
AD-785 071

MODELLING, TRAJECTORY CALCULATION AND
SERVOING OF A COMPUTER CONTROLLED ARM

Richard Paul

Stanford University

Prepared for:

Advanced Research Projects Agency

November 1972

DISTRIBUTED BY:

mi]
National Technical information Sonrico
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

BEST
AVAILABLE COPY

■

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM-177

^STAN-CS-72-311

>^

o
in
oo

MODELLING, TRAJECTORY CALCULATION AND
SERVO ING OF A COMPUTER CONTROLLED ARM

BY

RICHARD PAUL

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

NOVEMBER 1972

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

ReprodiM »■■) by

NATIONAl TECHNICAl
INFORMATION SERVICE

Spnn^frei'l VA StlSI

D D C

SEP 19 1974

EisEinnaiy
B

DU3"rtlBUTlUN STÄTEIÄW A

Approved for pubhc rc^euMt
DlalributtoD Unlitmied

<?v

I

STANFORD ARTIFICIAL INTELLIGEMCE PROJECT NOVEMBER 1972
MEHO Ain-177

CCriPjTER SCIENCE DEPARTHENT
REPORT CS-3U

MODELLING. TRAJECTORY CALCULATION AND SERVOING
OF A COHPUTER CONTROLLED ARfl

by

Richard Paul

The problem of computer control of an arm is divided into four parts: modelling,
trajectory calculation, servoing and control.

!n rnofielling ue use a symbolic data structure to represent objects in the
envirjnment. The program considers hew the hand may be positioned to grasp
these objects and plans hou to turn and position them in order to make various
moves. An arm model if used to calc late the configuration-dependent dynamic
properties of the arm before it is moved.

The ami is moved along time-coordinated space trajectories in which velocity and
acceleration are controlled. Trajectories are calculated for motions along
defined space curves, as in turning a crank; in such trajectories various joints
must be free due to external motion constraints.

The arm is servoed by 6 small computer. No analog servo is used. The servo is
compensated for gravity loading and for configuration-dependent dynamic
properties of the arm.

In order to control the arm. a planning program interprets symbolic arm control
instructions and generates a plan consisting of arm motion» and hand actions.

The move planning program has worked successfully in the manipulation of plane
faced objects. Complex motions, such as locating a bolt and screwing a nut onto
it, have also been performed.

This research was supported in part by the Advanced Research Projects Agency of
the Office of Defense under Contract No. SD-183.

The views and conclusions in this document are those of the author and should
not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Advanced Research Projects Agency or the U.S.
Government.

Reproduced in the USA, Available from the National Technical Information
Service, Springfield, Virginia 22151.

I

Page 11 ACKNOULtDGnENTS

I wish to express my thanKs to Professor Jerome Feldman for his invaluable he In
and advice.

I would like to thank Professor John llcCarthy and Professor Bernard Roth for
their suggestions.

Hany ideas presented in this work arose out of discussions with fellow workers
in par ticular with Gi I Fa Ik and Aharon Gi I i.

I would like to acknowledge the contributions from many people at the Stanford
Artificial Intel! igence Project and in particular from Victor Sehe inman who
designed the arm and Joe Zingheim who maintained it.

i am inaetDted to Bruce Baumgart who produced the small pictures of the am
appearing at the top corner of every page. By fanning through tfci document the
exairole üescribed in the text is displayed. These pictures were produced by
Bruce using his GEOflEO program [Baumgart] with an arm trajectory file as input.

Tnis^work was submitted to the Department of Computer Science and the Committee
on graduate Studies of Stanford 'Jmversi ty in partial fulfillment of the
requirements for the degree of doctor of philosophy.

v?W.^-v^.^T>grfg^«re^?WTi^^ »■^^^^^»^^^^.■»^«^H^.^^^^»^. .,.,.,.. n -n ,, l iiiiiiiiiiiiiji .111 iLi.ni.moicininiiinmnji

Page i i i TABLE OF CONTENTS

SECTION
l.l INTRODUCTION

1.1 SYSTEH DESCRIPTION
1.2 HISTORY

2.d ARH nODEL
2.1 KINEMATICS
2.2 ARM SOLUTION
2.3 DIFFERENTIAL SOLUTION
2.4 DYNAMICS
2.5 FORCE AND nOHENTS

3.8 UORLD MODEL
3.1 PROTOTYPE DESCRIPTION
3.2 ORIENTATION VECTORS

4.8 MOVE INSTANCE
4.J RANGE OF SOLUTION
4.2 MOVE INSTANCE

5.8 TRAJECTORIES
5.1 GENERAL CONSIDERATIONS
5.2 POLVNOniALS
5.3 TRAJECTORY EXTREMA
5.4 CONTINUOUS MOTION
5.5 DIFFERENTIAL MOTION

B.I SERVO
5.1 FEEDBACK LOOP
6.2 MOTOR DRIVE
6.3 PARTIALLY CONSTRAINED MOTION

7.3 CONTROL
7.1 ARM STATE
7.2 PRIMITIVES
".3 ASSEMBLY PROGRAM
7.4 PROGRAMMING EXAMPLES
f.b feXfeCUTE
7.5 ARM PRGCiAM

8.3 CONCLUSIONS
8.2 SUMMARY
8.2 SUGGESTIONS FOR FUTURE WORK

APPENDIX
A.l HARDWARE DESCRirTION
A.: SAIL
A.? VECTORS AND TRANSFORMATIONS

BIBLIOGRAPHY

PAGE

1
4

5
12
15
17
28

23
27

33
34

43
43
47
48
51

53
54
Go

G7
68
78
71
74
74

78
79

88
88
8i
82

88

MfeMMn mmmmm .-•■".--»-—»•"■

':

Page iv LIST OF ILLUSTRATIONS

FIGURE
2.1 Arm
2.2 Link Coordinate System
2.3 Arm Coordinate Systems
2.5 Solution of Joints 1.2 and 3
2.4 Hand Coordinates
2.5 Solution of Joints 4.5 and 6

Force Transformation
Cube Prototype
Prototypes
Or ientat ion Vect:"-G
Pick-up Point on an Edge
Outside Vertex
Approacn iiniited 0y Arm
Approach Angle Limited by Support Plane
Crash
Point to point Trajectory
Maxinium Penetration of Hand
iraiectcy beyond Joint Range
Loop ing
Simple Servo Loop
Effective Inertia Independent Peeoback
Grtvity Inaependent Loop
Acceleration Compensated Loop
Position Error with Inertia Compensation
Position Error with Gravity Compensation
Position Error with Acceleration Compensation
Pulse Width v. Output Torque
Pifcewise Linear Pulse Uidth v. Torque
A jraw Mot ion
Arm Program. Simpiif i ed FIou Chart
P I ane D#tcrict icn
Rottttd Coordinate sustem

2 7
3.1
si. 4.

3.3
3.4
3.5
4. i
4.2
c

i!
5.
5,
5.
B,

11

6.3
S.4
£.5
6.5
6.7
5.a
6.3
7.1
7.^

PAGE
6
7
8

13
14
15
21
24
25
28
33
38
33
34
48
41
42
44
49
54
55
55
58
59
61
62
64
65
78
75
84
86

Page 1

SECTION 1

INTRODUCTION

1.1 SYSTEM DESCRIPTION

Ue are concerned here with a computer controlled arm and hand. This arni and
hand function together as a general purpose manipulator which forms part of a
robot as an effector subsystem.

The computer plans and executes sequences of arm and hand motions to accowplish
tasks. Arm motions are along smooth, collision free space trajectories; all
known forces are predicted during planning and compensated for durinc- execution.
Hand motions, which consist of opening ana closing the hand, are controlled bu
touch sensors. The hand can also exert a force while fol lowing an external lu
def med mot ion. a « iW

Any robot must contain both a sensory input mechanism, whereby it can gain
information aoout the environment, and an effector subsystem by which it can
change the environment. In addition to being the main effector, the hand also
has primitive touch sensors and force detection ability, and may be considered a
sensory subsystem.

The environment in which the robot works must be one which it
internally. It has certain information a priori, and is able
information by interacting with its environment.

can represent
to gain more

In our case it knows, a priori, that objects are plane-bounded, solid, and may
be colored. It knows, a priori, that all objects are supported by a plane, or by
each other, and mat objects may be moved, but not through each other. It is
given protctyces cf tl j the possible objects that can exist, and learns by means
of its senses of tne existence and position of instances of these prototupes.
Work is In progress to increase the scope of the robot's environment; curved
objects are currently being added [Agin],

The type of interaction between robot subsystems is important as subsystems
function together to accomplish tasks. Currently all subsystems perform under
the erection of the strategy subsystem, with little interaction between other
subsystems. For instance, the arm does not call for vision to locate an object
th«t it has dropped, nor does vision call the arm to move an obscuring object in
order that it may "see" better. One important exception is the case of visual
feeaback used to oosifonthe hand on an object; here the vision subsustem
interacts d rectiy with the arm [Gil 13. »yoicm

To illustrate the system we will descrihe the interaction needed to solve the
Instant insanity pu^le [Feldman 71b]. Here i t is first required that four
colored cuoes be fcjnd and the color of the faces be determined. The cubes are
then turned and stacked so tha* each side of the stack has four different
colored faces visible. WFTWWH

Page 2 SYSTEM

The interaction between the STRATEGY subsystem. VISION, RECOGNIZE. COLOR and the
ARfl is on the following level. The STRATEGY subsystem asks the VISION subsystem
to find an outline; it then asks RECOGNIZE to identify the outline as a cube.
This process is repeated until four cubes have been found. COLOR is then told
to find the color at the center of each of the three visible faces of each cube.
The ARM is told to turn over each cube and VISION called to refind the outline.
REC03N1ZE is then called to reidentify the outline as a cube. Uhen all four
cuoes have been turned over and re-found, COLOR is told to find the color of
each of the three now visible back faces of each cube. The STRATEGY subsystem
then determines the necessary turns and stack positions of each of the cubes to
obtain a solution. The ARH is then told to move each cube accordingly. There
are two levels of error recovery: within each subsystem, and by the strategy
subsystem when a subsystem reports faiure.

The^programrning environment in which the robot operates is known as the "Hand
Eye" system IFeidman 71a]. Here individual subsystems are represented by time
sharing jobs, which may interact. This is done by two means: 1) a global data
structure whjich represents information about the environment available to all
suirsyste.Ts; 2) the message procedure construct whereby one job may execute a
procedure in «nethtf job. For example, cubes are moved by a message procedure
'TOVEJNSTANCE" which. In the Instant Insanity case, was used both to turn the
cuoes over and to stack them.

The am subsystem provides a series of functions which are of ger^ro1 utility,
such as to move the arm to a given position "flOVE," or to open the hd^a "OPE!.'."
In order to perform these functions the arm subsystem maintains a data oase in
the form of constants and procedures i-jhich describe the arm and hand in detail.
If the arm is required to perform some task then an attempt is made to describe
the task in terms of existing arm functions, if this can be dona then the
problem is solved. If a task is proposed that cannot be solved in terms of
existing functions, then either a function is modified or a new function must be
HP!t'en.

Other subsystems are not expected to u-se the arm's data base,which is local to
the am lubtyttM. Problem solving requiring use of this data base would be
considered a function cf the arm subsystem. Global variables are maintained
whJch describe the current state of the ifi for the other subsystems.

To huiia a stack of blocks would not be an arm function, as it could be
acco-n isned in terns of simpler, existing functions such as MOVEJNSTANCE. To
turn | cube over would be an arm function as this requires that the range
througnout which the hand can graso the cube be con.,dered. To move the arm
through a clutttn»d space of objects is an arm task as this requires that the
am. be considered ifl reiation to the other objects when planning the traiectoru
that tne arm will fclIOM. "

Information is given to the arm subsystem in function calls and in the form of a
three ctintntiontl description of the space. If this space is completely
Described and the arm fails to accomplish a task then the strategy subsystem
knows that the task must be specified differently. For instance, if a block must

»^wjB-: w»i\jmmmm9M^9W<it>msw!-'-*''9t-^.

Paoe 3 SYSTEH CD

be moved but some obstacle is in the way. then the strategy program must first
ask the ami to move the obstruction and then ask that the original move be
accomplished. The arm subsystem would not move other objects and thus change the
state of the environment without being told to do so by the strategy subsystem.
!f ehe space model is incomplete and the arm cannot accomplish a task based on
the available information, then the arm w'I! not call the vision subsystem to
have this space investigated but will report failure.

There are two main parts to the arm subsystem: the planning program and the arm
execution program. In order to move the hand a plan is made. If the hand is to
move an object then the planning program considers the object in relation to the
hand to cieteTnine how it may be grasped. As the move is planned, other objects
are considered in relation to the hand in order to prevent collisions. The plan
if represented in ter«f cf a coordinated time dependent trajectory for each
joint of the arm. Since the computer has planned a trajectory the program knows
oefore the arm is moved the configuration, velocity and acceleration of all the
links of the arm and can compute the effective inertia and the gravity torque of
each link. These terms together with the trajectory are given to the arm servo
program, whfff the inertia and gravity terms are used to improve the execution
of the trajectory.

Tr,e arm servo prcgrem executes the trajectory by moving the arm; it also
performs such actions as opening and closing the hand. Trajectories, together
with hand actions, are written out in a file, and may be repeatedly executed by
the arm servo program if required. The arm servo program is small and is
suitable for execution in a mini-computer connected directly to the arm. The
planning prcgraii can be run under time sharing and can make plans for many such
arms.

The särvo is a conventional sampled data servo executed by the computer with the
ml lowing modification: certain cortrol constants, the loop gain, predicted
gravity an:, exte^nai torques a."e varied with arm configuration.

In addition to the needs of the current vision and strategy subsystems, the arm
has betn prograMmed to perform other tasks such as turning cranks, screwing in
screwt, pushing ana nulling. The touch sense is used in some of these tasks. Arm
programs riaj tie written where the course of execution of the program by the arm
may be modified depending on activation of the touch sensors or other
condition». Such programs may be written in a form of assembly language but are
identicil to the nessage procedure calls of a strategy program.

in lubfitquent sections of this thesis we first describe the model of the arm and
derive all '.re reUtione tnat vm will use (Section 2). Ue then describe the
model of the environnent and the hand's interaction uith it (Section 3).
Section k describes TOVE.INSTANCE the highest level strategy function of the
arm subsystem, provided primarily for strategy subsystems performing operations
with plane faced soiids. In Section 5 we describe the requirements and solution
of tne smooth trajectories used by the arm. The servo loop is described and ue
then deal with controI (Sectior 7), giving a list of the arm functions or
pr init i ves.

Page 4 SYSTEn

The arm is described fully in [Scheinman], and ue give a brief description in
Appendix A.l. Tuo other appendices are given. Appendix A.2 describes SAIL, a
form of ALGOL, with LEAP added. SAIL is the language in which the programs are
written and we will use it to describe some of the algorithms. Appendix A.3
briefly describes homogeneous coordinate vectors and transformations, more fully
covered in [Roberts GBJ.

The notation used in this
underbar V; Matrices are

work is as fol
represented by

either superscripted or
subscripted or enclosed

proceeded by an "t",
in square brackets, A

lows: vectors are represented by an
vertical bars | fl |; Exponents are

2
x or xt2,J Indices ar« either

or A[i,j]; Multiplication is

represented by an asterisk "*".
U

1.2 HISTORY

The first mechanical hands were developed at Argonne National Laboratary in 19A7
for handling radioactive materials IGoertz B4]. These hands were master-slave
systems where the hand replicated the motions of a person, the master. In 1948
force feedback was added to enable the operator to fee! the forces that the hand
was exertinq [Goertz 521.

The early type of hand, without force feedback, has been adapted to perform
repetitive tasks [Lindboml. The hand is moved from one position to another by an
operator and the joint positions recorded. The hand can then cycle repeatedly
through these recorded positions in synchronism with external machinery.

In 13G1 Ernst [Ernst] developed a computer controlled hand with touch sense. The
har could Bxpiort a region by touch and put the objects it identified into a
box. !n 1963 a half tone picture could be analyzed to locate and identify plane
faced objects [Roberts 631. By 19G8 a program using a TV camera as vision input
[wichmanl located the objects for the hand to pick up.

1968 IT)
traiectories through
foMowed by Kahn who
[Kahn],

leper studied the kinematics of arms and planned
spaces containing obstacles [Pieper],
studied the dynamics and developed a

col Iision free
This work was
bang-bang servo

By adding force feedback Inoue was able to perform such tasks as putting a peg
into a hote and turning a crank [Inoue]. Ejiri developed a system to assemble
blccKs using a drawing of the required assembly as a visual input [Ejiri]. In
1S'2 Goto could locate and identify plane faced objects by touch and then pack
them compactly by moving and pushing them [Goto].

The recent proceedings of The Second International Symposium
Robots [IITRI] provide a general review of the state of the art.

On Industrial

Page 5 0

SECTION 2

ARfl nODEL

In this section ue will consider the arm and develop a model for it IPieper],
Ue will describe the solution which, given a hand position, returns a set of
joint angles. Then, based on the model of the arm, we will develop a solution
for differential motion. Ue will then derive the relation between acceleration
and force for the arm, to obtain the effective link inertia and gravity loading
[Kahn], Finally we will derive the relationship between a force and moment
acting at the hand and the six joint reaction torques. The results of this
section are used in later sections of the work but as they all relate to the arm
model they are derived together here.

2.1 KINEflATICS

The arm shown in Figure 2.1 is a six degree of freedom device allowing the hand
to be positioned anywhere and with any orientation within the limits of joint
motion.

The arm is made up of six links, each connected to the next by a joint. There
are two kinds of joints, prismatic, or sliding, and revolute. In order to
describe the link transformation in terms of the joint constraint and the joint
variable we will introduce a coordinate system in which the joint constraint U
impl ici t.

Ue will describe the "A" matrices, which relate between link coordinate systems,
and the "T" matrices, the link transformations which specify the position and
orientation of each link in space.

Associated with each link is an orthogonal coordinate system fixed in the link
(see Figure 2.2).

For link i the Zi axis is directed along the axis of the joint between link i
and i+1. The xi axis is along the commcn normal between the two joint axes of
the link in the direction from z(i-l) to zi. The y axis completes the right
handed set.

Ue can transform coordinate systems i into i+1 by performing a rotation, two
translations, and a final rotation as follows:

n A rotation about zi of 8i to make xi parallel to x(i+l).

2). A translation si along zi to locate the origin at the point where
the common normal between zi and zi+1 cuts zi.

3). A translation of ai along x{i+l) to bring the origins into
coincidence.

Page 8
nNEHATJCS -Q

Q

Figure 2.1
Arm

Page 7 KINEMATICS

»l-l

Figure 2.2
Link Coordinate System

4). A rotation about x(i+lt of ai to bring the z axes into coincidence.

The j-int variable for a revolute joint is 9: the joint variable for a prismatic

In thf. ca?p nf the arm that ue are using, we pick the origin of coordinates at
tre base of the sroulder. Ue have two revolute joints, foI lowed by a prismatic
joint followed by three intersecting revolute joints. There are three offsets:
Si = 16.24,0. b2 - G.85,n and SS - 10.35in. S4 - S5 - 0, and S3 is a variable.
Ihe nnk coordinates for the arm are shown in Figure 2.3.

If we express points in link i by a vector m then the relationship betupen
coordinate »ytttM Ri. and R(i-l) may be expressed by:

R(i-l) - | Ai| * | Ri | tEq. 2.11

where j Ai | is given Ijy:

i cos 9
j tin 9
I 0
I 2

-cos ü sin 9
cos a cos B
sin a
0

sin a sin 9
-sin a cos 9
cos a
0

a cos 9
a sin 9
s
1

CEq. 2.2]

Page 8 •CINEriATICS
I

JOWT a» • f
1 -to l«.24 •,

to • 05 »t
0 • S -to

-to | 1
to ♦ I
• 1095 -A

Figure 2.3
Arm Coord:nate Systems

\f\-

Page 9 KINEflATICS

For the joint angles shown in the following table:

Table 2.1

Joint Angles

JOINT VARIABLE
1 -35.7
2 -112.4
3 22.2
4 -38.2
5 82.4
1 G8.9

The A matrices for the arm shown in Figure 2.'. are:

Al

A2

A3

A4

1 -.13 .33 1.88 .08

I -i.ea .83 -.18 .00

i .83 -1.83 .88 IB. 24

j .88 .80 .38 1.00

1 -.38 .88 -.92 .00

| -.92 .30 .38 .00

1 .80 1.88 .08 6.05

1 .83 .83 .88 1.00

1 .83 1.38 .88 .00

1 -1.88 .38 .83 .80

.88 .33 1.33 22.16

1 .83 .00 .33 1.00

1 .79 .00 .62 .00

1 -.52 .00 .79 .00
l

I .33 -1.88 .38 .00 |

1 .33 .33 .38 1.00 1

Page 18

AS

A6

KINEHMTICS

.17 .38

.39 .88 ■

.83 1.38

.33 .33

.3S -.33

.93 .35

.33 .33 1

.83 .38

.33 .88

••17 .88

.38 .88

.88 1.88

.38 .88

.38 .88

.33 18.35

.83 1.88

if we let link 8 de the table coordinate system then we may relate from anu link
coordinates to Rfi by: » "

Rfi -|Al|*|A2|*jA3i ... !Ai|*|Ri [Eq. 2.3]

c:

Rfi Til * I Pi tEq. 2.4]

where:

I Ti| - |A1|«|A2|*|A3| ... |Ai| [Eq. 2.5]

I Ti | is the transform of the ith link of the arm which describes the position
of the link in table coordinates.

For the A matrices given in the preceding example we have the corresponding T
ma X i IC68•

Tl

I -.13 .83 1.88 .88 I
I I
I -1.83 .33 -.18 .88 |
i |
I .38 -1.88 .38 16.24 I
I |
I .88 .83 .88 1.88 1

Page 11

T2 -

T3

14

T5

TS

KINEflATICS

.84 1.88 .83 £.82

.38 -.18 .32 -.58

.92 .88 -.38 16.24

.88 .88 .88 1.88

1.88 .84 .83 1.8

.18 .38 .32 13.78

.88 .32 -.38 7.73

.88 .88 .88 1.88

-.81 -.83 -.53 8.86

-.15 -.32 .36 13.78

-.57 .38 .73 7.73

.88 .88 .88 1.88

-.23 -.59 -.78 8.86

-.33 .36 -.88 1?,78

.28 .73 -.63 7.73

.88 .88 .88 1.88

-.63 -.88 -.78

.88

-.88

.88 1.88 -.88 13.78

.78 -.88 -.63 1.38

.88 .88 1.88

V

I T5 ! is the transformation of the hand, the last linK of the arm. Ue can
interpret this matrix as follows: the right hand column of the matrix is the
position, in table coordinates, of a point centrally located between tie finger
tips £. The second column specifies the direction of the "y" axis of Me hand
(see Figure 2.3), which we will call the orientation vector Q; the orientation
vector is directed between the finger tips. The third column is the "z" axis and
is in the direction that the hand is pointing; we will call this vecto. the
approach vector A. Ue mag then write | T6 | as:

Page 12 KINEtlATICS

| (0 M A)[x] OCK] A[>] PM\
I I
I (0 M A)[y] Oty] ACy] P[y]|
I I
i (0 x A) [2] Qttl A[2] P[z]|
I I
18 I • H

CEq. 2.G]

The approach vector can be expressed in terms of an approach anglb as follows:

Ue define a reference approach vector Q^ as:

BA - Q »< Ü [Eq. 2.7]

where k is a unit z vector. The approach angle is the angle between A and RA
measured about Q (see Figure 2.4). "

2.2 ARH SOLUTION

The c-m solution is a procedure uhich, given | T6 |, the transformation of the
hand, returns the six Joint angles which will position the arm in such a way
that the hand will have the required transformation.

Because the last three joints intersect ue can obtain a closed form solution
[Pieper]. The position of the end of I ink 3 is found as:

LS - P - L£ [Eq. 2.8]

wri«r« [Jm is, a vector the length of SB and in the direction of the approach
vector ft (see Fioure 2.5).

A vector from the shoulder to the end of link 3 is:

y - Li - Li

Ue can now solve for S3, the prismatic joint variable, as:

S3 - (U . U - S2t2)t(l/2)

Havmg solved for S3, 81 is given by:

81 - 9 -»- (P

Where 9 and Q) are:

[Eq. 2.9)

[Eq. 2.10)

[Eq. 2.11)

e 13 SOLUTION

Tan 9 - U(2] / U[l) IEq. 2.12]

tEq. 2.13]

FigurtT 2.5
Solution of Joints 1,2 and 3

Sin (P - S2 / (Umt2 + U[2]t2)t(l/2)

See Figure 2.5

52 i? then;

Cos 92 •Um I S3

See Figure 2.5.

The '.'nit vectors y3 and z3 are now calculated for link 3 and a vecton

BS - 22 x 2£ [Eq. 2.15]

is calculated.

Then:

Eq. 2.14]

94 angle between Bfi and u2 about J2
95 angle between 2£ and 22 about Rfi
96 angle between y£ and Rß about 2£

IEq. 2.16]
[Eq. 2.17]
(Eq. 2.18]

See Figure 2.B

■- J.tw^:.(ir.«6»

^
KH

Page 14 SOLUTION ^

Figure 2.4
Hand Coordinates

Page 15 SOLUTION

Figure 2.B
Solution of Joints 4,5 and B

Al I joints uith the exception of joint 6 have only a partial range of motion. As
the solution for each joint is obtained, it must be checked to see that i is
within the range of motion of tnat joint.

2.3 DIFFERENTIAL SOLUTION

Given ar. arm solution, it is often necessary to compute the differential chanae
m joint angles ,n order to make a small change in position uhtle maintaS
the current orientation of the hand. ""«'maming

Ue can obtain the differential change in position dSS with respect to a chanae
m joint variable dqj as: ^^ "HOWI IU « cnange

m - I lUiJl • dqj * |Ri
j-l

tEq. 2.193

where:

lUiJl - a|Ti|/c.qj [Eq. 2.28]

.

Page IB DIFFERENTIAL

From which ue obtain:

lUiJl - |A1|«|A2| ... |Aj-l|*|Qi|*|Aji*|Aj+l| ... »jAi
[Eq. 2.21]

and depending on whether the joint is rotary;

Q(0)
|0-180|
110 0 0 1
10 0 0 0 1
10 0 0 0 1

tEq. 2.22]

or prismatic:

Q(s)
0 0 0 0 1
0 0 0 0 1
0 0 0 11
0 0 0 0 1

[Eq. 2.23]

2.20) If we then evaluate the six 1 UGji matrices (Equation^
differential change in the 16 elements of the hand matrix | T6
six loints. This corresponds to IG equations in
equations are independent. Ue must pick B indeoendent equations of the IB
then solve for the required change in the qj.

ue uiII have
| for each of

unknowns of which on

the
the
iy B
and

From t Ußj | we pick the first three elements of
turrttpond to dx, dy, it. Ue then pic^the two
tne approach vector, to constrain its di-ection.
element from column 2. the orientation vector,
about the approach vector.

The six equations:

the right hand column as these
smallest elements of column 3.
Finally we pick one additionai
in order to constrain rotation

.<„ii

Page 17

dx

dy

dz

a

8

8

DIFFERENTIAL

US1 U62 U83 UG4 U65 UBB
U 14 14 14 14 14

U61 U62 UB3 uS4 U65 UG6
24 24 24 24 24 24

U61 UB2 UB3 U64 U65 UBB
34 34 34 34 34 34

U61 UB2 U53 U64 UB5 UBB

xK;^'

u3 u3 u3 u3

U61 UB2 Ub3 UB4 UB5 UBB
v3 v3 v3 v3 v3 v3

UB1 U62 UB3 UB4 UB5 UBB
w2 w2 u2 w2 w2 w2

1
dq

1

i

dq^

dq,

dq

dq

[Ed. 2.24]

are then solved to give the six dqj, the differential change in joint angle.

For the position that we have been considering and have defined the A and T
matrices. A differential change of dz » 3.2 in is found to be:

Table 2.2

Differential Change of Joint Angle
JOINT dq

1 3.8
2 7.2
3 -1.1
4 -I.I
5 4.4
s 5.7

2.4 DYNAHiCS

From the k.ineaiat ic arm ;:,odel Mt can also develop the dynamic model [Uicker]. Ue
uill derive the Lagrangian [Kahn] for the arm in a gravitational force field,
and obtain the equations relating acceleration to joint torque, including the
static torques necessary to overcome the effects of gravity. These results will
be used in the section uihich relates to servoing the arm.

■'

Page 18 OYNArtICS

If the Lagrangian L is defined as:

L - K - P [Eq. 2.251

where:

K is the Kinetic Energy of the system in terms of joint variables;

P is the potential energy in terms of joint variables.

The joint variables "q" are either "9" or "s" depending upon whether the
joint is revolute or prismatic.

The equations of motion are given by:

d/dt { aL/3qj) - di/dq] - Fj

for j ^1,2, ... n

where Fj is the force on joint j.

From Equation 2.19 we can obtain the velocity of any point as:

dR2/dt - i Vj | * i Rj |

where;

CEq. 2.2G]

[Eq. 2.27]

I Vi | - I (| Uij | * dqj/dt)
j-1

[Eq. 2.281

Ue may now express the kinetic energy of a link as follows. Consider a particle
of mass dm on link i at Ri then the kinetic energy is:

dHi = 1/2 (Ri . Ri) dm [Eq. 2.29]

or;

T T
dHi - 1/2 Traced Vi |*| Ri|*| Ri| *| Vi |)*dni

[Eq. 2.38]

The total kinetic energy for the link can be found by integrating over the n-ass
of the link.

-.„....._... mmat ■ a&mm&mm

Pacie 19 DYNAfllCS

to obtain:

T T
dHi - 1/2 Trace[|Vi|*(/ |Ri|*|Rij *dni)*jVi|]

link

Hi = tni*

2 2 2
1/2(-k +k +k)

ill i22 133

il2

113

112 il3

2 2 2 2
k -k +k k
ill i22 133 123

;2i

2 2 2
k +k -k
ill 122 133

tEq. 2.31:

CEq. 2.321

where:k is the radius of gyration of link 1 about the i,k axes, xi. Z\ zi
1jk !»»♦•<

Is the center of mass of link 1. mi is the mass of link i.

i« Kinetic energy of the entire system Is:

n T
K - 1/2 I Trace(| VI |#| Hi |*| Vi |)

i-1
lEq. 2.331

The potential energy of the system due to gravity in the negative z direction is
expressed by:

P . - I mi * | G i * | Ti | * | Rl
i-1

where: | G ; - | 0 0 g 0 |

and g is the acceleration due to gravity.

[Eq. 2.34]

[Eq. 2.35]

Page 20 DYNAfllCS

Substituting for K from Equation 2.33 and for P from 2c,uatiür, 2.34 into Equat
Z.^b and then differentiating according to Equation 2.2G we obtain:

ion

n j f tt

Fi - E t Trace(| UjK|*| Hj|*i Uji| *qk)
j-i k-1

n j j T . .
+1 t Z IraceCI Ujkp|«| Hj|*| Uji| *ij*ik)
j-i k-1 p-1

-I mj«| G |*| Uji|«| Rj
j-'

CEq. 2.38]

the equation relating acceleration to force, from which we will infer the
effective link inertia and gravity loading torque Tg in Subsection G.l.

2.5 FORCE AND nOMENTS

Given a force F that acts through the origin of the hand coordinate system and a
moment H, we wish to find the joint reaction torques.

Ue represent a force in the n' th coordinate system as:

FnW

ana a moment similarly;

Fn -

tin

Fn[y]

Fn[z3

8

MnLx]

nn[y]

RnfcJ

8

[Eq. 2.37]

CEq. 2.38]

■'-■ ■ :■■---;: :-.!-:-\--

Page 21
FCRCL

We first transform the force F and t
bu: he mo/nent H into the hand coordinate system

-1
F5 | . | ",o | *| F

-1
H6 I ■ I T8 I *i n

fEq. 2.33]

fEq. 2.40]

"l\Z ISTFTSUT" tft'*' ,he ,0rCe a"d »«"' ** <*«*> >«• II«. as

and the moment;
F(n-lj An j * | Fn [Eq. 2.41]

I run-u An | * I fin

Hoi-jever the
[Eq. 2.42]

coorcunatesuslrUenairr^jln^rh,^9^!. 0ri9in 0f the '^^ H > uee ngure f./j anc, ue ha.?,, an additional moment given by:

« F(n-l)
[Eq. 2.43]

Fiaurt 2.7
Force Transformation

uhere: P is th« right htnd column of I An

•

Pa «aye ±i. FORCE

the total moment is then:

I n(n-l) An | * | fin i + P x F(n-l) [Eq. 2.44]

If the (n-Dth joint is revoiute then the reaction torque is fKn-lHr]- if it la
prismatic tnen the force isF(n-l)[z]. I '» n •■

The six reaction torques are knoun as the equivalent arm torque.

Uhen the hand is to exert % force the equivalent arm torque is calculated and
added to the gravity torque for each joint. If each joint is run at these
torques then tne h^ind will exert the required force.

For the arm position ue have been considermg we have two examples, the first is
to exert a ♦ore« of -IWoz. in the r direction, the second example is to exert a
moment o* -108o2. in. about the z axis: iv c er i d

Table 2.3

Equivalent Arm Torques
F:rJa-122or. rUz]-183oz. in.

joir^T lunuut JOINT TORQUE
i e.3 i -180.0
2 -1958.a 2 3.8
3 38.2 | 0.0
4 -741.3 4 38.2
5
G

-238.5
a.a I -72.7

G2.7

Page 23

SECTION 3

UORLD riODEL

This section describes the model of the arm's environment, which consists of
solid plane-faced objects. These are the objects that the vision system can
identify [FaIk] and a representation of them is maintained. This is done for
both the Arm and the Vision programs, which share a common data base [Paul].

Ue will first describe the prototype representation and the manner of specifying
instances of these prototypes. The problem of grasping this class of objects is
then reduced to finding a set of orientation vectors.

3.1 PROTOTYPE DESCRIPTION

Objects are described in terms of prototypes. To identify an object is to
associate tne object with its prototype; one prototype can represent many
objects or instances. All common information relating to the instances is kept
only once, with the prototype. The position of an object is associated with the
instance, as every instance has a different position. The prototype is located
with its center of mass at the origin and its principal inertial axes aligned
with the coordinate axes. Each vertex is represented by a vector giving its
distance from the origin and each face is represented by a row matrix giving its
position and outward pointing normal.

Items are created for each part of a prototype (face, vertex, edge). (Readers
not familiar with "items" should consult Appendix A.2.) The spatial information
associated with vertices and faces is stored as array datums of these items.
Farh nf these items is associated with the prototype, which is itself an item.
Difftrtfit attributes are used to indicate which topological part is being
associated.

For example, in the case of the cube shown in Figure 3.1:

FACE « CUBE s Fl
FACE • CUBE s F2

lEq. 3.1]

FACE e CUBE B FO

VERTEX a CUBE ■ VI
VERTEX ® CUBE ■ V2

fi H n

vt'RTEX «> CUBE ■ V8

EDGE • CUBE > El
EDGE • CUBE « E2

II II M

EDGE • CUBE « E12

[Eq. 3.2]

[Eq. 3.3]

■

Page 24 PROTOTYPE
S

Figure 3.1
Cube Prototype

In the case of edges, the length of the edge is kept as its datum.

For each Face ue now associate its vertices and edges together

Consider for example face Fl:

BOUNDARY «> Fl i El
BOLJiöARY ® Fl s E2
BOUNDARY ® Fl s E3
BOUNDARY ® Fl » E4

CORNER «> Fl « VI
CORNER e Fl a V2
CORNER © Fl ■ V3
CORNER ® Fi = V4

[Eq. 3.4]

CEq. 3.5]

And for edges we associate the edge with its endpoints:

ENOPT • El s VI
ENDPT ® El s V2

etcetera.

[Eq. 3.6]

Prototypes are kept ror the objects shown in Figure 3.2. this data is kept in
the global data store and is available to all programs.

: .

Page 25 PROTOTYPE

CUBE RHOMBOID RPPII2

RPPI22

RPPI24
RPPII4

WEDGE 122
LBEAM

WEDGE 124

Figure 3.2
Prototypes

Page 26 PROTOTYPE

exl'pter ^ adescriPtion "*• Possible to find .any relationships, for

Given any face Fl find its neighbors uhich share a common vertex VI,

^"aclsllch s^i"y
WhiCh ^ the "^ Verte>< V1 b« fi"d-9 all

FOREACH F | VERTEX » F » VI

nfr?hoclTeSentS f? iten' va"iable satisfied by the association. The set
of these F s are all the faces uhich share this common vertex. Houever
they are not all ne,ghborS of Fl. To ascertain that they are neighbors
we must requ.re that tney share a common edge and that they are not Fl

FOREACH F.E | VERTEX « F . VI
A EDGE »F.E
A EDGE • Fl • |
A F * Fl

^V?h%CiciVvt£ SI faCeS F WhiCh are the ****** °< Fl and

sJar^ng'wfth'n ^ '** "*** t0 g0 ar0Und the Vertices of a fa« « '" order.

T - Vlj
FOREACH E.H | EDGE • Fl . E
A END » E i T
A END ® E a H
A H « T DO 3EGI?^

IF H - VI THEN DONE;
<statenient>;
T - H END;

T^izrii)^i^:^"•*'a oeu i,M i8 crea,Bd ^ '• —••*- »'«<
INSTANCE • CUBE a INST1 CEq. 3.7]

The posit.on and orientation of the instance are expressed as a transformation

Subset i on'CA\)el3TKS PI0t0tfe ^din^s to instance coo Stna es °e
^stance hl5 '* transformation is stored as the datum of the

Most calculations can be performed by transforming the instance back to MM
prototype rather than by transforming the prototype Li to ihe instand

3**^?,:JS*S"W«*^

Page 27 PROTOTYPE

Consider for examp
finding through whi
face out to the in
direction of the ou
vector actually pas
each vertex of the
weight vector back
through which face
of the order of 8.5

e the problem of finding the support face of a body by
ch face the weight vector passes. Ue could transform each
stance, calculate if the weight vector was in th« general
tward pointing normal and then determine whether the weight
ses through the face. This would require that we transform
face to the instance. It is more efficient to transform the

to the prototype hy using the inverse transform and check
it passes, avoiding ill the other transformations, which take

m sec. each.

With this "rrototype-instance" scheme we can represent all plane faced objects.
There is stfficient information available for the vision program to be able to
identify objects in two dimensional scenes. In the next section ue will show
that there is also sufficient information for the arm program.

3.2 ORIENTATION VECTORS

The prototype description is used unen it is required to move an instance of
some prototype. Apart from the positional information, which is obtainable
directly from the instance transform, the prototype description is used to
calculate how the instance t,'ay be picked up. Knowing how a body is oriented and
where it is located does not specify a hand position which may be used to pick
the instance up. Although there are an infinite number of ways in which an
object may be picked up, we will limit the possibilities by the following
heuristics. Ue will require that the object be picked up by two parallel faces
on an axis containing the center of mass, as this will prevent the object from
rotating. One but not both surfaces may be replaced by an apex of the body. Both
surfaces may be replaced by edges if a normal from the edge intersects the
w«ntif of Mtt« These heuristics define a set of orientation vectors. if the
hand is positioned at the center of mass with one of these orientation vectors,
it will be in a position to grasp the object (see Figure 3.3).

To find systematically all the possible orientation vectors the program first
makes a list of all the vectors from the center of mass of the object that 1)
intersect and are normal to any edge, 2) intersect and are normal to any face, 3)
pass through any apex. Such vectors are known as contact vectors. This list is
then searched for pairs of anti-parallel vectors, being careful not to take both
vectors from the third class. This is done in the following manner: To find the
contact vectors for faces the program simply checks that the perpendicular from
the center of mass to the plane lies inside the face and thus the surface is
perpendicular at the contact point, jr:

■ MM - ..•»kiw*w4«*a»ii(*i*(a

»»^Mw.K.n.^.w.jMuw^r^.^w

Page 28 ORIENTATIONS

Figure 3.3
Orientation Vectors

FOREACH
BEGIN

FACE«PROTOTYPE»F DO

NFACE:

D-DATUn(F)[4];
IF D>8.8 THEN GO TO NFACE;

Comment if this plane is used the center of mass
will net lie between the finger tips;

IF CONTAINED{DATUn(F),F) THEN FOUND ONE{
Comment if the point of intersection of the
normal and the face within the boundary then
put the point in the list of contact vectors;

The procedure CONTAINED counts the number of region boundary crossinas of
from the point to infinity. If the number is odd then the point is ins
reg.on, if even then it is out-side.

a
ide

ray
the

Ih/'^ Ihe CrtaCt VeCt?rS f0r ed9e5 '* is necessary that a perpendioular from
the center of mass intersect the edge.lt is also required that the edae

the'"""! cSn5i!?onf COrner" ^ the lowing algorithm the program satisfies

■■''-^m^^^^üifftM .'TOWW'W! mm*.

Page 29 ORIENTATIONS

FOREACH E.A.BIEDGEcPROTOTYPEsE
A END«E«A
A END®E«B
A A*8 DO BEGIN
T-A . li - B)/(A - a) . t4- Dl
Comment T is the directed distance from
end point A to the normal, divided by the
directed distance of A from B;
IF T<e.8 v T>1.0 THEN GO TO NEDGE;
Comment the normal intersects on the edge;
t*!- H|- |J * T);
Comment C is a vector from the center of
mass and perpendicular to the edge at the
point of contact (see Figure 3.4).

Now check that this is an outside edge;
FOREACH Nl.NZIBOUNDARY^NliE

A B0Uiv!DARY<jN2«E
A N1*N1 DO;

Ni *- DATUnUJl);
HZ - DATUniN2);

comment N is a reference vector such that
we move outside as we rotate about N from
£*! to tß:

V - Hi X Q;
IF N . V < 3

Comment £ points to the outside of
the vertex;

THEN FOUND ONE;
END;

END;

To determine contact vectors at verticies we can use only the outside corners of
the object (see Figure 3.5). That is, for all edges at this vertex the angle 9
must be less than 30 degrees (see Figure 3.5).

NOGQOD: END;

FOREACH V (VERTEX o BDY ■ V DO BEGIN
C2»-V . w •
FOREACHl.A I END ® E s V

A END « E = A
A A « V DO

IF A . V > C2 THEN GO TO N0G00D;
FOUND ONE;

The program then searches this list of contact points looking for pairs of anti-
parallel vectors, being careful not to take both vectors from the class of
vertices. These then are the orientation vectors which are stored with the
prototype together with the contact information:

.-■.•> .■>-. mmam

Page 30 ORIENTATIONS

W
QaJJ

^ ^

cantar of mot«

Figure 3.4
Pick-up Point on an Edge

center of mot»

Figure 3.5
Outside Vertex

- ■■■■ ^ ■:■■ .„■■

■■■■■'.■ ■'■' :'■

Page 31 C'iIENTATIONS

ORIENTATION
ORIENTATION

BOY
BOY

01
02

ORIENTATION 9 BOY ■ 09

CONTACT • 01 ■ Fl
CONTACT • 01 5 F3
CONTACT ® 02 . F2
CONTACT • 02 ■ F4

CONTACT » 09
CONTACT • 09

ES
E2

CEq. 3.8}

CEq. 3.9]

The contact information is used in determining which orientation vectors can be
used for a g.ven instance. The datum of an orientation vector is a 5 element
mat.-ix with tne 10Ilowing elements: i f Q and C2 are two anti-parallel contact
vectors then the datum of the orientation vector is:

mi - cHi] / (cimt2 + cit2]t2 + umn \

012] - tim I (CHlItZ + ClUJfa ♦ Cl(3]t2)

0131 - CIGH / (CHUt2 ♦ Cl[2]t2 + C113]t2)
0141 > I Qi I
OtSJ - I 02 I

(1/2)

(1/2)

(1/2)

In the case of a rectangular parallelepiped of size 1.25in. * 1.25in.
the program computes the following 3 orientation vectors:

Table 3.1

Orientation Vectors for Rectangular Parallelepioed
0Q] 012] 013] 0(4] 0[5]

x 2.55in.

1.03 0.03 0.08 1.88 -1.60
8.88 1.88 8.88 1.B8 -1.60
0.88 0.88 1.88 0.78 -8.78
8.71 0.71 8.88 1.13 -1.13
8.71 -0.71 0.00 1.13 -1.13
8.44 0.00 0.30 8.78 -0.78
0.44 8.88 -0.90 0.70 -0.70
8.00 0.44 -0.98 0.70 -0.70
8.00 0.44 8.98 0.70 -9.70

Each row in Table 3.1 represents an orientation vector. The first three
elements Olli, 0C2] and 013] give the direction components of the vector. The
two contact vectors are given by:

Pago 32 ORIENTATIONS

Cl

OQ]

0[2]
i

OtSJi
I

014] 1

C2
I 0[2I
I
I 0t3]
I I
I OK] I

All arm operations with oodies can be reduced to manipulations of these vector«
To p.ck up a body we need only consider the orientation ve^rs Ue seUcH;
or.en ation vec or and specify an approach angle; we can then complete the hand
transformation (see Subsection 2.1) and obtain an arm solution? and

-- <-:i-: ■ .,V.,;.,■.

Page 33

SECTION 4

MOVE INSTANCE

4.1 RANGE OF SOLUTION

approach angles for each orientatior vector i tS US the range 0f P^^ibie
from the intersection of the t.o ranges 'GvenTn^;568 S* approe-h an9le
vector, the program needs to compute he rZp n?!I0n fnd fomentation
uh.ch the arm can reach the object subject J^L 15?^ ans,e ^roughout
arm (see Figure 4.1). J suoject to the physical constraints of the

LIMITING
APPROACH ANGLE

Figure 4.1
Approach Iimi ted by Arm

Heuristics are
exist, if one

used to
exi sts

find an approach angle
at ali, and a further

at which
test is

an arm
made to

solution uill
determine if

■^m^'*^!f.-e*mmsmm&mi>)m!rw}r.

Page 34 RANGE

solutions exist for all approach angles. If a solution exists, but not for the
full range, the limits of the range are found by conducting a binary search,
using the arm solution procedure to test for feasibility.

In order to ensure that the arm does not penetrate the support plane (see Figure
4.2), the program computes the range of approach angle for which link 5 is above
the plane.

LIMITING APPROACH
ANGLE

LIMIT

Figure 4.2
Approach Angle Limited by Support Plane

This range of approach angle is then intersected with the possible range of
approach angle defined oy the arm to give a ringe throughout which the arm can
reach the object limited Dy both the arm and the support.

is process is repeated for the support post of the arm, A final intersection
the Iimi ting

acent objects

This process is repeated for the support post of the arm, A final
of ranges is made to keep the hand from intersecting the post, and
range of approach angle is obtained. Possible conflicts with adj.
are not considered.

4.2 ROVE INSTANCE

The first action of nOVEJNSTANCE is to select those orientation vectors of the
prototype (see section 3.2) which can be used to grasp the object. To do this
the program transforms a gravity vector back to the prototype, using the inverse
transform, and determines through which face it passes, Ue consider this to be

Page 35 HOVE

the support face. Any orientation vector (Equation 3.8) jhich has a contact
point (Equation 3.9) on this face or on any edge or vertex of this face is
discarded, the remaining orientation vectors are marked as possible. This
procedure is performed for the object in its initial position and again in its
final position. If the action is to be accomplished in one move then the set of
awailable orientation vectors that can be used is the intersection of the two
sets or ui ientation vectors for the initial and final positions. As the most
stable way to pick up in object is by grasping the object by its faces, the
orientation vectors are oMered by length and the shortest, representing face-
face contacts, are considere:! first.

For each of the orientation vectors so ordered the range of approach is
calculated at both the initial and final positions. In order to relate these
two ranges for a given orientation vector we make use of the reference approach
vector Equation 2.7. By transforming the reference approach vector RAi at the
initial position to the final position by:

RAi' Tf Ti
-1

RAi lEq. 4.1]

the shift S, between approach ranges may then be calculated as:

S ♦- the angle between RAj.' and BM about Qi
£Eq. 4.23

After applying the shift S to the initial rancc the two ranges of approach are
intersected. If the intersection is not empty then the. solution has been found.
An approach vector ^ is picked :.ithin the range of intersection. In order to
keen the arm clear of other obj.'ts, the preferred approach direction is
straight down. Iwo arm solutions are obtained, one at the initial position and
one at the final position, such that the shift between approach vectors is
maintained.

If there is no intersection between the first two ranges, the next orientation
vector in the intersection of the available set of orientation vectors is tried.

Uhen the set of orientation vectors is empty at either the initial or final
position, there is no way that the move can be accomplished as the arm cannot
reach the object. If the intersection of the set of orientation vectors were
empty, or if after evaluating the ranges for all the orientation vectors the
intersection of the ranges was empty then an intermediate position is tried.

In the case of
obtained (Table 3.

the rectangular parallelepiped whose orientation vectors
1) we will consider the problem of moving an instance from:

we

IMP«,invwwfmmmwr^mwm^M »m. i- J....W

Page 36 novE

i.ea .m .22 22.00

.88 1.88 .88 38.88

.88 .80 1.8£ 1.38

•38 .88 .88 1.08

to:

I -1.88 .88 .00 40.00 I
I I
I .88 1.80 .80 20.00 I
I I
1 .08 .08 -1.88 1.30 I
I I
I .83 .00 .00 1.00 1

This move includes turning the object upside down.

For each of the possible orientation vectors the ranne of aooroarh \m mmtm i** ■
at both positions. PI is the position vector and Jl K ?he oT^ a\ oV c ^al
the .n.t.al pos.t.on and at the second position the vectors are £2 and Q2

El - 20.80 33.88 1.38 1.00
Qi - .33 1.08 .88 1.00

Range From 40 to 173 degrees
Shifted Range From 220 to 353 degrees

PZ - /+0.83 28.80 1.30 '.00
02 • .00 1.80 .00 1.00

Range From 7 to 120 degrees
Common range 0 degrees

Pi « 20.33 38.80 1.30 1.00
01 - 1.80 .00 .00 1.00

Range From B2 to 173 degrees
Shifted Range From 242 to 353 degrees

PZ - 48.83 28.00 1.30 1.00
02 ■ -1.83 .00 .00 1.00

Range From 7 to 123 degrees
Common range 0 degrees

■ ■

Page 37 HOVE

Ei - 28.88 38.83 1.38 1.88
Qi " .|1 -.71 .08 1.00

Range From 49 to 173 degrees
Shifted Range From 229 to 353 degrees

EZ ' 40.00 20.03 1.30 1.00
QZD ' -.71 -.71 .00 1.00

Range From 29 to 165 degrees
Common range 0 degrees

Ei - 28.80 38.88 1.38 1.88
Qi ■ -1 .71 .00 1.0a

Range From 59 to 173 degrees
Shifted Range From 239 to 353 degrees

PZ
cz

43.33 2S.03 1.30 1.00
-•71 .71 .00 1.00

Range From 7 to 115 degrees
Common range 0 degrees

As the intersection of all the ranaes is wa an a + +<.M^ ■
Plan to move the object from i s tni al D^i^on n S l9 T made t0 *** a

and then from the intermedia e pis i'on ?o the f na? ^m^^Ä POSition

program specifies whether an interme iaJe pos^on ?« tS bi Jried ^H"' '^

•r^?-- « ^ t.z£ ^.Krir^ -
intermediate posi t ion. J the .ove ?s uLl ly äcco .p i sh^d as i't U? T ***
position and not the orientation that is specifieS Go n^f 2 • IS 0n,y the

arm is unaole to carry cut a task in one rove t is tLSSl ^l^L "^ the
eKample. the object must be turned over. 11 is'then necessar!'fnr K

the feSent

th^ob.ect part-^ over, put i t do.n. ^^^^Vn^^^^

^r^T^-^^r^Z^rl'055^ ******* ^ces is
original support '^e^'^f ^f^JSV ^ 7 TrTstrL^ ^
constructed for this intermedi^tP attmitlT*^T\ Tace' A transformation is
parallel to the original "uppSrlurface ?o'?v.:^ ^ neW *Wor* **'*
range, the object is then turned abou an'a. ° nr-J V^L***™* 0f appr0ach

objecfs principal axes Perpendtrar t e 0^o , er of'hT r^ ^U T
distance from the center of mass to the original •uBMrTfJ. ? HT< ' I Jhe

the m.tial distance, the heignt of the cen?er of S^bjlct ; adj^sleT ^

The process i« then repeated to find a common approach. First a m0ve solution to

r'rI«l^!WW«BB-^'>i»''

Page 38 HOVE

the intermediate position is computed and then, if successful, a move soiution
from the intermediate position to the final position is attempted . Ranges are
saved during the "initial - final" move attempt as they are needed in the
"initial - intermediate," "intermedicte - final" move evaluations.

In the example we are considering the 1 ntermediate position is specified as 30,
30, 1.3 and as the intersection of al
posi t ion is set up a?:

the ranges was zero an intermediate

| .38 .13 -.38 33.33 !
i

1
I .33
1

.98 .19 38.83 |

1.33 .33 .88
1

.85 |
j

.23 .S3 .33 1.83 |

The program now tries to mdke a plan to move the object to this position:

W * 23.83 33.33 1.38 1.88
Qi= .23 1.33 .83 1.83

Range Freu H8 to 173 degrees
Shi f tea Ranrje Froni -53 to 83 degrees

PZ • 33.83 33.33 .55 1.33
E ■ .IS .98 .83 1.88

Range Fro^i 19 to 15G degrees
Common range From 19 to 83 degrees

Aparoach ■ 51 degrees

A CuiWOn range exists and the program now calculates the two hand posit'ins:

i -.53 .23 -.78 23.83
i

.23 1.88 .33 33.28

.78

.33

.23

.23

-.53 1.33

.33 1.33

-.75 .19 .52 38.88 |

.15 .98 -.12 33.23 I

-.53 .88 -.78 8.55 !

.82 .83 .33 1.08 |

FrCT~)?is.^TOCTMW^WMW.|^^^

Page 39 ncvE

The program now tries to make a plan to move the object from the intermediate
position to the final position:

Pi - 38.88 38.88 .65 1.88
Qi - .19 .98 .88 1.83
Range From 19 to 156 degrees

Shifted Range From -71 to 66 degrees

PZ - 48.88 28.88 1.38 1.88
02 - .88 1.88 .88 1.88
Range From 7 to 128 degrees

Common range From 7 to 66 degrees
Approach ■ 36 degrees

Once again a common range exists and the program calculates the two hand
positions:

! -.79 .19 -.58 38.88 |
I I
I .15 .98 .11 38.88 |
I I
I .59 .83 -.81 .65 |
I I
I .83 .83 .38 1.88 I

I -.59 .88 .81 48.83 I
I I
I .33 1.83 .33 23.33 |
I I
I -.81 .33 -.59 1.33 |
I I
i .83 .88 .38 1.33 |

The problem is solved and the moves can be made.

By this procedure it is possible to make any re-posi t ionings and re-
orientations, even when the goal must be accomplished in two moves.

About 4 seconds are required to compute the arm positions when two moves must be
used.

^"^^»wgÄgfiiaswws?« W:W^.,,, ,.,„,,^„,.^,^^5^^

Page 48

SECTION 5

TRAJECTORIES

5.1 GENERAL CONSIDERATIONS

In moving the arm we have two positions, the initial and final. The discussion
until now has emphasized these positions and their determination (Subsection
4.2). In this section we will describe the move in detail.

The simplest solution is to move the joints independently from their initial
position to their final position, using a simple servo. Consider the situation
shown in Figure 5.1, where the hand is turning a block onto its side. The
motion is mostly in joint 5; if all the joints were moved to their final
positions then the hand would try to move through the support. What is needed
is to lift the arm up and down as joint 5 is moved, in order to clear the
support. Uhen the arm starts to move, it is normally working with respect to
some surface, for instance, picking up a block from a table As it starts to
move the motion of the hand should be directly away from the surface. If we
were to specify a position on a normal to the surface out from the initial
position, and then to require that the hand pass through this position, we would
achieve the correct departure motion. If we could further specify the time
required to reach this position, we could control the speed at which the block
was to be I i fted.

BEFORE AFTER

Figure 5.1
Crash

'-^^»•»{S'BMIWw.ni* »»»WW«!»"«««««»«^^!»«»«««»«*»^^

Page 41 GENt,?AL e

To estimate how far this position should be from the surface, consider Figure
5..., as this represents the worst case of surface penetration. If the hand had
been lifted by the maximum surface penetration, approximately 15% the length of
the last link, the collision would have been avoided.

For such an initial move, the differential change of joint angles is calculated
(Subsection 2.3) for a move of 3 inches in the direction of the outward pointing
normal. A time to reach this position based on a low arm force is then
calculated. The same set of requirements exists in the case of the final
position. Here we wish once again to approach the surface in the direction of
the normal, this time passing down through a letdown point.

Ue now have 4 positions: initial.I
servo the arm from one position
support (see Figure 5.3).

iftoff,letdown, and final and
to the next we would not col

i f we
lide

were to
with the

TYPICAL
JOINT
ANGLE

TIME

Figure 5.3
Point to Point Trajectory

Ue would, however, like the arm to start and end its motion with zero velocity
and acceleration, Further, there is no need to stop the arm at all the
intermediate positions. Ue require only that the joints of the arm pas-j through
the trajectory points corresponding to these intermediate positions at the same
11 me.

The time for the arm to move through each trajectory segment is calculated as
follows: for the initial and final seyments the time is based on the rate of
approach of the hand to the surface and is some fixed constant. The time

Page 42 GENERAL

MAXIMUM
PENETRATION

FINGERTIP
TRAJECTORY

Figure 5.2
Maximum Penetration of Hand

.•• m smmmmm

Page 43 GENERAL

necessary for each joint to move through its mid trajectory segment is
estimated, based on a maximum joint vaLicity and accsleration. The maximum of
these times is then used for all the joirts to move through the mid trajectorg
segment. ■

Knowing the joint variables and times we can determine a polynomial for each
joint, expressing joint angle as a function of time, which passes through all
the points and has zero initial and final velocity and acceleration; as there
are 4 points and 4 velocity and acceleration constraints we would need a 7th.
order polynomial. Although such jolynomials satisfy our conditions, they often
have extrema between the initial and final points and the joint variable must be
evaluated at each extremum to check that it has not exceeded the working range
of the joint.

As the extrema are difficult to evaluate for such high order polynomials, we use
a different «ipproach. Ue specify three polynomials for each joint, one for the
trajectory from the initial point to the liftoff point, a second from the
liftoff to the setdown point, and a third from the setdown to the final point.
Ule specify that velocity and acceleration should be zero at the initial and
final points and that they should be continuous at the intermediate points.
This sequence of polynomials satisfies our conditions for a trajectory and has
extrema which are easily evaluated.

If a joint exceeds its working range at an extremum, then the trajectory segment
in which it occurs is split in two, a new intermediate point equal to the joint
range limit is specified at the break, and the trajectory recalculated (See
Figure 5.4),

Although a collision avoider has not been implemented, except in the case of the
table and the arm support post, such a program would modify the arm trajectory
in the same manner by specifying additional intermediate points. If a potential
cci'ision were detected one or more joints would be required to pass through
some additional trajectory points in order to avoid the collision.

Ue nave another type of trajectory that we wish to be ably to compute, one which
moves the arm along a well defined space curve. Here we obtain a sequence of
joint angles at points along the space curve. The velocity along the space
curve is controlled by relating distance along the curve to time between points
(See primitive DRAW Subsection 7.2). This type of curve leads to a trajectory
with many points. If we were to use a single polynomial it would need to be of
high order, for this reason the sequence of low order polynomials is also
preferred.

5.2 POLYNOniALS

For each trajectory segment we have position, velocity and acceleration
constraints at each end. Except at the beginning and end of the trajectory the
velocity and acceleration constraints are continuity constraints. There are

wrrr^mt

Page 44

JOINT
RANGE
LIMIT

TYPICAL
JOINT
ANGLE

POLVNOfllALS

»PH'^swr-'-ff»

EXTREMUM
ORIGINAL

LETDOWN

^
FINAL

fLIFTOFF
INITIAL

TIME

Figure 5.4
Trajectory beyond Joint Range

only four constraints on the intermediate trajectory segments and five
constraints at the ends. Thus for the first and last trajectory segments a
fourth order polynomial will suffice and for the intermediate trajectory
segments a third order polynomial uil I I be needed.

Consider a trajectory segment described by:

4 3 2
9 . Ai4*t' + Ai3*t' + Ai2*tl + Ailmt' +Ai0

[Eq. 5.11

ui th

t/ri lEq. 5.2]

where Aij is the coefficient of the jth. power of the i th. trajectory segment,
and time t, is normalized to unity at the end of the trajectory segment of
durat ion ri.

For the first trajectory segment at time t'-0:

■^»---^■w^r^^^w^-Tw^^r«*-^ ii i I ii n iililli I llll|ilUliWJi|ipjiiWB|.i!MPUi!lM.iJ.

Page 45

and at time t'-1:

POLYNOMIALS

98 - A18

00 - 8 -All

90-8 -A12

91 - 98 - A91 - A14 + Ml

rl*91 - 4*A14 + 3*Ali
2 ..

rl *91 - 12*A14 + 6*A13

for the last trajectory segment we substitute;

t" - t' - 1

9n ■ An8

9n - 8 -Anl

9n » 8 -An2

and at time t''-0:

and at time t' '—1:

9n - 9{n-l) - A9n - -An4 + An3

rn*9(n-l) - -4*An4 + 3*An3
2 ..

en «9(n-l) - 12«An4 - B*An3

For the general ith. trajectory segment we have

0 - Ai4
o(i-i) . Aie

ri*ö(i-]J - Ail
2 ..

ri *9i hil « Ai2
9i - 9(i-l) - LQ\ - A13 + Ai2 + Ail

■

ri*9i - 3*Ai3 + 2*Ai2 +Ail
2 .,

ri *9i - ß*Ai3 + 2*Ail

tEq. 5.3]

CEq. 5.4]

tEq. 5.5]

CEq. 5.61

[Eq. 5.7]

[Eq. 5.8]

Eq. 5.3]

:Eq. 5.18]

[Eq. 5.11]

[Eq. 5.12]

[Eq, 5.13]

[Eq. 5.14]

[Eq. E.ISi

[Eq. 5.16]
[Eq. 5.17]

[Eq. 5.18]

[Eq. 5.19]
[Eq. 5.20]

[Eq. 5.21]

[Eq. 5.22]

'-^^r^'y.'^T^m^- -f^m

Page 45 POLYNOniALS

Equations 5.3, 5.4, 5.5, 5.10, 5.11, 5.12, and Equations 5.17 specify
coefficients directly. The remaining coefficients may be solved in the form:

A91

8,

8

692

a

e

e

A9n

1 1

3/rl 4/rl
2 2

G/rl 12/tl

|-l/r2
1 2
I 8 -2/r2

1111

I l/r2 2/r2 3/r2
I 2 2
! 2/r2 G/r2

M II 1

-3/rn 4/rn
2 2

6/rn -12/rn

1 -1

A13

A14

A21

A22

A23

An3

An4

[Eq. 5.23]

i..here the blocks indicated in Equation 5.23 may be repeated for each additional
point that the trajectory must pass through.

Normalized time t' runs from 0 to 1 for each trajectory segment except for the
last segment in which case normalized time t'' runs from -1 to 0. The arm servo
program requires that normalized time t' run from 0 to 1 for all trajecton,
segments. If we substitute:

f t" + i [Eq. 5.24]

m:

4 3 2
9 . A4n*t" + A3n*t" + A2n*t" + Aln*t" + A0n

CEq. 5.25]

we obtain:

■'«^f.9a«»wwr,!'^sa«f»-^«wss • : ^m-svvr ,■,..■ ■'.■^.;->■•: ■'-■«;■?$»<

Page 47 POLYNOniALS

'^^m^^^^W^^wf^s

9 . AAnff

+ (-4)|cA4n + ASn)*!'

2
+(G*A4n -3*A3n +A2n)*t,

+(.A#A4n +3*A3n -2*A2n +Aln)*t,

+{A4n -A3n +A2n -Aln +A0n)

[Eq. 5.2G]

and this gives us the coefficients of a polunomif»! for the last trajectory
segment in9 which normalized time runs from 3 to . as requ.red for the servo

program.

5.3 TRAJECTORY EXTREtlA

Intermediate trajectory segments are described by thi,-d order polynomials, one
such polynomial for each joint:

3 2
Q . A'^t' + A'^t' + Ail*t' +Aia [Eq. 5.273

the derivative is:

G - 3»Ai3*t' + 2*Ai2«t' + Ail [Eq. 5.781

The times of the extrema are given as the roots of Equation 5.28:

2 1/2
f - -1/3 Ai2/Ai3 ± 1(1/3 Ai2/Ai3) - 1/3 Ail/Ai31

[Eq. 5.29]

If the discriminant is positive and B < f < 1 then an extremum exists and it
can be evaluated by Equation 5.27.

In the case of the initial and final trajectory segments the trajector:es are
described by fourth order polynomials (Equation 5.1) with the low order terms
missing (see Equation 5.4, 5.5, 5.11, and 5.12).

■• >.:, . -.■ . ■

^W'^WS^f^^
■ ■ ' •■.: ■ ' ■ -■■

Page 48

and the derivative by:

EXTREfIA

4 3
g . Ai^t' + Ai3«t' + Ai0

3 2
Q . ^AiAUff + 3*Ai3*t,

tEq. 5.38J

The time of the extremum is given as the roots of Equation 5.3i:

t' - -3/4*Ai3/Ai4

if 8 < t" < 1 than an extremum exists and th« value of 9 is:

3
9 - -l/4*A;3*t'

CEq. 5.313

tEq. 5.32]

[Eq. 5.33]

irHlretfr 0I the fi[st1
and

T
lasl- m**f ^e also require monotonic motion in

order to avoid overshoot. To ensure monotonicity ue compare the value a?'*^
extremum to the initial or final point instead of to the jo'fn? physic^ I i'!t.

5.4 CONTINUOUS MOTION

In Subsection 5.1 we mentioned trajectories on space curves, where arm solution«
are obtained at regular intervals along the curve and a traiprw, iu
planned through these positions. There is a special case of surh ^Vf ^
in which the first and last arm positions are ?Ke same "or L^ ^ajectones
arm motion of Figure 5.5. The Kltl^MN ^it ^iKi b^^'iS ^
the orientation remains the same during the motion. So S tons are obt^e,
every 68 degrees so that the hand will approximately follow Ihe path of Jhe

s^ec fied "b' a^'h "^t^ fH91^ ^ endl two^itional po'sUion are' speciTtea, D ana h, at 20 and 343 deqres« resoectiVPIH The a™ :.. -• Tu.
sa.e period of UM for Mch of th. 8 seglet» aS^husLar» u?I Jo^rl^

velocity and acceleration at these points. The hand is caused to move in^
circular path continuously having first been started fr^ point "V" by caus?na
it to move along the alternate trajectoru at point "a." When it \m S»«?^H ?9
stop It is not diverted at the "switch" at position V but a I owed tf 1»S . moving through position "h" to "a." posmon g put allowed to stop by

■•«»^.WMWawte.;..^ *...., HMM M H ^ - ■ ■■.■ ■ ■•., „■.,.,..

Page 49

Figure 5.5
Looping

In the following matrix equation the x's represent non zero elements of Equation
b.23. Equation 5.34 is for the case of a simple trajectory and Equation 5.35
is in the case of looping, providing for the solution of two additional fourth
order trajectory segments 9 and 12.

Page 50 LOOPING

Ä91 | | XX 1 1 A13 |
0 1 | XXX 1 vv i

1 I A14 j
0 1 | XX X 1 1 A21 |

A92 | | XXX i 1 A72 i
0 1 I XXXX

1 "•-*- (

1 1 A2o 1
0 1 I XX X 1 1 A31 |

£93 | 1 XXX 1 1 A32 1
0 1 1 xxxx 1 »W |

1 A33 |
0 1 ! XX X A41 l

£94 | . • 1 XXX
1 ••*•)

* 1 A42 |
0 1 1 xxxx I A43 |
0 1

A9r (
1 XX X
1 XXX

1 A51 |
1 A52 1

0 1
n i

! xxxx 1 A53 |
0 1 1 XX X I AG1 j

£96 |
n i

1 XXX 1 A62 |
0 1 XXXX 1 I A63 |
0 1 1 XX X I 1 Kn 1 £97 | 1 XXX j i *72 1
0 1 XXXXX i 1 A73 |
0 1

£98 |
1 XXXX |
1 XX |

1 A83 j
1 AS4 |

[Eq. 5.34]

In the case
same.

of looping, the blocks of elements marked as Y's and Z's are the

Page 51 LOOPING

i m i | XX
i 0 i 1 XXX
I e i 1 XX X
1 A92 | 1 XXX

i i 1 XXXY
0 1 1 XX V

A93 | 1 xyv
0 1 1 xxxx
0 1 1 XX X

A94 | XXX
0 1 XXXX
0 1 XX X

A95 | » 1 XXX
0 1 XXXX
0 1 XX X

A9S | XXX
0 1 zzzx
0 1 ZZ X

Ä07 | XXX
0 1 xxxxx
0 1 XXXX

A98 | XX
0 1 ZZZ X
0 1 ZZ X

A99 |
0 1
0 1

A910|

XXXX
xxxxx
XXX X

XXXX
2 • 1

1 Y
1 Y

XXXX
XXX

I A13
I A1A
I A21
I A22
I A23
i A31
I A32
I A33
I A41
I AA2
I A43
I A5i
I A52
I A53
! AS1
I AG2
I AG3
I A71
I A72
I A73
I A83
I A84
I A9i
1 A92
A93
A94
A101
Al 02
A103
Al 04

= CJ

tEq. 5.35]

g and c (see Figure Sis) the cont,n,Jlty requirements at points

5.5 DIFFEflENTIAL nOTION

The arm can also make differential motions where ail six imlmtm ^^
change a certain amount in a given t i .e I n th I s case all ^2 V? -"equ.red to
together to make the change in the spec 1 ied im« Thf rnl J0(?tS. are driven
are determined as in Subsection 2 3 SpeClf,ed t,,"e- The chaW* of joint angles

Joint angle 9 as a function g{t') of normalized time f, for a change of A9 is:

Page 52 DIFFERENTIAL

t' - t/rm
3 2

9-g{t')-A9*t' (It' - 15t' + 13)

[Eq. 5.361

[Eq. 5.37]

This gives zero initial and final acceleration and velocity.

This» type of motion has all the undesirable properties described in Subsection
5.1 and is only suitable when small changes are to be made, as in correcting the
hand position during visual servoing. Such motions are of course much simpler
to plan than regular trajectory controlled motion.

Page 53

SECTION 6

SERVO

In this section ue relate position error to joint torque in the S'-m servo. Ue
then discuss the model of the joint drive in order to convert joint torque into
motor drive. In the final section provision is made for degrees of freedom of
the arm as it is servoed.

6.1 FEEDBACK LOOP

In this sertioj-! we will describe the servo response. Ue k;i 11 treat the system
as continuous, and will ignore the effects of sampling, assuming that the
sampling period is much less than the response time of the arm. At the end of
the section we will check that this assumption is valid. Time is normalized to
the sampling period, which has the
where f is the sampling frequency,
is represented by F(s).

effect of scaling the link inertia up by ft2
The Laplace transform is used throughout and

is obtained by evaluating the
the required time. The velocity
and second derivatives of the

The set point for each joint of the arm
appropriate trajectory segment polynomial for
and acceleration are evaluated as the first
polynomials.

The position error is the observed position 9 less the required value 9s.
Likewise the velocity error is the observed velocity less the required velocity.
Position feedback is applied to decrease position error and velocity feedback is
used to provide damping.

The feedback loop is shown in Figure B.l The arm is represented by 1/s J, where
J is the effective link Inertia a function of arm configuration. T(8) is an
external disturbing torque. The set point R(s) is subtracted from the current
position to obtain the position error E(s) and is multiplied by P. representing
differentiation, to obtain the error velocity. There are two feedback gains ke
and kv, position and velocity respectively.

By writing the loop equation we can obtain the system response;

2 2 2
E(sN (-8 J)/(s J + skv + ke)*R(s) + l/(s J + skv + ke)*T(s)

[Eq. 6.11

and the condition for critical damping is:

1/2
kv » 2(J*ke) [Eq. 6.2]

Page 54 FEEDBACK

TU)

Figure 6.1
Simple Servo Loop

chanj.8 m are «Ml. to "l"«!^ *C 7iL5^(JT SSI fS'.'ST

2 2 2
E(s)- (-s)/(c + skv + ke)*R(s) + l/{s + skv + ke)*T(s)/J

fEq. 6.31

and the condition for critical damping iss

kv « 2*(ke)
1/2

CEq. 6.4]

It can be seen that the servo response is now independent of arm configuration.

The principal disturbing torque is that due to gravitu causinn ■ \mmmm . •*•
error, especially in the case of joint 2. If ue were able to ^riJf9 P081 l0n

the negative of the gravity loading Tg ?see Fiourel 2) V*n f" equal to

same systen, response as in Equ^ion 6?3 ex«S ^a ll. THT^ 0bt?in the
external disturbina toraue TUl tL «^ * P! t wou,d *•««•• Te, the
positionerror. 9 q ' " the 9ravi ^ pendent torque, reducing the

i

Page 55

,W^w«***«*^^

T(«)

FEEDBACK

fr *"

E(«)

Figure G.2
Effective Inertia Independent Feedback

T(»)

Figure 6.3
Gravity Independent Loop

Page 56 FEEDBACK

2 2 2
E(8)- (-8)/(9 + skv + Ke)*R(8) + 1/(8 + 8kv + ke)*Te(8)/J

[Eq. G.5J

Ue can compensate for the effect of acceleration of the tet point Rls), the

first term in Equation 6.5, if ue add a term s R(s) (see Figure 6.4) and obtain
a system response:

E's)- 1/(8 + skv + ke)»T(s)/J (Eq. 6.61

The gain of -J and the torque Tg are obtained from Equation 2.36 uh'.ch ue
restate here:

n j T ..
Fi - E E Traced Ujk|*| Hj|*| Uji| *qk)

j-i k-1

+1 l I Traced Ujkp|*| Hj|*| Uji| *qj*qk)
j-i k-1 p-1

-Z mj*l G |*| Uji|*| Ij
j-i

[Eq 2.361

What is desired is to obtain an expression of the form:

• *
Fi • Ji * qi + Tg (Eq. 6.73

given an arm configuration qi.

The velocity dependent terms of Equation 2.36 are only significant at high speed
and are small for the arm ue are using. Ue will ignore the second term of
Equation 2.36, although it could be included with the third term as the values

of qj and qk are known from the trajectory.

Ue may interchange the order of t cion of Equation 2.36 to obtain:

■W.—■r.TW.Miy-y fflttBEa-W*

Pa9e 57 FEEDBACK

B 6 |
Fi - I E Traced Ujk|«|Hj|«|Uji f)»qk

k-lj-i

-Z mj«! G |*| Uji|«| |j
(Eq. 6.8]

or:

Fi - £ Cik qk + Ci
k-1 (Eq. 6.9]

where:

6 T
Cik- Z Trace(| Ujk|*j Hj|*| Uji|)

j"i tEq. 6.18]

and:

Ci - -Z nij*| G |*| Uji|*| Rj
j-i CEq. 6.11]

sr^w-'ai'^r^ ürtrÄiJ,1*^1 ,h' ,'r"5 of ^^ *■* ••

where:

Fi ■ Ji * qi + Tg

6 T
J' -- Z Trace(| Uji|*| Hj|*| Uji|)

j-i

tEq. 6.12]

lEq. 6.13]

and Tg as Ci in Equation 5.11

Ji is the effective joint mertia and Tg is the constant tern, due to gravity.

The servo has uniform sgstem response under varying arm configurati ions and is compensated for gravity loading and for the" accel^ation orthe^t point "

■■■■

.. .. ■ ,

Page 58 FEEDBACK

T(»)

^
R(t)

E(t)

Figure 6.4
Acceleration Compensated Loop

n™™mmmmmmmmmilim*mmmi!

Pag« 59 FEEDBACK

TIME UM I

Figure B.5
Position Error with InerMa Compensation

-.■•..,..■-■:,. - ■ ..■ . .

■:-"^"Tr" ■ —.'->,.■»>. \.

Page 60 FEEDBACK

Three plots of position error v. time for joint 2 are shown: Figure 6.5, Fiaure
6.6, and Figure 6.7. ■

In Figure 6.5 there is no gravity or feedback compensation, in Figure 6.6 the
gravity term is added, and in Figure 6.7 the acceleration compensation is
included. -

The steady state error for a given error torque Te is:

Ess - Ta/(J « ke) [Eq. 6.14]

Ue would like the arm to be stiff when it is servoing and a value of 50 oz/in at
the hand is the minimum acceptable, if a lesser value is used the arm moves very
sloppily. For this value of stiffness the values of ke can be calculated by
means of Equation 6.14. Representative values of kv based on critical damping
may then be calculated (Equation 6.4) and will give us the lower limits on ke
and kv.

There is, however, some noise in position measurement and if ue are ^ obtain
velocity by differencing observed position readings then the same noije is in
the velocity determination. The primary source of noise is the quantiz.ng noise
of the analog to digital converter used to determine position. The A/D converter
is a 12 bit device and thus has a relative error of 1/4396. The equivalent
noise torque at the joint is given by:

Tn ■ k * J * e [Eq. 6.151

where k is either ke if the velocity is determined separately, or ke+kv if the
velocity is determined by differencing, and e is the quantizing noise. A noise
torque of approximately F8/2 (see Subsection 6.2) seems to be acceptable and
this gives an upper bound on k.

Based on this information we can evaluate Equations 6.14, 6.4 and 6.15
joint:

Table 6.1

Ranges of Servo Gains
JOINT !i£ KY li

for eacn

1 8.838 8.39 0.18
2 8.832 8.36 8.33
3 8.885 8.14 0.75
4 8.86 0.49 0.49
5 8.85 8.49 1.6
6 8.86 8.49 58.8

The second column is based on Equation 3.14 and the third on Equation 6.4 These

f^BEwiW^wpjj^ajgg^^ imm w mmi

Page 61 FEEDBACK

.IOOI

0.1 1.1

TIM UM I

Figure G.B
Position Error with Gravity Compensation

Page 62 FEEDBACK

TIME (MC)

Figure 6.7
Position Error with Acceleration Compensation

Page 63 FEEDBACK

are the minimum acceptable gains. The fourth column is from Equation B.1S and
represents the maximum allouable gain if the information is to be obtained by
means of position measurement using the available A/D converter. In the case of
Joints 1 and 2 it can be seen that an alternative me^ns nvjst be used to obtain
velocity information although the position information is acceptable using the
A/D converter. To measure the velocity for these two joints a tachometer
generator is used, uhich has Much lower noise than velocity obtained by
differencing position measurements.

Ue made an assumption at the beginning «1 this section that the sampling
frequency was much higher than the frequency response of the arm. Ue can obtain
the frequency response from Equation G.B by finding the inverse transform. This
ir 'ound to be;

frequency = kv * f / 2 [Eq. S.161

As maximum kv that
sampling frequency,
increased to 1

we require is 3.49 this give us a response of 1/4 the
It is found in practice that the velocity gain can be

before the effects of sampling becore apparent.

At the beginning and end of each trajectory and at tra end of each trajectory
segment, the values of Ji and Tg are evaluated (Ec.uation 6.12). They are then
given to the servo together with the part trajectory polynomial coefficients. As
the trajectory is executed the values of Ji and Tg are linearly interpolated.

For the hand in
values of Ji and

the position considered in the example in Subsection 2.1 the
Tg are (in the oz. in. 1/G8th. second system of units);

Table G.2

Servo
JOINT

Parameters
Ji Tg

1
2
3
4
5
6

761333 8
S53333 1413

9533 -53
83338 94
82888 37
4888 8

Although these gains give an accentable response from the point of view of
stiffness, the gain is too low to maintain the high positional tolerance of
±0.05 in, which we are just able to measure using the 12 bit A/D converter. In
order to achieve this error tolerance the position error is integrated when the
arm has reached the end of its trajectory. When the position error of I joint
is within tolerance the brake for that joint is applied and the joint is no
longer servoed. Uhen all the joints are within the error tolerance the
trajectory has been executed.

Page 64 FEEDBACK

H the arm is to move a heavy load its predicted effects are taken into account
by mcreasing the effective mass and inertia of the last link of the arm h^I
evaluating Equation G.12. Similarly, if the hand is o exert a q^en Lei or
moment then the equivalent arm torque (see Suosection 2.5) ?s ad.ed to Tg

6.2 nOTQR DRIVE

The output of the servo equation is a torque to be applied at the joint Each
jomt has an electric motor drive and a harmonic drive gear redScrL Th«
motors are dr.ven by a pulse-uidth modulated voltage signaL The oTnll 0'f Ihp

STJS sc Suis^is^.3"the poiarity-The dri- ^ie -f^s ?^ee

ssxy SM ;:;ocityj^ ^ r.*^two —^x™

PULSE WIDTH

(VELOCITY<TOROUE > 0)

(VELOCITY•TORQUE < 0)

OUTPUT TORQUE

Figure G.8
Pulse Width v. Output Torque

This curve can be explained in terms of tuo friction effort«. in** **.
causina the two curv«« to HI^^ I^I , J. ■.:. _-'°n *tfect8! load dependent. causmg the tuo curves to diverge, and load independent.
he two curves at the origin. The electrical motor time
the shape of the curve near the origin. Experimentally
supplied to the servo program in the foiiomng piecewise I

causing separation at
constant also affects
determined curves are
inear form (see Figure

Page 65 DRIVE

PULSE WIDTH
(VELOCITY.TORQUE > ^)

tvELOCITY'TOROUE < ^)

OUTPUT TORQUE

Figure G.9
Piecewlse Linear Pulse Width v. Torque

where:

V0 is the motor drive at uhich the joint will move at constant velocity
exerting zero force in the direction of motion;

Fa is the force that the joint uill exert at drive level V8 but with a

negative velocity;

the slopes and slope differences are obtained from the experimental

curves.

When the velocity is very low the direction of intended motion is substituted

for the velocity.

One other factor considered is the back Ml of the motor. The value of "h"
the ratio of required voltage to supply voltage. The supply voltage is simply
augmented by the computed back emf before "h" is calculated.

Uhe-i the velocity is non zero the output torque is predictable but at zero
velocity and with zero intended motion the error in the output torque can be as
much as half the horizontal displacement (F3/2) between the two curves at the
origin. The values for this error torque at a typical arm conf-gurat ion in terms

of force at the hand FH, are:

■,-..■

:

Page 66 DRIVE

?'.■:•■-' -yf ».-v;«'^«

Table 6.3

Arm Static Friction
JOINT F8 oz. FH oz.

480 ±18
788 ±20
78 ±35

188 ±5

III J
It can be seen that the arm can exert forces with a typical tolerance of ±18 02.

6.3 PARTIALLY CONSTRAINED MOTION

If we require the arm to exhibit a degree of freedom along a given direction or
about a given axis at the hand, the program selects a joint to be "free" on the
following basis. The program calculates the equivalent arm torque (Subsection
<..b) for a unit force in the given direction or moment about the given axis, and
then normalizes the torques by dividing through by their respective F8
(Subsection 6..J. The program then selects that joint which has the laraest
normahzed torque to be "free." This is the joint which is most sensitive to
motion m the required direction and it would be the first joint to move if the
force were slowly increased from zero in the free direction.

If we require more degrees of freedom we repeat the process, bei no
to select the same joint twice.

careful not

To free the joint during motion, the feedback gains ke and kv are set to zero
(see Subsection 6.1). This means that the free joint still has acceleratio,.
compensation (Equation 6.6) and gravity compensation (Equation S.5). If the hand
is required to exert an external force this is added so that the joint is
compensated for all known forces and has no feedback. • .

The free joint servo response ma'' be obtained from Equation 6.6 as:

E(s) - Te/(J
2

* s) tEq. 6.17]

Page G7
^

SECTION 7

CONTROL

In addition to moving, the arm can perform such functions as opening and closing
its hand. These functions and motions are called "primitives" and can be put
together to make an "arm program." An arm program is assembled to moke a
trajectory file specifying the primitives together with supporting data,
trajectories, effective inertia constants and gravity loading terms.

Two programs exist, one for assembling "arm programs" and the other for
executing the resulting trajectory files.

7.1 ARM STATE

The state of the arm is described by the foMowing global variables, uhich are
located in the upper segment and are available to all other programs sharing
this segment, such as a strategy program. At the termination of execution of a
program the state variables whicr, describe the arm are updated.

ARn_nOTION The name of the program currently being executed. This iss
warning flag to other programs that the arm is 'n motion.

ARHJJAIT Trie name of the program execution of which is temporarily
suspended.

ARf1_STATUS The error state of the ar.n at the end of execution.

ARn_LIN< The 4x4 transform uhich describes the position and orientation
of the hand at the snu of execution.

GRASP The separation between the finger tips.

ARn_SEGnENT An integer variable incremented at the beginning and end of
each MOVE pr imlt ive.

Programs can be executed by the following two procedures.

DOJT (NAHE) causes the pfegrM KA.IE to be executed.

D0_PRCICEED causes continued execution of the program execution of uhich
was interrupted.

During execution various errors can occur. Aitnough some errors may be desired
states, they are known as errors oecause tney cause the arm to stop and to apply
all the brakes. There are various touch sensors on the arm and if, when
selected, one of them touches anything, an "error" occurs.

:

Page 68 STATE

The follouing is a list of the error messages:

xl Excessive force at joint x.

2 Hand closed beyond minimum specified opening

xB Touch sensor x was touched.

22 Excessive force at hand

23 Arm failed to stop on specified force.

There are other messages which refer to system errors, such as file not found.

If an error occurs, execution of the program is suspended and the stat.
variables are updated, the contents of ARnjIOTION and ARfl UAIT are exchanged ano
the error code is set in ARn_STATUS, Execution can proceed with the next
primitive, after error recovery, by calling procedure DO PROCEED.

7.2 PRiniTlVES

This section lists the arm primitives, ..hich have meaning at two times: once at
assembly when the trajectory fi le is being created and feasibility must be
checked, trajectories planned etc., and once at execution time when the
primitives are executed in the same way that instructions are executed in a
computer,

OPEN (DIST.i Plan to open or close the hand such that the gap between the
finger tips is D1ST.

CLOSE (niNIMUn) Plan to close the hand until it stops closing and then

M^?M,,Mthft the gap betige8n the fi"fl«r tips is greater than
nlNinun. If it is less, then give error 2.

CHANGE (DX_DY_DZ. VELOCITY) Plan to move the arm differentially
(Subsection 5.5) to achieve a change of hand position of vector
DX_DY_DZ at a maximum speed of VELOCITY.

SUEEP (DIST. VELOCITY) Plan to move the hand differentially (Subsection
5.5) in the direction of the hand's orientation vector a
distance DIST at a maximum velocity VELOCITY.

LIFT (DIST, VELOr:TY) This is the same as SUEEP except that it is in the
direct ic. of Q x A where 0 and A are the orientation and
approach vectors respectively,

REACH (DIST, VELOCITY) Again this is the same as SUEEP except it is in
the direction of the Approach vector.

"WMimiiimin

^w^tJmift^v^wmm'y-^rmim^vm^m^

Page 69 PRiniTlVES

TILT (ANGLE) Plan to rotate the band di fferential! j ANGLE degrees
(Subsection 5.5) about the orientation vector.

TURN (ANGLE) This is a sipüar rotation about Q x ^.

TUIST (ANGLE) Here the rotation is about the approach vector.

PLACE Plan to move the hand vertically doun until the hand meets some
resistance, that is, the minimum resistance that the arm can
reliably detect.

MOVE (T) At assembly time check that the position specified by the
hand transformation T is clear. Plan to T.ove the hand along a
trajectory from its present position to | T I. The hand is moved
up through a point LIFTOFF given b^ LLFIÜnE • INITIAL POSITION +
DEPART, where DEPART is a global vector initialized to z - 3
inches. Similarly on arrival the hand is moved doun through a
point SEiJMgi. ^y: SELiM - FINAL POSITION * ARRIVE.
ARRIVE is dlso set *. ■ 3 inches.

PARK Plan a move as in flOVE but to the "park" position.

DRAU (DX DY DZ. ROT AXIS. 81. CRANK. CRANK AXIS. 92. TIME. LOOPS. FORCE.
NUHBER.FREE, FREE VECTOR) This is a trajectory motion of the
iiand. The hand is at the end of a vector (CRANK) which is
rotated 82 degrees around an axis (CRANK AXIS) as its origin is
translated (DX ßV DZ). At the same time the hand is re-oriented
about another axis (RDT AXIS) 91 degrees. See Figure 7.1. If the
end point is the same as the initial then looping may be
specified (see Subsection 5.2). Finally a number of degrees of
freedom and an excess force to be applied during the program may
be specified. With this primitive we can do almost anything!

There are also control primitives which specify how the other primitives are tu
be carried out.

STOP (FORCE, nOflENT) During the next arm motion stop the arm when the
feedback force is greater than the equivalent joint force
(Subsection 2.5). It the arm fails to stop for this reason
before the end of the motion, generate error 23.

SKIPE (ERROR) If error ERROR occurred during the previous primitive then
skip the next primitive.

SKIPN (ERROR) if error ERROR occurred during the previous primitive
execute the next primitive otherwise skip the next primitive.

JUMP (LAB) Jump to the primitive whose label in LAB.

UAIT Stop execution, update the state variables and wait for a proceed
command.

■- -'Tpf?^' IT' «y*» r«T^-^^W5« »TSPsPiFf

Page 70 PRiniTIVES

pxpxp;

CRANK AXIS

Figure 7.1
A Draw notion

TOUCH (MASK) Enable the touch sensors specified by rask for the next
primi tive.

SAVE Sav« the differential deviation from the trajectory set point.
This can be caused by CHANGE type primitives.

RESTORE Cajse the arm to deviate from the trajectory set point at the
end of the next motion by the deviation last saved.

7.3 ASSEHBLY PROGRAfl

The assembly program has two modes of input, message procedure or source file.
Ue will describe the source file input here although it should be kept In mind
that a strategy program would be able to execute the same functions.

Planning normal'y begins from the current position and proceeds from there. The
planned state cf the arm is kept in a 4x4 transformation STATE. Thus when a
series of moves is planned it is always from STATE to the specif'ad transform T
that moves aru made. At the end of each successful move STATE Is updated. In
order to start a program a BEGIN pseudo-op must be assembled. This causes a
trajectory file to be named and specifies the initial state of STATE. Similarly
at the end of a program the trajectory file must be closed. Ue will list the
pseudo-ops:

Page 71 ASSEMBLY

BEGIN (FILE. T) Open file FILE as the
STATE to transformation | T |.

trajectory file and initialize

MERGE Merge the last assembled primitive with the preceding motion
pr imi t ive.

END Close the trajectory file.

MACRO (FILE) Causes input to the planning program to be switched to FILE
until the end of FILE. This gives us macros without parameters.
The MACROs may be nested.

In the case of most primitivta their parameters are either vectors or
transformations; should another program use the assembly program these vectors
and transformations would be data structures of that program. In the case of
source input we need to define such data types and associate them with symbolic
names. All names must be defined before a primitive can be assembled.

Data types:

TRANS (NAME. R. X, Y, Z, Ox. Oy, Oz) Set up a 4x4 transformation NAME
sucn that it has position x.y.z and orientation vector Ox.Oy.Qz
and that the approach vector is rotated R degrees from the
reference approach vector about the orientation vector.

VECT (NAME, x
1

x) Define a vector NAME of value x ,x ,x ,x .
4 12 3 4

MOVEJNSTANCE (Tl. TF, IP) This is partly a data type primitive as it
sets up a series of transformations to move an object with
transformation TI such that it has transformation TF using
intermediate position iP if necessary. However it assembles all
the move and hand primitives to accomplish the move.

PROTOTYPE (OBJECT) this sets up the prototype of the body to be moved by
MOVEJNSTANCE.

The planning program is 30K and shares a 14K segment which contains runtime
routines and global data. Typical running times are 1 sec to plan a move, and
from 8.5 to 4 seconds for MOVEJNSTANCE depending on the complexity of the move.

7.4 PROGRAMMING EXAMPLES

Le will give some examples of hand programs to clarify the use of primitives.
The first example is to move the hand tc ^ position 28,30,1 to pickup an object,
then to move it to 40,20,2 and place it on ihe table.

BEGIN TRANSFER 0
TRANS T

Page 72 PROGRAHS

38 23 30 1 i 3 8

nOVE T
CLOSE 3.5

TRANS T
30 48 23 2 1 8 3

HOVE T
PLACE
PARK
OPEN 3
flERGE

END

Set up a transform to
posi tion the hand.

If there is nothing here
then an error mil occur.

Change the transform to
the new posi tion.

The hand ui11 open as i t
starts to move.

The next example is to grasp an object without moving it in case there (« some
error in its position. The hand is closed with the touch sensors enabled until a
finger touches the object. The hand is then "swept" and closed in 8.1 inch sters
until the other * mger touches. The hand is then clos-'d.

L2:

LI:

L3:

L8:
L10:

TOUCH 1
OPEN -1

SKIPE 8
JUMP LI
SWEEP -0.1 1
TOUCH 1
OPEN -1
SKIPE 16
junp L2
JUMP L3

SKIPE 16

JUMP L8
SWEEP 0.1 1
TOUCH 1
OPEN -1
SKIPE 5
junp Li
CLOSE 0.5
JUMP LI8
WAIT

This will cause the hand to
close wi th touch "on".
Did the left finger touch?

Yes move right.

And close the hand again.
Did the other finger touch?
No move right «gain.
Yes alI done.

Check that the right finger
touched.
No then some error.
Move left.

Ana close the hand again.
Did the left finger touch?
No move again
Yes close the hand.
And finish.
The error state.

The last example, whose file name is CATCH, has no begin and end as we are ooina
to use it as a macro. Ue will use CATCH first to position the hand on the

*rf^^^g««gM»«g»'»M<Wy»l«j»|l»fy..ti^y

Pvge 73
PROGRAHS

Sirk iToV^ir.^'*"' *"*ci0",he ^ •«- 'o .h„ M obj.ct
MACRO CATCH

OPEN 3
TWIST 98

MACRO CATCH

Here ue assume that the
hand has been positioned
over the object. The
macro calI ui11 substitute
the text from our previous
example.

Now open the hand and turn
it around 30 degrees.
And closa it again.

acco.pl i.h,d th. ^ K P Ky JlnTli.tX.'S?'!..''^,'" '*"*•»••
positico. M. „oulc. ,1,0 hav. SSL «tiTtt«'"^..^,. ^ 'n ini,ial

when the torque is 283 oz. in. 'ocdiea at ^M0,1. Ue will stop turning

BEGIN SCREW 8
TRANS T
98 28 38 2 1 8 8
MOVE T
PLACE

VECT ROTATION
8 8 -i
VECT NULL
8 8 8
VECT MOMENT
8 8 -288
STOP NULL MOMENT

VECT FORCE
8 8 -20

VECT FREEX
1 8 8

VECT FREEY
8 1 8
VECT FREEZ
8 8-1

Move the nut to the bolt
and place it.
The bolt axis

The stopping torque.

Stop the arm during the
motion when the torque
is 200 oz. in.

We will want to push
down on tne bolt as we
turn.

The hand must be free in
the x.y and z directions
as we screw.

Page 74 PROGRAMS

^^m^m^^m^^mmrm^s^^J^^^'m:

ORAU
NULL ROTATION 368
NULL NULL 8
60 3 FORCE

3
FREEX
FREEY
FREEZ
END

No change of position
No crank axis
1 Second per turn, plan
for a maximum of three
turns. Exert the force.
Three drgrees of freedom.

This will screw the nut on the bolt.

7.5 EXECUTE

With the exception of HOVE and DRAH, which require trajectory files, most
functions can be executed directly by prefixing the primitive name by "00." The
assembly program plans the action and sends it to the arm servo program to be
executed. This does not change the state of the arm servo program if it is in a
"wait" state and execution can continue after any number of executed primitives.
This method is used by the interactive programs, which will plan a move to bring
the hand close to the required place and then plan a "wait." When executed, the
hand position will be modified during the wait phase by the interacting program
executing a series of "DO" commands. Execution of the preplanned trajectory can
then continue by calling "D0_PR0CEED."

7.6 ARM PROG1":A!-

Tw.- * i iw A simplified flow chart for the execution program is shown in Figure 7.2.
loop is executed 60 times a second. If the arm is not in motion then RUN is
false and the touch sensors are checked before performing any function. At the
completion of a motion or, if the arm is not moving at the completion of a
function, the program counter is incremented and the next primitive executed. A
zero primitive terminates execution.

The block ANGLES measures all the joint angles and performs a piecewise non-
linear conversion on them. The velocities are also determined, either by reading
tne tachometer generator outputs (joints 1,2) or by differencing the position
information.

The block SERVO corresponds to Subsection 6.1; here the errors are computed and
the drive torques calculated. If a stop arm primitive is in effect then the
error torques are checked against the equivalent arm torques to determine if the
arm should be stopped. At the end of the trajectory the position errors are

«mmrmfKupr-^tifM

Page 75 ARfl

Figure 7.2
Arm Program, Simplified Flow Chart

Page 76 ARn

nulled. Uhen each individual joint is u;thin the error tolerance the brake is
applied and uhen all joints are stopped tne next primitive is executed.

Section DRIVE takes the joint torques as input and computes the motor drive. It
checks for excessive force and stops the arm.

The THETA section computes the next values of the joint angles, interpolates th-j
Ji and Tg values (see Equation 6.12) and controls the switching as required for
looping.

The Touch sensors are then checked and if any have been touched the arm is
stopped. Finally the function, if any, is performed. Functions are not
normally performed while running with the exception of hand opening.

The execution time for the loop is approximately Smsec on the PDP-6 processor,
using floating point hardware. The program length is 3K words including
trajectory buffers.

Uhiie the arm is running the trajectory set point 9t is given by:

9t - f(t') [Eq. 7.1]

where fCt) is the appropriate trajectory segment polynomial (Subsection 5.2) and
t' is normalized time. The arm set point is as follows:

6s - Gt 4 66 [Eq. 7.2]

where d6 is a constant offset between the set point and the trajectory point.
Between liftoff and set-down for a period of time Tm:

ös - 9t + dG +d28*g(t') (Eq. 7.3]

where g(t') is given in Equation 5.37. Uhen t > rm, d8 is changed as follows:

dQ .- d9 + 629
d29 •- 8

At the beginning of each trajectory motion we set:

d9 «- 9 - 9t
d29 <- -d9 + d29

(Eq. 7.4]
(Eq. 7.5]

(Eq. 7.6]
(Eq. 7.7]

where 6 is the observed value. Thus at the beginning of a trajectory:

9s - 9 - 9t + d9 (Eq. 7.8]

and at the end of let-down:

9s - 9t + d28i (Eq. 7.9]

Page 77

where d29i is the value of d29 at the beginning of the trajectory Equation 7.7.
If d20 Mas set to zero at the end of the previous trajectory by Equation 7.S
then Equation 7.9 becomes:

8? - 9t lEq. 7.183

This means that if the arm is displaced from the point from which the trajectory
was planned, the arm is gradually brought back to the trajectory during the mid-
part of the motion.

All the differential motions are accomplished by loading d2Q setting Tm and
setting RUN. At the end of Tm the arm has moved d29 and the value of d9 has also
been incremented by d29.

The "save" command causes d9 to be saved and the "restore" primitive loads d29
with the previously stored dG. By this means we can find some location by
differential motion, save the JQ, and then, if we uieh to return to this
differentially modified position, restore d9 into d29 before returning to the
unmodi fied posi tion.

Page 78

SECTION 8

CONCLUSIONS

8.1 SunriARY

In mit ..ork we have atten-.p^d t« provide a systematic approach to arm
programming. Ue have been concerneo with three main protlens. 1) hou to position
the hand on an object. 2) how to move the hand and |l how to servo the arm.

The firt« problem has been soivefl t., setting up a world model to represent these
objectsi problems relating to grasorg objects in the world model are solved
symbolically. Unen obiects trt .ocate^. either by the vision system or by touch.
theu are represpntel in the mode,. In performing the difficult man.pulat ,0ns
r-Guired by the «ttnl Insanity Puzzle [Feldman ?lb3 this model based approach
^or^ed without failure. Ire arm nas functioned in a dear environment and a
collision avoider has not been ir.plemented. It is hoped that the world model
will be adequate U soive tne co.llsicn prible-n symbolically.

In moving tne arm we have deronstrateci tne necessity of servoing the hand
through a succession of posit.cns m craer to avoid colliding with the support.
Having obtameo tne hand pos 11, ons. the joint variables are determined and a
cmooth curve is fitted for each jeu.t. fntM trajectories reduce the execution
time as the arm need not be stopnea at eacn intermediate position.

The planned -rajectories enable us to ca;cuiate joint torques to exert a given
hand force. If tne jomts are ef^cie-t tnen we can exert the force at the hand
bu driving the iointl at tne UleutttM torques. The lacK of efficiency of a
leint Ciuttd by friction, leads to e-rc-s in the force exerted. In the case of
the present hand tN error i| d tne order of ±1B or. at the hand. To reduce
these erro-s we would need to MAM jo:nt torques, or forces at the wr.st. If we
sense forces at the wrist a t-arsformation matrix would be needed to relate
joint drive to Mfitt force components.

At DTtMnt cor-pie^e arm actions *>§ i.ntten m a file. Each file contains both
the* traiecto-y and servo constants tc::etner with tne joint torques which exert a
nanci force. ' It is possible to sepa-ate tne components and to save the
trli«Ctoru tOOtth*- w: tn i ts serve constants. Such a trajectory can then be
u-ed "hen a similar motion is needed. If the arm were also to exert a force
th.s could be calculated ana acaec; to tne existing trajectory.

ThP th.rd problem, how to servo the arm, .as solved by writing a contro: program
-acablp of servomg the arm and performing the various functions. Uhen the arm
T^not' used smpiy as a pos 11: oning devi ce the f lexibi I i ty of a computer .s
needed to modify the course of execution depending on many conditions. The
arms positional accuracy is t3.i inches and its repeatabl11ty is ±0.03 inches.
Tne primary limitations on accuracy are the A/D converter and hnk stiffness. If
the System could mak« accurate differential motions we could bring the arm into

i

.-
Page 79 SUmARY

the vicinity of the object and then use either vision or touch to detect the
differential errors and make the appropriate corrections. Although the present
system can calculate differential changes all the joints must be servoed to
accomplish the change and there is no improvement beyond the limits of arm
repeatability. If some precise form of differential motion were possible then
the effective accuracy of the arm would be increased.

The basic decision to move the arm along trajectories and the subsequent
decision to divide the task into planning and execution have facilitated the
development of both parts of the work. For instance, without trajectories we
could not predict the gravity loading terms, nor could we control the approach
to the support plane. By writing two programs, one for planning and one for
execution, it is possible to optimize both separately. Ue were able to write
the planning program in a high level language and to execute it under time
sharing, as there are no real time constraints. The execution program is written
in assembly language and is suitable for execution on a small computer.

8.2 SUGGESTIONS FOR FUTURE UORK

There are two main areas for future work, world modeling and arm control. In
world modeling the determination of arm collisions with other objects and the
suusequent trajectory modification need to be programmed. The class of objects
that can be represented needs to be extended, together with the hand's ability
to mainpulate them.

In the area of arm control
the fc-m of touch sensors
arm more sensitive to its e
manner. With the present
measuring the joint torques
the degrees of freedom o
examining the resultant mot
be per formed with the exist
WCTK to üe investigated,
hands, one to hold the work
Ue are currently installing
hope to investigate some of

we need to improve the sensory ability of the arm in
and force sensing at the wrist. This would make the
nvironment, and able to perform in a more intelligent
system it should be possible to weigh objects by
and inferring the weight. Ue could also Investigate

f an unnncwn object by exerting forces on it and
ion. There are many tasks of this nature that coulr)
ing system. The use of tools is an important area of
nany tasks would be simplified by the use of two
piece and the other to perform some operation on it,
a second arm similar to the one described here and
these problems.

Page 88

APPENDIX

A.l HARDUARE DESCRIPTION

The arm is shown in Figure 2.1 IScheinman] and we ui II give its essential
features here. The hand, a simple parallel jaw hand of 10 cm opening, can be
positioned anywhere in a work space of 1 meter radius about the shoulder and
with any orientation. It
sensors.

* spciLe UT i nieier reiaiue ODOUI me snouiaer ana
is proviaed with elementary "switch" type touch

The arm, designed to work with 5kg loads, is powered by electric motors;
harmonic drive gear reductions are employed on most joints. These reductions are
efficient which means that the arm can react to external forces (see Subsection
6.3). and thus the hand can follow an externally constrained motion. Brakes
are provided to hold the arm in position when it is stopped, so that the arm
need not be continuously servoed.

The power to weight ratio is high, resulting in a very high performance arm. It
is possible to move the arm 1S8 degrees at the shoulder in little over a second
including stopping and starting time. The absolute accuracy of the arm is of
the order of ±3.1 incnes and it? repeatability ±0.03 inches. Point to point
servoing usually takes in the order of 1 to 2 seconds.

Joint angles are measured by integral potentiometers and are read into the
computer by a 12 oit A/D converter. In tne case of joint G where continuous
motion is possible two wipers are provided on a comnon element. Uhenever the
current wiper is within l/8th of the end of scale the other wiper is read. As
wipers are interchanged an offset is added when appropriate. This continuous
motion is used in such tasks as screwing in screws.

Control of the arm is by means of a voltage pulse widtn modulated signal; the
polarity and duration are set by tne coivputer. If the arm is not addressed bu
the computer once every ,?3 msec, a hardware interlock autcmatically stops the
motors and puts on the brakes. Tnis must be "unlocked" by the computer before
the arm can be run again.

Page SI SAIL

A.2 SAIL

SAIL [Suinehartl is an extended form of ALGOL with LEAP [Feldman 69] added to
it. LEAP provides the ITEM and QATUn constructs which we use to represent the
models. Bodies and parts of them (faces, vertices, edges) are represented by
items, a data type which is treated simply as a name. The main use of items is
that they may be associatea together in the following manner:

Attribute of Object is Value

Where Attribute, Object and Value are items.

To associate three items the "MAKE" construct is used.

msa A*O.V

Uhere the "•" stands for "of" and the "■" stands for "is".

To delete such an association tne "cRASE" construct is used.

ERASE A®0sV

[Eq. 9.1]

[Eq. 9.21

[Eq. 9.3]

There exists a mechanism for searching the store of associations in an efficient
manner, the "FOREACH" construct. Assume that we had HADE the following
associat ions:

FACEsCüBEäFACEl
FACE&CLJBE«FACE2

Then the following FOREACH statement:

FOREACH F| FACE«CUBEsF DO <statenient> CEq. 9.4]

where <stefterisnt> is an ALGOL ittttMnt and F is an iten variable and will cause
F to be sequentially assigned to FACE! and then to FACt2, the statement being
executed each time.

One additional p.ece of data can be associated with an item known as its DATUn.
This is usually of algebraic type, for example an array. In order to refer to
tnis array by name the DATUH construct is used, and to refer to an element of
the array the subscript list is aaded.

DATUHiA)

DATUfUA) [i,3]

[Eq. 9.5]

?

Page 82 SAIL

Thus if we represent a vertex of a body by an item e.g. VERTKX1 then we may give
as its datum the vector representing the position of the vertex, where
DATUn(VERTEXl)[1] would be for Instance the V coordinate.

A. 3 VECTORS AND TRANSFGRHATIONS

Vectors representing points in space are denoted by an under-bar "V" and are
described by four components:

1 vm i

I V[2] I

I V[3J i

I ¥143 |
[Eq. 9.G]

such that the components of the vector V along the x.y.z axes Is given by:

X = V[l]/V(43 [Eq, 3.7]
Y . V[2]/V[4]
Z = V[3]/V[43

Ulith this scheme the null vector:

3

a

3

i
uT-n 9.8]

and vectors at inifinity:

VQ]

V[2]

V[3J

[Eq. 9.S3

Page S3 VECTORS

are representable.

All usual vector operations are defined. Addition and subtraction where:

i*Ui|J [Eq. 9.10]

Rtl] - AE1J/AU] + B[1]/BI4]

nm - A [2]/A [4] ± B[2]/B[4]

Rt3] - A [3]/A [4] ± BC33/BC4]

R[4] - I.I

The dot product where:

(A . £) - (Ai-l]*Bm + A[2}*B[2] + A[3]*B[3})/A[43*B[4]

The cross product where: R - (A K £)

mi - A[2]*B[3] - 6C2:*A[3:

R[2] - AI3)*B[1] - Bt3]*A[i:

R£3] - A[i]*Bi2] - B[i]*A[2J

RW - A[4]*B[4]

tEq. 9.11]

tEq. 9.12]

flagni tude:

c- ale:

A I
2 2 2 1/2

(All] + A [2] fA[33) /A [4]

SA

I AQ]

I A [2:
I
I A [3:

I A[4]/s

Planes are also represented by four components as a row matrix.

I FQ] F[2] F[3] F[4] I

CEq, 9.13]

[Eq. 9.14]

[Eq. 9.15]

wvawmmmm.:

Page 84 VECTORS

m this case the first three components represent the outward pointing normal of
the plane normalired to unity and the fourth component represents the negative
directed distance to the plan« in the direction of the normal from the oriain
(see Figure 9.1). ■

Figure 9.1
Plane Description

PCU - Hill

F[2] - HW

FC33 - urn

FM - -D

[Eq. 9.161

If a plane is so represented, a simple test exists to determine if a point V
lies inside or outside the plane. Ue form the product:

|Fj*|V| - V[l]*Fm + V[2:*F[2] + V[33*F[3] + V[4]*F[4]
[Eq. 9.17]

and depending on the sign the point lies inside or outside the plane If the
product is zero then the point lies on the plane. ' > - - -

Having represented points and planes it remains to be able to rotate and

Page 85
VECTORS

»«^^äftJsrs&c.urrsÄ.r'-- •* -
T I

XX

l xy' m'
I «2' yz'
I 3 8

Zx'

zz'
8

e
a
e
i

tEq. 3.18]

i i i
i i

I a j
i I
I i I

'f then transformed by:

has components:

I *' T I * I x

IEq. 9.19]

tEq. 9.28]

XX

xy'

xz'

! 1

in the rotated system, (see Figure 3.2)

In the case of a translation we have the matrix:

, T , ii a a xt
I T i - i e i a ut

1 a 3 1 2t
i a a a i

IEq. 9.21]

CEq. 9.22]

Page 86 VECTORS

Figure 9.2
Rotated Coordinate system

from which it can be seen that:

| T | * 1 V i [Eq. 9.23]

has components:

| Vtl]+xt |
1 I
1 V[21+yt 1
i

1 v[3]+zt |
[|

1 V[4] |
[Eq. 9.24]

of the translated vector.

To be able to rotate and translate we multiply the transformation matrices
together:

| T | - | Tt| * | Tr| ttq. 9.25]

■-•'-^v^'-- :'':*^,r..:f>.^:-^".;,..;: ■.^■. M'-^ r; r-,..^ ■;..

Page 87

I T

VECTORS

xx' yx' zx' xt
xy' yy' zy' yt
*2' yz' ZZ' Zt
e e e i

tEq. 9.283

J^hif6 I"6 0nly transform3tions that m will perform although the sustem is
peTsp^cti^. ^ ^ t-n8^ti°- -ch as seal ing. 9 s^tch^ a^d

Sran^^n^rons^'th" Iff ^^ EqUati0n 9-17 to h°,d ^er these

I F I * I V | - | F' | « | V |

and:

I v T I « I V I

Then if ue substitute for | V | in Equation 3.27 we obtain

I P I * I V I - I F'| * | T | * | V |
and thus:

-1

or:
I F' I - I F | * | T |

T -1 T
I F1 | - | T | « | F i

[Eq. 9.27]

tEq. 9.28]

CEq. 9.29]

tEq. 9.30]

tEq. 9.31

transposed ^ tranSf0rmed by P^'f-Plying by the inverse transfer.

«■

y^f-r

Page 88

BIBLIOGRAPHY

[Agin] G. Agin. "Description and Representation oi Curved Objects", Ph.D.
Thesis, Stanford University. September 1972.

[Baumgart] B. Baumgart. "GEOMED - A Geometric Editor" Stanford ArtificiaI
Intelligence Laboratory Operating Note 68, flay 1372.

[Eiiri] n. Eilrl. T. Uno, H. Yoda. T, Goto. K. Takeyasu, "An Intelligent Robot
with'Cognition and Dec!sion-Haking ability." Second International Joint
Conference on Artificial Intelligence, London, September 1-3, 1971.

[Ernst] H. A. Ernst. "ilH-1 A Computer-Operated Hechanical Hand," Sc. D. Thesis.
Massachusetts Institute of Technology, December 1961.

[FalR] G. Falk. Comnuter Interpretation of ÜBJCtifil Lina DUU SS. ä lÜLfifi
Dimensional Scene. Stanford Artificial Intelligence Project, nemo
No. 139, August 1970. In reduced form: "Scene Analysis Based on
Imperfect Edge Data." Second International Joint Conference on
Artificial Intelligence, London, September 1-3, 1S71.

[Feidman 53] J. A. Feidman. P. D. Rovner. "An AI go I-Based Associative Language,"
Communication of the ACH. Vol. 12, No. 8, August 1969, pp.439-449.

[Feidman 71a] J. A. Feidman, R. F. Sproul, "System Support for the Stanford
Hand-Eye System," Second International Joint Conference on Artificial
Intelligence, London, September 1-3, 1971.

[Feidman 71b] J. Fekiman, K. P'.ngle. T. Binford, G. Falk, A. Kay, R. Paul. R.
Sproul I. and J. Tenenbaum. "The Use of Vision and Manipulation to Solve
the 'Instant Insanity' Purzle." Second International Joint Conference on
Artificial Intelligence. London, September 1-3, 1971.

[Gill] A. Gill "Visual Feedback and Related Problems in Computer Control led
Hand-Eye Coordination." Ph.O. Tnesls, Stanford University. Septenmer
1972.

[Goertr 52] R. C. Goertr. "Fundamentals of General-Purpose Manipulators."
Nucleonics. Vol. 10. No. ii. November 1952, pp.36-42.

[Goertz 64] R. C. Goertz, "rianlpulator Systems Developed at ANL," Proceedings of
the 12th. Conference on Remote Systems Technology, ANS, November 1964,
PP.117-13S.

[Goto] T. Goto. K. Takeyasu, T. Inoyama. R. Shimomura. "Compact Packaging by
Robot with Tactile Sensors," Proceedings of the 2nd. International
Symposium on Industrial Robots, May 1972, pp.149-159.

[IITRI] Proceedings ai ih£ ZQCL International Symposium on Indugfi?! RgbPt?.
May 1972.

Page S3 BIBLIOGRAPHY

Unoue] H. Inoue. "Computer Control led Bi lateral rianipulatcr." Bui let in of the
Japanese Society of Hechanical Engineers, Hi, 14, No. B3. 1971, pp.139-

[Kahn] H. E. Kahn, Ihg Near-Hinimuw-Timg Control j^, Open-Loop ArticulatPri
^nSMtit QMlni. Stanford Artificial Intelligence Project. Hemo
No. 18b. December 19S9.

CLindboml T. H. Lindbom. "Today's Robots at Work in Industry: Hatching the Robot
and the Job." Proceedings of the 2nd. International Symposium on
Industrial Robots. Hay 1972. pp. 123-148 wmm^m on

[Paul] R. Paul G. Falk. J. A. Felci-an. Ij^ Computer Reoresentat inn ^ Simnlu

Nof^iai ISeP^1, Stanf0rd ^i''^1 Intelligence Project,"!^

[Pieper] D. L. Pieper. JM UmiliSM 2l BJttiayigiM Uüdsr Conouter Control.
Stanrord Artificial Intelligence Project. Hemo No. 72, October^9687"^

[Roberts 83] L. G. Roberts. Q^i^ng P?ry?ptipn y Three-Dim^inn;,! fctlg.
Technical Report No. 315. L.ncoln Laooratory. Hassachusetts InstitStiJ
Technology. Hay 1953.

[Roberts G5J L. G. Roberts. Hc-oaeneous Hatrix Reoresentatinn and Haniou I at inn
Oi N-pinienSipn^l Cgn^trugts. Document HSia45. Lincoln Laboratoru
Hassachusetts Institute of Technology. May 1SB5.

[Scheinman] V. ß Scheinman. U11]m ^ * Computer Hanioulator. Stanford
Artificial Intelligence Project. Hemo No. 92. June 19B9"

[Swinehart] D. Swinehart. R. Sprouli. Sail. Stanford Artificial Intel!ioence
Project, Hemo No. 57, November IBBST inieingence

[Uicker] j. J- Dicker Jr. "Dynamic Force Analysis of Spatial Linkages." ASHF
paper No. BB-Hech-1 (published in Trans. ASHE 19B7).

[Uichman] U. H. Uichman. UlS. Ql Cctical Feedback in ^ Computer Control of an
Arm. Stanford Artificial Intelligence Project, Hemo No. 55, August ISBT?

