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PREFACE

This short course on laser effects was developed for a 12-hour
series of lectures dehvered by the author at the Naval Postgraduate
School in the fall of 1973, The lectures were nart of Professor John
Neighbours' course on solid-state physics, which stressed topics ap-
propriate 1o an understanding of laser ¢ffects by solid state physicists,

The author is grateful to Professor Neighbours for the oppor-
tunily W0 present these lecluies and {01 maily valuable discussions
during their deveiopment. He aiso wishes to thank Professor Otto
Heinz, chaivman, and those other members of the Department of
Physics and Chemistry of the Naval Postgraduate School, too
numerous to mention here, who through their support and hospi-
tality made valuable contributions to this work.




RESPONSE OF MATERIALS TO LASER RADIATION:
A SHORT COURSE

1. LASERS
1.1. Introduction

The word laser, of course, is an acronym for “light amplification by the stimulated
emission of radiation,” but that is not terribly enlightening. More correctly described a
laser is a device for producing light that is almost totally coherent. It works in principle
like this: An atom emits a photon of light when it decays from an excited energy state
to a lower state; the difference in energy between the two states AE determines frequency
v according to

AE = hv (1)

where /1 is Planck’s constant. This is illustrated in Fig. 1.
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Fig. 1 —Energy levels

This is the case for any light source, whether laser, flame, incandescent body, etc. In
the conventional light source, atoms emit photons in a random, sporadic manner and
spontaneously decay to lower states when excited by heat or electric current. In a laser,
on the other hand, the photons are emitted in phase and the electromagnetic radiation
thus produced is, more or less, simply a propagating sinusoidal radiation field that can be
described on a macroscopic level by, for example,

& = Re ‘:goe—anz/keiw(t-nz/c)] (2)

where

Note: Manuscript submitted January 31, 1974,
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& is the electric field of the radiation
Re stands for the real part of the complex quantity in brackets
& is the maximum amplitude
k2 is the extinction coefficient; in a vacuum, k = 0
z is the direction in which the wave is propagating
A is the wavelength
t is time
n is the index of refraction; in a vacuum, n = 1
c is the velocity of light in vacuum.

Equation (2) is a standard represertation of the electric field of a traveling light
wave. However. if one measures the electric field at some point in space for light from a
conventional source, the sinusoidal variation expressed in Eq. (2) does not appear, for the
atoms emitting the light are doing so at rend » m, and the sinuscida! variation due to the
emission from each atom is averaged to soine .1me-independent value. This is not true of
laser emission, where the individual photons arc in phase. Measuring the electric field at
a point in space for laser light resuits in the oscillating & predicted by Eq. (2).

This coherence is created by taking advantage of stimulated emission in materials in
which metastable states can be induced. The lifetime of an atom in an excited state de-
pends on the quantum mechanical selection rules for transition to a low.r state, and there
are states from which transition to a lower level is extromely improbable. Such states are
called metastable, and an atom not disturbed by outside influence will remain in a meta-
stable state for a very long time. If a metastable atom interacts with a photon of fre-
quency such that AE = hv, where AE is the energy difference between the atom’s normal
and metastable states, stimulated emission will occur, The atom will decay to its normal
state by emitting another photon of frequency v, so that the net result is two photons,
and the second photon will have the same phase temporally and spatially as the first.

In a laser, then, one establishes a large number of atoms in metastable states and
arranges the optics to increase the likelihood of stimulated emissiocn. Schematically, a
typical laser oscillator looks like Fig. 2. The pumping radiation (for example, light from
a flashlamp) excites the atoms in the lasing medium (for example, Cr*** ions in ruby).
In the decay process (if we have a successful laser), a large number of ions are left in a
metastable state; this is called a population inversion. As some atoms begin to decay,
they stimulate others to decay. But this alone would not provide a laser, since the emis-
sion would occur in random directions. The role of reflection is very important; the
photons moving perpendicular to the reflectors pass through the medium many times and
on each pass more and more atoms are caused to emit. This results in the build-up of a
very strong coherent light signal that travels in a single direction. Useful light output is
obtained by making one of the mirrors a partial reflector.
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Fig. 2—Schematic representation of a laser

It is interesting to look at a few examples of the intensity of laser light. In a typi-
cal ruby laser, the concentration [1] of Cr*** ions is about 2 X 1019 ¢m~3, and popula-
tion inversions are of the order of 3 X 1016 em~3. Crudely speaking, we can think of
creating 3 X 1016 quanta/cm3 in the lasing medium. Since we have arranged the laser so
that the output is in a single direction, and since photons move with the speed of light,
we obtain 3 X 1016 X 3x 1010 = 9 X 1026 quanta/cm?2s from the laser. For ruby, the
lasing wavelength is 69434, and since the energy of each quanta is hv, one can readily
calculate that the output is about 2.5 X 108 W/em?2,

Let us compare this to the power that a hot body, say the sun, emits at the same
wavelength with a similar bandwidth. This can be calculated by the use of Planck’s
radiation law,

fiw3 1

T " T @

U, is the energy, per unit volume and per unit bandwidth, radiated by a blackbody at
temperature T; k is Boltzmann’s constant. The radiation leaves the black-body source at
rate ¢, so the power radiated per unit area of the source, per unit bandwidth, is

cUy w3 1/4

b = = = S5 ert =1 (4)

If we use the sun’s temperature of 6000 K, and A = 69434,
Iy =~ 2X107°5 erg/cm?.

For the ruby laser, a typical line width is 3A, so Aw ~ 1.2X 1012 s~1. Thus the
power density at the source is

I = 25X107 erg/cm2s = 2.5 W/em?2.,
Thus the power density for comparable narrow-bandwidth, nearly single-frequency

light is much greater at a laser source than at a conventional hot-body source, because
laser light is coherent.
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1.2, Prepagation

The propagation of laser ight through the atmosphere poscs a complex prebiem and
it will not be discussed here. Suffice it (o say that, as anyone who has dyiven on a foggy
night certainly reabizes, L, o6 certainly scattered m the atimosphere. Lasers of high power
density pose even inore difficult propagation problems because the high intensity warms
the air and creates a density change across the beam. Thas vaniation in density refracts
the light and causes beam spreading, or "thermal taooming.”

Consider briefly the propagation of laser light in free space or in vacuum, Under
: these tdeal conditions, the only change in the pewer density 15 due to simple beam diver-
! genee. Since the typical laser emits light that is nearly unidirectional, the beam diver-
gence 1s small. In fact, one feature of a laser is that the divergence is nearly at the dif-
traction limit, which is of the order of Na, where ¢ is the diameter of the output aperture
of the laser. For the ruby laser discussed above, this gives a divergence angle of

:
4
‘ 6913 x 108 .
! S ey = X 1072 mrad
i -
‘ for, say, a 1-cm aperture. In practice, one needs to go to much trouble to realize this
f limit of divergence, but it has been done. More communly, an “off-theshielf™ ruby laser ‘
| might have a beam divergence of a few mrad.
The newconier to lasers has usuaily heard about diffraction-limiled beams und the
3 consequent extreme directionality of laser jight e is usually surprisced to discover that
1 at long distances from the source these beams have power densities thal vary as the recip-
' rocal of the squane of the distance, lilke all radiating saurces. To see this, consider a
source of power P W, diameter a, and divergence angle U, as shown in Fig. 3. d
3
i
o+2r 7aN§
i, 3~Simphfied sketeh ot laser beam diverpence
At distance r from the source, the power deasity 1s
P
-5 9
—- (a + 2r tan U)~
4
or, since 0 15 very small and tan 0 = ¢,
A
i
N

o YL CUUE SPWR T amdem, - e N

TR %
e "
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- P
% (a+2r0)2

or

[ = P . (5)

2
na? or
4 (1 o 0)

From this expression it is apparent that for large distances, such that 2r/a >> 1,

[=—_P
ma2 4r262
4 al
or
P
] = —
mr2o2
or, since 0 = A/a,
2\
- £ &
ar2 A2

For example, consider a 10-kW beam of 10.6-um wavelength and 10-cm aperture at 1 mi
(i.e., a high-power CO9 laser);

104 x 102

I =
m(5280 X 12X 2.54)2(10 X 1074)?

or

I~ 12 W/cm?2.

From Eq. (5), if we substitute Iy, the power density at the source, for P/(na2/4) and
recall that 0 =~ A/a,

1:10.___1_____. (6)

2
X
<1+2r72->

From this expression we can see that if r is small there is little change in power density
emitted by the source. The distances at which this ‘s true are referred to as “near field,”
and the fine details of the beam pattern, such as local variation in intensity, hot spots,
etc., are preserved in the near field. It is apparent from Eq. (6) that this near-field dis-
.ance will be limited to r such that I ~ Iy, or ’

LI
a
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or

Fnear field << a?/\.

For lasers with exceptionally good optics that have a Gaussian distribution of power den-
sity across the beam, the near field pattern will persist for distances on the order of a?/\
[2-4].

As a final comment on power densities at distances from laser sources, let us use
Eq. (6) to calculate the distance at which the power density is halved:

and
a2
r]/g = —z'i (\/2—1).

For our illustration of a CO; laser with a 10-cm aperture, r ~ 680 ft, or a little more
than 0.1 mi.

1.3. Response

The rcniarvs here were not intended to explore lasers or laser propagation at any-
thing beyond the most basic level, They were designed rather to set the stage for the
main purpose of these notes, that is, to describe the hehavior of materwis under irradia-
tion by laser light. A great deal of study is under way in this field, for the application
of highly intense light to materials has many uses. In the medical world, for example,
lasers are used to ‘‘spot-weld” detached retinas. The Ford Motor Company is installing a
large laser-computer machine to automatically weld parts of Torinc bodies. There are, of
course, possible military applications.

We address ourselves, then, to a detailed examination of what happens when the
light interacts with the material. It is convenient to think of this interaction ir threa
parts, although all three influence each other and take place simultaneously.

First, the light coupies with the material. To a first appreximation, this is governed
by simple optical refiectivity, although at high power densities other effects become im-
portant. The net result of the coupling is the conversion of some fraction of the optical
energy into thermal and/or mechanical energy.

Second, the thermomechanical signal is propagated into the material. The details of
this propagation plav 2 prominent role in «defermining the net effect of the irradiation.
For example, pure copper or aluminum, with their high thermal diffusivity, can readily
dissipate large amounts of thermal energy and thus require higher intensities for, say,
laser welding than more poorly conducting metals like stainless steel.
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Third is the induced effect, the effect the thermomechanical energy has on the ma-
terial, such as melting or vaporization, shock loading, crack propagation, and so on. Here
again there is an interplay with the other parts. When a metal, for example, begins to
melt, its optical reflectivity and thermal diffusivity change markedly, and this changes the
coupling and the energy flow. So in our discussion we shall have to be aware of the in-
teraction between the three aspects of coupling, energy flow, and induced effects.

2. OPTICAL REFLECTIVITY
2.1. General Properties

To consider the coupling of the laser energy to a material, we need first to know the
optical reflectivity R and the transmissivity T for light incident on a surface which divides
two semi-infinite media. The transmissivity plus the reflectivity equals unity at e single
surface:

R+T-=1. (7)

In most practical situations we are dealing with more )an one surface; typically, we have
a slab of material with light impinging on one surface. Some light is reflected, and the
rest is either absorbed or passes completely through the slab. In such a situation we shall
describe the net result of all the reflection, after multiplé passes inside the slab and ap-
propriate absorption has been accounted for, in terms of the reflectance R, the absorp-
tance ({, and the transmittance T:

R+ T+ d=1. (8)
What we really are interested in from the point of view of material response is (I, the
absorptance of the material. In most materials of interest from the practical aim of using
lasers to melt, weld, etc., J is zero, and
R+ A =1, (9)
In a later section we shall consider the relationship between R and R.
To understand reflectivity, we must use some genreral results from the theory of

electromagnetic waves. Let us summarize these briefly at this point. The electric field
of the electromagnetic wave, from Eq. (2), is

= E o-2nkz/A gits(t-nz/c)
& = Re| &gpe e .

The relationships we need are those among the index of refraction n, the extinction coef-
ficient k, and the material properties. These relationships can be derived by substituting
Eq. (2) in the wave equation

226 328 o0&
—— = UE + Uog = 10a
Hz2 o2 ot (20a)

This results in the expression
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Y
(2;_" '* -'(;m) = pe(-w?) + iwuo . (10b)

Note that we are using rationalized MKS units throughout. The material properties enter
through u, €, and o, which are the magnetic permeability, the dielectric function, and the
electric conductivity of the medium. Using the usual equations between the field vectors

D = K.cof, (11a)
J =06, (11c)
we have
€ = Kecg, (11d)
¢ = Knuo. (11e)

In Egs. (11), €¢ and ug are the electric permittivity and magnetic permeability of a
vacuum. K, is the dielectric constant and K, the magnetic permeability of the material.
By substituting Eqgs. (11ad) and (11e) into Eq. (10b) and using 2n/\ = w/e, we obtain

2
(k +in)® = ~KeKpeopoe? + iKmhoo o5

1 Finally, if we introduce ¢2 = (egug)”! and do some algebra,

n- ik = VEy /K - i 2. (12)

€ow

This equation relates the material parameters K,,, K., and o, which in general may be
complex, to index of refraction n and extinction coefficient 2. To describe the propaga-
tion of the light wave thus requires a knowledge of K, K,,, and u. Before we describe
these, let us look at two more general properties of our propagating electromagnetic
wave,

The first of these is absorption. If the medium is absorbing, the intensity will fall
off to 1/e of its initial value in a distance §, obtained by setting &2 of Eq. (2) equal to
(1/8)5’rznax, or

4nké
A

§ = . (18)

This shows why [ is called the extinction coefficient, for it determines skin depth A.
Equation (13) is fairly general in that once k is known, § can be calculated. As noted,
a knowledge of the material properties is required to calculate k.

8
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The second general property we wish to derive is the expression for reflectivity, in
terms of n and k. To do this, consider light impinging normally onto an ideal solid suz-
face, as shown in Fig. 4. Here we have illustrated the incident (&;), reflected (&,), and
transmitted (&) electric waves at a vacuum—material interface. For the present, we limit
our discussion to the case of normal incidence. We now consider the boundary condition.
We have

g‘x + 6,- = g{ (14)
for the electric field. For the magnetic field B, we write

B; - B, = B;. (15)

84;\ /
N

MEDIUM 1 MEDIUM 2

Fig. 4—Incident, transmitted, and reflected electric
vectors at an interface

The minus sign is before B, because & X B is positive in the direction of propagation of
the wave. Now, the relationship between B and &, or, since B = uH, between H and &,
is required in order to proceed further. This follows directly from Maxwell’s equations:

- _y SH
VX6 = -p T (16)
VXH=05+6-%—§-- 17)

It is convenient to rewrite Eq. (2) aud introduce w) = 27c, to have & explicitly in terms
of w instead of both w and A. Recall that & is a vector, and take it as being along the
x direction. Thus

19 L (n-ik)
&y = Gpeiwte ¢ : (18)
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Here we have dropped the ‘‘Re’’ notation, and shall simply note that we always mean the
real part when we write the wave in exponential form. We shall use unit vectors &, ¥,

and 2.

Now the curl expressions reduce to

VX6=)7 a >

which, with Eq. (16), tells us that H has only a y component, so

H oH,
X = —: —_—
v X 5
Thus Egs. (16) and (17) become
5 oH '
0by _ T (19)
0z at
and
o, RN T
- - = & + € .
P Oy ¢ ot (20)
and, of course, &, = &; = Hy = H; = 0. Putting the expression for &, from Eq. (18)
into Eq. (19) leads to :
. iw
- L e== -ik) .
Hy = n ”Czk Epe e 2(n-i )exwt.
This is the desired relationship:
n - ik o
Hy = ( “c ) (;‘.t . (21)

At this point we note in passing that Eq. (20) or (10b) could be used to yield the rela-
tionship of n and k to u, €, and o. If the reader is unfamiliar with these relationships, it
is instructive to carry out the algebra.

Returning to our consideration of the reflected etectric and magnetic fieids, we re-
write Egs. (14) and (15) with the help of the reiationship between H and &, from Eq.
(21);

L]

(‘:‘I + {T:r =

-
4
~

and
M Hy - piHy = uoH,
becomes

10
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6 - & - (f2 T i3\
I r = \n — ik {-
2 21

20
-

_ ny — ng — i(kl —kz)
Ea,- B hy + ng - i(kl +k2).

Finally, the reflectivity R at the surface is

\

2
& _ tn1mne)® v (ke —ke)® (22)
&il  (ng +ng)? + (k) +kg)?

Take medium 1 as a vacuum and drop the subscript 2. This gives, since in a vacuum
ny = 1andk1 =0,

_(n-1)% + k2
(n+1)% + k2

(23)

Equation (23) is the second relationship we will find useful in discussing the coupling of
optical radiation with metals. Note that it is derived for the special case of normal inci-
dence and is applicable to a vacuum-material interface.

~

2.2. Reflectivity of Metals at Infrared Wavelengths

We turn now to a derivation of the optical reflectivity of metals for infrared wave-
lengths, where experiment has shown that the free-electron theory (sometimes called the
Drude-Lorentz theory) of metals is adequate. This theory rests on three assumptions.
The first is that electromagnetic radiation interacts only with the free electrons in the
metal. The second is that the free electrons obey Ohm’s law, or, more specifically, that

(24)

where m* is the effective mass of the electron, v the velocity, 7 the relaxation time due
to collisions, and —-e& the force on the electron due to the electromagnetic field. The
third assumption is that the free electrons of a metal can be described in terms of a single
effective mass, carrier concentration, and relaxation time. There has been a good deal of
discussion about the validity of these assumptions in the literature. Recent work [3] in-
dicates that, for wavelengths in the intermediate infrared (a few microns to many tens of
microns) and beyond, the free-electron theory does a reasonable job of predicting the
reflectivity of metals.

To derive the free-electron optical reflectivity, we try solutions to Eq. (24) of the
form

v = elwl’

11
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so that

r mt ]
T

mriw) +
L
and

T -~

1 = ——

m ¥l +i1wr)

Now the virrent flow obeys

¢ = b = ~Nev

where NV is the electron concentration (nuinber of electrons per unit volumey.

parisen of the last two eyuations,

1] er
m'(l +1wT)

or

maY HIwT)
New the de conductivity s
Netq

>

n-

OU:

By com-

(25a)

We see ¢ 1s a complex quantity and seek to write 1t a; the sum of a real and imaginary

part. Thus,

Ne?r{l -i1wT)
m*(1 + wird)

Define
g = a0y - i(}z.
The result is
)
] = ——
: 1+ w?r?
JpwT
09 = 55
Tl wird

{25b)

(25¢)

To proceed further we need 1o use the general expression for electromagnetic waves de-
veloped in Sec. 2.1. Recall Eq. (12):

o R dim e
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e — " g
s = / ‘ - —
n 1k = A \'/AP i o
ang from the complex o,
(o 10y
' = g - s — ————
a - ik = VR \,I\‘, LT

If we assume only free-eleciron oplical interactions, the metal does not polarize under the
wave, and K, = 1. ln addiuon, for metals in the infrared, X,, = 1. Thus,

—_—
i ’,‘] gy + Ug
no-oar = 1 —
! y €gw
or
H ay A
ko= J1 - - e 26
n l v e oW (26)

It remains only to separate the real and imaginary parts ol Eq. (26), which will yield two
equations in n and k£ and thus give n and k£ in terms of the dc¢ conductivity ¢ and the
relar aion ume 7. Then we can use our expression for the reflectivity from Eq. (23) to
generate B from n and k.

To carry out the algebra we use the identity

VAT . g R4

V2 TPV
where

R’ - \JAT + BT

Letting

02
A = -
Cow
and
u
B —,
Cou

we have
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g ()] 2 o1 \2
2 - _[1- 2. - 22 L.
2R = (1 €0w> + ( 50“’) + CEOW, (27b)
Equations (27a) and (27b), together with

R = (n—1)% + k2
(n+1)% + k2

(Eq. (23)), give the reflectivity. These are elaborate expressions indeed. It is useful to
look at some limiting cases and at the material parameters that determine R.

Notice that R is a function solely of 0y, 02, and w. Look again at Egs. (25) and
note that gg can be used to replace 7 in the expression for ¢: and ov3:

70

m*2002

N2ed

g1 (288)

1 + w?
¥
2 m
o ————— w
0 Ne2
*2 . 2
m 00
. N2ed

(28b)

02

1 + w?

Equations (28) show that g, and g4, and thus R,’depend on frequency w, constant
m*/N, and dc conductivity og. Thus

R = f(w.0g, m*/N). (29)

This means that we can use the dc condiuctivity to predict the reflectivity. Furthermore,
if we know the temperature variation of gg, we can use this method to calculate R as a
function of temperature. This is a useful result, because it is difficult to measure optical
reflectivity as a function of temperature, whereas it is fairly easy to measure oy vs tem-
perature. A wealth of data on electrical conductivity has been amassed for most metals
and alloys. Thus the free-electron model is currently enjoying a great deal of attention as
a way of providing reflectivity-vs-temperature information in the study of laser effects.

There is, of course, one problem in using 0g(T) data to predict R, and that is the
parameter m*/N. It turns out that R is fairly insensitive to this parameter at infrared
wavelengths. To see this we show here some numerical illustration. Define

B = m*Img
where mgq is the free eleciron mass, and then the parameter /N is equivalent to m*/N.

Figure 5 shows a plot of o1¢/0(g/N) as a function of 3/N for A = 10 um and various values of
aq. Here 0q is in ur.iiv _{ reciprocal ohm-centimeters. Typical values are, for example,

14
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op - 10782 T em™ !t and 37N = 1023 em? for aluminum. Then the value of JR/3(B/N)
iz 2bhout 7.2x 1020 ¢my ™3, I we take a 10% error in 3N we got
OR
OME/INY)

A(BIN) = 7.2X 1029 x 10-24

AR = 0.06072.

Since for these values R = J.97366, the change in R is only about 0.17%, We can obtain
qune good predictions by the Drude-Lorentz model using the experimental values of oy
ancl the most simple choice for g/N, namely one free electron for each valence electron
per atom in the metal, and g = 1. For alloys, it is sufficient tc chocse the major con-
stitueat of the alloy. For example, with stainiess steel we choose ivron, or two elactions
per atom, to compute N and hence 3N

1022
I°2|
S ——
020k
"
v 3
1Q
§ 10'9¢-
z
a \ "
2 16
S -]
'&5 [Tl ot \
x
)
! )
54}
|o|7r \\
WA/E NUMBER = 103 ¢m™s
{10 MICRONS)
Oy I0
o' o.| -1
(3 em )
‘0I5 1 1 1.
|O-24 IO—Z. 0 22 IO-ZI .O-ZO

Brw termd)

Fig. 5 - Sensitwvity of R to the parameler
BN (Ref. 3)

Figures 6 and 7 shew the predictions of the free-ciectron theory for a vanety of
metals and some comparivon to ecperimental data [31. The abrupt change when the
metal melts is caused by the abrupt change in the ¢ coanductivity. Notice in che com-
parison to data that aluminum films give values clesest to the theory. This is probably
because they present the best surfaces. Defects, oxide layers, ete., tend te trap the inci-
dent radiation and cause the real surface to absorhb more radiation than the ideal surface,
These graphs are in terms of absorptance, which is the experimentallv measured quantity,
and, since metals aie opaque, (= 1 - K, which is correct for specular reflection at nor-
mal incidence from an opague stbstance.
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Fig. 6 - Temperature dependency of the absorptance at 10.6 ¢
for aiuminum a1d stainless steel

Let us return to the expressions for 1oand & {o look at some limiting forms and thus
show how thiese complete expressions reduce to simple relationships. Remember that I}
(Fa. (23) 1e ¢etermined by r and h (Egs. (27), which are in turn obtained from the de
conductivity and m*/N (Eys. (28). The variation of n and # with wavelength is shown in
Fig. 8 for a typical good conductor like aluminum or copper at room ternperature. Note
that at long wavelengihs n = k. We can derive this by using Egs. (25) for gy and 09 and
noting that s w -+ 0, u; = vy, and 02 -* ggw7. By substituting these into kEqgs. (27) for
n and k, we can readily snow that

(i

= | ———— .
n k V¥ 2¢pw

(30)

This is called the Hagen-Rubens lin.t. Note that n is very large. Under these conditions
algebra can he used to reduce Eq. (25 to

- e

or

N

a0 il
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Fig. 7—Free electron theory predictions of absorptivity of several metals at 10.6 u.
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and Eq. (30} can be substituted for o to get

, , [750 )
R =1 _ZV—-‘]-(—)*. (31}
This is the Hagen-Rubens refllectividy.
We can also comment on the skin depth. We have, at long wavelengths (w — o).
b by ’/ 2('()_5
Cory e
This can be rewritten as
T
&= '—-2—'" (32)
HyUy =

Equation (32) is the common expressicn for skin depth used at long wavelengths.

Finally, we see from Fig. 9 that n and & reconverge at short wavelengths, Lhis is
cafled the plasma resonance. To see this, or - must look at the behavior of n and k over a
larger spectrum. We have already discussed the long-wavelength limiting behavior of n and
&, This is the Hagen-Rubens isgion, where n = k. At short wavelengths, it is easy to show
from Egs. (28) that

Niet
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m Oogw~
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Jgy —F =7
2 m*w
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Fig. 9--nand k as funcions of wavelenygth
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Thus Eq. (27) can be written, for large w, as

2
nz = 1 -— le_ (333)

egm*w?
k2 = 0. (33b)

Now the plasma frequency is usually defined from Eq. (33a) by setting n = 0 to yield

2 Ne2
wp = eom* (34a)
and thus
wp2
nz =1- —. (34b)
wz

We see, then, that at very high frequencies the free-electron model predicts a transparent
behavior (k = 0) and the index of refraction approaches that of a vacuum. The transitio
to this transparent behavior takes place at the plasma frequency, and it is a fairly abrupt
transition, as Fig. 9 shows, In fact, some texts call this transition the “ultraviolet catas-
trophe.” Note that at w near wp, Eqgs. (34) and (33) are not valid. For these frequencies
we must use the full expression. If we use again the values of 0g = 10° Q 1cm~1 and
B/IN = 10~23 ¢m3, which are appropriate to a good conductor like aluminum at room
temperature, the refiectivity looks like Fig. 10. One can see that, in terms of the reflec-
tivity, the transition is very abrupt, indeed.

RA

1.0 —
~ - w
N
06— HAGEN ~RUBENS '\
04 |— PLASMA FREQUENCY
02~
LY ) ST, —_—
| ] | | >
1000 100 10 I o.l
-« (p)

Fig. 10— R as a function of wavelength

19




dJ. T. SCHRIEMPF

The optical reflectivity of real metals is, as we have seen, in reasonable accord with
the free-eleciron model at wavelengths in the infrared. The surface, however, must be
nearly perfect for the predicved reflectivities to be achieved, and, of course, as the wave-
lengths approach the visible region band effects become important and the reflectivity
shows rapid :lactuations with frequency. The absorptance of a practical metal surface is
still largely a1 empirical matter. For high-power, continuous-wave radiation by a COgq
laser, some data are available, but very little inforination on absorptivity as a function of
surface temperature under these conditions is available. Shown in Table 1 are room-
temperature absorptances for a few materials.

Table 1
Room-Temperature Absorbtances of Aerospace
Metals and Alloys at 10.6 um for Various Surface
Conditions and at Normal Incidence

Metal or Surface Condition
Alloy Ideal Polished As-Received Sandblasted
Al 0.013 0.030 0.04 0.115
- +0.02 +0.015
Au 0.006 0.01 0.02 0.14
Cu 0.011 0.016 0.06
Ag 0.005 0.011
2024 Al 0.033 0.07 0.25
+0.02
304 Stainless steel G.11 0.4
+0.2
Ti Alloy 0.65
(6Al, 4V) +0.2
Mg Alloy 0.06
Az-31B +0.03

Data on the reflectivity of a metal during actual irradiation by a laser beam is quite
difficult to obtain, although this information is central to the problem of laser-material
interaction. One classic experiment along these lines was carried out by Bonch-Bruevich,
Imas, Romanov, Libenson, and Mai’tsev in Russia in 1967 [4]. They surrounded their
specimens with a sphere to monitor the reflected radiation, as shown schematically in
Fig. 11. The output of the photodetector is proportional to the reflectance of the spec-
imen. Some of their resuits for steel and copper are shown in Fig. 12. The laser pulse
(Nd: glass laser, 1.06 um), with a peak power density of the order of 108W/cm2, is
shown as a broken line. As time passes, of course, the laser pulse heats the surface and
the reflectance decreases. An especially interesting feature of these data is the shoulder.
The author has suggested that this leveling off is associated with the surface reaching the
melting point and pausing at that temperature while the thickness of the molten layer

20
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Fig. 11 —Schematic representation of Bonch-Bruevich experiment
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Fig. 12—Reflectance of steel ar.u copper during
irradiation by a laser beam (from Ref. 5; copy-
right 1969, Clarendon Press, Oxford, England.
Used by permission of J.C. Jaeger).
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propagates into the solid. In short order, however, the molten layer begins to heat up
and the reflectance continues to decrease. As the power density of the laser pulse reaches
its peak and begins to fall, the surface temperature can no longer be mainwained, and as
the surface cools the reflectance begins to increase again.

3. THERMAL RESPONSE
3.1. Introduction

One of the most important effects of intense laser irradiation is the conversion of
the optical energy in the beam into thermal energy in the material. This is the basis of
many applications of lasers, such as welding and cutting. We shall summarize here this
thermal response. It is basically a classical problem, namely heat flow. In the usual man-
ner, we shall seek solutions to the equation which governs the flow of heat, namely

0T _ 0 0T\, 8 [, 3T\, 3 f, BT
o T K("‘)’“ay(l{ay)*az(’{az)“" (35)

We use here p for the densitv, C for the specific heat, T for temperature, { for time, and
K for thermal conductivity. A is the heat produced per unit volume per unit of time.
In Eq. (35), p, C, and K are considered functions of both position and temperature, and
A is a function of both position and time. In effect, the equation is a simple statement
that the rate at which heat accumulates in an elemental volume dxdvdz is equal to the
net flow of heat across the faces of that volume plus the rate at which heat is produced
within the volume.

Thus thermal response studies consist essentially of two parts. First, one needs to
know the rate and source of production cf heat by the laser, which yields A. Then one
solves Eq. (35) subject to the boundary conditions of the situation of interest. This can
be a very elaborate task and frequently can be done only with the aid of a computer.
There is a great deal of effort among workers in the field of laser effects to develop an
all-inclusive computer program to solve Eq. (35) for every possible situation. However,
the solution to Eq. (35) can be no better than the knnwledge of A, and, as we shall see
in later sections, it is often very diificult to establish A with any precision in a laser—
material interaction situation.

3.2. No Phase Change—Semi-Infinite Solid

Let us consider first the most simple situation. Let the laser beam be perfectly uni-
form over an extremely large area, so that we have a one-dimensional situation. Assume
also that the material parameters are temperature-independent and that the solid is uni-
form and isotropic and of semi-infinite extent (Fig. 13). Finally, assume that there is no
phase change; the rate at which energy enters the material is not sufficient to induce
meljting or vaporization.

First rewrite Eq. (35), using the fact that p, C, and K are constant:

2T 14T _ A
022 3 7)-_{- - -7{—. (36)
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Fig. 13—Uniform irradiation of a semi-infinite solid

Here we have introduced x = K/(pC), which is the thermal diffusivity. Let us adopt the
convention that T is measured with respect to the initial (or ambient) temperature of the
material. This is possible because Egs. (35) and (36) define T only to within an additive
constant. Then we have as a boundary condition that T — 0 as 2 = o, The boundary
condition on the front face (z = 0) depends on what we assume for radiative and con-
vective losses. It can ke shown that, for most cases of interest, the rate at which the
laser creates heat at the interface is overwhelmingly larger than convective and radiation
losses, so we ignore them for the present calculation. Thus the boundary condition is
that there is no heat flux at z = 0, that is,

K%I) = 0.
2)z=0

Now consider A. Denote by I the power density of the laser radiation at the sur-
face; the dimensions of I are power per unit area. The power density of the radiation
transmitted to the surface is /(1 ~ R). Then the power density as a function of z is

F = (1-R)Ie 4mkz/X\ (37)

This follows from the fact that the energy in the electromagnetic wave goes as &2. Now
to get the power transferred per unit volume, consider elemental volumes of length dz
and unit area:

oF 4k
A:—-—-—: 1—‘ I._ ‘477’22/}\.
Y 1-% ¢ (38)
The minus sign appears because 0F/0z is the power per unit volume lost by the radiation
and A is the power per unit volume absorbed by the material. Finally, we define the
absorption coefficient

o= ——, (39)
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which is, of course, 1/6, the skin depth. Thus
Az, t) = 1-R)I(H)ae 2 (40)
where we have included the possibility of I varying with time.

So the equation to be solved is

32T 19T  (1-R)l(Haeo?
2z2 K 3t K : (41)

In keeping with our assumption of temperature-independent thermal parameters, we as-
sume further that R is independent of temperature. Equation (40) is valid for temperature-
dependent R and can be used to give A(z, ¢, T).

For metals, « is a fairly large number. As we saw in Sec. 2, k is of the order of 100
at A = 10 um, so that o is of the order of 106 cm~!. Hence the absorption occurs in a
very narrow layer at the surface. It then becomes more convenient to seek solutions of

32T 1 9T _
g—:a—[—o (42)

subject to the boundary conditions that T = 0 at z = o0, but with a specified flux into the
surface at z = 0, i.e.,

_g oT s (1@
K az)z“o (1-%)1()
or, with the definition
F(gy = (1-R)I(t), (43)
oT -
-K az)z:O = F(t). (44)

First examine the case of F = Fg, a constani. This is appropriate to irradiation by a con-
tinuous laser, given t>mperature-independent material properties. We note here only the
solution, for many excellent texts on heat conduction can be consulted for the details [5].

The soluticon to this problem is

2R VI
K

T(z, t) ierfc [2/(2 Vkt)] (45)

or

T(z,t) = E% {/E;? e~z2/4kt __zé erfc [2/(2 \/E_t)]}.
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The funcuions which appear here are error functions, and it 15 useful to summarize some
pp .

of their properties and definitions.

The error function is

erf (x) =

erf (0) = 0,

The complementary error function is

erfe{x) =

The integral of the complementary error function is

ier{e (x)
or

1erfe (x)

1erfe (x)

Some derivatives are useful:

o erf (x)

erf () = 1,

1
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(See Ref. 5, Ch. I1.)

« A -
2 j e ¥ gy
AVAY (4 0

erf (-x) ~ -erf (x}.

2 j e ¥ dy.
X

m

- erf(x) =

=

J erfe (¢) dk

X

1 .
——e V" - xerfc(x)

ST

1 e ¥ x o+ x erb(x).
N T

dx

(e

derfe (x)

dx

rmarpe— - mewen

i)"'l wrfe (x)

x?
(45) vields

K

Jz
i

d2 erf (x)

Now we can show that the boundary condition 1s satished.

-(_)‘]- ~ 210 \/,7(7 [

¢erlfe(x) 9 2
. — . e X
Jdx Vi
32 erfe (x) 4 "
Ty S Tz e Y
Jdx? N
~esfe (x)
- —g,:‘ e“"z
v
Using the first form of Eq.
(.-rf('(z/(2 \/ﬁ)] LI
1l L } 2/ it
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and since erfe (0) = 1,

Q‘E) .k
92/, . K

One can also show that Kq. (45) satisfies Ey. (12).

We can us. Eq. (45) to show what the front surface temperature behavior is, under
constant irra<iation, by setting z = 0 so that

|

T(o, t) = :1:2 “,"IC ] (1€)

2|z

fis an lustration, let us calculate the time required (o raise aluminum to its melting
point for s power density of 5 kW/cm?:

K= 2.3 W/em?

Kk = 0.9 em?/s

Tmen = 6007°C

T = Tomelt = Troom = 6007C
Fo=(1-1)1

(1 -2)= 0.04

Fy = 0.04 X5 x10% = 200 W/em?2,

Then t = (ﬂKZ'I'?‘)iMF(;JK) vields ¢ = 42 s, In practice, 1t is very difficuit to melt extremely
thick slabs of aluminum with even a high-power laser, as these calculations suggoest,

Equation (45). although derived for a very simple case, describes man. very important
features of thiermal response Lo lasers. First we shall define the diffusion length, which is
useful In that it permits a wide variety of order-of-magnitude calculations to be made. The
thermal diffusion length 13 1s defined as

D 2 /kt . i)

Strictly speaking, the thermal diffusion lengih is defined as the distance required for the
temperature Lo drup 3 1e of its 1mtial value and depends somewhat on the geometry and
the boundary condition. For most purposes it s sufficient simply to take it as defined

by kqg. (17). Looking at our solution (Kqg. (15)), for example, we sec that

- I — D !
e,y - A 1\,’7 ) ('rf('(l)}
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|3
{—

D 01574}
5 (0.1573)7 .

(
T = — 1 )
I(D‘l) lv j

From Eq. (40),

T, t)y = Tio, t) I_"L - 0.1573 \/7?}.

Thus

H

T, 1) .09 T(o, t) (48)
10 this case, whereas (1/e} T(o. 1) =~ 0.37 T(o, t). Relerring to our example of irradiating
aluminum for 42 s to reach the meiting pomnt, we note that the diffusion length at that
time Is given ny

D= 209242 = 12cm,

and, by kq. (48). the temperature at distance D into the material is 0.09 X 600, or about
50°C ahove ambient.

Now let us illustrate the solution (Eq. (43)) graphically {Fig. 14). For convenience
rewnte the equation by introducing 1) = 2+/x{ and by reducing it to the error function
erf, so that

. . . bl
Tiz 1) = 2k [ D_ 22 02,2 orf (2/12) ]
2, 1y = —2 | e 5 erf (/)]
K j2va 2 2 ]
10
08k
>
- erf 2 = 09953
¢ 06 ert 3 : 399959

erf o= 1(; exuctly

o2

ol 1 N S W DR
& 05 10 15 29 25 30

X

Fig. 14 =The error function
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Now let n = 2/1), und

Tz 1ty =

= -utn erf(n)i (19a)

or, equivalently in terms of ierfe,

. koD
Tz, t) = N ierfe (n) . (49h)
Finally, we define a dimensionless temperature @ = TK/(FgD), so that

U = terfe (). (49c¢)

Thus the plot of the integral of the complementary crror funciion here is tae graph of
tue solution to the problem of constant heat flux on the surface of a semi-infinite sohd.

Now, although the graph of Eq. (49¢) (see Fig. 15H) represents very succinctiy the
solution to our problem, it does not really snow how the temperature varies as a function
of position and time. For this purpose it is useful to look at the temperature profiles for
various times and see how the profile changes with {ime. These curves can he generated

quickly from ¢ = ierfc (n) by recalling the de.initions of ¥ and n and writing them in the
foliowing form:

21y VT\
T = (———— tt 50a
K _/\/" (50a)
2= 2V VT . {50b;j
!
o6h-
A rertc (G} : 05642
g\ eete (1) 2 00502
05— werfe {2) : COOI S
i \ erfc (@) 2 Jexotty
,_oaL- \
x i
¥
¢ osf-
0?
ol f-
l ' ;
olim— Lo T >
o] Nz 0a C6 08 10 v 2 14 & 18 o

Fiu. 15 -The integral of the complimentary error fuaction
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Thus, at a given time the 0 = ierfc (n) curve scales according to Egs. (50); the basic shape
of the curve is unchanged, but it is stretched one way or the other depending on the
parameters, and this stretching progresses in time as \/t. The case of aluminum is shown
in Fig. 16.

r SEMI-INFINITE SLAB OF ALUMINUM IRRADIATED AT 2 = 0
8Y 200 W/cm2 OF ABSORBED LASER RADIATION

{t =5kW/cm21-R =04}

600 K = 2,3 W/cm deg

K = 0.9 cm2/S

X DENOTES DIFFUSION LENGTH D = 2\/K!

500

400

T(*CH TEMPERATURE ABOVE AMBIENT)
o

100

2 cm)

Fig. 16— Laser-induced temperature rise in aluminum as a function of depth

We can also look at the variation of temperature with time at a fixed position. The
variation ol the surface (z = 0) is simply T(o, t) /T, as Eq. (46) shows. Wherever
z/(2 Vkt) is very small, the temperature variation will approach «/t. Thus, at any posi-
tion T = \/7 at sufficiently large {. The temperature-vs-time profiles at fixed position for
times such that 2/(2 v/kf) is not small can be calculated, of course, from Eq. (45). Some
results for aluminum, with the parameters used above, are shown in Fig. 17. Notice that
at z = 10 cm the temperature profile is far from the “long-time,” or \/f, behavior even at
40 or 50 s, whereas the surface has already begun to melt.

We now turn to some order-of-magnitude arguments., One such argument can be
used to estimate the power—pulse length combination which might be expected to yield
surface vaporization. Consider a laser pulse that has the simple time behavior shown in
Fig. 18 and uniformly irradiates the surface of the material. The pulse length is ¢, and
the intensity is such that, combined with the reflectance, the absorbed power density is
Fo. Again we assume that the optical energy is absorbed in a very thin layer at the sur-
face. Let D, be the diffusion length associated with the time ¢,. The question is
whether a significant amount of surface vaporization will occur before the pulse ends.
One approach would be to use Eq. (46) to calculate the surface temperature at the time
tp and compare it to this vaporization temperature. However, this would ignore the in-
fluence of the latent heats of melting and of vaporization, which have an important in-
fluence. We shall discuss thermal flow with phase changes later. For the present purpose
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Fig. 17— Laser-induced temperature rise on front surface of
aluminum as a function of time
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Fig. 18—Irradiation of a semi-infinite solid by a pulse
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we can include them by considering the energy required to melt and vaporize a portion
of the material. The key is to estimate what thickness of the material is i’nvolved, and in
this order-of-magnitude argument we simply use the thermal diffusion length for this
thickness. Thus we set the criterion for vaporization as

“D—p‘ > plC(Tm ~To) + Ly + Co(Tp — Try) + Lyl

where p is density of the material, Cs; and Cq are the specific heats of the solid and

liquid, respectively, T, is the melting point, T} is the boiling point, and L,, and L; are
the heats of melting and vaporization. Notice we are ignoring differences between the
solid and liquid for density and conductivity, as is appropriate in this crude argument. If
numerical values are checked, L, dominates the expression on the right side of the inequal-
ity. For example, for aluminum L, = 10,875 J/g, whereas all the other terms contribute

a total of 3,046 J/g. Since the argument is crude, then, one usually takes

Dp

= pL,

.,

as the criterion for vaporization by a pulse. Since D, = 2+/«kip, we have

2VK Lyp
Vip

Fy > approx (51)

Some calculations based on Eq. (51) are shown in Fig. 19. Most metals fall in the band
indicated. For a given pulse time, at power densities greater than the band indicates,
vaporization effects would be expected to be important. Some useful thermal constants
are inciuded in Table 2.

VAPQORIZATICON

NO VAPORIZATION

S
W
T

ABSORBED POWER DENS!TY Fg(W/cm2)
o]
P
1

1 1 | ] 1 .

159 167 153 163 07!
PULSE T - ’s)

THE BAND INDICATLS WHERE Eq. (51) LIES FOR MOST METALS

Fig. 19— Power density —pulse time criterion for vaporization
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In deriving Eq. (51), we have been seeking the power density required, at a given
pulse length, for a thermal layer to be vaporized. The same expression, of course, tells
us the pulse time at which vaporization becomes important for a fixed power density.
Rewriting Eq. (51) giv-s for this time

K2 Tfapvr

t, > approx ——5;- (52)
P PP TR 2k

Let us ccmpare this to the time required for surface vaporization to begin. We do this
by using our solution for heat flow in the semi-infinite solid for the surface (Eq. (46))
and solving for the time at which the front surface reaches the vaporization temperature:

2Fy /[Kteap
Tap = g V77
or
K2TZ m
frap = —;FOZ K

Thus, at t, = tyap this calculation would predict that vaporization at the surface begins.
For example, at Fy = 108 W/cm?2, vaporization begins at t, ~ 1075 to 1076 s, depend-
ing on the metal. On the other hand, for a thermal layer to be evaporated requires, ac-
cording to Eq. (52), tp = 10-3 5. It turns out that both estimates are useful. In a later
section we shall discuss features of a more correct treatment, which accounts for both
the heat of melting and the heat of vaporization in the dynamic situation of propagating
solid—liquid and liquid—vapor interfaces.

3.3. No Phase Change—Slab of Finite Thickness

Let us turn now to a treatment of another geometry which can be useful in practical
cases, namely irradiation of one surface of a sheet or slab of finite {hickness. Let the slab
be taken as infinite in extent in the x and y direction, and let the laser irradiation be uni-
form over the entire surface z = 0. Thus we again have a one-dimensional situation, as
shown in Fig. 20. The thickness of the sheet is taken as ¢, the absorbed power density
as a function of time is F(¢), and we again assume that the radiation is absorbed in a very
narrow layer at the front surface. The equation we wish to solve is, then,

T 19T _
9z2 K Ot
with the boundary conditions
-K %i) = F(t)
2/z=0
K a—T) =0
02/,-¢
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Fig. 20—1Irraciaticn of a slab of finite thickness

The second boundary condition states that “he rear surface is insulated. We shall look at

the consequences of this assumption a little later,

As we showed for the semi-infinite slab, the solutions turn out to be elaborate,.
Turning to the special case of F(t) = Fp, a constant, the solution is

Fox Bl f3e-2)2 -0 2 <0 (1) e (€ - 2)
= S - = =l en ez
T(z, t) I t + % { e = /_1 — e Kkn=m Cos 7
n= ) (53)

We can check that this satisfies the boundary conditions:

~

AT _ Fol |-(L- 2) 2 o (D) oo oam . [(nm(L-2)
KT E T L T e B sin | — JJ
n=1 )

Now sin (nm) =0 and sin (G) = 0, so the £ term vanishes at both z = 0 and z = ¢,

and
QI) _ b
LY/ K
aT
o). -0
‘z=Y

Similarly, the thermal diffusion equation is satisfied, as the reader can verify.
Let us look briefly at this solution. It consists of a linear term in ¢, together with a
‘‘correcting term,” which can be plotted as shown in Fig. 21. In other words, what is

plotted is the term
34
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Let us examine 2 yme special cases, At 2 = 0, for example,
o0 -
Iy ["(lQ r] 2 8_1 1 kndade2 ; [3
To, 1) = o= &+ o= & - 5 ) =y e TR (54)
K¢ l_& r = on |
We can rewrite this as
oK v
l[‘ [‘ = A_.‘:- l + ' {
(0. 0 Ty K -

Now 7T at a fixed value of 2 is a function of K¢/¢2. 11 v = ki/¥Z, we can wnite

1
AN

{
T, t) = ’;2.“ (m+ T z=0tm). ("95)
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Figure 22 shows how 1 depends on 1, for 2 = 0, and was taken from the previous graph
of T vs (1 -2/0) (Fig. 21). Note that at small 7, i.e., at kt << 22, ! = 0, so that the
front surface initially heats up linearly with time, as

T = M (56
(o, t) = 17 t. &0)
04—
03—
:O.ZF
L)
01
o 1 L | 1
o] 0.l 0.2 03 04 05

T ——

Fig. 22— 1T at z = 0 as a function of 1

For large ¢ values, or xt >> (2, 1',_q approaches a limiting value of about 0.33. Thus at
long times

Fot
T(o, t) = —RQ—(K,% + 0.33), Kkt >> 2, (57

4

Here again we see linear behavior, but this time there is an additive constant. If we have
a very thick slab, we should get the same result as our previous solution for the time to
reach 600°C on the front surface of aluminum with an absorbed power density of 200
W/cm2. It turns out that the limiting form of Eq. (56) is not correct because it ignores the
behavior of ¥',-¢(n) at small 1. It is necessary to use the full expression. Thus

KT
n+ Pe=0(n) = -

Assume that £ = 100 cm, since we know from our infinite-slab solution that the diffusion
distance is 12 ¢m at T = 600°C on the front. Thus

. 2.3X 600 -
n + N=o() = 200X 1600 0.069.

Reading very roughly from the graph of D,-q vs i gives
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n ~ 0.004 at P ~ 0.065.

Thus our solution is

which gives, since k ~* 0.9 cm?2/s, a time of about 44 s, in reasonable agreement with the
semi-infinite-slab solution.

Now let us turn to a consideration of the rear surface temperature. For this case,
= €, so Eq. (53) becomes ‘

o0

Tt = o ! FOQ I:—% =03 ( e-kn?m?/Q2

K¢ T K 72

—

n=

or, introducing i as before, we have

Fo?
T(L, 1) = 5 (0 + Dae(m)).

Comments could be made here for the rear surface temperature, and they would be simi-
lar to those we made for the front surface temperature. It is interesting to compare the
front surface temperature to the back surface temperature. This has a simple form for
thin sheets, where kt/22 >> 1. By referring to the graph (Fig. 21) of D vs (1 — 2/%), one
can read off values for 9;=¢(e) and T ,=¢(e°), and thus

’ ( ’ ) ) K

Ktj92 >> 1.

Notice in Fig. 21 that the limiting values are approached rapidly; they are nearly realized
by the time xt/¢2 = 1. As a numerical illustration, if we have 0.3-cm-thick aluminum,

T(o, t) - T, t) =~ 13°C

For the same numbers we used above. This situation, with the two surfaces heating at
the same rate but separated by 13°C, would start at a time of the order of ¢t ~ 2/k ~
0.1 s. At this time the front surface temperature is about 35°C.

Let us turn now to a different sort of heat input. So far we have been discussing
continuous irradiation. Another simple case, which is a reasonable approximation under
certain conditions, is that of a laser pulse which is short enough to be treated as a delta
function. Take again a slab of thickness £, and assume that the energy is deposited in a
very thin layer near the surface. F refers, as before, to the fraction absorbed by the ma-
terial. The laser power density, that is, must be multiplied by the optical absorptance. In
this case we solve the thermal diffusion equation subject to the boundary condition that
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kT . T
K Bz)z=0 K E)z)z=q

=0,

with the stipulation that there is an instantaneous release of Eg units cf energy per unit
area in the plane z = 0 at time zero. This type of problem is discussed in Carslaw and
Jaeger [5] and is most easily solved by Laplace transform methods. For our present
purpose we quote the solution

E ad o .
T(z, t) = 7\%{ {1 + 2 Z cos(%) e"‘"““zl/ww (58)
n=1 J

In Eq. (58) we have introduced Eg, the energy per unit area in the pulse. Thus,

Eqg = f F(t) dt.
-0

For the case under consideration, F(t) is considered to be a delta function.

Equation (58) is the basis for a scheme used quite frequently for the measurement of
thermal parameters [6]. This scheme consists of using a thin sheet of the material to be
studied and irradiating uniformly one surface with a very short laser pulse while monitor-
ing the temperature rise induced on the back curface. If one knows g, and if the as-
sumptions of no heat loss are valid, the experiment can yield values of both specific heat
and thermal conductivity. One adjusts the pulse 2nergy, and hence Fg, so that the ir-
duced temperature rise is smail. In this way the values of specific heat and thermal con-
ductivity are representative of essentially the ambient temperature of the material.

To see how this is applied, rewrite Eq. (58) for the back surface, z = ¢:
7o, ) = 22 1+ g wf (~1)1 e~ ¥n?m2(/e? (59)
L) KQ 1 . \
n=

If we introduce a characteristic time t, = 2/kn2, Eq. (59) looks approximately iike the
curve shown in Fig. 23. Here we have also introduced a characteristic temperature 7T, =
Eyx /K¢ and plotted T/T, vs t/t., or

=1+ 2 Z (-1)te-ntlitc (60)
n=1

I
T

Essentially the experiment consists of monitoring the temperature as a function of time
and fitting it to Eq. (60). This can be done quite readiiy. First, the long-term tempera-
ture rise T, yields the specific heat because

Too
Te
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Fig. 23 —-Normalized back surface temperature response to
a delta function heat pulse
and, on substituung for T,
ok
. cegh
ro= 2
it K¢
or, since k - K/pC,
Eq
C =g (61)
.oop(\

This technigue of measuring specific heat is; of course, not vnigue to pulsed lasers 1t 1s
somerimes referred to as the slaby, calorimeter. ‘The accuracy of the method depends on
knowing Fq, which is frequently difficult to ascertain with laser radiation. In some ap-
pheattons Bq. (61) is used to calculate Eq, the energy actvally absorbed from the laser
pulse, by using macerials o, known specific heat.

The pulsed laser measurement technigue is especial'ly suited to determining thermnal
diffusivity. The magnitude of the back surface temperuture rise depends, as we saw, on
the energy which is coupled into the material, and thic may be difficult to kaow with
any precision. However the time dependence of the back surfuce temperature is inde
pendent of the energy input and is controlled only by the diffusivity k. A simple way
to derive k from a temperature-time profile can be seen from Fig. 23, Oace measures the

time required for the measured temperature response to reach some fraction, say one-
half, of its limiting value. Let us call this time £y,

It can be shown numerically (6}
from Kqg. (60} that

—

o . ¥ i
-2-1+2L<1)'(. L

s

n=1

15 satisfied when

A« e i
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-

tll2/lc = 1.37.

Using t. - ¢2/(xn?) yields

R 2
Ko 1".3{ S50y (62)
n2 lip

Thus a measurement of t},», together with the thickness of the specimen, immediately
gives the thermal diffusivity. If one knows E this experiment gives vellies of both the
specific heat and the diffusivity, and hence if one knows the density o the experiment
gives the thermal conductivity.

This technigue has heen applied often at vather high temperatures, usually in the
1000°C range and above. At these temperatures steady-state methods of measuring the
thermal conductivity are difficult to spply because radiation losses are 50 large. In the
laser flash techuique the radiation loss goes like 1057 - Tn", where Ty 15 the starting or
ambient temperature, established by, say, a furnace, and T is defined above. This
radiation loss can be inade quite small by adjusting Eg so that T is only a few degrees
larger thar 71> Since the precise value of £ is difficult to estabnsh, these experiments
typically measure only e thermal diffusivity, not the conductivity.

A final remark on the criterion for the applicability of Eq. (60) to slab heatih g con-
cerns the Jimits on the laser pulse duration, No laser pulse is, of course, a true & function.
Qur solution would be expected to be correct for laser pulse times which are short com-
pared to the time it takes the back surface to respond. The respornse times are of the
order of ¢, so we have the criterion

or

tp << Clra?y.

Calrulations that include explivitly the time dependence of the luser puls: [7] indicate
that our 6-fu .ction solution is in error by less than about 2% provided that (, 1s less than
o1 equal to about 4% of £.. Some typical values of £, with specimens 1 mm thick are
given bhelow.

K te - $jkm?
{em?)s) {(ms)
Aluminum (3.85 1.2
Stainless steel 0.0522 19

1

Typrweal laser pulse lengiiv are sbout 1/2 to 1 ms for the so-called “‘nerrnal mode’
lasers, and thus with 1-mm-thick »ecimens the technique would be fairly accuraie for
stainless steel but not very good for aluminum. Thicker sp:ecumens would help, but this
would make the rear surface temperature rise smatler. If our laser pulse has, say, 20
J'em? in it and we use the 10.6-um absorptance quoted earher for as-received surfaces,
the enticipated temnerature rises at the back of the j-mm specimens would be as shown
bheiow,
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Fon p C 10 = EyipCy
« (J/em?)y  qg/em?)  (J/g° () ()
Alu.minum 0.04 0.8 2.7 1.06 2.8
Stainless steel 0.4 8.0 8.0 0.628 16

We see the need to use shorter laser pulses but with the same amount of energy. Another
solution would be to carry cut a more detailed heat-flow calculation. Both tailoring of
the pulse shape and more detailed caiculations are usually employed in current applica-
tions of laser flash techniques [8].

3.4. Melting

Consider first the case of a semi-infinite slab melted, with instantaneous meit re-
moval, as indicated in Fig. 24,

:!=Tm|7/
:
0
S i é
I B
L

Fig. 2t --Irradiation of a semuinfaite slab with
instarlaneous melt removal

We solve this by considering ourselves moving along with the intertace. But to do
this we have 1o reconsider our beat-flow equation, which is

9T
0z

Ieeaall that this was derived by noting th- rate at which heat accumulated in an elemental
volume:

PP . / PO

Y T

C == - " = 0.
LY 0z \ 0z /

If the medum is moeving, an additional smount o»f heat pCT s flowing in at rate V.

So
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-K %—Z beromes -K %% + VpCT.

Thus, for moving inedia, the heat-flow equation is

7 .

C-(?—' + _(1 <K ll + VpCT| = 0,
at Jz dz

provided we are not generating any heat in the solid.

Thus

. o ,
or T Ly ATy (63)
ot dz? 0z

Sce we can find at least a steady-state solution to the problem by basing our coordinate
system at the interface and letting the material flow 1 at some rate to be determined.
Call the rate - U, where U 1s a positive number. The solution will be

T = Te L2 (64)

where k is diffusivity of the solid, 7}, is the melting temperature, and 2’ is the distance
from the melting front. That is, this is the solution to

YL )

- K - -— = 0,
Jat 2’2 dz

as we can verify. First, dT7d¢ = O because Lhis is the steady-state profile, or

Ly Ly (65)
Vz'? 0z

<

Of course T = T,y at e = 0, and T = 0 as 2 = o,
tion, that Eq. (64) is the solution 1o Ea. (65).

It is trivial to show, by differentiu-

‘lo calcuiate U, we use energy balance. £y must reise the material to Ty, its melting
pomt (T, °C above ambient), and then melt it. ‘Thus in time At the energy put 1ato

thickness A2" (where U = Az'/At) must be given by

'I'LAT{ - Lp + (’”/-mp
Az
or
Fy = plL+CTy] U (66)

Thus we can write, for the steady-state temperature profile,

e e ek e At A
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P
()___” 67)

|
T ]ml"p’l\‘?i,;(l/‘*crm_,

where Fy/[p(L + CT\y)] is the velocity of the melting front. This solution also would be
appropriate to subl.mation, where L is then the heat of sublimation and Ty, the sublima-
tion temperature. Note that this is the semi-infinite-slab approximation and cannot be
useid to estimate the time to penetrate a slab of given thickness.

Let us consider aluminum, with Fj = 200 Wjcm?. Taking a more accurate value of
the melting point than in earlier examples, 75, = €40°C (the actual melting point of

660° ¢ minus room temperature of 20°C). I we put in the other values of the param-
eters, T falls off as shown in Fig. 23.

T:6406 0.0822'
640 )

CRIIDE SKE (Ch
NOTE 1/¢ POINT AT ~2'z12¢em

Ti?C)

320 b—

o] 10 2Q 30
2 {em)

Fig. 25--Temperature profile in aluminum with
instantanevus melt removal

As another illustration, consider plexiglass. Plexiglass is rapndly eroded by 10.€-um

laser radiation, by g process that is essentially sublimation. Since it couples extremely
well (= 1.0) and has a very low thermal diffusivity (x = 10 "t ¢m?/s), it can be used to
make hurn patterns” of the beam. That is, the depth of the erosion at a given point is
hnearly proportional te the energy density incident at that point.
this by applying heai-tfiow concepfs
erosion. Since C =

We can understand

Let us apply Eq. (67) and interpret L as the heat of
1.1 J/g”Cand Ty, ® 200°C and L = 1000 Jjg, for a crude ca cula-
tion we can gnore CTy, . The density 1s about 1.1 g/em3. We then have

T s 200 ¢ o2

Since (1 = 1, for a typical power density like 3 kWyem? we have Fg = 5 X 109, 50 that

T = 200 e 1OX10%

Hence the temperature profile is confined to an extremely narrow region near the eroding
surface. The rate of erosion is, hy Eq. (66) with U7, gbured,
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U= 45 cm/s.

Now we can see why plexiglass is useful for monitoring the heam profile, and why
it can pick up fairly fine structure in the bheam. After irradiation for a time t the pene-
tration depth is Ut = (Fyt)/(pL), and this should be large compared to a thermal diffusion
length D = 2+\/kt if the pattern is to reveal fine structura, Otherwise thermal diffusion
would “*wash out™ the pattern by distriuting the energy in a radial direction. Thus

{

F
2Vt << —[;OZ—

For the numbers we used above at t = 1/4 5, we have a depth of 1 ¢m. Thus

2 \."1()'4>< }T > 0.1 mm << 1em

and we see the criterion s well satisfied.

Let us look at a more complete problem, namely melting by laser radiation of a
slab of material. One basi¢ problem is what happens to the melted material. (We will
1gnore the vaporizaticn question for now.} There are two cdases which are fairly amenable
to numerical solution. They are the “fully retained liqui'™ case, in which all the liguid
is presumed Lo stay in place, and the “fulf ablation™ case, in which the melt is presumed
to disappear magically as soon as it forms. The latter case might correspond to the pres-
ence of a heavy windstream which blows away the meit.

Loc king first at the full ahlation ¢ 2, we have the situation shown in kg, 26. 7,
1s the temperature in the solid, and the 1ront surface at z = 0 first warms up to the melt-
ing point 73, (above ambient) and then begins to move to the right. S denotes its posi- i
tion as a function of time. When 8 = £, the process is over, and we call this time ;. We

denote by (,, the time at which the front surface begins to melt. The field equation is

Q

F INSULATED BACK SURFAGE
—_———
' —_———
N
; 2:0 2:S =4 2 ——— |
1 SOLID REGION, T =T, (12,1) i

Fig. 26- -Fuilly ablated case
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oT:
K -—3) = -Fy for 0<t<tpy
0z 2=0
0T ds
—= = -F e <t <
2 3, >z=S Fy + pL dt for tn t tr
aT:
KQ——z') =0 for 0<t< ¢t
9z /,_¢
The starting conditions are
To(z,0) = Ty
S)f<tm = 0.

The above boundary conditions are nonlinear, and a solution in analytical form is
very difficult. This is due to the presence of the moving boundary and appears in the
second boundary condition, which states that the bcundary moves at a rate dS/dt deter-
mined by a balance between the heat of melting L, the heat input Fg, and the heat flow
by thermal conduction.

One relationship must hold for this problem; it follows from energy balance. The
total energy put in per unit area is Fpt;, and, since the material is simply heated to T,
and melted, this energy goes solely to those processes. Thus

Foty = p(L + CT,,).

This is convenient, for one can check numerical solutions. More important, it gives a
first-order estimate of the time needed to melt through materials by laser radiation.

Turning now to the fully retained liquid case, we have the following set of equations.
The definitions are the same as above, except that subscript 1 now refers to the molten
state, whereas subscript £ is still the solid state (see Fig. 27). The field equations are

62T2 — l ?_Tl - 0 0 < < d
azz Ko ot = <t < tf (SOh )

- — =0 tm < t < If (liquid) .

The boundary conditions are
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T=Tm

P L‘/

I
- l

Fo | INSULATED BACK
———— | SURFACE
S l
\’\/\/} St

z=0/ 1=S =L 2 et

LIQUID REGION,T=T, (z,t)
SOLID REGION, T=T, (z,t}

Fig. 27 —Fully retained liquid case

AT
—m—l> = F 0<t< iy
02 =0
oT
—Kl—l) - Fy tm < t < tf
0z /.0
9Ty 9Ty ds
;. - = = —pL <2 Tt <
1 az 2 azl:s Ldt tn t ff
T
Kziﬁ =0 0<t<
02 /o
To)yeg = T)as = T tm < t <ty

The initial conditions are

Ty(z,0) = Tyg

S)l<lm = 0.

Rather than discuss this problem in detail, we pass on Lo the more practical, although
more complex, case of vaporization. For the fully retained liquid case, suffice it to say
that the retained liquid has a shielding effect, and this causes the time to reach melting at
the back surface to be longer than in the ablated model. Some typical values of melt-
through time for 0.2-cm-thick material with Fy = 2 kW/cm? are given below.
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Ablated Retamed
(s) (s)
Aluminum (.32 0.37
Statnless steel 4.0 4.5

3.5, Melting and Vaporization

We present here without derivation some results for the case of a slab of material,
insulated on the surfuces, subjected to uniform and contimuous irradiation [9]. These
are one-dimensional calculations. It is assumed that the melt is fully retained until it
reaches the vapornization temperature, where it disappears, Then we have the case illus-
trated 1in Fig, 2K,

I |
- , | |
l |
- | |
" | el e e o
— ! ]
| |
| l
220 752 1735 2: £ 7 —>

Figo 28 - Melung and vaporization, with fully retamed hquid

Here Sy is the position of the liguid-vapor interface and S, the position of the solid-
hguid interface. This problem bas been salved numerically at NRL [9), and we shall
show some results. ‘The assumyptions are that in each phase the thermal properties are
mdependent of temperature,  In the curves, the following definitions are used:

oY = ———

oLk ond
Kuaolid!
PALLLLLLL

g2

O ~ (T- Il‘m"csnlid”’
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L. = latent heat of fusion
subseript () = ambient temperatuee
w = Ly, with Ly the latent heat of vaporization.
In these equations T is understood to be it degrees Celsius and represents the actual tem-
perature.  Although the thermal conductivities of liquid and solid are allowed to differ,
the specific heats are assumed to be the same.

Note that when Fp — 0 and Fy — -9, we get certain easy limits. For Fy = 0 no va-
porization can take place, the melting is small, and we approach the fully ablated limit.
On the other hand, as Fy — oo, all the liquid should be vaporized by {7, the time the back
surface melts,

So in this limit

FLJ:/’ = pkiL + (T, - T Csong + (T - Tm)cliquid + L] (Fy = =),
whereas
FUtf = pUL + (T, - To)Csnhal (Fo - 0).

The limiting values are re, nted by the asymptotes of the curves (Figs. 29-31)

indicated by dashed lines on the plots of o vs 7. Noute on these plots that the dasied

lines are at 45°, or have a slope of -1, These are log-log plots, so 1he asymptotes c¢aa be
described by

log («@) = log ¢ - log 7/

where ¢ = ¢’ as aQ -» %, and ¢ -> (¢ as aQ — zeco. f we take the antilog,
NS
aQ = T,

substituting in the definition of a@ and Tr gives

Fye N &

— S
pLegonid Ksolid

or

F()tf = opllL .
By conmiparison with the ¥y — 0 and the Fy — o0 limits above we can see that

. 1 q L mae
Gy o= 7 IL + (1,” - IU)(’SU!id]

and

1 - o e e g
U = L- lL * (Im o 1(1,('sulid + (1, - Iml(/liquid + Ll‘] -
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The numerical values of the thermal parameters which were used in generating these solu-
tions are included as a separate table (Table 3) in addition to the graphs (Figs. 29-34).

00}~ -]
CD ~ 1
w |
@ |
2 — ~
2 !
< |
e 4 - —
w
a !
& -1Ot-- -
w - . / .
‘5’ aQ =350 262 173 0434 0I30 ;
< B 4
2 / / |
e [ 0
g i
& 20~ —*:
» |
3 _
z l
g — 4
2 304 STAINLESS STEEL |
w L d
=
2 -30}- s «J
o ~
4 / ‘
b,:_ R S S l.lHli.,_ Y Y 1kkl“i 1 A ‘lellll 1 1 ALIIHK K H 'mj
00! o1 0 100 1000 10000

NONDIMENSIONAL TIME r

Fig, 32—Rear surface temperature risc for stainless steel (Ref. 9)

50



NONDIMENSIONAL REAR SURFACE TEMPERATURE, @

NONDIMENSIONAL REAR SURFACE TEMPERATURE 8

NRL REPORT 7724

00

t

(o]

o
]

2 : 605 227 0605 0i8 00454 OOISI

-0

2024 ALUMINUM

L
[

oot vl vl 1 i
Oi 10 100 1000 10000

NONDIMENSIONAL TINE r

ool

Fig. 33—Rear surface temperature rise- for aluminum
alloy (Ref. 9)

(010] ood

[

a Q=444 222 222 0444 OUuG

Ti-6AL - 4V

1 lllllll‘ P T lllllll 1 1 118

[o]e}

o] io 100 1000
NONDIMENSIONAL TIME, v

Fig. 34 —Rear surface temperature rise for titanium alloy (Ref. 9)

51

10000



J. T. SCHRIEMPF

€0 90 | evz0o | 620 L0OZ'0 , V1o LLT $9¢6'g g6 081'C 8€9 ‘wny $202
1500 1500 | 6610 661°0 SSHO0 SSr00 Lv'y vZ1'e v6 ¢8T'E 6V9'T | (AFIVY) LL
ES
£2%0°0 | €2s00 | 8¥1'0 | 3¥1'0 2900 290°0 08 AR R g9 000'¢ VST | ssauiels +og
(slzwd) | (s/gwd) |(0,B/129)| (0, 812} | (0 ~wd-s/1wd) | O -wd-s/1ed) (gword) | (Bned) | Hiws) | (0,) ,) Koqry
My Sy 2 $3 Ay Y J ary T ay wy 10 |B)3N

¢ dlqel

52



NRL REPORT 7728

Provided one knows Fy, these solutions are reasonable estimates for the iime to
penetrate a metal specimen with a laser beam. In application, however, one must con-
sider the actual size of the beam. These solutions will be useful for effects in the center
of the beam if the diffusion length is small compared to the beam radius, or if for times
up to and including the melt-through time {; the beam radius R is

R > 2+/ktr.

In terms of the parameter 7, this becomes, upon squaring both sides,

4. EFFECTS OF PULSED LASER RADIATION
4.1. Power Levels of Pulsed Lasers

Highly intense pulses of short duration can be prcduced in a variety of ways. Typi-
cally it is done by creating a large population inversion by the injection of electrical
energy from the discharge of large, highly charged capacitors. In these systems all the
energy is produced in a burst, the duration of which can be made quite short. We shall
not discuss the various techniques by which these pulses are created, but in Table 4 we
simply note some commonly obtained values |2].

Table 4
Pulse Energy
Laser Type Length Power Per Pulse

Ruby (normal mode) | 0.1-1 ms 10-100 kW 1-50 4
Ruby (Q-switched) 1078 s 1-10 GW 1-1CJ
Ruby (mode-locked) | 10711 s 0.1-1 TW 0.1-14
CO; TEA 16X 1076 s| 100 MW 1004
CO4 e-beam 2% 1075 50 MW 1000 J
CO4 shock tubegdl | 3X 1074 s 0.3 MW 1004

From the above table it is apparent that with beam areas of the order of 1 cm?2 extremely
high power densities can be obtained, and, although the pulse lengths are short, the total
energy in each puise is considerable. The available power densities range as high as 1012
W/cm?2,

Practically speaking, one is usually interested only in power densities below the
breakdown threshold of air because at higher power densities the energy never reaches
the target. These breakdown levels are functions of wavelength, spot size, and pulse
length, and depend as well on the contaminants in the air. Typical values are 109 W/cm?2
in *clean’ air at STP for CO, laser pulses with duration of about 1076 s and longer. At
shorter pulse lengths the threshold is somewhat higher, becoming 1010 W/cm?2 at 1078 s
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and 101! W/em2 at 10710 5. In the infrared region, the breakdown threshold scales with
the square of the frequency.

4.2, Material Vaporization Effects

We shall first discuss the effect of high-power-density laser pulses on materials from
the point of view of target vaporization, and shall assume that the vaporizing surface is
not shielded from the radiation by the vapor. In this case we can show that, in addition
to thermal input to the target, there is a strong pressure built up on the target surface
due to recoil from the blowoff of the vapor. The integral of this pressure over the time
of the laser pulse imparts a net impulse to the target. There arises then the possibility of
inducing stresses large enough to create gross mechanical changes, such as spall and de-
formation, by pulsed laser irradiation.

To calculote the pressure applied to a surface by a laser pulse, we start with a con-
sideration of the vaporization process, We use a one-dimensional calculation because in
most cases of interest the beam radius R is larger than the thermal diffusion length during
the pulse time {, or

We shall avoid consideratior: of thin targets, so that € is also large compared to the diffu-
sion length. In this case we can calculate the time tp required for the front surface tc
reach the vaporization temperature 7, from the semi-infinite slab result of Eq. (46),

which is
2F, Ktp
L
or
nK2T?2
ty = 2
4Fy K
or, since
K_ = i{_
pC’
KpCT?
m )
ty = 7~ (68)
FO

In applying Eq. (46) in this way, we ignore the molten layer and assume that the values
of K, p, and ¢ appropriate to the solid can be used. This is not as gross an approxima-
tion as it may ceem, because at these power densities the molten layer is very thin.

Once the material on the surface reaches the boiling point, the surface begins to erode
at a rate U, given by energy consideration, as we saw in section 3.

e e
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Fy
" pslCsolidTm + Lim + Criquid (Tv — Tm) + Ly]

Us

To simplify the calculation we take Cjiquid = Csolid = C and ignore L, by comparison to
L,. Then

Fo

U = —3
s ps(Ly + CTy)

(69)

Here we have used p, for the density of the solid. So after the time ¢, given by Eq. (68)
the surface begins to evaporate, and it recedes at the rate U;. By conservation of momen-
tum it must be true that

puUy = psUs (70)

where p, and U, designate the density and velocity, respectively, of the evaporation prod-
ucts. Thus we have

Fo
R ()

by combining Eqs. (69) and (70). A

To see how the pressure exerted on the surface is related to density and velocity,
note that the pressure on the surface is just the pressure of the evaporation products. To
calculate this pressure, consider particles which move a distance Az in time Af under the
pressure P and thereby acquire a velocity V. The pressure (force per unit area) must
equal the rate of charge of momentum (per unit area) so that

_ (pAz)V
P = At

That is, pAz is the mass per unit area which is brought to velocity V in time At by the
force per unit area P. V = Az/At, and so P = pV2, Thus, in our specific case of density
p, and velocity U, there is an associated pressure, given hy

P = pyUZ. (72)

We could compute the pressure from this expression if we knew p,, and U,. How-
ever, we only know the product p,U,, from Eq. (71). We need another relationship,
which we simply take from the ideal gas law,

where R is the gas constant and A the molecular weight. Denote R/A by ¢’ and use
Eq. (72), then
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L2 N
p U = pytT,

or
U = JOT,. (73)

Upon combining Fgs. (71) through (73), we get the desired relaticnship,

Iy V' Ty,
w + CT, '

p -

Pt

Since the specific heat of metal is typically 3R/A we can approximate ¢ by (1/3) € to
yield
P _ _1_ _?L——CTL . (74)
V3 Ly + CT]
Finally, we compute the specific impulse dehvered during the pulse, wii.ch 1s the force per
unit acea multiplied by the time over which it acts, and we get

Im = P“p = th)

or
; i I“O +/ (:II‘U ¢ T KPCTL? \l (, 5 )
im = =T e | - - — 10ad
m \/§ (L, + CTy) \\P 4 F02 ’/I
In ierins of the energy in the pulse, £y = Fgl,,, “his can be written as
I -1 Ey VCTy i KpCTLg 151
m =g 0L, * CTy) 17 g2 tp (75b)

A word about units 15 1n order. It has become conventional to quote impulse in
units of dyne-s, and specific impulse in dyne-sfjcm?. If we use J/em? for energy density,
J/g-"C for specific heat, and Jyg for heat of vaporization, we have

J/em?

Vd/g
= em 2V/Ig

= em 2107 erg g

”m]

or

[ln] = 107 (dyne-sj/em? .

This unit, dyne-s/fem?, is called a tap. Thus, in taps,
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Al 2
e iraxior g, YT [ x Keer?
o= LESX10%E, pmies (1 - Ty (76)
v v Eg

Note taat Eq. (76) predicts a threshold value of £~ for impulse production at a given
pulse length {,. This 15 due to the criterion we introduced for vaporizatioi; vaporization
must commence hefore the end of the pulse or there will be no impulse. The threshold
15 given by

T KpCT? -
4 2 P
1"0

or
i N7 R T
bO)th ——_‘2 Tu v KpCip .

This vaporization model also predicts that, at very large Py, the impulse per unit area is
directly proportional to the energy density with a constant coupling coefficient, given by

llm\ e V CTU
(T', = 1.83x103 T o
“0lux oy + CTy)

This 1s the iimit at which vaporizition begins essentially instantaneously with respect to
the pulse length and vapor products are produced for the entire pulse.

Some rumerical values are illusirated below and in Fig. 35. Eg is in J/em® and ty
i ws, so that I, is in taps:

For titaniumn

Im = 804 Egl1 - 6.231p/'f,'02].

Fe———

For aluminum
\

Iy = 6.94 150[1 - 33.9:,,/15'02J

“'he above mod-l dlustrates the principles involved ‘n generating impulse by laser
vaporr:ation, In fact, in predicting threshold values 1t gives results which are within a
factor »f two of experimental measurements. It has been refined [10] by a calculation
which : ceounts for the fact that T, is probably not a handbook value that comes from
medsurements at atmospheric pressure, but rather a different value appropriate to the
dynamic and high-pressure situation created by the laserinduced vaporization. In this
refinement, 7. is determmed from the kinetic model of vaporization, which predicts that
Uy o txp | LejlR'T0)], where ¢4 is the speed of sound in the sohd and R’ the gas
constant er ¢ram. When this is done, the thresholds agree very well with theory. How-
ever, as By tand hence By, sinee t, s constant) is increased, experiments show that de-
livered impulse does not increase indefinitely but begins to fall off. This is due to the
onsel of absorption of iaser energy by the vapor products and/or the heated air near the
target. We turn now to a consideration of this problem.
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Fig. 35--Coupling coefficient vs energy density for titanium

4.3. Effects from Absorption of Radiation in the Plume

The plume of vaporized material blown off the target becomes, at some power den-
sity, hot enough that it or the air begins to absorb the laser radiation. The onset of this
provess 1s not thoroughly understood, and the ignition of these so-called absorption waves
15 the subject of a great deal of research. Proper t-eatment of the problem depends on,
among other things, computing the onset of ionization and the rate of absorption of light

_ by the electrons and also accounting for both cascade processes and relaxation provesses

‘ m a full dynamic sense. We shall not ireat this problem here. Rather we shall look at

! some crude models which snow, in a2 semiguantitative way, various features of the ab- 3
sorption process. J

A e 2t iR e

IFirst note that the decoupling of the absorption from the material surface due to
shielding by the plume depends on the wavelength of the radiation. Recall from Eqgs. (34) i
that at the plasma frequency the reflectivity of a “‘lree-electron’ metal drops sharply
from a value near unity to essentially zero. If we assume that the coupling to the plume i
is due to the hght interacting with electrons, Eq. (34a) is valid, Using the mass of the
E free electron gives

] vy = 897 % 103N1/2 (77)

for the plasma frequency in hertz, when N is in electrons per cubtc centimeter. This can
be rewritten in terms of the corresponding wavelength X, to yield

N o= (112X 1013)/A% (78)

where Ay s ocentimeters. At agven wavelength the plume is transparent until the elec-
tron density reaches the value given by Eq. (78), where there will be a transition to a

condition i1 which the plume absorbs and reflects the radiation and thereby shields the :
material. For 10.6.um (C0Oy) radiation. shuelding boegins at 10'Y electrons per em?, for !
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1.06 um (Nd) at 102! electrons per em, and for 0.6% '3 um (1uby) at 2.3 X 10°! elec-

trons per cm#.

When the electron density reaches a high enough value, the beam decouples from
the surface and presumably the pressure due to material blowaoff will drop. To get some
idea of the order of magnitude of the energy density for a given pulse length where this
precess beging, let us simply assume that cutoff begins when the front surface rewches
the temperature at which the material is fully jonized. = "is should predict an upper
limit, for full ionization is obviously noi required. For . xample, solids have N ~ 1023
em” 3, whereas we only require, at 16.6 um, N > 10!9 em~3. For simplicity assume
that melting and vaporization processes can be ignored, and again use for the front sur-
fuce temperature rise the simple expression

2Fy AT
K V=&~

T =

A typical jonization temperature for @ metal would be about 75,000°C. Using simply the
values uf K and x for the sohd, we get for titanium,

Fo/t = 57x10%" Wsl/¢/em? |
Using kg = Fyt, this car be rewritten as

Y t[Js (79M
where t,, 1s understood to he time 1 microseconds,

Figure 35 shows some data taken by Dr. Rudder of the Air Force Weapons Labora-
tory, at twe puse lengths, 1.2 and 11 ps, with 1.06-um radiation and titanium targets
[11]. ‘The lines marked “*Anisimov predictions™ are calculated from the vaporization .
maodel of the previous section with the refined method for determining T,,. (This was ';'v
first done in the Soviet Union by Anisimov [19].) The experimental data agree very well
at values of F near threshold. Note that Eq. (79) for estimating the onset of shielding is
roughly consistent with these cata, although the experimental onset of shielding is, as one
might expoct, fairly gradual. The line on the graph marked LS Predictions refers to a
theoretical estimate based on the idea that the jaser light, when it couples into the blow- R
off, can create an explosionlike shock wave i the ax which travels up the beam, absorb-
ing the radiation energy in the process. This laser-supported-detonation, or LSD, wave is
one form of laser-supported-ahsorption wave. We will discuss these waves next,

Once the eoupiing of the radiation with the ejected vapor {and perhaps the air)
reaches a sufficient ievel, the absorption regicn begins to behave in a fashion character-
1zed by hydrodynamic dissipation of the energy coupled into it. For now, let us ignore 2
the gnition problem. The absorption region typically propagates up the laser beam in a .
way that is determined by the medium in whnich it propagates (usually air) and also by
the balance between the power being fed in by the laser and the relaxation processes
whiciu dissipate the power. ‘Three types of laser-suppoited-ubsorption waves are usually
identified. ‘Typical power levels at which they appear and their typical velocities of
propagation are indicated below for 10.€-um radiation and targets in air at standard tem-
peraiure and pressure |[12], X
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Fig. 36—Specific impulse delivered to solid targets by 1.06-um
laser radhiation (Ref. 11)
Power Level Velocity of
of Laser Flux  Propagation
Type of Wave (W/em?) {cm/s)
Laser-supported-detonation 107 105
wave (LSDW)
Laser-supported-combustion 10 102
wave ([.S5CW)
Plastnatron 101 0

The LSD wave propagates as a shock wave, i.e., at supersonic velocity, whereas the
LSC wave moves mare slowly and relaxes by thermal conduction. The plasmatron is at
rest, with the energy input being balanced by reradiation and convective losses into the
atmosphere.  Although we discuss these effocte here in the section on pulsed lasers, they
are just az valid for continuous radiation. Smcee pulsed lasers are the most convenlent
devices for reaching these power levels, especialiy for LSD waves, absorption waves are
usually considered under puised effocts.

Hydrodynamic theory can be applied to model these waves. The problem was first
solved in the Soviet Union by Raizer |13]. etonation waves can be discussed most
readily because the hydrodynamic equations reduce to fairly simple expressions, 50 we
shail consider them in some detail. A few remarks abcut combustion waves will come
later.
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We can derive conditions {or the steady-state behavior of a detonation wave by con-
sidering conservation of mass, momentum, and energy at the detonation front. For this
purpose we do not concern ourselves with how the process starts but presume that a
detonation wave has been formed and is propagating at some steady rate as sketched in
Fig. 37. The absorption rogion is propagating to the right at a steady velocity u. We
assume taat it is very thin and can be treated as a detonation front. Thus u is the det-
onation velocity. The temperature and density, ete., of the air go through very rapid
cnanges in the very short distance ¥. Note that this wave propagates, in this treatment,
in air, and thus cur results will be independent of target material.

bt >

RELAXATION 7 EEA
-— L < —— LASER M
TO TARGET REGION / AMBIENT AIR - INTENSITY |
// ’

ABSORPTION REGION — L BEAM RADIUS R
T

2

I
| :
Fig. 37--Temperature and density profiles tvpical of a
laser-supported-de’onation wave (Ref. 12)

In this discussion “‘behind the front” refers to the high-temperature-and-pressure
region imn ediately to the left of the absorption region in Fig. 37. ‘“*Ahead of the front™
is to the right in the sketch and refers to ambient air conditions. Mote we have given the
beam a finite radius R and thus will hive to consider lateral expansion, First let us do
the one-dimensional problem and assume that the detonauon front propagates simply as
a plane wave,

——— T ——

Eehind the front let p, P, and e be the density, pressure, and mternal energy per
urit mass, respectively, nd let pg, Py, and ey be the same variables ahcad of the front.
Define the velocities witl respect to a coordinate system moving with the front at the
detonation rate u. Then the ambient gas - into the front with the speed u, and we
define v as the speed with which the high-pressure gases leave the front. We can now
write down the conservation equations for mass, momentum, and energy across the deto-
nation front. These equations are based on flow, that is, they are in the terms of ‘‘per
unit area, per unit time.” ‘The equation for mass 15

Mass
polt = pu. (80)
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The conservation-of-momentum condition results from equating the impulse to t}w
change in momentum. Now impulse is force multiplied by time, but in the “per unit
area, per unit time” sense this becomes simpiy pressure. Since mass, in this flow con-
cept, is pv, momentum is (pv)v. Hence we have

P - Py = ~{(pv)v - (pouu],

and, if we ignore Py, which is much smaller than P, we have for momentum
Momentum

P + pv?2 = pou?, (81)

The conservation-of-energy condition follows from similar considerations. The dif-
ference in energy flow on each side of the froni must be balanced by the work done on
the gas (Pou — Pv) and the energy absorbed from the laser beam, which, using our earlier
notation, is F. F = (11, where ({ is the absorptance of the gas in the absorption region.

Thus we have
1 5 1 5\ _ .
pve+§v —poue0+—2-u~—P0u—Pu+I'.

If we use Py = 0 and eg =~ 0 and substitute from Eq. (80), we get for energy

1 P F
= p2 - L 2 = -2 =~
e+zv 5 U p+p0u
or
Energy
Pl o 1 o, F
e+p+20—2 +p0u' (82)

Our goal is to use these conservation laws to predict the pressure P behind the front
and ultimately the pressure transmitted to the target. For now assume that F is known,
and, of course, the ambient air density py is known. Thus we have three equations and
five unknowns, P, p, v, e, and u. To proceed we need to invoke some equation of state
for the gases, and we shall simply assume that the ideal gas law holds. Thus we have

P = pR'T (83)

where R’ is the gas constant per unit mass, or R’ = R/A, where A is the molecular weight.
(Since the wave is presumed to be in air in this treatment, 4 would be the average mo-
lecular weight of air. Taking A for air to be 29.4 g/mol gives R’ = 2.84 X 105 erg/(g-°C)
and is consistent with the ideal gas law anc with pg = 1.29X 1073 g/em3 for air at 0°C
and 1 atmosphere = 106 dyne/cm?2.) Now Eq. (83) essentially introduces another un-
known, the temperature T, so we need to add the expression for the energy of an ideal
gas, which is
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R'T _ P
Yy-1 (vy-1)p

(84)

where v is the ratio of the specific heats, v = C,/C,. For our purposes it is sufficient to
take v = 1.4.

Now we bave four equations (Egs. (80)-(82), (84)) in five unknowns (P, p, v, e, and u).
To get the final condition we use the criterion for detonation, which is that the velocity
of the high-pressure gases behind the front, relative to the front, is equal to or greater
than the local speed of sound. Intuitively this seems reasonable, for propagation of shock
waves is, by definition, in excess of the speed of sound. The criterion can be preperly
derived from a consideration of the thermodynamics of the situation, but we shall not do
so here [14]. Since we shall be interested in the minimum value of I {or F) required to
sustain a detonation wave, we take v equal to the speed of sound. ¥or an ideal gas the
sound speed is (vP/p)1/2, so we have our last condition,

b2 = 2L (85)
0

Before discussing the algebra, let us collect the equations—

pou = pU (80)
RN
P + pv?2 = pgu? (81)
P11 o _1 5 F
e+ o +g5 vt =F5u +p0u (82)
P
e = —m 84
(y-1p (84)
YP
p A A
v 5 (85)
Combine Egs. (80) and (81) to yield expressions for u2 and v2:
Pp
2 = —=o
po(p = po) (86)
Ppg
2 2 —_—
TP (87)
Now use Egs. (85) and (87) to eliminate v2 and p so that we can get
p 1+
po Y (88)

which is one of the equations we need, namely p in terms of the known quantities pg
and v. Now we can use Eq. (81) to get P in terms of u by eliminating v2 with Eq. (85) to
get
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pyu*

R
! T+

(83)

We need one more relation to complete the solution, namely u in terms of . This wiil,
by Eq. (89), give ug 7 in terms of . To get this we use Eq. (82) and replace e via Eq.
(84) and v? via Eq. (85). Thus Eq. (82) becomes

i p 1P 1 F
- = = = = + —.
-DLp Tt e T2 T
I we use Eq. (89) to eliminale P, we get
w2 [_31 po _po .1 _pol_1 E
—_— e U PR A2 A
1+7[(741)p+p+27pj g M5 ok
or
] |
//)0) w2 \ |2 Y0+ 4 2 F
{o) 1+ Y- 1 )" 2% " pou
or
1po of ¥ N 1,0, F_
‘p“(7-1> z ¥ T bou
If we use Eq. (88) for py/p, we get
2 -
1 u? LA . lu2 + I .
2 @:-1 2 pou

Finally we arrive at

u:a(____].__ o 28
¥ - 1 Py

(2(72 -yry e
woe ()

or

9
Po (90)
The eguations which represent the solution for the detonation wave, then, ure
P 1+
LA 88
£o Y (88)
2
pou
P (89)

1 + v
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o 1/4
u = [gfl___llf] . (90)
Po

These three equations, together with the ideal gas law, represent the formal solution
to the propagation of the laser-supported-detonation wave. Given the temperature he-
hind the front, and since Ey. (88) defines p, we could calculate £ and hence u and finally
the F required to support it. However, this does not really solve the problem. What we
wish to discover is: given the laser intensity /, will an LSD wave L+ supported? To an-
swer this question, we need to consider the distance it takes for the laser radiation to be
absorbed. We also need a more realistic situation then the simple plane wave,

First we note that the beam has a finite radius R and that lateral expansion can take
place. The order of magnitude of the radial expansion velocity will be the speed of
sound ¢;. To muaintain the detonation, we must replace the energy lost to expansion by
energy put into the absorption region. To simplify, let us assume all of the laser beam
energy is absorbed in the distance £. (Actually the beam intensity only falls by 1/e in
the distance £.) We define At as the time for the shock front to move a distance €, or
At = ¢/u. In this time the radial expansion is the amount c,At. Now mR2JAt is the
energy deposited by the beam in the cylindrical volume shown in Fig. 38 (c,At << R).
But the energy in this volume after expansion is approximately equal to its volume multi-
plied by its internal energy p«: unit volume. Thus

TR2IAt ~ poe[mR2Q +2nRc,AtL] .

Fig. 38— Cylindrical volume which absorbs
beam energy via expansion

Since At = Qu,
2 2 _Q
InR% =~ pgeu |TR? + 2nRc, 7l

Note that for v ~ 1.4, Eq. (88) predicts that p.~ 2pg and hence, using pv = pe, = pol,
u = 2¢,. So we have, after some aigebra,

pocu = (91)

<
1+R
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But this equation simply represents the rate at which we must put energy into the absorp-
tion volume in order to maintain the conditions we assume to carry out our detonation
wave calculation, namely a plane wave propagating by absorption of laser energy in a
distance ¢. Thus the energy flow per unit area from the laser beam is

I

T 1+ (YRY (92)

Finally, we can complete the problem if we know the absorption length . To
compute ¢ we need to invoke some model of the ionized air. For this purpose it is suf-
ficient to assume that free electrons ahsorb the light and that the electrons come from
singly ionized atoms. We shall not derive the expressions which we need but simply
quote them. There are two relationships. The first of these is the Saha equation |14a],
which reiates the fraction of atoms ionized o to the absolute temperature T and the ion-
ization potential 4 of a single atom:

3/2
2 2rmaokT -
o g1 m ( 10 ) o VKT (93)

1-a g0 P 2

In this equation m is the mass of the atom, mg is that of the electron, k is Boltzmann’s
constant, and A is Planck’s constant. The statistical wveigh's of the ground state of the
atom and its first ionized state are gg and g, respectively. Typically g; = go = 1. In
terms of known constants, then, the Saha equation gives us the degree of ionization as a
function of temperature.

Knowing the degree of ionization, we can get the absorption length. Again we sim-
ply quote the relationship [12], which assumes that the light is absorbed by inverse
bremsstrahlung. The expression is

1/2 . .
_1_ - 4 ( 2n >/ eth__ ([)20’2)(] B c—hu/er)
¢ 3 Q8mohkT mOC(hl’)S me

which, at the temperatures of interest and for 10.6-um radiation, hecomes (for hw/kT << 1)

1/2 9 o
652 pea=
1 4 (27!) eSh ) (94)

¢ 3 \3mg m2moc(hv)?  (RTVH2

ir Fg. (94) v is, of course, the frequency of the laser radiation, ¢ is the speed of light, and
e is the electronic charge. By combining Eqgs. (93) and (94) we can calculate € in terms
of temperature T, density p, and known parameters. A typical value of i for air is of the
order of 13 eV, (For O, § is 12.1 eV, for Ng it is 15.6 ¢V.) Thus we have

= fip,T)
or, since - potl +¥)/y = 2py, we can get a relationship between U and T and henee

between fand T, via Egs, (905 and (92). Typical results are shown in Fig. 39,

Ho
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10'C e R = t0cm
A = 106 ,_Lm
PROPAGATION INTO STP AIR

I (W/em?)
S
<o

107

0]
T {ev)

Fig. 39—Relationship between I and T for a lasm:-\supported-detonation wave (Ref.
12). This plot is based on a more realistic expression for the equation of state of
the gases than the ideal gas law, but the ideal gas law gives a similar result,

Here we have assumed a beam radius of 10 cm. The important point is that there is
a minimum in the l-vs.-T relation. We identify this as the minimum flux /,, required to
maintain an LSD wave. Associated with it is the temperature T, of the high-pressure
region at the detonation front. We can then use our detonation-wave relationships, Eqgs.
{88) through (90), to get the pressure behind the front, or equivalently, get pressure from
T via p = 2pg and the ideal gas law.

We shall turn to a calculation of the pressure on the target in a moment. First note
that the radial expansion concept imposes a natural criterion for the difference between
a comhustion wave and a detonation wave, The time for radial expansion is R/c, whereas
the time for passage of the absorption region is ¢/u. If the detonation condition is to be
maintained, radial expansion times must be larger than propagation times in order for the
high-pressure region to move as a shock front and not dissipate itself radially. Hence
Ricg > Yu., We have already noted that u = 2¢, or, crudely, u = ¢4, so that R > (| or
/R < 1, is the condition for detonation waves. If ¢ hecomes larger than R the absorp-
tion region is large, the relaxation in the radial direction is important, and the process
calied a combustion wave takes place. This can be treated in a similar fashion to the
detonation wave, hut the hydrodynamic equations do not take the simple form of Egs.
{80)-(82). We shall not treat combhustion waves in this report. The solution in Fig. 39
is for a detonation wave and hence is valid for ¢/R < 1. The limit (/R = 1 is shown in
the figure by a dashed line.

Finally, compute the impulse delivered to a target by a laser beam of intensity I just
sufficient to maintain a detonation wave [11]. The beam has a pulse duration (,. We
wish to calculate the effect on the targel due to the “‘explosion products™ behind the
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absorption region. These, of course, expand in all directions and create a pressure on the
target. To demonstrate the effect we shall use a very simple model, na'nely a model of
cylindrical expansion. We consider that the absorption region has propagated a distance -
Z by the end of the laser pulse, and at that time we have created a cylinder of high-
pressure gas which has a radius equal to the beam radius R, a length Z, and a pressure

P; given by Egs. (89) and (90) above, with P = P4, This cylinder is then allowed to ex-
pand radially at a speed estimated to be the speed of sound ¢,. Then we get the impulse
delivered to the target by integrating the force on the target due to the pressure in the
expanding cylinder during the time the cylinder expands from R to the target radius Ry.
For R very large, the integration is stopped when the cylinder pressure drops to atmos-
pheric pressure. The model is sketched in Fig. 40 at the time ¢t = ¢,.

1
Ry
F
——ae
- - I
-—
TARGET e e e e e — e —— —— —_———— e e —
Z = utp ‘=>|
—————————

Fig. 40—Radial expansion model for impulse delivered toa tz;rget from a laser-supported-detonation wave

The model might be expected to be valid if Z >> R and if ¢, << the time required
for radial expansion, either to Ry or to atmospheric pressure, to take place. We also are
assuming that impulse due to target vaporization is negligible, i.e., that the detonation
wave is formed very early in the laser pulse.

We take the radial expansion to be at constant temperature. Then P times the vol-
ume  of the cylinder is a constant. Since our model presumes only cylindrical expan-
sion, we have the condition that

Pr2 = constant (95)

where r is the radius of the cylinder and R < r < Rp. We shall need this relationship in
the derivation of the impulse. Let the impulse be I, , and let F be the force on the tar-
get due to the pressure, This gives

t(r=Rp)
]r'n = f F dt
((r=R)

where the upper limit is understood to be valid only where P is greater than atmospheric
pressure at r = Rp. Since the radial expansion rate is ¢q

1
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dr = ¢, dt.

From ideal gas relation for the speed of sound,
. P
Cq = 0 y

dt -

we have

i
ae
QU
>

Thus

Now at any time

F

(mr2)P,

-,
but, since r2P is constant, we can evaluate F from the initial pressure Py at r = R, or
F = mR2%P;.
Now the impulse becomes

Ry

I' = 7R2P f \/-T-)—dr.

Again invoking r2P = constant gives

réP = PyR?
or
R2
P=P 72—'
So the impulse is
Ry -~
I = TRPy f [~ rdr. (96)
Jn Vo :

Recall from Eq. (88) that p = pg(1 +7¥)/y. This gives

2
, Papo(1+y) (B7  R2
I =R =7\ " T/
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Since £ < R, we shall ignore the R2/2 term. The specific impulse I,, which is I,
dividec: by the area of the laser beam nR2 is then

2
RT 1+ v
I, = Sk VPipo -

Recalling the expression in Egs. (89) and (90) for Py, and ignoring /R with respect to
unity, we can write

R Ew\_ (20 \[2(72-1) 1]2’3
0 .

Im = 3g y2 )P T )l %o
This simplifies to
R{ |1 2/3
=t {2 2 _ 1/3 1/3

Sw,
The expression in braces is nearly equal to unity for typical value of v (say, ¥ = 1.4), so

72 2/3
= 0 113
1. 21{ (l I ’

Now the energy per unit area in the beam is Eq = /{;,, and we can write the coupling
coefficient I, /Eq as

! R{ 3 /1,173 1,273
Im 81 o 2/
Eq _ 2R PO /(tp ES?) . (97)

This is the equation of the straight line marked LSD Predictions shown in Fig. 36, where
the calculations were done for the parameters appropriate to the 1.2-us pulse length.

Several important consequences of the LSD wave are seen in Eq. (97). One is that
the coupling coefficient is reduced as E(y becomes larger, which tells us that we cannot
create an arbitrarily large impulse at a target by simply increasing the energy in the laser
beam. In fact, when Eq. (97) is considered to be correct at high Eg and the results of
the vaporization model (see Eq. (76) and Fig. 36) are used at lower values of Eg, there
is, for a given pulse length, an optimum value of Ey for transferring the largest amount of
impulse to a target. For the 1.2-us pulse illustrated in Fig. 36 the optimum value of Eg
is about 22 J/em?2, and this is in reasonable accord with the data. Of course the specific
impulse I, per se goes as E(l,m. so larger Eg will create larger I,,,. However, this slow in-
crease of I, with Ky is a very inefficient way to impart stress to a material. A better
scheme, perhaps, would be to use multiple pulses at the optimum Eq value.

Another consequence of the LSD wave is a lack of dependence of impulse on the
parameters of the target material. The same impulse is produced independently of the
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target. This is in accord with experiment. When [ is well into the 1ange where LSD’s are
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formed, the measured impulse is the same for all target materials. Some data taken by
NRL [15] are shown in Fig. 41. 1In this graph we see, in accord with the vaporization

model, a strong dependence of /,,/Ep on material type at lower power densities, whereas
at the high power densities typical of LSD formation the values of /,,/E( are the same for

all materials. In this range, however, a target area dependence appears. The target area
dependence shown is for aluminum. Here again the general behavior predicted by Eq.

(97) can be seen,
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Fig. 41—Coupling coefficient as a function of power densily (Ref. 15)

We have not yet considered the radius at which the expanding cylinder reaches at-
mospheric pressure. Call this radius Ry. As explained above Pr2 is constant, so

PoRy = P4R?2

where P, is atmospheric pressure, 106 dyne/cm2. Thus,

Ro = RPy2P)I2,

From Egs. (89) and (90), for Py this becomes
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/ p 2(v2 - 1) 213
_ -1/2 0 _
Ro = RFy \/1+7[ Po ] '

Again the factors involving vy are nearly unity, so
Rg = RP&llzp(I)IGI”g.
Upon substituting I = Eq/t,, we get
Ry = RPO-IIZP(I)IGE(I)/ISt;l/S' (98)

So if Ry is less than R, one replaces R by Rg in Eq. {97). Target sizes larger than Ry
will all receive the same impulse.

A numerical illustration is useful, Let Eg = 1000 J/cm? and t, = 100 ps. Suppose
the beam radius is 1 cm. The power density 7 is about 107 W/em<, so we expect a LSD
wave. If we take Rp = 5 cm for the target radius, Eq. (97) yields (with pg = 1.29X 1073
g/cm3)

AS

m _ 0 -3,2/3 4 10 —_
B =g (1.29X1073) Y (10792101028 ] <=
Im .
T = 7X 1077 dyne-s/erg
-0
or
Im -
L—.O = 7 dyne-s/dJ.

In this example expansion to atmospheric pressure would take place at a radius given by
Eq. (98):

Ro = (108)"1/2(1.29x 10-3)1/6(1010)1/3(10-4)~U/3
where we have used erg/cm? for Eg. Then
Ry = 15 cm.

Thus targets with radii of 15 ecm and larger wouid exhibit a maximum coupling coeificient
of (15/5)2 times 7, or about 63 dyne-s/d. If we compute I,,, we have 63,000 dyne-s/cm2,
that is 63,000 taps, as the maximum specific impulse from this laser pulse. Since this im-
pulse is delivered in times of the order of magnitude of the laser pulse time, this corre-
sponds to a pressure of roughly (6.3% 104)/10°4 ~ 6 X 108 dyne/cm2, or abcut 600
atmospheres.
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