
AD-785 072

LOGIC FOR COMPUTABLE FUNCTIONS
DESCRIPTION OF A MACHINE IMPLEMENTATION

Robin Milner

Stanford University

Prepared for:

Advanced Research Projects Agency
National Aeronautics and Space Administration

May 1972

DISTRIBUTED BY:

urn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

BEST
AVAILABLE COPY

STANFORD ARTIFICIAL INTELLIGENCE PROJECT
^MEMOAIM-IW

^ STAN-CS-72-288

o
00

<

^

LOGIC FOR COMPUTABLE FUNCTIONS

DESCRIPTION OF A MACHINE IMPLEMENTATION

BY

ROBIN MILNER

SUPPORTED BY

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

AND

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457
D

frTlIj •v

MAY 1972

1

SEP 20 -74

Jlkl
OK c

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U S Department of Commerce

Springfield VA 22151

■^552
T> I

1

STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-169

COMPUTER SCIENCE DEPARTMENT
REPORT CS-288

MAY 1972

LOGIC FOR COMPUTABLE FUNCTIONS

DESCRIPTION OF A MACHINE IMPLEMENTATION

by

Rob In MI Iner

ABSTRACTl This oaoer
Droo^-ch«cMno orogr
by Dan« Scott tn 1969
also 'or the loOie
oaptr, Th« proof-c^ec
intiractlvojy to ga
and funetlonals ovtr
Intaraat to tha como
computar programs and
by two faaturas: a s
machanlsm, ADPI teat to
particular of compl
discussed h«peln, but
IntroductIon,

is Primarily a user's nmnual for LCF, a
am for a logic of computable functions Proposed
but unpublished by him, we use the name LCF
Itself, which Is presented at the start of the

King orogram Is designed to allow the user
nerato formal proofs about computable functions

a variety of domains, Including those of
ute' scientist - for example Integers, lists and
their sema^tiss, The user's task Is alleviated

ubjioailng facility and a powerful simplification
ns include proofs of Program correctness and In
ler correctness; these applications are not
are Illustrated In the papers referenced In the

This research was supoortad in part by the Advanced Research
Projects Agency of the Office of tN Secretary of Defence under
Contract SD-183 and In part by the National Aeronautics and Space
Administration under Contract NSR 05-020-500,

The views and conclusions contained In this document are
those of the author and should not be Interpreted as necessarily
representing the official policies, either expressed or Implied» of
the Advanced Research Projects Agency, the National Aeronautics and
Space Administration! or the U.S, Government,

Reproduced In the USA. Available from the National Technical
Information Servlc«, Soringfield» Virginia 22151,

LOGIC FOR COMPUTABLE FUNCTIONS

DESCRIPTION OF A MACHINE IMPLEMENTATION

by

Kowln M| ln«r

CONTENTS

PAGE

1. INTRODUCTION 2

2. THE LOGIC LCF 3

3. THE MACHINE IMPLEMENTATION OF LCF - - 7
3.1 An Exempli -.---- 7
3.2 pules of Infeptnc« - - - - u
3.3 Coal»or lented Commands • - 17
3.4 Mtsctllaneous Commands - - 24
3.5 SlmpjlfIcstlon Rules - - - 27
3.6 Syntax ••••••• 28
3.7 Commands for Axioms and Theorems 30

4. HOW TO USE THE SYSTEM LCF - - - - - 34
4.1 Initialization and Termination 34
4.2 Errors end Recovsry - - - 35

5. ACKNOWLEDGMENTS 36

1. IMTRMLJCTIUN

proposed by h Ll^ is bisee ori a
Oxford in the Fail of

sc i fent i sts and is |n

I OT i c of Dana Scott,
i o' 1969, for reasoning about computable functions
reient this ionic, essentially as Scott himself

more fani iiar to computer
any case easier to worK with. Sac+ion "^ tK«n

descr.bes the machine I np I ementat I on of a proof-cheL^'^oJ Jhe
ie typed lovnc, we refer te Both the logic and the implementation as th

left« for computrhie functions, or typed LCF, or Just LCr?

It is hopea that a potential user of the system can, «,,-, Tn
heir ot the Hxamrip cf section 3.1 and with section 4. get onto Ih
macn.no w.thout rn^in.j tht whole cf this document

th the
e

Further discussion of LCF and examples
can ^e founi in th« foiiowiny papers:

MilrPr.K., "implementation ano
computLtle functions", Fror. AO

applic a t i o n s
Conference

of Its aopI ications

of Scott's logic for
Proving Assertions „ ,, .,.,«,,«.,, , rrwR, ALv Lonrerence on Provino A^sertlnn.

TSllVlTrT' '"" ',eXiC0 S"te l'ni"r5i"' '" truces! /"ZVC

WtyhPlUth,R, anc^ "imer, "F'rogram
mechanized Iruic", Proc, USA
19;'2 (to a^pea i-) ,

sementics and correctness in a
Japan Computer Conference, Tokyo, Oct

Mllrer and ;JeyhrHuch, "Proving compiler correctness In
io'j.c". Machine Indulgence 7, ed. Ü. Michie, Edinb
Pr^ss 1972 (to appear) .

a mechanized
upgh Univepslty

Newey.M,, "AXiuns and
LCF", forthcoming
University, 1972,

Theorems for integers, lists anj finite sets in
AI Memo,, Computer Science Dept,,

We give no further referonres here; they mey be found
paiers,

Stanford

In the above

2, THf LOGIC LIT

Tynes

At oottom "tr" and "ind" ar« tvoes. Further if Pi and P2 are tVoes
then n*^)Ji a tyoe. We adopt xhe convention that - associates to
tno riqnt and freyüontly onit rarenthesesJ thus we write Pi*n2-*P3 for
(Pi#(^2«03)>, with each term of the logic there is an unambifluou« I y
associated type, For a term t we wrIte

t»P

to Tear tnat the type associated with t is &, Throughout we use
Pf3l.P2,,., as mfltavnrlab I AS for types.

Terrrs (iretavar 1 ab I os si t« si. tl. . . .)

The followinp are terns:

IdentifiersCietavartables x,y) - sequences of upper or lower

letters and -mits. we assurje that the type of each identifier
is uniquely deterninod In sone manner.

Applications - s(t) : ^2 . where s:Pl-P2 and %*$%,

Conditionals - (s-tl,t^) I H , where s«tr and tl»t2:P,

X-axpressions - CXx.sJ : Ul#fl| , where xr^i and s:P2.

«»-express i ons - [ax.s] : S , where x»s:P,

Tnis strict syntax is relaxed In the machine Impjenentation (see
Section 6) to alln^ a saving ot parentheses and brackets.

The intendaj interpretation of the «-expression [«f.s] is the
miniiral fixed-point of the function or functional denoted by tkf a1

For sxanrple:

^f.C\x.(p(x)-.f(a(x)),r5(x))]]

denotes tne function 4nf\r*d recursively as follows:

f(x) <r if o(x> tnon f(a(x)) else b{x),

Constants

Tne identiMers TTiFf denote trufivalues true and false. \ju denotes
tha totally undefined onject of any type: In particular» the
undef i ned trJt^va|ja.

Atorric well-formed for'nula'' (a^ffs)

The following 's an awff:

i « t

where s ana t «re of ti*? same type. The intended i nteroretat ion of
set is» roughly, tnat t Is at least as well defined as» and
consistent with» si

Well-forced formulae (wffs) (metavarlao|as P»Q»P1,01, . ,,)

wffs are sets of zoro or ^ore awffs, written as lists with separating

comrras, Thay d-e interoreted as conjunctions. We use

to aobrevlate s^t, tcs .

Sentences

Sentences are !no I Ica11ons between wffs, wrlttan

P I- Q

or. 'f P is emnty. just

I- a

Proofs

A soof lg a saaJe^c^ of sentences» each being derived from zero or

more preceding sentences by a rule of inference,

Infe rence rJ I es

Let us write P{s/x) or t<s/x) for the result of substituting 9 for
all free occurrences of x in p or t, after first changing bound
variables In P or t so t^at no variable free in s becomes bound by
the substitution, »Je have not stated conditions on the types of
Identifiers ana terns •vith each rule; any consistent assignment of
tyct«? Is acini ss io I e.

INCL (J a subset of P)

CO Jw

CUT

01

HI P3

^2

P I- 21JQ2

PI I- P2 P2 I- ^3

c ^ULES •*••*

APPL
si c s2 t<sl) c t(s2)

RtFL

TRANS

f I- s = s

P I- si c s2 P

p I- si e s3

si? c s3

• »<*#* uu ^ULCS

MI'Jl
I- U'J c s

MIN3
I- ULKs) ' ÜU

CONDT

CONDITIONAL RULES

TT ■» s, t = 8

CONDU
I- UU - s»t = UU

COMDF
FF - s»t = t

••••• X RULES •••••

P I- set
ABSTR ••••••• (x not 'rte In P)

P I- CXx.sJ c CXx.t3

CONV

ETACCNV

ÜXx.3](t) = S<t/X)

CXK,y(x> 3 = y
(x and y distinct)

CASF.S

♦•»♦» TRUTH RULE •••<

P, s=TT I- Q P, siUU

P I-

Q P, s=FF I- 0

or RULES

FIXP

INDUCT

I- [«x.s] 5 s<C0x.s3/x>

P |- Ü(UU/x) P, Q I QCt/x)

<x not free In P)
Q([«x,t3/x)

3. THE MACHINE IMPLEMENTATION OF LCF

We now dascrloe the machine version of the logic of Section

2, and how to use It interactively on the machine.

The user h«| available four groups of commands«

• Rules of inference - to generate new sentences or steps

fro-n zero or more previous steps. (Section 3.2)

• Goal Or!«nted Commands - to specify and attack goals

and subgoais. (section 3.3)

• Miscellaneous - mainly to do with displaying or filing
parts or all of the proof so far, and the goals. (Section 3.4)

• Commands for axioms and theorems - to enable the user to create
axiom systems, to orova and file theorems in these «^tems, end
later to recall and instantiate those theorems. (Section 3.7)

pefore oescrlolng the commands In detail, and the syntax of wffs.

terrrs, etc, it may oe helnful to see an example.

3,1 An Example

of LCF by * aimole Let us hnroduce the machine version of LCF by. a s mo *
exa-role 'wSich. although short, exhibits many of Jhe features. t Is

t Dreof of a version of recursion I nduct i on. whl ch 8*at9; *hJ* .,' f. ^
*, oeflned recursively and G (another function) satisfies F •
recursive definition %h*n FcG. In other words, we prove that F Is
the »rininal fixed Point of Its defining eguation,

After Initialization (see Section 4), the system types 5

»citerisk" is a iUflal to the user to start a proof. In fact. 5
j; 11! ar^ al/ays ?he signal for the user to continue ^ 3 proo
Thus, ir wnat follows the user's contribution may be distinguished by
belrg Preceded by we explain each user and machine
contribution on the right of a vertical line.

»»«■••ASSUME FiC«F,FüN F3» SiFUN G;
IThe user assumes a wff (a sequence of atomic wffs
iseparated oy commas, where each atomic wff has = or
|t Infixed between two terms). Every user
Icommanc ends with a semicolon. Detailed syntax Is
Igiven later - but note in particular that application
Imay be represented (sonnimes) by Juxtaposition as In
l"FUN G" to save parentheses, ^ote also that F occurs both

Ifree and o0\jr\ö <by 3') w'thoUt confusion.

a

2 G = FUMG) (2)

iThe machine separates the assumption Into two sentences,
Igivlng each a stepnumber. Every sentence which the
ImachJne generates will have a stepnumber, and will consist
of a wff followed by a list of stepnumbers of assumptions
ion which the wff depends. A sentence
I
I n ? S
I
Iwnere P is a wff ard S a list of stepnumbers is the
lenalogue in LCF of the sentence
I
I Q j- P
I
lof pure LC-, where Q Is the conjunction of assumptions
idesignated by s, Each of steps 1 and 2 above thus
•represents an Instance of p |. p, which is a special
lease of the Inclusion rule of Section 2,

••»••GOAL FcG;

IThe user states his goal, but does not attack It yet.
jHt right list several goals before attacking any of themj
iin each case the machine w|li simple give a goal number:

NEWGOAL *! FcG

iGoal niimbers are distinguished from stepnumbers by #.

»»»»•TRY 1 INDUCT 1;

IThe user wants to attack CQALl using the tactic of
I induction on Step 1 - which is (as it must be) a
Irecursive definition - I.e. F=C«F.FUN(F)3.

NEWGOAL tl^l üücc
NEWGOAL niU2 FUN(Fi)cG ASSUME FlcQ

IThe machine says that the Induction base and step
Imust be established. For the step It picks an arbitrary
I Identifier not used previously (actually for mnemonic reasons
it picks something which only differs from the Instantiated

Ibound varlaoie In Its numerical suffix),

IWe now have two goals generated by the machine, at
a lower level, The user need not - but probably will -
Ichoose to prove *1 by proving #1#1 and #1«2,

•TRY x;

lUser chooses to attack #l#l first. Ha need (and must)
lon|y raf®r to the goal by the last Intagar In Its goal
Inumber, This t'"»» he doesn't state a tactic - he Knows
Ihow to Drove It himself - so the machine merely steos down
la level in the goal tree and waits. Actually, ha could
luse the slMPL tactic (see Section 3.3)» since this
Itactic notices Instances of MINI and would therefore
leave the user his next two commands.

»MINI G>

3 UUeG

iThe user notes that the subooal uucG can be proved

Iby the first minimality rule (see Section 2)» so ca
lit with the aoprooplate term - G - as parameter.

IThe machine obediently generates the proper instance of

Imlnlmaltty. Notice that this sentence depends on no
lassumptlons,

»QED;

IThe user can say QED to tell the machine that he has
Iproved exactly the goal under attack.

GOAL #1#1 PROVED. BACK UP TO GOAL #1

REMAINING SyBGOALS:

2 rUN{Fl)eG ASSUME Fl.cC

IThe machine agrees. Now In general It will back up

Ithg goal tree until it fin^s a goal some of whose su^goalt
lhave not been proved. It will remain at that level and list
Ithese subgoals for the user to try.

4 FlcG

TRY 21

lAgaln. us^r gives no tactic.

(4)

The machine makes the assumption of the goal for him (note
that goal #i#i had no assumption), and waits.

•♦#»»APPL FUN,4J

M'Apply FUN to Step 4" - an Instance of application (see
ISeotlon 2),

5 FUN(Fl)cFUN(G) (4)

10

•••••SYM 2;

iTupn step ?. arounrt p«ady for an aDplIcttlon of transitivity.

6 FÜN(G)£G (2!

»♦•••TPANS 5,6;

iNote that the parameters of inference rules are always
Istepnumbers or ternis, separated by eomnas.

7 FUN(Fl)cG (2 4)

••♦••QECJ

GOAL »1#2 PROVED, BACK UP TO GOAL #1. NO MORE SUBGOALS

§ FcG (2 1)

l-----T^e machine hasn't finished yet» but not« that It

Uiakes an explicit step to represent the proof of #1 (so
(that tne whole sequence of steps» with all the goal
Istructurs stripoed away, shall be a formal proof), Note
lalso thn assumptions of steo B,

GOAL «1 PROVED. PACK UP TO TOP LEVEL. NO MORE SUBCOALS.

MThere might have been more goals Msted at top level»
Islnee the user can list many oefore attacking any),

•♦•••SHOW PROOF RECIND;

iThc user decides to keep his Proof on a file called RECIND.
IT^e version kept Is shown below. Notice that not every-
ItMng which the user typed reappears? In particular» the
Istatement of a goal is not reproduced» only its trial,

llf the user wanted instead to display his proof (at any
Ipolnt» not Just at the end) he would just type "SHOw PROOF)"

PROOF

1 r I [«F,FUN(F)] <1) ASSUME.
2 G 5 FUN(G) (2) ---- ASSUME.

TRY #1 Fee INDUCT 1.

TRY #1#1 UU c G
3 UU c G ---- MINI G.

'

u
I |TRY *1*2 rUNCFl) c G ASSUME Fl c G .

|4 Fl c G (4) ASSUME.
|f FUN(F1> c FUN(C) (4) ---- APPL 4 FUN.
|6 FUM(G) = G (^> SYM 2.
|7 FUN(F1> c G (4 2) TRANS 5 6,

tf F- c G (2 1) INDUCT 3 7.

3.2 Ru I es of Inferenc«

Let us assume for t^*1 nonent the syntax classes <wff>, <awff>

(atCTlc wff), <ter">. Details of these are in Section 3,6i but for
now look only at the conventions given for syntax definitions at the
start of t^at Section.

We nee^ for the present

<stepnBire> ::= <inteqer>l m9m
m I . <Identifier> ?< (♦!-) <inteoer> >

<ter'»,naiTe> ;:= ?(: 31 : <steDname>) ?(:<integer> > (:LlJR)

<ranfle> ::= <steonaTe> I ?<stepnanie> : ?<steonane>

In a <steoname> ,,-,, means "the last step"» "--" means the

last step but one, etc.. and for example ".DD-l" means the step
preceding fiat labelled OD, See Section 3,4, the LABEL command, for
how to laoel steps.

A <ternnaTa> nay appear anywhere that a term can appear - for

exarrple as a subterm of a term - and frequently saves typing long
forirulae. We exolain ternnames by a few examples (suppose the last
step was numbered 15) .

:i5:i:R
:-;iJR
:15:R
-;R
:R

:.0D:2.L

:G:2:R

a|i designate the term whlch occurs as

right hand side In the first <awff> of Step 15.

designates tha ins of the second <awff>
of the step laoelied DD.

designate the rhs of the second <awff> of
the current goal - THISGOAL (See Section 3.3)

The <rBn3e>s 12, 23!3f» 542, 50: denote respectively the

single step 12, the steps 20 to 30 inclusively, the steps up to and
incluOlrg 40, and the st9Ps fro-n 50 onwards.

12

We now |lst tn« rulas» with some examples. Note thtt In the
machine Implementation there Is no tyoe-checkIng whatsoever. We rely
on the user to use types cmslstently,

ASSl'Ht <wff>>
Lach <awff> AI in the <wff> Is given a new stepnumber ni,
and the steps

nl Al(nl)
n2 A2(n2)

are generated. Each one
Is a tautology* since a step p(n) means Q I- P, where
0 Is the <awff> at step number n. Thus the purpose of
ASSUME is only to Introduce references for <awff>s,
See Section 3,1 for examples of ASSUME.

SASSUME <wff>;

Like ASSUME, but every <awff> of the <wff> is henceforward
treated .as a simplification rule (see section 3.5),

INCL <stepname>. <integer>;
Picks out an <awff>. Example:

115 Z=r(X,Y>, A=B, CXX.X3(Y)ei4 (13 7)
|»«»»»INCL 15,2{
116 AiB (13 7)

C6«J ,-,»<range>,_._ ;

Forms conjunction of all steps In the <range>s. Example:

15 pcQ.RES (12)

117 r=G (12 4)
|»»»»«C0NJ ---»-;
118 pcQ, R=s, F=c (12 4)

CUT <stepname>, <stepname>;

If the steos referred to are P(ml,m2i,,> and Q(nl,n2i,.)
respectivelyi where the m's and n's are stepnumbers,
and If every <awff> referenced by the n's occurs as an
<awff> in P, then the step Q(ml,m2»,.) Is generated,
Examp|e:

13

I? ris (?)
I
112 ?cQ (7)
|

115 fzO, GCH (14 2>
l»»»»«CUT 15,12}
116 pcQ (14 2)

HALF <8tepname>;

Meplaces "=" by *** in t^e first <awff>, and throws
the rest away, CxaTiplei

16 XzG(X), Y=H(Y) (1 3)
l»»»»«HALF 6»
17 XcG(X) (1 3)

SYM <stepnane>j

Interchanges the terms In the first <awff> (orovlded "=" occurs)
and throws the rest away. Example (continuing the previous):

|##»«»SYM b;
13 G(X)=X (1 3)

TRANS <3tepname>, <stepname>»
Looks at t^e f'rst <awff> in each <wff>, if these are sl(r|c>s2.
s2<ilc>s3 respectively» then slcs3 or sl=s3 Is generated, the
assumptions being "unioned", txamplei

112 XiY(Z), PcQ (11 4)

113 Y(Z)eY(X) (4 9
|#»#»#TRANS 12.13;
114 XcY(X> (11 4 9

6)

8)

APPL {<steoname>l ,<terrc>, l<t«ni>»<st«pname>} >

In the first case, applies both sides of the first <awff> of
<stepnam8> to the <ter'n>s in sequence.
In the secontl case, applies the <teri''> to both sides
of the first <awff> of <stepname>, Exampless

Ilia X = Y{Z), PcQ (9 4)
I APPL r,lCi;

1*

111 r(X)iF(V(r)) (9 4)
I
\2? rECXX.XJ.^cU (11 4)
l<»»«n»rtrPL 22, :-:2:RJ
123 riQ) = [XX.;0(Q) (11 4)

AQSTR <stepnam8>, ,<ident Ifier># »
noes X-abstraction on 1st <a^ff>. The Identifiers
»must not occ'Jr free In any of the assumptions of the steo,
ExampIe(cont'nJing the previous):

 ABSTR 2;?,F;
24 CXF.FaTCXF.CXX.XD] (11 4)

CASES)

)
INDUCTION)

Tnese «re no* ürBsent as inference rules» since it Is

■ess tediojs to use their goal oriented versions (see
Sectlo'"« "J,!),

CQ?\IV i<steoname> |<ter'n>);
Does all X-conversions In the <tPrm> or <steonRme>. ExamoleJ

I
114 B=CXX,X(X)]CXX.X(Y)3
I cONV -;
113 ?=Y(Y)

Remark, the term In 14 violates the type structural but the
system does not check thisi

FTACONV <term>;

Eta-converts t^e <term>, provided it has the form CXx.s(x)3,
with x not free in the tern s. Example (remember that
F(X,Y) abbreviates (F(X))(Y)):

|»*#»»ETAC0NV CXY. F(XiY)];
149 CXY. F(X,Y)3=F(X)

EQUIV <stepname>,<3t8pname>;

Looks at the first <awff> In each <wff>, If these are slcs2,
s2csl respectively, then slis2 is generated. Example:

16 x^Y. PiQ (12)

15

117 YcXi HcG (1 2)
I EQUIV 16il7;
118 X=Y (12 1 ?)

REFLl <tcrm>j
Glv«s t = t wherfl t Is deslflnattd by the mtepm, Exarrolei

l*»#«»RErL X(XX)}
119 XCXX) = XtXX)

HETLZ <term>>
Likg REFLl» but gives tct.

MINI <tepm>;

Uives UUct. Examolei see Section 3.1

MIN2 <t«rm>J
Gives UU(t)~UU. Example (continuing the orevlous):

I MIN2 :L;
120 iJU(X(XX)) = UU

CONDT <tepm>j

Checks that the <term> t has form TT-»sl#s2 and if
so generates t=sli Example:

I
121 r(X) = TT-X,F(G<YIX)) (10)
l»«»»»C0NDT :R;
122 TT*X# F(C,(Y,X)) = X

CONDF <term>!

Checks that the <term> t has form FF'»slis2 and If
so generates tltti

CONDU <term>»
Checks t'tat the mtern t has form UU"»sl»s2
and If so generates t = JU,

FIXP <8teDname>i

Checks that the first <awff> is a recursive definition
e.g. siC«G.t]» and generates s=t<s/G). Example:

16

l?3 F z CaG.HCCXF.GCF)])^
I »••••Fix? 23;
12^ F = H <CXFl.F<Fl>3)

SUBST <stepname> ?(OCC ...,<integ8r># > IN {<steoname>|<t«rm>>i
Let the first <st0pnam8> have tl S t2 as Its first <awff>f where
$ stands for = in case (l)« and for = or e in case (2}!

Case (i), If thsr» Is an <stepname> following "IM" i then t2 Is
substituted for all occurrences designated by the <Integer>-
list (or all occurrences» If no list) of tl In the <wff>.

Case (M), if there is a <tern> s following "IN" then
* * s' Is generated» where $* Is the result of substituting t2
for the aoProoriate occurrences (as In case (i)) of tl In a'.

Note that for tl to occur In a term s any occurrence of a free
variable in tl must not be bound in s. Also see the caution on
occurrence numbers in Section 3,6.

ExampIe:

125 CXX.F(X)3 c G(F(X>,F(X)) (2 3)
I
126 F(X) r X {5 1)
^••••SUBST 26 Occ 1 IN 25;
127 CXX.r(X)3 s G(X.F(X)) (2 3 5 1)
I»*»*»SüRST 26 IN J25JR5
12« C(Fm.F(X)) = G(X,X) (5 1)

SIMPL (<steoname>l<term>) l,..((BYIWÜ) .,.»<range>,..„)1_. j
In the case of an <steoname>> its <wff> Is simplified
(see Section 3.5) using as simplification rules those In
SIMP5ET together wltH those designated by the <ptnge>-|i8t
following each "PY"» a^d without those designated by the
<ran3e>-list foj owing each "WO", A <term> t is similarly
simplified» to tl say. and t = tl is generated, The SIMPSET
remains unchanged,

Example» continuing the previous (Section 3.5 gives more detail)«

29 CXP,P-»F(X),Y](TT)
♦••••SIMPL - 3Y 26;
30 XcjU (10 5 1)

UU(X) (10)

17

This hapoens because CONV, CONDT, MIN2 are among the
slmplIfIcation rules,

3,3 Goal-Oriented Commands

Anytnlng probable witr, the goal oriented commands Is provable
In PURE LCF, but most proofs would then be tedious (that's why we
only describe the INJDJCTION and CASES rules in goa I-or lented form).
Experience shows t^at *»lth the 90a I' or i ented commands the user has
only to type a small fraction of what he would otherwise have to
type.

The user may generate a subgoal structure of arbitrary depth.
This structure Is represented by three entities, GOALTREE» COALLIST
and THISGOAL» THISGOAL is always the goal currently under trial, all
its ancestors In COALTREE are (Indirectly) also under trial, the
subgoals of THISGOAL are listed In GOALLIST, Each goal has a goal
number - eig, *1«2*3 - wnich indicates its ancestors and <by the
number of parts) Its level In the tree. Here is a sample goal
structure,

LEVEL 0 •)
 I)
III)

LEVEL 1 «!• «2* *3e)
I)

LEVEL 2 •*2*l) GOALTREE
 I)
I I)

LEVEL 3 •*2#1#1 •#2#1#2 ----THISGOAL

• • • GOALLIST
«2*1*2*1 §2*1*2*2 #2«1*2#3

FIGURE 1

Each goal has a status (not shown In diagram) which Is either
••UNDER TRIAL" (only THISGOAL and Its ancestors have this status), Or
••NOT TRIED" or "PROVED".

18

The user has five goal orlantecj commands available: we give
first their syntax« then detailed descriptions,

COAL <wff> ?(ASSUME|SASSUMr) <wff> j

TRY ?<lnteger> ?<tactic> ;

QED ?<st«pname> :

ABANDON ;

SCRATCH <|nteger> ;

<tactlc> ::= CONJ I
CASES <t»rn> I
ABSTR I
S1MPL ?_..((BYIWO) .,.,<steDname>#._).__ |
SUBST <stepnanio> ?<OCC __,i<lnteger>(> I
INDUCT <stspnane> ?(0CC _,.,<Integer>, > I
USE <ldentlfler> ?...#<Instantiation^__.

<Instantlat|on> 8Ja <identifier> * <tern>

The GOAL command,

GOAL specifies a new goal to be added to GOALLIST, Its effect on the
goal structure of Figure 1 is s follows (Figur« Z)i

m m ., m m)

-----) ROALTREE
 I)
I <)
• •#2#1#2 ----THISGOAL

I
- » '-. - - .
II I I GOALLIST
• • • •

«2#l#2iM

FIGURE 2

(Notice that the new goal Isn't yet under trial)

A goal rray 3r may not be given assumptions. The only difference
between ASSUME AND SASSUME Is that In the latter case» when the goal
is tried» the assumption wff wjn bo added to the set of

■

19

slmpllfIcttlon pules (See Section 3.5) for the duration of thl.
goal's trlel, Cxamoles:

(»••••GOAL FeC|
INEWCOAL *1 FcG
^••••GOAL F(x)sG(Y) SASSUME r=c, X=Y;
INEWGOAL *2 F(X)=c(y) SASSUME F=G, X=Y

The only purpose of the system's reply Is to allot the goal a number.

The TRY command,

TRY specifies one of the goals of COALLIST to be tried (If the
<integer> Is absent, the last goal specified is assumed), if the user
gives no tactic, the new GOALLIST will be null (Figur« 3>,

I I
•#2«1«2 COALTREE

I I I
• • •

THISGOAL
I

(COALLIST Initially nulI)

FIGURE 3

But ''the user g|ve9 a tactici the system win set up a new
If lull .^osanumber of mempers depends on the t.otlc. T.c
described later In this section,put look ftt the Examp|e f
OED's description below to see what happens without them.

new GOALLIST
tips «re

lowing

The QED command,

OED Indicates that the <8tepname> - or previous step
proves THISGOAL; the user

no <8tepname>

goa
eo
th

i !T:2 fMI5büAL; the user will normally say QED when he TRIED this
!. ?0 tact,c. Sometimes the user has been able to prove a

J ^Si^i0^!1:?' .any of th« <»wff>s <tv>=<tv> or <tv>c<tv> where
e <tv>8 are distinct members of <TT,UU.FF) and In the case of e the

29)

The following example continues the one above, and
lustrates T9Y and 9f0, aoov», «no

TRY 2.

HI x f V 14)) Th0 SySt8',1 fflak98 the •ssumotlons.
I
|»»»«»APPL 13,X;)
111 F(X)=GCX) (U))
I >
l»***#APPL 0,141)

116 G(X)=G(Y) (14)) The user proves the goal.

'•••••TRANS 15,16 >
117 F(X)=G(Y) (13 x*) >

|)

IGOAL 42 PROVED. SACK UP TO TOP LEVEL.) The Sv«f.m
IREMAIMNG SUBGCALS: ' ™* Jy8t«',,

II pec ' bacKa UDi

The ABANDON command.

^SGSALind,?;teS ^at ^ ?88r d0esn't ,,ke h,s <""*" trial .of THISGÜAL. The effect will be to restore Figure 3 to Flau.« 9 . w..*
the status of »tn#|«| becomes again "NOT TRIED" Thus no furthiP
backing up can haocen, s no ^fthir

The SCRATCH command.

SCRATCH removes the Indicated goal from GQALLIST. However, thi ^,1^
will refuse to scratch goals generated by tactics.

21

Tact ics

we now descr;be the tactics availaole. There are six basic

ones, each Oased on a particular inference rule; In addition the user
may employ any THEOREM (see section 3.7) as a tactic.

For CON'J, the system jenerates a separate subgoa
<awff> In the goa I ,

for etch

For CASES, If s Is the <tern> and P is the <wff> of the goal,

the system generates the ! subgoals P SASSUME ssTT, P SASSl'ME 8 = UU. P
SASSUME srFF.

For ABSTR, t^e system instantiates in each <awff> In the goal

for as irany bound varlaoles as are bound by the outermost X In Its
left-hard side, thus generating a single new subgoal, New variables
are chosen which are not free In the proof so far. For example, If
the goal Is CxX Y.F(Y,X)J = CxiJ.5(2.2)] , and X is already free In
the proof, the new goal will be F(Y,X1) = G(XltXl,Y),

For SIMPL, the system generates a new subgoal by simplifying
the goal as far as possible, using E, modified SIMPSET (If any "BY" or
"WO" Is Present) as explained in Section 3.2 under the SIMPL rule.
The nroQifled SIVPSET remains in force, but the old one will be
relnstatea when the new goal is either proved or ABANDONed (see
section 3.5), If the sVstem olscovers that all <awff>s of the new
subgoal are Identically true - I.e. they are all of the form scs or
sis or UUcs - It initiates the backing up process described under OED
above instead of generating the subgoal. If some but not all of the
<awff>s are Identically true they are simply omitted from the new
subgoaI.

and the second is

'r3{t{y'/y)/s) ASSUME P(y'/s>

where y' Is a variable not previously used free, and where the

substitution In p takes place at appropriate occurrences, exactly as
for SUHST above.

dl

For USli the <HBntifier> Is a THEOREM name, The system w|||
instantiate tht THEftRC« by matchirg its consequent to the goal.
taking into account any instantiations supolled explicitly by the
Lis«?r. and will sin«rfiti> tie appropriate instance of Its antecedent as
a net* floal. bee section 3,7 fcr a fuller discjsslon of THEOREMS,

we now give examples of each tactic (except CONJ, which Is
tasy to understa^l). Some are realistically combined.

-I«*»»<K
:
O;L =-X.P-*V.E E F-X»Z;

lNt.WG0AL ni P^X,P-«Y,t = P-»X,H
I

^|#»*»*TRY CASES P;
INEWGOAL »1#1 PHX.P^Y,? = P^X,£ SASSUME P=TT
iNEl-iGOAL telil2 P-XfF'*Y,2 = P^X,2 SASSUME P = UU
INEWGOAL «US P^X,P^Y,i': = P-X.d SASSUME P=rF
I

«|#t###TK,V l SI^PLJ
125 PiTT (2^)) Hepe slMpL reduCaS got|
26 P^.p.y,? = 9^,-i (?5)) il#i to Identity, using
loUAL «i»l PROVED. BACK UP TO GOAL «1) 25 ana also an instance
IREMAlhlNG 3^r.CALr:) of CCNOT as simp, rules,
II P* ? SASSUME P = JU
13 P- 2 SASSUME P = FF

■.i#»♦»•!.jy ? sr4PL;
i(etc.)

The example looks long, out the users contribution (shown by
"■►") is s^ort. (The system keeps reminding the user of what subgoals
remain,) The "hard copy" proof proouced by the SHOW command will be
comparatively short,

The nnxt example illustrates the remaining tactics, and also
apolication to a particular subject matter - lists. The first four
steps are the result of SASSUME oy the user. Note also the
aborevlations VX Y, etc.. as explained In section 3.6.

11
12
13
14
I
I»*»**MSSUME AP = «F,XX Y.NULL X-Y,CONSCHO X,F(TL X,Y))J
15 AP E [«F.CXX Y,NULL(X)-.Y,C0NS(HD(X),F(TL{X),Y))]3 (5)

YX Y. MC?(C:NS(X.Y)) = X (1)
VX Y, TL{C0NS(X,Y)) = Y (2)
VX Y,'JLJLL(CO\'S(X,Y)) = FF (3)
NULL(UU) = UU (4)

23

 nxp 5;
6 AP £ CXX Y.NULL(X)-.Y,CÜN5(HD(X),AP(rL(X),V))l (5>

•»♦«•GOAL V^.AP(X,AP(Y,c)) = AP(AP(X#Y),Z);
NEUGOAL «1 VX.AP{X,AP(Y,2)) = AP(AP(X,Y),2)

«*#«»TRY INDUCT 5 OCC 1.4;
NF.WGOAL »1UX VX.JU(X, AP(Y#2)) i AP ^ UU (X, Y), ?)
NEWGOAL #1#2 VX.CXX Y . NULL (X)-»Y , CONS (HO (X), Fl (TL (X), Y))]
(X,äP(Y,2))
= AP{CXX Y.NULL(X)-Y,CONS(HD(X)lri(TL(X),Y))](X,Y),H)
ASSUME! vX.ri(X,AP(Y,E)) = APCFKX.Y),?)

♦•»••T^Y 1 ABSTR;
NL^GOAL »liiil UU(X,AP(Y,Z), = AP(UU(X,Y)I2

»»•##TRY SUBST 6 OCC 2;
NEWGOAL #l#l#i#l UU{X,AF(Y,Z>) =

CXX Y.MULL(X>-.YlCONS(HD(X),AP(TL(X),Y))3(UU(X,Y)»Z>

♦•##tTRY SJMPL;
7 UÜ{X,AP(Y,Z)) = CXX Y.\ULL(X)^YlCONS(HD(X),AP(TL<X),Y))]

(ÜU{X,Y),Z) (4)
GOAL »UX*i*i PROVED. BACKUP TO GOAL #1#1#1. NO MORE SUBGOALS
6 UU(X,AP(Y,H)) = APtUU<X,Y).i) (4 5)
GOAL #l#l#l PROVED. BACKUP TO GOAL #1*1. NO MORE SJBGOALS
9 vX,UU(XlAP(Y,2)) i APJUUCXiY)»!) (4 5)
GOAL «1«1 PROVED. BACKUP TO GOAL #1.
REMAINING SU3G0ALS:
2 (Here follows a restatement of goal #1#2>
(etc,)

rule

grou
I der
each

shor

(rea
of
cour
sues
f rea
suff

NO
s CONV

rds,
tical
goa I

NO

t in t

Fl

a sect
the i
se, T
tant ia
uent 0
Iclent

te t
and

to i
In b
to

Drove

te |l
he ab

na Ijy
■ on 3
nf ere
HEORE
I r
ccurr
1 by

nat sinpIif'cat I on (using
MIN2 and CONDU as we II
dentity» and the system
ackinn UP» it generates
the goal statement in Its
d.

the built-in sImoIifIcat1 on
as Step 4) reduced goal
generated step 7 on these
an exp licit f Ina I step,

wff, to tie up the proof of

so that the user's contribution (Indicated by W*M5 is

ove example.

1 here is an example of a THEOREM used as a tactic

,7 first;). It also shows how the user can make many
nee rules into tactics - even using the same names, Of
HS used as tactics wjll at least as often be
esults previously proved ana filed (consider the
ence In informal proofs of Mto prove XXX It Is
Theorsm AAA, to prove YYY and HZZ").

24

first» to make a THFOREM out of the TRANS pule:

l»»»»»ASSüME X=Y, YiH;
151 X-Y (bi)
152 Y=2 (52)

•»••♦TRANS --,-;
91 X|i (5i 52)

• •♦••THEORr"! TRANS: 53
THEORF:M TRANS: X=H ASSUME X=Y,Y=E;

'Jow to use TRArjS as a tactfc:

1 GOAL F(A»X)sG<X);
INEWP.OHL #1 F(A,X)=G(X)
ITRY USE TRA^S Y«-H(X,A);
iNCWrOAi ti$X F(A»X)=H<X,A)
INEWFOAL #1#2 N(X,A)=G(X)

Mote that thr y.Y.Z nf |hi THEOREM are metavariables which do not
conflict with the variables of t^e proof.

5,4 M i «je« ' '»rn'Ous Cornnands

The SIMRbET conMapri,

SIMPCET ,..{ (+I-) ,._,<range>,...),__ ;

The ste^s das i «Jnated are adoec to or removed from the set of
sinpI•fication rules (See section 3.5),

25

The SHOW coMiiiand,

SHOW

(AXIOMS 7< („.^iae'Hif ier>.._.)) I
THEOREMS U (.„.^Ident'f iep>,,)) I
GOALTREE ?.<,.»<rangB>,. |
THISGHAL j
GCALLIST I
PROCr ?.__.<Pan39>i... I
STEPS ?_..,<Pan9«>i„_ I
SIMPSET ?...,<range>,_..
LABELS ?-...<range>,._.)

?< <ldentif («'■> ?<lnteBer>) ;

n t^e final <ldent!fi9r> Is opesent tne material Is sent to the file
nameoi otherwise it is disDlayed on the console. The final <lnte9er>
if present denotes the line-width.

If a <range>- cr <ioent I fIer>-I!st Is not oresent, the whole Is

shown, The < I dentif ler>-I Ist for AXIOMS op THEOREMS denotes the
particular axioms or theorems reaulped, The <range>-|ist for GOALTREE
refers to levels (z is too level), and for PROOF, STEPS, SIMPSET end
LABELS refers to steonumbers, Thus

SHOW STEPS :3I 8, 2(5:23, 30, 55| j

will show steps 1,2,3,8.2)3,21,22,23,30 and 55 onwards of the proof,

with no goal structure; SHOW PRCOF will show steps with goal
structure, so Is normally used with a single <range>, or a whole
oroof. Only the steonumbers bound to LABELS are shown.

The FLTCH command.

f'ETCM -..,<|dentlf ler>,_.. {

The <ioentlfIer>-1 ist names files, Axioms and theorems on those
files w||| oe brought In, In fact any admissible commands on these
f,|fl9 ^'1' b« treated exactly as if typed at the console - e.g.
ASSUMptions may be made - so the user may prepare such flies other
than by SHOWING axioms or theorems. Much of what a user types Is
dependent on the steonumbers th^t the system is generating, so the
use of files preoared offline is limited. However, this difficulty ts
somewhat alleviated by the LABEL command (see below), The files are
exoectec to be sinpIy sequences of commands» so several files may
easily be concatenated without editing,

26

The CANCTL command.

CANCEL ?<steDname> ;

encountered «;,, be^oSred iTII «M'JLJ!? S!MPSET' Goa, tr,•,9

-^ny tttp which proves a goal. Possible to cancel back oast

The INFIX command,

IWI* .,.,<|aentif ier>,_,„ ;

Tne PRFFIX command,

PREnx ,_.<Identlfl«r>,.„ ,

This revokes the jnf;x status of all <id.n*jf.. N

The LABEL command,

LAflEL -..,<!dentifler> ?<steoname>,..- |

-

-•

27

3.5 SlmpiIfIcatlon Rules.

i ..-.At .'ny sta9e 'fl * Proof, thipt is a current sst of
smplfIcatlon rules. Steps may be added to or removtd from tho
simplification rule set (SIMPSET) In five ways)

e By SASSUME (See Section 3.2)
• By tht SIMPSET command (see section 3,4).
• By the goal tactic SIMPL (See Section 3.3),
• If the SIMPSET was modified oy attacking a goal
with a SASSuMptlon (see section 3.3) or by
using the SJMPL tactic» then it will be automatically
reinstated when the goal Is proved or ABANOONed,
• By CANCEL (see section 3,4).

Simplification Is invoked only by the SIMPL rule, (3.2) and by the

SIMPL tactic (3,3), The rules are then applied repeatedly to all
subterms of the aporoprlate awff or term until they can be applied no
further,

An aopllcation of a simplification rule s = t consists In
finoing all occurrences of s and replacing them by t (so the user
must be careful not to make something like F(X)s C(F(X)) a
simplification rule, or he will cause Indefinite expansion!). In
addition, in the case of a simplification rule Vx y ,., , s = t » ail
Instances of si gained by replacing x,y#.,. by arbitrary terms in s,
will be replaced by the appropriate instances of t.

There are five built in rules: CONV (X-CONVERSION), MIN2
(UU(8) £ UU) and CONDT, CONDU, CONDF (simplification of conditionals)
(see these rules of Inference In 3,2), Together with the previously
mentioned feature, this w||| allow the assumption

VX Y.HD(CONS(X,Y)) i X ,

when used as a simplification rule, to reduce

HD(C0NS(sl,s2))

via CXX Y.X3(sl»s2)

to si .

Such formulae may usually be kept oermanently in the SIMPSET. Others,
notably the SASSUMptions of the CASES tactic, will com« and go under
system control. Still others the user will need to handle hlmselfi a
gooa example Is the result of FiXP on a recursive definition of form
s = C«x,tp - the result has form s 5 t(s/x) and so can lead to
indefinite expansion as a simoI IfIcatIon rule, but wi|| not do so In
the ease that the recursive computation, which It will carry out,
terrrlnates as a eonseauence of other members of SIMPSET,

■^tu Syntax

AS *ell if t^e usual $Hf conventions we use the following:

() ar* for Croupind s>ntax patterns.
V oefore a pattern means optional,

-..P.— neans one or nore instancos of th« pattern P,
 --- ^eans onj cr mf9 instances of P separated

hy co-nmas,

«;wf f> : := .__, <awf f >f _._

<awff> n. ?___{ V „..<Identif!er>,,.. | <term>J:)__

<term> (=|c) <tarii>

<term> ::= <infixtern>KcondItionaIterm>

<conditiona|term> ::= < inf i xterrT,> - <term> , <term>

<inflxt6rm> ::= <slnpiet«rm> ?._.(<Infix><simp Ieterm>}...

<slnp|eterm> ;:= <cloSedten> tmmmi <c I osedterm> |
(-,_'<term>#___))

<cloSedterm> :;= < I dent i f i er> l<Xterrn> |<«term> l<termname> I
(<thrm>)

<|tffllfii«0 ;:« ?(:Gl:<stepna'ne>) ?(J<inte8er>) CLllR)

<Xterm> ::= c X .._< I dent i f I er>._. . Ct«f<t> 2

<oterm> ::= [a <(dentifier> . <term> :

<identlfiar> ;:= <word> I !<lnfix> | « (|

<word> ;:= .__ (< I etter> l<d i 3 i t-> I)

<inflx> ::= any of t^e single characters
nUj|+-»*AV/*».<><>^B«T4

or any <word> w|th current INFIX status (3,4)

Spaces rray occur anywhere «xcept within a <word>, but are only
necessary to separate <wor?>3 or to separate "." from a dlolt
(e.s. Ir "Vx. .^x = TT"). The latter is because the MIISP?
narser takes ",3" as a single element op token.

The brackets round <Xterm>s anc <«term>s may be omitted when
no airblguity ar Ises.

Exarrples follow, with Intended Interpretation:

• P-Q-»xrY,R^Y,£ is a <cond!tIonalterm># abbreviating

P-(O-XiY)»(R-Y.H)

• AP(AP X Y,Z) is a <siinoleterm>, abbreviating

AP(AP(X,Y),2) or AP((AP(X)>Y,Z)

or (AP(<AP(X))Y))2

(Thus the type which we should associate with
AP is (^«(P-P)), where 0 is the type of
individuals.}

• XX Y.NULL X^Y.TL Xp is a <Xterm>, abbreviating

CXX.CXY.(NULL(X)^Y,TL<X>)]]

• P :: X = Y Is an <awff>, abbreviating

P-»X,UU = P-Y,UU

• VX, F{X,X) = Y Is an <awff>, abbreviating

XX,F(XiX) = XX.Y

• VX Y, X=Y :: X E Y is an <awff>, abbreviating

XX Y.X = Y-*X,UU = XX Y.XsY-'Y.UU

• U = XX L. X=HD(L)-TT, X6TL<L)

Illustrates the "r'-ing (which may pronounced "shrieking"
or perhaps "howling") of <infix>esi which Is necessary
whenever they are mentioned in a non-lnflxed context.

Many examples of <wff>s and <awff>s occur throughout this paper.

Caution!! Some commands refer to occurrences of a <term> in a <wff>.
Occurrences are counted from left to right after aM occurrences of
wnM (which Is an abbreviation for legibility reasons only) have been
expanded as indicated in the examples» and with <infix>es considered
as prefIxed.

3,7 Corrnanrls for Axions and Theorems

WV!K-aesCp,b9 ^^ the usor may «'••«te, store away, and fetch axioms
and theorems, so that he can build us a file of results »V§* »"tpll
ü^'!?8. 0n th8 COmr,ute,,• 8"d does not have to start from scratch

we start with a i|ne|| example, and then describe the new commands In
aeta I I ,

 AXI0M LISTS: VX.NULL X :: x = NIL,.,.;

i,J-2**!er rreates an a^lon consisting of several
<awff>s: the example uses only one. so the others
are represented by ---. The system lists them
for him - as new steps - and w||| remember the
Icollectlon by its name: - LISTS.

AXICM LISTS

1 - - -
2 - - -
3 vx,NULL(X) :: x = ML
4 - - -

•••••SASSUME NULL YrTT;
5 \LLL(Y)iTT (5)
••♦»•APPL 3,Y;
6 CXX,NULL<X)*X,UU3(Y) = CXX,NULL(X)*NIL•UU3(Y)
•##««SIMPL «;
7 YiNIL (5)

!Note that the SASSUMption 5 has been used, so
lit appears as a condition for 7.

••»••THEOREM UNIQUENULL: 7;

iThe user wants to keep the result 7 - he will be

Ibe able to Instantiate for Y In later use, so the
jsystem really treats It as a metatheorem. The
Isystem writes It In full for him, reminding him
Ithat It depends on LISTS:-

THECREM(LISTS) UNIOJENULL» Y=ML ASSUME NULL<Y)=TT

Suppose that the user proves some more theorems,
and then wants to keep nls axioms (there may be
others besides LISTS) and theorems. He says;

31

»SHOW AXIOMS ariLCj
»SHOW THEOREMS THFILEJ

|H« can actually select Just some to be ktot (3.4). Also
I If ha omits t^e fllenane. t^ay will not be kept
Ibut displayed.

NOW, ON SOME LATER OCCASION: ■••

ITha user decides he now wants to talk about llstsi
land would like the theorems that ha opavlously orovad,

 FETCH AXFILE, THFILEJ
AXIOM LISTS
15 - - -
16 - - -
17 VX.NLLLCX) 15 X = NIL
18 - - -

THEOREM (LISTS) UNIQUENULL: YsNIL ASSUME NULL(Y)=TT

iRemembar there may ha^e bean other axioms and
•theorems on these files (they should have baan
lat least reoresented by •••, out we didn't
Ibother).
I
iThe crucial point Is that all variables which
lare free In t^e theorem, but not free In the axioms
Ion which It depends» may be instantiated, and the
luser can force an Instantiation by using the theorem
las an Inference rule. Suppose later ha proves (step 23)1

23 MJLL(H0(2))=TT (15 18)

iHe applies the theorem, as follows (and In this
lease the only free tnstantlable variable Is Y)l

•••••USE UNIQUENULL 231
24 HD(2)iNIL (15 18>

lit Is possible that not all the Instantlabia variables
loccur In the hypothesis of the theorem! the full
Ideflnftlon of the USE command shows how they may
Ibe Instantiated.

■i... „i...
i ■• WB.*-VJ^„CJIH.,

U'«I1«UUU

we row give the new commands which concern axioms and theorems!

The AXIOM command.

AXIOM <ldent'fier> : i{<5teDname>Kawff>), j

The system will re^e^ber all the <awff>s» mentioned explicitly or
deslgnatad by an <steDna,ne>, by the name < i aent i f ier> J tt also lists
therr - each with a new stapnumber. Thereafter, any THEOREMS created,
and saved by the SHOW command, will be tagged as dependent on this
ax!or.

Thfi THEOREM command.

THEOREM (<i

?(
<ide

The first option
<stepnafre> - as a th
explicit sentence -
saying what axioms i
list of ax lorn names)

In the first opt!
and tag It as depend

In the second option
are present (If no
the theorem by name,
This option is Used
THEOREM on a file us
thp file Is precise
the user FETCHes the
any appropriate ax
ther, too.

dantifler> : <stepname> I
< --,»<ldentifier>,_..))
nt!fier> : <wff> ?(ASSUME <wff>)) j

is for naming a proved
eorem. The second optio

i .e. <wff> ?(ASSUME <wff>
t depends on (the I Ists of

on, the systen will remembe
ent on all axioms orasent I

, the system wljl check tha

t it wt M warn you) and in
and tag it as dependent on
by the system as follows.
Ing the SHOW command, what
ly an Instance of the secon
theorem on a later occasio
io"s that are not oresen

result ' designated by
n is for naming an

) - as a theorem, and
<ident;fler>s is a

r the theorem by name,
n the system,

t the axioms mentioned
any case win remember
the axioms mentioned.
when the user saves a

the system writes on
d option, so that when
n he wiI| be warned of
t so that ha can FETCH

33

The USE oommand,

USE <ld«ntlfl«r> ?._.,<steDnatni>.... ?<#<ln8tintl»t,on>».--) I

<InsttntiatiOn> :«s < i'Unt I f l«r> - <frr\>

The first <ldenttfler> must be a THEOREM name, and the system cheeks

that all axioms o" which It depends arc orestnt, The system treats
the theorem as a metathaorem in that all Its frta variables» axoeot

dtoands» ara traatad as
user supDllts the

the 11st of <ste8name>s
of the metavarlabjes
antecedent list of the

those which ar« free In aKioms on which It
metavariables to be Instantiated, The
Instantiation In oart In two ways, First»
deslsnatas a list of <awff>s, and some or all
are bound by matching this list to the
thecram.

Second (since there may be metavariables which occur only In the

consequent of the theorem) the user may alve a list of Instantiations
each of which binds a term to a metavariable.

Any iretavar lablas not thus Instantiated will Just
stanö, Aftar matching, the USE command will
which Is simply the aporoprlate
the theorem, Examojei

nstantlatlon of

be left as they
generate a new step
the eonseouent of

••••♦AXIOM AXl;
AXIOM AXl
1 X = Y

X = Y;

>THE0PE^ UXX) THl: P = E ASSUME isRl

15 F(Y)=G(XiY) (2 6)

 USE THl 15. P-H(X)}
16 H{X)=F(Y) (2 6)

I
34

A, JtOW TO USE THE SYSTEM LCF

4,1 Initialization and Termination

R LCF

The system returns with an asterisk: you are now talking to LISP,

(INIT)

This will Initialize the system,which returns with 5 atttrlsksi you
are ready to generate a oroof by the commands of Section 3, 5
asterisks Is always the signal fcr a command. Rememberi all commands
end ** I th a semi colon,

To flnlsn a oroof (aftap maybe Dreservjng It on a file using
SHOW) type

It

The system will tyoe ENDPROOF and you are then ready to start another
oroof with

(INIT),

It Is possible to save your core image so as to resume the
oroof at a later time. To do this tyoe

tC

SAVE <f I lename>

and you can than either continue immediately by

START
(RESUME)

or at a later time by

RUN <f I |ename>

(RESUME)

3i>

4,2 Errors and Recover:

There are thre« tyoes cf error message:

• If you cofrinit a syntax error In a command, the system says

SYNTAX ERROqj TRY AGAIN

• If your command Is semantlcally susoeot - for examola« you
try to aooly TRANS (transitivity) to two steps for which It Is
inapDroorlate - vou will get something like

NASTYTRANSJ TRY AGAIN

• If you break the system somehow and get
usua I ly someth Inn Ii ke

3246 ILL MEM REF FRO"! ATOM

a LISP «rrort

then you can try something different (your first command may yield a
syntax error, In which case Just repeat It) ; however, this should
not occur and Malcolm Newey or I would like to know how It occurred,

If the sYstem gets Into a looo (the only known cause Is If
yojr SIMPSET allows Indefinite expansion) then

START
IRESUML)

will restore you, If ycü thereby abort a (long or looping)
simp I ifIcatlon Invoked by the SIMPL tactic you will also need to
ABANDON. *

36

5. ACKNOWLEDGEMENTS

The system Is entirely based on the logic prooosed by Dana
Scott «t Oxford In 1969 but unoubllshed by him,

I am grateful to Richard Weyhrauch for designing a better
simplification algorithm which has orcved indispensable, to Malcolm
Newey for undertaking the necessary Programming for corrections and
Imorovefpents to the system - including the simplification algorithm -
and to botn of them for constructive criticisms and discussions which
have led to many Improvements. I also thanK John McCarthy for
encouraging me to undertake this work,

The programming of the system was eased enormously by the
MLISP2 extendtble parser due to Horace Enea and David Smith, and by
the help they gave me In using It, In fact, extensions to the system
will be simple for the same reason,

