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11 ABS TRACT

The 3ffects of systematically manipulating five physical features of random,

closed figures were d-termined. Subjects were asked to select one of four figures
presented as being least like the others. The five features investigated were:

"ii
number of edges, area, radial length variance, edge length variance, and orien-

S1 tation of the major axis. A five-factor, five-level, central-composite response

surface design wcs employed. The resulting regression equation indicated that

four features were reliable in their prediction of performance. Additionally several

interaction effects were found. The applicability of these data for computer

simulation is discussed.
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INTRODUCTION

The question of how man perceives form has held a prominent position in

* psychological thinking for a great many years. Beginning with William James

(1890) countless psychologists have philosophized, theorized, and experimented

on man's ability to perceive form. Zusne's (1970) review of the psychological

H literature or, form perception lists 2583 references, and the entire Gestalt school

Li of p.ychology is based on principles derived from form perception. In addition to

the work done by psychologists, a great many computer scientists and engineers

have worked on similar problems encountered in the attempt to perform pattern

recognition by machine. It is discouraging to note that the level of our under-

standing of man's perceptuul process is apparently inversely related to the amount

of work thti: has been done. Selfridge and Neisser (1960) have noted that the

inability fo simulate perception has severely limited progress towards computer

simulation of cognitive processes. As they note "... until programs to perceive

patterns can be developed, achievements in mechanical problem solving will

remain isolated technical triumphs [p. 601 ."

As Zusne's (1970) review indicates the difficulty is not a lack of psycho-

logical experimentation per se but rother -i lack of psychological model- amenable

to computer simulation. Theoretical formulations, :,'ch as the Gestalt principles

I of "good form" (law of Praegnanz), "good continuation," and "closure" (Koehler,

1929; Koffka, 1935), while clearly demonstrable, do not lend themselves to easy

implementation in a computer simulation.

Similarly data obtained using multidimensional scaling techniques (Kunnapos,

Malhammer, and Svenson, 1964; Nunnally, 1967; Torgerson, 1958), which attempt

to map the physical dimensions ,F figures (features) into a psychological space, have
1 failed to provide the information required for automatic pattern recognition. As an

example of the method, Stenson (1968) computed a number of physical features for

each of 20 figures then obtained subject ratings of judged similarity for pairs of

t - -
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figures. These data were analyzed using multidimensionaý s,'aling methods and

identified four factors (complexity, curvature, curvature disperdion, and straight-

length dispersion) which accounted for the majority of the variance. A number of

problems arise in this type of experimentation. First, the sample sizu of figures

is generally quite small yielding data which could potentially be unreliable.

Second, it is necessary to know the characteristics of the parent population of

figures from which the sample of figures is drawn (Brown and Michels, 1966; Brown

and Owen, 1967). Third, there is no agreement as to which scaling method

is most appropriate (Attneave, 1950; Hake, 1966). Additionally, the procedure

dces not yield appropriate information about the relative importance of the

resulting dimensions and, more importantly, no information about the interaction

of two or more features is provided. Indeed, it is entirely possible that an impor-

* tant physical feature might not appear to be important because of its interaction -A

Swith other features. A multiple regression approach, where subject performance is

described by an equation containing a series of weighted terms representing

individual physical features and combinations of features, would provide the type

of data needed for cognitive simulation. The resv,•rch of Maruyama (1971) is an

example of one technique of obtaining what is essentiully a linear regression

equation and because it served as the impetus for the study to be reported here
will be reviewed in some detail.

Maruyama was interested in obtaining a computer program that could

choose which of several presented shapes was least like the others (odd shape

detection). To accomplish this, he computed 22 features for each of the presented

shapes. For each feature, he determined the shapes that had the largest and

smallest feature value. The odd figure was then determined by finding the shape

that was extreme on the largest number of features. Initial comparisons of

computer performance and human subject performance on a seW of 20 test tricks

indicated a relatively poor correspondence. To make the maciine choice more

like average subject choice required that certain features be more heavily weighted

-SI



-3-

than others. This results in a procedure that amounts to the evaluation of a linear

regression equation of the form:

,k 0 r x 1  + x2  + ...+ x2 2

where x is the deviation of feature 1 for figure k from the average of feature 1

for all of the other figures being compared. The shape with the largest y would

then be chosen as the odd shape. Maruyama tried a number of weighting factors

and chose the one producing the closest correspondence with his subject data.

Although this basic approach of using a regression equation appears to

hold promise, a number of problems with Maruyama's procedure can be identified.

The first problem involves the use of a simple multiple regression formula as

opposed to a polynomial multiple regression equation which would include higher

order terms representing interactions among features. The second problem lies in

the method used to determine weights for the various features. Several potential
forms of weighting functions were defined and then linear programming techniques

were used to obtain the best fitting coefficients using subject data as the criterion.

The weighting function yielding the best correspondence with the subject responses

o was then kept. An obvious defici e!ncy is that only a smill number of all possible

weighting functions ccin be tested. This approach also requires a sample of test

figures that is large enought to represent adequately the population of figures towhich the final moael is to apply. Obviously, with only 20 trials the sampling

error will be too large for the final model to be reliable.

Potentially a much better approach would be to obtain subject data in

such a manner that a polynomial multiple regression equation could be obtained

and an analysis of variance performed on the beta weights to determine which of them

reliably contribute to the prediction of subject performance. The use of polynomial

regression allows the inclusion of the potentially important interactive effects,

and the abi!ity to aS-cs% the reliability of ^each term allows the resulting model to

retain only relevant effects.

°1
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Such a procedure was implermented in the present experiment. Prior to I!

experimentation, however, steps had to be taken to reduce the impossibly large

amount of data required to fit a complete polynomial for 22 fýatures. Two steps

were taken to affect this reduction. First, the number of fec ures was reduced to

five by carefully selecting features likely to be relevant. Sec,•nd, a response 11

surface methodology experimental design was employed. The next two sections

detail these steps and are followed by a description of the procedures used to

obtain test figures.

i I!

i !
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fl jSELECTION OF FEATURES j

A number of criteria were involved in the choice of which features would j
be manipulated in the current experiment. Because of the choracleristics of the

experimental design to be used, it was necessary that the features be orthogonal.

(That is, all possible levels of one feature could occur with any combination of

levels of the other features). The total number of features needed to be relatively

small to keep the number of experimental conditions reasonable. Previous research

and the features used there, needed to be considered wherever possible.

Because the task to be employed in the current study was to be the same as

that used by Maruyama (1971), the first step in the selection of features involved

a careful look at Maruyama's data. As indicated previously, Maruyama employed

22 features in hi- program, however, many of these were highly correlated with

one another. For example, perimeter divided by area, perimeter squared divided

by area, and perimeter divided by the square root of the area are all very closely

related to one another. As an orthogonal set of features was reqi•'red for this

study, additional information was necessary to determine which orthogonal subset

of Maruycma's features would be appropriate.

This additional information was obtained by asking a group of six subjects

to examine Maruyama's figures and choose the odd shape and the reason for their

choice. An examination of the reasons given for a particular choice of odd

shape revealed size, number of edges, and non-regularity of shape as the most

commonly given reasons. Next, for those sets of figures where at least five of

the subjects selected the same figure as odd, those features with the most extreme

values were identified. These are the features that would most influence the
JI

computer's choice of odd shape. Of the 20 sets of figures shown to the subjects,

nine met the above criterion. For these nine sets the most influential features

were the number of verticies or edz7es, the deviation in edge length, the radius

of a circle of equal area and the average deviation from this circle, the perimeter
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2
(P) divided by the area (A), P /A, P/V-/, and area. In terms of independent

i!

f.. -'@"s the above set would reduce to the number of edges, the deviation in

edg!. .gth, the area, and some measures of jaggedness.

The choice of an odd shape is bastcal ly a form discrimination problem, and,

therefore, the form perception literature employing discrimination tnsks should be
applicable. However, because the interactive effects of several features varying

simultaneously have not been systematically investigated, the literature is not as

helpful as would be desired. The number of edges in random po!ygons (Brown,

Hitchcock, and Michels, 1962; Coules and Lekarczyk, 1963; Crook, 1957) and

dispersion, symmetry, and elongation (Andrews and Brown, 1967; Boynton, Elworth,

Monty, Onley, and Klingberg, 1961; Boynton, Elworth, Onley, and Klingberg,

1960; Brown and LoSasso, 1967; Monty and Boynton, 1962; Zusne, 1970) have been

shown to affect form discrimination. Although little work has been done on area as

a feature, largely because a square is a square whether it is a large square or a3 small

square, severa, studies have demonstrated that the estimation of area is affected by

Sshape (Anastasi, i936; Bolton, 1897; Warren and Pinneau, 1955). The direction

and magnitude of the effect is not agreed upon, however. Although these studies

have employed simple grometric figures rather than random shapes, the possibil~tv

of area interacting with other features appears very likely.

Data from scaling experiments suffer from a number of problems, some of

which have been mentioned previously. Because of the diversity of tasks, figures,

and scaling methods used, it is difficult to compare one study with another (see

Zusne, 1970, 277-288). It is probably safe to say, however, that measurý-; of
jaggedness, complexity, compactness, anc' symmetry are likely to be important.

A common measure of jaggedness is P /A, although it can be demonstrated that

the variation in radial lengths from thf centroid to the verticies is very nearly

the same measure. Complexity is closely related to the number of edges although

the variance of the edge length and the variance of the radial length might also

influence judged complexity. An interaction of radial length variance and edge

length variance would likely affect judgment of compactness.

MINI
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The angular orientation of a figure in some cases will have no effect on

the perception of a figure, as would be the case if a square is rotated a multiple

of 90 degrees about its centroid. On the other hand, some changes in orientation

create dramatic changes in perception, as would be the case if a square were rotated -

45 degrees so that it is a diamond. Perhaps because of this equivocalness, rotation

has received little experimental study. Because of th's lack of data, the orienta-

tion of the longest axis f'rom a verlex through the centroid was considered to be an

important feature for study.

Based on the above considerations, a likely set of features to be included

in the present study would be the number of edges, the area, the variance of the

radial lengths, the variance of the edge lengths, and the angu!ar orientation of

the major axis of the figure.

-I ._
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EXPERIMENTAL DESIGN

The reduction in the number of features from 22 to 5 obviously redices isr

number of data collection combinations dramatically. However, even with five

features the number of required data points for a Factorial experiment can be

quite large. If each of the five features were tested at five different levels,

the number of treatment combinations would be 3125 for each replication. Whereas

it might be possible to test each of these combinations, alternative experimental

designs that could reduce this number would be extremely attractive. One such

alternative is response surface methodology (RSM) which was originally developed

for use in the chemical industry (Box and Behnken, 1960; Box and Huntei, 1957;

Box and Wilson, 1951). Because human subjects are considerably different in

response variability than are chemical reactions, current RSM work has investigated

the necessary. modificatiorns to the original RSM designs to allow their use in

behavioral research (Clark and Williges, 1971; 1973; Simon, 1970; Williges and

Simon, 1971).

As noted earlier the interaction of one variable with another can have

consideable effect on ,ubject response. However, when one begins examining

the higher-order interactions it becomes apparent that the additional precision

obtained by including the fourth- and fifth-order interactions in most cases does

not warrant the additional data collection. RSM designs take advantage of this

situation to reduce the data collection, while retainingr the abilily to assess the

lower-order interactions. Additionally the analysis procedure (Clark, Williges,

and Carmer, 1971) allows a determination of whether or not a higher-order

regression equation (say one that contains third-order interactions) is necessary

to describe the data. If higher-order terms are necessary, the additional data

can be collected and a new regression equation can be obtained.

The particular design used in this study was a five-factor, five-level

central-composite design consisting of 27 variable combinations. The variable

level combinations are given in Mills and Williges (1973).
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This particular design allows the determinction of a complete second-order

polynomial regression equation of the form:

y= + 81x1 + /2x2 + 3x + 8 4x4 + Bjx

+ 8x 2  2 2 2 + 0 x 2 A
6 1 + #7x2 +%Ax3 + "x4 ~'105J

1 + /•1 1xlx 2 + A1 2 xlx 3 + 13
13 xlx 4 + X 14 lX5

+ ,15x2x3 + ,1 6 x2x4 + P17x2 5 + 3x4I

1+ / 9 x3 x5 + '20x4x51

where
x is the number of edges,

x2 is the area,

x is the variance of the radial lengths,

x4 is the variance of the edge lengths, o nd

x is the angular orientation of the major axis.

5i
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The x values can be either in coded form or in real-world values. :or the design -A

being used the coded values ae -2, -1, 0, 1, and 2. The real-w,.-rld values

corresponding to these coded values will be discussed in the next section.

An analysis of variance performed on the above equation allows a determi-

nation of which of the 20 beta weights reliably predicts the ubject data. After
consideration of shrinkage discussed by Williges and North (1973) the entire design

was replicated to obtain estimates of error variance.

A total of ten subjects served in the experiment. Each san ten trials in

each of the 27 treatment combinations for a total of 270 odd figure judgments.

For each treatment condition the number of trials on which the subj ?ct selected

the test figure was recorded allowing a determination of the probability of detection

as the dependent variable.

To obtain the regression equation given above requires that the test figure 4
differ from the standard comparison figures only on those features being manipulated.

This means that of the four figures shown to a subject on any trial, three should be I
identical with respect to the five features under study. (This of course does not I..
require that the standard figures "look" the same, and indeed they do not.) For the

rresent study the standard figures were selected to have all five features at their

center value. In terms of coded values all features were at the 0 level so that the A

"regression equation reduces to y Q0 when all four figures have the same standardj j

features.

Specification of the experimental design determined the characteristics of I

the 270 test figures and the 810 standard figures. Generation of these figures 1
required a precise definition of the features and the development of algorithms

for computer solution.
-
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STIMULUS GENERATION

A number of methods for the generation of random figures exist (Attneave

Sanc 
Arnoult, 1956), however, most of these are more appropriate for hand cal-

culation than for computer generation. As the number of figures required for the

present study was quite large, computer generation seemed justified. The figures
used were random in the sense that the coordinates of the verticies were randomly

chosen from a 256 x 256 matrix of points. This excluded a random radial and

radial length approach as suggested by Thurmond (1966). Because one of the features

to be calculated from these figures involved the radial distance from the centroid

I of the figure to each vertex, it was necessary to constrain the figures in such a way

that all verticies were visible from the centroid. If such is not the case, some

radials may intercept an edge before a vertex resulting in more than one possible

value of radial length. Although an arbritary choice could be made in such cases,
instead the figure population was :imited to angularly simple figures. (See Maruyama

(1971) for a discussion of angularly simple figures and encoding processes).

Figure Algorithm

The following algorithm was employed to generate random figures:

1. Specify number of edges or vertices (NV)

2. Get a random x and y value for each of th3 NV verticies.

(Two psudo-random number generators were used, one

* I for x and one for y).

3. Calculate the center of mass for the vertex points.

j i (This serves as a first approximation of the centroid).

4. Move the vertex points so that the center of mass is the

t 1 0, 0 point.

5. Calculate polar coordinate radial angles for each vertex.

I
__ _ _ _ _ __ _ _ _ _ _ __ _ _ _
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6. Arrange the vertex points in descending order of their.ith !=
radial angles. (By so doing the i vertex can connect

to the +1 (Modulo NV) vertex with no crossing edges.)

7. Calculate the centroid of the figure and nev radial angles.

8. Check to see that the radial angle.; are still in descending

order. If not, the figure is not angularly simple and must be N

rejected.

Step 7 above involves calculation of the centroid which was obtained using

a stepwise procedure. To find the x value of the centroid, the left-most vertex is

found and used as a starting point. Moving to the right in steps of one, the area to

the left of a vertical line is accumulated, When the area is half of the total area,

the x value of the verticui line is the x coordinate of the centroid. A similar

procedure is used for the y coordinate.

The incremental area is calculated by determining the intersections of all

edges of the figure and the vertical line. Because there are checks on the line

;ntersecting a vertex, the number of resulting intersections must be an even number.

The table of intersections is arranged in descending order and the differences between

the first and second and third and fourth, etc. intersections are added to the accumulated

area.

The total area of the figure is determined by considering it as the sum of

NV triangles with one common vertex at 0, 0. The general equation for the area

of a triangle with verticies XlYl; x2 y2 ; and x3Y3 is:

A 1/2 xlY2 - x2 Y1 + x2y3 - x3Y2 + x3 y1 - xlY3

If x3 = 0 andY 3 = 0 as would be the case if one common vertex is at 0, 0 then

the previous equation reduces to:

A i/2 x1 Y2 - x2 Yl 
I

617
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and the area of a figure with NV edges would be:

NV-I I
Afig = 1/2 E (x~y. +1 - x. + IYd)) + (xNVYl - x1YNV)

Feature Levels

For each of the five features, five levels could be accomodat'id by the

experimental design. The choice was made to keep the figures relolively simple,

therefore, the levels were chosen as 3, 4, 5, 6, and 7 edges. TFe major axis

orientation variable levels were selested as 90 degrees right, 45 degrees right,

vertical, 45 degrees left, and 90 degrees left. The area was manipulated in

increments of 2000 units from 4000 to 12000. 1
The radial length variance and edge length variancue features were

calculated in a normalized form to make them independenr of the area. The

standard form of a variance is:

2 (X i=

N
T-2

where x. is the individual data point, A is the mean, and N is the number of points.
This particular equation is sensitive to the value of the mean, X. If the mean is

doubled, c,, would be the case if the size of the figure were doubled, then the i

variance is quadrupled. To compensate for this, the equation for variance was
2divided by (Ex.) resulting in the following equation

NV
2 N V* E x.

norm - -1(wx.)2

j where x. is the ith radial or edge length.
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In the absence of any previous data to suggest what levels of these two

variance measures to select, the choice was made to use the mean, the mean

: .5 standard deviation of the variance, and the mean * 1.0 standard deviation.

To determine the values of the mean and standard deviation of the distribution

of the features, 1000 figures were generated for each of the five numbers of edges i

and the required estimates were obtained. Table 1 gives the resu!ts of these calculations.

Table 2 summarizes the independent variable levels. Figures 1 to 5 show typical i
figures with each of the features manipulated over its five levels. In these figures

the remaining four features are or their center value. -

A

ii

I ! ! ! !
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NE =3 NE =4

LI NE =5

ifNE =6 NE =7

1!Figure 1. Typical test figures showing the effect of number of

p edges (NE).
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I.I

A 4000 A =6000 ]
I °

i!i

A A8000

Vt

ii
Ai A10,000 A =12,000

1 Figure 2. Typical test figures showing the effect of area (A).

I
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RV= .015 RV .064

RV= .112

RV= .160 RV .209

Figure 3. Typical test figures showing the effect of radial lengthl
variance (RV).
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EV .099 EV= .178

EV =.257

EV= .336 EV= .415

Figure 4. Typical test figures showing the effect of edge length
variance (EV).
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MA =900 MA 450

MA=0

MA =45 0 MA = 90o0

Figure 5. Typical test figures showing the effect of major axis orientation
(MA).
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TABLE I

Mean and Standard Deviation of Radial Length Varianc', and Edge Length Variance

Features as a Function of Number of Edges

Number Radial Length Variance Edge Length Variance
of I

Edges Mean Std. Dev. Mean Std. Dev.

3 .157 .107 .128 .094

.126 .107 .216 .141 I
5 .112 .097 .257 .158

6 .107 .085 .292 .161 1
7 .105 .076 .321 .173

TABLE 2

Real-World Factor Levels Corresponding to the Coded Levels of the Five Feature

Variables i

LUvels - I
Feature -2 -1 0 1 2

Number of Edges (NE) 3 4 5 6 7

Area (A) 4000 6000 8000 10000 12000 1

Radial Length Variance (RV) M-o M-.5ci M M+.5c M+a

Edge Length Variance (EV) M-c; M-.5a M M+5.5o M+

Major Axis Orientation (MA) + 90 + 450 0 -45° -90°
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Generation of Figures

For three of the independent vuriables any desired level can easily be

obtained. The number of edges variable can be specified and the area and major

axis olientation carn easily be fixed once the igure is generated. For the two

variance variables, howevi,, no easy procedure is available to change the value

once the figure is generated. Although inefficient, the method used here was to

generate a figure, check to see if the variance values obtained were ones that

were required. If not, another figure was generated. If the variance values were

as required the area and major axis were adjusted to their desired values and the

figure was saved on magnetic tape.

The area was adjusted by multiplying all radial lengths by a constant

determined by taking the square root of the desired area divided by the actual

area. The major axis orientation was fixed by rotating the figure about its

centroid. To determine the major axis, the lengths of all lines from a vertex,

through the centroid, to the intersecting opposite edge were calculated. The

longest of these was determined and the difference between the angle of the

associated vertex and the desired angle became the rotation angle.

Twc programs were written using this procedure, one for test figures and

one for standard figures. The standard figure program required 81 hours to execute

and checked over 56,000 figures to obtain the required 810 standard figures. The

test figure program was somewhat better requiring only 10 hours to obtaln 270

figuras.

Generation of Finni Stimulus Tape

Having obtained two tapes, one with test figures and one with standard

figures, it was necessary to combine these into a single stimulus tape that could

be used during actual experimentation. This step involved getting all figures

into "virtual memory, " randomly selecting a test figure, three standard figures,

and a position on the display for the test figure. Three pseudo-random number

generators were used to obtain the random number-s required. Offsets were added

j
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I I •o the coordinates of the raw figures so that one figure occupied each of the four
display quadrants. The final stimulus tape was generated in such a way that the

II figures were always displayed in the same order, regardless of which quadrant
contained the test figure. This was done to guarantee that any perceptable delay
in the generation of the experimental display would not provide the subject with

a clue to which position contained the test figure. Each raw test figure and

U1 standard figure was used only once. A typical experimental display is presented
in Figure 6. The scale in the plot has been adjusted so that the resolution shown in

ii IFigure 6 is the same as that on the display the subject observed.

I..
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EXPERIMENTAL PROCEDURE

Apparatus
*1

The experiment was computer controlled and used the trial information

stored on the stimulus tape. A Digivue plasma panel interfaced to the Raytheon

704 computer of the University of Illinois, Aviation Research Laboratory was used

J i to display the figures. This display is equipped with a touch sensitive input device

which was used to obtain the subject's response.

The experimental program was written in Fortran but made extensive use of

special Fortran-called Assembly language subroutines to perform special functions.

The program was written to allow a completely automatic experiment. Instructions

were presented on the plasma panel in text form. When the subject had finished

I lreadii.g, he went on to the experimental trials by touching the panel. The subject

could take as long as he desired to make the odd shape discrimination. When he

was ready to choose, he merely touched the desired figure. All data were collected

on magnetic tape for later analysis.

The experiment was run in two b~ocks with v short break in between. Half

of the subjects saw the first 135 trials firsi and half saw the second 135 trials first.

Subjects

Ten subjects served in the experiment, 8 male and 2 female. All were

members of the staff at the Aviation Research Laboratory and volunteered to be

subjects.
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ANALYSES AND RESULTS

For each subject and for each of the 27 conditions, the number of times

the subject chose the test figure was divided by the total number of trials to y.-eld

a probability of choosing the test figure. The pro'ability values were punched on

cards along with the appropriate independent variable information. The eet of

cards was used as input to the RSM analysis program (Clark, Williges, and Carmer,

1971) which produced the following equation:

PD = .253 +.027 NE -. 032 A +.036 RV -. 013 EV -. 006 MA
+.067 NE2  +.060 A2 005 RV2  +.036 E +.061 MA 2

+ 004 NE A -. 018 NE RV -. 028 NE EV -. 024 NE MA +.033 A RV

+.001 A EV ±.037 A MA +.020 RV EV +.012 RV MA -. 060 EV MA

where all independent variables are coded values (i.e. -2, -1, 0, 1, 2,) and

i PD = Probability oF correctly choosing test figure,

NE = Number of Edges,

A Area,

RV = Radial length Variance,

EV = Edge length Variance, and

MA = Major Axis orientation.

This is the best second-order polynomial multiple regression equation

relating the probability of choosing the test figure and the five independent features

for the present data. The multiple regression coefficient for this regression equa-

tion is .52.
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The analysis program also performs an analysis of variance to determine
2which of the above terms aie reliable. That analysis found NE, A, RV, NE

2 2 2A2, EV2, MA , A RV, A MA, and EV MA to be reliable (p<.05). Excluding A

those terms that were not reliable in the above equation a second analysis provided

the following regresiori equation:

PD= .253 + .027 NE - .032 A +.036 RV +.068 NE +.063 A2

+ .039 EV2 + 064 MA2+.033 A RV +.037 A MA -. 060 EV MA

The multiple regression coefficient for this second equation is .51. Because the

above equation uses coded independent variable values the P weights are directly

comparable. The analysis of variance program also partials the residual variance

into a subject term and a lack-of-fit term. Both of these terms were highly reliable

(p< .01). In terms of percent of variance, the regression equation accounts for 23.6

percent, the subject term 7.6 percent and the lack-of-fit term 8.6 percent.

The possibility that subjects were choosing the odd figure based on some

unanticipated, but apparent, feature was checked by analyzing common subject

responses. For each trial the total number of subjects selecting each of the four

possible figures was calculated, and the trials where all subjects made the same

response were found. A total of 11 trials were identified. Of these, seven were

ones on which all subjects selected the test figure, and four were incorrect choices.

An examination of displayed figures for these tria;s revealed no unusual figures or

features.

In interpreting the various terms of the regression equation it is important to

keep the characteristics of the experimental task. If a feature being manipulated

did indeed influence the subject's selection of odd shape, then the subject responded

to the difference in feature level between the standard figures and the test figure.

Because the standard figures all had features at the center level, a difference in

feature level was represented by the particular level of the test figure teature

level regardless of the sign of the coded value. For example, if the difference in
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number of edges influenced tne subjects selection of odd shape, then both a four-

and a six-edged figure would be judged odd with equal probability. The four-

and six-edged figures both differ from the standard five-edged figures by one edge

even though their coded values are +1 and -1. This sign independence manifests

itself in the regression equation by a significant squared term. Four of the five

quadratic terms were significant, indicating that the difference between standard

figures on these features were apparently being used by subject's in making their

choi ces.

The presence of a linear term indicates that subjects were more likely to

select a figure as odd if the feature were in one direction as opposed to the other

direction. The addition of a linear term to a quadratic term indicates that not

only does the difference in feature level affect choice, but also the direction of

the difference. Hence, the significant linear NE term indicates that subjects

more often chose a figure with six or seven edges "han a figure with three or four

ed,-cs. The linear by linear terms indicate the interaction of two features.

The intercept term gives the probability of choosing the test figure when

all four of the figures have exactly the same features. If these five features

adequately describe the figures then t+e subject must guess in this situation. With

four choices the a prior probability is .25, and this is the value obtained.
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DISCUSSION

The existence of four significant quadratic terms clearly indicates that the

number of edges, area, edge length variance, and major axis orientation features

predict subject choice of odd shape. Performance was progressively better as the
feature became more extreme. For example, the probability of detection equaled
.253 when the test figure had its major axis oriented vertically. When it was rotated

L 45 degrees from the standard figures, the probability increases to .317 but jumped

to .509 when the axis was rotated 90 degrees (all other features held constant at 0).

This result is consistent with typical psycr.ological studies which demonstrate that

discriminability is a function of the magnitude of the physical differences. The

probability of detecting a very small difference is quite low; but as the difference

becomes larger, the ability to detect the difference improves at an increasing rate.

Typically the probability of detection progressively improves until some asymptote

is reached after which no further improvement occurs. The value of the asymptote
in the most general case is one. When the physical differences reach a particular

value, performiance is perfect, and additional increases in the difference cannot

result in further performance improvement.

The quadratic terms in the regression equation imply that the probability

of detection will continue to improve with increasing feature level differences.

With a sufficiently large feature difference the regression equation will predict

a probability greater than one. This is an obvious physical impossibility and

demonstrates two characteristics of the equation obtained. First, prediction

beyond the levels of the experimental data is not likely to be valid; and, second,

higher-order terms will be required to obtain the expected asymptotic behavior.

Three features had linear effects. In the case of the number of edges

feature, the linear effect is positive, indicating that a seven- or six-sided figure

is more likely to be chosen as odd. Two possible explanations seem relevant.

First, a figure with more edges is generally judged to be more complex (Attneave,

1957; Stenson, 1966) and thus less amenable to simple classification with any of
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the other figures. On the other hand, a three-sided figure can easily be labeled as

a "triangle" and a couple of the five-sided standard figures classed as "triangle like"

resulting in a higher probability of wrong choice. The second explanation is more

artifactual. Because it was possible for a figure vertex to occur along the line

joining two other verticies, it was possible for a five-sided figure to appear as if

it had only four edges. It, of course, wcs also possible for six-edged figures to

appear as five. However, because many more standard figures were presented, the

subject was more likely to believe stand'ard figures could have four sides. The

possible resul- is that the number of edges variable was not effective when its

value was four. This could then account for the better performance at higher

values of NE.

The linear effect of area is negative indicating that figures with smaller

areas were more often chosen than those with larger areas. This effect is undoubt- I
ably due to the linear scale of area values. The smallest area was half of the

area of the standard figures while the largest was only 1 .5 times the standard. It

is well known that maximum discrimination between areas occurs when they are

scaled logrithmically. Hence, the use of ihe linear scale in the present case

made the smaller area much more discriminable.

The third linear term was one for which no quadratic term existed, which

indicates that subjects preferred a figure with a larger radial length variance as

their choice of odd figure. This can probably be interpreted in terms of the

probability of a localized feature such as a notch or teat. When the radial length

variance is small the figure tends to be more globular and the chance of getting a

distortion quite small. However, when the radial variance is large, the char1c!

of a local feature is much higher. In all probability subjects choose the figure with

a distortion as odd.

Three linear by linear interactions terms were also found to be reliable.

These were: area by radial length variance, area by major axis orientation, and

edge length voiiance by ma jor axis orientation. The first of these, arca and radial
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variance, supports the local feature argument above. Performance was best when

both the area and Ine radial variance were large or when both were small. When

the area is large, local features can easily be discerned. However, whei the figure

H• is small these local features are more difficult to find making radial variance less

important. This inreraction would also indicate that a large radial variance tends

to make a figure appear larger. Indeed, with respect to spatial extention a figure

with a large radial variance will be larger, e~ven though the area remains constant.

Radial length variance acts to enhance the effectiveness of the area feature.

w The interaction of area and major axis orientation appears to be a situation

J• where two cues are better than one. The larger the deviation of the major axis

and the area from the standard, •he higher the probability of detection. In all

probability higher-order interactions of these two variables will also predict

performance reliably.

The final interaction term, edge length variance by major axis orientation,

has a negative weight indicating that best performance is obtained when the two

features are at opposite extremes. With a minimum edge length variance perform-

ance is best when the major axis is oriented to the left of vertical. With a large

edge varirnce, figures tilted fo the right are preferred. This particular interaction

is difficult to understand since there seems to be little reason to believe that a

figure lying on its side to the right should be different from a figure on its side to

the left.

The regression equation obtained in the present experiment is certainly less

than an adequate description of subject performance for a couple of reasons. First,

the analysis of variance identified a highly reliable lack-of-fit term, indicating

that the second-order equation is not sufficient to describe the data. Second,

the reliable subject effect indicates that different regression equations may be
necessary for different groups of sub'ects.

In an attempt to reduce the lack-of-fit, selected higher-order terms were

included in the regression analysis. The analysis program allows a specification

of the particular terms that will be included in the regression equation. Two
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constraints on the specification are immediately apparent. The highest power to

which any variable can be raied must be one less than the number of levels of

ea,. variable, and is;e total number of terms must be one less than the number of

experinqental conditions. For the present study the highest order term would be

eighth-order and the maximum number of terms would be 26 (the 27th term is 8O).

However, if all 26 terms are specified, no degrees of freedom remain for the lack-

of-fit test. The practical limit on the number of terms is, thus, 25.

A serious problem presents itself when trying to fit selected higher-order

terms to data collected in accordance with a response surface design. A complete

eighth-order poiynomial regression equation contains a total of 3124 terms. Prob-

lems exist in selecting the specific partial regression terms to fit and in determining

when to eliminate a term from the analysis. Similar problems in linear regression

have lead to step-wise regression procedures (Ralston and Wilf, 1960) which checL•

all possible combinations of terms. In the present case, however, the number of

combinations of 3124 terms taken 25 at a time is staggering thereby making a step-

wise procedure impractical.

An investigation of all possible combinations of terms Is not necessary.

Because the particular RSM design employed consists, in puIi- of a half-replicate
5of a 2 factorial, a certain amount of intentional confounding exists. The fractional

factorial was selected to keep the first- and second-order effects unconfounded, but,

higher-order effects are confounded. Because of this confounding, if an improper

selection of third- or fourth-order regression term is made the analyses cannot be

performed, By examining these confounded effects an identification of those terms

that cannot be analyzed together may be obtained. Elimination of those combina-

tions reduces the number of possible regression equations that need be considered.

One of the reasons for checking all possible combinations of terms in a

stepwise regression analysis is the possibility that the significance of a particular

term will be influenced by the presence or absence of other terms. Due to the

characteristics of a RSM design, particular terms will be totally independent of

any other terms. This allows these terms to be tested for reliability only once,
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and a single decision about whether to keep or drop the term can be made. What

remains to be done is an identification of these terms as a function of the character-

istics of the experimental design. This identification combined with a development

of procedures to select appropriate higher-order terms will greatly enhance the

power of RSM designs.

These experimental design investigations were beyond the scope of the

present study and consequently no reduction on the lack-of-fit ter n was accom-

plished. Pending further RSM investigations, a third-ord-'[ C'eý*gn will be required

on further odd shape studies like the present one.

Another indication that the regression equation obtained could be improved

was provided by the reliable subject effect. This effect argues that different

subjects attend to different features. This belief is strengthened by the subjects

comments upon completion of the experimental session. For example, some subjects

said they paid no attention to the orientation of the figure while others indicated

that orientation was a strong criteria in their choice. Because each subject performed I

only once in the experiment, no data were available that would allow a separate

regression equation for each subject. Had each subject performed twice, reliability

measures on his performance would have been available and individual regression

eauations would have been possible. With such data it might be possible to separate

subjects into several different classes based on the features to which they attended.

A separate regression ,ruation for each class wuuld then provide a much better

description of subject behavior.

One serious oversight in the present study was a slight confounding of the

two variance variables with the number of edges variable. The mean and standard

deviation values used when the stimuli were generc-ed were dependent on the

number of edges the particular figure possessed. If these two features are to be

general characteristics they should be manipu!ated independently of any other

variable. An examination of Table I will reveal that the extent of the confounding

is relatively small, however, its existence undoubtably increased the lack-of-fit

term. Any further studies should correct this confounding.
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CONCLUSIONS

The primary purpose of the present study was to obtain psychological data

on human performance that would be suitable for computer simulation. Implicit

in this purpose is the necessity for obtaining estimates of the interactive ,ffects of

features. The regression equation approach adequately meets this requirement.

Given an equation such as the one obtained in this study a possible algorithm for

the simulation would be as follows:

1. Calcu!ate the five features for each of the four input

figures.

2. For each figure calculate the difference between its

feature levels and the average feature levels of the

remaining fi'jure-.

3. Evaluate the regression equation with these difference
1-

values inserted and chose the figure with the largest

result as the odd figure.

Because of the lack-of-fit and subject effect problems discussed previously,

the particular equation obtained is not as descriptive as would be desired. The

present study does, however, indicate the potential usefulness of the regression

analysis approach. Chief among the potential benefits is the ability to assess inter- .

actions among features. The present study only identified three such terms; however,

the inclusion of higher-order terms undoub,•ably will reveal a great many more.

Additional studies are required to investigate larger ranges of feature values

as well as additional features. These studies combined with investigations into the

RSM design and analysis problems identified will provide much improved data on

human form perception.
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