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APPROXIMATE ANALYSIS OF HEAT TRANSFER IN TRANSPIRED BOUNDARY
LAYERS AT LIMITING PRANDTL NUMBERS

This report presents a simple analytical procedure for approximate
calculations of wall heat-transfer rates in transpired laminar
boundary layers at limiting Prandtl numbers. The work represents
a further extension of the investigation by Zien (NOLTR 73-17) rn
heat-transfer calculations at moderate Prandtl numbers. The
simplicity and accuracy continue to be the principal merits of

the method.
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SYMBOLS

radius of a circular cylinder
skin-friction coefficient, Tw/%pui
specific heat of gas at constant pressurc

complementary error function

1

2%¢ T-T,

profile for dimensionless temperature, F——7—
w

l -n
1 -2n+ 2n -n*

Karman-Pohlhausen
heat conductivity of the gas
Nusselt number c';wx/('rw - Tk

Nusselt number, 2ac.1w/('l‘w - Tk
Prandtl number, uCp/k

heat flux in the direction of y
Reynolds number based on the diameter, 2u_a/v

Reynolds number based on x, ugx/v
Reynolds number based on §, u_6/v

Reynolds number based on § §../v

7' Y=
absolute temperature

velocity components corresponding to (x,y)
(u/u_, v/u))

orthogonal coordinate system with origin at the
leading edge or forward stagnation point, x along
the surface

velocity profile-parameters defined in Ref. (1)
a temperature profile-parameter,

Np

1
1 2
{nTg(nT)dnT + 5 f nTg(nT)dnT = J d“’r 6" "’rg‘“'r)d”'r
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a temperature fp-ofile-parameter,

1 1 n

T
dfg(”'r)d"'r - J dng, { g(n.r)dn.r +

a temperature profile-parameter,

!\g(n,r)dn.r

a temperature profile-parameter,

{‘ n.rg(n.r)dn,r

thickness of velocity boundary layer

thickness of thermal boundary layer

basic mass-transfer parameter, Vw/“e

similarity variable, y/¢p

dimensionless temperature,
T

thermal diffusivity, k/(pCp)

apr-2/3

Pr)«1
ex/$

1/2
cRx

Ry

c(RxPr)l/2
dynamic viscosity

kinematic viscosity
density
shear stress

T

w

-Tm

-Tm

{nTg (nT)dnT

angle measured from forward stagnation point

vi
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condition far upstream
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initial condition
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INTRODUCTION

A simple, approximate method for calculating the skin
friction on porous surfaces has recently been described by
Zien (Refs. (1) and (2)). It is based on an idea, due originally
to Volkov (Ref. (3)), for refining the classical Karman-Pohlhausen
(K-P) momentum integral technique in the boundary-layer theory,
and is basically a one-parameter type of integral approach.

The chief merits of this analytical method, as illustrated in
References (1) and (2), lie in the remarkable combination of
simplicity and accuracy. The relative insensitivity of the results
to the choice of velocity profiles is particularly noteworthy.

These encouraging findings are indicative of the potential of the
method for development into a useful tool for practical calculations
of boundary-layer flows of a more complex nature. Further
exploitation and extension of this new method appear warranted.

This paper presents a procedure for approximate calculations
of wall heat-transfer in a transpired boundary layer at extreme
Prandtl numbers. The procedure is based on a further modification
and extension of Volkov's (Ref. (3)) original idea. Thus, the
heat transfer on an aerodynamic surface is calculated by considering
the energy balance across the entire, attendant (thermal) boundary
layer at a local flow station. A second integration of the energy
equation in the direction normal to the surface is then performed
to provide an ordinary differential equation for the determination
of the basic profile-parameter. To be sure, the idea of using a
double-integration scheme had appeared earlier in Whitehead's
(Ref. (4)) investigation of momentum boundary layers. However, the
determination of skin friction in Reference (4) was based on the
local slope of the assumed velocity profile, as in the original
K-P procedure.

For casy demonstration of the method, only simple, yet basic,
flows are considered in this paper. Thus, applications are made
to two-dimensional, incompressible, laminar boundary layers of a
single-component fluid. Results are present~d here only for
limiting cases of larye or small Prandtl numbers where certain
simplifying approximations can be effectively exploited to further
facilitate the exhibition of the central ideas of the method.
Detailed results for Pr = 0(l) pertaining to the semi-infinite
flat plate with uniform surface mass flux are available in
Reference (5). The frictional heating is neglected in the energy
equation throughout the calculations, and this approximation is
generally valid for incompressible boundary layers where the Eckert
number is usually small. An exact and comprehensive analysis of
heat transfer in a class of self-similar transpired boundary layers,
including the effects of frictional heating, can be found in
Gersten and Korner (Ref. (6)).
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The method is first applied to the case of transpired
boundary layers with large Prandtl numbers. A distinguished
limit of large Prandtl number and small mass-transfer rate is
readily apparent in the present integral formulation. Some examples
of this limiting flow are studied. The procedure is then used to
study a class c¢f low Prandtl number heat-transfer problems, and
the usefulness of the present method in providing approximate
solutions to general transient heat-conduction problems becomes
evident in the proccess.

It is roted herc that all the calculations presented in this
iraper involve, at most, the numerical integration of a single,
first-order ordinary differential equation. 1In many cases
snlutions are obtained in explicit, analytical forms. The primary
purpose of the raper is not to present solutions to any new problems.
Rather, it is to show how simply some old solutions can be
reproduced with good accuracy by the present method.

GCNERAL FORMULATION

Equations and 3oundary Conditions

In terms of the nondimensional velocity (u*,v*) and tempera-
ture, 8, the basic differential equations and boundary conditions
for an incompressible, constant-property, laminar boundary layer
over an isothermal porous surface are:

Jut vy
_37_ + .a_y_ = 0 , (la)
Ju*
dut vy 3%uw e
*r —_ 4 ..a-y—-zmgz *UZW ’ (lb)
Y
30 £38 _v 1 3% ;
u* -a—i + v 3Y W Pr : 3 H (lc)
b4
at y = 0:
ut = 0 (2a)
8 =1 (2b)
vt = ¢ (2¢)
as y * «:
u' -+ 1 (Zd)
6 +0 (2e)
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In the usual practice of integral methods, the asymptotic
conditions are specified at the edges of the boundary layer, & and
ér, for u* and 0, respectively. Some initial conditions on u* and
0 are generally required at x = 0 to complete the formulation.
These initial conditions are replaced by conditions on initial
boundary-layer thicknesses, §(0) and §7(0), in the present integral
formulation.

The skin-friction coefficient, C¢, and the Nusselt number, Ny,
are related to u* and 6 through the following expressions:

1 v Ju*
£ = — (3a)
3¢ U, 0Y 1
and
90
N, = =X Wlw (3b)

Present Method of Solution

Since the momentum equation is decoupled from the energy
equation, the solution of u* can proceed independently of the
temperature field. In order to present a self-consistent develop-
ment of the calculation procedure, we shall make use of the approxi-
mate solutions of u* by a similar calculation scheme as reported
by References (1) and (2) for the examples to be discussed below.

We now proceed directly to solve the energy equation. The
first integration of (lc) gives

Ll
Lo

)

where the continuity equation has been used to eliminate v* in
favor of u*.

) Y ? Y x (a0
Hb/u‘edy+c(6 -1) - e?‘i_o[“*dy'G:(W'

Equation (4) is taken as an expression for the wall heat flux
by letting the integration cover the entire thermal boundary layer.
Thus  using (3b), we have

Nx d T
S - = * -
Sy = R_Pr T u*d dy - € (5)

Equation (5) is a nondimensional version of the energy
balance across the thermal boundary layer at the station x.
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Therefore, the surface heat transfer is determined from an integral
expression involving the assumed profilcs for u* and 6. Of course,
this representation would be exactly the same as the one using

the derivative of 6 at the wall if the profiles used for u* and 0
were the exact solutions of the problem under consideration.

‘he basic parameter of the thermal boundary layer, 6, is to
be determined by the following differential ecquation which results
from a second inteqration of the original energy equation. Thus,
ctffecting another integration of (4), we arrive at

S v S " 8
g ] d [
ofdy % 6ru"ﬁdy +_{ (e- 3% Ju*dy)”dy = 6,1, a;f u*t dy - — (6)
0

o

In deriving (6) use has been made of the wall heat-flux expressiorn,
(5).

We assume the following siaple form for 6:
4 i
= glng) = iz=:oki”T » k; = const (7)

The choice of the profiles is obviously crude in the sense
that they presume similarity for general flows to be considered
below. liowever, they arc to be chosen such that the essential
boundary conditions, (2b) and (2e), are observed.

Equation (6) reduces to a first-order, nonlinear, ordinary
differential equation for 5., once a form for 6, such as (7),

is introduced. With § soléed, the Stanton number, S¢, follows
readily from (5) Lhrough an algebraic process.

APPLICATION TO CASES OF LARGE Pr

General Remarks

The existing literature on boundary-layer flows with large
Prandtl numbers is voluminous. Our purpose here is merely to
describe the application of the present simple method to this
class of flows. Hence, only the references pertinent to the
present development and results will be mentioned.

For large Prandtl numbers, the simplified representation of
the velocity in the thermal boundary layer is

w
u ﬁ—' Y . (8)
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This approximation was introduced and established by Fage and
Falkner (Ref. (7)), Lighthill (Ref. (8)), Morgan and Warner (Ref.
(9)), among others, and is convenient for systematic developments.
Subsequent extensions and improvements of this simplifying
approximation can be found, for example, in Curle (Ref. (10)), and
more recently, Chao (Ref. (11)). This simple expression will be
exploited in the present formulation. The eramples to be presented
here are porous-plate boundary layers for which the skin friction,
Ty+ has been calculated earlier by Zien (Refs. (1) and (2)). A
self-consistent development of the procedure is thus readily
accessible. The results +o be presented and discussed in the
following are all based on the approximate solutions of Ty
pertaining to the linear velocity profile used in Reference (1).
H7'ever, two temperature profiles, g; and g are used in the
calcula‘ion to test the sensitivity of resufts to the temperature
profiles. We note here that the velocity profile-parameters take
the values (a,B,y) = (1/8, 1/2, 1/6) in the ensuing calculations
(see Ref. (1)), and the temperature profile-parameters, (a,8,Y)

for g; and g4 are (1/8, 1/2, 1/6) and (1/28, 3/10, 1/15), respectively.

Porous Plate: Similarity Case

The basic equations are (5) and (6). From (8) we have

1
u* = 3 CeRyny = FRyny (9)

where R,a = Uy6.,/v. For this particular €flow, the result of F as
reportel by 2idn (Ref. (1)), i.e.,

= -1/2 a _ -1/2 ,y _
F Rx (5 g BA) (2 A) ,  (l0a)
will be used. Also, X is related to A through

A= (§ - enTl/2 . (10b)

Substitution of (9) into (6) leads readily to

aRT a—— RTF) = = ¢ BeRT . (11)

For the case of similarity blowing (or suction), € = const.,
and (11) is easily integrated to give the following solution:

o 172 a 1/2
TR 3 O SIS P W U Cl Sl Y
& g -n a Fr £ -

where Al = eRT.
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The heat transfer is obtained from (5), once RT is found.
The result is

i

s 2
—5 = Pr [% (g)
flg e

/3

1 2/3 ,a -1/6 1/3_ =
(57 *+ 1,8) (3 - 8)) (% - 1) A] . (13)

Equations (12), (13) and (10b) constitute the solution for Nx/t!xl/2

as functions of A and Pr.

It is interesting to note the behavior of the present approxi-
mate solutions in the limit of Pr + » and A = 0(l) for suction and
blowing sevarately. Following limiting solutions are easily
deduced from (12) and (13):

A <O Ay ~ -

N
1 and ——%75 ~ |x|pr : (14)
R

™|
mr—
2]

MRS V2 bk
X>0:0 ~3¥2 |28 =2 - and
a 1 _ A
- 2
Nx o i .
;;Dz Pr A (& B = 1) . (15)

For the special case of A= 0, the asymptotic limits for
N /R /% as pr + = are 0.367 Pr'/? and 0.338 pr!/3 for 6 = g, and
Y respectively. These apg;gximate limits are to be compared with
the exact lim.t of 0.339 Pr (see, for example, Ref. (12)).

As Pr » », the heat-transfer rate predicted here approaches
the correct asymptote (sce Gersten and Korner, Ref. (6)) independent
of profiles for the case of suction. For blowing, the present
solutions show a strong profile-dependent behavior. Note that the
quantity in the parenthesis of (15) it negative for both profiles
cons!dered here. The implications of the above observations are
thus clear. As Pr increases, the present solutions are uniformly
good for suction, but predict too rapid a decay in the heat-transfer
rate for blowing, especially when A is large.
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Some typical results are illustrated in Figures 1-4 and
compared with the available exact solutions due to Stewart and
Prober (Ref. (13)), and Thompson (Ref. (l14)) whenever appropriate.

Figure 1 shows the results for Pr = 1 for which an exact
integral, 6 = 1 - u*, holds. Exact solutions for heat transfer are
thus available from the exact skin-friction results of Emmons and
Leigh (Ref. (15)), or directly from Reference (13), for comparison.
It is remarkable that the present procedure, suitable for large
Prandtl numbers, yields very accurate results of heat transfer
for Pr = 1. Of course, the finding that the validity of a
calculation procedure designed for large Prandtl numbers actually
extends into regions of moaerate Prandtl numhers is not totally
unexpected, (see Ref. (8)). We also note the insensitivity of
the present results to the profiles used in the calculations.

Figures 2-4 show the heat-transfer results are functions of

0.01 0.1 .4 - g'

43

for which exact solutions are available for comparison. These
resu)ts clearly confirm our aforementioned predictions based on
the ._ehavior of the present solutions in the limit of Pr + =,
However, it should be remarked here that as Pr + =, the results
pertaining to blowing, though quantitatively inaccurate, are

still qualitatively correct. It is possible that the thermal
boundary layer is blown off the surface while the momentum boundary
layer still remains attached.

the Prandtl number at three values of X:

The same approach and profiles are then employed in the
original K-P procedure for this problem, using 7, obtained from
the original K-P method with a linear velocity profile, as
reported in Reference (l). The results are presented here only for

o= %;l in Figure 5. A comparison between Figure 5 and Figure 3

clearly illustrates the superiority of the refined K-P procedure.
The absence of a sharp decrease of the heat-transfer rate in tle
interval, 6 < Pr < 100, is typical of the failure of the original
K-P procedure. MNevertheless, it should be mentioned that for
the case of suction, the original K-P procedure with the same
profiles is also capable of predicting the correct asymptotic
behavio~ for Pr + =, only the sensitivity of results to profiles
is more pronounced.

A Distinguished Limit

The singular perturbation nature of the boundary-layer energy
equation in the limit of Pr + « is well-known. (See, for example,
Narasimha and Vasantha, Reference (16). It is also apparent in (lc)
in which the coefficient of the highest <derivative approaches zero
as Pr - =, The asymptotic structure of the thermal boundary layer
with surface blowing in the limit of Pr - » has been discussed

AT PR AY - SR
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by Kassoy (Ref. (17)), amony others. The interesting phenomenon
of thermal layer blowoff is qualitatively analyzed for the case
of a porous plate with similarity blowing in Reference (17).

Physically speaking, the thermal boundary layer has a
vanishing thickness relative to the momentum boundary layer as
Pr + =, because the viscous diffusion (~v) dominates the thermal
diffusion (-x). Therefore, the heat transfer takes place in a
very thin region close to the wall where the convective velocity
components (u,v) are also small. In the case of transpired
boundary layers, an additional mechanism of heat transfer (-¢)
appears. The precise orders of magritude of these physical
guantities as Pr - = are related uniquely only in a distinguished
limit in which convection, conduction and mass trarsfer are of
equal importance. It is convenient and instructive to deduce
such a limit from the equations derived in the process of the
present development. We remark here that, as Pr + =, the present
method_seems particularly suited for this case of vanishingly
small A in view of the results discussed in the section of Porous
Plate: Similarity Case.

Let us consider (ll). The three terms from left to right
represent, respectively, the effects of convection, conduction
and mass transfer. Therefore, we require that, as Pr » =,

~

~ €R (16)

T ’

-1/2).

i

3
Rp
R R:
X
where we have used the relation F = O(Rx

It follows immediately that

P+ o A=oer /3, 2 =o'l and 6,6 = oer~ 13 . an

Thus, the distinguished limit corresponds to vanishingly
small values of X and 6,./6. We are now led to introduce the
following variables for the study of this limiting flow:

A=pr/3 % =00 (18a)

Als Pr Al = 0(1) (18b)
In this limit, F may be expanded as

F=Fg,+ A Fi + ... (19}
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where Fg corresponds to the skin-friction coefficient in the
absence of mass transfer. Only the leading term, Fg, will be
needed in the ensuing calculations. The result to be obtained
thus corresponds to an approximation of the leading asymptotic
term in this distinguished limit. A systematic asymptotic analysis
of the general flow in this distinguished limit appears to be an
interesting problem of fundamental importance but beyond the scope
of the present paper.

For a flat plate, Reference (l) provides

-1/2
= — X Rx ’ (20)

° ra

and, as mentioned earlier, (a,y) = (1/8, 1/6) is useu in the
calculations.

Porous Plate: Similarity Case

F

Introducing A and A, and applying the limit process, (17), to
(12) and (13), we arrive at the following results:

A= @32 230 + aB/ Gy (21)
and
N ~ -
—7z = e/’ [3 @ V6@ "33 @20 + 4?3 - A - 22)
X

Results of Nx/(Rxl/ZPr1/3) as a function of A for the two

temperature profiles are plotted in Figure 6. It can be shown

that both curves approach the exact limit of asymptotic suction.
The dependence of the results to profiles is still weak in this
limiting flow, and the thermal boundary-layer blowoff (N, = 0)

is predicted at a finite value of A. An exact treatment of this
limiting case was rucently reported by Gersten (Ref. (18)) for a
class of Falkner-skan flows. The same distinguished limit was
derived in a different manner in Reference (18). The exact solution
pertaining to the flat-plate configuration is included in Figure 6
for comparison with the present approximate results. The agreement,
in general, is clearly quite satisfactory, except near thermal
boundary-layer blowoff where the exact solution exhibits an
exponential decay in heat transfer.

Porous Plate: Nonsimilar Case

Equation (11) is still the basic differential equation for
this nonsimilar flow, as the velocity, u, is approximated by (8).
Now, applying the limit process, (17) and (18), to (l1l1) and noting
(20) , we have the following differential equation for the limiting
flow:

o e e
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(8a) /2 ~ h 2
dA {8a) *°° (1 + BA)) + (§7)
1. _ye 5 1 (23a)
A
2(gh)
and
A 1/6
heo, £ i3a) . (23b)
(va)
Substituting (9) into (5) and introducing A and A, we
obtain
My 173 [§ A By
ﬁ,2..pr - (1 - =DA c (24)
Rxl [E& xl ¢ ]

Results of Nx/(Rxl/ZPr1’3) as a function of A are plotted

in Figure 7 for the two temperature profiles used in the
calculation. The behavior of heat transfer is cuite analogous
to that for the similarity case, Figure 6. We also note that
the two curves will converge in the region of large negative A
and approach the exact asymptotic suction limit,

N_/(R.1/2pr1/3) . |A|. No other limiting solutions to this non-
s¥nildr flow seem to exist in the literature, to the best of the
author's knowledge.

APPLICATION TO CASES OF SMALL Pr

General Remarks

In this section, the method is applied to the calculatio:n
of boundary-layer heat transfer in the limit of Pr + 0. The
mathematical limit here is R, + =, Pr » 0 and R _Pr + », so that
the concept of a thin therm¥1 layer near the slirface is still
valid. The chief simplification is that the velocity profile, u,
inside the thermal boundary layer can be approximated by the
external potential stream ug(x), (Ref. (12)). Therefore, we need
only to assume the temperature profile. The resulting solution
corresponds to the limiting case of Pr = 0, i.e., an inviscid
but heat-conducting fluid. Three representative examples will be
presented in the following. These examples will explicitly reveal
the relevance of the differential equations to a class of heat-
conduction problems. Therefore, the success of the present method
here would imply its potential usefulness in studying general

10
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problems in transient heat conduction with complex boundary
conditions, including nonlinear cases. Some initial attempts
have already been made by Volkov and Li-Orlov (Ref. (19)). A
more thorough investigation of this application appears desirable,
and should lead to a modified version of the work of Goodman

(Ref. (20)) who had applied the original K-P method to a variety
of heat-conduction problems.

Porous Plate: ¢ = const. = 0(1//Rx5r)

Here the velocity (u,v) = (uw,v,) and the energy equation
takes the form

36 36 k3%
H‘PCW-":;; . (25)

The first and second integrations of (25) lead to, respectively,

Nx d
———— = - € (26)
RxPr 1 aRx
and
dR'r 1 =
a = + €B g {27)
1 aRx PrR,r

where (¢ ,5) are profile-parameters defined in the Nomenclature.
In derivlng (26) and (27), a temperature profile of the form
8 = g(np) is assumed. Equation (27) is readily integrated to give

2 a:I. &1 P2
€ RxPr = E_ €RpPr - = in (1 - BeRTPr) . (28)

B

and the heat-transfer coefficient follows from (26) as

N - e/RxPr é’
X B —=—=— - (1 - —)ev/PrR . (29)
= — cRTPt &1 X
/RxPr a)

Equations (28) and (29) form a parametric representation for the
heat-transfer coefficient, i.e.,

N

X _=f (e/R_Pr) . (30)
/RxPr

11
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Results corresponding to the two temperature profiles, g;
and g4, are illustrated in Figure 8. The profile-parameters
alsoctated with g; and g4 and (&l,é) = (1,3, 1/2) and (2/15, 3/10),
respectively.

It is interesting to note that (2f) is also relevant to the
problem of the transient heat conduction in a semi-infinite solid
moving with a constant velocity ¢ and maintained at a constant
temperature at y = 0. The exact solution is available in Carslaw
and Jaeger (Ref. (21)). The heat-transfer rate is readily obtained
from the solution for 6, i.e.,

Ny 1 cszPr e/RxPr c/RxPr
—— exp(- ) - erfc (—2——) D (31)
'R Pr e 4 p

The exact solution is also shown in Fiqure 8 for comparison
with the approximate solutions, (30). The present results are
clearly very satisfactory in accuracy; the close agreement between
the results corresponding to the two temperature profiles is also
evident. However, it should be pointed out that as the blowing
intensity increases, the present approximate solutions predict
zero heat transfer (thermal boundary-layer blowofr) at finite
values of e¢vVR_Pr, wihile the exact solution shows exponential decay
in heat tranZfer. 1Therefore, as is usually the case, the accuracy
of the present solution begins to deteriorate as the blow-off
point is approached.

Circular Cylinder

We now consider the case of a circular cylinder in crossflow.
The orthogonal curvilinear coordinate system, (x,y), has its
origin at the forward stagnation point with x measuring the
distance along the surface (x = a¢). Then u* = 2sin¢, v* = =2y*
cosv. The energy equation and the boundary conditions are

Lo, 38 38 _ 1 3%8

sin¢ TR 4 cos¢ Sy+ R Pr A (32a)
*

0(¢, 0) =1 8(e, 6T) = 0 [ (32b)

*
where u* = u/u_, v* = v/u,, y* = y/a and GT = GT/a.

Applying the present method to (32a) results in the following
two equations, basec on the assumed profile, 6 = g(nT):

12
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1 ND > dé; *
3 RDPI = 3(sin¢ a-o— + 6'1' cosd) (33)
and
des,; 1
B e ! ¢
6T sin¢ . + GT cos¢ = RDPr o '34a)
with
» . =1/2 gt
GT (¢,0) (olRDPr) B (6.1.)° c (34b)
Equation (34a) can be easily integrated to give
LI * ¢
e (GT)o sec x c (35)
Equation (33) then gives
N .
0_ .. -E_— cos % (36)
VRDPI '/dl
= 1.73 cos % for 6 = g, (37a)
= 1.64 cos § for 8 = g, . (37b)

The exact solution to this problem can be found in Grosh
and Cess (Ref. (22)) who transformed the equation to a standard
form o{ one-dimensional heat equation. The heat-transfer result is:

Ny

4 RDPr

The present method is again shown to yield satisfactory results.

. (38)

Vo

= 1.60 cos

Two-Dimensional Stagnation Point, Uniform V,

As a last example of this limiting flow, we consider the
heat transfer near a plane stagnation point in the presence of
uniform surface mass flux. Of course, the treatment is still
within the framework of thermal boundary-layer theory.

13
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Here we have u = uy =vjx and v = Vy = yu;. The energy
equation and the boundary conditions are

30 N 20 220
Xt axat O = ¥Y) 3w ot 3y (39a)
f (x*,0) =1, 6 (x*, =) =0, (39b)

where the coordinates and velocity are normalized by the
characteristic length v/x/u, and velocity vku, respectively.
In particular, we have

Vw Uw UgX
1 = = —— = g "'m = 0(1) (40)
vYKuj e

>t
m

Using 6 = g (nq) and applying the present method to equation
(39a) result in

sy \ -
N ey = - .
alx'é; e alé; 1l + AIB GT (41)
and
dsx

Nx . Y X K_ = g8 (6% o Ly X

—r Kk T, ﬁex B (Op + x ) - A (42)
The solution to equation (41) is easily obtained as

= —1—. PEEY Y ay2 ~ i
4= = [s A+ ‘I(Als) + 4d, ] const. (43)
*1

Equation (42) then gives

-~

X =és,;-xl (44)
YRXPr

The exact solution to equation (39) is also easily obtained by
noting that the boundary conditions and the original partial
differential equation, (3%9a), admit a simple solution of the form
6 = 06 (y*). Hence, (39a) is essentially an ordinary differential
equation whose solution has a simple closed-form. The exact heat
transfer follows from the solution for 6, and is given by

Z

14
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-~

A

1 2 -1
.[@ e 2 (1+erf7;_)] (45)

@ . -1
e ['£ exp (Ay* - 5 y*h) dy*]

The approximate solutions have been obtained for two temperature
profiles, g, and g,, and compared with the exact solution,
equation (4&), in Figure 9. Again, the approximate solutions are
shown to be very accurate. It can further be shown analytically
that the approximate solutions reduce to the exact asymptotic

limit as Al + ==, independent of profiles. Near thermal boundary-

layer blowoff, the comparison resembles closely that of the case
of a porous plate studied in the Porous Plate section of this
report.

CONCLUDING REMARKS

The primary purpose of this paper is to present a simple
procedure for practical calculations of heat transfer in boundary
layers. Oversimplified and, in fact, improper profiles are
deliberately used in the calculations, and the principal merit of
the method, namely, the remarkable combination of simplicity and
accuracy, is amply demonstrated and fully exploited. No effort is
expended here in providing the details of the flow field.

Results of these calculations indicate that the rudimentary
application of the method, as described in this paper, is adequate
for most engineering purposes. The weak dependence of the results
to the profiles continues to prevail. This is believed to be a
consequence of using an integral expression for the surface heat
flux; the effect of improper profiles is mostly reflected in the
somewhat spurious predictions of transverse scales of the boundary
layers, 6§ and §q, so that the predictions of the wall heat-flux
remain reasonany accurate. However, near the thermal boundary-
layer blowoff where the heat-transfer rates are small, the
results are useful only for qualitative purposes. This finding
is reminiscent of the difficulty encountered in the previous skin-
friction calculations (Refs. (1) and (2)).

The possibility of using the method to study general problems
of transient heat conduction appears promising and warrants
further investigation. 1In particular, the present m:thod seems
capable of providing simple approximate solutions to heat conduction
problems with phase changes and moving boundaries, such as melting,
ablations, etc. These problems have the characteristic feature of

15



nonlinear boundary conditions imposed on a (unknown) moving
boundary. The technological importance of such problems is self-
evident. The present approximate method should serve »s a useful
guide to the development of extensive numerical efforts in this

area.

Results of this study will appear in a separate report.
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