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1. INTROLUCT]UN

LCH is base¢ on a 103ic of Dana Scott, proposed by him a+
Oxford in the Fal| gof 1969, for reasoning aboyt computable functions,
In Section Z we pregent this lodic, essentlally as Scott himself
oresentea It, but ysing the tyred x-calculus instead of the typed
corbinetors S ena v, gince the former is more famiilar to computer
scientists and js in any case casier to Work with, Section 3 then
describes the machine inplementation of g proof-checker for the
logic, we refer to noth the loglic and the Impiementation as the typed
loagie for computanle functions, or typed LCF, or Just LCF,

The joale prescpposes mp spacia gomain of computation fe,g.
lists ar Intrgerss, However, carticular domalns gan be A¥lemetlized |n
It ; Scott gave sn asomatiZation for drrthmetle and we sUpSest =&
PErtiml  pxipnetizagien for (ists in Section 3. But many lnterasting
FEILILS = h,8, wmguivaienne of pecursice fdustlon gschemata = are
pravaRles in the nure |ogle #ithout any crocer (hon=lpgical) axloms,

It is hoped that a potential user of the system can, wlth the

hain of the exampie eof Section 3.2 and wlth section 4, get onto the
macnine without reading *the whol|e cf this documrent,

Further discussion of LCF and examples of Its applications
can ne foaund in <he fyi|owling papérs!

Milrer,R.y "implementation ang applications of Scott’'s fogic for
conputerle functinng”, From. ACM Conference on Proving Assertions
about Prodrams, “e. Mexico Stete University, Las Cruces, New Mexico,
Jan 5=7, 19??0

Wwevnrauch,R, and “i;ner, "Prograrm sementlcs and correctness in a
mechanizead Jcuig, Proc, USA-Japan Computer Conference, Tokyo, Oct
17972 (to appear),

Milr2r and Weyhrauch, "Proving compiier corréctness in a mechanized
ieyie", Machine ‘neelligence 7, ed, D, Michie, Edinby,ah Univergity
Press 1972 (to appear),

Newey,M,, "axioms and Theorems for integers, |ists ani finite sets in
LCF", forsrcoming Al Memo,, Computer Science Dept,, Stanford
University, 1972,

We sive no further refarances here; they msy be found |n the above
paners,
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2, THE LOGIC LCF

Tynes

At pottom "tr" and "ind" are types, Further if B1 and B2 are types
ther (B162) Is a type, We adnpt the convention that = associates to
the right and freguentiy omit prarentheses; thus we Write P1<B24R3 for
(Bla(B248%)), With each term of the logic thera is an Jnambiguously
associated type, For a term t we wpite

Tl

to Team that the type associated with t Is v, Throughout wWe use
B,31.P2,,,, as matavarlablas for types.

Terns (retavariadlog s,teSlotle,,.)

The following are tarnms:

Identifiers(metavariables x,¥) = saequences of Upper Or |OWer
letters and Ai7its. we assune that the type of each identifler
is uniquely determinad In some manner,

Applications = s(t) t 32 , yhere s:B1+P32 and tiny,
Conditionalg = (s=tl,t2) ¢ B , where sitr and tl,t2:0,
Aeoxpressions =~ [Ax.,5] ! (1482 , where X:B: and s:f2,
¥=04pressions = [Ix,5] ¢ B , wnere X,s:f,

This strict syntax {5 relaxed [In the machine Imp|ementation (see
Sectlion ) to allnw a saving ot parentheses and brackets,

Tha intended iniarpretation of the a-gxpression [af,s] is the
miniral fixed=point of ithe functlon or functional denoted by ([xf.sl.
For 2xarpje:

:af,[xx,(p(x)~f(a(x)),n(x))JJ
denytas tne2 function dafined recursively as follows:

fFix) <= if p(x) «nen fla(x)) elge b(x),




Constants

The identiflers TT,FF denote truthvalues true and false, (U denotes
the totelly wundoefined object of any type: in particular, the
undefined truthvalua,

Atormic wel|l=formed fopmylaa (anffs)

The following is an awff:
s < ¢t

where s ana t are 2f tne same type, The intended interpretation of
s€t is, roughly, tnat t Is at irast as well defined as, and
consistent wlth, s,

Weli=-fopmed formulae (wffs) (metavariapjas P,Q,P1,01,..,.)

IO I X N B I N I I I I e A X

Wffs are sets of zaro or more awffs, written as |ists with separating
commras, Thay are interpreted as conjJunctions, We use

s = ¢

to abbreviate sct, tcs ,

Sentances

Sentences are implicatlons batween wffs, written
P e Q

or, if P is emnty, just

Procfs

A mzrd0f s a sagdenca of santences, each being derived from zero or
more preceding seantences by a rule of inference,



Irnference rules

Let us

write P({s/x)} or t{s/x) for the rasult of substituting s for
changing

all free occurrencas of x inP or t, after

varlables In P op t so that no variable free
the substitution, We have not stated conditions _
identifiers ana terms With each rule; any consistent asslignment of

types ls admlissiole,

INCL

cuT

APPL

TRANS

MY

MINg

sanns - RULCES LA AR X
cTocoscraece (:J a Suhset of P)
Pl 3

o= Q1 P I= 22

P |- 21vQ2
PL |= P2 P2 |= »3

P1L = P3

(2 XX Y c SYULES i ZX XX

sl ¢ g2 |- tlsl) < +(s2)

F | = 5 € §

P 1= 351 ¢ g2 P I=  s2 ¢ s3
P | = sl ¢ s3

(XXX ¥ Ly SULES AT RN

l= U e g

In s becomes bound by




R AL A CONDITIONAL RULES Rne

CONDT LR XK P N X g

|= 77 - st S s

CONDY  weeeecrecccccccc-cs
l=  UU » g4t S UU

CONDF oeoovedeeeSgreTewe

| = FF » g)t £ ¢

(Y Y XY A RULES HRENE

P |- s €t
ABSTR PO DT PO NP PO O (x not fr.e ln P,
P |- [Ax.gd © [Ax,tl

CONV Secseosoeecance coceavoesene

|- IMx,32(¢) = slg/x)

ETACONV eececccccccccavanse (x and y distinct)
|- IAx,7(x)] =

L1}
<

Hutas TRUTH RULE YT Y

Py s=TT |- Q P, ssUU 1= Q Py sSFF |= @
CA':F_S I I ey e P PP T R PR R PR R L L X coweccsseessese
P |= ¢
 2X X2 a RULES  TXXX
FXXP covcesscssavgeesTessaeSenee
I= Lax,s] £ s{[ax,s)/x}
P = Q{UUyx) P, @ I= Q(g/x)

INDUCT eecvccccecccecccccecencaceccece=e==  (x not free In P)
P = Qlox,tl/x)}
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3, THE MACHINE IMPLEMENTATION OF LCF

--------------------------------m-n--.

We now descripe the machine version of the logle of Section
2, and how to use |t interactively on the machine,

the yser nag avallable four groups of commands!

e Rules of |nference =- tO ganerate new sentences or steps
from 2ero or more Dprevious steps, (Sectlon 3.2)

e Goal Oriented Commands - to specify and attack goals
and subgoals., (sectlon 3.3)

e Miscellanegous = malnly to do with displaying or filing
parts or all of the oroof so far, and the goals, (section 3.4)

e Commands fnapr axlioms and theorems = ¢o enable the uyser to create
axlom systems, t2 prove and flle theorems in these systems, and
later to recail and instantlate those theorems, (Sectlon 3,7)

pefore cescrlibing the commands In detal}, and the syntax of wffs,
terns, 8tc,, it may oe helnful to see an example,

3,1 An Exanmpie

Let us Introduce the macnine verslon of LCF by a sim
exarplie whlegh, although short, axhlbits many of the features, [t
a proof of a version of racursion Induction, which states that | f
's oeflimed recursively and G (another funotion) satlsfies F’
recursive definition than FeG, In other words, we prove that Food
tha minimal fixed point of Its defining equatlion,

after Initjallzation (see Section 4), the system types 5
asteriske as a signal to the user to start a oproof. In fact, 5
asterisks are always the signal for the user to continue his proof.,
Thus, Ir what follows the user’s Sontribution may be distinguisned by
belrg preceded by essaw, Wwe explain each wuser and machine
cortributlion on the right of a vertical line,

sszenASSUME FELoF,FUN FJ, GSFUN '
IThe user assumes a w~ff (a sequence of atomnic wffs
lseparated oy commas, where each atomic wff has = or
le Infixed petween two terms), Every user
lcommanc ends w~ith a semicolon, Detailad syntax is
lgiven later = but note in particular that application
Imay be rebresented (som3times) by Juxtaposition as In !
["FUN G" to save parentheses. Note aiso that F occurs both
Ifree and Dgund (Oy ) without confuslon. i




1 FECaF ,FUN(F)D] (1)
2 GSFUN(G) (2)

IThe machine separates the assumpticn Into two sentences,
lgiving each a stepnumber. Every sentence which the )
Imachine genepatas wiil have a stepnumber, and wli| consist
lof a wff followed by a ||ist of stepnumbers of assumptions
lon which the wff depends, A sentence

|

| n P S

|

lwnere P Is a wff ard S a |ist of stepnumbers s the
lanalogue in LCF of the senmtence

|

I G |- P

I

lof pure LCF, where O = the conjunction of assumptions
ldesignated by S, Each of steps 1 and 2 above thus
Irepresents an instance of P |= P, which is a special
lcase of the incluslion rule of Sectlon 2,

#nnasGOAL Feis

IThe user states his goal, but does not attack it yet,

IHe might |{st severa!l goals before attacking any of them;
I'In each case the machine wli| simple give a goal nymber:

NEWGOAL #1 Feb
IGoal numbers are distinguished from stepnumbers by #,

sazas8TRY 1 INDUCT 1;

IThe user wants to attack COAL1 using the tactic of

linduction on Step 1 = which is (as It must be) a
lrecursive cefinition = |.e, FZCaF (FUNCF)],

NEWGOAL #1#1 Ulieg
NEGOAL #1#2 FUN(F1)eG ASSUME Fieg

IThe machine says that the Induction base and step

Imust be established, For the step It pleks an arbitrary
Ilaentifier not used previously (actuaily for mnemonic reasons
lit ricks something whiech only differs from the Instantiated
Ilbound veriabie In Its numeplcal| suffix),

INe row have two goals generated by the machlne, at

la lower jevel, The user need not = byt probabiy wil| =
lechoose to prove #1 by proving #1#1 and #142,

snsnnTRY 1;
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lUser chooses to attack #1i#1 flpst, He need (and must)
lonly refgr to the goal by the last Integer In its goal
Inumber, This time he doesn’t state a tactic = he knows
fhow to prove !t himself = so the machine merely stens down
la |eve| in the goal tree and waits, Actually, he could
luse the SIMPL tactlc (see Section 3.3), since this
ltactic notices Instances of MIN1 and would therefore

Isave the uger hls next two commanis,

sssaaMINL G}

IThe user notes that the subgoal| UUeG can be proved

Iby the first minimality ru|e (see Sectlion 2), s0 calls
|1t with the appropriate term = G - as parameter,

3 UueG
IThe machine obedlently generates the proper instance of
iminimajlty, Notlce that this sentence depends on no
lassumptions,

sansaQED;)

IThe user can say QED to tel! the machine that he has
Iproved exact|y the goal under attack,

GOAL #1#1 PROVED, BACK UP TO GOAL #1
REMAINING S,yBGOALS:

2 FUN(F1)eG ASSUME Fi1e6

IThe maching agrees, Now In general It w!li bagk up
Ithe goal trege untll it tings a goal somg of Whosg supgolls
Ihave not bean proved, It wiil remaln at thet leve| and |ist

Ithese subgpals for the user to try,
ansaneTRY 2}

lAgalin, user glves no tactic,
4 FieG (4)

IThe maching makes the assumptlion of the goal for him (note
Ithat goai #i#1 had no assumption), and walts,

saaneAPPL FUN, 4}
I"Apply FUN to Step 4" « an instance of appiication (see
|Sectlon 2),

5 FUN(FL)SFUN(G) (4)
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sennalSYM 2;
ITuern step 2 around ready for an application of transitivigy.
6 FUN(GIZG (2!
wnuneTRANS 5,6
INote that :he parametap3 of inference rules are always
Istepnumbers or terms, separated by commas,
7 FUN(F1)eG (2 4)

saaaeQED:
GOalL ®1#2 PROVED, BACK UP TO GCAL #1. NO MORE SUBGOALS
5§ FeG (2 1)

|ee===The machine hasn’'t finlished yet, but note that it

Imakes an expliclt step to represent the proof of #1 (so
ithat the whole sequence of steps, with al| the goa|
Istructure stripped away, shal! be a forma) proof), Note
lalgo the assumptions of sten 8,

ROAL #1 FROVED, RQACK UP TO TOP LEVEL. NO MORE SUBGOALS,

I(There might have baen more goals |isted at top Jevel,
Isince the user can list many before attacking any),

seaaaSHOW PROOF RECIND:

IThe user decides to keep his proof on a flle caljed RECIND,

IThe version kept IS shown bealow, Notlice that not every=-
Ithing which the user typed reappears: |In particujar, the
Istatemant of a goal is not reproduced, only its trilal,

I1f the user wanted instead to display hls proof (at any
lpoint, rot just at the end) ha would Jjust type "SHOy PROOF;™

PROCF
1 F 2 CoF,FUN(F)] (1) ==--= ASSUME,
2 G = FUN(G) (2) ===« ASSUME,

ITRY #1 F < 6 INDUCT 1,
l CmeomTNoRNonYtewTToseYenaww

I ITRY #1#1 Uu ¢ G

| I3 UU ¢ G ==== MIN1 G.

|

I
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|TRY #1#2 FUN(F1) © G ASSUME FL e G .
|4 F1 ¢ G (4) =-== ASSUME,

15 FUN(FL1l) € FUN(G) (4) =-== APPL 4 FUN,
| 6 FUN(G) 2 G (2) ==== SYM 2,

|7 FUN(Fl) ¢ 6 (4 2) ==-== TRANS ©5 ¢,

8 FeG (2 1) ==== INDUCT 3 7,

3.2 Rules of Inference

Let us assume for the monent the syntax classes <wffd>, <awff)
(aterlic wtf), <term>, Details of these are in Section 3,6, but for

now |ook only at the conventions glven for syntax definitlons at the
start of that Sectlian,

We need for the present

(stepnamre> ::= <integer>| - | , <ldentifiepr> 2{( (+|=«) Cinteger> )

Ctermnare)> $:2 ?2( :3l:<stepname> )} ?{ i<integer> ) (iLIl:R)
<rang®> ::s <stepnane> | ?<stepname> : ?<{stepname>

In a <stepname)> "=" means "the |ast step", "-=" means ¢the
last step but one, etc,» and for example ",ND=-1" means the step
preceding tnat lape|led DD, See Section 3,4, the LABEL command, for
how to labe| stops,

A <termnamed> may appear anywhere that a term can appear = for
exarple as a subterm of a term = and frequentiy saves typlng long
forrulae, We explain terrnames by a few examples (suppose the last
step was nunbered 15) .

11521:R )
tej1tR )
$15:R ) al!l designate the term which occurs as
=-3R ) rlght hand side In the first <awff> of Step 15.
iR )
+,DDs2:L designates the |ns of the second <awff>
of the step labelled DD,
tGi2:R ) dasignate the rhs of the second <{awff> of

the current 30a| = THISGpA_ (See Section 3.3)

The <rangeds 12, 23:30, 142, 52: denote resnectively the

single step 12, the staps 22 to 33 inclusiveliy, the steps up to and
includirg 40, and the st2ps from 58 onwards,
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We now |lst the rules, with some examples, Note that In the
machine Implementagion there Is no type-checking whatsoever, We rely
on the user to uJse types consistent|y,

ASSUME (wff)>;
tach <awff> Al in the <wff> Is given a new stepnumber ni,

and the steps
ni Al(n1)
ng A2(n2)

are geneérated, Each one
Is a tautologys, since a step P(n) means Q |- P, whers
Q Is the ¢awff> at step number n. Thus the purpose of
ASSUME Is only to Intrcduce references for cawffds,
See Section 3,1 for examples of ASSUME,

SASSUME <wff>;
Like ASSUME, but every <awffd> of the <wffd> Is henceforward
treated as a simplification rule (see Seotlon 3,5),

INCL <stepname>, <integer>;
Plcks out an <awffd>, Examp|e:

115  ZSF(X,Y), ASB, [AX.X]J(Y)ec14 (13 7)
|evene INCL 15,2;
116 AZB (13 7)

CONJ L..r<ranged>,___;
Forms conjunctlion of al|l steps In the <rangeds., Example:

115 PeQ,RSS (12)

' LA A X A J

117 F=S6 (12 4)
|#%ss0cON) ===,=}

118 P€Q, R3S, FZg (12 4)

CUT <stepnamed>, <stepnamed:
If the steps referred to are P(mi,m2,,,) and Q¢(ni,n2,.,)
respectively, where the m‘s and n’s are stepnumbers,
and |f every cawff> referenced by the n’s occurs as an
<awff> In P, then the step Q(mi,m2,,.) |s generated,
Examp|e?
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17 Fs6 (7

112 Peg (7)

' CEL K X N )

115 F=G6,» GSH (14 2)
|lesasecUT 15,12;

116 PeQ (14 2)

HALF <stepname>;

Replaces "2" py "c" in the flirst <awff>, and throws
the rest away, Example!

16 XSG(X), YSH(Y) (1 3)
jevssaHALF 61
17 ¥xeG(X) (1 3)

SYM Cstepnaney;

Interchanges the tarms In the first <awff> (provided "=" occurs)
and throws the res: away, Example (continuing the previous):

|ssanaSYM 0O
18 G(X)=X (1 3)

TRANS <stepnamed>, <gtepnamed}
Looks at the first cawffd> in each ¢wff>, If these are si{z|c)s2,
s2({Z1c)s3 respectively, then sics3 or siZs3 |s generated, the
assumptions being "unioned"”, Examples

112 XSY(2), PcO (11 4)
| - = S

113 Y(2)EY(X) (4 ¢ 8)
|essss TRANS 12,13

116  XeY(X) (11 4 9 8)

APPL (<stepname>, ___,<term>,___ |<term>,{stepnamed>)}
In the first case, applles both sides of the first cawff)> of
<stapnamed to the <(termds In sequence,
In the second case, applies the <(term> to both sides
of the first ¢awff> of ¢stepnamed, Exampies;

114 XE=Y(2), PecQ (9 4)
|ewanes APPL F,10;
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112 FXIZFIY (7)) (9 4)

| ~mce-

122 FESCXNX,X),RPeQ (11 4)
|anpseaAFPL 22,:=:2:R3

123 FOQ)SCAX.XJ(@)Y (l1 4)

ARSTR <stepnamed>, ___,<identifierd,___ i
Does \-abstragtion on 1st <awff>, The {dentifiers
must not occur free in any of the assumptions of the step,
example(continuing the previous):

CASES )
)
INDUCTICON )

|e2eweABSTR 22,F;
124 CAF, FISCNFLOAX,XID (11 4)

Thege ape no+t ppesent as inference rules, asince it Is

less todious to use their goa| orlented versions (anee
SeCtion 3.3),

CONV (<stepnamed>|{termd};

Does al |

Remark,

A=conversions In the <{term)> or <{stepname>, Example}

I ceca=

114 BELAXXOX)IOAX,.X(Y)]
|evesacONV =;

1145 R=y(Y)

the term In 14 violates the type structure, but the

system does not chack this,

ETACONV <Ctepmd;

t.ta-converts the <term>, provided it nas the form ([Xx.s(x)],
with x not free in the term s, Example (remembar that
F(X,Y) abbreviatges (F(X))(Y) ):

|eswssETACONV LAY, F(X2Y)];
149 [AY, FIX,Y)ISF(X)

EQULIV <stepname),{stopnamed;
Looks at tne flrst <Cawffd> In each <wff>, 1f these are sics?,
e2csl respectively, then s13s2 is generated. Example!

116 Xev, P2Q (12)
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117 YeXx, HeG (1 2)
leosasEQUIV 16,173
118 X3y (12 1 2)

REFLL <termd>;
Gives tZt whera ¢t Is designated by the mterm, Examplel

lenasaREFL X(XX)3;
149  X(XX) = X{(XX)

REFL2 <termd>;
Like REFL1, but gives tcg,

MINY <term>;
Gives UUst, Example! see Section 3J.1

MIN2 <tormd;
Gives UU(¢)sUU, Examplie (contimuing the previous):

e gPaeceoTeo"eandoorreog T Yoo ne®gy

jesaeaMINZ L ;
120 UUEX(XX)) = Uu

CONDT <termd>s
Checks that the <term> t has form TT+s1,s2 and if
s0 Jenerates t:sl, Example:

121 F(X) 3 TT-X,F(GCY, X)) (12)
|esasaCONDT :R;
122 TTeX, Flg(Y,X)) I X

CONDF <tepmd;
Checks that the <term> ¢t has form FF=»sl,s2 and I¢
50 generates t:=s2,

CONDU <teprmd;
Checks that the mterm
and If so generates ¢

has form Ul+si,s2
Ju,

LTINS 4

FIXF <stepname>;
Checks that the first <awffd is a recursive definition
0,9, s:z[aG,t), and qgenerates sZtl(s/G), Example:




ie

‘ - - - - - - - -

123 F Z CaG,H(LNF,G(F)1)])
|nvusafFixP 23;

124 p 2 H (CAFL.p(pH D)

SUBST <stepname> 2( OCC ___,<integepr>,___ ) IN (<stepnamed|<term>);
Let the firgt <stepnamed> have t1 § t2 as its first <awff>, where
$ stands for = in case (1), and for S or < in case (2),

Case (i), If there Is an <stepname> following "IN" , then ¢2 is

substituted for all occurrences designated by the <¢integerd>-
list (or all occurronces, if no list) of t1 Iin the ¢wff),

Case (i1), If there is a <term> s following "IN" then

3 3 s’ Is generateds, where s’ Is the result of substltuting t2
for the appropriate occurrences (as in case (i)) of ¢t1 in s’,

Note that for ti to occur In a term s any occurrence of a free

variable in t1 must not be bound Iin s, Aiso see the cautlion on
occurrence numbers Iim Section 3,6,

Exampie:

125 [AX.F(X)) e G(F(X),F(X)) (2 3)
' LN X N R J

126 F(x) 2 X (5 1)

[e®ssaSYpST 26 Occ 1 IN 25;

127  IXXWpiX)]) = g(Xep(X)) (2 3 5 1)
|#*anaSUpST 26 IN $25:R:

i28 G(F%X).F(X)) S g(X.X) (5 1)

SIMPL (<stepnamedicteormd) 2___( (BYIWO) __._,<ranged>,___ ). __ i
In the case of an <stepname), [ts <wff> |s simp|ifled
(see Sectlon 3,5) using as simpliifigcation ruies those In
SIMPSET togethep with those designated by the <panged=|Iist
following each "8Y", and without those dasignated by the
{range>=list fo|lowing each "WO", A <termd> t is gimilarly
simplified, to t1 say, and ¢t = t1 is generated, The SIMPSET
remains unchanged,

Example, continuing the previous (Section 3.5 0ives more detali)!

' L X N K J

129 [AP,P=2F{X),YI(TT) € Yu(x) (12
jessnaSIMPL = 3Y 263

|30 Xeyu (12 5 1)
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This happens because CONV, CONDT, MIN2 are among the
simpilification rules,

3.3 Goal=0plented Commands

Anything provable witr the goal oriented commands |s provable
In PURE LCF, but most nroofs would then be tedious (that's Why we
only descrlbs the INDUCTION and CASES rules in goal-oriented form),
Experlence shows that with the goal-~orlented commands the user has
only to type a smal| fraction of what he would otherwise have to

type,

The user may generate a subgoa! structure of arbltrary depth.
This structure Is represented by three entities, GOALTREE: GOALLIST
and THISGOAL: THISGOAL IS always the goal cuprently under trial; ail
its ancestors In GOALTREE are (Indirectly) also under trlal; the
subgoals of THISGOAL are listed In GOALLIST. Each goaj has a goal
number = e.g. H1#2#3 = which indicates its ancestors ang {(bY the

number of parts) Its (evel In the tree, Here is a sample goal
structure,
LEVEL 2 ° )
- e e '.-.--.-- )
| | | )
LEVEL & #le #2e 430 )
| )
LEVEL 2 o82%1 ) GOALTREE
LA B B W W '--'--.-- ’
| | )
LEVEL 3 o241yl OH2NIN2 wae=TH]SGOAL
|
---.----'--------
| | |
° ° ° GOALLIST

#2n14241 #2H1%282 #2#18283

FIGURE 1

Eaoh goa| has a status (not shown In diagram) which Is either
"UNCER TRIAL" (only THISGOAL and Its ancestors have this status), or

“NOT TRIED" or "PROVED",




18

The yser hag flve goal orlented commands avallable: we glve
flest thelr syntax, then detailed descriptions,

GOAL <Wwff> 2(ASSUME|SASSUME) <Cwi¢> ;
TRY ?<integer)> 7?<tactic) ;

QED ?<stepname> ;

ABANDON 3

SCRATCH <integer> ;

<tactic> ::= CONJ I
CASES <tepm> |
ABSTR |
SIMPL 2_._( (BYIWO) ___,<stepname>,_"_ )___ |
SUBST <stepname)> ?2(0CC ___,<integer>,___ )} |
INDUCT <stepname> ?2(0CC ___,<Integee>,___ } |
USE <identifler> ?2___,<Iinstantiation>,__._

<Instantiation> itz Cidentifierd> « <toeprm>

The GOAL command,

GOAL specifies a new goal to be added to GOALLIST, Its effect on the
goal structure of Figure 1 is s follows (Figure 2)!

- = = ® w

GOALTREE

L '.-.-----

I | )

. o#2#1#2 ~--=THISGOAL
|

---.----I-- ------ .- oy
|
[}

| T GOALLIST
®

- Nt

°
2414244

FIGURE 2

(Notice that the new goal| Isn‘t yet under trial)

A goal may dr may not be given assumptions. The only dlfference
between ASSUME AND SASSUME is that In the |(atter case, when the goal
is trled, the assumption wff wiil be @added to the sot of
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simpiification rules (See Section 3.5) for the duratlon of thils
goai’s triaj, Exampleg:

lesaneGOAL FeGy
INEWGOAL #1 FcG
lesnseGOAL F(X)ZG(Y) SASSUME F=6, XZY;
INEWGOAL #2 FCX)Sg(Y) SASSUME Fsgr» X2Y

--‘.-O-.--.-.--.-.-.-.-.----..

The only purpose of the system’s reply Is to allot the goal! a number.

The TRY command,

TRY specifles one of the goals of GOALLIST to be trled (If ¢he
cinteger> is absent, the |last 9oal specifled Is assumed), [f the uger

gives no tactic, the new GOALLIST will be null (Flgure 3),

- - - - - )
- - - - - )
-.--.--.'-- ------ )
| )

) oR2HL#2 ) GOALTREE
L L YT R ES "-'----.--—----- )
| | | | )
° ° ° ° )

THISGOAL

|
(GOALLIST Initially nyill)
FIGURE 3

But If the user givgs a tactic, the system wl|| set Up a new GOALLIST
for hir, whose numper of mempers depends on the tactlc, Tactles qre
described Igter in this sectlon,put |ook at the Exgmple gollow’ng
QED’s description bglow to sSee what happens without them,

The QED command,

QED Indicates that the <stepname> = or previous step if no {stepname>
= proves THISGOAL; the user wllil normally say GED when he TRIED thls
goal With no tactic, Sometimes the user has been able to oprove a
contradiction, 1,e, any of the <awffd>s <tv>Z<tv> or Ctvd>eCtv) where
the <tv>s are distinct members of {(TT,UU.FF) and In the gase of ¢ the
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first <tv> 1s hoe Uy, UFD wlj| accept a eontradictlon, slnce |&
froves anythinag, The effece: of QED |s to restore Flgure X o Floure
v with tne diffgrancea that the status of F2e1£283 ||| become
“PRCVEU™; further, |f THISGODAL (of flgure 2) was TRIED With ¢ tactle,
and all subgoals gensrat®c by this tactic are now "PROVED™, the
system ol || pack further up the tree. This may continus far many
"tepai aeventually the systam wlll 5500 and tel| the user which geal

n&s now bacoms THISGIAL, wnd whleh members of Its GOALLIST remaln to
b8 pcroved,

The following exanp|e continyes the one above, and
illustrates TRY and QFED:

|evasuaTRY 2;

113 ¢ G (13) ) The system makes the assumptions,
114 X Y (14)

|

IqouonAPPL 13,X;

115 F(X)z6:%) (38)

|

lesanaAPPL G,14;

116 G(X)2G(Y) (14)

|

lessauTRANS 15,16

117 F(X)s6(Y) (13 14)
|

luuonioED;

IGOAL #2 PROVED, BACK UP TO TOP LEVEL, ) The system
IREMAINING SUBGOALS: ) backs up.
IR EEG

[ELTT]

The user ppoves the goa|,

N Nl Nl Nt Nl i Nt N

The ABANDON command,

ABANDON indicates that the user doesn’'t !ike his current trial .of

THISGOAL, The effect will be to restore Figure 3 to Figure 2 = put
the status of #2#1#243 becomes agaln "NOT TRIED", Thus no further
backliny uyp can haocen,

The SCRATCH command,
SCRATCH removes the Indicated goal from GOALLIST, However, the system
will refuse to scratch goals generated by tactics,
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Tactics ,

We now describe the tactics avaliable, There are six basic
ones, each based on a particular inference rute; In addition the user
may employ any THEOREM (see sectlon 3,7) as a tactlc,

For CONJ, the systam generates a separate subgoa] for each
<awff> !n the goaj,

For CASES, if s is the <tern> and P is the <wff> of the goal,
tne system generates the 3 3subdoals P SASSUME szTT, P SASSUME szUU, P
SASSUME s=FF,

For ABSTR, the system instantiates in each <awffd> In the goai
for as many bound variaples as are bound by the outermost X |n lts
lefg-hare slde, thus generating a single new subgoal, New varlabiles
are chosen which are not frae In the proof so far, For example, If
the 3Joai 1s [3X Y,F(Y,X)] 2 [\2.G(2,2)) , and X is already free In
the proof, the new goai will be F(Y,X1) = G(X1,X1,Y),

For SIMPL, the system generates a new subgoal by simplifylng
the goal as far as possible, using & modifled SIMPSET (if any "BY" or
"WO" |Is present) as explained in Section 3,2 under the SIMPL ruie,
The moaif|ed SIMPSET remalns in force, but the old one wlll be
relnstatea when the new 3J0a| is elther proved or ABANDONed (gee
section 3,5), If the system aiscovers that ali <awffds of the mew
subgoal are identicaily true = i,e, they are all of the form scs or
§3s Or UUes =~ It initiates the backing up process described under QED
above instead of generatina the subgoa!, [f some but not all of the
<a4ff>s are identically true they are simply omitted from the new
sybgoli,

Far SUBST, she system generates a new subgoal by subst!tuting
=ha rhY 87 gstaprgmegs far tRe Ihs of catepnames In the gonl = althar
throwdhout, or at thne deslgnated occurrances whan an ¢lntegers=|igt
's glver, (gee thre cautinn on ogcurrance numbers In sectlon 3,81,

For INUUCT, et ¥ ne tha <wff> of «he goal, The sYstem checks
that c<gtepnamed> has the form s3[9y,t) = 1,8, that It in & recursive
gefirition, [In that cege, |t senarntes two Naw subgomls, The flpst

i
PLLIYSg)
and the second |s

P{t{y’'/y}/s) ASSUME P(y'/s)

whnere y’ Is a variabis not previously wused free, and where the
substitution in P takes place at appropriate occurrences, exact|y as
for SURST above,
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For USE, *he <Cidentifier> is 2 THEOREM name, The gystem wil ||
instantiate the THEMREM by matehirg Its consaquent to the goal,
taking Into accoupt any instantiations supplied explicltly by the

user, and Will yeparate tne appropriate instance of Its Antecedent as
a new Joal, “ee section 3,7 fcr a fullar discussion of THEOREMS,

4e now 4ive exampies of each tactic (except CONJ, which s
easy to understani), Some are realistically comhined,

s|eeannl04L PaX,P2Y,E 2 PeX,Z;
INEWGOAL #1 PeX,P=Y,Z E PaXx,?
I

~|lenseeaTRY CASES P
INEWGOAL #1#s PaX,PaY,?
INEWGOAL #1842 PaX,FaY,Z
INEWGOAL #£143 PaX,P=Y,#
|

»jenanaTHY I SIMFLS
125 PSTT (2%)
126 P+X,PsY, 2 = Pax,? (25)
IGUAL #3831 PRIVED, DRACK UP TO GOAL #1
IREMATHING SUBRGOALS:
[2 Po = = o = = = 7 SASSUME P
|3 P+ = = = =« = =% gAGQUME P
|

~|eneanTRY 2 SIMPL;
lcege,)

PeX,2Z SASSUME P=TT
PaX,Z SASSUME PzUU
PeX,Z SASSUME PZFF

Ju
FF

The sxampie |ooks I0ng, but the users contribution (shown by
“"+") is short, (Thg system keeps remingding the user of what suybgoals
remain,) The "hard cepy” proof produced by the SHOW commend w!l| be
comparatively short,

The next example illustrates the remaining tactics, and also
apolication to a particular subject matter - |Ists, The first four

steps are <the regult of SASSUME oy ¢the user, Note also the
aboreviations YX Y, etc,, as explained {n sectlion 3.6,

11 YK Y, HD(CINS(X,Y)) 8 X (1)
12 ¥X Y, TL(CONS(X,Y)) 3 Y (2)
I3 VY Y, NULL(CONS(X,Y)) = FF (3)
I4 NULLC(UU) = uu (4)
I
* |wewnsiSSUME AP S aF AX Y.NULL X=Y,CONS(HD X,F(TL X,Y))}
15 AP = [af [2\X Y,NULL(X)~Y,CONS(HD(X),F(TL(X),Y))JJ (5)
|

Here SIMPL reduces goal
#1431 to ldentity, using
25 ana also an instance
of CONDT as simp, rules,
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&

é

-

rules C
Ai#inln
grounds
identic
each goal! proved,

(read s

the inference rules into tactles - aven using the same names, Of
course, THEOREMS used as tactics will at Jeast as often Dbe
suostantial results previously proved ana filed (consider the
frequent occurrence in informal proofs of "to prove XXX it s
suffliclent, by Theorem AAA, to prove YYY and ZZZ"),
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jannnaf IXP 5;
16 aP = [AX Y, NULL(X)=Y,CONS(HD(X),AP(TL(X),Y))] (5)
I
[#asxuGOAL yX,AP(X,AP(Y,2)) Z AP(AP(X,Y),2);
| NEWGOAL #1 VYX.AP(X,AP(Y,2)) = AP(AF(X,Y),Z)
|
|###eaTRY INDUCT 5 OCC 1,4;
INEWGOAL #1441 VX, UUCX,AP(Y,2)) = AP(LU(X,Y),2)
INEAGOAL #1#2 WX OXX Y NULLCX)*Y,CONS(HD(X) FLCTL(X),Y))]
| (X, 4PCY,2))
12 ARPCOAX Y, NULLC(X)=Y,CONSCHD(X),FL(TL(X),Y))I(X,Y),2)
IASSUME yX.F1(X,AP(Y,2)) = AP(F1(X,Y),2)
I
len242TIY 1 ABSTR;
INEWGOAL #1#1#1 UU(X,AP(Y,Z))
I
+|#nnsaTRY SUBST 6 0CC 2;
INEWGOAL #1g#1#i#l UUCX,AF(Y,2)) =
| CAX Y. NULL(X)»Y,CONSCHD(X)»APCTL(X)» YD) ICUUCX, Y ) s 2)
I
leeanaTRY SIMPL;
17 UUCX,AP(Y,Z)) = DAY Y. NULL(X)=Y,CONS(HD(X)»AP(TL({X))»Y))]
| (VU(X,Y).2) (4)
|GOAL #1#1#1#4 PROVED, BACKUP TO GOAL #1#1#1., NO MORE SUBGOALS
18 UUCX,AP(Y,2)) = AP(UU(X,Y),2) (4 5)
IGOAL #1#1#1 PROVED, EACKUP TO GOAL #1#1, NO MORE SUBGOALS
19 VX, UU(X,AP(Y,2)) = AP(LU(X,Y)»Z) (4 5)
IGOAL #1#1 PROVED, RACKUP TO GOAL #1,
IREMAINING SUBGOALS:
I2 (Here follows a restatement of goal #1#2)

Itete,)

o weoes s PTegTaoeee c-Toeoeoeeceaweea XN O R R I R e X N W R N N

AP(UU(X,Y),Z

Note that simplificatlon (using the built-in simplification
ONV and MIN2 and CONDU as well as Step 4) reduced goal
1 to ‘identity, and the system generated sStep 7 on these
, In backing up, it generates an explicit flnal step,
al to the aqoal staterment in Its wff, to tie up the proof of

Note also that the user’s conrtribution (indicated hy "=") Is
n the above example,

Filnally, here |is an exampie of a THEOREM used as a tactic
sction 3,7 first!), It also shows how the user can make many
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First, to make a THFOREM out of the TRANS rule:

*
1 X2y (51)
2 YaZ (5@)

| %888 TRANS ==, =}

I53 X22 (51 52)

|

|#seeaTHEQREY TRANE: 63

ITHEORE™ TRANS: ¥ZZ ASSUME XEY,YEZZ;

‘low t0 use TRANS as a tactlce:

IeseseGOAL F(A,XIEG(X);
INEWGOAL #1 F(A,X)SG(X)
ITRY USE TRANS VYeH(X,A):;
INEAGCAL #1#1 FOAPX)ZH(X,A)
INENGOAL %182 H(X,A)ZG(X)

Note that the ¥,Y,Z nf the THEOREM are metavariables

conflicy with the varjatles of tha proof,

5.4 Migeallarncous Commands

The SIMPSET command,

SIMPSET ___( (+]=) ea-rr@dngey, __

)

;

which do nmot

The ste,s desivnated are adoec to or removed from the set of

simplification rules (See section 3.5),
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The SHOW conmmand,

{ AXIOMS 20 ( ___s<igentifigrdr__. ) ) |
THEQREMS ( ( __._.<lidentiflerd,___ ) } |
GOALTREE ?___,<ranged>,___ |
THISGOAL
GOALLIST
PROCF 2___,<range>s_.. |
STEPS ?2___,<ranged>,___ |
SIMPSET ?2__.,<ranged>,___

LABELS ?...:<range>, __. )
2 <ldentifier> 2<Intugerd ) ;

Iv the final <ldentifiard> Is present the material Is sent to the file
named, otherwlse it is displaysd on the console, The flnal <integer)
if present denntes the |lnea~width,

If a <ranged>=- or ¢logentifier>-list Is not oresent, the whoie |s

shown, The <(ldentifier>=llst for AXIOMS or THEOREMS denotes the
partlicular axicms op theorems required, The <ranged-|ist for GOALTREE
refers to levels (2 is top level), and for PROOF, STEPS, SIMPSET and
LABELS refers to steonumbers, Thus

SHOW STEPS :3, 8, 20:23, 30, 551 3

will show steps 1,2,3,8,27,2:,22,23,30 and 55 onwards of the proof,

with no goal structure; SHOW PRCOF wlll show steps with goal
structure, so Is noemal |y used with a singje <range>, or a whole
vroof, Only the stepnumbers bound to LABELS are shown.

The FLTCH commang,

FETCH ___,<identiflerd>,___ ;

The <igentifierd=|jst names files, Axloms and theorems on those
files wil| be brought In, In fact any admissible commands on these
files will be treated exactly as If typed at the console = e,0.
ASSUMptions may be made = s0 the user may prepare such flies other
thar by SHOWING axioms or theorems, Mych of what a user types Is
dependert on the steonumbers that the system is generating, so the
use of fljes prepared offjine is IImlted, However, this dlfflculty |s
somewhat alleviated by the LABEL command (see bejow), The f||es are
axpectec to Le simply sequences of commands, so severa| files may
easily be concatenaged without eciting.
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The CANCEL commangd,

CANCEL ?<stepname) ;

This steps back through the <stepname> given, otherwlse Just the last

step, Cancelled steps are removed from the SIMPSET, Goa| trials
encountered will pe ARANDOMNed, It is nmot possivie to cange| back past
any steén which proves a goal,

The [NFIX command,

INFIX -earSidentifior>, ___ ;

Tnis cCauses al) the <identifierbs named to be treated exactly as

<infix>es (see séction 3.6), In particular, the user must
henceforward "in them In non-infix contexts,

Tne PRFEFIX commang,

PREF | X e--s<identiflar>, ___ ;

This ravokes the infix status of al) Cidentifierds named, Standard
{infix>es are immune from this, however,

The LABEL command,

LABEL ___,<identifierd ?7<stepname>, ___ ;

Eagh <igentifiar> | BONBE ag a |abe| o the 5top indlcated oy tha
{:EIHH;EI}t IJ nrl=t=§f nthlrElli to thi heaxt¢ s ig 1o ba Elnlrltiﬂ.

Thus after " ABEL 00 = ;" the erovious step and |te prédscessors and
succhssars may be lgter referonced by the Cetopnameds ™, 00%, %,00=-q",
*JU0=1" oea,
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3.5 Simpiification Rules,

At any stage In a proof, there Is a current set of
simplification rules, Steps may be added to or removed from ¢the
simplification rule set (SIMPSET) In five ways:

® By SASSUME (See Sectlion 3,2)

® By the sIMPSET command (See Section 3,4),

® By the goa| taotic SIMPL (See Sectlon 3.3),

® If the SIMPSET was modiflied by attacking a goal
With a SASSUMption (see section 3.3) or by

using the SIMPL taotlic, then it will be automatically
reinstated when the goa| !s proved or ABANDONed,

® By CANCEL (see seotion 3,4),

Simplifloatlion 1Is Invoked only by the SIMPL rule, (3,.2) and by ¢he
SIMPL tactlo (3,3), The rules are then applled repeatediy to all
subterms of the appropriate awff or term unt!| they oan be appllied no
further,

An appllcation of a simpiification rule s = t consists In
finalng all occurronces of s and replacing them by t (so the user
must be careful not to make something |lke F(X)E GIF(X)) a
simplification rule, or he wil| cause Indefinite expansion!). In
addition, In the case of a simplification rule ¥x y ,., » 8 2 ¢ 4 all
instances of s, galned by replacing x,¥,.., by arblitrary terms In s,
wil|l be replaced by the appropriate Instances of t,

There are five bullt in rules: CONV (A=CONVERS]ON), MIN2

(UU(s) 2 UU) and CONDT, CONDU, CONDF (simplification of conditlonals)
(see these rujes of Inference In 3,2), Together with the proviously
mentioned feature, this wiil allow the essumption

YX Y,HD(CONS(X,Y)) & X ,

when used as a simp|ification rule, to reduce
HD(CONS(s1,s2))

via (AX Y,X)(s1,82)

to sy ,

Sueh formulae may usually be kept permanent|y In the SIMPSET. Others,

notably the SASSUMptions of the CASES tactlic, wll| come and 90 under
system control, Stl|| others the user Wil need to handle himself) a
gooa examp|e Is the result of FIXP on a recursive definition of form
s = (Ix,t] = the regult has forms £ t(s/x) and so can jead to
indefinite expansion as a simplifloation rule, but Will not do so In
the case that the recursive computation, which [t will carry out,
terminates as a consequence of other members of SIMPSET,
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$,6 Syrtax

As well as the usyaj BNF conventions we use the foliowing:

') are for grouning syntax patterns,

? pefore a pattern means optionai,

---P'-o. mPans one or more instances of the patternm P,

Ps_... Mmeans on2 cr 10re instances of P separated
by commas,

—~ow’

<wff> stz ___,<Cawff>, ___

Cawffd> 1:2 2__ (v ee-rSidentifier>, __ | <termdiy ) S
{term> (21c) <Ctermd

<termd> ;:= <:nf:xtern>l<conditionalterm>
<conditionajterm> ::= <infixtaermd> - <term> , <termd
<infixtermd> :32= <simpletarmd ?___(<3nfix)(simpletarm>)___

<simpleterm> ::z <closedtern> 7___( {closedterm>|
C _ooeCtermd, ) )___

<closedtermd ::= <Identifi9r>3<kterm>l<°term>3<tlrmname>l
(Ctarmd)

<{térmname> :iz  ?( iGl:<stepnamed ) 7{( i<integerd> ) {(:L|1IR)
<Aterm> = [ X\ ---Sidentifier>___ , <termd 3

<aterm> ::= [ « <jdentiftierd . <termd ]

Cidentifiard ;:2 <wordd> | Kinfix> | - | 23

<word> ::= ---{<iottar>|<aigigr| .

<infix> 112 any of the single characters
NUE | +=22AV/\@eSD¢DZ3uy,
oOr any <word> With current INFIX status (3,.,4)

Spaces may occur anywhere excert within a <Wword>, but are ogniy
neécessary to separate <worads ¢r to separate "." froma digit
(e,8, Ir "Vx, 7<x 2 TT" ), The |attar Is because the M 13p2
narser takes ",2" as a sinole elemen* or token,

The brackets roungd <Atermd>s anc <atermd>s may be omitted when
no ambliguity arlises,

Exarpies fo|low, with Intended interpratation:
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® FP«Q-x,Y,RaY,Z is a Ccondlitionalterm), abhreviating
P+(QXsY))(R=Y,2)
® AP(AP X Y,2) is a <simpleterm>, abbreviating

AP(AP(X,Y),Z) op AP(CAP(X))Y,2)
ar (AP(CAP(X))Y)) 2

(Thus the type whlich we should associate wlth
AP is (R4(B4R)), where B is the type of
individuals,)

® XX Y.NULL X«Y,TL Xp is a <\term>, abbreviating
IXX,OAY, (NULL(X) =Y, TL(X))]]

® P :: X =Y is an <awff>, abbreviating
PaX,Uy = P=Y,UU

Y is an <awff>, abbreviating

® VX, F(X,X)
AXGF (X, X) 2 AX,Y

® VX Y, X=Y :; X =Y is an <awff>, abbreviating
AX YuX=Y=X,UU 2 XX Y X=Y=Y,UV

e le I AX L, X=HO(L)~TT, XeTL(L)

filustrates the "!"=ing (Which may pronounced "shrleking"
or perhaps "how|ing") of ¢infixyes, which is necessary
whenever they are mentioned In a non=infixed context,

Many examples of (Wffd>s and <awff>s occur throughout this paper,

Caution!! Some commands refer to occurrences of a <termd jn a <wffd,
Occurrences are counted from jeft to right after all occurrences of
"i:" (Which is an apbreviation for |egipility reasons only) have been
exparded as indicated in the examples, and with <infix>es considered
as prefixed,
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3,7 Commands for Axions and Thenrems

We nowW describe now the ysar may create, store away, and fetoh axioms
and theorems, so that he can build un a file of results over several
sessions on the computer, ana does not have to start from scratch
each tire,

We start with a single example, and then describe the new commands |In
detalli,

sesasAXIOM LISTS:, ,,, . . UX NULL X 88 X = NIL)ouui

IThe user creates an axion consisting of several|
I<awff>s: tne exampie uses only one, s0 the others
lare represented by =--, The system |ists them
|for Rim - as new steps - and wjj| remember the
tcollection by its name: - LISTS,

AX[CM LISTS

1 - - -
2 - - -
3 VX NULL(X) 23 X

4 o o =

NIL

eeaasaSASSUME NULL Y=TT;

5 NULL(Y)STT (5)

sanveAPPL 3,Y;

6 CAX NULL(X)oX,Uuyud(Y) = EXX.NULL(X)*NILoUUJ(Y)
esaneSIMPL 6;

7 YENIL (5)

'Note that the SASSUMptlon 5 has been ysed, so
lit appears as a condition for 7,

eessaTHEOREN UNJQUENULLS 7;

IThe ussr wants to keep the resulit 7 « he will pe

Ite abie to instantiate for Y in later use, so the
Isystem rea|ly treats It as a metatheorem, The
Isystem writes It In full for nim, reminding him
Ithat It depends on L]STS:-

THEGREM(LISTS) UNIOQUENULL® YEN]L ASSUME NULL(Y)STT

ISuppose that the user proves some more theorems,

tand then wants to keep his axloms (there may be
lothers besides LISTS) and theorems, He says:
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evessSHOW AX]OMS AXFILES
enseeSHOW TAEOREMS THFILES

IHe can actyally select just some to be kept (3,4), A|so
1! he omits the filename, they wlil not be kept
lbut dispilayad,

===~ NOW, ON SOME LATER OCCASION: ==«

IThe user decides he now wants to talk about |Ists,
land would |lke the theorems that he previousiy proved,

enseobETCH AXFILE, THFILES
AXIOM LISTS

15 « = -

16 « = =

17 VX NULL(X) B! X
18 - = o

THEOREM (LISTS) UNIQUENULL: YENIL ASSUME NULL(Y)=TT

1t

NIL

IRamember there may have been other axioms and

|theorems on these flies (they should have been

lat least represented by -~«, bDut we didn’t

lboth.r ).

|

IThe crucia| point Is that all varlabjes whioh

lare froe In the theorem, but not free In the axloms

lon which I¢ depends, may be Instantiated, and the _

|luser can force an Instantiation by using the theorenm

las an Inference rule. Suppose later he proves (step 23)3

23 NULL(HD(Z))ETT (15 18)

IHe applles the theorem, as fo||ows (and In this
lcase the only free Instantiable variable |s Y)i

sesseeUSE UNJIQUENULL 231
24 HD(Z)ENIL (15 18)

|1t Is possible that not all the Instantiable varlables
loccur In the hypothesis of the theorem: the fujl
Idefinttion of the USE onmmand shows how they may

Ibe Instantiated,

e L8 Ak w. 0w dasn b 4 y PSRRI VR TR T FAm fa 4 s e St et i U B B b, A St
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We row give the new commands which concern axioms and theorems,

The AXIOM command,

AXIOM <Clden¢ifler> » (<stepnamed |<awff>}, ___ i

The system Wil remgmber all the <awffd>s, mentioned explicitly or
designated by an <stepname), by the name <jaentifier>; It also |ists
then - each Wwith a new steépnumber, Thercafter, any THEOREMs created,
and saved by the SHOW command, will be tadged as dependent on this
axiomr,

The THEQREM command,

THEOREM ( <igentifier> : <stepnamed> |

2C ( ___.<identifier>,___ ) )
Cidentifierd> : Cwff> ?2( ASSUME <wff> ) )

The flrst option is for naming a Dproved resuit - desjgnated by
¢stepnare) = as a theorem, The second option is for naming an
explicit sentence - i{,e, ¢wff> 2{ ASSUME ¢wff> ) - as a theorem, and
saying what axioms |t depencs on (the Ilsts of ¢identifierys Is =&
Jist of axiom names),

In the first option, the system wiil remember the theorem by name,
and tag |t as dependent on ail axioms prasent in the system,

In the second option, the system wi|l| check that the axioms mentioned

are present (if not it Wwill warn you) and in any case wji|| remember
the theorem by name, and ta9 it as dependent omn the axioms mentloned.
This option is used by %the system as follows; when the user saves a
THEGREM on a flle using the SHOW command, what the system writes on
the fije Is precisely an Instance of the second optlon, so that when
the user FETCHes the theorem on a later occaslon he will be warned of
any approprlate axioms that are not present so that he can FETCH
ther, too.
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The USE command,

USE <ldentifier> 2___,<stepnamed>,___ 7( . ceas<instantiat'onds_.. ) 3
CInstantiation> $i= Cidentlfier> « <term

The flret Cldentifier> muet be a THEOREM name, and the system c¢cheoks

that all axloms on which It depends are present, The gygtem treats
the theorem as a metatheorem in that all Its fres variables, oXxoept
those which are free In axioms on which |t dspends, are treatsd as
metavariables to be Inetantiated, The wuser suppiles the
Instantiation In part In two ways, Firet, the |lst of Ceteanamede
deslgonates a |let of <awff>s, and some or all of the metavariab|es

are bound by matching this |list to the antecedent |[st of the
thecrém,

Second (since there may be metavarlables whioh occur only In the

consequent of the theorem) the user may give a |ist of instantlations
each of which binds a term to a metavariable,

Any metavarlables not thus instantiated wil| Jjust be left ae thsy
stand, After matching, the USE command Will gsnerate a new step
which Is simply the appropriate Instantiation of the coneeguent of
the theogrem, Example}

|eswweaX]OM AXL; XEY;

lAXIOM AX1

i1 X=Y

|

leswee THEOREM (AXL) TH1: PEZ ASSUME 2Z2R)

|. - -

'. - -

115 F(Y)SG(X,Y) (2 6)

I

|essesUSE TH1 15, PeH(X)i
146 HIX)EF(Y) (2 6)
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4, “OW TO USE THE SYSTEM LCF

4,1 Initlalfzation and Termination

R LCF

The system returns with an asterisk: Yyou are now talking to LISP,
(INIT)

This will Initlalize the system,which returns with 5 agterlsks: you

are ready to generate a proof by the commands of Seetlon 3. 5
usterisks Is always the signal fcr a command. Remember, all commands
end with g semligojon,

To finlsn a proof (after maybe preserving It on a file uslng
SHOW) type

%;
The system wl |l type ENDPROOF and you are then ready to start another
proof with

(INIT),

It Is possible to save your core image so as to resume the
proof at a later time, To do this type

+C
SAVE <fllename>

and you can then glither continue Immedlately by

START
(RESUME)

or at a8 |ator time by

RUN <fl|anamed
(RESUME)
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4,2 Errors and Recovery

There are three types of error message:

@ If you commit a syntax error in a command, the system says

SYNTAX ERROR;} TRY AGAIN

LA X X}

© If your command is semarntically suspesct - for exampie, you
try to apply TRANS (trapsitivity) ¢to two steps for whlch it s

inaeppropriate =~ you will get something | ike
NASTYTRANS: TRY AGAIN
[ XX XX ]

® If you break the system somehow and get a LISP errer,
usually something |ike
3246 ILL MEM REF FROM ATOM

L]
L L X 2 X )

ther vou can try something different (your flrst command may yield a

syntax error, In which case Just repeat !t) ; however, this should
not occur and Malco|m Newey or | would [ike to know how |t occurred,

If the system gets Into a loop (the only known cause Is |f
your SIMPSET allows indefinite expansion) then

+C

START

(RESUNmE)
witl restore you, [f yeu thereby abori a (long or fooping)
simglification invoked by the SIMPL tactic you wil| also need to

ABANDON,
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