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ABSTRACT

This report deals with results obtained from operating an adaptive
time-domain maximum-likelihood filtering system on data from the Alaska
Long-Period Array (ALPA). Signal-to-noise gain of adaptive filtering re-

lative to beamsteering is investigated as a function of convergence rate and

steer direction. In addition, the effect upon signal-to-ncise gain of freezing

‘he adaptive filter set is described. Both on-azimuth and off-azimuth sig-
nals are examined to determine how much they are attenuated in the adaptive-
filter beam in comparison with the beamsteer output. Signal-to-noise gain
values presented are measured using beam output traces formed from actual

seismic data. Theoretical studies of the effect of floating DC levels and

roundoff error are also contained in this report,

A major advantage of adaptive multichannel filtering is found to be the

capability to narrow the main lobe of the array beam pattern,

Neither the Advanced Research Projects Agency nor the Air Force
Technical Applications Center will be responsible for information contained
herein which has been supplied by other organizations or contractors, and
this document is subject to later revision as may be necessary. The views
and conclusions presented are those of the authors and should not be inter-
preted as necessarily representing the official policies, cither expressed or
implied, of the Advanced Resecarch Projects Agency, the Air Force Technical
Applications Center, or the US Government,
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SECTION I
INTRODUCTION

A, PURPOSE OF THIS STUDY

The adaptive processing task of the Extended Array Evaluation Pro-

gram has as its objectives:

. To gain experience in operating a real-time adaptive signal

estimation processor based on the time-domain maximum-

likelihood algorithm

® To perform theoretical studies relating to the convergence of
the algorithm and to analyze the output oi the adaptive pro-

cessor in an attempt to upgrade its perforinance

This report deals solely with the problems associated with operating the real-
time adaptive processor on ALPA data. A modified version of the TI interim

ALPA system was used to implement the adaptive-filtering algorithm. Theo-

retical studies of the effect of floating means and roundoff error upon filter

performance are contained in this report.

B. DESCRIPTION OF ALASKA LONG-PERIOD ARRAY (ALPA)

The ALPA array is shown in Figure I-1. ALPA is a 19-element hex-

agonai array with 20 km spacing between sites, Table I-1 gives the ALPA

site locations. In this report, sites are referred to in terms of their trans-

mission order. Thus, site 10 refers to site 3-45 in the official nomenclature,

1-1
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C. ADAPTIVE MULTICHANNEL FILTERING

Multichannel filtering is a form of array processing in which multiple
channel inputs undergo individual frequency-shaping and phase-shift filtering
prior to the channel-crummation operation which produces the beamformer
output. Figure I-2 is a schematic diagram of multichannel filtering. This
illustration incorporates the option to preprocess the transducer outputs be-
fore they are input to the multichannel beamformer. Examples of prepro-
cessing are frequency filtering (most commonly with identical frequency re-
sponses on all channels) and time shifting to align waves emanating from a
particular direction. The preprocessed transducer outputs become the input
channels to a multichannel filter set, where individual filters (generally dif-
ferent from channel to channel) are applied to the input channels. Th4use fil-
ters are implemented as convolution filters in time-domain processing or as
complex-valued multiplicative filters in frequency-domain processing. The

multichannel filter output is created by summing the individual filtered chan-

nel outputs,

In systems where second-order statistics (crosscorrelation functions
and crosspower spectra) are used to describe interrelationships among the
input channels, there are two basic forms of multichannel filtering. In
Wiener - Kolmogorov multichannel filtering, the average squared error be-
tween the desired signal and the multichannel filter output is minimized. To
minimize the mean square error, the crosscorrelation functions or cross-

power spectra between the input channels and the desired signal are required

In maximura-likelihood multichannel filtering, the average squared output
from the multichannel filter set is minimized subject to signal-preservation
constraints which place some suitably-chosen frequency response on the sig-
nal. For maximum-likelihood multichannel filtering, unlike Wiener-

Kolmogorov filtering, only the direction of the signal needs to be specified,

but not the signal-to-noise ratio.

1-4
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Multichannel filtering can be employed with fixed or time-varving
filter sets. When the filters are updated as new data inputs enter the multi-
channel processor, the process is called adaptive filtering. Adaptive-
filtering algorithms with significant computational advantages over fixed
multichannel filtering are available. When the inputs to the multichannel
processor are time-stationary (in the wide sense), these algorithms yieid
filter sets which converge in the mean to the corresponding fixed multi-
channel filter sets., After adaptive filter sets reach the vicinity of the cor-
responding fixed filter sets, they fluctuate about the fixed-filter solution in
the presence of time-stationary data: the adaptive filters converge in the
mean in the sense that the average position of the fluctnating adaptive filters
is identical to the fixed-filter solution. When the statistics of the data enter-
ing the multichannel processor slowly change with time, adaptive filtering
can react to the changes in a semi-continuous manner. K fixed filtering is
used in this situation, newly-designed filters change in a more abrupt fash-
ion, When, as in this case, the statistics of the data shift with time, the
adaptive-filter solution lags behind the fixed-filter solution corresponcing
to the instantaneous statistics. The extent of the lag can be controlled by
changing the adaptation rate, The choice of an adaptation rate involves a
tradeoff between misadjustment (higher-than-optimum error or power due
to the adaptive-{filter fluctuations) and the lag behind the optimum instantan-
eous fixed-filter solution. A different kind of lag occurs when fixed filter
sets are periodically redesigned: statistics must be accumulated over a
design interval so that, as a result, the fixed-filter solution cannot be im-

plemented until the next design interval,

In the conventional technique of array processing, simple time delays
or phase shifts are applied to the input channels b ore summing to generate
the beam output. Optimum multichannel fiitering 'atroduces considerable

new flexibility into the beaminrming process. oJirce it is possible to weight

1-6
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the input channels differently, channels with higher signal-to-noise rztios
can be emphasized at the expense of noisier channels, When well instru-
mented arrays are utilized, this capability is generally of minor importance.
A far more consequential feature of adaptive filtering is the ability to form
array antenna patterns which optimally pass a signal while simultaneously

1 rejecting propagating noise. Deep nulls can be aimed toward off-beam

” noise sources. When strong off-azimuth noise sources are present, the
creation of such nulls is an automatic result of the optimality of the multi-
channel processor. The conventional time-shift-and-sum or phase-shift
processor, in contrast, has a beam pattern determined solely by the steer

Jdi.ection and the array geometry.

ks In most cases, the potential improvement of optimum rultichannel

filtering relative to beamsteering is determined by the coherence of the

noise field across an array: the greater the similarity of the noise field
from channel to channcl, the greater is the optimum-multichannel-filter

. improvement over beamsteering., When, on the other hand, noise is com-

: pletely uncorrelated between sensors and identical signal and noise power
levels are encountered at all array sites, there is no potential for improve-

ment: in this case, the optimum filter set is a beamsteer processor. The

R T o Tt P RPCI r i o o e e i
Sl e ot . el w

decision to employ or not to employ an optimum-filter technique of proces-
sing depends critically on measurements of the noise field at any given array. .
Once these measurements are available, the additional cost of implementing
an optimum-filter system can be quantitatively weighed against the advan-

tages of greater noise suppression relative to the conventional beamsteer

processing technique.

B D, DESCRIPTION OF THE MAXIMUM-LIKE LIHOOD ADAPTIVE FILTER g 5
ALGORITHM % k.

- The adaptive-filter output y(t) at time t is formed by applying a

convolution filter to each channel and summing the outputs of all channels:

17
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e = Y ), 2 (t-)
i=1 j=-N

where a_(j) is the filter weight for the i-th channel at a lag of j; sample
1

points, xi(t-j) is the value of the channel i at time t-j., M is the number

is the total length of the filter in pcints. Prior to
forming the filter output,

of channels, and 2N+1

each channel is time-shifted to time-align energy

arriving from *he desired steer direction,

The adaptive filter weights are updated by the following algorithmi:

new old

0= a0+ A0y [me) - xe)

where

x(t-j)

"
2|
_><

and A(t) is the convergence parameter at time t. This update algorithm

incorporates the maximum-likelihood constraints,

The convergence parameter A(t) is calculated by the formula

2K _
Alt) =

M
(2N+1) 2 Pi(t)
i=1

where Ks is an input parameter, and Pi(t)
the

is a moving power average for
i-th channel. Pi(t) is computed by the formula:

I/

Pi(t) = (1 - u) [ﬁ(t) - xi(t)]z + uPi(t-l) t=1

where M is an input parameter. Pi(O) is zero, and several values of Pi(t)

are computed before the filter is allowed to vary,
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E, GEOMETRICAL INTERPRETATION OF THE ABF ALGORITHM

i In vector form, the adaptive-beamforming filter update equation may

be written

i Arlew ) Aold 2 ) XTAOId(-}_(--X) ’

where the superscript T denotes transposition, and where the filter weight

vector A, the data vector X, and the beamsteer output vector X are,

respectively,
[ o [ 2 | V—r ]
a, (-N) x, (tN) x(t+N)
] aMZ-N) i | XN | I §(E+N)J
as | [ 2, (0) I x=||*® andX = [ ;(f)
0 t) t '
0 | O
i a, Ny ] [ x, (t-N) i [ %(t-N) |
: ay((N) i I xM(t-N)J I %(t-N) %
LI . - =, . |

The objective of maximum-1likelihood adaptive beamforming is to re-

duce the average squared filter output

————

yz(t) = (ATX)(XTA) = AT xx7T A

subject to a set of signal-preservation constraints on the filter vector A,

After preshifting the input channels to time-align energy from the look dir-

ection, these constraints can be written

1-9
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where the constants d(j) specify a convolution filter having the desired fre-
quency response on a signal from the steer direction, When such a signal

s(t) appears in identical form on all channels, the signal output from the

beamformer is

N M N
) > 2l | st = Y e . 5
j=-N | i=1 j=-N i
For the adaptive beamforming employed in this study, a white frequency !
response is specified by setting :
d(j) = 8. (j = "N, e 0y "l, 0, l, * e 0y N), E
Jo ;_
b
where 8,0 is the Kronecker delta operator :
J
k
1 if j=0 g
5, = ;

° Lo if j+o.

2
To reduce the average squared filter output y (t) , the method of
steepest descent (with two modifications) is used. In the unmodified form of
the method of steepest descent, the filter vector A moves in the direction

opposite to the gradient of the average squared filter output yz(t) 3

— —

d
A"V a0 s YaTxxTa) = c2exxTa |

T

The first modification is to replace the crosscorrelation matrix XX

. . T ;
with the rank-one matrix XX formed from. the instantaneous vector X at "-f

time t :

ATV U A% o aex(xTa) = -2c X y(t)

I-10
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This modification of Widrcw (Widrow, 1966) approximates, in effect, the
crosscorrelation-matrix time averaging through successive applications of
the filter update algorithm. The approximation becomes increasingly ac-
curate as the rate of change of the filter vector A is slowed by reducing the
scalar convergence parameter c . The filter vector A converges in the

mean under suitably prescribed conditions (Daniell, 1968) to the vector ob-

tained by using the crosscorrelation matrix XX7! in the update equation.
Ultimately the filter vector A oscillates about its mean. The size of the
oscillations can be controlled by varying the parameter ~. The reason for
the Widrow modification is a reduction in the computational operations re-
quired for the filter update from a number of proportional to the square of
the dimension of the vectors X and A to a number linearly proportional

to their dimension.

The second modification of the steepest-descent method is to alter
. 12 .
the direction of the vector -c\ [y (t)] so that the ensuing update vector
old, . 2 . o o
(Anew_ A""") is the vector nearest to -c\ y (t) which satisfies the con-

straints on the filter update vector. Since the sum across channels

M

> an

i=1

of the filter vector A is a fixed value d(j) at any lag value j, the filter

new  old
update vector (A - A7) must sum to zero at each lag:

M
new old
Z[al(.]) = al(J)] = O (J = 'N’---s"ls O! ln---:N)-

i=]

The filter update vector must be perpendicular to each of the (2N+1) unit

vectors Uk specified by their components

I-11
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where B'k is the Kronecker delta operator. Each of the vectors Uk is zero
J
except in the k-th lag position, where all components are equal to 1/V M.

In vector form, the filter update vector must satisfy the (2N+1) constraints

U, (A" A% a0 e N, o1 0, 1L, N,
The vector X, since it has identical components at any lag value j,is a
linear combination of the vectors Uk and is perpendicular to all possible
update vectors satisfying the constraint conditions. The vector (X—}_() , on

the other hand, satisfies the constraint conditions:

M N
U xR = )0 Y s [ - 5]
N

i=1 Je=m
M M

= Z [xi(k) = §(k)] = Z x (k)| - Mx(k)
i=1 i=1

Mx(k) - Mx(k) =0.

Thus the vector X can be resolved into two mutually orthogonal components

X (perpendicular to the constraint space for the filter update vector) and

X-X (lying within the constraint space). The negative -cV[yZ(t)] of the

. 2 .
scaled gradient of y (t) is a scalar multiple - [ch(t)]X of the vector X,

. 2 . .
The nearest point to -c V [y (t)] on the constraint space is the vector

[ZCy(t)] (X-X) formed by subtracting the component - [2cy(t)]3-( perpendi-

Tl i B g Ly 3t et

cular to the constraint space from the scaled negative gradient vector

- [ch(t)] X . The final form of the filter update equation is, therefore,
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amplitude spikes on the second channel.

are characterized by the respective vectors

-xl(t) =5 |

S = xZ(t) = s and N =

_x3(t) =s |

This situation is illustrated in Figure 1-3.

A - A = [Zc y(t)] (X-X) .

F. A SIMPLE I1LLUSTRATIVE EXAMPLE

i x,(t) =0 7
xZ(t) =1
I x3(t) =0 i

The resultant filter update vector

is the projection of -cV [yz(t)] onto the constraint space.

Suppose that three channels are input to an adaptive beamformer with
one lag per channel. Signals are defined to be simultaneous spikes on all

three channels. Noise, on the other hand, appears in the form of unit-

When signal and noise occur, they

Figure I-4 depicts time series inputs for this simple example. The adaptive

filter set is initialized with beamsteer weights:

i a (0)=1/3

A= al(0)=1/3

I a3(0) =1/3
An optimum filter set is
1
[ 2,(0) = 1/2 ]

A= aZ(O) =0

| 2,(0) =1/2 §

I-13




[2ey(t)] (X-X)
2 1 2
(projection of -c\ [y (t)]

onto the constraint space)

b [2cy(t)]X

the constraint space for

I:Anew _ Anld]
ev[ o) =[2eym ] x '

AlEW _ Aold _

= [chm] (X-X)
FIGURE I-3

A GEOMETRICAL INTERPRETATION OF TIME-DOMAIN
MAXIMUM- LIKELIHOOD ADAPTIVE FILTERING
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FIGURE I-4

A SIMULATED DISPLAY OF THE TIME SERIES INPU4T
CORRESPONDING TO THE ILLUSTRATIVE EXAMPLE
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Whenever a noise spike first appears on channel 2, the filter vector A is

updated according to the equation | §

2" o A%M L cyit) (R-N)

The adaptive update equation shifts its weighting from channel 2 to channels

1 and 3. The second time the noise spike appears on channel 2, the filter

output is
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1
s 1 2 7]
0 1 B - + —
) [ 0] 3 5 ©
* (t) = 1 ic - 1 - c
) Y= 3 7 79 -3 T g
I-::'. N 1 + 2 c
) L3 9
The amplitude of the noise output is diminished whenever 0<c<3/2, After
k updates, the adaptive filter vector is
1 1 4 k]
| L > - (1 =
2 5 3 ©)
id 1 4 'k
— Nl - =
3 3 ©)
‘ 1 1 4 Kk
: —_— - (1 - =
;‘ 5 . 2 6 ( 3 C) -t .
»« _ When the (k+l)-st noise spike appears on channel 2, the output of the adap-
il tive beamformer is
1 1 4 \k
= = (1 - —= ]
] yie) = 5 (1- S
Each time a new noise spike appears on channel 2, the adaptive filter output
- is (1 -4c/3) times its previous value. After each new noise spike, the
7 difference between the optimum filter vector and the old filter vector is re- v
g - duced by the same factor (1 -4c/3). In this simple example where the
Ee i noise crosscorrelation matrix NNT has a single non-zero eigenvalue, the {
1 2 b
: average squared filtered noise output yz(t) is minimized when ¢ = 3/4, 3
1 5 # In this case, noise is completely eliminated starting with the second noise

.: spike on channel 2. When 0<c< 3/4 , the noise output always has the same

sign as the spike on channel 2, When «c >3/4 , however, the noise output

1-17
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alternately differs and agrees in sign with the input spike on channel 2. The

magnitude of the output spike always diminishes as long as 0<c<3/2. When

c >3/2, on the other hand, the adaptive filter vector diverges and the ABF

output increases in magnitude with the arrival of each new noise spike,

In this idealized example, the signal does not affect the filter update

since

[ s 7 M s ] [0 ]
S-S = 5 - 5 & 0
s | 5 hO_‘.

In the event that a signal spike appears simultaneously on all channels, the

output from the beamformer is s since the filter weights sum to one,

G. ORGANIZ ATION OF REPORT

Section 1l describes the problem of floating means in ALPA data, its

effect on filter performance, and the techniques used to eliminate it. Simple

subtraction of the channel means did not adequately solve the problem. This

section is intended for data analysts and programmers who must deal with

means in the input data.

Section III examines the effect of roundoff error in an integer-

arithmetic implementation of the filter update equation. Simple approxima-

tions for the average angle of error in the vectors (')—(-X) and (AneW-AOId)

are presented. The angle of error in ()_(-X) is affected by the number of

bits used to represent the data values x (t-_]),

whereas the angle of error in
(A Aold

) is also influenced by the number of bits employed to represent

the filter weights a (j) The 51mple approximations given for the angular

error in (X X) and (A ) are probably adequate to specify the data-

value and filter-weight representations to the nearest four bits when directional

1-18
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- AOId). This sec-

tion is intended primarily for digital design engineers and programmers who

w

error limits are placed on the vectors (-}Z-X) and (Ane

may need to consider roundoff error when implementing an integer-arithmetic

adaptive-filter ing system.

In Section IV, the subject of investigation is the ability of adaptive
multichannel filtering to provide signal-to-noise ratio improvement relative
to beamsteering in the presence of background noise. Signal degradation and
noise reduction measurements from real data are combined to yield the as-
sociated signal-to-noise gain. The convergence rates where the highest
signal-to-noise gains occur are ascertained in this way. This section is in-
tended to assist those persons evaluating the potential usefulness of an

adaptive-filtering system for processing ALPA data.

Section V studies the effect of freezing the adaptive filter set., Loss
in noise reduction is determined by comparing the adaptive-filter beam out-
put when the filter is allowed to vary with the adaptive-filter beam output
when the filter is frozen. Signal degradation is remeasured when the adap-
tive filter set is frozen in order to estimate the resulting signal-to-noise
gain. Inprocessing the data samples used to evaluate the filter-freeze pro-
cedure, several off-azimuth events are also run through the adaptive beam-
former. The potential improvement in interfering-event situations is de-
monstrated as a byproduct of the investigations presented in this section.
The results of this section are intended both for data analysts and program-
mers interested in the effect of the filte~-freeze procedure and for those

persons interested in the effectiveness of the adaptive-filter algorithm in

processing interfering events.

Section VI examines noise reduction achieved by adaptive filtering for
different look directions and discusses variations in processing gain for the
ten four-hour noise samples processed for this report. This section is in-

tended to give some idea of the variability which can be expected in the

1-19
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performance of the adaptive-filtering process when background noise is pre-

sent. This information should be useful in evaluating the potential improve-

ments to be gained through adaptive filtering,

Section VII presents the conclusions of this study. For those with in-
sufficient time to analyze in detail the results of the individual sections in

this report, this section gives the highlights of this investigation,
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SECTION II
THE PROBLEM OF F1OATING MEANS

A, FLOATING MEANS IN ALPA DATA

In data recorded prior to the summer of 1972, some of the digitized
traces transmitted from ALPA had mean levels higher than 1000 éomputer
counts, These mean levels were contrasted with RMS levels in tens of com-
puter counts (after mean removal). Furthermore, these DC levels gradually
changed over a period of a few hours. Subtraction of a fixed DC level was
insufficient to reduce the mean to a level significantly below the RMS level
of any given trace because of the gradually changing mean levels. Even the
removal of an exponentially smoothed running mean prcduced similar results

because of a time lag between the mean computation and inean removal.

The floating means in ALPA data are caused by drift in the pream-
plifiers at the individual sites of the array. In the summer of 1972, the orig-
inal preamplifiers were replaced by new preamplifiers of different design.
The effect of this substitution was to reduce the floating imean levels by an
order of magnitude: while mean levels with the original equipment could
sometimes reach thousands of computer counts, mean levels were reduced
to levels expressed in hundreds of counts (typically between 100 and 200 com-

puter counts) with the chang~ in instrumentation.

Although the problem of floating means has been considerably amelio-
rated by the dramatic reduction in mean levels at ALPA, the current DC levels
still lie above the channel RMS amplitude levels after mean removal. The
same problem is evident at the NORSAR array, In fact, the floating-mean

problem may be a general problem with long-period seismometers.

II-1
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Consequently, effective techniques for removing the floating DC levels appear

to be essential in processing long-period data with adaptive-filtering algo-

rithms.

On a quiet noise sample from day 203 of 1971, negative improvement ¢
from adaptive filtering (as measured in terms of noise reduction) was consis-
tently obtained until the problem of floating means was studied and dealt with
effectively, The chief symptom of the trouble was a particularly poor per-

|

formance at frequencies below the frequency equal to the reciprocal of the f

filter length. !
1§

Subsection B presents a theoretical study of the effects of DC bias on ‘
maximum-likelihood adaptive filtering. In Subsection B, the results are de- l
rived using the fixed-filter maximum-likelihood multichannel-filter design
equations. Since the adaptive-filter solution converges in the mean to the
fixed-filter solution, similar if not precisely identical results can be expected
in the case of adaptive filtering, Empirical verification of this fact can be de-
rived from the elimination of the predicted floating-mean performance symp-

toms upon removal of the floating means from the data,

Subsection C describes the measures taken to eliminate problems
associated with DC bias., A necessary remedy was the application of a pre-
filter with precisely zero response at 0 Hx., In addition, computational bias

in the adaptive-filter computer program had to be reduced to the maximum

extent possible,

B. EFFECT OF DC LEVELS ON ADAPTIVE FILTERING IMPRO VEMENT

The general design equation for two-channel, (2N+1)-point maximum-

likelihood multichannel filter set is




E |
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: R 1 oJ | 0 0 OJ |0 0 0 _-)\(.-N)J
Ppll(l) q’lz(l) 0] Ml(o) q’lz(o) Iy (4’11“'21\” ¢12(l-2N)6 ral(O) i

¥ ¢>21(1) ¢22(1) 0l |#,,(0) ¢22(0) 1o ¢21(l-2N) ¢22(l-2N)0 a, (0) _
|0 . 0 0] 1 ' 1 oJ'. I 0 ' 0 (ﬂ -X(0) |

| ¢“(2N) ¢>12(2N) 0 ¢11(2N-1)<112(2N-1) 0 ¢“(0) ¢iz(0) 1 al(N)

- <1>21(2N) ¢22(2N) 0 ¢21(2N-l)¢>22(2N—1) of**]®, , (0) ®,,(0) 1 a,(N) 0
L 0 0 0 0 0 0 1 1 0 i _:-)\(N)JJ _:O:U

where ¢ (1) denotes the crosscorrelation function between channel i and
1]

channel j at time lag 7, aj('r) denotes the filter point for channel j at

ol i e e e o i

time lag 7, and )\(r) denotes the Lagrangian multiplier associated with
the maximum-likelihood constraint condition imposed upon the filter weights
-~ for time lag 7. The Lagrangian multiplier X(0) for zero lag is equal to
" the mean square error and noise power output of the filter set. A derivation

g of the design equation is given in part 2 of Subsection III-D,

Assume two traces each consist of a mean m, with white random
i

noise of power P, - Then

= T
¢ij('r) mimj # 0
- d)ij(o) = mym, i # ]
. qsii(o) = m +pi
: P = 0 p2 1
: 1 1 0 3
j M = m2
0 ’
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and
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Dol JCd

A(r)
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A(r)=

—al(r)
a,(7)
:A ()

or
—

where o denotes the Kronecker delta.
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The design equation for a symmetrical two-channel, (2N+1)-point
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o
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maximum-likelihood filter set
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-

M

M
]
|
'

M

M

-

-1

= 1

(it oY

/

P

A(0)
'

| A(N )]

, for the noise field specified, reduces to

[MT MT-- -MT MT]

A(-N)
l
f
A(0)
f

bA(N)J

Let Il denote the (2N+1) by (2N+1) block matrix with diagonal element P. Let 7]
denote the (2N+1) block column vector with element M. Then the total noise

matrix is & = ] +[J[JT.
-1
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p,m,tpm,

m

where g =

= m

1 2

o=l _ ot
i

Cb'l

1

2

(2N+1)(m1 - mz)

1l

1 +p.TH'1p 1+

(m, - m,)? E E<::"
= E::\E\ N
- '1 | \\ \\
+ + (2N + 1 - “ ' S~ D
[(pl Py} + ) (m, mz)_j B E ‘\\
| E E-----
| | B
‘ where E =]-1 1 -B
“ 2
* B -8 B
4
D 0-----0 O] E E
Oo. D b < O O E E
-1 1 : \\ \\ e : I\\ N N !
R R AN R A T AN :
PI"P2 (10 o ~_p O E EN_E “E
\\ ~
O 0O----3 O D] | E E--->E E|
1 -1 p2 -(ml-mz)
where D = -1 1 P, and )/ = .
+p.) +(2N+1 .
b, P, PP, (p,+p,) +( {m -m,)
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| : a (7£0) 0 8Y
f 1 1
= E 0 = - -
: {770 P 'P; d P)'P, B)zl
, :A(”éo); = i 1 J L B )I.:
: a,(0) 0 p,+ BY
E 1 1
% 2100 = PtP, D +YEI N0} = P tP, Py - BY
2
-\ (0) 1 PP TBY

The mean square error and noise power output are equal to A(0).

5 ( + )2
3 PP, =By 1 Pp,m v Pym,
3 MO) = + - +p plp2+
PR P17P2 [(

P +p,)HENH)(m - m. )7

Under the assumption that the white noise levels are the same for both channels,
P, = P, =P and the mean square error is

2
(m., + m.)
A0) :f?_1 1+ —L 2 >

2p + (2N+1)(m1-m2)

The noise output power for a beamsteer system applied to the same noise field is

1
FLeytey) + tm tm )]

2
B, \ (m1 + mz)
2 2p

if Py = P, = P- Since the quantity (2N+1)(m1 - mz)2 is always non-negative, the

or

maximum-likelihood filter set reduces the noise output power to a level at least

as low as the noise output power of a beamsteer system. Implicit in the design

equations, however, is the assumption that "power' due to DC bias is as

ont g ST oty s e i
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undesirable as power due to fluctuations in the traces. In practice, the analyst

easily "filters out" DC bias when visually inspecting a seismic trace.

Some important effects occur as a result of the means in the traces.

The filter weights are

oot = BY

P1+P2
2l TH0), = -—fl
PP
P2 BY
3J0) = ——=a- & m
P1"P2  Py*P,
ay0) = —L . BY
2 P*P,  Pytp,
1f P =P, =p and @ is set to B)’/(p1 +p2), the frequency response of the filters is _7
1 -i27rf -~ 4
: Alf) =5 +a Zﬂlz# Lat |
2
- =y
and
N
-i2mr f
Af) == - q y e-izm ifat
2
e =3
N o ;
Z e-iZTrf[At
If o(f)is set to‘l: ) » the noise output power density of the maximum-

likelihood filter set is

ECTWE EPTRP  PNPS
o Pto)|| 4, (1)

B}

- [i— +do(f) + aZO'Z(f)jP(f)

1
+ [Z -aoc(f) + azc‘z(f)]P(f)
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B |-

[P(f) + P(f)] +aO'(f)[P(f) - P(f)]
+ GZU'Z(f)[P(f) + P(f)]

f
———PZ( )[1 ¥ 4020'2(f)]

as compared with P(f)/2 noise output power density for a beamsteer system.
Thus, at any frequency other than DC, the beamsteer system reduces the noise

level at least as much as the maximum-likelihood filter set. In fact

£) = 3 -127f JAt  sin (2N+1)7r fAt
ol - E :C T smmmTf At
/=-N

0 whenf=——k——.— (k = 1,2,...2N)

i o(f) At(2N41)

The first zero of this function occurs at f = 1/(2N+1)At, and the function climbs

monotonically until it approaches the value 2N+1 as the frequency approaches
zero from the right, The quantity (2N+1) At is the effective’ length of the filter,
This result provides a possible explanation for the poor performance of the

maximum-likelihood filter set at frequerncies below the reciprocal of the filter

length.

C. TECHNIQUES USED TO ELIMINATE DC BIAS FROM
THE DATA

The first step in removing DC bias from the traces was to apply single-
channel prefilters to each of the site traces after rotation to the vertical trace.

A 31-point convolution filter was used for this purpose. The weights for this

filter are shown in Table II-1. Data points are scaled by 2-15 before exiting

from the convolution filter microcode which implements the filter. The frequen-

Cy response (after scaling) is shown in Figure II-1. The fact that the filter

weights sum to zero guarantees that the response at DC is exaétly Zero or -

in dB.
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= i[P(f) + P(f)] +aa'(f)[P(f) - P(f)]
+ azaz(f)[P(f) ™ P(f)]
= P-Z(ﬂ [1 + 4aza'z(f)]

as compared with P(f)/2 noise output power density for a beamsteer system.
Thus, at any frequency other than DC, the beamsteer system reduces the noise

level at least as much as the maximume-likelihood filter set. In fact

i -i2mf JAt  sin (2N+1)7r fAt
d L

o(f) = T T smmWiat
/=-
d (f) = 0 wh P e k =1,2 2N)
an g = when = At(2N+1) = 1,2,...

The first zero of this function occurs at f = 1/(2N+1)At, and the function climbs
monotonically until it approaches the value 2N+1 as the frequency approaches
zero from the right. The quantity (2N+1) At is the effective length of the filter.
This result provides a possible explanation for the poor performance of the
maximum-likelihood filter set at frequencies below the reciprocal of the filter
length.
C. TECHNIQUES USED TO ELIMINATE DC BIAS FROM

THE DATA

The first step in removing DC bias from the traces was to apply single-
channel prefilters to each of the site traces after rotation to the vertical trace.
A 31l-point convolution filter was used for this purpose. The weights for this

filter are shown in Table II-1. Data points are scaled by 2-15 before exiting

from the convolution filter microcode which implements the filter. The frequen
cy response (after scaling) is shown in Figure II-1. The tact that the filter
weights sum to zero guarantees that the response at DC is exaétly Zero or - o

in dB.
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TABLE II-1
PRE-FILTER WEIGHTS

5 Lag Weight
415 -1384
] +14 -1209
+13 -1049
+12 - 916
+11 - 819
410 - 766
49 - 756
+ 8 - 788
47 - 856
+ b - 951
f ) -1061
44 -1174
, +3 -1277
: + 2 -1360
41 1413
; 0 31558 !
3
11-10 7
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The filter of Table II-1 and Figure Il-1 was obtained from a computer
program which minimizes, for a discrete convolution filter of specified length,
the weighted mean square error (integrated over the Nyquist band) between the
desired frequency response and the convolution-filter frequency response,
After the initial run, several iterations with altered frequency weightings and
desired responses were made to reduce the ripple in the filter response, Next
the desired response at 0 Hz was modified so as to reduce the amplitude at DC,
After a response below -100 dB was achieved at 0 Hz, the filter coefficients
were rounded to the nearest 1/32,768. Finally, the zero lag weight of the con-
volution filter was adjusted by a multiple of 1/32,768 so that the sum of the

filter coefficients was zero (yielding a response of - o dB at DC),

When the program changes to implement this filter were made, dif-
ficulties persisted. A detailed study of the adaptive-filtering subroutine show-
ed that 1/2 count of negative bias per channel was being introduced by the con-
volution-filter microcode because of truncation. The subroutine was rewritten
to compensate for this bias in the beam output trace and to round intermediate
results wherever possible. After these modifications, the DC bias problems

were eliminated.
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SECTION 111
EFFECT OF ROUNDOFF ERROR IN THE FILTER UPDATE EQUATION

A, DISCUSSION

In the adaptive-filtering investigatiois conducted for this study, the
bulk of the adaptive-filter update calculations and the adaptive filter output
computations were performed using integer arithmetic. The reason for in-
teger arithmetic was the desirability of operating in an on-line mode on the
IBM 360/40 computers at SDAC using their special high-speed microcode
operations. In the construction of hardware specifically tailored to imple-
ment adaptive beamforming, economic considerations seem to dictate that
integer arithmetic be used. For this reason, the experience gained during

this study in the problems arising from integer-arithmetic roundoff error

may well be applicable to a variety of economically practical adaptive-filtering

systems,

The objective of this section is to obtain quantitative estimates of the
directional error in the filter update vector as a function of the limited num-
ber of parameters controlling the directional error. Some of these para-
meters, namely the number of bits used to represent the input data points
and the filter-weight coefficients, are subject to direct human control. Other
parameters depend either directly or indirectly on the characteristics of the
data at any given array. Once directional-error tolerances can be specified
with sufficient precision to avoid significant degradation of adaptive-filter
performance, noise field measurements at an array, together with the direc-
tional-error approximations given in this section, should provide useful esti-

mates of the number of bits needed for the input data points and the filter-

111-1
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weight coefficients, Even estimates accurate only to the nearest four bits
are valuable: it is extremely useful, in designing adaptive-filtering hardware,
to know whether 12 bits, 16 bits, 20 bits, 24 bits, etc., are needed to repre-

sent adequately the data and adaptive-filter coefficients.

In this section, the computational error will be traced through the

series of integer-arithmetic operations performed in updating the adaptive-

filter weights. At this point, these operations will be reviewed. The filter

update procedure is a vector operation which can be written compactly in the

vector equation

new ola ZKSXTAOId(}—i-X)
A = A +

®-%)"(X-x)
which describes the particular algorithm used in this study. The term Ks
is a scalar quantity called the convergence factor, It controls the adaptation
rate of the adaptive-filtering process. The dot product XTAOId denotes the
series of multiply-and-add operations which yield the adaptive beamformer
output y(t). The superscript T denotes vector transposition. The vectors
Anew’ AOId, X, and X (as well as their constituent components) were defined
previously in subsections I-D and I-E. In the algorithm actually employed, the

denominator (}_{-X)T()_(-X) is approximated by

M
(2N+1) Z Pi(t) v
i=1

where P (t) is a moving power average of the difference between the i-th
1

channel and the beamsteer output (see page 1-8). In this approximation, M

is the number of input channels and (2N+1) is the total number of filter

weights per channel.

e et - S S
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Since the denominator ()—(-X)T()_(-X) and the convergence factor K

s
are positive scalar quantities,

the direction of motion of the filter update

1d
vector (Anew - A° ) is determined by the sign of the adaptive filter output

y(t), a scalar quantity, and the vector ()—(-X). Directional error in the vec-

tor (-)—(-X) contributes to directional error in the filter update vector. Errors
in the data vector X, moreover,

T  old
put y(t) = X AOl

may change the sign of the adaptive filter out-

or cause it to round to zero: in the first case, the filter

vector moves in a direction which tends to increase the average squared filter

2 . .
output y (t) ; in the second case, the adaptive filter vector cannot move, After

multiplication of the vector (X-X) by the scalar quantity

ZKSXTAOId

X-x)T(®-x)

the individual components of the resultant scaled vector are rounded to the

1
nearest integer in the numerical representation of the filter weights and then 4

}
added to the corresponding components of the old filter vector. The filter-
weight roundoff process just described introduces further directional error
into the filter update vector. The filter-weight roundoff error can be made

as small as desire - using a sufficient number of bits in the numerical

DG e o

. - . {
representation of t.. nlter weights, A similar capability, however, is not

possible in computing the adaptive filter output y(t),

TPy T

where the preservation
of a non-zero value with the correct sign is ultimately limited by the quanti-

zation error introduced by the digitization system.

-t i o e S

The principal questions to be answered in determining the errcr in

the direction of movement of the filter weight vector are, therefore,

s

) How much directional accuracy is maintained in the vector

(?(-X) after machine computational procedures have been per-

formed?

LA R e
G 3
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How often do computational and digitization errors reverse the
sign of the adaptive filter output or result in a zero value for
the adaptive filter output when it is rounded to the nearest in-

teger?

What precision is required in the numerical representation of
the filter weights to achieve acceptable error levels when the

filter update vector is added to the old filter weight vector?

Subsections B and C examine error in the vector (T(-X) . Subsection
B, a necessary prelude to subsection C, discusses errors in a single com-
ponent of the vector (S-C-X). Error is traced through the individual processes
leading to the final value x(t-j) - xi(t-j). Probability densities, standard de-
viations of error, and maximum errors are presented for rotated data, pre-

filtered data, the beamsteer output, and the beamsteer output minus a single

channel,

After the preliminaries of subsection B, directional error in the vec-
tor (T(-X) is investigated in subsection C, The error E in ()_(—X) is sep-
arated into a part EC satisfying the filter-weight constraint conditions and
a part Eb perpendicular to the vector space corresponding to the filter-
weight constraints. Probability distributions for the angle of error in (X-X)

and the angle of error in its projection onto the constraint space are calculated

Subsection D considers the effect of digitization and roundof{f error on
the adaptive filter output y(t). The probability that y(t) rounds to zero and
the probability that y(t) changes sign are estimated. Since these probabil-
ities depend on the filter vector A, a derivation of the maximum-likelihood
filter-design equations is included so that the filter vector may be determined

from the data crosscorrelation matrix.

Subsection E studies the consequences of rounding off the updated fil-

ter vector A", To evaluate the likelihood that the roundoff process




immobilizes the filter vector by preventing any change in the individual com-
ponents, an expression for the squared magnitude AV Aold < is employ-
ed. To estimate the mean angle of error in the vector A"¢W. AOId, the pro-
bability distributions associated with rounding off the filter weights are de-
termined. Finally, two different techniques for eliminating discrepancies

in the maximume-likelihood constraints are appraised in terms of the result-

ant directional error in the filter update vector.

Subsection F is a summary of the results in this section.

B, ERRORS ASSOCIATED WITH A SINGLE COMPONENT OF THE

VECTOR (X-X)

As a first step in estimating the directional error of the vector (X-X),
the errors associated with a single component must be established. In order
to evaluate the directional error, it is necessary to distinguish between error
in one component of (X-X) due to inaccuracies in the quantit.es xi(t-j) prior
to forming the beamsteer output and error arising solely from roundoff error
during computation of the beamsteer output x(t-j) for time 't - jAt. This
distinction is necessary because error prior to generating the beamsteer out-
put cannot dislodge the updated filter vector A" from the subspace cor-
responding to the maximum-likelihood constraints. Conversely, roundoif
error in calculating the beamsteer output forces motion perperdicular to the
constraint space. A detailed description of this phenomenon will be given at

a more appropriate point in this section.

In analyzing errors at the single-component level, the digitization pro-
cess is presumed to introduce an error with a uniform probability density be-
tween plus and minus one-half count. There is one realistic situation where
this premise is not justified. The ALPA data values are represented as 16-
bit gain-ranged numbers with a 12-bit, two's-complement fraction and a fo ir-

bit negative exponent, When the DC level on any triax component rises to 2048

111-5
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computer counts or more, the digitization error is effectively multiplied by
the appropriate power of two, For the data samples processed in this report,
one or two of the six channels input to the adaptive processor might have float-
ing means of this size. To achieve simplicity of presentation, this fact is ig-
nored. In neglecting this possibility, the digitization error is underestimated.
This underestimation should not materially affect the results obtained in this

section.

A different assumption is made for computational roundoff error. When
an intermediate result must be rounded to the nearest count, the resultant
roundoff error is assumed to lie between -1/2 and +1/2 at equally-spaced dis-
crete points centered about zero. If none of these discrete points is located
one-half count from zero, they are assumed to equally likely, If an error of
one-half count is possible, each of the end points is assumed to be half as
likely as each of the interior points. Up to and including the point where the
adaptive channel data points xi(t-j) are averaged to form the beamsteer out-

put, the error of each quantity involved in a summation is assumed to be in-

dependent of the error in the other quantities involved in the summation, In

the case of independent summand errors, the probability density function for
the error in the sum is the convolution of the probability density function for

the error due to roundoff with that of each individual summand error.

When the possibility that roundoff error could be affecting adaptive
filter performance was first considered, an experiment was conducted. First,
with the convergence factor KS set to 0.30, anoise sample from a relative-
ly quiet summer day was run through the adaptive filter program. Noise in
the adaptive filter output was reduced by 2 dB relative to the beamsteer out-
put. Second, the data points were multiplied by 16 before processing. At
the same convergence rate, noise reduction was approximately 6 dB, It was

apparent, therefore, that roundoff error was significantly affecting processor
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performance. Scaling the data by a factor of 16 was sufficient to achieve noise
reduction comparable to that obtained for the same noise sample by a separate

computer program using floating-point arithmetic.

In this section, error will be examined for the case of unscaled data,
data scaled by a factor of 16, and data where the floating-point arithmetic is
used in the adaptive processor. When floating-point arithmetic is employed,
roundoff error is assumed to be negligible, and error control is ultimately
limited by digitization accuracy. A comparison of the error in unscaled data
and data scaled by a factor of 16 shows the error reduction achieved by scaling
the data. A comparison of the error in the scaled data and the data processed

using floating-point arithmetic indicates how closely the scaled data approaches

ultimate achievable precision,

In the first stage of processing, three-component triax data at each site
are combined to form a vertical component by multiplying each triax component
by one third and summing all three components (rounding to the nearest count
when the vertical component is output). In the case of unscaled data, the error
in each summand has a uniform probability density between plus and minus one
sixth (from digitization error), and a roundoff error with equal probability at
the three discrete points -1/2, 0, and 1/3. Since the probability density func-
tion is the convolution of four separate probability density functions, the result-
ant probability density function has a Fourier transform which is the product
of the individual transforms for cach of the four separate independent probabil-

ity density functions, For a uniform density between -c/2 and c/2, the

Fourier transform is

II1-7
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e -i27rsy -i7rcs iTcs
e dv = & . e

c y -i27rcs -127rcs

-c/2

sinflcs . _
o “-7TCS—-—— ( or 1 if s = 0 )
= sinc c¢s,
whcre

in T,

sincs = S80S (or 1 if s=0)
rs

For a finite-comb probability density function

n-1
1 2 j
p(y)=—n— 8(y--n—-).
j=-(n-1)
2

where n is an odd integer and § is the Dirac delta function, the Fourier

transform is

[ n;‘l -i27rjs
-i2frsy | 1
P(s) = / p(y) e dy = — e "
- 00 j=-(n-1)
2

The transform is a geometric progression, so that

iTrs -i7rs )
en - e n P(s) =
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- i27rjs
1 Z T n i: n
— e - e
= . n .

and

] (e iTrs = lo -17)'&*>/2i
P(S) = —n'

i7rs -irs
e 1 e n 21
sinrs

m—m (or 1if s is an integer multiple of n),

If the function }]C“(s) is defined for odd integers as the Fourier transform

just computed for the finite-comb probability density function, the Fourier

transform of the error in the vertical component for unscaled data is

sinc3 {s/2) }R3(s) - The maximum possible error is 5/6 count, In the case

) of data scaled by a factor of 16, the digitization error is multiplied by 16 dur-

ing scaling, but roundoff error is still the same. The Fourier transform of

\ 3
the ensuing error probability density function is sinc (168/3)3R3(s). The

maximum possible error is 8 1/3 counts. (At the same time that the absolute

error is higher because of scaling, the data points are 16 times larger, so

that the relative error is reduced.) For data going through a floating-point

processor, there is negligible roundoff error. The Fourier transform of the 3

3
corresponding probability density function is sinc (s/3). The maximum

possible error is 1/2 count, Inverse Fourier transforms graphing the error

probability density per count for unscaled data, data scaled by 16, and data
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passing through a floating-point processor are presented in Figure lll-1, The
physical size of the vertical scale was increased by 16 and that of the horizon-
tal scale reduced by 16 on the page in the case of data scaled by 16 to permit

meaningful comparison between the three modes of processing for the rela-

tive error in the vertical-component output,

In the second stage of processing, the vertical-component data traces

are funneled through a filter with exactly zero response at DC, The filter

weights (scaled by 215) for this filter were given previously on page 1I-9. The

equation which describes the filter implementation is

15

x.(t) = Z bJ. v (t-3),

j= -15

where x (t) is the prefiltered vertical-component trace for the i-th site at
i

time t, b, is the filter weight for the j-th lag, and vi(t - j) is the vertical-
J

component input trace for the i-th site at time t - jAt,

1
5, the roundoff error is presumed to lie at any

Since the filter
weights are all multiples of 2°

of the 32769 equally-spaced points between plus and minus one-half count, Both
of the end points are presumed to be half as likely as any of the interior points,

so that the probability density function for the roundoff error is
= ==

n
- -1

ply) = —él; oly +1/2) + -—rll— Z 8(y-%—)+%8(y-1/2)

= (.
| J= (- 1) _
n n ]
| = = =1
_ Z j Z j
= Br oy - =) + 5y - =)
o n . n
= = - '
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where n is 32768, The corresponding Fourier transforr is

b, o]
! -i2Ms
1 P(s) = / ply) e Y dy
5 -&
n o
2 i27rjs 2
2 1 - n - n
2l T
i . n ., n
J= -_z- J= -( 2 - 1)

which is the sum of two geometric progressions. Hence

iTrs _iTrs ‘;
e T - e P(s) ;

3 im(n+l)s im(n-1)s im(n-1)s _im(ntl)s 1
£ 1 n n n n 4
== le + e - e - e ‘
.,.l-« Zn -;
i/ As ims -ifts
= -l- n + e 4 e - e :
2n \© 3 '
so that i7rs ims ims -i7rs ]
P(s) = 1 fe Lo B e - e /24
: 3= n 5 ( iTrs i7s 3
4 n n .
e —e 2i |

SR

_ sinrs cos s

“| n sin(?s/n) n ,
or 1 when s 1is an integer raultiple of n. The function mn(s) for even
integers is defined as the expression just given. Under the assumption that

the errors in the separate vertical-component input points are mutu-lly in- ]

dependent and, further, independent of the roundoff error at output, the Four- !

ier transform of the resulting error probability density function for unscaled

data is

I11-12
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15 3 [b;s
JR32768(S) 11 sinc (—%—) 3R3 (bjs).

j= -15
Since the prefilter is symmetric about zero, b , = b, and the Fourier
3 transform above may be written
“ b s 15 b.s 2
A (s) sinc (2=} #_(b s) [] sinc®{I—)|d (b.s)
32708 3 3o = 3 3]

The maximum possible error for unscaled data is
15

1 5
7 * % Zlbjl

j= -15

counts or slightly less than 2 1/6 counts since the sum of the filter weight
absolute values is slightly less than 2 . For data scaled by 16, the Fourier

transform of the error probability density function is

16b s 2

3 1L 15 6 l16b s
m32768(s) sinc ( 3 ) m3(bos) j=ll sinc (—3L-)|:}I\3(bJs)]

and the maximum possible error is
15
1 25
=+ 5 20 Iy

j= -15

counts or slightly less than 17 1/6 counts. For data processed with floating -

1 point arithmetic, the corresponding Fourier transform is

b
3 oS 15 6 bjs
sinc | sinc
3 ; 3
j=1
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and the maximum possible error is

15

1
il b_'
2 Z ' J

j= -15

counts or slightly less than 1 count, Inverse Fourjer transforms giviag the

error probability density per count after prefiltering are shown in Figure 1II-2

for unscaled data, data scaled by 16, and data processed with floating -point

arithmetic.

In the third stage of processing, the prefiltered vertical-component

data traces for all sites at time t are summed and divided by the number of

channels to create the beamsteer output, When division is performed, the re-

sult is rounded to the nearest count,. Multiplication by the reciprocal of the

number of channels has the effect of dividing the argument of the Fourier trans-

forms in the previous stage by the number of channels. On the other hand, the
assumption of mutually independent error between the individual prefiltered
vertical components at each site means that the Fourier transforms corre-

sponding to the sum of the traces (scaled by 1/M) must be raised to a power

equal to the number of channels. Prior to rounding off to the nearest integer,

therefore, the Fourier transforms of the beamsteer output error probability

density functions are

Fm A 18(%° Fm AN B 2V (25F N
32768 (T) sinc ("ﬁ) 3(T) ,” sinc 18 3(5)

b — '}:l
6 i 6 12
[ 16b s b s 15 16b s b,s
a8 B . 18 o o .36 j b 15 j
32768 (e) sine ( 18 ) 3]63(_5_) jgl Sine ( 18 ) 3(‘6‘)
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ERROR PROBABILITY DENSITY PER COUNT AFTER
PREFILTERING VERTICAL COMPONENT
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and

b
18 bos 15 36 .S
sinc TN ﬂ sinc —J_-IB

j=1

for unscaled data, data scaled by 16, and floating -point data, respectively,
when six channels are used in the adaptive processor. The beamsteer error

probability density functions prior to roundoff are shown in Figure III-3 for

the three cases considered. Before rounding to the nearest integer, the max-

imum possible errors are exactly the same as in the previous stage -- 2 1/6

counts, 17 1/6 counts, and 1 count, respectively.

In those instances where integer arithmetic is employed, roundoff
error may occur at the seven discrete points ranging from minus one-half to
plus one-half count at increments of 1/6 count. The two end points are
assumed to be half as likely as the interior points, so that the Fourier trans-
form for the roundoff error is 4K 6 (s) both for unscaled data and data scaled
by a factor of 16. The beamsteer roundoff error probability density for both
cases is pictured in Figure III-4, According to the assumptions stated earlier,
floating -point arithmetic produces negligible roundoff error in the beamsteer

output,

To determine the beamsteer error probabhility density functions after

roundoff for unscaled data and data scaled by 16, the Fourier transforms prior
to roundoff are multiplied by Y 6 (s}, and inverse Fourier transforms are
taken. The probability density function for the floating-point beamsteer error
is the same as before. Figure III-5 gives the three specified probability den-

sity functions. After roundoff, the maximum possible errors are 2 2/3 counts,

17 2/3 counts, and 1 count, respectively. One-half count is added to the
maximum beamsteer output error when the output is rounded to the nearest in-
teger. No roundoff procedure is performed when floating-point arithmetic is

used,
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In the fourth stage of processing, each individual component of the

vector (X - X) is formed by subtracting the prefiltered vertical component

for the i-th site from the beamsteer output at the same time, No further

roundoff error is produced: either integers are subtracted from integers or

floating -point arithmetic geénerates no significant error. The error in an

individual component of (X - X) is

M
3 D% WD |+ g - xit) + egeg)

k=1
M
1 Lo -
- i E : xk( i) - xi( -j)
k=1
[ M 1
1 2 : ) .
eb(t-j) + i ek(t-J) A ti(t-_])
L k=1 d
- M T
1 -
= f.u(t-j) + T Z ek(t-j) - (—l\—dml—) ei(t-j),
k=1
L k#i =

where éb(t-j) is the beamsteer output roundoff error at time t-jAt (due

solely to the roundoff operation carried out at the tail end of the beamsteer

output computation), where ¢ (t-j) is the error in the prefiltered vertical
i

component for the i-th site at time t-jAt (the same component for which

is being evaluated), where

the error in X - X ek(t-j) is the error in the

prefiltered vertical component of the k-th site at time t-jAt, and where M

is the number of channels. 1If the term tb(t—j) is ignored and P(s) is the

Fourier transform of the probability density function for the error in any pre-

filtered vertical component, then
5s
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is the Fourier transform of the probability density function for the crror in

each component of the vector (i - X). (As in the case where the beamsteer
output error was discussed, the random variables Ck(t-j) are considered

to be mutually independent.) Figure III-6 shows the corresponding probability
density functions for unscaled data, data scaled by 16, and floating -point data,
respectively. In each case, the maximum possible error (ignoring the beam-
steer output roundoff error) is 5/3 as large as the maximum possible pre-
filtered vertical-component error. As a result, the corresponding maximum
errors are 3 11/18, 28 11/18, and 1 2/3 counts. When the term eb(t—j) is
not ignored, the Fcurier transform of the probability density function for the

error in each component of the vector (X - X) is

o @] o6

for the two cases where integer arithmetic ir employed. The error for floating-
point data remains the same as before. The probability densities for unscaled
data, data scaled by 16, and floating-point data are graphed in Figure III-7,
Maximum possible errors are increased by one-half count during integer
roundoff, and the three maximum errors are 4 1/9, 29 1/9, and 1 2/3

counts,

As the various probability densities were computed, standard devia-
tions for the error were calculated. Table III-1 is a summary of the standard
deviation and maximum possible error at each stage for the three modes of

processing examined.
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C. DIRECTIONAL ERROR OF THE VECTOR (}—(-Z()

1. Synopsis of this Subsection

In the next part of this subsection, the geometrical relationships be-

tween error in the vector ()—(-X) and the maximum-likelihood constraints on

1
the filter update vector (Anew_Ao

d) are explored. By separating the error

vector into the part E
c

E

due to error before beamsteer roundoff and the part
b due to the roundoff process occurring at the very end of the beamsteer
output formation, it is possible to show that the vector EC lies within the con-

straint space and the vector Eb is normal to the constraint space.

In part three, probability distributions for the squared ma

Ep

gnitudes
2

’

E
c

= 2
, and IX-X| are specified.

In part four, the probability distribution is given for the angle « be-

tween the vectors Ec and (}_(-X) within the constraint space.

In part five, the probability distribution for the angle 6 between the

vector (i-X) + EC and (?(-X) is derived and evaluated. The angle 6 is the

angle between the vector (_)—(-X) and the projection of the vector (}—(-X) + Ec +

Eb onto the constraint space.

In the final part of this subsection, a mathematical expression for the

probability of the angle between the vector (?(-X) 4 EC L Eb and the vector

(}_(-X) is presented. This angle is the angle of error in the vector (}_(-X).

2. Geometrical Relationships Between the Error in (_X-X) and

the Maximum- Likelihood Constraint Conditions

The maximum-likelihood filter set is designed to pass,with unity re-
sponse at all frequencies, a signal from the desired look direction. Provided

that the data channels have been time-shifted according to the beamsteer time

delays, this requirement results in the 2N+l equations
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M

Zal(J): 8_]0 (J= -N,...,-l,O,l,...,N),

i=1
where 8,0 is the Kronecker delta operator. If the filter change vector
d
(A"Y A%l iatisfies the relationships
M
E : new ., old .
[ai (J) - ai (J)] =0
i=1

and the old filter vector satisfies the maximum-likelihood constraints, the new

filter vector also satisfies the constraints:

M M M
d d
E V() = E 22145 + E , [a’.‘e“’(j) NS (j)] = 5,
i i 1 1 jo
i=1 i=] i=1

Henceforth the constraint space will refer to the set of vectors satisfying the

restrictions

M

> [a’i“"wu) : a‘i“d(j)] = 0

i=1

imiposed or the filter change vector for all lags j. These 2N+l equations each
define a plane of dimension M-1 in the M-dimensional subspace corresponding
to the j-th lag. If unit vectors Uj (each within the subspace associated with

the j-th lag) are defined by the equation

111- 26
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6. °
| J N
F 6_]0
v, 5 5 (j = -N 1,0,1 N)
j M | jO | J 1 0y » YUy lyee ., ’
SjN

the limitations on the filter change vector may be expressed with vector nota-

tion in the 2N+l equations

d
U;I'(Anew_Aol): 0.

In the subspace connected with lag j, U, is a unit vector normal to the con-
J

straint plane., The vector (—}Z-X) necessarily lies within the constraint space:

M )
T = 1 E: = .
UJ. (X-X) = Nivi [X(t-J) - Xi(t-J)J
i=1
M
1 - .
i Mx(t-j) - Z x.(t-])
i=1
= 0
since
M
] .
X(t-j) = i x(t-]).
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In the previous subsection, it was demonstrated that the error in a

single component of (;(-X) is
M

€+ o | D et | - e,

k=1

where Gb(t-j) is the beamsteer roundoff error at time t-jAt and where

ék(t-j) and ei(t—j) are the errors in the prefiltered vertical component at

time t-jAt for the k-th and i-th channels, respectively, The error vector

may be broken down into the portion E, due to beamsteer roundoff error and

the portion E due to error in the prefiltered vertical component outputs. Since
c

the beamsteer roundoff error is identical for all channels at time t-jAt, the

N
E, = JM Z €, (t-j) Uj,

j=-N

vector Eb is

a vector normal to the constraint space., The space of all such possible vec-

tors Eb is spanned by the 2N+l orthonormal vectors Uj . It is therefore

of dimension 2N+1 .

The vector EC, on the other hand, satisfies the constraint equations:

M M '
T 1 1
U  E = —— o ) - et
RN 30N E- D DENES PR
i=1 k=1
M M
= =L E €, (t-5) E (t-) 3
= L (E-3) - €.(t- f
k=1 i=1 |

1l
(@]

And so it must lie entirely within the constraint space. In the subspace coin-

ciding with time t-jAt, the vectors
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1 T M-l
. =1
1 . 1
U, = e— ’ W . = ’
i b VM i VMm-1)
1 -1

_ o —_— = : —_
. M-2 0
: ] -1 M-3
WZ, =\/__—-—==————____ 3 W= 1 _ -1
?. J (M-l)(MOZ) : » 3j (M-Z)(M_§T . . ,
- .
g -1 | -l
! o0 ™
E
w =1 0 1 :
?"- _ . P .
: M-2,j V3.2 ) , and WM-l,j T ,
] -1 i
: L_—l -1
; p— 1N pom—

form an orthonorral basis. The inner product between Ec and W, Iis

3 1j
Z ep(t-j) - (M-i) € (t-j)
i Elw, = SR
¢ VIM#+1-i) (M-1)
M i-1 M

. 1 . . 1 S
. (M+1 -1) { T Z Gk(t-J) - éi(t-J) } + Z{ N Lek(t—j) - ep(t-j)}
' - k=1 p=1 k=1

V(M+1-i) (M-i)

This inner product is not identically zero, so that the vectors Ec fill the space
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spanned by the orthonormal vectors Wij (i=1,2,...,M-1;j=-N,...,-1,0,
1,...,N). The space of all possible vectors E , therefore, is of dimension
c

(M-1) (2N+1).

B, Probability Distributions for the Squared Magnitudes
2 2 = |2
E | , |E‘ | , and |X-X
c b

Let the vinculum operator Q for any function Q of the M(2N+1)
variables ei(t-j) denote the mean ¢! the function Q over all possible values
of ei(t-j):

M ei(t-.]):uJ
I 1! Q ( II II »p [e.(t-j)]d €.(t-j){ .
el i i ' '

€.(t-j)=-00

Q =

2
The mean K of the squared magnitude EC| of the error vector EC

within the constraint space is

N M M )
. 1 :
= E E fi(t-J) v E 6k(t-J)
j=-N  i=1l k=1
N
M , 2¢(t-3) M : M M _
= E € (t-) - —5— E € (t-j) + ;/1—2_ E E €, (t-]) ep(t-J)
j:-N i=1 k=1 k=1 p:l
N M M M M M
= ez(t j) Ll (t-j) € (t-j) + : t-) j
= E E -3 - €(t-j) € (t-]) + €, -J)ep(t-J)
j=-N L i=1 i=1 k=1 k=1 p=1
N .M M M
= 62 . 1 ﬂ 0 Q :
E E i (t-§) - <= €;(t-J) e (t-)) :
j=-N L i=1 i=1 k=1 :
;
1
h
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= (M-1)(2N+1) Eiz(t—j)

provided that the zero-mean random variableg

ei(t-j) are mutually indepen-
dent and identic ally distributed,

The variance rrd of ‘E o is
C i C
|- ] M M 2 2
2 ; 1 .
= Y = — 2 2
o ; E E €.(t-j) M E : ck{t JIJ ; H,
L j=-N =] k=1 i
- N M M M s |8
M-1 z: 2 ] z: Z . .
Fr { E : S Ei{t—_]]' vy Ei“‘ﬂfk{t‘ﬂ} “ﬂcf i
L j==-N i=] i=] k=1 j
i#k '
N M M M 2 3
M-1 2 2 1 "
= Lot E t-j) - . - — E E - - :
{ 1 61( j) Gl(t j) N €.(t J)ek(t J)} ‘]
j=-N i=1 i=1 k=1
i#k
2 N N M M
M-1 2 : 2 : 2 2

= —_— E € (t-i) - t- = -
< ¥ ) i( j) 61( J) fk(t q) ek(t q) ;
j=-N  g=-N i=1 k=1 ;
:
;
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j=-N q=-N  i=1 k=1 [f=1 p=l
> N M 2
-1
=(I\;4 ) Z Z{é (t-j) - €. (t-])
j=-N i=1l
N M ,
l i 3 3 . . . 0
+ F Z Z[Ei(t-J)Gk(t-J)Ei(t-J)Gk\. it ei(t-J)ek(t-J)ek(t-J)ei(t-J)J
jZ'PJ i=1 k:=1
i#k
2 N M )
M-1 5\ 2 o
LY v - T .
J'=—N i=1 |
M :
+ E }:Z f(t_])f(t_])
_]—-N i=1 k=1
i#k

e —_2
M-1) (2N+1 2 . z z
= (____)Tfi_.._){(M-l)[éi(t-_]) - fi(t-_])jl + Z[Ei(t-J)] }

under the same assumptions as before. The quantity inside the braces is (M-1)
2

times the variance of Gi(t-j) plus twice the squared mean of eiz(t-j). If the

unsquared random variable ei(t-_j) were aormally distributed, the following

equations would be valid:

— 2 —_—1c
By o T ) -
[Gi(t-_]) - Gi(t-_])] = Z[Gi(t-_])] :
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2
2 2 . 2 .
(rC = (M-1) (2N+1) Ei(t-_]) - ti(t-J)J :

. [ > 2
(ri: 2(M-1) (2N+1) ‘iz("j)]

In that event, these cquations could have been deduced by trivial manipulations
of the X 2-distribution for (M-1) (2N+1) dimensions. Unfortunately, the pre-
filtered vertical-component output error ti(t-j) is not normally distributed,
25 can be seen from Table 111-2, which lists the variance of Eiz(t—j) together
with the ratio of its variance to its squared mean for unscaled data, data scaled
by 16, and floating-point data. The ratio in the righthand column is sufficiently
differcnt from two that the non-Gaussian character os ei(t-j) must be taken

into account.

2
The random variable ,Ecl » on the other hand, is the sum of the
|

2N+l (i.e., 31) independent, identically-distributed random variables

M M 2
. 1 .

E fi(t-J) = E tk(t-J)

i=}l k=1

The Central Limit Theorem will be assumed valid, so that the probability dis-

2

tribution of |E can be approximated by a normal distribution with mean
c

f¢  and variance o | Table 111-3 gives the mican, standard deviation, and
c
. 2
variance of IE
| c

plot of the cor:esponding probability density functions for all three cases.

for the three cases being considered. Figure 111-8 is a

(2
The randoni variable Ebl » similarly, is the sum of the 2N+] in-

2
dependent, identically-distributed random variables Méb(t—_j). In the two

. . . . . | 2 . . .
cases 1nvolving integer arithmictic, IEI l has the same probability distribu-
{ b
tion. With six channels, the probability mass function for the unsquared ran-

dom variable eb(t-j) s
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TPCY)
Oo 2 T
0. 1+
0 25 50
(a) Unscaled Data
TPCY)
0.004 + TPCY)
lo 0 T
0.003 +
0,002 1 0.5 1
Oo 001 'L
0 2560 0 10"
(b) Data Scaled by 16 (¢) Floating-Point Data
FIGURE 111-8
PROBARBILITY DENSITY PER COUNT SQUARED FOR THE RANDOM VARIABLE EC .

(SQUARED MAGNITUDE OF ERROR VECTOR PROJECTED ONTO CONSTRAINT SPACE)
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R My

ply) = 1/12 (y = -1/2, 1/2)

ply) = 1/6 (y =-1/3, -1/6, 0, 1/6, 1/3),

2
so that the probability mass function for M Eb(t—j) is

ply) = i/6 (y=10,11/2)

ply) = 1/3 (y= 1/6, 2/3).

The probability mass function for

Eblz is obtained by convolving this func-

tion with itself 2N+l times. Figure 111-9 pictures the resulting probability
mass function. Probability is concentrated at discrete points between 0 and

46 1/2 at intervals of 1/6. The vertical lines give the probability for each
discrete point. The mean, standard deviation, and variance are 16. 361 countsz,
2.805 countsz, and 7.870 counts4, respectively. Note that the plot is slightly
skewed: the mode point (16, 167 countsz) is slightly below the mean, and the
probability envelope falls off somewhat less rapidly on the right, When float-
ing point arithmetic is used, the beamsteer roundoff error is assumed to be

2
negligible, so that IEbI = 0.

In the case of the random variable I}_(-XIZ, the probability distribution
may be measured. A four-hour noise sample from day 238 of 1970 was used
for this purpose. The quantity l}_(-Xlz was computed every 31 points using
integer data scaled by a factor of 16. The resulting values were divided by
256 and sorted by magnitude to produce the cumulative distribution function
and histogram of Figure 111-10. In the histogram, a bin width of 1000 counts2
was utilized. The vertical axis indicates how many times values of If—X'Z
occurred within the limits of a particular bin. The probability distribution of
Figure 111-10 applies both to the case of unscaled data and floating -pcint data.

To obtain the equivalent distribution for data scaled by 16, the horizontal axis

needs to be multiplied by 256,
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FIGURE 111-10

CUMULATIVE DISTRIBUTION FUNCTION AND HISTOGRAM FOR THE
RANDOM VARIABLE |X-x|2 (FOR A NOISE SAMPLE COVERING THE
INTERV AL 0757-1150 ON DAY 238 OF 1970)
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4. Probability Distribution For The Angle « Between The Vectors
EC and {X-X)

Within the constraint space, the direction of ()_(—X) is presumed to be
independent of the direction of EC. This assumption may be satisfied in a
number of ways. For example, if the multidimensional probability density
function for either EC or (')E-X) were dependent solely on the magnitude of
the vector, this assumption would be satisfied. Such would be the case if the
components of either vector were mutually independent and normally distri-
buted. More realistizally, if the preferred orientations of one vector were

weak and not too strongly related to the preferred orientations of the other

vector, the assumption would be a good approximation.

Under the assumption just described, the probability that the angle
between EC and (X-X) is less than the angle « is equal to proportion of a
sphere subtended by a cone of angle a in a space of n= (M-1)(2N+1) dimen-
sions, where n is the dimension of the constraint space (n = 155 for 6 channels

and 31 filter points per channel). The axis of the cone may lie along any di-

rection in the constraint space.

To find the proportion of the sphere subtended by a cone of angle « ,

the polar coordinate transformation

=

7,1 cos Un-l

7n = P sin cos §

2 n-1 n-2

zn = P sin ¢ sin # """ sin 6_ cos #
n-1 n-1 n-2 2 1
7n = P sin ¢ sin 6 """ sinfl. sin #
‘n n-1 n-2 2

is made. The superscript n denotes the dimension of the space in which the

111- 40
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transformation is made. The Jacobian

n n n
a<zl. ZZD"'D/‘n>
otlp

expanded in terms of minors relative to the leftmost column of the determin-

ant, is

n n n n n n n n
6,,1 a(uz, z3,,.,, Zn) azl alzz, z3,,,,,zn>

o @ <"n-1’ UNETIRY 91) o0 a(p,()n_z,..., 9;)

since GZT/aOi = 0 for all values of i from 1 to n-2. The following part-

jal derivatives are easily evaluated:

0z

30 = cos ()n-l
R

— 1 = -p in 0
80 *1 Tho1

The corresponding polar coordinate transformation in the next lower dimen-

sion is
n-1
= f)
7 p cos 2
B _  Smin h ofeosd
7, = psin 0 5 cos 3
7n-l = in ¢ in in f) f)
5 B p sin 2 sin AR sin 0, cos
n-l o i @ . 86 in 6. sin 0
2z 1= p sin ) 2 sinff 5 ... sin ¢, sin #,
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Note that, for all values of i from 1 to n-1,

n _ in 0 n-1
TS I IS
so that
) 'n—l
a/'i+l = sinf ?/‘i
ér 7 'n-1 9p ’
n . n-1
9741 , 0%
= sin (/ I
o6 =t 8.
J J

for all values of j from I to n-2, and

n n-1
9% 41 n-1 2
= cosf) z, = pcosf
a()n_l n-1 1 n-1 anr
n-1
. aZi n-1
since p = 2z, . Therefore,
on 1
{ n n n n-1 n-1I n-1 :
My Z5E L 2 e O\Z) 75 sreea?og 1
= P cos f sin { :
: 0 () n-l n-1 a p () 0 ‘
o\ P n-1""""""1 P i Jp U U Sy 1

a( n-1 n-1 n-l) 1

2 - Z lzr) R -

+ P sin 0 lsinnzf’ I - o) '
n

- n-1 4
) i
a(t. 0 e ”1) |

I

I sin

o : . . n-2

The Jacubian in n dimensions can be expressed as the product of f sin f I -,
n- E

and the corresponding Jacobian in the next lower dimension. For the case of

Soi

two dimensions,

2 = ) cos t ’
Zl = pcos 1 ;
2 1
A ay =P sin

111-42 g




and the Jacobian for two dimensions is

azi 0z

2 2 or op

GGI, Zz)

- azz 622

a(/),ﬁl i 1 2
00 o6

1 1

cos ()1 sin 01

- P sin 01 P cos 01

n

[ (cos2 01 + sin2 f)l) =P

By the appropriate inductive reasoning,

a( n n n) '
Z. 5 i g 2 §
1 2 I Pn_l sinn-2 o sinn-3 f . sinl ] .

n-1 =2 ° 2"
a(.en_l. ,01)

The vuolume V(q,n) inside a sphere of radius r and inside a cone of angle

in an n-dimensional space is

o 2 r

n-1 . n-2 B¢ el n-1
V(ia,n) = 2 sin f) do I1 sin® = 0d6, P dpe.
n-1 n-11} . J )

0 =13 0

The surface area S(a,n) on the surface of a sphere of radius r and lying
inside a cone of angle a is OV(«a,n)/@r, so that the proportion of the spher -

ical surface subtended by a cone of angle « is
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4]

n-2
i ¢ d
/sm e en-l
S(a,n) 0
S(m,n) T
fsinn-ZO df
0 n-1 n-1

This expression is the probability P(a,n) that the angle between two vectors

from the center of the sphere to arbitrary points on the surface of the sphere

is less than or equal to the angle « (when the probability density at all points

of the surface is uniform).

The integrals may be evaluated in closed form using the two formulas
i-1

x { o[ +2(k-j)]
j_ 2k Z . 142 (k-1)
sin  xdx = - cos x sin X

4=t
i=1 jI:Il [2(k+l-j)]

: [1 +2(k-j)]
L)

L K

0 |20c-)]
j=1

i-1
k+1 11 [Z(k-.tl-j)]
j . 2k+1 = - cos x E J=1 sinz(kﬂ-l)x
sin xdx

i=1 i [l f 2(k+l-j)]

s

j=1

which are valid for all non-negative integers k. When the upper index in a

summation sign or product sign is smaller than the corresponding lowcr index,

the results are 0 or 1, respectively. These formulas were obtained by math-

ematical induction using the formula

. k-1l
jsinkxdx = . LosX im a, g ksl I sink-zxdx,

k
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E which can be derived using integration by parts. P(a,n) is a cumulative dis-

tribution function for a , so that the probability density function is

OP(a, n) sinn-za

Oa 4 -
fsinn 2 6 de %
b n-1 "n-1

Figure III-11 diagrams the cumulative distribution function and probability |

3 deunsity per degree for the angle o between Ec and (-}_(-X) in a 155-dimen-

sional constraint space. Note that the probability density function in strongly

o . . g .
peaked near a = 90", As the dimension of the constraint space increases,

the cumulative distribution function approaches a ste

p function jumping from
0to 1 at 90°,

Under the same circumstances, consequently, the probability

3 q o
density function approaches a delta function centered about 90,

5. Probability Distribution For the An

il gle 6 Between the Vectors
1 (X-X) +E_and (X-X)

It is possible to construct a two-dimensional plane passing through the

=— i
origin, any specific vector (X-X), and any specific vector Ec' The resulting F

plane must lie within the constraint space since the origin and the vectors

(-}—(-X) and Ec lie within the constraint space. Figure III-12 illustrates such a

plane. In the figure, (i-X) and EC are as defined previously in this section:

@ is the angle between the vectors EC and (-}E-X) » and 0 is the angle be-

tween the vectors (-}_(-X) and (-}E-X) + EC.

If EC is not a scalar multiple of (X-X), the angles a and 6 are between

0 and 7 and the sine law holds:

o o .0
s o

sin(a-9) |-)_(-X'
e T TR ;.
2
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CUMULATIVE DISTRIBUTION FUNCTION AND PROBABILITY DENSITY
PER DEGREE FOR THE ANGLE a BETWEEN (X-X) AND E. IN A
155-DIMENSIONAL CONSTRAINT SPACE

II1- 46

3
i




R CYCTELE W A M L LT pn b T Sa—

(X-X) + E_

FIGURE III-12

TWO-DIMENSIONAL PLANE PASSING THROUGH
THE ORIGIN, (X-X), AND E_
[




o a

e Lint bl sl

Division by sin @ yields the modified equation

I%-x|

cotf - cotax = —m—m—
|Ec|sm 15

Since the cotangent is a monotonically decreasing function over the range 0 to

m, 0% 00 if and only if cot OoScot 6. Thus @< 6, if and only if

cotf - cota < _I:)S-_X'___
o IEC|sln a

This condition is automatically satisfied if « < 00 » since cot 8 - cota <0
o

when a <9 . Hence @< ¢ if
o] o]

orif

lE I < |5‘(-X' sin 6,
c sin (- 00)

when a« > @ . It is not necessary to consider the case where EC is a scalar
o

multiple of (X-X), for a must then be either 0 or 7: the probability that

a £ 0 ora >7 iszero.

Since all quantities in the inequality for a > 00 are non-negative, both

sides ot the inequality may be squared:

2 .2
|EC|2 < 1X-X.|Zsln 6 (a>00).
sin (- 00)

With a few more minor manipulations, the probability that ¢ < 00 when

a > § becomes the probability that
o

A

2 " :

- ) .

lEcl He < Hc |X-X' sin2 6, 1 ]
Oc Oc M sinz(a- 00) 1 ‘
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where u  and o are the mean and standard deviation of the ra-dom vari-

c
. 2
able 'EJ& Since IEC| is normally distributed, this probability is

- 2 .2
F{#C lX-X| sin 00 o }

, 2
c p. ein (a-6)

where F is the cumulative normal distribution function

z
2
1 -y /2
F(z) = —= / e dy .
vem ~— 00 i
With the previous assumption that the angle a does not depend on the magnitude %

of E_, the probability that 6 < § is ‘

a=7 I |}_(-X'2 sin2 6

P(6<g) = Pla<g) +f F { =

2
a:()o pe S (3= 00)

-1 }p(a)da, u

where p(a) is the probability density function for the angle a. For values

ok e R e -

of 00 such that P(a < go) is negligible,

- 32
H - 2
P(g < 00) = F{ < lX X' tan 00 -1 }

% Ke

is a good approximation to the desired probability since p(a) is strongly peak-

ed at @ = 7/2 when the dimension of the constraint space is high.

2
The mean /.LC and standard deviation o of IEc are fixed for each

of the three modes of processing under examination. Given any squared mag -
- 2 -
nitude 'X-X| of the vector (X-X), a cumulative distributior function P(e <)
o
for the angle 6 between the vectors (T(-X) and (;(-X) + EC can be computed,

R . s |2
When such distribution functions are evaluated over a range of values of |X-X| y
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the result is a probability which is a function of the variables 00 and l)_(-X'Z,
Figure III-13 is a perspective drgwing of this probability over a rectangular
grid of the values 00 and I)—(-X| . The probabilities are plotted for the case
of unscaled data, data scaled by 16, and floating-point data. In each of the
three cases, two drawings are plotted from slightly different viewpoints, The
lower plateau in each drawing corresponds to a probability of zero, the upper

plateau to a probability of one.

By specifying a probability distribution for the squared magnitudes
2 —
&-X' of the vector (X-X), the probability distribution for the angle § can
be fouind:

I%.xl%) ar [%-x1? .

1
P(0<g) = j PO < g
0

The values l}—(-X|2 computed during a four-hour noise sample from day 238
of 1970 (see Figure III-10) have been assumed to be equally likely. Figure
I1I-14 shows the resulting probability density per degree for the angle @ be-
tween the vector \S-(-X) and the projection of the vector ()—(-X) + Ec + Eb on-
to the constraint space. In the graph corresponding to each of the three modes

of processing, there are minor bumps due to local concentrations or local

= |2
gaps in the values 'X-X' .

=7 |2
If the squared magnitudes |X-X| and IEC'Z are replaced by their

. o .
mean values and the angle a is nssumed to be 90", a useful estimate of the

mean 60 of the angle 6 is obtained:

Fe

e(1x-x/%)

. 2 - 2
where E('X-Xl ) is the mean of the squared magnitude IX-XI . For the

= |2 2
noise sample from day 238, the niean of lX-X' was 9693 counts
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(2) Unscaled Data

(b) Data Scaled by 16

(c) Floatiug-Point Data
FIGURE II1-13

CUMULATIVE DISTRIBUTION FUNCTION P(6 < 9 ) OVER A RANGE
OF THE SQUARED MAGNITUDE |.}-(--X|2
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(c) Floating-Point Data
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THETA FIGURE III-14

THETA

PROBABILITY DENSITY PER DEGREE FOR THE ANGLE

BETWEEN THE VECTOR (X-X) AND THE PROJECTION
OF THE VECTOR (X-X) + E; + E, ONTO THE

CONSTRAINT SPACE
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for unscaled data, 2,481,422 counts2 for data scaled by a factor of 16, Thus

the estimated mean of 8 is

L8| 28,071  _ .o,
S = e
-1 1081,952 _  o..,
2 SN sy T
and -1 4.133 _ .o,.,
tr Vogees T U

respectively, for unscaled data, data scaled by 16, and floating-point data.

These estimates are close to the probability density peaks of Figure III-14,

6. Probability Distribution i»r the Angle ¢ Between the Vectors
(X-X) + E_ + E_ and (X-X)

As before, it is possible to construct a two-dimensional plane that
passes through the origin, any one of the vectors (X-X), and any one of the

vectors (—)E-X) + EC + E Such a plane is shown in Figure 111-15. In the

b

figure, ¢ 1is the angle between the vectors (T’-X) + EC + E. and ()—(-X) and

b

Eb is the beamsteer roundoff error vector. (;(-X), Ec' and « are as defined

previously, The line running from the origin to (X-X) has been extended to

the point where (X-X) + EC + E projects onto it in order to form a right

b
triangle. Since Eb is perpendicular to any vector within the constraint
space, the leg of the right triangle adjacent to the angle ¢ is of length I%-x|
+ IEC | cos « . The side opposite the angle % consists of the sum of the
vector Eb and a vector of length EC sin « (within the constraint space

and perpendicular to X-X). Since Eb is perpendicular to the constraint

2
space, the length of the side opposite ¢ is \/'ECI sinza o IEbI2 . Thus the

cotangent of ¢ is
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FIGURE III-15
TWO-DIMENSIONAL PLANE PASSING THROUGH

THE ORIGIN, (X-X) + E_+E,_, AND (X-X)
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l—)—(-X‘ + IE l COs (v
C

\/IEC IZ sin2 o + |Eb'2

Since the cotangent decreases monotonically in (0, 7), the angle ¢ is less

cot ¢

than or equal to any specific angle (/)o within the interval (0,7) if and only

if cot < cotp. Hence » <¢ if and only if
o )

|>—<-x| t |E | cos a
C

\/IECIZ e, |Eb|2

If ¢= 950 , cotP=cot fPo implies that

t <
co sbo

2 2 2 = ; 2 2
EC sin” «a 4+ 'Ebl = (lX-X| +'Eclcos «) tan ¢ ,

(o]

This equation is consistent with the conic section cor reSpmmmg to the inter-
sectlon of a cone of angle 9‘)0 and a cutting plane perpendicular to the con-
stramt space. The cone of angle fbo has its vertex at the origin and is cen-
tered about an axis through the origin and (X-X). The cutting plane is deter-

mined by the three points (X X), (X X))+ E o and ()—(-X) + E +E . Fora

b
given value of lX X' and a given angle o , the region where <p<q> can be
expressed as an inequality involving the two variables |E | and 'E ‘ In fact,

if (X-X) is selected as the origin of a coordinate system within the cutting
plane, the direction of the vectors Ec and Eb can be used to specify the
directions of the abscissa and ordinate, respectively, in a two-dimensional
’

Cartesian system with perpendicular axes. For example, if ¢ < /2 =
o

the region where <y  can be e<pressed in terms of the inequality
o

2 2 = 2 2
< |IX-
IEbl . < lX X" tan (/)o :
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which corresponds to the interior of a circle of radius |>_<-x| tan ¢o with its
center at the origin (;(-X) of the cutting-plane coordinate system. Since the

] axis directions are determined by Ec and E , tune coordinates are(IE |, IEbI)
c

b
for any vector pair (EC,Eb). Thus all points lie within the first quadrant of the

; new coordinate system for the cutting plane.

It is easier to define the region where ¢S‘% with inequalities which
express IEbI in terms of IEC| . Since the results obtained in this way will

help to specify IEcl in terms of |Ebl , they will be derived first,

If q‘)o= 0,9< 9”0 implies that ¢ = 950: 0 and

: 2 2 2
3 \/IE I sin «a + IE '
e c b

0 =

I-}-(-Xl + lEclcosa

hid s Ao b

Z 2 2
Thus IEbl and IECI sin @ must be zero. If 0<a<m, only the single
point (|EC' ) 'Ebl) = (0, 0) satisfies the requirement that ¢ < <,12) -l RLO= RN (8
IEbi must be zero and all values of IE ' must lie on the semi-infinite line
0 S‘Ecig w. If a=m, lEbI must igaiu be zero and all values of lEC I must
lie on the line segment 0< Ec S'X-X‘ . In this case, the angle % is un-

defined when IEC | = ' .}—(—XI A

m da < ¢ ,
If 0<q.‘>0< /2 an a_sbo
= = 2 2
e ¢ [lx-xl + 21%-xl |E | cos a+ |E |2 sinza(cot @ - cot ¢ )]
(o) Cc C (o)
- 2 2 2 2
= (lX-Xl + |EC|cos a) tan qSO = IECI sin a2 0
The required inequality

%-x| + |E_|cos a K- + [E | cos a
cot (,‘bo = < 1=

(';(-XI + IECICOS a) tan ('bo K \/IECI2 sinza + IE:IT

is satisfied if and only if
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0 SIEbIZS(l)?-XI + |EC| cos a)2 ta.n2 (/)o - IECIZ s:'m2 a.

If 0<(% <72 anda« >(% , P is always greater than ¢o if IEC|>

|.}Z-X| sin c‘g/sin(a- c’)o). The following inequalities are valid if sin a > 0 :

|X-X| sin asin $g _ 1% x|

E | sina >
c :
sin(a - ¢ ) cot¢$p - cota

o o

VE.

cot (bo >
\\/lEC'Z s:'m2 o+ lEbIZ

SR |Eb

Z 2 2 -
sin « + IE | cot ¢ >IE sina cot ¢ >=X-X| + |E | cos «a;
b o~| ¢ o c

li-X| +‘E ‘cosa
| €

The last inequality is still valid if IE

bl =) lanel | @ E gy lECI >
|§-X| implies that I)—(-XI +E |l cosm< 0 and hence ¢ = m. Now if |E <
| =

cl
IX-x%| sin & Isin(a-¢)

OSIEcl sin « < (|5_(-X| + lEcl cos a) tan (fz)

and

- 2 2 2 2
(IX-X' +II‘C cos a) tan </)o - IE*I sin a > 0

-

Accordingly, when |E_| < IX-x| sin & /sin(a- )
(o]

I}_(-XI + 'E lcos o IX-x| + |E | cos a
cot® = < e =

(|5-<-X| + IEcl cos a)tan ¢o \/'EC‘Z sinza + IEb|2

if and only if
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0 < |Eb|2 S(I?(-X' + |Ec| cos oz)2 tan2 g‘)o

. |EC|Z sin2 « .

When 0 < (jz) < 72 and @ >¢ , therefore, p<¢ if and only if both of the
o o

conditions
-}—(-Xl sin ¢
|E.| < -
sin(a - %)
2 - 2 2 2 .2
OS|Eb| S(lX-Xl + |Ec'cos a) tan 9‘)0 - IEC' sin «
are met,
If ¢O = 7w/2, _
lX-X' + IL lcos «
0 = cot ¢p & <

\/IECIZ sinza+ |Eb|2

if and only if

l;(-Xl + |E |cosa/ >0
c

If « < 7/2, the condition is always satisfied. If a > 7/2 , ¢ < g(’)) if and

only if

1% -xl 1% -3l sin b

el
¢ -cos « sin( a-¢o)

If 7/2< (f)os 7 and ¢ <¢ , ¢ is never greater than ¢>O . Either
o

a <72 and cota 20 so that

IE I sin « I-}—(-X,
C

cot qSO- cot @< 0 <

\/IEclz sinza + lEbl2 \/lECIZ sinzaf + 'Eblz
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ang '-}—{-Xl + 'E Icos x

\/PE, sm o+ ,El E

or « > 72 and cot a < 0 so that

cot¢ <

IElsin o
c
cot © 4+

(o}
2 2 2
\kE! sin (Y+,E |
c b

|%.x
Scot¢ -cota 0 £ l
o

( - cot a)

b R

2
/lE ,2 sinza+’E ,
' C b

and

A
%

Finally, if w/2 <cp Z 7 and « >¢

, ® is never greater than ¢
if 'E lL')\ xl em(b/sm(a q‘))

o
The following conditions are satisfied:

|K’-Xl sin a« sin ¢ -
,Ecl sin o & 2 = lX-X,

sin{(a - ¢ ) cotd - cot a
o o

2% 2 -
\/'E l sin « + lE ’ cot ¢ < ,E , sin « cot ¢ S,X-Xl + 'E l cos a;
C D o C o c

IF('-XI + lE Icos a
c

° \/,EC:Z Bk @ 4 ,Eb|2
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On the other hand, if lE |> '?-Xl sin (i)o/sin((v- d)o), then

('.)_(—X| + IECI cosa)ztan d)o -IEC|2 sin2 a2 0 and

~(Ixxl - |E_| cos a) “x-x1 4 E_| cosa)
C C

-C(_Td) =
(o]

o

if and only if
2 -_ 2 2 2 2
> N - - |E i .
IEbl > (lX XI + ,Fc| cos ) tan <f;0 I CI sin «

2 2
Since IEbl has a discrete probability distribution and IEcl is nor-
mally distributed, it is easier to compute the probability that ¢ < QSO when
IEC| is given in terms of |Eb| . For each value of lEbl , there exists a

range of 'Ecl values such that ¢ < gbo . The probability of this range of lECI

values is the difference between two cumulative normal distribution functions.

To specify the boundary of the region where ¢ éqﬁo » the quadratic equa-

tion

(|E |2 - |E |2)cot2¢ = (%-x| + IF Icos a)z
c b o c

is used to solve IEC| in terms of 'Ebl . Ordinarily only one solution for lEcl

is the correct definition of the boundary. Since the conditions for ¢ = 0 have

2
negligible probability ('Ebl = 0) and since ¢ ¢ g‘)o whenever 7/2 < (f)o

and o < g(b) » only the cases 0 £ ¢ £7/2 and #72< ¢ £ a will be discussed.
o o

When 0 £ ¢ 27/2 and ag ¢, the inequality |Eb| < |IX-x| tan ¢

guarantees that

x-xl + 'EC| cos a) tan q’)o é\/'ECIZ sinza + |Eb|2
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and hence that ¢ < ¢
o

2 2 2 2 2 2 = 2 2
\/IEC' sin o« + IEbl < \/lECI cos « tan « + !X-XI tan ¢

2 2 — - —
< tan gho\/IE l cos « + |X-X| < tan ¢o (IX-X' + 'Ecl cos a).
C

If |Eb| > IX-x! tan & when 02 ¢ 272 and s ¢, ¢ ¢ ¢ if and only if
o 5) o o

'E I satisfies 'he linear inequality
C

E | tang > |E | - IX-x] tan ¢

ol

when a= 0, the hyperbolic inequality

cot (/)O \/l)-(-XlZ + lEb|2 (cotz(x - col2 (/)O) = I)-(-XI cot v

IE | sin a A
c

4 2 2

' cot a - cot ¢

- o

when 0 £ o ¢ ¢ , or the parabolic inequality
o

|Eb|2 K o $ - 1% -x 2

lEIcosaZ
c

when a = ¢
o]

If 0<¢ <m/2 anda> P IECl must be no larger than I_)T-Xlsin ¢/
o o

sin{ - gbo) in order that ¢ < qxo (as was shown earlier). The most difficult

2 — 2
case occurs when 95O< a <m[2, Whenever lEb| >|X-X' /(cot2

@ is always greater than ¢ :
o

(|EC|2 sinza + 'Eblz) cot2 (,')O
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= 2
2 2 - 2
>/'E I sin a + 'X XI cot ¢
c o

2 2
\ cot ¢ - cot «
o

E

C

(&

= Z_ 2
. cos2 o+ IECIZ sinza (cotcho - cotza) + ,X-Xl L +|-}—(-X,
2

2
cot (/)o - cot «

EIE IZ cosza + ZIE Icos al%-xl +l'>_{-.‘(52 = (|X-x! + 'P_. lcos (y)2
C (o] C

since ) 2
OS(cotZ(p - cotza) IE lSin(x- lX-chota
o & >
cot ¢ - cot a
o
-~ :IECIZ sinza' (C0t2¢ = cOtza) =D ,ECICOSQ';(-X"*' !X-Xl cot a
o

2 2
cot gbo - cot «

EC '2 sin2

Thus \/ + IEb,Z cot ¢p > |}_(-X| + IE ,cos a and ¢>>c/)o . For
C
the range 0 < 'Eblz < '}_(-X'Z tan ¢ , ¢ < q)o if and only if
o

|.)—('-X|cot a+ cot ¢ \/I}_(-Xlz - lEbiz(cot2 ¢ - cotza)
Oé'Eclsin o L 2 2

2 2
cot ¢¢ - cot «
o

= 2
when ¢ < <72, For the range l}_(-detanzt/i < lEb,ZS 'X-Xl
o o

2 2
cot ® - cot a
both of the inequalities °

|}_(-X|cot « - cot (f)o\/l}_(-XIZ -IEbl2 (cot2 ¢>o - cotza)

< in o
5 > < 'EC’sm o
cot ¢ - cot o
o
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and

IF(-XIcota+ cot ¢ \/'-)-(.-XIZ = 'Eb'z (cotng - cotza)
|Eclsin a < = 2

2 2
cot (/) - Ccot «
o

must be satisfied if & < ¢) .| The regicn ¢ < ¢ forms an ellipse in the cut-
o o

ting plane when 0 < ¢ <am2,

o
I o< <n/2 < 4, s always greater than b
o

_ o
|X-X|tan gb ]
o

whenever lEb I =

cot > |X~X|
o

2 2 3 (2. 2.
\/,ECI sin o« + ,X-X' tan (/)0

IT(-XI '?-Xi + IEC| cos a

>

25 12 2
\/IEcl sin” o + |Eb| \/IEC

If IEbI < BCXItan P

3 1 >

é 83 + lEb,Z

when O<<%<7T/2§ a, o < (po

if and only if IE I
c
satisfies the circular inequality

|E '2 < IX-xl%tan? e - |E lz
C o b

when a = /2, the elliptic inequality

Y

cot e \/';(-Xlz - ,Eblz (cotch - cotza) + ')_(.-X,cot a
IECI sin o < 2 2

2 2
cot ¢ - cot «
o

wien -—72-7:-<a<7r-¢ » the parabolic inequality
o

-
i
il L T Y ”




= F2
Ix.x1° . |Eb'2 Lo’ o
O

'EC| (-cosa) <
2|% x|

when « = 7- (po, the nyperbolic inequality

= Y A
AR -X| cot a - cot P \/'X-X' + 'Eb|2(cot2a - cot2 %)
0 )

|Ec lsina <
2 2

cot a - cot 96

o

when - d)o < o <m, or the linear inequality
|EC‘ tan(f)0§|Y-X| tan d)o - |Eb|
when o« =,
It was shown earlier that ¢ < d)o if and only if
IEC|(-cosa)§ 1% -x|
when 7/2 = (,")O< o.

If m/2<¢p < a,¢p < @ if and only if lEc' satisfies the hyperbolic
o S

inequaility

|)_(-X| cot o+ cot qz) I?(-Xlz + |Eb|2(cot2a- cot2 gbo)

E
c

sin a < -

2 2
cot « - cot ¢

when « <7, or the linear inequality

|EC| < Ix-xl - |Eb| cot b,

when « =7. These last two inequalities are automatically satisfied when

IEC|_<_ 'X-X' sin ¢O/sm( o - qZJ_).
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Figure III-16 shows the region in the cutting plane where ¢ < ¢ for
= 7o

a variety of angles « and ¢0 . The normalized variables C =|Ec'/ X -xl

and B = |Eb| / Ix-x! replace the variables IEcl and IEb| » respectively,

The most easily obtained information about the probability distribution
. . . = . = 2
of ¢ is an estimate of its mean ¢ . If the squared magnitudes lX-X' ,

2 2
IE ‘ , and IEbI are replaced by their mean values and the angle o is assumed
c

to be 900,
- - M M
F = tanl \/ c + b ’
- 2
E (I1X-x1)

- 2 = 1 '
where E (|X-X| ) is the mean of the squared magnitude IX-X' , #c is 3

2 2
the mean of 'E I , and Hy is the mean of ,Eb’ . For the noise sample
c

from day 238 of 1970 the estimated mean of @ is

-1 28.071 + 16. 361 o
= 3 !
tan \/ 3693 521,
-1 1081.952 +16.361 _ o .
tan \/ 2481422 = 8T
-1 4.133+ 0.0 o, f
tan \/ 9693 = 111", !

respectively, for unscaled data, data scaled by 16, and floating-point data. The !

A

estimate of the mean for the angle of error in (_}E-X) is 47' greater for unscaled
data, less than 1' greater for data scaled by 16, and, of course, exactly the

same for floating-point data when the effect of the beamsteer roundoff error is

. 3
considered,

The associated equation
Mo +Hp

tan2 ‘;5—

- 12
E (IX-x]|%) =
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FIGURE 111-16

REGION IN THE CUTTING PLANE WHERE ¢ < ¢ IN TERMS OF
THE NORMALIZED CUTTING PLANE COORDINATES
C= lECI/ |X-X| AND B- E,|/ I X-x|
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can be used to select analog-to-digital conversion factors and ccmputer data
scale factors which achieve a desired angle of error ¢, If the A/D system
is fixed, for example, the minimum achievable angular error can be deter-
mined by considering only the digitization errcrs. This minimum achievable
error can be approached arbitrarily closely through the choice of & suitably
high data scale factor. As the data scale factor increases, so does the term

- 12 _
E('X-Xl ! when expressed in squared computer counts. In turn, the computer-

count value of E(li-X') is almost sufficient to express the computer -count RMS

level for the data points xi(t-j) and hence the number of bits required to express

it.

of guard bits needed to reduce the frequency of data clipping to acceptable levels

is a function of the fluctuations above the data RMS level. If both the A/D sys-

tem and computer data scaling are subject to control, a wider range of A/ D
coanversion factors and computational scale factors is possible. For a given

desired angle ¢, in this event, there will be a curve relating the A/D con-

version factor to the computer data scale factor.

The more useful approximation
2 2 = L2 2
P(p<¢p) x P (IEcl + IEb| < |x-x1° tan %)

is based on the assumption that the angle « 1is always #/2. Since the pro-

bability density for « is strongly and symmetrically concentrated about a
value of #/2 and since the probability that ¢ < ¢ 1is quasi-linear in the
= 7o

neighborhood of « = 7/2, the approximation is remarkably accurate. Along

= |2 2
the curve |X-X, tan @ = M (where the estimate is 1/2 when lEb|2 = 0),
o
the actual values ranged from 0.50 at « = 7/2 to less than 0. 55 at the high-

T |2
est 'X-X' value. In most cases the approximation underestimates P(p <o)
—~ o

and hence tends to overestimate the angle of error. By specifying a probabil-
ity distribution for the squared magnitudes 'f—X'Z » the probability distribu-

tion for the angle ¢ can be approximated:
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tan® ¢ ) dPIX-x|% .
(o]

Once again, as in the case of the probability density functions graphed in

= 2
Figure 1II-14, the values |X-—X| from a four -hour noise sample from day 238

of 1970 have been assumed equally likely. Figure III-17 is a plot of the corres-

ponding probability density per degree for the angle of error ¢ ., Some idea of

the accuracy of the approximation can be gleaned from a comparison of Figures

2
III-14 (c) and 111-17 (c). Ir the case of floating-point data, ,Eb| = 0 and the

two probability distributions are identical: the approximation has shifted the

twin peaks at 1° 7,51 and 1° 17,25" to 1° 7.8" and 1° 17.55" (only 0. 3! error).

» the twin peaks in Figure I1I-14 (b) are 0., 9!
higher than for the floating -point data.

In the case of data scaled by 16

After allowing for error perpendicular

to the constraint space, they are now 1,2'to 1.5 higher in Figure I1I1-17 (b)

than the peaks for floating-point data. With unscaled data, however, noticeable

increases are visible in figure 11I-17 (a) as compared with Figure II1-14 (a).

The first peak has mo ed 44.25' from 2° 55,5" t5 3° 39, 751 the second

53.25' from 3° 21, 375" to 4° 14, 625, These changes (due to beamsteer round-

off error) are in rough agreement with the 47' increase predicied by the approx-

imations for 6 and )

If the complete calculation is to be performed, probabilities must be

= 2
computed over a range of IX-X|“ and (,bo values. To obtain one of these pro-

babilities, a numerical integration over the interval 0 < a<7is necessary,

And, finally, for any particular angle @ , a summation of cumulative normal

2
distribution functions (each term corresponding to one discrete value of IEbI )

must be carried out, The necessary mathematical relationships have been de-

tailed in this part of subsection C, Although it is possible in principle to ac-

complish the required computations, they have not been done because of the

computer time involved. It is necessary to be content with the results dis-

played in Figure 11I-17.
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At this point, it is worth mentioning that the beamsteer roundoff erior

can be eliminated by multiplying each component x(t- j) - x (t- in the vector

(X X) by M, the number of channels:

M [?(t-j) a xi(t-j)]

M

|_k=1
old

In calculating the filter change vector (A - Anew), a compensatory scaling

x (-5 |- Mox(t-j)

by 1/M can be executed. In the scaled ve-tor M(_)E-X), all the quantities invol-
ved are integers., The result is an integer, and no roundoff error is produced
in the scaled beamsteer output M ®(t-j) . If no overflow occurs, the scaled
vecter M(X-X) satisfies the constraint conditions exactly. The eradication of
the beamsteer roundoff entails one multiplication for each point xi(t-j) used

in the adaptive filter update. If the values M xi(t-j) are stored for use in sub-
sequent updates, only M multiplications per sample period are required.

Even so, however, the additional computations may preclude implementation

of this procedure,

The discussion near the beginning of subsection B mentioned that noise
reduction for one data sample was increased from 2 dB to 6 dB (relative to the
beamsteer output) simply by scaling the data points by a factor of 16. In view
of the relatively small angle of error in the vector X-X (even for unscaled

data), the principal source of error probably occurs elsewhere,.

D. ERROR IN THE FILTER OUTPUT XTA = y(t)

In this subsection, the effects on the adaptive filter output y(t) of
error in the data vector X are studied. One effect is that the sign of the

adaptive filter output may change so that the filter step




2K_ y(t) (X-X)

(X-X) T (X-X)
is in the wrong direction. As mentioned in subsection A, the effect of re-
versing the direction of the filter update vector is the precise opposite of
what adaptive filtering sets out to accomplish: instead of reducing the mean
square filter output yz(t) , the sign reversal causes the filter vector to move
in a direction which tends to increase the average squared filter output. A
second effect is that the filter vector A does not move if the dot product
(% + Ec)rlA lies between -1/2 and 1/2 and is consequently rounded to zero
when integer arithmetic is used, (This effect does not take place when floating-
point arithmetic is employed.) When the f{ilter update vector cannot move, the
adaptive-filtering process is delayed until the next non-zero value y(t) of the
filter output. Over a large number of iterations, the result is an effective re-
duction in the convergence rate through neglect of those times t where the
adaptive filter output y(t) is zero. These first two phenomena are discussed
in part 1, A completely different effecct is that the filter output power is alter-
ed. A method to calculate the modified filter output power fr.om the original
crosscorrelation matrix (without digitization and computational error) and the

probability distributions for the error is derived in part 2,
14 Probability That y(t) Changes Sign or Rounds To Zero

In order to calcul ate the probability that the filter output y(t) changes
sign or rounds to zero after adding the error vector EC to the data vector X,

the probability distribution for the error in y(t)

N M
e (t) = >y Dl g

j=-N =l

before roundoff must be determined. Since the probability density function
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for the roundoff error ei(t-—j) in any single component of Ec is symmetric

about zero, the probability distribution for the error ey(t) in y(t) before

roundoff is the same as for the random variable

N M
E , z , lai(J)I e (t-j) .
j=-N i=1
The probability density function for this random variable is the convolution of

the probability density functions for the M(2N+1) random variables

' ai(j)lei(t-j). The variance of ey(t) is least when the adaptive filter output

is the beamsteer output

M
7 = 5 ) %)
T M i
i=l
and greatest when each filter weight ai(j) assumes its maximum absolute
value. In the adaptive filtering program used for this report, the filter

weights clip when their absolute value is one half, so that the highest vari-

ance occurs when

N M
fylt) = % Z Z €(t-3) .

Such a situation can happen when, at the zero lag j=0, four weights are 1/2
two -1/2, and, at non-zero lags j # 0, three weights are 1/2, three -1/2,
The probability density function for the most favorable case, i.e., when y(t)=
X(t), was plotted in Figure III-3, When, in the most unfavorable case con-

ceivable, all 186 filter weights are of magnitude one half, the probability

distribution for the random variable

N M
1 :
> E E Gi(t-J)
j=-N  i=l
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is accurately approximated by a normal distribution, so that the probability

density function for the error in y(t) before roundoff is

[ ()] I -(e/207)
ple (t)]= ——— e
y

OéZTT

2 ) . .
where o, is the sum of the 186 identical variances for each of the random

variables ei(t-j)/Z. That is to say,

ol = 46.5 Var [ei(t-j)]

The resulting probability density functions for the three cases are graphed in

Figure III-18.

It is now possible to calculate the conditional probability that the sign

of y(t) is inverted given the absolute value |y(t)| : it is

p [ey(t)] de (1)
|y(t)| +1/2

for integer arithmetic,
o0
¢ (t)] de (t)
P [g0] de
|y(t)|

for floating-point arithmetic. Similarly, the conditional probability that y(t)

rounds to zero is
y(ty +1/2
p [e,0] ae
lyt)] - 1/2
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for integer arithmetic, zero for floating-point arithmetic. The conditional
probability that the sign of y(t) is reversed or that y(t) rounds to zero is
displayed in Figure III-19 in the most favorable case for unscaled data, data
scaled by 16, and floating-point data. The stippled areas designate the pro-
bability that y(t) rounds to zero, the striped areas the probability that y(t)

changes sign. The corresponding probabilities in the most unfavorable case

are depicted in Figure III-20,

For integer arithmetic, the total probability that the sign of y(t)

changes is the integral

o e

ple®] de | »[lyer]e|vol
0 |y(ty] +1/2

over the interval (0, ®) of the conditional probability of sign inversion given
| y(t)| multiplied by the probability density for the absolute value [y(t)|. The
total probability that y(t) rounds to zero is obtained by replacing the inner ]
integral by the conditional probability that y(t) is zero after roundoff: the
interval of integration is from |y(t)| - 1/2 to |y(ty | +1/2. For floating -

point arithmetic, similarly, the limits of integration change to |y(t)| and

infinity when specifying the total probability of sign inversion. Figure III-21

illustrates the regions in the [y(t), ey(t)] plane corresponding to the total

probabilities stipulated. To calculate these integrals, a knowledge of the pro-

P VPN T R ary Si.-- o W PRI PO LT

bability distribution for the adaptive-filter output values is required. Unfor-

tunately, it is not available. However, the adaptive-filter RMS level is avail- 5
able for a number of data samples. Under the as sumption that y(t) and the

error ¢ (t) before roundoff are normally-distributed, independent random

variablesywith zero mean, the total probabilities can be found. For integer

arithmetic, the total probability of sign inversion is
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FIGURE 111-21

REGIONS IN THE [y(t), € (t)] PLANE CORRESPONDING TO
SIGN REVERSAL AND ROUNDING TO ZERO
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-1/2- y
=ZJF(4Y)§\/_ dy
0 € y 2

where o’y is the adaptive-filter output RMS level and F(z) is the standard

cumulative normal distribution function

7, g

2 ,

1 = !

Fm:f Vor e 1t e ;
Ei LT }.

The probability of rounding to zero is

1 1

2\/oi+ 062 2\/(ri+ 0;2—

For floating-point arithmetic, the probability that the sign of y(t) changes is

equal to the probability that the random variable

y(t)
€ (t)
Yy

lies within the interval -1<w <0. The random variable w has a Cauchy

distribtition with probahbility density function

P ,
m(1 +p2 wz)

p(w) =
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where P is the ratio a’e/cry of the standard deviation of ey(t) to the RMS
level of the adaptive filter output y(t). The probability of a difference in sign

between y(t) and y(t) + ey(t) , therefore, is

P f dw _ el
; = = Z
o ] 1 +p wZ m

The arctangent is the angle from the (ey/cre )-axis to the line p( ey/cre) =
-(y/(ry) after the probability density is circularized by a coordinate trans-
formation which divides each random variable by its standard deviation. This
last estimate is useful even in integer arithmetic situations where the error
€ (t) before roundoff has a standard deviation much larger than one half

(e}., g., Figure 111-20b), Table Il11-4 lists the probability of a sign change or
zero value in the filter output from a 270° adaptive beam (with Ks= 0. 005)
for a four-hour noise sample from day 238 of 1970 under the assumption that
all filter weights are of magnitude one half. These probabilities are uncom-
fortably high. They indicate that sign changes and zero values may signifi-
cantly limit adaptive-filter performance., Even in the case of floating -point
data, digitization error results in a surprisingly high probability of a filter

d
update vector AtV A01

pointing in the wrong direction. The gain doubl-
ing performed on the ALPA seismometers in July and August of 1972 should

reduce this probability by a factor of approximately two,

These appreciable errors in y(t), particularly in the case of unscaled
data, may account for the radically different noise reduction values at data
scale factors of 1 and 16, respectively, for the quiet summer noise sample.

At the convergence rate Ks = 0. 30, the adaptive filter takes advantage of
transient correlation between successive data vectors to reduce the filter out-
put power. In order to do so effectively, the adaptive filter must react rapidly

and accurately as each new data vector X is received. If the filter step
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new old | . . : e ! .
A - A pointed in the wrong direction a significant fraction of the time,

the drop in noise reduction from 6 dB to 2 dB when a data scale factor of |
was used instead of 16 could easily be explained. In the event that the adap-
tive filter output y(t) rounded to zero, the effect would be somewhat less
severe: the filter vector would not update and could not react to incoming
data until the next data vector was available. Each time no update was per -
formed, some of the ability to exploit the transient correlation between con-

secutive data vectors would be lost.

Without knowledge of the crosscorrelation statistics between input
data channels, the unlikely possibility that all filter weights are of magnitude
one half cannot be completely excluded. Part 2 of this subsection, as a by-
product of other investigations, gives the filter weights obtained before and
after the error vector Ec is added to the data vector X, For specific cross-
correlation matrices, the absolute values of the resulting filter weights could
be used to provide more accurate estimates of the error ey(t) before round-

off in the adaptive filter output,

25 Change in the Mean Square Filter Output Power yZ(t) Due to
Adding the Error Vector Ec to the Data Vector X
If the error vector Ec is added to the data vector X and the round-
off error er(t) after forming the dot product (X + EC)TA is incorporated
into the adaptive-filter output, a maximum-likelihood filter set can be design-
ed to minimize the total output power subject to the maximum-likelihood con-

straints and an additional special constraint which reflects the fact that the

terrn er(t) is preserved with unity response. The adaptive -filter output

with roundoff error is

y'(t) = (Q')TA' = [(X + EC)T‘; er(t)] {-‘E‘} = [QT Eer(t)] {.ﬁ.‘;]

where Q' has 1 + M(2N+1) components, A is subject to the normal maximum
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likelihood constraints and the last component b of the expanded filter vector

A' is subject to the special constraint b = 1. The constraints are expressed

in the matrix equation

[1--- 3 [0---0) -mmi e [0---0] : 0
3 [0-;-0]\[1---1]\[0—--0]\- ------- [o-l--o] : (’)
i " ey T \\\ L Al = |bD
[0---0) -ccun-- n [0---0]\[1---1]I0-1-0] : 0
[0---0) ---me [o---o) [1---1] | o
[ [0---0] - _'_'_T.:__—_:__—__T______[OT_TO]‘:‘ T e 1 1],

where D is the (2N + 1)-dimensional vector

[ ] T

d(-N) 0

) ]

. ]

A ' !

E d(-1) 0

: d( 0) = 1

d( 1) 0

) '

{»1 ' ]

] ]

d( N) 0
and each of the row subvectors [l---—l] or [0—---0] in the constraint

matrix has M components (where M is the number of channels). In matrix

form, it may be written

C'A' = D!

’

where the ordinary maximum-likelihood constraint matrix C is formed by

dropping the last row and column from C', and where the expanded response

.

vector D' is

Pvies
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C'is a (2N +2) by [1+ M(2N + 1)] matrix, A'a [l + M{2N + 1)] - dimen-
y

sional column vector reflecting the white frequency response of the filter A

and the unalterable response of one on the error Er(t) generated by round-

T — -

ing the adaptive filter output to the nearest integer. The adaptive -filter up-
data equation uses the method of steepest descent to reduce the mean square
output power [y'(t)]2 using the Widrow approximation [y'(t)]2 = [y'(t)]2
(Widrow, 1966):

new

(a™v= a - uv{[yw]? - 2[<A')T<D'-C'A')]

= A'- 2y [y'(t) Q'+(C')TA'] ,

P BLTRY v 0T Ui O M it L R L

"m where A' is the Lagrangian multiplier vector
A(-N)
'

1 '

: '

A(-1)

A= A(0)

A(1)
|

The Lagrangian multiplier vector is found by solving the vector equation

D' = C'(A')new = C'A' - 2y [yl(t) c'Q! +C'(C')T Al}
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-1

o [C'(C')T]_l [crar - o)} - yuo [cren”]

-y '(t) [C‘(C')T ]-l c'Q!

Substitution of A' into the update equation yields
-1

AV A - 2p vt { 1-(cn?t [c' (c')T] c'} Q!

The matrix C'(C')T is the (2N +2) by (2N + 2) diagonal matrix

-1
and the matrix (C')T [C' (C')T] C' 1is the [l + M(2N + l)] by

[1+ME2N+1)] matrix
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where each of the

2N+l submatrices JM

ment equal to 1. The update equation reduces to

(A')

Q' = (CY

where

new

-1

T :C' (C')T] c'Q',

-

new
[A___ﬁ = P}J + 2uy'(t)
1 1

where @Q = cT [ccT] CQ.

| —

-1

A 2
minimizing the total output power [y'(t)]

is implemented when the error vector EC

= A"+ 2uy'(t) (Q'-QY)

]

is an M by M matrix with each ele-

or the equivalent equation

This equation, which is the equation for

is precisely the equation which

is added to the data vector X if

no roundoff error occurs when the beamsteer output components
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- g 1 .
qi(t-J) T e Z qi(t-J)

i=1

are rounded to the nearest integer:

new
A

A+ 2y (Q')TA'[E-Q]

n

A + z;;‘[(x +EC)TA+ er(t)] [(Y?TC) - (X +EC)].

As was shown in Subsection C

» the beamsteer roundoff error vector E can

be eliminated by scaling the vector Q by the number of channels and dividing

the convergence factor 4 by M:

M

McTi(t-j) = Z qi(t-j), 'r

so that M3 (t-j) is always an integer and no roundoff error occurs. By
i

choosing 4 small enough, the adaptive filter set can be shown to converge

to the optimum maximum -likelihood filter set if certain conditions are met {
(Daniell, 1968), j

This relationship between the adaptive filter set and the optimum

maximum-likelihood filter set can be used to calculate the mean square filter

output power [y'(t)]2

TP D

with digitization and roundoff error, [y'(t)] 2 can be

. . 2 .
compared with the mean square filter output power y (t) in the absence of

:
such errors. The adaptive filter output with these errors is

s sl n i S i e b

y'(t) = y(t) + ey(t) toe (), ]

where ey(t) is the error before roundoff and

8
er(t) is the roundoff error 9[

y(t) + ey(t) is rounded to the nearest integer.

occurring when

The quantity
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y(t) + € (t) may be broken up into the integer
b4

o) + o]

obtained after roundoff and the fractional term

o + e o]

which is eliminated by the addition of er(t). The mean square noise power

'] s

2 2
[y']” = [yt + ey(t)] + 2 [y(t) + ey(t)]l e (t)

2
+ 2 [y(t) + ey(t)]F e (t) + er(t)

When the standard deviation of y(t) + € {t) is larger than one count, its

rounded value [y(t) + ey(t)]I has only negligible correlation with the round-

off error er(t) , so that the term

2 [y(t) + ey(t)]l e_(t)

can be neglected. On the other hand,

[y(t) + ey(t)]F e (t) = 0,
so that lu'.
-—'_2- I:v
[Y (t)] = [y(t) + ey(t)]z -2 €i(t) + fi(t) Q
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= o+ o] - o

_ T T 2
= AT (X+E )(X+E ) A - € (1)

= ATha - Sy

where the matrix (p is the crosscorrelation matrix corresponding to the

C . 2

data vectors X + E . Minimizing the mean square filter output power [y'(t)]
€

. N T
is the same as minimizing the term A (DA.

When the filter weights are subject to the maximum-likelihood con-
straints CA = D, the optimum filter set is achieved when each component

of the gradient

V[I/Z AT®a+ AT(p- CA)] - @a - ca

is zero. T..e Lagrangian multiplier vector A is found by using the con-

straint conditions CA = D, so that the matrix equation

|
I
|
1
|

I
I
I
I
I
I
|
|
]
| O=== = =0

’
’

1
>
v}

yields a solution for both the filter vector A and the Lagrangian multiplier
vector A . By rearranging the rows and columns of this matrix equation,

the matrix can be put in block-Toplitz form (as on page 1I-3), The filter
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output power AT(I)A is the zero-lag component A(0) of the Lagrangian

multiplier vector:

bs - (T4

A = PlcT,

CA = (c(I)'lcT)A = D
A - (CQ-ICT)-ID

A = PlcTed Ty

AT(I’A = DT(C‘I)'ICT)'ICCI)'I(I)(I"ICT(C(I)'ICT)‘ID
T(Cq)-lcT)-lD

- DA

n

= AO0)

T
The vectors A and A as well as the mean square noise power A @A are
immediately available upon solution of the full matrix equation. The filter

output power with the addition of the error vector E and the roundoff error

€ (t) is

T T. -1 2 2 .
(C(I)X+Ec ) "D - € (t) = Ax+E(0) - e,

where the subscript X+E denotes the addition of the error vector E to the

data vector X. Without digitization error and roundoff error, the f11ter out-

put power is

T T, -1
D (C(I)Xc ) "D = AX(O) ,

1I1-90
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where the subscript X denotes the data vector X by itself. The ratio of the

2
altered mean square filter output power [y'(t)] to the original mean square

-

filter output power y (t) is

2
)\X+E(O) - € r(t)

()

Provided that the mean square error in predicting one channel from
any other channel at any time shift up to NAt is larger than 1 countz, a
channel value rounded to the nearest integer (and the roundoff error on that
channel) should have negligible correlation with the roundoff error on any
other channel. As a result, crosscorrelation values between two different
channels should be unaffected by digitization and roundoff error. Autocorrela-
tion values, however, are affected. Under reasonably weak assumptions con-
cerning the lack of perfect correlation be‘ween triax components at each site,
between successive values of the unfiltered vertical component at each site,
and between successive values of the prefiltered vertical component at each
site, the autocorrelation values after allowing for digitization error and

roundoff error should be

1 2 2
() x(t+T) = x.()x,(t+T) -]— €. + ¢
MO x[(tF7) = X (Ox EFT) [3 AN
. o . 2 .
where the primes indicate values with error, where ed is the variance of
the digitization error on each triax sensor, where ¢ is the variance of
v
the error in rounding each unfiltered vertical component to the nearest integer,
2 - : . -
where € is the variance of the error in rounding off each prefiltered ver-
x
tical component, where gab('r) is the autocorrelation function

i,
wb(T) =
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E

of the prefilter applied to the unfiltered vertical-component data, and where
So‘r is the Kronecker delta operator (the variance € is subtracted only
when T=0). Floating-point autocorrelation functions are affected only by

digitization error:

= it 1 - ., l —2-
hi(t) xi(t +1) = x i(t) xi(t +1) - 5 ed (pb(r)

In the case of specific noise matrices (I,X , these results provide a

convenient technique for determining the change in the mean square noise

power yz(t) from errors in the data vector X and from roundoff error
after the dot product (X + EC)TA has been formed. A knowledge of the
noise environment in which an adaptive-filtering system is to operate, to-
gether with a computation of the digitization and roundoff error statistics
associated with a particular imple mentation scheme, is sufficient to sct
specifications on the A/D system and on the precision of the data vector X
so as to come arbitrarily close to the mean square noise level }\X(O) for
data without digitization or roundoff error. (Further specifications on the

precision of the filter vector A are, of course, also nccessary.)

In one data sample with an enormous signal, it was necessary to re-
duce the data scale factor from 16 to 4 to avoid clipping the signal. After
three runs were made at scale factors of 16, 8, and 4, the noisc reduction
values over the section of data preceding the signal were sufficiently inter-
esting to make two additional runs at scale factors of 2 and 1. The noise
reduction results in Table 111-5 are for the period 0430 to 0638 on day 7 of
1972. An adaptive filter was steered toward 253° at a convergence rate
Kq = 0.005. Decibel values in this table are relative to 1 countz/socond.
With the exception of the varying data scale factors, all processing para-

meters are as desceribed in Subsection A of Section V. Note that the beam-

steer output power increases by 6. 181 dB, 6.098 dB, 6.061 dB, and 5.041 dB,
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respectively, each time the data scale factor is doubled.

Similarly, the

adaptive filter output power increases by 6.260 dB, 6.126 dB, 6.080 4B,
6.051 dB. Without roundoff error,

(6. 021 dB).

and
these figures should increase by 20 loglOZ
The actual results reflect the fact that roundoff error reduces
the ‘mean square noise power by a relatively stable number of squared counts,
The only significance of these results is that zero output is obtained by scal-

ing the data down to the point where the largest value xi(t:-j) in the data lies

between -~1/2 and 1/2 before it is rounded off. The same effect occurs when

the crosscorrelation matrix is formed from data containing a signal. In fact,

signal power might be reduced more than noise power. Crosscorrelation

terms as well as autocorrelation terms in 2n ideal signal matrix are affected;

e ————————

si'(t) sl'<(t+T) = si'(t) si'(t+r)

—_— L, "7 2 2
- Si(t) Si(t+T) B [T ed i Ev]¢b(T) B 80T 6x ’

As the data is scaled down to the point where the mean square error in pre-

. 2
dicting one channel from another drops well below 1 count”, the crosscorrela-

tion values need adjustment. And this condition is more readily achieved

when a signal is present.

One important fact can be inferred from this study of the effects of

error in the data vector X. It is that the principal effect of roundoff error

and digitization error at very low convergence rates is simply to reduce the

autocorrelation function values in the matrix @ = XX

when a significant

amount of power (in terms of computer counts) is uncorrelated between sen-

sors. Normally, the reduction of the autocorrelation functions causes a drop

in the filter output power. Aside from this scaling effect on signal and noise

alike, the error appears at very low convergence rates to have no major con-

sequences in terms of the mean square filter output once spatially uncorrelated
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noise rises to certain minimai computer-count levels. This statement applies,
of course, only to situations where the convergence rate is slow enough that
the adaptive filter set closely approximates the optimum maximum-likelihood

filter set. It does not apply to the effect of digitization and roundoff error on

misadjustment, which is defined to be the fraction

Yz(t) - [yz(t)]optimum
2 -
[Y (t)] optimum

of additional noise caused by the adaptive algorithm in a time-stationary en-

vironment. The drop in noise reduction from 6 dB to 2 dB at Ks = 0. 30
clearly illustrates this fact in the case of the quiet summer noise sample

where data scale factors of 16 and 1 were used.

An appropriate design goal would be to reduce the difference between
the mean square noise output values with and without error to the maximum
extent feasible. In that event, at least, processing results would increasingly

reflect instrument measurements rather than computational noise.

B DIRECTIONAL ERROR OF THE FILTER UPDATE VECTOR

(Anew _ Aold)

In this subsection, the effects of rounding off the filter update vector
are investigated. Part 1 discusses only the roundoff problems involved in the
direct calculation of the update vector. After this calculation, the constraint
conditions may no longer be satisfied. As has been pointed out in the litera-
ture (Frost, 1972), the cumulative effect of repeated calculations not satisfy-
ing the constraint conditions is to produce a random walk away from the con-
straint space. Some corrective procedure must be performed periodically
to bring the filter set back into reasonable agreement with the constraint con -

ditions. Part 2 considers the implications of various corrective methods on
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the directional error of the filter update vector. Part 3 briefly describes the

disadvantages of a procedure which eliminates filter -weight roundoff error

and beamsteer roundoff error,

1. Error Due to Rounding Off the Filter Weights ai(j)

The average change in an individual component of the filter weight

vector Ais a critical quantity in evaluating the error due to rounding off the

filter weights. An individual component may be immobilized or partially im-

mobilized when the average change drops significantly below the quantization

level of the filter weights., Even when the average change is approximately

the same as the filter

.

weight quantization level, the fact that some filter

weight components ai(j) will be hampered more than others in their move-

ment means that the filter vector A may be deflected from the desired direc- ]

tion of movement after several iterations,

1d}2
The squared magnitude ATV A°

of the filter update vector
is

e 7 e b

Id.T 1d
(Anew _ A° ) (Anew_ A° )

2 T = i
4KZ‘ A'xxTa @-x)T %ox) ;

X-x)" (X-x) @-x)T (%-x)

m o L iTedib bl g e

4k’ o)

X-x)T (X-x)

for the particular adaptive algorithm used in this report. With some mathe -

matical manipulations, a clearer picture emerges of the factors influencing
the filter step size:

it B gl Sl oy edir e LB ae ) cwlian Blans o Sl i eiy
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.
3

2

’

2 2
new Aoldlz _ 4K5 y (t)

A -
X-x)T (X-x)

4K§ \lfz(t) E [yz(t)]

- L

) E [(I_K—-X)T(S—(;X)]

4K‘:‘ \Ifz(t)

E [}“{Ti] E [(i-X)T(f-X)]
E [yz(t)] E [)"(Ti]

4K‘z \I'Z(t)

M(@2N + 1) E [iz(t)] E[XTX] - E[}—(Ti]
E [yz(t)] E [)"(T)?]

4K‘:‘ \I'Z(t)

2 2
M(2N + 1) R, (R}, - 1)

where the cperator E [—-—] denotes the time average of the quantity inside

the brackets, where V(t) is the random variable

_ yo(t) X-x)" ®-x)
" E[y*] e[®x"®x]

e .
where RA 1s the beam output power reduction
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R2 - E!Tcz(t)] _
A E [yz(t)]

A
of adaptive filtering relative to beamsieering, and where RB is the power

reduction

2 . =lx"x]

N

B
|
: : : 2
of beamsteering relative to the average single-sensor power, RB 1s normally

e
e

*l
=<l

close to the value M (where M is the number of channels) provided that the
noise field is spatially uncorrelated or coherent but distributed over a range
of look directions not impinging on the main lobe of the time-shift-and-sum
array beam pattern. Under the assumption that R; = M, the RMS change in

one component of the filter weight vector is

2
2
Alew Aold Ks\ll(t)

M(2N + 1) M(2N + 1) VM-1 R

It is the RMS change in the sense that it is the square root of the squared com-
ponents a'iz(j) averaged over all components, The quantity in question still
fluctuates as a function of time. If the time averages E [—--] are taken
over time intervals in which the power reduction RA of adaptive filtering
relative to beamsteering is stable, the RMS change in a filter component is

the product of the stable value

2K

S
M(2N + 1)vV/M-1 R

A

and the time-varying random variable V¥ (t). In view of the definition of ¥ (t),
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it is likely that the mode point of the probability distribution for W (t) is
close to 1. As a result, the mode point of the probability distribution fo: the

RMS change in one filter component ai(j) is close to

2K
S

M(2N+1) v M-1 RA

At the convergence rate KS = 0. 005 and the amplitude reduction factor

RA= 1.333 (about 2.5 dB) for adaptive filtering relative to beamsteering,
this quantity is 1/65536, or 2—16. The quantization level of the filter
weights for the adaptive procescor used in this report is 2-16. (A filter
weight of one half is represented as 32768 counts.) Thus the RMS filter-
weight change was close to one count when the adaptive filter output power
was 2.5 dB below the beamsteer output power. And the actual noise recduc-
tion obtained at a convergence rate KS = 0. 005 was typically below 2.5 dB,

so that the mode point of the probability distribution for the RMS filter-

weight jump was probably within the range 1 to 1,333 counts,

If the probability density function for the random variable Y (t) were
strongly peaked near a value of one, there would be considerable cause for
alarm when the RMFS 7e in one component of the filter weight vector drop-
ped below 1/2 count. in that event, most of the components would be immobil-
ized. A broadly dispersed probability distribution for W (t), on the other hand,
would permit movement when W (t) reached its highest values (even if the
rate KS might be biased either upward or downward, but at least the filter
vector would move, For this reason, the fluctuation of Y (t) as well as the
RMS change in ai(j) warrants scrutiny, The random variable \llz(t) may

be expressed as the product
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qlz(t) i} y (t) E | (X-X) (X-X)]

e [yw) (X-%)T(X-X)

5
Most of the variation in W 7(t) can be attributed to the term on the left since
the filter output y(t) oscillates back and forth between positive and negative

values, ordinarily reaching an amplitude greater than its RMS level. The

term on the right, however, does not fluctuate nearly as much since it is a
power average over 2N + 1 consecutive points in time. The 31-second
length of the adaptive filter used in this study spans 3 quarter-cycles of the

40-second period at which the bias-removal prefilter response (as well as

e e e

the filtered data power spectrum) begins to roll off. Furthermore, power
surges in yz(t) tend to compensate for power surges in (S_(-X)T(}_( X).

Since the point-to- pomt fluctuations in yz(t) have no counterpart in any other
term affecting l’ (t), it is reasonably safe to assume that \l/ (t) varies at
least as much as vy (t)/E[y (t)] There are a number of probabilistic
modc!s that could conceivably describe the fluctuations in y(t). Just which

one is most appropriate depends on the data. A reasonable assumption for

the sake of discussion is that y(t) is normally distributed. In that event, it ]

is easy to determine whether a "typical" filter -weight component is in danger ;
of being immobilized by roundoff error when it is 1ounded to the nearest filter-
weight count, By a '"typical" component is meant a filter -weight component

whose RMS change over time agrees with the RMS filter-weight change aver-

aged across components. Table III-6 gives the probability of no movement

7

and the standard deviation of the "typical filter -weight component's motion }

after roundoff at four RMS filter- weight change values. In this table, only the

variation in ‘1’ (t) due to the term y (t)/ E [y (t)] has been considered, and
the mean of the movement in the "typical" filter -weight component has been

ignored. Under these assumptions, it is apparent that the ''typical' compon-

ent is severely impeded in its movement only when the RMS filter-weight

change drops below 1/4 count,.




TABLE I1I-6

PROBABILITY OF NO MOVEMENT AND STANDARD DEVIATION OF THE
CHANGE IN A FILTER-WEIGHT COMPONENT WHOSE RMS CHANGE
OVER TIME IS THE SAME AS THE RMS FILTER-WEIGHT
CHANGE ACROSS COMPONENTS

RMS Filter - Weight Probability of Standard Deviation

" Change (ccunts) No Movement of the Change in a
Typical Component 2
{counts) .5
1.000 0.3830 1. 04
0.500 0.6826 0.57 :
§
0.250 0. 9546 0.21 |

0.125 1. 0000 0. 00
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In reality, a wide variation in average movement can be expected
across the components of the filter vector A, 1t is well within the realm of
possibility that the bulk of the motion could be concentrated in a small number
of components. At an RMS filter -weight change of 1/4 count, therefore, it is
likely that most of the filter weights are greatly restricted in their activity,
As a result, a safety margin of several bits in the numerical representation
of the filter weights seems appropriate. On the other hand, it is true that
those components most critical to adaptive-filter performance do move at
the 1/4 -count RMS change value. One unambiguous result can be derived
from this analysis: the filter vector proper is unlikely to move at all when
the RMS filter-weight change goes below l/[SVM(ZN—-I_-_l—)]counts; at that
level, Table 111-6 implies that the largest change in any component rounds
to zero even if all of the change is concentrated in a single component. The
empirical results of Subsection IV-B indicate that noticeable degradation in
filter performance begins to occur when the RMS change in an individual

filter weight drops below 1/2 count,

Due to the fact that the error in rounding off a filter weight never
changes the sign of the filter weight, it is possible to place some limits on the

w

] ne ol . o ..
angular error in the vector (A - d) 1t is never more than 90 different

from the vector sgn[y'(t)] (X-X + Eb + Ec) , Wwhere sgn is the function

-1ifz<0
sgnz=( 0ifz=0
1ifz>0 ,

where y'(t) is the adaptive filter output after roundoff, and where }—(-X, Eb,

and EC are as defined previously. A slightly more useful bound can be found.

Provided that the filter vector moves, the worst possible situation that can
happen is that one component changes slightly more than 1/2 count while all

other components change just slightly less than 1/2 count and round to zero.
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d
In that event, the angle between (Anew - A01 ) after roundoff and

sgn Ly'(t)] (X-X + E

E .
b+ c:) is

tan”! VMEN+D) -1,

or 85°48' when M(2N + 1) = 186.

Up to this point, no accurate estimates of the angular error in the

Id
) have been made because the change in

filter update vector (Anew - A°
the filter-weight components a.i(j) before roundoff has been smaller than

1 count for at least some components in the situations examined., If all com-
ponents change by at least several counts, simplifying assumptions which
facilitate mathematical treatment are possible. In adaptive filtering systems
where the process of rounding the filter weights affects the vector (Anew-AOId)
only slightly, all or almost all of the filter-weight components do change by at

least several counts. Hence it is worthwhile examining the results inferred

from the simplifying assumptions.

The most easily derived result is an upper bound for the angle between

the vector sgn [y'(t)] (X-X +E, + Ec) and the vector (Anew - AOId) after

b
roundoff. Prior to rounding the filter update vector to the nearest filter-

weight count, the filter update equation is

new old

A - A 2K_y'(t) (R-X +E_ +E)

2

b
q q| X-X +E, +E
b c

KX-X+E +E) ,
b c

where q 1is the quantization level of the filter weights (2-16 for the algorithm

used in this report), and where K is the scalar constant
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2K y'(t)

q| X-X + E + ECIZ

d
To the vector (Anew - AC’1 )/q is added the roundoff vector 4

; —
s i -

.8M (N ).1
b —

The squared magnitude of the vector (Auew_ AOId)/q is

o]
|

2 | —
q XX+ E +E|2
b c

ot i e s e .

2 1d
in counts . The vector (Anew - A° )/q after roundoff must lie within ID|

1d
counts of (Anew c o )/q before roundoff. This situation is illustrated in
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Figure 111-22, The largest angle Y between K(}_(-X + Eb +E })+D and
c

K()_(-X + Eb + EC) occurs when D 1is perpendicular to K()_(-X + Eb + E )+ D,
c

so that

2 IDI°IX-X +E, +E &
b c

o [y

Since the largest possible absolute value of any component 5i(j) in D is

sin Y £

2
1/2, ID'max = M(2N + 1)/4. Provided that the filter vector moves after

roundoff, the minimum absolute value of y'(t) is l. Therefore

46.5 ° |X-X +E_+E |2
C max

b
sin Y £

2
4 K
s

for a 186-component filter vector. In a four-hour noise sample from day 238

— 2 2
of 1970, the largest value |X-X + E + Ecl observed was 18, 617, 020 counts

when the data was scaled by a facto? of 16, Under the assumption that the
largest value |X-%x + Eb + Ec|2 for unscaled data was 1/256 as large, Table
111-7 lists the maximum possible angle between the filter update vector before
roundcff and the filter update vector after roundoff at the convergence rate
KS = 0. 005. This table indicates, in the case of unscaled data, that a 24-bit
filter vector guarantees an angle 7Y considerably smaller than the average
angle © between the vectors (}—(—X) and (-)_(—X + Eb + EC) at the conver-
gence rate KS ='0. 005, Twenty-eight bits accomplish the same purpose for
data scaled by 16. When the data is scaled by 16, or course, it is far less
likely that the rounded adaptive filter output y'(t) has an absolute value of
1. The angular bounds in Table 111-7 are extremely conservative. Whenever
the maximum angle is below 85048', the following conditions must occur

simultaneously to achieve it: (l) the squared magnitude IX-x + Eb +E | :
c
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FIGURE 11I-22 ]

TWO-DIMENSIONAL PLANE PASSING THROUGH

THE ORIGIN, D, AND K(X-X + E+E_)

.
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MAXIMUM POSSIBLE ANGLE OF DEFLECTION DUE TO ROUNDING
THE FILTER UPDATE VECTOR AT THE CONVERGENCE RATE

Ks = 0. 005 (USING NOISE DATA FROM DAY 238 OF 1970)

TABLE I11-7

Logz(l/q)

Unscaled Data

Data Scaled by 16

Maximum Angle

lov
17
18
19
20
21
22
23
24

20
21
22
23
24
25
26
27
28

85°48"
85°48"
44°33:
20°32"
10° 6!
5° 21
2%31
1°15!
0°38!
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must be at its maximum value; (2) the rectified filter output |y'(t)] must

be one; (3) the vector D must be perpendicular to the vector K()_(-X+Eb+EC)+

D; and (4) each component of D must be of magnitude 1/2,

The vector (Anew - AOId) without any digitization or roundoff error
points in the same direction as the vector sgn[y(t)] (3-(-X). With the errors
incorporated in the vectors E » E , and D, it points in the same direction as
the vector D + |K]| sgn [y'(t)] (X-X + Eb i EC). Since the filter-weight
roundoff vector D is symmetrically distributed about the origin and is zero
when y'(t) = 0, the specification of the probability distribution for the angular
error in (AneW-AOId) reduces to the determination of the probability distribu-
tion for the angle between |K| (}_(-X) and sgn [y(t):l sgn [y'(t)] [IKI(X-X + Eb +
Ec) + D] - Probability distributions for Eb and EC were derived previously
in Subsection C. Likewise, the probability distribution for sgn [y(t):, sgn [y'(t)]
was discussed in Subsection D. As a first step in finding the probability dis-

w

. d . .
tribution for the angle of error in (A" -A01 ) the filter-weight roundoff

vector D needs to be examined.

Prior to rounding the filter weights at the j-th lag, an individual com-

ponent of the filter vector is of the form

M
K {I(t-j) S xyleei) e (eed) - 52 D (-3 | + eb(t-j)}
L k=1

It consists of an integer part (the Component rounded to the nearest integer)
and a fractinnal part which is eliminated by the roundoff procedure. Thus, it
is clear that the component Si(j) of the vector D is simply the negative of
the fractional part of the expression above. Since the vectors (}_(-X) and E
satisfy the constraint conditions and since Eb(t-j) is the same for all "

channels at the j-th lag,
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M M
K{Z X(t-j)- xi(t-j) + ei(t-j) - % Zek(t-j) + eb(t-j)} = KMeb(t-j)z 0.
i=1 k=1

The fractional parts of the left-hand side of the equation must sum to an in-

teger if the right-hand side is to equal zero:

M
- -1 + -18 (i 5 -
[kmeen]p + S [860] = -1,
i=1
where I, is an integer and where the subscript F denotes the fractional part

J
of KM eb(t-j). This equation specifies a constraint on the roundoff errors

8.(j). Any one of the coraponents is a function of the other components and
i

KM eb(t—j). Let it be the M-th component:

M-1
[ka ] 2 ol - L
i=1

- 8,,00)

M-] _
3,:KM fb“'j)]p £y 6i(j){F
i=1

+

M-1
for ool + X aof -
i=]

where the subscript I denotes the integer part of the quantity inside the
braces. Since the negative of the M-th component of the roundoff error lies
between -1/2 and 1/2, it is equal to the fractional part of the right-hand
3 side of the equation:
| M-1
"ol =[x e ] s 5,000 }

i=] F
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Since BM(j) has no integer part, the integer part of the right-hand side

must be zero, so that

Given probability distributions for e (t -j) and the first M-1 components
o (_]), the probability distribution of the integers I can be ascertained. The

probablhty of any integer I is the probability that

M-1
1j -1/2 < [KM eb(t-j)]F + Z ai(j) < IJ. +1/2
i=1

Another useful way of expressing I, is

J
M-1
I, = KM€ (t-j + | KMe€, (t-j . ) B
; ;[ b J)JF [ € J)]I + E 6i(J)$I [KMeb(t J)JI
i=1
M-1 )
= KM t-. + ] - KM t-.
; plt-) + ) aimfl [ x J)JI
i=1
M-1
Let L denote the integer part of KM e (t i)+ E 6i(j)' Its probability is
the probablhty that i=1
M-1
L -1/2 < KMe t-j + 1) < 2
y Y pt-3) Z 8;0) < Ly + 1/
i=1

An important random variable is the sum
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R L - [KM eb(t-j)]F

L, - KMeb(t-j) ,

j

2 whose probability distribution depends on the probability of KMGb(t-j) and
. the conditional probability of Lj given KM eb(t-j).

: Let 7, denote the filter -weight change

] M

. T . . 1 . .

5 2, = K {x(t-n - x(t)) +e () - [+ E e (t-9) | + € (t-)

k=1

of the i-th channel at lag j before roundoff. The roundoff error Si(j) de -
pends only on the fractional partof z, . Any integer change in 2 results in
i
the same roundoff error § (j) = - (Zi)F’ so that the roundoff errors § (j) for
i i

any point in any (M-1l)-dimensional cell

m, -1/2 £z, < m,+1/2 (i=1, 2, ..
i i i

.y M-1; mi an
integer)

are the same as the roundoff errors Bi(j) for the corresponding point in the

cell

- l/2 Sz = (2) < 1/2 i=1,2, ..., M-1),

which includes the origin (zl. Zor ey ZM 1) =(0, 0, ..., 0). Consequently,

the sum
M-1

[KM Gb (t- _])] + 5
i=1
._x‘. }
III-111
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also remains invariant under integer translations of the variable z, . Further-

more, the regions

M-1

1j -1/2 £ [KMeb(t-j)]F + Z ai(j) S 1j +1/2

i=1

corresponding to the integers IJ are identical in each of the (M-1)-dimensional

cells. Figure III-23 illustrates this situation when [KMe (t-J)] = 0 for the

three-channel case. I, = -1 in the upper right corner of each cell, and I, = 1 in
the lower left corner oJf each cell. Any point within the shaded regions defined
by -1/2 < (zl)F + (ZZ)F < 1/2 results in a value of zero for I.. Non-zero
values for [KMeb(t-j)]F merely shift the boundaries for the integers 1.
within each cell by altering the constant in the boundary equations (z ) + (z

Z)F -
constant. Because of the constraints on the filter weights, the vectors

(zi, Zoy cees Z ) are concentrated in sheets whose ZM components differ by

the scalar constant K. The central sheet corresponding to KMe (t-J) =0

passes through the origin. When each of the components z is distributed

over a sufficient numbe: of filter ~weight counts, the vectors (zl, ) tare=ls zM)
tend to become evenly distributed over the sheets within each of tne (M-1)

dimensional cells

mi-l/ZS_ziSmi+1/2 i=1,2, ..., M-1),

Accordingly, the vectors (zl, Zos sony zM) projected onto the (zl, Zyses 'ZM-I)

plane also tend to become evenly distributed within each (M-1)-dimensional

cell. Thus the conditional probability distribution of the vectors

[(zl)F, (zZ)F, SO (ZM-I F] within each cell tends to become the same for

.y M-1)
tend to be evenly distributed over the interval C-1/2, 1/2] In the adaptive-

all cells. As a result, the roundoff error components §, (J) (i=1,2,,.,

filtering program used for this report, the changes z, before rounding each
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-32
filter -weight component can assume values separated by only 2 filter -

weight counts, so that the probability distribution for each of the first M-1
components Si(j) is adequately approximated by the probability density

function

1 ]8,()] < /2
pls,] =
0 18, > /2

whenever the filter -weight component changes are spread over a large number
of filter -weight counts. The probability distribution for the beamsteer round-
off error eb(t-j) was specified in Subsection B (Figure IlI-4). The resultant
distributions for KM eb(t-j) and [KM eb(t:-j)]F are easily obtained from

it once the scalar constant K 1is given. It is now possible to determine the

ks probability distributions associated with the filter-weight roundoff vector D.

: Let Db denote the vector

N M
D = e 8(]) U. ’
b i J
\/1\7 j=-N i=1

where U, is the unit vector perpendicular to the constraint plane in the sub-

space corresponding to the j-th lag (see Subsection C, page I1lI-25). Since

this vector is the sum of individual vectors perpendicular to the constraint
space, it is likewise perpendicular to the constraint space. Let D be the *
C /

vector Dc =D - Db . It lies within the constraint space since, for each lag

i
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ulp = ulD- D)
j j b
M N M
1 Z . 1 . T
- = s - = Y | Y sm| vTu
i i i k
\/1\7 i=1 \/ﬁ- k=-N i=1
M 1
- L Z G- ) s | vTu
Vi | = B
i=1 i=1 ]
By M |
1
= — 5.3y - Z 5.(3)
- 1 1
Vit | i=1 izl |

D therefore consists of a vector D within the constraint space and a vector
c

Db perpendicular to the constraint space,

2
The squired magnitude ID l of the vector DC is
c

M

N M 2
DZDC = Z 2 5.4) - -1\71; Z 8,.1)
j i k=1

j=-N 1

-
1

N M 2
-y Z{aim - o [Lj-KMeb(t-»]}
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2 . 2 . .
Z Z Si(J) v ZBi(J) LJ. - Kbe(t-J)

M-1
The random variable § (j)= L, - [KMe (t-j) + Z 5 (j)] has the
. M j b k=1 k
same probability distribution as the fractional part of the random variable

-1
y = KMe (t-j) + Mz: 8, (J). Since the random variables 5, () (k=1, 2,
> =k i

.» M-1) and éb(t-j) can be assumed mutually independent, the proba-
bility density function for the random variable Yy can be expressed as the
convolution of the probability density function for one of the M-1 roundoff
error components, say Sl (j) » with the probability density function for

the random variable # = KMe (t-j) + Nl S5. )
b Z k
k=1
k+#/

yt 1/2

/ p(x) dx

y-1/2

oo

Z p(y+n)

n=-o
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the probability density function for the fractional part of the random variable

M-1

y = KMt‘b(t-j) + E 8k(j) is a uniform density between -1/2 and 1/2. As
k=1 '

a result, each of the M roundoff error components 8i(j) (i=1, 2, ..., M)

has a uniform density between -1/2 and 1/2, even though the random variables
Si(j) (i=1,2, ..., M) are not mutually independent. The probability dis-
tribution for each roundoff error component 5i(j) is the same for all values
of K. Such is not the case for the discrete random variable Lj - KMGb(t-j) .
A perspective drawing of its probability mass function as a function of K is
shown in Figure Il1I-24 for the six-channel case. Only the range K=0 to
K=1/2 is shown since the probability mass function does not depend on the
sign of K and repeats whenever K changes by an integer. Probability is
concentrated in rays emanating from integer values L. along the line K=0.
Each ray corresponds to one of the seven integer values which M eb(t-j) zan
assume. Broken lines indicate rays where M eb(t-j) =+ M/2. The maximum
probability mass of 0. 092 is attained everywhere along the solid line directly
above Lj - KM eb(t-j) = 0. At points in the (K, Lj - KM eb(t-j))-plane where
rays intersect, the total probability of the value Lj - KM eb(t-j) is the sum
of the individual probability mass functions associated with each of the inter -
secting rays. The spikes at points of intersection are omitted in order to
avoid complicating Figure 111-24 unduly. The probability of Lj - KMeb(t-j)
given a particular value KMeb(t-j) is the probability that

M-1
- -i) - 1/2 < 3y < - _F
Lj KMe, (t-j) /2 < E 8.() = LJ. KMe, (t-j) +1/2
i=1
M-1
This probability is the integral of the probability density function for Z 8i(j)
i=1

over a one-count-wide interval centered at Lj - KM eb(t-j). The integral is

equal to the convolution of a uniform probability density between -1/2 and 1/2
M-1

with the probability density function for the random variable ) 5i(j) 5
i=1

where the convolution integral is evaluated at Lj - KMeb(t-j). Since each of

11-117

i o el




[
MhoonHUZDm<w< :-:ngm - T =X

FTIVIIVA WOANVY JHL ¥OJ4 NOILDONNA SSVIN A LITIdVEOYd
yZ-III 39N OId

LSANNQY 1A
0 = L= e

— e
— , N
413 h,?a k?,,, | _n__ \ s {
ﬂ e { ___ \ _ .__._. b | ro _.__. b _
¥l ; 1 4 ____. Y ;| __.. ) . ._. __ f “_ L A
L1 ! . LA A n
\W1 : A ____ b _._ \ S .,”_ __ ..“,, _
1Y it T KA i oa | -
| ,F._/ \ /! ol ST A | _ \ | r \ _ | N _ =
h | \| at . _
N n_. % ....._, __ ku__s # _A Hr_f A 1 1 H..
| LY LY | I | ¥
P | T 12 0 1 O 18 /) -
__.. v N Iy __ 5 __ L | _r___ CO | —
_____ 5 ,__,x. __. .f, ._ _,.__ .;—“._ F | % { Ny | Pt
Pl y | 1 \ P —
3 _.. b T Y _ﬂ_ ,ﬂ Py i .q.x_. __ A .H_.. xw/ .5 | A
[] | | LY ﬂt. L 1 (N ___ 1 i [ .__. 3 " _
w,, | WA X \ A
! | | f LI T Y B
Yool z/u..»... ._,,_._ | [ AN \ {\ | / o Vv
LT | [, \ _ » L vt e PR _
LT f | X L R R (g, b ! % ol
Ay _ ___ ¥ ) \ \ _ ____ r _rz __ | # R ____ |
o __ f /I. [ /. [ f L i
\ fr_ T | ] 1 ’ Ny _.__ % '
WhE \\ [/ /7 W
[# ) i L1 I
;%r fil" At J i [ ;&V
i k! Y
W s D D - G




the M-1 mutually independent random variables 5i(j) is also assumed to
have a uniform density between -1/2 and 1/2, the probability of Lj-KMeb(t-j)
given Kbe(t-j) is the convolution of M uniform density functions (each
equal to one over the interval -1/2 to 1/2), where the convolution is evaluated
at Lj - KM eb(t-j). For this reason, the values Lj - KMEb(t-j) are confined
to the interval (-M/2, M/2). To calculate the total probability of Lj-Kbe(t-j)
at any point where it may occur, the M-fold convolution evaluated at

Lj - KM fb(t-j) is multiplied by the sum of the probabilities of the values
Meb(t-j) corresponding to the rays passing through the point in question. The
probability of each value Meb(t-j) is 1/M unless Meb(t-j) =+ M/2, in
which case it is 1/2M. The probability of Lj - KMeb(t-j) is zero whenever,
at any particular value of K, no ray passes through the value Lj - KM Gb(t-j).
The probability of Lj - KM eb(t-j) given any value M Gb(t-j) lies on an envelope
equal to the M-fold convolution of unit-width, uniform density functions. Thus

the broken lines in Figure III-24 are located on an envelope half as high as the

envelope containing the solid lines.

2
To determine the mean of the squared magnitude IDC' of the vector

g 2 .
Dc' the expression for |Dc| can be re written:

N M 1

M M
2 :
p'D_ = T Z Z 8,(3) 8, (3)

4
j=-N i=1 i=1 k=l

N M M M
-1 2 1
S o R S
j=-N i=1 i=1 k=1
k#i
N M-1 M
2 2 .
- 25N N [8i(j)+8k(j)-28i(i) Sk(J)]
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N M-l M ,
= ﬁ T T T [5i(j) - 5k(j)] : ]
j=-N

i=1 k=i+1

2
The mean of 'Dc' is 1/M times the sum of the means for the individual

2
squared terms [5i(j) - ak(j)] . This fact does not depend on the mutual

independence of the squared terms. Since §.(j) and - 8k(j) have zero
2 1
means, the mean of [8i(j) - 5k(j)] is the variance of the random variable

5i(j) 2 Sk(j) . Any subset of 2 to M-1 roundoff error components at the j-th

lag contains mutually independent elements, so that

Var [5,0) - 5,()] = var [5,00)] + var [5,0)]

whenever M > 3, For a uniform probability density between -1/2 and 1/2,

2

the variance is 1/12, so that the mean of ID is
c
T 2N+1 (M-1)M 2 (M-1) (2N+1)
DB = 2ok o WS 2
c ¢ M ° 2 *12 12

whenever M > 3. Unless M=2, the mean of 'DCI2 and the contribution to

the mean from the subspace corresponding to the j-th lag do not depend on

K. A simple corollary results from this fact, Since

M |
1 w12l 2N (M-1) 1 E
M [Lj-KMeb(t'J)] ) Z ;0 - 3 = 7 -

i=1

the variance of the random variable L, - KMeb(t-j) is M/12 (independent
J

of K) whenever M 23,

The squared magnitude IDbIZ of the vector Db is
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j=-N k=-N i=1 i=1
N - M 2
1 y‘
= ™ y , 81(3)
j:-N L =]
N i 2
1 . ;
= ™ E Lj-KMeb(t-_])
j=-N L

Its mean is equal to (2N+1)/12 whenever M 23, The mean of the squared
2 2 2
magnitude Ipl® = |DC| + 'Db' is M(2N+1)/12 for the same range of M

values. The vector D , however, combines with the vector KE. in such

b, b 1
a way that :
2 1 o 2 k
D + = B= - 5 M o3 '
I L KEb| = z [Lj KMe, (t-j) + KMe,(t J)] |
j:-N
i
N :
L1y :a
T M y ]
j=-N

where the probability of any integer Lj is the probability that

M-1 |
1_.j - 1/2 € KMe, (t-) + Z 5,() < 1_.j +1/2 .

i=1

It depends solely cn the probability distribution for the random variable

M-1

KM Gb(t-j) + 2 ai(j) » whose probability density function is pictured in
i=1
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Figure 111-25 for the values K=0 to K=6. By the time K rises to the value
2.5, the fingers corresponding to each of the seven possible values of eb(t-j)
begin to separate. Once K is 5.0 or above, they are completely distinct.

The maximum probability density of 0.599 is attained at K=0, KMeb(t-j) &
M-1

E 5i(j) = 0. For values of K greater than 2.5, the maximum probability
&:zllsity is 0. 100 on the inner five fingers, 0. 050 on the outer two. The pro-

bability mass function for Lj also varies with K. Since the probability of
M-1

Lj is the probability that the random variable KM eb(t-j) + E ai(j) lies
i=1

within 1/2 count of L, the probability contained within the one~-count-wide
lanes straddling integirs in Figure III-25 condenses to form the probability
mass function for L, which is plotted as a function of K in Figure I1ii-26,
The maximum probai)ility mass of 0.550 occurs at the origin, For values of
K greater than 3.0, the maximum probability mass is 0,092 on the inner five
fingers, 0.046 on the outer two. Note that the finger corresponding to

Gb(t-j) = 0 in Figure III-25 necessarily results in a non-zero probability for
the integers Lj= -1, Lj =0, and Lj =1 at all values of K in Figure III-26,

This fact is important in part 2 of this subsection. The random variabie L,

J
is of interest in its own right, It represents the amount by which the error
M
Gb(t-j) and the exrrors 5i(j) at the j-th lag shift the sum Z ai(j) either
i=]

toward or away from the J-th lag constraint condition, At the j-th lag, it
completely specifies the probability distribution of the random walk away from

the constraint condition,

2
The mean of |D +KE | is
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FIGURE 111-25

PROBABILITY DENSITY FUNCTION
b

FOR THE RANDOM VARIABLE

AS A FUNCTION OF K
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i

2 1 N
b, + kB, = - E {[Lj- KMeb(t-J)]

j=-N

2
+ 2 [Lj - KMeb(t-j)] KM eb(t-j) + [KMsb(t-j):I }

Since M-1 of the roundoff error components si(j) at the j-th lag are in-

dependent of KMGb(t-j) X

2 [LJ_ - KM eb(t-j)] KM eb(t-j)

M

2| D 5.0 | s (i)

: i=1

h

2 5,,0i) KM, (t-})

M

=2 [KMeb(t-j) + Z si(j)] KM e, (t-j)

i=1 F

1

Whenever M 22, the probability distribution for SM(j) is uniform between

-1/2 and 1/2 and does not depend on the value of KMeb(t-j), so that

Z[Lj- KM(b(t-j)] KMeb(t-j) = 2 SM(j) KMeb(t-j) = 0

and

2 1 2 2
IDb + KEbI Vi Z { ‘:Lj - KM eb(t-j)] + [KMeb(t-j)] }

j=-N
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Whenever M 2 3, the variance of the random variable Lj - KMeb(t-j) is

M/12 and does not depend on K, so that

e N
2 2N+l 2 2.
|Db+KEb| = 5 + K E M € (t-])

j:-

2N+1 2 2

= T3 + K |Eb|

2
For the case of 6 channels and 31 filter points, the mean of |Eb| is 16,361,

and .

2
D, + KEb| = 2.583 + 16.361 K°

In order to derive these results, it was presumed that the filter-weight change
components z, were distributec over a sufficient number of filter-weight

i
counts that the vectors (zl, Zos e ZM) tended to become evenly distributed

over sheets within each of the (M-1)-dimensional cells

m, - 1/2 <z, 2 mi+ 1/2 (i=1, 2, ..., M-1)
i

in the subspace corresponding to any one of the 2N+l lags of the filter set. As
a result of this premise, the roundoff error components 5i(j) assumed pro-
bability distributions independent of both the prefiltered vertical-component
data values xi(t-j) and errours ei(t-j). The lack of correlation between the
prefiltered vertical-component errors ei(t-j) and filter-weight rogndoff

2
errors §.(j) implies that the niean of |DC + KEcl is
i

—

2 2 2
ID|” + K IE |
C C

|ID + KE |2
Cc Cc

(M-1)(2N+1)
12

+ K IE |°
C
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2 2
This mean is 12.917 + 28.071 K for unscaled data, 12.917 + 1081.952 K
for data scaled by 16. The mean of the squared magnitude of the error vec-

tor D+ KE is

+ |D + KE |2
C C

2
|Db +D_+K(E_ +EC)| = |Db+KEb|

1l
o

2 2 2 2 2
T+ 1D 7+ K (lEbl +|EC|)

M(2N+1) 2 2 2
= + K (|Eb| + IEcl )

since both Db and E are perpendicular to either D or E . The resultant
mean is 15.5 + 44, 432 K for unscaled data, 15.5 + 1098 313 K? for data scaled
by 16.

In the same way that an estimate was obtained in Subsecticn C for the
mean angle between the vector (;(-X) and the vector (i-X) + E , an estimate
c

can be made for the mean 8 of the angle @ between the vectors (X-X) and

sgn|y(t)] sgn[yYt)] X-X +E +DC/K):
! ID_ + KE_ |2
1) tan~
K E(1%-x1°%]
2
N R
= tan + —_—
K* E[|X x|%] EllX-x]°]
o qE[lXX+Eb+E|]|D| |E|2
tan + S 5
[ym] E[1%-x] %] E[1X-x| ]
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2 = o2 2
ID |” EllX-x]%] |E |
C (]

[y'(t)]2 E[1%-x1°]

In this estimate, the angle between D + KE and (X- X) has been assumed

to be 90O In addition, the difference between E “X X + Eb + E I ] and
E[l%- Xl ] has been assumed neghglble Furthermore, the probablllty dis -
tributions for IDCI P |X-X| , [y'(t)] , and |EC|2 are presumed to be
sharply peaked around their respective mean values. In view of all these
approximations, the estimate here is not likely to be as accurate as the cor-
responding estimate in Subsection C. For the four-hour noise sample from
day 238 of 1970 which has been used throughout this secrion, the mean of
|)?-X|2 was 9693 counts2 for unscaled data, 2,481,422 countsa for data ~caled
by 16. When substitutions are made for values which do not depend on the con-

vergence factor K , the estimated mean angle beconies
s

)(12 917)(9693)

[y(t)]

6
7.2878 x 10 ® . E504 ¢ Igh
[y(t)]

6
(208 Sull0 + 4.3602 x 104

[y (t)]

2
for data scaled by 16. Here the mean adaptive filter output power [y'(t) ]
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for data scaled by 16 is expressed in terms of the equivalent value corres-
ponding to unscaled data. Table I11I-8 gives the adaptive filter output power
for data scaled by 16 (after division by 256) as a function of the convergence
factor Ks. The resulting estimated niean of the angle 4 for unscaled data

and data scaled by 16 appears in the two rightmost columns as a function of

the convergence frctor KS. Figure I1I-27 graphs the estimated mean angles
8 of Table 1II-8 as a function of the convergence factor KS for unscaled data
and data scaied by 16. When the adaptive filter output y(t) without errors
and the adaptive filter output y'(t) with errors are non-zero and have the
“ame sign, 6 is the angle between the vector (Anew_Aold) without any
digitization or roundoff error and the projection onto the constraint space of
the vector (Ane\v_Aold) with digitization and roundoff error. The mean ad-
aptive filter output power [y'(t)] was taken from computer runs where the

2
data was scaled by 16. At higher convergence rates, the value [y'(t)]” for

unscaled data is likely to be larger than for scaled data, However, the term

IEIZ/E[
C

:‘{-XIZ] predominates at high values of KS - At lower convergence
rates, the adaptive filter output power is likely to he approximately the same
for unscaled data and data scaled by 16. Since no runs were made with un-
scaled data, the estimate of # in the top curve of Figure 111-27 is the best
possible without [y'(t)]2 measurements for unscaled data. The estimates of

0 in Figure 1lI1-27 are for the angle 6 in the constraint space before any
attempt to reduce discrepancies between the filter weights ai(j) and the con-
straint conditions at each of the 2N+l lags in the adaptive filter set. A dis-
cussion of the angle of error after corrective procedures designed to force
reasonable agreement with the constraint conditions must be postponed until

part 2 of this subsection.

The effect on the mean angle of error 6 due to a change in quantiza-
tion level may be evaluated in terms of the approximation for 8. If the quan-

tization level is halved by adding one additional bit to the filter-weight
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TABLE '1I-8

ESTIMATED MEAN §OF THE ANGLE BETWEEN (X-X) AND
sgn | y()] sgn|y' ()] (X-X + E_+ D /K) AS A FUNCTION
OF THE CONVERGENCE FACTOR K (USING NOISE
DATA FROM DAY 238 OF 1970)

Convergence Adaptive Filter Estimated Mean of the Angle 8
Factor KS Power (counts ) Unscaled Data Data Scaled by 16
0.002 11.0875 229 15! 22° g
0.003 10. 4431 15° 50! 15° 36!
0.004 10. 0444 127 23 12° 5
. 0.005 9. 7905 107 15" 97 52
0.007 9.4075 77 a7 7 il
0.010 9. 0444 57 58! 57 16"
0.015 8.6332 47 40 37 42
0.02 8. 3197 17 g 2° 551
0.03 7.7843 3% 350 2% 12
0.05 6. 9377 3% 18 19 4q
0.07 6. 2887 37 12 12 29
0.10 5.6118 39 g 12 22
0.15 5.0118 30 1217
0.20 4. 7441 30 6 1° 15
0.25 4. 6290 Y 1° 14
0. 30 4. 5738 37 5 1% 13
0.35 4. 5733 37 5 1713
0.40 4. 5799 37 5 12 13
9. 50 4. 6254 39 5 12 12
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sgn Ly(0]sgn [y' ()] (X-X + E_+D_/K) AS A FUNCTION
OF CONVERGENCE RATE (USING NOISE DAT A

FROM DAY 238 OF 1970)
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rapresentation, then the same mean angle 0 is achieved at about half the
original convergence factor KS if the change in the adaptive-filter output
power can be ignored. For the data in Table 111-8, the cha 1ge in the adaptive-
filter output power is near 10% when Ks changes by a factor of 2, so that the

gross effect of scaling the quantization level is to multiply the abscissa Ks

in Figure II1-27 by an equivalent amount.

2. Error in the Constraint Conditions

If a signal s(t) from the look direction propagates across the array
from which the data used in an adaptive -filtering process originates, the out-

put of the adaptive filter is

N M
: YD aw | s
N j=-N i=1
M
In effect, a filter with weights 3 a(j) (G=-".e.i-1, 0, 1,00, N) s
i=1

applied to the signal. The constraint conditions

M

Yooam = ag)

i=1

b

aaan e &

determine the frequency response of the filter set. In the adaptive-filtering
process implemented for this report, a white frequency response is specified
by setting a(j) = ajo (wher- F’jo is the Kronecker delta operator). The
effect of not satisfying the constraint conditions is to alter ihe frequency res-

ponse of the adaptive processor to a signal from the look direction.

After a large number of iterations, a random walk away from the con- 3

straint space takes place in the absence of an error-correcting procedure, In
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the case of floating -point data, many iterations may elapse before the damage

is serious, Ultimately, however, the filter vector A must be pulled back

toward the constraint Space. The error correction may be performed period-

or it may be executed at each iteration with a te

L. Frost's (Frost, 1972).

ically, chnique similar to O,

With integer arithmetic, the roundoff errors are

normally at least an order of magnitude greater than for floa

ting-point arith-
metic

» So that frequent corrective action is necessary,

At each iteration, the probability distribution of the change in the sum
M

2

ai(j) for the j-th lag is a discrete integer distribution whose probability
i=1

mass function was depicted in Figure 111-26. The probability of each possible

integer shift Lj is the probability that

M-1

L,j -1/2 < KMeb(t-j) + E si(j) < LJ. +1/2

i=1

On the first iteration, the squared distance from the constraint space (in

squared filter -weight counts) becomes

N

2 1 2
lDb+KEb| = = L,

j=-N

_— . : 2 .
whose contribution from the j-th lag is Lj /M. In order to bring the filter
vector back to the constraint Space along a vector perpendicular to the cop-
straint space, the quantity Lj/M must be

stbtracted from each component of
the filter vector,

This brocedure is possible only at those lags where 1,
J

is
a multiple of M, the number of channels, By

teger, however

s e e R R




M

-(M-1) < ‘Sjo - Z ai(j) < M-1 .

i=1

Let J denote the discrepancy. In order to satisfy the constraint conditions

with minimum movement inside the constraint plane, sgn(J) must be sub-

tracted frorm J of the M components at one lag, while M- |J| components

must be left alone. At any one lag, the squared magnitude of the resultant

displacement within the constraint plane is

2
M M

2 2
5] (M- lJI) ., M- )

Il ™M - 3]
M

For the integers such that 1 £ [J] < M/2, the squared magnitude is greater

than the previous squared magnitude JZ/M for the vector perpendicular to
the constraint plane. It is the same when 13l = M/2, and less when

M/2 < |J| < M. This procedure was employed by the adaptive-filtering system

which provides the results for this repcrt., It converts error perpendicular to

the constraint space into error within the constraint space. This feature is

an annoying disadvantage of the procedure.

If C is the error vector due to conversion of error perpendicular to

the constraint space into error within the constraint space, the mean of ICF

is

cl® - (“ﬁ”) EINTYSNE

—

2
d |J] were always equal to M/2, |C|® would reach the maximum value
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ICI2 = M(2N+1)/4

It is difficult to envision a situation where the mean value would be equal to
the maximum,

However, if the integer shifts L. were distributed in such a
way that the values J =

Lj (modulo M) were equally likely at the values
J=0,1

2
»yesvy; M-1, the mean of ICI would be

M-1 )
]E-F - (&N+1) Z L - ) = 2Nt -

Such a distribution for the integer shifts L., would occur if K were sufficient-

2
ly high. The least possible value for |C|” would occur at K=0, where L =+ 1
about half the time and L.

= 0 about half the time (when M=6), At K=0,
J

——

2 2N+1)(1)(5 31+ 5
Icl® - (_I\iﬁfl_)ij_ = = = 12,917

The mean angle 6 between the vector (X-X) and the vector

sgn [y(t)] sgn Ey'(t)j (3= o Ec + DC/K + C/K) can be estimated as before:

2,2 T3 5 2
B < tan" ] a (ID_I” + IcI®) ElIX-x[9) ) IE |
T
s ~
4Ki [y'e))” E[1%-x1?

—

2
At K=0, |D|" + |c|2 = 25,833,

. =

When the values J = Lj (modulo M) are
2 2
cqually likely at 0, 1,..., M-1, IDCI +|C|” =

= 43.056. 1f |J| were always
2 2
M/2, |D |” + |cl

would be 59,417, The value 43, 056 will be used,

When
—_ 2 2
E[|X-X| ] = 9693 counts ,

P
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7~ tan”] 2.4292 x 107°

X tan +  2.8904 x 107>
Kz [y'(t)]
for unscaled data, and
- -1 2.4292 x 107> -4
6 = tan +  4.3602 x 10
Ki [y'(t)]2

for data scaled b - 16, Table I1I-9 lists these mean angles @ for unscaled

data and data scaled by 16 as a function of the convergence factor K . Figure

s
I11-28 is a graph of the values in Table III-9, If y'(t) is a non-zero value
with the same sign as y(t), # is the angle of error in (AneW-AOId) after the

constraint-condition correction procedure which was actually implemented,

After the correction procedure is executed, the constraint conditions are sat-

isfied exactly and all error lies within the constraint space. At the convergence

factor KS = 0. 005 utilized most frequently in processing data for this report,

the mean angle of error is less than 18°, This angle is tolerable, although

more than desired. The result of the correction procedure actually employed

is almost to double the angle of ercor within the constraint space. In effect,

one bit in the filter -weight representation is lost when the mean angles of

Figure 111-28 are compared with those of Figure 111-27,
In view of the very small error angles at high convergence rates, the

drop in noise reduction from 6 dB to 2 d13 at KS = 0.30 for one summer noise

sample when the data scale factor was reduced from 16 to I is almost certain-

Iy due to zero y'(t) values and sign differences between y'(t) and y(t).

An alternative procedure which does not add to the error within the

constraint space is to round the value
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ESTIMATED MEAN f§ OF THE ANGLE BETWEEN (X-X) AND
sgn [y(t)] sgn [y'(t)] (X-X + E(‘ + D /K+ C/K) AS A
FUNCTION OF THE CONVERGENCE FACTOR K

TABLE 11i-9

(USING NOISE DA

TA FROM DAY 238 OF 1970)

A

Convergence Adaptive Filte Estimated Mean of the Angle 6
Factor Ks Power (counts ) Unscaled Data Data Scaled by 16
0.002 11.0875 367 351 36° 31
0.003 10. 4431 273 51 262 58"
0.004 10. 0444 21" 26" LG :
0.005 9. 7905 177 43 17° 31¢ ]
0.007 9.4075 13° 16 12° 59 g
0.010 9. 0444 9° 471 9° 231
0.015 8. 6332 77 4 6° 29"
0.02 8. 3197 52 451 57 N
0.03 7. 7843 4° 341 3° 351 |
0.05 6.9377 37 451 2° 270 ?
0.07 6.2887 37 28! 2° o ;
0.10 5.6118 37 18! 1° 41° 1
0.15 5.0118 3% 11! 19 28 '
0.20 4. 7441 3¢ g 17 22
0.25 4. 6290 3% 1° 18
0. 30 4.5788 37 12 16
0.35 4.5733 3, 6 115"
0. 40 4.5799 3 6 1° 14 4
0.50 4.6254 37 5 17 13 ;
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2w <o

i=1

to the nearest integer and subtract the resulting integer from each component

at the j-th lag, When M
M/2 (modulo M),

is an even integer and the discrepancy is equal to

the value to be subtracted is rounded to the integer with the

smallest absolute value to avoid unproductive computations. If M were 6

and the discrepancy were 4, this error-correction procedure would subtract

I from each component and produce a discrepancy of -2. The squared dis-

tance to the constraint plane would fall from 16/6 to 4/6. The other proce-

dure wouir. add 2/6 to the squared error within the constraint plane. In fact,

the suggested proecedure always results in less error than the one actually

utilized unless the discrepancy is congruent {modulo M) with zero or M/2.

The suggested procedure limits the deviation from the constraint conditions

to the set of integers with absolute value less than (M+1)/2. Such a small

error should only minimally affect the frequency response of the adaptive

filter to a signal from the look direction when a 16-bit representation of the

filter weights is employed.

If the suggested procedure were implemented, the probability of each

possible integer discrepancy between the filter weights and the constraint con-

dition at any lag could be described in terms of a Markov chain. Figure III1-29

diagrams the set of possible integers and transitions between integers for the

five-channel case. It is representative of the situation for an odd number of

channels. Figure I11-30 is a similar diagram for the six-channel case. It is

representative of the situation for an sven number of channels. Note that the

integers + M/2 are combined into a single state,
M

is performed, the sum E ai(j) shifts by the integer Lj
i=1

Each time the filter update
before the error-
correction procedure.

After the error-correction procedure, the combincd

1I1-139

1 e . 3 Y R IO AL, SR C T e
& o Bl oo annd Llole s SHa i g o Satd e Gc ol i 4 e L e TN
o " o o "y T a4




FIGURE 11I-29

SET OF POSSIBLE INTEGER CONSTRAINT-CONDITION DISCREPANCIES
AND TRANSITIONS BET WEEN DISCRE. ANCIES FOR THE
FIVE-CHANNEL CASE
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FIGURE III-30

SET OF POSSIBLE 'NTEGER CONSTRAINT -CONDITION DISCREPANCIES -.
AND TR ANSITIONS BETWEEN DISCREPANCIES FOR THE
SIX-CHANNEL CASE :
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effect of the integer shift and correction is a clockwise trip of I, steps
along the outer ring. 1In the case of an even number of channels, tho sym-
metric probability distribution of Lj about zero guarantees that the integers
-M/2 and M/2 are equally likely after any number of filter updates. The
symmetry of L. about zero also means that the two transition probabilities
in the transitionJ matrix corresponding to any pair of states are identicai; the

Markov transition matrix is symmetric, Since the probability density function
M-1

for Z 8.(j) is non-zero over the interval from -(M-1)/2 to (M-1)/2, each
i
i=1
of the integers Lj= -1, Lj= 0, and Lj= l is always possible whenever M > 3,
As a result, all states are possible at any time after (M-1)/2 or M/2 up -

dates. When, as in this case, the probability transition matrix for some

specified number of updates has no zero elements, the transition probabilities
ka into the f-th state for an indefinitely large number of updates approach

a fixed limit which is the same for all possible states k (Gnedenko, 1962),
Consequently, the prob~bility of any state approaches a limit as the number of
updates increases indefinitely, so that the probability of any state is practically
independent of any situation in the remote past. Since the probability distribuy-
tion for the integers Lj does not depend upon the discrepancy between the fil-
ter weights and the constrajint conditions, any rotatijon of the state labels along
the outer ring does not change the probability transition matrix 10r any speci-
fied number of updates. This fact means that all states are equally likely in

the limit as the number of updates approaches infinity. For an odd number of

channels, the limiting probability for each possible integer discrepancy is 1/M.

For an even number of channels, it is 1/M for each integer discrepancy with

absolute value less than or equal to M/2-1, while it is 1/2M for discrepancies

of -M/2 and M/2. The variance of this probability distribution about its zero
2 2

mean is (M~ - 1)/12 for odd integers, (M~ +2)/12 for even integers. When

M is 6, the standard deviation from the constraint plane at the j-th lag is

11I-142

: ’ e 1 n g da i
e, ok e e O B ik e




1. 77951 filter-weight counts. At the slight cost of allowing this non-cumulative
error perpendicular to the constraint space, the mean angle of error 8 within

the constraint space can be reduced to the level estimated in Figure 111-27.

3. Elimination of the Filter -Weight Roundoff Error

The directional error due to the filter-weight roundoff error vector D
and the beamsteer roundoff error vector Eb can be elirminated if the adaptive-

filter update equation is implemented in the form

2K y(t)
d
ATV pold S M(X-X)

M()—(-X)T()—(-X)

where the factor ZKS y(t)/ | MI)—(-XIZ] common to all M(2N+1) components is
computed as the product of an integer times the quantization level q of the fil-
ter weights. When the common factor rounds to zero for non-zero values of
y(t), however, the filter vector does not move. To prevent this phenomenon
from happening frequently, the quantization level q would need to be chosen

so that ZKs q/{™ - E[I)?—X|2H was close to 1. When KS = 0.005 and

E [I)?-X|2] = 9693 countsz, the required quantization level is 1/5,815,800 = ‘
2-22. Thus for the noise sample from day 238 of 1970 (where the RMS adaptive -
filter output was only 3 counts), 22 bits would be needed in the filter -weight
representation. To achiev: the same goal for data scaled by 16, 30 bits would

be needed. It is obviously more practical to perform the complete computation

at each component before carrying out any roundoff procedure.
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438 SUMMARY

When the data points transmitted from Alaska are multiplied by 16
befcre processing, the directional error in the vector (-}_(-X) and the rela-
tive error of the adaptive filter output y(t) = XTA are reduced to the point
where they are virtually the same as the corresponding errors for floating -
point arithmetic. Errors in (-}_(-X) and y(t) are then limited only by digi-
tization error. The gain doubling performed on the ALPA seismometers in

summer of 1972 should permit these errors to be halved.

At the convergence rate Ks = 0. 005 most frequently used in process-
ing data for this report, the filter-weight rounduff error appears to be the
dominant source of error, With the constraint-condition erro. correction
procedure actually employed, the mean angle of error in the filter update
vector (Anew_ AOId) was approximately 18° at Ks = 0. 005 (ignoring sign
reversals in the adaptive filter output), If the alternate constraint-condition
error correction procedure (described in part 2 of Subsection E) had been
W

; 1
implemented, the mean angle of error in (Ane - AOIC) would have been ap-

proximately 10°. At convergence rates below Ks = 0. 005, the filter -weight

roundoff error seems large enough to affect adaptive-filter noise reduction

relative to beamsteering (see Figures IV-1 and IV-2 in Section IV).
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SECTION IV

SIGNAL-TO-NOISE IMPRCVEMENT IN THE PRESENCE
OF BACKGROUND NOISE

A, INTRODUCTION

In this section, the subject of investigation is the ability of adaptive
multichannel filtering to provide signal-to-noise ratio improvement relative
to beamsteering in the presence of background noise. The critical area of
concern is the improvement for weak signals in the borderline detection range
(where the signal-to-noise ratio in the beamsteer output is between 6 and 12 dB).
In this range of signal-to-noise ratios, detection procedures are unable to rec-
ogrize the presence ci 1 signal with any consistency. Under these circumstances
it is not possible to rely on the standard procedure of freezing an adaptive multi-
channel filter set when a signal is detected., Results in this section are obtained
solely from computer runs that implement the adaptive filtering process at each
point in time when a new data sample is available. One signal approximately
6 dB above the noise level on the beamsteer output is used for the critical re-
sults. Two other signals with signal-to-noise ratios of 18 and 24 dB are pro-
cessed in this way to illustrate the desirability of preventing the adaptive filter
update in the presence of a signal. Provided that a signal of this size is not
overlapped by an interfering event, any dire effects on the signal due to adap-
tive filtering are of no serious concern: the signal-to-noise ratio on the beam-

steer output is sufficiently high that the beamsteer output is adequate for sub-

sequent analysis of the event.

The method of approach used to estimate signal-to-noise ratio improve-
ment is to measure the difference between noise reduction and signal degrada-

tion. Both noise reduction and signal degradation are computed in terms of the
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drop in power for the adaptive-filter output relative to the beamsteer output.
Since it is impossible in the case of real data to distinguish between signal
power and noise power when a signal is present, the data samples for signal
measurements must be different from those used for noise measurements.
Noise reduction is computed over data samples approximately four hours

long. Signal degradation, on the other hand, is computed over four- tc eight-
minute gates. In the case of signal degradation measurements, the effect of
adaptive filtering on contaminating noise is lumped together with the effect on
the signal proper. As long as the adaptive filter set reduces the contaminating
noise power at least as much as the signal power, the signal degradation is not
underestimated and the signal-to-noise ratio improvement is not overestimated.
Noise reduction and signal degradation are calculated for the same pair of data
samples over a range of convergence rates. From these figures, the signal-

to-noise ratio is determined as a function ol cuavergence rate.

At convergence rates where signal distortion and reliability of the noise
statistics are not serious problems, there are two principal factors determining
adaptive-filter performance. As the convergence rate increases, signal degra-
dation climbs to a‘damaging level. Conversely, as the convergence rate de-
creases, the ability of the adaptive filter to respond to changes in the noise
field is impaired. The convergence rate at which signal-to-noise ratio im-

provement is maximized lies somewhere in between.

Subsection B discusses noire reduction as a function of convergence
rate. Subsection C presents noise reduction as a function of frequency for one
convergence rate close to optimum. Subsection D studies signal degradation
as a function of convergence rate., Finally, the noise reduction and signal de-
gradation results are combined in Subsection E to yield signal-to-noise ratio

improvement as a function of coavergence rate.
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B. NOISE REDUCTION AS A FULL.CTION OF CONVERGENCE RATE

Two samples, one from day 238 of 1970 and the other from day 203 of
1971, were used to investigate the effect of convergence rate on adaptive filter
noise reduction relative to beamsteering. The look direction for both samples
corresponds to an azimuth of 270°. Noise reduction is calculated as the ratio
of beamsteer output power to adaptive-filter output power. It is computed for
the entire band 0.0 to 0.5 Hz and also for the band 0, 0234 to 0. 0664 Hz (cor-
responding to periods between 43 and 15 seconds). Each point on the noise re-
duction curves shown in Figures IV-1 and IV-2 was generated by passing ap-
proximately four hours of data through the adaptive filtering package at a par-
ticular convergence rate. The noise reduction shown is for the entire length
of the data samples processed., Convergence rates are defined as percentages

of the convergence rate K =1,
S

The first data sample to be run through the adaptive filtering package
covers the period 0757 to 1150 on day 238 of 1970. The vertical components
of sites 1, 2, 3, 6, 8, and 9 from the ALPA array were used as input channels
for the adaptive-filter beam. The PDE bulletin lists no events between 0639
and 1502 on August 26 of 1970, A scan of the four-hour sample from 128ice
348° at 24° increments using the Fisher detector (see Subsection V-A) indicates,
however, that a signal reached ALPA at 1021 from an azimuth just under 600,
possibly from the North Atlantic ridge. (Beam traces steered for 60° show a
frequency-cispersed Love-wave arrival prior to frequency-dispersed Rayleigh-
wave arrivals on the vertical and radial components.) The energy from this
signal is only a small fraction of the total energy within the four-hour sample
and should have only a minor effect on the reported noise reduction values.
Table IV-1 shows noise reduction in dB as a function of convergence rate both
broadband and in the band corresponding to periods between 43 and 15 seconds.
Figure IV-1 is a graph of noise reduction given in Table IV-1l., Maximum

broadbana noise reduction was achieved near a convergence rate of 35%. This
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TABLE IV-1

it 8 gl i sl Al % &

ADAPTIVE FILTERING NOISE REDUCTION VERSUS CONVERGENCE

RATE (DAY 238 1970]

Convergence Rate
(% of maximum)

Broadband Noise
Reduction (dB)

Narrowband Noise
Reduction (dB)

0.2
0.3
0.4

1.099
g s
1.521
1.639
1.813
1.983
2.186
2. 346
P (E15)
3.135
£}, SN2
4,056
4,547
4,786
4,892
4,940
4, 945
4,939
4,896

1.156
1.439
1.618
1.746
1.936
2.124
2,347
Py GYele)
2.847
3.415
3.911
4.501
5.108
5.413
5.563
5.639
5. 666
5.667
5.670
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Noise Reduction (dB)

Narrowband
(15-43 Seconds)

Broadband

| |

. 1% 1% 10% 100%

Convergence Rate Ks

FIGURE 1V-1

NOISE REDUCTION AS A FUNCTION OF CONVERGENCE RATE
DAY 238 OF 1970 (0757 TO 1150 GMT)
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fact is probably of little importance, since the correlation between one data
vector X (see page IlI-1 for a definition) and the next is high, The high
correlation occurs because the highest frequency (0. 0625 - 0,125 Hz) at
which there is any significant noise is about one quarter to one eighth of the
Nyquist frequency associated with a one-second sample interval. If one data
vector X were exactly the same as the next, for example, the noise power

2
would be reduced to (I - ZKS) of its original value: the update equation

It

new 1d ZKS(}_{-X) XTAOld
SRS A T v
(X-X) (X-X)
would imply that
4 2K XT(}_{ X)
\ T > b
. x T gnew _ T, old o =
" (X-X)  (X-X) ]
B
T old ZKS(X-X) (X-X)
= X A i- - T
(X-X) " (X-X)
X J
. T  old

XTATT (1 - 2K )

and

e

T &
(A )newXXTAnew - (AT)OldXXTAOId(l - ZKS)

This result would also apply to data vectors X containing signals., And so it

is necessary to examine what happens to signals at corresponding convergence i

rates.
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The second data sample encompasses the interval 0355 to 0725 on day
203 of 1971, Sites 8, 13, 14, 15, 16, and 17 of the ALPA array were input to
the adaptive-filter beam. The PDE bulletin reports some activity in the New
Ireland and Northern Celebes regions of the South Pacific during this period
(notably a magnitude 5.4 event from 0.4N, 123.5E at 06:07:52.8 GMT). Since
the azimuth from which this energy arrives is extremely close to 270° (the
look direction), the data sample contains signal energy. The relative strength
of enerzy from seismic events in this data sample is discussed later in Sub-
section B of Section VI. Apparently a sizeable fraction of the total energy is
due to seismic events (both on-azimuth and off-azimuth), Table IV-2 and
Figure IV-2 give the noise reduction in dB for this sample as a function of
convergence rate in the frequency bands 0. 0-0.5 Hz and 0. 0234-0. 0664 Hz.
Maximum broadband noise reduction occurs around a 25-30% convergence
rate. Note that the broadband noise reduction drops abruptly between a 32%
and 35% convergence rate, whereas the narrowband reduction stays more or
less level all the way to a 50% convergence rate. The reason for this drop
is that the adaptive filter set temporarily diverged over a short section of
data containing a glitch, The result of the divergence was a rapid oscillation
in the adaptive filter output at the folding frequency. The folding frequency
does not show up in the narrowband analysis, and hence the narrowband noise

reduction remains relatively constant beyond a 32% convergence rate.

Note that the noise reduction in both these samples begins to arc down-
ward slightly as the convergence rate decreases from KS = 0, 5% to KS= 0.2%.
The effects of rounding the filter weights to the nearest comnuter count are
probably becoming evident. A less plausible explanation is that the adaptive
filter set utilizes a sizcable fraction of the total four-hour sample before it
completes the transition from the initial beamsteer weights to a filter set re-

flecting the statistics of the noise field.



TABLE 1V-2

ADAPTIVE FILTERING NOISE REDUCTION VERSUS CONVERGENCE

RATE (DAY 203 1971)

Convergence Rate
(% of maximum)

Broadband Noise
Reduction (dB)

Narrowband Noise
Reduction (dB)

0.2
0.3
0.4
0.5
0.7
1880
1085
2.0
3.0
5.0
=0,
10.0
15.0
20,0
25.0
30.0
32.0
33,0
35.0
40.0
50.0

1.705
2,044
292405
2,442
2.686
2.937
3.207
3.420
3.782
4,362
4.793
5.246
5.611
5.764
5,814
5,807
5.806
5.732
5.494
5.393
5.281

1.828
Zeal'8il
2.421
2,596
2.852
S48
3.429
3.679
4,122
4,826
5335
5.864
6.293
6. 481
6. 547
6.561
6.562
6.557
6.558
6.537
6.498
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Convergence Rate Ks
FIGURE 1V -2
NOISE REDUCTION AS A FUNCTION OF CONVERGENCE RATE '
DAY 203 OF 1971 (0355 TO 0725 GMT) :
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Both of the noise samples studies so fa1: were taken from summertime
(when the noise is at its lowest). In Subsection C, noise reduction as a function
of frequency for a sample from day 7 of 1972 is discussed briefiy., Also in
Section VI, where noise reduction is examined as a function of steer direction,
a data sample near the peak autumn noise level is processed. These two
samples, one from winter and one from fall, give some idea of the reduction

of background noise achievable later in the year.

C. NOiISE REDUCTION AS A FUNCTION OF FREQUENCY

To determine the frequencies at which adaptive filtering was producing
noise reduction, power density spectra for the two beams were computed.
Spectira in this report are given in dB relative to one millimicron squared
per Hz at frequencies where the prefilter response is unity. If square-root-
of-N noise reduction had been achieved through beamsteering, equivalent
single-sensor noise levels would be 7.8 dB (i.e., 1010g106) higher than the

beamsteer power density spectra.

Figure IV-3 presents output spectra of the conventional and adaptive-
filter beams for the noise sample from day 238 of 1970. The spectrum rises
to a peak of 26.5 dB at a period of 18 seconds and descends rapidly from this
peak as the frequency increases. Figure IV-4 is a graph of the noise reduction
from adaptive filtering at a convergence rate 0.5% of maximum. Noise reduc-
tion is measured as the ratio of the beamsteer output power density to the
adaptive -filter output power density, Peak noise reduction of 3.0 dB is ob-
tained at a frequency corresponding to a period of 20 seconds. Noise reduc-
tion of 1 dB is maintained at almost all periods above 13 seconds. Positive
noise reduction is preserved at all frequencies where there is significant

power.

Corresponding beam output spectra for the noise sample from day 203

of 1971 are plotted in Figure IV-5. The adaptive-filter convergence rate was
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FIGURE IV -3

BEAMSTEER AND ADAPTIVE FILTER OUTPUT POWER DENSITY
DAY 2381970, STEER DIRECTION 270°, K_ : 0. 005)
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