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SYMBOLS AND NOTATION 

B - equivalent power bandwidth 

C(T) - autocovariance of U(t) 

C(k) - estimate of C(x) at T= kAr 

C (k) - estimate of C(T) at x=kAx using alternate 

formulation 

H(k) - histogram of the number of lag products 

I - turbulence intensity 

I - estimate of turbulence intensity 

M - maximum number of AT time increments 

N - the number of samples in a data segment 

N1 - number of uniform time intervals AT in T 

Ns - the number of data segments used to form a 

spectrum estimate 

R - frequency resolution f  Af 

R(T:) - autocorrelation of U(t) 

S(f) - power spectrum (Fourier transform of C(T) ) 

S(iAf) - estimate of S(f) at f=iAf 

T - time duration of data collection 

U(t) - velocity 

u(t) - time-varying velocity (zero mean) 

Ü - mean of U(t) 

U - estimate of U 

Vll 
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w(k) - lag window function at lag k 

W(f) - Fourier transform of w(k) 

a - normalized mean rate parameter, *4 
NNs ß - normalized number of data samples, -rs— 

T Y - normalized data collection time, m— 

Af - estimate spacing in frequency 

AT - uniform increments in time 

MAT - maximum delay 

e, - normalized RMS deviation of spectrum estimate 

e, - experimental measure of e, 

X - mean data rate 

a2 - variance of U(t) (mean-square intensity) 
A 

o2 - estimate of o2 

oi - variance of S(iAf) 

a* - standard deviation of U 

xc - turbulence time scale 

ij» - rate at which lag products occur in real-time 

Vlll 
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SECTION I 

INTRODUCTION 

1.1 THE PROBLEM 

Within many subtle limitations, laser velocimeter 

CLV) systems provide non-interfering point measurements of 

a velocity field when suspended scatterers pass through a 

small optical probe volume [1].  For wind tunnel measurements 

with little or no particulate seeding of the gas, the LV 

systems of concern here make essentially instantaneous 

sample measurements from sparsely distributed scatterers 

which are detected at random intervals in time.  The primary 

objective of the research reported herein has been the 

development of digital statistical data processing tech- 

niques for the estimation of turbulence intensity, auto- 

correlation, and power spectrum, with low mean data rates 

which minimize the particulate seeding requirement.  An 

additional objective has been the reduction of system costs 

by elimination of the need for expensive mass memory through 

the use of real-time minicomputer processing. 

1.2 BACKGROUND FOR STATISTICAL ESTIMATION 

1.2.1 Conventional Spectrum Analysis 

Many engineers who are familiar with the use of 

analog spectrum analyzers in measuring periodic data are 

unaware of the many subtleties in the measurement of power 
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spectra of continuous noise processes. However, theory 

and practices are well developed, at least for stationary 

Gaussian processes [2,3]. 

In many applications the need for greater accuracy 

or the digital nature of the original data format has led 

to digital power spectrum analysis of periodically sampled 

data.  There is a clear distinction between the require- 

ments of periodic or nearly periodic signals and those for 

broadband random signals, but the techniques and limitations 

are well understood for stationary Gaussian signals [2-9] . 

An excellent introduction to this subject has been provided 

in the very readable paper by Richards [4].  Free use of this 

background material is utilized in this report. 

1.2.2  Randomly Sampled Signals 

Fourteen years of rigorous mathematical research 

with statistical averages or infinite time averages indi- 

cates that not only is it possible to make mean, correlation, 

and spectral estimates using randomly timed samples but also 

that there is a significant advantage in doing so.  For esti- 

mating second order statistical parameters such as correlation 

and spectrum it is well known that with periodic sampling the 

sample rate must exceed twice the signal bandwidth to avoid 

aliasing error [5].  This Nyquist criterion, which is also 

required for time history reconstruction from periodic samples, 

often imposes difficult constraints on the data processing 

when spectral resolution requirements are added.  It has been 

shown mathematically that time history reconstruction from 

random samples also requires the Nyquist criterion; but practi- 
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cal reconstruction with low error requires approximately 

three times the Nyquist rate even for nonrealizable, non- 

linear, straight-line interpolation and much higher rates 

for optimum linear filters or sample-and-hold interpolators 

[10,11].  In contrast, alias-free spectrum estimation may 

theoretically be obtained with any mean sample rate, however 

small, when the random sampling process and the signal are 

both stationary and independent [12-14]. 

The economical implications of the mathematical 

theory are very significant for many applications in addition 

to the LV problem which naturally provides randomly sampled 

data:  we need only to reduce the mean sample rate to reduce 

the required electronic computation speed and memory to ob- 

tain economical real-time processing. 

Unfortunately, in contrast to the rigorous mathe- 

matical theory based on infinite averages, the theory of 

practical spectral estimation from finite data sets is in 

its infancy and is almost non-existant.  First we must 

distinguish between a few different classes of problems. 

Singleton [15] has considered estimation of parameters of 

randomly samples signals known to be periodic and Shaw [16] 

has considered periodic sampling with random time jitter; 

but these are different problems.  In particular, our experi- 

ments have shown that randomly sampled periodic data imposes 

minor requirements compared with randomly sampled broad- 

band noise processes.  Jones [17] has investigated another 

class of problems, which is more closely related to our 

concern, where independent random omissions of periodic sam- 

ples occur.  This type of sampling becomes similar to Poisson 

random sampling as the periodic sampling frequency increases 

and the probability of a given sample occurring goes to zero 

[11]. 
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1.2.3 Estimation of Broadband Spectra from Random Samples 

In the literature search only a few recent papers 

were found which relate directly to the problem.  Adegbola 

[18] has theoretically analyzed one approach in detail in 

which the data are used to form a rectangular approximation 

to the Fourier integral formulas applicable to continuous 

data.  He presents no experimental work and the estimator 

equation is not amenable to rapid computation.  We have 

derived a related estimator which involves less approxima- 

tion and computation.  This estimator and an example of the 

poor experimental results which were obtained with it for 

subNyquist mean sampling rate are presented in Appendix I 

as a warning to others.  We did not investigate Adegbola's 

estimator experimentally because it appears slow computa- 

tionally. 

In a very recent research study concerning spectral 

analysis from single-particle LV data, Asher, Scott, and 

Wang [19] attempted a straightforward, economical analog 

approach in which continuous sample and hold signals were 

analyzed by conventional spectral analysis instrumentation. 

Their unfortunate results should be considered by those 

who would apply the output of a frequency-tracker LV system 

which incorporates hold circuits during signal drop out to 

conventional instrumentation.  It is not difficult to see 

by hindsight that the use of sample-and-hold is mathematic- 

ally equivalent to our rectangular numerical approximation 

of the Fourier integrals previously mentioned.  For practical 

single-particle LV data rates, OT for trackers with appre- 

ciable drop out, we end up spectrally analyzing a random step- 
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function whose low-pass spectrum obliterates the desired 

spectrum. 

Another digital approach was taken by Thompson 

[20] whose derivation was inadequate to predict the addi- 

tive white spectral level he obtained in simulations, and 

whose simulations with deteriministic data are misleading 

in relation to the actual difficulties encountered with 

signals which are broadband random processes.  Through a 

different and more exact reasoning process we have derived 

an estimator similar to Thompson's which correctly sub- 

tracts the additive white level.  Our estimator, which 

is based on the known relationship between the signal spec- 

trum and the spectrum of the samples signal [11, 21] and 

its experimental demonstration are also displayed in Appen- 

dix I.  This estimator was not pursued because it appears 

less amenable to real-time computation than the approach 

taken. 

The spectrum estimator which we derived and found 

most useful during the exploratory phase of this research 

consists of determining an autocovariance estimate from 

the data after discretizing the occurrence time intervals 

as though the sampling were periodic with most of the samples 

randomly missing.  Our conclusion that this approach is 

optimum at the present time is supported by additional ref- 

erences by Jones [22,23] in which he describes three estima- 

tors including the discretizing autocovariance approach and 

concludes that this approach is the most practical of the 

three.  Jones unfortunately makes the erroneous conclusion 

that once the time discretizing has been accomplished, the 

error analysis problem reduces to that of randomly missed 
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samples and references his earlier analysis [17].  This 

is unfortunate because the analysis referred to does not 

correctly predict the spectrum estimate error, as we 

have shown by experiment. 

Further support of the discretizing autocovar- 

iance approach may be found in experimental development 

results currently being obtained at Lockheed-Georgia Co. 

under Contract No. F-33615-73-C-2032.  At the time of this 

writing, good agreement between hot wire anemometry and LV 

spectrum measurements has been obtained, but the results 

are not yet published.* 

1.3  SCOPE 

In Section 2, we present equations for estimation 

and error prediction of turbulence parameters measurable by a 

single-point, single-component LV system.  Section 3 pre- 

sents experimental evidence which supports the error predic- 

tion equations of Section 2.  Section 4 provides a guideline 

procedure for experiment and implementation design with fur- 

ther interpretation of the error prediction equations.  Sec- 

tion 5 is a brief discussion of the results, and Section 6 

provides conclusions and recommendations for further work. 

* The results have been described in presentations 
by D. M. Meadows at the "Workshop on Laser Doppler Velocimetry," 
held at Purdue University, West Lafayette, Ind., March 27-29, 
1974.  Papers will appear in the Conference Proceedings. 

6 
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SECTION II 

THEORY 

2.1  INTRODUCTION 

2.1.1 Assumptions 

For purposes of analysis, we consider an idealized 

model of the fluid flow, the LV system, and the mathemati- 

cal computations.  The practical significance of these 

assumptions is discussed later. 

The velocity component U(t) is an ergodic Gaussian 

random process with mean 

ÜTtJ ■ Ü C2.1) 

and variance or mean-square turbulence intensity, 

u -(t) = (U(t) - U)2 = a2 

The autocorrelation of UCt) is a real, even function 

(2.2) 

. R(x) = U(tJ UCt+x) = C(T) + Ü2 (2.3) 

where the autocovariance C(x) is 

C(T).= u(t) u(t+x) (2.4) 

The two sided spectrum, S(f), and the autocovariance form 

a Fourier transform pair 

s(f) = C  C(T) exp [-j2TrfT] dx (2.5) 

The horizontal bar denotes statistical expectation 
or infinite time average interchangeably. 
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The LV system is assumed to detect error-free 

instantaneous samples U. of the velocity at time instants 

t. which are the realization of a stationary Poisson point 

process, statistically independent of U(t), with mean rate X. 

2.1.2 Mathematical Background 

For the Poisson process the expected number of 

samples occurring in any interval of length T is XT, with 

variance XT, and the probability of m samples in T is 

e-XT 

P Cm'T) = ~m7~  CXT) (2-6) 

It proves convenient at times to divide the time 

axis into uniform increments of length AT which are small 

enough that XAT<<1.  In this case, expansion of (2.6) as a 

power series shows that the probability of samples occurring 

in any AT interval is 

P(0,AT) - 1-p 

P(1,AT) « p = XAT (2.7) 

P(m>l, AT) = 0 

For sufficiently small AT, a negligibly small timing error 

occurs in replacing the exact occurrence time t. with JAT, 

the location of the nearest uniform grid element.  Using 

this approximation, the data sequence, discretized in time, 

is given by U(j) I(j) where U(j) is the value of U(t) at 

JAT, and I(j) is an independent binary random variable with 

P{I = 1} = p 
(2.8) 

P{I=0} = 1-p 

8 
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The use of this notation is only justified when p = XAT 

is small. 

The concepts of equivalent power bandwidth B 

and turbulence time scale T„ will prove useful: c     r 

U sCf) df 
2B = 

*«».*)     rTT^) C2-9) 

T  - 2  0 
C     02 

peak 

1 /" C(T) dx C2.10) 

where S(f J is the maximum value of the power spectrum. 

For a typical low-pass spectrum with maximum value at zero 

frequency, we note that C(T) is even and 

SCO) = C   c(x)dT (2ell) 

to obtain 

BTC - 1/4 (2.12) 

2.2 MEAN AND INTENSITY ESTIMATORS 

2.2.1 Introduction 

Well-known statistical formulas exist for esti- 

mation of mean and variance, and for prediction of the mean- 

square error of these estimates, when uncorrelated samples 

9 



AEDC-TR-74-53 

are used as data. However, it is contradictory to assume 

uncorrelated samples obtained in a finite time with random 

times of occurrence when we require sufficiently high data 

rates to estimate correlation functions! 

The detrimental effects of correlated samples are 

as follows:  the standard unbiased estimate of variance 

becomes biased, and the variance of the estimates increases 

due to the reduced information content of the data.  We have 

obtained approximate formulas for the estimate errors which 

include finite-time correlation effects.  These approximate 

formulas were obtained by assuming that in the limiting 

case of high X the error could be no less than that which 

would be obtained from a continuous time segment of U(t). 

The errors for continuous estimators were derived from results 

in Papoulis [21] and added to the standard formulas.  The 

details of the derivations are omitted for brevity. 

2.2.2 Mean Flow 

Subject to our initial assumptions of section 

2.1.1 the usual sample mean 

1 N 
U = IT i=1  Ui (2.13) 

is unbiased and has rms error given approximately by 

where the X/2B term results from finite time effects. 

10 
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2.2.3 Mean-Square Intensity 

Subject to the assumptions of section 2.1.1, the 

conventional variance estimator may be used if limitations 

due to finite-time effects are considered: 

-2   i_ N 

a    = N-l E   (UrU)2 (2.15) 
" L    i-1   x 

With N^XT we find the continuous estimate of 

variance over the same duration would be biased and assume 

we can expect no better: 

a2  = a2 (1 - -^ = a2 (1 - -^ (2.i6) 

The bias error should generally not be significant but could 

easily become so under some of the implementation schemes 

discussed later in which data is broken into small segments 

for processing.  In such an implementation, care should be 

taken. 

The derivation of the added finite-time variance 

of the mean-square intensity estimate is simplified by 

assuming the bias is negligible.  When combined with the 

standard result given by Jenkins and Watts [9], the result is 

(cj2 " °2)2=:cirT) C1+2AT') < j^- (1+^)        (2.17) 

where 
1 

.00 
Tc = **" ;o  c2(-OdT i Tc C2'18) 

11 
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The inequality is valid for monotonically decreasing posi- 
tive functions C(x) but should be checked in more general 
cases. 

2.2.4 Normalized Turbulence Intensity 

We may estimate I ■ a/Ü using the previous 
formulas as 

I = ji (2.19) 
U 

Assuming the errors in a2  and U are small, Taylor series 
expansion shows 

~ X 
1 B I(1 " mC^ (2.20) 

Assuming that the bias error is negligible, and that the 

errors in a2 and U are uncorrelated, we find the variance 

approximately as 

ci - i)2 - (TT 
+ ZHTDV

1
 

+ «"J (2-21) 

In low turbulence measurements, the I* term will be negli- 
gible in comparison with the I2 term. 

12 
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2.3 AUTOCOVARIANCE 

2.3.1 The Estimators 

The method we have found most useful for spectrum 

analysis begins with a discretized autocovariance esti- 

mate similar to that reported by Jones [22, 23]. The exact 

time differences between pairs of samples are represented 

approximately as integral binary numbers with an arbitrary 

time increment AT. For each pair of samples for which the 

discretized time difference does not exceed the preselected 

maximum lag number M, the product of the two samples (lag 

product) is accumulated in a lxM matrix SUM(k) and 1 is 

added to a corresponding histogram H(k). For purposes of 

analysis we assume that the true mean has been previously 

subtracted from the data. After N samples are processed 

the resulting estimate C(k) of the value of C(T) at x=k&T, 

k?*0, is 

^(k) = ERTT SUMW C2.22) 

which the summation includes only the H(k) products for 

At 
kl < 0.5 (2.23) 

For k=0, the practical advisability of including products 

for which |t- - t.| < AT/2 along with the u? terms depends 

on the implementation; without these terms, H(0) = N and 

1 N  2 c(0) - ü I  "i (2.24) 
i=l 

13 



AEDC-TR-74-53 

A very similar autocovariance estimate may also 

be expressed in the alternate notation which assumes assign- 

ment of t. to the nearest value of JAT prior to computation 
as 

N'-k 
I  u(j) u(j+k) I(j) I(j+k) 

j=0   
C'(k) =   —  (2.25) 

N'-k 
I  ICJ) Kj+k) 

j-0 

when N^AT-AN'At and I(j) is the binary indicator sequence. 

The estimator is denoted with a prime to remind us that 

(2.25) differs from (2.23) and (2.24) because ±AT/2 errors 

in the discretization of t. and t. prior to subtraction 

allows maximum errors in time differences of ±AT.  The max- 
A A 

imum time error for C(k) is ±AT/2.  Also C(k) uses a fixed 

number of samples, while C'(k) uses a fixed length of time. 

The relation N = AT is only true on the average. 

2.3.2  Bias Error Due to Time Increment 

Jones dismisses the analysis of the discretized 

autocovariance estimate by reference to his analysis of 

periodic sampling with random omissions [17].  If, in fact, 

AT is assumed small enough to make the time errors negli- 
A A 

gible in both C(k) and C'(k) then the application of condi- 

tional expectation techniques to the random omission model 

shows that the estimates are unbiased provided that N is 

sufficiently large so that each lag value has at least one 

lag product.  We note, however, that practical limitations 
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will sometimes require AT to be as large as is permissible 
without bias error. In the case of periodic sampling with 
random omissions AT must satisfy the Nyquist criterion. 

In Appendix II we demonstrate that the expected 
A 

value of C(k) is 

+00 

C(k)   = / C(T) pk(T)dT r2.26 

where P^CT) is the conditional probability density for 
occurrence of lag delays and is nonzero only on the interval 

(kAT - AT/2, kAT + AT/2).  The function PT.(T) has unit area 
and is not given by a simple formula.  The somewhat compli- 
cated exact expression for PI,(T) is given in Appendix II 
for the case of uniform Poisson random sampling. 

As we show in section 2.3.4 below, in many prac- 

tical cases PJ.(T) may be replaced by a constant 1/AT over 
the interval of definition with the result that the expected 

A 

value of C(k) is the average value of C(T) on the surround- 
ing ±AT/2 interval. 

The limitation imposed by selection of AT is 
best understood by its effect on the spectrum estimate and 
will be discussed further in section 2.4. The resulting 
maximum value of AT is of the same order of magnitude as 
the Nyquist criterion for periodic sampling.  The bias 

A A 

error for C'(k) is expected to be worse than that for C(k), 
but on the same order of magnitude. 

15 
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2.3.3 Additional Bias Error 

For the present we assume the true mean IJ has 

been subtracted from the samples before formation of the 

estimate C(k).  In implementation it is actually necessary 

to subtract sample means to avoid low-frequency distortions 

of the spectrum estimate.  This procedure is expected to 

produce small bias errors in the autocovariance estimate 

which are associated with removal of the very low-frequency 

components, but the effect has not yet been analyzed in 

detail. 

2.3.4 The Histogram 

The histogram H(k) of the number of lag products 

obtained at each lag value k plays a significant role in 

practical application of the estimator C(k).  In Appendix 

II we have evaluated its expectation approximately under 

the assumption that AAT is small and N is large with the 
A 

result that with only u? terms used in C(0), 

H(k=0) = N 
(2.27) 

H(k) * NXAT - k(AAT)
2 * (jl - k) (AAT)

2 

The result shows that the number of products at each lag 

is generally much less than the number of u? terms.  The 

expected number of products at each lag decreases linearly 

with k, but if the data collection time, T, for each data 

segment, is much greater than the maximum delay, i.e., if 

T >> MAT,  N >>MAAT (2.28) 
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then the value of ff(k) is nearly constant. This condition 
is an important consideration in implementation which must 

be observed when segmented data methods are used. 
The variance of H(k) has not been theoretically 

evaluated, but we expect it to behave in the manner of a 
Poisson process for acceptably large values; i.e. 

CHCk) - ff(k))2 - ffOO (2.29J 

We may obtain an approximate expression for the 

function P^CT) utilized in section 2.3.2 from FT(k) by 
assuming that H(k) is an unnormalized estimate of the 
probability density for occurrences of lag values on the 
range 0<T<MAT.  The result is 

PkCT) ■ NAAX - n^ (2-303 

It is expected, therefore, that PT.(T) may be replaced in 
(2.26) by a unit area rectangular function of width AT 
and height 1/AT when the data collection time is much 
greater than the maximum delay. 

2.3.5 Variance of the Autocovariance Estimate 

When the system parameters are correctly chosen 

to avoid bias error, the important remaining problem is 
the determination of the statistical error of the estimate 
in terms of the amount of data collected and processed. 

17 
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A 

In Appendix II we derive the variance of C(k) under the 
assumptions that the normalized rate parameter X/2B is 
small compared with unity and the variance of H(k) is 

small. 

°ck * (C(k> " C(kÄT))2 

[a* + C2(kAT)] (2.31) 
H(kD 

kj«0 

The value of C(0) is identical with the previously given 
mean-square intensity estimate if the same sample mean is 
subtracted, and the previous, result with low mean sample 
rate and large N reduces to the usual formula: 

co    N (2.32) 

2.4  POWER SPECTRUM 

2.4.1 Computation From the Autocovariance 

Once the discrete autocovariance estimate C(k) 
has been computed, the two-sided power spectrum estimate 
follows using a discrete Fourier transform [4,7} as 

S(iAf) = AT [C(0) + l\      w(k) C(k) cos^)] ^ 

i ■ 1, 2,... M 
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where 

M = »5* 
AT 

Af = -i_ =_i  
2MAT U 

max 

£ = iAf 

and w(k) is a smoothing window function which is unity 

at k=0 and which decreases to zero at k=M. The discrete 

transform may be implemented to a fast Fourier transform 

with certain precautions regarding the addition of zeros 

as discussed by Brumbach [7]. 

Several observations are appropriate.  Details 

concerning these observations may be found in the literature 

[2,4,7,9,17] since they are common to conventional digital 

spectrum estimation.  First, S(f) is an even periodic func- 

tion with period 1/AT . Since the estimate replicates 

itself for f>lAr, the usual Nyquist criterion is a neces- 

sary condition on AT to avoid aliasing distortion, just 

as it is in periodic sampling.  The additional constraint 

on AT mentioned in section 2.3.2 is discussed further 

below. 

Optimum selection of the shape of the window 

function is an art involving knowledge of the spectrum 

shape (either a priori  or by trial and error procedure) 

and the measurement objectives. For smooth broadband 

turbulence spectra without spikes due to periodic com- 

ponents the simple Bartlett window given by 

w(k) . l - -£- , k < M (2.34) 

= 0       otherwise 
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should be adequate.  The effect of the window is a running 

weighted average, or convolution, in the frequency domain 

which reduces the error variation of the estimate.  At 

the same time, bias error is introduced in the form of loss 

of spectral resolution and the expected value of the 

estimate, assuming C(k) is unbiased, is 

7- (2.35) 
S(f) = S(f)*W(f) 

where * denotes convolution and W(f) is the Fourier trans- 

form of W(T).  For the Bartlett window given in (2.34) 

W(f) = MAT [ ";(>fMAT) , 2 

the "frequency resolution", R, may be taken as 1/MAT, the 

spread between the peak and the first zero of W(f). 

Several other window functions having better 

resolution and/or side-lobe characteristics are described 

in the literature.  The "Hamming" window is a common com- 

promise favorite which performs better than the Bartlett 

window in most cases.  It is given by 

W(k) = 0.54 + 0.46 cos (j£), k < M (2.37) 

.    ■ 0   otherwise 
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A final observation concerns the temptation on 

the part of some to compute S(f) at frequency intervals 

less than 1/(2AT) because the result is smoother and more 

pleasing looking than the somewhat jagged appearance of the 

result of using (2.33).  Giving into this temptation does 

not produce more useful information or resolution since the 

width of W(f) generally exceeds 1/(2MAT).  On the other hand, 

natural spectra are usually "smooth11, and the jagged appear- 

ance resulting from errors is not disguised when the frequency 

spacing is maintained large enough for the estimates to re- 
main nearly independent. 

2.4.2 Bias Effect of AT Selection 

Under the conditions AAT « 1 and N >> MXAT, 

result (2.26) becomes 

C (k) - C  CC-O A? Rect (^Tr-)  dT (2.38) 

where 

Rect (T) = 1, -1/2 < T < 1/2 (2.39) 

= 0 otherwise 

Equation (2.38) is a convolution integral which produces 

the effect in the spectrum estimate of multiplication by 

the transform of the Rect function. Manipulation with 

Fourier transform relations yields 

s(f)-j 8(f-^«m[^tf-frJ 
*Ax (f-JT) 
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Equation (2.40) reveals the usual nature of aliasing error 

wherein components of S(f)>l/2Ar fold and add to the esti- 

mate.  The equation also shows the attenuation of all 

spectral components by a (sin x)/x function which is down 

to a factor of 0.637 at the 1/2AT folding frequency. 

2.4.3 Effect of Non-Zero Mean and Linear Trends 

The finite resolution imposed by the finite 

width of the spectral window function (M<«>) means that any 

discrete frequency component in the data, which ideally 

would produce an impulse in the spectrum, will result in 

a replication of the spectral window at the location of 

the frequency spike with bias distortion of nearby esti- 

mates.  Even in the absence of periodic velocity fluctua- 

tions, the steady mean velocity component has the same 

effect at the frequency origin.  The presence of a large 

linear trend in the data which results from a sinusoidal 

component too low in frequency to be resolved also has 

the same effect.  For this reason, it is common spectral 

estimation practice to remove both the sample mean from 

the data and to further correct for linear trends [4]. 

The necessity for linear trend removal in tur- 

bulence measurements does not seem apparent, and the theory 

concerning such a step in the case of random sampling has 

not been considered.  In addition, the exact nature of the 

effect of removing the sample mean is also slightly 

unclear when short data segments are used.  We believe 

that, when the data segments are sufficiently long to 

satisfy other requirements, any low frequency bias errors 
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resulting from subtraction of the stemple mean instead 

of the true mean will be confined primarily to the zero 

frequency estimate with some leakage to the first fre- 

quency estimate (f=Af) through the greater than 1/(2MAT) 

width of the spectral window. 

2.4.4 Variance of the Spectral Estimate 

In Appendix II we derive the variance of the 

spectrum estimate under the assumption that X/2B << XMAT < 1. 

The derivation also assumes that AT is small enough, M and 

N are large enough, and the true mean has been subtracted 

so that the resulting estimate is unbiased and the histo- 

gram H(k) is approximately a constant given by NXAT.  The 

result is 

cr| - (S(iAf)-S(iAf))2- 
(2.41) 

M 
■ &r- X" w2w i°k + c2(kAT)] [i*eos c^)] 

This result shows the mean square error has a maxima at 

the zero frequency and the folding frequency with values 

which decrease to a value approximately one half as large 

for frequencies away from i=(0,M). 

If the summation is viewed as a numerical inte- 

gration, the variance away from the frequency origin may 
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be evaluated approximately by neglecting the small 

contribution from the C2(kAx) term as 
2 4  ,MAT af *  mr I     w2CT)dx (2.42) 

which for the Bartlett window gives 

°f " 3NX  (2-43> 

This result shows clearly the price paid for increasing 

MAT to obtain better spectral resolution. 

We may compare our error prediction result with 

that given by Jones [17] for spectrum estimation with 

missing observations.  Putting his results in the same 

notation and using our result for the value of the histo- 

gram H(k) we obtain 

where replacement by a continuous integral gives 

,C2m  ,MAt 

°lj ■ w^ /.   -"w* C2-45) 

This result agrees exactly with ours under the condition 

that the true spectrum is white so that a2 = S(f)/Ax.  Our 

result, however, indicates that the error level is not 

proportional as a function of frequency to the true spec- 

trum as Jones' result implies. 

The usual practice of indicating a constant 

confidence interval on a logarithmic spectrum plot is 

obviously not appropriate when the error level is not 
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proportional to the spectrum itself.  It now becomes 

more appropriate to indicate a constant confidence inter- 

val on a linear spectrum plot.  Supporting evidence for 

this statement in addition to our own may be found in 

careful observation of the digital simulation results in 

Jones' previously referenced paper. Unfortunately our 

analysis is supported by experiment with rather grim 

consequences for the estimation of low level spectral 

tails. 

2.-4.5 Post Estimate Smoothing 

Nature has provided some assistance in the 

dilemma which results when the constraints of resolution, 

error, and measurement time are all considered.  For 

many phenomena, a constant resolution on a log-frequency 

plot is more meaningful than is the constant resolution 

which results in the preceding discussion.  Various compu- 

tation-saving methods of achieving resolution at least 

appoximately proportional to frequency which reduce error 

variation at high frequencies have been devised for con- 

ventional spectral analysis [4,24]. 

Computationally efficient methods of achieving 

non-uniform spatial resolution, appropriate for random 

sampling should be pursued, perhaps by extension of low- 

pass digital filtering to randomly sampled data [25], but 

in their absence the error benefits may still be obtained 

by additional post-estimation smoothing.  This is accom- 

plished by replacing each spectral estimate with an 

average over a number of the original neighboring estimates 
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proportional to the frequency of the estimate. For 

example, if Af is 100 Hz, the resolution is 200 Hz, and 

there are 500 estimates from 100 Hz to 50 KHz, it might 

be appropriate to retain no better than 10% resolution. 

This would result in leaving the first 10 estimates 

unchanged, averaging ten estimates on either side along 

with the 10 KHz estimate, and averaging 45 estimates on 

either side with the 45 KHz estimate. 

If all of the spectral estimates were uncorrela- 

ted, the variance of the post-smoothed estimate would be 

reduced by the inverse of the number of estimates averaged. 

Since the resolution generally exceeds the Af spacing, 

the actual reduction in variance is less due to correla- 

tion between adjacent estimates.  This effect has not 

been analyzed in detail, but a factor of 2 seems conser- 

vative when the shape of the Bartlett window is considered. 

2.5  PROCESSOR DEAD TIME EFFECT 

Our idealized assumptions do not provide for 

the significant fact that all LV burst-counter processors 

exhibit dead time, d, during which the processors make 

the "instantaneous" sample measurement and verifies the 

validity of the measurement with various data checks which 

have been devised.  The significance lies in the fact that 
2 A 

the minimum value of AT is 2d if C(l) is not to be biased. 

It would thus seem that the electronic signal processor 

dead time limits the highest spectral frequencies which 

may be observed. 

2 This constraint could be reduced slightly by restric- 
ting the band of delays to less than ±AT/2 about each value 
kAt at the expense of loss of data and more complex data 
processing requirements. 
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The minimum possible processor dead time is bounded 

by the LV system parameters:  it is the time required for 

passage of a scattering particle through the probe volume. 

2.6 SEGMENTED DATA - NONSTATIONÄRITY 

The ergodic assumption includes statistical sta- 

tionarity of both the turbulence and the random sampling 

process.  In many practical situations one or both sta- 

tionarity assumptions will be violated.  The analysis of 

nonstationary random processes is difficult, and generally 

requires characterization models and parameters which are 

not available.  Evans and McCarty [26] have discussed such 

problems at length for the case of periodically sampled 

data. 

The problem we face is that in implementation 

we must choose between obtaining, storing and processing 

one large amount of data N as one continuous record; or 

computing many estimates from short data segments and 

averaging the results; or doing something that is a Compro- 

mise.  We may further subdivide the choices by pointing 

out that the results will be different if data segments 

are chosen to be of equal length in time, N'AT, or equal 

length in number of data words N.  Under the stationarity 

assumptions our theory is directly applicable to individual 

segment estimates with identical numbers of samples N. 

The succeeding averaging of Ns segments will not affect 

the predicted bias errors, but it will reduce variance in 

a manner simply obtained by replacing N by NNs in the 

equations.  It is expected that differences in implementations 
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will be minor when the random process are stationary, 

and that approximately correct predictions will be obtained 

by replacing N=XT when it is desirable to do so for design 

purposes. 

In the absence of theoretical guidelines, it 

appears advantageous to make use of the fact that in many 

nonstationary situations the statistics may be "slowly 

varying" in such a manner that the processes are quasi- 

stationary over short time segments. Under these ill 

defined conditions the use of statistical averages may 

provide valid answers in terms of the time dependent 

statistics, although the variance of the individual esti- 

mates may be unusably large and the effect of averaging 

the individual estimates to obtain a long-time estimate 

is not known. 
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SECTION III 

EXPERIMENTAL 

3.1  INTRODUCTION 

An experimental investigation was conducted in 

parallel with theoretical studies to guide the direction 

of the theoretical research and to verify results as they 

were derived.  A hybrid electronic simulation facility was 

designed and constructed to produce randomly sampled exper- 

imental data for the investigation and computer programs 

were written to process the data in records (segments) of 

250 samples each. 

Several stages of experimental work followed. 

The first stage involved a comparison of the performance 

of different spectrum estimators (see Appendix I) and the 

latter stages were studies of a particular estimator (see 

section 2.4) with emphasis on how its error behaved as a 

function of average sample rate and bandwidth as well as 

the estimator parameters. 

A detailed description of the simulation facility, 

the data processing procedures and a copy of the subroutine 

RASPEC implementing the spectrum estimator of Section 2.4 

are all included in Appendix III.  A description of the 

main experimental results follows. 
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3.2  RESULTS 

3.2.1  Preliminary Results 

Initially, three spectrum estimators were pro- 

grammed and tested with the same randomly sampled data. 

Brief descriptions of the first two estimators and the 

test results are given in Appendix I.  The third esti- 

mator, which gave the least qualitative error with less 

computational effort, is described in Section 2.4. 

Other experimental work followed using the 

third estimator.  A low frequency sinusoid (200 Hz) was 

randomly sampled at two different average sample rates 

and this data produced clearly discernable spikes at the 

fundamental frequency with only 250 data samples.  Both 

bandpass and lowpass random processes, generated by pass- 

ing white noise through controllable known filters, were 

then randomly sampled for a number of average sample rates, 

ranging from below the Nyquist rate to above the Nyquist 

rate. 

3.2.1.1 Experimental Error as a Function of the Number of 
Data Words 

The decrease in experimental spectrum estimate 

error, e,„, with an increase in the number of data words 7     Is 
processed is shown in Figure 1, a. and b., where 

200 

Jso S2(iA£) 
els 

151 
(3.1) 

S(£peak> 
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Figure 1.  Variation of Spectrum Estimates with Number of 
Data Samples. 
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The subscript s indicates that this is the error in the 

stopband which, in this case, is the band from 500 Hz to 

2000 Hz where the true spectrum is assumed to be zero. 

There are 151 estimates in this band at 10 Hz intervals. 

Qualitatively, e,  is the square root of the average error 

squared, normalized to the peak of the spectrum estimate. 

The same pair of estimates, plotted on a dif- 

ferent scale (Figure l, c. and d.), indicates that the 

estimator produced negative and positive errors that are 

symmetrical about the true spectrum. This is clearly seen 

in the stopband. 

3.2.1.2 Experimental Error as a Function of Mean Sample Rate 

In the series of estimates shown in Figure 2, the 

number of data words (N=248) and the number of data segments 

(Ns=20) are held constant and the mean sample rate, A, is 
A /s. 

increased. The reduction in e-  is indicated, where e,„ Is '       Is 
is defined just as in the previous section.  Note that in 

the main lobe of the bandpass spectrum, the estimate error 

qualitatively appears to increase for the higher values of X 
where a = A/2B >> 1. 

3.2.1.3 Aliasing Error and the Effect of Smoothing 

Aliasing error is shown in Figure 3.  In Figure 

3a., the parameter AT was purposefully selected large enough 

to cause the spectrum estimate to replicate itself within 

the scale of the plot.  A further increase in AT results 

in the increased aliasing of Figure 3b.  The error reduction 
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Figure 2.  Variation of Spectrum Estimates with Mean Data 
Rate. 
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Figure 3.  Spectrum Estimates Exhibiting Aliasing. 
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effect of decreasing the width of the window w(k) is 

shown in Appendix I, Figure 1-4. 

3.2.2 Parametric Variability Study 

One of the main theoretical results was the 

derivation of an expression for the variance of the spec- 

trum estimator of Section 2.4. Accordingly, an experi- 

mental effort was undertaken to verify this expression 

(equation (2.43)) by plotting theoretical error and 

experimental error as a function of the mean rate parameter, 
X 

a = 7B • 
To obtain a range of values for a, random process- 

es with two different lowpass spectra were used, one with 

B=100 Hz and one with B = 800 Hz (nominal values).  Four 

different average sampling rates were used for each of the 

two spectra to give eight values of the parameter a. This 

experimental data was then used to compute a "high accuracy" 

spectrum estimate for each bandwidth.  For this, four 20 

data segment spectrum estimates were computed for each value 

of X.- These estimates were averaged at each point in fre- 

quency to form an averaged estimate for each value of X. 

These four averaged estimates (from the four different 

values of X) were again averaged at each point in frequency 

to form the overall "high accuracy" estimate for that band- 

width.  The "high accuracy" estimates were then fitted with 

the ideal Butterworth spectrum (fourth order) for each band- 

width using a least-mean squares program to determine the 
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level of the Butterworth curve in the passband.  Wave 

analyzer data showed that frequencies below about 20 Hz 

were attenuated in the actual spectrum and so it was not 

a true Butterworth lowpass spectrum.  Consequently, the 

first six points of the estimates were not used in the 

least-mean squares program.  The plots of Figure 4 show 

the "high accuracy" estimates and least-mean square fit 

Butterworth curves for each bandwidth. 

The next step involved was to compute experimental 

error by computing error between a number of spectral 

estimates and the Butterworth curves described above.  For 

each value of a, 80 data segments were used in computing 

estimates; one estimate from the first 20 data segments, 

and so forth for a total of four estimates.  This resulted 

in 32 spectral estimates.  The experimental error was 

defined over two frequency bands for each bandwidth.  The 

bands were: 

Passbands 

24 Hz < f < 104 Hz 100 Hz filter 

204 Hz < f < 800 Hz 800 Hz filter 

Stopbands 

204  Hz < f <   00 Hz 100 Hz filter 

1632 Hz <  < 6400 Hz 800 Hz filter 
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0, 

400 f, Hz 

0. 
1600 

4b 

3200  f, Hz 

Figure 4.  Analytical Butterworth Spectra and "High 
Accuracy" Spectrum Estimates. 
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where the upper and lower limits were determined by counting 
off a discrete number of points of frequency spacing Af. 

The general expression for the experimental error 

in the passband, e, , was 

n+m-1 

£ip 

j±lm   (S(iAf) - S(iAf) )2J 
(3.2) 

SCO) 

where S(iAf) is the value of a spectrum estimate at frequency 

f = iAf. 

For the 100 Hz filter, 

S(iAf) = value of the analytical model (100 Hz 

filter) at frequency f = iAf. 

S(0) = value of analytical model (100 Hz filter) 

in the low frequency portion of the pass- 

band 

n = number of points in the passband over 

which the summation is taken = 20 

m = first point in the passband = 6 

Similar definitions apply for the experimental error in the 

passband of the 800 Hz filter. 

The general expression for the experimental error 

in the stopband, e, , is defined similarly to the experimental 
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error in the passband, except the summations are taken 

over n = 149 and m = 51 in the stopbands of both filters. 

By applying these definitions to the 32 spectrum 
A 

estimates, two plots were generated, one for e,  vs a, the 
_LS A 

normalized mean rate parameter, (Figure 5) and one for e,_ 
A   J. S 

vs a (Figure 6). For each value of a, four values of e-, 

were computed, one from each of the four spectrum estimates. 
A 

These were then averaged to form e.    and this is 

plotted as a solid line in Figure 5.  The values of e- 

from the first 20 records, e,  ,, and the second 20 records, 

e,  2» are shown as dashed lines in Figure 5 to show typi- 

cal variability of the E,  values about their average. 

To compare theory and experimental results, equa- 

tion (2.43) was plotted in normalized rms form: 

£- 
:L ^MAT\^ ■URS! IP     V3/  "\N\I (3.3) 

where a2 = 2BS(f eak) has been substituted using the nor- 

malized mean rate, parameter a= yg- •  The values of the 

parameters used in the experiment were substituted in the 

equation for computations. 
A 

The description of Figure 6, the plot of e.  vs 

a, is essentially the same as for Figure 5 but the results 

are somewhat different.  The plot shows much less varia- 
A A 

bility between the empirical average e,    and e,  . or 
A °  ls-av     ls-1 
e,_ 2 an<* älso shows much better agreement between E,  (the 
theoretical curve) and E,   . The agreement between the 

empirical and theoretical is good even for relatively 

large values of a. 
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Figure 5 Spectrum Estimate Error in the Passband 
Theoretical and Experimental. 
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Spectrum Estimate Error in the Stopband 
Theoretical and Experimental. 
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3.2.3 Parametric Study of Finite Time Correlation Effects 
on Mean and Turbulence Intensity Variability 

Experiments similar to those described in Section 

3.2.2 were conducted to determine whether or not the increase 

of varability due to finite time correlation effects were 

important for fixed N.  The results are shown in Figures 7 

and 8 where experimental measures of the normalized RMS 

deviations of the mean and turbulence intensity estimates 

are plotted versus a for N=248 and Ns=400.  The theoretical 

curves are plots of equation (2.14) (mean estimate) and 

equation (2.21) (turbulence intensity estimate) in normal- 

ized form.  It is seen that estimate error did increase 

for a > 1 but was less than predicted. The theoretical 

equations appear conservative and further work is required 

for exact results. 

3.2.4 Histogram Error 

Figure 9 shows the finite time effects on the 

histogram H(k) of lag products as a increases.  Figure 9a 

shows the histogram H(k) and its expected value, equation 

(2.27), for comparison. Figure 9b shows the histogram 

H(k) and equation (2.27) under the condition of equation 

(2.28) . 
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.1 

Figure 8 Normalized RMS Error of the Turbulence 
Intensity Estimate vs a. 
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SECTION   IV 

PRELIMINARY DESIGN 

4.1 INTRODUCTION 

In this section we provide some extension and fur- 

ther interpretation of the theoretical results of Section II 

in the form of a preliminary systems design guidelines and 

provide two illustrative examples.  The discussion is restrict- 

ted to the requirements of spectral analysis since implemen- 

tation of mean and turbulence intensity estimates is straight- 

forward under the assumptions of lack of correlation between 

X and U(t). 

4.2 PRELIMINARY DESIGN PROCEDURE 

There are many interrelated system variables 

whose proper relationship must be maintained to achieve 

results which satisfy error objectives while minimizing 

data collection and processing time.  The same procedures 

must be used in system design, experiment planning, and 

final data analysis.  The procedure is applied iteratively 

because of the many tradeoffs and the general fact that 

a priori  knowledge of the spectrum to be estimated is 
essential in the analysis.  With the exception of the 

alteration of the relationships due to random sampling, the 

design process is similar to that involved in conventional 

spectral estimation.  Detailed design discussion for con- 

ventional estimation has been provided by Blackman and Tukey 

[2] and Parzen [28]. 
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4.2.1 Bandwidth - Selection of AT 

Naturally produced spectra are not sharply band- 

limited and some aliasing bias error will generally have 

to be tolerated. When designing a system for turbulence 

spectrum estimation, electrical engineers accustomed to 

the use of 3 db bandwidth must exercise caution and communi- 

cate clearly with the aerodynamicists about the desired 

high frequency response. By way of example we note that 

a simple one-pole lowpass spectrum with 3 db bandwidth of 

2.5 KHz and log-spectrum tail slope of -2 has an equivalent 

power bandwidth of 3.92 KHz and is only 26 db down at 50 KHz. 

For this example, the factor C2 used in 4.2.4 below is 0.0785, 

The aliasing error equation (2.40) indicates that 

careful  consideration must be given to both the usual addi- 

tive aliasing error and the multiplicative error due to 

random sampling.  In a typical case, the maximum error occurs 

at a frequency less than the folding frequency 1/2AT because 

the multiplicative error and the additive errors may cancel 

at the folding frequency. 

4.2.2 Resolution, Frequency Spacing,.and Number of Estimates 

The frequency resolution R is an ambiguous quantity 

related to window shape, method of definition, and the lack 

or presence of discrete frequency spikes.  For broadband 

spectra with R defined as the half width of the spectral 

window measured to the first zero and with Af selected as 

1/2MAT where M is the maximum lag number and also the number 

of spectral estimates, then R=2Af when a Bartlett or Hamming 

window is selected. 
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The value of M is given by 

M = T575T C4.1) 

with typical values being 256, 512, 1024.  It is important 

to note that it is a simple matter to reduce the value of 

M after the autocovariance estimate has been made if it 

proves desirable to sacrifice resolution for reduced varia- 

bility error.  In other circumstances, post-estimate smooth- 

ing may prove desirable. However, it M is chosen inadequately 

small, no simple remedy is available. 

4.2.3 Data Segment Length 

In some implementations it is desirable to process 

data in segments and subtract the sample mean for the segment 

from each sample.  If the segment length, N, is too small the 

turbulence intensity estimate may be biased low according 

to equation (2.16). The bias effects on the spectrum are 

unknown, but are believed to be confined to the zero fre- 

quency estimate with leakage through the window function to 

the estimate at f=At. 

An additional constraint on N is imposed by equation 
i 

(2.28) to prevent-excessive variance of the spectral esti- 

mate due to low values of the histogram H(k) for the larger 

values of k. This constraint is generally satisfied by 

N > M (4.2) 

for sample rates A/2B < 1, AAT << 1. Note that this con- 

straint may be violated after system implementation by an 

over-eager experimenter who increases X to decrease varia- 

bility error. The inclusion of a comparison of H(l) and 

H(M-l) as a check is recommended. 
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4.2.4 Variability Error 

Once bias error effects are included properly in 

the system design and experimental execution, the primary 

concern is the statistical error due to finite data collec- 

tion.  Equation (2.42) may be expressed logarithmically for 

worst case error analysis in terms of the normalized RMS spec- 

trum error 

e  = fku 
1   «W C4,3] 

where S(f ,)   is the peak spectrum value. The worst 

case (largest value of) equivalent power bandwidth B 

is used to obtain 

2sr^k) 

log £j = % log (2C1C2)  - \  log a - \  log (ß)  C4-5) 

where 

r    = _±_rMAT a = ,* 
^1     MATJ0  WZ(T)dT 2B 

C- =  2ATB ft  = Ml 
2 P     M 

This result is plotted in Figures 10 and 11 in db using 

typical values of C, = 1/3 (Bartlett window) and C~ = 0.0785 

Equation (2.42) may also be expressed in terms of 

the total data collection time T (not including any process- 

ing time between data segments) by replacing NNs with the 

expected number of samples XT: 

log Ej = \  log (2Cx) - log (a) - \  log (Y)    
C4-6) 
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where C, and a are the same as in (3.6) and 

T 
Y "MAx (4.7) 

The result is plotted in Figures 12 and 13. 

We examine the significance of the error equations 

in examples in Section 4.3 below.  First there are two more 

primary considerations. 

4.2.5 Amplitude and Time Error 
i 

The present analysis has not included the effects 

of amplitude errors due to quantum and electronic noise, 

velocity gradients and particle lag effects, and timing 

errors in both the time-between-samples and the signal 

period counters.  In addition, fast hardware reciprocation 

(period to scaled velocity) conversion has been assumed 

without regard to error.  None of these effects were observed 

in the experimental results reported herein because they 

were negligible or non-existent in the simulation.  However, 

they should be expected in LV measurements of high velocity 

gas flow.  Further discussion is presented in Section 5. 

4.2.6 Computation Time and Memory Considerations 

The theory section does not concern itself with 

the time required to compute the autocovariance estimate. 

The time required to compute the required discrete Fourier 

transform to obtain the spectral estimate is small and is 

of secondary importance.  The critical parameter is the rate 

^ at which lag products must be formed, indexed, and 

accumulated.  This rate parameter determines what form of 

implementation is possible in terms of available software 
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and hardware. 

The factors which determine i|» are the mean data 

rate A and the maximum frequency resolution selection of 

MAT.  The average lag product rate is obtained simply as 

the product of A and the expected number of samples AMAT 

available at any instant in the preceding MAx seconds. 
2 

Adding the rate of u. terms gives 

i|i = X
2
MAT + X (4.8) 

For segmented data implementations, the average number of 

product computations per data segment N^p may be obtained 

from the expected value of the histogram by summation: 

N* ■ N ♦ NXAx - if- (AAT)2 (49) 

The (AAT)2 term is small in (3.4) when the suggested 

condition AAT << 1 is satisfied.  Division of (3.9) by N/A, 

the average time required to obtain one data segment, pro- 

duces equation (3.8) except for the (AAT)2 term which 

results from the loss of available lag products for which 

the time pairs cross a segment boundary. 

The system memory requirements vary considerably 

with implementation.  The minimum possible data memory occurs 

when only the last JMAX samples and occurrance times 

(U., U. _,, ... U._jMA„) are retained in real time processing. 

The quantity JMAX is also useful in segmented data implemen- 

tations.  This number is chosen statistically to insure that 

most of the sample pairs with time differences less than 

MAT will be retained while most of those with excessive 

time differences will not even be tested.  This benefit 

is obtained by processing lag product pairs along diagonals 

of the segment product matrix (U. U. ., U,+, 
u- + i+-j» etc.) 
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and stopping when JMAX is obtained in the second subscript. 

The value of JMAX is obtained by noting that for 

a Poisson sampling process the expected number of samples 

which will occur in time MAT is XMAT, and the variance  of 

this number is also XMAT, for values of JMAX >> 1, the 

Poisson probability law has an envelope which is nearly 

Gaussian and the ratio of the RMS deviation to the mean 

becomes small.  The mathematics are far from exact, but we 

may use the usual 3a law for Gaussian statistics to obtain 

the following condition which assures that very few valid 

product pairs are missed: 

JMAX = *MAT + 3 (XMAT)^ (4.10) 

When XMAT > 9, equation (4.10) gives a value of JMAX less 

than 2XMAT. 

4.3  EXAMPLES 

4.3.1 Problem Specification 

The following example is artificial but illustra- 

tion.  We assume that the spectrum to be measured will be 

bounded from above in the high frequency portion by 

S 
siCf) = TTTTi ' f > £o = 2-s KHz ■ C4.ll) 1 +   V.J-} 

o 
The LV signal process is assumed to provide accurate 

measurements of the velocity samples and time differences with 

a system dead time of 2.5 ysec maximum.  The measurement objec- 

tives are given as: 

a)  determine details of S(f) to 50 KHz 
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b) resolution = 100 Hz 

c) data collection time = 30 seconds 

d) use on-line real-time minicomputer program 

without external high speed memory 

e) provide maximum error at each frequency less 

than 5% of the true spectrum 

f) use mean data rate less than 1000 samples/sec. 

It is impossible for any system to be designed which 

will meet the measurement objective specifications since the 

estimate error is statistical and cannot be specified by a 

maximum value.  The usual spectrum estimation practice of 

specifying confidence interval using chi-squared statistics 

is not appropriate since the random estimate error is not 

a positive random variable.  At the present time only the 

RMS error may be specified. With the change of e) to "pro- 

vide bias error of less than 51 and RMS error of 1%  of 
the true spectrum at each point" the specifications become 

legitimate in form but unattainable.  This may be verified 

by applying the previously provided equations and guidelines. 

The next step is to compromise on the specification. 

In what follows we arbitrarily relax some of the constraints 

to obtain two more realistic examples.  The results are arbi- 

trary design selections which cannot be further optimized 

without priority design objective tradeoff specificationsi 

The difference in the results for the two examples clearly 

illustrates the need for priority assignment. 

4.3.2  Low Frequency, High Resolution 

The specifications are to be applied only to the 

frequency range 100 Hz to 2500 Hz.  The measurement time 
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objective of 30 seconds is to be relaxed if necessary.  It 

is assumed that no strong single-frequency spikes or steep 

steps are present which would provide excessive bias error 

at near-by estimates through the convolution of the spectral 

window function with the true spectrum. 

The first selection of parameters is given in 

Table 1 under "Trial One".  In the first trial all objectives 

are met except for T.  The selection of e, as 23 db is 17 db 

below the 2500 Hz 3 db value with an additional 1.5 db assumed 

for the unknown shape of the low-frequency portion of the 

spectrum and 1.5 db for experimentally indicated difference 

of actual error and theoretical error in the passband.  The 

folding frequency MAf is sufficiently high that the additive 

aliasing error e~ from the 17.5 KHz portion of the assumed 

tail is 4%.. This is adequate even if the predicted 2.5% nega- 

tive error el from random sampling effects does not materialize. 

Unfortunately the required Y and T are too large for consideration. 

Table 1 also presents a second iteration in which 

the resolution requirement is reduced a factor of two by de- 

creasing AT and increasing the folding frequency.  This change 

makes e~ negligible but does not reduce T by a sufficient 

amount.  The second trial also shows the effect of increasing 

the data rate to 7.85 K/sec to give a = 1.  Experiment indicates 

that there would be little or no advantage in increasing X 

beyond the a ■ 1 value for passband error.  Unfortunately, 

the mean lag product rate ip is too high for continuous online 

processing but other alternatives requiring only a digital 

tape recorder are possible as described in Section V. 
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Exampl e 1 Example 2 

Trial One Trial Two 

Af(Hz) 50 100 2000 

R(Hz) 100 200 4000 

M 200 ■ 200 50 

MAf(Hz) . 10K 20K 100K 

A-r(sec) 50y 25y 5v 

A(/sec) IK 7.85K 23.5K 

fQCHz-3db) 2.5K 2.5K 2.5K 

B(Hz) 3.93K 3.93K 3.93K 

a 0.127 1.0 3.00 

*(/sec) UK 316K 138K 

l/ij)(sec) 90y 3.2y 7.24u 

Gl(db) -23 -23 -35.5 

E + e2 4% neglij jible 11% 

e2~ 2.5% neglij »ible -10% 

G2 1.51 neglij gible 11 

Y excessive 26K 900K 

T excessive 130 225 

NN excessive 1020K 5288K 

Table 1. Trial Parameters for Example Problems 

59 



AEDC-TR-74-53 

4.3.3 High Frequency Spectrum Tails 

In order to obtain 2% error at 50 KHz the value 

of e, relative to the constant lowpass level of the assumed 

spectrum S, (f) would be -43 db since S,(f) is -26 db at 

50 KHz. A few trial parameter selections shows this error 

level is very difficult to reach. As a demonstration, 

Example 2 provides a parameter set which gives -35 db for e, 

with no theory compensation deemed necessary.  The value of 

&T = 5ysec is the smallest allowed by the signal processor 

dead time without additional bias errors. We note that in 

this example the lag product rate ^ is less than in the 

previous example because of the considerable loss of resolu- 

tion in the reduction of MAT. The total number of computa- 

tions required is larger, however. The bias errors e~ and 

&2 are the values at 50 KHz and appear to nearly cancel.  The 

theory concerning el has not been verified experimentally 

and the value of e, has not been checked at lower values of 

f. The bias error could therefore be as high as 11% at 50 

KHz which would be of the same order of magnitude as e, (35 db) 
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SECTION V 

DISCUSSION 

5.1  IMPLEMENTATION ALTERNATIVES 

The results show that there are many implementa- 

tion alternatives, depending on the measurement objectives 

and the values of A, the mean data rate, and IJJ, the mean 

lag product rate. 

5.1.1 Batch Processing - Segmented Data 

In many cases where only the principal turbulence 

power distribution is of interest and measurement time is not 

critical, the simplest implementation will be an arrangement 

similar to that which we used in which a minicomputer acts 

as a time buffer and pre-processor between the LV electronics 

and a digital tape recorder. Additional features could be 

incorporated such as segment mean computation and subtraction, 

segment turbulence intensity estimate, and elimination of 

data points lying outside 3 or 4 a deviation (assumed to be 

LV errors).  This mode of operation would allow immediate 

access to first order statistics.  It would also even allow 

for software period-to-velocity inversion and scaling at the 

data rates of 5 to 10 K. 

For higher values of A, such as may be required 

for tail investigations or for multiple channel processing, 

several batch mode alternatives are possible. The fastest 

methods would include either a large core or a high speed 
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disc.  The inexpensive method would be to simply retain 

the tape drive, use slightly modified pre-processing and 

transfer programs, but let the computer wait between seg- 

ments the additional time required to write a segment on 

tape.  Possible complications due to any low frequency 

sampling effect are not expected to be serious due to the 

random length of time required for acquiring a segment. 

With slightly more waiting time these same arguments apply 

to replacement of the tape unit with a telephone connec- 

tion to a large time shared machine. 

The batch processing mode is recommended at the 

present time not only for reasons of cost and simplicity 

but also because enough unknowns still remain to make saving 

the data for future reevaluation worthwhile if the test is 

an important one.  For example, after seeing the results the 

investigator' may wish to change AT a week later and reprocess 

the data. 

5.1.2 On Line Processing - Segmented Data 

'•• 
This alternative is similar to the Batch approach. 

The only difference is that after a segment is read, the 

processing continues until the lag products and additions 

to the histogram have been completed before another segment 

is read.  At low values of X and IJJ, this approach could be 

made nearly real-time if two memory segments are used with 

priority interrupt for reading and writing in between com- 

putations.  The differences between this approach and Batch 

processing would be most apparent at higher data rates where 

ty is increased by a A2 factor, particularly in cases where 

multiple channels of data would be processed.  In any event, 

3 
This is currently being done at the Lockheed Georgia 

Company - 
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the memory requirements would be greater because of the 

additional programming. Since the output data rate 

would be quite low in this approach, the division of the 

SUM matrix by the histogram, the multiplication by the 

window function, and the transform operations could all 

be done remotely on a time-shared computer. 

5.1.3 On Line Processing - Continuous 

This approach is feasible for sufficiently low 

lag product rates.  It could even be used in Batch processing 

if no data is skipped in the recording process because it has 

the advantage of requiring less data memory in core.  The 

data memory is indexed in a circular manner with the most 

recent sample replacing the oldest. The length of the 

memory array need be no longer than JMAX as described in 

Section 4.2.6.  Unfortunately, in most cases the achievable 

i|> rate would be inadequate unless long times T are used. 

Another difference in this approach is that a 

preestimate of the mean would be required for subtraction 

from each sample as it occurs.  This has the advantage of 

not removing low frequency components in the first frequency 

estimate since the same constant is subtracted from all data. 

It has the disadvantage of leaving a small spike of unknown 

amplitude at zero frequency due to error in the mean 

estimate used in the subtraction. 

5.1.4 Hardware 

This is a class of alternatives based on the 

second formulation of the autocovariance estimate given by 
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equation (2.25).  In this class of alternatives a buffer 

containing the latest sample value would be periodically 

read with reset to zero. The data would then consist of 

many zeros with sample values sparsely distributed.  The 

result would be very inefficient with memory utilization. 
4 

The alternate formulation also has differences in the 

required error analysis as previously noted.  The approach 

is designated "hardware" since it is conceivable that two 

commercial correlators could be modified to produce the 

autocorrelation of the sampled data sequence and the indi- 

cator sequence separately for division and Fourier process- 

ing on a time shared computer.  The general approach could 

also.be implemented as software, and has the advantage that 

time differences need not be computed.  The probable dis- 

advantages include poorer error performance, the need for 

hardware period-to-velocity conversion, and the lack of 

analysis at the present time of other factors which make 

recording the data worthwhile. 

5.2  RELATION BETWEEN THEORY AND EXPERIMENT 

The experimental results of Section III show 

excellent agreement with the theory of Section II with 

regard to spectral estimate varability error prediction 

_ 

This formulation is attributed to an interpretation 
by P. Scott, General Electric Co., of the results from 
this contract presented by Mayo, Shay, and Riter at the 
Oklahoma State University Workshop on "Theory and Applica- 
tion of the Laser Doppler Anemometer", June 11. 1973. 
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in the tail region. That this agreement persists at values 

of A/2B > 1 is somewhat surprising in view of the violation 

of the derivation assumptions of low data rate. 

The experimental results also show the theory is 

inadequate for error prediction in the spectrum passband at 

rates A/2B > 1.  In this case, the experiments substantiate 

intuitive reasoning based on information theory relevant to 

periodic sampling:  sampling at rates in excess of A/2B is 

redundant; the only way to increase the information transfer 

concerning the random process being sampled is to increase T. 

Continuation of this intuitive logic shows that for a fixed 

number of samples, increasing X  above 2B is detrimental 

becauses it reduces  T.  The quantitative experimental results 

of Figure 5 are inadquate to prove that e, actually exhibits 

a minimum at X/2B = 1, but the possibility is certainly not 

eliminated.  This possibility is qualitatively substanti- 

ated by the sequence of Figure 2 where the values of A/2B 

attained were greater. 

We conclude from our results that spectrum esti- 

mation with mean sample rates much less than twice the highest 

frequency are not only possible but also desirable when we 

are concerned with the primary turbulence power distribution. 

(The quantity B is generally much less than the highest sig- 

nal frequency). On the other hand, attainment of usably low 

estimate error in the spectrum tails will generally require 

many compromises in terms of measurement time, resolution, 

the use of attainable but relatively high data rates, and 

possibly in the use of expensive high speed memory. 
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S.3  COMMENTS ON FUTURE RESEARCH 

This investigation has raised many questions which 

require further work both theoretically and experimentally. 

We include here brief descriptions of a few of these ques- 

tions with intuitive comments on their implications. 

5.3.1  Sample Amplitude Error 

The velocity samples U- will contain "small" errors 

from sources which include photon and electronic noise, 

threshold period measurement error, ± 1 clock count error, 

and inversion round-off error.  In addition, there will be 

occasional "large" errors when a noise burst succeeds in 

satisfying the check logic of the LV processor.  Finally, 

there is a different type of effect due to particle lag, 

velocity gradients, and finite measurement volume size. 

As a first approximation, we may assume that the 

"small errors" collectively form a zero-mean wide-band random 
noise process, n(t) randomly sampled at instants t-.  If n(t) 

is independent of the velocity U(t) then the actual signal 

s(t) = n(t) + U(t) 

has true autocovariance given by 

Cs(x) - ceo + cn «CT] 

where C is a constant and 6(T) is the unit impulse function. 

The resulting true spectrum is 

Ss(f) = S(f) + cn 
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i.e., the value of C 'is the white noise level added by the* 

error process n(t). 

The bias error effect of n(t) in the estimate C(k) 

will be confined largely to C(0).  This means that the noise 

will appear in the measurement process as turbulence intensity 

which is not actually present. We observe, however, that with 

the simplified model assumed for the noise n(t) the value of 

the white level C may be measured  independently through spec- 
trum estimation by using the fact that the true spectrum must 

go to zero at the higher frequencies.  Unfortunately in the 

widest bandwidth estimation problems where the ± 1 clock errors 

are most likely to be serious, the noise spectrum is least 

likely to be white.  The immediate result will probably be a 

small signal-dependent broad-band spectral bias level which 

will add further difficulties to the tail estimation prob- 

lem. 

The second class of errors, "large errors", occur 

relatively seldomly, but the much larger magnitude implies 

that these errors could also produce- a non-negligible addi- 

tive white spectrum.  Partial remedies include the data- 

check circuits and preprocessing steps of estimation of a 

and throwing out excessively large or small estimates. 

These practices are presently being incorporated in LV ' 

processors and will aid significantly in the spectrum esti- 

mation problem. 

The third type of error is associated with the 

minor particle lag and velocity gradient effects.  These are 

the most fundamental in that they will be present even if 

the LV system is error free.  It is common to be worried 

about the nontrivial problem of the low-pass effect of par- 

ticle inertia on spectrum estimation.  We have left that one 

* Further analysis has revealed that this white 
level is also proportional to AT.  See "A Discussion of 
Limitations and Extensions of Power Spectrum Estimation 
with Burst Counter LDV Systems.", W. T. Mayo, Jr., to 
be published in the Proceedings of the 1974 Purdue LDV 
Workshop. 
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for the particle dynamicists. A more subtle effect.of 

minor particle lag is the fact that two particles entering 

the measurement volume at different velocities and closely 

spaced in time will appear spectrally as part of a wide- 

band random process.  The same type of effect will result 

from velocity gradients when particles enter opposite sides 

of the probe volume closely in time. These effects will 

not only increase the apparent turbulence intensity but 

also contribute difficult-to-characterize high-frequency 

spectral error.  They will be most insidious in the measure- 

ment of nearly steady flows where the actual turbulence 

levels are quite, low. 

A related effect will accompany high turbulence 

and small turbulence scale: while the finite measurement 

volume size acts as an averager or low-pass filter, it 

also will artificially create high frequency spectra due 

to random timing effects.  Thus some of the difficulties 

discussed by W. George [29] under the assumptions of high 

density seeding and Gaussian statistics also exist in a 

different form in the single-particle LV systems. 

5.3.2 Cross-Correlations and Cross-Spectra 

We wish to point out here that there is no funda- 

mental reason for not extending the concepts we have 

developed to two-channel cross-correlations and cross- 

spectra and that this is, in fact, being done at the Lockheed- 

Georgia Company,   In this regard, however, we note that 
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there are a few subtleties in measuring cross-correlations 

between two separate probe locations which are different 

than simply measuring two components at the same point; and 

further there is a difference in a two component measurement 

with 45° crossed fringes and a one-component measurement with 

normal fringes. 

First, the matter is straight-forward for two 

orthogonal measurements at the same point if it is required 

that both channels produce "good data" simultaneously and 

the same time interval measurement applies to both.  The only 

problem would seem to be the tolerances on the "simultaneous" 

requirement.  However, we note that this requirement may bias 

the selection of "good data" toward direction vectors along 

the bisector of the orthogonal component directions.  This 

results when Bragg-cell systems are not used because off- 

axis direction vectors produce a higher probability of "good 

data" in one channel than in the other. 

If simultaneity is not required, then the algorithms 

may become more complex as they will in separate-point mea- 

surements where each channel has a partially correlated or 

independent random sampling process.  The correlation, or 

lack of it, between the sampling processes is irrelevant if 

they are jointly independent of the velocity process.  The 

algorithms for time difference computations are more 

complicated because both backward and forward time differ- 

ences must be computed. 

Finally we note that with space correlations involv- 

ing zero delay in time the concept of simultaneity must once 
more be considered.  Finite tolerances are required to obtain 

any data points, and the joint data rate will be similar to 
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that of one element of the autocovariance histogram: 

generally much lower than the individual channel data rate. 

This difficulty cannot be overcome by indiscriminately 

opening up the simultaneity tolerance.  It must be similar 

to the restrictions on AT in the autocovariance estima- 

tion to prevent the averaging to zero of small scale compon- 

ents. 

5.3.3 Correlations Between Mean Sample Rate and the Velocity 

Process. 

In informal monthly progress reports, we derived 

the fact that if scatterers have a uniform Poisson random 

distribution in volume, then the expectation A(t) of the 

sampling process is not constant in time.  Instead, it is 

proportional to velocity and the estimate of the mean 

produced by equation C2.13) is biased due to the correla- 

tion between the sampling process and the velocity process. 

This work is not reproduced, because McClaughlin and Tieder- 

man have since reported similar conclusions, with extension 

of the same concepts to the turbulence intensity estimate, 

in detail [30].  We note that subsequently we pointed out 

that the bias of the mean estimate vanishes in first order 

approximation when the average of the burst period measure- 

ments is computed before inversion and scaling to velocity. 

Barnett and Bentley [31] have extended this discussion 

which has now become a topic of current debate. 

It is not unreasonable to suspect that correla- 

tion between velocity fluctuations and mean data rate will also 
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adversely affect the spectrum estimation problem under high 

turbulence intensity conditions. Unfortunately we are now 

dealing with non-stationary statistics for which the use of 

interchangable time and statistical averages is not appro- 

priate. A fallacy underlying the whole discussion, however, 

is the lack of experimental evidence concerning the nature 

of the correlations involved. None of the theory mentioned 

thus far even remotely relates to the interpretation .of jet 

mixing data, for example, in which the mean data rate depends 

on which air source each small volume increment originated in. 

Considerably more definitive work is needed in this area. 
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SECTION VI 

SUMMARY AND CONCLUSIONS 

The objectives of this research have been accom- 

plished.  It has been experimentally demonstrated that, 

with randomly timed sampled data, power spectra may be 

estimated regardless of the average data rate.  This 

means that, in principle, turbulence power spectrum mea- 

surements are possible with unseeded air at very low data 

rates with real-time on line minicomputer data processing, 

without the use of large high speed memory.  The algorithms 

for accomplishing this have been identified. 

The principal difficulty lies in the amount of 

data collection time required to determine the low level 

spectral tails with practical error tolerances.  Theory has 

been developed, with excellent agreement with experiment, 

for prediction of the spectrum estimate error in terms of 

the algorithm and LV system-flow parameters. The results 

indicate that the optimum mean data rate, for efficient 

estimation of the major distribution of turbulence power, 

is twice the equivalent power bandwidth of the spectrum; 

(not twice the "highest" frequency). However, the attainment 

of practical error levels in spectrum tail estimation may 

impose very stringent requirements including low resolution 

and excessively long data collection and processing time. 

For estimation of the spectrum tail, the most significant 

error and time reduction is accomplished by increase of 

the mean data rate to values exceeding twice the equivalent 

power bandwidth with no apparent limit.  An example calculation 
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in which the spectrum tail is down 26 db at 50 KHz indicates 

that a mean data rate of 23.5 K/sec may provide practical 

measurement times and error levels.  In the same example, 

real-time continuous minicomputer processing would not be 

feasible, but the use of a high-speed disc could be avoided 

through recording the data in segments with gaps. 

A preliminary design guideline is presented and 

alternate implementations with differing tradeoffs in cost 

and time are discussed. At the present time, the recommended 

implementation would use a minicomputer as a buffer and pre- 

processor for recording data segments on digital tape or for 

transmission to a large time-shared computer.  Later, when 

the remaining unknowns which have been identified have been 

more fully explored, more efficient implementations which 

destroy the data as it is obtained may be appropriate. 
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APPENDIX I 

TWO SPECTRAL ESTIMATORS BASED 

ON THE PERIODOGRAM APPROACH 

1.1 INTRODUCTION 

One general approach to the estimation of broad- 

band spectra from random samples is to approximate the 

periodogram, where the raw periodogram is defined as 

ST(üJ)=T |/+   u(t) exp(-jwt)dt| 
1      -T/2 (1-1) 

with u(t) assumed to be a zero mean random process and T 

is the record length. The periodogram estimate is made to 

converge by averaging many estimates from short segments of 

data [27]. 

1.2 ESTIMATOR 1 

The most straightforward approach is to use a 

rectangular approximation of the raw periodogram integral, 

equation (1.1). After some manipulation, the result is 

1   9 
>lO0=:f[(I  u±  cosCwt^Ai) 

N (1-2) 
+   CI u.  sinCwt^A^^] 
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where     A. = t. - t^_^ 

T " *N " *0 

1.3  ESTIMATOR 2 

Another approach is to first use the periodo- 

gram integral to estimate the spectrum of the process 

Z2(
t) = u(*0 Zi(t) = I  UjL 6(t-ti) 

1=-oo 

■:'■';' (i-3) 
+ 00 

where Z± (t) = J  öft-t^. 
l=-oo 

It is assumed Z..(t) is a Poisson impulse process with 

sample rate A.  With this estimate, it is possible to 

compute an estimate of S(w), the power spectrum of U(t), 

because it is known that 

Moo) - A2 S(w) + Xa2 (1-4) 

where S (u) is the power spectrum of Z2(t) and a
2 is the 

variance of U(t).  The periodogram estimate of S (<u) is 

1 T 
ST(w)   - -   |/   Z,(t)   exp(-jwt)dt| 

1     o 
2 

(1-5) 

» -II  ui expC-jwt^l 

i-1 

2 
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and the estimate of S(u) is 

S2Cu>) » \l  SrCa>) - — (1-6) 

For real computation, it is necessary to use estimates of 

A and a2 which are 

n 

A     = 
N 
T 

a2 = 1 
N 

V       2 

i=l 
CI*7) 

Substitution of these estimates and some algebra leads to 

T   N o  N 
S2^^ = N2 ^ ui cos wti) +(ü ui  sin »t.)Z w  i=l i-1        x 

-I u|] 
i=l 

Ci-^sj 

1.4  EXPERIMENTAL COMPARISON 

The two estimators were programmed and debugged 

using both uniformly and randomly sampled data produced by 

the electronic simulation facility. To compare the esti- 

mators when used with the same data, a zero mean bandpass 

process was randomly sampled at X  = 166 samples/sec.  The 
same 20 records of this data were then processed with 

Estimators 1 and 2 and with the autocovariance estimator 

given by equation 2.33 of the text (noted as Estimator 3 

in Figure 1-3). The resulting estimates are shown in 

Figures 1-1, 1-2, and 1-3 where the asterisks represent 
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measurements of the true spectrum as made with a wave 

analyzer. 

/>;'..Figure.I-4 is the result of reducing M by a 

factor o£-..4.";with a decrease in resolution (which was four 

times more than required in Figure 1-3) to Af = 1/(2MAT) 

and corresponding reduction of estimate variability. 

The result with Estimator 1 was not satisfactory, 

while the results with Estimators 2 and 3 were comparable. 

The significant differences were that Estimator 2 required 

nearly twice as much computer time as Estimator 3 and 

depended heavily on the stationarity assumption of the 

sampling process for the prediction of the white level. 
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APPENDIX II 

DERIVATIONS OF ESTIMATOR ERRORS 

In this appendix we provide the details concern- 

ing the random sampling bias error of the autocovariance 

function, the histogram effects, and the autocovariance 

and spectrum estimator variability errors. 

II.1 RANDOM SAMPLING BIAS ERROR 

A 

Equation (2.24). for C(0) is unbiased.  Equation 

(2.22) for C(k) , k?*0, may be expressed as 

where C is a u.u. product for which 
m      l j  c       ■ 

T.-IVtjl CII-2) 

satisfies the constraint of equation (2.23). Using bracket 

notation for expectation and using conditional expectation, 

we obtain 

<£«)   " (m)"JP -<Cml V H<4   )V  R(k) CII-SJ 
But the expectation of C depends only on the velocity process 

U(t) and the time difference T . The result is m 
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Taking the expectation with respect to T inside the 

summation gives 

<cv> *<mr m=i LCCT) P*CT) dT> He« CII*S] 

where PUCT) is the conditional probability density for the 

value of T , given that T  lies in the +AT/2 interval about in ° m — 
kAx.  Since the integral does not depend on H(k), the summa- 

tion produces H(k) identical terms and the result is as 

given in (2.26). 

The function Pj.(*0 may be obtained as 

pN("0 
PvCx) = —S  

ITAT  +  AT/9 
CII-6) 

kAT  + 
/ PN 

AT/2" 
(T)   dT 

kAT   - AT/2 

where PNCO is the conditional probability density function 

of T given that N consecutive samples were obtained.  The m r 

time differences T may be divided into N-l exclusive sets m 
according to the order of the time difference:  there are N-l 

first differences, t- - t. ,; N-2 second differences, t. - t. ,. 

...; and one N-l difference, t ~t,.  The total set of time 

differences is the set union of N-l mutually exclusive sets. 

We may therefore express the density PN(
T) as a probability 

weighted sum over the respective densities for first, second, 

third, etc., time differences.  The required functions f^Cr) 

are known for the case of stationary Poisson sampling.* The 

result is 
N-l 

PN(X) » I Pi f^O 
1=1 (.11-7) 

*Modifications of the Erlang functions.  See page 558 
of Papoulis [21]. 
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where P. = probability of ith order difference and 

f.fT, . JU-ii!    exp t-*T]    T>0 cn-8) 
fX1  T = 

T < 0 

and where P. can be obtained by dividing the number of 

ith order differences (N-l) by the total number of dif- 

ferences 

N"1       M2 M I   (N_i) = N_lN_ 

with the result 

p  =  2(N-i) 
i   N2.N (11-10) 

Finally we see that an exact expression for 

PVCT) may be obtained as a finite sum of integrals in- 

volving the ^(T) functions if (11-10), (II-8), and (II-7) 

are substituted in (II-6) . The result is a complicated 

expression which could be approximately evaluated by power 

series or numerical integration; but-this-is not yet been 

undertaken. 

II.2 Histogram HCk) 

Using the same type of derivation as in the pre- 

vious section we would obtain 

kAx + AT/2 

kAx - AT/2 
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This expression has not been evaluated and compared with 

experiment. 

Using the approximate alternate formulation as 

in equations (2.25) with the conditions for (2.7), we ob- 

tain the result given in equation (2.27) after noting that 

by replacing N1 = T/AT -  N/(XAT).  The extent of validity 

of the approximate result is not known, but good agreement 

with experiment was obtained in the experiments performed. 

II.3  VARIANCE OF THE AUTOCOVARIANCE ESTIMATE 

In addition to the assumptions of Section 2.1.1 

several more assumptions are used. 

a) AT is small enough to prevent bias error 

b) RMS deviation of H(k) is small (large N) 

c) H(k)  = constant, k < M (large N) 

d) individual product pairs are independent events 

e) the true mean is known (U - U) 

Assumption d) is not strictly ever valid; however, for suf- 

ficiently low values of A there are negligibly few instances 

in which two product pairs with the same lag value occur close 

enough together in time to be appreciably correlated.  It was 

initially assumed that A/2B << 1 would be required to obtain 

d). The question has not been resolved analytically, but the 

following results appear to be valid experimentally for values 

of \  up to 2B (and even higher for the stopband frequency com- 

ponents.) 
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Under our assumptions C(k) is unbiased so that 

<1:TCk)> = <'cCk) - C(k)> = 0 CII'13) 

and the mean square error is 

H(k) H(k) CII-14) >»  1 HJ.KJ M(.KJV >.v 

H(k) 

with C and C each being product pairs, as in (II-l), which 

are independent of H(k) . Expanding one term of the summation 

we have H(k) terms where m = n: 

<u2(t) u2(t ♦ xm) |TM>#- a- + 2 c2(Tm) CII.1S] 

2 
and H (k) - H(k) terms m / n which with the assumed indepen- 

dence gives 

^u(t) u(t+Tm) u(t') u(f+Tn)^ 

=  <$(t) U(t+Tm)>  <u(t») U(t'+Tn)> (11-16) 

nr  *■ n 

Assumption a) allows replacement of T , x by kAx 

with negligible effect so that (11-14) becomes 

ack=(iFW {H(k) [a" + 2c2(k)l + 

[H2(k) - H(k)] C2(k)} )H(k) - C2(k) 

•<HW)H(k) <°"*™ 

(11-17) 
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j 

We observe that equation (2.31) results if the RMS deviation 

of H(k) is small so that 

W/=OT en-is) 

II.4 VARIANCE OF THE SPECTRAL ESTIMATE 

With the additional assumption that MAT is large 

enough so that negligible smoothing bias error exists, the 

error e£(i) in the spectral estimate at iAf is zero mean. 

The mean square error is obtained by inserting equation (11.13) 

in equation (11-33) squaring the result, expanding as a double 

sum as 

M M 
a*(i)   =  4AT*J  I=O W,W   w,(n) ^(m)   ^ (n) ^ cos [_inm]   ^^ 

. cos   [ig^l 

where 

w'(k)   = w(k),   k?«0;  w'(k)   =  1/2,   k=0 (11-20) 

But since S(I) is unbiased and  e (m)e (n)  =0 for m^n 

because of the assumed independence the result becomes 

o|(i) = 2AT2 I    W2(k)  a*£k) (1+ cos [^]) 
k=0 (II-21) 

2 2 
neglecting the fact that w'*(0) - 1/4 and that w (0) ■ 1, 
equation (2.41) results from inserting equation (2.27) into 

equation (2.31), with (2.28) satisfied, then using equation 

(2.31) in (11.21). 

90 



AEDC-TR-74-53 

APPENDIX III 

EXPERIMENTAL FACILITIES AND DATA PROCESSING 

III.l  ELECTRONIC SIMULATION FACILITY 

111.1.1 Introduction 

The electronic simulation facility used the 

random emissions from a radioactive source to control 

an analog-to-digtal converter (ADC) and a special purpose 

time-interval counter. The ADC produced sample magnitudes 

and the time-interval counter counted the number of clock 

pulses between samples to indicate the time between conse- 

cutive samples.  The digital data from the ADC and the 

time-interval counter was read by a minicomputer and stored 

on magnetic tape for off-line processing.  The system block 

diagram in Figure III-l shows the general arrangement of 

equipment. Each component is discussed below. 

111.1.2 Radioactive Source and Proportional Counter 

The radioactive source was a laboratory sample 

of carbon 14 of .001 uc activity. The gas proportional 

counter detected the emission of alpha and beta particles 

and generated a -1.5 v pulse with duration 1 us for each 

detection event. The dead time between events was of the 

order of a few microseconds.  The number of events per unit 

time was assumed to have a Poisson distribution with mean 

rate A.  The mean rate was controlled by covering the 
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sample with various thicknesses of aluminum foil, while 

maintaining a constant voltage on the proportional counter 

electrode of approximately 2000 volts.  The mean rate was 

stable under these conditions. 

111.1.3 Control Logic and Counter 

This component contained three sections: 

1) circuitry to interface the output pulse of 

the gas proportional counter to TTL digital logic, 

2) TTL logic to generate control pulses for the 

ADC and the time-interval counter, 

3) a time-interval counter consisting of standard 

TTL packages and a Schmitt trigger clock to drive the counter, 

The time-interval counter was 16 bits (15 magni- 

tude bits and a sign bit) . The sign bit was included solely 

for convenience in interfacing with Hewlett-Packard logic. 

The time resolution of the counter was approximately 2 us 

(the period of the clock) and the upper range was (2 -1) x 

2 ys = .066 seconds. 

111.1.4 Noise Generator and Filter 

The noise generator provided a zero mean Gaussian 

signal which was approximately "white" over the range 5 Hz 

to 20 KHz.  The filter was an adjustable fourth order 

Butterworth active filter that could be used in a lowpass, 

bandpass or highpass mode. The 3 db cut-off frequencies 

were variable from 10 Hz to 1.1 MHz. The roll-off rate was 

24 db/octave.  In the lowpass mode, experimental measurements 
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with a wave analyzer showed that the response of the 

filter was not flat below approximately 20 Hz.  This was 

verified in the spectral estimates.  The wave analyzer 

measurements also showed that the cutoff frequencies indi- 

cated by the filter dial settings were low by 5%. Figure 

III-2 shows a plot of wave analyzer data (dashed line) and 

a plot of the theoretical Butterworth curve (solid line) 

for comparison. 

111.1.5 DC Source and Summer 

The DC Source was simply a DC power supply.  The 

DC level was added to the output of the filter to provide 

a non-zero mean signal.  To perform the addition, a summer 

was built with a general-purpose operational amplifier. 

The summer provided a gain of approximately 100.  Adjust- 

ment of the DC power supply and the output level of the 

noise generator provided a nonzero mean signal, with variable 

turbulence intensity and known spectrum, in the input range 

of the ADC. 

111.1.6 Analog to Digital Converter 

The ADC had an input range of ± 5 volts and the 

digital output consisted of nine magnitude bits and a sign 

bit representing a decimal range of -511 to +512.  Negative 

magnitudes were in two's complement form.  The ADC required 

a 12 ps trigger pulse which was generated by the control logic 

described earlier. 

The minimum sampling interval was approximately 

60 us, consisting of 50 us dead time for the ADC (maximum) 
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Figure III-2.  Wave Analyzer Data and Analytical 
Butterworth Spectra. 
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and a 10 ys allowance for execution time of computer 

instructions.  Randomly spaced samples occurring at smaller 

time intervals were ignored. 

III.1.7 Minicomputer 

The data was collected with a Hewlett-Packard 

2114B minicomputer (8K memory) and recorded on a Hewlett- 

Packard 7970B Digital Tape Unit in integer format in data 

segments consisting of 500 words (250 samples) per segment. 

An existing program (ADCMT) written at Texas" A§M was modi- 

fied for use with the ADC and the time interval counter. 

III.1.8  Instrumentation 

A laboratory time-interval counter was used to 

count the number of random pulses in a given interval to 

determine the average sample rate.  A laboratory wave 

analyzer was used to measure the distribution of power vs 

frequency at the output of the analog filter.  The magni- 

tude of the time-varying component was measured with a 

true rms voltmeter. 

III.2  DATA PROCESSING 

III.2.1 Data Files 

The data for each experimental run, recorded on 

a Hewlett-Packard Minicomputer system, was taken to an 

IBM 360/65 facility (with IBM 3420 tape drives) for transfer 
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to a Master Data Tape. The systems were compatible for 

integer data, except for word length (16 bits/word for 

Hewlett-Packard; 32 bits/word for IBM 360/65).  Each 

experimental run was assigned a separate file on the 

Master Data Tape. 

III.2.2 Software 

Programs were written in Fortran IV to batch 

process the experimental data in data segments of 500 

words/segment, where 1 word ■ 16 bits. The autocovariance 

estimator described in 2.3.1, eq. (2.22), was implemented 

as a subroutine by keeping running accumulations in the 

arrays H(k) and SUM(k) until a predetermined number of 

data segments had been processed. The estimate C(k) was 

then formed, followed by the spectral estimate S(iAf) 

computed from eq. (2.33).  The spectral estimation sub- 

routine used is reproduced on the following pages. 

Other subroutines were written to read data 

segments from the Master Data Tape, to compute the sample 

time of each sample assuming t = 0 at the beginning of 

each data segment, to compute segment mean, and to plot 

the various arrays and estimates on a line printer. 

Execution times of the order to 45 sec were encountered 

when processing 20 data segments with this package, but 

this could be decreased considerably by reprogramming 

with use of integer arithmetic operations. 
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III.2.3.  Typical Output 

Figure III-3, a and b, illustrate the difference 

between a linear plot and a'logarithmic plot.  Because of 

the symmetrical type of error produced by the estimator 

of Section 2.4, (not positive definite) linear plot routines 

have been used during this study.  The two figures illus- 

trate the difference in appearance for normalized RMS error 

level of -17 db. 
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Figure   III-3.     Linear and Logarithmic Plots  of a Spectrum 
Estimate. 
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SUBROUTINE  RASPEC   (NUM,NUMltHtDELTAUjAMPL,TtSUM,HtC,PStNF, ° 
"lKLMfKGM,JMAX, STEP» H 

C MODEL  5_     REENTRANT   MOD  5_ JANUARY  28t1974 ? 
C     "'   "SPECTRUM   ESTIMATION"     " "  f 
C            FROM  RANDO_ML_Y   SAMPL_EO  RANDOM   PROCESS S 
C       NUM-   NUMBER   OF   DATA  WORDS   IN "EACH "RECORD ' 

_C NUM1   -  NUM   +   1 ;  
C M  -   NUMBER  OF   DELTA  TAU   SLOTS   USEO   IN   HISTOGRAM 
C _       DELTAU  -_DELTA   TAU  -  TIMEJ.ENGTH  OF   EACH   SLOT 
C™ AHPL   -   INPUT   DATA'AMPLITUDE   MATRIX 
C       _      (RECORD  MEAN  ALREAOY   SUBTRACTED    _ __ 
C" ~T  _   TIME   MATRIX-  ELAPSED  TIME  CORRESPONDING   TO   EACH   AMPLCI) 

_C SUM -   MATRIX   OF   SUBTOTALS  OF   AMPLITUOES   CORRESPONDING  TO   EACH 
C HISTOGRAM   SLOT 
C . H -  MATRIX  OF   SUBTOTAL   NUMBER  OF   ELEMENTS   IN   EACH   SLOT 

~C" CORRESPONDS  TO  SUM  MATRIX  
1-1 c_  _ c_ "    _AUTOCOVARIANCE   MATRIX 
§ "C  Pr-"POWER "SPECT RUM  MATRix" OFyCENGTH^IE^-«^:«^*. 

_C NF   -   NUMBER  OF   FREQUENCIES  TXT*BE   EVACUATED   FOR ftJDWER   SPECTRUM 
C  * KLM -   NUMBER   OF   LAGS" LESS   THAN  OF   EQUAL   TO  M'>"     " r^~ 
c       _ KG_M T_ NUMBER   OF   LAGS   GREA+ER   THÄN.M 

"""""" CONTINUE  "  '"" ""Cs '■?''&£'■  t 
C    _THE_FULL SUBROUTINE MUST BEvfcAtU'EffflFIR-ST TO. INFTI AL IZE ALL STORAGE 
C    "LOCATIONS.  CONTROL IS RETURNED* IMMEDIATELY .,' i --—«--^: ,;;--•: * 
C     PSTEP2 IS CALLED EACH TIME^FOR -SOME - NUMBEIVOF RECORDS:' OF., INPUT 

" C     CONTROL IS RETURNED AFTER THE, HISTOGRAM AND SUM/MATRIX,'ARE. XOM- 
C     PLETED FOR 'THAT RECORD    •* -tj * \'r   ,    -^    % * y       «\.\ ^      ^ 
C PSTEP3 "IS ""CALLED TO CREATE-THTC*MATRIX FROMI THE ACCUMULATED SUM 
C AND_ H MATRIXE_S_.  RETURNS C-  f. >■ •*. -      ■'  _; . >'-' '■ _.JL ■ 
C PSTEP4 MULTIPLIES. C BY "THE"W RÄMP-7 TTHE W"/RAMP ^STARTS' AT; I AND " 
C FALLS TO 0 IN IH STEPS AND REMAINS. 0 FOR THE RESf OF TH-'C-_MAT_RIJ( 
C PSTEP5 CREATES THE POWER SPECTRUM ESTIMATE FOR,NF FREQUENCIES 
C_ _  _JSTART - STARTING _FREOUENCY DIVIDED BY_2.5   __. "  ""' " 
C STEP "-"MULTIPLE OF 2.5 TO BE STEP IN FREQUENCY,, ... 
C POWER SPECTRUM IS RETURNED AND SUBROUTINE IS TERMINATED 



IN'EGER JUAXtH(M)fCOtSTEP 
 PEAL SUM(M),C(M),PS<NF).TiNUHl).AMPL(NUM) 
c . —— 
C ^lT^AkIZACONSTAJ^^_AND_M^RIC_ES 

_      SUMO=0^  
HO=O  
KLM=0 
KGM=0 
00   5   1=1,M 
SUM("I)"=Ö"; 

5   HUI = 0 
RETURN 

 ENTRY   PSTEP2   (NUW»AHPLfftSUMtHtH,NUWltKLW>KGMtJWAX) 
T  
C     PRODUCE SUM AND H ARRAYS» KEEPING TRACK OF KLM ANO KGM 

o DO   10   I=1»NUM 
10   5!UV0=SUM0+AMPL(I )*AMPL(I> 
 H0=NUM+H0  

DO   20   J=ltJHAX 
NP=NUM-J ___         '  
DO   30   1=1,NP 
11=1+1 
DEITA=T<I1+J>-Ttli) 
K=DELTA*tl./DELTAU>+1.5  
IF(K.GT.M)G0  TO   25 

29 H(K)=H(K)+1 
^SlJHrK)="SÜM<KlTA"MT>LTT+3r*Al?PlTn 
KLM=KLM+1 
GTTT0~30 > 

25  KGM=KGM+1 g 
30 CONTINUE  9 
20  CONTINUE 3 

Sl)HIU=SÜWÖ 5« 
H(1)=H0 g Id 



RETURN £ 
ENTRY PSTEP3 (SUM,H,CtM) ° 

C  "       "" H 
C     PRODUCE AUTOCOVARIANCE MATRIX " 
c 5 

MMl=M-l w 
DO 40 K=2.MM1 
IF(H(K).NE.0> GO TO 40 

c  
C IF   H(K)=0,   THEN   STRAIGHT   LJNE   INTERPOLATE   BETWEEN   H(K-ll   ANO   HtK*l) 
C 

SUM(K)=SUM(K-1)+SUM(K+1) 
H(K)=H(K-1)*H(K+1) 

40   CONTINUE _ 
 " TFTHTMI .WioT' GO TO" 46 
C 
C IF   H(M)=0,   THEN  H(M)=H(M-1) 
C 

§ SUM<M)=SUM(M-1) 
HIM)=H(M-1) 

■*" wo tr*cr "R=I ; H 
50   C(Kl=SUM(K)/H(K) 

RETURN "" 
ENTRY PSTEP4 (C,IH,M) 

C 
C     PRODUCE W RAMP (BARTLETT WINDOW) AND MULTIPLY C MATRIX BY THIS 
C     WEIGHTING FUNCTION 
C 

DO 60 <=1.IH 
W=1.-FL0AT(K-1)/FLOAT«IH) 

60 C(K)=W*C(K) 
IH1=IH+1 
DO 61 k=IHl,M 

61 C(K)=0. 
RETURN 
ENTRY PSTEP5 (NF,ISTART,STEP,PSJ 



C ESTIMATE   POWER   SPECTRUM. FOR_DESIRED_FREj)UE_NC IES 
C 

DO   TO   J=liNF 
I=IST4RT+STEP*(J-1) 
SUMT=0. 

g DO   80   K=2fM 
w 80   SUMT = SUMT+CJK)*CgSC3.l4l59*I*FLCAT(K-l)/FL0AT<M)) 

SÜMT='SUMf"*SÜMf*Cll")     * 
70   PS(J)=OtLTAU*SUMT 

RETURN 
END 
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