AD-785 071

MODELLING, TRAJECTORY CALCULATION AND
SERVOING OF A COMPUTER CONTROLLED ARM

Richard Paul

Stanford University

Prepared for:

Advanced Research Projects Agency

November 1972

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

BEST
AVAILABLE COPY

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
~ MEMO AIM-177

~STAN-CS-72-311

MODELLING, TRAJECTORY CALCULATION AND
SERVOING OF A COMPUTER CONTROLLED ARM

B8Y
RICHARD PAUL

AD785071

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

NOVEMBER 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

&l [DISTRIBUTION STATLMINT A
NATIONAL TECHNICAL Mpipen T
INFORMATION SERVICE I

1! S Bepartnent of Caommaerce
Springheld VA 22151

T

{ TR \ i
'ﬁ. & A:lml
ST L

Approved for public release;
Distribution Unlimited

a1

i

STANFGRD ARTIFICIAL INTELLIGENCE PROJECT NOVEMBER 1972
MEMO AIN-177

COMPJTER SCIENCE DEPARTHENT
REPORT CS-311 .

MODELLING, TRAJECTORY CALCULATION AND SERVOING
OF A COMPUTER CONTROLLED ARM

by
Richard Paul

The problem of computer control of an arm is divided into four parts: modelling,
trajectory calculation, servoing and control.,

in moilel ling we wuse a symholic data structure to represeat objects in the
environment. The program considers hcow the hand may be positioned to grasp
these objects and plans how to turn and position them in order to make various
moves. An arm model is used to calc:late the configuration-dependent dynamic
properties of the arm before it is moved.

The arm is moved along time-coordinated space trajectories in which velocity and
acceleration are controlled. Trajectories are calculated for motions along
defined space curves, as in turning a crank; in such trajectories various joints
must be free due to external motion constraints.

The arm is servoed by & small computer. No analog servo is used. The servo is
compensated for gravity loading and for configuration-dependent dynamic
properties of the arm,

In order to control the arm, a planning program interprets symbolic arm control
instructions and generates a plan consisting of arm motions and hand actions.

The move planning program has worked successfully in the manipulation of plane
faced objects. Complex motions, such as locating a bolt and screwing a nut ontn
it, have also been performed.

This research was supported in part by the Advanced Research Projects Agency of
the Jffice of Defense under Contract No. SD-183.

The views and conclusions in this document are those of the author and should
not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Advanced Research Projects Agency or the U.S.
Government.

Reproduced in the USA, Available from the National! Technical Information
Service, Springfield, YVirginia 22151.

Page i ACKNOWLEDGMENTS

| wish to express my thanks to Professor Jerome Feldman for his invaluable help
and advice.

| would Iike to thank Professor John McCarthy and Professor Bernard Roth for
their suggestions,

Many ideas presented in this work arose out of discussions with fellou workers,
in particular with Git Falk and Aharon Gili.

I would like to acknouwledge the contributions from many people at the Stanford
Artificial Inteliigence Project and in particular from Victor Scheinman Hho
designed the arm and Joe Zingheim who maintained it.

I am indebted to Bruce Baumgart who produced the small pictures of the arm
appearing at the top corner of every page. By fanning through ths document the
example described in the text is displayed. These pictures were produced by
Bruce using his GEOMED program [Baumgart]l with an arm trajectory file as input.

This work was submitted to the Department of Computer Science and the Committee
on Ooraduate Studies of Stanford lniversity in partial fulfiliment of the
reguiremerits for the degree of doctor of phi losophy.

—

/

=

Page iii TABLE OF CONTENTS

SECTION PAGE
1.8 INTRODUCTION
1.1 SYSTEM DESCRIPTION 1
1.2 HISTORY 4
2.8 ARM MODEL
2.1 KINEMATICS 5
2.2 ARM SOLUTION 12
2.3 OIFFERENTIAL SOLUTION 15
2.4 DYNAMICS 17
2.5 FORCE AND MOMENTS 28
3.8 WORLD MODEL
3.1 PROTOTYPE DESCRIPTION 23
3.2 CORIENTATION VECTORS 27
4.8 MOVE INSTANCE
4.] RANGE OF SOLUTION 33
4.2 MOVE INSTANCE 24
5.8 TRAJECTORIES
S.1 GENERAL CONSIOERATIONS 49
5.2 POLYNOMIALS 43
5.3 TRAJECTORY EXTREMA 47
5.4 CONTINUOUS MOTION 48
5.5 DIFFERENTIAL MOTION 51
6.8 SERVO
8.1 FEEOBACK LOOP 53
6.2 MOTOR ORIVE 64
6.3 PARTIALLY CONSTRAINED MOTION 65
7.8 CONTROL
7.1 ARM STATE 67
7.2 PRIMITIVES 68
7.3 ASSEMBLY PROGRAM 78
7.4 PROGRAMMING EXAMPLES 71
/.9 ERELUTE 74
7.6 AR PROC3AM 74
8.8 CONCLUSIONS
§.1 SUMMARY . 78
£.2 SUGGESTIONS FOR FUTURE WORK 79
APPENGIX 88
A.1 HARDWARE GESCRIT TION 80
A2 SpIL . :
A.3 VECTORS AND TRANSFORMATIONS 82

BI1BLIOCGRAPHY 88

runmep

e L et Sl VN ———r i, T ——

SSS—p—— T e XN S
Page iv LIST OF ILLUSTRATIONS 1y
FIGURE PAGE
2.1 Arm N
2.2 Link Coordinate Sustem 7
2.3 Arm Coordinate Systems 8
2.5 Solution of Joints 1,2 and 3 13
2.4 Hand Coordinates 14
2.6 Solution of Joints 4.5 and B 15
2.7 Force Transformation 21
3.1 Cube Prototype 24
3.2 Prototypes 25
3.3 Orientation Vectors 28
3.4 Pick-up Point on an Edge 39
3.5 Qutside Vertex 38
4,1 Approach limited by Arm 33
4,2 Approach Angle Limited by Support Plane 36
€.l Crash 49
5.3 Point to Point Trajectory 41
5.2 Maximum Penetration of Hand 42
5.4 Trajectory beyond Joint Range . 44
5.5 Looping 49
B.1 Simple Servo Locp 54
5.2 Effective Inertia Independent Feedback g5
6.3 Gravity Independent Loop &5
6.4 Acceleration Compensated Loop S8
£.5 Position Error with lnertia Compensation 89
8.6 Position Error with Gravitu Compensation 61
6.7 Position Error with Acceleration Compensation 82
6.3 Pulse Width v. Output Torgque 84
6.9 Piecewise Linear Pulse Width v. Torque 85
7.1 A Uraw Motion 78
7.7 Arm Program. Simpiified Flow Chart 75
.. Elane (escripticn "84
3.2 Fotated Coordinate systen 86

Page 1

SECTION 1
INTRODUCTION

1.1 SYSTEM DESCRIPTION

We are concerned here with a computer controlled arm and hand. This arm and
hand function together as a genera! purpose manipulator which forms part of a
robot as an effector subsystenm.

The computer plans and executes sequences of arm and hand motions to accompl i sh
tasks. Arm motions are along smooth, collision free space trajectories: all
known forces are predicted during planning and compensated for durinu execution,
Hand motions, uhich consist of opening and closing the hand, are controlled by
touch sensors. The hand can also exert 3 force while following an externally
defined motion.

Any robot must contain both a sensory input mechanism, uhereby it can gain
information about the environment, and an effector subsystem by which it can
change the environment. In addition to being the main effector, the hand also
has brimitive touch sensors and force detection ability, and may be considered a
sensory subsystem,

The environment in which the robot works must be one which it can represent
internally, It has certain information a priori, and is able to gain more
information by interacting with its environment.

In our case it knows, a priori, that objects are plane-bounded, solid, and may
be colored. It knows, a priori, that all objects are supported by a plane, or by
eaclrn other, and ihat objects may be moved, but not through each other. It is
grven prototyves of ali the possible objects that can exist, and learns by means
of its senses of the existence and position of instances of these prototypes.,
Work is in progress to increase the scope of the robot's environment; curved
objects are currently being added [Agin).

The type of interaction between robot subsystems is important as subsystems
function together to accomplish tasks, Currently all subsystems perform under
the direction of the strategy subsystem, with little interaction betueen other
subsystems. For instance, the arm does not cal! for vision to locate an object
that it has dropped, nor does vision call the arm to move an obscuring object in
order that it may "see" hetter., One important exception is the case of visual
feedback wused to position the hand on an object; here the vision subsystem
interacts d'rectly with the arm (Gill].

To illustrate the system we Will describe the interaction needed to solve the
Instant Ineanity puzzle (Feldman 71b). Here it is first required that four
colored cubes be fcund and the color of the faces be determined. The cubes are
then turned and stacked so tha* each side of the stack has four different
colored faces visible,

SRR R

NG o W AT g YT

Iaddba 2\

Page 2 SYSTEN

The interaction betusen the STRATEGY subsystem, VISION, RECOGNIZE, COLOR and the
ARM is on the following level. The STRATEGY subsystem asks the VISION subsystem
to find an out!ine; it then asks RECOGNIZE to identify the outline as a cube.
This process is repeated unti! four cubes have been found. COLOR is then told
to find the color at the center of each of the three visible faces of each cube.
The ARM is told to turn over each cube and VISION called to refind the outline.
RECOSNIZE is then called to reidentify the outline as a cube. When all four
Cuhes have been turned over and re-found, COLOR is told to find the color of
each of the three now visible back faces of each cube. The STRATEGY subsystem
then determines the necessary turns and stack positions of each of the cubes to
obtain a solution. The ARM is then told to move each cube accordingiy., There
are two levels of error recovery: within each subsystem, and by the strategy
subsystem uhen 3 subsystem reports faiure,

The programming environment in which the robot operates is known as the "Hand
Eye" system [Feldman 7lal. Here individual subsystems are represented by time
eharing jobs, which may interact., This is done by two means: 1) a global data
structure uhich represents infermation about the environment available to all
subsystems: Z) the message procedure construct whereby one job may execute a
procedure in another job. For example, cubes are moved by 8 message procedure
"MOVE_INSTANCE" which, in the Instant Insanity case, was used both to turn the
cubes over and to stack them.

The arm subsystem provides a series of functions which are of gerera! utility,
such as to move the arm to a given position "MOVE," or to open the haira "QPEl! "
In order to perform these functions the arm subsystem maintains a data Ldase in
the form of constants and procedures uhich describe the arm and hand in detail.
If the arm is required to perform some task then an attempt is made to describe
the task in terms of existing arm functions, if this can be dona then the
problem is solved. If a task is proposed that cannot be solved in terms of
existing functions, then either a function is modified or a new function must be
Lmitten,

Other subsystems are not expected to use the arm's data base,uhich is local to
the arn subsustem. Problem solving requiring use of this data base would be
considered a function of the arm subsystem. Global variables are maintajned
which describe the current state of the arm for the other subsystenms,

To build a stack of hiocks would not be an arm function, as it could be
accompiished in terms of simpler, existing functions such as MOVE_INSTANCE. To
turn & cube over wou'd be an arm function as this requires that the range
thiroughout which the hand can grasp the cube be con..dered. To move the arm
through a cluttered space of objects is an arm task as this requires that the
arm be considerec in relation to the other objects when planning the trajectory
that trne arm wi!l fcllow.

Information is given to the arm subsystem in function calls and in the form of a
three dimensional description of the space. [f this space is completely
described and the arm fails to accomplish a task then the strategy subsystem
knous that the task must be specified differently. For instance, if a block must

s S kit A
I——e e Pt A G Ry aaipssi o e e ﬁ

Page 3 SYSTEM

be moved but some obstacle is in the way, then the strategy program must first :
ask the arm to nmove the obstruction and then ask that the original move be]
accomplished. The arm subsystem would not move other objects and thus change the
state of the environment without being told to do so by the strategy subsystem.
1f the space model is incomplete and the arm cannot accomplish a task based on
the available information, then the arm w'l!l not call the vision subsystem to
have this space investigated but will report failure.

There are tuwo main parts to the arm subsystem: the planning program and the arm
execution program. In order to move the hand a plan is made. If the hand is to
move an object ther the planning program considers the object in relation to the
hand to cdetermine how it may be grasped. As the move is planned, other objects
are considered in relation to the hand in order to prevent collisions. The plan
is represented in terms of a cocrdinated time dependent trajectory for each
joint of the arm. Since the computer has planned a trajectory the program knous
pefore the arm is moved the configuration, velocity and acceleration of all the
inks of the arm and can compute the effective inertia and the gravity torque of
each link. These terms tocether with the trajectory are given to the arm servo
s-ogram. Lhere the inertia and gravity terms are used to improve the execution
of the trajectory.

The arm servo progrem executes the trajectory by moving the arm; it also
performs such actions as opening and <losing the hand, Trajectories, together
Wwith hand actions, are uritten out in a file, 2nd may be repeatedly executed by
the arm servo program if reguired. The arm servo program is small and is
suitable for execution in a mini-computer connected directly to the arm., The
planning preogrem can be run under time sharing and can make plans for many such
arms,

The servo is a conventional sampled data servo executed by the computer with the
tellowing modification: certain conirol constants, the loop gain, predicted
qravity and externzl torques ate varied with arm configuration.

Ir additicn to the needs of the current vision and strategy subsystems, the arm
nes been nrogramned to perform other tasks such as turning cranks, screwing in
corews, pesning and pulling. The touch sense is used in some of these tasks. Arm
programs may be written where the course of execution of the program by the arm
ma., be modified depending on activation of the touch sensors or other
coreditiens. Such programs may be written in a form of assembly language but are
ycersical to the message procedure calls of a strategy progranm.

In subiseauent secticns of this thesis we first describe the model of the arm and
derive all *he relaticns tnat ue will use (Section 2). UWe then describe the
mote: of the environnent and the hand's interaction uwith it (Section 3).
Section & cescribes MOVE _INSTANCE the nighest leve! strategy function of the
arm subsystem, provided primarily for strategy subsystems performing operations
with plane faced sciids. In Section 5 we describe the requirements and solution
of the smooth trajectories used by the arm. The serve loop is described and we
then deal with control{Section 7}, giving a list of the arm functions or
prinitives.

L

Page 4 SYSTENM

The arn is described fully in {Scheinman], and ue give a brief description in
Appendix A.l. Tuwo other appendices are given. Appendix A.2 describes SAIL, a
form of ALGOL, with LEAP added., SAIL is the language in which the programs are
“ritten and we will use it to describe some of the algorithms. Appendix A.3
briefly describes homogeneous coordinate vectors and transformations, more fully
covered in [Roberts 85?.

The notation used in this work is as follows: vectors are represented by an
underbar V; Matrices are represented by vertical bars | M |; Exponents are

either superscripted or preceeded by an "t", x or x%2: Indices ara either

subscripted or enclosed in square brackets, A’. or Ali,jl; Multiplication is
1}

represented by an asterisk "x".

122 HUSTORY

The first mechanical hands were developed at Argonne National Laboratary in 1947
for handliny radioactive materials (Goertz B4]. These hands uwere master-slave
systems where the hand replicated the motions of a person, the master. In 1348
force feedback was added to enable the operator to feel the forces that the hand
was exerting [Goertz 52].

The early type of hand, without force feedback, has been adapted to perform
repetitive tasks [Lindboml. The hand is moved from one position to another by an
operator and the joint positions recorded. The hand can then cycle repeatediy
through these recorded positions in synchronism with external machinery.

In 19681 Ernst [Ernst) develcped a computer controlled hand with touch sense. The '

ra7o codld explore a region by touch and put the objects it identified into a
pox., In 1983 a half tone picture could be analgzed to locate and adent|fg plane
faced objects [Roberts 63)., By 1968 a program using a TV camera as vision |nput
[Wichman] located the objects for the hand to pick up,

[n 1958 Pieper studied the kinematics of arms and planned collision free
trajectories through spaces containing obstacles [Pieper]l. This work was
followed by Kahn who studied the dynamics and developed a bang-bang servo
(Kahnl.

Bu adding force feedback [noue uas able to perform such tasks as putting a peg
into a hole and turning a crank [lnouel. Ejiri developed a system to assemble
blccks using a drawing of the required assembly as a visual input [Ejiril. In
1972 Goto could locate and identify plane faced objects by touch and then pack
them compactly by moving and pushing them [Gotol.

The recent proceedings of The Second International Symposium On Industrial
Robots [IITRI! provide a general revies of the state of the art.

Page S

2T B % O AT

SECTION 2
ARM MODEL

In this section we will consider the arm and develop a mode! for it (Pieper].
We will describe the solution which, given a hand position, returns a set of
joint angles. Then, based on the model of the arm, we will develop a solution
for differential motion. MWe will then derive the relation between acceleration
and force for the arm, to obtain the effective !ink inertia and gravity loading
(Kahn), Finally we will derive the relationship betueen a force and moment
acting at the hand and the six joint reaction torques. The results of this
section are used in later sections of the work but as they all relate to the arm
mode| they are derived together here.

2.1 KINEMATICS

The arm shown in Figure 2.1 is a six degree of freedom device allowing the hand
to be positioned anuuhere and with any orientation within the limits of joint
motion.

The arm is made up of six |inks, each connected to the next by a joint. There
are tuwo kinds of joints, prismatic, or sliding, and revoiute. In order to
describe the Iink transformation in terms of the joint csinstraint and the joint
variable we will introduce a coordinate system in which the joint constraint is
implicit,

We will describe the "A" matrices, which relate between |ink coordinate systems,
and the "T" matrices, the link transformations which specify the position and
orientation of each |link in space.

Associated with each link is an orthogonal coordinate system fixed in the |ink
(see Figure 2.2).

For link i the Zi axis is directed along the axis of the joint between |ink i
and i+l. The xi axis is along the commcn normal between the two joint axes of
the link in the direction from z(i-]1) to zi. The y axis completes the right
handed set.

We cen transform coordinate systems i into i+l by performing a rotation, two
transiations, and a final rotation as follous:

1), A rotation about zi of Bi to make xi parallel to x(i+l).

2). A translation si along zi to locate the origin at the point where
the common normal betueen zi and zi+l cuts zi.

3). A translation of ai along x(i+l) to bring the origins into
coincidence.

¥ R

Fage 6

KINEMATICS ()

Figure 2.1
Arm

S RN R A

Page 7 KINEMATICS

Figure 2.2
Link Coordinate System

4). A rotation about x(i+l) of «i to bring the z axes into coincidence,

The jzint variable for a revolute joint is B: the joint variable for a prismatic
joint is s,

In the case of the arm that we are using, we pick the origin of coordinates at
the base of the shoulder. We have tuo revolute joints, followed by a prismatic
joint, followed by three intersecting revolute joints, There are three offsets:
Sl = 16.24in, S2 = 6,85in and S6 = 18.25in. S4 = SG = 8, and 83 is a variabie.
The tink coordinates for the arm are shown in Figure 2.3,

If wue express points in link i by a vector Bi then the relationship between
coordinate sustems Ri and R{i-1) may hbe expressed by:
R{i-1) = | Ai| % | Ri| (Eq. 2.1]

where | Ai | is given hy:

| cos B -cos « sin B sin « sin 8 acos 8 |

| sin B cos « cos 8 -s5in a cos @ a sin 8 |

| B sin « Cos « 5 |

| 8 8 8 1 |

(Eq. 2.2]

)
| |L$<%,
2

KINEMATICS

Page 8

Figure 2.3
Arm Coordinate Systems

Page 9 KINEMATICS

For the joint angles shown in the following table:
Table 2.1
Joint Angles

JOINT VARIABLE
B -86.7
2 -Al2-4
3 &< 2
4 -38.2
5 82.4
6 68.9

The A matrices for the arm shown in Figure 2.1 are:
'ola oaa loaa oaa

l

l

| -1.088 .08 -.18 .28
Al = |

l

l

l

oaa 'loea oaa 16924
.00 .08 .08 1.00
| -.38 .88 -.%2 .28

l
| =.82 .28 .38 .28

A2 - |
| .28 1.28 .88 6.85

|
| .88 .00 .88 1.28
; .82 1.00 .28 .28
I '1-80 oaa .83 oaa

A3 - |
; .22 .28 1.8 22.18
| ..o .08 .28 1.00
.73 .08 .62 .28
-.62 .28 .79 .08

Ab «

.82 -1.00 .28 .00
.28 .28 .08 1.00

Page 18 KINEMATICS

A7 .28 .99 .08
.89 .8e -.17 .e

AS
.82 1.00 .88 .20
.20 .be .80 1.08
-36 'a83 .aa -aa
.33 .36 .08 .08
Ab -

.83 .¢2 1.88 10.35
0o .28 .08 1.80

if we let Iink B be the table zoordinate system then we may relate from any |ink
coordinates to R@ by:

B =|Al|x|A2[%|A3| ... |Ai|%|Ri]| [Eq. 2.3)
2]
RE = | Ti|] x | Ri| [Eq. 2.4)
where:
| Ti]l = |Al|%]|A2]|%]A3]| ... A [Eq. 2.5)
| Ti | is the transform of the ith |ink of the arm which describes the position

of the link in table coordinates.

For the A matrices given in the preceding exanple we have the corresponding T
matrices:

-.13 .08 1.00 .00
-1.02 .88 -.10 .20
.82 -1.82 .80 16.24

l
l
l
T « |
|
| .88 .02 .8 1.e0

|
|
|
l
l
|
|

Page 11 KINEMATICS

.84 1.00 .88 6.082 |

|

|

| .38 -.18 .82 -.63
2 = |

I 082 -aa -038 16024

|

| .08 .00 .00 1.00

| -1.00 .84 .83 8.%

|

| .18 .38 .92 18.78 |
3 = | |

I -ae l82 ‘-38 7.78 I

|

| .02 .28 .00 1.00

' '-81 -.39 '058 S-GE

|

| =16 =.92 .36 18.78
To = |

l -057 -38 073 7.79

|

| .83 .28 .28 1.09 |

| -.23 -.59 -,78 8.86 |

| |

l '083 -36 'oaa 19078
5 = |

| .28 .73 -.83 7.78

|

| .88 .20 .00 l.00 |

II '063 '-aa '078 '-aa

| .8 1.88 -.88 19.78
® = |

= -78 '-aa '063 1.33 ll

| .88 .0@ .00 1.00 |

| T6é | is the transformation of the hand, the last link of the arm. MWe can

interpret this matrix as follows: the right hand column of the matrix is the
position, in table coordinates, of a point centrally located betueen ti.e finger
tips P. The second column specifies the direction of the "y" axis of *ne hand
(see Figure 2.3), which we will call the orientation vector Q; the orientation
vector is directed betueen the finger tips. The third column is the "2" axis and
is in the direction that the hand is pointing; we Wwill call this vecto, the
approach vector A, UWe may then urite | T6 | as:

KA TP STy B

i

PR WSSy

Page 12 KINEMATICS

| (0 x A)[x] OIx] Al Phd|
: (0% Ayl Olyl Aly] P[g]}
; (0 x A}Iz) Olz] Alz] P[z]}
; 8 8 8 1 :
[Eq. 2.6]

The approach vector can be expressed in terms of an approach angle as follows:
We define a reference approach vector BA as:

BA« 0 xk (Eq. 2.7]

where k is a unit z vector. The approach angle is the angle between A and RA
measured abcut ((see Figure 2.4),

2.2 ARM SCLUTION

The «=m solution is a procedure which, given | T6 |, the transformation of the
hand, returns the six joint angles which Will position the arm in such a way
that the hand will have the required transformation.

Because the last three joints intersect we can obtain a closed form solution
(Pieper]. The position of the end of link 3 is found as:

Be - 18 (Eq. 2.8]

wiere 3 is @ vector the length of S6 and in the direction of the approach
vector A (see Figure 2.5).

A vector from the shoulder to the end of link 3 is:

Wel3-L1 [Eq. 2.9]
We can now solve for S3, the prismatic joint variable, as:
S3 = (W . W-5212)11/ (Eg. 2.18)

Having solved for S3, Bl is given by:
gl = g + m [Eq. 2-11]

Where B and Q are:

MY SIS R T R

—

Page 13 SOLUTION

Tan 8 = W[2] / W(1) (Eq. 2.12)
Figure 2.5
Solution of Joints 1,2 and 3
Sin 0 « 52 / (W(1)12 + WI2112)11 (1/2) (Eq. 2.13)
See Figure 2.5
22 iz then:
Cos 82 = Li[3) 7 S3 (Eq. 2.14)
See Figure 2.5,
The unit vectors y3 and z3 are now calculated for link 3 and a vector:
BR = 23 x z6 (Eq. 2.15)
is calculated.
Then: }
84 angie between RR and y3 about z3 (Eq. 2.16]
85 angle between zB and z3 about RR (Eq. 2.17])
86 angle between yb and RR about 26 (Eq. 2.18)

See Figure 2.6

St ke

Page 14

SOLUTION

Figure 2.4
Hand Coordinates

R s e T G

Page 15 SOLUTION

Figure 2.8
Solution of Joints 4,5 and 6

All joints with the exception of joint & have only a partial range of motion., As
the solution for each joint is obtained, it must be checked to see that it is
within the range of motion of that joint,

<.3 DIFFERENTIAL SOLUTION

Given ar, arm solution, it is often necessary to compute the differential change

in joint angles in order to make a small change in position while maintaining
the current orientation of the hand.

We can obtain the differential change in position dR@ with respect to a change
in joint variable dqj as:

i
dR@ -.Zl fUij| * dgj * |Ri| (Eq. 2.19]
JI
Where:
Uiji = diTi|/eq;) [Eq. 2.28)

S Aincimrn st

Page 16 DIFFERENTIAL

From which we obtain:

Uijl = JALIXIAZ] o.o [AJ-LI%]Qj1%|Aj[%IAj+L] oo0 *]AQ|

(Eq. 2.21]
and depending on whether the joint is rotary:
| 8-1 88 |
Q@ = j188e|
| 8888]
| 8888 |
(Eq. 2.22]
or prismatic:
| 2288]
Q(s) = | 2888 |
| 8881 |
| 9888 |
(Eq. 2.23]
1f we then evaluate the six | UBj| matrices (Equation 2.20) we uwill have the

differential change in the 16 elemenis of the hand matrix | T6 | for each of the
six joints. This corresponds to 16 equations in 6 unknowns of which only 6
eguations are independent. We must pick B independent equations of the 16 and
then solve for the reguired change in the qj.

From | UBj | we pick the first three elements of the right hand column as these
wurrespond to dx, dy, dz. We then pick the two smal lest elements of column 3,
the approach vector, to constrain its direction, Finally we pick one additional
element from column 2, the orientation vector, in order to constrain rotation
about the approach vector.

The six equations:

A

K N

Page 17 DIFFERENTIAL

| dx | | UBl Ue2 UB3 Ue4 UBS Uee | | dq |
I | 14 14 14 14 146 146 | | 1
! [] I
[dy | | UBl UB2 UB3 US4 UBS UeE | | dqg |
| | f 264 24 24 24 24 26 | | 2]
| | | | | |
| dz | = | UBl UB2 UB3 UB4 UBS UGB x | dq |
| | I 34 36 3% 34 3 34 | 3
I [. I
3 | | UBl UeZ Us3 UB4 UGBS UBE | | dg |
| | | u3 u3 ul3 u3 u3 u3 |l
! l | | |
| 8 | [Ul UB2 Us3 UB4 UBS UBE | | dg |
| | | v3 v3 v3 v3 v3 v3 | | 4
I P I I
| 8 | | Ul UB2 UBS UB4 UBS UGB | dg |
| | W w2 w2 N2 w2 Wl | |

{Eq. 2.24)
are then solved to give the six dqgj, the differential change in joint angle.

For the position that we have been considering and have defined the A and T
matrices. A differential change of dz = 3.2 in is found to be:

Table 2.2

Oifferential Change of Joint Angle
JOINT dg

CrUV & LI DD -
[
U1 e ==

2.4 JYNAMICS

From the kinematic arm nodel ue can also develop the dynamic model [Uicker). We
will derive the Lagrangian [Kahn] for the arm in @ gravitational force field,
and obtain the equations relating acceleration to joint torgue, including the
static torques necessary to overcome the effects of gravity. These results will
be used in the section which relates to servoing the arm,

e i e b i

Page 18 DYNAMICS

If the Lagrangian L is defined as:

L=K-P

where:

[Eq. 2.25]

K is the Kinetic Energy of the system in terms of joint variables:

P is the potential energy in terms of joint variables.

The joint variables "q" are either "8" or "s" depending upon whether the

joint is revolute or prismatic.

The equations of motion are given by:

d/dt (aL/3aj) - a./3q) = Fj
for j #1,2, ... n
where Fj is the force on joint j.
From Equation 2.19 we can obtain the velocity of any point as:
dR@/dt = | Vi | * ' Ri |
where:

i
| Vi | = zl(| Uij | % dgj/dt)
ja

We may nouw express the kinetic energy of a link as follows. Consider
of mass dm on link i at Ri then the kinetic energy is:

dMi s 072 (B . B) am
or:

f L
dHi = 1/2 Trace(]| Vi|x| Rij*| Ri| *| Vi|)*dm

The total kinetic energy for the link can be found by integrating over

of the |ink.

(Eq. 2.26]

(Eq. 2.27)

(Eq. 2.28]

a particle

(Eq. 2.29]

(Eq. 2.30]

ths nass

VIR AT

Page 13 DYNAMICS

T T
dHi = 1/2 Tracel|Vi|x(f |Ri|%|Rij *dm)*|Vi|)
iink

(Eq. 2.31:

to obtain:
| 2 2 2 4 2 -
1720~k +k +k) 3 K x |
| ill 122 133 112 113 il
| I
| 2 2 2 2 B = |
| K kK =k 4k K y |
| i12 i1l i22 33 123 i
Hi = mix| |
| e 2 2 12 B -
| k k k 4k -k z |
| i13 325 111 22 i33 il
| |
| - s 4 |
| x y z 1
| i [i [
(Eq. 2.32]
where:k is the radius of gyration of link i about the j,k axes. xi, gi. 2i
i jk
is the center of mass of link i. mi is the mass of iink i.
‘e Konetic energy of the entire system is:
n T
K=1/2L Trace(| Vi |%| Hi || Vi |) [Eg. 2.33])

The potential energy of the system due to gravity in the negative z direction is
expressed by:

n (>

| =
Wwhere: | G | = |8 8 g 8| (Eq. 2.35)

and g is the acceleration due to gravity,

R

i bk ol

Page 28 DYNAMICS

Substituting for K from Equation 2,33 and for P “rom cquation 2.34 into Equation
2.25 and then differentiating according to Equation 2.26 we obtain:

T

n j o
Fi = L I Trace(| Ujk|¥| Hj|x| Uji| *qk)
j=i k=l

n j j T L] L]
+€L L L lracel(| Ujkp|x| Hj|*| Uji] *q j*ak)

j=i k=l pal
n e
~L mj%| G |*| Uji|*| Rj (Eq. 2.36)
jmi
the equation relating acceleration to force, from which we Hill infer the

effective link inertia and gravity loading torque Tg in Subsection B.1.

2.5 FORCE AND MOMENTS

Given a force E that acts through the origin of the hand coordinate system and a
moment M, we wish to find the joint reaction torques.

We represent a force in the n'th coordinate system as:

I
I
I
|
I
|

[(Eq. 2.37)

and a moment similariy:

|
|
I
Mn = ;
|
|

(Eq. 2.38)

O e " AR

Page 21

We first transform the force F and the
bu:

-
(o]

£

o
i

We then proceed to transform
follous (see Figure 2.7):

| Fln-1) | =
and the noment:
i =

| Min-1)

Houever the force Fin-1) dces not
coordinate system (see Figure 2.7) and

P x

Fiaure

where: P is tne right nand colunn of |

FORCE

moment I irito the hand coordinate system

-1
B | 1*: Fl (Eq. 2.39)
6] %M (Eq. 2.48)
the force and moment back through the |inks as

[An | % | Fn | [Eq. 2.41]

AR | % | Mn | (Eq. 2.42)
act through the origin of the (n-1}th
ve hact an additional moment given bys

Fin-

1)

(Eq. 2.43)

2ol
a o
Force Transformation

An |

o

Page 22 FORCE

the total moment is then:

| Mn-1) | = [An | % | Mn | + P x E{n-1) [Eq. 2.44]
If the (n-1)th joint is revolute then the reaction torque is Min-1)[z); if it is
prismatic then the force is F(n-1)[z].
The six reaction torques are knoun as the equivalent arm torque.
When the hard is to exert 2 force the equivalent arm torque is calculated and
added to the gravity torque for each joint. 1f each joint is run at these
torques then the hand will exert the required force,
For the arm position ue have heen considering we have tuo examples, the first is
to exert a force of -1880z. in the z direction, the second example is to exert a
moment of -188oz. in. about ‘he z axis:

Table 2.3

Eguivalent Arm Torques

Fl=1=-1225z. M{z)=-18080z. in,

JOINT TORCUE JOINT TORQUE
! g.g 1 ~198.0
2 -1986.8 2 3.8
3 g e 3 8.8
4 -741.9 4 38.2
5 -258.6 5 -72.7
6 2.2 B B82.7

£33

Page 23

SECTION 3
WORLD MOZEL

This section describes the model of the arm's environment, which consists of
solid plane-faced objects. These are the objects that the vision system can
identify [Falk] and a representation of them is maintained. This is done for
both the Arm and the Vision programs, which share a common data base [Paull.

We will first describe the prototype representation and the manner of specifying
instances of these prototypes. The problem of grasping this class of objects is
then reduced to finding a set of orientation vectors.

3.1 PROTOTYPE DESCRIPTION

Objects are described in terms of prototypes. To identify an cbject is to
associate the object with its prototype: one prototype can represent many
objects or instances. All common information relating to the instances is kept
only once, with the prototupe. The position of an object is associated with the
instance, as every instance has a different position. The prototype ic located
with its center of mass at the origin and its principal inertial axes aligned
with the coordinate axes. Each vertex is represented by a vector giving its
distance from the origin and each face is represented by a row matrix giving ite
position and outward pointing normal,

I tems are created for each part of a prototupe (face. vertex, edge). (Readers
not familiar with "items" should consult Appendix A.2.} The spatial information
associated with vertices and faces is stored as array datums of these items.
Farh of these items is associated with the prototype, which is itseif an item.
U:/rferent attributes are used to indicate which topological part is being
associated.

For example, in the case of the cube shown in Figure 3.1:

FACE ¢ CUBE = Fl (Eq. 3.1]
FACE ¢ CUBE = F2
FACE e CUsE = Fo
VERTEX o CUBE = V2

VERTEX o CUBE = V8

EOGE 2 CUBE = El (Eq. 3.3]
EDCGE ¢ CUBE = EZ

EOGE ¢ CUBE = El12

Page 26 PROTOTYPE

Wi Vi
[§)
4 Fi £2
Vi T Vi
. En
F3
L& F2 E0
YT
]
vs 1) Ve

Figure 3.1
Cube Prototype

In the case of edges, the length of the edge is kept as its datum.

For each Face we now associate its vertices and edges together

Consider for example face Fl:
BOUNCARY o F1 = El (Eg. 3.4]
BOUNDARY o F1 & E2

BOUNDARY e F1 = E3
BOUNDJARY ¢ F1 & E4

CORNER o Fl = V] {Eq. 3.5]
CORNER & F1 s V2
CORMER © F1 & V3
CORNER o Fl = V4

And for edges we associate the edge with its endpoints:

ENOPT @ El = V] (Eq. 3.6]
ENDPT @ E1 = V2

"W om

etcetera.

Prototypes are kept for the objects shoun in Figure 3.2, this data is kept in
the global data store and is available to all programs.

BRECS

Page 25 PROTOTYPE

Ny

CUBE RHOMBOID

RPPI22 \ /

RPPI24
x WEDGE 122
WEDGE 124
Figure 3.2
Prototypes

RPPII2

S

RN

RPPIIS

LBEAM

S SR REARY

o T Rl e

A e B

it

Page 26 PROTOTYPE

Based on such a description it is possible to find many relationships, for
examples

Given any face F1 find its neighbors which share a common vertex V1.

We can find the faces which share the common vertex V1 by finding all
the faces which satisfy

FOREACH F | VERTEX & F s V1

Here F represents an item variable satisfied by the association. The set
of these F's are all the faces which share this Ccommon vertex., However
they are not all neighbors of F1. To ascertain that they are neighbors
He must require that they share a common edge and that they are not F1.

FOREACH F,E | VERTEX ¢ F = V]
n EDCE oF & E
A EOCE o F1 & E
A F =Fl

This specifies the set of faces F which are the neighbors of Fi and
share the conron vertex V1.

Another example: it is required to go around the vertices of a face Fl in order,
starting with Vi

T « V1
FOREACH E,H | EDGE o F1 = E
A END o E =7
A END ¢ E =z H
A H = T D0 BEGIN
IF H = V1 THEN DONE:
<statement>;
T « H END;

When an instance is identified; @ new item is created which is associated With
the prototype as follows:

INSTANCE o CUBE = INSTI (Eq. 3.7]

The position and orientation of the instance are expressed as a transformation
matrix which relates prototype coordinates to instance coordinates (see

Subsection A.3). This 4 x & transformation is stored as the datum of the
instance.

Most calculations can be per formed by transforming the instance back to the
prototype rather than by transforming the prototype out to the instance.

NG A

WAL

Page 27 PROTOTYPE

Consicder for example the problem of finding the support face of a body by
finding through which face the weight vector passes. We could transform each
face out to the instance, calculate if the weight vector was in the general
direction of the outward pointing normal and then determine whether the weight
vector actually passes through the face. This would require that we transform
each vertex of the face to the instance. It is more efficient to transform the
weight vector back to the prototype hu using the inverse transform and check
through which face it passes, avoiding all the other transformations, which take
of the order of 8.5 m sec. each.

With this "prototype-instance" scheme we can represent all plane faced objects.
There is sufficient information available for the vision program to be able to
identify objects in two dimensional scenes. In the next section we wiil ehow
that there is also sufficient information for the arm program.

3.2 ORIENTATION VECTORS

The prototype description is used wuhen it is required to move an instance of
some prototype. Apart from the positional information, wuhich is obtainabie
directly from the instance transform, the prototype description is used to
calculate houw the instance way be picked up. Knowing how a body is oriented and
Wwhere it is located does not specify a hand position which may be used to pick
the instance up. Although there are an infinite number of ways in which an
o-ject may be picked up, we will Iimit the possibilities by the following
heuristics. We will require that the object be picked up by two parallel faces
on an axis containing the center of mass, as this uill prevent the object from
rotating. One but not both surfaces may be replaced by an apex of the body. Both
surfaces may be replaced by edges if a normal from the edge intersects the
center of mass. Thece heuristics define a set of orientation vectors. if the
hand is positioned at the center of mass with one of these orientation vectors,
it will be in a position to grasp the object (see Figure 3.3).

To find systematically all the possible orientation vectors the program first
makes a list of all the vectors from the center of mass of the object that 1)
intersect and are normal to any edge, 2)intersect and are normal to any face, 3)
pass through any apex. Such vectors are known as contact vectors. This list is
then searched for pairs of anti-parallel vectors, being careful not to take both
vectors from the third class. This is done in the following manner: To find the
contact vectors for faces the program simply checks that the perpendicular from
the center of mass to the plane lies inside the face and thus the surface is
perpendicular at the contact point, or:

P

Page 28 CRIENTATIONS

-

Y

.-l"'"

“‘m
7 ﬁ o

F—_‘-

S

Figure 3.3
Orientation Vectors

SOREACH F | FACEPROTOTYPEsF 00

BEGIN

D-DATUMIF) [4);

IF D>8.8 THEN GO TO NFACE;
Comment if this plane is used the center of mass
Will not lie betuween the finger tips;

IF CONTAINED(DATUM(F),F) THEN FOUND ONE;
Comment if the point of intersection of the
normal and the face within the boundary then

put the point in the list of contact vectors;
NFACE: END;

The procedure CONTAINED counts the number of region boundary crossings of a ray

from the point to infinity., [f the number is odd then the point is inside the
region, if even then it is outside.

To find the contact vectors for edges it is necessary that a perpendicular from
the center of mass intersect the edge. It is also required that the edge

represent an outside corner. By the following algorithm the program satisfies
the first condition:

1V

L~ o e ——

CaRERS RS

G N T R DR TR

Page 29 ORIENTATIONS

FOREACH E,A,B|EOGEcPROTOTYPE=E

n ENO<E=A
A ENDeEsB
n AxB 00 BEGIN

TeA . (A-BI/(A-B) . (A-B)

Comment T is the directed distance from
end point A to the normal, divided by the
directed distance of A from B:

IF T7<8.8 v T21.8 THEN GO TO NEQGE;
Comment the normal intersects on the edge;
C«A-((A-8) xT);

Comment C is a vector from the center of
mass and perpendicular to the edge at the
point of contact (see Figure 3.4},

Now check that this is an outside edge;
FOREACH N1,N2|BOUNDARYeN1sE

A BOUNDARYeNZsE

A N1=Ni 00

Nl « DATUMINL);

N2 « OATUMINZ);

N« Nl X N2;
camment N is a reference vector such that
e move outside as we rotate about N from
NI to N2

VenN XC;

IFN. V<D
Comment C points to the outside of

the vertex:
THEN FOUND ONE:
END;

END;

To determine contact vectors at verticies we can use only the outside corners of
the object (see Figure 3.5). That is, for all edges at this vertex the angle 8
must be less than 3@ degrees (see Figure 3.5).

FOREACH V | VERTEX « BOY = V DO BEGIN

2e¥ . Y

FOREACH E,A | END o E = V
A END e E = A
A A=«V 00

IF A . ¥V > C2 THEN GO TO NOGOOO;

FOUND ONE;

NOGOJD: END;

The program then searches this |ist of contact points looking for pairs of anti-
parallel vectors, beiny careful not to take both vectors from the class of
vertices. These then are the orientation vectors which are stored with the
prototype together with the contact information:

- . ; AR S R A AN

Page 38 ORIENTATIONS

L

Figure 3.4
Pick-up Pcint on an Edge

center of moss

Figure 3.5
Qutside Vertex

R —

R b s RN L

1
PR

ks

—

reemages s Er Nl

— TR R s———— I A R T o S P Wi RO A p

Page 31 OIIENTATIONS
ORIENTATION ¢ BDY » 01 (Eq. 3.8]
OR{ENTATION e"BDY . 02
ORIENTATION o BOY = 08
CONTACT o 01 = F] (Eq. 3.9]
CONTACT o Ol = F3
CONTACT o 02 = F2
CONTACT o 02 -‘Fé
CONTACT ¢ 09 = EB
CONTACT ¢ 09 = E2
The contact information is used in determining which orientation vectors can be
used for a given instance. The datum of an orientation vector is a S element
m2trix Wwith the tollowing elements: if] and €2 are two anti-paralliel contact
vectors then the datum of the orientation vector is:
0(1) = Cl{11 /7 (CLI1)%2 + CLI21%2 + C1(3)12)
021 = CL{2) / (CL{1)%2 + CL1{2)%2 + C11(31%2)(1/2)
0(3) = CLI{3) 7/ (CLI1)12 + C1{2)12 + C1 (3172)
004) = | CL
0ls) = | 22|
In the case of a rectangular paraiieiepiped of size 1.25in. x 1.25in. x 2.55in.
the program computes the foliowing 9 orientation vectqrs:
Table 3.1 .
Orientation Vectors for Rectangular Paral lelepiped
0(1) 012} 0 01(4) 0(s]
1.00 8.08 0.20 l1.68 -l.68
2.08 1.20 8.20 l.68 -1.60
2.00 8.080 1.00 8.7% -8.78
8.71 8.71 8.e8 1.13 -1.13
8.71 -8.71 8.08 1.18 <L
8.44 e.o8 8.38 8.72 -8.78
8.44 g.2e -8.98 8.7¢ -8.78
8.2 8.44 -0.92 8.7¢ -8.78
g.ee 8.44 8.98 8.7¢ -8.78

Each row in Table 3.1 represents anm orientation vector. The first three
elements 0(1], 0(2) and N(3) give the direction components of the vector. The
two contact vectors are given by:

Page 32 ORIENTATIONS
0[1]l
0c21]
L - 2
03
014]

All arm operations with podies can be reduced to manipulations of these vectors.
To pick up a body we need only consider the orientation vectors.
orientation vector and specify an approach angle; we can then complete
transformation (see Subsection 2.1) and obtain an arm solution.

0l
0121
0(3

0(s)

He select an

TIINAT S MRS

B

———————

g

A

Page 33

SECTION 4
MOVE INSTANCE
The procedure MOVE INSTANCE i¢ called wuhen it is desired to have the arm move an

object. MOVE_INSTANCE is first required to find a hand position which enables
the hand to grasp the object located by { Ti |. It should then find a second

hand position from which the hand can release the object such that it Will be
specified by | Tf |. The suffixes "i" and "f* refer to the initial and final
positions.

4.1 RANGE OF SOLUTION

In manipulating objects the program needs to find arm configurations at bath the
initial and final positions. To do this the program finds the range of pussible
approach angles for each orientatior vector; it then chooses some approzih angle
from the intersection of the tuo ranges. Given a position and an orientation
vector, the program needs to compute the range of apnroach angle throughout
Wwhich the arm can reach the object subject to the physical constraints of the
arm (see Figure 4.1).

LIMITING
APPROACH ANGLE
—e

Figure 4.1
Anproach limited by Arm

Heuristics are used to find an dpproach angle at which an arm solution wil|
exist, if one exists at all, and a further test is made to determine if

R B RS A

TS ey

W ey Ao e o 2 re

Page 34 RANGE

solutions exist for all approach angies. 1f a solution exists, but not for the
full range, the limits of the range are found by conducting a binary search,
using the arm solution procedure to test for feasibili ty.

In order to ensure that the arm does not penetrate the support plane (see Figure
4.2), the program computes the range of approach angle for which link 5 is above
the plane, -

LIMITING APPROACH
ANGLE

LIMIT

Figure 4.2 :
Appioach Angle Limited by Support Plane

This range of approach angle is then intersected with the possible range of
approach angle defined oy the arm to give a range throughout which the arm can
reach the object limited by both the arm and the support.

This process is repeated for the support post of the arm. A final intersection
of ranges is made to keep the hand from intersecting the post, and the limiting
range of approach angle is obtained. Possible conflicts with adjacent objects
are not consi.ered.

4.2 MOVE INSTANCE

The first action of MOVE_INSTANCE is to select those orientation vectors of the
prototype (see section 3.2) uhich can be used to grasp the object. To do this
the program transforms a gravity vector back to the prototype, using the inverse
transform, and determines through which face it passes, We consider this to be

BT DR R T

Page 35 MOVE

the suppert face. Any orientation vector (Equation 3.8) u4hich has a contact
point (Equation 3.9) on this face or on any edge or vertex of this face is
discarded, the remaining orientation vectors are marked as possible. This
procedure is performed for the object in its initial position and again in its
final position. |f the action is to be accomplished in one move then the set of
available oriertation vectors that can bs used is the intersection of the two
sets oi u ientation vectors for the initial and final positions. As the most
stable way to pick up &n object is bu grasping the object by its faces, the
orientation vectors are ordered by length and the shortest, representing face-
face contacts, are considered first.

For each of the orientation vectors so ordered the range of approach is
calculated at both the initial and final positions. In order to relate these
tuo ranges for a given orientation vector we make use of the reference approach
vector Equation 2.7. By transforming the reference approach vector BAi at the
initial position to the final position by:

i
RAI" « | TF | % | Ti | % |RAi | [Eq. 4.1)

the shift S, between approach ranges may then be calculated as:

S « the angle betueen BAi' and RAf about Qf
(Eq. 4.2]

After applying the shift S to the initial rancz the two ranges of approach are
intersected. [f the intersection is not empty then the solution has been found.
An approach vector A is picked :ithin the range of intersection. In order to
keep the arm clear of other ob,."ts, the preferred approach direction is
straight down. [wo arm solutions are obtained, one at the initial position and
one at tne final position, such that the shift between approach vectors is
maintained.

If there is no intersection betueen the first two ranges, the next orientation
vector in the intersection of the available set of orientation vectors is tried.

When the set of orientation vectors is empty at either the initial or final
position, there is no way that the move can be accomplished as the arm cannot
reach the object. If the intersection of the set of orientation vectors were
empty, or if after evaluating the ranges for all the orientation vectors the
intersection of the rangcs was empty then an intermediate position is tried.

In the case of the rectangular parallelepiped whose orientation vectors we
obtained (Table 3.1) we will consider the protiiem of moving an instance from:

re WIS TN e !

Page 36

to:

TRJKME?ﬁiFI%!ﬂ!!Flﬂﬂ?ﬁ?@ﬁ%¢¥wﬂﬂmmﬂmﬁ--—.-a———--—--,q---l----llnsn--u-inullllh--

MOVE

1.00 .0 .08 20.020
.08 1.20 .08 38.80 |
.00 .08 l.0e 1.38
.00 .eo .68 .00

-1.00 .00 .08 48.00
.02 1.80 .28 28.02
.08 .ge -l.ee 1.30
.22 .08 .28 1.90

This move includes turning the object upside doun,

For each of the possible orientation ve

Pl - 20.20 30.88 1.38 1.@@
0l = .08 1.00 .00 1.28
Range From 48 to 173 degrees
Shifted Range From 228 to 353 degrees

P2 = 40.00 20.03 1.32 :.g@
QZ s .aa ltee -ea 1-88
Range From 7 to 120 degrees
Common range 8 degrees

Pl = 22.88 30.280 1.32 1.28
0L « 1.00 .02 .28 1.20
Range From 62 to 173 degrees
Shifted Range From 242 to 353 degrees

P2 - 40.0@0 22.88 1.38 1.g0
Q2 = -l.00 .00 .22 1.28
Range From 7 to 123 degrees
Common range @ degrees

ctors the range of approach is calculated
at both positions. Pl is the position vector and 0l is the orientation vector at

the initial position and at the second position the vectors are P2 and Q2.

SR

R e

Page 37 MOVE
Pl = 20.08 32.0 1.32 1.98
0L = g1 =71 .08 1.00

Range From 43 to 173 degrees
Shifted Range From 229 to 353 degrees

P2 = 48.88 28.82 :.38 1.20
02 = -71 -7 .88 1.20
Range From 29 to 165 degrees
Common range 8 degrees

Pl - 20.08 30.28 1.39 i.p0
Ql L) -:71 071 'aa loaa
Range From 59 to 173 degrees
Shifted Range From 239 to 353 degrees
P2 = 42.82 26.88 1.33 1.83
02 = -.71 Nl .28 1.00

From 7 to 115 degrees

Range
Comnon range @ degrees

As the intersection of all the ranges is zero, an attempt
plan to move the object from its initial position to an

M e S o T PR e o e i o A

is Nnow made to make a
intermediate position

and then from the intermediate position to the final position, The calling
progran specifies whether an intermediate position is to be tried and if so
uhere. A clear space in front of the arm will give the greatest range of
approach in terms of joint motion constraints; however, choosing the initial or
final position as the intermediate pcsition ensures that the space is clear in
which to piace the object. Even uhen the initial position is used as the
intermediate position, the move is usually accomplished, as it js only the
position and not the orientation that is specified. On most occasions when the

arm is unable te carry out a task in one niove, it is because, as in

the present

example, the object must be turned over.lt is then necessary for the arm to turn

the object it down, and pick it up

move.

part-uay over, put

Given the new intermediate position, a set of pcssible
determined as the intersection of the cet of faces which
original support face and of the final support face.
constructed for this intermediate position to bring

parallel to the origiral support surface,

again to

To give maximum freedom

complete the

neuw support faces is
are neighbors of the

A transformation is
the new support face
of approach

range, the object is then turned about an axis normal to the support to make the

object's principal axes perpendicular to the shoulder

distance from the center of mass to the original support face is
the initial distance, the height of the center of the object

[f the
different from
S adjusted.

of the arm.

The process is then repeated to find a common approach. First a move solution to

Page 38

the intermediate position is computed and then, if successful, a move soiution
from the intermediate position to the final position is attempted . Ranges are
saved during the "initial - final" move attempt as they are needed in the
"initiai - intermediate," "intermedizte - final" move evaiuations.

In the example we are considering the intermediate position is specified as 38,
38, 1.3 and as the intersection of ali the ranges was zero an intermediate
position is set up as:
.08 .13 -.98 30.00
.93 .83 .15 38.08
1.88 .22 .88 .65
]

.cd .Le .83 1.8

The program now tries to make & plan to move the abject to this position:

Pl =« 22.28 3@.28 1.32 1i.02
0f = .83 1.dd .28 1.09

Range From 48 to 173 degrees
Shiftea Range From -58 to 83 degrees
P2 = 38.808 38.28 .65 1.28
02 = S .98 .28 1.00

Rarge From 18 to 156 degrees
Common range From 19 to 83 degrees

Approach = 51 degrees

A common range exists and the program now calculates the two hand positisns:
-.63 .8 -.78 22.22
.20 1.3 .22 32.28
T8 28 -3 1.38

|
l
|
I
{
.28 e .38 1.08 |

l
|
|
!
!
8
l

-.78 +19 .62 38.88
.15 98 -.12 3.3
-.63 .28 -.78 8.85
.22 .22 .23 l.e8

- R

iy g5

Bl R R

Page 33 MOVE

The program nouw tries to make a plan to move the object from the intermediate
position to the final position:

Pl = 308.88 38.00 .65 1.00
QL = .19 .98 .08 1.09
Range From 19 to 156 degrees
Shifted Range From -71 to B6 degrees {
P2 = 48.88 20.08 1.38 1.20
2 = .08 1.00 .08 1.o0
Range From 7 to 128 degrees
Common range From 7 to 66 degrees
Approach = 36 degrees

Once again a common range exists and the program calculates the two hand
positions:

-.79 .19 -.58 30.00 |
.15 .88 .11 30.80 {
.59 .88 -.81 .65 }
.88 .80 .02 1.00 =

-.59 .8 .81 4p.oe
.08 1.28 .e8 20.00

-.81 .08 -.59 1.30
.00 .06 .80 1.00

The problem is solved and the moves can be made.

By this procedure it is possible to make any re-positionings and re-
orientations, even when the goal must te accomplished in two moves.

About 4 seconds are required to compute the arm positions when two moves must be
used.

AR

SRR it i

Page 48

SECTION S
TRAJECTORIES

5.1 GENERAL CONSIDERATIONS

In moving the arm ue have two positions, the initial and final. The discussion
until now has emphasized these positions and their determination (Subsection
4.2). In this section We will describe the move in detail.

The simplest solution is to move the joints independently from their initial
position to their final position, using a simple servo. Consider the situation
shoun in Figure 5.1, where the hand is turning a block onto its side. The
motion is mostiy in joint 5; if all the joints were moved to their final
positions then the hand would try to move through the support. What is needed
is to Iift the arm up and down as joint S is moved, in order to clear the
support. MWhen the arm starts to move, it is normally Working With respect to
some surface, for instance, picking up a block from a table. As it starts to
move the motion of the hand should be directiy away from the surface. It we
were to specify a position on a normal to the surface out from the initial
position, and then to require that the hand pass through this position, we would
achieve the correct departure motion. [f we could further specify the time
required to reach this position, we could control the speed at wuhich the block
was to be |ifted.

=
/5 U

BEFORE AFTER

Figure S.1
Crash

el

Page 41 GENERAL

To estimate how far this position should be from the surface, consider Figure
S.2, as this repres.nts the worst case of surface penetration. If the hand had
been lifted by thc maximum surface penetration, approximately 5% the length of
the last link, the collision would have been avoided.

For such an initial move, the differential change of joint angles is calculated
(Subsection 2.3) for a move of 3 inches in the direction of the outward pointing
normal. A time to reach this position based on a low arm force is then
calculated. The same set of requirements exists in the case of the final
position. Here we wish once again to approach the surface in the direction of
the normal, this time passing down through a letdowun point.

We now have & positions: initial,liftoff, letdown, and final and if ue were to

servo the arm from one position to the next we would not collide Hith the
support (see Figure 5.3).

i

pid Toom
ANGLE _
FINAL
LIFTOFF
1AL .
TIME

Figure 5.3
Point to Point Trajectory

We would, houever, like the arm to start and end its motion with zero velocity
and acceleration, Further, there is no need to stop the arm at all the
intermediate positions. We require only that the joints of the arm pass through
the trajectory points corresponding to these intermediate positions at the same
time,

The time for the arm to move through each trajectory segment is calculated as
follows: for the initial and final seyments the time is based on the rate of
approach of the hand to the surface and is some fixed constant. The time

B i AT CTegh 55 5 5

|
!
Page 42 GENERAL ™ !

%
%
\
%
N e
MAXIMUM
PENETRATION
FINGERTIP
X TRAJECTORY
4
:
Figure 5.2 3
Maximum Penetration of Hand }

R VRRR R RS

Page 43 GENERAL

necessary for each joint to move through its mid trajectory segment is
estimated, based on a maximum joint velocity and acceleration. The maximum of
these times is then used for all the joints to move through the mid trajectory
segment.

Knowing the joint variables and times we can determine a polynomial for each
joint, expressing joint angle as a function of time, which passes through all
the points and has zero initial and final velocity and acceleration; as there
are & points and & velocity and acceleration constraints we would need a 7th.
order polynomial. Although such solynomials satisfy our conditions, they often
have extrema betueen the initial and final points and the joint variable must be
evaluated at each extremum to check that it has not exceeded the Horking range
of the joint.

As the extrema are difficult to evaiuate for such high order polynomials, We use
a different auproach. We specify three polynomials for each joint, one for the
trajectory from the initial point to the liftoff point, a second from the
liftoff to the setdown point, and a third from the setdown to the final paint,
We specify that velocity and acceleration should be zero at the initial and
final points and that they shouid be continuous at the intermediate points,
This sequence of polynomials satisfies our conditions for a trajectory and has
extrema which are easily evaiuated.

It a joint exceeds its working range at an extremum, then the trajectory segment
in which it occurs is split in two, a3 new intermediate point equal to the joint
range limit is specified at the break, and the trajectory recalculated (See
Figure 5.4},

Although a collision avoider has not been impiemented, except in the case of the
table and the arm support post, such a program would modify the arm trajectory
in the same manner by specifying additional intermediate points. 1f a potential
cci'ision were detected one or more jointe would be required to pass through
some additional trajectory points in order to avoid the co!lision.

We have anotier type of trajectory that we wish to be abls to compute, one which
moves the arm aiong a well defined space curve. Here we obtain a sequence of
joint angles at points along the space curve. The velocity along the space
curve is controlied by relating distance along the curve to time between points
(See primitive DRAW Subsection 7.2). This type of curve leads to a trajectory
With many points. If we nere to use a singie polynomial it would need to be of
high order, for this reason the sequence of low order poiynomials is also
preferred.

5.2 POLYNOMIALS

For each trajectory segment we have position, velocity and acceleration
constraints at each end. Except at the beginning and end of the trajectory the
velocity and acceleration constraints are continuity constraints. There are

R RS R R AR SO

Page 44 POLYNOMIALS

XTREMUM

ORIGINAL
Jownr | ‘ v
RANGE
LIMIT |— _— —

TYPICAL
JOINT
ANGLE

i
TIME

Figure 5.4
Trajectory beyond Joint Range

only four constraints on the intermediate trajectory segments and five
constraints at the ends. Thus for the first and last trajectory segments a
fourth order polynomial will suffice and for the intermediate trajectory
segments & third order polynomial will be needed,

Consider a trajectory segment described by:

4 3 2
B = Aidxt’ 4+ AiSxt' + Ai2xt' 4+ Ailxt' +AiD
{Eq. 5.11

With
t' o« t/ti {Eq. 5.2

vhere Aij is the coefficient of the jth. power of the ith. trajectory segment.
and time t, is normalized to wunity at the end of the trajectory segment of

duration ti.

For the first trajectory segment at time t'a=@:

LA e

RS

Page 45 POLYNOMIALS

88 = A10 [Eq. 5.3
08 = B -All [Eq. 5.4]
88 = B =Al2 [Eq. 5.5]
and at time t'sl:
B - 88 = 481 = Al4 + 713 (Eg. 5.6]
T1%8] = G¥AlG + 3wALZ [Eq. 5.7]
Tl %81 = 12¢Al4 + BRAL3 [Eq. 5.8]

tor the last trajectory segment we substitute:

t' o=t -1 {Eq. 5.9)
and at time t''=8:
8n = AnB 'Eq. 5.10)
Bn = @ =Anl [Eq. S.11]
Bn = @ =An2 [Eq. S.12]
and at time t''=-1;
8n - 8(n-1) = ABn = -An& + An3 [Eq. 5.13)
tn*é(n-l) = =4%And4 + 3kAN3 | | (Eq. S5.164)
tn %8(n-1) = 12%Ank - G¥An3 [Eq. §.15i

For the general ith. trajectory segrient we have

ti*B(i-1) = Ail [Eq. 5.18]
2 ol
i Qi (-1} » Ai2 (Eq. 5.19)
Bi - Bli-1) = 4Bi = Ai3 + Ai2 + Ail [Eq. .28
TI%Gi = 3¥AI3 + 24AI2 Al (Eq. 5.21]
Ti %81 = BXAIZ + 2%AI1 [Eq. 5.22]

e

| oo

Page 48 POLYNOMIALS

Equations 6.3, 6.4, 5.5, 65,18, S.11, 6.12, and Equations 5.17 specify
coefficients directly. The remaining crefficients may be solved in the form:

| [| |
| 481 | | 1 1 | | Al3 |
| - o I
8.		3/tl 4/tl	-1/¢2			Al4
oo 2 2	2					
8		6/tl 12/tl	B -2/t2 ’		A21	
I						
i AB2 : | : 1 1 1 { : } A22 |

| — |
| B | = | | 1/t2 2/¢2 3/t2 | | | * | A23 |
L | 2 2 | B
| [I 2/t2 6/t2 | | oo I
I [1] L[] | ' i | " (1) | ' | " " '
| | | I | |
| (I I I - |
8				=3/tn 4/tn		
o		2 2				
8				6/tmn -12/tn		An3
I P P I						
A8n		1 -1		And		
[} B [

(Eq. 5.23]

+here the blocks indicated in Equation 5.23 may be repeated for each additional
point that the trajectory must pass through.

Normalized time t' runs from 8 to 1 for each trajectory segment except for tie
last segment in which case normalized time t'' runs from -1 to 8. The arm servo
program requires that normalized time t' run from @ to 1 for all trajectory
segments. If we substitute:

th et 4] (Eq. 5.24)

4 3 2
B = Abnkt'' + A3nxt'' + AZ2nxt'' + Alnkt'' + ABn
{Eq. 5.25]

We obtain:

=

St

Page 47 POLYNOMIALS

4
B8 = A4nxt'

3
+{=4%A4n + A3n)xt'

2
+(B%A4n -3%A3n +AZn) ¥t'

+(-4kAGn +3%A3n -2%A2n +Aln)xt'

+{Abn -A3n +A2n -Aln +ABn)
(Eq. 5.26]

and this gives us the coefficients of a polynomial for the last trajectory
segment in which normalized time runs from 8 to . as required for the servo

program.

5.3 TRAJECTORY EXTREMA

Intermediate trajectory segments are described by thicd order polynomials, one
such polynomial for each joint:

3 2
0 = Ai3kt' + Ai2xt' + Ailkt' +AiB [Eq. 5.27]

the derivative is:

. 2
8 = 3AI3Kt' + 2¥AI2xt' + Ail [Eq. 5.78

The times of the extrema are given as the roots of Equation 5.28:

172

2
t' = -1/3 Ai2/Ai3 £ {(1/3 Ai2/Ai3) - 1/3 Ail/Ai3}
[Eq. 5.281]

[the discriminant is positive and B <t < 1 then an extremum exists and it
can be evaluated by Equation 5.27,

In the case of the initial and fina! trajectory segments the trajectories are
descr ibed by fourth order polynomials (Equation 5.1} with the low order terms
missing (see Equation 5.4, 5.5, 5.11, and 5.12).

B . - 5

e R e e o

EXTREMA

4 3
B = Aidxt' + Aidxt' + AiD (Eq. 5.38]

and the derivative by:

. 3 2
B = 4xAidxt' 4+ 3wAi3xt' (Eg. 5.31)

The time of the extremum is given as the roots of Equation 5.31:

t' = -3/4%Ai3/Ai4 (Eq. 5.32)

if @ <t <1 than an extremum exists and the value of B is:

o
8 = -1/GwhA] Ext (Eq. 5.33]

In the case of the first and last segments we also require monotonic motion, in
order to avoid overshoot. To ensure monotonicity wWe compare the value at the
extremum to the initial or firai point instead of to the joint physical limit.

5.4 CONTINUOUS MOTION

In Subsection 5.1 we mentioned trajectories on space curves, where arm solutions
are obtained at regular intervals along the curve and a trajectory is then
planned through these positions. There is a special case of such trajectories
in which the first and last arm positions are the same, for example the circuiar
arm motion of Figure S.5. The position of the hand is described by an angle;
the orientation remains the same during the motion. Solutions are obtained
every 68 degrees so that the hand Wwill approximately follow the path of the
circle. In the case of the beginning and end, two additional positions are
specified, "b" and "h," at 28 and 343 degrees respectively. The arm is given the
same period of time for ea-r of the 8 segments, and thus the arm will accelerate
from rest, move around the circle and come back to rest. The first and last
small segments encure smooth departure and arrival.

For continuous motion we provide an alternate path from position "

g" through
position "a" to position "¢" (see Figure 5.5) requiring continuity of both
velocity and acceleration at these points. The hand is caused to move in a
circular path continuousiy having first been started from point “4" by causing
it to move along the aiternate trajectory at point "g." When it is desired to
stop it is not diverted at the "switch" at position "g" but allowed to stop by
moving through position "h" to "a."

A TR TR T L,

Gk R

s

Page 49

Figure 5.5
Looping

In the following matrix equation the x's represent non zero elements of Equation
5.23. Equation 5.34 is for the case of a simple trajectory and Equation 5.35
is in the case of looping, providing for the solution of two additional fourth

order trajectory segments 9 and 18.

LOOPING

Page 50

"“ll""ll"""l"'l

M F —~ N 017.-312317._31231,2334
1127_23336465555567 I~~~ 0000
AAAAAAAAAAAAAAAAAAAQ << L

*

€ X >
x x X
x > X
A 2
< < >
x xX x
SC 2 ¢ <
> xX X<
x XX >
2 > > >
> >
> >
X
< > X
o€ > x¢
SC 2
> e
x> >
> 2 XX X
x > >

X 2 >
> o€ G

[
— o (] ~r L. w ~ o0
gaagaagaagegsaagaagaag
-3 <3 2 -3 <3 <3 <3 2

T e e s s et s e, e s e o . — i . s et i e e, et

(Eq. 5.34)

are the

Y's and Z's

ements marked as

In the case of looping, the blocks of el

same,

FAWL

Page 51 LOOPING

881		XX [A13
8	1 XX Alé		
@		XXX A2l	
862		XXX [A22	
8		XXXY	A23
8		XXy	A3L
483		XXY [A32	
i XXXX A33			
[@		XX X A4l	
486		XXX	AG2
8		XXXX AG3	
8		XX X	AS1
585	&	XXX	%
8		XXXX	
8		XX X	
866		XXX	
8		772X	AB3
e		ZZ X	A71
487		XXX	A72
e		XXXXX	A73
8		XXXX	A83
488		XX	
e		722 i	ASL
B		i X	AS2
489		XXXX	
e		XXKXX	
8		XXX X	
8618]	XXXX		A182
8 | | y XXKX | | Al@3|
8 | | Y XXX | | Al@4|

(Eq. 5.35)

Equation 5.35 is the same as Equation 5.3¢ except for the addition of the !as:
eight equations for segnents 3 and 18. These are fourth order polynomials due to
the extra end continuity constraints. The groups of non zero elements in the
lower triangle of Equation 5.35 relate to the continuity requirements at points
g and ¢ (see Figure 5,5).

S.5 DIFFERENTIAL MOTION

The arm can also make differential motions where all six joints are required to
change a certain amount in a given tine. In this case all the joints are driven
together to make the change in the specified time. The changes of joint angles
are determined as in Subsection 2.3.

Joint angle B as a function g{t') of normalized time t', for a change of 48 is:

T TR VTR r— = e R R R R R B e o = R R R T S TR LoV TS O 307 Gt s S i

Page 52 DIFFERENTIAL
té - t/;m {Eq. 5.36]
B=g(t')=p0%t' (6% - 15t' + 18) (Eq. 5.37]

Th.s gives zero initial and final acceleration and velocity.

This type of motion has all the undesirable properties described in Subsection
5.1 and is only suitable when small changes are to be made, as in correcting the
hand position during visual servoing. Such motions are of course much simpler
to plan than regular trajectory controlled motion.

ot DA

Page 53

SECTION &
SERVO

In this section ue relate position error to juint torque in the arm servo. We
then discuss the mode! of the joint drive in order to convert joint torgue into
motor drive. In the final section provision is made for degrees of freedom of
the arm as it is servoed.

6.1 FEEDBACK LOOP

In this section we will describe the servo response. We uill treat the system
as continuous, and wWill ignore the effects of sampling, assuming that the
sampling period is much less than the response time of the arm. At the end of
the section we Will check that this assumption is valid., Time is normalized to
the sampling period, which has the effect of scaling the link inertia up by f%2
where f is the sampling frequency. The Laplace transform is used throughout and
is represented by F(s).

The set point for each joint of the arm s obtained by evaluating the
appropriate trajectory segment polynomial for the required time. The velocity
and acceleration are evaluated as the first and second derivatives of the

polynomials.

The position error is the observed position 8 less the required value Bs.
Likewise the velocity error is the observed velocity less the required velocity.
Position feedback is applied to decrease position error and velocity feedback is
used to provide damping.

2
The feedback loop is shoun in Figure 6.1 The arm is represented by 1/s J, where
J is the effective link inertia a function of arm configuration. T(s) is an
external disturbing torque. The set point R(s) is subtracted from the current
position to obtain the position error E(s) and is multiplied by =, representing
differentiation, to obtain the error velocity. There are tuo feedback gains ke
and kv, position and velocity respectively.

By writing the loop equation ue can obtain the system response:

2 2 2
E(s)s (-5 J)/(s J + skv + ke)¥R(s) + 1/(s J + skv + ke)*T(s)
{(Eq. 6.1)

and the condition for critical damping is:

172
kv = Z(J*ke) [Eq- 8-2]

L R0

2

Page 54 FEEDBACK

Tis) ’ —

;*: _%sgg' Ria)

Q
Q‘ .
Figure 6.1
Simple Servo Loop

It can be seen that the system response is dependent on J as would be expected.
Because the effective link inertia J can vary by 18:1 as the arm configuration
changes, we are unable to maintain a given response (see Equation §,7)
independent of arm configuration, |f however we add a gain of -J as shown in
Figure 8.2 then we obtain:

2 2 2
Els)= (-5 }/{c + sky + ke)*R(s) + 1/(s + sky + ke)}xT (s)/J
[Eq. 6.3}

and the condition for critical damping is:;

172
kv = 2%(ke) [Eq. 6.4)

It can be seen that the Servo response is now independent of arm configuration.

The principal disturbing torque is that due to gravity, causing a large position
error, especially in the case of joint 2, 1f we were able to add a term equal to
the negative of the gravity loading Tg (see Figure 6.3) then We would obtain the
same system response as in Equation 6.3 except that T would become Te, the
external disturbing torque, less the gravity dependent torque, reducing the
position error.

AT AR

Page 5SS
Tis)

FEEDBACK

R(s)

Eis)

Figure 6.2

Effective Inertia Independent Feedback

Tis)

Rial

e g

Figure 6.3
Gravity Independent Loop

Page 56 FEEDBACK '

2 2 2
E(s)es (-8)/(s + skv + ke)*#R(s) + 1/(s + ekv + kelxTele)/J
[Eq. 6.5]

We can compensate for the effect of accelcrgtion of the set point R(s), the

firet term in Equation 6.5, if we add a term s R(s) (see Figure 6.4) and obtain
a eystem reeponse:

2
Els)s 1/(s + ekv + ke)*T(e)/J [Eq. 6.5]

The gain of =-J and the torque Tg are obtained from Equation 2.35 which we
restate here:

1

n j .o
Fi =L L Trace(] Ujk|*| Hjlx] Uji| *qk)
joi ksl
n jj e .
§ +f [L Tracel| Ujkpi*| Hjlx] Uji| *qj*qk)
jui kel pel
n &
ji.mj*l G |x| Ujilx| Rj {Eq 2.36]
Jul

What ie deeired ie to obtain an expression of the form:

Fi e Ji xqi +Tg [Eq. 6.7

given an arm configuration gi.

The velocity dependent terms of Equation 2.36 ars only significant at high speed
and are small for the arm we are using. MWe will ignore the eecond term of
Equation 2.36, although it could be included with the third term as the values
of qj and gk are known from the trajectory.

We may interchange the order of < .cion of Equation 2.36 to obtain:

AR R MR R AN

Page 57 FEEDBACK

6 6 T ..
Fie [L Trace(| UjkI%|Hj[*]Ujif ygk
km] jai
6 &
=L mjx| G |x| Uji|x| Rj (Eq. 6.8)
j=i
or:
b oG
Fi = I Cik gk + Ci (Eq. 6.9)
k=]
where:
6 T
Cikm 'E'Trace(l Ujklx| Hjlx| Uji|) [Eq. 6.18)
jmi
and:
6 =
i

One further simplification is that we may disregard the terms of Equation 6.9 in
which isk as they are very small, to obtain:

Fi = Ji %qi +Tg [Eq. 6.121

where:

3 T
Ji « I Trace(| Uji|x| Hilx] Uji])
jui

[Eq. 6.13]

and Tg as Ci in Equation 6.11
Ji is the effective joint inertia and Tg is the constant term due to gravity.

The servo has uniform system response under varying arm configurations and is
compensated for gravity loading and for the acceleration of the set point r.

AR NGRS

Page S8 FEEDBACK ¥
Tis) g
ARM
% +* ¥ o ’ - - Ris) i
Wy qﬁ :
- E(s)

ke
?
v L] i
ot :

Figure 6.4
Acceleration Compensated Loop]

Gt

oy

TR SN - i . BRCATHO RS A AT

Page 539 FEEDBACK

s
3

0.8 I 1.8 |
TIME (se¢)

Figure 6.5
Position Error with Inertia Compensation

L B

Page 68 FEEDBACK

Three plots of position error v. time for joint 2 are shown: Figure 6.5, Figure
6.6, and Figure 6.7.

In Figure 6.5 there is no gravity or feedback compensation, in Figure 6.8 the
gravity term is added, and in Figure 6.7 the acceleration compensation is
included.

The steady state error for a given error torque Te is:

Ess = Te/(J x ke) [Eq. 6.14)

We would like the arm to be stiff when it is servoing and a value of 58 o0z/in at
the hand is the minimum acceptable. if a Iesser value is used the arm moves very
sloppily. For this value of stiffness the values of ke can be calculated by
means of Equation 6.14. Representative values of kv based on critical damping
may then be calculated (Equation 6.4) and will give us the lower |imits on ke,
and kv,

There is, however, some noise in position measurement and if we are 'o obtain
velocity by differencing observed position readings then the same noi'e is in
the velocity determination. The primary source of noise is the quantizing noise
of the analog to digital converter used to determine position. The A/D conver ter
is @ 12 bit device and thus has a relative error of 1/4896. The equivalent
noise torque at the joint is given by:

Tn-k*J*Q [Eq- 8015]

where k is either ke if the velocity is determined separately, or ke+kv if the
velocity is determined by differencing, and & is the quantizing noise. A noise
torque of approximately FB/2 (see Subsection 6.2) seems to be acceptable and
this gives an upper bound on k.

Based on this information we can evaluate Equations 6.14, 6.4 and 6.15 for eacn
joint:

Table 6.1

Ranges of Servo Gains
JOINT ke ky k

8.838 8.39 8.18
8.832 8.36 8.33
8.8095 @.14 8.75
8.86 8.43 B.48
8.86 B8.48 1.6
8.86 8.4 5@.8

[ep Xa IR~ 7% ¥ N J 2

The second column is based on Equation 5.14 and the third on Equation 6.4 These

AR

Page 61 FEEDBACK

B T . —

i

|

|

|

%

| | | | |

. 08 | e ' |
TIMG (see) |

° 5
|

|

Figure 6.6
Position Error with Gravity Compensation

R S 3 ’ - 3 o T S N R

s i)

Page 62

FEEDBACK

-] "

TIME (sec)

Figure 6.7 .
Position Error with Acceleration Compensation

RN

Page 63 FEEDBACK

are the minimum acceptable gains. The fourth column is from Equation 6.15 and
represents the maximum allowable gain if the information is to be chtained by
means of position measurement using the available A/D converter. In the case of
Joints 1 and 2 it can be seen that an alternative meens must be used to obtain
velocity information although the position information is acceptable wusing the
A/D converter. To measure the velocity for these two joints a tachometer
generator is used, which has nuch lower noise than velocity obtained by
differencing position measurements.

We made an cssumption at the beginning «f this section that the sampling
frequency was much higher than the frequency response of the arm. We can obtain
the frequency response from Equation 6.6 by finding the inverse transform. This
iz ‘ound to be:

frequency = kv ¥ f / 2 (Eq. 6.16]

As maximum kv that we require is 8.43 this give us a response of 1/4 the
sampling frequency. It is found in practice that the velocity gain can be
increased to 1 before the effects of sanmpling becorie anparent.

At the beginning and end of each trajectory and at tn2 end of each trajectory
segment, the values of Ji and Tg are evaluated (Ecuation 6.12). They are then
given to the servo together with the part trajectory polynomial coefficients. As
the trajectory is executed the values of Ji and Tg are linearly interpolated.

For the hand in the position considered in the example in Subsection 2.1 the
values of Ji and Tg are (in the oz. in. 1/6@th. second system of units):

Table 6.2
Servo Parameters
JOINT Ji Tg
1 761820 2
2 953229 1419
3 9588 -53
4 83028 84
5 82020 37
6 4803 2

Although these gains give an acceptable rewponse from the point of view of
stiffness, the gain is too low to maintain the high positional tolerance of
+8.85 in, which we are just able to measure using the 12 bit A/D converter. In
order to achieve this error tolerance the position error is integrated when the
arm has reached the end of its trajectory. HWhen the position error of 2 joint
is within tolerance the brake for that joint is applied and the joint is no
longer servoed. UWhen all the joints are wWithin the error tolerance the
trajectory has been executed.

Page 64 FEEDBACK

If the arm is to move a heavy load its predicted effects are taken into account
by increasing the effective mass and inertia of the last link of the arm before
evaluating Equation 6.12. Similarly, if the hand is to exert a given force or
moment then the equivalent arm torque (see Subsection 2,5) is adced to Tg.

6.2 MOTOR DRIVE

The output of the servo equation is a torque to be applied at the joint, Each
joint has an electric motor drive and a harmonic drive gear reduction. The
motors are driven by 2 pulse-width modulated voltage signal. The output of the
computer is this pulse-width and the polarity., The drive module relates torque
to drive voltage pulse-width.

The motors are driven by a 368 Hert: pulse-width modulated voltage source. The
program output “"h" is the relative “on" time of this signal. If we plot an
exper imental curve of "h" v, jnint torque we obtain two discontinuous curves
depending on the joint velocity (see Figure 6.8).

PULSE WIDTH
{VELOCITY-TORQUE > ¢b)

(VELOCITY-TORQUE < ¢}

OUTPUT TORQUE

Figure 6.8
Pulse Width v. Dutput Torgue

This curve can be explained in terms of two friction effects: load dependent,

causing the tuo curves to diverge, and load independent, causing separation at
the two curves at the origin. The electrical motor time constant also affects

the shape of the curve near the origin, Experimental Iy determined curves are

éupplied to the servo program in the following piecewise |inear form (see Figure
.9)

! RS T e A N N e e e
= §

Page 65

where:

ORIVE

———

PULSE WIDTH
VELOCITY:TORQUE >)

{VELOCITY-TORQUE <)

v L

OUTPUT TORQUE

Figure 6.9
Piecewise Linear Pulse Width v. Torque

VB is the motor drive at which the joint will move at constant velocity
exerting zero force in the direction of motion;

F@ is the force that the joint will exert at drive level V@ but wuwith a
negative velocity;

the slopes and slope differences are obtained from the experimental
curves,

When the velocity is very low the direction of intended motion is substituted

for the

velocity.

One other factor considered is the back emf of the motor. The value of "h" is
the ratio of required voltage to supply voltage. The supply voltage is simply
augmented by the computed back emf before "h" is calculated.

When the

velocity is non zero the output torgue is predictable but at zero

velocity and with zero intended motion the error in the output ‘orgue can be as

much as
origin.

half the horizontal displacement (F8/2) between the tiio curves at the
The values for this error torque at a typical arm configuration in terms

of force at the hand FH, are:

- R TSR ICETE AT TR SN R R Y
v g e T, ML TSN e .

Page 66 DRIVE

Table 6.3

Arm Static Friction
JOINT F@ oz. FH oz.

1 400 £19
2 728 £28
3 70 35
4 1ee 5
S 160 8
6 1ee 178

It can be seen that the arm can exert forces with a tupical tolerance of *18 oz.

6.3 PARTIALLY CONSTRAINED MOTION

|f we require the arm to exhibit a degree of freedom along a given direction or
about a given axis at the hand, the program selects a joint to be "free" on the
following basis. The program calculates the equivalent arm torque (Subsection
2.5) for a unit force in the given direction or moment about the given axis, and
then normclizes tha torques by dividing through by their respective FB
(Subsection 6.2). The program then selects that joint which has the largest
normalized torque to be "free." This is the joint which is most seasitive to
motion in the required direction and it would be the first joint to move if the
force were slowly increased from zero in the free direction.

I1f we require nore degrees of freedom we repeat the process, being careful not
to select the same joint twice.

To free the joint during motion, the feedback gains ke and kv are set to zero
(see Subsection 6.1). This means that the free joint still has acceleratic.
compensation (Equation 6.6) and gravity compensation (Equation 3.5)., 1f the hand
is required to exert an external force this is added so that the joint is
compensated for all known forces and has no feedback.

The free joint servo response ma be obtained from Equation 6.6 as:

2
Els) = Te/(Jxs) {Eq. 6.17)

T —————— T —— POT— B L L o i i 1 e K O e s MO L e

Page 67

SECTION 7
CONTROL

In addition to moving, the arm can perform such functions as opening and closing
its hand. These functions and motions are calied “primitives" and can te put
together to make an "arm program." An arm program is assembled to moke a
trajectory file specifying the primitives together with supporting data,
trajectories, effective inertia constants and gravity loading terms.

Tuo programs exist, one for assembling "arm programs" and the other for
executing the resulting trajectory files,

7.1 ARM STATE

The state of the arm is described by tne following global variables, which are
located in the upper segment and are available to all other programs sharing
this segment, such as a strategy program. At the termination of execution of a
program the state variables which describe the arm are updated.

ARM_MOTION The name of the program currently being executed. This is a
warning flag to other programs that the arm is "n motion.

ARM_WAIT The name of the program execution of which is temporarily
suspended.

ARM_STATUS The error state of the aram at the end of execution.

ARM_LINK The 4x4 transform which describes the pasition and orientation
of the hand at the enu of execution.

GRASP The separation between the finger tips,

ARM_SEGMENT An integer variable incremented at the beginning and end of
each MOVE primitive.

Programs can be executed by the following two procedures.
DO_IT (NAME) causes the pregram NAME to be executed.

DO0_PROCEED causes continued execution of the program execution of which
was interrupted.

Ouring execution various errors can occur. Although some errors may be desired
states, they are knoun as errors because they cause the arm to stop and to apply
all the brakes. There are various touch sensors on the arm and if, when
selected, one of them touches anything, an "error" occurs.

Page 68 STATE o

The following is a list of the error messages:
x] Excessive force at joint x.
2 Hand closed beyond minimum specified opening
x6 Touch sensor x was touched.
22 Excessive force at hand
23 Arm failed to stop on specified force.
There are other messages which refer to system errors, such as file not found.

l1f an error occurs, execution of the program is suspended and the stat.
variables are updated, the contents of ARM_MOTION and ARM_WAIT are exchanged ano
the error code is set in ARM_STATUS. Execution can proceed with the next
primitive, after error recovery, by calling procedure DO_PROCEED.

7.2 PRINITIVES

This section lists the arm primitives, ..nich have meaning at two times: once at
assembly when the trajectory file is being created and feasibility must be
checked, trajectories planned etc., and once at execution time when the
primitives are executed in the same way that instructions are executed in a
computer,

OPEN (DIST) Plan to open or close the hand such that the gap between the
finger tips is DIST. A

CLOSE (MINIMUM) Plan to close the hand until it stops closing and then
check that the gap between the finger tips is gre:ter than
MINIMUM. 1f it is less, then give error 2,

CHANGE (DX_DY_DZ, VELOCITY) Plan to move the arm differentially
(Subsection 5.5} to achieve a change of hand position of vector
DX_DY_DZ at a maximum speed of VELOCITY.

SWEEP (DIST, VELOCITY) Plan to move the hand differentially (Subsection
5.5} in the direction of the hand's orientation vector a
distance DIST at a maximum velocity VELOCITY,

LIFT (DIST, VELOTITY) This is the same as SWEEP except that it is in the
directic., of Ux A where O and A are the orientation and
approach vectors respectively.

REACH (DIST, VELOCITY) Again this is the same as SWEEP except it is in
the direction of the Approach vector.

R R T N e et ¥ I L T T T

Page 69

PRIMITIVES

TILT (ANGLE) Pilan to rotate the bhand differential.y ANGLE degrees
(Subsection 5.5) about the orientation vector.

TURN (ANGLE) This is a similar rotation about Q x A.
TWIST (ANGLE) Here the rotation is about the approach vector.

PLACE Plan to move the hand vertically douwn until the hand meets some
resistance, that is, *he minimum resistance that the arm can
reliably detect.

MOVE (T) At assembly time check that the position specified by the
hand transformation T is clear. Plan to move the hand along a
trajectory from its present position to | T |. The hand is moved
up through a point LIFTOFF given by | IFTOFE = INITIAL POSITION +
QEPART. where DEPART is a global vector initialized to z = 3
inches. Similariy on arrival the hand is moved down through a
point OET QOWN give~ *y: SET DOWN = EINAL POSITION + ARRIVE.
ARRIVE is also set ‘-~ . = 3 inches.

PARK Plan a move as in MOVE but to the "park" position.

DRAW (DX DY DZ, ROT AXIS. 81, CRANK, CRANK AX]S, 82, TIME, LOOPS, FORCE,
NUMBER_FREE, FREE VECTOR) This is a trajectory motion of the
nand, The hand is at the end of a vector (CBANK) which is
rotated 82 degrees around an axis (CRANK AX]IS) as its origin is
transiated (Q¥ QY DZ). At the same time .the hand is re-oriented
about another axis (RQT AX]S) 81 degrees. See Figure 7.1. 1f the
end point is the same as the initia! then looping may be
specified (see Subsection 5.2)., Finally a number of degrees of
freedom and an excess force to be applied during the program may
be specified. With this primitive we can do almost anything!

There are also control primitives which specify how the other primitives are iu
be carried out.

STOP (FORCE, MOMENT) During the next arm motion stop the arm when the
feedback force is greater than the equivalent joint force
(Subsection 2.5). If the arm fails to stop for this reason
before the end of the motion, generate error 23.

SKIPE (ERROR) If error ERROR occurred during the previous primitive then
skip the next primitive,

SKIPN (ERROR} if error ERROR occurred during the previous primitive
execute the next primitive otherwise skip the next primitive,

JUMP (LAB) Jump to the primitive whose label in LAB.

WAIT Stop execution, update the state variables and wait for a proceed
command,

LETEGR P sin el s B

SN L]

R S i L e T o TR R P e A LT W B S TR e . AT A

Page 70 PRIMITIVES

Figure 7.1
A Draw Motion

TOUCH (MASK)} Enable the touch sensors specified by mask for the next
primitive,

SAVE Save the differential deviation from the trajectory set point.
This can be caused by CHANGE type primitives.

RESTORE Cause the arm to deviate from the trajectory set point at the
end of the next motion by the deviation last saved.

7.3 ASSEMBLY PROGRAM

The assembly program has two modes of input, message procedure or source file.
We will describe the source file input here although it should be kept in mind
that a strategy program would be able to execute the same functions.

Planning normal iy begins from the current position and proceeds from there. The
planned state of the arm is kept in a 4x4 transformation STATE. Thus uhen a
series of moves is planned it is always from STATE to the specif.ed transform T
that moves are made. At the end of each successful move STATE is updated. In
order to start a program a BEGIN pseudo-op must be assembled. This causes a
trajectory ‘ile to be named and specifies the initial state of STATE. Similarly
at the end of a program the trajectory file must be closed. MWe will Ilist the
pseudo-ops:

B R A

B ";
i
¥
&
¥

Page 71 ASSEMBLY

BEGIN (FILE, T) Open file FILE as the trajectory file and initialize
STATE to transformation | T |.

MERGE Merge the last assembled primitive with the preceding motion
primitive.

END Close the trajectory file.

MACRO (FILE) Causes input to the planning program to be switched to FILE
until the end of FILE. This gives us macros without parameters.
The MACROs may be nested.

In the case of most primitives their parameters are either vectors or
transformations; should another program use the assembly program these vertors
and transformations would be data structures of that program. In the case of
source input we need to define such data types and associate them with symbolic
names, Ail names must be defined before a primitive can be assembied,

Oata types:

TRANS (NAME. R. X, Y, Z, Ox, Oy, 0z) Set up a 4x4 transformation NAME
suc that it has position x,y,z and orientation vector Ox,0Qy,0z
and that the approach vector is rotated R degrees from the
reference approach vector about the orientation vector.

VECT (NAME, x , x, x , x) Define a vector NAME of vaiue x ,x ,x ,x .
i e R 1 2 3 4

MOVE_INSTANCE (T1, TF, 1IP) This is partiy a data type primitive as it
sets up 3 series of transformations to move an object with
transformation Tl such that it has transformation TF using
intermediate position iP if necessary. However it assembles all
the move and hand primitives to accomplish the move.

PROTOTYPE (OBJECT) this sets up the prototype of the body to be moved by
MOVE _INSTANCE.

The planning program is 38K and shares a 14K segment which contains runtime
routines and global data. Typical rurning times are 1 sec to plan a move. and
from 8.5 to 4 seconds for MOVE_INSTANCE cepending on the complexity of the move.

7.4 PROGRAMMING EXAMPLES

lie will give some examples of hand pruograms to clarify the use of primitives.
The first example is to move tre hand tc 3 position 28,38,1 to pickup an object,
then to move it to 40,28,2 and place it on ihe table.

BEGIN TRANSFER @
TRANS T

e

Page 72 PROGRAMS

S6 203811088 Set up a transform to
position the hand,

MOVE T

CLOSE 8.5 It there is nothing here
then an error will occur.

TRANS T

S8 482021808 Change the transform to
the new position,

MOVE T

PLACE

PARK

OPEN 3

MERGE The hand will open as it
starts to move.

END

The next example is to grasp an object without moving it in case there s some
error in its position. The hand is closed with the touch sensors enabled until a
finger touches the object. The hand is then "suept" and closed in 8.1 inch sters
unti! the other ¢inger touches. The hand is then closad.

TOUCH 1
OPEN -1 This wi!l cause the hand to
close with touch "on".

L2: SKIPE & Oid the left finger touch?
JUMP L1
SWEEP -8.1 1 Yes move right.
TOUCH 1
OPEN -1 And close the hand again.
SKIPE 16 Did the other finger touch?
JUMP L2 No move right again.
JUMP L3 : Yes all done.

1 SKIPE 16 Check that the right finger

touched,

JUMP L8 No then some error.
SWEEP 8.1 1 Move left.
TOUCH 1
OPEN -1 And close the hand again,
SKIPE & Oid the left finger touch?
JUMP L] No move again

L3: CLOSE 8.5 Yes close the hand.
JUMP L18 And finish.

L8: WAIT The error state.

L18:

The last example, whose file name is CATCH, has no begin and end as ue are going
to use it as a macro. MWe will use CATCH first to position the hand on the

St T Y =

Pige 73 PROGRAMS

object, then to turn it 98 degrees and close the hand again so that the object
Will be picked up centrally, ;

MACRO CATCH Here we assume that the
hand has been positioned
over the object. The
macro call will substitute
the text from our previous

exemple.
OPEN 3
TWIST 92 Now open the hand and turn
it around 98 degrees.
MACRO CATCH And close it again.

This we will also use as a macro called PICK, If the primitive MACRO PICK were
to replace the CLOSE 8.5 primitive in the first example then we would have
accomplished the move but wijthout having disturbe” the object in its initial
position, We would also have focated the object cen.rz| |y,

We uill give one final example, that is to put a nut, which we will assume the
hanu to be holding, on a vertical bolt located at 28,38,1. We will stop turning
when the torque is 288 oz. in,

BEGIN SCREW 8

TRANS T

9828302108

MOVE T

PLACE Move the nut to the bolt
and place it.

VECT ROTATION The bolt axis

80 -1

VECT NULL

608

VECT MOMENT The stopping torque.

e 8 -2080

STOP NULL MOMENT Stop the arm during the
motion uhen the torque
is 200 oz. in.

VECT FORCE

89 -28 We will want to push
doun on the bolt as we
turn,

VECT FREEX

1828 The hand must be free in
the x,y and z directions
as we screw.

VECT FREEY

8120

VECT FREEZ

86 -1

R e B F s ome g .

-V S g e

e e N o T L S Sl st O e g e BT Ve J e T T o T v PRNIOR

Page 74 PROGRANMS
DRAW
NULL ROTATION 368 No change of position
NULL NULL @ No crank axis
68 3 FORCE 1 Second per turn, plan

for a maximum of thres
turns. Exert the force.

3 Three drgrees of freedom.
FREEX
FREEY
FREEZ
END
This will screw the nut on the bolt.

7.5 EXECUTE

With the exception of MOVE and ORAN, which require trajectory files, most
functions can be executed directiy by prefixing the primitive name by "DO0." The
assembly program plans the action and sends it to the arm servo program to be
executed. This does not change the state of the arm servo program if it is in a
“wait" state and execution can continue after any number of executed primitives.
This method is used by the interactive programs, which will plan a move to bring
the hand close to the required piace and then plan a "wait." When executed, the
hand position will be modified during the wait phase by the interacting program
executing a series of “"D0" commands. Execution of the preplanned trajectory can
then continue by caliing "DO_PROCZED."

7.6 ARM PROCRAM

A simplified flow chart for the execution program is shown in Figure 7.2. The
loop is executed 68 times a second. |f the arm is not in motion then RUN is
false and the touch sensors are checked before performing any function. At the
completion of a motion or, if tne arm is not moving at the completion of a
function, the program counter is incremented and the next primitive executed. A
Zero primitive terminates execution,

The block ANGLES measures all the joint angles and performs a piecewise non-
linear conversion on them. The velocities are also determined, either by reading
tne tachometer generator outputs (joints 1,2) or by differencing %he position
information.

The block SERVO corresponds to Subsection B.1; here the errors are computed and
the drive torques calculated, If a stop arm primitive is in effect then the
error torques are checked against the equivalent arm torques to determine if the
arm should be stopped. At the end of the trajectory the position errors are

wor il

e e

Wy o ik T I T

.

Page 75 ARM

sm—m'——l
s

Figure 7.2
Arm Program, Simplified Flow Chart

wmriy

y

i e e N R S 7 i it

Yoo

T

i S b Lt s _ o Vg - kS Al 2 S

Page 76 ARM

nulled. When each individual joint is within the error tolerance the brake is
applied and when all joints are stopped the next primitive is executed.

Section DRIVE takes the joint torques as input and computes the motor drive., It
checks for excessive force and stops the arm.

The THETA section computes the next values of the joint angles, interpolates tr-
Ji and Tg values (see Equation 6.12) and controls the suwitching as required for
looping.

The Touch sensors are then checked and if any have been touched the arm is
stopped. Finally the function, if any, is performed. Functions are not
normal ly performed while running with the exception of hand opening.
The execution time for the loop is approximately Smsec on the PDP-6 processor,
using floating point harduare. The program length is 3K words including
trajectory buffers.
While the arm is running the trajectory set point 8t is given by:

8t = f(t') (Eq. 7.1]

where f(t) is the appropriate trajectory segment polynomial (Subsection 5.2) and
t' ie normalized tims. The arm set point is as follous:

Bs = Bt + dB (Eq. 7.2]

where d8 is a constant offset between the set point and the trajectory point.
Between liftoff and set-down for a period of time Tm:

Bs = Bt + d8 +d28%g(t') [Eq. 7.3]

where g{t') is given in Equation 5.37. When t = tm, dB is changed as fol lows:

d8 « d8 + d28 (Eq. 7.4]
d28 « 8 (Eq. 7.5]
At the beginning of each trajectory motion we set:
d8 « 8 - Bt (Eq. 7.6)
d28 « -d8 + d28 (Bq. 7.7]
where 8 ie the observed value. Thus at the beginning of a trajectory:
Bs = 8= Bt + dB (Eq. 7.8]
and at the end of let-doun:
Bs = Bt + d28i (Ea. 7.9]

h’:’k
L

S R iy SO g0 S

Page 77 ARM M

where d28i is the value of d28 at the beginning of the trajectory Equation 7.7.
[t d28 was set to zero at the end of the previous trajectory by Equation 7.5
then Equation 7.9 becomes:

Bs = Bt (Eq. 7.18]

This means that if the arm is displaced from the point from which the trajectory
was planned, the arm is gradually brought back to the trajectory during the mid-
part of the motion.

All the differential motions are accomplished by loading d20 setting Tm and
setting RUN. At the end of Tm the arm has moved d28 and the value of d@ has also
been incremented by d28.

The "save" command causes dB8 to be saved and the "restore” primitive loads d28
With the previnusly stored d8. By this means we can find eome location by
differential motion, save the 4B, and then, if we wWieh to return to this
differentially modified position, restore d8 into d20 before returning to the
unmodified position.

Page 78 0

SECTION 8
CONCLUSIONS

8.1 SUMMARY

In this work we have attemptud to provide a systematic approach to arm
programming. He have been concerned With three main protlems. 1) how to position
the hand on an object. Z) how to move the hand and 3) how to servo the arm,

The ¢irst problem has been soived by cetting up a wor |d model to represent these
objects: problems relating to grasping objects in the world mode! are solved
sumbolically. Wnen objects are locatec. either hy the vision system or by touch,
they are represented in the model. In performing the difficult manipulations
raguired by the 1stant Insanity Puzzie [Feldman 71b) this model based approach
Lorked without failure. The arm nas functioned in a clear environment and a
collision avoider has not been inpiemented. It is hoped that the world model
uill be adequate to solve the collisicn problem symbolically.

In moving the arm ue have demonstratzad the necessity of servoing the hand
through a succession of positicns in crder to avoid colliding with the support.
Having obtained tne hand positions, the joint variagbles are determined and a
emoath curve is fitted for each jo.urt. Trese trajectories reduce the execution
time as the arm need not be stopped at each intermediate position.

The planned trajectories enable us tc calculate joint torques to exert a given
hand force. |f the joints are efficient tnen we can exert the force at the hand
by driving the joints at tne calculated torgues. The lack of efficiency of a
joint, caused by friction, leads to errors in the force exerted. In the case of
the present hand the error is of the order of *18 o0z. at the hand. To reduce
these errors we Would need to sense joint torgues, or forces at the wrist, 1f ue
sense forces at the wrist a trarsformation matrix would be needed to relate
joint drive to wrist force comporents.

At precent cotnlete arm actions are wuwritten in a file. Eacn file contains both
the trajectory and servo constants together with the joint torques which exert a
nand force. It is possible to separate the components and to save the
trajectory together with its cervo constants. Such a trajectory can then be
used when a similar motion is nesded. 14 the arm were also to exert a force
this could be calculated and addec to the existing trajectory.

The third problem, how to servo the arm, was solved by writing a contro: program
capatle of servoing the arm and performing the various functions. When the arm
is not used sinply as a positioring device the flexibility of a computer is
needed to modify the course of execution depending on many conditions. The
arm's positional ascuracy is 3.1 inches and its repeatavility is *B.83 inches.
The primary limitations on accuracy are the A/D converter and link stiffness. |f
the system could make accurate differential motions we could bring the arm into

Page 79 SUMMARY i

the vicinity of the object and then use either vision or touch to detect the
differential errors and make the appropriate corrections. Although the present
system can calculate differential changes ail the joints must be servoed to
accomplish the change and there is no improvement beyond the limits of arm
repeatability. |f some precise form of differential motion were possible then
the effective accuracy of the arm would be increased,

The basic decision to move the arm along trajectories and the subsequent
decision to divide the task into planning and execution have facilitated the
development of both parts of the work. For instance, without trajectories we
could not predict the gravity loading terms, nor could We control the approach
to the support plane. By writing two programs, one for planning and one for
execution, it is possible to optimize both separately., UWe were able to urite
the planning program in a high level language and to execute it under time
sharing, as there are no real time constraints, The execution program is wuritten
in assembly language and is suitable for executicn on a small computer.

8.2 SUGGESTIONS FOR FUTURE WORK

There are tuo main areas for future work, world modeling and arm control. In
Wwor Id modeling the determination of arm collisions wuith other objects and the
subsequent trajectory modification need to be programmed. The class of objects
that can be represented needs to be extended, together with the hand's ability
to mainpulate them,

In the area of arm control we need to improve the sensory ability of the arm in
the form of touch <censors and force sensing at the wrist. This would make the
arm more sensitive to its envirgnment, and able to perform in 3 more intelligent
manner, With the present system it should be possible to weigh objects by
measur ing the joint torques and inferring the weight. We could aicso investigate
the degrees of freedom of an unrknown object by exerting forces on it and
examining the resultant motion. There are many tasks of this nature that could
be performed with the existing system. The use of tools is an important area of
Wwork to be investigated. Many tasks would be simplified by the use of two
hands, one to hold the work piece and the other to perform some operation on it,
We are currently installing a8 second arm similar to the one described here and
hope to investigate some of these problems,

]

e ey ’“;W’!:

Page 88 (8

APPENDIX

A.1 HARDWARE DESCRIPTION

The arm is shown in Figure 2.1 ([Scheinman] and we will give its essential
features here. The hand, a simple parallel jaw hand of 18 cm opening, can be
positioned anyuhere in a Work space of 1 meter radius about the shoulder and
Wwith any orientation. It is provided with elementary "switch" type touch
sensors.

The arm, designed to uork with Okg loads, is powered by electric motors:
harmonic drive gear reductions are employed on nost joints., These reductions are
efficient which means that the arm can react to external forces (see Subsection
6.3). and thus the hand can follow an externally constrained motion. Brakes
are provided to hold the arm in position when it is stopped, so that the arm
need not be continuousiy servoed.

The power to weight ratio is high, resulting in a very high per formance arm. It
is possible to move the arm 188 degrees at the shoulder in little over a second
including stopping and starting time. The absolute accuracy of the arm is of
the order of #8.1 inches and its repeatability #3.83 inches. Point to point
servoing usually takes in the order of 1 to 2 seconds.

Joint angles are measured by integral potentiometers and are read into the
computer by @ 12 bit A/D converter. In the case of joint 6 where continuous
motion is possible tWo Wipers are provided on a comwon element. Whenever the
current uiper is Within 1/8th of the end of scale the other wiper is read. As
Wipers are interchanged an offset is added when approgpriate. This continuous
motion is used in such tasks as screwing in screws.

Control of the arm is by means of a voltage pulse widtn modulated signal: the
polarity and duration are set by the computer, [f the arm is not addressed by
the computer once every 23 msec. a harduare interlock autocmatically stops the
motors and puts on the brakes., This must be "unlocked" by the computer before
the arm can be run again,

M AT gy CRE s ey

Page 81 SAIL (11

el e

A.2 SAIL

SAIL [Swinehart] is an extended form of ALGOL with LEAP [Feldman 69) added to
it. LEAP provides the ITEM and DATUM constructs which we use to represent the
models. Bodies and parts of them (faces, vertices, edges) are represented by
items, a data type which is treated simply as a name. The main use of items is
that they may be associated together in the following manner:

Attribute of Object is Value (Eq. 9.1)
Where Attribute, Object and Value are items.
To associate three items the "MAKE" construct is used.
MAKE AedsV (Eq. 8.2]
Where the "e¢" stands for "of" and the "s" stands for "is".

To delete such an association the "ZRASE" construct is used.

ERASE AeOsV (Eq. 9.3]

There exists a mechanism for searching tre store of associations in an efficient
manner, the “FOREACH" construct. Assume that we had MADE the following
associations:

FACZ2CUBE=FACEL
FACEsCUBESFACEZ

Then the following FOREACH statement:
FOREACH F| FACEsCUBE=F DO <statement> (Eq. 9.4)

where <statement> is an ALGOL statement and F is an item variable and will cause
F to be sequentially assigned to FACEl and then to FACE2, the statement being
executed each tine.

One additional piece of data can he associated uith an item known as its DATUM.
This is usually of algebraic type, for examale an array. In order to refer to
this array by name the DATUM conetruct is used, and to refer to an element of
the array the subscript list is added.

DATUM(A) (Eq. 9.5)
DATUM (A) {1,3]

TR et M AT A i

fage 82 SAIL 1

Thus if we represent a vertex of a body by an item e.g. VERTEX1 then we may give
as its datum the vector representing the position of the vertex, where
DATUM(VERTEX1) {1) wculid be for instance the "x" coordinate.

A.3 VECTORS AND TRANSFGRMATIONS

Vectors representing points in space are denoted by an under-bar "V" and are
descrihed by four components:

vil]
vi2

(Eq. 39.6]

such that the components of the vector Y along the x,y,z axes is given by:

X = VI11/V[4) (Eq. 8.7]
Y = V[2]/VI4]
Z = V[3]/VI(4)]

With this scheme the null vector:

0 o o

—

w1 S.8]

and vectors at inifinity:

[Eq. S.9]

Page 83 VECTORS

are representable.

T, wed AT RSRTNE e

All usual vector operations are definred, Addition and subtraction where:

Re(A28)
RI1] = A[11/A14) % BI1)/BL4)
RI2) = A[21/AL4) £ BI2)/B14)
R3] = A[31/A14) % B{3)/B[4)
R4) = 1.8

The dot product where:

(A . B) = (AI11%BI1) + AI2)%B([2] + Al3)%B([3)) /A 6] %B [4)

The cross product where: Be (AXE)
RI1] = A[2)%B(3) - BI2)%A[3)
R(2] = A[31*B(1) - BI3I*A[])
RI3] = A[1)%B(2] - BI1)%A[2]
Rl4] = Al4)%B[4)

2 2 2 1/2
Magni tude: FA L = (ALl + Al2) +A(3)) /A 4]
Scale:
[ALl |
| l
| AL2) |
SA = | I
[AL3) |
| I
| Al4)/s]

Planes are also represented by four components as a row matrix,

| FIII FI2) FI3) FL4) |

(Eq. S.10)

[Eq. 9.11)

[Eq. 9.12]

[Eq. 8.13)

[Eq. 9.14)

[Eq. 9.15)

A, R

I fhadt s

-'-.._‘_.
Page 84 VECTORS 0
in this case the first three components represent the outward pointing normal of
the plane normalized to unity and the fourth component represents the negative
directed distance to the plane in the direction of the normal from the origin
(see Figure 9.1).
¥
B
Figure 9.1
Plane Description
FI1) = N1} (Eq. 8.18)
FIZ2) = N[2)
F{3) = NI[3)
Fl4) = =D

ts to determine if @ point V

simple test exis
uct:

lf a plane is so represented, a
lies inside or outside the plane. We form the prod
[FIX[V] = VILIXF 1} + VI2I%F[2) + VI3I*F[3) + VI4)*F[4)

outside the plane, 1§ the

and depending on the sign the point lies inside or
product is zero then the point lies on the plane.
it remains

to be able to rotate and

Having represented points and planes

RSt

Page 85 VECTORS

transiate them. We do this by pre-multiplying by a transformation matrix,

R TR I x, Wi oD A DI

In the

Ccase of points, a rotation is represented by a four by four matrix:

[xx" yx' zx' @
T 1= xy ¢y zy' @
| x2' yz' z2z' B
| e 8 1

Here the first three columns represent the components of the unit vectors
i.e. aunit vector along the x axis:

reference system.

[1 |
[
i e |
X = | |
| 8 |
bl
[

if then transformed by:

P Lo T % | x|
has components:

[xx' |
| l
[xy'|
x = | I
| x2'|
l I
1]

in the rotated system. (see Figure 8,2)

In the case of a translation we have the matrix:
8
1
8
8

N x
Lol P

f

|
RETY
|

0o

i
8
8
8

l
l
|
(Eq. S.18)

in the

(Eq. 9.19)

[Eq. 9.20)

(Eq. 9.21)

(Eq. 89.22)

Page 86 VECTORS m

Figure 9.2
Rotated Coordinate system

from which it can be seen that:

| T 1 *jVv (Eq. 9.23]
ras components:
| VI1I+xt |
% V21 4yt |
% VI3l+zt I
I V4] ‘
(Eq. 9.24]

of the transiated vector.

To be able to rotate and transiate we multiply the transformation matrices
together:

P T 1= Tt * | Tr (kEq. 9.25]

i

FERET e e

B i e e f ot o h Tl e R

.
Page 87 VECTORS]
| o' yx' 2x' xt |
FT D e | oxy' gy zy' gt |
| ¥2' ye' z2' "2t |
I8 8 @ 1]
(Eq. 9.26)

These are the only transformations that we will perform although the system is
capable of many more transformations such as scaling, stretching and
perspective.

In the case of planes e require Equation 9,17 to hold under these
transformations such that if:

FET*]V =] F| x|V (Eq. 9.27)
and:

[V =T x|V (Eq. 9.28)

Then if we substitute for | V| in Equation 9.27 we obtain

IFI*IVI-IF'I*ITIHVI [Eq. 9.29]
and thus:
-1
=L AN N LT (Eq. 9.38)
or:
T
T -1 T
[F'L = T x|F| [Eq. 9.31)

Planes are thus transformed by pre-multiplying by the inverse transform
transposed.

=

Page 88

BIBLIOGRAFHY

{Aginl] G. Agin, "Description and Representation ot Curved Objects", Ph.D.
Thesis, Stanford University, September 1972.

(Baumgart) B. Baumgart, "GEOMED - A Geometric Editor" Stanford Artificial
Intel ligence Laboratory Operating Note 68, May 1972.

(Ejiri) M. Ejiri, T. Uno, H. Yoda, T. Goto. K. Takeyasu, "An Inteiligent Robot
Wwith Cognition and Decision-Making ability," Second International Joint
Conference on Artificial Intelligence, London, September 1-3, 1971.

(Ernst] H. A. Ernst, "MH-1 A Computer-Operated Mechanical Hand," Sc. 0. Thesis,
Massachusetts Institute of Technology, December 1361.

[Falk] G. Falk, Computer [nterpretation of [mperfect Line Data as a lhree
Dimensional Scene, Stanford Artificial Intelligence Project, Memo
No. 139, August i978. In reduced form: "Scene Anaiysis Based on
Imperfect Edge Data," Second International Joint Conference on
Artificial Intelligence, London, September 1-3, 1871,

(Feldman 89) J. A. Feldman, P. D. Rovrer, "An Algol-Based Associative Language, "
Communication of the ACM, Vol. 12, No. 8, August 1369, pp. 439-449,

(Feldman 71al J. A. Feldman, R. F. Sproul, "System Support for the Stanford
Hand-Eye System," Second International Joint Conference on Artificial
Intel ligence, London, September 1-3, 1971,

[Feldman 71b] J. Feldman, K. Pingle, T. Binford, G. Falk, A. Kay, R. Paul, R.
Sproull, and J. Tenenbaum, "The Use of Vision and Manipulation to Solve
the 'Instant Insanity' Puzzle,” Second International Joint Conference on
Artificial Intelligence, London, September 1-3, 1371.

(Gil1) A. Gill, "Visual Feedhack and Related Problems in Computer Controlled
Hand-Eye Coordination," Ph.0. Thesis, Stanford University, Septemper
1872.

(Goertz 521 R. C. Goertz, "Fundamentals of General-Purpose Manipulators,”
Nucleonics, Vol. 18, No. 11, Novemser 1852, pp.36-42.

(Goertz B4] R. C. Goertz, "Manipulator Systems Developed at ANL," Proceedings of
the 12th. Conference on Remote Systems Technology, ANS, November 1364,
pp.117-136.

(Goto) T. Goto, K. Takeyasu, T. inoyama, R, Shimomura, "Compact Packaging bu
Robot with Tactile GSensocrs," Proceedings of the 2nd. International
Symposium on Industrial Rovbots, May 1372, pp.149-158.

(II1TRI) Proceedings of the gnd, International Sumposium on lndustrial Robots,
May 1972.

s R SN, R o T A W

—

2

Page 83 B18L1GGRAPHY 1]

{Inouel H. Inoue, "Conputer Controlled Bilateral Manipuiator,” Bulletin of the
Japanese Society of Mechanical Engineers, Yol. 14, No. 63, 1871, pp.199-
287.

(Kahn] M. E. Kahn, The Near-Minimum-Time Control of Open-Loop Articulated
Kinenatic (Chains, Stanford Artificial Intelligence Project, Memo
No. 186, Dezember 1989.

(Lindboml T. H. Lindbom, "Today's Robots at Work in Industry: Matching the Robot
and the Job," Proceedings of the 2nd. International Symposium on
Industrial Robots, May 1972, pp.129-148

(Paull R. Paut, G. Falk, J. A, Feldnan, Tne Computer Representation pf Simpiy
Uescribed Scenes, Stanford Artificial Intelligence Project, Memo

(Pieper] D. L. Pieper, Ihe Kinematics of Manipulaters Under Computer Control,
Stanford Artificial Inteliigence Project, Memo No. 72, October 1968,

(Roberts 631 L. G. Roberts, Hachine Perception of JIhree-Dimensional Solids,
Technical Report No. 315, Lincoln Laboratory, Massachusetts Institute of
Technology, May 1963.

(Roberts 65] L. G. Roberts, Honogerieous Hatrix Representation and Hanipulation

of N-Dimensional (Constructs, Document MS1B4S, Lincaln Laboratory,
Massachusetts Institute of Technology, May 1965.

(Scheinman] V., 0. Scheinman, Design of a Computer Manipulator, Stanford

i
Artificial Intelligence Project, Memo No. 92, June 1989,

[Suwinehart] D. Suinehart, R. Sprouli, Sail, Stanford Artificial Intelligence

Project, Memo No. 57, November 1969.

(Uicker) J. J. Uicker, Jr., “Dunamic Force Analysis of Spatial Linkages," ASME
paper No. B6-Mech-1 (published in Trans. ASME 1967).

(Wichman) W. M. Wickman, Use of Optical Feedback in the Computer Control of

f an
Acm, Stanford Artificial Intelligence Project, Memo No. 56, August 1587.

