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THE MINIMUM ROOT  SEPARATION  OF A  POLYNOMIAL 

1.     Introduction.     Let A(x)   be a  polynomial   of degree  n ^   with 

complex  coefficients a.   and  complex  roots  a   ,   so that 

AW=Li=0  aixl=anTTj = l(x"aj) (I) 

We  define  sep(A) ,   the minimum  root   separation  of A,   by 

sep'A^min      ,       Ori'OLIi 
o-jf^    J     K 

(2) 

with  the  convention that  sep(A)= ■ in case A   lias  only  one distinct   root. 

The   computing time  required  by any  algorithm to  isolate  the   zeros 

of A  depends   inversely  on sep(A) .     Hence we  are  interested   in  easily  corn- 

stable   functions   fa   , ... ,a   )   of  the  coefficients  such  that 

f(ao,...,an;^ sepfA) (?) 

Heindel, [ ■ ], in analyzing the computing time of an algorithm 

based on Sturm's theorem for isolating the real zeros of any polynomial 

with integer coefficients, used a weak lower bound for sep(A; due to 

Collins.  Pinkert, [•>], presents an analogous algorithm for isolating all 

zeros, real and complex, of any polynomial with Gaussian integer coefficients 

His algorithm is based on Sturm's theorem and the Routh-Hurwitz theorem and 

uses a stronger lower bound for sep(A) obtained more recently by Collins. 

Horowitz, using another simpler approach, has recently obtained a third 

lover bound, intermediate in strength, but just slightly weaker than the 

MMM - — ■■—■"-—^ 
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stronger bound of Collins.  In the following, these three bounds are all 

derived, with the hope of stimulating further research on the problem. 

If A(x' has rational comolex coefficients, we can easily compute 

another polynomial, having the same roots, with Gaussian integer co- 

efficients.  Further, if A(x) has Gaussian integer coeffici?nts, we can 

easily compute another polynomial A*(x) with Gaussian integer coefficients, 

having the same roots as A(x) and having only simple TOOLS, namely 

A*(x)=A(x)/gcd(A(x),A,(x)), oo 

where A'^'x)   is  the derivative  of A(x)   '»nd   "scd" deiutes  the  greatest  common 

divisor.     Hence   in  the   following A   is  assumed   to have GaLisian   integer  co- 

efficients  and  no multiple  roots. 

Also,   the  three   lower  bounds   to  be  obtained will  all   be   of  the   for- 

0<g(n,d)£sep(A), (5) 

where  n=dcg(A),   the degree  of A,   and  d=v(A),  where   v is  some   "semi-norm". 

In  the  next   section we  introduce   the  notion  of a  semi-norm   for  a   ring and 

then derive  some   lemmas which will   be  used   in deriving the  root   separation 

theorems. 

1 l 

 ~.^m**mä 
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2.     Semi-Norms  and Rt-sultants.     If  I? is  any  commutative   ring,   a 

semi-norm   for  0 is  any   function v   from Q into  the  non-negative  real   numbers 

satisfying the   'ollowing  three conditions   for  all  a,   b^ ^: 

vCa)=C   if and  only   if 3=0, (t a 

v.'a-b^ v'a)-v(b), (' b 

v(abU v(a)v'D). (' c) 

These  conditions   imply  also 

v(-a'=vfa), 

A norm for ^ is a semi-norm for ff  such that 

v(»b)"v(«)v(k) • 

(6d; 

C7) 

For   the  ring G  of  the Gaussian  integers  a   familiar  norm   is 

2    2.1/2 
v(a+bi) = la+bil = /a'+b')   '   ,    A   semi-norm   for G which  is  not  a  BOta   is 

• .'a+bi^la+bil^laj + jbl. 

Any  semi-norm  v on a  commutative ring %> can  be  extended   to  a   semi 

norm   on   the   polynomial   ring /^ xl   by   the  definition 

v(Z.i=uaix  ' = '   fO^'i*' {  J 

By   induction on  r,   repeated  application  of  (8)   extends  v  to  a   semi-n,n-m  on 

/P[ x   ,...,x   1,   which   is  easily   seen   to  be   independent   of  the   order   in  which 

the   indeterminates   x.   are  adjoined. 

As  a  special  case,   (8)   defines   JAl   and   JAJ.   for any Gaussian  poly- 

nomial   Afx1 ,xr) EGixp... ,xr]   as   extensions   of   the   Eemi-norms   for  G 

defined  above.     For   integral   polynomials A.x   ,...,x   )  with  rational   integer 

coefficients,   the  norm   |A|     has  been used  extensively   for   the  analysis   at 

UlHbiMdlHMnMte     
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algebraic  algorithms.     See,   for  example,   [1],   [2],   {'']   and  [6].     Its 

extension  to Gaussian polynomials,   however,   is  new. 

If M   is  an arbitrary matrix  (or  vector^   over ft  we define 

V(M)=VVM   ;, (9) 

where the summation extends over all entries of M.  It is easy to verify 

that the conditions (6a)-(6c) hold tor matrices over /^»whenever the opera- 

tions are defined.  In pa.ticular, this extends v to a semi-norm for the 

ring of all n by n square matrices over ft. 

By combining the semi-norm extensions for polynomials and matrices, 

we obtain the following general analogue of Hadamard's determinant theorem 

([6], p. 206). 

Theorem I.  Let ft  be a commutative ring, v a semi-norm for ^, M an 

n by n matrix over /p.  Then 

v(det(M)K TT^vCM^ (lO) 

where M. is the i  row of M and det(M) is the determinant of M. 

Proof.  By induction on n, the case n=l being trivial.  We denote 

by M. . the element of M in the i  row and j   column of M, by M. . the 
l»J i.J 

submatrix  of M  obtained  by deletion  of  the   i       row and   j       column.     By 

Laplace   expansion, 

d«t(M)-y,j*j(-i)i+liitld«t(ii* ). 
■   ; Z   j=l' lj Ij7 

By   (6)   and   (11), 

v(det'M;:;_^^[vfMl.)v(det^M,
1.)) 

(U) 

(i- ; 

mm^^^ma^m 
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The   ith  rww   of M^.   it  a  subrow  of H^,   so 

^(detfM^.))! ^(M.) 

by  the   induction hypothesis.     By   (12)   and   (Ij), 

v(det   (M))< ^^(M^^lvfM^). 

[15) 

{Ik) 

Since ^^(M, . )=v(M1 ). this completes the induction.! 

A corollary of Theorem 1, needed in Section J, will now be obtained by 

consideration of certain submatrices of the Sylvester matrix of two poly- 

nomials, A and B, over £.  Let m=deg(A), n=deg(B).  The Sylvester matrix 

Of A a, 1 B is the m+n by m+n matrix S whose successive rows are the co- 

efficients of the polynomials x"" A(x) , ...,xA(x), A{X),K        B(X), ..., 

xB (x), B(x).  Diagrammatically, if A(x)=. ^a^
1 and BW-^b.x , the 

S= 

a   a 1 m   m-1 0 

a     a  , 
m    m-l 

m m-l ...  a, 

b   b  . 
n   n-1 

...   '1 

n-1 

b    b    ...  b 
n    n-1       i 

in which all missing entries are zero.  By definition, the resultant of 

A and B, resi'A,B), is the determinant of S. 

Theorem 2,  Let A and B be polynomials over a commutative ri.ig O 

-- ■        - - -  U,^mm, — ..-.. 
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with semi-norm v. Let m=deg(A)^0, n=deg(B)X5, c=res'.A,B)1 Then 

v(c)<v(A)
r,v(B)m. (16) 

Also, there exist polynomials U and V ov?r yg such that AUfBV=c, deg(U)<n, 

deg(V)<m, 

v(U)<v(A)n-Lv(B)m, (IT] 

I 
Ü 

I 
o 
0 
II 
Ü 

i 
II 

xB(x),B(x). Applying the Laplace determinant expansion theorem to the 

last column of S^ we obtain AU+BV=c with deg(U)<n-l and deg(V)^Jn-l, where 

and 

v(V)<v(A)nv(B)m"1. (18) 

Pro..f.  II S. is the it row of S then v(S1)=v(A) for l<i<n and 

v(S.)=v(B) for n+l<i< m+n, and (15) follows from Theorem 1. Now consider 

v m+n-i 
the matrix S which is obtained by adding to the last column of S x 

times the ithcolumn of S, for l<i<m+n. det(S )=det(S)=c and the last 

column of S contains the entiles x  A(x), ... ,xA(x,/, A(x), x  Bi'x),..., 

N 
^he coefficients of U and V are the cofactors of the last column of S . 

Each coefficient of U is the determinant of a matrix obtained from B 

by deleting one row of coefficients of A and the last column, and so 

Theorem I yields (l?), and similarly (18) holds.! 

5.  Root Separation Bounds.  For each of the first two root 

separation bounds we will • se the following upper bound on the roots of 

a polynomial. 

Theorem 3).  Let A be any non-zero Gaussian polynomial, and let t^, 

be a root of A.  Then 

W-lM/'aJ (19) 

where i =ldcf(A) . 
n 

BMWMM-ili—MMraWMmm   i ..     , —.      i        n I in UM 
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Proof.     |A|>U   I,   so  (19)  holds  for   la|<l.    Let A^^^.a.x1  and 

(20) 

n Cn-l       i 
assume   lo-l^l.     Then a  g =/j=oaia  '   so 

I«.I-|.I°^KI-I«I 
n-1 

Dividing  (20)   by   1^1       , 

iv-wStaH. l',*l^l«ll<l*l.      (2l) 

from which (1°) is immediate.! 

Theorem ); . (Collins, 1970)  Let A be a Gaussian polynomial of 

degree nS2 with only simple roots, and d=|Al.  Then 

seP(A)>(2dr
n(n-lV2. (22) 

Proof.  Let o'i.'«'»0' be the zeros of A and \=sep(A). We may 

choose notation so that AH&i-cvpl- Let D be the discriminant of A, 

so that 

»-f'S^v*/- (25) 

and  ([10],   Section 28),   0  is a Gaussian  integer.     Since  the  0,  are 

distinct,   D^ and  hence   IDI^I.     Combining  this with   (23),  we have 

l^an]2n'2iri<k]ofak]2' 

Dividing by A   , 

s-2   ,      ,2r\-2„ 
»«"«■ j "V  • 

(210 

(25) 

(j,k)Al,2) 

ere are   (■ -n-2)/2   factors   Ittj'Q^j     in   (25)   ar»d   I cVj-o^UI »j | + lakl' Th 

2d/la   I   by Theorem 5.     Hence, 

2 2 
2   ,„.sn  -n-2/|     ,n -Jn 

A    ^(2d) /'a  ' ■ (26) 

2 
Now n -5n+2>0  and   la   1>1   so 

^ n 

\l 

  ^ .   .- .-..,         jM 
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I- A-^(2d)n2-n-2lanl2<(2d)n2-n. 

from which  (22)   is  immediate. 1 

(27) 

6 

Theorem ^.  (Horowitz, 1975) Let A be a Gaussian polynomial of 

degree nä2 with only simple roots, and d=|A| . Then 

U 8eP(A)2(nd)"lm+5. (28) 

Proof. LetoC,...,oC 0« the zeros of A and^=sep(A). We may 

suppose thatA = U1 ^J. By Theorem 2, there exist Gaussian poly- 

nomials U and V such that 11 
11 
il 

1,1 

Ml 

AU+A'V^, (29) 

deg(u)^n-2 and  deg(V)^n-l,  where c-res^.A*).     Since A(x)=anri=1(x-i^i), 

we  have 

n '■M-^.^uiJ"-^- (30) 

Evaluating  (50)  at x=^,, we  obtain 

" A'(^)=an^=2U1-^i). (31) 

Hence,  evaluating  (29)  at x^ and using  (31). 

[j M-a^S^n^)-«. (52) 
By [10], Section 28, c=a D, where D is the discriminant of A, a non- 

zero Gaussian integer.  Hence V^JO^O and by (52) 1 

sep (A)-OAtAl)^   t^^L). (55) 

|j KMAl   SO 

\v\^rld2n-2 (5'o 
I! by Theorem 2.     Since  deg(V)^n-l  and   lflC(<d, 

D 

-J*~^*—MaM^*J—"^——-^ —^ - ■ ■ ■-  --   - ^        1       ^i^a■iliaill■■l■iMM>^tf■liillili^ll■^ 1      .  .  m   ■■ niTi^i'iiM  1 iTKii'ifc'^'ifi.i m t 
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\n*l)\t\v\.**mlmm'lJ*m*. (55) 

From (7,3)  and   (35),  using   ||>|*1 and   | ^-^ |<2d, 

sep(A)^2        n        d y. (36) 

The proof is completed by observing that ns2. I 

In order to obtain the third root separation bound, we construct 

a Gaussian polynomial B* whose roots are all the differences n.'a. 
1  j 

with i^j.  The idea of constructing B* as a resultant was suggested 

by some current research of R. Loos, [Jit After obtaining upper 

bounds for the coefficients of B*, we will apply the following theorem 

to obtain a lower bound for the roots of B^, and hence for bep(A). 

Theorem 6.  Let A(x)=y.  a.x be a complex polynomial of degree 

n>C, with a ^ 0.  If a is  any root of A, then 

M^^W IVlil/l- ^7) 
a,a© 
i 

Proof.  Let A*(x)=x Afx  )=*. ^.a  .x .  A* is a polynomial of 
  LJ.=0 n-i r    ' 

degreeHwhose  roots  are  the  reciprocals  of the  roots  of A,   for 

A-(x)=anxV=1(x-1. cv1)=anr'i;=l(l=aix)^anTrJ=1(-CVi)]^=1U- „.     ))- 

an(a0//an^TTi=l(x" ai'  ^^O^l^'^i"  ^    Hence A!'^"  ^=0 and  from []ri' 

Exercise I;.6.2,20, we have 

Ic/^max^Ja./a//1, (38) 

from which (37) is immediate. • (39) 

Theorem 7.  ("ollins, 1975)  Let A be a Gaussian poly- 

nomial of degree n&2 with only simple roots and d=|A[.  Then 

sep(A)^(e^n;,/2d)'n, 

where e is the base of the natural logarithm. 

(W) 
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Proof. Let B(x) be the resultant of A^y) and A x+y .  If the 

coefficients and roots of A are given by (1), then, 

A(x-fy)=an^=1(y.((,..x)). (U) 

Expressing the resultant B(x) as a symmetric function of the roots of 

A(y) and A(x+y) by the theorem of van der WPerdun 1 1 1, Section 2 ), 

B(x)=a2V . . {x-{a,-Q.)). {h2) v ' n l^i,jsnx  xu'i  j *  ' 

Since a-~a-   if and onlv if i=j, B(X)=X B(X), where 

B(x)=afru.(x-(0i-aj)), ^) 

is a polynomial of degree n(n-l) with B(O)-JC). >»lso, (Uj) can be written 

in the form 

B(x)=afTTi<j(x
2.(ai-0.)^), 

so that if ¥(x)=y .:l"" ^b.x
1 then b.=0 for i odd. 

Expanding A(x+y) in a Taylor series, 

,'..) 

A(x4y)=)7  fA^-O/i^x1. to-yun-i (U5) 

where A  is the i  derivative of A.  Let 

n  ,iÖ, 
A*(x>y) = rA(x-fy)-A(y)Vx=\n_1{A^y)/inx

i'1. ^6) 

Let M be the Sylvester matrix of A^y) and A(x+y).  If we subtract the 

th . th 
i  row of M from the (n+i)   row and then divide the latter by x, for 

l^i^n we obtain a matrix M such that det^M)=x det(M). The first column 

of M contains a  in the first row and zeros elsewhere.  Hence det''M) = n ' 

a det(M*)> where M* results from M upon deletion of its first row and 

column.  But M* is the Sylvester matrix •-■f A(y) *>.d A*1 y.,y), so 

B(x)=anB*(x) (U7) 

where B*(x) is the resultant of A y) and A*(x»y)« 
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We  rnw proceed   to  obtain bounds   for   the  coefficients   of B¥.     Let 

7k+l,     < i-1 A-k(x.y)^;eA ^y)/!:)«1"  . 

so that A« is th'> result of deleting from A" all terms of degree 
k 

k+1 or greater in x.  Since A" and A£ are both of degree n-1 in y, 

B*(x)»Bf(x) imodulo xk+1) for k20.  Hence the coefficients of x  in 

B-M» and W(«) are identical, and if B*(x)^="' b^ then 

Now |A^(y)/i:U r?)d. so, by [kB), 

lA^(x,y)Uy2^l(i)dsen  d. 

By Theorem '   and   (^C), 

.      .     n  (k+lln.2n-l 
iB^Ue  n d 

By ' t. and (51), together with 'b^l^l, 

.L ^  .1/Pk -n/2  -5n/^.-n+l/2 
lb*/b*,kl '  ^e / n ' ' d 

for k>l.     Since  b*=C   for  i  odd,   by Theorem 6, 

. I   ,,   1/? 5/2.^-n 
U^rvjl  -Ke '   m*   d)     , 

completing the proof. I 

The computing time of an algorithm, e.g. | '1, for isolating the 

zeros of a Gaussian polynomial A is dominated  in the sense of 2])   by 

a polynomial function of n=degi'A), log i where d=|A|: and -log sep'A) . 

If "-J' denotes codominance of functions as in [2]   and if C^ n,dj, 

H^n.d) and C./n,d) are the bounds on sep'A) given uy Theorems •, ! and 

7, then wc have 

(50) 

(51) 

(52) 

(55) 

•log C.'n,d)^n log d, 

—   -•-■- ~-    ^- 
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-log H(n,d)~-log C2(t.,d)^ji log nd . (55) 

In this sense the last two bounds are equivalent. 

p_ 
When n=2, sep A) can be given explicitly.  If A(x)*ax +bx+c has two 

distinct r.vots, then 

sep(A) = lb2-'ar.|l/2/|a|. (56) 

Also,  by Theirem I»,   s?p(A)>l/2d.     Let a=k,   b<Jk-l  and   c=k-l with k>l • 

Then d=|A[=!.k-2  and   sep(A}=l/k<V(lik-2)"U/d. 

Define 

Lfn,d^=minfsep(A):deg(A)=n^lAl<d] 

T.'ien,  we  hav,1   just   shown, 

(57) 

(58) 

It does not seem unreasonable to ask for an explicit relation such 

as (58) for Li'-i.d), but we have thus far not succeeded with this 

apparently simple problem.  We know only, by Theorem 57 and some 

obvious examples, that 

d'7;rsL(5,d)«:d'1, 

where   V  is   the dominance  relation. 

(59) 

■ 
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