AD-785 261

MODIFICATION AND CONTROL OF OXIDE STRUCTURES ON METALS AND ALLOYS PHASE IV

WESTINGHOUSE ASTRONUCLEAR LABORATORY

PREPARED FOR Naval Air Systems Command

May 1974

DISTRIBUTED BY:

National Technical Information Service

U. S. DEPARTMENT OF COMMERCE

Security Classification			
		F	D-785-261
Security electrication of title, body	DOCUMENT CONTROL D	ATA · RED n must be entered when	the overall report is classified)
ORIGINATING ACTIVITY (Corporate aut	her)	20 REP	DAT SECURITY CLASSIFICATION
Westinghouse Astronuclear L	aboratory		Unclassified
P. O. Box 10804 Pittsburgh, Pennsylvania 15	236	Ma	terials Science
REPORT TITLE			
Modification and Control of	Oxide Structures on M	etals and Alloys	: (Phase IV)
DESCRIPTIVE NOTES (Type of report on	d Inchielve dates)	74	
AUTHOR(S) (Last name. first name, initia	ivarch 73 to 2 warch	/4	
Svedberg, Robert C.			
REPORT DATE	70. TOTA	NC. OF PASES	78 NO OF REFS
May, 1974		14 1	j ð
N62269-73-C-0361		11 _AA_EP_74_00	2
PROJECT NO		NL-M-FR-74-00	5
		REPORT HO(S) (An	v ether numbers that may be seat good
		ler()	
A ALLABILITY/LINITATION NOTICE			
SUPPL ENENTARY NOTES	12 SPONS	RING MILITARY ACT	IVITY
ABSTRACT		lied to determin	a the effects of compositio
ABSTRACT Nb-Co-Al and Nb-Fe-Al ba both elemental and constitue the oxides formed during 120 sintering of intermetallic com from intermetallic compound measured, and the oxides for addition, Y and Y2O3 additi earth additions on the oxide	se alloys have been stud nt (i.e., intermetallic 10°C oxidation in air. npounds and elemental is and elements in powde med have been examine ions were made to sever structure.	lied to determin alloy compounds Alloys were fom powders and by er form. Oxidat d by x-ray diffr al alloys to eval	e the effects of compositio used to make alloys) on hed by both pressing and arc melting alloy buttons ion kinetics have been action techniques. In uate the effects of rare
ABSTRACT Nb-Co-Al and Nb-Fe-Al ba both elemental and constitue the oxides formed during 120 sintering of intermetallic con from intermetallic compound measured, and the oxides for addition, Y and Y2O3 additi earth additions on the oxide In addition to the oxidation ques were used to evaluate the study confirmed that rutile ty ble for improved oxidation per	se alloys have been stur nt (i.e., intermetallic 10°C oxidation in air. npounds and elemental s and elements in powde med have been examine ions were made to sever structure. kinetics and oxide struc- he depth of penetration ope oxides such as NbAl erformance.	lied to determin alloy compounds Alloys were for powders and by er form. Oxidat d by x-ray diffr al alloys to eval ture correlation of oxygen into to O4, NbFeO4, a	e the effects of composition used to make alloys) on hed by both pressing and arc melting alloy buttons ion kinetics have been action techniques. In uate the effects of rare , metallographic techni- he various alloys. This and NbCrO ₄ are responsi-
ABSTRACT Nb-Co-Al and Nb-Fe-Al ba both elemental and constitue the oxides formed during 120 sintering of intermetallic con from intermetallic compound measured, and the oxides for addition, Y and Y2O3 additi earth additions on the oxide In addition to the oxidation ques were used to evaluate the study confirmed that rutile ty ble for improved oxidation per Parabolic rate constants between with overall metal consumption	se alloys have been stud nt (i.e., intermetallic 10°C oxidation in air. npounds and elemental s and elements in powder med have been examined ions were made to sever structure. kinetics and oxide struct he depth of penetration rpe oxides such as NbAl erformance. 2 on including the oxyger	lied to determin alloy compounds Alloys were form powders and by er form. Oxidat d by x-ray diffr al alloys to eval ture correlation of oxygen into to O4, NbFeO4, cm /min were to contaminated a	e the effects of composition used to make alloys) on ned by both pressing and arc melting alloy buttons ion kinetics have been action techniques. In uate the effects of rare , metallographic techni- he various alloys. This and NbCrO ₄ are responsi- measured for these alloys, cone being 2.33 to 4.3 mils
ABSTRACT Nb-Co-Al and Nb-Fe-Al ba both elemental and constitue the oxides formed during 120 sintering of intermetallic con from intermetallic compound measured, and the oxides for addition, Y and Y_2O_3 additi earth additions on the oxide In addition to the oxidation ques were used to evaluate the study confirmed that rutile ty ble for improved oxidation per Parabolic rate constants betwee with overall metal consumption in 24 hours at 1200°C.	se alloys have been stur nt (i.e., intermetallic 10°C oxidation in air. npounds and elemental is and elements in powder med have been examine ions were made to sever structure. kinetics and oxide structure. kinetics and oxide structure. k	lied to determin alloy compounds Alloys were fom powders and by er form. Oxidat d by x-ray diffr al alloys to eval ture correlation of oxygen into to O4, NbFeO4, of Can /min were to contaminated a	e the effects of composition is used to make alloys) on hed by both pressing and arc melting alloy buttons ion kinetics have been action techniques. In uate the effects of rare , metallographic techni- he various alloys. This and NbCrO ₄ are responsi- measured for these alloys, ione being 2.33 to 4.3 mils
ABSTRACT Nb-Co-Al and Nb-Fe-Al ba both elemental and constitue the oxides formed during 120 sintering of intermetallic con from intermetallic compound measured, and the oxides for addition, Y and Y2O3 additi earth additions on the oxide In addition to the oxidation ques were used to evaluate the study confirmed that rutile ty ble for improved oxidation per Parabolic rate constants betwee with overall metal consumption in 24 hours at 1200°C.	se alloys have been stud nt (i.e., intermetallic 0°C oxidation in air. npounds and elemental s and elements in powde med have been examine ions were made to sever structure. kinetics and oxide struc- he depth of penetration rpe oxides such as NbAl erformance. reen 0.042 to 0.47 mg ² , on including the oxyger Reproduced by NATIONAL TECHNIC/ INFORMATION SERVI u s Department of Commen- Springfield vA 22151	lied to determin alloy compounds Alloys were for powders and by er form. Oxidat d by x-ray diffr al alloys to eval ture correlation of oxygen into to O4, NbFeO4, of cm /min were to contaminated a	e the effects of composition is used to make alloys) on hed by both pressing and arc melting alloy buttons ion kinetics have been action techniques. In uate the effects of rare , metallographic techni- he various alloys. This and NbCrO ₄ are responsi- measured for these alloys, ione being 2.33 to 4.3 mils

Unclassified

Security Classification							
		LINK A		LINK B		LIN	кC
		ROLE	ψT	ROLE	WT	RULE	WT
Oxide							
Defect Structure							
Niobates				1			
Niobium Alloy Oxidation							
INSTRU	UCTIONS						
 ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee. Department of De- fense activity or other organization (corporate author) issuing the report. REPORT SECURITY CLASSIFICATION: Enter the over- all security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accord- ance with appropriate security regulations. 	imposed by such as: (1) ** (2) ** (2) ** (3) **	y security Qualified port from Foreign a port by D U. S. Gov is report	classific requeste DDC.'' nnouncen DC is no ernment directly i	ration, us) rs may obt nent and d t authorize agencies n from DDC.	ng stand am copi issemina ed." bay obta Other o	dard states ier of this ation of th in copies qualified I	nents us of DC
 OKOOP. Futurate downgrading is specified in Dob Directive 5200. 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classified. 	(4) *** (4) ***	U. S. mili port direc nall reque	request tary agen tly from at throug	through acies may (DDC. Oth h	obtain ci er quali	opies of th fied upers	- · · · ·
tion, show title classification in all capitals in parenthesis immediately following the title.	(5) " if	All distrib ied DDC u	oution of isers sha	this report ill request	through	rolied. Q	924-
report, e.g., istram, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.	If the r Services, I cate this fi	eport has Departmen act and er	been fur t of Com ster the p	nished to t merce, for price, if kn	the Offic sale to own	re of Foch the public	nical , indi-
5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal withor is an absolute minimum requirement.	11. SUPP tory notes. 12. SPON	LEMENTA	ARY NOT	TES: Use	for addu rY: Ent	tional exp	lana- ao of

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

76. NUMBER OF REFERENCES Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: It appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

95. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limstations on further dissemination of the report, other than those ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a Unit acta for ۰. summary of the document indicative of the representation it may also appear elsewhere in the body of the technic port. If additional apace is required a continuation show nell be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the libstract shall end with an indication of the military security classification of the information in the paragraph. represented as . 75). (5) (C) or (1)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a rejot and may be used as index entries for cataloging the report. Key works must be selected so that no security classification is required. Identifiers, such as equipment model design of an trade name, military project code name, geographic is or as it is the used as key words but will be followed by words but will be followed by is ton of technical conin the sets is optional text. The assignment of link

1a/

Unclassified

Security Classification

FOREWORD

The work described herein was performed at the Astronuclear Laboratory of the Westinghouse Electric Corporation under Navy Contract N62269-73-C-0361. This work is a continuing effort started under Navy Contract N00019-70-C-0148 and continued under Contracts N00019-71-C-0089 and N00019-72-C-0132. Mr. I. Machlin of the Naval Air Systems Command served as Program Consultant. Program supervision at WANL was by Mr. R. W. Buckman, Jr., Manager, Materials Science.

The author wishes to acknowledge additional personnel contributing to this program. These are Messrs. S. S. Laciak for metallography, R. W. Conlin for x-ray diffraction studies, and R. P. Sprecace and F. L. Przywarty for alloy manufacture.

TABLE OF CONTENTS

			Title	Page No.
1.0	INTR	ODUCTIC	ON AND SUMMARY	1
2.0	OXY	GEN DIF	USION THROUGH MIXED NIOBATES	4
	2.1	EXPERI	MENTAL RESULTS	4
3.0	OXID	ATION B	EHAVIOR OF EXPERIMENTAL NIOBIUM ALLOYS	7
	3.1	ALLOY	PREPARATION AND EXPERIMENTAL PROCEDURES	7
	3.2	OXIDA	TION KINETIC MEASUREMENT RESULTS	10
		3.2.1	Nb-Co-Al Alloys	15
		3.2.2	Metallography of the Oxide-Metal Interfaces (Nb-Co-Al Alloys)	15
		3.2.3	Oxidation Behavior of Nb-Fe-Al Alloys	37
		3.2.4	Metallography of the Oxide-Metal Interfaces (Nb-Fe-Al Alloys)	37
		3.2.5	Nb-Cr; Nb-Cr-Al Alloys	37
		3.2.6	Metallography of the Nb-Cr,. Nb-Cr-Al, and Nb-Cr-Co-Al Alloys	47
	3.3	X-RAY	DIFFRACTION ANALYSIS OF THE OXIDE FILMS	47
		3.3.1	Nb-Cr Alloys	53
		3.3.2	Nb-Fe-Al Alloys	58
		3.3.3	Nb-Co-Al Alloys	64
4.0	DISCU	JSSION C	OF RESULTS	74
5.0	CON	CLUSION	S	79
6. J	REFER			80
APPENDI	XES			

B	OXIDE DIFFUSION RESULTS	B-1
с	X-RAY DIFFRACTION & SPACINGS AND RELATIVE INTENSITIES	C-1

Α

LIST OF ILLUSTRATIONS

No.	Title	Page No.
1	Weight Gain vs Time in Air at 1200°C for Some of the Sintered Nb Based Alloys	13
2	Alloy 15 (60Nb-10Al-30Fe) Showing Oxidation at Pore Surfaces for a Typical Pressed and Sintered Alloy	14
3	Effects of Y and Y ₂ O ₃ on the Microstructure and the Oxide Metal Interface of Alloy 13 (Nb-25NbAl ₃ -10Co)	17
4	Effects of Y and Y_2O_3 on the Microstructure and the Oxide Metal Interface of Alloy 13 (Nb-25NbAl $_3$ -19Co)	18
5	Effects of 7Hour and 24 Hour Oxidation in Air at 1200°C on the Micro- structure and Oxide-Metal Interface of Alloy 17 (Nb-15A1-15Co)	19
6	Effects of 7Hour and 24 Hour Oxidation in Air at 1200°C on the Micro- structure and Oxide-Metal Interface of Alloy 17 (Nb-15Al-15Co)	20
7	Effects of Y and Y_2O_3 on the Microstructure and the Oxide Metal Interface of Alloy 17	21
8	Effects of Y and Y ₂ O ₃ on the Microstructure and the Oxide Metal Interface of Alloy 17	22
9	Effects of 7 Hour and 24 Hour Oxidation in Air at 1200 ⁰ C on the Micro- structure and Oxide-Metal Interface of Alloy 18 (Nb-20NbAl ₃ -20NbCo ₂)	23
10	Effects of 7 Hour and 24 Hour Oxidation in Air at 1200 ⁰ C on the Micro- structure and Oxide-Metal Interface of Alloy 18 (Nb-20NbAl ₃ -20NbCo ₂)	24
11	Effects of 7 Hour and 24 Hour Oxidation in Air at 1200 ⁰ C on the Micro- structure and Oxide-Metal Interface of Alloy 19 (Nb-10Al-20NbCo ₂)	25
12	Effects of 7 Hour and 24 Hour Oxidation in Air at 1200 ⁰ C on the Micro- structure and Oxide-Metal Interface of Alloy 19 (Nb-10Al-20NbCo ₂)	26
13	The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 20 (Nb- 15NbAl ₃ –15NbCo ₂)	27
14	The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 21 (Nb- 15NbAl ₂ -15NbCo ₂)	28
15	Effects of Y and Y_2O_3 on the Microstructure and Oxide Metal Interface of Alloy 22 (Nb-10NbCr ₂ -15NbAl ₃ -15NbCo ₂)	29

.

LIST OF ILLUSTRATIONS (Continued)

<u>No</u> .	Title	Page No.
16	Effects of Y and Y ₂ O ₃ on the Microstructure and Oxide Metal Interface of Alloy 22 (Nb-10NbCr ₂ -15NbAl ₃ -15NbCo ₂)	30
17	The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 23 (Nb- 15NbAl ₃ -15NbCo ₂ -10NbNi)	31
18	Effects of 7 Hour and 24 Hour Oxidation in Air at 1200°C on the Micro- structure and Oxide-Metal Interface of Alloy 24 (Nb-30NbAl ₃ - 10NbCo ₂)	33
19	Effects of 7 Hour and 24 Hour Oxidation in Air at 1200 ^o C on the Micro- structure and Oxide-Metal Interface of Alloy 24 (Nb-30NbAl ₃ - 10NbCo ₂)	34
20	Effects of Y and Y ₂ O ₃ on the Microstructure and Oxide Metal Interface of Alloy 24 (Nb-30NbAl ₃ -10NbCo ₂)	35
21	Effects of Y and Y_2O_3 on the Microstructure and Oxide Metal Interface of Alloy 24 (Nb-30NbAl ₃ -10NbCo ₂)	36
22	The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 25 (Nb- 10NbAl ₃ -30NbCo ₂)	38
23	The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 11 (Nb- 25NbAl ₃ -25NbFe ₂)	39
24	The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 14 (Nb- 10Al-30NbFe ₂)	40
25	Effects of Y in the Microstructure and Oxide Metal Interface of Alloy 14 (Nb-10Al-30NbFe ₂)	41
26	Effect of Y ₂ O ₃ in the Microstructure and Oxide Metal Interface of Alloy 14 (Nb-10Al-30NbFe ₂)	42
27	Effects of 7 Hour and 24 Hour Oxidation in Air at 1200 ⁰ C on the Microstructure and Oxide-Metal Interface of Alloy 15 (Nb-10Al-30Fe)	43
28	Effects of 7 Hour and 24 Hour Oxidation in Air at 1200 ⁰ C on the Micro- structure and Oxide-Metal Interface of Alloy 15 (Nb-10Al-30Fe)	44
29	Effects of 7 Hour and 24 Hour Oxidation in Air at 1200 ⁰ C on the Micro- structure and Oxide-Metal Interface of Alloy 16 (Nb-25NbAl ₃ -15Fe)	45

LIST OF ILLUSTRATIONS (Continued)

No.	Title	Page No.
30	Effects of 7 Hour and 24 Hour Oxidation in Air at 1200 ⁰ C on the Microstructure and Oxide-Metal Interface of Alloy 16 (Nb-25NbAl ₃ - 15Fe)	46
31	The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 3 (Nb- 35NbCr ₂ -30Nb ₂ Al)	48
32	The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 7 (Nb- 15NbCr ₂ –10NbAl ₃ –4Al–9Cr)	49
33	The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 12 (Nb- 40NbCr ₂ -10Cr)	50
34	The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 31 (Nb- 9.8Al-18.8Cr-14.7Co-1.96Y ₂ O ₃)	51
35	Energy Dispersion X-ray Analysis (EDAX) of the Oxide Formed on Alloy 12 (Nb-40NbCr ₂ -10Cr)	57
36	Energy Dispersion X-ray Analysis (EDAX) of the Oxide Formed on (a) Alloy 11 (Nb-25NbAl ₃ -25NbFe ₂) and on (b) Alloy 14 (Nb-10Al 30NbFe ₂)	60
37	Energy Dispersion X-ray Analysis (EDAX) of the Oxide Formed on Alloy 15 (Nb-10A1-30Fe after 7 and 24 Hours Exposure to Air at 1200°C	61
38	Energy Dispersion X-ray Analysis (EDAX) of the Oxide Formed on Alloy 16 (Nb-25NbAl ₂ –15Fe) after 7 ahd 24 Hours Exposure to Air at 1200 ⁰ C	62
39	Energy Dispersion X-ray Analysis (EDAX) of the Oxide Formed on Alloy 14 (Nb-30NbFe ₂ -10Al) with (a) Y, (Alloy 28) and (b) Y_2O_3 (Alloy 29)	63
40	Energy Dispersion X-ray Analysis (EDAX) of the Oxide Formed on Alloy 31 (Nb-9. 8AI-18.6Cr-14.7Co-1.961 20 ₃) and Alloy 13 (Nb-25NbAl ₃ - 10Co)	65
41	Energy Dispersion X-ray Analysis (EDAX) of the Oxide Formed on Alloy 13 (Nb-25NbAl ₃ -10Co) with (a) Y (Alloy 26) and (b) Y ₂ O ₃ (Alloy 27)	66
42	Energy Dispersion X-ray Analysis (EDAX) of the Oxide Formed on Alloy 17 (Nb-15Al-15Co) after 7 and 24 Hours Exposure to Air at 1200°C	67
43	Energy Dispersion X-ray Analysis (EDAX) of the Oxide Formed on Alloy 19 (Nb-10Al-20NbCo ₂) after 7 and 24 Hours Exposure to Air at 1200 ⁰ C	68

LIST OF ILLUSTRATIONS (Continued)

<u>No.</u>	Title	Page No.
44	Energy Dispersion X-ray Analysis (EDAX) of the Oxide Formed on Alloy 24 (Nb-30NbAl ₃ ⁻¹⁰ NbCo ₂) after 7 and 24 Hours Exposure to Air at 1200°C	69
45	Energy Dispersion X-ray Analysis (EDAX) of the Oxide Formed on Alloy 17 (Nb-15Al-15Co) with Y (Alloy 32) and (b) Alloy 24 (Nb-30NbAl ₃ -10NbCo ₂) with Y ₂ O ₃ (Alloy 37)	70
46	Energy Dispersion X-ray Analysis (EDAX) of the Oxide Formed on Alloy 22 (Nb-10NbCr ₂ -15NbAl ₃ -15NbCo ₂)	71
47	Ternary Plot of Elemental Compositions Showing the Regions of Parabolic Oxidation Constant (k _p) Being Less than or Greater than 1.0 mg/cm ²) ² / min.	75
48	Temary Plot of Elemental Compositions Showing Regions of Parabolic and Linear Oxidation in the Nb-Co-Al System	76

LIST OF TABLES

<u>No</u> .	Title	Page No.
1	Chemical Diffusion Coefficients for Oxygen in the Binary Co–Nb–O Systems	6
2	Alloy Compositions Evaluated	8
3	Alloy Compositions Evaluated	9
4	Parabolic Rate Constants for the Arc Melted Niobium Alloys at 1200 ⁰ C	12
5	Correlation Between Metal Consumption in 100 Hours and the Parabolic Oxidation Constant	16
6	Average Vickers Hardness Numbers for the Nb Alloys After Oxidation	52
7	A Summary of the Oxides Formed on the Specific Alloys	54
8	Comments on Oxide Characteristics While Sampling for X-ray Powder Analysis	56
9	Comparison of Depth of Metal Affected Zone and Oxidation Kinetics of the Most Promising Alloys	78

1.0 INTRODUCTION AND SUMMARY

Nb-Co-Al and Nb-Fe-Al base alloys have been studied to determine the effects of composition, both elemental and constituent (i.e., intermetallic alloy compounds used to make alloys) on the oxides formed during 1200°C oxidation in air. Alloys were formed by both pressing and sintering of intermetallic compounds and elemental powders and by arc melting alloy buttons from intermetallic compounds and elements in powder form. Oxidation kinetics have been measured, and the oxides formed have been examined by x-ray diffraction techniques. In addition, Y and Y_2O_3 additions were made to several alloys to evaluate the effects of rare earth additions on the oxide structure.

In addition to the oxidation kinetics and oxide structure correlation, metallographic techniques were used to evaluate the depth of penetration of oxygen into the various alloys. Hardness measurements for the various alloys are presented and oxygen diffusion through a Co_3O_4 -Nb₂O₅ oxide has been measured. This study has confirmed the Phase III findings that a rutile-type oxide structure plus Al_2O_3 or an aluminate-spinel comprises the protective oxide on these alloys.

The overall program was initiated under Contract No. N00019-70-C-0148 and continued under Contracts Nos. N00019-71-C-0089 and N00019-72-C-0132 to investigate the feasibility of modifying oxide structures to enhance oxidation protection of elevated temperature structural materials (1-3).

The program has approached the problem of improving oxidation resistance by investigating various techniques designed to identify and then possibly modify the structure of the equilibrium oxides which are characteristic of the parent structural material and in this way attempt to improve oxidation resistance without either changing the structural and mechanical properties of the substrate or adding additional components to the system. Two of the techniques which have been investigated thus far are, pre-oxidation treatments and modi-fication of oxide defect structures by application of high pressures.

The chemica! diffusion coefficient of oxygen through several mixed niobates was measured during Phases II and III. In addition, pre-oxidation effects and the oxidation of Nb alloys were studied. The oxide structures associated with improved oxidation performance of some niobium alloys and intermetallic compounds have been identified, and the alloy compositions required to support these structures are being investigated.

The Phase 1⁽¹⁾ study has shown that high pressure high temperature exposure of Nb₂O₅ does produce a denser phase that maintains its characteristics after quenching to room temperature. However, it has not yet been possible to investigate the stability of the quenched phases nor the transport properties of the quenched phases. It has also been demonstrated that preexposure of alloy B-1 (Cb-15Ti-10W-10Ta-2Hf-3Al) in 20 torr oxygen at 650°C results in a decrease in the subsequent oxidation rate in air at 1040°C when compared to untreated B-1 alloys. This is the second method of pre-treatment shown to be effective in decreasing the rate of oxidation of the B-1 alloy. The first reported treatment involved an oxidation exposure at 2400°F in air for 1 hour which improved the oxidation during exposure to 2200°F air⁽²⁾. These experiments showed that changing the oxide structure is possible. The maximum potential of these various techniques has yet to be demonstrated.

Preliminary results from Phase II indicate that mixed oxides of Nb_2O_5 -TiO₂ and Nb_2O_5 -HfO₂ would not form protective oxide layers based on limiting the transport of oxygen through the scale and protecting the parent metal⁽²⁾. The NiO-Nb₂O₅ binary oxide exhibited no change in stoichiometry, i.e., no weight loss as a function of oxygen pressure until a partial pressure equivalent to that of the dissociation pressure of NiO is reached. At that point, a reduction reaction apparently begins, and large weight losses begin.

2

As a result of efforts during Phase III⁽³⁾, the rutile structure family for oxide compounds of the type Nb(B)O₄ where B = Cr, Al, or Fe have been identified as the primary oxide phase in the scales formed on oxidation resistant Nb intermetallic compounds and Nb-Ti-Cr-Al, Nb-Fe-Al, Nb-Cr-Al-Co, and Nb-Cr-Al-Ni alloys. Along with this oxide, small amounts of either (B)₂O₃ where B = Cr, Al, or Fe or a CoAl₂O₄ spinel in cobalt containing alloys were detected. Oxygen transport rates through Nb₂O₃-Cr₂O₃, Nb₂O₅-TiO₂, Nb₂O₅ ZrO₂, and Nb₂O₅-Al₂O₃ were also determined using thermogravimetric techniques. Of the oxide compounds evaluated, only oxygen transport through Nb₂O₅-Cr₂O₃ was slow enough to warrant its classification as a protective scale. In addition to oxidation rate data, metallographic studies and electron microprobe studies were conducted on the Nb intermetallic compounds and alloys.

The present report includes (i) a continuation of the oxygen transport rate measurements in the binary niobate $Nb_2O_5-Co_3O_4$ and (2) the investigation of the oxidation kinetics and oxide structures formed on 37 different Nb based alloys containing Co-Fe-Al-Cr-Ni-Y, and/or Y_2O_3 . The experimental results have been used to determine which alloys to scale up for mechanical property studies, based on the oxidation kinetics, the oxide structure formed, and the depth of substrate contamination which resulted during oxidation. These results indicate that both the Nb-Al-Fe and Nb-Co-Al alloys are oxidation resistant. The oxides on certain alloys become more protective as oxidation proceeds. In addition, the substrate contamination of these alloys by oxygen is very low. The protective oxide appears to be a rutile-type NbAlO₄ oxide. The Fe₂O₃ hemitite structure reported as forming on Nb-Fe-Al alloys has been shown to be located primarily at the oxide-gas interface by x-ray diffractometer studies. Additional work is required to determine whether the rate control is transport through the NbAlO₄ structure or some other layer between the oxide and metal, or, in fact, if the mechanical properties of the oxide are enhanced and the oxide has the ability to relieve internal stresses before the oxide spalls.

3

2.0 OXYGEN DIFFUSION THROUGH MIXED NIOBATES

The experimental techniques utilized and the sample preparation techniques employed have been explained previously⁽³⁾. The only change in the experimental technique was the method of acquiring the data. The output of the Cahn microbalance was recorded digitally on a Doric Digitrend 210, eliminating the need for reading the weight from a strip chart recorder. This technique also eliminates data loss due to overranging of the strip chart recorder and permitted unattended operation of the system.

2.1 EXPERIMENTAL RESULTS

Table 1 presents a summary of the experimental results for all of the oxygen diffusion experiments. Listed in Table 1 are the chemical diffusion coefficients, \widetilde{D}_L , determined by measuring the slope of the line formed by plotting the quantity log (1 - M(t)/Q) vs time for $\widetilde{D}t/1^2 \ge 0.15$ and the chemical diffusion coefficients D_p determined by measuring the slope of the line formed by plotting $(M(t)/A)^2$ vs time for $\widetilde{D}t/1^2 \le 0.25$. Also listed in Table 1 are the cumulative deviations from stoichiometry, the initial and final oxygen pressures between which each equilibration was made, and the time limitations for each model particular to each equilibration.

Tabular data is listed in Appendix B along with the computer plotted graphs for the various equilibrium conditions. The oxygen transport rates measured in the $Co_3O_4-Nb_2O_5$ oxide were lower than those measured in all but the $Cr_2O_3-Nb_2O_5$ system at 1175 and 850°C. However, at 1000°C the oxygen transport rate was found to be higher than any of the oxides previously measured. It is obvious that the dependence of the rate of diffusion of oxygen in all of these mixed niobates does not follow a simple temperature dependence which would be expected from a homogeneous single phase material. This lack of temperature dependence suggests strongly that the rate of diffusion of oxygen is being measured through several different phases at various combinations of oxygen partial pressure, degree of nonstoichiometry

·····											
Logarithmic Model Lower Time Limit	(177, 376	30	508, 316	ł	61	40, 12, 8	35, 36.3	231	76.5	406, 480.6
Perabolic Model Upper Time Limit	(mim)	1882, 1203	16.62	016	,	100	242	10	151	86	1356
Temperature	000	850	850	850	1000	0001	0001	0001	1175	1175	1175
log ₁₀ P (Finul Fanil)	-15.24	-17.72	-17.72	-20. 28	-10. 73	-13, 44	-13, 44	-16.07	- 8.13	-10, 70	-13.36
Final Equil. Orygen Presure (otm.)	5.7 × 10 ⁻¹⁶	1.9 × 10 ⁻¹⁸	1.9 × 10 ⁻¹⁸	5. 24 × 10 ⁻²¹	1.68 × 10 ⁻¹¹	3.60 × 10-14	3.60 × 10 ⁻¹⁴	8.48 × 10 ⁻¹⁷	7.33 × 10 ⁻⁹	1.98 × 10 ⁻¹¹	4.35 × 10 ⁻¹⁴
Initial Equil. Oxygen (eth.)	8.	5.7 × 10 ⁻¹⁶	.2	1.9×10 ⁻¹⁸	.2	1.68 × 10 ⁻¹¹	.2	3.60 × 10 ⁻¹⁴	.2	7.33 × 10 ⁻⁹	1.98 × 10 ⁻¹¹
Total Deviation From Statchiometry Ma Oxygen	not meas.	65, 51	45, 45	111.96	1.14	61.94	40.8	153.43	38. 22	8 0. 8 1	137.23
Ďp 10 ⁻⁷ cm²/ se c <u>D+</u> < 0. 25	I	. 29, . 407	×.	. 238	•	4.75	2.02	4. 75	3.24	¢. †	0.361
DL 10 ⁻⁷ cm ² /sec <u>D</u> 17 > 0.15	ı	. 66, 0.78	Bo	56° ° 9/C ·	• :	67 °CI	7.35, 25.3, 36.0	8.4, 8.1	1.27	3.84	0. /4, 0.611
žź	-	~ ~	 - •	•	n ,	6 1	~ .	20 (2 :	=

and temperature. In fact, some of the plots of log (1-M(t)/Q) vs time give 2 and 3 distinct slopes indicating that the transport rate of oxygen is controlled by several different phases or substructures.

If one attempts to visualize the oxide formed on a niobium alloy, one finds an extremely low oxygen partial pressure at the oxide-metal interface and a large oxygen partial pressure at the oxide-gas interface. It is very possible that there are several different layers of oxide structures, sub-structures, and/or phases established by the oxygen partial pressure gradient and oxidation temperature. With an unknown number of oxide phases or substructures possible, which could depend upon oxygen partial pressure and temperature, it is very difficult to attempt to define a rate controlling phase or oxide structure.

More information is required on the equilibrium oxides and their structure-composition relationships for these complex systems before an understanding of their behavior can be developed. The behavior of the mixed niobate system observed during this transport study indicates the need for basic fundamental data about the equilibrium phase relationships in the alloy and oxides, the effects of oxygen partial pressure on these systems, and the relationship between the alloy composition and oxide composition.

3.0 OXIDATION BEHAVIOR OF EXPERIMENTAL NIOBIUM ALLOY

Thirty-seven Nb alloys from the systems Nb-Co-Al, Nb-Fe-Al, Nb-Cr, and Nb-Cr-Al were made by powder and arc melting techniques. Alloys were made from both elemental powders and pre-alloyed intermetallic powders. The alloys were oxidized in air at 1200°C for 7 to 24 hours during which time the oxidation kinetics were determined. X-ray diffraction techniques were then utilized to analyze the oxide structures formed on the alloys. The ultimate objectives of this study were; 1) the identification of oxide structures which provide a protective scale on niobium based alloys; 2) the correlation of these oxides with the alloy constitution and composition, and then 3) to design an alloy for further mechanical property evaluation.

3.1 ALLOY PREPARATION AND EXPERIMENTAL PROCEDURES

Alloys were fabricated from elemental powders and intermetallic compounds by pressing and sintering and arc melting. The compositions of the alloys investigated during this program are given in Table 2 as weight percent of the metal or intermetallic powder from which they were manufactured and in Table 3 as the weight percent of the elements in the alloy.

To manufacture the pressed and sintered alloys, the respective powders were blended with 120 drops of trichloroethane and 0.4 wt. % stearic acid for 1.5 hours in a polyethene container rotating at 4.5 rpm. The blended powders were pressed into 2.5 gram pellets in a 1/2 inch diameter opposed anvil die at 20,000 psig. After pressing, the pellets were stacked in an Al_2O_3 crucible on Al_2O_3 discs and sintered at about 2800° F for 6 hours in a 10^{-6} torr vacuum. Melting occurred on some of the discs. These alloys are designated with the B suffix.

The alloys were also prepared by arc melting 5 g buttons from the powder materials using a tungsten inert gas electrode on a copper chill in a controlled atmosphere weld box. The buttons were cut into two pieces, their surface area carefully measured, and then the samples were oxidized in a Stanton Thermal Balance System previously described (2,3). Arc melted alloys are designated by the B & C suffix. After the samples were oxidized, the oxides

Alloy No.	Nb	NbCr2	N6A13	Nb2AI	NbFe2	AI	Cr	Co	NbCo2	Fe	NENI	Y	Y203
1 2 3 4 5 6 7 8 9	65 70 35 70 66 76 62 50 25	35 	- - - - - - 10 - -	- 30 30 - - 20 - -	-		- - - 9 - 9 -		- - - - - - - - - - - -	-	- - - - - - - - -	- - - - - - - -	- - - - - - - - -
10 11 12 13 14 15	65 50 55 65 60 60	25 40 -	- 25 - 25 -	- - - -	- 25 - 30 -	- - - 10 10	10 - 10 - - -	- - 10 -	- - - - -	- - - - 30		•	- - - - -
16 17 18 19 20	60 70 60 70 70	- - -	25 		- - - -	- 15 - 10 -	- - - -	- 15 - -	- 20 20 15	15 - - - -	• • •		
21 22 23 24 25	70 60 60 60 60	- 10 - -	- 15 15 30 10	15 - - -	- - - -	- - - -	- - - -	- - - -	15 15 15 10 30	•	- - 10 - -	- - - -	- - - -
26 27 28 29 30	63.7 63.7 58.8 58.8 54.9	- - - -	24.5 24.5 - - -		- 29.4 29.4	- 9.8 9.8 9.8	- - - 18.6	9.8 9.8 - 14.7	• • •	- - -	- - - -	1,96 1,96 1,96	1,96 1,96 1,96
31 32 33 34 35	54, 9 68, 6 68, 6 58, 8 58, 8	- - 9.8 9.8	- - 14, 7 14, 7	- - -	• • •	9,8 14,7 14,7 - -	18.6 - - - -	14, 7 14, 7 14, 7 - -	- - 14.7 14.7	- - - -	- - - -	- 1,96 - 1,96	1,96 - 1,96 -
36 37	58, 8 58, 8	-	29, 4 29, 4	-	-	•	-	-	9.8 9.8	-	-	1,96 -	1,96

Table 2. Alloy Compositions Evaluated (Wt. % Components Mixed)

Alloy No.	Nb	Al	Co	Cr	Fe	Ni	Y	Y2O3
1 2 3 4 5	81.5 96.2 77.7 86.1 77.8	- 3.8 3.8 13.9 -	- - - -	18.5 - 18.5 - 22.2	- - - -	- - - -	- - - -	
6 7 8 9 10	93. 4 74. 5 73. 6 60. 4 76. 8	6.6 4.4 - -	- - -	- 16.9 26.4 39.6 23.2	- - - -	- - - -	- - - -	- - - -
11 12 13 14 15	74. 7 68. 9 78. 4 73. 6 60	11.6 - 11.6 10.0 10	- - 10 -	- 31, 1 - -	13.7 - - 16.4 30	- - - -	- - - -	- - - -
16 17 18 19 20	73. 4 70 79. 5 78. 8 84. 6	11.6 15 9.3 10 7	- 15 11.2 11.2 8.4		15 - - -			- - -
21 22 23 24 25	89.7 79.3 80.7 80.5 78.6	1.9 7 7 13.9 4.4	8.4 8.4 8.4 5.6 16.8	- 5.3 - -		- - 3.9 -		
26 27 28 29 30	76.94 76.94 72.13 72.13 66	11.3 11.3 9.8 9.8 10	9.8 9.8 - - 15	- - - 19	- - 16. 11 16. 11 -		1.96 - 1.96 - 1.96	- 1.96 - 1.96 -
31 32 33 34 35	66 68.6 68.6 77.82 77.82	10 14, 7 14, 7 6, 81 6, 81	15 14.7 14.7 8.23 8.23	19 - 5. 18 5. 18 5. 18		- - - -	- 1.96 - 1.96 -	1.96 - 1.96 - 1.96
36 37	78. 93 78. 93	13.62 13.62	5. 49 5. 49	-	-	-	1, 96 -	- 1.96

Table 3. Alloy Compositions Evaluated (Wt. % Elements)

formed were analyzed by several x-ray diffraction techniques. Some of the oxides were sampled for powder diffraction analysis by scraping the oxide from the alloys or collecting spalled chips. For some analyses, oxide flakes were attached to the end of 0.1 mm glass fibers with Canadian Balsam. For others, the oxides were pulverized into a fine powder in an agate morter and attached to a 0.1 mm glass fiber using petroleum jelly. In all cases a 114.6 millimeter Debye-Scherrer camera was utilized for the powder analyses. The samples were exposed to either nickel filtered copper or iron filtered-cobalt radiation. The resultant films were compared to the 1971 ASTM diffusion index file for identification. To observe the oxides which formed on the metal substrate, nine of the alloy samples were ground before oxidation to provide a flat surface which, after oxidation, was subject to x-ray diffractometry analysis with the diffractometer trace being recorded on strip charts. This was an attempt to determine if any correlation between the alloy and oxide orientation could be detected and, also, to enable an x-ray analysis of the oxide as a function of distance from the substrate by grinding away the surface of the oxide and then taking an additional diffraction pattern of the oxide at different distances from the oxide metal interface. In addition, gualitative x-ray fluorescence analyses of some of the oxides were made using energy dispersive x-ray analysis (EDAX).

٩

3.2 OXIDATION KINETIC MEASUREMENT RESULTS

Both the pressed and sintered alloys and the arc melted alloys were oxidized in air at 1200° C. The pressed and sintered alloys were oxidized primarily to obtain samples of the oxide scale for x-ray analysis. Because of the difficulty in obtaining a uniform degree of densification for the pressed and sintered alloys, it was not possible to obtain representative kinetic data because of the additional surface area which resulted from the porosity. However, alloys 10-A, 11-A, and 13-A exhibited a change in shape after sintering at 2800 $\pm 30^{\circ}$ F indicating that the sintering temperature approached or slightly exceeded the melting point of these alloys.

10

Alloys 17-A, 18-A, and 19-A also exhibit extended sintering at a temperature of 2750 + 30°F.

Because these alloys were densified and relatively nonporous, the oxidation kinetics for these alloys are shown in Figure 1. Also on the figure, the parabolic rate constant calculated from measuring the slope of the weight loss (mg/cm^2) vs the square root of time \sqrt{t} are given. These are presented only for comparative purposes because of the uncertainties in surface area measurement due to undefined porosity. It was beyond the scope of this program to optimize sintering schedules for each alloy.

Figure 2 is a 75X photomicrograph of an alloy prepared by pressing and sintering which did not fully densify on sintering and shows the oxidation occurring at the pore surfaces. Some of these same alloys were also prepared by arc melting to determine if the oxide structure was dependent upon the constituents of the alloy. On the pressed and sintered alloys, the intermetallic compounds would be present as discrete particles. In the arc melted alloys, homogeneous mixing would occur.

The oxidation kinetics for the arc melted alloys are categorized into major alloy constituents for ease of explanation. The parabolic oxidation constants (k_p) are presented in Table 4 for the arc melted alloys. The parabolic oxidation constant was determined by calculating the slope of the weight gain/cm² (mg/cm²) vs the square root of time $t^{1/2}$ using a computer program written to permit the selection of certain time intervals over which the parabolic rate constant could be measured. In Table 4 the parabolic rate constant is reported with the associated time interval over which it was measured. In Appendix A, the computer printout of the oxidation data is presented along with the plots of weight gain vs time for all of the alloys.

75X

Alloy No.	Parabolic Rate Constant (mg/cm ²) ² /min	Oxidation Time (min)	Parabolic Rate Constant (mg/cm ²) ² /min	Oxidation Time (min)	Parabolic Rate Constant (mg/cm ²) ² /min	Oxidation Time (min)
Nb-Fe-Al Allovs						
11 . +	4 32	0 210	8.78	240 240		
14-0	9.32	40 - 420	5,75	240 - 300	-	-
15-R	0.33	0 - 40	0.18	90 - 450	-	-
15-0	0.042	120 - 1400	0,10		-	
16-8	0.29	30 - 150	0.24	180 - 420	-	
16-C	0.17	1140 - 1530	-	-	_	-
28 -8	0,68	90 - 390	-	•	_	-
29 -B	0.88	50 - 420	-	-	-	-
Nb-Co	-Al Alloys					
13 - A	1,27	0 - 420	-	-	-	-
17 -B	0.13	150 - 450	•	-	-	-
17-C	0,11	120 - 1100	0.15	1140 - 1410	-	-
18 -8	0, 57	0 - 420	-	-	-	-
18-C	0.76	0 - 600	1,17	630 - 990	1.69	1020 - 1200
19 - 8	0.54	0 - 420	-		-	-
19-C	0.47	0 - 990	0.59	1020 - 1260	0. 59	1020 - 1260
20 - A	0,72	0 - 240	1.1	240 - 390	-	-
21 -A	0.307	0 - 210	-	•	-	-
22 -0	0.30	0 - 300	-	-	•	-
23 -	0,39	240 - 420	-	-	-	-
24-0	0.46	390 - 1410	-		-	-
25 -	0.084*	0 - 420	_			
26 -B	1.62	20 - 420	_	_	_	
27 -B	1.15	90 - 390	-	-	-	-
32 -B	0.56	10 - 390	-	-	-	-
33 -8	0,67	120 - 450	-	-	_	-
34 -8	1.06	150 - 420	-	-	-	-
35 -B	1.26	90 - 420	-	•	-	-
36 -8	2.45	210 - 420	-	-	-	-
37 - B	1.28	60 - 420	-	-	-	-
Nb-Cr-	Al Alloys					
3-8	0.33+	0 - 360				
7-B	7 17	120 - 390		-	-	
		120 - 070	_	-	-	_
Nb-Cr	Alloy					
12-B	0.25	0 - 420	0, 24	60 - 420	-	-
Nb-Cr-	Al-Co Alloy					
31-B	0921	90 - 420				_
01.0	1 0761	70 - 420	-	-	-	-

Table 4. Parabolic Rate Constants for the Arc Melted Niobium Alloys at 1200°C

* Denotes linea: weight gain constant (no protective scale is formed),

+ A denotes pressed and sintered alloy

B denotes arc melted alloy oxidized for 7 hours

C denotes arc melted alloy oxidized for 24 hours

3.2.1 Nb-Co-Al Alloys

Of the Nb-Co-Al alloys oxidized in air at 1200°C, alloys 17, 22, and 24 exhibited the best oxidation behavior as determined from the parabolic rate constant reported in Table 4. Table 5 gives the approximate values for the rate of metal consumption in 100 hours for several parabolic oxidation constants based on the assumption of a metal density of 8 gms/cc and rate of weight of metal consumed/weight gain of oxygen of 2. For these alloys, the metal consumption rate is between 2.5 to 6 mils/100 hours at 1200°C. This compares with the NbAl₃ intermetallic with a $k_p = 0.018 (mg/cm^2)^2/min$ and a metal consumption rate $\approx 1 \text{ mil}/100$ hours. NbAl₃ is the most oxidation resistant. Nb alloy or compound evaluated thus far in this program. For alloy 24, the parabolic rate constant decreases as the oxidation (7 hours) to 0.26 $(mg/cm^2)^2/min$ for the 1410 minute (~24 hour) exposure. This indicates that as the oxide forms, it becomes more protective. This phenomenon was also shown for several Nb-Fe-Al alloys, which will be discussed in the next section.

 $Y_2O_3 + Y$ was added to several alloys to determine what effect these components would have on the oxidation behavior of the alloys. From Tables 2 and 3 it can be seen that alloys 26, 32, 34, and 36 are the Nb-Co-Al alloys 13, 17, 22, and 24 to which yttrium (Y) has been added while alloys 27, 33, 35, and 37 are Nb-Co-Al alloys 13, 17, 22, and 24 to which yttria (Y_2O_3) has been added. In all cases, the oxidation behavior was made worse by the addition of these components.

3.2.2 Metallography of the Oxide-Metal Interfaces (Nb-Co-Al Alloys)

In the refractory metals, the contamination of the metallic substrate by oxidants is a problem and must be analyzed as part of the overall oxidation behavior. Figures 3 thru 22 show the oxide metal interface of the Nb-Co-Al alloys in both the etched and unetched condition at 75 and 500X. Etching was done by using a 1:1:1 mixture of HNO₃:HF:H₂O.

k (mg/cm ²) ² /min P	mils/100 hr.	Oxide	Wt. of Metal Consumed Wt. of Oxygen Gained
0, 01 0, 05 0, 1 0, 5 1, 0 10, 0 25, 0	0.75 1.8 2.5 6 8 28 43	NbFeO4 Nb2O5 NbCrO4 NbAIO4	2.32 2.32 2.26 1.87

Table 5. Correlation Between Metal Consumption in 100 Hours and the Parabolic Oxidation Constant

Assumptions:

 $\frac{\text{Wt. of Metal Consumed}}{\text{Wt. of Oxygen Gained}} = 2.0$ Metal Density = 8 g/cc (Wt. gain)² = k t

17

Astronuclear Laboratory

Figure 5. Effects of 7 Hour and 24 Hour Oxidation in Air at 1200°C on the Microstructure and Oxide-Metal Interface of Alloy 17 (Nb-15Al-15Co) at 75X.

Figure 6. Effects of 7 Hour and 24 Hour Oxidation in Air at 1200°C on the Microstructure and Oxide-Metal Interface of Alloy 17 (Nb-15Al-15Co) at 500X.

Figure 7. Effects of Y and Y_2O_3 on the Microstructure and the Oxide Metal Interface of Alloy 17 at 75X.

Figure 8. Effects of Y and Y_2O_3 on the Microstructure and the Oxide Metal Interface of Alloy 17 at 500X.

Figure 9. Effects of 7 Hour and 24 Hour Oxidation in Air at 1200°C on the Microstructure and Oxide-Metal Interface of Alloy 18 (Nb-20N'sAl₃-20NbCo₂) at 75X.

Figure 10. Effects of 7 Hour and 24 Hour Oxidation in Air at 1200°C on the Microstructure and Oxide-Metal Interface of Alloy 18 (Nb-20NbAl₃-20NbCo₂) at 500X.

Figure 11. Effects of 7 Hour and 24 Hour Oxidation in Air at 1200°C on the Microstructure and Oxide-Metal Interface of Alloy 19 (Nb-10Al-20NbCo₂) at 75X.

Figure 12. Effects of 7 Hour and 24 Hour Oxidation in Air at 1200°C on the Microstructure and Oxide-Metal Interface of Alloy 19 (Nb-10Al-20NbCo₂) at 500X.

7 HOURS 1200°C AIR

Figure 13. The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 20 (Nb-15NbAl₃-15NbCo₂) at 75 and 500X.

ALLOY 21 7 HOURS 1200°C AIR

Figure 14. The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 21 (Nb-15NbAl₂-15NbCo₂) at 75 and 500X.

Astronuclear Laboratory

ALLOY 23 7 HOURS 1200°C A IR

Figure 17. The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 23 (Nb-15NbAl₃-15NbCo₂-10NbNi) at 75X and 500X.

Figure 18. Effects of 7 Hour and 24 Hour Oxidation in Air at 1200°C on the Microstructure and Oxide-Metal Interface of Alloy 24 (Nb-33NbAl₃-10NbCo₂) at 75X.

Figure 19. Effects of 7 Hour and 24 Hour Oxidation in Air at 1200°C on the Microstructure and Oxide-Metal Interface of Alloy 24 (Nb-30NbAl₃-10NbCo₂) at 500X.

ALLOY 24 + Y (ALLOY 36)

ALLOY 24 + Y₂O₃ (ALLOY 37)

7 HOURS 1200°C AIR

Figure 20. Effects of Y and Y₂O₃ on the Microstructure and Oxide Metal Interface of Alloy 24 (Nb-30NbAl₃-10NbCo₂) at 75X.

Figure 21. Effects of Y and Y_2O_3 on the Microstructure and Okide Matal Interface of Alloy 24 (Nb-30NbAl₃-10NbCo₂) at 500X.

7 HOURS 1200°C AIR

Figure 22. The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 25 (Nb-10NbAl₃-30NbCo₂) at 75X and 500X.

Figure 3 shows the effects on the microstructure of adding Y and Y_2O_3 to alloy 13 (Nb-25NbAl₃-10Co (Nb-11.6Al-10Co)). Without the electron beam microprobe analysis it is difficult to see a real difference on the oxide-metal interface, with the exception that the metal oxide thickness is small for alloy 13 as would be expected from the measured oxidation rates. Figure 4 shows the metal affected zone at 500X. The affected metal zone is about 30µ, while the oxide scale for alloy 13 is 140 to 150µ thick. Alloy 17 oxidized for ~7 and ~24 hours is shown in Figures 5 and 6. While the oxide is thicker as a result of the longer oxidation, a 3 fold increase in oxidation time, the affected metal zone increases only about 5 to 10µ.

Figures 7 and 8 are the photomicrographs of alloy 17 with Y and Y_2O_3 added. Both of these additions increased the metal affected zone by ~10-15µ. Figures 9 and 10 show the effects of oxidation on alloy 18. The metal affected zone of the alloy oxidized for ~24 hours (18-C) is actually thinner than that of the alloy oxidized for ~7 hours. Note the coarsening of the microstructure as the time at 1200°C is increased. The metal oxide interface of alloy 19 is shown in Figures 11 and 12 for oxidation times of ~7 and ~24 hours. For this alloy, the metal affected zone increased from ~20-23µ for the 7 hour oxidation to ~40-45µ for the 24 hour 1200°C exposure. The microstructures of alloy 20 and 21 are shown in Figures 13 and 14. Both structures appear to be definite coarse 2 phase structures and did not show good oxidation properties.

Figures 15 and 16 show the results of Y and Y_2O_3 additions to alloy 22. The yttrium addition increased the depth of the metal affected zone from ~25µ to 40µ. Figure 17 characterizes the oxide metal interface of alloy 23.

Figures 18 through 21 characterize the oxide metal interface of alloy 24, oxidized for both ~7 and ~24 hours and for alloys 36 and 37 which is alloy 24 with Y and Y_2O_3 ,

respectively. The microstructure of alloy 25 is shown in Figure 22. For most of the alloys the depth of the metal affected zone is between 20 and 40 microns (5 to 10 mils).

3.2.3 Oxidation Behavior of Nb-Fe-Al Alloys

Alloys 14, 15, and 16 exhibited the best oxidation behavior for the Nb-Fe-Al alloys investigated. The parabolic rate constants are shown in Table 4. Both alloys 15 and 16 exhibited a decreasing parabolic rate constant as oxidation times increased. For these alloys, the parabolic oxidation constants were found to range from 0.042 to 0.33 $(mg/cm^2)^2/min.$, corresponding to a metal consumption rate of from ~1.8 mils/100 hours to about 4.5 mils/100 hours, excluding the metal affected zone in the substrate. As reported for the Nb-Co-Al alloys, the addition of Y or Y_2O_3 to Nb-Fe-Al alloys caused an increase in the oxidation rate in air.

3.2.4 Metallography of the Oxide-Metal Interfaces (Nb-Fe-Al Alloys)

Figures 23 through 30 characterize the oxide metal interface and the metal affected zone for the Nb-Fe-Al alloys. For alloys 14 (Figures 29 and 30) and 16 (Figures 24, 25, and 26) the metal affected zone is less than 20 μ . However, for alloys 11 (Figure 23) and 15 (Figures 27 and 28) the metal affected zone is ~70 μ (~17 mils). As the oxidation time is increased from ~7 hours to ~24 hours at 1200°C, the metal affected zone for alloy 16 does not increase with time, while for alloy 15, the depth of the metal affected zone does increase with increased oxidation time.

3.2.5 Nb-Cr; Nb-Cr-Al Alloys

The Nb-Cr alloy 12 exhibited the lowest oxidation rate for this group of alloys. Alloy 3 exhibited linear oxidation behavior and alloy 7 oxidized at a rate equivalent to ~20-23 mils/100 hours. Alloy 31 was the Nb-Cr-Al-Co alloy designated DU-1 and reported in the

7 HOURS 1200°C AIR

Figure 23. The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 11 (Nb-25NbAl3-25NbFe2 at 75X and 500X.

7 HOURS 1200°C AIR

Figure 24. The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 14 (Nb-10Al-30NbFe₂) at 75X and 500X.

ALLOY 14 + Y (ALLOY 28)

7 HOURS 1200°C AIR

Figure 25. Effects of Y in the Microstructure and Oxide Metal Interface of Alloy 14 (Nb-10Al-30NbFe₂) at 75X and 500X.

7 HOURS 1200°C AIR

Figure 26. Effect of Y₂O₃ in the Microstructure and Oxide Metal Interface of Alloy 14 (Nb-10Al-30NbFe₂) at 75 and 500X.

Figure 27. Effects of 7 Hour and 24 Hour Oxidation in Air at 1200°C on the Microstructure and Oxide-Metal Interface of Alloy 15 (Nb-10Al-30Fe) at 75X.

Figure 28. Effects of 7 Hour and 24 Hour Oxidation in Air at 1200°C on the Microstructure and Oxide-Metal Interface of Alloy 15 (N's-10Al-30Fe) at 500X.

Figure 29. Effects of 7 Hour and 24 Hour Oxidation in Air at 1200°C on the Microstructure and Oxide-Metal Interface of Alloy 16 (Nb-25NbAl₃-15Fe) at 75X.

Figure 30. Effects of 7 Hour and 24 Hour Oxidation in Air at 1200°C on the Microstructure and Oxide-Metal Interface of Alloy 16 (Nb-25NbAl₃-15Fe) at 500X.

Phase III final report. Alloy 31 resulted when Y_2O_3 was added to the DU-1 alloy composition. An attempt was made to add Y, but the alloy cracked on cooling when it was arc-melted. The parabolic oxidation constant of 0.092 $(mg/cm^2)^2/min$ with Y_2O_3 compares with a parabolic oxidation constant of ~0.040 reported for the alloy without Y_2O_3 .

3.2.6 Metallography of the Nb-Cr, Nb-Cr-Al, and Nb-Cr-Co-Al Alloys

Figure 31 to 34 present the microstructures of the oxide metal interface for the Nb-Cr base alloys. Both alloy 3 and 7 exhibited segregated structures similar to those exhibited by alloy 20 for the Nb-Co-Al system. Inherent with this structure seems to be relatively poor oxidation behavior. Figure 33 shows the microstructure of alloy 12. Although this alloy exhibited a low oxidation rate, the metal affected zone is over 160μ (40 mils) deep. This kind of metal affected zone has been shown to be characteristic of Nb-Cr alloy systems. Figure 34 shows the microstructure of the DU-1 + Y_2O_3 alloy which also exhibits a large retal affected zone. Both NbCr₂ and DU-1 reported during Phase III of this program exhibited similar behavior.

Microhardness determinations were made on the alloys evaluated and are given in Table 6.

3.3 X-RAY DIFFRACTION ANALYSIS OF THE OXIDE FILMS

The results of the x-ray analysis are presented in detail in Appendix C where the d-spacings in angstroms, an estimate of the relative intensity in the case where the results were taken from a Debye-Scherrer film and calculated relative intensities measured from the x-ray diffractometer strip chart trace, are listed. Also indicated for each film studied are the lines which correspond to particular compounds as reported by the ASTM index. Where no indication is given, the constituent or phase responsible for that particular line or lines could not be readily determined.

Figure 31. The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 3 (Nb-35NbCr₂-30Nb₂Al) at 75X and 500X.

(ETCHED)

ALLOY 7

7 HOURS 1200°C AIR

Figure 32. The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 7 (Nb-15NbCr₂-10NbAl₃-4Al-9Cr) at 75X and 500X.

7 HOURS 1200°C A IR

Figure 33. The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 12 (Nb-40NbCr₂-10Cr) at 75X and 500X.

Figure 34. The Effect of a 7 Hour Oxidation Exposure in Air on Alloy 31 (Nb-9. 8AI-18. 8Cr-14.7Co-1.96Y₂O₃) at 75X and 500X.

Alloy No.	VHN	Alloy No.	VHN	
Nb-Fe-Al Alloys		Nb-Cr-Al	Nb-Cr-Al Alloys	
11-B 14-B 15-B 15-C 16-B 16-C 28-B 29-B	814 850 847 881 860 844 831 829	3-B 7-B <u>Nb-Cr Alla</u> 12-B <u>Nb-Cr-Al-</u>	514 798 2 <u>7</u> 763 <u>Co Alloy</u>	
Nb-Co-Al 13-B 17-B 17-C 18-B 18-C 19-B 19-C 20-A 21-A 22-B 23-A 24-C 24-C 25-A	Alloys 842 747 846 821 860 717 792 667 336 806 662 779 789 579	31-B	865	
26-B 27-B 32-B 33-B 34-B 35-B 36-B 37-B	809 852 892 860 756 768 747 782			

Table 6. Average Vickers Hardness Numbers for the Nb Alloys After Oxidation

The ASTM index contained no $CoNbO_4$ or $CoNb_2O_4$ cards. These compounds were arc melted from Nb_2O_5 and Co_3O_4 or Co_2O_3 , and the diffraction pattern was determined and is presented in Appendix C. The oxide structures determined from the x-ray analysis are categorized below according to the alloy designation. Table 7 gives a brief summary of the compounds formed on the oxides for the alloys. Table 8 gives some observations concerning the visual appearances of these oxides during sampling.

3.3.1 Nb-Cr Alloy

The Nb-Cr alloys 1-5-10-12 had similar oxide structures. Basically, these were a good match to card 20-311, CrNbO₄, a tetragonal oxide with $a_0 = 4.635$ Å and $c_0 = 3.005$ Å. Alloy 5 also showed some $a-Al_2O_3$, the source of which is not clear unless some Al_2O_3 from the sintering or oxidation supports contaminated the scale. These are Nb-Cr alloys with no Al addition.

The oxide formed on alloy 12 exhibited only the $CrNbO_4$ structure. However, alloy 1-A and 1-B and 12-A showed additional lines which closely matched a monoclinic NbO_2 (19-859). Alloy 5 showed an especially complex oxide with possible lines for $CrNbO_4$ (20211), NbO_2 (19-859), Cr_2O_3 (6-0504, and $NbCr_2$ (5-0701). The elemental chromium content of alloys 1, 5, and 12 go from 18.5 to 22.2, to 31.1 weight percent Cr. At 31.1 wt.% Cr, the alloy tends to form the pure $NbCrO_4$ rutile structure. The difference between the alloy with the suffix A and suffix B are that the A alloys have been pressed and sintered while the B alloys have been arc melted. For alloy 12-A, the NbO_2 (19-859) phase is present along with the rutile $NbCrO_4$ while for the arc melted 12-B alloy only the rutile phase is present. For 12-A both Nb and $NbCr_2$ were present in the matrix. For 12-B after arc melting, a homogeneous Nb-Cr alloy was developed, and this difference was reflected in the respective oxide structures. Figure 35 is a photograph of the results of the dispersion x-ray analysis of the oxide removed from sample 12 showing Nb-Cr and a small amount of Fe in the oxide. The source of the iron is unknown.

	Powder or Diffraction	Compounds in Oxide	Strongest Unindexed Lines
Nb-Fe-Al			
11-A+	Р	NbAlO4(14-494); Al202-9Nb20+ (16-545)	1.625
11-B	Р	NbAIO (14-494)	2. 92: 2. 87
14-B	Р	NbA104(14-494); g-FenOn	_
14-B	D	$FeNbO_4(16-374); a = Fe_2O_3$	-
14-C [*]	D	Al_ONb_O_(16-545)	2.56; 1.87; 1.74
15-8	Р	NbAIO_(14-494); FeNbO_(16-358)	3. 32; 2. 95; 2. 54; 2. 49; 1. 425
15-C	P		2.87; 2.65; 1.665
15-8	D	6 6 и и	-
16 -A	Р	-	2. 53; 2. 33-4; 2. 23; 2. 19
16- B	Р	N6AIO ₄ (14-494)	2. 96; 2. 86
16-C	Р		2.88; 1.67
28-8	D	a-Fe ₂ O ₃	-
29-B	D	a-Fe ₂ O ₃	-
Nb-Co-Al			
13 -A	P	AIN604(14-494); AI203-9N6205(16-545)	2.88; 1.44
13-B	Р	.н. н. н. н. н. 	3. 30; 2. 93
17 -A	P	Al ₂ O ₃ -9Nb ₂ O ₅ (16-545)	3. 65; 2. 95; 2. 48; 1. 725; 1. 53; 1. 45
17-8	P	NbAIO4(14-494)	3. 52; 2. 91
17-C	P	н н	3. 59; 3. 51
18-A	P	-	2. 39; 2. 32; 2. 28; 2. 23; 2. 17; 1. 357
19 - A	Р	NbA104 (14-494)	3. 40; 2. 93; 2. 04; 1. 675
19 -8	Р	•	3. 70; 3. 51; 2. 92
19-C	P	-	3. 70; 3. 51; 3. 39; 2. 67; 1. 568
20-A	P.	Al203-9Nb205(16-545)	2. 95; 2. 68; 2. 40
21-A	Р	n n n	2. 95; 2. 65 - 2. 70; 2. 40
22-🔺	P	Al ₂ O ₃ -9Nb ₂ O ₅ (16-545); NbO ₂ (19-859)	2. 95; 2. 68; 2. 40
22 -8	Р	-	3. 67; 3. 55; 3. 29; 2. 79; 2. 69; 2. 53
23 - A	P	Al ₂ O ₃ -9Nb ₂ O ₅ (16-545)	2.95
24 - A	Р	AI203-9Nb205(16-545)	2, 34; 2, 22-3; 2, 185
24-8	Р	N6A104(14-494)	3, 65; 3, 53; 3, 41
24-C	Р	an an	-

Table 7. A Summary of the Oxides Formed on the Specific Alloys

* After grinding

A denotes pressed and sintered alloy

B denotes arc melted alloy oxidized for 7 hours

C denotes arc melted alloy oxidized for 24 hours

Table 7 (Continued)

	Powder or Diffraction	Compounds in Oxide	Strongest Unindexed Lines
25-A	Р	Al ₂ O ₃ -9Nb ₂ O ₅ (16-545)	2. 95; 1. 725; 1. 705; 1. 45
26-B	Р	AIN604(14-494)	
26-в	D		2. 95; 2. 87; 2. 79; 2. 59; 2. 56; 2. 45; 1. 87; 1. 45
27-В	Р		3. 70; 3. 51; 3. 39; 3. 07; 2. 91; 1. 57
31-в	D		3. 28; 2. 53; 1. 71
32-B	D		2. 95; 1. 87; 3. 57
33 - B	D		2. 95; 1. 87; 3. 64; 1. 71; 1. 53; 1. 45
36-B		NbAIO4(14-494); AI2O3-9Nb2O5(16-545)	2.97; 1.73
37-B			2, 95; 2, 49; 1, 45
Nb-Cr-Nb-Cr-Al			
1 – A and 1 – I	B P	CrNbO ₄ (20-311); NbO ₂ (19 - 859)	-
5 - A		CrNbO4(20-311); NbO2(19-859); NbCr2(5-0701) -	
5-B		Cr ₂ O ₃ (6-0504); NbCr ₂ (5-0701); NbO ₂ (19-859 and CrNbO ₄	2.78; 2.085
12 - A		NbCrO ₄ (20-311); NbO ₂ (19-859)	3.67
12 - B		NbCrO ₄ (20-311)	-

Table 8. Comments on Oxide Characteristics While Sampling for X-ray Powder Analysis

Sample No.

13-B	The coating chipped off easily in large pieces.
14-B	Silvery thick coating; large piece broke off easily; Debye Scherrer film with Co/Fe radiation; strip chart traces on flat surface with Co/Fe radiation before and after grinding surface.
15-B	Gray thick coating; large pieces broke off easily; Debye Scherrer film and strip chart trace of flat surface with Co/Fe radiation.
15-C	Silver-gray thick coating; Debyb Scherrer film with Co/Fe radiation.
16-B	Gray thick coating; Debyb Scherrer film with Co/Fe radiation.
16-C	Gray thick coating; chipped off easily; Debye Scherrer film with Co/Fe radiation.
17-B	Purplish-gray coating; difficult to remove; Debyb Scherrer film with Co/Fe radiation.
17-C	A large piece of the bluish colored surface came off easily.
19-B	Dull gray with trace of purple coating; difficult to remove; Debyb
19-C	Dark gray with purple trace; large crack made removal fairly easy; Debyb Scherrer film with Co/Fe radiation.
22-B	The dark gray surface coating was very difficult to chip off.
24-B	The dark purplish-gray surface contained a crack which made removal easy. Without the pre-existing crack, removal would have been difficult.
24-C	The dark gray surface coating was difficult to chip off.

3.3.2 Nb-Fe-Al Alloy

Alloys 11, 14, 15, 16, 28, and 29 are Nb-Fe-Al alloys. Alloy 11 shows a good correlation to card 14-494 an AlNbO₄ rutile structure and the compounds $Al_2O_3-9Nb_2O_5$ and possibly $Al_2O_3-25Nb_2O_5$, card file numbers 16-545 and 16-546, respectively. It is quite similar to the oxide grown on DU-4, the Nb-Fe-Al alloy examined during Phase III. Alloy 16, however, is very difficult to match to any card in the index. This is quite interesting in light of the fact that the iron in alloy 16 is elemental at 15 wt. % and was made by powder techniques, while the iron in alloy 11, at 13.7 wt.%, was alloyed as the NbFe₂ intermetallic, and the DU-4 alloy was arc-melted. This indicates that the iron addition as an intermetallic does influence the structure of the oxide formed.

The oxide from alloy 14 is described by the d-spacings listed in column 1 of Table C-6. This column represents powder pattern data taken from the entire oxide cross section. This oxide is predominantly NbAlO₄ (14-494) with some α -Fe₂O₃ present. The second column in Table C-6 shows the results of the x-ray diffractometer trace made on the outside surface of the oxide while still intact on the metal surface. This oxide appears to be a mixture of FeNbO₄ and α -Fe₃O₄. From the previous program Phase III, the oxide formed on DU-4 alloy was shown by microprobe analysis to have an iron-rich layer of oxide on the surface and then an iron depleted layer further into the oxide with an iron buildup in the metal matrix just below the oxide metal interface. The surface after grinding (\approx 20 mils)g ives the structure, shown in the third column which is difficult to analyze, fitting none of the ASTM cards for the Nb-Fe-O-Al systems. However, some comments should be made about the strip chart traces. The lack of a sufficiently large flat surface area introduces two difficulties. First, if the surface area does not contain the entire beam, then the signal-to-noise ratio will be decreased. Second, it is difficult to accurately align a small flat surface in the diffractometer. This causes a decrease in the signal-to-noise ratio and a shift in the positions of the Bragg

^{*} See Appendix C.

reflection peaks. If the flat surface on your samples were larger (e.g., not cut in half) we should be able to obtain accurately positioned Bragg reflection peaks with higher signal-tonoise ratios.

The peaks being compared for alloy 14 should, however, be relatively oriented to each other since they were taken from the same surface. These results do show a gross difference between the outer oxide structure and the oxide below the surface.

The oxide from alloy 15 was shown to be composed of NbAlO₄ (14-494) and FeNbO₄ (16-358) (orthorhombic). The oxide grown on alloy 16 is difficult to identify. Some NbAlO₄ (14-494) can be identified in the scales. Alloy 15-C and 16-C have been oxidized for 24 hours. The oxides are quite similar to the 15-B and 16-B which were grown on the same alloy for only 7 hours. Both of these alloys exhibited increased oxidation resistance as the oxidation time increased, and it appears that the oxide associated with the 15-C and 16-C alloys is more protective.

Alloys 28 and 29 are alloy 14 with Y, and Y_2O_3 , respectively, added to the system. The defractometer scan of the surface indicates the formation of α -Fe₂O₃ (13-534) at the oxide surface as the predominant oxide constituent.

Figures 36 through 39 give the results of the EDAX analysis on the Nb-Fe-Al alloys. A slight amount of Cr and Co appear in the oxide of alloy 11 (Figure 36) and a small amount of Ti (Figure 37) appears in the oxide of alloy 15. The alloy with Y added (alloy 28) exhibits Y in the oxide. However, no Y was observed for alloy 29 in which Y_2O_3 was added. This indicates that possibly the Y_2O_3 is remaining in the metal matrix.

a,

C

æ.

m

0

(a) ALLOY 11-B

60

Energy Dispersion X-ray Analysis (EDAX) of the Oxide formed on Alloy 16 (Nb-25NbAl₃-15Fe) after 7 and 24 Hours Exposure to Air at 1200°C. Figure 38.

Although $NbAlO_4$ is identified by diffraction analysis, the EDAX photographs show no Al in the oxide. Presumably, this is because Al is an extremely light element and cannot be expected to be shown.

3.3.3 Nb-Co-Al Alloy

Alloys 13 and 17 through 27 and 32 through 37 are Nb-Co-Al alloys. The scales formed on these alloys are difficult to characterize. All appear to have a rutile type oxide structure. Some of the x-ray films do match $AlNbO_4$ (14-494). None of the patterns match the $Nb_2Co_4O_9$ (hemitite) (13-494). There is no card for the columbite Nb_2CO_6 or the rutile $NbCoO_4$ both possible structures in this system⁽⁵⁾. These samples have been prepared, and the x-ray analysis of these results is shown in Appendix C.

All of these Nb-Co-Al alloys show the Al₂O₃-9Nb₂O₅ and Al₂O₃-25Nb₂O₅ structures except 18 and 25. A 2.95 dÅ line becomes increasingly strong as one goes from alloys $19 \rightarrow (24, 13) \rightarrow (20, 22, 23) \rightarrow 21 \rightarrow 17 \rightarrow 25$. This sequence also shows a higher cobalt or cobalt/aluminum ratio as one progresses from 19 to 25. Alloy 17 has 15 wt. % elemental cobalt, alloy 21 has 8.4 wt. % cobalt to 1.9 wt. % Al, and alloy 25 has a 16.8 wt. % Co to 4.4 wt. % Al. From this trend, the assumption that the 2.95 dÅ line is from a NbCoO₄ rutile or Nb₂CoO₆ columbite is quite reasonable. In fact, a fairly close match of some of the lines in the Nb-Co-Al alloys can be made against a columbite structure of Nb-Ni-O, (15-159). The x-ray analysis of the NbCoO₄ oxide and the Nb₂CoO₆ oxide do show strong lines at several d spacings between 2.90 to 2.95.

The composition of the oxide scales as determined by EDAX is shown in Figure 40 through 46 for the Nb-Co-Al alloys. These analysis indicate that all of the elements in alloys are present in the scale although the Al peak is quite low.

* Tungsten Excitation

Figure 46. Energy Dispersion X-ray Analysis (EDAX) of the Oxide Formed on Alloy 22 (Nb-10NbCr₂-15NbAl₃-15NbCo₂)

Table C-14 presents the diffraction results for the oxides formed on alloy 24 in the pressed and sintered state as well as for the arc-melted alloy oxidized for 420 and 1410 minutes. Definite differences are apparent for each oxide. Noted by an asterisk on the table are the lines that match the rutile NbAlO₄ oxide structure. The oxide seems to reach a more stable structure and becomes the predominant oxide as the oxidation time increases. The oxide of 24-B does not give the definite strong NbAlO₄ pattern. Although it is close to this pattern, a strong 3.53 line on 24-B apparently shifts to a strong 3.56 line on 24-C. The medium intensity 3.65 line on 24-B disappears on 24-C. A 2.68 medium line on 24-C does not appear on 24-B. Sample 24-A meanwhile has a strong 2.34 line and definite lines at 2.49 - 2.54, 2.41, and 2.22 - 2.23. These lines seem to indicate Al-Nb compounds such as 12-85 (AlNb₃), 14-458 (AlNb), 15-598 (AlNb₂), and 13-146 (AlNb₃). The compounds are feasible due to the mixing of NbAl₃ and Nb during the sintering process for 24-A. The conclusion drawn from these results is that a definite time period is required to form a protective oxide structure on some of the alloys.

Alloy 17 (Table C-9) is another alloy for which x-ray results of the oxide formed during a 7 hour and 24 hour oxidation exposure have been determined. The same conclusion can be reached as indicated above for alloy 24. The NbAlO₄ structure appears to stabilize as time at temperature increases. Again, there is a distinctly different oxide formed in the pressed and sintered sample when compared with the arc-melted sample. The compound $Al_2O_3^-$ 9Nb₂O₅ appears as one of the components in the oxide on the pressed and sintered sample.

The d-spacings are presented in Tables C-13 and C-5 for alloys 22 and 13, respectively. Both of these samples cannot be positively indexed, although $Al_2O_3 - 9Nb_2O_5$ is present in the oxide formed on the pressed and sintered sample for alloy 22.

Alloy 18 gives an oxide whose structure is distinctly different from the other oxides. Alloys 20, 21, and 22 gives a similar oxide structure in the as-pressed and sintered configuration. Mostly, the compound $Al_2O_3-9Nb_2O_5$ is formed. The oxides on the Nb-Co-Al alloys with Y and Y_2O_3 added have been examined using the diffraction technique while the oxide is still on the sample. With the exception of alloys 36 and 37 and 26, it is not possible to determine the constituents of the oxides. The oxides for 26, 36, and 37 do contain $AlNbO_4$ (14-494) as the predominant oxide species.

Again some of the lines obtained for $CoNbO_4$ and $CoNb_2O_6$ appear to match some of the lines which cannot be positively identified as being associated with a given species listed in the ASTM card index.

4.0 DISCUSSION OF RESULTS

Figures 47 and 48 are ternary phase "maps" of the composition investigated. The oxidation behavior is also a definite function of alloy composition and good and bad behavior is denoted by an "iso-oxidation" line on each figure. If one examines the oxide phases listed in Table 7 in light of the compositions plotted in Figures 47 and 48 in most cases the rutile oxides NbAIO₄ and FeNbO₄ are associated with the alloys with the slowest oxidation rates. On the other hand, the alloys which exhibit the poorest oxidation performance contain $Al_2O_3-9Nb_2O_5$ type oxides. In the case of the best Nb-Cr alloy, the rutile phase CrNbO₄ was associated with alloys with good oxidation performance. These results confirm the findings of the Phase III program. However, it is very difficult to locate and analyze the oxide scales to determine if any spinel-type compounds are present.

Within the context of several summaries of the state-of-the-art of our understanding of the oxidation behavior of niobium alloys in a paper by Prof. Stringer at the AGARD Specialists meeting⁽⁴⁾ and in an article by Kofstad⁽⁵⁾, a more detailed understanding of the mechanisms of oxidation of Nb alloys is required. Throughout this present program; i.e., Phase I to Phase IV, we have attempted to provide an understanding of the oxidation behavior by attempting to characterize the scales formed on alloys previously reported to possess good oxidation behavior with little regard to the other alloy properties such as strength and ductility. In taking this approach, we have established the role the rutile structures piay in the formation of a protective oxide on these alloys. The question still remains, "is there some other oxide layer or intermetallic layer which is rate controlling, or have we sufficiently lowered the melting point or increased the plasticity of the scales formed on these oxides and only increased the oxide structural integrity"? The Nb-Al-V system and the Nb-Ti-W both studied by Wlodek ^(6, 7) gave good oxidation performance based on the formation or stabilization of the NbO structure. However, these best alloys had parabolic oxidation

TERNARY MAP Nb-Fe-AI SYSTEM

Figure 47. Ternary Plot of Elemental Compositions Showing the Region Where Parabolic Oxidation Constant (k_p) Being Less than or Greater than 1.0 (mg/cm²)²/min.

TERNARY MAP Nb-Co-AI SYSTEM

Figure 48. Ternary Plot of Elemental Compositions Showing Regions of Parabolic and Linear Oxidation in the Nb-Co-Al System

constants of the order of 17.6 $(mg/cm^2)^2/min$ at 1200°C or a metal consumption rate of ~35 mils/100 hours compared with the metal consumption rates measured in this program of 3.0 to 6 mils/100 hours.

Rapp and Goldberg⁽⁸⁾ have suggested that rhenium, a noble metal, when added to a Nb-Zr alloy, tended to accumulate in the metal below the oxide metal interface. Microprobe results determined during Phase III of this progran do, in fact, show that Co, Ni, and Fe do accumulate in the metal substrate just below oxide metal interface. The accumulation of the more noble metals could decrease the chemical potential of the niobium. In alloys containing Al, Al_2O_3 formed by internal oxidation could react with the accumulated noble metal to form BAl_2O_4 spinels at the oxide metal interface. A lack of adequate phase information for the alloys and oxides make the detailed development of mechanisms extremely difficult.

The oxygen transport studies initiated during the program have indicated that some oxides, such as the rutile $CrNbO_4$, has a slower rate of oxygen transport through the oxides than $AINbO_4$. Yet it has been shown in this study that $AINbO_4$ is associated with the improved oxidation performance of the Nb-Fe-Al and Nb-Co-Al alloys, and these alloys show the same low oxidation as the NbCr alloys without the associated internal oxidation.

The best alloys examined during this program based on the oxidation behavior and metal contamination are summarized in Table 9. Alloy 15 gives a 4.3 mils/24 hours to metal loss and metal affected zone; alloy 16 gives 2.33 mils/24 hours; alloy 17 gives 2.45 mils/24 hours; alloy 24 gives 2.53 mils/24 hours; and alloy 19 gives 4.2 mils/24 hours all calculated at 1200°C oxidation temperature. Therefore, alloys 15, 16, and 24 are the best alloys based on minimizing the overall detrimental effects of oxygen on the alloy.

	Metal Zone	Affected Depth	Parabolic Constant		Parabolic Meta Constant Consump		Metal Consumption
Alloy	(ų)	(mils)	ime (hrs)	mg ² /cm ⁴ /min	mils/ 24 hrs.		
15	60 90	2.36 3.54	7 24	0. 042	0. 76		
16	19 20	0. 75 0. 79	7 24	0.17	1, 54		
17	18 25	0.71 1.0	7 24	0.15	1,45		
24	6 16	0. 2 0. 63	7 24	0.26	1.9		
19	22 40	0.87 1.6	7 24	0.47	2.6		
22	30	1.2	7	0.30	2.1		
14	30	1.2	7	0.24	1.8		

Table 9.Comparison of Depth of Metal Affected Zone and
Oxidation Kinetics of the Most Promising Alloys

* Based on metal consumption during oxidation.

5.0 CONCLUSIONS

1. Nb-Co-Al and Nb-Fe-Al alloys give improved oxidation behavior

73.4Nb-15Fe-11.6AI	k_ ≕ 0.17	3.3 mils/100 hrs.	
60Nb-30Fe-10Al	k = 0.043	1.6 mils/100 hrs.	1200°C
80. 5 Nb-5. 6Co-13. 9AI	k = 0.26	4.1 mils/100 hrs.	

- 2. Long time oxidation tests (approximately 24 hours) are required to form the most protective scale on these alloys.
- 3. Oxygen diffusion rate measurements on Co₃O₄-Nb₂O₅ indicate a complex temperature-oxygen partial pressure-oxide phase equilibrium relationship.
- 4. The buildup of Co and/or Fe in the metal at the oxide-metal interface contribute to the decreased oxygen penetration into the base metal.
- 5. NbAlO₄, NbCrO₄, and NbFeO₄ rutile-type oxides are responsible for the improved oxidation behavior of these alloys.

6.0 REFERENCES

- 1. Svedberg, R. C., "Modification and Control of Oxide Structures on Metals and Alloys", WANL-PR(XXX)-001, April 1971.
- 2. Svedberg, R. C., "Modification and Control of Oxide Structures on Metals and Alloys (II)", WANL-FR-M-72-003, May 1972.
- 3. Svedberg, R. C., "Modification and Control of Oxide Structures on Metals and Alloys (III)", WANL-FR-M-73-003, February 1973.
- 4. Strunger, J., R. I. Jaffee, and T. F. Kearns", AGARD Conf. Proceedings No. 120, "High Temperature Corrosion of Aerospace Alloys", March 1973.
- 5. Promisel, N. E., (Ed.), <u>The Science and Technology of Tungsten, Tantalum</u>, Molybdenum, Niobium, and Their Alloys, Pergamon, N.Y., 1964, p 247.
- Wlodek, S. T., AIME Met. Soc. Conference on Columbium Metallurgy, Vol. 10, 1961, p 175.
- 7. Wlodek, S. T., AIME Met. Soc. Conference on Columbium Metallurgy, Vol. 10, 1961, p 553.
- 8. Rapp, R. A. and G. N. Goldberg, Trans. AIME, Vol. 236, 1966, p 1619.

APPENDIX A AIR OXIDATION WEIGHT GAIN DATA

TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-S	QR
1.	. 3	.2	.03	1
2.	2.8	1.6	2.50	2
3.	5.8	3.3	10.74	3
4.	6.1	3.4	11.88	
5.	5.8	3.3	10.74	7
10.	7.3	4.1	17.01	7
15.	9.8	5.5	30.00	, í
20.	13.0	7.3	73.74	ŏ
25.	14.0	8.4	01.34	10
30.	17.1	9./	142.11	11
40.	21.1	11.9	204.31	12
50.	25.5	14.3	274.42	13
60.	29.3	10.0	603.99	14
90.	43.5	29.0	1126.23	15
120.	59.4		1882.68	15
150.	/6.5	54 3	2947.82	17
180.	96.1	64 7	4184.70	18
210.	114.7	75.9	5757.12	19
240.	134.3	87.2	7599.51	20
270.	174.3	99.0	9808.83	21
300.	107 8	111.5	12425.32	22
360.	218.3	123.3	15211.11	23
		7 - 8		
TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-S	QR
1.	. 0	. 0	.00	1
2.	3.5	1.9	3.70	2
3.	7.0	3.8	14.79	3
4.	7.5	4.1	16.98	4
5.	8.0	4.4	19.32	2
10.	10.0	5.5	30.19	, ,
15.	12,5	6.9	47.17	<u>.</u>
20.	15.2	8.4	07.72	0
25.	17.0	9.3	6/+22	1.0
30.	18.5	10.2	103.32	11
40.	23.0	12.6	212.11	12
50.	26.5	14.0	271.71	13
60.	30.0	10.7	485.03	14
90.	40.0	22.0	695.57	17
120.	48.0	20.4	940.00	16
150.	25.8	30.7	1160.49	17
180.	02.0		1395.97	18
210.	08.0	37.7 An 1	1605.00	19
240.	/3.0	42.6	1813.26	20
270.	11.2	45.1	2029.45	21
300.	DZ.U NA II	47.5	2232.02	22
330.		49.5	2445.36	23
300.	90.0	51.4	2039.25	24
340.	7312	• • •		

1	•	
	U.	- 14

TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-SOR
1.	1.5	.5	.28
	10	1.1	1.13
2.	4 0	2.1	4.53
3.	7.0	2 5	6.16
	7.0	2.0	9.09
5.	8.7	3.0	22 02
10.	13.5	4.0	
15.	17.5	6.2	38.71
20.	21.7	7.7	59.21
25	25.0	8.9	78.59
30	27.5	9.8	95.10
40	33 0	11.7	136.94
40.	37 0	13.1	172.15
50.	37.0	14 7	216.57
60.	41.2	14.7	167 27
90.	53.0	18.8	333.23
120.	64.0	22.7	515.06
150.	73.0	25.9	670.11
180.	80.0	28.4	804.79

11-A

TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-SQR
1.	1.0	. 3	.07
2.	3.0	.8	, 62
3.	7.0	1.6	3.36
4.	8.0	2.1	4.39
5	10.5	2.7	7,56
10	18.0	4.7	22.20
15	23.5	6.2	37.85
20.	28.2	7.4	54.50
25	31.0	A.1	65.86
20.	34 0	A.9	79.22
30.	30.0	0.7	98.96
40.	42 5	11 1	123.78
50.	42.5	12 2	148.18
00.	40.2		214 91
90.	20.0	14.7	205 10
120.	04.2	10.9	202+1V 165 36
150.	72.0	18.8	377.67
180.	78.0	20.4	416.93
210.	84.5	22.1	489.31
240.	90.0	23.6	555.08
270.	95.5	25.0	625.00
300.	101.0	26.4	699.06
330.	106.5	27.9	777.27
360.	111.5	29.2	851.97
390.	114.0	29.8	890.60

TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-	SQR
1.	.0	.0	.00	1
2.	2.5	1.4	2.06	2
3.	6.0	3.4	11.89	3
4.	6,5	3.7	13.95	4
5.	7.5	4.3	18.58	5
10.	11.0	6.5	39.97	6
15.	13.5	7.8	60.20	7
20.	17.1	9.5	96.58	5
25.	18.2	10.5	109.41	9
30.	20.2	11.0	134.77	10
40.	23.0	13.2	174.73	11
50.	25.8	14.6	219.86	12
60.	28.0	16.1	258.95	13
90.	54.8	20.0	400.00	14
120.	39.0	22.4	502.38	15
150.	44.0	25.3	639.45	10
180.	48.2	27.7	767.35	17
210.	52.8	30.3	920.01	18
240.	57.6	33.1	1095.84	19
270.	62.0	35.6	1269.65	20
300.	66.0	37.9	1438.76	21
330.	70.0	40.2	1618.44	22
360.	73.5	42.2	1784.33	23

12-A

TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-SQR
1.	63.0	16.4	267.77
2.	89.5	23.2	540.41
3.	98.5	25.6	654,56
4.	101.0	26.2	688.21
5.	104,5	27.1	736.73
10.	110.5	28.7	823.76
15.	114.0	29.6	876.78
20.	117.7	30.6	934.61
25.	120.0	31.2	971.50
30.	122.0	31.7	1004.15
40.	126.5	32.9	1079.59
50.	131.0	34.0	1157.77
60.	134.5	34.9	1220.46
90.	146.0	37.9	1438.08
120.	158.0	41.0	1684 20
150.	169.5	44.0	1018 20
180.	180.0	46 B	2146
210.	148.5	49.0	2307 10
240.	194.5	51 0	2404 08
270.	203.0	52 7	2700 17
300.	200 0	54 3	2044 04
330	211 0	J4,J 56 1	2740.74
530.	£13.0	22.3	3060.82

11-B

「「ない」の日本のでは、「いうない

		12 - 8	
TIME-MIN	WT-LOSS	HT-LOSS/AREA	(WT-LOSS/AREA)-SQR
1.	-1.0	0	. 81
2.	-1.0	6	.31 2
3.	1.0	. 6	.31 .3
4	1.0	. 6	.31 4
2.	.,	. 4	.15 5
15	2.0	1.1	1.25 6
20.	Z • /	1.5	2.28 7
25.	5.2	2.3	5.51 8
30.	6.0	2.9	8.44 9
40.	6.5	3.6	11.24 10
50.	7.0	3.9	13.19 11
60.	7.5	4.2	17.54 12
90.	9.0	5.0	25.28 14
120.	10.0	5.6	31.21 15
150.	11.5	6.4	41.28 16
180.	12.0	6.7	44.94 17
210.	13.2	7.4	54.38 18
270	14.0	7.8	61.17 19
300	17.0	8.4	70.22 20
330.	14 8	8.9	79.90 21
360.	16.8	9.1	82.92 22
390.	17.5	7. 4	88.09 23
420.	18.0	10.1	95.58 24 101.12 25
		13 - A	
TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-SOR
1.	2.0	. 6	34
2.	5.5	1.5	2.31
3.	8.5	2.3	5.51
4.	10.0	2.8	7.63
5.	11.0	3.0	9.23
10.	14,5	4.0	16.04
15.	17.5	4.8	23.37
20.	20./	5.7	32.70
30.	24 5	D • 4	40.37
40.	27.0	7 5	47.81
50.	30.0	8.3	27.03 48 48
60.	32.0	8.8	78.14
90.	38.0	10.5	110.19
120.	43.0	11.9	141.10
150.	48.0	13.3	175.82
180.	52.5	14,5	210.33
210.	57.0	15.7	247.93
240.	01.7	17.0	288.62
270.	00.U	18.2	332.41
330	71 5	17.6	36N - 60
360.	78.0	21 5	916+67 464 37
390.	81.5	22.5	707 <i>16/</i> 506 87
420.	84.5	23.3	544.87

		14-B	
TIME-MIN	WT-LOSS	WT-LOSS/AREA	(HT-LOSS/AREA)-SQR
1.	2.5	. 8	.58
2.	3.7	1.1	1.20
3.	0.4	1.7	3.78
	4.5	2.0	3.90
10.	8.8	2.7	7.15
15.	10.5	3.2	10.19
20.	13.0	4.0	15.61
25.	14.0	4.3	18.11
30.	14.8	4,5	20.24
40.	16.0	4.9	23.07
50.	1/.0	7.2 5.5	30.60
00.	20.8	6.3	39.97
120.	22.8	6.9	48.03
150.	25.0	7.6	57.74
180.	27.0	8.2	67.35
210.	28.7	8.7	76.10
240.	30.0	9.1	63.15
270.	31.7	9.0	¥2.04 101 83
300.	33.2	10.1	10.42
360.	35.8	10.9	118.41
390.	36.6	11.1	123.76
420.	38.0	11.6	133.41
		1 5-B	
TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-SOR
1.	3.0	.8	.58
2.	4,5	1.1	1.31
3.	7.5	1.9	3.04
4.	7.0	1.0	3.17
5.	A.5	2.2	4.68
15.	9.5	2.4	5.84
20.	11.7	3.0	8.86
25.	12.5	3.2	10.12
30.	13.5	3.4	11.60
40.	15.3	3.9	15.16
50.	16.7	4.6	21.03
00.	20.5	5.2	27.21
120.	22.5	5.7	32.78
150.	24.5	6.2	38.86
180.	26,5	6.7	45.47
210.	28.3	7.2	51.85
240.	29.5	7.5	56.35
270.	31.2	7.9	63.03
300.	32.7	5.J	71.51
330. 740	15./	0.U A.Q	79.31
390.	36.0	9.2	83,91
420.	37.0	9,4	88.64
AEA	17 6	0.5	91.05

•	~	~
- 1	· · ·	- F
		·

.

TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-	SQR
1				
1.	1.5	. 3	.08	1
2.	2.0	. 4	.14	2
3.	3.8	.7	.52	3
4.	3.3	. 6	. 39	
5.	3.0	. 6	. 32	2
10.	3.0	. 6	. 32	0
15.	3.5	• 7	. 44	
20.	5.5	1.0	1.08	8
25.	6.3	1.2	1.42	10
30.	0.0	1.3	2.03	11
40.	/.2	1.4	2.01	12
50.	8.3	1.0	2.70	1.5
00.	9.0	2 1	4.56	14
120	17 3	2.5	6.32	15
150	14 3	2.7	7.31	16
180.	15.3	2.9	8.37	17
210.	16.5	3.1	9.73	18
240.	18.0	3.4	11.58	19
270.	18.3	3.5	11.97	20
300.	19.5	3.7	13.59	21
330.	20.3	3.8	14.73	22
360.	21.7	4.1	16.52	25
390.	22.3	4.2	17.77	24
420.	23.5	4.4	19.40	25
450.	23.5	4.4	19.73	26
480.	24.5	4.6	21.45	27
510.	25.5	4.8	22.87	28
540.	25.8	4.9	23.79	29
570.	26.5	5.0	25.09	30
600.	27.1	5.1	26.24	31
630.	27.3	5.2	26.63	32
660.	28.3	5.3	28.62	33
690.	28.8	5.4	29.64	54
720.	29.5	5.5	30.68	37
750.	29.8	5.6	31./3	30
780.	30.3	5./	32.81	3/
810.	31.3	5.9	37.01	30
840.	31.5	6.0	37.40	37
870.	32.1	0.1	30.02	41
900.	33.1	6.3	37,13	42
930.	33.3	0.5	40.52	43
900.	33.0	6 5	42.04	44
990.	34.5	6.6	44.03	45
1020+	35.4	6.7	44.53	46
1080.	35.8	6.8	45.00	47
1110.	36.5	6.9	47.61	48
1140.	37.1	7.0	49.19	49
1170.	37.5	7.1	49.72	50
1200.	38.3	7.2	52.42	51
1230.	38.3	7.2	52.42	52
1260.	38.8	7.5	53.80	53
1290.	39.5	7.4	55.19	54
1320.	39.5	7.5	55.75	55
1350.	40,3	7.6	58.04	56
1380.	40.5	7.7	58.61	57
1410.	41.5	7.6	60.95	50

Figure A-1. Oxidation Behavior of Experimental Niobium Alloys at 1200°C

		16-B	
TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-SOR
1.	3.0	.7	. 47
2	4.0	.9	.84
2.	7.0	1.6	2.58
J .	8.5	1.9	3.80
2	9.0	2.1	4.26
	11 5	2.6	6.96
10.	13.5	3.1	9.59
12.	16 2	3.7	13.81
20.	17 5	4.6	16.11
27.	10 5	4.2	18.00
30.	20.5	4.7	22.11
40.	20.5	5 2	26.63
50.	22.7	5.6	29.05
60.	23.7	4 1	36.94
90.	20.7		45.7A
120.	29.5	0.0	53.47
150.	32.0	7.3	62.61
180.	34.5	/.•	70 08
210.	36.5	6.4	70.00
240.	38.5	8.8	96 20
270.	40.5	9.3	00.27
300.	42.5	9.7	95.02
330.	43.5	10.0	99.34
360.	45.0	10.5	100.73
390.	46.5	10.7	113./3
420.	48.0	11.0	121.20

		16-C		
TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-	SQR
1.	-,3	1	.01	1
2.	1.2	.3	.08	2
3.	4.2	1.1	1.13	5
5.	4.5	1.1	1.23	
10.	7.1	▲ •• 1 . 7	2.80	6
15.	8.5	2.0	4.02	7
20.	9.7	2.5	5.23	8
25.	11.4	2.7	7.23	9
30.	12.3	2.9	8.42	10
40.	14.0	3,3	10.90	11
60.	16.2	3,5	14.60	13
90.	18.7	4.4	19.45	14
120.	20.5	4.8	23.38	15
150.	22.5	5.3	28.16	16
180.	24.0	5.7	32.04	17
210.	25.2	5.9	35.32	18
290.	28.5	6.3 6 7	39.07	19
300.	29.5	7.0	48.41	21
330.	30.7	7.2	52.43	22
360.	32.0	7.5	56.96	23
390.	33.2	7.8	61.31	24
420.	34.5	8.1	65.44	25
420.	24.0	5./	32.04	20
510.	26.7	5.5	39.65	28
540.	28.5	6.7	45.18	29
570.	29.5	7.0	48.41	30
600.	30.7	7.2	52.43	31
630.	32.0	7.5	56.96	32
660.	33,2	7.8	61.31	33
720	34.3	0.1 5.7	32 04	24
750.	25.2	5.9	35.32	36
780.	26.7	6.3	39.65	37
810.	28.5	6.7	45.18	38
840.	29.5	7.0	48.41	39
870.	30./	7.2	52.43	40
930.	34.2	7.8	20.70	42
960.	34.5	8.1	65,44	45
990.	24.0	5.7	32.04	44
1020.	25.2	5.9	35.32	45
1050.	26.7	6.3	39.65	46
1080.	20.5	0./	47.18	4/
1140.	53.5	12.6	159.21	40
1170.	54.5	12.8	164,01	50
1200.	54.7	12.4	166.43	51
1230.	56.U	13.2	174.44	52
1260.	26.5	13.3	177.57	53
1290.	77.7	13.6	183.91	54
1350.	58.7	13,0 17.8	190+30	77 56
1380.	59.7	14.1	198.25	57
1410.	60.7	14.5	204.95	58
1440.	61.5	14.5	210.39	59
1470.	62.5	14.7	215.90	60
1700.	61 7	14.0	210.00	61 62
	vv1/	~ 7 + V	662117	06

TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-SOR
1.	2.5	.5	.28
2.	4.5	. 9	. 90
3.	7.0	1.5	2.18
4	7.5	1.6	2.50
5	8.0	1.7	2.85
10.	6.0	1.3	1.60
15.	9.0	1.9	3.61
20.	12.2	2.6	6.62
25.	13.5	2.8	8.11
30.	15.5	3.3	10.69
40.	17.5	3.7	13.63
50.	18.5	3.9	15.23
60.	20.0	4.2	17.80
90.	23,5	5.0	24.58
120.	25.5	5.4	28.94
150.	28.0	5.9	34.89
180.	29.5	6.2	38.73
210.	31.0	6.5	42.77
240.	33.0	7.0	48.47
270.	34.5	7.3	52.98
300.	35.5	7.5	56.09
330.	36.5	7.7	59.30
360.	37.5	7.9	62.59
390.	38.5	8.1	65.97
420.	39.5	8.3	69.44
450.	40.5	8.5	73.01

		17-C		
TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-S	GR
	2 6	5	30	1
1.	2.3	.7	. 76	2
2.	A 5	1 4	2.01	3
4	6 2	1.4	1.83	4
5.	6.5	1.4	2.01	5
10.	8.5	1.9	3.44	6
15.	10.0	2.2	4.77	7
20.	12.5	2.7	7.45	6
25.	13.1	2.9	8.18	9
30.	14.0	3.1	9.34	10
40.	15.7	3.4	11.75	11
50.	17.0	3.7	13.78	12
60.	18.0	3.9	15.45	13
90.	16.0	3.5	12.20	14
120.	22./	5.0	29.37	12
150+	24.7	2.7	27.00	17
100.	20.2	5.0	37.38	1.8
240.	20.5	6.4	41.49	19
270.	30.5	6.7	44.35	20
300.	31.5	6.9	47.30	21
330.	32.5	7.1	50.35	22
360.	\$3.5	7.3	53.50	25
390.	54.5	7.5	56.74	24
420.	35.5	7.8	60.08	25
450.	36.5	8.0	63.51	26
480.	37.5	8.2	67.04	2/
510.	38.3	8.4	07.73 71 40	20
590.	38.7	8.A	71.70	30
600.	40 5	8.8	78.20	31
630.	41.3	9.0	81.31	32
660.	42.2	9,2	84.90	33
690.	42.5	9.3	86.11	34
720.	43.5	9.5	90.21	35
750.	44.5	9.7	93.56	30
780.	45.2	9.9	97.40	37
810.	45.8	10.0	100.00	38
840.	46.5	10.2	103.08	39
8/0.	4/,3	10.5	100.00	40
900.	48 5	10.5	112.14	42
960.	49.5	10.8	116.81	45
940.	50.5	11.0	120.62	44
1020.	51.5	11.2	125.46	45
1050.	51.7	11.3	127.42	46
1080.	52.5	11.>	131.40	47
1110.	55.5	11.6	135.43	48
1140.	54.5	11.9	140.56	49
1170.	55.0	12.0	144.21	50
1200.	55.5	12.1	146.04	51
1230.	70.7	12.5	176,18	26
1200+	50 11	12.7	140.37	55
1320.	20.U	12.9	165.95	55
1350.	59.7	13.0	169.91	56
1380.	60.5	13.2	174.49	57
1410.	61.5	13.4	180.31	58

1	8-	B
---	----	---

TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-SQR
1.	4.5	1.0	.91
2.	7.0	1.5	2.20
3.	10.5	2.2	4.95
4.	11.0	2.3	5.43
5.	12.0	2.5	6.46
10.	14.0	3.0	8.80
15.	16.0	3.4	11.49
20.	19.7	4.2	17.42
25.	21.0	4.4	19.79
30.	22.5	4.8	22.72
40.	25.5	5.4	29.19
50.	27.5	5.8	33.95
60.	30.0	6.4	40.40
90.	35.5	7.5	56.57
120.	40.5	8.0	73.63
150.	44.5	9.4	88.89
180.	48.5	10.3	105.58
210.	52.5	11.1	123.72
240.	55.5	11.8	138.26
270.	60.0	12.7	161.59
300.	62.5	13.2	175.34
330.	65.5	13.9	192.57
360.	68.5	14.5	210.62
390.	71.0	15.0	226.27
420.	74.0	15.7	245.80

TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-S	QR
			12	•
1.	1.5	• •	• 1 2	2
2.	4.0	• 7	. 67	1
3.	7.0	1.0	2.07	J
4.	8.0	1.9	3.47	-
5.	9.0	2.1	7 44	
10.	12.0	2.0	10 70	7
15.	14.0	3.3	17 10	Á
20.	17./	4.1	19.71	ŏ
25.	19.0	4.4	22.94	10
30.	20.7	4.0	30.15	11
40.	23.7	2.2	36.90	12
50.	20.0	4 7	44.34	13
60.	20.2	8.2	66.87	14
90.	35.0	0.2	85,17	15
120+	39.3	10.5	105.69	16
190.	49.0	11.5	128.41	17
180.	52 0	12.1	147.61	18
210.	55 5	13.0	168.15	19
270.	59.0	13.8	190.03	20
2/0.	62.5	14.6	213.24	21
300.	65.7	15.4	235.64	22
360.	69.0	16.1	259.90	25
300.	71.5	16.7	279.08	24
420.	74.5	17.4	302.99	25
450.	77.5	18.1	327.88	26
480.	80.5	18.8	353.76	27
510.	83.5	19.5	380.61	28
540.	86.5	20.2	408.46	29
570.	92.2	21.5	464.06	30
600.	94.5	22.1	487.50	31
630.	97.5	22.8	518.95	32
660.	100.0	23.4	545.90	55
690.	102.5	23.9	573.54	34
720.	105.5	24.6	607.60	37
750.	108.5	25.4	042.07	30
780.	111.5	26.1	0/8.00	3/
810.	114.0	26.0	709.43	10
840.	116.7	27.3	793.97	40
870.	119.7	28.0	/02+1/	41
900.	122.5	28.0	875 40	42
930.	123./	28.9	901 40	4.5
960.	128.5	30.0	901.40	44
990.	131./	30.0	990.00	45
1020.	135.0	10 J	1039.61	46
1050.	138.0		1093.01	47
1080.	144 0	47 6	1131.98	48
1110.	149.0	34.3	1179.63	49
1170.	151 ()	35.3	1244.70	50
1200	151 H	36.1	1303.08	5
T500+	* ~			

18-C

Figure A-2. Oxidation Behavior of Experimental Niobium Alloys at 1200°C

TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)+SOR
1.	1.5	.4	.13
2	5.0	1.2	1.40
3.	8.5	2.0	4.06
4.	9.0	2.1	4.55
5.	10.0	2.4	5.62
10.	12.5	3.0	8.77
15.	14.0	3.3	11.01
20.	16.7	4.0	15.66
25.	18.5	4.4	19.22
30.	19.5	4.6	21.35
40.	22.0	5.2	27.18
50	24.5	5.8	33.71
50.	26 0	6.2	37.96
00.	20.0	7.5	55.72
420	35 5	8.4	70.77
120.	10 5	9.4	87.61
100	42 5	10.1	101.43
100.	45 5	10.8	116.25
210.	49.5	11.5	132.09
270	51 5	12.2	148.93
2/0.	54 0	12.8	163.74
300.	54.0	17.4	179.26
330.	50.5	14.1	198.80
300.	J9, J	14 6	212.39
390.	01.7	15.0	226.42
420.	03.7	12.0	E E O T · E

19-B

TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-	SQR
1.	1.0	.2	.04	1
2.	3.5	.7	.53	2
3.	6.5	1.3	1.81	3
4.	7.3	1.5	2.28	4
5.	7.5	1.0	2.41	5
10.	10.5	2.2	4.73	6
15.	12.2	2.5	0.38	/
20.	15./	3.3	10.57	
22.	17.2	3.0	13.13	
30.	24 5	3.7	10 91	11
50	21.7	4.5	24 118	12
60.	26.2	5.4	29.42	1.3
90.	31.5	6.5	42.53	14
120.	36.0	7.5	55.55	15
150.	39.7	8.2	67.56	16
180.	43.5	9.0	81.11	17
210.	46.5	9,6	92.69	18
240.	49.5	10.2	105.03	19
270.	52,5	10,9	118.15	20
300.	55.5	11.5	132.04	21
330.	58.5	12.1	145.69	22
360.	60.7	12.6	157.94	23
390.	63.0	13.0	170.13	24
420.	65.5	13.0	183.90	25
450.	08.3	14.1	199.96	20
480.	70.2	14.0	213.05	21
510+	75.0	15 6	220.43	20
570	77.5	16 0	257.46	30
600.	79.5	16.5	270.92	31
630.	82.0	17.0	288.23	32
660.	83.7	17.3	300.30	33
690.	86.0	17.8	317.03	34
720.	88.0	18.2	331.95	35
750.	90.0	18.6	347.21	36
780.	92.0	19.0	362.01	37
810.	93.7	19.4	376.34	38
840.	95.5	19.8	390.94	39
870.	97.3	20.1	405.82	40
900.	99.3	20.6	422.07	41
930.	101.0	20.9	40/.2/	42
960.	103.0	21.3	474.70	43
1020	104.5	22 11	486.19	45
1050.	108.5	22.5	504.62	40
1080.	110.5	22.9	523.40	47
1110.	112.0	23.2	537.70	48
1140.	114.0	23.6	557.08	49
1170.	115.7	24.0	573.82	50
1200.	117,5	24.3	591.81	51
1230.	119.5	24.7	612.13	52
1260.	121.0	25.1	627.59	53

TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-SQR
1.	2.5	.5	.30
2.	6.0	1.3	1.70
3.	9.0	2.0	3.83
4.	9.5	2.1	4.27
5.	10.5	2.3	5.21
10.	13.5	2.9	8.61
15.	15.0	3.3	10.63
20.	18.7	4.1	16.53
25.	20.5	4.5	19.86
30.	21.2	2.1	21.85
90.	24.7	5.3	28.37
20.	2/17	6.0	37./4
00.	29,2 74 0	0.4	41,13
120	42 5	7.0	01,27
150	47 5	7.6 10 3	
180.	52.5	11 4	130 24
210.	57.5	12.5	154.25
240.	62.5	13.6	184.61
270.	67.0	14.6	212.15
300.	71.5	15.5	241.60
330.	76.5	16.6	276.57
360.	81.0	17.6	310.07
390.	85.5	18.6	345.47
		21-A	
TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-SQR
1.	6.5	1.4	1.92
2.	10.0	2.1	4,55
3.	14.0	3.0	8.91
4.	15,5	3.3	10.92
5.	18.0	3.8	14.73
10.	26.5	5.7	31.93
15.	34.0	7.2	52.55
20.	40.7	8.7	75.31
27.	46.2	9.9	98.30
30.	75.7	11,4	130.13
40.	07.7	14.0	195.05
2U.	/8.7	10./	280,15
00.	130 6	17.7	380.02
120.	174 5	2/.D 17 3	179,24
150.	221 5	47 4	1004107
180.	269.5	7/+6 67 6	263 0170 3101 04
210.	319.5	68.1	33U1.90 4640 83

TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT+LOSS/AREA)-SOR
1.	- , 5	1	.01
2.	3.0	. 6	. 39
3.	10.0	2.1	4.30
4.	10.5	2.2	4,/3
5.	11.0	2.3	5.21
10.	13,5	2.8	7.84
15.	13.0	2.7	7.27
20.	15.2	3.2	9.94
25.	15.5	3.2	10.34
30.	16.5	3.4	11.72
40.	18.5	3.8	14.73
50.	19.5	4.0	16.37
60.	21.5	4.5	19.90
90.	25,5	5.3	27.99
120.	28.5	5.9	34.96
150.	32.5	6.7	45.46
180.	35.5	7.4	54.25
210.	58.5	8.0	63.80
240.	41.5	8.6	74.13
270.	39.0	8.1	65.47
300.	46.5	9.6	93.07
330.	49.5	10.3	105.47
360.	51.5	10.7	114.16
		23-A	
TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-SOR
1.	.5	.1	.01
2.	3.0	.7	.50
3.	5,5	1.3	1.67
4	5.7	1.3	1.80
5.	6.2	1.5	2.13
10.	7.5	1.8	3.11
15.	9.0	2.1	4.48
20.	11.7	2.8	7.58
25.	12.5	2.9	8.65
30.	13.5	3.2	10.09
40.	15.5	3.6	13.30
50.	17.5	4.1	16.96
60.	19,5	4.6	21.05
90.	23.5	5.5	30.57
120.	27.5	6.5	41.87
150.	31.5	7.4	54.93
180.	34.5	8.1	65.90
210.	38.5	9.1	82.06
240.	41.5	9.8	95.35
270.	45.5	10.7	114.62
300.	48.5	11.4	130.23
330.	52.0	12.2	149.70
360.	54.5	12.8	164.44
390.	57.5	13.5	183.04
420.	60.5	14.2	202.64

2	4-	B
- 4-		D

TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-SQR
1.	2.5	. 6	. 34
2.	5.5	1.3	1.64
3.	8.0	1.9	3.48
4.	7.5	1.7	3.06
5.	7.0	1.6	2.66
10.	10.5	2.4	5.99
15.	14.0	3.3	10.65
20.	17.7	4.1	17.02
25.	20.5	4.8	22.83
30.	22.5	5.2	27.51
40.	25.0	5.8	22 04
50.	27.5	6.4	41.59
60.	29.5	6.9	47 20
90.	34,5	8.0	64.67
120.	38,5	9.0	80.54
150.	42.5	9.9	98.14
180.	45.5	10.6	112.49
210.	48.5	11.3	127.81
240.	50.5	11.8	138.57
270.	53.5	12.5	155.52
300.	56.5	13.2	173 45
330.	58.5	13.6	195 05
360.	60.5	14.1	198.68
390.	62.5	14.6	212 25
420.	64.5	15.0	226.05

		24-C		
TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-50	R
	3.5	.7	.50	1
1.	4.0	. 8	. 66	2
2.	10.0	2.0	4.10	3
4.	10.5	2.1	4.52	-
5.	12.0	2.6		6
10.	16.7	3.4	11.45	7
15.	19,7	3.9	21.12	8
20.	22.7	4.0	25.00	ÿ
25.	24.7	5.0	28.78	10
30.	26.5	5.9	35.18	11
40.	29.3	6.4	41.18	12
50.	31.7	7.4	48.77	13
60.	54.5	7.6	61.05	14
90.	43.0	8.7	75.77	15
150.	46.7	9.5	89.37	10
180.	49.5	10.0	100.41	1.8
210.	52.5	10.6	112.94	10
240.	55.0	11.1	123.70	20
270.	57.5	11.0	145.07	21
300.	59.5	12.0	156.00	22
330.	61./		168.89	23
360.	04.2	17.4	178.50	24
390.	06.U	13.7	186.70	25
420.	67.2	14.0	196.23	26
450.	71.0	14.4	206.57	27
480.	72.0	14.6	212.43	28
540.	73.7	14.9	222.58	29
570.	75.3	15.2	232.37	30
600.	76.5	15.5	234.01	32
630.	77.5	15.7	290.12	33
660.	78.6	15.9	262.26	34
690.	80.0	10.2	270.85	35
720.	81.3	16.7	278.90	36
750.	02.7	16.9	285.71	51
780.	03.7	17.1	292.59	38
810.	86.0	17.4	303.07	39
870.	87.5	17.7	312.30	40
900.	87.8	17.8	313.09	42
930.	89.5	18.1	320.70	4.5
960.	90.5	18.3	343.07	44
990.	91.5	18.7	350.61	45
1020.	92.5		358.24	46
1050.	93.5	19 0	362.08	47
1080.	94.U OF (19.3	372.16	48
1110.	77+3 04 3	19.5	380.01	49
1140+	96.7	19.6	383.18	50
1200.	97.7	19.8	391.14	51
1230.	98.7	20.0	399.19	54
1260.	99.5	20.1	44 L HD	54
1290.	100.5	20.3	422.16	55
1320.	101.5	20.7	438.96	50
1350.	103.5	21.U 24.4	443.21	57
1380.	104.0	21.1	444,92	58
1410.	104.2	E 1 + 2		

25-A

TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-SQR
1.	5	1	.01
2.	12.0	2.6	6.66
3.	17.0	3.7	13,37
4.	18.5	4.0	15.83
5.	19.0	4.1	16.70
10.	17.5	3.8	14.16
15.	16.5	3.5	12.59
20.	17.7	3.8	14.49
25.	18.5	4.0	15.63
30.	18.5	4.0	15.83
40.	22.5	4.8	23.41
50.	26.5	5.7	32.48
60.	29.5	6.3	40.25
90.	39.5	8.5	72.16
120.	48.5	10.4	108.79
150.	59.5	12.8	163.73
180.	70.5	15.2	229.86
210.	83.5	18.0	322.45
240.	96.5	20.8	430.67
270.	114.5	24.6	606.32
300.	128.0	27.5	757.73
330.	141.5	30.4	925.99
360.	152.5	32.8	1075.56
300.	165.5	35.6	1266.75
420.	177.5	38.2	1457.10

Figure A-4. Oxidation Behavior of Experimental Niobium Alloys at 1200°C

26-B

TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-	SOR	
1.	1.0	. 5	. 20	1	
2	3.0	1.4	1.83	Ż	
3	6.2	2.9	8.00	5	
4.	7.0	5.2	9.97	4	
5.	7.5	3.4	11.44	5	
10.	10.0	4.5	20.35	D	
15.	11.5	5.2	20.91	/	
20.	14.4	6.4	41.02	ð	
25.	15.0	6.8	45./8	Ŷ	
30.	16.0	7.2	52.08	ΤU	
40.	18.7	8.3	69.03	11	
50.	20.8	9.4	88.02	12	
60.	23.0	10.4	107.03	14	
90.	6/ . 7		195.00	17	
120.	54 5	15 6	242.16	16	
180	54 J	17 1	295.74	1/	
210.	41.0	18.5	342.41	15	
240.	44.0	19.6	393.04	17	
2/0.	46.4	20.7	430.51	ن 2	
300.	49.0	22.1	480.20	21	
330.	71.U	23.0	529.19	22	
360.	23.U	23.9	571.51	23	
390.	26.0	25.5	636.04	24	
420.	78.U	26.2	684.42	27	
		27-в			
TIME-MIN	WT-L055	WT-LUSS/AREA	(WI-LOSS/AREA)-	50H	
1.	. 2	.1	. 41	1	
2.	3.2	1.4	1.09	2	
3.	6.2	2.1	7.08	- 5	
4.	6.7	2.9	8.27	4	
5.	7.2	3.1	9.55	5	
10.	9.7	4.2	17.33	6	
15.	12.0	5.4	26.52	/	
20.	14.9	6.4	40.89	0	
27.	10./	7.2	51.3/	9	
30.	10 4	/.0	57.71	10	
40.	22 5	8.7	72.94	11	
60.	22.5	10 4	93.25	12	
90.	28.1	12 .5		13	
120.	52.4	1.5.6	101 00	1	
150.	35.2	15.2	232.14	10	
180.	57.1	16.2	261.50	1/	
210.	40./	17.5	305.12	18	
240.	42,5	18.2	552.11	19	
210.	44./	19.2	368.05	20	
.500.	40./	20.0	401.72	21	
330.	48.7	20.9	430.06	22	
360.	>0./	21.8	473.48	25	
390.	22.2	22.4	501.91	24	
420+	23./	23.0	531.17	27	

TIME-MIN	WT-LOSS	WT-LUSS/AREA	(WT-LOSS/AREA)+5	U R
•	. 4	. 2	.02	1
2	1.5		. 42	2
<u> </u>	3.8	1.9	3.61	3
4.	4.5	2.2	4.02	4
6	4.5	2.4	4.62	>
10.	7.5	3./	13.32	0
15.	8.0	4.5	15.49	/
20.	10.5	5.4	27.56	3
25.	12.0	6.0	36.00	9
30.	12.5	6.2	37.02	10
40.	14.5	7.2	51.12	11
50.	15.3	7./	58.52	12
60.	16.5	8.4	66.42	13
90.	19.5	9./	95.06	14
120.	21.5	10./	113.42	12
150.	23.5	11./	138.06	10
180.	25.1	12.5	157.00	1/
210.	27.5	13./	180.32	10
240.	28.5	14.2	200.22	19
2/0.	50.5	15.2	229.52	20
300.	51.5	15./	244,92	21
330.	52.5	16.2	260.02	22
360.	53.5	16./	277.22	23
390.	54.7	17.2	297.56	24
		28-B		
TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-	G H
		1	.01	1
1.			.17	2
2.	1,3	1.2	1,45	5
3.	3.0	1.4	1.85	4
9.	4.5	1.4	1.65	2
2.	7 4	2.5	5.34	0
10.	7.5 H 6	2.7	7.42	/
12+	10.5	3.5	11.05	ø
20.	12.0	3.6	14.44	Y
2	12.5	3.7	15.1/	10
30.	14.5	4.5	20.50	11
40. 50	15.5	4.0	23.47	12
60.	16.5	5.2	20.04	13
30.	19.2	6.4	38.13	14
120.	21.3	6./	45.49	17
150.	23.5	7.4	25.37	10
180.	25.1	7.9	63.17	1/
210.	27.5	8.0	74./5	18
240.	28.5	9.0	60.31	19
270.	50.5	9.6	92.06	20
300.	51.5	9.9	90.23	21
330.	32.3	10.2	104.01	22
360.	33.3	10.5	111.19	23
590.	54.7	10.9	119.35	24

28**-**8

29-B	

TIME-MIN	WT-LOSS	WT-LUSS/AREA	(WT-LOSS/AREA)-	SQR
1.	- 2	•.1	. 41	1
2.	1.8		. 65	2
3	4.8	2.2	4.04	5
4.	5.5	2.4	5.65	4
5.	6.5	2.8	7.99	5
10.	9.5	4.5	18.16	6
15.	10.8	4.8	23.48	ī
20.	14.U	6.5	39.45	8
25.	15.3	6.9	47.12	У
30.	16.5	7.5	53.48	10
40.	17.0	8.0	03.77	11
50.	19.8	8.9	78.91	12
60.	21.5	9.6	91.31	13
90.	24.5	10.9	118.85	14
120.	27.5	12.2	150.00	15
150.	29.0	13.2	175.16	10
180.	52.5	14.5	209.98	1/
210.	54.5	15.4	236./9	15
240.	56.5	16.3	265.21	19
2/0.	38.1	17.1	292.17	20
300.	59.5	17./	314.03	21
330.	41.5	18.5	543.30	22
360.	42.0	19.2	365./0	25
390.	44.5	19.9	394.99	24
420.	45.0	20.5	422.19	25
		31-В		
TIME-MIN	WT-LOSS	WT-LUSS/AREA	(WT-LOSS/AREA)-	SOR
1	. 0	. 4	.00	1
2.	. 2	.2	. 04	2
3.	2.5	1.0	1.07	S
4.	2.5	1.4	1.07	4
5.	2.2	1.0	1.07	2
10.	3.0	1.2	1.54	6
15.	4.5	1.9	3.47	1
20.	6.2	2.6	6.60	5
25.	6.0	2.8	7.43	y
30.	7.2	3.0	8.90	10
40.	8.2	3.>	12.40	11
50.	8.5	3.>	12.40	14
60.	9.0	3./	13.90	15
90.	11.0	4,6	20.70	14
120.	11.7	4.5	22.69	12
150.	12.5	5.2	26.01	10
180.	13.0	5.4	29.00	1/
210.	14.0	5.8	33.03	10
240.	14.8	6.1	57.59	17
270.	15.0	6.2	35.61	20
300.	15.7	6.4	41.23	21
330.	16.0	6.0	43.93	22
360.	16.U	6.0	43.43	23
390.	17.0	7.0	49.59	24
420.	17.2	7.1	50.77	25

Figure A-5. Oxidation Behavior of Experimental Niobium Alloys at 1200°C

32-B	

TIME-MIN	WI-L055	WT-LUSS/AREA	(WT-LUSS/AREA)-	SOR
1.	4.5	1.8	3.07	1
2.	6.2	2.5	6.40	Ż
3.	9.0	3.5	12.27	3
4.	9.5	3./	13.67	4
5.	10.0	3.9	15.15	2
10.	12.0	4./	21.62	0
15.	13.5	5.5	27.61	7
20.	16.2	6.5	39.77	В
25.	16.5	6.4	41.25	Ū,
30.	17./	6.9	47.47	1 0
40.	18.7	7.5	52.99	11
50.	20.3	7.9	62.44	12
40	24.4	н .4	68.74	1.5
90.	24.5	0.0	89.47	14
120	24.5	10 4	108 44	15
160	20.4	11 4	1 20 05	1.5
190+	£9.0	+ ± + 7: 10 ti		10
100.	50.0		140.07	11
210.	32.5		100.04	10
240.	34,9	10,7		17
2/0.	30.0	14.0	198.57	20
300.	37.5	14.0	210.08	21
330.	38.7	15.0	224.79	22
300.	40.0	15.0	292.43	23
390.	41.3	10.1	238.43	24
		33-B		
TIME-MIN	WT-LOSS	WT-LUSS/AREA	(WT-LOSS/AREA)-S	SQR
1.	3.7	1.9	3.66	1
2.	5,6	3.0	8.99	2
3.	8.0	4.1	17.11	3
4.	8.0	4.1	17.11	4
5.	8.0	4.1	17.11	5
10.	9.7	5.0	25.16	6
15.	11,2	5.8	33.54	/
20.	13.7	7.1	50.18	6
25.	14,5	7.5	56.21	9
30.	15.5	8.0	64.25	10
40.	16./	8.6	74.50	11
50.	18.2	9.4	88.56	12
60.	19.5	10.1	101.06	13
90.	21.5	11.1	123.58	14
120.	23.5	12.2	14/.05	12
150.	25.5	13.1	171.13	10
180.	27.4	14.0	194.90	1/
210.	28.5	14./	217.16	10
240.	20.5	15.3	232.6/	1 4
270.	50.5	15.8	248.71	24
2/0.	.(2 .	14 /	J74.44	21
300.	() J	14 U	270970 Jan . Hu	22
330.	52.7 (A 1	17 4		26
300.	46 3		434 JY 970100	د د مر
390.	57,6	40.£ 14 m		25
720.	47 4		471 47	
470+	9/19	TA*2	0/117/	60

TIME-MIN	WT-LOSS	WT-LUSS/AREA	(WT-LOSS/AREA)-S	QR
1.	4.2	1./	2.94	1
2.	6.2	2./	7.05	2
3.	8.0	3.0	12.92	S
4.	9.0	3./	13.52	4
5.	9.5	3.4	15.06	2
10.	12.0	4.9	24.03	6
15.	14.5	5.0	34.12	/
20.	17.2	7.0	44.3/	8
25.	19.0	7.6	60.24	y
30.	20.5	8.4	70.13	11
40.	23.0	9.4		12
50.	25.2	10.3	107.97	1.5
60.	27.5	11.2	120.20	14
90.	33.0	13.5		1 2
120.	57.5	15.5	294100	10
150.	41.2	17.0	426.00	1/
180.	44.2	18.1	168-01	18
210.	47.0	10.4	400.65	19
240.	49.0	20.0	437.44	20
270.	21.4	24.7	472.28	21
300.	73.6	23 5	504./8	22
330.	25.0	22.0	523.34	23
360.	20.0	23./	561.35	24
390.	50.0	24.5	590.76	25
		35-в		
TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)-5	QR
	78 (1)	1.5	1.64	1
1.	5.0	2.0	6.57	2
2.		3.8	14.78	S
3.	9.5	4.1	16.47	4
9. s	10.4	4.5	10.25	2
10	12.5	5.3	28.51	,
15.	15.2	6.7	42.10	<u></u>
20.	18./	8.U	53.01	
25.	20.0	8.5	12.77	1.0
30.	21.5	9.1	100 77	11
40.	25.7	10.0	118.05	12
50.	25.5	10.9	137.99	15
60.	27.5	11./	181.46	14
90.	51.5	13.7	227.38	12
120.	35.3		270.47	10
150.	38.7		511.24	1/
180.	41.5	10 6	345.28	18
210.	43,5	10.V	391.16	17
240.	46.3	20 /	429.22	20
270.	48.2	21.6	465.35	21
300.	70.7	22.4	502.94	22
330.	72.7	23.1	532.09	23
360.	74.U	23.9	572.25	24
390.	20.0	24.5	613.04	25
420.	20.0	• • • •		

34-B

36-B

TIME-MIN	WT-LOSS	WT-LOSS/AREA	(WT-LOSS/AREA)+SOR	
1.	6.2	2.0	6.75	1
2.	10.5	4.2	17.65	2
3.	14.5	5.8	33.61	S
4.	15.0	6.0	35.97	4
5.	15.5	6.2	38.41	7
10.	19.5	7.8	60.79	6
15.	22.1	9.1	82.38	/
20.	26.1	10.4	108.91	6
25.	27.1	11.1	122.67	9
30.	29.5	11.6	134.13	10
40.	53.5	13.4	179.42	11
50.	30.5	14.6	212.99	12
60.	39.5	15.0	249.44	13
90.	48.5	19.3	372.96	14
120.	22.2	22.2	492.45	17
150.	01.3	24.7	000.75	10
180.	06.3	20.7	702.75	1/
210.	/0./	28.3	/99.12	10
240.	/4./	29.9	092.10	17
270.	78.3	31.3	700.10	20
300.	01,4	32.3		20
330.	03.2	33.4	1106 20	24
300.	00,9	54.0 45.A	1252.16	24
390+		36 4	1323.90	25
720.	71.0	V017	1020170	27
		37-В		
TIME-MIN	WT-LOSS	WT-LUSS/AREA	(WT-LOSS/AREA)-S	GR
1.	5.0	2.5	5.33	1
2.	9.5	4.4	19.24	2
3.	13.5	6.4	38.85	5
4.	13.5	6.4	38.65	4
5.	14.0	6.7	41.78	5
10.	16,5	7.8	60.16	6
15.	18.5	8.5	72.95	/
20.	22.2	10.2	105.05	8
25.	23.7	10.9	119.72	y
30.	24.5	11.3	12/.94	10
40.	27.0	12.5	133.39	11
50.	28.8	13.3	1/0./4	14
60.	30.0	14.2	202.20	14
90.	34.8	10.1	230+13 420 km	1 7
120.	38.8		520+00 (688 - 60	16
150.	91.U	10.7	40.4 . 33	17
180.	43,7	2 U · L	447.11	18
210.	77,0	20 J	491.10	19
240.	40.U	66.6 171 1	5.52.61	20
2/0.	70+0		576.35	21
300.	72,U	24.5	598./4	22
330.	54 /	25.3	637.76	25
300.	2947 56.0	25.9	660.43	24
420.	57.5	26.5	699.03	25
· • • • •				

APPENDIX B OXIDE DIFFUSION RESULTS

(Table and Figure numbers correspond to the run numbers on Table 1 in the text. For several conditions, numbers exceeding the plotting routine's capabilities were generated and graphs were not plotted.)

800C-1/20 CONB

TIME-MIN	WT-LUSS	LUG(1-M(T)/Q)	M(T)/A-SJR	MCT)/W
4.	0020	2905E-02	.2173E-UO	.0007
.	.1380	.1644E UU	.10376-02	4600
14.	.2260	.2439E UU	.27/56-02	7555
51.	.2880	.2923E UU	.4907E-UZ	9600
41.	.2740	.2816E UU	.4074E-02	9153
42.	.2660	.2757E UU	·3847E-U2	8407
44.	2980	.2996E UU	.4825E-UZ	4955
52.	.2400	.2553E UU	.313UE-UZ	8000
62.	.2240	.2422E UU	.2726E-UZ	7407
72.	.1160	.142UE UU	.7311E-US	3867
82.	.1400	.1603E UU	.1065E-UZ	4007
92.	1260	.1523E UU	.8020E-03	- 4200
102.	1424	.1683E UU	.10966-02	4755
112.	.1084	.1335E UU	.63386-03	3600
122.	.1040	.1293E UU	.587/E-US	3407
1.52.	1000	.1249E UU	.5434E-US	5355
142.	.1160	.142UE UU	./ 5116-03	3807
152.	.1100	1357F UU	.05752-05	3007
161.	0960	.1240E UU	.5218E-US	3267
171.	.1120	13/6E UU	.00162-03	3735
181.	1120	.1376E UU	.6816E-US	3735
191.	.1044	.1243E UU	.58/7E-US	3467
211.	1100	1327E JU	.62752-03	3607
2.51	.1460	1722E UU	.1156E-UZ	4867
251.	1400	.1663E UU	.1065E-UZ	4607
281.	.1000	1249E UU	.5434E-US	3353
295.	.1240	1502E UU	.83556-03	4155
315	.1260	.1523E UU	. 86201-03	4200
355.	.0940	.1104Ē UJ	.48U1E-US	5135
4.53.	.0900	.1137E UU	.44U1E-US	3000
446.	.1060	.1314E UU	.0105E-US	3533
481.	.1120	.13/8E UU	.68166-03	5755
500.	.1080	1335E UU	.030E-US	3600
536	.0900	.1139E UU	.4401E-US	3000
504	. 1940	.1184F UU	.48U1E-US	5155
555	.0800	1027F UU	.54712-05	2607
707	. 0920	1102F UU	.4599E-US	3007
7/4.	.0860	1095E UU	.4019E-US	2867
8.54	.0720	.9342E-U1	.281/E-US	2400
893.	.0584	.76/66-01	.1820E-US	1953
953.	0824	.1049E UJ	. 30542-03	2753
1009.	.0900	.1139E UU	.44U1E-U3	3000
1069.	0560	.7435E-U1	.1704E-US	1867
1128.	.0760	.9867E-01	.31305-03	2755
1188.	.0640	-8390E-U1	.2226E-US	2155
1247.	.0704	.9108E-01	. 2602E-US	2555
1307.	.0640	.8390E-U1	.2220E-US	2133
1366.	.0600	.79186-01	.14565-03	2000
1425.	.0640	.8340E-U1	.2220E-US	2133
1485.	.1000	.1249E UU	.5434E-03	3333

an relevantation with

TABLE B-2

800C-1/1 CONB-1

TIME-MIN	WT-LOSS	L06(1-M(T)/Q)	M(T)/A-SUH	MCTIZU
7.		- 10575-01		
11.	- 7360		-194JE-U1	• 0091
16.			• < ¥ 3 ¥ E = U I	.0113
46.		- 38/56-02	15046-01	•0172
66.	- 7 - 1) 4 4 1	- 49/0E-01	+ 1077E U1	.0824
113.	-10-3200		• «/ «/ E UI	+1081
173.	-14.4560		. 3787E UI	+15/5
2.52	=15.6440	- 11 MMC 111	. 909JE UI	.2037
292.	-17.6100		.13376 02	.2394
361.	-19. (46)			.2000
4.56.	-21.3(4)		·2034E UZ	.2953
510.	-28.2300		-24/JE UZ	.323/
564.	-25.0780	- 20442 40	.29326 02	.3540
644.	-26.5420	- 20902 00	.341/E UZ	.3828
218	+2H 844U		.3820E U2	4051
702	- 40 - 17/14		.43002 02	.452/
452	-30+1320	20/0E UU	.49332 02	.4599
911	- 32 - 0400	- 20316 00	.54USE UZ	.4813
911.	-32.9420	3039E 00	. 3890E UZ	· >U20
7/1+	-34.3200	3224E UU	.04UZE UZ	.5240
1019.	- 35 - 3400	330/E UU	.0780E U2	. > 3 > 4
1114	-30.4/40	- 3534E UU	·/224E 02	. 5568
1146	-37.0000	3/3/E UU	.//OOE U2	.5771
1946	-39.0700	- 40402 00	.5551E 02	.6022
1203.	-41.2300	4312E UU	. 924UE UZ	.6295
1345.		402UE UU	.1000E U3	.0740
1919+	-44.3020	4598E UU	.1060E US	.6762
1907.	-45.9/60	2222 00	.1149E 03	.7018
1004.	-48.1/40	57/3E UU	.1261E US	•7355
1/23.	-50+2160	631/E UU	.1370E US	•7665
1042.	-22.0000	68/5E UU	.1473E US	.7941
1902 -	-53.7200	745UE UU	.1365E US	·82Uí
2001.	-33.2140	duse uu	.1650E US	. 8420
2199.	-20.2840	8076E UJ	.174UE US	• 8637
2010.	-5/./940	9200E UU	.1817E JS	• 6622
2412+	-20.0200	9785E UU	.1000E U3	. 8747
24/1+	-24.0880	1009E 01	.189/E US	•9019
2747.	-24.0480	1052E U1	.1930E US	• 9113
2005.	-60.1660	1088E U1	.196/E US	.9164
2005.	+60+600U	11 <i>6</i> 9Ē V1	·1992E US	• 9520
2/25.	-61.0400	1100E U1	.2024E US	•9317
2/84.	-61.4120	1204E UI	.2049E US	• 93/4
2824.	-61.//80	124+E U1	.2074e US	.9450
2918.	-62.3080	13116 01	.2109E 03	+9511
3037.	-62.9380	1400E U1	. 215 ct US	.9607
315/.	-03.4940	1511E U1	.2191E US	. 4672
3366.	-64.2500	1710E U1	. 2244E US	. 9007
35/4.	-64.7980	1903E U1	.2261E US	• 9891
5782.	-65.1620	22/2E U1	. 230/E US	.9447
5991.	-65.3880	2723E UI	· 23236 US	.9981
4288.	-65.5100	4915E U1	.2332E US	1.0000

Figure B-2. 800C-1/1 CONB-1

800C-1/1 CONB-2

TIME-MIN	WT-LOSS	L0G(1-M(T)/Q)	M(T)/A-SUH	M(T)/U
4.	0004	.0000E UV	.11056-20	.0000
9	-1.2920	1272E-U1	.90706-01	.0284
14.	-1.5020	1757E-U1	.1704E UU	. 0396
19.	-2.2160	21/1E-U1	.2600E UU	•U48d
24.	-2.6420	2601E-01	.3793E UU	.0581
28	-2.9480	2912E-01	.4722E UU	. 0649
	-3.2400	3203E-U1	,5881E UU	.0724
36.	-3.6200	J6U5E-U1	.712UE UU	.0796
41.	-3.9560	39756-01	.8504E UU	.08/0
46.	-4.316U	4333E-U1	.1012E U1	.0950
51.	-4.6560	4094E-U1	.1176E Ul	.1024
56.	-5.0400	5105ビーロエ	.1380E U1	.1109
61.	-5.4400	5537E-U1	.1606E UI	•1197
66.	-2.8440	59/7E-U1	.1856E U1	+1200
71.	-6.3060	6469E-U1	.2102E U1	.1380
76.	-6.7960	7U34E-U1	.2510E 01	.1495
81.	-7.2800	7501E-U1	.2680E 01	.1602
86.	-7.7820	8156E-U1	.3291E 01	.1/12
91.	-8.3320	8795E-U1	. 3772E U1	.1835
96.	-8,9080	94/4 <u>-</u> 01	.4312E U1	+1950
101.	-9.4840	1016E UU	.488/E U1	• 2007
151.	-13.3180	15U0E UU	.963/E 01	1942
161.	-17.4420	21U3E UU	.1653E UZ	4765
190.	-21.6500	2611E UU	.23492 02	
220.	-25.7960	3641E UJ	.36102	4547
250.	-29.7120	4606E UU	.4/9/2 02	.7315
280.	-33.2480	5711E UU	- OUUDE UE	. /9#4
309.	-36.2800	69556 00		.85.50
339.	-38.7980	83462 00	OTARE IN	. 4978
569.	-40.8060	YANGE 00		.9312
399.	-42.3360	1104E UI	10256 02	. 9525
429.	-43.4280		10546 8.5	.9714
428.	-44.1500	- 17475 01	1062- 03	.981/
483.	-44.0180		.10925 03	.98/7
518.	-44.5925		.11046 03	.9910
548.	-45.0000		.11UVE 05	.9941
578.	-45.1020	- 2461- 111	.1113E US	. 9970
607.	•42+222V		.11156 03	. 4467
637.	-45:2900		.1119= 03	.9983
697.	-45.3740		.11216 03	.9994
/56.	-47.4224	- 45115 41	1120E US	. 4941
816.	-42.4300	43575 U1	.1122E US	1.0000
8/2.	- 47,440V		.1123E US	1.0002
935.	-45.4000	- 37546 01	.1123E US	1.0002
994.	-47+473V -45 4121	34026 01	.1122E US	. 9990
1024.		4055F U1	.1123E US	1.0001
1113.		F.1/41+ 37	. 1122E US	1.0000
1341	-45.4500	17U1E 34)	.1122E US	1.0000
1500+	4214200	·····		

800C-20/1 CONB

TIME-MIN	WT-LOSS	LUG(1-M(T)/Q)	M(T)/A-SJR	MCT)/Q
6.	0044	26126-04		. 0001
21.	-1.5640	- 89996-02	.1011E	.0205
41.	-3.1844	21JUE-U1	- 550ME 00	. 11479
56.	-4.600U	3113E-W1	.115UE 01	.0692
76.	-6.482U	4433H-U1	.2283E 01	.0975
91.	-7.8920	5400F-U1	. 33841 01	.11#7
111.	-9.6924	- 084UE-U1	.5104+ 01	.1457
140.	-12.6400	9124E-U1		.1968
205.	-17.1440	1295E UU	179/F UC	.2578
265.	-20.9960	1647E UU	2395E UZ	
384.	-27.0320	2262E UU	. 3970F 02	4064
474.	-30,5500	26/1E UU	.5073E 02	. 45 4
593.	- 54.3760	3159E UU	.6421E UZ	.5164
682.	-30.7760	3497E UU	.7.50E UZ	. 55.50
801.	-39.5380	392UE UU	.8494E UZ	
690.	-41,360U	- 4225E UU	- 9244E JK	. 6220
1010.	-45.2680	4023F UJ	.1031E US	.6551
1099.	-45.0560	4914F UU	.1103- 43	.67/4
1218.	-46.0260	520dE UU	.11918 03	.7040
1307.	-48.0160	5559E UU	1253E 03	.7219
1427.	-49.4960	- 59216 00	.1331- US	.7442
1516.	-50.5340	6194E UU	.1386F US	.7590
1636.	-51.8380	6564E UU	.146UF US	. 7744
1725.	-52.7700	6849E UU	1513E US	. 79.54
1844.	-53,9180	7228E UU	15882 03	.8107
1935.	-54.7040	75UBE UU	.1620E US	.8225
2042.	-55.6420	7867E UJ	.1652E US	.8360
2132.	-50.2940	8130E UU	1722E US	. 8464
2251.	-57,1260	8505Ë UJ	1773E US	.8589
2340.	-57,6700	8768E UU	1808E US	· #672
2459.	-50.3000	911/E UU	.1851E U.S	.8775
2548.	-50.0520	-,9300E UU	· Idoct US	. 3849
2667.	-59,4520	9742E UU	.1921E U.S	.8939
2756.	-59.8780	1JU1E U1	.1940E US	.9005
28/5.	-60.4380	1037E U1	.1953E U.S	.9083
3024.	-61,0400	1005E U1	.2024E US	.9178
3262.	-61,9300	1102E U1	.2004E US	.9311
274ú.	-62,5040	122UE U1	. ELCOL US	.9398
2978.	-63.166U	1244E U1	.2100E US	.9447
5156.	-63.6346	1304E U1	ZZUVE US	.9500
5494.	-64.1760	1455E U1	.2238E US	.9649
3672.	-64.5360	1528E U1	.2263E US	.9704
3910.	-64,9620	1037E U1	.2293E US	. 9765
4069.	-65.2460	1721E U1	.2313E US	.9810
4327.	-65.5760	1823E U1	.233/E US	.9860
4499.	-65,8040	1974E U1	.2353E US	.9894
4637.	-66,1000	221UE U1	.2374E US	. 4938
4816.	-66.2840	2409E U1	.230/E US	.9960
4990.	-66.3840	-,2723E U1	.2394E US	. 4981
5219.	-66,5120	4522E U1	.2404E US	1.0000

Astronuclear W Laboratory

1000C-1/20 CONB

TIME-MIN	WT-LOSS	LUG(1-M(T)/Q)	M(T)/A-SUR	M(T)/Q
5.	7140	36/7E UU	.27708-01	· 571 2
10.	9600	6345E UU	.50UEE-01	.7080
15.	9200	5764E UU	.45456-01	.7300
20.	4520	-+6227E UU	.4924E-U1	.7616
79.	-1.0000	-,6940E UU	.54346-01	•9000
139.	-1.0260	7467E UU	.572UE-U1	.8208
199.	-1.0840	8768E UU	.63076-01	.80/2
258.	-1.0440	7830E UU	.5922E-U1	.0302
318.	-1.0780	8614E UU	.0314E-U1	. 8624
317.	-1.0640	82/4E UU	.0151 - 01	+8512
457.	-1.0980	9151E UJ	.6551E-U1	.8784
496.	-1.1240	9965E UU	.68672-01	.8942
226.	-1.1060	9307E UU	.664/E-U1	. 6848
615.	-1.118U	9763E UU	.67926-01	.8944
617.	-1.1260	1003E 01	.60896-01	.9008
754.	-1.1260	1003E 01	.03096-01	.9008
794.	-1.1360	1040E 01	.70122-01	.9088
857.	-1.14ôU	1000E 01	.7161E-U1	.9154
913.	-1.164U	1102E U1	.7362E-U1	.9312
972.	-1.166U	11/3E U1	./35/E-01	.9320
973.	-1.2480	2796E U1	.8463E-01	.9984
974.	-1.1520	11U0E U1	.72116-01	.9216
984.	-1,144u	10/2E U1	.71116-01	.9152
991.	6280	3031E UU	.2143E-01	.5024

1000C-1/1 CONB-1

TIME-MIN	WT-LOSS	LUG(1-M(T)/Q)	M(T)/A-SUR	M(T)/Q
3.	.0000	.UUUUE UU	.11066-21	0000
4.	-4.7500	354JE-U1	.1231E 01	.0785
6.	-20.2540	1761E UU	.222YE UZ	. 3353
7.	-23.2600	2097E UU	.2941E 02	. 3829
9.	-25.3140	2341E UU	.J482E UZ	.4166
18.	-29.0950	2695E UU	.4286E UZ	.4623
19.	-28.3580	2730E UU	.4370E 02	. 4567
21.	-28.7680	2786E UU	.449/E UZ	.4755
25.	-30.0360	2901E UU	.49UZE UZ	.4945
50.	-31,1120	3110E UU	.5259E OZ	.5120
55.	-31.9400	3239E UU	.5543E UZ	.5257
40.	- 52 . 5540	33/6E UU	.5850E UZ	. 5404
50.	-34.8040	3674E UU	.6502E UZ	.5725
>>.	-32.9460	3867E UU	.7021E U2	+5916
60.	-37.2300	412UE UU	.7531E UZ	.612/
65.	-38.6000	436UE UU	. BUY6E U2	.6353
70.	-40.0320	46/1E UU	.8708E UZ	• 6589
15.	-41.5440	5000E 00	.9378E UZ	.6837
80.	-43.0720	5379E UU	.1U08E 03	•7089
85.	-44.6240	5758E UU	.1082E US	.7344
90.	-46.1480	6189E UU	.115/E US	• 75 95
95.	-47.6700	660/E UU	.1235E US	.7840
100.	-49.1640	7193E UU	.1313E US	.8072
105.	-20+2200	//48E UU	.1389E U3	.8321
110.	-51.9/00	8340F NN	.1468E U3	• 8553
115.	-53.2240	9065E UU	.1539E U3	.8760
120.	-54.5560	9909E UU	.1617E U3	.8979
135.	- 57 . 4620	1265E U1	.1794E US	.9451
190.	-59.2000	161UE U1	.1909E 03	.9/54
107.	-00+1950	- 2029E UI	.1969E U3	.9907
100.	-00,0200	2003E U1	.1997E U3	.9978
192.	-00+/000	- 40056 01	.2006E U3	1.0001
210.	-00./040	3403E UI	.2008E US	1.0004
249	-00+0000	3102E UI	.2009E US	1.000/
230.	-00.7940	3292E UI	.2008E U3	1.0006
272+	- 6U + / 80U	-+4007E U1	.2000E 03	1.0001
20/.	-0U+/YOU	32U4E U1	. ZUUBE UJ	1.0006
202.	-00+/020		·20072 US	1.0004
29/ .	-0U+/80U	330YE U1	.2008E US	1.0004
312.	-00./000	3881E U1	.ZUUDE US	1.0001

1000C-1/1 CONB-2

TIME-MIN	WT-LOSS	LUG(1-M(T)/G)	M(T)/A-SUR	M(T)/Q
2.	13.9620	.12/6E UU	.1059E UZ	3416
4.	·.17UU	1810E-UZ	.1570E-02	.0042
7.	-2.3380	-,25586-01	.2970E 00	. 0572
11.	-3,2900	36478-01	.5881E UU	.0805
15.	-4.4080	4956E-U1	.1050E 01	.1079
20.	-5,5960	6395E-01	.1702E U1	.1369
25.	-6.5600	70U0E-U1	.2343E 01	.1607
30.	-7,6260	89092-01	.316UE U1	.1800
35.	-8,4120	1001E 00	.3845E Ul	.2058
40.	-9.2760	1118E UU	.4675E U1	.2270
45.	-10.2260	1251E UU	.5682E U1	.2502
50.	-11.2140	1393E UU	.6833E U1	.2744
55.	-12,3200	1558E UU	.624/E 01	.3014
60.	-13.5360	1747E UU	.9956E Ul	.3312
65.	-14,8160	1955E UU	.1193E UZ	.3625
70.	-16,2000	2194E UU	.1427E UZ	.3966
75.	-17.6100	2448E UU	.1655E UC	.4309
80.	-19.0860	2733E UU	.1979E UZ	.4670
85.	-20.6080	304/E UJ	.2308E UZ	.5042
90.	-22,1180	3364Ē UU	.2656E 02	.5412
93.	-22.9700	3586E UU	.286/E UZ	.5620
97.	-24.4980	39/3E UU	.3261E UZ	.5994
102.	-26.0000	4393E UU	.3675E 02	.6364
107.	-27,5300	- 4802E UU	.4118E U2	.6736
111.	-28.9840	5364E UU	.4505E U2	.7092
116.	-30,4020	5915E UU	.5022E 02	.7439
121.	-31,/500	6514E UU	.54//E UZ	+//69
126.	-32,9580			+ 5004
130.	-33:/900	- 0/15/ 00	.02U/E U2	+0270
139.	-34.0400	- 004 ()	10770E UZ	0760
140+	-35.7700	- 06142 00	.0933E U <u>C</u>	+0/34
142.	-30+0040	- 1004- 11	•/200E V& フトフンド ハン	0114
120.	-37 0620	- 1146E 01	74966 09	0266
157	-37,7320	- 11402 01	73246 02	47200
142	- 50,2000	1268E UT	./// UL	. 9460
167.	- 30, 6420	- 13615 01	- HANAE 62	.9565
187.	-40.180U	= 17/5E U1	-8172F 02	.9831
207.	-40.5760	2143E U1	. H946F 02	.9928
227.	40.756 U	2554F U1	9025E 02	.9972
247.	-40.7960	2742E U1	.9943E 02	.9982
267.	-40,8160	28/9E U1	.9152E 02	.9987
287.	-40.8480	3209E U1	.9066E UZ	.9995
302.	-40.8120	2840E U1	.9050E 02	.9986
322.	-40.8480	3269E U1	.9060E UZ	. 9995
342.	-4U.806U	2805Ē U1	.YJ40E UZ	.9984
362.	-40.8380	3106E U1	.YUGZE UZ	. 9992
422.	-40.8040	2798E U1	.YJ4/E UZ	.9984
453.	-40,9940	2518E U1	.9131E UZ	1.0030
454.	-40.8720	4310F U1	.9977E 02	1.0000

1000C 20/1 CONB

TIME-MIN	WT-LOSS	LUG(1-M(T)/Q)	M(T)/A-SUR	M(T)/Q
1.	- 3460	•.14135-02	.72746-02	. 0.0.42
4	- 6900	26686-02	.25876-01	.0061
5.	-1.7364	67456-112	.1638E 0u	. (154
6.	=2.0860	81176-02	2364E DU	.0145
11.	-5.6530		17366 81	.0502
16.	-9,2060	-,37036+01	46051 01	.0817
21.	-12.6180	5154E-U1	.5651+ 01	.1120
26.	-15,9760	66425-01	138/1- 02	.1418
31.	-19,3000	A162E-U1	2024E UZ	.1713
36.	-22.6160	97.5/6-11	2779E 02	.2008
41.	-25,8920	11346 00	36438 02	. 2294
46.	-29.1360	13006 00	4613E 62	.2586
51.	-32,3320	1469 <u></u> Uú	5684E 02	.28/0
56.	-35.6080	16505 00	.6889E UZ	.3101
61.	-34.6490	- 18256 00	.8116E 0∠	. 54 51
65.	=41.6026	20026 00	.9404F UZ	.3693
70.	+44.4706	21816 UU	10756 63	.3940
701	-47.2406	23616 00	.12136 03	. 41 94
A n .	-40.0146	- 25426 00	.13546 0.5	. 44.51
148	-84.7886	- 60075 00	3906E 0.4	. 7527
140.	- 84 . 6286	- 60426 00	3 HUVE 6.5	.7513
152	-8410200	61275 00	.39416 0.3	.7560
172	-00,3086	- 70265 00	.44316 0.5	. 6017
101	-94,5080	79.516 110	44536 03	.8390
211	-97.9686	- 88505 00	.52156 0.5	. 6697
261	-103.0286	- 10686 U1	- 576hr U.S	.9146
201	-106.2886	+ 1245E UI	6136E 03	.94.15
330.	-108.3886	14225 01	.6383E US	. 4622
370.	-109.7486	1569E U1	.6545E U.S	.9742
420.	-110.6480	1750E UL	-0652E 03	9422
460.	-111.2256	1699E 01	.0/22E 03	.98/4
500.	-111.5886	2026F W1	.0766E US	.9906
540.	-111.8286	- 2137E U1	.0795E 03	.9927
579.	-112.0486	22/3F U1	.6822E 03	.9947
619	-112,1600	2369F U1	.6836E US	.9957
629.	-112,2480	2448E U1	.68465 03	.9964
699.	-112.3066	2518E U1	.6853E US	.9970
7.38	-112.3886	2634E U1	.6863E US	.9917
778.	-112.4480	2748E U1	.6871E US	.9982
818.	-112.4680	2743E U1	.6873E US	. 9984
878.	-112,5486	3046E U1	.6883E US	.9991
897.	-112.5886	3264E U1	.5686E US	.9995
937.	-112,6080	3435E U1	.059UE US	. 9996
997.	-112.6480	4906E U1	.0897E US	1.0000
1036.	-112.6486	49U0E U1	.6847E UJ	1.0000
1076.	-112,6080	3435E U1	.089UE US	.9996
1095.	-112.4886	2844E U1	.6875E US	. 9986
1113.	-112,4680	2793E U1	.6873E US	. 9984
11/7.	-112,4680	27¥3E U1	.6873E US	. 9984

1175C-1/20 CONB

130000.00000.000000000000000000000000000000000000	TIME-MIN	WT-LOSS	LUG(1-M(T)/Q)	M(T)/A-SQH	M(T)/Q
130000.00000.00000.1088-21.0000233.34003972E-01.00010074335.49406741E-01.1640001.1438437.775098790-01.3285001.2034539.8980150220.3285001.20345311.77401600000.7532001.55366311.77401600000.75320.30817313.5120160520.9920001.55366315.2140220500.175960.30817316.6720245900.175960.436571.3-19.9960320600.175960.470711319.9960320600.2180002.524212220.03203226000.2505002.561914221.4720354600.2505002.561915222.06460375500.250502.561916223.35204101100.2963502.6564430226.5400515002.56190.5619416226.540055050.02.5619431427.698056050.44406.2748534127.698056050.44446.770754030.194059950.00.518607599-30.8944067902.12860.2724842226.600059950.00.595402<					
234.34003922-01 .00012 00 .0874 335.494067412-01 .1640E 01 .1436 437.77509879E-01 .3285E 01 .2034 539.69601302E 00 .523E 01 .2034 539.69601302E 00 .523E 01 .3081 7313.51201695E 00 .9920E 01 .3556 8315.21402205E 00 .1258E 02 .3981 9316.67202489E 00 .1510E 02 .4565 10317.99002763E 00 .1759E 02 .4707 11319.09603008E 00 .1759E 02 .4707 11220.84603226E 00 .2180E 02 .5242 13220.84603542E 00 .2180E 02 .5455 14221.47203564E 00 .2505E 02 .5619 15222.04603735E 00 .2601E 02 .5619 15222.04603735E 00 .2601E 02 .5619 16223.35204401E 00 .2601E 02 .5614 30226.54005503E 00 .4169E 02 .6584 30226.54005503E 00 .4169E 02 .6584 30226.54005503E 00 .4169E 02 .7248 42226.60005503E 00 .4169E 02 .7248 42326.54005503E 00 .4169E 02 .7248 44029.45406379E 00 .4714E 02 .7707 54030.19406379E 00 .5774E 02 .8350 77633.25008250E 00 .5752E 02 .8514 83722.83808250E 00 .5752E 02 .8514 84732.02407904E 00 .5572E 02 .8514 84733.25006803E 00 .5752E 02 .8514 84733.25006803E 00 .5752E 02 .8514 84733.25006903E 00 .5752E 02 .8514 84733.55609148E 00 .5752E 02 .8514 84733.55609149E 00 .5126E 02 .8927 107634.65801037E 01 .6227E 02 .8593 101634.11409672E 01 .6012E 02 .9445 115635.71801059E 01 .6024E 02 .9445 115635.71801059E 01 .60724E 02 .9445 13435.71801159E 01 .6932E 02 .9346 144235.93401224E 01 .7104E 02 .944	13.	.0000	.0000E UU	.1088E-21	0000
33. $-5,4940$ $67412-01$ $.16400$ 01 $.1438$ 43. $-7,7750$ $96792-01$ $.32851$ 01 $.2034$ 53. $-9,6980$ $1502E$ 00 $.5423E$ 01 $.2590$ 63. $-11,7740$ $1600E$ 00 $.732E$ 01 $.3081$ 73. $-13,5120$ $1695E$ 00 $.9920E$ 01 $.3556$ 83. $-15,2140$ $2205E$ 00 $.1759E$ 02 $.3981$ 93. $-16,6720$ $2469E$ 00 $.1759E$ 02 $.4707$ 113. $-19,0960$ $3008E$ 00 $.1981E$ 02 $.4707$ 122. $-20,0320$ $3226E$ 00 $.2160E$ 02 $.5455$ 142. $-21,4720$ $3842E$ 00 $.2505E$ 02 $.5556$ 142. $-21,4720$ $3842E$ 00 $.2601E$ 02 $.5769$ 182. $-22,0460$ $3735E$ 00 $.2641E$ 02 $.5769$ 182. $-22,0460$ $3735E$ 00 $.3827E$ 02 $.6584$ 302. $-26,5400$ $5503E$ 00 $.3827E$ 02 $.6584$ 302. $-26,6000$ $5503E$ 00 $.3827E$ 02 $.6584$ 302. $-26,6000$ $5503E$ 00 $.4409E$ 2.7707 540. $-30,1940$ $5603E$ 00 $.5157E$ 02 $.8380$ $776.$ $-32,0240$ $7799E$ 00	23.	-3.3400	39/2E-01	.6061E 001	.0874
43. $-7,7750$ $9879E-01$ $.3285E$ 01 $.2034$ 53. -9.64980 $1302E$ 00 $.5235E$ 01 $.2054$ 63. $-11,7740$ $1600E$ 00 $.7532E$ 01 $.3081$ 73. $-13,5120$ $1695E$ 02 $.3791$ $.3081$ 93. $-16,6720$ $2245E$ 00 $.9920E$ 02 $.4707$ $113.$ $-19,0960$ $2763E$ 00 $.1759E$ 02 $.4707$ $113.$ $-19,0960$ $3008E$ 00 $.1991E$ 02 $.4707$ $122.$ $-20,0320$ $3226E$ 00 $.2160E$ 02 $.5242$ $132.$ $-20,08460$ $3424E$ 00 $.2505E$ 02 $.5769$ $142.$ $-21,4720$ $3584E$ 00 $.2605E$ 02 $.5769$ $152.$ $-22,0460$ $3735E$ 00 $.2645E$ 02 $.5769$ $182.$ $-23,3520$ $4101E$ 00 $.2645E$ 02 $.6514$ $302.$ $-26,5400$ $5503E$ 00 $.3827E$ 02 $.6645$ $361.$ $-27,6980$ $5603E$ 00 $.3827E$ 02 $.6748$ $302.$ $-26,5400$ $5503E$ 00 $.3827E$ 02 $.6748$ $302.$ $-26,6400$ $5603E$ 00 $.574E$ 02 $.7707$ $540.$ $-30,1940$ $6790E$ 00 $.5154E$ 02 $.8783$ $303.$ $-30,8940$ <td>33.</td> <td>-5,4940</td> <td>6741E-U1</td> <td>.1640E 01</td> <td>.1438</td>	33.	-5,4940	6741E-U1	.1640E 01	.1438
53. -9.0980 13022 00 $.5326$ 01 $.2590$ 63. -11.7740 160952 00 $.75326$ 01 $.3081$ 73. -13.5120 169520 00 $.9920501$ $.5536$ 83. -15.2140 22052 00 $.12596022$ $.9981$ 93. -16.6720 2459602 $.12596022$ $.49961$ $103.$ -17.99000 27036000 $.12596022$ $.49977$ $122.$ -20.03220 32266000 $.19816022$ $.52422$ $132.$ -20.84600 3424600 $.23616022$ $.56197$ $152.$ -22.046400 35446002 $.25650022$ $.56197$ $152.$ -22.046400 35946002 $.26416022$ $.57697$ $182.$ -22.516000 460462000 $.38276022$ $.65844$ $302.$ -26.54000 599520000 $.38276022$ $.65844$ $302.$ -26.54000 599520000 $.38276022$ $.69455$ $361.$ -27.69800 56036000 $.47146022$ $.77077$ $540.$ -29.65400 63966000 $.47146022$ $.77077$ $540.$ -30.19400 $779920000000000000000000000000000000000$	43.	-7.7750	9879E-U1	.3285E 01	+2034
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53.	-9.8980	1302E 00	.5323E U1	•2590
7313.51201895E00.990E01.35368315.21402205E00.1258E02.99819316.67202489E00.1510E02.436310317.99002763E00.1759E02.470711319.09603008E00.1991E02.499712220.03203226E00.2180E02.524213220.64603324E00.2505E02.561914221.47203584E00.2505E02.561915222.04603735E00.2604E02.561918223.35204101E00.2605E02.611124225.16004604E00.3640E02.724830226.54005995E00.4406E02.724842226.60005995E00.4406E02.774848029.45406396E00.4954E02.790159930.8940716E00.5186E02.808465931.45007519E00.5186E02.808465931.45007919E00.572E02.851483732.63808250E00.5752E02.851483732.63808505E00.622E02.871395633.5660<	63.	-11.7740	1600E UU	.7532E U1	.3081
8315.21402205600.1258602.39819316.67202489600.1510602.440711317.99002763600.1759602.470711319.09603008600.1981602.524213220.84603226600.2801602.524213220.84603735600.2505602.561914221.47203584600.2505602.576918222.04603735600.2603602.576918223.35204101600.2963602.576918225.16004604600.3440602.724830226.54005150600.4104602.724842223.65005995600.4406602.724842223.60005995600.4104602.724842223.60005995600.4104602.724848029.45406396600.51566.823059930.89407176600.5186602.808465931.45007519600.5572602.838071832.02407904600.5627602.851463732.83808250600.62246.871395633.266091486 </td <td>73.</td> <td>-13,5120</td> <td>1895E UU</td> <td>.9920E 01</td> <td>. 3536</td>	73.	-13,5120	1895E UU	.9920E 01	. 3536
93. -16.6720 22894 00 $.15100$ 02 $.4707$ 113. -17.9900 27636 00 $.17940$ $.4707$ 113. -19.0960 30080 00 $.19816$ 02 $.4997$ 122. -20.0320 32266 00 $.2180102$ $.5242$ 132. -20.68600 374246 00 $.25056$ 02 $.5619$ 142. -21.47720 35846 00 $.26016$ 02 $.5619$ 152. -22.04600 37356 00 $.26416$ 02 $.5769$ 182. -23.3520 41016 00 $.34406$ 02 $.6584$ 302. -26.5400 51506 00 $.34406$ 02 $.6945$ 361. -27.6980 55036 00 $.46046$ 02 $.7248$ 422. -26.6000 59956 00 $.44046$ 02 $.7485$ 480. -29.4540 63966 00 $.47146$ 02 $.7248$ 480. -29.4540 67806 00 $.47146$ 02 $.7901$ 599. -30.8940 71766 00 $.57546$ 02 $.8084$ 659. -41.4500 75196 00 $.57546$ 02 $.8593$ 778. -32.5380 82606 00 $.57546$ 02 $.8593$ 956. -33.5660 91486 00 $.5236$ 02 $.8927$ 1076. -34.6780 10596 <td>83.</td> <td>-15,2140</td> <td>22U5E UU</td> <td>.1258E 02</td> <td>.3981</td>	83.	-15,2140	22U5E UU	.1258E 02	.3981
103. $-17,9900$ $2763E$ 00 $.1791E$ 02 $.4707$ 113. $-19,0960$ $3008E$ 00 $.1981E$ 02 $.5242$ 132. $-20,0320$ $3226E$ 00 $.21601E$ 02 $.5242$ 132. $-20,6460$ $3324E$ 00 $.2361E$ 02 $.5619$ 152. -22.0660 $3735E$ 00 $.2641E$ 02 $.5769$ 182. -22.0660 $3735E$ 00 $.2641E$ 02 $.6514$ 202. -25.1600 $4664E$ 00 $.3827E$ 02 $.6945$ 361. -27.6980 $5503E$ 00 $.4404E$ 02 $.7248$ 422. -26.5600 $5509E$ 00 $.4446E$ 02 $.7747$ 540. -29.4540 $6396E$ 00 $.4744E$ 02 $.7701$ 540. -29.4540 $6396E$ 00 $.4744E$ 02 $.7701$ 540. -29.4540 $6396E$ 00 $.5166E$ $.8230$ 718. -32.5380 $7176E$ 00 $.5166E$ $.8230$ 778. -32.5380 $8250E$ 00 $.5753E$ 02 $.8514$ 837. -32.6380 $6995E$ 00 $.6225E$ 02 $.8927$ 1076. -34.5500 $9950E$ 00 $.6225E$ 02 $.8927$ 1076. -34.6580 $1059E$ 00 $.6225E$ 02 $.8927$ 1076. -34.6580 $1059E$ 00 $.6411E$ 02 $.9205$ <td>93.</td> <td>-16,6720</td> <td>5488F NN</td> <td>.1510E 02</td> <td>.4363</td>	93.	-16,6720	5488F NN	.1510E 02	.4363
113. -19.0960 30080 00 $.218010$ 02 $.4997$ 122. -20.0320 32260 00 $.2180102$ $.5242$ 132. -20.08600 3424000 $.2361102$ $.5495$ 142. -21.47200 3584000 $.25050002$ $.5619000000000000000000000000000000000000$	103.	-17,9900	2763E UU	.1/59E 02	.4707
122. -20.0320 32260 00 $.21800$ 02 $.5242$ 132. -20.04600 3424000 $.2501002$ $.5619$ 142. -21.4720 3584000 $.2501002$ $.5619$ 152. -22.04600 37350000 $.2641002$ $.5769$ 182. -23.35200 4101000000 $.29635002$ $.61111000000000000000000000000000000000$	113.	-19.0960	3008E 00	.1981E UZ	.4997
132. -20.8460 34246 00 $.23616$ 02 $.5455$ 142. -21.4720 35546 00 $.25056$ 02 $.5619$ 152. -22.0460 37356 00 $.26416$ 02 $.5769$ 162. -23.3520 41016 00 $.263602$ $.6111$ 242. -25.1600 460462 00 $.34402$ $.6584$ 302. -26.5400 51002 00 $.38276$ 02 $.6945$ $361.$ -27.6980 55032 00 $.416946$ 02 $422.$ -26.6060 599526 00 $.416946$ 02 $.72486$ $422.$ -26.6060 599526 00 $.47146$ 02 $.7707$ $560.$ -30.1940 63966 00 $.47146$ 02 $.7707$ $560.$ -30.1940 63966 00 $.59726$ 02 $.8230$ $718.$ -32.0240 71766 02 $.8514$ $837.$ -32.6380 85166 00 $.55726$ 02 $.8593$ $897.$ -33.2960 869036 00 $.51226$ 02 $.8527$ $1076.$ -34.6580 10316 00 $.64116$ 02 $.9093$ $1016.$ -34.6580 10346 00 $.64226$ $.9227$ $1076.$ -34.6580 10346 01 $.66226$ 02 $.9227$ $1076.$ -34.6580 10346 01 $.66226$	122.	-20.0320	+.3226E UU	.218UE U2	.5242
142. -21.4720 3584 00 $.2505$ 02 $.5619$ $152.$ -22.0460 37356 00 $.26416$ 02 $.5769$ $182.$ -22.03520 41016 00 $.29636$ 02 $.6111$ $242.$ -25.1600 46646 00 $.34406$ 02 $.6584$ $302.$ -26.5400 55056 00 $.38276$ 02 $.6945$ $361.$ -27.6980 56036 00 $.416946$ 02 $.7248$ $422.$ -26.6050 59952 00 $.416946$ 02 $.7248$ $422.$ -29.4540 63966 00 $.47146$ 02 $.7707$ $540.$ -30.1940 67992 00 $.49546$ 02 $.8084$ $659.$ -31.4500 77196 00 $.51866$ 02 $.8084$ $659.$ -31.4500 77192 $.82502$ $.8230$ $.8230$ $718.$ -32.0240 79042 00 $.57532$ 02 $.8593$ $897.$ -33.2960 82502 00 $.57532$ 02 $.8593$ $897.$ -33.2960 89032 00 $.60242$ 02 $.8927$ $1076.$ -34.1140 997926 00 $.64112$ 02 $.8927$ $1076.$ -34.6580 10342 00 $.67236$ 02 $.9292$ $1076.$ -34.6780 109926 00 $.64122$ $.9292$ $1076.$	132.	-20,8460	3424E UU	.2361E U2	.5455
152. -22.0460 3735 0.0 $.26416$ 0.2 $.5769$ 182. -23.3520 41016 0.0 $.29636$ 0.2 $.6111$ 242. -25.1600 46646 0.0 $.34406$ 0.2 $.6945$ 361. -27.6980 51506 0.0 $.44646$ 0.2 $.7248$ 422. -26.6060 59956 0.0 $.41696$ 0.2 $.7248$ 422. -26.6060 59956 0.0 $.47146$ 0.2 $.7707$ 540. -30.1940 63966 0.0 $.47146$ 0.2 $.7707$ 540. -30.1940 67806 0.0 $.51866$ 0.2 $.8084$ 659. -31.4500 75196 0.0 $.51866$ 0.2 $.8230$ 718. -32.0240 79046 0.0 $.57536$ 0.2 $.85144$ $837.$ -32.6380 82506 0.0 $.57536$ 0.2 $.8593$ $897.$ -33.2960 89036 0.0 $.60246$ 0.2 $.8927$ $1076.$ -34.1140 99506 0.63256 0.2 $.8927$ $1076.$ -34.6780 10342 0.63256 0.2 $.8927$ $1076.$ -34.6780 10342 0.60166 0.2 $.9295$ $134.$ -35.7160 10342 0.60246 0.2 $.9295$ $134.$ -35.7180 11506 0.69326 0.2 $.9292$ $134.$ -35.7180 $$	142.	-21,4/20	3584E UU	.2505E 02	.5619
182. -23.3520 41012 00 $.29520$ $.6111$ $242.$ -25.1600 $4664E$ 00 $.3440E$ 02 $.6584$ $302.$ -26.5400 $5150E$ 00 $.3827E$ 02 $.6945$ $361.$ -27.6980 $5502E$ 00 $.4169E$ 02 $.7248$ $422.$ -28.6060 $5995E$ 00 $.4169E$ 02 $.7248$ $422.$ -28.6060 $5995E$ 00 $.4446E$ 02 $.7485$ $480.$ -29.4540 $6396E$ 00 $.4714E$ 02 $.7707$ $540.$ -30.1940 $6780E$ 00 $.4714E$ 02 $.7901$ $599.$ -30.8940 $7717E$ 00 $.5374E$ 02 $.8084$ $659.$ -31.4500 $7519E$ 00 $.5374E$ 02 $.8230$ $718.$ -32.0240 $7904E$ 00 $.5752E$ 02 $.8380$ $778.$ -32.6380 $8250E$ 00 $.5752E$ 02 $.8514$ $837.$ -32.6380 $8903E$ 00 $.6024E$ 02 $.8713$ $956.$ -33.5660 $9148E$ 00 $.6122E$ 02 $.8927$ $1076.$ -34.1140 $9950E$ 00 $.6622E$ 02 $.8927$ $1076.$ -34.6780 $1031E$ 01 $.6527E$ 02 $.9069$ $1195.$ -34.6780 $1039E$ 01 $.6723E$ 02 $.9292$ <td< td=""><td>152.</td><td>-22.0460</td><td>3735E UU</td><td>,2641E U2</td><td>.5769</td></td<>	152.	-22.0460	3735E UU	,2641E U2	.5769
242. -25.1600 46042 00 $.3402$ 02 $.6945$ $302.$ -26.5400 51502 00 $.382/E$ 02 $.6945$ $361.$ -27.6980 56032 00 $.41692$ 02 $.7248$ $422.$ -26.6050 59952 00 $.44465$ 02 $.7248$ $480.$ -29.4540 63962 00 $.47145$ 02 $.7707$ $540.$ -30.1940 67602 00 $.49545$ 02 $.8084$ $659.$ -31.4500 71762 00 $.51745$ 02 $.8084$ $659.$ -31.4500 77192 00 $.51745$ 02 $.8230$ $718.$ -32.0240 79014 $.55726$ 02 $.8514$ $837.$ -32.6380 82506 00 $.57535$ 02 $.8514$ $837.$ -32.6380 82506 00 $.57536$ 02 $.8593$ $897.$ -33.2960 89036 00 $.6226$ 02 $.8763$ $1016.$ -34.1140 96926 00 $.63236$ 02 $.8927$ $1076.$ -34.6780 10316 01 $.65276$ 02 $.9127$ $1254.$ -35.1760 10996 01 $.66126$ 02 $.9292$ $1314.$ -35.5120 11596 01 $.69326$ 02 $.9292$ $1373.$ -35.6380 11716 01 $.69326$ 02 $.9292$ <td< td=""><td>182.</td><td>-23.3520</td><td>41UIE UU</td><td>.2963E UZ</td><td>.6111</td></td<>	182.	-23.3520	41UIE UU	.2963E UZ	.6111
302. -26.5400 51500 001 $.3827002$ $.6945$ $361.$ -27.6980 56035000 $.41694002$ $.72480000$ $422.$ -26.60600 59950000 $.44664002$ $.7707070000000000000000000000000000000$	242.	-25.1000	4004E UU	.344UE UZ	+0584
361. -27.6980 $5603E$ 00 $.4169E$ 02 $.7248$ 422. -26.6060 $5995E$ 00 $.4446E$ 02 $.7465$ 480. -29.4540 $6396E$ 00 $.4714E$ 02 $.7707$ 540. -30.1940 $6780E$ 00 $.47954E$ 02 $.7901$ 599. -30.8940 $7176E$ 00 $.5186E$ 02 $.8084$ 659. -31.4500 $7519E$ 00 $.5374E$ 02 $.8230$ 718. -32.0240 $7904E$ 00 $.5572E$ 02 $.8380$ 778. -32.5380 $8250E$ 00 $.5572E$ 02 $.8514$ 837. -32.6380 $8250E$ 00 $.5693E$ $.622E$ $.8514$ 837. -32.6380 $8902E$ 00 $.5024E$ $.8513E$ 897. $-33.2960E$ $8902E$ 00 $.6024E$ 02 $.8713E$ 956. $-33.5960E$ $9148E$ 00 $.6024E$ 02 $.8927E$ 1076. $-34.3500E$ $9992E$ 00 $.6411E$ 02 $.8927E$ 1076. $-34.658E$ $1031E$ 01 $.6610E$ 02 $.9127E$ 1254. $-35.1760E$ $1099E$ 01 $.6612EE$ 02 $.9242E$ 1314. $-35.512E$ $1150E$ 01 $.6932E$ 02 $.9242E$ 1373. $-35.6340E$ $11225E$ 01 $.7079E$ 02 $.9445E$ 1501. <t< td=""><td>302.</td><td>-20.5400</td><td>5150E UU</td><td>.382/E U2</td><td>+6945</td></t<>	302.	-20.5400	5150E UU	.382/E U2	+6945
422. -26.6050 59952 00 $.44462$ 02 $.7707$ $480.$ -29.4940 67502 00 $.47142$ 02 $.7707$ $540.$ -30.1940 67502 00 $.49542$ 02 $.8084$ $599.$ -30.8940 $71/62$ 00 $.51862$ $.8084$ $659.$ -31.4500 75192 00 $.51742$ 02 $.8230$ $718.$ -32.0240 79042 00 $.55722$ 02 $.8380$ $778.$ -32.5380 82502 00 $.57532$ 02 $.8514$ $837.$ -32.6380 85162 00 $.58542$ $.8593$ $897.$ -33.2960 89032 00 $.60242$ $.8713$ $956.$ -33.5660 91482 00 $.63252$ 02 $.8927$ $1076.$ -34.6500 99502 00 $.64112$ 02 $.8988$ $1136.$ -34.6580 10312 01 $.65272$ $.9069$ $1195.$ -34.8780 10592 01 $.67232$ $.9292$ $1314.$ -35.5120 11502 01 $.69322$ 02 $.9292$ $1373.$ -35.6380 112242 01 $.70792$ $.9346$ $1442.$ -35.7180 12252 01 $.70792$ $.9445$ $1501.$ -36.2740 12242 01 $.70792$ $.9445$ $1561.$ -36.2740 12242 $.71502$ $.9445$ <td>361.</td> <td>-27.6980</td> <td>5603E 00</td> <td>.4169E U2</td> <td>.7248</td>	361.	-27.6980	5603E 00	.4169E U2	.7248
480. -29.4940 63960 00 $.47141$ 02 $.7707$ 540. -30.1940 67000 00 $.49541$ 02 $.7901$ 599. -30.8940 717600 $.5186102$ $.8084$ $659.$ -31.4500 751900 $.5186102$ $.8230$ $718.$ -32.0240 770400 $.5572102$ $.8230$ $778.$ -32.5380 82500 $.5753102$ $.8514$ $837.$ -32.8380 851600 $.5753102$ $.8514$ $837.$ -32.8380 8903000 $.6024102$ $.8593$ $897.$ -33.29600 6903000 $.6024102$ $.8713$ $956.$ -33.55660 914800 $.6122102$ $.8927$ $1076.$ -34.55600 9950100 $.6122102$ $.8927$ $1076.$ -34.6780 1031000 $.6411102$ $.89480$ $1136.$ -34.6780 1031000 $.6411002$ $.9127$ $1254.$ -35.17600 10310000 $.6411002$ $.9127$ $1254.$ -35.17600 103900000 $.6411002$ $.920500000000000000000000000000000000000$	422.	-28.6060	5995E UU	.4440E UZ	•7485
30. -30.1940 $6780E$ 00 $.4934E$ 02 $.7901$ $599.$ -30.8940 $7176E$ 00 $.5186E$ 02 $.8084$ $659.$ -31.4500 $7519E$ 00 $.5374E$ 02 $.8230$ $718.$ -32.0240 $7904E$ 00 $.5572E$ 02 $.8380$ $778.$ -32.5380 $82b0E$ 00 $.5753E$ 02 $.8514$ $837.$ -32.8380 $8516E$ 00 $.5859E$ 02 $.8593$ $897.$ -33.2960 $6693E$ 00 $.6024E$ 02 $.8753$ $956.$ -33.5660 $9148E$ 00 $.6122E$ 02 $.8753$ $1016.$ -34.1140 $9692E$ 00 $.6122E$ 02 $.8927$ $1076.$ -34.6580 $1031E$ 01 $.6527E$ 02 $.9069$ $1195.$ -34.8780 $1031E$ 01 $.6723E$ 02 $.9127$ $1254.$ -35.1760 $1099E$ 01 $.6723E$ 02 $.9292$ $1314.$ -35.5120 $1150E$ 01 $.6932E$ 02 $.9325$ $1394.$ -35.7180 $11224E$ 01 $.7079E$ 02 $.9445$ $1561.$ -36.2740 $1224E$ 01 $.7079E$ 02 $.9445$ $1561.$ -36.2740 $1224E$ 01 $.7150E$ 02 $.9445$	480.	-29,4540	0340E UU	.4/14E U2	.//0/
599. -30.8940 $7176E$ 00 $.5186E$ 02 $.8084$ $659.$ -31.4500 $7519E$ 00 $.5374E$ 02 $.8230$ $718.$ -32.0240 $7904E$ 00 $.5572E$ 02 $.8380$ $778.$ -32.5380 $8250E$ 00 $.5753E$ 02 $.8514$ $837.$ -32.6380 $8510E$ 00 $.5753E$ 02 $.8593$ $897.$ -33.2960 $8503E$ 00 $.6024E$ 02 $.8713$ $956.$ -33.5660 $9148E$ 00 $.6122E$ 02 $.8927$ $1016.$ -34.1140 $9692E$ 00 $.6323E$ 02 $.8927$ $1076.$ -34.6580 $1031E$ 01 $.6527E$ 02 $.9069$ $1195.$ -34.8780 $1031E$ 01 $.6610E$ 02 $.9127$ $1254.$ -35.1760 $1099E$ 01 $.6411E$ 02 $.9292$ $1314.$ -35.5120 $1150E$ 01 $.6932E$ 02 $.9325$ $1394.$ -35.7180 $1124E$ 01 $.6932E$ 02 $.9346$ $1442.$ -36.9340 $1224E$ 01 $.7079E$ 02 $.9445$ $1561.$ -36.2740 $1294E$ 01 $.7150E$ 02 $.9445$	240+	-30,1940	6/8UE UU	.4954E UZ	./901
059. -31.4500 $7519E$ 00 $.5374E$ 02 $.8230$ 718. -32.0240 $7904E$ 00 $.5572E$ 02 $.8380$ 778. -32.5380 $8250E$ 00 $.5753E$ 02 $.8514$ $837.$ -32.8380 $8510E$ 00 $.5859E$ 02 $.8593$ $897.$ -33.2960 $8903E$ 00 $.6024E$ 02 $.8713$ $956.$ -33.5660 $9148E$ 00 $.6122E$ 02 $.8763$ $1016.$ -34.1140 $9692E$ 00 $.6122E$ 02 $.8927$ $1076.$ -34.3500 $9950E$ 00 $.6411E$ 02 $.8927$ $1076.$ -34.6580 $1031E$ 01 $.6527E$ 02 $.9069$ $1136.$ -34.6580 $1059E$ 01 $.610E$ $.9205$ $1314.$ -35.1760 $1059E$ 01 $.6922E$ 02 $.9292$ $1373.$ -35.6380 $1171E$ 01 $.6932E$ 02 $.9346$ $1442.$ -35.7180 $1254E$ 01 $.7079E$ 02 $.9445$ $1501.$ -36.0940 $1255E$ 01 $.7079E$ 02 $.9445$ $1561.$ -36.2740 $1244E$ 01 $.7150E$ 02 $.9492$	277.	-30.8940	/1/6E UU	.5186E UZ	.8084
718. -32.0240 79040 00 $.5572002$ $.8380$ $778.$ -32.5380 $82b000$ $.5753002$ $.8514$ $837.$ -32.8380 8516000 $.5859002$ $.8593$ $897.$ -33.29600 89030000 $.6024002$ $.87133000000$ $956.$ -33.56600 $9148000000000000000000000000000000000000$	077.	-31,4500	/519E UU	.53/4E UZ	.8230
7/8. -32.5380 82800 00 $.57536$ 02 $.8514$ $837.$ -32.8380 85166 00 $.58596$ 02 $.8593$ $897.$ -33.2960 89186 00 $.60246$ 02 $.8713$ $956.$ -33.5660 91486 00 $.61226$ 02 $.8763$ $1016.$ -34.1140 969266 00 $.61226$ 02 $.8927$ $1076.$ -34.3500 999506 00 $.64116$ 02 $.8927$ $1076.$ -34.6580 10316 01 $.65276$ 02 $.9069$ $1195.$ -34.8780 1099606 01 $.65276$ 02 $.9127$ $1254.$ -35.1760 10996000 01 $.6723602$ $.9292$ $1314.$ -35.5120 115060000 0901602 $.9292$ $1373.$ -35.6380 $117160000000000000000000000000000000000$	/10.	-32.0240	/9U4E UU	.55/2E U2	.8380
037. -32.0380 $8910E$ 00 $.5839E$ 02 $.8593$ $897.$ -33.2960 $8903E$ 00 $.6024E$ 02 $.8713$ $956.$ -33.5660 $9148E$ 00 $.6122E$ 02 $.8783$ $1016.$ -34.1140 $9692E$ 00 $.6122E$ 02 $.8927$ $1076.$ -34.3500 $9950E$ 00 $.6411E$ 02 $.8988$ $1136.$ -34.6580 $1031E$ 01 $.6527E$ 02 $.9069$ $1195.$ -34.8780 $1059E$ 01 $.6527E$ 02 $.9127$ $1254.$ -35.1760 $1099E$ 01 $.6723E$ 02 $.9292$ $1314.$ -35.5120 $1150E$ 01 $.6932E$ 02 $.9292$ $1373.$ -35.6380 $1171E$ 01 $.6932E$ 02 $.9346$ $1442.$ -35.7180 $11224E$ 01 $.7079E$ 02 $.9445$ $1501.$ -36.0940 $1225E$ 01 $.7079E$ 02 $.9445$ $1561.$ -36.2740 $1225E$ 01 $.7150E$ 02 $.9442$	//0.	-32+2384	- 820UE UU	. 5/53E UZ	+8514
377. -33.2960 89036 00 $.60246$ 02 $.8713$ $956.$ -33.5660 91486 00 $.61226$ 02 $.8763$ $1016.$ -34.1140 96926 00 $.63236$ 02 $.8927$ $1076.$ -34.3500 99506 00 $.64116$ 02 $.8928$ $1136.$ -34.6580 10316 01 $.65276$ 02 $.9069$ $1195.$ -34.8780 10596 01 $.65276$ 02 $.9127$ $1254.$ -35.1760 10596 01 $.67236$ 02 $.9292$ $1314.$ -35.5120 11506 01 $.69526$ 02 $.9292$ $1373.$ -35.6380 11716 01 $.69326$ 02 $.9346$ $1442.$ -35.7180 12246 01 $.70796$ 02 $.9443$ $1501.$ -36.0940 12256 01 $.70796$ 02 $.9445$ $1561.$ -36.4780 12246 01 $.71506$ 02 $.9442$	807	-32+0300	- 800 AF 00	+0345 UZ	.8593
336. -33.3600 $9140E$ 00 $.6122E$ 02 $.8783$ $1016.$ -34.1140 $9642E$ 00 $.6323E$ 02 $.8927$ $1076.$ -34.3500 $9950E$ 00 $.6411E$ 02 $.8988$ $1136.$ -34.6580 $1031E$ 01 $.6527E$ 02 $.9069$ $1195.$ -34.8780 $1059E$ 01 $.6510E$ 02 $.9127$ $1254.$ -35.1760 $1059E$ 01 $.6723E$ 02 $.9205$ $1314.$ -35.5120 $1150E$ 01 $.6952E$ 02 $.9292$ $1373.$ -35.6380 $1171E$ 01 $.6901E$ 02 $.9292$ $1374.$ -35.7180 $1150E$ 01 $.6932E$ 02 $.9346$ $1442.$ -35.9340 $1224E$ 01 $.7079E$ 02 $.9443$ $1501.$ -36.0940 $1225E$ 01 $.7079E$ 02 $.9445$ $1561.$ $-36.478b$ $1142E$ 01 $.7150E$ 02 $.9442$	07/1	-33,2900	8903E 00		.8/13
101034.11409922 00 $.0323 = 02$ $.8927$ 107634.35009950 = 00 $.6411 = 02$ $.8988$ 113634.65801031 = 01 $.6527 = 02$ $.9069$ 119534.87801059 = 01 $.6610 = 02$ $.9127$ 125435.17601099 = 01 $.6723 = 02$ $.9205$ 131435.51201150 = 01 $.6852 = 02$ $.9292$ 137335.63801171 = 01 $.6901 = 02$ $.9292$ 137435.71801155 = 01 $.6932 = 02$ $.9346$ 144235.93401224 = 01 $.7016 = 02$ $.9445$ 150136.09401255 = 01 $.7079 = 02$ $.9445$ 156136.27401294 = 01 $.7150 = 02$ $.9442$	730+	-33+3000	91466 00	.0122E UZ	.0/03
107634.33009990600.6411602.8986113634.65801031601.6527602.9069119534.87801099601.6510602.9127125435.17601099601.6723602.9205131435.51201150601.6852602.9292137335.63801171601.6901602.9325139435.71801155601.6932602.9346144235.93401224601.7016602.9403150136.09401255601.7079602.9445156136.27401246601.7150602.9442	1076	-34+1140	- 0050C 00	.0323E UZ	·892/
1130. -34.8980 10340 0.10340 0.03270 02 $.9089$ 1195. -34.8780 10390 0.0100 0.0270 0.0270 1254. -35.1760 10396 01 0.67230 0.2 1314. -35.5120 11500 01 0.69520 0.2 1373. -35.6380 11716 01 0.69010 0.2 1394. -35.7180 11550 01 0.69320 0.9346 1442. -35.9340 12240 0.701602 0.9403 1501. -36.0940 125500 $.7079002$ 0.9445 1561. -36.2740 124601 $.7150002$ 0.94922	11/0.	-34.3700	- 10415 01	•0411E UE	·0700
1199. -36.0760 $1099E$ 01 $.0610E$ 02 $.9127$ $1254.$ -35.1760 $1099E$ 01 $.6723E$ 02 $.9205$ $1314.$ -35.5120 $1150E$ 01 $.6852E$ 02 $.9292$ $1373.$ -35.6380 $1171E$ 01 $.6901E$ 02 $.9325$ $1394.$ -35.7180 $1155E$ 01 $.6932E$ 02 $.9346$ $1442.$ -35.9340 $1224E$ 01 $.7016E$ 02 $.9443$ $1501.$ -36.0940 $1255E$ 01 $.7079E$ 02 $.9445$ $1561.$ -36.2740 $1294E$ 01 $.7150E$ 02 $.9492$ $1621.$ $-36.478b$ $1342E$ 01 $.7230E$ 02	1105	-34 9780	- 1000E 01	.072/E UZ	+ 9009
1294. -35.1760 $1099E$ 01 $.0725E$ 02 $.9205$ $1314.$ -35.5120 $1150E$ 01 $.6852E$ 02 $.9292$ $1373.$ -35.6380 $1171E$ 01 $.6901E$ 02 $.9325$ $1394.$ -35.7180 $1155E$ 01 $.6932E$ 02 $.9346$ $1442.$ -35.9340 $1224E$ 01 $.7016E$ 02 $.9443$ $1501.$ -36.0940 $1255E$ 01 $.7079E$ 02 $.9445$ $1561.$ -36.2740 $1294E$ 01 $.7150E$ 02 $.9492$ $1621.$ $-36.478b$ $1342E$ 01 $.7230E$ 02	1121	- 46 1760	- 1009E UI		+712/
1314. $-35+5120$ -111000 $11-11000$ $1000000000000000000000000000000000000$	1314	-3511/00	- 11505 01	.0723E UZ	19202
1373. -35.0380 11712 01 .09012 02 .9325 1394. -35.7180 11652 01 .69322 .9346 1442. -35.9340 12242 01 .70162 .9403 1501. -36.0940 12552 01 .70792 02 .9445 1561. -36.2740 12942 01 .71502 .9492 1621. -36.4780 13425 01 .72506 02 .9492	1 4 7 7	-32+2150		60072E UZ	+ 7 C 7 C
1394. -35.7160 11026 01 .39326 02 .9340 1442. -35.9340 1224E 01 .7016E 02 .9403 1501. -36.0940 1255E 01 .7079E 02 .9445 1561. -36.2740 1294E 01 .7150E 02 .9492 1621. -36.4780 13426 01 .7250E 02 .9492	13/3.	-35+8380	- 11/12 UI		+7323 0746
1442. -364940 -1224201 17010202 9445 1501. -364740 -1254201 7079202 9445 1561. -364780 -1242201 7150202 9492 1621. -364780 -11425201 7230602 9492	1442	-3517100	- 1224E 01	70166 02	0403
1561 36.2740 - 1294E 01 .7150E 02 .9492 1621 36.4780 - 1342E 01 .7150E 02 .9492	1501	- 35 + 9340	- 12545 01	70786 112	0415
1621 36.4786 - 13426 01 - 72306 02 - 7492	1501+	-30.0940		1/0/7E UE 71505 07	19442
	1621.	-36.4784	- 1 (42E P1	72306 02	0545
	1680.	-36.6220	- 1360- 01	79876 12	0543
	1740.	-36.8120	+ 14356 01		0444
	1800.	-36,9180	1469E U1	.74066 62	. 9660
	1909.	-37,0840	15284 01	.74726 02	. 9714
1988. •37.5140 •.1736F 01 7647F 02 0016	1968.	-37.5140	17366 01	.76476 02	.4816
12166. •37.7960 •.19616 U1\ .77636 U2 .0001	12166 -	•37.79hU	19616 01	.7763E 02	.0401
234537,97802206F 01 .7637F 02 .90KB	2345.	-37.9780	22U6F U1	.78378 02	. 99.48
2523. •38.20403503F 01 .7031F 02 .0007	2523.	-38,2040	3503F U1	.7931E 02	. 4947
273038,3200 -,2505E U1 .7979E U2 1.0027	2750.	-38.3200	- 2505E U1	.7979E U2	1.0027

and a set of the set of the set

TABLE B-10

1175C-1/1 CONB

FIME-MIN	WT-LOSS	LUG(1-M(T)/Q)	M(T)/A-SUR	M(T)/Q
5.	.0000	.00000 00	.00006 00	.0000
10.	-7.6340	8571E-U1	.3167F 01	. 1 7 9 1
15.	-9.616U	1110E UU	5024E 01	2256
20.	-11.1640	1319E UU	.0772E U1	.2619
25.	-12.6760	1533E UU	.8731E 01	.2974
30.	-14.3080	17/6E UU	.1112E 02	.3357
35.	-15.9780	2040E UU	.1387E 02	. 3749
39.	-17,754U	2340E UU	.1713E 02	.4165
44.	-20.8240	2912E UU	.2356E UZ	. 4886
49.	-21,5820	3066E UU	.2531E 02	.5063
54.	-23.6040	3504E UU	.302/E 02	.5538
59.	-25.6340	3997E UU	.3570E UZ	.6014
64.	-27,6660	4546E UU	.4159E 02	.6491
69.	-29.5900	5146E UU	.475/E 02	.6942
74.	-31.3860	5790 <u>2</u> 00	.5353E 02	.7365
79.	-33.0510	6486E UU	.5935E 02	.7754
84.	-34.5180	7206E UU	.6474E 02	-8098
89.	-35.8410	7982E UU	.6980E 02	.8409
94.	-36.9700	87/3E UU	.742/E U2	.8674
99.	-37,9360	9587E UU	.782UE 12	.8900
104.	-38.5620	1021E 01	.808UE 02	.9047
103.	•42.1040	1914E U1	.9632E UZ	.9875
223.	-42.3500	2192E UI	.9/45E UZ	.9936
203.	-42-45-040	- 23512 01	· 9/04E UZ	.9977
402	-42 4040	- 25166 01	· 9/97E UZ	• 9 9 0 1
461	-42.5300		• 7016E V6	•9970
521.	+42.5480	- 37492 01	17027E UZ	• 9 9 7 0
580.	-42.5660	- 28666 111	98455 02	1770Z
640.	-42.5760	294AE UI	.9850F 02	. 2040
669.	-42.5940	3153E U1	. 9450E UZ	. 494.5
760.	-42.6100	3464F U1	. 9862F UZ	. 4997
820.	-42.6020	320/E U1	. YOOLE OL	. 9995
880.	-42.6000	3249E U1	.9801E UZ	. 9994
940.	-42.6020	3267E U1	.9002E UZ	.9945
1000.	-42.6120	3550E U1	.4860E UZ	. 9997
1060.	-42.6040	3324E U1	.9862E UZ	. 9995
1120.	-42.6060	3426E U1	.9864E U∠	.9996
11/9.	-42.6140	36JUE U1	.986/E UZ	.9998
1239.	-42.6060	33/4E U1	.9863E UC	.9996
1299.	-42.5980	•.3215k U1	.986UE UZ	. 9994
1359.	-42.5840	-3020E UI)	. Y853E UZ	. 9991
1441.	-42.6240	4.1701E 34	.9872E UZ	1.0000
1432.	-42,2180	-20215-41	YA85E 02	. 9905

1175C-20/1 CONB

TIME-MIN	WT-LOSS	LUG(1-M(T)/Q)	M(T)/A-SQF	е м(т)/Q
2.	.0000	.0000E UU	.11766-21	0000
17.	.0040	.30U4E-U4	.86942-06	0001
52.	0840	6314E-US	.3834E-US	.0015
47.	3300	2406E-U2	.5917E-02	.0057
62.	7200	54428-02	.2817E-01	.0125
77.	-1.2280	9323E-UZ	.8194E-01	.0212
92.	-1.816U	1386E-U1	.1792E OU	.0314
107.	-2.3810	1828E-U1	.308UE 00	.0412
196.	-6.2340	49556-01	.2112E OĪ	.1078
256.	-7.8290	80916-01	.5248E U1	.1700
375.	-13.1880	1124E UO	.945UE 01	.2281
465.	-16.2720	1435E UU	.1439E 02	.2814
554.	-19,2520	1759E UV	.2014E 02	.3330
643.	-21.9980	20/9E UU	.2629E 02	.3805
752.	-24.5700	24UJE UU	.328UE 02	.4249
822.	-20.9760	2729E UU	.3954E 02	.4666
911.	-29.2020	3054E 00	.4634E 02	.50>1
1000.	-31,3220	3389è UU	.5331E 02	.5417
1149.	-34,6140	3905E UU	.651UE U2	-5987
1238.	-36,4220	4317E 00	.7208E 02	.6299
1328.	-38.1020	46/2E UU	.7888E 02	.6590
1389.	-39,4320	49/5E UU	.8449E 02	.6820
14/8.	-40.8440	5322E UU	.9064E 02	.7064
1573.	-42.0160	5633E UU	.9592E 02	.7267
1635.	-43,1440	5955E UU	.10116 03	.7462
1725.	-44,3760	6335E UU	.1070E U3	.7675
1/62+	-43.3400	6001E UU	.1117E U3	.7843
1845.	-47.8440	6838E UU	.1142E US	.7929
1907.	-47.2000	/303E UU	.1211E U3	.8107
2004.	-40.3920	/8//E UU	·12/2E US	.8309
2606+	-64.0900	- 02455 UU	13536 03	10030
2930+			140¥E 03	+000/
2745	~22+1320		1470E V3	.9020
2/02+	-32+9040	- 11545 01	15248 03	• 9100
(122	-53.0000	- 1164C 01	15026 00	0761
5100	-54 5440	+ 1 3 4 7 L U1	16176 84	0441
4438	-54 8680	- 12426 01	16365 04	0440
5420.	-54,0000	- 1 ((4 4 4 4 1 1 1	14576 04	
38.54 .	-55.3680	- 1 5 / 5 - 01	.16666 0.5	.9576
4013.		14UME U1		0400
4191.	-55.7120	+.14.5HE U1	14845 04	04 45
4369.	-57.6124	3459F UI	.18166 03	. 9999
4547.	-55.9040	1450F U1	.169MF 0.5	. 9669
4725.	-55.9840	1498E U1	.17036 03	.9682
4903.	-56.0760	12214 01	1709E 03	. 9698
>141.	-56,1240	1533E U1	.1712E 03	.9707
>320.	-56,6240	1604E U1	.1742E D.S	.9793
5418.	-57.280U	2USUE U1	.1785E 05	.9907
>000.	-20.3420	16U7E U1	17266 03	.9753

APPENDIX C

X-RAY DIFFRACTION & SPACINGS AND RELATIVE INTENSITIES

1-A (Pressed and Sintered) and 1-B (Arc Welded)					
d,A	ı⁄l₀	Comments			
5.1	vw	0			
4.8	vw	0			
3.75	s	0			
3. 57	S	0			
3.44	mw	o			
3.29	S	*			
2.79	m	o			
2.70	vw	o			
2.53	ms	*			
2.32	m	*			
2.23	vw	*			
2.05	m	o			
1.91	mw	o			
1.785	vw	-			
1.571	mw	-			
1.568	mw	-			
1.548	v	ο			
1.58	v	o			
1.47	vw	*			
1.40	w	*			
1.375	w(B)	*			

Table C-1. X-ray Diffraction Lines and Relative Intensities for the Oxide Formed on a Nb-Cr Alloy at 1200°C

o NbO₂ - (19-859) (monoclinic)

(B) Broad Peak

No match found

5-A (Pressed and Sintered)		5-B (Arc Melted)			
d, A	1/10	Comments	d, Å	۱/۱ ₀	Comments
-			5.1	w	0
-			4.75	w	0
3.75	m	o	3.75	s	0
3 . 58	m	o	3.67	s	+
3.43	w	o	3.42-3	m	0
3.28	s	۵	3.28	s	۵
2.78	mw	-	2, 78	m	-
2.69	w	0	2.69	w	o
-			2.55	mw(B)	-
2, 52-3	ms	*∆	2,52-3	ms	*∆
2, 32	mw	o*∆	2.32	mw	o*∆
2, 23	vw	*	2, 23	vw	*
2, 05	w	o	2.085	m	-
1.91	w	o	2.05	m	o
1, 79	vw	o	1.91	mw	ο
1, 71	ms	*۵	1.785	w	o
1.68	m(B)	٥۵	1.71	ms	*∆
1,64	w	*	1.68	m(B)	o∆→
			1.64	w	*
1 575	w	-	1.60	w	-
1, 505	w	-	1.57	mw	
1, 47	vw	۲	1.505	vw	-
1, 40	w	0	1.47	vw	Δ
1. 37-8	w(B)	+	1.415	vw	
			1.40	w	0
			1,37-8	w(B)	*
$f = Cr_2O_3 (6-0504)$ $h = NbO_2 (19-859) + Cr_2O_3 (6-0504)$ $h = NbO_2 (19-859) + NbCr_2 (50-0701)$					

Table C-2. X-ray Diffraction Lines and Relative Intensities for the Oxide Formed on a Nb-Cr Alloy at 1200°C

11-A (Pressed and Sintered)		11-B (Arc Melted)			
d,Å	۱∕۱₀	Comments	d, A	1/10	Comments
6.4	w		-		
6.1	w		-		
4.72	w		-		
3.8	mw		3.79	w	
3.7	mw	*	3.72	mw	*
3.6	mw		3.60	ms	
3, 54	s	*	3. 52	ms	
3.40	m		-		
3.09	mw	*	3.13	w	
2.88	m	*	2.92	m	
2.77	w		2.87	m	
2.68	mw	*	2.80	vw	
2.30	w		2.69	m(B)	*
2.07	w(B)	*	2.04	m(B)	*.
2.04	m	*	-		
1.90	w		-		
1.87	w	*	1.88	mw(B)	*
1.78	w		1.79	mw(B)	
1.625	m				
1.625	m		-		
1.58	m	*	1.58	mw(B)	*
-			1.50	mw(B)	
-			1.425	mw(B)	
-			1.39	mw(B)	

Table C-3. X-ray Diffraction Lines and Relative Intensities for the Oxide Formed on a Nb-Fe-Al Alloy at 1200°C

* NbAIO4 (14-494)

12-A (Pressed and Sintered)			12-B (Arc Melted)			
d,Å	1/1 ₀	Comments	d, A	1/1o	Comments	
5, 1	w	o	-			
4. 75	w	o	-			
3.75	S	o	-			
3. 67	S	-	-			
3. 42-3	m	o	3, 3	w	-	
3. 28	S	.*	3.25	s	*	
2, 78	m	0	-			
2.69	w	-	-			
2. 52-3	ms	*	2, 51	s	*	
2, 32	mw	*	2.31	mw	*	
2.23	vw	*	2.21	mw	*	
2.05	m	0	-			
1.91	mw	o	-			
1, 785	w	-	-			
1.71	ms	*	1, 70	S .	*	
1.68	m(B)	0	-			
1.64	w	*	1.632	mw	*	
1.57	mw	-	-			
1, 505	vw	*	1.50	w	*	
1.47	vw	*	1,465	w	*	
1, 40	w	*	-			
1.37-8	w(B)	*	1.37	m(B)	*	

Table C-4. X-Ray Diffraction Lines and Relative Intensities for the Oxide Formed on a Nb-Cr, Alloy at 1200°C

NbO₂ (19-859) NbCrO₄ (20-311) 0 *

13-A (Pressed and Sintered)			13-B (Arc Melted)			
o d,A	1/10	Comments	o d,A	١⁄١₀	Comments	
	-	-	7.1	w	-	
6.4	w	-		-	-	
6.1	w	0		-		
	-		5.1	w	o*	
4.72	w	*		-		
3.80	mw	*		-		
3.70	mw	0		-		
3.60	mw	*	3.62	m	*	
3.54	S	0	3.54	S	0	
3.40	m	*	3.40	m	*	
-	-	-	3.30	m	-	
3.09	mw	0	3.09	~	0	
	-	-	2.93	ms	-	
2.88	m			-		
2.77	w	*	2.78	mw	-	
2.68	mw	0	2.68	mw	0	
	-		2.55	w	-	
	-		2.35	vw	-	
2.30	vw	*	2.30	vw	*	
2.07	w (B)			-		
2.04	m	*	2.05	w (B)	*	
1.90	w	*	1.91	w	*	
1.87	w		1.87	w	-	
1.78	w	*		-		
	-		1.72	w (B)	*	
	-		1.67	w (B)	*	
1.625	m	*		-		
1.58	m	*	1,57	mw	*	
1.445	mw		1.45	mw	-	

Table C-5. X-ray Diffraction Lines and Relative Intensities for the Oxide Formed on a Nb-Co-Al Alloy at 1200°C

Al₂O₃-Nb₂O₅ (16-545) NbAlO₄ (14-494) *

0

_ 14(Arc Melter	d)	14 (A	s-Oxidize	d)		14 (After	Grinding)
d, Å	۱∕1 _° *	Comments	d, A	۱/1 _° **	Comments	d, Å	1/1_0**	Comments
5.6	vw				—			
5.5	vw							
			3.98	(8)				
3, 70	m	0				3.75	(50)	Δ
			3.59	(30)	Δ		1	
3.51	S	0		l				
3.40	w	-				3 37	(56)	
3 32		0				0.07	(30)	
3.09	m	0						
0.07		-	2.92	(42)	Δ		1	
2.89	m	0						
			2.81	(13)				
			2.69	(100)				
2.68	m	0				0.5/	(100)	
						2,50	(100)	-
2.04	/D	ł				2.20	(33)	
2,04	mw (D	0				2 03	(33)	
						1.91	(56)	
						1.87	(67)	-
			1.78	(17)				1 .
						1.74	(44)	۵
1.68	m		1.69	(29)	۵			
			1.60	(33)				
1.57	m					1 24	(22)	
			1 21	(22)		1.34	(33)	
			1.31	(55)				

Table C-6. X-ray Diffraction Lines and Relative Intensities for the Oxides Formed on an Arc Melted Nb-Fe-Al Alloy at 1200°C

Powder Pattern

** Oxide still on the metal (Defractometer)

0

ribAlO₄ (14-494) FeNbO₄ (16-358) Δ

C-7

15 (Arc Me	lted)		ו	5 (Arc Me	lted)	15 (Arc Melted)		
d, Å	۱⁄۱ _° *	Comments	d, A	۱⁄۱ _° *	Commen ts	d, Å	1/1,**	Comments
5.60	w		5.60	w(B)				
5.00	mw		5.00	w				
3.70	mw		3.69	m				
3.60	mw		3.60	m				
3. 52	s		3.51	S		3.55	(17)	Δ
3.32	m		3.30	w				
3.08	mw		3.07	w				
2.95	ms		2.92	5		2.97	(12)	
2.89	∨s		2.87	5		2.89	(47)	
2.67	ms		2.65	ms		2.67	(100)	Δ
2.54	m		2.53	w				
2.49	m		2.47	mw		2.49	(15)	Δ
2.43	mw		2.43	mw		2.43	(18)	
2.36	vw							
2.19	w		2.18	mw				
2.15	vw		2.14	mw				
1.86	mw		2.03	w				1
1.81	Ŵ		1.85	mw				
1.78	vw		1.82	mw				
1.76	vw		1.77	vw				
1.73	ms		1,72	m				· · · · · · · · · · · · · · · · · · ·
1.71	w							
1.695	w		1.68	mw				ſ
1.679	ms		1.665	m		1.68	(41)	Δ
1.565 - 1.595	mw		1.595	vw [1.59	(18)	
1.525	w		1.56	vw				
1.502	mw							1
1.475	w							
1.440	m							
1.425	m(B)					1.43	(18)	Δ
1.40	w							

Table C-7.X-ray Diffraction Lines and Relative Intensities for the Oxides Formed on a Nb-Fe-Al Alloy at 1200°C

* Powder Pattern

** Oxide still on metal (Diffractometer)

△ FeNbO₄ (16-358)

16-A- Pr	essed and Sintered	16-в	(Arc Melted)	16-C (Arc-Melted)		
o d, A	I/I _o Comments	d, A	1/1 Comments	d, A	1/1 ₀ Comments	
3.7 3.6 3.13 2.92 2.66 2.53 - 2.33-4 2.23 2.19 2.03 2.01 1.82	vw vw vw w m - s ms ms w(B) w(B) w	5. 55 5. 00 3. 68 3. 51 3. 39 3. 30 3. 06 2. 96 2. 91 2. 86 2. 75 2. 65 - - 2. 03 1. 885 1. 815 1. 77 1. 72 1. 565	vw w m s vw vw mw m m m m m m w m w mv w (B) vw mw w w w w w w w w w	5.55 5.01 3.70 3.52 3.07 2.88 2.75 2.53 2.48 2.42 2.29 2.18 2.15 2.07 2.03 1.87 1.78 1.725 1.685 1.67 1.58 1.50 1.44 1.42	w mw m s m ms w vw vw vw vw vw vw vw vw vw vw vw vw v	

Table C-8. X-ray Diffraction Lines and Relative Intensities for the Oxides Formed on a Nb-Fe-Al Alloy at 1200°C

17-A (P	ressed and	Sintered)	17-B	17-B (Arc Melted)		17-0	17-C (Arc-Melted)		
d, A	۱۸₀	Comments	o d, A	۱/۱ _۵	Comments	d, A	ا∕ا	Comments	
-	-		5, 55	w		-	-		
5.1	w	•	5.00	mw		-	-		
4.8	w	•	-	-		-	-		
3,75	m	0	-	-		-	-		
-	-		3.70	mw	*	3.7	mw	•	
-	-		-	-		3. 59	5		
3.57	m	0	-	-			-		
-	-		3. 52	5		3.51	5		
3.43	m	•	-	-		-	-		
-	-		3.40	vw		3.40	vw		
-	-		3.07	m	•	3.10	m	•	
-	-		2.87	vw		-	-		
2.855	mw		-	-		-	-		
2.800	mw	0	-	-		-	-		
-	-		2.75	vw		2.76	VW:		
2.70	- '		-	-		-	-		
	-		2.66	m	*	2.67	m	*	
2.52	m	0	2.50	mw		-	-		
2.48	m		-	-		-	-		
-	-		2.43	w		-	-		
2.36	w		-	-		-	-		
2.31	w	0	-	-		-	-		
2,23	W		-	-		-	-		
2,205	w	0	-	-		-	-		
2.0/	mw		2.05	mw		2.06	w	•	
-	-		2,01	mw		-	-		
1.915	mw		-	-		-	-		
1.890	mw		-	-	•	-	-		
-	-		1.80	m		1.80	m		
1.020	mw		-	-		-	-		
1.745	W		-	-		-	-		
1,703	mw		1.//	W		-	-		
1,723	m		1 70	-		-	-		
1 40	mw		1.70	VW		-	-		
1 67	W		1.00	VW		-			
1 58	W	0	1 502	VW NOR		-			
		0	1.575	~~~	•	1 67		•	
1 53	_		1.500	1113	-	1. 3/	m	-	
	m		1. 56	w		-	-		
-	-		1.486	W		-	-		
1.475	w		-	-			-		
1.45	ms		1.442	mw		1,43	mw		

7. X-ray Diffraction Lines and Relative Intensities for the Oxides Formed on a Nb-Co-Al Alloy at 1200°C Table C-9.

Al₂O₃-9Nb₂O₅ (16-545) NbAlO₄ (14-494)

0 *

- 100

18-A (Pressed and Sintered)							
d,Å	۱/۱ _۵	Comments					
3.75	vw						
3.55	w						
3.11	w						
2.95	w						
2.80	vw						
2.67	mw						
2.39	s						
2.32	ms						
2.28	ms						
2.23	ms						
2.17	s						
2.12	mw						
1,98	mw						
1.492	mw						
1.425	m						
1_397	mw						
1.357	m						
1,355	m						
1,290	w						
1, 198	w						
1,166							

Table C-10. X-ray Diffraction Lines and Relative Intensities for the Oxide Formed on a Nb-Co-Al Alloy at 1200°C

19-A (Pressed and Sintered)		19-8	19-B (Arc Melted)			19-C (Arc Melted)		
o d,A	۱∕۱	Comments	o d,A	۱۸,	Comments	o d, A	۱ <i>/</i> ۱	Comments
d, A 6. 40 6. 10 4. 72 3. 80 3. 70 3. 60 3. 54 3. 40 3. 09 - 2. 93 2. 88 2. 77 2. 68 2. 30 2. 22 2. 16 2. 07 2. 04 1. 90 1. 87	1∕1 ₀	Comments - + - + - + + - + + + + + + + + + + +	d, A 5. 60 5. 02 3. 70 3. 58 3. 51 3. 39 3. 07 2. 97 2. 92 2. 75 2. 66 - 2. 03 1. 895 1. 85 - 1. 70 - 1. 66 1. 565	I∕1 ₀ w m mw s w mw mw mw - mw mw vw - vw(B) mw	Comments	d, A 5. 6 5. 02 3. 70 3. 51 3. 39 3. 07 2. 97 2. 97 2. 97 2. 97 2. 67 2. 67 2. 50 2. 30 2. 05 1. 895 1. 858 1. 775 1. 710 1. 67 1. 66 1. 568	I/I _o w mw ms s m mw mw mw mw mw mw (B) w (B) w (B) mw mw w w mw mw mw mw mw mw	Comments
1.78 1.675 1.58	w m m	- - *	1,441 - -	¥ - -		1.392 1.365 -	vw vw -	

Table C–11. X-ray Diffraction Lines and Relative Intensities for the Oxides Formed on a Nb–Co–Al Alloy at 1200°C

AINDO4 (14-494)

20-A	20-A (Pressed and Sintered)			21–A (Pressed and Sintered)		
d, Å	۱/۱ _o	Comments	o d, A	١/١_	Comments	
5.1	m	0	-			
4.8	m	0				
3.75	s	0	3.75	s	0	
3.57	s	0	3.57	s	0	
3.43	s	0	3.43	m	0	
			-			
2.95	m	-	2.95	's	-	
2.79	m	0	2.79	mw	0	
2.68	m	-	2.79	mw	-	
	1		2.65-		-	
			2.70 🖇	mw		
2.40	m		2.40	m	-	
2.295	mw		2,295	mw	-	
2.03-6	ms	(o)	2.03-6	ms	(o)	
1.91	m	(o)	1.91	m	(o)	
1.72	m	(o)	1.72	m	(o)	
1.68	m	(o)	1.68	m	(o)	
1.58	m	0	1.58	w	0	
1.55	w	-	1.55	w	-	
1.53	w	o	1.53	w	0	
1.45	m	0	1.45	mw	0	
1.41	mw	-	1.41	mw	-	
1.33	w	-	-			
1, 305	w	-	1.305	w	-	
1.28	w	-	1.28	w	-	

Table C-12. X-ray Diffraction Lines and Relative Intensities for the Oxide Formed on a Nb-Co-Al Alloy at 1200°C

o Al_2O_3 -9Nb₂O₅ (16-545) () Indicates card intensities are weaker than those found on the films

22-A (Pressec	and Sin	tered)	22-B (Arc Melted)			
o d,A	1/10	Comments	o d,A	1/10	Comments	
5.1	m	o *		-		
4.8	m	o *)		-		
3.75	5	o *		-		
	-		3.67	s		
3. 57	5	o *	3.55	s		
3.43	S	o *		-		
	-		3.29	m		
2.95	m			-		
2.79	m	o *	2.79	m		
2.68	m		2.69	m		
	-		2.53	m		
2.40	m			-		
	-		2.31	w		
2.295	mw			-		
2.03 - 2.06	ms	o *	2.05	w		
1.91	m	o *	1.90	w		
1.72	m	o -		-		
1.68	m	• *	1.69	W		
1.58	mw	*	1.58	W		
1.55	w	*		-		
1.53	w	*		-		
1.45	m	• -		-		
1.41	mw	-		-		
1.33	w	-		-		
1.305	w	-		-		
1.28	w	•		-		

X-ray Diffraction Lines and Relative Intensities of the Oxides Formed on a Nb-Co-Al Alloy at 1200°C Table C-73.

• Al₂O₃-9Nb₂O₅ (16-545) * NbO₂ (19-859)

24-A (Pressed	and Sinte	ered)	24-B (/	Arc-Mel	ted)	24-C (Arc-Me	lted)
d, Å	1/1 ₀	Comment	d, Å	1/1 ₀ (Comment	d, A	1/1 ₀	Comment
						6.2	w	*
5.1	w	0	5.0	w	*	5.05	mw	*
4.8	vw	0	-			4.78	w	
3.75	ms	0	-	-	š.	_	-	
-	-	_	3.71	m	*	3.72	m	*
-	-		3.65	m	-	-	-	
3.57	ms	0	-	-		3.56	S	*
-	-		3.53	S	-	-	-	
3.43	m	0	3.41	m	-	3.43	w	
3.10	vw		3.08	m	*	3,09	m	*
-	-	1	2.99	w	-	3.00	w	*
2, 95	mw		2.95	w	*	2.95	w	
2.79	m	0	-	-		2.78	w	*
2.65 - 2.70	m	0	-	-		2.68	m	*
2.49 - 2.54	m	0	2,52	vw		2.50	. w	
2.41	m	o	-	-		2.45	vw	*
2.34	s		-	-		-	-	
2.295	mw		-	-		2.3	vw	
2.22 - 2.23	m		-	-		-	-	
2, 185	m		-	-		2,16	vw	
2.135	mw		-	-		-	-	
2.03 - 2.06	mw	0	2.06	mw	*	2.06	mw	*
-	-		-	-		2.03	w	*
1.91	mw	0	1.90	mw	-	1,91	mw	
1.82	w		1.86	mw	*	1.87	mw	*
-	-		1.78	w	-	1.79	mw	
1.72	w	0	-	-		-	-	
1.68	w	0	-	-		1.68	mw	
-	-		-	-		1.67	w	
1.58	mw	0	1.57	m	*	1.58	ms	*
1.53	vw		-	-		-	-	
1.50	w	0	-	-		-	-	
1.45	W	•	-	-		1,45	w	
1,41	mw		-	-		-	-	
1.33	w		-	-		-	-	
1.305	w		-	-		-	-	
1.28	w		-	-		-	-	

X-ray Diffraction Lines and Relative Intensities for the Table C-14. Oxides Formed on a Nb-Co-Al Alloy at 1200°C

* 14 - 494 - AINbO4 o 16 - 545 - Al2O3-9Nb2O5

23–A (Pressed and Sintered)			25-A (Pressed and Sintered)		
d,Å	١٨	Comments	d, Å	1/10	Comments
5.1	w	0	5.1	vw	0
4.8	vw	0	4.75	vw	0
3.75	s	0	3.75	m	0
3. 57	s	0	3.65	m	-
3.43	m	0	3.57	m	0
-]		3.43	mw	0
2.95	s	0	2.95	s	-
2.79	m	0	2.85	vw	-
2.65- }	1		2.79	vw	0
2.70 🖇	mw	0	2.70	vw	0
2.49-}			2.53	w	0
2.54	mw	°			
2.295	mw	-	2.48	w	-
			2.36	vw	-
2.03-6	ms	0	2.23	vw	-
1.91	m	0	2.20	vw	-
1.72	w	0	2.06	w(B)	0
-			1.91-2	w	•
1.58	w	0	1.89	₩	-
_	2		1.87	w	
			1.77	mw	
1.45	mw	0	1.725	m	-
1.41	mw	-	1.705	m	-
			1.69	vw	0
1.305	w	-	1.67	vw	o
1.28	w	-	1.58	w	-
			1.53	mw	-
			1.45	m	-
			1.37	vw	-

Table C-15. X-ray Diffraction Lines and Relative Intensities for the Oxide Formed on Nb-Co-Al Alloys at 1200°C

• Al₂O₃-Nb₂O₅ (16-545)

26 (Arc Melted)		26 (Arc Melted)			27 (Arc Melted)			
o d, A I	/ _*	Comments	o d,A	I/1**	Comments	d, Å	I/I* C	Comments
3. 60 3. 55 3. 35 3. 04 3. 00 2. 90 2. 75 2. 64 2. 03 1. 89 1. 765 1. 765 1. 70 1. 66 1. 587 1. 560 5	mw s mw mw mw mw mw s mw fuw w m		4.483 4.270 4.058 3.969 3.786 3.663 3.562 2.959 2.876 2.788 2.592 2.563 2.458 2.270 1.892 1.873 1.765 1.717 1.528 1.451	36 27 18 27 32 27 36 91 64 54 71 91 64 27 64 86 54 45 86 100		5.55 5.00 4.70 3.70 3.51 3.39 3.07 2.96 2.91 2.76 2.66 2.50 2.29 2.21 2.04 2.01 1.891 1.85 1.77 1.70 1.67 1.65 1.565 1.441	v(B) v(B) vw ms s m mw mw mw w vw w w vw mw (B) vw mw mw mw mw mw mw mw mw mw mw mw mw	

Table C-16. X-ray Diffraction Lines and Relative Intensities for the Oxides Formed on a Nb-Co-Al Alloy at 1200°C

* Powder pattern

** Oxide still on the metal (Diffractometer)

 \triangle NbAlO₄ (14-494) slight shift

	ed)	28 (Arc Melted)			
o d, A	۱∕۱₀	Comments	d, Å	۱/۱ _۵	Comments
3.641	20		3.66	12	
3.198	7			Į	
2.959	10		2.969	3	
2.894	11		2.884	6	
2.671	100		2.683	100	
			2, 501	13.0	
			2.353	3	
			2.196	18	
2.188	19				
2,129	25		2,136	12	
1.862	16				
1.827	38		1.831	17	
1.799	6				
1.728	4		1.686	49	
1.682	100				
1.588	13		1.480	21	
1.475	18		1.449	12	
1.424	12		1.342	8	
1.341	16				

Table C-17. X-ray Diffraction and Relative Intensities for the Oxide Formed on a Nb-Fe-Al Alloy at 1200°C

いっ 第二日の しょうしん

31 (Arc Melted)		32 (Arc Melted)			33 (Arc Melted)			
o d,A	١/١	Comments	o d, A	ı⁄l _o	Comments	d, Å	1/1	Comments
3.376	20		4.332	5		3.647	32	
3.278	96		3.969	5		3.562	1 11	
2.912	8		3.754	1 11		-	- 1	
2.585	16		3.648	26		-	i -	
2.525	100		3.576	33		-	-	
2.475	26		3.446	9		2.954	100	
2.315	16		3.132	11		2.862	26	
2.222	2		3.069	18		2.776	11	
2.171	32		2.954	100		-	-	
1.998	8		2.867	14		2.585	22	
1, 743	17		-	_		2.522	26	
1.710	80		2.525	23		2.488	26	
1.642	18		2. 488	16		2.499	22	
1.580	8		2.449	14		2.227	11	
1,469	24		2.227	4		2.201	16	
1.379	24		2.201	9		2.071	16	
1.371	32		-	_		-	-	
-	-		2.071	18		1.888	27	
-	-		-	-		1.870	47	
-	-		1.907	23		1,845	32	
-	-		-	-		1.821	11	
-	-		1.871	79		1.765	26	
-	-		1.822	7		1.741	5	1
-	-		1.789	7		1.722	16	
-	-		1.762	18		1.710	32	
-	-		1.725	23		-	-	
-	-		1.713	21		-	-	
-	-		1.686	9		-	-	1
-	-		1.669	12		1.558	11	
-	-		-	-		1.527	37	
-	-		1.603	28		-	-	
-	-		-	-		1.475	11	
-	-		1.528	21		-	-	
-	-		-	-		1,448	47	
-	-		1.477	9		1.435	16	
-	-		-	-		1.374	22	
-	-		1.447	30		-	-	
-	-		1.375	11		-	-	
-	-		1.238	17				
-	-		1, 187	21				

Table C-18. X-ray Diffraction Lines and Relative Intensities for the Oxides Formed on Nb-Cr-Al-Co (31) and Nb-Co-Al (32, 33) Alloys at 1200°C

	36 (Arc M	elted)	3	37 (Arc Melted)			
d, A	١٨	Comments	d, A	1/1 ₀	Comments		
3.95	10						
3.75	20	- *	5,438	7			
3.67	32	o -	3.648	21			
3.58	84	o *	3.562	32	0		
3.44	14						
3.10	40						
3.07	30	o -					
2.97	100		2.95	100			
2.87	18	o -	2.858	21	0		
2.69	24	o *	2.69	7	0		
2.54	24	o *	2.515	36	0		
2.49	22	- *	2.485	36	-		
2.46	12		2.449	21	-		
2.36	8						
2.23	8		2.22	14	-		
2.21	8		2.196	21	-		
2.11	10						
2.08	24	o -	2.071	21	0		
2.04	12	- *					
2.03	12	- *					
2.00	8						
1.99	6						
1.91	28	- *	1.91	14	-		
1.87	90	o *	1.89	21	-		
1.83	18		1.87	50	0		
1.82	18		1.817	7	-		
1.77	28	o -	1.765	21	0		
1.73	28		1.725	14	-		
1.72	34	- *	1.713	21	-		
1.67	16	- *					
			1.526	28	-		
			1.447	40	-		
			1.371	14	-		

Table C-19.X-ray Diffraction Lines and Relative Intensities for the
Oxide Formed on a Nb-Co-Al Alloy at 1200°C

Nb2CoO6 (Arc Melted)			NbCoO ₄ (Arc Melted)		
o d,A	۱/۱ ₀	Comments	d,Å	۱/۱ _۰	Comments
3.6 3.31 2.92 2.82 2.73 2.54 2.50 2.46 2.34 2.24 2.06 1.87 1.81 1.73 1.70 1.515 1.490 1.44 1.395 .919 .917 .906 .9035 .9025	E E S S S S S S S S E E E E E E E E E E		4.4 3.69 3.59 3.39 3.29 2.95 2.90 2.79 2.72 2.60 2.54 2.49 2.45 2.37 2.33 2.05 1.895 1.865 1.746 1.722 1.690 1.510 1.478 1.435 1.390 1.335 1.29 1.28 1.25 1.212 1.200 1.185 1.176 1.162 1.123		

 Table C-20.
 X-ray Diffraction Lines and Relative Intensities for Arc Melted

 Niobates for Which no ASTM Data Card was Found