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.ABSTRACT 

This report deals with results obtained from operating an adaptive 

time-domain maximum-likelihood filtering system on data from the Alaska 

Long-Period Array (ALPA).    Signal-to-noise gain of adaptive filtering re- 

lative to beamsteering is investigated as a function of convergence rate and 

steer direction.     In addition,  the effect upon signal-to-ncise gain of freezing 

'-he adaptive filter set is described.     Both on-azimuth and off-azimuth sig- 

nals are examined to determine how much they are attenuated in the adaptive- 

filter beam in comparison with the beamsteer output.    Signal-to-noise gain 

values presented are measured using beam output traces formed from actual 

seismic data.     Theoretical studies of the effect of floating DC levels and 

roundoff error are also contained in this report. 

A major advantage of adaptive multichannel filtering is found to be the 

capability to narrow the main lobe of the array beam pattern. 

Neither the  Advanced Research Projects  Agency nor the Air Force 
Techmcal Applications Center will be responsible for information contained 
herein which ha. been supplied by other organizations or contractors,   and 
this document is subject to later revision as may be necessary.     The views 
and conclusions presented are those of the authors and should not be inter- 
preted as necessarily representing the official policies,  either expressed or 
implied,   of the Advanced Research Projects Agency,   the Air Force Technical 
Applications  Center,   or the US Government. 
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SECTION I 

INTRODUCTION 

A. PURPOSE OF THIS STUDY 

The adaptive processing task of the Extended Array Evaluation Pro- 

gram has as its objectives: 

• To gain experience in operating a real-time adaptive signal 

estimation processor based on the time-domain maximum- 

likelihood algorithm 

• To perform theoretical studies relating to the convergence of 

the algorithm and to analyze the output oi the adaptive pro- 

cessor in an attempt to upgrade its performance 

This report deals solely with the problems associated with operating the real- 

time adaptive processor on ALPA data.    A modified version of the TI interim 

ALPA system was used to implement the adaptive-filtering algorithm.    Theo- 

retical studies of the effect of floating means and roundoff error upon filter 

performance are contained in this report. 

B, DESCRIPTION OF ALASKA LONG-PERIOD ARRAY (ALPA) 

The ALPA array is shown in Figure 1-1.    ALPA is a 19-element hex- 

agonal array with 20 km spacing between sites.    Table 1-1 gives the ALPA 

site locations.    In this report,   sites are referred to in terms of their trans- 

mission order.    Thus,   site 10 refers to site 3-45 in the official nomenclature. 

" 
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FIGURE 1-1 
ALPA GEOMETRY 
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C. ADAPTIVE MULTICHANNEL FILTERING 

Multichannel filtering is a form of array processing in which multiple 

channel inputs undergo individual frequency-shaping and phase-shift filtering 

prior to the channel-rummation operation which produces the beamformer 

output.    Figure 1-2 is a schematic diagram of multichannel filtering.    This 

illustration incorporates the option to preprocess the transducer outputs be- 

fore they are input to the multichannel beamformer.    Examples of prepro- 

cessing are frequency filtering (most commonly with identical frequency re- 

sponses on all channels) and time shifting to align waves emanating from a 

particular direction.    The preprocessed transducer outputs become the input 

channels to a multichannel filter set,   where individual filters (generally dif- 

ferent from channel to channel) are applied to the input channels.     These fil- 

ters are implemented as convolution filters in time-domain processing or as 

complex-valued multiplicative filters in frequency-domain processing.     The 

multichannel filter output is created by summing the individual filtered chan- 

nel outputs. 

In systems where second-order statistics (crosscorrelation functions 

and crosspower spectra) are used to describe interrelationships among the 

input channels,   there are two basic forms of multichannel filtering.    In 

Wiener-Kolmogorov multichannel filtering,   the average squared error be- 

tween the desired signal and the multichannel filter output is minimized.    To 

minimize the mean square error,   the crosscorrelation functions or cross- 

power spectra between the input channels and the desired signal are required. 

In maximum-likelihood multichannel filtering,  the average squared output 

from the multichannel filter set is minimized subject to signal-preservation 

constraints which place some suitably-chosen frequency response on the sig- 

nal.    For maximum-likelihood multichannel filtering,   unlike Wiener- 

Kolmogorov filtering,  only the direction of the signal needs to be specified, 

but not the signal-to-noise ratio. 
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Multichannel filtering can be employed with fixed or time-varying 

filter sets.     When the filters are updated as new data inputs enter the^multi- 

channel processor,  the process is called adaptive filtering.    Adaptive- 

filtering algorithms with significant computational advantages over fixed 

multichannel filtering are available.     When the inputs to the multichannel 

processor are time-stationary (in the wide sense),   these algorithms yield 

filter sets which converge in the mean to the corresponding fixed muM- 

channel filter sets.    After adaptive filter sets reach the vicinity of the cor- 

responding fixed filter sets,   they fluctuate about the fixed-filter solution in 

the presence of time-stationary data:   the adaptive filters converge in the 

mean in the sense that the average position of the fluctuating adaptive filters 

is identical to the fixed-filter solution.     When the statistics of the data enter- 

ing the multichannel processor slowly change with Hme.   adaptive filtering 

can react to the changes in a semi-continuous manner.    If fixed filtering is 

used in this situation,   newly-designed filters change in a more abrupt fash- 

ion.     When,   as in this case,  the statistics of the data shift with time,   the 

adaptive-filter solution lags behind the fixed-filter solution corresponding 

to the instantaneous statistics.    The extent of the lag can be controlled by 

changing the adaptation rate.    The choice of an adaptation rate involves a 

tradeoff between misadjustment (higher-than-optimum error or power due 

to the adaptive-filter fluctuations) and the lag behind the optimum instantan- 

eous fixed-filter solution.    A different kind of lag occurs when fixed filter 

sets are periodically redesigned:   statistics must be accumulated over a 

design interval so that,   as a result,  the fixed-filter solution cannot be im- 

plemented until the next design interval. 

In the conventional technique of array processing,   simple time delays 

or phase shifts are applied to the input channels b,   ore summing to generate 

the beam output.    Optimum multichannel filtering Produces considerable 

new flexibility into the beamforming process.    ^ ce it is possible to weight 
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the input channels differently,  channels with higher signal-to-noise ratios 

can be emphasized at the expense of noisier channels.     When well instru- 

mented arrays are utilized,  this capability is generally of minor importance. 

A far more consequential feature of adaptive filtering is the ability to form 

array antenna patterns which optimally pass a signal while simultaneously 

rejecting propagating noise.    Deep nulls can be aimed toward off-beam 

noise sources.     Wlien strong off-azimuth noise sources are present,  the 

creation of such nulls is an automatic result of the optimality of the multi- 

channel processor.     The conventional time-shift-and-sum or phase-shift 

processor,   in contrast,   has a beam pattern determined solely by the steer 

Jix action and the array geometry. 

In most cases,  the potential improvement of optimum multichannel 

filtering relative to beamsteering is determined by the coherence of the 

noise field across an array:   the greater the similarity of the aoise field 

from channel to channel,  the greater is the optimum-multichannel-filter 

improvement over beamsteering.     When,  on the other hand,   noise is com- 

pletely uncorrelated between sensors and identical signal and noise power 

levels are encountered at all array sites,  there is no potential for improve- 

ment:   in this case,  the optimum filter set is a beamsteer processor.    The 

decision to employ or not to employ an optimum-filter technique of proces- 

sing depends critically on measurements of the noise field at any given array. 

Once these measurements are available,  the additional cost of implementing 

an optimum-filter system can be quantitatively weighed against the advan- 

tages of greater noise suppression relative to the conventional beamsteer 

processing technique. 

•. 

D. DESCRIPTION OF THE MAXIMUM-LIKELIHOOD ADAPTIVE FILTER 
ALGORITHM 

The adaptive-filter output   y(t)   at time   t   is formed by applying a 

convolution filter to each channel and summing the outputs of all channels: 

I--7 
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M N 

y(t) = Zl   YJ ai(j)xi(
t-j) 

i = l j = -N 

where   Mj)   is the filter weight for the   i-th   channel at a lag of   j   sample 

points,    x.ft-j)   is the value of the channel   i   at time   t-j.    M   is the number 

of channels,   and   2N+1    is the total length of the filter in points.    Prior to 

forming the filter output,   each channel is time-shifted to time-align energy 

arriving from ^he desired steer direction. 

The adaptive filter weights are updated by the following algorithm: 

I 

new old 

where 

a
i(j)     =        a.(j)   +   A(t)y(t)   [x(t-j)   -   x.lt-j)] 

M 
s(t-j) - w E xi^ j) 

i=l 

and   Mt)   is the convergence parameter at time   t .    This update algorithm 

incorporates the maximum-likelihood constraints. 

The convergence parameter   .\(t)   is calculated by the formula 

2K 
A(t) 

M 

(2N+1) ^ p.d) 

i=l 

where   K      is an input parameter    and   P /n   i*, ^   
s H     pi  ctmeier,  anü   p.(t)   is a moving power average for 

the   i-th   channel.    P.(t)   is computed by the formula: 

P.lt)     =     (1  -^) x(t)   -   x.(t) +   /iP.(t-l) t > 1 

where     /i   is an input parameter.    V.(0)   is zero,   and several values of P.(t) 

are computed before the filter is allowed to vary. ' 
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E. GEOMETRICAL INTERPRETATION OF THE ABF ALGORITHM 

In vector form,  the adaptive-beamforming filter update equation may 

be written 

.new      Aold . T   old — 
A - A =   X(t) X'A^X-X) . 

where the superscript   T   denotes transposition,   and where the filter weight 

vector    A,   the data vector   X,   and the beamsteer output vector   X   are, 

respectively. 

aj (-N) 

aM(-N) 

aj (0) 

aM(0) 

a1 (N) 

VN) 

X = 

Xj (t+N) 
• • • 

xM(t+N) 
• 
• 

x,  (t) 
1  . 

■ 

• • • 

Xj (t-N) 
• • » 

"M""^ 

andX = 

x(t+N) 

x(t+N) 

x(t) 

x(t) 

x(t~N) 

x(t-N) 

The objective of maximum-likelihood adaptive beamforming is to re- 

duce the average squared filter output 

y2(t)   =     (ATX)(XTA)   =   AT XXT A 

subject to a set of signal-preservation constraints on the filter vector   A. 

After preshifting the input channels to time-align energy from the look dir- 

ection,  these constraints can be written 
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M 

E-, (j)   =   d(j) (j = -N,..., -1,  0,   1,...,^, 

i = l 

where the constants   d(j)   specify a convolution filter having the desired fre- 

quency response on a signal from the steer direction.     When such a signal 

s(t)   appears in identical form on all channels,   the signal output from the 

beamformer is 

N 

E 
j=-N 

M 

E ai(j) 
i=l 

N 

s(t-j)    =      2^     d(j)s(t-j) . 

j = -N 

For the adaptive beamforming employed in this study,   a white frequency 

response is specified by setting 

d(j)   =   8. 
jo 

(j = -N,.. ., -1,   0,   1,... , N), 

where     8.      is the Kronecker delta operator 
jo 

5  -J1  " i = 0 
J0

    (o    if    1*0. 

To reduce the average squared filter output   y (t) ,  the method of 

steepest descent (with two modifications) is used.    In the unmodified form of 

the method of steepest descent,  the filter vector   A   moves in the direction 

opposite to the gradient of the average squared filter output   y2(t) : 

new      .old T„    T cV(A   XX   A) =   -Zc XX    A 

rp 
The first modification is to replace the crosscorrelation matrix XX 

T 
with the rank-one matrix   XX      formed from, the instantaneous vector   X   at 

time   t : 

„new old „       ,    T 
A -A =   -2cX(X    A) =   -2cXy(t)   . 
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This modification of Widrow (Widrow,   1966) approximates,   in effect,  the 

crosscorrelation-matrix time averaging through successive applications of 

the filter update algorithm.    The approximation becomes increasingly ac- 

curate as the rate of change of the filter vector   A   is slowed by reducing the 

scalar convergence parameter   c .    The filter vector   A   converges in the 

mean under suitably prescribed conditions (Daniell,   1968) to the vector ob- 

tained by using the crosscorrelation matrix   XXT   in the update equation. 

Ultimately the filter vector   A   oscillates about its mean.    The size of the 

oscillations can be controlled by varying the parameter   r ,    The reason for 

the Widrow modification is a reduction in the computational operations re- 

quired for the filter update from a number of proportional to the square of 

the dimension of the vectors   X   and   A   to a number linearly proportional 

to their dimension. 

The second modification of the steepest-descent method is to alter 

[y  (t)       so that the ensuing update vector 
J      r 2   I 

(A        - A      )   is the vector nearest to -cV  y (t) 

the direction of the vector    -c\' 
L    J     r 2 i 

which satisfies the con- 

straints on the filter update vector.    Since the sum across channels 

M 

E ai^ a) 
i=l 

... 
of the filter vector   A   is a fixed value   d(j)   at any lag value   j , the filter 

j  * / «new     .old 
update vector   (A       - A      )   must sum to zero at each lag: 

M 

E 
i=l 

new old 
a.U)   -   a.O) = 0       (j = -N. ...,-1,   0,   1,...,N). 

1 

The filter update vector must be perpendicular to each of the   (2N+1)   unit 

vectors    U^   specified by their components 
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where   8.k   is the Kronecker delta operator.    Each of the vectors    U     is zero 

except in the   k-th   lag position,   where all components are equal to    1/VM. 

In vector form,   the filter update vector must satisfy the   (2N+1) constraints 

„T      new      Aoldv 
\ (A " A      ) = 0        (j = -N -1,   0,   1,...,N). 

The vector   X ,   since it has identical components at any lag value   j ,   is a 

linear combination of the vectors    Uk   and is perpendicular to all possible 

update vectors satisfying the constraint conditions.    The vector   (X-X) ,   on 

the other hand,   satisfies the constraint conditions: 

M        N 
ukT(x-x) = E E v M ■ M 

i=l    j = -N 

M 

= E [xi(k) ■x(k)]= 
r M 

E xi(k) 

i=l L i=l 

M3r(k) 

=   Mx(k)   -   Mx(k)   = 0 . 

Thus the vector   X   can be resolved into two mutually orthogonal components 

X   (perpendicular to the constraint space for the filter update vector) and 

X-X   (lying within the constraint space).    The negative   -cv[y2(t)l of the 

scaled gradient of   y2(t)   is a scalar multiple    -[2cy(t)]X   of the vector X. 

The nearest point to   -c V [y2(t)J   on the constraint space is the vector 

[2cy(t)](X-X)   formed by subtracting the component   -[2cy(t)]x   perpendi- 

cular to the constraint space from the scaled negative gradient vector 

- [2cy(t)] X .    The final form of the filter update equation is,  therefore, 
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.new old 
A - A [2cy(t)] 2cy(t)     (X-X) . 

This situation is illustrated in Figure 1-3.     The resultant filter update vector 

is the projection of     -c V [y  (t)J    onto the constraint space. 

F. A SIMPLE ILLUSTRATIVE EXAMPLE 

Suppose that three channels are  input to an adaptive beamformer with 

one lag per channel.    Signals are defined to be simultaneous spikes on all 

three channels.    Noise,  on the other hand,   appears in the form of unit- 

amplitude spikes on the second channel.     When signal and noise occur,  they 

are characterized by the respective vectors 

»• 

Xjit)  =  s 

x2(t) = s 

L x3(t) = s 

and N = 

XjOO = o 

x2(t) =  1 

L x3(t) = 0 

Figure 1-4 depicts time series inputs for this simple example.    The adaptive 

filter set is initialized with beamsteer weights: 

A = 

a^O) = 1/3 

a2(0) = 1/3 

_a3(0) = 1/3 

•' An optimum filter set is 

A = 

a^O) = 1/2 

a2(0) = 0 

La3(0) = 1/2 
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[2cy(t)] (X-X) 

(projection of    -c\    y  (t) I 

onto the constraint space) 

[2cy(t)]x 

the constraint space for 

cv[y2(t)J=:[2cy(t)]x 

A0ld   =    [2cy(t)] (X-X) 
new 

FIGURE 1-3 

A GEOMETRICAL INTERPRETATION OF TIME-DOMAIN 
MAXIMUM-LIKELIHOOD ADAPTIVE FILTERING 

i I   I 
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Channel 1 

r 

ChannelZ 

Channel 3 

(a)   Signal Model 

L 

Channel 1 

Channel 2 

I 

Channel 3 
(b)   Noise Model 

FIGURE 1-4 

A SIMULATED DISPLAY OF THE TIME SERIES INPUT 
CORRESPONDING TO THE ILLUSTRATIVE EXAMPLE 
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Whenever a noise spike first appears on channel Z,  the filter vector    A   is 

updated according to the equation 

or 

/new .   A0ld +   2cy(t) (N-N) 

new 

[  0     1     0 ] 

+ 2c _    i 

-    0 

3 

J_ 
3 

l_ 
3 -J 

_1_ 
3 

J_ 
3 

_1 
3* 

_L 
3 

J_ 
L-    3 

9 

4 
Tc 

2 

The adaptive update equation shifts its weighting from channel 2 to channels 

1 and 3.    The second time the noise spike appears on channel 2,  the filter 

output is 
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.. 

.. 

[  0     1     0 ] 

y(t) = 

3 

_1_ 
3 

L~ 

9 

9 

2 +      — 
9C_I 

The amplitude of the noise output is diminished whenever   0 < c < 3/2.    After 

k   updates,   the adaptive filter vector is 

. i 

; 

1 
2 -in. 4      W~l 

3  C) 

4-"- 4^k 

i 
L   2 T<'- 

4       W 
-3-C)    _ 

When the   (k+l)-st   noise spike appears on channel 2.  the output of the adap- 

tive beamformer is 

y(t)    =4(1-   -ic)k   . 

Each time a new noise spike appears on channel 2,  the adaptive filter output 

is   ( 1  - 4c/3 )   times its previous value.    After each new noise spike,   the 

difference between the optimum filter vector and the old filter vector is re- 

duced by the same factor   ( 1  - 4c^3 ).    In this simple example where ^ 

noise crosscorrelation matrix   NNT   has a single non-zero eigenvalue,   the 

average squared filtered noise output     y2(t)     is minimized when   c = 3/4. 

In this case,   noise is completely eliminated starting with the second noise 

spike on channel 2.     When     0 < c < 3/4 .   the noise output always has the same 

sign as the spike on channel 2.    When    c> 3/4 ,   however,  the noise output 
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alternately differs and agrees in sign with the input spike on channel 2.     The 

magnitude of the output spike always diminishes as long as   0 < c < 3/2.   When 

c > 3/2,  on the other hand,  the adaptive filter vector diverges and the ABF 

output increases in magnitude with the arrival of each new noise spike. 

In this idealized example,  the signal does not affect the filter update 
since 

S   -   S   = 

s s ' 0 " 

s - s = 0 

s s 0 

In the event that a signal spike appears simultaneously on all channels,   the 

output from the beamformer is    s    since the filter weights sum to one. 

G. ORGANIZATION OF REPORT 

Section II describes the problem of floating means in ALPA data,   its 

effect on filter performance,   and the techniques used to eliminate it.   Simple 

subtraction of the channel means did not adequately solve the problem.   This 

section is intended for data analysts and programmers who must deal with 

means in the input data. 

Section III examines the effect of roundoff error in an integer- 

arithmetic implementation of the filter update equation.    Simple approxima- 

tions for the average angle of error in the vectors   (X-X)   and   (AneW-A0ld) 

are presented.     The angle of error in   (X-X)   is affected by the number of 

^new ^okT6^656"* ^ data ValueS   V^'  whereas the angle of error in 
(A        - A   ■  )    is also influenced by the number of bits employed to represent 

the filter weights    a.(j).    The simple approximations given for the angular 

error in   (X-X)    and   (AneW- A0ld)   are probably adequate to specify the data- 

value and filter-weight representations to the nearest four bits when directional 
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error limits are placed on the vectors   (X-X)   and   (AneW - A0ld).    This sec- 

tion is intended primarily for digital design engineers and programmers who 

may need to consider roundoff error when implementing an integer-arithmetic 

adaptive-filter ing system. 

In Section IV,   the subject of investigation is the ability of adaptive 

multichannel filtering to provide signal-to-noise ratio improvement relative 

to beamsteering in the presence of background noise.    Signal degradation and 

noise reduction measurements from real data are combined to yield the as- 

sociated signal-to-noise gain.    The convergence rates where the highest 

signal-to-noise gains occur are ascertained in this way.    This section is in- 

tended to assist those persons evaluating the potential usefulness of an 

adaptive-filtering system for processing ALPA data. 

Section V studies the effect of freezing the adaptive filter set.    Loss 

in noise reduction is determined by comparing the adapti/e-filter beam out- 

put when the filter is allowed to vary with the adaptive-filter beam output 

when the filter is frozen.    Signal degradation is remeasured when the adap- 

tive filter set is frozen in order to estimate the resulting signal-to-noise 

gain.    In processing the data samples used to evaluate the filter-freeze pro- 

cedure,   several off-azimuth events are also run through the adaptive beam- 

former.    The potential improvement in interfering-event situations is de- 

monstrated as a byproduct of the investigations presented in this section. 

The results of this section are intended both for data analysts and program- 

mers interested in the effect of the filter-freeze procedure and for those 

persons interested in the effectiveness of the adaptive-filter algorithm in 

processing interfering events. 

Section VI examines noise reduction achieved by adaptive filtering for 

different look directions and discusses variations in processing gain for the 

ten four-hour noise samples processed for this report.    This section is in- 

tended to give some idea of the variability which can be expected in the 
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performance of the adaptive-filtering process when background noise is pre- 

sent. This information should be useful in evaluating the potential improve- 

ments to be gained through adaptive filtering. 

Section VII presents the conclusions of this study.    For those with in- 

sufficient time to analyze in detail the results of the individual sections in 

this report,  this section gives the highlights of this investigation. 
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SECTION II 

THE PROBLEM OF FJJOATING MEANS 

"' 

A. FLOATING MEANS IN ALP A DATA 

In data recorded prior to the summer of 1972,   some of the digitized 

traces transmitted from ALPA had mean levels higher than 1000 computer 

counts.    These mean levels were contrasted with RMS levels in tens of com- 

puter counts (after mean removal).    Furthermore,   these DC levels gradually 

changed over a period of a few hours.    Subtraction of a fixed DC level was 

insufficient to reduce the mean to a level significantly below the RMS level 

of any given trace because of the gradually changing mean levels.    Even the 

removal of an exponentially smoothed running mean produced similar results 

because of a time lag between the mean computation and mean removal. 

The floating means in ALPA data are caused by drift in the pream- 

plifiers at the individual sites of the array.    In the summer of 1972,  the orig- 

inal preamplifiers were replaced by new preamplifiers of different design. 

The effect of this substitution was to reduce the floating mean levels by an 

order of magnitude:   while mean levels with the original equipment could 

sometimes reach thousands of computer counts,   mean levels were reduced 

to levels expressed in hundreds of counts (typically between 100 and 200 com- 

puter counts) with the change in instrumentation. 

Although the problem of floating means has been considerably amelio- 

rated by the dramatic, reduction in mean levels at ALPA,  the current DC levels 

still lie above the channel RMS amplitude levels after mean removal.    The 

same problem is evident at the NORSAR array.    In fact,  the floating-mean 

problem may be a general problem with long-period seismometers. 

't 
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Consequently,   effective techniques for removing the floating DC levels appear 

to be essential in processing long-period data with adaptive-filtering algo- 
rithms. 

On a quiet noise sample from day 203 of 1971,   negative improvement 

from adaptive filtering (as measured in terms of noise reduction) was consis- 

tently obtained until the problem of floating means was studied and dealt with 

effectively.     The chief symptom of the trouble was a particularly poor per- 

formance at frequencies below the frequency equal to the reciprocal of the 
filter length. 

Subsection B presents a theoretical study of the effects of DC bias on 

maximum-likelihood adaptive filtering,    in Subsection B.   the results are de- 

rived using the fixed-filter maximum-likelihood multichannel-filter design 

equations.    Since the adaptive-filter solution converges in the mean to the 

fixed-filter solution,   similar if not precisely identical results can be expected 

in the case of adaptive filtering.    Empirical verification of this fact can be de- 

rived from the elimination of the predicted floating-mean performance symp- 

toms upon removal of the floating means from the data. 

Subsection C describes the measures taken to eliminate problems 

associated with DC bias.    A necessary remedy was the application of a pre- 

filter with precisely zero response at 0 Hz.    In addition,   computational bias 

in the adaptive-filter computer program had to be reduced to the maximum 

extent possible. 

B. 
EFFECT OF DC LEVELS ON ADAPTIVE FILTERING IMPROVEMENT 

The general design equation for two-channel,   {2N+l)-point maximum- 

likelihood multichannel filter set is 

II-2 

 --■ ' .-^^^^-a...^ -'■■'•    



mi^mimm^mm mmw*. mmmmm ■i       iJ-iiii      " in KJ.IIU>IJII i u in.ingjiwM j|iiiiij^m««««n^^vw^m »"»^iW»WPW»!pi«WW^Wl^^^iW»»iwwi!" .HHUt 

A' 

■ 

■*H(0) 

«21(0) 

1 

■*,,(■) 

*21(1) 

0 

012(0) 

*22(0) 

^2(1) 

>!!(-!)     012(-1)     0 

*21(-i)    022(.i)   o 

021(O) 

«12(0) 

^22(0) 

«21(-2N) ^22(-2N)    0 

0 0            0 

'^(l-ZN) 012(U2N) 0" 

021(1-2N) ^2(1-2N) 0 

0 0            0 

^11{2N)     </>12(2N)    0 

^21(2N)     ^2(2N)    0 

0 0 0 

011(2N-1)^2(2N-1)  0* 

<^1(2N-1)^2(2N-1)   0 

0 0 0 

\^)    012(O) 

9>21(0)   022(O) 

1 1 

1 

1 

0 

where    0   (r)   denotes the crosscorreiation function between channel   i   and 

channel   j    at time lag    r,   a(r)   denotes the filter point for channel   j    at 

time lag    r,    and     X(T)   denotes the Lagrangian multiplier associated with 

the maximum-likelihood constraint condition imposed upon the filter weights 

for time lag   T.    The Lagrangian multiplier      X(0)   for zero lag is equal to 

the mean square error and noise power output of the filter set.    A derivation 

of the design equation is given in part 2 of Subsection III-D. 

Assume two traces each consist of a mean   m.   with white random 
i 

noise of power   p. .     Then 

Let 

M 

m.m. 
1    J 

m.m. 
i    J 
2 

m.   + p. 

P,      o 

0  h 
1     1 

m1 
mo 

0 

T   ^   0 

i   ^   j 

1 

1 

0 

"aji-N)" "0 

a2(-N) 0 

-X(-N) 0 

• • 
fa^O) ' 

• • 
"o" 

a2(0) — 0 

L-x(o) _ 
• • • • • 

fa^N)' 

] 

"o" 

a2(N) 0 

L-X(N)_ 0 
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o = 

A(r) 

0     0 0 

0     0 0 

0     0 0 

a^r)" 

a2(r) 9 

and A(T) = 

-A(0 

0 

0 

OT 

where o denotes the Kronecker delta. 

The design equation for a symmetrical two-channel,  (2N+l)-point 

maximum-likelihood filter set,  for the noise field specified,   reduces to 

P   ON- O   O 
s 

O  PN   ^   o  o 

O   O     N 

o   o -O   P 

•x 
SPNO 

M 

M 
i 
i 
i 

M 

M 
L     J 

M      M M      M '] A(-N) 
i 

A(-N) 
1 

A(0) 
i 
I 

= A(0) 
l 
l 

I 

_A{N ) 
l 

A(N) 

Let 0 denote the (2N+I) by (2N+1) block matrix with diagonal element P.    Let /i 

denote the (2N+1) block  column vector with element M.    Then the total noise 
T matrix is   cj) =   Fl+li/i 

ST1 = n"1 - (n'W7^1) 
(i +/iTn"1/i) 

n 

p 

o 
I 

o \ 

p. l
vs 

■o 

o 
o 

O     O      s 

o   o -o 

o 
I 
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n-lfj = w 

T    -1 

n'^n"1 

M p'V 
M 

i _ P'/M 

A P    M 

M P"1]^ 

[ T       T T       T 
M     M M     M ] 

PVM 

P"^ 

[ 

[ P^M 

i 
i 

P^M 

(2N+1)MTP"1M 

J 
M^"1    MTp-1-—MV

1
   M

T
P 

J 

-] 

P^M 1 
1 

-1 

-1         P2 

1         Pi 

ml 

Pl+P2 
.P2 Pl     -P1P2 0 

1 

m2 

"m2 

-ml Pl+P2 

p2rr 
1 + Plm2 

i— -l 
r -1 P 

T   -1 
M   P   'M 

i 
m    rr 

'2  J 
mi- ■m2 

■ml 

{ml -m2) 

prp2 Pl + P2 P2m 
1 + Plm2_ 

-1         T   -1 
P    MM   P 

(rnl " m2) 1 
-1 

ß 

1   -1 /5 
(Pj + P 
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Z 
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where ß 
P2ml + Plm2 

mi-m2 

*■ n" 
(i+/iTn"V) 

T      , (2N+l)(m    - mj' 

Pl + P2 

<t>" 
Pl+P2 

(P1+P2)P 

I 
I 
O 

o 

o..- 

(Pl+P2)p 

o 

o- 

1   "- 

-o 

. o 

(p^p^p" 

o 

o 
I 
I 
I 

■O (P1
+P2)p" 

(ml -m2r 

(P1 +   P2) +   (2N +   1)  (mi  - m  )"1 

E E-N E     E 

! V^     -   N^  I 
E E Nv   "E   NE 

E E -E     E 

where 

where 

1 -1 ß 
1 1 -ß 

ß -ß ß 

cj> 
-1 

D 

Pl+P2 

D 

?N 
I 
I 

O 

o- —--o 

o D      N 

O     N ^D 

P2       Pl     "PlPz 

O 

o 
I 
I 

O       O -O       D 

+ y 

E       E E       E 
s 

E       E     Nv    E       E 
I \       V      N i 

E E^.    NE     NE s 
N 

and      y   = 
(rrij - m2) 

E ^E 

2 

(P1+P2) + (2N+l)(mi-m2)' 
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Si 

. 

a2{r/0) 

-A(r^O) 

a^O) 

a2(0) 

-A (0) 

Pl+p2 
YE 

0 

0 

1 

P1+P2 

P1 + P2 
D + yE 

0 

0 

1 

p1+p2 

$7 

-By 

$2y 

p2
+ w 

Pi-fly 

-p^z+^y 

The mean square error and noise power output are equal to     A(0). 

A(0) 
P1P2-ß y 

P1+P2 Pl + P2 
PiP^ + 

(p2mi+Plm2)' 

[(P1 + P2)+(2N+l)(mi-m2)2] 

Under the assumption that the white noise levels are the same for both channels, 

Pl ~ P2 ~ P  an<^ t^e rnean square error is 
, 2 

A(0, = E 1    + 
(ml + m2) 

2p + (2N+l)(m1-m2)" 

The noise output power for a beamsteer system applied to the same noise field if 

i[(p1+P2)  +  (m1+m2)2] 

or 

P 
2 

1   + 
(ml + rn2) 

2p 

2-, 

if Pl = P2 = P' Since the entity (2N+l)(m1 - m2) is always non-negative, the 

maximum-likelihood filter set reduces the noise output power to a level at least 

as low as the noise output power of a beamsteer system. Implicit in the design 

equations,  however,  is the assumption that "power" due to DC bias is as 
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undesirable as power due to fluctuations in the traces.    In practice,  the analyst 

easily "filters out" DC bias when visually inspecting a seismic trace. 

Some important effects occur as a result of the means in the traces. 

The filter weights are 

P1+P2 

2 Pl+P2 

p2      ßy 
1     Pl+P2   Pl+P2 

a^r/O) = 

aJr/0) = 

a.,(0) = 
pi    _  ßy 

P1+P2 ' P1+P2 

" Pl = P2 = P   and  a is set to   /5y/(P1 + P2).  the freque ncy response of the filters is 

N 

^f) =| + a   S e-i2^f^t 
i=-N 

and 

A,(f)   = 4  - 
N 

iZTrUAt 

Y^    -i27rf/At 
o ( i ) JS set to£= _N ,   the noise output power density of the maximum_ 

likelihood filter set is 

K(f)A*(f)] P(f )     0 

0     P(f) 

A^f) 

A2(f) 

= [| + aa-{i) + aV(f)jp(f) 

+ [4 -ao-(f) + a2o-2(f)]p(f) 
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i: 

1 

u 
■ 

= |[p(f) + P(f)] +a(7(f)[p(f) - P(f)l 

+ a2cr2(f)[p(f) + p(f)l 
p(f) r       221 = —^[i + 4a o- (f)J 

as compared with P(f )/2 noise output power density for a beamsteer system. 

Thus,  at any frequency other than DC,  the beamsteer system reduces the noise 

level at least as much as the maximum-likelihood filter set.    In fact 

N 
am =  V 

and 

/=-N 

(T(f)  =   0   when f = 

-i2m iAt  _   sin(2N+l)7rfAt 
smTTf A t 

At(2NHi) (k  =   1,2, ...2N) 

The first zero of this function occurs at  f =   l/{2N+l)At,  and the function climbs 

monotonically until it approaches the value 2N+1 as the frequency approaches 

zero from the right.    The quantity   (2N+1) At is the effective length of the filter. 

This result provides a possible explanation for the poor performance of the 

maximum-likelihood filter set at frequencies below the reciprocal of the filter 

length. 

C . TECHNIQUES USED TO ELIMINATE DC BIAS FROM 
THE DATA 

The first step in removing DC bias from the traces was to apply single- 

channel prefilters to each of the site traces after rotation to the vertical trace. 

A 31-point convolution filter was used for this purpose.    The weights for this 

filter are shown in Table II-1.    Data points are scaled  by 2"15 before exiting 

from the convolution filter microcode which implements the filter.    The frequen- 

cy response (after scaling) is shown in Figure II-1.    The fact that the filter 

weights sum to zero guarantees that the response at DC is exactly zero or   - oo 

in dB. 
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, 

i. 

0 

= |[p(n + P(f)] +a<r(f)[p{f) - pm] 

+ a2(r2(f)[p(f) + p(f)J 
p(f) r,      22   i = -^L1 + 4a o- (f)J 

as compared with P(f )/2 noise output power density for a beamsteer system. 

Thus,  at any frequency other than DC,  the beamsteer system reduces the noise 

level at least as much as the maximum-likelihood filter set.    In fact 

N 

and 

/=-N 

0-(f)   =   0   when f = 

-iZm iAt  _   sin(2N+l)7rfAt 
smTTf A t 

At(2N+l) (k  =   1,2 2N) 

The first zero of this function occurs at  f =   l/(2N+l)At,  and the function climbs 

monotonically until it approaches the value 2N+1 as the frequency approaches 

zero from the right.    The quantity   (2N+l)At is the effective length of the filter. 

This result provides a possible explanation for the poor performance of the 

maximum-likelihood filter set at frequencies below the reciprocal of the filter 

length. 

C . TECHNIQUES USED TO ELIMINATE DC BIAS FROM 
THE DATA 

The first step in removing DC bias from the traces was to apply single- 

channel prefilters to each of the site traces after rotation to the vertical trace. 

A 31-point convolution filter was used for this purpose.    The weights for this 

filter are shown in Table II-l.    Data points are scaled  by 2"15 before exiting 

from the convolution filter microcode which implements the filter.    The frequen- 

cy response (after scaling) is shown in Figure II-l.    The fact that the filter 

weights sum to zero guarantees that the response at DC is exactly zero or   - oo 

in dB. 
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TABLE II-1 

PRE-FILTER WEIGHTS 
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The filter of Table II-l and Figure II-l was obtained from a computer 

program which minimizes, for a discrete convolution filter of specified length, 

the weighted mean square error (integrated over the Nyquist band) between the 

desired frequency response and the convolution-filter frequency response,, 

After the initial run,   several iterations with altered frequency weightings and 

desired responses were made to reduce the ripple in the filter response.   Next 

the desired response at 0 Hz was modified so as to reduce the amplitude at DC. 

After a response below -100 dB was achieved at 0 Hz,   the filter coefficients 

were rounded to the nearest 1/32,768.    Finally,  the zero lag weight of the con- 

volution filter was adjusted by a multiple of 1/32,768 so that the sum of the 

filter coefficients was zero (yielding a response of   - oo  dB at DC). 

When the program changes to implement this filter were made,  dif- 

ficulties persisted.    A detailed study of the adaptive-filtering subroutine show- 

ed that 1/2 count of negative bias per channel was being introduced by the con- 

volution-filter microcode because of truncation.    The subroutine was rewritten 

to compensate for this bias in the beam output trace and to round intermediate 

results wherever possible.    After these modifications,  the DC bias problems 

were eliminated. 
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SECTION III 

EFFECT OF ROUNDOFF ERROR IN THE FILTER UPDATE EQUATION 

A. DISCUSSION 

In the adaptive-filtering investigations conducted for this study,  the 

bulk of the adaptive-filter update calculations and the adaptive filter output 

computations were performed using integer arithmetic.    The reason for in- 

teger arithmetic was the desirability of operating in an on-line mode on the 

IBM 360/40 computers at SDAC using their special high-speed microcode 

operations.    In the construction of hardware specifically tailored to imple- 

ment adaptive beamforming,   economic considerations seem to dictate that 

integer arithmetic be used.    For this reason,  the experience gained during 

this study in the problems arising from integer-arithmetic roundoff error 

may well be applicable to a variety of economically practical adaptive-filtering 

systems. 

The objective of this section is to obtain quantitative estimates of the 

directional error in the filter update vector as a function of the limited num- 

ber of parameters   controlling the directional error.    Some of these para- 

meters,   namely the number of bits used to represent the input data points 

and the filter-weight coefficients,   are subject to direct human control.  Other 

parameters depend either directly or indirectly on the characteristics of the 

data at any given array.    Once directional-error tolerances can be specified 

with sufficient precision to avoid significant degradation of adaptive-filter 

performance,   noise field measurements at an array,   together with the direc- 

tional^error approximations given in this section,   should provide useful esti- 

mates of the number of bits needed for the input data points and the filter- 
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weight coefficients.    Even estimates accurate only to the nearest four bits 

are valuable:   it is extremely useful,  in designing adaptive-filtering hardware, 

to know whether 12 bits.   16 bits.  20 bits.  24 bits.   etc..   are needed to repre- 

sent adequately the data and adaptive-filter coefficients. 

In this section,  the computational error will be traced through the 

series of integer-arithmetic operations performed in updating the adaptive- 

filter weights.    At this point,   these operations will be reviewed.    The filter 

update procedure is a vector operation which can be written compactly in the 

vector equation 

Anew old 2KsXTA0ld(X.X) 
A =   A +    —.—. __ 

(X-X)T(X-X) 

which describes the particular algorithm used in this study.     The term   K 

is a scalar quantity called the convergence factor.    It controls the adaptation 

rate of the adaptive-filtering process.    The dot product   XTA0ld   denotes the 

series of multiply-and-add operations which yield the adaptive beamformer 

output   y(t)      The superscript   T   denotes vector transposition.    The vectors 
.new     .old    — 
rt        .A      .   X,   and X   (as well as their constituent components) were defined 

previously in subsections I-D and I-E.    In the algorithm actually employed,  the 

denominator    (X.X)T(X-X)   is approximated by 

M 

(2N+i) y^ p.(t). 

i=l 

where   P^t)   is a moving power average of the difference between the   i-th 

channel and the beamsteer output (see page 1-8).    In this approximation.    M 

is the number of input channels and   (2N+1)   is the totaJ number of filter 

weights per channel. 
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Since the denominator   (X-X^X-X)   and the convergence factor   K 

are positive scalar quantities,  the direction of motion of the filter update   ' 
.new        old H 

vector    (A - A      )   is determined by the sign of the adaptive filter output 

y(t) ,   a. scalar quantity,   and the vector   (X-X).    Directional error in the vec- 

tor   (X-X)   contributes to directional error in the filter update vector.    Errors 

in the data vector^  X.   moreover,   may change the sign of the adaptive filter out- 

Put   y(t) = X   A0   '   or cause it to round to zero:   in the first case,   the filter 

vector mov_es in  a direction which tends to increase the average squared filter 

output   y  (t) ; in the second case,   the adaptive filter vector cannot move.   After 

multiplication of the vector   (X-X)   by the scalar quantity 

2K  XTA0ld 

s 

(X-X)T(X-X) 

the individual components of the resultant scaled vector are rounded to the 

nearest integer in the numerical representation of the filter weights and then 

added to the corresponding components of the old filter vector.    The filter- 

weight roundoff process just described introduces further directional error 

into the filter update vector.    The filter-weight roundoff error can be made 

as small as desir. "        using a sufficient number of bits in the numerical 

representation of w xxiter weights.    A similar capability,  however,   is not 

possible in computing the adaptive filter output   y(t) .  where the preservation 

of a non-zero value with the correct sign is ultimately limited by the quanti- 

zation error introduced by the digitization system. 

The principal questions to be answered in determining the error in 

the direction of movement of the filter weight vector are.  therefore. 

• How much directional accuracy is maintained in the vector 

(X-X) after machine computational procedures have been per- 
formed? 
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• How often do computational and digitization errors reverse the 

sign of the adaptive filter output or result in a zero value for 

the adaptive filter output when it is rounded to the nearest in- 

teger? 

• What precision is required in the numerical representation of 

the filter weights to achieve acceptable error levels when the 

filter update vector is added to the old filter weight vector? 

Subsections B and C examine error in the vector   (X-X) .    Subsection 

B,   a necessary prelude to subsection C,   discusses errors in a single com- 

ponent of the vector   (X-X).    Error is traced through the individual processes 

leading to the final value   x(t-j) - x.(t-j).    Probability densities,   standard de- 

viations of error,  and maximum errors are presented for  rotated data,  pre- 

filtered data,  the beamsteer output,   and the beamsteer output minus a single 

channel. 

After the preliminaries of subsection B,  directional error in the vec- 

tor   (X-X)   is investigated in subsection C.    The error   E   in   (X-X)   is sep- 

arated into a part   E     satisfying the filter-weight constraint conditions and 

a part   E     perpendicular to the vector space corresponding to the filter- 

weight constraints.    Probability distributions for the angle of error in   (X-X) 

and the angle of error in its projection onto the constraint space are calculated. 

Subsection D considers the effect of digitization and roundoff error on 

the adaptive filter output   y(t).    The probability that   y(t)   rounds to zero and 

the probability that   y(t)   changes sign are estimated.    Since these probabil- 

ities depend on the filter vector   A ,   a derivation of the maximum-likelihood 

filter-design equations is included so that the filter vector may be determined 

from the data crosscorrelation matrix. 

Subsection E studies the consequences of rounding off the updated fil- 

ter vector    A 
new 

To evaluate the   likelihood that the roundoff process 
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immobilizes the filter vector by preventing any change in the individual com- 

ponents,   an expression for the squared magnitude   | AneW- A0ld | 2   is employ- 

ed.    To estimate the mean angle of error in the vector   AneW- A0ld,   the pro- 

bability distributions associated with rounding off the filter weights are de- 

termined.    Finally,  two different techniques for eliminating discrepancies 

in the maximum-likelihood constraints are appraised in terms of the result- 

ant directional error in the filter update vector. 

Subsection F is a summary of the results in this section. 

B. ERRORS ASSOCIATED WITH A SINGLE COMPONENT OF THE 
VECTOR (X-X) 

As a first step in estimating the directional error of the vector (X-X), 

the errors associated with a single component must be established.    In order 

to evaluate the directional error,   it is necessary to distinguish between error 

in one component of   (X-X)   due to inaccuracies in the quantities   x.(t-j)   prior 

to forming the beamsteer output and error arising solely from roundoff error 

during computation of the beamsteer output   x(t-j)   for time   t - jAt.      This 

distinction is necessary because error prior to generating the beamsteer out- 

put cannot dislodge the updated filter vector   AneW   from the subspace cor- 

responding to the maximum-likelihood constraints.    Conversely,   roundoff 

error in calculating the beamsteer output {orces motion perperdicular to the 

constraint space.    A detailed description of this phenomenon will be given at 

a more appropriate point in this section. 

In analyzing errors at the single-component level,   the digitization pro- 

cess is presumed to introduce an error with a uniform probability density be- 

tween plus and minus one-half count.     There   is one realistic situation where 

this premise is not justified.     The ALPA data values are represented as  16- 

bit gain-ranged numbers with a 12-bit.   two's-complement fraction and a foir- 

bit negative exponent.     When the DC level on any triax component rises to 2048 
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computer counts or more,  the digitization error is effectively multiplied by 

the appropriate power of two.    For the data samples processed in this report, 

one or two of the six channels input to the adaptive processor might have float- 

ing means of this size.    To achieve simplicity of presentation,   this fact is ig- 

nored.     In neglecting this possibility,  the digitization error is underestimated. 

This underestimation should not materially affect the results obtained in this 

section. 

A different assumption is made for computational roundoff error.   When 

an intermediate result must be rounded to the nearest count,   the resultant 

roundoff error is assumed to lie between -1/2 and +1/2 at equally-spaced dis- 

crete points centered about zero.    If none of these discrete  points is located 

one-half count from zero,  they are assumed to equally likely.    If an error of 

one-half count is possible,   each of the end points is assumed to be half as 

likely as each of the interior points.    Up to and including the point where the 

adaptive channel data points   x.(t-j)   are averaged to form the beamsteer out- 

put,   the error of each quantity involved in a summation is assumed to be in- 

dependent of the error in the other quantities involved in the summation.    In 

the case of independent summand errors,   the probability density function for 

the error in the sum is the convolution of the probability density function for 

the error due to roundoff with that of each individual summand error. 

When the possibility that roundoff error could be affecting adaptive 

filter performance was first considered,   an experiment was conducted.   First, 

with the convergence factor   K      set to   0. 30 ,   a noise sample from a relative- 0 s 
ly quiet summer day was run through the adaptive filter program.    Noise in 

the adaptive filter output was reduced by 2 dB relative to the beamsteer out- 

put.    Second,   the data points were multiplied by 16 before processing.    At 

the same convergence rate,   noise reduction was approximately 6 dB.    It was 

apparent,   therefore,  that roundoff error w?.s significantly affecting processor 
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performance. Scaling the data by a factor of 16 was sufficient to achieve noise 

reduction comparable to that obtained for the same noise sample by a separate 

computer program using floating-point arithmetic. 

In this section,   error will be examined for the case of unsealed data, 

data scaled by a factor of 16,   and data where the floating-point arithmetic is 

used in the adaptive processor.     When floating-point arithmetic is employed, 

roundoff error is assumed to be negligible,   and error control is ultimately 

limited by digitization accuracy.    A comparison of the error in unsealed data 

and data scaled by a factor of 16 shows the error reduction achieved by scaling 

the data.     A comparison of the error in the scaled data and the data processed 

using floating-point arithmetic indicates how closely the scaled data approaches 

ultimate achievable precision. 

In the first stage of processing,  three-component triax data at each site 

are combined to form a vertical component by multiplying each triax component 

by one third and summing all three components (rounding to the nearest count 

when the vertical component is output).    In the case of unsealed data,   the error 

in each summand has a uniform probability density between plus and minus one 

sixth (from digitization error),   and a roundoff error with equal probability at 

the three discrete points    -1/2,   0,   and 1/3.    Since the probability density func- 

tion is the convolution of four separate probability density functions,   the result- 

ant probability density function has a Fourier transform which is the product 

of the individual transforms for each of the four separate independent probabil- 

ity density functions.    For a uniform density between   -c/2    and   c/2 ,    the 

Fourier transform is 
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c/Z 

/ 
-c/2 

-iZTrs -iTTcs 
dy = 

•iZTTci 

iTTcs 
e  

-iZTTcs 

sinTTcs 
TTcs (or    1    if   s = 0 ) 

=     sine cs, 

where 

sine s   = sinTTs 
TTs ( or 1    if   s = 0 ) 

For a finite-comb probability density function 

n-1 
2 

p(y)  = — 
n E    8<v-i). 

j = -(n-l) 
2 

where   n   is an odd integer and    fi    is the Dirac delta function, 

transform is 
the Fourier 

P(s)   = 

00 

/- 
-00 

(y) e '    dy = 

n-1 
2 

^    E n 

j=-(n-l) 
2 

The transform is a geometric pro progression,   so that 

/ iTTs -iTTsX 

P(s) = 
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f-' ^ z n 
J=-T 

iZTTjs 
n 

iZTTJ! 

and 

-   — e n    L 
TTs -iTTs 

-     e 

P(s)   =  -L 
n 

] 

(e ^    -   e j4zj 

sinTTs 
n sin(7rs/n) (or 1 if   s   is an integer multiple of n). 

It the function    »„(s)   is defined for odd integers as the Fourier transform 

just computed for the finite-comb probability density function, the Fourier 

transform of the error in the vertical component for unsealed data is 

='■>=    {B/3!   }K3(s).    The maximum possible error is   5/6   count.    In the case 

of data scaled by a factor of 16, the digi.i.ation error is muUiplied by 16 dur- 

ing scaling,  but roundoff error is still the same.    The Fourier transform of 

the ensuing error probability density function is    sinc3(16s/3)«   (s)      The 

maximum possible error is   8 1/3 counts.    (At the same time that the absolute 

error is higher because of scaling,   the data points are 16 times larger    so 

that the relative error is reduced. )   For data going through a floating-point 

processor,  there is negligible roundoff error.    The Fourier transform of the 

corresponding probability density function is   sinc3
(s/ 3).    The maximum 

possible error is    1/2 count.    hver8e Fourier .^^ ^^ ^ ^ 

probability density per count for unsealed data,   data scaled by .6,   and data 
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passing through a floating-point processor are presented in Figure III-l       The 

physical size of the vertical scale was increased by 16 and that of the horizon- 

tal scale reduced by 16 on the page in the case of data scaled by 16 to permit 

meaningful comparison between the three modes of processing for the rela- 

tive error in the vertical-component output. 

In the second stage of processing,   the vertical-component data traces 

are funneled through a filter with exactly zero response at DC.     The filter 

weights (scaled by 2     ) for this filter were given previously on page 11-9.     The 

equation which describes the filter implementation is 

xAt)    = 

15 z 
j= -15 

b. v.  (t - j) 
J     i J 

"here   x.(t)   Is the prefiltered vertical-component trace for the   i-th   site at 

time   . ,    b.    is the Alter weight for the   j-th   lag.   and   v (. - j,   is the vertical. 

component input trace for the   i-th   site a. time     t-jAt.     Since the filter 

weights are all multiples of  Z"15,   the roundoff error is presumed to lie at any 

of the 32769 equally-spaced points between plus and minus one-half count.   Both 

of the end points are presumed to be half as likely as any of the interior points 

so that the probability density function for the roundoff error is 

p(y)   = ■j-   My + 1/2) + -L en n 

1 
2n 

+ 27r6(y-l/2) 

n 

My - -H + n 8(y--i-) n 
n 

-(--1) 
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FIGURE III-l 

ERROR PROBABILITY DENSITY PER COUNT AFTER 

FORMATION OF VERTICAL COMPONENT 
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where   n   is 3Z768.     The corresponding Fourier transform is 

P(8)    = 

oo 

/ 

-iZTTsy   , 
P(y) e dy 

-oo 

_1_ 
2n 

n 
T 

E 
iZTTjs 

n 

LJ= n 

T-1 

j= -(f -1) 

iZTTjs 
n 

which is the sum of two geometric progressions.    Hence 

iTTs iTTs 

so that 

-     e 

TTs \ 

11    / P(s) 

2n 

_1_ 
2n 

i7r(n+l)s i7r(n-l)s i7r(n-l)s i7r(n+l)s 
n n n n 

e +     e 

(iTTs iTTs \  /   . 

e    "     +    e"   "    /U 

P(s) = 

iTTs iTTs 

lie +   e 
n 

- e 

TTs - i77 s 
- e 

-   e 

) 

iTTs -iTTs 

-   e //2i 
iTTs iTTsV 

n n In . \e - e ffZi 

n sin(7rs/n) \ n  J    , 

or    1    when    s    is an integer multiple of   n .     The function   3K    (s)   for even 
n 

integers is defined as the expression just given.     Under the assumption that 

the errors in the separate vertical-component input points are mutually in- 

dependent and,   further,   independent of the roundoff error at output,   the Four- 

ier transform of the resulting error probability density function for unsealed 

data is 
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15 
315 32768{S) n SinC 

J= -15 
(¥) ^^J8'- 

Since the prefiiter is symmetric about zeros     b   . =    b.     and the Fourier 
-J J 

transform above may be written 

>K32768(s)sinC M 
15 , 

aC,(b   s)       []    sine 
3    0 j=l 

(+)[^3^S)]' 
The maxinium possible error for unsealed data is 

15 

(t N \J=    15 / 

counts or slightly less than   Z  1/6   counts since the sum of the filter weight 

absolute values is  slightly less than   2 .     For data scaled by 16,  the Fourier 

transform of the error probability density function is 

^ 32768(S) SinC 

(16b  sv 15 //16b s\r V 
_f-J   aC^.,     n    Sinc6(-^)|3K3,b.s,J 

and the maximum possible error is 

15 
25 E 

.j= -15 ) 

counts or slightly less than   17 1/6   counts.     For data processed with floating- 

point arithmetic,   the corresponding Fourier transform is 

sine C4) | ..-' (+) 
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and the maximum possible error i : is 

/    15 

\l= -1 

counts or slightly less than    1  count.    Inverse Fourier transforms giving the 

error probability density per count after prefiltering are shown in Figure 111-2 

for unsealed data,   data scaled by 16.   and data processed with   floating-point 

arithmetic. 

In the third stage of processing,   the prefiltered vertical-component 

data traces for all sites at time   t   are summed and divided by the number of 

channels to create the beamsteer output.    When division is performed,   the re- 

sult is rounded to the nearest count.    Multiplication by the reciprocal of   the 

number of channels has the effect of dividing the argument of the Fourier trans- 

forms in the previous stage by the number of channels.    On the other hand,   the 

assumption of mutually independent error between the individual prefiltered 

vertical components at each site means that the Fourier transforms corre- 

sponding to the sum of the traces (scaled by 1/M) must be raised to a power 

equal to the number   of channels.     Pr^r ^ round^ ^f ^ ^ „ear^t in^ 

therefore,   the Fourier transforms of the beamsteer output error probability 

density functions are 

5K-a (f)]6 -18(¥)k(¥) 

Hi 
32768 (|..... pv)[«M | sine 
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FIGURE III-2 

ERROR PROBABILITY DENSITY PER COUNT AFTER 
PREFILTERING VERTICAL COMPONENT 
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and 

18 
sine (¥) 15 

n sine -m 
for unsealed data,   data sealed by 16,   and floating-point data,   respeetively, 

when six ehannels are used in the adaptive processor.    The beamsteer error 

probability density functions prior to roundoff are shown in Figure III-3 for 

the three eases considered.    Before rounding to the nearest integer,  the max- 

imum possible errors are exactly the same as in the previous stage —  2 1/6 

counts,   17 1/6 counts,   and   1    count,   respectively. 

In those instances where integer arithmetic is employed,   roundoff 

error may occur at the seven discrete points ranging from minus one-half to 

plus one-half count at increments of   1/6   count.    The two end points are 

assumed to be half as likely as the interior points,   so that the Fourier trans- 

form for the roundoff error is   JK ,  (s)   both for unsealed data and data sealed 
b 

by a factor of 16,    The beamsteer roundoff error probability density for both 

eases is pictured in Figure 1II-4.    According to the assumptions stated earlier, 

floating-point arithmetic produces negligible roundoff error in the beamsteer 

output. 

To determine the beamsteer error probability density functions after 

roundoff for unsealed data and data scaled by 16,  the Fourier transforms prior 

to roundoff are multiplied by   3K ,  (s) ,    and inverse Fourier transforms are 

taken.    The probability density function for the floating-point beamsteer error 

is the same as before.    Figure III-5 gives the three specified probability den- 

sity functions.    After roundoff,  the maximum possible errors are   2 2/3 counts, 

17 2/3 counts,   and   1    count ,    respeetively.    One-half count is added to the 

maximum beamsteer output error when the output is rounded to the nearest in- 

teger.    No roundoff procedure is performed when floating-point arithmetic, is 

used. 
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BEAMSTEER ERROR PROBABILITY DENSITY PER 
COUNT BEFORE ROUNDOFF 
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In the fourth stage of prooeSsl„e,   each individual component of the 

vector   (X - X)   is formed by subtracting the prefiltered vertical component 

for the   i-th   site from the beamsteer output at the same time.      No further 

roundoff error is produced:   either integers are subtracted from integers or 

floating-point arithmetic generates no significant error.      The error in an 

individual component of   (X - X)   is 

M 

M 2^ 
k=l  L 

\M) +  yt.j) + V^ ^(H)  +  ^(t-j) 

!Ivi 

M    Z-^   Xk(t"j)        -   ^-J)} 
k=l J J 

eb(t-j)     +    it 

6l5
(t-j)     +    T7 L) M 

M 

E 
L k=I 

'   M 

E 
Lk^i 

«k(t-j) 

'k"-J' 

M'-j) 

(M-l) 
"IT    «il'-J) • 

where      ^(t-j)   is the beamsteer output roundoff error at time   t-jAt   (due 

solely to the roundoff operation carried out at the tail end of the beamsteer 

output computation),   „here      ^t-j,   is the error in the prefiltered vertical 

component for the   i-th   site at time   t-JA,   (the same component for which 

the error in   X - X   is being evaluated,,  „here     .(t-j,   is the error in the 

prefiltered vertical component of the   k-.h   site a. time   t-JAt,   and „here M 

- the number of channels.    If the term     y.-J,   is ignored and   P,s,   is the 

Fourier transform of the probability density function for the error in any pre. 
filtered vertical component,   then 
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is the Fourier transform of the probability density function for the error in 

each component of the vector    (X  - X),    (As in the case where the beamsteer 

output error was discussed,   the random variables      €   (t-j)    are considered 

to be mutually independent. )    Figure III-6 shows the corresponding probability 

density functions for unsealed data,  data scaled by 16,   and floating-point data, 

respectively.    In each case,   the maximum possible error (ignoring the beam- 

steer output roundoff error) is    5/3   as large as the maximum possible pre- 

filtered vertical-component error.    As a result,  the corresponding maximum 

errors are    3  11/18,    28 11/18,   and    1   2/3 counts.     When the term    f , (t-j) is 

not ignored,   the Fourier transform of the probability density function for the 

error in each component of the vector    (X - X)   is 

3K6(s) H4 '(¥) 
for the two cases where integer arithmetic is employed.     The error for floating- 

point data remains the same as before.     The probability densities for unsealed 

data,   data scaled by 16,   and floating-point data are graphed in Figure III-7. 

Maximum possible errors are increased by one-half count during integer 

roundoff,   and the three maximum errors are   4   1/9,    29   1/9,   and   1   2/3 

counts. 

As the various probability densities were computed,   standard devia- 

tions for the error were calculated.    Table III-l is a summary of the standard 

deviation and maximum possible error at each stage for the three modes of 

processing examined. 
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C. DIRECTIONAL ERROR OF THE VECTOR (X-X) 

1. Synopsis of this Subsection 

In the next part of this subsection,   the geometrical relationships be- 

tween error in the vector   (X-X)   and the maximum-likelihood constraints on 

the filter update vector    (AneW-A0ld)    are explored.     By separating the error 

vector into the part   E^    due to error before beamsteer roundoff and the part 

Eb   due to the roundoff process occurring at the very end of the beamsteer 

output formation,   it is possible lo show that the vector   E    lies within the con- 
c 

straint space and the vector   Eb   is normal to the constraint space. 

In part three,   probability distributions for the squared magnitudes 

and     X-X are specified. 

In part four,   the probability distribution is given for the angle   a  be- 

tween the vectors   Ec    and   (X-X)   within the constraint space. 

In part five,   the probability distribution for the angle    6    between the 

vector (X-X) + Ec    and   (X-X)    is derived and evaluated.     The angle   B   is the 

angle between the vector    (X-X)   and the projection of the vector    (X-X) + E    + 

E    onto the constraint space. 

In the final part of this subsection,   a mathematical expression for the 

probability of the angle between the vector    (X-X) + E    + E      and the vector 
— c b 
(X-X)    is presented.     This angle is the angle of error in the vector    (X-X). 

2. Geometrical Relationships Between the Error in (X-X) and 
the Maximum-Likelihood Constraint   Conditions 

The maximum-likelihood filter set is designed to pass,with unity re- 

sponse at all frequencies,   a signal from the desired look direction.    Provided 

that the data channels have been time-shifted according to the beamsteer time 

delays,   this  requirement results in the   2N+1 equations 
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M z 
i=l 

\u- V (j =    -N,...f-1,0,1 N), 

where      8        is the Kronecker delta operator.   If the filter change vector 
J0   i i , , new .olu»       ^-   r-       ^i. i   . u- (A -      A      ) satisfies the relationships 

M 

i=l 

new,., o 
a.      (j)   -   a M-° 

and the old filter vector  satisfies the maximum-likelihood constraints,   the new 

filter vector also satisfies the constraints- 

M M M 

L <ew"> = E £[^0,-^,] '-i»   >:<ld(i)+ 2^ Larw"'- ar"'j: v 
i=i i=i i=i 

Henceforth the constraint space will refer to the set of vectors satisfying the 

restrictions 

M 
Ef   new a.      0) li     (J)J    " 
1=1 

imposed on the filter change vector for all lags   j .     These   2N+1    equations each 

define a plane of dimension   M-l    in the M-dimensional subspace corresponding 

to the   j-th   lag.    If unit vectors    U.    (each within the subspace associated with 

the   j-th   lag) are defined by the equation 
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u. 

■** mmm 

\.-N" 

.S^-NJ 

6J°    " 
_  1 

j   VM L      "jo    j 

L J 

(j = -N, .. , ,-1,0, 1, .. . .N), 

the limitations on the filter change vector may be expressed with vector nota- 

tion in the   2N+1    equations 

r,T . .new      .old. 
U.   (A - A      ) =   0 

In the subspace connected with lag   j ,     U.    is a unit vector normal to the con- 

straint plane.     The vector    (X-X)    necessarily lies within the constraint space; 

M 

UT (X-X)   =   -£= 
i \M 

i = l 

x(t-j)    -   x.(t-j »1 

V^ 
Mx(t-j)    - 

M 

Yl   Xi(t-j) 
i=l 

=   0 

since 

x(t-j) 

M 

1Ä   2J xi(t-j: 

i=l 
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In the previous subsection,   it was demonstrated that the error in a 

single component of   (X-X)    is 

€blt-j' +    M 

M z 
L   k=l 

ek(t-j) 6.(t-j) , 

where     €b(t-j)   is the beamsteer roundoff error at time    t-jAt   and where 

6k(t-j)    and    e.(t-j)   are the errors in the prefiltered vertical component at 

time   t-jAt    for the    k-th   and   i-th   channels,   respectively.     The error vector 

may be broken down into the portion   Eb   due to beamsteer roundoff error and 

the portion    Ec due to error  in the prefiltered vertical component outputs.   Since 

the beamsteer roundoff error is identical for all channels at time t-jAt,   the 

vector    E      is N 

S V^V 
j = -N 

a vector normal to the constraint space. The space of all such possible vec 

tors Eb is spanned by the 2N+1 orthonormal vectors U. . It is therefore 

of dimension   2N+1  . 

The vector    E^   on the other hand,   satisfies the constraint equations: 

M 
T 

U.   E 
J       c S/U        Cm    i 

"AT 

i = l 

M 

E 
k=i 

M 

k=l 

cjt-j) - c^t-j) 

M 

£k(t-j) E. ..(t-j) 
1=1 

And so it must lie entirely within the constraint space.    In the subspace coin- 

ciding with time    t-j At ,   the vectors 
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u. = 
J 

1 

w 
2j   >/(M-l)(M-2) 

0 
M-2 
-1 

-1 

W 
1 

M-Z.j    ^3- 2 
0 
2 

-1 
-1 

M-l 
-1 

W. . = 
1i       \/M{M-l) 

w_ .= 3JVl[M-2)(M-3) 

0 
0 

M-3 
-1 

-1 

,   and W M-l.j    SJ7Y 0 
1 

-1 

form an orthonormal basis.    The inner product between   Ec    and    W      is 

r    M 

T 
E     W..: 

C       1J 

Z s"-» 
.p=i+l 

(M-i)   «.(t-j) 

\/(M+l-i) (M-i) 

(M+l-i) 

M 

M      / J €k(.-j) 

k=l 

i-1 

Cjt-j)  ^    +     ^ M- 2^€k(t-j) 

 kEl : 
"   ^p^^' 

v/(M+l-i) (M-i) 

This inner product is not identically 7.ero,   so that the vectors    Ec fill the space 
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spanned by the orthonormal vectors    W,. (i = 1, 2, . . . , M-l; j = -N, .... -1, 0, 

1,...,N).    The space of all possible vectors   E   ,   therefore,   is of dimension 
c 

(M-1)(2N+1). 

3. Probability Distributions for the Squared Magnitudes 
U   |2 I      |2 -      12 
E ,      EL        ,   and     X-X 

I    c I |    b j | 

Let the vinculum operator   Q  for any function   Q   of the M(2N+1) 

variables    £.{t-j)    denote the mean cf the function   Q   over all possible values 

of   «.(t-j): 

Q 

M        N        ^-3)=" M       N       r 

ii     i: 
i=l    j = -N   J 

€;(t-j) = -oo 

Q 

M N IVL IN r "I 

n     n   P €.(t-j)d€ 
1=1    J=.N     L -I 

(t-j) . 

The mean    u     of the squared magnitude     E   !      of the error vector E c |c| c 
within the constraint space is 

N        Mr 

j = -N      i=l 

M 

k=l 

N Mr 

j = -N       1 = 1 

2€,(t-j) 
€,(t-j) - 

M 

M 

k=l 

M M 

£K(H)+^ Z) Zi €k(t-j) VH) 
M 

k=l      p=l 

N r   M 

j = -N 

M        M 

E E'■<'-«-^ 
M        M 

L  i=l 
HL, I]€i(t-j)6k(t-j)+il-2 2 €"(t"j)«-(t-^ 
i=l     k=l 

M   ^^ ^   "k1" -"^p^ 
k=l     p=l 

N       r   M MM 

'il'-J'-ET E  E'i'^'^'-« 
J = -N L 1=1 1=1      k=l 

11 iv 

E E 
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Nr M 

E)    M-I      V^      2 
IT" 2Li ei(t-j) 

J = -N    L i=1 

M M 

M 2^ 2^ ei(t"j) K^-iy 
i=l        k=l 

M-l 
M 

N M 

j = -N       i=l 

€,(t-j) 

(M-1)(2N+1)    6^(t-j) 

Provided that the Zero-mean random variables     ..(t-j)     are 

dent and identically distributed. ' 
mutually indepen- 

2 2 
^(t-j)    -  €.(t-j) 

M 2^ 2^€i(t-j )€k(t-j)i 

2 N 

i=l      k=l 
i^k 

M-l 
M 

N M M 

E ZZ E 
j = -N      q=-N      i = l k^l   L 

^(t-j).   ^(t.j) 
fk(t-q)  -   6, (t-q) 
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N N M M M 
2(M-1) 

M2 E E Z E Z <■ 
j = -N      q=-N       i=l        k=l        p=l 

i N M iM M M 

f(t-j) -  €f(t-j) £k(t-q)   6p(t.q) 

7 E E E Z) Z E£i( 
1      F 

 [*p 

.(t-j)€, (t-j)€.(t-q)€   (t-q) 
M- — *— ——       A««        A—*       i_^       1 K i' p 

j = -N       q=-N       i=l        k=l        / = 1       p=l 
i^k 

N Mr 
2 2 

€. (t-j)    -   £.(t-j) 

j = -N      i=l 

N M M 

7j HH Hwi-> M 

M-I 
M 

)€k(t-j)€.(t-j)€k(t  j)    +   €.(t-jUk(t-j)€k(t-j)€i(t-j) 

j = -N      i=l       k^l 
i^k 

2        N M 

) EZ 
j=-N     i^l 

€f(t-j)   -   e2(t-j) 

N M M 

M E EE ? 
j = -N      i = l       k=l 

i^k 

2 2 
;(t-j)      €k(t-j) 

(M-1)(2N^      (M-l) 
M 

2,      . 2 
«.(t-j)    -    €.(t.j) +     2 ^(t-j) J I 

under the same assumptions as  before.     The quantity inside the braces is (M-l) 

times the variance of    6. (t-j)     plus  twice the squared mean of    6   (t-i).    If the 
i i 

unsquared random variable    £.(t-j)    were normally distributed,   the following 

equations would be valid: 

^•(t-j) €2(t-j) ] ^(t-j) 
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IT    =   (M-l) (2N+1) ^(t-j)    -   MH) 

tr   =    2(M-1) (2N+1) 
2 

Mt-j) 
12 

In that event,   thes« equations could have- been deduced by trivial manipulations 

of the    X    -distribution for    (M-l) {2N+1) dimensions.    Unfortunately,  the pre- 

filtered vertical-component output  error     ..(t-j)    is not normally distributed. 

P. can be  seen from Table 111-2,   which lists the variance of      t 2(t-j)    together 

with the ratio of its variance to its squared mean for unsealed data,   data scaled 

by 16,   and floating-point data.     The ratio in the  righthand column is sufficiently 

different from two that the non-Gaussian character ol    e.^-j)     must be taken 

into account. 

The  random variable    JEJ
2
  ,   on the other hand,   is the  sum of the 

2N+1   (i.e.,    il) independent,   identically-distributed random variables 

M    r 

i = l 
i     J M 

M z 
k=l 

12 

tk(t-j) 

The  Central  Limit. Theorem will be assumed valid,   so that the probability dis 

tribution of   |Ec '      can be approximated by a normal distribution   with  mean 

^c    and variance   o-2 .    Table UI-3 gives the mean,   standard deviation,   and 

variance of     | Ec for the three cases being considered.     Figure 111-8 is a 

plot of the corresponding probability density functions for  all three cases. 

The random variable 
1 

similarly,   is the sum of the 2N + 1    in- 

dependent,   identic ally-distributed random vari 

cases involving integer arithmetic. 

ables   Me   (t-j).    In the two 

has the same probability distribu- 

tion.     With six channels,   the probability mass function for the unsquared ran- 

dom variable     t   (t-j)    is 
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FIGURE III-8 

PROBABILITY  DENSITY PER COUNT SQUARED FOR  THE RANDOM VARIABLE 
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p{y) =   1/12 

P(y) =   1/6 

(y = -1/2.  1/2) 

(y = -1/3,   -1/6,   0,   1/6,   1/3) , 

so that the probability mass function for    Me   (t-i)     is 
b 

P(y) =   1/6 

P(y) =   1/3 

(y =   o, i 1/2) 

(y =    1/6,   2/3) . 

The probability mass function for    Eb        is obtained by convolving this func- 

tion with itself   2N+1    times.    Figure 111-9 pictures the resulting probability 

mass function.     Probability is concentrated at discrete points between 0 and 

46 1/2    at intervals of 1/6.    The vertical lines give the probability for each 

discrete point.    The mean,   standard deviation,   and variance are 16. 361 counts2 

2.805 counts   .   and 7.870 counts   ,   respectively.     Note that the plot is slightly 

skewed:    the mode point (16. 167 counts2) is slightly below the mean,   and the 

probability envelope falls off somewhat less rapidly on the right.     When float- 

ing point arithmetic is used,   the beamsteer roundoff error is assumed to be 

negligible,   so that      E   I      =     0. 

In the case of the random variable   |x-x|2,   the probability distribution 

may be measured.    A four-hour noise sample from day 238 of 1970 was used 

for this purpose.     The quantity   |x-x|2    was computed every 31 points using 

integer data scpied by a factor of 16.     The resulting values were divided by 

256 and sorted by magnitude to produce the cumulative distribution function 

and histogram of Figure 111-10.    In the histogram,   a bin width of 1000 counts2 

was utilized.    The vertical axis indicates how many times values of   lx-x|2 

occurred within the limits of a particular bin.     The probability distribution of 

Figure III-10 applies  both to the case of unsealed data and floating-point data. 

To obtain the equivalent distribution for data scaled by 16,  the horizontal axis 

needs to be multiplied by 256. 
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CUMULATIVE DISTRIBUTION FUNCTION AND HISTOGRAM FOR  THE 
RANDOM VARIABLE   |X-xlZ   (FOR A NOISE SAMPLE COVERING THE 

INTERVAL 07S7-1150 ON DAY 238 OF 1970) 
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4. Probability Distribution For  The Angle  a Between The Vectors 
E     and (X-X) 

c 

Within the constraint space,   the direction of   (X-X)   is presumed to be 

independent of the direction   of   E   .     This assumption may be satisfied in a 

number of ways.     For example,   if the multidimensional probability density 

function for either    E^    or    (X-X)   were dependent solely on the magnitude of 

the vector,   this assumption would be satisfied.    Such would be the case   if the 

components of either vector were mutually independent and normally distri- 

buted.     More  realistically,   if the preferred orientations of one vector were 

weak and not too strongly related to the preferred orientations of the other 

vector,   the assumption would be a good approximation. 

Under the assumption just described,   the probability that the angle 

between   E^    and    (X-X)   is less than the angle    a   is equal to proportion of a 

sphere subtended by a cone of angle   «    in a space of   n = (M-1)(2N+1) dimen- 

sions,   where    n   is the dimension of the constraint space (n - 155 for 6 channels 

and 31  filter points per channel).    The axis of the cone may lie along any di- 

rection in the constraint space. 

To find the proportion of the  sphere  subtended by a cone of angle   a   , 

the polar coordinate   transformation 

1 
P cos   6 

n-1 

P sin   f)     ,  cos    (9 
n-1 n-Z 

.   = P  sin ß     ,   sin   Ö     „ 
n-I n-1 n-Z sin 0    cos   0 

n 
P  sin 6 

n-1 
si n e 

n- sin 0   sin    0 
6 i 

is made.     The superscript   n   denotes the dimension of the space in which the 
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transformation is made.     The Jacobian 

d±i   '     ZZ'   •••   '   ^n) 

expanded in terms of minors relative to the leftmost column of the determin- 

ant,   is 

-,/   n n ~ n 

(''•ft„- , "i 

^     n       ,/   n n n\        ^n^/n       „n n\ 

Li 4^ ':) ^       ^(Vi'Vz "i^     aö 

since     dz**   dO.    =    0    for  all values of   i   from 1  to n-Z.    The following part- 

ial derivatives are easily evaluated: 

n 
0 7- 

1 
=      cos fy     . 

OP n-1 

az 

as 
P sin 6 

n-1 
n-1 

The corresponding polar coordinate transformation in the next lower dimen- 

sion is 

n-1 n 
zl       =     ^cosön-2 

n-1 
■7-2 

p sin Ö    _ cos ^ 

n-1 
n-Z 

n-1 
n-1 

p sin Ö    0  sin 6 
' n-2 n-3 

p sin ^    _  sin ^     _ f n-Z n-i 

sin 9    cos 0 

sin ö_  sin 0 
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Note that,   for ail values of   i   from 1 to n-1, 

so that 

n 
:i+l 

d' 
11 

i + 1 

dp 

sin (y     ,7,. 
n-1    i 

d'-. 
n-1 

si inö 
n-1      dl> 

07' i+1 

dB 

az, n-1 

sin 0 
n-1 de 

J J 

for ail values of   j    from 1  to n-Z,   and 

az i + 1 

do n-1 

n-1 
cos U      ,7, 

n-1     i 

az; n-1 

p cos Ö 
n-1 dP 

since 
az, 

n-1 

P 
dp 

n-1 
z. .     Therefore, 

n          n n 
Ö,71  '     Z2'    ^n, 

al P. ^n.!'•••• öj 

/i 2 _ .   n-2   , 
P cos    ^     ,   sin d     , 

n-1 n-1 

,   n-1     n~l n-1 
ajZ. ,7, ,  .  •  . , 7, J £ n-1 

a| P, e  , ^j n-ii 1 / 

.    n     ■   u n .   n-2   . +  /J sin    ^        yin '' 
n-1 n-1 

j   n-1     n-1 
ÖlZl      '7'2      ' 

n-1 

'"n-l 

=   P sin""2 Ö 

n-Z 1 

n-1 

-1 

n-I       n-1 aizj   , z2  , .... z^j 

a p, ö  _ e, 
n-Z 1 

n     7 
The Jacbian in n dimensions can be expressed as the product of p sin ' 6 

and the corresponding Jacobian in the next lower dimension. For the case of 

two dimensions, 

n-1 

7, -       p   COS   Ö 

p  sin 0 
1 
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and the Jacobian for two dimensions is 

dz dz. 

dP 

z 
dz 

dp 

z 
i dz 

do do 

cos 0. SI ad. 

P sin 0       P cos $ 

2 2 
=   P   (cos   0    + sin   Ö  )   =  p 

By the appropriate inductive reasoning, 

'ei) dtP.e^. . 
„n-l     .   n-2 .   n-3 _ 
' sin 0     ,   sin        ^    ,. 

n-1 n-2 
.   1  , 

sin   0 

The volume   V(a, n)   inside a sphere of radius    r    and inside a cone of angle 

in an   n-dimensional space is 

a 

V(a,n)   =   2 
-' 

.   n-2 ,, ,  „ 
sin ö        d Ö    , 

n-1        n-1 

,77/2 r 

I!        /       sinJ     ö.dÖ      Ip^dP. 

The surface area   S(n, n)    on the surface of a sphere of radius    r    and lying 

inside a cone of angle   a   is    dY{a,n)/dr ,    so that the proportion of the spher- 

ical surface subtended by a cone of angle   n  is 

\ 
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S(ft, n) 
S(7r,n) 

a 

/ 

n-2 „ 
sin Odd, 

n-1        n-1 

/■ n-1        n-1 

This expression is the probability   P(«, n)   that the angle between two vectors 

from the center of the  sphere to arbitrary points on the surface of the sphere 

is less than or equal to the angle  rv (when the probability density at all points 

of the surface is uniform). 

The integrals may be evaluated in closed form using the two formulas 

I ■   2k   ^ sin      xdx - cos x 

k (n 1  +2(k-j) 

i=i( n 
vj=i 

1 +2(k-j) 

2(k+l-j) I 
.   l+2{k-i) 

sin 'x 

V  j=l 
2(k+l-j) i 

J .   2k+l    , 
sin xdx cos x 

i-1 
kfi | n 

E 
2(k+l-j) 

.  2(k+l-i) 
sin  ' 'x 

i.j in 1  + 2(k+l.j) 

which are valid for all non-negative integers   k .     When the upper index in a 

summation sign or product sign is smaller than the corresponding lower index, 

the results are   0 or  1,   respectively.     These formulas were obtained by math- 

ematical induction using the formula 

I k .  k-1 
sinxdx = -   ^ULIIH *. 

k 
(k M ■  k-2  ^ sin       xdx, 
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which can be derived using integration by parts.    P(a,n)   is a cumu]ative di8. 

tnbution function for   a   ,    so that the probability density function is 

aP(a.n) 
dot 

.   n-2 
sin        a 

[ 
3T 

■    n-2  a ,  n sin        6      dd 
n-1      n-1 

F.gure m-ll diagrams the cumulative distribution function and probability 

density per degree for the angle a   between   ^   and   (X-X)   in a 155-dimen- 

sional constraint space.    Note that the probability density function in strongly 

peaked „ear    „ = ,0°.     As the dimension of the constraint space increases, 

the cumulative distribution function approaches a step function Jumping from 

0 to 1 at 90 .    Under the same circumstances,  consequently,  the probability 

denstty function approaches a delta function centered about 90°. 

5. 

r^r^K7rr^'r" FOr the ^   "  B— '*e Vectors (X-X) + E    and   (X-X) 

It is possible to construct  a two-dimensionaJ plane passing through the 

origin,   any specific vector   (X-X).   and any specific vector   E   .    The resulting 

plane must lie   within the constraint space since the origin and the vectors 

(X-X) and Ec lie within die constraint space.    Figure 111-12 illustrates such a 

Plane.    In the figure.    (X-X)   and ^ are as defined previously i„ this section- 

«    is the angle between the vectors   Ec   and   (X-X) .   and    0   is the angle be- 

tween the vectors   (X-X) and (X-X) + E  . 
c' 

If Ec is not a scalar multiple of (X-X).  the angles   a   and   9  are between 

0 and   n and the sine law holds: 

sin(a-g) 
sin 0 

lx-x| 
|Ecl 
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(X-X) + E 

^A 
(X-X) 

FIGURE III-12 

TWO-DIMENSIONAL PLANE PASSING THROUGH 
THE ORIGIN,  (X-X).   AND E 
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Division by   sin a     yields the modified equation 

cot d   -   cot a |x-x| 
Fc|si in a 

Since the cotangent is a monotonically decreasing function over the range 0 to 

TT,    Ö < öo    if and only if cot 0o< cot Ö.    Thus    Ö<Ö if and only if 

. ü ^      x-xl cot B   -   cot a <  T—'- !      . 
o E    sin   a 

This condition is automatically satisfied if   a < ß    ,   since   cot 6   -   cot a <0 
o o 

when   a < 0   ■    Hence      d <  6       if 
o o 

a< e 

or if 

< lx-x| sin dr 
sin (a- e ) 

when a > 0 ■    It is not necessary to consider the case where   E     is a scalar 0 _ c 
multiple of   (X-X),   for     a    must then be either     0   or TT:   the probability that 

a   <  0   or a > TT    is zero. 

Since all quantities in the inequality for   a > Ö     are non-negative,   both 

sides of the inequality may be squared: 

N2 <-^ sin 

sin  (a- 6 ) 
o 

o 

With a few more minor manipulations,  the probability that    6 < 6    when 

a > 0     becomes the probabilitv that o ' 

Ec\     -"c      <    Fc. |x-x|: sin 

M    sin  (a- 6 ) 
IM O 

1 
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where    u     and    o-     are the mean and standard deviation of the ra-dom vari- 

able|Er,      Since     E is normally distributed,   this probability is 

lx-xl2 
sin    9 

u    sin  (a- Ö ) c o 

-    1 I. 
where    F   is the cumulative normal distribution function 

F(z) 

z 

N/ZF" J 
- y1" * e dy 

With the previous assumption that the angle  a   does not depend on the magnitude 

of   E     ,   the probability that    6 < 6     is 

Pie < e) o P( 

azd 

X-Xl2  sin2 6 

fj.   sin  (a- 0 ) 
- 1 \ p(a)da 

where   p(a:)   is the probability density function for the angle   a .     For values 

of    Ö     such that     P(a < 0 )   is negligible, 

P(ö < Ö .J  *  F{. 
a 
     tan    6-1 

is a good approximation to the desired probability since   p(a)   is strongly peak- 

ed at  a =    rr/Z   when the dimension of the constraint space is high, 

||2 
E are fixed for each 

c| 
of the three modes of processing under examination.    Given any squared mag- 

1—      |2 — 
nitude |X-X|       of the vector    (X-X),   a cumulative distribution function P( Ö <  0 ) 

_ o 
for the angle    6   between the vectors   (X-X)   and   (X-X) + E      can be computed. 

When such distribution functions are evaluated over a range of values of IX-x| 
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the result is a probability which is a function of the variables     6     and lx-xl; 

Figure III-13 ?s a perspective drawing of this probability over a rectangular 

grid of the values     9     and IX-X| ,    The probabilities are plotted for the case 

of unsealed data,   data scaled by 16,   and floating-point data.    In each of the 

three cases,   two drawings are plotted from slightly different viewpoints.   The 

lower plateau in each drawing corresponds to a probability of zero,  the upper 

plateau to a probability of one. 

k 
By specifying a probability distribution for the squared magnitudes 

XI      of the vector   (X-X),   the probability distribution for the angle    0   can 

be found: 

P(0 < 0 ) o 

1 

P(0 < 0 lx-x|2) ir |x-xl2 

The values   jX-Xl       computed during a four-hour noise sample from day 238 

of 1970 (see Figure III-10) have been assumed to be equally likely.    Figure 

III-14 shows the resulting probability density per degree for the angle   0    be- 

tween the vector    v^-^/   and the projection of the vector    (X-X) + E    + E.     on- 
c b 

to the constraint space.    In the graph corresponding to each of the three modes 

of processing,   there are minor bumps due to local concentrations or local 

gaps in the values   |X-X| 

If the squared magnitudes   IX-Xl      and     E are replaced by their 

mean values and the angle   a    is ..ssumed to be 90  ,   a useful estimate of the 

mean    0     of the angle    0   is obtained: 

tan 
-I 

E(!X-X|   ) 

where   E(|X-X|   )   is the mean of the squared magnitude   IX-Xl   .    For the 

noise sample from day 238,  the niean of   IX-Xl     was 9693 counts 
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(a)   Unsealed Data 

(b)   Data Scaled by 16 

(c)   Floatixxg-Point Data 

FIGURE III-13 

CUMULATIVE DISTRIBUTION FUNCTION P{0 < ß ) OVER A RANGE 

OF THE SQUARED MAGNITUDE |x-x|2 
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LU 
UJ 
cm 
CD 
UJ 
Q 

UJ  0.6 + 

cn 
UJ a 
>- 

Ü- 

(a) Unsealed Data 

-»—> 

(b) Data Scaled by 16 1    ß ..    (c) Floating-Point Data 

i 2 
THETfl 

4-^0.0 

FIGURE III-14 

1 2 
THETfl 

PROBABILITY DENSITY PER DEGREE FOR THE ANGLE 
BETWEEN THE VECTOR (X-X) AND THE PROJECTION 

OF THE VECTOR (X-X) + Ec + Eb ONTO THE 
CONSTRAINT SPACE 
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for unsealed data,    2,481,4Z2 counts    for data scaled by a factor of 16,    Thus 

the estimated mean of     6    is 

tan 
1 28.071 

9693 
=   3"5' . 

tan 
1081. 952 
2481422 

=     lu12'   . 

and 
tan 

4. 133 
9693 

=   rn 

respectively,   for unsealed data,   data scaled by 16,   and floating-point data. 

These estimates are close to the probability density peaks of Figure 111-14. 

6. Probability Distribution for the Angle   0   Between the Vectors 
(X-X) + E    + Eu   and (X-X) 

c b 

As before,   it is possible to construct a two-dimensional plane that 

passes through the origin,   any one of the vectors    (X-X),   and any one of the 

vectors   (X-X) + E    + E,   .    Such a plane is shown in Figure 111-15.     In the 
c b 

figure,   <p    is the angle between the vectors   (X-X) + E    + E      and   (X-X) and 

E,   is the beamsteer roundoff error vector,    (X-X),  E   ,   and    a  are as defined 
b c 

previously.     The line running from the origin to (X-X)   has been extended to 

the point where   (X-X) + E    + E     projects onto it in order to form a right 

triangle.     Since    E      is perpendicular to any vector within the constraint 

space,   the leg of the right triangle adjacent to the angle   0    is of length IX-Xl 

+ IE    I cos  a   .    The side opposite the angle   0   consists of the sum of the 
|    c | 

vector   E      and a vector of length     E      sin  oc    (within the constraint space 

and perpendicular to X-X).     Since E      is perpendicular to the constraint 
, fi     |2        2 i      IT" 

space,   the length of the side opposite   9 is "W E        sin   a   +     E .    Thus the 
Viel I    b I 

cotangent of    0   is 
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(X-X) + E    + E, 
c b 

• 

U   |2        2 |      |Z 
E       sin a + E. 

i   cl ]   bl 

(X-X) 

E     cos   n 

FIGURE III-15 

TWO-DIMENSIONAL PLANE PASSING THROUGH 
THE ORIGIN,   (X-X) +E    + Eul   AND (X-X) 

c b ' 
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COt      0     = 
lx-xl   +   |E  1 cos a 

\f\ I2        2 | 1     i    sin   a   +   E 

Since the cotangent decrease a  monotonically in   (0, TT),   the angle    0   is less 

Ha or equal to any specific angle    ^   within the interval (0.^ )   if and only 

Hence   9 < 0    if and only if if   cot  0    < cot 0, 
o 

COt      0     < 
O 

X-X|  +   IE   I cos   ix 
!    c 

E 
2    .   2 

sin  (v    + 

If    ^=   ^    .     cot0= cot 0      implies that 

2.2 1 
sin   a   +     E 2 I —       I i 7 2 

=     ( |X-X|    +   E      cos a)" tan    0 
■   c I o 

This equation is consistent with the conic section corresponding to the inter- 

section of a cone of angle     ^     and a cutting plane perpendicular to the con- 

straint space.     The cone of angle    ^     has its vertex at the origin and is cen- 

tered about an axis through the origin and (X-X).    The cutting plane is deter- 

mined by the three points (X-X).   (X-X) + E^   and (X-X) + E    + E  .     For a 

given value of IX-Xl     and a given angle   «     .   the region where 0< ^   can be 

expressed as an inequality involving the two variables lEl  and IE   f.    In fact, 

if (X-X)   is  selected as the origin of a coordinate system'within the cutting 

plane,   the direction of .he vectors   Ec   and   Eb   can be used to specify the 

directions of the abscissa and ordinate.   respectively,   in a two-dimensional 

Cartesian system with perpendicular axes.     For example,   if    0   <   rr/Z =   a> 

the region where 0< ^     can be expressed in terms of the inequality 

IE   I2    <    lx-xl2 tan20      , 
i     C| o 
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which corresponds to the interior of a circle of radius | X-x| tan (p      with its 
_ o 

center at the origin   (X-X)   of the cutting-plane coordinate system.    Since the 

axis directions are determined by   E      and   E   ,   the coordinates are ( IE    I , |E   1) 

for any vector pair   (E^E^.    Thus ail points lie within the first quadrant of the 

new coordinate system for the cutting plane. 

It is easier to define the region where (f> < cf>    with inequalities which 
o 

express   | Eb |   in terms of   |E   I ,      Since the results obtained in this way will 

help to specify   |E   I   in terms of   JE   I   ,  they will be derived first. 

If    0   = 0 , 0 < 9      implies that 0=0   =   0     and 
>' ■ •   o 

tan 0=0 

,2     .2 
E   |     sin   a + 

X-Xl    +    |E   I cosa 
c 

Thus and 
2     •   2 

sin   a     must be zero.     If   0<a<7r,      only the single 

point   ( |EC | .   |Eb|) = (0, 0) satisfies the requirement that 0 < 0   ,     If   a =    0, 

E       must be zero and all values of I E    I  must lie on the semi-infinite line 

O^JE   !<'«>•     tf     a = TT,   IE   I must agai:i be zero and all values of |E   I must 

lie on the line segment     0< E    <|X-x|   ,     In this case,   the angle  0    is un- 

defined when   |E    I      =   | X-X| , 

If     0< 0 < 77/2   and a < 0   , 
o ro 

tan2 0o[lx-x| +   2lx-xl|Ec|  cos a + |E   |2 sin2 a (cot2 a   -   cot2 0   )] 

= (|x-x|    +  |Ec|cos a)2 tan20      -  |E  |2 sin2cv> 0   . 

The required inequality 

cot  0     = 
X-X|   +   JE      cos   a 

c I X-X|    +     E     cos  a 
i    c 

(|x-x|   +   |Ec|cosa) tan0 ^|E 

is satisfied if and only if 

7~~2 r-TT 
sm   a   +   E, 

cl i   b 
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i2^   i- 2        2 2     .   2 
0<|E|<(|X-X|    +    IE   I  cos a)    tan    0     - IE  I     sin    a 

If   0 < (h  < TT/Z     and« > ^    ,    9  is always greater than   0     if     |E   I v 
o o old 

iX-X|   sin 6 /sin(a- c5 ).     The following inequalities are valid if sin   a > 0 : 

E      sin 
i    c 

|X-X|  sin «sin  <f>n                      X-X 
a > — "■    =        

sin( a - (p ) 
o 

cot 0   - cot a; 
o 

E        sin  a  + |E,   "     cot ci    > IE 
c| !    b o _      c 

sin a   cot (A >|X-X|  +  IE  j  cos  or; 
o i   c| 

|x-x|  + 
cot  d>    > 

o 

cos ex 

2        2 2 
\ /|E   I    sin   « + JE   I 

The last inequality is still valid if     E > 0 .    If     E,    =   0   and    a = n,      E     > 
b I I    c f 

|X-X| sinö /sin(a- 0 )    , 
o o 

0 < JE   I sin a < (|X-X|    +   JE  I  cos a) tan <A 

|X-x|    implies that     |X-x| + JE  | cos TT < 0     and hence 0 = TT.      NOW if   IE   I < 

and 

cos a)    tan   0 
o 

i      |2        2 
E        sin   « >  0 

A.ccordingly,  when IE   I <  |X-X|  sin0/sin{a-0 )    , 
5    CI o O 

COt 0       = 

|x-x|    +   |E   I cos a lx-x|   +    |E I 

(|X-X|    +    E      cosa)tan0 
5       C I O 

X-Xi    1     |E  I  cos a 

i     |2    "2      '     i     12 E       sin  a +    E, 
I   cl i   bj 

if and only if 
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0 < |Eb|
2<(lx-xl    +    |Ec| cos a)2 tan20o    -  |E   |2  sin2 a 

When    0 < 0   < TT/Z     and    «>0   ,   therefore,  0 < 0      if and only if both of the 
o O o 

conditions 

v ^ 
|x-x| sin 0 

sin(a- 0 ) 
o 

|2       i- 2        2 
0<|Eb|    <(|x-xl    +    IE   I cos a)   tan   0     -  |E  I 

|2     .   2 
sin   a 

are met. 

If      0     =      77/2   , 

X-Xl    + 
0   =   cot 0   4 ro 

E      cos  a 
cl 

EJ      sin   „+   |Eb 

if and only if 

|x-x|    +    |E   I cos n  >   0 

U    a   < n/Z ,   the condition is always  satisfied.    If   a  > TT/2 , ch < d>      if and 7   — To 
only if 

X-Xl Ix.xl 'I  sin  0 
EclS 

-cos ex sin( « - 0 ) 
o 

If    TT/Z < 0 < 77     and  a < 0   ,     0   is never greater than      0    ,      Either 
o 'o        r 0 ^o 

«  < TT/Z     and     col a  > 0        so that 

cot   0 
E        sin  n 

c| X-X 
cot rv < 0   < 

2.2 I       2 
sin   at +   E, 

b v '^l2     .2 ,      ,2 
E   j     sin   a +   E. 
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and 
Ix-xl   + 

cot   d)    < 
o 

E   i ./isb   ,i 

VKl2"- a+   IE, I2 

b 

or    a    > TT/Z    and   cot a   < 0       so that 

cot   <f> + / Nsin a  
VvirTz . 2    j ji X\|E        sin    fv +   E       , 

V   c !    h 

( - cot rv) 

and 

< cot 0   - cot a 4 0   ^     LX-X I 

vrT^^j^l 
IX-XI    +     E      cos   « 

cot £>   4 cl 

VKT^^-^ Kr 
Finally,   if    77/2 <^    ^   ^   and 

« > <^    ,   0 is neVer greater than 

if   | Ec | 4 IX-Xl   .sin^/sin(a-0).     The following condition 
6 

s are  satisfied: 

E   I sin a 4= 
|X-X|  sin n   sin 0 

sin(a - 0   ) 
o 

Ix-xl 
cot 0     - cot  a 

o 

r.   |2        2 ,      .2' 
E        sin   o- +     E 

c cot 0   <  |E 
o  ~ 

Ix-xl +       E    i   <  n:;    a 
cot 0     <  — !   cr 

VF |2      .2 . 
cl   Sln rt+  K 

mrvcot 0o<|X-Xl    + ^cosa; 
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On the other hand,   if      E   |>|x-xl    sin (f) / sin(a. (j) ),   then 
I-       I 2       2 2     0  2 0 

(|X-X|   +     E      cos«)   tan     (f)      - |E   I       sin    «   >    0        and 

- cot 0 
o 

-(Ix-Xl    -   |Ec|cosa) -(|X-X|    +|Ec|cosa) 

(|x-x|    +   |E   I cos«) tan 0 V/|E   I ,2 2 ,      .2 
EJ      sin   a+    |Eb| 

if and only if 

>    (Ix-X|    +    IE   I cos«)2 tan20     -  |E 
I    c| o c 

I2     .   2 
'     sin     « 

Since     E has a discrete probability distribution and   |E   |2   is nor- 1 I    c I 
mally distributed,   it is easier to compute the probability that ^ < 0        when 

F:   !   is given in terms of   |Eb|    .     For each value of    lEl ,   there exists a 

range of   JEj   values such that   0 < 0o •     The probability of this range of |E 

values is the difference between two cumulative normal distribution function! 

To specify the boundary of the  region where 0 40   ,   the quadratic equa 

tion 

([EJ    sin2«+   |Eb|
2)cot20o   =   (Ix-Xl   +   |E   | cos a)2 

is used to solve   [EJ   in terms of   [EJ .     Ordinarily only one solution for |E   I 

is the correct definition of the boundary.     Since the conditions for  0 =    0   have 

negligible probability   (pj2 =    0 )   and since 0  4   0      whenever    n/Z  <   0 

and « <  <g ,   only the cases    0 ± ^ S. n/Z    and      n/Z <  ^   t. a    will be discussed. 

When   0 ^ (^ /.TT/Z   and   « 4 0o.   the inequality   IE   I < |x-x| tan 0 

guarantees that 

(|X-X|    +   |Ec| cos«) tan <^ ^ AAEJ^ sin2« +   [EJ 
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and hence that ty < cjy 

U   I2     •   2 
E   i     sin   a + 

i   c 1 ^VK 2 2 2 ._       ,2 2 
cos   «tan   fv +   |X-X|    tan    0 

Ej    COS   a+|X-Xl      <   tan cb     (|X-X|    + |E   I cos a). 

If    IE   I > Ix-X.  tan   (V,      when     0 £. $    L^lZ    and rv 4 </, , 0  /. 0     if and only if 
I 0 0 o    '    - ^o 
E      satisfies  .he linear inequality 

E   i   tan 0    >    E 
c I Yo   -   I    li 

|E   |    -    Ix-Xl  tan^ 
o 

when   et ~    0 ,   the hyperbolic inequality 

rr   ,,i2 
cot0   \/IX-Xl     +   IE, I    (cot   « - cot   0  ) - 

lEjsina   A     °J! LliL_ <?_ 
IX-Xl cot a 

2 2 
cot   a   -    cot   0 

when    § £. a. L <ii    .or the parabolic inequality 

n  „12 

COS   rt     > 

IE, I    cot   0     - Ix-Xl 
I    b I ^o 

2 |X-X| 

when rv =  0 

If   0<(^<Tr/2    and a > ^   ,   JE   I mus«: be no larger than |X-X| sin 0 / 

sin(or- 0 )   in order that 0<0   (as was shown earlier).     The most difficult 

case occurs when    0<fY<77-/2.     Whenever IE, I    >IX-X|/(cot0    -cot«) 
o I    b| ' 'o 

0 is always greater than   0    : 

(|Ec|
2sin2«+    |Eb|2)cot20o 
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h > J  E        sin   « + 
c V 

ix.xr 
cot   0   - cot n 

o 

2 
cot    (/) 

2       * 0 

2 2 
cos    «+ |Ec|

2  sin2a (cot2^ - cot2«) +     ^^   cot    a     +|x.x)' j 

.2  K 2 cot   r/)    - cot   a 
o 

since 

> E 
2 2 

COS     a    I      ,d|E    leo',  a 
|Ec|coSa|x-xl+|v-Xi2    =    (IX-Xl  +|Ec|cos«)2 

0<(cot   o    - cot   a) E  I sin cv Ix-Xlcota 

t
2  A 2 cot   0   - cot   a 

o 

|2     .   2 
= |Ec|    sin   a (cot   ^-cot2«)   - 2 JE^cos a|x-x|+    ^'^    cot   « 

.2^ 2 cot   0   - cot  a 
o 

Thus    W|Ec|
2sin

2     +|Eb|2        t.    >   Ix.xl + |E |cos   a    and0>9,   .     Fo; 

the rang,,     0 < JE^ < |x.x|2 ta„\ ,   0 < 0    if'„, on,y „ 

^[..„^'^'"'^"'^yi^ -Ki2(c°t% 2   v cot  «) 

2  , 2 cot   0    -    cot   a 
o 

77   „I 2 
when   0o< a<7r/2.      For the range lx-x|2tan2 0   < |E   |2< Ig^l 

o       I   bl    — 

both of the inequalities 
2 ^ 2 

cot   0    - cot   a 
o 

Ix-Xlcota-    cot0o\fe:x|2jEj(cot
2^  . ^ 

2 2 
cot   0    -   cot  a 

o 

-   < JE  jsin a- 
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and 

|Ec|Sin„< l!^zil0!A^^Kf^\ z   . 
cot a ) 

2 2 
cot   0    -   cot a 

must be satisfied if 6 < 6   .    The region  c/> <   0     for 

ting plane when       O<0   < n < n/Z 

If   0< 0 <7r/2  < a>    0   is alw 

9o   forms an ellipse in the cut- 

Ix-xltan 0 
ays greater than     0       whenever   |E    |> 

COt   0       > 
o 

IX-Xl 

E si n    a+   |X-X|2tan2(/; 

x-x| 
> 

VI 
ß        2 T 

E sin   a + IE, 
cl I   b 

> 

<p 

v:-Xi     I   |S  | cos a 

\/|Ec|
2sin2a+   |E   ,Z 

If |Eb|< |X-X|tan 0o     when   0 < 0o < vr/2 < a>  0 < 0      if and only  if 

satisfies the circular inequality 

E   |2< |x-x|2tan20 

when   a =  7r/2,   the elliptic inequality 

:ot9o     Vl^l2  -   |Eb E   I sin a < 
2 2 2 

(cot   0 - cot   a) + jx-xlcota 

2 
COt     0 2 

cot   cv 

wiien —<a<7r-^ ,   the parabolic inequality 
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E      (-cos a)   < 
i   c I — 

Ix-xl       -  |E   I2 cot2 9 

zlx-xl 

when   a = TT- 0 ,   the hyperbolic inequality 

E     sin« < 
i    c — 

Ix-xl    + IE   I   (cot  a  - cot   0 ) 

2 Z 
cot   n; - cot   cp 

when    TT- r/)   < a: <77,    or the linear inequality 
o 

|Ec|   tan^<|X-X|  tan^    -   |Eb| 

when    a = TT , 

It was shown earlier that 0 < </>     if and only if 
o 

E    |(-cQsa)< Ix-xl 

when    TV/2 =   o < a. 
o 

If    7r/2 < 0 <  Of, c*)   <   o     if and only if   IE   | satisfies the hyperbolic 
o —     o I    c I 

inequality 

E   I sin a < 
Ix-XJ    + IE   I  (cot  a cot   <p ) 

2 2 
cot  a     -   cot </> 

when «<77-,   or the linear inequality 

|E I < Ix-xl 
!    c I Ncot f0 

when    n = TT ,      These last two inequalities are automatically satisfied when 

E   |< |X-Xlsin 0/sin( a- 0 ). 
c I ^ o 7o 

111-64 

fcKWwJ^:-^^^.^^^.^..  ■r.,.-;-^.^..^t,^..;^-^.,^.^IL^^^^»H^.^.„^Ai,^^^-.^f[.1^^|.|.'^^^...»;^j^^ ■  ■  ■■- -^--::,.-,1 -r^... . , . ,. . .:.^..,^- ..^'-^.i.^^W^^^^^^-^Wi^i/.AL^ 



Figure III-16 shows the region in the cutting plane where 0 < 0 for 

a variety of angles a and ^ . The normalized variables C =|E 1/ fe-xl 

and   B = |Eb| /  |x-x!  replace the variables    JEJ    and   JEj ,   respectively. 

The most easily obtained information about the probability distribution 

of   0   is an estimate of its mean    0   .     If the squared magnitudes   |X-x|2, 

Pel   '   and  Kl      are rePlaced by ^eir mean values and the angle   a   is assumed 
to be 90   , 

0    ~    tan' ^c    +     ^b 
-   ..I?- 

E ( |X-X| ' ) 

  o 

where    E (|X-X|    )       is the mean of the squared magnitude   |X-X|2 ,      fi     u 

the mean of     E       ,     and      a       is the mean of    IE 
I   c| b |b 

from day 2 38 of 1970 the estimated mean of    0   is 

2 c 

,    For the noise sample 

tan 

tan 

tan 

/28 .071 + 16. 361 
9693 

/1081.952 + 16. 361 
2481422 

u. 133 + 0. 0 
9693 

3052' 

l012'( 

1011' 

respectively,   for unsealed data,  data scaled by 16,   and floating-point data.   The 

estimate of the mean for the angle of error in (X-X) is 47' greater for unsealed 

data,   less than 1 ' greater for data scaled by 16,   and,   of course,   exactly the 

same for floating-point data when the effect of the beamsteer roundoff 

considered. 
error is 

The associated equation 

E((X-X|2)   «     ^^ 

tan      <^" 
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REGION IN THE CUTTING PLANE WHERE 0 < 0   IN TERMS OF 
THE NORMALIZED_CUTTING PLANE COORDINATES 

C= |Ec|/ |X.X| AND   B= |Eb|/|x-X| 
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1 

can be used to select analog-to-digital conversion factors and computer data 

scale factors which achieve a desited pngle of error   0 ,    If the A/D system 

is fixed,   for example,   the minimum achievable angular error can be deter- 

mined by considering only the digitization errors.     This minimum achievable 

error can be approached arbitrarily closely through the choice of a suitably 

high data scale factor.     As the data scale factor increases,   so does the term 

E(|X-Xl   ) when expressed in squared computer counts.   In turn,   the computer- 

count value of   E(lx-Xl) is almost sufficient to express the computer-count RMS 

level for the data points   x.(t-j)   and hence the number of bits required to express 

it.     The dynamic range of the data is a separate problem,   however.     The number 

of guard bits needed to reduce the frequency of data clipping to acceptable levels 

is a function of the fluctuations above the data RMS level.     If both the A/D sys- 

tem and computer data scaling are subject to control,   a wider range of A/D 

conversion factors and computational scale factors is possible.    For a given 

desired angle      (p ,     in this event,   there will be a curve relating the A/D con- 

version factor to the computer data scale factor. 

The more useful approximation 

P(0<^)   a   P(|Ec|     +|Ebp<  |X-X|     tan   0) 

is based on the assumption that the angle    a    is always   n/Z.    Since the pro- 

bability density for    a   is strongly and symmetrically concentrated about a 

value of      TT/Z     and since the probability that 0 <. 0     is quasi-linear in the 

neighborhood of   a =    n/Z,   the approximation is remarkably accurate.    Along 

the curve   |X-x|    tan    0    =      ^     (where the estimate is 1/2 when |E   f = 0), 

the actual values ranged from 0. 50 at   a =    n/Z   to less than 0. 55 at the high- 

est   (X-Xl      value.     In most cases the approximation underestimates   P( 0 < 0 ) 

and hence tends to overestimate the angle of error.     By specifying a probabil- 

ity distribution for the squared magnitudes   |X-x|2 ,    the probability distribu- 

tion for the angle     0    can be approximated: 
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P(^<<; V * j HI-   I' + iE   |2<|x-x|2tan%)dp|X-X|2 

o 

Once again,   as in the case^of the probability density functions graphed in 

Figure 111-14.   the values |x-x|2   from a four-hour noise  sample from day 238 

of 1970 have been assumed equally likely.     Figure 111-17 is a plot of the corres- 

ponding probability density per degree for the angle of error   0  .    Some idea of 

the accuracy of the approximation can be gleaned from a comparison of Figures 

111-14 (c) and 111-17 (c).    In the case of floating-point data.   IEJ
2
 _- o   and the 

two probability distributions are identical:    the approximation has shifted the 

twin peaks at 1° 7.5' and 1° 17.25. to 1° 7.8. and 1° 17.55. (only 0.3. error). 

In the case of data scaled by 16.   the twin peaks in Figure 111-14 (b) are 0. 9' 

higher than for the floating-point data.     After allowing for error perpendicular 

to the constraint space,   they are now 1.2- to  1.5« higher in Figure 111-17 (b) 

than the peaks for floating-point data.     Mth unsealed data,   however,   noticeable 

increases are visible  in Figure 111-17 (a) as compared with Figure 111-14 (a). 

The first peak has mo^ ed 44. 25" from 2° 55. 5- to 3° 39. 75«,    the  second 

53.25.from3    21. 37 5' to 4°  14   hPc;1      TV,QC,ö^U /J io t     i4.bZb .     These changes (due to beamsteer round- 

off error) are in rough agreement with the 47' increase predicted by the approx- 

imations for     6     and     (f) 

If the complete calculation is to be performed,   probabilities must be 

computed over a range of |X-X|2 and     ^   values.     To obtain one of these pro- 

babilities,   a numerical integration over the interval   0   < « < TT  is necessary. 

And.  finally,   for any particular angle   a   .   a summation of cumulative norma/ 

distribution functions  (each term corresponding to one discrete value of IE   f) 

must be carried out.     The necessary mathematical relationships have bee^de- 

tailed in this part of subsection C.    Although it is possible in principle to ac- 

complish the required compulations,   they have not been done because of the 

computer time involved.     It is necessary to be content with the results dis- 

played in Figure III-17. 
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PROBABILITY DENSITY PER DEGREE FOR THE ANGLE    0   BETWEEN 
THE VECTOR (X-X) AND THE VECTOR (X-X) + E    + F 
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At this point, it is worth mentioning that the beamsteer roundoff erior 

can be eliminated by multiplying each component x(t-j) - x.(t-j) in the vector 

(X-X)   by   M ,   the number of channels: 

M [ x(t-j) - x.lt-j) I 

M 

k=i 

xk(t.j) M x.lt-j) 

In calculating the filter change vector (A0ld - A™™),   a compensatory scaling 

by 1/M can be executed.    In the scaled vector M(X-X),   all the quantities invol- 

ved are integers.     The result is an integer,   and no roundoff error is produced 

in the scaled beamsteer output   M 5r(t-j) .    If no overflow occurs,  the scaled 

vector M(X-X) satisfies the constraint conditions exactly.    The eradication of 

the beamsteer roundoff entails one multiplication for each point   x.(t-j)   used 

in the adaptive filter update.    If the values   M x.(t-j)   are stored for use in sub- 

sequent updates,  only   M   multiplications per sample period are required. 

Even so,  however,   the additional computations may preclude implementation 

of this procedure. 

The discussion near the beginning of subsection B mentioned that noise 

reduction for one data sample was increased from 2 dB to 6 dB (relative to the 

beamsteer output) simply by scaling the data points by a factor of 16.    In view 

of the relatively small angle of error in the vector   X-X   (even for unsealed 

data),  the principal source of error probably occurs elsewhere. 

D. ERROR IN THE FILTER OUTPUT   XTA = y(t) 

In this subsection, the effects on the adaptive filter output y(t) of 

error in the data vector X are studied. One effect is that the sign of the 

adaptive filter output may change so that the filter step 
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., ZK    y(t) (X-X) 
Anew        Aold s 
A -    A = 

(X-X)T(X-X) 

is in the wrong direction.    As mentioned in subsection A,  the effect of re- 

versing the direction of the filter update vector is the precise opposite of 

what adaptive filtering sets out to accomplish:   instead of reducing the mean 
2 

square filter output   y  (t) ,   the sign reversal causes the filter vector to move 

in a direction which tends to increase the average squared filter output.    A 

second effect is that the filter vector   A   does not move if the dot product 

(X + E   )   A   lies between   -1/2    and   1/2   and is consequently rounded to zero 
c 

when integer arithmetic is used.    (This effect does not take place when floating- 

point arithmetic is employed. )    When the filter update vector cannot move,  the 

adaptive-filtering process is delayed until the next non-zero value   y(t)   of the 

filter output.    Over a large number of iterations, the result is an effective re- 

duction in the convergence rate through neglect of those times   t   where the 

adaptive filter output   y(t)   is zero.    These first two phenomena are discussed 

in part 1.    A completely different effect is that the filter output power is alter- 

ed.    A method to calculate the modified filter output pov."   from the original 

crosscorrelation matrix (without digitization and computational error) and the 

probability distributions for the error is derived in part 2, 

1. Probability That   y(t)   Changes Sign or Rounds To Zero 

In order to calculate the probability that the filter output y(t) changes 

sign or rounds to zero after adding the error vector E to the data vector X, 

the probability distribution for the error in   y(t) 

N M 

,<" =   2  2 ai(i) fi<t-i) 
J = -N      i=l 

before roundoff must be determined.    Since the probability density function 
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for the roundoff error    e.it-j)   in any single component of   E^   is symmetric 

about zero,  the probability distribution for the 

roundoff is the same as for the random variable 

error    e   (t)   in   y(t)   before 

N M 

j = -N i=l 

The probability density function for this random variable is the convolution of 

the probability density functions for the   M(2N+1)   random variables 

la.Wle^t-j).    The variance of   ey(t)   is least when the adaptive filter output 

is the beamsteer output 

M 

*{t) = -h L xi(t) 
i=l 

and greatest when each filter weight   a.fj)   assumes its maximum absolute 

value.    In the adaptive filtering program used for this report, the filter 

weights clip when their absolute value is one half,   so that the highest vari- 

ance occurs when 

N M 

ejt) = "T Z! ]C ei(t-j) • 
j = -N       i=l 

Such a situation can happen when,  at the zero lag   j=0.  four weights are 1/2 

two -1/2,  and,  at non-zero lags   j 4 0,  three weights are 1/2,  three -1/2. 

The probability density function for the most favorable case,  i. e. ,  when y(t) = 

x(t).  was plotted in Figure 111-3.     When,   in the most unfavorable case con- 

ceivable,   all 186 filter weights are of magnitude one half,  the probability 

distribution for the random variable 

N M 

i E E e.(t-j) 

j = -N       i=l 
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is accurately approximated by a normal distribution,   so that the probability 

density function for the error in   y(t)   before roundoff is 

W 
2 2 

P^V^ 

where    cr        is the sum of the  186 identical variances for each of the random 

variables      e.(t-j)/2.     That is to say, 

o-€    =       46.5    Var [VH)] 

The resulting probability density functions for the three cases are graphed in 

Figure III-18. 

It is now possible to calculate the conditional probability that the sign 

of   y(t)   is inverted given the absolute value   | y(t) |   :    it is 

00 

|yU)| + 1/2 

[V(t)]d(y,t, 

for integer arithmetic, 

00 

|y(t)l 

for floating-point arithmetic.    Similarly,   the conditional probability that   y(t) 

rounds to zero is 

y(t)    + 1/2 

/ P    by{t)]  d S/0 

|y(t)|   - 1/2 
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ADAPTIVE FILTER OUTPUT ERROR PROBABILITY DENSITY 
PER COUNT BEFORE ROUNDOFF (MAXIMUM POSSIBLE VARIANCE) 
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for integer arithmetic, zero for floating-point arithmetic. The conditional 

probability that the sign of y(t) is reversed or that y(t) rounds to zero is 

displayed in Figure 111-19 in the most favorable case for unsealed data, data 

scaled by 16, and floating-point data. The stippled areas designate the pro- 

bability that y(t) rounds to zero, the striped areas the probability that y(t) 

changes sign. The corresponding probabilities in the most unfavorable case 

are depicted in Figure 111-2 0. 

For integer arithmetic,   the total probability that the sign of   y(t) 

changes is the integral 

/ 

00 

y(t)|   + 1/2 

de  (t) 
y 

[|y(t)|]d(y(t) 

over the interval (0,*) of the conditional probability of sign inversion given 

I y(t)| multiplied by the probability density for the absolute value   |y(t) I . The 

total probability that   y(t)   rounds to zero is obtained by replacing the inner 

integral by the conditional probability that   y(t)   is zero after roundoff:   the 

interval of integration is from   |y(t)| - 1/2     to   |y(t) ( + 1/2.    For floating- 

point arithmetic,   similarly,   the limits of integration change to   | y(t) | and 

infinity when specifying the total probability of sign inversion.    Figure 111-21 

illustrates the regions in the     Ty^),   e   (t)j      plane corresponding to the total 

probabilities stipulated.    To calculate these integrals,   a knowledge of the pro- 

bability distribution for the adaptive-filter output values is required.    Unfor- 

tunately,  it is not available.    However,  the adaptive-filter RMS level is avail- 

able for a number of data samples.    Under the assumption that     y(t)   and the 

error      e   (t)   before roundoff are normally-distributed,   independent random 

variables with zero mean,   the total probabilities can be found.    For integer 

arithmetic,  the total probability of sign inversion is 
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(c) Floating-Point Data 

PROBABILITY THAT     y(t)     CHANGES SIGN OR ROUNDS TO ZERO 
GIVEN   |y(t)( [MOST FAVORABLE CASE:   v(t) = x(t)l 
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PROBABILITY THAT   y(t)   CHANGES SIGN OR ROUNDS TO ZERO 
GIVEN   |y(t)|    [MOST UNFAVORABLE   CASE:    |a.(j)| = l/2] 
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FIGURE 111-21 

REGIONS IN THE   [y(t).   ey(t)]   PLANE CORRESPONDING TO 
SIGN REVERSAL AND ROUNDING TO ZERO 

III-78 

aa^^t±i*m^.'.~J^.f-^...^,.a.A^JaMW„v^i.^^-...^■)..-^.■^--■■.^■^.^..■ -^-^.^,^~.-.^^^....^t^^:.^^■^■.^-J.^■-Jl.-.jL^^^^^.ii^L.jU^-.A,^^I^^A.^.^ .,..■.«^,^.^„-....:^.^.u^^^..^^J^L|AWl.y^^„^^.jA^^.t■-.-■■.jfrri1( iiaiilitilifiITfliVMiiliMfliniitflifllitttriTtll'nYiifil"hi! 



■■-^■sre-:^.gCTV-.<f ri-iyj.f^7'^i - .'yjmyjm-f! ..^ J J^^M^
1
 ^j^^Yri^i  r HH T>ii' i n r'in 'fi ii I'tiiTTTri ■ i 7 \\m^.tim>-> .*      • w 

/to oo 

2    f-JL- -{e2/ZcTZ) 1 

y 

00 

F<^) rr 

2 2 
(y  /2a- ) 

y 

27r 
dy   , 

-{yZ/ZcrZ) 
e y   dy 

where    cr      is the adaptive-filter output RMS level and   F(z )   is the standard 
y 

cumulative normal distribution function 

F(z) 

7. 

/ 
.00 

1 -z   /2    , 
e dz , 

2 77 

The probability of rounding to zero is 

/cr    + 
rz       2 

v/o-    +  o- 

For floating-point arithmetic,  the probability that the sign of   y(t)   changes is 

equal to the probability that the random variable 

w 
y(t) 

€   (t) 
y 

lies within the interval   -1 < w<0.    The random variable   w   has a Cauchy 

distribution with probability density function 

p{w)     = 
2     2 

7r(l + p   w ) 
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where    P   is the ratio     tr/o-       of the standard deviation of    e   (t)   to the RMS 
y y 

level of the adaptive filter output   y(t).    The probability of a diffe rence in sign 

between   y(t)   and   y(t) +    e   (t) ,   therefore,   is 
y 

u 

-    i   - 
77        -1        1 + 

dw 
2    Z 

p   w 

-1 
tän    p 

IT 

The arctangent is the angle from the   (e   /or   )-axis to the line   p( e   /cr )   = 
y    e ye 

-iV/Vy)     after the probability density is circularized by a coordinate trans- 

formation which divides each random variable by its standard deviation.   This 

last estimate is useful even in integer arithmetic situations where the error 

e  (t)   before roundoff has a standard deviation much larger than one half 

(e. g. .   Figure III-20b).    Table III-4 lists the probability of a sign change or 

zero value in the filter output from a 270° adaptive beam (with K  = Ü  005) 
s 

for a four-hour noise sample from day 238 of 1970 under the assumption that 

all filter weights are of magnitude one half.    These probabilities are uncom- 

fortably high.    They indicate that sign changes and zero values may signifi- 

cantly limit adaptive-filter performance.    Even in the case of floating-point 

data,   digitization error results in a surprisingly high probability of a filter 
J  t , Anew     .old 

update vector     A        - A pointing in the wrong direction.    The gain doubl- 

ing performed on the ALPA seismometers in July and August of 1972 should 

reduce this probability by a factor of approximately two. 

These appreciable errors in   y(t) ,  particularly in the case of unsealed 

data,   may account for the radically different noise reduction values at data 

scale factors of 1 and 16,   respectively,  for the quiet summer noise sample. 

At the convergence rate   Ks = 0. 30,   the adaptive filter takes advantage of 

transient correlation between successive data vectors to reduce the filter out- 

put power.    In order to do so effectively,  the adaptive filter must react rapidly 

and accurately as each new data vector   X   is received.    If the filter step 
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new       old 
-•        - A pointed in the wrong direction a significant fraction of the time, 

the drop in noise reduction from 6 dB to 2 dB when a data scale factor of   1 

was used instead of 16 could easily be explained.    In the event that the adap- 

tive filter output   y(t)   rounded to zero,   the effect would be somewhat less 

severe:   the filter vector would not update and could not react to incoming 

data until the next data vector was available.    Each time no update was per- 

formed,   some of the ability to exploit the transient correlation between con- 

secutive data vectors would be lost. 

Without knowledge of the crosscorrelation statistics between input 

data channels,   the unlikely possibility that all filter weights are of magnitude 

one half cannot be completely excluded.    Part 2 of thin subsection,   as a by- 

product of other investigations,   gives the filter weights obtained before and 

after the error vector   Ec    is added to the data vector    X.     For specific cross- 

correlation matrices,   the absolute values of the resulting filter weights could 

be used to provide more accurate estimates of the error    e   (t)    before round- 

off in the adaptive filter output. Y 

2. Change in the Mean Square Filter Output Power    /ÖÖ   Due to 
Adding the Error Vector   Ec   to the Data Vector   X 

If the error vector   Ec   is added to the data vector   X   and the round- 

off error     ^(t)   after forming the dot product   (X + E/A   is incorporated 

into the adaptive-filter output,   a maximum-likelihoodHlter set can be design- 

ed to minimize the total output power subject to the maximum-likelihood con- 

straints and an additional special constraint which reflects the fact that the 

term    ^(t)   is preserved with unity response.    The adaptive-filter output 
with roundoff error is 

y,,t)=<Q,,TA,=[(x + Ec'TiV')][^=[QTi.r(t)]^] 
where   Q'   has    1+M(2N+1)   components.    A is subject to the normal maximum 
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likelihood constraints and the last component b of the expanded filter vector 

A" is subject to the special constraint b = 1. The constraints are expressed 

in the matrix equation 

[1—l][0—0]  

[o-.-o] [1---1] [0---0] ■[0—0] 

[o--o] -"[o---oni---ino---o] 

1- 'z.0h "ji'i: "i."i: -z' -J0r i?l J1^"!1! 
[0---0]   [o-.-o] 

where   D   is the   (2N + l)-dimensional vector 

—       — 

1      0 

!         0 

'          1 
1         1 

I 
A 

1      0 

1    o 

!   1 b 
_       

D 

d(-N) 
i 
i 

i 

d(-l) 

d( 0 ) 

d(  1  ) 
i 
i 
i 

d( N) 

0 
i 
i 
i 

and each of the row subvectors    [l 1]     or   [0 O]   in the constraint 

matrix has   M   components (where M is the number of channels).    In matrix 

form, it may be written 

C'A' D' 

where the ordinary maximum-likelihood constraint matrix   C   is formed by 

dropping the last row and column from   C,   and where the expanded response 

vector    D1 
is 

111-83 

'•''■'''■'■'■■-iriiirrftittliiW1""-■"-■'■■".tiniitinrjffi"---'- '■! -iii- iT'rifrviiM-imiiiMi ■"■ ■^■'—aaniirnn'i—"'■"■'"-"-""'-;-J >.■....— ■■ ..L^...-..,.;...,^^..—-.^-■-.■..-..--..■.■.-...^..— ^-....».-»-a.^.^^'^ ^.„■^.^.J.-  ..■J..„-.^ 



f • ^wwifi^WHMWJHP^.^^^ mm^wi^mrfmmii^WfWwM j'-'-11 iJ^w^-iPJ'B.^^-JPt-WHPUjWJffWWg?1*^111^^ J' ■-" I^,^-^
M

-
|
M^-H--^I«WWJ^I|;UMII,''.J *JiMf..ii- i^^y'^wmM'} imu**1., ymmw' mw JU i-jw^^fgpwiin 

D' [?] 
C is a (2N + 2) by [l + M(2N + 1)] matrix, A' a [l + M(2N + 1)] - dimen- 

sional column vector reflecting the white frequency response of the filter A 

and the unalterable response of one on the error e (t) generated by round- 

ing the adaptive filter output to the nearest integer. The adaptive-filter up- 

data equation uses the method of steepest descent to reduce the mean square 

output power [y'it)] using the Widrow approximation [y'lt)]2 = [y'lt)]2 

(Widrow,   1966): 

(A')new=    A'-|iv{[y'(t) 2[(A')T(D'-C,A,)j 

=     A' -    Z/i   [y'lt) Q' + {C')TA>j 

where      A'     is the  L,agrangian multiplier vector 

A' 

X(-N) 

A(-i) 

A,( o ) 

M i ) 
i 

M N) 

L ^ 1 
The Lagrangian multiplier vector is found by solving the vector equation 

D' C'iA') 
new 

C'A'    -   2M   [y'(t) C'Q' + C'iC)     A'] 
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MWHMHVi 

A'     = {^j-   [cI(C')T]       [CA' - D']}  - y'(t)   [cI(CI)T] C'Q' 

=    -y'lt) [c'lC)7]       C'Q'  . 

Substitution of     A'     into the update equation yields 

(A1) 
new A'    -    2/i y'^ll- (C')T[c' (C')T]        C'} Q' 

T The matrix     C'CC)        is the   (2N + 2)   by   (2N + 2)   diagonal matrix 

M        0 

0^       M        0 
»v V 

I 

0 

V N 

0        M        0 

0  

0 0 

I 
I 
0 

0 M    '      0 
 X 1 
0 0|1 

I 

and the matrix     (C,)T [c (C,)T J       c'     is the    [ 1 + M(2N + 1)] by 

[l + M(2N + 1)]     matrix 
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M JM -0 

0.- 

i 

-v0 M JM 
i 
■ 
0-- 

0 n 
1 1 i 

t ■ 
Ü 1 0 

1 - "J 

0 

-- 0 
I 
I 

--x0 M JM 

i 
i 

■->0 

---0 ( 
I 

-.-0 M JM 

+ 

i 

i 
t 

0 
i 

Jo--o] [o--o] [o o] [o--o]    I 

^here each of the   2N+1    submatr^ces    J. .    is an M by M matrix with each eie- 
M 

ment equal to 1.    The update equation reduces to 

(A') 
new 

A' +   2ßy*(t) (Q' -Q')     . 

where     Q'    =   (C')T IC' (C)7 | 
-1 

C'Q1 ,   or the equivalent equation 

{'"] A 

1 J 
+    2/iy,(t) Q - Q 

0 

where    "S     =   C     [cc    J       CQ .    This equation,  which is the equation for 

minimizing the total output power    [y'(t)]2     is precisely the equation which 

is implemented when the error vector    Ec    is added to the data vector   X   if 

no roundoff error occurs when the beamsteer output components 
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M 

v^ - -^ E qi(t-j) 

i = l 

are rounded to the nearest integer: 

new 
A+   2M(Q-)

T
A'[Q-Q] 

A+   2M  [(X+Ec)
TA+   ^[(X-TE;)    -    (X+Ec)] 

As was shown in Subsection C.   the beamsteer roundoff error vector   E     can 

be eliminated by scaling the vector    Q    by the number of channels and dividing 

the convergence factor     /i    by   M : 

M 

Mq.lt-j)     =      ^     q.^.j)    > 

i = l 

so that     Mq.(t-j)   is always an integer and no roundoff error occurs.     By 

choosing     ß    small enough,   the adaptive filter set can be shown to converge 

to the optimum maximum-likelihood filter set if certain conditions are met 

(Daniell,   1968). 

This relationship between the adaptive filter set and the optimum 

maximum-likelihood_filter set can be used to calculate the mean square filter 

output power   [y-(t)] 2       with digitization and roundoff error.       [T^p     can be 

compared with the mean square filter output power     y2
(t)   in the absence of 

such errors.    The adaptive filter output with these errors is 

y'(t)   =   y(t)   +  e   (t)   +   e  (t)   , 
y r        ' 

where   6y(t)   is the error befor_e roundoff and     ^(t)   is the roundoff error 

the nearest integer.     The quantity 
occurring when     y(t) +   c   (t)   is rounded to 
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y(t) +   e   (t)    may be broken up into the integer 

[y(t)  +   ey(t)] 
y    J i 

obtained after roundoff and the fractional term 

[y(t) +  %(.)]F 

which is eliminated by the addition of    e   (t).    The mean square noise power 

[y'ft)]' IS 

[y'lt)]2    =   [y(t)+ e (t)]2   + 2[y(t) + e  (t)]l €r(t) 

+    2[y(t)   +  €y(t)]F   €r(t)      +     £r(t)        . 

When the standard deviation of     y(t) +   e   {t)     is larger than one count,   its 

rounded value     [y(t) +  e   (t)]     has only negligible correlation with the round- 

off error      e   (t) ,   so that the term 
r 

2  I»   +   <   (t)^   6r(t) 

can be neglected.    On the other hand, 

so that 

[y(t)  +   ey(t)]F    +    er(t)   =    0 , 

[y'(t)]    =  [y(t) * «y(t)]2   - 2 =>)   +  .'(t) 
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[y(t)   +   6y(t)]2     -    e
2(t) 

AT   (X + E   ) (X + E   )TA   -   €2(t) 
c c r 

AT$A     -    62(t)     . 
r 

where the matrix  (J) is the crosscorreiation matrix corresponding to the 

data vectors    X + E   .    Minimizing the mean square filter output power fy'lt)] 

is the same as minimizing the term     A   Q/A. 

When the filter weights are subject to the maximum-likelihood con- 

straints    CA = D,   the optimum filter set is achieved when each component 

of the gradient 

V[l/2AT$A+    AT(D-CA)]     =$A-CTA 

is zero,     li.e JLagrangian multiplier vector    A     is found by using the con- 

straint conditions    CA = D,   so that the matrix equation 

0 

$ 1        cT 
A 

0 

c 
''    0-. 0 

:    ^. ! 
1   o -o 

-A D 

__ 1                                   ^m^ —         | m 

yields a solution for both the filter vector    A   and the  Lagrangian   multipliej 

vector   A   ,     By rearranging the rows and columns of this matrix equation, 

the matrix can be put in block-Töpiitz form (as on page II-3).    The filter 
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output power   AT$A   is the zero-lag component     X(0)   of the Lagrangian 
multiplier vector: 

$A 

A 

CA 

T 
C   A 

(J)  ' C   A 

T 
C   )A =    D 

(C$   C1^)"^ 

A      =       $"1CT(C$-1CT)-1D 

AT$A 

T 

X(0) 

The vectors   A   and   A   as well as the mean square noise power    AT$A   are 

immediately available upon solution of the full matrix equation.      The filter 

output power with the addition of th 

er(t)    is 
e error vector   Ec   and the roundoff error 

DT(C$, X^CV1 D   -     e2{t)     =   Ax+E(0) 
r 

where the subscript   X+E   denotes the addition of the 

data vector   X.     Without digitization 

put power is 

error vector   E      to the 
c 

error and roundoff error,   the filter out- 

DV^CV D   =    Ax(0)    . 
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where the subscript   X   denotes the data vector   X   by itself.    The ratio of the 

altered mean square filter output power     [y^t)]       to the original mean yquare 

filter output power y  (t)      is 

V0' 
Provided that the mean square error in predicting one channel from 

any other channel at any time shift up to   NAt   is larger than 1 count2,   a 

channel value rounded to the nearest integer (and the roundoff error on that 

channel) should have negligible correlation with the roundoff error on any 

other channel.     As a result,   crosscorrelation values between two different 

channels  should be unaffected by digitization and roundoff error.    Autocorrela- 

tion values,   however,   are affected.     Under reasonably weak assumptions con- 

cerning the lack of perfect correlation between triax components at each site, 

between successive values of the unfiltered vertical component at each site, 

and between successive values of the prefiltered vertical component at each 

site,  the autocorrelation values after allowing for digitization error and 

roundoff error should be 

x.'(t) x.r(t + r)   =  x.(t) x.(t + r) 1       2 2 
3d v <Mr) - S   c b or x 

where the primes indicate values with error,   where      e       is the variance of 
T d 

the digitization error on each triax sensor,   where     e is the variance of 
v 

the error in rounding each unfiltered vertical component to the nearest integer, 

is the variance of the error in rounding off each prefiltered ver- 

tical component,  where     (PAT)    is the autocorrelation function 
b 

where 

<Pb{r) 
L 

E 
k=-L 

b  b 
k  k + T 
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of the prefilter applied to the unt'iltered vertical-component data,   and where 
~T 

(S is the Kronecker delta operator (the variance    e is  subtracted only 
or x 

when        T = 0 ).     Floating-point autocorrelation functions are affected only by 

digitization error: 

x .'(t)  x'it +T) 
i i 

x .(t)  x.(t +T) T   Z  VT' 

In the case of specific noise  matrices  $    .   these results provide a 

convenient technique for determining the change in the mean square noise 

power       y   (t)       from errors in the data vector    X    and from roundoff error 
T 

after the dot product    (X + E   )    A     has been formed.     A knowledge of the 

noise environment in which an adaptive-filtering system is to operate,   to- 

gether with a computation of the digitization and roundoff error  statistics 

associated with a particular implementation scheme,   is sufficient to set 

specifications on the A/D system and on the precision of the data vector    X 

so as to come arbitrarily close to the mean square noise level   A,   (0)     for 

data without digitization or roundoff error.     (Further specifications on the 

precision of the filter  vector    A   are,   of course,   also necessary. ) 

In one data sample with an enormous signal,  it was necessary to re- 

duce the data scale factor from 16 to 4 to avoid clipping the signal.     After 

three  runs were made at scale factors of 16,   8,   and 4,  the noise reduction 

values over the section of data preceding the signal were sufficiently inter- 

esting to make two additional runs at scale factors of 2 and 1.     The noise 

reduction results in Table IlI-'S are for the period 0430 to 0638 on day 7 of 

1972.     An adaptive filter was steered toward 2S3    at a convergence rate 
2. 

K    ^ 0. 00S.     Decibel values in this table are relative to I count   /second. 
s 

With the exception of the varying data scale factors,   all processing para- 

meters are as described in Subsection A of Section V.    Note that the beam- 

steer output power increases by 6. 181  dI3,   6.098 dB,   6.061 dB,   and 6.041 dB, 

111-92 

..■^■.-......■^^   ■•^'■^■^-^^----'■-■^ aillliiilllllllal■lli^lf^^'--"^-•-'•^-^—'^^^■'■**M*****=*****-***~~^--^ 



»»«•wcqs^Mjp^ipiajitMBipyijipppppi^ii»^ ,jn.MTOWWJp^aiPMUl..-IJP,!ll),l. "W.wn^Pkii.BuimiMPiiJi 

in 
i 

w 

PQ 

a! 
O 
H 
U 
< 
hi 

W 
-I 

u 
w 
<: 
h 
<! 
Q 

O 

O 
i—i 

H 
U z . 

oo 

o 

o 

O 

2 
h 
u 
D 
Q 
W 
B5 

W 

< 
Q 

In 
(U u 

+-> V 
—1 * 
h o 

ll .—, 

> 
1 

pq 
XI 

4-> w 

rt D 
-a 
< 

0 

O O sO vO i^. 
^ 00 O 00 ro 
^      t^-      O^     O^     o 

rt x >> ^ >> 
■4-» JD JD .£) JD 
n) n T3 T) -a TJ 

D OJ <v O 
X) —( —1 r-t 

tL) (t) n) nJ nf 
—1 U u U u 
rt W UJ CO W 
u 
tn 
a 

a! si 

D « Q Q Q 

ni-93 

 ^..^■..-^.... >- M  ^^.^^.,...... iiiii   d JMtfMMnlli ii 1 ii      i I    r   -   - -  ■      -- -   ■-■    ■-- iliiiittfhAAlMl ... .,...,.,......^^-^...^.^:-J,^ 



•^mm^ »"in»    it   11 HUI  i- mmmmmmmmwm Kmmm» i^mm^mMm vmit ■"•" ••••• ""   mmmtm n]i\Minimn .u.mnuiy.ummm 

respectively,   each time the data scale factor is doubled.    Similarly,   the 

adaptive filter output power increases by 6. 26C dB.   6. 126 dB.   6. 080 dB,   and 

6. 051 dB.     Without roundoff error,  these figures should increase by 20 log     2 

(6. 021 dB).     The actual results reflect the fact that roundoff error reduces 

the mean square noise power by a relatively stable number of squared counts. 

The only significance of these results is that zero output is obtained by scal- 

ing the data down to the point where the largest value     x.lt-j)   in the data lies 

between -1/2 and 1/2 before it is rounded off.     The same effect occurs when 

the crosscorrelation matrix is formed from data containing a signal.     In fact, 

signal power might be reduced more than noise power.    Crosscorrelation 

terms as well as autocorrelation terms in r.n ideal signal matrix are affected; 

s'At) sWt+r) 1 k sift) s'.it+T) 

s
i(t) s.(t+r) 1      2        ~ 

J       d v VT) 
oT      x 

Ac the data is scaled down to the point where the mean square error in pre- 

dicting one channel from another drops well below   1 count2,  the crosscorrela- 

tion values need adjustment.    And this condition is more readily achieved 

when a signal is present. 

One important fact can be inferred from this study of the effects of 

error in the data vector    X.     It is that the principal effect of roundoff error 

and digitization error at ver^ low convergence rates is simply to reduce the 

autocorrelation function values in the matrix     $ =   X^7   when a significant 

amount of power (in terms of computer counts) is uncorrelated between sen- 

sors.     Normally,   the reduction of the autocorrelation functions causes a drop 

in the filter output power.     Aside from this  scaling effect on signal and noise 

alike,   the error appears at very low convergence rates to have no major con- 

sequences in terms of the mean square filter output once spatially uncorrelated 
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noise rises to certain minimal computer-count levels.    This statement applies, 

of course,  only to situations where   the convergence rate is slow enough that 

the adaptive filter set closely approximates the optimum maximum-likelihood 

filter set.    It does not apply to the effect of digitization and roundoff error on 

misadjustment,   which is defined to be the fraction 

j (t)   -    Ly (OJopti mum 

[y (t)J   opti mum 

of additional noise caused by the adaptive algorithm in a time-stationary en- 

vironment.    The drop in noise reduction from 6 dB to 2 dB at K    = 0. 30 
s 

clearly illustrates this fact in the case of the quiet summer noise sample 

where data scale factors of 16 and 1 were used. 

An appropriate design goal would be to reduce the difference between 

the mean square noise output values with and without error to the maximum 

extent feasible.     In that event,   at least,  processing results would increasingly 

reflect instrument measurements rather than computational noise. 

E. DIRECTIONAL ERROR OF THE FILTER UPDATE VECTOR 

(AneW - A0ld) 

In this subsection,  the effects of rounding off the filter update vector 

are investigated.     Part 1 discusses only the roundoff problems involved in the 

direct calculation of the update vector.    After this calculation,  the constraint 

conditions may no longer be satisfied.    As has been pointed out in the litera- 

ture (Frost,   1972),   the cumulative effect of repeated calculations not satisfy- 

ing the constraint conditions is to produce a random walk away from the con- 

straint space.    Some corrective procedure must be performed periodically 

to bring the filter set back into reasonable agreement with the constraint con- 

ditions.    Part 2 considers the implications of various corrective methods on 
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the directional error of the filter upda.e vector.    Par. 3 briefly describes .he 

disadvantages of a procedure which eliminates filter-weight roU„doff error 

and beamsteer roundoff error. 

1. Error Due to Rounding Off the Filter Weights   a (j) 

The average change in an individual component of the filter weight 

vector A is a critical quantity in evaluating the error due to rounding off the 

füter weights.     An individual component may  be immobili.ed or partially im- 

mobbed when the average change drops significantly below the quantization 

level of the filter weights.    Even when the average change is approximately 

the same as the filter weight quantization level,   the fact that some filter 

weight components     a.(j)   will be hampered more than others in their move- 

ment means that the filter vector   A   may be deflected from the desired direc 

tion of movement after several iterations. 

The squared magnitude     I AneW - A0lcl| 2       of th« «U 6 ""■ A       | oi the filter update vector 
is 

(Anew _ ^T   (Anew _ ^ 

4K2   ATXXTA(X-X)T(X-X) 

(X-X)T(X-X)(X-X)T(X-X) 

4Kf   y2(t) 

(X-X)T (X-X) 

for the particular adaptive algorithm used in this report.     With some math 

matical manipulations,   a clearer picture e 

the filter step size: 

e- 

imerges of the factors influencing 
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new old 
IA - A 

4K2 vl/2(t) E 
s x 

4K2 y2(t) 

(X-X)T(X-X) 

IM 
E  [(X-X)T(X-X)] 

4K2 ^(t) 
s 

E -T- x1 X 
2 

y (t) 

.(X-X)T(X-X)1 

4K2t2(t) 
s 

MIZN+DEF^J     E[X
T

X]  - ET^X] 

[y2(t)] E [xTx] E 

4K2vk2(t) 
s 

M(2N+ 1) R^(R2   . j) 

where the operator    E [-]   denotes the time average of the quantity insid, 

the brackets,  where      ^(t)     is the random variable 

TO    = y2(t) (X-X)T (X-X) 

[y2(t)J      /     E[(X-X)
T

(X-X)] 

where     RA    is the beam output power reduction 
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R 
_E 

E 

of adaptive filtering relative to beamsceering,   and where     R 

reduction 
B 

R 
B 

[xTxl 
[xTxJ 

is the power 

R      is normally of beamsteering relative to the average single-sensor power, 

close to the value   M   (where M is the number of channels) provided that the 

noise field is spatially uncorrelated or coherent but distributed over a range 

of look directions not impinging on the main lobe of the time-shift-and-sum 

array beam pattern.     Under the assumption that   R*   = M.   the RMS change in 

one component of the filter weight vector is 

new old 
A - A 

M(2N + 1) 

2K   \J/(t) 
s 

M(2N +  1) V^vTT     R 

It is the RMS change in the sense that it is the square root of the squared com- 

ponents     a. (j)     averaged over all components.     The quantity in question still 

fluctuates as a function of time.    If the time averages     E [---]    are taken 

over time intervals in which the power reduction     R^    0f adaptive filtering 

relative to beamsteering is stable,   the RMS change in a filter component is 

the product of the stable value 

2K 

M{2N + UVMTI     R 

and the time-varying   random variable  ^ (t).    In view of the definition of    ^(t). 
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it is likely that the mode point of the probability distribution for    ^(t)   is 

close to I.    As a result,   the mode point of the probability distribution for the 

RMS change in one filter component     a.(j)   is close to 

2K 

M(2N+1) N/M-1    R 

At the convergence rate   K    =0. 005 and the amplitude reduction factor 

R   = 1. 333 (about 2.5 dB) for adaptive filtering relative to beamsteering, 

this quantity is    1/65536,  or   2       .    The quantization level of the filter 

weights for the adaptive processor used in this report is   2"     ,    (A filter 

weight of one half is represented as 32768 counts. )   Thus the RMS filter- 

weight change was close to one count when the adaptive filter output power 

was 2. 5 dB below the beamsteer output power.    And the actual noise reduc- 

tion obtained at a convergence rate   K    = 0. 005   was typically below 2. 5 dB, 

so that the mode point of the probability distribution for the RMS filter- 

weight jump was probably within the range    1   to   1. 333 counts. 

If the probability density function for the random variable    ^(t)   were 

strongly peaked near a value of one,  there would be considerable cause for 

alarm when the RM,C ye in one component of the filter weight vector drop- 

ped below 1/2 count,    in that event,   most of the components would be immobil- 

ized.    A broadly dispersed probability distribution for    ^(t),  on the other hand, 

would permit movement when   ^ (t)   reached its highest values (even if the 

rate   K     might be biased either upward or downward,   but at least the filter 

vector would move.    For this reason,  the fluctuation of    \|/(t)   as well as the 
2 

RMS change in     a.(j)     warrants scrutiny.      The random variable    v}/   (t)   may 

be expressed as the product 
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*     (t)        = 
2 

y   (t) 

[/(•>] 
L F.   L(X-X)T(X-X)J 

(X-X)T(X-X) 

Most of the variation in    ^"(t)   can be attributed to the term on the left since 

the filter output   y(t)   oscillates back and forth between positive and negative 

values,   ordinarily reaching an amplitude greater than its RMS level.     The 

term on the right,   however,   does not fluctuate nearly as much since it is a 

power average over    2N + 1    consecutive points in time.     The31-second 

length of the adaptive filter used in this study spans  3 quarter-cycles of the 

40-second period at which the bias-removal prefilter response (as well as 

the filtered data power  spectrum) begins to roll off.     Furthermore,   power 

surges in   y  (t)   tend to compensate for power surges in   (X-X)T(X-X). 

Since the point-to-point fluctuations in   y   (t)   have no counterpart in any other 
2 

term affecting     V   (t),   it is  reasonably safe to assume that    ^2(t)   varies at 

least as much as    y  (t)/E[y  (t)] .      There are a number of probabilistic 

modcio that could conceivably describe the fluctuations in   y(t).    Just which 

one is most appropriate depends on the data.     A reasonable assumption for 

the sake of discussion is that   y(t)   is normally distributed.    In that event,   it 

is easy to determine whether a "typical" filter-weight component is in danger 

of being immobilized by roundoff error when it is i ounded to the nearest filter- 

weight count.    By a "typical" component is meant a filter-weight component 

whose RMS change over time agrees with the RMS filter-weight change    aver- 

aged across components.     Table III-6 gives the probability of no movement 

and the standard deviation of the  "typical" filter-weight component^ motion 

after roundoff at four RMS filter-weight change values.     In this table,   only the 

variation in t   (t)   due to the term   y2(t)/E [y2(t)]  has been considered,   and 

the mean of the movement in the  "typical" filter-weight component has been 

ignored.     Under these assumptions,   it is apparent that the  "typical" compon- 

ent is severely impeded in its movement only when the RMS filter-weight 

change drops below 1/4 count. 
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TABLE III-6 

PROBABILITY OF NO MOVEMENT AND STANDARD DEVIATION OF THE 
CHANGE IN A FILTER-WEIGHT COMPONENT WHOSE RMS CHANGE 

OVER TIME IS THE SAME AS THE RMS FILTER-WEIGHT 
CHANGE ACROSS COMPONENTS 

RMS Filter-Weight Probability of Standard Deviation 
Change   (counts) No Movement of the Change in a 

Typical Component 
(counts) 

1. 000 0. 3830 1.04 

0. 500 0,6826 0. 57 

0. 250 0. 9546 0.21 

0. 125 1, 0000 0.00 
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In reality,   a wide variation in average movement can be expected 

across the components of the filter vector A,     It is well within the realm of 

possibility that the bulk of the motion could be concentrated in a small number 

of components.     At an RMS filter-weight change of 1/4 count,   therefore,   it is 

likely that most of the filter weights are greatly restricted in their activity. 

As a result,   a safety margin of several bits in the numerical representation 

of the filter weights seems appropriate.    On the other hand,   it is true that 

those components most critical to adaptive-filter performance do move at 

the  1/4-count RMS change value.    One unambiguous result can be derived 

from this analysis:    the filter vector proper is unlikely to move at all when 

the RMS filter-weight change goes below     l/[_8vM(2N + 1 )Jcounts; at that 

level.   Table III-6 implies that the largest change in any component rounds 

to zero even if all of the change is concentrated in a single component.   The 

empirical results of Subsection IV-B indicate that noticeable degradation in 

filter performance begins to occur when the RMS change in an individual 

filter weight drops below 1/2 count. 

Due to the fact that the error in rounding off a filter weight never 

changes the sign of the filter weight,   it is possible to place some limits on the 

angular error in the vector (A - A     ).   It is never more than   90° different 

from the vector       sgn [y^t)] (X-X + E    + E   ),      where      sgn   is the function 

sgn z 

1 if z < 0 

0 if z = 0 

1 if z > 0   , 

where   y^t)   is the adaptive filter output after roundoff,   and where   X-X, E   , 
b 

and   E      are as defined previously.    A slightly more useful bound can be found. 

Provided that the filter vector moves,  the worst possible situation that can 

happen is that one component changes slightly more than 1/2 count while all 

other components change just slightly less than 1/2 count and round to zero. 
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In that event,   the angle between     (A - A      )       after roundoff and 

8gn[y'(t)]   (X-X + Eb + Ec)     is 

tan"       >/ M(2N + 1) -1 

or 85  48' when   M(2N + 1) = 186. 

Up to this point,   no accurate estimates of the angular error in the 

filter update vector     (A -  A      )   have been made because the change in 

the filter-weight components     a.(j)     before roundoff has been smaller than 

1  count for at least some components in the situations examined.     If all com- 

ponents change by at least several counts,   simplifying assumptions which 

facilitate mathematical treatment are possible.     In adaptive filtering systems 

where the process of rounding the filter weights affects the vector (A        -A      ) 

only slightly,   all or almost all of the filter-weight components do change by at 

least several counts.     Hence it is worthwhile examining the results inferred 

from the simplifying assumptions. 

The most easily derived result is an upper bound for the angle between 
new 

(X-X + E,   + E   )     and the vector     (A 
b c 

the vector      sgn   y'lt) 

roundoff.    Prior to rounding the filter update vector to the nearest filter 

weight count,  the filter update equation is 

A      )   after 

new old 
A - A 2K    y'(t) (X-X + E,   + E   ) 

s be 

q     X-X + E,   + E 
b c 

K (X-X + E,   + E   )     , 
b c 

where     q     is the quantization level of the filter weights (2 for the algorithm 

used in this report),   and where     K     is the scalar constant 
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K 
2Ks    y'(t) 

q| X-X + E,   + E 
b c 

rT-    ^L , . new old  , 
To the vector     (A - A      )/q     is added the roundoff vector 

D 

Sj    (-N) 

L8M (-N). 

Sj    ( 0 )" 

8M   < 0 I 

81    (N ) 

LSM(N) 

lew     .old. The squared magnitude of the vector     (A        - A      )/q     is 

4K y'W 

q     I X-X + E    + E   |2 

b c 

L, new old 
in counts   .    The vector   (A - A      )/q     after roundoff must lie within   I D I 

r   . .new       Aold% . 
counts of   (A - A      )/q     before roundoff.    This situation is illustrated in 
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Figure 111-22.     The largest angle      V    between   K(X-X + E    + E   ) + D      and 

K(X-X + E    + E   ) occurs when    D   is perpendicular to     K(X-X + E    + E   )+ D, 

so that 

q2 IDI2 |X-X + EU + E   I' 
2       ^ be 

sin   y   <     

4K [y'it)]' 

Since the largest possible absolute value of any component     8.(j)   in    D   is 

1/2,   |D| =   M(2N + l)/4.     Provided that the filter vector moves after 
max 

roundoff,   the minimum absolute value of     y^t)     is  1.     Therefore 

46.5 q2 |X-X + E.   + E    | 
2      ^ be    max 

sin   7 <  

4 K 

for a 186-component filter vector.     In a four-hour noise sample from day 238 
— 2 2 

of 1970,   the largest value |X-X + EL + E  |      observed was  18, 617, 020 counts 0 be 
when the data was scaled by a factor of 16.    Under the assumption that the 

  2 
iareest value   Ix-X + E    + E   I      for unsealed data was 1/256 as large,   Table 6 be 
III-7 lists the maximum possible angle between the filter update vector before 

roundoff and the filter update vector after roundoff at the convergence rate 

K    = 0. 005.     This table indicates,   in the case of unsealed data,   that a 24-bit 
s 

filter vector guarantees an angle    7    considerably smaller than the average 

angle    <P     between the vectors    (X-X)   and   (X-X + Eb + E^J    at the conver- 

gence rate   K    =0.005.     Twenty-eight bits accomplish the same purpose for 

data scaled by 16.     When the data is  scaled by 16,   or course,   it is far less 

likely that the rounded adaptive filter output     y^t)     has an absolute value of 

1.     The angular bounds in Table III-7 are extremely conservative.     Whenever 

the maximum angle is below   85  48',   the following conditions must occur 
I- I 2 

simultaneously to achieve it:    (1)   the squared magnitude |X-X + E    + E   | 
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D+K(X-X + E, + E   ) 
b       c 

K(X-X + E, + E   ) 
b       c 

FIGURE 111-22 

TWO-DIMENSIONAL PLANE PASSING THROUGH 
THE ORIGIN.   D,   AND K(X-X + E   + E   ) 

b       c 
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TABLE III-7 

MAXIMUM POSSIBLE ANGLE OF DEFLECTION DUE TO ROUNDING 
THE FILTER UPDATE VECTOR AT THE CONVERGENCE RATE 

K    = 0, 005 (USING NOISE DATA FROM DAY 238 OF 1970) 

Log2(l/q) 

Maximum Angle Unsealed Data Data Scaled by 16 

16 20 85048' 

17 21 85048, 

18 22 44033, 

19 23 20O32I 

20 24 10°  6' 

21 25 5°  2- 

22 26 2031' 

23 27 1015- 

24 28 0O38' 
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must be at its maximum value;    (2)   the rectified filter output   |y'(t)|   must 

be one;    (3)   the vector    D   must be perpendicular to the vector K(X-X+E   +E   ) + 

D; and   (4)   each component of D must be of magnitude 1/2. 

TU / Anew        old 
The vector    (A - A      )   without any digitization or roundoff error 

points in the same direction as the   vector    Sgn[y(t)] (X-X).       With the errors 

incorporated in the vectors   E^   ly   and D.   it points in the same direction as 

the vector      D+|K|   sgn   [y.(t)]   (X-X+E^E^.    Since the filter-weight 

roundoff vector    D   is symmetrically distributed about the origin and is zero 

when    y-(t) = 0.   the specification of the probability distribution for the angular 
. .new     old e"-1-0-1 

error m (A        -A      ) reduces to the determination of the probability distribu- 

tion for the angle between | K|    (X-X)   and    sgn[y(t)]sgn[y.(t)][|K|(X-X+E   + 

Ec) + D].     Probability distributions for    Eb   and   Ec    were derived previously 

in Subsection C.     Likewise,   the probability distribution for   sgn [y(t)] sgn [y.(tj] 

was discussed in Subsection D.     As a first step in finding the probability dis- 

tribution for the angle of error in   (AneW-Aold)   the filter-weight roundoff 

vector   D   needs to be examined. 

Prior to rounding the filter weights at the   j-th   lag.   an individual 

ponent of the filter vector is of the form 
com- 

I K jx(t-j) - x.{t-j) +  e.(t.j) 

M 

-h I] V^j) 
k=l 

+ eb(t-j) j 
It consists of an integer part (the component rounded to the nearest integer) 

and a fractional part which is eliminated by the roundoff procedure.    Thus    it 

- clear that the component    ^(j)   of the vector   D   ig simply ^ ^.^ ^ 

the fractional part of the expression above.    Since the vectors    (X-X)    and   E 

satisfy the constraint conditions and since     e^t-j)     is the same for all 

channels at the   j-th   lag. 
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M 

i=l 

X(t-j)-  X,(t-j)  +   €.(t-j)   - 

M 

E 
k=l 

+ eb(t-j); - KM€b(t-j)= 0. 

The fractional parts of the left-hand side of the equation must sum to an in- 

teger if *he right-hand side is to equal zero: 

M 

i = l 
where    I.    is an integer and where the  subscript   F   denotes the fractional part 

of   KM6b(t-j).     This equation specifies a constraint on the roundoff errors 

8.0).     Any one of the components is a function of the ot 
KMe

b(t-j).     Let it  be the    M-th   component: 

M-l 

)ther components and 

- VJ' [KM<b<H)]F  +E   si(jl   -   'j 
i = l 

KM    eK(t-J)|F       1 

M-l 

JF 
+ E «i'j'j 

i = l 

KM  f 

M-l 

b(t-j)]F   +    XI   8i(jl 

where the subscript   I   denotes the integer part of the quantity inside the 

braces.    Since the negative of the    M-th    component of the roundoff error lies 

^-H    -1/2    and    1/2.   it is equal to the fractional part of the right-hand 
side of the equation: 

-SM(j)     ={[KMeb(t..i)]p   +   J^     8.(j)J 
M-l 

i=l 
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Since    8M(j)   has no integer part,   the integer part of the right-hand side 
must be zero,   so that 

M-l 

i. = {[KM ..„.j^ + ^   6i(j)| 
i = l 

Given probability distributions for    ^(t-j)   and the first   M-l    components 

8.(j).   the probability distribution of the integers    I.    can be ascertained.   The 

probability of any integer    I.    is the probability that 

M-l 

I.- 1/2 < [KM  eh(t-j)]F   +   Y,    S.O)   <  I. + 1/2 
i-:l 

Another useful way of expressing    I.    is 

KM t 
, M-l 

i=l 

M-l 

KMeb(t-j)   + J]     ..(j)^     .    [myt-j)^ 
i = l 

M-l 
Let    L.   denote the integer part of   KMe^t-j)^    ^(j) .    Its probability is 

the probability that i = l 

M-l 

1/2   <   KM6b(t-j)   +^      6i(j)<  L     +   1/2 

i = l 

An important random variable is the su m 
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M 

E8i(j) = ^ - [KM€
b

(t-j)] 
i=i 

L. -     KM6b(t-j)   . 

whose probability distribution depends on the probability of   KM e   (t-j)    and 
b 

the conditional probability of   L.    given     KM e   (t-j). 
j b * 

Let   z.    denote the filter-weight change 

K <x(t-j) - x.it-j) +e.(t-j) 

M 

h I] ek(t-j) 
M 

k=l 

+ %«-»■ 

of the    i-th   channel at lag   j    before roundoff.     The roundoff error  S .(j)   de- 

pends only on the fractional part of   z Any integer change in   z.    results in 

the same roundoff error  8_(j) = - (z.)        so that the roundoff errors  S  (j)    for 
i 1 J? i 

any point in any   (M-l )-dimensional cell 

m.  -  1/2   <   z.   <   m. + 1/2 
i i i (i = 1,  2,   . . . ,   M-l; m. an 

integer) 

are the same as the roundoff errors    S.(.i)   for the corresponding point in the 

cell 

1/2   <   z. =   {z.)_   <   1/2 
i i F (1=1,   2,   ....   M-l), 

which includes the origin   (Zj,   z2 
z

M_i) = (0'   0'   •••»   0)-    Consequently, 

the sum 

M-l 

[KMS(H)]F +   YJ   SJÜ) 
i=l 
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also remains invariant under integer translations of the variable 

more,  the regions 
z. .    Further- 

i 

M-l 

I.- 1/2  <  [KMeb(t-j)]       +   J^     ^j) <   !. + 1/2 

i=l 

corresponding to the integers   I.   are identical in each of the (M-l)-dimenSional 

cells.    Figure 111-23 illustrates this situation when    [KMe^t-j)]      =   0   for the 

three-channel case.    1. = -1 in the upper right corner of each cell,   and I   = 1 in 

the lower left corner of each cell.    Any point within the shaded regions defined 

by     -1/2   <   (ZI)F + (Z2)F  <   1/2    results in a value of zero for   I..    Non-zero 

values for     [KM ^(t-j)] F    merely shift the boundaries for the integers   I. 

within each cell by altering the constant in. the boundary equations   (z   )     + (z   ) 

constant.    Because of the constraints on the filter weights,  the vectors 

^i*   Z^,     '"  ZM)   are concentrated in sheets whose   zM   components differ by 

the scalar constant   K.    The central sheet corresponding to    KM 6   (t-j)   =0 

passes through the origin.    When each of the components   z.   is distributed 

over a sufficient number of filter-weight counts,  the vectors (z .   z z    ) 
1      2'* ° *'   M 

tend to become evenly distributed over the sheets within each of the   (M-l)- 

dimensional cells 

m. - 1/2   <   z.   <   m   + 1/2 
1 ii (i = 1,  2,   ....   M-l). 

Accordingly,  the vectors   (^   z.,.   ....   ^   projected onto the (z^  z2>...zM  ^ 

plane also tend to become evenly distributed within each   (M-l )-dimensional 

cell.    Thus the conditional probability distribution of the vectors 

[(z1)F,   (zz)F,   ....   {zM1)F2       within each cell tends to become the same for 

all cells.    As a result,  the roundoff error components     g (j) (i = 1,   2,   .. . ,  M-l) 

tend to be evenly distributed over the interval   C-l/2,   1/2] .    In the adaptive- 

filtering program used for this report,  the changes   z.   before rounding each 
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1  count 

>   z. 

FIGURE 111-23 

REGIONS IN THE (z j, z2)-PLANE SATISFYING THE INEQUALITIES 

I.  - 1/2 < 8   (j) +   8?(j) 1 I. + 1/2    (SHADED AREAS CORRESPOND 

TO THE INTEGER   I. = Ü) 
J 
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-32 
filter-weight component can asFume values separated by only 2 filter- 

weight counts,   so that the probability distribution for each of the first    M-l 

components     8.(j)     is adequately approximated by the probability density 

function 

P 18.(3)] 

1      18.0)1   <  1/2 

0      |6,(j)|    >  1/2 

whenever the filter-weight component changes are spread over a large number 

of filter-weight counts. The probability distribution for the beamsteer round- 

off error     €   (t-j)   was specified in Subsection B (Figure III-4).     The resultant 

distributions for       KMe^t-j)   and    [KMc   (t-j)J are easily obtained from 
b or 

it once the  scalar constant     K     is given.      It is now possible to determine the 

probability distributions associated with the filter-weight roundoff vector    D. 

Let    D,     denote the vector 
b 

N 

D. E 
i = -N 

M 

E«. (j) 
L    i = l 

u. 

where   U.    is the unit vector perpendicular to the constraint plane in the sub- 

space corresponding to the   j-th   lag (see Subsection C,  page 111-25).     Since 

this vector is the sum of individual vectors perpendicular to the constraint 

space,   it is likewise perpendicular to the constraint space.     Let    D      be the 

vector     D    = D - D,   .    It lies within the constraint space since,   for each lag 
c b 
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T 
U. D     = 

J    c 
uJ{D . Db) 

M                                    N 

" ^ ^^-J, E 
i = l                                 k = -N 

M 

E «i«' 
i=l 

uTuw J      k 

1 -      

M 

i=l 

M 

E «i«« 
i = l 

J      J 

1 
M 

EVJ' - 
i=i 

M 

E «i»' 
i=i 

D   therefore consists of a vector    Dc    within the constraint space and a vector 
D

b perpendicular to the constraint space. 

The  squared magnitude    |D|      of the vector   D       is 
I     CI c 

N M 

*>< - E  E 
j=-N        i = l 

SjU) 

M 

M T E sk(j) 

k=l 

N M 

j=-N       i=l   l L J; 
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N 

j = -N 

M 

E E^'-^- 
r M 

i = l 
E6!^1 

Li=l 
L. - KMeJt-j) 

M 

^ E h 
i = l 

N 

E 
j = -N 

M 

E 
i = l 

sfü) 

KMeb(t-j) 

[ 
12 

L. -   KMeL(t-j) 

M 

r M-l 
The  random variable     8M(j) =    L   -   I KM e   (t-j) +      £       .(j)]      has the 

same probability distribution as the fractional part of the random variable 

V =   KMeb(t-j) +     g     8k(j).    Since the random variables      g   (j)   (k = 1,   2. 
k-1 K 

....   M-l)     and    eb(t-j)   can be assumed mutually independent,   the proba- 

bility density function for the random variable   y   can be expressed as the 

convolution of the probability density function for one of the    M-l    roundoff 

error components,  say      ^(j).    with the probability density function for 

x   =     KMeu(t-j) +    v"1 

b k?i 
the random variable sk(j) 

k^i 
y+ 1/2 

p(y) 
/ 

y- 1/2 

p(x) dx 

Sinci 

00 00 

V     p(y+n)    =       /      p(x)dx =    1    , 

n=-oo 
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the probability density function for the fractional part of the random variable 
M-l 

y =   KMtb(t-j) +    2J     S. (j)     is a uniform density  between -1/2 and 1/2.   As 
k = l 

a result,   each of the   M   roundoff error components    S.(j)   (i= 1,  2, M) 

has a uniform density between    -1/2 and 1/2.   even though the random variables 

8.(j)   (1 = 1,   2,   ....   M)   are not mutually independent.    The probability dis- 

tribution for each roundoff error component    6.(j)   is the same for all values 

of K.   Such is not the case for the discrete random variable    L   - KM c   (t-i) 

A perspective drawing of its probability mass function as a function of   K   is 

shown in Figure 111-24 for the six-channel case.    Only the range   K=0   to 

K=l/2 is shown since the probability mass function does not depend on the 

sign of   K   and repeats whenever   K   changes by an integer.    Probability is 

concentrated in rays emanating from integer values   L.   along the line   K=0. 

Each ray corresponds to one of the seven integer values which M€   (t-j) -an 

assume.    Broken lines indicate rays where   M€   (t-j) = + M/2.    The maximum 

probability mass of 0, 092 is attained everywhere along the solid line directly 

above    L   - KM e  (t-j) = 0.    At points in the (K,   L   - KMe   (t-j))-plane where 

rays intersect,   the total probability of the value    L. - KMe   (t-j)   is the sum 

of the individual probability mass functions associated with each of the inter- 

secting rays.    The spikes at points of intersection are omitted in order to 

avoid complicating Figure 111-24 unduly.    The probability of   L   - KM«   (t-i) 
j bx    J/ 

given a particular value   KMe   (t-j)   is the probability that 

M-l 

L. - KMeb(t-j) -1/2 1^      5.(j)   <   L   - KMe^t-j) + 1/2   . 

i=l 

M-l IVi- 1 

This probability is the integral of the probability density function for    J]   8.{j) 

i=l     1 

over a one-count-wide interval centered at   L,. - KMe   (t-j).    The integral is 

equal to the convolution of a uniform probability density between -1/2 and 1/2 
M-l 

with the probability density function for the random variable   J^     g .(j) 

i=l       1 

where the convolution integral is evaluated at   L. - KMe   (t-j).    Since each of 
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the   M-l    mutually independent random variables     5.(j)   is also assumed to 

have a uniform density between -1/2 and 1/2,  the probability of L.-KMe   (t-j) 

given   KMcb(t-j)   is the convolution of   M   uniform density functions (each 

equal to one over the interval -1/2 to 1/2),   where the convolution is evaluated 

at   L   - KM c   (t-j).    For this reason,   the values    L   - KM e   (t-j)   are confined 

to the interval (-M/2,  M/2).    To calculate the total probability of L.-KMc   (t-j) 

at any point where it may occur,  the   M-fold   convolution evaluated at 

L   - KMeb(t-j)   is multiplied by the sum of the probabilities of the values 

M€b(t-j)   corresponding to the rays passing through the point in question.   The 

probability of each value   Mt^t-j)   is    1/M   unless   M €   (t-j) = + M/2,   in 

which case it is    1/2M.    The probability of   L, - KM e   (t-j)   is zero whenever, 

at any particular value of   K ,  no ray passes through the value   L. - KM e   (t-j). 
j b 

The probability of   L   - KMe^t-j) given any value   M ^(t-j)   lies on an envelope 

equal to the   M-fold   convolution of unit-width,   uniform density functions.   Thus 

the broken lines in Figure 111-24 are located on an envelope half as high as the 

envelope containing the solid lines. 

12 
D        of the vector c| 

D^,  the expression for   JD I"     can be rewritten: 

T 
D   D 

c    c 

N 

J = -N 

M 

i = l 
- E 

j = -N 

N      j 

= E' "■' 

E^ (j) 

M 

M 

E^ 
i = l 

(j) 

1 
M 

' M          M 

E E w ^ 
i=l       k=l 

_ 

1 
M 

' M        M 

YJ   YJ   Siü) « 
i=l      k=l 

k^fei 

ik(j) 

N M-l M 

M Z~<   2_J    2-j 
j = -N      i = l       k=i+l 

Sj(j) + 6^(j) -2 6.(1) Sk(j) 

m-i 19 
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N M-l M 

■^ E E   E k 
j = -N       i=l        k=i+l   L 

12 

(j)   -  8k(j) 

The mean of |Dc        is    1/M   times the sum of the means for the individual 

squared terms     ^.(j) -   8k(j) j2 .     This fact does not depend on the mutual 

independence of the squared terms.    Since      8 (j)   and    - g^j)   have zero 

means,  the mean of     ^.(j) . g^jjj2     is the variance of the random variable 

8^3) -   6k(j) .    Any subset of 2 to M-l roundoff error components at the j-th 

lag contains mutually independent elements,   so that 

Var [6,0) Sk0)]   = Var h (j) +   Var 
c(j)] 

whenever   M > 3.    For a uniform probability density between -1/2 and 1/2. 

the variance is 1/12,   so that the mean of   ID  |2     is 

T 
c    c 

2N+1 {M-1)M 
M 12 

(M-1)(2N+1) 
12 

whenever M > 3. Unless M=2. the mean of [DJ
2
 and the contribution to 

the mean from the subspace corresponding to the j-th lag do not depend on 

K.    A simple corollary results from this fact.    Since 

J_ 
M L. - KMe, 

J b (t-j)] 

M 

E 
i=l 

8 Aj) 
(M-l) j_ 

12 12 

the variance of the random variable    L. - 

of K) whenever   M > 3. 
.. -   KMeb(t-j)   is   M/12 (independent 

The squared magnitude   ID|'    of the vector   D     i< 
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T 
DbDb 

N N 

j = _N      k=-N 

■    M                  "I 

-  i=l 

r   M              -i 

-   i=l 

T 
U. U, 

J     k 

N      r M 

ir   XI     Zi 6i(j) 
j=-N 

N 

- y 
j = -N 

L  i=l 

L. - KMeL(t-j) 

Its mean is equal to   (2N+1)/12   whenever   M > 3.    The mean of the squared 

magnitude   IDI     = ID I    + ID  I       is   M(2N+1)/12   for the same range of   M 

values.    The vector     D ,  however,   combines with the vector   KE.    in such 
b b 

a way that 

j = -N 

KMeu(t-j) + KMeL b b (t-j)] 

N 

M 2-J     Lj    * 
j=-N 

where the probability of any integer   L.   is the probability that 

M-l 

L. - 1/2 < KM€b(t-j)   +   ^      «iW   ^   L. + 1/2     . 

i=l 

It depends solely on the probability distribution for the random variable 

M-l 
KM«   (t-j) +     2Z      8-(J) »  whose probability density function is pictured in 

i=l       1 
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Figure 111-25 for the values   K=0 to K=6.    By the time   K   rises to the value 

2. 5.  the fingers corresponding to each of the seven possible values of    6   (t-j) 

begin to separate.    Once   K   is 5. 0 or above,  they are completely distinct. 

The maximum probability density of 0. 599 is attained at   K=0.    KM^t-j)   + 

L       8AJ) = 0.    For values of   K   greater than 2. 5.  the maximum probability 

density is 0. 100 on the inner five fingers.   0. 050 on the outer two.     The pro- 

bability mass function for    L.   also varies with   K.    Since the probability of 

L. is the probability that the random variable   KM C  (t-j)   +   ^    g (j)   lies 

within 1/2 count of   L,   the probability contained within the one^ count-wide 

lanes straddling integers in Figure 111-25 condenses to form the probability 

mass function for    L,  which is plotted as a function of   K   in Figure 111-26. 

The maximum probability mass of 0. 550 occurs at the origin.    For values of 

K   greater than 3. 0.  the maximum probability mass is 0. 092 on the inner five 

fingers.   0. 046 on the outer two.    Note that the finger corresponding to 

VH) = 0   in Figure 111-25 necessarily results in a non-zero probability for 

the integers    Lj= -1,   L. = „.   and L. = 1    at all values of   K   in Figure 111-26. 

This fact is important in part 2 of this subsection.    The random variable    L 

is of interest in its own right.    It represents the amount by which the error J 

yt-j) and the exrors    s.fj)  at the j-th lag shift the sum   £      a (j)   either 

toward or away from the   j-th   lag constraint condition.    Mthe   j-th   lag.  it 

completely specifies the probability distribution of the random walk away from 
the constraint condition. 

The mean of   |D   + KE |2   is 
D n 

III-12 2 
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lDb + KEbl       =     M b »] 

h 1    ^ 1 U       KMe   (t-j) KMeb(t-j) +   |KMeb( [KM^M)]2) 

Since   M-l    of the roundoff error components      5.(j)    at the   j-th   lag are in- 

dependent of   KMe    (t-j) , 

L. -   KMe, (t-j) KMeb(t-j) 

=     2 

r M 

Li=l 

KMeb(t-j) 

2    8M(j)KMeb(t-j) 

[■ -2   |KMeb(t-j)   + 

M 

i=l 

KMeb(t-j)      . 

Whenever     M > 2,   the probability distribution for        SM(j)   is uniform between 

-1/2 and 1/2 and does not depend on the value of   KMe   (t-j),   so that 

II. -   KMeb(t-j)J KMeb(t-j) 2   8M(j)     KMeb(t-j)     =    0 

and 
N 

iDb + KEbr - y M       Z—< IL. - KMeb(t-j) 

j=-N 

KMeb(t-j) 
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Whenever   M > 3,  the variance of the random variable     L. - KMc^t-j)     is 
J 

M/1Z    and does not depend on   K,   so that 

2N+1 
N 

|Db + KEJ 12 
+    K2       ^     M e2(t-j) 

^       .K2^2 

For the case of 6 channels and 31 filter points,   the mean of   |E   |      is 16.361, 

and v 

|D.   + KEu| 
b b 

2.583 +   16. 361 K 

In order to derive these results,   it was presumed that the filter-weight change 

components   z     were distributed over a sufficient number of filter-weight 
i 

counts that the vectors    {z   ,   z   ,   . . . ,  z    )   tended to become evenly distributed 

over sheets within each of the    (M-1 )-dime!isional cells 

m.  -  1/2  < z. <  m. + 1/2 {i=l.  2 M-l) 

in the subspace corresponding to any one of the   2N+1    lags of the filter set.   As 

a result of this premise,   the roundoff error components     S .(j)   assumed pro- 

bability distributions independent of both the prefiltered vertical-component 

data values   x.(t-j)   and errors      e.(t-j).    The lack of correlation between the 

prefiltered vertical-component errors    e .(t-j)   and filter-weight roundoff 
1 2 

errors     5 .(j)   implies that the mean of      |D    + KE | is 
i c c 

|D    +   KE J' |D |2     +   K2|E   |2 

c c 

(M^iHZNll)   +   K
2
IE r 

12 c 
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Z 2 
This mean is 12. 917 + 28. 071 K     for unsealed data,   12. 917 + 1081. 952 K 

for data scaled by 16.    The mean of the squared magnitude of the error vec- 

tor     D + KE     is 

ID    + D    + K(EU + E   )l 1   b c v    b c" 
ID,   + KE   I 2     +   |D    + KE   I 2 
1    b b c c 

ID/   +   IDJ2     +      K2(|Eb|2   +   |Ec'2 

( ) 

M(2N+1) 
12 4 Ebi2 + iEci2 

) 

since both   D,     and   E,     are perpendicular to either   D      or   E   .     The resultant 
b b   _       r c c 

2 2 
mean is 15. 5 + 44. 432 K    for unsealed data,   15.5 + 1098. 313 K '   for data scaled 

by 16. 

In the same way that an estimate was obtained in Subsection C for the 

mean angle between the vector    (X-X)   and the vector    (X-X) + E   ,   an estimate 

can be made for the mean     6     of the angle    0    between the vectors    (X-X)   and 

Bgn[y(t)]   sgnlyHt)]   (X-X   +E    +D/K): 

0  ä  tan 
i      /    Pc +   KEc I 

K
2
E[|X-X|

2
1 

=   tan 
-1 

K
2
E[|X-X|

2
] E[|X-XI  . 

%   tan 
q2E[|X-X + Eu + E  !4] |D  |2 

b c c' 

4K2   ly'(t)]2     E[lX-X|2] E[|X-XI 1 
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^z tan 
q2    |D  |2    EllX-Xl2] 

c 

4K2   [y'(t)]2 

IE  I c 

Edx-xh 

In this estimate,   the angle between   D    + KE      and    (X-X)   has been assumed 
c c 

to be 90  .    In addition,   the difference between   E  f|X-X + E    + E  I    ]   and 
—        2 be 

E[|X-X|   ]    has been assumed negligible.     Furthermore,   the probability dis- 
7   T T O 

tributions for    |D   |   ,   |X-X|     ,    [y'ft)]   ,   and   |E   |        are presumed to be 

sharply peaked around their respective mean values.     In view of all these 

approximations,   the estimate here is not likely to be as accurate as the cor- 

responding estimate in Subsection C.     For the four-hour noise sample from 

day 238 of 1970 which has been used throughout this secrion,   the mean of 
i—      |2 2 
|X-X|      was 9693 counts    for unsealed data,   2,481,422 counts'1" for data 'caled 

by 16,     When substitutions are made for values which do not depend  on the con- 

vergence factor    K   ,    the estimated mean angle becomes 

j     /    (2"32)(12.917)(9693) 

ll trui    '     /      ZUZH      + 

2   . ,2 
4Ks   [y^t)] (9693) 

tan 
7.2878 x   10 

K2   [y'(t)]2 

s 

2. 8904 x 10 
- 3 

'or unsealed data. 

^ =   tan 
-1       / 7.2878 x 10' 

+      4.3602 x 10 

K2     [y'{t)]2 

for data scaled by 16.     Here the mean adaptive filter output power   (y^t)] 
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for data scaled by 16 is expressed in terms of the equivalent value corres- 

ponding to unsealed data.     Table 111-8 gives the adaptive filter output power 

for data scaled by 16 (after division by 256) as a function of the convergence 

factor   Ks.     The resulting estimated mean of the angle    9     for unsealed data 

and data scaled by 16 appears in the two rightmost columns as a function of 

the convergence fr.ctor    1^.      Figure 111-27 graphs the estimated mean angles 

0   of Table 111-8 as a function of the convergence factor    ^    for unsealed data 

and data scaled by  16.     When the adaptive filter output    y(t)    without errors 

and the adaptive filter output   y'(t)   with errors are non-zero and have the 

same sign,    0     is the angle between the vector    (AneW-A0ld)    without   any 

digitization or roundoff error and the projection onto the constraint space of 
.i , .new      old 
me vector    (A        -A       )    with digitization and roundoff error.     The   mean ad- 

aptive filter output power   [y'(t)]      was taken from computer runs where the 

data was scaled by 16.     At higher convergence rates,   the value       (y'(t)]2    for 

unsealed data is likely to be larger than for  scaled data.    However,   the term 

lEj    /E[|X-X|]     predominates at high values of   KB .    At lower convergence 

rates,   the adaptive filter output power is likely to be approximately the same 

for unsealed data and data scaled by 16.     Since no runs were made with un- 

sealed data,   the estimate of   0    in the top curve of Figure 111-27 is the best 

possible without   [y-(t)]2    measurements for unsealed data.     The estimates of 

8   in Figure 111-27 are for the angle    0    in the constraint space before any 

attempt to reduce discrepancies between tha filter weights    a (j)   and the con- 

straint conditions at  each of the   2N+1    lags in the adaptive filter set.    A dis- 

cussion of the angle of error after corrective procedure, designed to force 

reasonable agreement with the constraint conditions must bo postponed until 

part 2 of this subsection. 

The effect on the mean angle of error   Ö   due to a change in quantiza- 

tion level may be evaluated in terms of the approximation for   B,    If the quan- 

tization level is halved by adding one additional bit to the filter-weight 
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TABLE HI-S 

ESTIMATED MEAN^OF THE ANGLE BETWEEN  (X-X) AND 
sgn Iy(t)]   sgn | y<{t)]   (X-X 4   E    +  D   /K) AS A FUNCTION 

OF THE CONVERGENCE FXCTO'R K    (USING NOISE 
DATA FROM DAY 2 38 OF 1.970) 

Convergence 
Factor K 

0. 001 
0. 00 5 
0. 004 
0. 005 
0. 007 
0. 010 
0. 015 

0. 02 
0. 03 
0. 05 

0 07 
0 10 

0 15 

0 20 

0 25 

0 JO 
0 55 

0 . 40 
0 . 50 

Adaptive Filter 
Power («ounts  ) 

11. 0875 
10. 44 51 
10.0444 

9. 7905 
9. 4075 
9.0444 
8. 6552 
8. 5197 
7. 7843 
6. 9577 
6. 2887 
5. 6118 
5. 0118 
4.7441 
4. 6290 
4. 5738 
4. 5755 

4. 5799 
4. 6254 

Estimated Mean of the Angle 0 
Unsealed Data 

22° 15' 
15° 50' 
12° 23- 
10° 15' 

7° 47- 
5° 58' 
4" 40' 

i) 
4 

o 
3 
o 

3 
o 

3 
o 

3 
o 

3 
5 
o 

5 
o 

3 
o 

3 
o 

3 
o 

3 

■r 

35' 
18' 
12' 

9' 
7' 
(V 

5' 
5' 
5' 
5' 
5' 

Data Scaled by 16 

22 
15C 

c 
12 

6' 
36' 

5' 
52' 

16' 
16' 
42' 
55' 
12' 
41' 

29' 
22' 

17' 
15' 
14' 
13' 
15' 
1 5' 
12' 
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0.01 o.l 
Convergence Factor K 

FIGURE IIT~27 

ESTIMATED MEAN   0   OF THE ANGLE BETWEEN (X-X) AND 

sgn Ly(t)Jsgn [y'CtnCX.X + Ec   + D /K) AS A FUNCTION 

OF CONVERGENCE RATE (USING NOISE DATA 

FROM DAY 2 38 OF 1970) 
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representation,   then the same mean angle    fl   is achieved at about half the 

original convergence factor    K      if the change in the adaptive-filter output 

power can be ignored.     For the data in Table 1II-8,   the chaige in the adaptive 

filter output power is near  10% when   K    changes by a factor of 2,   so that the 

gross effect of scaling the quantization level is to multiply the abscissa   K 
s 

in Figure 111-27 by an equivalent amount. 

2. Error in the Constraint Conditions 

If a signal    s(t)   from the look direction propagates across the array 

from which the data used in an adaptive-filtering process originates,   the out- 

put of the adaptive filter is 

N r   M 

E   E ai{j) 
j = -N     L   i=l 

s(t-j) 

M 
In effect,   a filter with weights       J^     a.(j)     (j = - 

i=l     1 

applied to the signal.     The constraint condition; 

. . -1,   0,   1,.. . , N)   is 

M 

E ai(j) a(j) 

i = l 

determine the frequency response of the filter set.    In the adaptive-filtering 

process implemented for this report,   a white frequency response is specified 

by setting   a(j)   =   8       (wher-    5       is the Kronecker delta operator).    The 

effect of not satisfying the constraint conditions is to alter the frequency res- 

ponse of the adaptive processor to a signal from the look direction. 

After a large number of iterations,   a random walk away from the con- 

straint space takes place in the absence of an er ror-correcting procedure.   In 
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e ease o, „oati„g.poinl data,   many lterations may e ^ 

r":: ,ry ,execu,ed at each"— -h ^'— ^^ to o. u rro»t s Frost, l97E, TOh inteeer arithmetic_ the roiindoae 

nnetxc.   so that frequent corrective action is necessary. 

M At each iteration,   the prohabiiity distribution of the change in the sum 

E     .(J)   for the   J-th   ^ is a discrete integer distribution whose probabiiity 

mass function was depicted in Figure 111-26      Th. 
integer shift    l      <    >u The Probabüity of each possible integer shift   L.    is the probability that 

M-l 

Lj - 1/2 < KM^I.-j, +   ^     ö.(j)<L. + I/2     . 

i = l 

On the first iteration,   the squared dist 

squared filter-weight counts) becomes 
ance from the constraint space (in 

N 
|Db+ KEJ 1   V     z 

M       Z-(      Lj       • 
j = -N 

M 

whose contribution from the    i-th   lap i«    r2/^      , 
vector back to H J " "^ t0 ^^ the filt- ctor back to the constraint space along a vector perpendicular , ^ ^^ 

straint space,   the quantity    L /M    m„   f u , 

.he filter ve.tor     TM j '    '""^ ^^ "^ COm"'— °' 
VeC,0r-    Th,S Dr0"dU"   is P-"We onXy a. .hose lags where   L    is 

amumpleof   M.   thenernberofchanne's      B„ ., K. "«L.   i. 
>  subtracting tbe appropriate in 

:r::::;::.;;::.:r;:;:;rT.::::ri:1r:::r^ 
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-(M-l)     < 
jo 

M 

L   . 
i=l 

(j)   <   M-l 

Let   J    denote the discrepancy.     In order to satisfy the constraint conditions 

with minimum movement inside the constraint plane,   Sgn(J)    must be  sub- 

tracted from   J   of the    M   components at one lag.   while    M- |j|    components 

must be left alone.     At any one lag,   the squared magnitude of the  resultant 

displacement within the constraint plane is 

Ul m (M -   |j|)j' 

M 

|J|    (M -    |J| ) 

M 

For the integers such that      1 <   |j| < M/2.   the squared magnitude is greater 

than the previous  squared magnitude    J2/M   for the vector perpendicular to 

the constraint plane.     It is the same when   |j|   = M/2,   and less when 

M/2 < |j| < M.     This procedure was employed by the adaptive-filtering system 

which provides the results for this report.    It converts error perpendicular to 

the constraint space into error within the constraint space.     This feature is 

an annoying disadvantage of the proc edure. 

If    C    is the error vector due  lo com ersion of error perpendicular to 

the constraint space into error within the constraint space,   the  mean of    \cf 

is 

m i('-r f   -:'-   1    |J|    (M -    |J|   )     . 

If    |J|    were always equal to   M/2,    |c|2    would reach ih e maximum value 

III-] ^4 
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Id 

It is difficult to envision 

the maximum.    Howe 

M(2N+l)/4 

a situation where the mean value would be equal to 

way that the value 

J - 0.   1, . . . ,   M-l,   the mean of    (c| 

ver.   if the integer shifts    L.    were distributed in such a 

s   J = L. (modulo M) were equally likely at the values 

would be 

M-l 

icr (2N+1) 

M2 J]    |J| (M- |j() =  JH+IHM! - LL 
J = 0 6M 

Such a distriljulio„ for .he in.eger shifty    would occur «   K   were sufficient- 

ly high.     The leas, possible vaiue for    !c|2   wouid occur a.   K = 0.   where    L 

about haif .he time and   L.= 0   about haff the lime („hen M=6).     A. K-0        j 
lere    L.= + 1 

icr (2N+l)(l)(5^ 31-5 
2M IT" 12.917 

The 
mean angle   0    between the vector    (X-X)   and the vector 

■^en  Cy{t)]sgn  Cy'd)^ (X-X + E    + D  /K + C/K) r.n I c c
/iX + U'KJ can be estimated as before: 

0 = t 
-1 

an q (ID |2 + |C|2)E[|X-X|2] 

4*1 Mt)]2 
E[|X-X|2] 

At   K^O.     |DC|
2 + |C|2  =   25.833 

VVhen the_values   J = L. (modulo M) are 

MT^^' M"1>    |D^ + |C|2 =  45-056- V  lJl   -" always 

EllX-XJ^] =   9693 counts   . 
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6   * tan 
-i 2.4292 x 10' 

K! [y'ft)]2 

+      2.8904 x 10" 

for unsealed data,   and 

0  * tan 
-1 2.4292 x 10 4 

zrzzzr     +    4.3602x10 
K

Z
S fy'it)]2 

for data scaled b.   16.    Table III-9 lists these mean angles   B   for unsealed 

data and data sealed by 16 as a function of the convergence factor    K   .   Figure 

111-28 is a graph of the values in Table 111-9.    If   y.(t)   is a non-zerolalue 

with the same sign as   y(t).    fl    is the angle of error in   ^new^oldj   ^^ ^ 

constraint-condition correction procedure which was actually implemented. 

After the correction procedure is executed,   the constraint conditions are sat- 

isfied exactly and all error lies within the constraint space.    At the convergence 

factor   Ks  = 0. 005 utilized most frequently in processing data for this report. 

the mean angle of error is less than 1«°      xi,; i    , less than 18   .    This angle is tolerable,   although 
niore than desired.     The rpcnli nf tu^ 

me result of the correction procedure actually employed 

IS almost to double the angle of error within the constraint space.     In effect 

one bit in the filter-weight representation is lost when the mean angles of 

Figure 111-28 are compared with those of Figure 111-27. 

In view of the very small error angles at high convergence rates,  the 

drop in noise reduction from 6 dB to 2 dB at   ^ = 0. 30 for one  summer noise 

sample when the data scale factor was reduced from 16 to 1 is almost certain- 

ly due to zero   y.(t)   values and sign differences between    y.(t)    and   y(t). 

An alternative procedure which does not add to the error within the 

constraint space is to round the value 
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TABLE III-9 

ESTIMATED MEAN ? OF THE ANGLE BETWEEN (X-X) AND 
sgn [ y(t)]  sgn [y^t)]  (X-X +   E    f D   /K 4   C/K) AS A 

FUNCTION OF THE CONVERGENCE FACTOR K 
(USING NOISE DATA FROM DAY 238 OF 1970)    S 

} 

Convergence 
Factor K 

s 

Adaptive Filter 
Power (counts  ) 

Estimated M ean of the Angle 6 

, 
Unsealed Data Data Scaled by 16 

0.002 11.0875 36° 35- 36° 31- 
0.003 10. 4431 27°     5- 26° 58- 
0. 004 10.0444 21° 26- 21° 16' 
0. 005 9. 7905 17° 43- 

o 
17     31' 

0.007 9. 4075 13° 16- 12° 59" 
0. 010 9. 0444 

0 
9    47' 9    23' 

0.015 8. 6332 7°    4- 6° 29' 
0. 02 8. 3197 5° 45' 

o 
5       0' 

0.03 7. 7843 
o 

4    34' 3° 35- 
0. 05 6. 9377 3° 45' 

o 
2    27- 

0.07 6. 2887 
0 

3    28' 2°    0' 
0. 10 5. 6118 3° 18' 1041' 
0. 15 5. 0118 3° 11' 1028' 
0. 20 4. 7441 3o    ^ 

o 
1     22' 

0. 25 4.6290 
0 

3      7' 1018' 
0. 30 4. 5788 3°    7' 1016. 
0. 35 4. 5733 3      6' 

o 
1     15' 

0.40 4. 5799 3      6' 1014' 
0. 50 4. 6254 3°    5' o 

1     13' 
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001 0.01 o.l 
Convergence Factor K 

FIGURE 111-28 

ESTIMATED MEAN   0   OF THE ANGLE BETWEEN (X-X) AND 

sgn Hy(t)I|sgn Cy'CtOCX-X + E    + D  /K + C/K) AS A 
c c 

FUNCTION OF CONVERGENCE RATE (USING 

NOISE DATA FROM DAY 238 OF 1970) 

1. 0 
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r M 

E 
Li=l 

a.(j) S.    } /M 

to the nearest integer and subtract the resulting integer from each component 

at the   j-th    lag.     When   M   is an even integer and the discrepancy is equal to 

M/2 (modulo M).   the value to be subtracted is rounded to the integer with the 

smallest absolute value to avoid unproductive computations.     If   M    were    6 

and the discrepancy were 4.   this error-cor rection procedure would subtract 

1  from each component and produce a discrepancy of -Z.     The squared dis- 

tance to the constraint plane would fall from 16/6 to 4/6.     The other proce- 

dure woulo add 8/6 to the squared error within the constraint plane.     In fact, 

the  suggested procedure always results in less error  than the one actually 

utilized unless the discrepancy is congruent (modulo M) with zero or    M/2. 

The suggested procedure limits the deviation from the constraint conditions 

to the set of integers with absolute value less than   (M+l)/2.    Such a small 

error  should only minimally affect the frequency response of the adaptive 

filter to a signal from the look direction when a  16-bit representation of the 

filter weights is employed. 

If the suggested procedure were implemented,   the probability of each 

possible integer discrepancy between the filter weights and the constraint con- 

dition at any lag could be described in terms of a Markov chain.     Figure 111-29 

diagrams the set of possible integers and transitions between integers for the 

five-channel case.     It is  representative of the situation for an odd number of 

channels.     Figure 111-30 is a similar diagram for the six-channel case.     It is 

representative of the situation for an even number of channels.     Note that the 

integers   ± M/2    are combined into a single state.     Each time the filter update 
M 

is performed,   the sum      £     ^(j)    shifts by the integer    L.    before the error- 
i = l J 

correction procedure.     After the error-correction procedure,   the combined 
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FIGURE 111-2 9 

SET OF POSSIBLE INTEGER CONSTRAINT-CONDITION DISCREPANCIES 
AND TRANSITIONS BETWEEN DISCRE1 ANCIES FOR THE 

FIVE-CHANNEL CASE 
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FIGURE III-iO 

SET OF POSSIBLE INTEGER CONSTRAINT-CONDITION DISCREPANCIES 
AND TRANSITIONS BETWEEN DISCREPANCIES FOR THE 

SIX-CHANNEL CASE 
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effect of the integer shift and correction is a clockwise trip of   L    steps 

along the outer ring.    In the case of an even number of channels.'the sym- 

metric prohahility distribution of   U   about Zero guarantees that the integers 

-M/Z   and   M/2   are equally likely after any number of filter updates      The 

symmetry of   L.   about 2ero also means that the two transition probabilities 

m the transition matrix corresponding to any pair of states are identical, the 

Mar^transition matrix is symmetric.    Since the probability density function 

t°'     E       «.(j)   is non-zero over the interval from -(M-l)/2 to (M-l)/2,   each 

of the integers    L.= .,,   L.= 0,   and ^ ,    is ^^ ^^ ^^   ^ > ^ 

A. a result,   all states are possible at any time after    (M-D/2   or   M/2   up"     ' 

dates.     When,   as in this case,   the probability transition matrix for some 

specified number of updates has no .ero elements,   the transition probabilities 

Pk/  .n.o the ,-th   state for an indefinitely large „umber of updates approach 

a fxediim.t which is She same for al, possible states   k    (Cnedenho,   1,62, 

Consequently,   the probability of any state approaches a limit as the „0,^ of 

updates increases .ndefinitely,   so that the probability of any state is practically 

«dependent of any situation in the remote past.    Since the probability distribu- 

■on for the integers    L.   does not depend upon the discrepancy between the fil- 

er weights and the constraint conditions,   any rotation of the state labels along 

He outer ring does not change the probability transition matrix for any speci- 

■ed number of updates.     This fact mean, that all states are equally likely in 

^ l,m,t as the number of updates approaches infinity.    Tor an odd number of 

channels,   the limiting probability for each possible integer discrepancy is 1/M 

For an even „umher of channels,   it is    1/M   for each integer discrepancy with ' 

absolute value less than or equal to   M/2-,,   while it is    1/2M for discrepances 

of   -M/2   and   M/2.    -e variance of this probability dis.ribut.on about its zero 

meants     M    -1,12   for odd integers,    (M
2
+2,/,2   for even integers.     When 

M   .S6,   '"e standard dev.at.on from the constraint plane at the   j-th   lag is 
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1.77951 filter-weight counts.     At the slight cost of allowing this non-cumulative 

error perpendicular to the constraint space,   the mean angle of error   0*  within 

the constraint space can be reduced to the level estimated in Figure iii-Z7. 

3. Elimination of the Filter-Weight Roundoff Error 

The directional error due to the filter-weight roundoff error vector   D 

and the beamsteer roundoff error vector    E      can be eliminated if the adaptive- 

filter update equation is implemented in the form 

new old 
A - A 

2K    y(t) 
s 

M(X-X)T(X-X) 
M(X-X)     , 

where the factor   2Kg y(t)/[ M|X-X|   ]    common to all   M(2N+1)   components is 

computed as the product of an integer times  the quantization level   q   of the fil- 

ter weights.      When the common factor rounds to zero for non-zero values of 

y(t),   however,   the filter vector does not move.     To prevent this phenomenon 

from happening frequently,   the quantization level   q   would need to be chosen 

so that     2K   q/|M-   E[|X-X|   ]|     was close to 1.     When   K    =0.005       and 
—       2 ? s 

E [|X-X|   ]    = 9693 counts   ,   the required quantization level is    1/5,815,800A 
. -22 
2        .     Thus for the noise sample from day 238 of 1970 (where the RMS adaptive 

filter output was only 3 counts),   22 bits would be needed in the filter-weight 

representation.     To achieve the same goal for data scaled by 16,   30 bits would 

be needed.     It is obviously more practical to perform the complete computation 

at each component before carrying out any roundoff procedure. 

III-143 

--'■"—"■~' ii     ■    in' 'iitiinani-irtoriii-ün--—-■ 



.11,1.IM JB!|IJ(*^!|il W.I^J«!P«J^i..lJl^lPJi^Wra^PfIii.*!M!IJ.I-HUJ! ■'■«WUWi^^.iPKi^i, R:V1..- l"i I If. ■ I i-H. L(iWMW«»iUU iiIIIIUIIJII pi,l I! U «i|iili  Hi .U       .    J  ..,+.111,1111(111111 ^ IJJIU^JJUI 

F. SUMMARY 

When the data points transmitted from Alaska are multiplied by 16 

before processing,  the directional error in the vector   (X-X)   and the rela- 
T tive error of the adaptive filter output   y(t) = X   A   are reduced to the point 

where they are virtually the same as the corresponding errors for floating- 

point arithmetic. Errors in (X-X) and y(t) are then limited only by digi- 

tization error. The gain doubling performed on the AJLPA seismometers in 

summer of 1972 should permit these errors to be halved. 

At the convergence rate   K    = 0. 005   most frequently used in process- 

ing data for this report,   the filter-weight roundoff error appe^rs to be the 

dominant source of error.     With the constraint-condition error correction 

procedure actually employed,   the mean angle of error in the filter update 
. .new     Aold1 o 

vector   (A        - A      )   was approximately 18    at   K    = 0. 005 (ignoring sign 
9 

reversals in the adaptive filter output).    If the alternate constraint-condition 

^rror correction procedure (described in part 2 of Subsection E) had been 

implemented,   the mean angle of error in   (A       - A      )   would have been ap- 

proximately 10  .    At convergence rates below   K    = 0.005,  the filter-weight 
s 

roundoff error seems large enough to affect adaptive-filter noise reduction 

relative to beamsteering (see Figures IV-1 and IV-2 in Section IV). 
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SECTION IV 

SIGNAL-TO-NOISE IMPROVEMENT IN THE PRESENCE 
OF BACKGROUND NOISE 

A. INTRODUCTION 

In this section,  the subject of investigation is the ability of adaptive 

multichannel filtering to provide signal-to-noise ratio improvement relative 

to beamsteering in the presence of background noise.    The critical area of 

concern is the improvement for weak signals in the borderline detection range 

(where the signal-to-noise ratio in the beamsteer output is between 6 and 12 dB). 

In this range of signal-to-noise ratios,   detection procedures are unable to rec- 

ognize the presence t-i i signal with any consistency.    Under these circumstances 

it is not possible to rely on the standard procedure of freezing an adaptive multi- 

channel filter set when a signal is detected.    Results in this section are obtained 

solely from computer runs that implement the adaptive filtering process at each 

point in time when a new data sample is available.    One signal approximately 

6 dB above the noise level on the beamsteer output is used for the critical re- 

sults.    Two other signals with signal-to-noise ratios of 18 and 24 dB are pro- 

cessed in this way to illustrate the desirability of preventing the adaptive filter 

update in the  presence of a signal.    Provided that a signal of this size is not 

overlapped by an interfering event,   any dire effects on the signal due to adap- 

tive filtering are of no serious concern:   the signal-to-noise ratio on the beam- 

steer output is sufficiently high that the beamsteer output is adequate for sub- 

sequent analysis of the event. 

The method of approach used to estimate signal-to-noise ratio improve- 

ment is to measure the difference between noise reduction and signal degrada- 

tion.    Both noise reduction and signal degradation are computed in terms of the 
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drop in pow^r for the adaptive-filter output relative to the beamsteer output. 

Since it is impossible in the case of real data to distinguish between signal 

power and noise power when a signal is present,  the data samples for signal 

measurements must be different from those used for noise measurements. 

Noise reduction is computed over data samples approximately four hours 

long.    Signal degradation,   on the other hand,   is computed over four- to eight- 

minute gates.     In the case of signal degradation measurements,   the effect of 

adaptive filtering on contaminating noise is lumped together with the effect on 

the signal proper.     As long as the adaptive filter set reduces the contaminating 

noise power at least as much as the signal power,   the signal degradation is not 

underestimated and the signal-to-noise ratio improvement is not overestimated. 

Noise reduction and signal degradation are calculated for the same pair of dc^a 

samples over a range of convergence rates.     From these figures,   the signal- 

to-noise ratio is determined as a function of convergence rate. 

At convergence rates where signal distortion and reliability of the noise 

statistics are not serious problems,   there are two principal factors determining 

adaptive-filter performance.     As the convergence rate increases,   signal degra- 

dation climbs to a damaging level.     Conversely,   as the convergence rate de- 

creases,   the ability of the adaptive filter to respond to changes in the noise 

field is impaired.    The convergence rate at which signal-to-noise ratio im- 

provement is maximized lies   somewhere in between. 

Subsection B discusses noi.ce reduction as a function of convergence 

rate.    Subsection C presents noise reduction as a function of frequency for one 

convergence rate close to optimum.    Subsection D studies signal degradation 

as a function of convergence rate.     Finally,   the noise reduction and signal de- 

gradation results are combined in Subsection E to yield signal-to-noise ratio 

improvement as a function of convergence rate. 
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B. NOISE REDUCTION AS A FUKCTION OF CONVERGENCE RATE 

Two samples,   one from day 238 of 1970 and the other from day 203 of 

1971,   were used to investigate the effect of convergence rate on adaptive filter 

noise reduction relative to beamsteering.    The look direction for both samples 
o 

corresponds to an azimuth of 270   .    Noise reduction is calculated as the ratio 

of beamsteer output power to adaptive-filter output power.    It is computed for 

the entire band 0. 0 to 0. 5 Hz and also for the band 0, 0234 to 0, 0664 Hz (cor- 

responding to periods between 43 and 15 seconds).    Each point on the noise re- 

duction curves shown in Figures IV-1  and IV-2 was generated by passing ap- 

proximately four hours of data through the adaptive filtering package at a par- 

ticular convergence rate.     The noise reduction shown is for the entire length 

of the data samples processed.     Convergence rates are defined as percentages 

of the convergence rate    K    =1. 

The first data sample to be run through the adaptive filtering package 

covers the period 0757 to 1150 on day 238 of 1970.     The vertical components 

of sites 1,  2,   3,   6,   8,   and 9 from the ALPA array were used as input channels 

for the adaptive-filter beam.     The PDE bulletin lists no events between 0639 

and 1502 on August 26 of 1970.     A scan of the four-hour sample from 12    to 

348    at 24    increments using the Fisher detector (see Subsection V-A) indicates, 

however,   that a signal reached ALPA at 1021 from an azimuth just under 60  , 

possibly from the North Atlantic ridge.    (Beam traces steered for 60    show a 

frequency-'-ispersed Love-wave arrival prior to freqaency-dispersed Rayleigh- 

wave arrivals on the vertical and radial components. )    The energy from this 

signal is only a small fraction of the total energy within the four-hour  sample 

and should have only a minor effect on the reported noise reduction values. 

Table IV-1  shows noise reduction in dB as a function of convergence rate both 

broadband and in the band corresponding to periods between 43 and 15 seconds. 

Figure IV-1 is a graph of noise reduction given in Table IV-1.    Maximum 

broadbana noise reduction was achieved near a convergence rate of 35%.   This 
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TABLE IV-1 

ADAPTIVE FILTERING NOISE REDUCTION VERSUS CONVERGENCE 
RATE (DAY 238 1970) 

Convergence Rate 
(% of maximum) 

0.2 

0. 3 

0.4 

0.5 

0.7 

1.0 

1.5 

2. 0 

3.0 

5.0 

7. 0 

10. 0 

15. 0 

20. 0 

25. 0 

30. 0 

35.0 

40. 0 

50.0 

Broadband Noi:ie 
Reduction (dB) 

1.099 

1. 359 

1.521 

1.639 

1.813 

1.983 

2. 186 

2. 346 

2.635 

3. 135 

3.562 

4.056 

4.547 

4.786 

4.892 

4.940 

4. 945 

4.939 

4.896 

Narrowband Noise 
Reduction (dB) 

1. 156 

1.439 

1.618 

1.746 

1.936 

2, 124 

2. 347 

2. 526 

2.847 

3.415 

3.911 

4. 501 

5. 108 

5.413 

5. 563 

5.639 

5.666 

5. 667 

5. 670 
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FIGURE IV-1 

NOISE REDUCTION AS A FUNCTION OF CONVERGENCE RATE 

DAY 238 OF 1970   (0757 TO 1150 GMT) 
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fact is probably of little importance,   since the correlation between one data 

vector   X   (see page 1II-1 for a definition) and the next is high.    The high 

correlation occurs because the highest frequency (0. 0625 - 0. 125 Hz) at 

which there is any significant noise is about one quarter to one eighth of the 

Nyquist frequency associated with a one-second sample interval.    If one data 

vector   X   were exactly the same as the next,  for example,  the noise power 
2 

would be reduced to   (1  - 2K  )     of its original value:   the update equation 

2K  (X-X) XTA0ld 

new old s 
A =   A        +     =  

(X-X)    (X-X) 

would imply that 

xTAnew  =   xTAold 
1 + 

2K X   (X-X) 
s 

(X-X)T(X-X) 

XTA0ld 
2Ks(X-X)T(X-X) 

(X-X)T(X~X) 

and 

=   XTA0ld ( 1 - 2K   ) 

(ATr"xXTAneW   =   (AT)oldXXTA°Id
(l -ZK )2     . 

s 

This result would also apply to data vectors   X   containing signals.    And so it 

is necessary to examine what happens to signals at corresponding convergence 

rates. 
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The second data sample encompasses the interval 0355 to 0725 on day 

203 of 1971.    Sites 8.   13,   14,   15.   16,  and 17 of the ALPA array were input to 

the adaptive-filter beam.    The PDE bulletin reports some activity in the New 

Ireland and Northern Celebes regions of the South Pacific during this period 

(notably a magnitude 5.4 event from 0. 4N,   123. 5E at 06:07:52. 8 GMT).   Since 

the azimuth from which this energy arrives is extremely close to 270    (the 

look direction),   the data sample contains signal energy.    The relative strength 

of energy from seismic events in this data sample is discussed later in Sub- 

section B of Section VI.     Apparently a sizeable fraction of the total energy is 

due to seismic events (both on-azimuth and off-azimuth).     Table IV-2 and 

Figure IV-2 give the noise reduction in   dB    for this sample as a function of 

convergence rate in the frequency bands 0. 0-0. 5 Hz and 0. 0234-0. 0664 Hz. 

Maximum broadband noise reduction occurs around a 25-30% convergence 

rate.    Note that the broadband noise reduction drops abruptly between a 32% 

and 35% convergence rate,   whereas the narrowband reduction stays more or 

less level all the way to a 50% convergence rate.     The reason for this drop 

is that the adaptive filter set temporarily diverged over a short section of 

data containing a glitch.     The  result of the divergence was a rapid oscillation 

in the adaptive filter output at the folding frequency.      The folding frequency 

does not show up in the narrowband analysis,   and hence the narrowband noise 

reduction remains  relatively constant beyond a 32% convergence rate. 

Note that the noise reduction in both these samples begins to arc down- 

ward slightly as the convergence rate decreases from   Ks = 0. 5% to Ks= 0.2%. 

The effects of rounding the filter weights to the nearest computer count are 

probably becoming evident.     A less plausible explanation is that the adaptive 

filter set utilizes a sizeable fraction of the total four-hour sample böfore it 

completes the transition from the initial beamsteer weights to a filter set re- 

flecting the statistics of the noise field. 
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TABLE IV-2 

ADAPTIVE FILTERING NOISE REDUCTION VERSUS CONVERGENCE 
RATE (DAY 203 1971) 

: 

„ 

Convergence Rate Broadband Noise Narrowband Noise 
(% of maximum) Reduction (dB) Reduction (dB) 

0.2 1.705 1.828 

0.3 2.044 2. 181 

0.4 2.275 2.421 

0.5 2.442 2.596 

0.7 2.686 2.852 

1.0 2.937 3. 123 

1.5 3.207 3.429 

2.0 3.420 3.679 

3.0 3.782 4. 122 

5.0 4.362 4.826 

7.0 4.793 5.335 

10. 0 5.246 5.864 

15. 0 5.611 6.293 

20.0 5.764 6.481 

25. 0 5.814 6.547 

30. 0 5.807 6.561 

32.0 5.806 6.562 

33. 0 5.732 6.557 

35.0 5.494 6. 558 

40.0 5.393 6.537 

50. 0 5.281 6.498 
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Both of the noise samples studies so far were taken from summertime 

(when the noise is at its lowest).     In Subsection C,   noise reduction as a function 

of frequency for a sample from day 7 of 1972 is discussed briefly.      Also in 

Section VI,   where noise reduction is examined as a function of steer direction, 

a data sample near the peak autumn noise level is processed.     These two 

samples,   one from winter and one from fall,   give some idea of the reduction 

of background noise achievable later in the year. 

C. NOISE REDUCTION AS A FUNCTION OF FREQUENCY 

To determine the frequencies at which adaptive filtering was producing 

noise reduction,  power density spectra for the two beams were computed. 

Spectra in this report are given in dB relative to one millimicron squared 

per Hz at frequencies where the prefilter response is unity.     If square-root- 

of-N noise reduction had been achieved through beamsteering,   equivalent 

single-sensor noise levels would be7.8dB(i. e.,   10 log     6) higher than the 

beamsteer power density spectra. 

Figure IV-3 presents output spectra of the conventional and adaptive- 

filter beams for the aoise sample from day 238 of 1970.     The spectrum   .ises 

to a peak of 26. 5 dB at a period of 18 seconds and descends rapidly from this 

peak as the frequency increases.     Figure IV--4 is a graph of the noise reduction 

from adaptive filtering at a convergence rate 0. 5% of maximum.    Noise  reduc- 

tion is measured as the ratio of the beamsteer output power density to the 

adaptive-filter output power density.     Peak noise reduction of 3. 0 dB is ob- 

tained at a frequency corresponding to a period of 20 seconds.     Noise reduc- 

tion of 1 dB is maintained at almost all periods above 13 seconds.     Positive 

noise reduction is preserved at all frequencies where there is significant 

power. 

Corresponding beam output spectra for the noise sample from day 203 

of 1971 are plotted in Figure IV-5.     The adaptive-filter convergence rate was 
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aga.n 0. 5% of maximum.    The .eamsteer spectrum Hses ,o a peak with 

periods in the range 21-26 seconds.    A, higher frequencies,   spec.rai ieve, 

drops significant.    Figore IV.t gives the adap.ive-fiUering noise redaction 
relative to beamsteerine      In thic «am^iQ i ing.     in this sample,   peak noise reduction of 4   3 dB 

occurs a, a period of 2. seconds.    Once again,  positive noise reduction is 

main.ained a, all frequencies with significant power.    Due to the presence 

of a glitch and on-a.imuth events in the data,   some caution shouid be exer- 

csed in the interpretation of .he results (particularly in connection with the 

three major peaks in „oise reduction).    Possihly the reduction in the noise 

proper is comparable to that for day 238 of 1970. 

Another noise sample from day 7 of 1972 was processed.    It was a- 

typical because the spectrum peaked at 7 1/2 second,-   ,1,=       ■     •     , w^ seconos.   the principal micro- 
seismic peak a, 17 seconds was 28. 5 dB relative to one millimicron squared 

per Hz,   whereas the secondary microseismic peak was 32 dB at 7 1/2 seconds 

Highest noise reduction was 3. 5 dB at 17 1/2 seconds.    In contrast,   the noise 

reduction at 7 1/2 seconds „as only 2. 2 dB.    At a convergence rate 0. 5% of 

maximum,   broadband noise reduction was 1. 8 dB,  narrowband „oise reduc- 
tion 2, 1 dB. 

Evidently noise reduction is erpatPQt =.f fV,»       • , ion is greatest at the principal spectral peaks of 
the ALPA noise.     After the prefilter of Figure II-l  is a™H0H .    .u J. igure ii-i is applied to the vertical- 

component data,   these peaks are   ,1,   the principal microseismic peak near 

18 seconds,   and   (2)   the secondary microseismic peak near 8 seconds. 

D. 
SIGNAJ, DEGRADATION AS A FUNCTION OF CONVERGENCE RATE 

To probe the effects of convergence rate on adaptive-filter signal de- 

gradation,   three signals were selected out of a four-hour sample from day 

275 of 1971 (October 3).    The sample spans the time period 2000 to 2357 

Sites 8,  ,,   ,2,   15.   !6,  and 17 ari input to ^ time.shift.and.sum ^ ^ 

itlter beams.    In this analysis,   the adaptive-filter is permitted to update under 
all conditions and is never frozen 
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The critical signal arrived at ALPA at approximately 2140.     The 

signal-to-noise ratio on the beamsteer output is about 6 dB.     No event cor- 

responding to this signal can be found on either the PDE bulletin or LASA 

bulletin.    Various forms of frequency-wavenumber spectra computed at sev- 

eral frequencies peak at azimuths ranging from 299° to 306°.     A Fisher- 

detector  scan of this signal,   moreover,   shows a higher detector output at 

300    than at the two neighboring look azimuths of 276° and 324°.     The beam- 

steer and adaptive-filter beams are aimed toward 302.5°.     Signal degrada- 

tion for this event is computed at convergence rates from 0.2% to 25% of 

maximum over a 512-second gate.     Table IV-3 and Figure IV-7 depict signal 

degradation as a function of convergence rate both broadband and in the fre- 

quency band associated with periods between 43 and 15 seconds.    As the con- 

vergence rate increases beyond 0.5%,  the narrowband degradation rises a- 

bove the broadband degradation.    The negative degradation at the 0.2% rate 

means that the adaptive filter trace contains more energy than the beamsteer 

output trace over the 512-point gate.    (As a check on the measurement tech- 

nique,   the convergence rate was set equal to zero,   and the result was a power 

difference no larger than 0. 005 dB. )   Figure IV-8 shows the beamsteer and 

adaptive-filter output for this event at a convergence rate of 0, 5%,    Tick 

marks at the zero levels of both beams are spaced 5 minutes apart and cor- 

respond to the times given midway between the traces.    The beamsteer out- 

put is shown in the top trace,   the adaptive-filter output   in the bottom trace. 

The first of the two large signals examined in this section is an event 

listed on the PDE bulletin.    This earthquake from near the east coast of Kam- 

chatka has a bodywave magnitude of 4. 5.    The origin time is 20:54:48. 5 

(again on day 276 of 1971),   the latitude 55.7 N,  the longitude 162. 1 E,    The 

azimuth with respect to ALPA is 273°.    Accordingly,   the beams are trained 

in this direction.     18 dB is the signal-to-noise ratio on the beamsteer output. 

Signal degradation is computed over a 256-second gate at convergence rates 
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TABLE IV-3 

Ai APTIVE FILTERING SIGNAL DEGRADATION VERSUS CONVERGENCE 
RATE FOR A WEAK SIGNAL FROM 300O-305O (DAY 276 1971) 

Convergence Rate 
(% oi maximum) 

Broadband Signal 
Degradation (dB) 

Narrowband Signal 
Degradation (dB) 

0.2 -0.024 -0.039 
0. 3 0.104 0. 093 
0.4 0.255 0.251 
0.5 0.408 0.408 

0.7 0.650 0.655 
1.0 0. 945 0.956 

1.5 1.301 1. 320 
2.0 1, 569 1.599 
3.0 1.970 2. 031 

5.0 2.562 2.686 
7.0                       I 3.049 3.229 

10.0 3.713 3. 948 

15.0 4.505 4.781 

20.0 4.973 5.283 
25.0 5. 176 5.526 
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varying from 0. 2% to 25%.    The resulting signal degradation figures are por- 

trayei in Table IV-4 and Figure IV-9.    For convergence rates up to 10%,  the 

signal degradation for this stronger event is greater than before.    At a 5% 

convergence rate,  for example,  the signal degradation for this event is about 

0. 9 dB greater than for the   event from 300° to 305°. 

The last signal used to measure signal degradation is a magnitude 

4. 9 event on the same day from almost exactly the same location.    The PDE 

bulletin gives the origin time as 21:54:12. 9,  the latitude as 55. 8N,   and the 

longitude as  162. 2E.    As before,   the beams are directed toward a 273° 

azimuth.    For this event,   the signal-to-noise ratio on the beamsteer output 

is close to 24 dB.    Signal degradation over a 256-point interval is again cal- 

culated for convergence rates from 0. 2% to 25%.    Resultant signal degradation 

is represented in Table IV-5 and Figure 1V-10.    It is noticeably higher than 

for the event with an 18-dB signai-to-noise ratio.    Figure IV-li pictures the 

beamsteer output and adaptive-filter output for this tremor when the conver- 

gence rate is 0. 5%.    At that rate,  degradation is just under 2 dB.    The worst 

distortion occurs at the end of the event. 

Two features in the signal degradation cu-ves for the larger events are 

worth mentioning.    As the signal-to-noise ratio of these events increases,   so 

does the signal degradation.     With the particular adaptive algorithm employed, 

it is abundantly clear that the maximum-likelihood constraints do not guarantee 

that the signal is preserved.    Furthermore,  the signal degradation begins to 

approach a maximum at lower convergence rates than does the noise reduction. 

E. SIGNAL-TO-NOISE GAIN AS A FUNCTION OF CONVERGENCE RATE 

In this subsection,   signal degradation is subtracted from noise reduc- 

tion to yield signal-to-noise ratio improvement.    This procedure is carried 

out over a range of convergence rates in order to discover the convergence 

rates where the largest signal-to-noise gain is achieved. 
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TABLE IV-4 

ADAPTIVE FILTERING SIGNAL DEGRADATION VERSUS CONVERGENCE 
RATE FOR A STRONG SIGNAL FROM KAMCHATKA (DAY 276 1971) 

Convergence Rate 
(% of maximum) 

0.2 

0. 3 

0.4 

0.5 

0.7 

1.0 

1.5 

2.0 

3. 0 

5. 0 

7. 0 

10.0 

15.0 

20. 0 

25. 0 

Broadband Signal 
Degradation (dB) 

0 .269 

0 .416 

0 .556 

0 693 

0. 944 

1. 279 

1. 743 

2. 137 

2, 718 

3. 423 

3. 775 

3. 989 

4. 119 

4. 203 

4. 243 

Narrowband Signal 
Degradation (dB) 

0.268 

0.410 

0. 544 

0.674 

0. 915 

1.236 

1.684 

2. 070 

2.650 

3.369 

3.735 

3,958 

4. 085 

4. 170 

4.214 
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TABLE IV-5 

ADAPTIVE FILTERING SIGNAL DEGRADATION VERSUS CONVERGENCE RATE 
RATE FOR A VERY STRONG SIGNAL FROM KAMCHATKA (DAY 27 6 1971) 

Convergence Rate 
(% of maximum) 

0.2 

0.3 

0.4 

0. 5 

0.7 

1.0 

1.5 

2. 0 

3.0 

5.0 

7.0 

10. 0 

15. 0 

20. 0 

25.0 

Broadband Signal 
Degradation (dB) 

0,963 

1.324 

1.655 

1.977 

2.571 

3. 360 

4.450 

5.294 

6.367 

7. 179 

7.418 

7.461 

7.465 

7.495 

7.497 

Narrowband Signal 
Degradation (dB) 

0. 948 

1. 305 

1.633 

1.954 

2. 550 

3. 353 

4.482 

5. 371 

6.524 

7.417 

7.693 

7.764 

7.800 

7,850 

7.862 
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Since the weak signal from 300    - 305    has a signal-to-noise ratio of 

6 dB on the beamsteer output and lies within the borderline detection range, 

it is the source of the most meaningful results.    Noise reduction measure- 

ments from day 238 of 1970 and day 203 of 1971 are used to estimate the 

signal-to-noise gain which would have occurred on those days if the weak 

signal had arrived at ALPA during either of the two noise samples.   Tables 

IV-6 and IV-7 give the signal-to-noise gain for this event using the noise re- 

duction measurements from day 238 of 1970 and 203 of 1971,   respectively. 

Figure IV-12 contains the results for both days.    Narrowband n;ain is at the 

top in each pair of curves.    Best signal-to-noise ratio improvement is ob- 

tained near a convergence rate 0. 5% of maximum.     At that rate,   signal-to- 

noise gain is about 1. 3 dB for noise from day 238 of 1970,   about 2. 1 dB for 

"noise" from day 203 of 1971.    Since the signal degradation approaches the 

same order of magnitude as the noise reduction at higher convergence rates, 

it becomes increasingly difficult to determine what proportion of the remain- 

ing adaptive filter output is from the weak signal.    The high ratio of noise to 

signal in this event further complicates the situation at higher convergence 

rates.     As a result,   the curves in Figure IV-12 become more and more 

questionable as they sweep fromJeft to right.    An examination of the adaptive- 

filter output trace is useful in estimating the attenuation of the signal proper 

at higher convergence rates.    Figure IV-13 exhibits the beamsteer and adap- 

tive filter output for the critical weak event when the convergence rate is 25% 

and the filter set is being updated.    It appears that the signal alone has been 

knocked down by an amount consistent with the stated values in Table IV-3. 

Consequently,   more confidence can be placed in the results derived solely from 

power measurements:     for this  signal,   at least,   maximum   signai-to-noise 

gain does indeed occur near a convergence rate of 0.5%.    Figure IV-13 also 

illustrates an artifact created by the high convergence rate.    Toward the end 

of the adaptive-filter output in the bottom trace,  there is a noticeable distur- 

bance which is missing in the beamsteer output and the adaptive-filter output 
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TABj_E TV-6 

ADAPTIVE FILTERING SIGNAL-TO-NOISE GAIN VERSUS CONVERGENCE 
RATE FOR A WEAK SIGNAL FROM 300°-305° (USING NOISE REDUCTION 

MEASUREMENTS FROM DAY 238 OF 1970) 

Convergence Rate 
(% of maximum) 

Broadband 
Signal-to-Noise 

Gain (dB) 

Narrowband 
Signal-to-Noise 

Gain (dB) 

0.2 1.123 1. 195 

0, 3 1.255 1.346 

0.4 1.266 1. 367 

0.5 1.231 1. 338 

0.7 1. 163 1.281 

1.0 1. 038 1. 168 

1.5 0.885 1.207 

2.0 0.777 0.927 

3. 0 0.665 0.816 

5.0 0.573 0.729 

;                      7. 0 0. 513 0.682 

10.0 0. 34 3 0. 553 

15. 0 0. 042 0. 327 
] 

20. 0 -0. 187 0. 130 

25. 0 -0.284 0. 037 
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TABLE  IV-7 

ADAPTIVE FILTERING SIGNAL-TO-NOISE GAIN VERSUS CONVERGENCE 
RATE FOR A WEAK SIGNAL FROM 300°-305° (USING NOISE REDUCTION 

MEASUREMENTS FROM DAY 203 OF 1971) 

Broadband Narrowband 
Convergence Rate Signal-to -Noise Signal-to -Noise 
(% of maximum) Gain (dB) Gain (dB) 

0. 2 1.729 1. 867 

0. 3 1.930 2.088 

0.4 2.020 2. 170 

0.5 2.034 2. 188 

0.7 2.036 2.197 

1.0 1.992 2. 167 

1. 5 1.906 2. 109 
9..0 1.851 2.080 

3.0 1. 812 2.091      ' 

5.0 1. 800 2. 140 

7.0 1.744 2. 106 

10.0 1. 533 1. 916 

15.0 1. 106 1. 512 

20.0 0.791 1. 198 

25.0 0. 638 0.984 
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FIGURE IV-12 

SIGNAL-TO-NOISE GAIN AS A FUNCTION OF CONVERGENCE RATE 
FOR A WEAK SIGNAL APPROXIMATELY 6 dB ABOVE NOISE 
LEVEL ON BEAMSTEER OUTPUT (STEER AZIMUTH 302   5°) 

100% 

I' 

IV-29 

ütA^imiuMä 



i^m^mpppippflVMiaiiwniiiHi.iKiiiiBL iiiv^Rn^Bviiii iiukiiiwpM4*nsn^ra(^is«»npm^«imn>)^w^WOT^^nRmi«ppiqBpp<i»iiiii.   m1« "i ""■ ■■»«■«•"■■■•""i 

Beamsteer Output 

^V>^m^vAA/ ^^V'v.fi^^Xon^n 

SEGMENT 24 
276.21.40,03 

SEGMENT 25 
276.21.45.03 

100 

Adaptive Filter Output 

»«■l'S/r>-^»rf*» *■     ^'V^ „y^m^^r^ .n^^r. vr\J\J\j^ ^^J^y^A^^^  

FIGURE IV-13 

WEAK EVENT FROM 300O-305O 

(FILTER ADAPTING,  STEER DIRECTION 302.5°,   K    = 0.25) 
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at a convergence rate of 0. 5% (see Figure IV-8).    Apparently the adaptive- 

filtering process is attempting to use filtered noise in order to cancel the 

signal which has just died away. 

In the remainder of this subsection,  the two strong Kamchatka signals 

are treated in tandem to demonstrate the greater signal degradation and cor- 

responding lower signal-to-noise ratio improvement for signals with increas- 

ingly higher signal-to-noise ratios.    It is again worth emphasizing that first 

the beamsteer output is available for  subsequent analysis when adaptive 

filtering spoils a strong signal and second,   if necessary,   the situation can be 

alleviated simply by freezing the adaptive filter set upon detection of a signal. 

Tables IV-8 and IV-9 present the signal-to-noise ratio improvement 

using noise measurements from day 238 of 1970 for the earlier  18 dB signal 

and the later 24 dB signal,   respectively.    Figure IV-14 combines the results 

given in both tables.     Corresponding results for day 203 of 197 1 are contained 

in Tables IV-10 and IV-U and Figure IV-15.    On both days signal degradation 

is much worse for the later and stronger event.    Positive improvement for the 

larger signal is achieved only at extremely low convergence rates.    Maximum 

improvement occurs near a convergence rate of 0. 2%.    There broadband and 

narrowband signal-to-noise gain for the larger event are 0. 136 dB and 0.208 

dB,   respectively,  for day 238 of 1970.   and 0.742 dB and 0.880 dB,   respec- 

tively,   for day 203 of 1971.    The signal-to-noise ratio improvement values 

for the smaller Kamchatka signal are more in line with those of the 6-dB 

signal from 300° - 305°:   the best results are near a convergence rate 0.5% 

of maximum.    For both the strong Kamchatka signals,  the worst improvement 

over beamsteering occurs at a 5% convergence rate (unlike the weaker event 

from 300° - 305°). 

An interesting phenomenon happens as the convergence rate increases 

above 5%:   the gain for the two Kamchatka earthquakes begins to rise again. 

Narrowband signal-to-noise ratio improvement actually exceeds that achieved 
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TABLE IV-8 

ADAPTIVE FILTERING SIGNAL-TO-NOISE GAIN VERSUS CONVERGENCE 
RATE FOR A STRONG SIGNAL FROM KAMCHATKA (USING NOISE 

REDUCTION MEASUREMENTS FROM DAY 238 OF 1970) 

Convergence Rate 
(% of maximum) 

0 .2 

0 . 3 

0 4 

0 5 

0 7 

1 0 

1 5 

2. 0 

3. 0 

5. 0 

7. 0 

10. 0 

15. 0 

20. 0 

25. 0 

Broadband 
Signal-to-Noise 

Gain (dB) 

0. 830 

0.943 

0. 965 

0. 946 

0. 869 

0. 704 

0.443 

0. 209 

•0.083 

■0.288 

•0.213 

0.067 

0.428 

0. 589 

0. 649 

Narrowband 
Signal-to-Noise 

Gain (dB) 

0. 888 

1. 029 

1.064 

1. 072 

1.021 

0. 888 

0. 663 

0.456 

0. 197 

0.046 

0. 176 

0. 543 

1. 023 

1. 243 

1. 349 
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TABLE IV-9 

ADAPTIVE FILTERING SIGNAL-TO-NOISE GAIN VERSUS CONVERGENCE 
RATE FOR A VERY STRONG SIGNAL FROM KAMCHATKA (USING 

NOISE REDUCTION MEASUREMENTS FROM DAY 238 OF 1970) 

Broadband Narrowband 

Convergence Rate Signal-to-Noise Signal-to-Noise 

(% of maximum) Gain (dB) Gain (dB) 

0. 2 0. 136 0. 208 

0. 3 0.035 0. 134 

0.4 -0.134 -0.015 

0.5 -0.338 -0. 208 

0.7 -0.758 -0.614 

1.0 -1. 377 -1.229 

1. 5 -2.264 -2.135 

2.0 -2.948 -2.845 

3.0 -3.732 -3.677 

5.0 -4.044 -4.002 

7.0 -3. 856 -3.782 

10.0 -3.405 -3.263 

15.0 -2.918 -2.692 

20.0 -2.709 -2.437 

25.0 -2.605 -2.299 
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FIGURE IV-14 

SIGNAL-TO-NOISE GAIN AS A FUNCTION OF CONVERGENCE RATE 
FOR TWO STRONG KAMCHATKA SIGNALS (USING NOISE 
REDUCTION MEASUREMENTS FROM DAY 238 OF 1970) 
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TABLE IV-10 

ADAPTIVE FILTERING SIGNAL-TO-NOISE GAIN VERSUS CONVERGENCE 
RATE FOR A STRONG SIGNAL FROM KAMCHATKA (USING NOISE 

REDUCTION MEASUREMENTS FROM DAY 203 OF 1971) 

Convergence Rate 
(% of maximum) 

Broadband 
Signal-to-Noise 

Gain (dB) 

Narrowband 
Signal-to-Noise 

Gain (dB) 

0.2 1.436 1.560 

0.3 1.628 1                       1.771 
0.4 1.719 1.877 

|                     0.5 1.749 1.922 

0.7 1.742 1                       1.937 
1.0 1.658 1.887 

1.5 1.464 1.745 

2.0 1.283 1.609 
3.0 1.064 1.472 

5.0 0.939 1.457 

7.0 1.018 1.600 

10.0 1.257 1,906 
15.0 1.492 2.208 

20.0 1.561 2.311 

25.0 1.571 2.333 

IV-35 

—'-^''■''"-■"■liiillllHiitiiri"-'-'""-^-'- '-""""■' mm - —-•"■ 



pj^m±j^wwjv**mmmm^mmnmm^mm*m*^mm*^m i.juww*m*mtvmmmm'imfnmt »^MIIHI.JU ,.«»JW^H 

TABLE IV-11 

^IrvVnT^lT SIGNAL-TO-NOISE GAIN VERSUS CONVERGENCE 
RATE FOR A VERY STRONG SIGNAL FROM KAMCHATKA (USING 

NOISE REDUCTION MEASUREMENTS FROM DAY203 OF 1971^ 

Convergence Rate 
(% of maximum) 

Broadband 
Signal-to-Noise 

Gain (dB) 

0.2 0.742 

0.3 0.720 

0.4 0.620 

0.5 0.465 

0.7 0. 115 

1.0 -0.423 

1.5 -1.243 

2.0 -1.874 

3.0 -2.585 

5.0 -2.817 

7.0 -2.625 

10. 0 -2.215 

15.0 -1.854 

20. 0 -1.731 

25.0 -1.683 
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Narrowband 
Signal-to-Noise 

Gain (dB) 

0.880 

0.876 

0.788 

0.612 

0. 302 

-0. 320 

-1.053 

-1.692 

-2.402 

-2.591 

-2.358 

-1.900 

-1.507 

-1.369 

-1.315 
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FIGURE IV-15 

SIGNAL-TO-NOISE GAIN AS A FUNCTION OF CONVERGENCE RATE 
FOR TWO STRONG KAMCHATKA SIGNALS (USING NOISE 
REDUCTION MEASUREMENTS FROM DAY 203 OF 1971) 
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near 0. 5% in the case of the 18-dB Kamchatka signal.    The rise in gain is 

due to a flattening of signal degradation at convergence rates below those 

where maximum noise reduction is obtained (see Figures IV-9 and IV-10). 

This leveling off contrasts with signal degradation which is still climbing at 

a 25% convergence rate in the case of the weaker 6-dB signal from 300O-305O 

(see Figure IV-7).    At any rate,  there does not seem to be any way to exploit 

the extra noise reduction derived from transient correlation between succes- 

sive data vectors.    Such noise reduction would cease abruptly,   anyhow,   if 

the filter were frozen and the adaptive-filtering process could no longer 

track short-term fluctuations in the? data.    In addition,   severe signal distor- 

tion is a compelling reason for avoiding the higher convergence rates. 

The next section of this report discusses the effects of stopping the 

filter update in an attempt to eliminate the severe degradation of easily de- 

tected signals. 
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SECTION V 

EFFECT OF FILTER FREEZE ON SIGNAL-TO-NOISE 
RATIO IMPROVEMENT 

A. GENERAL DISCUSSION 

The maximum-likelihood adaptive-filtering equations are designed to 

preserve a signal by constraining the filter set to have unity response in the 

signal direction while optimally reducing the total filter output power subject 

to the unity-response constraint.     When no signal is present,   the adaptive 

filter set optimally reduces the filtered noise power subject to the constraint 

conditions.     There are no inherent design problems unless a signal is present 

If a slgnal is present,   however,   the adaptive filter set will attempt to mini- 

mize the total output power by manipulating the filtered noise output so as to 

cancel as much of the filtered signal as possible while still observing the con- 

straint conditions.     The constraint conditions are a significant but not insur- 

mountable barrier to signal cancellation.    In the particular form of the update 

algorithm used in this  study,  furthermore,   the step size of the filter update 

vector increases without limit as the time-shifted input data channels become 

more and more alike:   the squared magnitude of the filter change vector was 

shown in Subsection E of Section III to be 

Vew_ Aold| 
^T,2   2 
4Ksy   (t) 

Ix-xl2   " 

where   y(t)   is the adaptive filter output; as the data vector   X   approaches the 

rnTw3166^;4"    X    ^^ ^^ II1-1 '^ the d^tions).   the step size 
"A - A       |    approaches infinity.     (In practice,   the step size is limited by 
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contaminating noise,   differences in instrument response,   and signal propa- 

gation across the array not consistent with the signal model. )   To prevent 

signal cancellation and filter instability,  the adaptive filter set is frozen 

when a signal is detected.    After the signal has c'ied out.   the filter set is 

again allowed to adapt with the aim of reducing the output power of a changed 

noise field. 

A simple power detector was originally tried as a detection algorithm.. 

A running power average was computed for the adaptive-filter output beam. 

Each point of the beam was checked to see whether its square exceeded some 

arbitrary multiple of the running power average for the beam.    There were 

two serious problems with this method of detection: 

• The running power average tended to increase with time,   even 

when it was not updated after a signal detection.    The time re- 

quired to fall from a peak level was greater than the time re- 

quired to climb to that peak level.    Signals just below the det- 

tection threshold then drove the running power average still 

higher (and thereby raised the detection threshold). 

• Noise fluctuations and glitches produced frequent false alarms 

wten the threshold was set low enough to detect signals clearly 

visible on the beam output trace. 

A detection algorithm was chosen specifically to eliminate excessively 

large jumps in the adaptive filter vector.    For a fixed convergence rate   K   , 

the step size is proportional to   | y(t) |   /|x-x|.     When this ratio is large, ^t 

is likely that a signal is present.    To eliminate the dependence of this ratio 

on the filter weights,   the adaptive filter output   y(t) = XTA   is replaced by the 

RMS beamsteer output over a 31-point.   31-second gate.    The final form of the 

detection ratio is 
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xTx 

(X-X)T(X-X) 

M N 

E E 
i=l        j = -N 

_2#     .v x   (t-j) 

M N 

E E [5(t-ji 
i=l        j = -N 

^(t-j)l2 

where   M   is the number of channels,    2N+1    is the total number of filter 

weights per channel,    x{t-j)   is the beamsteer output at time   t-jAt,    and 

x.(t-j)   is the prefiltered vertical-component output for site   i   at time t-jAt. 

This ratio is a measure of the similarity between the input channels and the 

beamsteer output.     As it turns out,  the detection ratio is a scaled version of 

the Fisher detector    [(M-l)X   Xj/    [ (X-X)   (X-X) ]   .    The Fisher detector 

has been studied extensively (Melton and Bailey,   1957; Booker,   1965; Edwards, 

Benno and Creasey,,   1967; Shumway and Husted,   197 0; Blandford,   1970; Shum- 

way,   1971; Wirth,   1971; Smart and Flinn,   1971; Wirth,   Blandford and Shumway, 

1971; Shumway,   1972; Blandford,   1972; Smart,   1972).    In the results which 

follow,  the threshold value for the detection ratio is 4 (sufficient to detect 

signals 12 dB above the noise on the beamsteer output for six sites at ALP A). 

Once the detection ratio exceeds 4,  the filter set is frozen until 120 successive 

detection ratios (or two minutes of data) fall below the threshold. 

Subsection B shows what happens to the two large Kamchatka events 

from the previous section when the adaptive filter is frozen after a signal de- 

tection.    In addition,   it illustrates the capability of adaptive multichannel 

filtering to suppress off-azimuth events better than the standard time-shift- 

and-sum beamforming method.    Subsection C tackles the difficult problem of 

estimating the loss in noise reduction during the time period when the adaptive 

filter is prevented from updating. Subsection D describes an alternate adaptive 
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algorithm which appears to have definite advantages over the algorithm 

actually used.     The principal advantage of the suggested algorithm is greatly 

reduced signal degradation. 

B. EFFECT OF FILTER FREEZE ON SIGNALS 

A magnitude 5. 9 earthquake fron: New Guinea on day 7 of 1972 was 

selected to test the filter freeze procedure and observe its effects on the sig- 

nal.    The PDE bulletin gives its origin time as 06:25:48.4 and its location as 

(2. IS,   ,. 39. 0E).    The azimuth from ALPA is 253°.    Both the beamsteer and 

adaptive-filter beams were aimed in this direction to pass energy of 3.5km/ 

sec velocity.     To prevent clipping of this signal,  which was more than 42 dB 

above the noise on the beamsteer output,   the data was scaled by a factor of 

only 4 instead of 16.     The adaptive-filter package was run from 0430 to 0826 

at a convergence rate of 0.5% using sites 8,   9,   12,   15,   16,   and 17 as input to 

the adaptive-filter beam. 

The similarity-detection algorithm had no difficulty in spotting this 

event:   the adaptive filter set was frozen several times during the Rayleigh 

wave arrivals from this event.    The main Rayleigh wave arrived at about 

0708 and is shown in Figure V-l.    Tick marks at zero level in both beams 

are separated by 5 minutes and indicate the times given midway between 

traces.    The time-shift-and-sum output is at the top,   the adaptive-filter out- 

put at the bottom.    The Rayleigh-wave arrival for which both beams are stored 

is virtually intact.    Signal degradation measured over a 512-point gate starting 

at the beginning of segrrent 39 in the figure was just under 1. 3 dB both broad- 

band and in the frequency band associated with periods between 43 and 15 

seconds.     This event is  so strong that the P-wave arrival and other seismic 

phases ahead of the Rayleigh wave are visible on the beam outputs.    Since no 

appreciable degradation occurs for other events during the freeze period when 

the Rayleigh wave is the only visible phase,   it is likely that the adaptive- 

filtering process is rejecting some of the Rayleigh-wave arrival on an azimuthal 
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basis (using the earlier phases of the event).     Another possibility is that the 

signal degradation is due to adaptation over the short time interval immed- 

iately before signal detection. 

To observe the effects of the filter freeze on the two Kamchatka 

events of the previous  section,   the same sample as before from day 276 of 

1971 was reprocessed with the filter freeze threshold set to 4.     The conver- 

gence rate was specified as 0. 5% of maximum in the runs which produced 

the figures shown in the remainder of this subsection.    Several events from 

the PDE bulletin and LASA bulletin had arrival times within this period. 

Table V-l gives the PDE events which arrived during the sample interval. 

In addition to these events,   two events located within three degrees of the 

Panama event were included in the LASA bulletin covering this time interval. 

The first of these had a measured LASA bodywave magnitude of 3. 6 and 

arrived at LASA 47 minutes and 34 seconds before the PDE event from Panama. 

The second had a measured LASA bodywave magnitude of 3. 9 and arrived at 

LASA 6 minutes and 38 seconds before the PDE event from Panama. 

The adaptive filter beam was steered to pass events from an azimuth 

of 27 3    in order   to pick up the two events from the Kamchatka region.  Sites 

8,   9.   12,   15,   16.   and 17 of the ALPA array were used to form the beamsteer 

output and adaptive-filter beam. 

The first clear arrival at ALPA is shown in Figure V-2.    Apparently 

it is the magnitude 3. 6 Panama event from the LASA bulletin.    Although 

clearly visible in the beamsteer output,   it is almost obliterated in the adaptive- 

filter beam.     During this event,   the adaptive filter set was being updated. This 

off-azimuth signal was attenuated so strongly in the adaptive-filter beam be- 

cause the adaptive-filter beam reacted to the presence of this event and nulled 

it out:    a steadily increasing reduction of the power in this event over the first 

few cycles can be  seen in Figure V-2 on the adaptive-filter trace. 
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TABLE V-l 

PDE EVENTS ARRIVING AT ALPA BETWEEN 2000 AND 2357 
ON OCTOBER 3,   1971 

Origin Time 
(Hr-Min-Sec) 

20:42:46.7 

20:54:48.5 

21:54:12.9 

22:34:54.8 

23:17:26.4 

Lat 
(Deg) 

3.5N 

55.7N 

Long 
(Deg) 

82. 9W 

162. IE 

55. 8N 162.2E 

4.2S 152. 7E 

51.8N 173. 3W 

Region 

South of Panama 

Near East Coast 
of Kamchatka 

Near East Coast 
of Kamchatka 

New Britain 
Region 

Andreanof Islands, 
Aleutian Is. 

m. 

4.7 

4.5 

4.9 

4.8 

4.3 

Azimuth 
(Deg) 

113 

273 

273 

242 

237 
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The first of the two on-azimuth events from Kamchatka is plotted in 

Figure V-3.    The filter-freeze algorithm prevented the adaptive filter set 

from being updated during this event.    As a result,   signal degradation for 

this event was less than 0. 1 dB.    There is almost no perceptible difference 

between the beamsteer and adaptive-filter traces in Figure V-3. 

The magnitude 3. 9 Panama event from the LASA bulletin did not 

appear on either beam. 

On the other hand,   the magnitude 4. 7 Panama event from the PDE 

bulletin was clearly evident on the beamsteer output.    This event is pictured 

in Figure V-4.    As in the case of the event 47 minutes earlier,   it is sign- 

ificantly weaker on the adaptive-filter beam.    The adaptive filter set was up- 

dated throughout this event. 

Figure V-5 displays the weak event from 300   -305    used in the pre- 

vious section for signal degradation measurements.    In this case,   however, 

the 273    steer direction transforms this event into an off-azimuth event. 

Attenuation is 0. 56 dB broadband and 0. 57 dB narrowband when the detection 

of the first Kamchatka event in Figure V-3 triggers filter-update suppression 

over that event.    Curiously enough,   the attenuation for this weak event from 

300   -305    is -0. 35 dB broadband and -0. 36 dB narrowband when the adaptive 

filter is permitted to vary during the preceding Kamchatka event.    That is to 

say,  when the only difference in processing is to permit or to suppress the 

adaptive-filter update algorithm during an on-azimuth event 30 minutes earlier, 

the resultant attenuation varies by almost 0. 9 dB.    In both cases,   the steer 

direction is 273   ,  the convergence rate is 0. 5%,  the same sites are utilized, 

and the filter set is adapting for at least 20 minutes after the earlier Kamcha- 

tka event has faded away.    Figure V-6 presents the same weak off-azimuth 

event after allowing the filter set to vary over the previous event from Kam- 

chatka.    This figure does indeed appear to contain a cleaner estimate of the 

signal.    A possible explanation is that the adaptive-filter beam pattern exceeds 

V-9 

•■"■'-—i'1 ^••'^^-^^'■■'■'■»'""•'^^  ...„....^^^^ — 









fWIRilliipilBPPPBPIipipiIi^ 

Beamsteer Output 

^^^-^v^^A/vvVVVVvwv^^^^/v^v 
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100 
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FIGURE V-6 

WEAK EVENT FROM 300O-305O 

(FILTER ADAPTING,  STEER DIRECTION 273°,  K   =0.005, 
FILTER ADAPTING DURING EARLIER KAMCHATKA EVENT) 
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a value of 0 dB at 300O-305O a2imuths at the time of arrival of the off-azimuth 

event in Figures V-5 and V-6.     Array response patterns with maxima away 

from the steer direction are often generated by multichannel filtering,   espe- 

cially when no significant energy is coming from the direction corresponding 

to the beam-pattern maximum.     If this interpretation is correct,   it is still a 

moot question whether the deflection of the main lobe to azimuths north of 273° 

had already taken place by the end of the Kamchatka event or whether the char- 

acteristics of the intervening Panama event contributed to the end result. 

The second Kamchatka event from the PDE bulletin is presented in 

Figure V-7.    The filter set was frozen during this event.     This figure should 

be compared with Figure IV-11,   where the filter is adapting.    Signal degra- 

dauon for this on-azimuth event is almost exactly 0 dB.     As in the case of 

the earlier Kamchatka event,   there is almost no difference between the two 
beam outputs. 

No definite detection could be made for the magnitude 4. 8 event fr 
the New Britain region. 

om 

The final even, from the PDE bulletin,   a magnitude 4. 3 event fiom the 

Andreanof Islands (Figure V-8).   was detected on buth the beamstaer and 

adaptive-filter beams.    However,   the similarity between the beamsteer out- 

put and the input channels was too low to Iree.e the adaptive filter set.    This 

earthquake illustrates the effect of adaptive filtering on a strong off-a2imuth 

signal reasonably close (36°) to the steer direction.    Despite the loss of one 

input channel and the resultant redistribution of filter weights just before the 

prmc.pal burst of energy on both traces,  attenuation was more than 6 dB 

revive to the beamsteer output.     The marked attenuation demonstrates the 

sometame.-forgotten capability of multichannel filtering to narrow the width 

of the main lobe in the array beam pattern,   the array becomes a superdirective 
antenna. 
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Beamsteer Output 
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FIGURE V-8 

MAGNITUDE 4. 3 EVENT FROM ANDREANOF ISLANDS 
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The following conclusions can be drawn from this four-hour data 

sample: 

• On-azimuth signals at ALPA are not significantly attenuated 

by adaptive filtering at convergence rates near optimum for 

suppression of background noise.    Attenuation was 0.4 dB for 

the weak signal from 300O-305O (see Table IV-3) with the filter 

adapting    and steered toward 302.5   .     To stop degradation of 

stronger signals,   the filter must be frozen. 

• Off-azimuth events are strongly suppressed in the adaptive- 

filter beam when the filter set is not frozen.    Some off-azimuth 

signals are virtually annihilated.    The more powerful the off- 

azimuth event,   the more it is smothered. 

• Greater directional resolution at ALPA and other similar long- 

period arrays is achievable through the beam-narrowing capa- 

bility of multichannel filtering.     This fact is ex.remely im- 

portant if long-period arrays of this type are to be used for 

signal detection and location or for separation of multiple 

events.     With time-varying adaptive filters,   off-azimuth events 

can be nulled out in proportion to their signal-to-noise ratio 

with possible complications if two events overlap in time.   With 

fixed non-varying multichannel filters,   superdirectivity can be 

preserved in all circumstances,   but then the ability to quell 

specific bursts of off-azimuth energy in an on-line processing 

mode is impaired. 

j 
C. EFFECT OF FILTER FREEZE ON NOISE REDUCTION 

In Section IV,   signal-to-noise ratio improvement was calculated by 

subtracting signal degradation from noise reduction when the adaptive filter 

set is permitted to update each time a new sample of data is available,   even 
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when an on-azimuth signal is detected.    In this section,   the method of deter- 

mining signal-to-noise gain again involves the same two quantities,   but in 

this case they must be measured so as to reflect the fact that the filter update 

has ceased.     For signal degradation,   the required procedure is relatively 

simple and was performed in Subsection B:   only in the instance of the 42-dB 

signal on day 7 of 1972 was the degradation significant (1. 3 dB); the 18-dB 

and 24-dB signals on day 276 of 1971 were attenuated less than 0. 1 dB.    The 

measurement of the loss in noise reduction,   however,   poses some problems. 

As the elapsed time increases from the point of the filter freeze,   the general 

trend is one of even greater degradation in comparison with an adapting filter 

set.    There are periods of time,  however,   when the frozen filter set is better 

able to reduce the noise power than the adapting filter set.     The superior per- 

formance of the frozen filter set is due to temporary instances where the 

characteristics of the noise field revert to a condition more typical of the 

period before the filter freeze.    An attempt is made to put bounds on the 

trend of the drop in noise reduction as a function of time elapsed since the 

filter freeze:    this attempt is a subjective interpretation of the rapidly fluctu- 

ating measurements of the drop in noise reduction. 

To determine the effect on noise reduction of freeeing an adaptive filter 

set when an on-azimuth signal is detected,   a four-hour noise sample from day 

232 of 1970 was selected for processing.     The time period covered is from 

0344 to 0741.     No events are reported by the PDE bulletin between 1219 on 

August ]9 and 0834 on August 20 (day 232).     A 360° Fisher-detector scan of 

the four-hour sample at 24° azimuthal increments suggests two possible sig- 

nal arrivals,   one at 0406 from a 252° azimuth and another at 0506 from an 

azimuth between 12° and 36°.     In the first case,   a faint dispersed wavet.rain 

is visible between 0406 and 0416 on the 270° vertical-component beam.    A 

trained analyst would probably call it a signal.    The second possible arrival 

at 0506 is slightly weaker than the first on the Fisher-detector scan.     The 

V-18 

^^.i^^^-^* ^^n-^K^i^ymg^^!--rfUHAai^-^MBHB M 



murnfw wmmsm wmmmmmmmvmmm i IM 1UU.IIIJI.IIJIII   Jllll«..!!, 

only computed beam at 270° is too far away from the arrival direction to de- 

cide whether a signal is present.     These two possible signals should have 

only minuscule effects on noise-reduction results during the critical final 

hour of the data sample. 

In processing this sample,   sites 3,   4.   5,   6,   8,   and 9 are used to form 

vertical-component input channels for the beamsteer output and adaptive- 

filter beam.     Both beams are steered to pass energy arriving from an azimuth 

of 270    at a velocity of 3. 5 km/sec.     The adaptive-filter convergence rate is 

set at  0. 5% of maximum.    The noise  sample is processed twice.     In both 

cases,   the filter is permitted to adapt for the first three hours.     In the first 

computer  run,   it is  allowed to adapt for the remaining hour.     In the second 

run,   it is frozen for the remainder of the run in order to deduce the loss in 

noise reduction as a function of the elapsed time since the filter freeze.    In 

both runs,   time is divided into 55 equal 256-second segments.    Segments 40- 

55 correspond to the period in which the adaptive-filtering update process is 

suppressed in the second computer run.     Table V-2 gives the broadband noise 

reduction when the filter is adapting and when it is frozen,  together with the 

difference between the two modes of operation.    These figures are given for 

each of the 16 segments, for 8 two-segment intervals,  4 four-segment inter- 

vals,   2 eight-segment intervals,   and the entire 16-segment period from 0629 

to 0737.     Figure V-9 plots the measured loss in noise reduction as a function 

of the time since the filter was frozen.    Each point in the rightmost column 

of Table V-2 is located at the middle of the time interval it designates.    Re- 

sults are quite variable,   so much so that the loss in noise reduction does not 

increase monotonically until eight segments are grouped together.     The over- 

all trend,   of course,   is toward ever greater loss of noise reduction.     Figure 

V-10 attempts to portray the apparent trend of the drop in noise reduction due 

to freezing the adaptive filter set.    It is assumed that the loss in noise reduc- 

tion climbs monotonically from zero,   starting at the point in time where the 
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TABLE V-2 

BROADBAND NOISE REDUCTION AS A FUNCTION OF TIME 
FOR AN ADAPTING FILTER SET AND A FROZEN FILTER 

SET (USING A DATA SAMPLE FROM DAY 232 OF 1970) 

(PAGE 1 OF 2) 

Segment 

Broadband Noise Reduction (dR) 
Loss 
(dB) Filter Adapting       Filter Frozen 

.    40 2. 124 1. 811 0. 313 

41 1.419 1.262 0. 157 

42 1. 191 0. 703 0. 488 

43 1.80 3 1. 150 0. 653 

44 1. 348 1.088 0. 260 

45 3. 305 2.931 0. 374 

46 0. 688 -0.040 0. 728 

47 3. 109 2. 625 0. 784 

48 1. 702 1. 564 0. 138 

49 3.249 2. 526 0. 723 

50 0.063 -0.710 0. 773 

51 1.227 1.736 -0. 509 

52 0.592 -0.202 0. 794 

53 2.649 1.742 0. 907 

54 0.031 -0.906 0. 937 

. 
55 1.971 1. 217 0. 754 
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TABLE V-2 

BROADBAND NOISE REDUCTION AS A FUNCTION OF TIME 
FOR AN ADAPTING FILTER SET AND A FROZEN FILTER 

SET (USING A DATA SAMPLE FROM DAY 232 OF 1970) 
(PAGE 2 OF 2) 

Segment 

40-41 

42-43 

44-45 

46-47 

48-49 

50-bi 

52-53 

54-55 

40-43 

44-47 

48-51 

52-55 

40-47 

48-55 

40-55 

Broadband Noise Reduction (dB) 

Filter Adapting 

1.731 

1.422 

2.224 

1.826 

2.552 

0.693 

1.594 

1.092 

1.546 

2.022 

1.693 

1.274 

1.747 

1.474 

1.616 

Filter Frozen 

1 . 507 

0 ,874 

1 919 

1. 079 

2. 109 

0. 525 

0. 752 

0. 244 

0. 871 

1.081 

Loss 
dB 

0. 224 

0. 548 

0. 305 

0. 747 

0. 443 

0. 168 

0. 842 

0. 848 

0. 424 

0. 540 

1. 390 0. 303 

0.428 0. 846 

1. 275 0. 47? 

0. 603 

0. 535 

V-21 

^^-^iJ^^k^*ai^ii.ttMu^i..u-^-.■..^.^^^.^.^.^-.-.J.^■ .■> . .: ,.■. J..wJ^.^J.w^^.^.^.-v'..^.-..^-^  --. ^.^i-.....--.,.^.^.^--^--.-^.-.-^ ■..-■ ..YHHr.yiintifrtt'itiiiirt- hii'-iii' 



iy^-i.:W,wwuaM!;i»f»jgjB^j^^ipig^ 

1.0-1 

pq 

a 
o 

•rH 
■M 
U 
d 

x) 

od 
0) 
tn 

o 
2 

en 
o 

0. 

-0.^- 

-0.4- 

-0.6 

 -•—Eyery Segment 
 •-■ — Every 2 Segments 
 Every 4 Segments 
—•—• Every 8 Segments 
 All 16 Segments 

0 15 30 45 
"T" 
60 

Time Elapsed (min) 

FIGURE V-9 

MEASURED LOSS IN NOISE REDUCTION AS A FUNCTION 
OF TIME ELAPSED SINCE FILTER FREEZE 

(USING NOISE FROM DAY 232 OF 1970) 
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APPARENT TREND OF NOISE REDUCTION LOSS AS A FUNCTION 
OF TIME ELAPSED SINCE FILTER FREEZE 

(USING NOISE FROM DAY 232 OF 1970) 
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update process ceases.    The shaded area indicates the area between the like- 

ly upper and lower bounds for the trend.     The dotted curve within the shaded 

area is the estimate of the trend.    Shown at the top of the figure is the 1.6 dB 

noise reduction achieved by the adapting filter set over the interval 0629-0737. 

To determine the signal-to-noise gain for a detected event,  the signal 

degradation with the filter frozen is subtracted from the noise reduction to 

obtain the signal-to-noise gain at the time when the filter ceases to vary.   For 

the day-276 Kamchatka signal 18 dB above noise level on the beamsteer output, 

broadband signal degradation was 0. 087 dB.     Therefore the 1. 616 dB noise re- 

duction over segments 40-55 of the sample from day 232 of 1970 at a conver- 

gence rate of 0. 5% would yield a signal-to-noise ratio improvement of 1. 529 

dB at the time the filter is frozen.    From this value,   the drop in noise reduc- 

tion due to freezing the filter must be subtracted.    Figure V-ll shows the re- 

sultant trend of signal-to-noise gain as a function of time elapsed since the 

cessation of update using the results of Figure V-10.     The gain which would 

have been achieved if the filter had not been frozen is 0. 923 dB (1.616 dB - 

0. 693 dB) at a convergence rate 0. 5% of maximum.    Since the event in ques- 

tion lasted for less than 10 minutes,  it is clearly desirable to suppress the 

filter update upon detection of this signal. 

Even more dramatic are the results for the later Kamchatka event 24 

dB above beamsteer noise level.    Broadband signal degradation was -0. 004 

dB with the filter frozen,   so that signal-to-noise ratio improvement falls off 

starting at a value of I. 620 dB.    This figure contrasts with a signal-to-noise 

gain of -0. 361 dB (1. 616 dB - 1. 977 dB) when the filter adapts at a 0. 5% con- 

vergence rate. 

In summary,   when signals reach the signal-to-noise ratio required for 

detection,   greater signal-to-noise gain is generated by the filter-freeze pro- 

cedure.    The advantages of preventing the filter update become more and more 

dramatic in the case of increasingly strong events. 
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D. AN ALTERNATE ADAPTIVE ALGORITHM 

Part two of Subsection III-D showed that the adaptive algorith 

new old „        T    old — 
A =   A +   ZfiX    A0ia(X-X) 

minimizes the mean square adaptive filter output   AT ErXXTlA   subiect to 
M I J J 

th e constraint conditions   £    ^(j) =   g (j = .N .^   0j   ^   . . . , N) when 

i=l J 

the constant-valued convergence factor    fi     is chosen to be small enough.   If 

such an algorithm had been used,   bursts of power from off-azimuth seismic 

events would have been the dominant factor in the choice of the filter vectors 

A.    Since seismic events cannot,   in general,   be expected to repeat themselves, 

adaptive filters designed on this basis would devote significant effort to the 

elimination of energy which had long since disappeared.    The adaptive algor- 

ithm 

Änew old 2K
S XTA0id(X-X) 

A =   A + _. 

(X-X)T(X-X) 

used for this study attempts to minimize the quantity 

.T T 
A   E XX 

(X-X)X(X-X) 

subject to the same maximum-likelihood constraints   ]P     a (j)   =     8 

ftl       i 0J    ' 
where   E   denotes the expectation of each matrix element inside the brackets 

To prevent the squared magnitude 

|Anew _ Aold| 4KZ
s y2(t) 

(X-X)T(X-X) 
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of the filter update vector for this algorithm from becoming enormous when 

a strong signal traverses the array,   the adaptive filter set must be frozen 

whenever a signal is detected.    With this algorithm,   each update reduces the 

power output for the old data vector by a factor    (1-2K  )      regardless of the 
s 

fact that the data vector   X   ma.y be consistent with a s;gnal: 

(ATrWXXTAneW   =   (AT)<,ldXXTA0ld(I-2K   )2     . 
s 

The alternate algorithm 

no«, nM 2K    XTA0ld(X-X) „new          oid                s 
A =   A +      

T 
X   X 

attempts to minimize the quantity 

T T 
A    E 

XX 
T 

X   X 

subject to the same maximum-likelihood constraints.    With this algorithm, 

the squared magnitude 

|Anew _ Aold|2   =        4Ks y2(t) ^-X)T(X-X) 

T     2 

of the filter update vector decreases when a strong signal propagates across 

the array.    If the updated filter vector were applied to the old data vector, 

moreover,  the adaptive filter output would be 

XTAneW   =   XTA0ld 

=   XTA0ld 

1 + 
2K   XT(X-X) 

s 
T 

X   X 

2K  (X-X)T{X-X) 

f 
X   X 
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so that the squared filter output would be reduced by a factor of 

[l  - 2K    (X-X)   (X-X)/X   x]        instead of   (1-2K)2.    In the case of an ideal s s 
signal,   there would be no attenuation at all.     With weak signals having signal- 

to-noise ratios too low to trigger a filter freeze,   this algorithm appears to 

have a definite advantage over the algorithm actually employed:    the conver- 

gence factor    K      for the alternate algorithm would probably be significantly 

greater than for the algorithm actually used if signal degradation were the 

same for both algorithms,   so that greater noise reduction and hence greater 

signal-to-noise gain might be achieved by the alternate algorithm.     The sug- 

gested algorithm,   like the one actually implemented,   would also be less sen- 

sitive to power bursts from seismic events,   so that non-repeating seismic 

events would be  "forgotten" more rapidly than with the algorithm 

. new        „old „ T   old — 
A =   A +    2^ X   A      (X-X)   . 

Normalization of the data vector   X    by its absolute value     |x|     in the pro- 

posed algorithm instead of the absolute value   I X  - x|    ,   furthermore,   is 

sensibly motivated:    the adaptive filter responds to the phase characteristics 

of the data vector   X    and not to its magnitude.     It is difficult to describe pre- 

cisely the effect of the normalizing factor   |x  - XJ   . 
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SECTION VI 

VARIABILITY OF NOISE REDUCTION 

A. INTRODUCTION 

In Subsection B,  the results of adaptive processing on two data samples 

are studied to determine the variation in noise reduction at different steer dir- 

ections.     In processing these samples,   the adaptive filter is frozen when the 

similarity detection algorithm spots bursts of energy from the look direction. 

The reason for allowing the filter freeze is to simulate more accurately actual 

conditions of operation. 

In Subsection C,   the noise reduction figures from all noise samples pro- 

cessed for this report are compared in order to assess the range of signal-to- 

noise ratio improvement which may be expected from adaptive processing.   An 

evaluation is  made of the reasons for the performance achieved at each steer 

direction of each data sample.     The signal-to-noise gain estimates for noise 

samples discussed in this subsection are only indirectly related to the super- 

directivity effects on coherent events demonstrated in Section V. 

B. VARIATION IN NOISE REDUCTION AT DIFFERENT STEER 
DIRECTIONS 

The first data sample covers the period OJ 15 to 0510 on day  32 1  of 1971. 

The noise level of this sample at periods between 15 and 20 seconds is close to 

the peak level for the  1971  autumn season.    Sites  1,   2,   3,   6,   9,   and  19 are used 

as input channels for the adaptive-filter beams,   and the convergence rate is set 

to 0. 5% of maximum.     The adaptive-filter beams were aimed toward energy 

arriving at 3. 5 km/sec from azimuth of 0°,   90°,   180°,   and 270°,   respectively. 

Since the adaptive filter set was frozen no fewer than seven times while the 
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steer direction was 90°.   much of the energy in this four-hour sample must 

have come from azimuths close to 90°.    Figure VI-1 presents two of the 

microseismic bursts which triggered cessation of the filter update.     The per- 

iod of oscillation is 18 seconds throughout both microseisms.    If a detection 

algorithm is to distinguish between such microseasmic activity and earthquakes, 

the dispersion characteristics of teleseismic events will have to be used. 

Broadband noise reduction for this noise sample is  1.2 dB at 0°.   1.4 dB at 90° 

3. 1 dB at 180°.   and 1. 5 dB at 270^.    Corresponding figures for noise reduction' 

in the 15-to-43-second band are 1. 7 dB.   1. 6 dB.  4. 1 dB.   and 2. 6 dB.   respec- 

tively.    Maximum noise reduction is 3. 6 dB at the 14-second period for the 0° 

steer direction,   2. 3 dB at a 20-second period for the 90° steer direction.   6. 3 

dB at an 18-second period for the 180° steer direction,   and 4. 9 dB at an 18- 

second period for the 270° steer direction.     Figures VI-2 through VI-9 show 

beam spectra and noise reduction as a function of frequency,   respectively,  for 

the four look directions.    Spectral levels are given in dB relative to one 

(m/x)  /Hz.    The principal microseismic peak near 18 seconds is strongest on 

the 90    beam,   but only slightly stronger than on the 180° beam.    Beamsteer 

output levels on the 0° and 270° beams are a few dB lower at 18 seconds.    A 

visual examination of the beam outputs ^eveals strong microseismic bursts of 

18-second period on both the 90° beam and 180° beam.    A 360° Fisher-detector 

scan of tins data sample confirms that most of the energy is concentrated be- 

tween 100    and 132° azimuth.    The strong noise reduction relative to beam- 

steering on the 180° beam is due to the superdirectivity of the adaptive-filter 

beam.     It is somewhat puzzling that noise reduction is noticeably better on the 

270    beam than on the 0° beam.    The  WSW-ENE orientation of the six sites 

used as input channels may explain the difference:    the main lobe of the array 

wavenumber response would be elongated along a NNW-SSE axis so that the 

0    adaptive-filter beam would have more difficutly than the 270° adaptive-filter 

beam in rejecting noise from a 120° azimuth; the channel amplitude weightings 

would thus tend to be larger on the 0° beam than on the 270° beam,   and 
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FIGURE VI-5 

ADAPTIVE FILTER NOISE REDUCTION AS A FUNCTION OF FREQUENCY 
(DAY 321   1971,   STEER DIRECTION 90°,   K    = 0. 005) 
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ADAPTIVE FILTER NOISE REDUCTION AS A FUNCTION OF FREQUENCY 
(DAY 321   1971,   STEER  DIRECTION 180°,   K    =0.005) 
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consequently poorer performance could be expected for noise of 8-second 

period,   which tends to be relatively incoherent. 

The second data sample spans the interval 0355 to 0725 on day 203 of 

1971.     This  sample is the same sample described in Section IV (used there to 

study noise reduction as a function of convergence rate).     Sites 8,   13,   14,   15, 

16,   and 17 of the ALPA array are the input channels for the beamsteer and 

adaptive-filter beams.     The convergence rate is chosen to be 0, 5% of maximum. 

Again,   four beams are steered toward azimuths of 0°,   90°,   180°,   and 270°. 

This noise sample contains at least four seismic events.     Three of these are 

reported by the PDE bulletin and are given in Table VI-1.     A fourth event 

which triggered a filter freeze on the 270    beam is displayed in Fipure VI-10. 

This fourth event corresponds to a peak at 0426-0427 in the 275°  look direction 

for a Fisher-detector scan from 180    to 300° at 5° azimuthal increments using 

18 sites.    The first New Ireland event arrived slightly less than an hour later 

and is pictured in Figures VI-11  and VI-12 as it appeared on the 270° and 180° 

beams.     A glitch near the beginning of this event (seen most clearly in Figure 

VI-11) was caused by a burst of energy on a single channel.    Although the event 

is located at an azimuth of 239    with respect to ALPA,  the 180° beam contains 

the strongest signal.    This fact suggests that the apparent direction of arrival 

is closer to 180° than 270°.     A 360° Fisher-detector scan at 24° increments 

using sites 8,   13,   14,   15,   16,   and 17 reaches its maximum at 228° before the 

glitch in Figures VI-11 and VI-12 and at 216° after the glitch.    If such a shift 

in the apparent direction of arrival away from the direction of the source is a 

normal occurrence,   the signal-to-noise ratio obtained by steering toward the 

source is lower than that which could be achieved by steering toward the 

apparent direction of arrival at ALPA.    If the apparent direction of arrival 

were determined before steering the array,   some processing gain might be 

realized.     A Fisher-detector scan at 5     azimuthal increments from 180° to 

300    using 18 sites,   on the other hand,   no longer exhibits the southward bias 
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in the apparent arrival direction.     The directional peak varies from ^15° to 

255° during the time interval 0517 to 0525.     Thus,   with the full array,   the 

prospect of realizing  signal-to-noise gain by steering toward the apparent 

direction of arrival seems limited.     Figure VI-13 is a plot of the quietest 

noise section of the four-hour  sample.     A comparison with Figure VI-1  (from 

autumn) illustrates the wide variation in noise levels and spectral content 

throughout the   year.     A comparison of Figure VI-13 with the  seismic events 

during the period 0355 to 0725.   on the other hand,   indicates that a significant 

portion of the total energy in the sample is from the  seismic events.     Since 

PDE events occur slightly more frequently than once every two hours,   this 

situation may be typical of summertime.     Figure VI-14 portrays the  second 

New Ireland event as   seen by the 270° beam.     On the  180° beam,   the energy 

level is about the same as on the 270° beam.     The Fisher-detector  sweep 

using sites 8.   13,   14.   15,   16,   and  17 peaks at a 228° azimuth,   but at a 237.5° 

azimuth when 18 sites are used.     Figure VI-15 is the magnitude 5.4 event 

from the  Northern Celebes  region as seen by the 270° beam.     Once again,   the 

six-site Fisher-detector scan indicates an arrival azimuth of 252°,   while the 

corresponding  18-site scan produces azimuthal estimates ranging from 250° to 

^«5    over the time interval 0655-0700. 

Broadband noise reduction for this sample is 2.2 dB at 0°,   1.4 dB at 

90°.   2.4 dB at  180°,   and 2.4 dB at 270°.     The corresponding noise reduction 

in the  15-to-43-second band is 2.4 dB.   1.4 dB.   Z. 5 dB.   and 2. 6 dB.   respec- 

tively.     Maximum noise  reduc ion is  3. 7 dB at a 2 3-second period for the 0° 

beam.   3. 3 dB at a 51-second period for the 90° beam,   5.5 dB at a 2 3-second 

period for the  180° beam,   and 4.2 dB at a 21-second period for the 270° beam. 

Figures  VI-16 through VI-21  graph beam spectra and noise reduction as a 

function of frequency,   respectively,   for the 0°,   90°,   and  180° beams.     Since 

noise reduction on the 270° beam  seldom differs by more than 0. 1  dB from 

that show,-  in Figure IV-6,   no new illustrations have been generated for that 
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ADAPTIVE FILTER  NOISE REDUCTION AS A FUNCTION OF FREQUENCY 
(DAY 203 1971,   STEER DIRECTION 90°,   K    = 0.005) 
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BEAMSTEER AND ADAPTIVE FILTER OUTPUT POWER  DENSITY 
(DAY 203  1971.   STEER DIRECTION 180°,   K    = 0. 005) 
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ADAPTIVE FILTER NOISE REDUCTION AS A FUNCTION OF FREQUENCY 
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beam.    The beams aimed toward 0    and 90° possess the least power: spectral 

peaks in the 20-to-36 second band are comparable to the height of the principal 

microseismic peak at 18 seconds.    The main peaks at 20 seconds on the 130° 

beam and at 2 1 seconds on the 270    beam are about 6 dB higher.    Note that the 

180    beamsteer output contains less power at periods of 21 seconds and above 

tnan the 270    beam.     The relatively high-frequency power on the 180° beam 

probibly comes from the two New Ireland events.    Since most of the energy is 

this sample arrives at apparent azimuth ranging from 210° to 270°,   the highest 

noise reduction peaks for the  180    and 270    beams may be attributed to super- 

dxrectlvity effects on coherent seismic events.     The greater noise reduction on 

the 0    beam is due to the fact that the 90    beamsteer output contains less co- 

herent energy to eliminate. 

C VARIABILITY OF SIGNAL-TO-NOISE GAIN 

Table Vl-2 furnishes the noise reduction values for each of the ten 

four-hour samples processed for this report.    Figure Vl-22 provides a plot of 

these noise reduction values together with the corresponding signal-to-noise 

gains for the weak signal from 300    - 305° (day 276),   which is 6 dB above noise 

level on the beamsteer output (see Subsection IV-D),    Sample I suggests that 

1, 2 dB broadband and  1, 3 dB narrowband signal-to-noise gain can be expected 

from pure summer background noise.    Sample J intimates that the correspond- 

ing gains for winter background noise are  1. 4 dB and 1,7 dB,   respectively. 

Cases A through D near the peak fall noise level of 1971 on day 321 illustrate 

the variation in noise reduction as steer direction changes,    Superdirectivity 

effects account for the sustained 2, 7 dB and 3, 7 dB gains on the 180° beam. 

Since the filter set was frozen seven times on the 90° beam,   much of the energy 

is very close to the look direction and adaptive processing produces signal-to- 

noise gains of only 1, 0 dB broadband and 1.2 dB over the  15-to-43-second band. 

On the 270    beam,   the gains achieved are 1. 1 dB and 2. 2 dB.    In this case, 
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adaptive filtering was able to shape the array b^am pattern so as to reduce 

significantly the microseismic energy from 1J80 to 132°.     The 0° adaptive- 

filter beam was not nearly so successful ana yielded gains of 0. 8 dB and 1. 3 

dB.     A possible explanation is the orientation of the main lobe of the array 

wavenumber response along a NNW-SSE axis. 

Cases E through H demonstrate the signal-to-noise gain achievable at 

the steer directions 0°.   90°.   180°.   and 270° when several events propagate 

across  ALPA at apparent azimuths  ranging from 210° to 270°.      Superdirec 

tivity accounts for the lt 0 dB and 2. 1  dB gains on the  180° beam as well as 

the 2. 0 dB and 2. 2 dB gains on the 270° beam.    Some of the  1. 8 dB and 2. 0 dB 

gain on the 0° beam can be explained in th. same way.     In contrast,   signal-to- 

noise gains of only 1. 0 dB (both broadband and narrowband) wer.   obtained on 
the 90    beam. 

These results imply that signal-to-noise ratio improvement of one to 

t«0 dB can be preserved over four-hour noise samples.     In one case involving 

superdircctivity.   broadband gain was 2. 7 dB.   narrowband gain 3. 7 dB.      Of 

course,   as was amply demonstrated in Section V.   even greater signal-to-noise 

improvement can be achieved on off-azimuth seismic events of brief duration. 
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SECTION VII 

CONCLUSIONS 

Floating DC levels in the data channels transmitted from ALPA 

caused considerable difficulty in implementing an adaptive filtering system 

until their effect was studied theoretically and effective remedial action taken. 

Two steps were necessavy: 

• The data traces were run through a filter having a response 

exactly equal to zero at DC. 

• The adaptive filtering program was examined to uncover DC 

bias introduced by the computations.    Bias compensation was 

incorporated into the program and intermediate results were 

rounded instead of truncated whenever possible. 

Roundoff error in the adaptive-filter update equation 

new        old 2K
S 

X     A        (X " X) 
A = A        +    =  

(X  -X)       (X- X) 

almost became a  serious problem in obtaining the results of this report.     When 

the data points were scaled by a factor of 16,   however,   error in the input chan- 

nels to the adaptive filter was reduced to the point where the data vector X and 

the beamsteer output vector X were almost as accurate as the corresponding 

vectors computed with floating-point arithmetic.    In one noise sample,  this 
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scaling procedure increased the noise reduction of adaptive filtering relative 

to beamsteen^g from 2 dB to 6 dB at the convergence rate K    =0. 30,     The 

2-dB noise reduction figure fo:  unsealed data is apparently due to sign re- 
T 

versals in the adaptive filter output y(t) = X    A (so that the adaptive filter 

vector A moves in the wrong direction) and to zero values y(t) after round- 

ofc (so that the adaotive filter vector does not move at all).   With data scaled 

by 16,   errors in the vector (X - X) and the adaptive filter output y(t) were pre- 

dominantly digitization errors.     The sensor gain doubling at  ALPA in the sum- 

mer of 1972 should permit these errors to be halved.     At the most frequently 

employed convergence rates (near K    =0. 005),  the dominant source of error 

was the error in rounding the updated filter weights (on the right side of the 

update equation) to the nearest filter-weight count.    The mean angle of error 
/«new       .old, ^..10°, • 1 in the vector (A - A      ) was estimated as  18    for one summer noise sample 

at the convergence rate K    a 0. 005.     This angle could have been reduced to 10 

if errors in the maximum-likelihood constraint conditions had been corrected 

differently.     As the convergence rate drops below 0, 5%,  the filter-weight 

roundoff error becomes progressively worse until ultimately the filter vector 

A cannot change.    The way to improve this situation is to incorporate more 

bits into the filter-weight representation.    Such a solution would have meant 

abandoning the  special convolution-filter microcode instruction incorporated 

in the IBM 360/40 computers at SDAC,   where a 16-bit filter-weight repre- 

sentation is required for the CFIL microcode.    Had filter-weight roundoff 

error been eliminated,   the effect would   have been to reduce (probably only 

slightly) the convergence rate at which the highest adaptive-filtering signal- 

to-noise gains relative to beamsteering were achieved. 

In determining adaptive-filtering signal-to-noise gains,   the critical 

area of concern is the processing improvement for weak signals in the bor- 

derline detection range,  where the signal-to-noise ratio on the beamsteer 

output is between 6 anu 12 dB.     With sue!   weak signals,  detection procedures 

cannot consistently recognize the presence of a signal,   and no filter-freeze 

procedure can be implemented.    One signal approximately 6 dB a    jve 
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the noise level on the beamsteer output was used for the critical results. 

Signal-to-noise gain was measured as the difference between adaptive-fil- 

tering noise reduction and signal degradation. Optimum gain was realized 

near a 0. 5% convergence rate.    Using noise data from day 238 of 1970,   signal- 

to-noise gain for the weak signal was  1.2 3 dB broadband,   1. 34 dB in the fre- 

quency band for periods between 43 and 15 seconds.    With noise data from 

day 203 of 1971,   broadband gain was 2. 03 dB,  narrowband gain 2, 19 dB. 

Due to greater degradation of stronger signals,  the signal-to-noise gain was 

lower for signals  18 to 24 dB above the noise level on the beamsteer output 

when the adapti/e filter set was permitted to update. 

With signals as strong as these,   it is easy to detect their presence. 

A scaled version of the Fisher detection algorithm was used for this purpose. 

With the particular adaptive algorithm employed,  the standard procedure is 

to freeze the adaptive filter set.     When the filter set was prevented from up- 

dating upon signal detection,   signal degradation was less than 0. 1 dB for a 

signal 18 dB above the noise level on the beamsteer output and almost exactly 

0 dB for a signal with a beamsteer-outpuf signal-to-noise ratio of 24 dB.    These 

figures are contrasted with a signal degradation of 0.41 dB for the 6-dB signal 

at a convergence rate of 0. 5%.    Although the signal degradation is lower for the 

two strong signals when the filter is frozen,   noise reduction begins to drop as 

the elapsed time from the point of the filler freeze increases.    Loss in noise 

reduction vas measured by twice processing a noise sample from day 232 of 

1970.    In both cases,   the filter was permitted to adapt for the first three hours 

of the noise sample.    In the first computer run,   it was allowed to adapt for one 

more hour.    In the second run,  it was frozen during the final hour.    The apparent 

trend of the loss in noise reduction indicates that higher signal-to-noise gain 

is preserved for at least 15 minutes by freezing the filter rather than updating 

it in the case of the 18-dB signal.    Superior gain is maintained much longer 

for the 24-dB signal. 
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The alternate adaptive algorithm 

,- 2K    X1  Aold (X- X) .new       .old s 
A = A       +     

T 
X     X 

adapts much less rapidly in the presence of a signal.    It is very possible that 

this algorithm could operate at convergence rates higher than the value K    =0. 005 

without degrading signals any more than the impleinented algorithm does at its 

optimum rate of K    =0. 005.    If so,   greater signal-to-noise gains could be   re- 

alized through increased noise reduction at higher con/erg^nce rates. 

One data sample from ?.000 to Z357 on day 276 of 1971 was especially 

rich in signals (both on-azimuth and off-azimuth).    The following conclusions can 

be drawn from this four-hour data samplf,: 

• Off-azimuth events are strongly suppressed in the adaptive- 

filter beam when the filter  set is not frozen.    Some off-azi- 

muth signals are virtually annihilated.    The more powerful 

the off-azirr.uth event,   the more it is stifled. 

• Greater directional resolution at ALPA and other similar 

long-period arrays is achievable through the beam-narrow- 

ing capability of multichannel filtering.    This fact is extremely 

important if long-period arrays of this type are to be used for 

signal detection and location or for separation of multiple events. 

With time-varying adaptive filters,   off-azimuth events can be 

nulled out in proportion ^o ^heir signal-to-noise ratio with 

possible complications if two events overlap in time.     With 

fixed non-varying multichannel filters,   superdirectivity can 

be preserved in all circumstances,   but then the ability to 

quell specific bursts of off-a?:imuth energy in an on-line pro- 

cessing mode is impaired. 
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Four four-hour noise samples were processed for this report.    Adap- 

tive filter beams were steered toward four different look directions in pro- 

cessing two of these noise samples.    In eight out of ten cases,  the broadband 

signal-to-noise gain which would have achieved for the weak 6-dB signal was 

within the range &. 98 to 2. 02 dB.    In one case,   it would have been 0. 75 dB; 

in another,   it would have been 2. 7 dB.    Over the band 0. 0234 to 0. 0664  Hz 

(corresponding to periods between 43 and 15 seconds),  the signal-to-noise 

gain for the weak signal would have been between 0. 98 and 2. 0 dB in six cases, 

between 2. 0 dB and 2.2 dB in three cases.    The last case would have yielded 

a narrowband gain of 3. 74 dB.    The narrowband values are meaningful if a 

bandpass filter for periods between 40 and 15 seconds is applied to the data. 
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