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CHAPTER I 

INTRODUCTION 

This report is concerned with the problem of calculating the drag 

force on an object moving in a gaseous medium. An important parameter 

that governs the properties of aerodynamic flows in rarefied gases is 

the Knudsen number K. This Knudsen number is defined as the ratio of 

the mean free path \  of the molecules in the gas and a length L which 

measures the size of the object.  In order to describe the aerodynamic 

processes when the Knudsen number is larger than unity, one needs to 

consider methods based on the kinetic theory of gases. That is, in 

rarefied gas dynamics, the drag force can be considered as resulting 

from collisions of individual molecules with the object. 

The regime in which the molecular mean free path is much larger than 

the size of the object, i.e. the limit of infinite Knudsen number, is 

usually referred to as the free molecular flow regime.  In this regime 

molecules that are reflected from the object collide on the average with 

oncoming molecules at large distances from the object.  Hence the process 

is here completely determined by the interaction of independent gas 

molecules and the object, while collisions between the molecules may be 

neglected. Aside from the detailed nature of the interaction between gas 

molecules and the object, the physics of the free molecular flow regime 
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is well understood and practical calculations abound in the literature. 

Reviews of Schaaf [1] and Schaaf and Chambre [2] give examples of free 

molecular flow calculations together with bibliographies. 

In this report we focus our attention on the nearly free molecular 

flow regime where the Knudsen number is greater than one, but definitely 

finite. For such flows the molecular mean free path is larger than a 

typical dimension of the object, but small enough so that collisions 

between the gas molecules cannot be neglected. 

The drag coefficient C of an object in a gas stream is defined as 

CD= I  ' (1-1} K 
where E is the magnitude of the force exerted on the object and U is the 

incident kinetic energy. In the nearly free molecular flow regime K «1 

the drag coefficient C may be written in the form 

c: = C +C,K_1+ ...     , (1-2) 
D    O  1 

where C is the drag coefficient in the free molecular flow regime 
o 

K -»-0 and C1 the coefficient of a correction term which is inversely 

proportional to the Knudsen number K. 

The drag force can be evaluated theoretically by solving the 

Boltzmann equation subject to the appropriate boundary conditions imposed 

by the presence of the object.  The Boltzmann equation is a nonlinear 

integro-differential equation that describes the rate of change of the 

single-particle distribution function f of a dilute gas [3] 

3f(r_,v;t)   ^     3f<? ,v" ;t) 

—St + V—^—  =J(ff>       • a"3> 

where r , v. represent the position and velocity of a molecule labeled 1 
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and where Jtffl is a collision term containing a time independent integral 

operator acting on the function f(r ,v ;t). The term J(ff) accounts for 

the change in f due to binary collisions between the molecules and the 

gas. An approximate solution of the Boltzmann equation was obtained by 

Liu et al. for a sphere in a gas stream of Maxwellian molecules, i.e. 

molecules that repel each other with a force that varies as the inverse 

fifth power of the intermolecular separation [4]. 

Since it has proven to be difficult to solve the full nonlinear 

Boltzmann equation, some of the more authoritative studies are restricted 

to flows at low velocities where the linearized Boltzmann equation may be 

used [5]. Many authors have replaced the Boltzmann equation with a model 

equation proposed by Bhatnagar, Gross and Krook [6]. 

if. + t. M = V(f -f) , (i-4) 
3t   1 ^    o 

where f is the local Maxwell distribution and v an adjustable parameter 

representing a velocity independent collision frequency. Willis has solved 

the BGK equation using a Knudsen iteration method [7].  Rose has used a 

Fourier transform technique to deduce the drag from the BGK equation [8]. 

Cercignani and coworkers have evaluated the drag of a sphere from the BGK 

equation using a variational method [9]. For a review of the use of the 

Boltzmann equation and the BGK equation in rarefied gas dynamics the 

reader is referred to the books of Kogan [10] and Cercignani [11]. Although 

judicious application of the BGK equation has yielded some encouraging 

results, the model equation does not have any really predictive power [12]. 
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Another approach, encountered in the literature, is the first col~ 

lision model. The first collision model assumes that the drag on the 

object is the sum of the free molecular flow drag C and a correction 

term which results from collisions between molecules reflected from the 

surface of the object and molecules in the incident beam. It was used by 

Lunc and Lubonski [13] for calculating the drag of a strip, by Baker and 

Charwat [14] for calculating the drag of a sphere, and by Perepukhov for 

calculating the drag of a sphere and a cone [15]. The first collision 

model is a phenomenological theory and it is not derived from first 

principles. Clearly as the Knudsen number decreases, more and more colli- 

sions between molecules must be considered. 

A systematic approach to account for the effect of molecular colli- 

sions on the drag was developed by Dorfman and coworkers [16,17].  In 

this approach the object is treated as a heavy particle and the dynamical 

evolution of the system of gas and object is treated with the aid of 

the same techniques used earlier to derive the generalized Boltzmann 

equation for a moderately dense gas from the Liouville equation. In 

general the theory leads to a density expansion for the drag force on the 

object. In the limit that the mean free path of the molecules is large 

compared to the size of the molecules themselves, this expansion reduces 

to an expansion in the inverse Knudsen number. The coefficients in this 

expansion are given by integrals related to sequences of successive 

collisions among the molecules and the object. The same collision inte- 

grals can also be obtained by solving the Boltzmann equation with a 

modified Knudsen number iteration procedure as shown by Kelly and Sengers 

[18].  The derivation of the collision integrals for the first inverse 

10 
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Knudsen number correction term in (1-2) is reviewed in Chapter II. A 

preliminary analysis of the collision sequences that enter into the 

evaluation of the coefficient C. in (1-2) was made by Kuperman [19]. 

In principle, our method of calculating the drag coefficient from 

collision integrals can be applied to objects of any shape in a gas 

stream of molecules with any interaction potential of finite range 

given the interaction mechanism between the molecules and the object. 

However, in our current studies of the nature of the collision integrals 

we have introduced the following approximations: 

1). The molecules that strike the object do not stick to it, but are 

re-emitted after a time short compared to the mean free time of 

the molecules. 

2). The molecules are re-emitted diffusively with a temperature T 

corresponding to the temperature of the object which is assumed 

to be the same as the temperature of the molecules in the gas 

stream. We are thus neglecting any heat transfer effects. 

3). The molecules in the gas stream are assumed to interact as hard 

spheres with mass m and diameter a. 

The drag force on the object not only depends on the Knudsen 

number of the system, but also on the Mach number of the gas stream. 

The Mach number M is defined as the ratio of the flow velocity V relative 

to the sound velocity. For the problem at hand, instead of the Mach 

number, we find it more convenient to use as a parameter the speed ratio. 

The speed ratio S is defined as the ratio of the flow velocity V relative 

1/ 
to the thermal velocity (2kT^h) *, where k is Boltzmann's constant: 

1/ 
S = V(m/2Mf) 2. (1-5) 

11 
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The speed ratio S is directly proportional to the Mach number M 

S = M(Y/2)^ , (1-6) 

where Y is the specific heat ratio Cp/cy [1]. 

In a preceding research effort Kuperman analyzed the collision 

integrals in the limits of zero and infinite Mach number [19]. The 

research effort reported here is concerned with a study of the feasibility 

of evaluating these collision integrals for all Mach numbers or speed 

ratios. In particular, we shall present results obtained for the drag 

coefficient as a function of the speed ratio for a disc and a sphere 

in Chapters III and IV, respectively. We were informed at the initial 

stage of this research effort that Willis had obtained from the Boltzmann 

equation a completely analytic solution for the drag coefficient of a 

disc in the infinite Mach number limit [20,21]. Therefore, by applying 

our method to a disc we shall be able to compare our method with that 

of Willis without any uncertainty associated with the finite precision 

of any numerical quadrature method and to extend his result to finite 

Mach numbers. The sphere drag was selected since we had previously 

studied the sphere drag in the zero and infinite Mach number limit [16,19] 

and since other investigators have studied the sphere drag by approxi- 

mate methods [4,7,8,14,15]. 

12 



AEDCTR-74-79 

CHAPTER  II 

DERIVATION OF COLLISION INTEGRALS FOR THE DRAG FORCE 

IN THE NEARLY FREE MOLECULAR FLOW REGIME 

2.1 Introduction 

A theory of the force on an object in a gas stream in analogy 

with current procedures in the kinetic theory of moderately dense 

gases was proposed by Dorfman and Sengers [22] and formulated by 

McClure and Dorfman [17]. It is the purpose of this chapter to review 

the theory and to derive the general form of the collision integrals 

for the first inverse Knudsen number correction to the drag force. 

These formulas will then be analyzed and evaluated as a function of the 

speed ratio in the subsequent chapters. 

Let us consider a system of N gas molecules and a macroscopic 

object in a volume ß. The object is at rest and located at the origin 

of the coordinate system. We shall consider the limit in which the ra- 

tio of the mass of the object and the mass of the molecules becomes infinite. 

The momentum and position vectors of molecule i are indicated by p. and 

-»• 
r , respectively. The total momentum of the gas at time t is given by 

P(t) => p±(t)  . (2-1) 

This chapter was prepared in collaboration with Professor J. R. Dorfman, 
Dr. C. F. McClure and Dr. W. A. Kuperman [17,19]. 

13 
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In order to evaluate the total momentum we use the methods of non- 

equilibrium statistical mechanics with the state of the gas being 

characterized by an N-particle distribution function D„(T ;X;t). Here 
N N 

T„- (x.,. ..x.-) = (p. ,r,,.. .p„,r„) represents the 6N-dimensional phase space 
N    1     N    IX     N  N 

of the gas, X denotes the macroscopic object and D„(T ;X;t) is defined 
N  N 

such that D„(r ,;X;t)dr is the probability that the phases of the particles 
N  N       N 

in the presence of the object will lie between I\ and T + dT at time t. 
N     N     N 

The distribution function is normalized such that 

/drN DNtrN;X;t) " 1* <2"2> 

-*■ 

The expectation value <P(t)> is then determined by 

N 

<P(t» = fdrN2l.DN(rN;X;t) . (2-3) 
i=l 

Neglecting wall effects that disappear in the thermodynamic limit 

(N-x», ßx», N/ß=n), the force E(t) on the object is equal to the negative 

of the time rate of change of this total momentum [17] 

E(t) = - g| < P(t)> . (2-4) 

The time evolution of the N-particle distribution function 

D
N(rN;t) in the absence  of. a foreign object is governed by the Liouville 

equation 

It VrN;t) + hl(xl---V DN{rN,t} = ° {2-5> 

where L is the Liouville operator 

14 
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N  _,. . N 

(2-6) ^■•■^■Xi-fc-ZI«« 
i=l     ri  i<j 

Here 6  is a differential operator 

34»*.: 9    3$..  3 

i:   tf±  3p;  3r.   ajj 

where ♦ j a — ^^rii^ = ^Uri~r<*l) *s t*10 intermolecular potential between 

molecules i and j. The solution of the Liouville equation (2r5) may be 

written formally as 

DN(TN;t) = e_tLNö,N)DN(rN; o)   . (2-8) 

In the past decade methods have been developed for the evaluation 

of the average value of a phase function A(x,...x ) 

<A> -färv A(rN)Dh(rN,t>   . (2-9) 

In particular, Cohen and Green have formulated a cluster expansion of 

the streaming operator exp(-tLN) that leads to a density expansion for 

<A> [23,24].  In order to apply the same method to the drag problem we 

need to extend the concept of streaming operator or time-displacement 

operator to a system of molecules in the presence of a foreign object. 

2.2 Time Evolution of a System of Molecules in the Presence of an Object. 

A description of the time evolution of a system of molecules in the 

presence of a foreign object must take into account the fact that the 

interaction of the molecules and the surface of the object is usually of 

a stochastic nature. A suitable time-displacement operator for such a 

15 
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system was formulated by HcClure and Dorf man [17]. 

Let IT , „.(rjrt'lr.-t) be the transition probability density that 
t —t  N    N 

takes the system from the phase I" at time t to the phase T' at time t\ 

The average total momentum of the system is given by 

<P(t)> - /dT $tT)   DN(rN;X; t), C2-10) 

J Ja* 
where P(Tta) = > P.. In terms of the transition probability II we may 

N   j .  i » 

<?(t)> = JdTN pcr^Jdr- ntcrN,t!r^oiDN(r-,x,( 

rewrite (2-10) as 

>,0)        .       (2-11) 
n     JN 

Introducing a time displacement operator as 

rtS(r.) =ydrN?(rN)Ht(rN;t|r-;o)       . (2-12) 

(2-11) becomes 

<P(tl> = /dr« DN(r»;X;0) Tt PtfjJ ) . (2-13) 

In order to formulate the time-displacement operator T   we need to 

specify the interaction between the molecules and the surface of the 

object. For this purpose we assume that a gas molecule after colliding 

with the object with an incoming velocity v, will be re-emitted from 

the surface with a velocity v' with a probability n(v'|v)dv'. We 

assume that all molecules impinging on the object will be re-emitted 

again, so that the transition probability is normalized as 

fdv" n(v*|v)= 1 (2-14) 

To account for the interaction of a molecule, labeled 1, with the 

surface of the sphere it is convenient to introduce an operator T(l-X), 

defined as [17,19] 

T! 

v.n<o 

fi 

(1X)=  /dv'/dA n(v'|v)   |v-ü|  63 (r-R) (f^-1)   , (2-15) 

16 
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-»■ 

Here it is assumed that the molecule with incoming velocity v 

strikes the surface of the object at the position R inside the two- 

-»■ » -»■ -*■ 

dimensional surface element dA.  The symbol 6 (r-R) represents a three- 

dimensional delta function. The operator R is a rotation operator that 

transforms the velocity v before  the collision into the velocity v' after 

the collision of the molecule with the object. The vector n is a unit 

vector in the direction of the outward normal and the condition v»n<o 

indicates that the molecule strikes the surface from the outside. The 

integrations extend over all velocities v' and over the entire surface 

of the object. 

We shall refer to T(1X), defined in (2-15), as the binary collision 

operator for a molecule and the object.  It may be considered as the sum of 

two operators 

T(1X) = TX(1X) + Tn(lX) , (2-16) 

where 

T^lx) = Jdv'/dA nCv'|v)|v-n|6
3(r-R)RR , (2-16a) 

-»■ ^ 

vn<o 

Tn(lX) = -j dA|v-n|63(r-R) . (2-16b) 

-*- « vn<o 

The meaning of the operators T (IX) and T (IX) is illustrated in Fig. 1. 

In this figure the circle indicates the surface of the object and the lines 

represent the trajectory of the molecule. The operators T (IX) and T (IX) 

are only different from zero, if the molecule impinges on the object. The 

operator T (IX) transforms the incident velocity v =v of the molecule into 

-*■ 

the velocity v' of the molecule after being re-emitted from the object, 

taking into account the appropriate probability distribution for v'.  We 

17 



AEDC-TR-74-79 

OBJECT 

T (IX) Tn(IX) 

(o) (b) 

Figure 1.  Schematic representation of the trajectory of a molecule 
in the presence of the object. 
(a). An "interacting" collision with the object. 
(b). A "non-interacting" collision with the object. 

18 
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refer to this process as an "interacting" collision between the molecule and 

the object as shown in Fig. la. The operator T (IX) requires also that the 

molecule collides with the object, but it does not change the velocity v. 

The operator Tn(lX), therefore, corresponds to a "non-interacting" collision 

in which the velocity of the molecular after the collision is equal to the 

velocity prior to the collision, as shown in Fig. lb. 

The operator T(1X) is a generalization of the binary collision opera- 

tors T(ij) introduced by Ernst et al. to describe the interaction between 

two hard sphere molecules [25]. These binary collision operators T(ij) 

were defined as 

T(ij) = T^ij) + Tn(ij) , (2-17) 

where T (_ij) corresponds to an interacting collision between two hard 

sphere molecules i and j 

T±(ij) ■oa/*ij^ij"3ijlöi(?ij-0IJ>Ra       , (2"17a> 
v. . »a..<o 
ij    ID 

and T   (ij)   corresponds to a non-interacting collision between two hard 

sphere molecules 

Tn(ij) = -^J ^±i\tLya±t\&3(r±i-a±i)    . (2-l7b) 

V. . 'O..<o 
ID  ij 

-v -*■•*■      -»-  ->--*■ 

Here v =v.-v., r. .=r.-r. are the relative velocity and position of the 

two molecules, a  is the diameter of the molecules and a.. is the perihelion 

vector of the collision between molecules i and j (= vector from center of 

j to center of i at time of contact). The rotation operator Rn   . transforms uij 
■*■-*■. -»■-»■ 

the velocities v., v, pvxov  to the collision into the velocities v!, v! 
i  5 i  3 

after  the collision 

In this report a symbol a always indicates the unit vector in the 
direction of the vector a". 
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V! = R_  V.= V.— (V. .'8. ,)d. . , 
i  q  x  i  ID ID ID 

"*■.   o  ■*"  ■*  , #*  ft  \*> (2-18) v! = R.  V.= V. + (v..«8..)9.. . 
D   CT. . D  D    ID  ID  ID 

The properties of these binary collision operators were discussed in 

detail in previous reports £26,27]. 

As shown by McClure and Dorf man [17] and also discussed by Kuperman 

[19] the time-displacement operator, defined in (2-12), can be expressed 

in terms of these binary collision operators as 

N 

f, (1 N;X) = et[vIT(kX)] 
(2-19) 

k=l 
where G„ is the same resolvent operator as used in AEDC-TR-72-142 [27] 

N 

h • Sr.*5Ü?<«> V1'—"• -Z » • w^iiT'13'   • (2"20) 

In the absence of the object the time-displacement operator reduces to 

Tt<l,...N) = e^N  . (2-21) 

The explicit expressions (2-17) for the binary collision operators 

T(ij) refer to a gas of hard spheres. However, the crucial assumption 

enabling us to represent the time-displacement operators by (2-19) and 

(2-20) is the assumption that the size of the molecules is small com- 

pared to the mean free path.  Since we shall apply the theory to the 

case that even the macroscopic object is small compared to the mean 

free path, this assumption is satisfied for any gas of molecules with 

finite interaction range.  Therefore, we may use (2-19) and (2-20) to 

represent the time-displacement operator for any gas of molecules in 

the nearly free molecular flow regime, provided that the hard sphere 

cross section in (2-17) is replaced with the actual cross section of 

the molecules under consideration. For the same reason we do not 
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distinguish between T(ij) and T(tj) operators as was needed in the theory 

of transport properties of moderately dense gases [27]. 

2.3 Cluster Expansion. 

According to (2-4) and (2-13) the force E(t) on the object is 

■(t)" * §7 I tf« DM<rM,x'0>    T  Uf ...mx)   P(r   )     . (2-22) at f   N  N  N t N 

Using the form (2-19) for the time-displacement operator T we thus obtain 

E(t) = -/dTN DN(rN;X;0) 7"^+Jj*™] *     • <2-23) 

The operator G is associated with the streaming of the molecules without 

any interactions with the object. In the absence of the object the total 

momentum P is conserved, so that G„ and P commute: G„P* = PG„ = 0. • Moreover 
N N      N 

T(kX)pÄ = 0 for Jt+k and   (2-23)   becomes 

= "Xl^N DN(IVX;0) T
t(1"-"N;X>T< 

k=l / 

,i-l,i+l,....N) 

E(t)   = - 7   /dTXT D„(r„;X;0)  T4.(l,...,N;X)T(kX)pk       , (2-24) 

which for a gas of N identical molecules reduces to 

E(t)= -N/dTN DN(r-NjX;0)  Tt(l N|X)T(1X)51 • (2-25) 

We now write the time-displacement operator 7" (1,...N;X) in the form 

of a cluster expansion [17,19]. 

Tfc(l,...,N;X) = Ut(l)Tt(2,...,N;X) + Ut(l;X)Tt(2,...,N) + 

+ X fut(li)T"t(2,...fi-l,i+l N;X) + Ut(li;X)Tt(2, 

+ . . . +U (1,...,N;X)   , (2-26) 

Here we are introducing Ursell operators defined by 

Ut(l) =Tt(l) , 

Ut(l;X) =Tt(l;X)- Tt(l)  , 

utd2) =rt(i2)- Tt(urt<2) 

Ut(12;X) - Tt(12;X)- Tt(l;X)Tt(2) ~ Tt(2;X)T (1) 

- Tt(l2) + 2 Tt(DTt(2) 

. . ., etc. (2-27) 
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We substitute the expansion (2-26) for the time-displacement operator 

T  (1,...N;X) into the expression (2-25) for the drag force. Since 

the T operators in (2-26) do not affect the momentum p of molecule 1, 

we obtain 

(t)= -NfdrN DN(TN;X;0) |{Ut(l) ♦ Ut(l;X) } + 

+ (N-l) (ut(12) +Ut(12;X)}+ . . .+ 0.(1,.. .N;X)]T(1X)P, , (2-28) 

where we have again used the fact that the gas consists of N identical 

molecules. Introducing reduced distribution functions defined as 

F s(xl,...,Xg;X;t) = ßS/dxs+1...dxN DN(rN;X;t)  , (2-29) 

we obtain in the thermodynamic limit N*°°, ft*», N/CJ=n 

E(t)= -nfäxx F1(x1;X;0)   [Ut(l)+Ut(l;X)]T(lX)p1 + 

-n   fdx1äx.2 F2(xirX2;X;0)[UtC12)+ Ut<12;X)J  TdX)^ + 

+  .   .   . . (2-30) 

This expression relates the force to the distribution functions 

F (X....X ;X;0) at the initial state. Following HcClure and Dorfman 
si   s 

we assume that the initial state is unaffected by the presence of the 

object 

F   (x,...x  ;X;0)   =F   (x,...x ;0)     . (2-31) sis sis 

We also introduce the usual assumption that the molecules are un- 

correlated initially, so that F (x.—x ;0) may be approximated by a si        s 

product of single-particle distribution functions 

F   (X....X ;0)   =\     F.(x.;0)     . (2-32) si s 111 i=l 
The extent to which this assumption is justified has been discussed by 

Dorfman and Cohen [28].  In the absence of the foreign object the time- 

displacement operator T (1,,..N) may be reversed in time? therefore 

the single-particle distribution function F (x ;t) in the absence of 
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the object may be written 

(x1?t) =fildx2...dxNT_t(l,...N) DNCTN;X;0)  , F (x,;t) = fi|dx^...dx_T ^(1,...N) D„CT„;X;0)  , (2-33) 

or with (2-26) and (2-29) 

F1(x1;t) - U^l) F^x^O) + nrdx2U_t(12)F2(x1,x2;0)  + . . (2-34) 

t 
Using (2-32) we can invert (2-34) to yield an expansion for F (x ;0) 

?1(x1;t) -nU+t(l)/dx2U_t(12)TTü+t(i)F1(xi; F^x^O) = U+t(l)F, (x, ;t) -nU_(l)|dx^U _(12) | | U_(i)F, (x,; t) + 

+ . . . (2-35) 

Substitution of (2-31),(2-32) and (2-35) into (2-30) yields a density 

-»■ 

expansion for the force E(t). 

-*■ 

In this report we consider the drag force E in the steady state 

which corresponds to the limit fc**°.  In this limit the gas is in 

equilibrium in the absence of the object and the single-particle dis- 

tribution function F (x.;t) becomes independent of the position-r. and 

time t and may be represented by a displaced Maxwell distribution 

- + .% . mtW 
lim F   (x.;t)  =F(v.;V)   =  (2mnkT)     2e 2kT . (2-36) 
t»    111 ^ 

In this limit we obtain for the density expansion of the force E on the 

object 

IX <t), E = lim ^,E„,(t), (2-37) 
t*00 a 

where, for the purposes of this report, we consider only the first two 

-»■    -*■ 

terms E and E,. 
o     1 

E 
o (t)—n/d^ F(vi;V){Ut(l) + Ut(l;X)>T(lX)p1 , (2-38a) 

1Ct)=-n
2/dx1dx2 F(v1;V)F(v2;V){Ut(12) + Ufc(12;X) ^(lX)^ + 

n2/dx1dx2[Ut(l)U_t(12)F(v1;V)F(v2;^)] {Ut(D + Ufc(l;X) }T(lX)pr(2-38b) 

t The operators U (l...s) do not involve the object and the corresponding 
time reversed operators U (l...s) are well defined. The operators 
U (l...s;X) on the other hand depend on the stochastic interaction of 
the molecules with the object and therefore cannot be reversed in 
time [17]. 
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Here we use the convention that operators inside the square brackets [ ] 

do not operate on terms outside these brackets. In deriving (2-38) use 

is made of the fact that U (r)F(v.;V) = F(v.;V).  Since the adjoint 

operator (n . (1)U A12))f =  U  (12)U  (1) and since Ü .(1)U,. (1) = 1, 

(2-38b) reduces to 

E^t) = -n2jdxiax2  F(v1;V)F(v2;V){Ut(12;X)-Ut(12)U_t(l)üt(l;X)}T(lX)5i. 

(2-38c) 

2.4 Binary Collision Expansion 

The various terms E (t) in the expansion (2-37) for the force E 

contain the dynamics of a+l molecules and the object. When the density 

of the gas is sufficiently small so that the mean free path is large 

compared to the size of the molecules we may neglect the probability that 

two collisions occur simultaneously and the dynamical processes reduce 

to sequences of successive collisions among the molecules and the object. 

In order to classify the various collision sequences that contribute to 

the drag it is convenient to represent the time-displacement operators 

T (l...s) and T (l...s;X) in terms of a binary collision expansion. 

A precise formulation of the binary collision expansion for the 

time-displacement operator of a gas of hard spheres in the absence of 

an object was developed by Ernst et al. [25]. The extension of this 

procedure to the time-displacement operator in the presence of the object 

was formulated by McClure and Dorfman [17] and further discussed by 

Kuperman [19]. Following these authors we note that the time-displacement 

operator (2-19) has the form 
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rtd...s) = .tiLMi...■)«(!....ix>] f (2.39) 

where 

L-U...S) -Y 21. • §=. (2-40) 

and 
s 

K(l...s;X)= yy1^^) + VT (kX) . (2-4U 

i<j       k=l 

The time-displacement operator satisfies the relation 

T, - S.° + IdT S? _ K T_ , (2-42) rt * S+; +fdT  St-T K TT ' 
where S° is the streaming operator representing the free streaming of 

the molecules without any interactions 

Sj.(l...s) = e'tL°{1-"s). (2-43) 

The binary collision expansion is obtained after successive iteration 

of (2-42) 

t t        Tj. 

T4. =  S°   +/dT.   S»  _  K S«     +  IdT    /dT     S»  _  K S° K S»   +   .   .    . (2-44) t t    J       1     t-Tx       Tx    J     1J      2     t-T1       Tl-x2       T2 
o o o 

Introducing the convolution product 
t t 

f * g = AT f(T)g(t-T) = AT- f (t-T-)g(T') , (2-45) 

o o 
where f(t) and g(t) are functions of the time t, the binary collision 

expansion (2-44) may be written as 

T  = S° + S°*KS° + S°*KS°*KS°+ . . . (2-46) 

The operator K represents a collision either between two molecules 

or a molecule and the object and the operator S° represents the free 

streaming of the molecules between collisions. Thus the terms in the 

binary collision expansion (2-46) correspond to sequences of zero, one, 

two, etc. successive collisions among the s molecules and the object. 
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However, only those teams in (2-46) will be different from zero which 

correspond to sequences of collisions that are permitted by the laws 

of mechanics. The number of physically possible sequences of collisions 

depends on the geometry of the object. In this report we shall limit our 

considerations to convex objects. A molecule emitted by a convex object 

cannot return to the surface of the object unless it first collides with 

another molecule, so that 

S°*T(iX)S°*T(iX)S° = 0. (2-47) 

2 
Furthermore, the expansion parameter is the inverse Knudsen number na L, 

where L measures the size of the object. Terms in (2-46) that contain 

more than one binary collision operator corresponding to a collision 

between two molecules may be neglected since they are of higher order 

in ncr . A complete list of the combinations of binary collision operators 

that yield vanishing contributions was presented by Kuperman [19]. 

Substitution of (2-27) into (2-38) yields 

-»■ 

E (t)= -n/dx1 F(vi;v) Tt(l;X)p1 , (2-48a) 

E1(t)= -n2/dx1dx2 F(vi;V)F(v2;V) (2-48b) 

.{Tt(12;X)-T't(l)Tt(2;X)-rt(l;X)Tt(2)-rt(12)+2Tt(l)Tt(2)}T(lX)J1. 

Introduction of the binary collision expansion (2-46) into (2-48) then 

leads to [17,19] 

->       /*"*■"*■     "*■ 

EQ(t)= -n/ö^ F(vi;V)T(lX)p  , (2-49a) 

Ex(t)= -n"Jdxiax2 F(vlfV)F(v2;V)    CB3+B  )     f (2-49b) 

with 

?3=  S°*K(12;X)S°*K(12;X)ScT(lX)p     , (2~50al 

B4= S°*K(l-2;X)S°*K(12;X)S0*Ka2;X)SoT(lX)p     . (2-50bl 

26 



AEDC-TR-74-79 

For convex objects the binary collision expansion of E terminates after 

the first term at a result of (2-47) and the binary collision expansion 

of E terminates after the second term as shown by Kuperman [19]. If 

we substitute K(12;X) * T(12)+T(1X)+T{2X) into (2-50) and omit all 

-*-    -»■ 

vanishing terms, B and B reduce to 

B3= S°*{T(1X)+T(2X>}S
0
*T(12)S

(,
T(1X)P  , (.2-51a) 

B4* S
o*fT(lX)So*T(2X)+T(2X)S0*T(lX)}So*T(12)S°T(lX)p .      (2-51b) 

Since we may interchange the integration variables x and x , we adopt 

the convention that molecule 1 is identified as the molecule in the left 

most T(iX) operator, i.e. molecule 1 is the molecule that collides 

initially with the object. We may therefore replace (2-51) with 

B = S°*T(lX)So*T(12)S0{T(lX)+T(2X)}{p1+p }, (2-52a) 

B4= S°*T(lX)S
0*T(2X)S°*T(12)S0{T(lX)4T(2X)Hp +pj.        (2-52b) 

The term B accounts for the effect of sequences of three  successive 

collisions among two molecules, molecules 1 and 2, and the object, and 

the term B is related to sequences of faux»  successive collisions among 

two molecules and the object. A complete classification of these collision 

sequences was made by Kuperman [19]. In order to enumerate these collision 

sequences, we use (2-16) and (2-17) to express B and B more explicitly as 

■*•       i      i •+ 
B3 = S°* T (1X)S°*T (12)S°T(lX)p + (Rl) 

+ S°* Tn(lX)S0*T1(12)S°T(lX)pl+ (R2) 

+ S°* T1(lX)S°*T1(l2)S°T(2X)p2+ (ci) 

+ S°* Tn(lX)S°*T1(12)S°T(2X)p2+ (C2) 

+ S°* Ti(lX)S°*Tn(12)S°T(2X)p + (HI) 

+ S°* Tn(lX)S°*Tn(12)S°T(2X)p , (H2) (2^53,) 

and 
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ft    = s0*T1ClX)S0*T:LC2X)So*T1C12)S0TtlX)p1+ (R1C1) 

+ S0*Tn(lX)S0*T1(2X)S0*TX(12)S°T(lX)p + (R2C1) 

+ S°*T1tlX)S0*Tnt2X)S0*TXC12)S°TClX)p + (R1C2) 

+ So*Tn(lX)S°*Tn(2X)S°*T:L(12)S0T(lX).P1+ (R2C2) 

+ S0*T1(lX)S0*Ti(2X)S0*TX(12)S°T(2X)p+ (C1R1) 

+ S0*Tn(lX)S°*T1C2X)S°*T:La2)S0T{2X)P2+ (C2R1) 

+ S0*T1(lX)So*TnC2X)So*Ti(12)S°T{2X)p + (C1R2) 

+ S0*Tn(lX)S°*TnC2X)S°*T:L(12)S0T(2X)p2+ (C2R2)   . (2-54) 

-»- 
According to (2-53) B can be decomposed into a sum of six terms 

corresponding to six different types of sequences of three successive 

collisions among two molecules and the object. In analogy to the 

previous work of Sengers [29,30] we refer to these sequences as Rl and 

R2 (recollisions), Cl and C2 (cyclic collisions) and Hi and H2 (hypothe- 

tical collisions). These collision sequences are represented by the six 

diagrams in Fig. 2. In these diagrams the lines with- labels 1 and 2 indi- 

cate the trajectories of molecules 1 and 2. The vertical line represents 

the object. The molecules traverse their trajectories in the direction 

indicated by arrows. An interacting collision between the two molecules 

or a molecule and the object causes a change in the direction of the 

trajectories.  In a non-interacting collision the molecules continue 

to proceed in the direction of their original trajectories; in the diagrams 

we add a shaded region wherever we want to indicate the occurrence of a 

non-interacting collision. 

Molecule 1 initially strikes the object and is either reflected by 

the object (Rl, Cl, Hi) or passes through the object (R2, C2, H2).  It 

then collides with molecule 2 such that molecule 1 either collides with 
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Ri      (D R 2 

Cl C 2 

HI H2 

Figure 2. Sequences of three successive collisions among two molecules 
and the object. 
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the object again (Rl, R2), or it causes molecule 2 to collide with the 

object (Cl, C2), or it prevents molecule 2 from colliding with the object 

(HI, H2). On comparing Fig. 2 with Fig. 5 of AEDC-TR-69-68 [30] we note 

that these collision sequences are closely analogous to the collision 

sequences earlier encountered in the first density correction to the 

transport properties of a moderately dense gas. In fact, the new collision 

sequences are obtained if in the earlier three-particle collision se- 

quences one of the molecules is replaced with the object. 
-*■ 

According to (2-54) B can be decomposed into a sum of terms 

corresponding to eight different types of four successive collisions 

among two molecules and the object. These sequences are represented 

schematically by the diagrams of Fig. 3. äs noted earlier, for convex 

objects we do not have to consider any sequences of five successive 

collisions among two molecules and the object in calculating the first 

inverse Knudsen number correction to the drag force. 

The relative magnitude of B and B is determined by the probability 

that the corresponding collision sequences will occur. In evaluating the 

first density correction to the transport properties of a gas of hard 

spheres Gillespie and Sengers noted that the contribution from se- 
_4 

quences of four successive collisions is only 10  times the contribution 

from sequences of three successive collisions [31]. A preliminary 

numerical analysis, conducted by Kuperman indicated that for the drag 

problem sequences of four successive collisions would yield a correction 

of less than one percent [19]. Therefore, to obtain a realistic estimate 

of the magnitude of the drag force we shall only consider the contributions 

from three successive collisions and approximate (2-49b) by 

B   (t)e  -n2/dx1dx2 F Cv^-VjFCv^V)^ . C2-55) 
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RICI R2CI 

RIC2 R2C2 

CIRI C2RI 

CIR2 C2R2 

Figure 3.  Sequences of four successive collisions among two molecules and 
the object. 
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2.5 Explicit Formulation of Collision Integrals 

The drag force in the free molecular flow regime is determined by 

(2-49a). Introducing the explicit form C2-16) for the binary collision 

operator T(1X) and replacing the momentum integration with a velocity 

integration, we thus obtain 

E     = o - -mn/,dv1f(v1fV) /dA1  \\-\l /^ nCvjlVjHvJ-V^   , (2-56) 

if  «n <o 

with _^   _)_ 
mCv.-v)2 

m pi %     - i 
fCVV) "pflff)   e       2W C2~571 

->■ 

The force E., to be added in the nearly free molecular flow regime 

is given by (2-55) and can be decomposed into 

"l = *Rl + *R2 + Kl  + *C2 + «Hi + Kl   ' ^581 

where each term is uniquely related to the corresponding term in C2-531, 

Each term in (2-58) may be written explicitly as a collision integral 

in terms of the initial velocities,  intermediate velocities and final 

velocities in the collision sequences of Fig. 2 as shown by Kuperman 

[19]. As an example we consider the contribution E  . Using the 

definition (2-45) of the convolution product, E. may be written as 

ER1 = _mn lim/d*l*2d*ld'2 f C^i;^)f &2S^) 

jdTJdT'   S«_T TX(1X)   S°_T,    ^(121   s;,   TUJOVj. (2-591 
,t      ,T 

It is convenient to introduce the transformation T= T-T"  and 

T = T',   so that 

■+ 2   .     /■*■-»■    -v    -v ->■-»-      -*•-»- 
ER1= -ran lim /dr1dr2dv1dv2  f (v^-Vjf (v2;V) 

7dT2/dTl St-(T1+T2,   TiU*>   STX **<"> S»     T(1X1V1- (2-60) 
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The operators S°(12) are free streaming operators, so that 

STrl= ri + V1T   ' STV1= Vl ' (2-61) 
-*■■*■■*■ •*■-*■ 

S°r = r„ + V_T   , S°v * v_ . T 2  2   2 T 2  2 

The left most operator S° ,     .in (2-60) translates the integrand t-(T.j+ T2) 

according to the free particle motion (2-61).  Since the integration 

extends over the entire phase space of molecules 1 and 2,  the integral is 

invariant under such a transformation and (2-60) reduces to 
00        00 

*W= "mn2/d^1
ä^2d^ld^2f(^l;^)f(^2;^) /dT2 fdTl  T1(1X)S£^(12)8;» TtlX)vlt 

J i        { 1 2(2-62) 

In Fig. 4 we consider again a typical recollision. The lines 

represent the trajectories of molecules 1 and 2 and the circle indicates 

the object. Molecule 1 collides with the surface of the object at the 

position R (first collision), it subsequently collides with molecule 2 

(second collision) and then it collides with the object again at the 

position R (third collision). The first collision may either be an in- 

teracting collision (Fig. 4a) or a non-interacting collision (Fig. 4b). 

-*■     -*■ 

We indicate the initial velocities of the molecules by v,, v„, the velocities 
1  2 

after the first collision by v'» v', the velocities after the second 

collision by v", v" and the velocities after the third collision by v"' '', 

v* ■'; we indicate the relative velocities similarly by v. = v^-^' 

vj^= vj-v', v^= '■•-vi", v'*'= v'"-v'". We note that for the 

recollisions 

vi= v., v" •= v" (Rl-sequence) (2-63a) 

and 

^1= V ^2= V ^2,,= *2 Utf-seguence). (2-63b) 

Using this notation and the definitions (2-16), (2-17) and (2-61) of the 

operators T(iX), T(12) and S°(12), the expression for FL may be written 
RJ. 
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®/V. 
(a)~RI-SEQUENCE 

(b)    R 2-SEQUENCE 

Figure 4.    Recollisions 
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00 00 

-*■ 2  2 
ER1= -mn a ̂ d^dv^ f^hf(v2^JdTlfäx2j^1  IvÄjJ   6*$-\) 

v  .n<o 

fdh ntvilvjda^ \v[2'S12\  6  (r12+vi2Tr512) 

V   -a   <o 
12     12 

• /dA2   IvJ.fiJ   ö'C^H- v^H- v|,T2-R2)/dv^"n(v^,|v^)(v^"-v^'),   (2-64) 

v' '»n <o 1       2 
where dA and dA are the surface elements at the positions R and R , 

respectively. The time T is to be identified as the time between the 

first and the second collision and the time T as the time between the 

second and the third collision.  The first two delta functions in (2-64) 

can be readily integrated and we obtain [19] 
00    00 

?R1= -Inn  /dvldV2 f (v1
;v)ftV2''v)/dT1|

dT2 

• 63 (R^R^ v^T^ v£« T2) f dv£' ■ n(v£'' | v|-) (v^' '-v^') . 

Taking cognizance of the difference between T1(1X) and Tn(lX), we obtain 

(2-65a) 

f°r ET,^ R2 
00    00 

7   Of  -*■-*■ ->  -*■   -*-->■" 
ER2      " /N"l~*2 -"•1"'-^2' "I ~"ll~'2 = ^1m2a2/dv1dv2 f^jVjf^jVj/dTjd^ 

v *n <o    v *o <o     v .n_<o 1 1        12 12        1  2 

•|dv^,rn(v',,|v'')(v'''-v'') . (2-65b) 

Following the same procedure we obtain for the contributions E 

and E__ from cyclic collisions 
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00 CO 
*)    f -ML _1_ _&. _&. -k. -A. 

E_= -mn O 

2   '   2       21 

a= -nnV/dv^ f (v^f (▼ai$)&T]/dca 

• 63 (R^R^ v^TL+ v^■ T2) Alv^''n(v^- • | v»■) (v^ ■ -vj«)   , l2-66a) 

= -Hnn a jdv1dv2 f (vxiV)f (v2iV) f^J^2 

o      o 

/aft     Iv *n  I   /do       lv    «ff     I /dA    Iv^n  I   6s (R -R + v T + v' 'T ) 1   I   1     l1 J     12   I   12     12'y       2   '2     21 l  1     2       1  1       2     21 

W°     '12-*12<0      *2'*V
0 

, /dv2« 'n^' • |v2') (v2- '-v2')   , (2-66b) 

here the various velocities are now indicated in Fig. 5 for which 

■*■-*■•*■ ■*■ 

V2= V2' Vi"= Vl' (Cl-sequence), (2-67a) 

and 

-*■-»■-»•-»■-»■-»■ 

v'= v , v'=» v ,  v'"= v'1        (C2-sequence) . (2-67b) 

Tne contributions E ., and E  from hypothetical collisions are 
Hl H2 

oo        oo 

E    - -Hnn a  /dv,dv„ f (v, ;V)f (v„jV) / dT, fdT 

(2~68a) 

azfdv1dv2 f (v1?V) f (v2?V) / dtji 

. .f&t |v1.n1||dvir,(vi|v1,ydd12|vi2.ei2||dt2 fv,^ 

W° ^2-&12<0 VV° 
• 63 (RrR2+ v^T1+ v2T2) /"dv- -q(v2'' | v'') <*•' '-v2') 

ob        « 
2 2/+    +        ■*■■*■      ■*■    •*■  t        S 

:H2= -mn a fd*1dv2 f(v1?V)f (v2;V)/dT1 ldT2 

v-^n-^o Vi2-Ö12<0 ^2"Ä2<0 

• fdv2» »Tl(*2' • |v2») <v2' '-v2') (2-68b) 
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rr.Hi 

v'"=vÄ 

I     I 

(a)   Cl- SEQUENCE 

(b)  C2-SEQUENCE 

Figure 5.  Cyclic collisions. 
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v^"= v." =7' 

yU S   V*   = V 
2       2     2 

(a)   HI-SEQUENCE 

y-T-t-\ 

Vs V   - V 
2      2      2 

TT«/ 

(b)   H2-SEQUENCE 

Figure 6. Hypothetical collisions. 
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where the various velocities are now indicated in Fig. 6, for which 

v''=v*=v , v|"=v',=v' (Hl-seguence), (2-69a) 

and 

v»'=v'=v , v'•'=v''=v'=v (H2-seguencel . (2~69b) 
£ £• £• J~ XXX 

If the molecules of the gas are approximated by hard spheres a 

major simplification occurs, since we can prove that the recollisions 

and the cyclic collisions yield identical contributions 

-*■■*■ ■*■-*■ 

E =E  , E =E (2-701 
Cl Rl '  C2 R2 ^   * 

This theorem is proved in the Appendix. 

In conclusion, we may approximate the first inverse Knudsen number 

correction to the drag force by 

V^l + %2+2(*Rl + V ' C2-?1) 
-»■-+- -»■-»■ 

with E  and E  given by (2-65) and E . and E  given by (2-68). 
Rl      R2 HX      H2 

->■ 

The term E  represents a "loss" term which accounts for the fact that Hi. 

molecules reflected from the object prevent some molecules of the incident 

beam from striking the object. The term 2E  represents a "gain" term 

which accounts for the fact that molecules reflected from the object 

cause some additional molecules to collide with the object. The terms 

-*■ -*■ 

E  and 2E  account for a perturbation of the velocity distribution as 
HZ RZ 

a result of the fact that the presence of the object leads to a region 

■*■ -*■ 

that is inaccessible to some gas molecules. The terms E  and 2E 
H2      R2 

vanish in the infinite Mach number limit [19], but need to be included 

in determining the drag force at small speed ratios. 
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CHAPTER III 

DRAG COEFFICIENT OF A DISC IN THE NEARLY FREE 

MOLECULAR FLOW REGIME 

3.1 Introduction 

As a first application of our method we consider the drag force 

exerted on a disc. A study of the drag of a disc became very appealing, 

since, just prior to this research effort, Willis had obtained an 

analytic solution for this case in the infinite Mach number limit [20,21]t 

The situation is illustrated in Fig. 7. A disc with radius R is 

placed perpendicular to a gas stream with flow velocity v. The disc is 

located in the XY-plane and the Z-axis is taken in the direction of -V. 

The distribution of the velocities of the molecules in the gas 

stream can be represented by a displaced Maxwell distribution (2-57) 

f(v.;V)  = /-^2-\ exjBl—^£  f . (3-1) 
^2irkTJ 

The molecules are assumed to be reflected diffusively at the surface 

so that the transition probability Tl(v' fv) in C2-15) is given by 

mv'2 

Tl(v'|v) = n(v') =2£ /J? (v'.Ä)e" 2kT  0(v'.A) , (3-2) 

t We are indebted to Dr. A. G. Keel of the Naval Ordnance Laboratory 
for informing us about this work prior to publication. 
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Figure 7. A disc placed in a gas stream with flow velocity V. 
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where 0 is a Heaviside function defined as 

0(x)= 1    for x > o  , (3-3) 

0(x)=* 0    for x < o . 

The velocities v and v' are the velocities of a molecule before and after 

striking the object. The vector n is the normal vector of the object 

surface. At the upper side of the disc surface n is the unit vector in 

the +Z-direction; at the lower side of the disc surface n is the unit 

vector in the -Z-direction. The temperature T in (3-2) is the temp- 

erature of the object which is taken to be equal to the temperature T 

of the gas in (.3-1) . 

In order to exhibit the dependence of the drag force on the inverse 

Knudsen number explicitly it is convenient to introduce dimensionless 

quantities. For this purpose we measure all distances in terms of the 

radius R of the disc and all velocities in terms of the thermal velocity 

1/2 
(2kT/m)   of the molecules. We thus define 

i  i\2kT) ' ö v^2kT) '    R\m j . (3-4) 

The magnitude of the dimensionless flow velocity S is the speed ratio 

earlier introduced in (1-5). The surface element dA of the disc surface 

can be written as 

+  2 ■+■ 
dA= R dr , (3-5) 

-> 
where r is a two dimensional vector in the plane of the disc such that 

o<r<l.  In addition we introduce a dimensionless distribution function 

f*(w.;S) and a dimensionless transition probability n*(w!) defined as 

f*(wi;S)= K^  e-^-S)2  # C3_61 
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n*(w'.)= |- (w!-n)e"wi 0(w£-n)  , (3-7) 

normalized such that /dw f*Cw ;S)= 1 and fdwj n* (?.[>" 1. 

*_ „  1 „2 2 
The kinetic energy of the gas stream ** 0 ■ -gnrnV TTR , so 

that, in accordance with (1-1), the drag coefficient of a disc with 

radius R is defined as 

2E 

°D~ nw2TTR2       • (3-8) 

As a result of symmetry the drag force has only a non-vanishing component 

in the direction of the flow velocity v", so that 

->■ A 

E= E-V . £3-9) 

In this report we define the Knudsen number K as the ratio of the mean 

free path ^ over the radius R of the disc. Since for a gas of hard 

spheres X = V2Trnff  [3], we thus define 

K
_1
= VT irna2R. C3-10) 

The drag coefficient C in the nearly free molecular flow regime can be 

written as 

C = C + C.K"1*. . .  . (3-11) 
D   O   1 

The drag coefficient C in the free molecular flow limit K -*>o follows 
o 

from (2-56) 

Co= Irs 
/"dw f*(wiS)/dr |w-nj fdw«n*lw')(w'-W).&. (3-12) 

w«n<o 

The coefficient C of the first inverse Knudsen number correction can 

be decomposed in analogy to (2-71) 

Cl= CH1+ CH2+ 2CCR1+ CR2} • «-13) 
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Collision integrals for the first inverse Knudsen number correction to the 
drag coefficient of a disc. 

CH1= + -~ f£1&2t»üi1tt)£»{v2il) /dT* /dT* f^1\^1-\\f^'t1 n*<wj) 

O O     "►■ ''A . "' w  *n<o 

w-   •&%     <o        w'n<o ^ (X-D 12     12 2     2 

_ 00 00 

^,«n,<o 

• A&12l w12-Ö12|fe2|^-n2| 63 (^-^T^T*)^- «n* (w2- •) (*» -^2) .8. 
*      ft    «- ■*    ft ^ ^ tI-2) 

12     12 2    2 

CO CO 

L- - ~|^rdw1dw2f*(w1;S)f*(w2;S)rdT*fdT*fd?1|w1-n1||dw^ n*(5j; 

°    ° W0 

•/dd12|w^2-&12|fe2|w^».n2|63 <VV"iTi+ ^i'^'r^i' '^Si") ("i" '-»p •*, 

^2*&i2<o  -r-v° (I"3) 

CR2= + ^ J^2fU^^)fU^2;S)y,dT*JdT* pJvBj 
0 O - A 

W. 'fi <o 

• /ddl2l*'l2'Ö12l f**2$i  -h^3 (WVl"'*i,T2) [d"l  'n* C*i'"} (*i'' '"i,) *§- 
w12'&12<o ^'-n2<o (1-4) 

Note:  f*(w •S)= Tf ' e l i '     , 

n*(wp= |-(w|-nje~wi 0tw!-n)  (diffusive reflection) 

For a sphere: r = n = ft-, r » n « ft . 
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The explicit expressions for the collision integrals C , C , C ., and 

C  follow from (2-68) and (2-65) and are listed in Table I. The velocities 

in the integrands refer again to the hypothetical collisions and recol- 

lisions which, for a disc, are shown schematically in Figs. 8 and 9. 

We note that all collision integrals contain a factor of the type 

-*■     ■*■-*■ 

dw'n*(w')(w*-w) which for diffusive reflection reduces to 

w  ,.-...  . .„ ~ .. C3_14) |dw'n*(w,)(w,-w)= ^Idw^'e    (W -n) (w'-w)= | n- w . 

w'.fi>o 

The drag coefficient C is a function of the speed ratio S. For a 

disc it may be decomposed into a contribution C_j* accounting for the force 

exerted at the upper side of the disc surface and a contribution C - 

accounting for the force exerted at the lower side of the disc surface 

V CD++ CD ■ C3~15) 

The two contributions are interrelated by 

C- (+S)= -C*(-S)  . (3-16) 

3.2 Drag coefficient C^of a Disc in the Free Molecular Flow Regime. 

The drag coefficient C of the disc in the free molecular flow 
' o 

regime is given by (3-12) which can be integrated over the area of the 

disc. The drag coefficient C of a disc is thus the same as the co- 

efficient c of a flat plate of any shape. We decompose C in analogy to 

(3-15) and (3-16) 

C   CS)= C +CS)+ C "CS)= C +tS)-C +(-S)   , (3-17) o o o o o 

and note that 
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w'"*w"=w' 

(a) HI-SEQUENCE 

W|=W|=W|=W| 

«-X 

(b)  H2-SEQUENCE 

Figure 8.  Hypothetical collisions for a disc. 
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2   2 

(a) Rl-SEQUENCE 

(b) R2-SEQUENCE 
Figure 9.  Recollisions for a disc. 
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2 
co+ts>= ?hfi •"M|^4»J ■ <3-18) 
° ir '2s2 J      " vw2   -2    z' 

w <o 

Se"S + ^(l+2S2)(l+erf S)+j{e'S   +Sv*F(l+erf S)}1   , 

where erf S is the error function defined as 

L*-2 *P* erf S =^= /e  dt  . (3-19) 

We thus obtain for the total free molecular drag coefficient C 

(3-20) 

This expression is in agreement with the result obtained by previous 

investigators [32], but it has not been reproduced correctly in some 

more popular reviews [1,2/10]. 

to 

and 

In the low and high speed limits the drag coefficient C (S) reduces 
o 

Äc0,»-emA-*p    . 

lim C CS)= 2 . -       (3-22) 

Thus at low speed ratios the drag coefficient C (S) becomes inversely 

proportional to the speed ratio S, while in the high speed limit the 

drag coefficient C (S) becomes independent of the speed ratio S. On 

comparing with (3-8) we note that this result means that at low velocities 

the force is proportional to the stream velocity, as is to be expected 

[16], while at high velocities the force increases with the square of the 

stream velocity. - 
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3.3 Reduction of Collision Integrals for C. 

The coefficient C. of the first inverse Knudsen number correction 

to the drag coefficient is determined by the collision integrals in Table I. 

Since 

C1(S)= C1
+(S)-C1+(-S), (3-23) 

in accordance with (3-15) and (3-16), we only need to analyze the collision 

integrals for 

Cl+SSCHt'*CH2 + ^CBl + CR2)' C3-24) 

These collision integrals correspond to the case that the normal vector 

ft is in the + Z-direction, i.e. in the direction of -S. 

It is convenient to introduce a set of auxiliary vectors defined as 

(3-25a) 

(3-25b) 

*H1 
=: "w' 

-*■ i   A 

Wi"ni 

W-         w'       w_ 

w   -ft_    w'       w_ 2     2       lz       2z 

"H2 
= ^  

-*■             -*■-*■ 

W2*fi2    "lz    W2z 

\l 
= w- 

w' -ft wl nl 

w*'               w1          W1 * 
- Jl      - _ 1 -  1 

Wi'-"2      wiz      Wiz 

-*■ = 
w w' '             w.       w' 

WR2 \\-\\ " w' ' -fi_ = "w" " wp" 
12        lz      lz 

(3-25c) 

(3-25d) 

These auxiliary vectors are two-dimensional vectors located in the plane 

of the disc. The normal vector n. is directed in the positive Z-direction 

for the integrals associated with the HI- and Rl- sequences and in the 

negative Z-direction for the integrals associated with the H2- and R2- 

sequences. For future reference we also define 
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TtZ     1   - "HI rHl'ril' WH1   ri      , (3-26a) 

'HI 

w„„ W    •*,   3 w_.r 
K«„J   = flfa-*ll H2  '  H2    1' H2    1     , (3-26b) 

TI*   * =    _WR1 iW       *RT*I 

Rl 

w„ 
l»R2-Sl|a ^ T(4    1   s " "    X       _     "2    1     • (3-263) 

R2 <%2*  *1>*       "fc«R2 "  V2 »R2 

As an example we consider the collision integral C * associated 

with the Hl-sequences. The 6-function in (1-1) may be written 

|w2-n2[ö
3(r1-r2^T*+^2T*) - v = 6|T*2+ ^K) 62(Vv(n-si)Ti*Hi> • «-27> 

Because of symmetry we can integrate over the azimuthal angle of the 
-*■ -*■ 

position vector r of the first collision and take r in a fixed direction. 

say in the positive X-direction as indicated in Figs. 8 and 9. Using 

d ii 

2V2 

-»■ 

(3-14) and integrating over T* and r we thus obtain 

fdWjdw^Mw^JfMvy"!) /"dT* /dr^ |wlz| 

J^[^(Ü[)jäQ12\Zi2^12\   (<S -w2z) G(-wlz) 0(-w2z)  ,     C3-28) 

w12.&12<o 

with the auxiliary condition 

r2= 1^+ (w^fi^TjWgJs 1 . (3-29) 

This auxiliary condition implies 

n<r*^  -"HI-VNAHI-^HI"^2 

°^1^H1 «fo w^  * «3-30> 
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The time T*  is to be interpreted as the maximum possible time interval 
HI 

between the first and the second collision that leads to an Hl-sequence for 

->■->■    -> 

given r. , w' and w .  It then follows that 
l 

/*!/*i'i °<^!>= "^ HI» ' <3"31' 

with I(w ) defined by (3-26a).  Integration over 6      yields 
HI X*£ 

/dÖ12 l"lV9l2l 0(^12-&12) = «12 ' t3"32) 

and the collision integral (3-28) reduces to 

CHl(S)= ~ 3^2 fdV*2 f*(VS)f*Cw"2;S) |dwje"wl  [w^l (3-33a) 

•Wi2
(4-W2z)I(-Hl) 0(-Wlz> *^2J  0(Wiz}- 

The other collision integrals can be treated in the same manner with 

the result 

CH2(S)= + #fdV"2 «•Äl»*)**Ö2iftw12t«- w2z)icSH2> Qtwlz) ec-w2zi, 
(3-33b) 

Rlw/_   '   3TTS2 I M"i""2  *   ^i'u/i"v"2""rT >"lz' 
c»t(s>- + Tfflz f dV*2 f* ("i;*} f* l"2;*] fd"'1

e~V'1   IV1 

* ^/dd12   I"l2*dl2l    (f- <>I("R1>  0(-Wlz>   0(Wiz>   0("Wlz)   9(-"l2-Ö12)' 
(3-33c) 

CR2(S)= - ^/dV*2 **<V*,f*(V^Jdd12   l«12-dl2l 

* (T" wi;>1*R2) 0(Wlz} 0(-Wlz} 0(412*Ö12)- (3"33d) 

The total contribution of the four collision sequences to the co- 

efficient Cj is then determined by 
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CH1(S)= CH+(S)^ Cjj+C-Sl , (3-34a) 

CH2(S,= CH2(S)- CHJC"S) ' (3"34b) 

CR1(S)= ^(S)- CR+(-S) , (3-34c) 

CR2(S)= CR2(S)" CRJ("S) ' (3"34d) 

From a computational point of view the major difference between C  and 
HI 

C„„ on the one hand and C , and C „ on the other hand is that in the 
H2 Rl     R2 

recollision integrals the integration over & is to be done numerically, 

since the integrand depends on 8     via 

w«= w- (wi2'd12)d12,       (in CR1) (3-35a) 

w«= w^ (w12-ei2)Ö12.       (in CR2) (3-35b) 

3.4 Drag Coefficient C. of a pise at High Speed Ratios. 

The calculation of the collision integrals for the coefficient C. 

becomes particularly simple when the disc is placed in a beam of molecules 

-*■ 

that move with uniform velocity V. This limit is approximated when the 

-*■ 

velocity V of the gas stream is large compared to the thermal velocity 
U 

(2kT/m)'2 , i.e. S » 1. We may refer to this limit as the high speed limit 

or (cold wall) beam limit. 

In the beam limit all incident molecules are moving parallel, so 

that two molecules will never collide with each other unless at least 

one of them first interacts with the object. The contributions lim C 2(S) 

and lim C (S), therefore, vanish in the beam limit. Moreover, in the 

beam limit the drag force completely originates from collisions at the 

upper surface of the disc, so that 

lim.C, (S)= lim C„t(S)+ 2 lim C+(S). C3-36) 
S-*» 1 &*» Hl     &K» Rl 
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The collision integrals for the drag coefficient in the beam limit 

-*■   -»■ 
are obtained when the distribution function f*(w.;S) is approximated by 

a 6-function 

f*(w.;S)= 63(w.-"s). (3-37) 

Noting that w = S, w = S, w' = -S, w"= (S-9  )a  we thus obtain from 

(3-33a) and (3-33c) 

» CH1(S)= "IT S/dVWl2  ^Hl*   0t"i«>  ' C3"38al 

with 

w„ = ^    + £ , C3-38b) 
Hi    w' lz 

lm c     tS)= +^#srdw'e"wi2fd0loCS-&nJ
3lCwT>1)  0(w.   )  GtS-Ö.J , 

S-*»     Rl 317*      II I       12 12 Rl lz 12 

and 

C3-39a) 

with 

$    = *1    _ öl2    . (3-39b) R1   ~T      «— W CT lz 12z 

These integrals can be readily evaluated analytically.    For this 

purpose we introduce the coordinate transformation 

dw^= w^2dw|z wvdwvd$ , 

where w = w  in (3-38) and w = w_. in (3-39) and where <J> is the azimuthal 
V   HI V   Rl 

-> 
angle of the two dimensional vector w with the X-axis as initial axis. 

In terms of these variables the quantities I(w ) and I(w ), defined in 
HJ. Rl 

(3-26), reduce to 

The perihelion vector 8 may be expressed in terms of its polar angle 

8_ with the Z-axis and its azimuthal angle $g with the XZ-plane as in- 

itial plane. The collision integrals then become 
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i—        a> °° 2     2 
lime. (S)= -    -^sfdw'    w'2 rdWiile"wiz(wHl+1) 

5^,0     Hl 37T J      lz     lz 1      Hi 7dwiz Wiz/C 

0 o 

r.. ri-lcosjM       j       e /2"e * Jd* |   imy' - cos*j = " 3 V? s' (3-41a) 

4/2" 
* 27T        TT 

4fe C
RI

(S)=
 

+ ST s/dwizwiz/dwKi/d* fdea «i»effl^
59al /*0 

o       °    °  4 o 

(3-4lb) 

The total value of the coefficient C. is then obtained from (3-36). We 

thus conclude that in the limit of high speed ratios 

^CHl(S)=="fvf S* -2.128 S 

im Cl(S)= Jim{CH1(S)+ 2CR1(S)}= - rf l/^S= -0.426 S 
15 If TT 

(3-42a) 

(3-42b) 

(3-42c) 

in agreement with the result earlier obtained by Willis [20,21]. 

3.5 Drag Coefficient C. of a Disc at Low Speed Ratios 

At low speed ratios we can expand the Maxwell distribution (3-6) in 

terms of a Taylor series around S=0.  If we neglect terms of higher order 

in S, then 

■*■■*■        ■*   "*      1    - (w? + w2 ) #■ ■. f*(wlfS)f*(vr2;S)= ±3e   lWlr W2    {l-2S(wlz+ w^)}   , (3-43) 

to be substituted into the collision integrals (3-33). The zeroth order 

term in (3-43) does not contribute to the drag coefficient as a result 

-»■ 

of (3-34). We also note that we can integrate over w in the collision 

integrals for c  and CR.. In the limit of low velocity we thus obtain 
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from (3-33) and C3-34) 

lim CH1(S)- -3|f 

iä CH2(S,= +3?f dwie ijdw2e 2("wiz"w2z)w: 

lz 

(3-44a) 

), 

12^ -W2Z,I(*H2} 

•0(wlz) 0(-w2z)  , (3-44b) 

otJ 5 
11a C_.(S)= + JV| 
g->0  Rl      31T S ■" '  12 ' 12 121 

(T" »2Z) fl" »I.)1'»*!' 9(wiz> e<-»i2-8i2' 9(-"ii ),   (3-44c) 

lim C (S)= - ^r=- 
R2V '   3TTS 

s-*o 
^V"l/V1 */*U 'VJ 

• (-Wlz-"2z> (4 ""lz) I(V S(Wlz> 6<J*12-ei2' 9<-"i.''(3-1*" 

We recall that we work, in a coordinate system with the z-axis in the 

-*■ ->■-»■ 

direction of -S and the X-axis in the plane through S and r . The polar 

and arimuthal angles of any vector a in this coordinate system are indi- 

cated by 6 and <£ . We express the perihelion vector a      in terms of a 

polar angle 6' and an arimuthal angle $' in an auxiliary coordinate system 

-*■'   -*■ 

X'Y'Z' with the z'-axis in the direction of w._ {.=w  in C3-44d)). and with 

->■   -> 

the X'-axis in the plane through S and w' . The Cartesian components of 

-*■ 

any vector a in the auxiliary system are related to its components in the 

original XYZ system by 

y 
= R (0 ,„,)R (<l> ,„,) 

y wl2'  z Ywl2' 
C3-45) 

I 
Here 8 ._, and <(>  , are the polar coordinates of w' in the XYZ system 

and R and R are the same rotation matrices as those used in earlier 
y     z 

reports [31,33]. 
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We conclude that the drag coefficient C    in the limit of low velocity 

can be written as 

lim C  (S)  = 
S*o 

lim CH1(S)   + CH2(S)   + 2(0^(3)   + ^(S) } 
S"*0 ]■ (3-46) 

with 

i™ CH1(S)  = " IF? 

TT 2TT 
2   1 2 

dw w    e    2      dw'w'  e    1 

w 
d9w2Sin6w2    d*w2 

3* 
d6wl.Sin9wl. 

2TT 

d<t ,.*'   I—r - w„   I I(w „.   , Twl'   12\ 2 2z/        Hi) (3-46a) 

8/2 
Ü" CH2tS)   = + 3TO 
S+o 

c 

dw2w22e"W2 dw w.  e    ^ 

JT 

d9  »sin6 _ w2        w2 

27T 

d<J>, w2 

2TT 
% 

d9 ,sin9 , 
wl        wl d<f> , (-W,   -w_ )w, J—-- w„  )I(wTT_)   , Twl      lz    2z    12^ 2 2z/       H2 (3-46b) 

IT 2TT 

^CRltS)   =+3W 
S+o 

dw„w_ e    2 
2 2 

2 
2 -w' dw'w'   e    1 d6w2sinew2   K2 

d9wl'sin9wl' 

2TT 

<**■,.£   d6«sin9»  cos9' wl' IT       a      a1       a1 

-% 

,2* 

d*ä 

Wi2(
2T-W2z)(4-WiZ)It"Rl}0(-Wiz: )   , (3-46c) 

,,     „     ,_, 8/2 
lime    (S)  «--jpg 
S+o 

, 2 -Wo dw2w2 e    -2 J 2 -Wi dw w    e    J- 

TT 

d9 „sin9 _ w2 w2 

21T 

d(f», w2 

d9 ,sin9 , 
wl        wl 

.2TT .IT 

d<f>  1   h Twl TT 

2TT 

J 
d9'sine'|cose'| o      a1       a1 d*' (-wl2-w2z)w12 (4- w-jltw^et-w-) 

C3-46d) 
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TABLE II 

Collision integrals for the drag coefficient C. of a disc in the low 

velocity limit. 

Jjm CHl(S)= -(3.94 ± 0.13)S
_1 

Jim CH2(S)= +(0.23 + 0.03)S
-1 

lim C„(S)= lim (c„.(S) + C„.(S)} = -(3.71 ± 0.10)S_1 
&*0  H     S+O   Hl       H2 

li^CRl(S)= +(1.14 ± 0.07)S
_1 

~ CR2tS)= "(0,05 * 0-02) S-1 

m  CR(S)= ÜS {CR1(S) + CR2(S)>= +(1*10 * °-°8)S"1 

lim C_(S) = lim (c(S) + 2C (S)}« -(1.51 ± 0.08)S-1 
S^O  X     S~K)   H        R 

These collision integrals were evaluated numerically by a Monte Carlo 

method. That is, the integrals were estimated by averaging the integrand 

over a set of N random points selected in the integration region according 

to a suitable predetermined probability density function J34J. For this 

purpose we employed the same method and subroutines that were previously 

used by Gillespie and Sengers in a calculation of three-particle collision 

integrals for a gas of hard spheres and reported in AEDC-TR-73-171 J31], 

The numerical results, together with their estimated standard deviations, 

obtained by averaging the integrand over 50,000 points, are presented in 

Table II. 
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3.6 Drag Coefficient C. of a Disc at Arbitrary Speed Ratios 

For arbitrary values of the speed ratio S we need to substitute the 

complete Maxwell distribution (3-6) into the collision integrals (3-33). 

Thus 

=B1 
/», 2/2*    _,„.   f,»    - (w2-S)2 r _■+,   -w'2     ,    \>JT .„.-»■    , 
(S,= "3Fi7J(S)/dW2e JdWie    1    W12| JE2-W2.)1(WH1) 

0(-w2z)  0(wiz)   , (3-47a) 

0(S)= +0-TTT2 /dWle   l"l H2 31TS 
j,d^1e-twrs) r 2lT f+    -br-S)*rS-    -Cwo-S)2        /fT dw„e      * 

^2[-2"W2z)I(WH2) 

.0(wl2)   0(-w2z)   , (3-47b) 

sI«-*Ä .(sj/dV^'2^2 ±/*u 1*^1 

.[■ffi- w-)l^)0(wiz) 9C-wi2.d12, 0C-W-) , (3-47c) 

CR2(S)= -3F?2 
-si2 

/^.-«•**7B;i.-
,"r,) I/d9

12 i»12-fii2f 
[%- »;:)!(»„,) e(w, 1 e(-J,,•»„) 9(-."), 

where 

lz'    % R2' 

2 

lz' 12    12' lz' 

J<S)Ei/dV(Wl"S)     |wj  0(-wlz) 
2        Lf 

* e      + *r 2s(l+erf S). 

(3-47d) 

(3-48) 

We can express these integrals in terms of the same variables intro- 

duced in the preceding section and obtain 
[oo fco 

C
+   (s)   = -    2/2~ JCS) dw2W2 e W2 

2-w'2 

dw'w'  e    1 

IT 

d6 _sin9 _ w2        w2 

2TT 

w2 

r% -27T 

d6 ,rsin6 ., wl'        wl■ 
0 

% 

.A       -S(S+2w„ )   .    (/a \      •*■ 
d*wl.e 2z wi2  ^ - w2zj  I(wH1),     (3-49a) 
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Stt^'        +  3TTSS2 

,00 

2 -wj' 
dw„w_  e    ' 

2  2 

rTT 

, 2 -wi 
dw w.   e    ■*■ dew2Sin8w2 

2TT 

a*. w2 

o- 0 

,% .2TT 
% 

O' 

0' 

do  ,sin9 , 
wl        wl 

2/2 

..      -2S(S+w,  +w_ )       (/a \ -,+    . (3-49b) 

-00 

C
RI

(S)
 

= + 3WJ(s) J      2 _w? 
W2W2   6 

2 -w' 
dw'w'   e    1 

r71 

do  „sin9 „ w2 w2 

-2TT 

d* w2 

,7* 
d9 ,,sin9  ., 

wl' wl' 

0 

2TT IT 

d*wl'u 

% 

d9'sin0'|cos6'| 

2TT 

,,, -S (s+w- )   ,   f/n       ,,\ d<J>> 2zw^— -w^j 
12' 

„+   .„. 2/2 
CR2(S)   =-3i^ 

2   _w2 dw2w2 e    2 

rTT 2TT 

KwRl)0(-w-) 

(3-49c) 

2 -wi 
dw.w.   e    ■•■ d9w2Sinew2    d*w2 

d9 -sin9 . wl        wl 

0' 

2TT .IT 

dd>      — 
*wl  TT 

% 

d9'sine'|cose'| 

0' 

,2ir 

.. , -2S (S+w, +w0 )   (Sä      , ,\ d*'e      iz 2zw12^-w-j KwR2)0(-w-) 

C3-49d) 

For various values of the speed ratio S the collision integrals were 

again evaluated numerically.  The results obtained by averaging the inte- 

grand over 40,000 random points are presented in Tables III and IV. From 

the figures presented in Table III we note that the contributions C  and 

C  are small; they decrease rapidly with increasing values of the speed 

ratio S and can be neglected for S ^ 2. The results for S = 0.1 are in 

satisfactory agreement with the low velocity values earlier presented in 

Table II, while at high velocities the results do indeed approach the 

exact values given in C3-42). 

Further details concerning the procedures used in calculating the 
collision integrals are documented in a Ph.D. thesis to be submitted by 
Y. Y. Lin Wang. 
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TABLE III 

Collision integrals for the drag coefficient C. of a disc (S<L2) 

CH1xs CH2XS CR1XS R2 
cxs 

0.1 

0.5 

1.0 

1.5 

2.0 

-3.89±0.11 

-4.96±0.15 

-8.01±0.16 

-12.3+0.7 

-15.0+1.4 

+0.21±0v02 

+0.16+0.02 

+0.068±0.005 

+0.015+0.002 

+0.0019±0.0005 

+1.16±0.09 

+1.42±0.11 

+2.16±0.10 

+2.7±0.2 

+3.8+0.6 

-0.04+0.03 

■0.03+0.02 

-0.014+0.007 

-0.0019±0.0028 

-0.0005+0.0003 

-1.44±0.20 

-2.02±0.25 

-3.65+0.22 

-6.8±0.7 

-7.4+1.6 

,   TABLE  IV 

Collision integrals for the drag coefficient C.  of a disc  (S>2) 

s CH1/S CR1/S Cj/S 

2.0 -4.62t0.04 +1.37±0.02 -1.87*0.05 

3.5 -3.34±0.02 +1.12t0.02 -1.09*0.04 

5.0 -2.99*0.02 +1.04±0.02 -0.90*0.04 

7.5 -2.68±0.01 +0.96*0.01 -0.76*0.02 

10 -2.53+0.01 +0.92*0.01 -0.69*0.02 

15 -2.42t0.02 +0.90*0.01 -0.62*0.02 

20 -2.32±0.01 + 0.89*0.01 -0.54*0.02 

30 -2.26±0.01 + 0.88±0.01 -0.54*0.03 

40 -2.22t0.01 + 0.87*0.02 -0.48*0.03 

50 -2.19t0.01 + 0.86*0.01 -0.46*0.03 

> 
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3.7 Discussion of Results for the Drag of a Disc. 

In summarizing our results for the drag in the nearly free molecular 

regime, we write the drag coefficient C as 

with the inverse Knudsen number K  defined in (3-10) . The term (C./C )K l o 

represents the first inverse Knudsen number correction to the drag force 

relative to the magnitude of the drag force in the free molecular flow 

limit. The contribution C = C„,+C _ accounts for the effect of the H   HJ.  HZ 

hypothetical collisions and the contribution C = C .+ C  for the effect R   RJ.   Rz 

of the recollisions and cyclic collisions. 

We have calculated the coefficients C and C, over the entire range 
o     1 

of speed ratios between zero and infinity, assuming that the temperature 

of the reflected molecules is the same as the temperature of the molecules 

in the incident gas stream.  The free molecular flow drag coefficient C 

is given by (3-20), while the coefficient C. of the first inverse Knudsen 

correction was evaluated numerically.  The results are summarized in 

Table V and plotted graphically as a function of the speed ratio S in 

Figs. 10 and 11. 

In the nearly free molecular flow regime the drag coefficient decreases 

with decreasing Knudsen number.  The sign of the effect is determined by 

the contribution C *C ., i.e. by the fact that the reflected molecules 
H   HI 

prevent incident molecules from striking the object. 

The dependence of the drag coefficient on the speed ratio is quite 

different whether the speed ratio is smaller or larger than unity.  At low 

velocities the drag force is proportional to the speed ratio S. As a 
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TABLE V 

Drag coefficient of a disc in the nearly free molecular flow regime as 
a function of the speed ratio S. 

s c 
o VCo c0/c R o Cl/Co 

0 
0.1 
0.5 
1.0 

4.03-S~J 
4.04 S" 
4.21 .S~7 
4.72 S 

-0.92*0.02 
-0.91±0.02 
-1.14±0.03 
-1.68±0.03 

+0.27±0.02 
+0.28±0.02 
+0.33±0.03 
+0.45±0.02 

-0.38±0.02 
-0.36±0.05 
-0.48±0.06 
-0.7710.05 

1.0 
2.0 
3.5 
5.0 
7.5 

10 
15 
20 
30 
40 
50 
00 

4.72 
3.14 
2.59 
2.39 
2.25 
2.19 
2.12 
2.09 
2.06 
2.04 
2.04 
2.00 

-(1.68±0.03)S 
-(1.47±0.01)S 
-(1.29±0.01)S 
-(1.25±0.01)S 
-(1.19±0.01)S 
-(1.16±0.01)S 
-(1.14±0.01)S 
-(1.11±0.01)S 
-(1.10±0.01)S 
-(1.09±0.01)S 
-(1.08±0.01)S 
-1.064S 

+(0.45±0.02)S 
+(0.44±0.01)S 
+(0.43±0.01)S 
+(0.43±0.01)S 
+(0.43±0.01)S 
+(0.42±0.01)S 
+(0.42±0.01)S 
+(0.43±0.01)S 
+(0.43±0.01)S 
+(0.43±0.01)S 
+(0.42±0.01)S . 
+0r426S 

-(0.77±0.05)S 
-(0.60±0.02)S 
-(0.43±0.01)S 
-(0.38±0.01)S 
-<0.34±0.01)S 
-(0.32±0.01)S 
-(0.29±0.01)S 
-(0.26±0.01)S 
-(0.26±0.01)S 
-(0.23±0.01)S 
-(0.23±0.01)S 
-0.213S 
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result at small velocities both C and C, become inverse proportional 
o     1 

to the speed ratio S and the ratio C./C becomes independent of S. On the 

other hand, at large velocities the free molecular drag force varies with 

the square of the stream velocity, while the first inverse Knudsen 

correction to the drag force varies with the third power of the stream 

velocity. Thus the ratio C /C becomes proportional to the speed ratio 

S; this feature is encountered for a large class of"objects and will be 

further discussed in Section 4.7. In the limit of infinite speed ratio 

our result agrees with the value calculated by Willis et al. [21] for the 

drag coefficient of a disc in a beam of hard spherical molecules. 
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Figure 10. The drag coefficient CQ of a disc in the free molecular 
flow regime as a function of the speed ratio S. 
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CHAPTER IV 

DRAG COEFFICIENT OF A SPHERE IN THE NEARLY FREE MOLECULAR FLOW REGIME 

4.1 Introduction 

As a second application of our method we consider the drag force 

exerted on a sphere. A number of investigators have attempted to calculate 

the drag coefficient of a sphere using various approximation methods. 

However, to our knowledge a solution based on the full nonlinear 

Boltzmann equation that covers the entire range of speed ratios has not 

been presented earlier. 

We use the same dimensionless quantities that were introduced in 

Section 3.1 when discussing the drag coefficient of a disc. The drag 

coefficient in the nearly free molecular flow regime is again represented 

by (3-11) 

C = C    + C K-1 (4-1) D      o        o       ) 

with 

K-1- /2™T2R     , (4_2) 

where R now refers to the radius of the sphere. The drag coefficient 

C in the free molecular flow limit K -K) is in analogy co (3-121 

CQ= - —2 fa*  f* (w;S) JdR |w.R| fdw' n* (w*) (w* -$) .§. (4-3} 

w •ffco 

The coefficient C. of the first inverse Knudsen number correction 

Cl= CH1+ CH2+ 2(CR1+CR2) ' C4~4) 
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is again determined by the collision integrals listed in Table I, if 

r and n are both identified with the unit vector R in the direction 

of R and r and n with the unit vector R in the direction of R and 

where iL and R are indicated in Pigs. 4 and 6. The djjmensionless velocities 

■+■->■-»■-*■ -»■-*■•*■ 
v., w!, w!' and w!'' may be identified with the velocities v., v!, v!* and 
i  i  i     i l  i  i 

-»■ 

v"'' shown in Figs. 4 and 6, provided that the radius of the sphere is 

normalized to unity. 

4.2 Drag Coefficient C of a Sphere in the Free Molecular Flow Regime. 

The drag coefficient C of a sphere in the free molecular flow 
o 

A 
regime is given by (4-3). Let 6  be the polar angle of R with respect 

R 
-► 

to -S; because of symmetry we can integrate over the azimuthal angle 
A ■> A 

of R. Let 6' be the polar angle of w with respect to R and $' the 

azimuthal angle of w with the plane through S and R as initial plane. 

Then, using C3-14), 

C (S) o deRsin6RJdww
3j d8wsin9w |cos6;| Jd^ 

2 0 

-(w2+S2)+ 2S(w-S) ,,■► «.. VT       a  , ,.  c, • e {(wS)+ -j-coso }  , C4-5) 

with 

wS= w(sin6„sin8'cos^'-cos® cos0')  . C4-5a) R   w   w    R   w 

The integral can be evaluated analytically with the result [1,10,32] 

(4-6) 

In the low and high speed limits the drag coefficient C (S) reduces to o 
..     _   ,_        2TT+16 ^.4.191 ,.  ,, 
lim C  (S)=    -T-TS7"     —Z— (4-7) 
s-*0    o 3vTTS S 
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Figure 12. Geometry of an hypothetical collision for a sphere. 
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and 

lim C (S)= 2. t4-8) 

4.3 Reduction of Collision Integrals for C.t 

The coefficient C. of the first inverse Knudsen number correction 

to the drag coefficient is again determined by the collision integrals 

in Table I with r = n = ft. and r = n = R . The fact that each collision 

integral is related to a particular collision sequence is accounted for 

by the &-functions.  In this Section we integrate over the tf-functions 

and formulate explicitly the conditions for the occurrance of these 

collision sequences. 

As an example we consider the collision integrals associated with the 

hypothetical collisions (cf. Fig. 6). The geometry of an Hl-sequence 

. -*■ 

is indicated in Fig. 12. The Z-axis is taken in the direction of -S and 

the X-axis in the plane through S and R . Molecule 1 is emitted from the 

Ä -*■ ■*■ surface at R. with velocity w'. Molecule 2 with incident velocity w 

collides with molecule 1 after a time T* . We introduce the vector r 

defined as 

r =  R-i+wiT* (4-9) 

which determines the location of the collision between molecules 1 and 2 

relative to the center of the sphere. Molecule 2 continues to proceed 

with its initial velocity w and strikes the surface of the object after 

a time T* . Although not indicated explicitly in Fig. 12, the vectors 

-*■    -*■ 

r and R are not restricted to the XZ-plane. 

The 6-function in the expression (1-1) for C  can be rewritten in 
Hi 

•*■ •*■ 

terms of the velocity w and the distance vector r 

^Sections 4.3 and 4.4 were prepared in collaboration with Dr. W. A. Kuperman. 
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|w2'ft2| Ö'^-R^JTJ+W^*)- (4-10) 

2 Ä  -K   

-63(T*+ Y!|'r) «2 (fe2-r-Hi2{w2.?+ /l-(w2xr) 
2})ec-w2'r)0Cl-{w2»<r}

2l. 

The conditions imposed by the Heaviside functions in C4-10) have an 

obvious geometrical meaning. The condition w«»r < 0 guarantees that 

molecule 2 approaches the sphere and the condition (w_x r) <1 ensures 

that the impact parameter is smaller than unity, 

The conditions for the H2-seguence (cf. Fig. 6b) can be related to 

the conditions for the Hl-sequence, if we identify the velocity wj in 

-♦■ 
(4-9) and (4-10) with the initial velocity w and if we register the first 

collision not at the position where molecule 1 enters  the sphere, but at 

the position where molecule 1 leaves  the sphere. 

Hence, if we integrate over T* , R and O    (cf.(3-32)) and use (3-14), 

the collision integrals (1-1) and (1-2) reduce to 

0     -»■  /s 
wi*Ri<o 

• JdwjTi* (wp w^2 (w2- ^S2).§0 (-w2 -r) 0 (l-{w2>tr}
2)  ,        (4-lla) 

CH2(S)= + ^2-Jdw1dw2f*(w1;S)f*(w2;S) JdTj fcU^ |w]L.R1! 

W.'ft^O 

.w12(w2-^ ft2) .S 0(-w2-r)G(l-{w2><r}
2), (4-llb) 

with 

(4-llc) 

The collision integrals (1-3) and (1-4) can be treated in the same 

manner, except that we cannot integrate analytically over the collision 

vector &,_.  Thus 
12 
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  00 

CR1CS)= +^2   r^d» f*Cir i8)fl*(w2iS) fdT*  fdR^  \\'\\ 

w  *R <o 

■|dw^n*(wp fdÖ12  |w^2-ei2|    Cw--VSlft2).g0(-^..r)0Cl-{w-kr}2)/(4-12a) 

cR2(s)= - &|w(vl,f*tv1,fdT;/dgi iv\i 
w  -ft >o 

*/dd12 I^12'd12'    ("i'~ ^f V 'S 0t~"i' *r)0(l-{w^xr}2) , (4-12b) 
W12'd12<0 

with 

2= wj|4"r4 i/l-(w^'xi)2> . 

The 

&2= r-w,' '\wj' T *  VI- (w,' 'xr>z / . (4-12c) 

velocity w''   is again related to the integration variables by  (3-35). 

4.4    Drag Coefficient C,   of a Sphere at High Speed Ratios. 

In the high speed limit or   (cold wall)   beam limit 

f*(w. ;S)= 53(w.-S)   , (4-13) 

and 

lim C,(S)= lim C„,(S)+ 2 lim C„,(S) , (4-14) 
S->oo  1     S"*00  HI       S-*00  Rl 

as discussed in Section 3.4. Retaining only the leading term.ih S the 

collision integrals (4-lla) and (4-12a) reduce to 

lim 
S-KO 

0 S-R<o 

im CH1(S)= - -f S TdT*    CdRx IS-RJ   /dw^n* (w|)0(-§.r)0 (l-{s><r}2), (4-15) 

!£ cR1 (s)- + g s jdtj JdRl I§rRl I J^n* %) J dö12 (8 fai2r 

S.R<o s-d, >o 
1 12 

•G(-di2.r)e(l-{ff12Xr}
2) . (4-16) 
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a "*" "*" 
We express the vectors R, (0„, ,d>„,)» r(r,6 ,<(> ) and w'(w',0 » <fc  .) 

1 Rl TRi      rr      11 wl Twl' 

in terms of spherical polar coordinates in the coordinate system with 

the Z-axis in the direction of -S. Because of symmetry we may integrate 

over the azimuthal angle *  of ft. and take R in the XZ-plane as indicated 

in Fig. 12. Then 

JÄ^l (S)= - f    S /dTj J deRlsineR1cos8R1 Jdw^V"!  J «B^l^ ,K, 

•(w^-ft1)0(W|-ft1)0(cos9r)0(l-rsin6r)  , (4-17) 

with 

w^-ft^ coseRlcos8wl(+sirßR1sin9wl,cos<{.wlI . (4-17a) 

The Heaviside functions in  (4-17)   impose the conditions 

0<6R1< arctg(-cotg8wllsec*wll) , (4-18) 

and 

0<8   <arcsinr"   . C4-19) 

It follows from   (4-9)   that condition   (4-19)   is equivalent with 

Rl       I-cos*   .rf- V cotg 0D1+ cos *    il   . 
w'sin8  .i I wl R1 wlJ 

1        wl "■ 

0<T *< Rl       |-cos*„,d-V cotg 0,,,+ cos *„,•!  • (4-20) 

With the integration limits for x* and 0 . determined by (4-20) and 

(4-18) the Heaviside functions in (4-17) are taken to be unity. All 

integrations can be performed analytically with the result 

In order to evaluate the collision integral (4-16), as well as the 

collision integrals in the subsequent sections, we consider three 

different coordinate systems, to be referred to as the XYZ, X'Y'Z' and 
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X"Y"Z" systems. The XYZ system is the original coordinate system 

with the Z-axis in the direction of -S.  The X'Y'Z* system has the Z'-axis 

in the direction of R\. and the X'-axis in the plane through R. and %.  The 

-»■ 

X"Y'"Z" system has the Z''-axis in the direction of r and the X"-axis 

-*■-*■ + 
in the plane through r and S. We express WT(W',6' , ,<j>' ,) -in. terms of 

polar coordinates in the X'Y'Z' system. The polar and azimuthal angle of 

&  in the original system are 0 , <J> and in the X"Y"Z" system 6'' ,$*'. 

-»■ 

The Cartesian components of any vector a in the auxiliary systems are 

related to its components in the original XYZ system by 

v I ■ vv 
\a*\ 

lx«\ 

y" 
= Rv(6 ) R «f> )  a, 

y r z Tr 

A 

z / 

(4-22) 

where " and R are the same rotation matrices as those used in earlier 
■*     z 

reports [3l,33].-and where 6 and <J> are the polar and azimuthal angle of 

the distance vector r 

r = R. L+ Äjrj- R1+Wi ^-coS0;il+/r
2-sin20;i. j (4-23) 

lim C 

The collision integral (4-16) reads in terms of these variables 

& »   -  12 M 
RI

(S)=
 

+ V s^dtjJdeia.i«ieR1co.elll f*^3.-*. fatf**^-*^ 

2TT TJ4 2TT 

•J^wl./deasih0acos38a^d(fra0| r0 (-QOSO^ ') 0 (1-rsinej • ). (4-24) 

The Heaviside functions in (4-24) impose the condition 

ir- arcsin r  < 9' • < TT , (4-25) 

so that molecule 1 will indeed return to the sphere after the collision 

with molecule 2. We transform the integral over the time  T* from 0 to 

00 into an integral over the distanae  r from 1 to » [19] 
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dT*= 
rdr 

1      «iVr2-sin26'   I   ' 
(4-26) 

If we  then integrate over w', we obtain 

M 
lim C_.(S)= 
S-x»    Rl 

= + ^-ivS f d6„.,sin9„,cos6T Rl Rl Rl 

i 
/"»■ 

2TT 

sin6wi.cos0;i'/-wi' 'wi'/d*w: 

-2_._2fi'   \-l/2^fl  si e  cog3& 

a      a        o 
6 cr 

dr(l-r zsin^8wiiy
i/2rd9asineacos39a fd(|>a 0(- cos6'•)G(l-rsinS'•). (4-27) 

o a 

The remaining integral was estimated numerically as a weighted average 

over 100,000 random points with the result +(0.510*0.002)8. 

We thus conclude that in the limit of high speed ratios [16] 

Jim CHl(S)=-\/|s = -1.253 S , 

lim C  (S)= +(0.510±0.002)S   ,- 

J^C^S)« Jim  fcH1(
s>+2c

RltS)} - -(0.233±0.004)S 

(4-28a) 

(4-28b) 

(4-28c) 

These results are in good agreement with the values ldgg C .(S) = 

-(1.23+0.02)S and lim CRl(S)= +(0.511±0.002)S as calculated by Kupermant. 

t Equation C5-54) in the original thesis of Kuperraan contains an error and 

should read VCa)» ^x^"^\H>vli^^  j. This change does not affect the 

value of c Hl quoted in Table 5.2 of his thesis, but the values quoted for 

C±     and C^1 should be replaced with C  -C^ = (_0,256+0.0021 S/Kn' [35J , For 

the same reason the values quoted in Table 6.4 of Kuperman's thesis should 

be replaced with the values presented in Section 4,5 of this report. 
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4.5 Drag Coefficient C, of a Sphere at Low Speed Ratios. 

At low speed ratios we can expand the Maxwell distributions in the 

collision integrals (4-11) and (4-12) in a Taylor series around S=0 and 

retain only the first order term in S. 

■*■-*•        •*■■*■ 1 - (w?+w2) r •*•.■*■-*■    i 
f*(w,!S)f*(w,;S)=4e l lw2'{l+2S.(w+w„)} . (4-29) 

1       2     TT* 12 

The zeroth order term in (4-29) does not contribute to the drag coefficient. 

We use the coordinate systems introduced in the preceding section. 

The polar and azimuthal angle of any vector a are denoted by 8 ,<J> , O',^1 
3.  cL    Si       cL 

and e,,f<J),, in the XYZ, X'Y'Z' and X"Y"Z" system, respectively.  It 
a  3 

is also convenient to introduce the polar and azimuthal angles Q„  an<3 ?a 
of 

6  in a coordinate system with the Z-axis in the direction of w"  in 

(4-12a) and in the direction of w12 in (4-12b) and the Xr*axis in the plane 

through S and w' or w .   We transform again the variable T* into the 

distance r in accordance with (4-26).  In the collision integral (4-lla) we 

can integrate readily over the velocity w .  We thus obtain 

oo 2     oo 9     TT 

|r0
CHlCS)= " ^f/dW2W22e'W2/dWiWi2e"Wi  /«V^Rl 

0 0 0 

% ^ TT ™ 

j d8wl.8inewl.COSe;i'/d*wl. Jar(l-r-2sin29wlirl/2 JdB-.taB- \ä*£ 
° ol TT-arcsinr ° 

' WI2 ( 4 Sz-VzJ < *% COs9Rl-W2z)' <4"30a> 

j— r° 2   °° 2   * 

Jft CH2(S>= ^"A^fal^f"*!****! 

>;i8i^;i~^wi/<i/dr(i-r"2sin2e;i)**1/2 /de;2
sif w2 K; 0 5 1 TT-arcsinr""1       0 

,W12 (w2z" 2 V (W1Z+W2z}' («Ob) 
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•2° 2    °° 2     1" 
lim C^tSH + aJyJa*2w^e"W2 ftopfe""!  Jd9 

0 o 0 

»= + A? 
s-*-o 

/* 
2-rr 

*1T 2TT 

RlSineRl/de2Sin8
2/

d*2 
o o 

IT ZTT 

•/d^i-sine;i'CQs9;i./d^i J<*<i-*~We4,rv7deas±neff lcoSea| /is 
0 °        i % o' 

*W12(4 ^""lz5 (T cos9
Ri-w

2
COS02> e(-c°se;^r)0(l-rsin6-,,) ,      (4-30c) 

lim C 
S+O     R2 

   °° 2   J» ■ 2    ^ 7T 2lr 

27T 

0 *     1 % 

•W12 (wiz~ *T R2z> (wlz+W2z)G ("cose;i ''>©a-rsine^,,) . 

an 

sin6ff |cos8a| K 
(4-30d) 

These integrals were again calculated numerically. The results are 

presented, in Table VI. 

4.6 Drag Coefficient C. of a Sphere at Arbitrary Speed Ratios 

For arbitrary values of the speed ratio S we need to substitute the 

complete Maxwell distribution (3-6) into the collision integrals (4-11) and 

(4-12).  In formulating the collision integrals we use the same notation as 

in the preceding section and obtain 
-00 00 

r,        /nx 4/2 
CH1(S)   ="Fi* 

/■^ 

j 3 ~wl dw. w    e    ■*■ * 2 "»a 
2W2 G 

dewlSin8wllCOs6wll 

% 

2TT    ,y2 

0 oJ 

o' 

d*wl 
o' 

2 -w'' dwjw'  e    1 

2TT 

d8RlSin9Rl 

d9:i .sin6:i r«3^!. Id*'i ■ |dr(l-r-2sin2e-   ,)_1/2 

i 

TT 

de'lsinS1' 
w2 w2 

wl * wl' wl' I   Twl' 
0' V 

wl' 

■2fT . 

....   -2S(S+w,   +w-  )   ,     [JH _ \ d*w'e iz    2z wi2 ^- R2z-w2 J . (4-31a) 

TT-arcsin r -1    oj 
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TABLE VI 

Collision integrals for the drag coefficient C of a sphere in the low 

velocity limit. 

lim C .(S)= -(2.585±0.014)S 
S+o 

-1 

lim C 0(S)= +(0.299±0.008)S 
S"*0  H2 

-1 

lim C„(S)= Um{c ' (S)+C„.(S)} = |im^CHl(S)+CH2tS)^ = _t2.29±0.01)S 
-1 

'^m CR1tS)= +(0.59±0.03)S 
-1 

-1 
iio CR2(S)= -(0'059±0'007)s 

lim C„(S)= lim {c„. (SJ+C^CS)} = +(0.53±0.03)S~1 
g+o R   s->-o  Ri   R2 

lim Cn(S)= lim{C„CS)+ 2C fS)}= - C1.23±0.05)S -1 
S-K> &*o H 
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■00                                                *O0                                                ffT 

CH2(S)   = + Fi2" 
2 

dw w.  e    1 
2 

dw2w2 e    2 d8Rlsin0Rl 
o1                    oJ                    oJ 

.TU                                       ,2*      -co                                                          .*                            .2TT 

• 
wl        wl        wl d<j>' wl dr(l-r-2sin28;i)-1/2      d8-.ln9- rw2 

oJ i 

0 iJ 

ir-arcsin r          ° 

-2S <-v^>„12 (4 ,2z - .„). (4-31b) 

4/2 dw w    e    1 2 -wo2   I 2 -w'2 
dw„w„ e    *      dw'w'  e    1 

2  2 11 

TT 
0 0 

-2TT ,ir 

de'T sinQ'nIcose',I wl wl■ wl' 

% 

^wl 
d62sin92 

0 0 

2TT       M 

.   ,.     -2   .   20l     .-1/2 dr(1-r    sin 8'   ,) 

1' 

d*2 

o-       0' 

,2TT 

-TT 

d9RlSin9Rl 

2TT 

d8^'BlBe^'C08e^' d*;i 
0' 

d(Lsin6L |cos8J cr       a1       o1 
.7    -2S(S+w,  +w„ )   .   //F _        , ,\ d^e iz     2zwi2(-TR2z-w-j 

JK 
• 0 (-cosS^,,) 0 {l-rsine^,,), (4-31c) 

c      (s) l£ 2 -w, dw w.   e    A dw2w    e~w2 

/■TT 

deRlSin9Rl 

r^ 
0" o' 

-2TT /IT 

dG'^ineVcose', wl        wl        wl ^wl d82sin92 

o' 
2TT       ,«, 

d*. w2 

IT 

d9 sin9 Jcos8 J a       a1       a1 

,2TT 

.? -2S(S+w, +w„ ) d<J> e      lz 2z w a 

dr(l-r"2sin2e',)"1/2 
wl 

1' 

?* 
i2(4

R2z-wii)e(-cos8;i»,e(i-rsine;i-) 

(4-31d) 

The various integrals were again computed numerically. In Table VII we 

present the estimated values of C , as well as the individual contributions 

CH1' CH2' CR1' CR2 for S—3' Just as in Section 3-6 when calculating the drag 
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TABLE VII 

Collision integrals for the drag coefficient C. of a sphere (S<3) 

s C   ,*S «1 
c „xs H2 CRl*S C    *s R2 CjXS 

0.01 -1.22+0.10 

0.05 -2.51±0.07 +0.26±0.07 +0.45±0.03 -0.09±0.03 -1.16±0.06 

0.10 -1.24±0.10 

0.50 -2.94±0.16 +0.30±0.09 +0.65±0.05 -0.07±0.02 -1.47±0.16 

1.00 -4.53+0.12 +0.14±0.01 +1.04+0.05 -0.045+0.006 -2.36±0.14 

1.50 -6.47±0.25 +0.054±0.005 +1.48±0.07 -0.016+0.002 -3.48+0.27 

3.00 -17.9510.39 +0.002+0.001 +5.47+0.39 -0.0008+0.0004 -7.0010.85 

TABLE VIII 

Collision integrals for the drag coefficient C of a sphere (S£5) 

s CH1/S CR1/S Cj/S 

5.0 

7.5 

10. 

15. 

20. 

30. 

50. 

-1.64±0.04 

-1.49+0.03 

-1.44+0.03 

-1.3210.03 

-1.29±0.03 

-1.2610.02 

-1.2610.05 

+0.5210.02 

+0.5U0.01 

+0.5010.01 

+0.5210.02 

+0.5210.02 

+0.4910.01 

+0.5010.01 

-0.6010.05 

-0.4910.04 

-0.4310.03 

-0.3710.04 

-0.2510.04 

-0.2910.03 

-0.2610.03 
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of a disc, we again notice that the contributions C„_ and C__ may be neglected 
H*s      R2 

for speed ratios S>2.  The results obtained for the larger speed ratios 

are presented in Table VIII. At low and high speed ratios the results 

approach the limiting values established earlier in Sections 4.4 and 4.5. 

4.7 Discussion of Results for the Drag of a Sphere. 

In summarizing our results for the drag of a sphere in the nearly free 

molecular flow regime, we write the drag coefficient C again as in (3-51) 

[l+ri'Mlfft1 CD= Co |l+ Si XX\  = C_ ln/^^k"1 I  . (4-32) 

with 

K_1= /2 irncr2R. (4-33) 

A summary of the values of the coefficients in the expansion (4-32) for the 

drag coefficient C is presented in Table IX. The coefficients C and 

C /C are plotted as a function of the speed ratio S in Figs. 13 and 14 

using the same scale as used earlier for the drag coefficient of a disc in 

Figs. 10 and 11. On comparing Table IX with Table V and £igs. 13 and 14 

with Figs. 10 and 11, we note that the drag coefficient of a disc and a 

sphere are rather similar functions of the speed ratio. Again at low speed 

ratios CL/C becomes independent of the speed ratio, while at large speed 

ratios C./C becomes proportional to the speed ratio S. 

The drag exerted on a sphere in the nearly free molecular flow regime 

has been studied by a number of authors. Most of these studies are concerned 

either with low velocities S«l or large velocities S»l and we shall discuss 

the two cases separately. 

Our results may be interpreted as the solution of the Boltzmann equation 

for a gas of hard spheres in the presence of the object. A study of the 

sphere drag based on the Boltzmann equation for Maxwellian molecules, i.e. 
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TABLE IX 

Drag coefficient of a sphere in the nearly free molecular flow 

regime as a function of the speed ratio S. 

C- C fl+ £i K_1 = Co |1+ /CH+ZCRW-
1

' ;   K_1= l/2"irna2R. 

s Co CH/CO CR/CO C]/C0 

0 
0.01 
0.05 
0.10 
0.50 
1.0 

4.19S~* 
4.19S~j" 
4.19S"^ 
4.20S~^ 
4.34S-^ 
4.75S 

-0.54610.003 
-0.52710.007 
-0.53910.003 
-0.529+0.008 
-0.61+0.03 
-0.9210.02 

+0.12610.006 
+0.1210.01 
+0.1310.01 
+0.1310.01 
+0.1310.01 
+0.2110.01 

-0.2910.01 
-0.2910.02 
-0.2810.01 
-0.2810.01 
-0.3410.04 
-0.5010.03 

1.0 
1.5 
3.0 
5.0 
7.5 

10. 
15. 
20. 
30. 
50. 
00 

4.75 
3.58 
2.61 
2.32 
2.19 
2.14 
2.09 
2.06 
2.04 
2.02 
2.00 

-(0.9210.02)S 
-(0.8010.03)S 
-(0.76+0.02)S 
-(0.7110.02)S 
-(0.68+0.0DS 
-(0.6710.0DS 
-(0.6310.0DS 
-(0.6310.0DS 
-(0.63+O.ODS 
-(0.6210.02)S 

-0.627S 

+ (0.2110.01) S 
+(0.18+0.01)S 
+(0.2310.02)S 
+tO.2210.01)S 
+(0.230+0.005)S 
+(0.23510.006)S 
+(0.24810.008)S 
+(0.25310.008)S 
+(0.24+0.01)S 
+ (0.24710.008) S 
+(0.255+0.001)S 

-(0.5010.03)S 
-(0.43+0.03)S 
-(0.3010.04)S 
-(0.2610.03)S 
-(0.2210.02)S 
-(0.2010.02)S 
-(0.13+0.02)S 
-(0.1210.02)S 
-(0.14+0.01)S 
-(0.1310.0DS 
-(0.117+0.002)S 
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Figure 13. The drag coefficient C of a sphere in the free molecular flow 
regime as a function or the speed ratio S. 
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Figure 14. The coefficient C]/C0 of the first inverse Knudsen number 
correction to the drag coefficient of a sphere as a function 
of the speed ratio S. 

> 
m 
o 
o 



AEDC-TR-74-79 

molecules that repel each other with forces proportional to the inverse 

fifth power of the intermolecular separation, was made by Liu, Pang and 

Jew [4].  They expanded the collision integrals into Hermite polynomials 

in terms of the molecular velocity; this procedure leads to an expansion 

of the drag force in which higher order terms of the speed ratio S are 

neglected. 

A comparison of our results with those of Liu et al. is made in Table X. 

The predicted drag coefficients appear to be very similar for S<0.5; in this 

range we confirm the conclusion of Liu et al. that the coefficient C]/C0 is 

almost independent of the speed ratio S. For S>0.5 the results of Liu et al. 

begin to deviate substantially from our results; this difference might be 

due to a failure of the expansion procedure of Liu et al. for larger values 

of S [4]. The convergence of the expansion procedure of Liu et al. has been 

questioned by Willis [7]. Nevertheless, unless the agreement is fortuitous, 

the data of Table X would suggest that the drag coefficient is insensitive 

to the details of the molecular interaction and that it is mainly a function 

of the size of the interaction range, or, eguivalently, of the magnitude 

of the mean free path. 

Due to the complications associated with solving the full Boltzmann 

equation many authors have used instead the BGK equation (1-4) or more 

sophisticated versions of this model equation. The use of this model 

equation Introduces an uncontrolled approximation for mathematical conve- 

nience. Its predictive power is further limited by the appearance of an 

adjustable collision frequency v. 

In the limit 9*o it is sufficient to consider a linearized version of 

the BGK equation (1-4). Using this procedure and assuming again diffusive 
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TABLE X 

Comparison of our results for the sphere drag with those of Liu et al. 

Liu et al [4] This work 

(Maxwellian molecules} (hard spheres) 

S= 0 C./C = -0.298 
1 o 

C,/C = -0.29±0.01 
1 o 

0.01 -0.298 -0.29±0.02 

0.10 -0.300 -0.28±0.01 

0.50 -0.308 -0.34±0.04 

1.00 -0.. 296 -0.50±0.03 

TABLE XI 

Survey of theoretical values reported for lim C./C of a sphere. 

Cl 
lim —- - -0.24 S s-*» c 

o 
, Baker and Charwat [14,38] 

■ -0.143 S , Perepukhov [15] 

= -0.33 / Rose [8,39] 

= -0.165 f Willis [38] 

= -(0.117±0 002) 3 , this work. 
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reflection of the molecules from the object, Willis calculated the coefficient 

C /C for a sphere with the result [7J 

lim _i = -0.366 . (4-34a) 
S*0 o 

Starting from the same equation we find'' 

lim fi = -(0.4Q1±0.004) . (4-34b) 
S+0 C o 

These theoretical values are usually compared with the measurements of 

Millikan [36] for the drag of oil droplets in air as a function of the 

Knudsen number. From the experimental data of Millikan one may deduce*' 

Cl 
— » - 0.39+0.02 . (4-35) 
Uo 

The rather close agreement between (4-34) and (4-35) has been widely in- 

terpreted as a justification for the use of the BGK equation. However, such 

a conclusion is dangerous, since it heavily depends on the presupposition 

that the theoretical boundary conditions are satisfied in Millikan"s ex- 

periment. In fact, Millikan's experiments were conducted in air which is a 

mixture, while the results are interpreted in terms of equations for a one 

component system. A more reliable criterion for the adequacy of the BGK 

equation is obtained by comparing its solution with that of the Boltzmann 

+ 
This work will be included in a Ph.D. thesis to be submitted by 
Y. Y. Lin Hang. 

tt A statistical analysis of Millikan*s data in terms of the theoretically 
predicted equation C = C +C,K-1+c:K-2inK_1+C^K-2 was made by ^ondlo [37]. 

D   O  1     2 2 
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equation with the same boundary conditions [12]. The fact that the BGK 

result (4-35) differs appreciably from the Boltzmann equation result both 

for hard spheres and Maxwellian molecules raises doubt about the adequacy 

of the BGK model equation. 

Theoretical calculations of the sphere drag at large velocities have 

been presented by Baker and Charwat [14], by Perepukhov [15], by Willis and 

coworkers [38] and by Rose [8,39]. A summary of the values reported for 

lim Ci/C0 is presented in Table XI. In order to simplify a comparison with 

our results we have only quoted in Table XI the limiting values, when the 

temperature of the object is identified with the temperature of the gas 

stream. Baker and Charwat [14] and Perepukhov [15] start from the same model 

as considered in this report, but then proceed to introduce a number of 

approximations. The extent to which their results differ from our value of 

~(0.117±0.002)S indicates the effect of their approximations. In particular 

the drastic approximations introduced by Baker and Charwat, do not appear 

to be justified. The fact that C]/C0 becomes proportional to the speed ratio 

S at high velocity, is a consequence of the general nature of the collision 

integrals. 

The value obtained by Rose [8,39] is based on the BGK equation (1-4) 

and that obtained by Willis [38] is based on a modified version of the BGK 

equation. The dependence of their solutions on the speed ratio S appears 

to be qualitatively different. These model equation results are subject to 

the limitations mentioned earlier in the discussion of the drag coefficient 

in the low velocity limit. Their validity can only be judged a posteriori 

from a comparison with the solution of the Boltzmann equation, though not 

necessarily the solution of the Boltzmann equation for hard sphere molecules. 
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The fact that our calculated values of C]/C0 became proportional to the 

speed ratio S at large velocities deserves some further comments. The 

validity, of the expansion (4-32) for the drag coefficient is limited to the 

range where the mean free path is substantially larger than the object, i.e. 

the inverse Knudsen number should be substantially smaller than unity. How- 

ever, the parameter K ■^2 irna R in (4-32) represents the Knudsen number in 

the absence of (i.e. away from) the sphere and is therefore sometimes referred 

to as K» . In order for the expansion to be valid we must require that the 

local inverse Knudsen number near the object is substantially smaller than .. 

unity, indicating the local Knudsen number by K, then at small velocities 

lim K_1S K-1=V^" 7Tncr2R , (4-36a) 
9*o 

while at large velocities 

lim K-1S SK_1= Si/2~TTna2R  , (4-36b) 

since, at large velocities, the mean free path of the reflected molecules 

becomes inversely proportional to the speed ratio S. If we thus rewrite 

the expansion (4*32) in terms of the local Knudsen number 

1   o 

subject to the condition 

K-1«l, (4-381 

then lim C±/CQ= -(0.117±0.002) becomes independent of the speed ratio S. 

Thus the apparent increase of CJ/CQ at large velocities as a function of 

S is a consequence of the fact that the local inverse Knudsen number itself 
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becomes proportional to the speed ratio S. Unfortunately, the condition 

(4-38) implies for large values of the speed ratio that K «S  and, hence, 

the range of validity of the expansion decreases with increasing values of 

the speed ratio S. Of course, this limitation applies to all theoretical 

results obtained by a Knudsen number iteration procedure. 

Experimental data for the drag coefficient of a sphere at high velocities 

have been reported by Kinslow and Potter [40]. In terms of our parameters 

these data correspond to SK «3 and therefore do not overlap with the range 

SK «1 of our calculated values. 
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CHAPTER V 

REMARKS 

In this report we have considered a density expansion for the drag 

coefficient C in terms of the density of the gas stream. When the mean 

free path of the molecules is sufficiently large, this expansion reduces 

to an expansion in terms of the inverse Knudsen number.  Retaining only the 

first two terms we thus obtained 

CL- c + cX
1 • ^ D       o       1 

where the parameter K      was defined as 

K-1=tf2 iriX^R  . C5-2) 

The coefficient C represents the drag coefficient in the limit of free 

molecular flow.  It was shown that the coefficient C is determined by a 

set of well defined collision integrals associated with the dynamical motion 

of two molecules in the presence of the object. These collision integrals 

can be formulated for objects of any shape.  In order to demonstrate the 

feasibility of the method we calculated these collision integrals for the 

coefficient C. of a disc and a sphere as a function of the speed ratio S 

assuming that the molecules of the gas are reflected diffusively by the 

object. For convenience we took the temperature of the object to be equal 

to the temperature of the gas stream and assumed that the molecules of the 

gas stream could be treated as hard spheres. These approximations are not 

essential. Other temperatures of the object and molecules with more com- 

plicated interaction potentials can be handled by using the appropriate 
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binary collision operators T(1X).. 

The range of validity of (5-1) is determined by the conditions 

K"
1
«!     for SSI , C5-3a) 

and 

K'^S"1   for S>1 - C5-3b) 

In order to extend this range one needs to consider higher order terms in 

the .expansion (5-1) for the drag coefficient.  In analogy to the density 

expansion of the transport properties of a moderately dense gas, one may 

anticipate an expansion of the form [5,16,17,19)41] 

C= C0+ C K
_1+ C'K'

2
!!^"

1
*  C2K~

2+ . . . (5-4) 

where K is the local Knudsen number in the neighborhood of the object. 

The relationship between this local Knudsen number K and our parameter K 

was discussed in Section 4.7.  In view of (4-36b) one therefore may 

anticipate higher order terms that are nonanalytic in terms of the 

parameter K  as well as in terms of the speed ratio or the Mach number. 

For objects with two dimensional geometry, such as a cylinder or a strip 

whose length is large compared to the mean free path, these nonanalyticities 

appear already in the first inverse Knudsen number correction. However, 

the nature of these nonanalytic terms« as well as their practical signi- 

ficance, is not yet well understood and further research is required. 
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APPENDIX 

EQUALITY OF" THE CONTRIBUTIONS PROM RECOLLISIONS AND CYCLIC COLLISIONS 

In this Appendix we prove that for an object in a gas stream of hard 

spherical molecules the recollisions and cyclic collisions yield identical 

contributions to the drag force, i.e. 

Ecl= ER1 , CA-la) 

lc2=ER2  , CA-lb) 

■*■•+■ ■>      -v 
where ED1 and E  are given by (2-65) and E  and E  by (2-66).  Bhis 

RX      R2 CX      C2 

identity was earlier noted by Kuperman in the zero and infinite Mach number 

limits [19], but the theorem has a general validity independent of the speed 

ratio and independent of the detailed nature of the integrand.  It thus also 

applies to other collision integrals pertaining to the nearly free molecular 

flow regime, such as those derived by Kelly and Sengers [18] for the mass 

flux to a droplet in a supersaturated vapor. 

In order to prove the theorem we define the quantity 

g(vj')S   JdA2   |v^'-n2|   ö
3^-^ v^T;L+ V^'T2) fdv^''ri(v^'|v^) (v^'-v^-), 

V'V° <A-2) 

and consider the integrals 

yj*« IV^I^P ' (A-3a) 

'l2-d12<0 

V /d9i2 IV*«!«^ • (A"3b) 

n2-di2<o 
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-*■ -»■ 

On comparing C2-65a) with C2-66a) we note that E= E  , if I = I . 

For a gas of hard spheres the velocities before and after the second 

collision are interrelated by (2-18) 

v-= T- - (vi2«ei2)&12 , (A-4a) 

v2'=v2+ (vi2-d12)Ö12 . <A-4b) 

Let us introduce a new unit vector Ö' defined as 

v' ~(v' -d     )8 
8' =   12 l 12 12' 12 

l/l-Cv' -6 )2 
*  v 12 12J 

(A-5) 

so that 

v2'= v^ - (v|2.&•)&'- (A-6) 

We choose a coordinate system with the Z-axis in the direction of v* . The 

polar and azimuthal angles of 6      in this coordinate system are 9 and <f> and 

v' -Ö. = cos9.  It follows from (A-5) that the polar and azimuthal angles 

0' and (j)' of d'  in the same coordinate system are 8*=— -9, $x = <J>+TT and that 

v12    cos0'= -sinö.  Thus 

ZC= fdÖ12 l^l2"&12Lg(^2,)= V12/d* fde sin9lcosel gCv2') = 

Vd12<0 °  V2 
27T 

= V" 'i2 J*'fa'-i«(?-e') | cos (ft -9') l.gCv.'l = 

27T    II 

= v^faty'f aQ'siiß*   |cos9'| g(v2')= fd&' Iv^-S'l gtv2«).        (A-7) 

% v£2*Ö*<o 
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On comparing (A-7) and (A-6) with (A-3a) and (A-4a), we conclude that indeed 

Ic- IR , (A-8) 

which implies the equality E^, = E . The equality E = E 0 follows if ^X   RX CA   Rä 

-»- -»- 
v' is identified with v . 
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