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CARNECIE-MFLLON UNIVERSITY
COMPUTER SCIENCF DEPARTMENT

THESIS ABSTRACT

DYNAMIC ANALYSIS OF EX¥ECUTION:
Possibilities, Techniques and Problems

by

Birol Omer Aygun

The problem of designing computing systems which are far
more helpful to the user in the analysis of a propram's behaviour
at run-time, than current systems is studied.

By considering four arplication areas, namely debugging,
flow analysis, performance measurement and storage reference
piattern analvsis, a list of specifications for a "gpeneral-purpose
execution analysis facility" (GPEAFr) are drawn.

A prototype facility, called DAME (Dynamic Analysis and
Modelling Environment), implemented on the PDP-10 for studying
the behavicur of PDP-11 programs, is described. DAME conraias
a PDP-11/20 simulator and a programmable analysis facility.

It is shown that DAME satisfies most of the above reauirements.

Significant aspoects of DAME are: (i) Access to the state
of the PDP-11 at memory and register cvcle level, (ii) A flexible
hook mechanism which permits arbitrary analysis computations at
many points in the instruction cvcle, (i1i) A node mechanism
which permits the user to define over his program a "level of
abstraction" suitable for the desired analysis, (iv) A comprehen-
sive instruction set for analvsis procedures.

The node mechanism, perhaps the most novel feature of DAME,
enables the user to define at run-time a set of "nodes" in his
program, in terms of which the execution will be monitored. A
node is a portion of code, viewed as a "black box", having unique
entry and exit points. During execution, DAMF constructs a set
of the inputs and the outputs of each occurrence of each node.
The node mechanism pe mits backtracking to any point in the

execution history, and control and data flow analysis at node
level.

Five detailed examples of the application of DAMF to analyses,
difficult or impossible with other systems, are given. Fxample 1
illustrates the input/cutput sets of nodes and accessing the
previous values of an address. The PDP-11 pregram used in
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Example 1 through 4 is a recursive Quicksort program. Example 2
fllustrates the determination of the transition frequency between
nodes and Example 3 analyzes the parallellism in the Quicksort
routine at the recursive call level as examples of control flow
analysis. Example 4 illustrates analysis of data flow between
two consecutive nodes by comparing the output-set of the first
with the input-set of the second. Example 5 {llustrates a proce-
dure for tne analvsis of the instruction mix and addressing modes
used by PDP-11 programs.

The present performance of DAME is poor due to simulation
at memory cvcle level and checking for monitor actions at every
memorv and register access. It runs 1000 to 2000 times slower
than a PDP-11/20 when input/output sets are not used, and 4000
to 5000 times siower when they are. Measurements indicate that
respective speed ratios of 300 and 2500 for the above cases are
achievable without major re-design.

In designing analysis facilities for ALGOL-like languages,
while the main features of DAME are still applicable, other
complexities arise (e.g. scopes of variables, recursion, selec-
ting a "unit of execution'"). These problems and some approaches
to their solution are illustrated for a subset of the BLISS
language.

To be economically feasible, systems sucht as DAME will
require assistance from hardware. Microprogrammed implementations
of hook and node mechanisms, involving tag bits, associative
table searches and monitoring for special bit patterns to detect
hooks, are studied. Vey problems are seen to be access to the
comp.ete statc of the monitored machine, interference due to
resource sharinpg with the analysis facility and scarcity of
microstorage.




FOREWORD

The research which resulted in this dissertation may be
viewed as a journey through a neglected area in computer science.
While most areas in computer science are in very primitive stages
of development, the area of '~ -~amic analvsis of program behaviour
is certainly one ¢f the most ueglected and potentially most
beneficial for boti programmers and users of computers.

A look at the Table of Contents will show the reader the
many dimensions of this problem which had not received a systema-
tic examination up to now. Thus, the dissertation itself may
be regarded as a map of this heretofore neglected region, iden-
tifying its major ccmponents and the relations among them. Inevi-
tablv, all components have not been studied in the same degree
of detail. However, hopefullv, enough detail and insight have
been provided for the crucial parts to give a head-start to the
worker interested in designing such a systen.

In retrospect, I would like to acknowledge with gratitude
the contributions of many individuals In various stagpes of the
research and thesis preparation. Professor David Parnas, a
member of C!iU Computer Science faculty for most of the period
over whict this research took place, provided valuable advice
during the formative stages of the research and during an earlier
implementa ion of a monitoring facility. Professor William Wulf
provided bcth gpeneral guidance and specific technical contribu-
tions to the architecture and participated in the evaluation of

that facility. He also took part, with Professors Jack Mc Credie,
Sam Fuller and Mary Shaw, in the evaluation of the thesis proposal
and the progress of the research. In particular, he provided

a key idea in Chapter 7, which deals with execution analysis
facilities for high-level languages.

Special thanks are due the members of my thesis committee,
Professors Jack Mc (Credie (Chairman), Victor lLesser, Sam Fuller,
Raj Reddy and Andrew Wong, for generously contributing their
time to the reading and discussion of the dissertation, for
numerouys corrections and suggestions for improvements, and re-
reading the revision. |

I

I am particularly grateful to Prof. Jack Mc Credi~ for the 1
continuous dialog, guidance and support he provided in both 1
technical and administrative matters related to the research ,
and the thesis. While the members of the thesis committee and
others have contributed much to the technical soundness and to
the form of the presentation of the thesis, I bear the sole
responsibility for any errors and any technical or editorial
deficiencies.




IS

As with most projects involving a complex computer Program
utilizing teols developed by cthers, thanks are due to a number
of fellow workers, These include Amund Lunde, now with the
Uriversity of 0slo in 0slo, Norway, Roy Levin, Mad, Baver
Eichard Johnsson, Joe Newcomer, Chuck Weinstock, Mario Harbacet,
Dave Wile, lerry Apperson and Numerous others upon whom I have
called for help on many dccasions,

Thanks are due the CMU Computer Science Department for
broviding an atmosphere highly conducive to research, as well

a8 access to an excelient computer facility and financial support
for four vears,

Finallv, 1 must express my profound dppreciation for the
encouragement and support of my family, without which 1 may not
have been able to Persevere through the long period of under-
Rraduate and graduate study and research. My deepest gratituye

is to my wife, Giizin, who has not only typed, edited ard re-typed
the entire thesis several times over yhile holding a full-time
joeb, But alss sacrificed manvy 8ocial activitie
in order to »rovide the home atmosphere and peace of mind I needed
to carry on my research. Without her unwavering help and energyv

I do not know when this thesis would have been completed.
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CHAPTER

INTRODUCTION AND MOTIVATION

l.l__gyocutiqﬂ_Analvsig Defined

As the impact of computer technology pervades essentially
svery aspect of contempofdry civiligation and 4 we relegate
more and more responsibilities to the computer, it is reason-
able to é&xpeéct that programmers, analvsts and users of prog-
rams will need more and more powerful tocls to analyze the
behaviour of programs they are concerned with. The kinds of
analyses one can immediately think of in:lude, but are not
limited to, debugging, performance measurement, validation and
certiflcation. As the complexity of programs grows far bevond
the ability of any one individual or a small group of indivi-~
duals to completelv understand and predict their behaviour at
any level which is of interest (as it already is today with
most large programming systems), the need for better tools to
answer questions about the workings and the behaviour of prog-
rams grows proportionately. I shall use the term "execution
analysis" to include any incuiry into the behaviour of a program,
normally in a specific class of enviromnments, I shall leave the
word "program" undefined, relving on its intiitive meaning,
éxcept to require that the analyst ba able to identify what
is to be considered as a part of a program and what is not. I
shall further concentrate on the execution of programs on com-
puters similar in basic architecture to those in most common
use today, i.e. in which each processor has a single instruc-
tion stream and addresses a linear Primary memory, at least as
seen by the programmer. By execution analysis, then, more
specifically, I shall mean inquiries into the machine states,
and the relationships among machine states, which are evoked
by 2 patticular seét of e€xecutions ofa particular nrogram on
such a machine.

Objectives of Thesis

The main objective of the thesis is to report on a research
project into the design of environments which would facilitate
a very broad range of execution analvses. Of particular interest
are:

(i) representation of execution history information in
a manner which facilitates the introduction of high-level
construets for describing and carturing diverse aspects of
program behaviocur,
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(ii) a particular set of such constructs which prevides
| a kernel for a large class of analvses,

(iii) extendability of the provided set,

(iv) @& general-purpeose programming facilitv for sensing
(arbitrarily complex) conditions and taking asscciated actions
At any point during the execution the program under analvsis.

In addition to these, I shall consider, in less detail,
the extension of the presented ideas to high-level languages
and the architectural implications for machine design arising
from thems

1.3 Major Application Areas

Although questions related to execution analysis pervade
every area of computer science and technology, for the purposes
f concretencess, 1 shall select and examine in detail several
of the more prominent ones. The objective of this examination
will be to arrive at a set of functional requirements for an
analysis facility which will substantially facilitate such
analvses.

L.3.1] Debugging

I do not wish to dvell unnecessarily on the fundamental
importance of the dchugging problem and its magnitude. Let
a quote by J. T. Schwartz from a recent svmposium on debugging
systems LRU 1971] suffice: "Normally, at the beginning of
the debugging process, even a programmer with some past expe-
rience can never believe how bad things are really going to be
before the end." Schwartz also gives a thoughtful exposition
of the classes of bugs piauging the field. Here, I shall

follow roughly his approach to present a taxonomy of debugging
problems.

Let me first delineate the field of "bugs" from all othar
forms of error in programs: specifically excluded are (i)
syntax errors, (ii) errors due to total incompetence on the
part of the programmer; that is, if a program is so far off
in design and implementation from performing its intended
function that it would have to be cempletely, or almost comple-
telv, rewritten to make it work, I shall not consider such a
circumstance a "bug". Thus, I shall consider an error a bug
if and only if it can be corrected by changing a small part
of the total program, although it mav well have taken quite a
long time to isolate it. This limitatdion I place on the kinds
of errors I shall call bugs is necessarv, because otherwise one
runs into ihe strongly unsolvakle problem of proving (or disproving)




the equivalence of algorithms in general.

The first class of bugs I shall mention (following
Schwartz) are those due to losing count of things: e.g.
exceeding array bounds, one too many or one too few iterations
in a loop. Another common class is due to omission of initiali-
zation of variables, "manifest In situations in which things
fail to have eiiLher the initial or terminal value which a
Programmer expects". These are examples of bugs whkich usually
manifest themselves in the early stages. In later stages,
"situational" bugs become apparent in the interfaces between
relatively distant parts, i.e. in the assumptions those parts
make about each other (following D. Parnas's definition of
"interface"). "Semaphore bugs" and timing bugs also generally
belong to this class, their existence being due to lack of
cooperation among the var;ous parts. Also, in this large class,
is the set of bugs due to not reading the language or svstem
reference manual properly or to errors in such publications,
especially with respect t, services prcvided by the system, e.g.
meaning of a particular bit combination in a device control
register or the parameter-passing conventions for a system macro.

Schwartz next considers '"various aspects of the habitat
of bugs”. 1In languages which permit the use of pointers, in
particular assembly and higher-level implementation languages,
"one often transfers off to nowhere or begins writing into some
strange place'. (This author has received countless "{llegal
memory reference" messages from the operating system during the
development of this project and wished there were a debugging
system with the facilities desceibed in this report, although

he did have access to some of the better debugging facilities
provided by current systems).

In his thesis entitled "The Debugging of Computer Programs",
R. Stockton Gaines provides a more structured taxonomy of bugs,
which is summarized below:

"l- Point of origin in the Programming process: that is,
whether the bug arose in the formulation of the program, or
during its implementation...

2- Whether in data definition or data manipulation.,.

3- Control and Computation bugs...

4- Bugs resulting from lack of knowledge or misunderstanding
of features of the operating environment...

5- Fatal and non-fatal bugs...




6- The point at which the bug may be detected. Some
mav be detected automatically, (that is, in a purely mechanical
fashion by checks ,rovided in the compiler or in the generated
code or operating system), while others can only be found by
intelligent activity on the part of the programmer."”

The most characteristic feature of the debugging activity
is the search for the cause of an unexpected program behaviour
which has just been observed. If one attempted to diagunose the
observed anomalv through the examination of a voluminous set
of unstructured execution trace data, one would often have an
insurmountable task. Hence, the aim of debugging tools is to
narrow down the amount of data to be looked at "with the intent
»{ locating an operation transforuwing reasonable arguments into
an unreasonable result'" (Schwartz). The risk involved in reducing
the amount of data collected, of course, is the possibility of
leaving out some important information about the program behaviour
which could lead to the isolation of the bug. Hence, given a
debugging system which the user can direct to collect certain
kinds of information, one measure of the power of tne debugging
svstem is the degree of precision with which the user can specify
what kinds of data he wants collected. Other measures are the
ease with which the user can state his specificatiown and the time
between the iterations of a debugging step.

Normally, the first aim of the programmer in tie debugging
process is to put bounds on the portions of execution history
involving improper program behaviour. This requires an ability
to move back and forth easily in the execution history, to observe
the data flow as a function of control flow and vice versa.

This brings us to the area of flow analysis, which has
applications in many areas beside debugging.

1.3.2 Flow Analysis

By "flow analysis'" of a program P, I shall mean inquiries
into the relations between sequences of machine sta*es which
arise during a set E(P) of executions of P, The set E may be
small, or large enough to be considered infinite. For example,
consider a sorting program S(a,b) whose parameters a and b are
the starting and ending addresses of a vector of integers to be
sorted. Then the set of all executions of S(a,b) for all
a=0,...,[n/2J- and b=[n/23+,...,n where n is the number of core
locations in user address space, is essentially infinite.

(By (k] and [k]+, I denote the "floor" and '"ceiling" of k
respectively.)




A typical problem in flow analysis is determiaing the
set of all successors of every node in the program and the
associated transition probabilities. The result is normally
expressed as an mxm matrix M wvherve M(1i,3) is the probability
of node j being the next node if the current node fi® e Thiits
Problem can be extended to the determination of the set Qi %)
of all k-node sequences following note i. This ex:ended problem
may be regarded as the determination of "path-traversal probabi-
lities" and requires som:what more elaborate machinery thans
the determination of single step transition probabilities. This
class of models of control flow is generally called "Markovian
models" and, under certain assumptions of independence of past
program benaviour, yield probabilistic information about patterns
of behaviour. Coupled with estimates of CPL usage at each node,

these models can give resource usage estimatus over arbhitrarily
long paths.

Another examplie of flow analysis is that used in predicting
the degree of parallellism which can be obtained. Im Liig cadge,
one tries to determin. which parts of a program could be run
independently of which other parts and at which point in the
execution, In peneral, parts which do not communicate at all
can be run in parallel. The problem often becomes one of decom-
posing the program into parcs which either do not communicate
at all or whose communication permits svnchronization of their
execution while still maintaining a substantial amount of over-
lapped, parallel execution. The determination of "communication"
between two parts of a program can be very difficult. For example,
wheither or not part A "tells anything"” to part B may be input-
dependent in a complex way. I shall call this problem the "data
flow" problem. Data flow, together with control flow, constituies
the essence of a program's logical behaviour. 1 shall deal with
this problem at length in the rest of the thesis,

1.3.3 Performance Measurement

Two types of performance measurement have already been
discussed under Flow Analysis. Another, more general type of
performance measurement problem is the timing o¢ arbitrary paths
through a program. We may wish, for example, to define, several
paths through a program; start timing when one of these paths
is entered and stop timing when the executicn deviates from it.
We may decide to keep or discard measurements of partial traver-

sals of a path. We may further wish to start the measurement
activity only after certain events have happened; e.g. after
a certain routine has been called a fixed number of times. This

might be desirable, for example, in evaluating the tire spent
in a space-management routine only when it is called in the
"main-loop" portion of a program, after the initial allocation
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of space has been made. Thus we reed control over which

paths are to be measured and under what corditions they are
be measured.

In timing a program P running in a time-sharing environment,
the other programs running concurrentlv wich P have a certain
amount of effect on the measurements on P. As an example, in
some time-sharing systems, the overhead for handling an interrupt
is charged to the program which was running when the interrupt
came in, which is not necessarily the one to which the interrupt
belongs. It should possible in a general-purpose execution
analvsis facility to measure accurately the time taken by a
program, as we¢ll as usage of other system resources, e.g. main
storage. This brings us to a class of analyses which are t.adi-
tionallvy done by post-mertem processing of a tape file containing
the sequence of addresses generated by means of a hardware prole
during the execution of the program whose behaviour is under
analysis. These analyses, which are especially important in
paged systems, are called "Storage Reference Pattern Analyses"
and are discussed further in tlhe next sub-section.

1.3.4 Storage PReference°Pattern Analysis

For the analvsis of programs from a paging point of view,
one can identify several major variables: the hardware (in
particular page size and the paging store), the operating system
(in particular, [ts paging policies), the system load and the
particular program we are analyzing (in particular page-reference
patterns). In theoryv, it is possible to hold one or more of
these variables constant and vary the others. However, in
practice, one most ofte> has to hold at least the first two

constant, live with uncontrolled variations in the third and
try to improve the fourth.

It is alwavs beneficial to analyze the static reference
pattern of a program from the program text. One can achieve a
certain amount, perhaps a great deal, of improvement this way.
However, in general, the storage reference pattern is a function
of the inputs. Therefore, one needs to gather dynamic information
on the page-reference behaviour on various parts of one's program.
There is no easy way to get this information at present. There
are hardware devices for measuring all the page references in
a4 computer system over a specific interval of time. Not only
are these devices hard to get and make routine, practical use
of, they are also noc dynamically controlled; so, it is not
possible to monitor only a specific part of a program. Clearly,

a more flexible tool for obtaining and analyzing this data is
rceded.




In this sub-section, | have discussed four areas (namely
debugging, flow analysis, performance measurement and storage
reference pattern analvsis) for the application of execution
analysis techniques described in this thesis. In Chapter 4, I
shall take specific problems from these four areas and illustrate
the usage of the prototype software facility DAME in solving
them. In the next sub-section, I shall survey the state-of-the-art
in execution monitoring facilities.

1.4 State of the Art in Dynamic Execution Analvsis Tools

The first remark one can make regarding the state of the
art in this area #s that it is almost non-existent outside the
sub-area of debugging tools. A further indication of the stale
of the art in execution analysis 1is the fact that all the on-{line
debuggine tools which have come to this author's attention coluld
be used fur various other types of execution analys’s but the%
hardly ever are: in fact, with nincr extensicns they could tle
make iato quite useful execution analysis tools. The softwarp
techno .ogy has failed to properly utilize even its existing '
tools in execution analysis. This could be attributed to their
being labelled "debugging aids" as well as to not requiring
meaningful execution analysis data from programmers in the
industry as well as in the universities. At anv rate, the foilowing
iist is representative of the t ‘pes of machine language debugyping
facilities found in major sys:ems: (e.g. see [BO 681])

l1- Setting and removint breakpoints at arbitrary points
in a program,

2- Computing arbitrary functions of the state of the usey-
addressable core at a breakpoint,

locations,

3- Referencing core symbolically,
4- Transferring control to an arbitrary core location at
a breakpoint,
5- Calling other debugging procedures,
6- Modifying contents of core, i
4
4
7- Defining symbols private to the debugging system and 5
using them as normal identifiers in debugging procedures, i
8- Specifying automatic collection of the values of specific i
!
1
)

9- Directing dumps and traces to user-specified devices.
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As mentioned earlier, these abilities form a basis upon
which more useful analysis systems could be built. However,
the use of these facilities appears to have remained largely
in debugging.

I would now like to mention several systems whose facilities
have gone in somewhat different directions. In [ST 65]
T. G. Stockham describes a graphical debugging system which has
the ability to interact with the user during the course of the
execution in terms of the flowchart of the program, a significant
advance in man/machine communication. D. U. Wilde wrote a
program which statically charted the data and control flow in
IBM 7090 programs and attempted to construct functional expres-
sions relating the interacting variables [WI 67)]., Its main
limitation was limiting itself to static analysis. More recertly,
the Symbol computer developed by Fairchild Corporation permits
the user to specify a routine to be activated when user-specified
locations are accessed. This ability forms the basis for signifi-
cant advance in execution monitoring and analysis capabilities.
A similar feature was described for an Algol-like language by
J. Mc Neley [MCN 68]. R. Balzer's EXDAMS system [BA 67], though
it never became operational, made a attempt to provide high-level
facilities for obtaining traces, extracting information from it
and displaying it flexibly on a display tube and running the
program forwards and backwards. The work by T. Cheatham and his
associates at Harvard toward a software laboratory included
components for monitoring the value of user specified predicates
while a program runs on a real machine or a software interpreter
of machine language.

Various machine-simulator based debugging systems tave
been built and reported. The MIMIC system described by R. Supnik,
the AIDS system of R. Grishman and the HELPER system described
by H. Kulsrud are some good examples of such systems. (See
[RU 71] for reports on these systems.) The main limitations of
these systems are: (1) The very limited amount and types of
computational power which they appear to have been designed to
provide, (ii) They offer no higher-level unit of programming
than individual instructions, e.g. the effect on the machine
state of five consecutive instructions storing into the same
location would be recorded as five seperate entries and there
is no way to change this; thus they very quickly run into main
storage problems. The ability on the part of the user to define

a global structure over his program containing elements of arbitrary

size and to be able to capture arbitrary information about data
and control flow between these elements would greatly facilitate

the analysis of interesting questions about the program's run-time
behaviour.

s bl \ oo g




Another class of systems which 1is relevant to this topic
1s the so-called "virtual machines". (For a set of papers on
virtual machines, see [ACM 73]. However, in virtual machines
reported so far, no analysis facilities or features for user
control of the computation significantly better than the
breakpoint-oriented debugging facilities (such as PCS LBO 68])
of interactive systems have been described.
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CHAPTER 2

FUNCTIONAL REQUIREMENTS FOR A GENERAL-PURPOSE EXECUTION
ANALYSIS FACILITY

In this chapter, I would like to review and classify

the functional capabilities required to accomplish the

lasses of tasks outlinad in Chapter 1 and to arrive at a
set of functional specifications for what can truly be called
a "general-purpose execution analysis facility" (GPEAF).
By "functiornal specification” I mean that only "what" is
wanted is to be specified, leaving the method of implemen-
tation open. Having made this statement, let me violate

it just once in order to give a lot more concrete context
to what is to follow: If we view the kinds of analysis
tasks which have been mentioned as points in a space of
infinitely many, continuous dimensions, then the set of
functional capabilities of a GPEAF can be viewed as a set
of primitive operators and data structures whic'.,, when
used in composition, juxtaposition and iteration in normal
programming style, permit one to proceed easily to most points
in that space. This statement will serve as a qualitative
specification of the overall function of a GPFAF,.

2.1 Debugging

Let us first consider the kinds of questions that
arise most commonly in the debugging process. Recalling the
types of classifications of bugs given in sub-section 18531,
probably the most promising breakdown is into "Control"
bugs and "Computation" bugs. I do not wish to imply that
I believe these two classes are independent, rather simply
that in thinking over all the hours (days, years) 1 spent
debugging programs, it seems that a great deal of those
bugs could be comfortably placed into one of these two classes.

2.1.1 Control Bugs

Control bugs most often appear locally, in the form
of errors in conditional branch statements or in the number
of iterations in a loop. While the actual nature of each
error in control flow is, of course, specific to the particular
program, the kind of action one would like to take to diagnose
such a bug, woulu be to be able to say something like:
"If I have just done X and the machine state is Y, take
diagnostic action D if the next state is £ Y. Yake, %

i i

may take the form of a list of calls on subroutines possibly
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with specific values or with a specific relation over the

values, instruction addresses or other partial specifications

of the instruction with specific operand addresses or values.

Example: "After S1 has called $2 twice with parameters

A, B and C such that A>B>C, followed by n calls on S3 by

$2, followed by two MOVEs to location ky do...". Hote

that the word "follow" may be taken in its strict sense,

i.e, "immediately follow", or simply to mean “come sometime

after". Turther, it is unclear whether the diagnostic

action is to be taken only on the first occu-rence of the

specified condition or on all its occurrences. It should

be possible to formulate all of these alternative interpre-~

tations. Also note that the specifications over the actual

parameters of a subroutine call require that the analysis

facility be able to determine, or, failing that, be told

by the user, the locations of the parameters. The machine

state specifications Y and Z are partial predicates involving,
i

possibly complex, functions over the state of the memory,

including any general-purpose or device registers.

The diagnostic action D may involve, minimally, sus-

i
pending the execution and displaying certain elements of
core. In addition, we may wish to compute the value of

a function and store or display its result, automatically
continue execution from the same or a different point, or
we may wish to backtrack to an earlier point in the execution

history. This last requirement, namely backtracking, involves
two parts:

1- The specification of the point B to which we wish
to backtrack, and the associated search over execution
history,

2- The actual backtrack operation.

Having made a backtrack, one may wish to execute a
certain number of instructions and jump forward to an inter-
mediate state, and eventually resume execution from the
point where the original backtrack command was issued.

Note that the form of the debugging request given
above does not cover predicates involving the time-series
of the valuzs of a location, e.g. those of a variable whose
value is modified in each iteration of a loop. This leads
to the general concept of the time-series of the values of

a variable - which appears to be a natural and useful construct |
for debugging. I shall refer to this as the "value-trace" |
of a variable. The number of values to be kept should i

be user-specified.
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2.1.2 Computation Bugs

Under rthis title I shall include errors in "iormulas",
generally characterized by a sequence of arithmetic operations
concluded by an assignment. They are distiaguished from
Control Bugs by the trivial, localized control flow involved.
In this class of bugs, we are concerned with the past and
current values of variables as well as the new values to
be assigned to them tn a particular instruction or set of
instructions. Note that some of these values mav in fact
be addresses of indirect operands. MHence we are interested
in all the operands fincluding intermediate pointers, side-
effects such as setting of the condition code and automatic
incrementation or decrementation of registers) involved in
an instruction as well as their relation to the instruction.
For example, we want to know not ofky that dnstruction 1
Yetches something from address A but also whether A is the
eventual source operand, a pointer to the eventual source
operand, the eventual destination operand, or a4 pointer to
the eventual destination operand, etc. Hence, for any parti-
cular machine, there needs to be 1 characterization of everv
operand involved in every type of instruction in its instruction
set and a corresponding mechanism in the analysis facility
which permits one to refer to each of those operands through its
relation to the instruction. Facilities such as this permit

one, for example, to say: (i) "If I ever multiply (any
number) by a negative number and store the result Hipstior Pile
et he lmem a3l €lpp”c oF (i) MIF the Eruneativi SEBew

Involved in an integer division, defined as abs(l-((destination
operand*result)/source operand)) 6 ever exceeds 57, do ...".
Let us note an ambiguity in the former request (i); often

the result of a computation, such as the multiplication in
this case, is stored temporarily in a different location

*han its eventual destination. Later, perhaps after several
instructions, it is moved to its eventual destination. This
is particularly true about machines which do not have memory-
to-memory operations. In such machines, the high-speed
registers are used to hold temporary results very often. In
many cases a temporary result may remain in a register over
several instructions. In such a case, how should the "store
into X" be interpreted, as an "immediate store', a "store
within a fixed number of instructions'" or an "eventual

store" meaning a store sometime hefore the computed value

is modified? The answer to this question is the same as

the answer to earlier questions about interpretations of
requests: namely, that it does not matter; every interpreta-

tion should be able to be formulated within the analysis
facility.

[ would now like to mention a construct and an assocliated
notation first used (to the best of my knowledge) bv C.A.R.Hoarc
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The below quote is from E. W

- Dijkstra's "A Short Introduction
to the Art of Programming":

TRy R Py $8.0 v iuetbind. Boe predicates stating a relation
between values of variables. Let S, S1, 82, ... stand for pieces
of program text, in general affecting values of variables, 1i.e.
changing the current state. Let B, Bl, B2, ... stand for eirhecr
predicates stating a relation between values of variables or
for pieces of program text evaluating such a predicate, i.e.
delivering one of the values true or false without further affec-
ting values of variables, i.e. without changing the current state.

Then

P1[S]p2
means: "The truth of Pl immediately prior to the execution of
S implies the truth of P2 immediately after that execution of

S"...'. Dijkstra then goes on to state some theorems relating
Pi's, Bi's and S. The relation P1[S]P2 given above seems to be
another natural and useful construct fer debugging purposes: it
i1s a succinct formulation of a question about the effect of a
plece of code S on any part of the machine state. It is clearly
necessary that such relations for arbitrary Pl, S and P2 be
testable easily within the analysis facility.

Let us now summarize the capabilities implied by the examples
of debugging activities so far:

Dl- Determining the Path of control flow down to the
instruction level,

D2- Determining the type of instruction being executed,
D3- Following arbitrarily complex pointer chains in core,

D4- Determining the addresses and values (old and new) of
all the operands (explicit and implicit) of an instruction as
well as their relation to the instruction,

D5- Keeping an arbitrary number of previous values of any
address, in an easily accessible form,

D6- Computing arbitrary functions over the current machine
state,

D7- Searching execution history (backwards and forwards)

for a state satisfying a user-specified predicate,

D8- Efficient restoration of a state found in such a search,
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D9~ Stopping and starting execution,

D10~ Performing any sequence of the operations Dl through
D9 at any and each of: operand fetch, operand store, instruction
fetch and instruction completion times.

While it is rather imprecise to talk about the "completeness"
of a debugging system (or of a system with respect to debugging),
one can get a certain amount of reassurance of the sufficiency
of these requirements for a dcougging facility by convincing
oneself that they offer a great deal of help in isolating all
the classes of bugs mentioned in Chapter 1, sub-section 1.3.1.

2.2 Flow Analysis

As stated in Chapter 1, by the "flow analysis" of a program
P, I shall mean inquiries into the relations between sequernces
of machine states which arise during a set, E(P), of executions
of P. It is helpful to think of the program counter as a distinct
entity from the rest of the machine state. 1In machines having
a built-in stack, it mayv also be useful to think of the stack
pointer as a third distinct entity, especially in high-level
languages which do not permit explicit access by the user to the
elements in the stack. I shall not do so here, since I shall
be mainly concerned with machine language programs where every-
thing is essentially global.

Thus, thinking of the program counter (PC) as a seperate
entity from the rest of the machine state (which I shall call
"memory'", M), we can identify two types of flow: Control Flow
and Data Flow, where the former refers to the sequence of values
assumed by the PC and the latter to the sequence of states of M.
T would like to empharize the word "sequence'" in the last sentence.
The word "flow" implies a sequence of changes to one phenomenon
relative to another., Hence, for example, we might ask: "Starting
from a particular state of M and PC, what is the kth value of
PC?". Or similarly, "Starting from a particular state of M and
PC, what is the kth state of M?", Or, "Civen that M=M1, when
PC=P1l, what is M when PC=P2?7".

2.2.1 Control Flow

Normally, it suffices to consider only changes from sequential
flow in order to be able to reconstruct the entire history of
control flow. One must be careful, however, to include enough
information to indicate when each change occurred. For example,
one may include the starting address of the program, followed
by pairs (a ,b ), i=i,...,n, where a and b are the origin and

iy 4 i i




R

(B e o o

15

the destination of the ith branch instruction, respectively.
Alternately, one might let a be the starting address of a
i
block of straight-line code and b the number of instructions
i

in that block. A GPEAF should have facilities for sensing the
fetch of an instruction from a location X, the completion of
its execution, reconstricting the last N branches (origin and

target), for arbitrary N. It should also be able to execute
a user-specified procedure before and after any or every Iinstruc-
tion. (This ability was also listed as a requirement under

debug,ging.) It is important, though this can also be implemented
by the user himself using the above facility, that when the user
gains cont:o51 before or after an instruction, he be able to
deter:...ne the address of the previous instruction. F.g. If

one can jump to an address A from several locations, it is

necessary to be able to determine easily at A where one came
from.

2.2.2 Data Flow

If we think of data flow as a sequence of changes to the
state of the memory M representing the progress of execution,
it becomes clear that in order to be able to analyze 1it, we must
first relate it to control flow. That is, we must be able to
determine which changes are associated with which parts of the
execution path. 1In general, many parts of the execution path
may result in an identical effect on the state of M. Thus,
data flow analvsis must be able to detevmine, where possible,
the precise part responsible for any given effect.

Some Fundamental Relations in Data Flow

Let us consider two contiguous parts, A and B, with B
temporally following A, in the execution path of a program.
Suppose that we would like to know the data flow from A to B.
More specifically, we would like to know the set of addresses
which are both modified by A and read by B before being modified
again, and the values of those addresses upon entry into B
(in the absence of any outside interference, this is equivalent
to the value: of those adrresses upon exit from A). Let us
define as the input-set, I » of A the set consisting of pairs

A
(a ,v ) where a 1is the ith unique address from which A reads
ST & i
something before writing into it, and v 1is the value read.
i
Let us also define as the output-set, O , of A the set consisting
A
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of pairs (b ,u ) where b is the ith address written by A
i i i
and u the contents of b upon exit from A.
i i
Then, the data flow, D , from A to B can be characterized
[ <AB>
| simply as:
(1) D =0 I
<AB> A B

Note that in computing this intersection, it suffices to
look at only the address parts of the elements of the two sets,
since, due to the temporal adjacency of A and B, equality of
addresses will imply equality of contents. However, no harm
will result if, in order to maintain the conventional set-theoretic
definition of intersection, we require that only those elements
which are identical in all respects (which are used to include
them in their resprctive sets in the first place) be included
in the intersection. Hence, the conventional definition of
intersection in set theory will suffice for the relation (1).

Let us now consider an important step in data flow analysis,
namely the compaction of two consecutive parts into one. This
step is fundamental to many types of flow analyses; see for
8 example [CO 71]. To do this, we shall need the following additional
notations:

C(a,t) = contents of locatior a at time t,

T (A) = time of entry into part A,
e
<AB> = the part consisting of the temporal
' juxtaposition of parts A and B.

We can now characterize the input set of <AB> as follows:

(2) 1 =1 (1 -0 )
<AB> A B A

Here again, it suffices to consider the conventional set-
theoretic definition of the union operation, since the equality
of the address part of an element in I , to that of an element

A
in (I -0 ), implies the equality of their value parts. This can
B A
be briefly proved as follows:
b
Proof: Suppose that for some p=(a ,v )and q=(a ,v ), :
- P P q q
]




pel and q¢(1 -0 ) respectively, a =a and v #v . Now, since

A B A P q P q
A and B are consecutive, v =C(a ,T (B))=C(a ,T (A)), i.e. the
q q e q X
contents of location a are unchanged between the exit from
q
A and entry into B. But since a =a ,v must also equal
P q ¢
C(a ,T (A)). Thus, for v #zv to hold, this reguires that the
p X P q
contents of address a be modified during A. But this contradicts
)
our definition q<(I -0 ). Hence no such elements p and q can
B A
exist.

Finally, we can characterize the output set of <A,B> as:

(3 © =0 *u0
<AB> B A

where *u denotes an extension of the union operation to one which
"favors" the left-hand operand over the right hand one in the
sense that, if there is an element (a ,v ) in L and (a S,
L R R
in R such that a =a but v #v , then L*uUR includes a3, 9 ) dn
LR L R ’ L I
the resulting set.

This operation simply assures that if some address is
modified by both A and B, then only the final effect will be
recorded in the output set of <AB>.

These three highly intuitive relations form a base upon
which many data flow analysis mechanisms can be built.

So far, we have been concerned only with consecutive parts,
where we are assured that nobody else will get in between the
parts involved in the data flow. But now let us consider the
case where the parts, A and B, of the execution path, the data
flow between which we wish to exrlore, are not consecutive.

What should the analysis facility be able to tell us about the
effects of intervening parts C , i=1l,...,k, on the data flow

i
from A to B? There are at least two reasonable answers:

l1- That the analysis system be able to tell us whether any
of the C 's had any effect on the dat» flow from A to B or not, or
i




2- That the analysis system be able to give us a list
of the effe~ts, e.g. a list of pairs ((C ,v ),(cCc ,v Dsit ol
sl 2 2
where the first element of the pair indicates the effecting

part, and the second element indicates the effect.

A little reflection shows that the first, "yes'" or "no"
alternative is not satisfactory unless there is some practical
way of finding out the information provided by the second alter-
native. Hence., I shall adopt the latter as the information
which the analysis facility must provide.

What Maketh a Part?

All the Jdiscussion so far of data flow has been based on
the notion of "parts" in a program, which could be treated as
units of control flow and which provide the link between control
flow and data flow. Now, let us consider what properties a
part should have, and how we would recognize one i{f we saw one.

The main motivation for the introduction of the notion of
Parts was to break up the entire execution path of a program
(with a set of inputs) into more manageable units for gathering,
manipulating and interpreting information about data flow.

The smallest conceivable unit for this purpose is a memory

cvcle (between the processor and main memory, or the general
registers). For executions involving tens or hundreds of thousands
or millions of machine instructions, this would require the
recording of about four or five times that many (address, value)
pairs. This amount of data is clearly too voluminous to store

in main memory. It conceivably could be dumped into secondary
storage periodically and searched as needed. However, it would
dappear that unless one uses very efficient random access methods,
this approach would cause intolerable overhead. Further, this
fact defeats the goal of ease of use, since normally programmers
don't think in terms of the number of memory cycles when doing

flow analysis. Hence, a memory cycle appears to be too small
4 unit for this purpose.

The next level appropriate for consideration as a part is
a machine instruction. But we note that the amount of storage
required is of the same order of magnitude as above, since we
woulid have to record every address and value involved in the
execution of the instruction. A certain amount of saving is
possible though i1f we recognize that most of the operand addresses
involved in an instruction are statically fixed. The only ones
that are not, are indirectly addressed operands. To take advan-
tage of this, one can develop a technique for constructing a
"template" for each instruction in the program, showing the static




19

operand addresses (all of which may not be apparent in the
instruction itself), and relate to it each instance of execution
of the instruccion and the dvnamie operand addresses involved

In that instance. Such a technique can at best save less than
30% of the storage required in the preceding alternative,

Let us now move up one more level, to the level of groups
of instructions. The first, obvious question is "How big should
a group be?". The reason that one tends to raise the issue of
size before other issues here, is that so far we have found the
two previous alternatives unattractive because of the size of
Storage required. Once we move to the level of groups of instruc-
tions however, we have a preat deal of flexibility, For example,
we may wish to consider as a part, groups of instructions which
correspond to some syntactic programming unit, such as a sub-
routine or a block. Or we may wish to consider what are usually
called "basic blocks" by compiler writers, namely, blocks of
instructions having a unique entry point and a unique exit point.
(We must remember at this point that, a "part" refers to a part
of the execution path, not of the program text; i.e. for groups
of instructions, a part refers to a particular execution of one
group). Or, even more flexibly, we can let the user define what
should be a part. This latter choice has the advantages of control-
ling the amount of storage required as a function of the length
of execution as expected by the user and of having a part corres-
pond to a conceptual step in the solution of the user's problem.

Civen all these alternative strategies for defining parts,

the criteria for judging the suitability of a particular choice
of strategy are:

1- How well does the chosen strategy perfo m in answering
data flow questions?

2- How practical is it to implement?

In Chapter 3, I shall describe one choice and discuss its
implementation and performance.

Units of Data Flow

The most elementary unit of data as represented in digital
computers is the ubiqutious "bit". On the other hand, by far
the largest fraction of processing is done in terms of "words",
the size of which varies from computer to computer. Further, a
significant amount of Processing is done in terms of fractions
of words, called "bytes", and a relatively smaller portion in
terms of "blocks" of words. In machine languages, "blocks" are
rarely used as individual operands in an instruction (a notable
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exception being the "transfer block" instruction implemented

in certain machines). The "bit" is also very infrequently

used as an individual operand. Rather, it is usually employed
to express side-effects of certain operations, e.g. the setting
of the condition code, the bits in a processor status word and
so on. These side-effects are an essential part of the effect
of an instruction and hence any analysis facility must represent
and give access to them in an adequate way.

The "bytes" come in two flavors (no pun intended): fixed
size and variable size, fixed size being the more commonly used.
In variable-size-byte machines, such as the PDP-10, one needs
both a starting position and a length to characterize a byte
whereas with fixed-size machines one needs only the starting
position. Bytes also form an important unit of data flow and
should be dealt with in full by a GPEAF. For exqgmple, in the
input and output sets of a part, the location (word address and
starting position within the word), size and contents of byte
operands should be properly reflected.

The "word'" is probably the most appropriate unit for represen-
ting the largest fraction of data flow. I do not feel that I
need to dwell on the precise definition of a "word", since its
meaning for, probably all, commonly used machines today is clear.
An interesting class of exceptions to this would be machines, paper
or real, for directly executing high-level languages, such as a
LISP machine or a SNOBOL machine. In such machines, the selection
of the unit of data flow probably ought to be closely related to
the primitive data structures of the language (e.g. atoms, lists,
strings).

Thus, we can conclude our discussion of appropriate units
for representation of data flow by saying:

1- The main criteria for judging the suitability of a
proposed set of units are: (a) 1Is it capable of representing
all elements of data flow?, and (b) How efficiently, in terms
of storage and interpretation speed, does it represent the great
majority of operations?

2- The choice of data flow units has a large impact on the
efficiency of the analysis facility and hence its usefulness.

To summarize the functional capabilities required for control
flow and data flow analysis tasks, we can list them as follows:

Fl- Giving the control to the user {(or a user-specified
analysis procedure) tefore or after every instruction, and before
or after user-specified instructions,
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F2- Dividing the eéxeucution path into parts as specified
by the user and enabling the user to refer to these parts explicitly,

F3- Constructing the input and output sets of parts, as
these sets were defined earlier,

Fé4-~ Determining the data flow from a part to the following
part as per relation (1),

F5- Computing the combined input and output sets of adjacent
parts, as per relations (2) and (3),

F6~ Determining the effects of intervening parts on the
data flow between non-adjacent parts, as discussed earlier,

F7- Enabling the user to access every element of any input
set and any output set, and use the address and valuc parts of
the element {n computations.

2.3 Performance Measurements

Performance measurements are ccncerned with relating the
resource requirements of a functioning unit to the degree to
which {t achieves its goals. For example, one might relate the
gtorage and CPU requirement of a compiler to the compactness
and efficiencv of the object code it produces. A GPEAF should
offer the analyst high flexibility in making these measurements.

We can also talk about performance measurements of operating

systems. For example, scheduling, storage allocation and paging
policies have become the subject of much research and analysis
from a performance point of view. An operating system can be

"measured" in two ways:

(1) We can measure its component programs just as we
measure user programs (i.e. their storage and CPU requirements etc.)

(1i{) We can measure the performance of the whole system
while it processes a given workload (i.e. in terms of throughput,
average response time (for time-sharing systems), paging rate etc.)

I shall refer to the first class of properties as '"program
performance"” and to the second class as "svstem performance".

Measurement and Modelling of Program Performance

Among the most frequently used measures of program perfor-
mance are such criteria as :




How long it rumrs with a certain input,
How 1t spends its time,
How much main storage it requires.

Measures (1) and (3) are gfenerally provided by the oprrating
syvstem as user accounting data. (2) 1s usually obtained by
using timing packages or explicitly reading the systen clock
(job-time) within the user program. In either case, the user
has to recompile his program to vary the measurements of type(2)
he wants to make. Further, in multiprogrammed systems, the
CPU and storage charges for running the same program with thne
same 1inputs can vary significantly as a function of the othe-
programs running at the same time. I shall not po into the
reascons for this. Let it suffice to say that one often can not
get a '"pure" measure of a program's running time through conven-
tional operating system facilities. Hence it behooves an analysis
facility to offer much more help in this area.

Another problem in measuring the performance of existing
programs has been what to do about the parts which we do not want
to measure but which provide inputs to the parts which we do
want to measure. In large programs, program modification,
recompilation and re-loading time and effort required for each
change one wants to make to deal with this problem, has often
made such measurements too cumbersome and time-consuming to
undertake casually. It should be possible within an analysis
facility to model or "dummy up" the logic and sirulate the timing
of uninteresting parts of a program and "skip over" them, and
execute and measure in detail the interesting parts. (This
procedure is quite familiar to those who have done hand-patching
of the code produced by a compiler.) Using a GPEAF, one should
be able to define a number cof paths P s 1%1,...,k, through a

1
program possibly using the "part" definitions discussed earlier,
and measure the time for each complete traversal of each path.
This requires that one be able to sense departures from a path
at some intermediate point in the path.

Another technique for measuring where a program spends its
time is periodic sampling of the program counter. This technique
has the drawback that unless the period of sampling is chosen
with great care, certain parts of the program may never appear
in the samnles because of "lock-<tep" synchronization between
the sampl' g and the pattern of control flow. However this
problem c.ii be overcome with a certain amount of analysis. This
technique has the advantage of considerably less overhead, com-
pared with other techniques such as timing each subroutine entry
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and exit. To permit this technique, an analysis facility must
enable the user to schedule "sampling probes" with a dynamically
controlled frequency (to overcome the problem mentioned above).

With regard to measuring the storage requir~oments of a
program, since these are strongly tied to the .torage reference

patterns, I shall discuss those two subliectcs together in sub-
section 2.4,

Measurements and Modelling of System Performance

Under this topic I shall consider the measurement of such
properties of operating systems as system overhead, CPU utili-
zation, and paging rates (wheare applicable) as a function of

job mix and system design. 1t might be, reasonably, felt that
we are straying afar from our initially stated purpose of the
analysis of program behaviour. However, it n-st be pointed out

that the "true behaviour" ¢f an operating system program can

not be studied without some experimentation involving the proces-
sing of a typical job mix. It is true that studies invelving

the characteristics of an operating system nver several days or
weeks of user time probably fall outside the scope of an analysis
system of the tvpe envisicned here, although many functions,

such as measurement of the average time between interrupts, the
storage reference patterns, the average job running time etc.,
which can be measured by a GPEAF, could be useful in such studies.

There is another, perhaps more interesting, way however,
in which a GPEAF ought to be useful in such analyses. This
approach involves the modelling of parts of the user workload
and of the operating system via analysis system facilities by
which one can mimic the logic and/or the resource requirements
of these programs, as mentioned earlier under Measurement and
Modelling of Program Performance. An example of such a model
is a routine in the language of the GPEAF, which simulates a user
job which generates an I/0 request every K , i=1,..,n, milli-

i
seconds of CPU time, where each K may be a random number drawn
i

from a distrubution. Another example might be a model of the
page reference pattern of a job. One might take an ensemble of
such models of user jobs and model the execution of those jobs
under a given operating system, bv invoking the facilities of a
GPEAF to interface the models with the operating svscen. One
might even model parts of the operating system (such as 1/0
servicing, scheduling etc.) for purposes of expediency or efficiency.

Let me now summarize the capabilities required for the
performance measurement tasks which have been discussed:
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Pl-  Measuring the execution time required by arbitrary,
user-defined paths in a program,

P2- Gaining control of execution at specific time intervals
or when 1/0 or other supervisor services are needed by a user
program,

P3- Performing arbitrary computations when control is gained,

P4-

Simulating the passage of arbitrary lengths of time.

2.4. Storage Reference Analysis

In the design of paged systems, a parameter of interest is

|

f

|

f the pattern with which User proyrams will reference pages. This

E pattern, if it can be estimated for a large fraction of the
total workload the system 1s to handle, can effect the policy
for selecting the page to be swapped out to make room for a new
page. For example, it may be used to estimate how often the
Page to be swapped out ig likely to be a "dirty" page, i.e. it

has been written on since it was brought in, so that it indeed
has to be written out,

A popular measure
of a program, i.e.
program.

in paged systems is the working-set size
the number of unique pages addressed by the

Measures of Paging activity associated with a program are
also of interest to the programmer. Clearly, fewer inter-page

references means fewer Potential page faults. Hence, if a prog-
rammer is interested in impr

of his program, first he must be

There 1s at present virtually no way for a programmer to
get this information directly,
Another type of analysis is that of re
desirable that as many operands as possibl
registers. Hence, it is of interest to ldentify "dead" periods
of registers, which is the period between two successive stores
into a register with no intervening fetches from 4%, During
such a period, that register can Possibly be used to hold the
values of other variables. In fact, whenever a4 register can be
profitably used to hold the values of several different variables
(even if this may mean saving and restoring each such value),

the efficiency-conscious programmer may want to analyze the patterns
of reference to each such register.

gister usage. It is
e oe available in general




There are many other types of analyses which might be
called "storage reference analyses”" but which I shall not
enumerate.

The functional requirements for these kinds of analyses
can be summarized as:

Sl1- Obtaining every address (including registers) generated
by the program, when it is generated,

S2- For each generated address, an indication of whether
it is an instruction, an operand fetch or a store,

$3- Making arbitrary computations whenever a generated
address and the associated indication is obtained.

2.5. Summary of the Functional Requirements

In this section, I would like to summarize the functional
capabilities required for the four analysis areas which have
been discussed. I have no formal proof that these capabilities
form a "complete™ set; nor do I pretend to know precisely what
the "completeness of an execution analysis facility" may mean.
However, certainly it must mean "something more" than the trivial,
formal completeness in the sense of being able to compute all
computable functions. Below, I give my understanding ~f what
that "something more" is.

We can consider the required capabilities in four classes:

l1- What information the analysis facility has access to,

2- At what points in the execution cycle it can gain control,
3- Its instruction set,
4- External appearance and miscellaneous useful features.

2.5.1 Information Requirements of the Analysis System

The Analysis System needs access to at least two address
spaces: the address space of the object machine (which shall
also be called the "external state of the OM") and its cwn symbol
space. (Some may want to consider the former as an element, e.g.
a large array, in the latter.) 1In particular, every address and
register accessible by the object program must be readable and
writable by the Analysis Facility. 1In fact, the access to the
object machine address space should be very easy and direct.
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1f the Analysis System is inefficient in long computations
and therefore a need for a linkage to programs written in a
compiler level language (such as the one in which the Analysis
Svstem may be written) is indicated, then the Analysis System
routines should have access to the symbol space of that compiler
level language.

It is desirable that the Analys.s System have access to
the operand addresses and values of the current object instruction
(which shall also be called the "internal state of the OM"),
without having to decode them itself. Thus, at the end of an
instruction cycle, one should be able to say, in effect: "If
this is a MOVE instruction and the source operand value is zero,
and the destination address is between A and B, then do...".

It is a.so helpful if a direct indication of the instruction
class (double-operand, single-operand, no-operand) is available.

The juestion of access to the timing of the object machine
must also be considered. The Analysis System must be able to
read the clock of the object machine or otherwise determine the
object machine time easily, at least after each instruction.
For some applications, it may be necessary to determine the object
machine time after each major (primary memory) cycle or each
minor (register transfer) cycle,

While this is not an absoclute necessity (as we have shown
that we can get by without it in the DAME system), it would be
desirable to have access to the user program text and symbol
table, so that the user could converse with the system in terms
ot this own symbols.

It is clear from the foregoing discussions of control flow
analysis, that the user, in cooperation with the system, will
define a topology or structure over his program for purpcses of
control flow history. It is also clear from those discussions
that empirical data associated with each component of that struc-
ture will be generated during the execution of the user program
and that this data will be linked to the appropriate parts of
the control flow history. Each of these elements of information,
i{.e. user program structure, control flow history and dynamically-
generated empirical data, must also be accessible by the user.

2.5.2 Triggering of Analysis Actions

The user must be able to execute any (meaningful) set of
analysis actions after every operand fetch, store, instruction
fetcn, instruction completion or at specific points in time
({.e. relative to object machine clock). Further, the user must
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be able to specify, optionally, address ranges or registers
for which the stated action is applicable. 1In tlte rest of the
thesis, I shall refer to a stated sequence of actions to be
activated at one of the above pointsas a "hook".

2.5.3 The Instruction Set of the Analvsis Facility

The instruction set of the Analysis System should contain
two classes of instructions:

1- A complement of instructions similar to those of con-
ventional programming languages : these will be used to perform
assignment, arithmetic and logical operations, conditional execu-
tion, looping, subroutine call with parameters and I/0. 1In
fact, this subset of the instruction set should be a programming
language which is "complete in a practical sense'. All the
computations, such as those encountered in performance analysis

or flow analysis, can be potentially done in this subset of the
language.

However, as mentioned earlier, in the case that the Analysis
System instruction set turns out to be unsuitable for long
computations, there should be an escape mechanism through which
one can execute subroutines which are written in a more suitable
language (possibly the one in which the Analysis System itself
1s written). If that language has a syntactic construct, similar
to a "function" In some languages, which returns a value, then
it should be possible to assign the value returned by such a
construct to a symbol in the symbol space of the Analysis System.

2- A complement of instructions particularly useful in

monitoring and execution analysis. These should include the
following operations:

(i) inserting, deletins, enabling or disabling hooks
statically and dynamically,

(i1} defining "parts" in the execution path whose input
and output sets (discussed earlier under Data Flow, in sub-~section

2.2.2) are to be determined automatically and made accessible
to the user,

(iii) Searching the input and output sets of previous parts
for one which satisfies a user-specified predicate (better yet,
making each set available to the uter in some systematic manner,
e.g. reverse chronological order, letting the user perform
arbitrary computations using the elements, i.e. <address, value
pairs, in the set, and tell the system whether he wants to
continue the search or not),
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(iv) Displaying input/output sets in an appropriate
format (i.e. indicacing relations between addresses and values,
and the '"bvte" position and size where applicable),

(v) Backtracking to the beginning or end of a part found
in a search or specified explicitly by the user,

(vi) Moving further back or moving forward following the
execution of some instructions from a "backtracked'" position,

(vii) Resuming execution from the point where the backtrack
instwuction was issued.

2.5.4 External Appearance and Miscellaneous Useful Features

Since the main design goal for the Analysis Facility is to
facilitate the performance of analyses of program behaviour,
clearly the associated command language should be easy to use
and have good error-detection features. It must be noted that
unreasonable-looking results obtained by some analvsis procedure
are, in some sense, "doubly hard" to disprove or verify, since
one may have to re-examine both the analysis procedure and the
process under analysis to determine the validity of the obtained
result. Further, one frequently has to compose analysis proce-
dures in a short period of time, often in an interactive, spon-

taneous fashion, a condition which increases the probability of
making errors.

All of these conditions point to the requirement that the
language of the Analysis Facility be simple and terse in syntax,
encourage structured programming, and not rely very heavily on
remembering many keywords. This last requirement is probably
the most difficult to achieve due to the variety of specialized
functions which have to be performed in collecting and searching
execution history data. Further, the ojectives ur a powerful
language and simplicity of syntax conf’ ct with the objective
of not relying heavily on remembering nany keywords. However it

has been shown that very good compromises can be reached; witness
APL and LISP.

These conditions also mean that often the same commands
with minor modifications will be entered repeatedly, increasing
the possibility of making typing errors each t!ime they are entered.
Hence, the analysis facility should possess a "library" capability
where frequently used command sequences can be stored and called
when needed. Also, a good aditing facility for editing both
"on-line", i.e. loaded command sequences, and "off-line", i.e.
text files, is extremely useful.




In referencing object machine instructions, e.g. tracing
them as they are executed, or displaying a block of instructions,
the analysis facility should be able to deal with symbolic forms

as well as numerical. This ability is available in most on-line
debugging systems today,

It must be noted here that the mental picture, on which
these functional requirements are based, is that of an inter-
active, on-line analysis facility. For batch systems, some of
the requirements become more severe, and some less. For example,
in an on-line system, the user may display the values of some
variables and base his next action on what he sees. In a batch
system, this is not possible. Hence, the user would like to do
the next best thing - namely, program the reasoning process
he uses into the analysis procedure. (To the extent that this
process can be mechanized, this is even preferable to the visual
examination by the user.) This means that especially in a batch
sytem, anything that the user would like to see displayed in an
interactive system should be available "inside the machine" to
analysis procedures. On the other hand, the "terseness" require-
ment for the analysis language is not as severe in a batch system
as in an interactive system.
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CHAPTER 3

THE DAME SYSTEM

In this chapter, I shall describe the design of the DAME
(Dynami- Analysis and Modelling Environment) system, which has
been the major vehicle in my research for implementing, expe-
rimenting with and evaluating new ideas. DAME is a facility
for studying the logical behaviour and the performance of programs
for the PDP-11/20. It consists of-a PDP-11/20 simulator and
a programmable analysis facility which achieves most of the
requirements set forth in the last chapter. The main goal in
the design of DAME was to isolate critical problem areas in the
design of a general-purpose execution analysis facility (GPEAF),
for which solutions had not been developed as yet and to propose

solutions to, at least some of, these problems. It was not the
intention to develop a finished, tuned-up utility system for
general use. Hence, some features for which satisfactory tech-

niques were already known and which would be very desirable in a
system for general use, were omitted from DAME since the effort
required to implement them did not seem justified in view of their
minimal contribution to the research aspect of this project.
However, despite such omissions, I have found DAME to be a powerful
tool for analyzing program behaviour.

In order to facilitate the reading of this chapter by readers

with different objectives, I shall first provide a detailed outline.

This outline can also be used as a reference later to quickly
locate the section about a particular point, as well as to guide
the reader in the first reading to sections of more interest to
him.

Qutline of Chapter 3

The first topic is the set of data structures underlying the
design of DAME. 1In Section 3.1, I first summarize these structures
and then discuss in more detail some of them, namely, the formats
of objects and lists as well as certain master lists and symbol
tables which play an essential role in the implementation of DAME.

The description of these structures is provided only becausc
they facilitate certain search operations over pre-defined classes
of objects. An understanding of them is not required for an
overall understanding of DAME.
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The first topic is the set of data structures underlying the
design of DAME. 1In Section 3.1, I first summarize these structures
and then discuss in more detail some of them, namely, the formats
of objects and lists as well as certain master lists and symbol
tables which play an essential role in the implementation of DAME.

The description of these structures is provided only because
they facilitate certain search operations over pre-defined classes
of objects. An understanding of them is not required for an
overall understanding of DAME.
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In Section 3.2, another data structure, the representation
of the PDP-11 core, 1s described. In this connection, I also
Present the general problem of representing the memory of one
computer in another, emphasizing the problems related to the
respective memory sizes and word lengths of the two machines.

In Section 3.3, the questicn of the "time-grain" of simula-
tion is considered. 1In particular, the costs and benefits of
simulation at the memory cycle level and at the instruction leve]
are briefly discussed and compared. (Note: This topic 1s dis-
cussed in more detail 1in Chapter 5.)

In Section 3.4, the hook mechanism is described. The types
of hooks and the points in the PDP-11 instruction cycle at which
they may be placed are explained. Whenever a hook is activated,
the PDP-11 simulator makes available to the user certain informa-
tion on the current state of the processor and the Unibus by storing
that information in PDP-10 global symbols. In this section, a
list of the PDP-10 global symbols used for this purpose 1is given.

In Section 3.5, the most significant feature of DAME, the
Node Mechanism, is described. This mechanism permits a guaranteed
backtrack capability to any point in the execution history and
an analysis of data flow in terms of user-defined nodes. The
user thus has almost complete control over the amount of execution
history information collected by the system.

An understanding of the Hook Mechanism (Section 3.4) and of

the Node Mechanism (Section 3.5) is essential to the understanding
of the rest of the thesis,

In Section 3.6, an outline of the DAME 1instruction set 1is
given. First the general syntax of DAME instructions 1s specified.
The instruction set is divided into two subsets. The first sub-
set (Section 3.6.1) contains the instructions provided for normal
programming oprrations such as assignment, arithmetic, looping
and the like. These instructions are listed without much explana-
tion, except for several instructions which are more uncommon
(e.g. a search-1list instruction). The latter are explained in
detail. The second subset of Instructions (Section 3.6.2) consists
of those which are specifically designed for monitoring the execu-
tion of the -11, collecting data and searching them. These are
also explained individually. An understanding of this section
shoul be sufficient to follow the detailed illustrations given
in the next chapter. However, for those who wish a more detailed
and systematic description of the instruction set, a user's manual
1s provided in Appendix A of the thesis.

In the final section, Section 3.7, some unimplemented ideas
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for improving the performance of DAME are discussed. They are
immediately implementable, as opposed to future research, ideas.

3.1 The Underlying Data Structures

E In DAME, one has access to three address spaces:
!
1- Objects and list structures, which are the main class
of entities that DAML deals with,
2- PDP-11 core, general and device registers,

3- Global PDP-10 symbols used in the simulator.

(Note: These three address spaces are not disjoint; the
PDP-11 registers and core are alsr z2-cessible as PDP-10 global
symbols. Some operations which norma 1y operate on objects can
also operate on -10 globals.)

In the rest of this section I shall describe the structure
and possible attributes of objects, and several global, pre-definead
list structures which are crucial to the implementation of DAME.
The other two address spaces will be discussed in succeeding
sections. Tie reader who 1is not concerned with the implementation,
] can skip to Section 3.2 without loss of continuity.

Most of the information structures generated by DAME during
the execution of an -11 program are in the form of lists, as
are DAME routines themselves and most of the pre-defined infor-
mation in the environment. The basjic list-processing functions
and the PDP-11 simulator are implemented via the BLISS-based
general-purpose simulation package POOMAS, developed by Amund
Lumd@ [LU- 711}.

Attributes of DAME Objects

Each DAME object has the following attributes; a 'successor",
a "predecessor", a '"size", a '"class", a "subclass" and possibly
a list of "secondary attributes". (The first four attributes
are provided by POOMAS.) Objects which are not members of any
list contain a special code, NONE, as their successor and predecessor
attributes.

All of the above attributes of an object, except the secondary
attributes, are represented in three "system words'" preceding the
first "user word'" of the object. Objects are addressed by their
first user word, called "word 0". The system words are also
called "word -1", "word -2" and "word -3". The standard object
format is shown in the next figure.




Illustration

DAME Object Format

<pred>

<class~>

<subclass?>

|
|

word !
(<size>-3)l

|
|

<pred> : pointer to predecessor
<succ?> : pointer to successor

<SALP> : secondary attribute list

pointer

System words

User words
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The "class" attribute {s used mostly bv POOMAS (e.g. to
ildentifv list heads, objects representing process pointers and
event notices on the simulation event calendar). DAME also
uses the class attribute to indicate what is usually called
"data tvpes" In programming languages, namely whether some data
is normallvy to be treated as a character constant, character
variable, numeric constant, numeric variable, etc.

In addition to the class attribute, DAME objects have a
'subclass" attribute. The subclass attribute designates the
general function of an object, e.g. DAME instruction subclass,

hook subclass, node subclass, input-set subclass, output-set
subclass.

1

The "secondary attributes" are those attributes which mav
be defined for some objects but not necessaril, all. The secondaryv
attributes of an object are themselves represented as objects
and are put on that object's Secondary Attribute List (SAL).
The SAL also serves as a convenient place for the user to save
arbitrary information which is to be associated with an object
but which can not bhe a part of its contents. For example, suppose
a user would like to record the contents of some core locations
whenever a certain node is entered. He can do that by creating
an object of a particular subclass every time the node is entered,
copving the contents of the locations he is interested in into
the object and putting it on the node-object's SAL. He can later
retrieve that information by a special DAMF-supplied function by
giving the subclass of the secondary-attribute-object.

Subclass Master Lists

In order to provide access to objects via their subclass
(i.e. their general function) there is a master list for each
subclass, which contains a pointer to every object of that sub-
class. Thus, for example, it is possible to search the set of
all node-objects or hook-objects for one satisfying a particular
condition, or to delete all the DAMF routines defined so far etc.
In particular, there is a subclass called "subclass-master sub-
class", which contains all these subclass master lists. Most
of the objects existing at any given point in time, can be accessed,
without knowing their name or address, through these master lists.

Symbol Tables

In addition to the subclass masters, there is a conventional
symbol table maintained by DAME, which permits access to the
objects by their names. The Symbol Table is also organized as a
list and can be searched by the usual list processing functions.
Since the user can refer to global PDP-10 svmbols, the DDT symbol
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table is also present during execution. (A 1list of some useful
symbols is given in the User Manual in Appendix A). In trans-
lating a DAME instruction, if a name can not be found in the DAME
symbol table, then the DDT symbol table is searched. (These
symbol tables are not to be confused with that used by the PDP-11
assembler for PDP-11 symbols. The latter is not saved by the
assembler after assembly and is not available to DAME.)

3.2 The Representation of One Main Memory Inside Another

In the next sub-section, 3.2.1, a discussion of the general
problem of representing one main memory inside another is presen-
ted. Readers interested only in the approach taken in DAME,

may skip to the following sub-section, 3.2.2, without loss of
continuity.

3.2.1 The General Problem

One of the basic representational issues in simulating one
computer inside another is the representation of the main memory
of the simulated machine (called the Object Machine or OM) in the
simulating machine (called the Host Machine or liM). The importance
of this issue arises from the fact that it may have a big impact
on the storage requirements as well as the running speed of the
simulation. (In this discussion, I shall limit myself to word-
orifented machines, i.e. those in which the greatest bulk of
memory accesses address words, as opposed to bits, bytes or
variable-length blocks.) Two major components of this issue are:
(1) The relative word lengths, (ii) The relative sizes of
directly addressible memory in the two machine.

Let us denote by W and W the words lengths, and by M and
0 H 0

M the sizes in words of the object and host machine memories,

H

respectively. (To be more precise, M 1s the size of the portion

H
of the HM memory which mav be used to represent the OM memory.)
In the usual, and most comfortable, case W >W and M >M . This
H O H O

permits an explicit and direct representation of each word of the
OM in the HM. If W 22W , then the issue of packing more than one

H 0
OM word into one HM word com:s up. Clearly, if M 1is much smaller
0
than M , and main memory cost is not a problem, or, alternately,

H

if the HM has no, or very inefficient, instructions for extracting
a field out of an HM word which could represent one OM word, then
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the odas are heavily weighted in favor of mapping one OM word

to one KM word. It must also be noted that the increased size

of storage required to represent the OM memory can also degrade
the running speed of the simulation in a time~-sharing environment
by increasing the page-fault rate or by causing delays in being
swapped in by the operating svstem.

:
t If M <M , one can use a "paged" simulated memorv technique,
H' 0
i by dividing the OM memory into pages and reading and writing
’ pages as required from a "paging disk" or drum. All the techniques
E which have been brought to bear to improve the performance of
[ paged systems then become applicable to such a system. If it
E turns out that the "working-set" of the program under analysis
2

is smaller than M , then the performance of this system approaches
H
that of one where M <M ,

0O H

If W <W , then more than one word of WM are needed to represent
H O
one word of OM. In this case, the layout of the OM work must be
designed to minimize the overhead of decoding OM instruction operands,
and any '"tag" bits used by the Hook Mechanism as discussed in
Section 3.4 and Chapter 5,

3.2.2 The Representation of the PDP-11 in the PDP-10

In the case of representing the 16-bit 28K PDP-11 in the
36-bit PDP-10 with up to 192K core, initially two -11 words were
packed into one -10 word. However, this approach was later 4aban-
doned in favor using one -10 word per -11 word and utilizing 18
of the remaining bits in the word to address a list of DAMF objects
associated with that -11 location. This list, called the Associa-
tion List (AL) of twna 1location, contains, for example, the hook-
objects associated wi:h that location, if any. It is also acces-
sible by the user and may be used to save arbitrary information.
However, normally only a small fraction of core locations have a
non-empty AL. Therefore, this design decision may be considered
wasteful of core. Nonetheless, as will be seen later, in heavily
monitored programs, these lists permit much faster access to the
monitoring actions associated with a particular location. Thus,
in DAME, the low-order 16 bitsof the -10 word are used to represent
-11 words, the high-order 18 bits point to the AL, and the remaining
two bits are used in the maintenance of input/output sets (Section SIS

Only the existing device registers in the peripheral bank
are defined; attempts to access undefined locations will result
in a "time-out error" on the Unibus and an error trap will occur.




All error conditions are handled just as they are specified
in the PDP-11/20 Processor Handbook. The only supported 1/0

device at present is the TTY. (Recently, 6 relocation registers
were added to handle C.mmp programs [WU 721.)

3.3 The Time-Grain of Simulation

This issue has at least as strong an impact on the running
speed of the simulation as the representation of the OM memory.
The factor which has the major influence on the selection of the
time-grain is, clearly, the degree of precision with which one
wants to simulate the operation of the hardware. It has already
been indicated in Chapter 2 that this should be, at least, at
the level of individual instructions. Thus, for example, one
wouid be guaranteed that after each instruction, the state of
the memory and the value of the simulation clock would be correct
(within the tolerances given in the hardware specifications on
which the simulator is based).

The next lower level in the grain of simulation is the "fetch
instruction-fetch operands-execute" level, which 1 shall call
"memory c¢vecle level", This level involves, on the average, about
J to 5 times as many events as the instruction level. TIf the
OM permits intra-instruction interrupts, e.,g. after each memory
cvycle, and if one wants to reflect the timing of these interrupts
precisely, then, clearly, one has to design the simulation at
this level.

Due to the existen:e of the so-called "non-processor request'
(NPR) interrupts on the PDP-11, although at present no device
which can generate NPR interrupts is supported, the simulation
has been designed at the memory cycle level. This design decision
was also influenced by a desire to permit studies at the processor-
Unibus level. The overhead introduced by simulating at this
level, as opposed to instruction level, is studied in Chapter 5.

3.4 The Hook Mechanism

The principal mechanism by which the user causes DAME to take
some action while his program is running, is the Hook Mechanism.
A hook is an object having two user words; the first contains
a hook type, and the second a pointer to the list of DAME acticons
to be taken when the hook is triggered. Hooks may be created,
deleted, enabled or disabled dynamically by the HOOK command
explained in section 3.6.

There are two categories of hooks: general hooks and addressed
hooks. Within each category, there are several types. General
hooks are those in which a user-specified DAME action will be taken,




depending on its type, at one of the following points:
l1- After every fetch operation (type GF) or,

Before every store operation (type GS) or,

3- After every instructior fetch operation (type IF) or,
b- After every instruction completion (type IC) or,

5- After every operand fetch (type OF) or,

6- After every node entry (type NE) or,

7- After every node exit (type NX).

Addressed hooks dif:er from general hooks only in that
they are applicable only when the specified operation (e.g.
fetch, store) is performed on an address in a specified range.
The types of addressed hooks are:

8- After every fetch from an address in a given range
(type AF) or,

9- Before every store into an address in a given range
(tvpe A8) ot,

10- After every instruction fetched from a given address
range (tvpe AIF) or,

11- The completion of every instruction fetched from an
address range (type AIC).

To insert a hook, the user issues a HOOK command specifying
the hook tvpe, the action to be taken, and if an addressed hook,
the address range to which the hook is to be applicable. He can use

as many of any tvpe of hook as he desires. Any DAME instruction
can be used in these routines.

The types of hooks available in the DAME system, combined
with the PROBE command which permits the activation of a DAME
routine at a specific time on the simulation clock, satisfy the

requirements listed in sub-section 2.5.2, "Triggering of Analysis
Actions".

Some Information Made Available bv the Simulator

Whenever a honok is activated, the PDP-11 simulator makes
available to the user certain information about the state of the




PDP-11 CPU, by storing this information into global PDP-10
symbols. This includes: (i) The address anc data associated
with the machize cycle which activated the hook, (ii) The
operand registers and modes of the current instruction, (iii)
Contents of the DATA, ADDR and CONT lines of the Unibus, (iv)
The simulation clock, (v) The addresses of the current node
object, input set and output set.

The data structures described in Sections 3.1, 3.2 and the
above data elements, together with the Execute External (XX)
and Evaluate (EVAL) instructions for calling BLISS-10 routines
described in Section 3.6.1, satisfy the list of requirements in
Section 2.5.1, "Information Requirements of the Analysis System".

3.5 The Node Mechanism

A second major mechanism by which the user causes DAME to
collect information about the behaviour of his program, is the
so-called "Node Mechanism'". The Node Mechanism provides a means
by which the user can breakdown all or a part of a program into
hlocks (called '"nodes'"), such that each execution of a node (called
a '"'node instance") can be considered as a unit in recording the
history of execution of that program. Recalling our requirements
about determining data flow among node instances and that any
part of the execution must be reconstructible from the recorded
execution history, it is clear that we can use the node concept
to effect that reconstruction by recreating each instance of

each node. To recreate a particular instance X of a node X, we -
{ y
need to know all the inputs into X . Hence, for this purpose it
i
suffices to record each address from which X read something
i

before modifying its contents, and the value read. Let us denote
the set of such (address, value) pairs associated with a node
instance the "input~set" of that instanca. It is easy to see

how one can back up arbitrarily fai in execution history by
restoring the input sets of node instances in reverse chronological
order starting with the current node instance. (Note: to

simplify references to node instances when the identify of the

node itself is not needed, I shall refer to a node instance by

its "index" in a particular execution, so that node instance n

will refer to the nth node instaance since the start of the execu-
tion.) We must note here that restoring the input sets of node
instances k-p, (k-p)+1,...,k, where k is the current node instance,
does not mean that we are restoring the entire machine state

which existed when node instance k-p was entered; we are only
restoring that part of the machine state which will guarantee an
identical replication of the instances k-p through k Recalling
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another functional requirement that we must be able to reconstruct
every past machine state, we realize that we must also record

the effect of each node instance on the machine state. Such

an effect can be represented as a set of (address, old value,

new value) triples containing every address where the node instance
wrote something (even if the old and new contents are the same)

and the contents of that address upon entry and exit from the

node instance. Let us call such a set the "output set'" of that
node instance,

We also note that reconstructing the complete state which
existed when node instance k-p was enteied, also provides the
ability to replicate the execution of the node instances k-p
through k, i.e. we do not need the input sets for the purpose
of backtracking; the output sets are sufficient. We still do
need them however in answering questions about data flow.

One fiunal observation I wish to make is that if an address
appears both in the input and the output sets of the same node
instance, then its value in the input set and its "old value" in
the output set are equal. This means that whenever the two sets
contain the same addresses, the first two elements of the triple
in the output set (or equivalently, the pair in the input set)
are redundant. An empirical study nf some input and output sets
shows that this redundancy is almost complete, i.e. with very
few exceptions, every address which appears in an output set also
appears in the corresponding input set. This means that when we
restore the input sets of the last n instances in reverse chrono-
logical order, we almost always restore the complete machine state
which existed just before the n-instance sequence; however we
always restore a sufficient part of the machine state to guarantee
an identical replication of the execution if a backtrack 1is
requested. (Important note: Here we are neglecting the effects
of peripheral devices, such as the setting of status or data
registers. These effects constitute communication between two
independent processors, i.e. the I/0 device and the CPU. DAME
does not offer facilities for backtracking over periods in which
such communication between two processors occurred. However,
such a facility may be programmed by the user and inserted as
addressed hooks in such device registers.)

So far, we have not specified whether nodes can be overlapped
or nested. In the DAME system, if input/output sets are not
being used, nodes may be nested or overlapped, provided they do
not overlap at entry and exit points. If input/output sets are
being used, overlapped nodes are permitted, provided they do not
overlap at entry or exit points. In particular, for example, a
subroutine which is called from two different nodes constitutes
a part of each node instance in which it is called. If nodes are
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Tilustration 3.2

Node-object Format

<pred> <succ>
<class> <size> system words
.
NODESUBCLASS 0 )
\
<start addr> <ending addr>
<icount> <inst. count> ? user words
<ISLP> <0SLP>

<start addr> startineg address of node in -11 storage

<ending addr> ending address of node in -11 storapge

<icount> = no. of instructions executed in the last
instance of node

<inst. count> no. of instances of node
<ISLP> = 1input-set list pointer

<OSLP> = output-set list pointer
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nested, input/output sets become much more expensive to build.
In the case of un-nested nodes, each address is tagged with a
single bit when it is first generated, and in subsequent uses

of the same address in the same node instance, that bit prevents
it from being entered again in the input or output list; i.e.

a search of the inpnt/output set for each generated address is
not required to avoid repetition in the input/output sets. With
nested nodes however, the single-bit mechanism does not suffice.
One needs either a "bit stack" for each address or one has to
search the input/output sets of each nested instanc. for each
generated address; both are very expensive to implement. Hence,
this particular question may be regarded as an "unsolved problem".
In the current implementation, DAME does not permit the use of
1/0 sets if nodes are nested.

This limitation is analogous to not having a block-structured
programming language. While the availability of local variables
and dynamic storage allocation with arbitrarily short scopes in
a langnage like ALGOL or BLISS is very desirable in many instances,
the same algorithms can be programmed in FORTRAN or APL, which
do not have block structure, in very similar ways. Similarly,
the unavailability of nested I/0 sets did not handicap me
significantly in the analysis problems I attacked. 1 was able
to get around the problem by planning my approach in terms of
one-level nodes, just as one does in FORTRAN and APL.

3.6 An Outline of DAME Instruction Set

In this section, I shall outline the DAME instruction set
and discuss in more detail the instructions particularly useful
for monitoring and analyzing of the execution of the PDP-11.
Where syntactic descriptions are needed, a BNF-like notation will
be used, with "/" denoting disjunction, "<" and ">" delimiting
non-terminal symbols and, "[" and "]" delimiting optional operands.
The description is intended to be easily understandable and,
where there is a conflict between that objective and conciseness
and/or terseness, I shall emphasize intelligibility. For those
who wish a more detailed description, a document called "Introduc-
tion to DAME', which also serves as a User Manual, is included
in the Appendix.

DAME instructions can be executed immediately or given a
name and saved for deferred execution. The latter are referred
to as DAME routines. They can be defined on-line or retrieved
from a text file by special-purpose DAME instructions.

The syntax of a DAME instruction is:

<DAME instruction> » <Type-1 instruction> / <Type-2 instruction>

e s s ks il
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-Type-1 instruction- » <operator>(<operand list:)
Type-2 instruction» + <cperator>(<operand list> -action-)
~operand list> - -operand /<operand list> <operand-
coperand- + <octal integer>/

~short char. string>/

<global =10 symbol>/

<object name-
<action> +» <DAME routine name> / <compound instruction-
short char. string> » -up to 5 characters
<compound instruction-> » (<DAME instruction list>)
“DAME instruction list- » <DAME instruction: /

<DAME instruction list- <DAME instruction=>

As can be seen, some DAME instructions take simple operand
lists while others (in particular, IF, INCP, WHI, HOOK and ALONG
instructions) can optionally take the name of a DAME routine or
a compound-instruction (the analogue of a compound statement cr
compound expression in block-oriented languages) to be execuiled,
as the last operand. All operands of a DAMF instruction must
be defined prior to the execution of that instruction. Objects,
which are not pre-defined by the system, are defined by the
Create (CR) instruction (except for DAME routines, hooks and
value-trace objects, as described later.) The form @ octal integer
refers to the contents of -11 core location <octal integer> at
the time the DAME instruction containing the form is executed.

3.6.1 General Purpose Computation Instructions

DAME provides a complement of instructions corresponding to
the usual constructs used in programming, to wit: assignment,
arithmetic and logical operations, looping and conditional execution,
subroutine calling and I/0. 1 give an undetailed list of these
instructions here in order to convey their basic functions and
appearance. A detailed description of their effects is given in
Appendix A.

Create object:

CR('<obj.name> [<class> <subclass> <size> 1)
(e.g. CR('A))

Delete object:
DEL(<obj.id>)
(e.g. DEL(A))

Insert in object:
10BJ(-target> <word no.> -value>)
(e.g. I0BJ(A O 2))

Insert indirect in object:
I1I0BJ(<target> -obj.id- <word no.>)
(e.g. TIOBJ(A B 0))
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Insert in PDP-11 address:
I I(<address> <value>)
] (e.g. 1(10000 54))

! If-then-else:

IF(-~opdl> '<rel> <opd2> <then-action: [<else-action> )
(e.g. IF(A '"GT B (IOBJ(A O B)) (TOBJ(B O A))))

While-do:
WHL(<opd> <action>)

Incr-from-to-by-do:
INCR(<var> <from-opd> <to-opd> <step-opd> <action-) ]
(e.g. INCR(A 10000 10040 2 (I(A 0))))

Execute DAME routine:
EX(<routine>)

(e.g. EX(ROUT1) execute routine ROUT1)

Push parameter:
PUSH (<value>)
(e.g. PUSH(A) push contents of A)

Pop parameter:
POP(<obj.id>)
(e.g. POP(B) pop into B)

Return K levels:
RET(<level count>)
(e.g. RET(N) exit N levels c¢f nesting)

Type out object:
TOBJ(<obj.id>)
(e.g. TOBJ(A) type object A)

Tvpe object indirect:
TIOBJ(<obj.id>)
(e.g. TIOBJ(A) type object pointed by A)

Type PDP-10 symbol:
TY10(<global variable id>) ‘
(e.g. TY1O0(PC) type contents of program counter) i

Type contents of PDP-11 addresses: 1
T(<starting address>[<ending address>])
(e.g. T(10000 A))
:
!

Type immediate:
TI(<literal>)

(e.g. TI('ABC) type the char.string "ABC'") |
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Write disk:
WDSK(<obj.id>)
(e.g. WDSK(A) write the contents of A
in file USER.DAM)

Write disk indirect:

WIDSK(<obj.id>)

(e.g. WIDSK(MNODESC) write the contents of all
! node-objects in file USER.DAM.
Recall that MNODESC contains

a pointer to the node-subclass
master list)

Read disk:
RDSK (<obj.id>)
(e.g. RDSK(A) read a word into object A

from file USER.DAME., Read

and write operations on the
same file can not be intermixed
without closing the file.)

Generalized unary operation with assignment:
UA('<unary op.> <target> <opd>)
“unary op.> + SUC/PRED/SAL/SIZE/ADDR/NOT
(e.g. UA('SUC A B) put in A the address of the
successor of B)

Generalized binary operation with assignment:
BA('<binary op.> <target> <opdl> <opd2>)
<binary op.> » +/-/*/<slash>/AND/OR/XOR/'
where <slash> denotes the division operator "/"
(e.g. BA('+ A A B) add B to A)

Execute external routine:
XX(<PDP-10 routine id> [<param.list>])
(e.g. XX(TYPLIS 10000) execute TYPLIS(10000))

Execute external routine and assign returned value:
EVAL(<target> <PDP-10 routine id> [<param.list>])
(e.g. EVAL(A TYPLIS 10000) A « TYPLIS(10000))

Get the value of simulation time and assign:
TIME(“target> '<scale> '<type>)
<scale> » MICS/MILS
<tvpe> » FIX/FLOAT
(e.g. TIME(A'MICS 'FIX) Insert in A the simulation
time in microseconds, as an
integer)
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Plot character:
PLOT(<position> '<char>)
(e.g. PLOT(5 'X) type char. "¥" in column 5)

The DAME language was designed to provide a simple syntax
in order to minimize syntax errors in the analysis process and
to facilitate its translation. It was also intended to be a
"low-level" language into which a higher level analysis language,
such as the one discussed later in Chapter 6, could be compiled.

While 1 shall leave the undefined non-terminal symbols and
most of the semantics of the above instructions unelaborated,
a few explanations are in order. Wherever a numeric argument 1is
expected, if a name is supplied, its contents are taken. The
non-terminal -target> denotes the name or address of an object
into which the assignment is to be make. The syntax of the gene-
ralized unary and binary operations with assignment is admittedly
very awkward, but {t permitted me to save some code in interpreting
the cperands for each operation.

In addition to these instructions, since the fundamental
data structures used by DAME are lists, there is a set of list
manipulation facilities. Some of these are provided by POOMAS
and are accessible via the .X and EVAL instructions listed above.
These are routines for creating, deleting and maintaining lists.
DAME provides facilities for taking the union, intersection and
set difference of two lists and assigning the result to a third
list, in a syntax similar to the preceding instructions. It
also offers a unique "Search List" instruction whose syntax is:

SLIST(<target> <list id> <search spec.>)
<search spec> -+ <action>

which works as follows: DAML pushes the address of the first
element of the list <list id> on the "data stack". (The Push
and Pop instructions listed above operate on this stack. There
is a second stack, called the "monitor stack'", used for DAME
routine calls.) Control is then passed to the DAME instructicns
specified in <search spec.-. In the <search spec.>, the user
must obtain the stacked address with a POP instruction. He can
then perform arbitrary computations, preferably without further
manipulating the stack. If he wishes to end the search, he
PUSHes a 1 by DAME, in which case the stack will be popped by
DAME, the address of the current element in the list will be
stored in “target® and the instruction execution términated. If
the user wishes to continue the search, he can PUSH a 0. In
this case, after the stack is popped, if the end of the list is
reached, DAME will insert a 36-bit -1 in <target - and terminate
the instruction. Otherwise, the address of the next element of
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the list will be PUSHed and the cycle will be repeated. For
example, the instruction

SLIST(A LISTA (POP(B)
II0BJ(C B 3)
IF(C 'GL 5
(PUSH(1)) (PUSH (0)))))

would search LISTA for an element whose fourth user word contains

5. If such an element is found, its address is returned in
object A; otherwise A will contain a -1.

3.6.2 Execution Monitoring and Analysis Instructions

In this section, the subset of the DAME instruction repertoire
which perform the functions essential to providing the wide
range of facilities desirable in a general purpose execution
analysis facility is described. The style of the exposition is
again narrative and informal to give a good intuitive understanding
of the primitive operations and data structures involved. Starting
with the instructions for inserting hooks, defining nodes and
creating input/output sets, I shall describe instructions for
searching input/output sets, restoring node instances, "instant
replays", monitoring specific paths of control flow, automatically
collecting the last k values of a location and addressing them
via an operation similar to indexing, as well as the instructions

for typing out node objects and node instances which have been
mentioned before.

The Hook Mechanism, described earlier, is used to insert
hooks to perform the user-specified actions at user-specified
times. Instructions for manipulating hooks are:

HOOK(<hook-type><action> [<address range>] <hook name>)
(e.g. HOOK('IC (TOBJ(A)) 'HIC) Tvpe the contents of A
after every instruction)

DEL(<hook name>)
DISAB(<hook name>)
ENAB(<hook name>)

(e.g. DEL(KIC), DISAB(HIC), ENAB(HIC))

(Note: Brackets [, ] indicate optional operands.)

These will insert, delete, disable or enable, respectively,

a hook named <hook name>. The <address range> 1is onlv required
for addressed hooks.
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Creation of Nodes and Input/Output Sets

The Node Mechanism, also described earlier, can be evoked
in one of two ways: via the NODF instruction or via the NTR
instructéiom. The syntax for the former is:

NODE(-address range>-node name -)
(e.g. NODE(20000 20100 "NODLA))

The execution of this instruction will cause a node-object
of name <node name- to be created. The format of the user-words
of a node-object is given in the following figure. Each node-
object contains, among other data, a pointer to each of two listy
its Input-set list (ISL) and its output-set list (0OSL). If the
node has not been executed as vet, these lists are empty. An Input
(or output) set consists of a list of ten-word objects. An
(address, value) pair is inserted Into each word, starting with
the first word of the first object. When and if ft4e first object
is full, a second cbject is created, and so on. The list head
contains one user word which contains the index of the first
empty word in the last object. All unused words contain zeros.
The high order bit of each word contains a 1 if onlv a byte was
accessed, 0 otherwise. (The only varf{fation to this rule is in
the cas2 of the Processor Status word PS. Since the FS is esse: -
tially bit-addressable, an indication of which bits were read or
modified is needed. To do this, we can take advantage of the fact
that only the lower 8 bits of the PS are usable by the user. When
the PS appears in an input/output set, a bit mask in the upper
byte of the "contents" part indicates which bits were accessed.
Hocwever, this ‘eature is not implemented and the PS is treated
like any other address.) The PS and all the general and device
registers are represented by their console addresses. The format
of ISL's and 0SL's is given in Figure 3.3.

To provide for more flexibility in the use of I/0 sets,
separate instructions to initialize and build I/0 sets have been
provided. Since the building of these setd adds quite a bit of
'verhead to the execution, I have found it useful to prepare a
standard DAME routine in a text file which I can evoke onlv when
I wish to construect 1/0 sets. The instructions provided for
this purpose are I1S(), BIS() and 0IS() to initialize, build and
close input sets, I0S(), BOS() and COS() to perform the same
functions for output sets. (The parenthesis pairs indicate empty
parameter lists and are required by the syntax of the lanpuage.)

For example, the following hook causes the initialization
of a new input-set at each node entry.

HOOK('NE (I1S()) 'HNE)




Illustration 3.3

INPUT-SET LIST (ISL)
for a Node

ISL ptr IS ptr from
from node-obj. Node-trace table

IS for
instance
of node

IS for
;;: list head 2. instance

(s pointer-object N

address
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Illustration 3.4

NODETRACE Table Record

for a Node Instance

start of <start addr.> <flags>
record
+1 <instr. count at entry>
+2 <input-set ptr> <putput-set ptr>

+3 <no. of instructions in node inst.>
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Here HNE is the name

of the hook object and can be used
to disable or enable the

hook later, e.g. by the instruction

DISAB(HNE) or,
ENAB(HNE) .

The definition of nodes can be defaulted by using the Node
Trace, NTR(), instruction. 1In this case, nodes are defined by
DAME by monitoring the control flow. When it varies from sequen-
tial flow for any reason or when an unsuccessful conditional
branch is executed, the current node instance is terminated and
@ new node instance is entered. If the new instance is the first
one for that address, a new node object is created. Thus, in
the default mode, nodes most often terminate with a branch or
subroutine call instruction. 1/0 sets are constructed in the
$ame manner as when the NODE instruction is used.

Searching of Executed Nodes and Input/Output Sets

Given the formats of the node-objects, the I/0 sets and

the user can extract

bv using the language
facilities, in particular the list-processing operations. However
to facilitate most common types of analyses, a set of instructions
intended specifically for searching these data structures is
provided. These instructions are: Find Input Set (FISET), Find
Output Set (FOSET), Find Node Object (FNO), Find Node Instance
(FNI), Find Value (FVAL), Find Value Indirect (FIVAL), Playback
Values (PLAYB), Restore Node Instance (REST), Peplay Node Instance
(RPLAY), Type Node Instances (TNI) and Type Node Objects (TNO).

I shall now describe each of these instructions in detail,

The Find Input Set (FISET) instruction attempts to find an
input set satisfying some user-specified conditions. The speci-
fiable conditions are the identification of the node whose input
Sets are to be searched, the starting point and the time direction
¢cf the search (i.e. forward or backward in execution history),
and a predicate which should be applied to each input set. The
language for specifying the predicate was of some concern, since
the predicate could be arbitrarily complex and it was undesirable
to design a whole new language for this purpose. The technique
finally adopted was that described under the Search List (SLST)
instruction, i.e. to let the system help the user find each input
and access the valuye contained in it, and to let the user perform
arbitrary computations on them, and then tell the system whether
he wants to continue or stop the search, using the facilities
already implemented in the system. I shall now desreibe this
procedure. The syntax of the Find Input Set instruction 1S %

FISET(“object id> <node spec.> <search spec.:>
[<direction> [<starting index>]])




Let us ignore all the operands except <search spec.> for
the time being. <search spec.> must be a DAME routine name
or an explicit instruction sequence (similar to a 'compound
statement" or "compound expression" in some programming languages).
Before the <search spec.> is entered, the system locates and
internally PUSHes the address of the next input set to be searched
(PUSH and POP were described in the preceding section). The
user must obtain this address by a POP(A) instruction, where
A 1s some object name, which puts the address of the input set
to be searched in object A. Then the contents of address K in
that input set can be extracted and saved in some object B, by
the Find Value instruction, as FIVAL(B K A). The user can, in
this vanner, obtain the contents of any address in the input set
pointed by A, and perform calculations on them using the language
facilities. If he is finished with the search (e.g., he has
found the input set he is looking for), he PUSHes a 1; otherwise
he PUSHes a 0. After the last instruction in <search spec.> has
been executed, the system will POP the stack. If the value {is
0, then if the end of the node trace has been reached, it will
insert a -1 in <object 1d> and will terminate the FISET instruction.
If the value is 0 and the end of the node trace has not been
reached, it will push the address of the next input set to be
searched, proceeding in the direction specified by <direction>
and re-apply <search spec.>. If the popped value is a 1, the
index of the node instance just searched will be inserted in
<object id> and the instruction will be terminated. Thus, after
the FISET instruetion, <object id> will contain either -1, which
indicates that no input set satisfying the specifications was
found, or it will contain the address of the first acceptable set.

To illustrate the use of this instruction, suppose at some
point in the execution we wish to find the most recent input set
where the contents of location 1000 equal the contents of location
2000, and put the address of that input set into some object D.

To do this we shall need three more objects (in fact, we could
ret by with one by using the same object for various purposes
but we shall not do so here). The following instructions create
these objects and perform the required search:

CR('A) CR('B) CR('C) CR('D)
FISET(D '* (POP(A)
FIVAL(B 1000 A)
FIVAL(C 2000 A)
IF (B 'EQ C (PUSH(1)) (PUSH(0)))
))

The symbol '* for <node spec.> indicates that all nodes are
to be searched. The syntax of the IF instruction is:

IF(<obj.id> <relation> <obj. id> <then-case>[<else-case>])
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The Find Output Set (FOSET) instruction works exactly in

the same way as FISET, except that output sets are searched.

The Find Node Object instruction, whose syntax is FNO(<obj. id
<-11 address>), inserts in <obj. id> the address of the node

object associated with <-11 address> if such an object exists.
Otherwise a -1 is inserted.

Find Node Instance, FNI(<obj. id> <node id> -n> [<starting
index> [<direction>]]), wiil similarly insert in <obj. id- the
index of the nth instance of <node id> searching the node trace
in the <direction> specified starting from <starting index-.
The default values for the two optional operands are: '"the
current node instance" and "backward", respectively.

Find Value and Find Value Indirect are used to extract the
value associated with an address in an input or output set where
the I/0 set address is given in the instruction, and where the

1/0 set is pointed by the object given in the instruction, respec-
tively.

The Restore to Node Instance, REST(N), instruction moves
backward in execution time, restoring the input cets of node
instances until index N 1is reached; e.g., if the current node

instance is the Kth node instance executed, REST(N) would restore
the last (K-N+1) input sets.

The Replay Node Instances instruction RPLAY(<starting index-~
[<ending index>]), will cause the restoration of the input scts
of the node instances between the specified indices. The simulation
time is also restored. The instances whose input sets have been
restored are then re-executed. Upon termination of the last

instance the environment in which the RPLAY instruction was issued
is re-established.

The Type Node Instances instruction TNI([<starting index> !
<count>) types the node trace entries for abs(<count>) instances,
starting at <starting index, and moving forward in time, if
<count> is positive or backward if <count- is negative, where
abs(x) denotes the absolute value of x.

The Type Node Objects instruction, TNO(-addressl> <address? X B0t )
types out the node objects associated with the specified addresses.

Detecting Specific Paths of Execution

I would now like to describe the instruction ALONG, whose
syntax is:
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ALONG(<path> <action>)
<path> -+ <node id> / <path> <node id>
<action> - <DAME routine name> / (<instruction sequence>)

Suppose we have defined nodes N1, N2, ..., N7. Then, the
instruction

ALONG(N1 N5 N7 X)

would cause the action X to be taken if the current node is N1,
or if the last two nodes have been N1 and N5, or if the last
three nodes have been N1, N5 and N7, in that order. In short,
the specified <action> is taken whenever the flow of countrol
could be following the specified path. The ALONG instruction
is, as are all DAME instructions, executable through every type
of hook. Hence it provides a convenient facility for taking

selective action (e.g., tracing) as a function of the locus of
control flow.

Collecting and Accessing Precious Values of a Location

Finally, a mechanism for automatic collection of the previous
values of a location and for accessing those values is worth
mentioning. The first action is accomplished througl the use
of two instructions. The first is the Initialize Value Trace,
IVT(<-11 address> <n> <obj. name>), which creates an object named
<obj. name> of a special subclass and large enough to hold <n>
previous values of location <-11 address>. The second instruction
is the Value Trace Hook, VTH(<-11 address>), instruction which
causes the monitoring of values stnored into the location <-11
address> and maintains the last <n> such values in a circular
buffer in object <obj. name> created by the IVT instruction. Then,
at any point in the execution, the Kth previous value of <-11
address> is obtainable by a binary operator #, as

BA('# B <-11 address> K).

The instruction BA(<opr> <target> <opdl> <opd2>) is the
generalized "Binary Operation with Assignment" instruction and
performs the operation: <target> « <opdl> <opr> <opd2> in infix
notation. Thus the above instruction would insert in <-11 address
the Kth previous value of <-11 address>. If K is larger than
the number of values declared to be kept in the IVT instruction,
an error message will be typed and no assignment will be made.

If K values have not yet been assigned to <-11 address>, then
a special code larger than 2*t16 will be stored in B.




3.7 Various Design Issues and Unimplemented Ideas

In this section, I shall discuss some design issues which

arose in the course of the development of DAME. Most of them
are related to improving the execution speed of the simulation
and decreasing the monitoring overhead. I shall also outline

some ideas which have not been implemented mainly because they

would not contribute significantly to the research aspects of
this project.

3.7.1 Representation of -11 Core and the Design of the
Hook Mechanism

Since the representation of the PDP-11 core and the Hook
Mechanism lie at the heart of the implementation plan, these

two points are worth re-pondering and alternative implementations
worth considering.

As was mentioned, an earlier implementation of the simulator
packed two -11 words into a -10 word, one into the low-order
16 bits of each of the lower and upper halves of each 36-bit
-10 word. In that implementation, the high-order two bits of
each -10 halfword were used to indicate the presence or absence
of monitoring actions associated with the fetch or store of each
data word (e.g. a word fetched or stored by an instruction) or,
with the fetch or completicn of an instruction. The monitor
actions themselves were located via a table look-up on the parti-
cular address involved. A seperate table was used for each of
data fetch, store, instruction fetch and instruction completion
operations. This design makes possible a substantial saving in
the core requirement, approximately ((28K/2)-n), where n is the
number of locations for which a hook exists. The essential price
paid for this storage saving is the overhead of the table look-up
procedure. Assuming that approximately 1% of the locations are
hooked and a binary search is used, about 8 comparisons are
needed to locate the monitor action pointer associated with a
particular address. Further assuming that one address involved
in every instruction has some monitor action associated with it,
this overhead is roughly equivalent to twice the overhead of
decoding the op-code of an -11 instruction. In addition to the
monitoring actions associated with particular addresses, there
are those due to the so-called "general hooks'", i.e. actions to
be taken at every fetch, or every store etc. Thus, there already
is substantial overhead du2 to monitoring. So, the decision to
map one -11 word into each -10 word and use the left half of the
-10 word for a pointer to associated monitor actions was intended
to avoid further degradation in the monitoring overhead, but
exactly how much is gained in response time in a time-sharing
environment is not clear since the larger core requirement delays
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the swapping-in by the operating system scheduler. When the

word lengths of the object machine and the host machine are

equal and one would like to use a one-to-one mapping, a scheme
proposed by Bernard Lang, [LA 72|, called "Lambda-monitoring",
can be used. In this scheme, since there are no additional

bits available to indicate the presence of associated monitor
actions, one inserts a special bit pattern (called "Lambda")

into the word when one wants to associate monitor actions with
it. Then, at every fetch or store, one compares the contents

of the address being accessed with the bit pattern Lambda. If
they are found equal, this is taken as a signal that there may

be some monitor acticn associated with that address. Then, tables
set up for this purpose are searched, just as in the earlier
schemes. If an entry for that address is found, the monitor
action indicated by the entry is perfcrmed. The table entry also
includes the actual contents of that location. If no entry for

that address is found, no action is taken and the execution is
permitted to continue.

This scheme is clearly very similar to the scheme used by
current debugging systems which insert a trap instruction into
any instruction address where the user wants to put a breakpoint.
The "Lambda-monitoring" scheme simply extends this technique to
apply to data elements as well as instructions.

In using such a scheme, clearly, "bupged" locations must te
write-protected from the user; 1i.e. the data tc be stored into
such a location must in fact be trapped and re-routed to a special
register holding the actual contents of that location. That
register is the same one whose contents are fetched upon a fetch
operation on the bugged location. The first requirement implies
that prior to every store operation, the current contents of the
store address must be fetched and compared with Lambda.

I shall have more to say about this technique in Chapter 8,
when I go into the implementation of monitoring features in
microprogram or hardware.

3.7.2 Scheduling with look-ahead

One of the main bottlenecks in the simulator is the event
scheduling process. As was mentioned, the time-grain of the
simulation is at the memory/register access level. The particular
simulation package which is us:d is a general-purpose simulaticn
package, in which an Event Notice is created for each event to
be scheduled showing the time of activation and the process to
be activated. After each event, the scheduler consults the event
calendar and activates the process indicated by the first event
notice having the earliest time of activation. 1In our case,
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since there are no simulated devices other than the TTY, there
are usually only two processes which receive and surrender
control : the CPU and the Unibus. Further, the two are never
active simultaneously in sinulated time. While this design is
a clean and consistent one, permitting the addition of new
devices to the Unibus in an easy way logically quite similar
to adding them to the real Unibus, and also permitting studies
on bus utilization, timing of signals between devices on *he
bus etc. to be done very naturally, it is also quite expensive
in terms of scheduling overhead due to the event notice preperation,
placement and searching of the simulation calendar.

A technique which can be employved to reduce this overhead
ls what may be termed a "lecok-ahead" technigue, in which the
CPU checks the simulation calendar before it releases control

to the scheduler. If it finds no events scheduled (e.g. an 1/0
device activity), rather than releasing cuntrol to the scheduler
which would activate the Unibus next, the CPU performs the core
access function itself, perhaps by calling a "routine" version
of the Unibus (as opposed to a coroutine version) which performs

an identical function as the coroutine version without the co-
routine jump statements.

Some measurements on the gain in simulation speed through
this technique is reported in Chapter 5.

3.7.3  "Blow-up" Representation of the Processor Status Word

Another technique by which the speed of the simulation may
be increased is reducing the amount of individual bit manipulation
in the handling of each PDP-11 instruction since this is a very
slow operation in the PDP~10 (at least, in our model). A good
candidate for this case is the modification of the Processor
Status word (PS), siace most instructions modifv one or more bits
in this word,. Further, each bit must be computed and set seperatelv.
Since the PS is affected by most instructions, this causes a good
bit of overhead. |

This problem can be alleviated to a certain extent by
reprecsenting each of the six fields of the PS by a seperate word.
However, caution must be taken that, in case the user program
explicitly addresses the PS, then the result of the read or write
operation is reflected properiy on the Unibus lines and the words
representing individual PS fields.
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3.7.4 "Compilaticn" of Decoded -:il Instructions

As it is designed, the simulator re-interpretes every
PDP-11 instruction every time it is executed. In particular,
the extraction of the op-code., the operand addressing modes,
the operand registers and the selection of the particular simulator
routine to be called, causes considerable loss of efficiency in
each re-interpretation of an instruction. What this suggests
is a "compilation" of each executed PDP-11 instruction into
PDP-10 code taflored specifically for that particular -11 instruc-
tion, in which all varfability has been eliminated. This would
provide for much more efficient execution of that -11 instruction
subsequentlyv, (The concept of processors which can execute both
compiled and interpretive code has been implemented in various
svstems, e.g. PDP-10 LISP. Also see J. Mitchell for a pood
discussion of this topic [MI 70..)

There are several problems which must be resolved however.
One is the fact that there will be considerable overhead associated
with the compilation itself: therefore, instructions which will
be executed fewer than some number, n, times should not be compiled,
where n is a function of the actual overhead of compilation versus

field interpretation. Fowever, in general, we do not know before-
nand the number of times each instruction will be executed. Hence,
it is difficult to tell which instruction to compile and which

not to compile., One heuristic rule which can be used is that

if an instruction is used a second time, it is probably a part

of a loop or a common subroutine etc. and hence its chances of
being used again are good. Therefore, a reasonable approach mav
be to compile an instruction the second time it is used. There
will clearly be some waste due to the compilation of instructions
which are executed exactly twice or even those which are executed,
say, three or four times. This parameter, namely, the number n,
can be examined more thoroughly after the compilation process

has been implemented; it may well turn out that this number
varies as a function of the instruction class, e.g. a simple
unconditional branch mav not be worth compiling at all, whereas

a double-operand instruction may be worth compiling after its
first execution.

It is clear however that the simulator has to be able to
execute both forms of PDP-11 instructions, i.e. the "uncompiled"
PDP-11 machine instruction and the "compiled" version, which in
the ultimate, is a sequence of PDP-10 machine instructions
associated with the particular -11 instruction location.

Another question whizh must be resolved in order to use
this technique is how to associate the -10 code with the appropriate
-11 instruction address. One solution mav be to insert the =10
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instructions associated with a particular -11 location into

an object and to use a table of size k, containing pointers to
these objects, where k is the size of -11 memory containing
instructions. The overhead required to locate the required -10
code must be minimized to make this technique worthwhile.

In the design of DAME, there is a particular feature, namelv
the Association List for each core location, which solves this
problem very naturally. One can insert the object containing
the -10 instructions for a particular -11 location as the first

element in the Association List of that location. If more gene-
rality is desired, one can introduce a new subclass, called "Ppr-1n
code subclass" and insert an object of that subclass anywhere

in the Association List. lowever, this will of course increase
the search time. The use of association liste for this purpose

also obviates the need for the large table required bv the first
technique.

Finallv, in this connection, we must note a problem with
self-modifying programs, namely that if a particular instruction
is modified during the course of execution, its old "compiled"
version must be deleted and a new decision has to be made as
to whether the new version should be compiled. I'm fact, if a

Particular instruction will be chanped frequently, it probably
should not be compiled.

3.7.5 Futther Compilation of DAME Instructions

Another area worth considering for improved efficiencvy is
that of further compilation of DAME instructions into =10 code.
This is particularly true for heavily monitored programs. At
present, DAME i1nstructions are only “"assembled", i.e. the DAME
op-code and symbolic operands are replaced with the -10 addresses
of the routine to execute that instruction and the addresses of
the operands, respectively. Such things as determining the number
of cperands and certain kinds of type and size checkine are done
at run-time, It is possible to dn a large part of this at ro-iine-
definition time since object size, class and subclasses are
declared when the object is created. This would not he possible,
however, for indirectlyv accessed objects.

3.7.6 A "Limited-Run Complete-Trace" Feature

As was described earlier, backtracking to a particular
instruction n is implemented bv restoring in reverse chronological
order, the input sets of node instances until the one including
the instruction n is restored, and then executing the instructions
preceding n in that node instance. Backtracking has been implemented
in a different wav by, at least, one more worker, Ralph Grishman,
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in the AIDS system at NYU Courant Institute of Mathematical
Sciences. The following description of the implementation of
this mechanism is taken from R. Stockton Gaines' thesis:

= The back-up mechanism mentioned above is original with
Grishman, and is sufficiently interesting to warrant a detailed
description of how it is accomplished. AIDS keeps four tables
for this purpose; let us call them R1, R2, S1 and S2. As AIDS
{s interpreting the user's program it goes through the following
process. At some point it saves the state of the machine registers
in Rl1, and after that each time the user's program stores a new
quantity into a location in memory, the previous quantity at the
location is saved in S1 together with the address which is being
changed. When S1 is full, the registers are stored in R2, and
execution continues with AIDS saving the previous values and
addresses to which stores are made in $2. When S2 is full, the
process starts over again with Rl and S1, and so on. When the
user {ssues a request to back up, AIDS fetches the most recent
item from S1 or S2 and puts it back where it was criginally. It
then puts back Lhe next most recent, and so on, until it has put
back the first quantity saved after the next to last time the
registers were saved. At this point it can restore the registers
to the values they had the next to last time they were saved,
and AIDS can reexecute the program from that point to the interrupt
at which the back-up was requested, since the program and its
storape are now in the same condition they were when the program
reached that point for the first time..."

While I believe that the node mechanism and the input/output
set concept of DAME have significant advantages over this method
in terms of storage requirement and the ease with which the
collected information may be used in data flow analysis, there
are times at which the user would like to see a complete trace
of certain portions of his progra-.. At present, this can be
done in DAME by attaching general hooks to fetch, store and
instruction completion events to type out the required information,
Alternatively, if the number of instructions to be thus traced
is small, each instruction can be declared a node, in which case
the node mechanism will construct the input and output sets for

each instruction. Nevertheless, it may be desirable to have a
"detailed trace" mode in which every memory and register access
is recorded in a "trace object" This would be useful, for example,

in directly answering questions like "What was the second value
assigned to X in node N?", or "What was the value of X at instruc-
tion I?", without the restoration of the required input sets etc.
However, such a facility would have to be used in a highly selective
and judicious manner since it would require a great deal of storage
and CPU time overhead.
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CHAPTER 4

ILLUSTRATIVE EXAMPLES OF SOME APPLICATIONS OF DAMFE

In this chapter, I shall illustrate the m
DAME through a set of examples of its application. A modest
familiarity with the architechture of the PDP-11 will be helpful,

and assumed, in the ecamples. Assembly language notation will
be explained as necessary.

ain features of

Five examples are given. The first one demonstrates the
nodes and the Input and output sets of a program, as well as
the mechanics of loading a PDP-11 Program, inserting hooks,
initialization of ~-11 core and the initiation of execution. The
second example demonstrates the construction of a node transition
matrix M, whose element M(i,j) is the number of transitions from
node i to node j since the beginning of the execution. In the
third example, the lower bound for the elapsed time (in terms of
éxecuted Instructions) required to execute a recursive progran
Biven an unbounded number of identical processors, is calculated:
in fact, the structure of the execution tree is determined and
displaved. The fourth example demonstrates the construction of
a set X (N,M), each element of which is a triple (a ,a y8 ) where

i

] 2 i
a 1s an address which is in the intersection of the input set
1

of the ith instance of node N and the output set of the preceding

instance of node M. If node M has not been executed between the

(i-1)th and ith instances of N, then X 1is empty. a 1{s the value

i 2

read from location a by N and a 1is the value of a at the exit
1 i 3 1

from the preceding instance of M

These four examples are intended to provide illustrations
of dynamic analvses of control flow, data flow and performance,
which are the main tvpes of analyses for which a system like DAME
Is suitable. The
the various analvsis techniques. For the purpose of simplicity
In exposition, the chosen program {s a small one -- 3 one-page
"quicksort" routine. Its code is given and explained in Example 1.
The fifth example is not one for which LCAME is particulerly
suitable, but is included here to show that even in cases which
would "strain" a simulator-based software monitor system,
is able to make useful analyses b
Iin its use. This example deals with collecting

one
y exercising some intelligence

instruction mix

y will all use the same PDP-11] program to demonstrat.
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and addressing mode usage statistics on several PDP-1]1 programs.
The collected statistics, while they are interesting and possibly
useful in their own right, were used to project the running

times of the same programs on a PDP-11/40 and -11/45,

Example 1. Nodes and Input/Output Sets of a Quicksort Prugram

As a first example, let us consider the PDP-11 assembly
language program QUICKSORT, whose text is given in the next

illustration,. (For a specification of the DEC assembly language
see [DEC 71].) The progtam implements a simplified version of
the "quicksort” algorithm as given by Knuth in [KN 73], The

code given here was compiled by the BLISS=-11 compiler [DEC 73]

to be assembled by the MACX]]l assembler. To explain briefly some

of the notation in the assembly language: { denotes immediate
operands, RS1 means register i, SP is the stack pointer (register 7),
@ denotes indirect addressing, -(K) denotes automatic decrementation
of register K before its contents are used, and (K)+ denotes
automatic incrementation of register K after its contents have

been used. All integers are in octal. The syntax of double-operand
instruztions is:

<opcode> <source-operand-, <destination operand.
(A1l integers are in octal.)

The program consists of two parts: a recursive subroutine
called OSORT located between (relative addresses) 0 and 166, and
the main program between 170 and 204. The main program expects
two integers in registers 0 and 1, which are to be the bounds of
the core locations whose contents are to be sorted. It simply
pushes these parameters on the stack (which grows downward from
its initial value of 1400) and calls the subroutine QSORT. This
subroutine works as follows:

It uses R] and R2 to point to the lower and upper bounds,
respectively, of the vector to be sorted. If Rl is greater than
or equal to R2, there i{s no sorting to be done; hence it returns.
Otherwise, it compares the elements pointed by Rl and R2. If no |
exchange is necessary, R2 is decremented by 1 and the process is
repeated. After the first exchange Rl is incremented by 1 (Note:
Since sorting is done in units of words, the addresses are really
incremented by 2). Comparison with the element pointed by R2
and incrementation continues until another exchange occurs, at
which point R2 is decreased again. The sorting goes on this wav,
"burning the candle at both ends", until Rl and R2 point to the
same element. During this nrocess, the value which was initially
pcinted by R1 has been exchanged everytime the direction was
switched. When R1=R2, this value will have found its final position:
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, f.e., the position it must have in the completely sorted vector.
| (The interested reader can convince himself of this.) Further,
this element now divides the vector into two parts, namely,

that to its left and that to its right. These two parts, which
Knuth calls "subfiles", can be sorted with the same procedure.
Hence, QSORT then calls itself twice, to sort first the left
subfile and then the right subfile.

The -11 code given in Illustration 4.1 was produced by the

I BLISS-11 compiler and the comments, preceded by the symbol "!",
were inserted later by hand.

In this example, I shall load the -11 program, which 1is
t stored in a file named QSORT, initialize a vector of 40 elements
to be sorted, set the default mode for node definition and, at
every node-exit, tvpe out the node-object and the current input/
output set for the first five node instances. Then I will let
the program run to completion. The monitor ‘nstructions which
will be used to do this are contained in a file called DEMOI,
which is listed in Illustration 4.2. In this file, there are
two routines: DEMOl and TIO (for Type 1/0 Sets). DEMOl loads
two copies of the Quicksort program, one starting at location
20000 (this copy is the one which is executed) and another
starting at location 30000 (this copy will be used as data: a
small part of it will be sorted.): it initializes registers RO
and R1; loads another routine DEFIO from a file called DEFIO and
executes it; defaults the node definition; creates an object
C to be used for counting to 5; 1initializes it to 0; 1inserts

a hook to call the routine TIO at every node exit; pgives control
to the PDP-11 starting at location 20170, the address of the main
program. (All "relative addresses" in this example are relative

te 2J000.)

The routine DEFIO (listed at the bottom of illustration 4.2)
is a standard routine for constructing input/output sets. It
works as follows:

The svmbols CURNOBJ, CISP and COSP used in TIO are global
PDP-10 variables which point to the current node-object, the
current input-set and the current output-set, respectively, (As
a practical matter in the use of DAME, if the monitor routines
to be used turn out to be long or if we aren't sure they are
correct, it is a good idea to prepare them as text files and
load them at run-time rather than define them on-line, during
the analysis sessi-n.) The format of type-out for objects and
lists is: The words of an object are typed between slashes. If
a word is not zero, it is typed as <left half>, <vdght half>,
otherwise it is typed as 0. Thus, node-objects are tvped out as:




64

<starting loc.>,,<ending loc.> /<no. of instr. gk e,
<no. of instances> /<input-set ptr>,,<output-~set ptr>

Lists are typed as [<object:> <object>...]. Certain objects,
called "rep-objects", which are an artifact used for implementing
hierarchical list structures and member ship in multiple lists,
contain only pointers and are typed as » followed by the pointed
object. 1I/0 sets are simply lists of ten-word objects each
containing up to ten <address>,,<value> pairs. Unused words
contain zeros. Thus, an I/0 set containing up to 10 (address,
value) pairs is typed out as:

[<address>,,<value> /<address>,,<value> /.../0 /0].

An I/0 set containing more than one 10-word chunk is typed
out as:

[<first 10 words> + <next 10 words> - o Dealts

(Registers 0 through 7 are represented by their console
addresses 177700 through 177707 respectively, and the processor
status word by 177776.)

Illustration 4.3 shows the protocol for this example. User-
tvped portions are underlined. The comments in small type were
entered later and are not a part of the protocol.

It inserts the hooks named FINS (Initialize Cutput Set) and
HIIS (Initialize Input Set) to be activated at node entry (i.e.
hooks of type NE). These operations could have been done with
one hook but this method permits either one to be disabled and
enabled without effecting the other. These routines issue the
I0S() and IIS() instructions respectively. To build the I/0 sets
during the node instance, the hooks named HBOS (Build Output Set)
and HBIS (Build Input Set) are inserted to be activated at every
operand store and every operand fetch, respectively. These
routines issue the BOS() and BIS() instructions to maintain their
respective sets. At node exit, the input and output sets must
be closed. This is done by the hooks named HCIS and HCOS, by
issuing the CIS() and COS() instructions respectively. One final
problem is that in case the entire -11 program is not covered by
nodes, the hooks HBIS and HBOS must be turned off at exit from
a node and re-enabled at entry into a new one. Thus, DEFIO
initially disables these hooks, and inserts the hooks named HENB
and HDISB which are activated at node entry and exit respectively.
They call the routines ENAB and DISAB to perform their functions.

While this procedure for building I/0 sets is rather long
and elaborate, it is more efficient and flexible than automaticallv
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maintaining the I1/0 sets. Further, by Preparing it as a file
and simply calling it when reduired, it can be used easily.

The routine TIO tests C. If it is less than 5, the following
is done: A carriage return-line feed (CRLF), and the character
string 'NODE:' is typed (in DAME, a character string can not
normally exceed 5 characters and it preceded by a single quote):
the current node object (pointed by the Rlobal CURNOBJ) is typed
by the Type Indirect instruction TIOBJ which also types a CRLF:
this is followed by the text 'INPUT-SET "(typed in two pieces),
the current input set (pointed by CISP), the text 'OUTPUT-SET'
and the current output set (pointed by COSP). The counter C Is
then incremented, 1If initially C is not less than 5, the hook
HTIO which activates TIO {s disabled.

The protocol shown in Illustration 3, also illustrates the
instruction PLAYB. In this case, PLAYB (177701 3), recalling
that in the PDP-11 177701 is the console address of register deds
types out certain information about the state of the program at

the 3 most recent node entry or exits where register 1 appeared
either as input or output,

The message '---~HALT AT 20206"' following the last 1/0 set

Is typed out by the simulator when the halt instruction is
encountered.
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Illustration 4,1
ielative In-line
Addr, Code Date Comments
subroutine 23O0RT)
Ca0nt N10146 LD RS1,=(SP)
AgA2 10248 “ov R32,=(SP) }uvn regs. on stack;
219094 10346 "oV R33,=(SP)
Y300% 212709 N00001 ugv #1,R80 .set flag=1 inicially;
110312 316601 000012 "oV 12(3P),R81 !get ).parm into RI;
Y3061 “thef2 000010 MoV 10{8P),R82 !get 2.parm into R2;
10022 t20102 Cnp Rgl,Rg2 tlower bound < upper bound?
SARC2e Y2402 BLY LS8 :yes, go do sort;
t)0024 135009 (44 ] R3O «no, set value reg.=0;
*3M033  %)04S3 (.1} Ls2 +g0 to exit prologue;
Y0082 ae2n2ot Lsas Cnp Rs2,R81 5
t 11003« 333430 8LF usit ) HResDruwy
f003%s 21112 CcCupP ongl,0Rs2 ) if left elm. 2 right elm.
100043 103315 B8LE L3110 5 80 to L$10;
1Mn%32 01103 mov ORS1,RS
00945 11211 MOV eRez,eRyy | othentse
109338 310812 wyv R$3, 0as2 -
1300S: 3327600 090001 LI& ¢ ¥1,R80 iis flag set?
10M0Ss 821408 AEQ L1 «no - go decr, R2;
"073Ss 262701 000002 ADD 92,R81 «yes - incr. R1)
110062 300402 HR Lsi3
00036s 162702 17777e LSils  ADD #=2,R$2
AJNAT7Y  £)S100 LSt cox Rs0 icomplement flag;
100072 930797 L1 L34 <80 to beginning of loop;
700374 252700 000001 L8102 BlY o1,R80 +is Ylag set?
320123 001408 BEQ L31S «:no - go incr. R1;
200172 N62702 17777 ADD ve2,R82 iyes - decr. R2;
100178 0007S1 4 AR L34 .80 to beginning of loop;
30011, 742701 0Qo0002 LS1Ss ADD #2,R$} tincr. R1;
0301ts 290746 8Rr (& 1) R . 80 to beginning of loop;
- - -
:;::é: ::;::: . e ..g‘v’ :::?.:; " compute bounds for left
A08124 082703 177778 ADD ¥e2,R33 ubflle; pueh then ond
A2M1%D 0 A10848 MOV R$3,=(SP) recurse;
"0713%2 104767 177842 JSR PC,QASORT
"0f1is 262701 000002 ADD #2,R$} compute bounds for right
200142 210116 uov RS$1,(SP) }subﬂlc; push them and
00ta. Albe46 000014 MOV 14(SP) y=(SP)Y recurse;
ANNLSI 904787 (77624 Jsm PC,QSORTY
MI01% . K219 NI0006 ADD 96, 5P g
AINLAT 112608 L3521 oV (SP)+,R$3 pop stack and restore
AOAIm2 9124802 "oy (SP)e,RS2 registers;
A0%1%. 012604 oV (SP)+,RS81
A0NLAs  A0N207 AR PC ‘return
Falo p-ogTaz starts here:
s QUICKSORT S
100172 A12706 001378 11" S8 Tu,SP .move stack limit to SP
"08LT. Dl00Us ugy R$0,=(SP) -push contents of RO
A0A17s  AL6LUG gy R$1,=(SP) .push contents of R)
100273 N04T6T 177578 JSR PC,QS0RY scall QSORT
nOA2 e AINQNO HALY
: SQUICKSORTS
A00210 SIGVALSE 8,492
Nonete SIGREGE 8,02
+GLONL STIGVAL,SICHREG
son2ie +ASECT
200460 +3400
AQ1400 «8,¢1000
A1 47s SSThe,=2
| . The Quicksort Program

prTT————
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Contents of f{le DEMOI:
+DAME Routine DEMO)

DEMOL (LOADC'QSORT 20000)
LOAD('QSORT 30000)
T0BJ(RO 0 30000) I0BJ(RY 0 30100)
LMR(TDEPIO 1a) EX(DEFTO)

NTR()
CR(1C) 10BJ(C 0 0)

RUN(20170))
+DAME Routine TIO

TIOCIF(C 'LY S (XX(CRLF) TIC'NODES)
T108J(CURNNBY)

TICVINPUT) TI(IwSET))
T108J(CISP)

TIC'OUTPT) TI('eSETH)
T1087(C03P)

BACle C C 1) )

(OISAB(HTIO))))
Contents of file DEFIO:

Comment s
sload QSORT file starting at 20000
<load a second copy as data to be sorted
.insert bounds in registers

sload DAME file DEF10; exec., routine DEF{0

screate C; initialize it; default node definition

sstart to run from 20170, QUICKSORT

:1f C< 5 then
. (type msg and current node-object

.type curr, input set

stype curr, output set

tincr, C)

.otherwise disable hook

‘DAME routine DEF{0 - causes initialization, building

rand closing of 1nput/output sets

DEFIO(HOOK(INE (109(¢)) 1'HIDS)
HOOK (108 (BOS()) 1MROS)
HOOX(INX (COS()) 1HCOS)
HOOKCINE (IISC)) 'HWILS)
HOOK(I1OF (BIS()) 'MRIS)
HOOK (INX (CISC)) I1MCIS)

O1SAB(HADS)
OISAB(HAIS)

HOOK (INE ENAB 'NENB)
HOOK(INX DISAB 'NMDI9BY)

ENAB(ENAB (MBODS) ENAB(NRIS)Y
DISAB(DISAB(~BOS) DISAB(HBIS))

sinitiaiize output set at node entry
+buiid output set at each store operation
.close output set at node exit
:initialize input set

sbuild input set at each fetch operation
cclose input set at node exit

tinitially disable "buiid I/0 set" hooks
:at node entry, enable them

sat node exit, disable them again - in case nodes
«don't cover entire program
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Illuscration 4.3

s RUN DAME
DAMEL11/10...
S SLMR(OEMOL ‘o)
*SEX(DEMO1)

==<FILE LOADED 20080
=~-FILE LOAL D 302348

TO 20206

‘Typed out by the LOAD commands {n DEMO}
10 30206

NMODEIED | T8, .202007 4

*r | F2D2057 2202055

lNFua-hEI:LITTTdTa;EHlTEJEHI?E.JIJTﬁ!ITTTﬁipJH/
7 HIJJJE:HBI:JTE.-ﬁfEBEBEJ:J715141513 ]

UUI?I'kI:I[I?T?d?--Qaadafl11?16;¢HJIT1TIﬁ;: 11ﬂf1314;-300ﬂ0/|3720030|00/
B/e/8/8/9 |

I?TTHBr138080/|374.10/|17

NOUE:120832,,20034/
INPUT-SETIC177702,
QUIPI-SEI1(177776,

2::!/285375::285373
nJBIOO/l77781apJOGOB/O/O/O/P/O/O/O/O )
nO/I7778!:nJOOOO/O/O/O/O/G/O/O/O )

NODE!206363320340/
INPU‘-bET![l7770l:
070 1

0UTPT-5EIX(I77776.:@/38]88::1403/0/0/8/0/0/0/0/0 )

2::1/205386):2653@‘
3@80@/38080:010]46/l77702::30|00/30|0910|403/0/0/ﬂ/0/

NOUEX200420:28@54/5: 21720521 1+,2085215
INFUX'bE]:il777@ll‘JBQUU/JBGQGJD16146/|77763300/l7775233
3/]77797);29@52/20L52::l/l7770@)0|/0/6 )
OUIP]'5E1X[l777:6::8/!77793::lal46/38ﬂ88
6 /1717708,., 178707079 )

===HALT AT 20206

30100/30100,,140

o:lAOJ/JOlOO::lBI‘é/l71707..2005

Let us now, for exacple, display the values of reg- 3 node instances {in whose I/O sets it appears,

[ster 1 at the eucry or exit from the most recent

**FLAYB(177781 3)
The format of the type-cut ig: s
Value in
Starting Instr.count Input Output
__[n;;___:::. Acdr. St emtry et _AME, 1/0 set_
3621 NODE INST. 20163000000 4107 301516301542 4 OQUTPUT VALUE 130100
3621 NODE INST. 20160090000 4107 301516301542 4 INPUT VALUE 139042 |
:
261t NODE _INST. 28154000092 410] 23¢15663081612 £ QUTPUT VALUE :30042 |
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Example 2. Construction of Node Transition Matrix

A common type of model used for representing control flow

is the so-called "transition matrix" M whose element M(i,3) is

the number of transitions from node i to node j. By dividing

each element in this matrix by the sum of all the elements in

the same row, one can obtain a Markovian transition probability
matrix P whose element P(i,j) is the probability of the next

node to be executed being node j given that the current node is

i. In this example, I shall give a DAME procedure for constructing
the matrix M. Since we do not know the number of nodes, we cannot
initially allocate the space for M. Thus, the approach we will
take is to use the data in the NODETRACE table, which is maintained
by DAME as the -11 program runs, to count the transitions between
nodes. However, this table is of fixed size and when it 1is full,
it is to be dumped onto disk and its pointer NTRACEPTR is set to
zero. This pointer is initially 4, since the table initially
contains some additional information in the first four words. We
shall maintain the integrity of the matrix M by updating M each
time the table NODETRACE is full, prior to d:mping the latter

onto disk.

To load the program and initialize the main memory, we shall
use the DEMOl routine of Example 1 except that the TIOBJ instruction
for typing out I/0 sets will be removed.

In the file named FLW, given in the next illustration, there
are four routines: FLW, CHFLW, SFLW and FINDI. FLW is to be
executed only when the table NODETRACE has been dumped onto disk
for the first time.

FLW determines the number of existing nodes by taking the
cardinality of the '"node subclass master list" pointed by MNODESC:
2

stores that value in E, sets F=F , declares the node transition
table M as containing F words and the vector NV, which will contain
the starting address of each noce, as containing E words. It also
creates the object G, which will be used to index into NV, and

sets it to zero. It then searches the node subclass master list

to determine the address of each node and fills in the vector NV.
The node whose index in NV is i1 will be represented by the column

i and row i and M.

The routine CHFLW is activated prior to each dump via the
hook HNX1 inserted at run-time:; it goes through the table NODETRACE
and passes each node-address in chronological order to routine
SFLW. SFLW computes the index into the table M for each node by
calling FINDI to get the index into the vector NV of the node
address passed to it, and updates M.

. — S R p—




The success of this procedure clearly depends on the
execution of every node defined in program at least once until
the first dump so that FLW will see its name in the NODETRACE
table and put its address in the node vector NV. However, if
some node does not appear in NODETRACE, this will be detected
by FINDI since that node will not be found in NV, and it will
type the message 'EPROR-IN-FINDI' and return the control to the
user. So, this procedure for coastructing M is not foolproof,
but it is efficient since it requires little monitoring activity
between dumps of NODETRACE.

Illustrations 4.4 and 4.5 show the DAME routines and the
protocol, respectively.

———
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Illustration .,

FIN2I(POP(Q)

‘Routine FLW

FLR(CR(IE) CR(IF) CRE'IND) CR('INC) CR('F1) CR('F2) «create some objects for later use
ER(1G) CR('m) CR('Q) CR('K) CR('J) CR('P) CR('OLONO)
CREILY CREIYY CROIT) CR'CNODE)

108J(L 0 4) 108BJ(U O 3720) sinftial search limits for NODETSACE

Eval (€ CARDINAL ', “NODESC) :get no. of nodes, E

Aa('s F E §) i

isize of M, F= g

CR('™ 100 0 F) CRCINV 100 0 E) !create M and NV; (ignore 100 and 0)

108J(6 0 0) G-0

SLST(n MNODESC (POP (M) ‘Search List (SLST) works just like FISET; see 5.5,

EVAL(H SEETIROUGH ', W)

}gc( word # of node-obj, into H
1108J(H W)

BA(Y/ W W 1000000) .get left haif

10BJINV G M) BA('e G G §) PUSK{0)))) NV(G) =~ H:

i G = G+1; continue search
‘Routine CHFLW

C"VL'(INCR” L VG (BAC'] J NODETRA )

.get left half of every 4 word of NODETRACE into J
BACY/ J U 1006000)

PUSH( ) ‘pass {f SFLW

EX(SFL®))Y))
‘Routine SFLW
SFLn(PLP(CNOOE) :pop passed parameter into CNODE

IFCOLOND 'EC 0 (TORJCOLOND © CNCDE) RET(2)))

if oldnd=0 then (oldnd -~ cnode; return)

PUSHIOLOND) EX(FINDI) POP(F1) ‘Fl = index of OLDND {n NV

PUSH(CNODE) EX(FINDI) POP(F2) *F2 = index of CNODE {n NV

Bi('e IND FY B)

.compute index into M

BA('e IND IND FQ)

BA('] INC W IND) .get old count {n M

BA('e INC INC 1) JOBJ(™ IND INC)

iincrement and store it back

ICAJCOLONC 0 eNODE))

roldnd ~ cnode
‘Routine FINDI

INCR(JS O £ |

‘look for passed address {n vector NV

(BACT| X NV J)

IF(X '6Q Q (PUIM(S) RET(3))))) +if found, return its {ndex

TI{'ERROR) YI('=INeF) TI(VINDLI) STOP())

cotherwise report error and stop
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11lustration 4.5

« KUN DAME
DAMELI ) /710464«
e oLMK( *DEMOI

‘e) LMR('FLW 'e)

+Load DAME files DEMO! and FLW. The hook HTIO has
‘been removed from DIMOI
+hook HNX1 to be activated later

¢ oHOOK('NA (IF(NTRACEP ‘EQ © CHFLW)) °'HNXI1)

e oDISABIHNKD)

*eHDDRC'NA (IF(NIKACEF ‘EU BS$

tdisable 1t

will be executrd after 1. dump only

.to be used as data,

SeLX(DEMOL)

-==HALT Al
®o10BJINV)

*oTOBJ(F)
4048

*010BJ(J B ©)

e ¢ INCR(G @ 377

-==FILE LOADED 20¢0¢
-==FILL LOADED 38080
20286

see (EXC(FLW) EXC(CHFLW) 10BJ(L @ &)
see ENAB(HNX1) DISAB(HNX2)))) S
o0 *HNX2)

‘Having placed hooks HNX] and P'iX2 we can start up the program vis DEMO! which loads two coples of it, one
and runs ft,

To
10

20206
Jpn206

type t
ZUl76/20#06/80032/?0036/90642/°9556/20070/20064/20074/29|02/2ﬂ||0/?G||6'
20026/720160720136/728154

1$ ctype M as a 20x20 cable,

In the table typed above, elemenc (1,3) 1»
the number of transitions from node J to node |
'where { and ) are the indices of node addresses i{n
vector NV,

soe (BAC*! UM G)S 'Q = M(C)
e Tyiecurs ‘type Q
eoe BA(C's J J 1) 1) = J+l
ese 1F(J °EY 28 (XX(CRLF)S cif J=20 then (start new line; J - 0)
s 0o 10BJ(J 8 8)))))

© | © 6 8 8 @ @ 6 © & © © 0 6 o

U ¥ 13 8 8 6 @ ¥V 6 & 6 6 12 e 6 o
("] @ @ 144 @ 6 06 ©6 © © o 12 ©6 ©6 © o
] 8 ¥ U 43 0 86 © 100 6 6 ©6 © O e o
) 8 ¥ BV 6 25 @ 16 @8 86 6 6 9 0 06 ¢
b 86 86 ¥ » 8 25 06 V¥ ¥ ©6 6 6 6 e o0

e 0 25 8 8 & 6 © © 0 6 o 0 6 & o

%] @ 16 8 8 6 8 6 ¢ © 6 @ o A 6 o

o g 8 @6 Vb 6 0 6 e S2 26 o o 8 e
%] b 52 6 6 6 &6 o ¢ © © o 06 06 o o

(%] 0 26 8 © O ¥» © © 6 © © 6 © 0 o

@ 12 8 8 86 0 ¥ &8 8 06 0 © 6 © ©

(") 2 & ¥ 8 6 ¥ 6 86 ¢ 0 © e 12 0 o

e D ® » 86 6 VO 0 6 8 8 8 6 & 1 &

[’ 12 8 ¥ »p 8 8 & 6 06 © 6 © ©6 o o

e v b 2 o @ @ 0 @ 8 @ © ® 3 3 ©

HNX] will de zsctivated after
subsequent dunps

. executlon finished
the node-vecto

‘type size of matrix M

$ 1s a continuation char.
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Example 3. Analysis_of Parall elism in the QUICKSORT Program

In this example, we shall consider the following problem:
Suppose we have an unlimited number of Processors connected in
such a wav that any processor is able to locate one 1dte processor
at anv time, Pass to It a vector to be sorted and invoke it to
éxecute in paratlel with itself, thus enabling us to execute the
first recursive call on QSORT in Parailel with the second, Ignoring
the instructions cutside tihe main loop of OSIORY , d.e., 20032 to
20114, estimate the elapsed time (as number of instructions executed)
Lo sort a given vectolr.

Thus, the flow of control tooks ltike a binary tree where
each branch indicates one txkcution of QEORY. Fhe cime to he
computed corresponds to the longest path in thig tree, [he DAME
Procedure given ip Lllustration 4.5 solves this problem by construc-
ting a nested tist structure representing the tree. Each Iist
has two elements. The first element has two words containing the
number of instructions whiceh had been executed up to the entry
and up to the exit from the node along that particular branch of
the tree. The second element of each list is the sub-list represen -
ting the sub-tree under that node (Note: Here, 1 am using the
word "node" in jts usual meaning in DAME ,) .

Having created this DAME routine file beforehand, we can proceed
to load and apply it as shown in Iltustration 4.7, The tree repre-
sented by the negted listed structure, which has been tvped out,
fs re-drawn in Itlustration 4.8,

Each node in the tree shows the Instructions »xccuted along
that branch up to the entrv and the exit from the node as AT

where x is the former and v the latter. v=0 indicates terminal
nodes .

It can be seen that in the two longest paths through the tree,
536 instructions would be executed bv the main-loop portion of
the QSORT routine.
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Illustration 4.6

‘Routine QPAR

GPAR(LOAD('GSCRY 20000) LOAD('QSORT 30000) 'losd program
10BJ(RO 0 30000) IOBJ(RY 0 30040) tset bounds for 20 elements
CR('TEmP) CR('0BJAD) CR('ICT) CREILY) CR(IL2)
CR('PLAG) CR('TEMP?)
CR('ROOT) EVAL(ROOT MAKELIST) 10BJ(OBJAD 0 ROOT) 'create root of 1ist, put it o ROOT
PUSH(O) ‘push {nitial amount of time passed=0 and OBJAD
PUSH(ORJAD) !push address of list root

HOOK ('AIF PARO 20000 20000 'HPARO)
HOOK (1AIF PARY 20032 20032 'WPARY)
HOOK('AIF PAR2 20116 20116 'HPARQ)
HOOK('A1F PARY 20136 20136 !'MPARSY)
RUN(20170))

‘Routine PARO
PARO(IOBJ(FLAG 0 1) iset flag to fvdicate new entry

POP(08JAD) sget address of current object

POP(TENP) get asount of time already elapsed in this branch
EvaL(L2 CREOBS 100 0 2 0) 'create a 2-word object, Put its address in L2
1A0BJ(L2 0 TEwP) sinsert in {ts word 0 time already elapsed

XX(INCLUDE ', L2 'y OBJAD))!execute external -10 routine INCLUDE to put the nev objecy in
the current st
‘Routine PAR!
PARL(IF(FLAG 'EQ 1 (10BJ(ICTY 0 ICOUNT) I0BJ(FLAG 0 0)))) (¢ flag is set, get number of {a-
‘Rout ine PAR2 atructions through this noda
PARQ(BA('s TEMP2 ICOUNT ICT)
BA('s TEMP2 TEMP2 "“”}tmpz - temp+icount - {ct

PUSH(TEMP2) .pass {t to PARO or PAR)}

1A08J(L2 | TEMFR) sinsert total {nstructions {n word ! of nev object
PUSH(OBJAD) -pass address of current list to ENDR
PUSK(TENPD) +pass total instrurtions to ENDR

EX(ENDR))

‘Poutine ENDR

ENDR(EVAL (LY MAKELIST) ccreate & new list., Put {ts address {n LI,

MP M '
WL CTY RaEe 1y b3 include the new list as a member of currant list

XXCINCLUDE ', YEMP ', OBJAD)

PUSH(LL) ) ‘pass address of new li{st to PARO or PAR)
.koutine PAR)}

PARI(PCP(CBJAD) POP(TEMP) PUSH(TEMP) EX(ENDR)) :get values of OBJAD and TEMP; call ENDR
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Tllustration 4.

o UN UAME

UAMEL 17 1dee e

soLMN( 'UFAK ') +load and execute QPAR

s e AlUrAN)
=e=r ILE LUADED 2v000 {0 202046

===F{LE LUADFD Jdvay,. 1) 30206
===nALlI Al 20246 .execution finished

* 01 {UBJNIVL) ‘type the list pointed by ROOT

Ldseha =~=>1264/7485 -->la85/469 ~=>{a60079 Jee>(ahAn/ 513 ~s>[0%1/A Jeer(S}9
O il 14057424 -->(4Pary J=e>42470 )))-->128487174 -->(1747 04 -e>(an
6 /74 J-=>(43674175 2= LAT5/5(7 -=>(S5{171s Je=3[517/816 -=>(534/¢ Je=e> {83471
did==>04q75/¢ 13)-=>137474(3 ==>{A13/¥ )-->(41370 ))))

The tree represented by this l{st {s re-drawn
below:

Illusteation «.8
Execution Tree Constructed by QPAR

0/264

,,_,-—/’K

264/374
L0% /480 ~~

/\ W05,/ 42¢ ur..m:"”\meﬁ-l!
il s //'\ //\k /,—"\
/\ 424/0 424/0 “i8/n uﬂus “13/0

413/0
513/0 513/ //\

5t1/0 517/536
536/0 536/0
fach node {n the tree shows the {nstructions It can he seen that (n the two longe.t paths |
executed along that branch up to the entry and the through the tree, 536 fnstructions would be esccut -

evit from the node as x/y, where x is the former
and y the latter. y=0 indicates teminal nodes.

ed by the mafn-loop portion of the piven progr.am,
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Example 4. Data Flow Between Two Nodes

One class of analvsis tasks for which DAMF is most suitable
is the determitation of the data flow between two nodes, by
finding the addresses which are both in the output set of one
and the input set of the other. This analtvsis can be made in one
or both directions of flow. If the node instances happen to he
consecutive, then this procedure will vield the exact nature of
the information passed from one to the other. [f, on the other
hand, there are intervening node instances, then one has to monitor
their effeet on the data flow between the two nodes. For a more
detaited discussion of this question, see Chapter 2, Section 2.2.2.

Representation of the data flow from a node ¥ to a node M

for this purpose can, at the simplest tevel, be a list X of set s

X O(NM) LEbse ooklle eaiel s consisting of triples (A,B,C) where
i

A is an address which is in the input set (strictly speaking, vhich
is the "address part” of soms member of the input set) of the ith
instance N of N ard also in the output set of some instance M
i J
whieh occurred chronologically between N and 8 . If there
s L i
are several such instances of M, then M is the latest one. In

of M

the atove triple, B and C are the contents of A upon entry into
N and upon exit from M srespectively, In this example, a DAML

L B
procedure DFLOW and the associated subroutines BUILD and COPY
implement this process. These routines are given in the illustra-
tion below. The =11 pregram on which we operate is again the
by-fiow=familiar QBORY. Por the purposes of thisg example, we shall
consider the data flow from node NA to node NB, extending from
20000 (i.e. relative address 0) to 20024 and from 20042 to 20072
respectively., NA is the first node in QSORT, It saves the contents
of registers Rt, R2 and R3 on the stack, gets the parameters (whicl
are the lower and upper bounds of the vector to be sorted) 1into
Rl and R2, checks to see if lower bound is less than upper bound
and, if so, branches to the main portion which does the sorting.
The second node, NB, is entered when two elements which have to
Se interchanged have been found. These elements uare pointed by
registers Rl and R2. NB makes the exchange, tests the flag which
indicates which end of the vector is to be advanced in accordance
with the quicksort atgorithm, makes the advancement, complements
the flags and branches back to the beginning of the loop. We
note that while NA and NB are not consecutive, the intervening
instructions in locations 20032 to 20040 do not modify any locations
éxceépt PS and PC. A& will be seen, neither of these appear in
the input set of MB.




The DAMF routines given here are quite general and could
be applied to any two nodes by changing the limits of the nodes
in the NODE and HOOK instructions in DFLOW and the FOSET instruc-
tLoR  Ain GOPY.

To explain briefly the functioning of the procedure, the main
routine DFLOW does the following:

(i) Creates some objects which will be uced later; of thesc,
MAINL will point to the list we are interested a1 1

(1) Creates a list and stores its address in MAINL,

(iii) Loads two copies of QSORT, one of which will be used
as data,

(iv) Defines nodes NA and NB,
(%) Loads and executes the DAME routine DLEFIO (this routine,
as will be recalled from an earlier example, simply places hooks

at node entry/exit points to huild input/output sets),

(wi) Inserts a hook to execute routine BUILD after each
exécution of the instruction at location 20072, 4.e. after NB,

EATW) Initializes registers RO and Pl to contain the inftial
bounds of the vector to be sorted (which is what the main prograr
QUICKSORT expects),

(whidi) Starts the execution from location 20170, the starting
address of QUICKSORT.

The routine BUILD is thus activated after each instance of
NB and does the following:

(i) Creates a list, pointed by 1L,

(ii) Searches the current input set, pointad by CLSP, for
addresses which alse occur in the output sets of the instances
of NA and makes an entry in the list pointed by L for each such
address.

(tt will be recalled that an input set is a list of one or
more ten-word objects, each word of which contains an address in
the left half{ and the contents of that address in the i ighie  hadif .
A zero indicates the end of the list. The address 0 is represented
by 777777. Cl contains the address of current word to be looked
&2 The instruction Insert Inditect, I1OBJ(C? C€L), imsarts in
C2 *he contents of the word pointed by Cl. The COPY routine extract s




78

the address part of the word and uses the FOSET and FVAL instruc-
tions to find the most recent instance of the node NA in whose

output set the address appears. If one is found, C6 will contain
the contents of that address in the output set found; otherwise
i will contain -1, (See the description of the FOSET instruction

in Chapter 3, Section 3.6.2, for a better understanding of how
this works.) If such an output set has been found, an object of
2 user words is created, pointed by C7. The contents of the word
in the input set, and th: value just found in the output set are
inserted in it via the Insert Addressed (IAOBJ  instructions.

The object is put in the list pointed by L, and COPY returns to
BUILD. BUILD continues with the search until the current input
set is exhausted. At the end of the SLST instruction, L points
to a list of 2-word objects whose first word contains the data
described above.)

(i11, Puts L in the main list pointed by MAINL and types
ourt the list pofanted by L.
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Illustration 4.9

.routine DFLOW

DFLOW(CR('L) CR('C) CcR('Cl) CR('C2)
CR('C3) CGR(VCW) CR{"'C5) CR('C6) Cr('C7)
GR("LL) CR("MAINL)
‘create a list; put its address in MAINL
EVAL (MALINL MAKELIST)
‘load two copies of OSORT
LOAD('QSORT 20000) LOAD('OSORT 30000)
‘define the nodes NA and NB
NODE('NA 20000 20024) NODE('NB 20042 20072)
‘load nonitor routine DEFI10 and execute it
LMR("DE¥LQ ') EX(DFF10)
rinsert hook to build desired lists
BOOR( 'ALC BUCLD 20072 20072
‘initialize RO and R1, and go...
IOBJ(RO O 30000) I10BJ(RI 0O 30040) RUN(20170))

‘routine BULLD
BUILD(EVAL(L MAKELIST) 'create a list for this instance; point I to it
‘search current tnput list pointed by CISP
SLST(C CcISP (POP(Cl) !gpet addr. of first 10-word object
!search each word
INCR(1 0 11 1 (IIOBJ(C2 Cl) !gpet contents into C2
IF(C2 '"EQ O (RET(2))) !if 0, end search
B C1 €1 1) “else; 1GcE®: €1
EX(COPY) 1)) !call copy
PUSH(0))) l!continue search

XX(INCLUDE L '. MAINL) !put list pointer into main-list
TIOBJ(L)) .type list for th's instance

.routine COPY
COPY(ba('/ C3 C2 1000000) !'pet left half into C3
! irch output sets of node NA starting with most recent instance
FO “T(C4 20000 (POP(CS5) !pet address of first object
FVAL(C6 €3 €5) !get value of address which
'is in €3 from the object
‘pointed by C5 into Cé6
‘if C6 <0, continue search else quit
IF(C6 'LT O (PUSH(0)) (PUSHE(1)))))

‘if search failed, exit routine

IpcE "L 0O (BBRC2)9))

.otherwise, create a 2-word object; point C7 to it
E¥AL(C7 CREORBJ LOO 0 2 0)

‘insert contents of C2 into word 0 of new object
IROTICT @ C2)

-insert contents of C6 into word 1 of new object
LROBI(CT 1 C&)

‘put new object in the Iist for the current instance
L CINCIWR Y. G7 Y. m))
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[l1lustration 4.10

. LOG

JOB 14 CMU10A 7.G4/DEC 5.04B TTYL1S
#C410BA07

PASSWORD:

1247 14-JUN-73 THUP

TH 1200...NEWS(6-14)

.RUN SDAME
DAMELL /105 . .

**LMR('DFLOW '*) EX(DFLOW)
=--FILE LOADED 20000 TO 20206
*=-PlLE LOADED 30000 To 30Zde

177701,,30000/30000 30000,:0146/10146 177703,,0/0 177702, ,50040/30040
J0040, ,3415/3415 177707, ,20052/20052 20032,,1/1 177700, ,0/1 20066G,,2/27
L17760,,30002/30002 30002, ,10246/10248 L7 7708 . JO 46/ 1008 LIPS 2
30040/30040 30040,,10146/10146 V77107, A5/ 20092, Y/ LR e, 177776
(177776 20066, ,177776/177776

177701,,30002/30002 30002,,10146/10146 L77703,,10246/10246 177702, ,
300034/30034 20034,,3430/3430 177797,5,20052/20052 0082, ,1/1 L7700, ,
20060, ,2/7]

'177701,,30004 /30004 30004,,10346/10346 177702, ,10146/10146 177782,
30034/30034 30034,,10146/10146 177707 ,,20052/20052 20052,,1/1 17710%,,
177776/177776 20066,,177776/177776 )

177701, ,30004/30004 30004,,10146/10146 177703, ,10346/10346 177702,
30030/30030 30030,,453/453 1779707 ,,20032/20052 20052,,1/1 177700,,4/1
30040, ,2/2
'177701,.30006/30006 30006,,12700/12700 177703,,10146/10146 L7 77012 ,
30030/30030 30030,,10146/10146 177707, ,20052/20052 29052, ;1./1 1772769, ,
177776/1771776 20066, ,177776/177776

+77701,,30006,30006 30N006,,10146/10146 L77703,,12700/12700 177702,
30026/30026 30026,,5000/5000 177707,,20052/20052 20052,,1/0 477709,
L/1L 2006w, ,.3/2
¢C
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Example 5. Analvsis of Instruction Mix and
Addressing Mode Usage by PDP-11 Proprams

This example is based on an experiment in which we were
interested in comparing the performances of the PDP~-11/20, /40
and /45 in connection with a proposal for the acquisition of
several processors for the Carnegie Multi-miniprocessor (C.mmp).
What we wanted was a rough estimate of the relative speeds with
which these processors would execute programs typical of the

workload to be placed on them here. The procedure followed was
as follows:

(i) Four available programs were selected as benchmark
programs: Two hand-coded in assembly language, and two BLISS/1]
programs. The assembly language programs were an interactive
disassembler for the PDP-11 written by Roy Levin and the "vector
mode' portion of the XGP (Xerox GCraphic Pointer) support proeram
written by George Robertson and Hal Van Zoeren. The two BLISS/11]
programs were an interactive PDP-11 debugging aid written by
Fov Levin and the Quicksort program used in the preceding examples.
These programs were judged to bte a ;rod cross-section of the

vorkload to be run on the C.mmp, excluding the number-crunching
programs.

(ii) The information required to project the performances

of the models /40 and /45 were derived from the respective processor
manuals,

(ii1) A DAME routine (IMIX) was written to monitor the
execution of these four programs and gather the required data,

(iv) A DAME routine (RPORT) was written to summarize and
report the collected data in the form of instruction mix, addressing
mode usage and branching statistics,

(v) Two BLISS/10 programs were written to calculate the
performances of each of the /40 and /45 (These were needed
because of the wide dissimilarity in the torms of the processor
specifications given in the manuals for the two machines.) These
programs were written in BLISS rather than DAME because of the
relatively large amount of arithmetic, table-look up etc. that
was required. This fact also turned cut to be a good test of the
case vith wvhich data could be communicated between DAMF and BLISES ;
which was found to be very easvy and natural.

(vii) The DAME routines and the BLISS models of the /40 and
45 were debugged and hand-checked over short sequences of -11
C"dt.',




(viii) Several runs of varyving lengths were made with each
of the four btenchmark programs with different inputs. Tle collected
data was incorporated into a memorandum and sent to various facult
and staff members connected with the C.mmp project.

In this example, 1 shall po over the IMIX program. As men-
tioned above, the function of this routine was to build various
tables and accumulate counts during execution. HKelow is a list
of these data items (all integers belcw are decimal: in the tisting
of the IMIX routine itself in the next illustration, in octal):

DOTAB: a 12x8 table contaiuing a count of each of the twelve
double-operand instructions broken down by the eipght desti-
nation modes,

SOTAB: a 26x8 table for single-operand instructions, format
similar to DOTAB,

TOTICOUNT: a vector containing a count for each op-code
(indexed by OPN- see below),

LOSNO: a 12%8 table for double-operand instructions whose
source operand mode 0, broken down by destination mode,

DOSO: a 12x8 count table fur double-operand instructions
whose source operand mode= 0,

TOTSMOD: a 12x8 count table for double-operand instructions
bv source mode,

JSRCO: a count vector for JSR instructions by dst. mode,

DSR7: a count of instructions whose destination operand is
register 7 (PC),

JMPRT7: a count of JMP instructions whose destination cperand
is register 7,

TOTDRO: total number of double-cperand instructions,
TOTSO total number of single-operand instructions,
TOTCCOC: total number of condition code operators,
TOTBP: total number of conditional branch instructions,
SUCCBR: total number of successful conditional branches,

BRPD: total distance covered by positive branches,
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PBCNT: total number of positive branches,

BRND: total d’stance covered by negative branches,

NBCNT: total number of negative branches,

UNSUCCB: total number of unsuccessful conditional branches

In performing these calculations, IMIX uses a number of data
items supplied by the simulator. These are (all items refer to
the current -11 instruction):

OPN: a unique integer representing the op-code,

(Note: the op-code itself is not suitable for this purjyose)
SRCMODE: source operand mode,

DSTMODE: destination operand mode,

DSTREG: destination register,

OPC: <character representation of mnemonic op-code,

OLDPC: last value of PC,

The IMIX routine itself is given in the next illustration.
The protocol and the results of the analysis are not given here
because that would require the inclusion of the RPORT routine
as well and possibly also the BLISS rrutines for projecting the
performances of the /40 and /45. I do not consider the actual

results of that analysis as important for this thesis as the
description of the methodology.
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Illustration 4.11

IMIX(CR('C1 300 o 1) CR('TOT)
CR('DOTAB 100 0 140) !will contain d.o. instr. counts bv dst. mode

CR('SMPCT 100 0 140) 'table for src. mode percentages

CR("SOPCT 100 0 320) 'table for single opd. instr. percentages

CR('TOTDO) CR('TOTSO) CR('TOTBR) CR('TOTMS)
ER("J8xCo 108 0 10)

CR('BRPD) CR('BRND)

CP('PBCNT) CR('NBCNT)

CRE'TL) ER('T2) CR('T3) CP('T4)

‘insert hook to execute MIX after every instruction
HOOK('IC MIX 'HMIX))

MIX(BA('! T1 TOTICOU OPN) lincrement TOTICOUNT[OPN]
B+ TL TD 4

IOBJ(TOTICOU OPXN Tl)

‘deccde OPN, call for appropriate action
IF(OPN "LE® 13 LEDO ‘if? deubla operand, call INDO
(IF(OPX "LE 45 INSO '‘if single cperand, call INSO
(IF(OPN 'LE 57 INCOP 'if cond. code opr., call INCOP
'if conditional branch then call INCBR,
‘else incr. "misc. instruction” count
(IF(OPN 'LE 77 INCBR (BA('+ TOTMS TOTMS 1)
il JSR, call INJSR
IF(OPN "EQ 100 INJSR))))))))))

‘double-operand instruction handler
INDO(BA('* T3 OPN 10) .compute index into TOTSMOD table, incr. table entry
BA('+ T2 T3 SRCMODE)
BA('! T1 TOTS™MOD T2)
Ba("+ T1 T1 1)
I0BJ(TOTSMOD T2 T1)
‘!incr. DSR7 if required
IF(DSTMODE '"EQ 0 (IF(DSTREG "EQ 7 (BA('+ DSR7 DSR7 1))
‘increment count according to whether srcmode is 0 or not
IF(SRCMODPE "GT 0 IWCED INCEO)
iime®. tetal 9.6. count
BA('+ TOTDO TOTDO b))

INCGO(BA('+ T4 T3 DSTMODE) 'incr. count for d.o. instr. with srcmode>0
BA('! T1 DOSNO T4)
BAN "3 'T1F H1 1)
IOBJ(DOSNO T4 JREDP)
(continued on next page)
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Illustration 4.11
(continued)

INCEO(BA('+ T4 T3 DSTMODE) !incr. count for d.o. instr. with srcmode=0

BA('! T1 DOSO T4)
BA('+ T1 T1 1)
I0BJ(DOSO T4 T1))

'single-operand instruction handler
INSO(BA('- T3 OPN 14) !compute index into SOTAB
BA('* T3 T3 10)
BA('+ T4 T3 DSTMODE)
BA('! T1 SOTAB T4&)
BA('+ T1 T1 1)
IOBJ(SOTAB T4 T1) !incr. SOTAB entry and store it back
BA('+ TOTSO TOTSO 1) 'incr. total s.o. count
‘increment DS7 and JMPR7 if required
IF( DSTMODE 'EQ O(IF(DSTPREG 'FQ 7
(BA('+ DSR7 DSP7 1)
TI(OPC 'EQ 'JUMP (BA('+ JMPR7 JMPR7Z 1))))M)))

‘increment total cond. code operator count
INCOP(BA('+ TOTCCOC TOTCCOC 1))

increment total branch count, take care of successful and unsucc. branches
INCBR(BA('+ TOTBR TOTBR 1)

BA('- T1 PC OLDPC)

IF(T1 'NEQ 2 INCSB INCUB))

.successful branch
INCSB(BA('+ SUCCBR SUCCBR 1)
laccumulate positive(forward) and negat .ve(backward) branch
!distances and counts
IF(Tl 'GT O (BA('+ BRPD BRPD T1) BA('+ PBCNT PBCNT 1))
(BA('+ BRND BRND T1) (BA('+ NBCNT NBCNT 1))

'unsucc. branch
INCUB(BA('+ UNSUCCB UNSUCCB 1))

!increment JSR
INJSR(BA('! T1 JSRCO DSTMODE) !incr. JSRCOUNT-by-DSTMODE
BA('+ T1 T1 1)
IOBJ(JSRCO DSTMODE T1)
IF(DSTMODE 'EQ O
‘incr. JSRR7 if required
(IF(DSTREG 'EQ 7
(BA('+ JSRR7 JSRR7 1))))))
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CHAPTER 5

A PERFORMANCE MODEL FOR DAME-LIKE SYSTEMS

Having given a description of the design of the DAME system
and illustrative examples of its application in various types
of analysis tasks, it is now worthwhile to consider the resource
requirements and performance of DAME-like systems. It should
be clear by now to those who have examined Chapters 3 and 4, ihat
such systems are very costly in terms of main storage and CPU
time. Thus in this chapter, I would like to construct a model
of the operation of DAME-like svstems and parameterize the resource
requirements of each major component of that model. To do this,
I shall proceed as follows: First, I shall give an informal and
intuitive definition of what I mean by "DAME-like" systems
(Section 5.1). Then, I shall construct a more structured and
concise model of such systems, exhibiting the overall control flow
structure and the main "cost centers" ignoring the costs incurred
bv any hooks, i.e. involving only the object machine simulator
and checks for hooks (Section 5.2). This will be followed by a
characterization of the overhead of two major types of monitoring
operations which are essential to our approach; namelv, the
monitoring of node entry and exits (including the maintenance of
the node trace table) and the construction of input/output sets
(Section 5.3). These operations, while they are implemented in
the DAME system by the insertion of hooks by the system itself
just as a user would insert hooks, should be regarded as integral
parts of the analysis facility and hence, their performance is
considered a significant part of the basic performance of such a
facility. Thus, at ihe end of Section 5.3, we will have constructed
a rough theoretical model of the object machine simulator including
the checks for every type of hook defined in the DAME system
and we shall have superimposed on this model, a model of the over-
head of the execution trace facility, i.e. the node and inpuc/
output set mechanisms. This will provide a picture of the overall
operating overhead of such a facility excluding any user hooks.
The amount of everhead introduced by user hooks is, of course,
a function of the actions performed by the specific hooks and
therefore cannot be modelled in general.

Finally, in Section 5.4, some measurements of the PDP-11
simulator, the node entry/exit overhead and the input/output
set overhead are given.
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5.1 An Informal Characterization of DAME-like Systems

We shall call a system "DAME-1like" 1if 1its principal goal
is the monitoring and dynamic analysis (as opposed to post-mortem
analysis) of the behaviour of the object system by (1) permitting
the user to define a structure over his program code, (ii)
collecting execution history data in terms of the components of
that structure in such a way that backtracking to any point in
the execution history 1is possible, and (iii) permitting the user
to perform arbitrary computations over the present state and
:he state history of the object system at every operand access,
instruction fetch/completion and structural component (node)
entry/exit. A limitation of DAME-like systems, as structured
here, is that they operate on single-stream, sequential processors
where the systenm state resulting from any seaquence of instructions
can be completely determined from the initial state of the pro-
cessor and the inputs. This means, for example, that DAME-1like
systems are not well suited to analyzing the behaviour of programs
with a heavy dependence on the timing of asynchronous I1/0 devices,
since the latter in reality are parallel processors. Backtracking
over periods of time in which such devices caused interrupts or
tnrrned on status bits in their device control registers are
difficult to accomplish with DAME-like systems.

5.2 A Model of DAME-like Systems

The basic operational cycle of a DAME-like svste’ consists
of the instruction cycle of the object machine with the addition
of checks for monitor hooks and the actions initiated by the
hooks themselves. The operand addresses of an instruction are
assumed to be decoded and computed sequentiallv. Side-effects
arising from the operand decoding/computation pProcess (e.g.
auto-increment/decrement in the PDP-11) are also viewed as addi-
tional operand accesses and thus are subject to checks on such
accesses. Arbitrary levels of indirect addressing will be per-=
mitted. On the other hand, for the purpose of keeping the ex-
position simple, only single—word operands (i.e. no block transfers,
half word or byte—addressing) will be considered. Even with
this restriction, it is impossible to give a single, accurate
and constructive model of the instruction decoding process which
will describe all conveivable processors satisfying this restric-
tion. In the nodel given below, we assume the following kind
of an instruction decoding process: The ith instruction is fetched:
its opcode is ¢cetermined; the number of operands is determined;
the address of each operand is determined and each operand is
fetched or stored, one at a time, according to it- access-type
as determined from the instruction: each store operation is usually
preceded by a computation of the value to be stored from the
operands which have been fetched so far.




We can break down the total cost, C, of the simulated
execution of an object machine instruction into 3 parts:

S T

1- The basic cost, C

. B
1 memory to get the instruction, executing the instruction and
1 checking for interrupts,

» 0of indexing into the object machine

; 2- The cost of scheduling memory access events and updating
f the clock (C ),

S
r; 3-

The cost of checking for hooks at each contact point (C ).
H

b, —

T

Clearly, these cost components are not incurred in lumps,
but rather they are interleaved throughecut the execution of each
instruction. C depends on the semantics of each instrucétion and

B

how easily it can be emulated on the host machine.

C 1s a direct function of the number of events to be schedulud.
S
In a memory-cycle level simulator, for an instruction involving n
operands in the main memory, C =(n+2)T where T =the cost of

S S S
scheduling an event and activating it. The two events in addition
to the n memory accesses for operands, are for simulating the
delays for fetching the instruction and performing the operation.

C 1is a direct function of the total number of operands
H
fetched or stored, including side-effects, by the instruction.
It involves two kinds of overhead: checking for general hooks
and checking for addressed hooks. Thus, for an instruction invol-
ving a total of m operands, C =(m+2)(T +T ), where T = overhead
H GH AH GH
of checking for general hooks, T = overhead of checking for
AH
addressed hooks, and the two additional checks are for checks
for instruction fetch and instruction completion hooks.

Thus for a simulator, which has been written in a "loose"
way so that inserting checks for hooks will not cause much per-
turbation, if the average number of operaunds of an instruction
vhich are located in the main memory is n, then the ratio R =

1
(simulation time/real time) with no checking for hooks will be

B =(C +(n+2)T )/T
1 B S r
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where T 1is the average time to execute the same kind of

r
instruction (i.e. involving n main memory accesses) on the real
object machine. If we add to this the overhead for checking for

hooks with an average number, m, of total operands per instruction
we get

R=(C +(n+2)T +(m+2) (T +T ))/T
B S GH AR T

which is a broad-gauge, general model of the performance of a
DAME-1like system with no hooks attached. If the object machine
simulator has been implemented at the instruction level, rather
than at memory cycle level, then the associated overhead can be
found by setting n=0. Further, if hooks can only be inserted at
instruction fetch/completion level, rather than operand fetch/store
level, the corresponding overhead car be found by setting m=0,

5.3 The Overhead of the Node Mechanism

The overhead introduced by the Node Mechanism can be consi-

dered in two parts: (i) the overhead due to checking for entry
and exits from nodes, and (ii) the overhead for the construction
of input/output sets. Let us consider these two components in
turn.

5.3.1 The Overhead of Detecting Node Entry and Exits

Let us first consider the case where nested nodes are not
permitted. In this case the procedures for detecting node entry
and node exit, which I shall denote by ENTRYP and EXITP respectively,
can help each other significantly by communicating to each other
information as to whether an entry or exit has been performed.
Since nested nodes are not permitted, each node entry must be
followed by a node exit before another node entry can OCCUT.
Similarly, every node exit must be followed by a node entry before
another node exit can occur. Further, since we do not assume that
the defined nodes cover the entire program, there will be times
when the control flow will not be inside any node. Hence, after
EXITP tells ENTRYP that the last node has been exited and therefore
that a new node may begin anytime, ENTRYP must check with each
subsequent instruction fetch to see if a new node is being entered.
The cost of this check will depend strongly on its implementation.
For example, if there are two additional bits in the representation
of the object machine available for this use, these can be used
to indicate the first and the last instructions of a node. Otherwise,
a list of node definitions can be searched; or alternately, as
in DAME, ecach used memory location can be assigned an "attribute
1ist" and a node descriptor can be put on the attribute list of
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the starting address of the node. In the 1last alternative, one
proceeds as follows after each instruction fetch:

1- See if current instruction address has an attribute list
(most addresses won't);

2- If not, it can not be a node entry: hence, return;

3- Sez if there is a node-descriptor object on the attribute
list;

4- If not, return;

5- Compare the node starting address given in the node

descriptor object with the current instruction address to make
sure they coincide.

The longest step in this procedure is step 3, and even that
step is not very long since there usually aren't more than four
or five items on the attribute list of any location. The real
cost of this procedure lies in the inclusion of an attribute list
pointer potentially for every object machine location.

If the chosen approach for detecting a node entry is searching
the list of node definitions to see if there is a node starting
at the current instruction address, then, assuming a binary
search over a list of n node descriptors ordered by their starting

addresses, the average number of comparisons will be on the order
of log n.

2

Each of these three approaches for detecting a node entry
requires the associated checking to be done with every instruction
executed after the last node exit until a new entry is detected.
Thus, the total overhead caused by any one of the three is also
a function of the total number, Q, of such instructions executed.
If we denote by S the ratio of the number of executed object
machine instructions which belong to a node to the total number
of object machine instructions executed, and by 0 the overhead

NE
per instructior caused by the particular approach for node detection,
then the average overhead per instruction caused by the ENTRYP
procedure, without nested nodes, will be 0 (1-S). This formula
NE
means, for example, that if there are large segments of executed

code which do not belong to a node, this may cause a significant
overhead.

TaTe S
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The procedure for detecting the exit from the current node,
again assuming no nested nodes, 1is much simpler and requires a

comparison operation after each instruction in the node. Thus,
if we denote by O the cost of making a comparison, the overhead
NX
for detecting the exit from a node 1s O S.
NX

In addition to detecting entry and exits, there is a cost
for creating an entry in the Node Trace table for each node

executed. Lec us denote that overhead by 0 . IJf the average
NT
number of instructions per node instance is I then this overhead
NI
oo __IS/AN .
NT NI

5.3.2 The Overhead of 1/0 Set Maintenance

Now let us consider the largest component of cost associated
with the Node Mechanism, namely the construction of input-sets
and output sets.

The construction of an input-set involves the following
general steps:

I1- At node entry, allocate space for the set,
I12- After every fetch operation, determine if the fetch
address is already in the input-set or the output-set (i.e. if

it has been fetched or written previously in this node instance),

13- If not, add the address and its contents as an element
to the input set.

The construction of an output-set similarly involves the
following steps:

0l1- At node entry, allocate space for the set,

02- Before each store operation, determine if the store
address is already in the output-set,

03- 1If not, add the address (with an undefined content) as
an element to the set,

04- At exit from the node, fill in the current contents
of all the addresses in the output-set.
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Since, in general, the size of an I/0 set can not bhe predicted
in advance, some decision has to be made as to how space will be
9 allocated. It clearly is wasteful to obtain new space for each
4 element and link it to the rest. There are similar problems
with completely static allocation. The best procedure seems to
be some kind of a compromise between the two. (In DAME, this
is handled by obtaining space in 10-word chunks, each word to
contain an (address, value) pair. Uriused words will contain =1
in the address half. These 10~word chunks are put in a list.
The list~head has one user word which contains the index of the
next slot in the last member of the list.) Let us denote by
IS and IS the everage everhead for creating the list head and
L E
for adding a new element, respectively.

The cost of determining whether or not an address should be
added to an I/0 set (i.e. whether it is a new or an existing
address) depends strongly on the implementation. In DAME, this
is done by using bits 16 and 17 (from the right) of the PDP-10
word representing an =-11 word, to indicate those words which are
: already members of the output set and the input set respectively.
E Hence, the overhead amounts to testing these bits of each word
being accessed, and possibly setting one of them. If we denote
by w, B and B the ratio of the number of distinct operands to

1 2
the number of total operands, the overhead of testing a bit and
the overhead of setting a bit, respectively, tien the overhead
1 of this approach for the input and output sets, per instruction
4 inside a node, is 2m(B +wB ) and per node, it is 2I m(B +wB ).
3 1 2 NI 1 2

Let us now consider the case when the implementation does not
permit this approach (i.e. there are no available bits). Let us
suppose that the "brute force" method of searching the I/0 set
to determine if a given address is in it or not is being used.
Whenever an address is generated, the average number of existing
elements in an I/0 set is wmINI/Z, the number of comparisons

caused by new elements is w2mI /2 and the number of comparisons
NI
caused by old elements is (l-w)wmI /4. Thus, the average total
NI
number of comparisons for constructing the input and the output
s:ts of a node instance using this approach, assuming that the
above parameters are equal for both input and output sets, is:

Z(WZmI /2+(l-w)wmI /4)
NI NI

=wml +(w2mI /2)
NI NI

I Lt s ke b B bl s e e S e i
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Then, the average overhead, 0 , per executed object
I0
machine instruction for constructing I/0 sets is:

0 =(S/I )*(umI +(wimI /2))
10 NI NI NI

=Swm(1l+w/2)

where S and I are as before.
NI

We are now in a position to give an estimate of the average
total overhead, O , per executed object machine instruction:
I

0 =C +(n+2)T +(m+2)(T +T )
I B S GH AH

+0 (1-S)+0 S+0

NE NX 10
where
C = the average cost of emulating one object machins
B
instruction, with no event scheduling or checking for monitor hooks,
n= average number of main memory accesses per OM instruction,
T = the cost of scheduling an event and activating it,
S

m= total number of operands per OM instruction,

it e e B S s

T = overhead of checking for a general hook,

GH
T = overhead of checking for an addressed hook,

AH

0 = overhead per OM instruction of detecting a node entry,
NE

S= ratio of OM instructions telonging to some node to the
total number of executed OM instructions,

0 = overhead per OM instruction of detecting a node exit,
NX
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w= ratio of the number of distinct operands to total
operands generated over the course of the execution,

0 = overhead per executed instruction due to construction
10

of I/0 sets.

5.4 Measurements of the DAME System

In this section, some measurements of the overhead of the
DAME system along the lines outlined above will be presented.
First, a disclaimer note is in order: as mentioned previously,
the minimization of the resource requirements was not a primary
goal in the design and implementation philosophy of the DAME
system and often these goals were neglected in favor of flexibility
in the analysis facilities offered in order that newv and useful

features may be discovered. This philosophy has, in this acthor's
opinion, met its goals. On the other hand, the performance has
been worse than expected. Thus, the real purpose of this section

is to give the reader an idea of what to expect in the way of

the "relative'", rather than "absolute", performance of a DAME-like
system in the various monitoring and analysis tasks on which
measurements are presented. Clearly, the speed of any component

can be increased by better coding or less generality or by the

use of some of the ideas presented in the final section of Chapter 3.

5.4.1 Performance of the PDP-11 Simulator

The most basic observation is that simulation at memory
cycle level via a general-purpose scheduling mechanism degrades
the performance by at least a factor of 3 over emulation, in
which no scheduling is made. In the DAME system, simulation runs
about 3000 times slower and emulation 1000 times slower than a
PDP-11/20. These factors include about a 25% overhead for
checking for hcoks. These figures are based on measurements of
the time charged to the user by the PDP-10 monitor, which includes
supervisory and swapping overhead etc. and have shown a deviation
of up to 15% in both directions.

5.4.2 Node Entrv/Exit Overhead

If input/output sets are not being constructed, the overhead }
for user-defined nodes amounts to 3.2 milliseconds per node ;
instance for entry and exit combined and 1.2 milliseconds per
node instance to create a node trace entry, for a total of
4.4 milliseconds per node instance. 1In the DAME system, these
costs have been found to be only associated with the actual entry
and exit events; the cost of checking for entry and exit with
each instruction is found to be less than the precision of the
measuremnents.




5.4.3 Input/Output Set Overhead

When I/0 sets are being used, there is an added overhead
at node entry and exit, of about 40 milliseconds each, for
creating and closing the I/0 sets. 1In addition, the overhead
of testing each generated address to see if it should be added
to the input or the output set amounts to about 1.3 millisecond
per fetched or stored operand, or about 6 milliseconds per OM

instruction in the node instance. Thus, for a node instance of
5 instructions, the total overhead for 1/0 set creation and main-
tenance would be (2*%40)+(6*5)=110 milliseconds. If we assume

that 40 percent of all the executed instructions belong to some
node and an average of 5 instructions per node instance, the

total overhead for nodes and I/0 sets would be 11.5 ms per executed
instruction.

For a PDP-11 simulator with a slow-up factor of 3000, assuming
an average of 3.5 microseconds of real-time per instruction,
this amounts to an additional delay factor of 1.8.
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CHAPTER 6

HIGH-LEVEL LANGUAGES FOR EXECUTION ANALYSIS

One of major shortcomings of the DAME System as described
in Chapter 3 is that its lanpuage is too primitive for making
arithmetic calculations and certain types of monitoring opera-

tions. This fact was not altogether unexpected. One reason for
choosing this level in the design was the desire to avoid inter-
preting by software a complex syntax at run-time. A second reason

was the anticipation of the possibility that any proposed hard-
ware or microcoded implementation of a DAME-like facility might
employ an instruction set very similar to this one. Hence an
effort was made to keep a major part of the instruction set simple
enough to be implemented by hardware or, more probably, by micro-
code. However certain instructions are still too complex and
would probably be best implemented by software (e.g. Playback
Values, Replav Node Instance, Type Object instructions).

In this chapter, I would like to discuss some issues in the
design of high-level languaees for execution monitoring and
analysis. The emphasis will be on features which are particularly
relevant to this application area.

The general structure of this chapter is as follows: first,
a number of issues related to the human engineering aspects of
interactive systems and languages are discussed as they apply
to our problem. In particular, trade-offs between simplicity E
and power and between terseness and "rememberability" (ease of ;
use) arce outlined.

Second, the major data elements with which a high-level
execution analysis lanpuage must deal and the appropriate forms
of access to each of these data elements are taken up.

Finally, the problem of "continuousliy~evaluated" expressions
is discussed. In particular, appropriate control structures
for the continuous evaluation of a set of predicates and techni-
ques for efficient implementation, as discussed by D. Fisher in
this thesis [Fi 701, are presented and evaluated.

e i T . e R
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6.1 Some Human Engineering Issues

Since most of the programming in the analysis level will be
done by the analyst at the terminal, almost in real-time, without
laboring over a page of analysis code for several hours, certain
properties of the total interactive system become very crucial.
The issues I would like to discuss here are those related to
this aspect of the design of the language of the analysis facility.

Due to the hands-on, '"quasi-real-time" nature of the analysis
programming process, it is clear that the language must be terse
and conducive to error-free programming. An error in an analysisg
procedure can be "doubly costly" in the sense that it not only
causes A wrong computation but also unnecessarv periods of
(possibly simulated) execution by the object machine which it
controls. Especially the control structure of the analysis lan-
guage is an important factor, because of possibhle interaction
between the control flow ia the analysis program and the object
program. Another complicating factor is that several analysis
actions may have been independently scheduled to be activated
at the same contact point. Hence, whenever these actions are
sensitive to the order in which they are executed, the user must
have explicit knowledge of that order ani wmust be able to modify
it. In a list-oriented system such as DAMFE, this is extremely
easy. Here, the flexibility of a loosely structured list must
be weighed against the execution efficiency of a more optimized,
tighter representation.

We have already noted the need for terseness, simplicity of

syntax and conduciveness to error-free programming. These
objectives can conflict with each other when any one of them is
pursued with excessive zeal. For example, the goal of terseness

can lead to a design where the user has to remember a large

number of special symbols as operatcrs or control characters.
Over-emphasis on simplicity of syntax can lead to either weakening
of the power of the language (as one goes in the general direction
of the Turing tar pit) or to the definition of many special
symbols which have to be remembered. An interesting case is
presented by the syntax of LISP. It neither requires memorizing

a large number of special symbols, nor can the language said

to be too primitive. 1Its failing however, as users of LISP will
painfully testify, is the extreme reliance on balanced and properly
matched sequences of parentheses, which is one of the most fre-
quent sources of simple errors in LISP programming. Another
virtue of LISP is the fact that both program text and data use the
same basic representatior: namely, list structures. This feature
facilitates operations on programs as data, e.g. to parse them,
generate them or delete them. These operations are more difficult
in languages whcre the syntactic elements of the language can not

T P T Iy




be represented in one of the dominant data types or data struc-
tures defined in the language (it must be noted that most primitive
machine languages do satisfy this requirement). For these reasons,
a list-oriented syntax was selected for DAME. While there is

much room for improvement in it, the chosen syntax has proved
remarkably flexible and resilient under demands to accomodate more
and more complex instruction forms. A eood example of this is

the Search List(SLIST) instruction. (See Section 3.6.1 or

Appendix A: Introduction to DAME for a description of this instruc-
tion).

I would now like to consider the special-purpose data struc-
tures with which high-level execution analysis lanpuages must
deal (i.e. structures unique to execution ana.yvsis) and the access
methods which thev must provide.

6.2 High-Level Data Access in Execution Analvsis

The set of major data elements with which an execution analv-

sis facility must deal were discussed in Chapter 2, and we summa-
rize those elements here:

(i) The external state of the Object Machine
(i.e. main memory and user-addressable registers),

(idi) Some parts of the current internal state of the 0OM,
(iii) Possibly, user program text and symbol table,

(iv) Structural information about the user program
(e.g. its nodes),

(v) Empirical data associated with each component of the

structure (e.g. I/0 sets of node instances, data created by user
at run-time),

(vi) Execution history,
(vii) Analysis program text,

(viii) Representation of the association between analysis
actions and contact points,

(ix) Entities holding intermediate results of analysis A
computations. g

I shall now discuss appropriate forms of high-level access
to each of these elements.

(i) The external state elements should be accessible bv
explicit addressing, e.g. corel[2000], by computed addresses,
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e.g. core[A+B], through Object Machine pointers (e.g. corelA+
core[BJ]), as well as in blocks (e.g. core[A:B] « 0, wnere A:B
denotes 'A to B', or core[100:200] <« coref300:4001). User-
addressable registers should be accessible by their mnemonic
names used in the assembly language as well as by their memory
addresses where such addresses exist.

(ii) Those elements of the internal state of the object
machine which contain the various fields of the current instruction
(e.g. opcode, source operand, destination operation) should be
accessible by suitable mnemonics.

(1ii) Access to user program text makes possible such things
as building a text editor/incremental assembler into the analysis
facility so that corrections to user programs mnay be made as
they are discovered, rather than saved until the end and made in
a seperate operation. The availability of the user symbol table
clearly facilitates communication between the user and the
analysis facility by permitting the use of the symbols appearing
in the user program. One or both of these fFacilities are avail-

able in several systems though not in DAME (e.g. See Lampson [La 651,

Evans and Darley [ED 65]. For a comparative discussion of various
techniques related to this topic, see Evans and Darley [ED 661.)

(iv) Structural information about the user program describes
the components of that program, as they have been defined by
tlie user or determined by the system for the purposes of analysis,
and the relationships between the components (e.g. predecessor/
successor, outer/inner node relations). This can be in tabular
form or in the form of '"descriptor objects" (as in DAME) which
can be manipulated by list-processing functions. In any case,
it should be possible to reference these descriptions explicitly
(e.g. "node A" or "the node starting at location 10000"), by a

computed address (e.g. 'the node starting at the location pointed
by contents of location 10000 + contents of register 3"), or as
elements of a list or table satisfying a predicate (e.g. "all

nodes between 10000 and 12000"). Better yet, the user can be
given a facility for stepping through the component descriptions
in a systematic way and computing arbitrary functions using the
various fields within each description, with the ability to exit
the search at any point or have it terminated automatically when
the end of the table or list is reached.

(v) Empirical data generated during the execution of the
user program should be linked with the phase of the execution to
which they relate and they should be accessible by the user through
that link. An example of such data is the input/output sets
of a node instance in DAME. These sets are accessible directly
via pointers contained in the entry for the associated node
instance in the node trace table, as well as through the chrono-
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loeical list of pointers to a node's I/0 sets, pointed by the
node object itself. This process of linking empirical data

with the associated portion of the execution history can be

done by the Analysis Facility for specific types of data which
the system knows about (e.g. 1/0 sets): but the user should
also have a way of doing the same thing for arbitrary data.

“n example of the latter case is where the user wants to attach
to each node a list of the addresses of every unique successor
of that node in an analysis of control flow. This reaguires, for
example, that whenever a new node is entered, the user be able
to locate and search the current members of the successor list
of the last node for the address of the new one, and 1if it is
not found, be able to add it there. Such a mechanism mayv be
implemented in terms of a more general associative search facility,
such as LEAP in SAIL (See Feldman and Rovner [FP 691). This

associative search facility would permit LEAP-like statements
such as:

FOREACH X,Y,Z SUCH THAT <condition> AND
<condition> ... DO <statement>:

where X, Y and Z may be nodes, node instances, I/0 sets of any
of the other defined object types in the system. (Note that
one would probably prefer terse, single-character symbeols for
the FOREACH, SUCH THAT and AND in an interactive lanpuage).

(vi) The execution historv information represents essentially
a variable-level trace, where the precise level depends on the
structure which has been defined over the user program. Thus,
the time grain and the volume of collected data is under user
control. In addition to the normal maintenance by the Analvsis
Facility over the course of the execution, this data will also
be accessed by user analysis routines. The form of the access
should be similar to the preceding case; e.g. applyving a functicn
t to a sequence of elements in the execution history which satisfy
a user predicate p. The function f and the predicate p may
involve both the history information itself (e.g. the address
of the k nodes executed prior to the last execution of node A)
or the empirical data dynamically associated with it, as described
in (v). For this purpose, the analysis language should have a
facility for searching over the execution history events, backward

or forward in time, and applying predicates to each event encoun-
tered.

In the last two paragraphs, two distinct ways for performing
searches over execution historv ard associated empirical data
have been proposed. It is beneficial to recap them at this point;
one way is to build into the language high-level associative
search facilities such as those of LEAP, and the other is to give

fraiir
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i the user lower-level mechanisms such as the Search List instruction
r in DAME, which systematically give the user the next element of

the list being searched and test to see if the user wishes to
terminate the search or not. If the first facility is provided,
then clearly the language must possess a fairly sophisticated
list-search mechanism. In such a case, the system might as well
give the user the second, lower-level ahility too, since this

would be at almost no additional rost to the system and there

will probably be a number of cases where this lower-level ability
will be much more useful or efficient for the user.

Casme o A o biba s A N

(vii) The analysis program text and possibly its internal
representation will be of interest to the user in such cases as
when he wants to see the texts of the actions associated with a
particular type of access to a location or to edit or patch an
existine analysis routine. Thus, it is important that the analysis
facility contain an on-line editor for analysis text which can
also be invoked under program control.

T N EE—— . 4 e e e - ¥,

(viii) In addition to accessing the text of analyvsis routines,
the user should be able to access a list of the names of analysis
actions asscociated with a particular address or contact point.

This is important, for example, in avoiding duplicate entries

for the same analysis routine or in determining in what order the
actions associzted with an address or contact point should be
arranged, e.g. to optimize the set of analysis actions.

Clearly, if the syntax of the analysis language and the form
of these associations fall into one of the dominant data types
handled by the analysis language, very little additional machinery
will be mecessary to give the user the abilities mentioned above.

(ix) 1In the course of analysis computations, the user will
often want to hold temporary results in local (or transient)
variables. Depending on the kinds of entities manipulated in the
computation (e.g. lists, arrays, strings), the user will need
to create, and later delete, entities of appropriate type for
this purpose. In a highly modularized style of programming, such
as we expect analysis programming to be, it is very desirable
to have local variables, if for no other reason than the very
practical one that whenever one defines a new variable, one
would like to be sure that one is not clobbering an already existing
variable with the same name, which may have been defined by any
one of the number of routines used in the computation. Thus,
through the use of local variables, painful searches of all the
used analysis routines for each new ldentifier to be created can
be eliminated.



T P T N T T e il L s e T sl i k) A

o2

b 3 Continuous Evaluation ot Expressions

One of the main functions of a high-level execution analysis
Lanpuage should be to facilitate the description of execution
events which the user wishes to watceh for. These events can
penerally be expressed as a change in the value of a predicate
from FALSE to TRUE. Such a predicate can involve arbitrary
functions over the data elements discussed in the previous section.
The continuous monitoring of predicates was discussced by D.Fisher
in his thesis [Fi 701. In this and the next section, | discuss
the basic procedure for implementing continuously evaluated expres-
sions as described by Fisher, as well as some points not directly
addressed by him.

I shall start bv discussing the overall control flow in the
continuous evaluation of a set of predicates, deferring the dis-
cussion of efficient techniques for the continuous evaluation
of individual predicates until the next section.

Nermally, when one of these events takes place (i.e. the
value of one of the monitored predicates becomes TRUE), some
action is taken. Then the question arises: "Should the sare
predicate be now re-evaluated, because the action may have chanped
its value again?'" tore generally, the question is: '"What should
be the control structure for the continuous evaluation of a set
of predicates?'" I shall denote by S:-predicate - - -action> the
specification § that -action  has to be executed when -predicate-
becomes TRUE. Consider .or example the following specification:

A:(b~0) - (b <« b+t

where b is an analvsis system (not obiect machine) variable.
This specification will cause no changes in the state of the
analvsis syvstem until b exceeds zero. But after the first time
the predicate is found to be TRUE, what happens to the system
depends on whether or not the predicate is evaluated again imme-
diately fellowing the action b « b+l. If it is, clearly the .
system will fall into an infinite loop (infinite for all practical ]
purposes, unless this is avoided in some special cases by a quirk
in the number representation in the system, ¢.g. adding one to
the largest possible positive integer results in zero, or some
similar event). This is clearlyv a verv undesirable situation.

If the predicate is not re-evaluated, the infinite loop does

not result. However, in order to accomodate the case where the
user may wish to continue the ''predicate evaluation-action" loop
until the predicate returns FALSE, a WHILE <predicate> DO (or

an equivalent construct) should be available.




We still have not answered our general question regarding
the control structure of the predicate evaluation mechanism
in full. We have determined that changes to analysis system
variables should not cause a re-evaluation of the predicates.
How about changes to the object machine state by analysis actions
-- should these changes cause a re-evaluation just as if the
change were caused by the execution of the object program itself?
If so, we can again have the same infinite loop problem. On the
other hand, by ruling this out, we are ruling out an important
class of functions which the analysis facility should be able
to perform: namely, faithful mimicking, by analyvsis code, of
the effects of a piece of object code. For example, a predicate
which tests the contents of object machine location X should be
able to be activated whether the contents of X is changed by the
user program or a model (in the language of the analysis facilitv)
of that program. Thus, this seems to be a desirable ability to
have. However, there are some other points also to be considered:
How do we handle changes to several variables? How do we handle
multiple changes to the same variable in the action associated
with a single predicate?

Considering the multiplicity of requirements that a high-level
rule for this purpose would have to satisfy, the best policy
seems to be to let the user decide what he wants to do, i.e.
give him the ability to test if there are any predicates involving
a particular OM variable and, if so, to evaluate those predicates
and take any associated actions whenever he chooses to do so.
It may be desirable to have a high-level operator to do all of
this for a given symbol, e.g. an operator. CHECK(X), may serve
this purpose, as in:

[17:(A»5) =~ (B « A;CHECK(B):A « C:C ~ D;CHECK(C)):
where we have applied CHECK to B and C but not to A.

One possible model for this control structure appears to Le
that of Markov Algorithms. In this model, predicate evaluation
is halted after the first predicate with a value of TRUE has
been found and the associated action has been taken. Following
the next change in the object machine state, predicate evaluation
starts again from the top, i.e. with the first predicate.

A second possible model 1s one in which every predicate is
evaluated with every change in object machine state and the actions
associated with every predicate whose value is TRUE is executed,
in static order.

Either model is feasible for this purpose. ltowever, it is

clear that the evaluation of even one (arbitrarily complex)
predicate after every change in the object machine state can be
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unbearably expensive, unless some very efficient techniques are
found to perform the evaluation. 1In fact, unless such techniques

are found, the ideas discussed so far in this section just could
not be implemented in a useful way, Thus, while thesge techniques
may seem like "imwlementation details" to some, they are in fact

of the essence, since without them these ideas would not be usable.

6.4 Implementation of Continuously Evaluated Expressions

The first,
connection, is ¢t

iable chanpes value, to
Predicates in which it appears, in the proper
order. Thus, for example, in the set of (<predicate> - <action>)
pairs:

[lJ:((XvS)&((Y+Z)<O)) =
1
[2]:((X<5)&(W<Y)) » £ ;

2

the left-hand sides of [1] and [2] would b
modification of ¥ or Y. [1] w

modification of X, and [2] wit

e evaluated with each
ould also be evaluated with each
h each modification of W.

This implementation C
that whenever the va
P is changed,

P. First we can evaluate those terms in
and only if one of those ter
any more evaluations.

an be further refined,

by otserving
lue of a variable v

appearing in a predicate
toe re-evaluate all of

P in which v appears;
ms changes value do we need to make

This suggests a tree representation of
the predicate and a generalization of the above evaluation rule

to one where a node in level L 1inp the tree is re-evaluated if
and only if any of jts immediate descendants (in level L+1) is
modified.

A further refinement, sugpested by D. Fisher [Fi 701, deals
with the condition vhere the same term 0ccurs more than once in
a subtree. Consider for example the expression

((X+Y)/(X+Z))*(X+Y+Z)

whose tree representation,

following usual operator precedence
rules, is given beloy.

s

X
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d =d *d

d =d :d d =d +Z
3 1 2 5 4
d =X+Y d =X+Z d =X+Y \
1 2 4 ’ \ \\\
A
X Y X Z X Y Z

Here, d 's are dummy variables introduced to hold the current

i

value of each subexpression. Let us suppose that the value of X
has just changed and that we wish to propagate that change through

the whole expression. If we follow the rule given above in a
depth-first, left~to-right fashion, we proceed as follows:

At level 0, we substitute the new value of X into the leftmost

instance of X. We evaluate d wusing the old value of Y. If
1

d changes, we evaluate d wusing the old value of d . If d

1 3 2 3
changes, we evaluate d wusing the old value of d . Then, going

6 5

back to level 0, we substitute the new value of X into the
expression for d and evaluate it using the old value of Z; if

2
t-re value of d changes, we evaluate d again. If d changes,
2 3 3
we evaluate d again using the old value of d . Then, after
6 5

similarly proceeding up the right subtree with the new value of
X, we evaluate d a third time.
6
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Thus, in this expression, we have evaluated one subexpression,

1 d , twice and another, d , three times. In general, if a strict
g 3 6
depth-first search is fellowed, then for each new value assigned
to a variable X, every node e in the evaluation tree will be
evalnated n (X) times, where n (X)=number of occurrences of X

e e
in node e.

Clearly, the reason for the unneccessary computations is
the fact that at each node we do not wait for the entire sub-tree
under the node to be evaluated. Thus, a breadth-first search
for terms to be evaluated, where whenever the value of a term
changes as a resuvlt of re-evaluation, a flag bit associated with
its immediate ancestor is turned on and its own flag bit is
turned off, would eliminate the unnecessary evaluations. Thus,
in the preceding example, initially all flags would be turned
off. Then, when the value of X changed, the flag bits of the
X's in level 0 would be turned on. The new value of ¥ will be
plugged into each of its occurrences in level 0, also turning on
the flags of d , d and d (since each is an immediate ancestor

1 2 4
of X in level 0). The evaluation would then move to level 1.
If the value of either d or d 1is changed, the flag of d would
1 2 2
be turned on. Similarly, if the value of d changed, the flag
4
of d would be turned on. The evaluation would stop either after
5
the root node has been evaluated or when no more flag bits which
have been turned on can be found.

This breadth-first search (described by Fisher) thus avoids
the unnecessary computations of the earlier depth-first procedure
by using an additional bit of information associated with each
node of the tree to guide itself to those nodes whose values
could possibly change due to the change in one of their ancestors.

} Other types of optimizations, such as recognition of common
1 subexpressions (e.g. d and d 1in above example), could help to
1 4
further reduce the amount of computation involved.

It must be noted that our ability to determine the leaf
nodes of the execution tree which are affected by the change in
the value of a variable, X in the above example, depended on our
ability to statically locate all the occurrences of that variable E
in the whole expression. When this is not possible or practical,
the above procedure can not be used. Examples of such a case
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are function calls or coroutine jumps. In the case of function
calls, if the name of the function is staticallv fixed, e.g.
f(X), then one can conceivably locate, at compile-time, the text
of the function and see if it uses the variable whose value just
changed. If the function call is to a dynamically computed
address, this has to be done at run-time, introducing substantial
overhead.

Another example of a case where it may be impossible to
identify all possible occurrences of a term is accesses to a
dynamically computed address. Any term involving the contents
of a dynamically computed address should be checked after a
change in the value of any object machine variable to see if
the dynamically computed address is equal to that of the variable
whose value just changed. Alternately, instead of computing
the dynamic address with each change in the object machine state,
that address itself could be maintained by the continucus evalua-
tion techniques described above.

This last example illustrates a cascaded two-level continucuslv-

evaluated expression and provides an example of hierarchical
systems of such expressions as envisioned by Fisher.
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CHAPTER 7

EXECUTION ANALYSIS FACILITIES FOR ALGOL-LIKE LANGUAGES

My only hands-on experience with the implementation of the

presented ideas on monitoring and modelling has been with programs

written at the level of the dominant, contemporary central pro-

cessor instruction set. In this chapter, I would like to consider

the translation of these ideas to the class of lanpguages which
has come to be called ALGOL-like languages, which are a subset
of "problem-oriented" or "procedural" languages.

It must be emphasized that the intent of this chapter 1is
not to present a design specification for execution analysis
facilities for any specific high-level language, but to explore
the basic problem areas uniquely associated with this area. Hence
the level of detail will be much less than that of Chapter 3 in
which the design of a particular prototype system was discussed;
but hopefully enough ground will be covered to provide a starting
base for the researcher or designer interested in this area.

7.1 The Added Complexity of High-level Languages

In some sense, since a languape and its abstract processor,

which may be called its "machine", are two sides of the same coin,

there should be no conceptual difficulty in translating the

techniques we have discussed in the preceding chapters for "machine

language" to any language for which a machine exists or can be

built. The only difference is that the machines for ALGOL-1like
languages are much more complex than the machines considered so
far. Hence, some things which were very easy to handle before,
now become difficult. Let us consider the added complexity in

three narts:

1- Syntactic complexity,
2- Semantic complexity,
3- Language implementation complexity.

I shall now proceed much like in Chapters 2and 3 to discuss

these areas first in abstraction, then in reference to a particular

language.
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7.1.1 On Increased Syntactic Complexity

The increased syntactic complexity arises from the fact that
the analysis facilitv has to be able to understand (parse) each
statement in the source program at run-time. For example, one
would like to be able to say, at run time : "Trace on the TTY
the branch taken by everv IF statement', or "type the contents
of X and Y[1,2] at entry and exit from any loop in the routine
R" or "for every 'else clause' which is executed, type the values
of all the variables in the Boolean expression in the associated
'if clause'", or "type the values of the operands of all floatiny
point divide operations, except in routine R".

7.1.2 On Increased Semantic Complexity

An example of added semantic complexity is dealing with
scope rules and storage allocation. When specifying a monitoring
action on a local variable, one has to gqualifv the variable name
with an identification of the block in which it is declared as
a local variable and in which the monitoring action is to be

applicable. Further, if the block is executed recursively, then
one also has to specify which "generations" or "incarnations"
of the variable one is referring to. Similarly, references to

the actual parameters of a routine, "own" variables, values re-
turned by expressions etc. must be carefully qualified to ensure
reference to the correct data element.

Another example of semantic complexity with some high-level
languages is the interpretation of data types; e.g. checking
the data types of the actual parameters of a routine inside the
routine.

7.1.3 On Complexity due to Language Implementation Techniques

Clearly, an important question which cemes up when one tries
to envision how such an analysis facility might be implemented
is whether the source language is to be interpreted or compiled.
A form of compilation called "incremental compilation"”, in which
each statement is compiled as independently of the rest of the
program as possible and and control is returned to a run-time
monitor after each statemeut, is a convenient compromise which
permits us to reap some of the benefits of both the efficiency
of compiled code and the flexibility of interpretation.

To be able to recognize at run-tiume the code corresponding
to the various parts of a source statement in a compiled program
(compiled by a non-optimizing compiler), requires some kind of
intermediate-level representation of the structure of the object
program. This representation may be a directed graph produced
at compilation time. Given such a representation of the source

g e et 5
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program at run-time, the analysis ftacility can locate the relevant

parts of the object Program and arrange for appropriate types

of trapping or supervisor call operations when those parts are
accessed. Clearly, the symbol table must dlso be available at
run-time. This approach also requires that the structural re-
presentation and the symbol table for each external (e.g. library)
routine that is used must also be available at run-time.

Cn the other hand, a "pure interpreter", which essentially
re-parses each statement every time it is executed, would not
need such an intermediate structural representation, at least
in theory, since the effort to parse the program to insert the
requiced hooks is negligible compared to the continvous parsing
«s part of the interpretive execution. It will of course have

the symbol table available which it needs itself during the execu-
tion.

Between the extremes of pure compilation and pure interpre-

tation lies a spectrum of modes of execution involving varying
degrees of compiled and interpretive representation. In existing
languages, these extremens are exemplified, on the pure compilatdion
end, by BLISS, which requires no run-time packages (except 1/0,
which really isn't a part of the lanpuapge) and, on the pure inter-
pretation end, by APL, whose right-to-left scanning direction and
precedence rule come very close to making it a "pust-fix operator"
language. In between, 1lie languages (more accurately, their
current implementations) like PL/I1, which requires an elaborate

run-time library although it is a compiler language, and LISP which
can intermix compiled and interpretive execution.

In this multi-dimensional space,
of no significantly helpful metric for
I shall pick a much smaller subspace in the hope of discussing
its dimensions in a somewhat more systematic way. That is the
space of purely-interpreted languages. One reason for this choice
is that it is conceivable to use an interpreter for any language
for program development and testing purposes (or this could be
an incremental, debuggine compiler). Secondly, this choice permits
us to avoid the questions related to code generation and the asso-
ciated nappings between the source code and the object code.

Thus we can concentrate on the functional requirements (in the
spirit of Chapter 2) rather than implementation techniques. Thus
in the next section, we apply the functional requirements outlined
in Chapter 2 and the concepts used in their realization in the
DAME system, to the specification of execution analysis facilities

for which I can conceive
the purposes of this research,

for interpreter-based languages.
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7.2 Execution Analysis Facilities for Interpreter-based

Lanpuages

Let us recall the classes of required capahilities we estab-
lished in Chapter 2 for a general purpose execution analysis
facility:

1- The information to which the analysis facility has dccess.

2- The points in the execution cycle at which it can gain
control,

3- 1Its instruction set,
4~ External appearance and miscellaneous useful features.

The information to which the analysis facility should have
access, can be considered in two subclasses:

(i) Information about the execution history of the particular
program,

(ii) Information, some may call it "intelligence', about
the syntax and the semantics of the source language, as discussed
earlier in this section.

Subclass (i) is generically not very different from the
corresponding requirement for low-level machine languages; namely,
the information needed to efficiently reconstruct any past machine
state. In this case, of course, the "machine" is that defined
by the source language.

In order to give more concrete content to what is meant by
a "machine state" in the case of a high-level machine, let us
divide, as we did before, the machine state into two parts: the
"state of the memory", i.e. the values of all the variables defined
so far, and the "current instruction". The question now becomes:
"What is an instruction in a high-level machine?". The questicn
arises because in low-level machine languages, an instruction was
an easily identifiable unit, which performed a very small number
of, sometimes only one, indivisible operations, usually invelving
up to three or four operands, includinp side-effects. Further,
what is called a "machine language program' consisted of a sequence
of machine instructions. Hence the machine instruction turned
out to be a convenient unit for denoting state changes. Clearly,
what is usually called a "statement'" in a high-level language is
not a convenient unit, since it can be arbitrarily long and complex.
Thus, it is reasonable to propose the execution of an "operator"
as the smallest unit in such a language. However, the "operators"

S
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I have in mind here are a super-set of the operators usually

defined in a syntactic description of the language. For example,
when in FORTRAN one writes

IF(X-Y)10,20,30

the selection of the appropriate case as a result of evaluation

of (X-Y) must also be regarded as an operator as well as the
subtraction. Similarly, the passing of parameters in a subroutine
call must also qualify as an operator. Thus, we are led to the
intuitive concept of the set of operators in a given source
language S as "the set of denotations for the largest operations
in § whose effect is indivisible with respect to the semantics

of 8". This is a very vague and informal definition, in which

I rely on the intuitive meanings of all the terms used. The phrase
"indivisible with respect to the semantics of S" requires some
more elaboration however. Loosely, what is meant by this is that
the effect on the machine state of an "operator'" can not be broken
down into smaller units such that other operators can be inserted

between those units. These correspond, in a conventional machine,
to those periods in the execution cycle in which the processor i
is uninterruptible. They also represent, from a user's point of j

view, the finest degree of detail which can appear in a user re- ]
quest for information. ;

7.3 A Mini Demonstration Language i

For the sake of a more concrete illustration and also to
face some of the problems which arise in the application of these
ideas, I shall define a very small, hypothetical member of the 3
ALGOL family of languages and use it as a vehicle to explore these
ideas further. I have decided to take this approach rather than
pick a particular implementation of an existing language since
the latter would very likely be a much larger task. In our hypothe-
tical language, we would like the following properties.

R

g et

(i) It should capture the essence of the syntax and semantics
of ALGOL-like languages, i.e. features common to ALGOL 60, PL/I,

BLISS, etc. These include ALGOL-like syntax, block structure, :
recursion. !

Sl

(i1) 1Its syntax should be definable by a small grammar (say,
about 2 pages),

(iii) 1Its semantics, similarly, should be easily describable,
even if only informally.
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The mini-language to be used here was obtained by chopping
away a major part of BLISS/10, in fact by removing a great deal
of its unique and interesting parts (such as the uniform inter-
pretation of names as addresses, the contents operators, the
concept of "structures" etc.), retaining only a small portion
which looks sufficiently like ALGOL or PL/I etc. I shall refer
to this language as the Mini Demonstration Language (MDL). The
syntax of MDL is given in an appendix. For a description of
its semantics, I refer the reader to the BLISS/10 manual [WU 711.

7.3.1 Information Accessible by the MDL Analysis Facility

The outline given below follows the one given in Section 6.2:

(i) The external state of the MDL machine, i.e. the

contents of every variable and address directly accessible by
the MDL program,

(ii) Parts of the internal state of the MDL machine con-
taining the components of the current expression being evaluated,

(iii) The text of the MDL program,

(iv) Information about the structure defined over the user

program for purposes of analysis (which may not always coincide
with the syntactic structure),

(v) Empirical data associated with each component of the
structure, collected during execution,

(vi) Control flow history,
(vii) The text of the analysis program,

(viii) The list of analysis actions associated with each
contact point,

(ix) Meta-variables holding intermediate results in analysis
computations.

Item (i), access to the MDL variables, does not require any
more elaboration. Item (ii) and an important extension is dis-
cussed in detail in a succeeding subsection. Items (iii) and (vii),
namely access to the texts of MDI programs and analysis programs
are discussed together in a succeeding section. Items (iv), (v),
(vi) and (viii) are discussed together in the next subsection.

Item (ix) is discussed in the section on data types for the analysis
language.

e A e S o



7.3.1.1 Representation and Accessing of MDL Execution

Historz

This class of information consists basically of control flow
history, data flow history and a mapping between these two his-
tories,. I will be recalled that in thn DAME system this took the
form of a node trace table containing node instance descriptors,
each of which in turn contained pointers to the associated node
otject and input/output sets, as well as certain other dynamic
data. Clearly, the key concepts which motivated this implemen-
tation are those of nodes, node instances and input/output sets.
Given a particular set of nodes, the concepts of node instances,
input/output sets and an execution history structured in the above
manner are directly transportable to MDL. The rules for defining
nodes, however, are not as sirple as in the case of low-level
machine language, where the only requirement was that each node
have a unique entry point and a unique exit pcint. In MDL, since
there is no good analogue of a "machine instruction", we must
find a "unit of execution" (VOE), which will in fact be the smallest
syntactic construct which can be designated as a node.

The expression-orientation of MDL Suggests a natural candidate
for designation as a UOE: the simplest expressions in the lan-
guage. These are: a name or a decimal integer. However, to
these we must add an element which can act as a unit of computa-
tion: namely, expressions involving a single "operator" which
can be any one of the arithmetic or Boolean operators, relations,
IF-THEN, IF-THEN-ELSE, SELECT-OF-NSET, EXIT, RETURN, the indexing
operator [], the routine call, WHILE-DO and INCR-FROM-TO-BY-DO.
Clearly, since only a single operator is to be involved, the two
latter loop operators can only appear in degenerate form; they
either lorp zero times or an infinite number of times or they
compute a value already given as an operand in the expression,
€.g. INCR I FROM J TO K DO Z or INCR I FROM J TO K DO J etc..
(These loop expressions, when used as UNE's, always return -1

according to the semantics of MDL and BLISS since no EXIT operator
can be involved.)

Given the above basic definition for the UOE, the extension
to the general definition of a node is very natural: namely, any
expression sequence in the language having a unique entry point
and a unique exit Point. This corresponds in the syntactic specifi-
cation of MDL to the non-terminal "expression sequence'", with
the requirement that 1t not contain any escape-expressions except
possibly at the end of the node. This selection is in harmony
with the intuitive requirement that node definitions should be
compatible with the scopes of routines and blocks; it forces the
satisfaction of that requirement Autcmatically.
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In adaptine the concept of input/output sets to higher-level
languages, there are certain issues with respect to the represen-
tation of the elements of input/output sets which must be resolved.
i I shall only sketch some solutions to these issues here since
A they do not seem to be major problems.

One issue is the representation of local variables in I/0

sets. Consider, for example, the following MDL code and the defined
nodes N1 and N2:

% Routine R=begin

F local A,B;

! N1 A« Cl[11+42;

- N2 ClA}l « £(A,B)
] end;

The I/0 sets of N1 would look like:

I =0(c(1),v),(plv 1,v )]
N1 1 2 3

0 =[(R.A,V ),(R.B,V )]
N1 2 4

The I/0 sets of N would look like:
2

I =[(R,A,V ),(R,B,V )]
N2 2 4

0 =[(C[R.A],V )],
N2 5

Here, we have denoted by Vv , i=1,...,5, the value of C[1],
i

Cl1j+2, Dlcl1]+2] and DLC[1]1+23+"% in N1, and £(A,B) in N2, respec-
tively. We have also assumed that the function f does not
reference any non-local variables. To denote the use of the
local variables A and B, we have used the qualified form R.A and
R.B where R is the name of the routine in which they are declared.
To qualify local variables which are declared in the inner blocks
of a routine, nne could employ a block-numbering scheme similar
to the one used by some Algol compilers. 1In such a scheme, a
qualifying index is added for each static level and blocks in the

same static level are numbered sequentially. For example, in the
skeletal code:

ames




Routine 5= begin
local A;

begin
local a,B:

end:

begin
local A:

begin
local B;

end
end
end;

the local variables could be represented as: R.A, R.1.A, R.1.B.
F.2.A, R.2.1.B. However, as the number of levels increases,
this notation quickly becomes cumbersome. To overcome this, at
the expense of the loss of some information in the notation, we
can abbreviate the indices by using only one index which is the
ordinal number of the block~-head where tha variable 1is declared,
without any reference to static levels.

we would have: R.1.A, R.2.A, R.2.B, R.3.A, R.4.B, It is clear
that while some information 1s lost, i.e. static level information,
no ambiguity arises from the use of this latter representation.

Similar, but less problematic issues arise with respect to
other non-global variables, e.g. parameter formals, own variables.

These can also be resolved by the use of a qualifying mechanism
such as above.

Since recursive routine calls are permitted in MDL,
qualifying mechanism must be

different recursive incarnati
locals.

another
introduced to distinguish among

ons of the same routine and their

Thus, in the above example,

=
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7.3.1.2 Access to the Internal State and
Generic References to Expression Sequences

An important facility that an analysis facility for a high=~

level language must offer is one which permits the user to say
something like:

"If I ever do X, then do <action>"

where X is a partial syntactic specification of an expression

Sequence. For example, X may be: '<name> « <name>+1"', which
would mean that <action> will be performed whenever the MDL machine
evaluates an expression whose syntactic form fits the given spe-
cification. In such specifications, the permitted non-terminals
and their syntactic definitions must be those given in the syntactic
definition of the language, or they must be specified formally
somewhere (e.g. user manual) accessible by the user. The user
may also be given a device for new non-terminals to abbreviate
Possibly long syntactic forms.
E.g.
"Define <sum-terms> » <pnames> < <e>+<e>;
Define <prod.terms> » <name> <« <e>kca>;
Define <sum-of-products> + <name» <

<prod.term>+<prod.term>;
Define <prod.-of-sums> > <name> <

<sum-term>*<sum-term>;

If T ever do <sum-of-products> or <prod.-of-sums> then do... "
Such a facility should also permit

symbols and reserved symbols with specia

indicate relations between values of non

the use of terminal
1 meanings, e.g. to
-~terminals. For example:

"If I ever do 'X « <name>$1l+<name>$2*<name>$1"'
then do <action:"

would trigger <action> whenever a value computed by adding the

product of the values of two variables to the value of one of
them is assigned to X.

An extension to the facility for defining new non-terminals
leads us to the notion of "templates", which contain "holes" or
formal parameters. For example, one could write:

"Define template T(X,Y,Z) > '"if ¥ then Y else 4ue

If I ever do T('A>B',"f(A)'",'£(B)') then do...:

If I ever do T('(C+5)<0',<e>,<escapeexpression>)

then do...

P RPaI
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i These definitions would then cause the system to watch for
: the expression 'if A>B then f(A) else f(B)' and for expressions
of the form 'if (C+5<0) then <e> else <escapeexpression>', and

take the specified actions upon their occurrence.

. 7.3.1.3 Access to MDL and MDLAF Texts

%l The primary reason for access to the texts of MDL and MDLAF

1 programs is the desirability of on-line editing of these programs.
The user should not have to terminate the analysis session to
make corrections to either of these programs.

3 A second reason is to be able to analyze, under program control,

3 and optimize the set of actions associated with a contact point

: (e.g. to eliminate redundancy, to determine unintended dependencies
between actions).

A third reason is to facilitate the specification of the
user of expressions which are to be monitored.

Thus there seems to be a need for two different types of
editors; one is the more conventional, line or character-oriented
3 editor to be used in preparing and editing of MDL and MDLAF texts;
- the other is a lexeme-oriented editor which knows the syntax of

MDLAF and can respond to requests like:

"If there are any assignment operatcrs in the MDLAF actions
associated with fetches from X, return a list of pointers to
those actions, else return a null list,"

or,

! "Are there any continuously-evaluated MDLAF expressions involving
; Y? If so, delete them."

It is clear that such an editor will have to know the syntax
of MDLAF as well as its internal representation in order to be
able to find the desired pointers, delete expressions and the like.
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7.3.2 Contact Points and Hook Insertion in the MDL
Analysis Facility

Recalling our earlier definition of contact points in the
context of low-level machines, as '"those points in the instruction
cycle at which the analysis facility can gain control", we can
translate this notion to the domain of high-level languages such
as MDL in terms of the unit of execution which we have selected,
namely, individual operands and operators. That is to say, the
MDL machine will check for any required monitoring actions after
the fetch of each operand of an operator, just prior to and just
after the application of the operator, and just before the storage
of the result. This requires that we specify the order in which
the checks will be made within the expression involving the fetch
of several operands. It seems natural that this order should
be the same as that which is specified in tho language for evalua-
tion of the operands of expressions. BLISS/10, and MDL, give
"no guarantee regarding the order in which a simpleexpression is
evaluated other than that provided by precedence and nesting..."
(BLISS Reference Manual, Jan. 15, 1970, p. 2.2b). Hence, in the
expression

B « (C « 3)+(A « 5)

no guarantee is made about which of the two paranthesized expres-
sions is evaluated and checked for hooks first. However, it 1is
guaranteed that store-hooks for B will be checked after both

of the assignments to C and A. I shall denote store-hooks and
fetch-hooks for a location X by SHOOK(X) and FHOCK(X) respectively.

In addition to the store-hooks associated with A, B and C,
general hooks associated with the initiation and completion of
every expression evaluation, which I shall designate by IEXPHOOK
and CEXPHOOK respectively, and hooks for the initiation and comple-
tion of each specific expression, to be designated by ISEXPHOOK
and CSEXPHOOK will be checked. Thus, the seaduence of actions in
the evaluation of the above expression will be as follows (Note:
action sequences seperated by // should be assumed to be done in
random order):

((IEXPHOOK
ISEXPHOOK; i
SHOOK(C) ; \ ]
C « 3;
CSEXPHOOK;
CEXPHOOK) ;//

8 S A Stk ] e R T e e b S
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(IEXPHOOK ;
ISEXPHOOK:
SHOOK (A) ;
A« 5,
CSEXPHOOK
CEXPHOOK) ) ;

IEXPHOOK ;
ISEXPHOOK::
d « C+A;

1
CSEXPHOOK ;
CEXPHFQOK;
IEXPHOOK
ISEXPHOOK:
SHOOK (B) :
B~ d ;

1
CSEXPHOOK;
CEXPHOOK ;

The above picture probably conveys an exaggerated impression
of the overhead involved in checking for hooks. The check for
a general hook (i.e. IEXPHOOK, CEXPHOOK) can be as simple as a

test on a statically addressable bit and the check for each specific

hook (i.e. ISEXPHOOK, SHOOK, CSEXPHOOK) can be as simple as a
test on an indirect addressed bit. However, this overhead is
still very high if Performed by a conventional software inter-
preter, although perhaps not prohibitive. Therefore, the ideas
on microprogrammed and hardware implementations of monitoring and
dynamic analysis facilities presented in the next chapter should
be studied seriously by interested designers, if such implementa-
tions are in the realm of possibilities for them.

7.3.3 An Outline of the MDL Analvsis Facility Language (AFL)

AFL is an extension of MDL containing a new data tyvpe,
several new svntactic constructs and a set of built-in functions

and reserved words. In this subsection, these extensions to
MDL are outlined.

(i) NOLE Declaration
Syntax: NIDE-node-declaration list>;
<node-declaration list:> - <node-decl.> /

“node~declaration list>,<node~-decl.>
“node-decl.> » <pode name>=<delimiter>
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<delimiter> - <routine name> / <label> /
<routine name>,<block delimiter>/
<label>,<block delimiter>

<block delimiter> -+ <integer> /

<integer>.<block delimiter> /
: <block delimiter>,<block delimiter> /
1 <block delimiter>:<block delimiter>

lixamples : NODE N1=RQUTINEIL:

NODE N2=ROUTINE,S;
i NODE N3=L00P,1.1.2.3:5
\ NODE N4=L0OOP,1.2:3,N5=

LOOP,1.4:7;

Effect: The indices which are not followed or preceded by
a ":", represent lexical levels in the code which is in the
scope of the <routine name> or <label>. If a pair <x>:i<y> is

not present, the entire level is assumed, otherwise the <x>th
complete expression through the <y>th complete expression at the
level of the last index is defined as a node with name <node name>,
Nodes must be disjoint or properly nested. Also, they must

begin and end in the same level and block.

(ii) Built-in Functions and Reserved Words

Locating Nodes and Node Instances

Find Node: $FN(<node-decl>)

If no node has been defined which satisfies <node-decl>,
returns 0 else returns the address of the first such node object.

- Find Node Instance: SFNI(<node-inst. spec>[<node-expr>1])

: <node-inst. spec> -+ (<MDL expression>)

<node-expr> > <node name>/<node obj. ptr>/ :
SNODEOBJ(<node-inst expr>)/
@<MDL expr>/$CURNODE

<node-inst expr> - SCURINST/SLASTINST(<node-expr> !
[,<node-inst expr>J])/ '
SFIRSTINST(<node-expr>[,<node-inst expr>1)/
SNEXTINST(<node-inst expr>[,<count> i
[,<node-expr>1])/
SPRECINST(<node-inst>[,<count>
[,<node-expr>17)/
@<MDL expr>
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l'ftect: Let the value of ‘node-inst spee - be N. i
node-expr - has been specified, then only the instances of that
node, otherwise all node instances are searched. If N-O, then
the direction of search is forward in time starting with first
node instance; it N<0, the direction of search is bhackward in
time starting with the last instance, with N=0 representine the
last instance. [f the value of <node-expr> is zero, then zero

is returned; otherwise the value is taken as the address of a
node-object.

Node Object of: SNODEOBJ( node-inst expr-)

If ~node-inst expr- points to a node instance, then the

address of the node object associated with that instance, otherwise
zero is returned.

Last Instance of: SLASTINST(-node expr>|, -node-inst expr )

If second argument is omitted, it is equivalent to
$FNI(0,-node-expr“), otherwise a pointer to the last instance of
node-expr - prior to -node-inst expr - is returned. I'f no such
instance can be found, zero is returned.

First Instance of: SFIRSTINST(-node-expr ‘|, -node-inst expr- 1)

It second argument is omitted, it is equivalent to
SFNI(l, -node-expr>). Otherwvise a pointer to the first instance
of -node-expr- after -node-inst expr> is returned. If no such
instance can be found, zero is returned.

Next Instance of: S$NEXTINST(<node-inst expr>l,-count>
[,~node-cxpr-]i)

If the 2. and 3. arguments are omitted, it is equivalent to ;
SFIPSTINST(SNODEOBJ(<node-inst expr>), <node-inst expr>). 1§ i
only the 3. argument is omitted, it is equivalent to FNI(-~count>+1,
SNODEOBJ (~node-inst expr>)). Otherwise a pointer to the nth
instance of -node-expr- after -node-inst expr>, where n=<count>,
is returned. If no such instance can be found, 0 is returned.

Preceding Instance of: $PPFCINST(<node-inst expr>|,<count -
[, node-expr>11)

If the 2. and 3. arpuments are omitted, it is equivalent to
SLASTINST(SNODEOBJ(<node-inst expr>), <node-inst expr>). If 1
only the 3. argument is omitted, it is equivalent to FNI(<count>-1 .
SNODEOBJ(~node-inst expr-)). Otherwise a pointer to nth previous
instance of <node-expr> relative to <node-inst expr> is returned.
If no such instance can be found, 0 is returned.

]
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Current Node Instance: SCURINST

A global variable which always points to the node instance
which was entered most recently.

Current Node Object: S$CUROBJ
Equivalent to S$SNODEOBJ(SCURINST).

Locating Input/Qutput Sets

Input Set List of Node: S$ISL(<node-expr>)

Returns a pointer to Input Set List of node <node-expr> or,
in case of errors, zero.

Output Set List of Node: $0SL(<node-expr>)
Analogous to S$ISL.
Input Set of Node Instance: $IS(<node-inst expr>)

Returns a pointer to input set of <node-inst expr>, or, in
case Or errors, zero.

Output Set of Node Instance: $0S(<node-inst expr>),
Analogous to $IS.

Accessing Values of Addresses in I/0 Sets

Value-part of I1/0 set elemert: S$VAL(<id-expr>,<I/0 set ptr~>,
<flag>)

<id-expr> -+ <name>/<routine name>,<name>/<routine name>,
<block id>,<name>

<block id> - <pos. decimal>/<block id>,<pos. decimal>
Indirect Addressing Operator: @<name->

Returns a pointer to the object whose address is equal to
the value of <name>.

Get Attribute Value: SGATTR(<obj. expr>,<attr. name>,
<flag var>)

Looks for an attribute named <attr. name> in the object
<obj. expr». If such an attribute is not found, <flag var> is
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set to zero and zero is returned. Otherwise <flag var> is set
to 1 and the value of the attribute is returned.

Add Attribute: S$ATTR(<obj. expr>,<attr. name>,<value>)
Change Attribute': SCATTR(<obj. expr>,<attr. name>, <value>)
Delete Attribute: $DATTR(<obj. expr>,<attr. name>)

These functions work in obvious ways. They return 1 if
successful, 0 otherwise.

In addition to these functions, a set of conventional list
processing functions such as create-list, include-in-list, remove-
object-from-list, head-of-list, tail-of-list, cardinality-of-list
etc. should be provided.

(iii) Editing MDL and AFL Texts

I shall comment only briefly about this aspect of the analysis
facility. The reed for two different types of editing abilities
has been noted in Chapter 6. One of these is the normal set of
functions provided with conventional on-line text editors for
preparing and modifying program text. The other, and the more
interesting one for our purposes, is a lexeme-oriented, rather
than character or line-oriented, editor which can work on list-
Structure representations of MDL and AFL parse trees. Considerable
work has been done on such a syntax-driven editor by L. Robinson
and D. Parnas ([RP 73] and [Ro 73]). I feel I can do nothing
better than cite these references here.

(iv) Explicit Hook Insertion
(iv a) Monitoring of Accesses to Variables

To monitor the accesses to a variable explicitly, AFL

contains the ON FETCH, ON STORF and ON USE facilities, whose
syntax is:

<hook name>: ON <condition><varlist> DO <expr>;

or,

<hook name>: ON <condition> DO <expr>;
<condition> - FETCH/STORE/USE
<varlist> + <MDL variable id>/
<MDL array id>[<index expr>1/
<varlist>,<varlist>

1
b
i
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For example, "H: ON FETCH X DO expr " will cause the
evaluation of expr whenever the contents of X are fetched in
the evaluation of some MDL expression. If X is omitted, expr
will be evaluated with the fetch of every operand of every

expression. $OPDADDR and $OPDVAL will contain the address and
the value of the current operand.

e ON STORE and ON STORE X work similarly, except that they
- are checked prior to store operations.

ON USE and ON USE X cause checking upon both fetch and store
operations.

(iv b) Monitoring of Expressions
Expressions to be monitored can be specified in one of two
ways: by lexical location or by giving the syntax of the expression.

Further, the monitoring actions can be specified to be taken just

before the application of the "root" operator of the MDL expression
or just after it.

Specification by Lexical Location:
<hook name>: BEFORE <MDL location list> DO <expr>
<hook name>: AFTER <MDL location list> DO <exXpr>

<MDL location list> - <MDL location>/
<MDL location list>,<MDL location>

<MDL location> -+ <delimiter:

(See the syntax of the non-terminal <delimiter> in the
second paragraph of 7.3.3)

Examples:
L: BEFORE ROUTINEl, ROUTINE3 DO(X <« Y+1:TYPE(X));
L1: AFTER LABEL1.1.3 DO SDISAB(L):

L2: AFTER LABEL1.1.3:5 DO STYPE(Z):

The first example will cause the paranthesized sequence of
expressions to be evaluated before every call on the routines

ROUTINEL and ROUTINE3, after their parameters, if any, have been
evaluated.

e e e e R \ Lot s el L o
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The second example will disable the above action after the
third expression in the first block (or expression) following
and in the same block (or compound expression) and level as LABELI.

The third example will cause the value of Z to be typed
out after the evaluation of each of the 3., 4. and 5. expressions

at the top level of the block (or compound expression) mentioned
above.

Specification by Syntax:

<hook name>: BEFORE LEACH <syntax spec.> DO <expr>;

<hook name>: AFTER EACH <syntax spec.> DO <expr>;

<syntax spec.> takes the form of an expression in which
non-terminal symbols enclosed within “,> or the special symbol
$* (it means "anything") may appear.

Examples:

L: BEFORE EACH <loopexpression> DO <exXpr>;

»

Ll: AFTER FACH $*+A DO “expr>;

The first example would cause the evaluation of <expr>
before the evaluation of any WHILE and INCR expressions. The
second example would cause the evaluation of <expr> after each
addition operation involving A as the right-hand operand.

The syntactic specification facility could be extended by
implementing the features (involving "templates" and user-defined
non-terminals) discussed in subsection 7.3.1.2. I shall not
dwell on these extensions here.

(iv ¢) Monitoring of the Control Path

There are two facilities for monitoring the flow of control,

in addition to the BEFORE and AFTER features described earlier.
These are:

<hook name>: ALONG PATH <path descriptor> DO <exXpr>;

and

<hook name>: AFTER PATH <path descriptor> DO <expr>;

<path descriptor> -+ <delimiters>/
<path descriptor>,<delimiter>
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<delimiter> - <unit>/<unit>(<count>)/<unit>
[<path descriptor=]

<unit> » <routine name>/<label>/<node name>

The first expression causes <path descriptor>, which con-
tains, say, n <delimiters>, to be matched continuously apgainst
the control path. If, for some k<n, the first k elements of
<path descriptor> match the most recent k elements of the control
path (which are routine or node names or labels), then <expr>
is evaluated.

The second expression causes <expr> to be evaluated only
at the completion of the specified path.

In the specification of <delimiter>, the option <unit>(<count:>)
means that <count> number of consecutive executions cf the same
<unit>, without the intervention of any other unit s, is to be
watched for and treated as a single element in the path. The
option [<path descriptor>] provides for nesting of paths.

Examples:

L: ALONG PATH ROUTL{ROUT2, LABELl, LOOPl], ROUT3 DO <expr>; i
L: AFTER PATH R1(2),R2[R3(4),R4[R5,R611(3) DO <expr-: 1
In the first example, <expr> will be evaluated after the E
execution of each of ROUT2, LABEL1l and LOOP1l inside ROUT1l, after 3
exit from such an execution of ROUT] and after ROUT3, provided i
they occur in that order with no intervening <unit>s. ;

In the second example, the interpretation is similar, except
that multiple consecutive executions of certain <unit>s are to
be considered as single elements.

(v) Continuously Evaluated Expressions

CSELECT <elist> OF CSET <cexpressionset> TESC

m e e a2

<cexpressionset> = /<ce>/
<cexpressionset>:i<ce>

<ce> + <MDL expression>: <AFL expression>

<elist> > <AFL expressicn>/<elist>,<AFL expression>
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|
E.

As will be obvious to those familiar with BLISS, this syntax
follows the syntax of the SELECT expression in BLISS, and hence
the expressions defined by it are called CSELFCT (for "Continuous
Select") expressions. Its evaluation can be precisely described
by saying that it is equivalent to the evaluation of the AFL

E expression "SELECT <elist> OF NSET <cexpressionset> TESN" after
each change in the value of anv MDI variable in <elist> or in
? the left-hand sides of <cexpressionset>.

Example:

CSELECT (D+E) OF CSET

:
E A-B:f
g 1
: A*¥B:f ;
' 2
C+D:f
3
TESC:

1 This example will cause the monitoring of the values of
4 A,B,C,D and E and the continuous updating of the values of the
; expressions D+E, A-B, A*B and C+D. When the value of D+E changes,
. the value of the first left-hand expression, A-B, is compared
4 with the new value of D+E. If the two values are found equal,
p then the expression f 1is evaluated. Then, the next left-hand
1
expression, A*B, is compared with D+E, and if equal, f is evalua-
2
ted. This process continues, until all left-hand expressions have
been tested.

Important note: 1if the value of a left-hand side is equal
to the value of the controlling expression (D+E in this example),
the right-hand side will be evaluated with each change in the
value of an MDL variable, until the values of the left-hand side
and the controlling expression become unequal.

i o
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CHAPTER 8

ARCHITECTURAL FEATURES FOR EXECUTION ANALYSIS !

As has been previouslv noted, one of the major impediments
to the wide use of the kinds of simulator-based techniques
described so far is the slowness of simulation at the memory
cycle level and the information loss incurred with simulation
at instruction level. Further, if, unlike in the DAME system,
the object machine and the host machine are the same, then one
] would like to be able to execute the uninteresting parts of the
program, i.e. the parts we do not wish to include in the analysis,
at full machine speed and only incur overhead over the monitored
parts. This becomes an important factor, for example, in the
case of trying to isolate a bug which appears only after a con-
siderable amount of execution.

To deal with this problem, we have to design architectural
] features to be implemented in hardware or microprogram which

; would significantly reduce the amount of monitoring done by
software. Thus, in this chapter, 1 shall discuss:

(i) Various techniques for the implementation of the hook
mechanism as a function of the relative word lengths of the host
machine (W ) and the obtject machine (W ),

H 0

N R,

(11) The implementation of the node mechanism, in particu-
lar the node objects, the node trace table and the input/output
sets, along with the tyvpes of storage technologies appropriate ;
for these data structures, 3

Skl b,

(iii1) The interface between the host machine and the
object machine, in particular the data paths and the control
paths between the two.

1 shall then conclude the chapter with an outline of a unified
architecture embodying the various features discussed, assuming
a simple, conventional CPU architecture for the object machine,
and a review of several reports on hardware and microprogrammed
measuring and monitoring facilities by other workers.
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8.1 The Hook Mechanism

e L il b er

The three operations which lie at the heart of any monito-
ring scheme are: (i) Given a particular set of contact points
{ in the course of the execution of the object machine, the deter-
1 mination of whether there is any monitoring action to be taken
at the current contact point, (ii) If so, locating the description
of the action to be taken, (iii) Taking the desired action.

Step (i) clearly has to be done continuously, i.e. at every
occurrence of a contact point. This is the basic price paid
for running on a monitored machine. Therefore, it is desirable
to minimize this overhead. Step (ii) is normally performed much
less frequently than step (i). Thus, in programs which are not
heavily monitored this step will not normally cause excessive
amounts of overhead. In heavily monitored programs however, this
step can cause sufficient depradation of performance to prevent
4 wide spread use of the monitoring facility. The amount of over-

head caused by step(iii), of course, is a direct function of the

particular actions to be taken and of their execution by the ana-
lvsis facility. In the rest of this chapter, I shall explore
several techniques for implementing these operations in conventional

Single—jnstruction—stream/single—data—stream processors. For this
purpose, let us distinguish three cases:
3

b o Suko

(i) The host machine has a longer word-length than the
object machine (W -W ),

H o

T B0 L

4 (i1) The word lengths of the two machine are equal (W =W ),
b
] H o

(iii) The host machine has a shorter word-length (W <\ )

H oo

8.1.1 Monitoring with W Greater than W
H 0

As already discussed in Section 3.2, the availability of
extra bits in the host machine word greatly facilitates the
monitoring operations mentioned above.

Machine architectures with this feature are also known as
"Tagged Architectures". Many applications of this architecture,
includine some which are not discussed in this thesis, were dis-
cussed by E. A. Feustel in his paper "On the Advantages of Tagped

1 Architecture”" ([Fe 73]).
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Depending on the number, n, of extra bits available, one

can use them as flags (say, with 1<n<8) or as indices into a

table (9<nsA ), or as an address in the address space of the
H

host machine (nSA ), where A is
H H
Let us, then, first consider the use of flags for this

the width of a host machine

address.
purpose.

"Flag-bit'" Implementation

One approach may be as follows: one designates a flag bit
for each kind of contact point applicable to addresses (as opposed
to general contact points). These contact points may be, for
example, designated as in the DAME system: namely, (i) after
every fetch, (ii) before every store, (iii1) after every instruction
fetch, (iv) after every instruction completion. In this case,
one would need four bits. If fewer than four bits are available, 9
then one can combine some of the flags and implement a flag in ]
the CPU indicating the type of operation currently being performed. ;
In such a case, the monitoring logic would test the conjunction 1
of the flag bit in the current word being fetched or stored, and 4
the CPU operation flag. For example, with three bits instead ;
of four, one can combine the fetch and the instruction-fetch
flag bits. There would be a bit (let us call it the I-bit), indi- .
cating whether or not the current fetch cycle is an instruction i
fetch cycle or a data fetch cycle. This bit has to be accessibhle
by the monitor routines. Then, the user who wishes to detect
the accesses to a particular location as an instruction-fetch, :
would insert a hook to be activated upon every fetch from that |
location, and within that hook, test the I-bit to determine if
the current access is an instruction fetch or not. Since, usuallvy,
the same word is not accessed both as data and as instruction,
this technique would involve a conjunction and a comparison as
an overhead only in fetches from locations containing an instruc- p
tion. This does not seem to be an excessive price to pay. In
fact, if one is sure that the location being hooked is always

accessed properly, one can eliminate this test altogether. This
will probably be the most common case.

= st e sl ol S ol

A problem arises in certain computers however, if one wishes
to insert a hook in every instruction word of a large block of
consecutive locations. A case in point is the PDP-11, which
contains in-line data interspersed with instructions involving
certain addressing modes. Since, in general, it is impossible
to tell statically if a particular word contains data or instruction,
the insertion of hooks only in locations containing instructions
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can not be mechanized, i.e. the user has to either hook each
instruction word individually, or hook all the locations in a | ?
given block (using a mechanism similar to the DAME HOOK command
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which accepts an address range as a parameter) and then go in
and delete the hooks for individual locations containing in-line
data, Either way, it is a fairly painful process. An easier
method would be to perform a test in the monitor routine to see
if the current cvcle is an instruction fetch cvcle or not.

Thus, assuming that through the use of some combination of
flag bits, the presence of some monitor action to be taken at
a contact point can be determined, let us now consider the problem
of locating the description of the monitor action to be taken.
Ignoring the format and syntax of monitor actions themselves, I
shall assume that a single pointer is sufficient to locate the
desired action description. Hence, what is needed is a table
look-up procedure with two inputs, the current address and cycle
(i.e. instruction or data), and one output, a pointer to the
desired monitor action description. I shall not elaborate on
the implementation of this procedure; two most obvious approaches
which come to mind are via an associative memory or via a micro-
programmed tatle-lookup mechanism.

"Table Index" Implementation

Let us now consider the case where W 1is sufficiently larger
H
than W to permit the insertion of an index for a table, M, into
0
each host machine word representing an object machine word, in
addition to, or instead of, the flag bits. In this case, each
entry in table M would contain either the description of the
action itself, or a pointer to it. Thus, we would not need an
associative memory or microprogrammed look-up procedure, since
the table index would be built into each host machine word.

The limitation of this approach cf course is that if there
are k bits available to be used as an index, one could have at most

k .
a 2 element direct-access table. Such a table could be extended
by chaining overflow areas to each entry etc. at the cost of some

more search.

"Full Pointer" Implemeuntation

If the number of bits available is greater than or equal to
the address width o the host machine, then one can in fact store
there the full address cof the monitor action description. This
eliminates the need for a pre-allocated table to contain the
action descriptions or the pointers to them. It permits a list-
oriented structure to be created and maintained dynamically.

(As will be recalled from Chapter 3, DAMFE goes one step further
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and creates a general list of "interesting objects" for each
location requiring one, e.g. such locations as node entry points,
or addresses whose previous values are being collected. Pointers
to monitor actions, i.e. hook objects, are simply inserted and
deleted as elements in these lists as required.)

8.1.2 Monitoring with W Equal to W
B 0

This includes the important special case where the object
machine and the host machine are the same. Hence, it will be
discussed in some detail.

Here we have, for each memory access, two pieces of informa-
tion with which to determine whether or not the address being
accessed is being monitored and, if so, to locate the monitor
action description: namely, the object machine address and its
contents. A technique of obtaining this information by using
only the address has already been discussed above. Another technique
which uses both the contents of the accessed address and the

; address itself, called "Lambda monitoring" [LA 721, was described in
3 Section 3.7.1. I shall summarize this technique here again. The
; Lambda monitoring technique relies on finding a bit pattern,
Lambda, which is expected to be used very rarely by any object
program as instruction, address or data. Lambda can be determined :
by the user at load-time (if he wishes to use a different pattern 3
than the default one) and kept by the system in a Pattern Register.
Each data element fetched from the main memory or a register
would be compared with Lambda and a monitor trap would be caused
whenever an object machine location containing that pattern is i
: accessed., Clearly, this operation should be quite transparent 4
1 to the user program and the actual contents of that address should
be made available to the user program by the control logic upon
completion of the monitor action. Once a monitor trap is detected,
- one then has to locate the associated monitor action description.
‘ For this purpose, again, the object machine address being accessed
could be used as an input into an associative memory or microprog-
rammed look-up procedure to obtain a pointer to the monitor action
description. If the bit pattern Lambkda is the actual contents
of the accessed address, then the table search mechanism would
return a "no-hit" code which would terminate the trap. One can
generalize this technique somewhat by defining several bit patterns,
to be kept in different pattern registers, indicating different
kinds of monitor traps, e.g. one for each hook type, provided |
3 one can find several patterns which are likely to be used very
! infrequently by user programs. This would enable one to search. i
a unique, and hence smaller, table for each such bit pattern.
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The main potential difference in the performance of the
first technique, i.e. looking up every penerated address in a
table, and the Lambda Monitoring technique depends on two cri-
teria: (1) how well the table look-up procedure can be overlappe
with the normal object machine operand fetch procedure, and
(ii) how often the bit pattern Lambda is used by the user program
We must recall here that the terms like "operand fetch" and
"operand store" are to be interpreted very liberally and that
they refer to every register and main memory location addressable

by the user program. In register-oriented machines (as most
current central processors are), most references Are to registers
and not main memory. Hence, the overlapping of the table look-up

procedure, mentioned in criterion (i) above, is with respect to
the shorter one of the CPU cycle and the main memory read time.
If there is a substantial un-overlapped portion, then the first
technique 1isg apt to be much slower than the Lambda Monitoring
scheme. On the other hand, if the bit pattern Lambda is poorly
chosen and ¢crops up often in the user program as data, address
Or instruction, then the overhead associated with the latter
scheme can approach that of the former.

In addition to these two techniques, a third one can be
envisioned. This technique essentially is an architectural
feature which permits a modification of the physical addressing
Structure of the object machine to make the host machine word
length H longer than the object machine word length W , in a

H 0
way that is transparent to user programs, i.e. retaining the logi-
cal addressing Structure, except that the amount on physical main
memory available would be reduced. For example, consider a
machine architecture in which there are two modes of operation:
(i) normal user production-run mode, (ii) analysis mode. In
the normal mode, the machine functions with no changes to the
addressing structure and instruction execution. 1In the analysis
mode however, every user-generated address 1is multiplied by two,
and the contents of the double-word at that address is taken.
The lower half of that double-word represents the word which the
user is trying to access, and the upper half holds a pointer to
the monitor action description, much like in the "full pointer"
implementation discussed in the preceding sub-section. These
two halves can be retrieved either sequentially, using the same
memory port, or in parallel using a seperate memory port for the
two words. In either case, the monitoring facility would pick up
the monitor word and perform the described action, if any. This
technique trades off half of the storage of the object machine
for the avoidance of a table-lookup procedure, by in effect using
the current object machine (OM) address to locate the OM word
and the monitor action address simultaneously. Hence it may be
an attractive alternative in cases where a great majority of the
programs to be analyzed require less than half the available
storage for program code and data.
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A refinement of this technique, requiring a little more
intelligence implemented in the hardware or microcode controlling
address generation inside the CPU, permits user control over,
and possibly drastic reductions in, the amount of extra storage
required. Let us suppose, for example, that the area of main
memory which we are interested in monitoring lies between the
lower bound A and upper bound B. Then, clearly, a scheme which
would multiply by two only those addresses between A and B and
still remain transparent to the program being monitored would
provide the above advantages. Such a scheme can be implemented
in a straightforward manner. Let us define two registers A and
B in the machine, whose contents are to be specified by the user
at program and data load-time. Then, each user address N generated
during loading and execution is tested by hardware to see {if it
falls between A and B. If so, it is mapped into A+((N-A)*2)=2N-4A.
If N is less than A, it is mapped into itself. Otherwise (it is
larger than B), it is mapped into C+N where C is a constant

which is computed when the registers A and B are loaded and is
equal to B-A.

This address transformation, denoted by G(A,B,X), is illustrated
in the next figure.

Total Storage
|
Unmonitored Y

area: addressed
in single words

G(A,B,X)=(B-A)+X
for ¥>B

Monitored B
area; addressed

G(A,B,X)=A+((X-2)*2)
in double words

=2X-A for A<X<B

Unmonitored A
area; addressed
in single words

G(A,B,X)=X 1f X<A

e
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This technique can be generalized to the case involving M
monitored areas,M>1. Such a generalization requires the compa-
rison, possibly in parallel, of X with the limit registers for
each of the monitored areas and the selection of a different
constant to be added to X or 2X for each position of the memory.
Thus, if there are M such areas, with limits, A , B , i=1l,...,M,

i i

and X is found to be in the Kth monitored area, then X is mapped
K-1 K-1
into A +3° (B -A )+2(X-A )=¢( S (B -A )-A )+2X. If X is smaller
K j=1 j 3 K =1 3 3 K
than A , it is unchanged. If it is in an unmonitored area

1

following the Kth monitored area, then it is mapped into
K

2 (B -A )+X.
=0 §F 3§

8.1.3. Monitoring with W Less than W
H 0

This case is conceptually not very different from the prece-
ding two cases; howvever, its implementation will probably be
much more inefficient, especially if W is not some integral

0

multiple of W 1 shall not say much on this case except to

H

point out that it can be made equivalent to either of the two
preceding cases by an address-transformation mechanism of the

type described earlier. By choosing this transformation suitably,
one can make available a number of bits in the representation of
each word of the object machine, so that these bits can be used

as described under the "Flag bits", "Table index" or "Full pointer"
approaches. The basic inefficiency lies in the fact that one

has to access several HM words to simulate access to each OM word.

I conclude here the discussion of various techniaques for
implementing the hook mechanism. The choice of the appropriate
technique for a particular processor will depend on the word

sizes of the two machines, and the types of memory and microprog-
ramming capability available.
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? 8.2 Implementation of the Node Mechanism

One of the major components of the Analysis Facility is
the Node Mechanism which includes: the node objects, the Node
Trace table, the input/output sets, and the creation, maintenance
and searching of these data structures. Hence, in this section
4 I would like to discuss feasible approaches to the implementation
1 of this mechanism. I shall assume that the Analysis Facility
E has available for its use a certain amount of main memory, a
1 much smaller amount of high-speed local memory and some associative
4 memory. Data structures will be assigned to the type of memory
most appropriate to their size, frequency and method of access.
I shall also assume the existence of data paths between the local
memory and the main memory, and between the associative memory
and the main memory as well as microcode instructions to make
transfers along these paths.

The node objects are created when a node is defined. In the
course of the execution, they are accessed whenever the corres-
ponding node is entered or exited or when a monitor instruction
3 refers to them. They do not take up very much room, about 8-10
' words per object. Except for the current node object, they are
normally not accessed very often. Hence, an appropriate storage
allccation for node objects would be to keep them in main memory,
except for the current node object which will be brought into
the local memory when the corresponding node is entered, maintained
in the local memory during the current node instance and pit back
in its earlier position in main memory when the current instance
is exited.

The Node Trace table is a dynamically growing structure whose
size is a direct function of the number of node instances executed.
Here too, normally only the table entry for the current node
instance is accessed often. Hence this latter part can be kept
in local memory in the same manner as the current node object and
the rest of the table can be kept in main memory.

4 The same remarks also apply to the input/output sets with

' one important qualification: the maintenance of the current
input/output sets will probably be best implemented through an
associative memory. This is due to the fact that one has to
search the current input or output set for every generated address

1 during the current node instance. If the address is not found,

i it must be added to current input or output set. If this is done

via a sequential search of these sets, the resulting overhead

is likely to be unacceptable. Thus, the current input/output

sets should be created and built up in associative memory and

transferred to main memory and linked to the I/0 set list of the

associated node when the current node instance is exited.
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Another point worth mentioning with respect to the 1/0
sets is the nesting of these sets if nested nodes are permitted.
Suppose there are n levels of nested I/0 sets: what is the
best way to maintain them - to maintain all of them with each
generated address, or to maintain the highest level set only and
to update the next highest level (i.e. its parent) only when the
former is exited by adding the appropriate entries from the
highest level set into the next highest one? Both approaches
are feasible. The sophistication of the associative memory avail-
able and the overhead of the two approaches will determine the
preferable alternative for a particular implementation.

8.3. The Interface between the Analysis Facility and
the Central Processor

Since the Analysis Facility requires access to much information
inside the CPU and to the main memory, and since it needs the
ability to interrupt the CPU, it is worthwhile to consider the
interface between the Analysis Facility and a "conventional"
central processor. I shall not go to great detail in doing this
however: hence I shall not refer to a specific processor, but
rather to one which is representative of contemporary architecture.

The interface between the analysis facility and the central
processor consists of data and control paths between the analysis
facility processor and:

1- Main memory address register (data path), MARP,

2- VMain memory data register (data path), MDRP,

3- M- wemory access control (control path), MACP,

4- Geueral registers (data path), GRP,

5- Internal registers (data path), IRP,

6~ CPU control logic, (control path), CLP.

The first three paths, MARP, MDRP and MACP, permit the
analysis facility to access the main memory address and data
registers as well as main memory locations. The path GRP gives
access to the contents of the general registers.

The path IRP gives access to internal registers which contain
information about the opcode and operand fields obtained by the
CPU by decoding the current instruction (e.g. for the PDP-11,

these would be current opcode, source and destination mode and
registers ete.). In the existing design of some processors, this
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information may not be explicitly kept in this form during the
entire execution cycle. In such a case, either the processor
design may be modified to make this information available or
an instruction decoder may be built into the Analysis Facility
which can extract the required information.

The path, CLP, to the CPU control logic is a control path
which serves to synchronize the activities of the Analysis Facilitv
and the CPU. 1In particular, it will conduct signals from the
former to the latter to inhibit and enable instruction execution.

B.4 The Analvsis Facility Processor (AFP)

So far, we have said nothing about how the Analysis Facilitv
will function, its instruction set and internal organization.
While it is not desirable to go into much detail here, it 1is
probably worthwhile to outline the answers to these questions.

The question of thow the Analvsis Facility Processor (AFP)
will function, i.e. "will it have its own instruction execution
hardware or will it share that of the object machine?", and the
question of the instruction set of the AFP are interrelated.
Recalling the two subsets of the instruction set of DAME, namely
the "conventional” subset and the "monitoring and analysis"
subset, it is clear that if the AFP uses the same instruction
set as the object machine, then the monitoring and analysis instruc-
tions must be compiled into the conventional subset, which can
then be directly executed by the AFP.

This approach has the advantage of not requiring a seperate
instruction set processor for the AFP. However it also requires
that the internal state of the object machine CPU be saved before
the AFP can do anything. Also, if the CPU is to be monitorable
while it is being used by the AFP, then, in fact, the internal
state of the CPU has to be saved in a stack, to permit an orderly
return from the various levels of monitoring and analysis activity.
Further, the object machine instruction set would have to be
extended to permit access to the internal registers, MARP, MDRP
etc., perhaps requiring new instructions. Finally, the instruction
set of the object machine will no. necessarily be suitable to
perform the monitoring and analysis actions described in Chapters
2 and 3. In particular, if the list-structure orientation of the
DAME system is also adopted in the design of the AFP, one would
really prefer to have a machine instruction set suitable for list
processing. Fcr these reasons, my preference would be a seperate
instruction set processor for the AFP, both from the performance
point of view and the freedom it affords in defining new types
of operations. Hence, in the design for the AFP whose outline
is given in the following illustration, I assume a seperate AFP,
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Possibly implemented in microcode, using the three types of
storage, namelv main storage, high-speed local storage and
Some associative memory as discussed earlier,

It is worthwhile at this Point to review several reported
implementations or designs with objectives roughly similar to,
but all lessg ambitious than, ours.

times to a much higher resolution than the time between the "ticks
of the hardware clock, with a Precision limited only by the pre-

cision with which the hardware clock ticks. This part of the
paper makes it a "mugt" reading for those interested in program
:: instrumentation., Apart from this technique, the paper contains

a8 good discussion of the overhead of eXxecution under simulation

("simulation artifact") and by using the Execute instruction in
the Sigma 7 and in 5360/75,

In an earlijer Paper entitled '"SNUPER COMPUTER- a computer
in instrumentation automaton", G. Estrin et al describe a design
(which, to the best of thisg author's knowledge, was never implemented)
for an automaton connected to the object computer by sensors,
which would select user-specified eventsg occurring in the course
of the execution and transform this data into a count kept in an
element asseciated with that event. The paper, whiJe ahead of
its time (1%67) in some of the ideas proposed in it, leaves un-
specified the Crucial questions of (i) how the raw data coming
in from the object Computer is converted into an index for the
bit table whose elements indicate the significance or insignificance
of the events bearing that index, (ii) what parts of the state
of the object computer (IBM 7094) are accessible by the SNUPER
COMPUTER, (iii) what kind of a language will be used by the user
to specify the event, graphic displays and the like.

M. Zelkowitz in [ze 71) describes briefly an associative
memory-based design for associating interrupt routines with fetch/
Store addresses. His design includes a "condition code" field
in the @ssociative table entryv which indicates which of the "legs
than", "equal to" and '"greater than" relations must hold between
the address currently being accessed and the address stored in
the talle entry in order for the transfer of control to a second
address specified in the table entry. Apart from this feature,
this design is the basic, straightforward approach to monitoring
addresses. However, inp this author's opinion, the associative -
table will need to hold substantially more than the 16 entries :

|
!




141

envisioned by Zelkowitz's design. Also, this design does not
provide for monitoring accesses to the general registers.

Two other reports on hardware-monitor based approaches should
be mentioned here. One is the report on the Neurotron monitor
by R. A. Ashenbrenner et al [ALN 71], and the other is the report
on a hardware monitor for a multi-mini processor (C.mmp) system
by S. H. Fuller et al [FSW 73]. Both of these monitors appear
to be oriented toward data selection and collection and not the

full spectrum of general purpose, dynamic analysis activities
envisioned in this thesis.

The paper which comes closest in spirit and approach to those
described in this thesis is that of H. J. Saal and L. J. Shustek
[SS 72]. 1In this paper entitled '"Microprogrammed Implementation
of Computer Measurement Techniques'", the authors report on a
prcject in which a Standard Computer Corporation IC7000 computer,
which contains a writable control store, was microprogrammed to
collect (i) execution history data by recording all successful
brench instructions and relocation information, and (ii) distri-
butions of the usage of operation codes and consecutively executed
operation code pairs. What is of interest to us here, is not
the actual data or the types of data collected, but rather the
insights they provide on the problems of inserting measurement
routines in emulators. This paper is also "must" reading ‘for :
those interested in building microprogrammed instrumentation ks

facilities. Since these problems are so relevant to this discus-
sion, I outline them here:

(1) "... since microprogram storage is an extremely scarce
commodity, it was prohibitively expensive to insert measurement
routines throughout the microprogram.”" Thus, in the Aualysis

Facility Processor, the power of the instruction set wight be
limited by the microprogram storage available.

(ii) "Since our microcomputers possess a limited subroutining ]
facility at the microprngram level, it was not even feasible to
include a subroutine call at every point at which we wished to
measure the performance of the system." This is an example of
the protlems caused by the primitiveness of the microprocessor ]
instruction set. More on the same point: "A severe problem
found in the implementation of extensions via microprogramming,
generally not found in conventional software interpreters, arises
from the lack of many general facilities at the microprogram level."

P S

(iii) "In addition, many instructions are executed directly
in hardware at instruction fetch time (most of the program transfer
instructions). Others share microcode but are semantically dis- 1
tinguished by a large number of flip-flops (set by the hardwired E

2
[

instruction fetch and decode) which perform extensive residual
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control." Those flip-flops may well include data about addressing
modes, the success of a conditional branch etc. and should be
accessible by the measurement routines. More on the problems
caused by hardware interpretation: "Microprogram machines are
generally not completely microprogrammed. Many aspects of instruc-
tion decoding and operand fetching may be performed in a hardwired
scheduler in the interest of increased efficiency. This technique
conflicts with microprogram measurement. The hardwired decoding

1 scheme may automaticallv set a variety of residual control regis-
ters and flip~flops to simplify the semantic emulation routines.
Current microprocesscors have not been designed to allow these
registers to be explicitly read by an emulator and thus they

are not evailable to measurement routines. This lack of generality
imposes unnecessary complications to the microprogrammer, but

could be avoided in future microprocessor design."

(iv) "The Input/Output conflict between the microprogram
measuring routine and the system being measured was the single
most difficult problem i1n the implementation'. The authors

recommend that the two systems use different channels for input/
output.

All of these points are candid examples of the problems which
5 arise in the design and implementation of microprogrammed execution
i analysis facilities. They emphasize several points already made
in the discussion of the AFP above: namely, the need for a power-
ful instruction set, access to object machine internal registers

and seperation of the object machine hardware from that of the
AFP.
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Illustration 8.1
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CONCLUSIONS

The objectives of the research were (1) to explore the
possibility of designing facilities which are sipnificantly
more helpful to the user in many tvpes of execution analwvsis
than existing svsatems, (ii) to identifwv kev problems arcas,

(1ii) to propose solutions to some of them, and (iv) outline
directions of research for selving others.

The term "execution analysis'" covers many important areas,
such as debugging, control flow, data flow, performance measurement
and storage reference pattern acalvsis. The main contribution
of the thesis is the development ¢f a framework which faciliti-

, tates analysis tasks in all of these areas. A prototype of this

. framework, called DAME (Dvnamic Analysis and Modelling Environment)
2 has been implemented on the PDP-10 to study the behaviour of

; PDP~-11 programs. Its most novel aspect is that it permits the

user to define an abstract structure over his program at run-time
and perform his analysis in terms of the elements of that structure,
called "nodes'". A node is a segment of code, not necessarily
contiguous in space, having a unique entry point and a unique

A exit point. LEvery cxecution of a node is called an "instance"

of that node. During each node instance, DAME constructs a list,
called the "input-set'", of all the inputs used, and upon exit,

a list, called the "output-set'" of the changes to the svstem state
caused by the node instance. The input-set of a node instance

I is defined as the set of pairs <A,B> where A is an address

whose contents were read by I before being modified for the first
time bv I, and B is the value read. Thus the input-sect of 1
represents all the outside information passed to I. The output-set
of I consists of pairs <C,D- where C is an address written into

by I and D the last value written. The significance of this
formulation of input/output sets is that 1t not onlyv permits
backtracking to any arbitrary point in the execution history,

but also facilitates the determination of data flow between nodes.
This formulation is also verv helpful in narrowine down the search for
an elusive bug to a particular node instance during debugging.
Another significant advantage of this approach is that it gives

the user the ability to control the amount of information collected
by the svstem through the judicious definition of nodes. Cther
systems, which record every store and every branch operation,
require much more storape to represent the same length of execution.

ITn addition to the node mechanism, DAMFE offers a flexitle
mechanism, called the "Hook Mechanism", which allows the user to
trigger monitoring and analvsis actions at a wide variety of
points in the PDP-11 instruction cycle and at entry and exit from
nodes. By using the node and hook mechanisms and the comprehensive
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instruction set of DAML, which includes ceneral-purpose compu-
tational instructions as well as instructions specifically
designed for monitorinp, collecting aprd searching collected
data, the user can in most cases easilv formulate DAME routines
to perform the analysis he is interested in. 1In Chapter 4,
five example of the application of DAME to data flow analysis,
control flow analysis and instruction mix analysis are given.

The primary attribute soupht in the design of DAME was
flexibilitv. This goal resulted in a list-oriented design;
each PDP-11 core location has a, possibly emptv, list of "interes-
ting" objects associated with it, e.g. node descriptors, hook
descriptors, empirical data saved there by the analyvsis svstem,
a list of previous values. Fach DAME object can have a secondarv
attribute list which can contain system-defined or user-defined
attribute descriptors and arbitrary information associated with
the object. The DAME routines themselves and the DAME symbol
table are lists manipulable with the standard list functions.

The price for flexibility is usually loss cof efficiency.
A particularly stiff price was paid for the flexibility afforded
by the design of the PDP-11 simulator at the memory cycle level.
The motivation for this choice was the prospect that DAME might
be used for analvses involving events at Unibus transfer level.
Also, it had been envisioned that simulators for several 1/0
devices capable of generating NPR commands which could interrupt
the CPU after a memoryv cvcle within an instruction, could be
attached to the basic simulator. In hindsight, this decision
seems ill-advised; or perhaps, ironically, too inflexible. This
choice, coupled with the general-purpose scheduling mechanism
used for timing events, has caused DAME to spend two-thirds of
its time in the simulation scheduler, and there is no way to get
around this in the present design. A much better design would
have been to provide an option to the user as to whether to
simulate at memorv cycle level or at instruction level or possiblv
even at subroutine level. This would permit both detailed memory-
cycle-level studies over a short simulated time, and debugging,
flow analvsis and performance measurement studies which require
and order of magnitude longer periods of simulated time. These
latter areas make up the bulk of the applications of DAME and
hence should have been gpiven more emphasis,

The DAME language has proved unsatisfactorv in some areas.
Its main disadvantage is the low-level instructions supplied for
conventional computing tasks (e.g. arithmetic). These are equiva-
lent to those of a 3-address hardware machine. But, this design
was in fact intended to provide a model for a possible hardware
implementation and it was felt that a higher-level language can
subseguentlv be implemented tu compile into the DAME language.
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This task has not been done. Such a language would make DAME
easier to use.

The subset of DAME instructions dealing with monitoring,
data collection and retrieval have proved quite comprehensive
in their coverage and easy to use. While this subset could
certainly be enhanced by the implementation of higher-level
primitives discussed in Chapter 6, such as the FOREACH statement
in LEAP and continuously evaluated expressions, the provided
facilities have proved quite useful and also quite easy to trans-
port to a higher~level language. Their transportability to a
higher-level language as demonstrated in Chapter 7, and the fact
that their design was based on the requirements set forth in
Chapter 2, indicate that the specifications in Chapter 2 are
indeed independent of the analysis language level.

In the final chapter, Chapter 8, we consider a class of
questions whose solution could have a significant impact on the
extent to which execution analysis facilities are used by applica-
tion and system programmers alike. These auestions relate to
the hardware implementation of the primitives which are most
burdensome and cause most of the overhead in software. We did
not attempt to solve these problems; our intention was only to
pose the right questions and suggest approaches to their solution.
A real solution to these questions, due to the major design tasks
which still remain, would require a detailed, engineering level
design and possibly implementation, testing and trial use.

In summary then, we have shown that execution analysis
facilities significantly more powerful and widely applicable than
the existing systems for individual types of analyses, such as
debugging and performance measurement, can be built using current
technology. While the prototype implementation appears too
expensive for wide use, a more cost-conscious design and some
assistance from hardware can bring the cost down substantially.
We hope that the ideas demonstrated in this thesis will shed
some light on the problems involved and point the way to some of
the solutions.
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Introduction to D A M E

DAME (Dynamic Analysis and Modelling Environment) is an
environment for running PDP-11/20 proerams on the PDP-10 and
analyzing their execution. It contains a fairlv rich instruction
set containing the facilities of a low-level programming language
and a set of facilities for controlling the execution on the
PDP-11 and the dynamic collection ard searchine of data. (We
shall refer to DAME instructions also as DAME commands). Any
DAME command can be executed immediately or in a DAMF routine.

A DAME routine can either be defined on-line by using the "Define
Monitor Routine'" (DMR) command or it can be prepared ahead of
time in an SO0S file with the extension .DAM and subsequently
loaded with the "Load Monitor Routine'" (LMR) command. The latter
mode of operation is hiehly recommended since SQS has much better
editing facilities than DAME and cne quicklv rets tired of

entering the same commands repeatedly. LMR commands can be nested
in the sense that any executed routine can load and execute other
routines, achieving a hierarchical loading effect. This is a

very convenient mnde of operation.
PDP-11 programs are lcaded from a binary (.BIN) file using
the LOAD command. They are executed by using the RUN or GO

commands.

The Hook Mechanism

The principal mechanism by which the user causes DAME to
take some action while his program is running, is the Fook
Mechanism.

There are two classes of hooks: general hooks and addressed
hooks. Within each class there are several tyvpes. The tyvpe and
class of each hook is indicated by a mnemonic character constant
in the Hook command. General hooks are those in which a user-
specified monjtor routine will be executed at:

1- Every fetch operation (hock-type 'CF) or,

2- Every store operation (type 'GS) or,
3- Every instruction fetch (type 'IF) or,
4- Every instruction completion (tvpe 'IC) or,

5- Every node entry (type 'NE) or,
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6- Every node exit (type 'NX).
(Nodes are explained later.)

Addressed hooks are those in which the user-specified monitor
routine will be executed only if the specified tvpe of operation

is performed on an address in a given range. The tvpes of opera- j
tions are: u
7- Every fetch from an address range (tvpe 'AF),
8- Every store into an address range (type 'AS),
9- Every instruction fetch from an address range

(type '"AIF),

10- The completion of every instruction fetched from an
address range (tvpe 'AIC).

The user determines what actions he would like taken at one
or more of the above points. He then prepares a monitor routine
(by a DMR command or by loading from a .DAM file with a LMR
command) and issues a Hook command giving as parameters: the
tvpe of hook, the routine name, if an addressed hook then the
address range, and a name for the hook (consisting of a character
string up to 5 characters preceded by a single quote mark) with
which he can refer to the hook later on. He can place as many
of any type of hook as he wants. The routines which are thus
referenced in a hook specification must be defined prior to the
first activation of the hook. In practice, all monitor routines
are usually defined prior to the initiation of the execution of
the PDP-11 program.

The Node Mechanism

A second important mechanism by which the user collects
information about the behaviour of his program, is the so-colled

"Node Mechanism". The Node Mechanism reflects a certain view,
that held by DAME, of the notion of what "the execution of a
program"”" means. It contains facilities for extracting information

in compliance with that view, while the PDP-11 program runs.

The collected information makes it possibtle to reconstruct anv
previous state of the ~11, as well as to answer questions abcut
data flew and control flow historv without restoring past states.

In DAME's view of the world, interesting parts c¢. programs
are identified and divided into nodes by the user. (A defaulrt
mode is also provided. See NTR command.) Nodes c¢an be as small
as a single instruction or as large as the entire program.
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Nodes are defined thru the NODE command, by specifving their
entry and exit points. Nodes mavy be nested but no two nodes

may have the same entry or the same exit point; nor may nodes
overlap partially. Normally, the last instruction of a node

is a branch or subroutine call instruction and the first instruc-
tion is the target of a branch instruction or a subroutine entry
point. Control need not physically stay within the starting and
ending addresses of a node; the entire path followed by the
program between the entry and the exit from the node will be
considered a part of that "node instance'". A "node instance"
(NI) is a parti..lar execution of a node. Associated with

the concept of an NI are the corcepts of the NI's "input-set"
and the "output-set'". The "input-set'" consists of pairs (aj,bj)
where aj is an address from which the associated NI has fetched
something before writineg into it for the first time, and bj 1is
the value fetched from aj for the first time during the NI.
Thus, the input-set represents all the "external information"
used by the NI. The output-set consists of all the addresses
written bv a node-instance and the contents of those addresses
upon exit from the NI. Thus, it represents all the information
passed to the rest of the world by the NI.

For each node instance, the system creates a four-word
entry in a table, NODETPACE. The format of the entry is:

<node starting address>
<instruction count at entry-
<input-set ptr,,output-set ptr>
<no. of instructions in NI>

In addition, associated with each node is a node-object,
which contains pointers to lists of pointers to the input- and
output-sets of every instance of that node. The I/0 sets can
be displayed easilv by the TOBJ(<obtj. address>) command by
supplying the address of the desired I/0 set list from the node-
object. These lists can also be manipulated in monitor routines.

Finally, all node-objects and input/output sets are
accessible, as most other objects in the svstem are, thru a

set of master list pointers, MNODESC, MINPUTSETSC and MOUTPUTSETSC.

These lists, called "subclass masters'", contain a pointer to
every object of their respective subclasses.

A set of commands intended to facilitate the searching of
this execution history informatior is provided (See "Commands
for Searching Execution History").

R ey Ay T
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Data Elements of DAME

DAME has access to three address spaces, each of which

is handled in a similar, but not identical, manner. These
are:

1- PDP-11 core, general and device registers,

2- Global PDP-10 symbols declared in the simulator and in
the rest of DAME code,

3 3- Monitor Machine objects (MMO) created by the user during
3 the session or pre-defined for the user by DAME during initialiji-

zation.
; A list of the useful elements of type 2 and pre-defined
objects of type 3 are found in the back of this document. Symbols
3 of type 1 are identical to the corresponding, standard PDP-11

assembly language symbols as defined in [DEC 71].

Procedure for Getting Started with DAME

To run DAME, enter the following command to the PDP-10
Monitor:

.PUN DAME C410BAOQ7
It will respond with:

DAME11/10...

* %
and unlock the keyboard. You are now in DAME command mode,
indicated by the double-asterisk prompt signal.
(Notation: A BNF-like notation is used to describe the g
syntax of DAME instructions. "/" indicates disjunction, and

and ">" delimit non-terminal svmbols. Brackets "[" and
"an

J" delimit optional operands.)

'
ron

—

Instruction Format

I

MM instruction> » <Type-1 instruction> ; <Tvpe-2 instruction>
<Type-1 instruction> -+ <operator>(<operand list:)

“Type-2 instruction> » <operator>(-operand list> <action>)
-operand list> -+ <operand>/-<operand list: <operand>

<operand> » -octal inteper> / @<octal integer> , -short char. string>
“global -10 symbol> / <MMO name>
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<action> * <MM routine name~ <compound instruction->
<short char. string> » '<up to 5 characters>
<compound instruction> » (<MM instruction list>)

<MM instruction list> —» <MM instruction> / <MM instruction list~-
<«MM instruction>

As can be seen, some monitor instructions take simple
operand lists while others (in particular, IF, INCR, WHL, HOOK
and ALONG instructions) can optionally take a compound-instruction
(the analogue of a compound statement or compound expression

in block-oriented languages) as the last operand. All operands
of an MM instruction must be defined prior to the execution of
that instruction. MMO's which are not pre-defined by the

system,are defined by the CREATE instruction (except for monitor
routines, hooks and value-trace objects, as described later.)
The form @<octal integer> refers to the contents of -11 core
location <octal integer> when the instruction is executed.
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ARAARNARA R AR ARAR KRR A AR AR AR AR AR AR A AR ARAR AR A ARAR A AR AR AAR AR AR R AR A A A A
AAAKRARAAAAARRAARR AR AR AR AR A A AR AN AR AR AR A A A AR A A AR A AR AARA A A A AR AR R AKX

Commands for Creating Monitor Routines

AAKAAARRAAARRAA R A A A AR A A AR A AR AR AR ARARAAN A A AARANAA AR A AAAARAR A AR N A X
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¥ "Load Monitor Routine" Command

1 Syvntax: LMR (' filename sroutine spec. )
sroutine spec.> » 'sroutine name o/ 'k

Eftect: There must be an SOS tilenamed - filename- HBIN, wvhere
titename - has at most tive characters, The tile must contain |

Monitor rvoutines ifn the following tormat : j

3 crontine name (MM {fonstructions MM fusivuction:

D |
toutine name (MM instructlon: ..o, ]
ceed) ;
f.eo cach routine must start on a new SQO8 line. :
Standard S08 line numberling {s assumed. I ' {s specified, all
the routines in the file are loaded and defined as NMMO's. 1
b Otherwise, {f the specitied voutine is found in the tile, {t ix
‘ toaded and defined, else an crvor messape is tvped.
ARKAAA KA A A AR AR AR A AR A AR A AR A AR R AR AARAR AR A A AR AR AR AR AR AR AARAAR AR A K &
4
"Define Monftor Rout fne'" Comwand ‘

Syntax:  HMR ("routine name )

Eltect: routine name - must be at most 5 characters, The a
command puts the user in the DAME codit mode, which is indicated :
by the prompt characters '—==' for the first Line of a routine

being detfiuned, If the routine is to extend {nto more lines,

terminate ecach non=terminal ltine wlith an altwede and carviage-

return;  DAME will prompt with '--=' for cach non=-terminal line

atter the fivst Hine.  Terwminate tast Hine with only a carrfage -
returiu. 4
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*********************************************i:*****************
***************************************************************

PDP-11 Flow Control Commands

******************************7\'********************************
*****************************************************i;*********

"Run" Command
Svntax: RUN(l<starting address>[<halt count~>1])

Effect: If <starting address>» is specified, it is inserted in

the PDP-11 PC. If -<halt count> is specified, it is inserted in

the global variable HALTCOUNT, the value of which is initialized

to -1 when the system is started up. The CPU is then given control,
starting with an instruction fetch from the current value of PC.
HALTCOUNT is decremented by 1 after the completion of every
instruction. When it reaches zero, execution is stopped and

command mode is entered.

Ak khkhkkhhhkhhhhhkhhhhhhhhrhhhhhRhhhRhhdhhhhhhhhhhhhhhhrbhdhhhkhk
" n
Go'" Command

Syntax: GO([<halt count>])

Effect: If <halt count> is specified, it is inserted in
HALTCOUNT. Execution is resumed from its current state.

Ak kkk R Ak khhhAhhhhh kAR Ak kAR Ak RA ARk kA hhhhhhhhhhkhhhhhhhhdhhhk
"Stop" Command

Svntax: STOP( )

Effect: CPU is stopped and command mode is entered.

Akkkhhhhhhhhhhhdh ko hhhhhhhhhhhhhhhhh kb hhhhhhhhhhhhhhhhhhdhhhhk
"Stop Comditional'" Command

Syntax: STOPC(<id>)

Effect: 1If the value of <id> is odd, then same as STOP ¢,
otherwise no effect.
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hhhhhhhhhhhhhhkh Rk hkhkhkh kA kAR kkhkh ARk Ak kR AR KAk khkhhhh Ak hhhhkkkkkk %

"Node" Command

Syntax: NODE('<node name> <lower bound> <upper bound>)
Effect: Defines a node-object with name <node name> and whose
scope is <lower bound> to <upper bound>. See the format of

objects of nodesubclass and also NODETRACE table for the format
of node-instances (p. 41 and 49).

hhkkkhkhhhhhkhkhA A ARk AAA R A AR R AR A Ak hhkAA A Ak AR A ARk hkhhkkhkhkhhkhhkkhk kk

"Node Trace" Command

Svyntax: NTR()

I'ffect: This command causes the system to assume the default
mode for node definition. The first executed instruction starts
the first node and first node instance. Thereafter, every
conditional branch and every deviation from secuential flow
causes the termination of the current node instance, and the
following instruction (i.e. the target of the transfer) consti-
tutes entry into a new node instance. The current node instance
is also terminated when a preciously-established end of a node
instance is encountered even if control flow remains sequential.

hkhkkhkhhkkhdhhhhhh kA kkkhhkhhhhkhhhhhhhhrrhkhhh kA Ak kkhkhhkkhhhkkk

"Along" Command
Syntax: ALONG(NO N1...Nk P)

Effect: Ni's must be the names or starting addresses of nodes

and R a compound-instruction or the name of a monitor routine.
Whenever the execution follows path NO,Nl,...,Nk, R is executed
whenever this ALONG command is encountered. More precisely, let
LO,L1,...,Lt be the sequence (in reverse chronological order)

of nodes executed so far, with L0O= the current node. Then R will
be executed if and only if for some j, 0<j<k for all i=0,...,]7,
Ni=L(j-i); i.e. if some (j+1l)-element initial segment NO,N1,...,Nj
in the specified path is identical to L(j),L(j-1),...,L0, the

last j+1 node instances executed.

hhkhkhkhhhkhhkhkhhhhhkhkhhhhhkhkhhkhkhhhhhkrA AR Ak AR A A AR A AR AR AR A AR A A XA X &

"Restore to Node Instance" Command

Syntax: REST(-<index~)
“index> + <octal integer> / -obj. name>
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Effect: The PDP-11 environment which existed where the node
instance specified by <index> was entered is restored, including
the NODETRACE table and the instruction count ICOUNT.

However, simulation time is not restored.

KRR IR Rk Rk kR Rk Rk kh hh kA kA kR kA kAhkhk ko ko k k& & &k ko ok e ok ok ok ok
"Replay Node Instance" Command
Syntax: RPLAY(['T] <starting-index> [<ending-index>1)

Effect: The input-sets of the node instances back through the
instance of index <starting index> and a replay is made of

the ncde-instances specified by <starting-index> thru <ending-
index:>. (A node instance has index i if it is the ith node
instance entered since the first node was defined. The indices
of node instances can be determined via the Find Node Instance
(FNI) command.) At the end of the replay, the PDP-11 state
which existed when the RPLAY command was issued is restored,
including the NODETRACE table, instruction count and simulation

time. If 'T is specified, the instructions are traced on the
TTY as they are executed.

ek v
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Shkhkhhkhhkhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkdkkhk
Ahkkhhkhhhhdhhhhhhhhhhhhhhdhhhhhhhhhhhhhhkhhhhhhhhhhahhhhrhhhhhhhhhk

Monitor Routine Flow Control Commands

Ahkhkhkkhhkhhkhhhhhhhkhhhhhdkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhkhik
hddhkhkhhhkhkhkdkhhhhkhhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhdhdk

"I1f" Command
Svntax: IF(<opdl- '<rel>» <opd2> <then-action- [~else-action- ')
~then-action> » <action=>
~else-action> » <action-
~action> -+ <routine name> / <compound instruction:
<compound-instruction> » (-MM instruction list>)

<“MM instruction list> » ~MM instruction~-
/ <MM instruction list~ MM instruction~>

~rel» - EQ/NEQ/GE/GT/LE/LT
Effect: If the specified relation holds then the action

-then~action~> is executed. Otherwise, if an -else-action-
has been specified, it is executed.

KAk KRR IR hkhhhhhhhhhkkkhhkhhhARARhhhAhhhhhhhhkhkkhhhhhkkhkkkkk*
"While" Command
Svntax: WHL(-opd> <action>)

Effect: The action <action> is executed while the value of
-opd> is odd. <action~ is defined as above.

dkkkhkhkkhhhhhdkhhhkhhhhdhhdhhhhhhhhhhhhhhdhhhhhhdhhhhhhhdkhhhhkhhhhkk
"Incr" Command
Svntax: INCR(<var - ~from-opd> <to-opd> -step-opd> <action~)

Effect: As the value of -var- is incremented frem -~from-opd>

to at most -to-opd- in steps of -step-opd>, -~action- is executed
at each step. If <from-opd- is initially smaller than -to-opd-,

caction~ is not executed at all. ~action» is defined as above.

et o
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***************************************************************
"Execute" Command

Syntax: EX(<routine>)

Effect': The monitor routine <routine> is executed. This command,
together with the PUSH, POP and RET commands described below,
constitute a subroutine facility with call-bv-value parameters.

***************************************************************
"Push" Command

Syntax: PUSH(<value>)
<value> » <octal integer> / '<char. const. up to 5 chars.>
/ <obj. name>

Effect: The provided literal or thte contents of word 0O of
<obj. name> are pushed on a (implied) stack from where they
can be retrieved by a POP command.

Rhkddk ok kkkkkkk ko kk kR Rk kR k Ak h kR kA Ak Ak Rk kAR KAk ARk kR A KA AR Kk k k& &
"Pop" Command
Syntax: POP(<obj. id>)

Effect: The last element pushed onto the stack is popped into
word 0 of <obj. id>.

hhkhkhkhkhkkkhkkhhkhhhhhhhhkhhkhkhkhkkkkkkkkhkhhhhkdedhhkkhdkkkk &k %7 % k&
"Return" Command
Syntax: RET(<level count>)

Effect: Causes an exit from the last <level count> number of
monitor routines and compound-instruction levels; the level

count for current level being zero. (Note that, in fact, RET (Q)

is a useless case since it means that the MM instructions following
the RET(0) in the same level, will never be executed. The effect
of that level would remain unchanged if the RET(0) and all the
following instructions in the same level were removed.)
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***************************************************************
*****************************************************:‘v*********

"Type-Out'" Commands

khkkkkkkkk k***********‘k*****************************************
***************************************************************

"Type Object" Command
Syntax: TOBJ(<obj. name or address>)

Effect: Types the contents of the object whose name or -10
addrevs is given, at the terminal in a format appropriate to
the class of the object.

List-objects are typed between a pair of brackets, [ i
Each element of the list is also typed according to these same
rules, recursively.

Representative-objects are indicated by a -~ followed by a
recursive type-out of the object they represent.

Numeric-variable objects are tvped, for an cbject named
ABC, as 'ABC: ' followed by the contents of ABC where each word
is typed in PDP-10 numeric half-word format and words are sepera-
ted by slashes. The last word is followed by two spaces.

Character~-variables are typed in the same format as numeric-
variable objects, except that each user word is interpreted as
a left-justified character string and tvped out as such.

Numeric-constant and character-constant objects are typed
in a format similar to those of the corresponding variables
except that no name is typed. Long-character-constant objects
are typed without the slashes between user words.

(There are two classes of objects which are not normally

used by the user. These are included here only for completeness.
Id-objects, which represent names in a monitor instruction, are
typed between <...>. Non-homogenous objects are tvped, for an

n-word object by interpreting user vord i as an object class
and typing out user word i+l according to that class followed by
a ~olon, i=0,2,...,n-2. These are used in the Svmbol Table to

represent entries.)

For an object whose class is something other than one of
the above, an error message is typed indicatine the class of the

object. (For a list of object classes, see Create Object Command.)

"
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Note that TOBJ command must be used to type onlv MM objects.

Every completed type-out is followed by a carriage-return,
line-feed.

R Ly R L g e T L i L1
"Type-Indirect Object' Command
Syntax: TIOBJ(<pointer>)

Effect: Performs "Type Object" Command on the object pointed

by <pointer:., This command is especially useful for typing out
objects pointed by global PDP-10 symbols, by giving the -10
symbol as the <pointer>. See the list of global variables at

the end of this appendix.

AR R AR AR SRR RS E TR ET R RS RS S SRR SRS RS RS SRR RS RS R RN

"Type -10 Symbol” Command
Syntax: TY10(<plobal var. name or address>)

Effect: The contents of the specified global variable or the
-10 address is typed out in octal half-word format, followed by
two spaces.

LRSS E R SRR RS EETE TSRS RS SRS RS R R YRR RIS R R R

"Type Contents of -11 Addresses" Command
Syntax: T(«starting address> [<ending address>-])

Effect: Types out the contents of -11 core from <starting address>
to <ending address>. Either term may be a constant or an object
whose word 0 contains the address. If the latter is omitted,

it is taken to be equal to the former. For each core word, the
type-out has the form:

<MMO list ptr>,<I/M bits>,<~11 word>.

The first field is the 18-bit -10 add:ess of the list of MMO's
associated with that -11 location, e.g. hooks, value-traces,
node-objects etc. These may be examined by entering TOBJ(<MMOQ
list ptr>»). See "Object Subclasses" for the format of each
such object.

<I/M bits- are used in the determination of Input-QOutput sets,
and are not of direct interest to the user.

e e




R L S Moy USSR T

Lo e ol

TTR e 0

166

Each word is followed by two spaces.

Words are written eight
to a line.

***************************7':****************7’:******************

"Type Immediate' Command

Syntax: TI(<literal:>)
<literal> - ~non-neg. octal integer> /
"<char. string up to 4 chars.>

Effect: Tvpes out the surplied literal.

***************************************************************
"Type Node Instances'" Command

Syntax: TNI([<starting index> ] <count >)

Effect: <count> number of node instances starting with
“starting index> are typed on the TTY (moving forward in time
if <count> isg positive, otherwise movine backward in time).
If starting-index> is omitted, it is taken to be the setting

of the node instance pointer NIP. The format of each typed
instance is (typed on one line):

index- <node address-> <flags-
“input-set address> <output-set address>
“no. of instructions in the node instance>

R L L L L L L LT D N
"Type Node Objects" Command
Syntax: TNO(<al> <a2...

. <an>)

Effect: Types the node objects associated with PDP-11 addresses
alyremnans
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"Insert" Commands

LR RS R R LR TR Y T Y R LRl L L L L L
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"Insert in -11 Address'" Command

Syntax: I(-address> <value>)

Effect: EFach operand may be a constant or an ohject name. In
the latter case, the contents of word 0 of the object is used

as the -11 address or the value. If the value is less than
177777, the control bits (bits 16-35) of the core are unaffected
and the value is placed in the -11 word. Otherwise the full

-10 word is replaced by the value.

LR Sy Il I mMmM T T I ™™
"Zero -11 Addresses'" Command

Syntax: Z(-starting address> <ending address-)

Effect: Either operand mav be a constant or an object name.
The -11 words between the specified objects are set to zero.

Rk Rk ARk A AR KRRk kR Rk kA Ak AR AR AR AR A KRk ARk Ak kA A ARk Ak Ak kkkk Kk ok ok k ok %
"Insert in Object" Command
Syntax: IOBJ(-obj. name: : <N> <value:>)

Effect : The <value: is inserted in word <N> of the object
<obj. name- . Either <N or -value> may be a constant or an
object name. <value - may be an octal constant or a character
constant of at most 5 characters preceded by the single quote
If <value> is the name of an object whose subclass is #13

(ADDR11SUBCLASS), its contents are taken to be an -11 core address,

and the contents of that address are used as the value.

KA AR AR KRR AR AR R R AR AR Ak R A KA AR A AR AR A A AR R AR AR KRR K Kk Fok ko Kk ok ok ok dok dok ko ok
"Insert Halfword" Command

Syntax: IHW(<obj. id> <start-address> [<n>])

Effect: The nth halfword in the -10, counting left to right,

starting with the left-halfword of <start-address>, is inserted
in right half of -obj. id-.

R T
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Commands to Create and Delete Nbjects

hhkhhhkhkhdhhhhkhhkhhkhhhkhhhhhkhhhhhhhhhhhhkhhkhbhkhkhhhkhkhkhkhkhkr ki ki hhhkhk
khkhkhhkrhhhhhkhhhhkhhhhkhhhhhhkhhhhhhhhhhhhkhkhkhhhkkhkhkhkhkhkhkhkhkhkkhkk kA kkkk

"Create Object" Command
Svntax: CR('<obj. name class -subclass size~ )

Effect: Creates and object acrordineg to these specifications.
If only tne first operand is -~pecified, the default values for
the other 3 operands are used. These are #100 (numeric constant
‘lass), 0 (free subclass) and 1 (1 user word). All specified
operands must be constants, obj. name: must have at most 5
characters.

The object classes which the user mav use are:
100. numeric class

300: character class (up to 5 characters)
700: long-character-string class

The object subclasses which the user mav use are:

0 : free subclass (i.e. uninterpreted)
13 PDP-11 address subciass (whenever the obhject is encounte-
red, the contents of the PDP-11 word pointed by it
are taken)
14 : PDP-10 address subclass (wvhenever the object is encounte-
red, the coantents of the PDP-10 word pointed by it ]
are taken)

These classes and subclasses are that subset of all the pre-defined

classes and subclasses which should be visible to the user. There

are many others which are used bv DAME and POOMAS functions. The

user may create objects with classes and subclasses other than

those pre~defined. In such objects the classes assigned should

be between octal JN00 and 77770 and subclasses between octal 70 3
and 77770 in order to aveoid conflicts with the pre~defined ones.

Objects with such user-defined classes mav not be tvped out with ]
the TOB.J command. '

khhkhkkhkhkhkhkhhhkhkhdhhhkhhhhhhkhhhhhhhhhhhihdhhhhhhhhhhhhhhhdhhdhhhhhk

"Delete Object'" Command

Syntax: DEL(<obj. name or address>) i

Effect : Deletes the specified object and returns its space to
the free-space list. ]
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Hook Manipulation Cemmands
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"Hook" Command
Svntax: HOOK (- hook specification>)

4 “hook specification» » -“general hook spec.-  /
~addressed hook spec.-

<peneral hook spew> - '-gen. hook code- -action-
| hook name

-pen. hook code: -+ GF/GS/1F/IC/NE/N¥

~addressed hook spec- +» '-addr. hook code-
~action>
lower hound
“ upper bound-
'“hook name

-addr. hook code - ALF/ALIC/AF/AS

~hook name- - char. string up to 5 chars. -

~lower bound: - -octal integer- / -regname:>

upper bound- - -octal integer not smaller than
-lower bound:>

Effect: The HOOK command is the rrincipal means by which the
user executes monitor routines during the execution of his
program. Ceneral hooks, i.e. those with codes '#F,'GS,'IF,"'IC,
"OF,'0S,'NE or 'NY cause the execution of the specified monitor
routine at everv: fetch. store, instruction fetch, instruction
completion, node entry or node exit respectively.

Addressed hooks, i.e. those with codes 'AF,'AS,'AlF or 'AIC,
cause the execution of the specified monitor routine whenever

a fetch, a store, an instruction fetch or the completion of an
instruction occurs from a location within the specified bounds.
If register names are used, the following additional rule must
be observed: for general registers the bounds must stav within
RO to R7, and other registers, namely TKB, TKS, TPB, TPS and PS,
must be specified individually, by giving the same name for both
the lower and uppecr bounds.
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"Disable Hook" Command
Svntax: DISAB(<hook~obj. name or address:)

Effect: Causes any future activations of the hook to be a
no-op.
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"Fnable Hook" (ommand

Syntax: ENAB(<hook-obj. name or address>)

Effect: Causes the monitor routines associated with the hook
to be executed whenever the hook is activated.




***************************************************************
***************************************************************

Commands for Searching PDP-11 Fxecution History

***************************************************************
***************************************************************

"Find Input-Set" Command

Svntax: FISET(<obj. id- "node-spec - -search-spec
f<direction- [“starting inde.>|])

node-spec: - '* / -pode-id>

“search-spec* - routine name>
/ <compound-instruction -

«direction- - 'F/'B

‘startine index- - positive octal intepger-> /
obj. name>

Effect: A search is made over the input-sets of past node
instances until one satisfving vsearch-spec> is found. If

such a node irstance is found, the address of its input-set

is inserted in <obj. id and the node-instance pointer NIP

(which is a PDP-10 global variable) is set to the index of

the node instance: n*herwise a 3J6-bit -1 is inserted in

‘obj. 1d- and NIP is unaffected. If a “node-id> is proyided

in “node-spec, onlv the instances of that node are searched:

if "* is specified all input sets are searched. If a ~direction>
is provided, search takes place in that direction ('F for
"forward", 'B for "backward"): otherwise search takes place
backward. If a ‘starting-index  is provided, search starts

from that index, otherwise it starts from the most recent node
instance. (Note that if NIP is specified as “starting-index>,
it will start from the current setting of NIP.)

The procedure for the application of the predicate, 1i.e.
“search spec~, is as follows: The system pushes the address of
the input-set to be tried on the stack. Hence, the routine or
compound instruction supplied in search-spec>, referred to as
the predicate hereafter, must obtain that address bty a POP(A)
instruction, where A is some input-set name. Then, the contents
of an address 0 in the input-set can be extracted bv the '"find
value” instruction FVAL(B A Q) which will insert in the object
B either the (16 bit) contents of -11 address O in the set pointed
by A if Q is in fact in that set, else -1. The predicate must




obtain the contents of all addresses {n this wmanuer aund pertorm
norwal arithmet ¢ or comparison operat fons on them, which
constitutes the bodv ot the predicate, Then Tiualiv, {1t the
destired conditions are met (.. the predieate s satistied),

a PUSH(L) otherwise a PESHCOY must be pertorwed.  Upon exit

trom the predicate, the svstem wilt pop the stack. 1t the
popped value s 1, the tadex of the node fnstance just seavebed
will be ftuservted (n ocob). td o and the tustvactfon wilt be teval-
nated, fthetrwise, (f the eund of the node trace hintory has bheen
reached, obl. (ds witl be set to -1 clve the address ot the
nest fuput=set to be searched witl be pushed on the stack and
the cvede ‘(']‘r!‘-‘\(l‘l‘ apain,

Example: Suppoese wve wish to tind the most vevent fnput —net
of an dnstance of node N wheve the contents ot address {000
fw areater than the contents ot address 2000, Provided the
objects A, B, X oand Y have been previonsty created and the nodde
N opreviousty detfued by oa node o NER (ustruction, the tollowing
funstruct ton shonld de thisg

FIner(n N rorda)
PUALLN A oo
FVAL (Y A 2000
{PEN '6T v Crusucl)) Cteusuld)) ) 32

Phiis fustruetion will fuseve o B eithe the address ot the
fnput-set ot the mest vecent fastance ot Nodn owhiteb @O0 @grachd

or the value =1 {{ wo suebh {nput-set can be teund.,
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"Piad Output=Sct’ Command

Svantas: FOSET(-oby. 1d- node-nped seavehespec:
divectton [ Csmtartbtnyg andex: )

Fttect: The same as FESUT oxvept that eantput-sets arve seavehed
vather than faput=sets,

AARAAAAAAARACAARAAAACAAAARAAARAAARAAARAAAARRARAR AR A AR ARARAdR
TErud Valae™ vommand

Svutan: FVAL (ob). td addrens ot Q0 net el addvess o)

Ltteat 1t the specitted (1 address appeavs in the spevitied

1/70 wet, then the contents ot the address {n that set, othevrwise
1, ts tosevted tn coblo Gd
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"Find Node Instance'" Command
Syntax : FNI(-obj. id* 'node-spec - -instance-count -
| starting-index - '<direction~|])

‘node-spec: *» -node-id- / CURNODE
~instance-count - - -roctal integer - / -obj. name-

Effect: An attempt is made to find the nth instance of the
node specified by -node-spec - where n=-octal inteser if one

is supplied, otherwise contents of word 0 of -obj. name -.
CURNODE means the current node. If a -starting-index 1is
specified, the search starts from there, otherwise from the
current node instance. NIP is a valid parameter for -starting-
index . 1f a -direction  is specified, the search proceeds in
that direction: othervise it proceeds in the backward direction.
I1f the desired node instance is found, its index is inserted
into ‘obj. id> and into NIP. Otherwise, -1 1is inserted into
<obj. id- and NIP is unaffected.

Ak hhkhhhkhhkkhkkhkdkhhhkkhhkkdkkhkhk kA kK hhhkkkhkkkkhkkkhhhdkkkkdkkkokkkokk
“Find Node Object" Command

Svntax: FNO(-obj. id- =11 address )

Effect: If --11 address  is the starting address of a node,

the agdress of the node object, otherwise -1, is inserted in
-obj. id

- AR o T o 3 . -
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***************************************************************
***************************************************************

"Value-trace'" Commands

***************************************************************
***************************************************************

"Initialize Value-trace'" Command

Syntax: IVT(<-11 addr.> “number- '-obj. name>)

Effect: Creates a value-trace object with name -obj. name-

with enough ronin for <number> previous values and puts the
object in the MMO list of the specified -11 address or register.
Note: This command does not initjate the collection of values.
It merely creates and object to hold those values. The collec~-
tion of values is initiated by the VTH command.

***************************************************************

"VYalue-trace Hook'" Command
Syntax: VTH(<-11 addr. or reg. name>)

Effect: Causes the monitoring of values stored into the
specified core location or register and maintains a circular
buffer of the last k values, unique or non-uniaque, stored
there by the PDP-11, where k is the ~number> specified in

the preceding IVI command for the same address. All accesses
by the -11 to write into the specified cell (including auto
register incrementation, decrementation, turning on/off bits
in the condition code or the device registers) are considered
store operations and cause a new entry in the value-trace.

-
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Disk I/0 Commands

Nhkkkdrhkhkkhkkkkkkkkhkkkkkkhhkkkkkhkkkkhkkkkdkkkkhkhkkkkkkkkkkkkkkkkkk
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"Write Disk'" Command
Svntax: WDSK(<obj. id>)
Effect: will write (in PDP-10 dump mode) on disk file USER.DAM
the contents of the object whose name or address is given in
+obj. id~>. If the file does not exist, it will be created;

otherwise its old contents will be destroyed.

khkdkkhkhkdkkhhhhkhkhhhkhhhhdkhhhhhhkkhkhkkkkkkkkhkkkdkkkkkkdkkdkkhkkkkk
"Write-Indirect Disk" Command

Svntax: WIDSK(-address:>)

Effect: Will perform WDSK(<obj. id>») where <address> contains

a pointer to <obj. id-. This command is particularly useful
for writine out obje:is pointed by PDP-10 symbols.

Ikhkkkkkhkkkkkhkkkkkkkhk kkdehkkk ke dk ek hkkkhdhkkkhhhkkhkokokk ok kdkdkkkkx
"Read Disk" Command
Syntax: RDSK(-obj. id>)

Effect: Will read a 36-bit word from the binarv file USER.DAM
(which had better exist!) into the object -obj. id-.
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Miscellaneous Communds
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"Load PDP-11 Program'" Command
Svntax: LOAD('~file name- -starting address:)

Effect: The file must be in the absolute unpacked output
format of the PAL.-1i assembler or MACX1l wvith /I/A switches,
must have extension .BIN and the <file name> must be at most

5 characters. «starting address> must be an even octal integ r
between 0 and 157776 - ¥, where X is the length of the program
in bytes.

Kkhkhkkhhhhhhhkkhkhk kb kA kA A hkhhhhhh kkkkhhhkkkkhkkhhhhhhkkkkkk %
Generalized "Unary Operation with Assignment'" Command

Svntax: UA('<operation: -target> -opd=>)

“operation> » SUC / PRED / SAL / SIZE / ADDR / NOT

<target> - <obj. id:

“opd> + <obj. id>
Effect: The specified unary operation is performed on -opd>
and the result is inserted in <target:>. 'SUC and 'PRED are
the successor and predecessor functions, respectively. 'SIZE
returns the number of user words in <opd:, 'ADDR the address
of <opd». 'SAL the address of the secondary-attribute-list

(SAL) of <opd> and 'NOT the logical complement of the contents
of the first user word of -opd

Ahhkkhhkhkkkkhkhkhhkkhkhkhhkhkhkkkhhkkhkhhhdhhhhhhrhhhhkhhhhhhhhhrkrhhkhkkk

Generalized "Binarv Operation with Assignment'" Command

Syntax: BA('-operation- -target- -opdl- -opd2-)
<operation- - + / - / * / <slash- / AND / OR / ¥OR
A
where <slash. is the integer division sign "/'".
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Effect: The command performs <target> <« <opdl> <operation>
<opd2>. AffB is the Bth previous value of -11 core location

A, ! is the vector index operation and returns the contents
of word vopd2- of -~opdl:. No bounds check is made. Any or
all of -target>, <opdl- and <“opd2> may be octal constants, MMO
names or plobal variables. A constant for the -target> is

interpreted as a -10 address; for the others as a literal,
All the arithmetic and logical operations are defined the same
as in BLISS -10. In the case of # operation, a value-trace
hook for at least <opd2> previous values must have been placed
on “opdl> and a VTH command must have been issued (See IVT

and VTH Commands). If opd2- exceeds the number of values
declarad to be kept in the last IVT command for the location
<opdl>, and error messaee will be typed out and no assignment
will be made., If -opd2: number of values have not vet been
stored into the specified locacion, the half word #777777 will
be returned.

Kkkkhkhkhhhhkhkkkkkkkkkhkkkhhhkkdkkkkkkkkkkk ke kkkkhkkhkkkkhk k& % %
"Execute External'" Command
Syntax: XX(<PDP-10 routine name> | <param. list>])
-param. list- » <param- / «param. list> <param>

“param> -~ -literal> / <identifier-

Effect: Calls the specified routine with the given parameters.
Caution: If identifiers are given as parameters, their addresses
are passed. If you wish the contents of the identifier passed,

include an additional parameter, namely the literals'. (single
quote followed by a dot and a space) before each such parameter.
This convention applies onlv to this and to the LVAL command
below.

Khkkhkkdkkkkkkkdekdekkkkkk ko dhkhdhhhkhhhhkhkhkkhhkkkkkkkkkkkkhkkkk k kk &
"Evaluate" Command
Syntax: EVAL(-tarpet> ~PDP-10 routine name> | -param. list>])

Effect: The ~10 routine is called in the same manner as in
Execute External. The onlyv difference is that the value
returned ty the routine is stored in <target>. The value
returned by a routine is assumed to be in register 3, following
BLISS/10 convention.




***************************************************************

"Time'" Command

Svntax: TIME(<obj. id~ '-scale- '“type>)

<scale>» » MICS / MILS
(for microseconds or milliseconds respectively)

~type> - FIX / FLOAT
Puts in word O of <obj. id> the current value of the

Effect:
sirmulation clock according to the given specifications (i.e.
in microseconds or milliseconds and in fixed cr floating point).

*********************************************i:*****************

"Plot" Command

Syntax: PLOT(-space count> '-char>)
<space count> - -literal- / ~<identifier-

<space count -
line-feed, "!", followed by

Ef fect: Tvpes carriape-return,
-char~.

space count - spaces and the character
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A LIST OF USEFUL GLOBAL PDP-10 SYMBOLS AND THEIPR CONTENTS

SYMBOL CONTENTS

(For addressed fetch hooks)
AFHDATA The data just fetched
AFHADDR The address of the fetch

(For addressed store hooks)

ASHDATA The data to be stored

ASHADDR The address of the store

DATA Contents of Unibus Data lines

ADDR Contents of Unibus Address lines

CONT Contents of Unibus Control lines

OLDPC Last value of the Program Counter (R7)
OPN A unique inteper between 0 and octal 111

representing the current opcode
(See next table)

OPC The assembly lanpuage mnemonic for the
current opcode

DSTREG The destination register, mode and operand-
DSTMODE J value, respectively, of the
i DSTDATA most recent (including the current)
1 \ single-operand or double-operand
instruction
SRCREG ;The source register, mode and operand-value
SRCMODL of the most recent (including the current)
SRCDATA L double-operand instruction
HALTCOUNT Number of instructions after which simulator
will stop (normally maintained by DAME
but may be set by user)
CURNODE PDP-11 address of the current node 3
CURNOBJ PDP-10 address of the node object for the i
current node
CISP Pointer to current input-set
coSpP Pointer to current output-set

G e
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THE OCTAL VALUE OF OPN FQR EACH OPCODE (OPN=i+3)

N 0 1 2 3 4 5 6 7
i
0 MOV MOVB CMP CMPB BIT BITB BIC BICB
10 BIS BISB ADD SUB CLR CLRB COM COMB
20 INC INCB DEC DECB NEC NEGB ADC ADCB
30 SBC SBCB TST TSTB RDR RDRB ROL ROLB
40 ASR ASRB ASL ASLB JMP SWAB No-op CLC
50 CLV CLZ CLN No-op SEC SEV SEZ SEN
60 BR BNE BEQ BGF BLT BGT BLE BPL
70 BMI BHI BLOS EVC BVS BCC BCS Not
used
100 JSR RTS HALT WALT RTI (break 10T RESET
| point
[ trap)
110 | EMT TRAP

P ———



APPENDIX B

Syntax of MDL

module - MODULE name = e ELUDOM

block * BEGIN blockbody END / (blockbody)
compoundexpression * BEGIN expressionsequence END
blockbody - dec.arations: expressionsequence

declarations * declaration / declaration; declarations

expressionsequence * /] e |/ e; expressionsequence

e » simpleexpression / controlexpression / name: e
simpleexpression - pl0 « e / plo0

pl0 + p9 / plO OR p9

p® - p8 / p9 AND p8

p8 -~ p7 / NOT p7?

p7 - p6 / p6b rel.tion pé

pé * pS / - p5 / p6 + p5 / pb - P>

p5 =~ p4 / p5 * p4 / p>5 p4 / p5 MOD pé

p4 - p3 / p4 * p3

p3 - decimal / name / name [elist! / e (elist)
/ e() / block / compoundexpressiow

elist » e / elist, e
relation - EOL / NEO / LSS / LEO / GTR / GEO

controlexpression * conditionalexpression / loopexpression /
choiceexpression / escapeexpression

conditionalexpression » IF e THEN e / IF e THEN e ELSE e
1 2 1 2 3
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I loopexpression - WHILE e DO e
1 2

loopexpression » INCR name FRCM e TO e BY e DO e
l 1 2 3 4

escapeexpression » EXIT level escapevalue /
RETURN escapevalue / LEAVE name escapevalue

level ~ / [e.

escanevalue ~- / e

choiceexpression ~ SELECT elist OF NSFT nexpressionset TESN
nexpressionset - / ne / ne: mnexpressionset

ne * @&le

declaration » routinedeclaration / allocationdeclaration

allocationdeclaration » allocatetype idlist
allocatetvpe -~ GLOBAL / LOCAL / OWN / EXTERNAL / LABEL
idligt « id / idlist , id i
id - name / name [dimensionlist
dimensionlist - decimal / dimensionlist, decimal
routinedeclaration - ROUTINE name (namelist) = e /
ROUTINE name = e /
EXTERNAL flist
flist - name / flis*®, name
name - letter / name letter / name digit

lokker = A ¢/ B / «..

digit + 0 / L / ... [ ®

decimal » digit / decimal dieit




