
PJ)IPBPIPB|I|W!W!PWWWWWW M^w-miym

"' ' ' ■ ' " ' . .■■■ . i- ■: . .■.,;. ■ ■ . ■■ i
"■■ ■ . ■

AD-785 050

A FORMAL DESCRIPTION OF A SUBSET OF
ALGOL

John McCarthy

Stanford University

Prepared for:

Advanced Research Projects Agency

2 4 September 1964

DISTRIBUTED BY:

um
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

„.„vi^ic^u.;.,.,,. -•.-■^-.^■-.^^-..■^...^■--^.■.^.■■...^--■.^.■■-.^.■—^r.V... :-.-.- .■■.■,,.,;..-,.,■.,■ .^.^.,.J.:,.....^.4--'--------^^"'-^-^^^^^^--'-^ai

IWlfflippiilBpgpii^^ wm**sm*vmfimi

O

o
00
i>

STANFORD ARTIFICIAL INTELLIGENCE PROJECT
Memo No. 2k

September 2h, 196h

A FORMAL DESCRIPTION OF A SUBSET OF ALGOL

by John McCarthy-

Abstract: We describe Microalgol, a trivial subset
of Algol, by means of an interpreter.
The notions of abstract syntax and of
"state of the computation" permit a compact
description of both syntax and semantics.
We advocate an extension of this technique
as a general way of describing programming
languages.

4^

The research reported here was supported in part by the Advanced
Research Project Agency of the Office of the Secretary of Defense

(SD-I85)

i ■

I • I
1

i

NATIONAL TFCHNICA1
INFORMATION SERVICE

U S Df'p.trimmit of Commerce
Spfingfield VA ??151

— --■ - :....-.'.^-..v......^.^^...-... ■■.....■- -.. ■■ .,...■...„-.^^..■.^..w-.,^.... ;-...,^ ^.^....^^....^ .^-■.... . v-....-^.,-...,

ipBPljppiPlllili^

/

A FORMAL DESCRIPTION OF A SUBSET OF ALGOL

by John McCarthy

1. Introduction;

In my paper Towards a Mathematical Science of Computation,
Proceedings of the ICIP, 1962, I advocated defining programming
languages in the following way:

1 - Give the syntax in an abstract analytic form, i.e. for each
type of expression name the predicates for telling how it is composed
and for getting its parts.

2 - The abstract syntax makes no commitments about how sums,
products, etc. are actually represented by symbolic expressions. To
define a concrete syntax one represents the abstract syntactic predicates
and functions by functions of strings.

3 - Next one defines what information is included in describing
the state of the computation, e.g. this includes the values currently
assigned to the program variables.

k - Then one describes the semantics of the language by defining a
function £' = lang (it, 5) that gives the state £' that results from
applying the program it to the state |.

Our object in this paper is to carry this procedure ouo for a
very small subset of Algor called Micrcalgol. This will illustrate
the method in an easy case; all the difficult aspects of Algol are
eliminated.

2. Informal Description of Microalgol;

Microalgol is a language for programming about, not for programming
in. It has no declarations and no arrays, and the only statements are
assignments and conditional go _to 's of the form if p then go to a.

In forming the right sides of assignment statements one may use
sums, products, differences, quotients and conditional expressions
involving the relational operators = and <. All arithmetic operators
take two operands. Here is an example of a Microalgol program

. ^

I
itäJ.dM.jiidJ.vV^—.i.ia.

ifrjjfäjJMgjjiitäjj&ilti&S^^

^injiuimiii PfPjPIPBWgjjSiiSWiPBp?;^

root: = 1 ;

a: root: =0.5 x(root + x/root) ;

error: = root X root -x;

perror: = if error > 0.0 then error else 0.0 - error;

if perror > .00001 then go to a;

^. Abstract Analystic Syntax of Microalgol:

We shall first give the abstract analytic syntax of the terms that
can appear on the right sides of assignment statements. It is given
by the following table:

predicate associated functions examples

isvar (T)

isconst(T) val (T) N.B. This is a semantic
function

001

issum (T) addend (T) augend (T) a + x x y

isdiff (T) subtrahend (x) minuend (T) a - x X y

isprod (T) multiplier (T) multiplicand (T) X X (a+b)

alquotient (T) numerator (T) denominator (T) x/root

iscond (T) proposition (T) antecedent(T)consequent(T) if x < 5 then y
else 2

isequ^i (T) lefteq (T) righteq (T) x = 3

isless (T) lefl (T) rightl (T) x < 5

The idea, taken from the ICIP paper is that any term is of one of
the eight types and that the predicates enable us to tell which. Once
the type is decided the syntactic functions associated with that type
arp defined and give us the parts of the expression. Thus if t is
a -r r x y then issum (T) is true and addend (T) is a and augend (T) is
x X y.

Now we give the abstract syntax of Microalgol statements:

.3

■■^ ■- bmikijaittiaiaiM^iah^^ ^„.■■„^■..,A^...... w,..^,-,...^.,.^..^.,,^^

^'I^^WBBKtSra^ffTiHffl?^

predicate associated functions examples

assignment (s) left (s) right (s) s is "root:=0.5x(root+x/root)"
left(s) is "root"
right (s) is "0.5^(root+x/root)"

goto (s) proposition(s) destination(s) s is "if perror> .00001
then go to a"
proposition (s) is "perror >
.00001"
destination (s) is "a"

Finally, we give the abstract syntax of Microalgol programs:

1. If n is a program and TJ is a statement number then statement
(n, TI) is the T)th statement of the program. Thus for the program we
have been using as an example, statement (n, 5) is

"error: = root X root - x".

2. If £ is a label than numb { i, it) is the statement number corres-
ponding to the label if there is one. Thus, in our program, numb (a, it)
is 2.

5. The predicate end (it, r\) is true if there is no T]th statement.
Thus end (it,6) is true in our example.

k. The States of Microalgol

The state of a Microalgol computation is given by a state vector (■
which tells us the value currently assigned to each variable and also the
statement number about to be executed. We shall treat the statement
number as a pseudo-variable called sn.

Associated with state vectors are two functions:

1. c(var;|) gives the value assigned -co the variable var in state

I.

2. a(var, value, |) gives the new state that results from the state
^ when the number value is assigned to the variable var.

Some of the properties of state vectors are given in the ICIP
paper.

The values of Microalgol variable are real numbers. Of course,
only small integers can ever turn up as values of sn.

^

ytfjjijjiijjjjjjtfjffl^^ -—--—•- üüi

PiPBPiipgffPi^^ ippwpjpijsiHpfwpiwimvw'-w^t

$. The Semantics of Microalgol

I'M

The
function
program
we give
We have

semantics of Microalgol is given by a recursively defined
micro (jt, (■) that gives the state in which a Microalgol

jt will terminate if it is entered in state £. First, however,
the function value (T , 0 that tells us the value of a term.

isvar (T) then c(T,0
else if
else if
else if
else if
else if
else if

else if
else if

value (augend (T), I)
i) -value (minuend (T), ?)
|) x value Cmultiplicand (T),

value (T , |) = if
isconst (T) then val (T)
issum (T) then value (addend (T), |) +
isdiff (T) then value (subtrahend (T),
isprod (T) then value (multiplier (T);
isquotient (T) then value (numerator (T), |)/value (denominator(T),|)
iscond (T) then (if value (proposition (T), |) then

value (antecedent (T), t,) else value (consequent (T), |))
isequal (T) then (value(lefteq (T), |) = value (rightaq (T), £))
isless (T) then (value (leftl (T), |) < value (rightl(T), |))

For definiteness we shall assume that the arithmetic in Microalgol as
expressed by the operators + - X / = < is real number arithmetic. Little
would be changed, however, if we restricted the values of variables to
numbers represented in some machine and meant by the operators the
operations of the machine.

We now can write
micro (it , |) = {X n .if end (it , n) then 5

else (x s . if assignment-^) then
micro(it, a(sn, n + 1, a(left(s), value (right(s),f;),5)))

else if goto (s) then
micro (it, a(sn, ii^ value (proposition (s), 5) then

numb (destination (s),it) else n + 1, 0))
(statement (n,it)) (c (sn,|))

This completes the description of abstract Microalgol. In order
to describe a concrete Micro-algol it is only necessary to represent
the abstract sytactic predicates and functions by predicates and
functions on strings.

3. Two Concrete Realizations of Abstract Microalgol

We shall present two realizations of Microalgol. This first is a
Lisp S-expression realization suitable for use inside a machine and
the second corresponds to the concrete syntax of ALGOL 60.

A LISP realization called LMA.

We use LISP expressions for the terms as follows:

a. atoms for variables
b. Lisp numbers for constants

I)

S'

^aaa^a^;.^^^

PPPBPfilPIPPIBP^

c. (PLUS a b) for sums
d. (DIFF a ß)
e. (TIMES a ß)
f. (RATIO a ß)
g. (IF a ß 7)
h. (EQUALS a ß)
i. (LESS a ß)
j. (ASSIGN a ß)
k. (GO a ß)

2. We represent a program by a list of its statements leaving a
place for the label that is left blank if there is no label. The
syntactic functions are as follows:

a. isvar (T) = atom [T] A ^ numberp [T]

b. isconst (T) = numberp [T]

c. issum (T) = eq [car [i]; PLUS]
addend (T) = c adr [T]
augend (T) = caddr [T]

d. isprod (T) = eq [car [T]; TIMES]
multiplier (T) = cadr [x]
multiplicand (T) = caddr [T]

We omit the obvious for isdiff, isquot, iscond, iseq, isless,
assign, goto.

statement(n, it) = if n = 1 then cadar [jt] else statement [n-.l;cdr[n]]
numb (a, rt) = if eq [car [it] ; a]then 1 else 1 + numb [a,cdr [jt]]
end (it, n) = null [it] v h > 1 A end [cdr [it]; Tj-l]]

6. A Standard Realization

In order to describe a realization of Microalgol that corresponds
to ALGOL 60 we need to compute with strings of symbols. For this
purpose we shall use the linear LISP of [3] and we only give a few of the
syntactic predicates,namely,statement (t), n), issum (T), addend (T)
and isprod (T).

statement (T], it) = if 11 = 1 then delim {";", it) else statement (n-1.
strip (";.", it)) -

delim (a, it) = if first (it) = a then A. else prefix (first (it), delim
(a, rest (it)))

strip (a, it) = if first (it) = a then rest (it) else strip (a, rest (it))
issum (T) = isop (T, 0,"+")
isop (T, r\> a) = if null (T) then F else if

first (it) = "V then isop~(
rest (T), l+l^a) else if first (it) = ")" then isop (rest (T), n-l,a)

(f

gyMja&Etesaaaaiaiiiii^ ...„„..^..^^ --. ■ 1 in iinnriifir rnriiitiiftifttüiinir

Vftp^!WföPfSp8 HHiiHBHMgIPPiliPliPPitiPM IPPPIlMIlIPMiliPPI .^ipffflJBpB^^WW^JL1,'','.«!«1'!Ji;«' ^WnrBSTOW«^"!

else if 11 > 0 then isop (rest (T), T],a) else if first (T) = a then T
else isop (rest (f), T\,a)
augend (T) = deparen (delim 1 ("+", 0, T))
delim 1 (a, T|, T) = if first (T) = "(" then (prefix (

first (T), delim 1 (a, n +i, rest (t)))) else if first (T) = ")"
then prefix (first (f), delim 1 (a, v 1, rest (T))) else if
Ti > 0 then prefix (first (T), delim 1 (a, ^ , rest (T)).
ei&c if first (T) = a then A else
prefix (first (T), delim 1 (a, TJ, rest (T)))
deparen (t) = if -, first Jr) - "(" then T else
dep 1 (rest (T77

dep 1 (T) = if T-, null (rest (T))then prefix (first (T),
dep 1 (rest (T))) else J\,
isprod (T) = -, issum (T)/A-t isdiff (T) A isop (T , 0, "x")

7. What about ALGOL

The semantics of Microalgol was described entirely by the two
formulas of section 5. Algol is considerably more complicated, but
it will be relatively easy to write down the functions once we have
decided what goes into the state. The following complications arise.

1. We have to be able to describe the situation in which a term
is partially evaluated in order to describe the state during the
execution of a type procedure.

2. The chain of procedure entries must be described including the
recursive entries.

\

5- The current declarations and those associated with higher levels
of recursion must be included.

h. Call-by-name parameters require the association of expressions
to be evaluated.

5. etc.

I believe that those difficulties can be resolved and that a clear
description of the state of an Algol computation will clarify the problem
of compiler design.

8. Comparison with other ways of Describing Semantics

We believe that the description of programming languages by abstract
syntax and state transformation functions has the following advantages.

1. Questions of notation are separated from semantic questions and
postponed until the concrete syntax has to be defined.

2. Our intuitive idea of what happens when a statement is executed
is described by its effect on the state.

WA ijiaafcigaaj^eijiaii^^

mmmmmßK*^^

5. This technique will lead to the most concise and understandable
descriptions.

k. This notion of semantics corresponds to the notions of Tarski
etc. that are current in mathematical logic. I believe that describing
languages this way will lead to the possibility of proving theorems about
compilers. (See the notion of correctness of a compiler presented in
the ICIP paper).

It seems to me that there are two other approaches to the problem
incorporated in various ways in various papers. One of these ideas is
to regard the Algol data itself as strings of symbols and the state
as a giant string. In my opinion this gets a long way from the intuitive
ideas of Algol and enforces decisions in areas in which we want to
remain uncommitted if only because of differences among machines.

A second approach is to define ALGOL by a compiler, either into
a machine language,an intuitive subset of ALGOL or into an abstract
system such as \ - calculus. These definitions have a certain
practical value in resolving ambiguities, but as they do not correspond
to our intuitive ideas, they will make mathematical results difficult
to obtain and leave us with the problem of semantics of the target
language.

It has been argued that since the formalism used above is a
language, all semantic descriptions are circular; one might as well
explain Algol by examples, etc. rather than ignore the difficulties.

In one sense this objection is unanswerable. Nothing can be
explained to a stone; the reader must understand something before hand.
The same objection was raised against Tarski's efforts to describe
the semantics of mathematical logic which have proved very successful
and fruitful.

These are two answers; a practical answer and a fundamental
answer:

1. The formalism I used is simpler than Algol and will lead
to understanding. The same advantage can be claimed for translations
into simple languages.

2. The fundamental answer is this. The purpose of semantics is
to describe the relation between the form of an expression and what
it stands for. From such relations follow other properties of
the example; we can define equivalence of Microalgol programs in
terms of how states are transformed and show that certain changes
in a program preserve equivalence.

/

iiaäfiaffiiMfljfaaiüriMaiaä
ijgjijjlgjilglglljäiiii^^ Jttfrfifftirtfiiftiiitöiillli ̂ .^A^^.-~..^^*^fi**^i^

fi»f(jp$pisp^

REFERENCES

1 - Tarski, A - Logic, Semantics, and Meta-Mathematics, Oxford. -

2 - Robinson, A - Model Theory and the Meta-Mathematics of Algebra -
North Holland. -

3 - McCarthy J. - Recursive Functions of Symbolic Expressions. Comm.
ACM, April i960 " ™ "" """ ' ~ " ' "" ""

1+ - Towards a Mathematical Science of Computation, ICIP, 1962

5 - LISP 1.^ Programmer's Manual, MIT Press, 196^

9
iitwsot,,-,,,^.-,,',.,.,,!./,^,,«»^ jffiaii^aiiMiiiiBiiiaiiiBi^^ mäjm

