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PREFACE 

The work reported herein was conducted by the Arnold Engineering 
Development Center (AEDC), Air Force Systems Command (AFSC), for 
the Naval Weapons Laboratory (NWL) under sponsorship of the Air 
Force Armament Laboratory (AFATL),  AFSC,  under Program Element 
62602F,  Project 2547.    AFATL project monitor was Mr.   E.  Sears.   The 
results presented herein were obtained by ARO,  Inc.  (a subsidiary of 
Sverdrup &. Parcel and Associates,  Inc. ),  contract operator of AEDC, 
AFSC,  Arnold Air Force Station,  Tennessee.    The tests were conducted 
on March 22,   25,  and 26,   1974,  under ARO Project No.  VA427.    The 
final data package was completed on April 26,   1974,  and the manuscript 
(ARO Control No.  ARO-VKF-TR-74-48) was submitted for publication 
on June 17,   1974. 
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1.0 INTRODUCTION 

This test was conducted as part of a continuing investigation (Refs. 1 
and 2) by the Naval Weapons Laboratory (NWL) on development work of 
ballistic shells.   Since these projectiles are statically unstable, they 
must be spin-stabilized.   The spin velocity required to stabilize the pro- 
jectiles tends to induce Magnus effects, which can lead to dynamic in- 
stabilities.   Both of these factors will influence the flight path.   This 
test was initiated to determine the effects of boattail angle, boattail 
length,  and. base diameter on the Magnus-force and moment character- 
istics of projectiles.   Data were obtained at Mach numbers 1. 5, 2. 0, 
and 2. 5 at a Reynolds number (based on a model length of 28. 662 in.) of 
9.-6 x 106.    Some additional data were obtained at M0 = 2 for Reynolds 
numbers of 2. 4 x 106 and 17. 5 x 106.    The angle of attack was varied 
from -2 to 8 deg.,  and values of the spin parameter (pd/2Vao) ranged 
from 0. 02 to about 0. 27 radians. 

2.0 APPARATUS AND PROCEDURE 

2.1   TEST ARTICLES AND TEST MECHANISM 

The aluminum models (Figs.   1 and 2) were supplied by NWL and 
were similar to the ones tested in Ref. 2.    The models consisted of 
one common nose section and ten afterbody sections with various boat- 
tail lengths and angles as well as various base diameters.   All of the 
models were dynamically balanced in roll at VKF so that there would be 
no vibrational loads on the balance. 

The models were mounted on the Magnus-force test mechanism 
shown in Fig.  3.    Basically, the Magnus-force test mechanism has a 
sting-mounted, water-jacketed, four-component balance with a shell 
mounted on ball bearings over the water jacket.    A two-stage,  air- 
driven turbine is mounted inside the model mounting shell at a fixed 
axial position near the forward end of the sting.    The turbine is used 
to spin the model to some desired speed and then is disengaged with an 
air-operated sliding clutch to allow the model to spin freely on the ball 
bearings.    It is estimated that the turbine will produce a starting torque 
of 50 in.-lb and a developed torque of approximately 100 in.-lb.    The 
mechanism is designed to operate under normal-force loads up to 500 lb 
and axial-force loads of 125 lb and for a maximum spin rate of approxi- 
mately 25, 000 rpm. 
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2.2   TEST FACILITY 

Supersonic Wind Tunnel (A) is a continuous,  closed-circuit, vari- 
able density wind tunnel with an automatically driven flexible-pi ate-type 
nozzle and a 40- by 40-in. test section.    The tunnel can be operated at 
Mach numbers from 1. 5 to 6 at maximum stagnation pressures from 
29 to 200 psia, respectively,  and stagnation temperatures up to 750°R 
(M^ = 6).    Minimum operating pressures range from about one-tenth 
to one-twentieth of the maximum at each Mach number.    In most 
instances,  Mach number changes may be made without stopping the 
tunnel flow.    The model can be injected into the tunnel for a test run 
and then retracted for model changes without stopping the tunnel flow. 

2.3   INSTRUMENTATION 

Tunnel A stilling chamber pressure is measured with a 150-psid 
transducer referenced to a near vacuum and having full-scale calibrated 
ranges of 10,  50, and 150 psi.    Based on periodic comparisons with 
secondary standards, the precision of this transducer (a band which 
includes 95 percent of the residuals) is estimated to be within ±0. 5 per- 
cent of the measured pressure.   The stilling chamber temperature is 
measured with a copper-constantan thermocouple to a precision of ±2°R 
based on the thermocouple wire manufacturer's specifications. 

Model forces and moments were measured with the VKF four- 
component, moment-type, strain-gage balance shown in Fig. 4.    The 
small outrigger side beams of the balance, with semiconductor strain 
gages,  were used to obtain the sensitivity required to measure small 
side loads while maintaining adequate balance stiffness for the larger 
pitch loads.    When a yawing moment is imposed on the balance, 
secondary bending moments are induced in the side beams.    Thus, the 
outrigger beams act as mechanical amplifiers, and a normal-force 
to side-force capability ratio of 20 was achieved for a 500-lb normal- 
force loading.    Before testing,  static loads in each plane and combined 
static loads were applied to the balance, simulating the range of model 
loads anticipated for the test.    The uncertainties shown in Table 1 repre- 
sent the bands for 95 percent of the measurement residuals based on 
differences between the applied loads and the corresponding values 
calculated from the final data reduction equations. 

The transfer distance to the model moment reference was measured 
with a precision of ±0. 005 in. 
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The rotational speed of the model was computed from the electrical 
pulses produced by a ring with reflective surfaces passing an internally 
mounted infrared-emitting diode and phototransistor.    This tachometer 
system could measure spin rates form 0 to 25,000 rpm. 

2.4  TEST PROCEDURE 

The model was positioned at the desired attitude -with the tunnel 
pitch mechanism and then spun with the turbine.   When the desired spin 
rate was achieved, the nitrogen to the turbine was shut off, the clutch 
was disengaged, and data were recorded as the model spin rate decayed. 
Model spin rates were monitored using the internally mounted tachom- 
eter described in Section 2. 3. 

3.0 TEST CONDITIONS AND DATA PRECISION 

3.1   TEST CONDITIONS 

A summary of the configurations tested is presented in Table 2, 
and the nominal wind tunnel test parameters at which the data were 
obtained are presented in Table 3.    The "x" in Table 2 indicates that 
Magnus data were obtained for a = -2 to 8 deg. 

3.2   DATA PRECISION 

Uncertainties (bands which include 95 percent of the calibration 
data) in the basic tunnel parameters, pQ, TQ,  and M,,,, were estimated 
from repeat calibrations of the instrumentation and from the repeata- 
bility and uniformity of the test section flow during tunnel calibrations. 
These uncertainties were then used to estimate uncertainties in other 
free-stream properties, using the Taylor series method of error propa- 
gation.   Listed in Table 4 are the uncertainties in the basic wind tunnel 
parameters at which most of the data were obtained. 

Measurements of the model attitude in pitch including the model- 
balance deflection are precise within ±0. 05 deg, based on repeat cali- 
brations.   The rpm precision is estimated to be ±5 rpm. 
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The basic uncertainties listed in Section 2.3 were combined with 
uncertainties in the tunnel parameters (Table 4), assuming a Taylor 
series error propagation, to estimate the precision of the aerodynamic 
coefficients.    The uncertainties shown in Tables 5 and 6 are those that 
were computed for the test conditions at which most of the data were 
obtained (Re * 4 x 10"/ft) and are near the maximum aerodynamic 
loads. 

It should be noted that the data repeatability, which is a measure 
of the random-type errors, was generally within the maximum propa- 
gated uncertainties quoted. 

4.0 RESULTS AND DISCUSSION 

These tests were conducted primarily to determine the effect of 
varying the boattail geometry of ballistic shell configurations on their 
Magnus-force and moment characteristics at supersonic Mach numbers. 
Data were obtained at Mach numbers 1.5,  2.0,  and 2. 5 for angles of 
attack from -2 to 8 deg.    The spin rate parameter (pd/2Vaj) ranged from 
0.024 to 0.270 radians. 

The variations of normal force (Ci\j) and pitching moment (Cm) with 
angle of attack are presented in Figs.   5 through 7.    Since gun-launched 
projectiles are spin-stablized, they are all statically unstable, as 
expected.    Both C]\j and Cm are essentially linear functions of angle of 
attack for angles up to 4 deg.    For all configurations,  C]\j increased and 
Cm decreased with increasing Mach number indicating a rearward shift 
in the center of pressure.    The results presented in Fig.   6 show that 
varying the Reynolds number at Mach number 2 had no effect on the values 
of CN and Cm of Configuration 3.   Figure 7 shows the variations of CNa 
and CmQ, with Mach number.    As was shown in Fig.  5,  C^a increases 
and CmQ, decreases with increasing Mach number.    The results also 
show that as the boattail length or angle increased, in effect decreasing 
the projectile planform area aft of the moment reference, Cj$a decreased 
and CmQ, increased as would be expected. 

Figure 8 presents the typical variation of side force (Cy) and yawing 
moment (Cn) with pd/2Va0 for Configuration 3 at Mach number 1. 5.   The 
data typify the type of data, the amount of scatter, and the number of 
points that were obtained as the model spin rate changed.    The data pre- 
sented hereafter in this report show a computer fairing through the data 

10 
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points {a third-degree, least-squares curve fit) instead of a symbol for 
each data point.   The complete Cy and Cn versus pd/2V0O results are 
presented in Figs.  9 through 18.   Generally, the results indicate that 
both Cy and Cn are nonlinear with pd/2V<D at the higher angles of attack 
(a > 4 deg) and higher spin rates (pd/2V00 > 0. 15).    In addition, the usual 
negative Cy and positive Cn for positive values of pd/2V<D and a were 
obtained for all configurations. 

To examine the effects of angle of attack, the linear portion of the 
data (slopes of Cy and Cn versus pd/2V<D for pd/2V00 < 0. 1) will be used. 
Figure 19 presents the variations of Cy   and Cnp with angle of attack. 

The results show that the magnitudes of both Cyp and Cnp generally in- 
crease continuously with angle of attack.    The only exception to this was 
Configuration 7 at Mach number 1. 5 and a =z 6 deg, where Cnp showed a 
considerable decrease.   In addition, the magnitude of both parameters 
decreased with increasing Mach number. 

The effects of Reynolds number on Cyp and Cnp for Configuration 3 
at Mach number 2. 0 are presented in Fig.  20.    The results show that 
for Reynolds numbers of 4. 0 x 106/ft and 7. 3 x 10°7ft there was little 
difference in the parameters.    However, for the low Reynolds number 
(1 x 10°/ft) the magnitude of both parameters increased.    This is prob- 
ably the result of the laminar boundary layer in the boattail region at 
the low Reynolds number.    For the other test conditions the boundary 
layer was turbulent. 

The variations of CyPQ, and Cn~   with Mach number are presented in 
Fig. 21.    Generally, the magnitude of each parameter is either nearly 
constant or decreases with increasing Mach number.   Increasing the boat- 
tail angle and maintaining a constant boattail length (Fig.  21a) increased 
the magnitude of Cyp    and Cnp,,,,  except at M,,, = 2.5 where Cn„   was not 
appreciably affected.    Increasing the boattail length and maintaining a 
constant angle (Fig. 21b) produced magnitude increases in both Cyp 

and CnPa.    At M,,, = 1.5 the largest increase in magnitude was produced 
by increasing the boattail length from 0. 5 calibers to 1. 0 caliber, while 
at Mffl = 2. 0 and 2. 5 the largest increase occurred as the length increased 
from 1. 0 caliber to 1. 35 calibers.    The effects of increasing the boattail 
length and maintaining a constant base diameter are shown in Fig.  21c. 
Generally, the magnitude of Cyp   and Cnp   increased as the boattail 
length increased. 

11 
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5.0 CONCLUDING REMARKS 

An experimental investigation was conducted to determine the 
effects of boattail geometry changes on the Magnus-force and moment 
characteristics of ballistic shells at supersonic Mach numbers.    The 
tests were conducted at Mach numbers 1. 5, 2. 0, and 2. 5 for an angle- 
of-attack range from -2 to 8 deg.    Results obtained at spin parameter 
(pd/2V00) values up to 0.270 are summarized as follows: 

1. All configurations were statically unstable. 

2. Cj^ increased and CmQ, decreased with increasing 
Mach number. 

3. Increasing the boattail length or angle decreased CNtt 

and increased Cmß. 

4. Both Cy and Cn were nonlinear with pd/2V,,, at the 
higher angles of attack (a > 4 deg) and higher spin 
rates <pd/2V00 > 0. 15). 

5. Cy was negative and Cn was positive for positive 
values of pd/2V00 and a. 

6. Generally, the magnitude of Cy,.. and Cn„ increased 
with a and were linear up to about 2. 5 deg. 

7. Decreasing the Reynolds number from 4 x 10"/ft 
to 1 x 106/ft increased the magnitude of Cy   and 
Cnp. 

8. Increasing the boattail length or angle generally 
increased the magnitude of Cyp   and Cn    . 
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Figure 5.  Variation of CN and Cm with angle of attack, Reg = 9.6 x 106. 
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b.   Configuration 1 
Figure 5.  Continued. 
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Figure 5.   Continued. 
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Figure 5.  Continued. 
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Figure 5.  Continued. 
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Figure 5.  Continued. 
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Figure 5.   Continued. 
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Figure 5.   Continued. 
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Figure 5.  Continued. 
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j.   Configuration 9 
Figure 5.  Concluded. 
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Table 1.   Balance Uncertainty 

Balance 
Component 

Design 
Load 

Range of 
Static Loads 

Measurement 
Uncertainty 

Normal force, lb 500 ±150 ±0.05 

Pitching moment*, in. -lb 2500 ±240 ±0.30 

Side force, lb 25 ± 14 ±0.03 

Yawing moment , in. -lb 125 ± 70 ±0.08 

About balance forward moment bridge 

Table 2.   Test Summary 

Configuration 
Boattail 

Length (ißT). 
Boattail 

Angle (6BT). 

Base 
Diameter (dB), 

M.(Re = 4 x 106/ft) 

calibers deg calibers 1.5 2.0 2.5 

0 0 0 1.0000 X X X 
1 1.00 2.5 0.9126 X X X 
2 1.00 5.0 0.8249 X X X 
3 1.00 7.5 0.7366 X X* X 
4 0.50 5.0 0.9124 X X X 
5 1.35 5.0 0.7637 X X X 
6 1.70 5.0 0.7024 X X X 
7 0.45 18.4 0.7000 X X X 
8 0.85 10.0 0.7000 X X X 
9 1.25 6.9 0.7000 X X X 

*Also tested at Re = 1 x 106/ft and 7.3 x 106/ft 

Table 3.  Wind Tunnel Test Parameters 

M Po- T io« q.. v., Re x 10"6, 
ft"1 

1V1
«D psia °R psia ft/sec 

1.50 13.6 560 5.64 1444 3.95 
1.99 4.2 564 1.51 1731 1.02 
2.00 16.5 560 5.91 1729 4.02 
2.01 30.8 567 10.95 1745 7.34 
2.50 21.0 560 5.38 1933 4.02 
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Table 4.  Wind Tunnel Parameter Precision 

M. 
Uncertainty, percent 

M. Po 
T 

o <J. V„ Re 

1.5 

2.0 

2.5 

±0.7 

±0.5 

±0.3 

±0.50 

±0.50 

±0.50 

±0.36 

±0.36 

±0.36 

±0.52 

±0.75 

±0.78 

±0.51 

±0.33 

±0.23 

±0.73 

±0.83 

±0.83 

Table 5.  Coefficient Precision 

M. deg 

Uncertainty 

CN 
C m CY 

C 
n 

Cy , racT1 

P 
Cn . rad-1 

P 
pd/2V_* 

1.5 0 
2 
4 
8 

±0. 00036 
±0. 00052 
±0.00085 
±0.00230 

±0. 00040 
±0.00094 
±0.00176 
±0.00340 

±0.00021 
±0.00022 
±0.00024 
±0.00037 

±0.00011 
±0.00012 
±0.00014 
±0.00030 

±0.0015 
±0.0017 
±0. 0022 

±0. 0007 
±0.0010 
±0.0018 

±0.51 

2.0 0 
2 
4 
8 

±0. 00036 
±0. 00072 
±0.00136 
±0. 00380 

±0.00039 
±0.00119 
±0.00225 
±0. 00428 

±0.00021 
±0.00022 
±0.00024 
±0.00039 

±0.00010 
±0.00012 
±0.00015 
±0.00033 

±0.0017 
±0.0020 
±0.0025 

±0.0008 
±0.0012 
±0. 0022 

±0.33 

2.5 0 
2 
4 
8 

±0. 00039 
±0.00079 
±0. 00148 
±0. 00388 

±0.00043 
±0.00114 
±0.00212 
±0.00390 

±0.00023 
±0.00024 
±0.00025 
±0.00034 

±0.00011 
±0.00012 
±0.00014 
±0. 00026 

±0.0025 
±0.0024 
±0.0022 

±0.0011 
±0.0013 
±0.0017 

±0.23 

Table 6.   Derivative Coefficient Precision 

Uncertainty 

M- 
a 

C     . deg"1 

m a 
Cy    , rad"2 

P« 

C      , rad"2 

n 

1.5 
2.0 
2.5 

±0.00061 
±0.00073 
±0. 00080 

±0.00140 
±0.00133 
±0.00122 

±0.034 
±0.036 
±0.049 

±0.030 
±0.031 
±0.036 
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NOMENCLATURE 

A Reference area, model maximum cross-sectional area, 
23.715 in. 2 

Cm Pitching-moment coefficient,  pitching moment/q^Ad 

Cm« Pitching-moment coefficient derivative at a = 0, 
9Cm/9a, per deg 

Cj^ Normal-force coefficient, normal force/q^A 

CN Normal-force coefficient derivative at a = 0, 
dC^j/da,  per deg 

Cn Yawing (Magnus)-moment coefficient, yawing moment/q^Ad 
(see Fig.  2) 

Cn Magnus-moment spin derivative coefficient for (pd/2V0O) < 0. 1, 
P 9Cn/9(pd/2V{D), per radian 

Cnp Magnus-moment coefficient derivative at a = 0, 
° 92Cn/9(pd/2Vj9a, per radian2 

Cy Side (Magnus)-force coefficient, side force/q^A 
(see Fig. 2) 

Cy« Magnus-force spin derivative coefficient for 
P (pd/2V<D) < 0. 1,  9CY/a(pd/2Vj,  per radian 

CYD Magnus-force coefficient derivative at a = 0, 
Pa 92CY/9(pd/2Vjaa, per radian2 

d Reference diameter, model maximum diameter, 5.495 in. 

dg Base diameter,  calibers (note:   one caliber = 5.495 in.) 

A Model length, 28. 662 in. 

^BT Boattail length,  calibers (note:   one caliber = 5.495 in.) 

£Q Length of cylindrical section,  calibers 
(note:   one caliber = 5.495 in.) 

M,,, Free-stream Mach number 

p Model spin rate (positive,  clockwise viewing from the base), 
radians/sec 

p0 Tunnel stilling chamber pressure, psia 
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pd/2Vro Spin parameter, radians 

qoo Free-stream dynamic pressure,  psia 

Re Free-stream unit Reynolds number, ft~* 

Rejg Free-stream Reynolds number based on model length 

T0 Tunnel stilling chamber temperature, °R 

V,,, Free-stream velocity, ft/sec 

a Angle of attack, deg 

^BT Boattail angle, deg 
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