
AD-784 960

A PORTABLE LEXICAL ANALYZER WRITING SYSTEM

RAND Corporation

PREPARED FOR

National Science Foundation

November 1973

DISTRIBUTED BY:

Matinal Ttclinical lifanMtiti Sanrica
U. S. DEPARTMENT OF COMMERCE

A
D

7
8

4
9

6
0

A PORTABLE LEXICAL ANALYZER
WRITING SYSTEM

Robert C. Gamnill

Novenber 1973

^♦*nro<tor0d hy

NATIONA1 TECHNICAI
INFORMATION SERVICE

U S r'»p»r»r»,l.nt of Commorcr
SpnngfwIU VA 221bl

,,..1...1 A ¡
L '• . , . ■

n , . -¡(ij¡0¡

>d d a>o;

\
P-5117

f V

_i The Rand Paper Serie«*

Papers are issued by The Rand Corporation as a service to its professional staff.
Their purpose is to facilitate the exchange of ideas among those who share the
author s research interests, Papers are not reports prepared in fulfillment of
Rand’s contracts or grants. Views expressed in a Paper are the author's own, and
are not necessarily shared by Rand or its research sponsors.

II

The Rand Corporation
Santa Monica, California 90406

R. C. Gammill iii

Abstract

A PORTABLE LEXICAL ANALYZER WRITING SYSTEM

LAWS, a lexical analyzer writing system implemented in

FORTRAN, attempts to achieve a compromise between the con¬

tradictory demands of efficiency and portability. Simplicity

is emphasized to make extension and modification easy. LAWS

is a compiler for generating state transition tables and a

finite state machine (FSM) directed by those tables. The

language (STATE-DEF) used to program the FSM resembles Floyd-

Evans Production Language [1,2]. A program written in STATE-

DEF, the resulting state transition table, and a flow chart of

the FSM are given. Of special interest are the methods for

keeping tables small and automatically translating character

codes.

R. C. GammiJl
1

1. INTRODUCTION

Lexical analyzers are used in the front end of many kinds

of language processors, especially compilers. The analyzer

(sometimes called a scanner) collects a stream of input charac¬

ters into symbols for use by the rest of the processor.

Examples of symbols might include variable names, constants and

separators. Thus, the following FORTRAN card (1) could be

transformed by a scanner into the stream of symbols (2).

IF(l.E5.GT.EQ5)GOTO70=4.0 Q)

il 1 J-'E5 »GT. EQ5 I GOTO 70 = 4^0 (2)

Since the analyzer must handle every input character, it

is important that it be efficient, since the specification of

a lexical analyzer is primarily language dependent, it is

desirable for a single specification to work on many different

machines. However, efficiency and portability tend to be

contradictory demands. A portable lexical analyzer writing

system (LAWS) that attempts to achieve a reasonable com¬

promise has been designed and implemented. LAWS is imple¬

mented in FORTRAN. It is composed of a compiler and an

interpreter, as shown in Fig. 1. The compiler accepts a

program written in a language called STATE-DEF [5] and gene¬

rates a state transition table. That state transition table

and the interpreter form a finite state machine (FSM) whose

transitions have associated action code numbers. When the

FSM is combined with a set of semantics routines, (one per

action code number), the complete lexical analyzer has been

defined.

H. C. Gammi11
2

STATE-DEF
PR O Gk AM

(USER WRITTEhj)

FORTRAN

STATE-DEF
COA.', P¡ 1ER

CONSTRUCTOf.

FORTRAN

SEMANTICS
ROUTINES

(USER WRITTEN)

X OUTPUT
SYMBOLS

CALL
ACTION CODES

AND
INTERNAI. CHARACTERS

FORTRAN

FSM
INTERPRETER

INPUT
CHARACTERS

STATE TRANSITION
TABLE AND
TRANSFORM

VECTOR

IXz_U
ANALYZER

Fig.? Flow of InformoHon between elements of LAWS

R. C. Gammill
3

2. EARLIER WORK

Gries [3] gives a good discussion of the issues involved

in the use and construction of lexical analyzers. Two general

methods of constructing lexical analyzers have been used in

the past. The earliest approach, still used by many compiler

implementors, is to write the analyzer in a general purpose pro¬

gramming language such as ALGOL or assembly language. This

approach often produces an analyzer which has many conditional

(or case) statements and a complex structure. The result can be

difficult to modify and is sometimes inefficient as well.

More recently work has proceeded on scanner construction

systems. These systems provide a language, and other mechanisms

(like those shown in Fig. 1), especially suited for the easy

specification of efficient lexical analyzers. The best known

of these is the AED RWORD System [4].

The RWORD system uses a declarative language based on

regular expressions and produces an optimal lexical analyzer

using techniques from the theory of finite automata. RWORD

appears to be a powerful and effective tool for the construction

of lexical analyzers. However, it has certain drawbacks. Among

these are the size and complexity of the elements which make up

analyzer constructor. RWORD has two phases, the first of

which constructs an AED-0 language version of the FSM, and the

second of which constructs a macro-assembly language version.

Inherent in this process is the need for an AED-0 compiler and

a macro-assembler. Furthermore, most of the elements are constructed

R. C. Gammill
4

in the AED language, which is not universally available. Thus,

although RWORD is clearly a powerful tool, its complexity and

limited portability have kept it from wide use.

LAWS is a considerably less powerful tool, requiring the

user to program a state transition table in STATE-DEF. That

language resembles Floyd-Evans Production language [1,2], and shares

its simplicity. The compiler and interpreter are implemented in

FORTRAN, and are relatively compact and simple programs. Port¬

ability and efficiency have been emphasized. As a result, the

comparison between LAWS and RWORD is analagous to that between

a bicycle and a luxurious automobile. Where RWORD is complex

and powerful, LAWS is simple and direct. It is hoped that the

virtues of clarity, simplicity and portability will serve to over¬

come the limitations.

3. WRITING LEXICAL ANALYZERS

STATE-DEF (State Table Definition) was created by Schwanke

[5] as a convenient and easily understood tool for defining state

tables. His inspiration came from the clarity and simplicity

evident in the Floyd-Evans Production Language used for defining

syntax analyzers. STATE-DEF is used for defining finite state

languages and is itself a finite state language (STATL-DEF has

been used to define itself). Like Production Language, STATE-DEF

allows semantic code numbers (action codes) to be associated with

its transitions. Finite state machines tend to be quite efficient,

and despite the implementation of the interpreter in FORTRAN

R. C. Gammill 5

(inherently inefficient for this kind of task) satisfactory pro¬

cessing speeds have been achieved. The simplicity and small size

of the interpreter assure its easy conversion to optimized machine

language for operational use.

STATE-DEF is used to define state tables. A state table

is a two dimensional array with rows representing states and

columns representing input characters. The entry at any table

position specifies the next state (a transition) and an action

code (semantic number). An example of a state table and its

STATE-DEF program are shown in Fig. 2. The period is used as a

flag character in STATE-DEF to indicate that the specification of

an input character follows.

Input Character

X Y

A
State
Name

Al B2

B2 A3

State Input Next
Name Character State

Action
Code

A: .X NEXT=A, ACTI0N=1

B:

END:

•Y NEXT=B, ACTI0N=2

.X NEXT=B, ACTI0N=2

.Y NEXT=A, ACTI0N=3

INITIAL STATE=A;

Fig. 2. A State Table and its STATE-DEF Program.

R. C. Gammill 6

One problem with state tables is that if the input alphabet is

large, and one column is allowed for each character, then the

state table will be very wide. However, numerous input characters

will cause exactly the same transition and action. These charac¬

ters may be thought of as forming a class. If we translate the

input character into a class number before indexing into the

state table, we can save space due to the elimination of redundant

transitions. For example, all the alphabetic characters might

receive the class number 1. To transform characters into class

numbers, we use a vector with the character codes as indices as

shown in Fig. 3.

INPUT CLASS
CHARACTER NUMBER MEANING

ALPHABETIC

NUMERIC

SPECIAL

IGNORE

Fig. 3. A Vector for Converting Characters

to Class Numbers

One difficulty is that in some states we need to separate

alphabetic and numeric characters, while in another state we may

need to separate the first letters of key words

R. C. Gammill

from other alphabetic characters. Clearly, it would be helpful

to have a different transform vector for every state. This would

be uneconomical if we stored each transform vector in a separate

array. However, we note that under normal circumstances the

number of different classes per state will be small. So, although

a transform vector will bo 64 or 256 elements long, it will be

only a few bits wide (2 bits in the case of the vector shown in

Fig. 3, and a maximum of 6 bits for a 64 character input set).

The obvious solution is to pack the transform vectors for

different states into a single overall transform vector. In

each state we will have to remember which bits of the overall

transform vector represent the class numbers for the input

characters in this state. This means that the information needed

to define a state will now have three components (STATE, INSET,

MASK), as illustrated in Fig. 4. If we are in state (IDENT, 10,

2) and the input character is a %, the packed transform vector

will be right shifted by 10 bits and the rightmost 2 bits selected

to produce a class code of 2.

Another use of the transform vector is to include an in¬

ternal form of the character code, either to allow a special

internal collating sequence or change from, say, EBCDIC to BCD.

If all of this information can be packed into a space which can

be accessed by a single storage reference, we are able to achieve

considerable efficiency. If that is not possible initially, it

should be clear that some merging of the information can be

achieved which will make it possible. The method for compacting

R C. Gammill 8

Table for Finding Class No.

STATE

START

IDENT

NUMBER

INSET = number of bits to
right shift

MASK = number of useful bits
after shift.

INSET MASK

8 2

10 2

12 2

Fig. 4

Three Transform Vectors and

Internal Character Code Packed Together

R. C. Gammill 9

the overall transform vector has been examined and is uncomplicated.

It has not yet been implemented.

To summarize, when an external input character code is col¬

lected it is used to index the transform vector. This provides

a bit string, assumed to be less than one word in length, which is

called the internal character code. The right hand end of the bit

string is the actual internal coded character, suitable for

printing. The remainder of the bit string is a sequence of packed

class codes. The state information of the FSM has been extended

to include information called INSET and MASK which specifies the

number of bits to be shifted and masked to retrieve the class code

number for the character in this state. If the class code turns

out to be zero, then the character may be discarded immediately.

Otherwise, the class code is added to the state value to find the

location of a transition in the state tablf Because of the class

numbers, it is no longer necessary for the state table to be

rectangular. Instead the state becomes a base value in a linear

vector of transitions. The actual transition is selected (with

respect to the base value) by the class code. An interesting

feature of this arrangement is that if the same character is used

to produce more than one transition (a common technique in lexical

analysis) a new class code can be retrieved without any more table

references.

Fig. 5 shows a STATE-DEF program and the state table generated.

Two new features have been introduced in the STATE-DEF program.

These are the DEF card, which allows a collating sequence to be

specified, and the character class specification (e.g.,.A-Z), which

R. C. Ganunill 10

DEF 46

START:

IDENT:

NUMBER :

. A-

END:

ABCDEFGHIJKLMNOPQRSTUVWXYZ012345é789*+-*/(),

A-Z ACTION®1, NEXT=IDENT;

0-9 ACTION"!, NEXT®NUMBER;

®-$ ACTION®2 ;

A-9 ACTION®!;

=-$ ACTION®3, NEXT®START;

0-9 ACTION®1;

=-$ ACTION=4, NEXT*START;

INITIAL STATE®START;

3 BITS

Fig. 5

A STATE-DEF Program for a Three State FSM and the

State Table Generated by the Compiler

R. C. Gammill 11

uses the specified collating sequence to pick out a group of

characters (A through Z). Note that the character transform

vector shown in Fig. 4 goes with the state table of Fig. 5.

4. THE INTERPRETER

A flow chart of the interpreter for LAWS state tables is

given in Fig. 6. This flow chart is extremely simple to implement.

The most important aspect of tue implementation is handling the

problems of shifting and masking in a portable manner. This has

been accomplished by providing a set of primitive functions

written in machine language for use by the FORTRAN program (LEFTSH,

RGHTSH, OR and AND). Such functions exist on most binary computers.

When they do not exist, they can be easily implemented. It should

be noted, however, that decimal machines (without binary shifting

capabilities) or very short word length machines (e.g. some mini¬

computers) will probably not be suitable for execution of a LAWS

lexical analyzer.

No flow chart has been given for the program containing the

semantics routines mentioned in Fig. 1. That program usually has

such a simple structure as not to merit a flow chart. Normally

it is a subprogram which is called every time the language processor

needs a new symbol (token). The subprogram first calls the inter¬

preter (shown in Fig. 6). Return from the interpreter occurs when

an action code has been found, so a computed GO-TO can be executed

to one of a set of semantic routines. After completion of the

semantic routine, if a complete symbol is ready, control returns

R. C. Gammill 12

Get Internal
Choiacter

From Vector
Using Ext. Chor.

Unpack Class
Code From Int.

Character

Unpack Action
Code From State
Table Entry ot
(State ^Class)

Get Next State

Unpack Inset

Mask and State

FI H'| 14

I i;;. 6--F lav ihait o(the interpreter

R. C. Ganunill
13

to the caller. If not, control loops back and another call is

made on the interpreter. In the case of the STATE-DEF program

of Fig. 5, four action codes were specified. The required

semantics for each of those codes is listed in the table below.

TABLE OF ACTIONS

ACTION NUMBER MEANING

1 QUEUE THE INTERNAL CHARACTER

2 RETURN THE INTERNAL CHARACTER

AS A SYMBOL (SPECIAL CHAR)

3 RETURN THE QUEUE OF CHARACTERS

(IDENTIFIER) SET REUSE SWITCH.

4 RETURN THE QUEUE OF CHARACTERS

(NUMBER). SET REUSE SWITCH.

5. SUMMARY

A portable lexical analyzer writing system (LAWS) has been

implemented in FORTRAN. It is an extremely simple system, yet

is powerful despite that simplicity. Special care is used in

LAWS to achieve compactness of the state table and character

translation vector. The simplicity of the interpreter which runs

from those tables makes conversion to machine language easy.

Implementation in FORTRAN and careful use of primitive shifting

and masking functions maximizes portability and enhances possi¬

bilities for tailoring to user needs.

R. C. Gammill
*

é s|Pl

6. ACKNOWLEDGMENT

This research was supported by the National Science Founda

tion, Office of Computing'Activities, under grant GJ-36417.

R. C. Gammill

7. REFERENCES

[1] Arthur Evans Jr., An ALGOL 60 Compiler, Annual
Review in Automatic Programming, 1964, 87-124.

[2] R. W. Floyd, A Descriptive Language for Symbol
Manipulation, Journal of the ACM, vol. 8, no. 4,
October 1961, 579-584.

[3] David Gries, Compiler Construction for Digital
Computers, John Wiley & Sons, New York, 1971.

[4] Walter L. Johnson, James H. Porter, Stephanie I.
Ackley and Douglas T. Ross, Automatic Generation
of Efficient Lexical Processors Using Finite
State Techniques, Communications of the ACM, vol.
11, no. 12, December 1968, 805-813.

[5] Lee M. Schwanke, MACS - A Programmable Pre-Proces-
sor With Macrogeneration Facilities, Masters Thesis,
University of Colorado, 1972.

