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M EMORANDUM 

To: Oftioo of Naval Research 
Atln:   Mr. J.  Randolph Simpson 

Contract No.   N00014-69-J-0433 

From:       H. R.  Richardson 

Subject:    Differentiability ^f Optimal Search Plans 

This memorandum investigates the differentiability of the optinru search plan m* 

for a stationary target.    The principal result (Theorem 3) is that under suitable 

assumptions we may write (for almost all x) 

m*(T.x) • /0
TMt,x)dt( 

i.e., m* is absolutely continuous in the first variable. This is used in referc^o [a] to 

guarantee the existence of optimal search plans for a class of deterrainistically 

moving targets.    These search plans are transformations of the functions ß. 

Definitions and basic assumptions are presented in the first section followed in 

the second section by the investigation of differentiability.   The last section provides 

illustrations. 
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Basic Dt'finitions and Assumptions 

This section provides the basic definitions and assumptions used throughout 

the memorandum.   We shall use A to denote Lebesgue measure on E    and x^ to be 

the indicator function of a set SC_ E   .    For any real function 0 of a real variable, 

let q(ö,K ,A) be the difference quotient 

q(e,,;,A),M^w 

whenever K +A and K are within the domain of 0.   Thy right derivative D O.when it 

exists, is given by 

D+0(K) =     lim      q(Ö)K,A). 
0< A-0 

The left derivative,when it exists, is given by 

D~0{H) =     lim     q(e,K,A). 
0> A-0 

The limits are permitted to be infii.ite.   When D 0{K) -D~0{K),  0 has a derivative 

at K which is usually denoted 6{i() or DÖ(K).  These notations are also used for the one- 

sided derivatives at end points of intervals.   In case 0 is a real function of severa 

variables, then D. , D. , and D. denote the partial derivatives with respect to the j"1 

argument.   We use inv[0] to denote the inverse of Ö when it exists. 

The local effectiveness function b:fO,«)-*-[0,1] is assumed to have the following 

properties: 

(1) b is strictly increasing with b(0) -0 and lim      „, b(z) =1, 

(2) b exists and is continuous and strictly decreasing on [0,°°).   The right 
derivative b(0) satisfies 0< b(0) < <», and 
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(3)   b exists und is continuous for ail zc [0,^) and the right derivative b(0) 
satisfies -00 < b(0) < 0. 

A function iV:{0,^)--({),^) is do lined by 

*(u) 
inv(b](u)     for 0 < u < b(0) 

for u > b(0). 

In view of the conditions on the local effectiveness function b, * is continuous and 

strictly decreasing with limu_»o *(u) =°0 an(J ^(^i0)) ~0-   Th^ function * is dif- 

ferentiable at every point except b{0).   We have 

Moreover, 

1 

*(u) -' 
b(*(u)) 

for 0 < u < b(0) 

for u > b(0), 

D *(b(0)) 
b(0) 

= lim 
u-b{0) 

^T, '!'(u) 

and 

D 'l'(b(0)) =0=lim      ;/m    *(u). 
u—b(0) t- 

The derivative * is continuous on (0,b(0)) and 

limu^0 ^(u) =«. 

An explicit bound on ^ may be obtained by letting" 

ß(\i) =sup{|'i'{v)|:u< v<b(0)} foi 0 < u < b(0). 
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The function ß is finite since »If has a continuous extension on [u,b(ü)] for 0 < u< b(0). 

By the mean value theorem of differential calculus, 

*(b{0)) - *(v) = *(T)[b(0)-v] for v < T < b(0), 

and since *(b(0)) = 0, 

k(v)|  = ^(T)!   [b(0) -v] < ß (u) [b(0)-v] for u < v < b(0). 

N The target location probability density function f:E   -♦(0,«5) is assumed to be 

essentially bounded by r< oo, i.e. , A({x-.f(.x) > r}) =0 and for y < F 

A({x:f(x) > y}) > 0.   We denote by K   the product K   -b(0)r< ■». 

For 0 < K < K,., we define S(K) by 

S(K) x:f(x) > 7-^- 
' b(0) 

and define O^O, K01 —(0,«) by 

""O^so,)*«?^ 

Note that 0< A(S(K)) < «, since / XTf(x)dx^l. 
EN 

It is not difficult to show that under the assumptions on b and f,  0 is continuous 

and strictly decreasing with lim 0(h) -u0 and 9(0 =0. 

It can be shown (see, for example, reference [b]) that under assumptions (1) and 

(2) for b,the search plan m*:[0,<»)xE   ■♦(O,«') which maximizes detection probability 

is given by 
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*(~~)   forf(x) ^0, and 

m*(t,x) 

0 for f(x) =0. 

The function MO.^-MO.K-] is defined by A -Mnv[0]oc where C:[0,°°) — [ü,«>) is 

some differentiable (finite derivative) ütrictly increasing function with C(0) -0.   It 

follows immediately that X is continuous and strictly decreasing; A(0) ~ K^ and 

lim.^^ A.(t) = 0.   For each fixed xe E   , m*(- ,x) is continuous since it is the 

composition of continuous functions. 

Differentiability of m* 

Differentiability of the optimal search plan m* is investigated in this section. 

The principal result given as Theorem 3 is that under the assumptions of the first 

N section, m*^ ,x) is absolutely continuous for almost all xe E   . 

Lemma 1.   The function O:(0,K ]-* [0,°°) has finite and non-zero left and right 

derivatives oa the open interval (0,K0).   The left derivative D~0(K ) is finite but 

may be zero.   Moreover 0 is differentiable at K e(0,Ko) if and only if 

A({x:f(x)=K/b(0)}) -0. 

Proof.   In order to establish the existence of the left derivative, assume 

A < 0 and K c (0, KJ .   Then in view of the definition of 6 

q(Ö.^A) ^/^^q^^.^^dx-/^^^^ l^^dx. 

Without loss of generality, assume that for some fixed e > 0, we have 

AI K 
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Since F is the essential bound of f, for almost all xeS(K+A), 

and 

b(0)>^>^>0, 

1       K +A   I ,, K -f        ; K +A 

Since 

S(H+A)-S{K) = [K:^— < f(x) < —^-} . 
b(0, b(0) 

it is easily shown that 

b(0) - ^~ < b(0) (^-) for xe [S(K +A)-S(K)], 

Thus for almost aii xcS(/v+A) 

' ni£\ < wiÄ m 
'A   vf(x) " - rv   r '   K 

Since S(K+A1) -S(K-)C S(K'+A2)-S(K) for A1 > A   and 

n    S(K+A) - S(K') =0. 
A< 0 

We have 

,. 1 K+A 
lim      L.     ..   _.  . -T-*(-T--—-)dx = 0, 

0>A-«'0   S(K+A)-S('<) A     v f(x) ' 

since the integrands are uniformly bounded. 
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For h' e (0, K ] and for all xeS(K) 

lim     q(xl'.77-r.7r-r)77_r = D~*(7^T■)77~^• 0 > A - 0 f (x) ' t (x)' f (x) f(x)  f (x) 

The convergence is essentially bounded since for almost all xe S(K) 

|q^ 'Kx)'^)'^)1 -^   rH K J • 

Thus the bounded convergenct theorem insures that for 0 < K < K 

D-«W=/S(K)D-*(f^.;!i*[<-. 

since A(S(K)) < «.   If K < KQ, then D"*(K/f(x)) /f(x)  < 0 on the set {x:f(x) > K/b(0)} 

which has non-zero measure (otherwise T  wou'd not be the essential bound).   Thus 

for 0< K < K  , D'0(K)^0. 

Similarly, the existence of the right derivative of 6 or (0,K.) is established by 

assuming A > 0 and writing 

For almost all xeS(K) -S(K+A) we have 

Making use of the fact that $(0(0)) = 0, it follows that 

i's,«)« i-*^ ^{^ <fM < ^ "'7' ^ 7k 

which vanishes as A approaches 0.   For xc/   . A., the indicator function of the set 
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S  +A , it is easy to show that for xe S{i<) and 0 < K < «„ 

^O ^+A)« «<*■ f^"' I^IS- = D+*<W>f(^ 

It is aL'.o not difficult to show that for xt S{K) and 0 < K < K^ 

|q(* JL. ^-Ll <s(iL)[b(2L,2 
|q( ' f(x),f(x),f(x) ' -'Mrn K 

J • 

Since A(S(K')) < », it follows that for 0< K < K 

^wtm^ik^- 
Finally, for 0< K < K 

D-Ö(K) - D
+
ö(K) = Is{K)V-nj^) - D^^l^dx 

= /{x:f(x)=?^}^(b(0))!ÜTdx=   -liD-*(b(0))A({x:f(x) ^}). 
b(0) D^, 

since D
+
*(K /f(x)) =D"*(h7f(x)) for all x such that K/f(x) < b(0), 
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Lemma 2. The function A:[0,':o) ♦ (0, K^] has finite right and left derivatives 

on (0,°°). The right derivative exists at zero but may not be finite. The function 

A has a derivative at tc (O,00) if and only if 

A({x:f(x)  =   f^})  = 0. 
b(0) 

Proof.   By definition 

A(T)  = inv[0] (C(T))       for 0 < T < «. 

Therefore, we may write 

D~X(T) -     _C^T)       for 0 < T < «>, 
Ü+Ö(X(T)) 

whenever the derivative in the right-hand side of the equation exists.   For T == 0, 

we have 

D+A(ü)  - cm 
B~o(K0y 

Noting that A(T) < KQ for T > 0, the conclusions follow from Lemma 1, 

Theorem 1.   The optimal search plan m*:^,00) xE^ — fO, "»j has the property 

that for all x e EN, rn*(- ,x) has finite right and left derivatives on (O,«).    Moreover, 

rN for all x e E1N, m*(' ,x) is diffcrentiable for any t e (O,00) for which 

A({x:f(x) = M^}) ^ 0. 
b(0) 

Proof.   Assume without loss of generality that f(x) > 0.    Since 

m*(t.x) = *(7^). 
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we may write 

D-ra*(t.x)=DT*(^|)D\(t)^ 

for all tc (0,°°) for which the derivatives on the right-hand side exist and are fmite. 

For all te(0,°o),  A(t) t 0 and, therefore, D"*(X(t)/f(x)) and D+*(X(t)/f(x)) exist 

and are finite.   The theorem then follows from Lemma 2. 

Theorem 2.   If A({x:f(x) = r}) > 0, then D|ra*(0,x) exists and is finite for 

all xeEN.   If A({x:f{x) = F})- 0, then D^ m*(0)x) exists and is finite for all x 

for which f(x) / F. 

Proof.   If D~ *(X(0)/f(x)) and D+ A(0) exist and are finite, then D^ m*(0,x) 

exists and is finite.   In this case 

D>*(0.x)  .D-^D^MO)^. 

where 

/   1 

°-<|> = 
for f(x) = F 

b(0) 

f    0 otherwise, 

and 

^ - 5^- 

Now 
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D"ö^o)=/{x:f(x) = r}D"^0»fSdx 

J—A({x:f(x) = r}). 
b(0)r 

Therefore, the first statement of the theorem is established. 

The second statement is proved by observing that forxeE , if f(x) ^ T, then 

there exists a K-, < KQ such that f(x) < /fj/b(0). Also there exists tj > 0 such that 

K-, < A(t) < KQ for 0 <. t ^tj.   This means that for 0 <. t <. t^, 

m > mm., ;](0), 
f(X) Kj 

and, therefore, 

m+^.x)  - 0       for   0 < t < t,. 

Thus D+m*(0,x) - 0, and this completes the proof. 

Theorem 3.   For almost all x e EN, the functions m*(' .x) are absolutely 

continuous   and the function values may be written 

m*(T,x) = /   D+(t,x)dt      forO<T<«'. 

Proof.    For all xeE   , m*(' ,x) is continuous and non-decreasing on [0,T]. 

Thus m*(- ,x) is of bounded variation on [0,T].   By Theorems 1 and 2, D^ m*(' ,x) 

exists and is finite on [0,T] for almost all x.   Then by Lebesgue's version of the 

fundamental theorem of integral calculus (page 596 of reference [c]) 

T1 

m*(T,x)  - /    Djm+(t)x)dt 

except on the exceptional set of x having measure zero.   This concludes the proof. 
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Illustrations 

As an illustration of the above results, let b be the exponential effectiveness 

function b{z) = 1 -e"z for z e [0, *>),   Thus b(z) = e~z and *(u) = -lri(u).   Note that 

b(0) = 1.   Assume that C(t) =t. 

_      9 
First consider a two cell example.   For p-^ > pg and disjoint Rj, l^CF" 

such that A(R1) = A^g) =1, let 

Pj      for  xeRj, 

f(x)  = (Po      for  xeR2, and 

0        otherwise. 

It follows that F = KQ = Pi and 

Since 

one has 

S(/c)  = {x:f(x) > K}   = 
RJURJ,       for  0 < K < P2 

R. for  P2 < K < pj. 

e^-4(K)^)dx' 

6{K)   = 

/    plp2 
(In—=-      for 0 < K < p.? 

pl 
• In— for P2 < f < Pj. 

Thus 

-t Pje for  0 < t < ln(pj/p2) 

X(t) = 

_Vp^e -t/2 
for  t > ln(pl/p2)' 
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Finally for x f Rj, 

and for x eF^, 

m*(t,x) = 

t      for  0 < t < ln(p1/p2) 

: - + ln(p1/p2)      for  t > InCPj/pg) 

0      for  t < ^(pj/p.-,) 

m+^.x) =  ( 
t 
-+ln(p1/p2)       for  t > ln(p1/p2). 

. 

Note that in accordance with Theorem 1,  m*(' , x) has a finite derivative for 

all t ^{O,«5) for which 

A({x:f(x) =A(t)})  = 0. 

This condition fails to hold only when t - In^/^), in which case 

A({x:f(x) =X(t)}) = A{x:f(x) = p2}   - 1. 

In addition,  A({x:f(x) = r = Pj}) = 1, and, therefore, by Theorem 2, D^ni*(0,x) 

exists and is finite for all x c E . 

The next illustration considers a situation where Dj m*(0.x) is not finite for 

all x.    Let f be a bivariate normal distribution, i.e., for x = (x^^) c E2 and 

rlxpx.,) - (Ixj/ajl2 + [x2/a2]2)i, 

fW =  Zr~~Z   exp(-^r(x,y)2), 
6TT CJ , (Tp 
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Since A{(x:f(x) = X(t)}) =0 for all t > 0, ni*(-, x) must be differentiable fo> all 

xeE    wlen t > 0 according to Theorem 2. 

it is well kn^vn that if C't) = t, then for t > 0; 

JKVt - ^(Xj.Xg)2      for   rixj.Xg)2 < 2Kvrt' 

m*(t>x1,x2) = 

(0 othenvise, 

o 
where K = (TTCJ a^).    For all t > 0 and (XpX^,) ef.  , 

K 
DTin^t.Xi.Xo) = —. 1 VT 

In accordance with Theorem 3, D+m*(0,x1,x2) < «>, for (Xj.Xg) ^ (0,0).   Only at 

the point (0,0) (a set of measure zero) does Dj m* fail to be finite. 

Henry R/Kichardson 

jmr 
njm 
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