AD-785 247

「「「「「「」」」」」」

A STATE AND A S

the second second

「「「「「「」」」」

A LIFTING-SURFACE PROGRAM FOR TRAPE-ZOIDAL CONTROL SURFACES WITH FLAPS

Justin E. Kerwin, et al

Massachusetts Institute of Technology

Prepared for:

Office of Naval Research

August 1974

DISTRIBUTED BY:

National Technical Information: Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

REPORT DOCUMENTATI	ON PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
PORT NUMBER	Z. GOYT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
74–15		AN 785 247	
LE (and Subtitle)	l	5. TYPE OF REPORT & PERIOD COVERE	
A LIFTING-SURFACE PROGRAM		Final Report	
CONTROL SURFACES WITH FLA	12	4. PERFORMING CRG. REPORT NUMBER	
THOR(=)		. CONTRACT OR GRANT NUMBER(#)	
Justin E. Kerwin			
Bohdan W. Oppenheim		N00014-67-A-0204-0067	
RFORMING ORGANIZATION NAME AND ADD	RESS	10. PROGRAM ELEMENT, PROJECT, TASI AREA & WORK UNIT NUMBERS	
Dept. of Ocean Engineerin	8		
M.I.T.	•		
Cambridge, MA 02139		-	
		August, 1974	
Office of Naval Research		13. HUMPER OF PAGES	
		67	
DNITORING AGENCY NAME & ADDRESS(If di	ilerent trom Controlling Office)	15. SECURITY CLASS. (of this report)	
		Unclassified	
		150. DECLASSIFICATION/DOWNGRADING SCHEDULE	
STRIBUTION STATEMENT (of this Report) Distribution of this doc STRIBUTION STATEMENT (of the abstract on		a Report)	
Distribution of this doc		a Report)	
Distribution of this doc		a Report)	
Distribution of this doc STRIBUTION STATEMENT (of the abstract on PPLEMENTARY NOTES	tered in Block 20, 11 different fro		
Distribution of this doc STRIBUTION STATEMENT (of the abstract and PPLEMENTARY NOTES Y WORDS (Continue on reverse side if necesse Control Surfaces	tered in Block 20, il dillerent fro		
Distribution of this doc STRIBUTION STATEMENT (of the abetract end PPLEMENTARY NOTES Y WORDS (Continue on reverse side if necessa Control Surfaces Lifting Surface Theory	tered in Block 20, 11 dillerent fro ary and identify by block number) Reproduced by NATIONAL TECHN INFORMATION SE	NICAL RVICE	
Distribution of this doc STRIBUTION STATEMENT (of the obstract on PPLEMENTARY NOTES Y WORDS (Continue on reverse side if necesse Control Surfaces Lifting Surface Theory Rudders	tered in Block 20, 11 dillerent fro ary and identify by block number) Reproduced by NATIONAL TECHI	NICAL RVICE nmerce	
Distribution of this doc STRIBUTION STATEMENT (of the obstract on PPLEMENTARY NOTES Y WORDS (Continue on reverse elde 11 necessor Control Surfaces Lifting Surface Theory Rudders Ship Maneuvering	tered in Block 20, 11 different fro tered in Block 20, 11 different fro try and identify by block number) Reproduced by NATIONAL TECHN INFORMATION SE U S Department of Con Springfield VA _21	NICAL RVICE nmerce	
Distribution of this doc STRIBUTION STATEMENT (of the obstract on PPLEMENTARY NOTES Y WORDS (Continue on reverse elde 11 necesses Control Surfaces Lifting Surface Theory Rudders Ship Maneuvering STRACT (Continue on reverse elde 11 necesses	tered in Block 20, if different fro tered in Block 20, if different fro try and identify by block number) Reproduced by NATIONAL TECHN INFORMATION SE U S Department of Cou Springfield VA _21 ry and identify by block number) surface procedure is ces with trapezoidal yortex approximatic	NICAL RVICE states stat	
Distribution of this doc STRIBUTION STATEMENT (of the abstract end PPLEMENTARY NOTES Y WORDS (Continue on reverse side if necesse Control Surfaces Lifting Surface Theory Rudders Ship Maneuvering ISTRACT (Continue on reverse side if necesse A numerical lifting a for flapped control surface procedure uses a discrete	tered in Block 20, 11 different fro tered in Block 20, 11 different fro ary and identify by block number) Reproduced by NATIONAL TECHN INFORMATION SE U S Department of Cou Springfield VA _21 ry and identify by block number) surface procedure is ces with trapezoidal vortex approximatic onstant percentages ning an optimum flap	NICAL RVICE merce Si s developed specifically l planforms. The on with spanwise of the chord. Use oped rudder design	
Distribution of this doc STRIBUTION STATEMENT (of the obstract on PPPLEMENTARY NOTES Y WORDS (Continue on reverse olde 11 necessa Control Surfaces Lifting Surface Theory Ruders Ship Maneuvering STRACT (Continue on reverse olde 11 necessa A numerical lifting a for flapped control surface procedure uses a discrete vortex lines located at co of the procedure in obtain is demonstrated. A listin	tered in Block 20, 11 different fro tered in Block 20, 11 different fro try end identify by block number) Reproduced by NATIONAL TECHN INFORMATION SE U S Department of Con Springfield VA _21 ry end identify by block number) surface procedure in ces with trapezoidal yortex approximation onstant percentages ning an optimum flag ng and user's description	NICAL RVICE merce Si s developed specifically l planforms. The on with spanwise of the chord. Use oped rudder design	

Scinely of the shirt and the second

and a second find

. .

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Ocean Engineering Cambridge, MA 02139

Report No. 74-15

A LIFTING-SURFACE PROGRAM FOR TRAPEZOIDAL CONTROL SURFACES WITH FLAPS

> by Justin E. Kerwin and Bohdan W. Oppenheim August 1974 Distribution Approved for public reason Approved for public reason Approved for public reason

> > :)/3

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This work was supported by the Office of Naval Research, Contract N00014-67-A-0204-0067, NR 062-467, MIT OSP 80464.

N. W. S. Sterner

ial

CONTENT'S

ما يكريك إنها ال

シーステレーション

No. of Lot of Lo

10.00 A

		Page
	Abstract	
	Nomenclature	
1.	Introduction	1
2.	Discrete Vortex Arrangement	
3.	Continuous and Discrete Circulation Distribution	
4.	Computation of Induced Velocities	18
5.	Computation of Forces	24
6.	Test of Program Accuracy	28
7.	Design Application	33
	References	37

Appendices

and the second of the second se

ないないというないないとうないというというで

1.	Instruction for Preparing Computer Program Input Data -	40
2.	Sample Output	42
	Computer Program Listing and Particulars	46
	Positioning of Control Points Within Their Own Elements	59

Figures

1.	Coordinate System and Notation for Planform Geometry	2
2.	Illustration of a Typical Horseshoe Vortex Element	6
3.	Complete Lattice Arrangement	7
4.	Chordwise and Spanwise Mode Shapes	12
5.	Spanwise Lift Distribution Obtained by Present Program Superimposed on Fig. 13 of [5]	30
6.	Spanwise Distribution of Lift Due to Angle of Attack and Flap Deflection for Rudder Designs of Table 6	36
7.	The Element Used for Estimation of the Error Caused	
	by Control Point Position Deviations	60

<u>Tables</u>

1.	Relative Vortex Strength for Eight Chordwise Intervals _	15
2.	Relative Vortex Strength for Fifty Chordwise Intervals _	16
3.	Variations of Parameters With Extreme Precision Numbers -	28
4.	Indentification of Symbols in Fig. 5	31
5.	Effect of Sweep and Taper on Flapped Rudder Characteristics	34

and the second state of the se

ABSTRACT

A numerical lifting surface procedure is developed specifically for flapped control surfaces with trapezoidal planforms. The procedure uses a discrete vortex approximation with spanwise vortex lines located at constant percentages of the chord. Use of the procedure in obtaining an optimum flapped rudder design is demonstrated. A listing and user's description of the computer program is included.

and the state of the second state of the second of the

La la la

and a state of the state of the

Sale of the second second

NOMENCLATURE

(In the order of appearance in the text)

effective aspect ratio $\frac{(2s)^2}{k}$ а semi-span ទ rudder area A flap area ratio A_{p}/A f A f flap area taper ratio c_T/c_R λ tip chord cT root chord c_R sweep angle of 1/4 chord Λ chordwise coordinate axis x spanwise coordinate axis z $x_{L}(z)$ leading edge chordwise coordinate $x_{T'}(z)$ trailing edge chordwise coordinate i spanwise panel index of the lattice chordwise panel index of the lattice j spanwise index of control points m chordwise index of control points n flap chord at the rudder root ×FR flap chord at the rudder tip \mathbf{x}_{FT} skeg chord at the rudder root XSR skeg chord at the rudder tip XST Iv spanwise precision number chordwise precision number IH Ι number of chordwise panels on rudder J number of spanwise panels on rudder NF number of spanwise panels on flap NS number of spanwise panels on skeg G(x,z)nondimensional circulation distribution rudder angle of attack α δ flap deflection relative to skeg

IV

NOMENCLATURE (cont.)

actica

P

Contraction of the

and the second se

γ(x,5)	dime: sional circulation distribution
U	velocity at infinity
ckl	mode amplitudes
k	spanwise mode index
2	chordwise mode index
K	number of sparwise modes
L	number of chordwise modes
$f_k(\tilde{z})$	kth spanwise mode
pℓ(s) ž	Lth chordwise mode
ν Z	transformed spanwise coordinate
でざ	transformeá chordwise coordinate on rudder
c(z)	rudder local chord
ť	transformed chordwise coordinate on flap
٤	integral of £th chordwise mode
Γ(z)	spanwise circulation distribution
ξ,ζ	coordinates of a general point on a vortex
v(s)	velocity induced by spanwise vortex
_v (t)	velocity induced by trailing vortex
v _{m,n,i,j}	velocity induced by the (i,j)th element at the (m,n)th control points
v _{m,n,k,1}	velocity induced at the (m,n)th control point by the (k,1)th mode of unit amplitude
V _{m,n}	velocity at the (m,n)th control point
ρ	mass density
$C_{L\alpha}(z)$	local lift coefficient per unit angle of attack
C _{LÔ} (z)	local lift coefficient per unit flap deflection angle
CLA	overall lift coefficient per unit angle of attack
C _{LS}	overall lift coefficient per unit flap deflection angle
C _{Di}	induced drag coefficient
η	lifting surface efficiency
ML	first moment of the lth chordwise mode function
$\frac{x_{\rm H}(z)}{c(z)}$	local distance of the center of pressure as a fraction of the local chord from the hinge line

V

a de la companya de l

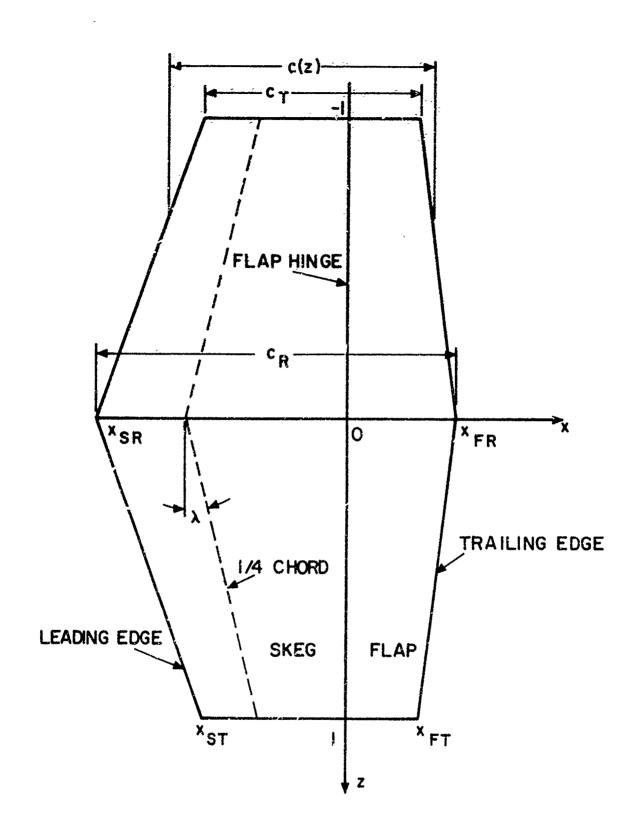
NOMENCLATURE (cont.)

$\frac{\mathbf{x}_{\mathrm{LE}}(z)}{c(z)}$	local distance of the center of pressure as a fraction of the local chord from the leading edge
×H č	resultant chordwise position of the center of pressure relative to the flap hinge line as a fraction of the mean chord
ē	mean chord = $(x_{FR} + x_{FT} + x_{SR} + x_{ST})/2$
с _{DV}	viscous drag coefficient
∿ ສ _H	transformed chordwise coordinate evaluated at the posi- tion of the flap hinge

vi

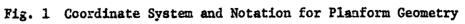
東京の高

m The Start Start Start Start Start Starter


1. INTRODUCTION

This study arose from the need to develop a rational basis for the selection of optimum geometric characteristics for rudders with relatively small flaps. In this case, very minor changes in sweep or taper can effect a major change in the spanwise distribution of flap chord. This, in turn, could be expected to influence the spanwise and chordwise distribution of lift when the flap is deflected. To optimize rudder performance one would like to have a distribution of lift which results in the maximum lift/drag ratio, highest possible stall angle, and minimum control moment for both skeg and flap. Consequently, it is necessary to have the means for estimating spanwise and chordwise distribution of lift for a given geometry.

Ship rudder effective aspect ratios typically fall in the region where neither high aspect ratio nor low aspect ratio theories are valid. One must, therefore, resort to numerical lifting-surface theory to obtain meaningful results.


It seemed most expedient for this application to write a specialized computer program designed to accommodate only trapezoidal planforms of the form shown in Fig. 1. The flap hinge is required to be at right angles to the root section, and the tip chord is required to be parallel to the flow. No restriction is placed on aspect ratio, sweep or taper, provided that the flap hinge emerges from the tip, rather than the leading or trailing edge.

A trapezoidal planform makes a discrete vortex lifting-surface model relatively simple. Unlike the original work of Faulkner [1], or current schemes for propellers [2], the present work employs spanwise vortex lines located at constant percentages of the flap and skeg chord, rather than at right angles to the oncoming flow. This eliminates the problem of vortex

たちろうろうろうろう

人 いたい いちょう いちょう

elements running out of the leading and trailing edges, which is inevitably a source of inaccuracy. This would be particularly objectionable in the tip region of a small flap.

As a result, the spanwise vortex lines are not purely bound vortices, since they include a component of vorticity parallel to the oncoming flow. Eowever, as long as the accompanying system of trailing vortices is arranged in such a way that continuity of vorticity is preserved, this is an equally valid, discrete representation of a continuous vortex system. おおおおおいたいないである。 そうまたいはまったいのはないない であるかでいたまであるまであったいであっていたちょうではないできたい そうなもま いいままた

It was decided to use a strictly linear lifting-surface theory, since an examination of results for two-dimensional airfoils with flaps [3] indicates that flap effectiveness is reduced due to viscous effects before any non-linear augment of lift becomes apparent. Consequently, the vortex system is located on a plane, even when the flap is deflected, and the influence of thickness on loading vanishes. One may then solve the problem of a rudder with zero flap deflection and unit angle of attack, and a separate problem of a rudder with zero angle of attack and unit flap deflection. The solution to any combination of angle of attack and flap deflection is then simply a linear combination of the preceding two results.

2. DISCRETE VORTEX ARRANGEMENT

فتسمد في والمناطر الم من محمد المعاد والمراجع الم

The computer program is designed to accommodate any quadrilateral flapped control surface with a hinge axis normal to the flow, and with a tip parallel to the flow, as indicated in Fig. 1. The planform geometry is uniquely specified by the four nondimensional quantities tabulated below:

Symbol	Definition					
8	Effective aspect ratio $\frac{(2s)^2}{A}$					
f	Flap area ratio A _F /A					
λ	Taper ratio c _T /c _R					
Λ	Sweep angle of 1/4-chord					

From these, we may obtain the coordinates of the four corners of the control surface. The coordinate system, as shown in Fig. 1, is located with the x-axis situated at the root section and the z-axis coincident with the flap hinge axis. The semispan, \exists , is taken to be unity, so that all length dimensions are nondimensionalized at the outset with respect to this quantity. The x-coordinates of the four corner points then become:

$$x_{FR} = \frac{3(1-\lambda) + 4f(1+\lambda)}{2a(\lambda+1)} - \frac{1}{2} \tan \Lambda$$

$$x_{SR} = x_{FR} - \frac{4}{a(\lambda+1)}$$

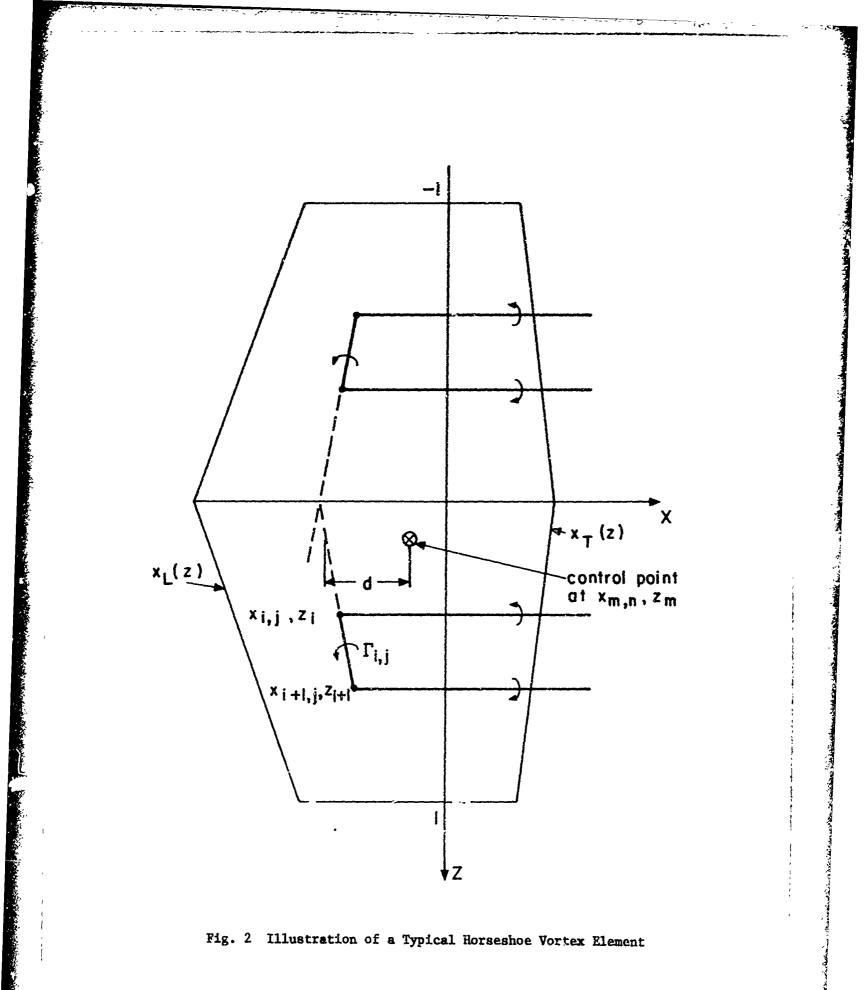
$$x_{FT} = \frac{3(\lambda-1) + 4f(1+\lambda)}{2a(\lambda+1)} + \frac{1}{2} \tan \Lambda$$

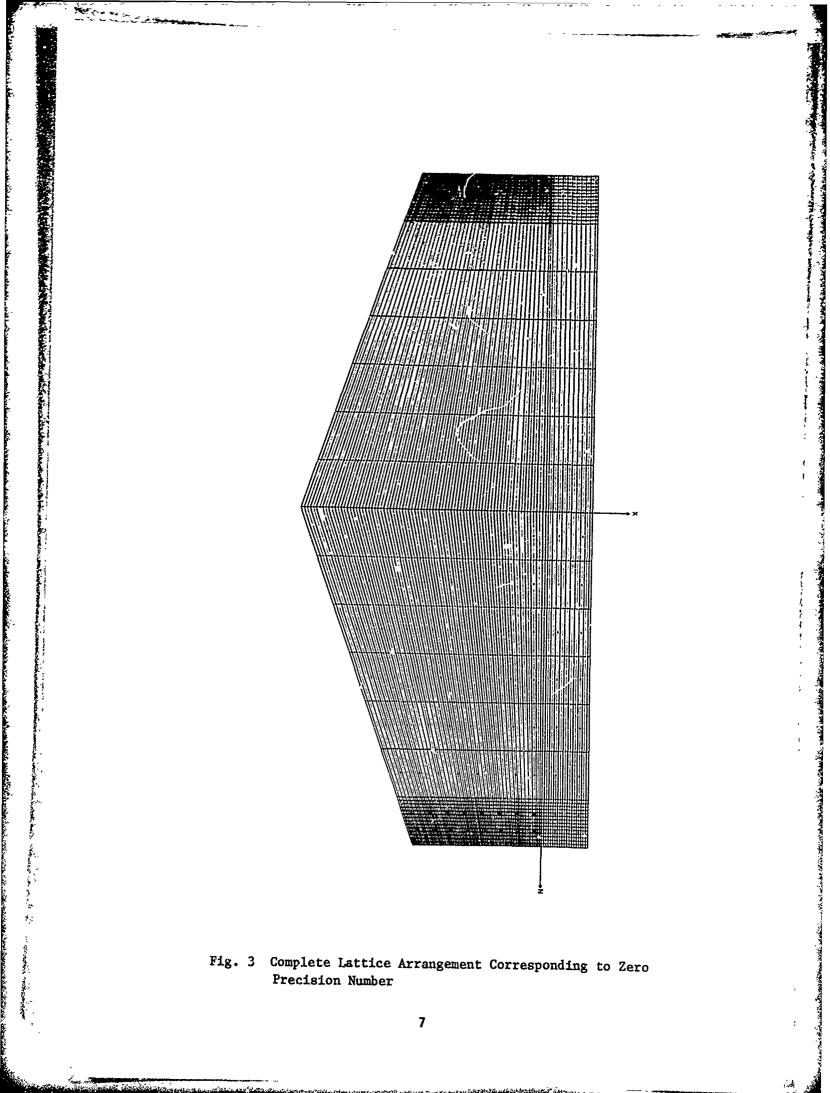
$$x_{ST} = x_{FT} - \frac{4\lambda}{a(\lambda+1)} \qquad (2.1)$$

and a construction of the second s

If we do not wish to have the flap hings emerge from either the leading or trailing edge, it is necessary that the choice of input quantities be such that x_{FR} and $x_{FT} > 0$ and x_{SR} and $x_{ST} < 0$. If these conditions are not met, an error message is printed.

The two trapezoidal regions representing the skeg and flap may now be subdivided into a lattice of spanwise and trailing discrete vortex lines. An individual segment of a spanwise vortex, together with the two trailing vortices originating at the ends of the segment, forms a horseshoe vortex of constant strength, as illustrated in Fig. 2.


The complete lattice arrangement is shown in Fig. 3. The fineness of the grid is controlled by specifying a spanwise precision number, $I_V = 0$, 1, or 2, and a chordwise precision number, $I_H = 0$, 1, or 2. A zero precision number denotes the coarsest possible grid spacing, which is the one illustrated in Fig. 3.


The semispan is divided into $5I_V + 7$ chordwise panels of equal width. The panel nearest to the tip is further subdivided into 14 equal intervals, and this pattern is duplicated on the image side of the planform. The total number of chordwise strips over the span, I, for each precision number is as follows:

Precision Number Number of Chordwise Panels

<u> </u>	Ĩ
0	40
1	50
2	60

「ないないという」というないのですのないであるのである

The total chord is divided into J spanwise panels in accordance with the specified horizontal precision number I_{μ} ,

$$J = 50 + 10 I_{\rm H}$$
 (2.2)

In general, it is not possible to have the chordwise spacing the same on both the skeg and the flap. However, the two spacings will be very nearly equal if the number of panels on the flap, NF, is the integer closest to the flap area ratio times the total number of intervals over the chord,

$$NF \ge f \cdot J \quad . \tag{2.3}$$

The number of panels on the skeg, NS, is then:

$$NS = J - NF \qquad (2.4)$$

The determination of NF and NS is in^+ ernal to the computer program, based on the specified input value of f.

Velocities are computed at 80 control points distributed over the span and chord. Their spanwise placement is permanent, as indicated by small circles in Fig. 3. Their chordwise placement is arbitrary, and is specified as input data by the user. Spanwise vortex lines are placed in the middle of each panel. Each control point is located midway between adjacent spanwise and trailing vortex elements, which is essential in order for the discrete system to converge to the Canchy-Principal Value of the corresponding continuous singular integral. Thus the control points are placed on the panel boundaries.

To avoid errors due to edge effects, control points should be located at least 2 spaces away from the leading and trailing edges, and 4 spaces away from the tip. The choice of 8 spanwise and 10 chordwise stations follows from our experience with similar computing schemes for propellers [2]. Since the flap, when deflected, acts to some extent as an independent lifting

surface: in is important to include as many control points as possible over the flap chord, while avoiding the immediate vicinity of the hinge line. This requires an unusually large number of panels over the chord, and a flexible system of specifying control point locations.

This lattice arrangement, which concentrates at least half of the elements over the outer seventh of the span, is the result of considerable numerical experimentation. Lifting surfaces with trapezoidal planforms may, under certain circumferences, have a spanwise load distribution which falls to zero very abruptly at the tip. To obtain accurate results it is necessary to locate a sufficient number of control points very close to the tip. However, to avoid edge effects, as we have noted before, it is essential to have several grid spaces between the outboard control point and the tip. One must, therefore, have an extremely fine grid in this region. Since a relatively coarse spacing provides ample accuracy in the midspan region of the lifting surface, it would be an extreme waste of computer time to extend the fine grid over the entire planform.

3. CONTINUOUS AND DISCRFTE CIRCULATION DISTRIBUTION

ć

One could, in principle, solve for the circulation of each discrete spanwise vortex element necessary to satisfy the flow tangency boundary condition at each control point. However, this would require that the number of control points be equal to the number of vortex elements, and would result in the need to solve large systems of simultaneous equations. For zero precision number, for example, there would nave to be 800 control points rather than 80, and there would be 800 simultaneous equations to solve.

We will, therefore, employ a modal approach, which greatly reduces the number of unknowns. The continuous distribution of circulation over the span and chord is assumed to be given by a series of known forms with unknown coefficients, following the classical work of Glauert [4]. The non-dimensional circulation distribution due to the angle of attack, $G^{(\alpha)}$, and flap deflection, $G^{(\delta)}$, is assumed to be given by the following series:

$$G^{(\alpha)}(x,z) = \frac{\gamma^{(\alpha)}(x,z)}{4U} = \sum_{k=1}^{K} \sum_{l=1}^{L-1} c_{kl}^{(\alpha)} f_{l}(\tilde{z}) p_{l}(\tilde{s})$$
(3.1)

$$G^{(\delta)}(\mathbf{x},\mathbf{z}) = \frac{\gamma^{(\delta)}(\mathbf{x},\mathbf{z})}{4!!} \sum_{k=1}^{K} \sum_{\ell=1}^{L} c_{k\ell}^{(\delta)} f_{k}^{(\lambda)} p_{\ell}^{(\lambda)} \hat{s} . \qquad (3.2)$$

In the above equations c_{kl} are unknown mode amplitudes, $f_k(\tilde{z})$ are the spanwise modes, and $p_l(\tilde{s})$ are the chordwise modes. The spanwise modes are given by the following expression:

$$f_k(\tilde{z}) = \sin[(2k - 1)\tilde{z}],$$
 (3.3)

where \hat{z} is the transformed spanwise coordinate

$$v_{z}^{\nu} = \cos^{-1}(-z)$$
 (3.4)

The chordwise modes are

A STATE OF LEASE

and a state the state was the state of

$$p_1(\vec{s}) = \frac{2}{\pi c(z)} \quad (\frac{1 + \cos \vec{s}}{\sin \vec{s}})$$
 (3.5)

$$p_{\ell}(s) = \frac{4 \sin[(\ell-1)s]}{\pi_{c}(z)} \qquad \ell = 2, 3, ..., L - 1 \qquad (3.6)$$

$$p_{L}(\tilde{t}) = \frac{2}{\pi x_{T}(z)} \quad \frac{(1 + \cos \tilde{t})}{\sin \tilde{t}}$$
(3.7)

where
$$\hat{s} = \cos^{-1}[1 - \frac{2(x - x_L(z))}{c(z)}]$$
 (3.8)

$$\hat{t} = \cos^{-1}[1 - \frac{2x}{x_{T}(z)}]$$
 (3.9)

The last chordwise mode, corresponding to l = L, contains a square-root singularity at the leading edge of the flap and is, therefore, omitted in (3.1). The first six spanwise and chordwise modes are plotted in Fig. 4. One can readily see from Fig. 4 that control points must be located very near the tip in order to resolve the fifth and sixth spanwise modes.

The chordwise modes may be integrated to obtain the total circulation around any element of chord length:

$$P_1(\hat{s}) = \int p_1(\hat{s}) dx = \frac{1}{\pi} (\hat{s} + \sin \hat{s})$$
 (3.10)

$$P_2(\ddot{s}) = \int p_2(\ddot{s}) dx = \frac{1}{\pi} (\ddot{s} - \frac{\sin 2\ddot{s}}{2})$$
 (3.11)

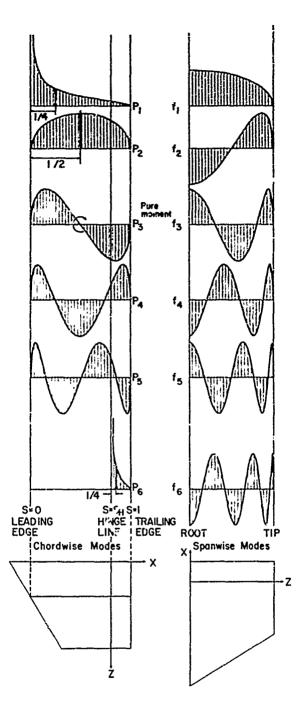


Fig. 4 Chordwise and Spanwise Mode Shapes

「「「「「「「」」」」

A Contraction of the

We was here and the strength

$$P_{\ell}(\tilde{s}) = \int p_{\ell}(\tilde{s}) dx = \frac{2}{\pi} \left(\frac{\sin(\ell-2)\tilde{s}}{2(\ell-2)} - \frac{\sin \ell \tilde{s}}{2\ell} \right) \qquad \ell = 2, 3, ..., L - 1$$
(3.12)

AND DESCRIPTION.

an in section of the ball of the section of the sec

A STATE OF A

and the state of t

and the standing

$$P_{L}(\tilde{t}) = \int p_{L}(\tilde{t}) dx = \frac{1}{\pi} (\tilde{t} + \sin \tilde{t}) \quad . \tag{3.13}$$

The total circulation around any spanwise station due to each mode is obtained by substituting the leading and trailing edges as limits in the preceding integrals. It, therefore, follows that

$$x_{T}(z) = p_{1}(\hat{x})dx = 1$$

$$x_{L}(z)$$

$$x_{T}(z) = p_{2}(\hat{x})dx = 1$$

$$x_{L}(z)$$

$$x_{T}(z) = p_{1}(\hat{x})dx = 0 \qquad l = 2, ..., L - 1$$

$$x_{L}(z)$$

$$x_{T}(z) = p_{L}(\hat{x})dx = 1 . \qquad (3.14)$$

$$0$$

We can now combine (3.14) with the spanwise modes to obtain an expression for the spanwise circulation distribution

$$\Gamma^{(\hat{u})}(z) = \int_{x_{L}(z)} \gamma^{(\alpha)}(x,z) dx = 4U \sum_{k=1}^{K} (c_{k1}^{(\alpha)} + c_{k2}^{(\alpha)}) f_{k}(\hat{z}). \quad (3.15)$$

$$E^{(\delta)}(z) = \int_{\mathbf{x}_{L}(z)}^{\mathbf{x}_{T}(z)} \gamma^{(\delta)}(\mathbf{x}, z) d\mathbf{x} = 4U \sum_{k=1}^{K} (c_{k1}^{(\delta)} + c_{k2}^{(\delta)} + c_{kL}^{(\delta)}) f_{k}(z) .$$
(3.16)

We can now obtain the circulation strengths of each discrete spanwise element corresponding to each mode of unit amplitude. The circulation must be, of course, constant over the span of the element. We chose to make this value correspond to that of the continuous distribution at the midspan of the element. Consequently, the spanwise mode value is obtained by substituting the value of $\sum_{n=1}^{\infty} \cos_n$ responding to the midspan of the element in question into (3.3). The circulation is then obtained by multiplying this value from (3.5) by the integral of the particular chordwise mode over one chordwise interval from (3.10) - (3.13). The sum of the strengths of the spanwise vortices over any chordwise panel will, therefore, be equal to the total circulation around the midspan of the panel in the continuous case.

The circulation of the two trailing vortices shed from the ends of each spanwise vortex seguent must then have the same magnitude with an appropriate algebraic sign. Finally, since corresponding elements on the image portion of the lifting surface have the same strengen, this computation needs to be made only over the semispan.

An alternative procedure for determining individual vortex strengths is a method originated by Faulkner [1]. The relative vortex strengths corresponding to any chordwise mode are obtained by requiring that the downwash at each panel boundary be exact in two-dimensional flow. The results are given in Table 1 for 8 chordwise panels, and in Table 2 for 50 chordwise panels. The only significant differences occur in the first and a substantian and a same and a substantian and

FAULKNEP SOLUTION

į,

and a shere we want

£ ≭∽	0.129591	-0-069119	-0.159381	-0.076562	0. 776562	0.159381	C.069119	-C.129591
J=4	0.146059	0.068072	-0.065429	-0.149702	-0.148702	-0.065429	0.068072	0.146058
J=3	0.125011	00154209	0.110310	0°039387	-0.035387	-0.110310	-0.154209	-0.126011
J=2	0.072036	0.123367	0.147C79	0.157547	0.157547	0.147079	0.123367	0.072006
ر ا ا	0.392761	C.13289	j.126892	0.036130	0.074768	0.057678	0.042297	0.026184
	N= 1	N= 2				N= 6	N= 7	N= 8

~
C
-
F
<
<u>ч</u>
С С
LL:
┣
Z
0
منا
ů C
C
Σ

J=5	C.116676 -0.061543 -0.061543 -0.073452 C.073452 C.073452 0.151446 0.151543 -0.116676
J=4	0.133168 0.068580 -0.068580 -0.144470 -0.144470 -0.068580 0.068580 0.138168
J=3	0.122816 0.152848 0.152848 0.039160 -0.039160 -0.109588 -0.152848 -0.122816
J≖2	0.072147 0.123354 0.157431 0.157431 0.157431 0.157431 0.147013 0.123354 0.072147
j=1	0.440596 0.166402 0.118774 0.070533 0.070353 0.053698 0.038158 0.019511
	NN N N N N N N N N N N N N N N N N N N

:

The mode Relative Vortex Strength for Eight Chordwise Intervals. index is J and the vortex element index is N. Table 1.

•

an and a bar and an and a strange a stranger and the strange of a bar and a stranger and a stranger and a stranger

and the second secon

KODE INTEGRATION

minimum and a sugar

3

FAULKNER'S SOLUTION

** 2 5 4 8 ņ

 0.015737

 0.015737

 0.015737

 0.015737

 0.015737

 0.015737

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015745

 0.015755

 0.015755

 0.015755

 0.015755

 m 8 ដុ 5 0.0141414 0.014144 0.014144 0.014144 0.014144 0.014144 0.014144 0.014144 0.0 ہ، ع 5 0.154175 0.0767745 0.0767745 0.077157 0.077157 0.077157 0.077157 0.077157 0.077157 0.077157 0.071577 0.071577 0.071577 0.0717777 0.07177777 0.07177777 0.0717777 -4 \$ 5 0.01696 0.01696 0.02157 0.01696 0.02157 0.016757 0.016757 0.011678 0.011678 0.011678 0.011678 0.011678 0.075957 0.011678 0.075957 0.011678 0.075957 0.011678 0.075957 0.011678 0.075957 0.011775 0.075757 0.011775 0.075757 0.011775 0.075757 0.011775 0.075757 0.011775 0.075757 0.011775 0.075757 0.011775 0.011755 0.0117555 0.01175555 0.011755555 00 ŝ 8 *3 0.013414 0.0134142 0.022173 0.0224597 0.0224597 0.0121737 0.0141544 0.0141544 0.0141544 0.0141544 0.0141544 0.0177337 0.0141544 0.0014541 0.0177337 0.0177337 0.0177337 0.0177337 0.0127113 0.0127113 0.0127113 -0.025404 -0.025404 -0.025376 -0.124309 -1.02373 1005 -8 -0- 37 5 -C. 727145 -U. 924055 -U. 924055 -C. 924755 -C. 924747 -0.724843 -0.023479 -0.02317 -0.019929 -0.016237 -0.006317 0.009317 0.016232 6.016732 6.016735 6.016735 0.023979 0.023979 -0-025333 0.0253333 m -0°02090-. 'n 0.023946 0.023555 0.027109 0.01454 0.012942 0.011079 0.001644 0.001644 0.025712 U.125947 0.024679 1.024537 0-624290 0.072633 114130 072051 ~ R 5 ć 0.074003 0.03491 0.077917 0.072229 0.072229 0.179461 0.07479 0.055791 r i . 5

the vortex

and

h

18

The mode index

Relative Vortex Strength for Fifty Chordwise Intervals.

element index is N.

3

Table

「「ななない」というではないないできたのでいう」」というないできた

chordwise mode near the leading and trailing edges, and both methods result in essentially identical final values of lift distribution. However, the Faulkner method requires a greater amount of com atation, since the relative panel widths on the skeg and flap are functions of spanwise position. For zero precision number, the Faulkner method would require the solution of 120 different sets of simultaneous equations, each with 50 unknowns. Without the complication of the flap, the Faulkner procedure for obtaining relative vortex strengths would be much simpler, since the relative vortex strengths could be pre-computed.

4. COMPUTATION OF INDUCED VELOCITIES

The lattice arrangement as described in Section 2 results in a set of discrete, skewed horseshoe vortex elements, as shown in Fig. 2. Consider a particular horseshoe element consisting of a spanwise vortex of strength Γ extending from (x_1,z_1) to (x_2,z_2) , joined by semi-infinite trailing vortices of strength Γ starting at (x_2,z_2) and $-\Gamma$ starting at (x_1,z_1) . For each such element located in the interval $0 \le z \le 1$, there will be a corresponding image element of the same strength extending from $(x_2,-z_2)$ to $(x_1,-z_1)$. The trailing vortex shed at $(x_2,-z_2)$ will have a strength $-\Gamma$, while the vortex shed from $(x_1,-z_1)$ will have a strength of $+\Gamma$.

Let us first consider the spanwise vortex segment. Defining (ξ,ζ) as the coordinates of a general point on the vortex, and (x,z) as the coordinates of the control point, the velocity may be written in accordance with the law of Biot-

Savart as follows:

$$\frac{4\pi v^{(s)}(x,z)}{\Gamma} = \int_{x_1,z_2}^{x_2,z_2} \frac{(x-\xi)d\zeta - (z-\zeta)d\xi}{[(x-\xi)^2 + (z-\zeta)^2]^{3/2}} . \quad (4.1)$$

Along the vortex, we have:

$$t = \frac{d\xi}{d\zeta} = \frac{x_2 - x_1}{z_2 - z_1} = const , \qquad (4.2)$$

so that (4.1) may be expressed in terms of the variable ζ alone and readily integrated to give the result:

$$\frac{4\pi v^{(s)}(x,z)}{\Gamma} = \frac{2a\zeta + b}{2d\sqrt{a\zeta^2 + b\zeta + c}} \Big|_{z_1}^{z_2}$$

where

$$a = 1+t$$

 $e = x-x_1+tz_1$
 $b = -2(et+z)$
 $c = e^2+z^2$
 $d = e-tz$. (4.3)

Equation (4.3) is not suitable for numerical computation if d becomes small. As is evident from Fig. 2, d is the horizontal distance between the control point and the spanwise vortex line or its extension. For the vortex arrangement shown in Fig. 3, d can never be less than approximately one half the chordwise grid spacing for vortex elements occupying the semispan interval. $0 \le z \le 1$. The distance d will only become small enough to cause problems if the aspect ratio is extremely high. For this situation, the limiting form of (4.1) valid for d<<1 is:

1 ... 2

$$\frac{4\pi v^{(s)}(x,z)}{\Gamma} = 2\sqrt{a} \left[\frac{1}{d} - \frac{2d}{(2az_1+b)^2} - \frac{2d}{(2az_2+b)^2} \right] , \quad (4.4)$$

provided $z_1 < z < z_2$. In that case, the velocity approaches that of an infinite vortex as given by the first term in (4.4). The second and third terms represent small corrections to the result for an infinite vortex. It has been found by numerical experimentation that round-off error is minimized if (4.4) is used for |d| < 0.002.

If z is not in the interval $z_1 < z < z_2$, the first term of (4.4) disappears, and the velocity tends to zero as $d \neq 0$. If (4.3) is used in this case, catastrophic round-off error can occur. This is because the integral becomes very large, but independent of ζ . Hence, the integral

from z_1 to z_2 becomes the small difference between the two large numbers.

This situation does not occur in practice for elements over the semi-span. However, due to the inclination of the spanwise vortex lines, it is evident from Fig. 3. that a control point could easily be aligned with the extension of an image vortex segment located in the interval $-1 \le z \le 0$. This can result in seemingly random errors which come and go with minor changes in grid spacing or planform. This problem is eliminated entirely if the velocity is set to zero for |d| < 0.002 provided z is outside the interval $z_1 < z < z_2$. Inclusion of the small correction similar to the second term of (4.4) makes no difference, and is therefore an unnecessary complication.

The velocity induced by the two trailing vortices is:

$$\frac{4\pi v^{(t)}(x,z)}{\Gamma} = (z-z_1) \int_{x_1}^{\infty} \frac{d\xi}{[(x-\xi)^2 + (z-z_1)^2]^{3/2}} \\ - (z-z_2) \int_{x_2}^{\infty} \frac{d\xi}{[(x-\xi)^2 + (z-z_2)^2]^{3/2}} \\ = \frac{1}{z-z_1} \left[\frac{x-x_1}{\sqrt{(x-x_1)^2 + (z-z_1)^2}} + 1 \right] - \frac{1}{z-z_2} \left[\frac{x-x_2}{\sqrt{(x-x_2)^2 + (z-z_2)^2}} + 1 \right]$$

(4.5)

Since the trailing vortices are all parallel, the round-off error situation is much simpler than for the spanwise vortices. Difficulties could only be encountered for aspect ratios far below those of practical interest. Equation (4.5) may therefore be used for all elements.

The total velocity induced by a horseshoe element is the sum of either (4.3) or (4.4) and (4.5). The contribution of corresponding image elements

may then be obtained by repeating this computation following the substitution:

$$x_1 \neq x_2$$

$$z_1 \neq -z_2$$

$$x_2 \neq x_1$$

$$z_2 \neq -z_1$$
(4.6)

which results in the correct algebraic sign for each of the individual elements. We shall use the notation $v_{m,n,i,j}$ to denote the velocity induced at the control point located at (z_m,x_n) by the complete unit strength horseshoe element located between $(z_i,x_{i,j})$ and $(z_{i+1},x_{i+1,j})$ together with its image.

The FORTRAN function HSVEL listed in the appendix performs this calculation.

The strength of the (i,j)'th vortex element corresponding to the k'th spanwise and L'th chordwise modes of unit amplitude is

$$f_k(\hat{z}_i) P_\ell(\hat{s}_{i,j})$$
, (4.7)

where \mathbf{z}_{i}^{\vee} is the transformed coordinate of the midspan of the element

$$\sum_{i}^{\nu} = \cos^{-1}(-\frac{(z_{i} + z_{i+1})}{2}), \qquad (4.8)$$

and $P_{\ell}(s_{i,j})$ is the integral of the chord load function obtained by substituting the x-coordinates of the leading and trailing edges of the midspan of the (i,j)'th element as limits of integration in (3.14).

The velocity induced at the (m,n)'th control point by the (k, ℓ) 'th mode of unit amplitude is, therefore, obtained by summing the product of the mode strengths from (4.7) with the velocities for unit circulation obtained from (4.3) - (4.5) over all I × J horseshoe elements:

$$\mathbf{v}_{m,n,k,l} = \sum_{i=1}^{I} f_k(\hat{z}_i) \sum_{j=1}^{J} P_l(\hat{s}_{ij}) \mathbf{v}_{m,n,i,j}. \qquad (4.9)$$

Since the contribution of the image is included in $v_{m,n,i,j}$, the summation in (4.9) is only over the elements in the semi-span interval $0 \le z \le 1$.

We can now write the final expression for the velocity induced at the (m,n)'th control point in terms of the unknown mode amplitudes $c_{k,l}$:

$$V_{m,n} = \sum_{k=1}^{K} \sum_{l=1}^{L} c_{k,l} v_{m,n,k,l}. \qquad (4.10)$$

Equation (4.10) represents a set of simultaneous equations for the mode amplitude coefficients, once the values of $V_{m,n}$ are prescribed by the boundary conditions of the problem. The mode amplitude coefficients corresponding to zero flap deflection and unit angle of attack, $c_{k,l}^{(\alpha)}$, are obtained by solving (4.10) with $V_{m,n} = +1$ for all values of (m,n). Similarly, the mode amplitude coefficients for zero angle of attack and unit flap deflection are obtained by setting $V_{mn} = 0$ for all values of (m,r) corresponding to control points on the skeg, and $V_{mn} = +1$ for all values of (m,n) corresponding to control points on the flap.

If the number of modes is equal to the number of control points, the boundary condition may be satisfied exactly at all the control points. If the number of modes is less than this, (4.10) may be solved by least squares to provide the closest possible fit at all the control points. The latter approach is preferred, since the higher modes amplitudes are generally of

questionable accuracy. For this application we solve (4.10) for K.L unknown mode amplitude coefficients by least squares through 80 control points.

a strain a s

and a state of the second s

ALL LAN

2

all a shine a sur deriver with the server

الكنتك المعالم المالي كالم المحالي

HARDEN AND A TON A STAND

and the second se

10

5. COMPUTATION OF FORCES

Lift and induced drag may be obtained most directly from the spanwise circulation distribution given in (3.15) and (3.16), employing the wellknown results of classical lifting-line theory [4]. The local lift coefficient per unit angle of attack is:

$$C_{L\alpha}(z) = \frac{-\rho U \Gamma(z)}{\frac{1}{2} \rho U^2 c(z)} = \frac{8}{c(z)} \sum_{k=1}^{K} f_k(z) \{c_{k1}^{(\alpha)} + c_{k2}^{(\alpha)}\}, \quad (5.1)$$

noting that the coefficients c_{kl} and the circulation Γ have been obtained from (4.10) for an angle of attack of unity. Similarly, the lift coefficient due to unit flap deflction is:

$$C_{L\delta}(z) = \frac{8}{c(z)} \sum_{k=1}^{K} f_{k}(z) \{ c_{k2}^{(\delta)} + c_{k2}^{(\delta)} + c_{kL}^{(\delta)} \} .$$
 (5.2)

Overall lift coefficients are obtained by multiplying (5.1) and (5.2) by the local chord, c(z), integrating over the span, and dividing by the area of the lifting surface. Since only the first spanwise mode contributes, we obtain the result:

$$C_{L\alpha} = \pi a (c_{11}^{(\alpha)} + c_{12}^{(\alpha)})$$

$$C_{L\delta} = \pi a (c_{11}^{(\delta)} + c_{12}^{(\delta)} + c_{1L}^{(\delta)}) , \qquad (5.3)$$

where a is the effective aspect ratio.

and a start of the second second second start with the second second second second second second second second

The induced drag coefficient, in accordance with lifting line theory, may be written as follows in terms of the present notation:

$$C_{\text{Di}\alpha} = \frac{C_{\text{L}\alpha}^{2}}{\pi a} \left[1 + \sum_{k=2}^{K} (2k-1) \left\{\frac{c_{k1}^{(\alpha)} + c_{k2}^{(\alpha)}}{c_{11}^{(\alpha)} + c_{12}^{(\alpha)}}\right\}^{2}\right]$$

$$C_{\text{Di}\delta} = \frac{C_{\text{L}\delta}^{2}}{\pi a} \left[1 + \sum_{k=2}^{K} (2k-1) \left\{\frac{c_{k1}^{(\delta)} + c_{k2}^{(\delta)} + c_{k1}^{(\delta)}}{c_{11}^{(\delta)} + c_{12}^{(\delta)} + c_{11}^{(\delta)}}\right\}^{2}\right] . \quad (5.4)$$

The efficiencies $\eta^{\alpha,\delta}$ of the lifting-surface are defined as the reciprocals of the quantities in square brackets in (5.4), and are equal to one if the spanwise circulation coefficients are zero for k>1.

To obtain the chordwise position of the center of pressure at any spanwise location, we must obtain the first moments of the chordwise mode functions, p_{ϱ} . \mathbf{x}_m

$$M_{1} = \int_{x_{L}}^{x_{T}} \mathbf{x} \cdot \mathbf{p}_{1}(\mathbf{\hat{s}}) \, d\mathbf{x} = \mathbf{x}_{L}(z) + \frac{c(z)}{4}$$

$$M_{2} = \int_{x_{L}}^{x_{T}} \mathbf{x} \cdot \mathbf{p}_{2}(\mathbf{\hat{s}}) \, d\mathbf{x} = \mathbf{x}_{L}(z) + \frac{c(z)}{2}$$

$$M_{3} = \int_{x_{L}}^{x_{T}} \mathbf{x} \cdot \mathbf{p}_{3}(\mathbf{\hat{s}}) \, d\mathbf{x} = -\frac{c(z)}{4}$$

$$M_{g} = \int_{x_{L}}^{x_{T}} \mathbf{x} \cdot \mathbf{p}_{g}(\mathbf{\hat{s}}) \, d\mathbf{x} = 0 \quad \text{for } \ell = 4, \dots L-1$$

$$M_{L} = \int_{0}^{x_{T}} \mathbf{x} \cdot \mathbf{p}_{L}(\mathbf{\hat{t}}) \, d\mathbf{x} = \frac{\mathbf{x}_{T}(z)}{4} \quad . \quad (5.5)$$

ation bearing a starting of a starting to the starting of the starting and the starting and the starting of the

The results for M_1 , M_2 and M_L can be readily indentified as the positions of the center of pressure of these modes, remembering that the origin of the coordinate system is at the flap hinge, rather than at the leading edge. The third chordwise mode contributes a pure moment, while the remaining modes contribute neither force nor moment.

The local distance of the center of pressure resulting from the joint effect of all the modes is expressed as a fraction of the local chord from the hinge line as follows:

$$\frac{x_{\rm H}^{(\alpha)}(z)}{c(z)} = \frac{1}{c(z)} \frac{\sum_{k=1}^{K} f_{k}^{(\lambda)}(z)}{\sum_{k=1}^{K} f_{k}(z)} \sum_{\substack{\ell=1\\ k=1}}^{L-1} c_{k,\ell}^{(\alpha)} N_{\ell}$$

$$\frac{\sum_{k=1}^{K} f_{k}(z)}{\sum_{k=1}^{L} c_{k,\ell}^{(\lambda)}} P_{\ell}$$

$$\frac{x_{\rm H}^{(\delta)}(z)}{c(z)} = \frac{1}{c(z)} \frac{\sum_{k=1}^{K} f_{k}(z)}{\sum_{k=1}^{L} c_{k,k}^{(\delta)}} N_{\ell}$$

$$\frac{\sum_{k=1}^{K} f_{k}(z)}{\sum_{k=1}^{L} c_{k,k}^{(\delta)}} N_{\ell}$$

$$(5.6)$$

$$\frac{\sum_{k=1}^{K} f_{k}(z)}{\sum_{k=1}^{L} c_{k,k}^{(\delta)}} N_{\ell}$$

and the second second

Distance between the local center of pressure and the leading edge as a function of local chord can be easily found from (5.6) as:

$$\frac{x_{LE}^{(\alpha)}(z)}{c(z)} = 1 - \frac{1}{c(z)} [x_{T}(z) - x_{H}^{(\alpha)}(z)]$$

$$\frac{x_{LE}^{(\delta)}(z)}{c(z)} = 1 - \frac{1}{c(z)} [x_{T}(z) - x_{H}^{(\delta)}(z)] .$$
(5.7)

Finally, the resultant chordwise position of the center of pressure relative to the flap hinge line can be obtained by integration over the semi-span,

$$\frac{\overline{\mathbf{x}}_{\mathrm{H}}^{(\alpha)}}{\overline{\mathbf{c}}} = \frac{1}{\overline{\mathbf{c}}} \sum_{\mathbf{L}\alpha} \int_{0}^{1} \mathbf{x}_{\mathrm{H}}^{(\alpha)}(z) C_{\mathbf{L}\alpha}(z) c(z) dz$$

$$\frac{\overline{\mathbf{x}}_{\mathrm{H}}^{(\delta)}}{\overline{\mathbf{c}}} = \frac{1}{\overline{\mathbf{c}}} \sum_{\mathbf{L}\alpha} \int_{0}^{1} \mathbf{x}_{\mathrm{H}}^{(\delta)}(z) C_{\mathbf{L}\delta}(z) c(z) dz .$$
(5.8)

This integration is performed numerically, using ten equally spaced stations and an integration formula which has been developed for functions with a square-root singularity in slope at the tip [2].

The preceding results may be combined to generate lift, drag and moment characteristics for any set of combinations of angle of attack and flap de-flection. By adding an empirical viscous drag term of the form:

$$C_{\rm DV} = 0.0085 + 0.0166 C_{\rm L}^2$$
, (5.9)

a realistic approximation to the characterists of a flapped control surface can be made, provided, of course, that stall does not occur. The constants appearing in (5.9) were obtained from experimental airfoil data with "standard roughness" given in [3]. A sample tabulation of this type is given in Appendix 3.

6. TESTS OF PROGRAM ACCURACY

The effect of the spanwise and chordwise guid spacing on computed lift-slope for a typical control surface is given in Table 3. Variations with precision numbers are quite small, and it may be concluded that zero precision numbers are satisfactory for planform shapes similar to the case examined.

Table 3

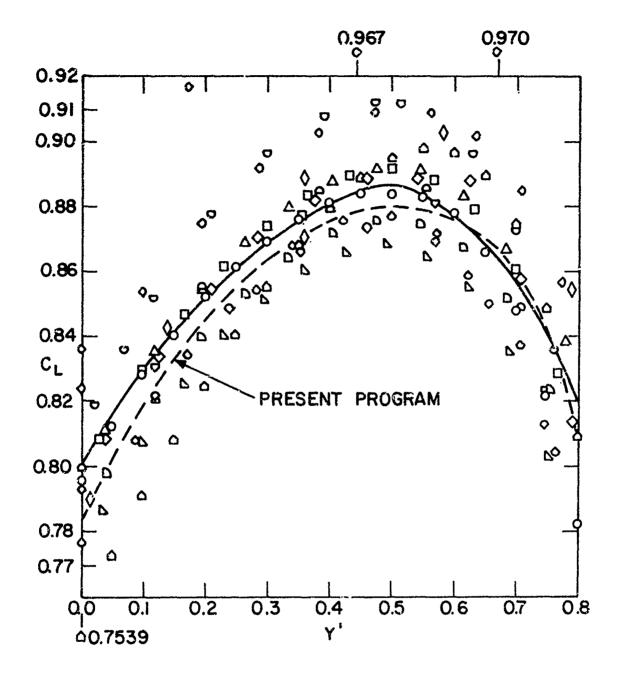
Variations of Parameters with Extreme Precision Numbers

۲	I.H.	C _{Dia}	C _{Diδ}	C _{IA}	с _{ту}	ηα	η^{δ}
0	0	0.114	0.116	3.138	1.776	0.996	0.984
0	2	0.114	0.116	3.132	1.877	0.996	0.980
2	0	0.114	0.116	3.101	1.756	0.995	0.980
a = 2.8		$\Lambda = 15^{\circ}$		f = 0.2		$\lambda = 0.6$	

Convergence of the solution with increasing numbers of elements is a necessary but obviously not sufficient test of program accuracy. Fortunately, the results for zero flap deflection may be compared with corresponding solutions obtained by other current numerical lifting-surface theory techniques. A recent publication by Langan and Wang [5] is particularly helpful in this regard. This reference compares the spanwise distributions of lift for a tapered wing of aspect ratio 5 obtained by fifteen different liftingsurface computer programs. Fig. 5 shows the results of the present program

and second statistics in the failures

plotted on a reproduction of Langan and Wang's Fig. 13 which are in excellent agreement with the average results of the fifteen programs compared in [5]. The overall lift coefficient obtained by the present program for this example is 4.106 which agrees <u>exactly</u> will the results given in [5] obtained by the Tulinius program! Induced drag was also found to be in good agreement.


A comparison was also made of the lift coefficient of a rectangular planform of unit aspect ratio. Watkins, Woolston, and Cunningham in a 1959 report [6], cite the following values obtained from several sources, to which we have added the results from the present program:

Source	<u>Cra</u>
Jones (low aspect ratio limit)	1.571
Lawrence	1.400
Hsu	1.497
Watkins-Woolston-Cunningham	1.455
Present Program	1.508

As a further check in the low aspect ratio range, J. Dulmovits of the Grumman Aircraft Engineering Corporation kindly offered to run his program for a tapered planform of effective aspect ratio 2.8. He obtained a lift slope of 3.140, which agrees almost exactly with a value of 3.138 obtained by the present program.

A test of the portion of the program dealing with the flap was made by running a rectangular planform of aspect ratio 60, to provide an essentially two-dimensional result. The exact solution in this case, as given in [7], is

$$\frac{C_{L\delta}}{C_{L\alpha}} = \frac{\left[(\pi - \tilde{s}_{H}) + \sin(\pi - \tilde{s}_{H})\right]}{\pi}$$
(6.1)

ALL DESCRIPTION

San a strategy at the series

Fig. 5 Spanwise Lift Distribution Obtained by Present Program Superimposed on Fig. 13 of [5]

SYMBOL	PROGRAM
0	TULINUS
	DULMOVITS
\diamond	MARGASON-LAMAR
Δ	GI ESING
Δ	RUBBERT
D	LOPEZ-SHEN (EVD)
◊	HAVILAND
۵	JORDAN
Q	LAMAR (MULTHOPP)
۵	WIDNALL
0	BANDLER (ERA)
∇	ROWE
σ	CUNNINGHAM
0	JACOBS-TSAKONAS
0	LOPEZ (KÜCHEMANN)

a new standard and a strand a strand a strand a strand a strand and a strand a strand a strand a strand a strand

はためたちという

Table 4 Identification of Symbols in Fig. 5

where \hat{s}_{H} is the transformed chordwise coordinate evaluated at the position of the flap hinge. For a 50% flap the present program gives $C_{L\delta}/C_{L\alpha} = .807$ compared with a value of .818 obtained from (6.1). For a 20% flap the computed value is .526 vs. .550 obtained from (6.1). We should expect slightly lower results for an aspect ratio of 60 so that this result seems reasonable.

The calculation for an aspect ratio of 60 also provided an additional check on C_{LCI} in the limit of high aspect ratio. The value obtained was 5.915 which compares closely with a value of 6.080 which one would obtain from the lifting-line theory.

Ý,

It may also be of some interest to compare the value of $C_{I\alpha}$ given by the present program with that given by Equation (23a) of Chapter VIII of <u>Principles of Naval Architecture</u> [8]. The latter is a simple empirical equation:

$$C_{L\alpha} = \frac{(0.9) (2\pi)a}{(\cos \Lambda \sqrt{\frac{a^2}{\cos^4 \Lambda} + 4}) + 1.8}$$
(6.2)

which, for an aspect ratio a = 2.8 and a sweep angle $\Lambda = 15^{\circ}$ gives a value of 2.997, which is about five percent below the computed value of 3.138. Since (6.2) was developed to provide correlation with experimental results, the lower value of lift slope is not at all unreasonable.

7. DESIGN APPLICATION

The present program was initially developed to provide a rational basis for selecting optimum planforms for an experimental series of flapped rudders [9]. The first two rudders in this series were to have an effective aspect ratio of 2.8 and flap area ratios of 20% and 10%, respectively. These were planned as an extension of an earlier series of experiments on flapped rudders published in 1972 [10].

With such small flaps, minor changes in sweep angle and taper ratio have a large effect on the spanwise distribution of flap chord. The objective is to determine the sweep angle and taper ratio in such a way as to optimise the following parameters:

- a) Maximize lift slopes $C_{I,\Omega}$ and $C_{I,\delta}$;
- b) Minimize induced drag;
- c) Provide nearly uniform distribution of C_L over span. This requirement is based on a decision to use a constant thickness/chord ratio of 15% over the span. Uniform lift coefficient is then optimum both for delay of cavitation inception and delay of stall.
- d) Provide sufficient flap tip chord to permit installation of a hinge.

Calculations were made for five combinations of taper ratio and sweep for the 20% flap rudder and the principal results are given in Table 5. Plots of spanwise distribution of lift-slopes are shown in Fig. 6.

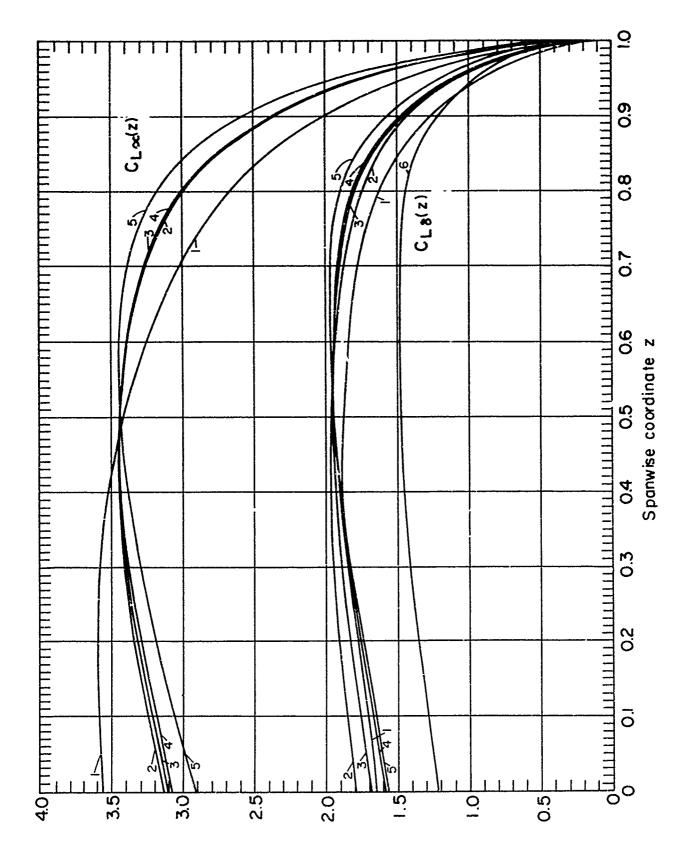
Table 5

No.	f	٨	λ	C _{La}	C _{LÔ}	C _{Dia}	^C Diδ
1	0.2	11 ⁰	0.9	3.101	1.670	0.115	0.121
2	81	11 ⁰	0.6	3.146	1.802	0.114	0.115
3	11	15 ⁰	0.6	3.138	1.775	0.114	0.116
4	11	18 ⁰	0.6	3.129	1.738	0.114	0.117
5	11	19.57 ⁰	0.5	3.136	1.774	0.114	0.115
6	0.1	15 ⁰	0.6	3.138	1.355	0.114	0.119

Effect of Sweep and Taper on Flapped Rudder Characteristics effective aspect ratio = 2.8

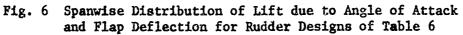
It is clear from Table 5 that overall lift and drag characteristics are very insensitive to sweep and taper within the fairly limited range permitted due to the small flap. This is, of course, a characteristic of low aspect ratio lifting surfaces, so that this result is not surprising. If one looks closely, one can see the trend of decreasing lift slope and increasing drag with increasing sweep angle.

The effect of taper ratio on spanwise distribution of lift is much more pronounced, as is evident from Fig. 6. Here it is clear that a taper ratio of 0.9 unloads the tip too much, while a taper ratio of 0.5 does the reverse, and that a value of 0.6 seems about right. A change ¹ sweep angle from 11 to 18 degrees has essentially no effect on C_{LX} , and a small effect on $C_{T,\hat{N}}$.


Rudder No. 2 appears to have the best spanwise distribution of lift as well as maximum lift and minimum drag. However, the tip chord of the flap is extremely small, which would cause difficulties in the model and possibly

in the full-scale hinge design. An increase in sweep angle from 11 to 15 degrees overcomes this problem with very little compromise in performance. Rudder No. 3 was therefore selected for the test program. This has the additional practical advantage of a nearly vertical trailing edge and a constant flap chord.

The constraint on flap chord for the 10% flap area ratio rudder is even more severe. Rudder No. 6 shown in Table 5 and Fig. 6 has the same planform as No. 3, but with a flap area of 10%. Again, we find that $C_{L\delta}$ is a little too low at z = 0. Increasing this by a decrease in sweep angle is even more impractical in this case due to the small flap chord. We conclude, therefore, that this planform seems to be nearly optimum for both the 20% and 10% flap rudders.


and the second se

C. Statistical

Contraction No.

とないでいていています。

REFERENCES

- Falkner, V. M., "The Calculation of Aerodyanmic Loading on Surfaces of Any Shape", Aerodynamic Research Counsel, TR R&M, 1973
- [2] Kerwin, J. E., "Computer Techniques for Propeller Blade Section Design", Second Lips Propeller Symposium, Drunnen, Holland, May, 1973.
- [3] Abbott, I. H. and Von Doenhoff, A. E., Theory of Wing Sections Including a Summary of Airfoil Data, Dover Publications, Inc., New York, 1959.
- [4] Glauert, H., "The Elements of Airfoil and Airscrew Theory", Cambridge University Press, London, 1926.
- [5] Langan, T. J. and Wang, H. T., "Evaluation of Lifting Surface Programs for Computing the Pressure Distribution on Planar Foils in Steady Motion", NSRDC 4021, May, 1973.
- [6] Watkins, C. E., Woolston, D. S., and Cunningham, H. J., "A Systematic Viernel Function Procedure for Determining Aerodynamic Forces on Oscillating or Steady Finite Wings at Subsonic Speeds", NASA TR R-48, 1959.
- [7] Durand, W. F., (Editor in Chief), Aerodynamic Theory, Dover Publications, Inc., New York, 1963.
- [8] Comstock, J. P. (Editor), Principles of Naval Architecture, The Society of Naval Architects and Marine Engineers, New York, 1967.
- Kerwin, J. E., Lewis, S. D., and Oppenheim, B. W., "Experiments on Rudders with Small Flaps in Free Stream and Behind a Propeller", M.I.T. Report 74-16, July, 1974.
- [10] Kerwin, J. E., Mandel, P., and Lewis, S. D., "An Experimental Study of a Series of Flapped Rudders", Journal of Ship Research, December, 1972.

37

2-2-1

APPENDICES

A STATE OF A STATE OF

and survey to a locality of the sector of the sector of the sector of the locality of the sector of

Preceding page blank

and the second second second

APPENDIX 1

Instructions for Preparing Computer Program Input Data

Integer variables must be right-ødjusted in their fields - Real variables must contain a decimal somewhere within their field.

of the state of the

A. FIRST CARD

وتبت يحديدها ليقيقا السقائينية

SYMBOL	MODE	FIELD	LIMITATIONS	DESCRIPTION
KDM	Integer	4	1-6	Number of spanwise modes-K Recommended value is 6
LT	Integer	8	: 3	Number of chordwise modes-L Recommended value is 6
IHF	Integer	12	0,1 or 2	Chordwise precision index I _H Recommended value is 0
IV	Integer	16	0,1 or 2	Spanwise precision index I _V Recommended value is O
ASR	Real	17-24	*	Geometric aspect ratio, $\frac{1}{2}a$
AF	Real	25-32	0.1 <u><</u> AF <u><</u> 0.9	Flap area ratio, f
T	Real	33-40	*	Taper ratio, λ
PP	Real	41-48	*	Sweep angle in degrees, Λ
КОРТ	Integer	56	0 or 1	If KOPT=1, the subrottine OPTION will be called and will perform the calcula- tions appearing on the third page of the output

B. SECOND CARD

William the state of the second second and second second second second second second second second second second

This card contains the indices of the ten chordwise panels which contain control points, NCP(N), N=1,10. These are integers which are read in ten

*Combinations of these quantities must be so chosen that flap chords are positive for all z.

this a side to concern and concerning

fields of 8 columns. The recommended values for zero precision number are 3, 8, 13, 18, 23, 28, 33, 38, 42, and 48. However, the intention is that these may be altered for a more advantageous placement relative to the flap hinge if so desired.

C. MULTIPLE RUNS

Upon completion of the calculation, the program returns to the read statement for the first card. A blank card (or more specifically, a zero value for KDM) terminates the run.

A LEAST AND A CONTRACT OF A

APPENDIX 2

and the second second second second second second

Langer Strate

tay the burnes and the first here at the second

<u>Sample Output</u> The correspondence between the output and the text symbols is as follows:

text	output	text	output
z C _{LQ} (z)	Z CLA	$C_{M\alpha}(z) = \frac{x_{H}^{(\alpha)}(z)}{c(z)} \cdot C_{L\alpha}(z)$	CM-A
$C_{L\delta}(z)$	CLD	$C_{\mathrm{M}\delta}(z) = \frac{\mathbf{x}_{\mathrm{H}}^{(\delta)}(z)}{c(z)} \cdot C_{\mathrm{L}\delta}(z)$	CM-D
CIa	CLAR	$M\delta^{(z)}$ c(z) L $\delta^{(-)}$	
C _{LÔ}	CLDR	α	ALPHA
$C_{\rm Dia}/C_{\rm La}^2$	CDIA	δ	DELTA
$c_{\rm Di\delta}^{2}/c_{\rm L\delta}^{2}$	CDID	δ/α	DELTA/ALPHA
: η ^α	EFA	$C_{L} = C_{L\alpha} \cdot \alpha + C_{L\delta} \cdot \delta$	CL
n^{δ}	EFD	$c_{Di} + c_{DV}$	CD
V m,n	downwash velocities	$(C_{L\alpha} \cdot C_{M} \cdot \alpha^{2} + C_{I,\delta} \cdot C_{L\delta} \cdot \delta^{2})/C_{L}$	СМ
c ^α KL	C-ALPHA	$(\frac{\mathbf{x}_{\mathrm{H}}^{\alpha}}{(\frac{1}{2})} \cdot \mathbf{c}_{\mathrm{I}\alpha} \cdot \alpha + \frac{\mathbf{x}_{\mathrm{H}}^{\delta}}{\frac{1}{2}} \cdot \mathbf{c}_{\mathrm{L}\delta} \cdot \delta)/\mathbf{c}_{\mathrm{L}}$	
د دلال	C-DELTA	$(\frac{H}{\overline{c}} \cdot C_{L\alpha} \cdot \alpha + \frac{H}{\overline{c}} \cdot C_{L\delta} \cdot \delta)/C_{L}$	XHL/C
$\frac{x_{\rm H}^{(\alpha)}(z)}{c(z)}$	XA/LC		
$\frac{\mathbf{x}_{\mathrm{H}}^{(\delta)}(z)}{c(z)}$	XD/LC		
$\frac{x_{LE}^{(\alpha)}(z)}{c(z)}$	XALE/LC		
$\frac{x_{LE}^{(\delta)}(z)}{c(z)}$	XDLE/LC		

42

an and the second s

DEG. ASPECT HATIOH 2.80 FLAP AREAH.200 TAPER RATIOHO.40 SWFFP ANGLEHIS.000 Precision indicesschardmise =0 Spanmise=0 Nummer de spanwise vonfs = 6 Nummer je cmordnise modes = 6

Sec. 2

SPANWISF DISTRIBUTION OF LIFT 7 = SPAN COURDINATF (7=0 AT THE PONT,2 =1 AT THE TIP)

.

	1.776 0.116 0.984	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	CL.9F. CD10= EFD =	##5 0.00131 -0.00131 -9.00476 -0.00315
	= 3.138 = 0.114	A SF 405F X 44 C 01509 C 01509 -0.01571 -0.01192 -0.00591 -0.00591
CC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RADIAN CL4Mm Creff.#42 Criam [fam	AMPL FTUDFS C-ALPMA L DF4UTFS CHOPDWISF MUDF K=3 K=4 0.01067 C.0150 1 -0.01705 -0.0157 9 -0.00535 -0.0119 9 -0.00535 -0.0118 2 -0.00554 -0.3027
CLA 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.11 2.11 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.10 2.12 2.10 2.00 2	SLOPF COEFF. PER I Coffe,/unit lift (APE RfSpectivfly	MCDF A MOF A K#2 0.05644 -0.05391 -0.01519 -0.01349 -0.00349
2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NVERALL LIFT SLOP Ivmiced ngag Coff Ecflencies APE	K DEHOTFS SPANUISF Kai Lei 0.38337 Lei 0.2663 Lei 0.00410 Lei 0.00493 Lei 0.00493 Lei 0.60344

K=6 -0.07050 0.70109 -0.0777 -0.0777 -0.25199 -0.0024

x=5 0.00711 -0.00589 -0.00589 -0.00563 -0.00563 -0.00147

-0.00145 -0.00001 0.00312 0.00455 0.100455 0.100455

HDDE AMPI ITUDES C-FELTA K=2 K=3 K=3 0.00101 -0.00574 -0. 0.00255 -0.00154 0. 0.00281 -0.0154 0. 0.00281 -0.0154 0.

x=1 0.03184 0.12911 -0.02936 0.3670 0.03670 0.02933

4 = X

ASPECT RATION 2.80 FLAP AREAN.200 TAPER RATIOND.60 SWEFP ANGLEWIS.000 DEG. Pretision indices:chardmise =0 Spanwigf=0 Number of spanwise modes = 6 number of chardwise wents » 6

CAN SUCCESSION

and the second secon

N=10 0.99604 1.00172 0.99945 0.990744 1.00458 0.99162 0.99162 0.99162 1.00047 V=10 1.03651 1.05539 1.05539 1.05539 1.05539 1.05539 1.05539 1.05539 1.05539 1.05539 1.05539 1.05539 W=# 1.00008 1.00068 1.00584 0.99.70 1.00129 1.00129 1.00129 1.00129 1.00129 414 0.93995 0.875955 0.85965 0.85414 0.87414 0.87483 0.88647 N=4 -0.01547 -0.01365 -0.01365 -0.01300 -0.00392 0.00392 -0.00422 N#7 0.49647 0.49632 1.00235 0.99077 0.99077 1.00235 0.99274 0.99274 0.99274 0.20275 N=7 0-05994 0-15202 0-13178 0-13329 0-13329 0-15288 0-15288 0-15288 N=6 0.99899 6.99941 1.00314 0.99914 0.99595 1.00075 0.99539 1.00075 Nek -0.00497 0.07518 0.07818 0.01484 0.01484 0.01448 0.01343
 FF
 DGMNWASH
 VELOCITIES
 ALL
 CONTACL
 PRINTS

 TES
 SPANWISE
 INDEX,
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N</ Nef 1.00105 0.99202 1.00144 0.99456 0.99456 1.001253 1.001261 0.99761 N=5 -0.07493 -0.05475 -0.05575 -0.05355 -0.05355 -0.0733955 -0.037595 -0.03150 -0.03150 444 -0.00450 -0.17578 -0.17578 -0.073778 -0.073778 -0.073778 -0.07378 -0.07378 -0.07378 -0.07378 -0.07378 -0.07378 N#3 0.02941 0.012941 0.01788 0.01778 0.01428 0.01498 DELTA FUF TO F N=2 0.04400 0.09995 0.12095 0.12095 0.12094 0.12162 0.12162 0.12162 MATKIX PF D M DENDIES S N=1 1.02080 0.95733 1.02080 1.02733 1.02735 1.02735 0.97726 0.997726 0.997726 N=1 -0.03657 -0.03657 -0.036589 -0.05589 -0.05589 -0.05572 -0.05572 -0.05572 -0.05432

_Ŧ THE DOWNSTREAM ROUMDARIES OF THE FOLLOWING PANELS 18 23 29 29 CONTROL POINT COLUMNS ARE LOCATED AT 3 5 5

Ş

•

ASPECT RATION 2.80 FLAP AREAN.200 TAPER PATION0.60 SWEEP ANGLEMIS.0000EG. PRECISION INDICES:CHOROWISE NO SPANNISENO Number of spannise modes = 6 - Number of Chorowise McOES = 6

	2	XA/LC	CHA	XD/LC	0-*0	XALE/LC	XDLE/LC	
ð	0.0	-0-585	-1.8270	-0.251	-0.4230	0.251	0.519	
0	0.10	-0.584	-1.8809	-0-247	-0.4333	0+2+0	0.586	
0	0.20	-0-582	-1.9321	-C.245	-0-4468	0.244	0.581	
G	0.30	-0.581	-1.9654	+52-0-	0054°ŭ-	212.0	0.575	
0	0.40	-0.578	0166*1-	-0-242	-0.4652	0.232	0.568	
G	0.50	-0.572	-1.9613	-0.719	-0.4622	0.725	0.561	•
o	0.60	-0.565	-1.9122	-C.213	-0.4490	0.224	0.557	
o	0.73	-0.561	-1.4310	-0.274	-0.4735	0.217	0.554	
0	0.80	-0.561	-1.6821	-0.212	-0.3777	0.204	0.553	
0	06.0	-0.566	-1.3468	-0.195	-0.2844	0.184	0.555	
INTEGRATED		-0.575	-1.4033	-0.234	-0.4156	0.225	0.566	
ANWISE POSITIONS OF THE CENTERS OF PRESSURE AME : 24=	THE	CENTERS CF	PRESSURE ARE 1	: ZA= 0.46	=UZ.	0.47		

	XHL/C	******	1462*0-	-0.2341	-0.2341	-0.2341	-9.2341	-0-5747	900400-	-0.4516	-0.4183	-0.3939	1276.0-	-0.5747	-0.4996	-0.4516	-0.4183	6191.0-	-0.3751	-0-5747	-0.4996	-0.4516	-9.41ÅT	-0.1939	1776.0-	-0.5747	9004*6	-0-4515	-0.4LB3	-0.3939
	CH	0.0	-0-01627	-0.07254	-0.10880	-0.14507	-0.1A134	-0.15737	-0.12667	-0.11761	-0.11010	-0.11233	-0.11879	-0-31474	-0.25333	-0.27722	-0.22326	-0.22467	-0.23659	-0.47211	-0.34000	-0-34083	0.011.0-	-0.13700	-0.35484	-0.62948	-0.50667	-0-45444	-0.44040	-0-44934
0.47	۲/۵	0.0	13.275	14.627	12.548	10.461	8.825	14.961	14.244	13.150	12.014	10.161	10.025	11.478	9.605	6.173	7.078	6,276	5.549	8.492	6 • A 4 5	5.705	4. RAO	4.255	3.774	6.624	5.261	4.351	407 ° F	3.222
*UZ . 44°D	6	0.0035	0.0117	0.0212	0.0370	C.0592	· 0.C878	0.0143	0.0247	0.0126	1270'0	0.0513	0.0660	0.0417	0.0732	0.1049	5.1421	0.1875	1972.0	0.0957	0.1540	0.2255	5112-0	6114.0	0.5256	0.1654	0.7671	2+52.0	0.5467	0.7246
APE : 24=	ฮ	0.0	0.1549	C.3099	0.4648	0.6198	0.7747	0.2738	C.3513	0.4285	0.5063	9.5937	0.6612	0.5477	0.7026	0.8576	1.0125	1.1675	1.3224	0.8215	1.0540	1.2964	1.5198	1.7512	1.9436	1.0954	1.4053	1.7152	2.0750	. 2.3349
THE CENTERS OF PRESSURE /	DFL/ALPH	*****	*****	*****	*****	*****	*****	0,0	5°2	1•0	1.5	2.0	2.5	0.0	C.5	1.0		2.0	2.5	0.0	0.5	1.0	5 .1	J°C	2.5	0.0	0.5	1.0 .	1 ° 5	2.0
THE CENTERS	DELTA	0-0	2 •0	10.0	15.0	20.0	25.0	0°0	2.5	5.0	7.5	10.0	12.5	0.0	5.0	10.0	15.0	20.0	25.0	0.0	7.5	15.0	22.5	30.0	37.5	0.0	10.0	20.0	30.0	\$0°C
SPANNISE POSITIONS GF	At PHA	G•0	0.0	0.0	C*0	0.0	0.0	5.0	5.0	5.0	5.0	5.2	5.0	10.0	10.0	10.0	10.0	10.0	19.0	c•31	15.0	15.0 -	15.0	15.0	15.0	0.05	0.05	20.0	20.0	20-0

Contraction of the second state of the second

NAMES OF TAXABLE PARTY OF TAXABLE

APPENDIX 3

Computer Program Listing and Particulars

Timing Information: O precision with 36 modes;

1.081 minutes execution time.

いたがと見たいが

alitates and this

MERICAN ALTER DISTRICT OF STREET

IBM System 370/165

and the second state of the second second

55.54

Memory Requirement 100K

a de la companya de l

DIMENSION ZGP(31), ZCP(3), XCP(R, IG), XGP(31, 70), DMNWSA(B, IO), DMNWSO(18,10), V(8,10,6,6), O(9,10), F(6), P(6), CL(1(24) DIMENSICN KW(90,37), CA(7R), CU(18), ZMP(71), MCP(10), FAA(34), CDD(36) FEAD(5,1)XDM, L 7, FHF, IVFR, ASR, AF, 7, PP, KOPT FORMT (415,4FR,3,1R) FEAD(5,4)(NCP(1), N=1, 10) FEAT(5,4)(NCP(1), N=1, 10) IF (Scaft.L1.0.J.AMD.STIP.L1.0.0.0.AMD.FKADT.GT.0.0.AMD.FTIP.GT.0.01G 10 T0 14 WRITF16.10031AP.AF.T.PP.IHF.IVFR.KNW.LT FOUMATIC//. FUROR IN THE LUPUT DATA: SWEEP ANGLE OR FLAP AKEA IS I TO' AIG OR TAFFR RATIO IS TOG SMALL ") CALCULATICA CF GRIC AND COMTROL POINT COORDINATES *************** 18/06/24 DATE = 74226 XGP[1,J]=XS *[FLOAT(NS-J+1]-0.501/FLMAT(NS] ZCP(K)=(2,-C+EK-1,-C+2,-O#PVER#(FK-1,-O})/R# ZCP(7)+2,-O+EFv/2,-O-1,-O)/R#+9,-O/([4,-O#R4) ZCP(5)+2,-O+EPv/2,-O-1,-O)/P4+E9,-O/([4,-O+R4) F# []] # (C 2Y A -]. 0+ (1-1, C) } / 0ENR-W2 SRPT # - : [5.0+3.0+1-C 2YN } / DENR+W2] DD 99 1±1,4K3 ZCP(1)=2.0*(FLCAT (1)=1.0)/R4 DD 101 1+2K4,4K2 ZCP(1)=2CP(1-1)+2.0/(14.C+RM) W2×0.5+TAV(PP=3.14159/189.0) C2YV=4.C+AF=(T+1.0) NF=AF+F1 0AT155+1HF+10)+C+1 NS=50+10*1HF-NF NA NA DFNa=2.0=AR= [T+1.0] XS=7GP[]]+57R+5P90T XF=7GP[]}+57R+5P90T R#=14.0+10.5*RVFR PYFB=FLPAT(IVER) {}-1)+MUX=XUM+{[]-[] 510=571P-58005 F1P=F11P-FRNCT FPR4AT (1019) WRITE (6,15) LK2=21+5+1VFR 48/C-1=(1)a)2 Dr 17 1=1,1x2 RNS=FLPAT(AS) RNF = FLOAT (NC) LK3=7+5+1VFR 00 105 K=2,6 00 16 J=1,NS LI T=I T=1 NUN X=L T=KD# FK=FLCAT(K) 1+EX]=5X] AHEZAASR GO TO 2 FORTRAN IV G1 RELFASE 2.0 103 5 17 \$ 101 36 4 U 0012 0012 0012 0013 0013 0013 0015 1000 6002 0004 0005 0005 0007 80 U O 0017 6100 8100 0139 0400 0400 0400 04500 0045 0046 0047 0048 0048 0039 10017

and the solution of the

いたいのため、たいたいたい

PAGE 0001

F 750 0051 0057 0053 0053 2053	RELEASE	2.0	44 I.N	0415 = 74226	19/06/24	PAGE 0002	
055 055 055	- •	1+SN=1 SN	1+SN=15N				
053 055 055		NI=NS+NF DP 17 J=NS1_NT					
055 055	17	XGP(1,J)=XF +(F	LOAT(J-NS-13+0+50)	+0.50}/fLOAT(NF)			
ec0		00 20 K+1+8					
	-	XSCP=ZCP(X)=57R	+ 5 P () () 1				
157	_	Dn 20 N=1,10					
15 B	-	IF (NCP (N) . GT . NS	1 C1 TO 19				
59		X1P(X•N)=X5(PeF)	L DAT (4S-ACP(N)) /FL DAT (NS)	AT (NS)			
040 141		6(* 111 20 Vrotv (* 1 1 - verođe i	(38/100/3/(30-(8/3/8/100)				
062	12	CC NT INUE	こうしんかん アー・ビー・リング ー・モウン				
		CALCULATICN OF	INDINCED VFLOCITIES	C [] [[E Z]	*********		
263	-	1110 KD=1+0C	х.К				
)64 25		CA(XD)=0.0					
55 55	0011	CP[KU]=7.0					
040 4 7	_ •	00 750 1 1 1 1 1 1 1					
8.9		DG 759 Kal.5		•			
140	_	DI 759 N=1.10					
0010	759	V(Y+A+KD+L 2=0.0					
111		しゃちゃんメマール					
22	-	DD 720 1=1,1.45					
		245=0.5=(2GP(1+	((1)+540(1))				
77		X 5= 2 M 5= 5 T 7 + 5 F C 0	- 1				
53			T Toliners coor				
11		241-1-242-1417 241-1-48202-1-242	1414FRGC1-54031				
	-		-				
5.0	500	E(K0)=SIN((2,0+	51071(KD)~1~0)+2A10				
80	-	TN. 1=L 077 00		•			
181	-	FJ=FL FAT(J)					
56.	-	ŋ∩ 721 K=1,4					
183		DO 721 A#1,10					
,R4		1=>>-01					
	_	[=]					
1.4.4							
		NC. Jewei					
				***************************************	1 * M1 * 7 C L K * 1		
	-						
	. •						
16	,						
20	-						
10							
100							
202	-				•		
							•
000	001		- 13/1/13-12-13-10	(h334)3/H13/4(0 6 /3/////h1534/0 6 /3//h			
	500			10.2-111/1114.5-10.			
0100	• -	60 TC 710					
>							

and the second second

200

and the state of the state of the state of a constant of a constant of the state of the

and the state of the second state of the

FJCT=FLQAT(J-hS) 5F2=(XF=FJOT-NNF=XS)/(RMF=CGPT) 5F2=(XF=FJOT-NNF=XS)/(RMF=CGPT) 5F42ARC75(1.0-2-20=5F1) 5F42-ARC75(1.0-2-20=5F1) 5F42-ARC75(1.0-2-20=5F1) 5F42-ARC75(1.0-2-20=5F1) 5F42-ARC75(1.0-2-20=5F1) 5F42-ARC75(1.0-2-20=5F1) 7F(17-LF2) 70 704 L=3-L1 77 (F1-7,0)=5F42)-5[W((FL-7,0)=5F41))/(FL-2,0)+(SiM(FL=5F41)) 72=FJOT/RMF 72=FJOT/RMF ********************* 18/06/24 7ATF = 74226 D FOLUENTY D FOLU T1=(FJ)7-1-1-1/PARF T1=(FJ)7-1-1-1/PARF TW2=ARCDS(1.0-2.0=T2) TW1=APCDS(1.0-2.0=T1) LTT=T P(LT)=TW2=SIN(TW2)-TW1-SIN(T41) D(T 760 K=1.8 D(T 760 K=1.80 D(T 760 K=1.80) CALCULATION OF ROUNCARY CONDITIONS MAIN RFLEASE 2.0 600 760 770 C 704 700 101 800 905 803 710 FOFTRAN IV GI 0101 0102 0103 0105 0105 0103 0103 0103 0110 0112 0113 0114 0115 0115 0117 0119 0120 0120 0127 0127 0124 0125 0126 0127 0123 0123 0123

PAGE 0003

Ş

Carlos States - -----

そうまやす ゴモ

ł

•			LT_O.O1 WWEIV.MUNKImO.O		W. FC. FD. NUKK, KFRQ = 3						₩, KC, L 1 + C 7 (1 S) + (MNMS 0 (K, N)]=Aq ={Cd { } } →CA { } +XD ⁴ } })*48° ([[](])+(]){1+K]4)+(]){1+[NNK]]					[]]#ZWP([-])+0.05									-> TR > + PACCT - 5K00T			{{¤};x;;;•{{x};;•{{x};*{{x};}}}}}}}}}}	1605	SUK?	DP)+CO(1+TNDX)			1.0)*{{Ca(KD}+Ca(KD+KD*KD*)/Aa1)**2].0] ={{{{D}}};].[4[59•48]].[4]59*#R]					01700 Kore
	00 910 KD=1,KDM	[Hett=[]#KD#+K[Vuffv }vi_vvv v v	IF EXCPERANDALTO	CONTINUE	CALL PTLSU(WW.CC.	Dr AC4 N=1,10	An 804 K≡l,R	HUX 1=0x 508 UU	D7 404 [*[,LT	1 S= (L-1) *KCM+KD	0488584X • 21 = 2 (X • 3	CALCULATICHS OF	CL&G={3.14159+=31	CLDG=(3.14155==3)	541 ±0.0		2mb(1)=0*0	PO 910 1=2,22	1F (1.LE.1c) 7MP(15 (1. GT. 191 740)	CONT VUF	ZMP(23)=0.995	747(24)=1.0	CLA(24)=0.0			50-7-0-0 5657-345112-1758		17 9 2 89 4 5 89 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	FUALLAINUT		Clall != 39.4784245	CUDU11=39.47E4205	442=C0(1)+CV(1+KD	DO 913 KD=2,KD=	FK=FLUAT (KC)	S#]=541+(2.0+FK-1	SH2=542+12 .00 FK-1	C)/(]#S+0*]]=V]CJ	CD1n=(1.0+SHZ)/(3	EFA=1.0/(1.0.5×1)	FFD=1.0/(1.0+5M2)	IN OIS NUT KER	UC 410 4=[\$754] U\$\$757-U\$\$7590 \$406	0000-0-0-0-000-0-0000-0-0000-0-0000-0-0000

ł.

48X M.

Mr. Rogers

こうちょうちょうちょう しょうちょうちょう しんしんかん ちょうちょうちょう

ولالتكفي وللملاكين

particle distribution of the statest

PAGE 0005	Sector 1	ງາສາ				• т	4E F D		(3									•/•.	+=Z=					
18/04/24	FA=F4=3+2X+12HT 6X+24HP4FC[S[OH AF# OF \$PA4HISF }	OX.+Z = SPAN CO			21.40-1-568.3-	č	HEFA+F8,3,6X,5H		L DENGTES CHORDWISE MODE)	34K=5,9X,34K=61								HORDWISE INDEX	**************************************			••••••••••••••••••••••••••••••••••••••		
0ATE - 74226	<pre>* IMF IVER*KDW.LT * AIT()=F5.2%.12HTAPE * AIT()=F5.2*2%.10HELAP ARFA=F4.3*2%.12HTAPE * AVCLE=F6.3*34%.4HCF0.*/*6%.2%4PRFC[Sf1M IN * 9HXPAVHSF=II1./*6%.*NUMAFF OF \$PAVHISF M) * 0HNROWISF WONFS = 0.12*//)</pre>			1)*270(1)) Per tidde fosse ofe manian	FLUE COLLE	LE RESPECTIVE	LITTIDES C-ALPHA')	ISE MUDE.	<pre><->.9X.3HK.3.9X.3HKe4.9X.3HKe5.9X.3HK</pre>		10612.51	×ו,K¥MAX)	LITURES C-NELTA')			• # # • # # # # # # # # # # # # # # # #	OF JJWWWASH VELOCITIES A Ammise index, N Denntes C	\$=N: *X6*.E=N: *	.*).**=[.[]) 0512 \$1		TT DFLTA**//18x,*4=1**94**4*2**9X**N=3**9X**N=4 ,9X**A=7**9X**4=9**97**9X**N=9**9X**N=10*1		
NI W NI N	WRITE(6.1003)AF.AF.T.PP.I S FCPMAT(11.55.1714A5PECT B 18 RATTCFF.2.27.174SKEFP 2016 E5:CH39DM15F m111.27.9 3055 **12.57.10148F4 DF C	21TE (6,548) 3P44T (10x,7945P1NH15F () 2ATE (2*0 AT THE 97)T,7	WPI TF (6.946) F@P4AT (16%,1H7,14X,3HCLA,	C 950 141,74 21TF(6,945)74Pf[],CLA(PVAT [[UX,3[F]0.3,5X] P[TF[6,99]][LAG.CLDG	71 FURNING (17,47,47,47,47,47,47,47,47,47,47,47,47,47	C) 1 9= • • F 8 • 3 } P T E (6 • 96]) F F A • F F O F R 4 A T (9 × • 2 9 4 E F F I C I F NC 11	¢F4.]) RITE{6,955) >P⊻11 (/.10x.000F ÅHDI	PITE(6,1002)	¤[TE(¢.10Cl) ∏P*AT {19%.3HK=1.9%.3H	00 957 L=1,15 KW=(L-1)=KD4+1	WAY=KW+KFM-1 CPMAT 194,2HL=,111,1X,	PITE(6,9581L, (CAA(N),N)	PPMAT (/, 3CX, 1MJNE AMP	жил стоядоог) ОП 960 L=1.«LT Кыш(t -1)«кГч+1	X=KW+KC*-1	WEITE(6,958)L.(CDU(N),N=81 Weite(6,1003) AP.AF.T.PP.	₩₽11E (6,5%1] FA2VAT (///,20X,•WATAIX 1T5•./.20X,•W AFAJTES 50		00 982 K#1.4 WPITF(6,9831K+\$\$WN#SA{K+N} Esemat (84 44241).12,1063	6 . T	0441 (1,30%,015	n 985 X=1.8	
TV GI RELEASE 2.	M 1.00 18 10 20 20 20 20	H 896	946 FI	950 HI	646 646		196 - 196	 255 255 255	1002	H 1001	C¥	959 7	957 H	059 F			3 C C C C C C C C C C C C C C C C C C C	4 981 F 11	3.5	0 N C 60		984 F	c	
FOPTRAN 1	0204 0205	0207 0207	0209 0709	0210	0212 0213	0215 0215	0717 0218	0219	1220	6223 4220	0225	0727 3778	0220	1220	1170 1170 2170	0735	0236	6238 8620		0241	14/0	0244	0245	

		•	_	
18/04/24		FORMAT (/////.IOX."CONTROL POINT CALIUMNS ARE LOCATED AT THE NOMUST IDEAN ACHINEMPSES OF THE SELFONDED PANELS : "	PP.SAUNT.	
11		101 10.//	AR, AF, T	
74226		ARE LOCA	HF. LVER.	
047F = 74226	6	CULINNS	K04.LT.T	
	N), N=1, 1	TNICE I	10.4.00.	
N I N	WWSLIK.	F THE ST	L DPTION	
I	943)Xefs	//// 10×	0.1) CAL	
د• ۲	WRITE (6.943)X.("WWNST(K.W).M=1.10) Write(6.926) (NEP(N).A=1.10)	FORMAT ()	IF (KOPT.EO.1) CAL	60 TO 2 END
FORTRAN IV GI RELEASF 2.0	1 526	986	• -	
19 /				
2 1				
FORTRI	0246	02+8	6740	0250

PAGE DORA

the c

Constant of the second s

and the second of the

あまちもも

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000	SUBRCUTIN	FLSG (4.K.NEC.MI4.KFM) F PTLSC (4.K.NEC.MI4.KFM) F A(80.37).R(36).B(1444)	54TE = 74726 Korj	18/00/24	PAGE 0001	
1 I I I I I I I I I I I I I I I I I I I	0003	-1+VIN+NUM-1 00 1 -1+1	NUN				
	2000 2000						
A RELATIONO	0000	B(L)=P(L) B(L)=P(L)					
	1100	R(F)=0.0					
	£100	6 [n] 8 [n] 8	4FD + Δ (Λ , μ[14) + Δ (Ν , 4)				
		CALL SIGG RETURN	(a. P. WIN, KEAROP)				
						•	
					-		
a roborn and a solution of							
a room on the state of the							
a room on the second							
a same same a							
a south the second							

N. Service Martin

ġ

PAGE 0001	
P.A	51 540 51 550 51 550 51 550 51 550 51 550 51 550 51 550 51 570 51 <
18/04/24	
3ATE - 74226	
2+0 \$140	SURGUTINE ST40(AK5) 01+KNSTCM AT11, E11) 05-53 Jah, N 07-55 Jah, N 17-11 Jab, Jah, I 17-11 17-1
RELFASF 3	
FORTRAN IV G1	00000000000000000000000000000000000000

والمتكلي ومعير

;

!

an amarcha dia tang tang

War Seturns let

markler most in

```
HSVEL=HSVEL+RAT*((X-XC)/SQRT((X-XC)**2+(Z-ZC)**2)+1.0)/(Z-ZC)
IF(ABS(D).GT.0.002) GO TO 3
IF(N.NE.1.OR.Z.LT.Z1.OR.Z.GT.Z2) GO TO 4
HSVEL=HSVEL+SQRT(A)*(1.0/D-4.0*D/(2.0*A*ZC+B)**2)
                                                                                                                                                                                                                                                                                                                                HSVEL=HSVEL-RAT+0.5*(2.0*A*ZC+B)/(D*SQRT(A*ZC**2+B*ZC+C))
FUNCTION HSVEL(X1,Z1,X2, Z2,X,Z)
                                                                                       D0 1 N=1,2
T=(XB-XA)/(ZB-ZA)
                                                                                                                                                   B=-2.0*(E*T+Z)
                                                                                                                                    E=X-XA+T*ZA
                                                                                                                                                                C=E**2+Z**2
                                                                                                                                                                                                                                          DO 2 M=1,2
                                                                                                                     A=1.0+T**2
               HSVEL=0.0
                                                                                                                                                                                                                                                                                                                                                 RAT=-1.0
                                                                                                                                                                                                                                                                                                                    30 TO 4
                                                                                                                                                                              D=E-T*Z
                                                                                                                                                                                              RAT=1.0
                                                                                                                                                                                                                                                                                                                                                                                                            ZA=-Z2
XB=X1
                                                                                                                                                                                                                                                                                                                                                                                                                                         ZB=-Z1
RETURN
                                           ZA=Z1
                                                                                                                                                                                                             ZC=ZA
                                                                                                                                                                                                                                                                                                                                                                 XC=XB
                                                                                                                                                                                                                                                                                                                                                                               ZC=Z8
                                                           XB = X2
                                                                         ZB=Z2
                                                                                                                                                                                                                            XC=XA
                                                                                                                                                                                                                                                                                                                                                                                             XA=X2
                              XA=X1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        END
```

のこのがあたないの、ときのなかいのはいかいです。

Same and a second


m -#

2

rrel

PAGE 0001 SUARAUTINE JATICY(CA,CC,KO*LT,1HF,1VFR,AP,AF,5,PP,SRODT,STIP,FROM 17,FTP) DITA STRON CA(30).CC(36).CMM(6).F(A).2(12).P(A).SIMPSW11) DATA STRON(0.33333,1.33333.0.66667.1.31333.0.66666 17,1.333339.0.611.5(75,0.0) MATA KY///VC/// MATT F(X).1001AR,AF,T.PP.1HF.1VFR,KN4,LT MATA KY///VC/// MATTF F(X).1001AR,AF,T.PP.1HF.1VFR,KN4,LT 1003 FAPVAT(11.55X,13HA59ECT PATINF5.2.2X,10HFLAP APEAF4.3.2X,12MTAPF IR PAT(10-1.5X,13HA59ECT PATINF5.2.2X,10HFLAP APEAF4.3.2X,12MTAPF IR PAT(10-2.2X,12HA59ECT PATINF5.2.2X,10HFLAP APEAF4.3.2X,12MTAPF IR PAT(10-2.2X,12H459ECT PATINF5.2.2X,10HFFR UF SPAWH5E MINES = 3.1755X,10HHLEP 1F CHOPOLISE MINES =..122,1/) 1546 FORWAT(//.22%,*?*,*X***XA/LC**BX,*CM-A**BX,*X7/LC**BX,*TM-D**5X,*XA 1LF/LC**5X,*X0[F/LC*,/] AA1=CA(1)+CA(1)*NM# AA2=CG(1)*CF(1)*CM#} 10/06/24 E{#0]=S]M{{?,0*8D-1,0}*2M]6} CLA=CLA=E{#D]={CA{#D}+{D}}**=71,956R/CT** CLD=E{#P]={CR1#D}+CA{#D+XD#}=71,956**R/CT** DATE = 74226 2CPA=2CPA+CLA+7(1P1/(10+0+CLAG)+51#nf4(f#) 2CP1+7CPD+7(D+2(1P1/(10+0+CLDG)+51#n54(f#) P{1]=3,14159 CTweifI]P-STIP+;RQQT-SACCT)=0.5 XTweifunt+FT12]+0.5/CTW JAPr=KD#4[LT-1] CFu([]=3.[4[59+{CT+4.03%}])4.0 CFM(2]=3.[4]59+{CT+2.C+%]]/4.0 CFM(3]=-3.[4]59+CT/4.0 Z(19]=Z(1)5.0 XT=Z(18)={FTP=F#ODT)+F#ODT XL=Z(18)={FTP=F#ODT)+S#COT XL=Z(18)= CT=XT-XL PPC=XT/CT CLARCH3.141590019484441 CLIDER13.141590019484441 CLIDER13.1415500310484442 CHINDED.0 ZCPA.0.0 ZCPA.0.0 DI 1515 [R=1,10 CLARC.C CLOP.0.0 CLARC.C NCITAD 7W[G=ARCOS(-711P)) Do 1520 KD=1,KFM RD=FLCAT(KP) CO 1572 L*3,LWB WRITFIL, 1948) P[LT]=3.14159 P[2]=3.14159 21=FL 9AT(1) P(()=0.0 1-1-1-1 - 8 [a -FURTRAN IV G1 RELEASE 2.0 1522 1520 0000 0000 0010 0010 0010 0010 0530 0040 00443 00443 00444 000443 000443 0004 0005 0005 0003 96.00 1000

San Share and a start should be

Reproduced from best available copy.

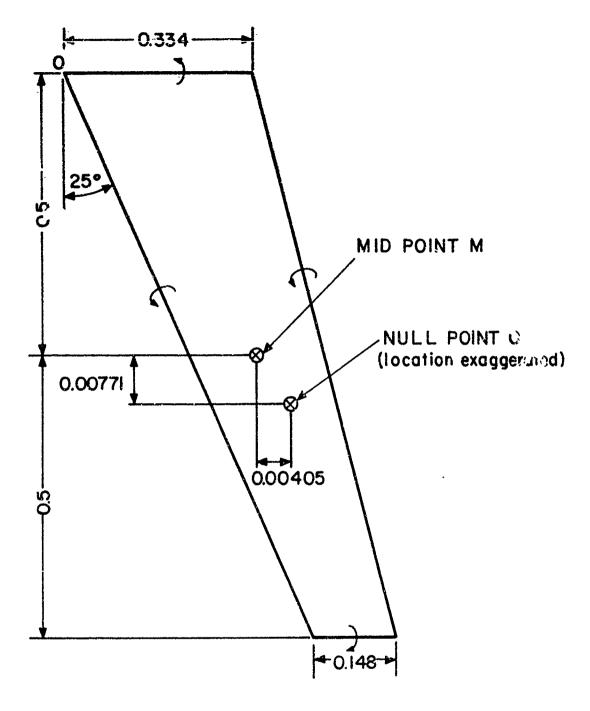
ŝ

Benefits Street

A DESCRIPTION OF

0000 1000000000000000000000000000000000000
1502 1516 1516 1516 1517 1516 1516 1516 1516
1510 1517 1517 1517 1517 1517 1517 1517
1512 1514 1519 1510 1510 1517
1512 1710 1710 1710
1312 17109 17109 1511
1512 17109 17109 1517
1216 1216 1216 1216
1514 17109 17109 1510
1514 17109 17109 17109 17109
2272 2272 2272 2272 2272 2325 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25
23 23 23 23 24 23 24 23 24 24 24 24 24 24 24 24 24 24 24 24 24
22 23 25 25 25 25 25 25 25 25 25 25 25 25 25
212 25 25 25 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26
25 26 26 26 26 26 26 26 26 26 26
35 1700 1710 17
36 36 1709 36 1709 1709
35 36 1709 37 39 39
34 11 165 1 1 165 1 1 165 1
1 6 6 6 6 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7
16 26
-

~)

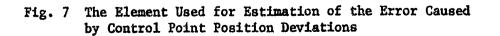

APPENDIX 4

Positioning of Control Points Within Their Own Elements

Control points should be located at a point within the element where the effects of the velocities induced by all four boundaries of the element cancel. This is essential in order for the discrete system to converge to the Cauchy-Principal Value of the corresponding continuous singular integral. For a rectangular element this will be, of course; at the centroid of the element.

With the present vortex scheme the elements may be both swept and tapered, so that a question arises as to whether the placement of the control point is critical. A detailed calculation was therefore made for an extreme element with geometric characteristics as shown in Fig. 7.

The velocity induced by the four line vortex elements was computed at finely spaced intervals throughout the interior of the element. In this case, the null point, 0, was found to be displaced from the mid-chord/mid-span point, M, by the amount shown in Fig. 7. This deviation, as well as the velocity at M is extremely small. In order to obtain an estimate of the error introduced by locating control points at M rather than at 0 in the complete lifting surface program a test run was made with all control points displaced by two percent of their panel chords. This resulted in a change of 0.92% in predicted lift slope. Since this displacement was far in excess of the value shown in Fig. 7, it can be concluded that the error introduced by locating control points at the mid-chord /mid-span position of an element is negligible.


mer mist

.

ţ

あるというできたいであるとうないのである

「「「「「」」

