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PREFACE

'fhin short course on laser effects was developed for a 12-hour
series of lectures delivered by the author at the Naval Postgraduate
School iii the fall of 1973. '1he lectures were part of Professor John
Neighbours' -ourse onl solid-state physics, which stressed topics ap-
propriate to an understanding of laser e-ffects by solid state physicists.

The author is grateful to Professo' Neighbours for the oppor-
lumi~y tu pluncitL.• en r [. t-- L~ivs C.... . 101 fo 1 ,1 ) va "uii• l"eit u...s.I.'...

during their deveiopment, lie a&so wishes to thank Professor Otto
Heinz, chairman, and those other members of the Department of
Physics and Chemistry of the Naval Postgraduate School, too
numerous to mention here, who through their support arid hospi-
talit.y made valuable contrihutiors to this work.
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RESPONSE OF MATERIALS TO LASER RADIATION:
A SHORT COURSE

1. LASERS

1.1. Introduction

The word laser, of course, is an acronym for "light amplification by the stimulated
emission of radiation," but that is not terribly enlightening. More correctly described a
laser is a device for producing light that is almost totally coherent. It works in principle
like this: An atom emits a photon of light when it decays from an excited energy state
to a lower state; the difference in energy between the two states AE determines frequency
v according to

AE = hv (1)

where h is Planck's constant. This is illustrated in Fig. 1.

E3

E2-

Fig. I -Energy levels

This is the case for any light source, whether laser, flame, incandescent body, etc. In
the conventional light source, atoms emit photons in a random, sporadic manner and
spontaneously decay to lower states when excited by heat or electric current. In a laser,
on the other hand, the photons are emitted in phase and the electromagnetic radiation
thus produced is, more or less, simply a propagating sinusoidal radiation field that can be
described on a macroscopic level by, for example,

• Re fjoe-27fkz/Xeiw(t-nz/c)] (2)

where

Note: Manuscript submitted January 31, 1974.
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' is the electric field of the radiation

Re stands for the real part of the complex quantity in brackets

0 is the maximum amplitude

k is the extinction coefficient; in a vacuum, k = 0

z is the direction in which the wave is propagating

X is the wavelength

t is time

n is the index of refraction; in a vacuum, n = 1

c is the velocity of light in vacuum.

Equation (2) is a standard representation of the electric field of a traveling light
wave. However. if one measures the electric field at some point in space for light from a
conventional source, the sinusoidal variation expressed in Eq. (2) does not appear, for the
atoms emitting the light are doing so at r- nd, Tr, and the sinusoidal variation due to the
emission from each atom is averaged to soLne ..irne-independent value. This is not true of
laser emission, where the individual photons are in phase. Measuring the electric field at
a point in space for laser light results in the oscillating &' predicted by Eq. (2).

This coherence is created by taking advantage of stimulated emission in materials in
which metastable states can be induced. The lifetime of an atom in an excited state de-
pends on the quantum mechanical selection rules for transition to a lower state, and there
are states from which transition to a lower level is extre'mely improbable. Such states are
called metastable, and an atom not disturbed by outside influcnce will remain in a meta-
stable state for a very long time. If a metastable atom interacts with a photon of fre-
quency such that AE = hi-, where AE is the energy difference between the atom's normal
and metastable states, stimulated emission will occur. The atom will decay to its normal
state by emitting another photon of frequency v, so that the net result is two photons,
and the second photon will have the same phase temporally and spatially as the first.

In a laser, then, one establishes a large number of atoms in metastable states and
arranges the optics to increase the likelihood of stimulated emission. Schematically, a
typical laser oscillator looks like Fig. 2. The pumping radiation (for example, light from
a flashlamp) excites the atoms in the lasing medium (for example, Cr... ions in ruby).
In the decay process (if we have a successful laser), a large number of ions are left in a
metastable state; this is called a population inversion. As some atoms begin to decay,
they stimulate others to decay. But this alone would not provide a laser, since the emis-
sion would occur in random directions. The role of reflection is very important; the
photons moving perpendicular to the reflectors pass through the medium many times and
on each pass more and more atoms are caused to emit. This results in the build-up of a
very strong coherent light signal that travels in a single direction. Useful light output is
obtained by making one of the mirrors a partial reflector.

2
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TOTAL ACIEMATERIAL OUTPUT
REFLECTOR R LEOUTPUT

PARTIAL
Il I I I REFLECTOR

PUMPING
RADIATION

Fig. 2-Schematic representation of a laser

It is interesting to look at a few examples of the intensity of laser light. In a typi-
cal ruby laser, the concentration [1] of Cr... ions is about 2 X 1019 cm-3 , and popula-
tion inversions are of the order of 3 X 1016 cm- 3 . Crudely speaking, we can think of
creating 3 X 1016 quanta/cm 3 in the lasing medium. Since we have arranged the laser so
that the output is in a single direction, and since photons move with the speed of light,
we obtain 3 X 1016 X 3 X 1010 = 9 X 1026 quanta/cm 2 s from the laser. For ruby, the
lasing wavelength is 6943A, and since the energy of each quanta is liv, one can readily
calculate that the output is about 2.5 X 108 W/c.m2 .

Let us compare this to the power that a hot body, say the sun, emits at th. same
wavelength with a similar bandwidth. This can be calculated by the use of Planck's
radiation law,

nw93  1
jw 2 (3)

Uw, is the energy, per unit volume and per unit bandwidth, radiated by a blackbody at
temperature T; k is Boltzmann's constant. Tile radiation leaves the black-body source at
rate c, so the power radiated per unit area of the source, per unit bandwidth, is

cU Uw p w3  1/4
w 4 •j2C2 ehlwikT - 1 (4)

If we use the sun's temperature of 6000 K, and X = 6943A,

,w ý- 2X10- 5 erg/cm 2 .

For the ruby laser, a typical line width is 3A, so Aw - 1.2X 1012 s-1 Thus the
power density at the source is

I - 2.5 X 107 erg/cm 2 s - 2.5 W/cm 2 .

Thus the power density for comparable narrow-bandwidth, nearly single-frequency
light is much greater at a laser source than at a conventional hot-body source, because
laser light is coherent.

3
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1.2. Propagation

-Ilth proparaion of laser light through the atmosphere postLs a complex proliene and
it will not be discussed here. Suffice it to say Ilhal, as anyone who has d(lfven on a foggy
night certainly realizUs, L ,. 1:; certainly scattered in the atnio,,phere. Laserfs of high power
density post' even more difficult prolpagation problems becau."e Lhe high intensity warms
the ;ir and creates a deinsity change across the beam. This variation in density refracts
the light and causes hteam spreading, or "thermal !.,ooming."

Consider briefly the propagation ut laser light in fr.e space or in vacuum, tinder
these ideal conditions, the only change in the power density is due to simple beam diver-
g,-nee. Since the typical laser emits light thlat is ncarly unidirectional, the beam diver-
gence is small. In fact, one feature of a laser is that the divergence is nearly at the dif-
fraction limit, which is of the order of ,N'a, where a is the diameter of the output aperturt'
of the laser. For the ruby laser discussed above, this gives a divergence angle of

6-13 x 10 -
0 -17 X 10-2 mrad

,a

for, say, a 1-cm aperture. In practice, one needs to go to much trouble to reahze this
limit of divergence, but it has been done. More commonly, an "off-the-shelf" ruby laser
might have a beam divergence of a few mrad.

The ne"wcomer to lasers has usually heard about diffraction-limited beams and the
consequent extreme directionality of laser light lie is usually surprised to discovei that.
at long distances front the source thtse beams have power densities that vary as the recip-

N ro'-ai of lilt' squa, e of tl;(j5 "..... ,,. all ratiting , oinres. To see this, consider a
source of powei P WV, dtaineter a, and divergence angle 0, as shown in Fig. 3.

-F-r '------ -T

Fig- :3 -Simn: 1 ifw,, sketch (t las•r heam divergence

At distance r from the so-trce, the power density is

7-P
4' (a + 2r tan ()ý"4

or, since 0 is very small and tan 0 0,

A
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P

(a + 2r0)2

or

2 2 (5)
4 ar

From this expression it is apparent that for large distances, such that 2r/a > 1,

P
7ra 2 4r 2 02

4 a2

or

P
=rr

2O 2

or, since 0 N X/a,

p aP
jrr2 X,2

For example, consider a 10-kW beam of 10.6-pm wavelength and 10-cm aperture at 1 mi

(i.e., a high-power C0 2 laser);

1 104 X 102

7r(5280 X 12X 2.54) 2 (10 X 10-4)2

or

I1 12 W/cm 2 .

From Eq. (5), if we substitute 10, the power density at the source, for P/(7ra 2 /4) and
recall that 0 N X/a,

1
I = 01 2 (6)

(1 + 2r2

From this expression we can see that if r is small there is little change in power density
emitted by the source. The distances at which thic s true are referred to as "near field,"
and the fine details of the beam pattern, such as local variation in intensity, hot spots,
etc., are preserved in the near field. It is apparent from Eq. (6) that this near-field dis-
.ance will be limited to r such that I P 10, or

2 rX
a 2

5
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or

rnear fiold « a 2 /X

For lasers with exceptionally good optics that have a Gaussian distribution of power den-
sity across the beam, the near field pattern will persist for distances on the order of a 2/X

[2-4].

As a final comment on power densities at distances from laser sources, let us use
Eq. (6) to calculate the distance at which the power density is halved:

I 1 1

10 2 2r2

a2 /

and

a 2

r, (V - 1).

For our illustration of a C0 2 laser with a 10-cm aperture, r - 680 ft, or a little more
than 0.1 mi.

1.3. Response

The rcrn_.-;s here were not intended to explore lasers or laser propagation at any-
thing beyond the most basic level. They were designed rather to set the stage for the
main purpose of these notes, that is, to describe the behavior of matentis under irradia-
tion by laser light. A great deal of study is under way in this field, for the application
of highly intense light to materials has many uses. In the medical world, for example,
lasers are used to "spot-weld" detached retinas. The Ford Motor Company is installing a
large laser-computer machine to automatically weld parts of Torino bodies. There are, of
course, possible military applications.

We address ourselves, then, to a detailed examination of what happens when the
light interacts with the material. It is convenient to think of this interaction in threc
parts, although all three influence each other and take place simultaneously.

First., the light couples with the material. To a first approximation, this is governed
by simple optical reflectivity, although at high power densities other effects become im-
portant. The net result of the coupling is the conversion of some fraction of the optical
energy into thermal and/or mechanical energy.

Second, the thermomechanical signal is propagated into the material. The details of
this propagation play a prnminent role in oetermining the net effect of the irradiation.
For example, pure copper or aluminum, with their high thermal diffusivity, can readily
dissipate large amounts of thermal energy and thus require higher intensities for, say,
laser welding than more poorly conducting metals like stainless steel.

6
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Third is the induced effect, the effect the thermomechanical energy has on the ma-
terial, such as melting or vaporization, shock loading, crack propagation, and so on. Here
again there is an interplay with the other parts. When a metal, for example, begins to
melt, its optical reflectivity and thermal diffusivity change markedly, and this changes the
coupling and the energy flow. So in our discussion we shall have to be aware of the in-
teraction between the three aspects of coupling, energy flow, and induced effects.

2. OPTICAL REFLECTIVITY

2.1. General Properties

To consider the coupling of the laser energy to a material, we need first to know the
optical reflectivity R and the transmissivity T for light incident on a surface which divides
two semi-infinite nnedia. The transmissivity plus the reflectivity equals unity at a single
surface:

R + T= 1. (7)

In most practical situations we are dealing with mor,. :t'.n one surface; typically, we have
a slab of material with light impinging on one surface. Some light is reflected, and the
rest is either absorbed or passes completely through the slab. In such a situation we shall
describe the net result of all the reflection, after multiple passes inside the slab and ap-
propriate absorption has been accounted for, in terms of the reflectance 'R, the absorp-
"tance (f, and the transmittance 'I:

-• F + ff = 1. (8)

What we really are interested in from the point of view of material response is d, the
absorptance of the material. In most materials of interest from the practical aim of using
lasers to melt, weld, etc., .J' is zero, and

.R + CI = 1. (9)

In a later section we shall consider the relationship between :R and R.

To understand reflectivity, we must use some general results from the theory of
electromagnetic waves. Let us summarize these briefly at this point. The electric field
of the electromagnetic wave, from Eq. (2), is

C- = Re [t,-,o)e-2nrkz/1eiwZ(t-nz!c)].

The relationships we need are those among the index of refraction n, the extinction coef-
ficient k, and the material properties. These relationships can be derived by substituting
Eq. (2) in the wave equation

.+ 11 ( . (10a)a)z2 at2 at

This results in the expression

7
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(2-k , i-wn 2 = p(-W 2 ) + ij.pO. (10b)

Note that we are using rationalized MKS units throughout. The material properties enter
through p, e, and a, which are the magnetic permeability, the dielectric function, and the
electric conductivity of the medium. Using the usual equations between the field vectors

D = Keco&, (Ila)

B = Kmpo H, (11b)

J = (11c)

we have

e = Keco, (lid)

p = KmiJ . (lie)

In Eqs. (11), e0 and go are the electric permittivity and magnetic permeability of a
vacuum. Ke is the dielectric constant and Km the magnetic permeability of the material.
By substituting Eqs. (lid) and (lie) into Eq. (10,) and using 27r/X = w/c, we obtain

(k + in) 2 =- -KeKm~oPoc 2 + iKml1poo "2

Finally, if we introduce c2 = (o0P0)-e and do some algebra,

n -ik = /-Km 1& -i (12)

This equation relates the material parameters Kin, Ke, and a, which in general may be
complex, to index of refraction n and extinction coefficient k. To describe the propaga-
tior of the light wave thus requires a knowledge of Ke, Kin, and a. Before we describe
these, let us look at two more general properties of our propagating electromagnetic
wave.

The first of these is absorption. If the medium is absorbing, the intensity will fall
off to Ile of its initial value in a distance 5, obtained by setting &,2 of Eq. (2) equal to
(1/e)2ax, or

4irk6_
-1

X

x (13)

This shows why k is called the extinction coefficient, for it determines skin depth $.
Equation (13) is fairly general in that once k is known, 6 can be calculated. As noted,
a knowledge of the material properties is required to calculate k.

8
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The second general property we wish to derive is the expression for reflectivity, in
terms of n and k. To do this, consider light impinging normally onto an ideal solid sur-
face, as shown in Fig. 4. Here we have illustrated the incident (&i), reflected (F!r), and
transmitted ((St) electric waves at a vacuum-material interface. For the present, we limit
our discussion to the case of normal incidence. We now consider the boundary condition.
We have

S+ = (14)

for the electric field. For the magnetic field B, we write

Bi - Br Bt. (15)

MEDIUM I MEDIUM 2

Fig. 4-Incident, transmitted, and reflected electric
vectors at an interface

The minus sign is before Br because F X B is positive in the direction of propagation of
the wave. Now, the relationship between B and F, or, since B = MH, between H and 6,
is required in order to proceed further. This follows directly from Maxwell's equations:

X =X ai-/ (16)at

VX H = + e .-. (17)
at

It is convenient to rewrite Eq. (2) aid introduce wX = 2irc, to have 6, explicitly in terms
of w instead of both wo and X. Recall that 6 is a vector, and take it as being along the
x direction. Thus

_.. z( n - ih)

•X = • 0 eiwte c (18)

9
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Here we have dropped the "Re" notation, and shall simply note that we always mean the
real part when we write the wave in exponential form. We shall use unit vectors •, 5',
and i.

Now the curl expressions reduce to

vxg = I
-Y z

which, with Eq. (16), tells us that H has only a y component, so

-llY
V x H = -. x

Thus Eqs. (16) and (17) become

.-- -•(19)

and

bz a = .,x + C a-- (20)

"and of course, = H = Hz 0. Putting the expression for 'x from Eq. (18)
into Eq. (19) leads to

iw

- ik t z -ik)

This is the desired relationship:

= (n ik) • . (21)

At this point we note in passing that Eq. (20) or (10b) could be used to yield the rela-
tionship of n and k to M, E, and a. If the reader is unfamiliar with these relationships, it
is instructive to carry out the algebra.

Returning to our consideration of the reflected electric and magnetic fieids, we re-
write Eqs. (14) and (15) with the help of the relationship between H and c<, from Eq.
(21);

+ Fr = t

and

ujH1 - MiHr =,2Ht

becomes

10
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- - (n2 - ik2

I r = 2 - iki)

Solve for r/5 i by eliminating kt:

cr nl -n2 - i(€ 1 -k 2 )
i= "i + n2 - i(kl +k 2 )

Finally, the reflectivity R at the surface is

(n - n2) + (kl -k 2) 2

(n, +n 2 ,2 + (kl +k 2 ) 2  (22)

Take medium 1 as a vacuum and drop the subscript 2. This gives, since in a vacuum
nj = 1 and k, = 0,

(n- i) 2 + k2
R = (n+1) 2 + (23)

Equation (23) is the second relationship we will find useful in discussing the coupling of
optical radiation with metals. Note that it is derived for the special case of normal inci-
dence and is applicable to a vacuum-material interface.

2.2. Reflectivity of Metals at Infrared Wavelengths

We turn now to a derivation of the optical reflectivity of metals for infrared wave-
lengths, where experiment has shown that the free-electron theory (sometimes called the
Drude-Lorentz theory) of metals is adequate. This theory rests on three assumptions.
The first is that electromagnetic radiation interacts only with the free electrons in the
metal. The second is that the free electrons obey Ohm's law, or, more specifically, that

M*d +--r U = -e& (24)
dt (24

where m* is the effective mass of the electron, v the velocity, r the relaxation time due
to collisions, and --eF, the force on the electron due to the electromagnetic field. The
third assumption is that the free electrons of a metal can be described in terms of a single
effective mass, carrier concentration, and relaxation time. There has been a good deal of
discussion about the validity of these assumptions in the literature. Recent work [31 in-
dicates that, for wavelengths in the intermediate infrared (a few microns to many tens of
microns) and beyond, the free-electron theory does a reasonable job of predicting the
reflectivity of metals.

To derive the free-electron optical reflectivity, we try solutions to Eq. (24) of the

form

V eiW1

ii
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so that

!m *(icv) I V ý -- el,-
F

and

CT

ml(1 + Wr)T

Now the current flow obeys

,4 : oto = -Nev

where N is the elec'tron0 concentrat,,n (number of electrons per unki volumej. By coin-
parviion of the last two equations,

o cv-
): I ii (I + IcWT)

or

Ne r
0 --(jO 2-
0 -i 1 + ic: r)

New the dc conductivity is

No 2 -r (25a)

We see a is a complex quantity and seek to write it a the sum of a real and imaginary

part. Thus,

Ne
2 r(I - IcoTJ

+

Define

o =a - io2

The rebult is

o0

0J - (25h)

1 + w 2 r
2

To proceed further we need to use the general expression for electromagnetic waves de.
ve.ouped in See. 2.1] Recall Eq. (12):

12
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k = • • . - _-_, i'-v
:1nl from twe compl,.x o,

-* -- 01 to"0'
no - 1k - i

If we assume only free-elec-ron optical interactions, the metal does not polarize under the
wave, and K, - 1. In addilion, for metals in the infrared, Km = 1. Thus,

?z -ik 10' + ()

-~C Lk W

o r

n - 1k 0 1 - i (26)

It remains only to separate the real and imaginary parts oi Eq. (26), which will yield two
equation,, in n and k and thus gve n and k in terms of tho dc conductivity or and the
rela, ation time T. Then we can use our expression for the reflectivity from Eq. (23) to
generate 1? from a and h.

"lo carry out the algebra we use the identity

R/ + A + . U!R - A
2 2

le - yA2 + 132.

I.et Ling

A 1 -02

and
U1

wv have

cc, OW

2,, 2  4k.,-) iV// (12 -2 ;"{} (27a)

aid

1:3
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2k 2  1 + (o , . (27b)

Equations (27a) and (27b), together with

R = (n- I) 2 + k2

(n + 1)2 + k2

(Eq. (23)), give the reflectivity. These are elaborate expressions indeed. It is useful to
look at some limiting cases and at the material parameters that determine R.

Notice that R is a function solely of a,, 02, and w. Lool again at Eqs. (25) and
note that o0 can be used to replace r in the expression for o, and 02:

U07 *2 2 (28a)

1 + W2 m'00
N 2 e4

Ne2

02 *2 2(28b)

N 2 e4

Equations (28) show that ul and 02, and thus R,ýdepend on frequency W, constant

m*/N, and dc conductivity c0. Thus

R -= f(w. Oo, m*IN). (29)

This means that we can use the dc conductivity to predict the reflectivity. Furthermore,
if we know the temperature variation of 00, we can use this method to calculate R as a
function of temperature. This is a useful result, because it is difficult to measure optical
reflectivity as a function of temperature, whereas it is fairly easy to measure o0 vs tem-
perature. A wealth of data on electric~il conductivity has been amassed for most metals
and alloys. Thus the free-electron model is currently enjoying a great deal of attention as
a way of providing reflectivity-vs-temperature information in the study of laser effects.

There is, of course, one problem in using o0 (T) data to predict R, and that is the
parameter m*/N. It turns out that R is fairly insensitive to this parameter at infrared
wavelengths. To see this we show here some numerical illustration. Define

0J = M*/mo

where m0 is the free electron mass, and then the parameter O/N is equivalent to mn*/N.
Figure 5 shows a pioc of Tu13•,/N) as a function of O/N for X - 10 pm and various values of
u0. Here oa is in u-ri. _, reciprocal ohm-centimeters. Typical values are, for example,

1.4



NRi. REPORT 7728

1 " - cm- i v l(-2.3 cm: for aluminum. Then the value of aI?Ia (01N)
is: ;.hout 7.2X 102() cm- If we take a 10'/( error in l/'N we got

OR A(01N) = 7.2 X I0')2 X 10-24

o191N) (3N -72

W( = 0.00072.

Since for thesse values R = 0.97366, the change in R? is only about 0. 1%,. We can obtain
qtune good predictions by the Drude-Lorentz model using the experimental values of o0
and the moist simple choice for O/N, namely one free electron for each valence electron
per atom in the metal, and PJ = 1. For alloys, it is sufficient to choose the major con-
stitu(ent of the alloy. For example, with stainiess steel we choose iron, or two electrons
lpet atolin, to compute N and hence ikiN.

a0Z
2

10
2 '

a020

C, 1 0-

10E ' \0 1WAIF NUMBER= 103 Vcm

00MiCRo. S)

a0 2 0ý2 10 22 10-ý 0-2

Fig. 5 Sensitivity o' to tht parameter

Figures G and 7 shuw the predictions of the frtee iectron theory for a variety of1
metals and some compari-vol to ec perimental data 1:31 . The abrupt change when the
metal molts is caused by the abrupt change- in the 0 conductivity. Notice in (he corn-
l)arison to data that aluniinum films givv values cl-..-ý;t to the theory. This is probably
hbcause they prevnent th(- best surfaces. Diefects, oxide layers, etc., tend to trap thc inci-
(lent radiatii ionIWId (cause they real surface to absorb more radiation than the ideal surface.
Thvwse graphs are in terms (cf absorptance, which is the experimentally measured quantity,
and, since metals aite opaque, uI 1 -I, which is correct for specular reflection at nor-
mal incidence from an opaque sibstance.
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Let. us relturn to the expressio:is !o- n andt h to look at some limiting forms and thus
show how th,!se complete expression~s reduce to simple re!ationships. RIememher that It
(Eq. (2 3 ) i' determined by n and he (Eqs. t27), which are in turn obtained from the de
conductivity arid nzeIN (Eqs. (28). The variation of n and i? with wav'1ength is; shown in
Fig. 8 for a lypical good 'onductor like aluminum or copper at .,oom temperature. Note
that at long wavelengths n = 1h. We can derive this by using Eqs. (25) for ui and 02 and
noting that bs w -, o, u1 I I00, and o2 -- o0(yr. by substituting these into Eqs. (27) for

a and 1, we can readily snow that

I .hi2o (30)
S2( 0 (,

This is called the llagen.-Rthen, liu,,t. Note that n is very large. Under these conditions
algebra can he used to reduce Eq. (25) to

n+I

or
R

Il

16
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Fig. 7-Free electron theory predictions of absorptivity of several metals at 10.6 p.
The open symbols indicate the molten state.
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and Eq. (30) can h, substtktited for n to gt,t

This is tht 1lagen-Rubetis reflectiviiy.

We canl also comment on the skin ,lepth. We have, at long wavelengths (w, -• o).

27' 00

This can be rewritten as

(,32)

Equation (32) is the common expressi n foi skin depth used at long wavelengths.

Finally, we see from Fig. 9 that n and I? reconverge at short wavelengths. 'I his is
cailed the plasma resonance- To see this, oi - must look" at the behavior of n and k over a
larger spectrum. We have already discussed th,! long-wavelength limiting behavior of n and

h. This is the ilagen-Rubens rc.gion, wherte n - k. At short wavelengths, it is easy to show

from Eqs. (281 that

N~el

I?l ý20 (i(k

Ae 2

U2__ II.
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Thus Eq. (27) can be written, for large w, as

n2 = 1  (33a)
eom*W

2

k2 = 0. (33b)

Now the plasma frequency is usually defined from Eq. (33a) by setting n = 0 to yield

2 Ne2  (34a)
Ep- 0 m, 3a

and thus

2

n2= 1--I (34b)

We see, then, that at very high frequencies the free-electron model predicts a transparent
behavior (k = 0) and the index of refraction approaches that of a vacuum. The transitio
to this transparent behavior takes place at the plasma frequency, and it is a fairly abrupt
transition, as Fig. 9 shows. In fact, some texts call this transition the "altraviolet catas-
trophe." Note that at w near wp Eqs. (34) and (33) are not valid. For these frequencies
we must use the full expression. If we use again the values of ao = 105 2-lcm- 1 and
0j1N = 10-23 cm 3 , which are appropriate to a good conductor like aluminum at room
temperature, the refiectivity looks like Fig. 10. One can see that, in terms of the reflec-
tivity, the transition is very abrupt, indeed.

R

1.0

0.8 "
0.6 HAGEN-RUBENS

PLASMA FREQUENCY

0.2

0.0 -I I I I
1000 00 t0 I 0.1

.4-,---X (EL)

Fig. 10-R as a function of wavelength
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The optical reflectivity of real metals is, as we have seen, in reasonable accord with
the free-electron model at wavelengths in the infrared. The surface, however, must be
nearly perfect for the predicted reflectivities to be achieved, and, of course, as the wave-
lengths approach the visible region band effects become important and the reflectivity
shows rapid -Actuations with frequency. The absorptance of a practical metal surface is
still largely a~i empirical matter. For high-power, continuous-wave radiation by a CO 2
laser, some data are available, but very little information on absorptivity as a function of
surface temperature under these conditions is available. Shown in Table 1 are room-
temperature absorptances for a few materials.

Table 1
Room-Temperature Absorbtances of Aerospace

Metals and Alloys at 10.6 pm for Various Surface
Conditions and at Normal Incidence

Meta or__ Surface ConditionMetal or _______ _______ _______ _______

Alloy Ideal Polished As-Received Sandblasted

Al 0.013 0.030 0.04 0.115

±0.02 ±0.015

Au 0.006 0.01 0.02 0.14

Cu 0.011 0.016 0.06

Ag 0.005 0.011

2024 Al 0.033 0.07 0.25
±0.02

304 Stainless steel 0.11 0.4
±0.2

Ti Alloy 0.65
(6Al, 4V) ±0.2

Mg Alloy 0.06
Az-31B ±0.03

Data on the reflectivity of a metal during actual irradiation by a laser beam is quite
difficult to obtain, although this information is central to the problem of laser-material
interaction. One classic experiment along these lines was carried out by Bonch-Bruevich,
Imas, Romanov, Libenson, and Mai'tsev in Russia in 1967 [4]. They surrounded their
specimens with a sphere to monitor the reflected radiation, as shown schematically in
Fig. 11. The output of the photodetector is proportional to the reflectance of the spec-
imen. Some of their results for steel and copper are shown in Fig. 12. The laser pulse
(Nd: glass laser, 1.06 jum), with a peak power density of the order of 108W/cm 2 , is
shown as a broken line. As time passes, of course, the laser pulse heats the surface and
the reflectance decreases. An especially interesting feature of these data is the shoulder.
The author has suggested that this leveling off is associated with the surface reaching the
melting point and pausing at that temperature while the thickness of the molten layer

20
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PHOTOMETRIC SPHERE

LASER____________
BEAM

(7. TARG3ETO

I PHOTODETECTOR

Fig. 11 -Schematic representation of Bonch-Bruevich experiment
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Fig. 12-Reflectance of steel ar.o copper during
irradiation by a laser beam (from Ref. 5; copy-
right 1969, Clarendon Press, Oxford, England.
Used by permission of J.C. Jaeger).
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propagates into the solid. In short, order, however, the molten layer begins to heat up
and the reflectance continues to decrease. As the power density of the laser pulse reaches
its peak and begins to fall, the surface temperature can no longer be inainuained, and as
the surface cools the reflectance begins to increase again.

3. THERMAL RESPONSE

3.1. Introduction

One of the most important effects of intense laser irradiation is the conversion of
the optical energy in the beam into thermal energy in the material. This is the basis of
many applications of lasers, such as welding and cutting. We shall summarize here this
thermal response. It is basically a classical problem, namely heat flow. In the usual man-
ner, we shall seek solutions to the equation which governs the flow of heat, namely

PC- -T K - +- K- I + iK - + A. (35)
Tt 3x 7 \3ýx a/ (~ ay az

We use here p for the density, C for the specific heat, T for temperature, I for time, and
K for thermal conductivity. A is the heat produced per unit volume per unit of time.
In Eq. (35), p, C, and K are considered functions of both position and temperature, and
A is a function of both position and time. In effect, the equation is a simple statement
that the rate at which heat accumulates in an elemental volume dxdydz is equal to the
net flow of heat across the faces of that volume plus the rate at which heat is produced
within the volume.

Thus thermal response studies consist essentially of two parts. Fik'st, one needs to
know the rate and source of production of heat by the laser, which yields A. Then one
solves Eq. (35) subject to the boundary conditions of the situation of interest. This can
be a very elaborate task and frequently can be done only with the aid o.f a computer.
There is a great deal of effort among workers in the field of laser effects to develop an
all-inclusive computer program to solve Eq. (35) for every possible situation. However,
the solution to Eq. (35) can be no better than the knowledge of A, and, as we shall see
in later sections, it is often very difficult to establish A with any precision in a laser-
material interaction situation.

3.2. No Phase Change-Semi-Infinite Solid

Let us consider first the most simple situation. Let the laser beam be perfectly uni-
form over an extremely large area, so that we have a one-dimensional situation. Assume
also that the material parameters are temperature-independent and that the solid is uni-
form and isotropic and of semi-infinite extent (Fig. 13). Finally, assume that there is no
phase change; the rate at which energy enters the material is not sufficient to induce
melting or vaporization.

First rewrite Eq. (35), using the fact that p, C, and K are constant:

32T 1 3T A (36)
3z 2 - 3t K
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UNIFORM LASER SEMI-INFINITE
BEAM SOQL I

z:O Z ---- 0.

Fig. 13-Uniform irradiation of a semi-infinite solid

Here we have introduced K = K/(pC), which is the thermal diffusivity. Let us adopt the
convention that T is measured with respect. to the initial (or ambient) temperature of the
material. This is possible because Eqs. (35) and (36) define T only to within an additive
constant. Then we have as a boundary condition that T - 0 as z - oo. The boundary
condition on the front face (z = 0) depend-. on what we assume for radiative and con-
vective losses. It can be shown that, for most cases of interest, the rate at which the
laser creates heat at the interface is overwhelmingly larger than convective and radiation
losses, so we ignore them for the present calculation. Thus the boundary condition is
that there is no heat flux at z = 0, that is,

K aT =O 0.

Now consider A. Denote by I the power density of the laser radiation at the sur-
face; the dimensions of I are power per unit area. The power density of the radiation
transmitted to the surface is I(1 - R). Then the power density as a function of z is

F = (1 - ýP)Ie-47IkzfX. (37)

This follows from the fact that the energy in the electromagnetic wave goes as '2. Now
to get the power transferred per unit volume, consider elemental volumes of length dz
and unit area:

A= _)F = (1 - R 47r e-47Tkz/X . (38)-az =xi •(8

The minus sign appears because VFlaz is the power per unit volume lost by the radiation
and A is the power per unit volume absorbed by the material. Finally, we define the
absorption coefficient

4= 1rk (39)
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which is, of course, 1/6, the skin depth. Thus

A(z, t) = (1- £R)I(t)ae-Oz (40)

where we have included the possibility of I varying with time.

So the equation to be solved is

a 2T 1 aT (1- R)I(t)a e-Oz--- - =- - (41)
az2 KC at K

In keeping with our assumption of temperature-independent thermal parameters, we as-
sume further that R is independent of temperature. Equation (40) is valid for temperature-
dependent ! and can be used to give A (z, t, T).

For metals, ot is a fairly large number. As we saw in Sec. 2, k is of the order of 100
at X = 10 prm, so that (x is of the order of 106 cm- 1 . Hence the absorption occurs in a
very narrow layer at the surface. It then becomes more convenient to seek solutions of

32 T 1 = 0 (42)
aZ2 K at

subject to the boundary conditions that T = 0 at z = oo but with a specified flux into the
surface at z = 0, i.e.,

-K ) = (1 - )I(t)v-Z.0

or, with the definition

F(t) = (1- R)(t), (43)

-K z) = F(t). (44)
z.0

First examine the case of F = F0 , a constanL. This is appropriate to irradiation by a con-
tinuous laser, given t'mperature-independent material properties. We note here only the
solution, for many excellent texts on heat conduction can be consulted for the details [5].

The solution to this problem is

2F0  T
T(z, t) = K ierfc [z/(2 ,/Kt)] (45)

or

T(z, t) = e-Z2 4Kt 2 erfc -z"(2VIt]
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The functions which appear here are error functions, and it is useful to summarize some
of their properties and definitions. (See Ref. 5, Ch. 11.)

The error function is

erf(x) 2 J0 eC
\7r

erf(o) 0, erf(o) 1, erf(-x) -erf.(x).

The complementary error function is

erfetx) 1 - erf(x,) 2i e-'

"The inregral of the (complementary error function is

ierfc (x) j erfc (ý') dA

or

1 2
in-rf(x W eX x erfc (x)

__rfc_(x) __i- e x + x-__t_ W

Some derivatives are useful:

•J erf Ix i erfe (xj 2 "
dxa ",ix x-

iJ2 erf•x) )2 erfc W(.x2
bx 2  ,ITr

0 4.rfe. Ix)
--- -- 7e-fc- (x)
Ox

i i' ,erl" ix) 2 7 2

~x~ 2 /- C

Now we can show that the houndary condition is satist ed. Using the first form of Eq.(4F5 yillds

" 21-" v'rdlerfcfz/(2v' ,I)l 1
-x 1 / J 2 ,5v7
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and since erfc(o) 1,o
T') 1"0

L -)z

O(ne can also show tiat Eq. (45) satisfies Eq. (42).

We can us,- Eq. (45) to show what the front surface temperature behavior is, under
constant irra'ihation, by setting z - 0 so that

T(o, t) ( 4('

'.,s an illustration, l0t us calculate the time required to raise aluminum to its melting
point for ai power density of 5 kW/cm 2 -

K = 2.3 W/!cm 2

K 0.9 cm 2 /s

"Fmp,,; -- 600"(

T : Tm,.it -- Trom = 600"C

F0 (1 - "'1

1 - *)" 0.0-1

0.0.1 X 5X 10:1 = 200 W!cm 2 .

"lThn t (,rK 2J' 2 )1(4, F 2 i) yields t 4: 42 s. IIn practice, it is very diffhiuit to melt extremely
thick slahs of aluminum A.ith even a high-power laser, as these calculations suggest.

Equation (45). although derived for a very simple case, descrihes man, very important
features of tiiermnal response to lasers. First we shall define the diffusion length, which is
useful in that it permits a wide variety of order-of-magnitude calculations to he madIe. Tht
thermal diffusion length 1) is defined as.

1) 2./•. 7

Strictly speaking, the thermal diffusion length i.i defined as the distance required for the
temperature to d1 up t; 1,;, of its initial value and depend:: soimiwhat on the geometry and
the boundary condition. For most purposes it is sufficient iimply to take it as defined
by Eq. (17J. 1,ook'ng at our solution (Eq. (15))1 for example, we see that
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2,F r- 1 1)}
T(D, V (0.1573)

From Eq. (4o),

"T(I'), t ) , 1 - 0.1573 73-/ .

Thus

T(D, t) - 0.09 T(o, t) (48)

in this case, whereas (lie) T(o. t ) •- 0.37 T(o. 1). Referring to our example of irradiating
aluminum for 412 s to reach the meiting point, we note that the diffusion length at that
time is given hy

) = 2 vU. .9 ,-4 2 • 12cmr,

and, by Eq. (4h). the temperature at distance D into the material is 0.09 x 600, or about
50'C above ambient.

Nov. let us illustrate the solution (Eq. (45)) graphically (Fig. 14). For convenience
rewrite the equation by introducing 1) 2 \f/7-1 and by reducing it to the error function
erf, so that

2I} - -, 2'/1) 2  z z
i.... = .(z D )Ki2/- 2 2j

108

e-• 2 0 9953

eni Icn ] I(j (. ~~cIy

S4

o2 - 1 - - 1 1_

05 I IC 21 2L5 30
x

Fig. I I -'Th t.rrr)r func ion
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Now let T z/i), and

'¾. t=f -0-K- r [/ -7i + il erf(r/). ('19aI

or, equivalently in terms of ierfe,

T(Z, 1) ierfc (rq) (. 9h

Finally, we define a dimensionless temperature 0 TKI(,O)), so that

L = ierfk (1)j. (49c)

Thus the plot of the integral of the complementary ,rror func;ioin here is ti.' graph of
tGe solution to the problem of constant heat flux on the surface of a semi-infinite solid.

Now, although the graph of Eq. (49c) (see Fig. 1 5) represents very succinctly the
solution to our problem, it does not really snow how the temperature varies as a function
of position and time. For this purpose it is useful to look at the temperature profiles for
various times and see how the profile chtngs with time. These curves can be generated
quickly from U ierfc (rT) by recalling th" de, ientions of 0 and 7, and writing them in the
foliowing form:

T = F (50a)

z 2 vf', v T ?.7 (50b)

t
06 } -

,er!C (j) ' O5E4?
II) 00502

IerIc {() Z eC .. !

01I

JJ

0 02 04 06 08 10 2 14 ,5 18 20
X

Fig. 15 -'The integral of .t complimentary error fu iction
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Thus, at a given time the 0 = ierfc (17) curve scales according to Eqs. (50); the basic shape
of the curve is unchanged, but it is stretched one way or the other depending on the
parameters, and this stretching progresses in time as VT The case of aluminum is shown
in Fig. 16.

SEMI-INFINITE SLAB OF ALUMINUM IRRADIATED AT ? 0
EBY 200 W/cm 2 OF ABSORBED LASER RADIATION

(I = 5 kW/cm 2 1 - R = 0.4)

600 K = 2-3 W/crn deg
X = 0.9 cm 2 /S

I--z X DENOTES DIFFUSION LENGTH D 2 rK7
M 500 42 s

>
o 400

w20Scr-
S300I-

'2200- 0S
C-,

-100

0

0 2 4 6 8 10 12 14 16 18 20 22

; (cm)

Fig. 16-Laser-induced temperature rise in aluminum as a function of depth

We can also look at the variation of temperature with time at a fixed position. The
variation of the surface (z = 0) is simply T(o, t) - t as Eq. (46) shows. Wherever
z/(2 %/'I) is very small, the temperature variation will approach \T Thus, at any posi-
tion T : VTtat sufficiently large t. The temperature-vs-time profiles at fixed position for
times such that z/(2 •V_-•) is not small can be calculated, of course, from Eq. (45). Some
results for aluminum, with the parameters used above, are shown in Fig. 17. Notice that
at z = 10 cm the temperature profile is far from the "long-time," or vNT, behavior even at
40 or 50 s, whereas the surface has already begun to melt.

We now turn to some order-of-magnitude arguments. One such argument can be
used to estimate the power-pulse length combination which might be expected to yield
surface vaporization. Consider a laser pulse that has the simple time behavior shown in
Fig. 18 and uniformly irradiates the surface of the material. The pulse length is tp and
the intensity is such that, combined with the reflectance, the absorbed power density is
F0 . Again we assume that the optical energy is absorbed in a very thin layer at the sur-
face. Let Dp be the diffusion length associated with the time tp. The question is
whether a significant amount of surface vaporization will occur before the pulse ends.
One approach would be to use Eq. (46) to calculate the surface temperature at the time
tp and compare it to this vaporization temperature. However, this would ignore the in-
fluence of the latent heats of melting and of vaporization, which have an important in-
fluence. We shall discuss thermal flow with phase changes later. For the present purpose
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we can include them by considering the energy required to melt and vaporize a portion
of the material. The key is to estimate what thickness of the material is involved, and in
this order-of-magnitude argument we simply use the thermal diffusion length for this
thickness. Thus we set the criterion for vaporization as

D--p- >_ p[Cs(Tm- To) + Lm + CQ(Tb- Tm) + Lj]

where p is density of the material, Cs and CQ are the specific heats of the solid and
liquid, respectively, Tm is the melting point, Tb is the boiling point, and Lm and Lb are
the heats of melting and vaporization. Notice we are ignoring differences between the
solid and liquid for density and conductivity, as is appropriate in this crude argument. If
numerical values are checked, Lv, dominates the expression on the right side of the inequal-
ity. For example, for aluminum Lv = 10,875 J/g, whereas all the other terms contribute
a total of 3.046 Jig. Since the argument is crude, then, one usually takes

F0 tp
- > pLyDp

as the criterion for vaporization by a pulse. Since Dp = 2 VW' , we have

2 V• Lvp
F0 _> approx vp (51)

Some calculations based on Eq. (51) are shown in Fig. 19. Most metals fall in the band
indicated. For a given pulse time, at power densities greater than the band indicates,
vaporization effects would be expected to be important. Some useful thermal constants
are included in Table 2.

S0sE

0. VAPORIZATION
z

L.J
> 107
t:

Z

Cr
W

0 NO VAPORIZATIONt•

0

I I ti39 J 155 j(53 10"1
PULSE `-, 'V 'Is)

THE BAND INDICATES WHERE Eq. (51) LIES FOR MOST METALS

Fig. 19- Power density--pulse time criterion for vaporization

31



J. T. SCHRIEMPF

E - ! II.. r4 ~
s 2 - - i6 6 E

*4 X

* 1z

5.4l 4"__

c4,

m c

oc

flc0n'

32'ae'



NRL REPORT 7728

In deriving Eq. (51), we have been seeking the power density required, at a given
pulse length, for a thermal layer to be vaporized. The same expression, of course, tells
us the pulse time at which vaporization becomes important for a fixed power density.
Rewriting Eq. (51) gi- s for this time

K 2 2
Tvap 7

tp > approx TF2 7 (52)

Let us compare this to the time required for surface vaporization to begin. We do this
by using our solution for heat flow in the semi-infinite solid for the surface (Eq. (46))
and solving for the time at which the front surface reaches the vaporization temperature:

Tvp-2F0 ta

or

tvap - _ Vaptrp=4 F02

Thus, at tp = tvap this calculation would predict that vaporization at the surface begins.
For example, at F0 = 106 W/cm 2 , vaporization begins at tp - 10-5 to 10-6 s, depend-
ing on the metal. On the other hand, for a thermal layer to be evaporated requires, ac-
cording to Eq. (52), tp ý- 10-3 s. It turns out that both estimates are useful. In a later
section we shall discuss features of a more correct treatment, which accounts for both
the heat of melting and the heat of vaporization in the dynamic situation of propagating
solid-liquid and liquid-vapor interfaces.

3.3. No Phase Change-Slab of finite Thickness

Let us turn now to a treatment of another geometry which can be useful in practical
cases, namely irradiation of one surface of a sheet or s!ab of finite thickness. Let the slab
be taken as infinite in extent in the x and y direction, and let the laser irradiation be uni-
form over the entire surface z = 0. Thus we again have a one-dimensional situation, as
shown in Fig. 20. The thickness of the sheet is taken as £, the absorbed power density
as a function of time is F(t), and we again assume that the radiation is absorbed in a very
narrow layer at the front surface. The equation we wish to solve is, then,

a)2 T 1 aT

Jz2  T at

with the boundary conditions

-K = F(t)

-K 0.) O.
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F (t

Fig. 20-Irraciati(t n ()f a slab of finite thickness

The second boundary condition states that" -he rear surface is insulated. We shall look at
the consequences of this assumption a iittl.e later.

As we showed for the semi-infinite slab, the solutions turn out to be elaborate.
Turning to the special case of F(t) FO, a constant, the solution is

T(z, t) = FO-t {3(+- z))2  Q2 2 \ (-ý1)" CK1 2 1T2 1IQ2 Cos(nT z)[
KV K 62 2 . n2 [ 9 KLn=I!i (53)

We can check that this satisfies the boundary conditions:

a T_ F0 9 f~Z) e-I (-1)jý ei silln F2r
n=1 .J

Now sin (nirT) =0 and sin (0) =0, so the 1 term vanishes at both z =0 and z Q,
and

FO

= 0.

Similarly, the thermal diffusion equation is satisfied, as the reader can verify.

Let us look briefly at this solution. It consists of a linear term in t, together with a
"correcting term," which can he plotted as shown in Fig. 21. In other words, what is
plotted is the term
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Let us examinine .- f special case:s. At z = 0, for cxan,plo,

P.? K r, 9K•2 '2 t i (5V)

lVe can rewrite this as

"l,, t) KF + K oK V

Now T at a fixed value of 2 is a function of Kt/Q 2 . It 'I 'I , we can write

l1,o

T"o, 1 (7? + J'z. o(71)). (55)
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Figure 22 shows how T, depends on ,7, for z = 0, and was taken from the previous graph
of T, vs (1 - z/Q) (Fig, 21). Note that at small 77, i.e., at Kt << Q2 , P• 0, so that the
front surface initially heats up linearly with time, as

F0KT(o, t) M P t.()

04L

03-

0.2

ot

0o 0.1 0,2 03 04 05

'7-

Fig. 22- - at z 0 as a function of 77

For large t values, or Kt >> Q2, 0z=O approaches a limiting value of about 0.33. Thus at
long times

T(o, t) = -- + 0.33 , t >> Q2. (57)

Here again we see linear behavior, but this time there is an additive constant. If we have
a very thick slab, we should get the same result as our previous solution for the time to
reach 6000 C on the front surface of aluminum with an absorbed power density of 200
W!cm 2 . It turns out that the limiting form of Eq. (56) is not correct because it ignores the
behavior of ý'P= 0 (77) at small r7. It. is necessary to use the full expression. Thus

77 + 1Z=0(7?)= F0-

Assume that Q = 100 cm, since we know from our infinite-slab solution that the diffusion
distance is 12 cm at T = 600°C on the front. Thus

2.3 X 600
77 + J z=O{T7) 200 X 100

Reading very roughly from the graph of Dz=o vs 77 gives
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t? : 0.004 at i 0.065.

Thus our solution is

'a

77 - 0.004 =

which gives, since K - 0.9 cm 2/s, a time of about 44 s, in reasonable agreement with the
semi-infinite-slab solution.

Now let us turn to a consideration of the rear surface temperature. For this case,
z = Q, so Eq. (53) becomes

Kot K0 6 .2 k- (-1 )fl Kln ~ /2

T(V, t) - F0 tK + KF0 Q [ 2 L _ e-__ n27r2t/Q 2

or, introducing 77 as before, we have

T(Q, t) = K (7 + j"z--(7,))
K

Comments could be made here for the rear surface temperature, and they would be simi-
lar to those we made for the front surface temperature. It is interesting to compare the
front surface temperature to the back surface temperature. This has a simple form for
thin sheets, where Kt/Q 2 >> 1. By referring to the graph (Fig. 21) of T vs (1 - z/Q), one
can read off values for j'-z=V(o) and :J~z=o(O), and thus

T(o, t) - T(Q, t) ' 0.5
K

for

at/V 2 >> 1

Notice in Fig. 21 that the limiting values are approached rapidly; they are nearly realized

by the time at/2 2 = 1. As a numerical illustration, if we have 0.3-cm-thick aluminum,

T(o, t) - T(Q, t) - 13 0 C

For the same numbers we used above. This situation, with the two surfaces heating at
the same rate but separated by 130C, would start at a time of the order of t - 22 /1c
0.1 s. At this time the front surface temperature is about 35 0 C.

Let us turn now to a different sort of heat input. So far we have been discussing
continuous irradiation. Another simple case, which is a reasonable approximation under
certain conditions, is that of a laser pulse which is short enough to be treated as a delta
function. Take again a slab of thickness 2, and assume that the energy is deposited in a
very thin layer near the surface. F refers, as before, to the fraction absorbed by the ma-
terial. The laser power density, that is, must be multiplied by the optical absorptance. In
this case we solve the thermal diffusion equation subject to the boundary condition that
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-K-iT _-K-iT 0,

with the stipulation that there is an instantaneous release of E 0 units of energy per unit
afea in the plane z = 0 at time zero. This type of problem is discussed in Carslaw and
Jaeger [51 and is most easily solved by Laplace transform methods. For our present
purpose we quote the solution

T(z, t) = E0 
1i + 2 N cos(n z e .K121T2t/Q2 (58)

In Eq. (58) we have introduced E0 , the energy per unit area in the pulse. Thus,

f00
Eo 0 F(t) dt .

'o

For the case under consideration, F(t) is considered to be a delta function.

Equation (58) is the basis for a scheme used quite frequently for the measurement of
thermal parameters [6]. This scheme consists of using a thin sheet of the material to be
studied and irradiating uniformly one surface with a very short laser pulse while monitor-
ing the temperature rise induced on the back surface. If one knows E 0 , and if the as-
sumptions of no heat loss are valid, the experiment can yield values of both specific heat
and thermal conductivity. One adjusts the pulse energy, and hence E0 , so that the in-
duced temperature rise is smail. In this way the values of specific heat and thermal con-
ductivity are representative of essentially the ambient temperature of the material.

To see how this is applied, rewrite Eq. (58) for the back surface, z = Q:

T(Q,t) 0 11 + 2 n (-1)n ecfl21r2!/•2. (59)

If we introduce a characteristic time t, = .2 /K~r 2 , Eq. (59) looks approximately like the
curve shown in Fig. 23. Here we ',ave also introduced a characteristic temperature Tc =
Eot<iKQ and plotted T/T, vs t/tc, or

00T - 1 + 2 - (-1)'e-n2tltc (60)TC
n=1

Essentially the experiment consists of monitoring the temperature as a function of time
and fitting it to Eq. (60). This can be done quite readiiy. First, the long-term tempera-
ture rise T,, yields the specific heat because

-=1

T3
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1 0

0 1 2 3 4 5 6

037

t/tC

Fig. 23 -- Nornalized back surface temperaturo res.ponsw to
a delta function heat pulse

and, on substituting for Tr,,

or, since x - K/pC,

Thi,. technique of measuring specific heat is, of course, not ufnique, to pukbed lasers It is
.sofit'tones referred to as the slat, calorimeter. The accuracy of the method depe-nds on
knowing K<, which is frequently difficult to ascertain with laser radiatio,. In siine ap-
pic'ation. Eq. 161 ) is used to calculate Eft, the energy actvally absorbe-d from the laser
pulse, by using materials o. known specific heat.

The pulsed laser measurement teclinique is especial y suittid to defermining theirnal
diffusivity. 'L'he magnitude of the back surface temperature rise depends, as we saw, on
the energy which is coupled into the material, and this may be difficult to kaow with
any pre(ision. H[owever the time dependence of the hack surlaca temlerature is mnde
pendent of th' energy input and is controlled only by the diffusivIty K. A simntlle way
to derive ic from a temperature-time profile can lie seen from Fig. 23- (ie measures the

time required for the mncasured temperature response to reach some fraction, say one-
half, of its limiting value. Let us call this time Il. It can lie shown numerically (61
from Eq. (60i that

is satisfied when
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t12I, 1 .37 .

Usin ~ ~2 /j(772yields

1.37 V2 (62)
7T 2 1 ]/2

Tfhus a measuremenlt Of t 112, together with the thickness of thle specimen, immediately
gesthe thermal diffusivity. If one knows EnI this experiment g~ivtes. vel-ies of both the,

s;pecific hneat and the diffusivity. ý'nd hence if one knovis the density p thle experiment
gives thle thermal conductivity.

This technique has heen apphed often, at rather high temnreratures. usually inl the
1)0O0ý'( range and above. At these temperatures steady-state methods of measuring thle
thermal conductivity are difficult to apply hecause radiation losses are so large. In the
laser flash tech[Lique the radiation loss goes like 'j' T61 where 'To i.s the starting or
ambient temperature, establiished by, say, a furnace, and 7' -is defined above. This
radiation loss canl h- ~i.ddle quite smnall by adjusting E0 so that TIL- is only a few degrees
larger that, 'i Since 0the precise value of E(0 is difficult to estahiish, these experiments
typiciilly mneasure anly * e thiermial diffusivity, not thle conductivity.

A final remark Onl thle Lriterion0 for the applicability of Eq. (601 to slab) heatfi g con-
cerns the limits onl the laser pulse' duration. No laser pulse is, of course, a true 6 fun-ction.
Ouar solution WOUld be expected to be correct for la.;er pnlse tim-es which are short comn-
piared to thc time it takes the hack surface to resp~ond. The response times are of the
ordcr of 1~, so wev have the criterion

or

p << k2 1(KrT
2

C'alc-ulat ions Ahat include explilit ly the time dependence of thle laser pulsŽý 171 indic-Ite
that our b-fu ction solution iin error by less than about 2% provide'1 that tG) is less than
ei equal to about 4%/( of t,.. Some typical valuer: of 1, wvith specimens I mmn thick are
given below.

K - i~r

(cM 2 /5j (inS)

AI lminum1 0.85 1.2
Stainles;s steel 0.0 52,? 19d

'I ypecal laser pulse lengi h are about 1/2 to 1 ms for the so-called "ncrrnal mode"
lasefs, and thus with I -mm-thick '-clr~mens thle technique would be fairly at-ckmrace for
stainless steel but not very rood for aluminum., Thicker specimens, would hielp, hut this
would mak 'e the rear surface temperatiir'' rise smalevr. If our laser p~ulse has, say, 20
.l,'c.m2 in it and we use the 10(.6-pum absorptanco quoted e~arlier for as-rec-eived surfadces,
tho vntttiipatod te1m-perature rises at the ;hack of the i -imm specimens would be as shov.n
he; o %.
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p C = E0 i'pCk
(1 (J/c 2) ( g/c:m2) (J/g°(t) -c)

Al~mrinum 0.0, 0.8 2.7 1.05 2.8
Stainless steel 0.4 8.0 8.0 0.628 16

We see dic need to use shorter laser pul:es hut with the same amount of energy. Another
solution would he to carry cut a more detailed heat-flow calculation. Both tailoring of
the- pulse shape and more detailed calculations are usually employed in current applica-
tions of laser flash techniques IS1

3.4. Melting

Consider first the case of a seni-infinitt, slah melted, with instantaneous meit re-
moval, as indicated in Fig. 24.

I]= Tm•/

Fo __ I /
I SEMI - INFINITE

""FI 
MEDIUM

_ - , /-
z:O z=Ut

1•'i• 21 -']rra(iid Ion ofs s-mo-iinnoilie I)o \'hh

illsta l('U.a ine -li rInmt jV

We solve this hy conAidering ours(-Ives moving i)rig with the interlace. But to do
this we have to reconsidur our heat-flow equation, which is

T)"1 1 /)7 -. 0
(1z2 K d

Iecaull that this was derived by noting th-- rate( at which heat accumulated in an elemental
volume:

(jtP. C. 7 7-- K - 0
() t (jz ,)z "

If the ned Urn is Ineving, an additional :,mounL. :,f heat pCI is. flowing in at rate V.
So
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-K "•T becomes -K - + VpCT.

"Thu.i, for moving media, the heat-flow equation is

C -K !T + VpC( 0
ot oz do /

provided we are not generating any heat in the solid.

Thus

+T 27 0. (63)
a ýt 2 bz

Se .%e can find at least a steady-state solution to tUe proble)m by basing our coordinate
system at the interface and letting the material flow in at some rate to be determined.

Call the rate - 11, where U is a positive number. The solution will be

T' = TFre C'z/ ((34)

where K is diffusivity of the solid, 'Tr, is the melting temperature, and z' is the distance

from the melting front. That is, this is t.hv solution to

3T 52T ; I
K -- , 0 U

ot ,)z ()z

as we (an verify. First, aJd'/It -- 0 because this is the steady-state prcbfile, or

K -1r • a-i' 0. (65)
c .Oz , .2 D)z '

Of course ' - T/,• at z' - 0, and 7T -- 0 as z' - ,. is trivial to show, by differentia-

tion, that Eq. (641) is the solution to Eq. (65).

"Io calcuiate U, we use' energy balance. FL) must raise the material to T,,,, its nelting
point (T,,,(' above• ambient). and then mf,!, it. 'Ilhus inl time 11, the energy put inito
thlic'kness A.z' (where U---Z'/al) VIust be giv~tI by

I--" Lp + C', p

or

l' 1= ,l, + C';, l . (6;6)

Thus wý' ,%t-•ritv, for the stAviidy-•tato, tempegtra.turet profile,
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-,,~ L- ,(67)

where Fo',[p(L + CT'I)j is the velocity of the melting front. This solution also would be
appropriate to suhbniatioii, where L is then the heat of sublimation and Tm the sublima-
tion temperature. Note that this is the scmi-infinite-slab approximation and cannot be
used to estimate the time to penetrate a slab of given thickness.

Let us consider aluminum, with F 0 : 200 Wjcm 2 . Taking a more accurate value of
the melting point than in earlier examples, T, -- F.40(C (the actual melting point of
6600(. minus room temperature of 200C). If we put in the other values of the param-
eters, T falls off a., shown in Fig. 25.

T= 6406-0.082Z'

640
CR1 JOE SI(E ;CH

NOTE I/ePOINTAT-z' :12cm

- 320

0

o ll ,I
0 10 20 30

Z" (Cm)

FiI4. 2-:-.'lno peraturv profile in alu iinium with
ilstantanoOUs melt retmvai I

As another illustration, consi(der !lexiglass. Plexiglass is rapidly eroded by 10.6-tim
laser radiation, by a process that is essentially sublimation. Since it couples extremely
weHl ((I -- 1.0) and has a very low thermal diffusivity (K - 10-4)I cm 2 /s), it can be used to

make "hurn patterns" of the beam. That is, the depth of the erosion at a given point is
linearly proportional to the energy density incident at that point. %Ve can understand
this by applying heat-flow cOncl)t, l.,Lt us apply EP(. (67) and interpret L as the heat of
erosion. Since C z- 1.1 J/g-'(: and 'T,, - 200"C and L . 1000 Jig, for a crude ('a cula-
tirn wo can ignore T7i J. 'Ihe' ensity is thout 1.1 gl/m:1. We tien have

T !- 200 e- 4FO

Since (U - 1, for a typical poNe-r density like 5 kW/'in,2 we hav' I0 = 5 X 103, so tlmt

T z- 200 eI j x ])404,'

Helnce tho temperature irofile is cof fined to an extremely narrow region near th,, vroding
surface. The rat.' of e.rosion is, by Eq. (66) with C':, igo ured,
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U - 4.5 cm/s.

Now we can see why plexiglass is useful for monitoring the beam profile, and why
it can pick up fairly fine structure in the boam. After irradiation for a time t the pene-
tration depth is U't - (Fot)/(pL), and this should be large compared to a thermal diffusion
length D 1 2 N/-0 if the p.ttt.rn is to rot-,al fine structure_. Otherwise thermal diffusion
would "wash out" the pattern by distr'ituting the energy in a radial direction. Thus

2 \V-Kt<< ýLt -
pL

For the numbers we used above at t z- 14 s, we have a depth of 1 cm. Thus

2 10_- X 1 0.1 mm << 1 cm

and w' see the criterion is well satisfied.

Let us look at a more complete poblem, namely melting by laser radiation of a
slab of material. One basic problem is what happens to the melted material. (We will
ignore the vaporization question fur now.) There are two eases which are fairly amenable
to numerical solution. They are the' "fully retained liqui"' cai,0 , in which all the liquid
is presumed to v-tay in place, and the "full ablation" case, in which the melt is presumed
to disappear magically as soon as it forms. The latter case might correspond to the pres-
once of a heavy windstream which blows away the melt.

1,.m( king first at the full ahlation ci e, we have MIh situatton siown in Fi)g. 26. 7'2
is the temperature in the solid, and the Iront surface at z = 0 first warms up to the melt-
ing point T" (above ambient) and then begins to move to the right. S denotes its posi-
tion as a function of time. When S = Q, the process Is over, and we call this time tf. We

denote by 1,, the time at which the front surface begins to melt. The field equation is

T I

F0 INSULATED BACK SURFACE

zrO z:S / z:1 2----

SOLID REGION, T T2 ( z,t )

Fig. 26 Fully ablated ca:se
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a22 1 3T 2
=2 K2  at =0 for 0 < t < tf.

The boundary conditions are

K 2 aT)z = -F 0  for 0 < t < tm

SdS
K2 - --F 0 + -pL- for trn < t < tf

z =S

K2 3Z = 0 for 0< t < tf.

The starting conditions are

T2 (z, o) = T20

S)t < f O

The above boundary conditions are nonlinear, and a solution in analytical form is
very difficult. This is due to the presence of the moving boundary and appears in the
second boundary condition, which states that the bcundary moves at a rate dS/dt deter-
mined by a balance between the heat of melting L, the heat input F0 , and the heat flow
by thermal conduction.

One relationship must hold for this problem; it follows from energy balance. The
total energy put in per unit area is Fotf, and, since the material is simply heated to Tm
and melted, this energy goes solely to those processes. Thus

Fotf = p(L+CTm).

This is convenient, for one can check numerical solutions. More important, it gives a
first-order estimate of the time needed to melt through materials by laser radiation.

Turning now to the fully retained liquid case, we have the following set of equations.
The definitions are the same as above, except that subscript 1 now refers to the molten
state, whereas subscript 2 is still the solid state (see Fig. 27). The field equations are

a 2T2 1 a T2 = 0 0 < t < tf (solid)
aZ2 K 2 3 t

3 2 T1  1 aT1
- = 0 tm < t < tf (liquid).

The boundary conditions are
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T=Tm

F0  I INSULATED BACK

SURFACE

Z= X= S =1 Z- --

LIQUID REG:ON,T=T1 (z,t)

SOLID REGION, T=T 2 (z,t)
Fig. 27 -Fully retained liquid case

K 2 3) = FO 0• t m

SO Fo tm t < tf

K I  d' 1  - K 2  Z = -pL -- , tf

K2 ýTh2 =0 0 <t <t f

T2)z=s = Tl)z=s =Tm tr < t < tf.

The initial conditions are

T 2 (z, o) = T20

S)t < tm = 0.

Rather than discuss this problem in detail, we pass on to the more practical, although
more complex, case of vaporization. For the fully retained liquid case, suffice it to say
that the retained liquid has a shielding effect, and thi; causes the time to reach melting at
the back surface to be longer than in the ablated model. Some typical values of melt-
through time for 0.2-cm-thick material with F 0 ; 2 kW/cm 2 are given below.
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,\hIlattlI Retainecd
(s) (s)

A11 nliinmI_ 1.32 0..17
statilless steel ,1.0 4.5

3.5. Melting and Vaporization

We present hert without derivation some result.s for the cuse of a slab of material,
insulated ork the surf aces, subje, cted tro uniform and continuous irradiation 191. These
are one-diniensional calculations. It is assumed that the inilt is fully retained until it-
reacihes the vaporization temperature, where it disappears. Tlhen we Lave the case illus-
trated in Fig. 28.

Fo LIOUID SOLID INSuLATED SACK
SURFACE

I II

zO z:S 2  z:SI z:e z-

Fi- 2?8 Meltin did Vai)orii.ailn, wi.i fully ,.,it'i d Iiquid

"I • 2r, ,%, is the, position of the liquid-vapor interface and S! the position of the Solid-
Iiqtuid interface. This probhlerm Iis been solved numerically at NKL, 191, and we shall
show sonic results. The asuin;t'tons art' that in ciach phase the thermal properties are
independlent of temperature. In the curves, the following definitions are used:

0]K.5 11 d

K•odld I

i ." (] - 'fmi(-s.o)io ,1

,17
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1, latcnl heat of fusion

subscript 0 ambient temperature

= LL,, with l,, the !ater heat of vaporization.

In these equations T is undetstood to he in degrees ('elsius and represents the actual tem-
perature. Although the thernmal conductivities of liquid and solid are allowed to differ,
the specific heats are assumed to be the same.

Note that when F 0 - 0 and F- ., we get certain easy 'limits. For E -- (I no va-
porization can take place, the melting is small, and we approach toe fully ablated limit.
On the other hand, as F0 -• cc all the liquid should be vaporized by (f, the time the back
surface melts.

So in this limit

1-0lf = L + (T,, T-)6sold + (Tv - Tn,()liquid + L] v F0 -h _)

whereas

Fort- -LL + (T, -- T0)CL,,j,(] (F0 - 0).

The limiting values are re nrted by the asymptotes of the curves (Figs. 29-31)
indicated by dashed lines on the plots of (X0 vs r. Noto on these plots that the dased
hues are at 4.7-, or have a slope of -1. These are log-log plots, so the asymptotes c.)m be
described by

log (c-C)) - log t - log Tr-

where & & as crC) -+ c, and ('0 as o0) - zeco. If we take the antilog,

substituting in the definition of C) and if gives

RLýsolid Ksoldtf

or

Forf :P~l.,j'

By comparison with the V0 -f 0 and the F' - cc limits above we can see that

c(0 L I,[ + (1 ,, - C,),,,i dJ

and

00-=1 L + (T, T. ")COsoicd + (1'f-'Tn)Cliqmid + L,1.
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Fig. 29-Power dpnsitv vs burn-through time for

stainiless steel (Ref. 9)
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Fig. 30--Power den3ity vs burn-through time for
titanium alloy (Ref. 9)
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ýa 100:7L
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Fig. 31 -Power density vs burn-through time for
aluminum alloy (Ref. 9)

The numerical values of the thermal parameters which were used in generating these solu-
tions are included as a separate table (Table 3) in addition to the graphs (Figs. 29-34).

CDf

LU

-10 
--

U-< aQ =350 262 173 0434 0130

S/ /

V)
Cr

CtLJ 2 0

zo
z 304 STAINLESS STEEL

W2

z 30
0
z

001 01 10 100 1000 ;0000
NONDIMENSION4L TIME r

Fig. 32--Rear surface temperature rise for stainless steel (Ref. 9)
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Fig. .33--Rear surface temperature rise for aluminum
alloy (Ref. 9)w 1
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Fig. 341-Rear surface temperature rise for titanium alloy (Ref. 9)
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Provided one knows F 0 , these solutions are reasonable estimates for the time to
penetrate a metal specimen with a laser beam. In application, however, one must con-
sider the actual size of the beam. These solutions will be useful for effects in the center
of the beam if the diffusion length is small compared to the beam radius, or if for times
up to and including the melt-through time tf the beam radius R is

R > 2,/ -t.

In terms of the parameter if this becomes, upon squaring both sides,

<rf< (R)

4. EFFECTS OF PULSED LASER RADIATION

4.1. Power Levels of Pulsed Lasers

Highly intense pulses of short duration can be produced in a variety of ways. Typi-
cally it is done by creating a large population inversion by the injection of electrical
energy from the discharge of large, highly charged capacitors. In these systems all the
energy is produced in a burst, the duration of which can be made quite short. We shall
not discuss the various techniques by which these pulses are created, but in Table 4 we
simply note some commonly obtained values [2].

Table 4

L Pulse Power Energy
Laser Type Length Per Pulse

Ruby (normal mode) 0.1-1 ms 10-100 kW 1-50 J
Ruby (Q-switched) 10-8 s 1-10 GW 1-10 J
Ruby (mode-locked) 10-11 s 0.1-1 TW 0.1-1 J
CO 2 TEA 10X10-6s 100MW 100J
CO 2 e-beam 2X 10-5 50 MW 1000 J
CO 2 shock tube gdl 3X 10-4 s 0.3 MW 100 J

From the above table it is apparent that with beam areas of the order of 1 cm 2 extremely
high power densities can be obtained, and, although the pulse lengths are short, the total
energy in each pulse is considerable. The available power densities range as high as 1012
W/cm 2 .

Practically speaking, one is usually interested only in power densities below the
breakdown threshold of air because at higher power densities the energy never reaches
the target. These breakdown levels are functions of wavelength, spot size, and pulse
length, and depend as well on the contaminants in the air. Typical values are 109 W/cm2

in "clean" air at STP for CO 2 laser pulses with duration of about 10-6 s and longer. At
shorter pulse lengths the threshold is somewhat higher, becoming 1010 W/cm 2 at 10-8 s
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and 1011 W/cm 2 at 10-10 s. In the infrared region, the breakdown threshold scales with
the square of the frequency.

4.2. Material Vaporization Effects

We shall first discuss the effect of high-power-density laser pulses on materials from
the point of view of target vaporization, and shall assume that the vaporizing surface is
not shielded from the radiation by the vapor. In this case we can show that, in addition
to thermal input to the target, there is a strong pressure built up on the target surface
due to recoil from the blowoff of the vapor. The integral of this pressure over the time
of the laser pulse imparts a net impulse to the target. There arises then the possibility of
inducing stresses large enough to create gross mechanical changes, such as spall and de-
formation, by pulsed laser irradiation.

To calculate the pressure applied to a surface by a laser pulse, we start with a con-
sideration of the vaporization process. We use a one-dimensional calculation because in
most cases of interest the beam radius R is larger than the thermal diffusion length during
the pulse time tp, or

R >> 2\ 'K tp.

We shall avoid consideration of thin targets, so that V is also large compared to the diffu-
sion length. In this case we can calculate the time tb required for the front surface tG
reach the vaporization temperature Tv from the semi-infinite slab result of Eq. (46),
which is

2 2F Ktb

or

7rK 2 TV
tb - 24F0 K

or, since

K

2
r KpCTL2 (8tb = p ' o2 (6 8 )

S 0
2

In applying Eq. (46) in this way, we ignore the molten layer and assume that the values
of K, p, and c appropriate to the solid can be used. This is not as gross an approxima-
tion as it may seem, because at these power densities the molten layer is very thin.

Once the material on the surface reaches the boiling point, the surface begins to erode
at a rate U, given by energy consideration, as we saw in section 3.
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us F0
US Ps[CsolidTm + I'm + Cliquid(Tt - Tm) + Lu1

To simplify the calculation we take Gliquid = Csolid = C and ignore Lm by comparison to
L,. Then

uF0 (69)
ps(Lv + CTv)

Here we have used p, for the density of the solid. So after the time tb given by Eq. (68)
the surface begins to evaporate, and it recedes at the rate U,. By conservation of momen-
tum it must be true that

PVUV = psUS (70)

where pv, and Uv, designate the density and velocity, respectively, of the evaporation prod-
ucts. Thus we have

F0  (71)
- Lv, + CT(

by combining Eqs. (69) and (70).

To see how the pressure exerted on the surface is related to density and velocity,
note that the pressure on the surface is just the pressure of the evaporation products. To
calculate this pressure, consider particles which move a distance Az in time At under the
pressure P and thereby acquire a velocity V. The pressure (force per unit area) must
equal the rate of change of momentum (per unit area) so that

(pAz) V
At

That is, pAz is the mass per unit area which is brought to velocity V in time At by the
force per unit area P. V = Az/At, and so P = pV 2 . Thus, in our specific case of density
p, and velocity U, there is an associated pressure, given by

P = pUt2. (72)

We could compute the pressure from this expression if we knew P, and U,. How-
ever, we only know the product pU,, from Eq. (71). We need another relationship,
which we simply take from the ideal gas law,

P =Pu R- Tv

where R is the gas constant and A the molecular weight. Denote RIA by C' and use
Eq. (72), then
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or

1, = CT.(", 3)

Upon cominning F-kis. (71) through (73), we get the desired relation,.hip,

_L,, + CT,

Since the specfic heat of metal is typically 3RiA we can approximate C" by (11/3) C to
yield

[Lr, + ctrj

Finally, we compute the specific impulse delinered during the pulse, vi,,ch is the force per
unit acea multiplied by the time over which it acts, and we get

1"= ' p - t1 )

o~r

-0 V-(,T" 7TKp(TL

x/-3 IL, + CTi] lt P 4 15aa)

OF

Ini Lerins of the energy in the pulse, E0 - Fotp, .his can be written as

l I_ E~u 'CT (1 KpCT4 2 p)
- IL+ CT0 ] 4 2  tp. (751))

A word about units is in order. It has become conventional to quote impulse in
units of dyne-s, and specific impulse in dyne-sicm 2 . If we use 1/CM 2 for energy density,
J/g-"(; for specific heat, and J/g for heat of vapomization, we have

r cm 2

cm 2 10' erg g

or

I/,u \n11" (dy ,-si/c1m2 .

This unit, dynl-s/cm 2 , is called a till,. Thus, in taps,
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i-, =/ 7.jX13 0ý - - KP t~ (76)IL, +CT~j 4 02 P

Note t~iat Eq. (76) predicts a threshold value of L- for impulse production at a given
pulse length t,,. T his is due to the criterion we introduced for vaporization; vaporization
m1ust commenice hefore the end of the pulse or theroŽ will be no impulse. The threshold
isý givenl by

.2
7r KpC7T,
4~ E0 2 tP

E -y-l 7, vTKp!-t

''Ihis vaporiz~ition mod~el also predicts that, at very large I'(, the impulse per unit area is
directly proportional to tht2 energy density with a constant coupling coefficient, given by

'Ihis is the iimhii at which vaporization begins essentially instantaneously with respect toI

'.he I)Ui5C length and vapor produas are produced for the entire pulse.

Some r~unierical values art, illustrated below and in Fig. 35. E0 is in dieml2 and t P
ii /Is, so that 1,, is in taps:

Ft r titanium

I'll 8.04 E0~ I 623 tp /Eu

For n-luminum

he abo(v(, mod -1 illustrate.; thle principles involved r1 generating impulse by laser
vapor, -at ion. In fact, in predicting threshold values it gives results which are wvithin a
factor -A two of experimental measurements. It has boen refined 110) by a calculation
which ;(counts for the fact that Te is probably not a handbook value that comes from
measure ments at atmospheric pressure, hUt rather a differont value appiropriate to the
dyn-imnh and highi-prz-ssure situaWtion created by the laser-induced vaporization. In this
re-flilnement, T,; is (leteririined fromn the kinetic model of vaporization, which predicts that
US-c, x L, j(1R''I,. ,] wverv v, i., the Speed Of joLund it- the solid and R?' the gas

coinstant )er gram. When this is done, the threshiolds agree very well with theory. How-
ever, as E,) (and hencev Fit, since 1P is constant) is inc(reased, ex periments show that de-
livered impul1Use does miot InCrtasi' indefinitely hut be-ginS to fall Off. T'his is (Jut, to the
onlset oif absorption of laser merieni. by the vapor products and/or the heated air near the
target. We turn now to a consideration of this problemi.
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4.3. Effects from Absorption of Radiition in the Plumne

The plume of vaporized ma',terial blown off the target becomes, at some power den-
sity. hot enough that it or the air begins to absorb the laser radiation. The onse t of this
pjrocess is not thoroughly understood, and the ignition of these so-called absorption waves
is thev subject of a great deal of research. Proper t-eatment of the problem depends onl,
among other things, computing the onset of ionizaiion and the rate of absor-itaon of lighit
by the electrosi:; anid also accounting for both cascade processes and relaxation procetsses
InI a full dynamic sense. We shall not treat this problem here. Rather we shall look at
some cru1de modelIs whichI simIoN, in a semniqiiantitative way, various features of the ab)-
sorption process.

First note, that the decoupling of the absorption from the material surface due to
bhiuding by the plume depends on the wav'elength of the radiation. RecallI fromi Eqs. ( 34)
that at tho plasmai frequ~ency the reflectivity of a "free-elec-tron'' metal drops sharply

i.i due to the light interacting with electrons, Eq. ( 3 4a) is valid, Using the mass of the
free clectron givesj

1)P-8.971X ItfWIN /2  (77)

for the plasnia frequencyv in hertz, when N is in electrons per (uL)bC centimeter. This can
he rowritten in termis of the corresponding wavelength XP to yield

N (1. 12X 1042(78)P

where XPy is In centi mat rs. At aI giveni %- avelengtlI t IP pli.1me1 is t~rainspare~nt until the elec-
tron density reaches the value given by Eq. - 78), w here thi-re will hec a transition to a
'onidition'ii which the plumeý absorbs and reflects- the radiation and thereby shields the

material. V or I (Ji-pm r X 2  ad iationii. shuieding begins at I 0'l c lectrons per ciri2 , for
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1.06 pnm (Nd) at 1021 electronis per cm:', and for 0.6. 3 pm (iuby) at 2.3x 1021 elec-
trons per cnma.

When ihe electron density reaches a high enough value, the beam decouples from
the surface and presumably the pressure due to material blowoff will drop. To get some
ideW of the order of magnitude of the energy density for a given pulse length where this
p)rocess begins, let us simply assume that cutoff begivs when the front surface reaches
the temperature at. which the material is fully ionized. 's should predict an upper
limit, for full ionization is obviously not required. Foz . xample, solids have N - 1023

em-3 , whereas we only require, at 10.6 mro, N > 1019 cf- 3 . For simplicity assume
that raolting and val)orization processes can be ignored, and again use for the front sur-
face temperature rise the ;imple expression

-K

A typi'a! ionization temperature for a metal would be about 75,0'0C. Using simply th(e
values of K and t< for the solid, we get for titanium,

F06 -F: 5.7 x 101 WsI/2/cmi 2

Us5ing - - Fot, this caP he rewritten as

Ec L- 5 7, vri (79)

wert thr is understood to he time in niwrosetons.

Figure 335 shows some data taken b. 1Dr. Rudder of the Air Force Weapons Labora.
lory, at two pitse lengths, 1.2 and 11 ps, with 1.06-pm radiation and titanium targets
1111 . The lines marked "Anisimov predictions" are calculated from the vaporization
model of the previous section with the refi';id method for determining T,. (This was
first done in the Soviet Union by Anisimov 1191 .) The experimental data agree very well
at values of E near threshold. Note that Elq. (79) for estimating the onset of shielding is
roughly consistent with these caata, a'though the experimental onset of shielding is, as one
might expect, fairly gradual. The line on the groph marked ,SID Predictions refers to a
theoretviai estimate based on the idea that the jaser light, when it couples into the blow-
off, can create an explosionlike shock wave in the air which travels up the beam, absorb-
mg the radiation energy in the process. This laser-supported-detonation, or LSI), wave is
one form of laser-supp)orted-absorption wave. We will discuss these waves n.,xt.

Once the c')upihiL of the radiation with the ejected vapor (and perhaps the air)
reaches a sufficient -voel, the absorption regi(n Ibegins to behave in a fashion character-
ized by hydrodynamri dis.ipation of the energyv coupled into it. For now, let us ignore
the ignition prol)le'm. The absorption region typicAlly propagates up the laser beam in a
way that is determined bN the medium in which it propagates (usually air) and also by
the 1,alat.ce between the power being fed ir. by the laser and the relaxation processes
which dissipate the power. Three types of laser-suwapoited-nhsorptiei Waves are usually
identified. Typical power levrls at whicli they appear andO their typical velocities of
propagation are indicated below for 10.6--pm radiation and targets in air at standard tern
peruture and pressure 112].
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Fig, 36-Spt-cific imipulse deliveied to solid targets bN 1.06-pmrr
laser radiation (Ref. 111

Power Level Velocity of
of Laser Flux Propagation

Type Of Waile (Wcn 2  (m.s)

La ser- suppfo r ted- (Ie tona tin o ~ 1 107

wavc {LSDW')

1.aser-su pported -co nb usti on 10'1 103'
wave (1,3CW)

Plasmatron 104 0

TFhe LSDJ wave propagates as a shock wave, i.e., at supersonic velocity, whereas tho
LS(: wave moves more slowly and relaxes by thernial condUctil;n. The plasmatron is at
rest, with the energy input being balanced by reradiat~ion and c:onvective losses into the
atmosphere. Although We d~iscuss these effnctr here in tho section on pulsed lasers, they
are just a.4 valid for cointinuous radiation. Suice pulsed lasers are thý, most convenient
devices for reaching these power levels, especialiy for LSD waves, absorption waves are
usually considered undier pulsed efftects.

llydrodynuinic theory can he applied Lo model these waves. T'in problem ilwas first
sotlved in the Soviet Union by ltazwer 11131 J. etonation waves~ can be discussed most.
readily because trit hydrodynaniic equaltions redluct- to fairly simp~le expressions, so we
shall consider them in sonift detail. A few remarks abou;Lt coýMbu.]stion Waves Will come
later.
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Vke can derive conditions for the steady-state behavior of a detonation wave by con-
.stdering conservation of mass, momentum, and energy at the detonation front. For this
purpose we do not concern ourselves with how the process starts but presume that a
detonation wave has beeq formed and is propagating at some steady rate as sketched in
Fig. 37. The ahsortption itegion is propagating to the right at a steady velocity u. We
assume tiat it is very thin and can be treated as a detonation front- rhus u is the det-
onation -clocity. The temperature and density, etc., of the air go through very rapid
(onanges in the very short distance V. Note that this wave propagates, in this treat-ment,
in air, and thus our results will be independent of target material.

TOTARG RELAXATION . AMBIENT AIR LASER EEAM

REGION INTENS1Y I

ABSORPTION REGION LBEAM RADIUS R

IIFig. 37--Ternprature aiid density profiles typical of a

laser-supported-de:onation wave (Ref. 12)

In this discussion "behind the front" refers to the high-temperature-and-pressure
region imn +diately to the left of the absorption region in Fig. 37. "Ahead of the front"
is to the right in the sketch and refers to ambient air conditions. Note we have given the
tweam a finite radius H and thus will hatve to consider lateral expansion. First let us do
the one-dimensional problem and assume that the detonation front propagates simply as
a plane wave.

Behind the front let p, P, and e be the density, pressure, and internal energy per
unt muss, respectively, Pnd let p0, P0, and e0 be the same variables ahead of the front.
Define the velocities witt respect to a coordinate system moving with the front at the
detonation rate u. Then the ambient gas '- into the fronm. with the speed u, and we
define v as the ,speed with which the highi-j)rneure gases leave the front. We can now
write down the conservation equations for mass, momentum, and energy across the deto-
nation front. These equations are based on flow, that is, they are in the terms of "per
unit area, per unit time." The equation for mass is

Mass

poU P pv. (80)
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The conservation-of-momentum condition results from equating the impulse to the
change in momentum. Now impulse is force multiplied by time, but in the "per unit
area, per unit time" sense this becomes simply pressure. Since mass, in this flow con-
cept, is pv, momentum is (pv)v. Hence we have

P - Po = -[(pv)v - (pou)u]

and, if we ignore P0 , which is much smaller than P, we have for momentum

Momen turn

P + Pv 2 = pou 2 . (81)

The conservation-of-energy condition follows from similar considerations. The dif-
ference in energy flow on each side of the front must be balanced by the work done on
the gas (Pou - Pv) and the energy absorbed from the laser beam, which, using our earlier
notation, is F. F = (Cl, where Cf is the absorptance of the gas in the absorption region.

Thus we have

pv(e + i v2 - PoU (e0 + " u) = POu - Pv + F.

If we use P0  0 and e0  0 and substitute from Eq. (80), we get for energy

1+ 2 1 2 u2= P + F

2 2 p pou

or

Energy

P 1 1_2
e +-E+ V2 2 + F (82)

p 2 2 pou

Our goal is to use these conservation laws to predict the pressure P behind the front
and ultimately the pressure transmitted to the target. For now assume that F is known,
and, of course, the ambient air density p0 is known. Thus we have three equations and
five unknowns, P, p, v, e, and u. To proceed we need to invoke some equation of state
for the gases, and we shall simply assume that the ideal gas law holds. Thus we have

P = pR'T (83)

where R' is the gas constant per unit mass, or R' = RIA, where A is the molecular weight.
(Since the wave is presumed to be in air in this treatment, A would be the average mo-
lecular weight of air. Taking A for air to be 29.4 g/mol gives R' = 2.84 X 106 erg/(g-0 C)
and is consistent with the ideal gas law anrd with P0 = 1.29 X 10-3 g/cm 3 for air at 00 C
and 1 atmosphere = 106 dyne/cm 2 .) Now Eq. (83) essentially introduces another un-
known, the temperature T, so we need to add the expression for the energy of an ideal
gas, which is
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R'T P (84)
T - 1 Y - 1)p

where -y is the ratio of the specific heats, y = Cp/Cu. For our purposes it is sufficient to
take - = 1.4.

Now we bave four equations (Eqs. (80)-(82), (84)) in five unknowns (P, p, u, e, and u).
To get the final condition we use the criterion for detonation, which is that the velocity
of the high-pressure gases behind the front, relative to the front, is equal to or greater
than the local speed of sound. Intuitively this seems reasonable, for propagation of shock
waves is, by definition, in excess of the speed of sound. The criterion can be properly
derived from a consideration of the thermodynamics of the situation, but we shall not do
so here [141. Since we shall be interested in the minimum value of I (or F) required to
sustain a detonation wave, we take u equal to the speed of sound. For an ideal gas the
sound speed is (-yp/p) 112, so we have our last condition,

V2 :• YP (85)

P

Before discussing the algebra, let us collect the equations-

PoU = pv (80)

p + pv 2 = p0 u 2  (81)

P 1 1_2
e +- + v2 =1 2 + (82)p 2 2 Pu

e - (y_1)p (84)

7Pv2-1~ (85)

Combine Eqs. (80) and (81) to yield expressions for u2 and v2 :

=Pp

U2 = PP (86)PO(P - PO)

v2 - • (87)P(P - Po)

Now use Eqs. (85) and (87) to eliminate v2 and p so that we can get

P I + ( 8o _ 17 (88)

which is one of the equations we need, namely p in terms of the known quantities P0
and y. Now we can use Eq. (81) to get P in terms of it by eliminating v2 with Eq. (85) to
get
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S+ (89)

We need oine more relation to complete tile solution, namely u in terms of F. This will,
b5 Eq. (89), give us P in terms of F. To get this we use Eq. (82) and replace e via Eq.
(84) and 0

2 via Eq. (85). Thus Eq. (82) becomes

P P 1 y _P 1 u F

(7-1p U P P 2 P 2 Pou

If we use Eq. (89) to eliminate P, we get

u 2  i Po + PO +1 P0 1 u2+2 +F
1 +r Wy- 1) P p -2 7 P 2 -"U

or

iP0o •_ __ ___ ) 1 U2 2 0- --Y-4
--P' 71 7 -1 - I • pou

or

1 00 U2 Y -Y 1u 2 + p
2 p u- - l 2 -o;

If we use Eq. (88) for pO/p, we get

1 2 -Y 1 U2 +2

2 (-t 2 ) 2 pou

Finally we arrive at

____ 2 F

or

U /2 o "2 (90)

-P0

The equations which -epresent the solution for the detonation wave, then, are

p) 1 +y
- (88)Po

P OO (89)
1 +6
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u-- [2L -y2 - (90)

These three equations, together with the ideal gas law, re;present the formal solution
to the propagation of the laser-supported-detonation wave. Given the temperature be-
hind t-e front, and since Eq. (88) defines p, we could calculate P and hence u and finally
the F required to support it. However, this does not really solve the problem. What we
wish to discover is: given the laser intensity I, will an LSD wave bo, supported? To an-
swer this question, we need to consider the distance it takes for the laser radiation to be
absorbed. We also need a more realistic situation then the simple plane wave.

First we note that the beam has a finite radius R and that lateral expansion can take
place. The order of magnitude of the radial expansion velocity will be the speed of
sound c,. To maintain the detonation, we must replace the energy lost to expansion by
energy put into the absorption region. To simplify, let us assume all of the laser beam
energy is absorbed in the distance V. (Actually the beam intensity only falls by 1/e in
the distance V.) We define At as the time for the shock front to move a distance Q, or
At = Q/u. In this time the radial expansion is the amount caAt. Now 7rR 2IAt is the
energy deposited by the beam in the cylindrical volume shown in Fig. 38 (cAt << R).
But the energy in this volume after expansion is approximately equal to its volume multi-
plied by its internal energy p,: unit volume. Thus

7rR 2lAt poe[irR 2 V +2irRc0 AtQj .

Ca At

/ ji RI / I
I, //

Fig. 38-Cylindrical volume which absorbs
beam energy via expansion

Since At =/u,

IirR2 -poeu [1R2 + 21rRr,,

Note that for -t 1.4, Eq. (88) pr dicts that p. 2p0 and hence, using pv = pc, pou,
u - 2c. So we have, after some abigebra,

poeu •(91)

R
35
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But this equation simply represents the rate at which we must put energy into the absorp-
tion volume in order to maintain the conditions we assume to carry out our detonation
wave calculation, namely a plane wave propagating by absorption of laser energy in a
distance V•. Thus the energy flow per unit area from the laser beam is

F + (92)
I + (V/R)

Finally, we can complete the problem if we know the absorption length Q. To
compute Q we need to invoke some model of the ionized air. For this purpose it is suf-
ficient to assume that free electrons absorb the light and that the electrons come from
singly ionized atoms. We shall not derive the expressions which we need but simply
quote them. There are two relationships. The first of these is the Saha equation 114a],
which relates the fraction of atoms ionized a, to the absolute temperature T and the ion-
ization potential I of a single atom:

______ g1 rn /2lrrokT13 2
1 - re / 2 -oI137" (93)

In this equation m is the mass of the atom, rn0 is that of the electron, k is Boltzmann's
constant, and h is Planck's constant. The statistical -weights of the ground state of the
atom and its first ionized state are go and gj, respectively. 'rypically g, = go = 1. In
terms of known constants, then, the Saha equation gives us the degree of ionization as a
function of temperature.

Knowing the degree of ionization, we can get the absorption length. Again we sim-
ply quote the relationship [12], which assumes that the light is absorbed by inverse
bremsstrahlung. The expression is

1 4 1 2r 1,2 912e,;h,2 ,0,/2°212 /2 / _ h hT)

1 ~ ~ ~ o(/)I '3n/T) ~ er 2 n - -i~k

which, at the temperatures of interest and for 10.6-pm radiation, becomes (for hv/:k7T<< 1)

1 4[/ 27r [/2 e 6 t12  
_2_a2

V 3 ,---Ino n2mnc(hv) 2  (k7,)3,2

hr Eq. (94) v is, of course, the frequency of the laser radiation. c is the speed of light, and
e is the electronic charge. By combining Eqs. (93) and (94) we can calculate V in terms
of temperature T, density p, and known parameters .A typical value of i for air is of the
order of 13 eV. (For 02 1 is 12.1 eV, for N9 it is 15.6 eV.) Thus we have

Q f (p, T)

or. since p - po0 I + yt)/l- 2 p,, we can get a rlationship between V and T and hence
I)ftw,(l / anId T, via Iq(1s. (90) and (92). Typical results are shown in Fig. 39.
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Fig. 39-Relationship between I and T for a laser-supported-detonation wave (Ref.
1 2). This plot is based on a more realistic expression for the equation of state of
the gases than the ideal gas law, but the ideal gas law gives a similar result.

Here we have assumed a beam radius of 10 cm. The important point is that there is
a minimum in the I-vs-T relation. We identify this as the minimum flux 'rn required to
maintain an LSD wave. Associated with it is the temperature Tm of the high-pressure
region at the detonation front. We can then use our detonation-wave relationships, Eqs.
(88) through (90), to get the pressure behind the front, or equivalently, get pressure from
T,, via p - 2po and the ideal gas law.

We shall turn to a calculation of the pressure on the target in a moment. First note
that the radial expansion concept imposes a natural criterion for the difference between
a comhustion wave and a detonation wave. The time for radial expansion is R/c, whereas
the time for passage of the absorption region is V/u. If the detonation condition is to be
maintained, radial expansion times must be larger than propagation times in order for the
high-pressure region to move as a shock front and not dissipate itself radially. Hence
R!c > V/u. We have already noted that u - 2 c, or, crudely, u - ca, so that R > V, or
VIR < 1, is the condition for detonation waves. If Q becomes larger than R the absorp-
tion region is large, the relaxation in the radial direction is important, and the process
called a combustion wave takes place. This can be treated in a similar fashion to the
detonation wave, but the hydrodynamic equations do not take the simple form of Eqs.
(80)-(82). We shall not treat combustion waves in this report. The solution in Fig. 39
is for a detonation wave and hence is valid for V/I < 1. The limit (IR = 1 is shown in
thy' figure by a dashed line.

Finally, compute the impulse delivered to a target by a laser beam of intensity I just
.ufficient to maintain a detoeation wave I 11l. The beam has a pulse duration it,. We
wish to calculate the effect on the target due to the "explosion products" behind the
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absorption region. These, of course, expand in all directions and create a pressure on the
target. To demotstrate the effect we shall use a very simple model, nanely a model of
cylindrical expansion. We consider that the absorption region has propagated a distance
Z by the end of the laser pulse, and at that time we have created a cylinder of high-
pressure gas which has a radius equal to the beam radius R, a length Z, and a pressure
Pd given by Eqs. (89) and (90) above, with P = Pd. This cylinder is then allowed to ex-
pand radially at a speed estimated to be the speed of sound Ca. Then we get the impulse
delivered to the target by integrating the force on the target due to the pressure in the
expanding cylinder during the time the cylinder expands from R to the target radius RT.
For RT very large, the integration is stopped when the cylinder pressure drops to atmos-
pheric pressure. The model is sketched in Fig. 40 at the time t = to.

R T

• - I

TARGET - - - - - -

Z = Ut

Fig. 40-Radial expansion model for impulse delivered to a target from a laser-supported-detonation wave

The model might be expected to be valid if Z >> R and if tp << the time required
for radial expansion, either to RT or to atmospheric pressure, to take place. We also are
assuming that impulse due to target vaporization is negligible, i.e., that the detonation
wave is formed very early in the laser pulse.

We take the radial expansion to be at constant temperature. Then P times the vol-
ume C, of the cylinder is a constant. Since our model presumes only cylindrical expan-
sion, we have the condition that

Pr2 = constant (95)

where r is the radius of the cylinder and R < r < RT. We shall need this relationship in
the derivation of the impulse. Let the impulse be Iý, and let F be the force on the tar-
get due to the pressure. This gives

t(r-R7 .)
t(r=RT)'ý = fr= Fdt

where the upper limit is understood to be valid only where P is greater than atmospheric
pressure at r = RT. Since the radial expansion rate is ca
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dr = ca dt.

From ideal gas relation for the speed of sound,

Ca = T

we have

dt = FTP dr.

Thus

= -- T F -adr.

Now at any time

F = (,rr 2 )p,

but, since r 2 p is constant, we can evaluate F from the initial pressure Pd at r R, or

F = 7rR 2 Pd.

Now the impulse becomes
CiT

1m = irR 2 Pd P dr.

"R

Again invoking r 2p = constant gives

r2 p = PdR 2

or

P = Pd 7

So the impulse is

,• 7rR v Fr.!d op - rdr. (96)
-R

Recall from Eq. (88) that p po(1 + y)/y. This gives

dPO( + 'Y
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Since I: < RT, we shall ignore the R 2/2 term. The specific impulse r,,, which is ',",
dividec. by the area of the laser beam wR 2 is then

RT~ 5

Recalling the expression in Eqs. (89) and (90) for Pd, and ignoring Q/R with respect to
unity, we can write

2/

IM R 7. (+\ (Yý P0 2(,y 2 -1) ]2/3.-2R P0 Po

This simplifies to

Im I 2(y2 - 1)]111 } O J1/3

The expression in braces is nearly equal to unity for typical value of -Y (say, f = 1.4), so

2

Now the energy per unit area in the beam is E 0 = Itp, and we can write the coupling
coefficient Im/E 0 as

ImRf 2/(i/Ej
3 'Tm .RT2 131(t 113E •2/3) (97

E'-- 2 2-R 0• p •0

This is the equation of the straight line marked LSD Predictions shown in Fig. 36, where
the calculations were done for the parameters appropriate to the 1.2-ps pulse length.

Several important consequences of the LSD wave are seen in Eq. (97). One is that
the coupling coefficient is reduced as E0 becomes larger, which tells us that we cannot
create an arbitrarily large impulse at a target by simply increasing the energy in the laser
beam. In fact, when Eq. (97) is considered to be correct at high E0 and the results of
the vaporization model (see Eq. (76) and Fig. 36) are used at lower values of E 0 , there
is, for a given pulse length, an optimum value of E 0 for transferring the largest amount of
impulse to a target. For the 1.2-ps pulse illustrated in Fig. 36 the optimum value of E0
is about 22 J/cm 2, and this is in reasonable accord with the data. Of course the specific
impulse Im per se goes as E!/ 3 . so larger E0 will create larger I,,,. However, this slow in-
crease of 1m with E 0 is a very inefficient way to impart stress to a material. A better
scheme, perhaps, would be to use multiple pulses at the optimum E 0 value.

Another consequence of the LSD wave is a lack of dependence of impulse on the
parameters of the target material. The same impulse is produced independently of the
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target. This is in accord with experiment. When I is well into the iange where LSD's are
formed, the measured impulse is the same for all target materials. Some data taken by
NRL [15] are shown in Fig. 41. In this graph we see, in accord with the vaporization
model, a strong dependence of I.. /E 0 on material type at lower power densities, whereas
at the high power densities typical of LSD formation the values of ImIEo are the same for
all materials. In this range, however, a target area dependence appears. The target area
dependence shown is for aluminum. Here again the general behavior predicted by Eq.
(97) can be seen.

t0o

r LUCITE
0 QUARTZ PHENOLIC

- 0{ 0 ASBESTOS PHENOLIC
0 FIBERGLASS

10- 0-6 e00lo
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106 Io7 108 Io9

AVERAGE POWER DENSITY (WAT T/CM2 )

Fig. 41 -Coupling coefficient as a function of power density (Ref. 15)

We have not yet considered the radius at which the expanding cylinder reaches at-
mospheric pressure. Call this radius R0 . As explained above Pr 2 is constant, so

PoR2 = pdR2

where P0 is atmospheric pressure, 106 dyne/cm 2 . Thus,

P.0 = RPJ"2 P •

From Eqs. (89) and (90), for Pd this becomes
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RIO1 /2  P [ - 12/3

Again the factors involving y are nearly unity, so

R0= RPo/ 2 pl/ 6 II3.

Upon substituting I = Eo/tp, we get

= RPj1 /2 P 1/6 E/3t-1/3 (98)

So if Ro is less than RT, one replaces RT by Ro in Eq. (97). Target sizes larger than R0
will all receive the same impulse.

A numerical illustration is useful. Let Eo = 1000 J/cm 2 and tp = 100 ps. Suppose
the beam radius is 1 cm. The power density I is about 107 W/cm 2 , so we expect a LSD
wave. If we take RT = 5 cm for the target radius, Eq. (97) yields (with Po = 1.29X 10-3

g/cm 3 )

2 5 1.29X 10-3)2/ (1-4)1/3(1010)2/3 dyne-s

1- 2 9X erg

--m 7X 10-7 dyne-s/erg
Eo

or

E-O 7 dyne-s/J.

In this example expansion to atmospheric pressure would take place at a radius given by
Eq. (98):

R0 = (10 6 )-1/ 2 (1.29X 10- 3 )116 (1010 )113 (10-4)1 1 3

where we have used erg/cm 2 for E0 . Then

R0 - 15 cm.

Thus targets with radii of 15 cm and larger would exhibit a maximum coupling coefficient
of (15/5)2 times 7, or about 63 dyne-s/J. If we compute 1m, we have 63,000 dyne-s/cm 2 ,
that is 63,000 taps, as the maximum specific impulse from this laser pulse. Since this im-
pulse is delivered in times of the order of magnitude of the laser pulse time, this corre-
sponds to a pressure of roughly (6.3X 104)/10-4 O 6 X 108 dyne/cm 2, or about 600
atmospheres.
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