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1.0 INTRODUCTION 

The interference on the flow field over a model caused by the pres- 
ence of wind tunnel walls has been recognized ever since wind tunnels 
were originated.    At subsonic speeds,   simple formulae for correction 
factors are available for closed and open-jet tunnels.    Since ventilated 
walls were introduced into transonic wind tunnels,  the calculation of 
correction factors has become rather complicated.    Furthermore,   as 
Mach number increases,  mixed flow (supersonic and subsonic) regions 
appear around a model causing complexity of the computations to in- 
crease an order of magnitude,   especially when the local supersonic 
region reaches the tunnel walls or Mach number approaches the sonic 
speed. 

Available theoretical correction formulae for ventilated tunnels are 
based mainly on linearized subsonic theory with compressibility effects 
accounted for by the Prandtl-Glauert scaling factor (Refs.   1 and 2).    The 
subsonic interference in the perforated tunnels of rectangular cross 
section has been calculated numerically in Refs.  3 and 4.    The com- 
pressibility scaling factor in the linearized subsonic theory is valid 
only for the subcritical flow (i.e.,  flow without a mixed subsonic and 
supersonic flow region).    However,  the subsonic correction theory may 
be still valid even though the flow over the model becomes supercritical 
(i. e.,  even though it has a supersonic region embedded in the flow). 
Hence,  the Mach number range for which the subsonic tunnel theory is 
applicable needs to be determined. 

The application of transonic theory to wind tunnel data corrections 
is reviewed in Ref.   5,   and particularly the axisymmetric case is con- 
sidered by tne equivalence principle.    In recent years,   several numer- 
ical methods have become available for the free-air case (infinite ex- 
tended flow) and are reviewed in Ref.   6.    Similar numerical schemes 
have been applied to wind tunnel flow problems on a body of revolution 
model (Ref.  7) and a two-dimensional airfoil (Ref.   8).    Both numerical 
computations solve the complete tunnel flow field around a test model, 
but neither of them provides tunnel corrections directly.    Hence, the 
solution for the free-air case is required to obtain the difference be- 
tween tunnel flow and free-air fields for tunnel corrections.    These 
available numerical methods have been utilized in an attempt to deter- 
mine the range of validity of subsonic wind tunnel corrections for the 
two-dimensional case (Ref.   9).    The only approximate formulation using 
the local linearized transonic theory was solved by the integral method 
for a two-dimensional symmetrical airfoil at sonic speed (Ref.   10). 
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In the present report,  the tunnel blockage interference is calculated . 
directly for a two-dimensional symmetrical model in a perforated tran-  ; 
sonic tunnel using the linearized transonic theory developed by 
Oswatitsch (Ref.   11) and Maeder and Wood (Ref.   12).    This method of 
direct computation of the interference does not require the exact repre- 
sentation of the model flow at supercritical Mach numbers.    It is as- 
sumed that the tunnel Mach number is subsonic and that the embedded 
supersonic region does not extend to the tunnel walls.    The transonic 
small perturbation equation is used.    The blockage interference is ob- 
tained in terms of pressure coefficient by the Fourier transform tech- 
nique.    The Mach number range for which subsonic tunnel corrections 
are valid is defined by comparing the present transonic results with 
subsonic corrections.    The computed pressure correction can be applied 
directly to the measured pressure coefficients on a model.    The results 
may also provide useful information for tunnel wall design and the selec- 
tion of model size. 

2.0 LINEARIZED TRANSONIC THEORY 

The linearized transonic theory was first proposed by Oswatitsch 
(Ref.   11) and later was extended by Maeder and Wood (Ref.   12).    The 
flow is assumed to be ir.viscid and irrotational.    The transonic small 
perturbation equation for flow over a two-dimensional thin airfoil in 
Cartesian coordinates of x,  y (Fig.   la) is 

"-*£*„ + *vy ■ (y+miiM.. (1) 

where the velocity potential,  6,   is normalized with respect to the free- 
stream velocity,  \Ja.    The boundary condition of tangential flow at the 
airfoil surface is of the form 

4>y = rl'x(x) (2) 

at y -*0.    Further,   the perturbation velocities vanish at infinity.    The 
linearization of Eq.  (1),  devised by Oswatitsch-Mader,  produces 

»-*£>*„ + 9yy  = ^x (3) 
where 

k2 = (y+m
26, 
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a.   Free-air flow. 
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I 

b.   Wind tunnel flow 
Figure 1.   Wind tunnel and model geometries. 

The acceleration parameter,  <j xx,   is assumed to be an average con- 
stant,   <?xx'   over a tiiin airfoil. 

For the convenience of tunnel blockage interference calculation, 
the linearized transonic equation is written in terms of the axial veloc- 
ity,   u,   as a dependent function-  thus, 

ß\x  -   «vy  "   *\ 

with boundary conditions 

uv   =   rFxx        al 

u-u, = 0 

)   - ° 
at      \,\    -»   JO 

(4) 

(5) 

(6) 

In order to solve the boundary value problem posed in Eqs.  (4) through 
(6), the Fourier transform technique is applied.    The boundary value 
problem in the transformed plane becomes 

>2  2 -ßyu  +   uvv = — ik-pu 
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or 

ST üvv - A2* = 0 (7) 

where 

Ü =  (2ffr1^/SOu(x) e'P" dx (8) 
—oc 

and 

A2 = jS2
P(P-ik2) (9) 

and the boundary condition at y -*■ 0 is given as 

u. (2T7)-''V
0
%FXxe

5Pxdx  =.   rf(p) (10) V -' XX 

The solution of Eqs.  (7) and (10) in the transformed plane is 

ü(y,p) = - [rf(p)/A] e-*^ (11) 

The solution in the physical plane can be obtained by the Fourier in- 
version formula.    The detail solution in the physical plane can be found 
in the report by Maeder and Wood (Ref.   12).    However,   the transformed 
solution for free-air flow,  Eq.  (11), will be used to identify the inter- 
ference portion of the solution in the following section. 

3.0   TRANSONIC THEORY OF TUNNEL BLOCKAGE INTERFERENCE 

3.1   FORMULATION 

The linearized transonic theory reviewed in the previous section 
can be used to obtain the tunnel blockage interference over a model in 
a perforated tunnel as shown in Fig.   lb.   The boundary conditions at the 
tunnel walls are assumed to be 

Or ^x   *   T0y  =   0   at  y  =   ±h 

'■ H    ± Tu   = 0 at y = ±1> (12) 

where T is the porosity parameter, an empirical constant for a given 
perforated wall. The boundary condition, Eq. (12), assumes that the 
mass flow is proportional to the pressure drop across the tunnel wall 
(Ref.  2).    As with the free-air case,  the boundary condition on the 
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airfoil is that the flow is tangent to the surface.   Far upstream and 
downstream,  the disturbance perturbation velocity vanishes.    The line- 
arized transonic equation of perturbation velocity is used for the field 
equation.    Hence,  the boundary value problem for the tunnel blockage 
interference can be described by Eqs.  (4),  (5),  (6),  and (12).    The 
Fourier transform technique is applied in a manner similar to that of 
the free-air case.    The solution of Eq.   (4) in the transform plane is 

H(y,p)  =  Cj(p) e~*y  +  C2(p) eA>' (13) 

where the constants C\ and C2,  determined by the transformed bound- 
ary conditions 

and -ipü +  TUy = 0 at  y =  h 

u     =   rf(p)      at   y  -»   0 

are of the form 

C, (  ) iM   1 + (ip + TA) e-Ah  
1 P A +  (-ip + TA) eAh   -   (ip + TA) e"AhJ 

(14) 

C ( )   =  -iM (ip + TA) e-Ah  (15) 
2 A      (_ip , TA) eAh   -   (ip + TA) e~Ah 

It is interesting to note that 

C,(p) = -rf(p)/A 
and 

C2(p) = o 

as h - °° 

so that Eq.  (13) reduces to the free-air solution,  Eq.  (11),  as expected. 
Substituting Ci and C2 into Eq.   (13),  the solution equation,  one obtains 

rf(p) Cip  -r   TA) e"^h ,   , 
u  =  um r : ^-7-, —T—. ,   .,   cosh Av m A      -ip cosh Ah   +   TA sinh Ah 

where um = -{jf(p)/A] e"   v, the solution for free-air flow in Eq. (11). 
Therefore,  the interference velocity induced by the tunnel wall is 

IM <;P  +   TA> e~Ah  C0Sh Ay (16) 
A      — ip cosh Ah   +   TA sinh Ah 
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In the physical plane,  the interference velocity is obtained by the inverse 
formula, 

„ =',/ /dfF*f (ip + ™ e~Kh
vr\xiu e_ip(x*^ J

P      <i?> 1 2ff  jj,,   Zoe S A -ip cosh Ah   +   TA sinh Ah r 

The interference velocity expression,   Eq.  (17),  may be reduced to a 
real variable integration as follows: 

5.  , ^e»rp>,a,T,h) '"^ ^ Ay M.d»  +/°l>,c/r,h)e^h7hAy\lHdJ    (18) 

as shown in Appendix A,   where A^ = ß^((j2 + 0^) ancj a = k^/2.    The ex- 
pressions of Ic and Is are listed in Appendix A.    The qualities Mc and 
Ms are dependent on model geometry as 

Mc = f°V t e"°f cos OJ{X - 0d£ 

(19) 

For any given power series form of F^,  the model surface profile,  the 
expressions for Mc and Ms may be integrated analytically and tne inter- 
ference velocity solution,   Eq.   (18),   becomes a single integration which 
may be easily performed numerically. 

3.2   DETERMI NATION OF TRANSONIC ACCELERATION PARAMETER 

In Eq.  (18),  one undetermined parameter,  a,   is directly related to 
the acceleration parameter as 

a m k2/2 = «24» «ay. 
00   ^ XX 

In order to determine the value of the acceleration parameter, one 
assumes a to include two parts; thus, 

a  = a,   + a0 

where aj is induced by the model in free air and »2 is induced by the 
presence of the tunnel wall. 

10 
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The.acceleration parameter" «i is derived from the velocity solution 
in the free-air case (Ref.   12), 

a,   = ^ £ -fe.K^SV'sinhaV  - KJeKJC'cbsh a\   -■ siriK£;)T (20) 
2r(y + 1)M2L J 

where 

*,  -  a,//S2 

The acceleration parameter induced-by the tunnel wall, c*2, is-de- 
rived as follow-s by differentiating. Eq.- (18) with respect to x-: 

a2  =   G(o]   +  d"2,   *)' 

where 

r~dMe  e-Ah ~dMs  e"Ah "!i     f91A 
G(a.x)   =  aUi(a,T,x)   -  (2/,)" r e«^/ _ _ .^   + / — _  [; d*]    (2D 

Acceleration parameter a\ is a-constant averaged over the model, 
but parameter~a2' is a local acceleration dependent upon the chord lo- 
cation,   x,   along the model. 

An iteration scheme is required to determine a\ and ai from Eqs. 
(20) and (21).    Once the acceleration parameter,  a,- is determined,  the 
interference velocity can be calculated from Eq.  (18); 

4.0 INTERFERENCE" PRESSURE-ON A'CIRCÜLÄR-ARG AIRFOIL 

A cLrcular--arc airfoil was cnosen as an example to calculate the 
interference pressure coefficient'on-a model in a perforated-tunnel. 
The profile of a circular-arc airfbil is expressed'as 

na-wf-*      o-<£< i (22). 
=  0" elsewh'ere 

where j is the airfoil'thickness-ratio and'the-'chord is aunit length.    The 
quantities Mc and-Mg-of Eq.- (1-9) may be determined from 

Mi:  = f'2r(] - 20 c-0^  cos w(x - £d£ (23> 

II 
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Ma = /2K1 - 20 e~«^ sin <a(x - £df (24) 
o 

The integrations of Eqs.  (23) and (24) can be performed analytically, 
and the results are listed in Appendix B.    The acceleration parameter, 
a,   is calculated from Eqs.  (20) and (21) with the expressions 8MC/3X 
and 9MS/9X easily obtained from Mc and Ms. 

The pressure coefficient in the small perturbation theory is related 
to the axial perturbation velocity by Cp = -2u where u = u^ + um;  u^ = 
interference velocity of Eq.  (18),  and um = model-induced velocity in 
free air.    Hence,  the interference pressure coefficient may be ex- 
pressed as 

Cp. = -2u. (25) 

and may be related to the tunnel measured and free-air pressure coef- 
ficientsby 

CPm - C
PT " C

Pi (26) 

where 

and 

C       =   model pressure coefficient in free air 

C       =  measured pressure coefficient in the wind tunnel. 

4.1   INTERFERENCE PRESSURE COEFFICIENT 

The interference pressure coefficient for a circular-arc airfoil 
with 6-percent thickness ratio is shown in Fig.   2 for various tunnel 
porosity parameters,  Q.    The parameter Q is related to the porosity 
parameter,  T,  by Q = (1 ■*■ ßT)-1.    For a closed tunnei, the value 
of Q is equal to zero,  and for an open-jet tunnel,  Q is equal to one.    It 
may be seen from Fig.  2 that the sign of the interference pressure co- 
efficients for closed and open-jet tunnels is opposite,  as expected.   It 
is also observed from Fig.  2 that as Mach number decreases, variation 
of interference pressure coefficient becomes rather uniform from the 
leading to the trailing edge of the airfoil,  and the overall level of inter- 
ference for a given value of tunnel porosity decreases. 

12 
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Figure 2.   Interference pressure coefficients on a 6-percent circular-arc airfoil 

at h/c = 3.0. 
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The effect of tunnel height-to-chord ratio on the interference pres- 
sure coefficient is shown in Fig.  3.    The interference pressure de- 
creases as the parameter h/c increases.    This trend is expected as the 
reduction of cross-section area blockage decreases the blockage inter- 
ference. 

14 
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In order to evaluate the overall interference on the lift force of an 
airfoil, the average value of interference pressure coefficient over the 
airfoil chord is now introduced. 

<•* 1       c 

Cp. = - r c 
'1 c o Pi 

dx (27) 

16 
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The value of Cp. plotted versus the porosity parameter, Q,  is shown in 

Fig.  4 for various Mach numbers.    The minimum value of Cp. occurs 

in the neighborhood of Q = 0.4' for several Mach numbers. It should be 
noted that the minimum value of Cp. implies only that the correction of 
the overall lift force is small. 
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Figure 4.   Porosity effect on the average interference pressure coefficient, CPj, 
of a 6-percent circular-arc airfoil at h/c = 3.0. 

4.2   VALIDITY RANGE OF MACH NUMBER FOR SUBSONIC 
INTERFERENCE THEORY 

The Mach number effect on the interference pressure coefficient is 
shown in Fig.   5 for several locations on the airfoil.    The interference 
pressure coefficient,  Cp.,   increases as Mach number increases.    The 
results of subsonic wind tunnel theory are also shown in the same figure 
for the purpose of comparison with transonic theory. 

The subsonic interference pressure is symmetrical about midchord 
for a closed tunnel and indicates in Fig.  5a that the interference pres- 
sures coincide at x/c = 0 and 1. 0.    The transonic interference theory 

17 
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has no such symmetrical property.    However,  as Mach number decreases 
below 0. 9,  the interference pressure coefficients at the leading and 
trailing edges begin to merge.    This indicates that the subsonic theory 
is valid at Mach numbers less than 0. 9.    It is also shown in Figs.  5b 
and c that the interference pressure coefficients of the subsonic theory 
deviate from the transonic theory at Mach numbers above 0. 9.    The re- 
sults of subsonic theory overestimate the interference pressure above 
this Mach number,  and the interference approaches infinity as the flow 
reaches sonic speed.    Therefore,   subsonic theory may be applicable 
for the blockage interference of a circular-arc airfoil up to Mach num- 
ber 0. 9.    At Mach numbers greater than 0. 9,  the transonic wall inter- 
ference theory should be used. 
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Figure 5.   Comparison of transonic and subsonic theories on interference pressure 

coefficient at various Mach numbers. 
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Figure 5.  Continued. 

19 



AEDC-TR-74-65 

0.14 

0.12 

0.10 

z 
UJ 
u 

0.08 

U. 
UJ 

8 0.06 
u 
ae 
m 
CO 
Ul 

*   0.04 
ui 

Ul 
oc 
Ul 
K  0.02 
Ul 

T T 7 
TRANSONIC THEORY 
SUBSONIC THEORY 

0.6 

1.0 

■002 

4U4ssä _L 

\ 

\ 

\ 

J. 
0873 0.900        Q925 O950 

MACH NUMBER,. M 

c.  Q = 0.5, h/c = 2.0 
Figure 5.   Concluded. 

0.975 1.000 

20 



AEDC-TR-74-65 

4.3  APPLICATION 

The result of the interference pressure coefficient calculation may 
be used to correct wind tunnel data through Eq.  (26).    A set of data ob- 
tained by Collins (Ref.   13) in a closed tunnel with h/c = 3.4 at M,,, = 
0.915 is shown in Fig.  6a along with the free-air solution computed by 
Murman's numerical method (Ref.   8).    It can be seen that the correc- 
tions improve the agreement between the data and the theoretical curve. 
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COLLINS(REF.I3) 
CORRECTED DATA, 
PRESENT THEORY 

0.4 0.6 0.8 
CHORD LOCATION, x/c 

1.0 L2 

a.   M = 0.915 
Figure 6.   Application of interference pressure coefficient to closed tunnel configuration 

on a 6-percent circular-arc airfoil at h/c = 3.4. 
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Further,   it is shown in Fig.   6b that the present theory also accounts 
for the difference between free-air and closed tunnel theoretical solu- 
tions.    It is noted,  however,  that the pressure near the trailing edge of 
the airfoil has a large gradient which indicates the appearance of a shock 
wave.    The present correction theory is not applicable to the portion of 
the flow downstream of the shock wave location,   since the linearized 
transonic theory does not permit a shock wave jump.    However,  the 
correction seems very good upstream of the shock wave. 
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1 1 1  
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b.   M = 0.875 
Figure 6.   Concluded. 
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5.0 CONCLUDING REMARKS 

The transonic blockage interference was calculated in a perforated 
wall wind tunnel by the application of linearized transonic theory of 
Oswatitsch and Maeder. 

The effects of the tunnel porosity parameter and tunnel height to 
airfoil chord ratio presented herein may provide some guideline in the 
selection of a tunnel wall configuration and model size.    The determi- 
nation of the applicable Mach number range for use of subsonic inter- 
ference theory for a circular-arc airfoil has shown that subsonic inter- 
ference theory can give good results beyond the critical Mach number 
of the airfoil.    The application of transonic blockage interference cor- 
rections to two cases demonstrates that the present theory is very sa- 
tisfactory.    Future work is planned to extend the theory to consider 
bodies of revolution and also the lifting wing case. 
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APPENDIX A 
EVALUATION OF THE INTERFERENCE VELOCITY EXPRESSION 

The interference velocity expression,   Eq.  (17),   is of the form 

where 
X2 = )32p(p - ik2) (A-2) 

From the physical argument, the interference velocity u^ must be a 
real value function,  and the imaginary part should vanish by symmetrical 
properties.    This will be verified later in this appendix. 

Two additional variables,  u and a,  are introduced as follows: 

A2  =   ß2(a>2 + a
2) 

=   jS2^ + \a)(oj - ia) <A_3> 

From Eqs.  (A-2) and {A-3), the following two^ equations are obtained: 

p  = o  T  ia 

p — ik      = Co  —   ia 

where k^ is a constant defined in Eq.  (3).    The new variable a becomes 
a constant parameter as a = k^/2 and the variable u = p - ia.    After the 
variables p and X are replaced by the new variables u and a, the inter^ 
ference equation, uj, Eq.  (A-l), may be simplified as a real value func- 
tion. 

u. = ^ eax[/°^ I>,a,T,h) 6" h C°x
Sh -£Fgö e_a^ cos "(x " $dt 

+ /°d&,I>,a,T,h) e   - TSh h£f'^ e_af sin <k,(* " ^ (A-4) 

where 
__   (tü2-a2 + aTA)H   +   (TA-2a)cü2G 

H2  T a,2G2 

_ -(TA-2q)H   -   (m2-fl2+aTA|C 

H2  +  *2G2        ■ 

H   = a cosh Ah  +   TA sinh Ah 

G  =   cosh Ah 

A  =  ßyjoj2 +a2 
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APPENDIX B 
INTEGRATION OF EXPRESSIONS Mc AND Ms 

Expressions Mc and Ms of Eqs.  (23) and (24) for a circular-arc 
airfoil are integrated as follows: 

where 

M 
1 a   + co 

M,. =  lkr.   - 2\1    ) 

[a cos to (x - £)   +  co sin <j(x - $1 
f=0 

and 

M. 
2 2        2 1 a   + co 

[*€ + - y]coSfj(x-^)   +  lcot;+      ~mo    ] sin co(\ - £) 
\ a + co   / \ az + col) 

where 

M s, o -[-a sin cu(x- £)   +   w coswfx-^)] 

and 

M. 
.-£ 

s2 2 2 
a   ■* CJ 

(«£ +   ',"";     sincü(x-^)   -   fc)£ +     2 "*" , ) cos<y(x-£) 
^        a~ ~ to / \ a   - co    ' f=0 

[      1 
<f=l 
I   ' [   U    -[   K 
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NOMENCLATURE 

C1(p),   C2(p) Functions of p in Eqs.   (14) and (15) 

Cp Pressure coefficient 

Cp Critical pressure coefficient 

C_. Average interference pressure coefficient,   Eq.  (27) 
H1 

F(x) Airfoil profile function 

f(p) Fourier transform of Fxx,   Eq.  (5) 

h Semiheight of tunnel 

lc,   Ig Functions defined in Appendix A 

k2 Acceleration constant 

Mc>   Ms Functions defined in Appendix B 

M,,, Free-stream Mach number 

p Fourier transform parameter 

Q Porosity parameter,  (1 + /3T)~ * 

T Geometric porosity parameter 

U,,, Free-stream velocity 

u Perturbation axial velocity 

x, y Cartesian coordinates,   Fig.   1 

a Acceleration parameter,  k2/2 

«i Acceleration parameter,   induced by model 

»2 Acceleration parameter,   induced by tunnel wall 

|8 Compressibility parameter,   (1 - M„) 

7 Specific neat ratio 

X /32p(p - ik2)1/2,   Eq.   (9) 

f Dummy variable 

<p Perturbation velocity potential 

T Airfoil thickness ratio 

u Dummy variable 
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SUBSCRIPTS 

i Interference 

m Model 

T Tunnel measured data 

x, y, | First derivative with respect to x, y, and f, 
respectively 

xx, yy Second derivative with respect to x and y, 
respectively 

_ Free-stream condition 
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