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AllSIKAlT 
/ 

A  colUitlon »i   tasks   havlnR known  processing   time   requirement s  on  a   set   ol   non-ldent leal   parallel  mrchines 

Is  to be  scheduled  so  that   the mean    low-time  or   the   tasks   Is as  small   as  possihle.     In  this  paper   It   Is  shown 

that  a   trivial  axtansion ol   a  simple alKorlthm   lor  a   restricted  case  perlorms well,  and  olten  optimally,   In  the 

Keneral   case.     A  prlndpaj   result   Is   that   lor  every   prot.lem.   some   renumbering of   the   tasks  will   canst   this  al- 

gorithm  to  produ.e an optimal   schedule.     Upper  hounds  on  the worst-case  pertormance  ol   the  algorithm are  given, 

and average  pertormance   Is  explored using Monte   l^rlo  technl'iues. 

I,      INTRODUCTION 

The  problem addressed   In  this  paper   Is  the   sequencing  ot   n   Independent   task»  on m  parallel  and  non-Identical 

machine«   so  that   the  average   flow-time ot   the   tasks   Is  as  small  as   possible   |5),    We will  assume   that  all  n   tasks 

or   )ob.  are   simultaneously available at   time  rero;   that   there are  no  feasibility or precedence  constraint«  among 

the  tasks;   that   tasks may  not   be  preempted;   that  a  machine  can process only one   )jb at  a   time;   and   that   the  pro- 

casst.j  tin«  required  by a   Job   I  on a machine   )   is  given  by a  positive  number p     .     The   inability  of   some machine 

to process  some  taak may be  represented l,y making   the  corresponding  p       prohibitively  large. 

Fig.    Ka)   is  a   processing   time  array  P  lor   an  eight    job,   three  machine   problem.     A   schedule   lor   this  problem 

Is  shown   in  Fig.   1(b)   In  the   form of a Gantt   chart   [♦!,  which   Illustrates   the  r  «Hel  activity of   the   three ma- 

chinss along  a  horlsoital   time  axis.     The  rectangular   blocks   in  the  chart  have   len,;ths equal   to   the  processing 

times  ol   the   lobs with whose  numbers  they are   labeled.     The   llow-tlme or   tlme-ln-s> Uem ol   a  Job   In  a  particular 

schedule   is   simply   the   time  at   whtc^   that   )ob   completes   its  execution,   where   the  schedule   begins  at   time   0.     Tlui«, 

In  Fig.    Kb)   the   flow-time   of    job   3   is  2,   ol   Job  4   is   10,   of   Job  6   Is   IS,   and  so on. 

Korrowlng   some   notation   from   [SJ,  wt w.ll   denote   by   J|i]   the   number  ol   the   Job  scheduled   1th  on machine   J. 

1"  Fig.   1(h).   1(11   1.  5,   im   is »,   1[3!   is  2.   and   so  on.     Let   ^   be   the   fl,>w-tlme ol   Job   1   in  .  particular 

«hadule,   let   F be  the  sum of   the   I low-times „I   all   n  Jobs,  and   let   ^   be   the  number ol   jobs  scheduled  on machine 

j.     It   Is  clear  that 

fjnrpjm.j 

jm   pjm.j    pjm.j 
o) 

«nd   I n  general. 

Slry-PjUU   +  P1|21,J   + 

'itij'j:, Plik;,r 

In  Fig.   1(b),   for  example,   we   have 

flMl" "llll.l 

<  P. •y.r 

1   +  4 'im " piiii,i + pii2i,i 

f'ni" piii!.i * pii2i,i + Pini.i ■ i ♦#♦ J. 
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Itie   total   flow-time  ol  a  schedule,   K.  may be expressed  as  a  sum of  contributions   from each  machine.     Collect- 

infc  terras  in equations   (1),  we may express  the  contribution of  machine  J as 

ii. n 

L  t.,Ä* * L    L   o 

nm.j+ (nj-',pj^].< n.P. 

Summing over all machines, we get 

^Jlnj-U.j  + 'jt.jl.j' 

-       "J 

u   L  i 
J-l   i-1 Jll 

m J     1 

.III, 
J-l    1-1   k-I      -T1*" ' 

n.P ipi[ii.. + ,nr1)p.[2i,, + -- + 2pi;n].,]il + p1[ni]>l 

|n2p2[1ii2  ♦   (n2-l)p2r21>2 +  ...   +P2!      ]f2  + 

(2) 

+  n  p  .,,       +   (n  -1)p  r,,       +   .   .   +  D 
ni'nllj.m m       rm[2|,m Km[n   j,m' 

m 

For example,   in  Fig.   1(b)  we  have 

F -  3-1   + 2-9 +  1.3 

+ 2-2  + 1.1 

+ 3.3 + 2-4   »  1.5 

-  51. 

Our goal is to minimize mean flow-time, Jf, but minlmlElng F Itself is equivalent, and we will follow that 

approach in the rest of this paper. Fig. 1(c) gives an optimal schedule (optimal schedules are not necessarily 

unique)   for  the  problem of  Fig.   1(a),  with  F -  34. 

A  non-enumeratlve  algorithm    or mlnlm.rlng mean  flow-time   In  the general  case was discovered  by Bruno, 

Coffraan,   and  Sethi   [2,3).     T^elr algorithm  Is  based  on a  reduction of   the  problem  to a minimum-cost  network  flow 

problem,   and   the   time  required  by  the algorithm  Is  0(n3)   when  n ^ m  (the  case  of   interest)  and  0(n2m)  when  n < ra. 

T^is  paper  propose,  and  analyzes  an algorithm which  finds  schedules   that  are good,  and  frequently optimal,  with 

respect   to mean  flow-time,  and does  so at  very  small  computational  cost. 

Section 2  of   this  paper  reviews  an easy algorithm  for  an  important  restriction of   the  general   problem.     In 

Section  3   this  algorithm  Is  extended   to cover  the general  case,  and   it   is  shown  that while an optimal   schedule   is 

not  always  produced,   the  performance  of   the algorithm strongly depends on  the  ordering of  the  rows  of   the  proces- 

sing  time  array  P.     Section 4  examines  analytically  the worst-case  performance of   the algorithm under  various 

ordering  rules,  and   the  algorithm^  average   performance under  these  rules   is  explored empirically  in Section 5. 

Section 6  contains  the  conclusions  of   the  paper. 

**- ■ i 11     *«>■ ■ ._... -   -      -  ■ ■ -     -  - -^ 
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2,     MACHINE  FACTOR   CASE 

An Important and  r.alUtlc raitrlctlon of th« general  problem trtmt when each p      U the product of a  time 

aitoclated with  job   I and an efficiency  fa, tor aiaoclated with machine J,   that  Is,  p      - p w .     In this restrict- 

ed caa«,  mean flow-tlna   la mlnlmlaed  by a simple  procedure which   follows   Imnedlately  from the  analysis of   [5] 

First,  rewrite equation  (2)  a*  follows: 

m       "j     1 m       "j      I 

' ■ j-, h K-, 'JW.J ■ |, h L W
J
P
J[^ 

"Vl'ltlJ4  (nl-1),'lPl[2]+-+2-l''1[n1-l]
+w,P,[n)] 

;n2V2[1]+  (n.-1)V2[2] +  •••  +V2lu2] 
+ 

W^IJ4  V^VWlJ4-  +Vm[n   ]' ■ 

Second,  since F It a  «um of n terns,  each of which Is a product of one of the n p^s with one of  the n coefflcl- 

entc n1w),(n1.l)w1 VV^I w2 Vn." "'V  plck " coefficients  the n smallest of  the nm posslbll- 

Itlaa rm1,(n.l)w) w).nw2 w2 m,^,...,^.    This will determine  the values of the n  .     Third, mlnl- 

ml.e F by matching r.ha  largaat ?l wich  the smallaat coafflclant.  the «econd-l.rgest p1 with the  second-amallaat 

coafficlent, and so on.     If a particular p1  Is matched with   (nJ-k)wj,  then Job  I Is scheduled   (k+l)th on machine 

J.    Picking coafflclan-   (nj-k;wJ  Implla*  th«t we have already picked   (nj-k-Dwj, (nJ-k-2)w 2w  ,  and w  .   so 

the reaultlng .ch.dul.  1. well-fomad.     (T-t la.  It  Is not  po.alble,   for example,  to schedule  some  Job  fourth 

on some machine and not  schedule  some oth ,r Jobs first,   second,  'nd  third.) 

Each choice of a coafflclant can b, raa.-lctad to ba among only m possibilities out of the  total  of nm.     The 

first choaan «111 aur.ly be on. of w, wm  uhe .«all.at.   in fact).     Suppose  It Is »^    Then the  second coeffici- 

ent will be the nallaat of w, 2w1 w^    At each  stage the  Integer multiplier of the chosen coefficient  1« 

Increased by  1, and  tha next choice made.    The schedule ia  thua being determined "back"  to "front". 

An axampl. of tht. procedure ia given in Fig.  2(a)   for a five  Job,   three machine problem.    The  Jobs happen 

to be numbered so that  p,  * p2 i ...  * p^;  consequently no sorting of  the ^  Is necessary.     In each row of  the 

table th. amallaat of  tha m potential  co.fflcl.nts Is chos.n  (circled),  and  In the next row the circled coeffici- 

ent   is Increased by tha corr.apondlng Wj.     In row 2  th.re .re  two smallest coefficients;   the choice  bstween them 

Iß arbiträr .  since dl££r.-.nt sch.dul.s with the s.me  (optlm.l)  F will result  from different choices  Jn the c.se 

of a  tie.    Fig.  2(b)   shows  tha reavlting schedule and  the  calculation of F. 

Fig.  2(c)  shows  the application of an equivalent algorithm to the  problen, of Fig.  2(a).    Here  the  processing- 

time array P I, explicitly ahown. and  th. co.fflcl.nt.  In .ach row now repre.ent the possible sequence positions 

on the three machine.,   counting from th. jnd of th. sch. 'ule.   for the  -orre.pondlng Juk      It Is  Important  to «*M 

that for each column J,  P^  * P2j  ?   ...  * P    .    Let the coefficient,  in a particular row 1 be h^h, h     (in 

this case,  m - 3).    Then the minimum ly^  ia chosen,  p^   i« clrcl.d,  and h    Is Increased by 1   In the next row. 

MiiMMMuaiMlUMMiilt Mk^eiiMabM  •—•  
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Thls 1B exactly equivalent to the elgorlthm cf fig. 2(«), end the seme schedule results. The difference lies In 

the leek of explicit i-se of the w In the second version of the «Igorlthi... end this difference will be exploited 

in Section 1, 

Sorting the p requires computational exertion of (hn log n), and finding the smallest coefficients requires 

O(ran), so the time com|.lexliy of the machine factor algor'thm Is 0(max(n log .;,nm)). 

3.  EXTENSION TO THE GENERAL CASE 

The second version of the procedure of the preceding section (Fig. 2(c)), since It does not use the machine 

factors w , may be applied In the general case, though with no guarantee that optimal schedules will be found. 

Fig. 3(a) shows the result of applying this procedure to the problem of Fig. 1(a).  Since this problem is outside 

the machine factor case we cannot sort the Jobs according to a single processing time, so In Fig. 3(a) the Job 

numbering of Fig. 1(a) It retained, and the schedule of Fig. 3(b) results.  The value of F Is not optimal, but 

the schedule was very quickly computed, so this algorithm will hereafter be called the Quick And Dirty (QAD) al- 

gorithm.  The coefficients used at a particular stage of the schedule generation will be called the QAD coeffici- 

ents and labeled h^h,,...^ .  In each row I of P the QAD algorlthn' chooses the minimum of h]Pi\'
h2fi2'"''lXmPlm 

and increments the chosen h  in the foll-w'ng row.  As In the "ischlne factor case, the choice of h p  means that 

Job 1 Is scheduled (n -h +1)1^ (or equlvalently, h th from the end) on machine J, and tha- the term h p  will 

occur In the calculation of F.  (This latter fact Is very Important for the rest of this paper.) 

An obvious Infirmity of the schedule In Fig. 3(b) Is that the Jobs are not scheduled In "shortest processing 

time first" (SPT) order on each machine.  SPT order Is optimal for the mln ''ration of F on a single machine [5], 

so an optimal schedule for the more general problem clearly must have Jobs in SPT order on each individual machine. 

This fact suggests that the performance of Q^D may be Improved by adding to It a procedure which sortä the Jobs 

In SPT order on each machine after the schedule has been produced.  Call the combined procedure QAD*.  If QAD* Is 

applied to Fig. 3(a), the result Is a schedule with an Improved F of 35, which, while still not optimal. Is con- 

siderably better than QAD'a F " 48. 

Though an optimal schedule was not found in Fig. 3(a), If the rows of P are permuted as In Fig. 3(c), the 

optimal schedule of Fig. 1(c) will be generated by QAD (and therefore also by QAD*).  This might appear at first 

glance to be no more than a fortunate coincidence; the following theorem, however, states otherwise. 

Theorem 3-1.  Given an arbitrary processing time array P, there exists a permutation of the rows (a renumbering 

of the Jobs) such that the QAD algorithm, operating on the permuted array, will yield I schedule with optimal 

(minimal) F. 

Proof.  Let P be arbitrary.  The plan of the proof will be to show that If the first k Jobs (Jobs 1,2 k) of P 

are scheduled optimally by QAD, then one of the remaining n-k Jobs can bp renumbered k+1 so that it, too, will be 

scheduled optimally.  If this can be demonstrated for k ■ 0,1,2,....n-l, then the theorem will be proved.  In 

this proof the phrase "scheduled optimally" will mean scheduled (by QAD) in^ agreement with some optimal schedule, 

both In the assignment of Jobs to machines, and in the order in which they are assigned.  Recall that QAD assigns 

    



■■■■- "—• ^^t^mm^^ 

•7- 

(a) 

1 2 3 

1 7 4 0 
2 3 (D 2 

3 0 2 2 

4 9 9 0 
5 0 1 ? 

6 ® 6 5 

7 5 0 4 

8 5 © 4 

1 1 1 

I 1 2 

1 2 2 

2 2 2 

2 2 3 

3 2 3 

4 2 3 

4 3 3 

(b) 

(c) 

3                            3 
1 
1 

4       • 
t 
i 

i     ; '       £ n 

1 6 5 3 

2 8 7 2 

3 4 1 

"  Xl   + 2P5.1   + %t\  
+ 3P8,2  + 2P7.2  +  1P2,2 + ^4.3 +  ^1,3 

- 3-3  + 2.1  +  1.3 + 3.4 + 2.1  +  LI   + 2.8 + 1*3 

- 48 

1 2 3 

4 9 9 0 
8 5 ® 4 

6 0 6 5 

1 7 4 0 
3 3 0) 2 

7 5 0 4 

5 0 1 2 

2 3 3) 2 

1 1 

1 i 

2 

2 

2 

3 

4 

4 

Figure 3 

MttllMi        1  !■ mill — ' — > •• mM 



mmmmmmm " " 

-8- 

Jobt fron last to first on «ach machine. 

Let S be an optimal schedule for F. Assume that the first k jobs of P are scheduled by QAD in agreement 

with S, where k may be any Integer from 0 to n-1.  (There Is nothing to prove if k - n.) We will try to find a 

(k+l)th Job such that either: 

1. Joba 1 through k+1 will be scheduled by QAD In agreement with S; or 

2. th?re is some other optimal schedule I' such that jobs 1 through k+1 will be scheduled In agreement 

with It. 

If at least one of these two alternatives Is always true, the theorem is proved. 

Fig. 4 illustrates the situation with an example.  The shaded jobs are jobs 1 through k, optimally scheduled 

by QAD.  If the QAD schedule is to agree with I, the only jobs which are "candidates" for job k+1 are those 

marked by an aaterisk in Fig. 4.  There is at most one such candidate job on each machine.  Let g  (j ■ 1,2 m) 

be the number of the candidate job on machine J If there is one; otherwise let g • 0.  Let h (j - 1,2 m) be 

the QAD coefficient for machine j in row k+1 of P. 

S: 

Figure 4 

Construct a graph with m verticea v-.v, v  .    For each vertex v.,  draw a directed arc  (v.,v.)  from v    to 
I     t m 1 i    J 1 

v    If and only  if 

1. g1 t 0; and 

2. gA.i would schedule job g    on machine J  if it became job k+1  of P. 

The existence of an arc  (v.,v )   implies  that h p s h p        , with equality only if the tie-breaking rule used 
^J J8|»J *-8J»1 

by the QAD algorithm would choose machine j over machine  i for job g . 

If  there  is any arc of the  form  (v^v^,  then job g    can become job k+1, QAD will schedule it according to 

S,  and we are done.    Assume,  therefore,  that  there are no such arcs in the graph. 

Suppose  some vertex v^ has one or more arriving arcs but no departing arc, and  let v.  be a predecessor of 

-t,^.          
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Vj   (Flg.   5(b)),     Construct a  new schedule  S'  which   Is   Identical   to S except   that  Job  g.   is  scheduled   first  on 

machine  J   (Fig.   5(a)),     If we  constructed  thj graph  corresponding  to  S', we would   find  Fig.   5(c)   in place  of 

Fig,   5(b),     If S"   is optimal,   then  Job  g1  could  become   the  new  Job k+I   in P and  be optimally  scheduled. 

K-- 'i. 

S: 

(b) 

>> 

(•) («) 

Fifjure  5 

S S' 
Denote  by  F    and  F      the  total   flow-times  of  the   two  schedules.     Then we  have 

..S' 

F'+ hjVJ - hi Vc' (3) 

Th« non-nagatlve term c occurs <.n (3) because the removal of Job g1 from machine i caust- the coefficients of all 

preceding Jobs (If there are any) to be reduced by 1 (see Fig. 5(a)). The  existence of arc (v^v ) implies that 

V^.j * hlPg4.l' '
nd the 0Pcim«llty of S Implies that TZ'   s FS. We conclude from (3), therefore, that c - 0. 

S'   S     *. 
F  ■ F , and S' U optimal.  Thus Job g  can become Job k+1 of P. 

Now suppose that the graph contains no vertices that have arriving arcs but no departing ere.  Since there 

Is at least one arc Ir. the graph (becauoe k < n) , since the number of vertices Is finite, and since there are no 

area (Vj.v^. we conclude that there must exist a cycle in the graph.  Suppose the cycle has three arcs, (v ,V ) , 

(Vj.v^, .nd (vk.v1), .s shown In Fig, 6(b),  («M following argument may easllv be generalized to cycles of any 

size,)  Construct a new schedule |< Identical to S except that Job ^ moves to Job g 's position on machine J. 

Job gj goes to machine k. and Job ^ to machine 1 (Fig. 6(a)). 9m  graph corresponding to |< would Include Fig. 

6(c) In place of Fig, 6(b). 

S     S' 
With F and F  as before we may write 

,V 

- FS + *JV ■ "'V' * (hkS.k ■ '^+ {h^ ■ vgk,k)- (4) 

The existence of  the arc. In the cycle mean,  that each parenthesl.ed    term in  (4)   Is non-po.ltlve,  and since 
-S'   S 
F  * F . we conclude, as before, that i' Is optimal.  Any one of Jobs g^ ijl and gk can become Job k+1 In P and 

be optimally scheduled. 

We have therefore shown what we set out to show, namely, that there must always exist, for k - 0,1 n-1. 

■     ,_. 
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S; 

(b) 

(c) 

Figure  6 

•  (k+l)th Job th« will be optimally .cheduled by QAD      The exi.t.n« nf . 
D/ ^u.     fhe existence of • row-permutatlon of F that ylelda an 

optimal echedule follows Imnedlately.        ■ 

o» „„..,..„. u mmm. „ „ lh.t „ optlMl tchMt My ^ ^ ^ ^^ WB ^ ^ ^ ^ ^ 
"*—«- - . - **m ... ... „H...U ,ra «, th. „.ult..  fc „,.„„„ „ #o o(n)) ^^ 
[2,3,,  »„..„.   „„U^.. th. „„ 0,  ,uch .. .„^  ,„ ^ büt  .^^^^ ^ ^^      M ^  ^^^ 

U -K . -, .... th. 41„ov„y „ _ „„.,„, ^^^ ^^^  ^ ^ ^^ ^ ^ ^ ^^     ^ 

U ~.a.- , . .^ ,„ «^ _ Iln.le „^ aik. ^ „ ^ ^ ^ ^ ^ ^ i<^ 

».    WORST CASE  PEBTOBMAPd 

in tHl. ..etlon w. will examine the worst case performance of tbe QA0 algorithm u„der various row-sorting 

-les.    Since QAD* „eV.r yitli. . _, .chedulp ^ ^    ^ ^^^ boundi  ^ ^ ^ ^ ^ ^ 

hold  for QA^  thoU8h ._ bound. which .re ^ for QAD ^^ not ^^ ^ ^ ^ 

UH FQAD    be the total  flow-tlme of the QAO schedule  for .OTe P whose row. are  sorted according to rule 

KUU.  and  let ^ be the optimal   (minimal)   flow-tlme for P.    ^ M..ure of perf_nce  ^ „, ^ _ine  ^ 

RULE 
QAD , 

OPT 

en. li*.l»« .o ...i„.. tt. „.„„ ,.„„ „, th. .lKtl[_ 

of  their QAD scedules.    Then 

F' 
-T < n 
F (5) 

 -. 
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• nd   this   ii a  best   bound. 

12 12 
Proof.     Lat  C    and  C    denote   tha  contributions of  Job  1  to F    and  F  ,   respectively,   so  that 

Cl   "   Vlk 

(6) 

'       . .2 
for some J and k, where h^ and 1^ are  the chosen QAD coefficients  for Job  1  In P    and P  .    We will  show  that  for 

all  1, 

J 
(7) 

"1  < -j * n. 
Cl 

Suppoaa (7) Is false for some 1.  Than, using (6), we may write 

hlpij * "»w- 
By  the operation of  tha QAD algorithm,  we know that 

(8) 

and  In particular. 
"WJ " CJ'vv 

hJpij 5 hkpik (9) 

where k Is as In  (6).     Combining  inequalities   (f) and  • i), we get 

^"ik S SPiJ " n,Vpik 

hkPlk  ' "^"ik 

(10) 

1  . L2 Inequality (10) is plainly iopoaaible, since 1^ and 1^ are Integers between 1 and n.  This contradiction proves 

(7). 

Now write 

_1  c.+c..+,.,+c, 
F_ .  I I n 
F 2 ' 
^2  c.+cS..,^ 

I  2     n 

From inequality (7) and the fact that all c| and C^ are positive. It follows that 

c!+c'+,,.+c' 
2 n . 

-5—5 j 5 n. 
C,+C,+...+C 

1  2     n 

(11) 

For equality to hold  in  (11),   it seist be  true that for «11  I,  cj - nC^.     But  clef.ly this cannot be,  so inequal- 

ity  (11)  becomes strict and   (5)   is proved. 

To  show that n  Is a best bound,   let  P  take   the   following  form; 

        - -B^riHMMMMMMaa^atfg 
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n-1 

n 

i    .     .     ■     m 

UJ 

«    m I     •    •    a 

(12) 

t      U     U)      .       .       .      UJ 

X      UÜ     U      .       .       .ID 

wh.r.  . < < X < < ,«.    Ut P'  b. .. glv.n .„d con.tnact P2 by Int.rch.nglng row.  1  «nd n.    The QAD .Igorlthn, will 

.ch.dul. .11  Job. on ».chin.   1   f„r both  p'  .„d  P2;  only  th.  Job ord.r will  b. dlff.r.nt.    W, will h.v. 

i. + 2« + 3. +  ...  +  (n-^t -t. „x 

F2      X + 2f + 3. + ... +  (n-1)c + nc 
.nd 

,.     F      n:: 

«-0    F X 

Thu.^w. -y.   for « . ,  .„d n . 2.  con.truct .n .rr.y P with two raw-p.nnut.tlon. P1  .nd P2 .u.h th.t th. r.tlo 

F'/F    1. .rbltr.rlly clo.«  to R.     Th.r.for. n 1. . b..t b^und.      ■ 

CprolLry 4^1.    L.t F^ b.  th.  tot.l  flow-tlm. of th. QAD .ch.dul. for .n .rbltr.ry P und.r .n .rbltr.ry row- 

permut.tlon.    Th.n 

«nd thl.  1. . b..t bound. 

FQAD   . 
F        <n (13) rOPT K'J> 

Praof.    Th.t n 1. .n upp.r bou«! follow, dlr.ctly fro» Th.or.n. 3-,  .nd Th.or.» 4-1.    Th.t It 1. . b..t bound .-y 

b.  ^.n by «.mining   (12)   In th. proof of Th.or.» 4-1.     In th.t example  F2 - F ■ 
OPT'       ■ 

Th. .rgu^nt for th. .h.rpn... of th. bound, in Th.or.n. 4-!  .„d Coroll.ry 4-1 depend, on th. p.cull.r .truc- 

tur. of th. proc-lng-tl». .rr.y  (12).     If ** „„ used ln.te(ld of ^   ^ opttMl ^^ ^ (u)_sn ^ 

«-chin,  l-w^uld b. found.    Thu.  th. bound n In  (5)  .nd  (13)   1. not n.ce...rlly . be.t bound for QAD*. 

Th. ..n.lbl. u.. of both .Igorlthn,. d.pend. on mm .ch.me for .rr.nglng the row. of P prior to their .x.cu- 

tlon.    T^e .ppro.ch w. t.k. will b. to .ort  th, row. .o th.t  the v.lue. of mm .ingle-v.lu.d function of ..ch 

row .r.  in non.l„cr...ing ord.r.     P.rh.P.  th. »o.t obvlou. cholc. for .uch . function 1. th. iver^. of the . 

proce..l„g tin... of . Job.    TVo oth.r po..lbllltl.. .re the »jxlmu» .nd nir^ of the n. tin...    Notlr.  th.t .ny 

of  the.e  three rule, will cu.. QAD to perfor» optln-lly m the ».chine f.ctor c.e.  .nd  It ...». re.son.ble to 

require that thl. b. tru. of wh.t.v.r .ortlng nil. we .dopt. 

Denote by AVE. MAX. .nd MIN.   th. rule, of .ortlng In ord.r of non.lncre..lng row .ver.ge. ».xl»u». .nd »1„- 

i™».  r..p.ctlv.ly.    „. c.n ...lly .hw> mt„mmmf.  th.t AVE .nd MAX do not  Improve the wor.t c... prfor- 

».nc. of QAD.     For  consider  the  following .rr.y  P: 

-■■■■-■   —  -- --■-—^—   -■ ■       -   -■-■   —-■ -- ■   iiti\ it n\ utM\\\unmm]Umt*mi]-n*i\imm*tim m^lMmm 
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2 in 

(tf+X    . • u^-X 

in*-*    . • u^-X 

•               • • 

• • 
• • • 

n-1 c urfX     . i u^-X 

n X ID # u< 

(14) 

wh«re  c < < X < < a).     Th«  rows  «re alraady arrariged according  to  both AVE  and MA> ,     The  optimal  tchadul«  for   (14) 

i«  SPT on oachlna  1,  but  QAD tchedulei   Job  n  flrat  Instead of  last  on machine   I.     Therefore,  using  the argument 

from  the  proof of  Theorem 4-1,   the  bounds 

^<n 
OPT 

-MAX 

OPT 

are best bounds.    We have already observed  that QAD* cannot be tricked  in this way,  so these may not be best 

bounds   for QAD*. 

The wont case behavior of QAD under the MIN rule is  less  than    bout half as bad as under the AVE and MAX 

rules.     To establish this we will  first need  two lennas. 

Leiroa 4-1.    Let r1 denote  the minimum value  in row i of an arbitrary P whose rows have been arranged according  to 

the MIN rule.    Then 

'S*'!  +2r2  +  •••   +nrn (15) 

with equality only if the r    occur in a single column of P. 

Proof.    Let Ci denote the contribution of  job  i  to F^,  so that 

VD " CI ■'" C2 + ••' + Cn- 

If we  can show that for all  i,  C^  s ir^   then  (15) will follow directly.    Thä value of a particular C   will be 

hJPlj  f0r ,Cm* '*    Su,>po,e th-t ri occur»  ln column k,  so rl - plk.    Clear'.y, h    s i and r    « p    .    By the opera- 

tion of QAD we know that h.p..  s 'VP«].'     T*1*" "* ■*> write 

ci" hjpij s Vik" Vi s !'i 

and   (55)   la  proved.    Th« necessary condition for equality in (15)   is obvious.      ■ 

Lemma 4-2.     If r.  2 r.  2 ... fe f    > 0  then 
  1 2 n 

r1  +2r2 ^ '•• 4nrn  s:n±l 
r,  + r2 + ...  +rn 2 

(16) 

I iiiliiJMÜÜI^rtl  -UllMt MMHUUM^atlteUUMi ■  ■ ._.— ... 
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wlth «quality  if and only  If r.  - r    -  ...  -  r  . 

tXSSL-       Inaquallty  (16)   U aquivalant  to 

S+l      ri   * 2r2  ■*•  •••  + » 

2    * »I ♦ », ♦ ... ♦ t        * 0 
I 2 n 

•»hlch,  sine« all Ti ara positiv«,  i« Itaalf aquivalant tc 

(•»♦IHr,  + r2 + ... « rn)  - Z'T} * 2r2 ♦ ... ♦ „rn)  * o. 

Collact  tarm« in  (17)  to gat 

(n-Dr,  «  (n-3)r2 «  (n^Tj ♦ ... ♦ (5-n)rn_2 ♦ O-n)^,  « (1-„)rn ^ 

No- «atch r, with rn.  r2 »1th r^,. and .o on,  to «at 

(17) 

•or  odd  n;  and 

(n-1)(Vrn)  * (n-3)(r2-V))  « ...  ♦ (n.n)r   ,» 0 

(n-IXr,-^)  + (n.3)(r -r      ) • ... + l(r -r      )  » 0 
n*' n    n|■ ? r1 

(18) 

(18') 

tor avan n.     Dua  to tha con.cralnt that t,  . ...  . rn > 0. a.ch t.™ In (18)  and  (18-)   1. „on-nagatlva.    Thi. 

..fbllaha.   (17)  and th.r.fora  (16).    Equallt,- holi. In  (18) and  (IT)   If all  tan«, ara 0. or aqul.alantly. 

»| • »t • ... • t^l   ittllllM, «oaa tan will ba jio.itiva and  (16) will ba «trlct.      ■ 

lhaoran 4-2. 

-MIN 
Q/.P , »ti 

F 2     ' 
OPT        ' (19) 

Sioot.    Fir.t notlca that If bia tl ara row mlnloa of P, 

F0PT *r1  +r2 + ••• *rn (20) 

-1th aquallty only If tha r, Ua In dlffar.nt colu.n. of P.  (Thl. l.Plla. . * n.)  Inaquallty (20) and La- 

4-1 allow u« tc wrlta 

!a*E * !j_Lil2_Lii_lJ!In 
FOFT      r1+r2+-"+r„       ■ (21) 

Th« nacaaaary condltlona  for aquallty In  (20) and  In  (1S^  «f I A  I  - 
H y in  uu> and  m (15)  of Laaaa 4-1 ara contradictory.    Th«  inaquallty In (21) 

I. tharafo.« atrict.    Ualn. thi. fact to.athar with L«-a 4-2. w. «at  (19) dlr.ctly.      . 

Tha bound in  (19)  h.. not „.,„ .ho(fIl „ b. . ^ „^ £or ^ ^ ^ ^      ^ ^  ^ ^ ^ 

b««n mm» to conatruct an array P which violata. th. aurprl.in, bound in tha followin, conjactir.. 

Thi«  lanna wa. provad by Profaaaor G. W.  Stawart. 

 ^ ■ -     - ■       - ————->-»«».—i—^—^« 
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■ on lecture: 
MIN 

r 
OPT 

We now turn briefly to the time complexity ot QAD end t)AD* w^th row-iorting rules.  K«ch of the three sort- 

ing rules examined takes time proportional to .n for «ach of the n rows of P, or Odm), to calculate the sort 

keys.  Sorting the rows takes an additional 0(n log n) ; the guts of QAD require 0(im) ; and the final SHT sort of 

QAD* takes at most 0(n log n).  Both algorithms with sorting rules, therefore, have time complexity 

0(max(mn, n log n)).  Not surprisingly, this is the same order of complexity displayed by the machine factor al- 

gorithm.  For purposes of comparison, constructing an SPT schedule for a ningle machine - perhaps the simplest 

scheduling problem of all - itselt requires time of 0(n log n). 

5.  AVERAGE PERFORMANrt 

Most algorithms behave much better most of the time than they do In the worst case, and the QAD algorithm 

is no exception.  In this section we will use Monte Carlo methods to examine the average performance of QAD and 

QAD* under various row-sorting rules for two models of parallel machin« systems.  Model I Is extremely simple 

and correspondingly remote from reality; Model II, a computer system model. Is considerably more down-to-earth. 

The measure of performance used, as In Section 4, is fq^/F^ (and r^jf/f^y).  In a typical experiment, 

a large number of arrays P were randomly generated a id the values of this performance measure calculated for 

each of four sorting rules:  MIN, AVE, MAX, and a new rule, RAHD, which arranges the rows of P in ranoom c-der. 

The algorithm of Bruno, Coffman, and Sethi [2,3] was used to calculate >  -  The rules MIN, AVE, etc. used with 

QAD* will be denoted by MIN*, AVE*, ^tc. 

5. t  Model 1 

In ,-his model, the p^ are integers inde- . idently drawn from a uniform distribution over a specified range. 

Pig. 7 shows the results of an experiment in rfhich were generated 200 arrays with n - 8 and n - 3, where the 

range of the uniform distribution w«a from I to 100,  Each of the four rules was applied wlfi QAD to each of the 

200 problems, and the four curves of Fig. 7 are the sample cumulative distribution functions for the values of 

rRULE/ 
QAD 'FOPT'     Point (1.2, 0.90) on the AVE curve, for example, means that 90 percent (180) of the 200 values 

of 'QAD'FOPT Were l*"  th*n or •I"*1 t0 '•2' We ""y immediately observe that MIN Is substantially better than 

the other rules for this experiment, and tha-. the uerformance of QAD under the MIN rule is quite good:  39.5 

percent of the sample problems were scheduled optimally, and 95 percent of the solutions were at most 15 percent 

worse than the optimal schedule. 

The performance of MIN Is little improved by the final SPT son of the Qf0*  algorithm, though the other 

rules are improved to nrying degrees.  Fig. 8 shows the results of applying QAD* to the same 200 problems.  The 

curve for MIN* is omitted becat'se its closeness to AVE* would have obscured both curves, and because it is nearly 

identical to M1N in Fig. 7. 

Table 1 shows the extent to which each rule outperformed each of the others in this experiment.  For 

Instance, AVE* yielded a better schedule than MAX in 85 percent (170) of the 200 sample problems.  Table 2 gives 

  —. I I ■!  - ■   - - .   .  - ■ . . ■ ^ 
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Flgure  7 

. ^. -..- ^.^^-.— —...   . , ..■ ■ ■        -      - -   - -        ----- -   -   -  — ——— ■—^-i 
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Figure  8 
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four u..ful ch.r.ct.ri.tlc. of ..=h m*U di.trlbutlon:     ho« oft.n .n optl«.! .ch.dul. w..  found;   *. «.„ ., 

th. dUtrlbutlon;  ch. v.lu. « .„d fc^ ^ 95 „,„.„, of ^ MBipUi  llt; ^  ^ ^^ ^ ^^^^ ^ 

th«  experiment. 

TABLE   1 

Rule A bactar  than  Rule  B   (percentage) 

*\ B       MIN MIN* AVE AVE* MAX MAX* 
MIN 0 0 70 30.5 90.5 51.5 95.5             55.5 

MIN* 1 0 70 30.5 90.5 il.5 95.5            55.5 

AVE 19.3 19.5 0 0 82 39 86                41.5 
AVE* 27.5 27 n 0 93.5 49 94.5             56.5 

MAX 7 7 9 5 0 0 64.5            21.5 

MAX* 23.5 23.5 54 24.5 93.5 0 87.5            43.5 

RAND 3.5 3.5 12.5 4.5 33 10.5 0                   0 
RAND* 21 21 52 22.5 

TABLE  2 

76.5 33 96.5               0 

DUtrlbutlon   Characteristics 

PERCENTAGE 
OPTIMAL MEAN 95i LEVEL 

OBSERVED 
MAXIMUM 

MIN 39.5 1.038315 1.141304 1.234177 

MIN* 43 1.038233 1.141304 1.234177 

AVE 9 1.087132 1.228572 1.516129 

AVE* 38 1.043284 1.158228 1.447581 

• MAX 1 1.204095 1.45946 2.02963 

MAX* 29 1.069569 1.220109 1.357934 

RAND 1.5 1.280514 1.614815 1.917808 

RAND* 26 1.086278 1.259434 1.449367 

Ih. .vidanc.  th«.  Ur pr.a.nt.d au.ga.t. that for Modal  I. MIN t.  th. ba.t nUa.    ». f.ct th.t MIN* i. 

-.r8ln.Ily b.tt.r «M .a., to ba oufalghad by th. .d.atton.1 co-put.tion.I .ffort U r.^...    ^ chT.cfr- 

1*1« of th. r..ult. of thi. „pan-ant  turn out  to ba  trua  for ^ .xp.rlo.nt.  both  ln ^  , ^ ^  „ 

that will ba daacribad: 

1. Th. rul.. Ito^ in ora.r of p^ of f„9„mwm .„ MIN> AVE) MAXt um for ^ ^ ^ ^ 

2. MIN* -H..l»-i MIH vlrtu-lly n.v.r;  RAND* outparfor-d RAND vtrtu.Uy .Iwy.; .„. th. oth.r ^ 

were   In between. 

S.v.r.l p.r^t.r. of th. .xp.ri-.nt -r. varlad to ta.t tha aan.itlvity of tha parfonnanca of 
QAD with MIN 

. ..       ,.— ^.^. ^..^^. ■„J—^^.■. -      ,   - ^      - - -    -   
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U ch.ng..  in the ^    ^ expellraent. cf  100 ^^^ ^^  ^^  _ ^^ m _ fc ^^ >ii  othir ^^^      ^  ^ 

Ik.   flr.t „p..^,.   .nd  the oth.r wuh   the  range of  the ^^^ di8tribution ^^   ^^   N)OO  to. |   ^ ^^ 

oth.r p^H« .,  b.f0.e.     Botn .^^^.^ ^^^ MIN ^^^ ^ ^^^^^^ characteristics not  ^^ 

•11, itfi»   fro«  tKo..  .1  rt..   7 .„a  T.bU  2.     T.kl„g  lnto ..coun.   *.  U.Ued  nuraber .nd  n.ture  of   the  „. 

HH~*.   (r,.trtcaon.  ^po... -tal, by the comput.tlon.1  „^^ of  ^ ^^ ^^    ^ ^  ^ 

»tl-t,   .„dud.  th.t  p..^^  ln MoHel   ,   u  reUtlvely  iniengttive  ^  ^^^^^   ^  ^^^^  ^^^ 

Ocn.r .xp.Tia.ntB deolonitr.ted  th.t  tlie8e „„^^ reguit8 ^ sen8itive  ^ ^^^  ^ ^    ^^ ^^ 

— w.re p.rfonned wlth the unlforin dliCrlbution ig  ^^      _ ^^  )oo gampie ^    ^  n .  ,6  by m . ,. 

ewo or th... („IN curve. only) .re comp.red wlth ^ MIN ^^ of Fig> 7 ^ ^ ^^^^ ^^^^^ ^ ^ 

Fi8-   ^     It •PP<,r8  ^ "  "  lnCr (Wlth ^ "  ^ »>.   «-  -»»• — °f  - dlstribution.  rem.lns  r.UtlVely 

it«tion«ry,  whll«  the  sample  variance  decrea».       iv-   m 
d.crea.e..     The   thre. „>..„. are:     8  by 3.   1.038315;   16  by 4,   l. 030334 •   and 

2  ^ 5.   1.037,205.     Further .upport  1.  Unt  to  this  tentative concision by the  five vaiues of ^/r        for the 

64  by . experiment:     1.02552.   1.029267.   1.03074.   1.043362.  and   1.0563,9.  „1th a mean of   ,.0370.14 ^ 

U  U  dlfflcult   to conceive of a  reaHstlc  situation  In „hlch  the  ,      are   Independent and  unlfor.!, dls- 

chlne -hich  run. one  Joh  faster  than  the other machine.   Is  H.el, to run other  Johs  qulckly     too.    We   turn  now 

to a more realistic model 

5.2    Model  II 

Mode!   „  U a mode!  of a multlproce..or computer  .y.tem not unH.e  Carnegle-MeUon Unlverslt.^s  C.^p  [7] 

». ^chln.. are different mod.U of the O^lta! Equl^nt  Corporation POP-,,  computer  W, a.d  the Job. are 

tor..    A Job', m proce.slng times are calculated hy drawing . .fn»!.  .<       <r 
Dy drawing a  single  time  from an exponential distrlhutlon and 

multlplying by the machine  factors as.oclated with  lt.  loh class       rr.™». . 
tn  ita joo class.     (Times are rounded  to the nearest  Integer ) 

a. mMm ».,„. „.„ „.„ „„ c.ltul.t.a ^ pDp.„ „„.„„.^ flgurii tLim u [ij 

». H« ..P.»™« „ b. d.,„lb.d „„.ld.„d 2M fTMtmi M . . , ^ . . ,  ^^ ^^ wmtMn ^ 

• — «... „. . „M u, „, . HM „    ^ ^ thre< ^ ci     cui_ ^ ^^ ^ 
«-. .... .. c... ,. „„^.„^ Job., ot ^ thtte _ ,_ ^ aii_ ^ _ ^ ^ ^ ^ ^ 

Below are the machine factor, for the.. Joh cla..e.: 

jfcuza PDP-nAu       PHP.,,//.. 
Class 1 

Class 2 

Cla.s 3 

1 .556 .556 

1 •291 .m 

.556 

n   üfcrt'i   - -'■—- -.....—i.-...-w.  ■— ..,. -   .    ..—..^.^^^w..-^., .,.■.. —L..-.—     ....-■ i,,.-.-,     |    -- -■ ■■ --,— ■.■..-...-.>. ,._-..-,.^-.. -^M^,   ■..,. -J.^1J„ __ ■ ■ 
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Figure 9 
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"•r. co„U„.d  „ i.  i,,  „ n  „„ on tht   Tl/40 

^ «« . ... .u „u. „t.Pt „ro.   a. „ „... ,. tnamUt  ^ ^^ M^ u ^ M 

TABLE  3 

RuU A b«ct«r than Rul« B  (p«rc«nt.g.) 

A\ B       MIN MIN* AVE AVE* MAX MAX* Oiun                  n..n^ 
MIN 0 0 48 47.5 71.5 66.5 98 .5                89 

MIN* 0 0 40 47.5 71.5 66.5 S»H .5               89 
AVE 13.. 1             13.5 0 0 45.5 37 95 •5                79,5 

AVE* 13.; 1             13.5 18.5 0 H 37.5 96 5              81,5 
MAX 10 10 0 0 0 0 93 5              63 

MAX* 11 11 11 0 47,5 0 94. 5                70,5 
RAND 0 0 3 2.5 5 4 0 C 

RAND* 5 5 15.5 13 

TABLE 4 

32.5 22.5 97. 5                 0 

Dlitrlbutlon Chartcteris ties 

PERCENTAGE 
OPTIMAL MEAN 95^ LEVEL 

OBSERVED 

MIN 61.5 1.01767 1.081088 1,303683 
MIN* 61.5 1.01767 1.081088 1,303683 

AVE 39 1.04A154 1.143041 1.303683 
AVE* 40.5 1.039521 1.139162 1.303683 

MAX 18 1.088859 1.257068 1,303683 
MAX* 24.5 1.06943 1.188495 1.303683 
RAND 1.5 1.476827 l.tSIMS 2.249682 

RAND* 4.5 1.153185 1.442467 1.811287 

;...TJ.   —         J..,-J_^J_1^^—„..--.^ „ :,.., .^..^...^-^u—^—_—■-.■—.  ■ ^ 
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Figure  11 
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The  sensitivity of  these  results   to changes   In  the model',   parameters was  examined  by  running several  addi- 

tJonal experiments.    As In Modal  I,  changing the  range of values of the p      had  little effect.    A-i experiment of 

101)  sample  arrays was run with all  paramaters  as  before,   except  that the mean of  the exponential distribution was 

changed  from  1000 to 60000  (milliseconds).     The  performance of QAD under the MIN rule was  not significantly dif- 

ferent  from that of the first experiment.    Again,   strong conclusions are ruled out  by the  limited extent of  the 

testing,   but  performance  In this model would   tentatively appear not  to depend on  the  exponential distribution. 

In  further agreement with Model  I,   performance was  found  to be  sensitive  to  changes   In n.    An experiment was 

performed  In which the number of Jobs In each class waa doubled,  bringing the  total   to  16.    A fourth machine was 

added  to the model,  a PDP-11 Model 05, whose machine  factors for the three Job claases are:     Class 1,  1.25;  Class 

2,   1.25;  and Class 3, ".    One hundred sample arrays were  .ested.    The results appear  In comparison with the 8 by 

3 reaulta  In Fig.   12 on a greatly expanded horizontal  scale.    The means of the  two experiments are:    8 by 3, 

1.01767;   16 by 4,  1.019837.    Approximately the  same  behavior found In Model   I  Is demonstrated here:    as n In- 

creases   (with m ■ log n),  the sample mean appears  to remain relatively stationary, while  the sample variance de- 

creases. 

^ 
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6.  CONCLUSION 

For the scheduling problem studied in this paper, the QAD «Igorithm seems to be a reasonable alternative to 

the optimal algorithm of Bruno, Cotfman, and Sethi [2,3].  The QAD algorithm (with the MIN rule) takes computa- 

2  3 
tional time of 0(maxHnn, n log n)) , while the optimal algorltta requires 0(max(mn , n )).  Furthermore, QAD is an 

extremely simple algorithm, and easy to work by hand (as might be required in an industrial shop, for instance). 

By contrast, the optimal algorithm is quite difficult.  While QAD does not always find optimal schedules. It 

frequently does (and it always can); and its performance, bounded in the worst case, appears from limited experi- 

mental results to be very good most of the time. 

There is, of course, much room for further work.  The most interesting unanswered question is whether here 

exists a simple row-sorting rule which will guarantee QAD's production of optimal schedules.  It might be the 

case, however, that sorting according to any function of a row is by itself Insufficient; more Information about 

the processing time array might be required to discover the optimal row-permutation promised by Theorem 3-1.  If 

nn optimal rule cannot be found, pe.-hap» row-sorting rules more fruitful than the simple ones considered here 

could he discovered.  A proof of the conjecture In Section 4 would be extremely Interesting.  Finally, the cora- 

piitatlonal complexity of this problem Is unknown, and the work reported here only begins to suggest that the com- 

3 
plexity is less than 0(n ). 
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