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THESIS ABSTRACT 

DYNAVic: ANALYSIS OF FXEfUTION: 
Possibilities, Techniques and Problems 

bv 

Birol Ömer Ayeun 

The problem of designinfj computing systems which are far 
more helpful to the user in the analysis of a program's behaviour 
at run-time, than current svstems Is studied. 

Bv considering? four afplicatinn areas, namely debugging, 
flew analysis, performance measurement and storage reference 
pattern analvsis, a list of specifications for a "genera 1-purpose 
execution analvsis facility" (r.PEAr) are drawn. 

A prototyp« facility, called DAMF (Dynamic Analvsis and 
Modellinc Environment), implemented on the PDP-IO for studying 
the behaviour of PDP-11 programs, is described.  DAME conralis 
a PDP-11/20 simulator and a programmable analys.s facility. 
It is shown that DAME satisfies most of the abovo requirements. 

Significant aspects of DAME are:  (i) Access to the state 
of the PDP-11 at memory and register cvcle level, (ii) A flexible 
hook mechanism which permits arbitrary analysis computations at 
many points in the instruction cvcle, (iii) A node mechanism 
which permits the user to define over his program a "level of 
abstraction" suitable for the desired analysis, (iv) A comprehen- 
sive instruction set for analysis procedures. 

The node mechanism, perhaps the most novel feature of DAME, 
enables the user to define at run-time a set of "nodes" in his 
program, in terms of which the execution will be monitored.  A 
node is a portion of code, viewed as a "black box", having unique 
entry and exit points. During execution, DAMF constructs a set 
of the inputs and the outputs of each occurrence of each node. 
The node mechanism pemits backtracking to anv point in the 
execution history, and control and data Mow analysis at node 
level. 

Five detailed examples of the application of DAME to analyses, 
difficult or impossible with other systems, are given.  Example 1 
illustrates the input/cutput sets of nodes and accessing the 
previous values of an address.  The PDP-11 program used in 
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Example 1 through 4 is a recursive Quicksort proprarc.  Example 2 
i11 ustratMS the determination of the transition frequency between 
nodes and Example 3 .m^lyzes the parallelllsm in the Quicksort 
routine at the recursive call level as examples of control flow 
analysis.  Example 4 illustrates analysis of data flow between 
two consecutive nodes by comparing the output-set of the first 
with the input-set of the second.  Example 5 illustrates a proce- 
dure for •, ne analvsis of the instruction mix and addressing modes 
used by PDP-11 programs. 

The present performance of DAME is poor due to simulation 
at memory evele level and checking for monitor actions at every 
memorv and register access.  It runs IDOO to 2000 times slower 
than a PDP-11/20 when input/output sets are not used, and 4000 
to 5000 tines slower when they are.  Measurements indicate that 
respective speed ratios of 300 and 2500 for the above cases are 
achievable without major re-deslgn. 

In designing analysis facilities for ALCOI.-like languages, 
while the main features of DAME are still applicable, other 
complexities arise (e.g. scopes of variables, recursion, selec- 
ting a "unit of execution").  These problems and some approaches 
to their solution are illustrated for a subset of the BLISS 
language. 

To be economically feasible, systems such as DAME will 
require assistance from hardware.  Microprogrammed implementations 
of hook and node mechanisms, involving tag bits, associative 
table searches and monitoring for special bit patterns to detect 
hooks, are studied.  Key problems are seen to be access to the 
complete stat^ of the monitored machine, interference due to 
resource sharing with the analysis facility and scarcity of 
microstorage. 
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FOREWORD 

The research which resulted in this dissertation may be 
viewed as a journev through a neglected area in computer science. 
While most areas in computer science are in verv primitive stages 
of development, the area of   ^amic analysis of program behaviour 
is certainly one if the most neglected and potentially most 
beneficial for but.'i programmers and users of computers. 

A look at the Table of Contents will show the reader the 
many dimensions of this problem which had n.)t received a systema- 
tic examination up to now.  Thus, the dissertation itself raav 
be regarded as a map of this heretofore neglected region, iden- 
tifying its major components and the relations among them.  Inevi- 
tably, ail components have not been studied in the same degree 
of detail.  However, hopefully, enough detail and insight have 
been provided for the crucial parts to give a head-start to the 
worker interested in designing such a system. 

In retrospect, I would like to acknowledge with «ratitude 
the contributions of manv individuals in various stages of the 
research and thesis preparation.  Professor David Parnas, a 
member of    C'.\V   Computer Science facult\ for most of the period 
over whicl this research took place, provided valuable advice 
during the formative stages of the research and during an earlier 
implementa ion of a monitoring facility.  Professor William Wulf 
provided bcth general guidance and specific technical contribu- 
tions to the architecture and participated in the evaluation of 
that facility.  He also took part, with Professors Jack Mc Credie, 
Sam Fuller and H&TJ   Shaw, in the evaluation of the thesis proposal 
and the progress of the research.  In particular, he provideo 
■ key idea in Chapter 7, which deals with execution analysis 
facilities for high-le/el languages. 

Special thanks are due the members of mv thesis committee. 
Professors Jack Mr Credie (Chairman), Victor Lesser, Sam Fuller, 
Raj Reddy and Andrew Wong, for generously contributing their 
tire to the reading and discussion of the dissertation, for 
numerous corrections and suggestions for improvements, and re- 
reading the revision. 

I am particularly grateful to Prof. Jack Mc Credi^ for the 
continuous dialog, guidance and support he provided in both 
technical and administrative .natters related to the research 
and the thesis.  While the members of the thesis committee and 
others have contributed much to the technical soundness and to 
the form of the presentation of the thesis, 1 b^ar the sole 
responsibility for anv errors and any technical or editorial 
deficiencies. 
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CHAPTER  1 

! •"• ! S2 Sü CTIOM AN D Hi) II V AI [QN 

I»1  tjxecu t ion Ana Ivs i_s Def i ned 

As the impart of cuaputcr technology pervades essentially 
every aspect of rontemporarv civilization and as we relegate 
more and more responsibilities to the computer, it is reason- 
able to expect that programmers, analvsts and users ol prog- 
ram! will need more and more powerful tOfli to analyze t lie 
behaviour of programs they are concerned with.  The kinds of 
analyses one can immediatelv think of in lude, hut are not 
limited to, debugging, performance measurement, validation and 
certification.  As the complexitv of programs grows far beyond 
the abilitv of any one individual or a small group of indivi- 
duals to completelv understand and predict their behaviour at 
any level which is of interest (as it already is todav with 
most large programming systems), the need for better tools to 
answer questions about the workings and the behaviour of prog- 
rams grows proportionatelv.  I shall use the term "execution 
analysis" to include anv incuirv into the behaviour of a program, 
noraelly in a specific class of environments. I shall leave the 
word  program" undefined, reiving on its intiitive meaning, 
except to require that the -inalyst be able to identifv what 
is to be considered as a part of a program and what is not.  I 
shall further concentrate on the execution of programs on com- 
puters stmilar in basic architecture to those in most common 
use today, i.e. in which each processor has a single instruc- 
tion stream and addresses a linear primarv memorv, at least as 
seen hv the programmer.  By execution analysis, then, more 
specifically, I shall mean inquiries into the machine states, 
and the relationships among machine states, which are evoked 
by a particular set of executions of a particular .rogram on 
such a machine. 

1:_2 Ob^_ecj.lves of The si s 

The main objective of the thesis is to report on a research 
project into the design of environments which would Facilitate 
a very broad range of execution analvses.  Of particular interest 
are : 

(i)   representation of execution historv information 
a manner which facilitates the introduction of high-level 
r-onstructs for describing and carturing diverse aspects of 
program behaviour. 

i n 
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(ii)     ■   particular  let   of   such   construct!  wtiicli   prevIdea 
a   kernel   for   ■   1 ar^i1  class  of   ■ aelyees, 

(i i i ) extendeb1111y of tha provided set, 

(IV)  a general-purpose p rog r •■■ i ng facility f(ir sensing 

(arbitrarily comnlex) conditions and taking associated ait inns 

at anv point during tha execution the program under analvsis. 

[a addition to these, I shall consider, in less detail, 

the extension of the presented ideas to high-level languages 

tnd the architecture] Implications for machine design arising 
fron them. 

1.j  Major Application A r e a s 

Although questions related to execution analysis pervade 

every area of computer science and technology, for the purposes 

of concretenaaa, I shall select and examine in detail several 

of the more prominent ones.  The objective of this examination 

Will be to arrive at a set of functional requirements for an 

analysis facility which will s u b s t a n t i a ll v facilitate such 
analyses . 

1.3.1  De b ugg in£ 

I do not wish to dwell unnecessarily on the fundamental 

importance of the d-jbugglng problem and its magnitude.  Let 

a quote by J. 'I. Schwert I from a recent symposium on debugging 
systems [til 1971] suffice.  "Normally, at the beginning of 

the debugging process, even a programmer with some past expe- 

rience can never believe how bad things are reallv going to be 

before the end."  Schwartz also gives a thoughtful exposition 

of the classes of bugs pi anging the field.  Here, I shall 

follow roughly his approach to present a taxonomy of debugging 
problems . 
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the equivalence of algorithms In general 

The first class of b 
Schwartz) are those due t 
exceeding array bounds, o 
in a loop.  Another conmo 
zation of variables, "man 
fail to have either the i 
programmer expects". The 
manifest themselves in th 
"situational" bugs become 
relatively distant parts, 
make about each other (fo 
"Interface"). "Semaphore 
belong to this class, the 
cooperation among the var 
is the set of bugs due to 
reference manual properly 
especially with respect t 
meaning of a particular b 
register or the parameter 

ugs I shall mention (following 
o losing count of things:  e.g. 
ne too many or one too few iterations 
n class is due to omission of iniMali- 
ifest in situations in which things 
nitial or terminal value which a 
se are examples of bugs which usually 
e early stages.  In later stages, 
apparent in the interfaces between 
i.e. in the assumptions those parts 

llowing D. Parnas's definition of 
bugs" and timing bugs also generally 

ir existence being due to lack of 
:ous parts.  Also, in this large class, 
not reading the language or svstem 
or to errors in such publications, 

B services provided by the system, e.g. 
it combination in a device control 
-passing conventions for a svstem macro 

Schwartz next considers "various aspects of the habitat 
bugs    In languages which permit the use of pointers, in 

particular assembly and higher-level implementation languages, 
one often transfers off to nowhere or begins writing into some 

strange place . (This author has received count 1 ess' "i1 1 ega1 
memory reference" messages from the operating svstem during the 
development of this project and wished there were a debugging 
system with the facilities desceibed in this report, although 
he da have access to some of the better debugging facilities 
provided by current systems). 

■  c/\ hiS thesis titled "The Debugging of Computer Programs", 
K. btockton Gaines provides a more structured taxonomy of bugs, 
which is summarized below; 

"J-  Point of origin in the programming process:  that is 
wnether the bug arose in the formulation of the program, or 
during its implementation... 

2- Whether in data definition or data manipulation.,. 

3- Control and Computation bugs... 

4- Bugs resulting from lack of knowledge or misunderstanding 
of features of the operating environment... 

5- Fatal and non-fatal bugs... 

1 
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6-  The point at which the bug may be detected.  Some 
may be detected automatically, (that is, in a purely mechanical 
fashion bv checks .rovided in the compiler or in the generated 
code or operating system), while others can only be found by 
inteJligent activity on the part of the programmer." 

The most characteristic 
is the search for the cause o 
which has just been observed, 
observed anomaly through the 
of unstructured execution tra 
insurmountable task.  Hence, 
narrow down the amount of dat 
of locating an operation tran 
an unreasonable result" (Schw 
the amount of data collected, 
leaving out some important in 
which could lead to the isola 
debugging system which, the us 
kinds of information, one mea 
system is the degree of preci 
what kinds of data he wants c 
ease with which the user can 
between the iterations of a d 

feature of the debugging activity 
f an unexpected program behaviour 

If one attempted to diagnose the 
examination of a voluminous set 
ce data, one would often have an 
the aim of debugging tools is to 
a to be looked at "with the Intent 
sforniliig reasonable arguments Into 
artz).  The risk involved in reducing 
of course, is the possibility of 
formation about the program behaviour 
tion of the bug.  Hence, given a 
er can direct to collec«- certain 
sure of the power of the debugging 
sion with which the us.er can specify 
ollected.  Other measures are the 
state his specification and the time 
ebugg i ng step. 

Normally, the first aim of the programmer in tilt   debugging 
process is to put bounds on the portions of execution history 
involving improper program behaviour.  This requires an ability 
to move back and forth easily in the execution history, to observe 
the data flow as a function of control flow and vice versa. 

This brings us to the area of flow analysis, which has 
applications in many areas beside debugging. 

1.3.2  Flow Analysis 
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flow analysis" of a program P, I shall mean inquiries 
relations between sequences of machine sta':es which 
ing a set E(P) of executions of P.  The set I may be 
large enough to be considered infinite.  For example, 

a sorting program S(a,b) whose parameters a and b are 
ing and ending addresses of a vector of integers to be 
Then the set of all executions of S(a,b) for all 
n/2J- and b = [n/2 ]+»••..n where n is the number of core 
in user address space, is essentially infinite, 

and Ik]+. I denote the "floor" and "ceiling" of k 
ely. ) 
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1-3.3  Per formance Measurement 

Two types of performance measureme 
discussed under Flow Analysis. Another 
performance measurement problem is the 
through a program. We may wish, for ex 
paths through a program; start timing 
is entered and stop timing when the exe 
We may decide to keep or discard measur 
sals of ? path. We may further wish to 
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Di space lias been made.  Thus we need control ovrr which 
paths are to be measured and under what conditions they are 
bfl measured. 

In timing a program P running in a t I-ne-shar i ng environment, 
the other programs running concurrently wich F have a certain 

■ irruuint of effect on the measurements on P.  As an example, in 
•o«« time-sharing systems, the overhead for handling an interrupt 
is charged to the program which was running when the interrupt 
came in, uhich Is not necessarily the one to which the interrupt 
belongs.  It should possible in a genera1-purpose execution 
■aalyali facility to measure accurately the time taken by a 
program, as wt 1 1 as usage of other system resoui-es, e.g". main 
storage.  This brings us to a class of analyses which are t adi- 
tioa«lly done by post-mortem processing of a tape f 11 e conta in Ing 
th« sequence of addresses generated by means of a hardware pro'.'e 
during tue   execution of the program whose behaviour is under 
analysis.  These analyses, which are especially important in 
paged systems, are called "Storage Reference Pattern Analyses" 
and are discussed further in the next sub-section. 

1.3.A  Storage Reference Pattern Analysis " ' 

For the analysis of programs from a paging point of view 
::■ can identify several major variables:  the hardware (in 

particular page size and the paging store), the operating system 
(in particular, its paging policies), the svstem load and the 
particular program we are analyzing (in particular page-reference 
patterns).  In theory, It is possible to hold one or more of 
these variables constant and vary the others.  However  in 
practice, one most ofttr has to hold at least the first two 
constant, live with uncontrolled variations in the third and 
try to improve the fourth. 

I 
patter 
cert a I 
Howeve 
of the 
on the 
There 
are ha 
a comp 
are t h 
of , th 
poss i b 
a more 
r reded 

t is always beneficial to analyze the static reference 
n of a program from the program text.  One can achieve a 
n amount, perhaps a great deal, of improvement this way. 
r, in general, the storage reference pattern is a function 
inputs.  Therefore, one needs to gather dynamic information 
page-reference behaviour on various parts of one's program, 

is no easy way to get this information at present. There 
rdware devices for measuring all the page references in 
uter system over a specific interval of time.  Not only 
ese devices hard to get and make routine, practical use 
py are also no. dynamically controlled;  so, it is not 
le to monitor only a specific part of a program.  Clearly 
flexible tool for obtaining and analyzing this data is 

"--■ —• ■ -  
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In this sub-section, I have discussed four   areas (namelv 
debugging, flow analysis, performance measurement and storage 
reference pattern analysis) for the application of execution 
analysis techniques described in this thesis.  In Chapter 4, I 
shall take specific problems from these four areas and illustrate 
the usage of the prototype software facility DAME in solving 
them.  In the next sub-section, I shall survey the state-of-the-art 
in execution monitoring facilities. 

1.4  State of the Art In Dvnamic Execution Analvsis Tools 

The 
art in th 
sub-area 
of the a r 
debugg inp 
be us« d    f 
hardly ev 
make i 11 o 
techno og 
tools in 
being lab 
meaningfu 
industry 
list   is r 
fac i1it ie 

first remark one 
is area Is   that 
of debugging too 
t in execution a 
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ut various other 
er are;  in fact 
quite useful ex 

y has failed to 
execution analys 
elled "debugging 
1 execution anal 
as well as in th 
epresentativc of 
s found in :..ajor 

can make regarding the state of the- 
it is almost non-existent outside th,- 
Is.  A further indication of the state 
n a lysis is the fact that all the on-{line 
e come to this author's attention cofald 
tvpes of execution analvs's but thef/ 

, with taiuOT extensions they could bje 
ecution analysis tools.  The softwar'e 
properly utilize even its existing 
is.  This could be attributed to their 
aids" as well as to not requiring  : 

ysis data from programmers in the 
e universities.  At anv rate, the following 
the t-pes of machine language debugs i-ig 
sys:ems:  (e.g. see 1B0 68I) 

1- Setting and removim breakpoints at arbitrary points 
in a prog ram, 

2- Computing arbitrary functions cf the state of   the use^- 
addressable core at a breakpoint, 

3- Referencing core symbolically, 

4- Transferring control to an arbitrary core location at 
a breakpoint, 

5- Calling other debugging procedures, 

6- Modifying contents of core, 

7- Defining symbols private to the debugging system and 
using them as normal identifiers in debugging procedures, 

8- Specifying automatic collection of the values of specifi 
locations, 

9- Directing dumps and traces to user-specified devices. 

 m    



As mentioned earlier, these abilities form a basis upon 
which more useful analysis systems could be built. However, 
the use of these facilities appears to have remained largely 
in   debugging. 
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Another class of systems which Is relevant to this topic 
Is the so-called "virtual machines".  (For a set of papers on 
virtual machines, see TACM 73].   However, In virtual machines 
reported so far, no analysis facilities or features for user 
control of the computation slgiii f 1 cant 1 v better than the 
breakpoint-oriented debugging facilities (such as PCS (BO 68J) 
of interactive systems have been described. 
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CHAPTER 

FUNCTIONAL RKQUIRKVENTS FOR A GENERAL-PURPOSE EXECUTION 
ANALYSIS FACILITY ~ 

In this chapter, I would like to review and classify 
Mir tunctional capabilities required to accomplish the 
classes ot tasks outlin.'d in Chapter 1 nnd to arrive at a 
set ot functional specifications for w'.at can truly be called 
a  general-purpose execution analvsis facility" (GPBAF). 
By "functional specification" I mean that only "what" Is 
wanted is to be specified, leaving the method' of implemen- 
tation open.  Having made this statement, let me violate 
it just once, in order to give 
to what is to follow: 

a lot more concrete context 
If we view the kinds of analysis 

tasks which have been mentioned as points In a space of 
infinitely many, continuous dimensions, then the set of 
tunctional capabilities of a GPEAP can be vit^ed as a set 
of primitive operators and data structures whlc1., when 
used in composition, juxtaposition and iteration in normal 
programming style, permit one to proceed easily to most points 
in that space.  This statement will serve as a' qua 1 ita11ve 
specification of the overall function of 

q' 
GPF.AF 

jNJ Debugg i ng 

Let us first consider the kinds of questions that 
arise most commonly in the debugging process.  Recalling the 
types ot classifications of bugs given In sub-section 1.3 1 
probably the most promising breakdown is into "Control" 
bugs and "Computation" bugs.  I do not wish to imply that 
I bei eve these two classes are independent, rather'simply 
that in thinking over all the hours (days, years) I spent 
debugging programs, it seems that a great deal of those 
bugs could be comfortably placed into one of these two classes. 

2.1.1  Control BUBS 

Control bugs most often appear  locally, in the form 
J errors in conditional branch statements or in the number 
f iterations in a loop.  While the actual nature of each 

error in control flow is, of course, specific to the particular 
program^, the kind of action one would like to take to diagnose 

to be able to say something like: 
and the machine state is Y. take 
the next state Is Z ".  Here. X 

i 
list of calls on subroutines possibly 

of 
o 
e 

P 
such a bug, wou1 j be 
"If I have just done 
diagnostic action D 

i 
may take the form of 

X 
i f 

■^ .-.....-.,.  :     - .  ■-■.  —         - J 
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with specific value? or with a specific 
values, instruction addresses or other p 
of the instruction with specific operand 
Example:  "After SI has called S2 twice 
A, B and C such that A>B>C, followed by 
S2, followed by two HOfll to location k, 
that the word "follow" may be taken in i 
i.e, "immediately follow", or simply to 
after".  "Mrther, it is unclear whether 
action is to be taken only on the first 
specified condition or on all its occurr 
be possible to formulate all of these al 
tations.  Also note that the specificati 
parameters of a subroutine call require 
facility be able to determine, or, faili 
by the user, the locations of the narame 
state specifications Y and Z  are partia 

i 
possibly complex, functions over the sta 
including any general-purpose or device 

relation over the 
artial specifications 
addresses or values, 

with parameters 
n calls on S3 by 
do. . . ".  Note 

ts strict sanse, 
mean "'come sometime 
the diagnostic 
occurrence of the 
ences.  It should 
ternative interpre- 
ons over the actual 
that the analysis 
ng that, be tolH 
ters.  The machine 
1 predicates involving, 

te of the memory, 
registers. 

The diagnostic action D  may involve, minimally, sus- 
i 

pending the execution and displaying certain elements of 
core.  In addition, we may wish to compute the value of 
a function and store or display its result, automatically 
continue ejcecution from the same or a different point, or 
we may wish to backtrack to an earlier point in the execution 
history.  This last requirement, namely backtracking, involves 
two parts: 

1- The specification of the point B to which we wish 
to backtrack, and the associated search over execution 
history. 

2- The actual backtrack operation. 

Having made a backtrack, one may wish to execute a 
certain number of instructions and Jump forward to an inter- 
mediate state, and eventually resume execution from the 
point where the original backtrack command was issued. 

Note that the form of the debugging request given 
above does not cover predicates involving the time-series 
of the valuss of a location, e.g. those of a variable whose 
value is modified in each iteration of a loop.  This leads 
to the general concept of the time-series of the values of 
a variable - which appears to be a nalural and useful construct 
for debugging.  I shall refer to this as the "value-trace" 
of a variable.  The number of values to be kept should 
be user-specified. 

t^jtM^^-a 
■ I     I   ItlM—f^— ilkMHriH 
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2.1.2 C o m p u t a t i o n fi u ^ s 

I'nder this title 1 shall include errors in ". o i mu 1 a s", 

Kenerallv characterized hy i sequence of arithmetic operations 

concluded by an assignment.  They ire distin^uished from 

Control hugs by the trivial, localized control flow involved. 

In this class of buK.s, we are concerned with the past and 

current values of variables as well as the new values to 

be assigned to them in a particular Instruction or sot of 

instructions.  Note that some of these values uiav in fact 

be addresses of indirect operands.  Hence we are interested 

in all the operands (including intermediate pointers, side- 

effects such as setting of the condition code and automatic 

incrementation or decrementation of registers) involved in 

an instruction as well as their relation to the instruction. 

Kor example, we want to know not only that instruction 1 

(etches something from address A   but also whether A is the 

eventual source operand, | pointer to the eventual source 

operand, the eventual destination operand, or a pointer to 

the eventual destination operand, etc.  Hence, for any parti- 

cular machine, there needs to be i characterization of everv 

operand involved in every type of instruction in its instruction 

set and a corresponding mechanism in the analysis facility 

which permits one to refer to each of those operands througii Ita 

relation to the instruction.  Facilities such as this permit 
one, for example, to say:  (i)  "If I ever multiply (any 

number) by a negative number and store the result into X, 

let me know and stop";  or (ii)  "If the truncation error 

involved in an integer division, defined as ahs (1 -((dest inat ion 

operand*result)/source operand)) ^  ever exceeds 5%, do ...". 

Let us note an ambiguity in the former request(i);  often 

the result of a computation, such as the multiplication in 
this case, is stored temporarily in a different location 

•ban its eventual destination.  Later, perhaps after several 

instructions, it    is moved to its eventual destination.  This 

Is particularly true about machines whicli do not have memorv- 

to-memory operations.  In such machines, the high-speed 

registers are used to hold temporary results very often.  In 

many cases a temporary result may remain in a register over 

several instructions.  In such a case, how should the "store 

into X" be interpreted, as an "immediate store", a "store 

within a fixed number of instructions" or an "eventual 

store" meaning a store sometime before the computed value 

is modified?  The answer to t ii i s question is the same as 

the answer to earlier questions about interpretations of 

requests:  namely, that it does not matter;  every interpreta- 

tion should be able to be formulated within the analysis 
facility. 

I would now like to mention a construct and an associated 
notation first used (to the best of mv knowledge) by f.A.R.Hoaro 

.■-.■ _ J,^.        -  ^ ,   -    -  - — —   - ■ - -     ■ MMMMaHÜMMH J 



13 

L^the'Art'oTp ^ '"T ':. W- D1Jkstra,s "A Short Introdu:tion to cne Art of Programming": 

ho.-, 0
Let Pi Plv P2, ''' ctan(i   for Predicates stating a re3ation 

between values of variables.  Let S. SI. S2. ... stand for p eces 

rhaLinrrh'6^' '" general affectln« values of variables. ? 
changing the current state.  Let B. Bl. B2. ... stand for either 
predicates stating a relation between values of variables or 
tor pieces of program text evaluating such a predicate, i.e. 
deliver ng one of the values true or false without further affec- 
ting values of variables, i.e. without changing tk*   current state. 

P 1 [ S ] P 2 

means:  "The truth of PI immediately prior to the execution of 
S Implies the truth of P2 immediately after that execution of 

P^'*' ;,.  J !t:ra then goes on to state some theorems relating 
PI s      Bi   | and S.  The relation PUs]P2 given above seems to be 
another natural and useful construct fcr debugging purposes:  it 
is a succinct formulation of a question about the effect of a 
piece of code S on any part of the machine state.  It is clearly 
f!!!!!?!3'   !? SUCh relati°ns for arbitrary PI. S and P2 be 
testable easily within the analysis facility. 

of HOK" ?* r'0W ^ummarize the capabilities implied by the examples 
of debugging activities so far: 

inGrr
m~><   De'erm;nlnR the Path of control flow down to the 

instruction leve1 , 

D2-  Determining the type of Instruction being exe-.uted. 

D3-  Following arbitrarily complex pointer chains in cove. 

•11 tit"     Dete7i"ln8 the addresses and values (old and new) of 
all the operands (explicit and Implicit) of an instruction as 
well as their relation to the instiuction, 

D5-  Keeping an arbitrary number of previous values of any 
address, in an easily accessible form, 

.»—**"  Compu,:ln« arbitrary functions over the current machine 

D7-  Searching execution history (backwards and forwards) 
for a state satisfying a user-specified predicate. 

D8-  Efficient restoiatlon of a state found in such a search. 

1 
i  ti -f- -  

■ ■ - ■-■    ■   -  . - ■ — 
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D9-  Stopping and starting execution, 

D10- Performing any sequence of the operations Dl through 
D9 at anv and each of:  operand fetch, operand store, instruction 
fetch and instruction completion times. 

While it is rather imprecise to talk about the "complettness" 
of a debugging system (or of a system with respect to debugging), 
one can get a certain amount of reassurance of the sufficiency 
of these requirements for a cicougging facility by convincing 
oneself that they offer a great deal of help in Isolating all 
the classes of bugs mentioned in Chapter 1, sub-section 1.3.1. 

2.2  Flow Ana lysis 

As stated in Chapter 1, by the "flow analysis" of a program 
P, I shall mean inquiries into the relations between requences 
of machine states which arise during a set, E(P), of executions 
of P.  It is helpful to think of the program counter as a distinct 
entity from the rest of the machine state.  In machines having 
a built-in stack, it may also be useful to think of the stack 
pointer as a third distinct entity, especially in high-level 
languages vhich do not permit explicit access by the user to the 
elements in the stack.  1 shall not do so here, since I shall 
be mainly concerned with machine language programs where every- 
thing is essentially global. 

Thus, thinking of the program counter (PC) as a seperate 
entity from the rest of the machine state (which I shall call 
"memory", M), we can identify two types of flow:  Control Flow 
and Data Flow, where the lormer refers to the sequence of values 
assumed by the PC and the latter to the sequence of states of M. 

would like to emphapize the word "sequence" in the last sentence. 
The word "flow" implies a sequence of changes to one phenomenon 
relative to another.  Hence, for example, we might ask: "Starting 
from a particular state of M and PC, what is the kth value of 
PC?".  Or similarly, "Starting from a particular state of M and 
PC, what is the kth state of M?".  Or, "Given that M-Ml , when 
PC = P1, what- is M when PC = P2?". 

2.2.1  Control Flow 

Normally, it suffices to consider only changes from sequential 
flow in order to be able to reconstruct the entire historv of 
control flow.  One must be careful, however, to Include enough 
information to indicate when each change occurred.  For example, 
on« may include the starting address of the program, followed 
by pairs (a ,b ), 1 = 1,. ..,n, where a  and b  are the origin and 

i  1 i      i 

■—--- 
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the destination of the 
Alternately, one might 

block of straight-line 

1th branch instruction, respectively. 
let a  be the starting address of a 

i 

code and b  the number of instructions 
i 

in that block.  A GPEAF should have facilities for sensing the 
fetch of an instruction from a location X, the comp1etion 'of 
its execution, reconstructing the last N branches (origin and 
target), for arbitrary N.  It should also be able to execute 
a user-specified procedure before and after any or every instruc- 
tion,  (Thib ability was also listed as a requirement under 
debugging.1'  It is important, though this can also be implemented 
by the user himself using the above facility, that when the 111 
gains conf. ol before or after an instruction, he be able to 
deter..,ne the address of the previous instruction.  F.g. if 
one can jump to an address A from several locations, it is 
necessary to be able to determine easily at A where one came 
from . 

ist- r 

2.2.2  Data Flow 

If we think of data flow as a sequence of changes to the 
state of the memory M representing the progress of execution, 
it becomes r.iear   that in order to be able to analyze it, we must 
first relate it to control flow.  That is, we must be able to 
determine which changes are associated with which parti? of the 
execution path.  In general, manv parts of the execution path 
may result in an identical effect on the state of M.  Thus, 
data flow analysis must be able to determine, where possible, 
the precise part responsible for any given effect. 

Some Fundamental Relations in Data Flow 

Let 
tempo rail 
Suppose t 
More spec 
which are 
again, an 
(in the a 
to the va 
define as 

(a ,v ) w 
i  i 

some thing 

Let us a 1 

us consider two contiguous parts, A and B, with B 
y following A, in the execution path of a program, 
hat we would like to know the data flow from A to B. 
ifically, we would like to know the set of addresses 
both modified by A and read by B before being modified 

d the values of those addresses upon entry into B 
bsence of any outside interference, this is equivalent 
luef of those adr.resses upon exit from A).  Let us 
the input-set, I , of A the set consisting of pairs 

A 
here a  is the ith unique address from which A reads 

i 

before writing into it, and v  is the value read. 
i 

so define as the output-set, 0 , of A the set consisting 
A 
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ot pairs (b ,u ) where b  is the ith address written by A 
i  i i 

and u  the contents of b  upon exit from A. 
i i 

Then, the data flow, D    , from A to B can be characterized 
<AB> 

simply as : 

(1) D    =0 "I 
-AB-  A  B 

Note that in computing this intersection, it suffices to 
look at only the address parts of the elements of the two sets, 
since, due to the temporal adjacency of A and B, equality of 
addresses will imply equality of contents.  However, no harm 
will result if, in order to maintain the conventional set-theoretic 
definition of intersection, we require that only those elements 
which are identical in all respects (which are used to include 
them in their respective sets in the first place) be included 
in the intersection.  Hence, the conventional definition of 
intersection in set theory will suffice for the relation (1). 

Let us now consider an important step in data flow analysis, 
namely tha compaction of two consecutive parts into one.  This 
step is fundamental to many types of flow analyses; see for 
example 1 CO 71].  To do this, we shall need the following additional 
notat ions: 

C(a,t) = contents of locatioi   at time t, 
T (A)  = time of entry into jart A, 
e 

<AB>   = the part consisting of the temporal 
juxtaposition of parts A and B. 

We can now characterize the input set of <AB> as follows: 

(2) I    =1 (I -0 ) 
•'AB>   ABA 

Here again, it suffices to consider the conventional set- 
theoretic definition of the union operation, since the equality 
of the address part of an element in I , to that of an element 

A 
in (I -0 ), implies the equality of their value parts.  This can 

B  A 
be briefly proved as follows: 

Proof:  Suppose that for some p=(a ,v )and q=(a ,v ), 
P      P q      tl 

—*     ----- —r- —"- ^^tiaMMiMiMMHi 
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P'l      and q. (1 -0 ) respective 1 v, a =a  and v *v ,  Now, since 
A B  A p  q       p  q 

A and | are consecutive, v =C(a ,T (B))=C(a ,T (A)), i.e. the 
q    q  e q  x 

contents of location a  are unchanged between the exit from 

q 
A and entry into B.  But since a =a ,v  must also equal 

p q q 
C(a ,T (A)).  Thus, for v /v  to hold, this reauires that the 

P  x p  q 

contents of address a  be modified during A.  Rut this contradicts 

P 
our definition q(I -0 ).  Hence no such elements p and q can 

B  A 
exist. 

Finally,   we   can   characterize   the   output   set   of   'A,B>   as: 

(3)      0 =0*0 
^AB ■      B A 

where *  denotes an exte-slon of the union operation to one which 
"favors" the left-hand operand over the right hand one in the 
sense that, if there is an element (a ,v ) in L and (a ,v ) 

L  L R  R 
in | such that a =a  but v *v , then L*-R Includes (a ,v ) in 

L  R      L  R L  L 
the resulting set. 

This operation simply assures that if some address is 
modified by both A and B, then only the final effect will be 
recorded in the output set of ^AB>. 

These three highly intuitive relations form a base upon 
which many data flow analysis mechanis-ns can be built. 

So far, we have been concerned only with consecutive parts, 
where we are assured that nobody else will get in between the 
parts involved in the data flow.  But now let us consider the 
case where the parts, A and B, of the execution path, the data 
flow between which we wish to explore, are not consecutive. 
What should the analysis facility be able to tell us about the 
effects of intervening parts C , 1=1,...,k, on the data flow 

i 
from A to B?  There are at least two reasonable answers: 

1-  That the analysis system be able to tell us whether any 
of the C 's had any effect on the dat=> flow from A to B or not, or 

1 
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2-  That the analysis system be able to give us a n «? t- 
of the effects, e.g. a list of pairs ((C ,v )!(C.v )!.!!) 

where the first element of the pair indicates the effectinK 
part, and the second element indicate, the effect. 

A little reflection shows that the first, "yes" or "no" 
alternat ve 1. not satisfactory unless there  s some practical 

"tiv0!   Sen"' T J1»?'«'"""" P-vlded by the second aU 
llitl  l* ?'   ^a11 ad0pt the latter as the information which the analysis facility must provide. 

What Maketh a Part? 

All the Jiscussion s 

es 

- — - - — 
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clrresooid r   11   '"'I   ** ■*   ^'^   8r0UpS 0f ^«tructlons which correspond to some syntactic programmin« unit, such as a sub- 

ca  ed""^-3  M  J ..^ We ■•, WiSh t0 consider what are usualiy 
called  basic blocks" by compiler writers, namelv, blocks of 

urr%tlCnS  r1"8 a UniqUe entry P0int and a unic5ue e^t P"int. 
(We must remember at this point that, a "part" refers to a part 
of  he execution path, not of the program text; i.e. for .roilD. 

instructions, a part refers t 
g roups 

particular execution of one 
h  ^'K   ' ^^ ra0re flexib]y' »e   ^n let the user define what 

should be a part.  This latter choice has the advantages of control 
11«| the amount of storage required as a function of the length 
of execution as expected by the user and of having a part corres- 
pond to a conceptual step in the solution of the Sser's problem 

rh.  Girn/1i theSe alternat1^ strategies for defining parts, 
the criteria for judging the suitability of 
ofstrategyare: a particular choice 

d.t* M  HOW Wen doeS the Ch0Sen strateP.v perfo-m in answering data flow questions? 

2-  How practical is it to implement? 

In Chapter 3. I s .all describe one choice and discuss its 
implementation and performance. 

Units of Data Flow 

The most elementary unit of data as represented in digital 
computers is the ubiqutious "bit".  On the other hand, by far 
he largest fraction of processing is done in terms of "words", 

the size of vhich varies from computer to computer. Further a 
significant amount of processing is done in terms of fractions 

tl^rof'-bl  k " 'r65'"; and a relativel>' —Her portion in terms of  blocks' of words.  In machine languages, "blocks" are 
rarely used as individual operands in an instrSc11 on (a notable 

■"■' -'--■i.   i   ■ i - —  Mil ■■■—■—■ 
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exception being the "transfer block" Instruction implemented 
in certain machines).  The "bit" is also very infrequently 
used as an individual operand.  Rather, it is usually employed 
to express side-effects of certain operations, e.g. the setting 
of the condition code, the bits in a processor status word and 
so on.  These side-effects are an essential part of the effect 
of an instruction and hence any analysis facility must represent 
and give access to them in an adequate way. 

The "bytes" come in two flavors (no pun intended) :  fixed 
size and variable size, fixed size being the more commonly used. 
In variable-size-byte machines, such as the PDP-10, one needs 
both a starting position and a length to characterize a byte 
whereas with fixed-size machines one needs only the starting 
position.  Bytes also form an important unit of data flow and 
should be dealt with in full by a GPEAF.  For exqmple, in the 
input and output sets of a part, the location (word address and 
starting position within the word), size and contents of byte 
operands should be properly reflected. 

The "word" is probably the most appropriate unit for represen- 
ting the largest fraction of data fluw.  I do not feel that I 
need to dwell on the precise definition of a "word", since its 
r.eaning for, probably all, commonly used machines today is clear. 
An interesting class of exceptions to this would be machines, paper 
or real, for directly executing high-level languages, such as a 
LISP machine or a SNOBOL machine.  In such machines, the selection 
of the unit of data flow probably ought to be closely related to 
the prituitive data structures of the language (e.g. atoms, lists, 
strings) . 

Thus, we can conclude our discussion of appropriate units 
for representation of data flow by saying: 

1-  The main criteria for judging the suitability of a 
proposed set of units are: (a)  Is it capable of representing 
all elements of data flow?, and (b)  How efficiently, in terms 
of storage and interpretation speed, does it represent the great 
majority of operations? 

2-  The choice of data flow units has a large impact on the 
efficiency of the analysis facility and hence its usefulness. 

To summarize the functional capabilities required for control 
flow and data flow analysis tasks, we can list them as follows: 

Fl-  Giving the control to the user (or a user-specified 
analysis procedure) before or after every Instruction, and before 
or after user-specified instructions. 

._—a—^^—a—^^. .»■MdiiaftUHMA 
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ividing the exeucution path into parts as specified 
by the user and enabling the user to refer to thes e parts explicitly, 

rh.   /3\    Constru^ing   the    input   and   output   sets   of   parts,   »s 
these   sets   were   defined   earlier. 

pa 

pa 

F4-  Determining the data flow from a part to the following 
rt as per relat ion (1 ) , ft 

F5-  Computing the combined input ana output sets of adl 
rts, as per relations (2) and (3), 

acent 

F6-  Determining the effects of intervening parts on the 
data flow between non-adjacent parts, as discussed earlier, 

F7-  Enabling the user to access every element of any input 
set and any output set, and use the address and value parts of 
the element in computations. 

2•3  Performance Measurements 

Performance measurements are concerned with relating the 
resource requirements of a functioning unit to the degree to 

«iri.l  !S ilf,*- itS 80alS-  Für exa"Ple. one might relate the 
-^orage and CPL requirement of a compiler to the compactness 
and efficiency of the object code it produces.  A f;PF.AF should 
offer the analyst high flexibility in making these measurements. 

We can also talk about performance measurements of operating; 
systems.  For example, scheduling, storage allocation and paging 
policies have become the subject of much research and analysis 
from a performance point of view.  An operating system can be 
measured" in two ways: 

(I) We can measure its component programs just as we 
measure user programs (i.e. their storage and CPU requirements etc.) 

(II) We can measure the performance of the whole system 
while it processes a given workload (i.e. in terms of throughput, 
average response time (for time-sharing systems), paging rate etc.) 

I thall refer to the first class of properties as "program 
performance  and to the seconH class as "system performance". 

Measurement and Modelling of Program Performan ce 

Among the most frequently used measures of program perfor- 
mance are such criteria as : 

- -  - - - ■•■ ■  —   .  - 



(1) How long it runs with a certain input, 

(2) How it spends its time. 

(3) low much main storage it requires 
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traversal of each path, 
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Another techniaue for measuring where a program spends Its 
time is periodic sampling of the program counter.  This technique 
has the drawback that unless the period of sampling is chosen 
with great care, certain parts of the program mav never appear 
in the samnles because of "lock-^iep" synchronization between 
the sampl  g and the pattern of control flow.  However this 
problem can be overcome with ■ certain amount of analysis.  This 
technique has the advantage of considerably less overhead, com- 
pared with other techniques such as timing each subroutine entry 
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and exit.  To permit this technique, an analysis facility must 
enable the user to schedule "sampling probes" with a dynamically 
controlled frequency (to overcome the problem mentioned above). 

With regard to measuring the storage requirements of a 
program, since these are strongly tied to the storage reference 
patterns, I shall discuss those two subjects together in sub- 
section 2.4. 

Measurements and Modellini <f   Svstem Performance 

Under this topic I shall consider the measurement of such 
properties of operating systems as system overhead, CPU utili- 
zation, and paging rates (wh.^re applicable) as a function of 
job mix and system desipn.  It might be, reasonably, felt that 
we are straying afar from our initially stated purpose of the 
analysis of program behaviour.  However, It r -st be pointed out 
that the "true behaviour" of an operating system program ran 
not be studied without some experimentation involving the proces- 
sing of a typical job mix.  It is true that studies Involving 
tie characteristics of an operating system over several days or 
weeks of user time probably fall outside the scope of an analysis 
system of the fpe envislcned here, although many functions, 
such as measurement^ of the average time between interrupts, the 
storage reference patterns, the average job running time etc., 
which can be measured bv a GPKAF, could be useful in such studies 

There is another, perhaps more 
in which a GPEAF ought to be useful 
approach involves the modelling of 
and of the operating system via ana 
which one can mimic the logic and/o 
of these programs, as mentioned ear 
Modelling of Program Performance, 
is a routine in the language of the 
job which generates an I/O request 

seconds of CPU time, where each K 
1 

from a distrubution.  Another examp 
page reference pattern of a job.  0 
such models of user jobs and model 
under a given operating system, by 
GPEAF to Interface the models with 
might even model parts of the opera 
servicing, scheduling etc.) for pur 

interesting, way however, 
in such analyses.  This 

parts of tho user workloai 
lysis system facilities by 
r the resource requirements 
lier under Measurement and 
An example of such a model 
GPF.AF, which simulates a user 

every K , 1 = 1,. .,n,  milli- 
1 

may be a random number drawn 

le might be a model of the 
ne might take an ensemble of 
the execution of those jobs 
invoking the facilities of a 
the operating svccen;.  One 
ting system (such as I/O 
poses of expediency or efficiency 

Let me now summarize the capabilities required for the 
performance measurement tasks which have been discussed: 
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Pl- easuring the execution time 
user-defined paths in a program, required by arbitrary. 

P2-  Gaining control of execution at specific tl 
or   when I/o or other > i 
program, 

me intervals 
supervisor services are needed by a user 

P3 

P4 

2.4 

Performing arbitrary computations when control is gained. 

Simulating the passage of arbitrary lengths of time. 

__Sj:orage Reference Analysis 
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There is at present virtually no 
get this information directly. way for a programmer to 
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values o'f o t h^ r va iabLs   In'f/r'' ^ ^ USed t0 hold ^ 
pro.itably used to hold the '" fact ' when^er a register can be 

(even if this mav mean slv inland're^ "^'^ 4J"«"«* variables 
the efficiency-consciou. n!       restoring each such value). 

o^ reference L each ^c/r^^r ^ Want t0 ^^   the^atterns o 
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There are manv other types of analyses which might b< 
callej  storage reference analyses" but which I shall not 
enume rate 

The functional requirements for these kinds of analyses 
can be summarized as: 

51- ObtaininR every address (including registers) generated 
by the program, when it is generated, 

52- For each generated address, an indication of whether 
it is an instruction, an operand fetch or a store, 

53- Making arbitrary computations whenever a generated 
address and the associated indication is obtained. 

2.5.  Summary of the Functional Requirements 

In this section, I would like to summarize the functional 
capabilities required for the four analysis areas which have 
been discussed.  I have no formal proof that these capabilities 
form^a  complete" set;  nor do I pretend to know precisely what 
the  completeness of an execution analysis facility" may mean. 
However, certainly it must mean "something more" than the trivial 
formal completeness in the sense of being able to compute all 
computable functions.  Below, I give my understanding of what 
that "something more" is. 

We can consider the required capabilities in four classes: 

1- What information the analysis facility has access to, 

2- At what points in the execution cycle it can gain control, 

3- Its instruction set, 

4- External appearance and miscellaneous useful features. 

2 •5.-i Information Requirements of the Analysis Systei im 

The Analysis System needs access to at least two address 
spaces:  the address space of the object machine (which shall 
also be called the "external state of the OH") anO its own symbol 
space.  (Some may want to consider the former as an element, e.g. 
a large array, in the latter.)  In particular, every address and 
register accessible by the object program must be readable and 
writable by the Analysis Facility.  In fact, the access to the 
object machine address space should be very easy and direct. 

 ^  _ . ..-.v ^■!...,....J.iJJim 
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It the Analvsis System Is Inefficient in long computations 
><nd therefore a need for a linkage to programs written in a 
compiler level language (such as the one in which the Analysis 
System may be written) is indicated, then the Analysis System 
routines should have access to fhe symbol space of that compiler 
level language. 

It is desirable that the Analys.s System have access to 
the operand addresses and values of the current object instruction 
(which shall also be called the "internal state of the OM"), 
without having to decode them itself.  Thus, at the end 01 an 
instruction cycle, one should be able to say, in effect: "If 
this is a MOVE instruction and the source operand value is zero, 
and the destination address is between A and B, then do...". 

It is also helpful If a direct indication of the instruction 
class (double-operand, single-operand, no-operand) is available. 

The luestion of access to the timing of the object machine 
must also be considered.  The Analysis System must be able to 
read the clock o: the object machine or otherwise determine the 
object machine time easily, at least after each Instruction. 
For some applications. It may be necessary to determine the object 
machine time after each major (primary memory) cycle or each 
minor (register transfer) cycle. 

While this is not an absolute necessity (as we nave shown 
that we can get by without it in the DAME system), it would be 
desirable to have access to the user program text and symbol 
table, so that the user could converse with the system in terms 
of this own symbols. 

It is clear from the foregoing discussions of control flow 
analysis, that the user. In cooperation with the system, will 
define a topology or structure over his program for purposes of 
control flow history.  It is also clear from those discussions 
that empirical data associated with each component of that struc- 
ture will be generated during the execution of the user program 
and that this data will be linked to the appropriate parts of 
the control flow history.  Each of these elements of information, 
i.e. user program structure, control flow history and dynamically- 
generated empirical data, must also be accessible by the user. 

2.5.2  Triggering of Analysis Actions 

The user must be able to execute any (meaningful) set of 
analysis actions after every operand fetch, store, Instruction 
fetcn. Instruction completion or at specific points in time 
(I.e. relative to object machine clock).  Further, the user must 

-  ■   _^  ^__  ~**—-* 
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be able lo specify, optionally, address ranges or registers 
for which the stated action is applicable.  In the rest of the 
thesis, 1 shall refer to a stated sequence of actions to bo 
activated at one of the above points as a "hook". 

2'5 tj The Instruction Set of the Analysis Facility 

The instruction set of the Analysis System should contain 
two classes of instructions: 

1- A complement of instructions similar to those of con- 
ventional prop,rammin8 languages :  these will be used to perform 
assignment, arithmetic and logical operations, conditional execu- 
tion, looping, subroutine call with parameters and I/O.  In 
fact, this subset of the instruction set should be a programming 
language which is "complete in a practical sense".  All the 
computations, such as those encountered in performance analysis 
or flow analysis, can be potentially done in this subset of the 
language. 

However, as mentioned earlier, in the case that the Analysis 
System instruction set turn?, out to be unsuitable for long 
computations, there should be an escape mechanism through which 
one can execute subroutines which are written in a more suitable 
language (possibly the one in which the Analysis System itself 
is written).  If that language has a syntactic construct, similar 
to a  function" in some languages, which returns a value, then 
it should be possible to assign the value returned by such a 
construct to a symbol in the symbol space of the Analysis System. 

2- A complement of instructions particularly useful in 
monitoring and execution analysis. These should include the 
following operations: 

(i)   inserting, deleting, enabling or disabling hooks 
statically and dynamically, 

(11}  defining "parts" in the execution path whose input 
and output sets (discussed earlier under Data Flow, in sub-section 
2.2.2) are to be determined automatically and made accessible 
to the user, 

(iii) Searching the input and output sets of previous parts 
for one which satisfies a user-specified predicate (bettar yet, 
making each set available to the urer in some systematic manner, 
e.g. reverse chronological order, letting the user perform 
arbitrary computations using the elements, i.e. <address, value 
pairs, in the set, and tell the system whether he wants to 
continue the search or not). 
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(iv)  Displaying Input/output sets In an appropriate 
format (i.e. indicating relations between addresses and values, 
and the "byte" position and size where applicable), 

(v)   Backtracking to the beginning or end of a part found 
in a search or specified explicitly by the user, 

(vi)  Moving further baelt or moving forward following the 
execution of some Instructions from a "backtracked" position, 

(vii) Resuming execution from the point where the backtrack 
inst'uction was issued. 

2.5.4  Fxternal Appearance and Miscellaneous Useful Features 

Since the main design goal for the Analysis Facility is to 
facilitate the performance of analyses of program behavijur, 
clearly the associated command language should be easy to use 
and have good error-detection features.  It must be noted that 
unreasonable-looking results obtained by some analysis procedure 
are, in some sense, "doubly hard" to disprove or verifv, since 
one may have to re-examine both the analysis procedure and the 
process under analysis to determine the validity of the obtained 
result.  Further, one frequently has to compose analysis proce- 
dures in a short period of time, often in an interactive, spon- 
taneous fashion, a condition which increases the probability of 
making  errors. 

All of these conditions point to the requirement that the 
language of the Analysis Facility be simple and terse in syntax, 
encourage structured programming, and not rely very heavily on 
remembering many keywords.  This last requirement is probably 
the most difficult to achieve due to the.   variety of specialized 
functions which have to be performed in collecting and searching 
execution history data.  Further, the u'jectives or a powerful 
language and simplicity of syntax conf. ct with the objective 
of not relying heavily on remembering rmy keywords.  However it 
has been shown that verv good compromises can be reached; witness 
APL and LISP. 

These conditions also mean t'.'<*<-   often the same commands 
with minor modifications will be entered repeatedly, increasing 
the possibility of making typing errors eacn time they are entered 
Hence, the analysis facility should possess a "library" capability 
where frequently used command sequences can be stored and called 
when needed.  Also, a good aditing facility for editing both 
"on-line", i.e. loaded command sequences, and "off-line", i.e. 
text files, is extremely useful. 

  ^-•■—■■'^^        "•     — --j--    • —■^^...~D-.-  ^ 
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In referencing object machine Instructions, e.g.    tracing 
them as they are executed, or displaying a block of instructions, 
the analysis facility should be able to deal with symbolic forms 
as well as numerical.  This ability is available in most on-line 
debugging systems today. 
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In order to facilitate the reading of this chapter bv readers 
with different objectives, 1 shall first provide a detailed outline. 
This outline can also be used as a reference later to quickly 
locate the section about a particular point, as well as to guide 
the reader in the first reading to sections of more interest to 

him. 

Outliue of Chapter 3 

The first topic is the set of data structures underlying the 
design of DAME.  In Section 3.1, I first summarize these structures 
and then discuss in more detail some of them, namely, the formats 
of objects and lists as well as certain master lists and symbol 
tables which play an essential role in the implementation of DAME. 

The description of these structures is provided only becausr 
they facilitate certain search operations over pre-defined classes 
of objects.  An understanding of the^ is not required for an 

overall understanding of DAME. 
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CHAPTER 

THE DAME SYSTEM 

In this chapter, I shall describe the design of the DAME 
(Dynamic Analysis and Modelling Environment) system, which has 
been the major vehicle in my research for implementing, expe- 
rimenting with and evaluating new ideas.  DAME is a facility 
for studying the logical behaviour and the performance of programs 
for the PDP-11/20.  It consists of a POP-ll/20 simulator and 
a programmable analysis facility which achieves most of the 
requirements set forth in the last chapter.  The main goal in 
the design of DAME was to isolate critical problem areas in the 
design of a genera 1-purpose execution analysis facility (GPEAF), 
for which solutions had not been developed'as yet and to propose 
solutions to, at least some of, these problems'.  It was not the 
intention to develop a finished, tuned-up utility system for 
general use.  Hence, some features for which satisfactory tech- 
niques were already known and which would be very desirable in a 
system for general use, were omitted from DAMP since the effort 
required to implement them did not seem justified in view of their 
minimal contribution to the research aspect of this project. 
However, despite such omissions, 1 have found DAME to be a powerful 
tool for analyzing program behaviour. 

In order to facilitate the reading of this chapter bv readers 
with different objectives, I shall first provide a detailed outline 
This outline can also be used as a reference later to quickly 
locate the section about a particular point, as well as to guide 
the reader in the first reading to sections of more interest to 
him. 

Outline of Chapte r 3 

The first topic is the set of data structures underlying the 
design of DAME.  In Section 3.1, I first summarize these structures 
and then discuss in more detail some of them, namelv, the formats 
of objects and lists as well as certain master lists and svmbol 
tables which play an essential role in the Implementation of DAME. 

Ihe description of these structures is provided only because 
they facilitate certain search operations over pre-defined classes 
of objects.  An understanding of them is not required for an 
overall understanding of DAME. 
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[ 
of rh! PHD ^0n '  * another data structure, the representation 
of the PDP-11 core, 1. described.  In this connection. 1 also 
present the general problem of representing the memory of one 
computer in another, emphasizing the problems related to the 
respective memory sizes and word lengths of the two machines. 

In Section 3.3. the question of the "time-grain" of simula- 
t on is considered.  In particular, the costs and benefits of 
simulation at the memory cycle level and at the instruction level 
are briefly discussed and compared.  (Note:  This topic is dis- 
cussed in more detail in Chapter 5.) 

In Section 3.4, the hook mechanism is described. The types 
of hooks and the points in the PDP-11 instruction cycle at which 
they may be placed are explained. Whenever a hook is activated, 
the PDP-11 simulator makes available to the user certain informa- 
ion on the current state of the processor and the Unibus bv storin? 
hat information in PDP-10 global symbols.  In this section', a 

list of the PDP-10 global symbols used for this purpose is given. 

v .  in Section 3.5, the most significant feature of DAME, the 
Node Mechanism, is described.  This mechanism permits a guaranteed 
backtrack capability to any point in the execution history and 
an analysis of data flow in terms of user-defined nodes.  The 
user thus has almost complete control over the amount of execution 
history information collected by the system. 

...   A" understanding of the Hook Mechanism (Section 3.4) and of 
the Node Mechanism (Section 3 75y~i7 essential to the um'.e r rtlTnTH n. 
of the rest of the thesis. —" ■ 

In Section 3J), an outline of the DAME instruction set |« 
given.  First the general syntax of DAME instructions is specified. 
The instruction set is divided into two subsets.  The first sub- 
set (Section 3.6.1) contains the instructions provided for normal 
programming op-rations such as assignment, arithmetic, looping 
and the like.  These instructions are listed without much explana- 
tion, except for several instructions which are more uncommon 
(e.g. a search-list instruction).  The latter are explained in 
detail.  The second subset of instructions (Section 3.6.2) consists 
of those which are specifically designed for monitoring the execu- 
tion of the -11, collecting data and searching them.  These are 
also explained individually.  An understanding of this section 
shoul be sufficient to follow the detailed illustrations given 
in the next chapter.  However, for those who wish a more detailed 
and systematic description of the instruction set, a user' 
is provided in Appendix A of the thesis. 

s manua 1 

In the final section. Section 3.7. some unimplemented ideas 
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for improving the performance of DAME are discussed.  They are 
immediately implementable, as opposed to future research, ideas. 

3.1  The Underlying Data Structures 

In DAME, one has access to three address spaces: 

1- Objects and list structures, which are the main class 
of entities that DAME deals with, 

2- PDP-11 core, general and device registers, 

3- Global PDP-10 symbols used in the simulator. 

(Note:  These three address spa:es are not disjoint; the 
PDP-ll registers and core are als" n^cessible as PDP-10 global 
symbols.  Some operations which norma ty operate on objects can 
also operate on -10 pjobals.) 

In the rest of this section I shall describe the structure 
and possible attributes of objects, and several global, pre-defined 
list structures which are crucial to the implementation of DAME. 
The other two address spaces will be discussed in succeeding 
sections.  Tie reader who is not concerned with the implementation, 
can skip to Section 1.2 without loss of continuity. 

Most of the information structures generated by DAME during 
the execution of an -11 program are in the form of lists, as 
are DAME routines themselves and most of the pre-defined infor- 
mation in the environment.  The basic 1ist-processing functions 
and the PDP-11 simulator are implemented via the Bl.ISS-based 
genera 1-purpose simulation package POOMAS , developed by Amund 
Lunde 1 LU 71 ) . 

Attributes of DAME Objects 

Each DAME object has the following attributes;  a "successor", 
a "predecessor", a "size", a "class", a "subclass" and possibly 
a list of "secondary attributes".  (The first four attributes 
are provided by POOMAS.)  Objects which are not members of any 
list contain a special code, NONE, as their successor and predecessor 
attributes. 

All of the above attributes of an object, except the secondary 
attributes, are represented in three "system words" preceding the 
first "user word" of the object.  Objects are addressed by their 
first user word, called "word 0".  The svstem words are also 
called "word -1", "word -2" and "word -3".  The standard object 
format is shown in the next figure. 

■ -  ——^ ____M—. 
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1 1 lust rat Ion   3. 1 

word - 3 

word - 2 

word - 1 

word 0 

word  1 

word 
(«-size   -3)1 

DAME   Object   Format 

p r ed 

class 

subclass 

succ ^ 

• s i z e • 

SALP ■ 

System words 

I >  User words 

pred    :  pointer to predecessor 

succ-  :  pointer to successor 

SALP secondary attribute list pointer 
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In 
' s u b class 

addition to the class attribute, DAME objects have a 
attribute.  The subclass attribute designates the 

general function of an object, e.g. DAM I', instruction subclas: 
hook subclass, node subclass. Input-set subclass, output-set 
subclass . 
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node-object's SAL.  He can later 
ecial DAMF-supp1ied function by 
arv-attribute-object. 

Subclass Master List s 

In order to provide access to objects via their subclass 
(i.e. their general function) there is a master list for each 
subclass, vhich contains a pointer to every object of that sub- 
class. Thus, for example, it is possible to search the set of 
all node-objects or hook-objects for one satisfying a particular 
condition, or to delete all the DAME routines defined so far etc. 
In particular, there is a subclass called "subclas»-master sub- 
class", which contains all these subclass master lists.  Most 
of the objects existing at any given point in time, can be accessed, 
without knowing their name or address, through these master lists. 

Symbol Tables 

In addition to the subclass masters, there is a conventional 
symbol table maintained by DAME, which permits access to the 
objects by their names.  The Symbol Table is also organized as a 
list and can be searched by the usual list processing functions. 
Since the user can refer to global PDP-10 symbols, the DDT symbol 
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table is also present during execution.  (A list of some useful 
symbols is given in the User Manual in Appendix A).  In trans- 
lating a DAME instrurtion, if a name can not be found in the DAME 
symbol table, then the DDT symbol table Is searched.  (These 
symbol tables are not to be confused with that used bv the P')P-n 
assembler for PDP-11 symbols.  The latter is not saved by the 
assembler after assembly and is not available to DANE.) 

j--.2  The Representation of One Main Memory Inside Anot her 

In the next sub-section, 3.2.1, a discussion of the general 
problem of representing one main memory inside another Is presen- 
ted.  Readers interested only in the approach taken in DAME, 
mav skip to the following sub-section, 3.2.2, without loss of 
continuity. 

3.2.1  The General Prob 1 em 

One of the basic representational issues In simulating one 
computer inside another is the representation of the main memory 
of the simulated machine (called the Object Machine or OM) in the 
simulating machine (called the Host Machine or HM).  The importance 
of this Issue arises from the fact that it may have a big Impact 
on the storage requirements as well as the running speed of the 
simulation.  (In this discussion, 1 shall limit myself to word- 
oriented machines, i.e. those In which the greatest hulk of 
memory accesses address words, as opposed to bits, bytes or 
variabl e-lergth blocks.)  Two major components of this issue are: 
(i)  The relative word lengths, (ii)  The relative siees of 
directly addressib1e memory in thf two machine. 

Let us denote by W  and W  the words lengths, and bv M  and 
OH 0 

M  the sizes in words of the object and host machine memories, 
H 

respectively.  (To be more precise, M  is the size of the portion 
H 

of the HM memory which mav be used to represent the OM memory.) 
In the usual, and most comfortable, case V     W  and M KM .  This 

HO      HO 
permits an explicit and direct representation of each word of the 
OM In the HM.  If W ?2W , then the Issue of packing more than one 

I   0 
OM word into one HM word com.-s up.  Clearly, If M  Is much smaller 

0 
than M , and main memorv cost is not a problem, or, alternately, 

H 

if the HM has no, or very inefficient. Instructions for extracting 
a field out of an HM word which could represent one OM word, then 

I 
- - - --    ■ ■ — • - - -- ■ 
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the odos are h?avily weighted in favor of mapping one OM word 
to one iJM word.  It must also be noted that the increased size 
of storage required to represent the OM memory can also degrade 
the running speed of the simulation In a time-sharing environment 
by increasing the page-fault rate or by causing delays in being 
swapped in bv the operating system. 

If M  M , one can use a "paged" simulated memorv technique, 
H  0 

bv dividing the OM memory Into pages and reading and writing 
pages as required from a "paging disk" or drum.  All the techniques 
which have been brought to bear to improve the performance of 
paged systems then become applicable to such a system.  If it 
turns out that the "working-set" of the program under analysis 
is smaller than M , then the performance of this svstem approaches 

H 
that of one w tie re M  M . 

0  H 

then more than one word of MM are needea to represent If W • W 
H  0 

one word of OM. In this case, the layout of the 
designed to minimize the overhead of decoding OM 
and anv "tag" bits used by the Hook Mechanism as 
Section 3.4 and Chapter 5. 

OM work must be 
instruction operands, 
discussed in 
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of representing the 16-bit 28K PDP-11 in the 
h up to 192K core, initially two -11 words were 
10 word.  However, this approach was later aban- 
ing one -10 word per -11 word and utilizing 18 
bits in the word to address a list of DAME objects 
hat -11 location.  This list, called the Associa- 
ti.n  location, contains, for example, the hook- 

d wi:h tliat location, if any.  It is also acces- 
and may be used to save arbitrary information. 
only a small fraction of core locations have a 

erefore, this design decision may be considered 
Nonetheless, as will be seen later, in heavilv 

s, these lists permit much faster access to the 
s associated with a particular location.  Thus, 
order 16 hltsof the -10 word are used to represent 
gh-order 18 bits point to the AL, and the remaining 
in the maintenance of input/output 

nd 
sets (S^rtion 3.5) 

Only the existing device registers in the peripheral bank 
are defined;  attempts to access undefined locations will result 
in a "time-out error" on the Unibus and an error trap will occur 
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All error condir. icns are handled just as they are specified 
in the PDP-11/20 Processor Handbook.  The only supported 1/0 
device at present Is the TTY.  (Recently, 6 relocation registers 
were added to handle C.mmp programs [WU 7 2.1.) 

3.3  The Tiine-r.rain of Simulation 

This issue has at least as strong an impact on the running 
speed of the simulation as the representation of the 0M memorv. 
The factor which has the major influence on the selection of the 
time-grain is, clearly, the degree of precision with which one 
wants to simulate the operation of the hardware.  It has already 
been indicated in Chapter 2 that this should be, at least, at 
the ievel of Individual instructions.  Thus, for example, one 
wouxd be guaranteed that after each instruction, the state of 
the memory and the value of the simulation clock would be correct 
(within the tolerances given in the hardware specifications on 
which the simulator is based) 

Due to the existen:e of the so-called "non-processor request" 
(NPR) interrupts on the PDP-11, although at present no device 
which can generate NPR Interrupts Is supported, the simulation 
has been designed at the memory cycle level.  This design decision 
was also Influenced by a desire to permit studies at the processor- 
Unibus level.  The overhead Introduced by simulating at this 
level, as opposed to instruction level, is studied In Chapter 5. 

3.4  The Hook Mechani sm 

The principal mechanism by which the user causes DAME to take 
some action while his program is running, is the Hook Mechanism. 
A hook is an object having two user words;  the first contains 
a hook type, and the second a pointer to the list of DAME actions 
to be taken when the hook is triggered.  Hooks may be created, 
deleted, enabled or disabled dynamically by the HOOK command 
explained in section 3.6. 

There are two categories of hooks: general hooks and addressed 
hooks.  Within each category, there are several types.  General 
hooks are those In which a user-specified DAME action will be taken, 

^■"- - - —-'■—— — -—  -■ -        - - rt, 
 ... ■......^.. 
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depending on its tvpe, at one of the following points: 

1 - After e v e r v fetch operation (type CF) or, 

2- Before everv store operation (type CS) or, 

i- Alter every instructio- fetch operation (type IF) or, 

4- After every instruction completion (type 1C) or, 

5- After every operand fetch (type OF) or, 

6- After every node entry (type NE) or, 

7- After everv node exit (type NX). 

Addressed hooks difer from general hooks only in that 
they are applicable onl\ when the specified operation (e.g. 
fetch, store) is performed on an address in a specified range. 
The types of addressed hooks arc: 

8- After every fetch from an address in a given range 
(type AF) or, 

9- Before every store into an address in a given range 
(type AS) or, 

10- After every instruction fetched from a given address 
range (type AIF) or, 

11- The completion of every instruction fetched from an 
address range (type AIC). 

To insert a hook, the user issues a HOOK command specifying 
the hook tvpe, the action to be taken, and if an addressed hook, 
the address range to which the hook is to be applicable.  He can use 
as many of any tvpe of hook as he desires.  Any DAME instruction 
can be used in these routines. 

The types of hooks available in the DAME system, combined 
with the PROBE command which permits the activation of a DAME 
routine at a specific time on the simulation clock, satisfy the 
requirements Ksted in sub-section 2.5.2, "Triggering of Analvsis 
Ac t ions". 

Some Information Made Available by the Simulator 

Whenever a hook Is activated, the PDP-11 simulator make? 
available to the user certain information about the state of the 

.^. ._   , ^     
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PDP-11 CPi;, by storing this Information into global PDP-10 
symbols.  This includes:  (i)  The address and data associated 
with the machiie cycle which activated the hook,  (ii)  The 
operand registers and modes of the current Instruction, (iii) 
Contents of the DATA, ADDR and CONT lines of the Unibus,  (iv) 
The simulation clock,  (v)  The addresses of the current node 
object, input set and output set. 

The data structures described in Sections 1.1, 3.2 and the 
above data elements, together with the Execute External (XX) 
and Evaluate (EVAL) instructions for calling BLISS-10 routines 
described in Section 3.6.1, satisfy the list of requirements in 
Section 2.5.1, "Information Requirements of the Analysis System". 

3.5  The Node Mechanism 

A second major mechanism by which the user causes DAME to 
collect information about the behaviour of his program, is the 
so-called "Node Mechanism".  The Node Mechanism provides a means 
by which the user can breakdown  all or a part of a program into 
blocks (called "nodes"), such that each execution of a node (called 
a "node instance") can be considered as a unit in recording the 
history of execution of that program.  Pecallinp our requirements 
about determining data flow among node instances and that any 
part of the execution must be reconstructible from the recorded 
execution history, it is clear that we can use the node concept 
to effect that reconstruction by recreating each instance  of 
each node.  To recreate a particular instance X  of a node X, we 

i 
need to know all the inputs into X .  Hence, for this purpose it 

i 
suffices  to record each address from which X  read something 

i 
before modifying its contents, and the value read.  Let us denote 
the set of such (address, value) pairs associated with a node 
instance the "input-set" of that instance.  It is easy to see 
how one can back up arbitrarily fai in execution history by 
restoring the input sets of node instances in reverse chronological 
order starting with the current node instance.  (Note:  to 
simplify references to node instances when the identify of the 
node itself is not needed, I shall refer to a node instance by 
its "index" in a particular execution, so that node instance n 
will refer to the nth node instance since the start of the execu- 
tion.)  We must note here that restoring the input sets of node 
instances k-p, (k-p)+1,...,k, where k is the current node instance, 
does not mean that we are restoring the entire machine state 
which existed when node instance k-p was entered;  we are only 
restoring that part of the machine state which will guarantee an 
identical replication of the instances k-p through V   Recalling 
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another functional requirement that we must be able to reconstruct 
every past machine state, we realize that we must also record 
the effect of each node instance on the machine state.  Such 
an effect can be represented as a set of (address, old value, 
new value) triples containing every address where the node instance 
wrote something (even if the old and new contents are the same) 
and the contents of that address upon entry and exit from the 
node instance.  Let us call such a set the "output set" of that 
node instance. 

We also note that reconstructing the complete state which 
existed when node instance k-p was enteied, also provides the 
ability to replicate the execution of the node instances k-p 
through k, i.e. we do not need the input sets for the purpose 
of backtracking;  the output sets are sufficient.  We still do 
need them however in answering questions about data flow. 

One final observation I wish to make is that 
appears both in the input and the output sets of 
Instance, then its value in the input set and its 
the output set are equal. This means that whenev 
contain the same addresses, the first two element 
in the output set (or equivalently, the pair in t 
are redundant. An empirical study "f some input 
shows that this redundancy is almo-c complete, i. 
few exceptions, every address which appears in an 
appears in the corresponding input set. This mea 
restore the input sets of the last n instances in 
logical order, we almost always restore the compl 
which existed just before the n-instance sequence 
always restore a sufficient part of the machine s 
an identical replication of the execution if a ba 
requested. (Important note: Here ve are neglect 
of peripheral devices, such as the setting of sta 
registers. These effects constitute communicatlo 
independent processors, i.e. the I/O device and t 
does not offer facilities for backtracking over p 
such communication between two processors occurre 
such a facility mav be programmed by the user and 
addressed hooks in such device registers.) 

if an address 
the same node 
"old value" in 

er the two sets 
s of the triple 
he input set) 
and output sets 
e. with very 
output set also 

ns that when we 
reverse chrono- 

ete machine state 
;  however we 
täte to guarantee 
cktrack is 
ing the effects 
tus or data 
n between two 
he CPU.  DAME 
eriods in which 
d .  However, 
inserted as 

So far, we have not specified whether nodes can be overlapped 
or nested.  In the DAME system, if input/output sets are not 
being used, nodes may be nested or overlapped, provided they do 
not overlap at entry and exit points.  If input/output sets are 
being used, overlapped nodes are permitted, provided they do not 
overlap at entry or exit points.  In particular, for example, a 
subroutine which is called from two different nodes constitutes 
a part of each node instance in which it is called.  If nodes are 

■ llll ■■■   --- 
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Illustration 3.2 

Node-object Format 

• p r e d > <succ > 

< e i • t i ■ <•!••> 

NODESl'RCLASS 0 

'start addr> 'endlnR addr > 

■ i c o u n t ■ 'Inst. count-- 

•ISLP' •OSLP> 

System v;ords 

user words 

start addr> 

•ending addr- 

i c o u n t > 

•inst. count> 

■ 1SLP * 

■OSLP> 

startine adtlress of node in -1] storage 

ending address of node In -11 storage 

no. of instructions executed In the last 
instance of node 

no. of instances of node 

input-set list pointer 

output-set list pointer 

■B 
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Type-1 instruction' » -operator (-operand list) 
Tvpc-2 instruction- ► -cperator-(«operand list   action) 
operand list- •  operand /-operand list  -operand 
-operand  ► -octal integer-/ 

-short char, string/ 
- g lobn1 - 10 symbol - / 
object name 

-action  •  DAMF. routine name- / -compound instruction 
short char, string- ►  up to 5 characters 
-compound instruction  ► ( PAMK instruction list) 
- DAME instruction list- ►  DAME instruction  / 

DAME instruction list   DAME instruction 

As can be seen, some DAME instructions take simple operand 
lists while others (in particular, IF, INCH, WHI, HOOK and ALONG 
instructions) can optionally take the name of a DAME routine or 
a compound-instruction (the analogue of a compound statement 0C 
compound expression in block-oriented languages) to be executed, 
as the last operand.  All operands of a  DAME instruction must 
be defined prior to the execution of that instruction.  Objects, 
which are not pre-defined bv the system, are defined hy the 
Create (CR) instruction (except for DAME routines, hooks and 
value-trace objects, as described later.)  The form «octal integer 
refers to the contents of -11 core location  octal integer  at 
the time the DAME instruction containing the form is executed. 

3.6.1  General Purpose Computation Instructions 

DAME provides a complement of instructions corresponding to 
the usual constructs used in programming, to wit:  assignment, 
arithmetic and logical operations, looping and conditional execution, 
subroutine calling and I/O.  I give an undetailed list of these 
instructions here in order to convey their basic functions and 
appearance.  A detailed description of their effects is given in 
Appendix A. 

Create object: 
CR(' obj.name 
(e.g. CRCA.)) 

class subclass- -size  ) 

Delete object: 
DEL(-obj.id ) 
(e.g. DEL(A)) 

Insert in object: 
IOBJ( target   word no 
(e.g. IOBJ(A 0 2)) 

value ) 

Insert indirect in object: 
I IOR,](- target  • obj . id 
(e.g. IIOBJ(A I 0)) 

word no. ) 
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Insert in PDP-1] address: 
I(<address value ) 
(e.g. 1(10000 54)) 

If-then-else : 

IF(opdl- '-rel  ■opd2>   -then-action  I-else-action-;) 
(e.g. IF(A »CT I (I0BJ(A 0 B)) (T0BJ(B 0 A)))) 

While-do : 
WHL(•opd • -action) 

Incr-from-to-by-do : 
INCR(var- -from-opd- -to-opd-  step-opd   action ) 
(e.g. INCR(A 10000 10040 2 (I(A 0)))) 

Execute DAME routine: 
EX(-routine ■) 
(e.g. EX(ROUTl) 

Push parameter: 
Pl'SH (• value •) 
(e.g. PUSH(A) 

Pop parameter : 
P0P(-obj.id ) 
(e.g. POP(B) 

Return   K   levels: 
RET(■ leve 1   count -) 
(e.g.    RET(N) 

Type out object: 
10BJ(- obj . id •) 
(e.g. TOBJ(A) 

Type object indirect: 
TI0BJ(-obj.id) 
(e.g. TIOBJ(A) 

execute routine ROUT]) 

cush contents of A) 

pop into B) 

exit N levels cf nesting) 

type object A) 

type object pointed by A) 

Type PDP-10 symbol: 
TY10(-global variable id>) 
(e.g. TY10(PC) type contents of program counter) 

Type contents of PDP-11 addresses: 
T( starting addre ss -'--end i ng address 1) 
(e.g. T(10000 A)) 

Type immediate: 
TI( literal ■) 
(e.g. TI ( 'ABC) type the char.string "ABC") 

^^a^^-a-a^—^-ri 
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Write disk 
WDSK( 
(e.g. 

obj . i d ) 
WDSK(A) 

Write disk indirect: 
WIDSK(-obj .id ■) 
(e.g. WIDSK(MNODESC) 

write the contents of A 
in file TSKR.DAM) 

write the contents of all 
node-objects in file USER.DAM. 
Recall that MNODESC contains 
a pointer to the node-sub class 
master list) 

Read disk: 
RDSK(- ob.j . id ) 

(e.g. RDSK(A) read a word into object A 

from file USER.DAME.  Read 
and write operations on the 
same file can not be intermixed 
without closing the file.) 

Generalized unary operation with assignment: 
UA('-unary op.  -target  -opd») 

unary op.> * SUC/PRED/SAL/SIZE/ADDR/NOT 
(e.g. UA(,SUr A B) put in A the address of 

successor of K) 

Generalized binary operation with assignment: 
BA('-binary op.> -target- <opdl- 'opd2>) 

•binary op.- > +/-/*/-s1 ash •/AND/OR/XOR/! 
where -slash- denotes the division 

(e.g. BA('+ A A B) add B to A) 

the 

operator "/" 

Execute external routine: 
XX(-PDP-10 routine id 
(e.g. XX(TYPLIS 10000) 

-param.1i st > j) 
execute TYPE 15(10000)) 

Execute external routine and assign returned value: 
EVAL(-target PDP-IO routine id- ('param.list 
(e.g. EVA1(A TYPLIS 10000) A • TYPLIS(10000)) 

Get the value of simulation time and assign: 
TIME(- target • 'stale- ' 

-scale- • MICS/MILS 
•type- ► FIX/FLOAT 

(e.g. TIME(A'MICS 'FIX) 

type>) 

Insert in A the simulation 
time in microseconds, as an 
integer) 

  — 
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Plot character: 

PLOT(<poBltion 
(e.g. P1.0T(5 'X) 

char ) 

type char, "y" in column 5) 

The DAME language was designed to provide a simple syntax 

in order to minimize syntax errors in the analysis process and 
to facilitate its translation.  It was also intended to be a 

"low-level" language into which ■ higher level analysis language, 
such as the one discussed later in Chapter 6, could be compiled. 

While I shall leave the undefined non-terminal symbols and 

most of the semantics of the above instructions une1aborated, 

a few explanations are in order.  Wherever a numeric argument is 

expected, if a name is supplied, its contents are taken.  The 

non-terminal  target ■ denotes the name or address of an object 

into which the assignment is to be make.  The syntax of the gene- 

ralized unary and binary operations with assignment is admittedly 

very awkward, but it permitted me to save pome code in interpretinf 
the operands for each operation. 

In addition to these instructions, since the fundamental 
data structures used by DAME are lists, there is a set of list 

manipulation facilities.  Some of these are provided bv POOMAS 

and are accessible via the ..X and EVAE instructions listed above. 

These are routines for creating, deleting and maintaining lists. 

DAME provides facilities for taking the union, intersection and 

set difference of two lists and assigning the result to a third 

list, in a syntax similar to the preceding instructions.  It 

also offers a unique "Search List" instruction whose svntax is: 

SI.IST(-target   list id   search spec.-) 

■search spec  »  action-- 
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the list will be Pl'SHed and the cycle will be repeated 
example, the instruction 

SLIST(A 1.1STA (POP(B) 

IIOBJ(C B 3) 
IF(C 'GE 5 

(PUSH(l))(PUSH (0))))) 

For 

would search LISTA for 
5. If such an element 
object A;  otherwise A 

an element whose fourth user word 
is found, its address is returned 
will contain a -1. 

contains 
In 

l^<Li Execution Monitoring and Analysis Instructions 

In this sect ion, the s 
which perform the functions 
range of facilities desirab 
analysis facility is descri 
again narrative and informa 
of the primitive operations 
with the instructions for i 
creating input^output sets, 
searching input/output sets 
replays", monitoring specif 
collecting the last k value 
via an operation similar to 
for typing out node objects 
mentioned before. 

ubset of the DAME instruction repertoire 
essential to providing the wide 

le in a general purpose execution 
bed.  The style of the exposition is 
1 to give a good intuitive understanding 
and data structures involved.  Starting 

nserting hooks, defining nodes and 
I shall describe instructions for 

, restoring node instances, "instant 
ic paths of control flow, automatically 
s of a location and addressing them 
indexing, as well as the instructions 
and node instances which have been 

The Hook Mechanism, described earlier, is used to insert 
hooks to perform the user-specified actions at user-specified 
times.  Instructions for manipulating hooks are: 

HOOKC-hook-type>'action- [-address range-!  hook name) 
(e.g. H00KCIC (TOBJ(A)) 'HIC)   Type the contents of A 

after every instruction) 

DEL(• hook name •) 
DISAB(-hook name ■) 
ENAB(<hook name•) 

(e.g. DEL(HIC), DISAB(HIC), ENAB(HIC)) 

(Note Brackets L, J indicate optional operands.) 

These will insert, delete, disable or enable, respectively 
a hook named -hook name-. The -address range> is only required 
for addressed hooks. 

I 
■ i    i^---^- ■   -      i    , ■■■MaMH^MBMrt—m«^» ^»MMWilMi   
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Cf «tion of Mod«« «nd  Input/Outout  S«f 

*h« »Od« Mechanism, also described earlier, can be evoked 
in one of two wavs:  via the RODE instruction or via the MR 
instruction.  The svntax for the former is: 

NODEC address range •■node name ) 
(•.g. HODE(20000 20100 'MOPEA)) 

The execution of this instruction vill cause a node-object 
Of name  node name  to be created.  The format of the user-vords 
< f a node-object is given in the following figure.  Each node- 
object contains, among other data, a pointer to each of two lists 
ti input-set list (I8L) BBd its output-set list (OSL).  If the 

node has not been executed as vet. these U.t. are emptv.  An input 
or output) set consists of a list of ten-word objects.' An 

he^Irs; r!r).Pai
ir ^ inserted int0 e^h word, starting with 

lu   rst word of the first object.  When and if the first object 
is full, a second object is created, and so on.   ihe list h««d 
contains one user word which contains the index of the first 
empty word in the last object. All unused words contain zeros. 
Ih  high order bit of each word contains a 1 if onlv a byte was 
a cessed. 0 otherwise.  (The onlv variation to this rule is in 

luvSbit  J^ Pr0jrSSOr StatUS WOrd PS-  Sin- th. FS is esse:- 
mod   eH       !Sr le' ^ indicatlon of   which bits were read or 
^od fied is needed.  To do this, we can take advantage of the fact 
hat only the lower 8 bits of the PS are usable bv the user. W en 

b" e of M83"8 ^ ^ ^«^««tput set, a bit mask' in the upper 
llllvli      Jl. ""tents" part Indicates which bits were accessed, 
^vever, this Mature Is not implemented and the PS is treated 

g^ster 0     •"'•••)  The PS and al, the general and device 

of     •s'and'osi •reSented ^ theIr COnSOle •"'•••••'  The format l IBL s and OSI. s Is given in Figure 3 3. 

To provide for more flexibilltv in the use of I/O sets 
separate instructions to initialize and build I/O 

idcd.  Since the building of these sets add,- 
sets 

quite 
ia v e been 
■ bit of 

of a 
For example, the following hook causes the initialisation 
new input-set at each node entry. 

HOOKCNE HISO)  'HUE) 
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111ustrat ion   3 . 3 

INPUT-SET   LIST    (ISL) 
for   a   Node 

ISL ptr 
from node-obj 

IS ptr f rom 
Node-trace table 

IS for 
1. instance 

of node 

IS for 
2 . instance 

I  : 

T i 
-X- 

address va luc 

■ i ■   — ■- 
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Illustration 3.4 

NCPFTPACF Table Record 

for a Kode Instance 

start of 
record 

+ 1 

+ 2 

+ 3 

start addr. flags' 

instr. count at entrv- 

input-set ptr^ output-set ptr- 

no. of instructions in node inst 

- ■■ ■ ■ ■ -  i -- - - - -     . _  . _ _ - — -   • - -  - - - 
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Her. Ml is the name   of the hook 

to disable or enable the ho A later, ej bv the 

DISAR(HNK) 
ENAB(HNE). 

or, 

can be used 
1nst rue t i on 

Trace      NTROnr"   0f/0deS   can   be   defaulted   by   usin,   the   Node 
DI.ME   bv   Ln   to    in   ^b "•       '?   thiS   CaSe'   nodes   are   <•"•-   ^v 
tial    floTfol   ln "ntrol   flow.      When   it   varies   from   sequen- 
branch      s   «LJSd     X!"   "   When   ^   »"«"•••'«l   conditional' 
a   new   nodV™;   IV .VtlllY   "uMT*^   'l   "****"•*   ^ one for ^ha^ *AA entered.  If the new instance is the first 

he defauU nod    ^ ' "^ ^^ 0bJeCt is -"ted.  Thus, in 

sane .anner ^w^h^ i^Jru^ io^ i s^ ^ ^ t " " ^ 

Ulii&JÜJLli Executed Nodes and Input/Output Sets 
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Let us ignore all the operands except  search spec.' for 
the time being.  -search spec.' must be a DAME routine name 
or an explicit instruction sequence (similar to a "compound 
statement" or "compound expression" in some programming languages). 
Before the  search spec. ■ is entered, the system locates and 
internally PUSHes the address of the next input set to be searched 
(PUSH and POP were described in the preceding section).  The 
user must obtain this address by a POP(A) instruction, where 
A is some object name, which puts the address of the input set 
to be searched In object A.  Then the contents of address K in 
that input set can be extracted and saved In some object B, by 
the Find Value Instruction, as KIVAL(B K A).  The user can, in 
this i anner, obtain the contents of any address In the Input set 
pointed by A, and perform calculations on them using the language 
facilities.  If he is finished with the search (e.g., he has 
found the input set he Is looking for), he PUSHes a 1;  otherwise 
he PUSHes a 0.  After the last instruction In -search spec.  has 
been executed, the system will POP the stack.  If the value is 
0, then if the end of the node trace has been reached, it will 
insert a -1 In -object Id> and will terminate the FISET Instruction 
If the value Is 0 and the end of the node trace has not been 
reached, It will push the addrcsü of the next input set to be 
searched, proceeding in the direction specified by <direction> 
and re-apply -search spec.--.  If the popped value is a 1, the 
index of the node Instance just searched will be inserted in 
<object id- and the Instruction will be terminated.  Thus, after 
the FISET instruction,  object id- will contain either -1, which 
indicates that no Input set satisfying the specifications was 
found, or it will contain the address of the first acceptable set. 

To illustrate the use of this instruction, suppose at some 
point in the execution we wish to find the most recent input set 
where the contents of location 1000 equal the contents of location 
2000, and put the address of that input set into some object D. 
To do this we shall need three more objects (in fact, we could 
pet by with one by using the same object for various purposes 
but we shall not do so here).  The following instructions create 
these objects and perform the required search: 

CRCA)   CP.CB)  CRCC)   CRCD) 
FISET(D  '*  (POP(A) 

F1VAL(B 1C00 A) 
FIVAL(r 2000 A) 
IF (B 'EQ C (PUSH(l)) 

)) 
(PUSH(0))) 

to 
The symbol 

be searched. 
* for  node spec.> indicates that all nodes are 
The syntax of the IF instruction is: 

IF(-obj.id.' --relation- -obj. id- <then-case>[-else-case>]) 

     -..■-.. ■MMMite^MMaMI 
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The Find Output Set (FOSET) instruction works exactly in 
the same way as FISET, except that output sets are searched. 

The Find Node Object instruction, whose syntax is FNOCobj. id 
-11 address), inserts in ■obj. id- the address of the node 

object associated with  -1] address- if such an object exists. 
Otherwise a -1 is inserted. 

Find Node Instance, FNI(-obj. id   node id   n  Istartinn 
index  ! •direction> ! 1), will   similarly Insert in  obj. id  the 
index of the nth instance of -node id- searching the node trace 
in the  direction- specified starting from ^starting index . 
The default values for the two optional operands are:  "the 
current node instance" and "backward", respectively. 

Find Value and Find Value Indirect are used to extract the 
value associated with an address in an input or output set where 
the I/O set address is given in the instrueti cm , and where the 
I/O set is pointed by the object given in the instruction, respec- 
tively. 

The I»»tOf to Bod» Ittifnc«. REST(N), instruction moves 
backward in execution time, restoring the input rets of node 
instances until index N is reached;  e.g., if the current node 
instance is the Kth node instance executed, REST(N) would restore 
the last (K-N+l) input sets. 

The Replay Node Instances instruction RPLAY(•starting index 
! ending index- J), will cause the restoration of the input sets 
ot the node instances between the specified indices.  The simulation 
time is also restored.  The Instances whose input sets have been 
restored are then re-executed.  Upon termination of the last 
instance the environment in which the RPLAY instruction was issued 
is re-established. 

The Type Node Instances instruction TNI(I starting index>] 
<count -) types the node trace entries for abs (■count ) instances , 
starting at -starting index , and moving forward in time, if 
-count  is positive or backward if -count- is negative, where 
abs(x) denotes the absolute value of x. 

The Type Node Objects instruction, TNO( addressl  -address2 ...) 
tvpes out the node objects associated with the specified addresses. 

Detecting Specific Paths of Execution 

I would now like to describe the instruction ALONG, whose 
syntaxis: 

.      .  — J 
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ALONC( path^ -action) 
•path- ♦ <node id- / <path> •node id« 
'action^- * --DAMF. routine name- / (-instruction sequence-) 

Suppose we have defined nodes Nl, N2, ..., N7.  Then, the 
instruction 

AL0NG(N1 N5 N7 X) 

would cause the action X to be taken if the current node Is Nl , 
or if the last two nodte* have been Nl and N5 , or if the last 
three nodes have been Nl, N5 and N7, in that order.  In short, 
the specified <action> is taken whenever the flow of control 
could be following the specified path.  The ALONG instruction 
is, as are all DAME instructions, executable through every type 
of hook.  Hence it provides a convenient facility for taking 
selective action (e.g., tracing) as a function of the locus of 
control flow. 

Collecting and Accessing Precious Values of a Local ion 

Finally, a mechanism for automatic 
values of a location and for accessing 
mentioning.  The first action is accomp 
of two instructions.  The first is the 
IVT(-11 address • ^n> ^obj. name-), whi 
•obj. name  of a special subclass and 1 
previous values of location <-ll addres 
is the Value Trace Hook, VTH(---11 addre 
causes the monitoring of values stored 
address> and maintains the last <n> sue 
buffer in object -'obj. name> created by 
at any point in the execution, the Kth 
address- is obtainable by a binary oper 

collection of the previous 
those values is worth 
lished through the use 
Initialize Value Trace, 
ch creates an object named 
arge enough to hold - n ■ 
s>.  The second instruction 
ss>), instruction which 
into the locdtion <-U 
h values in a circular 
the IVT instruction. Then, 

previous value of <-ll 
ator f, as 

BA(*I B ■11 address- K) 

The instruction BA(<opr> ^target> <opdl> <opA2>)    is the 
generalized "Binary Operation with Assignment" instruction and 
performs the operation: ■target> • <opdl> 'opr> 'opd2- in infix 
notation.  Thus the above instruction would insert in  -11 address 
the Kth previous value of '-ll address>.  If K is larger than 
the number of values declared to be kept in the IVT instruction, 
an error message will be typed and no assignment will be made. 
If K values have not yet been assigned to <-11   address>,  then 
a special code larger than 2tl6 will be stored in B. 

■ ■ ■! i  ■■  ^a M^^fcM^M- _ — —    - -  . -   ■ in i  IIIM^TI ■ ■■    mimumä 
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3.7  Various Design Issues and Unimp1ement ed Ideas 

In this section, I shall discuss some design issues which 
arose in the course of the development of DAME.  Most of thep- 
are related to improving the execution speed of the simulatinn 
and decreasing the monitoring overhead.  I shall also outline 
some ideas which have not been implemented mainly because they 
would not contribute significantly to the research aspects of 
this proj ec t. 

1 

3.7.1 Representation of -11 Core and the Design of the 
Hook Mec han1sm 

Since the representation of the PDP-11 core and the Hook 
Mechanism lie at the heart of the implementation plan, these 
two points are worth re-pondering and alternative implementations 
worth considering. 

As was mentioned, an earlier implementation of the simulator 
packed two -11 words into a -10 word, one into the low-order 
16 bits of each of the lower and upper halves of each 36-hit 
-10 word.  In that implementation, the high-order two bits of 
each -10 halfword were used to Indicate the presence or absence 
of monitoring actions associated with the fetch or store of each 
data word (e.g. a word fetched or stored by an instruction) or, 
with the fetch or completion of an instruction.  The monitor 
actions themselves were located via a table look-up on the parti- 
cular address Involved.  A seperate table was used for each of 
data fetch, store, instruction fetch and instruction completion 
operations.  This design makes possible a substantial saving in 
the core requirement, approximately ((28K/2)-n), where n is the 
number of locations for which a hook exists.  The essential price 
paid for this storage saving is the overhead of the table look-up 
procedure.  assuming that approximately l°A   of the locations are 
hooked and a binary search is used, about 8 comparisons are 
needed to locate the monitor action pointer associated with a 
particular address.  Further assuming that one address Involved 
in every instruction has some monitor action associated with it, 
this overhead is roughly equivalent to twice the overhead of 
decoding the op-code of an -11 instruction.  In addition to the 
monitoring actions associated with particular addresses, there 
are those due to the so-called "general hooks", i.e. actions to 
be taken at every fetch, or every ^tore etc.  Thus, there alreadv 
is substantial overhead due to monitoring.  So, the decision to 
map one -11 word into each -10 word and use the left half of the 
-10 word for a pointer to associated monitor actions was intended 
to avoid further degradation in the monitoring overhead, but 
exactly how much is gained in response time in a time-sharing 
environment is not clear since the larger core requirement delays 

MMM-JUMMMMUI 
•     ■  ■MMBMiMM 



wzs • •   i "i• 11 "I -» ■ I     "' '■ll 

the swap pi 
word leng t 
equal and 
proposed b 
can be use 
bits avail 
actions, o 
into the w 
it. Then, 
of the add 
they are f 
be some mo 
set up for 
schemes. 
action ind 
includes t 
that addre 
permitted 

56 

ng-in by the operating system 
hs of the object machine and 
one would like to use a one-t 
y Bernard Lang, [LA 72 i, call 
d. In this scheme, since the 
able to indicate the presence 
ne inserts a special bit patt 
ord when one wants to assocla 
at every fetch or store, one 

ress being accessed with the 
ound equal, this is taken as 
nitor action associated with 
this purpose ?re searched, i 

If an entry for that address 
icated by the entry is perfor 
he actual contents of that lo 
ss is found, no action is tak 
to continue. 

scheduler.  When the 
the host machine are 
o-one mapping, a scheme 
ed "Lambda-monitoring", 
re are no additional 
of associated monitor 

ern (called "Lambda") 
te monitor actions with 
compares the contents 

bit pattern Lambda.  If 
a signal that there may 
that address.  Then, tables 
ust as in the earlier 
is found, the monitor 
med.  The table entry also 
cation.  If no entry for 
en and the execution is 

This scheme is clearly very similar to the scheme used by- 
current debupging systems which insert a trap instruction into 
any instruction address where the user wants to put a breakpoint. 
The "Lambda-monitoring" scheme simply extends this technique to 
applv to data elements as well as instructions. 

In using such a scheme, clearly, "bugged" locations must he 
write-protected from the user;  i.e. the data to be stored into 
such a location must in fact be trapped and re-routed to a special 
register holding the actual contents of that location.  That 
register is the same one whose contents are fetched upon a fetch 
operation on the bugged location.  The first requirement implies 
that prior to every store operation, the current contents of the 
store address must be fetched and compared with Lambda. 

I shall have more to say about this technique in Chapter 8, 
when I go into the implementation of monitoring features in 
microprogram or hardware. 

3.7.2  Scheduling with J_o£k-ahead 

One of the main bottlenecks in the simulator is the event 
scheduling process.  As was mentioned, the time-grain of the 
simulation is at the memory/regist er access level.  The particular 
simulatioi. package which is us -d is a general-purpose simulation 
package, in which an Event Notice is created for each event to 
be scheduled showing the time of activation and the process to 
be activated.  After each event, the. scheduler consults the event 
calendar and activates the process indicated by the first event 
notice having the earliest time of activation.  In our case, 

-- - ■ ■ - 
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since there are no simulated devices rther than the TTY, there 
are usually only two processes which receive and surrender 
control:  the CPU and the Unibus.  Further, the two are never 
active simultaneously in sir.ulated time.  While this design is 
a clean and consistent one, permitting the addition of new 
devices to the I'nibus in an easy wa" logically quite similar 
to adding them to the real Unibus, and also permitting studies 
on bus utilization, timing of signals between devices on ^he 
bus etc. to be done verv naturally, it is also quite expensive 
in terms of scheduling overhead due to the event notice preperation, 
placement and searching of the simulation calendar. 

Some measurements on the gain in simulation speed through 
this technique is reported in Chapter 5. 

3.7.3  "Blow-up" Representat ion o f the Processor Status Word 

Another techniaue by which the speed of the sinulation may 
be increased is reducing the amount of individual bit manipulati.n 
in the handling of each PDP-ll instruction since this is a very 
slow operation in the PDP-10 (at least, in our model).  A good 
candidate for this case is the modification of the Processor 
Status word (PS), si.ice most instructions modify   one or more bits 
in this word.  Further, each bit must be computed and set seper.it. 
Since the PS is affected by most instructions, this causes a good 
bit of overhead. 

This problem can be alleviated to a   certain extent bv 
representing each of the six fields of the PS by a seperate word. 
However, caution must be taken that, in case the user program 
explicitly addresses the PS, then the result of the read or write 
operation is reflected properly on the Unibus lines and the wordl 
representing individual PS fields. 

J 
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3.7.4  "CompllatIon" of Decoded -i 1 Instructions 
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It is clear however that the simulator has to be able to 

execute both forms of PDi-ll instructions, i.e. the "unrompiled" 

PDP-11 machine instruction and the "compiled" version, which in 

the ultimate, is a sequence of PUP-10 machine instructions 

ociated with the particular -11 instruction location. 

Another question whi.h must be resolved in order to use 

thll technique is bov to associate the -10 cod« with    the appropriate 
-11 instruction address.  One solution mav be to insert the -10 
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■nstructions associated with a particular -11 location i ,u o 
an object ana to use a table of size k, containing pointers to 
these objects, where k is the size of -1] „emorv containing 

tructions.  The overhead required to locate the reauired -10 
code Bust be ninimized to make this technique worthwhile. 

In the desii i^n of DAME, there Is a particular feature, 
theAssociatlonLlstforeach 
problem verv naturallv 

of DA^E. 
core location, which solves t 

One can insert the object contain!- 

t.ie -10 instructions for a particular -11 location as the f 
element in the Association List of that location. If more 
rality is desired, one can Introduce a new subclass, called 
code subclass" and insert an object of that subclass anywh 
in the Association List. However, this will of course Inrr 
the search time. The use of association 1 i s t.- for this pur 
also obviates the need for the large table required bv the 
technique. 

n a m e 1 v 
hi s 
R| 
1 rst 
(? e n e - 
"FDP-l0 

ere 
ease 
pose 
first 

Finally, in this connection, we must note a problem with 
seJf-moditvin^ programs,  namely that if a particular instruction 
is modified during the course of execution, its old "compiled" 
version rust be deleted and a new decision has to he made as 
to whether the new version should be compiled.  In fact, if a 
particular instruction will be changed frequently, it probably 
should nut be compiled. 

-3 • 7 • 5 Hurt her Comp i 1 a t i on _o f DAMF. Instructions 
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iti -6  A "Limited-Run Cjjmj3_l_e_te -Trace" Fe a t u r ( 

As was described earlier, backtracking to a particular 
instruction n is implemented bv restoring in reverse chrono1oßica 1 
"rder, the input sets of node instances until the one including 
the instruction n is restored, and then exerting the instruction, 
preceding n in that node instance.  BacktracKine has been Implement^ 
in a dirferent wav bv , at least, one more worker, Ralph Grish-an 
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in the AIDS system at NYU Courant Institute of Mathematical 
Sciences.  The following description of the implementation of 
this mechanism is taken from K. Stockton f.aines' thesis: 

"... The back-up mechanism mentioned above is original with 
Grishman, and is sufficiently Interesting to warrant a detailed 
description of how it is accomplished.  AIDS keeps four tables 
for this purpose;  let us call them Rl, R2 , SI and S2.  As AIDS 
is interpreting the user's program it goes through the following 
process.  At some point it saves the state of the machine registers 
in Rl. and after that each time the user's program stores a new 
quantity into a location in memory, the previous quantity at the 
location is saved in SI together with the address which is being 
changed.  When SI li full, the registers are stored in R2, and 
execution continues with AIDS saving the previous values and 
addresses to which stores are made in S2.  When S2 is full, the 
process starts over again with Rl and SI, and so on.  When the 
user issues a request to back up, AIDS fetches the most recent 
item from SI or S2 and puts it back where it was originally.  It 
then puts back the next most recent, and so on, until it has put 
back the first quantity saved after the next to last time the 
registers were saved.  At this point it can restore the registers 
to the values they had the next to last time they were saved, 
and AIDS can roexecute the program from that point to the interrupt 
at which the back-up was requested, since the program and its 
storage are now in the sane condition they were when the program 
reached that point for the first time..." 

While I believe that the node mechanism and the input/output 
set concept of DAMK have significant advantages over this method 
in terms of storage requirement and the ease vith which the 
collected information may be used in data flow analysis, there 
are times at which the user would like to see a complete trace 
of certain portions of his prograv.  At present, this can be 
done in DAME bv attaching general hooks to fetch, store and 
instruction completion events to type out the required information. 
Alternatively, if the number of instructions to be thus traced 
is small, each Instruction can be declareü a node, in which case 
the node mechanism will construct the input and output sets for 
each instruction.  Nevertheless, it may be desirable to have a 
detailed trace" mode in which every memory and register access 

is recorded in a "trace object"   This would be useful, for example, 
in directlv answering questions Like "What was the second value 
assigned to X in node N?", or "What was the value of X at instruc- 
tion 1?", without the restoration of the required input sets etc. 
However, such a facility would have to be used in a highlv selective 
and judicious manner sin^e it would require a great deal of storage 
and CPU time overhead. 
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CHAPTER      4 

ILLUmATIVE   ElAWFLIl   ff  fnum   APPLICATIONS   OF DAME 

DAMK Mr   K 
chaptor' I sha11 Illustrate the main features of 

fa^il a it'  a I"1.0'   examPl- of   Its application.  A modest 
familxarity w.th the architechture of the PDP-11 will be helpful 

e^  a"" d  n  " —Ples-  ^—"y U«.».,. notation win  ' ut explained as necessary. 

nodes'and l*™*1***™/^™-      The first one demonstrates the 
nodis and the input and output sets of a program, as well as 
he mechanics of loading a PDP-11 program' inserting Vooi" 

•Vconl .Alill   V    'n   COre and the lniti^i"" "f execution.  The 
matrix I     J t™0"*1™^*   **•   construction of a node transition 
node i to   ^"Se.£>lement J<*.i) ^ the number of transitions from 
node to node   smce the beginning of the execution.  In the 

a  is an address which is 
1 

of the Ich instance 
instance of node M 

intersect ion 

of 

input set 

node | and the output set of the precedintz 
If node N has not bee'n executed between te' 

iKh and Ltk instances of N, then X  Is emptv.  a  is the valu, 

i 2 
and read from location a  by N 

1      i 
from the preceding instance 

III 

a  is the value of 
3 

at the exit 

of H. 

»••• four examples are intended to provide illustrations 
o  dynamic analvses of control flow, data flow and performance 

uitlbl    Tr" ^.V   0f "•^•- for ^ich a svstem like ^MF 
e "a Mo rana r'i     ^  "" "l   "M PDP-1] Pr0^am tü ^monstr.n. 

n exposition        ,,qUeS-  F0r the MCPOM of simplicitv ion. the chosen program is a small one-. 
quicksort" routine.  It 

suitable, but is i n c 1 u d e M 

a one-page 
is given and explained in Example 1. 

The f if h examp e is not one for vhich DANE is pa r t i c u 1 .■ r 1 v 
.kU, but is included here to show that even in cases which 

would  s rain' a simu1 ator-based software monitor svstem. one 
£'u eÜ na,^—fuI f-i^V ^ exercising some intelU ^nce 

li its use.  Ihls example deals with collecting instruction mix 

I  llll    T« 
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and addressing mode usage statistics on several PDF-11 programs. 
The collected statistics, while they are Interesting and possibly 
useful in their own right, were used to project the running 
times of the same programs on a PDP-11/40 and -11/45. 

Example 1   Nodes and Input/Output Sets of a Quicksort Ptogram 

As a first 
language progra 
I ! '. i;st ra t i on . 
see  DEC 7 1  .) 
the "quicksort " 
code given here 
to be a s s e m11e d 
of the notation 
operands, R S i ■ 
I denotes indir 
of register K b 
automat i c i nc re 
been used.  All 
instructions is 

example, let us consider the PDP-ll assembly 
■ (H'ICKSORT, whose text is given in the next 
(For a specification of the DKC assembly language 
The program implements a simplified version of 

algorithm as given by Knuth in 'KN 73 .  The 
was compiled by the Bl.ISS-11 compiler (DEC 73 1 
by the MACXll assembler.  To explain briefly some 
in the assembly language: f denotes immediate 

eans register i, SP is the stack pointer (register 7), 
ec t addressing, -(K) denotes automatic decrementation 
efore its contents are used, and (K)+ denotes 
mentation of register K after Its contents have 
integers are in octal.  The syntax of double-operand 

opcode^ -source-operand-, -destination operand- 

(All Integers are in octal.) 

Ihe program consists of two parts:  a recursive subroutine 
called OSORT located between (relative addresses) 0 and 166, and 
the main program between 170 and 204.  The main program expects 
two integers in registers 0 ard 1, which are to be the bounds of 
the core locations whose contents are to be sorted.  It simply 
pushes these parameters on the stack (which grows downward from 
Its initial value of 1400) and calls the subroutine QSORT.  This 
subroutine works as follows: 

It uses Rl and R2 to point to the lower and upper bounds, 
respectively, of the vector to be sorted.  If Rl Is greater than 
or equal to R2, there is no sorting to be done;  hence It returns. 
Otherwise, it compares the elements pointed bv Rl and R2.  If no 
exchange is necessarv, K2 is decremented by 1 and the process is 
repeated.  After the first exchange PI Is incremented by 1 (Note: 
Since sorting Is done in units of words, the addresses are really 
incremented by 2).  Comparison with the element pointed by R2 
and incrementation continues until another exchange occurs, at 
which point P2 is decreased again.  The sorting goes on this wav, 
"burning the candle at both ends", until Rl and P2 point to the 
same element.  During this rrocess, the value which was initially 
pointed by Rl has been exchanged everytime the direction was 
switched.  When R1=R2, this value will have found its final position 
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i.e., the position it must have in the completely sorted vector 
(The interested reader can convince himself of this.)  Kurtlier, 
this element now divides the vector into two parts, namelv, 
that to its left and that to its right.  These two parts, which 
Knuth calls "subfiles", can be sorted with the same procedure. 
Hence, QSORT then calls itself twice, to sort first the leli 
subfile and then the right subfile. 

The -11 code given in Illustration 4.1 was produced bv the 
BLISS-11 compiler and the comments, preceded by the symbol ":", 
were inserted later bv hand. 

I 
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to be 
every 
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two Ci 
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to the 
progra 
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ogram r 
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set t 
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un to 
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he d 
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1 1 b 
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a t iv 

shal 1 
OSORT, 
e f au1t 
u t the 
t five 
let ion. 
are co 

st rat io 
d TIO ( 
sort pr 
one wh 

000 (tli 
e sort e 
rout i ne 
the nod 
ng to 5 
ine TIO 
at 1 oca 
e add re 

load the 
initial I z 
mode for 
node-obj e 
node inst 

The mon 
ntalned i 
■4.2.  I 
for Type 
ogram , on 
ich is ex 
Is copy w 
d . ) :  it 
D K F 1 0 f r 

e definit 
;  ini t la 
at every 

tion 20 17 
s ses in 

-1 1 
e a 
node 
eta 
anc e 
I t or 
n a 
nth 
I/O 
e st 
ecu t 
I 1 I 
Init 
om a 
ion; 
1 i ze 
nod 

0, t 
this 

program, 
vector o 
definit 

n H l h L' c 
s.  Then 

* n • t r (i c 
tile c a 1 
is file, 
Sets) . 
ar t ing a 
e d) and 
be used 
I a 1 i z e s 
file ca 
create 

s it to 
e exit; 
he add re 
examp1e 

which is 
f 40 e1emen t s 
ion and, at 
urrent input/ 

I will let 
tlons which 
led DEMO! , 
there are 

DKM01 loads 
t location 
another 
as data: a 
reg Ist ers R0 
1 led DEFIO and 
s an  object 
0;  inserts 
Rives control 

ss of the main 
are relative 

The routine DKFIO (listed at the bottom of illustration 4 
is a standard routine for constructing input/output sets.  It 
works as follows: 

2) 

The svmbols Cl'RNOBJ , CISP and COSP used in TIO are global 
PDf-10 variables which point to the current node-object, the 
current input-set and the current output-set, respectively.  (As 
a practical matter in the use of DAMK, if the monitor routines 
to be used turn out to be long or if we aren't sure they are 
correct, it is a good idea to prepare them as text files and 
load them at run-time rather than define them on-line, during 
f • •■ analysis sessi-n.)  The format of type-out for objects and 
lists is:  The wo.ds of an object arc typed between slashes.   It 
a word is not zero, it is typed as  left half t>  right half , 
otherwise it is typed as 0.  Thus, node-objectV are tvped out as: 
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•starting loc. -,, • ending loc.> /-no. of instr. in it 
no. of instances- /-input-set ptr> , ,-output-set ptr 

Lists are typed as I-object:- <ob j ec t > . . . |.  Certain 
called "rep-object-,", which are an artifact used for impl 
hierarchical list structures and member ship in multiple 
contain onlv pointers and are typed as • followed by the 
object.  I/O sets are simply lists of ten-word objects ea 
containing up to ten • add r ess • , , • val ue > pairs.  I'nused wo 
contain zeros.  Thus, an I/O set containing up to 10 (add 
value) pairs is typed out as: 

■ address •,.<value • / ■address • , ,-value^ /.../0 /01. 

An I/O set containing more than one 10-word chunk is tvped 
out as : 

objects, 
emen t inß 
lists, 
pointed 
ch 
rds 
ress , 

first 10 words- next 10 words 1. 

(Registers 0 through 7 are represented by their console 
addresses 177700 through 177707 respectively, and the processor 
status wordbyl77776.) 

Illustration 4.3 shows the protocol for this example.  User- 
typed portions are underlined.  The comments in small type were 
entered later and are not a part of the protocol. 

It inserts t 
HIIS (Initialize 
hooks of type NE) 
one hook but this 
enabled without e 
I0S() and IIS() i 
during the node i 
and HBIS (Bui Id I 
operand store and 
routines issue th 
respective sets, 
be closed.  This 
issuing the CIS() 
problem is that i 
nodes, the hooks 
a node and r e-e n a 
initially disable 
and HDISB which a 
They call the rou 

he hooks named HIOS 
Input Set) to be act 
#  These operations 
method permits elth 
ffect ing the other. 
nstructions respectl 
nstance, the hooks n 
nput Set) are insert 
every operand fetch 

e B0S() and BIS() in 
At node exit, the i 

is done by the hooks 
and C0S() Instructi 

n case the entire -1 
HBIS and HBOS must b 
bled at entry into a 
I these hooks, and i 
re activated at nodr 
tines ENAB and DISAb 

(Initialize Out 
i vated at node 
could have been 
er one to be di 
These routines 

vely. To bui]d 
amed HBOS (Bull 
ed to be activa 
, respectively, 
structions to m 
nput and output 
named HCIS and 

ons respec t ivel 
1 program is no 
e turned off at 
new one. Thus 

nserts the hook 
entry and exit 
to perform the 

put Set) and 
entry (i.e. 
done with 
sabled and 
issue the 
the I/O sets 

d Output Set) 
ted at every 
These 

aintain their 
sets must 
HCOS, by 

y.  One final 
t covered by 
exit from 

, DEFIO 
■ named HENB 
respectively, 

ir functions. 

While this procedure for building I/O sets is rather long 
and elaborate, it is more efficient and flexible than automatically 
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iVöTilV^   oT*170/"!'  K-th-. by preparing it as a file and simply calling it when reaulred, it can be 

The 

used easily, 

it is less than 5, the following 

illustrates the The protocol shown in Illustration 3. als, 

rvn./ I 177701 is the console address of register 1 
ypes out certain information about the state of the program at' 

th r^rin^r1 node entrv or exits where "I'«« 1 ~ eitner as input or output. 

The message 
ou 

encountered 
u""^^ AT 20206, followin« the last I/O set 

bv the simulator when the halt instruction is 

■ 
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Illustration   4.2 

Contents of  file DFMOl : 
iDAME Routine DEWOl 

DC«0l(L0*D('0S0HT   ?0000) 

U0t0(iQ30RT   10000} 

lOBJCRO   0   J0000)   10BJ(Rl   0   JfllOO) 

LM«(I0EP10   ••)   EXCOEFIO) 

Comnent s 

:ioad QSORT file  starting .u  20000 

!load a  second  copy as  data  to be  sorted 

!Insert bounds   in registers 

Uoad  DAME  file  DEFIO;   exec,   routine  DtFIO 

NTR() 

C»(iC)   10BJ(C   0   0) Icreate C;   Initialize  It;  default  node definition 

»tJN(20l70)) 
IDAME  Routine  TIO 

T10(!F(C 'LT 5 (K)((C»LM TK'NOOCl) 
TIOBJCCUBNOBJ) 

TK'INPUT) T!("-SET|) 

TI0BJ(CI9P) 

T1(«0UTPT) TIC-BETi) 
TI0BJ(C03P} 

«*('♦ C C 1) ) 

(0I9AB(MTI0)))) 

Contents of file OKFiO: 

iDAMt routine DEHO - causes initialization, building 

Istart to run from 20170, QUICKSORT 

Ilf C < 5 then 
I (type msg  and   current   node-object 

Itype curr.   Input  set 

•type curr.  output   set 

liner.  C) 

^otherwise disable hook 

land closing of input/output sets 
0tF10(MO0K(tKE (lOSO) «MIOS) 

MOOKPOS (BOSO) IMBOS) 
M00K{"N)r (COSO) IMC09) 
M00K(INE (IISO) "MUS) 
HOOKttOr (Bism 'MBIS) 
H00«<(tNl«   (CISO)    "HCIS) 

DIS«B(HBIS) 

H00K(*NE   ENAB   'HENB) 
HOOM'Nir   DIS*fl   "HOISB)) 

EN*B(EN*B(MB0S)   ENABfHUlS)) 
0|9AB(DISAB(HB0S)   DI9Ag(HBlS)) 

Ilnltialize  output   set   at   node  entry 
Ibulld  output   set   at   each   store  operation 
Iclose  output   set  at   node  exit 
Unitialize   input   set 
Ibuild   input   set  at   each   fetch  operation 
Iclose   Input   set   at   node  exit 

1 initially disable  "build   i/o  set"  hooks 

lat  node entry,  enable  them 
lat   node  exit,   disable   rhtnn  again  -   In  case  nodes 
Idon't  cover  entire  program 

tmammmmmmmm 

■ ■  i        ..   
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11 lustraLion k.3 

• HON  DAME 

UAHEl ;/!«... 

••L*r(( ■ÜEMÜI     ••) 

••£A(DEM01) 
•-flLE   LOAOiLL)   2BH0Ö      ro      20206 

---PILE   LOAC-D   30000      ro      3a206 I Typed out by  th« LOAD coon.n* In DJMOI 

3H000/I374,,0/|77 

000/1372,,3810«/ 

NOOE.2a000./2kJa£,4/1^#1/2abb0(qj#2055a2 

20020.. :0/1372,,3k,1^S;200,0..,/177700..30000   --.200, 4, ,, 2/, 374, , 3000«; 

OufH   -M- ^"^l^';77«'"3«««0/0/0/0/./0/0/0/0   , 'M ^776.,0/I7770|,.30000/0/0/0/0/ö/e/0/0    , 

mjUl   ^T't'77^".30000.30000..1(,M6/177702„30I00/30l00„,403/0/0,0/e/ 

00.^-^.^1 77776..0,30100.. ,403/0/0/0/0/0/0/0/0   , 

;2;itjj«j;^«^i..i/iwtiT..tMtii 

6U/n770L^^^7]/7
a/

6^/;77703''l^l46/:J0f'0f'•••^3/30I00,,,e146/177707,,?005 
---MALf   AI     20206 

t us now,   for exacple,  display  the  values  of  reg- 
.ster  1   at  the ei.cry or exit  from  the most  recent 

••K.ArBC 17770,   3j 
rhc    ronaat  of  the  type-MJt  1»; 

3 node  Instances  In whose  i/o sets  It appears. 

Instance 
Index 

S'.arcing Instr.count   Input Output 
A. dr. at  entrv set      Addr. 

Value in 
i/o set 

3621  NODE   INST.   2^r6"^0000     4107     3^6301542     4     OUTPUT   VALUE   :30100 

362.   NODE   MIT.   20160000000      4,07      30,5,630,542      4      INPUT   VALUE    130042 
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Example 2.  Construction of Node Transition Matrix 

A common type of model u 
is the so-called "transition 
the number of transitions fro 
each element in this matrix b 
the same row, one can obtain 
matrix P whose element P(l,j) 
node to be executed belnjj nod 
i.  In this example, I shall 
the matrix M.  Since we do no 
initially allocate the space 
take is to use the data in th 
by DAME as the -11 program ru 
nodes.  However, this table i 
it is co be dumped onto disk 
zero.  This pointer is initia 
contains some additional Info 
shall maintain the integrity 
time the table NODETRACE is f 
onto disk. 

sed for represent 
matrix" M whose e 
m node 1 to node 
y the sum of al1 

a Markovian trans 
is the probabi11 

e j given that th 
give a DAME proce 
t know the number 
for M.  Thus, the 
e NODETRACE table 
ns, to count the 
s of fixed size a 
and its pointer N 
lly 4, since the 
rmation in the fi 
of the matrix M b 
ull, prior to d'jm 

ing control flow 
lement M(1,J) is 
j .  By dividing 
the elements in 
itlon probability 
ty of the next 
e current node is 
dure for constructing 
of nodes, we cannot 
approach we will 

, which is maintained 
transitions between 
nd when it is full, 
TRACEPTR is set to 
table initially 
rst four words.  We 
y updating M each 
ping the latter 

To load the program and initialize the main memory, we shall 
use the DEM01 routine of Example 1 except that the TIOBJ Instruction 
for typing out I/O sets will be removed. 

In the file named FLW, given in the next illustration, there 
are four routines:  FLW, CHFLW, SFLW and FINDI .  FLW is to be 
executed only k-h-n the table NODETRACE has been dumped onto disk 
for the first t ime. 

FLW determines the number of existing nodes by taking the 
cardinality of the "node subclass master list" pointed by MNODESC: 

2 
stores that v^lue in E, sets F=E , declares the node transition 
table H as containing F words aid the vector NV, which will contain 
the starting address of each noL", as containing E words.  It also 
creates the object G, which will be used tc index into NV, and 
sets it to zero.  It then searches the node subclass master list 
to determine the address of each node and fills in the vector NV. 
The node whose index in NV is i will be represented by the column 
i and row i and M. 

The routine CHFLW is activated prior to each dump via the 
hook HNX1 inserted at run-time;  it goes through the table NODETRACE 
and passes each node-address in chronological order to routine 
SFLW.  SFLW computes the index into the table M for each node by 
calling FINDI to get the index into the vector NV of the node 
address passed to it, and updates M. 

II I itl l^KlH 
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The success of this procedure clearly depends on the 
execution of every node defined in program at least once until 
the first dump so that Fl.W will see It« name in the NODK.TRACE 
table and put its address in the node ve-tor NV.  However, if 
some node does not appear in NODETRACE, this will he detected 
by F1NDI since that node wiM not be found in NV, and it will 
type the message ' ERROR-IN-FINDI' and return the control to the 
user.  So, this procedure for constructing M is not foolproof, 
but it is efficient since it requires little monitoring activity 

between dumps of NODETRACF. 

Illustrations 4.A and 4.5 show the DAME routines and the 

protocol, respectively. 

---t*«*^cM"    • '■-  —'■— 
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I 1 In- t r ii Ion 

I Routine   PIM 

n.«(:»(tr) ci»(<f) CBCISO) C»C«|«CI etc*rii CRMFPI . 
!i:?! ?:!::i "(,o, c*("<' ^«(.5,^ ip B

Rf LD;oresomeübjectsforiateru,e 
C'CD   CRCU)   CR("I)   CB('C».00£) 

Initial   search   HDUS   tor  NODETWCE 

get  no.   of   nodes,   E 

2 
sire  of M,   F -   E 

create M  and  NV;   (Ignore   100 and   0) 

C -  0 

Search   List   (SLST)   works   Ju.t   like   USET;   ste   S.i.l 

IC8J(L   0   U)   I0BJ{U  0   mo) 

f*4L(e   C*B01N*L    ',   MNODESC) 

etc*« ioo o ^) CCNV ioo o n 

lOBJte o o) 

SlSTfM   «N00E3C   (^OP(H) 

f y 

11 

"*('/   M   N   1000000) Iget   left   half 

' ' ' '    .-^Mo;  - H,   o •- 0*1;   continue search 

•get   left   half  of  every 4  word  of  NODhTRACE   Into  J 

MiCM   5EtT,.B0UGM   >,   N}^ 

. ..... f s*-'1 word ^ I0BJ(M    H) J of   node-ohj.   into H 

iRout^e   CHUM 

ei#k*(lMetCI   L   U   a   (BA(i|   J   »iOOET«*   u 
BAP/   J   j   lOOCOOO) 

Ipass   If  SFLW 

1 Routine   S>LW 
S'LutP^PfCNOOE) 

PU3M(J) 

fXfSFL»)))) 

Ipop passed pjraraeter into CNODE 

\.eni  ^f  oldnj.o then (oldnd - cnode, return; 

•El - index of OLUND in SV 

PUSN(C>.00E)   IKftMtll   »0P(Ei) 
.F2  -   index  of   CNODE   In   MV 

BAf'a    IN0   Fl    |) .   _ 
• cc»=pute   Index   Into M 

BAP»   INO   1N0  fi) 

BAP I    INC   *   ISO) •„   ,      ,. ' -get   old   tount   In M 

BAfU    INC    ISC    1)    lOBJC    ISO    ISCI      • ii    iuojv       iiu   i^cj      .intrenent  and   store   it   back 

.oldnd •-  cnode lOBJfOLOSC   0   CSOOt)) 
'■f.-.'-.-e   FIND! 
EIs;i(P0P(O) 

L 

I^rnfJ  0  E   I 

(BAp 1    N   NV   J) 

IP(x   "PO  0   (»üSM(J)   ■CTftllHI 

TIpEBOO»)   Tl(i-IN.F)    TIPINOII)    STOPO) 

Hook   for  passed   address   In  vector  NV 

I If   found,   return   its   Index 

lulherwUe  report   error  and   stop 
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1 ! lustr.it ion   •. > 

. KUN    UAMf 

ÜAMCl 1/ It). . . 

•«MM •l-LMOl     •.)   LHK( 'FLW    ••)      |U.d  DAME   fll«.  DEMOt   -nd  FLW.     The  hook HTIO ha. 

Ibeen  removt.'d   fron Dmol 
• •MBOHCM   liriMTMC»   »M  0  CHFI>))   -HNAI )    ;h(>ok ntai   to b. .ctlv.ted  l.t.r 

• »UliAHC MNÄI  ) Idltable   It 

• •Hi-ljKt'NA    (irtNIKACE^     "EU   HS 

••* <tA(kLW)   EX(CMFLW)    IOHJ(L   0   0)!>iwlU be executed «fter   1. dump only 
••' ENAHtMNAl)   UI bAH ( HNX2) ) )) « JHNXI  will be ».ctlv.ted after 

J «ubacquent duinpt 

jHavlng  placed hooks  HKX1   and  H:iX2 we can  etart up  the progra« via Da« I  which   load»  two coplea of   It,  one 
Ito  be  used   M   data,   and   runs   It. 

••EAtUEMOl) 
 FILE   LOADED   MMi TO 2HÜ416 
 F ILL   UM0C1   JBHtftf 1 ) ■M62IA6 
 KALI   Al       ^«^»6 
••lÜÖJ(NV) 

lexecutton  flnlihed 
Itype  the  node-vector  NV 

2tfl 7«l/^l1.)üB/^0«3^/PDHI36/?0*)42/200b6/20070/2006a/?e074/2BI02/2Bl 10/201 16' 
200«;6/^0l6 0/2ai3«>/20l b4 

•»TOfaJfE) 

••lOUJCJ   0   0) 

• •INCKCO   0   377    It       Itype H aa  a  20x20  table. 
• •• (HA( 'I   '.   M   ü)S 
••• tr101w>t 
••• ÜA('•    J   J    I)t 
••• 1F<J    'EW   20    (AA(CHLF)$ 
• •• 10BJ< J   0   0) ) ) ) > 

00000000000 
000000000       12 

I 44      0000000       |2e 
0      43      000       100      0000 

Itype  ilte of matrix M 

$  li a continuation char. 
IQ ► M(C) 
Itype Q 
IJ - J-M 
Uf J-20 than  (nart new UM;   J - 0) 

I 
0 

0 

0 
12 
0 

0 
13 
0 
0 
0 
0 
25 
16 
0 
b2 
26 

0 
0 
0 

0 

0       0 
0       0 

0       0 
0      0 

0      0 
0       0 
0       0 
0       0 

■        0 
0        0 

0      0 
0       0 

2,>     0 
0 2b 

0      0 
0      0 

0 0 
0       0 
0        0 
0    0 

0 0 
0 0 

0      0 
0 0 

16      0      0 
0 0      0 
0 0 
0 0 

0 0 
0 C 
0 e 
0 ( 

0       0 

0 
0 

S2 
0 
0 
0 

0 
0 

0 
0 

0 
0       0 
0 0 
0 0 
26 
0      0 
0      0 
0      0 

0      0 
0      0 

0      0 
0        0 

0        0 
0     0      0 

e   o   0 
000 

0000 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 12 0 0 
0 0 7 6 

0 0 0 0 
0 3 3 0 

In   the   table   typed  above,   element   (l.J)   li 
the  nuaher  of   tramUiona   from  node   I   to  node   J 
where   1   and   )  are  the   Indices  of   node  addrei.se*   In 
vector NV. 
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»M»ri« 3.   AB.u.i, of >.>.r^., tn tfl< 9PTrrT„ 

is . xa.pl t.wt.hll (.onsid).r the   f„1](iwi 
an „n MnMed B„.b„ of proc...or- „J^^J  n 

•«) processor Is able to 1,..,.,.. „ne ld,( 
vector to processor 

Suppose w» 
sue h | wav t ha t 

first recursive call on OSOPT  ' tl,US •■•bl*"i »■ to execute the 
th- instruction.. ,sd<

UU  ! Pf^l-> with the second.   Ignori«, 

2ou4. .sti.at t r: a s r,t;::n.Inüp ai OSORT
' »•••. ">*" - 

to sort a «iven vector nUmber ,,f in^ructions executed) 

Thus, the flow of coatrel looks i | 
t«c h branch indicates 
computed corresponds t 

■ b i n a r v t r e e whe re 
one execution of QSORT.  The time to bc 

Procdure give, slrl,^"''^*    ''!'' l*    ' h ' S tr"e-   **•   DA^ 
ting a n,.ste,i  i   itJucturl J! "  'f^*' t h *S ProhI^ bv —stru.- 
h- -,..  Cenents'.  ^ e        -T —t.ng the tree.  Fach list 

number „f i n s t rue t i Li itl'l   J?!"" h^   ^   ****•   containing the 
•id been executed instructions wh i ch 

and up to the exit fm- f .        executed up to the entry 

*■ i i. s usual ■•anlnp in DAME.). 

to '--"""•-."•.-: irü::..^:..*:'::?^ «-• 
DAME rout i ne f i 1 

s e n t e d b v the nested list t r«« 

ur^^-.-iiin.iin:; v.i:" • — ^ '••■ •---'• 
pre  eed 

rep r t - 

nod( 

■ hovg t h Lach node in th.. i r 

i>«r.. i. th. r.,.., „4 v th. i«t": !ir     "    ''s"/ 
indicates terminal 

It can be seen that in 
w o u 

the gSORT rout ine 
». t;«!«"... ...xii. .-.:c

h:.:rhio?i!.":.j:!j:0;
h^?j.:k:( 

t ree 
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I 1 lu-,t r.iUon  4.6 

I Routine   QPAH 

QP»B(LO*0('3SO«T   20000)   L040M0S0RT   JOOO0)      Ilo^d progr«m 
I0BJ(»n   0   J0000)    10HJ(Rl   0   JOOaO) li.t bound,   for 20 element. 
CRCTt-P)   CR('0BJ»0)   r«('lCT)   CRPLl)   Cd(tL2) 
C<»('rL»C)   CBCTtHP?) 
CP('»00T)   fViLOOOT   «AKtLlST)   10BJ(0BJ»0   0   ROOT)     Ure.te root of  U.t.  put   U  la ROOT 
PU5H{0) Ipush   Initial   «mount   of   time  patsed>0 and  OBJAD 
RU9H(0RJ*0) ipush address  of   list   root 

NOMfUlf   P*R0  20000   20000 "MPARO) 
NOOKCUtf   »»RJ   20012   20052 iMR4»n 
M00K("Air   PA«2   20116   20116 <HP*H2) 
NOORflAtP   R*R1   20156   20116 'MPARI) 
RON(20lT0)) 

'.Routine  PAR0 

R»R0(lOBJ(PL»C   0   1)        Iset   flag  to  U dlcate  new entry 

RORtOBJAO) :get address ot  current object 

POR(TEMP) Iget  amount  of  time already elapsed  In  this branch 

EV4L(L2   CReOBJ   100   0   2   0)     Create a 2-vord  object.     Put  Us address  In L2 

I*0BJ(L2   0   TEXP) llnsert   In  Us word 0 tüne already  elapsed 

XXCI^CLUOF   •,   ii   •,   OBJ*0)):execute external   -10 routine  INCLUDE  to put  the new objeci   In 
. the  current   list 
.Routine   PAR) 
R*Rl(IP(rL*C   l||   1   (lOBJdCT  9   1C0UNT)   IPBJ(rL«G 0  0))))  »y fi,g U ,et. get nuinber of lB. 
.Routine   PAR? .»_.   , .a.        Tv^-. ■ . 
R*R2fB«('-   TE-R2   1C0UNT   ICT) 

fU ; ' ♦   T|xP2   Te>«P2   TfHP) /teraP2 -  t«n>P+lcount   -  let 
RUSN(TtMP2) 

structlons  through this nod« 

pass   It   to  PARO or  PAR3 

!Insert   total   Instructions  In word   I  of  new object 

Ipass address  of  current  Hat  to  ENDR 

Ipass   total   Instru'.lons  to  ENDR 

I*0BJ(L2   1   TE«^) 

^U3H(CBJ»0) 

RL'S-tTf >«P2) 

IX(E*<0R)) 

1 Routine   ENDR 

EMOR(fV*L(Ll   XAKFLIST) 

EVAL(T£«P   MAKERFR   '.   LI) 

««(INCLUDE   ',   TEHP   ',   0BJ40) 

^U5M<LI)   ) 

I Routine   PARI 

R»R3(PCR(oflj«o) mmm p«iNcif«»i iniMitii :get v.lues 0{ 0BJAD ^ TQ1p. .y ENI)R 

^create a new list.  Put Its address In LI. 

include the new list as a manber of currant list 

'pass address of new list to PARO or PAR3 

J 
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I 1 lii-.tr.it i>iti   .. 

lload  and  eKecute QPAR 

• »t A( ur-An ) 
---►ILt   LlMOCO   ^»IHMH       10      SHPVH, 
 > iLt   LOAOCO   Jk}*)i4M       10      je?t)6 
- --MMLI    Al       ,M^H6 
• »I lUQJtHJlH > 
iti/thA   -->i^64/4jb   ■••C40W4M   ■ 

IIJ—»lOTV«    iJJ--.1374/413    --»1413/*,    J.-.HU/*    njJ '       *   ^ 

lexecutlon  finished 
• type   tht   list pointed  by  ROOT 

>(46;v14  I—»(«m/fn  --»rsn/'i   J..,tsn 

below: 
The  tree  represented by  thl»   list   i*  re-drawn 

1 1 hi^t i aion   4.8 

Kxecution  Tree  Constructed by  gPAR 

0/264 

4 13/0 

II;/I 517/536 

536/0 5 36/0 

i  note   In   the   tree     ',...•.   the   instruction» 
exrcutod   alon^   that   branch  u^   to   the   entry   and   the 
t   it   fr<*i  the  node  as   x/y,  wh.'re   x   is   tlu-   former 
and   y   the   Litt.-r.      y 0   mdlciies   terniinal   node». 

It   i an be   seen  that   in   the   two   Ion,;.'   t   IMUM     ^ 
thro.!»;!!   ihf   tree,   S It.   Instnution.  would  be  e\e.iit 
e.l  by   tin- niln-lnop  portion  ot   th.    ,i.tii  progl I   . 

■k 
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' ■ ! »g1« ^'  j' •< L-' _Fl.uw jg t w e e n Two Ro4« I 

ls tl  
IU

i ;1',Sr »f •••iMi« tasks for which DAMK is most suitable 
!■ th« *««r«lrt«tto« Of the data t 1 .w between two ..odes  hv 
indin« the addresses whioh are both in the output se  .t one 

and t e  nput set of the other.  This analvsis ^    ll.lL'V*   one 

conse ^ !    rnSM ' f:ÜW-  If the n0d<' l««""a h.pM. to he ^onse...i.e. then this procedure will vield the exa.t nature of 

^i^f!I;'ti0,, r-—d f"- — ^ the other.   If. a« the OthVf 
I:-; \ftllSll     rT"*!?! "J- l««"'". then one h.. to monitor 

iitill!!'!?   '"  h* data ,lüW between the two nodes.   Kor a more 
üeta.Ud dis.uss.on o!  this Question, see Chapter ?. Se.tion 2.2.2, 

Representation of the data flow from a node N to a node N 
tor th s purpose can. at the simplest level, he . list X of .ot. 

■;   ' ^ 1KI "• ••«■ ••« consisting of triples (A.B.r, V;K.r., 

A is an address which is in the input set (stri.tlv speaMnK. v M o h 
. th.  addre^ part" ot some member of the input setj oi    tl.    itl* 
lÄ,tMC« " o*   ■ and also In the output set of some instance .V 

of H which occurred chronologically between N    and N .  If there 

• r« several such instan.es of H, then M  is th« UtO.t'a««.   In 

I11* 'I  ■■  trlI»J«. ■ a^ C are the contents of A upon entrv into 
•\ aild Upün "*« P"" -..respectivelv.  ta this example, a 1*1 

illlltlll   ML0W and ^ ••••«*•»•< subroutines BPIID and COM 

1 i below   ThePrOCnSS-   TheSC rOUtlnCS ^^ RiVPn in tKj illustra- tion below   The -11 prrgram on which we operate is awain the 
bv-n^-fammar OSOPT.  For the purposes of this example, we shall 

20000   Vi   I        I?i;*,l0Mr- n0dC NA tÜ n0dt' NB' "»"^M from .0000 ( .e  relative address 0) to 20024 and from 20042 to 20072 
respectlvelv.  R« is the   first node in QfORT.  It saves the contents 
o  r.^sters HI. 1<2 and K3 on the stack. Rets the parame e s  w 

R  and. ^^ \nd UPPer bOUndS 0f tU   Ve<t0r tt' ^   ••"•d) in o 
"J M. checks to see if lower bound is less than upper bound 

•««.     10. branches to the main portion which does the sortin*. 
Ihe second node, NH . is entered when two elements which have to 
be interchanged have been found.  These elements are pointed bv 
M •'«. K  and F,2.  NH makes the exchange, tests the' f 1 a, wh c h 

tltitll        I   I      '^ V   t,ie VeCt0r iS t0 bt' ^vanced in accordance 
v th  he quicksort algorithm, makes the advancement, complements 
the flags and branches back to the beginning of the loop.  We 
note that while NA an.! MB are not consecutive, the intervening 
instruct ons in locations 20032 to 20040 do not modify anv locations 
except PS and PC.  As ,111 be seen, neither of these appear in 
tr.t- input set of NB. 
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Iht' DAM1 routines |iv«a here are quit« geiK-ral and nnild 
l3'' applied to anv two nodes bv changltt| the 1 i n i t s of the nodes 

in the iODI and HOOK instructions in DFLOU and tin- P08ET instru. 
t i on in COPY. 

To explain briet./ the functioning of the procedure, the Bain 
routlo« DHOW does the fn]lowing: 

(i)  Creates some objects which will be u«-ed later; of the si, 
NA1NL will point to the list we are interested in, 

(ii)  Creates a list and stores Its address in MAIN'L, 

(111)  Loads two copies ot QSORT, one of which will be ust-d 
■ ■ d ■ t ■ , 

(iv)  Defines nodes NA and N'H, 

(v)  Loads and executes the DAME routin« DEFIO (this routine, 
i- will be recalled fron an earlier example, simplv places hooks 
at node entrv exit points to lulld input/output sets), 

(vij   Inserts a bool to execute routine KIII.D after each 

•xacutloa »i   the Lnatructloa at location 2007 2, i.e. aftar HI« 

^v''!  Initializes raglatatl RQ and PI to certain t lu- i n i t : .1 ' 
bouadl Of the vector to be sorted fwhich is what the main progra- 
QUl cKS'ip; axpecca), 

(viii)  Starts the execution from location 20170, the s t a r t i n 1; 
address of 01'ICK SORT. 

The routine BUILD is thus activated after aacb instance of 
HI and does the following: 

(i)  Creates a list, pointed by I, 

(ii;  Searches the current  input set, pointed hv CISP, for 
addresses which also occur in the output sets of    the instan*.^ 

: NA and makes an entrv in the list poi-ned bv 1. for each such 
address. 

(11 will be ra ca11ad that an input set is a list of one or 

more ten-word objacta, each word of wind contains an address in 

the left halt and the contents ot that address in the right half. 

A zero lad1cata■ the end of the list.  The address 0 is represented 

by 777 7 77.  Cl contains tie address ot current word to be looked 

at.  The instruction Insert  Indirect, I I OBJ (("2 Cl) , inserts in 

C2 -he contents of the word pointed by Cl.  The COPY routine OXtracti 
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and 
ins 

s . 
in t 
des 

for 
u t s 
t ed 
ue j 
Add 
pel 

the 
of 

hose 

uses the FOSKT and FVA1. instruc- 
tance of the node NA in whose 
If one is found, C.b   will contain 
he output set found;  otherwise 
cription of the FOSET instruction 
a better understanding of how 
et has been found, an object of 
by C7.  The contents of the word 
ust found in the output set are 
ressed (IAOBJ  Instructions, 
nted by L, and COPY returns tu 
search until the current input 
the SLST Instruction, 1. points 
first word contains the data 

(iii/  Puts L in the Tiain list pointed by MAINL and types 
ou»- the list pointed by L. 

. —      
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Illustration   4.9 

troutin«   DPLOW 
DPLOVCCRCL)   CRCC)   «('CD   c.H(\:2) 

CKCCJ)    CRCC*)    CPCfS)    CR('C6)    C\<('C7) 
CRC Li)   CR('HAINL) 
.'create a list; put its address in MAIM. 
EVAL(MAIRL MAKBLIST) 
.'li'ad tVO copies of OS ORT 

LOAO(*0SORT   20000)   LOADCQSORT   30000) 
.'define the nodes NA and NB 

NODKC'NA 20000 20024) NODF.CNB 20042 20072) 
.'load .ion 1 tor routine DF.FIO and execute it 
LHRCOEFXO '*) BX(DEPIO) 
.'insert hook to build desired lists 
HOOK('MC IVILD 20072 20072 
.'initialize HO and PI, and yo . . . 
IOBJ(RO 0 30000) I0BJ(H1 0 30040) RUH(20170)) 

for   this 

CXIP 
of first 

instance 

1 0 - w o r d 

point I 

o b i ec t 

to it 

.'routine IUIL0 

IVILD(EVAL(L NARELI8T) .'create a list 
{•••rch current input list pointed hv 

SLST(C CISP (POP (Cl) .'pet addr 
.'search each word 

IRCR(1 0 111 (IIOBJ(C2 Cl) !g«t contents into C2 
IP(C2 'EO 0 (RET(2>)) .'if 0, end search 
BA( '+ Cl Cl 1 ) .'else, incr. Cl 
EX (COPY)  )) .'call fOPY 

PUSH(0))) .'continue search 

XXdRCLUOE 
TIOBJ(L)) 

HAIHL) .'put list pointer into na in-list 
type list for tb's instance 

! rout in« COP1 
':^'!'V(b/( ' / C3 C2 1000000) .'pet left half info CJ 

irch output sets of node N'A startinp with most recent 
F(. r.T(C* 20000 (P0P(C5) .'pet address of first object 

FV,M.(C6 C3 C5) .'pet value of address which 
is In C3 from the object 
pointed by C5 into Cf> 

lif CC  0, continue search else quit 
IP(CI 'LT "    (PrSH(0)) (PL'S1!(1))))) 

lit   search failed, exit routine 
iF(C4 'LI 0 (PFT(2))) 

.'otherwise,    create   a   2-word   object;    point   C7    to    it 
BVAL(C7   CREORJ   100   0   2   0) 
! i n ■ • r I    contents   of   C2    into   wfird   0   of   new   object 
[A0RJ(C7   Ü   C2) 
.'insert contents of C6 into word 1 of new object 
I/.0RJ(C7 1 C6) 

.'put new object in the list for the current instance 
Xy( IHCLUDE ' . C7 ' . L) ) 

instance 

^ 
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niustration   A.10 

. LOG 
.JOR    14    CMUIOA    7.CÜ/DV.V   5.04 b   TTYlj 
fC410BA07 
PASSHOtDi 
1247 U-JL'N-73 THL'P 
TH    L200.•.NEWS((-14) 

.RÜ1 NDAME 

Ü.'Vtll / 10. . . 

**!.^R('DFl.OW •*) EX(DFI.0W) 
 Pill LOADED 20000 TO 20206 
 FILE LOADED 30000 TO 30206 

1 77701 ,, 30000/30000 30000, '11 
30040, , 3415/3415 1 777O7 , , 20052 
17701 ,, 30002/30002 30002,,102 

30040/30040 30040t(10146/10146 
'177776 20066, ,17 7 7 76/177776 
177701, ,30002/30002 30002,,10 

300034/30034 30034 ,, 3430/3430 
20060,,2/2 

1 77701 , ,30004 '30004 30004, ,10 
3 0034/3003 4 30034,, 10146/10146 
177776/177776 20066 . , 1 77776/17 

1 77701 ,.30004/30004 30004,,10 
30030/30030 30030 ,, 453/453 177 
20C60,,2/2 

1 77701 ,,30006/30O06 30006,,12 
30030/30030 30030 , , 10146/10146 
177776/177776 20066, ,177776/17 

:77701,,30006/30006 30006,,10 
30026/30026 30026 ,, 5000/5000 | 
1/1 20060, ,2/2 
• C 

46/10146 177703, ,0/0 1 77702 ,, 30040/30040 
/20052 20052, ,1/1 177700,,]/] 20060, ,2/2 
46/10246 177703,,10146/10144 177702,, 
177 70 7, ,''00 52/2 005 2, ,1 /] 1 7 7 700 , , 1 7 7 7 76 

146/10146 177703,,10 2 46/10246 177702,, 
177707, ,20052/20052 20052, ,1/1 177700,, 

346/10346 177703, ,10146/10146 177702,, 
177707, ,20052/20052 20052,,]/] 177700,, 

7776 , 
146/10146 177^03, ,10346/10346 177702,, 
707, ,20052/20052 20052,,]/] 177700, ,1/1 

70O/12700 177703, ,10146/10146 177702,, 
1 77707 . ,20052/20052 20052, ,1/1 177700., 

7776 
146/10146 ]77703, ,12700/12700 177702, 
77707, ,20052/20052 20052,,1/1 177700,, 
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^3mP1e 5.  Analysis of Instruction Mix and 
Addressing Mode Usage by PDP~-1] Prop r am; 

inter 

.J n d / 

■ v v I r 
What 
wh i ( li 

w o r k 1 
as to 

This e 
a ■ t e d 
45 in 
a 1 p r o 
w | van 
the se 

oad to 
1 1 ows : 

xample is based on an experiipent in which we were 
in comparing the pe r f o rma f. t-s of the PnP-11/20, /AO 
connection with | proposal for the acquisition of 
cessors for the Carnegie Mu1ti-miniprocessor (C.mmp) 
ted was a rough estimate of the relative speeds with 
processors would execute programs typical of the 
be placed on them here.  The procedure followed w.»s 

( 
p rog ra 
p r o g r a 

d 1 s a s s 

mode '' 

vr111• 
prog ra 

Roy L« 
T h «r .-, e 

vorl i o 
p r o g r a 

i) 
ms 
ms 
em 
po 
n 
ms 
V I 

rr 
ad 

Four available programs were selected as benchmark 
:  Two hand-coded in assembly language, and two BLISS/11 

The assembly language programs wero an interactive 
bier for the PDP-11 written by Koy Levin and the "vector 
rtion of the XCP (Xerox Graphic Pointer) support propram 
by George Robertson and Hal Van Zoeren.  The two BLISS/11 
were an interactive PDP-ll dehueging aid written by 

ii and the Quicksort program used in the preceding examples 
ograms were judged to be a i.ood c r o s s-so c t i on of the 
to be run on the C.m.mp, excluding the numbe r-c r unc h i ng 

(ii) 
0t the models 
manuals, 

The information 

40 and /45 wert 
required to project 

derived from the 
the performances 

respective p r ocS S S OI 

(ill)  A DAMI routine (IMtK) was written to monitor the 
execution of these four programs and gather the renuired data, 

(iv)  A DAMK routine (PPOPT) was written to summarize and 

rsport the collected data in the form of instruction mix, addressing 
mode usage and branch, ing statistics, 

(v)  Two BLISS/in programs were written to calculate the 

performances of each of the /40 and /45 (These were needed 

because of the wide dissimilarity in the torms of the processor 

•pSCificstisoi given in the manuals for the two machines.)  These 
programs were written in B1ISS rather than DAMK because of the 

relatively large amount of arithmetic, table-look up etc.  that 

required.  This fact also turned out to be a «ood test of the 

ease with which data could be communicated between 1)AMK and Bl 1SS. 
which was found to be very easy and natural. 

(v i i )       The 
/ 4 5   v/e r e   debuggi 
C ode , 

DAMI routines and the KI ISS models of the 740 and 

d and hand-checked over short seouences of -11 
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(viii)  Several runs of varyinp lengths were made with each 

of the four benchmark programs vith different inputs.  Tie collected 

data was incorporated into a memorandum and sent to various faculty 

and staff members connected with the C,mmp project. 

In this example, 1 shall go over the IM1X program.  As men- 

tioned above, the function of this routine was to build various 

tables and accumulate counts during execution.  He 1ow is a list 

of these data items (all integers below are decimal;  in the listinv; 

of the I MIX routine itself in the next illustration, in octal): 

DOTABl  a 12x8 table contaiulnp a count of each of the twelve- 

do ub 1 e--ope rand Instructions broken down bv the eight desti- 

nation modes, 

SOTAB:  a 26x8 table for single-operand instructions, format 

similar to DOTAB, 

TOTICOUNT:  a vector containing a count for each op-code 

(indexed b v 0 P N- see b e1o w J , 

COSMO:  ■ 12x8 table for iouh1e-operand instructions whose 

source operand mode   0, broken down by destination mode, 

ÜOS0:  a 12xP count table for ioubl« operand instructions 

whoa« source operand mode= 0, 

TOTSMODi  a 12x8 COUIIt table for double-operand instructions 

bv source mode, 

JSRCO:  a count vector tor JSK instruciinns bv dst. TOde, 

ÜSK7:  ■ count of instructions vhos* destination operand is 

register 7 (PC), 

jypH7:  a count of JMF instructions whose destination cperand 

is register 7, 

TOTDO:  total number of double-operand instructions, 

TOTSO:  total number of single-operand instructions, 

TOTCCOC:  total number of condition code operators, 

TOTBF:  total number of onditional branch instructions, 

SUCCEK:  total number of successful conditional branches, 

BRPD:  total distance covered by positive branches. 
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PBCNT:  total number of positive branches, 

BRND:  total distance covered by negative branches, 

NBCNT:  total number of negative branches, 

UNSUCCB:  total number of unsuccessful conditional branches 

In performing these calculations, IMIX uses a number of data 
items supplied by the simulator.  Thes.- are (all items refer to 
the current -11 instruction): 

OPN:  a unique integer representing the op-code, 

(Note:  the op-code itself is not suitable for this purpose) 

SHCMODE:  source operand mode, 

DSTMODE:  destination operand mode, 

DSTREG:  destination register, 

OPC:  character representation of mnemonic op-code, 

OLDPC:  last value of PC, 

The IM1X routine itself is given in the next illustration. 
The protocol and the results of the analysis are not given here 
because that would require the inclusion of the RPORT routine 
as well and possibly also the rtLISS routines for projecting the 
performance? of the MO and U$.  I do not consider the actual 
results of that analysis as important for this thesis as the 
description of the methodology. 

^■■■■■■■■MMM 
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Illustration A. 11 

IHII(Ct(*Cl 300 0 1) CPCTOT) 

CRCDOTAh 100 0 140) .'will contain d.o. Instr. counts bv dst. mode 

CRCSMPCT 100 0 140) '.table   for src. mode percentages 

CRCfOfCl 100 0 320) :table for single ord. instr. percentages 

CRCTOTDO) CKCTOTSO) CR('TOTBR) CRCTOTMS) 
c»('JSRCO ion oio) 
CRCBRPD)   CPCBRN-D) 

CPCPBCNT)   CRCNBCNT) 

(RCTl)   Ct('T2)   CRCTB)   rp('T4) 

HOOKrlc^ ^Mlxir" MIX after eVery ,"^"- 

MIX(BA('i Tl T?
T1C:01

 
0PN) :incretT,ent TOTICOrNTfOPNj 

I()BJ(TOTlCOU OPN Tl) 

:dec,de OPN. call for appropriate action 
IMOPN  LI 13 INDO Uf double operand, call INDO 

(U(OPN  LI 45 INSO Mf single operand, call INSO 
(IFCOPN 'LE 57 INCOP Uf cond. code opr.. call INCOP 
•it conditional branch then call IMCBR, 

.'else incr. "misc. instruction" count 
(IF(0PN 'LE 77 INCBR (MC'♦ TOTMS TOTMS 1) 

.'if JSR. call INJSR 
IF(OPN 'EG 100 INJSR)))))))))) 

.'dpuble-operand instruction handler 
IN!'"(BA('* 13 OPN' 10) .'compute index into TOTSMOD table. Incr. 

IA('4 72 T3 IICMODE) ■•*•! mcr. 
KAC '.    Tl TOTSyOD T2) 
BA('+ Tl Tl 1) 
I0BJ(T0TSM0D T2 Tl) 
•incr. DSR7 if required 
IF(DSTMODE ' EO 0 (IFCDSTREr ' EO 7 (BAC+ r)SR7 DSR7 l))>)) 
•Increment count according to whether srcmode Is 0 or not 
IFdlCNODI 'GT 0 INCG0 INCE0) 
.' incr. total d.o. count 
BA('+ TOTDO TDTDO :)) 

IICe0(BA(;4 T4 T3 DSTMODE) Mncr. count for d.o. instr. with srcmode^O 

table entrv 

BAC .' Tl DOS MO T4) 
BA(,+ Tl Tl 1) 
IOBJ(DOSN0 T4 Tl)) 

(continued on next page) 
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Illust ration 4.11 
(cont inusd) 

INCE0(BA(,+ T4 T3 DSTMODE) Üncr. count for d 

BA('! Tl DOSO T4) 
BA('+ Tl Tl 1) 
IOBJ(DOS0 T4 Tl)) 

I single-operand Instruction handler 
INSO(BA('- 

BA( '* 
BA( ' + 

instr. with srcmode=0 

BA( ' : 
BA( ' + 

T3 OPN 14) .'compute index into SOTAB 
T3 T3 10) 
T4 T3 DSTMODE) 
Tl SOTAB T4) 
Tl Tl 1) 

I0BJ(S0TAB T4 Tl) .'incr. SOTAB entry 
BA(,+ TOTSO TOTSO 1) liner, total s.o 
lincrement DS7 and JMPR7 if required 
IF( DSTMODE 'EQ 0(IF(DSTPEG 'FO 7 

(BA('+ DSR7 DSP7 
I ■"'(OPr 'EQ ' JMP 

and store 
. count 

it hack 

1) 
(BA('+ JMPR7 JMPR7 1)) )))))) 

lincrement total cond. code operator count 
INC0P(BA('+ TOTCCOC T0TCC0C 1)) 

lincrement total branch count, take care of successful and unsucc. branches 
INCBR(BA('+ TOTBR TOTBR 1) 

BA('- Tl PC OLDPC) 
IF(T1 'NEQ 2 INCSB INCUB)) 

^successful branch 
INCSB(BA('+ SUCCBR SUCCBR 1) 

.'accumulate posi tive (forward ) and negat ''e (backward) branch 
Idistances and counts 
IF(T1 'GT 0 (BA('-f BRPD BRPD Tl) BA('+ PBCNT PBCNT 1)) 

(BA('+ BPND BRND Tl) (BA(,+ NBCNT NBCNT 1)))) 

I unsucc. branch 
INCUB(BA(,+ UNSUCCB UNSUCCB 1)) 

I increment JSR 
INJSR(BA('.' Tl JSRCO DSTMODE) Üncr. JSRCOUNT-by-DSTMODE 

BA('+ Tl Tl 1) 
I0BJ(JSRC0 DSTMODE Tl) 
IF(DSTMODE 'EQ 0 
liner. JSRR7 if required 

(IF(DSTREG 'EQ 7 
(BA('+   JSRR7   JSRR7   1)))))) 

■     -— - ■ - ■— a-uMMMl ■-  -   -■ ■- ' ^•MUMMMMt! 
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A PERFORMANCE MODEL FOR DAME-LIKE SYSTEMS 
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Finally, in Section 5.4, some measurements of the PDP-11 
simulator, the node entry/exit overhead and the input/output 
set overhead are given. 
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5.1 An Informal r.h.rac terlza 11 on of DAME-like Systems 

We shall call a system "DAME-like" if ^^^^Lf-mortem 

is the monitoring and dynamic -
al^-c ^^ ^hy i)'permi 11 ing 

analysis) of the behaviour of the object system ny k / F 
he user to define a structure over ^« P-J^0^^ ^its of 
collecting execution history data ^"^'^ any point in 
that structure in such a way  hat ^^"^^^tLg the user 

e
hr/e!'!fUa/tir:re»"e°^^raf-:£r;£nrfa;nPsrrrcn„. 
where the system state resulting from ^^ ^^^/^ the pro- 
can be completely determined from the inl t ^, f3"^ DAME-like 
cessor and the inputs.  This means  f ^/^^^of programs 
systems are not well suited to analyzxng ^e behaviou     J^ 
with a heavy dependence on the timing o  ^^ ron0^  Backtracking 
since the latter in reality are P^f^1//""^" interrupts or 
over periods of time in which s"c\deV^  "^egistlrs are 
turned on status bits in their device control registe 
difficult to accomplish with DAME-like systems. 

S.2  A Model of DAME-like Systems 

ll ^cirf^nito^Lkl Id je actions -Jiated by the^ 

""Lrn^brd^od^arcrmu^r^ru^tianv^^ride-effects 
^tsi:  "o^tr^^rand decoding/computation proce^ 

auto-increment/decrement in  ^/^^^"^ct to checks on such 

cl0nal oP-^^^-Hv:;   rindrre^iddressing will be per- 
ritred^-On'thr^r'rand, for the P-Pose of keeping ^ ex- 

position simple, only «^f-^t^Pf^nside^d.  Even with 
half word or byte-addressing) will be ^slder^     accurate 
this restriction, ^ is impossible to gve^^sing ^^   ^^ 

and constructive model of the insc^     satisfying this restric- 
will describe all conveivable processor """^L^™ kind 
tiin.  in the nodel given below  we -su-  h     low-g ^ ^^ 

of an instruction decoding P™"***  T^ ^erands is determined; 
its opcode is determined;  the ^ber . ^ .^^d, operand is 
the address of each operand is de*e™l*l*™\ *™\   ^cess-type 
fetched or stored, one at J^^^^^^re operation is'usually 
as determined from the inst ^uc^i0n ' , „"^ he   ^^ed from the 
preceded by a computation of the value to be stored 
operands which have been fetched so far. 

-, ..  ■--~.-..;!—-...■ -^.-^.J.^..■■-■ ... ■■■-.I.^J.T.L.- . ..-^.■..-.■-.-.-■.■- ...   i,-|h|ir, ,rii,(liWfhiii1inii   »IM- .■■,-..^.^^-..^-:  _>;■■. i iniiiiMiwiiMr^mafc^Mia 
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We can break down Che total cost, C, of the slnulateu 
execution of an object machine Instruction Into 3 parts: 

1- The basic erst, C , of indexing into the object machine 
B 

memory to get the instruction, executing the instruction and 
checking for interrupts, 

2- The cost of scheduling memory access events and updatinp 
theclock(C), 

S 

3- The cost of checking for hooks at each contact point (C ). 

II 

Clearly, these cost components are not incurred in lumps, 
but rather they are interleaved throughout the execution of each 
instruction.  C  depends on the semantics of each instruction and 

B 

how easily it can be emulated on the host machine. 

C  is a direct function of the number of events to be scheduled 
S 

In a memory-cycle level simulator, for an instruction involving n 
operands in the main memory, C =(n+2)T  where T =the cost of 

S       S        S 
scheduling an event and activating it.  The two events in addition 
to the n memory accesses for operands, are for simulating the 
delays for fetching the instruction and performing the operation. 

C  is a direct function of the total number of operands 
H 

fetched or stored, including side-effects, by the instruction. 
It involves two kinds of overhead:  checking for general hooks 
and checking for addressed hooks.  Thus, for an instruction invol- 
ving a total of m operands, C =(m+2)(T  +T  ), where T  = overhead 

H        GH  AH GH 
of checking for general hooks, T  = overhead of checking for 

AH 
addressed hooks, and the two additional checks are for checks 
for instruction fetch and instruction completion hooks. 

Thus for a simulator, which has been written in a "loose" 
way so that inserting checks for hooks will not cause much per- 
turbation, if the average number of operands of an instruction 
which are located in the main memory is n, then the ratio R = 

. 1 
(simulation time/real time) with no checking for hooks will be 

R =(C +(n+2)T )/T 
IB       S   r 

«<Mi%uA*lb-i.WW. > ,.■...■■:  -,-...*.■•-  ■ - ■-■- 
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where T  is the average time to execute the same kind of 
r 

Instruction (i.e. involving n main memory accesses) on the real 
object machine.  If we add to this the overhead for checking for 
hooks with an average number, m, of total operands per instruction 

we get 

R=(C +(n+2)T +(m+2)(T  +T  ))/T 
B       S GH  AH    r 

which is a broad-gauge, general model of the performance of a 
DAME-like system with no hooks attached.  If the object machine 
simulator has been implemented at the instruction level, rather 
than at memory cycle level, then the associated overhead can be 
found bv setting n=0.  Further, if hooks can only be inserted at 
instruction fetch/completion level, rather than operand fetch/store 
level, the corresponding overhead can be found by setting m=0. 

5.3  The Overhead of the Node Mechanism 

Thr overhead introduced by the Node Mechanism can be consi- 
dered in two parts:  (i) the overhead due to checking for entry 
and exits from nodes, and  (ii) the overhead for the construction 
of input/output sets.  Let us consider these two components in 

turn . 

5.3.1  The Overhedd   of Detecting Node Entry and Exits 

Let us first consider the case where nested nodes are not 
permitted.  In this case the procedure? for detecting node entry 
and node exit, which I shall denote by ENTRYP and EXITP respectively, 
can help each other significantly by communicating to each other 
information as to whether an entry or exit has been performed. 
Since nested nodes are not permitted, each node entry must be 
followed by a node exit before another node entry can occur. 
Similarly, every node exit must be followed by a node entry before 
another node exit can occur.  Further, since we do not assume that 
the defined nodes cover the entire program, there will be times 
when the control flow will not be inside any node.  Hence, after 
EXITP tells ENTRYP that the last node has been exited and therefore 
that a new node may begin anytime, ENTRYP must check with each 
subsequent instruction fetch to see if a new node is being entered. 
The cost of this check will depend strongly on its implementation. 
For example, if there are two additional bits in the representation 
of the object machine available for this use, these can be used 
to indicate the first and the last instructions of a node. Otherwise, 
a list of node definitions can be searched;  or alternately, as 
in DAME, each used memory location can be assigned an "attribute 
list" and a node descriptor can be put on the attribute list of 

iftriili-M'ti^H-iMTV-iiiii-nWiM T'li' r-r-iri M'I 'r- mr '^uu -■-'-■■'—--"■■- ■      ■'    - 
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proceeds'as'f^n1"683 f ^   ^'      In the laSt alternative, one proceeds as follows after each instruction fetch: 

(most^ddre'Lef ^"t); inStruCtlon add— has an attribute list 

2-  If not, it can not be a node entry; hence, return; 

list;3" Sea   ^ there iS a node-descriptor object on the attribute 

A-  If not, return: 

descrJntnr
0inKarVhe u^t   starti^   address given in the node 

surrt^:rcoii:ide:ith the current in—^^ ^— - -^ 

step l^nir?!^ r^ ^ thiS Procedure i« ^ep 3, and even that 
or ?iie itLr y  r8 Sin?! there usually aren't more than four 
cost of  M    n ^   at;rlbute üst of any location.  The real 
cost of this procedure lies in the inclusion of an attribute list 
pointer potentially for every object machine location 

the iJst'of nod!6. !?Pr°ach for detecting a node entry is searching 
the list of node definitions to see if there is a node starting 
at the current instruction address, then, assuming a binary 

^r: ..eT'the11^ ^ " ^   de8"*Pt-s ordered by the^ startin. 
of log  n!     average number of comparisons will be on the order 

2 

recuiref fhl these/h"e approaches for detecting a node entry 
xecited after thf?.? ch"king to be done with every instruction 

THMC  !? after the last node exit until a new entry is detected 
Thus, the total overhead caused by any one of the three is also 
a function of the total number, Q, o/such instruc ions exerted 
If we denote by S the ratio of the number of executed object 
machine  nstructions which belong to a node to the total number 
of object machine instructions executed, and by 0   the overhead 

?SL1th!:r^Cti01' CaUSeu by the Particular approach^or node detection 
then the average overhead per instruction caused by the ENTRYP 
procedure, without nested nodes, will be 0  (1-8)7 This formula 

code'whlch tn^l^   ihat if there are iarg^segments of executed 
overhead! 8 t0 " n0de* thlS may Cause a significant 

..,— ^;-J.-..J.,-„,-,.-.., .-,..-, --.-   ,  , iim-iiimijüiiMMlMMliil 
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The procedure for detecting the exit from the current node, 
again assuming no nested nodes, is much simpler and requires a 
comparison operation after each instruction in the node.  Thus, 
if we denote by 0   the cost of making a comparison, the overhead 

NX 
for detecting the exit from a node is 0   S. 

NX 

In addition to detecting entry and exits, there is a cost 
for creating an entry in the Node Trace table for each node 
executed.  Lee us denote that overhead by 0  .  If the average 

NT 
number of instructions per node instance is I   then this overhead 

NX 

is 0  S/I  . 
NT   Nl 

5.3.2  The Overhead of I/O Set Maintenance 

Now let us consider the largest component of cost associated 
with the Node Mechanism, namely the construction of input-sets 
and output sets. 

Ihe construction of an input-set involves the following 
general steps: 

11- At node entry, allocate space for the set, 

12- After every fetch operation, determine if the fetch 
address is already in the input-set or the output-set (i.e. if 
it has been fetched or written previously in this node instance), 

13- If not, add the address and its contents as an element 

to the input set . 

The construction of an output-set similarly involves the 
following steps : 

01- At node entry, allocate space for the set, 

02- Before each store operation, determine if the store 
address is already in the output-set, 

03- If not, add the address (with an undefined content) as 
an element to the set, 

04- At exit from the node, fill in the current contents 
of all the addresses in the output-set. 

J-l^-J ...l...:,.,,.../-.-..-..-   ..,-..-■   »—■   .-r., ..:■-.,. ..„...■ ^  .-~~1.. -   -      -        -    - -  „mm*mwmmmaäM 



m •*.*'.• R.WW(^< M!P UJiiilHiiJllW Ml IS«l»ll!»WAI|U|PlW.Wi^^J. 1WN»WW«WJIJ11,U*II»1J!»^^ ,1 !J«!»JiiUIW! 

Since, i 
in advan 
allocate 
element 
with com 
be some 
is handl 
contain 
in the a 
The list 
next slo 
IS  and 

L 
for add i 

n ge 
ce , 
d. 
and 
plet 
kind 
ed b 
an ( 
ddre 
-hea 
t in 
IS 

E 
ng a 

nera 
some 
It c 
link 
ely 
of 

y ob 
addr 
ss h 
d ha 
the 

the 

1, the 
deci s 
learly 
it to 

static 
a comp 
tainin 
ess , v 
alf . 
s one 
last 

everag 

size 
ion h 
is w 
the 
allo 

romis 
g spa 
alue) 
These 
user 
membe 
e eve 

92 

of an I 
as to be 
aste ful 
rest . T 
cation. 
e betwee 
ce in 10 
pair . 
1 0-word 

word whi 
r of the 
rhead fo 

/0 set 
made a 

to obta 
here ar 
The be 

n the t 
-word c 
Unused 
chunks 

ch cont 
list .) 

r creat 

can not be predicted 
s to how space will be 
in new space for each 
e similar problems 
st procedure seems to 
wo.  (In DAME, this 
hunks, each word to 
words will contain -1 
are put in a list, 

ains the index of the 
Let us denote by 

ing the list head and 

new element, respectively. 

The cost o 
added to an I/O 
address) depend 
is done by usin 
word representi 
already members 
Hence, the over 
being accessed, 
byw, B  andB 

1 2 
the number of t 
the overhead of 
of this approac 
inside a node, 

f determining whether or not an address should be 
set (i.e. whether it is a new or an existing 

s strongly on the implementation.  In DAME, this 
g bits 16 and 17 (from the right) of the PDP-10 
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head amounts to testing these bits of each word 
and possibly setting one of them.  If we denote 
the ratio of the number of distinct operands to 

otal operands, the overhead of testing a bit and 
setting a bit, respectively, then the overhead 

h for the input and output sets, per instruction 
is 2m(B +wB ) and per node, it is 21  m(B +wB ). 

12 NI   1   2 

Let us now consider the case when the implementation does not 
permit this approach (i.e. there are no available bits).  Let us 
suppose that the "brute force" method of searching the I/O set 
to determine if a p.iven address is in it or not is being used. 
Whenever an address is generated, the average number of existing 
elements in an I/O set is wml  /2, the number of comparisons 

NI 

caused by new elements is w2ml  /2 and the number of comparisons 
NI 

caused by old elements is (l-w)wml  /4.  Thus, the average total 
NI 

number of comparisons for constructing the input and the output 
stats of a node instance using this approach, assuming that the 
above parameters are equal for both input and output sets. Is: 

2(w2ml  /2+(l-w)wmI  /4) 
NI NI 

=wml  +(w2ml  /2) 
NI      NI 
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Then, the average overhead, 0  , per executed object 
10 

machine instruction for constructing I/O sets is: 

0  -(S/I  )*(wml  +(w2ml ID) 
10     NI      NI      NI 

=Swm(l+w/2) 

where S and I   are as before. 
NI 

We are now in a position to give an estimate of the average 
total overhead, 0 , per executed object machine instruction: 

I 

0 =C +(n+2)T +(m+2)(T  +T  ) 
IB        S HH  AH 

+0  (l-S)+0  S+0 
NE       NX   10 

where 

C = the average cost of emulating one object machin' 
B 

instruction, with no event scheduling or checking for monitor hooks, 

n=  average number of main memory accesses per 0M instruction, 

T = the cost of scheduling an event and activating it, 
S 

m= total number of operands per 0M instruction, 

T  = overhead of checking for a general hook, 
GH 

T  = overhead of checking for an addressed hook, 

0  = overhead per 0M instruction of detecting a node entry, 
NE 

S= ratio of OM instructions belonging to some node to the 
total number of executed OM instructions, 

0  = overhead per OM instruction of detecting a node exit, 
NX 
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w- ratio of the number of distinct operands to total 
operands generated over the course of the execution, 

0  = overhead per executed instruction due to construction 
10 

of I/O sets. 

5.4  Measurements of the DAME Systeir 

In this sect! 
DAME system along 
First, a d i sclaime 
the minimization o 
goal in the design 
system and often t 
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features may be di 
opini on, met its g 
been worse than ex 
is to give the rea 
the "relative", ra 
system in the varl 
measurements are p 
can be increased b 
use of some of the 

on, some measurements of the overhead of the 
the lines outlined above will be presented, 
r note is in order:  as mentioned previously, 
f the resource requirements was not a primary 
and implementation philosophy of the DAME 

hese goals were neglected in favor of flexibility 
cilities offered in order that new and useful 
scovered.  This philosophy has, in this author's 
oals.  on the other hand, the performance has 
pected.  Thus, the real purpose of this section 
der an idea of what to expect in the way of 
ther than "absolute", performance of a DAME-like 
ous monitoring and analysis tasks on which 
resented.  Clearly, the speed of any component 
y better coding or less generality or by the 
ideas presented in the final section of Chapter ' 

5.4.1 Performance of the PDP-11 Simulator 

The most basic observation is that simulation at memory 
cycle level via a general-purpose scheduling mechanism degrades 
the performance by at least a factor of 3 over emulation, in 
which no scheduling is made.  In the DAME system, simulation runs 
about 3000 times slower and emulation 1000 times slower than a 
PDP-11/20.  These factors include about a 25% overhead for 
checking for hooks.  These figures are based on mea3urements of 
the time charged to the user by the PDP-10 monitor, which includes 
supervisory and swapping overhead etc. and have shown a deviation 
of up to 15% in both directions. 

5.4.2 Node Entry/Exit Overhead 

If input/output sets are not being constructed, the overhead 
for user-defined nodes amounts to 3.2 milliseconds per node 
instance for entry and exit combined and 1.2 milliseconds per 
node instance to create a node trace entry, for a total of 
4.4 milliseconds per node instance.  In the DAME system, these 
costs have been found to be only associated with the actual entry 
and exit events;  the cost of checking for entry and exit with 
each instruction is found to be less than the precision of the 
measurements. 
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5.4.3  Input/Output Set Overhead 

When I/O sets are being used, there is an added overhead 
at node entry and exit, of about 40 milliseconds each, for 
creating and closing the I/O sets.  In addition, the overhead 
of testing each generated address to see if it should be added 
to the input or the output set amounts to about 1.3 millisecond 
per fetched or stored operand, or about 6 milliseconds per OM 
instruction in the node instance.  Thus, for a node instance of 
5 instructions, the total overhead for I/O set creation and main- 
tenance would be (2*40)+(6*5)=110 milliseconds.  If we assume 
that 40 percent of all the executed instructions belong to some 
node and an average of 5 instructions per node instance, the 
total overhead for nodes and I/O sets would be 11.5 ms per executed 
instruction. 

For a PDP-11 simulator with a slow-up factor of 3000, assuming 
an average of 3.5 microseconds of real-time per instruction, 
this amounts to an additional delay factor of 1.8. 
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CHAPTEP 

HIGH-LEVEL LANGUAGES FOR EXECUTION ANALYSIS 

One of major shortcomings of the DAME System as described 
in Chapter 3 is that its language is too primitive for making 
arithmetic calculations and certain types of monitorinR opera- 
tions.  This fact was not altogether unexpected.  One reason for 
choosing this level in the design was the desire to avoid inter- 
preting by software a complex syntax at run-time.  A second reason 
was the anticipation of the possibility that any proposed hard- 
ware or microcoded implementation of a DAME-like facility might 
employ an instruction set very similar to this one.  Hence an 
effort was made to keep a major part of the instruction set simple 
enough to be implemented by hardware or, more probably, by micro- 
code.  However certain instructions are still too complex and 
would probably be best implemented by software (e.g. Playback- 
Values, Replay Node Instance, Type Object instructions). 

In this chapter, I would like to discuss some issues in the 
design of high-level languaees for execution monitoring and 
analysis.  The emphasis will be on features which are particularly 
relevant to this application area. 

The general structure of this chapter is as follows:  first, 
a number of issues related to the human engineering aspects of 
interactive systems and languages are discussed as they apply 
to our problem.  In particular, trade-offs between simplicity 
and power and between terseness and "rememberability" (ease of 
use) are outlined. 

Second, the major data elements with which a high-level 
execution analysis language must deal and the appropriate forms 
of access to each of these data elements are taken up. 

Finally, the problem of "continuously-evaluated" expressions 
is discussed.  In particular, appropriate control structures 
for the continuous evaluation of a set of predicates and techni- 
ques for efficient implementation, as discussed by D. Fisher in 
this thesis [Fi 701, are presented and evaluated. 
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6.1  Some Human EnRineerins Issues 

Since most of the programminj? in the analysis level will be 
done by the analyst at the terminal, almost in real-time, without 
laboring over a page of analysis code for several hours, certain 
properties of the total interactive system become very crucial. 
The issues I would like to discuss here are those related to 
this aspect of the design of the language of the analysis facility 
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be represented in one of the dominant data types or data struc- 
tures defined in the language (it must be noted that most primitive 
machine languages do satisfy this requirement).  For these reasons, 
a list-oriented syntax was selected for DAME.  V'hile there is 
much room for Improvement in it, the chosen syntax has proved 
remarkably flexible and resilient under demands to accomodate more 
and more complex instruction forms.  A eood example of this is 
the Search List(SLIST) instruction.  (See Section 3.6.1 or 
Appendix A:  Introduction to DAME for a description of this instruc- 
tion) . 

I would now like to consider the special-purpose data struc- 
tures with which high-level execution analysis languages must 
deal (i.e. structures unique to execution analysis) and the access 
methods which they must provide. 

6.2  High-Level Data Access in Execution Analysis 

The set of major data elements with which an execution analy- 
sis facility must deal were discussed in Chapter 2, and we summa- 
rize those elements here: 

(i)    The external state of the Object Machine 
(i.e. main memory and user-addressable registers), 

(ii)   Some parts of the current internal state of the OM, 

(iii)  Possibly, user program text and symbol table, 

(iv)   Structural information about the user program 
(e.g. its nodes), 

(v) Empirical data associated with each component of the 
structure (e.g. I/O sets of node instances, data created by user 
at run-time), 

(vi)   Execution history, 

(vii)  Analysis program text, 

(viii) Representation of the association between analysis 
actions and contact points, 

(ix)   Entities holding intermediate results of analysis 
computations. 

I shall now discuss appropriate forms of high-level access 
to each of these elements. 

(i)  The external state elements should be accessible by 
explicit addressing, e.g. corer2000], by computed addresses. 
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e.g 
c o r e 1 B J J ) , 

core[A+Bl, through Object Machine pointers (e.g. core[A+ 
in blocks (e.g. coreC>;B] <■ 0, where A:B as well as 

denotes 'A to B', or core[100:200 core[300:A00]).  User- 
addressable registers should be accessible by their mnemonic 
names used in the assembly language as well as by their memory 
addresses where such addresses exist. 

(ii)  Those elements of the internal state of the object 
machine which contain the various fields of the current instruction 
(e.g. opcode, source operand, destination operation) should be 
accessible by suitable mnemonics. 

(iii)  Access to user program text make.* possible such things 
as building a text editor/incremental assembler into the analysis 
facility so that corrections to user programs may be made as 
they are discovered, rather than saved until the end and made in 
a seperate operation.  The availability of the user symbol table 
clearly facilitates communication between the user and the 
analysis facility by permitting the use of the symbols appearing 
in the user program.  One or both of these facilities are avail- 
able in several svstems though not in DAME (e.g. See Lampson LLa bb .. 
Evans and Darley [ED 65.1.  For a comparative discussion of various 
techniques related to this topic, see Evans and Darley [ED bb.i.) 

(iv)  Structural information about the user program describes 
the components of that program, as they have been defined by 
the user or determined by the system for the purposes of analysis, 
and the relationships between the components (e.g. predecessor/ 
successor, outer/inner node relations).  This can be in tabular 
form or in the form of "descriptor objects" (as in DAME) which 
can be manipulated bv list-processing functions.  In any case, 
it should be possible to reference these descriptions explicitly 
(e.g. "node A" or "the node starting at location 10000'), by a 
computed address (e.g. "the node starting at the location pointed 
by contents of location 10000 + contents of register 3 ).((Or as 
elements of a list or table satisfying a predicate (e.g.  all 
nodes between 10000 and 12000").  Better yet, the user can be 
given a facility for stepping through the component descriptions 
in a systematic way and computing arbitrary functions using the 
various fields within each description, with the ability to exit 
the search at any point or have it terminated automatically when 
the end of the table or list is reached. 

(v)  Empirical data generated during the execution of the 
user program should be linked with the phase of the execution to 
which they relate and they should be accessible by the user through 
that link.  An example of such data is the input/output sets 
of a node instance in DAME.  These sets are accessible directly 
via pointers contained in the entry for the asfociate^0^ 
instance in the node trace table, as well is through the chrono- 
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FOREACH X,Y,Z SUCH THAT '.condi t ion > AND 
«condition> ...  DO <statement>; 

where X, Y and Z may be nodes, node instances, I/O sets of any 
of the other defined object types in the system.  (Note that 
one would probably prefer terse, single-character symbols for 
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In the last two paragraphs, two distinct ways for performing 
searches over execution history and associated empirical data 
have been proposed.  It is beneficial to recap them at this point; 
one way is to build into the language high-level associative 
search facilities such as those of LEAP, and the other is to give 
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the user lower-level mechanisms such as the Search List instruction 
in DAME, which systematically Rive the user the next element of 
the list being searched and test to see if the user wishes to 
terminate the search or not.  If the first facility is provided, 
then clearly the language must possess a fairly sophisticated 
list-search mechanism.  In such a case, the system mip,ht as well 
give the user the second, lower-level ability too, since this 
would be at almost no additional rost to the system and there 
will probably be a number of cases where this lower-level ability 
will be much more useful or efficient for the user. 

(vii)  The analysis program text and possibly its internal 
representation will be of interest to the user in such cases as 
when he wants to see the texts of the actions associated with a 
particular type of access to a location or to edit or patch an 
existing analysis routine.  Thus, it is important that the analysis 
facility contain an on-line editor for analysis text which can 
also be invoked under program control. 

(viii)  In addition to accessing the text of analysis routines, 
the user should be able to access a list of the names of analysis 
actions associated with a particular address or contact point. 
This is important, for example, in avoiding duplicate entries 
for the same analysis routine or in determining in what order the 
actions associe^ed with an address or contact point should be 
arranged, e.g. to optimize the set of analysis actions. 

Clearly, if the syntax of the analysis language and the form 
of these associations fall into one of the dominant data types 
handled by the analysis language, very little additional machinery 
will be mecessary to give the user the abilities mentioned above. 

(ix)  In the course of analysis computations, the user will 
often want to hold temporary results in local (or transient) 
variables.  Depending on the kinds of entities manipulated in the 
computation (e.g. lists, arrays, strings), the user will need 
to create, and later delete, entities of appropriate type for 
this purpose.  In a highly modularized style of programming, such 
as we expect analysis programming to be, it is very desirable 
to have local variables, if for no other reason than the very 
practical one  that whenever one defines a new variable, one 
would like to be sure that one is not clobbering an already existing 
variable with the same name, which may have been defined by any 
one of the number of routines used in the computation.  Thus, 
through the use of local variables, painful searches of all the 
used analysis routines for each new Identifier to be created can 
be eliminated. 
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Sue!) a predicate can involve arbitrary 
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i toring of pred i ca t es was discussed by D. Fisher 
70!.  In this and the next section, 1 discuss 
e for implementing continuously evaluated expres- 
by F i sii er , as well as some points not directly 

I shall start by discussing the overall control flow in the 
continuous evaluation of a set of predicates, deferring the dis- 
cussion of efficient techniques tor the continuous evaluation 
of individual predicates until the next section. 

Normally, when one of these events takes place (i.e. the 
value of one of the monitored predicates becomes TRUE), some 
action is taken.  Then the question arises:  "Should the same 
predicate be now re-evaluated, because the action may have changed 
its value again?"  More generally, the question is:  "What should 
be the control structure for the continuous evaluation of a set 
of predicates?"  I shall denote by S:-predicate' •  action> the 
specification S that  action- has to be executed when  predicate- 
becomes TRUE.  Consider ,or example the following specification: 

A: (b 0)  • (b ^ b+1 i 

where b is an analysis sy stem (not object machine) variable. 
This specification will c ause no changes in the state of the 
analysis system until b exceeds zero.  But after the first time 
tiie predicate is found to be TRUE, what happens to the system 
depends on whether or not the predicate is evaluated again imme- 
diately following the action b •> b + 1.  If it is. clearly the 
system will fall into an infinite loop (infinite for all practical 
purposes, unless this is avoided in some special cases by a quirk 
in the number representat ion in the system, e.g. adding one to 
the largest possible positive integer results in zero , or some 
similar event).  This is clearly a very undesira ble situation. 
If the predicate is not re-evaluated, the infinite, loop does 
not result.  However, in order to accomodate the case where the 
user may wish to continue the "predicate evaluation-action" loop 
until the predicate returns FALSE, a WHILE  predicate- DO  (or 
an equivalent construct) should be available. 
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Considering the multiplicity of requirements that a high-levol 
rule for this purpose would have to satisfy, the best policy 
seems to be to let the user decide what he wants to do, i.e. 
give him the ability to test if there are any predicates involving 
a particular OM variable and, if so, to evaluate those predicates 
and take any associated actions whenever he chooses to do so. 
It may be desirable to have a high-level operator to do all of 
this for a given symbol, e.g. an operator. CHECK(X), may serve 
this purpose, as in: 

ril:(A5) * (B <    A;CHECK(B):A *■ C:C *• D;CHECK(C)): 

where we have applied CHECK to B and C but not to A. 

One possible model for this control structure appears to Le 
that of Markov Algorithms.  In this model, predicate evaluatiop 
is halted after the first predicate with a value of TRUE has 
been found and the associated action has been taken.  Following 
the next change in the object machine state, predicate evaluation 
starts again from the top, i.e. with the first predicate. 

A second possible model is one in which every predicate is 
evaluated with every change in object machine state and the actions 
associated with every predicate whose value is TRUE is executed, 
in static order. 

Either model is feasible for this purpose.  However, it is 
clear that the evaluation of even one (arbitrarily complex) 
predicate after every change in the object machine state can be 
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unbearably expensive, unless some very efficient ^.h , 
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Here, d 's are dummy variables Introduced to hold the current 
i 

value of each subexpression.  Let us suppose that the value of X 
has just changed and that we wish to propagate that change through 
the whole expression.  If we follow the rule given above in a 
depth-first, left-to-right fashion, we proceed as follows: 

At level 0, we substitute the new value of X into the leftmost 
instance of X.  We evaluate d  using the old value of Y.  If 

1 
d  changes, we evaluate d  using the old value of d .  If d 
1 3 2       3 

changes, we evaluate d  using the old value of d .  Then, going 
6 5 

back, to level 0, we substitute the new value of X into the 
expression for d  and evaluate it using the old value of Z; if 

2 
ti-e value of d  changes, we evaluate d  again.  If d  changes, 

2 3 3 
we evaluate d  again using the old value of d .  Then, after 

6 5 
similarly proceeding up the right subtree with the new value of 
X, we evaluate d  a third time. 

6 
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Thus, in this expression, we have evaluated one subexpression, 
d , twice and another, d , three times.  In Renerai, if a strict 
3 6 

depth-first search Is followed, then for each new value assigned 
to a variable X, every node e in the evaluation tree will be 
evaluated n (X) times, where n (X)=number of occurrences of X 
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e evaluation would stop either after 
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aluated or when no more flag bits which 
e found . 

This breadth-first search (described by Fisher) thus avoids 
the unnecessary computations of the earlier depth-first procedure 
by using an additional bit of information associated with each 
node of the tree to guide itself to those nodes whose values 
could possibly change due to the change in one of their ancestors 

Other types of optimizations, such as recognition of common 
subexpressions (e.g. d  and d  in above example), could help to 

14 
further reduce the amount of computation involved. 

It must be noted that our ability to determine the leaf 
nodes of the execution tree which are affected by the change in 
the value of a variable, X in the above example, depended on our 
ability to statically locate all the occurrences of that variable 
in the whole expression.  When this is not possible or practical, 
the above procedure can not be used.  Examples of such a case 
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arc function calls or coroutine jumps.  In the case of function 
calls, if the name of the function is staticaJlv fixed, e.g. 
f(X), then one can conceivably locate, at compile-time, the text 
of the function and see if it uses the variable whose value just 
changed.  If the function call is to a dynamically computed 
address, this has to be done at run-time, introducing substantial 
overhead. 

Another example of a case where it may be impossible to 
identify all possible occurrences of a term is accesses to a 
dynamically computed address.  Any term involving the contents 
of a dynamically computed address should be checked after a 
change in the value of any object machine variable to see if 
the dynamically computed address is equal to that of the variable 
whose value just changed.  Alternately, instead of computing 
the dynamic address with each change in the object machine state, 
that address itself could be maintained by the continuous evalua- 
tion techniques described above. 

This last example illustrates a cascaded two-level continucuslv- 
evaluated expression and provides an example of hierarchical 
systems of such expressions as envisioned by Fisher. 
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CHAPTER 

EXECUTION ANALYSIS FACILITIES FOR ALGOL-LIKE LANGUAGES 

My only hands-on experience with the imp lernentation of the 
presented ideas on monitoring and modelling has been with programs 
written at the level of the dominant, contemporary central pro- 
cessor instruction set.  In this chapter, I would like to consider 
the translation of these ideas to the class of languages which 
has come to be called ALGOL-like languages, which are a subset 
of "problem-oriented" or "procedural" languages. 

It must be emphasized that the intent of this chapter is 
not uo present a design specification for execution analysis 
facilities for any specific high-level language, but to explore 
the basic problem areas uniquely associated with this area. Hence 
the level of detail will be much less than that of Chapter 3 in 
which the design of a particular prototype system was discussed; 
but hopefully enough ground will be covered to provide a starting 
base for the researcher or designer interested in this area. 

7.1  The Added Complexity of High-level Langua£e_s 

In some sense, since a language and its abstract processor, 
which may be called its "machine", are two sides of the same coin, 
there should be no conceptual difficulty in translating the^ 
techniaues we have discussed in the preceding chapters for  machine 
language" to any language for which a machine exists or can be 
built.  The onlv difference is that the machines for ALGOL-lihe 
languages are much more complex than the machines considered so 
far'.  Hence, some things which were very easy to handle before, 
now become difficult.  Let us consider the added complexity in 

three parts : 

1- Syntactic complexity, 

2- Semantic complexity, 

3- Language imp lernen tat ion complexity. 

1 shall now proceed much like in Chapters 2 and 3 to discuss 
these areas first in abstraction, then in reference to a particular 

language. 
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7.1.1 On Increased Syntactic Complexity 

The increased syntactic complexity arises from the fact that 
the analysis facility has to be able to understand (parse) each 
statement in the source program at run-time.  For example, one 
would like to be able to say, at run time :  "Trace on the TTY 
the brancli taken by everv IF statement", or "type the contents 
of X and Y!l,2l at entry and exit from any loop in the routine 
R" or "for every 'else clause' which is executed, type the values 
of all the variables in the Boolean expression in the associated 
'if clause'", or "type the values of the. operands of all floatin; 
point divide operations, except in routine P". 

7.1.2 On Increased Semantic Complexity 

An example of added semantic complexity is dealing with 
scope rules and storage allocation.  When specifying a monitoring 
action on a local variable, one has to qualify the variable name 
with an identification of the block in which it is declared as 
a local variable and in which the monitoring action is to be 
applicable.  Further, if the block is executed recursively, then 
one also has to specify which "generations" or "incarnations" 
of the variable one is referring to.  Similarly, references to 
the actual parameters of a routine, "own" variables, values re- 
turned by expressions etc. must be carefully qualified to ensure 
reference to the correct data element. 

Another example of semantic complexity with some high-level 
languages is the interpretation of data types;  e.g. checking 
the data types of the actual parameters of a routine inside the 
routine. 

7.1.3  On Complexity due to Language Implementation Techniques 

Clearly, an important question which comes up when one tries 
to envision how such an analysis facility might be implemented 
is whether the source language is to be interpreted or compiled. 
A form of compilation called "incremental, compilation". In which 
each statement is compiled as independently of the rest of the 
program as possible and and control is returned to a run-time 
monitor after each statement, is a convenient compromise which 
permits us to reap some of the benefits of both the efficiency 
of compiled code and the flexibility of interpretation. 

To be able to recognize at run-t..me the code corresponding 
to the various parts of a source statement in a compiled program 
(compiled by a non-optimizing compiler), requires some kind of 
intermediate-level representation of the structure of the object 
program.  This representation may be a directed graph produced 
at compilation time.  Given such a representation of the source 
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presentation and the symbol table for each external (e.. 
routine that is used must also be available at run-time. 

1ibrary) 
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In this multi-dimensional space, for which I can conceive 
of no significantly helpful metric for the purposes of this research, 
I shall pick a much smaller subspace in the hope of discussing 
its dimensions in a somewhat more systematic way.  That is the 
space of purely-interpreted languages.  One reason for this choice 

for n^n     A   
co"ceIvable t0 ^e an interpreter for any language 

for program development and testing purposes (or this could be 
an incremental, debugging compiler).  Secondly, this choice permits 
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spirit of Chapter 2) rather than implementation techniques.  Thus 
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7.2  Execution Analysis Facilit ie s for Interpreter-based 
Languages 

Let us recall the classes erf required capabilities we estab- 
lished in Chapter 2 for a p.eneral purpose execution analysis 
facility : 

1- The informatior to which the analysis facility has access 

2- The points in the execution cycle at which it can gain 
control, 

3- Its instruction set, 

4- External appearance and miscellaneous useful features. 

The information to which the analysis facility should have 
access, can be considered in two subclasses: 

(i)  Information about the execution history of the particular 
program, 

(ii)  Information, some may call it "intelligence", about 
the syntax and the semantics of the source language, as discussed 
earlier in this section. 

Subclass (i) is generically not very different from the 
corresponding requirement for low-level machine languages; namely, 
the information needed to efficiently reconstruct anv past machine 
state.  In this case, of 
by the source language. 

course, the "machine" is that defined 

In order to give more concrete content  to what is meant by 
a "machine state" in the case of a high-level machine, let us 
divide, as we did before, the machine state into two parts:  the 
"state of the memory", i.e. the values of all the variables defined 
so far, and the "current instruction".  The question now becomes: 
"What is an instruction in a high-level machine?".  The question 
arises because in low-level machine languages, an instruction was 
an easily identifiable unit, which performed a very snail number 
of, sometimes only one, indivisible operations, usually involving 
up to three or four operands, including side-effects.  Further, 
what is called a "machine language program" consisted of a sequence 
of machine instructions.  Hence the machine instruction turned 
out to be a convenient unit for denoting state changes.  Clearly, 
what is usually called a "statement" in a high-level language is 
not a convenient unit, since it can be arbitrarily long and complex 
Thus, it is reasonable to propose the execution of an "operator" 
as the smallest unit in such a language.  However, the "operators" 
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I have in mind here are a super-set of the operators usually 
defined in a syntactic description of the language.  For example, 
when in FORTRAN one writes 

IF(X-Y)10,20,30 

the 
of ( 
sub t 
call 
intu 
lang 
in S 
of S 
I re 
"ind 
more 
the 
down 
betw 
to t 
is u 
view 
ques 

se le 
X-Y) 
rac t 
mus 

it iv 
uage 
who 

ii 

ly o 
ivis 
ela 

ef fe 
int 

een 
hose 
nint 
, th 
t fo 

c t io 
mus 
ion . 
t al 
e co 
S a 

se e 
This 
n th 
ible 
bora 
c t o 
o sm 
thos 
per 

erru 
e fi 
r in 

n of 
t al 

Si 
so q 
ncep 
s "t 
ffec 
is 

e in 
wit 
tion 
n th 
alle 
e un 
iods 
ptib 
nest 
form 

the 
so be 
mi lar 
uali f 
t of 
he se 
t is 
a ver 
tui t i 
h res 
howe 

e mac 
r uni 
its . 
in t 

le. 
degr 

at ion 

appro 
rega 

iy, t 
y as 
the s 
t of 
ind iv 
y vag 
ve me 
pec t 
ver . 
hine 
t s su 
Thes 

he ex 
They 
ee of 

pr la 
rded 
he p 
an o 
et o 
deno 
is ib 
ue a 
ani n 
to t 
Loo 

stat 
ch t 
e co 
ecut 
also 
det 

t e case 
as an 

ass ing 
perator 
f opera 
ta t ions 
1e with 
nd info 
gs of a 
he sema 
s e 1 y , w 
e of an 
hat oth 
rrespon 
ion eye 
rep res 

ail whi 

as a 
opera 
of pa 
. Th 
tors 
for 
resp 

rmal 
11 th 
nt ics 
hat i 
"ope 

er op 
d , in 
le in 
ent , 
ch ca 

res 
tor 
rame 
us , 
in a 
the 
ec t 
def i 
e t e 
of 

s me 
rat o 
era t 
a c 
whi 
from 
n ap 

u 11 of e 
as well 
t ers in 
we are 1 
given s 

largest 
to the s 
n i t ion , 
rms used 
S" requi 
ant by t 
r" can n 
o r s can 
onven t io 
ch the p 
a user' 

pear in 

val ua 
as th 
a sub 
ed to 
our ce 
opera 
eman t 
in wh 

Th 
res s 
his i 
o t be 
be in 
nal m 
roces 
s (joi 

a use 

tion 
e 
rout ine 
the 

t ions 
ics 
ich 
e phrase 
ome 
s that 
broken 

serted 
achine , 
sor 
nt of 
r re- 

7.3  A Mini Demonstration Language 

For the sake of a more concrete illustration and also to 
face some of the problems which arise in the application of these 
ideas, I shall define a very small, hypothetical member of the 
ALGOL family of languages and use it as a vehicle to explore these 
ideas further.  I have decided to take this approach rather than 
pick a particular implementation of an existing language since 
the latter would very likely be a much larger task.  In our hypothe- 
tical language, we would like the following properties. 

(i)  It should capture tne essence of the syntax and semantics 
of ALGOL-like languages, i.e. features common to ALGOL 60, PL/I, 
BLISS, etc.  These include ALGOL-like syntax, block structure, 
recursion. 

(ii)  Its syntax should be definable by a small grammar (say, 
about 2 pages), 

(iii)  Its semantics, similarly, should be easily describable, 
even if only informally. 

■ ■ ■ ■ - — -- ■ -■ — 
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The mini-language to be used here was obtained by chopping 
away a major part of BLISS/10, in fact by removing a great deal 
of its unique and interesting parts (such as the uniform inter- 
pretation of names as addresses, the contents operators, the 
concept of "structures" etc.), retaining only a small portion 
which looks sufficiently like ALGOL or PL/I etc.  I shall refer 
to this language as the Mini Demonstration Language (MDL).  The 
syntax of MDL is given in an appendix.  For a description of 
its semantics, I refer the reader to the BLISS/10 manual [WU 71]. 

7.3.1  Information Accessible by the MDL Analysis Facility 

The outline given below follows the one given in Section 6.2: 

(i)    The external state of the MDL machine, i.e. the 
contents of every variable and address directly accessible by 
the MDL program, 

(ii)   Parts of the internal state of the MDL machine con- 
taining the components of the current expression being evaluated, 

(iii)  The text of the MDL program, 

(iv)   Information about the structure defined over the user 
program for purposes of analysis (which may not always coincide 
with the syntactic structure), 

(v)    Empirical data associated with each component of the 
structure, collected during execution, 

(vi)   Control flow history, 

(vii)  The text of the analysis program, 

(viii) The list of analysis actions associated with each 
contact point, 

(ix)   Meta-variables holding intermediate results in analysis 
computations. 

Item (i), access to the MDL variables, does not require any 
more elaboration.  Item (ii) and an important extension is dis- 
cussed in detail in a succeeding subsection.  Items (iii) and (vii), 
namely access to the texts of MDL programs and analysis programs 
are discussed together in a succeeding section.  Items (iv) , (v), 
(vi) and (viii) are discussed together in the next subsection. 
Item (ix) is discussed in the section on data types for the analysis 
language. 
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7.3.1.1 .Representation and Accessing of MDL Execution 
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In adaptinq the concept of Input/output sets to higher-level 
languages, there are certain issues with respect to the represen- 
tation of the elements of input/output sets which must be resolved. 
I shall only sketch some solutions to these issues here since 
they do not seem to be major problems. 

One issue is the representation of local variables in I/O 
sets.  Consider, for example, the following MDL code and the defined 
nodes Ml and N2: 

Routine n=begin 
local A,B; 

Nl    A < cm + 2; 
B * D[Aj+5; 

N2    ClAJ * f(A,B) 
end ; 

The I/O sets of Nl would look like: 

I  =[(C(1),V ),(Drv ],V )J 
Nl 12   3 

0 = [ ( P . A , V ) , (R . B , V ) I 
Nl        2        4 

The I/O sets of N  would look like: 
2 

1 =[(R.A,V ),(R.B,V )1 
N2        2        4 

0  = [ ( C [ R. A ] , V ) J . 
N2 5 

Cl 1 J 
t i ve 
ref e 
loca 
R. B 
To q 
of a 
to t 
qual 
same 
skel 

Here, we have denoted by V , i=l,...,5, the value of CfiJ, 
i 

+ 2, DCCCl]+2] and D[ C[ 1 J + 2 ] + ,'- in Nl, and f(A,B) in N2 , respec- 
ly.  We have also assumed that the function f does not 
rence any non-local variables.  To denote the use of the 
1 variables A and B, we have used the qualified form R.A and 
where R is the name of the routine in which they are declared, 
ualify local variables which are declared in the inner blocks 
routine, one could omploya block-numbering scheme similar 

he one used by some Algol compilers.  In such a scheme, a 
ifying index is added for each static level and blocks in the 
static level are numbered sequentially.  For example, in the 

etalcode: 
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Routine S= begin 
local A; 

begin 
local A , B; 

end 

begin 
local A; 

beg in 
local B; 

end 
end 

end ; 

^2 ^RSTB3151
*« 

C0Uld ^ rfPreSented as:  R-^ R.l.A. R.l.B. 
tils   not'Jt'il: .H°"eV^r' as the «^ber of levels increases, 
this notatxon quickly becomes cumbersome.  To overcome this  at 

an lir^   V   It*   l0SS 0f SOme inf —tion in the nota ion.' we 
ordinal nV1K   ^   i^i^3   by USing 0nly 0ne index -hich is the ordinal number of the block-head where tha variable is declared 

Similar, but less problematic issues arise with resoect tn 
other non-global variables, e.g. parameter formal" own variables 

s^rar^i:! ^ reSOlVed ^ the USe 0f a ^alifying mechanism68" 

Since recursive routine calls are permitted in MDL  another 
qualifying mechanis. must be introduced'to distinguish among 
different recursive incarnations of the same routine and their 

k.i....->L..-  .■..^■..,■■...... V.L.. ^.O-i-^^^ : ■^^.^.■..-■^  ■■■■^ ■  .-.^..-    ...   ..■^...,  .,.._ 
 — - -  - -        -    ■---■■- 

^-^^■■C.|.-.J-. —-— ^'-"—J:-^ ' ,   .   .^ W..^^^,*^^^. >-^ 



 ,  
"■^^^^^ SSäS. »^.^«jji-WP.wiiiiJ.w^uv^wy;»'*"^"! 

117 

7.3.1.2 Access to the Internal State and 
Generic References to Expression Sequences 

An important facility that an analysis facility for a high- 
vel language must offer is one which permits the user to say le 

something like 

"If I ever do X, then do •-action>" 

where X is a partial syntactic specification of an 
sequence.  For example, X may be:  '<name> - <name>+l', which 
would mean that <actlon> will be performed whenever the MDL machin 
evaluates an expression whose syntactic form fits the given spe- 

expression 

:""•      In such specifications, the permit ted"nön-terminals 
deJinitioVnf^1? definitions "^t be those ßiven in the syntactic 
definition of the language, or they must be specified formally 
somewhere (e.g. user manual) accessible by the user.  The user 
may also be given a device for new non-terminals to abbreviate 
possibly xong syntactic forms. 

E.g. 
"Define <sum-terms> * <name> 
Define <prod.terms> > <name 
Define ^ sum-o f-produc t s > -> 
Define <prod .-of-sums> H 

■*■ <e> + <e>; 
<- < e > * < e > ; 

name> -<- <prod . te rm > + <p rod . t erm> ; 
name> ■<- < sum-t erm>* ' sum-1 erm > ; 

If I ever do ^sum-of-products> or <prod.-of-sums> then do 

svmhole^ A facilitl should als° Permit the use of terminal 
symbols and reserved symbols with special meanings, e.g. to 
indicate relations between values of non-terminals For example 

"If I ever do 'X - -name>$l+<name>$2*<name>$1' 
then do <action>" 

would trigger <action. «henever a value computed by adding the 
product of the values of two variables to the value of one of 
them is assigned to X. 

An 
lends u« tn ^    -V th! f,acil±ty for defining new non-terminals 
leads us to the notion of "templates", which contain "holes" or 
formal parameters. For   example, one could write: 

"Define template T(y,Y,Z) -> 'if y then y else zi. 

If I ever do Tf'A-B', 'f(A) ' , 'f (B) ' ) then do. 
If I ever do T('(C+5)<0' , <e 

then do . . . 
escapeexpression>) 
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These definitions would then cause the system to watch for 
the expression 'if A^B then f(A) else f(B)' and for expressions 
of the form 'if (C+5<0) then <e> else <escapeexpression>', and 
take the specified actions upon their occurrence. 

7.3.1.3  Access to MDL and MDLAF Texts 

The primary reason for access to the texts of MDL and MDLAF 
programs is the desirability of on-line editing of these programs. 
The user should not have to terminate tha analysis session to 
make corrections to either of these programs. 

A second reason is to be able to analyze, under program control, 
and optimize the set of actions associated with a contact point 
(e.g. to eliminate redundancy, to determine unintended dependencies 
between actions). 

A third reason is to facilitate the specification of the 
user of expressions which are to be monitored. 

Thus there seems to be a need for two different types of 
editors; one is the more conventional, line or character-oriented 
editor to be used in preparing and editing of MDL and MDLAF texts; 
the other is a lexeme-oriented editor which knows the syntax of 
MDLAF and can respond to requests like: 

"If there are any assignment operators in the MDLAF actions 
associated with fetches from X, return a list of pointers to 
those actions, else return a null list," 

or, 

"Are there any continuously-evaluated MDLAF expressions involving 
Y?  If so, delete them." 

It is clear that such an editor will have to know the syntax 
of MDLAF as well as its internal representation in order to be 
able to find the desired pointers, delete expressions and the like 

■^ ----   — •■ i i n. ---—"-—- - - ^—.- M   - ....,^~.. -,.^..,-^^^.a^..,.^^ 
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7.3,2  Contact Points and Hook Insertion In the MDL 
Analysis Facility 

Recalling our earlier definition of contact points in the 
context of low-level machines, as "those points in the instruction 
cycle at which the analysis facility can gain control", we can 
translate this notion to the domain of high-level languages such 
as MDL in terms of the unit of execution which we have selected, 
namely, individual operands and operators.  That is to say, the 
MDL machine will check for any required monitoring actions after 
the fetch of each operand of an operator, just prior to and just 
after the application of the operator, and just before the storage 
of the result.  This requires that we specify the order in which 
the checks will be made within the expression involving the fetch 
of several operands.  It seems natural that this order should 
be the same as that which is specified in the language for evalua- 
tion of the operands of expressions.  BLISS/10, and MDL, give 
"no guarantee regarding the order in which a simpleexpression is 
evaluated other than that provided by precedence and nesting... 
(BLISS Reference Manual, Jan. 15, 1970, p. 2.2b).  Hence, in the 
expression 

B (C 3)+(A - 5) 

the two paranthesized expres- no guarantee is made about which of 
sions is evaluated and checked for hooks first.  However, it is 
guaranteed that store-hooks for B will be checked after both 
of the assignments to C and A.  I shall denote store-hooks and 
fetch-hooks for a location X by SHOOK(X) and FHOCK(X) respectively. 

In addition to the store-hooks associated with A, B and C, 
general hooks associated with the initiation and completion of 
every expression evaluation, which I shall designate by IEXPH00K 
and CEXPHOOK respectively, and books for the initiation and comple- 
tion of each specific expression, to be designated by ISEXPHOOK 
and CSEXPH00K will be checked.  Thus, the sequence of actions in 
the evaluation of the above expression will be as follows (Note: 
action sequences seperated by // should be assumed to be done in 

random order): 

((IEXPH00K; 
ISEXPHOOK; 
SHOOK(C) ; 
C - 3; 
CSEXPH00K; 
CEXPHOOK);// 
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(IEXPHOOK; 
ISEXPHOOK; 
SHOOK(A); 
A ^ 5; 
CSEXPHOOK; 
CEXPHOOK)); 

IEXPHOOK; 
ISEXPHOOK: 
d •«■ C + A; 
1 

CSEXPHOOK; 
CEXPHOOK; 
IEXPHOOK; 
ISEXPHOOK; 
SHOOK (B) ; 
B - d ; 

1 
CSEXPHOOK; 
CEXPHOOK; 

The above picture probably con veys an exaggerated inpression 
of the overhead involved in checking for hook..:' The checVfo^ 
a general hook (i.e. IEXPHOOK, CEXPHOOK) can be as simple as I 
test on a statically addressable bit and the cl 
hook (i.e. ISEXPHOOK, SHOOK, CSEXPHOOK) can be 

e check for each specific 

UlO^An   Online ^^heJ^_Analy_sis_Facility   Language (AFM 

AFL is an extension of MDL containing 
several new syntactic constructs and a 

a new data type, 
set of built-in functions niti-irAz:^ '-thls-----:,e.-^n: 

(i)  NOLE Declaration 

Syntax:  NODE■node-declaration list- 

-node-declaration list- > -node-d ec 1 . -- / 

-node-declaration list>,<node-decl 
' -node name;- = <delimiter- node-dec 1 
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<routlne name> / <label> / 
<routine name>,<block de.llniter>/ 
<label>,<block delimiter^ 

•-block delimiter^ ->• <integer> / 
<integer>.<block delimiter> / 
<block delimiter >, <block delimiter--- / 
<block delimiter>:<block delimiter^ 

Examples:  NODE N1=R0UTINE1; 
NODE N2=ROUTINE,5; 
NODE N3=L00P,1.1.2.3:5; 
NODE NA=LOOP,1.2:3,N5=L00P,1.4:7; 

Effect:  The indices which are not followed or preceded by 
a ";", represent lexical levels in the code which is in the 
scope of the <routine name- or <label>.  If a pair <x>:<y> is 
not present, the entire level is assumed, otherwise the •;x>th 
complete expression through the <y>th complete expression at the 
level of the last index is defined as a node with name <node name> 
Nodes must be disjoint or properly nested.  Also, thev must 
begin and end in the same level and block. 

(ii)  Built-in Functions and Reserved Words 

Locating Nodes and Node Instances 

Find Node:  $FN(<node-decl>) 

If no node has been defined which satisfies <node-de.c 1 > , 
returns 0 else returns the address of the first such node object. 

Find Node Instance:  $FNI(<node-inst. spec>[<node-expr>]) 

<node-inst. spec> ■> (<MDL expres sion'-•) 

<node-expr> -»• <node name>/<node obj . ptr>/ 
$NODEOBJ(<node-inst expr>)/ 
(a-^MDL expr>/$CURNODE 

<node-inst expr> - $CURINST/$L^STINST(<node-expr> 
[,<node-inst expr>])/ 
$FIRSTINST(''node-expr>[ ,<node-inst expr>])/ 
$NEXTINST(<node-inst expr>f,<count> 

[,<node-expr> 1 ])/ 
$PRECINST(<node-inst>[,<count> 

[ , <node-expr>]])/ 
@<MDL expr> 
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Mffect:  Let the value of 'node-lnst spec- be N.  If 
node-expr • has been specified, then only the Instances of that 

»ode, otherwise all node instances are searched.  If NO, then 
the direction of search is forward in time starting with first 
node instance;  if N-0, the direction of search is backward in 
time starting with the last instance, with N=() representing the 
last instance.  If the value of -node-expr- is zero, t he n zero 
is returned;  otherwise the value is taken as the address of a 
node-object. 

Node Object of:  $N0DE0BJ( • node-inst expr) 

1 f 
a d d r e s s 
zer o is returned 

node-lnst expr- points to a node instance, then the 
)f the node object associated with, that instance, otherwise 

Last Instance of:  $ I.AST1NST (• node exp r • I , ■ node-ins t expr  i) 

If second argument is omitted, it is equivalent to 
$FNI(0, node-expr •) , otherwise a pointer to the last instance of 
node-expr  prior to  node-inst expr- is returned.  If no such 
instance can be found, zero is returned. 

First Instance of:  $FI RSTINST(■ node-expr ■ I ,• node-inst expr i) 

If second argument is omitted, it is equivalent to 
$FN1(J ,.node-expr •) •  Otherwise a pointer to the first instance 
of  node-expr- after  node-inst expr. is returned.  If no such 
instance can be found, zero is returned. 

Next Instance of:  $NKXTINST(-node-inst expr - T , count ■ 
I , ■■ n o d e - c x p r • 1 i) 

If the 2. and 3. arguments are omitted, it is equivalent to 
$FIRSTINST($NODEOBJ(<node-lnst expr>)> -node-inst expr>).   If 
only the 3. argument is omitted, it is equivalent to FNI(<count>+l, 
$NODEOBJ(<node-inst expr>)).  Otherwise a pointer to the nth 
instance of  node-expr- after -node-lnst expr-, where n=<count>, 
is returned.  If no such instance can be found, 0 is returned. 

Preceding Instance of:  $PPFCINST (--node-i ns t expr> [ , <count > 
[,<node-expr>j]) 

If the 2. and 3. arguments are omitted, it is equivalent to 
$LASTINST($NODEOBJ(-node-lnst expr>), «node-inst expr>).   If 
only the 3. argument is omitted, it is equivalent to FNI(<count>-l, 
$NODEOBJ(-node-inst expr)).  Otherwise a pointer to nth previous 
instance of -node-expr- relative to <node-inst expr> is returned. 
If no such Instance can be found, 0 is returned. 

i 
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Current Node Instance:  $CURINST 

A global variable which always points to the node instance 
which was entered most recently. 

Current Node ObjeC :  $CUROBJ 

Equivalent to $NODEOBJ($CURINST). 

Locating Input/Output Sets 

Input Set List of Node:  $ISL(-node-expr>) 

Return? a pointer to Input Set List of node «node-expr> or, 
in case of errors, zero. 

Output Set List of Node:  $OSL(<node-expr>) 

Analogous to $ISL. 

Input Set of Node Instance:  $IS(<node-inst expr>) 

Returns a pointer to input set of <node-inst expr>, or, in 
case or errors, zero. 

Output Set of Node Instance:  $0S(<node-inst expr>), 

Analogous to $IS . 

Accessing Values of Addresses in I/O Sets 

Value-part of I/O set elemer'. ;  $VAL(<'id-expr>,<I/0 set ptr>, 
<flag>) 

<id-expr> -* <name > / < rout ine name >, <name >/^r out ine name--, 
<block id>,<name> 

<block id> ■+ <pos. decimal>/< block i d > , < p o s . decimal> 

Indirect Addressing Opera'or:  @<name> 

Returns a pointer to the object whose address is equal to 
the value of <name>. 

Get Attribute Value:  $GATTR(<obj. expr>,<attr. name>, 
•"flag var>) 

Looks for an attribute named <attr. name> in the object 
•obj. expr>.  If such an attribute is not found, <flag var> is 
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set to zero and zero is returned.  Otherwise <flag var> is set 
to 1 and the value of the attribute is returned. 

Add Attribute:  $^TTR(<obj. expr>,<attr. name>,<value>) 

Change Attribute':  $CATTR( <obJ . expr>,<attr. name > , <value > ) 

Delete Attribute:  $DATTR(<obj. expr>,<attr. name>) 

These functions work in obvious ways.  They return 1 if 
successful, 0 otherwise. 

In addition to these functions, a set of conventional list 
processing functions such as create-list, include-in-list , remove- 
object-from-list, head-of-1 ist, tail-of-list, cardinality-of-1ist 
etc. should be provided. 

(iii)  Editing MDL and AFL Texts 
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mment only briefly about this aspect of the analysis 
need for two different types of editing abilities 
in Chapter 6.  One of these is the normal set of 
ded with conventional on-line text editors for 
odifying program text.  The other, and the more 
for our purposes, is a lexeme-oriented, rather 

or line-oriented, editor which can work on list- 
sentations of MDL and AFL parse trees.  Considerable 
one on such a syntax-driven editor by L. Robinson 
[RP 73] and [Ro 73]).  I feel I can do nothing 
e these references here. 

(iv)  Explicit Hook Insertion 

(iv a)  Monitoring of Accesses to Variables 

To monitor the accesses to a variable explicitly, AFL 
contains the ON FETCH, ON STORF and ON USE facilities, whose 
syntax is : 

<hook name>:  ON < condit ionxvarl is t > DO <expr>; 

or, 

<hook name>:  ON <condition> DO <expr>; 
<condition> ■> FETCH/STORE/USE 
^varlist> ■*   <MDL variable id>/ 

<MDL array id>[<index expr>]/ 
<varlist> ,<varlist> 
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For example, MH:  ON FETCH X DO  expr " will cause the 
evaluation of  expr  whenever the contents of X are fetched in 
the evaluation of some MDL expression.  If X is omitted,  expr 
will be evaluated with the fetch of every operand of every 
expression.  $OFDADDR and $OPDVAL will contain the address and 
the value of the current operand. 

ON STORE and ON STORE X work similarly, except that they 
are checked prior to store operations. 

ON USE and ON USE X cause checking upon both fetch and store 
operat ions. 

(iv b)  Monitoring of Expressions 

Expressions to be monitored can be specified in one of two 
ways:  by lexical, location or by giving the syntax of the expression. 
Further, the monitoring actions can be specified to be taken just 
before the application of the "root" operator of the MDL expression 
or just after it. 

Specification by Lexical Location: 

<hook name>:  BEFORE <MDL location list> DO <expr> 

<hook name>:  AFTER <;MDL location list> DO <expr> 

<MDL location list> -*   <MDL location>/ 
<MDL location list>,<MDL location> 

<MDL location> * <delimiter> 

(See the syntax of the non-terminal <delimiter> in the 
second paragraph of 7.3.3) 

Examples: 

L:  BEFORE R0UTINE1, R0UTINE3 DO(X *- Y+l : TYPE (X) ) ; 

LI: AFTEP LABEL1.1.3 DO $DISAB(L); 

L2: AFTER LABEL1.1.3:5 DO $TYPE(Z); 

The first example will cause the paranthesized sequence of 
expressions to be evaluated before every call on the routines 
R0UTINE1 and R0UTINE3, after their parameters, if any, have been 
evaluated . 
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third «! SeCO   e^mPle "111 disable the above action after the 

andln thr«™nhin ?*,   firSt bl0Ck (or "P"*8lon) following and in the same block (or compound expression) and level as LABEL1. 

out aJter^h!0 ^^   wil1 cause ^   value of 7   to be typed 
at the ton l  valuation of each of the 3.. 4. and 5. expressions 
at the top level of the block (or compound expression) mentioned 

Specification by Syntax: 

-hook name-:  BEFORE EACH <syntax spec- DO <expr>; 

'hook name-:  AFTER EACH <syntax speo DO <expr>; 

non tPr^'^ ^'u^ takeS the f0rm 0f an "Passion in which 
non-terminal symbols enclosed within <,> or the special symbol 
$* (it means "anything") may appear. 

Examples : 

L:  BEFORE EACH <loopexpression> DO <expr>; 

LI: AFTER EACH $*+A DO <expr>; 

The first example would cause the evaluation of <expr> 
before the evaluation of any WHILE and INCR expressions.  The 
second example would cause the evaluation of <expr> after each 
addition operation involving A as the right-hand operand! 

(iv c)  Monitoring of th e Control Path 

in x^t™   are "ü0 facilities for monitoring the flow of control, 
in addition to the BEFORE and AFTER features described earlier. 

■1. 11 c o c.  c» L G , 

-hook   name>:      ALONG   PATH   <path   descriptor   DO   <expr>; 

and 

<hook name>:  AFTER PATH <path descriptor DO .expr>; 

-path descriptor^ * <delimiter>/ 
-path descriptor>,vdelimiter> 

■'•^ ■-■■- :  - " --■ • - ■  .■ ■ 
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••'deliinlter> -*■ ••unit>/<unit>(<count>)/,'unit> 
[<path descriptor^-] 

<unit> ■* <routine name >/< labe 1 >/<node name> 

The first expression causes <path descriptor'-», which con- 
tains, say, n ^delimiters>, to be matched continuously against 
the control path.  If, for some k<n,   the first k elements of 
<path descriptor-' match the most recent k elements of the control 
path (which are routine or node names or labels), then <expr> 
is evaluated. 

The second expression causes <expr> to be evaluated only 
at the completion of the specified path. 

In the specification of <delimiter>, the option <unit>(<count>) 
means that <count> number of consecutive executions of the same 
<unit>, without the intervention of any othp.r  unit s, is to be 
watched for and treated as a single element in the path.  The 
option [<path descriptor;-] provides for nesting of paths. 

Examples: 

L:  ALONG PATH R0UT1[R0UT2, LABEL1, L00P1], R0UT3 DO <expr>; 

L:  AFTER PATH Rl(2) ,R2[R3(4) ,RAI R5,R6 ] I (3) DO <expr>: 

In the first example, <expr> will be evaluated after the 
execution of each of R0UT2, LABEL1 and L00P1 Inside R0UT1, after 
exit from such an execution of ROUTl and after P0UT3, provided 
they occur in that order with no intervening ^nit^s. 

In the second example, the interpretation is similar, except 
that multiple consecutive executions of certain <unit>s are to 
be considered as single elements. 

(v)  Continuously Evaluated Expressions 

CSELECT <elist> OF CSET <cexpressionset> TESC 

<cexpressionset> -*• / < c e > / 
<cexpressionset>:<ce> 

<ce> ■* <MDL expression--:  -AFL expresslon> 

<elist> *   <AFL express ion>/<elist>,<AFL expression> 
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As will be obvious to those familiar with BLISS, this syntax 
follows the syntax of the SELECT expression in BLISS, and hence 
the expressions defined by it are called CSELECT (for "Continuous 
Select*') expressions.  Its evaluation can be precisely described 
by saying that it is equivalent to the evaluation of the AFL 
expression "SELECT <elist> OF NSET <cexpressionset> TESN" after 
each change in the value of anv MDL variable in <-elist-- or in 
the left-hand sides of <cexpressionset>. 

Example: 

CSELECT (D+E) OF CSFT 

A-B:f ; 
1 

A*B:f : 
2 

C+D:f 

TESC: 

This example will cause the monitoring of the values of 
A,B,C,D and E and the continuous updating of the values of the 
expressions D+E, A-B, A*B and C+D.  When the value of D+E changes, 
the value of the first left-hand expression, A-B, is compared 
with the new value of D+E.  If the two values are found equal, 
then the expression f  is evaluated.  Then, the next left-hand 

1 
expression, A*B, is compared with D+E, and if equal, f  is evalua- 

2 
ted.  This process continues, until all left-hand expressions have 
been tested. 

Important note:  if the value of a left-hand side is equal 
to the value of the controlling expression (D+E in this example), 
the right-hand side will be evaluated with each change in the 
value of an MDL variable, until the values of the left-hand side 
and the controlling expression become unequal. 
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CHAPTER  8 

ARCHITECTURAL FEATURES FOR EXECUTION ANALYSIS 

As has been previously noted, one of the major impediments 
to the wide use of the kinds of simulator-based techniques 
described so far is the slowness of simulation at the memory 
cycle level and the information loss incurred with simulation 
at instruction level.  Further, if, unlike in the DAME system, 
the object machine and the host machine are the same, then one 
would like to be able to execute the uninteresting parts of the 
program, i.e. the parts we do not wish to include in the analysis, 
at full machine speed and only incur overhead over the monitored 
parts.  This becomes an important factor, for example, in the 
case of trying to isolate a bug which appears only after a con- 
siderable amount of execution. 

To deal with this problem, we have to design architectural 
features to be implemented in hardware or microprogram which 
would significantly reduce the amount of monitoring, done by 
software.  Thus, in this chapter, I shall discuss: 

(i)  Various techniques for the implementation of the hook 
mechanism as a function of the relative word lengths of the host 
machine (W ) and the object machine (W ), 

H 0 

(ii)  The implementation of the node mechanism, in particu- 
lar the node objects, the node trace table and the input/output 
sets, along with the types of storage technologies appropriate 
for these data structures, 

(iii)  The interface between the host machine and the 
object machine, in particular the data paths and the control 
paths between the two. 

I shall then conclude the chapter with an outline of a unified 
architecture embodying the various features discussed, assuming 
a simple, conventional CPU architecture for the object machine, 
and a review of several reports on hardware and microprogrammed 
measuring and monitoring facilities by other workers. 
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8.1  The Hook Median 1 sro 

The three operations which lie at the heart of any monito- 
ring scheme are:  (i)  Given a particular set of contact points 
in the course of the execution of the object machine, the deter- 
mination of whether there is any monitoring action to be taken 
a  the current contact point, (11)  if so, locating the description 
of the action to be taken, (ill)  Taking the desired action. 

Step (i) dearly has to be done continuously, i.e. at every 
occurrence of a contact point.  This is the basic price paid 
for running on a monitored machine.  Therefore, it Is desirable 
to minimize this overhead.  Step (ii) is normally performed much 
less frequently than step (1).  Thus, in programs which are not 
heavily monitored this step will not normally cause excessive 
amounts of overhead.  In heavily monitored programs however, this 
step can cause sufficient degradation of performance to prevent 
wide spread use of the monitoring facility.  The amount of over- 
head caused by step(lii), of course, is a direct function of the 
particular actions to be taken and of their execution by the ana- 
lysis facility.  In the rest of this chapter, I shall explore 

several techniques for implementing these operations in conventional 

sinoie-jnstruction-stream/single-data-stream processors.  For this 
purpose, let us distinguish three cases: 

(i)  The host 
object machine (W 

I! 

machine lias a longer 
W ) , 

0 

'ord-length than the 

(ii)  The word lengths of the two machine are equal (W =W ), 

H  0 

(ill)  The host machine has a shorter word-length (W <W ). 

H  0 

8.1.1  Monitoring with W  Greater than W 

H o 

As already discussed in Section 3.2, the availability of 
extra bits in the host machine word greatly facilitates the 
monitoring operations mentioned above. 

Machine architectures with this feature are also known as 
fagged Architectures".  Many applications of this architecture, 

includinp some which are not discussed in this thesis  were dis- 
cussed by E. A  Feustel in his paper "On the Advantages of Tagged 
Architecture" ([Fe 731). ^»s»«:« 
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Depending on the number, n, of extra bits available, one 
can use them as flags (say, with l<n<8) or as indices into a 
tabie (9-n^A ), or as an address in the address space of the 

H 

host machine (n^A ), where A  is the width of a host machine 
H H 

aurrosS"  Let US' then, firSt consider tbe use 0f flaRS for this 

"Flag-bit" Implementation 

One approach may be as follows:  one designates a flag bit 
for each kind of contact point applicable to addresses (as opposed 
to general contact points).  These contact points mav be. for 
example, designated as in the DAME system:  namely, (i) after 

ZVrl   ^^ f
(ii) bef0re eVery St0re' (111) after every instruction retch, (iv) after every instruction completion.  In this case 

one would need four bits.  If fewer than four bits are available. 
^en °"e."n combine some of the flags and implement a flag in 
the CPU indicating the type of operation currently being, performed. 
In such a case, the monitoring logic would test the conjunction 

It      rnn   8     in the current "^d   being fetched or stored, and 
the CPU operation flag.  For example, with three bits instead 
ot tour, one can combine the fetch and the instruction-fetch 
flag bits.  There would be a bit (let us call it the I-bit), indi- 
cating whether or not the current fetch cycle is an instruction 
fetch cycle or a data fetch cycle.  This bit has to be accessible 
by the monitor routines.  Then, the user who wishes to detect 
the accesses to a particular location as an instruction-fetch, 
would insert a hook to be activated upon every fetch from that 
location, and within that hook, test the I-bit to determine if 
the current access is an instruction fetch or not.  Since, usually 
the same word is not accessed both as data and as instruction, 
this technique would involve a conjunction and a comparison as 
an overhead only in fetches from locations containing an instruc- 
tion.  This does not seem to be an excessive price to pay.  In 
fact, if one is sure that the location being hooked is alwavs 
accessed properly, one can eliminate this test altogether. 'This 
will probably be the most common case. 

A problem arises in certain computers however, if one wishes 
to insert a hook in every instruction word of a large block of 
consecutive locations.  A case in point is the PDP-11, which 
contains in-line data interspersed with instructions involving 
certain addressing modes.  Since, in general, it is impossible 
to tell statically if a particular word contains data or instruction, 
the insertion of hooks only in locations containing instructions 
can not be mechanized, i.e. the user has to either hook each 
instruction word individually, or hook all the locations in a 
given block (using a mechanism similar to the DAME HOOK command 
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which accepts an address range as a parameter) and then go in 
and delete the hooks for individual locations containing in-line 
data.  Either way, it is a fairly painful process.  An easier 
method would be to perform a test in the monitor routine to see 
if the current cvcle is an instruction fetch cvcle or not. 

e of some combination of 
action to be taken at 

us now consider the problem 
tor action to be taken, 
or actions themselves, I 
ufficient to locate the 
t is needed is a table 
current address and cycle 
put, a pointer to the 
shall not elaborate on 
two most obvious approaches 
ve memory or via a micro- 

Thus , assumine: that through the us 
flag bits, the presence of some monitor 
a contact point can be determined, let 
of locating the description of the moni 
Ignoring the format and syntax of monit 
shall assume that a sinple pointer is s 
desired action description.  Hence, wha 
look-up procedure with two inputs, the 
(i.e. instruction or data), and one out 
desired monitor action description.  I 
the implementation of this procedure; 
which come to mind are via an associati 
programmed table-lookup mechanism. 

"Table Index" Implementation 

Let us now consider the case where W  is sufficiently larger 
H 

than W  to permit the insertion of an index for a table, M, into 
0 

each host machine word representing an object machine word, in 
addition to, or instead of, the flat» bits. In this case, each 
entry in table M would contain either the description of the 
action itself, or a pointer to it. Thus, we would not need an 
associative memory or microprogrammed look-up procedure, since 
the table index would be built into each host machine word. 

The limitation of this approach of course is that if there 
are k bits available to be used as an index, one could have at most 

a 2 element direct-access table. Such a table could be extended 
by chaining overflow areas to each entry etc. at the cost of some 
more search. 

"Full Pointer" Imp lernen tat ion 

If the number of bits available is greater than or equal to 
the address width of the host machine, then one can in fact store 
there the full address of the monitor action description.  This 
eliminates the need for a pre-allocated table to contain the 
action descriptions or the pointers to them.  It permits a list- 
oriented structure to be created and maintained dynamically. 
(As will be recalled from Chapter 3, DAME goes one step further 
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and creates a general list of "interesting objects" for each 
location requiring one, e.R. such locations as node entry points, 
or addresses whose previous values are being collected.  Pointers 
to monitor actions, i.e. hook objects, are simply inserted and 
deleted as elements in these lists as required.) 

8.1.2  Monitoring vith W  Equal to W 

H 0 

This includes the important special case where the object 
machine and the host machine are the same.  Hence, it will be 
discussed in some detail. 

Here we have, for each memory access, two pieces of informa- 
tioo with which to determine whether or not the address being 
accessed is being monitored and, if so, to locate the monitor 
action description:  namely, the object machine address and its 
contents.  A technique, of obtaining this information by using 
only the address has already been discussed above.  Another technique 
which uses both the contents of the accessed address and the 
address itself, called "Lambda monitoring" [LA 72], was described in 
Section 3.7.1.  I shall summarize this technique here again.  The 
Lambda monitoring technique relies on finding a bit pattern, 
Lambda, which is expected to be used very rarely by any object 
program as instruction, address or data.  Lambda can be determined 
by the user at load-time (if he wishes to use a different pattern 
than the default one) and kept by the system in a Pattern Register. 
Each data element fetched from the main memory or a register 
would be compared with Lambda and a monitor trap would be caused 
whenever an object machine location containing that pattern is 
accessed.  Clearly, this operation should be quite transparent 
to the user program and the actual contents of that address should 
be made available to the user program by the control logic upon 
completion of the monitor action.  Once a monitor trap is detected, 
one then has to locate the associated monitor action description. 
For this purpose, again, the object machine address being accessed 
could be used as an input into an associative memory or microprog- 
rammed look-up procedure to obtain a pointer to the monitor action 
description.  If the bit pattern Lambda is the actual contents 
of the accessed address, then the table search mechanism would 
return a "no-hit" code which would terminate the trap.  One can 
generalize this technique somewhat by defining several bit patterns, 
to be kept in different pattern registers, indicating different 
kinds of monitor traps , e.g. one for each hook type, provided 
one can find several patterns which are likely to be used very 
infrequently by user programs.  This would enable one to search 
a unique, and hence smaller, table for each such bit pattern. 
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firstTtLhn!n POtentiaJ difference in the performance of the 
-rst technique, i.e. lookini 

irs 
:-up 

f-u   i "  •/ au w v i ,    a.» wicn resnect tn 
he shorter one of the CPU cycle and the main memory reaS   m^ 

If there is a substantial un-overlapped portion, then the fJrst 

heL'^O^thr 11   bVU.Ch Sl0Wer than 'he La^da Monitor!^ 
chosen'and cron 0thP-rf

hand' lf ^e bit pattern Lambda is poorly 

or instruct?nnP%^P ^t™   ^   the USer pr0^am as data. address' 
llhtll '        f" the overhead associated with the latter 
scheme can approach that of the former. 

envlsloned^Thi ^ TV   ^   techni^es. a third one can be 
feltuJe !h; H     technique essentially is an architectural 
s ructure if tr'T8 ! modu

ifica^^ of the physical addressing 
lenath H  l      0uJeCt nachine t0 "ake the host machine word 
length H^ longer than the object machine word length W , in a 

cal IddrP«^tran!Parent t0 USer Pro8ra^. i.e. retaining the logi- 

-Lr r^ii^ir^jrbe r:duep:dtha;o:h:xrint on phrical maL 

(i) normal user production-run node,  (ii) analysis mode   In 

Iddre":"   ^de' the maChine funct-ns with no change   ; the 
addressing structure and instruction execution.  In the analysis 
mode however, every user-generated address is mul lp ^d bj tw 
and  he contents of the double-word at that address is taken 

u eV^tr • ' to that dOUblrWOrd -presents the word which'the 
the monitor r\   a,CCeSS! and the UPP^ half holds a pointer to 
the monitor action description, much like in the "full pointer" 
mplernentation discussed in the preceding sub-section. ^Sese 

two halves can be retrieved either seauentially , using the same 
memory port  or in parallel using a seperate memory por  for the 

the mo^Jt"   " ^V   ^^    ^   monitoring facility would pick up 
the monitor word and perform the described action,"if any.  This 
technique trades off half of the storage of the object ma hine 
for the avoidance of a table-lookup procedure, by in effect using 
the current object machine (OM) address to locate the OM word 
and the monitor action address simultaneously.  Hence it may be 
an attractive alternative in cases where a great majority of the 
programs to be analyzed require less than half the available 
storage for program code and data. 
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A refinement of this technique, requiring a little more 
diligence implemented in the hardware or macrocode controlling 
address generation inside the CPU. permits user control over 

ifrger'thaTB^l/; ^ ^ T^**   int0 itSelf-  ^herwise (it is 
vh^h        ^ .      tS   inaPPed lnto C+N "here C is a constant 
eiual      o ^07Uted when the registers A and B are loaded and is 

in thriLt'f^ure^3"8'0^'1011' den0ted by r'^'B.X). - illustrated 

Total Storage 

Unmoni tored 
area: addressed 
in single words 

Monitored B 
area; addressed 
in double words 

Unmonitored A 
area; addressed 
in single words 

G(A,B,X)=(B-A)+X 
for   X>B 

G(A>B,X)«A+((X-A)*2) 
=2X-A   for   A<X<B 

\      n(A,B,X)=X   if   X<A 

. 
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This technique can be generalized to the case involvine M 
monitored areas.M>1.  Such a generalization requires the compa- 
rison, possibly in parallel, of X with the limit registers for 
each of the monitored areas and the selection of a different 
constant to be added to X or 2X for each position of the memory. 
Thus, if there are M such areas, with limits, A , B , i=l,...,M, 

and X is found to be in the Kth monitored area, then X is mapped 
K-l K-l 

into A +£ (B -A )+2(X-A ) = ( ^ (B -A )-A )+2X.  If X is smaller 
K j=1  J  J       K   j-1  j  j   K 

than A , it is unchanged.  If it is in an unmonitored area 

following the Kth monitored area, then it is mapped into 
K 
T.    (B -A )+X. 
J = 1  j  j 
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I conclude here the discussion of various techniaues for 
implementing the hook mechanism.  The choice of the appropriate 
technique for a particular processor will depend on the word 
sizes of the two machines, and the types of memory and microprog- 
ramming capability available. 
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8.2  Implementation of the Node Mechanism 
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xeeution, they are accessed whenever the eorres- 
entered or exited or when a monitor instruction 
They do not take up very much room, about 8-10 

t.  Except for the current node object, they are 
cessed very often.  Hence, an appropriate storage 
node objects would be to keep them in main memory, 
current node object which will be brought into 
y when the corresponding node is entered, maintained 
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The Node Trace table is a dynamically growing structure whose 
size is a direct function of the number of node instances executed 
Here too, normally only the table entry for the current node 
instance is accessed often.  Hence this latter part can be kept 
in local memory in the same manner as the current node object and 
the rest of the table can be kept in main memory. 
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same remarks also apply to the input/output sets with 
rtant qualification:  the maintenance of the current 
tput sets will probably be best implemented through an 
ive memory.  This is due to the fact that one has to 
he current input or output set for every generated address 
he current node instance.  If the address is not found, 
be added to current input or output set.  If this is done 
quential search of these sets, the resulting overhead 
y to be unacceptable.  Thus, the current input/output 
uld be created and built up in associative memory and 
red to main memory and linked to the I/O set list of the 
ed node when the current node instance is exited. 
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Another point worth mentioning with respect to the I/O 
sets is the nesting of these sets if nested nodes are permitted. 
Suppose there are n levels of nested I/O sets;  what is the 
best way to maintain them - to maintain all of them with each 
generated address, or to maintain the highest level set only and 
to update the next highest level (i.e. its parent) only when the 
former is exited by adding the appropriate entries from the 
highest level set into the next highest one?  Both approaches 
are feasible.  The sophistication of the associative memory avail 
able and the overhead of the two approaches will determine the 
preferable alternative for a particular implementation. 

8.3.  The Interface between the Analysis Facility and 
the Central Processor 

Since the Analysis Facility requires access to much information 
inside the CPU and to the main memory, and since it needs the 
ability to interrupt the CPU, it is worthwhile to consider the 
interface between the Analysis Facility and a "conventional" 
central processor.  I shall not go to great detail in doing this 
however;  hence I shall not refer to a specific processor, but 
rather to one which is representative of contemporary architecture. 

The interface between the analysis facility and the central 
processor consists of data and control paths between the analysis 
facility processor and: 

1- Main memory address register (data path), MARP, 

2- Kain memory data register (data path), MDPP, 

3- M--   nemory access control (control path), MACP, 

4- Gt.lC:ral registers (data path), GRP , 

5- Internal registers (data path), IRP . 

6- CPU control logic, (control path), CLP. 

The first three paths, MARP, MDRP and MACP, permit the 
analysis facility to access the main memory address and data 
registers as well as main memory locations.  The path GRP gives 
access to the contents of the general registers. 
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information may not be explicitly kept in this form during the 
entire execution cycle.  In such a case, either the processor 
design may be modified to make this information available or 
an instruction decoder may be built into the Analysis Facility 
which can extract the required information. 

The path, CLP, to the CPU control logic is a control path 
^"nnf,8 t0 s-vnchronlze the activities of the Analysis Facility 

and the CPU.  In particular, it will conduct signals from the 
former to the latter to inhibit and enable instruction execution. 

8.4 The Analysis Facility Processor (AFP) 

So far, we have said nothing about how the Analysis Facility 
will function, its instruction set and internal organization. 
While it is not desirable to go into much detail here, it is 
probably worthwhile to outline the answers to these questions. 

The question of thow the Analysis Facility Processor (AFP) 
will function, i.e. "will it have its own instruction execution 
hardware or will it share that of the object machine?", and the 
question of the instruction set of the AFP are interrelated. 
Recalling the two subsets of the Instruction set of DAMF, namely 
the  conventional" subset and the "monitoring and analysis- 
subset, it is clear that if the AFP uses the same Instruction 
set as the object machine, then the monitoring and analysis instruc 
tions must be compiled into the conventional subset, which can 
then be directly executed by the AFP. 

This approach has the advantage of not requiring a seperate 
instruction set processor for the AFP.  However it also requires 
that the internal state of the object machine CPU be saved before 
the AFP can do anything.  Also, if the CPU is to be monitorable 
while it is being used by the AFP, then, in fact, the internal 
state of the CPU has to be saved in a stack, to permit an orderly 
return from the various levels of monitoring and analysis activity, 
turther, the object machine instruction set would have to be 
extended to permit access to the internal registers, MARP, MDRP 
etc., perhaps requiring new instructions.  Finally, the instruction 
set of the object machine will nou necessarily be suitable to 
perform the monitoring and analysis actions described in Chapters 
n*^      In Particular. ^ the list-structure orientation of the 
DAME system is also adopted in the design of the AFP, one would 
really prefer to have a machine instruction set suitable for list 
processing.  For these reasons, my preference would be a seperate 
instruction set processor for the AFP, both from the performance 
point of view and the freedom it affords in defining new types 
of operations.  Hence, in the design for the AFP whose outline 
is given in the following illustration, I assume a seperate KFP, 
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envisioned by Zelkowi'-z's design. Also, this design does not 
provide for monitoring accesses to the general registers. 

Two other reports on hardware-monitor based approaches should 
be mentioned here.  One is the report on the Neurotron monitor 
by R. A. Ashenbrenner et al [ALN 71], and the other is the report 
on a hardware monitor for a multi-mini processor (C.mmp) system 
by S. H. Fuller et al [FSW 73].  Both of these monitors appear 
to be oriented toward data selection and collection and not the 
full spectrum of general purpose, dynamic analysis activities 
envisioned in this thesis. 
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(i)  "... since microprogram storage is an extremely scarce 
commodity, it was prohibitively expensive to insert measurement 
routines throughout the microprogram."  Thus, in the Analysis 
Facility Processor, the power of the instruction set might be 
limited by the microprogram storage available. 

(ii)  "Since our microcomputers possess a limited subroutining 
facility at the microprogram level, it was not even feasible to 
include a subroutine call at every point at which we wished to 
measure the performance of the system."  This is an example of 
the problems caused by the primitiveness of the microprocessor 
instruction set.  More on the same point:  "A severe problem 
found in the implementation of extensions via microprogramming, 
generally not found in conventional software interpreters, arises 
from the lack of many general facilities at the microprogram level." 

(iii)  "In addition, many instructions are executed directly 
in hardware at instruction fetch time (most of the program transfer 
instructions).  Others share microcode but are semantically dis- 
tinguished by a large number of flip-flops (set by the hardwired 
instruction fetch and decode) which perform extensive residual 
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control."  Those flip-flops nay well include data about addressing 
modes, the success of a conditional branch etc. and should be 
accessible by the measurement routines.  More on the problems 
caused by hardware interpretation:  "Microprogram machines are 
generally not completely microprogrammed.  Many aspects of instruc- 
tion decoding and operand fetching may be performed in a hardwired 
scheduler in the interest of increased efficiency.  This technique 

murren L m-icrupruceaburs nave IIUL oeen uesj^ueu LU CHJ-UW UUCOC 

registers to be explicitly read by an emulator and thus they 
are not evailable to measurement routines.  This lack of generality 
imposes unnecessary complications to the microprogrammer, but 
could be avoided in future microprocessor design." 

(iv)  "The Input/Output conflict between the microprogram 
measuring routine and the system being measured was the single 
most difficult problem j.n the implementation".  The authors 
recommend that the two systems use different channels for input/ 
output. 

All of these points are candid examples of the problems which 
arise in the design and implementation of microprogrammed execution 
analysis facilities.  They emphasize several points already made 
in the discussion of the AFP above:  namely, the need for a power- 
ful instruction set, access to object machine internal registers 
and seperation of the object machine hardware from that of the 
AFP. 
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CONCLUSIONS 

The term "execution analysis" covers many important areas, 
such as debugging, control flow, data flow, performance measurement 
and storage reference pattern analysis.  The main contribution 
of the thesis is the development of a framework which faciliti- 
tates analysis tasks in all of the.-ie areas.  A prototype of this 
framework, called DAME (Dynamic Analysis and Modelling Knvlronment) 
has been implemented on the PPP-10 to study the behaviour of 
PDP-11 programs.  Its most novel aspect is that it permits the 
user to define an abstract structure over his program at r u n-1 i m e 
and perform his analysis in terms of the elements of that structure, 
called "nodes".  A node is a segment of code, not necessarily 
contiguous in space, having a unique entry point and a unique 
exit point.  Every execution of a node is called an "instance" 
of that node.  During each node instance, DAME constructs a list, 
called the "input-set", of all the inputs used, and upon exit, 
a list, called the "output-set" of the changes to the system state 
caused by the node instance.  The input-set of a node instance 
I is defined as the set of pairs -AjB- where A is an address 
whose contents were read by 1 before beini», modified for the first 
time bv I, and B is the value read.  Thus the input-set of I 
represents all the outside information passed to I.  The output-set 
of I consists of pairs -C,!)  where C is an address written into 
by I and D the last value written.  The significance of this 
formulation of input/output sets is that it not only permits 
backtracking to any arbitrary point in the execution history, 
but also facilitates the determination of data flow between nodes. 
This formulation is also very helpful in narrowing down the search for 
an elusive bug to a particular node instance during debugging. 
Another significant advantage of this approach is that it gives 
the user the ability to control the amount of information collected 
by the system through the judicious definition of nodes.  Other 
systems, which record every store and every branch operation, 
require much more storage to represent the same length of execution. 

In addition to the node mechanism, DAME offers a flexible 
mechanism, called the "Hook Mechanism", which allows the user to 
trigger monitoring and analysis actions at a wide variety of 
points in the PDP-11 instruction cycle and at entry and exit from 
nodes.  Bv using the node and hook mechanisms and the comprehensive 
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instruction set of DAM!:, which includes general-purpose compu- 
tational Lnstructions as well as instructions specifically 
designed for monitorin p., collecting and searching collected 
data, the user can in most cases easiJv formulate DAME routines 
to perform the analysis he is interested in.  In Chapter 4, 
five example of the application of DAME to data flow analysis, 
control flow analysis and instruction mix analysis are j?, iven. 
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The DAME language has proved unsatisfactory in some areas. 
Its main disadvantage is the low-level instructions supplied for 
conventional computing tasks (e.p. arithmetic).  These are equiva- 
lent to those of a 3-address hardware machine.  But, this design 
was in fact intended to provide a model for a possible hardware 
implementation and it was felt that a higher-level language can 
subsequently be implemented to compile into the DAME language. 
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Such a language would make DAME 

The subset of DAME instructions dealing with monitoring, 
data collection and retrieval have proved quite comprehensive 
in their coverage and easy to use.  While this subset could 
certainly be enhanced by the implementation of higher-level 
primitives discussed in'Chapter 6, such as the FOPEACH statement 
in LEAP and continuously evaluated expressions, the provided 
facilities have proved quite useful and also quite easv to trans- 
port to a higher-level language.  Their transportability to a 
higher-level language as demonstrated in Chapter 7, and the fact 
that their design was based on the requirements set forth in 
Chapter 2, indicate that the specifications in Chapter 2 are 
indeed independent of the analysis language level. 

In the final chapter. Chapter 8, we consider a class of 
questions whose solution could have a significant impact on the 
extent to which execution analysis facilities are used by applica- 
tion and system programmers alike.  These cuestions relate to 
the hardware implementation of the primitives which are most 
burdensome and cause most of the overhead in software.  We did 
not attempt to solve these problems; our intention was only to 
pose the right questions and suggest approaches to their solution, 
A real solution to these questions, due to the major design tasks 
which still remain, would require a detailed, engineering level 
design and possibly implementation, testing and trial use. 

In summary then, we have shown that execution analysis 
facilities significantly more powerful and widely applicable than 
the existing systems for individual types of analyses, such as 
debugging and performance measurement, can he built using current 
technology.  While the prototype implementation appears too 
expensive for wide use, a more cost-conscious design and some 
assistance from hardware can bring the cost down substantially. 
We hope that the ideas demonstrated in this thesis will shed 
some light on the problems involved and point the way to some of 
the solut ions. 

t-  ■ ■  , u I m -■■ -   - ■ I t— -        ■     ■   -     -- —j   -,. . , _^.^^^fcitM^^         -■       ■    IIBI M   „nil^Mfc^Maaftiltl 



IPBP^pppiPIPIpippiWPIifBiPWIPi^W»!»»''^^ 

147 

REFERENCES 

[ACM 73J  Proceedings of"Workshop on Virtual Computer Systems", 
ACM SIGARCH-SIGOPS, 1973. 

[AS 71J   Aschenbrenner, R. A., et al, "The Neurotron Monitor 
System", Proc. FJCC 39(1971). 

[BA 67 1   Balzer, R. M., "EXDAMS-Extendable DebuRginp, and Monito- 
ring System", Proc. FJCC, 1971. 

[BE 66]   Bernstein, A. J., "Analysis of Programs for Parallel 
Processing", IEEE Transactions on Electronic Computers, 
October, 1966. 

[BO 68)   Bernstein, W. A., Owens, J. J., "Debugging in a Time- 
Sharing Environment", Proc. FJCC, 1968. 

[BK 701   Bussell, B., and Koster, R. A., "Instrumenting Computer 
Systems and Their Programs", Proc. FJCC, 1970. 

[CO 71J   Cocke, J., "On Certain Graph-Theoretic Properties of 
Programs", IBM Research Report RC 3391, 1971. 

[DEC 71]  "PDP11/20 ,15 ,r20 Processor Handbook", Digital Equipment 
Corp., Maynard, Mass., 1971. 

[DEC 73]  "BLISS-11 Programmer's Manual", Digital Equipment Corp., 
Maynard, Mass., 197 3. 

[ED 66]   Evans, T. G., Darley, D. L., "On-line Debugging 
Techniques:  A Survey", Proc. FJCC, 1966. 

[ED 65]   Evans, T. G., and Darley, D. L., "DEBUG-An Extension 
to Current Online Debugging Techniques", C/CM Vol. 8, 

No. 5 . 

[ES 67]   Estrin, G., et al, "Snuper Computer-A Computer in 
Instrument-■:.ion Automaton", Proc. SJCC, 1967. 

[FE 73]   Feustel, E. A., "On the Advantages of Tagged Architecture", 
IEEE Transactions on Computers, Vol. c-22. No. 7, July 

1973. 

[FI 70]   Fisher, E., "Control Structures for Programming Languages", 
Ph.D. Thesis, Carnegie-Mellon University, 1970. 

[FR 69]   Feldman, J. A., and P. D. Rovner, "An ALGOL-Based 
Associative Language", CACM 12. Vol. 8, August 1969. 

,-■-:-—,>-■.-.:.:,.-■■  " ....-<.■. .-.■.:. :., :......:    ■.: ...■.■-  ,.-...■..   ^f.-..iln i v       ■ ■-  ■- -- - •■•■■■~>-'^-*- >■■■■■ ■~- -' '-'-■^-■^'■L^'t^***-^*****!***** 



,IUii|i»|iWJ«llMllU   in Ml W.i.1 r.f^nmjM'AI ■''■•    •^SW^JTWKSJBSnpiBWWWPJBpwiWWJKTflil^PT^^ "IJII-W 

148 

[FSW 73 1  Fuller, S. I'., R. J. Swan and W. A. Wulf, "The 
Instrumentation of C.mmp, a Multi-(Mini) Processor", 
Proc. of COMPCUN 73, IEEE Computer Society. 

[GA 69;   Gaines, R, Stockton, "The Debugging of Computer Programs", 
Institute for Defense Analyses, Working Paper No. 266, 
August, 19 6 9. 

[KN 73i   Knuth, Donald E., The Art of Computer Programming, 
Vol. 3, Addison-Wesles, 1973. 

ILA 65!   Lampson, B. 1.'., "Interactive Machine Language Progr ammi np", 
Proc. F J C C 1965. 

I LA 72 i   Lang, B., "A New Technique for Data Monitoring", ACM 
SIGPLAN Notices, Vol. 7, No. 6, June 1972. 

1LU 71]   Lunde, A., "POOMAS-Poor Man's Simula", Unpublished 
user manual for the POOMAS simulation package available 
at CMU Computer Science Dept. 

I ME 67 i   Martin, David F. and Katrin, Gerald, "Experiments on 
Models of Computations and Systems", IFEE Transactions 
on Electronic Computers, February, 1967. 

[MCN 68]  McNeley, J. L., "Compound Declarations", in Simulation 
Programming Languages, ed. J. N. Buxton, North-Holland, 
1968. 

[MI 70;   Mitchell, J. G., "The Design and Construction of Flexible 
and Efficient Interactive Programming Systems", Ph.D. 
Thesis, Carnegie-Mellon University, June 1970. 

[RU 71 i   Rustin, R., "Debugging. Techniques for Large Systems", 
Courant Computer Science Symposium 1, Courant Institute 
of Mathematical Sciences, New York University, 
Prentice-Hall, 1971. 

ISS 723   Saal, H. J. and L. J. Shustek, "Microprogrammed Implemen- 
tation of Computer Measurement Techniques", Proc. 5. 
Annual ACM/SIGMICRO Workshop on Microprogramming, 
University of Illinois, Urbana, Illinois. 

(.ST 65 1 Stockham, T. r;. , "Some Methods of Graphical Debugging", 
Proc. IBM Scientific Computing Symposium on Man-Machine 
Communication, May, 1965. 

IWI 67.1   Wilde, D. 11., "Program Analysis Digital Computer", 
Ph. D. Thesis, MIT, 1967 . 

.  ^  - ^ ■ J. ■  .   .^.^   _.        .......... ■^. -..-.- ^ ^.-^.-^   ■              .  .    .    , • ..^u.^^.... -  . ■■ ^1—ja^>AML^Jfc^l». 



nm^^rmf^n^^n^mmm^ ■'■   mm !|^!!BWBl(pippipW!l«imiPWIW!!!5Pl«lWUIiJ,»l.l,».MI i.lWHJI^WPWBPPPlJiJ«U"l*»llMilll -,,.»I«H.,I_I HJ.HJ.J. iifmj. 

•*r n liillWHillMIfflHIW 

[WU 71] 

[WU 72] 

f ZE 71] 

149 

Wulf, W. et al., "Bliss Reference Manual", C.MU Computer 
Science Department Research Report, January, 1971. 

Wulf, W., "C.mmp:  A Multi-Mini-Processor", Computer 
Science Reseerch Review 1971-72, Department of Computer 
Science, Carnegie-Mellon University, 1972. 

Zelkowitz, M., "Interrupt Driven Programming" CACM, 
June 1971 Vol. 14, No. 6. 

  •    - ■■"•■-■ ■- ■-^■■■■-"i- lutei^i    - •■ —   -■■^ — ^v*--^ -    -  • "   '   " t.......,^;..-. ■ " -■-'- -■---..    1. min' nt rriii',i-l 'i^ti nvtutiilniiiriit —■•■■' -■.-^—.. -. ....-,        iryiJfalMha i 



*mm^i*^*> w *r v' n ■VLIHW-w w»-^.,u' 11. i. -i 11 n»]iyf\tmmv.vi9\iv.m.'mti'mt.mtt mw. ■< «MI ^ \\\mfi», .^ yj^wi* i 'WMnij^ym» »»VIPUI APi.wpi .|.-"i*P'.ij'--'- I '"" I -1... .IUI«ü^.P »u.y JI^H». jijppwi ij.i|pM j»iijL^«ii m.v^s vj.^miwrnv*'^' J >.». .-w- 

1 SO 

APPENDIX  A 

CONTENTS 

Introduction to DAME 

The Hook Mechanism 

The Node Mechanism 

Data Elements of DAME 

Procedure for Getting Started with DAME 

Instruction Format 

Monitor Machine Instruction Set 

Commands for Creating Monitor Routines 

Load Monitor Routine (LMR) 
Define Monitor Routine (DMR) 

PDP-11 Flow Control Commands 

Run .(RUN) 
Go (GO) 
Stop (STOP) 
Stop Conditional (STOPC) 
Node (NODE) 
Node Trace (NTR) 
Along (ALONG) 
Restore to Node Instance (REST) 
Replay Node Instance (RELAY) 

Monitor Routine Flow Control Commands 

If (IF) 
While (WHL) 
Incr (INCH) 
Execute (EX) 
Push (PUSH) 
Pop (POP) 
Return (RET) 

Page 

153 

] 5 3 

154 

156 

156 

156 

158 

158 

159 

162 

^"■-  - -'-■■■"        ■     ■■ -•-  -.-^-.- .■.,--.:.-.,       ,.............*      .. "-—"-*-•—       - -  .-   . .       ..        1. ■n^jMiMM—r—idai 



jwi»wp»^m»g'^'wiuii<»i»ii'i:i-, -iu^^ ],JMiwiiii.L<»»»wi'MWiW»«i^wWiwwJW™^ ■ ■"   i"-'"^^!!! 

151 

Type-Out Commands 

Type Object (TOBJ) 
Type-Indirect Object (TIOBJ) 
Type -10 Symbol (TY10) 
Type Contents of -11 Addresses (T) 
Type Immediate (TI) 
Type Node Instances (TNI) 
Type Node Objects (TNO) 

Insert Commands 

Insert in -11 Address (I) 
Zero -11 Addresses (Z) 
Insert in Object (IOBJ) 
Insert Halfword (IHW) 

Commands to Create and Delete Objects 

Create Object (CR) 
Delete Object (DEL) 

Hook Manipulation Commands 

Hook (HOOK) 
Disable Hook (DISAB) 
Enable Hook (ENAB) 

Commands for Searching PDP-11 Execution History 

Find Input-Set (EISET) 
Find Output-Set (FOSET) 
Find Value (FVAL) 
Find Node Instance (FNI) 
Find Node Object (FNO) 

Value-trace Commands 

Initialize Value-trace (IVT) 
Value-trace Hook (VTH) 

Disk I/O Commands 

Write Disk (WDSK) 
Write-Indirect Disk (WIDSK) 
Read Disk (RDSK) 

Page 

164 

167 

168 

169 

171 

174 

175 

-- ^  ..   - -   .   . IM   i ^u.-..■■■;:>■.  ..^^■■■^. .■■■.,^-m-:^..i.-.. „- -,1.*..^-^. ^.--.....i..^.--^-^/..■^v.^^.„^^ JW^.iztM^-js^MurttiuUi\AtiUsitü^.:^ ..--.- ■ ■  .-,^^.^^^,..^^^-^:^^A^^~^'^r-a.L.,..-.-',^^.i>-*^■.■i „;.^^J^^.■.düiUbiaaimUJbMäMaUimk 



PPfP^lpip^WWWBIffpiipiS?*^^ 

152 

Page 

Miscellaneous Commands 176 

Load PDP-11 Program (LOAD) 
Generalized Unary Operation with Assignment (UA) 
Generalized Binary Operation with Assignment (BA) 
Execute External (XX' 
Evaluate (EVAL) 
Time (TIME) 
Plot (PLOT) 

A List of Useful Global PDP-10 Symbols and Their Contents 179 

The Octal Value of OPN for Each Opcode 180 

.  Tl«>Wtfj'«V^;i^lw.rnW>^",>ito--irVi
,>rtriimiri--' i>'-iv-v —)-v::,-l-

,-r-'tfriTli^ftWitirt ,.  .     . ,   . ■ - ^-^-iiiinifcinr i —' -'-—-^ 



133 

Introduction  to  D ^ M E 

D^MF (Dynamic Analysis and Modelling Environment) is an 
environment for running PDP-11/20 proprams on the PDP-10 and 
analyzing their execution.  It contains a fairly rich instruction 
set containing the facilities of a low-level programming language 
and a set of facilities for controlling the execution on the 
PI)P-11 and the dynamic collection ard searchinp of data.  (We 
shall refer to DAME instructions also as DAME commands).  Any 
DAME command can be executed immediately or in a DAME routine. 
A DAME routine can either be defined on-line by using the "Define 
Monitor Routine" (DMR) command or it can be prepared ahead of 
time in an SOS file with the extension .DAM and subsequently 
loaded with the "Load Monitor Routine" (J.MR) command.  The latter 
mode of operation is highly recommended since SOS has much better 
editing facilities than DAME and one quickly pets   tired of 
entering the same commands repeatedly.  LMP commands can be nested 
in the sense that any executed routine can load and execute other 
routines, achieving a hierarchical loading effect.  This is a 
very convenient mode of operation. 

PDP-11 programs are loaded from a binary (.BIN) file using 
the LOAD command.  They are executed by using the RUN or GO 

commands . 

The Hook Mechanism 

The principal mechanism by which the user causes DAME to 
take some action while his program is running, is the Hook 

Mechanism. 

There are two classes of hooks:  general hooks and addressed 
hooks.  Within each class there are several types.  The type and 
class of each hook is indicated by a mnemonic character constant 
in the Hook command.  General hooks are those in which a user- 
specified monitor routine will be executed at: 

1- Every fetch operation (hook-type 'OF) or, 

2- Every store operation (type 'GS) or, 

3- Every instruction fetch (type 'IF) or, 

4- Every instruction completion (tvpe 'If) or, 

5- Everv node entry (type 'NE) or. 
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6-  Every node exit (type 'NX). 

(Nodes are explained later.) 

Addressed hooks are those in which the user-specified monitor 
routine will be executed only if the specified type of operation 
is performed on an address in a given range.  The types of opera- 
tions are: 

7- 

8- 

9- 

F.very fetch from an address range (tvpe 'AF) 

Every store into an address range (type 'AS), 

Every instruction fetcti from an address range 
(type 'AIP), 

10- The completion of every Instruction fetched from an 
address range (type 'AIC). 
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The Node Mechanism 

A second Important mechanism by which the user collects 
information about the behaviour of his program, is the so-colled 
"Node Mechanism".  The Node Mechanism reflects a certain view, 
that held by DAME, of the notion of what "the execution of a 
program" means.  It contains facilities for extracting information 
in compliance with that view, while the PDP-11 program runs. 
The collected Information makes it possible to reconstruct anv 
previous state of the -11, as well as to answer questions about 
data flow and control flow history without restoring past states. 

In  DAME's view of the world, interesting parts ci   programs 
are identified and divided into nodes by the user.   (A default 
mode is also provided.  See NTR command.)  Nodes can be as small 
as a single instruction or as large as the entire program. 
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For each node instance, the system creates a four-word 
entry in a table, NODETFACE.  The format of the entry is: 

<node starting address> 
■instruction count at entry- 
input-set ptr,,output-set ptr-' 

■no. of instructions in NI- 

In addition, associated with each node is a node-object, 
which contains pointers to lists of pointers to the input- and 
output-sets of every instance of that node.  The I/O sets can 
be displayed easily by the T0BJ(<obj. address>) command by 
supplying the address of the desired I/O set list from the node- 
object.  These lists can also be manipulated in monitor routines. 

Finally, all node-objects and input/output sets are 
accessible, as most other objects in the svstem are, thru a 
set of master list pointers, MNODESC, MINPUTSETSC and MOUTPUTSETSC 
These lists, called "subclass masters", contain a pointer to 
every object of their respective subclasses. 

A set of commands intended to facilitate the searching of 
this execution history information is provided (See "Commands 
for Searching Execution History"). 
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Data Elements of DAME 

DAME has access to three address spaces, each of which 
Is handled in a similar, but not identical, manner.  These 
are: 

1- PDP-11 core, general and device registers, 

2- Global PDP-10 symbols declared in the simulator and in 
the rest of DAME code, 

3- Monitor Machine objects (MMO) created by the user during 
the session or pre-defined for the user by DAME during initiali- 
zation. 

A list of the useful elements of type 2 and pre-defined 
objects of type 3 are found in the back of this document.  Symbols 
of tvpe 1 are identical to the corresponding, standard PDP-11 
assembly language symbols as defined in [DEC 71J. 

Procedure for Getting Started with DAME 

To run DAME, enter the following command to the PDP-10 
Moni tor: 

.FUN DAME CA10BA07 

It will respond with: 

DAME11/10... 

** 

and unlock the keyboard.  You are now in DAME command mode, 
indicated by the double-asterisk prompt signal. 

(Notation:  A BNF-like notation is used to describe the 
syntax of DAME instructions.  "/" indicates disjunction, and 
"<" and ">" delimit non-terminal symbols.  Brackets "[" and 
"]" delimit optional operands.) 

Instruction Format 

■MM instruction> -> <Type-l instruction;» / -'Tvpe-2 instruction- 

•Type-1 instruction-- ♦ • opera tor ■(■ operand list -) 

-Type-2 instruction^ ►  operator -(■operand list>  action-) 

■-operand list-- ■► -operand »/• operand lisf- ^operand- 

•operand- ►  octal integer- / (3- octal integer-- ,  short char, string- 
-global -10 symbol;- / -MMO name- 

■"•■■—---■■■-  '■ ' 
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<actlon> * <MM routine name--   -compound instruction> 

•short char, string-■ - '-'up to 5 characters' 

■compound instruction?' ■* (*'MM instruction list) 

•MM instruction list> ■♦ -MM instruction-' / <MM instruction list- 
■MM instruction> 

As can be seen, some monitor instructions take simple 
operand lists while others (in particular, IF, INCR, WHL, HOOK 
and ALONG instructions) can optionally take a compound-instruetion 
(the analogue of a compound statement or compound expression 
in block-oriented languages) as the last operand.  All operands 
of an MM instruction must be defined prior to the execution of 
that instruction.  MMO's which are not pre-defined by the 
system,are defined by the CREATE instruction (except for monitor 
routines, hooks and value-trace objects, as described later.) 
The form (?-octal integer- refers to the contents of -11 core 
location  octal Integer ■ when the Instruction is executed. 

■- •■—' - ■"■■■' 
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MONITOR MACHINK 1 NS TKl'CT 1 ON SKT 

*************************************************************** 
*************************************************************** 

Commaiuis for Croat Inc. Monitor Routines 

*************************************************************** 
*************************************************************** 

"Load Monitor Routine" Command 

Syntax:  LMR (' t i lonamo ■  rout im- spec. ) 
«routine s p o i- .   • ' ■ r o u t i n o n a ni o / ' * 

Effect :  There must be an SOS file named ^filename .HIN, where 
t i Lename  lias at most i ivo i:l\arac t o rs ,  The t i 1 i- must contain 

Monitor routines in the following format : 

rout i ne name ( MM Lnstructlon> <MM Instruction'' 

 1 
rout i n e n am e > («• MM Instruction    

 ) 

I.e. each routine must start on  a new SOS line. 

Standard SOS Line numbering Is assumed.  ii '* Ls specifiedi all 
the rout Lnes In tho t ilo aro loaded and del tned as HMO's. 
Otherwise, If the specified routine Ls found in the file, it is 
Loaded and definedi else an error message is typed. 

*************************************************************** 

"Define Monitor Rout Ine" Command 

Syntax:  H M K ('• rou t i u o n a me ) 

Effect :   rout tne name  must be at most 5 characters.  The 
command puts tho user In the DAME edit mode, which is Indicated 
by tho prompt i-. harartors '--' for the first  lino of a rout i no 
bo inn dofiuod.  If tho rout ino is to extend into more Lines, 
terminate each non-terminal line with sn altmode and carriage- 
return;  DAME will prompt with '■■■-' tor each non-terminal Line 
a f t e r the first 1 i ne .  Ter mi na to Last lino v i t h o n1y a o a r r1 a gc 
rot urn. 
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********************************************* >'.***************** 
*************************************************************** 

PDP-11 Flow Control Commands 

*************************************************************** 
*****************************************************''•********* 

"Run" Command 

Syntax:  RUN([«starting address ■ 1 •halt count M) 

Effect:  If 'Starting address' is specified, it is inserted in 
the PDP-11 PC.  If  halt count  is specified, it is inserted in 
the global variable HALTCOUNT, the value of which is initialized 
to -1 when the system is started up.  The CPU is then given control, 
starting with an instruction fetch from the current value of PC. 
HALTCOUNT is decremented by 1 after the completion of every 
instruction.  When it reaches zero, execution is stopped and 

command mode is entered. 

*******************************************************"*:******* 

"Go" Command 

Syntax:  G0([<halt count- I) 

Effect:  If -halt count> is specified, it is inserted in 
HALTCOUNT.  Execution is resumed from its current state. 

*************************************************************** 

"Stop" Command 

Syntax:  STOP( ) 

Effect:  CPU is stopped and command mode is entered. 

*************************************************************** 

"Stop Comditional" Command 

Syntax:  ST0PC(<id>) 

Effect:  If the value of <id> is odd, then same as STOP ( ), 
otherwisenoeffect. 

; 

■■ ■■- - ,  ^ •■ - -- ■ ■■ 

  . ■■■ . ...  ... ^_. 
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*************************************************************** 

"Node" Command 

Syntax:  KODEC'-noJe name> 'lower bound> supper bound-) 

Effect:  Defines a node-object with name <node name> and whose 
scope is -lower bound> to -upper bound>.  See the format of 
objects of nodesubclass and also NODETRACE table for the format 
of node-instances (p. 41 and 49). 

*************************************************************y(^ 

"Node Trace" Command 

Syntax:  NTR() 

Effect:  This command causes the system to assume the default 
mode for node definition.  The first executed instruction starts 
the first node and first node instance.  Thereafter, every 
conditional branch and every deviation from seouential flow 
causes the termination of the current node instance, and the 
following instruction (i.e. the target of the transfer) consti- 
tutes entry into a new node instance.  The current node instance 
is also terminated when a preciously-established end of a node 
instance is encountered even if control flow remains sequential. 

*************************************************************** 

"Along" Command 

Svntax:  ALONG(N0 Nl...Nk P) 

Effect:  Ni's must be the names or starting addresses of nodes 
and R a compound-instruetion or the name of a monitor routine. 
Whenever the execution follows path NO,Ml,...,Nk, R is executed 
whenever this ALONG command is encountered.  More precisely, let 
1.0,Ll,...,Lt be the sequence (in reverse chronological order) 
of nodes executed so far, with L0= the current node.  Then R will 
be executed if and only if for some j, 0 < j S k for all i = 0,...,j, 
Ni=L(j-l); i.e. if some (j+1)-element initial segment N0,Nl,...,Nj 
in the specified path is identical to L(j),L(j-l),...,L0, the 
last j+1 node instances executed. 

*************************************************************** 

"Restore to Node Instance" Command 

Syntax :  REST(-lndex •) 
■index> ► 'octal integer> /  obj. name- 

^ -   . ..i .I—-  - - -  ~—'—»^— l   l l«l  ninl 
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Effect:  The PDP-11 environment which existed where the node 
instance specified by <index> was entered is restored, including 
the NODETRACE table and the instruction count ICOUNT. 
However, simulation time is not restored. 

******************************************************* mum 

"Replay Node Instance" Command 

Syntax:  RPLAYd'TJ < s tar 11 ng-index • [ < endi ng-i ndex > 1) 

Effect:  The input-sets of the node instances back through the 
instance of index <startlng lndex> and a replay is made of 
the ncde-instances specified by '-s t ar t ing-index > thru <ending- 
index^.  (A node instance has index i if it is the irh node 
instance entered since the first node was defined.  The indices 
of node instances can be determined via the Find Node Instance 
(FNI) command.)  At the end of the replay, the PDP-11 state 
which existed when the RPLAY command was issued is restored 
including the NODETRACE table, instruction count and simulation 
time.  If 'T is specified, the instructions are traced on the 
TTY as they are executed. 

L — _-.—i—M.—-^—.^—          ....     —_^__^^> 
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*************************************************************** 
*************************************************************** 

Monitor Routine Flow Control Commands 

*************************************************************** 
*************************************************************** 

"If" Command 

Syntax:  IF(<opdl> 'rel-  opd2-  then-action  [<else-action>1) 

•then-action- * -action- 

-else-action- ♦ -action- 

^action- * -routine name- /  compound Instruction 

•'compound-instruction- ■*   (MM instruction list) 

•MM instruction list  ► •■ MM instruction- 
/ «MM instruction list- -MM instruction- 

rel EQ/NEQ/GE/GT/LE/LT 

Effect:  If the specified relation holds then the action 
then-action- is executed.  Otherwise, if an  else-action 

has been specified, it is executed. 

*************************************************************** 

"While" Command 

Syntax:  W H L (• o p J - -action-) 

Effect:  The action  action- is executed while the value of 
opd  is odd. -action- is defined as above. 

*************************************************************** 

"Inc r" Command 

Syntax:  INCR(<var> -from-opd  -to-opd- -step-opd'- -action) 

Effect:  As the value of -var  is incrpfiented from  from-opd^ 
to at most -to-opd  in steps of -step-opd-, -action- is executed 
at each step.  If -from-opd  is initially smaller than -to-opd , 
-action- is not executed at all.   action- is defined as above. 

: 

-■;—" 
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"Execute" Command 

Syntax:  EX(■routine•) 

Effect':  The monitor routine <routine> is executed.  This command 
together with the PUSH, POP and RET commands described below, 
constitute a subroutine facility with call-by-value parameters. 

"Push" Command 

Syntax:  PUSH(<value>) 

<value> > <octal lnteger> / ^char. const, up to 5 chars. 
/ "^obj. name> 

Effect:  The provided literal or the contents of word 0 of 
obj. name- are pushed on a (implied) stack fr< 

can be retrieved by a POP command. 
om where they 

"Pop" Command 

Syntax :  POP(<obj . id >) 

Effect:  The last element pushed onto the stack is popped into 
word Oof -obj. ld>. 

*************************************************************** 

"Return" Command 

Syntax:  RET(<level count) 

Effect:  Causes an exit from the last <level count> number of 
monitor routines and compound-instruction levels;  the level 
count for current level being zero.  (Note that, in fact, RET(O) 

11   aDll
e^SS   CaSe SinCe it: meanS that   the MM instructions following 

the RET(O) in the same level, will never be executed.  The effect 
of that level would remain unchanged if the P,ET(0) and all the 
following instructions in the same level were removed.) 

■r ■■-'-■• -i-i-.  — —*'■->—— - 
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*************************************************************** 

*********************^*******************************yi ********* 

"Type-Out" Commands 

*************************************************************** 
*************************************************************** 

"Type Object" Command 

Syntax:  TOBJ(<obj. name or address>) 

Effect:  Types the contents of the obiect whose name or -10 
addreis is given, at the terminal in a format appropriate to 

the class of the object. 

List-objects are tvped between a pair of brackets, [J. 
Each element of the list is also typed according to these same 

rules, recursively. 

Pepresentative-objects are indicated by a • followed by a 

recursive type-out of the object they represent. 

Numeric-variable objects are tvped, for an object named 
ABC  as 'ABC:' followed by the contents of ABC where each word 
is typed in PDP-10 numeric half-word format and words are sepera- 
ted by slashes.  The last word is followed by two spaces. 

Character-variables are typed in the same format as numeric- 
variable objects, except that each user word is interpreted as 
a left-justified character string and tvped out as such. 

Numeric-constant and character-constant objects are typed 
in a format similar to those of the corresnonding variables 
except that no name is typed.  Long-character-constant objects 

are typed without the slashes between user words. 

(There are two classes of objects which are not normally 
used by the user.  These are included here only for completeness. 
Id-objects, whl^h represent names in a monitor instruction, are 
typed between <...>.  Non-homogenous objects are typed, for an 
n-word object by interpreting user vord i as an object class 
and typing out user word i+1 according to that class followed by 
a -olon, 1=0,2,...,n-2.  These are used in the Svmbol Table to 

represent entries.) 

For an object whose class is something other than one of 
the above, an error message is typed indicating the class of the 
object   (For a list of object classes, see Create Object Command.) 

__  -— ■ ■  - ■ -- - 
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Note that TOBJ command must be used to type onlv MM objects. 

Every completed type-out is followed by a carriage-return, 
line-feed. 

*************************************************************** 

"Type-Indirect Object" Command 

Syntax:  TIOBJ ( <pointer>) 

Effect:  Performs "Type Object" Command on the object pointed 
by -pointer1.  This command is especially useful for typing out 
objects pointed by global PDP-]0 symbols, by giving the -10 
symbol as the <polnter>.  See the list of global variables at 
the end of this appendix. 

*************************************************************** 

"Type -10 Symbol" Command 

Syntax:  TY10(<global var. name or address>) 

Effect:  The contents of the specified global variable or the 
-10 addreps is typed out in octal half-word format, followed by 
two spaces. 

*************************************************************** 

"Type Contents of -11 Addresses" Command 

Syntax:  T(<starting address- [-ending address -1) 

Effect:  Types out the contents of -11 core from -starting address> 
to -ending address>.  Either term may be a constant or an object 
whose word 0 contains the address.  If the latter is omitted, 
it is taken to be equal to the former.  For each core word, the 
type-out has the form: 

<MM0 list ptr>, I/M bits-,--11 word>. 

The first field is the 18-bit -10 addvess of the list of MMO's 
associated with that -11 Jocation, e.g. hooks, value-traces, 
node-objects etc.  These may be examined by entering T0BJ(^MM0 
list ptr).  See "Object Subclasses" for the format of each 
such object. 

«I/M bits' are used in the determination of Input-Output sets, 
and are not of direct interest to the user. 

 - ■..■„-..J.->J.- 
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Each word is followed bv two spaces.  Words are written eiRht 
toaiine. 

"Type Immediate" Command 

Syntax:  TI(<1iteral>) 
-literal:- ■>  non-neg. octal inteper> / 

'«char, string up to 4  chars.> 

Effect:  Types out the supplied literal. 

"Type Node Instances" Command 

Syntax:  TNI([<starting index>] <count>) 

Effect:  <count> number of node instances starting with 
•starting index> are typed on the TTY (moving forward in time 
It  count- is positive, otherwise moving backward in time) 
If -starting-index:- is omitted, it is taken to be the setting 
of the node instance pointer NIP.  The format of each typed 
instance is (typed on one line): 

index • -node address-  flags- 
^input-set address- ^output-set address> 
•no. of instructions in the node instance- 

"Type Node Objects" Command 

Syntax:  TN0(<al> <a2 - ... <an>) 

Effect:  Types the node objects associated with PDP-11 addresses 
a 1,. . . ,an. 

-- ■ ■ -    ■ -  ■ mmtmm - -■ ■ - -   -   ■ ■  . . ._^_^, ^^MMiMMü 
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"Insert"   Commands 

*************************************************************** 
***********************************************************+*** 

"Insert in -1] address" Command 

Syntax:  I(address-  value) 

Effect:  Each operand may be a constant or an object name. In 
the latter case, the contents of word fl of the object is used 
as the -11 address or the value.  If the value is less than 
177777, the control bits (bits 16-35) of the core are unaffected 
and the value is placed in the -11 word.  Otherwise the full 
-10 word is replaced by the value. 

*************************************************************** 

"Zero -11 Addresses" Command 

Syntax:  Z(- starting address ' 'ending address) 

Effect:  Either operand may be a constant or an object name. 
The -11 words between the specified objects are set to zero. 

*************************************************************** 

"Insert in Object" Command 

Syntax:  I0BJ(obj. name-  N-  value) 

Effect:  The  value- is inserted in word <N> of the object 
•obj. name-.  Either -N  or  value  may be a constant or an 
object name.   value  may be an octal constant or a character 
constant of at most 5 characters preceded by the single quote 
If -value- is the name of an object whose subclass is /(13 
(ADDR11SUBCLASS), its contents are taken to be an -11 core address, 
and the contents of that address are used as the value. 

*************************************************************** 

"Insert Halfword" Command 

Synta;.:  IHW(-obj. id- • s t ar t-addre ss - [<n>]) 

Effect:  The nth halfword in the -10, counting left to right, 
starting with the 1eft-ha1fword of <start-address ■ , is inserted 
in right half of  obj. id . 

■'^- .■■'■-■-.■----.■ - - — - - — - —■ -—-»■^-^-— ■ - - - i in   nr   iiiirfailiii 
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********************************************** vt **************** 

******************************* *************n^A**A*)lt*A********* 

Corrmands to Create and Delete Objects 

********■![****************************************************** 

*************************************************************** 

"Create Object" Command 

Syntax:  C R('< o b j. name class subclass size- i) 

Effect:  Creates and object acrordinp to these specifications. 
If only the first operand is specified, the default values for 
the other 3 operands are used.  These are "100 (numeric constant 
class), 0 (free subclass) and 1  (1 user word).  All specified 
operands must be constants.   obj. name- must have at most 5 
characters. 

The object classes which the user mav use are: 

100.  numeric class 
300:  character class (up Co 5 characters) 
700:  long-character-string class 

The object subclasses which the user mav use are: 

0  :  free subclass (i.e. uninterpreted) 
13 :  PDP-ll address subclass (whenever the object is encounte- 

red, the contents of the PDP-ll word pointed by it 
are taken) 

14 :  PDP-10 address subclass (whenever the object is encounte- 
red, the contents of the PDP-IO word pointed by it 
are taken) 

These classes and subclasses are that subset of all the pre-defined 
classes and subclasses which should be visible to the user.  There 
are manv others which are used hv DAME and POOMAS functions.  The 
user may create objects with classes and subclasses other than 
those pre-defined.  In such objects the classes assigned should 
be between octal JOQO and 77770 and subclasses between octal 70 
and 77770 in order to avoid conflicts with the pre-defined ones. 
Objects with such user-defined classes may not be tvped out with 
the TOB.I command. 

*************************************************************** 

"Delete Object" Command 

Syntax:  DEL(<obj, name or address>) 

Effect:  Deletes the specified object and returns its space to 
the free-space list. 

- - - - - - -•■ ■ 

■ _     .■ ^^^■--^^- 
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*************************************************************** 

Hook   '''anipulation   Commands 

*************************************************************** 
*************************************************************** 

"Hook"   Command 

Ss-ntax:       HüOK(hook   specification) 

lu->ok   specification       •      Keneral   hook   spec.  ■   / 
■addressed   hook    spec.  • 

•peneral   hook   spe"       •    'pen.    hook   code action' 
hook   n a m e • 

•pen. hook code' • GF/GS/IF/IC/NE/NX 

addressed hook spec   ► 'addr. hook code- 
■ action • 
•lower hound 
upper bound- 
'•hook nape 

addr. hook code  • AIF/AIC/AF/AS 

hook name  •  char, string up to 5 chars. 

■lower bound- • -octal integer- / • rep,name- 

upper bound  •  octal inteper not smaller than 
lower bound- 

Effect:  The HOOK command is the rrinclpal means by which the 
user executes monitor routines during the execution of his 
program.  General hooks, i.e. those with codes 'GF,'GS,'IF,'IC, 
'OF.'OS.'NE or 'NX cause the execution of the specified monitor 
routine at every:  fetch, store, instruction fetch, instruction 
completion, node entrv or node exit respectively. 

Addressed hooks, i.e. those with codes 'AF,'AS,'AIF or 'AIC, 
cause the execution of the specified monitor routine ','henever 
a fetch, a store, an instruction fetch or the completion of an 
instruction occurs from a location within the specified bounds. 
If register names are used, the following additional rule must 
be observed:  for general registers the bounds must stay within 
RO to R7, and other registers, namely TKB, TKS, TPB, TPS and PS, 
must be specified individually, by giving the same name for both 

the lower and upper bounds. 

-   ■ i ■ Mtt^ugtmtmtlmmmmä 
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*************************************************************** 

''Disable Hook" Command 

Syntax:  DISAB(<hook.-obj. name or address) 

Effect:  Causes any future activations of the hook to be a 
no-op . 

*******************>******************************************* 

"E'nable Hook" Command 

Syntax:  ENAB('hook-obj. name or address) 

Effect:  Causes the monitor routines associated with the hook 
to be executed whenever the hook is activated. 

        1  1 nm immminii   -•■  MBM^aMaH*aMMKa^_a> 1  if iiiiMniiitini iiBiii—^ 
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Commands   for   Searching   PDP-11    Execution   History 

"Find    Input-Set"   Command 

Svntax:      FISET(<obj.    iA        node-spec.      search-spec 
'direction-   [starting   inde,-!l) 

node-spec ■ 

search-spec 

direction • 

*    /      n o d e - i d • 

•      routine   name > 
/    -compound-Instruction ■ 

'F/'B 

starting index positive octal integer- / 
obi. name ■ 

Effect : 
Instances 
suc h a no 
is Insert 
(which Is 
the node 
ohj . Id ■ 

in -node- 
i f ' * is 
is p rov 1 d 
"forward" 
backward . 
f rom that 
instance, 
it will s 

A search is made over the input-sets of past node 
until one satisfying  search-spec- is found.  If 

de instance is found, the address of its input-set 
ed in  ob.i . id  and the node-instance pointer NIP 
a PDI'-IO global variable) is set to the index of 

Instance;  otherwise a 36-blt -1 is Inserted in 
and NIP is unaffected.  If a -node-id- is provided 

spec-, onlv the instances of that node are searched: 
specified all input sets are searched.  If a  direction 
ed, search takes place in that direction ('F for 
,  B for "backward");  otherwise search takes place 

If a  starting-index- is provided, search starts 
index, otherwise it starts from the most recent node 
(Note that if NIP is specified as ■ star11ng-index • , 

tart from the current setting of NIP.) 

The procedure for the application of the predicate, i.e 
^search spec , is as follows:  The system pushes the address of 
the input-set to be tried on the stack.  Hence, the routine or 
compound instruction supplied in  search-spec-, referred to as 
the predicate hereafter, must obtain that address by a POP(A) 
instruction, where A is some input-set name.  Then, the contents 
of an address 0 in the input-set can be extracted bv the "find 
value  instruction FVAL(B A 0) which will insert in the object 
B either the (16 bit) contents of -11 address 0 in the set pointed 
by A if Q is in fact in that set, else -1.  The predicate must 

; -'■•" ■■   -—■■■■'■-      •'-■ ^-^-^*- ■~>--^ ---■ -^  ■MMMMMMMMrii 
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obtain   i lu-   cont«nti  ol   .»1 l   addraas««   Ln   thli  ffl«nn«t   ind   ptrfortn 
norm«!   »rlthrattlc   or  comp«rl«on  operationi   on   than»,   which 
conatltutai   tha   body  ol   tha   pradicata.      rhan   Finally,   II   tha 
daalrad   conditlom  ara  mal    (I.a.   tha   pradicate   la   aatlaflad), 
■   PUSH(l)   othorwist<  «  I'lSlKO)   must   ba   parformad.     Upon   axil 
from   tha   pradicata,   tha   ay a tain  will   pop   tha  a tack.      it    tha 
pnppad   valua   La   L,   tho   Inda»   ol   tha   noda   Inatanca   |ual    »aarched 
will   ba   Inaartad   In    obj.    \S     and   tha   Lnatructlon  wll]   ba   tarml- 
natad.     Otharwlaa,   it   the   and   ol   tha   noda   traca   hiatory   ha«   baan 
r«achad,     obj.    Id     will   ba   aal   to     1;     alaa   the   addraaa :' 
u,.st    inpul    ••'•!    t^   1M-   siMirvlu'd   will   ba   puahed  on   tha   atac 
t h <•   c v >' 11-   i '■ p i «' a i «'>i  ■» n a in. 

ant 

Examplai      Suppoaa   **a   wlah   to   find   thw   raoal    rac»nl    Input    ••<•< 
oi    ..n   Inatanca   ol   noda   N  whara   the   contanti  ol   addraH«   1000 
is   greater   than   the   contanta   ol   addres«   2000.     Provided   the 
objects   A.   B,   x   and  V   have   been   previoualy   created   and   the   node 
N   previously   defined   by   n   node   oi   NTH   Inetruction,   th«    following 
tnet rue I lo n   H hou I >l  do   t h i ;: : 

KISET(B   N   (   POP(A) 
rv.M (X   A i 000) 
KVAl (V   A 2000) 
1F(X   'HT \    (PUSH(1))    (PUSH(O))   )   )) 

rhia   lnatructlon  will   Inaari    In   i*   eithai    the   addreaa   -<!    tne 
t anca   ol   N   In  which   81000   82000 

■ n   be   i v'uiiil. 
i ii p u i   si-1   >' i    i ha  mo« t   cacani    11> 
o i    t he   v.i 1 ua      I   LI   no   «uc h   I npul   ae t 

"Pi ml   Oulput   Set"   Command 

AAAAAAAAAAAAAAAAAAAAAAAAAAA 

Syntax i      FOSEr(   ob 1•   Id 
J l t i-r r  I »-n 

Hi1 il i-     s p i- t' IP«roll   si<i-> 

Htartina i ndox 

Effect!  fhe aame .>•- FISET except thnl output »al 

i .i t he i than I npu t setP . 

.i i a s i-.»i c he >1 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

" F i n>l   \'.i 1 ue "  Command 

Svnl IN :      t-'VAl »,   obj .    Id 

AAAAAAAAAAAAAAAAAAAAAAAAAA 

,.1.11 an*   .-i    L/O  aat U   add i aaa   ) 

.ii •■   In   i i>>-   epi ell i ad Effact s      it    t he   »pec If led      M   addreaa   «ppe 
i   o   ....,,   than   the   contanta   ol    the   addraaa   In   thai    aat,   otharwlaa 

i ,    is   i ns<-1 t ad   In    obj .    Id   . 

  ■■ 
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*************************************************************** 

"P'ind Node Ins Lance" Command 

Syntax:  FNI( ob), id   node-spec-  instance-count 
I --startinR-index ■ ' <dlrection> I I) 

node-spec  •  node-id  / CURNODE 

•-instance-count' •  octal Integer  / ■ obj. name-- 

Effect:  An attempt is made to find the n t li instance of the 
node specified bv  node-spec  where n=-octal integer  if one 
is supplied, otherwise contents of word 0 of  obj. name. 
CL'RNODE means the current node.  If a  s t ar t i np-i nd ex  is 
specified, the search starts from there, otherwise from the 
current node instance.  NIP is a valid parameter for  starting- 
Index .  If a  direction  is specified, the search proceeds in 
that direction;  otherwise it proceeds in the backward direction 
If the desired node instance is found, its index Is inserted 
into  obj. id  and into NIP.  Otherwise, -1 is inserted into 

obj. id  and NIP is unaffected. 

*************************************************************** 

'Kind Node Object" Command 

Syntax!  FNO( obj. id   -11 address ) 

Effect:  If  -11 address  is the starting address of a node, 
the aodress of the node object, otherwise -1, is inserted in 

obj. id . 

•  ■- -^-^^ ,._..* ... .. - .... **kim ... . ,„% - 
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*************************************************************** 

"Value-trace" Commands 

*************************************************************** 
*************************************************************** 

"Initialize Value-trace" Command 

Syntax:  IVT('-11 addr.>  number- '<obj. name>) 

Effect:  Creates a value-trace object with name •obj. name • 
with enough room for ■number- previous values and puts the 
object in the MMO list of the specified -11 address or register. 
Note:  This command does not initiate the collection of values. 
It merely creates and object to hold those values.  The collec- 
tion of values is initiated by the VTH command. 

*************************************************************** 

"Value-trace Hook" Command 

Syntax:  VTH(-11 addr. or reg. name) 

Effect:  Causes the monitoring of values stored into i;he 
specified core location or register and maintains a circular 
buffer of the last k values, unique or non-uniaue, stored 
there bv the PDP-11, where k is the -number- specified in 
the preceding IVT command for the same address.  All accesses 
bv the -11 to write into the specified ceil (including auto 
register incrementation, decrementation, turning on/off bits 
in the condition code or the device registers) are considered 
store operations and cause a new entry in the value-trac e.. 

1 

—* ' ^ ■ --  -■      ■ - —•—* 
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*************************************************************** 
*************************************************************** 

Disk I/O Commands 

X************************************************************** 

*************************************************************** 

"Write Disk" Conmand 

Syntax :  WDSK(• obj . id) 

Effect:  Will write (in PDP-10 dump mode) on disk file I'SFP.D/^M 
tlte contents of the object whose name or address is piven in 
•obj. id-.  If the file does not exist, it will be created; 
otherwise its old contents will be destroyed. 

*************************************************************** 

"Write-Indirect Disk" Command 

Syntax:  WIDSK(• address ■) 

Effect:  Will perform WDSK(<obj. id") where 'address- contains 
a pointer to -obj. id.  This command is particularly useful 
for writing out objects pointed by PDP-10 symbols. 

*************************************************************** 

"Read Disk" Command 

Syntax :  RDSK(-obj . id ■) 

Effect:  Will read a 36-bit word from the binarv file USER.DAM 
(which had better existl) into the object -obj. id-. 

1 u I _*. I 1  ■- ■ •   ■->■-■'■"-- -:'- ^-  I I  —— 
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*************************************************************** 
************************5l   ************************************** 

Miscellaneous   Communds 

*************************************************************** 
*************************************************************** 

"Load PDP-11 Program" Command 

Syntax:  LOAD('file name-  starting address-) 

Effect:  The file must be in the absolute unpacked output 
format of the PAL-.-ii assembler or MACX11 with /I/A switches, 
must have extension .BIN and the -file name- must be at most 
5 characters.   starting address- must be an even octal integ r 
between 0 and 157776 - X, where X is the length of the program 
in bytes. 

*************************************************************** 

Generalized "Unary Operation with Assignment" Command 

Syntax:  UAC'operation   target  -opd) 

operation- > SUC / PRED / SAL / SIZE / ADDR / NOT 

-target- ■*   <ob j . id 

■ op d > -> ^ob j . id - 

Effect:  The specified unary operation is performed on -opd-' 
and the result is inserted in -target -.  'SUC and 'PPED are 
the successor and predecessor functions, respectively.  'SIZE 
returns the number of user words in -opd , 'ADDR the address 
of  opd-. 'SAL the address of the secondary-attribute-list 
(SAL) of -opd^ and 'NOT the logical complement of the contents 
of the first user word of -opd-. 

*************************************************************** 

Generalized   "Binarv   Operation   with   Assignment"   Command 

Syntax:      BA('-operation-   -target opdJ-   < o p d 2 >) 

■operation-    •+/-/*/       slash-    /   AND   /   OR   /   XOR 
/    I    /    ft 

where      s.lash-   is   the   integer   division   sign   "/". 

- - —- ■ —^ -  *— ii       iiinii HI ■       Hi ilnl  ■—Mil  MT 
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******************************************* Ä*********ye********* 

"Execute External" Command 

Syntax:  XX(-PDP-10 routine name- l-param. list- I) 

-param. list  ► -param  / --param. list- < p a r am > 

■par am > ■* -literal- / ■ identifier - 

Effect:  Calls the specified routine with the qiven parameters. 
Caution:  If identifiers are given as parameters, their addresses 
are passed.  If you wish the contents of the identifier passed, 
include an additional parameter, namely the literals'.  (single 
quote followed by a dot and a space) before each such parameter. 
This convention applies only to this and to the CVAL command 
below. 

*************************************************************** 

"Evaluate" Command 

Syntax:  FVAL(■tarpet - -PDP-10 routine name- I-param. list>]) 

Effect:  The -10 routine is called in the same manner as in 
Execute External.  The only difference is that the value 
returned by the routine is stored in -target-.  The value 
returned by a routine is assumed to be in register 3, following 
BLISS/10 convention. 

■    -   — 
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*************************************************************** 

"Time" Command 

Syntax:  TIME(< o b j. id- ' < s c a1e > '< t yp e >) 

■ scale ■ * MICS / MILS 
(for microseconds or milllse'.onds respectively) 

type • ■* FIX / FLOAT 

Effect:  Puts in word 0 of  obj. id' the current value of the 
simulation clock accordinp, to the given specifications (i.e. 
in microseconds or milliseconds and in fixed rr floating point). 

*********************************************,! ***************** 

"Plot" Command 

Svntax:  PI.0T(- space count  'char) 

space count literal- /  identifier 
space count- 

Effect:  Types carriage-return, line-feed, "1", followed by 
space count- spaces and the character -char-. 

 -.. . -   .  .      — _....    . — •      ■   ■ ■    '' ■.-- ...V.  -■.. -: ■   ■-■ i \i»tmmmmmmm 
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A LIST OF USEFUL GLOBAL PDP-10 SYMBO'.S AND THEIP CONTENTS 

SYMBOL CONTENTS 

(For addressed fetch hooks) 
AFHDATA The data just fetched 
AFHAÜDR The address of the fetch 

(For addressed store hooks) 
ASHDATA The data to be stored 
ASHADDR The address of the store 

DATA 
ADDR 
CONT 
OLDPC 

OPN 

OPC 

DSTREG 
DSTMODE 
DSTDATA 

SRCREG 
SRCMODE 
SRCDATA 

HALTCOUNT 

CURNODE 
CURNOBJ 

CISP 
COSP 

Contents of Unibus Data lines 
Contents of Unibus Address lines 
Contents of Unibus Control lines 
Last value of the Program Counter (R7) 

A unique inteper between 0 and octa] 111 
representing the current opcode 
(See next table) 

The assembly lanpuap.e mnemonic for the 
current opcode 

The destination register, mode and operand- 
value, respectivelv, of the 
most recent (including the current) 
single-operand or double-operand 

L instruction 

i'The 

nscructi-un 

source register, mode and operand-value 
f the most recent (including the current) 
oubie-operand instruction 

Number of instructions after which simulator 
will stop (normally maintained by DAME 
but may be set by user) 

PDP-11 address of the current node 
PDP-10 address of the node object for the 

current node 
Pointer to current input-set 
Pointer to current output-set 

'■-~- ■ m dfhiilrdiB^if ....... .M ■■.   -f . -.— ^—:-J^-^..^l 
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THE OCTAL VALUE OF OPN FOR EACH OPCODE l.OPN=l + i) 

0 MOV MOVE CMP CMPB BIT BITB BIC BICB 

10 BIS BISB ADD SUB CLP CLPB COM COMB 

20 INC INCB DEC DECB NEC NEf-B ADC ADCB 

3 0 SBC SBCB TST TSTB RDR RDRB ROL ROLB 

40 ASR ASRB ASL AS LB JMP SWAB No-op CLC 

50 CLV CLZ CLN N o - o p SEC SEV SEZ SEN 

60 BR BNE BEO BGE BLT BGT BLE BPL 

70 BMI BHI BLOS B V C BVS BCC BCS Not 

100 J3R RTS HALT WAIT RTI (break 
point 

IOT 
used 
RESET 

no EMT TRAP 
trap) 
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APPENDIX  I 

Syntax of MPL 

module • MODULE name = e ELUDOM 

block • BEGIN blockbody END / (blockbody) 

compoundexpression • BEGIN expressionseauence END 

blockbody » dec.aratione : expressionsequence 

declarations ' declaration / declaration; declarations 

e:;pressionsequence - / e / e •. expres s ionseq uenc e 

e ' simpleexpression / contro1 expression / name:  e 

simpleexpression ♦ plO * e / plO 

plO » p9 / plö OR p9 

p? • p8 / p9 AND p8 

p8 • p7 / NOT p7 

p7 • p6 / p6 rel.tion p6 

p6 • p5 / - p5 / pf> ^ p5 / p6 - p5 

p5 ♦ p4 / p5 * p4 / p5   p4 / p5 MOD p4 

p4 '   pi   /p4 * p3 

p3 • decimal / name / name lelist  / e ('elist) 
/ e() / block / compoundexpress loi, 

elist • e / elist, e 

relation « EOL / NEO / LSS / LEO / GTP / CEO 

controlexpression ► conditionalexpression / 1oopexpression / 
choiceexpression / escapeexpression 

conditionalexpression - IF e  THEN e  / IF e  THEN e  ELSE e 
1 1 3 

 - ■ ■ 
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locpexpresslon • WHILF e  DO e 
1     2 

loonexpression • 1NCR name FROM s  TO e  H I  DO e 
12 14 

escapeexpresslon    -   EXIT    level    t^capcvalue   / 
RETURN   e..capevalue    f   LEAVE   ru'me   escape-value 

level     «    /    ' e 

esc an i'value    *   I   e 

choiceexpression    •   SELECT   el ist   OF   NSIT   nexnressionset   TESN 

nexpressionset    -   /   ne    /   ne;      nexp r es.s i on se t 

n e    •   e : e 

declaration • rout inedec1aration / a 11ocationdec1aration 

allocationdeclaration • allocatetypp idlist 

aUecatetvpe  • GL0BA1. / I 0CA1 / OV.'N / EXTERNM. / LAPEL 

i d 1 i s t -   id / i d1 i s t , id 

id • name ' name 'dimension 1ist 

dimensionlist - decimal / dinension 1 ist , decimal 

routinedeclaration ► ROUTINE name (aamelist) = ■ / 
ROUTINE name = e / 
EXTERNAL f1 ist 

flist » name / flis-, name 

name • letter / name letter / name dipit 

letter -A / E / ... / 7 

«igit • 0 / 1 / . • . / 9 

decimal *   digit / decimal dipit 

- - -    -   -  - 


