
■n 1,1'

AD-784 894

SCHEDULING INDEPENDENT TASKS ON
NON-IDENTICAL PARALLEL MACHINES
TO MINIMIZE MEAN FLOW-TIME

Douglas C lark

Ca rnegie - Mellon University

Prepared for:

Defense Advanced Research Projects Agency
Air Force Office of Scientific Research

June 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

— - —

r- "mmm

 DHCIASSIPIED __
-;W|T'> Cl »»»iriCATlQM or TNH -"ft f—ifn ffjfj rnfMM)

REPORT DOCUMENTATION PAGF.
i M PORT NUMt.l .,

AFOSR - i;; -74-1352
OOV1 ACCl 'i >, IIO

* Tl TLE (••ncJ Subfillfl

SCHEDULING INDEPEIfDEMT TASKS ON HOM-IDENTICAL
PAIALLBL MACHINES TO MINIMIZE MEAN FLOW-TIME

KM'.AU IN'' ! RUC1 IONS
'BEFORE COMPI ETTNQ hORM

> fECll If M'S CATALOG

 AJ>''7mt<tu
I TYPE or RCPOWT « PERIOD CO^mED

I ul. cj rim

' AUTHOHf,

Jouglas Clark

» PEREORUISO cr-T7^TÄ'iKirvrA'v"t"_7S7rÄDo"RKsT'
Carnegie-Mellon Dniversity
Departnent of Corapueer 5cl«nee
PltCsburgh, PA 15213

" CONTROLLINC 9rriCI NAHT MO AOOMtu"

Deft'nsc Advai^cd Research Projects Agency
1400 Wilson Dlvd
Arlington, VA 22209 Anington, VA_22209

Air Pore« Office oj Scienclfic Research ' , /; •
L400 Wilson 11yd /

t PERKOKMINO O^G REPOFIT NUMBCI

«. CONTRACT OP &RART WUMHERT.T

F44620-73-C-007A

• 0. PROOIIAM ELEMTKI. f'RÖurT T tiiT
ARtA t WORK UMT RUBBERS '

61101D
A0k^66

1« REPORT DATE

June, 197A
u. RIIMKTR of-PAGFS-

*£
Arlington, VA 22209

If. DISTRinj-.c.. ,-, «TEMCNT CO/ rM. t »„ZTiT

IS TECUolTY CLASS CO/ (,'„, r,p„r()

UHCLASSinBD
15». IX.CI. A'.ilf ICATrOR DOW>.'.rJA[jiN(;

iCHEDJLE

Approved for public release; distribution unlimited,

17 niSTR,BlJTiON »TATKMCNT re; »: ^wr.r, MMMWta IMMk M. »«MMM eSTE Port)

It SUPPLEMENTÄR V NOTCS

IS
KEY WORDS 'Co .,>,u« M W«WM rtM T/„«c.a.y ^ /c/rnf//y b; blnTTm^T

NATIONAL TECHNICAL
INFORMATION SERVICE
U S Department of Commerce

■ VA 2?\h\

In , . , tasks having known processing time requirements on a set of
non-identical parallel ^chines is to be scheduled so that the mean flow-t me
Of the asks is as small as possible. In this paper it is sho.n that a tri-
vial extension of a ilapl« algorithm for a restricted case perfom well and
o en opcimally. in the general case. A principal result is that for ev^ry

aTo nnarrb""; r'^ "^ ^ *" ^ ^ ^«orithm to produce
ritZ'^\. ^r ^ ^^ h,f)l!ndS ^ the vor^-caSe pcrfonnanc of he al.O- nthm are gwen, and average perfomaace is explored ualng Monte Carlo tel-nic-

DD , jAS .j 1473 EDlT.O' CF I NCVfiS ISOBSCLETt

US .

DNCLASSIFIBD
SECURITY CL ASSIFICATIÖN OF'TMIS F-ACE fK7.»n hmlu tütmUI

- --

■ " — ■ ■ ■ ■■—■-■'

II

SCHEDULING INDEPENDENT TASKS ON NON-IDENTICAL
PARALLEL MACHINES TO MINIMIZE MEAN FLOW-TIME

Douglas Clark

Department of Computer Science
Carnegie-Melion University

Pittsburgh, Pa, 15213

Jucre 1974

This work was supported in part by a grant from the Xerox Corporation
Palo Alto Research Center and in part by the Ad 'anced Research Projects
Agency of the Office of the Secretary of Defense, Contract Number
F44620-73-C-0074, which is monitored by the Air Force Office of Scien-
tific Research. This document has been approved for public release and
sale; its distribution is unlimited.

. .

■

AllSIKAlT
/

A colUitlon »i tasks havlnR known processing time requirement s on a set ol non-ldent leal parallel mrchines

Is to be scheduled so that the mean low-time or the tasks Is as small as possihle. In this paper It Is shown

that a trivial axtansion ol a simple alKorlthm lor a restricted case perlorms well, and olten optimally, In the

Keneral case. A prlndpaj result Is that lor every prot.lem. some renumbering of the tasks will canst this al-

gorithm to produ.e an optimal schedule. Upper hounds on the worst-case pertormance ol the algorithm are given,

and average pertormance Is explored using Monte l^rlo technl'iues.

I, INTRODUCTION

The problem addressed In this paper Is the sequencing ot n Independent task» on m parallel and non-Identical

machine« so that the average flow-time ot the tasks Is as small as possible |5), We will assume that all n tasks

or)ob. are simultaneously available at time rero; that there are no feasibility or precedence constraint« among

the tasks; that tasks may not be preempted; that a machine can process only one)jb at a time; and that the pro-

casst.j tin« required by a Job I on a machine) is given by a positive number p . The inability of some machine

to process some taak may be represented l,y making the corresponding p prohibitively large.

Fig. Ka) is a processing time array P lor an eight job, three machine problem. A schedule lor this problem

Is shown in Fig. 1(b) In the form of a Gantt chart [♦!, which Illustrates the r «Hel activity of the three ma-

chinss along a horlsoital time axis. The rectangular blocks in the chart have len,;ths equal to the processing

times ol the lobs with whose numbers they are labeled. The llow-tlme or tlme-ln-s> Uem ol a Job In a particular

schedule is simply the time at whtc^ that)ob completes its execution, where the schedule begins at time 0. Tlui«,

In Fig. Kb) the flow-time of job 3 is 2, ol Job 4 is 10, of Job 6 Is IS, and so on.

Korrowlng some notation from [SJ, wt w.ll denote by J|i] the number ol the Job scheduled 1th on machine J.

1" Fig. 1(h). 1(11 1. 5, im is », 1[3! is 2. and so on. Let ^ be the fl,>w-tlme ol Job 1 in . particular

«hadule, let F be the sum of the I low-times „I all n Jobs, and let ^ be the number ol jobs scheduled on machine

j. It Is clear that

fjnrpjm.j

jm pjm.j pjm.j
o)

«nd I n general.

Slry-PjUU + P1|21,J +

'itij'j:, Plik;,r

In Fig. 1(b), for example, we have

flMl" "llll.l

< P. •y.r

1 + 4 'im " piiii,i + pii2i,i

f'ni" piii!.i * pii2i,i + Pini.i ■ i ♦#♦ J.

- —

wgf^mm^w

(a) Pi

i

2

s
4

s

6

7

8

s
3

4

1

s
s
5

4

1

2

l

6

1

4

0 1

(b)

(c)

i i

MACHINE 1

MACHINE 2

MACHINE 3

7
<

F - 51

F - 34

Figure 1

10 12 13

- — - - - — _ - ..■. . .. :.....*

' I""! ^^■^^^n^^^^ "■•- ■"■■ <wm iiiw mimi

-3-

Itie total flow-time ol a schedule, K. may be expressed as a sum of contributions from each machine. Collect-

infc terras in equations (1), we may express the contribution of machine J as

ii. n

L t.,Ä* * L L o

nm.j+ (nj-',pj^].< n.P.

Summing over all machines, we get

^Jlnj-U.j + 'jt.jl.j'

- "J

u L i
J-l i-1 Jll

m J 1

.III,
J-l 1-1 k-I -T1*" '

n.P ipi[ii.. + ,nr1)p.[2i,, + -- + 2pi;n].,]il + p1[ni]>l

|n2p2[1ii2 ♦ (n2-l)p2r21>2 + ... +P2!]f2 +

(2)

+ n p .,, + (n -1)p r,, + . . + D
ni'nllj.m m rm[2|,m Km[n j,m'

m

For example, in Fig. 1(b) we have

F - 3-1 + 2-9 + 1.3

+ 2-2 + 1.1

+ 3.3 + 2-4 » 1.5

- 51.

Our goal is to minimize mean flow-time, Jf, but minlmlElng F Itself is equivalent, and we will follow that

approach in the rest of this paper. Fig. 1(c) gives an optimal schedule (optimal schedules are not necessarily

unique) for the problem of Fig. 1(a), with F - 34.

A non-enumeratlve algorithm or mlnlm.rlng mean flow-time In the general case was discovered by Bruno,

Coffraan, and Sethi [2,3). T^elr algorithm Is based on a reduction of the problem to a minimum-cost network flow

problem, and the time required by the algorithm Is 0(n3) when n ^ m (the case of interest) and 0(n2m) when n < ra.

T^is paper propose, and analyzes an algorithm which finds schedules that are good, and frequently optimal, with

respect to mean flow-time, and does so at very small computational cost.

Section 2 of this paper reviews an easy algorithm for an important restriction of the general problem. In

Section 3 this algorithm Is extended to cover the general case, and it is shown that while an optimal schedule is

not always produced, the performance of the algorithm strongly depends on the ordering of the rows of the proces-

sing time array P. Section 4 examines analytically the worst-case performance of the algorithm under various

ordering rules, and the algorithm^ average performance under these rules is explored empirically in Section 5.

Section 6 contains the conclusions of the paper.

**- ■ i 11 *«>■ ■ ._... - - - ■ ■ - - - -^

pvv^^mmenqa *i^^*m^mmnmmm*mi mrnmmmmmmmmmi

2, MACHINE FACTOR CASE

An Important and r.alUtlc raitrlctlon of th« general problem trtmt when each p U the product of a time

aitoclated with job I and an efficiency fa, tor aiaoclated with machine J, that Is, p - p w . In this restrict-

ed caa«, mean flow-tlna la mlnlmlaed by a simple procedure which follows Imnedlately from the analysis of [5]

First, rewrite equation (2) a* follows:

m "j 1 m "j I

' ■ j-, h K-, 'JW.J ■ |, h L W
J
P
J[^

"Vl'ltlJ4 (nl-1),'lPl[2]+-+2-l''1[n1-l]
+w,P,[n)]

;n2V2[1]+ (n.-1)V2[2] + ••• +V2lu2]
+

W^IJ4 V^VWlJ4- +Vm[n]' ■

Second, since F It a «um of n terns, each of which Is a product of one of the n p^s with one of the n coefflcl-

entc n1w),(n1.l)w1 VV^I w2 Vn." "'V plck " coefficients the n smallest of the nm posslbll-

Itlaa rm1,(n.l)w) w).nw2 w2 m,^,...,^. This will determine the values of the n . Third, mlnl-

ml.e F by matching r.ha largaat ?l wich the smallaat coafflclant. the «econd-l.rgest p1 with the second-amallaat

coafficlent, and so on. If a particular p1 Is matched with (nJ-k)wj, then Job I Is scheduled (k+l)th on machine

J. Picking coafflclan- (nj-k;wJ Implla* th«t we have already picked (nj-k-Dwj, (nJ-k-2)w 2w , and w . so

the reaultlng .ch.dul. 1. well-fomad. (T-t la. It Is not po.alble, for example, to schedule some Job fourth

on some machine and not schedule some oth ,r Jobs first, second, 'nd third.)

Each choice of a coafflclant can b, raa.-lctad to ba among only m possibilities out of the total of nm. The

first choaan «111 aur.ly be on. of w, wm uhe .«all.at. in fact). Suppose It Is »^ Then the second coeffici-

ent will be the nallaat of w, 2w1 w^ At each stage the Integer multiplier of the chosen coefficient 1«

Increased by 1, and tha next choice made. The schedule ia thua being determined "back" to "front".

An axampl. of tht. procedure ia given in Fig. 2(a) for a five Job, three machine problem. The Jobs happen

to be numbered so that p, * p2 i ... * p^; consequently no sorting of the ^ Is necessary. In each row of the

table th. amallaat of tha m potential co.fflcl.nts Is chos.n (circled), and In the next row the circled coeffici-

ent is Increased by tha corr.apondlng Wj. In row 2 th.re .re two smallest coefficients; the choice bstween them

Iß arbiträr . since dl££r.-.nt sch.dul.s with the s.me (optlm.l) F will result from different choices Jn the c.se

of a tie. Fig. 2(b) shows tha reavlting schedule and the calculation of F.

Fig. 2(c) shows the application of an equivalent algorithm to the problen, of Fig. 2(a). Here the processing-

time array P I, explicitly ahown. and th. co.fflcl.nt. In .ach row now repre.ent the possible sequence positions

on the three machine., counting from th. jnd of th. sch. 'ule. for the -orre.pondlng Juk It Is Important to «*M

that for each column J, P^ * P2j ? ... * P . Let the coefficient, in a particular row 1 be h^h, h (in

this case, m - 3). Then the minimum ly^ ia chosen, p^ i« clrcl.d, and h Is Increased by 1 In the next row.

MiiMMMuaiMlUMMiilt Mk^eiiMabM •—•

wmm^mi jmmmmm^^mmammmmmmmm*^

-5-

n - 5, tn - 3

machine factors:
1 Z

'2 " 2'5* W3 - 1

(•)

(b)

1 PI

potentla

1
1 8 2
2 6 0
3 6 4
4 4 4
5 1 4

2 J__
2.5

2.5

2.5

?
5

2

®
3

(D

machine chosen

3

1

3

2

3

Vl + «2^4 + 3w
3P5 + 2W3P3 + »»J^

2-6 + 2.5.4 + 3.1.1 +2.1.6 + 1.T.8

45

(c;

1

1 16

2 ©
3 12

4 8

20

15

15

5 2

IS
2.5

3

®
6

(D
4

©

1 1 1

1 1 2

2 1 2

2 1 3

2 2 3

Figure 2

—

-6-

Thls 1B exactly equivalent to the elgorlthm cf fig. 2(«), end the seme schedule results. The difference lies In

the leek of explicit i-se of the w In the second version of the «Igorlthi... end this difference will be exploited

in Section 1,

Sorting the p requires computational exertion of (hn log n), and finding the smallest coefficients requires

O(ran), so the time com|.lexliy of the machine factor algor'thm Is 0(max(n log .;,nm)).

3. EXTENSION TO THE GENERAL CASE

The second version of the procedure of the preceding section (Fig. 2(c)), since It does not use the machine

factors w , may be applied In the general case, though with no guarantee that optimal schedules will be found.

Fig. 3(a) shows the result of applying this procedure to the problem of Fig. 1(a). Since this problem is outside

the machine factor case we cannot sort the Jobs according to a single processing time, so In Fig. 3(a) the Job

numbering of Fig. 1(a) It retained, and the schedule of Fig. 3(b) results. The value of F Is not optimal, but

the schedule was very quickly computed, so this algorithm will hereafter be called the Quick And Dirty (QAD) al-

gorithm. The coefficients used at a particular stage of the schedule generation will be called the QAD coeffici-

ents and labeled h^h,,...^ . In each row I of P the QAD algorlthn' chooses the minimum of h]Pi\'
h2fi2'"''lXmPlm

and increments the chosen h in the foll-w'ng row. As In the "ischlne factor case, the choice of h p means that

Job 1 Is scheduled (n -h +1)1^ (or equlvalently, h th from the end) on machine J, and tha- the term h p will

occur In the calculation of F. (This latter fact Is very Important for the rest of this paper.)

An obvious Infirmity of the schedule In Fig. 3(b) Is that the Jobs are not scheduled In "shortest processing

time first" (SPT) order on each machine. SPT order Is optimal for the mln ''ration of F on a single machine [5],

so an optimal schedule for the more general problem clearly must have Jobs in SPT order on each individual machine.

This fact suggests that the performance of Q^D may be Improved by adding to It a procedure which sortä the Jobs

In SPT order on each machine after the schedule has been produced. Call the combined procedure QAD*. If QAD* Is

applied to Fig. 3(a), the result Is a schedule with an Improved F of 35, which, while still not optimal. Is con-

siderably better than QAD'a F " 48.

Though an optimal schedule was not found in Fig. 3(a), If the rows of P are permuted as In Fig. 3(c), the

optimal schedule of Fig. 1(c) will be generated by QAD (and therefore also by QAD*). This might appear at first

glance to be no more than a fortunate coincidence; the following theorem, however, states otherwise.

Theorem 3-1. Given an arbitrary processing time array P, there exists a permutation of the rows (a renumbering

of the Jobs) such that the QAD algorithm, operating on the permuted array, will yield I schedule with optimal

(minimal) F.

Proof. Let P be arbitrary. The plan of the proof will be to show that If the first k Jobs (Jobs 1,2 k) of P

are scheduled optimally by QAD, then one of the remaining n-k Jobs can bp renumbered k+1 so that it, too, will be

scheduled optimally. If this can be demonstrated for k ■ 0,1,2,....n-l, then the theorem will be proved. In

this proof the phrase "scheduled optimally" will mean scheduled (by QAD) in^ agreement with some optimal schedule,

both In the assignment of Jobs to machines, and in the order in which they are assigned. Recall that QAD assigns

■■■■- "—• ^^t^mm^^

•7-

(a)

1 2 3

1 7 4 0
2 3 (D 2

3 0 2 2

4 9 9 0
5 0 1 ?

6 ® 6 5

7 5 0 4

8 5 © 4

1 1 1

I 1 2

1 2 2

2 2 2

2 2 3

3 2 3

4 2 3

4 3 3

(b)

(c)

3 3
1
1

4 •
t
i

i ; ' £ n

1 6 5 3

2 8 7 2

3 4 1

" Xl + 2P5.1 + %t\
+ 3P8,2 + 2P7.2 + 1P2,2 + ^4.3 + ^1,3

- 3-3 + 2.1 + 1.3 + 3.4 + 2.1 + LI + 2.8 + 1*3

- 48

1 2 3

4 9 9 0
8 5 ® 4

6 0 6 5

1 7 4 0
3 3 0) 2

7 5 0 4

5 0 1 2

2 3 3) 2

1 1

1 i

2

2

2

3

4

4

Figure 3

MttllMi 1 !■ mill — ' — > •• mM

mmmmmmm " "

-8-

Jobt fron last to first on «ach machine.

Let S be an optimal schedule for F. Assume that the first k jobs of P are scheduled by QAD in agreement

with S, where k may be any Integer from 0 to n-1. (There Is nothing to prove if k - n.) We will try to find a

(k+l)th Job such that either:

1. Joba 1 through k+1 will be scheduled by QAD In agreement with S; or

2. th?re is some other optimal schedule I' such that jobs 1 through k+1 will be scheduled In agreement

with It.

If at least one of these two alternatives Is always true, the theorem is proved.

Fig. 4 illustrates the situation with an example. The shaded jobs are jobs 1 through k, optimally scheduled

by QAD. If the QAD schedule is to agree with I, the only jobs which are "candidates" for job k+1 are those

marked by an aaterisk in Fig. 4. There is at most one such candidate job on each machine. Let g (j ■ 1,2 m)

be the number of the candidate job on machine J If there is one; otherwise let g • 0. Let h (j - 1,2 m) be

the QAD coefficient for machine j in row k+1 of P.

S:

Figure 4

Construct a graph with m verticea v-.v, v . For each vertex v., draw a directed arc (v.,v.) from v to
I t m 1 i J 1

v If and only if

1. g1 t 0; and

2. gA.i would schedule job g on machine J if it became job k+1 of P.

The existence of an arc (v.,v) implies that h p s h p , with equality only if the tie-breaking rule used
^J J8|»J *-8J»1

by the QAD algorithm would choose machine j over machine i for job g .

If there is any arc of the form (v^v^, then job g can become job k+1, QAD will schedule it according to

S, and we are done. Assume, therefore, that there are no such arcs in the graph.

Suppose some vertex v^ has one or more arriving arcs but no departing arc, and let v. be a predecessor of

-t,^.

—'• ■ '' ■ '"

-9-

Vj (Flg. 5(b)), Construct a new schedule S' which Is Identical to S except that Job g. is scheduled first on

machine J (Fig. 5(a)), If we constructed thj graph corresponding to S', we would find Fig. 5(c) in place of

Fig, 5(b), If S" is optimal, then Job g1 could become the new Job k+I in P and be optimally scheduled.

K-- 'i.

S:

(b)

>>

(•) («)

Fifjure 5

S S'
Denote by F and F the total flow-times of the two schedules. Then we have

..S'

F'+ hjVJ - hi Vc' (3)

Th« non-nagatlve term c occurs <.n (3) because the removal of Job g1 from machine i caust- the coefficients of all

preceding Jobs (If there are any) to be reduced by 1 (see Fig. 5(a)). The existence of arc (v^v) implies that

V^.j * hlPg4.l' '
nd the 0Pcim«llty of S Implies that TZ' s FS. We conclude from (3), therefore, that c - 0.

S' S *.
F ■ F , and S' U optimal. Thus Job g can become Job k+1 of P.

Now suppose that the graph contains no vertices that have arriving arcs but no departing ere. Since there

Is at least one arc Ir. the graph (becauoe k < n) , since the number of vertices Is finite, and since there are no

area (Vj.v^. we conclude that there must exist a cycle in the graph. Suppose the cycle has three arcs, (v ,V) ,

(Vj.v^, .nd (vk.v1), .s shown In Fig, 6(b), («M following argument may easllv be generalized to cycles of any

size,) Construct a new schedule |< Identical to S except that Job ^ moves to Job g 's position on machine J.

Job gj goes to machine k. and Job ^ to machine 1 (Fig. 6(a)). 9m graph corresponding to |< would Include Fig.

6(c) In place of Fig, 6(b).

S S'
With F and F as before we may write

,V

- FS + *JV ■ "'V' * (hkS.k ■ '^+ {h^ ■ vgk,k)- (4)

The existence of the arc. In the cycle mean, that each parenthesl.ed term in (4) Is non-po.ltlve, and since
-S' S
F * F . we conclude, as before, that i' Is optimal. Any one of Jobs g^ ijl and gk can become Job k+1 In P and

be optimally scheduled.

We have therefore shown what we set out to show, namely, that there must always exist, for k - 0,1 n-1.

■ ,_.

10-

S;

(b)

(c)

Figure 6

• (k+l)th Job th« will be optimally .cheduled by QAD The exi.t.n« nf .
D/ ^u. fhe existence of • row-permutatlon of F that ylelda an

optimal echedule follows Imnedlately. ■

o» „„..,..„. u mmm. „ „ lh.t „ optlMl tchMt My ^ ^ ^ ^^ WB ^ ^ ^ ^ ^
"*—«- - . - **m „H...U ,ra «, th. „.ult.. fc „,.„„„ „ #o o(n)) ^^
[2,3,, »„..„. „„U^.. th. „„ 0, ,uch .. .„^ ,„ ^ büt .^^^^ ^ ^^ M ^ ^^^

U -K . -, th. 41„ov„y „ _ „„.,„, ^^^ ^^^ ^ ^ ^^ ^ ^ ^ ^^ ^

U ~.a.- , . .^ ,„ «^ _ Iln.le „^ aik. ^ „ ^ ^ ^ ^ ^ ^ i<^

». WORST CASE PEBTOBMAPd

in tHl. ..etlon w. will examine the worst case performance of tbe QA0 algorithm u„der various row-sorting

-les. Since QAD* „eV.r yitli. . _, .chedulp ^ ^ ^ ^^^ boundi ^ ^ ^ ^ ^ ^

hold for QA^ thoU8h ._ bound. which .re ^ for QAD ^^ not ^^ ^ ^ ^

UH FQAD be the total flow-tlme of the QAO schedule for .OTe P whose row. are sorted according to rule

KUU. and let ^ be the optimal (minimal) flow-tlme for P. ^ M..ure of perf_nce ^ „, ^ _ine ^

RULE
QAD ,

OPT

en. li*.l»« .o ...i„.. tt. „.„„ ,.„„ „, th. .lKtl[_

of their QAD scedules. Then

F'
-T < n
F (5)

 -.

-11.

• nd this ii a best bound.

12 12
Proof. Lat C and C denote tha contributions of Job 1 to F and F , respectively, so that

Cl " Vlk

(6)

' . .2
for some J and k, where h^ and 1^ are the chosen QAD coefficients for Job 1 In P and P . We will show that for

all 1,

J
(7)

"1 < -j * n.
Cl

Suppoaa (7) Is false for some 1. Than, using (6), we may write

hlpij * "»w-
By the operation of tha QAD algorithm, we know that

(8)

and In particular.
"WJ " CJ'vv

hJpij 5 hkpik (9)

where k Is as In (6). Combining inequalities (f) and • i), we get

^"ik S SPiJ " n,Vpik

hkPlk ' "^"ik

(10)

1 . L2 Inequality (10) is plainly iopoaaible, since 1^ and 1^ are Integers between 1 and n. This contradiction proves

(7).

Now write

_1 c.+c..+,.,+c,
F_ . I I n
F 2 '
^2 c.+cS..,^

I 2 n

From inequality (7) and the fact that all c| and C^ are positive. It follows that

c!+c'+,,.+c'
2 n .

-5—5 j 5 n.
C,+C,+...+C

1 2 n

(11)

For equality to hold in (11), it seist be true that for «11 I, cj - nC^. But clef.ly this cannot be, so inequal-

ity (11) becomes strict and (5) is proved.

To show that n Is a best bound, let P take the following form;

 - -B^riHMMMMMMaa^atfg

-12-

n-1

n

i . . ■ m

UJ

« m I • • a

(12)

t U U) . . . UJ

X UÜ U . . .ID

wh.r. . < < X < < ,«. Ut P' b. .. glv.n .„d con.tnact P2 by Int.rch.nglng row. 1 «nd n. The QAD .Igorlthn, will

.ch.dul. .11 Job. on ».chin. 1 f„r both p' .„d P2; only th. Job ord.r will b. dlff.r.nt. W, will h.v.

i. + 2« + 3. + ... + (n-^t -t. „x

F2 X + 2f + 3. + ... + (n-1)c + nc
.nd

,. F n::

«-0 F X

Thu.^w. -y. for « . , .„d n . 2. con.truct .n .rr.y P with two raw-p.nnut.tlon. P1 .nd P2 .u.h th.t th. r.tlo

F'/F 1. .rbltr.rlly clo.« to R. Th.r.for. n 1. . b..t b^und. ■

CprolLry 4^1. L.t F^ b. th. tot.l flow-tlm. of th. QAD .ch.dul. for .n .rbltr.ry P und.r .n .rbltr.ry row-

permut.tlon. Th.n

«nd thl. 1. . b..t bound.

FQAD .
F <n (13) rOPT K'J>

Praof. Th.t n 1. .n upp.r bou«! follow, dlr.ctly fro» Th.or.n. 3-, .nd Th.or.» 4-1. Th.t It 1. . b..t bound .-y

b. ^.n by «.mining (12) In th. proof of Th.or.» 4-1. In th.t example F2 - F ■
OPT' ■

Th. .rgu^nt for th. .h.rpn... of th. bound, in Th.or.n. 4-! .„d Coroll.ry 4-1 depend, on th. p.cull.r .truc-

tur. of th. proc-lng-tl». .rr.y (12). If ** „„ used ln.te(ld of ^ ^ opttMl ^^ ^ (u)_sn ^

«-chin, l-w^uld b. found. Thu. th. bound n In (5) .nd (13) 1. not n.ce...rlly . be.t bound for QAD*.

Th. ..n.lbl. u.. of both .Igorlthn,. d.pend. on mm .ch.me for .rr.nglng the row. of P prior to their .x.cu-

tlon. T^e .ppro.ch w. t.k. will b. to .ort th, row. .o th.t the v.lue. of mm .ingle-v.lu.d function of ..ch

row .r. in non.l„cr...ing ord.r. P.rh.P. th. »o.t obvlou. cholc. for .uch . function 1. th. iver^. of the .

proce..l„g tin... of . Job. TVo oth.r po..lbllltl.. .re the »jxlmu» .nd nir^ of the n. tin... Notlr. th.t .ny

of the.e three rule, will cu.. QAD to perfor» optln-lly m the ».chine f.ctor c.e. .nd It ...». re.son.ble to

require that thl. b. tru. of wh.t.v.r .ortlng nil. we .dopt.

Denote by AVE. MAX. .nd MIN. th. rule, of .ortlng In ord.r of non.lncre..lng row .ver.ge. ».xl»u». .nd »1„-

i™». r..p.ctlv.ly. „. c.n ...lly .hw> mt„mmmf. th.t AVE .nd MAX do not Improve the wor.t c... prfor-

».nc. of QAD. For consider the following .rr.y P:

-■■■■-■ — -- --■-—^— -■ ■ - -■-■ —-■ -- ■ iiti\ it n\ utM\\\unmm]Umt*mi]-n*i\imm*tim m^lMmm

-13-

2 in

(tf+X . • u^-X

in*-* . • u^-X

• • •

• •
• • •

n-1 c urfX . i u^-X

n X ID # u<

(14)

wh«re c < < X < < a). Th« rows «re alraady arrariged according to both AVE and MA> , The optimal tchadul« for (14)

i« SPT on oachlna 1, but QAD tchedulei Job n flrat Instead of last on machine I. Therefore, using the argument

from the proof of Theorem 4-1, the bounds

^<n
OPT

-MAX

OPT

are best bounds. We have already observed that QAD* cannot be tricked in this way, so these may not be best

bounds for QAD*.

The wont case behavior of QAD under the MIN rule is less than bout half as bad as under the AVE and MAX

rules. To establish this we will first need two lennas.

Leiroa 4-1. Let r1 denote the minimum value in row i of an arbitrary P whose rows have been arranged according to

the MIN rule. Then

'S*'! +2r2 + ••• +nrn (15)

with equality only if the r occur in a single column of P.

Proof. Let Ci denote the contribution of job i to F^, so that

VD " CI ■'" C2 + ••' + Cn-

If we can show that for all i, C^ s ir^ then (15) will follow directly. Thä value of a particular C will be

hJPlj f0r ,Cm* '* Su,>po,e th-t ri occur» ln column k, so rl - plk. Clear'.y, h s i and r « p . By the opera-

tion of QAD we know that h.p.. s 'VP«].' T*1*" "* ■*> write

ci" hjpij s Vik" Vi s !'i

and (55) la proved. Th« necessary condition for equality in (15) is obvious. ■

Lemma 4-2. If r. 2 r. 2 ... fe f > 0 then
 1 2 n

r1 +2r2 ^ '•• 4nrn s:n±l
r, + r2 + ... +rn 2

(16)

I iiiliiJMÜÜI^rtl -UllMt MMHUUM^atlteUUMi ■ ■ ._.— ...

• 14-

wlth «quality if and only If r. - r - ... - r .

tXSSL- Inaquallty (16) U aquivalant to

S+l ri * 2r2 ■*• ••• + »

2 * »I ♦ », ♦ ... ♦ t * 0
I 2 n

•»hlch, sine« all Ti ara positiv«, i« Itaalf aquivalant tc

(•»♦IHr, + r2 + ... « rn) - Z'T} * 2r2 ♦ ... ♦ „rn) * o.

Collact tarm« in (17) to gat

(n-Dr, « (n-3)r2 « (n^Tj ♦ ... ♦ (5-n)rn_2 ♦ O-n)^, « (1-„)rn ^

No- «atch r, with rn. r2 »1th r^,. and .o on, to «at

(17)

•or odd n; and

(n-1)(Vrn) * (n-3)(r2-V)) « ... ♦ (n.n)r ,» 0

(n-IXr,-^) + (n.3)(r -r) • ... + l(r -r) » 0
n*' n n|■ ? r1

(18)

(18')

tor avan n. Dua to tha con.cralnt that t, rn > 0. a.ch t.™ In (18) and (18-) 1. „on-nagatlva. Thi.

..fbllaha. (17) and th.r.fora (16). Equallt,- holi. In (18) and (IT) If all tan«, ara 0. or aqul.alantly.

»| • »t • ... • t^l ittllllM, «oaa tan will ba jio.itiva and (16) will ba «trlct. ■

lhaoran 4-2.

-MIN
Q/.P , »ti

F 2 '
OPT ' (19)

Sioot. Fir.t notlca that If bia tl ara row mlnloa of P,

F0PT *r1 +r2 + ••• *rn (20)

-1th aquallty only If tha r, Ua In dlffar.nt colu.n. of P. (Thl. l.Plla. . * n.) Inaquallty (20) and La-

4-1 allow u« tc wrlta

!a*E * !j_Lil2_Lii_lJ!In
FOFT r1+r2+-"+r„ ■ (21)

Th« nacaaaary condltlona for aquallty In (20) and In (1S^ «f I A I -
H y in uu> and m (15) of Laaaa 4-1 ara contradictory. Th« inaquallty In (21)

I. tharafo.« atrict. Ualn. thi. fact to.athar with L«-a 4-2. w. «at (19) dlr.ctly. .

Tha bound in (19) h.. not „.,„ .ho(fIl „ b. . ^ „^ £or ^ ^ ^ ^ ^ ^ ^ ^ ^

b««n mm» to conatruct an array P which violata. th. aurprl.in, bound in tha followin, conjactir..

Thi« lanna wa. provad by Profaaaor G. W. Stawart.

 ^ ■ - - ■ - ————->-»«».—i—^—^«

-n-

■ on lecture:
MIN

r
OPT

We now turn briefly to the time complexity ot QAD end t)AD* w^th row-iorting rules. K«ch of the three sort-

ing rules examined takes time proportional to .n for «ach of the n rows of P, or Odm), to calculate the sort

keys. Sorting the rows takes an additional 0(n log n) ; the guts of QAD require 0(im) ; and the final SHT sort of

QAD* takes at most 0(n log n). Both algorithms with sorting rules, therefore, have time complexity

0(max(mn, n log n)). Not surprisingly, this is the same order of complexity displayed by the machine factor al-

gorithm. For purposes of comparison, constructing an SPT schedule for a ningle machine - perhaps the simplest

scheduling problem of all - itselt requires time of 0(n log n).

5. AVERAGE PERFORMANrt

Most algorithms behave much better most of the time than they do In the worst case, and the QAD algorithm

is no exception. In this section we will use Monte Carlo methods to examine the average performance of QAD and

QAD* under various row-sorting rules for two models of parallel machin« systems. Model I Is extremely simple

and correspondingly remote from reality; Model II, a computer system model. Is considerably more down-to-earth.

The measure of performance used, as In Section 4, is fq^/F^ (and r^jf/f^y). In a typical experiment,

a large number of arrays P were randomly generated a id the values of this performance measure calculated for

each of four sorting rules: MIN, AVE, MAX, and a new rule, RAHD, which arranges the rows of P in ranoom c-der.

The algorithm of Bruno, Coffman, and Sethi [2,3] was used to calculate > - The rules MIN, AVE, etc. used with

QAD* will be denoted by MIN*, AVE*, ^tc.

5. t Model 1

In ,-his model, the p^ are integers inde- . idently drawn from a uniform distribution over a specified range.

Pig. 7 shows the results of an experiment in rfhich were generated 200 arrays with n - 8 and n - 3, where the

range of the uniform distribution w«a from I to 100, Each of the four rules was applied wlfi QAD to each of the

200 problems, and the four curves of Fig. 7 are the sample cumulative distribution functions for the values of

rRULE/
QAD 'FOPT' Point (1.2, 0.90) on the AVE curve, for example, means that 90 percent (180) of the 200 values

of 'QAD'FOPT Were l*" th*n or •I"*1 t0 '•2' We ""y immediately observe that MIN Is substantially better than

the other rules for this experiment, and tha-. the uerformance of QAD under the MIN rule is quite good: 39.5

percent of the sample problems were scheduled optimally, and 95 percent of the solutions were at most 15 percent

worse than the optimal schedule.

The performance of MIN Is little improved by the final SPT son of the Qf0* algorithm, though the other

rules are improved to nrying degrees. Fig. 8 shows the results of applying QAD* to the same 200 problems. The

curve for MIN* is omitted becat'se its closeness to AVE* would have obscured both curves, and because it is nearly

identical to M1N in Fig. 7.

Table 1 shows the extent to which each rule outperformed each of the others in this experiment. For

Instance, AVE* yielded a better schedule than MAX in 85 percent (170) of the 200 sample problems. Table 2 gives

 —. I I ■! - ■ - - . . - ■ . . ■ ^

-16-

Flgure 7

. ^. -..- ^.^^-.— —... . , ..■ ■ ■ - - - - - ----- - - - — ——— ■—^-i

-17-

.2 -

1 -

i i 1 T— 1 1 r-
1 T-1 1.2 1.3 1.4 1.5 1.6 1.7

Figure 8

'Jt-V" ■•"-•-- ■ ■■ ~'-'-r- ■■ ■ ■-■

-18-

four u..ful ch.r.ct.ri.tlc. of ..=h m*U di.trlbutlon: ho« oft.n .n optl«.! .ch.dul. w.. found; *. «.„ .,

th. dUtrlbutlon; ch. v.lu. « .„d fc^ ^ 95 „,„.„, of ^ MBipUi llt; ^ ^ ^^ ^ ^^^^ ^

th« experiment.

TABLE 1

Rule A bactar than Rule B (percentage)

\ B MIN MIN AVE AVE* MAX MAX*
MIN 0 0 70 30.5 90.5 51.5 95.5 55.5

MIN* 1 0 70 30.5 90.5 il.5 95.5 55.5

AVE 19.3 19.5 0 0 82 39 86 41.5
AVE* 27.5 27 n 0 93.5 49 94.5 56.5

MAX 7 7 9 5 0 0 64.5 21.5

MAX* 23.5 23.5 54 24.5 93.5 0 87.5 43.5

RAND 3.5 3.5 12.5 4.5 33 10.5 0 0
RAND* 21 21 52 22.5

TABLE 2

76.5 33 96.5 0

DUtrlbutlon Characteristics

PERCENTAGE
OPTIMAL MEAN 95i LEVEL

OBSERVED
MAXIMUM

MIN 39.5 1.038315 1.141304 1.234177

MIN* 43 1.038233 1.141304 1.234177

AVE 9 1.087132 1.228572 1.516129

AVE* 38 1.043284 1.158228 1.447581

• MAX 1 1.204095 1.45946 2.02963

MAX* 29 1.069569 1.220109 1.357934

RAND 1.5 1.280514 1.614815 1.917808

RAND* 26 1.086278 1.259434 1.449367

Ih. .vidanc. th«. Ur pr.a.nt.d au.ga.t. that for Modal I. MIN t. th. ba.t nUa. ». f.ct th.t MIN* i.

-.r8ln.Ily b.tt.r «M .a., to ba oufalghad by th. .d.atton.1 co-put.tion.I .ffort U r.^... ^ chT.cfr-

1*1« of th. r..ult. of thi. „pan-ant turn out to ba trua for ^ .xp.rlo.nt. both ln ^ , ^ ^ „

that will ba daacribad:

1. Th. rul.. Ito^ in ora.r of p^ of f„9„mwm .„ MIN> AVE) MAXt um for ^ ^ ^ ^

2. MIN* -H..l»-i MIH vlrtu-lly n.v.r; RAND* outparfor-d RAND vtrtu.Uy .Iwy.; .„. th. oth.r ^

were In between.

S.v.r.l p.r^t.r. of th. .xp.ri-.nt -r. varlad to ta.t tha aan.itlvity of tha parfonnanca of
QAD with MIN

. .. ,.— ^.^. ^..^^. ■„J—^^.■. - , - ^ - - - -

■19-

U ch.ng.. in the ^ ^ expellraent. cf 100 ^^^ ^^ ^^ _ ^^ m _ fc ^^ >ii othir ^^^ ^ ^

Ik. flr.t „p..^,. .nd the oth.r wuh the range of the ^^^ di8tribution ^^ ^^ N)OO to. | ^ ^^

oth.r p^H« ., b.f0.e. Botn .^^^.^ ^^^ MIN ^^^ ^ ^^^^^^ characteristics not ^^

•11, itfi» fro« tKo.. .1 rt.. 7 .„a T.bU 2. T.kl„g lnto ..coun. *. U.Ued nuraber .nd n.ture of the „.

HH~*. (r,.trtcaon. ^po... -tal, by the comput.tlon.1 „^^ of ^ ^^ ^^ ^ ^ ^

»tl-t, .„dud. th.t p..^^ ln MoHel , u reUtlvely iniengttive ^ ^^^^^ ^ ^^^^ ^^^

Ocn.r .xp.Tia.ntB deolonitr.ted th.t tlie8e „„^^ reguit8 ^ sen8itive ^ ^^^ ^ ^ ^^ ^^

— w.re p.rfonned wlth the unlforin dliCrlbution ig ^^ _ ^^)oo gampie ^ ^ n . ,6 by m . ,.

ewo or th... („IN curve. only) .re comp.red wlth ^ MIN ^^ of Fig> 7 ^ ^ ^^^^ ^^^^^ ^ ^

Fi8- ^ It •PP<,r8 ^ " " lnCr (Wlth ^ " ^ »>. «- -»»• — °f - dlstribution. rem.lns r.UtlVely

it«tion«ry, whll« the sample variance decrea». iv- m
d.crea.e.. The thre. „>..„. are: 8 by 3. 1.038315; 16 by 4, l. 030334 • and

2 ^ 5. 1.037,205. Further .upport 1. Unt to this tentative concision by the five vaiues of ^/r for the

64 by . experiment: 1.02552. 1.029267. 1.03074. 1.043362. and 1.0563,9. „1th a mean of ,.0370.14 ^

U U dlfflcult to conceive of a reaHstlc situation In „hlch the , are Independent and unlfor.!, dls-

chlne -hich run. one Joh faster than the other machine. Is H.el, to run other Johs qulckly too. We turn now

to a more realistic model

5.2 Model II

Mode! „ U a mode! of a multlproce..or computer .y.tem not unH.e Carnegle-MeUon Unlverslt.^s C.^p [7]

». ^chln.. are different mod.U of the O^lta! Equl^nt Corporation POP-,, computer W, a.d the Job. are

tor.. A Job', m proce.slng times are calculated hy drawing . .fn»!. .< <r
Dy drawing a single time from an exponential distrlhutlon and

multlplying by the machine factors as.oclated with lt. loh class rr.™». .
tn ita joo class. (Times are rounded to the nearest Integer)

a. mMm ».,„. „.„ „.„ „„ c.ltul.t.a ^ pDp.„ „„.„„.^ flgurii tLim u [ij

». H« ..P.»™« „ b. d.,„lb.d „„.ld.„d 2M fTMtmi M . . , ^ . . , ^^ ^^ wmtMn ^

• — «... „. . „M u, „, . HM „ ^ ^ thre< ^ ci cui_ ^ ^^ ^
«-. c... ,. „„^.„^ Job., ot ^ thtte _ ,_ ^ aii_ ^ _ ^ ^ ^ ^ ^

Below are the machine factor, for the.. Joh cla..e.:

jfcuza PDP-nAu PHP.,,//..
Class 1

Class 2

Cla.s 3

1 .556 .556

1 •291 .m

.556

n üfcrt'i - -'■—- -.....—i.-...-w. ■— ..,. - . ..—..^.^^^w..-^., .,.■.. —L..-.— -■ i,,.-.-, | -- -■ ■■ --,— ■.■..-...-.>. ,._-..-,.^-.. -^M^, ■..,. -J.^1J„ __ ■ ■

-20-

1.025

Figure 9

..... ^-.-^—^»_-.—x-i^.—^-^. J.^.-—J.- ..

-21-

"•r. co„U„.d „ i. i,, „ n „„ on tht Tl/40

^ ««u „u. „t.Pt „ro. a. „ „... ,. tnamUt ^ ^^ M^ u ^ M

TABLE 3

RuU A b«ct«r than Rul« B (p«rc«nt.g.)

A\ B MIN MIN* AVE AVE* MAX MAX* Oiun n..n^
MIN 0 0 48 47.5 71.5 66.5 98 .5 89

MIN* 0 0 40 47.5 71.5 66.5 S»H .5 89
AVE 13.. 1 13.5 0 0 45.5 37 95 •5 79,5

AVE* 13.; 1 13.5 18.5 0 H 37.5 96 5 81,5
MAX 10 10 0 0 0 0 93 5 63

MAX* 11 11 11 0 47,5 0 94. 5 70,5
RAND 0 0 3 2.5 5 4 0 C

RAND* 5 5 15.5 13

TABLE 4

32.5 22.5 97. 5 0

Dlitrlbutlon Chartcteris ties

PERCENTAGE
OPTIMAL MEAN 95^ LEVEL

OBSERVED

MIN 61.5 1.01767 1.081088 1,303683
MIN* 61.5 1.01767 1.081088 1,303683

AVE 39 1.04A154 1.143041 1.303683
AVE* 40.5 1.039521 1.139162 1.303683

MAX 18 1.088859 1.257068 1,303683
MAX* 24.5 1.06943 1.188495 1.303683
RAND 1.5 1.476827 l.tSIMS 2.249682

RAND* 4.5 1.153185 1.442467 1.811287

;...TJ. — J..,-J_^J_1^^—„..--.^ „ :,.., .^..^...^-^u—^—_—■-.■—. ■ ^

-22-

.9-

.8-

.7-

VI

k
O

B Q

V .5
XI
o
C

>
1)
tn

5

/ /

J

.4-

,3-

.2-

1 -

_/

J

1—
1.1 1.2 1.3 1.4

~1—
1.5 1.6 1.7

Figure 10

 - - ■ - ■
- - - - ^^m0mmmämtm0m - - - - - - •-■

-23-

Figure 11

- '■-'■- ■ - —-— ■ -■ - -- ■

1 ■" I mm " '•

-24-

The sensitivity of these results to changes In the model', parameters was examined by running several addi-

tJonal experiments. As In Modal I, changing the range of values of the p had little effect. A-i experiment of

101) sample arrays was run with all paramaters as before, except that the mean of the exponential distribution was

changed from 1000 to 60000 (milliseconds). The performance of QAD under the MIN rule was not significantly dif-

ferent from that of the first experiment. Again, strong conclusions are ruled out by the limited extent of the

testing, but performance In this model would tentatively appear not to depend on the exponential distribution.

In further agreement with Model I, performance was found to be sensitive to changes In n. An experiment was

performed In which the number of Jobs In each class waa doubled, bringing the total to 16. A fourth machine was

added to the model, a PDP-11 Model 05, whose machine factors for the three Job claases are: Class 1, 1.25; Class

2, 1.25; and Class 3, ". One hundred sample arrays were .ested. The results appear In comparison with the 8 by

3 reaulta In Fig. 12 on a greatly expanded horizontal scale. The means of the two experiments are: 8 by 3,

1.01767; 16 by 4, 1.019837. Approximately the same behavior found In Model I Is demonstrated here: as n In-

creases (with m ■ log n), the sample mean appears to remain relatively stationary, while the sample variance de-

creases.

^

_ MHMaf|A|gMHBl_afaM|Hajf&_)a_flBU^jatMiba_ '

—-, —

■25-

VI

u.
Z Q
H <

1

.5-

.4-

.2-

.1-

^T-^^ 3

»

1.02 1.04 1.06 1.08 1.1

Figure 12

a^iMim — - -. M —..—. .. -

■ ■ I ■ " ' ! • ■■ILIIIVIII I 1

-26-

6. CONCLUSION

For the scheduling problem studied in this paper, the QAD «Igorithm seems to be a reasonable alternative to

the optimal algorithm of Bruno, Cotfman, and Sethi [2,3]. The QAD algorithm (with the MIN rule) takes computa-

2 3
tional time of 0(maxHnn, n log n)) , while the optimal algorltta requires 0(max(mn , n)). Furthermore, QAD is an

extremely simple algorithm, and easy to work by hand (as might be required in an industrial shop, for instance).

By contrast, the optimal algorithm is quite difficult. While QAD does not always find optimal schedules. It

frequently does (and it always can); and its performance, bounded in the worst case, appears from limited experi-

mental results to be very good most of the time.

There is, of course, much room for further work. The most interesting unanswered question is whether here

exists a simple row-sorting rule which will guarantee QAD's production of optimal schedules. It might be the

case, however, that sorting according to any function of a row is by itself Insufficient; more Information about

the processing time array might be required to discover the optimal row-permutation promised by Theorem 3-1. If

nn optimal rule cannot be found, pe.-hap» row-sorting rules more fruitful than the simple ones considered here

could he discovered. A proof of the conjecture In Section 4 would be extremely Interesting. Finally, the cora-

piitatlonal complexity of this problem Is unknown, and the work reported here only begins to suggest that the com-

3
plexity is less than 0(n).

Acknowledgments. I am grateful to Pete Stewart for the proof of temma 4-2; to Jack McCredle and J. G. Ramage for

advice on Section 5; and to Sam Fuller, Therese Flaherty, and David Stevenson for comments and criticism through-

out.

REFERENCES

1. Bell, C. G., and Kaman, C. The Effect of Semiconductor Memory Technology on the Design of the PDP-11 Series
Minicomputers. Digital Equipment Corporation, October, 1973.

2. Bruno, J. A Scheduling Algorithm for Minimirlng Mean Flow Time. TR 141, Computer Science Department, Penn.
State University.

'). Kruno, J., Coffman, E. G,, and Sethi, H. Algorithms for Minimizing Mean Flow Time. IF IP Congress 74.
Stockholm, Sweden.

4. Clark, W. The Gantt Chart (3rd edition). Pitman and Sons, London, 1952.

5. Conway, R. W., Maxwell, W. L., and Miller, L. W, Theory of Scheduling. Addlson-Wesley, 1967.

6. PDP-11 Processor Handbook. Digital Equipment Corporation, 1972.

7. Wulf, W. A., and Bell, C. G. C.mmp —A Multl-Mlnl-Processor. Proc. FJCC. 1972, 765-778.

-

