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PREI'ACE

This formal technical report entitled "3-D Stress
Wave Code for the ILLIAC IV,' is submitted by Systems,
Science and Sottware (S®) to the Advanced Research Projects
Agency (ARPA) and to the Defense Nuclear Agency (DNA) .

The report presents the results of a continued effort
to develop a versatile numerical scheme for simulating 3-D
stress waves on the ILLIAC IV computer system.

This work was supported by the Advanced Research
Projects Agency and was monitored by the Defense Nuclear
Agency under Contract No. DNA 00i-72-C-0154. Colonel David
C. Russell has been the ARPA Program Manager and Lt. Colonel
F. J. Leech has been the DNA Project Scientist.

Dr. Gerald A. Frazier has been the S® Project Manager.
Much help and advice has been obtained from the User Support
Group of the IAC. The authors are also grateful for many

valuable communications with other users of the ILLIAC IV
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I. INTRODUCTION

Over the past twenty months, we have formulated,
developed, and implemented two numerical computer codes for
processing stress wave calculations on the ILLIAC IV com-
puter. Our primary goal has been to develop a capability
for performing 3-D wave calculations with a spatial resolu-

tion that is comparable to conventional 2-D calculations.

Such a computing capability would most certainly
prove to be a valuable asset in numerous ground motion
studies. The Lagrangian stress wave codec that is being de-
veloped on the ILLIAC, referred to as SWIS (Stress Waves In
Solids), is expected to have important applications for

simulating seismic phenomena such as:

e Ixplosions in prestressed and geologically
complex formations.

e Spontaneous earthquake ruptures and near-field
ground motions,

e Stress waves passing through laterally varying

carth models,

e Stress waves impinging on buried and surface

structures.

This 3-D simulation capability is expected to play an impor-
tant role in the Advanced Rescarch Projects Agency's (ARPA)

program to discriminate earthquakes from explosions and the

Defense Nuclear Agency's (DNA) investigations on the vul-

nerability c¢f buried structures to incoming stress waves.

In order to simulate the seismic phenomena itemized
above in threce spatial dimensions, the capability must exist
for handling very large grids. It is our opinion that, with
the advent of super computers such as the ILLIAC IV and
highly sophisticated numerical computing algorithms, detailed
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3-D wave calculations are now feasible. Based on predicted
computing speeds for the ILLIAC, we have estimated that it

is theoretically feasible to process wave calculations at

the rate of 0.10 m-sec of computer time per numerical time
step per 3-D element. This amounts to 10 secs of computer
time per numerical time step for a 3-D grid containing 100-
thousand elements {e.g., a 50 by 50 by 40 grid). This com-
puting rate is nearly comparable to that achieved in 2-D
wave calculations for an equivalent 50 by 50 grid using a
conventional serial computer, e.g., a UNIVAC 1108.

Numerically processing wave calculations in 3-D grids
with more than 100-thousand elements involves an enormous
number of calculations. More than one billion floating point
multiply and add operations can arise from a single computer
simulation. Clearly, considerations of computing efficiency
become extremely important in designing and implementing such
a computing scheme. Also, the usefulness of such a code, once
it is finalized, will depend on its flexibility for handling
a range of geometric configurations, boundary conditions,
material types, etc,.

In an effort to arrive at an optimum computing scheme,
we have carefully reviewed existing numerical computing tech-
niques, both finite element and finite difference, in order
to combine strong points from each method into a single algo-
rithm in a form that is suited for parallel processing on the
ILLIAC. In so doing we have conceived a hybrid scheme that
employs the finite element method for spatial discretization
(employing spatial interpolation functions and a virtual
work expression) and follows a computing sequence that
resembles Lagrangian finite difference schemes; the consti-
tutive properties of the material appear in an isolated
module of the code so that the nonlinear flow rule can easily
be altered. In addition, the SWIS code, which employs the
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hybrid algorithm, contains some advanced features that will

enhance its usefulness in particular applications:

¢ The code operates, with no loss of efficiency,
in one-, two-, or three-spatial dimensions.

¢ The ccde contains a flexible grid generator
which can be superseded in local portions of

the grid.

e The calculations are performed in orthogonal

curvilinear coordinates.

e The code has a provision for effectively sup-

pressing wave reflections at grid boundaries.

A detailed description of the SWIS computing scheme is pre-

sented in Section II of this report.

During the early stages of code development, the
ILLIAC IV was not operational. The first successful program
execution on the array took place in March, 1973. Because
no I/0 facilities were available at this time, computed re-
sults had to be extracted from core dumps. A linearized
version of SWIS (described in Section 3.2 of this report)
first became operational on the array in July, 1973, A
number of plane-wave calculations were performed at this
time to test various features of the linear SWIS code, e.g.,
artificial damping and transmitting boundary conditions.
One calculation was performed which involved 10,000 time
steps in an effort to test the stability of the current
ILLIAC configuration and to obtain estimatec of computing

rates.

Following the initial success with the linearized

version of SWIS, ILLIAC program development for the more
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involved nonlinear SWIS code was begun in September. As
the result of improvements in the ILLIAC computing system
and our earlier experiences in implementation on the sys-
tem, this code development work progressed rapidly. The
nonlinear SWIS became operational for 1-D geometries in
late November, and, during the month of December, both 2-D
and 3-D wave calculations were performed on the ILLIAC.
Based on the central system clock times, we estimate that
the general SWIS code is processing wave calculations at
the rate of 1.2 m-sec of computer time per numerical time
step per 3-D element. The entire code is programmed in
GLYPNIR, and, although nearly all of the calculations are
carried out in parallel, no effort has been made to opti-
mize the resulting machine code. Also, we note that the
ILLIAC should ultimately process calculations much faster
than in its present configuration; perhaps a factor of
three or four will be realized from software (overlapping
machine instructions) and hardware improvements that are
being considered. Thus, we are anticipating somewhat faster
computing rates in the future. Our goal has been set at
0.10 m-sec of ILLIAC time per numerical time step per 3-D

element.
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IT. NUMERICAL ALGORITHM

2.1 INTRODUCTION

The numerical algorithm that has been designed for
the SWIS code contains features of both finite element and
finite difference methods. In many respects, it is like a
finite element method in that the continuum is discretized
using spatial interpolation functions and a virtual work
principle, but the computing sequence is modeled after
Lagrangian finite difference shock codes. Figure 2.1 illus-
trates how three distinct steps in a Lagrangian finite
difference code, one of which involves the constitutive
properties, are combined into one step in the conventional
finite element method through the use of a stiffness matrix.
The SWIS code does not develop the finite element stiffness
matrix but rather directly computes strain rate, stress, and

restoring forces.

2.2 PROBLEM INITIALIZATION

The following quantities are needed to pose the stress
wave calculation:

1. Coordinate System Designation

a. Number of spatial dimensions to appear in
the numerical grid.

b. Orthogonal curvilinear coordinate system to
be employed in the calculations. Transforma-
tion metrics are provided internally for

operating in Cartesian, spherical, and cylind-

rical coordinate systems.
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Grid Configuration

lost grids can be produced using a flexible code-
contained grid generator; liowever, a provision is
made for superseding the grid generator in local
regions. The grid configuration is described by:

a. Spatial location of the node points, and

b. Node map to associate nodes with elements.

Boundary Conditions and Applied Forces

No distinction is made between internal nodes
and boundary nodes in that each directional
component of each node point is assigned one

of the following three constraint conditions:

a. Unconstrained with applied body force or
surface traction to form an array of
nodal forces.

b. Const ained with nodal displacement com-
ponents constrained to follow a specified

time history (moving or stationary).

c. Transparent with a boundary disguised to
reflect almost no incident wave energy.

Material Properties

Each element is associated with a material
described by

a. Density.

b. Constitutive properties, i.e., properties
for developing stress rate as a function
of strain rate and stress.

c. Dimensionless coefficient for regulating
the damping of spurious high frequency
numerical oscillations.

11
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Time Stepping Data

a. Starting time and final time.
b. Time step At.

Starting Conditions

a. Velocity and displacement with respect
to some reference frame.

b. Stress at the centroid of each element.

Presentation of Results

a. Element and node numbers for which re-
sults are to be printed at designated
time intervals.

b. Printer plots for displaying results at

designated time intervals.

c. Time histories of individual node points.

d. Plot files producing graphical displays

of the computed results.

Default conditions and data generation schemes are
used where possible to minimize the quantity of data that
1s needed to describe a problenm.

12




2.3 SPATIAL DISCRETIZATION

A spatial region is discretized by subdividing its
volume V into a total of E elements, illustrated in
Fig. 2.2. The displacement field, ui(g,t), throughout V,
is interpolated from spatially sampled displacements ui(gn’t)
where Sn’ n=1, 2, ... N, are isolated node points which
are positioned at juncture points along element boundaries;

N is the total number of node points in the numerical grid.
The spatial interpolation is achieved using piecewise smooth
interpolation functions pn(§) so that

N

B (6T = Db () up (X, t) (2.1) |

n=1 3

|

in which :
pn(l‘m) - 6nm

Spatial derivatives of the displacement field are then ex-
pressed in terms of nodal displacement
differentiation of Eq. (2.1).

by the appropriate

:

du. N ap 3

L (x t)=§ —~1 (x) X ,t .

7 7%, X u; (X,t) (2.2) |
n=1

2.3.1 Orthogonal Curvilinear Coordinates

Curvilinear coordinates are often better suited for
particular applications than Cartesian; notably, cylindrical
and spherical coordinates are well suited for explosion cal-
Culations. The capability to operate in spherical (or
spheroidal) coordinates also has value for applications in .
global seismology. In order to accomodate applications | *




x Cartesian Coordinates

y Orthogonal Curvilinear
(Sphericual) Coordinates

i Natural Element Co-
ordinates

23
4 v 2
2
: ? 1z, = (1,1f1)
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"1;_'12
6 ,k_
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N 6
5
Typical Element with 7 —

5
Local Node Numbers

Cubic Element in Natural
Element Coordinates

Fig. 2.2--Three-dimensional grid illustrating coordinate
systems.
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which can benefit from the use of a particular coordinate
system, the SWIS code has been developed to operate in general
orthogonal curvilinear coordinates designated y (we reserve
the notation x for Cartesian systems). A brief development

-~

of how this is accomplished is presented below.

Consider the point P with Cartesian coordinates X
and curvilinear coordinates y. We define a local Cartesian
system, 5; with its origin centered at P. Each component
of x{ is measured in the direction tangent to the respective

curvilinear component y; at point P, illustrated in Fig. 2.3

P T B -l T, TR W T v T NN g L T N L T N T NP R e e

The metric coefficients for the orthogonal curvilinear system
y are given by

X <
i

hy = Y (1) (2.3)

where the brackets enclosing the subscript indicate that
the summation convention does not apply to that particular
subscript. Table I contains metric coefficients and their
curvilinear spatial derivatives for some of the more common
orthogonal curvilinear coordinate systems.

When a scalar field, e.g., density = p(y,t), is
differentiated, the curvature in the vy system adds no
complications, and we simply have

3p  _ ayk ap 1 3p

ax5 axj ayk h(j) ayj

: (2.4)

However, when a vector field, e.g., displacement = ui(z,t),

is differentiated, curvature in the Y system gives rise to
additional terms which are developed in elementary texts on ]
tensor calculus, see Spain (1960) or Washizu (1968). For ;

the special case of orthogonal curvilinear systems we write

15 4




Fig. 2.3--Local Car*esian coordinate system centered
at the point P.
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. §. oh, . 8. . oh,.
Dijx = }flk e R Jlﬁ sl + moh . (2.6)
H ) 75 hHhwy Yy (1)) k
Spatial derivatives of the discretized displacement
field
N
u; (y,t) = Z Pp(y)ui (Y ,t) (2.7)
n=1
are conveniently expressed using the operator Dijk:
Bui iy
—— (18 = D Dy pa () (Y, (2.8)
J n=1
When y denotes a Cartesian system (i.e., y = x and
= 15 [
hi = 1), we note that Dijk reduces to Gik P and
Eq. (2.8) reduces to our earlier expression, Eq? N, 2
Strain, in the curvilinear, discretized space, is
also conveniently expressed using the spatial operation
1 Bui 1 au .
Eij(X’t) = s (Z’t) ks '2' _"L (}’,t)
9X ox: ~
J J
= 7 (Dyip * Doy (v, t)
2 YUijk jik’ "k'L?
N
= 1 -
=7 Z (Dijx * Dyip)Ppy (Iup (Y, 1) (2.9)
n=1
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Because the grid deforms with the medium in a Layrangian ‘
formulation, we retain only the first order terms. b

2.3.2 Inner-Llement Interpolation

S S A

In the SWIS coce, as in conventional finite element .
computer codes, spatia’ interpolation is defined element by §
element. Localized interpolation functions, which depend
only on the geometry of a single element, characterize the
spatial variations within the element so that

Ph(Y) = pp(y)

for y in V® or on $® where V¢ and S® denote the
volume and the boundary surface of element e, respectively.

The result is that ui(z,t) in Eq. (2.7) depends only on the
displacement of the node points bordering element e when

Y 1is interior to or on the boundary of element e. A brief
development of how interpolation functions are expressed

for skewed element geometries is presented below.

Let us consider a local element transformation that
serves to map skewed elements into a standard geometry,
namely, a two-unit line segment in 1-D, a two-unit square in
2-D, and a two-unit cube in 3-D. We de signate this natural
. element coordinate system z, illustra.ed for 3-D, in Fig., 2.2.
The interpolation functions for a low order 3-D element are then
expressed in the natural system as
pm(f) - é (1 + 21‘7‘1m)(1 ¥ zzzZm)(1 ¥ zngm)
in which m = 1, 2, ... 8 denotes the local node number for
the element, illustrated in Fig. 2.2, and Zim = + 1 denotes

the iE—}l coordinate value for node m. The more general ex-

pression that applies in D-dimensional space is written
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D
1 il
Pp(2) = g z:g (1 + 2325, - (2.10)

Spatial derivatives of the element interpolation functions
are obtained directly from Eq. (2.10) to yield

D

; op. (z) Z.
i £
; T Z%m ﬂ (1 + z;Z;3p) - CAED)
é ] i=1
] i#j

Interpolation functions for higher order elements are easily

v developed in the natural coordinate geometry, see for example,

Frazier, et al., 1973.

We note that the interpolation functions expressed
in natural element coordinates =z can be used directly for
interpolating field variables within an element, e.g.,

2D

ug(z,t) = D (2 (B, 1) - (2.12)

m=1

= In addition, the same interpolation functions serve to
express the mapping from natural element coordinates z to

~

the global curvilinear coordinates Y, 1y JEFtR,

5D
yi(2) = Z p ()Y, (2111839
m=1
and
5D
9y (2) ap,_(2)
a_z—j— =Z 32 . Tt (2.14)
m=1 J

20
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where Yim denotes the iE-}l coordinate value of local node
number m. Spatial derivatives of the interpolation
functions with respect to global coordinates, Eqs. (2.2) and
(2.8) then become

1]
Pn _ (if_i_) P
ay. Qaz. z.
i %5 9z

so that the derivative of the interpolated displacement field,

Eq. (2.12), with respect to y 1is computed using the expression

du, ay. \ "1 Ziy ap
W%—(g,t) = (a_zl) Z 5% (2) u;(z ,t) . (2.15)
] X m=1
21
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2.4 NOTATIONAL CONVENTION

The notation that has been adopted for the various

spatial coordinate systems is illustrated in Figs. 2.2 and 2.3:

E
:
sv
]
E
E
1

X — global Certesian coordinates.
Yy — global orthogonal curvilinear coordinates. f
5’ — local Cartesian coordinates aligned with the
curvilinear system at the point x~ = 0,
z — natural element coordinates.
Capital symbols én’ Xn’ and gn are used to denote the

spatial coordinate of a node point.

As illustrated by Eqs. (2.8) and (2.9), spatial deriva-
tives in the various coordinate systems merely involve mani-
pulations on the element interpolation functions. Subroutines
handle these transformations in such a way as to minimize
complications in the primary logic of the SWIS code. At the
same time care has been taken to assure that excess calcula-

tions do not occur when employing a simple Cartesian system,

In the subsequent presentation, matrix notation will
be used in preference to subscript notation for denoting
arrays that arise from spatial discretization. This enables
us to keep directional indices (subscript notation) separate
from nodal indices (matrix notation). For convenience, all
matrices are of order N, the total number of node points in
the grid; and the symbols < >, { }, [ 1, and ["] are used
to denote a row, column, square, and diagonal matrix, re-
spectively. Using this notation, Eq. (2.7) becomes

u; (7,t) = <p(y)> (U (8)) (2.16)

and the local Cartesian derivative of the spatially discre-
tized displacement field is expressed




A e S

ou.
'gx—;r (st = <Di5p(y)> (U (1)} . (2.17)

Note that we have used upper case to denote nodal displacement

(a nodal subscript replacing the spatial argument), i.e.,
Uin(t) = ui(Xn,t) (2.18)
or

{Ui(t)} = ui(zn,t) g B 15 2n amw N

Finally, with regard to notation, we point out that
the global arrays <p(z)> and <Dijkp(x)> are never actually
developed in the computing algorithm, but rather spatial
interpolations are dealt with element by element. An array

that is localized to a single element is denoted by a super-
scripted e, thus

E
<p(y)> = Z <pe()~')>
e=1
and
E
<Dijkp(x)> = :z: <Dijkpe(x)> .
e=1

E being the total number of elements in the global assemblage,
Using this notation, pi(y) is zero unless node n is associa-

ted with element e and Yy lies within or on the boundary
of element e,

23




2.5 (CONSERVATION OF MOMENTUM

Conservation of momentum in a Lagrangian framework

can be expressed by the virtual work expression

f (piiidui * oy :—;li - ?iaui) dv -/?.lauids =0 (2.19)
v ] S,
in which us is the particle displacement, dui is a virtual
displacement, ﬁi is parEicle acceleration, 0. is stress,
p is mass density, and fi and ?i are specified body force
and surface traction, respectively. S0 is that portion of
surface (internal or external) bounding the volume V to
which tractions are applied. For general orthogonal curvi-
linear coordinates, the term adui/axf is taken to be
Di.kduk , the operator Dijk having been defined above in
Eq. (2.6). For a Cartesian system, the term simply becomes
adui/axj.

In the spatially discrete system conservation of
momentum is expressed by substituting the interpolated dis- l
placement field from Eq. (2.16) into the virtual work expres-

sion above to obtain
s T .
(6U, 3 ([MI{UL ) * R} + {Q) - (F;}) = 0 (2.20)

where
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E
= e T
{Ri} = Z / cjk<Djkip> dv
e
e=l V
E
= e T
Q) = Z 315 Py > 4
e=l V

in which E 1is the total number of elements in the grid and
B is the number of element surfaces with applied tractions.
An artificial stress qij = qij(é) has been introduced for
the purpose of damping spurious high frequency numerical

oscillations.

The zero matrix is the only vector orthogonal to all
possible (unconstrained) virtual displacements {GUi}, there-
fore Eq. (2.19) yields a series of simultaneous equations ex-
pressing conservation of momentum node by node:

MU (6)} + (R (8)) + {Q;(8)) = (F, ()} . (2.21)

In contrast to conventional finite difference methods, free
surfaces and loaded surfaces are "automatically" provided for
in the above equations of motion through the forcing term
{Fi(t)}. Node points with a specified displacement time
history and node points along a transmitting boundary are not
automatically handled by the virtual work expression, and
therefore, these constrained node points require special
considerations. For convenience, we have simply modified the
definition of the forcing term at the constrained node points so
that Eq. (2.21) applies, without exception, to all points in
the grid. The modified prescription for Fin(t) suited for

the constraint condition at node n is given below in Egs.
(2.30) and (2.31).
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In contrast to the conventional finite element method,

we note that the constitutive properties have not been ap-

Plied in the development of Eq. (2.21). The load-deformation

properties of the material are introduced below at an inter-
mediate stage in the time stepping scheme.

2.6 TIME STEPPING SCHEME

In selecting a time stepping scheme, we have con-
sidered the relative merits of explicit and implicit methods.
In order to achieve satisfactory accuracy in the propagation
of sharp wave fronts (wave length equal to 10 to 15 grid
dimensions), a small time step is needed, roughly equal to
that required for stability of an explicit method. When a
numerical calculation involves such small time steps, ex-
plicit methods are strongly favored over implicit methods,
Explicit methods generally require many times fewer opera-
tions per time step. The number of multiply and add opera-
tions for the implicit schemes used in finite element codes,
such as SAP, increases as N5/3 for cube-like blocks of 3-D
meida; whereas for explicit methods the number of operations
increases linearly with N, N being the total number of
node points in the numerical grid. Furthermore, algorithms
based on explicit methods are simpler to program and general-
ly more flexible for introducing nonlinear material response
behaviors. The simplicity of our explicit wave calculation
scheme has made it possible to develop a very efficient

parallel algorithm for processing linear seismic waves on
the ILLIAC IV computer,
Stress, ogj(z , t-4t), e = 1,2, ... E; velocity,

|

lﬁi(t - %3):; displacement, {Ui(t)}; and node positions,
{Yi(t)}, are advanced in time by At wusing a four stage
computing sequence.

i e | i L oA




Stage 1: Strain Rate

Compute strain vate for element e

au. 3

e ae) o1 2% ot} 1Y _ At
En(X't' 7’)’ zaxj(X’t 2 )+ zaxi(X’t z)
nl : eryy> 10 (¢ - AE)!
7 <DygP () *+ Dyyp ()2 Oy (e - 3 )i
(2.22)
where €. y,t - AE) is the strain rate evaluated at a dis-

ij\~ 2
crete point within element e (strategic points in v® for

evaluating the {R;} integral of Eq. (2.20) which may, under
special conditions, be confined to the centroid point ?e).
That is, the terms <Dijkpe(z)> are evaluated at the inte-

gration points for element e.

Stage 2: Stress Rate and Stress

Compute stress rate for element e

Bl e T ——

ag.(x,t . %E) = f(ée, ge) (2.23)

~ ~

which, for linear isotropic material, becomes

se NEY _ e e _ At e ce . B8
Oij(X’t - 7—) = 2y Eij(Z’t > ) + A Gij tkk(z’t > )

TR AR An T TR e L

-

(2.24) :

1

where u°® and A€ are Lamé's elastic constants for the i
material in element e. The stress at the advanced time

is then computed by direct integration 4

0. (y,t) = o5.(y, t-at) + At oS.ly,t - éf—) (2.25) !

ijt=? ij~4? ij\%? 2 d j

1

Compute artificial stress qij which serves to damp ;

spurious high frequency numerical oscillations
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e ) nF e+ - _é_l_:_ ,
qij(Z’t) = At B Oij<Z’t > ) (2.26) |

where 8% = 0.15 is a dimensionless damping coefficient., For
the special case of linear waves (linear material and small

displacements) the damping provided by the above expression
for qij,
damping of each natural mode of vibration (i.e., each eigen-

with £ uniform between elements, results in the

function of the linear system) as the square of the corres-

ponding natural frequency (Frazier, et al., 1973). Also, we

note that no damping occurs in regions of stationary stress.
The isotropic component, qik, is equivalent to linear damp-
ing used in Lagrangian finite difference shock codes, see

for example, Richtmyer and Morton, 1967.

Stage 3: Restoring Forces (equivalent to stress gradients)

Compute the nodal restoring forces that result from

stresses in element e

(R(t) + Qf(1)} = f

T
<Djk'p(X)> (O]?]C(X’t)
Ve

1

+ q?k(z,t)> dv . (2.27)

In many applications, a single integration point at the centroid
of the element is sufficient for evaluating the integral., How-
ever, for cases in which the strain energy that is neglected by
sampling only at the centroid becomes significant, stress is
computed (Stages 1 and 2) at two points for each spatial dimen-
sion of the element, and in this way the spatial variations
within an element are treated in the integration above. Further
discussion on the treatment of inner element variations in
stress is presented in Appendix A. As an incidental note,
Frazier, et al., 1973, have shown that for rectilinear 3-D
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grids, a one-point integration procedure is equivalent to the
cell-centered-stress finite difference method that is commonly
used in Lagrangian shock codes.

The integration above is performed for each element to

obtain the restoring force of the medium on all the nodes in
the grid

E
(Ri(t) + Q ()} = D (RE(1) + Q%(0)1 . (2.28)
e~

Actually, the global arrays {Ri(t)} and {Qi(t)} are not
stored, but rather the effects of the element restoring forces

are directly accumulated in the nodal acceleration calculations
developed in Stage 4,

Stage 4: Motion of the Node Points

Nodal accelerations are computed directly from Eq. (2.21)

W, (t)} = [ﬁ]"’{pi(t)} - [ﬁ]“{Ri(t) + Q. (1) (2.29)

where the so-called lumped mass matrix [&] is obtained by
replacing each diagonal term in the distributed mass matrix
(M] by the sum of the terms in the row in which it appears.,
This operation yields a diagonal mass matrix thereby making
the inversion of the mass matrix in Eq. (2.29) trivial.

Equation (2.29) directly applies to all unconstrained
internal and boundary nodes, including internal nodes with
applied body forces and boundary nodes with applied tractions
(zero or otherwise)., A modified prescription for Fin(t)
is used at constrained node points so that Eq. (2.29) is uni-
versally applicable to all node points in the grid.
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The SWIS code accommodates two types of constraint
conditions: The first type involves a constrained component
of displacement in which displacement is made to follow a
prescribed time history ﬁi(zn,t). This condition is
satisfied with

~

M
- nn —
Fin(®) = Rip(8) + @ (6) + 2T, (1,0 + at)
M M
nn nn - At
) At 2 Uin(t) At Uin(t "B ) (2 50)

where n denotes the node number.

The second type of node constraint involves a trans-
parent boundary condition in which a boundary point is made

to reflect almost no energy. In this case the nodal forcing
term is set to

~

M
_ 1 1 nn ¢ At
Fin() = 7 Rin(8) + 7 Q4 (0) - 3% Uin(t ) 7“) (2.31)

Nodal velocities at the advanced time t + At/2 are

computed by direct (numerical) integration of the nodal ac-
celerations

[

‘Oi(t +

1

and similarly, the nodal displacements are advanced in time

l\)l

t)f - :Oi(t - %3); + At%ﬁi(t)} (2.32)

{Ui(t + At) )} = {Ui(t)} + At-}fli (t + %i)f (2.33)
and
(Y (t + 8t)) = (Y, (£)] + At[ljl(i)]-l{fli(t + %E)} (2.34)
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where [H(i)] is a diagonal listing oi the '15-}l metric co-
efficient for each node in the grid. CLquations (2.32), (2.33),
and (2.34) are employed for all node points in the grid; no
exception is made at this point for the calculations at con-
strained nodes.

The sequence of calculations outlined in the four
stages above yields the necessary variables for continuing
into the subsequent time step, i.e., set t = t + At and re-
turn to Stage 1. Approximately 500 floating point multiply
and add operations are required per 3-D element to advance
the solution one time step using Cartesian coordinates and
a one-point integration scheme in Stage 3. To put this
number is perspective we note that roughly one-half of this
effort would be required per node to multiply the non-zero
terms in a 3-D finite element stiffness matrix by the nodal
displacements (about 250 floating point multiply and add
operations). Thus, the algorithm developed above should be
exceedingly fast for both linear and nonlinear stress wave
calculations. This conjecture is supported by ILLIAC test

calculations, some of which are presented in Section IV,
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2.7 CONSERVATION OF ENERGY

Kinetic energy, strain energy, dissipated energy
(artificial viscosity), and load potential are computed at

each time step based on the expressions:

K(t) = kinetic energy at time t
T
1 At
i _2.: = T); o bu, v - 7—); (2.35)
S(t) = strain energy (internal energy) at time t
= S(t-At) + At S(t : %‘i)
T
- e Aty (o . A\l .
- S(t-At) + 7—-lui(t -2-—)‘ lRi(t) * Ry(e-at) (2.36)
D(t) = dissipated energy at time t resulting from
artificial viscosity
= D(t-At) + At 1')(1: g 52\1)
T
_ S O AT |
= D(t-At) + > (Ui(t 7—)’ IQl(t) * Q4 (t- At)‘
2 D(t-at) + At ‘1’1( - 7-))T ‘Q (t)' (2.37)
[ I e g
L(t) = load potential (energy entering cr leaving

the system through the boundaries or through
the action of body forces) at time t result-
ing from body forces and surface tractions
(Eq. (2.20)), specified displacement time
history (Eq. (2.30)), and transmitting bound-

aries (Eq. (2.31))
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L(t-At) + At i(t - é3)

T
L(t-at) + %E:ﬁ,(t - 7_)} ;F (t) + F. (t At)) (2.38)

We note that an approximate expression is employed for estimat-

ing dissipated energy D(t) in Eq. (2.37), because the array of
dissipation forces {Qi(t-At)} - BAt:Ri(t - E%E): y Wwhich is

needed for a consistent calculation, is not ret
at the advanced time t,.

ained in core

When SWIS is operated without artificial damping,
energy is conserved in the calculations, i.e.,

L(t) - K(t) - S(t) = 0 + computer round-off (2.39)

with D(t) = 0. Conservation of energy has been observed for
linear wave calculations. However, because the method has
been formulated from an energy principle, Eq. (2.39) will also
be satisfied for waves in nonlinear materials with D(t) = 0.

Energy conservation can be demonstrated directly from
the discrete equations of motion. The two discrete equa-
tions — Eq. (2.21), centered at time t, and Eq. (2.21),

centered at time t - At — are averaged to yield an equation
of motion at t - At/2

o [M];fli(t + é"—‘-‘) - Gi(t : iéi)’ + %;Ri

(t) + Ri(t-At)

]
. %:Q (t) + Q, (t- At); :F () + F, (t- At)f |
in which Eq. (2.32) has been enployed to replace {U (t)} and
{ﬁi(t-At)} by

L:ai(t + é—E) - U, (t - %3)

l
5

gt T e e
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1 4 AR _sat)l
E?j”i(t 2 ) Ui(t ‘7‘%
respectively. This expression is then pre-multiplied by nodal

velocities {ﬁi(t - At/Z)}T to obtain variations in energy oOver

the time step At
14
7lui(t

)}TERi(t) . Ri(t—At)t

'T

all

i é£>'T%Fi(t) . pi(t-At)%

;Qi(t) . Qi(t-At)t

2

5

Using the notation introduced in Egqs. (2.35) through (2.38) we

have

K(t) - K(t-at) + S(t) - S(t-at) + D(t) - D(t-4t) = L(t) - L(t-At)
(2.40)

Consequently, all of the energy in the system has been accounted
for; changes in load potential are reflected by changes in
kinetic energy, strain energy (interral energy), and dissipated
energy. Beginning at some initial time t0 with K(0) + S(0)
+ D(0) = L(0), Eq. (2.40) i: applied repetitively from t0 to

t to yield

K(t) + S(t) + D(t) = L(t)
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with no dependence on the constitutive properties. We note
that, for the case of a yielding material, not all of the
strain energy is recoverable. Thus we see that S(t) con-

tains both the recoverable strain energy and the internal
plastic work.

2.8 SPECIAL CASES: CARTESIAN COORDINATES, RECTILINEAR GRIDS,
AND TTNEAR MATERTALS

The preceding formulation for time stepping nonlinear
stress waves through 1-D, 2-D, and 3-D curvilinear geometries
may involve procedures not commonly found either in finite
element literature or finite difference literature. In an
effort to make the presentation more easily understood, some
special cases will be considered.

2.8.1 Cartesian Coordinates

The presentation of the computing scheme is complicated
somewhat by the inclusion of general orthogonal curvilinear
geometries, Therefore, we will summarize the time stepping
procedure using Cartesian coordinates. This not only removes
much of the abstractness from spatial derivatives in the
discrete system but also enables us to focus on the key opera-
tions that are involved in completing a time step.

As described above in Section 2.6, stresses, velocities,
displacements, and node positions are advanced in time using
a four stage computing sequence. Denoting parameter initiali-
zation as stage 0, the following operations are performed:

0. Initialize Values

1 . Vo e . )l e )
lXi(t) ] lUi(t)" lUi(t )‘, Oij ()_S’ t A5




1L Compute Strain Rate

e BT 3p° (x) . At
Eij(’f' 5 '2") = < o%; b Ui(t ) T)
o (X) | |
1 ~ . At
: .2.<_a_xl_.> i (t : T)f (2.42)
g Compute Stress Rate and Stress
'€ At _ X e\ ~ ere _ At ]
hife e ) - ol )7 oyl s - 4
e ce At
+ A 6ij€kk(§’ t - 7—)] (2.43)
0. (x,t) = 0%, (x, t- at) + At &%.(x, t - AL (2.44)
. i) Dy TR i3y ~’ 2 :
,_” 3 A
afy(x,t) = 8%t o‘i*j()f, t - 73) (2.45)
30 Compute Restoring Forces
| X T 3
‘Rf(t) + Qf(t)$ ; jf (- ) (oi-(§.t3 a
I Ve J J 1
—~ ‘ q‘i*j()f,t)) av (2.46)

Steps 1 and 2 are repeated for each integration point x

-~

located in element e, Steps 1, 2, and 3 are repeated ior
each element in the grid to yield

E

IHORENO D DR HOREHOY

e=1
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4. Compute Motion

%ﬁi(t)% = [ﬁ]'lﬁFi(t) - Ry (1) - Qi(t)% (2.47)
with

B

E
Fn(t)= Z/Tipidv+ Z/;)?ipgds

e=l V b=1 SU

e e e e e o mm  )

for the case in which X represent an unconstrained in-

ternal node or a boundary node with applied tractions (zero

or otherwise),

~

M

Py (8) = Ryp(6) + Qpu(e) + =55 (R, £+ 00

'
>
t

M
s At
S DBy (r) - 2R 0 (t-._) _
At2 At in 2 i
4
for the case in which Xn is driven by the specified time :
history ﬁi(gn, t), or ;

M

m 1 _ _nn _ At
B (5 = 3 Rin(t) i g Qin(t) 20t Uln(t 7] )

for the case in which X is positioned along a transmitting

boundary. .
‘1 (e + ‘é‘t‘)'g - t'i(t : %‘E)'g ; At{ﬁi(tﬂ (2.48) f
R I
{ (t o+ At)} - {xi(t)ls . At{ﬁi(t + g—t)§ . (2.50) |

Time is advanced by At, e is set to one, and program control i

is returned to stage 1.
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2.8.2 Rectilinear Grids

In general, the grid geometry will not be rectilinear.
As discussed in Section 2.2.2 and illustrated in Fig. 2.2,
elements that appear skewed in the global coordinate system
Y are mapped into local element coordinates Zz where each
element appears as a cube (or a square in 2-D). Simple poly-
nomial functions, Eq. (2.10), are then employed for inter-
polating spatial quantities over the interior of the element.
Spatial derivatives with respect to the local element coor-
dinate system are expressed in terms of derivatives of the
interpolation functions, Eq. (2.11). Because the polynomial
interpolation functions also express the transformation from
local element coordinates to global problem coordinates,
spatial derivatives of the interpolated field variables are
evaluated at a specified point (-1 < z; < +1) in an element

through simple manipulations on the interpolation-function
derivatives, Eq. (2.15).

The interpolation functions and their derivatives,
expressed in local element coordinates, are the same for
all elements in the grid. A subroutine has been constructed
for producing the values of these spatial functions at any
specified point -1 £ z; £ +*1. To proceed from these values
and compute the value of a discretized field variable or
its derivative at the specified point in the element merely
involves a few matrix op .rations; consequently, the spatial
differencing that is involved in the time stepping scheme,
Eqs. (2.22) and (2.27), has not been expressed explicitly in
the development. We do not concern ourselves with these de-
tails in actual code development. However, we will develop
the particular spatial schemes that arise in 3-D rectilinear
grids to indicate nature of the spatial discretization,
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For the special case of a Cartesian global coordinate

system, spatial interpolation in a skewed-brick 3-D element
1s expressed by

ui(z,t)

8
Y pece U,
m=1

- 5 (1+2 ) (1+z ) (1+2 U,
‘% (1-z ) (1+z ) (1+2 )US,
oz (1+z ) (1-2 ) (1+z )US,

fg (1-z ) (1-2 ) (1-2 )US,

where the second subscript on the nodal displacements denotes

a local node number as designated in Fig. 2.2. The coordinate

mapping from local element coordinates to global coordinates,

i.e., x; = xi(g), is obtained by replacing ui(z,t) and

U?m(t) in the above expression by xi(z) and X?m, respectively.

When we restrict the 3-D element to a rectilinear brick
geometry in which X, is parallel to z

i’ the coordinate
mapping reduces to

i

3

1

1 | 3
= 7. = ¢ e

i (2.51)

e o i sl e
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where

Ax® = (xe , X8 ,x® , or x© ) - (xe ,X¢ ,x® , or x© )
23 24 27 28

Ax® = (xe , X ,x® , or x© ) - (x° , X% ,x% , or x© )

31 32 33 3y 35 36 37 38
That is, Y? is the centroidal point and Ax(l) is the
element dimension in the direction Xy The transformation
Jacobian, given by Eq. (2.14), then becomes

iy _ W @
EP. A%y 943 (2.52)
and
axi -1 2
(377) = —— 8 (2.53)
) AX (1)

for the case of a simple brick element geometry.

We combine the spatial derivatives of the element
interpolation functions with the transformation Jacobian
above as indicated in Eq. (2.15) to obtain the spatial
derivatives of the discretized displacement field

8
u. IX. - p
— = _J —_}
axj azk :E: azk Z) U (Z ')

mn=
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In particular we obtain

au.

1 e e
40x° [(1+Zz)(1*23)(”11‘”iz)
1

(1-2 ) (1+z ) (U8,-u8,)
(1+z )(1-z ) (Uf-Ug)
(1-22)(1-23)(U§7-U§8)]

1
44x°
2

[(1+zl)(1+z3)(U§1-U§3)

(1-zl)(1+z3)(U§2-U§4)

(1+z )(1-z ) (uf¢-US,)

(1-zl)(1-z3)(U§6-U§8)}

1
4Ax°®
3

Bl+zl)(l+zz)(U§1-U§5)
(1-zl)(1+z2)(U§2-U§6)
(1vz ) (1-2 ) (U 5-U5,)

(1-z )12 ) (U, - Uieﬂ

41
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At the element center, z = 0, we obtain the familiar
difference equation

u.
iy o 1 e e e e _ e
ET e Uip * Ujs * Ujg + Ujy - Ug,
i 4Axl
1T - S 2.55
Uig - USe - Ulg) (L)

Similar expressions are obtained for (Bu /3x ) and
(au /3x ) at the centroid of the brick- shaped element.

2.8.3 Linear Materials

An important class of problems that involve small
amplitude seismic waves can be treated using a linearly
elastic material model. We express linear material behavior
in the stress-strain relationship

%15 T Cijkefke
for the general case of anisotropic and heterogeneous
media. With this restriction, Stages 1, 2 and 3 (Egs. (2.22)
through (2.28)) combine to yield

Ry (1)} = [K; 51U, () (2.56)
and
fQ; (t)} = sat[k, ]{U (t)} (2.57)
where
I
ij Z / }<21p > “xemn <Dmnjpe> dv (2.58)

e= B
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in which the indices i, j, k, 2, m, and n vary from one
through the number of spatial dimensions. By restricting the

development to Cartesian coordinates, the expression for the

stiffness matrix can be reduced somewhat

N\ ap®
. <8xk> Cikjs <8x2> dv (2.59)
v

The equation of motion for the discrete system,
Eq. (2.21), then becomes

§Ui € - %3):+ [K;514U; (£)) = {F; (1))

. _ 1
[hij] -

E
e=1

[M]{Gi(t)} + BAL[K, ]

(2.60)

and the resulting time stepping algorithm (Stages 1, 2, 3
and 4) is expressed in a single equation,

(Uj (tat)} = at2(M)7HF, (1)) + 2{U (1)}
~.-1
Uy (e-at)d - e M) [K;51{(1+8)U; (1)
- BUj(t-At)}

The linear SWIS code, which is described in Section 3.2,
is based on this linearized time stepping procedure.
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IIT. TILLIAC CODES: DESIGN AND DEVELOPMENT
3.1 OVERVIEW

In order to implement a numerical code on the ILLIAC IV,

two unique aspects of the machine require special consideration.
The first is its parallel architecture. In designing a stress
wave code, our approach has been to formulate numerical opera-
tions particularly suited to the parallel nature of the machine
rather than to adapt an existing code with numerics designed

] for a conventional serial computer. The resulting algorithm

: proved relatively easy to write and debug on the ILLIAC.

The second aspect to be dealt with is the method of in-
put and output. As the normal access is via the ARPANET over
large geographical distances, we must use new procedures in
program development and debugging. Program source and input
data must be delivered to the machine by teletype or by file

transfer from another host computer on the Net. Output must

return again via teletype or by file transfer to a host with
line printers. Even with the availability of printer output,
interpreting the results from large 3-D numerical simulations,

for example, can be exceedingly tedious without facilities
for graphical display.

Our first attempt at running programs in this environ-
ment occurred in March 1973. At that time, the only services '
available at the ILLIAC IV host were text editing and a !
minimal mechanism for ILLIAC program submission. It took ?
nearly one month to get results from our first run. The re-

sults were contained in a memory dump listing which was re-
ceived by mail.

Since then, the capabilities of the ILLIAC system have
evolved rapidly. The ARPANET File Transfer Protocol allows

us to transfer programs from UCSD to Sunnyvale and obtain ;

44

% o e S I P WY o




line printer listings of ILLIAC dump files. With UCSD only
a few miles from S*®, we can obtain substantial output from an
ILLIAC run only an hour after program completion on the
ILLIAC. The display software enables an ILLIAC program to
output selected quantities under program control. This
eliminates the tedious task of searching memory dumps for
computed results. Since September 1973, the ILLIAC instal-
lation has maintained a job turn-around of roughly once or
twice a day for two weeks out of every month. With new ser-
vices and improved job turn-around, the ease of getting work
dotie has improved enormously.

S%'s first ILLIAC code, a linearized version of SWIS,
became operational in July 1973, and has been exercised on
several modest problems. A more general nonlinear version
of SWIS, presently about 1200 lines of GLYPNIR coding in
size, is now in the testing stage. As a result of improved
job turn-around, this new SWIS code has progressed from de-
sign stage to successful test runs in slightly less than
three months. During that period, ILLIAC reliability was
sufficient to debug the new code directly on the machine
rather than simulate the ILLIAC with SSK as was often neces-
sary before September. We estimate that our recent code
design and debug rate on the ILLIAC has been nearly 50 per-
cent of the rate at which we could have developed comparable

code on S°'s 1108 computer. We estimate that roughly half

of the ILLIAC development is spent communicating with the
ILLIAC host site via an interactive terminal.

In conclusion, we have had satisfactory results from
our first attempts to use the ILLIAC IV. Part of this suc-
cess stems from careful selection of the algorithms we first
tried to implement. Code development progressed relatively
smoothly, though was inhibited somewhat by the effort of
interactive communication with the ILLIAC facility. Further




attention must be given to the difficulties of handling
large quantities of output before major calculation can

be performed.

3.2 LINEAR STRESS WAVE CODE

3.2.1 General Description

The goal in our ILLIAC code development effort has
been to numerically simulate stress waves in 3-D geologic
materials. The first step in attaining this goal was to
develop a time stepping algorithm for propagating small
amplitude waves in linear materials. The linear algorithm
is formulated in Section 2.8.3; the algorithm is expressed
by Eq. (2.61). In limiting our attention to linear material,
we were able to construct a compact, yet versatile, code
that eased our first efforts to use the ILLIAC IV.

The algorithm accommodates nonsystematic node number-
ing of 1-D, 2-D, or 3-D numerical grids. As there is no
relationship between grid numbering and the number of PE's
(processing elements) in the array, very irregular grids
consisting of beams, plates, and so forth, may be analyzed.
Furthermore, the alg.rithm is as efficient for irregular
grids as it is for systematic grids. This is accomplished
by a work-ahead procedure in which PE's simultaneously com-
pute contributions to the advanced displacements of several
different nodes. A serial machine requires 261 floating
point multiply and add operations to obtain a nodal displace-
ment at the advanced time step in a 3-D grid (Eq. (2.61)).
The ILLIAC algorithm performs an average of 4 parallel
floating point operations plus 3 row sums for each advanced
nodal displacement. Thus, only a small overhead has been

added to accommodate the parallel operations.
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Based on predicted computing rates for the ILLIAC,
it appears that a carefully coded version of the linear
time stepping algorithm should run I/0 bound on the array.
This would require a processing rate of roughly 0.4 seconds
per time step for a 10,000 node 3-D grid. Accurate timings
are not available for the present operational version of
the linear code (programmed in GLYPNIR). However, it apnears
that our present computing rates are considerably slower
than the theoretical rate noted above.

3.2.2 Numerical Problem Definition

The definition of a complex grid can require u large
amount of data. In the most general case, the definition
must include data for individually locating each node and
some information about the interconnectivity of the element
in the grid. In addition, inhomogeneous material properties
must be specified element by element throughout the grid.

In all, about 17N data items are required to completely
describe a totally arbitrary N-node 3-D grid. Such a re-
quirement would make 3-D grids excessively tedious to set
up.

In order to make the linear version of SWIS as flex-
ible as possible and not tie it down to any particular grid
generation scheme or finite element scheme, the influence
coefficients for the grid are gencrated separately and be-
come data for the time stepping algorithm. One limitation
of this approach is that the algorithm can compute stress
waves only in materials with linear stress-strain laws,
since no provision is made for recomputing the influence
coefficients during the time stepping. However, since the
grid need only be generated once, one may employ as sophis-
ticated a grid generation scheme as desired involving curved
grids or structural appendages, with no effect on the
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efficiency and speed of the time stepping algorithm.

In the present code configuration, spatial discre-
tization is carried out on a serial computer using a con-
ventional finite element code. This step produces the
terms {Fi(t)}, [&], and [Kij] of Eq. (2.61). These terms
are then sorted by the serial machine program into the
order required by the ILLIAC time stepping scheme. A sort
algorithm has been designed to perform this sort on the
ILLIAC (Frazier, et al., 1973), but has not been implemented
as our recent work has turned to implementation of the non-
linear version of SWIS (described in Section 3.3).

At each time step, Eq. (2.61) is processed. It has
the form

Weran)) = (v(e)d + [A] (wi(e)) (3.1)

W)} = @B W) - Blu(t-ot)) (3.2)
(V(t)} = at* (M7 {F(eI} + 2(U(0)} - {U(t-0t)) (3.3)
[A] = -at2[M] 7" K] (3.4)

Underscores are used here in Place of directional component

subscripts 1 and j. Using nodal subscripts, Eq. (3.1) be-
comes

d,..
Up(Er88) = Vo (e) + D0 A, Whce) (3.5)
m

The terms Un’ Yn’ Ug, and Fn correspond to node n in

the numerical grid and each represents 3 floating point num-
bers on the computer for a 3-D grid. Space is provided for

each vector by storing sequentially across PE's. For example,

-




the 64th term of {U(t)}, corresponding to the displacement of
the 64th node point in the grid, falls into PE 63 (Fig. 3.1).

The vectors wrap around in core so that U appears in PE C.

~65
In general, vector term n appears in PEk where k is the

rei:ainder of dividing n-1 by 64. In the present version of
linear SWIS, these vectors are core contained. A three-
dimensional grid of N nodes would require 3N storage loca-
tions for each vector. With roughly 131K words of PE memory
available, the code is limited to 3-D problems containing no
nore than N = 10,000 nodes.

The matrix of influence coefficients, [A], is an
N x N matrix of 3 x 3 submatrices, or 3N x 3N. For a problem
of N = 10" nodes, the matrix would consume roughly 10° words
of storage. However, [A] is sparse with each row generally
containing no more than~27 non-zero 3 X 3 submatrices. This
1s a consequence of the connectivity in a 3-D grid of skewed
trick elements in which each interior node point is connected
directly to 26 neighbor nodes and each boundary node to less
than 26 neighbors. If the matrix is compressed to remove
zero submatrices, the storage is reduced to roughly: (number
of nodes in the grid) x (number of neighbors plus one) x
(words of storage for a submatrix) = 10* x 27 x 10 = 2.7 x 10°
words for N = 10". The extra word of storage for the 3 x 3
submatrix contains the row and column position of the sub-
matrix in the uncompressed matrix.

These submatrices are stored on the high speed disk in
an order appropriate for the sparse matrix multiply which is
performed repetitively during the time stepping. As illus-
trated in Fig. 3.2, the column number of the nonzero terms
in [é] provides the PE destination, i.e., énm is to appear
in PEk where k 1is the remainder of the division of m-1 by
64. This scheme assures that, as the influence coefficients

are read into PE memory from the I4 disk, each coefficient

49

e A e

sl o




DESTINATION OF NODAL DISPLACEMENTS IN PE MEMORY

PEO PE1 PE2 PE62 PE63 PEO
| { | ' | '
U Uy U (/N . U
~1 ~2 ~3 ~63 ~64 ~65
DISPLACEMENTS IN PE MEMORY
PEO PE1 PE2 PE63
U U U U
~1 ~2 ~3 ~6u
U
~65 ~128
Fig. 3.1--Schematic illustrating the arrangement

of nodal displacements in PE memory .
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DESTINATION OF NONZERO INFLUENCE COEFFICIENTS IN PE MEMORY

s
F pﬁo PE1 P?Z P?S PEO PE1 PE2
4 [ A A 0 0 ... 0 A A oo
3 =11 %] 2 14566 *1 4967
] A A A 0 0 A
] x21 %22 223 2,67
' 0 A
4 x32

[é] = 0 0

ANLN
| B

INFLUENCE COEFFICIENTS IN PE MEMORY

%
PEO PE1l PE2 L, PEk

\~-
A A A A
211 x12 %1567 ~1,K
A A A g
x21 X1 966 X293 .

éz,e? én,k
?m,ss
An,k+64
"\~
Fig. 3.2--Schematic illustrating the arrangement of the
influence coefficients énm in PE memory.
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will arrive in the PE that contains the corresponding nodal
displacement. For a 3-D problem, 9 parallel multiplications
can then be performed for each 10 rows of influence coeffi-

cients that arrive from the disk. The only PE interactions

that are needed, even for irregular grid configurations, result
from summing accumulated products between PE's — one Trow sum
per row of the sparse matrix [A]. More detail on our sparse
matrix multiply scheme is presénted in the following section
and in Appendix II.

3.2.3 Time Stepping

The time stepping process consists of the calculation
of Eq. (3.5) for each time step. The first term {V(t)} of
Eq. (3.5) involves column vector operations which require no
interaction amongst ILLIAC PE's. As a result, it is easily
computed in a parallel process. Similar column vector onera-
tions are involved in the calculation of {gd(t)}. The sig-
nificant calculation is the multiplication of the vector
{Qd(t)} by the large sparse matrix [é]. This multiplica-
tion accounts for almost all of the coﬁputation time that
is required to complete one numerical time step. A sophis-
ticated but simple mechanism has been developed to perform
the sparse matrix multiply in parallel (Frazier, et al., 1973).
The non-zero terms of [A] in Eq. (3.5) are arranged on disk
so that each 3 x 3 submatrix énm arrives in the PE contain-
ing Qﬁ. Furthermore, as successive terms of [5] are read
from disk the matrix row nuabers n increase monotonically
(but not necessarily sequentially) in each PE. This is done
so that the sparse matrix multiply can be completed in the
order of ascending row number.

The first submatrix Anm to arrive in each PE from

~
-~

the disk (the énm with the lowest row number n that ap-

£

pears in each PE) is multiplied by the three-component vector
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gg and the results are accumulated in a buffer R along
with the row number identifier n. This operation allows
some PE's to work on the same row number n while other
PE's work ahead on other row numbers. Since several rows
may be processed simultaneously, a look-ahead buffer {R}

is maintained in each PE which contains both the elements

R and the row number n. Since rows will continuously be
completed as new ones are started, {B} need only be large
enough to contain the maximum number of R's to be worked
on at one time in any given PE. On the average, all of the
multiplies for 64/27 = 2.4 rows of the sparse matrix multiply
are completed after such an operation. Rows that correspond
to boundary nodes require less calculation.

During the matrix multiply, a test is made to see if
all contributions from the sparse matrix multiply are ready
to be summed for the node n . If all of the row numbers n
from the submatrix multiply are greater than n o, then all
contributions for n - are completed (all PE's are now work-
ing on contributions to higher node numbers). The contribu-
tions for n are then summed and added to the other terms
in Eq. (3.5) to obtain the advanced nodal displacements
gno(t+At). This displacement vector is stored in PEk, k
being the remainder of no-l divided by 64. If the rontribu-
tions from row n°+1 are completed, then node n°+1 is also
advanced in time by summing contributions from participating
PE's, otherwise the next submatrix multiply in line for each
PE is performed. The parallel submatrix multiplies, row sums,
and disk reads continue until all of the [A] matrix has
been processed and all nodes have been advanced in time. The
entire operation is repeated for each time step. (A more

detailed description of the sparse matrix multiply appears in
Appendix B.)
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3.2.4 Tests

The first version of linear SWIS was coded in GLYPNIR
and also in ASK. Several tests were made with the GLYPNIR
code on the ILLIAC IV simulator at UCSD (Frazier, et al.,
1973). The GLYPNIR version of linear SWIS with a simple
grid generator became operational on the ILLIAC IV in April
1973. Because of difficulties with the disk hardware at
that time, SWIS was run with the [A] matrix held entirely

in core. Several test runs involving the propagation of
planar P waves in 3-D media have been made to check bound-
ary conditions in the code. Successful runs of over 100
seconds on the ILLIAC were completed.
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3 LAGRANGIAN STRESS WAVE CODE

(3]

.3.1 Grid Configuration

A flexible scneme, described in Section IT, has been
devised for numerically simulating stress waves in geologic
materials. The flexibility for handling highly irregular
grid configurations has been compromised somewhat in adapt-
ing the scheme to the ILLIAC.

The guneral numericaj scheme admits mixed element
types (e.g., trahedra apd hexahedra) with nonsystematic
node and element numbering. Because of the difficulties in

transferring information between PE's in an arbitrary manner

on the ILLIAC, we associate grid Cross-sections with PE's, as
1llustrated in Fig. 3.3, Adjacent grid Cross-sections are
dssociated with adjacent PE's so that points which are adja-
cent in the grid appear in the same or adjacent PE's,

The first grid dimension, which is normal to grid
section mentioned above, is Strung across PE's. This enables
a string of 64 elements, lying in 64 contiguous Cross-sections,
to be processed in parallel. We note that the first grid
dimensio: does not necessarily correspond to the first problem
coordinate. To insure totally parallel operations for the
bulk of the Ccalculation< on the ILLIAC, the requirement is
made that each element string in the first grid dimension cop-
tains elements of the same basic type. That is, one element
string cannot contain both tetrahedral and hexahedral (skewed-
brick) eclements. The present operating version of SWIS treats _
only one element type over the entire grid: 8-node hexahedra y
in 3-D, 4-node quadralaterals in 2-D, and 2-node 1line segments
in 1-D. This restriction may be 1ifted in the future to aj-

low for varying element types between element strings,
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Fig. 3.3--Relationship between grid geometry and
PE storage.
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The requirement for uniformity of elemert types
imposes restrictions only on the connectivity between
elements, not on the size or shape of the elements. No

g restrictions are placed on material types, applied loads,

or boundary conditions in any dimension of the grid. The

ILLIAC SWIS code can also treat irregular geometric shapes.
The number of elements can vary between node strings due
to irregular grid boundaries, either internal or external.
However, inefficiencies in PE utilization occur when the

number of clements in a node string is not a multiple of 64.

3.3.2 Storage Scheme

The ILLIAC SWIS code uses three types of data storage:

1. General problem descriptors require only minor storage

1
3
E
3
;;
3

and include such terms as curvilinear coordinate designator,

number of spatial dimensions, material descriptions, grid

s

descriptions, time stepping data, and data for printing

£

P

selected results.

ey

2. Global storage contains nodal and element information

a—

for the entire grid. For each node point in the grid, the
present version of SWIS stores coordinates (position), dis-
placement, velocity, acceleration, boundary condition type, ;
applied force (or displacement), and concentrated mass. :
Material type and element stress are stored for each element
in the grid. Nodal and elcment storage are combined, stor-
ing one node with one element, to yield 9, 16, and 24 words
of storage per 1-D, 2-D, and 3-D element, respectively.
Figure 3.4 illustrates the various grid terms that appear

in global storage.

The global storage scheme has been designed first to

minimize interactions between PE's and second to simplify



Element
String 1 )

Element
String 2

E,
E‘
[.
E
i
|
|
|
t
ii;
:

Element
k+1 of

Element
String 2

STORAGE OF GRID QUANTITIES ACROSS PE'S

PEO PE1 PEk

1 2 k+1
65 66 k+65

1 2 k+1
65 66

Words of
PEk k+1 Storage

Node Displacement D
Node Velocity D
Node Acceleration D
Node Coordinates D
Boundary Condition Type 1
Applied Force (or Dis-

placement) D
Node Mass 1
Material Type 1
Element Stress D(D+1)/2

Words of storage per element =

(D* + 11D)/2 + 3

where D 1is the number of spatial dimensions.

Fig. 3.4--Multiplexed storage of global variables.
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disk accessing. As indicated in the previous section,
global storage for one dimension of the grid (the first
dimension) is strung across PE's with variables for cross-
section n appearing in PEk where k is the remainder
from the division of n-1 by 64. Figure 3.3 illustrates the
relationship between the PE's and the grid configuration.
All of the global variables needed to process one element,
i.e., to compute element restoring forces, are always con-
tained in two adjacent PE's (PE0 is considered to be adja-
cent to PE63). Node variables are routed left at the be-
ginning of the loop for processing a string of %4 elements,
and the computed element restoring forces are routed right
at the end of the loop. Thus, by associating global storage
with grid configuration, we have reduced PE interactionc to

simple, predictable routing operations.

Primarily for the purpose of expediting efficient
use of the I4 disk, the various node and element quantities
are multiplexed in global storage, as illustrated in Fig. 3.4.
In the present design, global arrays will appear sequentially
on the I4 disk with grid dimension one most rapidly varying
in the grid numbering scheme. Thus, if a particular global
variable is located at position n on the disk then the
corresponding variable for the next higher element number
would be located at position n + (D? + 11D)/2 + 3 where D

is the number of spatial dimensions in the grid and

(D* + 11D)/2 + 3 is the number of terms per element multi-
plexed into global storage.

3. Element string storage, which occupies about 60 words

of fixed storage per PE, contains variables for processing
one string of 64 elements. The element string storage serves
as buffer storage for certain global variables (node posi-
tions and node velocities) and as storage for intermediate
variables not stored globally (curvilinear coordinate metrics,
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element interpolation functions and their spatial deriva-
tives, element strain rates, element stress rates, and
element restoring forces). By setting aside special element
storage, we have managed to isolate inner PE exchanges from
the major calculation phase of the code.

3.3.3 Initialization

As described in Section 2.2, a stress wave calcula-
tion is initiated by data that specifies the churacter of
the grid, the (time-varying) boundary conditions, the
material properties, the time stepping data, the initial
conditions, and the type of results to be printed. In the
present configuration, about 50 words of data are required
to initiate a 3-D calculation. Approximately half of these
data serve to define the grid. Nonzero initial conditions

and time varying forcing terms require additional data.

Before proceding with the time stepping calculations,
global storage is initialized. Based on the number of dimen-
sions in the grid (and on the number stress components to
be included in non-Cartesian calculations), the global
multiplexed storage is dynamically assigned within a large
segment of available core at run time. Displacements,
velocities, and element stresses are set to a default value

- - of zero. Boundary conditions and material types are set
from the problem input data. A code-contained grid generator
serves to produce node positions in both Cartesian and curvi-
linear grids. Nodal masses and nodal forces are computed by
numerical integration, Eq. (2.20). The nodal accelerations
are initialized to

RS |

wy = MHET

1

Eq. (2.29) with R} = {Q;} = 0. We note that, with the
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exception of boundary conditions and nodal forces, initiali-

zation calculations are conveniently processed in parallel.

3.3.4 Time Stepping

The calculations that are performed to numerically
propagate stress waves are described in Section 2.6, Egs.
(2.22) — (2.34). Figure 3.5 illustrates how these calcula-
tions are performed on the ILLIAC using the following basic
operations: Grid positions and nodal velocities combine to
yield element strain rates. The element strain rates com-
bine with material properties to yield element stress rates,
which are used to update total element stresses. Element
restoring forces, which are computed from the element
stresses, are combined with externally applied forces (or
other boundary conditions) to produce nodal accelerations.
Nodal displacements and nodal velocities are then advanced
one time step by direct numerical integration ¢f the nodal
accelerations. This time stepping procedure continues until
the wave simulation is completed.

We note that the algorithm has been organized so that
interactions between PE's occur at only two points in the
computing sequence. The initial operation in processing a
string of 64 elements involves a parallel route left. This
serves to bring global values of nodal velocity and nodal
coordinates into local element storage. The nodal restoring
forces for the 64-element string are then computed in paral-
lel with no inner PE communications. These operations repre-

sent the bulk of calculations for completing one time step.

The final operation in processing a string of 64
elements involves a route right. The nodal restoring forces
are divided by the corresponding nodal masses and accumulated
in global storage as contributions to nodal accelerations.
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Loop on time

Loop on element strings,

r === —(Segment element String into blocks of
4 elements and loop on segments),

1. Transfer nodal velocities and nodal

— = — (Loop on element integration points.,)

2. Set metric coefficients, Section 213101,
Table 1.

I
I
|
I
I
|
|
!
I
t 3. Set element interpolation scheme,

l Section 2.3,2, Egs. (2.10), (2.11),
| (2.14),

|

4. Compute Strain rate, Eq. (2.22).

I

|

I

I

I

|

|

I

!

L 5. Compute stress rate, Eq. (2.24),
| Stress, Eq. (2.25), and damping
i Stress, Eq. (2.26).

I
I
_

6. Accumulate element restoring forces
from numericaj integration, Eq. (2.27).

- -

7. Accumulate nodal accelerations in
global Storage, Eq. (2.29) (involves
4 parallel route right on the element

l restoring forcesy.
_-—I————___‘

8. Satisfy boundary conditions, Egs. (2.30)
(2.31) (for unconstrained nodes, PE's

off!.

9. Advance nodal velocities, Eq. (2a32)s,
nodal displacements, Eq. (2.33), and
nodal coordinates, Eq. (2.34),

—

Fig, 3.5--Paralle] computing scheme used in the
SWIS code.
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Strings of 64 elements are sequentially processed with a
parallel route left (global to element storage) in the
initial operation and a parallel route right (element to

global storage) in the final operation.

The acceleration of each node in the grid is deter-
mined from the processing of all element strings. Boundary
conditions are then applied by sweeping through global stor-
age, modifying accelerations of only those nodes with force,
displacement, or fixed boundary conditions. At the same
time, the advanced nodal velocities and displacements are
computed in parallel by time integration. This operation

completes one numerical time step.

3.3.5 Code Output

For the testing stage of SWIS, we have relied on two
basic types of numerical output. Both of these employ the
DISPLAY software facility for outputting formatted data

during run time.

One method is to output an entire PE row of informa-
tion at a selected time step. Since an interesting portion
of the problem often has its orientation across PE's, row
output can provide the desired results in condensed form.
One test problem — Lamb's problem as described in the next
chapter — had the free surface of the grid oriented along
the first grid dimension. Thus six row outputs provided
horizontal and vertical components of displacement velocity
and acceleration along the entire free surface. This ap-
proach is less convenient for grid cross-sections other than
those oriented across PE boundaries. A mechanism is used
for transferring a series of selected quantities into a

buffer row of memory for output.
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A similar mechanism is used for collecting time

histories. The displacement, or some other quantity at
selected points in the grid, is accumulated into a buffer
area following each time step. When the buffer is full,

it is output and the accumulation is resumed. In this way,
the behavior of a point in the grid over time may be con-
veniently displayed.

We anticipate incorporating further modes of program
output into SWIS. One is a binary output mode in which large
quantities of unformatted data are transferred to UNICON
laser storage during run time. Selected portions of this
file could be transferred over the ARPANET for printing or
plotting at another site. A further possibility is to in- i
corporate some code into SWIS for generating plots using é
the network graphics protocol (NIC #15358, 1973). This ploct
information could be plotted at any site equipped with pre-
processors for the graphics protocol.

e o ik
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IV. STRESS WAVE CALCULATIONS

Our primary thrust during this contract period has
been to develop code on the ILLIAC for performing 3-D stress
wave calculations. Test calculations have been performed
in 1-D, 2-D, and 3-D geometries to verify the resulting code
and to examine particular features of the computing algorithm.

A sample of these test calculations are presented below.

4.1 LAMB'S PROBLEM: 2-D CARTESIAN COORDINATES

The ILLIAC SWIS code has teen exercised in 2-D
Cartesian geometry (plane-strain) for treating Lamb's
problem: A line load (a point load in the plane of the
grid) applied as an impulse to the free surface of a half-
space. Figure 4.1 illustrates the numerical presentation
and provides the physical parameters that were used in the
calculation. Based on central system clock times, we esti-
mate that the calculations were processed at the rate of

0.4 m-sec per 2-D element per numerical time step.

The sharp wave forms that arise from the concentrated
impulse loading serve as a critical test for the stress wave
computing scheme. Frazier, et al. (1973) have reported on
finite element and finite difference treatments of Lamb's
problem using S®'s UNIVAC 1108. In the present treatment
of Lamb's problen on the ILLIAC, we have examined alternat:
schemes for dealing with bending modes in the individual
elements (hour glass deformations, see Appendix A) and al-
ternate schemes for damping spurious high frequency noise.
We have also made an effort to test the effectiveness of

transmitting boundary conditions in 2-D geometry.

Computed displacements along the free surface are com-
pared with mathematical solutions in Figs. 4.2, 4.4 — 4.6.
In the first of this series of calculations, Figs. 4.2 and

65




Lt

ine load = 0.985 x 1019 dynes per cm along x

Free Surface

T sizasssstass D

5 4 T A Ty

;léJ ! iE——L‘ﬁx, = 1.0 cm ?ﬂ

HHHT il
HH
i

ﬁxl = 1.0 cm ’/}

Plane of
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(63,5C)
' At = 1 usec = 0.555 el
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Physical Parameters

P = mass density = 2.77 g/cm3
Vp = P wave velocity
v

<

0.555 cm/sec

S wave velocity 0.3145 cm/usec

V. = Rayleigh wave velocity = 0.2898 cm/usec

total impulse = j]'pressure dx1 dt

1.97 x 1010 dyne-usec/cm

Fig. 4.1--Prob1em description used for analyzing a line load
impulse on a half-space (Lamb's problem).
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Fig. 4.2--Vertical displacement of the free surface: Damping
coefficient 8, = 0.80 for P waves, Bs = 0.80 for
S waves, and B, = 0.80 for hour glass"motions.
Inner element stress variations due to bending are
not included.
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Fig. 4.3--Time history of a point on the free surface, 39 cm from
the applied load. Damping coefficient B8, = 0.80 for

P waves, B, = 0.80 for S waves, and EH = 0.80 for
hour glass Motions. Inner element stress variations
due to hending are not included.
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Fig. ¢.4--Vertical displacement of the free surface: Damping

coefficient B, = 0.40 for P waves, fo = 0.80 for
S waves, and B, = 0.40 for hour glass motions.
Inner element stress variations due to bending are
included.
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Fig. 4.6--Horizontal displacement of the free surface: Damping
cocfficient £, = 0.40 for P waves, B, = 0.80 for
S waves, and Bj = 0.40 for hour glass“motion. Fifty
percent of inner element stress variations due to
bending are included.
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4.3, a single-point integration scheme was employed for

computing restoring forces of the medium (see Eq. (2.27)
or alternately Eq. (2.46)). As discussed in Appendix A,
this scheme does not take into account the spatial varia-

tions in stress within an element. Consequently, the
elements contain no stiffness against bending. The result
is that the concentrated load configuration excites hour
glass deformation modes in the grid in addition to the de-
sired wave forms. An effort was made to control this un-
desirable response by introducing a special artificial
viscosity with the sole purpose of damping the hour glass
deformations. While this procedure was successful in sup-
pressing the hour glass modes from the computed velocities,
we see from Fig. 4.2 that considerable numerical noise
appears in the displacement field in the vicinity of the
applied load. By employing the hour glass damping scheme,
a well-formed Rayleigh wave emerges at points greater than
about 20 grid dimensions from the source. The time history
of a point 39 cm from the source, presented in Fig. 4.3,
shows no trace of hour glass noise. We note that no special
treatment is required to control hour glass deformation
modes when the surface load is distributed over many ele-
ments; there is essentially no excitation of hour glass
modes in this case.

The SWIS code was then altered to take account of
inner element variations in stress, rather than to arti-
ficially damp the hour glass modes. The vertical component
of displacement along the free surface, using this numeri-
cally consistent formulation, is presented in Fig. 4.4.
Also, the standard numerical damping scheme, Eq. (2.26),
was altered somewhat for this calculation. Shear distor-
tions were damped using a coefficient BS = 0.80, the same
B that was used in the previous calculation; whereas a
smaller damping coefficient of 0.40 was applied to
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volumetric distortions. This procedure has the effect of
damping high frequency P and S waves of comparable wave
lengths rather than damping comparable frequencies as is the
case using one B for both volumetric and distortional

deformations (see Frazier, et al., Appendix B, 1973).

First, we see from the results presented in Fig. 4.4
that there is no trace of hour glass deformation present
in the computed displacement field. Also, we find that the
reduction in the artificial damping of volumetric distor-
tions results in a more distinct P wave along the surface.

As a final numerical experiment, the restoring forces
that arise from bending of individual elements were arti-
ficially reduced by 50 percent. This inconsistent analysis
was performed to examine what effect the bending stiffness
of individual elements has on the resulting wave forms.
Cell-centered-stress finite difference schemes disregard
the bending stiffness of individual elements; whiic the
consistent finite element scheme, used to produce Fig. 4.4,
slightly over-estimates the bending stiffness of elements.
We see from Fig. 4.5 that a slightly sharper Rayleigh wave
(higher peak displacement) is obtained when the bending
stiffness of the elements is reduced. It appears that an
accurate representation for the bending stiffness of indi-
vidual elements is not critical to this particular wave
simulation. Except for the hour glass deformations that
permeate the displacement field near the point of loading
(Fig. 4.2), it appears that artificial damping, which is
needed to control numerical dispersion, has as much effect
on peaked wave forms as the bending stiffness of the

elements.

Finally, some data on machine reliavility have been
obtained from the numerical simulations of Lamb's problem.
Eight separate calculations were initiated, each set for

73




500 time steps. Major errors, which are detected by orders
of magnitude increase in the total energy, occurred in all
eight calculations prior to completion. Two calculations
did not reach 100 time steps before the total energy jumped;
one calculation progressed just beyond 250 time steps be-
{fore major spurious errors occurred. Each numerical time
step requires about 3 x 10° floating point multiply and add
operations, approximately 100 operations per element per
time step. Thus, it appears that bits are being altered

in the exponents at the rate of about one error ner 3 x 107
floating point multiply and add operations for the parti-
cular sequence of machine instructions activated by this
2-D wave simulation. In some instances, we also find that
low order errors have occurred in the calculations before
errors of very large magnitudes appear. We plan to in-
corporate rigorous energy checks and an automatic restart
mechanism in the SWIS code to detect and recover from

machine errors.
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4.2 PLANE WAVES: 3-D CARTESIAN COC.DINATES

The first test calculation of the SWIS code in 3-D
geometry has been designed to simulate a plane wave pro-
duced by an impulse pressure. As with the problem of the
previous section, the propagating wave has a discontinuity
in the displacement field and a singularity in the velocity
field. We do not expect to match behavior of this type
accurately but rather to examine the limitations of the
numerical procedure. The response of a linear system to
an impulse load provides the Green's function for the Sys-
tem. Thus, by treating an impulse loading, we obtain the
Green's function for the numerically discrete system.

The grid configuration, grid parameters, and material
parameters are presented in Fig. 4.7. The grid, which is
core-contained, involves 1575 cubic elements with 63 grid
spaces in the direction of propagation. The uniform pres-
sure pulse produces particle motion only in the direction
of loading. Computed displacement and velocity at selected
time intervals (t = 40, 80, 120 usec) are presented in
Fig. 4.8. The computed velocity field represents a numeri-
cal approximation to a delta function. The time integral
of the computed particle velocity matches the time integral
of the analytical singularity. This is illustrated by the
close agreement between computed and .nalytical displace-
ment fields behind the wave front.

Based on central system clock times, we estimate that
the 3-D plane wave calculations were processed at the rate

of 1.2 m-sec per element per numerical time step.
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Uniform Normal Pressure = 100 kbars

hx, = ﬁxz = ﬂxs = 1.0 cm

\

(63,5,5) [
Lo |~ L

' (63,0,5) Free Surface
1 Ax
At = = 1.0 usec
x, 7 V;

Physical Parameters

P = mass density = 2,5 g/cm3
Vp = P wave velocity = 0.5 cm/usec
Vs = S wave velocity = 0.25 cm/usec

B = damping coefficient = 0.15

Fig. 4.7--Problem description used to simulate a uniform

impulse pressure applied to the surface of a i
half-space. '
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4.3 BURTED EXPLOSION: 1-D, 2-D, 3-D SPHERICAL COORDIMNATES

The facility in the SWIS code for processing wave
calculations in curvilinear coordinates is employed for
simulating elastic compression waves emanating from a
spherical cavity. A step pressure with an exponential
decay is analyzed using the following parameters:

r

c cavity radius = 10 m

Ar = radial zone size = 0.2 m

At

time step = 20 usec

B = damping coefficient - 0.15

V. = P wave velocity 5 km/sec

VS = S wave velocity 2.5 km/sec

p = mass density = 2.0 g/cm’
-10°t

cavity pressure = e kbar

p(t)

The elastic explosion calculation is processed in
spherical coordinates using 1-D, 2-D, and 3-D grid configu-
rations, illustrated in Fig. 4.9. Each grid has 63 elements
in the radial dimension. This provides equal resolution
for each grid configuration in the spherically symmetric
explosion. Consequently, we would expect very nearly iden-
tical results from the 1-D, 2-D, and 3-D calculations.

The computed response of the cavity wall is compared
with analytic solutions by Blake (1952) in Fig. 4.10.
Radial displacement and velocity are compared 2.0 m-sec
after pressurizing the cavity with the analytic solutions
in Fig. 4.11. While the computed points in Figs. 4.10 and
4.11 are taken from the 1-D spherical calculation, the 2-D
and 3-D calculations gave results with 1 percent of the
1-D calculation. Therefore, these figures can be con-

sidered representativs of the computed behavior for all
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Fig. 4.9--Grid configurations for anal

cal cavity: 1-D, 63 Ar; 2-D, 63 Ar by 60 A6;
3-D, 63 Ar by 5 A® by 5 A¢.
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; sults within 1 percent of plotted points for 1-D
calculation.
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three grid configurations.

More test calculations nced to be performed to

verify the SWIS code for other curvilinear courdinate sys-

tems. However, because no code alterations were needed
to produce the 2-D and 3-D spherical results, 1t appears
likely that the curvilinear formulation is generally

operational. We note that the wave calculations processed

in spherical coordinates required about 50 percent more
computer time than would have been required for a comparable

Cartesian calculation.




V. SUMMARY AND CONCLUSIONS

Considerable progress has been made in the develop-
ment of an ILLIAC computer code for simulating stress
waves in the earth. A novel finite element scheme has
been developed for processing stress waves in B-Dy 2-D
and 3-D curvilinear geometries. The numerical scheme
accommodates finite deformations and nonlinear material

behavior using a Lagrangian formulation.

In the initial phase of this program, code develop-
ment was confined to small amplitude stress waves with
linear material response. During this period, an ILLIAC
code was developed for time stepping stress waves through
highly irregular 1-D, 2-D, and 3-D grid configurations.
The linear code was made operational on the ILLIAC, and
test calculations were performed as early as March 1973
to verify the code. The linear code development effort on

the ILLIAC proved valuable in the subsequent development
of the more general SWIS code.

Because of the manner in which the more recent non-
linear SWIS code has been adapted to the parallel structure
of the ILLIAC, grid points are associated with PE's. This

has required a certain regularity in the grid configurations,

namely, the grid must be composed of an assemblage of ele-
ment strings. The parallel processing capabilities of the
[LLIAC are most effectively utilized when the number of
elements in the element strings is some multiple of 64.
This 1s in contrast with the earlier linear code which
processes irregular grids just as efficiently as regular
grids.

The nonlinear SWIS code was programmed using GLYPNIR
and debugged directly on the ILLIAC. Successful test cal-
culations were performed on the ILLIAC just three months
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after the initial programming was begun. This fact is a
credit to the total ILLIAC system: the ARPANET, the ILLIAC
IV computer, and the peripheral equipment at the ILLIAC
site. Systems failures have interfered with our ability

to utilize the ILLIAC on the average of about two weeks

out of each month for the past three months. System re-

liability is expected to improve in the coming months.

A series of core-contained test calculations have
been performed on the ILLIAC to verify the SWIS code in
1-D, 2-D, and 3-D Cartesian and spherical coordinates.
Cartesian coordinates were employed to simulate a line load
impulse (Lamb's problem) using 3150 2-D elements and a
pressure pulse using 1575 3-D elements. Spherical coordi-
nates were employed to simulate a pressurized spherical
cavity using 63 1-D elements, 3780 2-D elements, and 1575
3-D elements. The calculations were processed at the rate
of 0.4 and 1.2 m-sec per element per numerical time step
for the 2-D and 3-D Cartesian grids, respectively. Appro-
ximately 50 percent slower computing rates were obtained
for the spherical calculations. Based on repetitive execu-
tions of Lamb's problem, we have observed what appears to
be machine errors. We estimate that errors occur in the
exponent bits at the rate of one error per 3 x 107 floating
point multiply and add operations. Errors in the mantissa,
which are slightly more difficult to detect, have also been
observed. We plan to incorporate rigorous energy checks
and an automatic restart mechanism in the SWIS code to de-
tect and recover from machine errors.
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APPENDIX A

INNER-ELEMENT STRESS VARIATIONS

The stress tensor evaluated at the centroid of a 2-D
or 3-D rectilinear element does not adequately describe the
state of stress in the element. We note that no stress is
generated at the centroid as the element undergoes a bending
deformation, illustrated in Fig. A.1. Stress wave calcula-
tions that use centroidal stresses exclusively can result in

hour-glass deformation patterns superposed on the computed
displacements.

Let A denote the amplitude of the bending mode pic-
tured, then

¢
V= ocow b, -1,-1, + 1 > }u]:
u (z) = Az 2
1 2
RIt . 7 4 2
tL.‘ (:) =l + - ]:‘\ 2 2 !
11~ 2 \hz. A 1
.)“*2@)2 uz
Ao(_,) = 2 + Mg = A
LGRS 1] 1) kk
1z Az
1 2

oz =) =0

on the desired displacement and velocity fields,

A one-point integration scheme is not sufficient for
treating spatial variations in stress with an element. When
two integration points per clement dimension are used in
lq. (2.20) for computing rectoring forces of the medium, con-

stderably more calculations are required to process cach
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Let A denote the amplitude of the bending mode pictured,
then

A= eelly -y =, *15]0%]

1

Fig. A.1--Bending mode of deformation with nonuniform
stress tensor that vanishes at the centroid.




clement. llowever, a two-point integration scheme is suf-
ficiently accurate to treat guadratic variations in stress;
consequently, little additional computing effort would be

required to process higher order elements.

For the increased accuracy of a two-point integra-
tion scheme to be effective, a more complete description of
the spatially varying element stresses is required. We
note two possibilities: (1) Store element stress at each
integration point. This procedure requires a considerable
amount of storage. (2) Store the restoring forces at node
points and update the restoring forces using stress rates
evaluated at cach integration point. This procedure is
currently being installed in the SWIS code.

Alternate procedures were used for processing Lamb's
problem, presented in Section IV. Ve chose to treat a point
load (applied at one discrete point in time and space) as
a critical test for the numerical computing scheme in pre-
ference to a distributed load for which the hour-glass mode
is negligible. As a first effort, we simply damped the
bending deformations in each element. This procedure
succeeded in removing hour-glass patterns from the velocity
field, however, hour-glass deformations appeared in the dis-
placement field in the vicinity of the impulsively loaded
surface. Lamb's problem was then repeated by including the
restoring te-ms that arise from bending deformations in the
element. As cxpected, no hour-glass patterns appear in

these results.
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APPENDIX B

The following scheme for banded sparse matrix multi-
plies was developed by Frazier (1972). The sparse matrix
involved is a matrix of influence coefficients [A], which
is a N x N matrix of 3 x 3 submatrices. As notea in Sec-
tion 3.2, the uncompressed matrix requires roughly 10° words
of storage for a 3-D problem containing N = 10* nodes. How-
ever, since most nodes have just 26 immediate neighbors in

a 3-D rectilinear gridwork, there will usually be 27 non-zero
submatrices in a single row of

(4] = A

The unnecessary zeroes are compressed out of [A] to yield
a N x 27 matrix of 3 x 3 submatrices. From the node number-

ing sequence we can deduce the column numbers for the non-
zero terms 1in cach row, 1i.e

L]

m = mn,k , n=1,2, ... N
(B.1)
k=1,2, ... = 27
where n and m are the row and column numbers of [A],
respectively, and N is the total number of node points in
the 3-D grid. The array of contributing column numbers mooxe
k =1,2, ... = 27 are simply the node numbers adjacent to
node n.

Only the non-zero multiplications of the matrix multiply

?n ) :E: énmym »n = 1,2, ... N (B.2)

N
m=1

are performed in the sparse matrix multiply, which can now

91

Preceding page blank




be expressed as

by '™ gn,k gmn (B.3)

The compre<sed matrix [E] should be arranged on the
disk so that each term arrives in the processor containing
the nodal displacement for which it is to be multiplied,

Eq. (B.3). Thus, Kn x Should arrive in the PEM contain-
xlly

g U, K without requiring additional shift operations.

If [E] ’remains unchanged over many multiply operations,
consiaerable effort can be devoted to arranging the non-zero
terms of the matrix on mass storage in an optimal fashion
for processing.

In the case of the 3-D grid, the vectors u are
nodal displacements of three components and require three
numbers for their representation. Let Uim be the component
of Qm along the Xy axis, 1 =1,2,3. Correspondingly,
én,k is a 3 x 3 matrix that requires nine numbers in its
representation. Let Kin,jk denote the ij element of
this matrix. Then Eq. (B.3) can be written

=27 3
-— ‘ ry
s = :E: Ain,jk Ujm X (B.4)
k=1  j=1 s

where Bin is the component of gn along the Xy axis,

The nodal displacements are arranged on the disk
to flow into the PEM's (denoted p) by PE rows (denoted

B et Nt b it g

LT




r) so that ) +>p=0,1r=20; U +p=0,71=1;

11 ~21 ’
U, >p=0,r=2U =>p=1,71-=0; U, ¢, ~ P = 63,
T = 2 gl e +p=0,1r=23; etc.
In general we have
U. »p(m-1) = (m-1) - 64[“'1]
jm 64 1
_ m-1 .
r = 3[31—] * -1 (B.5)

where [%il] denotes fixed point division. Thus, p(m) in
the above equation is the remainder of %T' This storage con-
figuration in the PE's is achieved by loading U, , m = 1,2,

= jm
. N, on the disk in the sequential order US’ s=1,2, ... 3N

where

S=m+ 128 Bt + 64(3-1) , (B.6)

j=12,3

The condition for Kin ik to arrive in the processor
containing Ujm is expressed, using Eq. (B.5), as

n,k
Ain,jk +p (mn,k-l) (B.7)

The PE row number r to be occupied by the various non-
zero terms of the sparse matrix is somewhat more difficult to
express because of the arbitrariness of the node numbering
scheme. The node numbers n should increase monotonically
(but not necessarily sequentially) with increasing row number
r in each PE so that the row number n of the sparse matrix
can be processed in ascending order. However, in general, no
more than 27 of the 64 PE's will contain a Ujm for which
Kin,jk is non-zero for any particular matrix rBWknumber n.
That is, only about one-third of the PE's will contain nodal
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displacements that are adjacent to node number n in the
spatially zoned continuum. Furthermore, a single PE may, in
some instances, contain more than one neighbor nodal displace-
ment but rarely more than nine.

When performing the multiplications that contribute to
matrix row number n, there is no neced to make the noncontri-
buting PE's inoperative. Each noncontributing PE can simul-
taneously perform multiplications for the next higher matrix
row number for which the PE will have a contribution. If the
compressed matrix [A] is loaded into the PE's in any proper
sequence, this work-;head scheme can be carried out by per-
forming multiplications in each PE in the sequence that the
[é] terms are loaded from mass storage. This desired storage

configuration in the various PE's is achieved by loading

Ain jk; n=1,2, ... N; k=1,2 ... 227, on the disk in the
sequential order AS’ S =1,2, ... =10 x 27 x N where
S = 64r + (p+1) + 64(3i+j-4) , (B.8)

i and j =1,2,3 ,

in which r = 0, 1,2 ... = 10 x 27 x N/64 and p=20,1,2 ... 63
are the row and PE number, respectively. The PE number is
p(mn,k-l). The row number for each PE is expressed by summing
all previous entries in the particular PE, i.e., the row num-

ber for PEp is expressed in terms of n and k by

n=1 %27 k-1
= § . +1 :E: s . B.9
r =10 :i: :Z: oo 0 4 bp (B.9)
n=1 g°=1 k™=

where épp' =0 forp#p” and § . =1 for p =p° and
where, just as in Eq. (B.7)

-1

A \ '
PR 5 p(mn,,k, ) - (B.10) i
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Every 10th term in the array AS starting with S = ] is
used to store two index numbers: m = mn,k to identify the
nodal displacerient that is to be multiplied and n to
identify the matrix row to which the multiplication contri-

buteg, Bg. (B.3).;

Using the storage schemes defined above, i.e., start-
ing from a point in the computations in which {U} and [A]
appear in their prescribed sequences on the disk, the sparse

matrix multiplication of Eq. (B.3) proceeds as follows:

1. {U} 1is loaded into core by P. rows using a

single access.

2. The serially arranged version of [A], defined
Eqs. (B.7) - (B.10), is accessed ana its load-
ing is initiated. The terms flow into core by
PE rows starting with row 0. After 30 rows are
filled the loading is continued, uninterrupted,
back at row 0 overwriting the prev.ously loaded
terms. The computations and manipulations of
the following steps are carreid out before the

matrix terms are overwritten.
3. InGzialize np T 10 < 0; B, =0 foF v = 0,

r
ls®s .0 BB n0 N8

4. Three sets of three multiplications and product
summation are performed simultancously in all

processors.

3

... =3 +Z 0 s i=1,2,3
SRSl o Terie3ic3 Tl

T

where




QF o (r°+10) (l-dzo,ro)
o =l

At 2
"Hhon (T, if n = Br2

t lr +4, if n > B

2 r,
n = A (first 32 bBits)
iy

m = R (second 32 bits)

r(‘
Also, store matrix row number of the product
conty ibution

Setn =n + 1
0 0

5. Check for the completion of matrix row number n .
¢
If no = MIN(n) return to step (4); otherwise,

P T n° < MIN(n) continue on to step (6).

MIN(n) is the minimum b among all 64 PE's.
0

6. Perform a row sum on Bi; 1 =1,2,3 among those
PE's for which b° Rl With only PEp operative,

shi{t the result to B 1 =1,2,3 where

T G =g P
1

p = p(no-l)

n -1
r ={.=§
1

Operating only those PE's for which b = n set

0 0
Br = Br+4 SOT T = @y Lz wur B9
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7. If the next ten PE rows of the [A1 matrix have

been loaded, return to step (4); otherwise return
to step (5).

The computations and manipulations of steps (4) - (7)
are displayed in Table A.1l.

v




TABLE A.1 COMPUTATIONS AND MANIPULATIONS OF
STEPS (4) - (7)

ANE D o) i 3N

m-1

m+128 ET_] * 64(i-1)

oW TR TR

64r + (p+1) + 64(3i+j-4)




