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ABSTRACT 

A method of analysis and a computer program were developed for 

determination of the frequencies and mode shapes of the free vibrations 

of stiffened cylindrical shells. The shells are stiffened by closely 

spaced stringers and rings, have different boundary conditions, and are 

subjected to either a static axial load or a hydrostatic pressure. The 

stiffeners are considered "smeared" over the shell. The system of 

equations which was obtained is solved by a method known as the "exact 

method . The theoretical investigation includes a study of the variation 

in frequencies and mode shapes with increase in the static load until 

buckling. 

The results of the present analysis are compared to those of other 

methods which appear in the literature, and good agreement is obtained. 
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1. INTRODUCTION 

1.1. General 

Free vibrations of stiffened shells subjected to static loads are 

studied in this report. The problem is of considerable engineering 

importance in the design of aircraft and missiles»since many of their 

structural components are stiffened cylindrical shells. Free vibrations 

are significant also as a step in the analysis of flutter, forced vibration 

and dynamic response. 

Before discussion of the results of the present study, a detailed 

review of earlier studies is presented. This review is confined to free 

vibrations in vacuo. Vibration in a fluid, forced vibration, and dynamic 

response are not included. 

1*2. Vibrations of Isotropic Cylindrical Shells 

Vibrations of isotropic cylindrical shells are already mentioned in 

Rayleigh's book published in 1894 [1], but only for the extreme extension- 

al cases, which obviously do not represent the general case. In 1927 Love 

[2] formulated the general equations for the latter but did not develop it 

further for different boundary conditions. In 1934 Flügge [3] also formulat¬ 

ed the equations of motions for the cylindrical shell and solved the problem for 

the case of SS3 boundary conditions (simple support); he found that each 

mode of vibration is associated with three frequencies differing in the 

amplitude ratios of the three displacement components. The frequency of 

interest here is that mainly associated with radial motion of the shell, 

and it is by far the lowest of the three. 



The work of Arnold and Warburton [4,5], first published in 1949 

initiated the considerable research effort devoted universally to this 

field (not confined to cylindrical shells). Using the theory of shells 

as formulated by Love, they derived expressions fo'' the elastic and 

kinetic energy of the shell and with the aid of Lagrange's principle - 

the appropriate vibration equations. They obtained an exact solution 

for the SS3 case, for which the exact mode of vibration is known. For 

the case of clamped B.C.'s they used Rayleigh's method, assuming the 

pattern of a clamped beam for the longitudinal mode. They carried out 

a comprehensive numerical analysis for both cases, for different shell 

geometries, and observed the so-called "cylindrical shell anomaly" (that 

in certain ranges transition to a more complicated mode results in a drop 

in the natural frequency), which they interpreted in energy terms. Their 

work included an experimental study which yielded very good agreement with 

theory. Reference [5] presents an interesting , though inaccurate, method 

for determination of the vibrations under intermediate boundary conditions 

between SSJ and clamping, which occur in many practical cases. 

Several sets of equilibrium equations, are to be found in the theory 

of shells, and many investigators have discussed their relative merits. 

Naghdi and Bleich [6] compared Love's equations with those of Flügge and 

Donnell. In parallel, Baron and Bleich [7] presented a method for 

determination of the frequency and mode of vibration of infinite cylindrical 

shells, based on a correction to the pure membrane solution, and included 

tables for application of the procedure. Reissner [8], turned to another 



problem - subsequently dealt with by others - namely, whether in-plane 

inertia may be neglected relative to its radial counterpart. This aspect 

is of extreme importance, the neglect of in-plane inertia permits relatively 

easy solutions to otherwise very difficult equations 

Another significant early contribution was yi-Yuan Yu's study [9), in 

vhich he derived a set of three general equilibrium equations (parallel 

to those obtained by Donnelll for the static case), and found an 

exact solution" also used m the present study. He also 

dealt with the cases of SS3 (for which he compared Donnell's solution 

with more exact ones), clamping, and the combination of one edge clamped 

and the other SS3 In ether studies [10, 11], he used Flugge’s more exact 

theory and obtained a set of five equations, incorporating the effect of 

the transverse shear and rotational inertia. Warburton's comments [12] 

on Yi-Yuan Yu s first paper [9] were mainly a discussion, repeated in many 

other papers, of the accuracy of Donnell's equations. 

In the last decade, the number of publications on the vibration of 

isotropic cylindrical shells increased rapidly The mam topics studied 

are now reviewed briefly. 

first, an attempt was made to adapt the earlier results for use by 

engineers and designers. For example, Yamane [13j presented design 

curves for a wide range of geometries. Graphs and tables of this kind 

appeared in many other publications 

The advantage of the exact method, mentioned earlier, lies in the fact 

that it covers all boundary conditions and their combinations, without 
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recourse to approximations beyond those of the theory of shells. Flügge 

already [3] outlined such a method in 1934, but no examples were presented 

because of the cumbersome numerical work involved. This difficulty was 

overcome to a certain extent by "logical" approximations [14] , or by a 

preliminary analysis (Refs [15] to [17])which, in most cases, however, 

confines the method to certain ranges. The advent of the computer solved 

the problem of long complicated calculations, and hence in [18] the exact 

method is applied, without any assumptions or restrictions, to shells with 

different boundary conditions. With the introduction of computers, the 

method of finite differences was also applied extensively to the solution 

of the set of three differential equations. 

Just as in the preceeding decade the emphasis had been on the choice 

of equations, the main problem in the sixties was the choice of method of 

solution. A comprehensive study on this subject was undertaken by Forsberg 

[19], who compared Flugge's and Donnell's equations on the one hand, and 

the exact solution, the finite differences method, and Arnold and Warburton’s 

energy approach - on the other. In addition he also examined the effect of 

neglect of in-plane accelerations. 1,. another study [20], Forsberg examined 

tho effect of different boundary conditions with Flugge's equations and the 

exact method, for ten different cases which did not include, however, 

flexible supports. He found, for example, that the difference between SS3 

and clamping is caused primarily not by the restriction on the gradient 

of the radial displacement, but rather by the additional restriction on 

the axial displacement, which is absent in the SS3 case. A similar effect 



was found by Sobel [21]for buckling under hydrostatic pressure. Nuckolls 

and Egle [22] studied a cylindrical shell with one edge SS3 and the other 

on springs. The spring model is very important, as it permits closer 

approximation of reality. 

The computer also gave impetus to the finite-element approach. 

Although the simple isotropic cylindrical shell offers little scope for 

application of this method Webster [23], for example, used it for SS3 and 

clamped boundary conditions, with a view to comparing its accuracy with 

the known exact solutions. 

The axisymmetric (n * 0) and beam-type (n * 1) vibrations are also 

of considerable engineering significance, though usually not related to 

the low-frequencies. Forsberg [24] studied both types and found that 

in certain cases they may be determined, with fair accuracy, by means of 

simpler equations. He showed that the axisymmetric case includes two 

types of vibration - one longitudinal, for which the shell may be represent 

ed by a beam model, and the other radial, corresponding to a ring model. 

The problem of beam-type vibration was also studied by Kornecki [25]. 

The above review is limited mainly to work reported in Western 

sources. The parallel studies published in the Russian literature, 

have not been included. Some important work was also published in 

Japan. Mizoguchi discussed the problem in two papers [26, 27] and 

derived equations for a shell with two types of clamping, one with 

restrained and one with unrestrained circumferential motion. Another 

team [28] studied shells clamped at one edge and free at the other,both 
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theoretically and experimentally. One should alao mention Yamaki (29J 

who presented curves and tables for determination of frequencies in 

cylindrical shells with a wide range of geometries, for eight boundary- 

condition variants. 

The present review considers primarily methods that have widespread 

application, and doe* not dwell on special methods developed tor specific 

problems (for example. Lin [30, 31]). The vibration of thick shells, for 

which the classical theories axe inadequate and different approaches are 

called for are also excluded. However, it may be worth, in this context, 

to mention a comparison between exact theories(developed from theory of elas 

ticity; and those cf Flügge and Donnell,for the SS3 case,by Armenakas [32]. 

1,3 Vibrations of Anisotropic Cylindrical Shells 

Anisotropic cylindrical shells, which include orthotropic and laminated 

shells (consisting of orthotropic layers), sandwich shells and heterogeneous 

shells, are widely used in aerospace structures. Das [33] solved the case 

of an orthotropic cylindrical shell by means of displacement functions, and 

presented examples of different boundary conditions for cylinders and 

cylindrical segments. White [34] analyzed a laminated cylindrical shell, 

consisting of alternate layers of two isotropic materials (for which he 

found the resultant elastic constants) and subsequently used Arnold and 

Warburton's method (Rayleigh's principle, with a beam type longitudinal mode) 

for the SS3 and clamped cases. Weingarten [35] also dealt with laminated 

shells and found good agreement between theory and experiment. Dong [36] 

used the exact method for laminated cylindrical shells comprising layers of 

different orthotropic materials and of different thickness. 



Padovan and Koplik [37J studied cylindrical sandwich shells, and 

derived equations of motion which consider transverse shear in the core 

and face layers. These equations were solved for infinite and finite 

shells with SS3 boundary conditions, and the results were compared with 

chose of the simpler theories. The authors emphasized the importance 

of inclusion of the face shear even in the case of very thin face layers. 

Stavsky and Loewy [38] dealt with heterogeneous and orthotropic 

cylindrical shells, using a set of equations based on Love's approach, 

as well as a simpler set based on Donnell’s equations. Their numerical 

analysis showed that heterogeneity may have a considerable effect, and 

also that in certain circumstances the two approaches may yield widely- 

differing results. Tasi [39] also studied the effect of heterogeneity 

on axisymmetric vibrations of cylindrical shells. 

A problem faced by many authors, both in isotropic and anisotropic 

systems, was the accuracy of the shell theories for the dynamic case. 

This motivated Mirsky's comparison [40] of the results of shell theory 

for orthotoropic shells with those of three dimensional theory of 

elasticity for the axisymmetric case. 

The effect of orthotropy,as well as that of boundary conditions and 

eccentricity on vibrations of cylindrical shells, are studied in [41], 

where orthotropy represents stringer and ring stiffening. Stiffened shells, 

which are a special case of anisotropic shells are, however, discussed in 

more detail below. 



1,4‘ Vibrations of Stiff«ned Cylindrical shi.li. 

Work on »tiffoned »holls bogan in the fifties. Early contributions 

include those of Junger 142] and Baron 143],which were theoraticsl studies 

of special cases of vibrations of infinite stiffened cylindrical shells, 

and that of Galletly 161], which is discussed later. Hoipaann {44,45] 

considered the stiffened shell as an orthotropic shell, whose elastic 

constants he determined experimentally, and found that the "isotropic 

anomaly" exists also in stiffened shells. His experiments with stringer- 

and ring-stiffened shells showed good agreement with theory. In 1967, Penses 

146] used Hoppmann's theoretical considerations to determine the effect of 

boundary conditions on the vibrations of stiffened cylindrical shells. Miller 

Í47] analysed stringer-ring-stiffened cylindrical shells with SS3 boundary 

conditions using a discrete approach, but did not progress beyond the 

formulation of equations and gave no numerical examples. By contrast, 

Bleich [40] presented a practical (though inaccurate) method for a ring- 

stiffened cylindrical shell. 

The main approaches used in the analysis of stiffened shells are now 

discussed in detail: One approach sets out from the concept that if the 

stiffeners are numerous, closely-spaced and uniformly distributed, their 

effect may a.so be regarded as uniformly distributed, and the shell becomes 

an .equivalent orthotropic system in which the eccentricity of the stiffeners 

allowed for. This approach is known accordingly as "smearing". A 

simple "smeared" theory, developed by Baruci and Singer [49,50], is utilised 

in buckling and vibration analyses of shells by many authors, including 



equations developed in Mikulas, McElman and Stem [51,52J, who extended the 

[49] and solved them numerically for the SS3 cate. The numerical analysis 

showed that the eccentricity of the stiffeners is important in vibrations, 

as shown earlier in buckling. For example, external stringers were found to 

cause higher frequencies than internal ones. Resnik and Dugund}* [41] whose 

study was already mentioned, also used the "smeared" approach for theoretical 

and experimental vibration analysis of cylindrical shells under different 

boundary conditions. They obtained good agreement between experiment and 

theory, and found (as expected) that the boundary conditions have a con¬ 

siderable influence on the frequencies and modes. Their study included also 

the effect of in-plane inertia. (In [51] and [52], only radial inertia was 

taken into account). Sewall and Naumann [53] included in their analysis 

also the effect of rotational inertia and carried out an experimental 

study of vibrations under different boundary conditions. They found that 

the effect of rotational inertia is insignificant, unlike that of the 

boundary conditions and eccentricity. 

In all these studies, based on the "smeared" approach, the equilibrium 

equations were derived (variationally, by the Lagrange principle, or by 

Rayleigh's method) from an expression for the total potential of the stiffened 

shell. This method may also be used in a "discrete" approach, whereby each 

stiffener is treated separately in terms of location, geometry and material. 

This approach is suitable for shells with a small number of heavy stiffeners, 

differing in dimensions, material and spacing. In the discrete approach, 

the analysis of vibration was again preceeded by extensive work on buckling 

(for example [54, 55, 56]). The approach was outlined for vibrations 
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already r„ ,41J without detailed derivations or „u„erioal worh. it was 

elao employed in the theoretical and experimental wort of Parthan and 

John* ff, - 59]. They studied mainly the SS3 ca** • • 
y tne SS3 case, examining the effect 

°f different factors and comparing theories, and concluded that, even if 

the SUff,!n8rS are fainy "ide1^ se-O. both approaches yield close 

results. Parallel wort on hucXlin, of stiffened shells yielded similar 

conclusions. The only significant difference m the case of vibrations 

is in the spectrum (the curve orasen*-, e 
P esenting frequency versus circumferential 

wave number,, being smooth in the ••smeared" approach and wavy in the 

"discrete" approach. These investigators also found that while in-pl.„. 

cannot be neglected, relational inertia has only a negligible 

effect. A similar "discrete" approach was used by Soder ,60). 

earliest studies of the vibrations of stiffened cylindrical 

15 that °f Gall8tIy 1611 ' with ring-stiffened shells. 

it is outstanding also in that it takes , 
into account inter-ring dis- 

Placements in addition to those of the shell « „ s , 
tne snell as a whole. The study 

considered the case of SS3 n r’e j ^ 
SS3 B.c s and found that ,nter-ring motion may 

sometimes have a considerable effect on the f 
on the frequency and mode shape. Also 

- subseguent investigations (62 - 641 the equiUbrium equition5 ^ 

derived from the total potential expression, since the approach is 

discrete", each stiffener was considered separately, and the displace- 

ments are also valid for inter-rinr. m 
ring motion. This approach was 

employed by Eagle and Sewall m [621 rof 
(62). Reference 163) provided experimental 

resonance effect predicted for widely spaced large stiffen-rs. Another 

Hkiai MüMÉHMÉIálHMd MMÉM 
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tea» [64J also found, in a thaoratical and experinantal study, that the 

¿lúcrete traitaient is of importance for widely spaced and relatively large 

stiffeners. 

The studies discussed above were based at least initially on an energy 

epproach. There are also "discrete" approaches of a different type. One 

aeries of studies was carried out by a team headed by Wah [65 1- ¢8]. In 

them, the ring-stiffened shell was subdivided into cylindrical segments 

«d rings. The cylindrical segments were analysed by shell theory and the 

rings by more exact methods derived from the theory of elasticity, with an 

appropriate continuity requirement for forces and displacements at the 

FKiint of contact and appropriate boundary conditions at the edges. The 

resulting set of difference equations could be solved without difficulty. 

in [65!, a solution was presented for the symmetric case of uniformly- 

spaced rings, in ,66, the analysis was extended to non-sy^etric vibrations, 

and in [67, the eccentricity of the rings was also taken into consideration. 

Reference [68, compared the results obtained by this method, with those 

found by others. These studies showed that for large circumferential wave 

numbers, inter-ring motion becomes important. In these cases some doubt 

is cast on the accuracy of the "smeared" theory, which neglects this motion. 

Warburton and Al-Nagafi [69, also used this method and extended it. After 

comparing its results to those of other methods, including Forsberg's [77, 

exact analysis to be discused later, they found the method to be very 

accurate. 

A similar method was used by McDonald [70, for a stringer-stiffened 
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shell »ith SSI B.c's. He likewise subdivided the stiffened shell into 

cylindrical segments and bean«, and enforced appropriate continuity require- 

-nts. The „ethnd yielded good results and again enphasited the importance 

cf eccentricity of stiffeners. Schnell and Heinrichsbauer ,71, applied a 

similar method to stringer-stiffened shells. 

Other discrete methods are discussed in 1711-,,4,. Reference ,72, 

used the discrete-mass method and presented a solution for certain cases. 

In ,73) the stiffeners »ere replaced by an equivalent system of forces 

which depend on the displacement at each point. x„ „4, „arari and Baron 

again dealt separately with shell segments and rings, enforcing appropriate 

continuity requirements, comparison of their results with those obtained 

by “smeared" theory showed again that the "smeared" approach yields 

very good results for weak and closely-spaced stiffeners. 

Special approaches were also developed for particular types of shells. 

Basdekas „5, presented a method, based on the variational principle, for 

vibrations of shells of variable thickness, stiffened with rings of 

variable shape (also in circumferential direction, and spacing. His 

a^thod permits inclusron of lumped masses attached to the shell or rings. 

The effect of lumped masses on the vibrations of ring-stiffened cylindrical 

shells, which has obvious engineering significance, was also studied in 

[76]. 

To-day, c unputer programs are available which cover even the vibrations 

of anisotropic shells of complex geometry with arbitrarily located stiffeners. 

These programs are usually complicated and lengthy, and even the simplest 
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ones apply to shells of revolution, of which the cylinder is only a 

particular case. The programs utilize either finite difference or 

finite elements. 

The wealth and variety of methods necessitated assessment of their 

relative advantages. Forsberg's study (77] referred to above, contains 

such an assessment. The ring-stiffened shell is again subdivided into 

cylindrical segments (analysed by Flügge'3 equations'and rings, with the 

appropriate continuity requirements and eight boundary conditions. The 

rings are analysed by an exact method and affect the shell segment via 

the boundary conditions. Comparison of these "exact" results with those 

Obtained by fini,- elements, finite differences, or other approximate 

methods showed fairly .lose agreement. The paper also surveys the 

influence of different stiffener-and shell parameters. 

1-5' ¡^rations of Cylindrical shells under In]t,.l st—. 

Whereas the general field of vibrations of cylindrical shells has 

been thoroughly investigated, the particular case of shells under 

initial stress has drawn much less attention, though it is of considerable 

practical importance. One may note, that in their outstanding contribution 

15], the authors (who confined their study to an unloaded cylindrical 

shell) wrote: " The results are also true for a cylinder subjected to 

uniform stress, thus internal fluid pressure in a container will not 

the frequency , and a similar erroneous conclusion appeared also 

ih their first paper Id], Soon, however, the error in this statement 

was realized and fairly extensive work, motivated by engineering require- 



ments, was undertaken on the vibrations of cylindrical shells under external 

or internal pressure. Apparently the earliest investigation in this field 

was that of Fung, Sechler and Kaplan [78]. They linearized Timoshenko's 

shell equations, assuming small displacement, studied the cylindrical shell 

with SS3 boundary conditions as a particular case, and discussed different 

approximations to the frequency equation. In order to verify the theory, 

tests were carried out on cylindrical shells under internal pressure. It 

was found that the internal pressure has a significant effect on the frequency 

of the different modes (the frequency rises with increase in pressure), and 

changes the mode with the lowest frequency. Koval [79], in a comment on the 

above paper, showed that one of the simpler approximate vibration equations 

is identical with that obtained from Donnell’s equations, if the effect of 

radial acceleration is added. He also showed how Yu’s method [9] can be 

appl.ito a clamped cylindrical shell under internal pressure Tests on 

vibration of cylindrical shells were also conducted by Gottenberg 180] with 

internal pressure, and yielded good agreement between theory and experiment. 

Recently new efforts were applied. The effects of prestress 

due to uniform pressure on the vibrations of spherical caps and conical 

shells was studied by Ebner [81] with the aid of a large computer program. 

Dym, in [62], studied the vibrations of orthotropic cylindrical membranes 

under external pressure, and in [83] extended the discussion to orthotropic 

cylindrical shells. His conclusion was that if the m-plane inertia is 

neglected and only the radial inertia taken into consideration, a very 

close approximation is obtained. He also found that a change in the 

circumferential stiffness causes considerable changes in the frequencies, 
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while internal pressure increases the frequency appreciably and can hence 

offset the changes in circumferential stiffness. The effect of an attached 

mass on the natural vibrations of a pressurized stiffened cylindrical shell 

was studied in [84]. It was found that any weight addition even if it is 

very light evokes marked local effects which may lower the fundamental 

frequency considerably and offset the stiffening due to pressurization. 

In another study [85] Greenspon used Flügge's theory to derive a set of 

equations for a stiffened cylindrical shell under pressure (valid also 

for sandwich shells), which he solved for SS3 boundary conditions. He 

showed that the resulting frequency equation may be simplified by various 

assumptions and approximations, to yield a convenient relationship between 

the natural frequency of a stressed and an unstressed shell. 

Besides internal and external pressure, other preloads were also 

studied. Koval and Cranch [86] considered cylindrical shells under an 

initial torque. They employed three methods of analysis: an exact solution 

(assuming a large circumferential wave number and thereby reducing the 

order of the characteristic equation from eight to four), an approxi:oate 

solution by the Galerkin method, and an approximate solution using Lagrange's 

equations. The authors solved several cases with different boundary con¬ 

ditions and found good agreement between the three methods, which were also 

confirmed experimentally up to buckling. Both theory and experiment showed 

that the natural frequency decreases with increasing torque. Weingarten 

[87] studied the vibrations of a cylindrical shell under an initial bending 

moment and internal pressure, using Donnell-type equations with only radial 

inertia taken into account. The equations were solved by Galerkin's method 
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and results verified experimentally. He found that the frequency decreases 

with increasing moment for certain modes and increases for others apparently 

due to the fact that bending produces both a zone of compression (which 

reduces stability) and a zone of tension (which increases it). Seggelke 

[88] used Flügge's equations and obtained an "exact" solution for an 

isotropic shell under axial load or radial pressure for different boundary 

conditions. 

In the studies cited above, linear theory was used, with the preload 

state considered as one of membrane stress. A more exact treatment is 

given in a series of studies lead by Herrmann. In [3*], Herrmann and 

Armenakas, presented some linear theories, based on the three-dimensional 

theory of elasticity, for the vibrations of cylindrical shells under 

initial stress. These theories are more exact than the earlier ones in 

that they take into consideration not only a membrane state of intial 

stress, but also initial moments and transverse shears, as well as the 

change due to deformation in the direction and magnitude of the forces. 

In [90], the same authors applied their general bending theory to a 

study of the effect of uniform circumferential stress, bending moment 

and radial shear on the vibrations of an infinite cylindrical shell. 

Later Armenakas [91] extended the investigation to a finite cylindrical 

shell, with SS3 boundary conditions, subjected to uniform circumferential 

and axial stress. The results were compared with those obtained by 

simpler methods, and the appxoximate methods were found to be satisfactory 

in most cases. Herrmann and Shaw [92] added an experimental part to the 

investigation in which the vibrations of cylindrical shells under axial 
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load and external pressure were tested. Herrmann's exact method was 

extended also to anisotropic shells by Baker and Herrmann [93] in a study 

of the vibrations of sandwich shells under an initial stress. 

In another approach. Cooper [94] used Saunders non-linear equations 

for shells of revolution for investigating the vibrations of prestressed 

shells. He took into account some factors, like initial deformation due 

to preload, not included in the linear theory which considers only an 

initial membrane-state. He developed a numerical method based on finite 

differences and obtained a closed solution for the SS3 caso In another 

report [95], Cooper used linearized equations to study the effect of axial 

compression or tension, and internal or external pressure on the vibration 

of cylindrical shells with SS3 boundary conditions. Recently the vibrations 

of anisotropic cylindrical shells subjected to nonuniform lateral pre¬ 

stress were also studied by Padovan [96], with Hoppmann's equations [44], 

[45]. 
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2. DIFFERENTIAL EQUATIONS, DISPLACEMENTS AND BOUNDARY CONDITIONS 

2.1. Assumptions and Basic Equations 

The approach presented here is based on "smearing" of the stiffeners. 

This approach has been discussed in detail by Singer, Baruch and Harari 

[49] and [97]. It was also employed by Mikulas, McElman and Stein [51], 

[52] and in other investigations mentioned in the previous Chapter. Its 

accuracy, compared with the more exact "discrete" methods, is also discussed 

in many studies cited above. From References [57,58,59,74] it can be seen 

that the "smeared" approach yields accurate results, provided the stiffeners 

are uniformly spaced, fairly close and not too heavy. Since here the 

stiffeners obey these criteria, the use of "smeared" theory is justified. 

The rotational inertia of the shell sections is neglected, in accordance 

with [53],[57-59] , where it was shown that its effect is indeed negligible 

in stiffened shells. Use is made of Donnell's and Flugge's theories [3]. 

Equilibrium equations and natural boundary conditions are derived by 

application of the first variational principle to the total potential 

of the shell. The derivations according to Flügge and Donnell are 

given in Appendices A and B respectively. The non-linear expressions 

used subsequently in this Chapter also appear in Appendix B. 

2.2. Equilibrium Equations and Boundary Conditions for the Vibrations of 

Prestressed Stiffened Cylindrical Shells. 

The vibrating prestressed shell is a case of small deformation super¬ 

posed on finite deformations. This involves distinction between three 

states of the elastic body, First, the zero state with the body free of 
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stresses. When subjected to a given force, the body assumes state "a", 

a state of finite deformation under a given state of stress. When a 

small deformation is added to state "a"the body assumes state "b". The 

equilibrium equations are now obtained for state "b" by a linear approach, 

which is based on the assumption that in the system of coordinates 

there is no difference between the three states. Hence, for example, the 

system of cylindrical coordinates used here for all three states is exact 

only in the zero state. The displacement components of the shell in state 

a are ufl, va, wa, and in state "b" u, v, w, where the following 

relations apply; 

u u + u 
a b 

v = v + V. 
a b 

w = w + w. 
a b 

(2.1) 

V Vb' wb bein9 the components of the small increment characterizing 

the change from state "a" to state "b". Here the "b" displacements 

are components of the dynamic displacements caused by the vibrations of 

the shell, in the same manner one can write; 

N 
X 

N 
y 

N 
xy 

M 
X 

M 
y 

M 
xy 

M 
yx 

+ N 

+ N 

xy 
+ N 

xy,. 

M + M 

M + M 

M 
xy. 

+ M 
xyv 

M 
yx. 

+ M 
yxv 

(2.2) 
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The expression for state "a" are obtained by substitution of u , v , w 
Add 

for u, v, w, in Eqs. (B.5), of Appendix B,yielding: 

N = S [(1 + U, ) (u + — w2 )+ v (v - w + -- w2 )- X-.W ] 
xa 1 a,x 2 a,x ' a,y a 2 a,y' A1 a,xJ 

N = S [ (1 + JJ ) (v - W + 4 W2 ) + V 'u + 4 W2 )“ X->w 1 
Ya 2 a,y a 2 a,y a,y 2 a^' Ä2 a,yyJ 

1 - v 
N = N = S —-— [u + V + w w ] 

Y31» 2 a»Y a*x a.X a.yJ « a 

M [ (1 + n , )w + vw - Ç, (u + 4 w2 ) ] 
r2 ol a,XX a,yy 1 a,x 2 a,x 

(2.3) 

D . , 12 
M --- [(1 + n _)w + vw - £ (v - w + — w )) 
Ya r2 o2 a,yy a,xx s2 a,y a 2 a,y J 

M Dr, xya - - -j [1 - v ntllwi xy 
K 

M = - ~r [1 - v + w 
yxa r2 t24 a,xy 

If Eqs. (2.1) are substituted in Eqs. (B.5) and Eqs. (2.3) are subtracted, 

where only linear terms in u^, v^, w^ are retained (in view of their small¬ 

ness) , one obtains: 

N » S[(l + ii-)(u, + w w. ) + v (v, - w. + w w. )- x.v. 1 
xb H1 Td,x a,x b,x b,y b a,y b,y' Ä1 b,iOt 

N = S[(l + p ) (v - W + W W )+ v (u, + w w, ) - Y_W. ] 
Yb 2 b,y b a,y b,y T>,x a,x b,x A2 b,yy4 

N = N * S — [u, + V. + w w, + w w, ] 
XYb yXjj 2 T3,y b,x a,x b,y a,y b,x 

M --5-[(l + n_n)w,_+ vw, 
b R 

xL _2l''‘' ' "ol'"b,xx ’ vWb,yy ^1^%^ + Wa,xWb,: .)] (2.4) 

M :[(l + n 0)w. + vw - ç_(v, - w. + w w )] 
o2 b,yy b,xx ^2 b,y b a,y b,y 

b R 

M =- [1 _ y + f| 1W, 
xyb r2 'tlJ b,xy 

M = —— [1 - v + 
yXh r2 t2J b,xy 
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State a is a state of static equilibrium, in which a pressure 

P acts lateraly ,edge forces act on the shell at a distance z* = ë 

from its middle surface and edge forces Ñ act at the middle surface. 
xy 

Eqs. (B-3) then yields the equilibrium equations for state "a": 

N + N 
X xy 
a,x a,y 

N + N 
y xy 
a,y a,x 

+ N w + N w +2N w M + M + M + M 
xa,xx ya.yy Xya.xy yXa,xy ''a*'“ ' ^a.xy 

+ "x “a,x * "y ”, ,. -1 N... . * RP =0 
a,x a,y a'y xya,x a'y xya,y a'x 

(2.5) 

The boundary conditions for state "a" are obtained from Eqs. (B.4) : 

(i) u 

(ii) 

0, or N - N = 0 
X X 
a 

0, or N - Ñ = 0 
xya ^ 

(iii) w = 0, or N w + N w + M + M +M 
a Xj> a,x xya Xa x xy^ Myxa>y a 

(iv) w = 0, or M - Ñ — = 0 
ax x x R 

a (2.6) 

State "b" is also an equilibrium state. The transition from "a" 

to b involves no increment to the edge forces and pressure, but only 

a dynamic displacement. Substituting Eqs. (2.2) into (B.3) and subtracting 

Eqs. (2.5), one obtains the equlibrium equations for "b". 
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\ * V “''"“b 

Ny + Nxv = R2Mv 

yb,y xyb,x b 

M + M + M + M 
XX yb,yy Yb,xy yxb 

+ N + N w + N w + 
,xy yb Xa b,XX *h a,XX 

* Vb-" * \Vyy * 2%au».*y + 2Va-xv+“* "»■« + a b xy a,x 

+ Nv Wa x + Nv wk „ + N W + N w +N w + 
"b.x a'x ya,y b'y yb,y a'y - b'y % b,x 

a,y 

+ N W, + N w = R^M w 

xya.yb'x » 
(2.7) 

Substitution of Eqs. (2.2) into (B.4) yields similarly the boundary 

conditions for "b". Upon recalling that they are the same for both 

states, one may subtract Eqs. (2.6) from the result and finally 

obtain the boundary conditions for "b\ in the following form: 

(i) = 0 or N = 0 

(ii) V = 0 or N * 0 
b xyb 

(iii) W =0or Nw, +Nw +N w +N w +.. 
b xa b,x xb a,x xy.Wb,y+ V Wa.v + + xya b,y xyb a,y ^ 

+ M + M = 0 
^b.y yxb, >*y 

(iv) w, 
b,x 0 or M 

2'3’ Axisymmetric Initial Static State of Stress 

If state "a" is axisymmetric 

N = M = M =n 
xya xya y»a 

(2.8) 

( ) = 0 
a *y (2.9) 

■MáUliMÉMklttÉUHÉÉÉH ÉÉiaitáMÉiÉtfihfliÉiHiakÉi HÉMÉdMMkÉÉttÉMÉk «MiHMiaMsiaiiHiiWMiHaM 
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The last condition in Eq. (2.9) signifies that in state "a" a derivative 

of my parameter with respect to y vanishes, i.e. the parameters are 

invariant in y. with conditions (2.9) Eqs. (2.3) reduce to; 

Nx = S[(l + uj (u ^ 1 - 2 1 ' . + ~ W ) — \lu — V W 1 
1 a,x 2 a,x a Xl a,xx 

Nv - S[-(l + y )w + v(u + — w2 1 
ya 2 a a,x 2 a,xJ (2.10) 

Mx = r t (1 + n . )w - c, (u + — w2 n 
Xa R2 ol a»3“ a,x + 2 "ayJ 

M 
ya R2 ^VWa*xx + ^2Wa^ 

The equilibrium Equations (2.5) then reduce to: 

N 
a,x 

0 

M + N_ + N w 
(2.11) 

y. " X ”a,xx + Nx wa,x + RP = 0 
a,x a,XX -a a 

and the boundary conditions Eqs. (2.6) become for 
an axisymmetric state 

(i) u = 0 
a or N - N = 0 

Xa x 

(ii) w = 0 
a or N w + M =o 

x a ,x x 
a a,:c 

(2.12) 

(iii)w 
a,x 0 or M - n — = 0 

X X R 
OL 

Equations (2.11) further simplify to; 

Nx = Const 
a 

M 
x + Ny + Nx Wa XX + RP = 0 
a,XX Ya a a,xx 

(2.13) 

..., J 
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ând Eqs. (2.4) become for the axisymmetric case: 

\ - S<(1 * “l' <%,„ - ,1 * V,Vb,y - -b) * 

Nv = s[(l + H-) (V - w. ) + V 
2; Vb,y - wb) + V(ub,x + - X2Wb,yyJ 

"xyb ' Nyxb = S' 2 " IUb.y * Vb,x * ”a,x“b,yI 

1 - 

D 
X ~ " 2 
b r“ 

M 
f + >Wu . + VW, 

“l b,*X + V"b,yy - VVx * "a,xWb,xn 

M 
yb R2 

I ( 1 + ~ ) w. + 
o2’b(yy + ''"b.xx ’ ^<\,y - »„>1 

M Xy 2 ~ v + n..]w 
yb R2 tl b,xy 

M 
2 ^ ” V + yxb R2 ’ t2J”b,xy 

The equilibrium Equations for state ”b" then simplify from Eqs. (2.7) 

to: 

N X + N*V = R2 M u. 
b,x yb,y ° 

N + N = R2 M y 

■* ^byX b fb,y 

MX + Mv + M 

b,xx yb,yy Xyb,xy yXb x- "y^ “xy, + Mvx + N„ + N„ Ww .... + N 

+ N w + N 

w, + N W 4> 
*xy ■'b xa b,xx ^ a'xx 

.2 - 

yab^ ' Vb.y“*- ’ ""“b 

and the corresponding boundary conditions to: 

(2.14) 

(2.15) 
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The equilibrium equations are thenf according to Eqs. (2.15): 

N + N = R2 M u 
X,x xy,y 

N + N = F2 M V 
y»y xy,x 

M + M + M M 2 - " 

-XX y,yy "xy^y "yx^y + Ny + Nxw,xx ' pRW,yy = R M w 

(2.19) 

and the corresponding boundary conditions according to Eqs. (2.16): 

(i) u = 0 or N = 0 
X 

(ii) V = 0 or N = 0 
xy 

(iii) w — 0 

(iv) w = o 
»X 

or Nw + M + M + m =0 
X ,x x,x xy,y yx,y 

or m = 0 
X 

(2.20) 

2’5’ £au.lllbrium Equations and Boundary Conditions for Vibrations of 

Stiffened Cylindrical Shells Subjected to a "Membrane" Axi- 

symmetnc otatic State of Stress, with the Initial Stress State 

Considered According to Donnell's Theory and the Dynamic Dis¬ 

placements according to Flügge*s Theory. 

Equations (2.17) are still valid. The resultant forces and moments 

m 0118 case are obtained according to Eqs. (A.31) of Appendix A and are 

not repeated here. The equilibrium equations are obtained from Eqs. (A.29), 

with addition of the contribution of the initial stress according to Eqs. 

(2.19). Hence 

N*.X + V.y - K2 » “ 
(2.21) y*y My/y + Nxy,x “ Mxy,x ■ R M V 

Ny + MX,XX + Mxy,xy + Myx,xy + My fyy + ÑxWxx - pRw>yy = R2 M ; 
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The boundary conditions are obtained from Eqs. (A.30) with addition of 

the contribution of the initial stress to the third equation: 

(i) 

(ii) V 

u = o or N = o 
X 

O or N - M = 0 
xy xy 

(iii) w = o or Ñw +M +M +M -r, 
* .X X,X xy,y Myx,y - 0 

(iv) w = o or M = o 
>x X 

(2.22) 

One may point out agaxn that the above equations represent an inter¬ 

mediate formulation between the Donnell and Flügge theories. The con¬ 

tribution of the small displacements is taken according to Flügge and 

that of the initial stress according to Donnell. Below, the latter is 

aleo taken according to Flügge, and the complete set by Flügge’s theory 

is obtained. The intermediate set permits assessment of the influence 

of more accuracy in each contribution on the final result. 

2*6' ga.uillbrium Equations and Boundary Conditions for Vibrations of 

Stiffened Cylindrical Shell«; Snh je, .ted to a ■’Membrane» 

Static State of Stress According to Flügge’s Theory. 

In order to derive these equations by the energy method, one would 

have to include non-linear terns in the expressions for the deformations 

in Appendix A, and follow the procedure outlined in Appendix B and 

Sections 2.2 - 2.4. since the derivations here are more cumbersome, a 

different procedure was adopted. Prom Appendix A it is apparent that the 

equilibrium equations and boundary conditions in terms of the resultant 

forces and moments are identical with those presented by Flügge for an 

isotropic shell [3], except that the forces 
and moments here include also 
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the effect of the stiffeners. Hence, Flügge's original equations may be 

used for stiffened shells, provided the expressions for the resultant 

forces and moments are modified appropriately. In the Chapter on Buckling 

in Flügge's book the equilibrium equations are presented with the con¬ 

tributions of the initial stresses. For the axisymmetric initial stresses 

the equilibrium equations become 

(2.23) 

+ N w RMW 
X ,xx 

The boundary conditions are not formulated explicitly in Flügge's book, but 

are according to his approach 

(i) u N = 0 
X 

or 

(ii) V = 0 or (2.24) 

(iii) w = 0 or 0 

(iv) w = 0 
»X M = 0 or 

X 

The appropriate formulae for the resultant forces and moments which include 

the effect of the stiffeners, are Eqs. (A.31) in Appendix A. 

WWMlHillÉkHikttHlHAMIIÉi MHMIlHiHlrilflMHl 
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3. METHOD OF SOLUTION 

Three sets of equilibrium equations and boundary conditions for 

an axisymmetric membr-ne initial state of stress have been derived. 

The first set (a) is based on the Donnell theory, the second set 

(b) considers the small displacements according to Flügge, and the 

contribution of the initial stresses according to Donnell, the third 

set (c) is based completely on the Flügge theory. Now, as a first 

step towards solution, the equilibrium equations and boundary con¬ 

ditions are rewritten in terms of the displacements, 

Ñ 
+ + ““) U + f'i——4. TM _ EHi .. 1 + V OR 

1 XX 1 2 (1+2:) -|-]u,yy + “T--,xy-(^f)WfX 

- (X, - T)w - T w 
1 - ,XXX 2 W f xyy 

r2m " 
1“u 

N 
~-2~*rXy+ U + - Ir>\yy + + Í3L) + H T + -i]v = tl s ,xx 

- (1 + P2 + X2 + Tn - |R)W -(X +Tri o)w + T(^ + n )w 
— -°2 IL ,y 2 _ 02 ,yyy 2 * ntl;w.xxY 

R2M " 
Ty 

(V 
* ï'“,XXX * * ¥ U.xvv * <1 + U, + X, + -?£)v S '-,x -l -,u,xxx T 1 ~2~ u,xyy + ^ + + V^o2 " f")' , 

.3-v 
(X2 + Tno2)V,yyy " T(~2~ + ntl)v,xxy ' (1 + + 2x2)w 

PR \ 
(2X2 + S ,W,yy + s~ w>xx ~ Tf(l + 3np2)w + 2w>yy(l + 2t\q2) 

1ol^W,xxxx+ ^2 + ntl + nt2^W xxyy + + n02^w J 'xxyy o2 ,yyyy s 
r2m 

(3.1) 
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where the terms underlined twice are those which appear in set c only, 

those underlined once - relate to sets b and c but not to set a. 

The boundary conditions, are given with the same marking for the 

different sets: 

(i) 

(ii) 

u = 0 or 

V = 0 or 

(iii) w = 0 or 

(1 + y )u + v(v - w) - X,w + Tw = 0 
,y l ,xx ,xx 

1-v N 1- 
(“0^ + ~-)u + -^-(1+31) V + Tn . V 

¿ ,y 2 _ ,x tl ,x 

, -.m I-V + 3T ——- w + Tn ,w = 0 
-i_£*¥. t:L >XV 

U - ç )u - ■i— u + + n ,)v + 
^ ,xx ^ >yy 2 tl ,xy 

(iv) w 

- 2 
N R 

+ vxv+ <2-v+r' .th.-jw -- W =0 
or ,xxx tl t2 ,xyy D ,x 

•=0 or (i " CJu v + vv + vw, + (1+n )W 
,x - 1 ,x ,y yy ol , XX 

(3.2) 

The following displacements are now substituted in Eqs. (3.1) 

u = Ahe^X sin(ny) 

V = Age^X cos (ny' e LJj^ (3.3) 

w = AeXx sin(ny) ei<<)t 

This is the usual substitution in the "exact solution" method discussed in 

Chapter 1. 

The substitution of the displacements (3.3) in the equilibrium 

equations (3.1) yields: 
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[f^ + í2) [f3X] [f4XJ + f5X] 

[f3X] [fcx2 + f,] [fQX2 + 

+ f^X] [fX + fQ] [f10A^ + + f, J 
11 '12 

Ah 

Ag 

L J 

(3.4) 

where the coefficients f defined in Eqs. (C.l) in Appendix C. The con¬ 

ditions for a non-trivial solution is the vanishing of the determinant of 

the coefficients, namely; 

-8 - 6 - 4 - 2 
A_X + A.X + A_X + A_X + A, 
5 4 3 2 1 (3.5) 

where the coefficients Ã are defined by Eqs. (C.2) in Appendix C. Eq. 

(3.5) has eight roots (determined here by the Newton-Raphson method), 

and hence the displacement components are; 

u * sin (ny) e 
ioJt 

8 
Z A.h.e 

j-1 33 

X ,x 
3 

V » cos (ny) e 
iu)t 

8 
2 A.g.e 

3-1 3 3 

X .X 
3 (3.6) 

w = sin (ny) e 
icút 

8 
Z A e 

j-1 3 

X ,x 
3 

where h^ and g^ are obtained from Eq. (3.4) 

, -y^Ve - ^^7 - f5f6 - y«1 - y, * y7> 

3 £lVj + Xj(£2£6tfl£7-£3> +£2£7 

. ^£3£4 - W £ *1^3^ -£2£e - flV - £2f9 

(3.7) 

£l£6^ + Xj(£2£6 + £1£7 - £3> + £2£7 

MMUflHÜ iUMüÉMIiMHiÉI «ttiÉiaiiiia 
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Substitution of the displacement components Eqs. (3.6) in the boundary 

conditions Eqs. (3.2) yields: 

8 A.x 

a) Z A.h.e 3 b = o 
j=l 3 i 

or 2 [(1+W ) A h -vng -v-xiA2+TA2]e A - 0 
j=l A J J J j 

8 
'A 

8 N 
b) 2 A^g^e J ü = o or E^{(¿~+ ~)nh >[—(1+3?)+10,, ] Aj9j + 

j=l ■tlJ"jgj 

1-V 
+ T (3-^- +ntl)nA^}e 1 “ A^ = 0 

8 Xi*b 
c) Z A.e 

j-1 3 

+ Xj(1+rioi)_(2“v+r,tl+nt )n2xj ■ 

N R2 A . X 
* , , 1 b 

~ 15 Ve Aj = 0 

d) I A.A.e 
j.l ^ 3 or Z IU-Ç )A.h -vng.-vnS(l+n .)Aj]e ^ bA. = o 

3»1 1 3 3 -1 ol j j 

(3.7) 

where is the end coordinate, and here Xj^ = ± L/2R (see Fig. 1). m 

abbreviated form, the boundary conditions read: 

[[¢) IN] + M[Y]]{A} - 0 (3>8) 

where [Y], [n], [¢) and [ÿ] are 8x8 square matrices and {A}a column matrix of 

eight elements, [y] describes the geometrical boundary conditions, and 

(N) the natural ones (of the forces and moments). [<J>] and [ÿ] are 

diagonal matrices, whose diagonals consist of ones and zeroes, that 
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determine which of the two possible boundary conditions is valid. The 

elements of all the matrices are defined by Eqs. (C.3) to (C.6) in 

Appendix C. Clearly, always: 

!♦! * I») - III ,3.,, 

where [I] is a unit matrix. 

For Eq. (3.8) to have a non-trivial solution, the determinant of 

its coefficients must vanish, namely: 

IWIN] + *o (3 10) 

Since the aim is to find the frequency and mode shape of the free 

vibrations of a shell with a given geometry, load, boundary conditions 

and circumferential wave number, the solution proceeds as follows: 

(1) A certain initial frequency is chosen. 

(2) The initial frequency is substituted in Eq. (3.5) and the 

roots of the equations are found. 

(3) hj and g^ are found from Eqs. (3.7). 

(4) Equation (3.10) is checked for compliance. 

(5) If it is not satisfied, the frequency is increased and 

steps (2)-(4) are repeated. 

(6) If Eq. (3.10) is satisfied the natural frequency has been found. 

(7) To obtain the corresponding mode shape, the relationship between 

the coefficients Aj are found from Eq. (3.8) with the aid of 

Cramer's rule, and substituted in Eqs. (3.6). 

(8) Substitution of the displacements, Eqs. (3.6), in Eq. (C.7) of 

Appendix C then yields the resultant forces and moments. 
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Having found the first frequency, the others are determined in a 

similar manner. The calculation is carried out for a certain n 

(circumferential wave number). n represents therefore a known parameter 

m the calculations. It should be noted that determination of the frequency 

at which Eq. (3.10) vanishes is quite difficult, and hence in practice one 

looks for the frequency at which the determinant changes its sign. The 

required frequency is then known to be between this last frequency and the 

one proceeding it, and is obtained by iteration to the desired accuracy. 

There are, however, additional computational difficulties. The roots of 

Eq. (3.5) and hence the determinant in Eq. (3.10) are generally complex. 

This raises the question which part of the determinant, the real or the 

imaginary one, must be checked for change of sign. A discussion of 

this point is given in Appendix D. 

The case of a shell under a uniform compressive load is of special 

interest. The total load on the shell is P. and therefore: 

M P 
X ' ‘ 27r (3.11) 

The variation of the natural frequencies and mode shapes with 

increasing P are now studied At a certain value of P the shell 

bucklis. The definition of buckling depends also on the point of view. 

Dynamically, it may be regarded as the state of vanishing frequency, at 

which ti,*. shell departs from the state of equilibrium and does not return 

to it. Accordingly, the value of P is sought for which the natural 

frequency is zero- The procedure is as follows: 



(1) All terms containing u inEqs. (3.5), (3.7) and (3.10) are 

made to vanish. 

(2) An initial load P is chosen. 

(3) The initial load is substituted in Eq. (3.5) and the roots of 

the equation are found. 

(4) h_. and are found from Eq. (3.7) 

(5) Eq. (3.10) is checked for compliance. 

(6) If it is not satisfied, P is increased and steps (3)-(5) are 

repeated. 

(7) if Eq. (3.10) is satisfied, the buckling load has been found. 

(8) if the pattern is sought, the relationships between the co¬ 

efficients A^ are found from Eq. (3.8) and substituted in 

Eqs. ( 3.6) . 

Obviously, the result is the buckling load for a given n, the actual 

buckling load being the lowest one for any possible value of n. 

The axisymmetnc case (n = 0) mentioned in Chapter 1,differs from 

the others and is discussed in Appendix E. The case of pure torsion 

is discussed in Appendix F. The case of SS3 boundary conditions is 

often discussed in the literature, since its exact displacement functions 

are relatively simple. Here it is discussed in Appendix G. 

The computations by the above procedure are generally lengthy and 

cumbersome. A computer program was prepared based largely on the program 

proposed by Cooper [98] , who employed the "exact" approach for isotropic 

shells of revolution with axial curvature. 
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4. VERIFICATION OF THE METHOD OF ANALYSIS 

The first step in the verification of t><=> method developed, is a com¬ 

parison with results obtained by other investigators with different 

approaches and procedures. In the absence of a suitable reference for 

comparison of the variation of the natural frequencies under intial static 

load (axial or external pressure) and with different boundary conditions, 

the comparison is carried out for no-load frequencies and buckling loads. 

The no-load frequencies are compared with the results of Sewall and 

Naumann (53],(whose theory assumes "smeared" stiffeners, is based on the 

Novozhilov strain expressions and takes into account also the rotational 

inertia of the shell cross-section). Their solution employed the Rayleigh- 

Ritz principle, and represents the longitudinal vibration modes by an 

arbitrary number of beam modes with suitable boundary conditions. The 

calculations by the present method are based on set c of the equilibrium 

equations and B.C.'s, which for zero load is identical with set b. 

Figures 2-5 show the comparisons for externally stringer-stiffened 

cylindrical shells with 4 different sets of boundary conditions. The 

dimensions and properties of the shells are given in Table 1. Agreement 

between the frequencies computed by the two methods is generally good, 

bearing in mind that the curves reproduced from Ref. [53] have been scaled 

up, which reduces their accuracy. The largest discrepancies appear for 

the free-free B.C.'s (Fig. 5) and even there, the largest difference is 
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less than 9%»being generally much smaller. Sewall and Naumann's Fig. 7 

compares their results with those of Ref. [51] for the SS3 case, (in 

[51] smeared" stiffener theory is used as in the present study, except 

that there only Donnell's theory, set a is considered). The differences 

there are very small, and of the same nature as in Fig. 2 of the present ^cudy. 

Sewall and Naumann's results are lower at small wave numbers and higher 

at large ones. 

Figures 6 and 7 present a comparison for externally ring-stiffened 

shells, and the agreement is again satisfactory. 

The comparison of buckling loads is carried out for different 

circumferential wave numbers (see[101]) with results obtained with the 

BOSOR 3 program [99],[100], which is based on the method of finite- 

differences. The agreement for the buckling loads is also good. 

The results of these comparisons increases the confidence in the 

soundness of the method of analysis developed here. 
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5. CONCLUSION 

A method has been developed for analysis of the vibrations of pre- 

loaded stiffened cylindrical shells with different boundary condition. 

"Smeared" stiffener theory is employed. Three sets of equilibrium 

equations and boundary conditions, based on different theoretical 

approaches, have been obtained. The differences between results obtained 

from the three sets of equations have, however, been shown in [101] to 

be very small. A computer program, utilizing the "exact" solution, 

has been developed for solution of the three sets of equations and to 

obtain the frequencies, buckling loads and mode-shapes. This method 

presents a very easy solution for any combination of the natural boundary 

conditions. The method has been verified by comparison of the results 

with those obtained by other methods. The good agreement observed lends 

confidence to the proposed method of analysis. 

Verification of the theory with experiments has also been performed. 

Again, good agreement is obtained. Details are given in the parallel 

report [101]. 
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APPENDIX A - DERIVATION OF EQUILIBRIUM EQUATIONS AND BOUNDARY CONDITIONS 

FOR STIFFENED SHELLS ACCORDING to flügge's theory. 

(A.1) INTRODUCTION 

As shown in Fig. 1, two coordinate systems are used: the dimensional 

* * * 
one (x , y , z ) and the non-dimensional system (x, y, z), with: 

* .i. 

X y z 

x = r? y R ; z = r (A.l) 

The shell boundaries are at x‘, x*,(or x^ x2). The derivation proceeds 

as follows: The expressions for the strain energy of the shell and the 

stiffeners are found and a variation is performed on every term. The 

sum of the variations, plus that of the potential of external forces, 

represents the first variation of the total potential of the shell. When 

made to vanish, it yields the equilibrium equations and natural boundary 

conditions. 

* * * * * 
Now' VT'WT are the displacement components in the x , y , z* - 

directions respectively. According to Flügge [3], 

* * * * 
uT = u - Z w>x* 

* * R - z* * * 
■ 2 w,y* (A.2) 

v = V 
T R 

wm = w 
T 

, * * * 

wnere u , v , w are the displacements at the middle surface of the 

* 
shell, where z = 0. The strains are, according to Flügge's theory: 

* 
e 

: 

e 

xT * UT,x* 

R , * w* 
*(VT,y* " T] yT 

R - z 
Y * R * 
xyT « (v„ . . . u ,) 

R - 2 T'y 

1 _ w 
T,x 

(A.3) 



Substitution of Eqs. (A.2) in Eqs. (A.3) yields 

'xT 

* * * 
U - Z w * * 

,X X *X 

'yT 

* 

V * 
*y 
_M. w * * - 

w 

R - z 

xyT 

By Hooke's law, 

R - z * 
R V,x* + 

>y y 

R 

R - Z 
(A.4) 

u* . --£5- w * * - 
R - z R - z -X y 

* * 
z w * * 

»X y 

XT (e _ + ve „) 
2 ' XT yT 

1 - V 
E 

(e _ + ve ) 
yT J _ v2 yT xT (A.5) 

xyT 2(1 + y) 'xyT 

With these expressions for strains and stresses the strain energy of the 

shell can now be computed. 

Strain Energy of the Shell 

To avoid lengthy calculations, the expressions for the strain energy 

of an isotropic cylindrical shell obtained by Bleich and Dimaggio [102] 

from Flügge's theory are employed after some modification of the coordinate 

system. The strain energy of the shell may hence be written 

U 
sh 2 I + (V* * - f-)2 + 2vu* *(v* * - ~) 

* ,x *y R ,x ,y R ' 

' *v>2]dxV. + (w*y.y. * si)2 

* 

+ - X - . V * V 2 
w* * * - - u* *)2 + 3(1 ~ v> (LlX* * )2 + 

2 ,X V R v*; 5 I rj + w * * »X y R »y 2 1 R ,x"y" 

v" * * 

i- 

* * * * vw* o** 
+ 2vw * *(w * * + -£-> + 1 u *W,xVldx dy 'XX ,y y R ' r u x* 'X X (A.6) 

iikidÉiaÉiaMMHÉlUiMHkHÉÉHMiHíe Xx. LX. -1' V. 
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Rewriting -he above in non-dimensional displacements and coordinates, and 

performing the variation, one obtains 

6USh = R fj { lNx6U,X + Nyx6u,y’ + [(Ny - My)6v,y + % " \y )^] - 

1 • I t 

(Ny 5w + Mvów'vu. + M ów, _ + (M + M 

where 

I 

N = S[u + v(v - w) + Tw 1 
x >x >y ,xx 
i 

Ny * StV.v ~ W + v - T(W _ + w)] 

y 'yy "'xy “yx )0w'xy1} ^ dy <A-7) 

»y -yy 

- q 1 ~ «... - s --—[U + V + T(V +W )] 
* ? Ä V **•“ 

xy 

■ 
I 
yx 

,x ,xy 

N - = s v + V + T(u - w )] ' 1» -- -y »xy 

Mx =- -Tlw,xx + v(w.w + v .,) + u „] -yy »X (A.8) 

M 
y 
- 

i 
xy 

M 

' 7 Iw.yy + “ * 

D 
-r(l - v)[w, + V ] 

r2 xy ,x 

D 
^VX = ~ 2^~v)tw - U +— V 1 
yx R2 -xy 2 ,y 2 ,xJ 

Integration of Eq. (A.7) by parts, bearing in mind that the integration 

path along y is closed and that all variables are continuous in it, 

yields 

6Ush = ■ r2//{1\ x + n’x vJ¿u + in’ x,x yx,y y,y M„ „ + N - M Jôv + 
y»y xy,x xy,x 

+ '“y * Mx,xx ’ M y,y/ M xy,xy+ Hyx,xylâu,dx ^ 

» R2/[Nx5U . (Nxy - Mxy)Sv t (M¿ . + h’.* M 
x,x 

x=x- 
xy»y yx,x 

) 6w - 

- M 6w ] dy 
x ,x x=x y 

(A.9) 
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One may note that the quantities in Eqs. (A.8) are identical to the ones in 

Flügge*s theory, except that the moments are divided by R. 

(A.3) Strain Energy of the Stringers 

The strain energy of the stringers is contributed by bending and torsion. 

The flexural strain energy is 

5+d 
C1 ^ x 2 * * * 

U i. = •rr“/// E e dz dx dy 
stb 2b, - 1 xT J 

1 h 
(A. 10) 

and its variation 

6U 

h : 
T +c^i c 2 1 1 * it * 

. i E, e m6e dz dx dy 
stb b. h 1 xT xT 2 

1 2 

(A. 11) 

Substitution of the strains»Eqs. (A.3) »and integration by parts with respect 

* 
to z yields 

¿0 = - R //[N 6u + M <5w)dx dy + S I p V V V w ■* X , X X , XX 

X^X,. 2 •• •• m "*2 
+ R /[N 6u + M ÔW - M 6w ] dy 

X X,X X ,x x*x^ 1 

where 

(A.12) 

"x ■ - *l\xx' 
" D , 

M ---[n w - ç,u ] 
x r2 ol ,xx 1 ,x 

(A.13) 

The torsional strain energy is 

1-- * 

= tk- * * + -~—) ^dx dy stt 2b1 1 1 ,x y R 1 
(A.14) 

and its variation: 

<5U 

* 
V * G -i d 1 ^ ., . 

.. = —r—SI (w * *+ ■■ •'*- ) (6w * * + — 
stt hl ,x y R »X y R 

6v * 
,x ,, *, * 

)dx dy (A.15) 
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Rewriting Eq. (A.15) in non-dimensional form and integrating by parts, 

one obtains 

Dntl//[-(w 
stt ‘'"tl" 1 '",xxy + v,xx)6v + (w.xvw + v vv,,)fiw3dxdy - ,xxyy ,xxy 

ti“ '".«y ' -.X'”- T + V,xy)Î"I«.x, ^ ” DntVl~(W vv + v v)<Sv ^ (W 

(A.4) Strain Energy of the Rings 

x=x 

(A.16) 

Similarly, the flexural strain energy of the rings is 

, 7«, 

Urb * 2b"/;/ E2eyT dz dx dy 
2 h 

(A.17) 

2 
and its variation 

h 

iUrb = bJ//;_ E2eyTÔeyT dz*dx*dy* (A. 18) 

h 
2 

Substitution of the strains Eqs. (A.4 ) and integration by parts, yields 

•I II 

0Urb ~ R ("Ny,y + My,y)0V " (Ny + My 6widxdy (A.19) 

where 

Ny " S[u2(v,y' W) + ^2{V,y " 2w “ W.VJ ~ T^o(2w + 3w - v J J ryy o2 ,yy 

(A.20) 
M ,, ~ (w + 2w - V ) + Sy (v - w) 
y R2 02 >yy ,y X2 ,y ’ 

The torsional strain energy of the rings is 

U 
Tt ‘ 2b¡ "Vy^xV*1 V (A.2.) 

ÔU 
rt 

G J 
2 2 * * * * 

//w * * 6w * *dx dy 
-V v “ 

'2 *x y »x y 

Rewriting again Eq. (A.22) in non-dimensional form and integrating by 

parts, one obtains 

(A.22) 

J 
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X—X 

6Urt = Dnt2//w xxvv6w - Dn.-/tw 6w] 2 dy rt *xxyy t2 ,xyy x=x^ J 

(A-5) The Potential of the External Forces 

(A.23) 

The external forces include the edge and surface loads(Ñ and Ñ 
X xy 

p) and inertia forces due to motion of the shell (-Mu, -Mv, and -Mw). 

Ñx acts at a distance z * e from the middle surface of the shell, and 

Nxy - at t^le surface. M is the mass per unit area given by: 

- P1A1 P2A2 
M * ph + + -=-+- 

bl b2 
(A.24) 

Bearing in mind that the rotational inertia of the shell cross sections 

is neglected,the variation of the potential becomes 

* * * 

* * 
X =x- 

ÓV * - .7p6w"dx"dy'- /tÑxóu‘| , _ J * dy* - /[Ñ ¿vV/^ dy* + 
1 z =e X =x^ y X =x 

- .. * ”* * * ti 
+ M,;[u 6u + V 6v + w 6w ] dx dy (A.25) 

Substituting for <5uT| ^ A its value given by Eg. (A.2) and non-dimensional- T * 
z =e 

izing one obtains 

ÔV = R // [hu6u Mvóv -f- (MW - 6w) dx dy -»• 
R 

2 - - _ x*x 
+ R /[-N 6u - Ñ 6v + Ñ — ów 1 2 dv 

x xy X R ,xJx=Xl y (A.26) 

(A‘6) gg-rlvation of Equilibrium Equations and Natural Boundary Conditions 

The equilibrium equations are obtained from the conditions 

+ <5U + ÓU +6Ù + 6u + 6U = 0 
sh stb stt rb rt u 

After substitution of the appropriate values ,Eq. (A.27) becomes 

(A.27) 
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- //[N + N + N - R2 M u]6u dx dy 
yx#y x,x 

- If lu -M + N -M + N -M 
y»y y#y xy»x xy,x y,y y,y 

- 2" 

- MR v]ôv dx dy 

ntlD + —r- (w + v - 
xxy ,xx 

* • ■ * I H ft II 

-//[N+M + M +M + M + M +N+M 
y x,xx y,yy xy,xy yx,xy x,xx y y,yy 

' 7<ntl + \2)“,xxyy • 72 \lv,xxy ' Sr2w * RP|6u d' * 
K R 

I » _ X=x 
+ /[N + N - N )6u] dy 
XXX x-x^ 1 

' ' D - x“x5 
+ /{[N •*M + —r H. . (w +v )~N ] ôv} dy 

xy xy r2 tl ' ,xy tx' xyJ x»x1 y 

+ /{ [M + M__ + M. + M„ „ - n 
x,x 

x=x. 

xy,y + Myx,y + Mx,x " R2 nt2w,xyy " r2 ntl(w,xyy+Vfxy^^-x^ 

x=x„ 
+ /[(- M - M + N 2.)ôw ] dy = O 

X X X R ,X X^Xj^ 1 (A.28) 

which in turn yields the equations of equilibrium 

2- " 

N + N = RM U 
X,x yx,y 

N - M + N - M = R2M V 
y»y y#y xy,x xy,x (A.29) 

N+M + M + M + M +Rp= MR2w 
y X»xx xy,xy yx,xy yfyy y w 

and the four boundary conditions, to be satisfied at x = x and x * x 

a) u = 0 or N - N = 0 
x x 

b) v = 0 or N -M -Ñ =0 
xy xy xy 

c) w = 0 or M + M + M =0 
X,x _xy,y yx,y 

d) w = 0 
»X 

(A. 30) 

or M -Ñ 
x x R 
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where 

• Il 
N = N + N = Stl+U )u •*-v(v „-wj-x.w +Tw J 
x x x * »X *y l ,xx ,xx 

I h 

Ny = NV + Nv = s{(l+u )(V -w)+vu +X-(v -2w-w )- y y Y 2 ,y ,x 2 ,y ,yy 

- T[w + w + n _(2w + 3w - v )]} 
*yy o2 ,yy ,yM 

Nxy‘ % - s ^ lu.y + V* T<\, * “.V1 

V ■ V = sir[",y * v + T'“,y - »,xy>i 
D 

MX ' MX + Mx ■ - ¡r"1 * VW,XX + V(”,yy + '.y’ + ^ ' V",»1 

My - My + My ' - ^1(1 * no2) („>iry + V) . vw_xx + (no2 * C2) (W - V yn 

M = M ' ntlD 
xy "xy R2 (w,xy + V,X> = ‘ 21 (1”v) <wfXy + v>x) + 1,., <w + V J J 

M = M - —— ri w 
yx yx r2 t2 ,xy 

tr ,xy 

(1-V) ^xy * J(v x - u ..)] » n..w 
K t2 ,xy 

(A. 31) 

Substitution of Eqs. (A.31) into Eqs. (A.29), yields the equilibrium 

equations in terms of the displacements 

1-v 
■l'“,xx 2 

2- 

(1+W,)u ..,+^-(1+1)u + ~v -vw -(x -T)w -T - — u 
'YY 2 ,xy ,x lXl 1,W,xxx T T^,xyy ~ u 

1+v . 1—V 
r".xy*(1+“2'»,yy*|—'^3T,+ntlT]ViXx-U^2n2*Tno2l„ii 

-(X,+Tn )w + T(~r~ + n ,)w = ÿ 
2 o2 ,yyy 2 tl ,xxy s 

VU,x+(XrT)u,xxx+T ÍTU,xyy+(1+‘J2+X2+TT1o2)V,y +(X2+Tno2)V *yyy 
,3-v 

' T( 2 * ntl,V,xxy-(ltU2t2><2”'-2i<2",yy"-1'to3''o2>”*2“,yy<lt2''o2) 

2- 

+ U+n «iw vv +(2+0 +0..)w +(i+o ,)w ]+ SE» — « 
or , xxxx tl t2 ,xxyy o2 ,yyyy S e w 

(A. 32) 

MMHMMMi 
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«nd similarly the boundary conditions in terns of the displacements 

a> U-° °r SI(1*>'l)u,xt'"v,y-»> .» 

are 

-XX ,XX 

b) V = o — cr s__[U ir t v x * 3T(v xt wixy)] ♦ 2j ntl («„..» V J = N 
»XY #x xy 

1-v ,3-v O w = 0 or + 

+ (2 - V + n.e + n _)w = o 
tl t2 ,xyy 

d) w = o 
#x 

D - 
or v + vv + vw +(l+n )w i = Ñ £ 

R2 1 'x 'Y *yy oi,w,xxJ Nx R 

(A.33) 

The above equations reduce to those given by Flügge [3], when the con¬ 

tribution of the stiffeners vanishes. 
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APPENDIX B DERIVATION OF EQUILIBRIUM EQUATIONS AND BOUNDARY CONDITIONS 

FOR STIFFENED SHELLS ACCORDING TO DONNELL'S THEORY. 

The derivation and the coordinate system are similar to Appendix 

A, and hence only differences will be pointed out 

According to Donnell 

* * * * 
u = u - z w * 

A fX 

•K * * * 
VT = V - z W>y, 

* * 

w = w 
T 

(B.l) 

^ter iocozporation of non-linear terms for the three strains, they 

become 

* 1 *2 * 1 *2 * * 
CxT = UTv*+7Wv*==U„* + t‘w * - z w ** Xi I *x * rX ,x 2 ,x ,x X 

* * 

£ - V* 4. I ,,*2 _ * w 1 *2 * * 

yT T,y* R 2 W,y* " V,y* " i“ + J W,y* " 2 W,yV 

* * * * * * 

YxyT = VT,x* + UT,y* + W,x* W,y* = U,y* + v,x* + w>x* -2z w>x*y* 

(B.2) 

Application of Hooke's law and the first variational principle yields 

the equilibrium equations 

2- '* 

N + N = R M u 
X** xy,y 

\.y * Nxy,x • r2íÍ v 

"x.xx * \,yy + M xy,xy+ Myx,xy * Ny * V.xx * Ny\yy * 2N,y“,xy 

N w +N W +N W +N W + Rn = r2m u x,x ,x y,y ,y xy,xW,y + xy,yW,x + RP = R M » 

(B.3) 

and the natural boundary conditions 

■Ué IIIHHNÉ 
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a) u = O 

b) V = o 

c) w = o 

d) w 

or N = N 
X X 

or N = N 
xy xy 

°r NXW V+Nw + M +M +M 
x xy ,y x,x MXy,y Myx,y 

»X 

where 

N Eh 

x /, 2 (1-v ) 

Eh 

or m = Ñ - 
x x R 

“"“l’ <U.*+ Î ‘ * 7 - XyW ^l 

I ll+Uj) t i W^) 

(B. 4) 

(B.5) 

Ny = —rlu+u2 

Nxy = Nyx= Ta^rIu,y + V/X + w,xw,yJ 

M D 
X ■ ' R2['UnOl,U.XX * ™,yy - CylU^ * i W^, ) 

"y * ‘ ^t(ltVW.yy + XX - î2(v>ÿ - » * i W^y) 1 

Mxy” - [(1 - V) + n ]W 
* ti ,xy 

Myx = " t(1-v) + n ]w 
y t2 ,xy 

su^tuuti,,, Eqs. (B.5, i,. Eqs. (B.3, and (B.4, one obtains tb. e^Uibrioa, 

equations and boundary conditions in text,, of the displacements, io stress 

the differences between the two theories, the equations can be written i„ 

the following form 



- 50 - 

(1+li, ) u + u + 
f XX 2 ,yy 

-1-v 
_ u 
J_æL 

H-v 
+ —r— V - vw - x,w 

2 , xy ,x 1 , XXX 

T (w - w ) 
,XXX 2 f xyy 

= r2m 
u 

14-V . 1-V 
— U + (1+W^)v + —T— V + 
2 ,xy 2 ,yy 2 ,xx 

, 1-v „ „ 
3 -r— Tv + Tn -V 

2 ,xx tl ,xx - V.yyy 

- (l«2)w_y 
, 3-v 

-x2w y ♦ T[(— Titl).|X>v- no2<w_vvy - w_v)| 
r2m 

vu + X,u 
,X 1 ,XXX 

T (u - u ) 
,XXX 2 ,XVV + <1+,,2|V, . + V,yyy 

X-v - T [ (-~ +nj_.)v -n (v +v )] 
2 _2_ti_txxy_o2_a_.yw 

W (1+UJ 

- 2x2w - 2X2w>yy - Tl (1.3no2)w - 2w vv(U2r,o2) + (i+n ,)w 
ol ,xxxx 

2- 

X ,, X . Rp RM 
w (2 + + ri ) + (1 + n Jw ] + T*“ — ——- w 
,xxyy tl t2 o2 ,yyyy s s 

(B.6) 

and the boundary conditions, similarly 

(a) u = 0 or S[(1+p,)u + v(v - w) - x,w + 
1 ,x ,y A1 ,xx 

Tw 
,xx 

] = N 

.1-v, 
(b) V = 0 or S—r—[u +v + 

2 »y ,x 
3T(v +w ) 
_>iL.-».xZ 

] + —»r (w +v ) 
R2 tl ,xy ,x 

N 
xy 

(c) w = O or “Ç,u + 
1 ,xx 

1-v .3-v . 
u _- —zr~ u + (—r— + H )v 

t XX 2 ,yy tl fXy 

+ (l+n^,)w + (2 - V + n , + n^-)w = o 
ol f XXX 'tl t2 ,xyy 

D 
(d)w =0 or-tî-Çu + 

*X P* J- »X 
U +V V 
,x ,y 

+ vw +(l+n ,)w ] = Ñ ~ 
,yy ol ,xx x R 

(B.7) 

where the "boxed" expressions appear only in Flügge'r equation: and not 

in Donnell's. Note that the above equations contain no non-linear terms, 

.. 

y 
-i 

J Lm
m
j**
™

 J»J* 1' IIJ*
If
>

1''I 
H

m
w

w
w

a
t
 

u
m
m
i
 



APPENDIX C SUPPLEMENT TO CHAPTER 3 

The coefficients in Eq. (3.4) are 

Ñ 

fi - 1 * ^ ♦ r 

2.1- 
t ^ = — r» I — = -n2[-^(l + T) - ) + Ku)2 

I+v 

= 1 - X, 

e I pR, ml_V 2 
fc = - (v + 5-) + T—— n 

N 

- (X + 3T, - ntlT - ^ 

n2(1 + U2 - ^—) - Kuj2 

-nT(ir+ \x> 

£9 - n(l ♦ + . T-loJ - |^) - »3(X, ♦ Tn.,) 
'02' 

IO 
T(1 + n .) 

oi 

N 

fxi ■ 'Tn2<2 + nti * \2> - r 

f12 ■ 1 + u3 * 2x, + T(1 + Xn,,)- n2Ux2 + |£ t 2T(1 * 2n_,) ) + 
_o2 

4 2 
+ Tn (1 + n 0) - Kai 

o2 

02' 

(C.l) 

The terms underlined twice appear in set c only; those underlined once 

do not appear in a. 

The coefficients in Eq (3.5) are 
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A5= flf6f10-f6f4 

N = f2f6f10+ flf7f10 + flf6fll " flf8 " f3flo' f4f7 + 2f3f4ffi " 2f4fSf 

A3 “ f2f7f10 + f2f6fll + flf7fll + flf6f12 ' f5f6 ' 2f4f5f7 " f2f 

3 4 8 4 5 6 

2- _ 2 
8 

" 2flf8f9 - Vil + 2f3f5f8 + 2f3f4fç 

2 - i2I7Ill + r2r6£12 + flf7fl2 ' 2f2f8f9 ' flf9 * f3f12+2f3f5f9 ‘ & 

1 " f2f-'f12" f2f9 

(C.2) 

Now the elements of matrix [Y], defining the geometric boundary 

conditions in Eq. (3.8) are 
A.L 

V, . = h.e 
lO 3 

Y2j - ’3* 

2R 

A .L 

~ 2R 

Y = h.e 
53 3 

Y. = e 
33 

A ,L 

2R 

Y6j “ gje 

A .L 

2R 

A ,L 

2R 

A .L 

2R 

Y7j = e 

43 3 

A .L 
_a_ 
2R 

Y8j “ Aje 

A .L 

2R 

and those of matrix [N], defining the natural boundary conditions. 
A .L 

2.„,2, 2R 

(C.3) 

are 

Nij = I(1+W1)A;.h:j-vngj-v-x1Aj+TApe 

N 

N2j = {(¿F + +ntl]nA.}e 
1-v 

A .L 

2R 

N3j= 1(-ci|hjAj* V"2hi ~ ‘V*- 

~(2 -y + ntl ♦ nt2)n2». - ^X.]e 

A .L 

2R 

..aüMlÉfcifc ÉMttÉIWÉÉMMlÁlUkllÉiHlÉfe 
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X^L 

N4j = [U - ^jhj - vng^ - vn2 + (1 + 2R 

A_. L 

N_. = [ (l*y. ) X .h - vruj , - v - XlX2 + TX2]e2R 
5j 1 3 3 3 1 3 _3 

N 

N6j= {(iri + r)nh3 + + ^ti]Ajgj+ Tl2kr+ \iinVe 

N7j = [(l-Ç^h.X2 + —nV - + r)tl) Ajngj+Xj (l+ri0i) “ 

- A L 

2 \R à“ 
- (2 'v + nti+ \2)n Aj -ir-We 

XX 

N = ((l-C.)X.h - vng. - vn2 + (1 + n 1)X2]e2R 
°3 ~ 3 3 3 ol ] 

X .L 

2R 

(C .4) 

In both matrices, the first four rows represent the boundary con¬ 

ditions at X = - L/2R and the last four at x = L/2R. In [Y], the 

first and fifth rows represent u = 0, the second and sixth v = 0, 

and the third and seventh w = o, and the fourth and eighth w = 0. 

In [N], the first and fifth rows represent = 0, the second 

and sixth N - M + N u 
xy xy x ,3 

0, and the third and seventh N w + 
x ,x 

MV V + MW V + Muv „ = °' the fourth and eighth M = 0. xy,y yx,y x 

For the SS3 case (N = 0, v = 0, w = 0, M = 0 at the edges) 
x x 

the matrices [ij;] and [<J>] become 



- 54 - 

w = 

o 

[¢1 = [I] - [^] 

For clamped edges, u=v«w*w«o, these matrices become 

(C .5) 

... 
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¢ = 1-,/,= [o] 

(C.6) 

The resultant forces and »cents are obtain«! by substitution of 

Esq. (3.6) in Eqs. (A.31)j 

N = S • sin(ny)« eiü)t £ 

Nv = S • sin(ny)• e lüJt 

^Ul+UjIh.A.-vny.-u-Xjl. t 1 » 

8 

AIvVi • n9ja + “2 * 

A .X 
(1 + U2 ~2x2 ~ 3Tl^o2 " + n2(x2 + T + 2Tno2)]e ^ 

Nxy = s cos(ny^iut Z tnh + A g (1 + T) + TA.n]eXjX A 
j=l J J 3 ~ 3 

riWkkittküÉÉíiMMlH 
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J „ c 1^. . . iut 8 AjX 
\x S 2 cos (ny),e £ id + T)nh + X g - ta,n]e ^ A. 

j“l -3 ^ J - J j 

M 

M 

iajt 8 
T sin (ny) ,e E Kl - çjA.h, + 
R j=l 3 J 

a2 
'ol,Aj 

A .X 
vng. + (1+n JA* - vn2]e j a, 

8 

R2 sl"("y> 1^2 + C2)ngj ♦ 1 ^no2 - î2 - 

2 2 X-ix 
- n (1+n ,) + vA.Je -3 A. 

02 3 D 

M 
xy 

D , » lut 8 . 
■J COS (ny)*e E [ (1 - v + n ,) (A.g. + nA4)]e j Aj 
R j»i ex ,_jj 3 

M lut 
yx R2 cos(ny^'^ jfi ‘X^i+ * a- V* nt2)n*.],"i‘ Âj 

(C.7) 

■uMiiyuáJúHÉiHiiUiwtiiiMaÉá* iiaäflMlilMMl 
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APPENDIX_D - DISCUSSION OF DETERMINANT (3.IQ) 

Before consideration of the determinant itself, the roots of Eq. 

(3.5) are checked. One observes that the characteristic equation 

yields four solutions for which in turn, on extraction of the 

square root, yield the eight roots of the equation. It must be borne 

in mind that the conjugate of a complex root is also a root of the 

equation. Hence the following sets of combinations are possible: 

!• 4 full complex 

4 pure real 

2. 4 full complex 

2 pure real 

2 pure imaginary 

3. 4 full complex 

4 pure imaginary 

4. 8 full complex 

5. 8 pure real 

6. 2 pure imaginary 

6 pure real 

7. 4 pure imaginary 

4 pure real 

8. 6 pure imaginary 

2 pure real 

8 pure imaginary 
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Now, as can be seen from Eqs. (C.3) and (C.4), the columns of the 

determinant consist of functions of A^, the function being the same 

throughout each row. Thus two columns representing a pair of conjugate 

roots are themselves a conjugate pair. A determinant changes sign when 

two columns are interchanged. On interchanging all columns with their 

conjugates, the new value of the determinant is the old one multiplied 

by (-1) (2k being the number of full-complex and pure-imaginary roots of 

the characteristic equation), or in effect the conjugate of the latter 

(as is the case when the variable in a complex function is replaced by 

its own conjugate). For the above to be satisfied, the determinant must 

be real for k = 0,2,4 and imaginary for k = 1,3. Of the nine com¬ 

binations listed, (1), (3), (4), (5), (7) and (9) correspond to k = 2,4, 

and (2), (6) and (8) to k * 1,3. In other words, the real part of the 

determinant must be considered in the first case, and its imaginary part 

in the second case. In practice, however, the value obtained is not pure 

real or pure imaginary, due to the cumulative error involved in the com¬ 

putation. 
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APPENDIX E AXISYMMETRIC CASE 

In the axisymmetric case v = o and all parameters are invariant 

in y. Hence the equilibrium equations Eqs. (3.1) reduce to: 

(1 * M1 r F,W?x " (X1 " i,w° 

lv * f:,u!* * (:<1 - I'txxx - * r 

r2m "o 
= —" ■ u 

,xxx S 

,xx (E.l) 

- T[(i -r 3n )w° + (1 + n .jw0 ] = 
'02'" ' T "ol/w/XxxxJ = T W 

and the boundary conditions to: 

a) u = 0 or (1+M )u° - vw° - x,w0 + Tw° = o 
1 'X 1 ,XX , XX 

b) w = o or (1-; )u° + 
Ñ R2 

,-- • (1+n )w --2—w° =n 
1 ,XX ol ,XXX D ,x 0 (E.2) 

c) w = 0 or U-;, )u° t (l+n Jw0 = o 
I »X ol ,xx 

Substituting in Eqs. (E.l) the displacements 

,,° - TV0!,0 AX u = A h e e 

o o ax iwt 
w = A e e 

one obtains 

(f^2 + f2J lf3A3 + f4A] 

(f A3 + f A] [f A4 * f a2 + 

where 

A h 

= 0 

(E.3) 

(E.4) 

f, * 1 + U 

f2 = 

1 S 

f * X - y 
3 - X1 

4 $ 

f5 = T(1^ol' 

(E. 5) 

f 7 = 1+V2x2 + T(1+3n02)_Kw 
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Foi u non-trivial solution the determinant of the coefficients in Eq. (E.4) 

must vanish. Hence 

where 

5°j6 + Ã°A4 * A°»2 + Ã° = 0 

S4 = £Xf5 - f3 

53 ' f2f5 + fl£6 - ’£3£4 

= f2£6 

= f2f7 

(E.6) 

(E. 7) 

From Eq. (E.4) one also obtains 

h° , ^',2f3 + £4» 

3 £1>2 * f2 

Eq.(E.6) yields six roots and hence 

(E.8) 

o icut 
u = e 

6 A ,x 
I e ^ h0A° 

j-1 3 3 

o iot 6T AjX o 
w = e I e J A. 

; 3=1 3 

(E.9) 

Substitution of the displacement componenus Eqs. (E.9) in Eqs. (E.2) 

yields: 

o a — l A_Th e J = 0 

j-1 
2,/j\ h e = o or I [ (1+y )A h”-v+(T-x.)A^]e 3 V = 0 

J J j=i 1 3 I “ 1 3 3 

6 A ,x, 
.e £ A°“ ^ b or E I (¿“^i ) Ajh°+ (1+1 . ) A? - -2— A 

j=l 1 3 3 ol 3 D j 

E A“A e J "= 0 or Z [ (1*C ) A h°+(1+n^. ) A^e^ jXbA0 » 0 
j-1 3 3 j = l 1 3 3 ol j u 

ÑR2 

j-1 
UA3 V = o 

6 A ,x, 
.o, 3 b 

(E.10) 
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The boundary conditions may be formulated as follows 

[U°] [N°l + [^°] [Y°] J{A°} = 0 

where [Y°] , [i|/°] , [N°] , [¢1°] are 6x6 square matrices, 

(E.ll) 

[¢) and [ipj are diagonal matrices whose diagonal consists of 

ones and zeroes, and they determine which of the two alternative 

boundary conditions is satisfied. Obviously, 

(¢1 > 14,] = [I] (E. 12) 

[Y] is again the matrix of the geometric boundary conditions, 

with elements ,, A L 
A L 

0 2R 
Y. . *= h .e 

D 
X ,L 

2R 

0 ,0 2R 
Y . . = h e 
4] : 

A L 

2R 
(E.13) 

Y,. * A e 
33 3 

2R 
Y, = A ,e 
63 3 

A .L 

2R 

whose first three rows represent the boundary conditions at x * -L/2R 

and the last three - those at x = L/2R; the first and fourth rows give 

u = 0, the second and fifth w * 0, and third and sixth w * 0. 

[N] is the matrix of the boundary conditions of the resultant forces 

and moments, with elements 

N°. - [(1 + UjU.lv - V - + TA^le 

A L 

2R 

, Ñ R2 ■ 
n“.- lu-qu.h“* u * V’VÎT-Ve 

A«iL 

N°. * [(1 - c )A h3 f(l + n ,)A^]e 2R 
3] — 1 3 3 oi 3 A L 

A .L 
_L_ 
2R 

N°. * [(1 Ut)A h° - V - XiA. + TA ]e 
43 133 1 3 __1 

MM 
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Ñ R2 

"SJ - ‘<¿ ♦ U ♦ "oi»,3 --S-Ajle 

<i- Xi-ti’Vj* u + V^j1* 2R 

AX 

2R 

(E .14) 

where as in [Y], the first three rows represent the boundary conditions 

at x = " L/2R and the last three - those at x * L/2R, the first and 

fourth rows gives N = o, the second and fifth Ñ w + M « 0 and 
X X ,X X,X 

the third and sixth M * 0. 
x 

For simple supports SS3, 

1^°]^ 

and for clcuaped edges 

j"i 

¡ 1 

[^°J 

(E.15) 

['I'0] = [I] - [*°] - [0] 

For Eq. (E.ll) to have a non-trivial solution, the determinant of 

the coefficients must vanish 
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I [¢1°] [N°] + [1/,0] [y°j I , o 

The vibration and buckling problems are then solved in 

(E.16) 

the same 

manner as in Chapter 3. 
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APPENDIX F - SHELL IN PURE TORSION 

In the case of pure torsion 

V = V ( X f t ) ; u = w = o 

i.e. the cross-sections remain circular. 

There remains therefore only one equilinrium equation 

[~(1 + 3T) + n. ,T + ]v = ¿Ü V 

Assuming a solution in the form 

10)t 
V = i ( X ) e 

and substituting Eq. (F.3) in Eq. (F.2), one obtains 

where 

f fxx + cu2z2f (xj = 0 

R2M 
■■ — 

31^-(1+31) n ,T + —] 
2 —• tl^ S_ 

From Eqs. (3.2) for the boundary conditions one has here 

f(x) = 0 or f (x) = 0 
# * 

The boundaries are x = ±L/2R, and there are three 

n) f(x) « o for both edges, in which case 

cases: 

f (x) = B cos 

and the frequency is 

fxR 

(H,2 
2 ‘l ' 

U) = —-— 

(F.l) 

(F.2) 

(F.3) 

(F .4) 

(F .5) 

(F .6) 

(F .7) 

(F .8) 
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(b) f(x)^x = 0 for both edges, in which case 

flx) “ B sin lET (P.9) 

and the frequency is the same as above. 

(c) f(x) = 0 for one edge and f(x) =o for the other, in which case 

f (x) = Bsin(~ + J) (F.10) 

and the frequency is 

(IE,2 
u2 - — (r.U) 

z2 

--- 
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APPENDIX G - THE CASE OF SS3 BOUNDARY CONDITIONS 

If the boundary conditions are SS3 for both edges » the displacement 

components are given by: 

/ X R* a. ^ iUit u = cos (ny) cosing— + —)e 

Rx 1 iwt 
V = C2 sin(ny}sinmTT(— + j)e 

, 4 . .Rx ^ 1. iujt 
w = C3 cos(ny)sinmiT(~ + ^-je 

(G.l) 

Substitution of Eqs. (G.l) in Eqs. (3.1) yields 

(f1 + Kw ) 

(f2> 

(f3) 

(f2) 

(f + Ku2) 
4 

(f5) 

(f3> 

(f5) 

(f,. + KüJ ) 
o 

(G.2) 

where 

. 2 . n2(i^(l . T) -¾ f - - (1+Uj » 5 ■ -L , .. , 2 ,. i.. s 

r l-*-v ,m7tRv 
f2 ' —n 'ir1 

, ~ 2 1-v .trmR, 
f . „ £E, ,¾ +(x . T) ,¾ 3 . Tn ~' 
3 O L 1 — Li 

f4 = - n2(l + - f5-) - (S^)2[^(l + 3T) T ntlT + 

f^ = n(l + U, + X, + TH_^ - 1^.)- n3(x, + Tno2) - Tn(“-) (-— + nfcl) 
o2 S 

= -(1 + 2X,) + n2(2X2 + 2” Tt(1 3no2) “ 2n2(1 + 2n 02' o2 

{1 + nol) + (2 + ntl + nt2) ^2°2 + (1 + ^2^41 

(G.3) 
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For a non-trivial solution/ the determinant of the coefficients must vanish. 

Hence 

K3u6 + Ã3K2U)4 + Ã2Ku/ + = 0 (G.4) 

where 

A3 “ fl + f4 + f6 

A2 “ flf6 + flf4 + f4f6 " f2 ” f3 " f5 

A3 “ ^lf4f6 + 2^2^3f5 ” ^2^6 " *3f4 ” ^1^5 

(G.5) 

Equation (G.4) yields the natural frequencies. As stated in Chapter 

1, there are three different frequencies of which the lowest (mainly 

associated with the radial motion) is of prime interest; the other two 

are much higher and are mainly associated with in-plane motion. 
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TABLE I - GEOMETRICAL AND STRUCTURAL PROPERTIES OF MODELS FROM REF. [53]. 

PROPERTY 

Radius to shell middle surface 

Shell thickness h 

Stiffener width, 

Stiffener height, d^ 

Stiffener spacing, 

Cylinder length for various end conditions, 

Free-free 

Clamped-free 

Simply supported 

Clamped-Clamped 

Young's modulus for shell and stringers,E = 

Poisson's ratio for shell, v 

Shear modulus for stringers, 

Mass density for shell and stringers p = p 

Cross sectional area of stringer, 

Distance from shell middle surface 

to stringer centroid, e^ 

Moment of inertia of stringer about 

shell middle surface, I 

°1 

MODELS 

9.537 in (242.2mm) 

0.0256 in (0.650mm) 

0.100 in (2.540mm) 

0.2764 m (7.021mm) 

1.00 in (2.54 mm) 

L 

25.125 in (63.82cm) 

24.625 (62.55cm) 

24.00 in (60.96 cm) 

24.00 in (60 96 cm) 

7 2 
Ej^ 10 psi (68.95 GN/m ) 

C .315 

3.8*lO^psi(26.2 GN/m^) 

2 54-10-4 lb-sec^ 

(2.7145-103 kg/m3) 

0.029319 in2(18.92 mm2) 

0.1439 in (3.655 mm) 

0.836124-10-3 in4 

(0.034802 cm2) 
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