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Abstract 

A PORTABLE LEXICAL ANALYZER WRITING SYSTEM 

LAWS, a lexical analyzer writing system implemented in 

FORTRAN, attempts to achieve a compromise between the con¬ 

tradictory demands of efficiency and portability. Simplicity 

is emphasized to make extension and modification easy. LAWS 

is a compiler for generating state transition tables and a 

finite state machine (FSM) directed by those tables. The 

language (STATE-DEF) used to program the FSM resembles Floyd- 

Evans Production Language [1,2]. A program written in STATE- 

DEF, the resulting state transition table, and a flow chart of 

the FSM are given. Of special interest are the methods for 

keeping tables small and automatically translating character 

codes. 
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1. INTRODUCTION 

Lexical analyzers are used in the front end of many kinds 

of language processors, especially compilers. The analyzer 

(sometimes called a scanner) collects a stream of input charac¬ 

ters into symbols for use by the rest of the processor. 

Examples of symbols might include variable names, constants and 

separators. Thus, the following FORTRAN card (1) could be 

transformed by a scanner into the stream of symbols (2). 

IF(l.E5.GT.EQ5)GOTO70=4.0 Q) 

il 1 J-'E5 »GT. EQ5 I GOTO 70 = 4^0 (2) 

Since the analyzer must handle every input character, it 

is important that it be efficient, since the specification of 

a lexical analyzer is primarily language dependent, it is 

desirable for a single specification to work on many different 

machines. However, efficiency and portability tend to be 

contradictory demands. A portable lexical analyzer writing 

system (LAWS) that attempts to achieve a reasonable com¬ 

promise has been designed and implemented. LAWS is imple¬ 

mented in FORTRAN. It is composed of a compiler and an 

interpreter, as shown in Fig. 1. The compiler accepts a 

program written in a language called STATE-DEF [5] and gene¬ 

rates a state transition table. That state transition table 

and the interpreter form a finite state machine (FSM) whose 

transitions have associated action code numbers. When the 

FSM is combined with a set of semantics routines, (one per 

action code number), the complete lexical analyzer has been 

defined. 
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2. EARLIER WORK 

Gries [3] gives a good discussion of the issues involved 

in the use and construction of lexical analyzers. Two general 

methods of constructing lexical analyzers have been used in 

the past. The earliest approach, still used by many compiler 

implementors, is to write the analyzer in a general purpose pro¬ 

gramming language such as ALGOL or assembly language. This 

approach often produces an analyzer which has many conditional 

(or case) statements and a complex structure. The result can be 

difficult to modify and is sometimes inefficient as well. 

More recently work has proceeded on scanner construction 

systems. These systems provide a language, and other mechanisms 

(like those shown in Fig. 1), especially suited for the easy 

specification of efficient lexical analyzers. The best known 

of these is the AED RWORD System [4]. 

The RWORD system uses a declarative language based on 

regular expressions and produces an optimal lexical analyzer 

using techniques from the theory of finite automata. RWORD 

appears to be a powerful and effective tool for the construction 

of lexical analyzers. However, it has certain drawbacks. Among 

these are the size and complexity of the elements which make up 

analyzer constructor. RWORD has two phases, the first of 

which constructs an AED-0 language version of the FSM, and the 

second of which constructs a macro-assembly language version. 

Inherent in this process is the need for an AED-0 compiler and 

a macro-assembler. Furthermore, most of the elements are constructed 
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in the AED language, which is not universally available. Thus, 

although RWORD is clearly a powerful tool, its complexity and 

limited portability have kept it from wide use. 

LAWS is a considerably less powerful tool, requiring the 

user to program a state transition table in STATE-DEF. That 

language resembles Floyd-Evans Production language [1,2], and shares 

its simplicity. The compiler and interpreter are implemented in 

FORTRAN, and are relatively compact and simple programs. Port¬ 

ability and efficiency have been emphasized. As a result, the 

comparison between LAWS and RWORD is analagous to that between 

a bicycle and a luxurious automobile. Where RWORD is complex 

and powerful, LAWS is simple and direct. It is hoped that the 

virtues of clarity, simplicity and portability will serve to over¬ 

come the limitations. 

3. WRITING LEXICAL ANALYZERS 

STATE-DEF (State Table Definition) was created by Schwanke 

[5] as a convenient and easily understood tool for defining state 

tables. His inspiration came from the clarity and simplicity 

evident in the Floyd-Evans Production Language used for defining 

syntax analyzers. STATE-DEF is used for defining finite state 

languages and is itself a finite state language (STATL-DEF has 

been used to define itself). Like Production Language, STATE-DEF 

allows semantic code numbers (action codes) to be associated with 

its transitions. Finite state machines tend to be quite efficient, 

and despite the implementation of the interpreter in FORTRAN 
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(inherently inefficient for this kind of task) satisfactory pro¬ 

cessing speeds have been achieved. The simplicity and small size 

of the interpreter assure its easy conversion to optimized machine 

language for operational use. 

STATE-DEF is used to define state tables. A state table 

is a two dimensional array with rows representing states and 

columns representing input characters. The entry at any table 

position specifies the next state (a transition) and an action 

code (semantic number). An example of a state table and its 

STATE-DEF program are shown in Fig. 2. The period is used as a 

flag character in STATE-DEF to indicate that the specification of 

an input character follows. 

Input Character 

X Y 

A 
State 
Name 

Al B2 

B2 A3 

State Input Next 
Name Character State 

Action 
Code 

A: .X NEXT=A, ACTI0N=1 

B: 

END: 

•Y NEXT=B, ACTI0N=2 

.X NEXT=B, ACTI0N=2 

.Y NEXT=A, ACTI0N=3 

INITIAL STATE=A; 

Fig. 2. A State Table and its STATE-DEF Program. 



R. C. Gammill 6 

One problem with state tables is that if the input alphabet is 

large, and one column is allowed for each character, then the 

state table will be very wide. However, numerous input characters 

will cause exactly the same transition and action. These charac¬ 

ters may be thought of as forming a class. If we translate the 

input character into a class number before indexing into the 

state table, we can save space due to the elimination of redundant 

transitions. For example, all the alphabetic characters might 

receive the class number 1. To transform characters into class 

numbers, we use a vector with the character codes as indices as 

shown in Fig. 3. 

INPUT CLASS 
CHARACTER NUMBER MEANING 

ALPHABETIC 

NUMERIC 

SPECIAL 

IGNORE 

Fig. 3. A Vector for Converting Characters 

to Class Numbers 

One difficulty is that in some states we need to separate 

alphabetic and numeric characters, while in another state we may 

need to separate the first letters of key words 
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from other alphabetic characters. Clearly, it would be helpful 

to have a different transform vector for every state. This would 

be uneconomical if we stored each transform vector in a separate 

array. However, we note that under normal circumstances the 

number of different classes per state will be small. So, although 

a transform vector will bo 64 or 256 elements long, it will be 

only a few bits wide (2 bits in the case of the vector shown in 

Fig. 3, and a maximum of 6 bits for a 64 character input set). 

The obvious solution is to pack the transform vectors for 

different states into a single overall transform vector. In 

each state we will have to remember which bits of the overall 

transform vector represent the class numbers for the input 

characters in this state. This means that the information needed 

to define a state will now have three components (STATE, INSET, 

MASK), as illustrated in Fig. 4. If we are in state (IDENT, 10, 

2) and the input character is a %, the packed transform vector 

will be right shifted by 10 bits and the rightmost 2 bits selected 

to produce a class code of 2. 

Another use of the transform vector is to include an in¬ 

ternal form of the character code, either to allow a special 

internal collating sequence or change from, say, EBCDIC to BCD. 

If all of this information can be packed into a space which can 

be accessed by a single storage reference, we are able to achieve 

considerable efficiency. If that is not possible initially, it 

should be clear that some merging of the information can be 

achieved which will make it possible. The method for compacting 
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Table for Finding Class No. 

STATE 

START 

IDENT 

NUMBER 

INSET = number of bits to 
right shift 

MASK = number of useful bits 
after shift. 

INSET MASK 

8 2 

10 2 

12 2 

Fig. 4 

Three Transform Vectors and 

Internal Character Code Packed Together 
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the overall transform vector has been examined and is uncomplicated. 

It has not yet been implemented. 

To summarize, when an external input character code is col¬ 

lected it is used to index the transform vector. This provides 

a bit string, assumed to be less than one word in length, which is 

called the internal character code. The right hand end of the bit 

string is the actual internal coded character, suitable for 

printing. The remainder of the bit string is a sequence of packed 

class codes. The state information of the FSM has been extended 

to include information called INSET and MASK which specifies the 

number of bits to be shifted and masked to retrieve the class code 

number for the character in this state. If the class code turns 

out to be zero, then the character may be discarded immediately. 

Otherwise, the class code is added to the state value to find the 

location of a transition in the state tablf Because of the class 

numbers, it is no longer necessary for the state table to be 

rectangular. Instead the state becomes a base value in a linear 

vector of transitions. The actual transition is selected (with 

respect to the base value) by the class code. An interesting 

feature of this arrangement is that if the same character is used 

to produce more than one transition (a common technique in lexical 

analysis) a new class code can be retrieved without any more table 

references. 

Fig. 5 shows a STATE-DEF program and the state table generated. 

Two new features have been introduced in the STATE-DEF program. 

These are the DEF card, which allows a collating sequence to be 

specified, and the character class specification (e.g.,.A-Z), which 
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DEF 46 

START: 

IDENT: 

NUMBER : 

. A- 

END: 

ABCDEFGHIJKLMNOPQRSTUVWXYZ012345é789*+-*/(), 

A-Z ACTION®1, NEXT=IDENT; 

0-9 ACTION"!, NEXT®NUMBER; 

®-$ ACTION®2 ; 

A-9 ACTION®!; 

=-$ ACTION®3, NEXT®START; 

0-9 ACTION®1; 

=-$ ACTION=4, NEXT*START; 

INITIAL STATE®START; 

3 BITS 

Fig. 5 

A STATE-DEF Program for a Three State FSM and the 

State Table Generated by the Compiler 
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uses the specified collating sequence to pick out a group of 

characters (A through Z). Note that the character transform 

vector shown in Fig. 4 goes with the state table of Fig. 5. 

4. THE INTERPRETER 

A flow chart of the interpreter for LAWS state tables is 

given in Fig. 6. This flow chart is extremely simple to implement. 

The most important aspect of tue implementation is handling the 

problems of shifting and masking in a portable manner. This has 

been accomplished by providing a set of primitive functions 

written in machine language for use by the FORTRAN program (LEFTSH, 

RGHTSH, OR and AND). Such functions exist on most binary computers. 

When they do not exist, they can be easily implemented. It should 

be noted, however, that decimal machines (without binary shifting 

capabilities) or very short word length machines (e.g. some mini¬ 

computers) will probably not be suitable for execution of a LAWS 

lexical analyzer. 

No flow chart has been given for the program containing the 

semantics routines mentioned in Fig. 1. That program usually has 

such a simple structure as not to merit a flow chart. Normally 

it is a subprogram which is called every time the language processor 

needs a new symbol (token). The subprogram first calls the inter¬ 

preter (shown in Fig. 6). Return from the interpreter occurs when 

an action code has been found, so a computed GO-TO can be executed 

to one of a set of semantic routines. After completion of the 

semantic routine, if a complete symbol is ready, control returns 
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Get Internal 
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to the caller. If not, control loops back and another call is 

made on the interpreter. In the case of the STATE-DEF program 

of Fig. 5, four action codes were specified. The required 

semantics for each of those codes is listed in the table below. 

TABLE OF ACTIONS 

ACTION NUMBER MEANING 

1 QUEUE THE INTERNAL CHARACTER 

2 RETURN THE INTERNAL CHARACTER 

AS A SYMBOL (SPECIAL CHAR) 

3 RETURN THE QUEUE OF CHARACTERS 

(IDENTIFIER) SET REUSE SWITCH. 

4 RETURN THE QUEUE OF CHARACTERS 

(NUMBER). SET REUSE SWITCH. 

5. SUMMARY 

A portable lexical analyzer writing system (LAWS) has been 

implemented in FORTRAN. It is an extremely simple system, yet 

is powerful despite that simplicity. Special care is used in 

LAWS to achieve compactness of the state table and character 

translation vector. The simplicity of the interpreter which runs 

from those tables makes conversion to machine language easy. 

Implementation in FORTRAN and careful use of primitive shifting 

and masking functions maximizes portability and enhances possi¬ 

bilities for tailoring to user needs. 
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