
Best
Available

Copy

.,

r-1 '•i*- ■■ •■- ■

»mmmmtmmm'i

AD-784 882

DYNAMIC ANALYSIS OF EXECUTION:
POSSIBILITIES. TECHNIQUES AND PROBLEMS

Birol Omer Aygun

I
Carnegic-Mcllon University

V

Prepared for:

Defense Advanced Research Projects Agency
Air Force Office of Scientific Research

September x973

DISTRIBUTED BY:

FNPi L^in
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

■ - ■--■ t-.-^M^M^^M --■- -■

-—-^———^—. ———
IT»' "S

«tcuSTry^i.. ^ . •"■ jjiEEiSELEEZsis: £ ^ J) - Tjjr ^^^
 ^ jgjjgjj] ^^'^^TA7|0M PAGE I / _ .K^.^^':T'S?-"• ~l

.' COVI *(.C t S<.IO»- NO

« TITLF (mrü Submit)

»YN.M 1C ANALYSIS OF BXKCDTIOIIl P03S11'.ILITILS ,
TBCHMIQUES AND PROBLEMS

1 *UTMUH(»;

Birol Ommt Kygvn

9 PSftt 9IHIIN6 OftGANIIAVION NAWI *ND*or)«f!>S

C.irr.c^ic-F.il Ion University
Dcparcneni of Computer Scioncc
Pittsburgh, PA 15211

J hCCl^lCNT't CATALOG NUMB» n

l T.1 f. or Rtfom i PKinofl cevineo

Inter' in

6 Pt fifCif MING OKG fU ^TRT UUM^ I 0"

B CONTRACT on GRANT NUMBCRf«)

P44620-70<-€-0107

 I

'I COMTMOLDNQ >*,:L>. AMI AND AOOMCtl

Defense Advanced Reseanii Projects Agency
UOO Wilson Blvd
Arlington, VA 22209

14 MONlTO^'No i .i «.C y N»ME » «riHf SS/.'f dillerml Item C'»nrral>«R| Ollirr)

Air Force Office of BcientiCic Research / :'/,7
1400 Wilson Blvd /

Arlington, VA 22209

10 PROGRAM CLCMCNI RROJFCT TASK •
Ar<(A a *ORK UNIT NUMULf'',

ItlOlO
AÜ827

• ? Rt(uRT DATF

Septc'inher, 19V3

13 NUMOtR OF F-Afjl.S

/^
li SEC JRITY CLASS (ol thl§ ,trc,l}

UKCLASS1FIKD
'5. DECL ASSIFICATION DO*Nr.R,r.)|Ni

SC HtOuLE

16 DltTlliauTtON STATCMCNT tml Ott» Ktpwfj

Approved for public release; distribution unlimited

'7 MSTMOUTIOM STATFMtHT (^t Ihr thurscl tnttrrd In tiH.<k 30. II d'lllrrrnl llor- .\epor eport)

'8 SuPPLtMEHTARyMOTFS

19 KEY »ORDS CCor.rmu» on trvrrif aid» il netrsmry mnd Idtntlly tv block number)

NATIONAI "F^HNJCAI
INFORMATION SERVICE

■

■ VA ??151

0 AbS' RAC T 'C-.-lt, i/e r.n rrtr-t« iid> ll nrrmnan and idrnlily t,y Mock miW>«rJ

The problem of dntigaing computer systems which are far more helpful to the
user than current sy-.tems in dynamically analyzing program behavior is r-tudied.
UM functional re^uirenents whirl; such a facility must meet are outlin.d. The
fundamental objective is to permit the user lo analyze a program in terms of a
user-d. finod level of ibstraction suitable to his particular analysis. A pro-
totype implementation which meets most of the requirements is described. The
implications of SMCI, a facility for machine architecture to reduce execution
overhead are explored

1

DD ,,Ji:;
u

73 1473 IPITION OF I MOV t% PS OBSOi FTF

UNCLASSIFIED
SECURITY CLASSIFICATION 0» T><IS PAGE fWItMi HM« C«it*rM)

__M__>i^a___-__

r-A

DYNAMIC ANALYSIS OF KXKQITION:

PosslhilUifs, Tecliniquüs and Problt-ms

by

lirol (Vner Ay^ün

Department ot Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213
September, l'J7T

Submitted to Canu ^ie-Melion University
In partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

This work was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defense CFA4620-70-C-0107) and
is monitored by the Air Force Office of Scientific Research.
This document has been approved for public release and sale; its
distrubutlon is unlimited.

D D C

 i -- - ■

..^' "» ■ ■"-

i-R

CAKNEC I F.-MFLI.ON UNI VFRS ITY
COHPUTII SriENCF DEPARTMENT

THESIS ABSTRACT

DYNAVic: ANALYSIS OF FXEfUTION:
Possibilities, Techniques and Problems

bv

Birol Ömer Ayeun

The problem of designinfj computing systems which are far
more helpful to the user in the analysis of a program's behaviour
at run-time, than current svstems Is studied.

Bv considering? four afplicatinn areas, namely debugging,
flew analysis, performance measurement and storage reference
pattern analvsis, a list of specifications for a "genera 1-purpose
execution analvsis facility" (r.PEAr) are drawn.

A prototyp« facility, called DAMF (Dynamic Analvsis and
Modellinc Environment), implemented on the PDP-IO for studying
the behaviour of PDP-11 programs, is described. DAME conralis
a PDP-11/20 simulator and a programmable analys.s facility.
It is shown that DAME satisfies most of the abovo requirements.

Significant aspects of DAME are: (i) Access to the state
of the PDP-11 at memory and register cvcle level, (ii) A flexible
hook mechanism which permits arbitrary analysis computations at
many points in the instruction cvcle, (iii) A node mechanism
which permits the user to define over his program a "level of
abstraction" suitable for the desired analysis, (iv) A comprehen-
sive instruction set for analysis procedures.

The node mechanism, perhaps the most novel feature of DAME,
enables the user to define at run-time a set of "nodes" in his
program, in terms of which the execution will be monitored. A
node is a portion of code, viewed as a "black box", having unique
entry and exit points. During execution, DAMF constructs a set
of the inputs and the outputs of each occurrence of each node.
The node mechanism pemits backtracking to anv point in the
execution history, and control and data Mow analysis at node
level.

Five detailed examples of the application of DAME to analyses,
difficult or impossible with other systems, are given. Example 1
illustrates the input/cutput sets of nodes and accessing the
previous values of an address. The PDP-11 program used in

MMMMM^rai ______

11

Example 1 through 4 is a recursive Quicksort proprarc. Example 2
i11 ustratMS the determination of the transition frequency between
nodes and Example 3 .m^lyzes the parallelllsm in the Quicksort
routine at the recursive call level as examples of control flow
analysis. Example 4 illustrates analysis of data flow between
two consecutive nodes by comparing the output-set of the first
with the input-set of the second. Example 5 illustrates a proce-
dure for •, ne analvsis of the instruction mix and addressing modes
used by PDP-11 programs.

The present performance of DAME is poor due to simulation
at memory evele level and checking for monitor actions at every
memorv and register access. It runs IDOO to 2000 times slower
than a PDP-11/20 when input/output sets are not used, and 4000
to 5000 tines slower when they are. Measurements indicate that
respective speed ratios of 300 and 2500 for the above cases are
achievable without major re-deslgn.

In designing analysis facilities for ALCOI.-like languages,
while the main features of DAME are still applicable, other
complexities arise (e.g. scopes of variables, recursion, selec-
ting a "unit of execution"). These problems and some approaches
to their solution are illustrated for a subset of the BLISS
language.

To be economically feasible, systems such as DAME will
require assistance from hardware. Microprogrammed implementations
of hook and node mechanisms, involving tag bits, associative
table searches and monitoring for special bit patterns to detect
hooks, are studied. Key problems are seen to be access to the
complete stat^ of the monitored machine, interference due to
resource sharing with the analysis facility and scarcity of
microstorage.

MÜMMMMMaiMMBaaila —~*~.*~~*~~*~*.*-~

mmmm

I I I

FOREWORD

The research which resulted in this dissertation may be
viewed as a journev through a neglected area in computer science.
While most areas in computer science are in verv primitive stages
of development, the area of ^amic analysis of program behaviour
is certainly one if the most neglected and potentially most
beneficial for but.'i programmers and users of computers.

A look at the Table of Contents will show the reader the
many dimensions of this problem which had n.)t received a systema-
tic examination up to now. Thus, the dissertation itself raav
be regarded as a map of this heretofore neglected region, iden-
tifying its major components and the relations among them. Inevi-
tably, ail components have not been studied in the same degree
of detail. However, hopefully, enough detail and insight have
been provided for the crucial parts to give a head-start to the
worker interested in designing such a system.

In retrospect, I would like to acknowledge with «ratitude
the contributions of manv individuals in various stages of the
research and thesis preparation. Professor David Parnas, a
member of C'.\V Computer Science facult\ for most of the period
over whicl this research took place, provided valuable advice
during the formative stages of the research and during an earlier
implementa ion of a monitoring facility. Professor William Wulf
provided bcth general guidance and specific technical contribu-
tions to the architecture and participated in the evaluation of
that facility. He also took part, with Professors Jack Mc Credie,
Sam Fuller and H&TJ Shaw, in the evaluation of the thesis proposal
and the progress of the research. In particular, he provideo
■ key idea in Chapter 7, which deals with execution analysis
facilities for high-le/el languages.

Special thanks are due the members of mv thesis committee.
Professors Jack Mr Credie (Chairman), Victor Lesser, Sam Fuller,
Raj Reddy and Andrew Wong, for generously contributing their
tire to the reading and discussion of the dissertation, for
numerous corrections and suggestions for improvements, and re-
reading the revision.

I am particularly grateful to Prof. Jack Mc Credi^ for the
continuous dialog, guidance and support he provided in both
technical and administrative .natters related to the research
and the thesis. While the members of the thesis committee and
others have contributed much to the technical soundness and to
the form of the presentation of the thesis, 1 b^ar the sole
responsibility for anv errors and any technical or editorial
deficiencies.

'

- -

■"I If

I\

utlliJlar1^ "^ ^•ct« -voivin,

1 hanks are dup tha rur /•-

" .-ess r, .„ exc.i.ent cM u e ' ^r, : "•"r"' f "^n

lor four vear-. H ractlltv and financial support

 ^.. -■-

w^-f^^^miy* "' "I ■■'»■^'■' ■«■«««^"«^«■■«ii^ppipiii^i^jp"1'»»1 HI

ABSTRACT

CONTEKTS
Paig.

FOPEWORD III

CHAPTLP 1 INTRODUCTION AND MOTIVATION

1.1 Execution Analysis Defined

1.2 Ub Ject ives of Thos i s

1.3 ^' a j o r Application Areas

1.3.1 Debugging

,1.3.2 Flow Analysis

1.3.3 Performance Measurement

1.3.A Storage Reference Pattern Analysis

1.4 State cf the Art in Dynamic Execution Analysis Tools

CHAPTER 2 FUNCTIONAL PEOT IREMENTS FOR A CENERAL-PUKPOSE
EXECCTION ANALYSIS FACILITY

2.1 Debugging

2.1.1 Control Bugs

2.1.2 Computation Bugs

2.2 Flow Analysis

2.2.1 Controj Flow

2.2.2 Data Flow

2.3 Performance Measurements

2.4 Storage Reference Analysis

2.5 Summary of the Functional Requirements

2.5.1 Information Requirements of the Analysis System

10

 ^— . . ■ -- MMMMMMMUM

~—~ mi i iMUpu m^^^w'•"■•'*"*••*'**' ■ ■

VI

fa fil-

es

CMAPTCR

J . 1

3 2

] 3

3 4

i 5

3 6

3.

3.

3. 7

3.

3.

3.

3.

3.

3.

2.5.2 rrlggariBg O'i Analvsls Actions

2.5.3 The Instruct ion Sot of the Analysis Facility

2.5.4 External Appearance and Miscellaneous Useful Featur

3 III DAME SYSTEM

The Underlying Data Structures

The Representation of the PDP-11 in the PDP-10

The Time-(;rain of Simulation

The Hook Mechanism

The Node Mechanisr

An Outline of DAM, Instruction Set

6.1 Ceneral Purpose Computation Instructions

6.2 Execution Monitoring and Analysis Instructions

Various Design Issues and Unimp1emented Ideas

/'.I Representation of -11 Core and the Design of the
Hook Mechanism

7.2 Scheduling with look-ahead

7.3 "BL-w-up" Representation of the Processor Status Word

7.4 "Compilation" of Decoded -11 Instructions

7.5 Further Compilation of DAMF Instructions

7.6 A Limited-Pun Complete-Trace Feature

30

DAME CHAPTER 4 ILLUSTRATIVE EXAMPLES OF SOME APPLICATIONS OF

Example I. N.^des and Inpu t/Ou t pu t Sets of a OUICKSORT
Program

Example 2. Construction of Node Transition Matrix

Example 3. Anatvsls of Parallelism In the QUICKSORT Program

61

- - - - - - -MMM^^^M^^M—*— _. l ■ I - - - - - - 1

Mil

Kxample 4. Dat. Flow Between Two Nodes

Exa.ple 5. Anal Is of Instruction Mix and Addressing
■Mode I'sape bv PDP-11 Programs

CHAPTER 5 A PI-PFORMANTE MODKL FOR D/ME-MKF SYSTEMS

5.1 An Informal Characterization of DAME-llke System.

5.2 A Model of ÜAME-like Systems

5.3 The Overhead of the N'ode Mechanism

5.3.x The Overhead of Detecting Node Entry and Bxitl

5-3.2 The Overhead of I/o Bet Maintenance

5.4 Measurements of the DAME System

5.4.1 Performance of the PDP-11 Simulator

5.4.2 Node Entry/Exit Overhead

5.4.3 Input/Output Set Overhead

CHAPTER 6 HIOH-LEVFL LANGUAOES FOR EXFOUTION ANALYSIS

6.1 Some Human Engineering Issues

6-2 HiHh-Level Data Access In Execution Analysis

6.3 Continuous Evaluation of Expressions

6.4 Implementacion of Continuouslv Evaluated Expression:

Page

CHAPTER 7 EXECUTION ANALYSIS f?ACILITlEI
LANGUAGES

7. 1 The Added Cc

S FOR ALGOL-LIKE

:omplexitv of High-Level Languages

7.1.1 On Increased Syntactic Complexity

7.1.2 On Increased Semantic Complexity

7.1.3 On Complexity due to Language Implementation
iechnlaues

86

«6

108

.■.. ^., -,,,.._ ..

■d ■ ■ ■-■■-- — ■-■-- - " -^ ■

mm.^.mm ..■•<>

Vill

7.2 Kxecution Analysis Facilities for Interpreter-based
Lancuages

7.3 A yini Demonstration Language

7.3.1 Information Accessible by the MPL Analysis Facility

7.3.1.1 Representation and Accessinp. of MDL Execution
History

7.3.1.2 Access to the Internal State and
Generic References to Expression Sequences

7.3.1.3 Access to MDL and MDLAF Texts

7.3.2 Contact Points a.id Hook Insertion

7.3.3 An Outline of the MDL Analysis Facility Lanp.uage
(AFL)

C8APTBI 8 ARCHITECTURAL FEATURES FOR EXECUTION ANALYSIS 129

8.1 The Hook Mechanism

8.1.1 MonitorinR with W >W
H 0

8.1.2 Monitoring vith W »W
H 0

8.1.3 Monitoring with i 'W
H 0

8 2 Implementation of the Node Mechanism

8.3 The Interface between the Analysis Facility and
the Central Processor

8.4 The Analysis Facility Processor (AFP)

CONCLUDING REMARKS 144

PEFERENCES 147

APPENDIX A: DAME USER MANUAL 150

APPENDIX B: SYNTAX OF MDL 181

----- ii m mr- -— —■ - - — — __ ._ . - ^ ■■ ■ ■!■ it ^t**mttm J

mmmm •^Wf^tm^^^rm

CHAPTER 1

! •"• ! S2 Sü CTIOM AN D Hi) II V AI [QN

I»1 tjxecu t ion Ana Ivs i_s Def i ned

As the impart of cuaputcr technology pervades essentially
every aspect of rontemporarv civilization and as we relegate
more and more responsibilities to the computer, it is reason-
able to expect that programmers, analvsts and users ol prog-
ram! will need more and more powerful tOfli to analyze t lie
behaviour of programs they are concerned with. The kinds of
analyses one can immediatelv think of in lude, hut are not
limited to, debugging, performance measurement, validation and
certification. As the complexitv of programs grows far beyond
the abilitv of any one individual or a small group of indivi-
duals to completelv understand and predict their behaviour at
any level which is of interest (as it already is todav with
most large programming systems), the need for better tools to
answer questions about the workings and the behaviour of prog-
rams grows proportionatelv. I shall use the term "execution
analysis" to include anv incuirv into the behaviour of a program,
noraelly in a specific class of environments. I shall leave the
word program" undefined, reiving on its intiitive meaning,
except to require that the -inalyst be able to identifv what
is to be considered as a part of a program and what is not. I
shall further concentrate on the execution of programs on com-
puters stmilar in basic architecture to those in most common
use today, i.e. in which each processor has a single instruc-
tion stream and addresses a linear primarv memorv, at least as
seen hv the programmer. By execution analysis, then, more
specifically, I shall mean inquiries into the machine states,
and the relationships among machine states, which are evoked
by a particular set of executions of a particular .rogram on
such a machine.

1:_2 Ob^_ecj.lves of The si s

The main objective of the thesis is to report on a research
project into the design of environments which would Facilitate
a very broad range of execution analvses. Of particular interest
are :

(i) representation of execution historv information
a manner which facilitates the introduction of high-level
r-onstructs for describing and carturing diverse aspects of
program behaviour.

i n

- •aal^^MWaBMaaMMM

(ii) ■ particular let of such construct! wtiicli prevIdea
a kernel for ■ 1 ar^i1 class of ■ aelyees,

(i i i) extendeb1111y of tha provided set,

(IV) a general-purpose p rog r •■■ i ng facility f(ir sensing

(arbitrarily comnlex) conditions and taking associated ait inns

at anv point during tha execution the program under analvsis.

[a addition to these, I shall consider, in less detail,

the extension of the presented ideas to high-level languages

tnd the architecture] Implications for machine design arising
fron them.

1.j Major Application A r e a s

Although questions related to execution analysis pervade

every area of computer science and technology, for the purposes

of concretenaaa, I shall select and examine in detail several

of the more prominent ones. The objective of this examination

Will be to arrive at a set of functional requirements for an

analysis facility which will s u b s t a n t i a ll v facilitate such
analyses .

1.3.1 De b ugg in£

I do not wish to dwell unnecessarily on the fundamental

importance of the d-jbugglng problem and its magnitude. Let

a quote by J. 'I. Schwert I from a recent symposium on debugging
systems [til 1971] suffice. "Normally, at the beginning of

the debugging process, even a programmer with some past expe-

rience can never believe how bad things are reallv going to be

before the end." Schwartz also gives a thoughtful exposition

of the classes of bugs pi anging the field. Here, I shall

follow roughly his approach to present a taxonomy of debugging
problems .

Le

forms o

syntax

part of

in do s i

f unc ti o

t e 1 y , r

Ci re urns

if and
of the

1 on^ t i

of e r r o

runs In

t me

f er

err o
t ho

gn a

n t h

e w r i

(an c

on 1 y

t o t a
me t

rs I

l u i

f i

r o r

rs ,

pr
nd

at

t t e

a a
i f

1 !'
i) i

sh

he

rst del
in pro

(ii) e
0g ramme

i mp1eme

it w o u1

n to ma

"bup,".

it c a n

rograni
s o 1 a t e

all c a]
st r o n p. i

i ne

g r a
r r o

r ;
n t a

d h

ke

I
ba
al

i t .

1 b

V u

ate

ms :

rs d

tha
t i on

avc

i t w

hus ,

co r

t h o U
Th

uga
nso 1

the
sp

ue

t i

f r

to

o rk

I

r ec

gh
i s

i s

val

f i e

ec i f

to t

s , i

om p

be c

, I
aha]
t ■ d
i I ■
1 i m i

ne c e
le n

Id
lea
ota
f a
erf
omp
sha
1 c
bv
av
t at
a s a
rob

of
1 1
1

P
or
le
1 1
on
eh
we
i 0

r y

1 a

"bugs" from all Other

y excluded are (i)

incompetence on the

rogram is so far off

ming its intended

t e1y, or almost c o m p1e -

not consider such a

sider an error a bug

anging a small part

11 have taken quite a

n I place on the kinds

, b e ca use otherwise one

m of proving (or disprc" ing)

 ■ ■—"-■- - - ■

the equivalence of algorithms In general

The first class of b
Schwartz) are those due t
exceeding array bounds, o
in a loop. Another conmo
zation of variables, "man
fail to have either the i
programmer expects". The
manifest themselves in th
"situational" bugs become
relatively distant parts,
make about each other (fo
"Interface"). "Semaphore
belong to this class, the
cooperation among the var
is the set of bugs due to
reference manual properly
especially with respect t
meaning of a particular b
register or the parameter

ugs I shall mention (following
o losing count of things: e.g.
ne too many or one too few iterations
n class is due to omission of iniMali-
ifest in situations in which things
nitial or terminal value which a
se are examples of bugs which usually
e early stages. In later stages,
apparent in the interfaces between
i.e. in the assumptions those parts

llowing D. Parnas's definition of
bugs" and timing bugs also generally

ir existence being due to lack of
:ous parts. Also, in this large class,
not reading the language or svstem
or to errors in such publications,

B services provided by the system, e.g.
it combination in a device control
-passing conventions for a svstem macro

Schwartz next considers "various aspects of the habitat
bugs In languages which permit the use of pointers, in

particular assembly and higher-level implementation languages,
one often transfers off to nowhere or begins writing into some

strange place . (This author has received count 1 ess' "i1 1 ega1
memory reference" messages from the operating svstem during the
development of this project and wished there were a debugging
system with the facilities desceibed in this report, although
he da have access to some of the better debugging facilities
provided by current systems).

■ c/\ hiS thesis titled "The Debugging of Computer Programs",
K. btockton Gaines provides a more structured taxonomy of bugs,
which is summarized below;

"J- Point of origin in the programming process: that is
wnether the bug arose in the formulation of the program, or
during its implementation...

2- Whether in data definition or data manipulation.,.

3- Control and Computation bugs...

4- Bugs resulting from lack of knowledge or misunderstanding
of features of the operating environment...

5- Fatal and non-fatal bugs...

1

j

6- The point at which the bug may be detected. Some
may be detected automatically, (that is, in a purely mechanical
fashion bv checks .rovided in the compiler or in the generated
code or operating system), while others can only be found by
inteJligent activity on the part of the programmer."

The most characteristic
is the search for the cause o
which has just been observed,
observed anomaly through the
of unstructured execution tra
insurmountable task. Hence,
narrow down the amount of dat
of locating an operation tran
an unreasonable result" (Schw
the amount of data collected,
leaving out some important in
which could lead to the isola
debugging system which, the us
kinds of information, one mea
system is the degree of preci
what kinds of data he wants c
ease with which the user can
between the iterations of a d

feature of the debugging activity
f an unexpected program behaviour

If one attempted to diagnose the
examination of a voluminous set
ce data, one would often have an
the aim of debugging tools is to
a to be looked at "with the Intent
sforniliig reasonable arguments Into
artz). The risk involved in reducing
of course, is the possibility of
formation about the program behaviour
tion of the bug. Hence, given a
er can direct to collec«- certain
sure of the power of the debugging
sion with which the us.er can specify
ollected. Other measures are the
state his specification and the time
ebugg i ng step.

Normally, the first aim of the programmer in tilt debugging
process is to put bounds on the portions of execution history
involving improper program behaviour. This requires an ability
to move back and forth easily in the execution history, to observe
the data flow as a function of control flow and vice versa.

This brings us to the area of flow analysis, which has
applications in many areas beside debugging.

1.3.2 Flow Analysis

I
into t
arise
sma1 1 ,
cons id
the st
sorted
a = 0, . .
loca t i

(By 1 k
respec

y
he
du r
o r

■ r
art

ons

t i v

flow analysis" of a program P, I shall mean inquiries
relations between sequences of machine sta':es which
ing a set E(P) of executions of P. The set I may be
large enough to be considered infinite. For example,

a sorting program S(a,b) whose parameters a and b are
ing and ending addresses of a vector of integers to be
Then the set of all executions of S(a,b) for all
n/2J- and b = [n/2]+»••..n where n is the number of core
in user address space, is essentially infinite,

and Ik]+. I denote the "floor" and "ceiling" of k
ely.)

. . . ——i

A typical problem i
set of all successors of
associated transition pr
expressed as an mxm matr
of node j being the next
problem can be extended
ot all k-node sequences
nay be regarded as the d
lities" and requires son
the determination of sin
class of models of contr
models" and, under -erta
program behaviour, yield
of behaviour. Coupled w
these models cao give re
1 ong paths.

n flow analysis is determ.-. ing the
every node in the program and the
obabilities. The result is normally
ix M where M(1, j) is '.he prohabilitv
node if ehe current node is i. This

to the determination of the set Q{i,k)
following Bed« i. This extended problem
etermination of "pa t h-t r av." r r,a 1 probabi-
.'wh?. t more elaborate machinery thai
gle step transition probabilities. This
ol flow is generally called "Markovian
in assumptions of independence of past
probahi 1 istii information about patterns

i t h estimates of C1M u s ;a g e at each node,
source usage estimatis over arbitrarilv

Another e
the degree of
one tries to d
independently
execu t i on. In
can be run in
posing the pro
at all or whos
execution w h i1
lapped , para 1 1
between two pa
whether or not
dependent i n a
flow" prob 1 em.
the essence of
this problem a

x a m p i -->
para 11
e t e r m i
of w h i
pener

para 11
gram i
e comm
e stil
el exe
r t s of
part
c omp 1
Data

a pro
t 1 eng

of f
• llig
Hi wh
ch o t
al , p
el .
n t o p
uni ca
1 ma i
cut i o
a p r

A "te
ex wn
flow

gram '
th in

; ow a
■ wh i
ich p
h | r p
arts
The p
a r L s
t ion
n t a i n
n . T
0 g r a m
1 Is a

y- i
, tog
s 1 og
the

na 1 y
C h c
arts
arts
wh 1c
robl
wh i c
perm
ing
he d
can

ny t h
sha

e t he
i ca 1
rest

si s
an h
of
and

h do
em 0
h e i
i t s
a su
et er
be
ing"
11 c
r w i
beh
of

is that used in predicting
e obtained. In t '.•: s case,
I program could be run
at which point in the
not communicate at all

ften becomes one of decom-
ther do not communicate
svnehronization of their
hstantial amount of over-
mination of "communication"
verv difficult. For example
to part | may be input-

all this problem the "data
th control flow, constitiies
aviour. I shall deal with
the thesis.

1-3.3 Per formance Measurement

Two types of performance measureme
discussed under Flow Analysis. Another
performance measurement problem is the
through a program. We may wish, for ex
paths through a program; start timing
is entered and stop timing when the exe
We may decide to keep or discard measur
sals of ? path. We may further wish to
activity only after certain events have
a certain routine has been called a fix
might be desirable, for example, in eva
in a space-management routine only when
"main-looo" portion of a program, after

nt have already been
, more gfieral type of
timing o'. arbitrary paths
ample, to define, several
when one of these paths
cutitn deviates from it.
ements of partial traver-
start the measurement
happened; e.g. after

ed number of times. This
luating the tie spent
it is called in the
the initial allocation

Di space lias been made. Thus we need control ovrr which
paths are to be measured and under what conditions they are
bfl measured.

In timing a program P running in a t I-ne-shar i ng environment,
the other programs running concurrently wich F have a certain

■ irruuint of effect on the measurements on P. As an example, in
•o«« time-sharing systems, the overhead for handling an interrupt
is charged to the program which was running when the interrupt
came in, uhich Is not necessarily the one to which the interrupt
belongs. It should possible in a genera1-purpose execution
■aalyali facility to measure accurately the time taken by a
program, as wt 1 1 as usage of other system resoui-es, e.g". main
storage. This brings us to a class of analyses which are t adi-
tioa«lly done by post-mortem processing of a tape f 11 e conta in Ing
th« sequence of addresses generated by means of a hardware pro'.'e
during tue execution of the program whose behaviour is under
analysis. These analyses, which are especially important in
paged systems, are called "Storage Reference Pattern Analyses"
and are discussed further in the next sub-section.

1.3.A Storage Reference Pattern Analysis " '

For the analysis of programs from a paging point of view
::■ can identify several major variables: the hardware (in

particular page size and the paging store), the operating system
(in particular, its paging policies), the svstem load and the
particular program we are analyzing (in particular page-reference
patterns). In theory, It is possible to hold one or more of
these variables constant and vary the others. However in
practice, one most ofttr has to hold at least the first two
constant, live with uncontrolled variations in the third and
try to improve the fourth.

I
patter
cert a I
Howeve
of the
on the
There
are ha
a comp
are t h
of , th
poss i b
a more
r reded

t is always beneficial to analyze the static reference
n of a program from the program text. One can achieve a
n amount, perhaps a great deal, of improvement this way.
r, in general, the storage reference pattern is a function
inputs. Therefore, one needs to gather dynamic information
page-reference behaviour on various parts of one's program,

is no easy way to get this information at present. There
rdware devices for measuring all the page references in
uter system over a specific interval of time. Not only
ese devices hard to get and make routine, practical use
py are also no. dynamically controlled; so, it is not
le to monitor only a specific part of a program. Clearly
flexible tool for obtaining and analyzing this data is

"--■ —• ■ -

~ - - - _- -^ ■ ------ - -' „—^a«^^.

In this sub-section, I have discussed four areas (namelv
debugging, flow analysis, performance measurement and storage
reference pattern analysis) for the application of execution
analysis techniques described in this thesis. In Chapter 4, I
shall take specific problems from these four areas and illustrate
the usage of the prototype software facility DAME in solving
them. In the next sub-section, I shall survey the state-of-the-art
in execution monitoring facilities.

1.4 State of the Art In Dvnamic Execution Analvsis Tools

The
art in th
sub-area
of the a r
debugg inp
be us« d f
hardly ev
make i 11 o
techno og
tools in
being lab
meaningfu
industry
list is r
fac i1it ie

first remark one
is area Is that
of debugging too
t in execution a
tools which hav

ut various other
er are; in fact
quite useful ex

y has failed to
execution analys
elled "debugging
1 execution anal
as well as in th
epresentativc of
s found in :..ajor

can make regarding the state of the-
it is almost non-existent outside th,-
Is. A further indication of the state
n a lysis is the fact that all the on-{line
e come to this author's attention cofald
tvpes of execution analvs's but thef/

, with taiuOT extensions they could bje
ecution analysis tools. The softwar'e
properly utilize even its existing
is. This could be attributed to their
aids" as well as to not requiring :

ysis data from programmers in the
e universities. At anv rate, the following
the t-pes of machine language debugs i-ig
sys:ems: (e.g. see 1B0 68I)

1- Setting and removim breakpoints at arbitrary points
in a prog ram,

2- Computing arbitrary functions cf the state of the use^-
addressable core at a breakpoint,

3- Referencing core symbolically,

4- Transferring control to an arbitrary core location at
a breakpoint,

5- Calling other debugging procedures,

6- Modifying contents of core,

7- Defining symbols private to the debugging system and
using them as normal identifiers in debugging procedures,

8- Specifying automatic collection of the values of specifi
locations,

9- Directing dumps and traces to user-specified devices.

 m

As mentioned earlier, these abilities form a basis upon
which more useful analysis systems could be built. However,
the use of these facilities appears to have remained largely
in debugging.

have
T. C.
the a
exec u
advan
p r o g r
IBM 7
s 1 ons
limit
the S
the u
1 oc at
cant
A s Im
J . Mc
i t ne
f ac 11
and d
progr
a ssoc
c ompo
while
of ma

1 wou
gone
Stoc

bllit
t 1 on
c e in
am wh
090 p
re la

at ion
ymbo 1
ser t
ions
advan
i lar
Nele

ver b
it ies
i s p 1 a
am f o
la t e s
nent s
a pr

chine

id n
In s
k h a m
y to
in t
man
ich
rogr
t ing
was
com

o sp
are
et- i
feat
y L M
ecam
for

y Ing
rwar
at
for

ogra
Ian

ow 1 i
omewh
de sc
inte

e rms
/mach
stat i
ams a
the
limi

pu t e r
ec 1 f y
ac ces
n exe
u r e w
CN 68
e ope
ob t a
it f

ds an
Harva
mon i

m run
guage

ke to men
at differ
r i be s a g
ract with
of the fl
ine commu
ca 1ly cha
nd a 11 emp
interacti
ting i t se
deve1 ope
a rout in

sed. Thi
cut i on mo
as descrl
1. R. Ba
rat ional ,
ining tra
lexibl.y o
d backwar
r d toward
to ring th
s on a re

tion several syst
ent directions,
raphical debuggin
the user during

owchar t of the pr
nication. D. V.
rted the data and
ted to construct
ng variables [WI
If to static anal
d by Fairchild Co
e to be activated
s ability forms t
nitoring and anal
bed for an Algol-
Izer's EXDAMS sys
made a at t empt t

ces, extracting i
n a display tube
ds. The work by
a software labor

e value of user s
al machine or a s

ems whose facilities
In [ST 65]
g system which has
the course of th°
ogram, a significant
Wilde wrote a
control flow in

functional expres-
6 7], Its main
ysis. More recently,
rporation permits
when user-specified

he basis for signifi-
ysis capabilities,
like language by
tem [BA 671, though
o provide high-level
nformation from it
and running the
T. Cheatham and his
atory includei
pecified predicates
oftware interpreter

Various machine-simulator based debugging sy
been built and reported. The MIMIC system descri
the AIDS system of R. Grishman and the HELPER sys
by H. Kulsrud are some good examples of such syst
[KU 71| for reports on these systems.) The main
these systems are: (i) The very limited amount
computational power which they appear to have bee
provide, (ii) They offer no higher-level unit of
than individual instructions, e.g. the effect on
state of five consecutive instructions storing in
location would be recorded as five separate entri
Is no way to change this; thus they very quickly
storage problems. The ability on the part of the
a global structure over his program containing el
size ana to be able to capture arbitrary informat
and control flow between these elements would gre
the analysis of interesting questions about the p
be havlour.

stems 1 a'^
bed by R« Supnik,
tern described
ems. (See
1Imitat ions of
and types of
n designed to
p ,-ogramming

the machine
to the same
es and there
run into ma In
user to define

ements of arbitrary
ion about data
atly facilitate
rogram's run-time

 — ■ -

Another class of systems which Is relevant to this topic
Is the so-called "virtual machines". (For a set of papers on
virtual machines, see TACM 73]. However, In virtual machines
reported so far, no analysis facilities or features for user
control of the computation slgiii f 1 cant 1 v better than the
breakpoint-oriented debugging facilities (such as PCS (BO 68J)
of interactive systems have been described.

■^ ■.... ^ ■■ .■■ .- - ..^ „^... ..v : -^ ^ .. ■ - ■- -■ ■ .J:.-J-J-^.J , ... _ ._. ..■■ ■■....-^ ■■..■-..... ... ^. ■ . ,.J.^.^^tM^M,^MMhAMMfa^^«lifc^.jB

10

CHAPTER

FUNCTIONAL RKQUIRKVENTS FOR A GENERAL-PURPOSE EXECUTION
ANALYSIS FACILITY ~

In this chapter, I would like to review and classify
Mir tunctional capabilities required to accomplish the
classes ot tasks outlin.'d in Chapter 1 nnd to arrive at a
set ot functional specifications for w'.at can truly be called
a general-purpose execution analvsis facility" (GPBAF).
By "functional specification" I mean that only "what" Is
wanted is to be specified, leaving the method' of implemen-
tation open. Having made this statement, let me violate
it just once, in order to give
to what is to follow:

a lot more concrete context
If we view the kinds of analysis

tasks which have been mentioned as points In a space of
infinitely many, continuous dimensions, then the set of
tunctional capabilities of a GPEAP can be vit^ed as a set
of primitive operators and data structures whlc1., when
used in composition, juxtaposition and iteration in normal
programming style, permit one to proceed easily to most points
in that space. This statement will serve as a' qua 1 ita11ve
specification of the overall function of

q'
GPF.AF

jNJ Debugg i ng

Let us first consider the kinds of questions that
arise most commonly in the debugging process. Recalling the
types ot classifications of bugs given In sub-section 1.3 1
probably the most promising breakdown is into "Control"
bugs and "Computation" bugs. I do not wish to imply that
I bei eve these two classes are independent, rather'simply
that in thinking over all the hours (days, years) I spent
debugging programs, it seems that a great deal of those
bugs could be comfortably placed into one of these two classes.

2.1.1 Control BUBS

Control bugs most often appear locally, in the form
J errors in conditional branch statements or in the number
f iterations in a loop. While the actual nature of each

error in control flow is, of course, specific to the particular
program^, the kind of action one would like to take to diagnose

to be able to say something like:
and the machine state is Y. take
the next state Is Z ". Here. X

i
list of calls on subroutines possibly

of
o
e

P
such a bug, wou1 j be
"If I have just done
diagnostic action D

i
may take the form of

X
i f

■^ .-.....-.,. : - . ■-■. — - J

11

with specific value? or with a specific
values, instruction addresses or other p
of the instruction with specific operand
Example: "After SI has called S2 twice
A, B and C such that A>B>C, followed by
S2, followed by two HOfll to location k,
that the word "follow" may be taken in i
i.e, "immediately follow", or simply to
after". "Mrther, it is unclear whether
action is to be taken only on the first
specified condition or on all its occurr
be possible to formulate all of these al
tations. Also note that the specificati
parameters of a subroutine call require
facility be able to determine, or, faili
by the user, the locations of the narame
state specifications Y and Z are partia

i
possibly complex, functions over the sta
including any general-purpose or device

relation over the
artial specifications
addresses or values,

with parameters
n calls on S3 by
do. . . ". Note

ts strict sanse,
mean "'come sometime
the diagnostic
occurrence of the
ences. It should
ternative interpre-
ons over the actual
that the analysis
ng that, be tolH
ters. The machine
1 predicates involving,

te of the memory,
registers.

The diagnostic action D may involve, minimally, sus-
i

pending the execution and displaying certain elements of
core. In addition, we may wish to compute the value of
a function and store or display its result, automatically
continue ejcecution from the same or a different point, or
we may wish to backtrack to an earlier point in the execution
history. This last requirement, namely backtracking, involves
two parts:

1- The specification of the point B to which we wish
to backtrack, and the associated search over execution
history.

2- The actual backtrack operation.

Having made a backtrack, one may wish to execute a
certain number of instructions and Jump forward to an inter-
mediate state, and eventually resume execution from the
point where the original backtrack command was issued.

Note that the form of the debugging request given
above does not cover predicates involving the time-series
of the valuss of a location, e.g. those of a variable whose
value is modified in each iteration of a loop. This leads
to the general concept of the time-series of the values of
a variable - which appears to be a nalural and useful construct
for debugging. I shall refer to this as the "value-trace"
of a variable. The number of values to be kept should
be user-specified.

t^jtM^^-a
■ I I ItlM—f^— ilkMHriH

12

2.1.2 C o m p u t a t i o n fi u ^ s

I'nder this title 1 shall include errors in ". o i mu 1 a s",

Kenerallv characterized hy i sequence of arithmetic operations

concluded by an assignment. They ire distin^uished from

Control hugs by the trivial, localized control flow involved.

In this class of buK.s, we are concerned with the past and

current values of variables as well as the new values to

be assigned to them in a particular Instruction or sot of

instructions. Note that some of these values uiav in fact

be addresses of indirect operands. Hence we are interested

in all the operands (including intermediate pointers, side-

effects such as setting of the condition code and automatic

incrementation or decrementation of registers) involved in

an instruction as well as their relation to the instruction.

Kor example, we want to know not only that instruction 1

(etches something from address A but also whether A is the

eventual source operand, | pointer to the eventual source

operand, the eventual destination operand, or a pointer to

the eventual destination operand, etc. Hence, for any parti-

cular machine, there needs to be i characterization of everv

operand involved in every type of instruction in its instruction

set and a corresponding mechanism in the analysis facility

which permits one to refer to each of those operands througii Ita

relation to the instruction. Facilities such as this permit
one, for example, to say: (i) "If I ever multiply (any

number) by a negative number and store the result into X,

let me know and stop"; or (ii) "If the truncation error

involved in an integer division, defined as ahs (1 -((dest inat ion

operand*result)/source operand)) ^ ever exceeds 5%, do ...".

Let us note an ambiguity in the former request(i); often

the result of a computation, such as the multiplication in
this case, is stored temporarily in a different location

•ban its eventual destination. Later, perhaps after several

instructions, it is moved to its eventual destination. This

Is particularly true about machines whicli do not have memorv-

to-memory operations. In such machines, the high-speed

registers are used to hold temporary results very often. In

many cases a temporary result may remain in a register over

several instructions. In such a case, how should the "store

into X" be interpreted, as an "immediate store", a "store

within a fixed number of instructions" or an "eventual

store" meaning a store sometime before the computed value

is modified? The answer to t ii i s question is the same as

the answer to earlier questions about interpretations of

requests: namely, that it does not matter; every interpreta-

tion should be able to be formulated within the analysis
facility.

I would now like to mention a construct and an associated
notation first used (to the best of mv knowledge) by f.A.R.Hoaro

.■-.■ _ J,^. - ^ , - - - — — - ■ - - ■ MMMMaHÜMMH J

13

L^the'Art'oTp ^ '"T ':. W- D1Jkstra,s "A Short Introdu:tion to cne Art of Programming":

ho.-, 0
Let Pi Plv P2, ''' ctan(i for Predicates stating a re3ation

between values of variables. Let S. SI. S2. ... stand for p eces

rhaLinrrh'6^' '" general affectln« values of variables. ?
changing the current state. Let B. Bl. B2. ... stand for either
predicates stating a relation between values of variables or
tor pieces of program text evaluating such a predicate, i.e.
deliver ng one of the values true or false without further affec-
ting values of variables, i.e. without changing tk* current state.

P 1 [S] P 2

means: "The truth of PI immediately prior to the execution of
S Implies the truth of P2 immediately after that execution of

P^'*' ;,. J !t:ra then goes on to state some theorems relating
PI s Bi | and S. The relation PUs]P2 given above seems to be
another natural and useful construct fcr debugging purposes: it
is a succinct formulation of a question about the effect of a
piece of code S on any part of the machine state. It is clearly
f!!!!!?!3' !? SUCh relati°ns for arbitrary PI. S and P2 be
testable easily within the analysis facility.

of HOK" ?* r'0W ^ummarize the capabilities implied by the examples
of debugging activities so far:

inGrr
m~>< De'erm;nlnR the Path of control flow down to the

instruction leve1 ,

D2- Determining the type of Instruction being exe-.uted.

D3- Following arbitrarily complex pointer chains in cove.

•11 tit" Dete7i"ln8 the addresses and values (old and new) of
all the operands (explicit and Implicit) of an instruction as
well as their relation to the instiuction,

D5- Keeping an arbitrary number of previous values of any
address, in an easily accessible form,

.»—**" Compu,:ln« arbitrary functions over the current machine

D7- Searching execution history (backwards and forwards)
for a state satisfying a user-specified predicate.

D8- Efficient restoiatlon of a state found in such a search.

1
i ti -f- -

■ ■ - ■-■ ■ - . - ■ —
*äm laMiMMy

14

D9- Stopping and starting execution,

D10- Performing any sequence of the operations Dl through
D9 at anv and each of: operand fetch, operand store, instruction
fetch and instruction completion times.

While it is rather imprecise to talk about the "complettness"
of a debugging system (or of a system with respect to debugging),
one can get a certain amount of reassurance of the sufficiency
of these requirements for a cicougging facility by convincing
oneself that they offer a great deal of help in Isolating all
the classes of bugs mentioned in Chapter 1, sub-section 1.3.1.

2.2 Flow Ana lysis

As stated in Chapter 1, by the "flow analysis" of a program
P, I shall mean inquiries into the relations between requences
of machine states which arise during a set, E(P), of executions
of P. It is helpful to think of the program counter as a distinct
entity from the rest of the machine state. In machines having
a built-in stack, it may also be useful to think of the stack
pointer as a third distinct entity, especially in high-level
languages vhich do not permit explicit access by the user to the
elements in the stack. 1 shall not do so here, since I shall
be mainly concerned with machine language programs where every-
thing is essentially global.

Thus, thinking of the program counter (PC) as a seperate
entity from the rest of the machine state (which I shall call
"memory", M), we can identify two types of flow: Control Flow
and Data Flow, where the lormer refers to the sequence of values
assumed by the PC and the latter to the sequence of states of M.

would like to emphapize the word "sequence" in the last sentence.
The word "flow" implies a sequence of changes to one phenomenon
relative to another. Hence, for example, we might ask: "Starting
from a particular state of M and PC, what is the kth value of
PC?". Or similarly, "Starting from a particular state of M and
PC, what is the kth state of M?". Or, "Given that M-Ml , when
PC = P1, what- is M when PC = P2?".

2.2.1 Control Flow

Normally, it suffices to consider only changes from sequential
flow in order to be able to reconstruct the entire historv of
control flow. One must be careful, however, to Include enough
information to indicate when each change occurred. For example,
on« may include the starting address of the program, followed
by pairs (a ,b), 1 = 1,. ..,n, where a and b are the origin and

i 1 i i

■—---

15

the destination of the
Alternately, one might

block of straight-line

1th branch instruction, respectively.
let a be the starting address of a

i

code and b the number of instructions
i

in that block. A GPEAF should have facilities for sensing the
fetch of an instruction from a location X, the comp1etion 'of
its execution, reconstructing the last N branches (origin and
target), for arbitrary N. It should also be able to execute
a user-specified procedure before and after any or every instruc-
tion, (Thib ability was also listed as a requirement under
debugging.1' It is important, though this can also be implemented
by the user himself using the above facility, that when the 111
gains conf. ol before or after an instruction, he be able to
deter..,ne the address of the previous instruction. F.g. if
one can jump to an address A from several locations, it is
necessary to be able to determine easily at A where one came
from .

ist- r

2.2.2 Data Flow

If we think of data flow as a sequence of changes to the
state of the memory M representing the progress of execution,
it becomes r.iear that in order to be able to analyze it, we must
first relate it to control flow. That is, we must be able to
determine which changes are associated with which parti? of the
execution path. In general, manv parts of the execution path
may result in an identical effect on the state of M. Thus,
data flow analysis must be able to determine, where possible,
the precise part responsible for any given effect.

Some Fundamental Relations in Data Flow

Let
tempo rail
Suppose t
More spec
which are
again, an
(in the a
to the va
define as

(a ,v) w
i i

some thing

Let us a 1

us consider two contiguous parts, A and B, with B
y following A, in the execution path of a program,
hat we would like to know the data flow from A to B.
ifically, we would like to know the set of addresses
both modified by A and read by B before being modified

d the values of those addresses upon entry into B
bsence of any outside interference, this is equivalent
luef of those adr.resses upon exit from A). Let us
the input-set, I , of A the set consisting of pairs

A
here a is the ith unique address from which A reads

i

before writing into it, and v is the value read.
i

so define as the output-set, 0 , of A the set consisting
A

 —'- ■ mm* n -ji—a-auMMi J

■Pfj"1 '«'

16

ot pairs (b ,u) where b is the ith address written by A
i i i

and u the contents of b upon exit from A.
i i

Then, the data flow, D , from A to B can be characterized
<AB>

simply as :

(1) D =0 "I
-AB- A B

Note that in computing this intersection, it suffices to
look at only the address parts of the elements of the two sets,
since, due to the temporal adjacency of A and B, equality of
addresses will imply equality of contents. However, no harm
will result if, in order to maintain the conventional set-theoretic
definition of intersection, we require that only those elements
which are identical in all respects (which are used to include
them in their respective sets in the first place) be included
in the intersection. Hence, the conventional definition of
intersection in set theory will suffice for the relation (1).

Let us now consider an important step in data flow analysis,
namely tha compaction of two consecutive parts into one. This
step is fundamental to many types of flow analyses; see for
example 1 CO 71]. To do this, we shall need the following additional
notat ions:

C(a,t) = contents of locatioi at time t,
T (A) = time of entry into jart A,
e

<AB> = the part consisting of the temporal
juxtaposition of parts A and B.

We can now characterize the input set of <AB> as follows:

(2) I =1 (I -0)
•'AB> ABA

Here again, it suffices to consider the conventional set-
theoretic definition of the union operation, since the equality
of the address part of an element in I , to that of an element

A
in (I -0), implies the equality of their value parts. This can

B A
be briefly proved as follows:

Proof: Suppose that for some p=(a ,v)and q=(a ,v),
P P q tl

—* ----- —r- —"- ^^tiaMMiMiMMHi

mmmmmmmmm** nMMMMPMP«

17
'

P'l and q. (1 -0) respective 1 v, a =a and v *v , Now, since
A B A p q p q

A and | are consecutive, v =C(a ,T (B))=C(a ,T (A)), i.e. the
q q e q x

contents of location a are unchanged between the exit from

q
A and entry into B. But since a =a ,v must also equal

p q q
C(a ,T (A)). Thus, for v /v to hold, this reauires that the

P x p q

contents of address a be modified during A. Rut this contradicts

P
our definition q(I -0). Hence no such elements p and q can

B A
exist.

Finally, we can characterize the output set of 'A,B> as:

(3) 0 =0*0
^AB ■ B A

where * denotes an exte-slon of the union operation to one which
"favors" the left-hand operand over the right hand one in the
sense that, if there is an element (a ,v) in L and (a ,v)

L L R R
in | such that a =a but v *v , then L*-R Includes (a ,v) in

L R L R L L
the resulting set.

This operation simply assures that if some address is
modified by both A and B, then only the final effect will be
recorded in the output set of ^AB>.

These three highly intuitive relations form a base upon
which many data flow analysis mechanis-ns can be built.

So far, we have been concerned only with consecutive parts,
where we are assured that nobody else will get in between the
parts involved in the data flow. But now let us consider the
case where the parts, A and B, of the execution path, the data
flow between which we wish to explore, are not consecutive.
What should the analysis facility be able to tell us about the
effects of intervening parts C , 1=1,...,k, on the data flow

i
from A to B? There are at least two reasonable answers:

1- That the analysis system be able to tell us whether any
of the C 's had any effect on the dat=> flow from A to B or not, or

1

- - - —■ -— ■ - ■-■■■--

r-s- fm^mmm***

18

2- That the analysis system be able to give us a n «? t-
of the effects, e.g. a list of pairs ((C ,v)!(C.v)!.!!)

where the first element of the pair indicates the effectinK
part, and the second element indicate, the effect.

A little reflection shows that the first, "yes" or "no"
alternat ve 1. not satisfactory unless there s some practical

"tiv0! Sen"' T J1»?'«'"""" P-vlded by the second aU
llitl l* ?' ^a11 ad0pt the latter as the information which the analysis facility must provide.

What Maketh a Part?

All the Jiscussion s

es

- — - - —

' ■' -l^" »■■-) -rr-—■^PBWWI^

19

clrresooid r 11 '"'I ** ■* ^'^ 8r0UpS 0f ^«tructlons which correspond to some syntactic programmin« unit, such as a sub-

ca ed""^-3 M J ..^ We ■•, WiSh t0 consider what are usualiy
called basic blocks" by compiler writers, namelv, blocks of

urr%tlCnS r1"8 a UniqUe entry P0int and a unic5ue e^t P"int.
(We must remember at this point that, a "part" refers to a part
of he execution path, not of the program text; i.e. for .roilD.

instructions, a part refers t
g roups

particular execution of one
h ^'K ' ^^ ra0re flexib]y' »e ^n let the user define what

should be a part. This latter choice has the advantages of control
11«| the amount of storage required as a function of the length
of execution as expected by the user and of having a part corres-
pond to a conceptual step in the solution of the Sser's problem

rh. Girn/1i theSe alternat1^ strategies for defining parts,
the criteria for judging the suitability of
ofstrategyare: a particular choice

d.t* M HOW Wen doeS the Ch0Sen strateP.v perfo-m in answering data flow questions?

2- How practical is it to implement?

In Chapter 3. I s .all describe one choice and discuss its
implementation and performance.

Units of Data Flow

The most elementary unit of data as represented in digital
computers is the ubiqutious "bit". On the other hand, by far
he largest fraction of processing is done in terms of "words",

the size of vhich varies from computer to computer. Further a
significant amount of processing is done in terms of fractions

tl^rof'-bl k " 'r65'"; and a relativel>' —Her portion in terms of blocks' of words. In machine languages, "blocks" are
rarely used as individual operands in an instrSc11 on (a notable

■"■' -'--■i. i ■ i - — Mil ■■■—■—■

,mm,t -■ mm*m ...*... i

20

exception being the "transfer block" Instruction implemented
in certain machines). The "bit" is also very infrequently
used as an individual operand. Rather, it is usually employed
to express side-effects of certain operations, e.g. the setting
of the condition code, the bits in a processor status word and
so on. These side-effects are an essential part of the effect
of an instruction and hence any analysis facility must represent
and give access to them in an adequate way.

The "bytes" come in two flavors (no pun intended) : fixed
size and variable size, fixed size being the more commonly used.
In variable-size-byte machines, such as the PDP-10, one needs
both a starting position and a length to characterize a byte
whereas with fixed-size machines one needs only the starting
position. Bytes also form an important unit of data flow and
should be dealt with in full by a GPEAF. For exqmple, in the
input and output sets of a part, the location (word address and
starting position within the word), size and contents of byte
operands should be properly reflected.

The "word" is probably the most appropriate unit for represen-
ting the largest fraction of data fluw. I do not feel that I
need to dwell on the precise definition of a "word", since its
r.eaning for, probably all, commonly used machines today is clear.
An interesting class of exceptions to this would be machines, paper
or real, for directly executing high-level languages, such as a
LISP machine or a SNOBOL machine. In such machines, the selection
of the unit of data flow probably ought to be closely related to
the prituitive data structures of the language (e.g. atoms, lists,
strings) .

Thus, we can conclude our discussion of appropriate units
for representation of data flow by saying:

1- The main criteria for judging the suitability of a
proposed set of units are: (a) Is it capable of representing
all elements of data flow?, and (b) How efficiently, in terms
of storage and interpretation speed, does it represent the great
majority of operations?

2- The choice of data flow units has a large impact on the
efficiency of the analysis facility and hence its usefulness.

To summarize the functional capabilities required for control
flow and data flow analysis tasks, we can list them as follows:

Fl- Giving the control to the user (or a user-specified
analysis procedure) before or after every Instruction, and before
or after user-specified instructions.

._—a—^^—a—^^. .»■MdiiaftUHMA

^r~T^-'"" J' wmmmi*^*m tmimmiAim^^^^mw- i IMII^WIUHI IOTMI"PI> w^M^pp«

F2-

21

ividing the exeucution path into parts as specified
by the user and enabling the user to refer to thes e parts explicitly,

rh. /3\ Constru^ing the input and output sets of parts, »s
these sets were defined earlier.

pa

pa

F4- Determining the data flow from a part to the following
rt as per relat ion (1) , ft

F5- Computing the combined input ana output sets of adl
rts, as per relations (2) and (3),

acent

F6- Determining the effects of intervening parts on the
data flow between non-adjacent parts, as discussed earlier,

F7- Enabling the user to access every element of any input
set and any output set, and use the address and value parts of
the element in computations.

2•3 Performance Measurements

Performance measurements are concerned with relating the
resource requirements of a functioning unit to the degree to

«iri.l !S ilf,*- itS 80alS- Für exa"Ple. one might relate the
-^orage and CPL requirement of a compiler to the compactness
and efficiency of the object code it produces. A f;PF.AF should
offer the analyst high flexibility in making these measurements.

We can also talk about performance measurements of operating;
systems. For example, scheduling, storage allocation and paging
policies have become the subject of much research and analysis
from a performance point of view. An operating system can be
measured" in two ways:

(I) We can measure its component programs just as we
measure user programs (i.e. their storage and CPU requirements etc.)

(II) We can measure the performance of the whole system
while it processes a given workload (i.e. in terms of throughput,
average response time (for time-sharing systems), paging rate etc.)

I thall refer to the first class of properties as "program
performance and to the seconH class as "system performance".

Measurement and Modelling of Program Performan ce

Among the most frequently used measures of program perfor-
mance are such criteria as :

- - - - - ■•■ ■ — . -

(1) How long it runs with a certain input,

(2) How it spends its time.

(3) low much main storage it requires

Me
■ y s t e m
using t
(j ob-t i
has to
he want
CPU and
same in
p rogram
reasons
get a "
t i o n a 1
fac i 1 It

asu r
as u
im i n
ne)
rcco
■ t o
s t o

puts
■ r u
for

pure
oper
v t o

es (
ser
I pa
with
mp i]
mak
rage
can

nni n
thi

" me
at i n
off

1) an
a c c ü u
c k a g e
in th
■ his
e . V
char
vary
gat
s. L
asur e
g s y s
er mu

d (3) are generally provided by the operating
nting data. (2) is usually obtained by
s or explicitly reading the systen clock
e user program. In either case, the user
program to vary the measurements of type(2)

urther, in mi» 1 t i programmed systems, the
ges for running the same program with the
significantly as a function of the otht'

the same time. I shall not go into the
et it suffice to say t'iat one often can not
of a program's running time through conven-

tem facilities. Hence it behooves an analysis
ch more help in this area.

Ano
programs
to mea s u
want to
recompil
change o
made sue
und e r t ak
facility
of un1nt
execute
procedur
of the c
be able

t her
ha s

re bu
mea s u
a t Ion
ne wa
h mea
e c a s
to m

e r e s t
and m
e is
ode p
to de

prob
been
t wh
re .
and

nt s
sure
ual l
ode 1
ing
ea su
qui t
rodu
f i ne

lern in
what t
ich pro
In 1 ar
r e - 1 o a

to make
ment s t
y. It
or "du

parts o
re in d
e famil
ced by
a numb

program possibly using t
and measure the time for
This requires that one b
at some intermediate poi

meas ur
o do a
vide i
ge pro
ding t
to de

oo cum
should
mmy up
f a p r
e t ai 1
i ar to
a comp
er of

he "pa
each

e able
nt in

ing t
bout
npu t s
grams
ime a
a 1 w I
ber so
be p

" the
o g r a m
the i

t hos
Her.
paths

rt" d
c omp 1
to s

the p

he p
the
to

. pr
nd e
th t
me a
ossl

1 og
and

n t er
e wh
) D
P .

i
ef i n
e t e
ense
ath .

erformance of existing
parts which we do not want
the parts which we do
ogram modification,
ffort required for each
his problem, has often
nd time-consuming to
ble within an analysis
ic and simulate the timing
"skip over" them, and

esting parts. (This
o have done hand-patching
sing a GPEAF, one should

I = 1 , . . . ,k, t hrough a

itlons discussed earlier,
traversal of each path,
departures from a path

Another techniaue for measuring where a program spends Its
time is periodic sampling of the program counter. This technique
has the drawback that unless the period of sampling is chosen
with great care, certain parts of the program mav never appear
in the samnles because of "lock-^iep" synchronization between
the sampl g and the pattern of control flow. However this
problem can be overcome with ■ certain amount of analysis. This
technique has the advantage of considerably less overhead, com-
pared with other techniques such as timing each subroutine entry

 " ^-■■- —'- - --■—-'--■- ■ - '■-'-■jiMn^amMMHii. - - -- -- ■—■— -■■----

 . ~.^^^..—^

23

and exit. To permit this technique, an analysis facility must
enable the user to schedule "sampling probes" with a dynamically
controlled frequency (to overcome the problem mentioned above).

With regard to measuring the storage requirements of a
program, since these are strongly tied to the storage reference
patterns, I shall discuss those two subjects together in sub-
section 2.4.

Measurements and Modellini <f Svstem Performance

Under this topic I shall consider the measurement of such
properties of operating systems as system overhead, CPU utili-
zation, and paging rates (wh.^re applicable) as a function of
job mix and system desipn. It might be, reasonably, felt that
we are straying afar from our initially stated purpose of the
analysis of program behaviour. However, It r -st be pointed out
that the "true behaviour" of an operating system program ran
not be studied without some experimentation involving the proces-
sing of a typical job mix. It is true that studies Involving
tie characteristics of an operating system over several days or
weeks of user time probably fall outside the scope of an analysis
system of the fpe envislcned here, although many functions,
such as measurement^ of the average time between interrupts, the
storage reference patterns, the average job running time etc.,
which can be measured bv a GPKAF, could be useful in such studies

There is another, perhaps more
in which a GPEAF ought to be useful
approach involves the modelling of
and of the operating system via ana
which one can mimic the logic and/o
of these programs, as mentioned ear
Modelling of Program Performance,
is a routine in the language of the
job which generates an I/O request

seconds of CPU time, where each K
1

from a distrubution. Another examp
page reference pattern of a job. 0
such models of user jobs and model
under a given operating system, by
GPEAF to Interface the models with
might even model parts of the opera
servicing, scheduling etc.) for pur

interesting, way however,
in such analyses. This

parts of tho user workloai
lysis system facilities by
r the resource requirements
lier under Measurement and
An example of such a model
GPF.AF, which simulates a user

every K , 1 = 1,. .,n, milli-
1

may be a random number drawn

le might be a model of the
ne might take an ensemble of
the execution of those jobs
invoking the facilities of a
the operating svccen;. One
ting system (such as I/O
poses of expediency or efficiency

Let me now summarize the capabilities required for the
performance measurement tasks which have been discussed:

- ■ — ■

24

P^ m w<m i mmwv

Pl- easuring the execution time
user-defined paths in a program, required by arbitrary.

P2- Gaining control of execution at specific tl
or when I/o or other > i
program,

me intervals
supervisor services are needed by a user

P3

P4

2.4

Performing arbitrary computations when control is gained.

Simulating the passage of arbitrary lengths of time.

__Sj:orage Reference Analysis

the p t n w ^h h'us SyStemS' a ^™et- of interest is
Pattern. " it can he esliLVV ^ "l'1 reference ?••••. This
total workload he svstem l^to b!L! lar8e fractlon of ^he
for selecting rhl system is to handle, can effect the policy

page Fo examnL'^t \e SWaPPed OUt t0 make — f- - new
Pa'e to^ ^ ed'o ^ Lr^beT"^ ^ 0ften the
Has been written on since it ^s boh Ä tLTlt'^d Ü
has to be written out. ' i t: lndeed

of a jtj;;:i!riT"i;: iLs:;*!,""?—is th<, -"■«•«-... siZe
progran,. "1"!r 0 f u,,"'u'ä P8«" addressed by the

pattern and determine the effects of el^ch^e'^ ^Je'""8

There is at present virtually no
get this information directly. way for a programmer to

-ir^ha^: :U-nj^i\:h;:.;ij:nr:;.jj2- *< -
""^L^-rs^ch1^1^^^^-^^01^^^^
-to a register with L ^t v n ng'6 H:" ^ T*""? St0reS
such a period that reoi^tll fetches from it. During

values o'f o t h^ r va iabLs In'f/r'' ^ ^ USed t0 hold ^
pro.itably used to hold the '" fact ' when^er a register can be

(even if this mav mean slv inland're^ "^'^ 4J"«"«* variables
the efficiency-consciou. n! restoring each such value).

o^ reference L each ^c/r^^r ^ Want t0 ^^ the^atterns o

- ■ ■MMMB^MMMiMaMMIMai

mi^^^^mm^mmt^^m^r^^^fim

25

There are manv other types of analyses which might b<
callej storage reference analyses" but which I shall not
enume rate

The functional requirements for these kinds of analyses
can be summarized as:

51- ObtaininR every address (including registers) generated
by the program, when it is generated,

52- For each generated address, an indication of whether
it is an instruction, an operand fetch or a store,

53- Making arbitrary computations whenever a generated
address and the associated indication is obtained.

2.5. Summary of the Functional Requirements

In this section, I would like to summarize the functional
capabilities required for the four analysis areas which have
been discussed. I have no formal proof that these capabilities
form^a complete" set; nor do I pretend to know precisely what
the completeness of an execution analysis facility" may mean.
However, certainly it must mean "something more" than the trivial
formal completeness in the sense of being able to compute all
computable functions. Below, I give my understanding of what
that "something more" is.

We can consider the required capabilities in four classes:

1- What information the analysis facility has access to,

2- At what points in the execution cycle it can gain control,

3- Its instruction set,

4- External appearance and miscellaneous useful features.

2 •5.-i Information Requirements of the Analysis Systei im

The Analysis System needs access to at least two address
spaces: the address space of the object machine (which shall
also be called the "external state of the OH") anO its own symbol
space. (Some may want to consider the former as an element, e.g.
a large array, in the latter.) In particular, every address and
register accessible by the object program must be readable and
writable by the Analysis Facility. In fact, the access to the
object machine address space should be very easy and direct.

 ^ _ . ..-.v ^■!...,....J.iJJim

mmmii^mm WHU w

26

It the Analvsis System Is Inefficient in long computations
><nd therefore a need for a linkage to programs written in a
compiler level language (such as the one in which the Analysis
System may be written) is indicated, then the Analysis System
routines should have access to fhe symbol space of that compiler
level language.

It is desirable that the Analys.s System have access to
the operand addresses and values of the current object instruction
(which shall also be called the "internal state of the OM"),
without having to decode them itself. Thus, at the end 01 an
instruction cycle, one should be able to say, in effect: "If
this is a MOVE instruction and the source operand value is zero,
and the destination address is between A and B, then do...".

It is also helpful If a direct indication of the instruction
class (double-operand, single-operand, no-operand) is available.

The luestion of access to the timing of the object machine
must also be considered. The Analysis System must be able to
read the clock o: the object machine or otherwise determine the
object machine time easily, at least after each Instruction.
For some applications. It may be necessary to determine the object
machine time after each major (primary memory) cycle or each
minor (register transfer) cycle.

While this is not an absolute necessity (as we nave shown
that we can get by without it in the DAME system), it would be
desirable to have access to the user program text and symbol
table, so that the user could converse with the system in terms
of this own symbols.

It is clear from the foregoing discussions of control flow
analysis, that the user. In cooperation with the system, will
define a topology or structure over his program for purposes of
control flow history. It is also clear from those discussions
that empirical data associated with each component of that struc-
ture will be generated during the execution of the user program
and that this data will be linked to the appropriate parts of
the control flow history. Each of these elements of information,
i.e. user program structure, control flow history and dynamically-
generated empirical data, must also be accessible by the user.

2.5.2 Triggering of Analysis Actions

The user must be able to execute any (meaningful) set of
analysis actions after every operand fetch, store, Instruction
fetcn. Instruction completion or at specific points in time
(I.e. relative to object machine clock). Further, the user must

- ■ _^ ^__ ~**—-*

!

'»-"" '■"i.'^^W^^Wi.WWWW-JPi^i" F^BÜWfW^ifBWWf^»

27

be able lo specify, optionally, address ranges or registers
for which the stated action is applicable. In the rest of the
thesis, 1 shall refer to a stated sequence of actions to bo
activated at one of the above points as a "hook".

2'5 tj The Instruction Set of the Analysis Facility

The instruction set of the Analysis System should contain
two classes of instructions:

1- A complement of instructions similar to those of con-
ventional prop,rammin8 languages : these will be used to perform
assignment, arithmetic and logical operations, conditional execu-
tion, looping, subroutine call with parameters and I/O. In
fact, this subset of the instruction set should be a programming
language which is "complete in a practical sense". All the
computations, such as those encountered in performance analysis
or flow analysis, can be potentially done in this subset of the
language.

However, as mentioned earlier, in the case that the Analysis
System instruction set turn?, out to be unsuitable for long
computations, there should be an escape mechanism through which
one can execute subroutines which are written in a more suitable
language (possibly the one in which the Analysis System itself
is written). If that language has a syntactic construct, similar
to a function" in some languages, which returns a value, then
it should be possible to assign the value returned by such a
construct to a symbol in the symbol space of the Analysis System.

2- A complement of instructions particularly useful in
monitoring and execution analysis. These should include the
following operations:

(i) inserting, deleting, enabling or disabling hooks
statically and dynamically,

(11} defining "parts" in the execution path whose input
and output sets (discussed earlier under Data Flow, in sub-section
2.2.2) are to be determined automatically and made accessible
to the user,

(iii) Searching the input and output sets of previous parts
for one which satisfies a user-specified predicate (bettar yet,
making each set available to the urer in some systematic manner,
e.g. reverse chronological order, letting the user perform
arbitrary computations using the elements, i.e. <address, value
pairs, in the set, and tell the system whether he wants to
continue the search or not).

»M - --..-- -- - — ■■^^M

28

(iv) Displaying Input/output sets In an appropriate
format (i.e. indicating relations between addresses and values,
and the "byte" position and size where applicable),

(v) Backtracking to the beginning or end of a part found
in a search or specified explicitly by the user,

(vi) Moving further baelt or moving forward following the
execution of some Instructions from a "backtracked" position,

(vii) Resuming execution from the point where the backtrack
inst'uction was issued.

2.5.4 Fxternal Appearance and Miscellaneous Useful Features

Since the main design goal for the Analysis Facility is to
facilitate the performance of analyses of program behavijur,
clearly the associated command language should be easy to use
and have good error-detection features. It must be noted that
unreasonable-looking results obtained by some analysis procedure
are, in some sense, "doubly hard" to disprove or verifv, since
one may have to re-examine both the analysis procedure and the
process under analysis to determine the validity of the obtained
result. Further, one frequently has to compose analysis proce-
dures in a short period of time, often in an interactive, spon-
taneous fashion, a condition which increases the probability of
making errors.

All of these conditions point to the requirement that the
language of the Analysis Facility be simple and terse in syntax,
encourage structured programming, and not rely very heavily on
remembering many keywords. This last requirement is probably
the most difficult to achieve due to the. variety of specialized
functions which have to be performed in collecting and searching
execution history data. Further, the u'jectives or a powerful
language and simplicity of syntax conf. ct with the objective
of not relying heavily on remembering rmy keywords. However it
has been shown that verv good compromises can be reached; witness
APL and LISP.

These conditions also mean t'.'<*<- often the same commands
with minor modifications will be entered repeatedly, increasing
the possibility of making typing errors eacn time they are entered
Hence, the analysis facility should possess a "library" capability
where frequently used command sequences can be stored and called
when needed. Also, a good aditing facility for editing both
"on-line", i.e. loaded command sequences, and "off-line", i.e.
text files, is extremely useful.

 ^-•■—■■'^^ "• — --j-- • —■^^...~D-.- ^

■ ■IIIIJIIMBIIM 1 I i HI I I II I J llll I I

'mw************^-- - mmmmmmmmmmm—mmm^mmmm—mmH

"-' l""! ■ l"1 ' '

29

In referencing object machine Instructions, e.g. tracing
them as they are executed, or displaying a block of instructions,
the analysis facility should be able to deal with symbolic forms
as well as numerical. This ability is available in most on-line
debugging systems today.

It must be noted here
these functional requiremen
active, on-line analysis fa
the requirements become mor
in an on-line system, the u
variables and base his next
system, this is not possibl
the next best thing - namel
he uses into the analysis p
process can be mechanized,
examination by the user.)
sytem, anything that the us
interactive system should b
analysis procedures. On th
ment for the analysis langu
as in an interactive system

that t
t s are
cility
e seve
ser ma
ac t io

e. He
y. pro
rocedu
this i
This m
er wou
e ava i
e ot he
age is

he m
bas

F
re,
y di
n on
nee ,
gram
re .
s ev
eans
Id 1
labl
r ha
not

ent a
ed,
or b
and
sp la
wha
the
the
(To

en p
tha

ike
■ "i
nd ,
as

1 pi
is t
a t c h
some
y th
t hr
use
rea
the

ref e
t es
to s
nsid
the
seve

c ture ,
hat of
system
less .

e value
sees,

r would
son ing
extent

rable t
pec 1al1
ee d isp
e the m
"t er sen
re in a

on which
an inter-
s, some o f
For example,

s of some
In a batch
like to do

process
that this

o the visual
y in a batch
layed in an
achine" to
ess" require-
batch system

i ii i ■ mü i

w^mm 1
30

CHAPTER

THE DAME SYSTEM

In this
(Dynami'. Ana
been the maj
r iment i ng wi
for studying
for the PDP-
a prograFitnab
requ1renent s
the design o
design of a
for which so
solutions to
intention to
general use.
niques were
system for g
required to
iiiinimal cont
However, des
tool for ana

c h a p t
lysis
or veh
t h and
the 1
11/20.
1 e ana
set f

f DAME
genera
1u t ion
, at 1
deve 1
Henc

a 1 read
eneral
i mp1 em
r ibut i
p i t e s
1 y z i n g

er, I sha
and Model
i c1e in m
evaluat i

oglcal be
It cons

lysis fac
orth in t
was to i

1-purpose
s had not
east some
op a f ini
e, some f
y known a
use , wer

ent them
on to the
uch omi ss
program

11 describe the design of the
ling Environment) system, whic
y research for implementing, e
ng new ideas. DAME is a facil
haviour and the performance of
ists of a PDP-11/20 simulator
ility which achieves most of t
he last chapter. The main goa
solate critical problem areas
execution analysis facility (
been developed as yet and to
of, these problems. It was n

shed, tuned-up utility system
eatures for which satisfactory
nd which would be very desirab
e omitted from DAMP since the
did not seem justified in view
research aspect of this proje

ions, I have found DAME to be
behaviour.

DAME
h has
xpe-
ity
programs

and
he
1 in
in the
GPEAF),
propose
ot the
for
t ech-

1 e in a
effort
of their

c t .
a power fu1

In order to facilitate the reading of this chapter bv readers
with different objectives, 1 shall first provide a detailed outline.
This outline can also be used as a reference later to quickly
locate the section about a particular point, as well as to guide
the reader in the first reading to sections of more interest to

him.

Outliue of Chapter 3

The first topic is the set of data structures underlying the
design of DAME. In Section 3.1, I first summarize these structures
and then discuss in more detail some of them, namely, the formats
of objects and lists as well as certain master lists and symbol
tables which play an essential role in the implementation of DAME.

The description of these structures is provided only becausr
they facilitate certain search operations over pre-defined classes
of objects. An understanding of the^ is not required for an

overall understanding of DAME.

 '■— -^^.. . ..i........... ... ■ .- -^
- : - - - ■ ■ ■ ■ ■ -—-

30

CHAPTER

THE DAME SYSTEM

In this chapter, I shall describe the design of the DAME
(Dynamic Analysis and Modelling Environment) system, which has
been the major vehicle in my research for implementing, expe-
rimenting with and evaluating new ideas. DAME is a facility
for studying the logical behaviour and the performance of programs
for the PDP-11/20. It consists of a POP-ll/20 simulator and
a programmable analysis facility which achieves most of the
requirements set forth in the last chapter. The main goal in
the design of DAME was to isolate critical problem areas in the
design of a genera 1-purpose execution analysis facility (GPEAF),
for which solutions had not been developed'as yet and to propose
solutions to, at least some of, these problems'. It was not the
intention to develop a finished, tuned-up utility system for
general use. Hence, some features for which satisfactory tech-
niques were already known and which would be very desirable in a
system for general use, were omitted from DAMP since the effort
required to implement them did not seem justified in view of their
minimal contribution to the research aspect of this project.
However, despite such omissions, 1 have found DAME to be a powerful
tool for analyzing program behaviour.

In order to facilitate the reading of this chapter bv readers
with different objectives, I shall first provide a detailed outline
This outline can also be used as a reference later to quickly
locate the section about a particular point, as well as to guide
the reader in the first reading to sections of more interest to
him.

Outline of Chapte r 3

The first topic is the set of data structures underlying the
design of DAME. In Section 3.1, I first summarize these structures
and then discuss in more detail some of them, namelv, the formats
of objects and lists as well as certain master lists and svmbol
tables which play an essential role in the Implementation of DAME.

Ihe description of these structures is provided only because
they facilitate certain search operations over pre-defined classes
of objects. An understanding of them is not required for an
overall understanding of DAME.

- _ ._ - - - - . —

31

'" ' ■ ' ' ' '

[
of rh! PHD ^0n ' * another data structure, the representation
of the PDP-11 core, 1. described. In this connection. 1 also
present the general problem of representing the memory of one
computer in another, emphasizing the problems related to the
respective memory sizes and word lengths of the two machines.

In Section 3.3. the question of the "time-grain" of simula-
t on is considered. In particular, the costs and benefits of
simulation at the memory cycle level and at the instruction level
are briefly discussed and compared. (Note: This topic is dis-
cussed in more detail in Chapter 5.)

In Section 3.4, the hook mechanism is described. The types
of hooks and the points in the PDP-11 instruction cycle at which
they may be placed are explained. Whenever a hook is activated,
the PDP-11 simulator makes available to the user certain informa-
ion on the current state of the processor and the Unibus bv storin?
hat information in PDP-10 global symbols. In this section', a

list of the PDP-10 global symbols used for this purpose is given.

v . in Section 3.5, the most significant feature of DAME, the
Node Mechanism, is described. This mechanism permits a guaranteed
backtrack capability to any point in the execution history and
an analysis of data flow in terms of user-defined nodes. The
user thus has almost complete control over the amount of execution
history information collected by the system.

... A" understanding of the Hook Mechanism (Section 3.4) and of
the Node Mechanism (Section 3 75y~i7 essential to the um'.e r rtlTnTH n.
of the rest of the thesis. —" ■

In Section 3J), an outline of the DAME instruction set |«
given. First the general syntax of DAME instructions is specified.
The instruction set is divided into two subsets. The first sub-
set (Section 3.6.1) contains the instructions provided for normal
programming op-rations such as assignment, arithmetic, looping
and the like. These instructions are listed without much explana-
tion, except for several instructions which are more uncommon
(e.g. a search-list instruction). The latter are explained in
detail. The second subset of instructions (Section 3.6.2) consists
of those which are specifically designed for monitoring the execu-
tion of the -11, collecting data and searching them. These are
also explained individually. An understanding of this section
shoul be sufficient to follow the detailed illustrations given
in the next chapter. However, for those who wish a more detailed
and systematic description of the instruction set, a user'
is provided in Appendix A of the thesis.

s manua 1

In the final section. Section 3.7. some unimplemented ideas

 - - ^M^M^M^^

32

for improving the performance of DAME are discussed. They are
immediately implementable, as opposed to future research, ideas.

3.1 The Underlying Data Structures

In DAME, one has access to three address spaces:

1- Objects and list structures, which are the main class
of entities that DAME deals with,

2- PDP-11 core, general and device registers,

3- Global PDP-10 symbols used in the simulator.

(Note: These three address spa:es are not disjoint; the
PDP-ll registers and core are als" n^cessible as PDP-10 global
symbols. Some operations which norma ty operate on objects can
also operate on -10 pjobals.)

In the rest of this section I shall describe the structure
and possible attributes of objects, and several global, pre-defined
list structures which are crucial to the implementation of DAME.
The other two address spaces will be discussed in succeeding
sections. Tie reader who is not concerned with the implementation,
can skip to Section 1.2 without loss of continuity.

Most of the information structures generated by DAME during
the execution of an -11 program are in the form of lists, as
are DAME routines themselves and most of the pre-defined infor-
mation in the environment. The basic 1ist-processing functions
and the PDP-11 simulator are implemented via the Bl.ISS-based
genera 1-purpose simulation package POOMAS , developed by Amund
Lunde 1 LU 71) .

Attributes of DAME Objects

Each DAME object has the following attributes; a "successor",
a "predecessor", a "size", a "class", a "subclass" and possibly
a list of "secondary attributes". (The first four attributes
are provided by POOMAS.) Objects which are not members of any
list contain a special code, NONE, as their successor and predecessor
attributes.

All of the above attributes of an object, except the secondary
attributes, are represented in three "system words" preceding the
first "user word" of the object. Objects are addressed by their
first user word, called "word 0". The svstem words are also
called "word -1", "word -2" and "word -3". The standard object
format is shown in the next figure.

■ - ——^ ____M—.

HHBBi ;*^*• i ■

33

-■' " ■ ' ■"'-■«'■-■—--■«J J-i- wm, .< . .

1 1 lust rat Ion 3. 1

word - 3

word - 2

word - 1

word 0

word 1

word
(«-size -3)1

DAME Object Format

p r ed

class

subclass

succ ^

• s i z e •

SALP ■

System words

I > User words

pred : pointer to predecessor

succ- : pointer to successor

SALP secondary attribute list pointer

_. ■ -■ ■ i • umiJMi — • :■■.-:—■^-^^■^..^,.M-^ J

mBOTOT«M"«nPWI||P>MMlH 11". **■<■»>.*<■•< ■■"P"i 1 "■—' -■"■■' — -■-"- FT»-—t-r-r.-^B.

3A

In
' s u b class

addition to the class attribute, DAME objects have a
attribute. The subclass attribute designates the

general function of an object, e.g. DAM I', instruction subclas:
hook subclass, node subclass. Input-set subclass, output-set
subclass .

be de
a t: t r i
a n d a
The S
arb i t
but H
I as■
whene
an ob
c o p y i
the o
r e t r i
g i v i n

The "
f i n e d
b u t e s
re pu
Al. ai
r a r y
h ic h
r won
v e r a
jec t
Bg th
bj ect
eve t
g t he

secondary
for
of

t on
so |
info
can
Id 1
c er

of a
e co
and

ha t
sub

some
an ob
that

e rves
rma t i
not b
ike t
tain
part

n t en t
putt

i nf o r
class

at t
obj

j e c t
obj
as

on w
e a
0 re
node
i cu 1
s of
i ng
ma t i
of

ributti
ec t s
are

ect '
a co
h ich
part
cord
is

a r s
the

it o
on b
the

but n
t hems

s Sec o
nven i e
is to
of it
the c

entere
ubc las

1 o c a t
n the
y a s p
second

re those attributes which mav
ot necessarily all. The secondarv
elves represented as objects
ndarv Attribute List (SAL).
nt place for the user to save
be associated with an object

s contents. For example, suppose
ontents of some core locations
d. He can do that bv creating
s everv time the node is entered,
ions he is interested in into
node-object's SAL. He can later
ecial DAMF-supp1ied function by
arv-attribute-object.

Subclass Master List s

In order to provide access to objects via their subclass
(i.e. their general function) there is a master list for each
subclass, vhich contains a pointer to every object of that sub-
class. Thus, for example, it is possible to search the set of
all node-objects or hook-objects for one satisfying a particular
condition, or to delete all the DAME routines defined so far etc.
In particular, there is a subclass called "subclas»-master sub-
class", which contains all these subclass master lists. Most
of the objects existing at any given point in time, can be accessed,
without knowing their name or address, through these master lists.

Symbol Tables

In addition to the subclass masters, there is a conventional
symbol table maintained by DAME, which permits access to the
objects by their names. The Symbol Table is also organized as a
list and can be searched by the usual list processing functions.
Since the user can refer to global PDP-10 symbols, the DDT symbol

Mi

PT^SäT—

35
!

table is also present during execution. (A list of some useful
symbols is given in the User Manual in Appendix A). In trans-
lating a DAME instrurtion, if a name can not be found in the DAME
symbol table, then the DDT symbol table Is searched. (These
symbol tables are not to be confused with that used bv the P')P-n
assembler for PDP-11 symbols. The latter is not saved by the
assembler after assembly and is not available to DANE.)

j--.2 The Representation of One Main Memory Inside Anot her

In the next sub-section, 3.2.1, a discussion of the general
problem of representing one main memory inside another Is presen-
ted. Readers interested only in the approach taken in DAME,
mav skip to the following sub-section, 3.2.2, without loss of
continuity.

3.2.1 The General Prob 1 em

One of the basic representational issues In simulating one
computer inside another is the representation of the main memory
of the simulated machine (called the Object Machine or OM) in the
simulating machine (called the Host Machine or HM). The importance
of this Issue arises from the fact that it may have a big Impact
on the storage requirements as well as the running speed of the
simulation. (In this discussion, 1 shall limit myself to word-
oriented machines, i.e. those In which the greatest hulk of
memory accesses address words, as opposed to bits, bytes or
variabl e-lergth blocks.) Two major components of this issue are:
(i) The relative word lengths, (ii) The relative siees of
directly addressib1e memory in thf two machine.

Let us denote by W and W the words lengths, and bv M and
OH 0

M the sizes in words of the object and host machine memories,
H

respectively. (To be more precise, M is the size of the portion
H

of the HM memory which mav be used to represent the OM memory.)
In the usual, and most comfortable, case V W and M KM . This

HO HO
permits an explicit and direct representation of each word of the
OM In the HM. If W ?2W , then the Issue of packing more than one

I 0
OM word into one HM word com.-s up. Clearly, If M Is much smaller

0
than M , and main memorv cost is not a problem, or, alternately,

H

if the HM has no, or very inefficient. Instructions for extracting
a field out of an HM word which could represent one OM word, then

I
- - - -- ■ ■ — • - - -- ■

 - _^_M^^M^—^

g- _ i" ■■ II «II .11. ■mm^ra ■ •^" " —— -"

36

the odos are h?avily weighted in favor of mapping one OM word
to one iJM word. It must also be noted that the increased size
of storage required to represent the OM memory can also degrade
the running speed of the simulation In a time-sharing environment
by increasing the page-fault rate or by causing delays in being
swapped in bv the operating system.

If M M , one can use a "paged" simulated memorv technique,
H 0

bv dividing the OM memory Into pages and reading and writing
pages as required from a "paging disk" or drum. All the techniques
which have been brought to bear to improve the performance of
paged systems then become applicable to such a system. If it
turns out that the "working-set" of the program under analysis
is smaller than M , then the performance of this svstem approaches

H
that of one w tie re M M .

0 H

then more than one word of MM are needea to represent If W • W
H 0

one word of OM. In this case, the layout of the
designed to minimize the overhead of decoding OM
and anv "tag" bits used by the Hook Mechanism as
Section 3.4 and Chapter 5.

OM work must be
instruction operands,
discussed in

3.2.2 The Representation of the PDP-11 in the PDP-10

1
36-bit
packed
doned
of the
as soc i
t i o n L
object
slble
H o w e v e
non-em
wast ef
m o n i t ^
moni t u
i n DAM
- 1 1 wo
two b 1

n the case
PDP-10 wit
into one -

in favor us
remai n1ng

ated with t
ist (AL) of
s associate
by the user
r , norma 11 y
pty AL. Th
ul of core,
red program
ring action
E , t lie 1 ow-
rds, the hi
ts are used

of representing the 16-bit 28K PDP-11 in the
h up to 192K core, initially two -11 words were
10 word. However, this approach was later aban-
ing one -10 word per -11 word and utilizing 18
bits in the word to address a list of DAME objects
hat -11 location. This list, called the Associa-
ti.n location, contains, for example, the hook-

d wi:h tliat location, if any. It is also acces-
and may be used to save arbitrary information.
only a small fraction of core locations have a

erefore, this design decision may be considered
Nonetheless, as will be seen later, in heavilv

s, these lists permit much faster access to the
s associated with a particular location. Thus,
order 16 hltsof the -10 word are used to represent
gh-order 18 bits point to the AL, and the remaining
in the maintenance of input/output

nd
sets (S^rtion 3.5)

Only the existing device registers in the peripheral bank
are defined; attempts to access undefined locations will result
in a "time-out error" on the Unibus and an error trap will occur

-- ■ - - ■ ^^M^MMMatai^M« J

ii... Ji i«iiji ■ ii .m ^^^^nj^fw^pw

37

All error condir. icns are handled just as they are specified
in the PDP-11/20 Processor Handbook. The only supported 1/0
device at present Is the TTY. (Recently, 6 relocation registers
were added to handle C.mmp programs [WU 7 2.1.)

3.3 The Tiine-r.rain of Simulation

This issue has at least as strong an impact on the running
speed of the simulation as the representation of the 0M memorv.
The factor which has the major influence on the selection of the
time-grain is, clearly, the degree of precision with which one
wants to simulate the operation of the hardware. It has already
been indicated in Chapter 2 that this should be, at least, at
the ievel of Individual instructions. Thus, for example, one
wouxd be guaranteed that after each instruction, the state of
the memory and the value of the simulation clock would be correct
(within the tolerances given in the hardware specifications on
which the simulator is based)

Due to the existen:e of the so-called "non-processor request"
(NPR) interrupts on the PDP-11, although at present no device
which can generate NPR Interrupts Is supported, the simulation
has been designed at the memory cycle level. This design decision
was also Influenced by a desire to permit studies at the processor-
Unibus level. The overhead Introduced by simulating at this
level, as opposed to instruction level, is studied In Chapter 5.

3.4 The Hook Mechani sm

The principal mechanism by which the user causes DAME to take
some action while his program is running, is the Hook Mechanism.
A hook is an object having two user words; the first contains
a hook type, and the second a pointer to the list of DAME actions
to be taken when the hook is triggered. Hooks may be created,
deleted, enabled or disabled dynamically by the HOOK command
explained in section 3.6.

There are two categories of hooks: general hooks and addressed
hooks. Within each category, there are several types. General
hooks are those In which a user-specified DAME action will be taken,

^■"- - - —-'■—— — -— -■ - - - rt,
 ... ■......^..

n^ww^^W" "■ mfmm^^^wmm ■r«-^-—

18

depending on its tvpe, at one of the following points:

1 - After e v e r v fetch operation (type CF) or,

2- Before everv store operation (type CS) or,

i- Alter every instructio- fetch operation (type IF) or,

4- After every instruction completion (type 1C) or,

5- After every operand fetch (type OF) or,

6- After every node entry (type NE) or,

7- After everv node exit (type NX).

Addressed hooks difer from general hooks only in that
they are applicable onl\ when the specified operation (e.g.
fetch, store) is performed on an address in a specified range.
The types of addressed hooks arc:

8- After every fetch from an address in a given range
(type AF) or,

9- Before every store into an address in a given range
(type AS) or,

10- After every instruction fetched from a given address
range (type AIF) or,

11- The completion of every instruction fetched from an
address range (type AIC).

To insert a hook, the user issues a HOOK command specifying
the hook tvpe, the action to be taken, and if an addressed hook,
the address range to which the hook is to be applicable. He can use
as many of any tvpe of hook as he desires. Any DAME instruction
can be used in these routines.

The types of hooks available in the DAME system, combined
with the PROBE command which permits the activation of a DAME
routine at a specific time on the simulation clock, satisfy the
requirements Ksted in sub-section 2.5.2, "Triggering of Analvsis
Ac t ions".

Some Information Made Available by the Simulator

Whenever a hook Is activated, the PDP-11 simulator make?
available to the user certain information about the state of the

.^. ._ , ^

"^

39

PDP-11 CPi;, by storing this Information into global PDP-10
symbols. This includes: (i) The address and data associated
with the machiie cycle which activated the hook, (ii) The
operand registers and modes of the current Instruction, (iii)
Contents of the DATA, ADDR and CONT lines of the Unibus, (iv)
The simulation clock, (v) The addresses of the current node
object, input set and output set.

The data structures described in Sections 1.1, 3.2 and the
above data elements, together with the Execute External (XX)
and Evaluate (EVAL) instructions for calling BLISS-10 routines
described in Section 3.6.1, satisfy the list of requirements in
Section 2.5.1, "Information Requirements of the Analysis System".

3.5 The Node Mechanism

A second major mechanism by which the user causes DAME to
collect information about the behaviour of his program, is the
so-called "Node Mechanism". The Node Mechanism provides a means
by which the user can breakdown all or a part of a program into
blocks (called "nodes"), such that each execution of a node (called
a "node instance") can be considered as a unit in recording the
history of execution of that program. Pecallinp our requirements
about determining data flow among node instances and that any
part of the execution must be reconstructible from the recorded
execution history, it is clear that we can use the node concept
to effect that reconstruction by recreating each instance of
each node. To recreate a particular instance X of a node X, we

i
need to know all the inputs into X . Hence, for this purpose it

i
suffices to record each address from which X read something

i
before modifying its contents, and the value read. Let us denote
the set of such (address, value) pairs associated with a node
instance the "input-set" of that instance. It is easy to see
how one can back up arbitrarily fai in execution history by
restoring the input sets of node instances in reverse chronological
order starting with the current node instance. (Note: to
simplify references to node instances when the identify of the
node itself is not needed, I shall refer to a node instance by
its "index" in a particular execution, so that node instance n
will refer to the nth node instance since the start of the execu-
tion.) We must note here that restoring the input sets of node
instances k-p, (k-p)+1,...,k, where k is the current node instance,
does not mean that we are restoring the entire machine state
which existed when node instance k-p was entered; we are only
restoring that part of the machine state which will guarantee an
identical replication of the instances k-p through V Recalling

 ^^j-m^üttmmmmBim ml If II in • ■ ■ -

mm

AO

another functional requirement that we must be able to reconstruct
every past machine state, we realize that we must also record
the effect of each node instance on the machine state. Such
an effect can be represented as a set of (address, old value,
new value) triples containing every address where the node instance
wrote something (even if the old and new contents are the same)
and the contents of that address upon entry and exit from the
node instance. Let us call such a set the "output set" of that
node instance.

We also note that reconstructing the complete state which
existed when node instance k-p was enteied, also provides the
ability to replicate the execution of the node instances k-p
through k, i.e. we do not need the input sets for the purpose
of backtracking; the output sets are sufficient. We still do
need them however in answering questions about data flow.

One final observation I wish to make is that
appears both in the input and the output sets of
Instance, then its value in the input set and its
the output set are equal. This means that whenev
contain the same addresses, the first two element
in the output set (or equivalently, the pair in t
are redundant. An empirical study "f some input
shows that this redundancy is almo-c complete, i.
few exceptions, every address which appears in an
appears in the corresponding input set. This mea
restore the input sets of the last n instances in
logical order, we almost always restore the compl
which existed just before the n-instance sequence
always restore a sufficient part of the machine s
an identical replication of the execution if a ba
requested. (Important note: Here ve are neglect
of peripheral devices, such as the setting of sta
registers. These effects constitute communicatlo
independent processors, i.e. the I/O device and t
does not offer facilities for backtracking over p
such communication between two processors occurre
such a facility mav be programmed by the user and
addressed hooks in such device registers.)

if an address
the same node
"old value" in

er the two sets
s of the triple
he input set)
and output sets
e. with very
output set also

ns that when we
reverse chrono-

ete machine state
; however we
täte to guarantee
cktrack is
ing the effects
tus or data
n between two
he CPU. DAME
eriods in which
d . However,
inserted as

So far, we have not specified whether nodes can be overlapped
or nested. In the DAME system, if input/output sets are not
being used, nodes may be nested or overlapped, provided they do
not overlap at entry and exit points. If input/output sets are
being used, overlapped nodes are permitted, provided they do not
overlap at entry or exit points. In particular, for example, a
subroutine which is called from two different nodes constitutes
a part of each node instance in which it is called. If nodes are

■ llll ■■■ ---

 ~ ^mi*^*w*^*^mmm*mm^^mi i ü'PWP.I I I IIII «■ ■ . HI I .mmmnt^im ■ — qWI_l I !■■•—

l
41

Illustration 3.2

Node-object Format

• p r e d > <succ >

< e i • t i ■ <•!••>

NODESl'RCLASS 0

'start addr> 'endlnR addr >

■ i c o u n t ■ 'Inst. count--

•ISLP' •OSLP>

System v;ords

user words

start addr>

•ending addr-

i c o u n t >

•inst. count>

■ 1SLP *

■OSLP>

startine adtlress of node in -1] storage

ending address of node In -11 storage

no. of instructions executed In the last
instance of node

no. of instances of node

input-set list pointer

output-set list pointer

■B

 -- "■ -■■---- ■ - ■■ - -■ I. . . ■■ ...-■- --■ —--■-^. ■-■■ -^ ...■.- — .-- : ■ . ^—„_ t^^MMAMH^K^

43

Type-1 instruction' » -operator (-operand list)
Tvpc-2 instruction- ► -cperator-(«operand list action)
operand list- • operand /-operand list -operand
-operand ► -octal integer-/

-short char, string/
- g lobn1 - 10 symbol - /
object name

-action • DAMF. routine name- / -compound instruction
short char, string- ► up to 5 characters
-compound instruction ► (PAMK instruction list)
- DAME instruction list- ► DAME instruction /

DAME instruction list DAME instruction

As can be seen, some DAME instructions take simple operand
lists while others (in particular, IF, INCH, WHI, HOOK and ALONG
instructions) can optionally take the name of a DAME routine or
a compound-instruction (the analogue of a compound statement 0C
compound expression in block-oriented languages) to be executed,
as the last operand. All operands of a DAME instruction must
be defined prior to the execution of that instruction. Objects,
which are not pre-defined bv the system, are defined hy the
Create (CR) instruction (except for DAME routines, hooks and
value-trace objects, as described later.) The form «octal integer
refers to the contents of -11 core location octal integer at
the time the DAME instruction containing the form is executed.

3.6.1 General Purpose Computation Instructions

DAME provides a complement of instructions corresponding to
the usual constructs used in programming, to wit: assignment,
arithmetic and logical operations, looping and conditional execution,
subroutine calling and I/O. I give an undetailed list of these
instructions here in order to convey their basic functions and
appearance. A detailed description of their effects is given in
Appendix A.

Create object:
CR(' obj.name
(e.g. CRCA.))

class subclass- -size)

Delete object:
DEL(-obj.id)
(e.g. DEL(A))

Insert in object:
IOBJ(target word no
(e.g. IOBJ(A 0 2))

value)

Insert indirect in object:
I IOR,](- target • obj . id
(e.g. IIOBJ(A I 0))

word no.)

UW II .1 UM

44

Insert in PDP-1] address:
I(<address value)
(e.g. 1(10000 54))

If-then-else :

IF(opdl- '-rel ■opd2> -then-action I-else-action-;)
(e.g. IF(A »CT I (I0BJ(A 0 B)) (T0BJ(B 0 A))))

While-do :
WHL(•opd • -action)

Incr-from-to-by-do :
INCR(var- -from-opd- -to-opd- step-opd action)
(e.g. INCR(A 10000 10040 2 (I(A 0))))

Execute DAME routine:
EX(-routine ■)
(e.g. EX(ROUTl)

Push parameter:
Pl'SH (• value •)
(e.g. PUSH(A)

Pop parameter :
P0P(-obj.id)
(e.g. POP(B)

Return K levels:
RET(■ leve 1 count -)
(e.g. RET(N)

Type out object:
10BJ(- obj . id •)
(e.g. TOBJ(A)

Type object indirect:
TI0BJ(-obj.id)
(e.g. TIOBJ(A)

execute routine ROUT])

cush contents of A)

pop into B)

exit N levels cf nesting)

type object A)

type object pointed by A)

Type PDP-10 symbol:
TY10(-global variable id>)
(e.g. TY10(PC) type contents of program counter)

Type contents of PDP-11 addresses:
T(starting addre ss -'--end i ng address 1)
(e.g. T(10000 A))

Type immediate:
TI(literal ■)
(e.g. TI ('ABC) type the char.string "ABC")

^^a^^-a-a^—^-ri

, I..,.

A5

Write disk
WDSK(
(e.g.

obj . i d)
WDSK(A)

Write disk indirect:
WIDSK(-obj .id ■)
(e.g. WIDSK(MNODESC)

write the contents of A
in file TSKR.DAM)

write the contents of all
node-objects in file USER.DAM.
Recall that MNODESC contains
a pointer to the node-sub class
master list)

Read disk:
RDSK(- ob.j . id)

(e.g. RDSK(A) read a word into object A

from file USER.DAME. Read
and write operations on the
same file can not be intermixed
without closing the file.)

Generalized unary operation with assignment:
UA('-unary op. -target -opd»)

unary op.> * SUC/PRED/SAL/SIZE/ADDR/NOT
(e.g. UA(,SUr A B) put in A the address of

successor of K)

Generalized binary operation with assignment:
BA('-binary op.> -target- <opdl- 'opd2>)

•binary op.- > +/-/*/-s1 ash •/AND/OR/XOR/!
where -slash- denotes the division

(e.g. BA('+ A A B) add B to A)

the

operator "/"

Execute external routine:
XX(-PDP-10 routine id
(e.g. XX(TYPLIS 10000)

-param.1i st > j)
execute TYPE 15(10000))

Execute external routine and assign returned value:
EVAL(-target PDP-IO routine id- ('param.list
(e.g. EVA1(A TYPLIS 10000) A • TYPLIS(10000))

Get the value of simulation time and assign:
TIME(- target • 'stale- '

-scale- • MICS/MILS
•type- ► FIX/FLOAT

(e.g. TIME(A'MICS 'FIX)

type>)

Insert in A the simulation
time in microseconds, as an
integer)

 —

46

Plot character:

PLOT(<poBltion
(e.g. P1.0T(5 'X)

char)

type char, "y" in column 5)

The DAME language was designed to provide a simple syntax

in order to minimize syntax errors in the analysis process and
to facilitate its translation. It was also intended to be a

"low-level" language into which ■ higher level analysis language,
such as the one discussed later in Chapter 6, could be compiled.

While I shall leave the undefined non-terminal symbols and

most of the semantics of the above instructions une1aborated,

a few explanations are in order. Wherever a numeric argument is

expected, if a name is supplied, its contents are taken. The

non-terminal target ■ denotes the name or address of an object

into which the assignment is to be make. The syntax of the gene-

ralized unary and binary operations with assignment is admittedly

very awkward, but it permitted me to save pome code in interpretinf
the operands for each operation.

In addition to these instructions, since the fundamental
data structures used by DAME are lists, there is a set of list

manipulation facilities. Some of these are provided bv POOMAS

and are accessible via the ..X and EVAE instructions listed above.

These are routines for creating, deleting and maintaining lists.

DAME provides facilities for taking the union, intersection and

set difference of two lists and assigning the result to a third

list, in a syntax similar to the preceding instructions. It

also offers a unique "Search List" instruction whose svntax is:

SI.IST(-target list id search spec.-)

■search spec » action--

which

el erne

and f
is a
rou t i
spec I
must
then
man i p
PUSHe
DAME,
store
the u
this
reach
the i

wor
n t o
op i
se co
ne c
f ied
obta
per f
u I at
s a

t he

d i p

se r

case

ed,

ns t r

k s a

f th

ns t r
nd s

al Is

i n

i n t

orm

ing

1 bv

add

t a

wish

, af
DAME
uc t i

I f o
e 1 i
uc t i
tack

.)
• sea

he |

arbi
the

DAM

r ess

rget
es t

ter

wi 1

on .

1 low

st -

ons
, ca
Con t
r c h
tack
t ra r
s t ac
E, 1
of
an

0 co

the

1 in
Oth

s :
H s
1 is
1 le
rol
spe
ed
v c
k .
n w
the
d t
nt i
s t a

ser
e rw

DAME
t id -

ted ah

d t he

is t h
c . • ,

a d d r e s

ompu t a
If he

h i c h c

c u r r e

he ins

nue th
c k is

t a 16

i s e , t

push

on t

ove

"mon

es the

he "da

o p e r a t
i t o r s

addre

t a s t a

eon t

tack".

en p
In t

■ w i

t ion
w i s

a s e

n t ■
t r u e
■ se

popp

-bit

he a

as sed

he ■ se
t h a P

■ • pre
hes to

t he st

1emen t

t ion e

arch,

o d , if

-1 in

d d r o s s

to t h i.

arch s

OP ins

f e r a b I

end t

a c k w i

in t h

xec u t i

he can

t he e

targ

of th

ss of

ck".

his s

used

DAME
pec .

t r u r t

v wit

he se
I 1 be
e 1 i s
on t e
PUSH

nd of
et a
e nex

t he
(The

tack.
for
i nst

, the
ion.
hou t
arch,
popp

t w i 1
r m i n a

a 0.

the

n d t e

t e 1 e

first

P u s h

There

DAME
ruct ions
user
He can

further
he

ed by
1 be'
t ed

In
list is
rm i nat e
men t of

If

■ ■ -

47

the list will be Pl'SHed and the cycle will be repeated
example, the instruction

SLIST(A 1.1STA (POP(B)

IIOBJ(C B 3)
IF(C 'GE 5

(PUSH(l))(PUSH (0)))))

For

would search LISTA for
5. If such an element
object A; otherwise A

an element whose fourth user word
is found, its address is returned
will contain a -1.

contains
In

l^<Li Execution Monitoring and Analysis Instructions

In this sect ion, the s
which perform the functions
range of facilities desirab
analysis facility is descri
again narrative and informa
of the primitive operations
with the instructions for i
creating input^output sets,
searching input/output sets
replays", monitoring specif
collecting the last k value
via an operation similar to
for typing out node objects
mentioned before.

ubset of the DAME instruction repertoire
essential to providing the wide

le in a general purpose execution
bed. The style of the exposition is
1 to give a good intuitive understanding
and data structures involved. Starting

nserting hooks, defining nodes and
I shall describe instructions for

, restoring node instances, "instant
ic paths of control flow, automatically
s of a location and addressing them
indexing, as well as the instructions
and node instances which have been

The Hook Mechanism, described earlier, is used to insert
hooks to perform the user-specified actions at user-specified
times. Instructions for manipulating hooks are:

HOOKC-hook-type>'action- [-address range-! hook name)
(e.g. H00KCIC (TOBJ(A)) 'HIC) Type the contents of A

after every instruction)

DEL(• hook name •)
DISAB(-hook name ■)
ENAB(<hook name•)

(e.g. DEL(HIC), DISAB(HIC), ENAB(HIC))

(Note Brackets L, J indicate optional operands.)

These will insert, delete, disable or enable, respectively
a hook named -hook name-. The -address range> is only required
for addressed hooks.

I
■ i i^---^- ■ - i , ■■■MaMH^MBMrt—m«^» ^»MMWilMi

ilimi« ■ wHmvwiPTTW

4«

Cf «tion of Mod«« «nd Input/Outout S«f

*h« »Od« Mechanism, also described earlier, can be evoked
in one of two wavs: via the RODE instruction or via the MR
instruction. The svntax for the former is:

NODEC address range •■node name)
(•.g. HODE(20000 20100 'MOPEA))

The execution of this instruction vill cause a node-object
Of name node name to be created. The format of the user-vords
< f a node-object is given in the following figure. Each node-
object contains, among other data, a pointer to each of two lists
ti input-set list (I8L) BBd its output-set list (OSL). If the

node has not been executed as vet. these U.t. are emptv. An input
or output) set consists of a list of ten-word objects.' An

he^Irs; r!r).Pai
ir ^ inserted int0 e^h word, starting with

lu rst word of the first object. When and if the first object
is full, a second object is created, and so on. ihe list h««d
contains one user word which contains the index of the first
empty word in the last object. All unused words contain zeros.
Ih high order bit of each word contains a 1 if onlv a byte was
a cessed. 0 otherwise. (The onlv variation to this rule is in

luvSbit J^ Pr0jrSSOr StatUS WOrd PS- Sin- th. FS is esse:-
mod eH !Sr le' ^ indicatlon of which bits were read or
^od fied is needed. To do this, we can take advantage of the fact
hat only the lower 8 bits of the PS are usable bv the user. W en

b" e of M83"8 ^ ^ ^«^««tput set, a bit mask' in the upper
llllvli Jl. ""tents" part Indicates which bits were accessed,
^vever, this Mature Is not implemented and the PS is treated

g^ster 0 •"'•••) The PS and al, the general and device

of •s'and'osi •reSented ^ theIr COnSOle •"'•••••' The format l IBL s and OSI. s Is given in Figure 3 3.

To provide for more flexibilltv in the use of I/O sets
separate instructions to initialize and build I/O

idcd. Since the building of these sets add,-
sets

quite
ia v e been
■ bit of

of a
For example, the following hook causes the initialisation
new input-set at each node entry.

HOOKCNE HISO) 'HUE)

r~m

49

111ustrat ion 3 . 3

INPUT-SET LIST (ISL)
for a Node

ISL ptr
from node-obj

IS ptr f rom
Node-trace table

IS for
1. instance

of node

IS for
2 . instance

I :

T i
-X-

address va luc

■ i ■ — ■-

I IJIIMMI» I III M 1 MJ appp^i^ppa^m^^p ■WP Lin RI< «»wMi«Kw^npMiv

50

Illustration 3.4

NCPFTPACF Table Record

for a Kode Instance

start of
record

+ 1

+ 2

+ 3

start addr. flags'

instr. count at entrv-

input-set ptr^ output-set ptr-

no. of instructions in node inst

- ■■ ■ ■ ■ - i -- - - - - . _ . _ _ - — - • - - - - -

51 1
Her. Ml is the name of the hook

to disable or enable the ho A later, ej bv the

DISAR(HNK)
ENAB(HNE).

or,

can be used
1nst rue t i on

Trace NTROnr" 0f/0deS can be defaulted by usin, the Node
DI.ME bv Ln to in ^b "• '? thiS CaSe' nodes are <•"•- ^v
tial floTfol ln "ntrol flow. When it varies from sequen-
branch s «LJSd X!" " When ^ »"«"•••'«l conditional'
a new nodV™; IV .VtlllY "uMT*^ 'l "****"•* ^ one for ^ha^ *AA entered. If the new instance is the first

he defauU nod ^ ' "^ ^^ 0bJeCt is -"ted. Thus, in

sane .anner ^w^h^ i^Jru^ io^ i s^ ^ ^ t " " ^

Ulii&JÜJLli Executed Nodes and Input/Output Sets

Gi
the nod
w h a t e v e
fac ili t
to fac i
i nt ende
provide
Output
(mi).
Values
(RPLAY)
I shall

ven the
e-t race
t e x e c u
ies , in
1 i täte
d spec i
d. The
Set(FOS
Find Va
(PLAYB)
, Type
now de

form
tabl

tion
part

mos t
f ical
se in
ET) ,
lue (
. Pes
Node
sc r ib

at s
e de
info
icul
comm
ly f
s t ru
Find
FVAL
tore
Ins t
e ea

of the node-objects, the I/O sets and
scribed earlier, the user can extract
rmation he needs bv usinp the language
ar the list-processing operations. However
on types of analyses, a set of instructions'
or searchin« these data structures is
ctions are: Find Input Set (FISET), Find
Node Object (FNO), Find Node Instance

), Find Value Indirect (FIVAL), Plavback
Node Instance (REST). Peplay Node Instance

ances (TNI) and Type Node Objects (TNO)
ch of these instructions in detail.

The
input set
f iable co

sets are
of the s e
and a pre
language
the p redi
to design
f i na1ly a
instruct!
and acces
arbitrary
he wants
already i
procedure

F ind I
satis

nd i t io
to be
arch (
d icate
for s p
cat e c
a who

dop ted
on. 1 .
■ the
compu

to con
mplerne

The

nput Set
f ying
ns ar
s e a r c
i.e.
wh ic

ec i f y
ould
1 e ne
was

e. to
value
tat io
t i nue
n ted
svnt

Set
som

e th
bed.
f orw
h sh
ing
be a
w la
that
let
con

ns o
or

in t
ax o

(FIS
e us
e id

the
ard
ould
the
rbit
ngua
des
the

tain
nth
stop
he s
f th

ET) i
e r-sp
en t if

star
or ba
be a

predi
rari]
ge f o
er i be
sys t

ed in
em . a
the

y s t e m
e Fin

nst rue t
eci f led
icat ion
ting po
c k w a r d
p p 1 i e d
ca te wa
y comp1
r this
d under
em help
it. an

nd then
search,

I sh
d Input

ion
con
of

int
in e
to e
s of
ex a
purp
the
the

d to
tel
us i

all
Set

at t em
ditio
the n
and t
xecut
ach i
some

nd i t
ose .
Sear
user
let

1 the
ng th
now d
inst

pts to f
ns. The
ode w h o s
he time
ion hist
nput set
concern
was und
The tec

ch List
find ea

the user
systern

e 1ac i 1 i
esre ibe
ruction

ind an
spec i -

e input
direction
ory) .

The
, s ince
es i rab 1 e
hni que
(SLST)
c h input
perform

whether
ties
this
i s :

FISET(-object id-
(•direction-

node spec. > search spec-
"start ing index ; J)

 - J

 ' ^^mm^*mm*m**

52

Let us ignore all the operands except search spec.' for
the time being. -search spec.' must be a DAME routine name
or an explicit instruction sequence (similar to a "compound
statement" or "compound expression" in some programming languages).
Before the search spec. ■ is entered, the system locates and
internally PUSHes the address of the next input set to be searched
(PUSH and POP were described in the preceding section). The
user must obtain this address by a POP(A) instruction, where
A is some object name, which puts the address of the input set
to be searched In object A. Then the contents of address K in
that input set can be extracted and saved In some object B, by
the Find Value Instruction, as KIVAL(B K A). The user can, in
this i anner, obtain the contents of any address In the Input set
pointed by A, and perform calculations on them using the language
facilities. If he is finished with the search (e.g., he has
found the input set he Is looking for), he PUSHes a 1; otherwise
he PUSHes a 0. After the last instruction In -search spec. has
been executed, the system will POP the stack. If the value is
0, then if the end of the node trace has been reached, it will
insert a -1 In -object Id> and will terminate the FISET Instruction
If the value Is 0 and the end of the node trace has not been
reached, It will push the addrcsü of the next input set to be
searched, proceeding in the direction specified by <direction>
and re-apply -search spec.--. If the popped value is a 1, the
index of the node Instance just searched will be inserted in
<object id- and the Instruction will be terminated. Thus, after
the FISET instruction, object id- will contain either -1, which
indicates that no Input set satisfying the specifications was
found, or it will contain the address of the first acceptable set.

To illustrate the use of this instruction, suppose at some
point in the execution we wish to find the most recent input set
where the contents of location 1000 equal the contents of location
2000, and put the address of that input set into some object D.
To do this we shall need three more objects (in fact, we could
pet by with one by using the same object for various purposes
but we shall not do so here). The following instructions create
these objects and perform the required search:

CRCA) CP.CB) CRCC) CRCD)
FISET(D '* (POP(A)

F1VAL(B 1C00 A)
FIVAL(r 2000 A)
IF (B 'EQ C (PUSH(l))

))
(PUSH(0)))

to
The symbol

be searched.
* for node spec.> indicates that all nodes are
The syntax of the IF instruction is:

IF(-obj.id.' --relation- -obj. id- <then-case>[-else-case>])

 -..■-.. ■MMMite^MMaMI

•».»I. ,,1..„,«..,,.„. — '«P ""-i- ■i"*"ww"^™(nn

53

The Find Output Set (FOSET) instruction works exactly in
the same way as FISET, except that output sets are searched.

The Find Node Object instruction, whose syntax is FNOCobj. id
-11 address), inserts in ■obj. id- the address of the node

object associated with -1] address- if such an object exists.
Otherwise a -1 is inserted.

Find Node Instance, FNI(-obj. id node id n Istartinn
index ! •direction> ! 1), will similarly Insert in obj. id the
index of the nth instance of -node id- searching the node trace
in the direction- specified starting from ^starting index .
The default values for the two optional operands are: "the
current node instance" and "backward", respectively.

Find Value and Find Value Indirect are used to extract the
value associated with an address in an input or output set where
the I/O set address is given in the instrueti cm , and where the
I/O set is pointed by the object given in the instruction, respec-
tively.

The I»»tOf to Bod» Ittifnc«. REST(N), instruction moves
backward in execution time, restoring the input rets of node
instances until index N is reached; e.g., if the current node
instance is the Kth node instance executed, REST(N) would restore
the last (K-N+l) input sets.

The Replay Node Instances instruction RPLAY(•starting index
! ending index- J), will cause the restoration of the input sets
ot the node instances between the specified indices. The simulation
time is also restored. The Instances whose input sets have been
restored are then re-executed. Upon termination of the last
instance the environment in which the RPLAY instruction was issued
is re-established.

The Type Node Instances instruction TNI(I starting index>]
<count -) types the node trace entries for abs (■count) instances ,
starting at -starting index , and moving forward in time, if
-count is positive or backward if -count- is negative, where
abs(x) denotes the absolute value of x.

The Type Node Objects instruction, TNO(addressl -address2 ...)
tvpes out the node objects associated with the specified addresses.

Detecting Specific Paths of Execution

I would now like to describe the instruction ALONG, whose
syntaxis:

. . — J

54

ALONC(path^ -action)
•path- ♦ <node id- / <path> •node id«
'action^- * --DAMF. routine name- / (-instruction sequence-)

Suppose we have defined nodes Nl, N2, ..., N7. Then, the
instruction

AL0NG(N1 N5 N7 X)

would cause the action X to be taken if the current node Is Nl ,
or if the last two nodte* have been Nl and N5 , or if the last
three nodes have been Nl, N5 and N7, in that order. In short,
the specified <action> is taken whenever the flow of control
could be following the specified path. The ALONG instruction
is, as are all DAME instructions, executable through every type
of hook. Hence it provides a convenient facility for taking
selective action (e.g., tracing) as a function of the locus of
control flow.

Collecting and Accessing Precious Values of a Local ion

Finally, a mechanism for automatic
values of a location and for accessing
mentioning. The first action is accomp
of two instructions. The first is the
IVT(-11 address • ^n> ^obj. name-), whi
•obj. name of a special subclass and 1
previous values of location <-ll addres
is the Value Trace Hook, VTH(---11 addre
causes the monitoring of values stored
address> and maintains the last <n> sue
buffer in object -'obj. name> created by
at any point in the execution, the Kth
address- is obtainable by a binary oper

collection of the previous
those values is worth
lished through the use
Initialize Value Trace,
ch creates an object named
arge enough to hold - n ■
s>. The second instruction
ss>), instruction which
into the locdtion <-U
h values in a circular
the IVT instruction. Then,

previous value of <-ll
ator f, as

BA(*I B ■11 address- K)

The instruction BA(<opr> ^target> <opdl> <opA2>) is the
generalized "Binary Operation with Assignment" instruction and
performs the operation: ■target> • <opdl> 'opr> 'opd2- in infix
notation. Thus the above instruction would insert in -11 address
the Kth previous value of '-ll address>. If K is larger than
the number of values declared to be kept in the IVT instruction,
an error message will be typed and no assignment will be made.
If K values have not yet been assigned to <-11 address>, then
a special code larger than 2tl6 will be stored in B.

■ ■ ■! i ■■ ^a M^^fcM^M- _ — — - - . - ■ in i IIIM^TI ■ ■■ mimumä

■-" ■■ ,_

55

3.7 Various Design Issues and Unimp1ement ed Ideas

In this section, I shall discuss some design issues which
arose in the course of the development of DAME. Most of thep-
are related to improving the execution speed of the simulatinn
and decreasing the monitoring overhead. I shall also outline
some ideas which have not been implemented mainly because they
would not contribute significantly to the research aspects of
this proj ec t.

1

3.7.1 Representation of -11 Core and the Design of the
Hook Mec han1sm

Since the representation of the PDP-11 core and the Hook
Mechanism lie at the heart of the implementation plan, these
two points are worth re-pondering and alternative implementations
worth considering.

As was mentioned, an earlier implementation of the simulator
packed two -11 words into a -10 word, one into the low-order
16 bits of each of the lower and upper halves of each 36-hit
-10 word. In that implementation, the high-order two bits of
each -10 halfword were used to Indicate the presence or absence
of monitoring actions associated with the fetch or store of each
data word (e.g. a word fetched or stored by an instruction) or,
with the fetch or completion of an instruction. The monitor
actions themselves were located via a table look-up on the parti-
cular address Involved. A seperate table was used for each of
data fetch, store, instruction fetch and instruction completion
operations. This design makes possible a substantial saving in
the core requirement, approximately ((28K/2)-n), where n is the
number of locations for which a hook exists. The essential price
paid for this storage saving is the overhead of the table look-up
procedure. assuming that approximately l°A of the locations are
hooked and a binary search is used, about 8 comparisons are
needed to locate the monitor action pointer associated with a
particular address. Further assuming that one address Involved
in every instruction has some monitor action associated with it,
this overhead is roughly equivalent to twice the overhead of
decoding the op-code of an -11 instruction. In addition to the
monitoring actions associated with particular addresses, there
are those due to the so-called "general hooks", i.e. actions to
be taken at every fetch, or every ^tore etc. Thus, there alreadv
is substantial overhead due to monitoring. So, the decision to
map one -11 word into each -10 word and use the left half of the
-10 word for a pointer to associated monitor actions was intended
to avoid further degradation in the monitoring overhead, but
exactly how much is gained in response time in a time-sharing
environment is not clear since the larger core requirement delays

MMM-JUMMMMUI
• ■ ■MMBMiMM

wzs • • i "i• 11 "I -» ■ I "' '■ll

the swap pi
word leng t
equal and
proposed b
can be use
bits avail
actions, o
into the w
it. Then,
of the add
they are f
be some mo
set up for
schemes.
action ind
includes t
that addre
permitted

56

ng-in by the operating system
hs of the object machine and
one would like to use a one-t
y Bernard Lang, [LA 72 i, call
d. In this scheme, since the
able to indicate the presence
ne inserts a special bit patt
ord when one wants to assocla
at every fetch or store, one

ress being accessed with the
ound equal, this is taken as
nitor action associated with
this purpose ?re searched, i

If an entry for that address
icated by the entry is perfor
he actual contents of that lo
ss is found, no action is tak
to continue.

scheduler. When the
the host machine are
o-one mapping, a scheme
ed "Lambda-monitoring",
re are no additional
of associated monitor

ern (called "Lambda")
te monitor actions with
compares the contents

bit pattern Lambda. If
a signal that there may
that address. Then, tables
ust as in the earlier
is found, the monitor
med. The table entry also
cation. If no entry for
en and the execution is

This scheme is clearly very similar to the scheme used by-
current debupging systems which insert a trap instruction into
any instruction address where the user wants to put a breakpoint.
The "Lambda-monitoring" scheme simply extends this technique to
applv to data elements as well as instructions.

In using such a scheme, clearly, "bugged" locations must he
write-protected from the user; i.e. the data to be stored into
such a location must in fact be trapped and re-routed to a special
register holding the actual contents of that location. That
register is the same one whose contents are fetched upon a fetch
operation on the bugged location. The first requirement implies
that prior to every store operation, the current contents of the
store address must be fetched and compared with Lambda.

I shall have more to say about this technique in Chapter 8,
when I go into the implementation of monitoring features in
microprogram or hardware.

3.7.2 Scheduling with J_o£k-ahead

One of the main bottlenecks in the simulator is the event
scheduling process. As was mentioned, the time-grain of the
simulation is at the memory/regist er access level. The particular
simulatioi. package which is us -d is a general-purpose simulation
package, in which an Event Notice is created for each event to
be scheduled showing the time of activation and the process to
be activated. After each event, the. scheduler consults the event
calendar and activates the process indicated by the first event
notice having the earliest time of activation. In our case,

-- - ■ ■ -

57

since there are no simulated devices rther than the TTY, there
are usually only two processes which receive and surrender
control: the CPU and the Unibus. Further, the two are never
active simultaneously in sir.ulated time. While this design is
a clean and consistent one, permitting the addition of new
devices to the I'nibus in an easy wa" logically quite similar
to adding them to the real Unibus, and also permitting studies
on bus utilization, timing of signals between devices on ^he
bus etc. to be done verv naturally, it is also quite expensive
in terms of scheduling overhead due to the event notice preperation,
placement and searching of the simulation calendar.

Some measurements on the gain in simulation speed through
this technique is reported in Chapter 5.

3.7.3 "Blow-up" Representat ion o f the Processor Status Word

Another techniaue by which the speed of the sinulation may
be increased is reducing the amount of individual bit manipulati.n
in the handling of each PDP-ll instruction since this is a very
slow operation in the PDP-10 (at least, in our model). A good
candidate for this case is the modification of the Processor
Status word (PS), si.ice most instructions modify one or more bits
in this word. Further, each bit must be computed and set seper.it.
Since the PS is affected by most instructions, this causes a good
bit of overhead.

This problem can be alleviated to a certain extent bv
representing each of the six fields of the PS by a seperate word.
However, caution must be taken that, in case the user program
explicitly addresses the PS, then the result of the read or write
operation is reflected properly on the Unibus lines and the wordl
representing individual PS fields.

J

58

3.7.4 "CompllatIon" of Decoded -i 1 Instructions

PDP-

the

the

rout

each

i s a

PDP-

t i on
p r . ■ v
subs

c tmp
sy st

disc

As
1 1 i

e x t r

oper
i ne

re-

"co

10 c

, in

Id«
eq ue

iled

tai,
u s s i

it is

n s t rue

act ion

and r e

to be

i n t e r p

mp i1 at

ode t a

wli ich

for nu
n t 1 v .

and i

e . K .

on of

designed, the sirulator re-interpret es every

tion everv tirre it is executed. In particular,

of the op-rode, the operand addressing modes,

Risters and the selection of the particular simulator

called, causes considerable loss of efficiency in

re tat ion of an instruction. What this suggests
ion" of each executed PDP-ll instruction into

ilored specifIrallv for that particular -II instruc-

a 1 1 variability has been eliminated. This would

ch more efficient execution of that -II instruction

(The concept of processors which can execute both

nterpretive code has been implemented in various

I'DP-IO LISP. Also see J. yitchell for a good
this topic [Ml 70 .)

One
w i t h

be e

wher
fiel

hand
I I ;

no t

if a

of a
be i n
be t
will

wh i c
s ■ V ,

can

h ■ s
va r i

unco

I do

firs

The
is t

the

xecu

I n

d i n

the
■ di

t< c
n i n

loo

g us

0 c 0
cle

h a r

thr
be e

been

es a

nd i t

ub 1 e

t ex

re
he

a r

fa
c orp

ted f
i s ■
t e r p r

n umh
f f i c u

o ■ p j 1

st rue

p or

ed ag

mp 1 1 e
a r I v

e exe

ee or

xam i n

i mp 1

s a f

; p.a 1

- 11 ■ r
ecu t i

e sever

c t that

i 1 a 11 on

ewer t h

func t i 0

e t a t i o n
er of t

It tot

e . One

tion is

a commo

a i n are

an ins

be some

cuted |

four t

ed more

e m e n t e d

u n c t ion

branch

and ins
on .

al

th

i t

an

n o

ime
el 1

he

us
n ■
go

t ru

wa

xac

ime
tli

of

ma'

t r iK

r o b 1 i

re w i

elf;

ome n
t he

0 w e v e

each

which
r is t i

das

b rout
d. I
tion

t e du

1 y t w

Th

rough

t ray
the i

not

tion

m s w h i

1 1 be

there

umber,

actual

r , in

i ns t r

i ns t r

< rule

econd
i ne et

heref o

the s e

e to t
ice or

is par

I y aft

wel 1

n s t rue

be wor

m a v be

c h ■
cons

fore

n ,
o ve

gene

uc t i

uc t i

vh 1

time

c . a

re ,
cond
he c

eve

ame t

er t

turn

tion

t h c

wo r

ust

ider

, in

t i me

r hea

r a I ,

on w
on t

ch c

, it
nd h
a re

t i ■
omp i
n t h
or ,
he c
out
c 1 a

omp 1
th c

be r
a b 1 e

• t r u
s s h
d of

we

i 1 1

0 CO

an b

i s

enc e

a son
e i t

1 at i

o s e

name

omp i

tha

ss ,

ling

or p i

e s o J v

over

c t 1 on

ou 1 d

comp

d o n 0

be ex

mpi 1 e

e use

proba
i ts

able

! S U

on of

which

lv, t
1 a t i o

t t h i

eg.
11 a

1 i ng

e d how
head a
■ w h i c

not be

i 1 a t i o

t k now

ecut ed
and w

d i s t

b 1 y ■
chance

app r oa
s ?d .

i nst r

are e

he n u m

n p r o c

s numb

a simp

11, wh

after

ever,

ssociated

h will

c o m p i 1 e H

n versus

before-

Hence,
h i ch

bat

part

s 0 f
c h ma y
There
u c t ions
xecu t ed,
be r n .
ess
e r
le
e r ea s

i ts

It is clear however that the simulator has to be able to

execute both forms of PDi-ll instructions, i.e. the "unrompiled"

PDP-11 machine instruction and the "compiled" version, which in

the ultimate, is a sequence of PUP-10 machine instructions

ociated with the particular -11 instruction location.

Another question whi.h must be resolved in order to use

thll technique is bov to associate the -10 cod« with the appropriate
-11 instruction address. One solution mav be to insert the -10

S9

■nstructions associated with a particular -11 location i ,u o
an object ana to use a table of size k, containing pointers to
these objects, where k is the size of -1] „emorv containing

tructions. The overhead required to locate the reauired -10
code Bust be ninimized to make this technique worthwhile.

In the desii i^n of DAME, there Is a particular feature,
theAssociatlonLlstforeach
problem verv naturallv

of DA^E.
core location, which solves t

One can insert the object contain!-

t.ie -10 instructions for a particular -11 location as the f
element in the Association List of that location. If more
rality is desired, one can Introduce a new subclass, called
code subclass" and insert an object of that subclass anywh
in the Association List. However, this will of course Inrr
the search time. The use of association 1 i s t.- for this pur
also obviates the need for the large table required bv the
technique.

n a m e 1 v
hi s
R|
1 rst
(? e n e -
"FDP-l0

ere
ease
pose
first

Finally, in this connection, we must note a problem with
seJf-moditvin^ programs, namely that if a particular instruction
is modified during the course of execution, its old "compiled"
version rust be deleted and a new decision has to he made as
to whether the new version should be compiled. In fact, if a
particular instruction will be changed frequently, it probably
should nut be compiled.

-3 • 7 • 5 Hurt her Comp i 1 a t i on _o f DAMF. Instructions

t hat
This
p r e s e
op-co
of th
t h | o
Of c p
at r u
de f 1 n
d e c 1 a
howe v

Ano t he
of f u i"

is par
nt , bA
de and
e r o u t
p e r a n d
erand s
n - t i m e
i t i on
red w h
er, f o

r area wort
ther compil
ticularlv t
M K instruct
symbo lie o

ine to exec
s, respectl
and certal

It 1s p o
time since
en the obje
r i nd1rec t 1

n ninus or type and size checking ar
ssible to do a large part of this at
object size, class and subclasses ar
>-t Is created. This would not be po
v accessed objects.

1 s

code .
At

DAME
dresses
es of
e number
e done
r o • ■ L i n e ■

e
ssible.

iti -6 A "Limited-Run Cjjmj3_l_e_te -Trace" Fe a t u r (

As was described earlier, backtracking to a particular
instruction n is implemented bv restoring in reverse chrono1oßica 1
"rder, the input sets of node instances until the one including
the instruction n is restored, and then exerting the instruction,
preceding n in that node instance. BacktracKine has been Implement^
in a dirferent wav bv , at least, one more worker, Ralph Grish-an

ftO

in the AIDS system at NYU Courant Institute of Mathematical
Sciences. The following description of the implementation of
this mechanism is taken from K. Stockton f.aines' thesis:

"... The back-up mechanism mentioned above is original with
Grishman, and is sufficiently Interesting to warrant a detailed
description of how it is accomplished. AIDS keeps four tables
for this purpose; let us call them Rl, R2 , SI and S2. As AIDS
is interpreting the user's program it goes through the following
process. At some point it saves the state of the machine registers
in Rl. and after that each time the user's program stores a new
quantity into a location in memory, the previous quantity at the
location is saved in SI together with the address which is being
changed. When SI li full, the registers are stored in R2, and
execution continues with AIDS saving the previous values and
addresses to which stores are made in S2. When S2 is full, the
process starts over again with Rl and SI, and so on. When the
user issues a request to back up, AIDS fetches the most recent
item from SI or S2 and puts it back where it was originally. It
then puts back the next most recent, and so on, until it has put
back the first quantity saved after the next to last time the
registers were saved. At this point it can restore the registers
to the values they had the next to last time they were saved,
and AIDS can roexecute the program from that point to the interrupt
at which the back-up was requested, since the program and its
storage are now in the sane condition they were when the program
reached that point for the first time..."

While I believe that the node mechanism and the input/output
set concept of DAMK have significant advantages over this method
in terms of storage requirement and the ease vith which the
collected information may be used in data flow analysis, there
are times at which the user would like to see a complete trace
of certain portions of his prograv. At present, this can be
done in DAME bv attaching general hooks to fetch, store and
instruction completion events to type out the required information.
Alternatively, if the number of instructions to be thus traced
is small, each Instruction can be declareü a node, in which case
the node mechanism will construct the input and output sets for
each instruction. Nevertheless, it may be desirable to have a
detailed trace" mode in which every memory and register access

is recorded in a "trace object" This would be useful, for example,
in directlv answering questions Like "What was the second value
assigned to X in node N?", or "What was the value of X at instruc-
tion 1?", without the restoration of the required input sets etc.
However, such a facility would have to be used in a highlv selective
and judicious manner sin^e it would require a great deal of storage
and CPU time overhead.

61

CHAPTER 4

ILLUmATIVE ElAWFLIl ff fnum APPLICATIONS OF DAME

DAMK Mr K
chaptor' I sha11 Illustrate the main features of

fa^il a it' a I"1.0' examPl- of Its application. A modest
familxarity w.th the architechture of the PDP-11 will be helpful

e^ a"" d n " —Ples- ^—"y U«.».,. notation win ' ut explained as necessary.

nodes'and l*™*1***™/^™- The first one demonstrates the
nodis and the input and output sets of a program, as well as
he mechanics of loading a PDP-11 program' inserting Vooi"

•Vconl .Alill V 'n COre and the lniti^i"" "f execution. The
matrix I J t™0"*1™^* **• construction of a node transition
node i to ^"Se.£>lement J<*.i) ^ the number of transitions from
node to node smce the beginning of the execution. In the

a is an address which is
1

of the Ich instance
instance of node M

intersect ion

of

input set

node | and the output set of the precedintz
If node N has not bee'n executed between te'

iKh and Ltk instances of N, then X Is emptv. a is the valu,

i 2
and read from location a by N

1 i
from the preceding instance

III

a is the value of
3

at the exit

of H.

»••• four examples are intended to provide illustrations
o dynamic analvses of control flow, data flow and performance

uitlbl Tr" ^.V 0f "•^•- for ^ich a svstem like ^MF
e "a Mo rana r'i ^ "" "l "M PDP-1] Pr0^am tü ^monstr.n.

n exposition ,,qUeS- F0r the MCPOM of simplicitv ion. the chosen program is a small one-.
quicksort" routine. It

suitable, but is i n c 1 u d e M

a one-page
is given and explained in Example 1.

The f if h examp e is not one for vhich DANE is pa r t i c u 1 .■ r 1 v
.kU, but is included here to show that even in cases which

would s rain' a simu1 ator-based software monitor svstem. one
£'u eÜ na,^—fuI f-i^V ^ exercising some intelU ^nce

li its use. Ihls example deals with collecting instruction mix

I llll T«

62

and addressing mode usage statistics on several PDF-11 programs.
The collected statistics, while they are Interesting and possibly
useful in their own right, were used to project the running
times of the same programs on a PDP-11/40 and -11/45.

Example 1 Nodes and Input/Output Sets of a Quicksort Ptogram

As a first
language progra
I ! '. i;st ra t i on .
see DEC 7 1 .)
the "quicksort "
code given here
to be a s s e m11e d
of the notation
operands, R S i ■
I denotes indir
of register K b
automat i c i nc re
been used. All
instructions is

example, let us consider the PDP-ll assembly
■ (H'ICKSORT, whose text is given in the next
(For a specification of the DKC assembly language
The program implements a simplified version of

algorithm as given by Knuth in 'KN 73 . The
was compiled by the Bl.ISS-11 compiler (DEC 73 1
by the MACXll assembler. To explain briefly some
in the assembly language: f denotes immediate

eans register i, SP is the stack pointer (register 7),
ec t addressing, -(K) denotes automatic decrementation
efore its contents are used, and (K)+ denotes
mentation of register K after Its contents have
integers are in octal. The syntax of double-operand

opcode^ -source-operand-, -destination operand-

(All Integers are in octal.)

Ihe program consists of two parts: a recursive subroutine
called OSORT located between (relative addresses) 0 and 166, and
the main program between 170 and 204. The main program expects
two integers in registers 0 ard 1, which are to be the bounds of
the core locations whose contents are to be sorted. It simply
pushes these parameters on the stack (which grows downward from
Its initial value of 1400) and calls the subroutine QSORT. This
subroutine works as follows:

It uses Rl and R2 to point to the lower and upper bounds,
respectively, of the vector to be sorted. If Rl Is greater than
or equal to R2, there is no sorting to be done; hence It returns.
Otherwise, it compares the elements pointed bv Rl and R2. If no
exchange is necessarv, K2 is decremented by 1 and the process is
repeated. After the first exchange PI Is incremented by 1 (Note:
Since sorting Is done in units of words, the addresses are really
incremented by 2). Comparison with the element pointed by R2
and incrementation continues until another exchange occurs, at
which point P2 is decreased again. The sorting goes on this wav,
"burning the candle at both ends", until Rl and P2 point to the
same element. During this rrocess, the value which was initially
pointed by Rl has been exchanged everytime the direction was
switched. When R1=R2, this value will have found its final position

a

i.e., the position it must have in the completely sorted vector
(The interested reader can convince himself of this.) Kurtlier,
this element now divides the vector into two parts, namelv,
that to its left and that to its right. These two parts, which
Knuth calls "subfiles", can be sorted with the same procedure.
Hence, QSORT then calls itself twice, to sort first the leli
subfile and then the right subfile.

The -11 code given in Illustration 4.1 was produced bv the
BLISS-11 compiler and the comments, preceded by the symbol ":",
were inserted later bv hand.

I
stored
to be
every
output
the p r
wi] : b
which
two ro
two Ci

20000
start i
sma 1 I
and R 1
execut
C to b
I hook
to the
progra
to 2 JO

n this
In a f

sorted,
node-ex
set f o

ogram r
e used
is list
u t I n e s :
:> I e s of
(this c
ng a t I
part of
; load
es it;
e used
to c a 1
I'UP-l 1

m. (Al_
00.)

examp1
i 1 c na
set t

it, t v
r t he
un to
to do
ed I n

F'tMO
t he Q

0 p y is
oca t i o
it wi

s a n o t
de f au

for co
1 the
start

1 "rel

• i I
med
he d
pe o
firs
comp
this
I 1 lu
1 an
u i ck
the

n 30
1 1 b
ho r
1 ts
unt i
rout
IB|
a t iv

shal 1
OSORT,
e f au1t
u t the
t five
let ion.
are co

st rat io
d TIO (
sort pr
one wh

000 (tli
e sort e
rout i ne
the nod
ng to 5
ine TIO
at 1 oca
e add re

load the
initial I z
mode for
node-obj e
node inst

The mon
ntalned i
■4.2. I
for Type
ogram , on
ich is ex
Is copy w
d .) : it
D K F 1 0 f r

e definit
; ini t la
at every

tion 20 17
s ses in

-1 1
e a
node
eta
anc e
I t or
n a
nth
I/O
e st
ecu t
I 1 I
Init
om a
ion;
1 i ze
nod

0, t
this

program,
vector o
definit

n H l h L' c
s. Then

* n • t r (i c
tile c a 1
is file,
Sets) .
ar t ing a
e d) and
be used
I a 1 i z e s
file ca
create

s it to
e exit;
he add re
examp1e

which is
f 40 e1emen t s
ion and, at
urrent input/

I will let
tlons which
led DEMO! ,
there are

DKM01 loads
t location
another
as data: a
reg Ist ers R0
1 led DEFIO and
s an object
0; inserts
Rives control

ss of the main
are relative

The routine DKFIO (listed at the bottom of illustration 4
is a standard routine for constructing input/output sets. It
works as follows:

2)

The svmbols Cl'RNOBJ , CISP and COSP used in TIO are global
PDf-10 variables which point to the current node-object, the
current input-set and the current output-set, respectively. (As
a practical matter in the use of DAMK, if the monitor routines
to be used turn out to be long or if we aren't sure they are
correct, it is a good idea to prepare them as text files and
load them at run-time rather than define them on-line, during
f • •■ analysis sessi-n.) The format of type-out for objects and
lists is: The wo.ds of an object arc typed between slashes. It
a word is not zero, it is typed as left half t> right half ,
otherwise it is typed as 0. Thus, node-objectV are tvped out as:

64

•starting loc. -,, • ending loc.> /-no. of instr. in it
no. of instances- /-input-set ptr> , ,-output-set ptr

Lists are typed as I-object:- <ob j ec t > . . . |. Certain
called "rep-object-,", which are an artifact used for impl
hierarchical list structures and member ship in multiple
contain onlv pointers and are typed as • followed by the
object. I/O sets are simply lists of ten-word objects ea
containing up to ten • add r ess • , , • val ue > pairs. I'nused wo
contain zeros. Thus, an I/O set containing up to 10 (add
value) pairs is typed out as:

■ address •,.<value • / ■address • , ,-value^ /.../0 /01.

An I/O set containing more than one 10-word chunk is tvped
out as :

objects,
emen t inß
lists,
pointed
ch
rds
ress ,

first 10 words- next 10 words 1.

(Registers 0 through 7 are represented by their console
addresses 177700 through 177707 respectively, and the processor
status wordbyl77776.)

Illustration 4.3 shows the protocol for this example. User-
typed portions are underlined. The comments in small type were
entered later and are not a part of the protocol.

It inserts t
HIIS (Initialize
hooks of type NE)
one hook but this
enabled without e
I0S() and IIS() i
during the node i
and HBIS (Bui Id I
operand store and
routines issue th
respective sets,
be closed. This
issuing the CIS()
problem is that i
nodes, the hooks
a node and r e-e n a
initially disable
and HDISB which a
They call the rou

he hooks named HIOS
Input Set) to be act
These operations
method permits elth
ffect ing the other.
nstructions respectl
nstance, the hooks n
nput Set) are insert
every operand fetch

e B0S() and BIS() in
At node exit, the i

is done by the hooks
and C0S() Instructi

n case the entire -1
HBIS and HBOS must b
bled at entry into a
I these hooks, and i
re activated at nodr
tines ENAB and DISAb

(Initialize Out
i vated at node
could have been
er one to be di
These routines

vely. To bui]d
amed HBOS (Bull
ed to be activa
, respectively,
structions to m
nput and output
named HCIS and

ons respec t ivel
1 program is no
e turned off at
new one. Thus

nserts the hook
entry and exit
to perform the

put Set) and
entry (i.e.
done with
sabled and
issue the
the I/O sets

d Output Set)
ted at every
These

aintain their
sets must
HCOS, by

y. One final
t covered by
exit from

, DEFIO
■ named HENB
respectively,

ir functions.

While this procedure for building I/O sets is rather long
and elaborate, it is more efficient and flexible than automatically

■■■""

65

iVöTilV^ oT*170/"!' K-th-. by preparing it as a file and simply calling it when reaulred, it can be

The

used easily,

it is less than 5, the following

illustrates the The protocol shown in Illustration 3. als,

rvn./ I 177701 is the console address of register 1
ypes out certain information about the state of the program at'

th r^rin^r1 node entrv or exits where "I'«« 1 ~ eitner as input or output.

The message
ou

encountered
u""^^ AT 20206, followin« the last I/O set

bv the simulator when the halt instruction is

■

6 7

Illustration 4.2

Contents of file DFMOl :
iDAME Routine DEWOl

DC«0l(L0*D('0S0HT ?0000)

U0t0(iQ30RT 10000}

lOBJCRO 0 J0000) 10BJ(Rl 0 JfllOO)

LM«(I0EP10 ••) EXCOEFIO)

Comnent s

:ioad QSORT file starting .u 20000

!load a second copy as data to be sorted

!Insert bounds in registers

Uoad DAME file DEFIO; exec, routine DtFIO

NTR()

C»(iC) 10BJ(C 0 0) Icreate C; Initialize It; default node definition

»tJN(20l70))
IDAME Routine TIO

T10(!F(C 'LT 5 (K)((C»LM TK'NOOCl)
TIOBJCCUBNOBJ)

TK'INPUT) T!("-SET|)

TI0BJ(CI9P)

T1(«0UTPT) TIC-BETi)
TI0BJ(C03P}

«*('♦ C C 1))

(0I9AB(MTI0))))

Contents of file OKFiO:

iDAMt routine DEHO - causes initialization, building

Istart to run from 20170, QUICKSORT

Ilf C < 5 then
I (type msg and current node-object

Itype curr. Input set

•type curr. output set

liner. C)

^otherwise disable hook

land closing of input/output sets
0tF10(MO0K(tKE (lOSO) «MIOS)

MOOKPOS (BOSO) IMBOS)
M00K{"N)r (COSO) IMC09)
M00K(INE (IISO) "MUS)
HOOKttOr (Bism 'MBIS)
H00«<(tNl« (CISO) "HCIS)

DIS«B(HBIS)

H00K(*NE ENAB 'HENB)
HOOM'Nir DIS*fl "HOISB))

EN*B(EN*B(MB0S) ENABfHUlS))
0|9AB(DISAB(HB0S) DI9Ag(HBlS))

Ilnltialize output set at node entry
Ibulld output set at each store operation
Iclose output set at node exit
Unitialize input set
Ibuild input set at each fetch operation
Iclose Input set at node exit

1 initially disable "build i/o set" hooks

lat node entry, enable them
lat node exit, disable rhtnn again - In case nodes
Idon't cover entire program

tmammmmmmmm

■ ■ i ..

68

11 lustraLion k.3

• HON DAME

UAHEl ;/!«...

••L*r((■ÜEMÜI ••)

••£A(DEM01)
•-flLE LOAOiLL) 2BH0Ö ro 20206

---PILE LOAC-D 30000 ro 3a206 I Typed out by th« LOAD coon.n* In DJMOI

3H000/I374,,0/|77

000/1372,,3810«/

NOOE.2a000./2kJa£,4/1^#1/2abb0(qj#2055a2

20020.. :0/1372,,3k,1^S;200,0..,/177700..30000 --.200, 4, ,, 2/, 374, , 3000«;

OufH -M- ^"^l^';77«'"3«««0/0/0/0/./0/0/0/0 , 'M ^776.,0/I7770|,.30000/0/0/0/0/ö/e/0/0 ,

mjUl ^T't'77^".30000.30000..1(,M6/177702„30I00/30l00„,403/0/0,0/e/

00.^-^.^1 77776..0,30100.. ,403/0/0/0/0/0/0/0/0 ,

;2;itjj«j;^«^i..i/iwtiT..tMtii

6U/n770L^^^7]/7
a/

6^/;77703''l^l46/:J0f'0f'•••^3/30I00,,,e146/177707,,?005
---MALf AI 20206

t us now, for exacple, display the values of reg-
.ster 1 at the ei.cry or exit from the most recent

••K.ArBC 17770, 3j
rhc ronaat of the type-MJt 1»;

3 node Instances In whose i/o sets It appears.

Instance
Index

S'.arcing Instr.count Input Output
A. dr. at entrv set Addr.

Value in
i/o set

3621 NODE INST. 2^r6"^0000 4107 3^6301542 4 OUTPUT VALUE :30100

362. NODE MIT. 20160000000 4,07 30,5,630,542 4 INPUT VALUE 130042

"■'"' --»^^™— «»■

69

Example 2. Construction of Node Transition Matrix

A common type of model u
is the so-called "transition
the number of transitions fro
each element in this matrix b
the same row, one can obtain
matrix P whose element P(l,j)
node to be executed belnjj nod
i. In this example, I shall
the matrix M. Since we do no
initially allocate the space
take is to use the data in th
by DAME as the -11 program ru
nodes. However, this table i
it is co be dumped onto disk
zero. This pointer is initia
contains some additional Info
shall maintain the integrity
time the table NODETRACE is f
onto disk.

sed for represent
matrix" M whose e
m node 1 to node
y the sum of al1

a Markovian trans
is the probabi11

e j given that th
give a DAME proce
t know the number
for M. Thus, the
e NODETRACE table
ns, to count the
s of fixed size a
and its pointer N
lly 4, since the
rmation in the fi
of the matrix M b
ull, prior to d'jm

ing control flow
lement M(1,J) is
j . By dividing
the elements in
itlon probability
ty of the next
e current node is
dure for constructing
of nodes, we cannot
approach we will

, which is maintained
transitions between
nd when it is full,
TRACEPTR is set to
table initially
rst four words. We
y updating M each
ping the latter

To load the program and initialize the main memory, we shall
use the DEM01 routine of Example 1 except that the TIOBJ Instruction
for typing out I/O sets will be removed.

In the file named FLW, given in the next illustration, there
are four routines: FLW, CHFLW, SFLW and FINDI . FLW is to be
executed only k-h-n the table NODETRACE has been dumped onto disk
for the first t ime.

FLW determines the number of existing nodes by taking the
cardinality of the "node subclass master list" pointed by MNODESC:

2
stores that v^lue in E, sets F=E , declares the node transition
table H as containing F words aid the vector NV, which will contain
the starting address of each noL", as containing E words. It also
creates the object G, which will be used tc index into NV, and
sets it to zero. It then searches the node subclass master list
to determine the address of each node and fills in the vector NV.
The node whose index in NV is i will be represented by the column
i and row i and M.

The routine CHFLW is activated prior to each dump via the
hook HNX1 inserted at run-time; it goes through the table NODETRACE
and passes each node-address in chronological order to routine
SFLW. SFLW computes the index into the table M for each node by
calling FINDI to get the index into the vector NV of the node
address passed to it, and updates M.

II I itl l^KlH

MpB^miinuiiMia-i IIP , --

70

The success of this procedure clearly depends on the
execution of every node defined in program at least once until
the first dump so that Fl.W will see It« name in the NODK.TRACE
table and put its address in the node ve-tor NV. However, if
some node does not appear in NODETRACE, this will he detected
by F1NDI since that node wiM not be found in NV, and it will
type the message ' ERROR-IN-FINDI' and return the control to the
user. So, this procedure for constructing M is not foolproof,
but it is efficient since it requires little monitoring activity

between dumps of NODETRACF.

Illustrations 4.A and 4.5 show the DAME routines and the

protocol, respectively.

---t*«*^cM" • '■- —'■—

71

I 1 In- t r ii Ion

I Routine PIM

n.«(:»(tr) ci»(<f) CBCISO) C»C«|«CI etc*rii CRMFPI .
!i:?! ?:!::i "(,o, c*("<' ^«(.5,^ ip B

Rf LD;oresomeübjectsforiateru,e
C'CD CRCU) CR("I) CB('C».00£)

Initial search HDUS tor NODETWCE

get no. of nodes, E

2
sire of M, F - E

create M and NV; (Ignore 100 and 0)

C - 0

Search List (SLST) works Ju.t like USET; ste S.i.l

IC8J(L 0 U) I0BJ{U 0 mo)

f*4L(e C*B01N*L ', MNODESC)

etc*« ioo o ^) CCNV ioo o n

lOBJte o o)

SlSTfM «N00E3C (^OP(H)

f y

11

"*('/ M N 1000000) Iget left half

' ' ' ' .-^Mo; - H, o •- 0*1; continue search

•get left half of every 4 word of NODhTRACE Into J

MiCM 5EtT,.B0UGM >, N}^

. f s*-'1 word ^ I0BJ(M H) J of node-ohj. into H

iRout^e CHUM

ei#k*(lMetCI L U a (BA(i| J »iOOET«* u
BAP/ J j lOOCOOO)

Ipass If SFLW

1 Routine S>LW
S'LutP^PfCNOOE)

PU3M(J)

fXfSFL»))))

Ipop passed pjraraeter into CNODE

\.eni ^f oldnj.o then (oldnd - cnode, return;

•El - index of OLUND in SV

PUSN(C>.00E) IKftMtll »0P(Ei)
.F2 - index of CNODE In MV

BAf'a IN0 Fl |) . _
• cc»=pute Index Into M

BAP» INO 1N0 fi)

BAP I INC * ISO) •„ , ,. ' -get old tount In M

BAfU INC ISC 1) lOBJC ISO ISCI • ii iuojv iiu i^cj .intrenent and store it back

.oldnd •- cnode lOBJfOLOSC 0 CSOOt))
'■f.-.'-.-e FIND!
EIs;i(P0P(O)

L

I^rnfJ 0 E I

(BAp 1 N NV J)

IP(x "PO 0 (»üSM(J) ■CTftllHI

TIpEBOO») Tl(i-IN.F) TIPINOII) STOPO)

Hook for passed address In vector NV

I If found, return its Index

lulherwUe report error and stop

72

1 ! lustr.it ion •. >

. KUN UAMf

ÜAMCl 1/ It). . .

•«MM •l-LMOl •.) LHK('FLW ••) |U.d DAME fll«. DEMOt -nd FLW. The hook HTIO ha.

Ibeen removt.'d fron Dmol
• •MBOHCM liriMTMC» »M 0 CHFI>)) -HNAI) ;h(>ok ntai to b. .ctlv.ted l.t.r

• »UliAHC MNÄI) Idltable It

• •Hi-ljKt'NA (irtNIKACE^ "EU HS

••* <tA(kLW) EX(CMFLW) IOHJ(L 0 0)!>iwlU be executed «fter 1. dump only
••' ENAHtMNAl) UI bAH (HNX2)))) « JHNXI will be ».ctlv.ted after

J «ubacquent duinpt

jHavlng placed hooks HKX1 and H:iX2 we can etart up the progra« via Da« I which load» two coplea of It, one
Ito be used M data, and runs It.

••EAtUEMOl)
 FILE LOADED MMi TO 2HÜ416
 F ILL UM0C1 JBHtftf 1) ■M62IA6
 KALI Al ^«^»6
••lÜÖJ(NV)

lexecutton flnlihed
Itype the node-vector NV

2tfl 7«l/^l1.)üB/^0«3^/PDHI36/?0*)42/200b6/20070/2006a/?e074/2BI02/2Bl 10/201 16'
200«;6/^0l6 0/2ai3«>/20l b4

•»TOfaJfE)

••lOUJCJ 0 0)

• •INCKCO 0 377 It Itype H aa a 20x20 table.
• •• (HA('I '. M ü)S
••• tr101w>t
••• ÜA('• J J I)t
••• 1F<J 'EW 20 (AA(CHLF)$
• •• 10BJ< J 0 0)))) >

00000000000
000000000 12

I 44 0000000 |2e
0 43 000 100 0000

Itype ilte of matrix M

$ li a continuation char.
IQ ► M(C)
Itype Q
IJ - J-M
Uf J-20 than (nart new UM; J - 0)

I
0

0

0
12
0

0
13
0
0
0
0
25
16
0
b2
26

0
0
0

0

0 0
0 0

0 0
0 0

0 0
0 0
0 0
0 0

■ 0
0 0

0 0
0 0

2,> 0
0 2b

0 0
0 0

0 0
0 0
0 0
0 0

0 0
0 0

0 0
0 0

16 0 0
0 0 0
0 0
0 0

0 0
0 C
0 e
0 (

0 0

0
0

S2
0
0
0

0
0

0
0

0
0 0
0 0
0 0
26
0 0
0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0 0

e o 0
000

0000
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 12 0 0
0 0 7 6

0 0 0 0
0 3 3 0

In the table typed above, element (l.J) li
the nuaher of tramUiona from node I to node J
where 1 and) are the Indices of node addrei.se* In
vector NV.

73

»M»ri« 3. AB.u.i, of >.>.r^., tn tfl< 9PTrrT„

is . xa.pl t.wt.hll (.onsid).r the f„1](iwi
an „n MnMed B„.b„ of proc...or- „J^^J n

•«) processor Is able to 1,..,.,.. „ne ld,(
vector to processor

Suppose w»
sue h | wav t ha t

first recursive call on OSOPT ' tl,US •■•bl*"i »■ to execute the
th- instruction.. ,sd<

UU ! Pf^l-> with the second. Ignori«,

2ou4. .sti.at t r: a s r,t;::n.Inüp ai OSORT
' »•••. ">*" -

to sort a «iven vector nUmber ,,f in^ructions executed)

Thus, the flow of coatrel looks i |
t«c h branch indicates
computed corresponds t

■ b i n a r v t r e e whe re
one execution of QSORT. The time to bc

Procdure give, slrl,^"''^* ''!'' l* ' h ' S tr"e- **• DA^
ting a n,.ste,i i itJucturl J! " 'f^*' t h *S ProhI^ bv —stru.-
h- -,.. Cenents'. ^ e -T —t.ng the tree. Fach list

number „f i n s t rue t i Li itl'l J?!"" h^ ^ ****• containing the
•id been executed instructions wh i ch

and up to the exit fm- f . executed up to the entry

*■ i i. s usual ■•anlnp in DAME.).

to '--"""•-."•.-: irü::..^:..*:'::?^ «-•
DAME rout i ne f i 1

s e n t e d b v the nested list t r««

ur^^-.-iiin.iin:; v.i:" • — ^ '••■ •---'•
pre eed

rep r t -

nod(

■ hovg t h Lach node in th.. i r

i>«r.. i. th. r.,.., „4 v th. i«t": !ir " ''s"/
indicates terminal

It can be seen that in
w o u

the gSORT rout ine
». t;«!«"... ...xii. .-.:c

h:.:rhio?i!.":.j:!j:0;
h^?j.:k:(

t ree

74 1
I 1 lu-,t r.iUon 4.6

I Routine QPAH

QP»B(LO*0('3SO«T 20000) L040M0S0RT JOOO0) Ilo^d progr«m
I0BJ(»n 0 J0000) 10HJ(Rl 0 JOOaO) li.t bound, for 20 element.
CRCTt-P) CR('0BJ»0) r«('lCT) CRPLl) Cd(tL2)
C<»('rL»C) CBCTtHP?)
CP('»00T) fViLOOOT «AKtLlST) 10BJ(0BJ»0 0 ROOT) Ure.te root of U.t. put U la ROOT
PU5H{0) Ipush Initial «mount of time patsed>0 and OBJAD
RU9H(0RJ*0) ipush address of list root

NOMfUlf P*R0 20000 20000 "MPARO)
NOOKCUtf »»RJ 20012 20052 iMR4»n
M00K("Air PA«2 20116 20116 <HP*H2)
NOORflAtP R*R1 20156 20116 'MPARI)
RON(20lT0))

'.Routine PAR0

R»R0(lOBJ(PL»C 0 1) Iset flag to U dlcate new entry

RORtOBJAO) :get address ot current object

POR(TEMP) Iget amount of time already elapsed In this branch

EV4L(L2 CReOBJ 100 0 2 0) Create a 2-vord object. Put Us address In L2

I*0BJ(L2 0 TEXP) llnsert In Us word 0 tüne already elapsed

XXCI^CLUOF •, ii •, OBJ*0)):execute external -10 routine INCLUDE to put the new objeci In
. the current list
.Routine PAR)
R*Rl(IP(rL*C l|| 1 (lOBJdCT 9 1C0UNT) IPBJ(rL«G 0 0)))) »y fi,g U ,et. get nuinber of lB.
.Routine PAR? .»_. , .a. Tv^-. ■ .
R*R2fB«('- TE-R2 1C0UNT ICT)

fU ; ' ♦ T|xP2 Te>«P2 TfHP) /teraP2 - t«n>P+lcount - let
RUSN(TtMP2)

structlons through this nod«

pass It to PARO or PAR3

!Insert total Instructions In word I of new object

Ipass address of current Hat to ENDR

Ipass total Instru'.lons to ENDR

I*0BJ(L2 1 TE«^)

^U3H(CBJ»0)

RL'S-tTf >«P2)

IX(E*<0R))

1 Routine ENDR

EMOR(fV*L(Ll XAKFLIST)

EVAL(T£«P MAKERFR '. LI)

««(INCLUDE ', TEHP ', 0BJ40)

^U5M<LI))

I Routine PARI

R»R3(PCR(oflj«o) mmm p«iNcif«»i iniMitii :get v.lues 0{ 0BJAD ^ TQ1p. .y ENI)R

^create a new list. Put Its address In LI.

include the new list as a manber of currant list

'pass address of new list to PARO or PAR3

J

73

I 1 lii-.tr.it i>iti ..

lload and eKecute QPAR

• »t A(ur-An)
---►ILt LlMOCO ^»IHMH 10 SHPVH,
 > iLt LOAOCO Jk}*)i4M 10 je?t)6
- --MMLI Al ,M^H6
• »I lUQJtHJlH >
iti/thA -->i^64/4jb ■••C40W4M ■

IIJ—»lOTV« iJJ--.1374/413 --»1413/*, J.-.HU/* njJ ' * ^

lexecutlon finished
• type tht list pointed by ROOT

>(46;v14 I—»(«m/fn --»rsn/'i J..,tsn

below:
The tree represented by thl» list i* re-drawn

1 1 hi^t i aion 4.8

Kxecution Tree Constructed by gPAR

0/264

4 13/0

II;/I 517/536

536/0 5 36/0

i note In the tree ',...•. the instruction»
exrcutod alon^ that branch u^ to the entry and the
t it fr<*i the node as x/y, wh.'re x is tlu- former
and y the Litt.-r. y 0 mdlciies terniinal node».

It i an be seen that in the two Ion,;.' t IMUM ^
thro.!»;!! ihf tree, S It. Instnution. would be e\e.iit
e.l by tin- niln-lnop portion ot th. ,i.tii progl I .

■k

76

' ■ ! »g1« ^' j' •< L-' _Fl.uw jg t w e e n Two Ro4« I

ls tl
IU

i ;1',Sr »f •••iMi« tasks for which DAMK is most suitable
!■ th« *««r«lrt«tto« Of the data t 1 .w between two ..odes hv
indin« the addresses whioh are both in the output se .t one

and t e nput set of the other. This analvsis ^ ll.lL'V* one

conse ^ ! rnSM ' f:ÜW- If the n0d<' l««""a h.pM. to he ^onse...i.e. then this procedure will vield the exa.t nature of

^i^f!I;'ti0,, r-—d f"- — ^ the other. If. a« the OthVf
I:-; \ftllSll rT"*!?! "J- l««"'". then one h.. to monitor

iitill!!'!? '" h* data ,lüW between the two nodes. Kor a more
üeta.Ud dis.uss.on o! this Question, see Chapter ?. Se.tion 2.2.2,

Representation of the data flow from a node N to a node N
tor th s purpose can. at the simplest level, he . list X of .ot.

■; ' ^ 1KI "• ••«■ ••« consisting of triples (A.B.r, V;K.r.,

A is an address which is in the input set (stri.tlv speaMnK. v M o h
. th. addre^ part" ot some member of the input setj oi tl. itl*
lÄ,tMC« " o* ■ and also In the output set of some instance .V

of H which occurred chronologically between N and N . If there

• r« several such instan.es of H, then M is th« UtO.t'a««. In

I11* 'I ■■ trlI»J«. ■ a^ C are the contents of A upon entrv into
•\ aild Upün "*« P"" -..respectivelv. ta this example, a 1*1

illlltlll ML0W and ^ ••••«*•»•< subroutines BPIID and COM

1 i below ThePrOCnSS- TheSC rOUtlnCS ^^ RiVPn in tKj illustra- tion below The -11 prrgram on which we operate is awain the
bv-n^-fammar OSOPT. For the purposes of this example, we shall

20000 Vi I I?i;*,l0Mr- n0dC NA tÜ n0dt' NB' "»"^M from .0000 (.e relative address 0) to 20024 and from 20042 to 20072
respectlvelv. R« is the first node in QfORT. It saves the contents
o r.^sters HI. 1<2 and K3 on the stack. Rets the parame e s w

R and. ^^ \nd UPPer bOUndS 0f tU Ve<t0r tt' ^ ••"•d) in o
"J M. checks to see if lower bound is less than upper bound

•««. 10. branches to the main portion which does the sortin*.
Ihe second node, NH . is entered when two elements which have to
be interchanged have been found. These elements are pointed bv
M •'«. K and F,2. NH makes the exchange, tests the' f 1 a, wh c h

tltitll I I '^ V t,ie VeCt0r iS t0 bt' ^vanced in accordance
v th he quicksort algorithm, makes the advancement, complements
the flags and branches back to the beginning of the loop. We
note that while NA an.! MB are not consecutive, the intervening
instruct ons in locations 20032 to 20040 do not modify anv locations
except PS and PC. As ,111 be seen, neither of these appear in
tr.t- input set of NB.

77

Iht' DAM1 routines |iv«a here are quit« geiK-ral and nnild
l3'' applied to anv two nodes bv changltt| the 1 i n i t s of the nodes

in the iODI and HOOK instructions in DFLOU and tin- P08ET instru.
t i on in COPY.

To explain briet./ the functioning of the procedure, the Bain
routlo« DHOW does the fn]lowing:

(i) Creates some objects which will be u«-ed later; of the si,
NA1NL will point to the list we are interested in,

(ii) Creates a list and stores Its address in MAIN'L,

(111) Loads two copies ot QSORT, one of which will be ust-d
■ ■ d ■ t ■ ,

(iv) Defines nodes NA and N'H,

(v) Loads and executes the DAME routin« DEFIO (this routine,
i- will be recalled fron an earlier example, simplv places hooks
at node entrv exit points to lulld input/output sets),

(vij Inserts a bool to execute routine KIII.D after each

•xacutloa »i the Lnatructloa at location 2007 2, i.e. aftar HI«

^v''! Initializes raglatatl RQ and PI to certain t lu- i n i t : .1 '
bouadl Of the vector to be sorted fwhich is what the main progra-
QUl cKS'ip; axpecca),

(viii) Starts the execution from location 20170, the s t a r t i n 1;
address of 01'ICK SORT.

The routine BUILD is thus activated after aacb instance of
HI and does the following:

(i) Creates a list, pointed by I,

(ii; Searches the current input set, pointed hv CISP, for
addresses which also occur in the output sets of the instan*.^

: NA and makes an entrv in the list poi-ned bv 1. for each such
address.

(11 will be ra ca11ad that an input set is a list of one or

more ten-word objacta, each word of wind contains an address in

the left halt and the contents ot that address in the right half.

A zero lad1cata■ the end of the list. The address 0 is represented

by 777 7 77. Cl contains tie address ot current word to be looked

at. The instruction Insert Indirect, I I OBJ (("2 Cl) , inserts in

C2 -he contents of the word pointed by Cl. The COPY routine OXtracti

the
t i on
ou t p
t he
i t w
in C
this
2 us
in t
i nse
The
IUIL
set
to a
desc

a d d r e
s to
u t se
c onl e
ill c
hap t e
wo rk

I r w g
he in
rted
ob j ec
Ü. B
is ex
list

r ibed

ss p
f ind
I th
n t s
on t a
r 3,
s .)
rds
put
in i
t i ■
L'ILL)
hau s
of
abo

art
the

• ad
of t
in -
Sec
If

i s c
se t ,
t vi
put
con

t ed .
2-wo
ve .)

of t
mos

d res
hat
1 .
t i on
such
reat
and

a th
in

t inu
At

rd o

he w
t r«
s ap
add r
(See
3.6
an

ed ,
th ■

e In
the
es w

I he
b j ec

o r d
cent
pear
ess
the

• 2,
ou t p
poin
va 1

ser t
list
ith
end

t s w

78

and
ins

s .
in t
des

for
u t s
t ed
ue j
Add
pel

the
of

hose

uses the FOSKT and FVA1. instruc-
tance of the node NA in whose
If one is found, C.b will contain
he output set found; otherwise
cription of the FOSET instruction
a better understanding of how
et has been found, an object of
by C7. The contents of the word
ust found in the output set are
ressed (IAOBJ Instructions,
nted by L, and COPY returns tu
search until the current input
the SLST Instruction, 1. points
first word contains the data

(iii/ Puts L in the Tiain list pointed by MAINL and types
ou»- the list pointed by L.

. —

79

Illustration 4.9

troutin« DPLOW
DPLOVCCRCL) CRCC) «('CD c.H(\:2)

CKCCJ) CRCC*) CPCfS) CR('C6) C\<('C7)
CRC Li) CR('HAINL)
.'create a list; put its address in MAIM.
EVAL(MAIRL MAKBLIST)
.'li'ad tVO copies of OS ORT

LOAO(*0SORT 20000) LOADCQSORT 30000)
.'define the nodes NA and NB

NODKC'NA 20000 20024) NODF.CNB 20042 20072)
.'load .ion 1 tor routine DF.FIO and execute it
LHRCOEFXO '*) BX(DEPIO)
.'insert hook to build desired lists
HOOK('MC IVILD 20072 20072
.'initialize HO and PI, and yo . . .
IOBJ(RO 0 30000) I0BJ(H1 0 30040) RUH(20170))

for this

CXIP
of first

instance

1 0 - w o r d

point I

o b i ec t

to it

.'routine IUIL0

IVILD(EVAL(L NARELI8T) .'create a list
{•••rch current input list pointed hv

SLST(C CISP (POP (Cl) .'pet addr
.'search each word

IRCR(1 0 111 (IIOBJ(C2 Cl) !g«t contents into C2
IP(C2 'EO 0 (RET(2>)) .'if 0, end search
BA('+ Cl Cl 1) .'else, incr. Cl
EX (COPY))) .'call fOPY

PUSH(0))) .'continue search

XXdRCLUOE
TIOBJ(L))

HAIHL) .'put list pointer into na in-list
type list for tb's instance

! rout in« COP1
':^'!'V(b/(' / C3 C2 1000000) .'pet left half info CJ

irch output sets of node N'A startinp with most recent
F(. r.T(C* 20000 (P0P(C5) .'pet address of first object

FV,M.(C6 C3 C5) .'pet value of address which
is In C3 from the object
pointed by C5 into Cf>

lif CC 0, continue search else quit
IP(CI 'LT " (PrSH(0)) (PL'S1!(1)))))

lit search failed, exit routine
iF(C4 'LI 0 (PFT(2)))

.'otherwise, create a 2-word object; point C7 to it
BVAL(C7 CREORJ 100 0 2 0)
! i n ■ • r I contents of C2 into wfird 0 of new object
[A0RJ(C7 Ü C2)
.'insert contents of C6 into word 1 of new object
I/.0RJ(C7 1 C6)

.'put new object in the list for the current instance
Xy(IHCLUDE ' . C7 ' . L))

instance

^

»•w ■ — --..•. >■ . ■^ ' -—^WP^WIW«'

80

niustration A.10

. LOG
.JOR 14 CMUIOA 7.CÜ/DV.V 5.04 b TTYlj
fC410BA07
PASSHOtDi
1247 U-JL'N-73 THL'P
TH L200.•.NEWS((-14)

.RÜ1 NDAME

Ü.'Vtll / 10. . .

**!.^R('DFl.OW •*) EX(DFI.0W)
 Pill LOADED 20000 TO 20206
 FILE LOADED 30000 TO 30206

1 77701 ,, 30000/30000 30000, '11
30040, , 3415/3415 1 777O7 , , 20052
17701 ,, 30002/30002 30002,,102

30040/30040 30040t(10146/10146
'177776 20066, ,17 7 7 76/177776
177701, ,30002/30002 30002,,10

300034/30034 30034 ,, 3430/3430
20060,,2/2

1 77701 , ,30004 '30004 30004, ,10
3 0034/3003 4 30034,, 10146/10146
177776/177776 20066 . , 1 77776/17

1 77701 ,.30004/30004 30004,,10
30030/30030 30030 ,, 453/453 177
20C60,,2/2

1 77701 ,,30006/30O06 30006,,12
30030/30030 30030 , , 10146/10146
177776/177776 20066, ,177776/17

:77701,,30006/30006 30006,,10
30026/30026 30026 ,, 5000/5000 |
1/1 20060, ,2/2
• C

46/10146 177703, ,0/0 1 77702 ,, 30040/30040
/20052 20052, ,1/1 177700,,]/] 20060, ,2/2
46/10246 177703,,10146/10144 177702,,
177 70 7, ,''00 52/2 005 2, ,1 /] 1 7 7 700 , , 1 7 7 7 76

146/10146 177703,,10 2 46/10246 177702,,
177707, ,20052/20052 20052, ,1/1 177700,,

346/10346 177703, ,10146/10146 177702,,
177707, ,20052/20052 20052,,]/] 177700,,

7776 ,
146/10146 177^03, ,10346/10346 177702,,
707, ,20052/20052 20052,,]/] 177700, ,1/1

70O/12700 177703, ,10146/10146 177702,,
1 77707 . ,20052/20052 20052, ,1/1 177700.,

7776
146/10146]77703, ,12700/12700 177702,
77707, ,20052/20052 20052,,1/1 177700,,

m' *!' ">'

l
81

^3mP1e 5. Analysis of Instruction Mix and
Addressing Mode Usage by PDP~-1] Prop r am;

inter

.J n d /

■ v v I r
What
wh i (li

w o r k 1
as to

This e
a ■ t e d
45 in
a 1 p r o
w | van
the se

oad to
1 1 ows :

xample is based on an experiipent in which we were
in comparing the pe r f o rma f. t-s of the PnP-11/20, /AO
connection with | proposal for the acquisition of
cessors for the Carnegie Mu1ti-miniprocessor (C.mmp)
ted was a rough estimate of the relative speeds with
processors would execute programs typical of the
be placed on them here. The procedure followed w.»s

(
p rog ra
p r o g r a

d 1 s a s s

mode ''

vr111•
prog ra

Roy L«
T h «r .-, e

vorl i o
p r o g r a

i)
ms
ms
em
po
n
ms
V I

rr
ad

Four available programs were selected as benchmark
: Two hand-coded in assembly language, and two BLISS/11

The assembly language programs wero an interactive
bier for the PDP-11 written by Koy Levin and the "vector
rtion of the XCP (Xerox Graphic Pointer) support propram
by George Robertson and Hal Van Zoeren. The two BLISS/11
were an interactive PDP-ll dehueging aid written by

ii and the Quicksort program used in the preceding examples
ograms were judged to be a i.ood c r o s s-so c t i on of the
to be run on the C.m.mp, excluding the numbe r-c r unc h i ng

(ii)
0t the models
manuals,

The information

40 and /45 wert
required to project

derived from the
the performances

respective p r ocS S S OI

(ill) A DAMI routine (IMtK) was written to monitor the
execution of these four programs and gather the renuired data,

(iv) A DAMK routine (PPOPT) was written to summarize and

rsport the collected data in the form of instruction mix, addressing
mode usage and branch, ing statistics,

(v) Two BLISS/in programs were written to calculate the

performances of each of the /40 and /45 (These were needed

because of the wide dissimilarity in the torms of the processor

•pSCificstisoi given in the manuals for the two machines.) These
programs were written in B1ISS rather than DAMK because of the

relatively large amount of arithmetic, table-look up etc. that

required. This fact also turned out to be a «ood test of the

ease with which data could be communicated between 1)AMK and Bl 1SS.
which was found to be very easy and natural.

(v i i) The
/ 4 5 v/e r e debuggi
C ode ,

DAMI routines and the KI ISS models of the 740 and

d and hand-checked over short seouences of -11

82

(viii) Several runs of varyinp lengths were made with each

of the four benchmark programs vith different inputs. Tie collected

data was incorporated into a memorandum and sent to various faculty

and staff members connected with the C,mmp project.

In this example, 1 shall go over the IM1X program. As men-

tioned above, the function of this routine was to build various

tables and accumulate counts during execution. He 1ow is a list

of these data items (all integers below are decimal; in the listinv;

of the I MIX routine itself in the next illustration, in octal):

DOTABl a 12x8 table contaiulnp a count of each of the twelve-

do ub 1 e--ope rand Instructions broken down bv the eight desti-

nation modes,

SOTAB: a 26x8 table for single-operand instructions, format

similar to DOTAB,

TOTICOUNT: a vector containing a count for each op-code

(indexed b v 0 P N- see b e1o w J ,

COSMO: ■ 12x8 table for iouh1e-operand instructions whose

source operand mode 0, broken down by destination mode,

ÜOS0: a 12xP count table for ioubl« operand instructions

whoa« source operand mode= 0,

TOTSMODi a 12x8 COUIIt table for double-operand instructions

bv source mode,

JSRCO: a count vector tor JSK instruciinns bv dst. TOde,

ÜSK7: ■ count of instructions vhos* destination operand is

register 7 (PC),

jypH7: a count of JMF instructions whose destination cperand

is register 7,

TOTDO: total number of double-operand instructions,

TOTSO: total number of single-operand instructions,

TOTCCOC: total number of condition code operators,

TOTBF: total number of onditional branch instructions,

SUCCEK: total number of successful conditional branches,

BRPD: total distance covered by positive branches.

83

PBCNT: total number of positive branches,

BRND: total distance covered by negative branches,

NBCNT: total number of negative branches,

UNSUCCB: total number of unsuccessful conditional branches

In performing these calculations, IMIX uses a number of data
items supplied by the simulator. Thes.- are (all items refer to
the current -11 instruction):

OPN: a unique integer representing the op-code,

(Note: the op-code itself is not suitable for this purpose)

SHCMODE: source operand mode,

DSTMODE: destination operand mode,

DSTREG: destination register,

OPC: character representation of mnemonic op-code,

OLDPC: last value of PC,

The IM1X routine itself is given in the next illustration.
The protocol and the results of the analysis are not given here
because that would require the inclusion of the RPORT routine
as well and possibly also the rtLISS routines for projecting the
performance? of the MO and U$. I do not consider the actual
results of that analysis as important for this thesis as the
description of the methodology.

^■■■■■■■■MMM

84

Illustration A. 11

IHII(Ct(*Cl 300 0 1) CPCTOT)

CRCDOTAh 100 0 140) .'will contain d.o. Instr. counts bv dst. mode

CRCSMPCT 100 0 140) '.table for src. mode percentages

CRCfOfCl 100 0 320) :table for single ord. instr. percentages

CRCTOTDO) CKCTOTSO) CR('TOTBR) CRCTOTMS)
c»('JSRCO ion oio)
CRCBRPD) CPCBRN-D)

CPCPBCNT) CRCNBCNT)

(RCTl) Ct('T2) CRCTB) rp('T4)

HOOKrlc^ ^Mlxir" MIX after eVery ,"^"-

MIX(BA('i Tl T?
T1C:01

0PN) :incretT,ent TOTICOrNTfOPNj

I()BJ(TOTlCOU OPN Tl)

:dec,de OPN. call for appropriate action
IMOPN LI 13 INDO Uf double operand, call INDO

(U(OPN LI 45 INSO Mf single operand, call INSO
(IFCOPN 'LE 57 INCOP Uf cond. code opr.. call INCOP
•it conditional branch then call IMCBR,

.'else incr. "misc. instruction" count
(IF(0PN 'LE 77 INCBR (MC'♦ TOTMS TOTMS 1)

.'if JSR. call INJSR
IF(OPN 'EG 100 INJSR))))))))))

.'dpuble-operand instruction handler
IN!'"(BA('* 13 OPN' 10) .'compute index into TOTSMOD table. Incr.

IA('4 72 T3 IICMODE) ■•*•! mcr.
KAC '. Tl TOTSyOD T2)
BA('+ Tl Tl 1)
I0BJ(T0TSM0D T2 Tl)
•incr. DSR7 if required
IF(DSTMODE ' EO 0 (IFCDSTREr ' EO 7 (BAC+ r)SR7 DSR7 l))>))
•Increment count according to whether srcmode Is 0 or not
IFdlCNODI 'GT 0 INCG0 INCE0)
.' incr. total d.o. count
BA('+ TOTDO TDTDO :))

IICe0(BA(;4 T4 T3 DSTMODE) Mncr. count for d.o. instr. with srcmode^O

table entrv

BAC .' Tl DOS MO T4)
BA(,+ Tl Tl 1)
IOBJ(DOSN0 T4 Tl))

(continued on next page)

m^^mm^i i i i i pnw^WRnnv^ia mi inn tm.m«.m > IUWIIHII PWI^WWJmilll ijimB"wi""BBwnBwmT«wim

85

Illust ration 4.11
(cont inusd)

INCE0(BA(,+ T4 T3 DSTMODE) Üncr. count for d

BA('! Tl DOSO T4)
BA('+ Tl Tl 1)
IOBJ(DOS0 T4 Tl))

I single-operand Instruction handler
INSO(BA('-

BA('*
BA(' +

instr. with srcmode=0

BA(' :
BA(' +

T3 OPN 14) .'compute index into SOTAB
T3 T3 10)
T4 T3 DSTMODE)
Tl SOTAB T4)
Tl Tl 1)

I0BJ(S0TAB T4 Tl) .'incr. SOTAB entry
BA(,+ TOTSO TOTSO 1) liner, total s.o
lincrement DS7 and JMPR7 if required
IF(DSTMODE 'EQ 0(IF(DSTPEG 'FO 7

(BA('+ DSR7 DSP7
I ■"'(OPr 'EQ ' JMP

and store
. count

it hack

1)
(BA('+ JMPR7 JMPR7 1))))))))

lincrement total cond. code operator count
INC0P(BA('+ TOTCCOC T0TCC0C 1))

lincrement total branch count, take care of successful and unsucc. branches
INCBR(BA('+ TOTBR TOTBR 1)

BA('- Tl PC OLDPC)
IF(T1 'NEQ 2 INCSB INCUB))

^successful branch
INCSB(BA('+ SUCCBR SUCCBR 1)

.'accumulate posi tive (forward) and negat ''e (backward) branch
Idistances and counts
IF(T1 'GT 0 (BA('-f BRPD BRPD Tl) BA('+ PBCNT PBCNT 1))

(BA('+ BPND BRND Tl) (BA(,+ NBCNT NBCNT 1))))

I unsucc. branch
INCUB(BA(,+ UNSUCCB UNSUCCB 1))

I increment JSR
INJSR(BA('.' Tl JSRCO DSTMODE) Üncr. JSRCOUNT-by-DSTMODE

BA('+ Tl Tl 1)
I0BJ(JSRC0 DSTMODE Tl)
IF(DSTMODE 'EQ 0
liner. JSRR7 if required

(IF(DSTREG 'EQ 7
(BA('+ JSRR7 JSRR7 1))))))

■ -— - ■ - ■— a-uMMMl ■- - -■ ■- ' ^•MUMMMMt!

F ^ J'* 'I i ■ M|i»<>p.Pi^«uwijijjwiu».|i.HiJti^»«iii^uvii iiuiifwuniii i mm .IIIIJU. ^■■WI.¥*-* ■ n»»wi;»t-»HJ.i.i"JW ii^»ij*«iflwiT"r'"r'F-j' TJiw.viTtftf

86
1

CHAPTER

A PERFORMANCE MODEL FOR DAME-LIKE SYSTEMS

Hav in
and 11 lust
of analysi
requi remen
be clear b
such syste
time. Thu
of the ope
requiremen
I shall p r
intuitive
(Section 5
concise mo
structure
by any h o o
and checks
character!
operations
moni tor i np
the node t
(Section 5
the DAME s
just as a
parts of t
considered
facility,
a rough th
the checks
and we sha
head of th
output set
operat ing
The amount
a funct ion
therefore

g give
rat ive
s task
t s and
y now
ms are
s in t
ration
ts of
oceed
de f in i

• 1).
del of
and t h
ks , i ,
for h

zat ion
which
of no

race t
• 3).
y s t e m
u ;3 e r w
he ana
a sig
Thus ,

eoret i
for e

11 hav
e exec
mecha
overhe
of ev
of th

canno t

n a descrip
examples o

s, it is no
performanc

to those wh
very costl

his chapter
of DAME-li

each major
as fo1 lows :
t ion of wha
Then, I sha
such syste

e main "cos
e. involvin
ooks (Sec t i
of the ove
are essent

de entry an
able) and t
These opera
by the inse
ould insert
lysis facil
nificant pa
at ; ae end

cal model o
very type o
e superimpo
ution trace
nisms . Thi
ad of such
erhead intr
e actions p
be modelle

tion of the design of the DAME sys
f its application in various types
w worthwhile to consider the resou
e of DAME-like systems. It should
o have examined Chapters 3 and 4,
y in terms of main storage and CPU
, I would like to construct a mode
ke systems and parameterize the re
component of that model. To do th

First, I shall give an informal
t I mean by "DAME-like" systems
11 construct a more structured and
ms, exhibiting the overall control
t centers" ignoring the costs incu
g only the object machine simulato
on 5.2). This will be followed by
rhead of two major types of monito
ial to our approach; namely, the
d exits (includinp the maintenance
he construction of input/output se
tions, while they are implemented
rtion of hooks by the system itsel
hooks, should be regarded as inte

ity and hence, their performance i
rt of the basic performance of sue
of Section 5.3, we will have cons

f the object machine simulator inc
f hook defined in the DAME system
sed on this model, a model of the
facility, i.e. the node and input

s will provide a picture of the ov
a facility excluding any user hook
oduced by user hooks is, of course
erformed by the specific hooks and
d in general.

t em

rce

:-. h -i t

source
is,
and

flow
rred
r
a

ring

of
ts
in
f
gral
s
h a
t rue ted
lud ing

over-
/
erall
s .

Finally, in Section 5.4, some measurements of the PDP-11
simulator, the node entry/exit overhead and the input/output
set overhead are given.

■ *-rt^—t—«j^*iuw..;-»#...i-v.-^....- .-...-. ■ i nV •■"ir-ftiiBiiTli-ninrlfirfcMnlMilfclfni ,- M^&*Mt&Lt.&Ui*J*i*&;mamjJ***~.-'.. ^.IMJ^**.**.!^!-**.^^^^:.*,**. 1

P^B^^^"^"»""" ' " 1 a»mniiiii| i WiBff?^WiiPPiiP,iwlllp»P^W"^«#.(imupi!i|.llMLi^liliMlWW, I'P^'iJ.'JIWWi.MPSW

87

5.1 An Informal r.h.rac terlza 11 on of DAME-like Systems

We shall call a system "DAME-like" if ^^^^Lf-mortem

is the monitoring and dynamic -
al^-c ^^ ^hy i)'permi 11 ing

analysis) of the behaviour of the object system ny k / F
he user to define a structure over ^« P-J^0^^ ^its of
collecting execution history data ^"^'^ any point in
that structure in such a way hat ^^"^^^tLg the user

e
hr/e!'!fUa/tir:re»"e°^^raf-:£r;£nrfa;nPsrrrcn„.
where the system state resulting from ^^ ^^^/^ the pro-
can be completely determined from the inl t ^, f3"^ DAME-like
cessor and the inputs. This means f ^/^^^of programs
systems are not well suited to analyzxng ^e behaviou J^
with a heavy dependence on the timing o ^^ ron0^ Backtracking
since the latter in reality are P^f^1//""^" interrupts or
over periods of time in which s"c\deV^ "^egistlrs are
turned on status bits in their device control registe
difficult to accomplish with DAME-like systems.

S.2 A Model of DAME-like Systems

ll ^cirf^nito^Lkl Id je actions -Jiated by the^

""Lrn^brd^od^arcrmu^r^ru^tianv^^ride-effects
^tsi: "o^tr^^rand decoding/computation proce^

auto-increment/decrement in ^/^^^"^ct to checks on such

cl0nal oP-^^^-Hv:; rindrre^iddressing will be per-
ritred^-On'thr^r'rand, for the P-Pose of keeping ^ ex-

position simple, only «^f-^t^Pf^nside^d. Even with
half word or byte-addressing) will be ^slder^ accurate
this restriction, ^ is impossible to gve^^sing ^^ ^^

and constructive model of the insc^ satisfying this restric-
will describe all conveivable processor """^L^™ kind
tiin. in the nodel given below we -su- h low-g ^ ^^

of an instruction decoding P™"*** T^ ^erands is determined;
its opcode is determined; the ^ber . ^ .^^d, operand is
the address of each operand is de*e™l*l*™\ *™\ ^cess-type
fetched or stored, one at J^^^^^^re operation is'usually
as determined from the inst ^uc^i0n ' , „"^ he ^^ed from the
preceded by a computation of the value to be stored
operands which have been fetched so far.

-, .. ■--~.-..;!—-...■ -^.-^.J.^..■■-■ ... ■■■-.I.^J.T.L.- . ..-^.■..-.■-.-.-■.■- ... i,-|h|ir, ,rii,(liWfhiii1inii »IM- .■■,-..^.^^-..^-: _>;■■. i iniiiiMiwiiMr^mafc^Mia

■■I. i^lfWWP«lBfWPgWff!W^.i''W^iiiM.iLUB^llWH^^W?^ .- ^tU

88

We can break down Che total cost, C, of the slnulateu
execution of an object machine Instruction Into 3 parts:

1- The basic erst, C , of indexing into the object machine
B

memory to get the instruction, executing the instruction and
checking for interrupts,

2- The cost of scheduling memory access events and updatinp
theclock(C),

S

3- The cost of checking for hooks at each contact point (C).

II

Clearly, these cost components are not incurred in lumps,
but rather they are interleaved throughout the execution of each
instruction. C depends on the semantics of each instruction and

B

how easily it can be emulated on the host machine.

C is a direct function of the number of events to be scheduled
S

In a memory-cycle level simulator, for an instruction involving n
operands in the main memory, C =(n+2)T where T =the cost of

S S S
scheduling an event and activating it. The two events in addition
to the n memory accesses for operands, are for simulating the
delays for fetching the instruction and performing the operation.

C is a direct function of the total number of operands
H

fetched or stored, including side-effects, by the instruction.
It involves two kinds of overhead: checking for general hooks
and checking for addressed hooks. Thus, for an instruction invol-
ving a total of m operands, C =(m+2)(T +T), where T = overhead

H GH AH GH
of checking for general hooks, T = overhead of checking for

AH
addressed hooks, and the two additional checks are for checks
for instruction fetch and instruction completion hooks.

Thus for a simulator, which has been written in a "loose"
way so that inserting checks for hooks will not cause much per-
turbation, if the average number of operands of an instruction
which are located in the main memory is n, then the ratio R =

. 1
(simulation time/real time) with no checking for hooks will be

R =(C +(n+2)T)/T
IB S r

«<Mi%uA*lb-i.WW. > ,.■...■■: -,-...*.■•- ■ - ■-■-
■ ■--■ "•■ ..-^^IJ---- -...■-. .-.■,.^... ■■■... -■■w...-.^...:... ,. ,- >■■ ^^■^-.r^.^.>w^^i*^^^rfLtt^.ld^A^jJ^^^tAJ.^iAta

"■■I""11 ! ^WJWAIBWV ^IR»«PI!P5PB«I»PIBISWP« L wnm!n.mmw*fmim JIJLJIJll-W^.M«fWRfl^WWI,"WI"V-!*-.!!",,^(W-"'.'fW^BpB

89

where T is the average time to execute the same kind of
r

Instruction (i.e. involving n main memory accesses) on the real
object machine. If we add to this the overhead for checking for
hooks with an average number, m, of total operands per instruction

we get

R=(C +(n+2)T +(m+2)(T +T))/T
B S GH AH r

which is a broad-gauge, general model of the performance of a
DAME-like system with no hooks attached. If the object machine
simulator has been implemented at the instruction level, rather
than at memory cycle level, then the associated overhead can be
found bv setting n=0. Further, if hooks can only be inserted at
instruction fetch/completion level, rather than operand fetch/store
level, the corresponding overhead can be found by setting m=0.

5.3 The Overhead of the Node Mechanism

Thr overhead introduced by the Node Mechanism can be consi-
dered in two parts: (i) the overhead due to checking for entry
and exits from nodes, and (ii) the overhead for the construction
of input/output sets. Let us consider these two components in

turn .

5.3.1 The Overhedd of Detecting Node Entry and Exits

Let us first consider the case where nested nodes are not
permitted. In this case the procedure? for detecting node entry
and node exit, which I shall denote by ENTRYP and EXITP respectively,
can help each other significantly by communicating to each other
information as to whether an entry or exit has been performed.
Since nested nodes are not permitted, each node entry must be
followed by a node exit before another node entry can occur.
Similarly, every node exit must be followed by a node entry before
another node exit can occur. Further, since we do not assume that
the defined nodes cover the entire program, there will be times
when the control flow will not be inside any node. Hence, after
EXITP tells ENTRYP that the last node has been exited and therefore
that a new node may begin anytime, ENTRYP must check with each
subsequent instruction fetch to see if a new node is being entered.
The cost of this check will depend strongly on its implementation.
For example, if there are two additional bits in the representation
of the object machine available for this use, these can be used
to indicate the first and the last instructions of a node. Otherwise,
a list of node definitions can be searched; or alternately, as
in DAME, each used memory location can be assigned an "attribute
list" and a node descriptor can be put on the attribute list of

iftriili-M'ti^H-iMTV-iiiii-nWiM T'li' r-r-iri M'I 'r- mr '^uu -■-'-■■'—--"■■- ■ ■' -

, . ^-^ .^■^J-.>^- M

IWWHTPWBWWW $\n.-U\£nw[Vy''VflJi'™^m-W™v!*f*m^ rt^-^^^^^^mm^wr^w^m^^r^vT^v^^ --*

90

proceeds'as'f^n1"683 f ^ ^' In the laSt alternative, one proceeds as follows after each instruction fetch:

(most^ddre'Lef ^"t); inStruCtlon add— has an attribute list

2- If not, it can not be a node entry; hence, return;

list;3" Sea ^ there iS a node-descriptor object on the attribute

A- If not, return:

descrJntnr
0inKarVhe u^t starti^ address given in the node

surrt^:rcoii:ide:ith the current in—^^ ^— - -^

step l^nir?!^ r^ ^ thiS Procedure i« ^ep 3, and even that
or ?iie itLr y r8 Sin?! there usually aren't more than four
cost of M n ^ at;rlbute üst of any location. The real
cost of this procedure lies in the inclusion of an attribute list
pointer potentially for every object machine location

the iJst'of nod!6. !?Pr°ach for detecting a node entry is searching
the list of node definitions to see if there is a node starting
at the current instruction address, then, assuming a binary

^r: ..eT'the11^ ^ " ^ de8"*Pt-s ordered by the^ startin.
of log n! average number of comparisons will be on the order

2

recuiref fhl these/h"e approaches for detecting a node entry
xecited after thf?.? ch"king to be done with every instruction

THMC !? after the last node exit until a new entry is detected
Thus, the total overhead caused by any one of the three is also
a function of the total number, Q, o/such instruc ions exerted
If we denote by S the ratio of the number of executed object
machine nstructions which belong to a node to the total number
of object machine instructions executed, and by 0 the overhead

?SL1th!:r^Cti01' CaUSeu by the Particular approach^or node detection
then the average overhead per instruction caused by the ENTRYP
procedure, without nested nodes, will be 0 (1-8)7 This formula

code'whlch tn^l^ ihat if there are iarg^segments of executed
overhead! 8 t0 " n0de* thlS may Cause a significant

..,— ^;-J.-..J.,-„,-,.-.., .-,..-, --.- , , iim-iiimijüiiMMlMMliil

fFmvtm^mmmmi mfmrnmnmwiiiimim »IJJJiI'™»ni!W>UB>!»Jll«lJI|l:,m«U»iLUl,lJl.J|M.I|ll.J.lMJ,L,Ulll.lMl^W>Ptpi.ll Ulli IIIJ .11 IJI „ILl, ■»■

91

The procedure for detecting the exit from the current node,
again assuming no nested nodes, is much simpler and requires a
comparison operation after each instruction in the node. Thus,
if we denote by 0 the cost of making a comparison, the overhead

NX
for detecting the exit from a node is 0 S.

NX

In addition to detecting entry and exits, there is a cost
for creating an entry in the Node Trace table for each node
executed. Lee us denote that overhead by 0 . If the average

NT
number of instructions per node instance is I then this overhead

NX

is 0 S/I .
NT Nl

5.3.2 The Overhead of I/O Set Maintenance

Now let us consider the largest component of cost associated
with the Node Mechanism, namely the construction of input-sets
and output sets.

Ihe construction of an input-set involves the following
general steps:

11- At node entry, allocate space for the set,

12- After every fetch operation, determine if the fetch
address is already in the input-set or the output-set (i.e. if
it has been fetched or written previously in this node instance),

13- If not, add the address and its contents as an element

to the input set .

The construction of an output-set similarly involves the
following steps :

01- At node entry, allocate space for the set,

02- Before each store operation, determine if the store
address is already in the output-set,

03- If not, add the address (with an undefined content) as
an element to the set,

04- At exit from the node, fill in the current contents
of all the addresses in the output-set.

J-l^-J ...l...:,.,,.../-.-..-..- ..,-..-■ »—■ .-r., ..:■-.,. ..„...■ ^ .-~~1.. - - - - - - „mm*mwmmmaäM

m •*.*'.• R.WW(^< M!P UJiiilHiiJllW Ml IS«l»ll!»WAI|U|PlW.Wi^^J. 1WN»WW«WJIJ11,U*II»1J!»^^ ,1 !J«!»JiiUIW!

Since, i
in advan
allocate
element
with com
be some
is handl
contain
in the a
The list
next slo
IS and

L
for add i

n ge
ce ,
d.
and
plet
kind
ed b
an (
ddre
-hea
t in
IS

E
ng a

nera
some
It c
link
ely
of

y ob
addr
ss h
d ha
the

the

1, the
deci s
learly
it to

static
a comp
tainin
ess , v
alf .
s one
last

everag

size
ion h
is w
the
allo

romis
g spa
alue)
These
user
membe
e eve

92

of an I
as to be
aste ful
rest . T
cation.
e betwee
ce in 10
pair .
1 0-word

word whi
r of the
rhead fo

/0 set
made a

to obta
here ar
The be

n the t
-word c
Unused
chunks

ch cont
list .)

r creat

can not be predicted
s to how space will be
in new space for each
e similar problems
st procedure seems to
wo. (In DAME, this
hunks, each word to
words will contain -1
are put in a list,

ains the index of the
Let us denote by

ing the list head and

new element, respectively.

The cost o
added to an I/O
address) depend
is done by usin
word representi
already members
Hence, the over
being accessed,
byw, B andB

1 2
the number of t
the overhead of
of this approac
inside a node,

f determining whether or not an address should be
set (i.e. whether it is a new or an existing

s strongly on the implementation. In DAME, this
g bits 16 and 17 (from the right) of the PDP-10
ng an -11 word, to indicate those words which are
of the output set and the input set respectively

head amounts to testing these bits of each word
and possibly setting one of them. If we denote
the ratio of the number of distinct operands to

otal operands, the overhead of testing a bit and
setting a bit, respectively, then the overhead

h for the input and output sets, per instruction
is 2m(B +wB) and per node, it is 21 m(B +wB).

12 NI 1 2

Let us now consider the case when the implementation does not
permit this approach (i.e. there are no available bits). Let us
suppose that the "brute force" method of searching the I/O set
to determine if a p.iven address is in it or not is being used.
Whenever an address is generated, the average number of existing
elements in an I/O set is wml /2, the number of comparisons

NI

caused by new elements is w2ml /2 and the number of comparisons
NI

caused by old elements is (l-w)wml /4. Thus, the average total
NI

number of comparisons for constructing the input and the output
stats of a node instance using this approach, assuming that the
above parameters are equal for both input and output sets. Is:

2(w2ml /2+(l-w)wmI /4)
NI NI

=wml +(w2ml /2)
NI NI

■ .-^MU^MlAWUitu^ , .. ■ . , * ~<~,i^*.^.;,. ■faVMtfMfiir^f..ifrttiinhi..i-.'ii^rM*i.-- .^ ■ . v M ;fiiin---.--iltin M it initf'i n ilfuh.iittfrtfiitfrihifc^it twll fii'it fcinifluri Wrilli

■p^gS^w^fWWRpiwffs^^w^^öww?^

MMMHWi ■ ■■•■——

93

Then, the average overhead, 0 , per executed object
10

machine instruction for constructing I/O sets is:

0 -(S/I)*(wml +(w2ml ID)
10 NI NI NI

=Swm(l+w/2)

where S and I are as before.
NI

We are now in a position to give an estimate of the average
total overhead, 0 , per executed object machine instruction:

I

0 =C +(n+2)T +(m+2)(T +T)
IB S HH AH

+0 (l-S)+0 S+0
NE NX 10

where

C = the average cost of emulating one object machin'
B

instruction, with no event scheduling or checking for monitor hooks,

n= average number of main memory accesses per 0M instruction,

T = the cost of scheduling an event and activating it,
S

m= total number of operands per 0M instruction,

T = overhead of checking for a general hook,
GH

T = overhead of checking for an addressed hook,

0 = overhead per 0M instruction of detecting a node entry,
NE

S= ratio of OM instructions belonging to some node to the
total number of executed OM instructions,

0 = overhead per OM instruction of detecting a node exit,
NX

- ■ ! ■ ■ ^.- ^ .rt. J-»rtVi1i.-..>.. -AA*::--. - / .-^.^. I :^ -.-■■. .. ■ ^.^^^Ll^.,^^.^^....-^!.,-^.^^^ hah^^^Hi'M^tf1m;iift^^^*n,atifi^r*ilSAiiii • i i — ! -TMiniMnifiMrintii-riMfiiiri'i iVinmniii

^PpppwpfWSBfWWfWw^trw-TO^^

94

w- ratio of the number of distinct operands to total
operands generated over the course of the execution,

0 = overhead per executed instruction due to construction
10

of I/O sets.

5.4 Measurements of the DAME Systeir

In this sect!
DAME system along
First, a d i sclaime
the minimization o
goal in the design
system and often t
in the analysis fa
features may be di
opini on, met its g
been worse than ex
is to give the rea
the "relative", ra
system in the varl
measurements are p
can be increased b
use of some of the

on, some measurements of the overhead of the
the lines outlined above will be presented,
r note is in order: as mentioned previously,
f the resource requirements was not a primary
and implementation philosophy of the DAME

hese goals were neglected in favor of flexibility
cilities offered in order that new and useful
scovered. This philosophy has, in this author's
oals. on the other hand, the performance has
pected. Thus, the real purpose of this section
der an idea of what to expect in the way of
ther than "absolute", performance of a DAME-like
ous monitoring and analysis tasks on which
resented. Clearly, the speed of any component
y better coding or less generality or by the
ideas presented in the final section of Chapter '

5.4.1 Performance of the PDP-11 Simulator

The most basic observation is that simulation at memory
cycle level via a general-purpose scheduling mechanism degrades
the performance by at least a factor of 3 over emulation, in
which no scheduling is made. In the DAME system, simulation runs
about 3000 times slower and emulation 1000 times slower than a
PDP-11/20. These factors include about a 25% overhead for
checking for hooks. These figures are based on mea3urements of
the time charged to the user by the PDP-10 monitor, which includes
supervisory and swapping overhead etc. and have shown a deviation
of up to 15% in both directions.

5.4.2 Node Entry/Exit Overhead

If input/output sets are not being constructed, the overhead
for user-defined nodes amounts to 3.2 milliseconds per node
instance for entry and exit combined and 1.2 milliseconds per
node instance to create a node trace entry, for a total of
4.4 milliseconds per node instance. In the DAME system, these
costs have been found to be only associated with the actual entry
and exit events; the cost of checking for entry and exit with
each instruction is found to be less than the precision of the
measurements.

'*■■■"--•-■-- ■■-- '■——■ ■ n^r.lHMMfMat^dliBttl^^ ^■»^.M^..^.^-.:::.^^. .-■„.■..v...--,....--....-......- ^-...■■..■^■J. " ifmiiiWiiiiiMiMiiiiMiiittar

'■■»■■.«.■..n'jMwy-.i'r'l i-W •' ->' ,-,'.ry»-M>..--«r':.."-.»''--w.ji)i.njju^ii.

95

5.4.3 Input/Output Set Overhead

When I/O sets are being used, there is an added overhead
at node entry and exit, of about 40 milliseconds each, for
creating and closing the I/O sets. In addition, the overhead
of testing each generated address to see if it should be added
to the input or the output set amounts to about 1.3 millisecond
per fetched or stored operand, or about 6 milliseconds per OM
instruction in the node instance. Thus, for a node instance of
5 instructions, the total overhead for I/O set creation and main-
tenance would be (2*40)+(6*5)=110 milliseconds. If we assume
that 40 percent of all the executed instructions belong to some
node and an average of 5 instructions per node instance, the
total overhead for nodes and I/O sets would be 11.5 ms per executed
instruction.

For a PDP-11 simulator with a slow-up factor of 3000, assuming
an average of 3.5 microseconds of real-time per instruction,
this amounts to an additional delay factor of 1.8.

j -.■... — - - ■■ -- - ■ ■ -- ■■ - — ^^-~—

^«■PP-, »,■■ HJ.I..M. "*r**-'-"^.1 ■" f*■ v^!-a.ij»..w*w*.!J.Bi.(L,Ri.!Mü!.^i IIB^IJ.L!■,,iim.iiWSII.LP-U W.I L».JII„I,I,..N J*^IJI*i.H!ki-w'V-MW«M-*i.i, ww..-W«iv<tffi j^;^pn*1?Vin«i«WVPP^iP("ninn9

96

CHAPTEP

HIGH-LEVEL LANGUAGES FOR EXECUTION ANALYSIS

One of major shortcomings of the DAME System as described
in Chapter 3 is that its language is too primitive for making
arithmetic calculations and certain types of monitorinR opera-
tions. This fact was not altogether unexpected. One reason for
choosing this level in the design was the desire to avoid inter-
preting by software a complex syntax at run-time. A second reason
was the anticipation of the possibility that any proposed hard-
ware or microcoded implementation of a DAME-like facility might
employ an instruction set very similar to this one. Hence an
effort was made to keep a major part of the instruction set simple
enough to be implemented by hardware or, more probably, by micro-
code. However certain instructions are still too complex and
would probably be best implemented by software (e.g. Playback-
Values, Replay Node Instance, Type Object instructions).

In this chapter, I would like to discuss some issues in the
design of high-level languaees for execution monitoring and
analysis. The emphasis will be on features which are particularly
relevant to this application area.

The general structure of this chapter is as follows: first,
a number of issues related to the human engineering aspects of
interactive systems and languages are discussed as they apply
to our problem. In particular, trade-offs between simplicity
and power and between terseness and "rememberability" (ease of
use) are outlined.

Second, the major data elements with which a high-level
execution analysis language must deal and the appropriate forms
of access to each of these data elements are taken up.

Finally, the problem of "continuously-evaluated" expressions
is discussed. In particular, appropriate control structures
for the continuous evaluation of a set of predicates and techni-
ques for efficient implementation, as discussed by D. Fisher in
this thesis [Fi 701, are presented and evaluated.

-.''^»--«ii'^KUttL.,-'. fäMMäm .-,:■- . ■
-irr fr' -fw,-,-*^^!^-^-^^^

MHÜ^ "' '■ " ■ ■ "l ■ "m

97

6.1 Some Human EnRineerins Issues

Since most of the programminj? in the analysis level will be
done by the analyst at the terminal, almost in real-time, without
laboring over a page of analysis code for several hours, certain
properties of the total interactive system become very crucial.
The issues I would like to discuss here are those related to
this aspect of the design of the language of the analysis facility

progr
and c
proce
cause
(poss
cont r
guage
be twe
progr
ac t io
at th
sensi
have
it .
easy .
be we
tight

Due t
ammin
onduc
dure
saw
ibly
ols .
is a

en th
am,
ns ma
e sam
t ive
expl 1
In a

Her
ighed
er re

o the
g proc
ive to
can be
rong c
s imula
Espec

n i mpo
e cont
Anothe
y have
e cont
to the
ci t kn
list-o
e , the
again

presen

hands
ess ,
erro
"dou

ompu t
ted)
ial ly
rtant
rol f
r com
been

act p
orde

owled
r lent
flex

st th
tat io

-on ,
it i
r-f r
bly
atio
exec
the
f ac

low
plic
ind

oint
r in
ge o
ed s
ibil
e ex
n .

"qu
s cl
ee p
cost
n bu
utio
con

tor ,
in t
at in
epen

H
whi

f th
yste
ity
ecut

asi
ear
rogr
ly"
t al
n by
trol
bee

he a
g fa
dent
ence
ch t
at o
tn su
of a
ion

real-t
that t
amming
in the
so unn
the o
s t rue

ause o
nalysi
ctor i
ly sch
, when
hey ar
rder a
ch as
loose

eff ici

ime
he la

An
sens

ecess
b j ec t
tui e
f pos
s pro
s t ha
edule
ever
e exe
n j u. u
DAME,
ly st
encv

natu
ngua
err

e th
arv
mac

of t
sibl
gram
t se
d i.o
thes
cute
st b
thi

ruct
of a

re of the analysis
ge must be terse
or in an analysis
at it not only
periods of
hine which it
he analysis lan-
e interaction
and the object

veral analysis
be activated

e actions are
d, the user must
e able to modify
s is extremely
ured list must
more opt imi zed ,

synt
obje
purs
can
numb
Over
of t
of t
symb
pres
a la
to b
pain
mate
quen
virt
same
f aci
gene
in 1

We have
ax and c
ctives c
u e d with
lead to
er of sp
-emphasi
he power
he Turin
ols whic
ented by
rge numb
e too pr
fully te
hed sequ
t source
ue of LI
basic r

litat es
rate the
anguages

alrea
o n d u c i
an con
exces

a desi
ecial
sons
of th

g tar
h have
the s

er of
imit iv
stify ,
ences
s of s
SP is
eprese
operat
m or d
where

dy no
venes
f lict
sive
gn wh
symbo
impli
e Ian
pit)
to b

yntax
speci
e. I
is t

of pa
imple
the f
ntat i
ions
elete
the

ted th
s to e
with
zeal.
ere th
Is as
city o
guage
or to
e reme
of LI

al sym
t s f ai
he ext
renthe
error

ace th
or : n
on pro
them.

syntac

e need
rror-f
each o
For e

e user
operat
f synt
(as on
the de
mbered
SP. I
bols ,
ling h
reme r
s e s , w
s in L
at bot
amely ,
grams

Thes
tic el

for t
ree pr
t h e r w
xample
has t

crs or
ax can
e goes
finiti
. An
t neit
nor c a
owever
elianc
hich i
ISP pr
h prog
list

as dat
e oper
ement s

ersenes
ogrammi
hen any
, the g
o remem
contro
lead t
in the

on of m
interes
her r e q
n the 1
, as us
e on ba
s one o
ogrammi
ram tex
structu
a , e.g.
at ions
of the

s , simplic
ng. These
one of th

oal of ter
ber a larg
1 characte
o e it her w
general d

any specia
ting case
uires memo
anguage sa
ers of LIS
lanced and
f the most
ng. Anoth
t and data
res. This
to parse

are more d
language

ity of

em is
senes s
e
rs .
eakening
irec t ion
1
is
riz ing
id
P will
properly
fre-

er
use the
feature

them ,
ifficult
can not

 - i in ■ifiiii«[ifmi«iiilMilii--:—-■^■--i ii r HUI ^i*riMj^«r>iiiMiM—mM«Mi^MiiM«MMiM " ^_JJ„M^_iiM,Bt^iMjtMjaM>M«tdl<M

m^mmmm*mm^m* > > H»I^I^W^»IWPW«»^^WW^«^^»«P«P»I«P»«^W^HPW^>»I»" ww»-"^«"»»!!™

98

be represented in one of the dominant data types or data struc-
tures defined in the language (it must be noted that most primitive
machine languages do satisfy this requirement). For these reasons,
a list-oriented syntax was selected for DAME. V'hile there is
much room for Improvement in it, the chosen syntax has proved
remarkably flexible and resilient under demands to accomodate more
and more complex instruction forms. A eood example of this is
the Search List(SLIST) instruction. (See Section 3.6.1 or
Appendix A: Introduction to DAME for a description of this instruc-
tion) .

I would now like to consider the special-purpose data struc-
tures with which high-level execution analysis languages must
deal (i.e. structures unique to execution analysis) and the access
methods which they must provide.

6.2 High-Level Data Access in Execution Analysis

The set of major data elements with which an execution analy-
sis facility must deal were discussed in Chapter 2, and we summa-
rize those elements here:

(i) The external state of the Object Machine
(i.e. main memory and user-addressable registers),

(ii) Some parts of the current internal state of the OM,

(iii) Possibly, user program text and symbol table,

(iv) Structural information about the user program
(e.g. its nodes),

(v) Empirical data associated with each component of the
structure (e.g. I/O sets of node instances, data created by user
at run-time),

(vi) Execution history,

(vii) Analysis program text,

(viii) Representation of the association between analysis
actions and contact points,

(ix) Entities holding intermediate results of analysis
computations.

I shall now discuss appropriate forms of high-level access
to each of these elements.

(i) The external state elements should be accessible by
explicit addressing, e.g. corer2000], by computed addresses.

. . «■iirtw^.' Hrtit1ttiiiii.nil'^-
,'-if-'-- J i ,ta**mtM*iLMitmmsa^^m

WIW»™»!«! mmmiBm'mimfmmmm u, i.ijiimjuiiuuiiijiiiJiiJiiii ■ IN ?*&m*mmrm*mm^^mmmimmmmm mmmmmmmm mmmmm

99

e.g
c o r e 1 B J J) ,

core[A+Bl, through Object Machine pointers (e.g. core[A+
in blocks (e.g. coreC>;B] <■ 0, where A:B as well as

denotes 'A to B', or core[100:200 core[300:A00]). User-
addressable registers should be accessible by their mnemonic
names used in the assembly language as well as by their memory
addresses where such addresses exist.

(ii) Those elements of the internal state of the object
machine which contain the various fields of the current instruction
(e.g. opcode, source operand, destination operation) should be
accessible by suitable mnemonics.

(iii) Access to user program text make.* possible such things
as building a text editor/incremental assembler into the analysis
facility so that corrections to user programs may be made as
they are discovered, rather than saved until the end and made in
a seperate operation. The availability of the user symbol table
clearly facilitates communication between the user and the
analysis facility by permitting the use of the symbols appearing
in the user program. One or both of these facilities are avail-
able in several svstems though not in DAME (e.g. See Lampson LLa bb ..
Evans and Darley [ED 65.1. For a comparative discussion of various
techniques related to this topic, see Evans and Darley [ED bb.i.)

(iv) Structural information about the user program describes
the components of that program, as they have been defined by
the user or determined by the system for the purposes of analysis,
and the relationships between the components (e.g. predecessor/
successor, outer/inner node relations). This can be in tabular
form or in the form of "descriptor objects" (as in DAME) which
can be manipulated bv list-processing functions. In any case,
it should be possible to reference these descriptions explicitly
(e.g. "node A" or "the node starting at location 10000'), by a
computed address (e.g. "the node starting at the location pointed
by contents of location 10000 + contents of register 3).((Or as
elements of a list or table satisfying a predicate (e.g. all
nodes between 10000 and 12000"). Better yet, the user can be
given a facility for stepping through the component descriptions
in a systematic way and computing arbitrary functions using the
various fields within each description, with the ability to exit
the search at any point or have it terminated automatically when
the end of the table or list is reached.

(v) Empirical data generated during the execution of the
user program should be linked with the phase of the execution to
which they relate and they should be accessible by the user through
that link. An example of such data is the input/output sets
of a node instance in DAME. These sets are accessible directly
via pointers contained in the entry for the asfociate^0^
instance in the node trace table, as well is through the chrono-

u».»..;n...... jarMiiiiifiil)'-■-"-"■—' •"'•""""-ÜtitlflM ■fluff"-''"" ■■- -»■:^..-....^-«..—,^.=...^.J-—«: '-""■-—-Wiinifilliririr ■ iii-n T ■ ■ -.w - ^

JOO

mm

looical list of pointers to a node's I/O sets, poin
node object Itself. This process of linking emplri
with the associated portion of the execution histor
done by the Analysis Facility for specific types of
the system knows about (e.g. I/O sets); but the us
also have a way of doing the same thing for arbltra
An example of the latter case is where the user wan
to each node a list of the addresses of every unlqu
of that node in an analysis of control flow. This
example, that whenever a new noda Is entered, the u
to locate and search the current members of the sue
of the last node for the address of the new one, an
not found, be able to add It there. Such a mechanl
Implemented In terms of a more general associative
such as LEAP in SAIL (See Feldman and Rovner IFF 69
associative search facility would permit LEAP-llke
such as :

ted by the
cal data
y can be
data which

er should
ry data.
ts to attach
e successor
reaulres , fc r
ser be able
cessor list
d if it is
sm may be
search facility,
J). This
statements

FOREACH X,Y,Z SUCH THAT '.condi t ion > AND
«condition> ... DO <statement>;

where X, Y and Z may be nodes, node instances, I/O sets of any
of the other defined object types in the system. (Note that
one would probably prefer terse, single-character symbols for
fhe FOREACH, SUCH THAT and AND in an interactive language).

a var
s true
the t
contr
Facil
be ac
shoul
f to
a use
1 n v o 1
of th
or th
in (v
facil
or f o
tered

(vl) The
iable-lev
ture whic
Ime grain
ol. Ina
ity over
cessed by
d be s1ml
a sequenc
r predlca
ve both t
e k nodes
e empiric
). For t
ity for s
rward in

execution histor
el trace , where t
h has been define
and the volume o

ddition to the no
the course of the
user analysis ro

lar to the preced
e of elements In t
te p. The functl
he history inform
executed prior t

al data dynamical
his purpose, the
earchlng over the
time, and apply j. n

y informat io
he precise 1
d over the u
f collected
rmal mainten
execution,

utines. The
Ing case ; e
he execution
on f and the
atlon itself
o the last e
ly associji.te
analysis Ian
execution h

g predicates

n represents
evel depends
ser program.
data is unde
ance by the
this data wl
form of the

.g. applying
history whi
pred icat e p
(e.g. the a

xecution of
d with it, a
guage should
istory event
to each eve

essentially
on the
Thus ,

r user
Ana]ysis
11 also
access
a func 11 on

ch satisfy
may

dd ress
node A)
s described
have a

s, backward
nt encoun-

In the last two paragraphs, two distinct ways for performing
searches over execution history and associated empirical data
have been proposed. It is beneficial to recap them at this point;
one way is to build into the language high-level associative
search facilities such as those of LEAP, and the other is to give

 ■ -■--■■—- ——■'-— — ^_.. . - --- - —.^^^.i». MMMMMMM J

101

the user lower-level mechanisms such as the Search List instruction
in DAME, which systematically Rive the user the next element of
the list being searched and test to see if the user wishes to
terminate the search or not. If the first facility is provided,
then clearly the language must possess a fairly sophisticated
list-search mechanism. In such a case, the system mip,ht as well
give the user the second, lower-level ability too, since this
would be at almost no additional rost to the system and there
will probably be a number of cases where this lower-level ability
will be much more useful or efficient for the user.

(vii) The analysis program text and possibly its internal
representation will be of interest to the user in such cases as
when he wants to see the texts of the actions associated with a
particular type of access to a location or to edit or patch an
existing analysis routine. Thus, it is important that the analysis
facility contain an on-line editor for analysis text which can
also be invoked under program control.

(viii) In addition to accessing the text of analysis routines,
the user should be able to access a list of the names of analysis
actions associated with a particular address or contact point.
This is important, for example, in avoiding duplicate entries
for the same analysis routine or in determining in what order the
actions associe^ed with an address or contact point should be
arranged, e.g. to optimize the set of analysis actions.

Clearly, if the syntax of the analysis language and the form
of these associations fall into one of the dominant data types
handled by the analysis language, very little additional machinery
will be mecessary to give the user the abilities mentioned above.

(ix) In the course of analysis computations, the user will
often want to hold temporary results in local (or transient)
variables. Depending on the kinds of entities manipulated in the
computation (e.g. lists, arrays, strings), the user will need
to create, and later delete, entities of appropriate type for
this purpose. In a highly modularized style of programming, such
as we expect analysis programming to be, it is very desirable
to have local variables, if for no other reason than the very
practical one that whenever one defines a new variable, one
would like to be sure that one is not clobbering an already existing
variable with the same name, which may have been defined by any
one of the number of routines used in the computation. Thus,
through the use of local variables, painful searches of all the
used analysis routines for each new Identifier to be created can
be eliminated.

■

'■ —'- ■ > ■ ■-- ^ - ■- '~~---—- ■■'- - i i ~ ■- -*- ■ - ^ ..■■.-. ■.■■ . ^ , . j , ■ ^ j .. iv. ^. .,-.,;. .:.^:.^~i. ^:M v ■ ■■-■:. -^

mmm*mm*^— ■ • I..I.IUI«I«JL«U«^H

b^_J Con t i iiu (ms llv.i 1 un t i cm o t K x [> r e sslons

One of the ma
1 a n (Mi age should b e
e v e n t s wli ich the u
«en e r a 1 J v be exPre
t ro m m.s i; to TRUE
f u n c t ions over the
The c on L i nuous mon
i n li i S thesis IFi

the b a s i c p r o c e d u r
s i o n a as described
add re ssed b v him.

In functions of a hißh-ieve] execution analysis
to facilitate the description of execut ion

ser wishes to watch for. These events can
ssed as a change in the value of a predicate

Sue!) a predicate can involve arbitrary
data elements discussed in I he previous section

i toring of pred i ca t es was discussed by D. Fisher
70!. In this and the next section, 1 discuss
e for implementing continuously evaluated expres-
by F i sii er , as well as some points not directly

I shall start by discussing the overall control flow in the
continuous evaluation of a set of predicates, deferring the dis-
cussion of efficient techniques tor the continuous evaluation
of individual predicates until the next section.

Normally, when one of these events takes place (i.e. the
value of one of the monitored predicates becomes TRUE), some
action is taken. Then the question arises: "Should the same
predicate be now re-evaluated, because the action may have changed
its value again?" More generally, the question is: "What should
be the control structure for the continuous evaluation of a set
of predicates?" I shall denote by S:-predicate' • action> the
specification S that action- has to be executed when predicate-
becomes TRUE. Consider ,or example the following specification:

A: (b 0) • (b ^ b+1 i

where b is an analysis sy stem (not object machine) variable.
This specification will c ause no changes in the state of the
analysis system until b exceeds zero. But after the first time
tiie predicate is found to be TRUE, what happens to the system
depends on whether or not the predicate is evaluated again imme-
diately following the action b •> b + 1. If it is. clearly the
system will fall into an infinite loop (infinite for all practical
purposes, unless this is avoided in some special cases by a quirk
in the number representat ion in the system, e.g. adding one to
the largest possible positive integer results in zero , or some
similar event). This is clearly a very undesira ble situation.
If the predicate is not re-evaluated, the infinite, loop does
not result. However, in order to accomodate the case where the
user may wish to continue the "predicate evaluation-action" loop
until the predicate returns FALSE, a WHILE predicate- DO (or
an equivalent construct) should be available.

---■ »I- -• - - - ■ ■ ■ . ■-..—-. -... - _._ —.._ ...
■ -- ■ ■-——■

'm~^^m*mvm^^mmmig^^i --I.WJ»

■ I IKII ! IM

w
the co
in f u 1
var iab
How ab
- - s h o
change
If so ,
other
class
to per
the ef
which
able t
user p
of tha
have .
How do
mul t ip
with a

e s t i
n t rol
1. W
les s
out c
uld t
were
we c
hand ,
of fu
f orm :
f ects
tests
o be
rogra
t pro
Howe
we h

le ch
si ng

11 have n
s t ruet ur

e have de
hould not
hanges to
hese chan
caused b

an again
by rul in

nc t ions w
namely ,

of a pie
the cont

activated
m or a mo
gram. Th
v e r , t h e r
andle cha
anges t o
le predic

103

ot answered our general question rega
e of the predicate evaluation mechani
termined that changes to analysis sys
cause a re-evaluation of the predica
the object machine state by analysis

ges cause a re-evaluation just as if
y the execution of the object program
have the same infinite loop problem.
E this out, we are ruling out an impo
hich the analysis facility should be
faithful mimicking, by analysis code

ce of object code. For example, a pr
ents of object machine location X sho
whether the contents of X is changed

del (in the language of the analysis
us, this seems to be a desirable abll
e are some other points also to be co
nges to several variables? How do we
the same variable in the action assoc
ate?

r d i n g
sm
tem
tes .
actions

the
Itself?
On the

r t an t
able
, of
ed i cat e
uld be
by the
facility)
1 t y to
n s 1 d e r c d :
handle

iated

Considering the multiplicity of requirements that a high-levol
rule for this purpose would have to satisfy, the best policy
seems to be to let the user decide what he wants to do, i.e.
give him the ability to test if there are any predicates involving
a particular OM variable and, if so, to evaluate those predicates
and take any associated actions whenever he chooses to do so.
It may be desirable to have a high-level operator to do all of
this for a given symbol, e.g. an operator. CHECK(X), may serve
this purpose, as in:

ril:(A5) * (B < A;CHECK(B):A *■ C:C *• D;CHECK(C)):

where we have applied CHECK to B and C but not to A.

One possible model for this control structure appears to Le
that of Markov Algorithms. In this model, predicate evaluatiop
is halted after the first predicate with a value of TRUE has
been found and the associated action has been taken. Following
the next change in the object machine state, predicate evaluation
starts again from the top, i.e. with the first predicate.

A second possible model is one in which every predicate is
evaluated with every change in object machine state and the actions
associated with every predicate whose value is TRUE is executed,
in static order.

Either model is feasible for this purpose. However, it is
clear that the evaluation of even one (arbitrarily complex)
predicate after every change in the object machine state can be

,^n*^^«~~.. ■*..•,~**^^*...-*.'.^,^ttoiiiutfitl±fyita ifl-uq^^^ ^.i.^..«.'./.^. ^^^^.^^rt^tWf^rtM'"^''--^- -^.-^ - ■-.^■■.■.■.:^ ^ ■ . - -. —..-.. .:. v...:.i.^J.^.^,.>J:..^f.-L:^^M,^ i::.^^

• ' - . ^ ...

104

unbearably expensive, unless some very efficient ^.h ,
found to perform the evaluation In Lrl ^ techniques are
are found, the ideas discussed^o far in M? ^ ^^ techni^es
not be implemented in a useful lav rtL tt^t0* JUSt COuld

may seem like "implementation d^ails" to' o f^" techni^^
of the essence, since without t^lLsl*^^ ^ £ ^le.

conne^Ln;ri:\:b:^0:-;;r-:e^f,-:- - ^ ^ ^
in a predicate and whenever sucSa varlabl! t Variable appearing
re-evaluate the predicates in whA ^ changes value, to
order. Thus, f0l exa^ e " ^ e se t of'r^^-^ the Pr0Per
pairs: set of ('Predicate- -»■ <action>)

[■U:((X •5)&((Y+Z)<n)) > f .

r2]:((X<5)&(W<Y)) - f .
2

-amcauon of x. ^^^Lir^z^uitizrt Th each

P U chased, we do not nccL«rJw V/PP"rlnR In a pradicata

P. First „e can avalult^tho r L"' 1° il^rl^ ^ 0f

and only if one of tho^P ^e^^,o ^ rms ln p in which V appears;

any more evaluations Thssu.^^65 ValUe *0 We need to ™^
the predicate and a 8enIraliZa?ion 0

S
f
a^ree.repreSentation of

to one where a node fn level LntL ^^ evaluati°n rule
and onlv if anv of itl 7 i. m the tree is re-evaluated if
modified. ' tS lramediate descendants (in level L+l) 18

with thf^n^Ll^rthe811^::^' ^ ^ "^^ rFi 701' ***>*
a subtree. Consldeffo" ^mple^t^^p^^r" ^ ^ ^

((X+Y)/(X+Z))*(X+Y+Z)

A— .^ -t «.^.V... ^ ■. ..^■■■.. .„ ■ - - - - -. ^ ; ... ^ mta - ■ ■ - -■ -.■.j^^^^aM.fllfc*kiUitA.*^-mamA>Aj

T—'f

105

Here, d 's are dummy variables Introduced to hold the current
i

value of each subexpression. Let us suppose that the value of X
has just changed and that we wish to propagate that change through
the whole expression. If we follow the rule given above in a
depth-first, left-to-right fashion, we proceed as follows:

At level 0, we substitute the new value of X into the leftmost
instance of X. We evaluate d using the old value of Y. If

1
d changes, we evaluate d using the old value of d . If d
1 3 2 3

changes, we evaluate d using the old value of d . Then, going
6 5

back, to level 0, we substitute the new value of X into the
expression for d and evaluate it using the old value of Z; if

2
ti-e value of d changes, we evaluate d again. If d changes,

2 3 3
we evaluate d again using the old value of d . Then, after

6 5
similarly proceeding up the right subtree with the new value of
X, we evaluate d a third time.

6

• — ■...■■-■.■..■ , - ■ - . — —.-^— .,..- _ _. **m ^»mm*i^m*m*t

Pf^^^
■

106

Thus, in this expression, we have evaluated one subexpression,
d , twice and another, d , three times. In Renerai, if a strict
3 6

depth-first search Is followed, then for each new value assigned
to a variable X, every node e in the evaluation tree will be
evaluated n (X) times, where n (X)=number of occurrences of X

e e
in node e.

C
the fa
under
for te
change
its im
turned
in the
off.
X's in
plugge
the fl

of X i
If the

lear
ct t
the
rms
s as
med i
off
pre

Then
lev

d in
ags

n le
val

iy.
hat
node
to b
a r

ate
, wo
cedi
, wh
el 0
to e
of d

vel
ue o

the r
at ea
to b

e eva
e s u 11
ances
uld e
ng ex
en th
woul

ach o
, d

1 2
0).
f eit

eason
ch nod
e eval
luated
of re

tor is
limina
ample ,
e v a 1 u
d be t
f its
and d

be turned on

The ev
her d

1
Similarly,

of d would be turned on.
5

the root node has been ev
have been turned on can b

for
e we
uate
, wh
-eva
tur

te t
ini

e of
urne
occu

(s
A
alua
or

if

Th

the unneccessary computations is
do not wait for the entire sub-tree

d. Thus, a breadth-first search
ere whenever the value of a term
luation, a flag bit associated with
ned on and its own flag bit is
he unnecessary evaluations. Thus,
tially all flags would be turned
X changed, the flag bits of the

d on. The new value of X will be
rrences in level 0, also turning on
ince each is an immediate ancestor

tion would then move to
d is changed, the flag
2

the value of d changed,
4

e evaluation would stop either after

level 1.
of d would

2
the flag

aluated or when no more flag bits which
e found .

This breadth-first search (described by Fisher) thus avoids
the unnecessary computations of the earlier depth-first procedure
by using an additional bit of information associated with each
node of the tree to guide itself to those nodes whose values
could possibly change due to the change in one of their ancestors

Other types of optimizations, such as recognition of common
subexpressions (e.g. d and d in above example), could help to

14
further reduce the amount of computation involved.

It must be noted that our ability to determine the leaf
nodes of the execution tree which are affected by the change in
the value of a variable, X in the above example, depended on our
ability to statically locate all the occurrences of that variable
in the whole expression. When this is not possible or practical,
the above procedure can not be used. Examples of such a case

k ,JJ-J-, -■^,. ■ , ., ^^L-^..-^^ ^........^.-^-^..l-».-—„~- .. . i rtuMjMBMMBatMMl

■■■■■•

107

arc function calls or coroutine jumps. In the case of function
calls, if the name of the function is staticaJlv fixed, e.g.
f(X), then one can conceivably locate, at compile-time, the text
of the function and see if it uses the variable whose value just
changed. If the function call is to a dynamically computed
address, this has to be done at run-time, introducing substantial
overhead.

Another example of a case where it may be impossible to
identify all possible occurrences of a term is accesses to a
dynamically computed address. Any term involving the contents
of a dynamically computed address should be checked after a
change in the value of any object machine variable to see if
the dynamically computed address is equal to that of the variable
whose value just changed. Alternately, instead of computing
the dynamic address with each change in the object machine state,
that address itself could be maintained by the continuous evalua-
tion techniques described above.

This last example illustrates a cascaded two-level continucuslv-
evaluated expression and provides an example of hierarchical
systems of such expressions as envisioned by Fisher.

iM^mitiiMämiätmUäA ̂ „^a^*,-:*. I- ..^.■-•l.l'.,...'. ■ ; ■■'■■■■ --• '■ Mjiaafla

108

CHAPTER

EXECUTION ANALYSIS FACILITIES FOR ALGOL-LIKE LANGUAGES

My only hands-on experience with the imp lernentation of the
presented ideas on monitoring and modelling has been with programs
written at the level of the dominant, contemporary central pro-
cessor instruction set. In this chapter, I would like to consider
the translation of these ideas to the class of languages which
has come to be called ALGOL-like languages, which are a subset
of "problem-oriented" or "procedural" languages.

It must be emphasized that the intent of this chapter is
not uo present a design specification for execution analysis
facilities for any specific high-level language, but to explore
the basic problem areas uniquely associated with this area. Hence
the level of detail will be much less than that of Chapter 3 in
which the design of a particular prototype system was discussed;
but hopefully enough ground will be covered to provide a starting
base for the researcher or designer interested in this area.

7.1 The Added Complexity of High-level Langua£e_s

In some sense, since a language and its abstract processor,
which may be called its "machine", are two sides of the same coin,
there should be no conceptual difficulty in translating the^
techniaues we have discussed in the preceding chapters for machine
language" to any language for which a machine exists or can be
built. The onlv difference is that the machines for ALGOL-lihe
languages are much more complex than the machines considered so
far'. Hence, some things which were very easy to handle before,
now become difficult. Let us consider the added complexity in

three parts :

1- Syntactic complexity,

2- Semantic complexity,

3- Language imp lernen tat ion complexity.

1 shall now proceed much like in Chapters 2 and 3 to discuss
these areas first in abstraction, then in reference to a particular

language.

MM^Iidt^iiiiiiiiiii i'iiläirMimTliflillKfcifti'mlli Ming i —- - - -— . . ._ - • ■ ■■rtmaainrin liiiillninifi iftMiiarttil

109

7.1.1 On Increased Syntactic Complexity

The increased syntactic complexity arises from the fact that
the analysis facility has to be able to understand (parse) each
statement in the source program at run-time. For example, one
would like to be able to say, at run time : "Trace on the TTY
the brancli taken by everv IF statement", or "type the contents
of X and Y!l,2l at entry and exit from any loop in the routine
R" or "for every 'else clause' which is executed, type the values
of all the variables in the Boolean expression in the associated
'if clause'", or "type the values of the. operands of all floatin;
point divide operations, except in routine P".

7.1.2 On Increased Semantic Complexity

An example of added semantic complexity is dealing with
scope rules and storage allocation. When specifying a monitoring
action on a local variable, one has to qualify the variable name
with an identification of the block in which it is declared as
a local variable and in which the monitoring action is to be
applicable. Further, if the block is executed recursively, then
one also has to specify which "generations" or "incarnations"
of the variable one is referring to. Similarly, references to
the actual parameters of a routine, "own" variables, values re-
turned by expressions etc. must be carefully qualified to ensure
reference to the correct data element.

Another example of semantic complexity with some high-level
languages is the interpretation of data types; e.g. checking
the data types of the actual parameters of a routine inside the
routine.

7.1.3 On Complexity due to Language Implementation Techniques

Clearly, an important question which comes up when one tries
to envision how such an analysis facility might be implemented
is whether the source language is to be interpreted or compiled.
A form of compilation called "incremental, compilation". In which
each statement is compiled as independently of the rest of the
program as possible and and control is returned to a run-time
monitor after each statement, is a convenient compromise which
permits us to reap some of the benefits of both the efficiency
of compiled code and the flexibility of interpretation.

To be able to recognize at run-t..me the code corresponding
to the various parts of a source statement in a compiled program
(compiled by a non-optimizing compiler), requires some kind of
intermediate-level representation of the structure of the object
program. This representation may be a directed graph produced
at compilation time. Given such a representation of the source

 ■-'-—..... .- -....I-.
—- • -^— ■ ———m

■

110

presentation and the symbol table for each external (e..
routine that is used must also be available at run-time.

1ibrary)

re narL« ! I I *' * VXire interP" t er", which essentially
re parses each statement every time it is executed, would not '
Jn theorv an . lnt e rn/ed ia ^ e structural representation, at least

eoui "d'h %lnCe the ?ff0rt t0 ParSe the Pro^am t0 insert the required hooks is negligible compared to the continnous parsin
•*ö part of the interpretive execution,
the symbol table available which it need
t ion .

p a r s i n B
It will of course have
s itself during the execu-

tatl
degr
lang
end ,
whic
pre t
prec
lang
curr
run-
can

Between the extremes
on lies a spectrum of
ees of compiled and i
uages, these extremen
by BLISS, which requ

h really isn't a part
ation end, by APL, wh
edence rule come very
uage. In between, 11
ent implementations)
time library although
intermix compiled and

of pure compilation and pure interpre-
modes of execution involving varying
nterpretive representation. In existing
s are exemplified, on the pure compilation
ires no run-time packages (except I/O,
of the language) and, on the pure inter-

ose right-to-left scanning, direction and
close to iraking it a "post-fix operator"

e languages (more accurately, their
like PL/I, which requires an elaborate
it is a compiler language, and LISP which
interpretive execution.

In this multi-dimensional space, for which I can conceive
of no significantly helpful metric for the purposes of this research,
I shall pick a much smaller subspace in the hope of discussing
its dimensions in a somewhat more systematic way. That is the
space of purely-interpreted languages. One reason for this choice

for n^n A
co"ceIvable t0 ^e an interpreter for any language

for program development and testing purposes (or this could be
an incremental, debugging compiler). Secondly, this choice permits

c?a PH^ • 2uestions elated to code generation and the asso-
ciated nappmgs between the source code and the object code.
InTriT Ja" concen^ate on the functional requirements (in the
spirit of Chapter 2) rather than implementation techniques. Thus

In ell T ^"Ü10?' We aPPly the functional requirements outlined
HAMP

P T u e concePts used ^ their realization in the
tor\nllrVl\t0 l^ «P^iflcation of execution analysis faciliti.
tor interpreter-based languages.

es

 *r..^.,. ...^- ■ .■■■■ ■ J-;;., ' '■' - ■ -^/<AL^-.n-M^J(..^,tJ.J^ - ■'-"■ - ^.■--.-^-^^

<,.,„,-._.,.ufr.. , iiltwwll|]|^ijip||),|j.|(W|.i|||Jljluii LMiiiuu (ii I müJllfMIU, I ■»i^ilJil I u.^in^uiji^ii jw(iÄpw,iij,jli».jiii*» iw.i,!."i

111

7.2 Execution Analysis Facilit ie s for Interpreter-based
Languages

Let us recall the classes erf required capabilities we estab-
lished in Chapter 2 for a p.eneral purpose execution analysis
facility :

1- The informatior to which the analysis facility has access

2- The points in the execution cycle at which it can gain
control,

3- Its instruction set,

4- External appearance and miscellaneous useful features.

The information to which the analysis facility should have
access, can be considered in two subclasses:

(i) Information about the execution history of the particular
program,

(ii) Information, some may call it "intelligence", about
the syntax and the semantics of the source language, as discussed
earlier in this section.

Subclass (i) is generically not very different from the
corresponding requirement for low-level machine languages; namely,
the information needed to efficiently reconstruct anv past machine
state. In this case, of
by the source language.

course, the "machine" is that defined

In order to give more concrete content to what is meant by
a "machine state" in the case of a high-level machine, let us
divide, as we did before, the machine state into two parts: the
"state of the memory", i.e. the values of all the variables defined
so far, and the "current instruction". The question now becomes:
"What is an instruction in a high-level machine?". The question
arises because in low-level machine languages, an instruction was
an easily identifiable unit, which performed a very snail number
of, sometimes only one, indivisible operations, usually involving
up to three or four operands, including side-effects. Further,
what is called a "machine language program" consisted of a sequence
of machine instructions. Hence the machine instruction turned
out to be a convenient unit for denoting state changes. Clearly,
what is usually called a "statement" in a high-level language is
not a convenient unit, since it can be arbitrarily long and complex
Thus, it is reasonable to propose the execution of an "operator"
as the smallest unit in such a language. However, the "operators"

— - ■. . -,. — -. — ■ .-•—.— ■ ■' ■ ■ • ■ iiniic---" - ~~^~*i~i~~m*a~mmt**^

l,J|l«J,-.|P»lHlUil S^UPJjWUPfnwp^BP^T^^^^^^W^^rwTT^^^T^f .,,«r.(...,.raP,.ni>.,<>,iWiiii» ,.11, ,»,.i , ,--~.~r. -^—«jiviJUM"!

112

I have in mind here are a super-set of the operators usually
defined in a syntactic description of the language. For example,
when in FORTRAN one writes

IF(X-Y)10,20,30

the
of (
sub t
call
intu
lang
in S
of S
I re
"ind
more
the
down
betw
to t
is u
view
ques

se le
X-Y)
rac t
mus

it iv
uage
who

ii

ly o
ivis
ela

ef fe
int

een
hose
nint
, th
t fo

c t io
mus
ion .
t al
e co
S a

se e
This
n th
ible
bora
c t o
o sm
thos
per

erru
e fi
r in

n of
t al

Si
so q
ncep
s "t
ffec
is

e in
wit
tion
n th
alle
e un
iods
ptib
nest
form

the
so be
mi lar
uali f
t of
he se
t is
a ver
tui t i
h res
howe

e mac
r uni
its .
in t

le.
degr

at ion

appro
rega

iy, t
y as
the s
t of
ind iv
y vag
ve me
pec t
ver .
hine
t s su
Thes

he ex
They
ee of

pr la
rded
he p
an o
et o
deno
is ib
ue a
ani n
to t
Loo

stat
ch t
e co
ecut
also
det

t e case
as an

ass ing
perator
f opera
ta t ions
1e with
nd info
gs of a
he sema
s e 1 y , w
e of an
hat oth
rrespon
ion eye
rep res

ail whi

as a
opera
of pa
. Th
tors
for
resp

rmal
11 th
nt ics
hat i
"ope

er op
d , in
le in
ent ,
ch ca

res
tor
rame
us ,
in a
the
ec t
def i
e t e
of

s me
rat o
era t
a c
whi
from
n ap

u 11 of e
as well
t ers in
we are 1
given s

largest
to the s
n i t ion ,
rms used
S" requi
ant by t
r" can n
o r s can
onven t io
ch the p
a user'

pear in

val ua
as th
a sub
ed to
our ce
opera
eman t
in wh

Th
res s
his i
o t be
be in
nal m
roces
s (joi

a use

tion
e
rout ine
the

t ions
ics
ich
e phrase
ome
s that
broken

serted
achine ,
sor
nt of
r re-

7.3 A Mini Demonstration Language

For the sake of a more concrete illustration and also to
face some of the problems which arise in the application of these
ideas, I shall define a very small, hypothetical member of the
ALGOL family of languages and use it as a vehicle to explore these
ideas further. I have decided to take this approach rather than
pick a particular implementation of an existing language since
the latter would very likely be a much larger task. In our hypothe-
tical language, we would like the following properties.

(i) It should capture tne essence of the syntax and semantics
of ALGOL-like languages, i.e. features common to ALGOL 60, PL/I,
BLISS, etc. These include ALGOL-like syntax, block structure,
recursion.

(ii) Its syntax should be definable by a small grammar (say,
about 2 pages),

(iii) Its semantics, similarly, should be easily describable,
even if only informally.

■ ■ ■ ■ - — -- ■ -■ —
 ■" ■ " u.,.^...^u.

MM——ii. w ii i.i. wi ——.l^.. ■■ ■ . ■ ,.^.r ,... _.._._r1.|, , ||| ..tin mi I,,,,,,,,,,,,, „ „ '„ ' , , , , '_..-'„■ .. ^_.. _ _ ... - .. ,,' ,. „., ,., , .,„.. .,„„...

113

The mini-language to be used here was obtained by chopping
away a major part of BLISS/10, in fact by removing a great deal
of its unique and interesting parts (such as the uniform inter-
pretation of names as addresses, the contents operators, the
concept of "structures" etc.), retaining only a small portion
which looks sufficiently like ALGOL or PL/I etc. I shall refer
to this language as the Mini Demonstration Language (MDL). The
syntax of MDL is given in an appendix. For a description of
its semantics, I refer the reader to the BLISS/10 manual [WU 71].

7.3.1 Information Accessible by the MDL Analysis Facility

The outline given below follows the one given in Section 6.2:

(i) The external state of the MDL machine, i.e. the
contents of every variable and address directly accessible by
the MDL program,

(ii) Parts of the internal state of the MDL machine con-
taining the components of the current expression being evaluated,

(iii) The text of the MDL program,

(iv) Information about the structure defined over the user
program for purposes of analysis (which may not always coincide
with the syntactic structure),

(v) Empirical data associated with each component of the
structure, collected during execution,

(vi) Control flow history,

(vii) The text of the analysis program,

(viii) The list of analysis actions associated with each
contact point,

(ix) Meta-variables holding intermediate results in analysis
computations.

Item (i), access to the MDL variables, does not require any
more elaboration. Item (ii) and an important extension is dis-
cussed in detail in a succeeding subsection. Items (iii) and (vii),
namely access to the texts of MDL programs and analysis programs
are discussed together in a succeeding section. Items (iv) , (v),
(vi) and (viii) are discussed together in the next subsection.
Item (ix) is discussed in the section on data types for the analysis
language.

■ifcr>>i'illIihhiiiyii.ii,iiV'l i i if n^ r'llilhflfrirMfnrt-.^-'rj-iiirmi'T'Hti--" ■■'■.i.-rf».-- ■----;J^^-^t'~LJ.^^-^l-.-J-:..-Ja:.-^-j.Ji>-^.^m^ .-a..-A--.-,.,-^^.vv^..^t--.--^..^^-.ji.^rt.-^^-,-,,,..,; . , -.,. ..■.a-:,..--„J.j.^.o.,.^^J^.-J.A.:L., ,..^J...... j^

"WW^WWI ' <iJHi,ii.!.»u».,«WH-«»J'WIJI>«il.4Jl.wpi^ipiJI Ill 11 111,11 I ^^fn^r^f^" •«A«»*«««?«»»,!«"«!»', i '^^.mfMBiSS;

114

7.3.1.1 .Representation and Accessing of MDL Execution

hist
tori
form
each
obje
data
tati
Give
inpu
mann
node
mach
have
ther
find
synt

This
ory , d
as. I
of a
of wh

c t and
Cle

on are
n a pa
t/outp
er are
s , how
ine la
a uni

e is n
ti un

ac t ic

clas
ata
wil

node
ich
inp

arly
tho

rtic
u t s
dir

ever
ngua
que
o go
it o
cons

Histor_

s of in
flow hi
1 be re
trace

in turn
ut/outp
, the k
se of n
ular se
ets and
ectly t
, are n
ge, whe
entry p
od anal
f execu
truct w

formation consists basically of
story and a mapping between thes
called that in thn DAME system t
table containing node instance d
contained pointers to the assoc

ut sets, as well as certain othe
ey concepts which motivated this
odes, node instances and input/o
t of nodes, the concepts of node
an execution history structured

ransportable to MDL. The rules
ot as simple as in the case of 1
re the only requirement was that
oint and a unique exit point. I
ogue of a "machine instruction",
tion" (UOE) , which will in fact
hich can be designated as a node

control flow
e two his-
his took the
escriptors,
iated node
r dynamic
implemen-

utput sets.
instances,
in the above

for defining
ow-level
each node

n MDL, since
we must

be the smallest

The express!
for designation a
guage. These are
these we must add
tion: namely, ex
can be any one of
IF-THEN, IF-THEN-
operator [], the
Clearly, since on
latter loop opera
either loop zero
compute a value a
e.g. INCR I FROM
(These loop expre
according to the
can be involved.)

on-orientat
s a UOE: t

a name o
an element

press ions i
the arithm

ELSE, SELEC
routine cal
ly a single
tors can on
t imes or an
Iready give
J TO K DO Z
ssions , whe
semantics o

ion of MDL sugge
he simplest expr
r a decimal inte
wh i ch can act a
nvolving a singl
etic or Boolean
T-OF-NSET, EXIT,
1, WHILE-DO and
operator is to

ly appear in deg
infinite number

n as an operand
or INCR I FROM

n used as UOE's,
f MDL and BLISS

sts a natural candidate
essions in the lan-
ger. However, to
s a unit of computa-
e "operator" which
operators, relations,
RETURN, the indexing

INCR-FP0M-TO-BY-D0.
be involved, the two
enerate form; they
of times or they

in the expression,
J TO K DO J etc. .
always return -1

since no EXIT operator

t-o r-fco !! i ! ^y6 baSiC definition for the UOE, the extension
exnreL?611617 definition <>* * "ode is very natural: namely, any
expression seouence in the language having a unique entry point

with the intuitive requirement that node definitions should b^
compatible with the scopes of routines and blocks: it forces the
satisfaction of that requirement automatically.

r-'V IV i iifh-M i- '- ■ ri-i nl titx'ffiii-»*«!" "•'--**■"-•- -,. ■.-.:. ..^.^.^L^.ik.^^L^^.^^.^^V.-...-.:- ..-.-.■■.:- ■ ■,, . i L. . ., ,-.t....*^.!-:..^ „.^..^.-i.... .,...,■,;-■■.
■ ■-- ■■ ■ ■ -

ppfpwBffjpWWPWSPww^wpfre^

115

In adaptinq the concept of Input/output sets to higher-level
languages, there are certain issues with respect to the represen-
tation of the elements of input/output sets which must be resolved.
I shall only sketch some solutions to these issues here since
they do not seem to be major problems.

One issue is the representation of local variables in I/O
sets. Consider, for example, the following MDL code and the defined
nodes Ml and N2:

Routine n=begin
local A,B;

Nl A < cm + 2;
B * D[Aj+5;

N2 ClAJ * f(A,B)
end ;

The I/O sets of Nl would look like:

I =[(C(1),V),(Drv],V)J
Nl 12 3

0 = [(P . A , V) , (R . B , V) I
Nl 2 4

The I/O sets of N would look like:
2

1 =[(R.A,V),(R.B,V)1
N2 2 4

0 = [(C [R. A] , V) J .
N2 5

Cl 1 J
t i ve
ref e
loca
R. B
To q
of a
to t
qual
same
skel

Here, we have denoted by V , i=l,...,5, the value of CfiJ,
i

+ 2, DCCCl]+2] and D[C[1 J + 2] + ,'- in Nl, and f(A,B) in N2 , respec-
ly. We have also assumed that the function f does not
rence any non-local variables. To denote the use of the
1 variables A and B, we have used the qualified form R.A and
where R is the name of the routine in which they are declared,
ualify local variables which are declared in the inner blocks
routine, one could omploya block-numbering scheme similar

he one used by some Algol compilers. In such a scheme, a
ifying index is added for each static level and blocks in the
static level are numbered sequentially. For example, in the

etalcode:

Mj^.^.. ■O.,;.^;.-^^,-;,».,.,....^..-^rf;/^,.B^^:^......-.,.,lr -:.:■..,, ' - '->.-li.vM I , Viflrt ^ rrf^lÜirritÜi"- ' '-J'' ^ ' ' ' -v'' •-—■-.-r^U U.V ^. . ■ . ^T.-.-i v-:*: ,>;...., ~ .^...^-... W. ..^ ,.. !>, [^~,.^.. ^..^.-■■••■ ..■.^■■■.-. ■.jll«.*^

WS» 'BW,''W'5SiSS5™''"" ■l;w ■ ^ ■- - '-'"miW

116

Routine S= begin
local A;

begin
local A , B;

end

begin
local A;

beg in
local B;

end
end

end ;

^2 ^RSTB3151
*«

C0Uld ^ rfPreSented as: R-^ R.l.A. R.l.B.
tils not'Jt'il: .H°"eV^r' as the «^ber of levels increases,
this notatxon quickly becomes cumbersome. To overcome this at

an lir^ V It* l0SS 0f SOme inf —tion in the nota ion.' we
ordinal nV1K ^ i^i^3 by USing 0nly 0ne index -hich is the ordinal number of the block-head where tha variable is declared

Similar, but less problematic issues arise with resoect tn
other non-global variables, e.g. parameter formal" own variables

s^rar^i:! ^ reSOlVed ^ the USe 0f a ^alifying mechanism68"

Since recursive routine calls are permitted in MDL another
qualifying mechanis. must be introduced'to distinguish among
different recursive incarnations of the same routine and their

k.i....->L..- .■..^■..,■■...... V.L.. ^.O-i-^^^ : ■^^.^.■..-■^ ■■■■^ ■ .-.^..- ■^..., .,.._
 — - - - - - ■---■■-

^-^^■■C.|.-.J-. —-— ^'-"—J:-^ ' , . .^ W..^^^,*^^^. >-^

 ,
"■^^^^^ SSäS. »^.^«jji-WP.wiiiiJ.w^uv^wy;»'*"^"!

117

7.3.1.2 Access to the Internal State and
Generic References to Expression Sequences

An important facility that an analysis facility for a high-
vel language must offer is one which permits the user to say le

something like

"If I ever do X, then do •-action>"

where X is a partial syntactic specification of an
sequence. For example, X may be: '<name> - <name>+l', which
would mean that <actlon> will be performed whenever the MDL machin
evaluates an expression whose syntactic form fits the given spe-

expression

:""• In such specifications, the permit ted"nön-terminals
deJinitioVnf^1? definitions "^t be those ßiven in the syntactic
definition of the language, or they must be specified formally
somewhere (e.g. user manual) accessible by the user. The user
may also be given a device for new non-terminals to abbreviate
possibly xong syntactic forms.

E.g.
"Define <sum-terms> * <name>
Define <prod.terms> > <name
Define ^ sum-o f-produc t s > ->
Define <prod .-of-sums> H

■*■ <e> + <e>;
<- < e > * < e > ;

name> -<- <prod . te rm > + <p rod . t erm> ;
name> ■<- < sum-t erm>* ' sum-1 erm > ;

If I ever do ^sum-of-products> or <prod.-of-sums> then do

svmhole^ A facilitl should als° Permit the use of terminal
symbols and reserved symbols with special meanings, e.g. to
indicate relations between values of non-terminals For example

"If I ever do 'X - -name>$l+<name>$2*<name>$1'
then do <action>"

would trigger <action. «henever a value computed by adding the
product of the values of two variables to the value of one of
them is assigned to X.

An
lends u« tn ^ -V th! f,acil±ty for defining new non-terminals
leads us to the notion of "templates", which contain "holes" or
formal parameters. For example, one could write:

"Define template T(y,Y,Z) -> 'if y then y else zi.

If I ever do Tf'A-B', 'f(A) ' , 'f (B) ') then do.
If I ever do T('(C+5)<0' , <e

then do . . .
escapeexpression>)

■^^^^^--..„.^,V,wU^^lJ^t^^.^^^^^^,^-...J.-:.L-t.>J-^t.. -- -- ■^, ..■■--. .,__^ - - - -- ^ - .■..■■- -^ --^

—■~—~ mmmm.

118

These definitions would then cause the system to watch for
the expression 'if A^B then f(A) else f(B)' and for expressions
of the form 'if (C+5<0) then <e> else <escapeexpression>', and
take the specified actions upon their occurrence.

7.3.1.3 Access to MDL and MDLAF Texts

The primary reason for access to the texts of MDL and MDLAF
programs is the desirability of on-line editing of these programs.
The user should not have to terminate tha analysis session to
make corrections to either of these programs.

A second reason is to be able to analyze, under program control,
and optimize the set of actions associated with a contact point
(e.g. to eliminate redundancy, to determine unintended dependencies
between actions).

A third reason is to facilitate the specification of the
user of expressions which are to be monitored.

Thus there seems to be a need for two different types of
editors; one is the more conventional, line or character-oriented
editor to be used in preparing and editing of MDL and MDLAF texts;
the other is a lexeme-oriented editor which knows the syntax of
MDLAF and can respond to requests like:

"If there are any assignment operators in the MDLAF actions
associated with fetches from X, return a list of pointers to
those actions, else return a null list,"

or,

"Are there any continuously-evaluated MDLAF expressions involving
Y? If so, delete them."

It is clear that such an editor will have to know the syntax
of MDLAF as well as its internal representation in order to be
able to find the desired pointers, delete expressions and the like

■^ ---- — •■ i i n. ---—"-—- - - ^—.- M -,^~.. -,.^..,-^^^.a^..,.^^

I1"1""1 ■>———. ^mm «m ' ' M

119

7.3,2 Contact Points and Hook Insertion In the MDL
Analysis Facility

Recalling our earlier definition of contact points in the
context of low-level machines, as "those points in the instruction
cycle at which the analysis facility can gain control", we can
translate this notion to the domain of high-level languages such
as MDL in terms of the unit of execution which we have selected,
namely, individual operands and operators. That is to say, the
MDL machine will check for any required monitoring actions after
the fetch of each operand of an operator, just prior to and just
after the application of the operator, and just before the storage
of the result. This requires that we specify the order in which
the checks will be made within the expression involving the fetch
of several operands. It seems natural that this order should
be the same as that which is specified in the language for evalua-
tion of the operands of expressions. BLISS/10, and MDL, give
"no guarantee regarding the order in which a simpleexpression is
evaluated other than that provided by precedence and nesting...
(BLISS Reference Manual, Jan. 15, 1970, p. 2.2b). Hence, in the
expression

B (C 3)+(A - 5)

the two paranthesized expres- no guarantee is made about which of
sions is evaluated and checked for hooks first. However, it is
guaranteed that store-hooks for B will be checked after both
of the assignments to C and A. I shall denote store-hooks and
fetch-hooks for a location X by SHOOK(X) and FHOCK(X) respectively.

In addition to the store-hooks associated with A, B and C,
general hooks associated with the initiation and completion of
every expression evaluation, which I shall designate by IEXPH00K
and CEXPHOOK respectively, and books for the initiation and comple-
tion of each specific expression, to be designated by ISEXPHOOK
and CSEXPH00K will be checked. Thus, the sequence of actions in
the evaluation of the above expression will be as follows (Note:
action sequences seperated by // should be assumed to be done in

random order):

((IEXPH00K;
ISEXPHOOK;
SHOOK(C) ;
C - 3;
CSEXPH00K;
CEXPHOOK);//

. ■.:.-w,.;<^vijvJ*i=.. ■ .. *t,'.i;i::* ^.^r*,...,.*.:....-.. . ., ■■. ■.^^.. >,-.■;.■..;■..■.: ,-,...:.:.:-^ .■■:.■■.....:.....■■ ^..„■:.-: .. ,.»^Ai,^i^—^~^^^'~^ ■■ w.'...

^i)immmmvmm^'^^^^™^''m'9m!'m!mmfmit''i9'^f''Pm^ii'"rf mnfwf^ff^i^^^^mw^mmmvimnvmfjm^j^^9^m^mm^^fitmmi iwrnimummmMm |'*MJ«eH«i.!ii,,jijiijp™

120

(IEXPHOOK;
ISEXPHOOK;
SHOOK(A);
A ^ 5;
CSEXPHOOK;
CEXPHOOK));

IEXPHOOK;
ISEXPHOOK:
d •«■ C + A;
1

CSEXPHOOK;
CEXPHOOK;
IEXPHOOK;
ISEXPHOOK;
SHOOK (B) ;
B - d ;

1
CSEXPHOOK;
CEXPHOOK;

The above picture probably con veys an exaggerated inpression
of the overhead involved in checking for hook..:' The checVfo^
a general hook (i.e. IEXPHOOK, CEXPHOOK) can be as simple as I
test on a statically addressable bit and the cl
hook (i.e. ISEXPHOOK, SHOOK, CSEXPHOOK) can be

e check for each specific

UlO^An Online ^^heJ^_Analy_sis_Facility Language (AFM

AFL is an extension of MDL containing
several new syntactic constructs and a

a new data type,
set of built-in functions niti-irAz:^ '-thls-----:,e.-^n:

(i) NOLE Declaration

Syntax: NODE■node-declaration list-

-node-declaration list- > -node-d ec 1 . -- /

-node-declaration list>,<node-decl
' -node name;- = <delimiter- node-dec 1

a^..,.»^ .-^.,^ ■: >.- .■ v ■■ ^■l:^-J-^^^i-^i-^^...1.v.:^^ :.;...^.^.- -* ■^. ;..^fe^..;^L.«c^,^.-^^^^-^.~r^^..1i^.i ^^ ...■v...., ..; ..*„~,*...^.. ,....:..,,...■. ^. „,:,..».-...,...,., Vr;.z.,.. ... :i--:-..--^.ni(iii|inWtt[aMrMtfilVliiiVrt^

..t wmmftijmmmmwmi-'itvii'".' Mj'™>^^]pjjpps«wi^mi,B!(Jiluli.j«,ww|«".. 11 '." HI n 11

•idelimiter> ■»

121

<routlne name> / <label> /
<routine name>,<block de.llniter>/
<label>,<block delimiter^

•-block delimiter^ ->• <integer> /
<integer>.<block delimiter> /
<block delimiter >, <block delimiter--- /
<block delimiter>:<block delimiter^

Examples: NODE N1=R0UTINE1;
NODE N2=ROUTINE,5;
NODE N3=L00P,1.1.2.3:5;
NODE NA=LOOP,1.2:3,N5=L00P,1.4:7;

Effect: The indices which are not followed or preceded by
a ";", represent lexical levels in the code which is in the
scope of the <routine name- or <label>. If a pair <x>:<y> is
not present, the entire level is assumed, otherwise the •;x>th
complete expression through the <y>th complete expression at the
level of the last index is defined as a node with name <node name>
Nodes must be disjoint or properly nested. Also, thev must
begin and end in the same level and block.

(ii) Built-in Functions and Reserved Words

Locating Nodes and Node Instances

Find Node: $FN(<node-decl>)

If no node has been defined which satisfies <node-de.c 1 > ,
returns 0 else returns the address of the first such node object.

Find Node Instance: $FNI(<node-inst. spec>[<node-expr>])

<node-inst. spec> ■> (<MDL expres sion'-•)

<node-expr> -»• <node name>/<node obj . ptr>/
$NODEOBJ(<node-inst expr>)/
(a-^MDL expr>/$CURNODE

<node-inst expr> - $CURINST/$L^STINST(<node-expr>
[,<node-inst expr>])/
$FIRSTINST(''node-expr>[,<node-inst expr>])/
$NEXTINST(<node-inst expr>f,<count>

[,<node-expr> 1])/
$PRECINST(<node-inst>[,<count>

[, <node-expr>]])/
@<MDL expr>

^.-.■..- - v. ;t.^.. ..:,. fjatn'iiiVMft^iii t.!-.'-^ "'■'-•^---••^-■"^■'- ■ - - ■ ■ II iJif«itfiaminlifiiiifi •--■>^--^^. ^■•■^ ■--^-—■'-■•- , » - - -• Mi I iiMi^^MMMaMMi

f \i_. i imm «mmmm^rmf^K^^mmitmimumii m — '•n»". nvm j^mm^^m*^^' '—"1""'"

122

Mffect: Let the value of 'node-lnst spec- be N. If
node-expr • has been specified, then only the Instances of that

»ode, otherwise all node instances are searched. If NO, then
the direction of search is forward in time starting with first
node instance; if N-0, the direction of search is backward in
time starting with the last instance, with N=() representing the
last instance. If the value of -node-expr- is zero, t he n zero
is returned; otherwise the value is taken as the address of a
node-object.

Node Object of: $N0DE0BJ(• node-inst expr)

1 f
a d d r e s s
zer o is returned

node-lnst expr- points to a node instance, then the
)f the node object associated with, that instance, otherwise

Last Instance of: $ I.AST1NST (• node exp r • I , ■ node-ins t expr i)

If second argument is omitted, it is equivalent to
$FNI(0, node-expr •) , otherwise a pointer to the last instance of
node-expr prior to node-inst expr- is returned. If no such
instance can be found, zero is returned.

First Instance of: $FI RSTINST(■ node-expr ■ I ,• node-inst expr i)

If second argument is omitted, it is equivalent to
$FN1(J ,.node-expr •) • Otherwise a pointer to the first instance
of node-expr- after node-inst expr. is returned. If no such
instance can be found, zero is returned.

Next Instance of: $NKXTINST(-node-inst expr - T , count ■
I , ■■ n o d e - c x p r • 1 i)

If the 2. and 3. arguments are omitted, it is equivalent to
$FIRSTINST($NODEOBJ(<node-lnst expr>)> -node-inst expr>). If
only the 3. argument is omitted, it is equivalent to FNI(<count>+l,
$NODEOBJ(<node-inst expr>)). Otherwise a pointer to the nth
instance of node-expr- after -node-lnst expr-, where n=<count>,
is returned. If no such instance can be found, 0 is returned.

Preceding Instance of: $PPFCINST (--node-i ns t expr> [, <count >
[,<node-expr>j])

If the 2. and 3. arguments are omitted, it is equivalent to
$LASTINST($NODEOBJ(-node-lnst expr>), «node-inst expr>). If
only the 3. argument is omitted, it is equivalent to FNI(<count>-l,
$NODEOBJ(-node-inst expr)). Otherwise a pointer to nth previous
instance of -node-expr- relative to <node-inst expr> is returned.
If no such Instance can be found, 0 is returned.

i

 I I !!■ !■■ .-■ - '- - : ■ - - i i i r>i -"- - ' ■-- i ■■- ■■■-- ■ tfiirTrirtiMri1"-'-'---"^'- . , ..; ...^„ .: ■...■.:..,■ HI -.^-^^..-^^v^.^

wzzsr*<*fm ?,.« »IIII .7 M11 ■■ .^^^Sv. ■ n»^ h/■■■ 11 r M i ' «I ' ^- " - - - " ^^^ - -^^'^raiTi I ■ il-

123

Current Node Instance: $CURINST

A global variable which always points to the node instance
which was entered most recently.

Current Node ObjeC : $CUROBJ

Equivalent to $NODEOBJ($CURINST).

Locating Input/Output Sets

Input Set List of Node: $ISL(-node-expr>)

Return? a pointer to Input Set List of node «node-expr> or,
in case of errors, zero.

Output Set List of Node: $OSL(<node-expr>)

Analogous to $ISL.

Input Set of Node Instance: $IS(<node-inst expr>)

Returns a pointer to input set of <node-inst expr>, or, in
case or errors, zero.

Output Set of Node Instance: $0S(<node-inst expr>),

Analogous to $IS .

Accessing Values of Addresses in I/O Sets

Value-part of I/O set elemer'. ; $VAL(<'id-expr>,<I/0 set ptr>,
<flag>)

<id-expr> -* <name > / < rout ine name >, <name >/^r out ine name--,
<block id>,<name>

<block id> ■+ <pos. decimal>/< block i d > , < p o s . decimal>

Indirect Addressing Opera'or: @<name>

Returns a pointer to the object whose address is equal to
the value of <name>.

Get Attribute Value: $GATTR(<obj. expr>,<attr. name>,
•"flag var>)

Looks for an attribute named <attr. name> in the object
•obj. expr>. If such an attribute is not found, <flag var> is

i "T: nV-1! - ■■'<■'-■ •riri'--n'|-lVll'inriiirii n -ij-n'''irr ^^■^W•■^'^'ifTriifattintiTii i^iTiy-üii'ftVlii BfrttfcfliiViifi'ilBriM --- -'-' - -■■-■■■-^- ■■----^ ■—■•■■■^■- ■•■■ ^-■.-^^■^^^^^^^^^-^■.■^»M.tt^kAi

mmmmmmmm mtm "!■■ ,I1I«^^P»»!^WBIU H^"»ll •mm~mwmmu 11 JHIII ■ i. i I>III ymmniJUiiijUv >,u^)ij;!i,-»ni)™i uum^iui»«!

124

set to zero and zero is returned. Otherwise <flag var> is set
to 1 and the value of the attribute is returned.

Add Attribute: $^TTR(<obj. expr>,<attr. name>,<value>)

Change Attribute': $CATTR(<obJ . expr>,<attr. name > , <value >)

Delete Attribute: $DATTR(<obj. expr>,<attr. name>)

These functions work in obvious ways. They return 1 if
successful, 0 otherwise.

In addition to these functions, a set of conventional list
processing functions such as create-list, include-in-list , remove-
object-from-list, head-of-1 ist, tail-of-list, cardinality-of-1ist
etc. should be provided.

(iii) Editing MDL and AFL Texts

faci
has
f unc
prep
int e
than
s t ru
work
and
bett

I shal
lity .
been no
t ions p
aring a
rest ing
charac

c ture r
has be

D. Parn
er than

1 co
The
ted
rovi
nd m
one

ter
epre
en d
as (
cit

mment only briefly about this aspect of the analysis
need for two different types of editing abilities
in Chapter 6. One of these is the normal set of
ded with conventional on-line text editors for
odifying program text. The other, and the more
for our purposes, is a lexeme-oriented, rather

or line-oriented, editor which can work on list-
sentations of MDL and AFL parse trees. Considerable
one on such a syntax-driven editor by L. Robinson
[RP 73] and [Ro 73]). I feel I can do nothing
e these references here.

(iv) Explicit Hook Insertion

(iv a) Monitoring of Accesses to Variables

To monitor the accesses to a variable explicitly, AFL
contains the ON FETCH, ON STORF and ON USE facilities, whose
syntax is :

<hook name>: ON < condit ionxvarl is t > DO <expr>;

or,

<hook name>: ON <condition> DO <expr>;
<condition> ■> FETCH/STORE/USE
^varlist> ■* <MDL variable id>/

<MDL array id>[<index expr>]/
<varlist> ,<varlist>

 — ■ ■ - - ■ - "HIH n ii i nm i-1 - ■ —■^--^^-•^——-

llliPWIWIWSPWBiWWWipBipilBiilliBIIpBBIl^^

125

For example, MH: ON FETCH X DO expr " will cause the
evaluation of expr whenever the contents of X are fetched in
the evaluation of some MDL expression. If X is omitted, expr
will be evaluated with the fetch of every operand of every
expression. $OFDADDR and $OPDVAL will contain the address and
the value of the current operand.

ON STORE and ON STORE X work similarly, except that they
are checked prior to store operations.

ON USE and ON USE X cause checking upon both fetch and store
operat ions.

(iv b) Monitoring of Expressions

Expressions to be monitored can be specified in one of two
ways: by lexical, location or by giving the syntax of the expression.
Further, the monitoring actions can be specified to be taken just
before the application of the "root" operator of the MDL expression
or just after it.

Specification by Lexical Location:

<hook name>: BEFORE <MDL location list> DO <expr>

<hook name>: AFTER <;MDL location list> DO <expr>

<MDL location list> -* <MDL location>/
<MDL location list>,<MDL location>

<MDL location> * <delimiter>

(See the syntax of the non-terminal <delimiter> in the
second paragraph of 7.3.3)

Examples:

L: BEFORE R0UTINE1, R0UTINE3 DO(X *- Y+l : TYPE (X)) ;

LI: AFTEP LABEL1.1.3 DO $DISAB(L);

L2: AFTER LABEL1.1.3:5 DO $TYPE(Z);

The first example will cause the paranthesized sequence of
expressions to be evaluated before every call on the routines
R0UTINE1 and R0UTINE3, after their parameters, if any, have been
evaluated .

irV t'tii -n1 i • -■ m- - (ii^1«ir-i1^:,.,,-f-.--.^-..^..-*:.-..-*-:■ ^ .^- -^ - ■■ Miriit.-yiirrtri^iMniiiii r ■■ ' - • - ■^■-■-" •-• ^M^K-VM^^^h i mi iiiiM. nhMi^Ahii—iliiHi iMyif ^

pppppvpimiiw-iu M-J™WH I
,^rpT'1,^^p^wff^»?^^BW^^"'p*W^'^w^''ffT^SWff^^

126

third «! SeCO e^mPle "111 disable the above action after the

andln thr«™nhin ?*, firSt bl0Ck (or "P"*8lon) following and in the same block (or compound expression) and level as LABEL1.

out aJter^h!0 ^^ wil1 cause ^ value of 7 to be typed
at the ton l valuation of each of the 3.. 4. and 5. expressions
at the top level of the block (or compound expression) mentioned

Specification by Syntax:

-hook name-: BEFORE EACH <syntax spec- DO <expr>;

'hook name-: AFTER EACH <syntax speo DO <expr>;

non tPr^'^ ^'u^ takeS the f0rm 0f an "Passion in which
non-terminal symbols enclosed within <,> or the special symbol
$* (it means "anything") may appear.

Examples :

L: BEFORE EACH <loopexpression> DO <expr>;

LI: AFTER EACH $*+A DO <expr>;

The first example would cause the evaluation of <expr>
before the evaluation of any WHILE and INCR expressions. The
second example would cause the evaluation of <expr> after each
addition operation involving A as the right-hand operand!

(iv c) Monitoring of th e Control Path

in x^t™ are "ü0 facilities for monitoring the flow of control,
in addition to the BEFORE and AFTER features described earlier.

■1. 11 c o c. c» L G ,

-hook name>: ALONG PATH <path descriptor DO <expr>;

and

<hook name>: AFTER PATH <path descriptor DO .expr>;

-path descriptor^ * <delimiter>/
-path descriptor>,vdelimiter>

■'•^ ■-■■- : - " --■ • - ■ .■ ■
i :, -■ —■^^-l-'■■■||,||, im- i^^^^..^..^., ^.- --■—i--'.^, — ■ :. .

. ^w_.-.-M-^ll

r mmi****!****'^^**^******^******^^ im'r^!*mf9^-V^Jjm.'->~-"v-.y7

127

••'deliinlter> -*■ ••unit>/<unit>(<count>)/,'unit>
[<path descriptor^-]

<unit> ■* <routine name >/< labe 1 >/<node name>

The first expression causes <path descriptor'-», which con-
tains, say, n ^delimiters>, to be matched continuously against
the control path. If, for some k<n, the first k elements of
<path descriptor-' match the most recent k elements of the control
path (which are routine or node names or labels), then <expr>
is evaluated.

The second expression causes <expr> to be evaluated only
at the completion of the specified path.

In the specification of <delimiter>, the option <unit>(<count>)
means that <count> number of consecutive executions of the same
<unit>, without the intervention of any othp.r unit s, is to be
watched for and treated as a single element in the path. The
option [<path descriptor;-] provides for nesting of paths.

Examples:

L: ALONG PATH R0UT1[R0UT2, LABEL1, L00P1], R0UT3 DO <expr>;

L: AFTER PATH Rl(2) ,R2[R3(4) ,RAI R5,R6] I (3) DO <expr>:

In the first example, <expr> will be evaluated after the
execution of each of R0UT2, LABEL1 and L00P1 Inside R0UT1, after
exit from such an execution of ROUTl and after P0UT3, provided
they occur in that order with no intervening ^nit^s.

In the second example, the interpretation is similar, except
that multiple consecutive executions of certain <unit>s are to
be considered as single elements.

(v) Continuously Evaluated Expressions

CSELECT <elist> OF CSET <cexpressionset> TESC

<cexpressionset> -*• / < c e > /
<cexpressionset>:<ce>

<ce> ■* <MDL expression--: -AFL expresslon>

<elist> * <AFL express ion>/<elist>,<AFL expression>

-■-J-..-. ..■,.-..gL.^,^,J.J.,...»..-..-&-^. .i.-— . -■i^Mr--^Mi-',tiiia<iriM.'%liii1[MH II'IBII ■■"ill .■-J;.„i..---.-^.--^.^^ ..^,^-^,, .,_■. . . -■-- .^„l ^^ , .^. . ^ -. ■ ^-^..- ^.^^^^-t^i^M^u^MJfC^

P8WIBPBPSWWWWP '?F*r*****yvi**w*m!W*rw*rrrr?wjs-*'r*^* .,l|ll„|llJ)|H|.llH,iflpiLi.

128

As will be obvious to those familiar with BLISS, this syntax
follows the syntax of the SELECT expression in BLISS, and hence
the expressions defined by it are called CSELECT (for "Continuous
Select*') expressions. Its evaluation can be precisely described
by saying that it is equivalent to the evaluation of the AFL
expression "SELECT <elist> OF NSET <cexpressionset> TESN" after
each change in the value of anv MDL variable in <-elist-- or in
the left-hand sides of <cexpressionset>.

Example:

CSELECT (D+E) OF CSFT

A-B:f ;
1

A*B:f :
2

C+D:f

TESC:

This example will cause the monitoring of the values of
A,B,C,D and E and the continuous updating of the values of the
expressions D+E, A-B, A*B and C+D. When the value of D+E changes,
the value of the first left-hand expression, A-B, is compared
with the new value of D+E. If the two values are found equal,
then the expression f is evaluated. Then, the next left-hand

1
expression, A*B, is compared with D+E, and if equal, f is evalua-

2
ted. This process continues, until all left-hand expressions have
been tested.

Important note: if the value of a left-hand side is equal
to the value of the controlling expression (D+E in this example),
the right-hand side will be evaluated with each change in the
value of an MDL variable, until the values of the left-hand side
and the controlling expression become unequal.

- - ■ ■ ——.....—.■. - ftiiraiirrimirh'1""-'*-'-"'- - „^^^^^^^.»^

r 'i

129

CHAPTER 8

ARCHITECTURAL FEATURES FOR EXECUTION ANALYSIS

As has been previously noted, one of the major impediments
to the wide use of the kinds of simulator-based techniques
described so far is the slowness of simulation at the memory
cycle level and the information loss incurred with simulation
at instruction level. Further, if, unlike in the DAME system,
the object machine and the host machine are the same, then one
would like to be able to execute the uninteresting parts of the
program, i.e. the parts we do not wish to include in the analysis,
at full machine speed and only incur overhead over the monitored
parts. This becomes an important factor, for example, in the
case of trying to isolate a bug which appears only after a con-
siderable amount of execution.

To deal with this problem, we have to design architectural
features to be implemented in hardware or microprogram which
would significantly reduce the amount of monitoring, done by
software. Thus, in this chapter, I shall discuss:

(i) Various techniques for the implementation of the hook
mechanism as a function of the relative word lengths of the host
machine (W) and the object machine (W),

H 0

(ii) The implementation of the node mechanism, in particu-
lar the node objects, the node trace table and the input/output
sets, along with the types of storage technologies appropriate
for these data structures,

(iii) The interface between the host machine and the
object machine, in particular the data paths and the control
paths between the two.

I shall then conclude the chapter with an outline of a unified
architecture embodying the various features discussed, assuming
a simple, conventional CPU architecture for the object machine,
and a review of several reports on hardware and microprogrammed
measuring and monitoring facilities by other workers.

^ ..Tr ■ . - uk. ■ ■ - '■-■■'—-■"■ -'-■■ »—-^ ——- ■ ;■■. L.V«i'<.-JJ»-.- ^ •■■ ...-•>■■,. .J<rVlir|1.i ...■'-.. -.....• . •IMttMMiMMMMaiüM

»•■—»'

»B^^™^,,.li,.ii1,.i,,.i,,^,l,i,.#iijiÄi,iiU,iLiii],, ■,,,«.,,,;.I.,,J i,m^M.J.-i;.mmiiA.ti.v^nirJmm

1 30

8.1 The Hook Median 1 sro

The three operations which lie at the heart of any monito-
ring scheme are: (i) Given a particular set of contact points
in the course of the execution of the object machine, the deter-
mination of whether there is any monitoring action to be taken
a the current contact point, (11) if so, locating the description
of the action to be taken, (ill) Taking the desired action.

Step (i) dearly has to be done continuously, i.e. at every
occurrence of a contact point. This is the basic price paid
for running on a monitored machine. Therefore, it Is desirable
to minimize this overhead. Step (ii) is normally performed much
less frequently than step (1). Thus, in programs which are not
heavily monitored this step will not normally cause excessive
amounts of overhead. In heavily monitored programs however, this
step can cause sufficient degradation of performance to prevent
wide spread use of the monitoring facility. The amount of over-
head caused by step(lii), of course, is a direct function of the
particular actions to be taken and of their execution by the ana-
lysis facility. In the rest of this chapter, I shall explore

several techniques for implementing these operations in conventional

sinoie-jnstruction-stream/single-data-stream processors. For this
purpose, let us distinguish three cases:

(i) The host
object machine (W

I!

machine lias a longer
W) ,

0

'ord-length than the

(ii) The word lengths of the two machine are equal (W =W),

H 0

(ill) The host machine has a shorter word-length (W <W).

H 0

8.1.1 Monitoring with W Greater than W

H o

As already discussed in Section 3.2, the availability of
extra bits in the host machine word greatly facilitates the
monitoring operations mentioned above.

Machine architectures with this feature are also known as
fagged Architectures". Many applications of this architecture,

includinp some which are not discussed in this thesis were dis-
cussed by E. A Feustel in his paper "On the Advantages of Tagged
Architecture" ([Fe 731). ^»s»«:«

 - - ■ - - - - ■■- •
 ■-- I l.imt.mlilllltmftiitHilm

-•*—-™»-1 imi*Bmm0if!.-f9 !'■■ i.' IM ..imi.llliiililil 11,1,1, 1I.IJUJJ1MI,^1!I*U.IJIJ|J1II1IIM*,UIIVIIWJWI1UW,»5LI1, UIII^JPJJIE^U^ ^lipi.pflWM^UW-lJl «lU-ll^

131

Depending on the number, n, of extra bits available, one
can use them as flags (say, with l<n<8) or as indices into a
tabie (9-n^A), or as an address in the address space of the

H

host machine (n^A), where A is the width of a host machine
H H

aurrosS" Let US' then, firSt consider tbe use 0f flaRS for this

"Flag-bit" Implementation

One approach may be as follows: one designates a flag bit
for each kind of contact point applicable to addresses (as opposed
to general contact points). These contact points mav be. for
example, designated as in the DAME system: namely, (i) after

ZVrl ^^ f
(ii) bef0re eVery St0re' (111) after every instruction retch, (iv) after every instruction completion. In this case

one would need four bits. If fewer than four bits are available.
^en °"e."n combine some of the flags and implement a flag in
the CPU indicating the type of operation currently being, performed.
In such a case, the monitoring logic would test the conjunction

It rnn 8 in the current "^d being fetched or stored, and
the CPU operation flag. For example, with three bits instead
ot tour, one can combine the fetch and the instruction-fetch
flag bits. There would be a bit (let us call it the I-bit), indi-
cating whether or not the current fetch cycle is an instruction
fetch cycle or a data fetch cycle. This bit has to be accessible
by the monitor routines. Then, the user who wishes to detect
the accesses to a particular location as an instruction-fetch,
would insert a hook to be activated upon every fetch from that
location, and within that hook, test the I-bit to determine if
the current access is an instruction fetch or not. Since, usually
the same word is not accessed both as data and as instruction,
this technique would involve a conjunction and a comparison as
an overhead only in fetches from locations containing an instruc-
tion. This does not seem to be an excessive price to pay. In
fact, if one is sure that the location being hooked is alwavs
accessed properly, one can eliminate this test altogether. 'This
will probably be the most common case.

A problem arises in certain computers however, if one wishes
to insert a hook in every instruction word of a large block of
consecutive locations. A case in point is the PDP-11, which
contains in-line data interspersed with instructions involving
certain addressing modes. Since, in general, it is impossible
to tell statically if a particular word contains data or instruction,
the insertion of hooks only in locations containing instructions
can not be mechanized, i.e. the user has to either hook each
instruction word individually, or hook all the locations in a
given block (using a mechanism similar to the DAME HOOK command

*-- -■ i ■ i ^ - ■ -■...-■ ...I, mm»mtMm

__—— ——— 1 K""1 i.UW.WiHi wm iii.-jiipt U«WJWI

132

which accepts an address range as a parameter) and then go in
and delete the hooks for individual locations containing in-line
data. Either way, it is a fairly painful process. An easier
method would be to perform a test in the monitor routine to see
if the current cvcle is an instruction fetch cvcle or not.

e of some combination of
action to be taken at

us now consider the problem
tor action to be taken,
or actions themselves, I
ufficient to locate the
t is needed is a table
current address and cycle
put, a pointer to the
shall not elaborate on
two most obvious approaches
ve memory or via a micro-

Thus , assumine: that through the us
flag bits, the presence of some monitor
a contact point can be determined, let
of locating the description of the moni
Ignoring the format and syntax of monit
shall assume that a sinple pointer is s
desired action description. Hence, wha
look-up procedure with two inputs, the
(i.e. instruction or data), and one out
desired monitor action description. I
the implementation of this procedure;
which come to mind are via an associati
programmed table-lookup mechanism.

"Table Index" Implementation

Let us now consider the case where W is sufficiently larger
H

than W to permit the insertion of an index for a table, M, into
0

each host machine word representing an object machine word, in
addition to, or instead of, the flat» bits. In this case, each
entry in table M would contain either the description of the
action itself, or a pointer to it. Thus, we would not need an
associative memory or microprogrammed look-up procedure, since
the table index would be built into each host machine word.

The limitation of this approach of course is that if there
are k bits available to be used as an index, one could have at most

a 2 element direct-access table. Such a table could be extended
by chaining overflow areas to each entry etc. at the cost of some
more search.

"Full Pointer" Imp lernen tat ion

If the number of bits available is greater than or equal to
the address width of the host machine, then one can in fact store
there the full address of the monitor action description. This
eliminates the need for a pre-allocated table to contain the
action descriptions or the pointers to them. It permits a list-
oriented structure to be created and maintained dynamically.
(As will be recalled from Chapter 3, DAME goes one step further

-- miitt^^ainMiinnntli - '■■- • ,- -' - ■ ■- ■■— - ■ .—->'—--- ^.^^^^^tää^äkMiMi^ämäti^lid.Miä

m •'•'•"••

] 33

and creates a general list of "interesting objects" for each
location requiring one, e.R. such locations as node entry points,
or addresses whose previous values are being collected. Pointers
to monitor actions, i.e. hook objects, are simply inserted and
deleted as elements in these lists as required.)

8.1.2 Monitoring vith W Equal to W

H 0

This includes the important special case where the object
machine and the host machine are the same. Hence, it will be
discussed in some detail.

Here we have, for each memory access, two pieces of informa-
tioo with which to determine whether or not the address being
accessed is being monitored and, if so, to locate the monitor
action description: namely, the object machine address and its
contents. A technique, of obtaining this information by using
only the address has already been discussed above. Another technique
which uses both the contents of the accessed address and the
address itself, called "Lambda monitoring" [LA 72], was described in
Section 3.7.1. I shall summarize this technique here again. The
Lambda monitoring technique relies on finding a bit pattern,
Lambda, which is expected to be used very rarely by any object
program as instruction, address or data. Lambda can be determined
by the user at load-time (if he wishes to use a different pattern
than the default one) and kept by the system in a Pattern Register.
Each data element fetched from the main memory or a register
would be compared with Lambda and a monitor trap would be caused
whenever an object machine location containing that pattern is
accessed. Clearly, this operation should be quite transparent
to the user program and the actual contents of that address should
be made available to the user program by the control logic upon
completion of the monitor action. Once a monitor trap is detected,
one then has to locate the associated monitor action description.
For this purpose, again, the object machine address being accessed
could be used as an input into an associative memory or microprog-
rammed look-up procedure to obtain a pointer to the monitor action
description. If the bit pattern Lambda is the actual contents
of the accessed address, then the table search mechanism would
return a "no-hit" code which would terminate the trap. One can
generalize this technique somewhat by defining several bit patterns,
to be kept in different pattern registers, indicating different
kinds of monitor traps , e.g. one for each hook type, provided
one can find several patterns which are likely to be used very
infrequently by user programs. This would enable one to search
a unique, and hence smaller, table for each such bit pattern.

lff1•|lMiil'm^'^-^^^'~-^•-^t^-''-<•k^-'^^^^■^'^^^^'■-■"^^"^-■ . UU l^U_.v,.,^.., ..i-^- ^,.^^^..;.... ■ :..■■..■ j^. i i J ^._.... ^^_ ■- ■ -.--^-.- ''-v^^-^^J^i^Mft^a*fe^^^ifejafc j

rp I"» ■> niiiiii■«■■»»■w «.wHJpw«'"fwjim»iiiIWj,iyitmiuii!(H«)Fi J.JJ i ii nuLHppnp^jHiiipiiiiiii ■^^^■Iivi^WlPJi^WliJi.jyLlill^iPH.I-^iLiJWAW

134

firstTtLhn!n POtentiaJ difference in the performance of the
-rst technique, i.e. lookini

irs
:-up

f-u i " •/ au w v i , a.» wicn resnect tn
he shorter one of the CPU cycle and the main memory reaS m^

If there is a substantial un-overlapped portion, then the fJrst

heL'^O^thr 11 bVU.Ch Sl0Wer than 'he La^da Monitor!^
chosen'and cron 0thP-rf

hand' lf ^e bit pattern Lambda is poorly

or instruct?nnP%^P ^t™ ^ the USer pr0^am as data. address'
llhtll ' f" the overhead associated with the latter
scheme can approach that of the former.

envlsloned^Thi ^ TV ^ techni^es. a third one can be
feltuJe !h; H technique essentially is an architectural
s ructure if tr'T8 ! modu

ifica^^ of the physical addressing
lenath H l 0uJeCt nachine t0 "ake the host machine word
length H^ longer than the object machine word length W , in a

cal IddrP«^tran!Parent t0 USer Pro8ra^. i.e. retaining the logi-

-Lr r^ii^ir^jrbe r:duep:dtha;o:h:xrint on phrical maL

(i) normal user production-run node, (ii) analysis mode In

Iddre":" ^de' the maChine funct-ns with no change ; the
addressing structure and instruction execution. In the analysis
mode however, every user-generated address is mul lp ^d bj tw
and he contents of the double-word at that address is taken

u eV^tr • ' to that dOUblrWOrd -presents the word which'the
the monitor r\ a,CCeSS! and the UPP^ half holds a pointer to
the monitor action description, much like in the "full pointer"
mplernentation discussed in the preceding sub-section. ^Sese

two halves can be retrieved either seauentially , using the same
memory port or in parallel using a seperate memory por for the

the mo^Jt" " ^V ^^ ^ monitoring facility would pick up
the monitor word and perform the described action,"if any. This
technique trades off half of the storage of the object ma hine
for the avoidance of a table-lookup procedure, by in effect using
the current object machine (OM) address to locate the OM word
and the monitor action address simultaneously. Hence it may be
an attractive alternative in cases where a great majority of the
programs to be analyzed require less than half the available
storage for program code and data.

-.iV^flu.aii.>.^..i.'^^j,--jt,:'^i- i-- ■ '• i--• i i ■' ■ -ff -il-'i liiiitiilrliMrihiiiilr'i'iliMiwria-iii'illri'liiiiii

m) •.mi —r ■BB WT?^^-Tni^*I"*^WT™wilWF3'TrBWT"J*w'J^^

13 5

A refinement of this technique, requiring a little more
diligence implemented in the hardware or macrocode controlling
address generation inside the CPU. permits user control over

ifrger'thaTB^l/; ^ ^ T^** int0 itSelf- ^herwise (it is
vh^h ^ . tS inaPPed lnto C+N "here C is a constant
eiual o ^07Uted when the registers A and B are loaded and is

in thriLt'f^ure^3"8'0^'1011' den0ted by r'^'B.X). - illustrated

Total Storage

Unmoni tored
area: addressed
in single words

Monitored B
area; addressed
in double words

Unmonitored A
area; addressed
in single words

G(A,B,X)=(B-A)+X
for X>B

G(A>B,X)«A+((X-A)*2)
=2X-A for A<X<B

\ n(A,B,X)=X if X<A

.

iihfriiiifiiiiii,i'n1'''a-'-;^^^ ■-—--^^- .-,.■ ■MII i --■- — ■---■--— . ._...^.. -..—^....- -. -. . .-- —

m^r^ST'-' llw-1 - ■.'.■^K. ' ■ *»*" "i"'^«" u «iii>v.^,ui|i>«)i wmi:]vw^sr-i9mMWWL£)iw..:\w **'>- H v-r'PW-'*W'?-'«.wJ J^WWi

136

This technique can be generalized to the case involvine M
monitored areas.M>1. Such a generalization requires the compa-
rison, possibly in parallel, of X with the limit registers for
each of the monitored areas and the selection of a different
constant to be added to X or 2X for each position of the memory.
Thus, if there are M such areas, with limits, A , B , i=l,...,M,

and X is found to be in the Kth monitored area, then X is mapped
K-l K-l

into A +£ (B -A)+2(X-A) = (^ (B -A)-A)+2X. If X is smaller
K j=1 J J K j-1 j j K

than A , it is unchanged. If it is in an unmonitored area

following the Kth monitored area, then it is mapped into
K
T. (B -A)+X.
J = 1 j j

8.1.3 Monitoring with W Less than W
' H o

ding
much

This
two
more

multiple

point
p rece
type
one c
each
as de
appro
has t

out
ding
desc
an m
word
sc r i
ache
o ac

case
cases ;
inef f

of W .
H

that
cases

ribed
ake av
of th

bed un
s . Th
cess s

is conceptually not very different from the prece-
however, its implementation will probably be

icient, especially if W is not some integral
0

I shall not say much on this case except to

it can be made equivalent to either of the two
by an address -1ransformation mechanism of the

earlier. By choosing this transformation suitably,
ailable a number of bits in the representation of
e object machine, so that these bits can be used
der the "Flag bits", "Table index" or "Full pointer"
e basic inefficiency lies in the fact that one
everal HM words to simulate access to each OM word.

I conclude here the discussion of various techniaues for
implementing the hook mechanism. The choice of the appropriate
technique for a particular processor will depend on the word
sizes of the two machines, and the types of memory and microprog-
ramming capability available.

^^1^^<^^v,^^ni--..^^^^i^ü.ü-J-J^^l^i:^^^j.v^ ■.^^, ^^ii.-z.v. ..^i.^.j,- ^.■,.i. - ..■■/^.....■^-^.■J-^^iiü.-uüt^i^.....,.-,„>„_ ■v^M^.,;^^;i.^.^.,,L..^/.,..^-.......l.:^

PW.ÜU-iWl n l|".""'.lÜIWW^l|WM mi Uli Win H i i i i I i in li Mlin i i | im n ii mi inn ii II^I ii !■ ii| MJIIIIIHII|MIIIII IM iiMi/iiii ii in in i HM pi HI i^n M i i i i i i|ii||i| ii|M ii IMI II I |i| lyi

137

8.2 Implementation of the Node Mechanism

the
Trac
and
I wo
of t
has
much
memo
most
I sh
memo
and
t ran

cour
pond
ref e
word
no Da
allo
exce
the
in t
in i
is e

One of
Node Me
e table
searchi
uld lik
his m e c
availab
smalle

ry. Da
approp

all als
ry and
the mai
s f e r s a

the
chan
. th
ng o
e to
hani
le f
r am
t a s
r iat
o as
the
n me
Ion«

maj or
ism w h
e inpu
f thes
di scu

sm. I
or its
ount o
tructu
e to t
sume t
main m
mory a
these

comp
ich i
t/ out
e dat
ss f e
shal
use

f hig
res w
heir
he ex
emor y
s wel
path

onen
nc lu
put
a st
asib
1 as
a ce
h-sp
ill
size
iste
, an
1 as
s .

t s o
des :
sets
ruct
le a
sume
r tai
eed
be a

, fr
nee
d be
mic

f the
the

, and
ures .
pproa
that

n amo
local
ssign
equen
of da
tween
rocod

Ana
nod
the
He

ehe s
the

unt
mem

ed t
cy a
t a p
the

e in

lysis
e obj
crea

nee ,
to t
Ana]

of ma
ory a
o the
nd me
aths
asso

s t rue

Facility is
ee t s, the Node
tion, maintenance
in this section
he implementation
ysis Facility
in memory, a
nd some associative
type of memory

thod of access,
between the local
ciative memory
tions to make

The
se o
ing
rs t
s pe
ally
cat i
pt f
loea
he 1
t s e
xi t e

node o
f the e
node is
0 them,
r objec
not ac

on for
or the
1 memor
ocal me
arlier
d.

bjects .ire created when a node Is defined. In the
xeeution, they are accessed whenever the eorres-
entered or exited or when a monitor instruction
They do not take up very much room, about 8-10

t. Except for the current node object, they are
cessed very often. Hence, an appropriate storage
node objects would be to keep them in main memory,
current node object which will be brought into
y when the corresponding node is entered, maintained
mory during the current node instance and pit back
position in main memory when the current instance

The Node Trace table is a dynamically growing structure whose
size is a direct function of the number of node instances executed
Here too, normally only the table entry for the current node
instance is accessed often. Hence this latter part can be kept
in local memory in the same manner as the current node object and
the rest of the table can be kept in main memory.

one
inpu
asso
sear
dur i
it m
via
is 1
sets
tran
asso

The
impo
t/ou
ciat
eh t
ng t
ust
a se
ikel
sho

sf er
ciat

same remarks also apply to the input/output sets with
rtant qualification: the maintenance of the current
tput sets will probably be best implemented through an
ive memory. This is due to the fact that one has to
he current input or output set for every generated address
he current node instance. If the address is not found,
be added to current input or output set. If this is done
quential search of these sets, the resulting overhead
y to be unacceptable. Thus, the current input/output
uld be created and built up in associative memory and
red to main memory and linked to the I/O set list of the
ed node when the current node instance is exited.

^.)...—...-, „ , .„.„a^i......^-.-.-.^--. "-- ■■■■..-.« ^-^■,:..,^..;-.i, ..r..,,,;..*J.^.. ..,.....-. .,..,.,... ■., ,. .,., ■ --- in ii iimiHMi—MBMaMiMlg

^^^^^^^^^^^^^^^ ^^"^"^■^^—^^^^^^^^^^~^^^^^^^^^^^"^^^^^^^^"3I

138

Another point worth mentioning with respect to the I/O
sets is the nesting of these sets if nested nodes are permitted.
Suppose there are n levels of nested I/O sets; what is the
best way to maintain them - to maintain all of them with each
generated address, or to maintain the highest level set only and
to update the next highest level (i.e. its parent) only when the
former is exited by adding the appropriate entries from the
highest level set into the next highest one? Both approaches
are feasible. The sophistication of the associative memory avail
able and the overhead of the two approaches will determine the
preferable alternative for a particular implementation.

8.3. The Interface between the Analysis Facility and
the Central Processor

Since the Analysis Facility requires access to much information
inside the CPU and to the main memory, and since it needs the
ability to interrupt the CPU, it is worthwhile to consider the
interface between the Analysis Facility and a "conventional"
central processor. I shall not go to great detail in doing this
however; hence I shall not refer to a specific processor, but
rather to one which is representative of contemporary architecture.

The interface between the analysis facility and the central
processor consists of data and control paths between the analysis
facility processor and:

1- Main memory address register (data path), MARP,

2- Kain memory data register (data path), MDPP,

3- M-- nemory access control (control path), MACP,

4- Gt.lC:ral registers (data path), GRP ,

5- Internal registers (data path), IRP .

6- CPU control logic, (control path), CLP.

The first three paths, MARP, MDRP and MACP, permit the
analysis facility to access the main memory address and data
registers as well as main memory locations. The path GRP gives
access to the contents of the general registers.

to- -^ ■^■^a'-^-'J..--v..- ^^.a.....> -- ^...^«..^.i. --■ ,■■.-...;.....:■......v :..-^....■...■ .^■■., ..i^^....;.'..... iiTilVritfliliümfriilliihtioi -., .- ..i.. ■,. ■ v..- .^.'-■.■,^.-B.L...^ .^.. ^.^;.^-,.. ■ .,.il.^1J^^...^.^.^:J^..^.->J.^..

ii i .iiuim-immmm^^ii-U'tmui^f^mmfmm^mm^^' "'■ ",,",■ """ .—'"•■"•'—«" rim WKmru Jl..» Ii • IIMU . JllllUIi.

139

information may not be explicitly kept in this form during the
entire execution cycle. In such a case, either the processor
design may be modified to make this information available or
an instruction decoder may be built into the Analysis Facility
which can extract the required information.

The path, CLP, to the CPU control logic is a control path
^"nnf,8 t0 s-vnchronlze the activities of the Analysis Facility

and the CPU. In particular, it will conduct signals from the
former to the latter to inhibit and enable instruction execution.

8.4 The Analysis Facility Processor (AFP)

So far, we have said nothing about how the Analysis Facility
will function, its instruction set and internal organization.
While it is not desirable to go into much detail here, it is
probably worthwhile to outline the answers to these questions.

The question of thow the Analysis Facility Processor (AFP)
will function, i.e. "will it have its own instruction execution
hardware or will it share that of the object machine?", and the
question of the instruction set of the AFP are interrelated.
Recalling the two subsets of the Instruction set of DAMF, namely
the conventional" subset and the "monitoring and analysis-
subset, it is clear that if the AFP uses the same Instruction
set as the object machine, then the monitoring and analysis instruc
tions must be compiled into the conventional subset, which can
then be directly executed by the AFP.

This approach has the advantage of not requiring a seperate
instruction set processor for the AFP. However it also requires
that the internal state of the object machine CPU be saved before
the AFP can do anything. Also, if the CPU is to be monitorable
while it is being used by the AFP, then, in fact, the internal
state of the CPU has to be saved in a stack, to permit an orderly
return from the various levels of monitoring and analysis activity,
turther, the object machine instruction set would have to be
extended to permit access to the internal registers, MARP, MDRP
etc., perhaps requiring new instructions. Finally, the instruction
set of the object machine will nou necessarily be suitable to
perform the monitoring and analysis actions described in Chapters
n*^ In Particular. ^ the list-structure orientation of the
DAME system is also adopted in the design of the AFP, one would
really prefer to have a machine instruction set suitable for list
processing. For these reasons, my preference would be a seperate
instruction set processor for the AFP, both from the performance
point of view and the freedom it affords in defining new types
of operations. Hence, in the design for the AFP whose outline
is given in the following illustration, I assume a seperate KFP,

 ——-'■-•i lirtw i ■ ■ ■■■ i— _-..^..-,-. ...*. .■■.„.-.■..^^^— _ --■■■■ i ■ njrrn ^ ■-'-■■-^—^■..~>--— - ■-'-'nrTiiiiMhMritfMaiill^i

■^■■■■»sarTTTTr^ wiWi.«i,iUili«iJ««liii^BliwiJaJU^^^

140

«one associative memo™ a^' '.^r peed. local borage and memory as discussed earlier'

It is worthwhile at t-h-i o -t
implementations or deslans with^H! ^^review "veral reported

^t all less ambitious than! ours JeVeS ""^^ SimiIar to.

Bussell and
the instrumentat
the purpose of t
the most signifi
"vernier-scale"
times to a much
of t;he hardware
cision with whic
paper makes it a
inst rumentation.
a good discussio
("simulation art
the Sigma 7 and

Koster [BK 70J
ion of programs
iming and instru
cant part of thi
technique for me
higher resolutio
clock, with a pr
h the hardware c
"must" reading
Apart from thi

n of the overhea
ifact") and bv u
in S360/75.

reported on
for the XDS
ction mix m
s paper is
asuring ins
n than the
ecision lim
lock ticks,
for those i
s technique
d of execut
sing the Ex

an experiment involving
Sigma 7, mainly for

easurements. Probably
a description of a
truction and event
time between the "ticks"
ited only by the pre-

This part of the
nterested in program
. the paper contains
ion under simulation
ecute instruction in

In an earlier paper entitled "SNUPFR
n nstrumentation automaton". G Estrln .

o -^u0^:^05 thlS -^"^-wle

which wouds^ct011116^6' t0 the 0bject c

of the execution , "Ser-sPec^ied events o

element^L-^^^i h^thlt^vL^5 'T '

^ f tu c-i-cinencs indicate thp cinn
of he events bearln, that lnde^ ft) X

to specify ()e^ "r
n
a

d
p;' '^"f"'^ "1 vent, graphic displays and

COMPUTER- a computer
t al describe a design
ge,was never implemented)
omputer by sensors,
ccurring in the course
nto a count kept in an
app.r, while ahead of
sed in it, leaves un-
the raw data coming

nto an index for the
ificance or insignificance
t parts of the state
ssible by the SNl'PER
11 be used bv the user
the like.

M. Zelkowitz
memory-based desig
store addresses,
in the associative
Chan", "equal to"
the address curren
the table entry in
address specified
this design is the
addresses. Howeve
table will need to

in f7e 71 i des
n for associat
His design inc
table entry w

and "greater t
tly being acce
order for the

in the table e
basic, stralg

r. in this aut
hold substant

cribes bri
ing interr
ludes a "c
hich indie
han" relat
ssed and t
transfer

ntry. Apa
ht forward
hor's opin
iallv more

efly an associative
upt routines with fetch/
ondition code" field
ates which of the "less
ions must hold between
he address stored in
of control to a second
rt from this feature,
approach to monitoring
ion, the associative
than the 16 entries

 -^—- MMlMiMiMbM^i J

——" 1 ■" I ■" mmm^m '"' wmrnmm

141

envisioned by Zelkowi'-z's design. Also, this design does not
provide for monitoring accesses to the general registers.

Two other reports on hardware-monitor based approaches should
be mentioned here. One is the report on the Neurotron monitor
by R. A. Ashenbrenner et al [ALN 71], and the other is the report
on a hardware monitor for a multi-mini processor (C.mmp) system
by S. H. Fuller et al [FSW 73]. Both of these monitors appear
to be oriented toward data selection and collection and not the
full spectrum of general purpose, dynamic analysis activities
envisioned in this thesis.

The paper which comes
described in this thesis i
[SS 72]. In this paper en
of Computer Measurement Te
project in which a Standar
which contains a writable
collect (i) execution his
branch instructions and re
butions of the usage of op
operation code pairs. Wha
the actual data or the typ
insights they provide on t
routines in emulators. Th
those interested in buildi
facilities. Since these p
sion, I outline them here:

closest in
s that of H
titled "Mic
chniques",
d Computer
control sto
tory data b
location in
erat ion cod
t is of int
es of data
he problems
is paper is
ng micropro
rob 1 ems are

spirit and appr
. J. Saal and L.
roprogrammed Imp
the authors repo
Corporation IC70
re, was micropro
y recording all
format ion, and (
es and consecut i
erest to us here
collected, but r
of inserting me
also "must" rea
grammed instrume
so relevant to

oach to those
J. Shus tek

lementation
rt on a
00 computer,
grammed to
successful
ii) distri-
vely executed
, is not
ather the
asurement
ding -for
nt at ion
this discus-

(i) "... since microprogram storage is an extremely scarce
commodity, it was prohibitively expensive to insert measurement
routines throughout the microprogram." Thus, in the Analysis
Facility Processor, the power of the instruction set might be
limited by the microprogram storage available.

(ii) "Since our microcomputers possess a limited subroutining
facility at the microprogram level, it was not even feasible to
include a subroutine call at every point at which we wished to
measure the performance of the system." This is an example of
the problems caused by the primitiveness of the microprocessor
instruction set. More on the same point: "A severe problem
found in the implementation of extensions via microprogramming,
generally not found in conventional software interpreters, arises
from the lack of many general facilities at the microprogram level."

(iii) "In addition, many instructions are executed directly
in hardware at instruction fetch time (most of the program transfer
instructions). Others share microcode but are semantically dis-
tinguished by a large number of flip-flops (set by the hardwired
instruction fetch and decode) which perform extensive residual

 . . . __. , . ~ . „ ^ , , , . ..- _ ' -• 'tfihitliitf'ir'i^"-"•-—•"'v-"-a'- "M

mmmm mimniiwm-m !wimßmmnivm'>H.mm.tvm" 'ly i - WmWIF.««»«'!.««^..!«.-'-"'1-1"-' |JI,JW L,1,.LI1..U]W1^I#I11I|UIU111X,«IWP«^I1MIJU1J ^

142

control." Those flip-flops nay well include data about addressing
modes, the success of a conditional branch etc. and should be
accessible by the measurement routines. More on the problems
caused by hardware interpretation: "Microprogram machines are
generally not completely microprogrammed. Many aspects of instruc-
tion decoding and operand fetching may be performed in a hardwired
scheduler in the interest of increased efficiency. This technique

murren L m-icrupruceaburs nave IIUL oeen uesj^ueu LU CHJ-UW UUCOC

registers to be explicitly read by an emulator and thus they
are not evailable to measurement routines. This lack of generality
imposes unnecessary complications to the microprogrammer, but
could be avoided in future microprocessor design."

(iv) "The Input/Output conflict between the microprogram
measuring routine and the system being measured was the single
most difficult problem j.n the implementation". The authors
recommend that the two systems use different channels for input/
output.

All of these points are candid examples of the problems which
arise in the design and implementation of microprogrammed execution
analysis facilities. They emphasize several points already made
in the discussion of the AFP above: namely, the need for a power-
ful instruction set, access to object machine internal registers
and seperation of the object machine hardware from that of the
AFP.

-• ■ ■■ - - - - - - .MMa^MMMaHMH

|P(B|(||p|.U»*JJUUIItiJPlWIHlW^^I'i.N'4il1!J,l-!.'l|lV"l»iUI"!Ui, II, i«,lul,lllpi|]l«HIWJmjlWJlUlflll!l'Jl««'««!.!; !■ i! in. .HI llJWl;!W*»P,1"»'J"" -HUllWi'1. ' "

143

OBJECT MACHINE

Illustration 8.1

ANALYSIS FACILITY

r

MAIN MEM.

DATA!

Block
Trans fer

ADDR :ONT(

ALU
+

Control Unit

i

I L {]
'Gen. Regs

_JL

AFP
POM
for
AFP
Code

.--.■-^■■.■■. ^■.■. --i.-....- ■■.,■.-.. ■.-..-iv-w.-^^ ■ ..^ .. .^.v...,^„^.-..-—.-.^^.i^t^^..^J.■.-■.,-■. -^.....^-^^^.^^ ,l^.^. ..;i.., -,. ._,.., ■. .-^^..^-.. :^..,..-.,^........^^.^...^^■..^^■^^aJi^uimLmM

m ■ ——-™, w^m^iim^iimmwiimmrmmmm'nmif^iiimmmmmfm^im^i^rmn^'

1AA

CONCLUSIONS

The term "execution analysis" covers many important areas,
such as debugging, control flow, data flow, performance measurement
and storage reference pattern analysis. The main contribution
of the thesis is the development of a framework which faciliti-
tates analysis tasks in all of the.-ie areas. A prototype of this
framework, called DAME (Dynamic Analysis and Modelling Knvlronment)
has been implemented on the PPP-10 to study the behaviour of
PDP-11 programs. Its most novel aspect is that it permits the
user to define an abstract structure over his program at r u n-1 i m e
and perform his analysis in terms of the elements of that structure,
called "nodes". A node is a segment of code, not necessarily
contiguous in space, having a unique entry point and a unique
exit point. Every execution of a node is called an "instance"
of that node. During each node instance, DAME constructs a list,
called the "input-set", of all the inputs used, and upon exit,
a list, called the "output-set" of the changes to the system state
caused by the node instance. The input-set of a node instance
I is defined as the set of pairs -AjB- where A is an address
whose contents were read by 1 before beini», modified for the first
time bv I, and B is the value read. Thus the input-set of I
represents all the outside information passed to I. The output-set
of I consists of pairs -C,!) where C is an address written into
by I and D the last value written. The significance of this
formulation of input/output sets is that it not only permits
backtracking to any arbitrary point in the execution history,
but also facilitates the determination of data flow between nodes.
This formulation is also very helpful in narrowing down the search for
an elusive bug to a particular node instance during debugging.
Another significant advantage of this approach is that it gives
the user the ability to control the amount of information collected
by the system through the judicious definition of nodes. Other
systems, which record every store and every branch operation,
require much more storage to represent the same length of execution.

In addition to the node mechanism, DAME offers a flexible
mechanism, called the "Hook Mechanism", which allows the user to
trigger monitoring and analysis actions at a wide variety of
points in the PDP-11 instruction cycle and at entry and exit from
nodes. Bv using the node and hook mechanisms and the comprehensive

. r.- . ■..-■-..^^ ■..^^.■^.i:^.,.^ ,...:.... -,.^..,1 rililwiin rJitru [■■■■■■^ -i.--—-— L-J.: ...i..--...^fa;.j.-:-^/..... ■ ■.., f i igiitwfcifiiiüriiMMiUiaiit J

M«B W^P irgrmmmmmmmmi****i^mmmimm**^* mm* w^mm^mm m IP mn irmm^^mmm nmpopn*

145

instruction set of DAM!:, which includes general-purpose compu-
tational Lnstructions as well as instructions specifically
designed for monitorin p., collecting and searching collected
data, the user can in most cases easiJv formulate DAME routines
to perform the analysis he is interested in. In Chapter 4,
five example of the application of DAME to data flow analysis,
control flow analysis and instruction mix analysis are j?, iven.

Th
f lex i b 1
each P D
ting" o
des c r i p
a list
a t t r i b u
at t r1bu
the o'-) j
table a

e primary attribute souphf in the design of DAME was
lj_t_v • This goal resulted in a list-oriented design;
P-ll core location has a, possibly empty, list of "interes-
bjects associated with it, e.g. node descriptors, hook
tors, empirical data saved there by the analysis svstem,
of previous values. Each DAME object can have a secondary
te list which can contain system-defined or user-defined
te descriptors and arbitrary information associated with
ect. The DAME routines themselves and the DAME symbol
re lists manipulable with the standard list functions.

T
A part
by t h e
The m o
be use
A 1 s o ,
device
the CP
attach
seems
choice
used f
its t i
around
have b
Simula
even a
cycle-
f 1 o w a
and or
latter
hence

he p r i
icular
des ig

t iva t i
d for
it had
s capa
U afte
ed to
ill-ad
, coup
or t im
me in
this

een to
te at
t subr
level
n a 1 y s i
der of
areas

should

ce f
ly s
n of
on f
anal
bee

ble
r a
the
vise
led
ing
the
in t
pro

memo

or fl
tiff
the

or th
y s es
n env
of g e
memor
basic
d ; o
with
event
s imul
he pr
vide
rv cv

ex ib 1
price
PDP-1
is c h
i nvo 1
is ion
ne ra t
y eye
s imu

r per
the g
s , ha
a t i o n
e s e n t
an oj^
cle 1

1 1 t y is
was pa

1 s i m u 1
0 i c e w a
vi ng ev
e d that
ing NPP
le with
1 a t o r .
haps, i
enera 1 -
s cause
s chedu
design

t i on to

usual
id for
a to r a
s the
en t s a
s imul
comma

in an
In hi

roni ca
purpos
d DAME
ler , a

A m
the u

1 y loss of efficiency.
the flexibility afforded

t the memory cycle level,
prospect that DAME might
t Unibus transfer level.
a t o r s
n d s w
ins t r
n d s i g
Uy,
e sch
to s

nd th
uc h b
ser a

, eve! or at instruc
outlne level. This would permit
studies over a short simulated t
s and performance measurement st
magnitude longer periods of sim
make up the bulk of the applica
have been given more emphasis.

for
h 1 c h
uc t i
ht,
too
edul
pend
ere
et te
s to
t ion

se v
ecu

on ,
this
inf 1
ing
two

era! I
Id int
could
d ec i s

exi b1e
m e c h a n
-third

is n
r de
whe
1 ev

bot
Ime ,
ud i e
ulat
t ion

h de
and

s wh
ed t
s of

o way
sign w
ther t
e 1 or
tailed
debug

ich re
ime .
DAME

/n
errupt
be
ion

This
i sm
s_ of
to get
ould
o
possibly
memory-

ging,
quire
These
and

The DAME language has proved unsatisfactory in some areas.
Its main disadvantage is the low-level instructions supplied for
conventional computing tasks (e.p. arithmetic). These are equiva-
lent to those of a 3-address hardware machine. But, this design
was in fact intended to provide a model for a possible hardware
implementation and it was felt that a higher-level language can
subsequently be implemented to compile into the DAME language.

L.^^.^.;.;.-^.',...:^^-^^.».-. ■ . ■ ■- ■ , , , J 1 :_ ■ ^ ■■■- ■ - ■■^-■- '-'- u ■-- .-.- W:-.^».^-...... ^.^..-■J. ,--,■ ,--■,■. ■^1„T.■.:r^t^.fi|^^-J■^:-^--»..-, ^-^A-^:^-^

UaBM—W^^^"1-" ' '■^^^WpilllllfnWM^^H^W^»»!»«!!.!!]«» .11. ■I»J»»»UI|M ■ ■M»imill^^-.|.i.ni...>|Wi|»|i..

This task has not been done
easier to use.

146

Such a language would make DAME

The subset of DAME instructions dealing with monitoring,
data collection and retrieval have proved quite comprehensive
in their coverage and easy to use. While this subset could
certainly be enhanced by the implementation of higher-level
primitives discussed in'Chapter 6, such as the FOPEACH statement
in LEAP and continuously evaluated expressions, the provided
facilities have proved quite useful and also quite easv to trans-
port to a higher-level language. Their transportability to a
higher-level language as demonstrated in Chapter 7, and the fact
that their design was based on the requirements set forth in
Chapter 2, indicate that the specifications in Chapter 2 are
indeed independent of the analysis language level.

In the final chapter. Chapter 8, we consider a class of
questions whose solution could have a significant impact on the
extent to which execution analysis facilities are used by applica-
tion and system programmers alike. These cuestions relate to
the hardware implementation of the primitives which are most
burdensome and cause most of the overhead in software. We did
not attempt to solve these problems; our intention was only to
pose the right questions and suggest approaches to their solution,
A real solution to these questions, due to the major design tasks
which still remain, would require a detailed, engineering level
design and possibly implementation, testing and trial use.

In summary then, we have shown that execution analysis
facilities significantly more powerful and widely applicable than
the existing systems for individual types of analyses, such as
debugging and performance measurement, can he built using current
technology. While the prototype implementation appears too
expensive for wide use, a more cost-conscious design and some
assistance from hardware can bring the cost down substantially.
We hope that the ideas demonstrated in this thesis will shed
some light on the problems involved and point the way to some of
the solut ions.

t- ■ ■ , u I m -■■ - - ■ I t— - ■ ■ - -- —j -,. . , _^.^^^fcitM^^ -■ ■ IIBI M „nil^Mfc^Maaftiltl

IPBP^pppiPIPIpippiWPIifBiPWIPi^W»!»»''^^

147

REFERENCES

[ACM 73J Proceedings of"Workshop on Virtual Computer Systems",
ACM SIGARCH-SIGOPS, 1973.

[AS 71J Aschenbrenner, R. A., et al, "The Neurotron Monitor
System", Proc. FJCC 39(1971).

[BA 67 1 Balzer, R. M., "EXDAMS-Extendable DebuRginp, and Monito-
ring System", Proc. FJCC, 1971.

[BE 66] Bernstein, A. J., "Analysis of Programs for Parallel
Processing", IEEE Transactions on Electronic Computers,
October, 1966.

[BO 68) Bernstein, W. A., Owens, J. J., "Debugging in a Time-
Sharing Environment", Proc. FJCC, 1968.

[BK 701 Bussell, B., and Koster, R. A., "Instrumenting Computer
Systems and Their Programs", Proc. FJCC, 1970.

[CO 71J Cocke, J., "On Certain Graph-Theoretic Properties of
Programs", IBM Research Report RC 3391, 1971.

[DEC 71] "PDP11/20 ,15 ,r20 Processor Handbook", Digital Equipment
Corp., Maynard, Mass., 1971.

[DEC 73] "BLISS-11 Programmer's Manual", Digital Equipment Corp.,
Maynard, Mass., 197 3.

[ED 66] Evans, T. G., Darley, D. L., "On-line Debugging
Techniques: A Survey", Proc. FJCC, 1966.

[ED 65] Evans, T. G., and Darley, D. L., "DEBUG-An Extension
to Current Online Debugging Techniques", C/CM Vol. 8,

No. 5 .

[ES 67] Estrin, G., et al, "Snuper Computer-A Computer in
Instrument-■:.ion Automaton", Proc. SJCC, 1967.

[FE 73] Feustel, E. A., "On the Advantages of Tagged Architecture",
IEEE Transactions on Computers, Vol. c-22. No. 7, July

1973.

[FI 70] Fisher, E., "Control Structures for Programming Languages",
Ph.D. Thesis, Carnegie-Mellon University, 1970.

[FR 69] Feldman, J. A., and P. D. Rovner, "An ALGOL-Based
Associative Language", CACM 12. Vol. 8, August 1969.

,-■-:-—,>-■.-.:.:,.-■■ "-<.■. .-.■.:. :., :......: ■.: ...■.■- ,.-...■.. ^f.-..iln i v ■ ■- ■- -- - •■•■■■~>-'^-*- >■■■■■ ■~- -' '-'-■^-■^'■L^'t^***-^*****!*****

,IUii|i»|iWJ«llMllU in Ml W.i.1 r.f^nmjM'AI ■''■• •^SW^JTWKSJBSnpiBWWWPJBpwiWWJKTflil^PT^^ "IJII-W

148

[FSW 73 1 Fuller, S. I'., R. J. Swan and W. A. Wulf, "The
Instrumentation of C.mmp, a Multi-(Mini) Processor",
Proc. of COMPCUN 73, IEEE Computer Society.

[GA 69; Gaines, R, Stockton, "The Debugging of Computer Programs",
Institute for Defense Analyses, Working Paper No. 266,
August, 19 6 9.

[KN 73i Knuth, Donald E., The Art of Computer Programming,
Vol. 3, Addison-Wesles, 1973.

ILA 65! Lampson, B. 1.'., "Interactive Machine Language Progr ammi np",
Proc. F J C C 1965.

I LA 72 i Lang, B., "A New Technique for Data Monitoring", ACM
SIGPLAN Notices, Vol. 7, No. 6, June 1972.

1LU 71] Lunde, A., "POOMAS-Poor Man's Simula", Unpublished
user manual for the POOMAS simulation package available
at CMU Computer Science Dept.

I ME 67 i Martin, David F. and Katrin, Gerald, "Experiments on
Models of Computations and Systems", IFEE Transactions
on Electronic Computers, February, 1967.

[MCN 68] McNeley, J. L., "Compound Declarations", in Simulation
Programming Languages, ed. J. N. Buxton, North-Holland,
1968.

[MI 70; Mitchell, J. G., "The Design and Construction of Flexible
and Efficient Interactive Programming Systems", Ph.D.
Thesis, Carnegie-Mellon University, June 1970.

[RU 71 i Rustin, R., "Debugging. Techniques for Large Systems",
Courant Computer Science Symposium 1, Courant Institute
of Mathematical Sciences, New York University,
Prentice-Hall, 1971.

ISS 723 Saal, H. J. and L. J. Shustek, "Microprogrammed Implemen-
tation of Computer Measurement Techniques", Proc. 5.
Annual ACM/SIGMICRO Workshop on Microprogramming,
University of Illinois, Urbana, Illinois.

(.ST 65 1 Stockham, T. r;. , "Some Methods of Graphical Debugging",
Proc. IBM Scientific Computing Symposium on Man-Machine
Communication, May, 1965.

IWI 67.1 Wilde, D. 11., "Program Analysis Digital Computer",
Ph. D. Thesis, MIT, 1967 .

. ^ - ^ ■ J. ■ . .^.^ _. ■^. -..-.- ^ ^.-^.-^ ■ . . . , • ..^u.^^.... - . ■■ ^1—ja^>AML^Jfc^l».

nm^^rmf^n^^n^mmm^ ■'■ mm !|^!!BWBl(pippipW!l«imiPWIW!!!5Pl«lWUIiJ,»l.l,».MI i.lWHJI^WPWBPPPlJiJ«U"l*»llMilll -,,.»I«H.,I_I HJ.HJ.J. iifmj.

•*r n liillWHillMIfflHIW

[WU 71]

[WU 72]

f ZE 71]

149

Wulf, W. et al., "Bliss Reference Manual", C.MU Computer
Science Department Research Report, January, 1971.

Wulf, W., "C.mmp: A Multi-Mini-Processor", Computer
Science Reseerch Review 1971-72, Department of Computer
Science, Carnegie-Mellon University, 1972.

Zelkowitz, M., "Interrupt Driven Programming" CACM,
June 1971 Vol. 14, No. 6.

 • - ■■"•■-■ ■- ■-^■■■■-"i- lutei^i - •■ — -■■^ — ^v*--^ - - • " ' " t.......,^;..-. ■ " -■-'- -■---.. 1. min' nt rriii',i-l 'i^ti nvtutiilniiiriit —■•■■' -■.-^—.. -.-, iryiJfalMha i

mm^i^*> w *r v' n ■VLIHW-w w»-^.,u' 11. i. -i 11 n»]iyf\tmmv.vi9\iv.m.'mti'mt.mtt mw. ■< «MI ^ \\\mfi», .^ yj^wi* i 'WMnij^ym» »»VIPUI APi.wpi .|.-"i*P'.ij'--'- I '"" I -1... .IUI«ü^.P »u.y JI^H». jijppwi ij.i|pM j»iijL^«ii m.v^s vj.^miwrnv*'^' J >.». .-w-

1 SO

APPENDIX A

CONTENTS

Introduction to DAME

The Hook Mechanism

The Node Mechanism

Data Elements of DAME

Procedure for Getting Started with DAME

Instruction Format

Monitor Machine Instruction Set

Commands for Creating Monitor Routines

Load Monitor Routine (LMR)
Define Monitor Routine (DMR)

PDP-11 Flow Control Commands

Run .(RUN)
Go (GO)
Stop (STOP)
Stop Conditional (STOPC)
Node (NODE)
Node Trace (NTR)
Along (ALONG)
Restore to Node Instance (REST)
Replay Node Instance (RELAY)

Monitor Routine Flow Control Commands

If (IF)
While (WHL)
Incr (INCH)
Execute (EX)
Push (PUSH)
Pop (POP)
Return (RET)

Page

153

] 5 3

154

156

156

156

158

158

159

162

^"■- - -'-■■■" ■ ■■ -•- -.-^-.- .■.,--.:.-., ,.............* .. "-—"-*-•— - - .- 1. ■n^jMiMM—r—idai

jwi»wp»^m»g'^'wiuii<»i»ii'i:i-, -iu^^],JMiwiiii.L<»»»wi'MWiW»«i^wWiwwJW™^ ■ ■" i"-'"^^!!!

151

Type-Out Commands

Type Object (TOBJ)
Type-Indirect Object (TIOBJ)
Type -10 Symbol (TY10)
Type Contents of -11 Addresses (T)
Type Immediate (TI)
Type Node Instances (TNI)
Type Node Objects (TNO)

Insert Commands

Insert in -11 Address (I)
Zero -11 Addresses (Z)
Insert in Object (IOBJ)
Insert Halfword (IHW)

Commands to Create and Delete Objects

Create Object (CR)
Delete Object (DEL)

Hook Manipulation Commands

Hook (HOOK)
Disable Hook (DISAB)
Enable Hook (ENAB)

Commands for Searching PDP-11 Execution History

Find Input-Set (EISET)
Find Output-Set (FOSET)
Find Value (FVAL)
Find Node Instance (FNI)
Find Node Object (FNO)

Value-trace Commands

Initialize Value-trace (IVT)
Value-trace Hook (VTH)

Disk I/O Commands

Write Disk (WDSK)
Write-Indirect Disk (WIDSK)
Read Disk (RDSK)

Page

164

167

168

169

171

174

175

-- ^ .. - - . . IM i ^u.-..■■■;:>■. ..^^■■■^. .■■■.,^-m-:^..i.-.. „- -,1.*..^-^. ^.--.....i..^.--^-^/..■^v.^^.„^^ JW^.iztM^-js^MurttiuUi\AtiUsitü^.:^ ..--.- ■ ■ .-,^^.^^^,..^^^-^:^^A^^~^'^r-a.L.,..-.-',^^.i>-*^■.■i „;.^^J^^.■.düiUbiaaimUJbMäMaUimk

PPfP^lpip^WWWBIffpiipiS?*^^

152

Page

Miscellaneous Commands 176

Load PDP-11 Program (LOAD)
Generalized Unary Operation with Assignment (UA)
Generalized Binary Operation with Assignment (BA)
Execute External (XX'
Evaluate (EVAL)
Time (TIME)
Plot (PLOT)

A List of Useful Global PDP-10 Symbols and Their Contents 179

The Octal Value of OPN for Each Opcode 180

. Tl«>Wtfj'«V^;i^lw.rnW>^",>ito--irVi
,>rtriimiri--' i>'-iv-v —)-v::,-l-

,-r-'tfriTli^ftWitirt ,. . . , . ■ - ^-^-iiiinifcinr i —' -'-—-^

133

Introduction to D ^ M E

D^MF (Dynamic Analysis and Modelling Environment) is an
environment for running PDP-11/20 proprams on the PDP-10 and
analyzing their execution. It contains a fairly rich instruction
set containing the facilities of a low-level programming language
and a set of facilities for controlling the execution on the
PI)P-11 and the dynamic collection ard searchinp of data. (We
shall refer to DAME instructions also as DAME commands). Any
DAME command can be executed immediately or in a DAME routine.
A DAME routine can either be defined on-line by using the "Define
Monitor Routine" (DMR) command or it can be prepared ahead of
time in an SOS file with the extension .DAM and subsequently
loaded with the "Load Monitor Routine" (J.MR) command. The latter
mode of operation is highly recommended since SOS has much better
editing facilities than DAME and one quickly pets tired of
entering the same commands repeatedly. LMP commands can be nested
in the sense that any executed routine can load and execute other
routines, achieving a hierarchical loading effect. This is a
very convenient mode of operation.

PDP-11 programs are loaded from a binary (.BIN) file using
the LOAD command. They are executed by using the RUN or GO

commands .

The Hook Mechanism

The principal mechanism by which the user causes DAME to
take some action while his program is running, is the Hook

Mechanism.

There are two classes of hooks: general hooks and addressed
hooks. Within each class there are several types. The type and
class of each hook is indicated by a mnemonic character constant
in the Hook command. General hooks are those in which a user-
specified monitor routine will be executed at:

1- Every fetch operation (hook-type 'OF) or,

2- Every store operation (type 'GS) or,

3- Every instruction fetch (type 'IF) or,

4- Every instruction completion (tvpe 'If) or,

5- Everv node entry (type 'NE) or.

■^ ii-Tu «rtmw'iTi ^■c-"—-'•--•—-• ---- - - - -■ .J

154

6- Every node exit (type 'NX).

(Nodes are explained later.)

Addressed hooks are those in which the user-specified monitor
routine will be executed only if the specified type of operation
is performed on an address in a given range. The types of opera-
tions are:

7-

8-

9-

F.very fetch from an address range (tvpe 'AF)

Every store into an address range (type 'AS),

Every instruction fetcti from an address range
(type 'AIP),

10- The completion of every Instruction fetched from an
address range (type 'AIC).

or mo
(by a
comma
type
a ci d r e
s t r i n
which
of an
refer
first
are u
the P

The
re o
DMP

nd)
of h
s s r
P, up
he

y t y
ence
act

sual
DP-1

user d
f the
c omna

and Is
ook, t
ange ,
to 5

can re
pe of
d i n a
1va t lo
ly def
1 prog

etermines what actions he would like taken at one
above points. He then prepares a monitor routine
nd or by loading from a .DAM file with a LMR
sues a Hook command giving as parameters: the
he routine name, if an addressed hook then the
and a name for the hook (consisting of a character
characters preceded by a single auote mark) with
fer to the hook later on. He can place as many
hook as he wants. The routines which are thus
hook specification must be defined prior to the

n of the hook. In practice, all monitor routines
ined prior to the initiation of the execution of
ram .

The Node Mechanism

A second Important mechanism by which the user collects
information about the behaviour of his program, is the so-colled
"Node Mechanism". The Node Mechanism reflects a certain view,
that held by DAME, of the notion of what "the execution of a
program" means. It contains facilities for extracting information
in compliance with that view, while the PDP-11 program runs.
The collected Information makes it possible to reconstruct anv
previous state of the -11, as well as to answer questions about
data flow and control flow history without restoring past states.

In DAME's view of the world, interesting parts ci programs
are identified and divided into nodes by the user. (A default
mode is also provided. See NTR command.) Nodes can be as small
as a single instruction or as large as the entire program.

 - MM»

155

Nodes are defined thr
entry and exit points
may have the same ent
overlap partially. N
is a branch or subrou
tion is the target of
point. Control need
ending addresses of a
program between the e
considered a part of
(NI) is a parti..lar
the concept of an NI
and the "output-set",
where aj is an addres
something before writ
the value fetched fro
Thus, the input-set r
used by the NI. The
written by a node-ins
upon exit from the NI
passed to the rest of

u the NODE command
Nodes may be ne

ry or the same exi
ormally, the last
tine call instruct
a branch instruct

not physically sta
node; the entire

ntry and the exit
that "node instanc
execution of a nod
are the concepts o

The "input-set"
s from which the a
ing into it for th
ir aj for the first
epresents all the
output-set consist
tance and the cont

Thus, it repres
the world by the

, by specifying their
sted but no two nodes
t point; nor may nodes
instruction of a node
ion and the first instruc-
ion or a subroutine entry
y within the starting and
path followed by the
from the node will be
e". A "node instance"
e. Associated with
f the NI's "input-set"
consists of pairs (aj.bj)
ssociated NI has fetched
e first time, and bj is
11 me during the NI.
"external information"
s of all the addresses
entf; of those addresses
ents all the information
NI.

For each node instance, the system creates a four-word
entry in a table, NODETFACE. The format of the entry is:

<node starting address>
■instruction count at entry-
input-set ptr,,output-set ptr-'

■no. of instructions in NI-

In addition, associated with each node is a node-object,
which contains pointers to lists of pointers to the input- and
output-sets of every instance of that node. The I/O sets can
be displayed easily by the T0BJ(<obj. address>) command by
supplying the address of the desired I/O set list from the node-
object. These lists can also be manipulated in monitor routines.

Finally, all node-objects and input/output sets are
accessible, as most other objects in the svstem are, thru a
set of master list pointers, MNODESC, MINPUTSETSC and MOUTPUTSETSC
These lists, called "subclass masters", contain a pointer to
every object of their respective subclasses.

A set of commands intended to facilitate the searching of
this execution history information is provided (See "Commands
for Searching Execution History").

 ■■ - -■ - --

.156

Data Elements of DAME

DAME has access to three address spaces, each of which
Is handled in a similar, but not identical, manner. These
are:

1- PDP-11 core, general and device registers,

2- Global PDP-10 symbols declared in the simulator and in
the rest of DAME code,

3- Monitor Machine objects (MMO) created by the user during
the session or pre-defined for the user by DAME during initiali-
zation.

A list of the useful elements of type 2 and pre-defined
objects of type 3 are found in the back of this document. Symbols
of tvpe 1 are identical to the corresponding, standard PDP-11
assembly language symbols as defined in [DEC 71J.

Procedure for Getting Started with DAME

To run DAME, enter the following command to the PDP-10
Moni tor:

.FUN DAME CA10BA07

It will respond with:

DAME11/10...

**

and unlock the keyboard. You are now in DAME command mode,
indicated by the double-asterisk prompt signal.

(Notation: A BNF-like notation is used to describe the
syntax of DAME instructions. "/" indicates disjunction, and
"<" and ">" delimit non-terminal symbols. Brackets "[" and
"]" delimit optional operands.)

Instruction Format

■MM instruction> -> <Type-l instruction;» / -'Tvpe-2 instruction-

•Type-1 instruction-- ♦ • opera tor ■(■ operand list -)

-Type-2 instruction^ ► operator -(■operand list> action-)

■-operand list-- ■► -operand »/• operand lisf- ^operand-

•operand- ► octal integer- / (3- octal integer-- , short char, string-
-global -10 symbol;- / -MMO name-

■"•■■—---■■■- '■ '

....■.■ .--.■.. it ...-. ^.-nr ■ .._.■. ■ - ■—
 -■■.•■-■'--^' —-■*—

157

<actlon> * <MM routine name-- -compound instruction>

•short char, string-■ - '-'up to 5 characters'

■compound instruction?' ■* (*'MM instruction list)

•MM instruction list> ■♦ -MM instruction-' / <MM instruction list-
■MM instruction>

As can be seen, some monitor instructions take simple
operand lists while others (in particular, IF, INCR, WHL, HOOK
and ALONG instructions) can optionally take a compound-instruetion
(the analogue of a compound statement or compound expression
in block-oriented languages) as the last operand. All operands
of an MM instruction must be defined prior to the execution of
that instruction. MMO's which are not pre-defined by the
system,are defined by the CREATE instruction (except for monitor
routines, hooks and value-trace objects, as described later.)
The form (?-octal integer- refers to the contents of -11 core
location octal Integer ■ when the Instruction is executed.

■- •■—' - ■"■■■'

r>s

MONITOR MACHINK 1 NS TKl'CT 1 ON SKT

Commaiuis for Croat Inc. Monitor Routines

"Load Monitor Routine" Command

Syntax: LMR (' t i lonamo ■ rout im- spec.)
«routine s p o i- . • ' ■ r o u t i n o n a ni o / ' *

Effect : There must be an SOS file named ^filename .HIN, where
t i Lename lias at most i ivo i:l\arac t o rs , The t i 1 i- must contain

Monitor routines in the following format :

rout i ne name (MM Lnstructlon> <MM Instruction''

 1
rout i n e n am e > («• MM Instruction

)

I.e. each routine must start on a new SOS line.

Standard SOS Line numbering Is assumed. ii '* Ls specifiedi all
the rout Lnes In tho t ilo aro loaded and del tned as HMO's.
Otherwise, If the specified routine Ls found in the file, it is
Loaded and definedi else an error message is typed.

"Define Monitor Rout Ine" Command

Syntax: H M K ('• rou t i u o n a me)

Effect : rout tne name must be at most 5 characters. The
command puts tho user In the DAME edit mode, which is Indicated
by tho prompt i-. harartors '--' for the first lino of a rout i no
bo inn dofiuod. If tho rout ino is to extend into more Lines,
terminate each non-terminal line with sn altmode and carriage-
return; DAME will prompt with '■■■-' tor each non-terminal Line
a f t e r the first 1 i ne . Ter mi na to Last lino v i t h o n1y a o a r r1 a gc
rot urn.

159

*** >'.*****************

PDP-11 Flow Control Commands

''•******

"Run" Command

Syntax: RUN([«starting address ■ 1 •halt count M)

Effect: If 'Starting address' is specified, it is inserted in
the PDP-11 PC. If halt count is specified, it is inserted in
the global variable HALTCOUNT, the value of which is initialized
to -1 when the system is started up. The CPU is then given control,
starting with an instruction fetch from the current value of PC.
HALTCOUNT is decremented by 1 after the completion of every
instruction. When it reaches zero, execution is stopped and

command mode is entered.

"*:****

"Go" Command

Syntax: G0([<halt count- I)

Effect: If -halt count> is specified, it is inserted in
HALTCOUNT. Execution is resumed from its current state.

"Stop" Command

Syntax: STOP()

Effect: CPU is stopped and command mode is entered.

"Stop Comditional" Command

Syntax: ST0PC(<id>)

Effect: If the value of <id> is odd, then same as STOP (),
otherwisenoeffect.

;

■■ ■■- - , ^ •■ - -- ■ ■■

 . ■■■ ^_.

160

"Node" Command

Syntax: KODEC'-noJe name> 'lower bound> supper bound-)

Effect: Defines a node-object with name <node name> and whose
scope is -lower bound> to -upper bound>. See the format of
objects of nodesubclass and also NODETRACE table for the format
of node-instances (p. 41 and 49).

***y(^

"Node Trace" Command

Syntax: NTR()

Effect: This command causes the system to assume the default
mode for node definition. The first executed instruction starts
the first node and first node instance. Thereafter, every
conditional branch and every deviation from seouential flow
causes the termination of the current node instance, and the
following instruction (i.e. the target of the transfer) consti-
tutes entry into a new node instance. The current node instance
is also terminated when a preciously-established end of a node
instance is encountered even if control flow remains sequential.

"Along" Command

Svntax: ALONG(N0 Nl...Nk P)

Effect: Ni's must be the names or starting addresses of nodes
and R a compound-instruetion or the name of a monitor routine.
Whenever the execution follows path NO,Ml,...,Nk, R is executed
whenever this ALONG command is encountered. More precisely, let
1.0,Ll,...,Lt be the sequence (in reverse chronological order)
of nodes executed so far, with L0= the current node. Then R will
be executed if and only if for some j, 0 < j S k for all i = 0,...,j,
Ni=L(j-l); i.e. if some (j+1)-element initial segment N0,Nl,...,Nj
in the specified path is identical to L(j),L(j-l),...,L0, the
last j+1 node instances executed.

"Restore to Node Instance" Command

Syntax : REST(-lndex •)
■index> ► 'octal integer> / obj. name-

^ - . ..i .I—- - - - ~—'—»^— l l l«l ninl

161

Effect: The PDP-11 environment which existed where the node
instance specified by <index> was entered is restored, including
the NODETRACE table and the instruction count ICOUNT.
However, simulation time is not restored.

*** mum

"Replay Node Instance" Command

Syntax: RPLAYd'TJ < s tar 11 ng-index • [< endi ng-i ndex > 1)

Effect: The input-sets of the node instances back through the
instance of index <startlng lndex> and a replay is made of
the ncde-instances specified by '-s t ar t ing-index > thru <ending-
index^. (A node instance has index i if it is the irh node
instance entered since the first node was defined. The indices
of node instances can be determined via the Find Node Instance
(FNI) command.) At the end of the replay, the PDP-11 state
which existed when the RPLAY command was issued is restored
including the NODETRACE table, instruction count and simulation
time. If 'T is specified, the instructions are traced on the
TTY as they are executed.

L — _-.—i—M.—-^—.^— —_^__^^>

162

Monitor Routine Flow Control Commands

"If" Command

Syntax: IF(<opdl> 'rel- opd2- then-action [<else-action>1)

•then-action- * -action-

-else-action- ♦ -action-

^action- * -routine name- / compound Instruction

•'compound-instruction- ■* (MM instruction list)

•MM instruction list ► •■ MM instruction-
/ «MM instruction list- -MM instruction-

rel EQ/NEQ/GE/GT/LE/LT

Effect: If the specified relation holds then the action
then-action- is executed. Otherwise, if an else-action

has been specified, it is executed.

"While" Command

Syntax: W H L (• o p J - -action-)

Effect: The action action- is executed while the value of
opd is odd. -action- is defined as above.

"Inc r" Command

Syntax: INCR(<var> -from-opd -to-opd- -step-opd'- -action)

Effect: As the value of -var is incrpfiented from from-opd^
to at most -to-opd in steps of -step-opd-, -action- is executed
at each step. If -from-opd is initially smaller than -to-opd ,
-action- is not executed at all. action- is defined as above.

:

-■;—"

163

"Execute" Command

Syntax: EX(■routine•)

Effect': The monitor routine <routine> is executed. This command
together with the PUSH, POP and RET commands described below,
constitute a subroutine facility with call-by-value parameters.

"Push" Command

Syntax: PUSH(<value>)

<value> > <octal lnteger> / ^char. const, up to 5 chars.
/ "^obj. name>

Effect: The provided literal or the contents of word 0 of
obj. name- are pushed on a (implied) stack fr<

can be retrieved by a POP command.
om where they

"Pop" Command

Syntax : POP(<obj . id >)

Effect: The last element pushed onto the stack is popped into
word Oof -obj. ld>.

"Return" Command

Syntax: RET(<level count)

Effect: Causes an exit from the last <level count> number of
monitor routines and compound-instruction levels; the level
count for current level being zero. (Note that, in fact, RET(O)

11 aDll
e^SS CaSe SinCe it: meanS that the MM instructions following

the RET(O) in the same level, will never be executed. The effect
of that level would remain unchanged if the P,ET(0) and all the
following instructions in the same level were removed.)

■r ■■-'-■• -i-i-. — —*'■->—— -

16A

*********************^*******************************yi *********

"Type-Out" Commands

"Type Object" Command

Syntax: TOBJ(<obj. name or address>)

Effect: Types the contents of the obiect whose name or -10
addreis is given, at the terminal in a format appropriate to

the class of the object.

List-objects are tvped between a pair of brackets, [J.
Each element of the list is also typed according to these same

rules, recursively.

Pepresentative-objects are indicated by a • followed by a

recursive type-out of the object they represent.

Numeric-variable objects are tvped, for an object named
ABC as 'ABC:' followed by the contents of ABC where each word
is typed in PDP-10 numeric half-word format and words are sepera-
ted by slashes. The last word is followed by two spaces.

Character-variables are typed in the same format as numeric-
variable objects, except that each user word is interpreted as
a left-justified character string and tvped out as such.

Numeric-constant and character-constant objects are typed
in a format similar to those of the corresnonding variables
except that no name is typed. Long-character-constant objects

are typed without the slashes between user words.

(There are two classes of objects which are not normally
used by the user. These are included here only for completeness.
Id-objects, whl^h represent names in a monitor instruction, are
typed between <...>. Non-homogenous objects are typed, for an
n-word object by interpreting user vord i as an object class
and typing out user word i+1 according to that class followed by
a -olon, 1=0,2,...,n-2. These are used in the Svmbol Table to

represent entries.)

For an object whose class is something other than one of
the above, an error message is typed indicating the class of the
object (For a list of object classes, see Create Object Command.)

__ -— ■ ■ - ■ -- -

165

Note that TOBJ command must be used to type onlv MM objects.

Every completed type-out is followed by a carriage-return,
line-feed.

"Type-Indirect Object" Command

Syntax: TIOBJ (<pointer>)

Effect: Performs "Type Object" Command on the object pointed
by -pointer1. This command is especially useful for typing out
objects pointed by global PDP-]0 symbols, by giving the -10
symbol as the <polnter>. See the list of global variables at
the end of this appendix.

"Type -10 Symbol" Command

Syntax: TY10(<global var. name or address>)

Effect: The contents of the specified global variable or the
-10 addreps is typed out in octal half-word format, followed by
two spaces.

"Type Contents of -11 Addresses" Command

Syntax: T(<starting address- [-ending address -1)

Effect: Types out the contents of -11 core from -starting address>
to -ending address>. Either term may be a constant or an object
whose word 0 contains the address. If the latter is omitted,
it is taken to be equal to the former. For each core word, the
type-out has the form:

<MM0 list ptr>, I/M bits-,--11 word>.

The first field is the 18-bit -10 addvess of the list of MMO's
associated with that -11 Jocation, e.g. hooks, value-traces,
node-objects etc. These may be examined by entering T0BJ(^MM0
list ptr). See "Object Subclasses" for the format of each
such object.

«I/M bits' are used in the determination of Input-Output sets,
and are not of direct interest to the user.

 - ■..■„-..J.->J.-

166

Each word is followed bv two spaces. Words are written eiRht
toaiine.

"Type Immediate" Command

Syntax: TI(<1iteral>)
-literal:- ■> non-neg. octal inteper> /

'«char, string up to 4 chars.>

Effect: Types out the supplied literal.

"Type Node Instances" Command

Syntax: TNI([<starting index>] <count>)

Effect: <count> number of node instances starting with
•starting index> are typed on the TTY (moving forward in time
It count- is positive, otherwise moving backward in time)
If -starting-index:- is omitted, it is taken to be the setting
of the node instance pointer NIP. The format of each typed
instance is (typed on one line):

index • -node address- flags-
^input-set address- ^output-set address>
•no. of instructions in the node instance-

"Type Node Objects" Command

Syntax: TN0(<al> <a2 - ... <an>)

Effect: Types the node objects associated with PDP-11 addresses
a 1,. . . ,an.

-- ■ ■ - ■ - ■ mmtmm - -■ ■ - - - ■ ■ . . ._^_^, ^^MMiMMü

Will piJ-H^kP'J^WWWHWM« '"J u"11 '-' J l>"«-1 ■«■••B^ -mi. ijll.Jli JH

167

"Insert" Commands

+

"Insert in -1] address" Command

Syntax: I(address- value)

Effect: Each operand may be a constant or an object name. In
the latter case, the contents of word fl of the object is used
as the -11 address or the value. If the value is less than
177777, the control bits (bits 16-35) of the core are unaffected
and the value is placed in the -11 word. Otherwise the full
-10 word is replaced by the value.

"Zero -11 Addresses" Command

Syntax: Z(- starting address ' 'ending address)

Effect: Either operand may be a constant or an object name.
The -11 words between the specified objects are set to zero.

"Insert in Object" Command

Syntax: I0BJ(obj. name- N- value)

Effect: The value- is inserted in word <N> of the object
•obj. name-. Either -N or value may be a constant or an
object name. value may be an octal constant or a character
constant of at most 5 characters preceded by the single quote
If -value- is the name of an object whose subclass is /(13
(ADDR11SUBCLASS), its contents are taken to be an -11 core address,
and the contents of that address are used as the value.

"Insert Halfword" Command

Synta;.: IHW(-obj. id- • s t ar t-addre ss - [<n>])

Effect: The nth halfword in the -10, counting left to right,
starting with the 1eft-ha1fword of <start-address ■ , is inserted
in right half of obj. id .

■'^- .■■'■-■-.■----.■ - - — - - — - —■ -—-»■^-^-— ■ - - - i in nr iiiirfailiii

^^mm*r**

168

** vt ****************

******************************* *************n^A**A*)lt*A*********

Corrmands to Create and Delete Objects

********■![**

"Create Object" Command

Syntax: C R('< o b j. name class subclass size- i)

Effect: Creates and object acrordinp to these specifications.
If only the first operand is specified, the default values for
the other 3 operands are used. These are "100 (numeric constant
class), 0 (free subclass) and 1 (1 user word). All specified
operands must be constants. obj. name- must have at most 5
characters.

The object classes which the user mav use are:

100. numeric class
300: character class (up Co 5 characters)
700: long-character-string class

The object subclasses which the user mav use are:

0 : free subclass (i.e. uninterpreted)
13 : PDP-ll address subclass (whenever the object is encounte-

red, the contents of the PDP-ll word pointed by it
are taken)

14 : PDP-10 address subclass (whenever the object is encounte-
red, the contents of the PDP-IO word pointed by it
are taken)

These classes and subclasses are that subset of all the pre-defined
classes and subclasses which should be visible to the user. There
are manv others which are used hv DAME and POOMAS functions. The
user may create objects with classes and subclasses other than
those pre-defined. In such objects the classes assigned should
be between octal JOQO and 77770 and subclasses between octal 70
and 77770 in order to avoid conflicts with the pre-defined ones.
Objects with such user-defined classes may not be tvped out with
the TOB.I command.

"Delete Object" Command

Syntax: DEL(<obj, name or address>)

Effect: Deletes the specified object and returns its space to
the free-space list.

- - - - - - -•■ ■

■ _ .■ ^^^■--^^-

■r^s'""""" "' 1 - ■■ ■ ■■—^^■•««••■P

169

Hook '''anipulation Commands

"Hook" Command

Ss-ntax: HüOK(hook specification)

lu->ok specification • Keneral hook spec. ■ /
■addressed hook spec. •

•peneral hook spe" • 'pen. hook code action'
hook n a m e •

•pen. hook code' • GF/GS/IF/IC/NE/NX

addressed hook spec ► 'addr. hook code-
■ action •
•lower hound
upper bound-
'•hook nape

addr. hook code • AIF/AIC/AF/AS

hook name • char, string up to 5 chars.

■lower bound- • -octal integer- / • rep,name-

upper bound • octal inteper not smaller than
lower bound-

Effect: The HOOK command is the rrinclpal means by which the
user executes monitor routines during the execution of his
program. General hooks, i.e. those with codes 'GF,'GS,'IF,'IC,
'OF.'OS.'NE or 'NX cause the execution of the specified monitor
routine at every: fetch, store, instruction fetch, instruction
completion, node entrv or node exit respectively.

Addressed hooks, i.e. those with codes 'AF,'AS,'AIF or 'AIC,
cause the execution of the specified monitor routine ','henever
a fetch, a store, an instruction fetch or the completion of an
instruction occurs from a location within the specified bounds.
If register names are used, the following additional rule must
be observed: for general registers the bounds must stay within
RO to R7, and other registers, namely TKB, TKS, TPB, TPS and PS,
must be specified individually, by giving the same name for both

the lower and upper bounds.

- ■ i ■ Mtt^ugtmtmtlmmmmä

^^Km^^^mgmmimanmmmfmmrmPKrmmm wmmn**^***^***''^!'*^*! i ■ mmwiifHPniHaEifTV'fiiiri."-«*-.^vi< jmiv**itmmmJ&Mf*f***i99m'.j\wj[.*\ 14J-.P-»»üJ,JLPL 1.J;-.I n. 1 ^I J.*. ■ ■ LHH

170

''Disable Hook" Command

Syntax: DISAB(<hook.-obj. name or address)

Effect: Causes any future activations of the hook to be a
no-op .

*******************>***

"E'nable Hook" Command

Syntax: ENAB('hook-obj. name or address)

Effect: Causes the monitor routines associated with the hook
to be executed whenever the hook is activated.

 1 1 nm immminii -•■ MBM^aMaH*aMMKa^_a> 1 if iiiiMniiitini iiBiii—^

^^mm~ ^m^m~^^~ wm^*—-~*mmm

] 7]

Commands for Searching PDP-11 Execution History

"Find Input-Set" Command

Svntax: FISET(<obj. iA node-spec. search-spec
'direction- [starting inde,-!l)

node-spec ■

search-spec

direction •

* / n o d e - i d •

• routine name >
/ -compound-Instruction ■

'F/'B

starting index positive octal integer- /
obi. name ■

Effect :
Instances
suc h a no
is Insert
(which Is
the node
ohj . Id ■

in -node-
i f ' * is
is p rov 1 d
"forward"
backward .
f rom that
instance,
it will s

A search is made over the input-sets of past node
until one satisfying search-spec- is found. If

de instance is found, the address of its input-set
ed in ob.i . id and the node-instance pointer NIP
a PDI'-IO global variable) is set to the index of

Instance; otherwise a 36-blt -1 is Inserted in
and NIP is unaffected. If a -node-id- is provided

spec-, onlv the instances of that node are searched:
specified all input sets are searched. If a direction
ed, search takes place in that direction ('F for
, B for "backward"); otherwise search takes place

If a starting-index- is provided, search starts
index, otherwise it starts from the most recent node
(Note that if NIP is specified as ■ star11ng-index • ,

tart from the current setting of NIP.)

The procedure for the application of the predicate, i.e
^search spec , is as follows: The system pushes the address of
the input-set to be tried on the stack. Hence, the routine or
compound instruction supplied in search-spec-, referred to as
the predicate hereafter, must obtain that address by a POP(A)
instruction, where A is some input-set name. Then, the contents
of an address 0 in the input-set can be extracted bv the "find
value instruction FVAL(B A 0) which will insert in the object
B either the (16 bit) contents of -11 address 0 in the set pointed
by A if Q is in fact in that set, else -1. The predicate must

; -'■•" ■■ -—■■■■'■- •'-■ ^-^-^*- ■~>--^ ---■ -^ ■MMMMMMMMrii

wmw ■Mill»

i •;

obtain i lu- cont«nti ol .»1 l addraas«« Ln thli ffl«nn«t ind ptrfortn
norm«! »rlthrattlc or comp«rl«on operationi on than», which
conatltutai tha body ol tha pradicata. rhan Finally, II tha
daalrad conditlom ara mal (I.a. tha pradicate la aatlaflad),
■ PUSH(l) othorwist< « I'lSlKO) must ba parformad. Upon axil
from tha pradicata, tha ay a tain will pop tha a tack. it tha
pnppad valua La L, tho Inda» ol tha noda Inatanca |ual »aarched
will ba Inaartad In obj. \S and tha Lnatructlon wll] ba tarml-
natad. Otharwlaa, it the and ol tha noda traca hiatory ha« baan
r«achad, obj. Id will ba aal to 1; alaa the addraaa :'
u,.st inpul ••'•! t^ 1M- siMirvlu'd will ba puahed on tha atac
t h <• c v >' 11- i '■ p i «' a i «'>i ■» n a in.

ant

Examplai Suppoaa **a wlah to find thw raoal rac»nl Input ••<•<
oi ..n Inatanca ol noda N whara the contanti ol addraH« 1000
is greater than the contanta ol addres« 2000. Provided the
objects A. B, x and V have been previoualy created and the node
N previously defined by n node oi NTH Inetruction, th« following
tnet rue I lo n H hou I >l do t h i ;: :

KISET(B N (POP(A)
rv.M (X A i 000)
KVAl (V A 2000)
1F(X 'HT \ (PUSH(1)) (PUSH(O)))))

rhia lnatructlon will Inaari In i* eithai the addreaa -<! tne
t anca ol N In which 81000 82000

■ n be i v'uiiil.
i ii p u i si-1 >' i i ha mo« t cacani 11>
o i t he v.i 1 ua I LI no «uc h I npul ae t

"Pi ml Oulput Set" Command

AAAAAAAAAAAAAAAAAAAAAAAAAAA

Syntax i FOSEr(ob 1• Id
J l t i-r r I »-n

Hi1 il i- s p i- t' IP«roll si<i->

Htartina i ndox

Effect! fhe aame .>•- FISET except thnl output »al

i .i t he i than I npu t setP .

.i i a s i-.»i c he >1

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

" F i n>l \'.i 1 ue " Command

Svnl IN : t-'VAl », obj . Id

AAAAAAAAAAAAAAAAAAAAAAAAAA

,.1.11 an* .-i L/O aat U add i aaa)

.ii •■ In i i>>- epi ell i ad Effact s it t he »pec If led M addreaa «ppe
i o ,, than the contanta ol the addraaa In thai aat, otharwlaa

i , is i ns<-1 t ad In obj . Id .

 ■■

wmtmmmm^mm^*r^r*m^~^^*^"' " ■ mm m • wti^aff^imm^mK^mKmmm wfaimgmiwuini wmw^fimm

-•■' -■•■ M - .: — ■ . ^ ■■•■

173

"P'ind Node Ins Lance" Command

Syntax: FNI(ob), id node-spec- instance-count
I --startinR-index ■ ' <dlrection> I I)

node-spec • node-id / CURNODE

•-instance-count' • octal Integer / ■ obj. name--

Effect: An attempt is made to find the n t li instance of the
node specified bv node-spec where n=-octal integer if one
is supplied, otherwise contents of word 0 of obj. name.
CL'RNODE means the current node. If a s t ar t i np-i nd ex is
specified, the search starts from there, otherwise from the
current node instance. NIP is a valid parameter for starting-
Index . If a direction is specified, the search proceeds in
that direction; otherwise it proceeds in the backward direction
If the desired node instance is found, its index Is inserted
into obj. id and into NIP. Otherwise, -1 is inserted into

obj. id and NIP is unaffected.

'Kind Node Object" Command

Syntax! FNO(obj. id -11 address)

Effect: If -11 address is the starting address of a node,
the aodress of the node object, otherwise -1, is inserted in

obj. id .

• ■- -^-^^ ,._..* - **kim ,„% -

174

"Value-trace" Commands

"Initialize Value-trace" Command

Syntax: IVT('-11 addr.> number- '<obj. name>)

Effect: Creates a value-trace object with name •obj. name •
with enough room for ■number- previous values and puts the
object in the MMO list of the specified -11 address or register.
Note: This command does not initiate the collection of values.
It merely creates and object to hold those values. The collec-
tion of values is initiated by the VTH command.

"Value-trace Hook" Command

Syntax: VTH(-11 addr. or reg. name)

Effect: Causes the monitoring of values stored into i;he
specified core location or register and maintains a circular
buffer of the last k values, unique or non-uniaue, stored
there bv the PDP-11, where k is the -number- specified in
the preceding IVT command for the same address. All accesses
bv the -11 to write into the specified ceil (including auto
register incrementation, decrementation, turning on/off bits
in the condition code or the device registers) are considered
store operations and cause a new entry in the value-trac e..

1

—* ' ^ ■ -- -■ ■ - —•—*

rnssa» ■^ li i Li ij HiB II<I iHnw^pa^^»—i^V

'

175

Disk I/O Commands

X**

"Write Disk" Conmand

Syntax : WDSK(• obj . id)

Effect: Will write (in PDP-10 dump mode) on disk file I'SFP.D/^M
tlte contents of the object whose name or address is piven in
•obj. id-. If the file does not exist, it will be created;
otherwise its old contents will be destroyed.

"Write-Indirect Disk" Command

Syntax: WIDSK(• address ■)

Effect: Will perform WDSK(<obj. id") where 'address- contains
a pointer to -obj. id. This command is particularly useful
for writing out objects pointed by PDP-10 symbols.

"Read Disk" Command

Syntax : RDSK(-obj . id ■)

Effect: Will read a 36-bit word from the binarv file USER.DAM
(which had better existl) into the object -obj. id-.

1 u I _*. I 1 ■- ■ • ■->■-■'■"-- -:'- ^- I I ——

^»PPBJpWiPWSPWWMIIPPBBWmiPWWBIWBW^WB^WPBIMWWWIimWmWIi™

176

************************5l **************************************

Miscellaneous Communds

"Load PDP-11 Program" Command

Syntax: LOAD('file name- starting address-)

Effect: The file must be in the absolute unpacked output
format of the PAL-.-ii assembler or MACX11 with /I/A switches,
must have extension .BIN and the -file name- must be at most
5 characters. starting address- must be an even octal integ r
between 0 and 157776 - X, where X is the length of the program
in bytes.

Generalized "Unary Operation with Assignment" Command

Syntax: UAC'operation target -opd)

operation- > SUC / PRED / SAL / SIZE / ADDR / NOT

-target- ■* <ob j . id

■ op d > -> ^ob j . id -

Effect: The specified unary operation is performed on -opd-'
and the result is inserted in -target -. 'SUC and 'PPED are
the successor and predecessor functions, respectively. 'SIZE
returns the number of user words in -opd , 'ADDR the address
of opd-. 'SAL the address of the secondary-attribute-list
(SAL) of -opd^ and 'NOT the logical complement of the contents
of the first user word of -opd-.

Generalized "Binarv Operation with Assignment" Command

Syntax: BA('-operation- -target opdJ- < o p d 2 >)

■operation- •+/-/*/ slash- / AND / OR / XOR
/ I / ft

where s.lash- is the integer division sign "/".

- - —- ■ —^ - *— ii iiinii HI ■ Hi ilnl ■—Mil MT

i m ' >•> ' > •> • > m ■mm^^***<^^*^*~m ■ p.i.iip I..J. ;.,: WI*»'»WBPPi|p|

^

177

Ef fee
- opd2
A. :
of wo
all o
names
inter
All t
as in
hook
on ■ o
and V
dec 1 a
■ opdl
will
store
be re

t : T
A

is t
rd <o
f ta
or R

pre t e
he ar
BLIS

for a
pdl
TH Co
r =d t

■ , an
b e tn a
d int
turne

he comm
/''B is t
he vec t
pd2 • of
rget>,
1 o b a 1 v
d as a
i t hme t i
S -10.
t least
and a V
m m a n d s)
o be ke
d error
de. If
o the s
d.

and
he B
or i

• op
^ opd
aria
-10
c an
In
• op

TH c
I

Pt i
mes
• op

peel

per f
th p
ndex
dl •.
1> a
b 1 es
add r
d lo
the
d2 ■
omma
f • o
n th
sap e
d2>
f led

o rms <
rev iou
opera
No b

n d -op
A c

ess ;
gical
case o
previo
nd mus
pd2 ■ e
e last
will
number

1 o r a c

t a r p. e
s va 1
t ion
ounds
d2> m
ons t a
for t
opera
f // o
us va
t hav
xceed
IVT

be t y
of v

ion,

t > <

ue o
and
ehe

ay b
nt f
he o
t ion
pera
lues
e be
s th
comm
ped
a] ue
the

■ op
f -1
re tu
ck i
e oc
or t
t h e r
s ar
t i on
mus

en i
e nu
and
out
s ha
half

dl ■ <o

1 core
rns t h
s made
t al co
he • ta
s as a
e d e f i
, a va
t have
ssued
mber o
for th
and no
ve not
word

pera t
] oca

e con
An

ns tan
r ee t ■
lite

ned t
lue -t
been
(See
f val
e] oc
as s i
yet

#7 7 77

ion»
t ion
tents
y or
ts, MMO

i s
ral.
he same
race
placed

IVT
ues
at ion
pr.fucn t
been
7 7 will

*** Ä*********ye*********

"Execute External" Command

Syntax: XX(-PDP-10 routine name- l-param. list- I)

-param. list ► -param / --param. list- < p a r am >

■par am > ■* -literal- / ■ identifier -

Effect: Calls the specified routine with the qiven parameters.
Caution: If identifiers are given as parameters, their addresses
are passed. If you wish the contents of the identifier passed,
include an additional parameter, namely the literals'. (single
quote followed by a dot and a space) before each such parameter.
This convention applies only to this and to the CVAL command
below.

"Evaluate" Command

Syntax: FVAL(■tarpet - -PDP-10 routine name- I-param. list>])

Effect: The -10 routine is called in the same manner as in
Execute External. The only difference is that the value
returned by the routine is stored in -target-. The value
returned by a routine is assumed to be in register 3, following
BLISS/10 convention.

■ - —
tam^tmmmmitmm

^llfgyg£jlf/£ßll^ß^Tflgm£g!Ji*iimm*^ ■MWUWUWI*«

178

"Time" Command

Syntax: TIME(< o b j. id- ' < s c a1e > '< t yp e >)

■ scale ■ * MICS / MILS
(for microseconds or milllse'.onds respectively)

type • ■* FIX / FLOAT

Effect: Puts in word 0 of obj. id' the current value of the
simulation clock accordinp, to the given specifications (i.e.
in microseconds or milliseconds and in fixed rr floating point).

,! **************

"Plot" Command

Svntax: PI.0T(- space count 'char)

space count literal- / identifier
space count-

Effect: Types carriage-return, line-feed, "1", followed by
space count- spaces and the character -char-.

 -.. . - . . — _.... . — • ■ ■ ■ '' ■.-- ...V. -■.. -: ■ ■-■ i \i»tmmmmmmm

W9 ywwwmiiwmmmmmmwm ^ i in. m nuppfn^pp^p iuaii.^iuiM*j|WL*iWinVH|H

179

A LIST OF USEFUL GLOBAL PDP-10 SYMBO'.S AND THEIP CONTENTS

SYMBOL CONTENTS

(For addressed fetch hooks)
AFHDATA The data just fetched
AFHAÜDR The address of the fetch

(For addressed store hooks)
ASHDATA The data to be stored
ASHADDR The address of the store

DATA
ADDR
CONT
OLDPC

OPN

OPC

DSTREG
DSTMODE
DSTDATA

SRCREG
SRCMODE
SRCDATA

HALTCOUNT

CURNODE
CURNOBJ

CISP
COSP

Contents of Unibus Data lines
Contents of Unibus Address lines
Contents of Unibus Control lines
Last value of the Program Counter (R7)

A unique inteper between 0 and octa] 111
representing the current opcode
(See next table)

The assembly lanpuap.e mnemonic for the
current opcode

The destination register, mode and operand-
value, respectivelv, of the
most recent (including the current)
single-operand or double-operand

L instruction

i'The

nscructi-un

source register, mode and operand-value
f the most recent (including the current)
oubie-operand instruction

Number of instructions after which simulator
will stop (normally maintained by DAME
but may be set by user)

PDP-11 address of the current node
PDP-10 address of the node object for the

current node
Pointer to current input-set
Pointer to current output-set

'■-~- ■ m dfhiilrdiB^ifM ■■. -f . -.— ^—:-J^-^..^l

....I i .,«l..^.JHJ...L!.J,li..i»Jl»*i,ilWälllJilH» i| "W^-W<-"■**■-

180

THE OCTAL VALUE OF OPN FOR EACH OPCODE l.OPN=l + i)

0 MOV MOVE CMP CMPB BIT BITB BIC BICB

10 BIS BISB ADD SUB CLP CLPB COM COMB

20 INC INCB DEC DECB NEC NEf-B ADC ADCB

3 0 SBC SBCB TST TSTB RDR RDRB ROL ROLB

40 ASR ASRB ASL AS LB JMP SWAB No-op CLC

50 CLV CLZ CLN N o - o p SEC SEV SEZ SEN

60 BR BNE BEO BGE BLT BGT BLE BPL

70 BMI BHI BLOS B V C BVS BCC BCS Not

100 J3R RTS HALT WAIT RTI (break
point

IOT
used
RESET

no EMT TRAP
trap)

—' l^^^*"^-""- ■ ■• '

181

APPENDIX I

Syntax of MPL

module • MODULE name = e ELUDOM

block • BEGIN blockbody END / (blockbody)

compoundexpression • BEGIN expressionseauence END

blockbody » dec.aratione : expressionsequence

declarations ' declaration / declaration; declarations

e:;pressionsequence - / e / e •. expres s ionseq uenc e

e ' simpleexpression / contro1 expression / name: e

simpleexpression ♦ plO * e / plO

plO » p9 / plö OR p9

p? • p8 / p9 AND p8

p8 • p7 / NOT p7

p7 • p6 / p6 rel.tion p6

p6 • p5 / - p5 / pf> ^ p5 / p6 - p5

p5 ♦ p4 / p5 * p4 / p5 p4 / p5 MOD p4

p4 ' pi /p4 * p3

p3 • decimal / name / name lelist / e ('elist)
/ e() / block / compoundexpress loi,

elist • e / elist, e

relation « EOL / NEO / LSS / LEO / GTP / CEO

controlexpression ► conditionalexpression / 1oopexpression /
choiceexpression / escapeexpression

conditionalexpression - IF e THEN e / IF e THEN e ELSE e
1 1 3

 - ■ ■

^mm^mmimmm
" - " ■ - ■ ■ ■ '■ ■ ■

182

locpexpresslon • WHILF e DO e
1 2

loonexpression • 1NCR name FROM s TO e H I DO e
12 14

escapeexpresslon - EXIT level t^capcvalue /
RETURN e..capevalue f LEAVE ru'me escape-value

level « / ' e

esc an i'value * I e

choiceexpression • SELECT el ist OF NSIT nexnressionset TESN

nexpressionset - / ne / ne; nexp r es.s i on se t

n e • e : e

declaration • rout inedec1aration / a 11ocationdec1aration

allocationdeclaration • allocatetypp idlist

aUecatetvpe • GL0BA1. / I 0CA1 / OV.'N / EXTERNM. / LAPEL

i d 1 i s t - id / i d1 i s t , id

id • name ' name 'dimension 1ist

dimensionlist - decimal / dinension 1 ist , decimal

routinedeclaration ► ROUTINE name (aamelist) = ■ /
ROUTINE name = e /
EXTERNAL f1 ist

flist » name / flis-, name

name • letter / name letter / name dipit

letter -A / E / ... / 7

«igit • 0 / 1 / . • . / 9

decimal * digit / decimal dipit

- - - - - -

