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CHAPTER I

INTRODUCTION

This report is concerned with the problem of calculating the drag
force on an object moving in a gaseous medium. An important parameter
that governs the properties of aercdynamic flows in rarefied gases is
the Knudsen number K. This Knudsen number is defined as the ratio of
the mean free path A of the molecules in the gas and a length L which
measures the size of the object. In order to describe the aerodynamic
processes when the Knudsen number is larger than unity, one needs to
consider methods based on the kinetic theory of gases. That is, in
rarefied gas dynamics, the drag force can be considered as resulting
from collisions of individual molecules with the object.

The regime in which the molecular mean free path is much larger than
the size of the object, i.e. the limit of infinite Knudsen number,-is
usually referred to as the free molecular flow regime. 1In this regime
molecules that are reflected from the object collide on the average with
onceming molecules at large distances from the object. Hence the process
is here completely determined by the interaction of independent gas
molecules and the object, while collisions between the molecules may be

neglected. Aside from the detailed nature of the interaction between gas

molecules and the object, the physics of the free molecular flow regime
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is well understood and practical calculations abound in the literature.
Reviews of Schaaf [1] and Schaaf and Chambre [2] give examples of free
molecular flow calculations together with bibliographies.

In this report we focus our attention on the nearly free molecular
flow regime where the Knudsen number is greater than one, but definitely
finite. For such flows the molecular mean free path is larger than a |
typical dimension of the object, but small enough so that collisions
between the gas molecules cannot be neglected.

The drag coefficient C_ of an object in a gas stream is defined as

D
c.= = . (1-1)
where E is the magnitude of the force exerted on the object and UK is the
incident kinetic energy. 1In the nearly free molecular flow regime K-1<<1
the drag coefficient cD may be written in the form
- -1

CD = CO+C1K + . . . ' {1-2)
where co is the drag coefficient in the free molecular flow regime
K-1+0 and C, the coefficient of a correction term which is inversely

1
proportional to the Knudsen number K.
The drag force can be evaiuated theoretically by solving the
Boltzmann equation subject to the appropriate boundary conditions imposed
by the presence of the object. The Boltzmann equation is a nonlinear

integro-differential equation that describes the rate of change of the

single-particle distribution function £ of a dilute gas [3]

<> > > >
Bf(rl,vl,t) . 3_. Bf(rl,vl,t) - s (1-3)
at 1 3t ’
1l
> >
where Iir vy represent the position and velocity of a molecule labeled 1
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and where J(ff) is a collision term containing a time independent integral
operator acting on the function f(;i,zl;t). The term J(ff) accounts for
the change in f due to binary collisions between the molecules and the
gas. An approximate solution of the Boltzmann equation was obtained by
Liu et al. for a sphere in a gas stream of Maxwellian molecules, i.e.
molecules that repel each other with a force that varies as the inverse
fifth power of the intermolecular separation [4].

Since it has proven to be difficult to solve the full nonlinear
Boltzmann equation, some of the more authoritative studies are restricted
to flows at low velocities where the linearized Boltzmann equation may be
used [5]. Many authors have replaced the Boltzmann equation with a model

equation proposed by Bhatnagar, Gross and Krook [6].

Q
Hh

of =~
at+v

1 = v(fo-f) ’ (1-4)

K

= >

1
where fo is the local Maxwell distribution and v an adjustable parameter
representing a velocity independent collision frequency. Willis has solved
the BGK equation using a Knudsen iteration method [7]. Rose has used a
Fourier transform technique to deduce the drag from the BGK equation [8].
Cercignani and coworkers have evaluated the drag of a sphere from the BGK
equation using a variational method [9]. For a review of the use of the
Boltzmann equation and the BGK equation in rarefied gas dynamics the
reader is referred to the books of Kogan [10] and Cercignani [11l]. Although
judicious application of the BGK equation has yielded some encouraging

results, the model equation does not have any really predictive power [12].
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Another approach, encountered in the literature, is the first col-
lision model. The first collision model assumes that the drag on the
object is the sum of the free molecular flow drag C° and a correction
term which results from collisions between molecules reflected from the
surface of the object and molecules in the incident beam. It was used by
Lunc and Lubonski [13] for calculating the drag of a strip, by Baker and
Charwat [14) for calculating the drag of a sphere, and by Perepukhov for
calculating the drag of a sphere and a cone [15]. The first collision
model is a phenomenological theory and it is not derived from first
principles. Clearly as the Knudsen number decreases, more and more colli-
sions between molecules must be considered.

A systematic approach to account for the effect of molecular colli-
sions on the drag was developed by Dorfman and coworkers [16,17]. In
this approach the object is treated as a heavy particle and the dynamical
evolution of the system of gas and object is treated with the aid of
the same techniques used earlier to derive the generalized Boltzmann
equation for a moderately dense gas from the Liouville equation. 1In
general the theory leads to a density expansion for the drag force on the
object. In the limit that the mean free path of the molecules is large
compared to the size of the molecules themselves, this expansion reduces
to an expansion in the inverse Knudsen number. The coefficients in this
expansion are given by integrals related to sequences of successive
collisions among the molecules and the object. The same collision inte-
grals can also be obtained by solving the Boltzmann eyuation with a
modified Knudsen number iteration procedure as shown by Kelly and Sengers

[18]. The derivation of the collision integrals for the first inverse

10
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Knudsen number correction term in (1-2) is reviewed in Chapter II. A

preliminary analysis of the collision sequences that enter into the

evaluation of the coefficient C1 in (1-2) was made by Kuperman [19].

In principle, our method of calculating the drag coefficient from
collision integrals can be applied to objects of any shape in a gas
stream of molecules with any interaction potential of finite range
given the interaction mechanism between the molecules and the object.
However, in our current studies of the nature of the collision integrals
we have introduced the following approximations:

1). The molecules that strike the object do not stick to it, but are
re-emitted after a time short compared to the mean free time of
the molecules.

2). The molecules are re-emitted diffusively with a temperature T
corresponding to the temperature of the object which is assumed
to be the same as the temperature of the molecules in the gas
stream. We are thus neglecting any heat transfer effects.

3). The molecules in the gas stream are assumed to interact as hard
spheres with mass m and diameter ¢g.

The drag force on the object not only depends on the Knudsen
number of the system, but also on the Mach number of the gas stream.

The Mach number M is defined as the ratio of the flow velocity V relative

to the sound velocity. For the problem at hand, instead of the Mach

number, we find it more convenient to use as a parameter the speed ratio.

The spead ratic S is defined as the ratio of the flow velocity V relative

to the thermal velocity (2kT7h)5&, where k is Boltzmann's constant:

1 /2

S = V(m/2kT) (1-5)

11
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The speed ratio S is directly proporticnal to the Mach number M
s =My/2)¥2 , (1-6)
where Y is the specific heat ratio cp/hv [1].

In apreceding research effort Kuperman analyzed the collision
integrals in the limits of zero and infinite Mach number [19]. The
research effort reported here is concerned with a study of the feasibility
of evaluating these collision integrals for all Mach numbers or speed
ratios. In particular, we shall present results obtained for the drag
coefficient as a function of the speed ratio for a disc and a sphere
in Chapters III and IV, respectively. We were informed at the initial
stage of this research effort that Willis had obtained from the Boltzmann
equation a completely analytic solution for the drag coefficient of a
disc in the infinite Mach number limit [20,21]. Therefore, by applying
our method to a disc we shall be able to compare our method with that
of Willis without any uncertainty associated with the finite precision
of any numerical quadrature method and to extend his result to finite
Mach numbers. The sphere drag was selected since we had previously
studied the sphere drag in the zero and infinite Mach number limit [16,19]
and since other investigators have studied the sphere drag by approxi-

mate methods [4,7,8,14,15).

12
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CHAPTER II

DERIVATION OF COLLISION INTEGRALS FOR THE DRAG FORCE

IN THE NEARLY FREE MOLECULAR FLOW REGIME+

2.1 Introduction

A theory of the force on an object in a gas stream in analogy
with current procedures in the kinetic theory of moderately dense
gases was proposed by Dorfman and Sengers [22] and formulated by
McClure and Dorfman [17). It is the purpose of this chapter to review
the theory and to derive the general form of the collision integrals
for the first inverse Knudsen number correction to the drag force.
These formulas will then be analyzed and evaluated as a function of the
speed ratio in the subsequent chapters.

Let us consider a system of N gas molecules and a macroscopic
object in a volume 2. The object is at rest and located at the origin
of the coordinate system. We shall consider the limit in which the ra-
tio of the mass of the cbject and the mass of the molecules becomes infinite.
The momentum and position vectors of molecule i are indicated by ;i and
;i' respectively. The total momentum of the gas at time t is given by

B(t) =) B, () . (2-1)
1=

1-

This chapter was prepared in collaboration with Professor J. R. Dorfman,
Dr. C. F. McClure and Dr. W. A. Kuperman [17,19].

13
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In order to evaluate the total momentum we use the methods of non-
equilibrium statistical mechanics with the state of the gas being
characterized by an N-particle distribution function D (P ;X;t). Here

= (x ,...xN) (pl,rl,...p ,r ) represents the 6N-dimensional phase space
of the gas, X denotes the macroscopic object and DN(FN;x;t) is defined
such that DN(PN;x;t)dFN is the probability that the phases of the particles
in the presence of the object will lie between FN and TN + dTN at time t.

The distribution function is normalized such that

farN Dy (TyiXit) = 1. (2-2)

Y
The expectation value <P(t)> is then determined by

<P(t)> —IdI‘ ZP D (I‘ X3t} (2-3)
=]

Neglecting wall effects that disappear in the thermodynamic limit
(N, (bo, NA=n), the force E(t) on the object is equal to the negative

of the time rate of change of this total momentum [17]

=g = d<+ >
E(t) = It P(t)> . (2-4)

The time evolution of the N-particle distribution function

N(I’N,t) in the absence of. a foreign object is governed by the Liocuville
equation
9 p (T;t) + L D (Tyit) =

where LN is the Liouville operator

14
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N + a . N
L (x ...x) =9y B, -:E:':E
VR S Z‘i‘r = %5 (2-6)
i=1 i i<y
Here eij is a differential operator
_ 0¢g. O 9., 9
0y F o vl . —, (2-7)

& > > -
ari api arj apj

vhere ¢ij=é ¢(rij) . ¢(|;14;j|) is the intermolecular potential between
molecules i and j. The solution of the Liouville equation (2=5) may be

written formally as
- a..) .
D (Tyik) = ¢ NUN DTy 0) . (2-8)

In the past decade methods have been developed for the evaluation

of the average value of a phase function A(xl...xN)

<> = drn A(I’N)DN(FN;t) s (2-9)

In particular, Cohen and Green have formulated a cluster expansion of
the streaming operator eXP(-tLN) that leads to a density expansion for
<A> [23,24]. In order to apply the same method to the drag problem we

need to extend the concept of streaming operator or time-displacement

operator to a system of molecules in the presence of a foreign object.

2.2 Time Evolution of a System of Molecules in the Presence of an Object.

A description of the time evolution of a system of molecules in the
presence of a foreign object must take into account the fact that the
interaction of the molecules and the surface of the object is usually of

a stochastic nature. A suitable time-displacement operator for such a

15
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system was formulated by McClure and Dorfman {17].

Let Ht,_t(Fﬁ;t1PN;t) be the transition probability density that
takes the system from the phase PN at time t to the phase Fﬁ at time t’.
The average total momentum of the system is given by

> >
= 1X; 2-10
Seey> f%rn By o (Tixie), (2-10)

where'i(r ;&. In terms of the transition probability Ht we may

N =

rewrite (2-10) :s

<3(t)> = fdl'N 'f(erde'; Itt(I‘N;tll‘ﬁ;owNa‘;;x;o) . (2-11)
Introducing a time displacement operator as
T, '5(1';;) = f drN‘;’»(ert(rN;t|r§;o) , (2-12)
(2-11) becomes
> 30
<P(tL>=fdrg b (I3:iX:0) T, P(re ) - (2-13)

In order to formulate the time-displacement operator Tt we need to
specify the interaction between the molecules and the surface of the
object. For this purpose we assume that a gas molecule after colliding
with the object with an incoming velocity ;, will be re-emitted from
the surface with a velocity 3' with a probability n(¢'|¢)d$'. We
assume that all molecules impinging on the object will be re-emitted
again, so that the transition probability is normalized as

/:1'6' n@' =1 (2-14)

To account for the interaction of a molecule, labeled 1, with the
surface of the sphere it is convenient to introduce an operator T(1X),

defined as [17,19]

T(lx)sfd?;'fd'ﬁ n@' v [v-8] 8 @R R -1 (2-15)

-
v.n<o

16
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Here it is assumed that the molecule with incoming velocity 3
strikes the surface of the object at the position i inside the two-
dimensional surface element dZ. The symbol 63(;-3) represents a three-
dimensional delta function. The operator RR is a rotation operator that
transforms the velocity v before the collision into the velocity v after
the collision of the molecule with the object. The vector fi is a unit
vector in the direction of the outward normal and the condition v-fico
indicates that the molecule strikes the surface from the outside. The
integrations extend over all velocities ¥' and over the entire surface
of the object.

We shall refer to T(1X), defined in (2-15), as the binary collision
operator for a molecule and the object. It may be considered as the sum of

two operators

T(1X) = T (1X) + T"(1X) , (2-16)
where

7 (1X) sfair"]'d.'i n@ v |[v-al63 @-RIR, , (2-16a)
L S
VvV n<o

T (1x) = -de]'G-ﬁlﬁ%?—'ﬁ) . (2-16b)
+ A
v+*1n<o

The meaning of the operators Ti(lx) and Tn(lx) is illustrated in Fig. 1.

In this figure the circle indicates the surface of the object and the lines
represent the trajectory of the molecule. The operators Ti(IX) and Tn(lx)

are only different from zero, if the molecule impinges on the object. The

operator Ti(lx) transforms the incident velocity 3i=$ of the molecule into

the velocity 3' of the molecule after being re-emitted from the object,

=Y
taking into account the appropriate probability distribution for v'. We
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OBJECT

v
v !
l l
T 1X) T (1X)
. (a) (b)

Schematic representation of the trajectory of a molecule
in the presence of the object.
(a).

(b) .

An "interacting" collision with the cbject.
A "non-interacting" collision with the cbject.
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refer to this process as an "interacting"” collision between the molecule and
the object as shown in Fig. la. The operator Tn(IX) requires also that the
molecule collides with the object, but it does not change the velocity 3.
The operator Tn(lx), therefore, corresponds to a "non-interacting" collision
in which the velocity of the molecular after the collision is equal to the
velocity prior to the collision, as shown in Fig. lb.

The operator T(1X) is a generalization of the binary collision opera-
tors T(ij) introduced by Ernst et al. to describe the interaction between
two hard sphere molecules [25]. These binary collision operators T(ij)
were defined as |

T(1) = TH(i9) + TO(id) (2-17)
where Ti(ij) corresponds to an interacting collision between two hard

sphere molecules i and j

i" 2 ~ > A 3, >
T (i =0 jr O,..|V..*0O.. ..=0, . =
(i) 3 1J|v1J oljlc (z; cij)RU.. ’ (2-17a)
3. 8. <o -
ij 713<

n,,, . . .
and T (ij) corresponds to a non-interacting collision between two hard
sphere molecules

n,.. ~2/ ~ -> A 3+ ~
T = .-y o e s U - . -
(ij) dcljlvlj °13|5 (r;4=0;4) (2-17b)
V. .0
Vij <0

ij

> > > > > > . .
Here vij=vi—vj, rij=ri-rj are the relative velocity and position of the

two molecules, O is the diameter of the molecules and Eij is the perihelion
vector of the collision between molecules i and j (= vector from center of

j to center of i at time of contact). The rotation operator Rcij transforms

i
A T . . B > >
the velocities Ve vy prior to the collision into the velocities vi, \

J

after the collision+

t In this report a symbol a always indicates the unit vector in the
direction of the vector 3.
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-+ > > >
' = = he )
4 Rcij V.=V, (vij 8ij)613 ’
] %j J j 13 ij’ ij

The properties of these binary collision operators were discussed in
detail in previous reports [26,27].

As shown by McClure and Dorfman [17] and also discussed by Kuperman
[19]) the time-displacement operator, defined in (2-12), can be expressed

in terms of these binary collision operators as
N

T (L,.. . N;X) = et[GN+ZT(kX)] , (2-19)
=1

where G is the same resolvent operator as used in AEDC-TR-72-142 [27]

G (1,...N) = 23 9 T(J.J) - (2-20)

In the absence of the object the é&me-d1splacement operator reduces to
Tt(l,...N) =e®n . (2-21)
The explicit expressions (2-17) for the binary collision operators
T(ij) refer to a gas of hard spheres. However, the crucial assumption
enabling us to represent the time~displacement operators by (2-19) and
(2-20) is the assumption that the size of the molecules is small com-
pared to the mean free path. Since we shall apply the theory to the
case that even the macroscopic object is small compared to the mean
free path, this assumption is satisfied for any gas of molecules with
finite interaction range. Therefore, we may use (2-19) and (2-20) to
represent the time-displacement operator for any gas of molecules in
the nearly free molecular flow regime, provided that the hard sphere

cross section in (2-17) is replaced with the actual cross section of

the molecules under consideration. For the same reason we do not
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distinguish between T(ij) and T({J) operators as was needed in the theory
of transport properties of moderately dense gases [27].

2.3 Cluster Expansion.

According to (2-4) and (2~13) the force E(t) on the object is

->
E(t) de‘N DN(I‘N.x o T (1,...N;x) p(I‘ ) . (2-22)
Using the form (2-19) for the time-displacement operator T we thus obtain
E(t)= - dFN DN(I‘N,x 0T [G +§;T(kX) . (2-23)

The operator GN is associated with the streaming of the molecules without
any interactions with the object. In the absence of the object the total
momentum 3 is congserved, so that GN and P commute: Gﬁ? = ?GN = 0. . Moreover

->
T(kX)py = 0 for ¥4k and (2-23) becomes

-+ >

E(t) = ;ifdl‘n DN(I‘N:x,-O) Tt(1, e NIX)T(RX)P, (2-24)
which for a g;s of N identical molecules reduces to

> >

E(t)= -N dI‘N DN(I'-N;x;O) Tt(l,...,N;x)T(lx)pl . (2-25)

We now write the time-displacement operator Tt(l,...N;X) in the form
of a cluster expansion [17,19].

Tt(l,...,n;x) = Ut(l)Tt(Z,...,N;x) + Ut(l;x)Tt(2,...,N) +
+ i [Ut(li)Tt(zp...,i-l,i+l,....N;X) + Ut(li:X)Tt(z,...,i—l,i+l,..-.N)]

1=2

+ ... +Ut(1,...,N;X) - (2-26)
Here we are introducing Ursell operators defined by

Ut(l) =Tt(1) ’

U (LX) = Tt(l;X)- Tt(l) '

v (12) =T _(12)- T.WT.(2 .

iX) =T iX)- ; - g
Ut(lz X) t(12 X) Tt(l x)T£(2) Tt(2 X)Tt(l)
-T.(12) + 2 Tt(l)Tt(2) '

. .« or etc. (2-27)

21



AEDC-TR-74-79

We substitute the expansion (2-26) for the time-displacement operator
Tt(l,...N;x) into the expression (2-25) for the drag force. Since
the Tt operators in (2-26) do not affect the momentum ;l of molecule 1,
we obtain
E(t)= -N/dI'N DN(T'N;X;O) [{Ut(l) * Ut(l;xl} +
+ (N-1) {Ut(lZ) +U (Azxb+ .. ut(l,...N;x)]T(lx):p'l , (2-28)
where we have again used the fact that the gas consists of N identical
molecules. Introducing reduced distribution functions defined as
Fo(xppeeerx iXit) = @ fax_ ...ax D (TiXiE) (2-29)
we obtain in the thermodynamic limit N+, 4, N/fi=n
E(t)= -nfax) F)(x;5%:0) [U ()40, (LX) ]ITAXD) +
-n:f/‘dle_dx2 F2(xl,x2;x,'0) [Ut(12)+ Ut(12;x)] 'r(lx)'sl +
+ ... . (2-30)
This expression relates the force to the distribution functions
Fs(xl...xs;x;O) at the initial state. Following McClure and Dorfman
we assume that the initial state is unaffected by the presence of the
object
Fs(xl' ..xs;X:O) = Fs (xl.. .xs;O) . (2-31)
We also introduce the usual assumption that the molecules are un-
correlated initially, so that Fs(xl...xs;O) may be approximated by a
product of single-particle distribution functions
Fs(xl...xs;o) = i Fl(xi;O) . (2-32)

The extent to which this assumption is justified has been discussed by

Dorfman and Cohen [28]. 1In the absence of the foreign object the time-
displacement operator Tt(l,...N) may be reversed in time; therefore

the single-particle distribution function Fltxl;t) in the absence of
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the object may be written
H = ee e LRI 12:44 2_33
F,(x,it) =Qfdx,...dx, T_t(l, N) D, @ iXi0) ( )

or with (2-26) and (2-29)

Fl(xl;t) = U-'t(l) Fl(XI;O) +n dsz_t(12)F2(xl,x2;0) + . .(2=-34)

Using (2-32) we can invert (2-34) to yield an expansion for F (x ; 0)
Fl(xlio) = U+t(1)Fl(x1;t) -nU+t(1) (12)ﬁ (l)F (x it) +

+ ... (2-35)
Substitution of (2-31), (2-32) and (2-35) into (2-30) yields a density
expansion for the force -E(t) .

In this report we consider the drag force -ﬁ in the steady state
which corresponds to the limit t*, In this limit the gas is in
equilibrium in the absence of the object and the single-particle dis-
tribution function Fl (xi;t) becomes independent of the position ;i and

time t and may be represented by a displaced Maxwell distribution
> >
R 7 m(v,--V)z

lim F (x,;t) = F(v,;V) = (2mkT) ‘Ze 2KT . (2-36)

174 i

oo N
In this limit we obtain for the density expansion of the force E on the
object

R ->
= 1lim 2 Ea(t) ' (2-37)
o

where, for the purposes of this report, we consider only the first two

> >
terms Eo and E..

1
i:' (t)=-n fax, F(v V) U () + U (LX) FTARB, (2-38a)
i:*lu;)- nfax, ax F(vl,V)F(VZ.V) U, (12) + U _(12;%) }T(1x)p1

2
+n/:ixldx2[ut(1)u_t(12)p(VI;V)F(vz;ff)] {U (1) + U_(1;%) }T(1X) B .(2-38D)

t The operators U, (l...s) do not involve the object and the corresponding
time reversed operators U , (l...s) are well defined. The operators
U, (1...s8;X) on the other hand depend on the stochastic interaction of
e molecules with the object and therefore cannot be reversed in
time [17].
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Here we use the convention that operators inside the square brackets [ ]
do not operate on terms ocutside these brackets. In deriving (2-38) use
> > 3> > . .
is made of the fact that Ut(i)F(vi;V) = F(vi;V). Since the adjoint
L : =
operator (U+t(1)U_t(12)) = U+t(12)U-t(l) and since U_t(l)U+t(l) =1,
{(2-38b) reduces to

-> — _ 2 > .-r -> --) . _ . -
El(t) = n‘/‘dxldx2 F(vl,V)F(vz,V) {Ut(lZ,X) Ut(12)U_t(l)Ut(l,X)}T(lX)pi.
{2-38c)

2.4 Binary Collision Expansion

The various terms Ea(t) in the expansion (2-37) for the force.E
contain the dynamics of ¢+l molecules and the object. When the density
of the gas is sufficiently small so that the mean free path is large
compared to the size of the molecules we may neglect the probability that
two collisions occur simultaneously and the dynamical processes reduce
to sequences of successive collisions among the moleeules and the object.
In order to classify the various collision sequences that contribute to
the drag it is convenient to represent the time-displacement operators
Tt(l...s) and Tt(l...s;x) in terms of a binary collision expansion.

A precise formulation of the binary collision expansion for the
time-displacement operator of a gas of hard spheres in the absence of
an object was developed by Ernst et al. [25]. The extension of this
procedure to the time-displacement operator in the presence of the object
was formulated by McClure and Dorfman [17] and further discussed by
Kuperman [19]). Following these authors we note that the time-displacement

operator (2-19) has the form
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Tt(l...s) = et[L°(1...s)+K(l...s;x)], (2-39)
where
5 5
Pj
L°(l...s) = _— o
; = g—gi (2-40)
and
s s
K(l...8:X)= ZZT(ij) + ZT (kX) . (2-41)
i<j k=1
The time-displacement operator satisfies the relation
“ ° L
Tt S,g + far 83 X T (2-42)

where S; is the streaming operator representing the free streaming of

the molecules without any interactions

-tL°(l...8)

s;(l...s) =e (2-43)

The binary collision expansion is obtained after successive iteration

of (2-42)
t t Tl
T = L] [ o T [ ° o -
£ = St +fd'rl St—TlK s2_+ fat, Jat, s2 . K Sy _g K S+ . . . (2-44)
1l 1 17%5 2
o] [o] o]
Introducing the convolution product
t
£*gqg =ﬁr £(T)g(t-T) =j:iT' £(t-T")g(T") , (2-45)

where £(t) and g(t) are functions of the time t, the binary collision

expansion (2-44) may be written as
Tt = SP + S°*KS° + SOXKSO*KS°+ . . . (2-46)
The operator K represents a collision either between two molecules
or a molecule and the object and the operator S; represents the free
streaming of the molecules between collisions. Thus the terms in the

binary collision expansion (2-46) correspond to sequences of zero, one,

two, etc. successive collisions among the s molecules and the object.
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However, only those terms in (2-46) will be different from zero which
correspond to sequences of collisions that are permitted by the laws
of mechanics. The number of physically possible sequences of collisions
depends on the geometry of the object. In this report we shall limit our
considerations to convex objects. A molecule emitted by a convex object
cannot return to the surface of the object unless it first collides with
another molecule, so that

SO*T (iX)S°*T(iX)S® = O. (2-47)
Furthermore, the expansion parameter is the inverse Knudsen number nch,
where L measures the size of the object. Terms in (2-46) that contain
more than one binary collision operator corresponding to a collision
between two molecules may be neglected since they are of higher order
in nc3. A complete list of the combinations of binary collision operators
that yield vanishing contributions was presented by Kuperman [19].

Substitution of (2-27) into (2-38) yields

Eo(t) = J/;x FCV ) T, (L x)p1 ' (2-48a)
->

E, ()= -n f dx dx,, F(vl;V)F(VZ;V) (2-48b)
.{Tt(12;x)-Tt(1)Tt(2;x)-Tt(l;x)Tt(Z)—Tt(12)+2Tt(1)Tt(2) }rrux)il.

Introduction of the binary collision expansion (2-46) into (2-48) then

leads to [17,19]

-+ > > >
E_(t)= -nfax 1 FvpvITX)p, (2-49a)
E (t)= -nfdx dx F(v ,V)F(v ,V) (B +B ) , (2-49b)
with
-+ -
B3= s°='=1<(12;x)s"*1<(12;x)s°'1'(1X)p1 , (2-504a)
B = s°*x(1-z,-x)s°*1<(12;X)s°*1<(12;x)s°T(1x)'51 ) (2-50b)
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For convex objects the binary collision expansion of"ﬁ° terminates after
the first term at a result of (2-47) and the binary collision expansion
of El terminates after the second term as shown by Kuperman [19). If
we substitute K(12;X) & T(12)+T(1X)+T(2X) into (2-50) and omit all

> >
vanishing terms, B, and B, reduce to

3 4
> >

B = s°*{T(1x)+T(2x}}s°*T(1z)s°T(1x)p1 , (2-51a)
54- s°*{T(1x)s°*T(zx)+T(2x)s°*T<1x)}s°*T<1z)s°T(1xf§1. (2-51b)

Since we may interchange the integration variables x, and X, We adopt

1
the convention that molecule 1 is identified as the molecule in the left
most T(iX) operator, i.e. molecule 1 is the molecule that collides

initially with the object. We may therefore replace (2-51) with

E3= s°*T(1x)s°*T(1z)s°{T(1x)+T(2x)}{51452}, (2-52a)

> > >

B,= S°*T(1X)S°*T(2X)S°*T (12) s°{T(1xX) +T (2X) Hp +p,} . (2-52b)
>

The term B3 accounts for the effect of sequences of three successive

collisions among two molecules, molecules 1 and 2, and the object, and
>
the term B4 is related to sequences of four successive collisions among
two molecules and the object. A complete classification of these collision

sequences was made by Kuperman [19]. In order to enumerate these collision

>
sequences, we use (2-16) and (2-17) to express"l;3 and B4 more explicitly as

B, = 5% TH(1x)so*T (12) ST (1) B+ (RL)
+ son Tn(lx)3°*Ti(12)S°T(1X)Bi+ (R2)
+ sox ) sorrd (12)50m (2008 4 (c1)
+ Sox Tn(lx)s°*'ri(12)s°'r(2x)§2+ (c2)
+ So% Ti(lx)S°*Tn(12)S°T(2X);i+ (11)
+ 5o T(X) ST (12)S°T (B, {H2) (2-53)
and
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B = s°*-ri(1x)s°*-ri(zx)s°*-riuz)s°-r(1xf§1+ (RI1C1)
n i i >

+ 5o+ (1X)SO*T (2X) SO*T" (12)S°T(IX) B+  (R2CL)
i n i >

+ soar (1) so*T™ (2X) SO4TT (12)SOT(1X) B+ (RIC2)

+ s°*-r“(1x)s°*-rn(2X)s°*-ri(12)s°T(n<).'§1+ (R2C2)

+ s°*rri(1x)s°*rri(zx)s°*Ti(1z)s°T(zxf§2+ (C1R1)

+ s°*T“(1x)s°*Ti(2x)s°*Ti(1z)s°T(mc)'§2+ (C2R1)

+ s°*Ti(1x)s°*T“(zX)s°*-ri(1z)s°T(2x)'§2+ (C1R2)

+ s°*Tn(1x)s°*Tn(2x)s°*-ri(1z)s°r(zx)'§2+ (C2R2) . (2-54)

According to (2-53) 33 can be decomposed into a sum of six terms
corresponding to six different types of sequences of three successive
collisions among two molecules and the object. In analogy to the
Previous work of Sengers [29,30] we refer to these sequences as Rl and
R2 (recollisions), C1 and C2 (cyclic collisions) and Hl1 and H2 (hypothe-
tical collisions). These collision sequences are represented by the six
diagrams in Fig. 2. In thase diagrams the lines with. labels 1 and 2 indi-
cate the trajectories of molecules 1 and 2. The Vvertical line represents
the object. The molecules traverse their trajectories in the direction
indicated by arrows. An interacting collision between the two molecules
or a molecule and the object causes a change in the direction of the
trajectories. In a non-interacting collision the molecules continue
to proceed in the direction of their original trajectories; in the diagrams
we add a shaded region wherever we want to indicate the occurrence of a
non-interacting collision.

Molecule 1 initially strikes the cbject and is either reflected by
the object (R1l, Cl, Hl) or passes through the object (R2, C2, H2). It

then collides with moleocule 2 such that molecule 1 either collides with
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Figure 2. Sequences of three successive collisions among two molecules
and the object.
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the object again ‘(R1, R2)}, or it causes molecule 2 to collide with the
object (Cl, C2), or it prevents molecule 2 from colliding with the object
(H1, H2). On comparing Fig. 2 with Fig. 5 of AEDC-TR-69-68 [30] we note
that these collision sequences are closely analogous to the collision

gsequences earlier encountered in the first density correction to the

transport properties of a moderately dense gas. In fact, the new collision
sequences are obtained if in the earlier three-particle collision se-
quences ane of the molecules is replaced with the object.

According to (2—54)“1’34 can be decomposed into a sum of terms
corresponding to eight different types of four successive collisions
among two molecules and the object. These sequences are represented
schematically by the diagrams of Fig. 3. As noted earlier, for convex
objects we do not have to consider any sequences of five successive
collisions among two molecules and the object in calculating the first
inverse Knudsen number correction to the drag force.

> >
The relative magnitude of B_ and B, is determined by the probability

3 4
that the corresponding collision sequences will occur. In evaluating the
first density correction to the transport properties of a gas of hard
spheres Gillespie and Sengers noted that the contribution from se-
quences of four successive collisions is only 10-4 times the contribution
from sequences of three successive collisions [31]. A preliminary
numerical analysis, conducted by Kuperman indicated that for the drag
problem sequences of four successive collisions would yield a correction
of less than one percent [19]. Therefore, to obtain a realistic estimate
of the magnitude of the drag force we shall only consider the contributions

from three successive collisions and approximate (2-4%b) by

-+ . 2 x e N - N _
El(t)— --n-/‘dxldx2 F(Vl:V)F(V2,V)B3 3 (2-55)
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RICI 0 R2CI 0
() ®
© @ @
RIC2 [0) R2C2 0
@ @
@
® ®
CIRI ® C2RI ®
0
@ O]
®
CIR2 ® C2R2 ®
0
@
0] ®
Figure 3. Sequences of four successive collisions among two molecules and

the object.
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2.5 Explicit Formulation of Collision Integrals

The drag force in the free molecular flow regime is determined by
(2-49a). Introducing the explicit form (2-16) for the binary collision
operator T(1X) and replacing the momentum integration with a velocity

integration, we thus obtain

> ->- -
- -mn[dv E(v,:V) [ da, |"1'“1|fd" n@ v G (2-56)
? ?11
with N
m(vi-v)
£(v.:V) = Ve, -~
Vip CS 21"{'1‘ e (_2"'57).

-
The force El’ to be added in the nearly free molecular flow regime

is given by (2-55) and can be decomposed into

E—E +E +'ﬁ E +'> ++ (2-58)
1= Bjy tBpp P Boy * By By fE, .

where each term is uniquely related to the corresponding term in (2~53),
Each term in (2-58) may be written explicitly as a collision integral

in terms of the initial velocities, intermediate velocities and final

velocities in the collision sequences of Fig, 2 as shown by Kuperman

>
{19]1. BAs an example we consider the contribution E Using the

R1°®

definition (2-45) of the convolution product, r] Py be written as

E.. = -mn2lim [dF.ar dv.dv. £(v. ;)£ Co V)
RL - T e J T2 B IR
t T
[ -] é <>
']d‘fldf Sg- '1‘ (Ax) sz .. ¥°(12) s°, TUX)v,. (2-59)
T! h 4
o o
It is convenient to introduce the transformation T1= T=T' and
12= T', so that
- 2 >
ERl -mn llmjdrldr dvlc'iv2 f(v ,V)f(vz;V)

ar, d'l' s° riaxy se a2 so raxy (2-60
1 %= (1,47,) T, T, Vi =60)
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The operators S°(l12) are free streaming operators, so that

S°r.= r. + VT sov.=v. , (2-61)
T1 1 1 ' T1 1

ST =1 +v SOy = v

™2 %2 I ™2 Y2 °

The left most operator S°

t-(T T ) in (2-60) translates the integrand

according to the free partlcle motlon (2-61) . Since the integration
extends over the entire phase space of molecules 1 and 2, the integral is

invariant under such a transformation and (2-60) reduces to

-> - = 2 ° . ->
En mn/drldrzdvldvzf(v SV EW ,vy‘ar ﬁ‘t pt (1x)s T (12) s¢ T(lx)vl.
(2-62)

In Fig. 4 we consider again a typical recollision. The lines
represent the trajectories of molecules 1 and 2 and the circle indicates
the object. Molecule 1 collides with the surface of the object at the

&>
position Rl (first collision), it subsequently collides with molecule 2

(second collision) and then it collides with the object again at the

position ﬁz (third collision). The first collision may either be an in-

teracting collision (Fig. 4a) or a non-interacting collision (Fig. 4b).

->
We indicate the initial velocities of the molecules by 3 ’ v2, the velocities

1

after the first collision by ?71'. '55. the velocities after the second

collision by 3", ?r’; and the velocities after the third collision by ¥}'',

vi": we indicate the relative velocities similarly by v12 V"?
->

v! =-‘;|_+| +ll—.+ll_*ll |||=, Ill_ e W te that £ th
12 1 V2, V12— Vl V2 ? Vlz Vl V2 . e no oY e

recollisions

"’*5= ;’*2' "’*l 1 1= ;’*l ] (Rl—sequence) ] (2-633.)
and

-»> - -»> -

Vi= Vi V3= Vo, 3}"= 35' (R2-sequence) , (2-63b)

Using this notation and the definitions (2-16), (2-17) and (2-6l1) of the

operators T(iX), T(12) and S°(12), the expression for Eﬁl may be vritten

33



AEDC-TR-74-79

(b) R 2-SEQUENCE

Figure 4. Recollisions
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> - 2 2 . 63 r-R
ERl_ mn- g drldrzdvldv2 f(v ,V)f(v 'VJdTJdT fdAl |v1 nl ( )

-n<o
3
> nal e -~ >, .
.]dvl n(vllvl)[do'l2 |v12 6‘12| 8 (r12+v121:1 0‘12)
VU5 <
12°912°°

fa, [Fua | 6@ Viw s VR i@ S0 @1vi, (2-64)
2 V1'% 1" V1T 2} favy T TNuy vy ) vy e B

v 'f <o

1%

> - > ->
where dAland dAz are the surface elements at the positions Rl and Rz,
respectively. The time Tl is to be identified as the time between the

first and the second collision and the time T2 as the time between the
second and the third collision. The first two delta functions in (2-64)

can be readily integrated and we obtain [19]

§R1= -mn O'/dv dv2 f(v :V)f(v ,VJdTJdT

> > . A
/dA Ivlonlljdv n(v lv ) d& |v O ]/dAz |vi'.n2|

12 1+
1 < 1t
16% (R, R+ vl + vI'T) faviin@r [V (v (2-65a)
2 11 1l 2 1 1l 1 1 1°°
Taking cognizance of the difference between Tl(lX) and Tn(lX), we obtain
for E
or E.,
[+ L. ]
202 > > +> > >
= +mn d'vdv f(v sVYE(v.; ) aTt_ jartT
1l 2! 1 2
- T e 3 10
/dA |v 12 812_'._/“2 |v of | s (R R2+ vl'l'l+ vl T,)
< 1R <
12 812 o vi'.fi<o
. 111 [N ] L} Ill_ " -
]dvl 1'1(V:L lvl )(vl vy )., (2-65b)

. ->
Following the same procedure we obtain for the contributions E(21

and ECZ from cyclic collisions
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-] [ o]
ch -mn0 jdvldvz £ N EG, /d'rl ar,,
/dA Iv nllldv'n(v'lv ) d812 |vl2 12' dA Iv"-n |

¥, .18 <o 8 R <
1" V]_z ? <o

'63(R R + "in’ V"T )[ vllln(vllllvll)(vlll_vll) , [2:'65&}

T = +mn202fdr.dv. £(v. O E( ;) [ar. faT

1l 11 2 2

- < < v .n <
1nlc’ 128120 vzﬁo

,/dv"'n(-t;é"lvé') (vé"-\;é') , {2-66b)

->
/dt |v | fa8,, v v, 12}]@‘ ‘G"-n ol 5% (R -R2+ VT + VI'T)

2

where the various velocities are now indicated in Fig. 5 for which

> > -+ >
vé Ve vi' '= vi' (Cl-sequence), (2-67a)

and

vi= -\; V= v, vitt= gt {C2-sequence) (2-67b)
1l 1’ "2 2’ 1 1 °

>
The contributions EHl' and -ﬁ from hypothetical collisions are

H2

> > > > > 2 0%
; ; T T
EHl +mn 0 dvldv2 f(v V)f(v AN K\ 1 a 2

fdA ¥y n1|/d"1““’ v ’/dalzl"lz 12']‘iK o8,

. 63 (Rl R2+ "1T1+ V )/dvllln(vllllvll)(.'lll_vl ') 2=68a)

> 2.2
EH2= -mn“g dv dv f(v ,V)f(v ,V)/d‘l' jd‘l‘

/dA lv 4| /d&lz Iv.12 12| /dA |v B | GS(R -R + vl't1+ v 2T5)
vl fi;<o Via 612 2-n2<o :

'[dzﬁ"“&y";'z').(‘;—é' l_-;éu) {2-68b)
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(b) C2- SEQUENCE

Figure 5. Cyclic collisions,
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il _—=il _
V. =V V
L I

—~u_ =il _=l_
V SV SV =
[

_;(

(b) H2-SEQUENCE

Figure 6. Hypothetical collisions.
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where the various velocities are now indicated in Fig. 6, for which

-> > > > -+ ->

vé'=vé=v2, vi"=vi'=vi (Hl-sequence) , (2-69a)
and

Ti=vi=y , v ! 'y =y (H2-sequence) . (2~69b)

2 22" "1 1 11
If the molecules of the gas are approximated by hard spheres a
major simplification occurs, since we can prove that the recollisions

and the cyclic collisions yield identical contributions

> > -+ ->
Ec1™®r1 * Ec2™Fr2 (2-170)
This theorem is proved in the Appendix.

In conclusion, we may approximate the first inverse Knudsen number

correction to the drag force by

F=% LB +2E. +E) (2-71)
1= By + Bap * 208y * Epy) o

ith E d B__ given by (2-65) and E d % _ given by (2-68)
wi g1 and Ep, given by ( and E., and E, given by .

->
The term EHl represents a "loss"” term which accounts for the fact that

molecules reflected from the object prevent socme molecules of the incident

>
beam from striking the object. The term 2ERl represents a "gain"™ term

which accounts for the fact that molecules reflected from the object
cause some additional molecules to collide with the object. The terms

-+ >
E . and 2ER account for a perturbation of the velocity distribution as

H2 2

a result of the fact that the presence of the object leads to a region
>

that is inaccessible to some gas molecules. The terms EH2 and ZERZ

vanish in the infinite Mach number limit [19], but need to be included

in determining the drag force at small speed ratios.
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CHAPTER III

DRAG COEFFICIENT OF A DISC IN THE NEARLY FREE

MOLECULAR FLOW REGIME

3.1 1Introduction

As a first application of our method we consider the drag force
exerted on a disc. A study of the drag of a disc became very appealing,
since, just prior to this research effort, Willis had obtained an
analytic solution for this case in the infinite Mach number limit [20,21]%

The situation is illustrated in Fig. 7. A disc with radius R is
placed perpendicular to a gas stream with flow velocity‘f. The disc is
located in the XY-plane and the Z-axis is taken in the direction of —V.

The distribution of the velocities of the molecules in the gas

stream can be represented by a displaced Maxwell distribution (2-57)

e
-> > m 3/2 m(vi-V)z
f(Vi;V) = (?n'-ﬁ) exP"—ZKT— . (3-1)

The molecules are assumed to be reflected diffusively at the surface

so that the transition probability TKV'I;)in.(z—ls) is given by

mv' 2
@D =A@ =z (]%T Fre T o@r.n) , (3-2)

+ We are indebted to Dr. A. G. Keel of the Naval Ordnance Laboratory
for informing us about this work prior to publication.
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<i

>
Figure 7. A disc placed in a gas stream with flow velocity V.
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where O is a Heaviside function defined as

O(x)=1 forx > o , {3-3)

O(x)=0 forx < o .

The velocities -1; and -\:' are the velocities of a molecule before and after
striking the object. The vector fi is the normal vector of the object
surface. At the upper side of the disc surface N is the unit vector in
the +Z-direction; at the lower side of the disc surface fi is the unit
vector in the -Z-—direction. The temperature T in (3-2) is the temp-
erature of the object which is taken to be egual to the temperature T

of the gas in (3-1).

In order to exhibit the dependence of the drag force on the inverse
Knudsen number explicitly it is convenient to introduce dimensionless
quantities. For this purpose we measure all distances in terms of the
radius R of the disc and all velocities in terms of the thermal velocity

(2kT/m) Y% of the molecules. We thus define

=3 (Ve 3o (Ve pan Tf2eTYh
T "i(m + 8% V(Zk'l) r ™ ®R{m ) . (3-4)

The magnitude of the dimensionless flow velocity E is the speed ratio
earlier introduced in (1-5). The surface element dA of the disc surface
can be written as

aA= R%ar , (3-5)
where : is a two dimensional vector in the plane of the disc such that
0<r<l. 1In addition we introduce a dimensionless distribution function

> > -+
£* (wi;S) and a dimensionless transition probability n*(wj'_ ) defined as

> > 2
£+ (w,:8)= 1y, e"(W-5)F (3-6)
1 11'/2
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> A = ! > A
n*(-v;J!_)=% @reme™i e@h (3-7)

- > > - -»>
normalized such that./‘dwi £* (w 38)= 1 andfdwi n*(wi)- 1.
The kinetic energy of the gas stream is UK-'%HMVZHR?, s0
that, in accordance with (1-1), the drag coefficient of a disc with

radius R is defined as

2E

D ry?nr? . (3-8)
As a result of symmetry the drag force has only a non-vanishing component

in the direction of the flow velocity V, so that

-+ A
E= E-V . €3-9)
In this report we define the Knudsen number K as the ratio of the mean
free path A over the radius R of the disc. Since for a gas of hard

spheres A"l vampo? [3], we thus define

K 1= V2~ 1rm2R. (3-10)

The drag coefficient CD in the nearly free molecular flow regime can be

written as

-1

The drag coefficient C° in the free molecular flow limit K-¥&o follows
from (2-56)
- - > >
Co= -—:?/d-v; £+ (;;-S*)jd'i' v < ] Idw'n* (W)t -w) 8. (3-12)
->

w.fi<o

The coefficient c1 of the first inverse Knudsen number correction can

be decomposed in analogy to (2-71)

C = €yt Cyot 2(cp* Cpy) - (3-13)

1 "H1 "H2 R2
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Collision integrals for the first inverse Knudsen number correction to the
drag coefficient of a disc.

L2 .
Cup= * “—25—2fdw1dw2f (w 78) £* (w ,S)ﬁ'rifd'r fdr le ﬁlfdw n* Gwl)

A

w *n<o
> > 3> > > - > >
[ |w12 12[ ar2[w2 n2|6 (r - r2+wl'ri+w T*)fdwi"'ﬂ* (wy'") (W) '-w,) .8,

> >
. < A < =1
Wi, 812 o) w, i, <o (I-1)

Vi
CH2— dw dw f*(w S)f*(w ,S) d'r* d'l'* dr ,w A |
! S
-n <

18 +||| +|'|_.>
fdﬁlz w5 lzfdr Iw -fi IG (rl rzwltlwzrgfdwz n*(w2 )(w2 w2).S.

(I-2)
<
wyp8)5%
v— o0 00
= 2 e -> .+ > .4- C B x > - ->
ch— —ﬂszdwldwzf* (wl,s)f* (wz,sfd'rifd'r;fdrl'wl ﬁly.dwl n (wi)
o o .
v, ﬁ1<o

> +lo." 3 - * [P +||| +||| +lll_+ll
fd&lz 12 12' dr Iw n2|6 (rl r2+w1'l‘1+ wl ‘rz) dw1 n*(wl )(wl wy }.8,

(I-3)
W) 58 5% "’i' -fi <o

V— o0 [+
= 2 -> * -> * -> -> .
Cpp= * 20 fdwldwzf (w IS £+ (w w,i8) [ aty d'l';[drl]wl a
° fi_<o

o ->
W1thy
ol AT 3,3 > =2 > o ket P +|||,+u
ﬁa |w ., 612|fdr2|w1 .n2|6 (r)=rytw TH+) 'T8) faws " n* (ws ') (wy*tewdt) LS.
" A
< 1.1 < -
W)y 812 o Wl fi <o (1~-4)
= e 2
Note: f*(-w’.i--s’)=1r %e (wi 2 ,

+| 2 > A -w"2 - : s N
n*(wi)= F(yi-me i e(wi.ﬁ) (diffusive reflection).

> ~ + ~
For a sphere: r =f = kl' = fiy= Rz'
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The explicit expressions for the collision integrals C , and

H1' w2’ ma
CR2 follow from (2-68) and (2-65) and are listed in Table I. The velocities
in the integrands refer again to the hypothetical collisions and recol-
lisions which, for a disc, are shown schematically in Figs. 8 and 9.

We note that all collision integrals contain a factor of the type

/E%-n*($-)($--$) which for diffusive reflection reduces to

M|§|

-2 > > > A >
fd’v*w'n*(&')(?.’;'-'w?)= .,-zr-fdar'e Y w ) (- ="T A= w . (3-14)
-+
w'.fido
The drag coefficient CD is a function of the speed ratio S. For a
disc it may be decomposed into a contribution C;' accounting for the force

exerted at the upper side of the disc surface and a contribution Cﬁ'

accounting for the force exerted at the lower side of the disc surface

o= C* G (3-15)

The two contributions are interrelated by

- = ¥ -
cD (+8)= cD( sy . (3-16)

3.2 Drag coefficient C,of a Disc in the Free Molecular Flow Regime.

The drag coefficient Co of the disc in the free molecular flow
regime is given by (3-12) which can be integrated over the area of the
disc. The drag coefficient Co of a disc is thus the same as the co-
efficient C° of a flat plate of any shape. We decompose Co in analogy to
(3-15) and (3-16)

c (s1= c_H(s)+ ¢ ~(s)= c_tis)-c t(-s) , (3-17)

and note that
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'ﬁm=wln='\;l @
;;'h_;;'__‘v 2
272772
;;l" A (:)
2
(a) HI-SEQUENCE

= =W. =W
W) EWEW

Figure 8.

(b) H2-SEQUENCE

Hypothetical collisions for a disc.
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®

W. =W

(e) RI-SEQUENCE

-y -=n

Wo=W, @

<
N =~
n

(b) R2-SEQUENCE ©

Figure 9. Recollisions for a disc.
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2 > —(w-5 \id
C + = - = 3-18
(s) TThgZ faw e W= 5 w,) ( )

2 2
- Yr YT -
=\'ﬁ-—:slr [Se 54 %(1+252) (l+exf B)+ EY {e S +Sﬁ(l+erf S)}] ’

where erf S is the error function defined as
erf s =y e dt . {3-19)

We thus obtain for the total free molecular drag coefficient Co

1.3

2 (3-20)

2
2 -5 i
(] (S}--——v[e + V(== + S)erf s +
° " s s

This expression is in agreement with the result obtained by previous
investigators [32], but it has not been reproduced correctly in some
more popular reviews [1l,2,10].

In the low and high speed limits the drag coefficient co(s) reduces

to
___(4+'|T)_. _}_ = 4.029 _
Zsl+ig| CO(S) v S S ’ (3-21)
and
lim Co(S)= 2 . - (3-22)
&»co

Thus at low speed ratios the drag cgefficient CO(S) becomes inversely
proportional to the speed ratio S, while in the high speed limit the
drag coefficient Co(s) becomes independent of the speed ratio S. On
comparing with (3-8) we note that this result means that at low velocities_
the force is proportional to the stream velocity, as is to be expected
[16), while at high velocities the force increases with the square of the

stream velocity. ~
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3.3 Reduction of Collision Integrals for C

1

The coefficient C1 of the first inverse Knudsen number correction
to the drag coefficient is determined by the collision integrals in Table I.
Since

=c.Ysy-cot(- 3-23

c,(s)=c, (s) - c,*(-5), (3-23)
in accordance with (3-15) and (3-16), we only need to analyze the collision
integrals for

t= c + 4 Ct+ +2tCT +C 1. _

= Cuf ¥ Gy +2Cy + Cp3) (3-24)

These collision integrals correspond to the case that the normal vector

ﬁz is in the + Z-direction, i.e. in the direction of -5.

It is convenient to introduce a set of auxiliary vectors defined as

-+ *! w wow
L =N - , (3-25a)
', '
withy Wy Wy W,
- > rd > -
W, S -2 =2-2 (3-25b)
Iw1'?’1I wolly Wi, Vo,
> -;. ;' ] ;' ;' [ ]
Wop S — 5 — =1 -_1 (3-25¢)
w!-h wited w! w!!
1™ Y1 My Wi Y
v W v, W
> 1 1 1 1l
YR2 Tlw.ea | Twltea, T W, witoC (3-254)
1% 1 P2 Y1z Vg

These auxiliary vectors are two-dimensional vectors located in the plane
of the disc. The normal vector ﬁl is directed in the positive Z-direction
for the integrals associated with the Hl- and Rl- sequences and in the

negative Z-direction for the integrals associated with the H2- and R2-

sequences. For future reference we also define
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- A -+ A
I )= H , - lel'rl|32_ Ym 1, (3-26a)
H1® ~ 2 ﬁﬁ >3
(Wi X T1) g Py * %p) Vi
> >
I ) = - H2 , - ¥y 2}' - waprfy (3-26b)
H2T (B, % #)) i Ty X E)) i
+
I(w, ) = T»——FWRI 2 — — P fal ety (3-26c)
= . ; , -
RLIT - (g > 50 Wby x £ why
> 3 -
1o ) = R _ vy | Ve (3-264)
R2 x = )2 z O T2 2
Bpa™ T))2  wR,Qpp X T) YR2

As an example we consider the collision integral CHI associated

with the Hl-sequences. The 6-function in (I-1l) may be written

|$2.32|63(r -r +w1Tl+w T3 = tt*+ 1 1T )Gz(r -r +(w ‘1 )lekl) (3-27)

Because of symmetry we can integrate over the azimuthal angle of the

- >
position vector r, of the first collision and take r, in a fixed direction,
say in the positive X-direction as indicated in Figs. 8 and 9. Using

{(3-14) and integrating over T* and r we thus obtain

+oay 22
CuL(8)=~27 v, & £+ () &) £* (w E)!drl/dr 11 vy,
-+ -+
-fdwi n*(wi)fdﬁ | wi, 8., T 5 “Wy,) O(-w ) O(-w,) (3-28)
->
wyp8y,%

with the auxiliary condition

-3
r,= |r1+ (w i )leH1| 1 . (3-29)

This auxiliary condition implies

32
k= i Et VRO % T .
="Hl w2, wi-nl . (3-30)
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The time THl is to be interpreted as the maximum possible time interval
between the first and the second collision that leads to an Hl-sequence for

given t 0 w' and w It then follows that

f Jdr r e(r ~r*)- ,,\ I(le (3-31)

with I(w ) defined by (3-26a) Integratlon over 612 yvields

fde ES )5l 81,7815 = ™, (3r32)

and the collision integral (3-28) reduces to

4vz 3> > > > > > S b
cls)= - 3—Trs-2fdwldw2 £+ (w, ;) £ (wz,'S)fdwie w1 vy, | (3-33a)
VTI' -3
TWio (T T W) TW,y) Oy ) O-w, ) Otwy ).

The other collision integrals can be treated in the same manner with

the result
c Y=+ —‘—26 d.aw. e+ @ D@ dw, (T - w 116G.) 0w, ) B(-w_ )
H2 3s 172 1’ 2’ 12° 2 2z H2 1z 2z’
(3-33b)
P
> -w
Cpi(s)= + ﬁz dw dw £+ (w i) £ (w 'S)fdwie 1 lezl

ﬁ "” >
fda Wi o8y, (5 = w TG ) 0w, ) 0w ) O(-w,”) O(-W,°8,,),

12
(3-33¢)
cts= - 22 (G . eo@ Beei Bt (a0 [w,.8._|
352 172 1’ 2'% 12 1712 Y12
(E_ " 2 e e (1] 9 =5 .6 a
> wlz)I(sz) (wlz) (-wlz) (-w12 12). (3-334)

The total contribution of the four collision sequences to the co-

efficient C1 is then determined by
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Cyp (8)= €T (5)= CT(=s) (3~-34a)
Cyp(8)= C 3 (S)- c 2 (-8) . (3-34b)
Cpp (8)= 1 (8)- . T(-9) , (3-34c)
Cpo (8= C 2 (5)- cR;(-s) . (3-344d)

From a computational point of view the major difference between CHl and

CH2 on the one hand and ch and cR2 on the other hand is that in the

recollision integrals the integration over 612 is to be done numerically,

since the integrand depends on 81 via

2
-> +l_ +‘ R . _
w'= w (w12 612)812, (in ch) (3-35a)
> > > . .
wi= W, = (w12-612)612. (in CRZ) (3-35b)

3.4 Drag Coefficient C, of a Disc at High Speed Ratios.

1
The calculation of the collision integrals for the coefficient C

1
becomes particularly simple when.;he disc is placed in a beam of molecules
that move with uniform velocity 3. This limit is approximated when the
velocity V of the gas stream is large compared to the thermal velocity
(2kT/hJ’£, i.e. S>> 1, We may refer to this limit as the high speed limit
or (cold wall) beam limit.

In the beam limit all incident molecules are moving parallel, so
that two molecules will never collide with each other unless at least
one of them first interacts with the ocbject. The contributions éig CHZ(S)
and lim CRZ(S)' therefore, vanish in the beam limit. Moreover, in the
beam limit the drag force completely originates from collisions at the

upper surface of the disc, so that

lim.C_(S)= lim c_t(s)+ 2 1lim c *(s). (3-36)
Sro 1 Seem H1 S0 R1
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The collision integrals for the drag coefficient in the beam limit

> >
are obtained when the distribution function f*(wi;s) is approximated by

a 8-function

£+ (v, 18)= 6% (w,-5) .

i (3=-37)
Noting that w.= §, w.= §, w!_= -8, w'= (-E-G )8 ... we thus obtain from
g ENAT Wy S WG S My = TS Wy 12”712
(3-33a) and (3-33c)
. _ _4\[5 -)-. —w:'L2 -3 -)-' -
g‘_}gt CHl(S)—- o fdwle I(le) G(wlz) ' (3-38a)
with
=
w
W= +3, (3-38b)
H1l w!
1z
and

. - a2 >, =Wy 372 8,
st_):._;g ch(S)- * T Sfdwie 1[&312(3-612) I(le) e(wlz) 08 612) '

(3-3%a)
with
>y 6
Ho.="1 _"%15 . (3-39b)
R1 w! o,
1z 122
These integrals can be readily evaluated analytically. For this

purpose we introduce the coordinate transformation
-
‘= 2 3.0
dwl vl dwlz wvdwbd¢ '

where w,~ wﬁl in {3-38) and W= Woq in (3-39) and where ¢ is the azimuthal

->
angle of the two dimensional vector LA with the X=-axis as initial axis.

In terms of these variables the quantities I<;ﬁ1) and IG;RI), defined in

(3-26), reduce to

3
I(-v;v)= w% [ksjj%%’i - cos(b] : (3-40)

The perihelion vector 312 may be expressed in terms of its polar angle

65 with the Z-axis and its azimuthal angle ¢g with the XZ-plane as in-

itial plane. The collision integrals then become
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J_ 0o [+ ] 1
lim C_. (S)= = 4—2‘ SIdW' w'2 faw __e wlz(w +1)
Sy HL lz 1=z H1
o]

fdcb [1—%—23%1- coscp] = - % S, (3-41a)

00 27 T 2T
: L2
= i 3
lim (::Rl(S) oy Sfdwi 1 fdwufdd) a8 slneclcos Bclfdd)c
0 o 0

o

sin“¢

2 6./2
q&-wi: { wizil + 2wR1tg90cos (¢-¢c)+ tg' @ 0'+l}] [1 cos’ cos¢]= TS-/ =

(3-41b)

The total value of the coefficient C1 is then obtained from (3-36). We

thus conclude that in the limit of high speed ratios

Lim C,. ()= - %\/Z « -2.128 S (3-42a)

dim c_. (s)= + \/_ S~ +0.851 S (3-42b)
3 — . - - —8. 3 ~ -

é_,:.;-q Cl(S)— &{cﬂl(s)+ 2cR1(S)}- sV5 s 0.426 S (3-42c)

in agreement with the result earlier obtained by Willis [20,21].

3.5 Drag Coefficient C, of a Disc at Low Speed Ratios

i

At low speed ratios we can expand the Maxwell distribution (3-6) in
terms of a Taylor series around S=0. If we neglect terms of higher order
in s, then

£ (v, 13) £ (w3 5) = L3e AR AN ~25(uy + w, )} (3-43)
to be substituted into the collision integrals {(3-33) . The zeroth order
term in (3-43) does not contribute to the drag coefficient as a result
of (3-34). We also note that we can integrate over ;1 in the collision

integrals for cHl and ch' In the limit of low velocity we thus obtain
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from (3-33) and (3-34)

12
lim C_, (S)= 3-5-— 2fdw e "1 w' (E- v, ? I(w 1! G(-w 2 e(w' 2
S0
{3-44a)
>
lim C (S)— +—,.;—fdw e f W e 2( =W, -w ) 2(—"—"; - wzz)I(wﬂz)
s*
. - 3-44b
O(wlz) o( wzz) ' ( )
lim C__ (S)= + 'w% dw e 1 @ [w |
530 R1VT 31r s 12 M12° 812
ﬁ ﬁ - e ' -yt ! -
-(—2—- wzz) 62- wlz)I(w ) 0(w ) o wl2 612) o( wlz)' (3-44c)
= ‘rz e (o ‘"%l]aa %, -8,
é_i:; CaS)= =5p¥g [ dw;e Wae 2] T2 1M127%2
/T_l: e - N | -
. (-wlz-wzz) (—-3 -wlz) I(sz) O(w ) B¢ $12 612) ¢ wlz),(3 444)

We recall that we work in a coordinate system with the Z-axis in the

-+ >
direction of _§ and the X-axis in the plane thrcocugh S and r The polar

1I
and arimuthal angles of any vector % in this coordinate system are indi-

cated by ea and ¢a. We express the perihelion vector 8‘12 in terms of a

polar angle 6('7 and an arimuthal angle ¢(;_ in an auxiliary coordinate system

' >
X'Y'Z' with the Z'-axis in the direction of ; (=w

12 in (3-444d)) and with

12

> ->
the X'-axis in the plane through S and wiz.

-,
any vector a in the auxiliary system are related to its components in the

The Cartesian components of

original XYZ system by

x! X
ay, = Ry(ew12')Rz (¢w12') a.y {3-45)
a_, a

z z

Here 0 w12 and ¢ wl2' 2%Ye the peolar coordinates of w in the XYZ system

12
and Ry and Rz are the same rotation matrices as those used in earlier

reports [31,33].
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We conclude that the drag coefficient cl

can be written as

lim ¢, (S) =|1lim c_.(S) + c_.(s) + 2{c_.(s) + c__(s)}}| , (3-46)
Sro 1 Sro H1l H2 R1 R2
with © © T -
: 8v/2 2 -w22 a2 w2 ;
;f: cHl (s) = - s dw2w2 e dwlwl e 1 d9w251n6w2 d¢w2
o o To o
s 27
: g 2
. 3 ] —— -
Idewl'sz'newl' Jdcbwl'wlz( > " Yy, I(le) ' (3-46a)
o o
o co T 27
lim c_.(S) = + 8v2 dw,w 2e~w22 dw.w 3 -w12 de _sinb d¢
sf: a2t = 7 3w¥s |22 1“1 € w2y [Pu2
o o] % o]
T4 2T
. /T >
dels:Lnﬁwl J&bwl(-wlz-wzz)wlz(-? -V, I(sz) . (3-46b)
o o
0 -~ T 2m
2
= 8',5 “w) Tyt w3 .
;:: CRl(S) = + 33 Idwzw2 e dwlwi e 1 dszslnGwz d¢w2
o o o ©
U3 2T m 2%
. 5 l‘. ] ] t ]
Jdewl,smewl, [dqswl, = Ide &sind![cos6! | Jdd) b
[} [e] 1% [o]
Al A W '
. wi2 (—2 - w2z) (—2 - wlz) I(le)O(-wlz) ; (3-46¢c)
o - ™ o
lim C (é) - .22 d 2e-wr22 d 2 _w12 dd _sinf dé
S_,“;‘ r2 T T 3r¥s |TY2'a 1% e w2 %2 [Py
o] [o] [ o]
T4 27 T 2T
40 _sinf dad L de'sin6'|cos6'| dd'(-w. -w_. lw -”—-"-.. ' I(-v; )0 (-w!")
wl wl wlm o} o o o' "lz 22’ 125 " Y2 R2 12
o
° ° i (3-464)
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TABLE II

Collision integrals for the drag coefficient C1 of a disc in the low

velocity limit.

. _ -1
Lim Cyy (S)= -(3.94 £ 0.13)s

_1
3 = +
éig CH2(S) +(0.23 * 0.03)S

. o _ . -1
é&% CH(S)- éi% {CHl(S) + CH2(S)} = -(3.71 + 0.10)S

_ -1
%CM(S)_ +(1.14 £ 0.07)S

-1
iim Cpo(8)= -(0.05 % 0.02)s

. _ -1
Lim Cp (S)= éi% {ch(S) + ch(s)}— +(1.10 * 0.08)S

-—— -——— ———— e - - —

: _ RS - -1
Lim c, (s)= im {cH(s) + 2cR(s)} (1.51 +* 0.08)S

These collision integrals were eyaluated numexically by a Monte Carlo
method. That is, the integrals were estimated by ayeraging the integrand
over a set of N random points selected in the integration region according
to a suitable predetermined probability density function [34], For this
purpose we employed the same method and subroutines that were previously
used by Gillespie and Sengers in a calculation of three-particle collision
integrals for a gas of hard spheres and reported in AEDC-TR-73-171 [31],
The numerical results, together with their estimated standard deviations,
cbtained by averaging the integrand over 50,000 points, are presented in

Table II.
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3.6 Drag Coefficient C. of a Disc at Arbitrary Speed Ratios

1
For arbitrary values of the speed ratio S we need to substitute the

complete Maxwell distribution (3-6) into the collision integrals (3-33).

Thus
Cpy (81= - 31! 282 3(s) fdw e fdw'e 17w [ - w T )
-6(-w22) 0(wlz) . (3-47a)
+ sy > - (,-8) B2 >
429 f f 2 ( 2~ Y2 T¥y))
-e(wlz) O(-w,.) s (3-47b)

et +.22, 3(s) [dn.e B2 [ ‘"'21 a8 8|
RL©’ T3mUs? fz jl 12 12 12

S - Wi T ) 0w ) 01,8 ) Ot-wih) (3-47¢)

-(w S) —(w -S) >
(S)': - —s—zfd f 2 2 Idﬁ } 12 12[

ﬁ LA e
< - wlz)I(w ) Owy,) O(- w12 812) OC-w; ), (3-47d)
where
2 2 -Gn-8)2 Y
J(s)= 'ﬁfd"’le 1 vy | 0w )= e e %S (1+erf s). (3-48)

We can express these integrals in terms of the same yariables intro-

duced in the preceding section and obtain

T 2m
+ 2v2 2 -w 2 2 -2
C..(s) = J 2 s i
w () = sz (s) dw2w2 e dwl‘»r:'L 1 dewzslnﬂwz do 2
(o)
'% 27 ° Z °
. : -S(S+2w. ) T >
d6w1,51n9w1, d(bwl,e 2z wiz (—2- - wzz) I(le), (3-49a)

(] o)
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(=) 5 (-} 'ﬂ'. 2T
2
+ _ ., 22 2_-wy 2 -wy .
CH2(S) + Irss2 dw2w2 e dwlw1 e dew2s1new2 d¢w2
) 0 s o]
T4 2m
. . -2s(stw. +w_ ) (/@ _ ) > _
d6w151n6w1 dé 1 1z "2z wlz( >~ Vo, I(sz) ' {3-49b)
0 o
200 00 ™ 2m
cr (s) =+ 2/2 J(S) |dw.w 2edW22 dww! 2 -wiz d® _sind dé
r1'° T 7 37952 |72 11 © w25 2 |2
(o] (o] 0 0
T4 2™ u 2T
. By P ' ' -S(s+w, ), ﬁ_ vl —t !
dewl,S1n6w1, aé 17 deosin60|coseo| d¢ée 2z w5 = Wy I(whl)e( wip)
) ) 3; o}
00 [-] T 27 (3-49(:)
2
+ __ _2/2 2 ~wy 2 -wy .
CRZ(S) = - 3r9s? dw2w2 e dwlwl e dewzs:l.newz dd)wz
0 (o}
s 2™ u 2T
. l 1al ’ ' ' =25 (St+w, +w, ) ﬁ " > gt !
dewlsinewl d¢w1 = d6051n6°|cosec| d¢ce 1z 2z Wial 3 -V I(whz)e( wig
(o} (o] % (o}
{3-494)

For various values of the speed ratio S the collision integrals wexe
again evaluated numerically.T The results obtained by averaging the inte-
grand over 40,000 random points are presented in Tables III and IV. From
the figures presented in Table III we note that the contributions CH2 and
CR2 are small; they decrease rapidly with increasing values of the speed
ratio S and can be neglected for S > 2. The results for S = 0.1 are in
satisfactory agreement with the low velocity values earlier presented in

Table II, while at high velocities the results do indeed approach the

exact values given in (3-42).

+Further details concerning the procedures used in calculating the
collision integrals are documented in a Ph.D. thesis to be submitted by
Y. Y. Lin Wang.
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TABLE III
Collision integrals for the drag coefficient cl of a disc (552)

s C1%S Co XS Cpy*S Cp, XS “ C,xs
0.1 -3.89+0.11 | +0.21+0,02 +1.1640.09 | -0.04+0.03 -1.4440.20
0.5] -4.9640.15 | +0.164+0.02 +1.4240.11 | -0.0340.02 -2.0240.25
1.0 -8.011+0.16 | +0.068+0.005 +2.1610.10 | -0.01440.007 -3.65+0.22
1.5 -12.340.7 +0.01540.002 +2.740.2 | -0.00194+0.0028 || -6.8+0.7
2.0( -15.0#1.4 | +0.001940.0005 | +3.8+0.6 -0.0005+0.0003 || -7.4+1.6

., TABLE IV
Collision integrals for the drag coefficient Cl of a disc (522)
s Cyy/S Cpy/S 'i c,/s
2.0 || -4.62%0.04 | +1.37%0.02 H-l.aTto.os
3.5 ‘ -3.34%0.02 +1.12%0.02 | -1.09%0.04
5.o’ -2.99%0.02 +1.04%0.02 { -0.90%0.04
7.5 || -2.68%0.01 +0.96%0.01 | -0.76%0.02
10 -2.53t0.01 +0.92%0.01 [ -0.69%0.02
15 -2.42t0.02 +0.90t0.01 [ -0.62%0.02
20 -2.32t0.01 +0.89%0.01 | -0.54%0.02
30 -2.26t0.01 +0.88%0.01 || -0.54t0.03
40 -2.22*:6.01 +0.8740.02 || -0.48t0.03
50 -2.19t0.01 +0.86t0.01 || -0.46t0.03
A
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3.7 Discussion of Results for the Drag of a Disc.

In summarizing our results for the drag in the nearly free molecular

regime, we write the drag coefficient CD as

Cy - Cp+2Cg\, -1
Cp= c°[1+ c—l- K 1] = Co l1+([’é;3)K ] ' (3-51)
(o] o

with the inverse Knudsen number K ~ defined in (3-10). The term (C:L/CO)K-l
represents the first inverse Knudsen number correction to the drag force
relative to the magnitude of the drag force in the free molecular flow

limit. The contribution CH= accounts for the effect of the

Ca1*Cho

hypothetical collisions and the contribution CR= CR + CR2 for the effect

1
of the recollisions and cyclic collisions.

We have calculated the coefficients C° and C. over the entire range

1
of speed ratios between zero and infinity, assuming that the temperature
of the reflected molecules is the same as the témperature of the molecules
in the incident gas stream. The free molecular flow drag coefficient C°
is given by (3-20), while the coefficient Cl of the first inverse Knudsen
correction was evaluated numerically. The results are summarized in
Table V and plotted graphically as a function of the speed ratio § in
Figs. 10 and 11.

In the nearly free molecular flow regime the drag coefficient decreases
with decreasing Knudsen number. The sign of the effect is determined by
the contribution CH=~CH1, i.e. by the fact that the reflected molecules
prevent incident molecules from striking the object.

The dependence of the drag coefficient on the speed ratio is quite

different whether the speed ratio is smaller or larger than unity. At low

velocities the drag force is proportional to the speed ratio S. As a
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TABLE

v

Drag coefficient of a disc in the nearly free molecular flow regime as
a function of the speed ratio S.

C

_ S1 -1 _ CH+2CR\ -1 -1 2
CD— C°[1+ o K ] = C°[l+ (_C_)K ]; K "= V2Zmo“R
o o

S c, cH/co cR/co cl/co

0 4.03=s:i -0.92¢0.02 +0.27%0.02 -0.38%0.02
0.1|]|4.04s_; -0.91+0.02 +0.28%0.02 -0.36%0.05
0.5 || 4.21.5] -1.14+0.03 +0.33%0.03 -0.48+0.06
1.0 || 4.72 s -1.68%0.03 +0.45%0,02 -0.7740.05
1.0 || 4.72 -(1.68+0.03)S | +(0.45%0.02)s || -(0.77t0.05)s
2.0 || 3.14 -(1.47+0.01)S | +(0.44+0.01)S || -(0.60%*0.02)S
3.5 || 2.59 -(1.29+0.01)S | +(0.43+0.01)s || -(0.43t0.01)S
5.0 || 2.39 -(1.25+0.01)S | +(0.43%0.01)S || -(0.38%*0.01)s
7.5 || 2.25 -(1.1940.01)S | +(0.43+0.01)s || -(0.34%0.01)S
10 2,19 -(1.16+0.01)S | +(0.42+0.01)S || -(0.32%0.01)s
15 2.12 -(1.14+0.01)S | +(0.42%0.01)S || -(0.29%0.01)S
20 2.09 -(1.11+0.01)S | +(0.43+0.01)S -(0.26%0.01)S
30 2.06 -(1.10+0.01)S | +(0.43%0.01)s || -(0.26%0.01)S
40 2.04 -(1.0920.01)S | +(0.43£0.01)S || -(0.23%0.01)S
50 2.04 -(1.08%0.01)S | +(0.42+0.01)s || -(0.23%0.01)s
® 2.00 ~1.0648 +0,4268 ~0.213S
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result at small velocities both C° and C. become inverse proportional

1
to the speed ratio S and the ratio Cl/co becomes independent of S. On the
other hand, at large velocities the free molecular drag force varies with
the square of the stream velocity, while the first inverse Knudsen
correction to the drag force varies with the third power of the stream
velocity. Thus the ratio cl/co becomes proportional to the speed ratio

S; this feature is encountered for a large class of“"objects and will be
further discussed in Section 4.7. In the limit of infinite speed ratio

our result agrees with the value calculated by Willis et al. [21] for the

drag coefficient of a disc in a beam of hard spherical molecules.
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Figure 10. The drag coefficient C, of a disc in the free molecular
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CHAPTER IV

DRAG COEFFICIENT OF A SPHERE IN THE NEARLY FREE MOLECULAR FLOW REGIME

4.1 Introduction

As a second application of our method we consider the drag force
exerted on a sphere. A number of investigators have attempted to calculate
the drag coefficient of a sphere using various approximation methods.
However, to our knowledge a solution based on the full nonlinear
Boltzmann equation that covers the entire range of speed ratios has not
been presented earlier.

We use the same dimensionless quantities that were introduced in
Section 3.1 when discussing the drag coefficient of a disc, The drag
coefficient in the nearly free molecular flow regime is again represented

by (3-11)

1
)

cD= co + cox (4-1)
with

-1 2
= ™o

K V2T™oR , (4-2)

where R now refers to the radius of the sphere. The drag coefficient

. L
Co in the free molecular flow limit K "0 is in analogy co (361?1

Co -,f_s‘ZId-:v £* (w; S) fd% l-;"ﬁl fd-‘;'n* (W) (wr =) 8. (4-3)
->
w-R<o
The coefficient cl of the first inverse Knudsen number correction
1= Cm* Cug* 2(Crp*lyo) - (4-4)
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is again determined by the collision integrals listed in Table I, if

;1 and ﬁl are both identified with the unit vector ﬁl in the direction

Y
of -151 and ;2 and ﬁz with the unit vector ﬁz in the direction of R, and
where -l*ﬁ and -1*2 are indicated in Figs. 4 and 6. The dimensionless velocities

;i' -v;; w:'L' and w"' may be identified with the velocities vl, vi, 3" and

i
->
vi_' ' shown in Figs. 4 and 6, provided that the radius of the sphere is

normalized to unity.

4.2 Drag Coefficient C_ of a Sphere in the Free Molecular Flow Regime,

The drag coefficient co of a sphere in the free molecular flow
regime is given by (4-3). Let eR be the polar angle of R with respect
to -E; because of symmetry we can integrate over the azimuthal angle
of R. Let e;’ be the polar angle of ; with respect to R and ¢;, the
azimuthal angle of ;; with the plane through g and R as initial plane.

Then, using (3-14),
© T 2w

4 ; 3 :
c (8)= mszofdeRs:.neRJ'dw w” | d6'sing 'cose"vl fd(bv'v
2 (o]

2 .2 = n
. WS E 255 > A Z_;r__cosaR} , (4-5)

with
-+
w-S= w(s:.neRs:Lne cos¢'-cose cosB’ M (4-5a)

The integral can be evaluated analytically with the result [1, 10,32]

. 4, as-
c (s)= (f:T ";1} s* + {_——3—45 ;545 Ders s + :;’7 . (4-6)

In the low and high speed limits the drag coefficient co (8) reduces to

2T+16 __ 4.191

Zsl_’irg CO(S)= W—ﬁ e (4-7)
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wl

Figure 12. Geometry of an hypothetical collision for a sphere.
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and

lim C (S)= 2. (4-8)
S0 O

4.3 Reduction of Collision Integrals for le

The coefficient C1 of the first inverse Knudsen number correction

to the drag coefficient is again determined by the collision integrals

”~

in Table I with.;1= ﬁ1= ﬂl and ;2= 32= R,. The fact that each collision
integral is related to a particular collision sequence is accounted for
by the 6-functions. In this Section we integrate over the §-functions
and formulate explicitly the conditions for the occurrance of these
collision sequences.

As an example we consider the collision integrals associated with the
hypothetical collisions (e¢f. Fig. 6). The geometry of an Hl-sequence
is indicated in Fig. 12. The Z-axis is taken in the direction of -5 and
the X-axis in the plane throughlg and il' Molecule 1 is emitted from the

A -> ->
surface at R, with velocity w Molecule 2 with incident velocity v,

1
1 1°
collides with molecule 1 after a time TI . We introduce the vector';
defined as
-> = ~ +‘ * B
xr = R1+w1'l‘1 (4-9)

which determines the location of the collision between molecules 1 and 2
relative to the center of the sphere. Molecule 2 continues to proceed

with its initial velocity'a and strikes the surface of the object after

2

a time T; . Although not indicated explicitly in Fig. 12, the vectors

-> ->
r and R2 are not restricted to the XZ-plane.

The §-function in the expression (I-1) for CHl can be rewritten in

> >
terms of the velocity wz and the distance vector r

tsections 4.3 and 4.4 were prepared in collaboration with Dr. W. A. Kuperman,
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i 3 o el PRI =
lw, R,| 8% (R -Rpwic]+w,ry)= (4-10)

2 A
=8 (T3+ %2—?‘%—:) 52 (ﬁ2-¥+€a2{€v2 F+V1- G 2heeh, -?)eu-{azx?:}"’: .

The conditions imposed by the Heaviside functions in (4-10) have an

[a]
obvious gecmetrical meaning. The condition w2-§'< 0 guarantees that

molecule 2 approaches the sphere and the condition (ﬁ2)<;)2~<1 ensures
that the impact parameter is smaller than unity,

The conditions for the H2-sequence (c¢f. Fig. 6b) can be related to
the conditions for the Hl-sequence, if we identify the velocity -;’l in

->
(4-9) and (4-10) with the initial velocity w. and if we register the first

1
collision not at the position where molecule 1 enterg the sphere, but at
the position where molecule 1 leaves the sphere.

Hence, if we integrate over T; ; R and U (cf.(3-32)) and use (3-14),
the collision integrals (I-1) and (I-2) reduce to

Cppy ()= -% fdwldw £* (w ,S)f*(w 18 fd‘f* de Iw 1|

faw n* et yw! - (w- YT 8.8 0(—0. D)0 (1-{7. %3} (4-11a)
1/%12\W," 3 Ryl 2 2 v
Cyp (5 ,".szfdw aw £* (W, 5 8) £ (v, )Id'l‘* de lw
w ﬁ:>o
-> ~ A -5 A
.wlz(wz--\ﬁz- ﬁz).s 9(-w2-r)9(1-{w2xr} ), {(4-11b)

with
> r-w2 w2 r+ V w2 r) . {(4-11c)
The collision integrals (I-3) and (I-=4) can be treated in the same

manner, except that we cannot integrate analytically over the collision

vector 812. Thus
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(S)- +[22'__2 Idw dw £* (w S)f (w S)fd'r* dR l-‘;l.nll

w R <o
fawnein [ [w) 6 (7:"-@11) 8 0= 1. 70 (1-{%. '"¥x}?), (4-12a)
1 f 12120 W1 T T2 R ! 1 '
W12 612<°
Rp ()= = —'C—zfdw dw f*(w S)f*(w S)F’r"de [w1 R |
w -R >o
> *uu_ﬁ _"ll. &1 L
_;fdalz |w12-812| (wy 5 ﬁz).s O(-w1'-r)o(1 {wl xr}?y , (4-12b)
128,20
with

R = it ’v)zi--'}4 Vl-(ﬁ'l-x}“)'z ) (4-12¢)

2 1

>
The velocity w]'_' is again related to the integration variables by (3-35).

4.4 Drag Coefficient C. of a Sphere at High Speed Ratios.

1
In the high speed limit or (cold wall) beam limit
£* (w,; 8)= 63 (w,-5) , (4-13)
i i
and
Slig cl(s)= é—»lg cHl(s)+ 2 g._)igl ch(S) ' (4-14)

as discussed in Section 3.4. Retaining only the leading term.'in S the

collision integrals (4-1la) and (4-12a) reduce to

éi.orﬁ Cypp (S)= - —2 fd'r* de [8-& lfdw'n*(w )0 (-8-7)0 (1-{8%x}?), (4-15)

8. R <o

éﬂc (s)= + 7 S!d‘r fdﬁ lg'Rll Id'\%ln*(w')fdﬁ @,812
8. R <o 8. 8 5>

> 2
-9(-812-r)e(1-{612xr} ) . (4-16)
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We express the vectors %l(e

- -p'
R1'¢R1) ’ r(r'er'¢r) and wl (w

i'ewl' '¢w1' )

in terms of spherical polar coordinates in the coordinate system with
N .
the Z-axis in the direction of -S. Because of symmetry we may integrate

over the azimuthal angle ¢R1 of ﬁl and take 11\2 in the XZ-plane as indicated

1
in Fig. 12. Then

& @ © 2 JF 2T
lim C_. (S)= - 2 s |at* ﬁe sinf__cosP dw'w'3e-w1 a8 _.sinb a
dao Hl T 1 Rl Rl Rl 11 - wl! wlt wl'
[o] o] o) 0
S A, - . -
04 ﬁl)e(wl Rl)e(coser)eu rsmer) ' (4-17)
with
wi-§1= cosBRlcosewl.+snﬁRlsin0wl'cos¢wl, . (4-17a)
The Heaviside functions in (4-17) impose the conditions
0<6 r1S axetg (—cotgewl, sec(bwl‘) ’ (4-18)
and
0.<9r <arcsin r-l . (4-19)
It follows from (4-9) that condition (4-19) is equivalent with
sinb 2 2
*< - . L
0<1.'1 : l% cos(bwl.-l-‘/cotg 6R1+ cos ¢w1'] (4-20)
wysinb

»
1l

(4-18) the Heaviside functions in (4-17) are taken to be unity. All

With the integration limits for T. and eRl determined by (4-20) and

integrations can be performed analytically with the xesult

T
é-)ig CHl(S)— -S 3 (4-21)

In order to evaluate the collision integral (4-16), as well as the
collision integrals in the subsequent sections, we consider three

different coordinate systems, to be referred to as the XYz, X'Y'Z' and
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X''Y''Z'' gystems. The XYZ system is the original coordinate system

with the Z-axls in the direction of -gl The X'Y'Z2' system has the Z'-axis
in the direction of ﬁi and the X'-axis in the plane through ﬁl and 8. The
X''Y''2'' gystem has the Z''-axis in the direction of'; and the X''-axis
in the plane through ; and 5. We express ﬁi(wi,eél,,¢él,).in]terms of
polar coordinates in the X'Y'Z' system, The polar and azimuthal angle of
3i2 in the original system are 0, ¢G and in the X''Y''2'' system 6&',¢&'.

+
The Cartesian components of any vector a in the auxiliary systems are

related to its components in the original XYZ system by

axl ax ax" ax
a . f= RY(BRI) azl r [ayw| = Ry(er)gz@¢r) a | - (4-22)
az' az az“ a,

where Ry and Rz are the same rotation matrices as those used in earlier
reports [31,33].and where er and.¢rare the polar and azimuthal angle of
the distance vector';

; = ﬁ1+ %111 ﬁ +w' [-cose' +Vr =sin 6 ] (4-23)

The collision integral (4-16) reads in terms of these variables

472 3 wi g
i = 4 i e
lim CRl(S) — S!dTIJ‘dBRls:LnB lcosenljdw w! !d 1 's:.uta AL A

il 2T
.o[awwl:ﬁZZGSi“BGC°Saeoa[d¢ce(‘2959&') ©(1-rsind}'Y. (4-24)
o

The Heaviside functions in (4-24) impose the condition

] -1
T=arcsinr =~ ¢ 9&' <%, (4-25)

so that molecule 1 will indeed return to the sphere after the collision
with molecule 2. We transform the integral over the time T* from 0 to

1
®© into an integral over the distance r from 1 to » [19]
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rdr

i 4-26)
ar*= -TFFZ:“- - (
1 ¥, Vr®-gin 9;1,

!, we obtain

If we then integrate over w1

T 2T

i = !EES d9_.sinf_.cosh do'  sind'.  cosO' ag’

%ﬂg CR1(S)_ + A Rl Rl Rl wl' wl' wl!' wl'
¢

oo 2 2
] -2_, 25" \-1/2 . 3 A Y 1 10y . (427
J&r(l-r sin ewl) dBOSLnBOcos 90%!h¢0 o( cosec YO (1 rsineo Yo )
0

The remaining integral was estimated numerically as a weighted average
over 100,000 random points with the result +(0.510%0.002)sS.

We thus conclude that in the limit of high speed ratios [16]

dim c . (S)= -\/% s =-1.253s , (4-28a)
im C ) (S)= +(0.510%0.002)S - (4-28b)
4m C, (5)= Lm {c ) (S)+2C,, (S)} = -(0.23320.004)S . (4-28c)

These results are in good agreement with the values éigbcﬁl(s)=

-(1.2840.02)S and Lim C_; (S)= +(0.51140.002)S as calculated by Kuperman'.

t Equation (5-54) in the original thesis of Kuperman contains an error and

should read Vi)™ Rx(-B)Rz(r¢ )V(kl). This change does not affect the

wl

value of ClHl quoted in Table 5.2 of his thesis, but the values quoted for

clRl and clC1 should be replaced with C1

the same reason the values quoted in Table 6.4 of Kuperman's thesis should

Rl=C1C1=(_0.25610.0021$/Kn'[35]. For

be replaced with the values presented in Section 4,5 of this report,
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4.5 Drag Coefficient C, of a Sphere at Low Speed Ratios.

At low speed ratios we can expand the Maxwell distributions in the
collision integrals (4-11) and (4-12) in a Taylor series around S=0 and
retain only the first order term in S.

£ (w3 5) £% (w3 5) = ;% e “’i“wg’{1+23.($1+$2)} . (4-29)
The zeroth order term in (4-29) does not contribute to the drag coefficient.

We use the coordinate systems introduced in the preceding section.

The polar and azimuthal angle of any vector -;. are denoted by ea’¢a' Gé,tb;
and 6;',¢;' in the XYZ, X'Y'Z' and X''Y''2!'' system, respectively. It

is also convenient to introduce the polar and azimuthal angles éo and $0 of
6 in a coordinate system with the Z-axis in the direction of ;v*

12 12
(4-12a) and in the direction of 312 in (4-12b) and the X-axis in the plane

through S and wl2 or 312. We transform again the variable 1.‘1 into the
distance r in accordance with (4-26). In the collision integral (4-1la) we

-
can integrate raadily over the velocity w.. We thus obtain

1
2 oo 2
= w2 12571
é}m& CHl(_S) Id w 2e” fdw w fdeRl
e 2™ o 277
. 2 l 1/2 [N } [ |
o‘jde;"l,SJ.nGv"l,cose' Idcp 1t Idr(l r “sin 6 ) jd@ sinf [dd)
o) 1l T-arcsinr °
T
W 2( «g Rzz_w2z> ( -ﬁz coseRl—wzz) ’ (4-30a)
J— (o] 2 [+2]
. = 4 2 2 -Wl
é—i’% CH2(S) +'r_rs§ J dwlwle J dw2w2e Ya f dBRls:LnG
-||'/2 2™ = 2™
- [ . [] —2 "'1 2
fdﬂwlslnewlcose;’l!dda:d!dr(1-r sinzev"l) / fde' 's:.;.xe " d¢
0 T-arcsinx
.w12 (WZZ— -@ RZZ) (wlz+w22) ! (4-30b)
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T 21
lim C_. (S)= + fd "" 1t f
Sin O W w e dwyw) deRls:LneRl 40,sing, fdp,
o
T 2m T 2w

.ofde,;,l.sine;u.cese- of a! f dr(1-r" Sinze ) 142 ]d5 o5in6,, |cosh_| [d$0
Ve )

ey S
wlz(_n/_lz_ R, W) cosem-wzcosez) 9(-cosB' 1'7)0(A-rsing i, ), (4-30c)

_g 2 T T 27

lim C S - i

s-rlgl Rz( )= Idw woe ﬁwzwze dBRlsirﬂRld[dﬂz s:.xﬂzfdpz
27

o0
Idﬂ sid! cosd! [ap! fdr(l-r'zsin%'w ~1/2 de sind; |cosd_| fdai
Ve

P (wi'- £ z) (wlzwzz)e(-cose' ! +1)6(1-rsinbd 'i, . (4-304)

These integrals were again calculated numerically. The results are

presented. in Table VI.

4.6 Drag Coefficient C. of a Sphere at Arbitrary Speed Ratios

For arbitrary values of the speed ratio S we need to substitute the
complete Maxwell distribution (3-6) into the collision integrals (4-11l) and
(4-12). In formulating the collision integrals we use the same notation as

in the preceding section and obtain

o 2 o0 2 T
2
4/2 3 ~wy 2 -w 2_-w.
= - - 2 []
cHl (s) Ths? J dwlwl e dezw2 e dw lwi e 1 Jdemsinem
o o) 0 o
m mom 27
N -2, 2 -1/2
[ 6' s:.ne ]cose' [ Jd¢"vljd6;’1,51n6;'1,cose"ﬂ,Idﬁ'l, dr(l-r “sin 6"'1,)
o o o i
T 2™ ‘/_
. -25(S+w. +w_ ) ( T )
s (N e e ] AN - . -
de‘“’.‘,szu.new2 d¢w 1z 2z wi, \ 3 Rzz Woo ¢ (4-31a)

fT-arcsin r o
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TABLE VI

1 of a sphere in the low

lim C.__ (S)= -(2.585%0.014)S *
H1l
S*o

$ l
i = 4 U

. oy , S -1
éig c,(s)= é&g{cﬂl(s)+CH2(S)} (2.29%£0.01)S

-1
N = +
é&l’(l)l CRl(S) +(0.59%¥0.03)S
. = + -1
%_yél CRZ(S)_ (0.059%0.007)s

+(0.53£0.03)s"1

Lim C(S)= Lim {cR1(8)+cR2(S)}

lim Cl(S)= 1in{¢_(S)+ 2C_(s)}= -(1.23i0.05)s'l
S0 s+ H R
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2 -w 2 "
= 2 »
(s) + i;—;- dw dw2w2 e denlslneRl
o
4 Ul 2™
. -2 . 2 -1/2 .
. L} ] L} ] -] ] LI | LR ) L8 ]
dewlslnewlcosﬂwljd¢wl dr(l-r “sin Gwl) dewzslnew2 d¢w2
° o A m-arcsin xr™L O
-2S (S+w, _+w, ) v/ _ _ _
e 1z "2z Vo ( > RZz sz) P (4-31Db)
00 00 m
2 2 2
_ . 42 3 -wy 2_-wy 0 2_-w! :
(S) + gz |9v W, e dw,w,"e dwlw1 el dGRlSLnGRl
o o o] o
2™ T 2T W 27
] ] L ] L} ' ] L ]
ae sxne |cose | d¢wl JdGZSLnBZ d¢2 dewl,SLnG cosewl, d¢wl
4 o o o 0 0
T 2m
2., -1/2|x . x ~ ~  -25(S+w, +w, ) , /' .y
dr(l-xr 2.in ewl') d9051n90|coseol d¢oe 1z "2z wlz( 3 Ry~
% o
. 0(-cose'i“)9(l-r31n9 l“) (4-31c)
Q0 2 00 2 o
2/2 2 -w 2 -w
= l 2 .
CRZ(S) - qhgZ |Gw v, e dw,w,"e d6R151n9R1
0 o o’
!% 2T T 27 sCO
; ] -2, 2 -1/2
'y ] L) L 1 - ]
dewlslnewlcosewl d¢w1 d6281n62 d¢w2 dr(l-r “sin ew1)
oJ Y 0 0 1’
m 27

P

|3

. d§OSin60|°0560| d$ 2S(s+wiz+w22)w12( R, = ")O(-cose'i“)e(l-rs ne'i").

N

e °
(4-314)

The various integrals were again computed numerically. In Table VII we

present the estimated values of Cl, as well as the individual contributions

cHl’ Chpr CRl' Cro for s<3. Just as in Section 3.6 when calculating the drag
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Collision integrals for the drag coefficient C1 of a sphere (S<3)

s || Car*S Cua*S Cr1*S Cra*S C*s
0.01 -1.22%0.10
0.05||-2.5120.07 | +0.26t0.07 | +0.45t0.03 | -0.090.03 ~1.16£0.06
0.10 ~1.24%0.10
0.50|[~2.94t0.16 | +0.30%0.09 | +0.650.05 | -0.07+0.02 ~1.47£0.16
1.00||-4.51t0.12 | +0.14%0.01 | +1.04%0.05 | -0.045t0.006 || -2.36%0.14
1.50||-6.47t0.25 | +0.054+0.005| +1.48:0.07 | -0.016+0.002 || -3.48%0.27
3.00||~17.95t0.30 | +0.002t0.001| +5.47+0.39 | -0.00080.0004 | | -7.0020.85

TABLE VIII

Collision integrals for the drag coefficient C

1l

S cHl/s ch/s cl/s
5.0 -1.64+0.04 +0.52+0.02 -0.60%0.05
7.5 -1.49%0.03 +0.51+0.01 -0.49+0.04

10. -1.44%0.03 +0.50%£0.01 -0.43+0.03
15. -1.32+0.03 +0.52+0.02 -0.37+0.04
20. -1.29+0.03 +0.52t0.02 -0.25+0.04
30. ~1.26+0.02 +0.49+0.01 ~«0.29%0.03
50. -1.26+0.05 +0.5030.01 -0.26+0.03
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of a disc, we again notice that the contributions CH and cR may be neglected

2 2
for speed ratios S>2. The results obtained for the larger speed ratios

are presented in Table VIII. At low and high spsed ratios the results

approach the limiting values established earlier in Sections 4.4 and 4.5.

4.7 Discussion of Results for the Drag of a Sphere.

In summarizing our results for the drag of a sphere in the nearly free

molecular flow regime, we write the drag coefficient CD again as in (3-51)

C=c [1+ €1 K-]'] =c [14,,(9.!*"_2‘2){1] , (4-32)
D o C o C
o o
with
K_l= /E'NnczR. (4-33)

A summary of the values of the coefficients in the expansion (4-32) for the
drag coefficient C  is presented in Table IX. The coefficients c, and
Cl/Co are plotted as a function of the speed ratio S in Figs. 13 and 14
using the same scale as used earlier for the drag coefficient of a disc in
Figs. 10 and 1l. On comparing Table IX with Table V and ¥igs. 13 and 14
with Figs. 10 and 11, we note that the drag coefficient of a disc and a
sphere are rather similar functions of the speed ratio. Again at low speed
ratios Cl/'c° becomes independent of the speed ratio, while at large speed
ratios cl/'c° becomes proportional to the speed ratio S.

The drag exerted on a sphere in the nearly free molecular flow regime
has been studied by a number of authors. Most of these studies are concerned
either with low velocities S<<1 or large velocities S>>1 and we shall discuss
the two cases separately.

Our results may be interpreted as the soclution of the Boltzmann eguation
for a gas of hard spheres in the -presence of the object. A study of the

sphere drag based on the Boltzmann equation for Maxwellian molecules, i.e.
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TABLE IX

Drag coefficient of a sphere in the nearly free molecular flow

regime as a function of the speed ratio S.

C = c°[1+ C1 x'1]= c, [1+(Eli2.c_R)K'1]; k1= v3mno?R.

D o o
s Co Cy/Co Cr/Co C1/Cq
0 4.195_ |  -0.546£0.003 | +0.126%0.006 -0.29+0.01
0.01(| 4.19s77| -0.527#0.007 | +0.12¢0.01 ~0.29%0.02
0.05| 4.19s ;| -0.53920.003 | 40.13t0.01 ~0.28+0.01
0.10|| 4.20s7]| -0.529t0.008 | +0.13#0.01 ~0.28%0.01
0.50|| 4.345_;| =-0.61%0.03 40.13%0.01 ~0.34:0.04
1.0 || 4.758 ~0.92£0.02 40.21#0.01 -0.50£0.03
1.0 || 4.75 -(0.92£0.02)S | +(0.21%0.01)S ~(0.50£0.03)S
1.5 || 3.58 -(0.80:0.03)s | +(0.18%0.01)S ~(0.43£0.03)S
3.0 || 2.61 ~(0.76£0.02)S | +(0.23%0.02)S -(0.30£0.04) S
5.0 || 2.32 -(0.71£0.02)S | +{0.22£0.01)S ~(0.260.03)S
7.5 || 2.19 ~(0.68t0.01)S | +(0.230%0.005)s || -(0.22+0.02)s
10. 2.14 -(0.67£0.01)S | +(0.235:0.006)s || -(0.20£0.02)s
15. 2.09 ~(0.63:0.01)S | +(0.248+0.008)S || -(0.13%0.02)s
20. 2.06 -(0.63t0.01)S | +(0.253t0.008)S || -(0.12£0.02)s
30. 2.04 -(0.63%£0.01)S +(0.24%+0.01)8 -(0.14%+0.01)Ss
50. 2.02 -(0.62t0.02)S | +(0.247¢0.008)s || -(0.1320.01)s
e 2.00 ~0.6278 +(0.255:0.001)s || -(0.117¢0.002)s
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Figure 13. The drag coefficient C_ of a sphere in the free molecular flow
regime as a function of the speed ratio S.
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molecules that repel each other with forces proportional to the inverse
fifth power of the intermolecular separation, was made by Liu, Pang and
Jew [4]. They expanded the collision integrals into Hermite polynomials
in terms of the molecular velocity; this procedure leads to an expansion
of the drag force in which higher order terms of the speed ratio S.are
neglected.

A comparison of our results with those of Liu et al. is made in Table X.
The predicted drag coefficients appear to be very similar for S<0.5; in this
range we confirm the conclusion of Liu et al. that the coefficient C1/Co is
almost independent of the speed ratio S. For 0.5 the results of Liu et al.
begin to deviate substantially from our results; this difference might be
due to a failure of the expansion procedure of Liu et al. for larger values
of S [4]. The convergence of the expansion procedure of Liu et al. has been
questioned by Willis [7]. Nevertheless, unless the agreement is fortuitous,
the data of Table X would suggest that the drag coefficient is insensitive
to the details of the molecular interaction and that it is mainly a function
of the size of the interaction range, or, equivalently, of the magnitude
of the mean free path.

Due to the complications associated with solving the full Boltzmann
equation many authors have used instead the BGK equation (1-4) or more
sophisticated versions of this model equation. The use of this model
equation 4ntroduces an uncontrolled approximation for mathematical conve-
nience. Its predictive power is further limited by the appearance of an
adjustable collision frequency V.

In the limit S*o it is sufficient to consider a linearized version of

the BGK equation (1-4). Using this procedure and assuming again diffusive
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TABLE X

Comparison of our results for the sphere drag with those of Liu et al.

Liu et al [4] This work
{Maxwellian molecules) {hard spheres)
= = - = - i -

S= 0 Cl/C° 0.298 Cl/'C° 0.29%0.01
0.01 -0.298 -0.2910.02
0.10 -0.300 -0.28%0.01
0.50 -0.308 -0.34%0,04
1.00 -0.296 -0.50%+0.03

TABLE XI

Survey of theoretical values reported for lim Cl/'c° of a sphere.

G0
C1
lim E: = =0.24 S » Baker and Charwat [14,38]
= =0.143 S » Perepukhov [15]
= -0.33 » Rose [8,39]
= -0.165 + Willis [38}
= =(0.117+0.002) 8, this work.
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reflection of the molecules from the object, Willis calculated the coefficient

cl/co for a sphere with the result (7]

C
lim El = -0.366. (4-34a)
S0 To

Starting from the same equation we find+

Q

lim ~1 = -(0.401%0.004) . (4-34b)
$+0 C_

These theoretical values are usually compared with the measurements of

Millikan [36] for the drag of oil droplets in air as a function of the

Knudsen number. From the experimental data of Millikan one may deducéf*

= = 0.3910.02 . (4-35)

Ql'_.(')

o
The rather close agreement between (4-34) and (4-35) has been widely in-
terpreted as a justification for the use of the BGK equation. However, such
a conclusion is dangerous, since it heavily depends on the presupposition
that the theoretical boundary conditions are satisfied in Millikan's ex-
periment. In fact, Millikan's experiments were conducted in air which is a
mixture, while the results are interpreted in terms of equations for a one
component system. A more reliable criterion for the adequacy of the BGK

equation is obtained by comparing its solution with that of the Boltzmann

T This work will be included in a Ph.D. thesis to be submitted by

Y. ¥, Lin Wang.
Tt A statistical analysis of Millikan's data in terms of the theoretically
predicted equation C = C°+Clx?1+C5K?21nK‘1+C2K?2 was made by Zondlo [37].
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equation with the same boundary conditions [12]. The fact that the BGK
result (4-35) differs appreciably from the Boltzmann equation result both
for hard spheres and Maxwellian molecules raises doubt about the adequacy
of the BGK model equation.

Theoretical calculations of the sphere drag at large velocities have
been presented by Baker and Charwat [14], by Perepukhov [15], by Willis and
coworkers [38] and by Rose [8,39]. A summary of the values reported for
éig C1/Co is presented in Table XI. In order to simplify a comparison with
our results we have only quoted in Table XI the limiting values, when the
temperature of the object is identified with the temperature of the gas
stream. Baker and Charwat [14] and Perepukhov [15] start from the same model
as considered in this report, but then proceed to introduce a number of
approximations. The extent to which their results differ from our value of
-(0.11740.002)S indicates the effect of their approximations. In particular
the drastic approximations introduced by Baker and Charwat, do not appear
to be justified. The fact that C;/Co becomes proportional to the speed ratio
§ at high velocity, is a consequence of the general nature of the collision
integrals.

The value obtained by Rose [8,39] is based on the BGK equation (1-4)
and that obtained by Willis [38] is based on a modified version of the BGK
equation. The dependence of their solutions on the speed ratio S appears
to be qualitatively different. These model equation results are subject to
the limitations mentioned earlier in the discussion of the drag coefficient
in the low velocity limit., Their validity can only be judged a posteriori
from a comparison with the solution of the Boltzmann equation, though not

necessarily the solution of the Boltzmann equation for hard sphere molecules,
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The fact that our calculated values of C;/Co become proportional to the
speed ratio S at large velocities deserves some further comments. The
validity of the expansion (4-32) for the drag coeféicient is limited to the
range where the mean free path is substantially larger than the object, i.e.
the inverse Knudsen number should be substantially smaller than unity. How-
ever, the parameter K-1=4§ ﬂnUZR in (4-32) represents the Knudsen number in
the absence of (i.e. away from) the sphere and is therefore sometimes referred
to as Ke'. In order for the expansion to be valid we must require that the
local inverse Knudsen number near the object is substantially smaller than ..

unity. Indicating the local Knudsen number by i, then at small velocities

I 2

1im ¥ 12 x 1=V3 moR (4-36a)

S*o
while at large velocities

lim ;c'lé sx'1= sy ‘ITno‘zR ; (4-36b)

S

since, at large velocities, the mean free path of the reflected molecules
becomes inversely proportional to the speed ratio S, If we thus rewrite

the expansion (4-32) in terms of the local Knudsen number

= 131 -
= %o [1+ = ] , (4-37)
o}

subject to the condition

K <1, (4-38)

then é}g El/to= -(0.117£0.002) becomes independent of the speed ratio S.
Thus the apparent increase of C;/Cq, at large velocities as a function of

S is a consequence of the fact that the local inverse Knudsen number itself
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becomes proportional to the speed ratio S. Unfortunately, the condition

1 1

(4-38) implies for large values of the speed ratic that K "<<§ — and, hence,

the range of validity of the expansion decreases with increasing values of
the speed ratio S. Of course, this limitation applies to all theoretical
results obtained by a Knudsen number iteration procedure.

Experimental data for the drag coefficient of a sphere at high velocities
have been reported by Kinslow and Potter [40]. In terms of our parameters

1

these data correspond to SK =3 and therefore do not overlap with the range

SK71<<1 of our calculated values.
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CHAPTER V

REMARKS

In this report we have considered a density expansion for the drag
coefficient cD in terms of the density of the gas stream. When the mean
free path of the molecules is sufficiently large, this expansion reduces

to an expansion in terms of the inverse Knudsen number. Retaining only the

first two terms we thus obtained

-1, (5-1)
CD= C°+ ClK

where the parameter K-l was defined as

K 1=yZ mo°R . (5-2)

The coefficient Co represents the drag coefficient in the limit of free
molecular flow. It was shown that the coefficient C1 is determined by a
set of well defined collision integrals associated with the dynamical motion
of two molecules in the presence of the object. These collision integrals
can be formulated for objects of any shape. In order to demonstrate the
feasibility of the method we calculated these collision integrals for the
coefficient C, of a disc and a sphere as a function of the speed ratio §

1
assuming that the molecules of the gas are reflected diffusively by the

object. For convenience we took the temperature of the object to be equal
to the temperature of the gas stream and assumed that the molecules ¢of the
gas stream could be treated as hard spheres. These approximations are not
essential. Other temperatures of the object and molecules with more com~

Plicated interaction potentials can be handled by using the appropriate
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binary collision operators T (1X).

The range of validity of (5-1) is determined by the conditions

Kf1<<1 for s€1 , (5-3a)
and

K71<<S-1 for S21 . {5-3b)

In order to extend this range one needs to consider higher order terms in
the .expansion (5-1) for the drag coefficient. 1In analogy to the density
expansion of the transport properties of a moderately dense gas, one may

anticipate an expansion of the form [5,16,17,19;41]

T e
C= Co+ C1 + C2K InK

1 2

+ Ezi' + ... (5-4)

where X is the local Knudsen number in the neighborhood of the object.

The relationship between this local Knudsen number K and our parameter X
was discussed in Section 4.7. In view of (4-36b) one therefore may
anticipate higher order terms that are nonanalytic in terms of the
parameter K-l as well as in terms of the speed ratio or the Mach number.

For objects with two dimensional geometry, such as a cylinder or a strip
whose length is large compared to the mean free path, these nonanalyticities
appear already in the first inverse Knudsen number correction. However,

the nature of these nonanalytic terms, as well as their practical signi-

ficance, is not yet well understood and further research is required.
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\ APPENDIX

EQUALITY OF THE CONTRIBUTIONS FROM RECOLLISIONS AND CYCLIC COLLISIONS

In this Appendix we prove that for an object in a gas stream of hard
spherical molecules the recollisions and cyclic collisions vield identical

contributions to the drag force, i.e.

¥

cl

my

R1 ' (a-1a)

c2 "R2 '

tad
o D o

(a-1b)
here B.. and E__ are given by (2-65) and E.. and E__ by (2-66). This
whersiLp, ans Bp, &€ given By c1 c2 Y :
identity was earlier noted by Kuperman in the zero and infinite Mach number
limits [12], but the theorem has a general validity independent of the speed
ratio and independent of the detailed nature of the integrand. It thus also
applies to other collision integrals pertaining to the nearly free molecular
‘flow regime, such as those derived by Kelly and Sengers [18] for the mass

flux to a droplet in a supersaturated vapor.

In order to prove the thecrem we define the quantity

g(vll)h fdA lvvl.ﬁ I 63(R R+ VT + vlvT )Idvlvvn(vlltlvll)(VIII_VII)'

2
Vi'-n2<o (a-2)
and consider the integrals
1 = fda k2 lg@n (A-3a)
R+ a2 12° 12
Vi2°Yy2<0
ICE J'aa |v12 12|g(v") . (a-3b)
V1.8
V1291°
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> >
On comparing (2-65a) with (2-66a) we note that E__ .= ER

Ccl 1

For a gas of hard spheres the velocities before and after the second

collision are interrelated by (2-18)

+||= > >,
vil= vy (91,8508,
ol >,
vy'= vyt (v1,08,08,, -

Let us introduce a new unit vector 8' defined as

g = _ V12715812081,

- A' - 2
Vi-01,8, )

so that

We choose a coordinate system with the Z-axis in the direction of ¥

(A-4a)

(A-4Db)

(A-5)

(r-6)

The

polar and azimuthal angles of 312 in this coordinate system are 8 and ¢ and

9]'_2-812 = cosf. It follows from (A-5) that the polar and azimuthal angles

9' and ¢' of 8' in the same coordinate system are 9'=§—E -0, ¢'= ¢+T and that

Vi2'6'= cosB'= -sinf. Thus
e N 2T W R
I.= [dﬁlz |V]'_2-812|‘g(vé-)= vizfd¢fd9 sinf|cos8 | g(vy")=
-
V12°8;5% o T/2
r 3 3
= [} ~ 1 . 5
= viz fd¢ db'sin (2—_-9-) ! p— (%ﬂ:_ 9') l-g(.V:_','l _
0 i/
2T m
> -»> >
= vl'2fd¢'fde'5ine' |cose|| g(v'2')= fda' lvi2°6'| g(v'2').
° T 3i2'8’<o
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On comparing (A-7) and (A-6) with (A-3a) and (A-4a), we conclude that indeed
I=1I_ ., (a-8)

\ . ] > > . > > .
which implies the equality Ecl_ ERl' The equality Ec2_ ER2 follows if

-+ <>
v]'_ is identified with vl.
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