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Richard Paul 

The problem of computer control of an arm is divided into four parts: modelling, 
trajectory calculation,   servoing and control. 

!n rnofielling ue use a symbolic data structure to represent objects in the 
envirjnment. The program considers hew the hand may be positioned to grasp 
these objects and plans hou to turn and position them in order to make various 
moves. An arm model if used to calc late the configuration-dependent dynamic 
properties of   the arm before   it   is moved. 

The ami is moved along time-coordinated space trajectories in which velocity and 
acceleration are controlled. Trajectories are calculated for motions along 
defined space curves, as in turning a crank; in such trajectories various joints 
must  be  free due  to external   motion constraints. 

The arm is servoed by 6 small computer. No analog servo is used. The servo is 
compensated for gravity loading and for configuration-dependent dynamic 
properties of   the arm. 

In order to control the arm. a planning program interprets symbolic arm control 
instructions and generates a plan consisting of  arm motion» and hand actions. 

The move planning program has worked successfully in the manipulation of plane 
faced objects. Complex motions, such as locating a bolt and screwing a nut onto 
it,   have also been performed. 
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SECTION 1 

INTRODUCTION 

1.1 SYSTEM DESCRIPTION 

Ue are concerned here with a computer controlled arm and hand. This arni and 
hand function together as a general purpose manipulator which forms part of a 
robot as an effector subsystem. 

The computer plans and executes sequences of arm and hand motions to accowplish 
tasks. Arm motions are along smooth, collision free space trajectories; all 
known forces are predicted during planning and compensated for durinc- execution. 
Hand motions, which consist of opening ana closing the hand, are controlled bu 
touch sensors. The hand can also exert a force while fol lowing an external lu 
def med mot ion. a « iW 

Any robot must contain both a sensory input mechanism, whereby it can gain 
information aoout the environment, and an effector subsystem by which it can 
change the environment. In addition to being the main effector, the hand also 
has primitive touch sensors and force detection ability, and may be considered a 
sensory subsystem. 

The environment in which the robot works must be one which it 
internally. It has certain information a priori, and is able 
information by interacting with its environment. 

can represent 
to gain more 

In our case it knows, a priori, that objects are plane-bounded, solid, and may 
be colored. It knows, a priori, that all objects are supported by a plane, or by 
each other, and mat objects may be moved, but not through each other. It is 
given protctyces cf tl j the possible objects that can exist, and learns by means 
of its senses of tne existence and position of instances of these prototupes. 
Work is In progress to increase the scope of the robot's environment; curved 
objects are currently being added [Agin], 

The type of interaction between robot subsystems is important as subsystems 
function together to accomplish tasks. Currently all subsystems perform under 
the erection of the strategy subsystem, with little interaction between other 
subsystems. For instance, the arm does not call for vision to locate an object 
th«t it has dropped, nor does vision call the arm to move an obscuring object in 
order that it may "see" better. One important exception is the case of visual 
feeaback used to oosifonthe hand on an object; here the vision subsustem 
interacts d rectiy with the arm [Gil 13. »yoicm 

To illustrate the system we will descrihe the interaction needed to solve the 
Instant insanity pu^le [Feldman 71b]. Here i t is first required that four 
colored cuoes be fcjnd and the color of the faces be determined. The cubes are 
then turned and stacked so tha* each side of the stack has four different 
colored faces visible. WFTWWH 
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The interaction between the STRATEGY subsystem. VISION, RECOGNIZE. COLOR and the 
ARfl is on the following level. The STRATEGY subsystem asks the VISION subsystem 
to find an outline; it then asks RECOGNIZE to identify the outline as a cube. 
This process is repeated until four cubes have been found. COLOR is then told 
to find the color at the center of each of the three visible faces of each cube. 
The ARM is told to turn over each cube and VISION called to refind the outline. 
REC03N1ZE is then called to reidentify the outline as a cube. Uhen all four 
cuoes have been turned over and re-found, COLOR is told to find the color of 
each of the three now visible back faces of each cube. The STRATEGY subsystem 
then determines the necessary turns and stack positions of each of the cubes to 
obtain a solution. The ARH is then told to move each cube accordingly. There 
are two levels of error recovery: within each subsystem, and by the strategy 
subsystem when a  subsystem reports faiure. 

The^programrning environment in which the robot operates is known as the "Hand 
Eye" system IFeidman 71a]. Here individual subsystems are represented by time 
sharing jobs, which may interact. This is done by two means: 1) a global data 
structure whjich represents information about the environment available to all 
suirsyste.Ts; 2) the message procedure construct whereby one job may execute a 
procedure in «nethtf job. For example, cubes are moved by a message procedure 
'TOVEJNSTANCE" which. In the Instant Insanity case, was used both to turn the 
cuoes over and to stack them. 

The am subsystem provides a series of functions which are of ger^ro1 utility, 
such as to move the arm to a given position "flOVE," or to open the hd^a "OPE!.'." 
In order to perform these functions the arm subsystem maintains a data oase in 
the form of constants and procedures i-jhich describe the arm and hand in detail. 
If the arm is required to perform some task then an attempt is made to describe 
the task in terms of existing arm functions, if this can be dona then the 
problem is solved. If a task is proposed that cannot be solved in terms of 
existing functions, then either a function is modified or a new function must be 
HP!t'en. 

Other subsystems are not expected to u-se the arm's data base,which is local to 
the am lubtyttM. Problem solving requiring use of this data base would be 
considered a function cf the arm subsystem. Global variables are maintained 
whJch describe the current state of the ifi for the other subsystems. 

To huiia a stack of blocks would not be an arm function, as it could be 
acco-n isned in terns of simpler, existing functions such as MOVEJNSTANCE. To 
turn | cube over would be an arm function as this requires that the range 
througnout which the hand can graso the cube be con.,dered. To move the arm 
through a clutttn»d space of objects is an arm task as this requires that the 
am. be considered ifl reiation to the other objects when planning the traiectoru 
that tne arm will fclIOM. " 

Information is given to the arm subsystem in function calls and in the form of a 
three ctintntiontl description of the space. If this space is completely 
Described and the arm fails to accomplish a task then the strategy subsystem 
knows that the task must be specified differently. For instance, if a block must 
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be moved but some obstacle is in the way. then the strategy program must first 
ask the ami to move the obstruction and then ask that the original move be 
accomplished. The arm subsystem would not move other objects and thus change the 
state of the environment without being told to do so by the strategy subsystem. 
!f ehe space model is incomplete and the arm cannot accomplish a task based on 
the available information, then the arm w'I! not call the vision subsystem to 
have this space investigated but will report failure. 

There are two main parts to the arm subsystem: the planning program and the arm 
execution program. In order to move the hand a plan is made. If the hand is to 
move an object then the planning program considers the object in relation to the 
hand to cieteTnine how it may be grasped. As the move is planned, other objects 
are considered in relation to the hand in order to prevent collisions. The plan 
if represented in ter«f cf a coordinated time dependent trajectory for each 
joint of the arm. Since the computer has planned a trajectory the program knows 
oefore the arm is moved the configuration, velocity and acceleration of all the 
links of the arm and can compute the effective inertia and the gravity torque of 
each link. These terms together with the trajectory are given to the arm servo 
program, whfff the inertia and gravity terms are used to improve the execution 
of the trajectory. 

Tr,e arm servo prcgrem executes the trajectory by moving the arm;  it also 
performs such actions as opening and closing the hand. Trajectories, together 
with hand actions, are written out in a file, and may be repeatedly executed by 
the arm servo program if required. The arm servo program is small and is 
suitable for execution in a mini-computer connected directly to the arm. The 
planning prcgraii can be run under time sharing and can make plans for many such 
arms. 

The särvo is a conventional sampled data servo executed by the computer with the 
ml lowing modification: certain cortrol constants, the loop gain, predicted 
gravity an:, exte^nai torques a."e varied with arm configuration. 

In addition to the needs of the current vision and strategy subsystems, the arm 
has betn prograMmed to perform other tasks such as turning cranks, screwing in 
screwt, pushing ana nulling. The touch sense is used in some of these tasks. Arm 
programs riaj tie written where the course of execution of the program by the arm 
may be modified depending on activation of the touch sensors or other 
condition». Such programs may be written in a form of assembly language but are 
identicil to the nessage procedure calls of a strategy program. 

in lubfitquent sections of this thesis we first describe the model of the arm and 
derive all '.re reUtione tnat vm will use (Section 2). Ue then describe the 
model of the environnent and the hand's interaction uith it (Section 3). 
Section k describes TOVE.INSTANCE the highest level strategy function of the 
arm subsystem, provided primarily for strategy subsystems performing operations 
with plane faced soiids. In Section 5 we describe the requirements and solution 
of tne smooth trajectories used by the arm. The servo loop is described and ue 
then deal with controI (Sectior 7), giving a list of the arm functions or 
pr init i ves. 
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The arm is described fully in [Scheinman], and ue give a brief description in 
Appendix A.l. Tuo other appendices are given. Appendix A.2 describes SAIL, a 
form of ALGOL, with LEAP added. SAIL is the language in which the programs are 
written and we will use it to describe some of the algorithms. Appendix A.3 
briefly describes homogeneous coordinate vectors and transformations, more fully 
covered in [Roberts GBJ. 

The notation used in this 
underbar V; Matrices are 

work is as fol 
represented by 

either superscripted or 
subscripted or enclosed 

proceeded by an "t", 
in square brackets, A 

lows: vectors are represented by an 
vertical bars | fl |; Exponents are 

2 
x or xt2,J Indices ar« either 

or A[i,j]; Multiplication is 

represented by an asterisk "*". 
U 

1.2 HISTORY 

The first mechanical hands were developed at Argonne National Laboratary in 19A7 
for handling radioactive materials IGoertz B4]. These hands were master-slave 
systems where the hand replicated the motions of a person, the master. In 1948 
force feedback was added to enable the operator to fee! the forces that the hand 
was  exertinq   [Goertz 521. 

The early type of hand, without force feedback, has been adapted to perform 
repetitive tasks [Lindboml. The hand is moved from one position to another by an 
operator and the joint positions recorded. The hand can then cycle repeatedly 
through these recorded positions in synchronism with external  machinery. 

In 13G1 Ernst [Ernst] developed a computer controlled hand with touch sense. The 
har could Bxpiort a region by touch and put the objects it identified into a 
box. !n 1963 a half tone picture could be analyzed to locate and identify plane 
faced objects [Roberts 631. By 19G8 a program using a TV camera as vision input 
[wichmanl   located  the objects for the hand to pick up. 

1968 IT) 
traiectories through 
foMowed by Kahn who 
[Kahn], 

leper studied the kinematics of arms and planned 
spaces containing obstacles [Pieper], 
studied the dynamics and developed a 

col Iision free 
This work was 
bang-bang servo 

By adding force feedback Inoue was able to perform such tasks as putting a peg 
into a hote and turning a crank [Inoue]. Ejiri developed a system to assemble 
blccKs using a drawing of the required assembly as a visual input [Ejiri]. In 
1S'2 Goto could locate and identify plane faced objects by touch and then pack 
them compactly by moving and pushing them [Goto]. 

The recent proceedings of The Second International Symposium 
Robots [IITRI] provide a general review of the state of the art. 

On Industrial 
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SECTION 2 

ARfl nODEL 

In this section ue will consider the arm and develop a model for it IPieper], 
Ue will describe the solution which, given a hand position, returns a set of 
joint angles. Then, based on the model of the arm, we will develop a solution 
for differential motion. Ue will then derive the relation between acceleration 
and force for the arm, to obtain the effective link inertia and gravity loading 
[Kahn], Finally we will derive the relationship between a force and moment 
acting at the hand and the six joint reaction torques. The results of this 
section are used in later sections of the work but as they all relate to the arm 
model they are derived together here. 

2.1 KINEflATICS 

The arm shown in Figure 2.1 is a six degree of freedom device allowing the hand 
to be positioned anywhere and with any orientation within the limits of joint 
motion. 

The arm is made up of six links, each connected to the next by a joint. There 
are two kinds of joints, prismatic, or sliding, and revolute. In order to 
describe the link transformation in terms of the joint constraint and the joint 
variable we will introduce a coordinate system in which the joint constraint U 
impl ici t. 

Ue will describe the "A" matrices, which relate between link coordinate systems, 
and the "T" matrices, the link transformations which specify the position and 
orientation of each link in space. 

Associated with each link is an orthogonal coordinate system fixed in the link 
(see Figure 2.2). 

For link i the Zi axis is directed along the axis of the joint between link i 
and i+1. The xi axis is along the commcn normal between the two joint axes of 
the link in the direction from z(i-l) to zi. The y axis completes the right 
handed set. 

Ue can transform coordinate systems i into i+1 by performing a rotation, two 
translations,  and a final  rotation as follows: 

n A rotation about zi of 8i to make xi parallel to x(i+l). 

2). A translation si along zi to locate the origin at the point where 
the common normal between zi and zi+1 cuts zi. 

3).  A translation of ai along x{i+l)  to bring the origins into 
coincidence. 
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Figure   2.1 
Arm 
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»l-l 

Figure 2.2 
Link Coordinate System 

4). A rotation about x(i+lt of ai to bring the z axes into coincidence. 

The j-int variable for a revolute joint is 9: the joint variable for a prismatic 

In thf. ca?p nf the arm that ue are using, we pick the origin of coordinates at 
tre base of the sroulder. Ue have two revolute joints, foI lowed by a prismatic 
joint  followed by three intersecting revolute joints. There are three offsets: 
Si = 16.24,0. b2 - G.85,n and SS - 10.35in. S4 - S5 - 0, and S3 is a variable. 
Ihe nnk coordinates for the arm are shown in Figure 2.3. 

If we express points in  link i by a vector m  then the relationship betupen 
coordinate »ytttM Ri. and R(i-l) may be expressed by: 

R(i-l) - | Ai| * | Ri | tEq. 2.11 

where j Ai | is given Ijy: 

i cos 9 
j tin 9 
I 0 
I 2 

-cos ü sin 9 
cos a cos B 
sin a 
0 

sin a sin 9 
-sin a cos 9 
cos a 
0 

a cos 9 
a sin 9 
s 
1 

CEq. 2.2] 
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JOWT a» • f 
1 -to l«.24 •, 

to • 05 »t 
0 • S -to 

-to | 1 
to ♦ I 
• 1095 -A 

Figure 2.3 
Arm Coord:nate Systems 
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For   the   joint  angles shown   in  the  following  table: 

Table 2.1 

Joint Angles 

JOINT VARIABLE 
1 -35.7 
2 -112.4 
3 22.2 
4 -38.2 
5 82.4 
1 G8.9 

The A matrices for the arm shown  in Figure 2.'. are: 

Al 

A2 

A3 

A4 

1    -.13 .33 1.88 .08 

I -i.ea .83 -.18 .00 

i      .83 -1.83 .88 IB. 24 

j      .88 .80 .38 1.00 

1    -.38 .88 -.92 .00 

|    -.92 .30 .38 .00 

1      .80 1.88 .08 6.05 

1      .83 .83 .88 1.00 

1      .83 1.38 .88 .00 

1 -1.88 .38 .83 .80 

.88 .33 1.33 22.16 

1      .83 .00 .33 1.00 

1      .79 .00 .62 .00 

1    -.52 .00 .79 .00 
l 

I      .33 -1.88 .38 .00   | 

1      .33 .33 .38 1.00      1 
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AS 

A6 

KINEHMTICS 

.17 .38 

.39 .88     ■ 

.83 1.38 

.33 .33 

.3S -.33 

.93 .35 

.33 .33     1 

.83 .38 

.33 .88 

••17 .88 

.38 .88 

.88 1.88 

.38 .88 

.38 .88 

.33 18.35 

.83 1.88 

if we let link 8 de the table coordinate system then we may relate from anu link 
coordinates to Rfi by: »        " 

Rfi -|Al|*|A2|*jA3i ... !Ai|*|Ri [Eq. 2.3] 

c: 

Rfi Til * I Pi tEq. 2.4] 

where: 

I Ti| - |A1|«|A2|*|A3| ... |Ai| [Eq. 2.5] 

I Ti | is the transform of the ith link of the arm which describes the position 
of the link in table coordinates. 

For the A matrices given in the preceding example we have the corresponding T 
ma X i IC68• 

Tl 

I -.13   .83  1.88   .88 I 
I I 
I -1.83   .33  -.18   .88 | 
i | 
I .38 -1.88   .38 16.24 I 
I | 
I .88  .83  .88  1.88 1 
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T2 - 

T3 

14 

T5 

TS 

KINEflATICS 

.84 1.88 .83 £.82 

.38 -.18 .32 -.58 

.92 .88 -.38 16.24 

.88 .88 .88 1.88 

1.88 .84 .83 1.8 

.18 .38 .32 13.78 

.88 .32 -.38 7.73 

.88 .88 .88 1.88 

-.81 -.83 -.53 8.86 

-.15 -.32 .36 13.78 

-.57 .38 .73 7.73 

.88 .88 .88 1.88 

-.23 -.59 -.78 8.86 

-.33 .36 -.88 1?,78 

.28 .73 -.63 7.73 

.88 .88 .88 1.88 

-.63  -.88  -.78 

.88 

-.88 

.88  1.88  -.88 13.78 

.78  -.88  -.63  1.38 

.88 .88  1.88 

V 

I T5 ! is the transformation of the hand, the last linK of the arm. Ue can 
interpret this matrix as follows: the right hand column of the matrix is the 
position, in table coordinates, of a point centrally located between tie finger 
tips £. The second column specifies the direction of the "y" axis of Me hand 
(see Figure 2.3), which we will call the orientation vector Q; the orientation 
vector is directed between the finger tips. The third column is the "z" axis and 
is in the direction that the hand is pointing; we will call this vecto. the 
approach vector A. Ue mag then write | T6 | as: 
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|   (0 M A)[x]    OCK]      A[>] PM\ 
I I 
I   (0 M A)[y]     Oty]       ACy] P[y]| 
I I 
i   (0 x A) [2]    Qttl       A[2] P[z]| 
I I 
18                 I          • H 

CEq.   2.G] 

The approach vector can be expressed  in terms of an approach anglb as follows: 

Ue define a reference approach vector Q^ as: 

BA - Q »< Ü [Eq.  2.7] 

where k is a unit z vector. The approach angle is the angle between A and RA 
measured about Q (see Figure 2.4). " 

2.2 ARH SOLUTION 

The c-m solution is a procedure uhich, given | T6 |, the transformation of the 
hand, returns the six Joint angles which will position the arm in such a way 
that the hand will have the required transformation. 

Because the last three joints intersect ue can obtain a closed form solution 
[Pieper]. The position of the end of I ink 3 is found as: 

LS - P - L£ [Eq. 2.8] 

wri«r« [Jm    is, a vector the length of SB and in the direction of the approach 
vector ft (see Fioure 2.5). 

A vector from the shoulder to the end of link 3 is: 

y - Li - Li 

Ue can now solve for S3, the prismatic joint variable, as: 

S3 - ( U . U - S2t2 )t(l/2) 

Havmg solved for S3, 81 is given by: 

81 - 9 -»- (P 

Where 9 and Q) are: 

[Eq. 2.9) 

[Eq. 2.10) 

[Eq. 2.11) 
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Tan 9 - U(2]  / U[l) IEq.  2.12] 

tEq.  2.13] 

FigurtT   2.5 
Solution of Joints 1,2 and 3 

Sin (P - S2 /  ( Umt2 + U[2]t2 )t(l/2) 

See Figure 2.5 

52   i?   then; 

Cos 92 •Um I S3 

See Figure 2.5. 

The '.'nit vectors y3 and z3 are now calculated for link 3 and a vecton 

BS - 22 x 2£ [Eq. 2.15] 

is calculated. 

Then: 

Eq. 2.14] 

94 angle between Bfi and u2 about J2 
95 angle between 2£ and 22 about Rfi 
96 angle between y£ and Rß about 2£ 

IEq. 2.16] 
[Eq. 2.17] 
(Eq.  2.18] 

See Figure 2.B 

■- J.tw^:.(ir.«6» 
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Figure 2.4 
Hand Coordinates 
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Figure 2.B 
Solution of Joints 4,5 and B 

Al I joints uith the exception of joint 6 have only a partial range of motion. As 
the solution for each joint is obtained, it must be checked to see that i is 
within the range of motion of tnat joint. 

2.3 DIFFERENTIAL SOLUTION 

Given ar. arm solution, it is often necessary to compute the differential chanae 
m joint angles ,n order to make a small change in position uhtle maintaS 
the current orientation of the hand. ""«'maming 

Ue can obtain the differential change in position dSS with respect to a chanae 
m joint variable dqj as: ^^     "HOWI IU « cnange 

m  - I lUiJl • dqj * |Ri 
j-l 

tEq. 2.193 

where: 

lUiJl - a|Ti|/c.qj [Eq. 2.28] 

. 
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From which ue obtain: 

lUiJl - |A1|«|A2| ... |Aj-l|*|Qi|*|Aji*|Aj+l| ... »jAi 
[Eq.  2.21] 

and depending on whether the joint  is rotary; 

Q(0) 
|0-180| 
110 0 0 1 
10 0 0 0 1 
10 0 0 0 1 

tEq. 2.22] 

or prismatic: 

Q(s) 
0 0 0 0 1 
0 0 0 0 1 
0 0 0 11 
0 0 0 0 1 

[Eq. 2.23] 

2.20) If we then evaluate the six 1 UGji matrices (Equation^ 
differential change in the 16 elements of the hand matrix | T6 
six loints.  This corresponds to IG equations in 
equations are independent. Ue must pick B indeoendent equations of the IB 
then solve for the required change in the qj. 

ue uiII  have 
| for each of 

unknowns of which on 

the 
the 
iy B 
and 

From t Ußj | we pick the first three elements of 
turrttpond to dx, dy, it. Ue then pic^the two 
tne approach vector, to constrain its di-ection. 
element from column 2. the orientation vector, 
about the approach vector. 

The six equations: 

the right hand column as these 
smallest elements of column 3. 
Finally we pick one additionai 
in order to constrain rotation 

.<„ii 
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dx 

dy 

dz 

a 

8 

8 

DIFFERENTIAL 

US1  U62  U83  UG4  U65  UBB 
U   14   14   14   14  14 

U61  U62  UB3  uS4  U65  UG6 
24  24  24  24  24  24 

U61  UB2  UB3  U64  U65  UBB 
34   34   34   34  34   34 

U61  UB2  U53  U64  UB5  UBB 

xK;^' 

u3   u3 u3   u3 

U61  UB2  Ub3  UB4  UB5  UBB 
v3   v3   v3   v3   v3   v3 

UB1  U62  UB3  UB4  UB5  UBB 
w2   w2   u2   w2  w2  w2 

1 
dq 

1 

i 

dq^ 

dq, 

dq 

dq 

[Ed.   2.24] 

are  then solved  to give the six dqj,   the differential  change   in  joint angle. 

For  the    position that we    have been considering    and have defined    the A    and T 
matrices.  A differential  change of dz » 3.2 in  is found to be: 

Table 2.2 

Differential Change of Joint Angle 
JOINT   dq 

1 3.8 
2 7.2 
3 -1.1 
4 -I.I 
5 4.4 
s 5.7 

2.4 DYNAHiCS 

From the k.ineaiat ic arm ;:,odel Mt can also develop the dynamic model [Uicker]. Ue 
uill derive the Lagrangian [Kahn] for the arm in a gravitational force field, 
and obtain the equations relating acceleration to joint torque, including the 
static torques necessary to overcome the effects of gravity. These results will 
be used in the section uihich relates to servoing the arm. 

■' 
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If the Lagrangian L is defined as: 

L - K - P [Eq. 2.251 

where: 

K is the Kinetic Energy of the system in terms of joint variables; 

P is the potential energy in terms of joint variables. 

The joint variables "q" are either "9" or "s" depending upon whether the 
joint is revolute or prismatic. 

The equations of motion are given by: 

d/dt { aL/3qj ) - di/dq]  - Fj 

for j ^1,2, ... n 

where Fj is the force on joint j. 

From Equation 2.19 we can obtain the velocity of any point as: 

dR2/dt - i Vj | * i Rj | 

where; 

CEq. 2.2G] 

[Eq. 2.27] 

I Vi | - I ( | Uij | * dqj/dt ) 
j-1 

[Eq. 2.281 

Ue may now express the kinetic energy of a link as follows. Consider a particle 
of mass dm on link i at Ri then the kinetic energy is: 

dHi = 1/2 ( Ri . Ri ) dm [Eq. 2.29] 

or; 

T    T 
dHi - 1/2 Traced Vi |*| Ri|*| Ri| *| Vi | )*dni 

[Eq. 2.38] 

The total  kinetic energy for  the  link can be found by integrating over    the n-ass 
of   the  link. 

-.„....._... mmat ■ a&mm&mm 
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to obtain: 

T T 
dHi  - 1/2 Trace[|Vi|*(/ |Ri|*|Rij *dni)*jVi|  ] 

link 

Hi = tni* 

2   2   2 
1/2(-k  +k  +k  ) 

ill i22 133 

il2 

113 

112 il3 

2  2  2      2 
k  -k  +k k 
ill i22 133     123 

;2i 

2  2  2 
k  +k  -k 
ill 122 133 

tEq. 2.31: 

CEq. 2.321 

where:k   is the radius of gyration of link 1 about the i,k axes, xi. Z\     zi 
1jk !»»♦•< 

Is the center of mass of link 1. mi is the mass of link i. 

i« Kinetic energy of the entire system Is: 

n T 
K - 1/2 I Trace(| VI |#| Hi |*| Vi | ) 

i-1 
lEq. 2.331 

The potential energy of the system due to gravity in the negative z direction is 
expressed by: 

P . - I mi * | G i * | Ti | * | Rl 
i-1 

where:  | G ; - | 0 0 g 0 | 

and    g    is the acceleration due to gravity. 

[Eq.   2.34] 

[Eq.   2.35] 
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Substituting for K from Equation 2.33 and for P from 2c,uatiür, 2.34  into Equat 
Z.^b and then differentiating according to Equation 2.2G we obtain: 

ion 

n      j f tt 

Fi   - E t Trace(|  UjK|*| Hj|*i  Uji|  *qk) 
j-i k-1 

n j       j T .     . 
+1 t     Z IraceCI Ujkp|«| Hj|*| Uji| *ij*ik) 
j-i k-1 p-1 

-I mj«|  G  |*|  Uji|«| Rj 
j-' 

CEq.   2.38] 

the equation relating acceleration to force, from which we will  infer the 
effective link inertia and gravity loading torque Tg in Subsection G.l. 

2.5 FORCE AND nOMENTS 

Given a force F that acts through the origin of the hand coordinate system and a 
moment H, we wish to find the joint reaction torques. 

Ue represent a force in the n' th coordinate system as: 

FnW 

ana a moment  similarly; 

Fn    - 

tin 

Fn[y] 

Fn[z3 

8 

MnLx] 

nn[y] 

RnfcJ 

8 

[Eq.  2.37] 

CEq.  2.38] 

■'-■ ■  :■■---;: :-.!-:-\-- 
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FCRCL 

We   first   transform  the  force F and  t 
bu: he mo/nent H  into the hand    coordinate system 

-1 
F5   |   .  |   ",o  |    *|  F 

-1 
H6 I ■ I T8 I   *i n 

fEq.   2.33] 

fEq.   2.40] 

"l\Z  ISTFTSUT" tft'*'    ,he ,0rCe   a"d »«"' **    <*«*> >«•    II«. as 

and   the moment; 
F(n-lj An   j  *  |  Fn [Eq.   2.41] 

I run-u An  |  *  I  fin 

Hoi-jever     the 
[Eq.   2.42] 

coorcunatesuslrUenairr^jln^rh,^9^!.   0ri9in    0f     the   '^^ H    >     uee ngure f./j   anc, ue ha.?,, an additional  moment  given by: 

« F(n-l) 
[Eq.  2.43] 

Fiaurt   2.7 
Force  Transformation 

uhere:  P  is th« right htnd column of  I An 

• 
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the  total   moment   is  then: 

I  n(n-l) An   |  *  |  fin  i  + P x F(n-l) [Eq.   2.44] 

If the (n-Dth joint is revoiute then the reaction torque is fKn-lHr]- if it la 
prismatic tnen the force isF(n-l)[z]. I '» n •■ 

The six reaction torques are knoun as the equivalent arm torque. 

Uhen the hand is to exert % force the equivalent arm torque is calculated and 
added to the gravity torque for each joint. If each joint is run at these 
torques then tne h^ind will exert the required force. 

For the arm position ue have been considermg we have two examples, the first is 
to exert a ♦ore« of -IWoz. in the r direction, the second example is to exert a 
moment o*  -108o2. in. about the z axis: iv c er i d 

Table 2.3 

Equivalent Arm Torques 
F:rJa-122or. rUz]-183oz.   in. 

joir^T lunuut JOINT TORQUE 
i e.3 i -180.0 
2 -1958.a 2 3.8 
3 38.2 | 0.0 
4 -741.3 4 38.2 
5 
G 

-238.5 
a.a I -72.7 

G2.7 
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SECTION 3 

UORLD riODEL 

This section describes the model of the arm's environment, which consists of 
solid plane-faced objects. These are the objects that the vision system can 
identify [FaIk] and a representation of them is maintained. This is done for 
both  the Arm and the Vision programs,  which share a common data base   [Paul]. 

Ue will first describe the prototype representation and the manner of specifying 
instances of these prototypes. The problem of grasping this class of objects is 
then reduced to finding a set of orientation vectors. 

3.1  PROTOTYPE DESCRIPTION 

Objects are described in terms of prototypes. To identify an object is to 
associate tne object with its prototype; one prototype can represent many 
objects or instances. All common information relating to the instances is kept 
only once, with the prototype. The position of an object is associated with the 
instance, as every instance has a different position. The prototype is located 
with its center of mass at the origin and its principal inertial axes aligned 
with the coordinate axes. Each vertex is represented by a vector giving its 
distance from the origin and each face is represented by a row matrix giving its 
position and outward pointing normal. 

Items are created for each part of a prototype (face, vertex, edge). (Readers 
not familiar with "items" should consult Appendix A.2.) The spatial information 
associated with vertices and faces is stored as array datums of these items. 
Farh nf these items is associated with the prototype, which is itself an item. 
Difftrtfit attributes are used to indicate which topological part is being 
associated. 

For  example,   in the case of  the cube shown  in Figure 3.1: 

FACE « CUBE s Fl 
FACE • CUBE s F2 

lEq. 3.1] 

FACE e CUBE B FO 

VERTEX a CUBE ■ VI 
VERTEX ® CUBE ■ V2 

fi H        n 

vt'RTEX «> CUBE ■ V8 

EDGE • CUBE > El 
EDGE • CUBE « E2 

II II M 

EDGE • CUBE « E12 

[Eq. 3.2] 

[Eq. 3.3] 

■ 
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Figure 3.1 
Cube Prototype 

In the case of edges, the length of the edge is kept as its datum. 

For each Face ue now associate its vertices and edges together 

Consider for example face Fl: 

BOUNDARY «> Fl i El 
BOLJiöARY ® Fl s E2 
BOUNDARY ® Fl s E3 
BOUNDARY ® Fl » E4 

CORNER «> Fl « VI 
CORNER e Fl a V2 
CORNER © Fl ■ V3 
CORNER ® Fi = V4 

[Eq. 3.4] 

CEq. 3.5] 

And for edges we associate the edge with its endpoints: 

ENOPT • El s VI 
ENDPT ® El s V2 

etcetera. 

[Eq. 3.6] 

Prototypes are kept ror the objects shown in Figure 3.2. this data is kept in 
the global data store and is available to all programs. 

:      . 
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CUBE RHOMBOID RPPII2 

RPPI22 

RPPI24 
RPPII4 

WEDGE 122 
LBEAM 

WEDGE 124 

Figure    3.2 
Prototypes 
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exl'pter ^ adescriPtion "*•    Possible to find .any relationships, for 

Given any face Fl find its neighbors uhich share a common vertex VI, 

^"aclsllch s^i"y
WhiCh ^ the "^ Verte>< V1 b« fi"d-9 all 

FOREACH F | VERTEX » F » VI 

nfr?hoclTeSentS f? iten' va"iable satisfied by the association. The set 
of these F s are all the faces uhich share this common vertex. Houever 
they are not all ne,ghborS of Fl. To ascertain that they are neighbors 
we must requ.re that tney share a common edge and that they are not Fl 

FOREACH F.E | VERTEX « F . VI 
A  EDGE »F.E 
A  EDGE • Fl • | 
A  F * Fl 

^V?h%CiciVvt£ SI   faCeS F   WhiCh are the   ****** °<    Fl and 

sJar^ng'wfth'n   ^  '** "*** t0 g0 ar0Und the Vertices of a fa« «   '" order. 

T - Vlj 
FOREACH E.H | EDGE • Fl . E 
A   END » E i T 
A   END ® E a H 
A   H « T DO 3EGI?^ 

IF H - VI THEN DONE; 
<statenient>; 
T -  H END; 

T^izrii )^i^:^"•*'a oeu i,M i8 crea,Bd ^ '• —••*- »'«< 
INSTANCE • CUBE a INST1 CEq.  3.7] 

The posit.on and orientation of    the  instance are expressed as    a transformation 

Subset i on'CA\)el3TKS    PI0t0tfe    ^din^s    to    instance      coo Stna es        °e 
^stance hl5   '*   transformation    is stored   as the    datum    of  the 

Most  calculations    can be    performed by    transforming the    instance back    to MM 
prototype rather  than by transforming the prototype Li  to ihe   instand 
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Consider for examp 
finding through whi 
face out to the in 
direction of the ou 
vector actually pas 
each vertex of the 
weight vector back 
through which face 
of   the order of 8.5 

e the problem of finding the support face of a body by 
ch face the weight vector passes. Ue could transform each 
stance, calculate if the weight vector was in th« general 
tward pointing normal and then determine whether the weight 
ses through the face. This would require that we transform 
face to the  instance.     It  is more efficient  to    transform  the 

to the prototype hy using the inverse transform and check 
it passes, avoiding ill  the other transformations, which take 

m sec.    each. 

With this "rrototype-instance" scheme we can represent all plane faced objects. 
There is stfficient information available for the vision program to be able to 
identify objects in two dimensional scenes. In the next section ue will show 
that there is also sufficient information for the arm program. 

3.2 ORIENTATION VECTORS 

The prototype description is used unen it is required to move an instance of 
some prototype. Apart from the positional information, which is obtainable 
directly from the instance transform, the prototype description is used to 
calculate how the instance t,'ay be picked up. Knowing how a body is oriented and 
where it is located does not specify a hand position which may be used to pick 
the instance up. Although there are an infinite number of ways in which an 
object may be picked up, we will limit the possibilities by the following 
heuristics. Ue will require that the object be picked up by two parallel faces 
on an axis containing the center of mass, as this will prevent the object from 
rotating. One but not both surfaces may be replaced by an apex of the body. Both 
surfaces may be replaced by edges if a normal from the edge intersects the 
w«ntif of Mtt« These heuristics define a set of orientation vectors. if the 
hand is positioned at the center of mass with one of these orientation vectors, 
it will be in a position to grasp the object (see Figure 3.3). 

To find systematically all the possible orientation vectors the program first 
makes a list of all the vectors from the center of mass of the object that 1) 
intersect and are normal to any edge, 2) intersect and are normal to any face, 3) 
pass through any apex. Such vectors are known as contact vectors. This list is 
then searched for pairs of anti-parallel vectors, being careful not to take both 
vectors from the third class. This is done in the following manner: To find the 
contact vectors for faces the program simply checks that the perpendicular from 
the center of mass to the plane lies inside the face and thus the surface is 
perpendicular at the contact point, jr: 

■ MM - ..•»kiw*w4«*a»ii(*i*(a 
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Figure 3.3 
Orientation Vectors 

FOREACH 
BEGIN 

FACE«PROTOTYPE»F DO 

NFACE: 

D-DATUn(F)[4]; 
IF D>8.8 THEN GO TO NFACE; 

Comment if this plane is used the center of mass 
will net lie between the finger tips; 

IF CONTAINED{DATUn(F),F) THEN FOUND ONE{ 
Comment if the point of intersection of the 
normal and the face within the boundary then 
put the point in the list of contact vectors; 

The procedure CONTAINED counts the number of region boundary crossinas of 
from the point to infinity. If the number is odd then the point is ins 
reg.on, if even then it is out-side. 

a 
ide 

ray 
the 

Ih/'^ Ihe CrtaCt VeCt?rS f0r ed9e5 '* is necessary that a perpendioular from 
the center of mass  intersect the edge.lt  is also required that the edae 

the'"""! cSn5i!?onf COrner" ^ the lowing algorithm the program satisfies 
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FOREACH E.A.BIEDGEcPROTOTYPEsE 
A     END«E«A 
A     END®E«B 
A      A*8   DO BEGIN 
T-A . li - B)/(A - a) . t4- Dl 
Comment T is the directed distance from 
end point A to the normal, divided by the 
directed distance of A from B; 
IF T<e.8 v T>1.0 THEN GO TO NEDGE; 
Comment the normal intersects on the edge; 
t*!- H|- |J * T); 
Comment C is a vector from the center of 
mass and perpendicular to the edge at the 
point of contact (see Figure 3.4). 

Now check that this is an outside edge; 
FOREACH Nl.NZIBOUNDARY^NliE 

A  B0Uiv!DARY<jN2«E 
A  N1*N1 DO; 

Ni *- DATUnUJl); 
HZ -  DATUniN2); 

comment N is a reference vector such that 
we move outside as we rotate about N from 
£*! to tß: 

V - Hi X Q; 
IF N . V < 3 

Comment £ points to the outside of 
the vertex; 

THEN FOUND ONE; 
END; 

END; 

To determine contact vectors at verticies we can use only the outside corners of 
the object (see Figure 3.5). That is, for all edges at this vertex the angle 9 
must be   less  than 30 degrees  (see Figure 3.5). 

NOGQOD:  END; 

FOREACH V   (   VERTEX o BDY ■ V DO BEGIN 
C2»-V . w • 
FOREACHl.A I END ® E s V 

A END « E = A 
A   A « V DO 

IF A . V > C2 THEN GO TO N0G00D; 
FOUND ONE; 

The program then searches this list of contact points looking for pairs of anti- 
parallel vectors, being careful not to take both vectors from the class of 
vertices.  These then are the orientation vectors which are stored with the 
prototype together with the contact information: 

.-■.•> .■>-. mmam 
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W 
QaJJ 

^      ^ 

cantar of mot« 

Figure    3.4 
Pick-up Point on an Edge 

center of mot» 

Figure 3.5 
Outside Vertex 

-    ■■■■ ^    ■:■■     .„■■ 
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ORIENTATION 
ORIENTATION 

BOY 
BOY 

01 
02 

ORIENTATION 9 BOY ■ 09 

CONTACT • 01 ■ Fl 
CONTACT • 01 5 F3 
CONTACT ® 02 . F2 
CONTACT • 02 ■ F4 

CONTACT » 09 
CONTACT • 09 

ES 
E2 

CEq. 3.8} 

CEq. 3.9] 

The contact information is used in determining which orientation vectors can be 
used for a g.ven instance. The datum of an orientation vector is a 5 element 
mat.-ix with tne 10Ilowing elements: i f Q and C2 are two anti-parallel contact 
vectors then the datum of the orientation vector is: 

mi - cHi] / (cimt2 + cit2]t2 + umn \ 

012]  - tim I ( CHlItZ + ClUJfa ♦ Cl(3]t2 ) 

0131  - CIGH / ( CHUt2 ♦ Cl[2]t2 + C113]t2 ) 
0141  >  I Qi I 
OtSJ -  I 02 I 

(1/2) 

(1/2) 

(1/2) 

In the case of a rectangular parallelepiped of size 1.25in.  * 1.25in. 
the program computes the following 3 orientation vectors: 

Table 3.1 

Orientation Vectors for Rectangular Parallelepioed 
0Q]       012]       013]        0(4]        0[5] 

x 2.55in. 

1.03 0.03 0.08 1.88 -1.60 
8.88 1.88 8.88 1.B8 -1.60 
0.88 0.88 1.88 0.78 -8.78 
8.71 0.71 8.88 1.13 -1.13 
8.71 -0.71 0.00 1.13 -1.13 
8.44 0.00 0.30 8.78 -0.78 
0.44 8.88 -0.90 0.70 -0.70 
8.00 0.44 -0.98 0.70 -0.70 
8.00 0.44 8.98 0.70 -9.70 

Each row in Table 3.1 represents an orientation vector. The first three 
elements Olli, 0C2] and 013] give the direction components of the vector. The 
two contact vectors are given by: 
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Cl 

OQ] 

0[2] 
i 

OtSJi 
I 

014] 1 

C2 
I 0[2I 
I 
I 0t3] 
I I 
I OK] I 

All  arm operations with oodies can be reduced to manipulations of  these vector« 
To p.ck up a body we    need only consider the orientation ve^rs     Ue    seUcH; 
or.en ation vec or and specify an approach angle;  we can then complete    the hand 
transformation  (see Subsection 2.1) and obtain an arm solution? and 

--   <-:i-:   ■ .,V.,;.,■. 
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SECTION 4 

MOVE INSTANCE 

4.1 RANGE OF SOLUTION 

approach angles for each orientatior vector i tS US the range 0f P^^ibie 
from the intersection of the t.o ranges 'GvenTn^;568 S* approe-h an9le 
vector, the program needs to compute he rZp n?!I0n fnd fomentation 
uh.ch the arm can reach the object subject J^L 15?^ ans,e ^roughout 
arm  (see Figure 4.1). J        suoject    to the physical  constraints    of   the 

LIMITING 
APPROACH ANGLE 

Figure    4.1 
Approach  Iimi ted by Arm 

Heuristics are 
exist,     if one 

used to 
exi sts 

find an approach angle 
at ali, and a further 

at which 
test is 

an arm 
made    to 

solution uill 
determine  if 
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solutions exist for all approach angles. If a solution exists, but not for the 
full range, the limits of the range are found by conducting a binary search, 
using the arm solution procedure to test for feasibility. 

In order to ensure that the arm does not penetrate the support plane (see Figure 
4.2), the program computes the range of approach angle for which link 5 is above 
the plane. 

LIMITING APPROACH 
ANGLE 

LIMIT 

Figure 4.2 
Approach Angle Limited by Support Plane 

This range of approach angle is then intersected with the possible range of 
approach angle defined oy the arm to give a ringe throughout which the arm can 
reach the object limited Dy both the arm and the support. 

is process is repeated for the support post of the arm, A final intersection 
the Iimi ting 

acent objects 

This process is repeated for the support post of the arm, A final 
of ranges is made to keep the hand from intersecting the post, and 
range of approach angle is obtained. Possible conflicts with adj. 
are not considered. 

4.2 ROVE INSTANCE 

The first action of nOVEJNSTANCE is to select those orientation vectors of the 
prototype ( see section 3.2) which can be used to grasp the object. To do this 
the program transforms a gravity vector back to the prototype, using the inverse 
transform, and determines through which face it passes, Ue consider this to be 



Page 35 HOVE 

the support face. Any orientation vector (Equation 3.8) jhich has a contact 
point (Equation 3.9) on this face or on any edge or vertex of this face is 
discarded, the remaining orientation vectors are marked as possible. This 
procedure is performed for the object in its initial position and again in its 
final position. If the action is to be accomplished in one move then the set of 
awailable orientation vectors that can be used is the intersection of the two 
sets or ui ientation vectors for the initial and final positions. As the most 
stable way to pick up in object is by grasping the object by its faces, the 
orientation vectors are oMered by length and the shortest, representing face- 
face contacts,  are considere:! first. 

For each of the orientation vectors so ordered the range of approach is 
calculated at both the initial and final positions. In order to relate these 
two ranges for a given orientation vector we make use of the reference approach 
vector Equation 2.7. By transforming the reference approach vector RAi at the 
initial  position to the final  position by: 

RAi' Tf Ti 
-1 

RAi lEq.   4.1] 

the shift S, between approach ranges may then be calculated as: 

S ♦- the angle between RAj.' and BM about Qi 
£Eq. 4.23 

After applying the shift S to the initial rancc the two ranges of approach are 
intersected. If the intersection is not empty then the. solution has been found. 
An approach vector ^ is picked :.ithin the range of intersection. In order to 
keen the arm clear of other obj.'ts, the preferred approach direction is 
straight down. Iwo arm solutions are obtained, one at the initial position and 
one at the final position, such that the shift between approach vectors is 
maintained. 

If there is no intersection between the first two ranges, the next orientation 
vector in the intersection of the available set of orientation vectors is tried. 

Uhen the set of orientation vectors is empty at either the initial or final 
position, there is no way that the move can be accomplished as the arm cannot 
reach the object. If the intersection of the set of orientation vectors were 
empty, or if after evaluating the ranges for all the orientation vectors the 
intersection of the ranges was empty then an intermediate position is tried. 

In the case of 
obtained (Table 3. 

the rectangular parallelepiped whose orientation vectors 
1) we will consider the problem of moving an instance from: 

we 
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i.ea .m .22 22.00 

.88 1.88 .88 38.88 

.88 .80 1.8£ 1.38 

•38 .88 .88 1.08 

to: 

I -1.88   .88   .00 40.00 I 
I I 
I .88  1.80   .80 20.00 I 
I I 
1 .08   .08 -1.88  1.30 I 
I I 
I .83   .00   .00  1.00 1 

This move includes turning the object upside down. 

For each of the possible orientation vectors the ranne of aooroarh \m mmtm i** ■ 
at both positions. PI is the position vector and Jl K ?he oT^ a\ oV c ^al 
the .n.t.al pos.t.on and at the second position the vectors are £2 and Q2 

El - 20.80 33.88  1.38  1.00 
Qi -   .33  1.08   .88  1.00 

Range  From 40 to 173 degrees 
Shifted Range From 220 to 353 degrees 

PZ   - /+0.83 28.80  1.30  '.00 
02 •   .00  1.80   .00  1.00 

Range  From 7 to 120 degrees 
Common range 0 degrees 

Pi « 20.33 38.80  1.30  1.00 
01 -  1.80   .00   .00  1.00 

Range  From B2 to 173 degrees 
Shifted Range From 242 to 353 degrees 

PZ   -   48.83 28.00  1.30  1.00 
02 ■ -1.83   .00   .00  1.00 

Range  From 7 to 123 degrees 
Common range 0 degrees 



■ ■ 

Page 37 HOVE 

Ei - 28.88 38.83  1.38  1.88 
Qi "  .|1  -.71   .08  1.00 

Range  From 49 to 173 degrees 
Shifted Range From 229 to 353 degrees 

EZ   '   40.00 20.03  1.30  1.00 
QZD '     -.71  -.71   .00  1.00 

Range  From 29 to 165 degrees 
Common range 0 degrees 

Ei - 28.80 38.88  1.38  1.88 
Qi ■  -1   .71   .00  1.0a 

Range  From 59 to 173 degrees 
Shifted Range From 239 to 353 degrees 

PZ 
cz 

43.33 2S.03  1.30  1.00 
-•71   .71   .00  1.00 

Range  From 7 to 115 degrees 
Common range 0 degrees 

As the intersection of all the ranaes is wa an  a + +<.M^ ■ 
Plan to move the object from i s tni al D^i^on n S l9 T made t0 *** a 

and then from the intermedia e pis i'on ?o the f na? ^m^^Ä POSition 

program specifies whether an interme iaJe pos^on ?« tS bi Jried ^H"' '^ 

•r^?-- « ^ t.z£ ^.Krir^ - 
intermediate posi t ion. J the .ove ?s uLl ly äcco .p i sh^d as i't U? T *** 
position and not the orientation that is specifieS Go n^f 2 • IS 0n,y the 

arm is unaole to carry cut a task in one rove t is tLSSl ^l^L "^ the 
eKample. the object must be turned over. 11 is'then necessar!'fnr K 

the feSent 

th^ob.ect part-^ over, put i t do.n. ^^^^Vn^^^^ 

^r^T^-^^r^Z^rl'055^ ******* ^ces is 
original support '^e^'^f ^f^JSV ^ 7 TrTstrL^ ^ 
constructed for this intermedi^tP attmitlT*^T\  Tace' A transformation is 
parallel to the original "uppSrlurface ?o'?v.:^ ^ neW *Wor* **'* 
range, the object is then turned abou an'a. ° nr-J V^L***™* 0f appr0ach 

objecfs principal axes Perpendtrar t e 0^o , er of'hT r^ ^U T 
distance from the center of mass to the original •uBMrTfJ. ? HT< ' I Jhe 

the m.tial distance, the heignt of the cen?er of S^bjlct ; adj^sleT   ^ 

The process i« then repeated to find a common approach. First a m0ve solution to 
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the intermediate position is computed and then, if successful, a move soiution 
from the intermediate position to the final position is attempted . Ranges are 
saved during the "initial - final" move attempt as they are needed in the 
"initial - intermediate," "intermedicte - final" move evaluations. 

In the example we are considering the 1 ntermediate position is specified as 30, 
30, 1.3 and as the intersection of al 
posi t ion is set up a?: 

the ranges was zero an intermediate 

|      .38 .13 -.38 33.33  ! 
i 

1 
I       .33 
1 

.98 .19 38.83  | 

1.33 .33 .88 
1 

.85  | 
j 

.23 .S3 .33 1.83  | 

The program now tries to mdke a plan to move the object to this position: 

W    *    23.83   33.33     1.38     1.88 
Qi=        .23     1.33       .83     1.83 

Range      Freu H8 to 173 degrees 
Shi f tea Ranrje Froni -53 to 83 degrees 

PZ   •    33.83 33.33   .55  1.33 
E ■   .IS  .98  .83  1.88 

Range  Fro^i 19 to 15G degrees 
Common range From 19 to 83 degrees 

Aparoach ■ 51 degrees 

A CuiWOn range exists and the program now calculates the two hand posit'ins: 

i -.53   .23  -.78 23.83 
i 

.23  1.88   .33 33.28 

.78 

.33 

.23 

.23 

-.53  1.33 

.33  1.33 

-.75 .19 .52 38.88 | 

.15 .98 -.12 33.23 I 

-.53 .88 -.78 8.55 ! 

.82 .83 .33 1.08 | 
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The program now tries to make a plan to move the object from the intermediate 
position to the final position: 

Pi - 38.88 38.88   .65  1.88 
Qi -   .19   .98   .88  1.83 
Range  From 19 to 156 degrees 

Shifted Range From -71 to 66 degrees 

PZ   - 48.88 28.88  1.38  1.88 
02 -   .88  1.88   .88  1.88 
Range  From 7 to 128 degrees 

Common range From 7 to 66 degrees 
Approach ■ 36 degrees 

Once again a common range exists and the program calculates the two hand 
positions: 

!    -.79       .19     -.58   38.88 | 
I I 
I      .15       .98       .11   38.88 | 
I I 
I .59       .83     -.81        .65 | 
I I 
I .83       .83       .38     1.88 I 

I    -.59       .88       .81    48.83 I 
I I 
I      .33     1.83       .33   23.33 | 
I I 
I    -.81       .33     -.59     1.33 | 
I I 
i      .83       .88       .38     1.33 | 

The problem is solved and the moves can be made. 

By this procedure it is possible to make any re-posi t ionings  and re- 
orientations, even when the goal must be accomplished in two moves. 

About 4 seconds are required to compute the arm positions when two moves must be 
used. 
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SECTION 5 

TRAJECTORIES 

5.1 GENERAL CONSIDERATIONS 

In moving the arm we have two positions, the initial and final. The discussion 
until now has emphasized these positions and their determination (Subsection 
4.2). In this section we will describe the move in detail. 

The simplest solution is to move the joints independently from their initial 
position to their final position, using a simple servo. Consider the situation 
shown in Figure 5.1, where the hand is turning a block onto its side. The 
motion is mostly in joint 5; if all the joints were moved to their final 
positions then the hand would try to move through the support. What is needed 
is to lift the arm up and down as joint 5 is moved, in order to clear the 
support. Uhen the arm starts to move, it is normally working with respect to 
some surface, for instance, picking up a block from a table As it starts to 
move the motion of the hand should be directly away from the surface. If we 
were to specify a position on a normal to the surface out from the initial 
position, and then to require that the hand pass through this position, we would 
achieve the correct departure motion. If we could further specify the time 
required to reach this position, we could control the speed at which the block 
was to be I i fted. 

BEFORE AFTER 

Figure 5.1 
Crash 
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To estimate how far this position should be from the surface, consider Figure 
5..., as this represents the worst case of surface penetration. If the hand had 
been lifted by the maximum surface penetration, approximately 15% the length of 
the last link, the collision would have been avoided. 

For such an initial move, the differential change of joint angles is calculated 
(Subsection 2.3) for a move of 3 inches in the direction of the outward pointing 
normal. A time to reach this position based on a low arm force is then 
calculated. The same set of requirements exists in the case of the final 
position. Here we wish once again to approach the surface in the direction of 
the normal, this time passing down through a letdown point. 

Ue now have 4 positions: initial.I 
servo the arm from one position 
support (see Figure 5.3). 

iftoff,letdown, and final and 
to the next we would not col 

i f we 
lide 

were to 
with the 

TYPICAL 
JOINT 
ANGLE 

TIME 

Figure 5.3 
Point to Point Trajectory 

Ue would, however, like the arm to start and end its motion with zero velocity 
and acceleration, Further, there is no need to stop the arm at all the 
intermediate positions. Ue require only that the joints of the arm pas-j through 
the trajectory points corresponding to these intermediate positions at the same 
11 me. 

The time for the arm to move through each trajectory segment is calculated as 
follows: for the initial and final seyments the time is based on the rate of 
approach of the hand to the surface and is some fixed constant.  The time 



Page 42 GENERAL 

MAXIMUM 
PENETRATION 

FINGERTIP 
TRAJECTORY 

Figure 5.2 
Maximum Penetration of Hand 

.•• m smmmmm 
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necessary for each joint to move through its mid trajectory segment is 
estimated, based on a maximum joint vaLicity and accsleration. The maximum of 
these times is then used for all the joirts to move through the mid trajectorg 
segment. ■ 

Knowing the joint variables and times we can determine a polynomial for each 
joint, expressing joint angle as a function of time, which passes through all 
the points and has zero initial and final velocity and acceleration; as there 
are 4 points and 4 velocity and acceleration constraints we would need a 7th. 
order polynomial. Although such jolynomials satisfy our conditions, they often 
have extrema between the initial and final points and the joint variable must be 
evaluated at each extremum to check that it has not exceeded the working range 
of the joint. 

As the extrema are difficult to evaluate for such high order polynomials, we use 
a different «ipproach. Ue specify three polynomials for each joint, one for the 
trajectory from the initial point to the liftoff point, a second from the 
liftoff to the setdown point, and a third from the setdown to the final point. 
Ule specify that velocity and acceleration should be zero at the initial and 
final points and that they should be continuous at the intermediate points. 
This sequence of polynomials satisfies our conditions for a trajectory and has 
extrema which are easily evaluated. 

If a joint exceeds its working range at an extremum, then the trajectory segment 
in which it occurs is split in two, a new intermediate point equal to the joint 
range limit is specified at the break, and the trajectory recalculated (See 
Figure 5.4), 

Although a collision avoider has not been implemented, except in the case of the 
table and the arm support post, such a program would modify the arm trajectory 
in the same manner by specifying additional intermediate points. If a potential 
cci'ision were detected one or more joints would be required to pass through 
some additional trajectory points in order to avoid the collision. 

Ue nave another type of trajectory that we wish to be ably to compute, one which 
moves the arm along a well defined space curve. Here we obtain a sequence of 
joint angles at points along the space curve. The velocity along the space 
curve is controlled by relating distance along the curve to time between points 
(See primitive DRAW Subsection 7.2). This type of curve leads to a trajectory 
with many points. If we were to use a single polynomial it would need to be of 
high order, for this reason the sequence of low order polynomials is also 
preferred. 

5.2 POLYNOniALS 

For each trajectory segment we have position, velocity and acceleration 
constraints at each end. Except at the beginning and end of the trajectory the 
velocity and acceleration constraints are continuity constraints.  There are 
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JOINT 
RANGE 
LIMIT 

TYPICAL 
JOINT 
ANGLE 

POLVNOfllALS 

»PH'^swr-'-ff» 

EXTREMUM 
ORIGINAL 

LETDOWN 

^ 
FINAL 

fLIFTOFF 
INITIAL 

TIME 

Figure 5.4 
Trajectory beyond Joint Range 

only four constraints on the intermediate trajectory segments and five 
constraints at the ends. Thus for the first and last trajectory segments a 
fourth order polynomial will suffice and for the intermediate trajectory 
segments a third order polynomial uil I I be needed. 

Consider a trajectory segment described by: 

4      3      2 
9 . Ai4*t'  + Ai3*t' + Ai2*tl + Ailmt' +Ai0 

[Eq. 5.11 

ui th 

t/ri lEq. 5.2] 

where Aij is the coefficient of the jth. power of the i th. trajectory segment, 
and time t, is normalized to unity at the end of the trajectory segment of 
durat ion ri. 

For   the  first  trajectory segment at  time t'-0: 
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and at time t'-1: 

POLYNOMIALS 

98 - A18 

00 - 8 -All 

90-8 -A12 

91 - 98 - A91 - A14 + Ml 

rl*91 - 4*A14 + 3*Ali 
2 .. 

rl *91 - 12*A14 + 6*A13 

for the last trajectory segment we substitute; 

t" - t' - 1 

9n ■ An8 

9n - 8 -Anl 

9n » 8 -An2 

and at time t''-0: 

and at time t' '—1: 

9n - 9{n-l) - A9n - -An4 + An3 

rn*9(n-l) - -4*An4 + 3*An3 
2 .. 

en «9(n-l) - 12«An4 - B*An3 

For the general ith. trajectory segment we have 

0 - Ai4 
o(i-i) . Aie 

ri*ö(i-]J - Ail 
2 .. 

ri *9i hil « Ai2 
9i - 9(i-l) - LQ\  - A13 + Ai2 + Ail 

■ 

ri*9i - 3*Ai3 + 2*Ai2 +Ail 
2 ., 

ri *9i - ß*Ai3 + 2*Ail 

tEq. 5.3] 

CEq. 5.4] 

tEq.  5.5] 

CEq. 5.61 

[Eq. 5.7] 

[Eq.  5.8] 

Eq. 5.3] 

:Eq. 5.18] 

[Eq. 5.11] 

[Eq.  5.12] 

[Eq, 5.13] 

[Eq. 5.14] 

[Eq.  E.ISi 

[Eq. 5.16] 
[Eq. 5.17] 

[Eq. 5.18] 

[Eq. 5.19] 
[Eq. 5.20] 

[Eq. 5.21] 

[Eq. 5.22] 
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Equations    5.3,    5.4,    5.5,    5.10,    5.11,    5.12,    and   Equations     5.17    specify 
coefficients directly.  The remaining coefficients may be solved  in the form: 

A91 

8, 

8 

692 

a 

e 

e 

A9n 

1 1 

3/rl     4/rl 
2 2 

G/rl    12/tl 

|-l/r2 
1                   2 
I     8   -2/r2 

1111 

I l/r2   2/r2   3/r2 
I                   2        2 
!            2/r2   G/r2 

M       II            1 

-3/rn       4/rn 
2 2 

6/rn   -12/rn 

1 -1 

A13 

A14 

A21 

A22 

A23 

An3 

An4 

[Eq. 5.23] 

i..here the blocks indicated in Equation 5.23 may be repeated for each additional 
point that the trajectory must pass through. 

Normalized time t' runs from 0 to 1 for each trajectory segment except for the 
last segment in which case normalized time t'' runs from -1 to 0. The arm servo 
program requires that normalized time t' run from 0 to 1 for all trajecton, 
segments.  If we substitute: 

f t" + i [Eq. 5.24] 

m: 

4       3       2 
9 . A4n*t" + A3n*t" + A2n*t" + Aln*t" + A0n 

CEq. 5.25] 

we obtain: 
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'^^m^^^^W^^wf^s 

9 . AAnff 

+ (-4)|cA4n + ASn)*!' 

2 
+(G*A4n -3*A3n +A2n)*t, 

+(.A#A4n +3*A3n -2*A2n +Aln)*t, 

+{A4n -A3n +A2n -Aln +A0n) 

[Eq.  5.2G] 

and this gives us the coefficients of a polunomif»! for the last trajectory 
segment in9 which normalized time runs from 3 to . as requ.red for the servo 

program. 

5.3 TRAJECTORY EXTREtlA 

Intermediate trajectory segments are described by thi,-d order polynomials, one 
such polynomial for each joint: 

3      2 
Q . A'^t' + A'^t' + Ail*t' +Aia [Eq. 5.273 

the derivative is: 

G - 3»Ai3*t' + 2*Ai2«t' + Ail [Eq. 5.781 

The times of the extrema are given as the roots of Equation 5.28: 

2 1/2 
f - -1/3 Ai2/Ai3 ± 1(1/3 Ai2/Ai3) - 1/3 Ail/Ai31 

[Eq. 5.29] 

If the discriminant is positive and B < f < 1 then an extremum exists and it 
can be evaluated by Equation 5.27. 

In the case of the initial and final trajectory segments the trajector:es are 
described by fourth order polynomials (Equation 5.1) with the low order terms 
missing (see Equation 5.4, 5.5, 5.11, and 5.12). 

■•  >.:,  .  -.■ . ■ 
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and the derivative by: 

EXTREfIA 

4      3 
g . Ai^t' + Ai3«t' + Ai0 

3       2 
Q . ^AiAUff + 3*Ai3*t, 

tEq. 5.38J 

The time of the extremum is given as the roots of Equation 5.3i: 

t' - -3/4*Ai3/Ai4 

if 8 < t" < 1 than an extremum exists and th« value of 9 is: 

3 
9 - -l/4*A;3*t' 

CEq.  5.313 

tEq.  5.32] 

[Eq.  5.33] 

irHlretfr 0I the fi[st1
and

T
lasl- m**f ^e also require monotonic motion in 

order to avoid overshoot. To ensure monotonicity ue compare the value a?'*^ 
extremum to the initial or final point instead of to the jo'fn? physic^ I i'!t. 

5.4 CONTINUOUS MOTION 

In Subsection 5.1 we mentioned trajectories on space curves, where arm solution« 
are obtained at regular intervals along the curve and a traiprw, iu 
planned through these positions. There is a special case of surh ^Vf ^ 
in which the first and last arm positions are ?Ke same "or L^ ^ajectones 
arm motion of Figure 5.5. The Kltl^MN ^it ^iKi b^^'iS ^ 
the orientation remains the same during the motion. So S tons are obt^e, 
every 68 degrees so that the hand will approximately follow Ihe path of Jhe 

s^ec fied "b' a^'h "^t^ fH91^ ^ endl  two^itional po'sUion are' speciTtea,  D ana h,  at 20 and 343 deqres« resoectiVPIH The a™ :.. -•   Tu. 
sa.e period of UM for Mch of th. 8 seglet» aS^husLar» u?I Jo^rl^ 

velocity and acceleration at these points. The hand is caused to move in^ 
circular path continuously having first been started fr^ point "V" by caus?na 
it to move along the alternate trajectoru at point "a." When it \m    S»«?^H ?9 
stop It is not diverted at the "switch" at position V but a I owed tf 1»S . moving through position "h" to "a."      posmon g put allowed to stop by 

■•«»^.WMWawte.;..^ *...., HMM M H ^ -  ■ ■■.■ ■ ■•., „■.,.,.. 
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Figure 5.5 
Looping 

In the following matrix equation the x's represent non zero elements of Equation 
b.23. Equation 5.34 is for the case of a simple trajectory and Equation 5.35 
is in the case of looping, providing for the solution of two additional fourth 
order trajectory segments 9 and 12. 
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Ä91 | | XX 1  1 A13 | 
0 1 | XXX 1    vv  i 

1   I A14 j 
0 1 | XX X 1  1 A21 | 

A92 | |  XXX i  1 A72 i 
0 1 I  XXXX 

1  "•-*-  ( 

1  1 A2o 1 
0 1 I   XX X 1  1 A31 | 

£93 | 1     XXX 1  1 A32 1 
0 1 1   xxxx 1        »W     | 

1 A33 | 
0 1 !     XX X A41 l 

£94 | . • 1       XXX 
1  ••*•  ) 

* 1 A42 | 
0 1 1     xxxx I A43 | 
0 1 

A9r ( 
1        XX X 
1         XXX 

1 A51 | 
1 A52 1 

0 1 
n        i 

!       xxxx 1 A53 | 
0 1 1          XX X I AG1 j 

£96 | 
n       i 

1            XXX 1 A62 | 
0 1 XXXX    1 I A63 | 
0 1 1            XX X   I 1 Kn   1 £97 | 1             XXX  j i *72 1 
0 1 XXXXX i 1 A73 | 
0 1 

£98 | 
1              XXXX | 
1               XX | 

1 A83 j 
1 AS4 | 

[Eq. 5.34] 

In the case 
same. 

of looping, the blocks of elements marked as Y's and Z's are the 
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i m i | XX 
i 0 i 1 XXX 
I  e   i 1 XX X 
1 A92 | 1  XXX 

i i 1  XXXY 
0 1 1   XX V 

A93 | 1   xyv 
0 1 1   xxxx 
0 1 1     XX X 

A94 | XXX 
0  1 XXXX 
0  1 XX X 

A95 | » 1 XXX 
0 1 XXXX 
0 1 XX X 

A9S | XXX 
0 1 zzzx 
0  1 ZZ X 

Ä07 | XXX 
0 1 xxxxx 
0 1 XXXX 

A98 | XX 
0 1 ZZZ   X 
0 1 ZZ    X 

A99 | 
0 1 
0 1 

A910| 

XXXX 
xxxxx 
XXX X 

XXXX 
2 • 1 

1     Y 
1     Y 

XXXX 
XXX 

I A13 
I A1A 
I A21 
I A22 
I A23 
i A31 
I A32 
I A33 
I A41 
I AA2 
I A43 
I A5i 
I A52 
I A53 
! AS1 
I AG2 
I AG3 
I A71 
I A72 
I A73 
I A83 
I A84 
I A9i 
1 A92 
A93 
A94 
A101 
Al 02 
A103 
Al 04 

= CJ 

tEq. 5.35] 

g and c (see Figure Sis) the cont,n,Jlty requirements at points 

5.5 DIFFEflENTIAL nOTION 

The arm can also make differential motions where ail six imlmtm ^^ 
change a certain amount in a given t i .e I n th I s case all ^2 V? -"equ.red to 
together to make the change in the spec 1 ied im« Thf rnl  J0(?tS. are driven 
are determined as in Subsection 2 3 SpeClf,ed t,,"e- The chaW*  of joint angles 

Joint angle 9 as a function g{t') of normalized time f, for a change of A9 is: 
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t' - t/rm 
3   2 

9-g{t')-A9*t' ( It'  - 15t' + 13) 

[Eq. 5.361 

[Eq. 5.37] 

This gives zero initial and final acceleration and velocity. 

This» type of motion has all the undesirable properties described in Subsection 
5.1 and is only suitable when small changes are to be made, as in correcting the 
hand position during visual servoing. Such motions are of course much simpler 
to plan than regular trajectory controlled motion. 
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SECTION 6 

SERVO 

In this section ue relate position   error to joint torque  in the S'-m servo.    Ue 
then discuss the model  of the joint drive in order to convert  joint torque  into 
motor drive.   In the    final  section provision is   made for degrees of freedom of 
the arm as  it  is servoed. 

6.1 FEEDBACK LOOP 

In this sertioj-! we will describe the servo response. Ue k;i 11 treat the system 
as continuous, and will ignore the effects of sampling, assuming that the 
sampling period is much less than the response time of the arm. At the end of 
the section we will check that this assumption is valid. Time is normalized to 
the sampling period, which has the 
where f is the sampling frequency, 
is represented by F(s). 

effect of scaling the  link  inertia up    by ft2 
The Laplace transform  is used throughout and 

is   obtained    by    evaluating  the 
the required time.     The velocity 
and second   derivatives   of the 

The    set    point    for    each    joint of    the    arm 
appropriate  trajectory    segment polynomial   for 
and    acceleration are   evaluated   as the    first 
polynomials. 

The position error is the observed position 9 less the required value 9s. 
Likewise the velocity error is the observed velocity less the required velocity. 
Position feedback is applied to decrease position error and velocity feedback is 
used to provide damping. 

The feedback loop is shown in Figure B.l The arm is represented by 1/s J, where 
J is the effective link Inertia a function of arm configuration. T(8) is an 
external disturbing torque. The set point R(s) is subtracted from the current 
position to obtain the position error E(s) and is multiplied by P. representing 
differentiation, to obtain the error velocity. There are two feedback gains ke 
and kv,  position and velocity respectively. 

By writing the  loop equation we can obtain the system response; 

2 2 2 
E(sN  (-8 J)/(s J + skv + ke)*R(s)  + l/(s J + skv + ke)*T(s) 

[Eq.  6.11 

and the condition for critical damping is: 

1/2 
kv » 2(J*ke) [Eq. 6.2] 
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TU) 

Figure 6.1 
Simple Servo Loop 

chanj.8 m    are «Ml. to "l"«!^ *C 7iL5^( JT SSI fS'.'ST 

2  2 2 
E(s)- (-s )/(c + skv + ke)*R(s) + l/{s + skv + ke)*T(s)/J 

fEq. 6.31 

and the condition for critical damping iss 

kv « 2*(ke) 
1/2 

CEq. 6.4] 

It can be seen that the servo response is now independent of arm configuration. 

The principal disturbing torque is that due to gravitu causinn ■ \mmmm  .  •*• 
error, especially in the case of joint 2. If ue were able to ^riJf9 P081 l0n 

the negative of the gravity loading Tg ?see Fiourel 2)  V*n f" equal to 

same systen, response as in Equ^ion 6?3 ex«S ^a ll. THT^ 0bt?in the 
external disturbina toraue TUl  tL «^ * P!   t wou,d *•««•• Te, the 
positionerror.   9   q '   " the 9ravi ^ pendent torque, reducing the 

i 
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T(«) 

FEEDBACK 

fr       *" 

E(«) 

Figure G.2 
Effective Inertia Independent Feedback 

T(») 

Figure 6.3 
Gravity Independent Loop 
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2       2 2 
E(8)-  (-8 )/(9   + skv + Ke)*R(8) + 1/(8   + 8kv + ke)*Te(8)/J 

[Eq.  G.5J 

Ue can   compensate for the   effect of   acceleration of the   tet point   Rls),   the 

first term in Equation 6.5,   if ue add a term s R(s)  (see Figure 6.4)    and obtain 
a system response: 

E's)-   1/(8   + skv + ke)»T(s)/J (Eq.  6.61 

The    gain of    -J and    the torque   Tg are    obtained from   Equation 2.36    uh'.ch ue 
restate here: 

n  j T .. 
Fi - E  E Traced Ujk|*| Hj|*| Uji| *qk) 

j-i k-1 

+1      l      I  Traced Ujkp|*| Hj|*| Uji| *qj*qk) 
j-i k-1 p-1 

-Z mj*l G |*| Uji|*| Ij 
j-i 

[Eq 2.361 

What is desired is to obtain an expression of the form: 

• * 
Fi • Ji * qi + Tg (Eq. 6.73 

given an arm configuration qi. 

The velocity dependent terms of Equation 2.36 are only significant at high speed 
and are small for the arm ue are using. Ue will ignore the second term of 
Equation 2.36,  although it could be    included with the third term as    the values 

of qj and qk are known from the trajectory. 

Ue may  interchange the order of t        cion of Equation 2.36 to obtain: 
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B   6 | 
Fi  -   I   E Traced Ujk|«|Hj|«|Uji f )»qk 

k-lj-i 

-Z mj«! G |*| Uji|«| |j 
(Eq.  6.8] 

or: 

Fi  -       £    Cik qk + Ci 
k-1 (Eq.  6.9] 

where: 

6 T 
Cik-   Z Trace(| Ujk|*j Hj|*| Uji|  ) 

j"i tEq.  6.18] 

and: 

Ci  -   -Z nij*| G  |*| Uji|*| Rj 
j-i CEq. 6.11] 

sr^w-'ai'^r^ ürtrÄiJ,1*^1 ,h' ,'r"5 of ^^ *■* •• 

where: 

Fi ■ Ji * qi + Tg 

6 T 
J'  --    Z Trace(| Uji|*| Hj|*|  Uji|  ) 

j-i 

tEq.   6.12] 

lEq.  6.13] 

and Tg as Ci   in Equation 5.11 

Ji   is the effective joint  mertia and Tg  is the constant tern, due to gravity. 

The servo has    uniform sgstem response under    varying arm configurati ions    and  is compensated for gravity  loading and for  the" accel^ation orthe^t point " 

■■■■ 
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T(») 

^ 
R(t) 

E(t) 

Figure    6.4 
Acceleration Compensated Loop 
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TIME UM I 

Figure   B.5 
Position Error with InerMa Compensation 

-.■•..,..■-■:,.     - ■ ..■ .    . 
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Three plots of position error v. time for joint 2 are shown: Figure 6.5, Fiaure 
6.6, and Figure 6.7. ■ 

In Figure 6.5 there is no gravity or feedback compensation, in Figure 6.6 the 
gravity term is added, and in Figure 6.7 the acceleration compensation is 
included. - 

The steady state error for a given error torque Te is: 

Ess - Ta/( J « ke ) [Eq. 6.14] 

Ue would like the arm to be stiff when it is servoing and a value of 50 oz/in at 
the hand is the minimum acceptable, if a lesser value is used the arm moves very 
sloppily. For this value of stiffness the values of ke can be calculated by 
means of Equation 6.14. Representative values of kv based on critical damping 
may then be calculated (Equation 6.4) and will give us the lower limits on ke 
and kv. 

There is, however, some noise in position measurement and if ue are ^ obtain 
velocity by differencing observed position readings then the same noije is in 
the velocity determination. The primary source of noise is the quantiz.ng noise 
of the analog to digital converter used to determine position. The A/D converter 
is a 12 bit device and thus has a relative error of 1/4396. The equivalent 
noise torque at the joint is given by: 

Tn ■ k * J * e [Eq. 6.151 

where k is either ke if the velocity is determined separately, or ke+kv if the 
velocity is determined by differencing, and e is the quantizing noise. A noise 
torque of approximately F8/2 (see Subsection 6.2) seems to be acceptable and 
this gives an upper bound on k. 

Based on this information we can evaluate Equations 6.14, 6.4 and 6.15 
joint: 

Table 6.1 

Ranges of Servo Gains 
JOINT  !i£    KY    li 

for eacn 

1 8.838 8.39 0.18 
2 8.832 8.36 8.33 
3 8.885 8.14 0.75 
4 8.86 0.49 0.49 
5 8.85 8.49 1.6 
6 8.86 8.49 58.8 

The second column is based on Equation 3.14 and the third on Equation 6.4 These 
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0.1 1.1 

TIM UM I 

Figure   G.B 
Position Error with Gravity Compensation 
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TIME (MC) 

Figure   6.7 
Position Error with Acceleration Compensation 
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are the minimum acceptable gains. The fourth column is from Equation B.1S and 
represents the maximum allouable gain if the information is to be obtained by 
means of position measurement using the available A/D converter. In the case of 
Joints 1 and 2 it can be seen that an alternative me^ns nvjst be used to obtain 
velocity information although the position information is acceptable using the 
A/D converter. To measure the velocity for these two joints a tachometer 
generator is used, uhich has Much lower noise than velocity obtained by 
differencing position measurements. 

Ue made an assumption at the beginning «1 this section that the sampling 
frequency was much higher than the frequency response of the arm. Ue can obtain 
the frequency response from Equation G.B by finding the inverse transform. This 
ir   'ound to be; 

frequency = kv * f / 2 [Eq. S.161 

As maximum kv that 
sampling frequency, 
increased to 1 

we require is 3.49 this give us a response of 1/4 the 
It is found in practice that the velocity gain can be 

before the effects of sampling becore apparent. 

At the beginning and end of each trajectory and at tra end of each trajectory 
segment, the values of Ji and Tg are evaluated (Ec.uation 6.12). They are then 
given to the servo together with the part trajectory polynomial coefficients. As 
the trajectory is executed the values of Ji and Tg are linearly interpolated. 

For the hand in 
values of Ji and 

the position considered in the example in Subsection 2.1 the 
Tg are (in the oz. in. 1/G8th. second system of units); 

Table G.2 

Servo 
JOINT 

Parameters 
Ji    Tg 

1 
2 
3 
4 
5 
6 

761333   8 
S53333 1413 

9533  -53 
83338  94 
82888  37 
4888   8 

Although these gains give an accentable response from the point of view of 
stiffness, the gain is too low to maintain the high positional tolerance of 
±0.05 in, which we are just able to measure using the 12 bit A/D converter. In 
order to achieve this error tolerance the position error is integrated when the 
arm has reached the end of its trajectory. When the position error of I joint 
is within tolerance the brake for that joint is applied and the joint is no 
longer servoed. Uhen all the joints are within the error tolerance the 
trajectory has been executed. 
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H the arm is to move a heavy load its predicted effects are taken into account 
by mcreasing the effective mass and inertia of the last link of the arm h^I 
evaluating Equation G.12. Similarly, if the hand is o exert a q^en Lei or 
moment then the equivalent arm torque (see Suosection 2.5) ?s ad.ed to Tg 

6.2 nOTQR DRIVE 

The output of the servo equation is a torque to be applied at the joint Each 
jomt has an electric motor drive and a harmonic drive gear redScrL Th« 
motors are dr.ven by a pulse-uidth modulated voltage signaL The oTnll    0'f  Ihp 

STJS sc Suis^is^.3"the poiarity-The dri- ^ie -f^s ?^ee 

ssxy SM ;:;ocityj^ ^ r.*^two —^x™ 

PULSE WIDTH 

(VELOCITY<TOROUE > 0) 

(VELOCITY•TORQUE < 0) 

OUTPUT TORQUE 

Figure G.8 
Pulse Width v. Output Torque 

This curve can be explained in terms of tuo friction effort«. in**  **. 
causina the two curv«« to HI^^ I^I , J. ■.:. _-'°n *tfect8!  load dependent. causmg the tuo curves to diverge, and load independent. 
he two curves at the origin. The electrical motor time 
the shape of the curve near the origin. Experimentally 
supplied to the servo program in the foiiomng piecewise I 

causing separation at 
constant also affects 
determined curves are 
inear form (see Figure 
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PULSE WIDTH 
(VELOCITY.TORQUE > ^) 

tvELOCITY'TOROUE < ^) 

OUTPUT TORQUE 

Figure    G.9 
Piecewlse Linear Pulse Width v.  Torque 

where: 

V0 is the motor drive at uhich the joint will move at constant velocity 
exerting zero force in the direction of motion; 

Fa is the force that the joint uill exert at drive level V8 but with a 

negative velocity; 

the slopes and slope differences are obtained from the experimental 

curves. 

When the velocity is very low the direction of intended motion is substituted 

for the velocity. 

One other factor considered is the back Ml of the motor.  The value of  "h" 
the ratio of required voltage to supply voltage. The supply voltage is simply 
augmented by the computed back emf before "h" is calculated. 

Uhe-i the velocity is non zero the output torque is predictable but at zero 
velocity and with zero intended motion the error in the output torque can be as 
much as half the horizontal displacement (F3/2) between the two curves at the 
origin. The values for this error torque at a typical arm conf-gurat ion in terms 

of force at the hand FH, are: 
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Table 6.3 

Arm Static Friction 
JOINT  F8 oz. FH oz. 

480 ±18 
788 ±20 
78 ±35 

188 ±5 

III    J 
It can be seen that the arm can exert forces with a typical tolerance of ±18 02. 

6.3 PARTIALLY CONSTRAINED MOTION 

If we require the arm to exhibit a degree of freedom along a given direction or 
about a given axis at the hand, the program selects a joint to be "free" on the 
following basis. The program calculates the equivalent arm torque (Subsection 
<..b) for a unit force in the given direction or moment about the given axis, and 
then normalizes the torques by dividing through by their respective F8 
(Subsection 6..J. The program then selects that joint which has the laraest 
normahzed torque to be "free." This is the joint which is most sensitive to 
motion m the required direction and it would be the first joint to move if the 
force were slowly increased from zero in the free direction. 

If we require more degrees of freedom we repeat the process, bei no 
to select the same joint twice. 

careful not 

To free the joint during motion, the feedback gains ke and kv are set to zero 
(see Subsection 6.1). This means that the free joint still has acceleratio,. 
compensation (Equation 6.6) and gravity compensation (Equation S.5). If the hand 
is required to exert an external force this is added so that the joint is 
compensated for all known forces and has no feedback. •  . 

The free joint servo response ma'' be obtained from Equation 6.6 as: 

E(s) - Te/( J 
2 

* s ) tEq. 6.17] 
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SECTION 7 

CONTROL 

In addition to moving, the arm can perform such functions as opening and closing 
its hand. These functions and motions are called "primitives" and can be put 
together to make an "arm program." An arm program is assembled to moke a 
trajectory file specifying the primitives together with supporting data, 
trajectories,  effective  inertia constants and gravity  loading terms. 

Two programs exist, one for assembling "arm programs" and the other for 
executing the resulting trajectory files. 

7.1  ARM STATE 

The state of the arm is described by the foMowing global variables, uhich are 
located in the upper segment and are available to all other programs sharing 
this segment, such as a strategy program. At the termination of execution of a 
program the state variables whicr, describe the arm are updated. 

ARn_nOTION The name of the program currently being executed. This iss 
warning flag to other programs that the arm is 'n motion. 

ARHJJAIT Trie name of the program execution of which  is temporarily 
suspended. 

ARf1_STATUS The error state of the ar.n  at the end of execution. 

ARn_LIN< The 4x4 transform uhich describes the position and orientation 
of the hand at the snu  of execution. 

GRASP The separation between the finger tips. 

ARn_SEGnENT An integer variable incremented at the beginning and end of 
each MOVE pr imlt ive. 

Programs can be executed by the following two procedures. 

DOJT (NAHE) causes the pfegrM KA.IE to be executed. 

D0_PRCICEED causes continued execution of the program execution of uhich 
was interrupted. 

During execution various errors can occur. Aitnough some errors may be desired 
states, they are known as errors oecause tney cause the arm to stop and to apply 
all the brakes. There are various touch sensors on the arm and if, when 
selected, one of them touches anything, an "error" occurs. 

: 
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The follouing is a list of the error messages: 

xl Excessive force at joint x. 

2 Hand closed beyond minimum specified opening 

xB Touch sensor x was touched. 

22 Excessive force at hand 

23 Arm failed to stop on specified force. 

There are other messages which refer to system errors, such as file not found. 

If an error occurs, execution of the program is suspended and the stat. 
variables are updated, the contents of ARnjIOTION and ARfl UAIT are exchanged ano 
the error code is set in ARn_STATUS, Execution can proceed with the next 
primitive, after error recovery, by calling procedure DO PROCEED. 

7.2 PRiniTlVES 

This section lists the arm primitives, ..hich have meaning at two times: once at 
assembly when the trajectory fi le is being created and feasibility must be 
checked, trajectories planned etc., and once at execution time when the 
primitives are executed in the same way that instructions are executed in a 
computer, 

OPEN (DIST.i Plan to open or close the hand such that the gap between the 
finger tips is D1ST. 

CLOSE (niNIMUn) Plan to close the hand until it stops closing and then 

M^?M,,Mthft the gap betige8n the fi"fl«r tips is greater than 
nlNinun. If it is less, then give error 2. 

CHANGE (DX_DY_DZ. VELOCITY) Plan to move the arm differentially 
(Subsection 5.5) to achieve a change of hand position of vector 
DX_DY_DZ at a maximum speed of VELOCITY. 

SUEEP (DIST. VELOCITY) Plan to move the hand differentially (Subsection 
5.5) in the direction of the hand's orientation vector a 
distance DIST at a maximum velocity VELOCITY. 

LIFT (DIST, VELOr:TY) This is the same as SUEEP except that it is in the 
direct ic. of Q x A where 0 and A are the orientation and 
approach vectors respectively, 

REACH (DIST, VELOCITY) Again this is the same as SUEEP except it is in 
the direction of the Approach vector. 

"WMimiiimin 
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TILT (ANGLE) Plan to rotate the band di fferential! j ANGLE degrees 
(Subsection 5.5) about the orientation vector. 

TURN (ANGLE) This is a sipüar rotation about Q x ^. 

TUIST (ANGLE) Here the rotation is about the approach vector. 

PLACE Plan to move the hand vertically doun until the hand meets some 
resistance, that is, the minimum resistance that the arm can 
reliably detect. 

MOVE ( T ) At assembly time check that the position specified by the 
hand transformation T is clear. Plan to T.ove the hand along a 
trajectory from its present position to | T I. The hand is moved 
up through a point LIFTOFF given b^ LLFIÜnE • INITIAL POSITION + 
DEPART, where DEPART is a global vector initialized to z - 3 
inches. Similarly on arrival the hand is moved doun through a 
point SEiJMgi. ^y: SELiM - FINAL POSITION * ARRIVE. 
ARRIVE is dlso set   *. ■ 3 inches. 

PARK Plan a move as in flOVE but to the "park" position. 

DRAU (DX DY DZ. ROT AXIS. 81. CRANK. CRANK AXIS. 92. TIME. LOOPS. FORCE. 
NUHBER.FREE, FREE VECTOR) This is a trajectory motion of the 
iiand. The hand is at the end of a vector (CRANK) which is 
rotated 82 degrees around an axis (CRANK AXIS) as its origin is 
translated (DX ßV DZ). At the same time the hand is re-oriented 
about another axis (RDT AXIS) 91 degrees. See Figure 7.1. If the 
end point is the same as the initial then looping may be 
specified (see Subsection 5.2). Finally a number of degrees of 
freedom and an excess force to be applied during the program may 
be specified. With this primitive we can do almost anything! 

There are also control primitives which specify how the other primitives are tu 
be carried out. 

STOP (FORCE, nOflENT) During the next arm motion stop the arm when the 
feedback force is greater than the equivalent joint force 
(Subsection 2.5). It the arm fails to stop for this reason 
before the end of the motion, generate error 23. 

SKIPE (ERROR) If error ERROR occurred during the previous primitive then 
skip the next primitive. 

SKIPN (ERROR) if error ERROR occurred during the previous primitive 
execute the next primitive otherwise skip the next primitive. 

JUMP (LAB) Jump to the primitive whose label in LAB. 

UAIT Stop execution, update the state variables and wait for a proceed 
command. 



■- -'Tpf?^' IT' «y*» r«T^-^^W5« »TSPsPiFf 

Page 70 PRiniTIVES 

pxpxp; 

CRANK AXIS 

Figure 7.1 
A Draw notion 

TOUCH (MASK) Enable the touch sensors specified by rask for the next 
primi tive. 

SAVE Sav« the differential deviation from the trajectory set point. 
This can be caused by CHANGE type primitives. 

RESTORE Cajse the arm to deviate from the trajectory set point at the 
end of the next motion by the deviation last saved. 

7.3 ASSEHBLY PROGRAfl 

The assembly program has two modes of input, message procedure or source file. 
Ue will describe the source file input here although it should be kept In mind 
that a strategy program would be able to execute the same functions. 

Planning normal'y begins from the current position and proceeds from there. The 
planned state cf the arm is kept in a 4x4 transformation STATE. Thus when a 
series of moves is planned it is always from STATE to the specif'ad transform T 
that moves aru made. At the end of each successful move STATE Is updated. In 
order to start a program a BEGIN pseudo-op must be assembled. This causes a 
trajectory file to be named and specifies the initial state of STATE. Similarly 
at the end of a program the trajectory file must be closed. Ue will list the 
pseudo-ops: 
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BEGIN (FILE. T) Open file FILE as the 
STATE to transformation | T |. 

trajectory file and initialize 

MERGE Merge the last assembled primitive with the preceding motion 
pr imi t ive. 

END Close the trajectory file. 

MACRO (FILE) Causes input to the planning program to be switched to FILE 
until the end of FILE. This gives us macros without parameters. 
The MACROs may be nested. 

In the case of most primitivta their parameters are either vectors or 
transformations; should another program use the assembly program these vectors 
and transformations would be data structures of that program. In the case of 
source input we need to define such data types and associate them with symbolic 
names. All names must be defined before a primitive can be assembled. 

Data types: 

TRANS (NAME. R. X, Y, Z, Ox. Oy, Oz) Set up a 4x4 transformation NAME 
sucn that it has position x.y.z and orientation vector Ox.Oy.Qz 
and that the approach vector is rotated R degrees from the 
reference approach vector about the orientation vector. 

VECT (NAME, x 
1 

x ) Define a vector NAME of value x ,x ,x ,x . 
4 12 3 4 

MOVEJNSTANCE (Tl. TF, IP) This is partly a data type primitive as it 
sets up a series of transformations to move an object with 
transformation TI such that it has transformation TF using 
intermediate position iP if necessary. However it assembles all 
the move and hand primitives to accomplish the move. 

PROTOTYPE (OBJECT) this sets up the prototype of the body to be moved by 
MOVEJNSTANCE. 

The planning program is 30K and shares a 14K segment which contains runtime 
routines and global data. Typical running times are 1 sec to plan a move, and 
from 8.5 to 4 seconds for MOVEJNSTANCE depending on the complexity of the move. 

7.4 PROGRAMMING EXAMPLES 

Le will give some examples of hand programs to clarify the use of primitives. 
The first example is to move the hand tc ^ position 28,30,1 to pickup an object, 
then to move it to 40,20,2 and place it on ihe table. 

BEGIN TRANSFER 0 
TRANS T 
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38 23 30 1 i 3 8 

nOVE T 
CLOSE 3.5 

TRANS T 
30 48 23 2 1 8 3 

HOVE T 
PLACE 
PARK 
OPEN 3 
flERGE 

END 

Set up a transform to 
posi tion the hand. 

If there is nothing here 
then an error mil occur. 

Change the transform to 
the new posi tion. 

The hand ui11 open as i t 
starts to move. 

The next example is to grasp an object without moving it in case there (« some 
error in its position. The hand is closed with the touch sensors enabled until a 
finger touches the object. The hand is then "swept" and closed in 8.1 inch sters 
until the other * mger touches. The hand is then clos-'d. 

L2: 

LI: 

L3: 

L8: 
L10: 

TOUCH 1 
OPEN -1 

SKIPE 8 
JUMP LI 
SWEEP -0.1 1 
TOUCH 1 
OPEN -1 
SKIPE 16 
junp L2 
JUMP L3 

SKIPE 16 

JUMP L8 
SWEEP 0.1 1 
TOUCH 1 
OPEN -1 
SKIPE 5 
junp Li 
CLOSE 0.5 
JUMP LI8 
WAIT 

This will cause the hand to 
close wi th touch "on". 
Did the left finger touch? 

Yes move right. 

And close the hand again. 
Did the other finger touch? 
No move right «gain. 
Yes alI done. 

Check that the right finger 
touched. 
No then some error. 
Move left. 

Ana close the hand again. 
Did the left finger touch? 
No move again 
Yes close the hand. 
And finish. 
The error state. 

The last example, whose file name is CATCH, has no begin and end as we are ooina 
to use it as a macro. Ue will use CATCH first to position the hand on the 
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Sirk iToV^ir.^'*"' *"*ci0",he ^ •«- 'o .h„ M obj.ct 
MACRO CATCH 

OPEN 3 
TWIST 98 

MACRO CATCH 

Here ue assume that the 
hand has been positioned 
over the object. The 
macro calI ui11 substitute 
the text from our previous 
example. 

Now open the hand and turn 
it around 30 degrees. 
And closa it again. 

acco.pl i.h,d th. ^ K P Ky JlnTli.tX.'S?'!..''^,'" '*"*•»•• 
positico. M. „oulc. ,1,0 hav. SSL «tiTtt«'"^..^,. ^ 'n    ini,ial 

when the torque is 283 oz. in.        'ocdiea at ^M0,1. Ue will stop turning 

BEGIN SCREW 8 
TRANS T 
98 28 38 2 1 8 8 
MOVE T 
PLACE 

VECT ROTATION 
8 8 -i 
VECT NULL 
8 8 8 
VECT MOMENT 
8 8 -288 
STOP NULL MOMENT 

VECT FORCE 
8 8 -20 

VECT FREEX 
1 8 8 

VECT FREEY 
8 1 8 
VECT FREEZ 
8 8-1 

Move the nut to the bolt 
and place it. 
The bolt axis 

The stopping torque. 

Stop the arm during the 
motion when the torque 
is 200 oz. in. 

We will want to push 
down on tne bolt as we 
turn. 

The hand must be free in 
the x.y and z directions 
as we screw. 
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^^m^m^^m^^mmrm^s^^J^^^'m: 

ORAU 
NULL ROTATION 368 
NULL NULL 8 
60 3 FORCE 

3 
FREEX 
FREEY 
FREEZ 
END 

No change of position 
No crank axis 
1 Second per turn, plan 
for a maximum of three 
turns. Exert the force. 
Three drgrees of freedom. 

This will screw the nut on the bolt. 

7.5 EXECUTE 

With the exception of HOVE and DRAH, which require trajectory files, most 
functions can be executed directly by prefixing the primitive name by "00." The 
assembly program plans the action and sends it to the arm servo program to be 
executed. This does not change the state of the arm servo program if it is in a 
"wait" state and execution can continue after any number of executed primitives. 
This method is used by the interactive programs, which will plan a move to bring 
the hand close to the required place and then plan a "wait." When executed, the 
hand position will be modified during the wait phase by the interacting program 
executing a series of "DO" commands. Execution of the preplanned trajectory can 
then continue by calling "D0_PR0CEED." 

7.6 ARM PROG1":A!- 

Tw.- * i iw A simplified flow chart for the execution program is shown in Figure 7.2. 
loop is executed 60 times a second. If the arm is not in motion then RUN is 
false and the touch sensors are checked before performing any function. At the 
completion of a motion or, if the arm is not moving at the completion of a 
function, the program counter is incremented and the next primitive executed. A 
zero primitive terminates execution. 

The block ANGLES measures all the joint angles and performs a piecewise non- 
linear conversion on them. The velocities are also determined, either by reading 
tne tachometer generator outputs (joints 1,2) or by differencing the position 
information. 

The block SERVO corresponds to Subsection 6.1; here the errors are computed and 
the drive torques calculated. If a stop arm primitive is in effect then the 
error torques are checked against the equivalent arm torques to determine if the 
arm should be    stopped.    At the   end of the    trajectory the position   errors are 
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Figure 7.2 
Arm Program, Simplified Flow Chart 
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nulled. Uhen each individual joint is u;thin the error tolerance the brake is 
applied and uhen all joints are stopped tne next primitive is executed. 

Section DRIVE takes the joint torques as input and computes the motor drive. It 
checks for excessive force and stops the arm. 

The THETA section computes the next values of the joint angles, interpolates th-j 
Ji and Tg values (see Equation 6.12) and controls the switching as required for 
looping. 

The Touch sensors are then checked and if any have been touched the arm is 
stopped. Finally the function, if any, is performed. Functions are not 
normally performed while running with the exception of hand opening. 

The execution time for the loop is approximately Smsec on the PDP-6 processor, 
using floating point hardware. The program length is 3K words including 
trajectory buffers. 

Uhiie the arm is running the trajectory set point 9t is given by: 

9t - f(t') [Eq. 7.1] 

where fCt)   is the appropriate trajectory segment polynomial   (Subsection 5.2)   and 
t'   is normalized time.    The arm set point  is as follows: 

6s - Gt 4 66 [Eq.  7.2] 

where d6  is a    constant offset between the    set point and the    trajectory point. 
Between  liftoff and set-down for a period of time Tm: 

ös - 9t + dG +d28*g(t') (Eq.   7.3] 

where g(t') is given in Equation 5.37. Uhen t > rm, d8 is changed as follows: 

dQ .- d9 + 629 
d29 •- 8 

At  the beginning of each trajectory motion we set: 

d9 «- 9 - 9t 
d29 <- -d9 + d29 

(Eq. 7.4] 
(Eq. 7.5] 

(Eq. 7.6] 
(Eq. 7.7] 

where 6 is the observed value. Thus at the beginning of a trajectory: 

9s - 9 - 9t + d9 (Eq. 7.8] 

and at the end of let-down: 

9s - 9t + d28i (Eq. 7.9] 
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where d29i is the value of d29 at the beginning of the trajectory Equation 7.7. 
If d20 Mas set to zero at the end of the previous trajectory by Equation 7.S 
then Equation 7.9 becomes: 

8? - 9t lEq.  7.183 

This means that if the arm is displaced from the point from which the trajectory 
was planned, the arm is gradually brought back to the trajectory during the mid- 
part of the motion. 

All the differential motions are accomplished by loading d2Q setting Tm and 
setting RUN. At the end of Tm the arm has moved d29 and the value of d9 has also 
been incremented by d29. 

The "save" command causes d9 to be saved and the "restore" primitive loads d29 
with the previously stored dG. By this means we can find some location by 
differential motion, save the JQ, and then, if we uieh to return to this 
differentially modified position, restore d9 into d29 before returning to the 
unmodi fied posi tion. 
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SECTION 8 

CONCLUSIONS 

8.1 SunriARY 

In mit ..ork we have atten-.p^d t« provide a systematic approach to arm 
programming. Ue have been concerneo with three main protlens. 1) hou to position 
the hand on an object. 2) how to move the hand and |l how to servo the arm. 

The firt« problem has been soivefl t., setting up a world model to represent these 
objectsi problems relating to grasorg objects in the world model are solved 
symbolically. Unen obiects trt .ocate^. either by the vision system or by touch. 
theu are represpntel in the mode,. In performing the difficult man.pulat ,0ns 
r-Guired by the «ttnl Insanity Puzzle [Feldman ?lb3 this model based approach 
^or^ed without failure. Ire arm nas functioned in a dear environment and a 
collision avoider has not been ir.plemented. It is hoped that the world model 
will be adequate U soive tne co.llsicn prible-n symbolically. 

In moving tne arm we have deronstrateci tne necessity of servoing the hand 
through a succession of posit.cns m craer to avoid colliding with the support. 
Having obtameo tne hand pos 11, ons. the joint variables are determined and a 
cmooth curve is fitted for each jeu.t. fntM trajectories reduce the execution 
time as the arm need not be stopnea at eacn intermediate position. 

The planned -rajectories enable us to ca;cuiate joint torques to exert a given 
hand force. If tne jomts are ef^cie-t tnen we can exert the force at the hand 
bu driving the iointl at tne UleutttM torques. The lacK of efficiency of a 
leint Ciuttd by friction, leads to e-rc-s in the force exerted. In the case of 
the present hand tN error i| d tne order of ±1B or. at the hand. To reduce 
these erro-s we would need to MAM jo:nt torques, or forces at the wr.st. If we 
sense forces at the wrist a t-arsformation matrix would be needed to relate 
joint drive to Mfitt force components. 

At DTtMnt cor-pie^e arm actions *>§ i.ntten m a file. Each file contains both 
the* traiecto-y and servo constants tc::etner with tne joint torques which exert a 
nanci force. ' It is possible to sepa-ate tne components and to save the 
trli«Ctoru tOOtth*- w: tn i ts serve constants. Such a trajectory can then be 
u-ed "hen a similar motion is needed. If the arm were also to exert a force 
th.s could be calculated ana acaec; to tne existing trajectory. 

ThP th.rd problem, how to servo the arm, .as solved by writing a contro: program 
-acablp of servomg the arm and performing the various functions. Uhen the arm 
T^not' used smpiy as a pos 11: oning devi ce the f lexibi I i ty of a computer .s 
needed to modify the course of execution depending on many conditions. The 
arms positional accuracy is t3.i inches and its repeatabl11ty is ±0.03 inches. 
Tne primary limitations on accuracy are the A/D converter and hnk stiffness. If 
the System could mak« accurate differential motions we could bring the arm into 
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the vicinity of the object and then use either vision or touch to detect the 
differential errors and make the appropriate corrections. Although the present 
system can calculate differential changes all the joints must be servoed to 
accomplish the change and there is no improvement beyond the limits of arm 
repeatability. If some precise form of differential motion were possible then 
the effective accuracy of the arm would be increased. 

The basic decision to move the arm along trajectories and the subsequent 
decision to divide the task into planning and execution have facilitated the 
development of both parts of the work. For instance, without trajectories we 
could not predict the gravity loading terms, nor could we control the approach 
to the support plane. By writing two programs, one for planning and one for 
execution, it is possible to optimize both separately. Ue were able to write 
the planning program in a high level language and to execute it under time 
sharing, as there are no real time constraints. The execution program is written 
in assembly language and is suitable for execution on a small computer. 

8.2 SUGGESTIONS FOR FUTURE UORK 

There are two main areas for future work, world modeling and arm control. In 
world modeling the determination of arm collisions with other objects and the 
suusequent trajectory modification need to be programmed. The class of objects 
that can be represented needs to be extended, together with the hand's ability 
to mainpulate them. 

In the area of arm control 
the fc-m of touch sensors 
arm more sensitive to its e 
manner.  With the present 
measuring the joint torques 
the degrees of freedom o 
examining the resultant mot 
be per formed with the exist 
WCTK to üe investigated, 
hands, one to hold the work 
Ue are currently installing 
hope to investigate some of 

we need to improve the sensory ability of the arm in 
and force sensing at the wrist. This would make the 
nvironment, and able to perform in a more intelligent 
system it should be possible to weigh objects by 
and inferring the weight. Ue could also Investigate 

f an unnncwn object by exerting forces on it and 
ion.  There are many tasks of this nature that coulr) 
ing system. The use of tools is an important area of 
nany tasks would be simplified by the use of two 
piece and the other to perform some operation on it, 
a second arm similar to the one described here and 
these problems. 
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APPENDIX 

A.l HARDUARE DESCRIPTION 

The arm is shown in Figure 2.1 IScheinman] and we ui II give its essential 
features here. The hand, a simple parallel jaw hand of 10 cm opening, can be 
positioned anywhere in a work space of 1 meter radius about the shoulder and 
with any orientation. It 
sensors. 

* spciLe UT i  nieier reiaiue ODOUI me  snouiaer ana 
is proviaed with elementary "switch"  type touch 

The arm, designed to work with 5kg loads, is powered by electric motors; 
harmonic drive gear reductions are employed on most joints. These reductions are 
efficient which means that the arm can react to external forces (see Subsection 
6.3). and thus the hand can follow an externally constrained motion. Brakes 
are provided to hold the arm in position when it is stopped, so that the arm 
need not be continuously servoed. 

The power to weight ratio is high, resulting in a very high performance arm. It 
is possible to move the arm 1S8 degrees at the shoulder in little over a second 
including stopping and starting time. The absolute accuracy of the arm is of 
the order of ±3.1 incnes and it? repeatability ±0.03 inches. Point to point 
servoing usually takes in the order of 1 to 2 seconds. 

Joint angles are measured by integral potentiometers and are read into the 
computer by a 12 oit A/D converter. In tne case of joint G where continuous 
motion is possible two wipers are provided on a comnon element. Uhenever the 
current wiper is within l/8th of the end of scale the other wiper is read. As 
wipers are interchanged an offset is added when appropriate. This continuous 
motion is used in such tasks as screwing in screws. 

Control of the arm is by means of a voltage pulse widtn modulated signal; the 
polarity and duration are set by tne coivputer. If the arm is not addressed bu 
the computer once every ,?3 msec, a hardware interlock autcmatically stops the 
motors and puts on the brakes. Tnis must be "unlocked" by the computer before 
the arm can be run again. 
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A.2 SAIL 

SAIL [Suinehartl is an extended form of ALGOL with LEAP [Feldman 69] added to 
it. LEAP provides the ITEM and QATUn constructs which we use to represent the 
models. Bodies and parts of them (faces, vertices, edges) are represented by 
items, a data type which is treated simply as a name. The main use of items is 
that  they may be associatea together  in the following manner: 

Attribute of Object  is Value 

Where Attribute,  Object and Value are  items. 

To associate  three  items the "MAKE" construct  is used. 

msa A*O.V 

Uhere the "•" stands for "of" and the "■" stands for "is". 

To delete such an association tne "cRASE" construct is used. 

ERASE A®0sV 

[Eq. 9.1] 

[Eq. 9.21 

[Eq. 9.3] 

There exists a mechanism for searching the store of associations in an efficient 
manner,  the "FOREACH" construct. Assume that we had HADE the following 
associat ions: 

FACEsCüBEäFACEl 
FACE&CLJBE«FACE2 

Then the following FOREACH statement: 

FOREACH F| FACE«CUBEsF DO <statenient> CEq.  9.4] 

where <stefterisnt> is an ALGOL ittttMnt and F is an iten variable and will cause 
F to be sequentially assigned to FACE! and then to FACt2, the statement being 
executed each time. 

One additional p.ece of data can be associated with an item known as its DATUn. 
This is usually of algebraic type, for example an array. In order to refer to 
tnis array by name the DATUH construct is used, and to refer to an element of 
the array  the subscript   list   is aaded. 

DATUHiA) 

DATUfUA) [i,3] 

[Eq.  9.5] 
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Thus if we represent a vertex of a body by an item e.g. VERTKX1 then we may give 
as its datum the vector representing the position of the vertex, where 
DATUn(VERTEXl)[1] would be for Instance the V coordinate. 

A. 3 VECTORS AND TRANSFGRHATIONS 

Vectors representing points in space are denoted by an under-bar "V" and are 
described by four components: 

1 vm i 

I V[2]   I 

I V[3J   i 

I ¥143   | 
[Eq. 9.G] 

such  that  the components of  the vector V along the x.y.z axes  Is given by: 

X = V[l]/V(43 [Eq,  3.7] 
Y . V[2]/V[4] 
Z = V[3]/V[43 

Ulith  this scheme the null  vector: 

3 

a 

3 

i 
uT-n 9.8] 

and vectors at   inifinity: 

VQ] 

V[2] 

V[3J 

[Eq. 9.S3 
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are representable. 

All  usual   vector operations are defined.    Addition and subtraction where: 

i*Ui|J [Eq.   9.10] 

Rtl]  - AE1J/AU]  + B[1]/BI4] 

nm  - A [2]/A [4]  ± B[2]/B[4] 

Rt3]  - A [3]/A [4]  ± BC33/BC4] 

R[4]  - I.I 

The dot product where: 

(A .  £)  -  (Ai-l]*Bm  + A[2}*B[2]  + A[3]*B[3} )/A[43*B[4] 

The cross  product  where:  R -   (A K £ ) 

mi  - A[2]*B[3]   - 6C2:*A[3: 

R[2]  - AI3)*B[1]   - Bt3]*A[i: 

R£3]  - A[i]*Bi2]  - B[i]*A[2J 

RW - A[4]*B[4] 

tEq.   9.11] 

tEq.  9.12] 

flagni tude: 

c- ale: 

A  I 
2 2 2    1/2 

(All]    + A [2]     fA[33    )      /A [4] 

SA 

I   AQ] 

I  A [2: 
I 
I A [3: 

I  A[4]/s 

Planes are also represented by  four components as a row matrix. 

I FQ]    F[2]    F[3]    F[4]   I 

CEq,  9.13] 

[Eq.   9.14] 

[Eq.   9.15] 



wvawmmmm.: 

Page 84 VECTORS 

m this case the first three components represent the outward pointing normal of 
the plane normalired to unity and the fourth component represents the negative 
directed distance to the plan« in the direction of the normal from the oriain 
(see Figure 9.1). ■ 

Figure    9.1 
Plane Description 

PCU - Hill 

F[2] - HW 

FC33 - urn 

FM  - -D 

[Eq.   9.161 

If a plane    is so represented,  a    simple test exists to   determine  if a    point V 
lies  inside or outside the plane. Ue form the product: 

|Fj*|V|  - V[l]*Fm  + V[2:*F[2]  + V[33*F[3]  + V[4]*F[4] 
[Eq.  9.17] 

and depending on the sign the point lies inside or outside the plane  If the 
product is zero then the point lies on the plane. '    >     -     -  - 

Having represented points and planes  it remains to be able to rotate and 
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»«^^äftJsrs&c.urrsÄ.r'-- •* - 
T  I 

XX 

l xy' m' 
I «2' yz' 
I    3      8 

Zx' 

zz' 
8 

e 
a 
e 
i 

tEq.  3.18] 

i i i 
i    i 

I a j 
i    I 
I i I 

'f then transformed by: 

has components: 

I  *' T  I  *  I  x 

IEq.  9.19] 

tEq.  9.28] 

XX 

xy' 

xz' 

! 1 

in  the rotated system,   (see Figure 3.2) 

In the case of a translation we have the matrix: 

, T ,    ii a a xt 
I T i - i e i a ut 

1 a 3 1 2t 
i a a a i 

IEq.  9.21] 

CEq.  9.22] 
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Figure 9.2 
Rotated Coordinate system 

from which it can be seen that: 

| T | * 1 V i [Eq. 9.23] 

has components: 

|  Vtl]+xt   | 
1                                         I 
1 V[21+yt  1 
i 

1 v[3]+zt  | 
[                                  | 

1  V[4]         | 
[Eq. 9.24] 

of   the  translated vector. 

To    be able    to rotate    and translate    we multiply    the    transformation matrices 
together: 

|  T   |   -   |  Tt|  *  |  Tr| ttq.  9.25] 
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I  T 

VECTORS 

xx' yx' zx' xt 
xy' yy' zy' yt 
*2' yz' ZZ' Zt 
e e e i 

tEq. 9.283 

J^hif6  I"6 0nly  transform3tions    that m will  perform although the    sustem   is 
peTsp^cti^.    ^   ^    t-n8^ti°-     -ch   as   seal ing.  9 s^tch^ a^d 

Sran^^n^rons^'th" Iff   ^^    EqUati0n   9-17    to    h°,d      ^er    these 

I F  I * I  V  |  -  | F' | « |  V | 

and: 

I v T   I  «  I  V  I 

Then if ue substitute for | V | in Equation 3.27 we obtain 

I P I * I V I - I F'| * | T | * | V | 
and thus: 

-1 

or: 
I F' I - I F | * | T | 

T      -1      T 
I F1 | - | T |  « | F i 

[Eq. 9.27] 

tEq. 9.28] 

CEq. 9.29] 

tEq. 9.30] 

tEq. 9.31 

transposed ^ tranSf0rmed by P^'f-Plying by the inverse transfer. 

«■ 
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