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APPROXIMATE ANALYSIS OF HEAT TRANSFER IN TRANSPIRED BOUNDARY 
LAYERS AT LIMITING PRANDTL NUMBERS 

This report presents a simple analytical procedure for approximate 
calculations of wall heat-transfer rates in transpired laminar 
boundary layers at limiting Prandtl numbers. The work represents 
a further extension of the investigation by Zien (NOLTR 73-17) --n 
heat-transfer calculations at moderate Prandtl numbers.  The 
simplicity and accuracy continue to be the principal merits of 
the method. 

This study was conducted under the sponsorship of NOL Independent 
Research Project, Task Number MAT 03L-000/ZR02/30^)10. 

ROBERT WILLIAMSON II 
Captain, USN 
Commander 

4f*j tf j<fU**c c 
LEON   H.   SCHINDEL 
By direction 

iii 



NOLTR 74-121 

CONTENTS 
Page 

INTRODUCTION  1 
GENERAL FORMULATION  2 

Equations and Boundary Conditions  2 
Present Method of Solution  3 

APPLICATION TO CASES OF LARGE Pr  4 
General Remarks  4 
Porous Plate; Similarity Case  5 
A Distinguished Limit  7 
Porous Plate:  Similarity Case  9 
Porous Plate:  Nonsimilar Case  9 

APPLICATION TO CASES OF SMALL Pr  10 
General Remarks  10 
Porous Plate: c = const. « 0 (l//RxPr) ,  11 
Circular Cylinder  12 
Two-Dimensional Stagnation Point, Uniform Vw  13 

CONCLUDING REMARKS  15 
Acknowledgements  16 

REFERENCES  16 

Figure 

ILLUSTRATIONS 

Title 

Porous Plate, Similarity Case, Pr 
Method, u = y i^/u) 

1 (Present 

Porous Plate, Similarity Blowing (Present 
Method, u = y T /u) 

Porous Plate, Similarity Blowing (Present Method, 
u = y TW/U) 

Porous Plate, Similarity Suction (Present Method, 
u ■ y T^P) 

Porous Plate, Similarity Blowing (Usual K-P Method, 
u = y xyy) 

Porous Plate, Distinguished Limit for Similarity 
Case (Present Method) 

Porous Plate, Distinguished Limit for Uniform e 
(Present Method) 

Porous Plate, Uniform e, Pr 

Plane Stagnation Point, Uniform Vw, Pr 
(Present Method) 

0 (Present Method) 

0 

IV 



NOLTR 74-121 

SYMUOLS 

a radius of a circular cylinder 

Cf skin-friction coefficient, Tw/pP"«, 

Cp specific heat of yas at constant pressure 

erfc complementary error function 

F lc 
g profile for dimensionless temperature, = =— 

y j^ (n) I - n 

g4(n) 1 - 2n + 2n, - n" 

K-P Karman-Pohlhausen 

k heat conductivity of the gas 

N Nusselt number q x/(T  - T )k 
x n»   w   • 

N- Nusselt number, 2aqw/(T  - T^k 

Pr Prandtl number, 11C /k 

q heat flux in the direction of y 

RD Reynolds number based on the diameter, 2uaoa/v 

R Reynolds number based on x, uex/v 

R^ Reynolds number based on 5, uoo5/v 

R_ Reynolds number based on 5 , u^o./v 

T absolute temperature 

(u,v) velocity components corresponding to (x,y) 

(u*,v*) (u/u^, v/uj 

{x,y) orthogonal coordinate system with origin at the 
leading edge or forward stagnation point, x along 
the surface 

(a,8,Y) velocity profile-parameters defined in Ref. (1) 

o a temperature profile-parameter. 

1/'nTg(nT)dnT 
+ j / ^(V^T "   f dr]T '     nTg(nT)dnT 
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ä. a  temperature j   ofile-parameter, 

\ g{nT)dnT -     I dnT    J   g(nT)dnT +   / nTg(nT)dn1j 

ß a temperature profile-parameter, 

i^ T)dnT 

Y a temperature profile-parameter, 

T  nTg(nT)dnT 

6 thickness of velocity boundary layer 

• thickness of thermal boundary layer 

e basic mass-transfer parameter, v /ue 

nT similarity variable, y/6T 

T  -  T_ 
6 dimensionless temperature, 

T     - T 
w        o 

thermal diffusivity, k/(pC ) 

A APr-2/3 

h^ PrAj^ 

X GX/6 

A 

Al eRT 

\ e(RxPr)
1/2 

M dynamic viscosity 

v kinematic viscosity 

o density 
shear stress 

$ angle measured from forward stagnation point 

vi 
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Subscripts 

"> condition far upstream 

e edoe of boundary layer 

w wall condition 

0 initial condition 

VI i 
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INTRODUCTION 

A simple, approximate method for calculating the skin 
friction on porous surfaces has recently been described by 
Zicn (Refs. (1) and (2)).  It is based on an idea, due originally 
to Volkov (Ref. (3)), for refining the classical Karman-Pohlhausen 
(K-P) momentum integral technique in the boundary-layer theory, 
and is basically a one-parameter type of integral approach. 

The chief merits of this analytical method, as illustrated in 
References (1) and (2) , lie in the remarkable combination of 
simplicity and accuracy.  The relative insensitivity of the results 
to the choice of velocity profiles is particularly noteworthy. 
These encouraging findings are indicative of the potential of the 
method for development into a useful tool for practical calculations 
of boundary-layer flows of a more complex nature.  Further 
exploitation and extension of this new method appear warranted. 

This paper presents a procedure for approximate calculations 
of wall heat-transfer in a transpired boundary layer at extreme 
Prandt-.l numbers. The procedure is based on a further modification 
and extension of Volkov's (Ref. (3)) original idea. Thus, the 
heat transfer on an aerodynamic surface is calculated by considering 
the energy balance across the entire, attendant (thermal) boundary 
layer at a local flow station.  A second integration of the energy 
equation in the direction normal to the surface is then performed 
to provide an ordinary differential equation for the determination 
of the basic profile-parameter.  To be sure, the idea of using a 
double-integration scheme had appeared earlier in Whitehead's 
(Ref. (4)) investigation of momentum boundary layers.  However, the 
determination of skin friction in Reference (4) was based on the 
local slope of the assumed velocity profile, as in the original 
K-P procedure. 

For easy demonstration of the method, only simple, yet basic, 
flows are considered in this paper.  Thus, applications are made 
to two-dimensional, incompressible, laminar boundary layers of a 
single-component fluid.  Results are presented here only for 
limiting cases of large or small Prandtl numbers where certain 
simplifying approximations can be effectively exploited to further 
facilitate the exhibition of the central ideas of the method. 
Detailed results for Pr = 0(1) pertaining to the semi-infinite 
flat plate with uniform surface mass flux are available in 
Reference (5).  The frictional heating is neglected in the energy 
equation throughout the calculations, and this approximation is 
generally valid for incompressible boundary layers where the Eckert 
number is usually snail.  An exact and comprehensive analysis of 
heat transfer in a class of self-similar transpired boundary layers, 
including the..effects of frictional heating, can be found in 
Gersten and Korner (Ref. (6)). 
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The method i:-. first applied to the case of transpired 
boundary layers with large Prandtl numbers.  A distinguished 
limit of large Prandtl number and small mass-transfer rate is 
readily apparent in the present integral formulation.  Some examples 
of this limiting flow are studied.  The procedure is then used to 
study a class cf low Prandtl number heat-transfer problems« and 
the usefulness of the present method in providing approximate 
solutions to general transient heat-conduction problems becomes 
evident in the process. 

It is r.oteci heic that all the calculations presented in this 
paper involve, at most, the numerical integration of a single, 
first-ordar ordinary differential equation.  In many cases 
solutions are obtained in explicit, analytical forms.  The primary 
purpose of the paper is not to present solutions to any new problems. 
Rather, it is to show how simply some old solutions can be 
reproduced with good accuracy by the present method. 

GENERAL FORMULATION 

Equations and Boundary Conditions 

In terms of the nondinensional velocity (u*,v*) and tempera- 
ture, 9, the basic differential equations and boundary conditions 
for an incompressible, constant-property, laminar boundary layer 
over an  isothermal porous surface are: 

3u* . äv*   n 
ET My = 0 (la) 

4 3u*    4 8u*   v 
u* -r— + v* 3x dy      Ua 

l^+u*  3U* 
?y' e  3x 

(lb) 

36 

3x 
+ v* 

at y 0: 

39 ■ v_ 1_ 
3y ~ lU Pr 

a2e 

ay3 
dc) 

u* = 0 

6 = 1 

v* = e 

(2a) 

(2b) 

(2c) 

as y 

(2d) 

(2e) 
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In the usual practice of integral methods, the asymptotic 
conditions are jpecified at the edges of the boundary layer, 6 and 
dip, for u* and 0, respectively. Some initial conditions on u* and 
0 are generally required at x = 0 to complete the formulation. 
These initial conditions are replaced by conditions on initial 
boundary-layer thicknesses, 6(0) and 6T(0), in the present integral 
formulation. 

The skin-friction coefficient, Cf, and the Nusselt number, Nx, 
are related to u* and 6 through the following expressions: 

and 

x N  - -X " 1)7 

(3a) 

(3b) 

Present Method of Solution 

Since the momentum equation is decoupled from the energy 
equation, the solution of u* can proceed independently of the 
temperature field.  In order to present a self-consistent develop- 
ment of the calculation procedure, we shall make use of the approxi- 
mate solutions of u* by a similar calculation scheme as reported 
by References (1) and (2) for the examples to be discussed below. 

We now proceed directly to solve the energy equation. The 
first integration of (1c) gives 

|j /Udy + e (6  -  1)   -  ef^ /X-dy . *- (|i - |i|   ) (4) 
0 o w 

where the continuity equation has been used to eliminate v* in 
favor of u*. 

Equation (4) is taken as an expression for the wall heat flux 
by letting the integration cover the entire thermal boundary layer. 
Thus using (3b), we have 

■./'• 
st ^ RT?-aW  u*e dy- e (5) 

Equation (5) is a nondimensional version of the energy 
balance across the thermal boundary layer at the station x. 
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Theraforei tho surface heat transfer is determined from an integral 
expression involvimj the assumed profiles for u* and Ö. Of course, 
this representation would be exactly the same as the one using 
the derivative of ü at the wall if tho profiles used for u* and Q 
were the exact solutions of the problem under consideration. 

The basic parameter of the thermal boundary layer, 6.r, is to 
be determined by th?  following differential equation which results 
from a second integration of the original energy equation. Thus, 
effecting another integration of (4), we arrive at 

6 6 

dy £_ /u*,dy +/ (t. |- /u*dy)0dy - 5  t- / u*e dy - J-  (6) 
o       " o oo y " 
In deriving   (6)   use has been made of  the wall  heat-flux expression, 
(5). 

We assume  the  following  ai.nple  form  for  6: 

n i 
B  ■ g(nT)   =    T,^i'^    >       k.   = const (7) 

1 i=0  1 1 

The choice of the profiles is obviously crude in the sense 
that they presume similarity for general flows to be considered 
below.  However, they are to be chosen such that the essential 
boundary conditions, (2b) and (2e), are observed. 

Equation (6) reduces to a first-order, nonlinear, ordinary 
differential equation for &„,  once a form for 6, such as (7), 
is introduced. With 6T solved, the Stanton number, St, follows 
readily from (5) through an algebraic process. 

APPLICATION TO CASES OF LARGE Pr 

General Remarks 

The existing literature on boundary-layer flows with large 
Prandtl numbers is voluminous. Our purpose here is merely to 
describe the application of the present simple method to this 
class of flows.  Hence, only the references pertinent to the 
present development and results will be mentioned. 

For large Prandtl numbers, the simplified representation of 
the velocity in the thermal boundary layer is 

Tw 
u ~ ^ y . (8) 
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This approximation was introduced and established by Page and 
Falkner (Ref. (7)), Lighthill (Ref. (8)), Morgan and Warner (Ref. 
(9)), among others, and is convenient for systematic developments. 
Subsequent extensions and improvements of this simplifying 
approximation can be found, for example, in Curie (Ref. (10)), and 
more recently, Chao (Ref. (ID). This simple expression will be 
exploited in the present formulation. The e-.amples to be presented 
here are porous-plate boundary layers for which the skin friction, 
TW, has been calculated earlier by Zien (Refs. (1) and (2)). A 
self-consistent development of the procedure is thus readily 
accessible. The results to  be presented and discussed in the 
following are all based on the approximate solutions of TW 

pertaining to the linear velocity profile used in Reference (1). 
H.r-ever, two temperature profiles, g^ and g*,  are used in the 
calcula'. ion to test the sensitivity of results to the temperature 
profiles. We note here that the velocity profile-parameters take 
the values (a,6,Y) ■ (1/8, 1/2, 1/6) in the ensuing calculations 
(see Ref. (1)), and the temperature profile-parameters, (a,ß,Y) 
for g1  and gA  are (1/8, 1/2, 1/6) and (1/28, 3/10, 1/15), respectively. 

Porous Plate; Similarity Case 

The basic equations are (5) and (6). From (8) we have 

U* " I CfVT " FRTnT (9) 

where R_ - u»6 /v.  For this particular flow, the result of P as 
reported by Zien (Ref. (1)), i.e., 

F = RX"
1/2(I " ßx)"1/2(i " A)    ' do«) 

will be used. Also, A is related to A through 

A « A (£ - ßA)"1/2 .  (10b) 

Substitution of (9) into (6) leads readily to 

5RT air (RTF) ' h +  *eRT •  (11) 
x 

For the case of similarity blowing (or suction), eR- ■ const., 
ution: and   (11)   is easily integrated to give the following solu 

f /« _  0^l/2 | ,0. _ oi,l/2 
A3  -      i 

1 ä 
~3   <I -  ^)1/2 

ßAJ     l 2     1     ~3   (J -  ßA) 

(J-  A)      J   *       5    Pr (l.  X) 

where  A.   =  eR, . 
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found. The heat transfer is obtained from  (5) , once R-, is 
vhe result is 

_^ . pr F J (i,2^^ +   ^„2/3   (a . eArl/6   (j .  X)l/3.   Xj t     {13) 

Equations   (12),   il3)   and   (10b)   constitute the solution for ■_/** 
as  functions of X  and Pr. 

It is  interesting to note the behaviop of the present approxi- 
mate solutions in the limit of Pr •♦ » and A ■ 0(1)   for suction and 
blowing separately.     Following limiting solutions are easily 
deduced  fron  (12)   and   (13)J 

ii N 

X  *  0   !   Al  ^  "  - fF    and    ~TJS "   'XlPr '* tl4) 

1/2 
It .■•I r,   ■.   i   •»■/  <- I 

A    •   0   3   A,    ■   X3/2  1^    -*  1 and 1 L5    i-» J 

"x Pr J  (1 I - 1) . (15) 

For the special case of A - 0,  the asymptotic limits for 
Nx/Rx

1/2 as Pr - «    are 0.367 Pr1/3 and 0.338 Pr1/3  for e - g1 and 
g.,   respectively.    These approximate limits are to be compared with 

1/3 the exact  linut of  0.339 Pr '      (see,  for example,  Ref.   (12)). 

As Pr   » <»,  the heat-transfer rate predicted here approaches 
the correct asymptote   (see Gersten and Körner, Ref.   (6))   independent 
of profiles for the case of suction.    For blowing,   the present 
solutions show a strong profile-dependent behavior.    Note that the 
quantity in the parenthesis of   (15)   is negative for both profiles 
considered here.    The implications of the above observations are 
thus clear.    As Pr increases,   the present solutions are uniformly 
good for suction, but predict too (apid a decay in the heat-transfer 
rate for blowing,  especially when A is large. 
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Some typical results are illustrated in Figures 1-4 and 
compared with the available exact solutions due to Stewart and 
Prober (Ref. (13)), and Thompson (Ref. (14)) whenever appropriate. 

Figure 1 shows the results for Pr - 1 for which an exact 
integral, 6 • 1 - u*, holds.  Exact solutions for heat transfer are 
thus available from the exact skin-friction results of Emmons and 
Leigh (Ref. (15)), or directly from Reference (13), for comparison. 
It is remarkable that the present procedure, suitable for large 
Prandtl numbers, yields very accurate results of heat transfer 
for Pr ■ 1. of course, the finding that the validity of a 
calculation procedure designed for large Prandtl numbers actually 
extends into regions of moderate Prandtl numbers is not totally 
unexpected, (see Ref. (8)).    We also note the insensitivity of 
the present results to the profiles used in the calculations. 

Figures 2-4 show the heat-transfer results are functions of 

the Prandtl number at three values of Xt , 5ii and - ti, 
/I  /I      r0 

for which exact solutions are available for comparison.  These 
results clearly confirm our aforementioned predictions based on 
the -ehavior of the present solutions in the limit of Pr * o». 
However, it should be remarked here that as Pr ♦ oo, the results 
pertaining to blowing, though quantitatively inaccurate, are 
still qualitatively correct.  It is possible that the thermal 
boundary layer is blown off the surface while the momentum boundary 
layer still remains attached. 

The same approach and profiles are then employed in the 
original K-P procedure for this problem, using TW obtained from 
the original K-P method with a linear velocity profile, as 
reported in Reference (1). The results are presented here only for 

A ■ —i— in Figure 5.  A comparison between Figure 5 and Figure 3 

clearly illustrates the superiority of the refined K-P procedure. 
The absence of a sharp decrease of the heat-transfer rate in the 
interval, 6 < Pr < 100, is typical of the failure of the original 
K-P procedure. Nevertheless, it should be mentioned that for 
the case of suction, the original K-P procedure with the same 
profiles is also capable of predicting the correct asymptotic 
behavic for Pr * «, only the sensitivity of results to profiles 
is more pronounced. 

A Distinguished Limit 

The singular perturbation nature of the boundary-layer energy 
equation in the limit of Pr * ^ is well-known. (See, for example, 
Narasimha and Vasantha, Reference (16). It is also appctrent in (1c) 
in which the coefficient of the highest derivative approaches zero 
as Pr -♦• o». The asymptotic structure of the thermal boundary layer 
with surface blowing in the limit of Pr -^ * has been discussed 
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by Kassoy (Ref. (17)), amoi'y others. The Interesting phenomenon 
of thermal layer blowoff is qualitatively analyzed for the case 
of a porous platn with similarity blowing in Reference (17). 

Physically speaking, the thermal boundary layer has a 
vanishing thickness relative to the momentum boundary layer as 
Pr ♦ «, because the viscous diffusion ( v) dominates the thermal 
diffusion (•<).    Therefore, the heat transfer 'ikes place in a 
very thin region close «-o the wall where the convective velocity 
components (u,v) are also small.  In the case of transpired 
boundary layers, an additional mechanism of heat transfer (-c) 
appears. The precise orders of magritude of these physical 
quantities as Pr -» • are related uniquely only in a distinguished 
limit in which convection, conduction and mass transfer are of 
equal importance.  It is convenient and instructive to deduce 
such a limit from the equations derived in the process of the 
present, development. We remark here that, as Pr ♦ <D, the present 
method^seems particularly suited for this case of vanxshingly 
small X in view of the results discussed in the section of Porous 
Plate; Similarity Case. 

Let us consider (11). The three terms from left to right 
represent, respectively, the effects of convection, conduction 
and mass transfer.  Therefore, we require that, as Pr ♦ 00, 

*i     i 
--I7T ' PF~ eRT ,     (16) 
Rx 

-1/2 where we have used the relation F ■ 0(R„ ' ). x 

It follows  immediately that 

Pr - «:   X « 0(Pr"2/3)        ,     X1  »  0(Pr"1)   and 6^/6  =  0(Pr"1/3).(17) 

Thus, the distinguished limit corresponds to vanishingly 
small values of A and 6_/(S.  We are now led to introduce the 
following variables for the study of this limiting flow: 

A - Pz2/3  Ä = 0(1) (18a) 

A.- Pr Xj^ = 0(1) (18b) 

In this limit, P may be expanded as 

F « F0 + X F1 + ... (19) 
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where FQ corresponds to the skin-friction coefficient in the 
absence of mass transfer. Only the leading term, FQ,  will be 
needed in the ensuing calculations.  The result to be obtained 
thus corresponds to an approximation of the leading asymptotic 
term in this distinguished limit.  A systematic asymptotic analysis 
of the general flow in this distinguished limit appears to be an 
interesting problem of fundamental importance but beyond the scope 
of the present paper. 

For a flat plate, Reference (1) provides 

v   -1/2 
F0 - -^- Rx • <20) 

/2a 

and, as mentioned earlier, (a,Y) - (1/8, 1/6) is useo In the 
calculations. 

Porous Plate;  Similarity Case 

Introducing A and Aj, and applying the limit process, (17), to 
(12) and (13), we arrive at the following results: 

Aj - (2)3/2(a)1/2A3(l + A18)/(iY) (21) 

and 

^Tj- Pr1/3 [Y(a)-1/6(a)-2/3(Y)
1/3(2)-1/2(l + A,*,

2/3 - A] .(22) 

Results of M /(» '2Pr ^ ) as a function of A for the two 

temperature profiles are plotted in Figure 6.  It can be shown 
that both curves approach the exact limit of asymptotic suction. 
The dependence of the results to profiles is still weak in this 
limiting flow, and the thermal boundary-layer blowoff  (Nx * 0) 
is predicted at a finite value of A. An exact treatment of this 
limiting case was recently reported by Gersten (Ref. (18)) for a 
class of Falkner-skan flows. The same distinguished limit was 
derived in a different manner in Reference (18). The exact solution 
pertaining to the flat-plate configuration is included in Figure 6 
for comparison with the present approximate results. The agreement, 
in general, is clearly quite satisfactory, except near thermal 
boundary-layer blowoff where the exact solution exhibits an 
exponential decay in heat transfer. 

Porous Plate; Nonsimilar Case 

Equation (11) is still the basic differential equation for 
this nonsimilar flow, as the velocity, u, is approximated by (8). 
Now, applying the limit process, (17) and (18), to (11) and noting 
(20), we have the following differential equation for the limiting 
flow: 
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(8a)1/2      ^       Al 3 

dAi.1^— " : *y * jr! {22. 
ar ■ "" —2  (23a, 

A
i 2<7r) 

and 
Al (a«)1/6 

A " 0'    IT* -JilT71 • <23b' A (Ya)1/3 

Substituting   (9)   into (5)   and  introducing  A  and A,,  we 
obtain i 

P >  . prVJ iA . (1 . SJ^I _    (24) 

Results of Nx/(Rx
1/'2Pr1/3) as a function of A are plotted 

in Figure 7 for the two temperature profiles used in the 
calculation.  The behavior of heat transfer is quite analogous 
to that for the similarity case, Figure 6.  We also note that 
the two curves will converge in the region of large negative A 
and approach the exact asymptotic suction limit, 

N /(R 1/2Pr1/'3) ~ |A|. No other limiting solutions to this non- 
similar flow seem to exist in the literature, to the best of the 
author's knowledge. 

APPLICATION TO CASES OF SMALL Pr 

General Remarks 

In this section, the method is applied to the calculation 
of boundary-layer heat transfer in the limit of Pr ^ 0. The 
mathematical limit here is R    ■* <*>,  Pr -» 0 and R Pr -* », so that 
the concept of a thin thermal layer near the surface is still 
valid.  The chief simplification is that the velocity profile, u, 
inside the thermal boundary layer can be approximated by the 
external potential stream ue(x), (Ref. (12)).  Therefore, we need 
only to assume the temperature profile. The resulting solution 
corresponds to the limiting case of Pr = 0, i.e., an inviscid 
but heat-conducting fluid.  Three representative examples will be 
presented in the following. These examples will explicitly reveal 
the relevance of the differential equations to a class of heat- 
conduction problems.  Therefore, the success of the present method 
here would imply its potential usefulness in studying general 
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problems in transient heat conduction with complex boundary 
conditions, including nonlinear cases.  Some initial attempts 
have already been made by Volkov and Li-Orlov (Ref. (19)). A 
more thorough investigation of this application appears desirable, 
and should lead to a modified version of the work of Goodman 
(Ref. (20)) who had applied the original K-P method to a variety 
of heat-conduction problems. 

Porous Plate:  c - const. ■ 0(1//R Pr) 

Here the velocity (u,v) - (U«D,VW) and the energy equation 
takes the form 

36     36   tc   326 ,,-. 

The first and second integrations of   (25)   lead to, respectively, 

(26) 
"x" * UAx 

and 

dR_ , 
(27) 

where (ciwß) ate profile-parameters defined in the Nomenclature. 
In deriving (26) and (27), a temperature profile of the form 
6 * g(n'p) is assumed. Equation (27) is readily integrated to give 

e2RxPr - -=■  ERTPr - ^ In (1 J- ßeR^r)     ,     (28) 

and the heat-transfer coefficient follows from (26) as 

c 

dR 1 
PrRT 

+ eß 

Nx - i 
»i 

e/RxPr 

eRTPr 
/RxPr 

0 - (1 - E-)e/PrR~       .      (29) 
oj     x 

Equations   (28)   and   (29)  form a parametric representation for the 
heat-transfer coefficient,  i.e., 

NY   
- f   (e/R~Pr) . (30) 

^fr 
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Results corresponding to the two temperature profiles, g^ 
and gA,  are illustrated in Figure 8. The profile-parameters 
associafed with g^ and 94 and (u ,g) - (1/3, 1/2) and (2/15, 3/10), 
respectively. 

It is interesting to note that (25) is also relevant to the 
problem of the transient heat conduction in a semi-infinite solid 
moving with a constant velocity e and maintained at a constant 
temperature at y = 0.  The exact solution is available in Carslaw 
and Jaeger (Ref. (21)).  The heat-transfer rate is readily obtained 
from the solution for 6, i.e.. 

H      ,       c2R Pr   f/R~Pr      c/R~Pr 
- i- exp( j^—) ^— erfc ( f     ) .   (31) 

»•R Pr   /rT 

The exact solution is also shown in Figure 8 for comparison 
with the approxinate solutions, (30).  The present results are 
clearly very satisfactory in accuracy; the close agreement between 
the results corresponding to the two temperature orofiles is also 
evident.  However, it should be pointed out that as the blowing 
intensity increases, the present approximate solutions predict 
zero heat transfer (thermal boundary-layer blowoff)  at finite 
values of c/R Pr, wlüle the exact solution shows exponential decay 
in heat  transfer.  Iherefore, as is usually the case, the accuracy 
of the present solution begins to deteriorate as the blow-off 
point is approached. 

Circular Cylinder 

We now consider the case of a circular cylinder in crossflow. 
The orthogonal curvilinear coordinate system, (x,y), has its 
origin at the forward stagnation point with x measuring the 
distance along the surface (x = a0).  Then u* ■ 2sin({>, v* ■ -2y* 
cos;.  The energy equation and the boundary conditions are 

• > 39    *    * 36     1    92e ,,, . sm* ^ - y* cos* ^ = _ —- (32a) 

0U, 0) - 1   e($, 6*) = 0 , (32b) 
* 

where u* » u/u^,  v* » v/um,  y* -  y/a and 6T ■ 6T/a. 

Applying the present method to (32a) results in the following 
two equations, based on the assumed profile, 6 = g(nT): 

12 



and 

with 

NOLTR   74-121 

1        ND - d6T 
I   R^F" ?(8in'   IT* &r   o0*" (33) 

* d6T *2 11 

6j   (*,o)   -   (o^Pr)"1/2  -   (6*) . (34b) 

Equation   (34a)   can be easily  integrated to give 

«! -   (fi*)     sec i . (35) ,T -   voT;o   sec  j 

Equation (33) then gives 

N,  D_ „ 2 _§_  co8 | (36) 

= 1.73 cos | for 6 = g, (37a) 

« 1.64 cos * for 6 = g4     .      (37b) 

The exact solution to this problem can be found in Grosh 
and Cesj (Ref. (22)) who transformed the equation to a standard 
form o* one-dimensional heat equation.  The heat-transfer result is: 

 "— - 1.60 cos | .      (38) 

•V 
The present method is again shown to yield satisfactory results. 

Two-Dimensional Stagnation Point, Uniform Vw 

As a last example of this limiting flow, we consider the 
heat transfer near a plane stagnation point in the presence of 
uniform surface mass flux. Of course, the treatment is still 
within the framework of thermal boundary-layer theory. 
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Here we have u ^ ue "Vjx and v ■ Vw - yuj. The energy 
equation and the boundary conditions are 

Jt* 30 32e 
^*+ (Ai - y#) w7" ^ 3y* 

1.1 (x*,0) = 1, 0 (x*, «) - 0, 

(39a) 

(39b) 

where the coordinates and velocity are normalized by the 
characteristic length /K/U, and velocity /»cu, respectively. 
In particular, we have 

w 

'<Ui 

(40) 

Using 0 » g (n<p) and applying the present method to equation 
(39a) result in 

d6 
älX*6T d^ + ai6T2 * ! + ^ «$ 

and 

Nx % 
k  Tw-T« /RxPr 

The solution to equation (41) is easily obtained as 

S$ « _L_  ß Ä1 + JiX^Q)2  + 4ai  = const. 

(41) 

dö* 
3^-6 (6* + x* g^) - X1     (42) 

(43) 

Equation (42) then gives 

Nx 

/RxPr 
ß S{ (44) 

The exact solution to equation (39) is also easily obtained by 
noting that the boundary conditions and the original partial 
differential equation, (39a) , admit a simple solution of the form 
6=9 (y*).  Hence, (39a) is essentially an ordinary differential 
equation whose solution has a simple closed-form. The exact heat 
transfer follows from the solution for 6, and is given by 
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Nx 1-1 
•  F^  exp (^y* - | y*») dy* J 

' VT e "^ (1 + erf -i ) (45) 

The approximate solutions have been obtained for two temperature 
profiles, gi and g*,   and compared with the exact solution, 
equation (45), in Figure 9. Again, the approximate solutions eure 
shown to be very accurate. It can further be shown analytically 
that the approximate solutions reduce to the exact asymptotic 

limit as X. ♦ -», independent of profiles.  Near thermal boundary- 
layer blowoff,  the comparison resembles closely unat of the case 
of a porous plate studied in the Porous Plate section of this 
report. 

CONCLUDING REMARKS 

The primary purpose of this paper is to present a simple 
procedure for practical calculations of heat transfer in boundary 
layers. Oversimplified and, in fact, improper profiles are 
deliberately used in the calculations, and the principal merit of 
the method, namely, the remarkable combination of simplicity and 
accuracy, is amply demonstrated and fully exploited. No effort is 
expended here in providing the details of the flow field. 

Results of these calculations indicate that the rudimentary 
application of the method, as described in this paper, is adequate 
for most engineering purposes. The weak dependence of the results 
to the profiles continues to prevail. This is believed to be a 
consequence of using an integral expression for the surface heat 
flux; the effect of improper profiles is mostly reflected in the 
somewhat spurious predictions of transverse scales of the boundary 
layers, 6 and dm, so that the predictions of the wall heat-flux 
remain reasonably accurate. However, near the thermal boundary- 
layer blowoff  where the heat-transfer rates are small, the 
results are useful only for qualitative purposes. This finding 
is reminiscent of the difficulty encountered in the previous skin- 
friction calculations (Refs. (1) and (2)). 

The possibility of using the method to study general problems 
of transient heat conduction appears promising and warrants 
further investigation.  In particular, the present mi thod seems 
capable of providing simple approximate solutions to heat conduction 
problems with phase changes and moving boundaries, such as melting, 
ablations, etc. These problems have the characteristic feature of 
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nonlinear boundary conditions imposed on a (unknown) moving 
boundary. The technological importance of such problems is self- 
evident.  The present approximate method should serve *8 a useful 
guide to the development of extensive numerical efforts in this 
area. Results of this study will appear in a separate report. 
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