S T

AD-784 894

SCHEDULING INDEPENDENT TASKS ON
NON-IDENTICAL PARALLEL MACHINES
TO MINIMIZE MEAN FLOW-TIME
Douglas Clark

Carnegie-Mellon University

Prepared for:
Defense Advanced Research Projects Agency

Air Force Office of Scientific Research

June 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Sprinpfield Va. 22151

UNELAﬁg}FIED N = G
JRITY CLASS FICATION OF Tiis P a GE /'-‘haAn Deta Frtered) /
REPORT DOCUHEMTATION PAGE] Savoes cone i ooy 1§
1 RLFGRY NUMBY R 7. GOVY ACCESUIGH HO[3 PECITIENT'S CATALOG NUMBE A
AFOSR - Th =74 -185¢2 @_ TSH &
4. TITLE (and Subuitie) 2 TYPE OF REPORT 8 PERIOD COVERED
SCHEDULING INDEPENDENT TASKS ON NCil=1DENTICAL Interim '
PARALLEL MACHINES TO MINIMIZE MLAY FLOU-TIME
[PERFORMING ONG REPORT HUMBER i

7. AUTHOR(s 8. CONTRACT OR GRANT NUMEERa)
pouglas Clark F44620-73-C-0074

S PERFORMING GHAANIZATIC) HANF AND ADDRESS 10. PROGIRAM ELEMENT, PRNJECT, T5r

:] ; AREA & WORK UNIT NUKBERS

Carnegie-Mcllon Unjversity
Department of Computer Science 61101p
Pittsburgh, P4 15213 A0Z466

e+ e —— — o —— - ——— ———

Il CONTROLLING SFFICE HAME AND ADDRESS 12. REPORT OATE
Defense Advanced Research Projects Agency June, 1974
1400 Wilson Blvd 13, NUMRF® AF PAGES 7
Arlingtor, VA 22309 < 9

T4 USRI TORIG ATENES NANE 8 RDERTETT ditteren’ tro.r Contralling Office) | 15, SECURITY CLASS (ol thie resort)
Alr Force Otfice of Scientific Rescarch / s
1400 wilsen Bled UNCLASSIFIED
Arlington, VA 22209 158, DECLACSIFICATION DOWNGRADING

SCNEDJLE

To OISTRIBUTION 37 AT EVERT (ol Thin)

Approved for public release; distribution unlimited.

7. DISTYRIBUTION STATEMENT (of the abatract entored In ltiock 20, (f ditierent from Report)

18. SUPPLEMENTARY NOTZS

19 KFY WORDS rCo: tinue &n tevoree afda if nocesomy and {dentity by biock numbor)

Reproduced ty

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
- Springfield VA 22151

20. ABSTRACTY rContinua on reveras alcde | necessary and tdenttly by block numbar)
A collection of tasks having known processing time requirements on a set of

non-identical parallel machines is to be scheduled so that the mean flow-time
of the tasks is as small as possible. 1In this paper it is shown that a tri-
vial extenzion of a sirple aigorithm for a restricted case performs well, and
often optimally, in the general case. A principal result is that for every
problem, some renumbering of the tasks will cause this algorithm to produce
an optimal schedule, Upper bounds on ihe worst=case performance of the algo-
rithm are given, and average performance is explored using Moute Carlo techniq“cs.

DD , :f:”n 1473 ctoivior oF 1ucves s OBSCLETE UNCLASSIFIED

SLCURITY CL ASSIFICATION BIF THIS P AGE (¥hen Date Lntered)

SCHEDULING INDEPENDENT TASKS ON NON-IDENTICAL
PARALLEL MACHINES TO MINIMIZE MEAN FLOW-TIME

Douglas Clark

Department of Computer Science -
Carnegie-Mellon University
Pittsburgh, Pa. 15213

Juce 1974

This work was supported in part by a grant from the Xerox Corporation
Palo Alto Research Center and in part by the 2danced Research Projects
Agency of the Office of the Secretary of Defense, Contract Number
F44620-73-C-0074, which is monitored by the Air Force Office of Scien-
tific Research. This document has been approved for public release and
sale; its distribution is unlimited.

ABSTRACT

A collection of tasks having known processing time requirements on & set of non-ldentical parallel machlnes
{s to be scheduled so that the mean iow-time of the tasks ls as small as possible. In this paper it 1s shown
that a trivial extension of a slmple algorithm for a restricted case pertorms well, and often optimally, in the
general case. A principa. result {s that for every problem, some renumbering of the tasks wlll cause¢ thls al-
gorithm to produ.e an optimal schedule, Upper bounds on the worst-case performance of the algorithm are given,

and average performance is explored using Monte Carlo techniques,

1. INTRODUCTION

The problem addressed in this paper is the sequencing of n Independent tasks on m parallel and non-identical
machines so that the average flow-time of the tasks is as small as poasible (5], We wlll assume that all n tasks
or jobs are simultaneously available at time zero; that there are no feasibility or precedence constrafints among
the tasks; that tasks may not be preempted; that a machine can process only one Job at a time; and that the pro-
cessi, ; time required by & job 1 on a machine J 1ls given by & positive number plj' The inabllity of some machine
to process some task may be represented by making the correspondlng plj prohibitively large.

Flg. 1(a) 1ls & processing tlme array P for an eight job, three¢ machine problem, A schedule for thla problem
ls ghown In Flg, 1(b) in the form of & Gantt chart [4], which 1llustrates the p--allel activity of the three ma-
chines along & horizortal time axis. The rectangular blocks in the chart have len;ths equal to the processing
timea of the jobs with whose numbers they are lsbeled. The flow-tlme or time-in-syitem of & job in a particular
schedule 1s simply the time at which that job completes its executlon, where the schedule begins at tlme 0., Thus,
{n Flg. 1(b) the flow-time of job 3 {s 2, of Job 4 1{s 10, of job 6 {s 12, and so on.

Horrowing some notatlon from [5], we will denote by ji1] the number of the job scheduled Ith on machine j.
In Fig, 1(b), 1[1] 18 5, 1[2] 1s 4, 1[3] is 2, and so on, Let f1 be the flow-tlme of job { ln & partlcular
schedule, let F be the sum of the flow-times of all n jobs, and let nJ be the number of jobs scheduled on machine

J. It 1s clear that

B = 500,

f P +p
Jz2] 3, 323, m

‘J:njl R0 T B M e SICRRL

and in general, i
f - 3 0
(T0) el 11 3
{n Fig. 1(b), for example, we have

ST TR

N2y = Pipag ¥ Pagagn D

31T Pt gt Pypsg T 9 e

T, S Iy rgm T

O =~=

5

3

MACHINE 1

MACHINE 2

MACHINE 3

F = 34

s8e

The total flow-time of a schedule, F, may be expressed as a sum of contributions from each machine, Collect-

iny terms in equations (1), we may express the contribution of machine j as

n n
j o1
)
- p .
o T " o Pyt
TPt T Ay IR aany W et zpjtnj-l}.J * Pyay),

Summing over all machines, we get

m ;j m nj i
u
E's & & of g - E: }: E: P T
[T LD I RS (L P
= Bfipna " Sgrt0® 500 ¥ e 28,10, Piln, 1,1 @

+ +

RaPar1),2 Y (M Ry(pg p ke ¥ P2(n,],2

nmpm[l],m ¥ (nm-])pm[Z],m R pm[nmj.m'

For example, in Fig. 1(b) we have

F=3.142.941.3
+2.2 + 11

+ 3e3 + 2.4 + 1.5

Our goal is to minimize mean flow-time, %F, but minimizing F itself is equivalent, and we will follow that
approach in the rest of this paper, Fig. 1(c) gives an optimal schedule (optimal schedules are not necessarily
unique) for the problem of Fig, 1(a), with F = 34,

A non-enumerative algorithm for minimizing mean flow-time in the general case was discovered by Bruno,
Coffman, and Sethi [2,3], Their algorithm is based on a reduction of the problem to & minimum-cost network flow
problem, and the time required by the algorithm is 0(n3) when n 2 m (the case of interest) and 0(n2m) when n < m,
This paper proposes and analyzes an algorithm which finds schedules that are good, and frequently optimal, with
respect to mean flow-time, and does so at very small computational cost,

Section 2 of this paper reviews an easy algorithm for an important restriction of the general problem, In
Section 3 this algorithm is extended to cover the general case, and it is shown that while an optimal schedule is
not always produced, the performance of the algorithm strongly depends on Lhe ordering of the rows of the proces-
sing time array P, Section 4 examines analytically the worst-case performance of the algorithm under various
ordering rules, and the algorithm'e average performance under these rules is explored empirically in Section 5,

Section 6 contains the conclusions of the paper.

2, MACHINE FACTOR CASE

An {mportent and realistic restriction of the general problem erfses when each p1j is the product of a time

associated with job i and an efficiency fa tor essociated with machine j, that is, pij = ple. In this restrict-

ed case, mean flow-time is minimized by a simple procedure which follows immedietely from the analysis of [5]

First, rewrite equetion (2) as follows:

Lirt, LiTEL

P
IS IR TI I T BN 1LY IS RS R e hS €3

B i T T R R T 2"1P1[nl-|] * 1P,)

MRyt My VRy gy el *Paim) -

+nvapm[‘] * (nm-‘)umpmi2] MEIE vmpm[nm]°

Second, gince F ir a sum of n terms, each of which is e product of one of the n pi'a with one of the n coeffici-

enteg nlv‘,(nl-l)v‘,...,vl,nzvz,...,vz,...,...,nmvm,...,vm, Pick es coefficients the n smallest of the nm possibil-

ities nvl,(n-l)vl,...,vl,nwz,...,vz....,...nvm,...,vm. This will determine the values of the n., Third, mini-

mize F by metching the lergest Py with the smallest coefficient, the second-lergest Py with the second-smallest

coefficient, end so on. If e particuler Py is matched with (nj-k)wj, then job i is scheduled (k+1)th on machine

. Picking coefficien~ (nj-k)vj impliea that we have already picked (nj-k-l)vj,(nj-k-Z)wj,...,2vJ, end 'j’ 80

the resulting schedule is well-formed, (Tiat is, it is not possible, for example, to schedule some job fourth

on some mechine end not schedule some othur jobs first, second, #«nd third.)

Eech choice of & coefficient can bs res.ricted to be emong only m possibilities out of the totel of nm, The

first chosen will surely be one of WiseooW (the smellest, in fact). Suppose it is v Then the second coeffici-

ent will be the smellest of v‘....,2v1,...,vm. At each stage the integer multiplier of the chosen coefficient is

increesed by 1, end the next choice made. The schedule is thus being determined "back" to "front".

An exemple of this procedure is given in Fig. 2(e) for a five job, three mechine problem, The jobs happen

to be numbered so thet P 2 P, z,,.2 Pgi consequently no sorting of the Py is necessary, In eech row of the

teble the smallest of the m potentiel coefficients is chosen (circled), and in the next row the circled coeffici-

ent {s increesed by the corresponding vj. In row 2 there ere two smellest coefficients; the choice b:tween them

is arbitrer-, since diffevent schedules with the same (optimel) F will result from different choices in the case

of a tie, Fig. 2(b) shows the resulting schedule and the celculation of F,

Fig. 2(c) shows the applicetinn of en equivelent elgorithm to the problem of Fig. 2(a). Here the processing-

time errey P {s explicitly shown, end the coefficients in each TOoW now represent the possible sequence positions

on the three mechines, counting from the end of the schi 'vle, for the ~orresponding Jub It is important to note

by 2
thet for each column §, plj 2 p2j ¥ore pnj’ Let the coefficients in e particuler row i be h‘,hz,...,hm (i

this cese, m = 3), Then the minfmum hjpij is chosen, p1j is circled, and hj is increesed by 1 in the next row.

ne=5 n=3

machine factors: w, = Z, v, = 2.5, oy = 1

potential coefficients
(a) i Pi 1 2 3 machine chosen
1 8 2 2.5 Q) 3
2 6 ® 2.5 2 1
3 6 4 2.5 ® 3
4 4 4 @ 3 2
5 1 4 5 ® 3
0 1 7 10 12 15
1 | 1 i I
!]]]]
] ! :] :
) 2 ."
L] L] !
' i i I
i 1 i 1
i i i ¥
b ! 1 :
(b) 2 4 7 !
r | | :
' ! i
3l 5 3]
L
F = w]p] + w2p4 + 3w3p5 + 2w3p3 + lw3p]
=206 + 2,54 4+ 3.1.1 +2.7.6 + 1.1.8
= 45
1 2 3 hl h2 h3
111 20 @ ! ! L
21 @ 15 s ! ! 2
(c; P: 3|12 15 @ 2 ! 2
4| 8 4 2 3 3
501 2 2.5 Q@ 2 2 3

Figure 2

T

This is exactly equivalent to the algorithm cf Fig. 2(a), and the same schedule results. The difference lies in
the lack of explicit vse of the "j in the second version of the algorithrm, and this difference will be exploited
in Section 3.

Sorting the Py requires computational exertion of O(n log n), and finding the smallest coefficients requires

0(nm), so the time complexity of the machine factor algorithm is O(mex(n log «,nm)).
3. EXTENSION TO THE GENERAL CASE

The second version of the procedure of the preceding section (Fig. 2(c)), since it does not use the machine
factors wj' may be applied in the general case, though with no guarantee that optimal schedules will be found.
Fig. 3(a) shows the result of applying this procedure to the problem of Fig. 1(a). Since this problem is outside
the machine factor case we cannot sort the jobs according to a single processing time, so in Fig. 3(a) the job
numbering of Fig. 1(a) is retained, and the schedule of Fig. 3(b) results. The value of F is not optimal, but
the schedule was very quickly computed, so this algorithm will hereafter be called the Quick And Dirty (QAD) al-
gorithm, The coefficients used at a particular stage of the schedule generation will be called the QAD coeffici-
ents and labeled hl'hZ""'hm' In each row i of P the QAD algorithrm chooses the minimum of hlpll'h2p12”"'hmp1m

and increments the chosen h, in the follawing row. As in the machine factor case, the choice of h means that

3 1P1y

job 1 is scheduled (nj-h +1)th (or equivalently, hjgh from the end) on machine j, and the* the term hjpij will

b
occur in the calculation of F. (This latter fact is very important for the rest of this paper.)

An obvious infirmity of the schedule in Fig. 3(b) is that the jobs are not scheduled in 'shortest processing
time first" (SPT) order on each machine, SPT order is optimal for the miniv'zation of F on a single machine {5],
so an optimal schedule for the more general problem clearly must have jobs in SPT order on each individual machine.
This fact suggests that the performance of QAD may be improved by adding to it a procedure which sorts the jobs
in SPT order on each machine after the schedule has been produced. Call the combined procedure QAD*, If QAD* is
applied to Fig. 3(a), the result is a schedule with an improved F of 35, which, while still not optimal, is con-
siderably better than QAD's F = 48,

Though sn optimal schedule was not found in Fig, 3(a), if the rows of P are permuted as in Fig. 3(c), the

optimal schedule of Fig. 1(c¢) will be generated by QAD (and therefore also by QAD*), This might appear at first

glance to be no more than a forrunate coincidence; the following theorem, however, states otherwise.

Theorem 3-1. Given an arbitrary processing time array P, there exists a permutation of the rows (a8 renumbering
of the jobs) such that the QAD algorithm, operating on the permuted array, will yield & schedule with optimal

(minimal) F,

Proof. Let P be arbitrary. The plan of the proof will be to show that if the first k jobs (jobs 1,2,...,k) of P
are scheduled optimally by QAD, then one of the remaining n-k jobs can be renumbered k+1 so that it, too, will be
scheduled optimally, If this can be demonstrated for k = 0,1,2,...,n-1, then the theorem will be proved. In

this proof the phrase "scheduled optimally' will mean scheduled (hy QAD) in agreement with some optimal schedule,

both in the assignment of johs to machines, and in the order in which they are assigned, Recall that QAD assigns

R TR — e — LT

e i

Figure 3

= 33421+ 13 +3:4+42:174+1:1+ 2.8+ 1.3

= 48

(c)

-8

jobs from last to first on each machine.
Let S be an optimal schedule for P, Assume that the first k jobs of P are scheduled by QAD in agreement
with S, where k may be any integer from 0 to n-1., (There is nothing to prove if k = n.) We will try to find a

(k+1)th job such that either:

1. Jjobs 1 through k+] will be scheduled by QAD in agreement with S; or
2, thare is some other optimal schedule S' such that jobs 1 through k+1 will be scheduled in agreement

with {t.

If at least one of these two alternatives is always true, the theorem is proved.

Fig. 4 illustrates the situation with an example. The shaded jobs are jobs 1 through k, optimally scheduled
by QAD. If the QAD schedule is to agree with S, the only jobs which are "candidates" for job k+] are those
marked by an asterisk in Fig. 4, There is at most one such candidate job on each machine., Let gJ (J=12,...,m)
be the number of the candidate job on machine j if there is one; otherwise let g, = 0, Let h, (j = 1,2,,.,,m) be

b]
the QAD coefficient for machine j in row k+l of P,

' AN
2 27 \%\li-u

N

Figure &4

Construct & graph with m vertices VI'VZ"“'Vm' For each vertex v) from v, to

g draw a directed arc (vi,vJ 3

vJ if and only if

1. 31!‘0; and

2. QAD would schedule job g, on machine j 1f it became job k+1 of P,

The existence of an arc (v,,v,) implies that h <h
Gty I U

by the QAD algorithm would choose machine j over machine i for job 8-

) with equality only 1f the tie-breaking rule used
»

If there is any arc of the form (vi.vi), then job g, can become job k+1, NAD will schedule it according to

S, and we are done. Assume, therefore, that there are no such arcs in the graph,

Suppose some vertex vJ has one or more arriving arcs but no departing arc, and let vy be a predecessor of

.

-9-

vJ (Fig. 5(b)). Construct a new schedule S' which is identical to S except that job g1 is scheduled first on
machine j (Fig. 5(a)). If we constructed tha graph corresponding to S', we would find Fig. 5(c) in place of

Fig. 5(b). 1If S' is optimal, then job g could become the new job k+! in P and be optimally scheduled,

e« —f et |
(b)
B =
i hq\:::‘ﬂ\\\\,_‘};-\)VJ

li -
- o
S:

i — ;
"w::*::55§;5NH35E§ s
N i
: ’/// N wa
[i
(a) (c)
=]
e
Figure 5
j
Denote by Fs and Fs' the total flow-times of the two schedules. Then we have
s’ 8
- -h = e. 3
FRE S Al TN ¢ =

The non-negative term ¢ occurs in (3) because the removal of job g from machine i cause- the coefficients of all

preceding jobs (if there are any) to be reduced by 1 (see Fig. 5(a)). The existence of are (vi,v) implies that

]

o!
hjpg o < hipg a° and the optimality of S implies that F* 2 FS. We conclude from (3), therefore, that ¢ = 0,
i i
sl

F' = F, and S' {s optimal, Thus job g, cAn become job k+1 of P,

Now suppose that the graph contains no vertices that have arriving arcs but no departing erc, Since there
1s at least one arc ir the graph (becauge k < n), since the number of vertices is finity, and since there are no
arcs (vi,vi), we conclude that there must exist a cycle in the graph, Suppose the cycle has three arcs, (vi,vj),
(vj’vk)’ and (vk’vi)’ as shown in Fig., 6(b). (The following argument may easily be generalized to cycles of eny

size.,) Construct a new schedule S' identical to S except that job g, moves to job g 's position on machine j,

3
job gj goes to machine k, and job 8, to machine i (Fig. 6(a))., The graph corresponding to S' would include Fig.

6(c) in place of Fig, 6(b),
s 1]
With F and FS ag before we may write

s' S . - =
F | (hjp g - hipg 1) + (hkpg K hjpgi.j) + (hipg { hkpgk,k)' %)

gio i’ J) K’

The existence of the arcs in the cycle means that each parenthesized term in (4) is non-positive, and since
sl
F 2 F, we conclude, as before, that S' is optimal, Any one of jobs gi, gj, and g, can become job k+l! in P and

be optimally scheduled.

We have therefore shown what we set out to show, namely, that there must always exist, for k = 0,1,...,n-1,

-10-

\ (b) '\. "I'}
\“

]y NN "
- 5 (e) ’ O”J

S’ Ov.,

Figure 6

P

(m}

a (k+l)£§ job that will be optimally scheduled by QAD, The existence of a row-permutation of P that yields an
optimal schedule follows immediately, =

One consequence of Theorem 3-1 18 that an optimal schedule may be found by applying QAD to each of the n!
row-permutations of P and Picking the best schedule from among the resuits. The existence of sn 0(n3) algorithm
[2,3], however, precludes the use of such an approach for any but trivially small problems. Of more interest
would be some computationally inexpensive rule for sorting the rows of P prior to the execution of QAD or QAD*
in such a way that the discovery of some optimal schedule becomes, if not certain, at least more likely, What
1s needed is a scheme for finding some single number (like L in the machine factor case) which best represents
the u processing times of a job, and which can be used ar a key for sorting che rows of P, Several such sorting

rules are proposed and analyzed in the next two sections (f this paper,

4. WORST CASE PERFORMANCE

In this section we will examine the worst case performance of the QAD algorithm under various row-sorting
rules. Since QAD* never ylelds a worse schedule than QAD, the performance bounds to be given for QAD will also
hold for QAD*, though some bounds which are sharp for QAD are not necessarily so for QAD*,

Let F;HEE be the total flow-time of the QAD schedule for some P wvhose rows are sorted according to rule

RULE, and let POPT be the optimal (minimal) flow-time for P. The measure of performance that we will examine is

FRUI..E
QAD 3

Forr

We will first seek upper bounds on this expression for various rules, Then, in Section 5, we will use Monte

Carlo techniques to estimate the average performance of the algerithms,

]
Theorem 4-1. Let P and P2 be two row-permutations of an arbitrary P, Denote by F‘ and F2 the total flow-times
of their QAD scedules, Then

"1J"ﬂ.
A
-

(5)

)
Mk
and this is a best bound.

1 2
Proof, Let Cl and Ci denote the contributions of job i to F and F, respectively, so thst

(6)

1
for some j and k, where h; and h: are the chosen QAD coefficients for job 1 in P and Pz. We will show that for

all {,
J
=5 < n, (7)
¢
Suppose (7) is false for some i. Then, using (6), we may write
1

2
§P1y ” Py (8

By the operation of the QAD algorithm, we know that

h

1 1
h,p,. * min (h p,)
T g 818

and in particular,

1 1
hjpij < hkplk 9

vhere k is as in (6). Combining inequalities (!) and /), we get

1 1 2
PPy 2 hyPyy > ahyp,
1 2
PPy~ TPy
h,k > “hk 5 (10)
Irequality (10) is plainly impossible, since h: and h: sre integers between 1 and n, This contradiction proves

(7.

Now write

Joc
— AR
2 ¢

C,+...1C

N -
L

1
]4‘
3+C +...4C

NN
2N
.

From inequality (7) and the fact that all Cl and ci are positive, it follows that

1.1 1
C]+C +.. .*Cn amn

2 <n,
C]-#C2+, . .+Cn

For equality to hold in (11), it must be true that for all i, Cl - ncz. But cler.ly this cannot be, so inequal-

= i

ity (11) becomes strict and (5) s proved.

To show that n 1is a best bound, let P take the following form:

Where ¢ < < X < < g, Let P1 be as given and construct P2 by interchenging rows 1 and n. The QAD elgorithm will

schedule 811 jobs on machine ! for both P] and PZ; only the job order will be different., We will have

F]. s ¥ 2¢+ 3¢+ .., + (n=1)e + uX

r_ X+2¢+3¢+ ...+ (n-1)¢g + ne

and

F] n
1im ?"T'n.

1 2
Thus we may, form 2 ! and n 2 2, construct en errey P with two row-permutations P and P° such thet the ratio

1.2
F'/F 1s arbitrerily close to n. Therefore n is e best bound, @

Corollery 4-1. Let FQAD be the total flow-time of the QAD schedule

permutetion., Then

for sn erbitrery P under en arbitrery row-

F
F_QA_E<,,

(13)
OPT

end this is a best bound,

Broof. Thet n is en upper bound follows directly from Theorem 3-1 end Theorem 4-1, That it is e best bound may

be seen by examining (12) {n the proof of Theorem 4-1, 1In that exemple Fz = F

orrr W

The argument for the sherpness of the bounds in Theorem &4-1 end Corollary 4-1 depends on the peculier

struc-
ture of the processing-time erray (12),

If QAD* were uced insteed of QAD, the optimal schedule for (12) = SPT on

machine 1 —would be found. Thus the bound n in (5) end (13) is not necessarily a best bound for QADW,

The sensible use of both elgorithms depends on some scheme for errenging the rows of P prior to their execu-

tion. The epproach we teke will be to sort the rows so that the velues of some single-velued function of eech

rov ere in non-increesing order. Perheps the most obvious choice for such e function is the everage of the m

processing times of ¢ job. Two other possibilities are the maximum end minfsum of the m times,

Noticre that eny

of these three rules will ceuse QAD to perform optimelly in the mechine factor cese, and it seems reesoneble to

require thet this be true of whetever sorting rule we edopt,

Denote by AVE, MAX, end MIN, the rules of sorting in order of non-increesing row average, maximum, and min-

imum, respectively. We cen easily show, unfortunately, that AVE end MAX do not improve the worst case perfor-

mence of QAD, For consider the following erray P:

19=

. (“0)

n-1le¢ wtX . . . utX

where ¢ < < X < < w. The rows are already arrarnged accordiig to both AVE and MA), The optimal schedule for (14)
is SPT on machine 1, but QAD schedules job n first instead of last on machine 1. Therefore, using the argument
from the proof of Theorem 4-1, the bounds

FAVl’

4P . .

Forr

r)‘!A)(
Qad
Forr
are best bounds. We have already observed that QAD* cannot be tricked in this way, so these may not be best
bounds for QAD¥,
The woret case bahavior of QAD under the MIN rule is less than bout half »: bad as under the AVE and MAX

rules, To establish this we will first need two lemmas.

Lemma 4-1, Let r denote the minimum value in row i of an arbitrary P whose rows have been arrangad according to
the MIN rule. Then

IN
FgAD <r, + 2t2 + .. tor, Q15)

vith equality only if the r, occur in a single column of P.

Proof. Let C1 denote the contribution of job 1 to l-)(;:g. so that

N
F’Q'AD- C 4 €+ wun +C.

If we csn show that for all i, C1 < 1:1, then (15) will follow directly. Th: value of a particular C1 will be
- 1 -
hjplj for some j. Suppose that r, occurs in column k, so T® Py Clear'y, hk < i and r, < pu. By the opera

tion of QAD we know that hjpij < hkptk' Then we may write

Cp = hyPyy e,y = b, <ir,

and (75) is proved. The necessary condition for equality in (15) is obvious., @

Lemma 4-2, Ifr, 2r, 2.., 2r_ > 0 then
e 1 2 n

1 + 21'2 + eee *+ nr n+l 6)

t1+t2+...+rn 2

r

hge

with aquality 1/ and only 1{f 6 = Ty ® e L)

m,f Inequality (16) is aquivalant to

m"_'.r'-1»1’1'.‘,-1>...-1>nr 54
ese +
2 r'+r2+ l'n

which, since all L are positiva, is itsalf equivalant to
(Ml)(r' + r, + .0+ rn) - 2(r' + 2r2 + ... + nrn) 20, 7)
Collact tarms in (17) to gat
(ﬂ-')l" + (l‘l-3)l‘2 + (."I-S)l'3 s o (S-n)rn_2 + (J-n)rn-' + (l-n)rn =0,
Now match r, with T Ty with LD ond so on, to gat

(n-l)(r,-rn) + (n-3)(r2-rn_,) + oo + (nen)r o

]z 0 (18)
for odd n; and 2

(n-l)(r'-rn) + (n-3)(r;,-r)+ o+ (xrr)20 (18")

n-1

s
N«l-’

for aven n. Dus to the constraint that ..z r, > 0, sach tarm in (18) and (18') 1is non-nagativa. This

astablishas (17) and therafora (16). Equality holds in (18) and (18') 1f all terms ore 0, or aquivalently,

T, = Ty ® cee = o otharvisa, some tarm will ba positive and (16) will ba strict, []

Thaorem 4-2,
rHIN
OPT

Proof. First notice that if the ¥, 8ra row minima of P,

POPTzrl +r2+...+rn (20)

vith equality only if tha L 11a in diffarent columns of P. (This implias m 2 n.) Inequality (20) and Lemma

4-1 allow us te¢ writs

IN
FHQ!D < r' + 2r2++ ...++ m‘n . o
FOPT r' + rz coe rn

The necassary conditions for squality in (20) and in (15) of Lemma 4-1 are contradictory. The inaquality in (21)
is therafo.a strict. Using this fact togathar with Lemma 4-2, ve gat (19) directly. @
Tha bound in (19) has not bean shown to ba & bast bound for aithar QAD or QAD*, In fact, the suthor has

been untble to construct an array P which violatas the surprising bound in the following conjecu'ju.

f'l‘h!.n lamma was provad by Profassor G. W, Stewart.

i.on ICC ture:

MIN
F

P
OPT

We now turn briefly to the time complexity of QAD and QAD* with row-sorting ruies. Eech of the three sort-
ing ruies examined takes time proportionel to m for eech of the n rows of P, or O(nm), to ceicuiate the sort
keys. Sorting the rows tekes en edditionel O(n log n); the guts of QAD require O(nm); and the fine! SPT sort of
QAD* takes st most O(n log n). Both elgorithms with sorting rules, therefore, have time complexity
O(max(mn, n i0g n)). Not surprisingiy, this is the seme order of complexity displeyed by the mechine fsctor al-
gorithm, For purposes of comparison, :onstructing an SPT schedule for a singie machine - perhaps the simplest

scheduiing problem of ell - itseit requires time of 0(n iog n).

5. AVERAGE PERFORMANCE

Most aigorithms beheve much better most of the time then they do in the worst case, end the QAD elgorithm
{s no exception, In this section we will use Monte Cario methods to examine the everege performence of QAD end
QAD* under verious row-sorting ruies for two models of perellel mechine systems, Modei I is extremely simple

and correspondingly remote from reelity; Model ii, e computer system model, is considerabiy more down-to-eerth.

RULE RULE
QAD QAD*/ Forr*

a farge number of errays P were rendomly genereted e.d the values of this performance measure calculated for

The meesure of performence used, es in Section 4, is F /FoPT (and F In e typicel experiment,
eech of four sorting rules: MiN, AVE, MAX, end e new rule, RAND, which errenges the rows of P in rancom v-der.

The aigorithm of Bruno, Coffmen, end Sethi ([2,3] wes used to calculete F The ruies MiN, AVE, etc., used with

OPT’
QAD* will be denoted by MiN*, AVE*, -tc.

5.1 Model i

in *his model, the pU are integers inde’ cudently drewn from e uniform distribution over a specified renge.
Fig. 7 shows the results of en experiment in «hich were genereted 200 errays with n = 8 end n = 3, where the
range of the uniform distribution wes from | to 100, Each of the four rules was epplied with QAD to eech of the
200 problems, end the four curves of Fig, 7 ere the semple cumuletive distribution functions for the velues of
FSR;E/FOPT' The point (1.2, 0.90) on the AVE curve, for exsmple, meens that 90 percent (180) of the 200 velues
of FQXE/FOPT were less then or equal to 1.2. We may immediately observe thet MIN is substentielly better than
the other rules for this experiment, end thet the performence of QAD under the MIN rule is quite good: 39,5
percent of the semple problems were scheduled optimelly, and 95 percent of the solutions were et most 15 percent
worse than the optimal scheduie.

The performance of MIN is iittle improved by the finei SPT sort of the QAD* algorithm, though the other
rules are improved to iarying degrees. Fig. 8 shows the results of applying QAD* to the same 200 problems. The
curve for MIN* {a omitted becavse its closeness to AVE* would heve obscured both curves, end beceuse it is neerly

identical to MiN in Fig. 7.

Tabie 1 shows the extent to which each rule outperformed each of the others in this experiment. For

instence, AVE* yielded e better schedule then MAX in 85 percent (170) of the 200 sample problems. Table 2 gives

Y ey SN R e e T Y

Figure 7

RAND

-16-

T T T
-~ - o« - o w =

(3 = thmMMMHWhvaﬁum paalasqQ

=
- -
o 1=y
1

34
ol

1

0

-17-

1.6

1.5

]-

.3

1.2

1.1

Figure 8

B, R o el e e e ey e

-18-

four useful cherecteristics of eech samrle distribution: how often an optimal schedule was found; the mesn of
the distribution; the velue et end below which 95 percent of the samples lie; end the meximum velue observed in

the experiment,

TABLE
Rule A better than Rule B (percentage)

A\B__MIN MIN* AVE AVE* MAX MAX* RAND RAND*
MIN 0 0 70 30.5 90.5 51.5 95.5 55.5
MIN* 1 0 70 30.5 90,5 51.5 95.5 55.5
AVE 19.5 19.5 0 0 82 39 86 41,5
AVE* 27.5 27 73 0 93.5 49 94.5 36.5
MAX 7 7 9 5 0 0 64,5 21,5
MAX* 23,5 23.5 54 24.5 93.5 0 87.5 43,5
RAND 3.5 3.5 12,5 4.5 3 10.5 0 0
RAND* 21 2] -52 22,5 76.5 33 96.5 0
TABLE 2

Distribution Cherecteristics

PERCENTAGE OBSERVED

OPTIMAL MEAN 954 LEVEL MAXIMUM

MIN 39,5 1.038315 1,161304 1.236177

MIN% 4 1.038233 1.141304 1.236177

AVE 9 1.087132 1.228572 1.516129

AVE¥ 38 1.043284 1.158228 1.447581

) MAX 1 1.204095 1.459¢ 2.02963
MAX* 29 1.069569 1.220109 1.357934
RAND 1.5 1.280514 1.614815 1.917808
RARD* 26 1.086278 1.25943% 1.449367

The evidance thus fer presented suggests thet for Model I, MIN is the best rule. 7The fect thet MIN* 1o
amerginally better would seem to be outweighed by the eduitional computetionel effort it requires. Two cherecter-

istics of the results of this experiment turn out to be true for gvery experiment, both in Model I and Model II,

thet will be described:

1. The rules listed in order of goodness of performance ere MIN, AVE, MAX, RAND for both QAD and QAD*,
2, MIN* outperformed MIN virtuelly never; RAND* outperformed RAND virtuelly elvays; end the other rules

were in between.

Severel parameters of the experiment were varied to test the sensitivity of the performance of QAD with MIN

-]19.

to changas in the model, Two experiments ¢ 100 samples were run, one with m = € and 8ll other parameters as in
the firse experiment, and the other with the vange of the uniform distribution changed from 1-100 toﬁl-IOOO and
other parameters as before., Both experiments ylelded MIN curves snd distribution characteristics not substsnti-
ally different from those vf Fig., 7 and Table 2, Taking into account the limited number and nature of the ex-
periments (restrictions {mposed mainly by tha computational requirements of the optimal algorithm), we may ten-
tative'y conclude that performance in Model I is relatively insensitive to variations in these parameters,

Othar experiments demonstrated that these performance results are sensitive to changes in n. Three exper{-
ment3 were performed with the uniform distribution as before: one with 100 sample P's of s{ze p = 16 by m = 4;
one with 20 samples of size 32 by 5; and one with only five samples of size 64 by 6. The results of the first
two of these (MIN curves only) are compared with tne MIN curve of Fig. 7 on an expended horizontal scale in
Fig. 9. It appears that as n increases (with m = log n), the sample mean of the distributions remains relatively
stationary, while the sample variance decreases. The three means are: 8 by 3, 1.038315; 16 by 4, 1,039134; and
32 by 5, 1.0371205. Further support is lent to this tentative conclusion by the five values of Fg:g/FOPT for the
64 by 6 experiment: 1.02552, 1,029267, 1.03074, 1.043362, and 1.056319, with a mean of 1.0370414,

It 1s difficult to conceive of a realistic situation in which the Plj are independent and uniformly dis-

tributed. A job which is very fast on some machine is likely to be fast on some other machines as well; a mna-

chine which runs one Job faeter than the other machines is likely to run other Jobs quickly too, We turn now

to a more realistic model,

5.2 Model II

Model II is a model of a multiprocessor computer system not unlike Carnegie-Mellon University's C.mmp [7],
The machines are different models of the Digital Equipment Corporation PDP-11 computer [6], aud the Jjobs are
computing jobs from a small number of distinct job classes. Each job class has 1ts own vector of m machine fac-
tors. A job's m processing times are calculatad by drawing a single time from an exponential distribution and
multiplying by the machine factors associated with its Job class, (Times are rounded to the nearest integer.)
The machine factors used here were calculated from PDP-11 performance figures given in [1].

The first experiment to be described considered 200 pProblems with n = 8 and m = 3, vhere the computers were
8 PDP-11 Model 20, a Model 40, an® a Model 45, There were three job classes: Class 1, "average" jobs, of which
there were 4; Class 2, floating-point Jobs, of which there were 3; and Class 3, a single job which could run only
on the Model 40 because (for example) {t required a particular peripheral device connected only to that machine.

Below are the machine factors for these job classes:

| PDP-11/20 PDP-11/40 PDP-11/45
Class 1 1 .556 556
Class 2 1 29 .134
Class 3 ® 556 ®

Note that floating-point jobs exploit the specialized hardware of the 11/40 and especially the 11/45 to a much

greater extent than "average" jobs, The expc '“ntial distribution used in this experiment had mean 1000

g BT o)

-20-

|||||

(s MO0

4 mu:mu qoagd paaiasqg

1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2

1

Figure 9

~21=

(milliseconds). For purposas of the row-sorting rules, the everege end weximum processing times of a Class 3 job
wvere considered to bde its processing time on tha ll/loO.
The results of this exparimant are shown in Figures 10 (QAD) end 11 (QAD*) end in Tables 3 and 4. Comparing f
Fig. 10 wich Fig, 7 we observe =~ perhaps with some surprise — thet QAD's p:rformance is better in Model II than
in Model I for ell rulas axcept RAND, The MIN rule, in particular, found optimal schedu'es in over 60 percent

of the ceses, and did no more than about B percant worse then optimal in 95 percent of the casas,

TABLE 3 l

Rule A batter than Rule B (percentage)

A\B __MIN MIN* AVE AVE* MAX MAX#* RAND RAND*
MIN 0 0 48 47,5 71,5 66,5 98.5 89
MIN* 0 0 4 47,5 7.5 66,5 98.5 89

AVE 13,5 13.5 0 0 45,5 37 95.5 79.5

AVE* 13.5 13.5 18.5 0 56 37.5 96.5 81,5
MAX 10 10 0 0 0 0 93,5 63

MAX* n n n 0 47.5 0 9.5 70,5
RAND 0 0 3 2,5 S 4 0 0
RAND* S S 15.5 13 32,5 22,5 97.5 0

TABLE 4

Distribution Characteristics

PERCENTAGE OBSERVED

OPTIMAL MEAN 954 LEVEL MAX IMUM

MIN 61.5 1.01767 1.081088 1.303683
MIN* 61,5 1.01767 1.081088 1.303683
AVE 39 1.044154 1.143041 1.303683
AVE* 40,5 1.039521 1.139162 1.303683
MAX 18 1.088859 1.257068 1.303683
MAX* 24.5 1.06%43 1.188495 1.303683
RAND 1.5 1.476827 1. 952063 2,249682
RAND* 4.5 1.153185 1.442467 1.811287

-22-

MAX

:

1d0, , avd
b} 0x OAI9S
@Gs m\m.Sm& q014 p 90

1.4

1.3

1.2

1.1

Figure 10

«23-

P
s []
—
L =]
—_—
—
wy
= =
—
—
-
o
-lan-_ﬁ & | o)
L =3
0
ol
7]
™
- —
™
= ®
—
—_—
- —
rJJl_H,llrl_|_J T
L I T L T 1 | I L] L
— =] ag r o wy ~F ™ [} - =
- - - L] - L] - - -

140 L 0]
b | 014 paAlasqp
L a w.E..&_ b L

-24-

The sensitivity of these results to changes in the model's parameters was examined by running several addi-

tional experiments, As in Model I, changing the range of values of the pU had little effect. Au experiment of

100 sample arrays was run with all parameters as before, except that the mean of the exponential distribution was
changed from 1000 to 60000 (milliseconds). The performance of QAD under the MIN rule was not significantly dif-
ferent from that of the first experiment. Again, strong conclusions are ruled out by the limited extent of the
testing, but performance in this model would tentatively appear not to depend on the exponential distribution.

In further agreement with Model I, performance was found to be sensitive to changes in n, An experiment was
performed in which the number of jobs in each class was doubled, bringing the total to 16, A fourth machine was
added to the model, a PDP-11 Model 05, whose machine factors for the three job classes are: Class 1, 1,25; Class
2, 1.25; end Class 3, ®, One hundred sampie arrays were .ested. The results appear in comparison with the 8 by
3 results in Fig, 12 on a grestly expanded horizontal scale. The means of the two experiments are: 8 by 3,
1.01767; 16 by 4, 1,019837, Approximately the ssme behavior found in Model I is demonstrated here: as n in-
creases (with m = log n), the sample mean appears to remain relatively stationary, while the sample variance de-

creases,

i e e e St <

-25-

S

HmOh\o<c

0o1d paAaasqQ
sz..c q P

3 s

5 =]

1.06

1.04

1.02

Figure 12

26
6. CONCLUSION

For the scheduling problem studied in this paper, the QAD algorithm seems to be a reasonable alternative to
the optimal slgorithm of Bruno, Coffman, and Sethi [2,3]. The QAD algorithm (with the MIN rule) takes computa-
tional time of O(max(mn, n log n)), while the optimal algorithm requires O(mlx(mnz, nj)). Furthermore, QAD is an
extremely simple algorithm, and easy to work by hand (as might be required in an industrial shop, for instance).
By contrast, the optimal algorithm is quite difficult, While QAD does not always find optimal schedules, it
frequently does (and it always can); and its performance, bounded in the worst case, appears from limited experi-
mental results to be very good most of the time,

There is, of course, much room for further work, The most interesting unanswered question is whether ‘here
exists a simple row-sorting rule which will guarantee QAD's production of optimal schedules. It might be the
case, however, that sorting according to any function of & row is by itself insufficient; more information about
the processing time array might be required to discover the optimal row-permutation promised by Theorem 3-1, If
un optimal rule cannot be found, pechapa row-sorting rules more fruitful than the simple ones considered here
could be discovered. A proof of the conjecture in Section 4 would be extremely interesting. Finally, the com-
pitational complexity of this problem is unknown, and the work reported here only begins to suggest that the com-

plexity is less than 0(n3).

Acknowledgments., I am grateful to Pete Stewart for the proof of Lemma 4-2; to Jack McCredie and J. G, Ramage for

sdvice on Section 5; and to Sam Fuller, Thérese Flaherty, and David Stevenson for comments and criticism through-

out,

REFERENCES

1. Bell, C, G,, and Kaman, C. The Effect of Semiconductor Memory Technology on the Design of the PDP-11 Series
Minicomputers. Digital Equipment Corporation, October, 1973,

2. Bruno, J. A Scheduling Algorithm for Minimizing Mean Flow Time, TR 141, Computer Science Department, Penn.
State University.

3. Bruno, J., Coffman, E. G,, and Sethi, R, Algorithms for Minimizing Mean Flow Time. IFIP Congress 74,
Stockholm, Sweden.

4, Clark, W, The Gantt Chart (3rd edition). Pitman and Sons, London, 1952.

5. Conway, R. W,, Maxwell, W, L,, and Miller, L. W, Theory of Scheduling. Addison-Wesley, 1967,

6., PDP-11 Processor Handbook. Digital Equipment Corporation, 1972,

7. Wulf, W, A,, and Bell, C, G. C.mmp—A Multi-Mini-Processor. Proc. FJCC, 1972, 765-778.

