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PREFACE 

This formal technical report entitled "3-D Stress 

Wave Code for the ILLIAC IV," is submitted by Systems, 

Science and Software (S3) to the Advanced Research Projects 

Agency (ARPA) and to the Defense Nuclear Agency (DNA). 

The report presents the results of a continued effort 

to develop a versatile numerical scheme for simulating 3-D 

stress waves on the ILLIAC IV computer system. 

This work was supported by the Advanced Research 

Projects Agency and was monitored by ;:he Defense Nuclear 

Agency under Contract No. DNA 00i-72-C-0154.  Colonel David 

C. Russell has been the ARPA Program Manager and Lt. Colonel 

F. J. Leech has been the DNA Project Scientist. 

Dr. Gerald A. Frazier has been the S3 Project Manager, 

Much help and advice has been obtained from the User Support 

Group of the IAC.  The authors are also grateful for many 

valuable communications with other users of the ILLIAC IV 

and the ARPANET, particularly those with Terry Layman of the 

CAC. 
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I.  INTRODUCTION 

Over the past twenty months, we have formulated, 

developed, and implemented two numerical computer codes for 

processing stress wave calculations on the ILLIAC IV com- 

puter.  Our primary goal has been to develop a capability 

for performing 3-D wave calculations with a spatial resolu- 

tion that is comparable to conventional 2-D calculations. 

Such a computing capability would most certainly 

prove to be a valuable asset in numerous ground motion 

studies.  The Lagrangian stress wave code that is being de- 

veloped on the ILLIAC, referred to as SWIS (Stress Waves In 

Solids), is expected to have important applications for 

simulating seismic phenomena such as: 

• Explosions in prestressed and geologically 

complex formations. 

• Spontaneous earthquake ruptures and near-field 

ground motions. 

• Stress waves passing through laterally varying 

earth models. 

• Stress waves impinging on buried and surface 

structures. 

This 3-D simulation capability is expected to play an  impor- 

tant role in the Advanced Research Projects Agency's (ARPA) 

program to discriminate earthquakes from explosions and the 

Defense Nuclear Agency's (DNA) investigations on the vul- 

nerability cf buried structures to incoming stress waves. 

In order to simulate the seismic phenomena itemized 

above in three spatial dimensions, the capability must exist 

for handling very large grids.  It is our opinion that, with 

the advent of super computers such as the ILLIAC IV and 

highly sophisticated numerical computing algorithms, detailed 
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3-D wave calculations are now feasible.  Based on predicted 

computing speeds for the ILLIAC, we have estimated that it 

is theoretically feasible to process wave calculations at 

the rate of 0.10 m-sec of computer time per numerical time 

step per 3-D element.  This amounts to 10 sees of computer 

time per numerical time step for a 3-D grid containing 100- 

thousand elements (e.g., a 50 by 50 by 40 grid).  This com- 

puting rate is nearly comparable to that achieved in 2-D 

wave calculations for an equivalent 50 by 50 grid using a 

conventional serial computer, e.g., a UNIVAC 1108. 

Numerically processing wave calculations in 3-D grids 

with more than 100-thousand elements involves an enormous 

number of calculations.  More than one billion floating point 

multiply and add operations can arise from a single computer 

simulation.  Clearly, considerations of computing efficiency 

become extremely important in designing and implementing such 

a computing scheme.  Also, the usefulness of such a code, once 

it is finalized, will depend on its flexibility for handling 

a range of geometric configurations, boundary conditions, 

material types, etc. 

In an effort to arrive at an optimum computing scheme, 

we have carefully reviewed existing numerical computing tech- 

niques, both finite element and finite difference, in order 

to combine strong points from each method into a single algo- 

rithm in a form that is suited for parallel processing on the 

ILLIAC.  In so doing we have conceived a hybrid scheme that 

employs the finite element method for spatial discretization 

(employing spatial interpolation functions and a virtual 

work expression) and follows a computing sequence that 

resembles Lagrangian finite difference schemes; the consti- 

tutive properties of the material appear in an isolated 

module of the code so that the nonlinear flow rule can easily 

be altered.  In addition, the SWIS code, which employs the 

atMmimitiiifMr— .- ..■..-:■■. 
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hybrid algorithm, contains some advanced features that will 

enhance its usefulness in particular applications: 

• The code operates, with no loss of efficiency, 

in one-, two-, or three-spatial dimensions. 

c The ci.de contains a flexible grid generator 

which can be superseded in local portions of 

the grid. 

• The calculations are performed in orthogonal 

curvilinear coordinates. 

• The code has a provision for effectively sup- 

pressing wave reflections at grid boundaries. 

A detailed description of the SWIS computing scheme is pre- 

sented in Section II of this report. 

During the early stages of code development, the 

ILLIAC IV was not operational.  The first successful program 

execution on the array took place in March, 1973.  Because 

no I/O facilities were available at this time, computed re- 

sults had to be extracted from core dumps.  A linearized 

version of SWIS (described in Section 3.2 of this report) 

first became operational on the array in July, 1973.  A 

number of plane-wave calculations were performed at this 

time to test various features of the linear SWIS code, e.g., 

artificial damping and transmitting boundary conditions. 

One calculation was performed which involved 10,000 time 

steps in an effort to test the stability of the current 

ILLIAC configuration and to obtain estimates of computing 

rates. 

Following the initial success with the linearized 

version of SWIS, ILLIAC program development for the more 
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involved nonlinear SWIS code was begun in September.  As 

the result of improvements in the ILLIAC computing system 

and our earlier experiences in implementation on the sys- 

tem, this code development work progressed rapidly.  The 

nonlinear SWIS became operational for 1-D geometries in 

late November, and, during the month of December, both 2-D 

and 3-D wave calculations were performed on the ILLIAC. 

Based on the central system clock times, we estimate that 

the general SWIS code is processing wave calculations at 

the rate of 1.2 m-sec of computer time per numerical time 

step per 3-D element.  The entire code is programmed in 

GLYPNIR, and, although nearly all of the calculations are 

carried out in parallel, no effort has been made to opti- 

mize the resulting machine code.  Also, we note that the 

ILLIAC should ultimately process calculations much faster 

than in its present configuration; perhaps a factor of 

three or four will be realized from software (overlapping 

machine instructions) and hardware improvements that are 

being considered.  Thus, we are anticipating somewhat faster 

computing rates in the future.  Our goal has been set at 

0.10 m-sec of ILLIAC time per numerical time step per 3-D 

element. 
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II.  NUMERICAL ALGORITHM 

2.1  INTRODUCTION 

The numerical algorithm that has been designed for 

the SWIS code contains features of both finite element and 

finite difference methods.  In many respects, it is like a 

finite element method in that the continuum is discretized 

using spatial interpolation functions and a virtual work 

principle, but the computing sequence is modeled after 

Lagrangian finite difference shock codes.  Figure 2.1 illus- 

trates how three distinct steps in a Lagrangian finite 

difference code, one of which involves the constitutive 

propertiesj are combined into one step in the conventional 

finite element method through the use of a stiffness matrix. 

The SWIS code does not develop the finite element stiffness 

matrix but rather directly computes strain rate, stress, and 

restoring forces. 

2 . 2  PROBLEM INITIALIZATION 

The following quantities are needed to pose the stress 

wave calculation: 

1.  Coordinate System Designation 

a. Number of spatial dimensions to appear in 

the numerical grid. 

b. Orthogonal curvilinear coordinate system to 

be employed in the calculations.  Transforma- 

tion metrics are provided internally for 

operating in Cartesian, spherical, and cylind- 

rical coordinate systems. 
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Particle 
Acceleration 

Initial Conditions for 
Advanced Time Step: 

Particle Displacement, 
Velocity 

Stiffness 
Matrix 

and 
Mass 

Matrix 

Constitutive 
Properties 

Strain  Rate 

Stress  Rate,  Stress 

Cell-centered-stress  Finite  Difference 

___  Conventional  Finite  Element 

Fig. 2.1--Schematic of the computational sequence for 
propagating stress waves using conventional 
finite  element  and  finite  difference methods 
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Grid Configuration 

Most grids can be produced using a flexible code- 

contained grid generator; however, a provision is 

made for superseding the grid generator in local 

regions.  The grid configuration is described by: 

a. Spatial location of the node points, and 

b. Node map to associate nodes with elements. 

Boundary Conditions and Applied Forces 

No distinction is made between internal nodes 

and boundary nodes in that each directional 

component of each node point is assigned one 

of the following three constraint conditions: 

a. Unconstrained with applied body force or 

surface traction to form an array of 

nodal forces. 

b. Const ained with nodal displacement com- 

ponents constrained to follow a specified 

time history (moving or stationary). 

c. Transparent with a boundary disguised to 

reflect almost no incident wave energy. 

Material Properties 

Each element is associated with a material 

described by 

a. Density. 

b. Constitutive  properties,   i.e.,   properties 
for  developing  stress   rate  as  a  function 
of  strain  rate  and  stress. 

c. Dimensionless  coefficient   for  regulating 
the  damping  of  spurious  high  frequency 
numerical  oscillations. 

11 
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Time Stepping Data 

a. Starting time and final time. 

b. Time step  At. 

Starting Conditions 

a. Velocity and displacement with respect 

to some reference frame. 

b. Stress at the centroid of each element. 

Presentation of Results 

a. Element and node numbers for which re- 

sults are to be printed at designated 

time intervals. 

b. Printer plots for displaying results at 

designated time intervals. 

c . 

d. 

Time histories of individual node points 

Plot files producing graphical displays 

of the computed results. 

Default conditions and data generation schemes are 

used where possible to minimize the quantity of data that 

is needed to describe a problem. 
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2.3  SPATIAL DISCRETIZATION 

A spatial region is discretized by subdividing its 

volume V  into a total of E  elements, illustrated in 

Fig. 2.2.  The displacement field, u^x.t), throughout  V, 

is interpolated from spatially sampled displacements u.fX .t) 

where  Xn, n « 1, 2, ... N, are isolated node poinc^; which 

are positioned at juncture points along element boundaries; 

N  is the total number of node points in the numerical grid. 

The spatial interpolation is achieved using piecewise smooth 

interpolation functions p (x)  so that 

M*'^ = ]C pnW UiUn.t) (2.1) 
n=l 

in which 

MW = 6nm 

Spatial derivatives of the displacement field are then ex- 

pressed in terms of nodal displacement by the appropriate 

differentiation of Eq. (2.1). 

3u. 

aix 

N a« 

t (^ ^ = IJ air w Vxn.t) 
J        n=l  J 

(2.2) 

2-3-1  Orthogonal Curvilinear Coordinat es 

Curvilinear coordinates are often better suited for 

particular applications than Cartesian; notably, cylindrical 

and spherical coordinates are well suited for explosion cal- 

culations.  The capability to operate in spherical (or 

spheroidal) coordinates also has value for applications in 

global seismology.  In order to accomodate applications 

13 
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Typical Element with 
Local Node Numbers 

x  Cartesian Coordinates 

1 Curvilinear 
1J Coordinates 

Element Co- 

Cubic  Element   in Natural 
Element Coordinates 

Fig.   2.2--Three-dimensional  grid  illustrating  coordinate 
systems. 
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which can benefit from the use of a particular coordinate 

system, the SWIS code has been developed to operate in general 

orthogonal curvilinear coordinates designated  y  (we reserve 

the notation x  for Cartesian systems).  A brief development 

of how this is accomplished is presented below. 

Consider the point P  with Cartesian coordinates  x 

and  curvilinear coordinates y.  We define a local Cartesian 

system, x^ with its origin centered at P.  Each component 

of xT  is measured in the direction tangent to the respective 

curvilinear component y.  at point P, illustrated in Fig. 2.3 

The metric coefficients for the orthogonal curvilinear system 

y are given by 

h. i 

3y (i) 
(2.3) 

where the brackets enclosing the subscript indicate that 

the summation convention does not apply to that particular 

subscript.  Table I contains metric coefficients and their 

curvilinear spatial derivatives for some of the more common 

orthogonal curvilinear coordinate systems. 

When a scalar field, e.g., density = p(y,t), is 

differentiated, the curvature in the y  system adds no 

complications, and we simply have 

9P     . 
3yk   9p 1     dp 

ax: axj ^ 1^7 syj (2.4) 

However, when a vector field, e.g., displacement = u.(y,t), 

is differentiated, curvature in the y  system gives rise to 

additional terms which are developed in elementary texts on 

tensor calculus, see Spain (1960) or Washizu (1968).  For 

the special case of orthogonal curvilinear systems we write 

15 
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♦■    X. 

Fig.   2.3--Local   Cartesian  coordinate  system centered 
at  the  point     P. 
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3u 

3xr 

1 = D. ., u, 
13 k  k (2.5) 

with 

field 

D. . ik ^   9h(J) +   
6x3 

dh 
(i) ijk h(j) 3yj' ^m1^ ^   ^i?^ö^r- (2-6) 

Spatial derivatives of the discretized displacement 

N 

V^t) = ^ Pnf>:)ui(Yn,t) 
n=l 

(2.7) 

are conveniently expressed using the operator  D 
ijk" 

3u 

3 

N 

-7" tl'V   -J2   Dijk pn(y) ukCYn.t) 
j        n=l 

When y denotes a Cartesian system (i.e., y = x and 

h- = 1), we note that  D..,  reduces to  6. 1JK 1 k 3x. and 
Eq. (2.8) reduces to our earlier expression, Eq-I (2.2). 

Strain, in the curvilinear, discretized space, is 

also conveniently expressed using the spatial operation 

^j^.t)   =  \ -1  (y,t)   + 
J 3xr   ~ 

,   3u. 

2 3xr 
(y.t) 

I (Dijk + »jikH^'t) 

N 

n=l 

(2.8) 

=  iZ)   (Dijk  +  Djik)Pn^Uk(Yn>t) (2.9; 
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Because the grid deforms with the medium in a Lagrangian 

formulation, we retain only the first order terms. 

2.3 Inner-Element Iriterpolation 

In the SWIS coc'e, as in conventional finite element 

computer codes, spatia  interpolation is defined element by 

element.  Localized interpolation functions, which depend 

only on the geometry of a single element, characterize the 

spatial variations within the element so that 

PnW = PnQO 

for y in Ve or on Se where Ve and Se denote the 

volume and the boundary surface of element e, respectively. 

The result is that u^t) in Eq. (2.7) depends only on the 

displacement of the node points bordering element e when 

X     is interior to or on the boundary of element e.  A brief 

development of how interpolation functions are expressed 

for skewed element geometries is presented below. 

Let us consider a local element transformation that 

serves to map skewed elements into a standard geometry, 

namely, a two-unit line segment in 1-D, a two-unit square in 

2-D, and a two-unit cube in 3-D.  We df Jignate this natural 

element coordinate system  z, illustra.ed for  3-D, in Fig. 2.2. 

The interpolation functions for a low order 3-D element are then 

expressed in the natural system as 

p-(z) = ? fli ViJd * V2ra)(i ♦ zZ3m) m 

in which m  =   1,   2, 8 denotes the local node number for 

the element, illustrated in Fig. 2.2, and Z.  = + 1 denotes 
t.i-th     ,. im  — 
the i— coordinate value for node m.  The more general ex- 

pression that applies in D-dimensional space is written 

19 
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D 

PmW 7TJ TT (1 + 2iZ^ 
(2.10) 

i = l 

Spatial derivatives of the element interpolation functions 

are obtained directly from Eq. (2.10) to yield 

D 
3PmC*) 
3z. 

J 
-jrT]    (1 + ZiZim) (2.11) 

i = l 

Interpolation functions for higher order elements are easily 

developed in the natural coordinate geometry, see for example, 

Frazier, et al., 1973. 

We note that the interpolation functions expressed 

in natural element coordinates  z can be used directly for 

interpolating field variables within an element, e.g.. 

u.Cz,!) = X) Pm(5)^iCZIU»t3 • 

y^ - E Pm^Y im 
m=l 

and 

3/^2) 

3z. E 
m=l 

3pm(z) in ~  Y 
8 z •    im 

20 

(2.12) 

m=l 

In addition, the same interpolation functions serve to 

express the mapping from natural element coordinates  z to 

the global curvilinear coordinates y, i.e., 

(2.13) 

(2.14) 
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where Y.m denotes the iH coordinate value of local node 

number m.  Spatial derivatives of the interpolation 

functions with respect to global coordinates, Eqs. (2.2) and 
(2.8) then bee ome 

3p m 

^i V 
3y 

a 

-i 9p m 

J 

so that the derivative of the interpolated displacement field, 

Eq. (2.12), with respect to  y  is computed using the expression 

,D 
9p 

JZTW  "i^m't)   • C2-^) 
m=l K 

-1    2J 
8ui /9yi\   V^ 
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2-4  NOTATIQNAL CONVENTION 

The notation that has been adopted for the various 

spatial coordinate systems is illustrated in Figs. 2.2 and 2.3 

x - global Cartesian coordinates. 

y - global orthogonal curvilinear coordinates. 

x' - local Cartesian coordinates aligned with the 

curvilinear system at the point x' = 0. 

z  - natural element coordinates. 

Capital symbols  Xn,  Yn,  and Z^       are used to denote the 

spatial coordinate of a node point. 

As illustrated by Eqs. (2.8) and (2.9), spatial deriva- 

tives in the various coordinate systems merely involve mani- 

pulations on the element interpolation functions.  Subroutines 

handle these transformations in such a way as to minimize 

complications in the primary logic of the SWIS code.  At the 

same time care has been taken to assure that excess calcula- 

tions do not occur when employing a simple Cartesian system. 

In the subsequent presentation, matrix notation will 

be used in preference to subscript notation for denoting 

arrays that arise from spatial discretization.  This enables 

us to keep directional indices (subscript notation) separate 

from nodal indices (matrix notation).  For convenience, all 

matrices are of order N, the total number of node points in 

the grid; and the symbols < >, { }, [ ], and [~] are used 

to denote a row, column, square, and diagonal matrix, re- 

spectively.  Using this notation, Eq. (2.7) becomes 

u^y.t) = <p(y)> (U.U)} 

and the local Cartesian derivative of the spatially discre- 

tized displacement field is expressed 

(2.16) 
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3u. 
sir (X'V = <Dijkp(y)> {uk(t)} (2.17) 

Note that we have used upper case to denote nodal displacement 

(a nodal subscript replacing the spatial argument), i.e., 

Uin^ = uiCYn,t) C2.18) 

or 

(U.Ct)} = u.CY^t) ,  n = 1, 2, ... N  . 

Finally, with regard to notation, we point out that 

the global arrays  <p(y)>  and  <B  p(y)>  are never actually 

developed in the computing algorithm, but rather spatial 

interpolations are dealt with element by element.  An array 

that i. localized to a single element is denoted by a super- 
scripted e, thus 

E 

e = l 

:p(y)> «  ^ <pe(y) 

and 

^ijkPQ^ <D. . 

e = l 
ijkP W 

E  being the total number of elements in the global assemblage 

Using this notation,  p^(y)  is Zero unless node 

ted with element  e  and y  lies with 

of element  e. 

n is associa- 

in or on the boundary 
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2.5  CONSERVATION OF MOMENTUM 

Conservation of momentum in a Lagrangian framework 

can be expressed by the virtual work expression 

/(pü.6u. + a., -r-^ - f.6u.| dV - / T.6u.dS = 0 ri 1  13 9x,   11/   y   1 1 
V ■' S„ 

(2.19) 

in which u.  is the particle displacement,  6u.  is a virtual 

displacement,  ii.  is particle acceleration,  0..  is stress, 

p  is mass density, and  f.  and T.  are specified body force 

and surface traction, respectively.  S  is that portion of 

surface (internal or external) bounding the volume  V to 

which tractions are applied.  For general orthogonal curvi- 

linear coordinates, the term d&u./dxl     is taken to be 

D. ••. «Su, , the operator  D. .,  having been defined above in 
1J K  K 1J K 

Eq. (2.6).  For a Cartesian system, the term simply becomes 

86u./3x.. 

In the spatially discrete system conservation of 

momentum is expressed by substituting the interpolated dis- 

placement field from Eq. (2.16) into the virtual work expres- 

sion above to obtain 

{6Ui}
1([M]{Ui} + {R^ + {Q^ - {F.}) = 0 (2.20) 

where 

[M] = if. 
e = l Ve 

p<pe>T <pe> dV 

{Fi} = E /. ?i<pe>Tdv + E X Ti " <pb>T dS 

e = l  V b = l  S 
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(R . } =  V"  /  o., <D.1 . Pe>T dV 
e = l V 

^ 

— 

{Q . } =  y^  /  q. ^D., . pe>T dV 
e=l  V 

in which E  is the total number of elements in the grid and 

B  is the number o£ element surfaces with applied tractions. 

An artificial stress q.. = q-.fe)  has been introduced for 

the purpose of damping spurious high frequency numerical 

oscillations. 

The zero matrix is the only vector orthogonal to all 

possible (unconstrained) virtual displacements  {6U- }, there- 

fore Eq. (2.19) yields a series of simultaneous equations ev- 

pressing conservation of momentum node by node: 

[MHU.U)} + {^(t)} + (Q^t)} = {F.U)} (2.21) 

In contrast to conventional finite difference methods, free 

surfaces and loaded surfaces are "automatically" provided for 

in the above equations of motion through the forcing term 

{F.(t)}.  Node points with a specified displacement time 

history and node points along a transmitting boundary are not 

automatically handled by the virtual work expression, and 

therefore, these constrained node points require special 

considerations.  For convenience, we have simply modified the 

definition of the forcing term at the constrained node points so 

that Eq. (2.21) applies, without exception, to all points in 

the grid.  The modified prescription for  r. (t)  suited for r-      i- in 

the constraint condition at node n  is given below in Eqs. 

(2.30) and (2.31) . 
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In contrast to the conventional finite element method, 

we note that the constitutive properties have not been ap- 

plied in the development of Eq. (2.21).  The load-deformation 

properties of the material are introduced below at an inter- 

mediate stage in the time stepping scheme. 

2.6  TIME STEPPING SCHEME 

In selecting a time stepping scheme, we have con- 

sidered the relative merits of explicit and implicit methods. 

In order to achieve satisfactory accuracy in the propagation 

of sharp wave fronts (wave length equal to 10 to 15 grid 

dimensions), a small time step is needed, roughly equal to 

that required for stability of an explicit method.  When a 

numerical calculation involves such small time steps, ex- 

plicit methods are strongly favored over implicit methods. 

Explicit methods generally require many times fewer opera- 

tions per time step.  The number of multiply and add opera- 

tions for the implicit schemes used in finite element codes, 

such as SAP, increases as  \T5/3  for cube-like blocks of 3-D 

meida; whereas for explicit methods the number of operations 

increases linearly with N,  N being the total number of 

node points in the numerical grid.  Furthermore, algorithms 

based on explicit methods are simpler to program and general- 

ly more flexible for introducing nonlinear material response 

behaviors.  The simplicity of our explicit wave calculation 

scheme has made it possible to develop a very efficient 

parallel algorithm for processing linear seismic waves on 

the ILLIAC IV computer. 

Stress,  o^Cy , t-At) , e = 1,2, ... E; velocity, 
-— I '   ■      rH en 1 a i-oman +■ Hi     f+OI.      ^^ A     „„J„ •i.-  (,Ji(t - —)j ; displacement,  (ILCt)}; and node positions, 

!Y.(t) }, are advan 

computing sequence 

{Yi(t)}, are advanced in time by  At using a four stage 
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Stage 1:  Strain Rate 

Compute strain xate for element e 

9u. •e   /     .       At\        1   3Ui /v   t        At\  +   1  !^/v  t   .   At\ 

^<D.jkpe(y)   +  Djikpe(y)>   juk(t   - f )| 

(2.22) 

where  ef./y.t - 4^)  is the strain rate evaluated at a dis- 

crete point within element  e (strategic points in V  tor 

evaluating the  {R.}  integral of Eq. (2.20) which may, under 
1 Q 

special conditions, be confined to the centroid point y ). 

That is, the terms <D
ij^P

6 (y)> are evaluated at the inte- 

gration points for element  e. 

Stage 2:  Stress Rate and Stress 

Compute stress rate for element  e 

■°Ui'< - f) ■ f(r- f) 
which, for linear Isotropie material, becomes 

(2.23) 

At\ 
2 ; 

(2.24) 

where ye and Xe are Lame's elastic constants for the 

material in element e. The stress at the advanced time 

is then computed by direct integration 

^C^.t) - o^y, t-At) * At ^(jj.t - |i).       (2-25) 

Compute artificial stress q®. which serves to damp 

spurious high frequency numerical oscillations 
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q^ (y,t) = üt ß a
ij\l>t - —j li3 ^ 

e 

(2.26) 

where  ß^ = 0.15  is a dimensionless damping coefficient.  For 

the special case of linear waves (linear material and small 

displacements) the damping provided by the above expression 

for q.-, with  ß uniform between elements, results in the 

damping of each natural mode of vibration (i.e., each eigen- 

function of the linear system) as the square of the corres- 

ponding natural frequency (Frazier, ejt al., 1973).  Also, we 

note that no damping occurs in regions of stationary stress. 

The Isotropie component,  qvu» is equivalent to linear damp- 

ing used in Lagrangian finite difference shock codes, see 

for example, Richtmyer and Morton, 1967. 

Stage 3:  Restoring Forces (equivalent to stress gradients) 

Compute the nodal restoring forces that result from 

stresses in element  e 

{R.(t) + Q^(t)} 

ve 

ijkQ:^) dV . (2.27) 

In many applications, a single integration point at the centroid 

of the element is sufficient for evaluating the integral.  How- 

ever, for cases in whicli the strain energy that is neglected by 

sampling only at the centroid becomes significant, stress is 

computed (Stages 1 and 2) at two points for each spatial dimen- 

sion of the element, and in this way the spatial variations 

within an element are treated in the integration above.  Further 

discussion on the treatment of inner element variations in 

stress is presented in Appendix A.  As an incidental note, 

Frazier, et al., 1973, have shown that for rectilinear 3-D 
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grids, a one-point integration procedure is equivalent to the 

cell-centered-stress finite difference method that is commonly 

used in Lagrangian shock codes. 

The integration above is performed for each element to 

obtain the restoring force of the medium on all the nodes in 
the grid 

^iCt) * Q^t)} = ]£ {R?(t) 
e=l 

+ Q-(t)} (2.28) 

Actually, the global arrays  (R^t)}  and  {Q.(t)}  are not 

stored, but rather the effects of the element restoring forces 

are directly accumulated in the nodal acceleration calculations 

developed in Stage 4. 

Stage 4:  Motion of the Node Points 

Nodal accelerations are computed directly from Eq. (2.2.1) 

{U.(t)} = [Ml'^F-Ct)} - [Ml'^R^t) + Q.(t)} (2.29) 

where the so-called lumped mass matrix  [M]  is obtained by 

replacing each diagonal term in the distributed mass matrix 

[M]  by the sum of the terms in the row in which it appears. 

This operation yields a diagonal mass matrix thereby making 

the inversion of the mass matrix in Eq. (2.29) trivial. 

Equation (2.29) directly applies to all unconstrained 

internal and boundary nodes, including internal nodes with 

applied body forces and boundary nodes with applied tractions 

(zero or otherwise).  A modified prescription for P. ft) 
inv J 

is used at constrained node points so that Eq. (2.29) is uni- 

versally applicable to all node points in the grid. 
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The SWIS code accommodates two types of constraint 

conditions:  The first type involves a constrained component 

of displacement in which displacement is made to follow a 

prescribed time history U.(Y .t).  This condition is 

satisfied with 

Fin(t' ' hn^  *  «W1' * ̂ rVln-^") 

~  U. (t) - J1SL 
At2  m

1- J        At U. (t 
in 

At\ 
2 I (2.30) 

where  n denotes the node number. 

The second type of node constraint involves a trans- 

parent boundary condition in which a boundary point is made 

to reflect almost no energy.  In this case the nodal forcing 

term is set to 

hn^  -Kntt) ^QinCt) -^0ln(t.fi)     (2.31) 

Nodal velocities at the advanced time t + At/2 are 

computed by direct (numerical) integration of the nodal ac- 

celerations 

IM^MM'-H!*"!^! (2.32) 

and  similarly,   the nodal  displacements  are  advanced  in time 

UJ.Ct   +   At)}   =   OJ.Ct)}   +   Atjü^t   +  fi)j (2.33) 

and 

(Y, (t   +   At)}   =   {Yi(t)}   +   AtlA^^^jü^t   +  |l)j (2.34) 
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where  [H/---*]  is a diagonal listing of the i— metric co- 

efficient for each node in the grid.  Equations (2.32), (2.33), 

and (2.34) are employed for all node points in the grid; no 

exception is made at this point for the calculations at con- 

strained nodes. 

The sequence of calculations outlined in the four 

stages above yields the necessary variables for continuing 

into the subsequent time step, i.e., set t = t + At and re- 

turn to Stage 1.  Approximately 500 floating point multiply 

and add operations are required per 3-D element to advance 

the solution one time step using Cartesian coordinates and 

a one-point integration scheme in Stage 3.  To put this 

number is perspective we note that roughly one-half of this 

effort would be required per node to multiply the non-zero 

terms in a 3-D finite element stiffness matrix by the nodal 

displacements (about 250 floating point multiply and add 

operations).  Thus, the ,'tlgorithm developed above should be 

exceedingly fast for both linear and nonlinear stress wave 

calculations.  This conjecture is supported by ILLIAC test 

calculations, some of which are presented in Section IV. 
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2.7  CONSERVATION OF ENERGY 

Kinetic energy, strain energy, dissipated energy 

(artificial viscosity), and load potential are computed at 

each time step based on the expressions: 

K(t) = kinetic energy at time  t 

S(t) = strain energy (internal energy) at time  t 

D(t) 

1 

(2.35) 

S(t-At) + At s(t - ~) 

S(t-At) + j^ U./t - |ij  R.Ct) + R-Ct-At)    (2.36) 

dissipated energy at time  t  resulting from 

artificial viscosity 

D(t-At) + At oft - —\ 

D(t-At) + |tjö^t . Atjl |Qi(t) + Qi(t.At)j 

D(t-At) + Atjü^t - ^){T JQ.Ct)! (2.37) 

L(t) = load potential (energy entering or leaving 

the system through the boundaries or through 

the action of body forces) at time  t  result- 

ing from body forces and surface tractions 

(Eq. (2.20)), specified displacement time 

history (Eq. (2.30)), and transmitting bound- 

aries (Eq. (2.31)) 
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- LCt-it) * At tit - |i) 

■ Mt-.t) + |l[fl.(t - |t)jT|F.(t) + F.Ct-Ät,j   (2.38) 

We note that an approximate expression is employed for estimat- 

ing dissipated energy D(t)  in Eq. (2.37), because the array of 

dissipation forces  {Q.(t-AtJ} HM t - 3At 
1  , which is 

needed for a consistent calculation, is not retained in core 
at the advanced time  t. 

When SWIS is operated without artificial damping, 

energy is conserved in the calculations, i.e., 

L(t) - K(t) - S(t) = 0 + computer round-off (2.39) 

with D(t) = 0.  Conservation of energy has been observed for 

linear wave calculations.  However, because the method has 

been formulated from an energy principle, Eq. (2.39) will also 

be satisfied for waves in nonlinear materials with D(t) = 0. 

Energy conservation can be demonstrated directly from 

the discrete equations of motion.  The two discrete equa- 

tions - Eq. (2.21), centered at time  t, and Eq. (2.21), 

centered at time t - At - are averaged to yield an equation 
of motion at t - At/2 

+ iJQi^ -  Q^t-Atoj = iJF.tt) + F.Ct-At)! 

in which Eq. (2.32) has been employed to replace {Ü.(t)} and 
(lyt-At)}  by 1 

iJöi (t ♦ f) - oi (t - fi) 
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and 

kU - ?) - h{< - ¥) 
respectively.  This express 

2 /) 

ion is then pre-multiplied by nodal 

velocities {Ü.(t - At/2)}T to obtain variations in energy over 

the time step  At 

.fiju-lt  - |t)|   I^Ct]   +  R^t-At)' 

^l0!^ " r)jT|QiCt) +Qi(t-At)i 

Using the notation introduced in Eqs. (2.35) through (2.38) we 

have 

K{t)   -   K(t-At) + S(t) - S(t-At) + D(t) - D(t-At) = L(t) - L(t-At) 

(2.40) 

Consequently, all of the energy in the system has been accounted 

for; changes in load potential are reflected by changes in 

kinetic energy, strain energy (internal energy), and dissipated 

energy.  Beginning at  some initial time t^    with  K(0) + S(0) 

+ D(0) = L(0), Eq. (2.40) is applied repetitively from to  to 

t  to yield 

K(t) + S(t) + D(t) = L(t) (2-41) 
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' 

with no dependence on the constitutive properties.  We note 

that, for the case of a yielding material, not all of the 

strain energy is recoverable.  Thus we see that S(t)  con- 

tains both the recoverable strain energy and the internal 

plastic work. 

2.8  SPECIAL CASUS:  CARTESIAN COORDINATES. RECTILINEAR GRIDS. 
AND LINEAR MATERIALS ~ '" 

The preceding formulation for time stepping nonlinear 

stress waves through 1-D, 2-D, and 3-D curvilinear geometries 

may involve procedures not commonly found either in finite 

element literature or finite difference literature.  In an 

effort to make the presentation more easily understood, some 

special cases will be considered. 

2.8.1  Cartesian Coordinates 

The presentation of the computing scheme is complicated 

somewhat by the inclusion of general orthogonal curvilinear 

geometries.  Therefore, we will summarize the time stepping 

procedure using Cartesian coordinates.  This not only removes 

much of the abstractness from spatial derivatives in the 

discrete system but also enables us to focus on the key opera- 

tions that are involved in completing a time step. 

As described above in Section 2.6, stresses, velocities, 

displacements, and node positions are advanced in time using 

a four stage computing sequence.  Denoting parameter initiali- 

zation as stage 0, the following operations are performed: 

0. Initialize Values 

]h^\- Kwj; \\(t -f)}; o^tj, t - At) , 
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-m«m 

1. Compute  Strain  Rate 

.3pe(x) 

t7<-5Sr>  h^ 

Ät\l 
2-)j 

At\| 
"   2   / 

Compute Stress Rate and Stress 

he.(x ,   t 

a^ (x,t) 
13 • 

q-jCx.t) 

a®.(x, t- At) + At o®./x, t - |M 

BeAt ae.(x. t - fi) 

Compute Restoring Forces 

T 

JR^Ct) + QfCt)] =  /e<I^Cx)>  (ae.(x.t) 

l^ (x,t)) dV 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

Steps 1 and 2 are repeated for each integration point x 

located in element  e.  Steps 1, 2, and 3 are repeated ior 

each element in the grid to yield 

jvt) * Qidoj ^ k(t) + Q^(t)j 
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4. Compute  Motion 

{üiCoj   =  [Sr'^Ct)  - RiU)   - Q.Ct)» (2.47) 

with 

m W-    tOi**"*    t/ji^n 
e-1    Vv 

B 
—^ 

dS 

for the case in which Xn represent an unconstrained in- 

ternal node or a boundary node with applied tractions (zero 

or otherwise) , 

M 

At  m \   2 / 
M N 
-M u. (t) 
At2  in 

for the case in which Xn is driven by the specified time 

history ^(X^ t) , or 

FinCt) -l2\n^   + I ^in^ ' m ^ " f) 

for the case in which Xn is positioned along a transmitting 

boundary. 

U^t + At)  = 

!x. (t + At) 
I 

U,(t)! + Atjüjt + |^)j 

(2.48) 

(2.49) 

(2.50) IX-Ct)! + Atjü^t + ^) 

Time is advanced by At,  e is set to one, and program control 

is returned to stage 1. 

37 



2.8.2  Rectilinear Grids 

In general, the grid geometry will not be rectilinear. 

As discussed in Section 2.2.2 and illustrated in Fig. 2.2, 

elements that appear skewed in the global coordinate system 

y are mapped into local element coordinates  z where each 

element appears as a cube (or a square in 2-D)~  Simple poly- 

nomial functions, Eq. (2.10), are then employed for inter- 

polating spatial quantities over the interior of the element. 

Spatial derivatives with respect to the local element coor- 

dinate system are expressed in terms of derivatives of the 

interpolation functions, Eq. (2.11).  Because the polynomial 

interpolation functions also express the transformation from 

local element coordinates to global problem coordinates, 

spatial derivatives of the interpolated field variables are 

evaluated at a specified point (-1 < z. < +i) in an element 

through simple manipulations on the interpolation-function 
derivatives, Eq. (2.15). 

The interpolation functions and their derivatives, 

expressed in local element coordinates, are the same for 

all elements in the grid.  A subroutine has been constructed 

for producing the values of these spatial functions at any 

specified point -1 < z. < +1.  To proceed from these values 

and compute the value of a discretized field variable or 

its derivative at the specified point in the element merely 

involves a few matrix op .rations; consequently, the spatial 

differencing that is involved in the time stepping scheme, 

Eqs. (2.22) and (2.27), has not been expressed explicitly' in 

the development.  We do not concern ourselves with these de- 

tails in actual code development.  However, we will develop 

the particular spatial schemes that arise in 3-D rectilinear 

grids to indicate nature of the spatial discretization 
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For the special case of a Cartesian global coordinate 

system, spatial inteipolation in a skewed-brick 3-D element 
is expressed by 

8 

V-t) = EP^QO "UV 
m=l 

:es 

+ '•• F cl-z1^
1-22Hi-23)uf8 

where the second subscript on the nodal displacements denot( 

a local node number as designated in Fig. 2.2.  The coordinate 

mapping from local element coordinates to global coordinates, 

i.e., xi = x^z), is obtained by replacing u.(z,t) and 
Uim(t) in the above expression by  x^z)  and1 X^, respectively, 

When we restrict the 3-D element to a rectilinear brick 

geometry in which x.  is parallel to  z.,  the coordinate 
mapping reduces to 

Xi   =   Zi  I Ax(i)   +  K (2.51) 
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where 

'WE x. 
im 

m=l 

Ax«; = (xe .Xe .Xe , or Xe ) - (xe .Xe ,Xe , or xM 
1 ^ 1 1   13   15         17/     \  12   1 i.   1 6 18/ 

Ax^ = (x^  Xe .Xe . or Xe ) - (xe ,Xe   ,Xe . or Xe ) 
2 V  2 1   22   2 5         26/     \  2 3   2 U   2 7 2 8/ 

Ax^ = (xe ,Xe ,Xe , or Xe ) - (xe ,Xe ,Xe , or Xe ) 
3 V  31   32   3 3         St/     \  35   36   37 38' 

vC That is,  X.  is the centroidal point and Ax^.>  is the 

element dimension in the direction xi.  The transformation 

Jacobian, given by Eq. (2.14), then becomes 

 i _ 1 . e   . 
ST.  ■ 2 Ax(i) 6ij (2.52) 

and 

3x. \-l m Ax 
(i) 

iJ (2.53) 

for the case of a simple brick element geometry. 

We combine the spatial derivatives of the element 

interpolation functions with the transformation Jacobian 

above as indicated in Eq. (2.15) to obtain the spatial 

derivatives of the discretized displacement field 

9u. 

4 
3x. -1 JL, 3p 
3^  Z, 3^ t55 W1' ■ 

m=l 

40 

   ■-•■■  ■■—■" ...^^-.l^...;.,...■.:■.. .^■^.■^.■■.--. ...^.i.... ..../.. j^.^^ 
J"""-—- ■■  , . —    - ■ - ■-» 



In particular we obtain 

3u. 1 

i   4Ax 
i 

(i^!Hi*z3)K1-^, 

* fl-22)(l-Zä)(U=7-U^) 

^  4Äxe 
(Uz^d^z^lu^-U^) 

* Cl-z^d.zplU^-U^) 

* d^m-z^U^-U^) 

* (l-z^d-z^iu^-U^) 

3u 
3x   /i A e a   4Ax 

3 

tmni.z^-uy 

Ci-z^cuzplu^-u^) 

(Uz^d-z^lu^-U^) 

* d-z^d-z^lU^ - U^) (2.54) 
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At the element center, z = 0, we obtain the familiar 

difference equation 

3u 

4Ax 
- (U^ ♦ UI3 .  U=5 + U^ 
1 

u 
12 

i4 16 "u) (2.55) 

Similar expressions are obtained for (du./dx  ) and 

C3ui/3x33 at the centroid of the brick-shaped element. 

2.8.3  Linear Materials 

An important class of problems that involve small 

amplitude seismic waves can be treated using a linearly 

elastic material model.  We express linear material behavior 

in the stress-strain relationship 

aij     cijiaeia 

for the general case of anisotropic and heterogeneous 

media.  With this restriction, Stages 1, 2 and 3 (Eqs. (2.22) 

through (2.28)) combine to yield 

(RiCt)} =  [K^Hiyt)} (2>56) 

and 

(Q^t)}   =   BAttK.-HU-Ct)} (2.57) 

where 

[K^l   -  ^ 
„=1     Are e=l     V 

iVe>      ck£mn   <DmnjPe>   dV (2.58) 
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in which the indices  i, j, k, 2, m, and n  vary from one 

through the number of spatial dimensions.  By restricting the 

development to Cartesian coordinates, the expression for the 

stiffness matrix can be reduced somewhat 

[K^J ^Z 
e=l V 

3X, 

e\ T 

^^ <^ >dv (2.59) 

The  equation of motion  for  the  discrete  system, 
Eq.   (2.21),   then  becomes 

[M] I. (Ü-Ct)}   +   ^[K.jljü.   (t   -  ^)j+   [K.jHU.Ct)}  =   (F-Ct)} 

(2.60) 

and the resulting time stepping algorithm (Stages 1, 2, 3 

and 4) is expressed in a single equation, 

(ILtt + At)} = At2[M]"1{Fi(t)} + 2{Ui(t)} 

-(U-Ct-At)} - At2[M]"1[Kii]{(l+ß)U.(t) 

-   ßU^t-At)} (2.61) 

The linear SWIS code, which is described in Section 3.2, 

is based on this linearized time stepping procedure. 
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III.  ILLIAC CODES:  DESIGN AND DEVELOPMENT 

3.1  OVERVIEW 

In order to implement a numerical code on the ILLIAC IV, 

two unique aspects of the machine require special consideration 

The first is its parallel architecture.  In designing a stress 

wave code, our approach has been to formulate numerical opera- 

tions particularly suited to the parallel nature of the machine 

rather than to adapt an existing code with numerics designed 

for a conventional serial computer.  The resulting algorithm 

proved relatively easy to write and debug on the ILLIAC. 

The second aspect to be dealt with is the method of in- 

put and output.  As the normal access is via the ARPANET over 

large geographical distances, we must use new procedures in 

program development and debugging.  Program source and input 

data must be delivered to the machine by teletype or by file 

transfer from another host computer on the Net.  Output must 

return again via teletype or by file transfer to a host with 

line printers.  Even with the availability of printer output, 

interpreting the results from large 3-D numerical simulations, 

for example, can be exceedingly tedious without facilities 
for graphical display. 

Our first attempt at running programs in this environ- 

ment occurred in March 1973.  At that time, the only services 

available at the ILLIAC IV host were text editing and a 

minimal mechanism for ILLIAC program submission.  It took 

nearly one month to get results from our first run.  The re- 

sults were contained in a memory dump listing which was re- 
ceived by mail. 

Since then, the capabilities of the ILLIAC system have 

evolved rapidly.  The ARPANET File Transfer Protocol allows 

us to transfer programs from UCSD to Sunnyvale and obtain 
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line printer listings of ILLIAC dump files.  With UCSD only 

a few miles from S3, we can obtain substantial output from an 

ILLIAC run only an hour after program completion on the 

ILLIAC.  The display software enables an ILLIAC program to 

output selected quantities under program control.  This 

eliminates the tedious task of searching memory dumps for 

computed results.  Since September 1973, the ILLIAC instal- 

lation has maintained a job turn-around of roughly once or 

twice a day for two weeks out of every month.  With new ser- 

vices and improved job turn-around, the ease of getting work 

done has improved enormously. 

S 's first ILLIAC code, a linearized version of SWIS, 

became operational in July 1973, and has been exercised on 

several modest problems.  A more general nonlinear version 

of SWIS, presently about 1200 lines of GLYPNIR coding in 

size, is now in the testing stage.  As a result of improved 

job turn-around, this new SWIS code has progressed from de- 

sign stage to successful test runs in slightly less than 

three months.  During that period, ILLIAC reliability was 

sufficient to debug the new code directly on the machine 

rather than simulate the ILLIAC with SSK as was often neces- 

sary before September.  We estimate that our recent code 

design and debug rate on the ILLIAC has been nearly 50 per- 

cent of the rate at which we could have developed comparable 

code on S3,s 1108 computer.  We estimate that roughly half 

of the ILLIAC development is spent communicating with the 

ILLIAC host site via an interactive terminal. 

In conclusion, we have had satisfactory results from 

our first attempts to use the ILLIAC IV.  Part of this suc- 

cess stems from careful selection of the algorithms we first 

tried to implement.  Code development progressed relatively 

smoothly, though was inhibited somewhat by the effort of 

interactive communication with the ILLIAC facility.  Further 
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attention must be given to the difficulties of handling 

large quantities of output before major calculation can 

be performed. 

3 . 2  LINEAR STRESS WAVE CODE 

3.2.1  General Description 

The goal in our ILLIAC code development effort has 

been to numerically simulate stress waves in 3-D geologic 

materials.  The first step in attaining this goal was to 

develop a time stepping algorithm for propagating small 

amplitude waves in linear materials.  The linear algorithm 

is formulated in Section 2.8.3; the algorithm is expressed 

by Eq. (2.61).  In limiting our attention to linear material, 

we were able to construct a compact, yet versatile, code 

that eased our first efforts to use the ILLIAC IV. 

The algorithm accommodates nonsystematic node number- 

ing of 1-D, 2-D, or 3-D numerical grids.  As there is no 

relationship between grid numbering and the number of PE's 

(processing elements) in the array, very irregular grids 

consisting of beams, plates, and so forth, may be analyzed. 

Furthermore, the algorithm is as efficient for irregular 

grids as it is for systematic grids.  This is accomplished 

by a work-ahead procedure in which PE's simultaneously com- 

pute contributions to the advanced displacements of several 

different nodes.  A serial machine requires 261 floating 

point multiply and add operations to obtain a nodal displace- 

ment at the advanced time step in a 3-D grid (Eq. (2.61)). 

The ILLIAC algorithm performs an average of 4 parallel 

floating point operations plus 3 row sums for each advanced 

nodal displacement.  Thus, only a small overhead has been 

added to accommodate the parallel operations. 
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Based on predicted computing rates for the ILLIAC, 

it appears that a carefully coded version of the linear 

time stepping algorithm should run I/O bound on the array. 

This would require a processing rate of roughly 0.4 seconds 

per time step for a 10,000 node 3-D grid.  Accurate timings 

are not available for the present operational version of 

the linear code (programmed in GLYPNIR).  However, it appears 

that our present computing rates are considerably slower 

than the theoretical rate noted above. 

3.2.2  Numerical Problem Definition 

The definition of a complex grid can requin | large 

amount of data.  In the most general case, the definition 

must include data for individually locating each noue and 

some information about the interconnectivity of the element^ 

in the grid.  In addition, inhomogeneous material properties 

must be specified element by element throughout the grid. 

In all, about 17N data items are required to completely 

describe a totally arbitrary N-node 3-D grid.  Such a re- 

quirement would make 3-D grids excessively tedious to set 
up. 

In order to make the linear version of SWIS as flex- 

ible as possible and not tie it down to any particular grid 

generation scheme or finite element scheme, the influence 

coefficients for the grid are generated separately and be- 

come data for the time stepping algorithm.  One limitation 

of this approach is that the algorithm can compute stress 

waves only in materials with linear stress-strain laws, 

since no provision is made for recomputing the influence 

coefficients during the time stepping.  However, since the 

grid need only be generated once, one may employ as sophis- 

ticated a grid generation scheme as desired involving curved 

grids or structural appendages, with no effect on the 
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efficiency and speed of the time stepping algorithm. 

In the present code configuration, spatial discre- 

tization is carried out on a serial computer using a con- 

ventional finite^element code.  This step produces the 

terms (F^t)}, [M] . and [K. . ] of Eq. (2.61).  These terms 

are then sorted by the serial machine program into the 

order required by the ILLIAC time stepping scheme.  A sort 

algorithm has been designed to perform this sort on the 

ILLIAC (Frazier, et al., 1973), but has not been implemented 

as our recent work has turned to implementation of the non- 

linear version of SWIS (described in Section 3.3). 

At each time step, Eq. (2.61) is processed.  It has 
the form 

where 

{y(t+At)} = {V(tJ} + [A] {Ud(t)} 

{yd(t)} = (i + ß){u(t)} - ß{u(t-At)} 

{V(t)} = At^MJ'^FCt.)} + 2{U(t)} - {y(t-At)} 

[A] = -At^M]'1 [K] 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Underscores are used here in place of directional component 

subscripts  i and  j.  Using nodal subscripts, Eq. (3.1) be 
comes 

yn(t+At) = vn(t) + ^ 
snm -m ' (3.5) 

m 

The terms Un, Vn, U^, and Fn correspond to node  n  in 

the numerical grid and each represents 3 floating point num- 

bers on the computer for a 3-D grid.  Space is provided for 

each vector by storing sequentially across PE's.  For example. 
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the 64th term of {U(tH, corresponding to the displacement of 

the 64th node point in the grid, falls into PE 63 (Fig, 3.1). 

The vectors wrap around in core so that U65 appears in PE C, 

In general, vector term n appears in PEk where k is the 

remainder of dividing n-1 by 64.  In the present version of 

linear SWIS, these vectors are core contained.  A three- 

dimensional grid of N nodes would require 3N storage loca- 

tions for each vector.  With roughly 131K words of PE memory 

available, the code is limited to 3-D problems containing no 

nore than N = 10,000 nodes. 

The matrix of influence coefficients, [A], is an 

N x N matrix of 3 * 3 submatrices, or 3N * 3N.~ For a problem 

of N = lO1* nodes, the matrix would consume roughly 109 words 

of storage.  However, [A] is sparse with each row generally 

containing no more than 27 non-zero 3x3 submatrices.  This 

is a consequence of the connectivity in a 3-D grid of skewed 

brick elements in which each interior node point is connected 

directly to 26 neighbor nodes and each boundary node to less 

than 26 neighbors.  If the matrix is compressed to remove 

zero submatrices, the storage is reduced to roughly:  (number 

of nodes in the grid) x (number of neighbors plus one) x 

(words of storage for a submatrix) = lO1* x 27 x io = 2.7 x io6 

words for N = 10''.  The extra word of storage for the 3x3 

submatrix contains the row and column position of the sub- 

matrix in the uncompressed matrix. 

These submatrices are stored on the high speed disk in 

an order appropriate for the sparse matrix multiply which is 

performed repetitively during the time stepping.  As illus- 

trated in Fig. 3.2, the column number of the nonzero terms 

in  [A]  provides the PE destination, i.e., A   is to appear 

in PEk where k is the remainder of the division of m-1 by 

64.  This scheme assures that, as the influence coefficients 

are read into PE memory from the 14 disk, each coefficient 
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DESTINATION OF NODAL DISPLACEMENTS IN PE MEMORY 

PEO PE1 PE2 PE62 PE63 PEO PEk ♦ t ♦ t t ♦ ♦ 
V y2' U  ... 

~3 ~63 ^ 
U 
~6 5 • "N 

DISPLACEMENTS IN PE MEMORY 

PEO PE1 PE2 . . . PE63 

U 
-" i 

u 
~ 6 5 

• 

U 
-2 

U 
~3 

•  •  • U 
~64 

U 
~128 

• 

• 

Fig. 3.1--Schematic illustrating the arrangement 
of nodal displacements in PE memory. 
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DESTINATION OF NONZERO INFLUENCE COEFFICIENTS IN PE MEMORY 

[A] = 

PEO 

A 
«1 1 

PEl 

A 
«1 2 

PE2 

t 
0 

PE3 

0  .. 

PEO 

1 
0 

PEl 

1 
A 
«1,66 

PE2 

1 
A 
«1,67 

A 
«21 

A 
«2 2 

A 
s:23 

0 0 A 
S2 , 67 

0 A 
«3 2 

0 0 

PEO 

A 
:i 1 

2 1 

INFLUENCE COEFFICIENTS IN PE MEMORY 

-*\sn  
PEl 

A 
51 2 
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Fig. 3.2--Schematic illustrating the arrangement of the 
influence coefficients Anm in PE memory. 
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will arrive in the PE that contains the corresponding nodal 

displacement.  For a 3-D problem, 9 parallel multiplications 

can then be performed for each 10 rows of influence coeffi- 

cients that arrive from the disk.  The only PE interactions 

that are needed, even for irregular grid configurations, result 

from summing accumulated products between PE's - one row sum 

per row of the sparse matrix [A].  More detail on our sparse 

matrix multiply scheme is presented in the following section 

and in Appendix II. 

3.2.3 Time Stepping 

The time stepping process consists of the calculation 

of Eq. (3.5) for each time step.  The first term  {V(t)}  of 

Eq. (3.5) involves column vector operations which require no 

interaction amongst ILLIAC PE's.  As a result, it is easily 

computed in a parallel process.  Similar column vector onera- 

tions are involved in the calculation of  {Ud(t)}.  The sig- 

nificant calculation is the multiplication of the vector 

(U (t)} by the large sparse matrix  [A].  This multiplica- 

tion accounts for almost all of the computation time that 

is required to complete one numerical time step.  A sophis- 

ticated but simple mechanism has been developed to perform 

the sparse matrix multipl> in parallel (Frazier, et al., 1973) 

The non-zero terms of  [A]  in Eq. (3.5) are arranged on disk 

so that each 3 x 3 submatrix Anin  arrives in the PE contain- 

ing  Um.  Furthermore, as successive terms of  [A]  are read 

from disk the matrix row numbers  n  increase monotonically 

(but not necessarily sequentially) in each PE.  This is done 

so that the sparse matrix multiply can be completed in the 

order of ascending row number. 

The first submatrix Anm  to arrive in each PE from 

the disk (the  Anrn with the~lowest row number  n  that ap- 

pears in each PE) is multiplied by the three-component vector 
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U^ and the results are accumulated in a buffer R along 

with the row number identifier n.  This operation allows 

some PE's to work on the same row number n while other 

PE's work ahead on other row numbers.  Since several rows 

may be processed simultaneously, a look-ahead buffer  {R} 

is maintained in each PE which contains both the elements 

R and the row number n.  Since rows will continuously be 

completed as new ones are started,  {R} need only be large 

enough to contain the maximum number of R's  to be worked 

on at one time in any given PE.  On the average, all of the 

multiplies for 64/27 = 2.4 rows of the sparse matrix multiply 

are completed after such an operation.  Rows that correspond 

to boundary nodes require less calculation. 

During the matrix multiply, a test is made to see if 

all contributions from the sparse matrix multiply are ready 
to be summed for the node If all of the row numbers n 
from the submatrix multiply are greater than n , then all 

contributions for  no  are completed (all PE's are now work- 

ing on contributions to higher node numbers).  The contribu- 

tions for no  are then summed and added to the other terms 

in Eq. (3.5) to obtain the advanced nodal displacements 

yno^*^'  This displacement vector is stored in PEk,  k 

being the remainder of n^l divided by 64.  If the r ontribu- 

tions from row n^l are completed, then node n +1 is also 

advanced in time by summing contributions from "participating 

PE's, otherwise the next submatrix multiply in line for each 

PE is performed.  The parallel submatrix multiplies, row sums, 

and disk reads continue until all of the  [A]  matrix has 

been processed and all nodes have been advanced in time.  The 

entire operation is repeated for each time step.  (A more 

detailed description of the sparse matrix multiply appears in 
Appendix B.) 
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3.2.4     Tests 

The first version of linear SWIS was coded in GLYPNIR 

and also in ASK.  Several tests were made with the GLYPNIR 

code on the ILLIAC IV simulator at UCSD (Frazier, et al. , 

1973).  The GLYPNIR version of linear SWIS with a simple 

grid generator became operational on the ILLIAC IV in April 

1973.  Because of difficulties with the disk hardware at 

that time, SWIS was run with the  [A]  matrix held entirely 

in core.  Several test runs involving the propagation of 

planar P waves in 3-D media have been made to check bound- 

ary conditions in the code.  Successful runs of over 100 

seconds on the ILLIAC were completed. 
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3-:5  LAggANGIAN STRESS WAVF CODE 

3-3-l  Grid Configuration 

devisodM1"1"6-8"6"'6' deSCribed in SeCti0n "^ h- "«" 
devxsed for „umencauy simulating stress waves in geoio.ic 

ate       The HclbiUty for ha„dli„8 highly ^  " 

n t   T   nS haS been ""'P'«1-« -"-at in adapt- mg the scheme to the IUIAC. 

tvn.s rThC 8tneraI nUmerical ^™  »toits mixed element 
t/POS (e.g., trahedra and hexahedra) with nonsystematic 

node and element numbering.  Because of the difficulties in 
transferring information between PF-, f„ .   u- 
on the 111 Mr netween PE s in an arbitrary manner 
on the ILLIAC, we associate grid cross-sections with PE's  as 
illustrated in fie  ^ •?  ajf„      ., ' 

'n ng. 3.3.  Adjacent grid cross-sections are 
a-ociated with adjacent PE's so that point, which are d a- 

cont in the grid appear in the same or adjacent PE's 

The first grid dimension, which is normal to grid 
section mentioned above, is strung across PE's.  Thi  enables 

s rin8 of «elements, lyin8 in 64 conUguous cross.      s 

to be processed in paraHel.  We note that the first grid 

o1::::::;;00:not —^ —^ - the first problM 
coordinate.  To insure totally paraUel operations for the 

bu k of the calculation, on the ILLIAC. the retirement is 

a et at each element stri„8 in the first grid dimension'con- 

s elements of the same basic type.  That is. one element 

-">not contain both tetrabedral and hexahedral (skewed- 
br ck) elements.  The present operating version of SWIS treats 

nly one eiement type over the entire grid:  8-node hexahed" 

D. 4-node cuadralaterals in 2-D, ard 2.node line segments 
n ID.  This restriction may be lifted in the future to al- 

low for varying element types between element strings 

5S 

-- ^■-•--- -■-- ^-. ■-'■   -■■-  ■ ^.^.,...      ...   .L^.^.   -..».. '" — ' 1--  - '- -I  fH  1  .^J.__. i^MIflltfMiiMMfcni'ÜiiiliMÜliMaiMftii 



^i^^W^pWW-^P—»^v—^-™- ■■.jy-j.!. ,ii]n,ini!iminj|i 

Fig. 3.3--Relationship between grid geometry and 
PE storage. 
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The requirement for uniformity of element types 

imposes restrictions only on the connectivity between 

elements, not on the size or shape of the elements.  No 

restrictions are placed on material types, applied loads, 

or boundary conditions in any dimension of the grid.  The 

ILLIAC SWIS code can also treat irregular geometric shapes. 

The number of elements can vary between node strings due 

to irregular grid boundaries, either internal or external. 

However, inefficiencies in PE utilization occur when the 

number of elements in a node string is not a multiple of 64 

—. 

3.3.2  Storage Scheme 

The ILLIAC SWIS code uses three types of data storage: 

1. General problem descriptors require only minor storage 

and include such terms as curvilinear coordinate designator, 

number of spatial dimensions, material descriptions, grid 

descriptions, time stepping data, and data for printing 

selected results. 

2. Global storage contains nodal and element information 

for the entire grid.  For each node point in the grid, the 

present version of SWIS stores coordinates (position), dis- 

placement, velocity, acceleration, boundary condition type, 

applied force (or displacement), and concentrated mass. 

Material type and element stress are stored for each element 

in the grid.  Nodal and element storage are combined, stor- 

ing one node with one element, to yield 9, 16, and 24 words 

of storage per 1-D, 2-D, and 3-D element, respectively. 

Figure 3.4 illustrates the various grid terms that appear 

in global storage. 

The global storage scheme has been designed first to 

minimize interactions between PE's and second to simplify 
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STORAGE OF GRID QUANTITIES ACROSS PE'S 
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1 
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Words of storage per element =       (D2 + llD)/2 + 3 

where  D  is the number of spatial dimensions. 

Fig. 3.4--Multiplexed storage of global variabl es 
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disk accessing.  As indicated in the previous section, 

global storage for one dimension of the grid (the first 

dimension) is strung across PE's with variables for cross- 

section n appearing in PEk where k is the remainder 

from the division of n-1 by 64.  Figure 3.3 illustrates the 

relationship between the PE's and the grid configuration. 

All of the global variables needed to process one element, 

i.e., to compute element restoring forces, are always con- 

tained in two adjacent PE's (PEO is considered to be adja- 

cent to PE63).  Node variables are routed left at the be- 

ginning of the loop for processing a string of 64 elements, 

and the computed element restoring forces are routed right 

at the end of the loop.  Thus, by associating global storage 

with grid configuration, we have reduced PE interactions to 

simple, predictable routing operations. 

Primarily for the purpose of expediting efficient 

use of the 14 disk, the various node and element quantities 

are multiplexed in global storage, as illustrated in Fig. 3.4. 

In the present design, global arrays will appear sequentially 

on the 14 disk with grid dimension one most rapidly varying 

in the grid numbering scheme.  Thus, if a particular global 

variable is located at position n on the disk then the 

corresponding variable for the next higher element number 

would be located at position n + (D2 + llD)/2 + 3 where  D 

is the number of spatial dimensions in the grid and 

(D^ + llD)/2 + 3 is the number of terms per element multi- 

plexed into global storage. 

3.    Element string storage, which occupies about 60 words 

of fixed storage per PE, contains variables for processing 

one string of 64 elements.  The element string storage serves 

as buffer storage for certain global variables (node posi- 

tions and node velocities) and as storage for intermediate 

variables not stored globally (curvilinear coordinate metrics, 
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element interpolation functions and their spatial deriva- 

tives, element strain rates, element stress rates, and 

element restoring forces).  By setting aside special element 

storage, we have managed to isolate inner PE exchanges from 

the major calculation phase of the code. 

3.3.3  Initialization 

As described in Section 2.2, a stress wave calcula- 

tion is initiated by data that specifies the character of 

the grid, the (time-varying) boundary conditions, the 

material properties, the time stepping data, the initial 

conditions, and the type of results to be printed.  In the 

present configuration, about 50 words of data are required 

to initiate a 3-D calculation.  Approximately half of these 

data serve to define the grid.  Nonzero initial conditions 

and time varying forcing terms require additional data. 

Before preceding with the time stepping calculations, 

global storage is initialized.  Based on the number of dimen- 

sions in the grid (and on the number stress components to 

be included in non-Cartesian calculations), the global 

multiplexed storage is dynamically assigned within a large 

segment of available core at run time.  Displacements, 

velocities, and element stresses are set to a default value 

of zero.  Boundary conditions and material types are set 

from the problem input data.  A code-contained grid generator 

serves to produce node positions in both Cartesian and curvi- 

linear grids.  Nodal masses and nodal forces are computed by 

numerical integration, Eq. (2.20).  The nodal accelerations 

are initialized to 

{U} = [M]"1^.}  , 

Eq. (2.29) with {R^ = {Q.} = 0.  We note that, with the 
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exception of boundary conditions and nodal forces, initiali- 

zation calculations are conveniently processed in parallel. 

3.3.4  Time Stepping 

The calculations that are performed to numerically 

propagate stress waves are described in Section 2.6, Eqs. 

(2.22) - (2.34).  Figure 3.5 illustrates how these calcula- 

tions are performed on the ILLIAC using the following basic 

operations:  Grid positions and nodal velocities combine to 

yield element strain rates.  The element strain rates com- 

bine with material properties to yield element stress rates, 

which are used to update total element stresses.  Element 

restoring forces, which are computed from the element 

stresses, are combined with externally applied forces (or 

other boundary conditions) to produce nodal accelerations. 

Nodal displacements and nodal velocities are then advanced 

one time step by direct numerical integration tf the nodal 

accelerations.  This time stepping procedure continues until 

the wave simulation is completed. 

We note that the algorithm has been organized so that 

interactions between PE's occur at only two points in the 

computing sequence.  The initial operation in processing a 

string of 64 elements involves a parallel route left.  This 

serves to bring global values of nodal velocity and nodal 

coordinates into local element storage.  The nodal restoring 

forces for the 64-element string are then computed in paral- 

lel with no inner PE communications.  These operations repre- 

sent the bulk of calculations for completing one time step. 

The final operation in processing a string of 64 

elements involves a route right.  The nodal restoring forces 

are divided by the corresponding nodal masses and accumulated 

in global storage as contributions to nodal accelerations. 
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Strings of 64 elements are sequentially processed with a 

parallel route left (global to element storage) in the 

initial operation and a parallel route right (element to 

global storage) in the final operation. 

The acceleration of each node in the grid is deter- 

mined from the processing of all element strings.  Boundary 

conditions are then applied by sweeping thiough global stor- 

age, modifying accelerations of only those nodes with force, 

displacement, or fixed boundary conditions.  At the same 

time, the advanced nodal velocities and displacements are 

computed in parallel by time integration.  This operation 

completes one numerical time step. 

3.3.5  Code Output 

For the testing stage of SWIS, we have relied on two 

basic types of numerical output.  Both of these employ the 

DISPLAY software facility for outputting formatted data 

during run time. 

One method is to output an entire PE row of informa- 

tion at a selected time step.  Since an interesting portion 

of the problem often has its orientation across PE's, row 

output can provide the desired results in condensed form. 

One test problem - Lamb's problem as described in the next 

chapter - had the free surface of the grid oriented along 

the first grid dimension.  Thus six row outputs provided 

horizontal and vertical components of displacement velocity 

and acceleration along the entire free surface.  This ap- 

proach is less convenient for grid cross-sections other than 

those oriented across PE boundaries.  A mechanism is used 

for transferring a series of selected quantities into a 

buffer row of memory for output. 

Hfc—^i_ 
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A similar mechanism is used for collecting time 

histories.  The displacement, or some other quantity at 

selected points in the grid, is accumulated into a buffer 

area following each time step.  When the buffer is full, 

it is output and the accumulation is resumed.  In this way, 

the behavior of a point in the grid over time may be con- 

veniently displayed. 

We anticipate incorporating further modes of program 

output into SWIS.  One is a binary output mode in which large 

quantities of unformatted data are transferred to UNICON 

laser storage during run time.  Selected portions of this 

file could be transferred over the ARPANET for printing or 

plotting at another site.  A further possibility is to in- 

corporate some code into SWIS for generating plots using 

the network graphics protocol (NIC #153S8, 1973).  This plot 

information could be plotted at any site equipped with pre- 

processors for the graphics protocol. 
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IV.  STRESS WAVE CALCULATIONS 

Our primary thrust during this contract period has 

been to develop code on the ILLIAC for performing 3-D stress 

wave calculations.  Test calculations have been performed 

in 1-D, 2-D, and 3-D geometries to verify the resulting code 

and to examine particular features of the computing algorithm, 

A sample of these test calculations are presented below. 

4.1  LAMB'S PROBLEM:  2-D CARTESIAN COORDINATES 

The ILLIAC SWIS code has been exercised in 2-D 

Cartesian geometry (plane-strain) for treating Lamb's 

problem:  A line load (a point load in the plane of the 

grid) applied as an impulse to the free surface of a half- 

space.  Figure 4.1 illustrates the numerical presentation 

and provides the physical parameters that were used in the 

calculation.  Based on central system clock times, we esti- 

mate that the calculations were processed at the rate of 

0.4 m-sec per 2-D element per numerical time step. 

The sharp wave forms that arise from the concentrated 

impulse loading serve as a critical test for the stress wave 

computing scheme.  Frazier, e^ al. (1973) have reported on 

finite element and finite difference treatments of Lamb's 

problem using S3's UNIVAC 1108.  In the present treatment 

of Lamb's problen on the ILLIAC, we have examined alternats 

schemes for dealing with bending modes in the individual 

elements (hour glass deformations, see Appendix A) and al- 

ternate schemes for damping spurious high frequency noise. 

We have also made an effort to test the effectiveness of 

transmitting boundary conditions in 2-D geometry. 

Computed displacements along the free surface are com- 

pared with mathematical solutions in Figs. 4.2, 4.4 - 4.6. 

In the first of this series of calculations. Figs. 4.2 and 
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ine load = 0.985 * 10  dynes per cm along x 

Free Surface 

(63,0) 

i^pim 
1.0 cm 

Transmitt ing 
Boundaries 

At = 1 usec = 0.555 AX 
V~ 
P 

(63,50) 

Physical Parameters 

P ■ mass density = 2.77 g/ cm 

Vp «= P wave velocity = 0.555 cm/sec 

V£ = S wave velocity = 0.3145 cm/psec 

Vr •= Raylcigh wave velocity = 0.2898 cm/psec 

L ■ total impulse = JJ pressure dx, dt 

1.97 x io10 dyne-psec/ cm 

Fig. 4.1 Problem description used for analyzing 
impulse on a half-space (Lamb's proble 

a line load 
m). 
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4.3, a single-point integration scheme was employed for 

computing restoring forces of the medium (see Eq. (2.27) 

or alternately Eq. (2.46)).  As discussed in Appendix A, 

this scheme does not take into account the spatial varia- 

tions in stress within an element.  Consequently, the 

elements contain no stiffness against binding.  The result 

is that the concentrated load configuration excites hour 

glass deformation modes in the grid in addition to the de- 

sired wave forms.  An effort was made to control this un- 

desirable response by introducing a special artificial 

viscosity with the sole purpose of damping the hour glass 

deformations.  While this procedure was successful in sup- 

pressing the hour glass modes from the computed velocities, 

we see from Fig. 4.2 that considerable numerical noise 

appears in the displacement field in the vicinity of the 

applied load.  By employing the hour glass damping scheme, 

a well-formed Rayleigh wave emerges at points greater than 

about 20 grid dimensions from the source.  The time history 

of a point 39 cm from the source, presented in Fig. 4.3, 

shows no trace of hour glass noise.  We note that no special 

treatment is required to control hour glass deformation 

modes when the surface load is distributed over many ele- 

ments; there is essentially no excitation of hour glass 

modes in this case. 

The SWIS code was then altered to take account of 

inner element variations in stress, rather than to arti- 

ficially damp the hour glass modes.  The vertical component 

of displacement along the free surface, using this numeri- 

cally consistent formulation, is presented in Fig. 4.4. 

Also, the standard numerical damping scheme, Eq. (2.26), 

was altered somewhat for this calculation.  Shear distor- 

tions were damped using a coefficient  ßg = 0.80, the same 

ß  that was used in the previous calculation; whereas a 

smaller damping coefficient of 0.40 was applied to 
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volumetric distortions.  This procedure has the effect of 

damping high frequency P and S waves of comparable wave 

lengths rather than damping comparable frequencies as is the 

case using one  ß  for both volumetric and distortional 

deformations (see Frazier, et^ al. , Appendix B, 1973). 

First, we see from the results presented in Fig. 4.4 

that there is no trace of hour glass deformation present 

in the computed displacement field.  Also, we find that the 

reduction in the artificial damping of volumetric distor- 

tions results in a more distinct  P wave along the surface. 

As a final numerical experiment, ehe restoring forces 

that arise from bending of individual elements were arti- 

ficially reduced by 50 percent.  This inconsistent analysis 

was performed to examine what effect the bending stiffness 

of individual elements has on the resulting wave forms. 

Cell-centered-stress finite difference schemes disregard 

the bending stiffness of individual elements; while the 

consistent finite element scheme, used to produce Fig. 4.4, 

slightly over-estimates the bending stiffness of elements. 

We see from Fig. 4.5 that a slightly sharper Rayleigh wave 

(higher peak displacement) is obtained when the bending 

stiffness of the elements is reduced.  It appears that an 

accurate representation for the bending stiffness of indi- 

vidual elements is not critical to this particular wave 

simulation.  Except for the hour glass deformations that 

permeate the displacement field near the point of loading 

(Fig. 4.2), it appears that artificial damping, which is 

needed to control numerical dispersion, has as much effect 

on peaked wave forms as the bending stiffness of the 

elements. 

Finally, some data on machine reliaoility have been 

obtained from the numerical simulations of Lamb's problem. 

Eight separate calculations were initiated, each set for 
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500 time steps.  Major errors, which are detected by orders 

of magnitude increase in the total energy, occurred in all 

eight calculations prior to completion.  Two calculations 

did not reach 100 time steps before the total energy jumped; 

one calculation progressed just beyond 250 time steps be- 

fore major spurious errors occurred.  Each numerical time 

step requires about 3 * 105 floating point multiply and add 

operations, approximately 100 operations per element per 

time step.  Thus, it appears that bits are being altered 

in the exponents at the rate of about one error per 3 x 107 

floating point multiply and add operations for the parti- 

cular sequence of machine instructions activated by this 

2-D wave simulation.  In some instances, we also find that 

low order errors have occurred in the calculations before 

errors of very large magnitudes appear.  We plan to in- 

corporate rigorous energy checks and an automatic restart 

mechanism in the SWIS code to detect and recover from 

machine errors. 
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4.2  PLANE WAVES:  3-D CARTESIAN COCIJINATES 

The first test calculation of the SWIS code in 3-D 

geometry has been designed to simulate a plane wave pro- 

duced by an impulse pressure.  As with the problem of the 

previous section, the propagating wave has a discontinuity 

in the displacement field and a singularity in the velocity 

field.  We do not expect to match behavior of this type 

accurately but rather to examine the limitations of the 

numerical procedure.  The response of a linear system to 

an impulse load provides the Green's function for the sys- 

tem.  Thus, by treating an impulse loading, we obtain the 

Green's function for the numerically discrete system. 

The grid configuration, grid parameters, and material 

parameters are presented in Fig. 4.7.  The grid, which is 

core-contained, involves 1575 cubic elements with 63 grid 

spaces in the direction of propagation.  The uniform pres- 

sure pulse produces particle motion only in the direction 

of loading.  Computed displacement and velocity at selected 

time intervals (t = 40, 80, 120 ysec) are presented in 

Fig. 4.8.  The computed velocity field represents a numeri- 

cal approximation to a delta function.  The time integral 

of the computed particle velocity matches the time integral 

of the analytical singularity.  This is illustrated by the 

close agreement between computed and analytical displace- 

ment fields behind the wave front. 

Based on central system clock times, we estimate that 

the 3-D plane wave calculations were processed at the rate 

of 1.2 m-sec per element per numerical time step. 
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Uniform Normal  Pressure "  100 kbars 

(63,0,5) 
Free Surface 

fit " f \p " 1-0 ysec 
xl P 

Physical  Parameters 

P - mass density «=2.5 g/cm3 

Vp =  P wave velocity =0.5 cm/psec 

Vs - S wave velocity -  0.25 cm/ysec 

ß ■ damping coefficient  =  0.15 

Fig.   4.7--Problem description used  to  simulate  a uniform 
impulse pressure   applied  to the  surface of a 
half-space. 
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Fig. 4.8--Plane wave produced by a uniform impulse pressure, 
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4.3  BURIED EXPLOSION:  1-D. 2-D, 3-D SPHERICAL COORDINATES 

The facility in the SWIS code for processing wave 

calculations in curvilinear coordinates is employed for 

simulating elastic compression waves emanating from a 

spherical cavity.  A step pressure with an exponential 

decay is analyzed using the following parameters: 

r  = cavity radius = 10 m 
c       / 

Ar = radial zone size = 0.2 m 

At = time step = 20 psec 

0 = damping coefficient - 0.15 

V = P wave velocity = 5 km/sec 

\'     =  S wave velocity = 2.5 km/sec 

p = mass density = 2.0 g/cm 

-1031 p(t) = cavity pressure = e     kbar 

The elastic explosion calculation is processed in 

spherical coordinates using 1-D, 2-D, and 3-D grid configu- 

rations, illustrated in Fig. 4.9.  Each grid has 63 elements 

in the radial dimension.  This provides equal resolution 

for each grid configuration in the spherically symmetric 

explosion.  Consequently, we would expect very nearly iden- 

tical results from the 1-D, 2-D, and 3-D calculations. 

The computed response of the cavity wall is compared 

with analytic solutions by Blake (1952) in Fig. 4.10. 

Radial displacement and velocity are compared 2.0 m-sec 

after pressurizing the cavity with the analytic solutions 

in Fig. 4.11.  While the computed points in Figs. 4.10 and 

4.11 are taken from the 1-D spherical calculation, the 2-D 

and 3-D calculations gave results with 1 percent of the 

1-D calculation.  Therefore, these figures can be con- 

sidered representative of the computed behavior for all 
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AO   -   7T/120 
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r=10 m     r=22.6  m 

2-D  Grid 
3-D  Grid 

3-D,   63   Ar   by   5   A8   by   5   A0. ' 
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three grid configurations. 

More test calculations need to be performed to 

verify the SKIS code for other curvilinear coordinate sys- 

tems.  However, because no code alterations were needed 

to produce the 2-D and 3-D spherical results, it appears 

likelv that the curvilinear formulation is generally 

operational.  We note that the wave calculations processed 

in spherical coordinates required about 50 percent more 

computer time than would have been required for a comparable 

Cartesian calculation. 
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V.  SUMMARY AND CONCLUSIONS 

Considerable progress has been made in the develop- 

ment of an ILLIAC computer code for simulating stress 

waves in the earth.  A novel finite element scheme has 

been developed for processing stress waves in 1-D, 2-D, 

and 3-0 curvilinear geometries.  The numerical scheme 

accommodates finite deformations and nonlinear material 

behavior using a bagrangian formulation. 

In the initial phase of this program, code develop- 

iiient was confined to small amplitude stress waves with 

linear material response.  During this period, an ILLIAC 

code was developed for time stepping stress waves through 

highly irregular 1-D, 2-D, and 3-D grid configurations. 

The linear code was made operational on the ILLIAC, and 

test calculations were performed as early as March 1973 

to verify the code.  The linear code development effort on 

the ILLIAC proved valuable in the subsequent development 

of the more general SWIS code. 

Because of the manner in which the more recent non- 

linear SKIS code has been adapted to the parallel structure 

of the ILLIAC, grid points are associated with PL's,  This 

has required a certain regularity in the grid configurations, 

namely, the grid must be composed of an assemblage of ele- 

ment strings.  The parallel processing capabilities of the 

ILLIAC are most effectively utilized when the number of 

elements in the element strings is some multiple of 64. 

This is in contrast with the earlier linear code which 

processes irregular grids just as efficiently as regular 

grids. 

The nonlinear SWIS code was programmed using CLYPNIR 

and debugged directly on the ILLIAC.  Successful test cal- 

culations were performed on the ILLIAC just three months 
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after the initial programming was begun.  This fact is a 

credit to the total ILLIAC system:  the ARPANET, the ILLIAC 

IV computer, and the peripheral equipment at the ILLIAC 

site.  Systems failures have interfered with our ability 

to utilize the ILLIAC on the average of about two weeks 

out of each month for the past three months.  System re- 

liability is expected to improve in the coming months. 

A series of core-contained test calculations have 

been performed on the ILLIAC to verify the SWIS code in 

1-D, 2-D, and 3-D Cartesian and spherical coordinates. 

Cartesian coordinates were employed to simulate a line load 

impulse (Lamb's problem) using 3150 2-D elements and a 

pressure pulse using 1575 3-D elements.  Spherical coordi- 

nates were employed to simulate a pressurized spherical 

cavity using 63 1-D elements, 3780 2-D elements, and 1575 

3-D elements.  The calculations were processed at the rate 

of 0.4 and 1.2 m-sec per element per numerical time step 

for the 2-D and 3-D Cartesian grids, respectively.  Appro- 

ximately 50 percent slower computing rates were obtained 

for the spherical calculations.  Based on repetitive execu- 

tions of Lamb's problem, we have observed what appears to 

be machine errors.  We estimate that errors occur in the 

exponent bits at the rate of one error per 3 * 107 floating 

point multiply and add operations.  Lrrors in the mantissa, 

which are slightly more difficult to detect, have also been 

observed.  We plan to incorporate rigorous energy checks 

and an automatic restart mechanism in the SWIS code to de- 

tect and recover from machine errors. 
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APPENDIX A 

INNER-ELEMENT STRESS VARIATIONS 

The stress tensor evaluated at the centroid of a 2-D 

or 3-D rectilinear element does not adequately describe the 

state of stress in the element.  We note that no stress is 

generated at the centroid as the element undergoes a bending 

deformation, illustrated in Fig. A.l.  Stress wave calcula- 

tions that use centroidal stresses exclusively can result in 

hour-glass deformation patterns superposed on the computed 

d isplacement s. 

Let  A  denote the amplitude of the bending mode pic- 

tured, then 

A = < + 1, -1,-1, + 1 > |ue| 

u (z) = A z  z 
\     - 12 

,  /dU.    »U . v 

n -   ? \3z.   ■z.J 

ViU) M    ii  kk 

y. . (2 - 01 = 11 

O + 2 u) z   u 2 
2       1 

Az 

on the desired displacement and velocity fields. 

A one-point integration scheme is not sufficient for 

treating spatial variations in stress with an element.  When 

two integration points per element dimension are used in 

Eq, (2.203 f"1" computing restoring forces of the medium, con 

siderably more calculations are required to process each 
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: 

?! = d.D 

^ ► z 

Let  A denote the amplitude of the bending mode pictured, 

then 

A = <+i, -i, -i, +i>!ue! 

u^z)   - 

ce.(z) 

A 2 
1      2 

9u.        9u. 1     ^i  +  ^1 

1 
L2   \ 

o^(z) 2U£ij   +   6ijUkk   =  A 

CA+2u)z uz 
2 1 

uz 
L 1 

Az 

ol.iz=0)   =   0 

Fig. A.l--Bending mode of deformation with nonuniform 
stress tensor that vanishes at the centroid, 
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clement.  However, a two-point integration scheme is suf- 

ficiently accurate to treat quadratic variations in stress; 

consequently, little additional computing effort would he 

required to process higher order elements. 

For the increased accuracy of a two-point integra- 

tion scheme to he effective, a more complete description of 

the spatially varying element stresses is required.  IVe 

note two possibilities:  (1) Store element stress at each 

integration point.  This procedure requires a considerable 

amount of storage.  (2) Store the restoring forces at node 

points and update the restoring forces using stress rates 

evaluated at each integration point.  This procedure is 

currently being installed in the SWIS code. 

Alternate procedures were used for processing Lamb's 

problem, presented in Section IV.  We chose to treat a point 

load (applied at one discrete point in time and space) as 

a critical test for the numerical computing scheme in pre- 

ference to a distributed load for which the hour-glass mode 

is negligible.  As a first effort, we simply damped the 

bending deformations in each element.  This procedure 

succeeded in removing hour-glass patterns from the velocity 

field, however, hour-glass deformations appeared in the dis- 

placement field in the vicinity of the impulsively loaded 

surface.  Lamb's problem was then repeated by including the 

restoring terms that arise from bending deformations in the 

element.  As expected, no hour-glass patterns appear in 

these results. 
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APPENDIX B 

The following scheme for banded sparse matrix multi- 

plies was developed by Frazier (1972).  The sparse matrix 

involved is a matrix of influence coefficients  [A], which 

is a N x N matrix of 3 * 3 submatrices.  As noted in Sec- 

tion 3.2, the uncompressed matrix requires roughly 109 words 

of storage for a 3-D problem containing N = lO" nodes.  How- 

ever, since most nodes have just 26 immediate neighbors in 

a 3-D rectilinear gridwork, there will usually be 27 non-zero 

submatrices in a single row of 

W   =  in.m; n'm = l>2>   ••• N • 

The unnecessary zeroes are compressed out of  [A]  to yield 

a N x 27 matrix of 3 x 3 submatrices.  From the node number- 

ing sequence we can deduce the column numbers for the non- 
zero terms in each row, i.e.. 

m   =  mn,k ' n = 1'2' ••• N 

k = 1,2, ... = 27 
(B.l) 

where  n  and m are the row and column numbers of  [A], 

respectively, and N  is the total number of node points in 

the 3-D grid.  The array of contributing column numbers  m  ,, 
n,k' 

k = 1,2, ... = 27 are simply the node numbers adjacent to 

node n. 

Only the non-zero multiplications of the matrix multiply 

N 

B n = E iruA ' n = l>2>   '•• N (B.2) 

m=l 

are performed in the sparse matrix multiply, which can nnw 
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be expressed as 

= 27 

k=l n,k 
(B.3) 

for n = 1,2, ... N with 

K  i-  =  A 
*n,k  .n.mn)k 

The compressed matrix  [A]  should be arranged on the 

disk so that each term arrives in the processor containing 

the nodal displacement for which it is to be multiplied, 

Eq. (B.3).   Thus,  Jn k  should arrive in the PEM contain- 

ing  U        .        . . 
"■mn,k wlt:hout requiring additional shift operations. 

If  [A]  remains unchanged over many multiply operations, 

considerable effort can be devoted to arranging the non-zero 

terms of the matrix on mass storage in an optimal fashion 

for processing. 

In the case of the 3-D grid, the vectors  U 
m are 

nodal displacements of three components and require three 

numbers for their representation.  Let  U.   be the component 

of Um along the  xi  axis, i = 1,2,3.  Correspondingly, 

an,k  is a 3 x 3 matrix that requires nine numbers in its 

representation.  Let Äin .k  denote the  ij  clement of 

this matrix.  Then Eq. (B.'3) can be written 

= 27 

m S V* A.  .. U. Z—^   Z—^  m, jk  j 
k=l   1=1 

m 
n ,k 

(B.4) 

x,  axis. where  Bin  is the component of B  along the 

The nodal displacements are arranged on the disk 

to flow into the PEM's (denoted p) by PE rows (denoted 
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r) so that U  ->• p = 0, r 
~ 11 

U  ■>p = 0, r = 2;U 
-31 r -12 

0:  UM *P 
p = 1, r 0; 

r = 2; U p = 0, r = 3; etc. 
1 i 6 s 

In general we have 

Ujm - P(m-l)   =   (m-l)   -   64[^i]   , 

where 

r  =   3 

m-ll 

fm-l" 
j-i 

0,   r  =  1; 

.   U - p  =   63, 
~3 > 6 ^ 

(B.5) 

denotes fixed point division.  Thus,  p(ni)  in 
m the above equation is the remainder of T-J.     This storage con- 

figuration in the PE's is achieved by loading  U. , m = 1,2, 
°   jm      ' ' 

... N, on the disk in the sequential order üs, S = 1,2, ... 3N 

where 

m-1 
S - m + 128 ^ + 64(j-l) , (B.6) 

j = 1,2,3 . 

containing U 

The condition for A.  .,  to arrive in the processor 
in, j K 

jm n,k 
is expressed, using Eq. (B.5), as 

A. 
in.jk P ^Vk-1) (B.7) 

The PE row number r to be occupied by the various non- 

zero terms of the sparse matrix is somewhat more difficult to 

express because of the arbitrariness of the node numbering 

scheme.  The node numbers  n  should increase monotonically 

(but not necessarily sequentially) with increasing row number 

r in each PE so that the row number n of the sparse matrix 

can be processed in ascending order.  However, in general, no 

more than 27 of the 64 PE's will contain a U.     for which 
- ^n k Ain ik is non_zero for any particular matrix ro* number n. 

That is, only about one-third of the PE's will contain nodal 
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displacements that are adjacent to node number n  in the 

spatially zoned continuum.  Furthermore, a single PE may, in 

some instances, contain more than one neighbor nodal displace- 
ment but rarely more than nine. 

When performing the multiplications that contribute to 

matrix row number n, there is no need to make the noncontri- 

buting PE's inoperative.  Each noncontributing PE can simul- 

taneously perform multiplications for the next higher matrix 

row number for which the PE will have a contribution.  If the 

compressed matrix  [A]  is loaded into the PE's in any proper 

sequence, this work-ahead scheme can be carried out by per- 

forming multiplications in each PE in the sequence that the 

[A]  terms are loaded from mass storage.  This desired storage 

configuration in the various PE's is achieved by loading 

^in,jk; n = 1'2' -i- N' k = 1»2 ••• ::27. on the disk in the 
sequential order Äg, S = 1,2, ... = 10 x 27 * N where 

S = 64r + (p+1) + 64(3i+j-4) , (B.8) 

i  and  j  = 1,2,3 , 

in which r = 0, 1,2 ... = 10 x 27 x N/64 and p = o, 1,2 ...  63 

are the row and PE number, respectively.  The PE number is 

^"Vk"1^  The row number for each PE is expressed by summing 
all previous entries in the particular PE, i.e., the row num- 

ber for PEp is expressed in terms of n  and  k by 

n-1 = 27 

10 E   E 
n 1  6=1 

PP 
+ 10 

k-1 

E 
k' = l 

PP 
(B.9) 

where  6 - = 0 for p ^ p' 

where, just as in Eq. (B.7) 
and 

PP 
= 1 for p = p and 

P = P m n ,k  / (B.10) 
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Evtry 10th term in the array Äg starting with S = 1 is 

used to store two index numhers- ■ • « . to identify the 

nodal displacement that is to be multiplied and  n  to 

identify the matrix row to which the multiplication contri- 
butes, Eq. (B.3). 

Using the storage schemes defined above, i.e., start- 

ing from a point in the computations in which {U} and [A] 

appear in their prescribed sequences on the disk, the sparse 

matrix multiplication of Eq. (B.3) proceeds as follows: 

1-  (U)  is loaded into core by PI rows using a 

single access. 

2.  The serially arranged version of  [A], defined 

Eqs. (B.7) - (B.10), is accessed and its load- 

ing is initiated.  The terms flow into core by 

PF. rows starting with row 0.  After 30 rows are 

filled the loading is continued, uninterrupted, 

back at row 0 overwriting the previously loaded 

terms.  The computations and manipulations of 

the following steps are carreid out before the 

matrix terms are overwritten. 

Init ialize r 10; r  = 0; B  = 0 for r = 0, 

1,2, ... 99; n  =1. 
o 

Three sets of three multiplications and product 

summation are performed simultaneously in all 

processors. 

3 

r2 + i   =   Br2M   +     1]  Är 7.   , pi        o + j+3i-3     ri+j-l 

where 

■ 



—. 

1 
rn ■ (r +10) /l-6     ) 

0        0       \ 20,T      I 

m-1 r  = I '" 1 

(r , if n = B 
r  = I 2 r 

lr +4, if n 
2 

> B 

n ■ A   (first 32 bits) 

m = A   (second 32 bits) 

Also, store matrix row number of the product 

contribution 

B = n 
2 

Set n n  ♦ 1 
o 

Check for the completion of matrix rois number 

If no ■ MIN(n) return to step (4); otherwise, 

i.e., n^ <  MIN'(n) continue on to step (6). 

MIN(n) is the minimum b  among all 64 PE's. o 

Perform a row sum on B^ i   1,2,3 among those 

PE's for which b 

i ■ 1,2,3 where 
H .  With only PEp operative, 

shift the result to B 
r +i-l 

i 

P ■ p(n -1) 
o 

n -1 
o 

Operating only those PE's for which h 
Br = BrM 1'0r r = 0. 1, ... 99 . 

n  set 
o 

■   !     i ■ ■ lmd 



"■ - 

I 
7.  If the next '.en PE rows of the  [Al  matrix have 

been loaded, return to step (4); otherwise return 
to step [5]. 

The computations and manipulations of steps (4) - (7) 
are displayed in Table A.i. 
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TABLE A.l  COMPUTATIONS AND MANIPULATIONS OF 
STEPS (4) - (7) 

I • 1,2,3;    n • 1,2,3 

p      0,1,2,   ...   6.3 

S-l 

US 

A 
in, im 

1 n , .1 k 

I 

Pr 

I 

=   (S-l)    -   64 64" =   p(m-I) 

r   =   R   ,   R   M,   R   +1,    . . .   R   +3 
000 0 

N»631 
64    J 

R     ♦ 
0 

S-l 1 
64" =   R   +3 

0 

m-1 
6T- ♦   i-1 

1,2,3,   ...   s  3N 

^m-I ■  m+i:8 6T ♦   (14(11) 

(n,m)   =   1,2,3,   ...   N;   i   =   1,2,3;   j   =   1,2,3; 

n  ■   1,2,3,   ...   N; 

m  =   m     ,    data n , k 
r   =   R   ,   R   * 1 ,   R   + 2,   . . .   ^   R   >   10   ^   2 7   *   N 
ill i 64 

=   R  +   10 
i PP 

n=l =27 t z 
n-l      k'=i 

p =  0,1,2   ...   63 

p- - P^V^-D 

S =   1,2,3,   ...   • 

=   64r   +   (p*11   ♦   64(3i+j-4) 

♦   10 

k-1 

k -1 

6      . 
PP 
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