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MEMORANDUM

To: Office of Naval Rescarch Contract No. N00014-69-C-0435

Attn: Mr. J. Randolph Simpson

From: H. R. Richardson
Subject: Differentiability »f Optimal Seareh Plans
This memorandum investigates tae differentiability of the optim:i search plan m*

for a stationary target. The principal result (Theorem 3) is that under suitable

assumptions we may write (for 2lmost all x)

4

r
m*(T,N) - fO w(t, x)dt,
i.e., m* is ubsolutely continuons in tne first variable. Thais is used in refercrre [a] to

guarantee tie existence of optimal scarch plans for a cluss of deterministically

moving targets. These search plans are transformations of the functions p.

Delinitions and basic assumptions arc presented in the first scetion followed in

the second section by the investigation of differentiability. The last section provides

illustrations.
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Basic Definitions and Assumptions

This section provides the busic definitions and assumptions used throughout
the memorandum. We shall use A to denote Lehbesgue measure on EN and Xg to be
- . N - 1
the indicator function of a set ST E. For any real function 0 of a real variable,

let q(0,«,4) be the difference quotient

0(k +4) - 0(x)
A ?

q(f,x,8) =

BAD.Q Q A . q . -+ q
whenever k +A and £ are within the domain of #. The right derivative D 0,when it

exists, is given by
DTO(k) = lim q(6,k,8).
0<A-=0
The left derivative,when it exists, is given hy

D O(x)= lim q(0,k,4).
0>

A—=0

The limits arc permitted to be infiite. When D+0(K) =D"0(x), 0 has a derivative
at k which is usually denoted b(K) or DO(x). Thesc notations are also used for the one-
sided derivatives at end points of intervals. In case 6 is a real function of severa
variables, then D}r, Dj—, and Dj denote the partial derivatives with respect to the jth
argument. We use inv[0] to denote the inverse of 6 when it exists.

The local effectiveness function b:[0,«) [0, 1] is assumed to have the following
properties:
b(z) =1,

(1) his strictly increasing with b(0) =0 and lim

Zz=>

(2) b exists and is continuous and strictly decrcasing on [0,«). The right
derivative b(0) satisfies 0< 1(0) < =, and



(3) b exists and is continuous for all z¢ [0,«) and the righl derivative ‘13(0)
satisfies —o < b(0) = 0.

A function ¥:(0,«)->(0,=) is delinced by
inv[‘r')](u) for 0 < u < i)(O)

Y(u) = .
0 for u > b(0).

In view of the conditions on tae local effectiveness function b, ¥ is continuous and

strictly decreasing with lim g ¥(u) =« and ¥(b(0)) =0. The function V¥ is dif-

ferentiable at every point except i)(O). We have

for 0 < u < i)(O)

: (%)
Y(u) =
0 foru > i)(O).
Morecover,
D Y(h(0) = ——=1lim .  ¥(u
ho o uebE- T
and

D ¥(0)) =0 = lim W (u).

u—=b(0)+

The derivative ¥ is continuous on (0,h(0)) and

lim Y(u) =,

An explicit bound on ¥ may be obtained by letting

B(u) = sup{l\i’(v)|:u§v< f)(O)} for 0 < u < i)(O).



The function B8 is finite since ¥ has a continuous extension on [u,h(0)] for 0 <u < b(0).

By the mcan value theorem of differentiul calculus,
¥(b(0)) - ¥(v) = #(T) [(0)-v] for v < T < b(0),
and since \P(B(O)) =0,
e = [En)] o) -v1 < 8@ HO) ] for u < v < b0).

J
The target location probability density function f:El\-'IO, ©) is assumed to be
essentially bounded by "< =, j.¢., A({x:f(x) > I‘}) =0 and for y< I

A({x:f(x) >v}) > 0. We denote by &, the product Ko =H(0) T < o,

0

For 0<« < Ky we define S(x) by

S(k) = [x:f(x) > —5—1
b(0)

and define 0:(0,}:0]-’(0,00) by

o(k) = fsm \I'(f%)dx.
Note that 0 < A(S(k)) < =, since fENf(x)dx=1.

It is not difficult to show that under the assumptions on b and f, 0 is continuous
and strictlv decreasing with limK -0 0(k) == and G(KO) =0.

It can be shown (see, for example, refevence [b]) that under assumptions (1) and
(2) for b,the search plan m*:[O,w)xEN- [0, ) which muximizes detection probability

is given by

R



\1'(%(—3-) for f(x) #0, and

m*(t,x) =

0 for f(x) = 0.
The function ?\:[O,w)-’(O,KO] is defined by A =inv[0]oC where C:[0,=) - [U,=) is
some differentiable (finite derivative) strictly increasing function with C(0) =0. It
follows immediately that A is continuous and strictly decreasing; A (0) L and
limt_,w A(t) =0. For cach fixed xe EN, m*(-,x) is continuous since it is the

composition of continuous functions.

Differentiability of m*

Differentiability of the optimal search plan m* is investigated in this section.

{ The principal result given as Theorem 3 is that under the assumptions of the first
i
j section, m*(-,x) is absolutely continuous for almost all xe EN.
l. Lemma 1. The function 0:(0, KO]-> [0, ) has finite and non-zero left and right
derivatives oa the open interval (0, KO). The left derivative D—O(KO) i§ finite but
! may be zero. Morcover 0 is differentiable at « e(O,KO) if and only if
A({x:E(x) =k /D(0) }) = 0.
Proof. In order to establish the existence of the left derivative, assume
t A<0and ke(0, KO]. Then in view of the definition of 6

K A y 1 1 K+A
Vi T 10 T sy sy & W

q(0,k,8) = [

S(K)q(

Without loss of generality, assume that for some fixed ¢ > 0, we have

K
< < -,
ol < e <




Since I is the essential bound of {, for almost all xe S(k +4),

g K+A K -€
b(O)Z’f'(;)—Z T > 0
and
K+A K-€. . K+AD
e < B (o) - -
Since
A
S(k+0)-S(k) = {x:— < f(x) < ——},
b(0) b(0)
it is easily shown that
KA

b(0) -

f(x) —

Thus for almost ati x¢ §(x+4)

LK +A K -€ f)(())
Since S(k+4)) -S(k) C S(« +8,)-8(k) for A, > A, and

M S(k +D) - S(k) = 0.
A<O

We have

1 @(K_m.)dx =0,

S f(x)

om0 sy -sin) 3

since the integrands are uniformly bounded.

< 1%0) (-"I_A—) for xc [S(k+A) -S(k)].
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For K€(0,K0] and for all xcS(x)

K A 1 - K 1
i ), , = =D ¥(=—) .
038 Wi I D i T
The convergence is essentially bounded since for almost all xe S(k) i
:
ALl o b(O) 2
< =
v o i g S BRI _

Thus the bounded convergence thcorem insures that for 0 <k < Ky

DT0() =g, D ¥ ﬂd‘ s

since A(S(k)) < =. If k < k,, then D W(x /f(x)) /f(x) <0 on the set {x:f(x) > K/B(O)}
which has non-zerc measure (otherwise I‘0 wou'd not be the essential bound). Thus

for 0< k < k., D 0(k)#0.

01

Similarly, the cxistence of the rigat derivative of 6 on (0, KO) is established by

assuming 4> 0 and writing

A
a(6,%,8) = 4, ey ) ol - U

fS(K+A) TH(x) 7 (%) 7 £(x) (k)-S(k+8) A " "f(x)

For almost all xeS(k) -S(x+A) we have

(o <P (T

|l K| K'l

Making use of the fact that cI>(k')(0)) =0, it follows that

1
|fS(K) -S(k+4) A f(

K+A K. 3 1
el < \{\:W<f()< b(o)}ﬂ(F) b(0) —=

which vanishes as A approaches 0. For XS(K+A)’ the indicator function of the set



S, 4y it is casy to show that for xeS(x) and 0< ¥ < Ky

1 K 1

li

It is also not difficult to show that for xe S(xj and 0 <k < Ko

K A ) 1 b(O) 2
¥, o5 F e | < B (P15
Since A(S(k)) < =, it follows that for 0 < & < Ko
+ _ + K 1
D00 =iy P g Ty
Finally, for 0 <« < Ky
- ¥ B
D 6(k) -D O(K)—fs( )[D \Il(f()) (f( ))](—(b\
=/ DT¥(H(0 = b(o) {
- {x:f(X)z. K } ( ( )) f( ) = —=D ‘I’(b(O))A( Xf(X) = 'b(—'})l
h(0)

since DY (x /f(x)) =D ¥(k /f(x)) for all x such that  /f(x) < b(0).

d AY =Dy
0< R0 Xy W g T T TP M i oo
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Lemma 2, The function A:[0,«) - (0, k4] has finite right and left derivatives
on (0,), The right derivative exists at zero but may not be {inite, The function
A has a derivative at t € (0, ) if and only if

t
Ax:f = 283y <o,
b(0)

Proof. By definition
AT) = inv[0] (C(T)) for 0 < T < =,

Therefore, we may write

+
D A(T) = _ACT)— for 0 < T < o,
vtom(ry

whenever the derivative in the right-hand side of the equation exists, For T =0,

we have

" __Cu
D A(0) D-O(KO)°

Noting that A(T) < «, for T > 0, the conclusions follow from Lemma 1.
Theorem 1, The optimal search plan m*:[0, ) XEN—-[O, =) has the property
that for all x ¢ EN, m*(-,x) has finite right and left derivatives on (0,%). Morecover,

for all x ¢ EN, m*(-,x) is diffcrentiable for any t e (0,*) for which
A{x:f(x) = .MQ}) = 0.
b(0)

Prooi. Assume without loss of generality that f(x) > 0. Since

m¥(t,x) = W(%(‘,%»



we may write

+
D m*(t,x) = D \p(—f(%) D x()f(x)

for all t € (0, ) for which the derivatives on the right-hand side exist and are finite,

For all te (0,%), A(t) # 0 and, therefore, D™¥(A(t)/f(x)) and DY ¥ (A (t) /f(x)) exist
and are finite, The theorem then follows from Lemma 2

Theorem 2. If A({x:f(x) = T})> 0, then D] m*(0,x) exisis and is finite for
all xe EN. If A({x:f(x) =T})=0, then D;m*(o,x) exists and is finite for all x
for which f(x) # T.

Proof. If D™ ¥(A(0)/f(x)) and D* A(0) exist and are finite, then D’i m*(0, x)

exists and is finite, In this case

3
D] m*(0,x) = D \Il(—féj) D¥A(0) = "
where
w!— forf(x) =T
A(0) b(0)
D \Il(T(('\))
. 0 otherwise,
and
3
i + - (.3!0!
D A(0) = D-o (Ko)
Now

L - -10-
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D™ ¥ (h(0)) — dx

D-O(Ko) = )

f{x:f(x) =T}

1 Adx:fx) = T}).

b(MT

Therefore, the first statement of the theorem is established.,
The second statement is proved by observing that for x ¢ EN, if f(x) # T, then
there exists a k; < & such that f(x) < K]/f)(O). Also there exists t; > 0 such that

Ky £ M) < kg for 0 <t <ty. This means that for 0 < t < ty,

h(o) -
7;((3 > MUBO g,

and, therefore,
m*(t,x) =0 for 0gt<ty.

Thus D* m*(0, x) = 0, and this complctes the proof,
Theorem 3. For almost all xe EN, the functions m*(-, x) are absolutely

continuous and the function values may Lie written
T o+
m*(T,x) = fo Dy(t,x)dt  for 0 < T < =,

Proof. For all x eEN, m*(-,x) is continuous and non-decreasing on {0, T].
Thus m*(-,x) is of bounded variation on [0, T]. By Theorems 1 and 2, D*l" m*(*, x)
exists and is finite on [0, T] for almost all x, Then hy Lebesgue's version of the

fundamental theorem of integral calculus (page 596 of reference [c])

m*(T,x) = f(;r Dy m*(t,x) dt

except on the exceptional set of x having measure zero. This concludes the proof.
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Illustrations

As an illustration of the above results, let h be the exponential effectiveness
function b(z) =1 -e”Z for z €[0,=), Thus l.)(z) =e"% and ¥(u) = -In(u), Note that
i)(()) =1, Assume that C(t) =t.

First consider a two cell example, For py > Py and disjoint Ry, R2C E>

such that A(Rj) = A(Rg) =1, let
{pl for xeRq,
f(x) = (p, for xeRjy, and
0 otherwise,

It follows that T = Ko = Pyq and

Ri{UR, for 0 <k <py
S(k) = {x:f(x) > k} =

!‘Rl for py <k < p;g.
Since
09 = Jy,  ¥(rm)dx
S(v)  fx) T
one has
PP
ln—}-;.g for 0 < k¥ < Py
| K"
8(x) =
P
n\lnT for py < k < p;.
Thus

ple"t for 0 <t < In(p;/py)

Aty =
w/plp2 e't/2 for t > In(p;/py).
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Finally for x e Ry,
Jt for 0 <t < In(py/py)
m*(t,x) =

ot
ol In(p/py)  for t > In(p;/py)

and for x ¢ Rz,

(0 for t < ln(pl/po)

t
§+ ]n(p]/pg) for t > ln(Pl/Pz)-

m*(t,x) = )
l
|
\

Note that in accordance with Theorem 1, m*(-, x) has a finite derivative for

all t € (0, ) for which
A x:f(x) =A(t)}) = 0.
This condition fails to hold only when t = ln(pl/pz) , in which case
A({x:f(x) =A@} = A{x:f(x) =py} = 1.

In addition, A({x:f(x) = T =p;}) =1, and, therefore, by Theorem 2, D’I m*(0, x)
exists and is finite for all x ¢ EZ,

The next illustration considers a situation where D*l' m*(0,x) is not finite for
all x. Let { be a bivariate normal distributioa. i.e., for x = (x1,X9) € E2 and

r(xy,xy) = (1%;/0 1% + [xg/0 9131,

A = 1 e =1 2
(0 = 375 5, FPCIrEN.

=13~



Since A({x:f(x) = A(t)}) =0 for all t > 0, m*(-,x) must be differentiable foy all
xeEN wrent > 0 according to Theorem 2,

it is well knrwn that if C/t) =t, thenfort > 0.

(K\/— - ir(x],xz)2 for r(x],x2)2 < 2KW

1

m*(t, Xy, X,) = ¢
0 otherwise,
where K = (70, 05). For all t > 0 and (x},Xxy) eEz,

D, m*(t, X7, Xg) = Ft .

In accordance with Theorem 3, D’im*(o,xl,xz) < », for (X1, Xo) #(0,0). Only at

the point (0,0) (a set of measure zero) does Di m* fail to be finite,

IR

Henry R. Richardson
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