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ABSTRACT 

This thesis concerns itself with progress that has been made in the development of a 
better model of computer chess. We consider the fact that chess programs have made 
almost no gain in strength, as measured on the human scale, in the period 1968 - 1973, 
as indicative that the popular model of computer chess is near the limits of its 
exploitability. 

Some indication of why this could be so is provided in a chapter which discusses some 
very basic flaws in the current popular model of computer chess. Most serious of these 
is the Horizon Effect which is shown to cause arbitrary errors in the performance of 
any program employing a maximum depth in conjunction with a quiescence procedure. 

We see the problem of computer chess as two-fold. There is the representation of 
chess as a knowledge domain.  Such a representation allows: 

1) Situations to be recognized 

2) Problems to be stated 

3) Results to be expressed, and 

4) Intermediate Knowledge to be saved. 

A major portion of the. thesis addresses itself to the development of a representation 
detailed enough to support the above requirements. 

The second as tect of the problem is tiiat a verification method Is required to validate 
any proposed course of action. This is because it is seldom possible to establish a move 
(part of a course of action) as correct, based solely on the properties that the move 
may have. The usual vorification method employed 'n computer chess is tree searching, 
and we do not differ hare. However, in today's most successful programs tree 
searching is used both for discovery and verification, and we object to the former use. 
When tree searches are used for discovery, they tend to produce bushy (high branching 
factor) trees. This is what creates the exponential explosion which severely limits the 
depths to which current programs can effectively probe. 

The thesis investigates the problems of how a more effective use of the representation 
avoids the need for much discovery tree searching. It 3!so examines the problem of 
how to make a tree search converge naturally, without any externally specified limits on 
the depth and width of the search. Several new tree searching heuristics are 
introduced. 

A program (CAPS-ID has been developed during the research reported herein. It is 
only concerned with the tactical (conservation of material) aspects of chess. It does not 
play very good chess by current computer chess standards. However, it is able to do 
well certain tasks that current programs can not do and could never be extended to do. 
This includes circumnavigating very large search spates. CAPS-II regularly is allowtd 
to go to a depth of 10 ply compared with the 5 ply for today's best programs. This is 
an increase of about three orders of magnitude in the size of the virtu»1 search space, 
and the research points to ways for further extending this. 
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We have tested CAPS-II for its tactical ability, and it does quite well on sets of 
problems that are used to measure tactical chess know-how in humans. Since CAPS-II 
depends more on concepts and less on searching than today's programs, it is able to 
solve some problems with long principal variations while failing to solve others which 
could la'e been solved by shallow exhaustive searches. 

Among' thij more significant developments in the research is a Causality Facility which is 
able to deal in a general manner with cause and effect issues and thus produce a radical 
narrowing of searches aimed at ""covery of the remedy for a certain cause. Both 
causes and effects are describee« in (he representation, and these descriptions can be 
used b, move generators and for making deductions. 
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INTRODUCTION 

Even before computers were commercially available, scientists were concerning 
themselves with the problems of computer chess. The first serious attempt to treat the 
problem of how a computer could play chess was made by Claude Shannon [Shannon, 
(1950)]. However, no programs that could play complete games of chess appeared until 
the late f if tie? [Kister, et. al. (1957), Newell, et. al. (1958), Bernstein, et.al. (1959)]. 
This was also the tim^ period during which the field of Artificial Intelligence was 
beginning to emerge. However, these early programs played very weak chess and could 
only hope to beat beginners. 

A historic correspondence chess match was held in the middle sixties between a 
computer program at Stanford University and a program at the Moscow Institute of 
Physics. Although ih:s was the first occasion of computers competing against each 
other, the quality K play did not attract much attention. The first program to attract 
wide attention was that of Greenblatt [Greenblatt, (1967)]. It played in human 
tournaments and soon achieved a Class "C" rating, which is just below the median of the 
human scale for tournament chess players. However, in the intervening years no 
program has been able to achieve a stable rating above the MC" class. 

This thesis concerns itself with a framework within which a Master level chess 
program could be built. We consider the fact that little advance in the strength of chess 
programs has been achieved since the 1968 Greeenblatt program as indicative that 
there is something wrong with the model of chess that is currently in popular use. In 
Chapter I we examine some of these problems. We show the need for programs to 
probe considerably deeper than they do now. We also show that the Horizon Effect is a 
limiting factor on the accuracy of evaluations, which can only be overcome by quiescing 
all parameters used in any terminal evaluation function 

These considerations lead us to aim for a model of chess which has a naturally 
converging tree search of unlimited depth. 0 : research is aimed at achieving this, and 
has two major directions. The first is to find additional tree control methods for 
converging the search. These include partitioning the search problem into several goal 
states, using new level of aspiration methods, and making comparisons among nodes in 
the tree in order to achieve termination criteria. Among the latter is a Causality 
Facility, which can make cause/effect decisions about a set of consequences that 
occurred in a given sub-tree. 

The second method, on which the first partly depends, is to develop better 
representations of chess. This involves developing constructs that can reasonably 
project a future board state some three to seven ply away from the current position. 
We achieve this by noticing certain critical relations between pieces and squares. 
Pieces are then bound to those relations that must be maintained in order for the 
current situation to retain its stability. 

We apply the above notions to the development of a Tactics Analyzer. A Tactics 
Analyzer is a program that is able to determine if in a given position a sequence of 
forcing moves exists that can change the material balance of the position. Such a 
program should be able to determine the material qu'dscence of any position. In our 
ultimate program, the Tactics Analyzer would be a basic unit for determining the tactical 
quiescence of any node. Thus it could be used for determining the tactical feasibility of 
any idea (move) suggested by a strategical agency. 

jy^jyfjlj-^^^yjjlg^^^i^j^^^ü^^g^fc^^ll^jlj^^^j^j^ 
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A chess playing program that corresponds to the above notions has been developed 
during this research. Its name is CAPS-II (Chess As Problem Solving, Version 2). It is 
quite good at solving tactical middle-game problems, and can solve many deep problems 
that are out of reach of toddy's programs. It produces trees with a branching factor of 
1.5 to 3.0, which diverge two to three times more slowly than today's standard trees. 
The program does not play a good complete game of chess, because there are still 
several tactical perceptual mechanisms which have not been programmed, and because it 
does not have the positional knowledge needed for evaluating positions and guiding 
end-game play. Since a chess program, like a chain, hangs by its weakest link, these 
factors currently limit the program's performance. However, the basic approach 
appears successful in that the above weaknesses can be overcome by additional 
programming without significantly affecting the program's branching factor. In fact 
several unimplemented ideas give promise of further significant reduction in the 
branching factor. 

In reading this thesis, it may be useful to consider the following: Chapter I gives 
some basic insight into the generic problems of today's generation of chess programs 
and what would have to be done to overcome these in a significant way. Chapter II 
explains the structure of our program, and is essential for a deep understanding of the 
work reported herein. Chapter III explains the representation and gives examples of its 
use. Chapter IV performs a similar function for the tree searching method used here. 
Chapter V gives data deriving frcm large scale tests of the program. Chapter VI treats 
some meta issues and speculates about how certain issues raised by the research could 
be resolved. 

Since the vocabulary of cness is somewhat specialized, and since we define many 
new constructs in this work, we have provided « glossary to aid the reader. 
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CHAPTER 

SOME NECESSARY CONDITIONS FOR A MASTER CHESS PROGRAM * 

In this chapter we derive the motivation for the work reported in this thesis. But 
this is not a philosophical chapter. The Horizon Effect is examined for the first time in 
its full complexity. Other chronic problems plaguing the current generation of chess 
programs are also investigated. Deductions made about the necessary properties of a 
program that would not be afflicted with these problems lead to the formulation of the 
model, for which the work reported herein is a first implementation step. 

A.  THE HORIZON EFFECT 

When branches in a tree search must be terminated prior to a legal termination 
point (according to the rules of the game), it is necessary to assign a value (an interim 
value other than win, lose, or draw) to the terminal node, which then allows comparison 
with other terminal nodes. This is usually done by invoking a static evaluation function. 
In games where a search to legal termination is not possible, no other recourse appears 
possible. An interesting phenomenon arises from the interaction of the artificial 
termination of the search and the fact that all the terms in the static evaluation function 
are evaluated at this terminal point. The result of this combination is that for the game 
playing program, reality exists in terms of the output of the static evaluation function, 
and anything that is not detectable at evaluation time does not exist as far as the 
program is concerned. This interesting fact is present in all tree searches in any chess 
program that we know of, and causes aberrations in program behavior. 

First let us consider some salient aspects of a terminal evaluation. Who has the 
advantage in Figure 1.1? Merely counting the material on the board would result in an 
evaluation of "equal". However, one side is about to capture the other's queen and thus 
win the game. Since dramatic changes in the status quo are possible, we clearly cannot 
evaluate this position unless we can estimate the effect of these changes. This involves 
trying to construct a likely sequence of moves that would lead to a more stable 
situation. For this we also must know who moves first. What we are dealing with here 
is the concept of quiescence. A non-quiescent position cannot be evaluated properly 
without resorting to special approximations in order to attempt to find its quiescent 
value. Thus in Figure 1.1, it would be enough to know that the side-on-move can make 
a winning capture. This can be done by either extending the analysis one more ply or 
by doing a static analysis of the position considering whose turn to play it is. This 
example establishes the need for quiescence analysis. 

However, the problem reaches much deeper than this. Let us say that a program 
does not do quiescence analysis, or does it improperly, so that it regards the position In 
Figure 1.1 as equal. Then a logical consequence of this would be that White to play in 
Figure 1.2 would play QxR in a depth one search. This is so since QxR results in an 
"equal" position at evaluation time, whereas other moves would not have such a 
"beneficial" effect. This Is an elementary instance of the Horizon Effect. The Horizon 
Effect causes programs to make moves which are inferior, due to the fact that in some 
branch there exists a terminal position which was not quiesced or improperly quiesced. 

(*) An earlier version of this chapter [Berliner, (1973)] constituted the major portion of 
a paper presented at the 3rd International Joint Conference on Artificial Intelligence, 
Stanford University, 1973. 
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The above example is due to lack of quiescence of the final position. 

Examples of the The Horizon Effect have been observed by several researchers 
[Strachey (1952), Greenblatt (1967), Berliner (1970), Atkin et. al. (1971)] in game 
playing programs. However the complete phenomemon has never received a name in 
the literature nor have its causes and effects been properly cataloged. The regimen of 
insisting on a quiescence analysis (which as we have seen is necessary) results in 
today's programs in a two domain search. One domain is the regular search, and the 
other the quiescence search. The criteria for admitting moves to the search are 
different in the two domains. It is sometimes possible to shift the analysis of a 
particular problem in a position from the search domain into the quiescence domain. If 
this can be done in such a way that it will produce a superior evaluation while also 
producing an incorrect analysis (as sean by a chess player superior in strength to the 
program), the program will prefer the incorrect analysis and possibly make a bad move 
because of this. When the Horizon Effect results in creating diversions which 
ineffectively delay an unavoidable consequence or make an unachievable one appear 
achievable, we call it an instance of the Negative Horizon Effect. This is the 
phenomenon previously reported in the literature. It can best be shown by a typical 
example. 

1.  The Negative Horizon Effect 

In Figure 1.3 it is White's turn to play, and for expository simplicity let us 
suppose the search is to be limited to three ply (it is relatively easy to construct 
examples at any given depth). What will happen in the above position is that the 
program will try to play 1. B-QN3 and after P-B5, <\ Anything, it is time to do a 
static evaluation. This usually consists of a material quiescence analysis, together 
with a calculation of other coefficients of an evaluation function. The material 
quiescence analysis could consist of trying all capture sequences and accepting the 
minimax value if it is an improvement for the side starting the sequence. Other 
quiescence procedures are also possible, but in essence they should yield the same 
value. Now at the end of the above 3-ply sequence, the program will coma to the 
conclusion that It will lose the Bishop on N3, and.will continue its search for 
something better. It will eventually come upon 1. P-K5 and recognize that if now 
PxB, then 2. PxN is good for White. Therefore it will consider as best for Black to 
play PxP, after which White plays 2. B-QN3. Since we are now at maximum depth of 
the regular search (the search horizon), this position will be evaluated using the 
standard procedure. The quiescence analysis will show that White has saved his 
Bishop since there is no sequence of capiura which will win the Bishop. Alas, it is 
only after the next move that the program finds out that the non-capture threat of 
P-B5 has not been met by this diversion.lt then looks for other ways of parting with 
material worth less than a Bishop in order to postpone the inevitable day when the 
Bishop will finally be trapped and captured. In this case 2. RxB would no doubt be 
tried next since after NxB, 3. B-QN3, "saving- the Bishop by giving up the Rook for 
the Black Bishop is preferred to losing it. We have seen programs indulge in this 
type of folly for five to six successive moves, resulting in going from a position In 
which they are well ahead to one in which they are hopelessly behind. 

In this case the Horizon Effect is due to improper quiescence. The quiescence 
procedure used only includes captures but not moves that attack trapped pieces. 
Thus the improper quiescence leads the program to believe something exists that 
really does not. 
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rrr.lh  H r.ol^r 1°   Prevent  ,his   behavior   was   mven,ed   by   Greeenblatt 
[GreenblaU (1967)] and is also used by the NorthwestPrn University group [Atkin 

al-     1971J-    This consists essentially of extending a new principal variation 
another two ply, to see whether the reason it was considered supenor, will continue 
to obtain.   In the above example, this will result in finding that the threat of P-B5 
does not go away, and thus a potential sequence of blunders is averted.   However 
extending a principal variation two ply can only discover whether a one move threat 
has or has not been dissaoated.   Threats requiring two or more moves can not be 
dealt with effectively in this manner.   This is usually not noticed, since today's best 
programs perform at a level of skill where two move threats are rare and far from 
the  major  cause of concern for their developers.    However, it  is clear that  the 
Horizon Effect can not be dealt with adequately by merely shifting the horizon. 

2.   The Positive Horizon Effect 

The Positive Horizon Effect is different in that irstead of trying to avert some 
unavoidable consequences, the program prematurely grabs at a consequence that 
can be imposed on an opponent later in a more effective form, or else tries to 
adjust the timing of moves so that some unachievable effect appears to have been 
achieved because of improper quiescence. This phenomenon has been largely 
overlooked in the literature, but is reported in a previous paper [Berliner (1970)] 
Figure lA shows an example of the Positive Horizon Effect where the program 
adjusts the timing of moves in order to take advantage of a lack of proper 
quiescence at maximum depth. 

It is White to play and the search is being conducted to a depth of five ply 
Since nothing tactical can be achieved; the program will try to find some way of 
improving its position.    A natural candidate would be the move N-K5, which places 
the  knight  on  an  important central square and also increases White's control of 
space significantly.    Unfortunately, this maneuver does not work as Black's r^ply 

-Q3 forces the knight back whenever it moves to K5.   However, the program will 
ind the following (ingenious!) way of getting the knight there anyway.   It will play 

1.  PxP  and  after   l.-PxP, 2. RxR, BxR, 3. N-K5 maximum depth will  have  been 
reached.    Since no captures result in any basic change in the position and since 
nothing  is  done  to  see  whether the position of  the  knight on K5 is  relatively 
permanent    White   will   have   "achieved"  his   goal   of   significantly   improving   his 
position.   Of course, after Black's next move when tho norizon moves forward two 
ply,  White  will  discover  his error.    However, in the  mean time  he  has  made  a 
commiting decision (1. PxP) in the belief that it would lead somewhere, and it in fact 
did not.   In this way, today's better programs teeter and totter along in a game. 

An example of the Positive Horizon Effect that illustrates throwing away a 
positional advantage is shown in Figure 1.5. Here, if the evaluation function is 
aware of the beneficial effect of controlling an open file, and if the search is again 
being conducted to three ply, the most likely continuation will be 1. PxP ch, PxP, 
2. R-KR1 with control of the open file and "some advantage". The fact that on the 
next move Black can answer R-KR1, after which White's advantage has largely 
evaporated is not recognized. Neither is the key fact that Black can do absolutely 
nothing to prevent White from opening the file whenever he likes (for human 
players there is the dictum "do not open a file until you are ready to use it") 
However today's programs would almost certainly reject the correct 1. R-KR1 since 
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Mter Black plays R-KR1 and White plays 2. PxPch, it is time to invoke the 
quiescence procedure which p.oduces PxP. Now in contrast to the earlier variation, 
control of the open file is c'ispoted and the evaluation will not be as favorable for 
White. Nor would it be if any 2nd move other than 2. PxPch were played. Clearly, 
a program could recognize the va'ue of playing 1. R-KR1 before 1. Px? ch, only if it 
were secure in the knowledge that the file can be ooened at a later time by PxP 
and that if Black plays PxP, he will merely incur an equally difficult problem in 
defence of the KRP as he has now in defence of the KR-file. In fact having once 
played i. R-KR1 and getting the answer R-KR1, a program that has reasot ed thus 
far should have little difficulty in now playing 2. R-R2 since opening the file at the 
present moment is not advantageous and making room for the other Rook could help. 
It should be noted that incorporating the human players' dictum appears extremely 
difficult as fhe issue of "ready to use it" is one requiring dynamic judgements, in 
which even good human players make mistakes at times. 

Another example of grabbing too soon at an advantsge (this time a material 
advantage) can be seen in Figure 1.6. Here it is White to play and the search is 
again to a depth of three ply. The program notices that it can play 1. P-Q7 and if 
Black does not now play NxP, 2. NxN, then it would get a new Queen. It sees that in 
this way it can increase it's material superiority. It may or may not notice that it 
will then have to face the formidable task of mating with a Bishop and Knight. The 
interesting   thing   about  this  position is  that   the  maneuver   1.  B-K5  followf.-d  by 
2. B-Q4 cannot be prevented and results in forcing the Pawn through to a Queen 
without letting Black give up the Knight for it, thus simplifying the win greatly. Hure 
the important point is that there is a consequence on the horizon, and the progi am 
insists on realizing it withir the horizon of the search as otherwise it dorn not exist. 
As a result, a consequence vhich ccold have turned out to be very beneficic', turns 
out to only have a small benefit. If the issue of whether or not the pawn is 
promotable arid what the I, rgest penalty that can be exacted for it, were separated 
from the function that counts material in all terminal positions then it would be 
possible to treat this problem separately and possibly come to the correct 
conclusion with respect to it. Thus the promotable pawn could be regarded like 
money in the bank, and would not be spent until a survey of various ways of 
spending it was complete. By concentrating on delected issues it should be possible 
to avoid the premature throwing away of winning advantages ^hat one frequently 
finds in today's programs. In fact, the main reason for the demonstrated lack of 
tolerance of complexity of today's chess programs is that their evaluation function 
insists on maximizing, in terms of a preconceived set of evaluation terms, anything 
that it detects within the search horizon, and thus all too frequently destroys an 
advantageous situation before it really has a chance to bloom. 

3. What can be done about the Horizon Effect 

It is important to distinguish between ine Positive and Negative Horizon Effects. 
In both cases, a phenomenon is detected durhg the regular search, and an 
inappropriate response to this phenomen'n is then made because of the analysis in 
the quiescence or terminal evaluation p läse. In the Negstive Horizon Effect, the 
response consists of the program believing that the undesirable effect has gone 
away or been goUen rid of at a lowe cost than the original impact of the effect. 
This illusion is caused by the program manipulating the timing of moves so that a 
certain position will occur at ihe search horizon.   The Negative Horizon Effect can 
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be gotten rid of if the regimen for the regular search were the same as the regimen 
for the quiescence search. This is the approach used in this research. Another 
possibility would be to ma ntain descriptions of all undesirable effects encountered, 
and then include investigations of these described effects in the quiescence analysis. 

In the Positive Horizon Effect, two things can happen. A desirable consequence can 
be detected, and the program then foois itself into thinking that this consequence is 
achievable {again by manipulating the timing of moves), even though it really is not 
This was the case in Figure 1.4. The ofhe: situation is where the detected effect is 
realizable, but in a much better form than what the prograir discovers (Figures 1.5 
and 1.6). In such cases, it is usually not possible to blame the tree -earch. Rather, 
this is a function of knowledge; knowing that the detected phenomenon may be' 
realizable in a better form, and then applying techniques (which may not be tree 
searching) to determining if this is possible. For example in Figure 1.6, a five ply 
search could not be blamed for not finding the right solution. However, once the 
problem of finding the maximum gain for promoting the passed pawn is detected a 
method must exist for dealing with this. When tree searching is not adequate, some 
general knowledge may suffice. For instance, knowing that the Black knight in 
Figure 1.6 can be attacked could be sufficient. In this last example, we do not wish 
to imply that such a paradigm will always react optimally to every position. Rather 
it has the facilities for reacting optimally to phenomena detected during the search 
The phenomena must be detected,and describable. Further the methods for finding 
the optimum are subject to the same risks that all problem solving processes arej 
however, such methods must be made part of any proper quiescence analysis or 
ttrmmal evaluation. 

B. NEED FOR A GLOBAL STRATEGY 

Another basic problem, the need for a global strategy, is shown in Figure 1.7. Here 
White is to play and every one of today's programs would conduct a 5-ply search and 
then play 1. K-K3. A summary of its findings during this trae search might run a 
follows: (t decided that P-B7 would lose the pawn to K-K2, and therefore decided to 
move the King to the most central location available (thi-, is a quantity recognized by the 
evaluation function). On the next move, having already achieved its "optimum" position, 
the program would be faced with a problem that all hill climbers face when they reach 
the top: How to back down as little as possible? Accordingly there would occur either 
K-02 or K-B3. The point of this whole example is to show the hopeless hill-climbing 
characteristics of current program designs. In the giver position, even a poor human 
player would recognize that there is nothing to be gaired by the above maneuvers. 
The real problem is that today's programs mix their strategical and tactical objectives 
during the search. Thus the above position rould be handled effectively if a tactical 
search were first done and this came to the conclusion that P-B7 only resulted in losing 
the Pawn. There being no other tactical tries, control would then revert to a strategical 
module which would try to improve the position of any and all pieces. Since, in this 
simplified situation, we only have the King as a candidate, the next step would be to try 
to find an optimum or near optimum position for the King and determine if it could get 
there. Here we must not rely solely on a static, preconceived notion of centrality, 
although that certainly is a part of the picture, but more importantly we seek a 
functional optimum. This can be found by noting that the Black KNP and KP are not 
defended by Pawns and could possibly be attacked by the King, and also that our own 
KBP couid possibly benefit from having our KinL near it.    Next, a null move analysis 
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could be earned out, consisting of moving the While King around without looking at 
intervening moves, to see if we can find a path to any of the desired squares. This will 
eventually y.eid the correct idea of infiltrating with the White King via QR3, which wins 
easily. Aomittedly the control structure that could evoke such behavior would present 
some problems. Mos' of the problems in chess are tactical (immediate) problems and for 
this reason, the lack of global ideas is frequently obscured in today's programs 
However, it is absolutely necessary to be able to generate global goals in order to avoid 
hill climbing behavior. 

We have touched above only on the relatively simple problem of finding the correct 
way to proceed. A far more difficult problem, which would also have to be faced by the 
Master strength program is to judge whether the position can be won or is a draw. A 
simple "pawn ahead" judgement is not enough. There may be other endgames from 
which to choose, in which the program is also a pawn ahead. In the position being 
discussed, for instance, if a further White Pawn were at QN4, and a Black Pawn at its 
QN4. the position would be a draw. Clearly dynamic judgemonts of this type are 
absolutely necessary. 

C.   CALCULATION OF LONG TACTICAL SEQUENCES 

In Figure 1.8, we see a much better understood problem than any of the above It is 
the problem of calculating in depth. Here White to play can execute a mating 
combination requiring an initial Queen sacrifice and nine further moves, a total of 19 ply 
as follows: 1. Q-R5ch, NxQ, 2. PxPch, K-N3, 3. B^ch, K-N4, 4. R-B5ch, K-N3, 5 R-B6ch 
K-N4, 6. R-N6ch, K-R5, 7. R-K4ch. N-B5, 8. RxNch, K-R4, 9. P-N3, Any, 10. R-R4 mate' 
This combination was played by a forner World Champion while playing a total of 20 
games simultaneously. The reason no program that looks at 10 or more alternatives at 
every node can play the correct move is that the principal variation to justify the initial 
queen sacrifice extends much, much furtner than the 5-ply depth that is about all that is 
possible with a program that gets buried in the exponential explosion of investigating 
10 sprouts from every node. Now it is quite possible to play Master level chess without 
playing such long combinations, but it is necessary to be able to defend oneself against 
such long sequences. In the author's experience, one must at least once a game be able 
to look 14 or more ply ahead. As far as the above example goes, we believe that 99/? 
of all Masters would solve it as well as a high percentage of Experts and Class A 
players. What is really difficult about the example is not the simple unravelling of the 
mam line, which having few branches is fairly linear, but the conception of the position, 
and that such a solution involving chasing the King up the board might exist in it. 

One could argue that just because good players can solve such problems, this does 
not show the requirement for the program to see to such depths in order to play at the 
Master level. What this would mean is that the program would have to relv almost 
exclusively en static, non-tree-search computations for its moves. But we have already 
shown in Figures 1.4 and 1.5 that static notions must be combined with dynamic tests in 
depth in order to yield correct results. So a program that could not look 10 ply ahead 
would be subject to any 10-ply deep threat that comes along. Even though the main 
thrust of most such threats could no doubt be muted, it would be inevitable that some 
concession would have to be made. This type of thrust and parry is at the heart of 
Master play. Even more importantly, a program that cannot look 10 ply ahead could 
never conceive a five move threat of its own which is dependent on adverse action. 
The evidence is quite overwhelming. 
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D.   THE UNRELIABILITY OF STATIC ANALYSIS 

1.   The Safety of Pieces 

Another Interesting phenomenon, that of reality or illusion, that afflicts all of 
todays best programs can be seen in Figure 1.9. Here it is White's turn to play 
l he first thing that the evaluation function will discover is that White has both of his 

HOOKS en prise" (captr.-able by the opponent under favorable conditions) If this 
pos,t.on has occured at some node which is eligible for sprouting, then moves that 
move either of the rooks to a "safer" place will receive good recommendations. If 
the node is a terminal node, then it will be consio-red as not satisfactory for White 
as .t is presumed that at least one of the Rooks will be lost.   In actuality, neither of 

K   Ml    O ^'Wm^n-K,!! BlaCk PlayS QXR ^^ R"B8 ma,t-' and if PxR' ,hen QxPch. 
th ' ^u . '. B1' P'N7ch f0ll0Wed by P-N8=Qch wins ^ick|y- Even stranger is 
the fact that if this position occurs somewhere in the tree below the top node, and 
if. say, two ply earlier White had played RxP{KB6) as a sacrifice which it turns out 
could not have been accepted, then in today's programs there would now be no 
knowledge of the sacrifice at KB6 when the position is tendered for evaluation two 
ply later. Rather the Rook would be considered en prise. Indirect defences of this 
ype are seen all the time in Master chess. Clearly, if a program aspires to this 

level it must be able to handle such problems. Part of the solution consists in 
noting the functional overloading of the pieces that are thought of as doing the 
capturing. Here the Black Queen is guarding a check on the back rank apart from 
a ackmg he White Rook. Also the Black KNP is guarding a Pawn and a check, while 
attacking the White Rook. However this is not enough, since it is quite possible that 
he checks that are being defended against are quite harmless, and it would be folly 
o try to determine, without further searching, the exact potency of every check on 

the board. 

2.   The Value of Material can depend on Dynamic Considerations 

Another problem, that of dynamic evaluation of material, is depicted in 
Figure 1.10. Here with either side to play, White's pawn cannot be stopped from 
queening, while Black's pawns are going nowhere fast. Yet there is no doubt that 
every one of today's programs, if playing Black would refuse a draw in this position 

^u'JuV Very Clear tha, 0nly a very weak human P|ayer would offer a draw 
with White. The programs' rationale is that three passed pawns are better than 
one. The problem here is one of recognizing the dynamic potential of the White 
passed pawn which cannot be caught. It is true that in this case the job can be 
done statically be merely noting the distances of the White Pawn and the Black King 
from the queening square. However, if the Black Pawns were all advanced three 
squares, the computation would have to be done dynamically, since there is a 
possibility they may arrive first. Similar dynamic ideas, which no program can at 
present handle well, are the notion of a defenceless King by reason of no 
surrounding men of his own to help defend him, and the notion of cooperation 
among various men rather than only assessing the goodness of their individual 
positions. Such notions require dynamic exploration to determine the degree of 
their apphcabihty in a given position. However, in a program where terminal 
evaluation must be done very quickly because of the large number of nodes that 
must be evaluated, sfirh luxuries are not possible. We are here directly confronted 
with a basic limitation of the generate and test approach, vhen it does not allow 
enough time to do a detailed evaluation of the nodes visited. 
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E.   EFFICIENCY ISSUES 

Our last two examples deal with situations that present-day programs can handle. 
However, the method by which they do this is terribly inefficient and could not be used 
if one wanted to do tree searches which could extend even a little deeper than the 
current five ply. The first of these problems is the problem of defence. If is relatively 
easy to recognize attacks and develop criteria for judging the value of most attacks. 
However, this is not so with defence. The problem is that in order ;or a defence to 
exist, a threat must first be known. All threats are not of the simple type such as 
threatening a capture. It is the deep threat, the effect of which shows up ori!y in the 
backed-up value of the current variation, that is not easy to counter. This would be 
especially true when the initial move of such a threat does not accomplish anything 
obvious. In such cases present technology is able to only determine the magnitude of 
the threat's effect. Figure 1.11 shows a position of this type. Here it is Black's turn to 
play and the search is being conducted to a depth of five ply. If Black plays a normal 
aggressive move such as l.~ P-R7, he will find that after 2. Q-K8 ch, RxQ, 3. RxR he is 
mated. The search will then eventually revert to the point where Black played P-R7. 
Now in most of today's programs we would be armed with the killer heuristic (which 
says that against any new proposed move try the "killer" Q-K2ch first). This would 
indeed result in the efficient dismissal of the next 15 or so moves likely to be tested. 
However the fact remains that each of these alic^stives is being served up in a 
generate and test mode, and the program can consider itself fortunate if it discovers the 
only defence (Q-K5) before it has exhausted half the legal moves. A much better way 
of handling this problem through the CAUSALITY FACILITY is demonstrated in Chapter III. 

Our final example in Figure 1.12 shows another subtle consideration. In this position 
with White to play, programs that look five ply deep have an excellent chance of finding 
the mate in three moves: 1. BxPch, K-Rl, 2. B-N6ch, K-Nl, 3. Q-R7 mate. If such a 
program, due to the fact that White is behind in material, were only -o look at captures 
of pieces of greater or equal value to the current deficit, and checks (an assumption 
which requires some preprocessing) and to stop at five ply depth (for which it would be 
difficult to establish a logical reason), there would still be about 100 bottom positions to 
examine before the mate is found. Here any tournament caliber human player would 
recognize the situation immediately as one of a set of Queen and Bishop mates He 
would only have to determine the functional need to guard the King escape square at 
KB2, to determine what the correct sequence is and that it does lead to mate. The 
critical thing here is not that a program couldn't find the mate once the diagrammed 
position is reached, but that in advanced chess play such situations occur frequently in 
deep parts of a tree as a reason why some other move fails. If a program spends 100 
nodes investigating such a well known pattern, then there is a definite limit on the 
amount of work the program can be expected to do. The answer here quite obviously 
is to have a repetoire of frequently occurring patterns available to the program 
together with some guidance to determine the exact applicability of any particular 
pattern. In the above case, recognition of the Queen and Bishop functionally bearing on 
the undefended KR7 square, together with the position of the Black King hemmed in by 
some of its own pieces is ^he basic pattern. The dynamic analysis reveals that the King 
could escape over KB2 if this were not kept under continued guard. With these 
constraints, the number or variation^ to Is examined are very few. 

^ . riViii^itr'^""'"'''*-'--""^^  ^,..-.. „.-.^,.....-/.^....,;,.-.^-^-..„.WJ..^.*»..^ 



I  - 13 

f.   SOME CONCLUSIONS 

Let us examine some potential models of computer chess. All the complete models 
are clearly too time or space consuming. Therefore, the most reasonable course 
appears to be to rely upon models that construct trees of possibilities but with some 
limitations imposed upon the growth of the trees. Now depending upon how we define 
these limits, we have a tractable problem. The real question, and that addressed in this 
chapter, is how these limits can be defined and implemented in order to include the 
range of performance exhibited by chess masters while still keeping the problem 
tractable. 

Let us summarize ihe requirements no'ed earlier: 

1) In Figures 1.1 to 1.6 we saw the Horizon Effect in operation. We also saw that the 
two-ply extension of each new principal variation is only a stop-gap measure, which 
prevents one move debacles (anyone who doesn't believe this is invited to try 
Figure 1.13 out on his program). What can be done about the Horizon Effect? 
Clearly the problem is due to the fact that some term in the static evaluation 
function is evaluated "prematurely". Prematurely here means that a noticable 
change in the value <ji the term can be forced, without any compensatory change in 
any other term(s). From this, one can deduce that there can be no arbitrary depth 
limit imposed on the search. The decision as to whether to terminate the search at 
a node or continue, has to be a function of the information tnat exists at that ,iode 
and how this relates to the quiescence of each and every term in the evaluation 
function. For instance, if we have an evaluation function that would consider it bad 
to have a bishop blocked in by its own pawns, then some effort must be expended 
to determine the permanency of such situations. In general wliat is required is a 
procedure to determine the quiescence of every term in the evaluation function and 
in cases of non-quiescence, a procedure foi generating moves or applying some 
static means of reaching a quiescence decision. This should not be construed as 
meaning that perfect knowledge of the future status of each parameter in the 
evaluation function is required. In fad some practical maximum depth or time limits 
must exist. Thus only a finite set of resourses can be expended to determine the 
true future status, and some controlled error will no doubt have to be tolerated. 
However, the resulting error by this method should be orders of magnitude smaller 
(a so-called judgement error) than the errors produced currently by the Horizon 
Effect. In present day programs, quiescence is pursued only for the material 
parameter. And even this frequently does not work out satisfactorily, sirce usually 
only captures are considered, while forks, mate threats, etc.  are ignored. 

2) From Figure 1.7 we saw the need for having global goals and being able to 
determine something about the feasibility of such proposed goals. This may involve 
procedures of considerable complexity in order to answer basic questions about the 
value of any node. All of which adds to the potential evaluation time required at a 
node. 

3) From Figure 1.8, we saw that the program must on occasion be able to calculate 
precise variations to a depth of 14-ply and possibly more. This in no way means 
that every move should be calculated to this depth nor that when a move is, that 
every branch would go to this depth also. However, the basic facility to allow 
probing to at least this depth must exist. 
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4) From Figure 1.9 we saw the need to diagnose certain dynamic properties of 
positions, and the requirement to communicate such data to other nodes in the tree. 
This need exists in order to avoid faulty interpretation and the necessity of 
otherwise "discovering America" over and over again. 

One Key to detecting that something may not be as it appears statically, is the 
use of a functional analysis. In Figure 1.9, the initial indication that neither of the 
Rooks is capturable is that eacii of their attackers is also defending something of 
importance. Sometimes it is possible to resolve such function conflicts statically by 
noting that another piece can assume the required functional role without itself 
becoming overburdened. When this is not possible, the validity of a potential 
function conflict must be established dynamically by tree searching. In later 
chapters of this thesis, we examine the notion of lemmas. Lemmas store 
intermediate information that has been discovered, and can be used to avoid the 
above problems. 

5) From the defence problem in Figure 1.11, we see a need for communication within 
a search tree. A proper description o' a set of undesirable consequences can save 
tremendous effort in finding problem solutions if such exist, or moving on to more 
fruitful endeavors if not. The adequacy of the descriptive language is important as 
it must be used to test whether the set of consequences were ca..-«;ed by the latest 
move, and to provide an input to move generators that could find an appropriate 
answer to the problem. For this purpose, functional relations which describe 
attacks that occured, and path information which describes paths traversed by 
moving pieces and paths over which threats occurred, appear to be among the 
required elements of the language. 

6) The functional relations mentioned in the previous examples are in a sense 
patterns involving two pieces or a piece and a square. Certain clues can be gained 
by searching these patterns when they focus about a common square or piece. 
However, from the example of Figure 1.12 we can see the need for a still higher 
level of pattern abstraction. Here we are looking for groups of pieces which form a 
pattern around some interesting focus. In the example cited, the KR7 square with 
the White Queen and Bishop attacking it, and the Black King are the focal points 
which should suffice to index into the correct pattern, which will th( n produce a 
pointer to a routine for deciding if we are confronted with an exploitable instance 
of the pattern in question. 

Above, we have assembled the beginning of a set of requirements for a program 
that could have the power to play Master level chess. It does not take long to dismiss 
the possibility of extending the current generation of chess program to meet the above 
requirements. It is quite enough to realize that such a program requires about a factor 
of 20 of additional time for each additional two ply of depth that it searches. 

G.   STRUCTURAL REQUIREMENTS FOR A PROGRAM 

In 1958 Newell, Simon, and Shaw [Newell, et. al. (1958)], argued that "As analysis 
deepens, greater computing effort per position soon pays for itself, since it slows the 
growth in number of positions to be considered". This is welt substantiated in the ACM 
tournaments which have convincingly shown the superiority of programs that search a 
subset of legal moves and evaluate a moderate amount, over programs that search all 
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legal moves and evaluate little. Clearly it is time to move again, and more substantially, 
In the direction of more evaluation and less search. Tht requirements demonstrated 
here show a need to do possibly ten or more times as mucr processing at a node than 
is currently done. This means that, for equivalent computing power, we are faced with 
generating trees of at most 5000 nodes distributed throughout the search space. The 
Greenblatt and Northwestern University programs have an effective branching factor of 
5 to 6 (where number of bottom nodes - BF 0CPTH). If it is assumed that the search is 
limited to 14-ply, then the branching factor must be less than 1.9, if we «re to stay 
within 5000 nodes. 

Actually this is a meaningful measure only for trees which have a maximum depth. 
In order for a tree of no maximum depth to converge, a necessary and sufficient 
condition is that for any arbitrary node 2 ( i P[ i]) < 1 (where P[ i] is the probability of i 
sprouts). Clearly the less 2 ( i P[ i]) is, the more rapidly the tree will converge. It 
appears resonable that tree convergence could be achieved without arbitrary bounds, if 
it were possible to do meaningful comparisons of the state of any node with the states 
of earlier nodes in the tree branch being investigated. Comparisons could involve how 
earlier expectations are holding up, and whether moves that are eligible for testing 
have appropriate thematic relationships to what has gone before. The number of such 
comparisons grows linearly with depth thus providing ever more conditions for stopping 
the search O" not investigating an arbitrary move. 

To guide the search mechanisms are needed which can at linear cost provide 
analysis at a node so that the exponential cost of discovery and/or verification due to 
tree searching is drastically reduced. It appears reasonable that the more powerful (in 
the sense of greater depth) the prediction mechanism, the better the effect on program 
performance. Here the functional analysis and pattern recognition mentioned earlier 
clearly are de l.ned to play a part, with the former being an essential element of the 
latter. Also the communication of defensive requirements appears vitally necessary. In 
fact since dissatisfaction with a result is a relative matter, one might consider using 
backed-up descriptions to discover ways of heightening the success of whatever is 
being attempted at present. 

Lastly, one can see the overriding importance of quiescence of concepts being used 
in the evaluation procedure. The evidence is quite overwhelming that the attempt to 
drive all evaluations into a quiescent state should be the major force that determines 
the shape of the tree. Thus, while today's programs use up nearly all their time trying 
to assure tactical quiescence, this will now have to be done by less complete methods in 
order to make way fcr the additional facilities required. It is interesting to compare this 
derived role of quiescence as the main guiding force, with the control structure of the 
1958 Newell, Simon and Shaw program [Newell, et.al. (1958)] which was apparently 
derived from a concern with human behavior. 

The requirements derived in this chpater appear to be necessary for Master chess. 
However, they are almost certainly not suf*:cient. Masters know a great deal of chess 
knowledge which has as yet not been encoded in any program, and will probably have 
to be placed In a long-term memory for occasional reference, We have avoided 
discussing what a minimum quantity of such data might look like, since until the 
necessary mechanisms for its use are in place, so that it would be possible to 
experiment, there would be little scientific validity in such speculation. There is also the 
problem of doing at least some learning in order to avoid repeating obvious errors In 
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identical situations. However, an organization which takes account of the conditions 
noted here is almost certainly necessary to make significant progress beyond the 
present state of the art, and its implementation should strive to be extendable to the 
problems of learning and further pattern encodings, as these prove necessary. In the 
immediate future, the major problem appears to be how to produce a search of the 
economy of that proposed, while retainin,* at least the same reliability »s evidenced by 
today's programs which use a more complete search strategy. 
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CHAPTER II 

STRUCTURE OF THE PROGRAM 

A.   DESIGN CONSIDERATIONS 

In Chapter I we have shown that programs tnat pay costs that are an exponential 
funchon of depth for discovering interesting things about a chess position will never 
attain the Master level of play.   Therefore, if a program is ultimately to aspire to this 
evel of play it must use more effective methods.   These methods must be essentially 

linear in cost as a function of depth.   By operating on a given position they should give 
clues as to what are the most worthwhile things to consider doing and what <.re the 
essential   eatures that will be the key to evaluating this position.   The type of complex 
mter-relations that we mean here are usually refered to as patterns.   But patterns can 
be composed of very few elements or of many, and even very simple patterns have 
heir mformation to deliver.   Consider the domain of written language.   Here a vertical 
me could be considered a pattern element.  This element is encompassed in some of the 

letters, and letters are essential elements of words which are essential elements of 
phrases.   Thus, it is to be expected that a viable pattern scheme for chess should have 
basic elements that can be combined recursively to make more powerful patterns. 

The  fact  that patterns can be composed suggests that  best  results  are  to be 
obtained by designing the information structure for a chess program from the bottom 
up.   Thus what are needed are some basic elements of patterns which can be used to 
form ever higher level patterns.    Based upon insights gained as a subject in chess 
perception   experiments   [Chase   and   Simon,   (1973a,   1973b)]   in   the   Psychology 
Department at CMU, as well as introspective evidence, the following basic elements were 
chosen.   The most basic element is the legal move since this is really what chess is all 
about and cannot be dismissed.   Legal moves and moves that would be legal if one or 
two things about the current position were changed can be represented as bearing 
relations    By considering certain points on the board more important than others, it is 
possible to consider legal moves dealing with those points as more important than legal 
moves which do not deal with any such point.   Thus arises the notion of a functional 
relation.    A functional relation assigns a given piece a specific meaningful role with 
respect to another piece or square.    This is the second level building block in our 
hierarchy of information structures.   Relations of this type show up again and again in 
chess perceptual experiments to which we had access.   Apart from this, our earlier 
program [Berliner, (1970)] was continually confronted with questions of which piece was 
responsible   for   which   actions   on   the   board.     Since   actions   were   usually   only 
summarized, there was no longer any way of knowing the agencies responsible for the 
final output.   This made it impossible to differentiate such situations as two pieces being 
defended by different pieces or by the same piece.  Clearly, when both defensive tasks 
are being performed by a single piece there is a possibility of overburdening that piece, 
which would not exist If the two defences were independent.   The need to be able to 
get at such information, long after the initial evaluation that a piece is defended has 
taken place, was also a major consideration for a data structure that preserves such 
relations. 

[ 

Another important aspect in the design is the accuracy issue. In chess the only 
sure way to establish truth is to do a COMPLETE tree search. Short of that, one can 
attempt many different methods of ascertaining the truth about a set of features on the 
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chess board, but one musl bear in mind that any such method is approximate and 
subject to error. However, even in the domain of approximations there are methods 
that are more approximate than others. Based upon the 1958 observation of Newell, et. 
al. that good exploitation of information at a node slows down the exponential growth 
of searching, it appeared very worthwhile to expend the maximum effort in trying to 
ascertain the truth about each issue dealt with. Such an effort would be expended even 
when this meant considerably increasing the complexity of the program. Furthermore, 
even very great static accuracy is no guarantee that these results would not be later 
upset by something that a more knowlegable agency in the program finds out. There 
certainly exirt situations where almost any static analysis will fail. In such cases, there 
could be a series of inversions of truth, where each successive court of appeal to the 
real truth reverses the findings of the previous court. Finally, the actual truth could 
only be found out by a complete tree search, which would in most instances be 
unrealizable. 

Another consideration is the executability of the ultimate chess program. To 
determine the capability of a program, it is more or less necessary to test it in an 
environment similar to that in which humans play chess. The playing demonstration is 
usually done in a tournament of either other programs or a mix of humans and 
programs. Therefore it is important in choosing the representation to consider that a 
program will be asked to produce chess moves at a rate of approximately three minutes 
per move. One of our design objectives has been to generate trees with between 200 
to 500 nodes, which means that it would be possible to spend approximately one-half 
second per node. Since the basic design philosophy also called for computing as much 
as is reasonably possible before leaving a node, the efficiency of performing certain 
basic operations becomes paramount in the light of the three-minutes-per-move 
constraint. 

For this reason the language Lisp [McCarthy, et. al., (1965)] which Is frequently 
chosen for projects in artificial intelligence was ruled out, since the computing cost of 
searching lists for every datum is prohibitive at this stage of the hardware art. This 
does not, however, rule out the need for certain higher level data to exist in list form. 
But, there appeared to be many lower level operations for which a more hard and fast 
approach would work, and it was here that great efficiency was desired. Therefore, a 
language was required which could take full advantage of the set manipulation 
instructions in the hardware (PDP-10). The language chosen was Bliss [Wulf, et. al., 
(1971)], which is an ALGOL-like implementation language, developed at Carnegie-Mellon 
University, which makes use of almost all machine commands and produces highly 
optimized code. Thus the members of a particular set can be represented as "on" bits 
in a bit vector. It is then possible to find the set intersection of two sets by simply 
"ending" their vectors. The other set theoretic operations are also simply performed. It 
is easy to see that this method of data analysis for frequently used data, is much faster 
than the similar list processing technique. These techniques are used for all lower level 
data. 

Given the above considerations, we can begin to lay out a concrete design. First 
consider a set of bearing relationships (defined in detail below) which specify certain 
attributes about moves and potential captures that are possible on the board at present 
or would be if some minimal change occured. These bearing relations between pieces 
and squares are stored in tables for quick reference. As the analysis of a given 
position proceeds, certain of these relations are picked out as being more important 
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than others -- those that are essential to the stability or instability t. it characterizes 
the current chess position on the board. Among the relations that are interesting are 
those that defend or attack a piece, defend or attack an important square, deny access 
to a square for a useful move, etc. 

The restriction for information to be abstracted above the bearing relationship level 
is for it to be "meaningful". For this an arbitrating process must exist to decide which 
rrlations are meaningful and which are not. Such a process must decide, for instance 
what is needed to defend a piece. If this piece is not attacked, then clearly nothing is 
needed to defend it, while if it is multiply attacked, several pieces may be needed. Or it 
may be possible to determine that a major fraction of the piece will be lost regardless 
of how many times it is defended, as would be the case if a pawn attacked a queen. We 
call the relations that have meaning, in the above sense, "functions", after Newell and 
Simon [Newell and Simon, (1972)]. In this way functions represent the fabric of the 
chess position. 

The hoard analysis process can be extended to include other things besides the 
safely of pieces. This involves such things as unoccupied squares from which double 
attacks can be made. When the function assignment phase is completed, a description of 
tne board noting certain basic situations (the piece on square X is en prise) and 
inter-depenoencies (piece Y defends both square A and B) exists. From this description, 
it is then possible to detect potential moves that have utility for the moving side. The 
next step is to evaluate these moves in the description environment, which allows 
detecting not only useful properties of the suggested move, but any function conflicts 
which it raises. These function conflicts could result in a move, which at first glance 
appears foolish (it puts a piece en prise), being evaluated as potentiallv verv good. 
This is when a piece that apparently could capture it, is otherwise committed. 

Having found a set of potentially useful moves, we want to try them in some order 
according to their potential. This is done in the usual tree search paradigm. However, 
we wish to be more sensitive to issues that come up than the current generation of 
programs. Specifically, if something unfavorable happens, we want to be able to decide 
if this was due to some blunder just tried in the analysis, or if it was unavoidable at this 
node. This requires a facility which can make cause/effect decisions by comparing 
descriptions of a move with descriptions of what happened. This in turn requires 
facilities which can accumulate deep descriptions of consequences. When a causality 
decision Is made, we want to address all the resources of the program to solving the 
detected problem, and abandon the searching of moves which may at one time have 
appeared appropriate, but no longer appear so. Finally, we want to have a level of 
aspiration for the program. This level is to define the expected value of the top 
position in the search tree. When a result that is clearly better or worse than this is 
found, we want to be able to readjust the expectation and possibly re-examine the 
analysis to see if It can be further improved. 

The following sections describe how this program structure is implemented We 
take up first the various levels of the data structure, how its elements are computed, 
and how elements at higher levels are dependent on those at lower levels. Next, we 
discuss move generation and the static evaluation procedure for proposed moves'and 
for positions. The last portion of the chapter deals with the control structure for the 
program. In following the descriptions in this chapter it w||l be useful to refer to Figure 
2.1 which is a rough flow diagram of the computational sequence.   Any new position 
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(node) is processed by SETUP, which computes the lowest level of data, then OCCUR, 
which computes what is going on on a square, and then FEATRS, which computes 
across-the-board effects. Then a goal state determination is made and move generation 
proceeds. The proposed moves are then evaluated by EVALUATE and the best is 
selected for tree searching. If the node is ever returned to during the search, the first 
decision made is whether the current goal state ;s stili considered adequate. The 
program then proceeds to find a new goal state or select the next move for testing 
accordingly. 

B.   DATA STRUCTUP: 

1. Board Geometrical Primitives 

The program has access to the following tables which give frequently required 
information dealing with the geometry of the chess board, without having to 
compute these each time. 

VUE(SQ,TP) - Provides the set of all squares that would be legally accessible to a 
piece of type TP, located on square SQ on an otherwise empty board. The 
information for one SQ-TP pair is contained in a two-word bit vector. 

CLR(S01,SQ2) - Provides the set of all squares on a straight line between squares 
SQl and SQ2 (two word bit-vector). If SQl and SQ2 are not on a straight line, then 
the va1* of the first word is -1. Since a PDP-10 word is 36 bits and only 32 are 
needed to represent one-half of the chess board, the last four bits in the first word 
of CLR give the direction between the two points which define the straight line. 
The last four bits of the second word are used to define the distance, as a king 
moves, between the pair of squares. 

BEND(SQ,DTN) - Gives the name of the last square along the diagonal direction DTN, 
starting from square SQ. 

2. Representation of an Actual Board Position 

Each board position is represented as 1040 PDP-10 words. Table II-1 is a 
summary of this data structure. 
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TABLE II-l   - Data Structure for each Board Position 

Datum Size(Words)  Type 

Mm 64 Vector 
WHR 33 Vector 
TYP PA Vector 
TP 33 Vector 
MOB 33 Vector(field) 
(lAT 2 Vector 
BRD 2 Bit-vector 
PCS 1 Fields 
SPACE 25G Vector 
PTR 1 Word 
POSIT 1 Uord 
VALUE 1 Uord 
UTHRT 1 Field 
BTHRT 1 Field 
UMISS 1 Field 
BfllSS 1 Field 
UIDEA 1 Field 
BIDEA 1 Field 
FCTN 33 Vector(field) 
BLOK 33 Vector(field) 
PINS 33 Vector(field) 
FTPS B4 Vector(field) 
DCY B4 Vector(field) 
KdOB 4 Bit-vector 
DIR G4 Bit-Vector Array 
OTHRU B4 Bit-Vector Array 
ETHRU B4 Bit-Vector Array 
OBJ G4 Bit-Vector Array 
DSC 64 Bit-Vector Array 
TSQ 64 Vector 
BEH 16 Bit-vector Array 
SAME 14 Bit-Vector Array 
INT 24 Bit-vector Array 
BEST 2 Vector(field) 
MVPTR 1 Uord(fields) 
POIR 8 Bit-vector Array 
DPATH 2 Bit-vector 
GN 1 Uord 
TPATH 4 Bit-vector 
RPATH 4 Bit-vector 
RSQS 4 Bit-vector 
TGTSQS 4 Bit-vector 
RPCS 2 Bit-vector 
RTGTS 2 Bit-vector 

Purpose 

Name of Piece on each Square 
Location of Piece by Name 
Type of Piece on each Square 
Type of Piece by Name 
Mobility of Piece by Name 
Value of Material for each Side 
Occupied/Unoccupied for each Square 
Status Information 
Free Space Area (lists and Movestack) 
Pointer into SPACE (next avail, word) 
Positional Value of Position 
Static Evaluation of Position 
List Header - Uhite Threats 
List Header - Black Threats 
List Header - Uhite Unworkable Threats 
List Header - Black Unworkable Threats 
List Header - Uhite Vacating Moves 
List Header - Black Vacating Moves 
List Headers - Piece Functions 
List Headers - Blocking Relations 
List Headers - Piece Pin Status 
List Headers - Functions by Squares 
OccupiabiIity of Squares 
Safe Squares for each King 
Bearing Relation 
Bearing Relation 
Bearing Relation 
Bearing Relation 
Bearing Relation 
Threats on each Square 
Names of Pieces Behind Pawns 
Names of Piece of Like Movement 
Targets for each Type 
Best Material Threat Squares 
Ptrs to Movestack (last tried, etc.) 
Names of Pawns on each File 
Squares on Defensive Paths 
Current Goal State 
Part of Refutat 
Part of Refutat 
Part of nefutat 
Part of Fsfutat 
Part of Refutat 

on Descr 
on Descr 
on Descr 
on Descr 
on Descr 

p t i on 
pt ion 

ption 

ptlon 

ption 
Part of Refutation Description 

The above data structure does not add up to 1040 wo Hs since several data 
items are fields in the same vector. 
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II 

a.   Piece Identifying Primitives 

This section concerns itself with the data that are generated at the lowest 
level of abstraction during the board analysis. The squares of the chess board 
are numbered from 0 to 63 starting in the lower left-hand corner on White's 
side of the board, and moving horizontally from left to right until the top 
right-hand corner is reached. 

TYP - is a vector of 64 words representing the type of occupant of each iHuare 
of the chess board.  Table II-2 shows the legal types. 

TABLE II-2 - Piece Types 

TYPE WHITE BLA 

Empty B 0 
King 1 -1 
Queen 2 -2 
Rook 3 -3 
Bishop A -4 
Knight 5 -5 
Pawn no^ t on 7th rank G -G 
Paun on 7th rank 7 -7 

NUM - is a vector of 64 words representing the name of each occupant of each 
square of the the chess board. Table II-3 gives the piece naming scheme. 
Names are assigned in order of increasing piece value, with knights coming 
before bishops. 

TABLE II-3  -  Piece Names 

Color of Occupant Range of Values 

Empty Squfire 
White 
Black 

8 
1 - IG 

17 - 32 

TP - is a 33-word vector which gives the type of a piece when referenced by 
name. 

WHR - is a 33-word vector which gives the square of a piece when referenced 
by name. 

BRD - is a two-word bit-vector which has bits turned on for every square that 
is occupied. 

b.   Piece to Square Relations 

Let us define a bearing relation R(PC,SQ) as a relation of a piece to a 
square. A piece, PC, is said to have bearing relation R on square SQ, If piece PC 
bears with relation R on square SQ. We can now define the following bearing 
relations: 
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D'R(PC,SQ) - A piece, PC, bears DIR on square SQ if, were SQ occupied by a king 
of the opposite color as PC, this King would be In check by PC. Intuitively, the 
relation DIR defines the direct control of a piece over a square. Direct control 
is the ability to capture on a square. 

OTHRUPC,SQ) - A piece, PC, »ears OTHRU on square SQ if PC would be bearing 
DIR on square SQ, if it were not for another (intervening) piece of the same 
color as PC which has a DIR relation on SQ. Intuitively, the bearing relation 
OTHRU defines the ability of a piece to control a squaie through one of its own 
pieces. Such relations occur, for example, when two rooks of the same color 
are lined up on the same file. 

ETHRU(PC,SQ) - A piece, PC, bears ETHRU on square SQ if PC would be bearing 
DIR on square SQ, if it were not for one (intervening) piece of the opposite 
color which has a DIf I relation to SQ. Intuitively, this relation defines the ability 
of a piece to contrrl a square through an enemy man that is also controlling the 
square. 

DSC(PCISQ) - A piece, PC, bears DSC on square SQ if PC would be bearing DIR 
on square SQ, if it were not for a piece of its own color, which is NOT bearing 
DIR on SQ. Intuitively, this corresponds to the ability of PC to make a 
discovered attack on the square if the intervening piece were to be removed. 

OBJ(PC,SQ) - A piece, PC, bears OBJ on square SQ if PC would be bearing DIR 
on square SQ, if it were not for a piece of the opposite color, that is NOT 
bearing DIR on SQ. Intuitively, this corresponds to a pin ray by the bearing 
piece through the intervening piece (subject of the pin) and looking for an 
object to pin it to further down the line. 

The above are the basic bearing relations that are noted. They are 
computed by SETUP. Each relationship is preserved in its own table. Tables 
are laid out to have 64 words each, one per square on the board. Each word is 
then treated as a bit-vector with bits corresponding to the names of the pieces, 
and an "on" bit indicating the relationship exists. 

c.  Other Low Level Data 

BEH(PC,PWN) - is a 16-word bit-vector. A piece, PC, has the relation BEH to a 
pawn, PWN, if it is a rook or a queen and is behind PWN (as it would advance), 
and bears DIR, or OTHRU, or ETHRU on the square on which PWN is located. Bits 
are set for the name of each such piece in the word corresponding to PWN. 
Intuitively, this corresponds to knowing (he names of the pieces that can affect 
from behind, the pawn's ability to advance. 

PDIR(PWN,FIL) - is an 8-word bit-vector. If a pawn, PWN, is on file, FIL, its 
name bit is set in the word corresponding to FIL. This provides a quick 
overview of open fles and other information about pawn structure. 

BLOK - is a vector of lists hanging from list headers named BLOK and associated 
with the names of pieces. Each list gives the names of sliding pieces which 
would bear DIR on this piece if all other pieces were removed, and also gives 
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the direction between the two pieces. Intuitively, this corresponds to the BLOK 
list giving the natnes of all pieces whose action this piece could ultimately block, 
while neither piece moved. 

MAT - This is a two-word vector which gives the value of material on the board 
for each side. Values are computed according to Table IM, which are the usual 
values for mate,-ial multiplied by 50 and made somewhai more precise in the 
case of m^igM and bishop. 

Piece   Type 

TABLE IM Value of Material 

Value 

Pawn 

Knight 
B i shop 

Rook 
Queen 
King 

58 
1G0 

1G5 

^&0 
1C50 

■ 

PCS -- Is a uorc^ that contains the following subfields; 

UPC - 

BPC - 
UPP - 

BPP - 

WCAS 

BCAS 

FIL - 

gives the number of pieces that Uhite has. 

gives th£ number of pieces that Black has. 

gives the number of pawns that Uhite has. 

gives the number of pawns that Black has. 

- is a two bit field that indicates whether Uhite still 
has King-side and Queen-side castling rights. 

- is a two bit field that indicates whether Black still 
has King-side and Queen-side castling rights. 

is a field whose value is zero except when the previous 

move was a two square pawn advance, in which case it takes 

the v.ilue of the file on which this occurred, files being 
numbered in ascending order from 1 to 8 starting 

with the QR-file (needed for en passant captures). 

All the data in this section are computed by SETUP. 

d. Other Data 

The remaining words of the 1040 which are associated with every position 
can be found in Table I!-l above. Only the following structure is worth 
describing at this point. The others will be described in detail when the 
computation that writes on them is described. 

SPACE is a free space area of 256 words in which list structured data grows. 
Ths left-most nine bits of each list member in SPACE are reserved as a pointer 
to the next word in the list. The moveslack for proposed moves is also kept in 
this area. 
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The data which represent each board position exist in a stack which has a 
1040 word segment for each depth of the search tree. 

3.  Retaining Important Relations 

PINS - While computing the bearing relationships during SETUP, the program also 
notices all obvious pins? «hat is, those that depend only on the relative values of the 
pinning piece and the object of the pin. Information about pins is stored in lists in 
SPACE with a list header for each piece existing as a nine-bit field in the 33-word 
vector FCTN. This field is called PINS. A list is used here since it is possible for a 
piece to be pinned in several directions. For each direction a word in the list gives 
the direction of the pin, the name of the object square (the one on which the pin 
object resides), the value that would be lost on the object square if the pinned 
piece were to move, and up to three names of pinners doing the pinning. 

Once the program has meaningful pin information together with the above 
bearing data, it can embark on a meaningful square by square analysis of the board. 
The following data are computed for each square by the sub-routine OCCUR: 

0CY(C0L0R, SQ) - The value of the largest valued piece of side COLOR that can 
safely land on square SQ. These data are stored in two 8-bit fields in the vector 
NUM where they can be addressed by SQ and COLOR. 

If a square is occupied then the safety of the piece that is there is computed. 
Since at a later stage, the knowledge of which objects are worth attacking by which 
men is crucial, the safety of a piece is determined to be in one of five categories: 

COMPLETELY EN PRISE - The full value of the piece on this square is subject to loss 
on the opponent's next move. 

PARTLY EN PRISE - Only part of the value of the piece on this square may be 
captured with gain, but not the full value of the piece will be lost (i.e. a rook 
attacked by a bishop and defended a pawn). 

BARELY DEFENDED - No capture with gain is possible now, but attacking this square 
with any one more unit of force will make this piece at least partly en prise. 

COMPLETELY OVERPROTECTED - The piece is safe against any further single attack 
by a piece of equal or greater value (i.e. a pawn which is attacked by one pawn 
and defended by two pawns). 

PARTLY OVERPROTECTED -The piece is safe against a set of single attack types, but 
not safe against the complementary set (i.e. a knight which is attacked by a rook 
and defended by a king and queen is safe against attacks by queen and king, but 
not against attacks by any lesser piece). 

FTPS - It is interesting to note that the above categories were developed 
empirically. The initial notify applied here was the categories which one finds in 
chi?ss books; namely en prise, safe, and overprotected. The need for splitting two 
of the categories will be explained later. The result of the piece safety computation 
Is storec in the eight right-most bits of the vector FTPS.   The result is stated in 
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terms of how many units of material (with pawn=l and king-31) are at stake on this 
square. Six bits ere used to indicate this number of units of material, and two bits 
indicate upon which side the onus rests to restore the balance. 

OCCUR - The sub-routine OCCUR is used to compute the above data, but it can also 
be called by FEATRS to determine what is happening on a square. Its arguments 
are a square name, a task, and a bit-vector naming the pieces bearing on this 
square that should be considered in the computation. The most usual task is to 
calculate OCY and enpriseness for a square, but other tasks are mentioned below. 
OCCUR lines up the pieces in the passed argument for each side in the optimum 
order of employment. It then uses a minimax calculation to determine the actual 
value of each quantity. In ordering the pieces, 0CCUr'' will use the value of a piece 
unless it is pinned or is itself a pinner of a piece in the passed argument. Each 
pinned piece goes onto a special internal list which gives the name of the piece and 
the value of the pin object. Each pinner goes on another internal list which has the 
name of the piece and the name of the pinnee. It is possible for a piece to be on 
both lists at the same time. OCCUR also has a meuianism which notices pieces 
bearing on the square in the OTHRU and ETHRU categories. These pieces are put 
into special tables according to the name of the intervening piece. When a piece is 
invoked in the calculation, a check of this table is made. If another piece was 
bearing "thru" this piece, that new piece is put into the appropriate bearing lists 
before the computation goes on. The rule for employing pinned pieces is not to 
employ a pinned piece until there is no longer any piece available which is of lesser 
value than the value of the object of the pin. The rule for employing pinners, 
where the pinned piece also bears on the square, is to release the pin only when 
the pinner is the least valuable piece available and is capturing a more valuable 
piece. As shown in Chapter V, OCCUR does an excellent job of computing 
occupiability. This is quite important as the program's outlook is very much 
conditioned by the accuracy of the information received at any level of 
understanding. If the correct value is underestimated, then the program could 
ignore important features, while if it is overestimated the program could spend time 
in useless activity. In situ?/(ions where errors could occur, the latter type is of 
course preferred. 

OCCUR is genera1 enough to resolve a large set of problems dealing with a 
square. It can be called for various purposes with inputs differing from the usual 
bearing relationships. For instance, if there was a question as to whether a check 
on the rank from a given square was likely to succeed, OCCUR would be passed only 
the identities of horizontally moving pieces belonging to the checking side and 
bearing on that square, plus all defensive pieces. The resulting calculation would 
pronounce the square safe or unsafe in terms of the survival of the function, e.g. 
the checis. 

Whenever OCCUR is dealing with something of value, e.g. an occupied square, a 
pawn promotion, or a high-powered attacking move, it assigns functions to all pieces 
invoked during the computation. These functions are in the form of a relation from 
a piece to a square and can be of four different types: 

1)   ATTACKING   -   Involved   in   the   aggressive   purpose   for   which   the 
computation was invoked. 
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2) DEFENDING 
was invoked. 

Defendini? against the purpose for which the computation 

3) OVERPRQTECTING  -  Providing   a   presently  unneeded  defensive   unit 
against tho aggressive purpose of the computation. 

4) SUPPORTING - Providing protective support to a piece when it carries 
out an attack on this square without itself participating in the attack. 

FCTN, FTPS - When a function is assigned, it is put into each of two linked lists. 
One list is FCTN which has a header associated with the name of the function 
performing piece, while referencing the function type and the name of the square 
on which it is being performed. The other list is FTRS which is associated with the 
square on which the function is being performed, while referencing the name of the 
unction performing piece and the function type. This makes cross-referencing of 

functional committments easier than if only one list existed. 

DPATH - When OCCUR assigns a DEFENSIVE function to a sliding piece of the side 
that just moved, it puts the names of all the squares on this defensive path into the 
bit-vector DPATH. DPATH thus records all the squares on which the moving side 
can block a defensive path. 

4.  Analysis of Board Features Using Knowledge from Several Squares 

Having obtained quite accurate information about each square, it is now possible 
to examine the full board for interesting tactical features.    Thi» is done by the 
sub-routine FEATRS.   First certain square problems which could not be determined 
accurately on the first pass, are rectified.   FEATRS checks all occupied squares to 
see if any piece could be a pin object, and if such a pin has not been detected 
previously.   Such pins could be complicated enough so as not to have been picked 
up on the first pass; e.g.   they could depend upon the safety of the pin object, or 
involve more than one pinner acting on the same pin line.   Initially, information on 
he safety of each piece was not available, nor was it clear whether there was more 

than one piece acting along the same line.   However, the first pass of OCCUR across 
«HI squares has clarified these problems.  Now, if any such new pins are discovered, 
they are cataloged, and all functions of the newly pinned piece are re-examined, and 
reassigned if necessary.   The process of discovering undiscovered pins scans the 
board only once.   It is clear that situations e^ist in which the order of discovery 
makes a difference on the final interpretation of all the pins on the board.  However 
it is also clear that repeating the discovery process can lead to cycles from which 
some arbitrary escape must be arranged anyway.  Therefore, we have opted for the 
single extra scan of the board.  We have never noticed a problem in evaluation due 
to misinterpretation of pins. 

POSIT - FEATRS next gets an estimate of which side is controlling the most space in 

I™1!6'1 pos,t,on-    This computation is a summation over the whole board of 
(OCY(White) - OCY(Black)) x centrality factor.   This quantity is not used at present 
but is intended to yield categories of space control (great, medium, even) for future 
use.  It is stored in the word POSIT. 

SAME - The vector TP is now examined and pieces of like types are put together 
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into elements of the bit-vector SAME. SAME has bits set for names of pieces. 
Sameness here means functional similarity. Thus a queen is the same as a bishop, 
but not vice versa. 

MOB - Next the effective mobility of each piece is computed. This consists of first 
noting the squares to which a piece could pseudo-legally move. (A pseudo-legal 
move is one that would be legal if it were allowed to move a piece in such a way 
that the king of the side on move would be in check after the move, or if castling 
while in check were allowed.) Then credit is given for each square which can safely 
be occupied by the piece in question. Safety is here determined using the OCY 
values previously computed for each square. The mobility count for each piece is 
stored in a five-bit field named MOB which is in the vector FCTN, where it can be 
accessed by name of piece. Pieces that are found to have sub-standard mobility 
have the LMP (low mobility piece) bit in this vector set to preserve this fact. Table 
11-5 gives the minimum mobility requirements for each piece type. Any piece with 
mobility less than or equal to the given values is a low mobility piece. The king is 
always considered to be a low mobility piece. Any pinned piece is also a low 
mobility piece. 

Piece  Type 

Queen 
Rook 
B i shop 
Knight 
Pawn 

TABLE II-5   -   Minimum Mobility of Types 

ninimum Standard Hohility 

3 
1 
2 
2 
e 

KMOB - The mobility of each king receives special attention. For each square that is 
in the VUE of the king from its present location, the following determination is made. 
If the square is occupied by a piece of the king's color, no action is taken. Else, if 
any opposite colored piece bears DIR on the square, the lowest valued such piece is 
assigned the function of guarding this king escape square. Else, the bit 
corresponding to this square in the vector KMOB is set to indicate that the king has 
mobility to this square. 

INT - The next analysis task that FEATRS undertakes is to identify for each piece 
type, all worthwhile targets. A worthwhile target is one which would change its en 
prise status if a piece of this type were to attack it. This information is then stored 
in bit-vectors in the array INT, which is accessed by piece type. The bit-vectors 
contains "on" bits for each square that has an interesting target on it. Since this 
information is frequently used later for evaluation of suggested moves, it is very 
desirable that it be as accurate as possible. Here is where the issue of, for 
instance, COMPLETELY OVERPROTECTED versus PARTLY OVERPROTECTED becomes 
important. A pawn which is defended by king and queen and attacked by a rook is 
PARTLY OVERPROTECTED. This causes the program to decide that this is a target of 
interest to pieces below the value of a rook, but not to those of value of a rook and 
above. If the pawn were merely regarded as OVERPROTECTED, then this interest of 
the lower valued pieces in attacking it would not be noticed statically. 
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WTHRT, BTHRT - FEATRS now scans all squares. For each piece that can presently 
move to a given square, it determines whether the piece can make a double attack 
or an attack on a low mobility piece or a capture on this square. Moves which are 
deemed effective, in the sense that there appear to be no reasons for their 
non-success, are put into lists of effective attacKs. These lists hang from the list 
headers WTHRT and BTHRT and accumulate White threats and Black threats 
respectively. 

WMISS, BMISS - Moves which are not effective are put into lists of moves which 
could be resurrected by considering across-board effects. These lists hang from 
the headers WMISS and BMISS. 

The method for determining effectiveness is to look at the OCY of the square, 
and if it indicates that the moving piece cannot be captured on this square without 
loss, to assume the attack has merit. In this case the appropriate attacking function 
is assigned to the threatening piece, and no defensive functions are assigned. In 
cases where the piece can be captured without loss, OCCUR is called with the 
element of the array SAME corresponding to the TYPE of the attacking piece. 
OCCUR then assigns all necessary attacking, supporting and defensive functions and 
delivers the verdict which assigns the attack to one of the THRT or MISS lists. 

WIDEA, BIDEA - When a square in the INT vec'or of a piece type is found to have a 
piece of that type bearing DSC or. it, FEATRS finds the intervening piece that could 
make this discovered attack possible. This piece is then put on one of the idea lists 
hanging from the headers WIDEA and BIDEA for White and Black ideas respectively. 
When squares, on which double attacks and attacks on low mobility pieces can take 
place, are occupied by a piece of the same color as the piece that would like to 
make the attack there, these blocking piece names are also put on the appropriate 
idea list. 

TSQ - Whenever a square is found on which a piece of the moving side has a threat 
(as distinct from a capture on that square) the value of the threat is added into the 
element of the vector TSQ corresponding to that square. TSQ thus keeps track of 
the threat potential of each square. This is done regardless of whether the threat 
was deemed to be successful or not, as long as the target square is not occupied by 
a piece of the attacking piece's color. The values in TSQ allow the identification of 
key squares, and sometimes make possible the occupation of such a square by 
another piece, considering that if it were captured the recapturing piece would be 
able to execute a threat there. Values are also added into TSQ for squares on 
which pieces reside that have discovery threats. In this way if a move involving 
this piece is being evaluated, the discovered threat potential will always be known 
regardless of any other reason for moving the piece. Thus TSQ serves two 
functions. Fo«- occupied squares, a value indicates discovery potential, while for 
unoccupied squares it indicates threat potential on that square. 

BEST - Finally, the lists WTHRT and BTHRT are scanned, and capture threats found 
there are put into the vector BEST which contains the names of up to five squares 
for each side in order of the amount threaiened on that souare. 
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C.   MOVE GENERATION 

There have been two basic types of move generating procedures in previous chess 
programs. One consists of passing all legal moves in review and applying some 
evaluat.on process to each of them. The other method for generating moves is 
evocative, relymr, on certain goal oriented processes that exist in the program to 
suggest moves that should be investigated. Clearly the latter approach has certain 
risks, since it is possible to reach a position in which no move generator will suggest 
the right move and this would result in a performance failure. In a pass-in-review type 
of approach, all legal moves would at least be known, whether or not the merits of the 
correct one were recognized. This would allow certain "fall-back" procedures that could 
ultimately locate such a move. However in the current program the evocative approach 
was chosen, since it clearly fits in better with the philosophy of getting away from the 
generate and test, bushy tree searching method. 

All  move generation is done in resp   se to conditions detected during program 

nnVnnu    ^ mstance on first seeinS a P05'^" at any node in the tree, FEATRS and 
UCCUP  have  put  interesting tactical moves into the various  lists  available  for  this 
purpose  as  explained  above.    These lists then serve as input to the simple move 
generators which are discussed below.   Likewise, on return to a node from deeper in 
he tree certain information gained during the search produces specifications for moves 
hat would result in defending against a detected "deep" threat, or make an attempted 
actic possibly work better.   The nature of this deep information is discussed later in 

this chapter under the CAUSALITY FACILITY. 

A move stack for generated moves exists in SPACE. It grows from the opposite end 
as the free space area for lists. The two halves of the word MVPTR keep track of the 
location of the last move put on the stack and the last move searched. All generated 
moves are searched for duplication before being put on the move stack. 

The basic move generators consist of the following: 

OCCUPY(SQ) - is a move generator which generates all pseudo-legal moves to square SO 
for the side on move.  One of the uses of OCCUPY is in generating captures. 

MOVEAWAY(SQ) - is a move generator which generates all pseudo-legal moves for the 
piece on square SQ. It is useful in defence considerations and for generating discovery 
moves. 

INTERPOSED-302) - SQ1 and SQ2 define a straight line with SQl being the name of 
the square on which an attacker resides and SQ2 being the square on which a target 
resides NTERPOSE then finds all intervening squares using the geometrical primitive 
CLR, and then repeatedly calls on OCCUPY to provide the complete set of interposin? 
moves. Before doing this. INTERPOSE first finds the value of the attacker, and sets a 
g obnl constant which lets OCCUPY know that moves that counter-attack the attacker 
along the specified line are to get special heuristic credit. 

MOVTOCON(SQ) - generates the set of all pseudo-legal moves which bring a piece of the 
moving side which at present does not have DIR control of this square into a position 
where it does. 
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These move generators are invoked at various points in the program where 
intelligence has been gathered that makes it desirable to find moves of a certain type. 
For instance if a discovered attack possiblity has been found, then MOVEAWAY is called 
with the square name of the masking piece. If a defensive condition has been found 
that makes it desirable to guard a certain square on which an opponents strong move 
lands, then MOVTOCON is called with that square name. The full details of when and in 
response to what conditions move generation occurs are presented later in this chapter 
under goal states. 

D.   THE STATIC EVALUATION PROCEDURE FOR PROPOSED MOVES 

There are two basic methods of evaluating a proposed move, and there are good 
examples in the literature of each method. One way is to execute the proposed move 
and score the resulting position, as is done in J. BUT [Berliner, (1970)], CHESS 3.5 
[Atkin, et. al., (1971)] and others. The other method is to score the transition to a new 
position implied by the proposed move, using all properties of the old position and the 
differential properties of the move. This method is used by Greenblatt [Greenblatt, et. 
al., (lr"}7)]. The second method is more economical, since it avoids the work of setting 
up the derived position (which would have to be done for every proposed move before 
one is selected). However this latter method involves more special code to score the 
transition, rather than using the existing code for scoring a position. Also, there is 
difficulty in developing a good scoring procedure for transitions, since it is desired to 
have the properties of the old position plus the differential properties of the move 
equal the properties of the new position. 

We chose the second method not only for reasons of efficiency, but also since a 
major purpose of the whole program is to be selective about potentially good moves. 
The evaluation procedure uses factors which regularly involve predicting consequences 
five ply in advance (as for instance in an exchange calculation on a square). Since 
looking at a position after a move is made, only advances the knowledge one ply 
whereas scoring the transition advances it no ply, this gain seemed rather trivial in 
terms nf the depth of prediction involved. It was also desired to have a handle on the 
actual properties of a move since this information can be used to determine thematic 
relations between moves.  However, this use is not implemented in the present program. 

The evaluation procedure used involves scoring the effect of a proposed move on 
an existing position. The resulting score after the evaluation is an integer, which 
represents an optimistic view of what the proposed move could accomplish. To facilitate 
this process, any move which is proposed gets a quantitative recommendation from the 
agency which proposes it. The amount of the recommendation is a function only of the 
effect that the move could have (according to the proposing agency) if it were 
successful. How much of this value is actually given to the move depends on the 
evaluation procedure. 

EVALUATE (the evaluation sub-routine) first determines the safety of the new 
square for the moving piece. This is done using the OCY values explained above. If the 
piece cannot be captured without loss on the destination square, then it gets credit for 
whatever value its recommending agency gave it. However, if it can be captured 
without loss, the following procedure is performed: Each opposing piece that has been 
assigned a defensive function on that square has its FCTN list examined to see what 
other functions it has.  The following quantities are then computed: 
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DEFENSIVE OVERLOAD - Maximum [across all squares on which this piece has 
defensive functions] (The number of material units at stake on this square (as 
recorded in FTPS) + the TSQ »alue for that square). 

DECOY VALUE - Maximum value (any opposing piece that has a defensive function 
on this square). 

DISTRACT VALUE = Maximum [across all opposing pieces that have a defensive 
function on this square] (Value of any en prise piece on which this defensive piece 
has an attacking function). 

REDEEMING VALUE - Maximum (DEFENSIVE OVERLOAD, DECOY VALUE/2 DISTRACT 
VALUE/2). /  ,     ^ HMOI 

The coefficients used above have been developed over the life of the program, and 
the present values merely reflect a reasonable state of things. No claim for optimality 
is made. In addition there are still several lesser effects not yet programmed because 
the adjustment process on the above factors is still going on. Among these lesser 
effects are: 1) Whether a piece that has a defensive function would have to relinquish a 
blocking function (other than pinned which is noted); and 2) Whether a piece that has an 
attacking or supporting function on this square could unblock some favorable line. 

Erased on the above, an adjustment to the threat value associated with a proposed 
move is made.   If the gain (or loss) associated with capturing the moving piece, plus the 
redeeming value, are less than the threat value, then the threat is reduced to that value 
otherwise it is left the same. 

Next, all moves that retain threat credit for giving a check through the above 
procedure are evaluated for the effectiveness of the check. This consists of 
determining whether the checking piece would be giving up any king escape guarding 
functions which it has been assigned, and which can not be taken over by another piece. 
Also every king escape square in the vector KMOB that can be controlled by this check 
is noted. After this the total number of escape squares available to the king are 
counted and the check is evaluated according to the degree of mobility left to the king, 
with a completely immobilizing check getting a large bonus. 

EVALUATE then determines if the moving piece is pinnea, and if so, subtracts the 
expected loss from the value of the move. If the move was recommended by an agency 
in charge of finding defensive moves (see discussion of GOAL STATES below) it 
probably received a heuristic value for its defensive potential. Such terms are now 
added in. Any change in the centrality of the moving piece causes a relatively small 
addition or subtraction from the value of the move. This tends to cause the program to 
prefer •-entralizing moves when all else is equal. 

If the move is a capture, its evaluation is adjusted upward foi any defensive 
function the captured piece may have had on a BARELY DEFENDED or PARTLY EN PRISE 
piece. Upward evaluation also occurs for any attacking functions that the captured 
piece had on any EN PRISE pieces. If the moving piece had functions on other squares 
than the one to which it is moving, an adjustment must be made for these. Here any 
defensive functions on pieces that were barely defended result in a debit, as do 
attacking functions on pieces that were en prise.   In all this, if the captured piece had a 
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function on a square, and the moving piece had a complimentary function on the same 
square (i.e. one has an attacking or supporting function and the other a defensive one) 
then no adjustment is made. 

Finally, any pieces wich are still known to be en prise are evaluated in such a way 
as to give slightly more credit to the side which is about to move. This evaluation is far 
from optimum since it fails to account for two pieces which are mutually en prise, or the 
possiblity that the side which is enduring the strongest threat may counter it rather 
than going ahead with its own best capture. During the early stages of program 
development this caused little trouble. It is, however, a major source of error now, and 
will be corrected during the next program revision. 

E.   THE STATIC EVALUATION PROCEDURE FOR POSITIONS 

Two evaluations are developed for each node in the tree.  They are: 

NOMINAL VALUE - This evaluation counts the material on the board and gives credit to 
each side for all their material threats as cataloged in BEST, the side that it to move 
getting slightly more credit for its threats.  This value is stored in the word VALUE. 

PESSIMISTIC VALUE (from the point of view of the side that is to move) - This 
evaluation counts the material on the board and then adds in only the 
side-which-just-moved's best capture threat. If this result is more favorable than the 
Nominal Value, then the Nominal Value is used. The CLAIM SYSTEM (sfje discussion in 
Section F3b below) determines whether the Pessimistic Value will be preserved for use 
during tree pruning. 

Since these evaluations only deal with imminent captures (as distinct from forking 
threats, for instance) they are less than ideal in their estimating capacity. However, at 
present they are reasonably good estimators, and because of their simple structure it 
would be easy to up-grade them when required. 

F.  CONTROL STRUCTURE 

1.  On the Applicability of Effort Expended During Tree Searching 

Consider the following paradigm: Two domains A and B are given. An optimum 
solution to a given problem can be obtained by taking the correct element from A 
and matching it with the correct element from B. If the correct solution can only be 
recognized by comparing it with any other possible solution, the amount of work 
that needs to be done to find such a solution is proportional to |A| x |B|, Now, 
assume domains A and B could be sub-divided into domains Al and A2, and Bl and 
B2. If it can be ascertained that no solution could exist in Al x B2 nor in A2 x Bl, 
then clearly much work in finding a solution could be saved. Even if we were not 
sure that no solutions existed in Al x B2, but merely that the likelihood was very 
low, then much work could still be saved on the average by searching Al x B2 later 
than domains which have higher likelihoods. This basic notion is behind the 
following discussion. 

In all of the chess programs that we know to exist today, ail moves are 
examined and then graded along a common dimension with subsequent selection of 
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the N best. We consider this practice as inadequate, since the selecting dimensions 
could vary considerably depending upon the position. This is particularly true of 
situations where defence is retired. Present day programs have great difficulty 
with such situations, since scoring moves statically for their defensive potential is 
clearly more difficult than doing this for attacking moves, and may be nearly 
impossible. This is because it is impossible to be 1007, sure of what is really 
attacked {e.g. can this atiacked pawn really be captured safely, or is this check 
f.omg to lead to male or is it meaningless), nor can one be sure whether the right 
way to meet an attack is by retreating, or somehow interfering with the attack. The 
problem is further compounded by the fact that only a fraction of the moves with 
defensive potential can usually be included in the N best that are allowed to be 
searched at each node. Therefore, it was decided that defence should be a discrete 
activity in the analysis process, and should be activated when required, rather than 
have moves with "good defensive potential" mixed in with moves of other "good 
potential". 

Similarly tactics, positional play, and long-term strategy should be separated 
from each other. Tactical moves are made in order to gain or avoid losing material 
and are usually of the highest degree of importance. Positional advantages are 
usually of lower order than the most minimal material advantage. They can be 
brought about as a result of tactics which leaves material unchanged, or without any 
tactics at all. We certainly want to react to both methods of obtaining a positional 
advantage. Positional gains at the end of a tactical variation can be noted for very 
minimal additional computational cost. In today's programs this virtue is made into a 
vice. Mixing posi..jnal and tactical moves in a given search tree with the hope of 
discovering both kinds of advantages results in much additional work. This is so, 
since tactical advantages almost always outweigh positional ones. Thus, the 
necessary work to find tactical stability is increades by one to two orders of 
magnitude for a 5-ply search. When positional factors are separated from tactics, 
these can be pursued after tactics has failed to find a clear-cut solution. In this 
case, positional moves can be investigated one after another for TACTICAL 
feasibility. The savings come from the fact that the search need not be concerned 
with both issues simultaneously, and positional stability (at the playing ability of 
today's programs) would not necessitate the deep rummaging that is done to assure 
tactical soundness. 

In the same manner, long-term strater,ical issues should be separated from both 
tactics and position play. Long-term strategy need be invoked only rarely, to 
decide on a long-range goal of lower order than such things as material and 
positional advantages; e.g. move pieces into position for a king-side attack, or In 
this type of position a knight is belter than a bishop. These rare invocations of 
strategy should be made only when these usually background issues become 
important, thus avoiding the need to re-examine strategical issues at every node in 
the tree. 

Another division of labor Is possible in the area of attacking moves. Some 
attacks appear more workable than others. Some attacks would be more potent 
should they succeed. By investigating moves that are most likely to succeed before 
moves that have greater potential but lesser likelihood. It is possible to establish 
firm Alpha and Beta values (see discussion in Section 3) which help in trimming 
branches  containing  unworkable  ideas.     Mixing  likely-to-succeed  moves  In  with 
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high-potential moves b>  giving some weight to each along a common dimension, 
reduces the ability io introduce the more efficient searching order. 

By thus partitioning the problem and actively controlling which partition is being 
applied, it is possible to realize huge savings in tree size. Below, we describe the 
partitions of the present program, and how the analysis can proceed from partition 
to partition, occasionally making decisions to skip one or more partitions along the 
way. 

2.   CONTROL OF THE GOAL STRUCTURE AT A NODE 

a.   THE CAUSALITY FACILITY 

The CAUSALITY FACILITY allows determining whether a set of consequences 
can be definitely dissociated from the last move tried at a node. Only the 
detection of this condition allows fixing the blame for a set of consequences on 
something that existed before the search came to this node. Once it is known 
that the node has inherited a problem, the necessary mechanisms can be set in 
motion for trying to solve it. Causality is established by comparing a 
description of a set of consequences (the Refutation Description) with a 
description of a move. The CAUSALITY FACILITY then decides whether the 
consequences could have in any way been made possible by the move made. 
We describe here the data used by the CAUSALITY FACILITY. How the 
CAUSALITY FACILITY gathers this data and uses it for comparisons and decision 
making will be found in the examples of Chapter III. 

During the backup process, whenever a result is acceptable to Alpha-Beta, 
the following data are collected at that node for use by the CAUSALITY 
FACILITY.  These data constitute the Refutation Description. 

RPCS - is a i)it-vector which has bits representing names of pieces. The name 
bit of the phce that moved to produce this node is set in this vector. 

RSQS - is a bit-vector with bits representing squares on the board. The bit 
corresponding to the destination square of the move that produced this node is 
set in RSQS. 

RPATH - is a bit-vector with bits representing squares on the board. The bit 
for any square across which a sliding piece moved in making the made move is 
set in RPATH. If the move was a non-capture pawn move, then all squares over 
which it passed including the destination also have bits set for them. 

RTGTS - is a bit-vector with bits representing name of targets. A comparison is 
made of BEST for this node with BEST one ply previously. Any squares which 
are now named as containing material targets, but were not mentioned in the 
previous BEST, have bits set for the name of the piece on this square to 
indicate that this threat was created by the last move. 

TGTSQS - is a bit-vector with bits representing squares on the board. A 
comparison is made of BEST for this node with BEST one ply previously. Any 
squares  which  are  now named as containing material targets, but  were  not 
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mentioned in the previous BEST, have bits set for them to indicate that this 
threat was created by the last move. 

TPATH - is a bit-vector with bits representing squares on the board. For any 
TGTSQS detected above, if a piece that has an ATTACKING function on this 
square is a sliding piece, then all the intervening squares have bits set for them 
in TPATH. 

Once this information ia generated, it is accumulated during the backing-up 
process of the tree search. This is done by forming the union of the current 
description and llu pr8viously existing description whenever a node's value is 
accepted. Thus when returning to a node, a complete descripnon of all that 
each side has accomplished lower in the tree and how, is available. A discussion 
of what the CAUSALITY FACILITY contributes to the tree search may be found 
in later chapters. 

b.   GOAL STATES 

GN - Goal states are a scheme for partitioning the moves that may be looked at 
at each node. A goal state defines intuitively a condition and explicitly a set of 
moves that are appropriate to the problem as perceived by the program. Only 
these moves may be searched as long as this goal state is in charge. This 
produces the desired economy as explained above. A node is always in one and 
only one of the following goal states (which is preserved in the word GN). 

AGGRESSIVE - This state consists of discovering and proposing moves in the 
following four categories: 

STRONG WORKABLE ATTACKS - Double aUacks and attacks on low mobility 
pieces that are deemed workable. 

STRONG UNWORKABLE ATTACKS - Double attacks and attacks on low 
mobility pieces that are not deemed workable (but could be justified by 
other across the board factors). 

SQUARE VACATING MOVES - Discovered attacks and moves which vacate a 
square that another piece would like to occupy. 

SINGLE ATTACKS - Moves that only attack one piece or have one threat but 
have another beneficial aspect such as improving the position of the 
attacking piece or opening a line for another piece. (Not implemented thus 
far). 

There are several DEFENSIVE states: 

PREVENTIVE DEFENCE - This state is invoked when the side on move finds itself 
significantly ahead of expectation (EXPCT) in material. The state then generates 
moves which attempt to consolidate the material plus by defending against any 
apparent threats. 

NOMINAL DEFENCE - Invoked only when the position is deemed worth defending 
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and no previously tried goal state has produced a good move, nor has a clear 
enemy threat been noticed in the process. This state defends against apparent 
threats in the hope that this will satisfy the needs of this node. 

DYNAMIC DEFENCE - This state is actuated when a search has returned to a 
node with an unsatisfactory value, and the last move tried at this node was 
blameless. Information backed up during the tree search (the Refutation 
üescription), is examined to determine what the nature of the problem is Then 
the move generators are activated to try to 

1) Capture pieces that participated in the refutation, 

2) Block the paths of any such pieces, 

3) Block the threat paths of any piece, against targets which were not actudlly 
captured, ' 

4) Move away or protect target pieces, and 

5) Protect squares to which refutation pieces moved. 

These moves receive quantitative recommendations according to what they 
appear to be doing in helping with the solution of the problem. They then pass 
through the usual static evaluation, and are tried in order of decreasing value. 

MISCELLANEOUS States: 

STRATEGY - This state is invoked only at depths which were specified on input 
The strategy implemented here is to call the legal move generator J TECH 
LGillogly, (1972)], which does s positional sort on the legal moves. These are 
then tried m the given order, with the proviso that moves that were already 
searched are not searched again. Since this in effect means opening up the 
search completely, STRATEGY is invoked only at the top of the tree in the 
current program. This is a very primitive way of looking at strategy. However 
the module is completely independent of everything else, and could be replaced 
incrementally by more sophisticated procedures. Within the present study, 
which is focussed on the tactical component of chess play, it permits a minimal 
completion to a total chess program capable of playing complete games. This 
facilitates comparison with other programs (see Chapter V). 

KING IN CHECK - When the king is in check, this state is invoked directly, since 
the set of legal moves is usually small and can be sorted effectively based upon 
knowlege of the safety of squares for the pieces. 

c.   RULES FOR CHANGING GOAL STATES 

The program is able to invoke and change goal state or abandon a node 
dependent upon: 

1) What an initial analysis of the position indicates is the correct state. 
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2) Whether a satisfactory result has been obtained in this state. 

3) Whether any more moves recommended by this state remain io be tested. 

4) What the CAUSALITY FACILITY indicates about causes. 

These relationships are explained in detail in Chapter IV. 

3.   CONTROL OF THE GROWTH OF THE TREE 

The program employs a depth-first tree search to a maximum depth of 10 ply. 
It uses many standard tree control devices and several that are believed not to 
have been incorporated in any previous program. Many of these devices do not 
work on absolute reference points in making their decisions, but rather use relative 
values determined at a higher level of control. These relative values deal with level 
of aspiration, which is discussed after the individual mechanisms are explained. 

a.   The Problem of When and How to Stop 

Ideally, to determine the tactical value of the top node in a tree, all 
branches that have to be searched should eventually terminate in a quiescent 
position (one in which neither side has a threat). However, such positions are 
very rare. Therefore, it is much more usual to stop searching because the 
current position is now outside of the bounds of reasonable consequences that 
could have derived from the top position. What this means is that we must have 
some idea of what is reasonable, e.g. an expectancy, which is represented in 
the program by the variable EXPCT. We also need to have a margin around this 
expectancy which will define the limits of reasonableness. This is the constant 
MARG. With these constructs, we can begin to make such tests. However, even 
here there are problems. In a non-quiescent position it can sometimes be very 
diificult to tell whether having lost material is detrimental (it could have been a 
sound sacrifice) or whether having gained material is advantageous (it could 
have been a trap). 

For this reason, we have devised the following method of dealing with the 
reasonableness issue. Whenever a move is proposed, we develop an optimistic 
evaluation of its potential. That is we give credit for anything that may work in 
its favor and only debit it in a minimal way for any negative characteristics it 
may have. This tends to prevent moves that have any good features from being 
overlooked. 

When a position is evaluated, we develop two values for the position: 1) A 
Pessimistic Value that is an estimate of the worst that could happen to the side 
on move if the opponent were able to carry out his strongest threat, and 2) A 
Nominal Value which is the best estimate (although in very non-quiescent 
positions this could be fraught with error) of the value of the position. In 
general, the search at a node continues as long as there are moves which have 
a potential greater or equal to that already attained. However, if the initial 
Pessimistic Evaluation of the node or any result that is returned by the tree 
search is MARG greater than EXPCT, the search at this node stops. The 
reasoning is that, if this value holds up, we will readjust the expectation for the 
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position and redo the search. Otherwise, we are only dealing with a spurious 
branch of the analysis. 

b.   Mechanisms that Deal with the Value of a Node 

The following mechanisms operata on the value of a node in order to stop 
the search, and/or change the evaluation environment. 

ALPHA-BETA - This device prevents the tree search from investigating branches 
of the virtual tree which have already been superceded based upon values 
found in another part of the tree. This is done by retaining two reference 
values (ALPHA for the side on move and BETA for the other side) for each node 
which show the best result that each side has achieved so far. Then it would be 
senseless for the program to investigate any branch which could not be 
minimaxed to yield a value in the range specified by the two values. Excellent 
treatments of the implementation and properties of the Alpha-Beta tree pruning 
algorithm can be found in Slagle and Dixon, (1969) and Nillson, (1971). The most 
advanced analysis fo-date of the potential savings in the tree search achieved 
by the algorithm is Fuller, et.   al., (1973). 

CLAIM SYSTEM WITHIN ALPHA-BETA - This is a new concept used for the first 
time in this program. The idea is the following: Even if Alpha and Beta define a 
range of contention within which the program is currently trying to find tne 
best solution, it is possible to help things along further. Suppose that the 
search reaches a point where a terminal evaluation can be made, and it turns 
out that White is a rook behind what he was at the top of the tree. The 
backing-up mechanisms of the tree search have no idea whether this was due to 
pressures on White which resulted in him losing a rook, or whether White tried 
an unsound sacrifice while under no pressure at all. Consequently, if the result 
is within the Alpha-Bet? limits, the back-tracking process now concerns itself 
with how White can avoid losing the rook. This would be appropriate only if the 
rook were not voluntarily sacrificed, in which case it would be appropriate to 
look only at moves for White which could make the sacrifice sound. 

In order to avoid spending time solving such unneccessary problems, the 
CLAIM SYSTEM does not allow any ALPHA value (best so far for the side on 
move) to remain lower than the Pessimistic Value for this position. For instance, 
suppose that in a given position Black's best threat is equal to EXPCT minus the 
value of a pawn (Black is always striving for the most negative values and While 
the r,,ost positive). However, the ALPHA value which describes the best White 
t^s achieved thus far is EXPCT minus the value of a rook. Before going on, 
ALPHA is adjusted to be EXPCT minus the value of a pawn, thus narrowing the 
range of contention. Then if White were later to sacrifice a rook unsoundly, the 
search could never become concerned with how to achieve anything less for 
White than EXPCl minus the value of a pawn (which he is considered to have 
achieved already at the node in question). This algorithm is especially effective 
when ALPHA and BETA are far apart. There is a certain risk in this method, as 
in the forward prune heuristic (described below), that a position's potential will 
not be properly appreciated. However, this is a normal risk associated with 
generating sparse trees and the risk should lessen as the program improves in 
its abilities. 
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POSITION REPETITION WITHIN A BRANCH OF THE TREE - This device checks the 
current position against previous positions in the same branch of the tree to 
see if a position repetition with the same side on move has occurred. This is 
necessary if perpetual checks and other forms of (forced) repetition are to be 
recognized as draws. 

POSITION REPETITION WITHIN GAME - This device checks a move made by the 
opponent to see whether it results in a repetion of some earlier position in the 
game. If so, then a switch is set which causes every position generated during 
the tree search to be compared with hash-table entries representing all 
previous positions in the game. Any repetition that is found results in a value 
of "draw" being assigned to that node and causes the tree search to back up 
from that point. 

STOP WHEN AHEAD - This heuristic causes backup at a node where the 
pessimistic evaluation is significantly higher in value than was expected at the 
top of the tree. 

SUCCESS IN DEFENCE - This heuristic operates only when a node is in one of 
the DEFENSIVE goal states. Suppose in such a state, a value is backed up, which 
is greater or equal to EXPCT. Then if the material at this node plus the 
side-to-move's best threat are not greater than the backed up value, the search 
at this node stops. The rationale is that the defensive states are for the 
purpose of finding satisfactory solutions to defensive problems, and not for 
finding ways of improving prospects in excess of this. 

SATISFIED - If at any node a value is reached which deviates from EXPCT by 
more than MARG, the search at that node is stopped. This is done, even though 
other moves may be available for testing, on the assumption that this will not be 
a principal variation in the final analysis. At a later stage of development i' 
would probably be desirable to mark such values so that they can be identified 
as a certain type of estimate during backup, and then further action could be 
taken at the '.op of the tree if desired. 

MAX. JEPTH - There is a maximum depth (CL rently 10 ply) beyond which 
the program can not search. When this depth is hit, we assign the nominal value 
of the bottom node to this branch. 

TOTAL EFFORT LIMIT - If the top node is in the STRATEGY state and two 
minutes of CPU time have already been used for this move, then no additional 
searching is done if a satisfactory move has already been found. This is the 
only effort limit that exists at present. As the program becomes more involved 
in playing games, it is expected that others will be implemented. 

c.   Mechanisms that Deal with the Value of a Move 

FORWARD PRUNE - This mechanism compares the Static Value of a proposed 
move with the ALPHA value at that node. If the move's value is worse than 
ALPHA, the proposed move is rejected without testing. Since the comparison 
involves taking the static value of a move and comparing it with the value of a 
position in the tree, some errors could be made here.   Therefore, as explained 
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CHAPTER III 

THE REPRESENTATION AND ITS ADVANTAGES 

This chapter presents a discussion of the organization of the data that make up ths 
representation and how these data are used. It follows up on the definitions and 
constructions of Chapter II and uses these in providing a more commanding overview of 
the program. 

In order for a chess program to be both a good player and efficient, it is necessary 
that: 

1) Good moves be proposed for investigation 

2; The goodness of proposed moves correspond somewhat to the order in which they 
are to be investigated. 

3) The ultimate goodness of any proposed move be recognized 

Whereas the tree search is charged with delivering an ultimate verdict about any 
proposed move, the data structure is charged with statically finding important moves 
and doing this economically. Thus we are interested in this chapter with the recognition 
equipment that must exist in order to support the latter effort. There are two main 
points to notice: 

1) The recognition machinery must be capable of finding worthwhile moves even if 
their properties are somewhat hidden. We present examples of this and of how it is 
achieved. 

2) The recognition machinery must be able to reject worthless moves in order to avoid 
wasting the efforts of the tree search. Clearly this notion cannot be carried to the 
extreme, where the recognition machinery would be charged with producing just 
one move at the top node which would always be the best. Instead we take an 
intermediate attitude, and allow several moves to be proposed, but impose a 
stricture of reasonableness. This stricture is rather subjective, but must get 
tougher as the recognition machinery improves. Thus it is possible continuously to 
find new ways of improving the recognition machinery in order to notice a new 
facet of a move/position which makes that move unreasonable in that position 
environment, or makes the move important in that position environment. 

We show examples of good tactical moves that our method finds, which current 
standard methods fail to find. We also show examples of moves that the recognition 
machinery effectively excludes (by giving them a very poor rating), which programs 
with less sensitive recognizers would include and thus waste tree searching time. Being 
sensitive to the goodness of moves narrows the width of the search tree, making 
searching to greater depth possible. The representation is primarily used in move 
generation, move evaluation, and the creation of descriptions. These facets are treated 
in turn.  We present first a brief review of the pertinent parts of Chapter II. 
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A.   HOW IS THE REPRESENTATION ORGANIZED 

The most primitive elements in the representation are the pseudo-legal moves which 
define the possible transitions from position to position that could be allowable under 
the rules of chess. Upon this structure is erected the notion of a bearing relationship. 
This is a relationship of a piece to a square, and in our usage tells under what 
conditions the piece could pseudo-legally move to that square The basic bearing 
relations used in this program are defined and explained in Chapter II. They are DIR, 
OTHRU, ETHRU, DSC, and OBJ. These relations are sufficient to be able to determine 
whether a piece can: 

1) Participate in a capture with or without an intervening piece participating. 

2) Be a pinner of an opposing piece. 

3) Be the source of a discovered attack if one of its own pieces were to clear the line. 

In addition, the relation BLOK indicates when a given piece is in the way of any 
sliding piece, between that piece's present location and the edge of the board. Another 
important relation is BEH which tells which pieces, not presently able to control the 
squares to which a pawn can advance, would be able to control these as the pawn 
advances. This involves rooks and queens behind the pawn. The totality of the above 
relations makes it possible to determine statically what squares are available to a given 
piece from its present location under a variety of simple conditions. 

The 'text level of abstraction involves using the above information to rummage 
about Ihe board, without doing tree searching. Certain points on the board are 
considered to be important, and analytic routines are invoked to discover the state that 
these important points are in. This involves such things as the apparent safety of 
every piece on the board. The program begins to thus put an interpretation on what is 
going on on the board. Functions, which specify a piece, a role it plays, and a square on 
which this role is played, serve to remember key roles of various pieces in the 
interpretation. The following types of functions have been found useful; it being a 
sufficient condition for one function type to differ from another, if it at any point 
requires a different analytical treatment: ATTACKING, DEFENSIVE, SUPPORTING, 
OVER-PROTECTING, PINNING, GUARDING THE ESCAPE SQUARE OF A 
LOW-MOBILITY-PIECE, and BLOCKING A SQUARE. Among the BLOCKING functions, there 
also exist dysfunctions, which serve against the best interests of the side whose piece 
this is. This occurs, for instance, when a piece block's an escape square for one of its 
own pieces. Functions are assigned to pieces only when a meaningful role for the 
piece-function combination is found. Special routines arbitrate over the meaningfulness 
issue, assigning, for instance, DEFENSIVE functions only when something needs to be 
defended. 

B.   HOW IS THE REPRESENTATION USED 

1.   Move Generation 

The above described information environment is well suited to detecting 
meaningful tactical moves. It can be used for finding aggressive moves that are: 
captures, double attacks by one piece, attacks on a low mobility piece, moves that 

I 
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cause a discovered attack, and moves that remove a piece that at present has a 
blocking dysfunction. This in turn creates new functional assignments associated 
with maintaining and defending against the threatening moves. It can also be used 
for generating moves that deiend against the statically (without tree searching) 
noticed threats. 

If the search ever returns to a node with a defensive problem, a Refutation 
Description will be available to dec-cribe the problem. This description Is examined 
and appropriate defensive noves are gener?(ed from it. In all cases, the 
recommending agency has sorm idea of why a move is being proposed and assigns a 
heuristic quantitative recommendation to the move according to what it may be 
expected to accomplish should it be successful. 

2.  Move Evaluation 

There are two general advantages to the use of this representation in the move 
evaluation process. The first is that it is detailed enough so that it is possible to 
evaluate the effect of a move simply by scoring the move in the environment of the 
old position, rather than by setting up the new position. This results in a definite 
saving in computing time. The second advantage is that the assignment of functions 
results in binding certain pieces to certain important duties on the chess board. 
These duties are considered to be essential if the existing stability of the current 
position is to be maintained. Therefore when a move results in a perturbation of 
these functions it is possible to examine the representation in an attempt to gauge 
the effect of such a disturbance. From the experience we have had, it is possible to 
both notice effects which would take up to seven ply to unfold in an actual game, 
and to estimate the maximum possible effect due to such a perturbation with good 
reliability. These effects involve noticing whether a piece is moving en prise, 
whether any piece that is set to capture another is committed to other important 
duties, and whether a moving piece clears or blocks any important squares. 
Optimism is introduced by giving full credit for any effect favorable to the moving 
side, and only a small partial debit for effects that are unfavorable. 

To understand perturbation of a position it is important to be aware of the 
various types of moves that can occur and how their merits can be determined. For 
instance, it is quite usual in programs such as the Greenblatt and Northwestern 
programs, to include all moves that are checks or captures, even if they involve loss 
of material, just on the chance that some other fuctors exist which may make such a 
move successful. Those "other factors" would, however, have to be discovered at 
the exponential cost of tree searching. The present program can, because of its 
refined analytical methods, rule out many checks and captures as completely 
worthless. This would occur when, for instance, a capture will result in loss of 
material without causing commensurate "disturbing effecls" on the position. The 
ability to optimistically gauge such disturbing effects and thus dismiss certain 
"sacrificial" moves as having absolutely no sacrificial merit, is one of the things that 
our evaluation function is be able to deal with effectively. It should be noted that 
the expedient of including all checks and captures is not a panacea, since many 
double attack moves or other forceful moves which do not fall into the class of 
checks and captures, appear to lose material but actually are correct sacrifices. 
Moves of this type are frequently not discovered by today's better programs, 
whereas our program makes the discrimination quite well.    For example, in the 
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position in Figure 3.1 the Greenblatt 1968 program (which had already achieved a 

w nnln. T^ 'T 0"0 ^ W
c
hi,e While '" the t0ur"^ ^' instead oNN6 

f^^Z^J-llZ  --   -   -H       CHESS   3. 

even^ua y play NxB winning the exchange, after he had p'reviou   y played QxQP 

NorthLlt6 qUeen ^^/^ ,he ,ender SP0,•    M ,his is rather strange as the 
ll nT    T^ Pr0gram SetS UP the P0si,i0n resu,,inß fr0 " every move it wants to 

Ts      r   While Toth8^ 2-B"Q5 ' Se, UP' it Sm d0eS n0t knOW that »An 
Lorlc^ 7K , eSe  Pr0gramS  play very eood tacti"l chess  (for chess 
programs), these examples are typical of things that they do not do well  and that 
cannot be covered up by a catch-all such as "Try all captures and Thecks"    Ou 
program solves both problems correctly. '   0ur 

a.   Guard Destruction 

fn Jnard»deStT,i0n reSUltS fr0m a capture of a Piece *hich has one or more 
unct-ons to perform.   It is possible to detect this effect by simply sett ng UD 

^e Position resulting from the move. However, as previously explained h's is a 
ost which can be avoided.   With the use of functions, it is'quite   asy to note 

vaL     ^^T,^ ^"'^f aSS0CiafeCi With a Capture' and t0 als° note their 
be na de trov H a 0K     USefr, f0 kn0W When the piece whose ^^ are being destroyed can be recaptured, and whether it is possible to do this so as 
to restore all functions without relinquishing any new ones.    This Mature has 
not yet been implemented. 'ms reaiure has 

„ia ^"D nl 'n?5 a Simple example of 8"ard destruction.   White to play can 
P ay 1    RxBch. PxR. 2.  QxN and thus gain material.  In this case, the sip a rule 
of trymg ail cap ures finds the solution too.    However, if the capture RxBh 
were not associated with some sacrificial theme, there would be no po^t in  t 
Such cases would just result in wasted tree searching effort. 

In our program the move 1. RxBch is noticed because it is a capture    The 

S ntThlt^     £ ,S kTn t0 haVe ,he functi0n 0f 8"-ding the Knfgh   on K5 
REDEEMING VAMFT   eC
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u 
e:da^red whereas it was previously save, the 

bishoo th^ th >*?? beCOmeS higher than the loss of the ^k for a b.shop that the move enta.led.   This results in a strong recommendation for the 

b.   Piece Overloading 

«nothiTf 0vtrl0a
f
ding 0JCUrS When a piece that has a sPecific unction also has 

another funct.on to perform which cannot be performed at the same time.   The 
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piece will become overloaded when either function is demanded of it. It wi I be 
successfully overloaded, if the cost of demanding the first function is not 
greater than the reward to be gained as a result of the second function having 
to be relinquished. Some simple examples will help to clarify this: If a pawn is 
guarding each of two other pawns, then it would not be worthwhile for a bishop 
to capture one of the pawns at a net loss of 2 units, in order for some other 
piece to be able to capture the second pawn worth one unit. However if a 
pawn is guarding each of two knights, then if a rook were to capture one of the 
knights (for a net loss of two units) in order for some other piece to capture 
the other knight for an ultimate net gain of one unit, this would be worthwhile. 

Figure 3.4 shows a simple example of piece overloading. Here White to play 
can play 1. RxN, PxR, 2. QxN. It is the pawn which is overloaded by having two 
functions to fulfill and not being able to do both satisfactorily. Our program 
notices the move i. RxN because it is a capture. Since the defending pawn has 
another defensive function on its FCTN list, it is found to be overloaded. Since 
the value of the overload is equal to the value of the knight on QB4, it creates a 
REDEEMING VALUE which makes the loss of the rook for a knight worthwhile. It 
is important to note the economics of such transactions! e.g. there is no point in 
starting with 1. QxN as the amount that can be recovered is not worth the 
investment made. As a matter of fact, 1. QxN is evaluated as below the value of 
the existing position. 

c.   Decoying 

Piece decoying is a relatively simple idea which involves the sacrifice of 
some amount of material in order to bring to a new square an opponent's piece 
of greater value than the amount sacrificed. In a successful decoy sacrifice, the 
decoyed piece will then be attacked, and a net gain will result. The king is the 
piece that is most often decoyed; however, possibilities also exist with lesser 
valued pieces. The crucial information item here is again the function 
(defensive), which tells which piece will be decoyed. This information is 
absolutely essential, as simply knowing whether or not a piece is defended will 
not result in distinguishing between sacrifices that have decoy value and tnese 
that simply bring a very low valued piece to a new square. 

Figure 3.5 shows the simplest type of decoy sacrifice. In the position it is 
White to play and he can mate in two moves by the sequence 1. QxPch, KxQ, 
2. PxPmate. The present program finds this sequence without any 
back-tracking. This is due exclusively to the DECOY VALUE that EVALUATE 
associates with 1. QxPch. Many contemporary programs would investigate the 
moves QxPch, QxBch, PxP, and other attacking and capturing moves. In such 
programs the move QxBch would almost certainly be preferred to QxPch, since 
both moves give check, but the former captures a more valuable 'piece. 
However, the issue here is not capturing the most valuable piece, but luring the 
most valuable piece into a now position. In this connection, EVALUATE gives the 
move 1. QxBch an unsatisfactory static rating, since giving up the queen for a 
bishop and the luring of a rook to a new position does not get a satisfactory 
REDEEMING VALUE. The check gets no credit at all, since the recapturing rook 
has no other functions to perform. In fact the only sacrificial move besides 
1. QxPch which gets an above average rating is 1. PxP which opens up a line on 
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Ine enemy king. All th3 other sacrificial moves do not have adequate properties 
to merit a high rating. It should however be pointed out that if the Black rook 
were not at KN1, both QxBch and QxPch would be tried in that order and neither 
found to be sucessful. However, the algorithms only help in detecting which 
violent moves have no potential, not which ones are guaranteed to succeed. For 
that, the tree searcS is required. 

d.  Blocking and Unblocking 

Blocking and unblocking involve complicated problems, some of which are 
not addressed by this program. We turn first to those that are. It is possible 
to block the defensive function path of an enemy man, thus making the object of 
its protection undefended. This is noticed in the program by checking the 
destination square of a move against DPATHj a catalog of squares on which 
defensive paths can be intercepted. If the destination square of a move is 
mentioned in DPATH, EVALUATE finds all pieces that bear DIR on this square. It 
then checks the DEFENSIVE functions of each such opposing piece, to find which 
cross the given squaro. For this it uses CLR(function piece location, function 
square). For every defensive function that crosses this square, EVALUATE 
raises the evaluation of the proposed move according to the value of what this 
function defends. It is also possible to block an enemy attack or support path. 
However, this is a defensive gesture and is treated as part of the defensive 
move generation procedure. 

An example of defensive path blocking can be seen in Figure 3.6, Here the 
correct move, 1. R-B7, is originally noticed by FEATRS since it forks the Black 
queen and the KIMP. It is put on the list WMISS, that has moves not likely to 
succeed, since the terminal square is unsafe. EVALUATE then notices that the 
move intersects the defensive path of the Black queen bearing on its KN2. Now, 
TSQCBIack's KN2) indicates that this is a square where White is at present 
threatening to give check (with the queen). This results in the value of the 
move 1. R-B7 getting enough heuristic credit to establish it, based upon its 
static evaluation, as one of the potentially best moves in this position. 
Ultimately, mechanisms should be added which will be charged with proposing 
such function path intersecting moves; however, the present program is limitsd 
to merely detecting such occurrences in moves proposed by other agencies. 

In unblocking, it is possible to move an own man that has a BLOCKING 
dysfunction, and thus make a previously blocked move possible. This would 
occur, for example, when a knight is occupying a square on which a queen would 
like to give check. This is noticed in EVALUATE by checking the origin square of 
a move in the vector TSQ. This will indicate the vacating potential of this 
square, both for other pieces that would like to get there and for discovered 
attacks. Thus the discovered attack is also an unblocking move, and the utility 
of such a move is noticed at the same time, when TSQ is examined, A simple 
example of an unblocking move is shown in Figure 3,7, White to play can 
unblock the square K5 where the bishop can give check by moving the knight 
that is there. This can be done most forcefully and effectively by 1, NxPch and 
as Black must recapture BxN, White follows up with 2, B-K5mate. The move 
1. NxPch is orginally found by OCCUR, but put on the WMISS list because the 
checking square is adequately defended.   EVALUATE later assigns a high value 
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to  the  move  because  it vacates a checking square while giving checK  and 
capturing a pawn.  Thus our program finds the winning sequence easily. 

It Is also possible to take advantage of the fact that an enemy piece has a 
blocking function. This is done by evoking any other function that it may have 
(overloading). Thus, If it were to exercise the other function it would no longer 
be on the square on which the blocking function had to be performed. The 
rules for piece overloading apply perfectly well to this case. In fact such 
overloading is noticed as part of the piece overloading calculation described in 
Chapter II. A simple example of a sacrifice to achieve unblocking is shown in 
Figure 3.8. Here White can play 1. QxPch since the reply PxB unblocks the path 
of the White KNP thus allowing 2. P-N7mate. In our program the capture 
1. QxPch Is notices by OCCUP and put on the list WMISS because the capture is 
defended against. In EVALUATE the blocking function of the Black KNP is 
noticed (it blocks a check by the White KNP) and the move thus receives a high 
value.  The mate is then found immediately. 

Finally, moving a pinned piece is also an unblocking move, but one with 
undesirable side effects for the moving side. EVALUATE checks the PINS list 
associated with the moving piece's narra to see if it was pinned. It then debits 
the evaluation of the move by the maximum valued piece, that moving the 
pinned piece will expose. 

EVALUATE is aware of all the above cases of blocking and unblocking and 
credits and debits the value of any proposed move accordingly. In addition, 
there are cases involving opening of lines by moving a piece that presently 
limits the scope of one or more other pieces. This happens, for Instance, if a 
knight moved in order to clear a path to a square where a queen could give 
check. This is not noted by the preser.; program. There are also moves that 
produce side effects in the process of clearing a line. Such a move is 1. N-N6 in 
Figure 3.1 above where the line clearance creates a pin and at the same time 
takes advantage of it. 

The present program handles these more complicated unblocking moves as 
follows: If there is any square, that has an object of Interest (in the vector INT) 
to the piece that is being unmasked, anywhere on the line that is being 
unmasked, the proposb-f move receives heuristic credit for one-third of the 
value of this object of interest. This is far from an ideal solution. For instance, 
the analysis for Figure 3.1 should start by noticing that moving the knight clears 
the path to the Black rook on QR1 which is in the INT vector of the White rook. 
Then it should notice that the Black pawn on QR2 is bearing on QN6 and thus is 
responsible for its protection. Then when this pawn is also found to be on the 
newly opened line, the possibility of a pin arises, and this should be enough to 
fully justify trying the move. Besides the above, there are unblocking 
possibilities associated with every piece that could participate in a projected 
capture sequence on a square. This seems to be the full scope of blocking and 
unblocking possibilities. 
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e. Desperados 

A desperado is a piece that tries to sell its life as dearly as possible This 
can occur when it is trapped and bound to be lost. However, a more important 
case occurs when the piece is subject to capture, while an equivalent valued 
enemy p.ece is also subject to capture. Consider the position in Figure 3 9 If 
Wh.te were to play 1. RyQ, then Black could reply RxQ and the position would 
remain materially equal. Likewise, if White moved the queen away. Black could 
do the same without any change in the material balance. However, if White 
could use his first move to capture something, and thus sell his queen dearly he 
could make a gain if Black's queen was still capturable after this. Thus in 
Hgure   3.9,   White   can   win   by   playing   1.   QxN.      Now   if   Black   tries   the 

Tnu'?e?P,?rad0. ?XR (QXN d0eS n0t WOrk because 0' W White wins with 
2. QxRch followed by 3. RyQ. Thus it takes three desperado sacrifices in 
sequence to produce the correct solution. Our program finds both the 
desperado moves 1. QxN and 1. QxR attractive using the procedure explained 
oelow.   It eventually finds 1. QxN to be correct by tree searching. 

PVAM^TC n8
ÄnSefUl despera0ü moves is UP »0 the board evaluation portion of 

tVALUAlE All captures are always proposed in the AGGRESSIVE goal state 
The potential of a desperado capture can be found when the relative threat 
picture for both sides is known Thus, it is up to the board evaluation 
computation to determine that after 1. QxN above both queens are en prise, but 
Black cannot remove his from attack while capturing the White queen (as could 
occur for instance after 1. QxR). In a program that always tries all captures, 
desperado sequences will always be found, as long as they terminate within the 
search horizon. However, many existing programs must waste a lot of time 
checking out foolish captures, if the other necessary conditions for the 
desperado do not exist to warrant the investigation. 

f.  Recognizing the Futility of Certain Moves 

Figure   3.10 shows examples of moves, which the present program statically 

[hT^'T aus W0?,es^'tha!would however be searched ^ ™y w™ ^ he   all checks and captures" paradigm.  White to play has four checks here and 
two captures and none of them are even slightly worthwhile.   In the present 
program none of these moves gets enough of a REDEEMING VALUE to justify the 
amount of material that is expected to be lost in the transaction.    Take for 
mstance, the move QxRch.   The rook is defended by the knight which has no 
other functions  to perform.    Thu  there is no overload.    When the queen is 
recaptured it will decoy the knight to a new position, but losing a queen for 
rook is too much of a cost to achieve this.   The captured rook has only one 
defensive function to perform: guarding the check at Q4.    However  since the 
capturing piece is also the one which would give the check against which the 
rook is guarding, this is detected as not being a guard destruction.    Finally, 
moving the queen to QS does not block or unblock any important lines, and 
conditions   are   not   ripe  for  a  desperado  (no  enemy  queen  also  en  prise) 
Iherefore this move receives a rating below the EXPCT for the position, and will 
not be searched unless some desperate set of circumstances are found to exist 
(they do not exist in the given position).  The remaining checks and captures are 
evaluated as poor in a similar way. 
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Now consider the samp position with an additional White rook on Kl. In this 
new situation, the Black rook at QI has a new function: guarding the check by 
the White rook at K8. This would now provide some justification for the move 
QxRch, since it would destroy the guard against the check by the rook. That 
QxRch does not in fact ultimat^y work, is not important. With a few more 
changes in the position, it could be made to result in a mate. Hence, there is 
some potential in the move, with a White rook bearing on K8. There is NO 
potential in the move QxRch in the original position. The lack of a data structure 
which allows such functional comparisons could make it p-actically impossible to 
detect the difference in the two situations. This in turn makes for wasteu tree 
searching effort. 

3.   Creating and Passing Descriptions 

Another use of the representation is in the creating of descriptions which can 
be passed to some agency which could use the description to try to solve a 
problem. The usual format is that the description is accumulated during the search 
process as this moves from node to node. If the description is found to be relevant 
to a problem at a node, facilities in the program attempt to apply it. The only 
facility of this type in the present program is the CAUSALITY FACILITY, which is 
described together with examples in Section D below. 

Two other possibilities for creating and using descriptions have been discovered 
while developing this program. However, neither of these is implemented as yet 
The first is the use of themes to restrict the combinatorial explosion of tree 
searching. It would be possible, wnen evaluating a move, to keep track of why a 
move received a REDEEMING VALUE if it was a sacrificial move, or why it was 
recommended if not. This could be put into a description associated with the move, 
and would be passed forward as the tree search went deeper. The contents of all 
descriptions associated with the moves of a given side in the variation being 
presently examined, would constitute the theme which is being attempted Then 
criteria would have to be set up by which all proposed moves would be judged 
This would involve not only recognizing the potential of a move, as is done at 
present, but also whether the move should be tried here. This means consideri .g 
whether the move was also possible earlier, and whether it appears to continue the 
theme" to this point. There are several problems still associated with defining how 

a move can be acceptable to a theme. 

The other use of descriotions that we envisage is the development of 
intermediate data from Refutaiion Descriptions. These descriptions would take the 
form of a lemma that is posited about things that could happen in a given position. 
Thus, if the capture of a rook allowed a mate in three, then certain key elements of 
the position relating to the capture and the mating sequence (as described in the 
Refutation Description) would be abstracted from the position. Then, if in a direct 
descendant of this position, these key e'ements still pertained, the view would be 
taken that the capture of the rook is still not feasible. How lemmas can be 
constructed and used is discussed in more detail in Chapter VI. 

In the remainder of this chapter, we present examples from the program's 
performance that illustrate how the above described facilities operate in a practical 
environment. 

^MtJiM^^immmämmmiiammiämmmmmMm 
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C.   EXAMPLES OF THE STATIC ANALYSIS PROCESS 

In the first example, we present a complete view of all the higher level data 
generated as part of the static representation of a pos'tion. These data are generated 
from lower level data (location of pieces, bearing relations, etc.) by the routines OCCUR 
and FEATRS as explained in Chapter IL The moves generated from these data and then 
evaluated as part of the AGGRESSIVE state are also shown. We refer to the position in 
Figure 3.11. 

Table III-l shows the occupiabilities of each square. The table is in the form of a 
chessboard with squares corresponding to the squares of Figure 3.11. The top entry 
in each square pertains to the occupiability for White, the lower entry for Black. The 
number indicates the value of highest valued piece for that side that would be sMe 
there. This is using the standard values of the pieces, e.g. pawn-1, etc., to king-31. 
When the letter associated with the number ic S (sa'e), this indicates that if a piece of 
the side whose OCY this is, is presently bearing on this square, it would be safe there. 
If the letter is N (not safe), only pieces not at present bearing on this square would be 
safe there. For example, consider White's QB5 square. The values here are 2 N and 1 
S respectively. This means that White pieces worth 2 points or less but not presently 
bearing on this square would be safe there. This excludes the pawn that is presently 
bearing on the square. The value for Black indicates that any piece worth 1 point or 
less and presently bearing (or not bearing) on the square would be safe there. This Is 
clearly true? however, the pieces presently bearing on the square, each beina worth 
more than 1 point would not be safe there. 
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TABLE III-l   -  Occupiabi'ties of Squares 

'SlNIBNIBNiaNIBNIBNISlNIBNI 
1 I I I I I I I I 
I   31 N    I  31 S    I  31  S    I  31 S    I 31 S    i  31 S    I  31 N    I  31 S    I 

'eNlBNIBNIBNIBNiaNIBNISNI 
11 I I I I I I I 
'315     I     9S     I31S     I     3S     I31S     I     3N     I31S     I     3N     I 

I0NI8NI1NI8NI8NI0NI1SIBNI 
1 I I I I I I I I 
1     35     I31S     I     3N     I31S    I31S     I    9S     I    2N    I    3S     I 

'BNISlSIZNIBNIBSIlNllNiaiSI 
1 I I I I I I I I 
|31SI0SI1SI9SI8NI3MI3NIBNI 

1   31  N     I     3 S     I     3 S     I    5 N    I  31 S     I  31 S     I  31 S     I  31 N     I 
1 > I I I I I I I 
|31NI0NI8NI8NllNiaNIBNI31NI 

1     3 N    I  31 N     I    3 N    I  31 S    I  31 S    I  31 S    I  31 S    I  31 S    I 
1 ' I I 1 I I I I 
|5NI31NI3NI8NI8N!BNIBNI8NI 

I   31  S     I   31  N     I   31  S     I  31 N     I  31 S     I   31 S     I   31  5     I   31  S     I 
1 < I I I I I I I 
|0NI31NI8NI8NI8NIBNIBNI8NI 

I   31  S     I   31  S     I   31  S     I  31 S    I    31 S   I    31 S   I    31 N  I    31 S   I 
1 I I I I I I I I 
•eNIBNIBNIBNIBNIBNIBNIBNI 
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Table III-2 shows the physical blocking relations of pieces blocking each other's 
movement. It should be noted that there is no functional meaning associated with these 
relations. 

TABLE III-2  - Blocking Relations 

Blocking F iece 

Black Rook on Ql 

Black Bishop on QB1 

Black Bishop on QB1 

Black Bishop on KB1 

Black Knight on Kl 

Black Knight on Kl 
Black Pawn on K3 

Black Pawn on K3 

Black Pam on QR2 

Black Pawn on QR2 

Black Pawn on QN2 
Black Pawn on QN2 

Black Pawn on QN2 

Black Pawn on KB2 

Black Pawn on KB2 
Black Pawn on KN2 

Black Pawn on KN2 

Uhite King on KN1 

Uhite King on KN1 

Uhite Rook on Kl 

Uhi te Bishop on Q3 

Uni te Bishop on Q3 

White Knight on K5 
Uhite Knight on K5 
Uhite Pawn on KB2 
Mhite Pawn on KN2 

Uhi te Pawn on QR3 
Uhite Pawn on QR3 
Uhi te Pawn on QB3 

Uhi te Pawn on QB3 
Uhite Pawn on QB3 

Mhi te Pawn on Q4 

Blocks Path of 

Black Rook on QR1 

Black Rook on QR1 

Black Rook on Ql 

Black Rook on Ql 

Black Rook on Ql 
Black Rook on QR1 

Black Bishop on QB1 

Uhite Rook on Kl 
Black Rook on QR1 

Uhite Rook on QR1 

Black Queen on QB2 

Black Bishop on QB1 

Uhite Queen on KB3 

Black Queen on QB2 

Uhite Queen on KB3 

Black Queen on QB2 

Black Bishop on KB1 

Uhite Rook on QR1 

Uhite Rook on Kl 

Uhite Rook on QR1 
Black Rook on Ql 

Uhite Queen on K63 

Black Queen on QB2 

Uhite Rook on Kl 
Uhi te Queen on KB3 
Uhite Quuen on KB3 
Black Rook on QR1 

Uhite Rook on QR1 

Black Queen on QB2 

Uhite Queen on KB3 

Uhite Bishop on Q2 
Black Rook on Ql 

Ending on 

KR1 

KR1 

QR1 
KR1 

KR1 

KR1 

KRG 
K8 

QR8 

QR8 

QR2 

QR3 
QR8 

KR2 

kB8 
KR2 

KR3 
KR1 

KR1 

KR1 

Q8 

QR3 
KR7 

K8 
KB1 
KR1 

QR8 

QR8 

QB8 
QR3 

QR5 
Q8 
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TABLE 111-3 - Piece Mobilities 

P i ece Name Effective 1 

Uhi te Pawn on QA 0V, 
Uhite Pawn on QB3 1 
Uhi te Pawn on QR3 1 
Uhite Pawn on KR2 2 
Uhite Pawn on KN2 2 
Uhite Pawn on KB2 e,v 
Uhi te Knight on K5 2ft 
Uhite Bi shop on Q3 7 
Uhi te Bisnop on Q2 3 
Uhite Rook on Kl 7 
Uhi te Rook on QR1 4 
Uhite Quuen on KB3 9 
Uhi te King on KN1 2* 
Black Pawn on KN2 2 
Black Pawr on KB2 2 
Black Pawn on QN2 1 VoV 
Black Pawn on QR2 2 
Black Pawn on KR3 B* 
Black Pawn on K3 0>v 
Black Knight on Kl 2>v 
Black Bishop on KB1 2ft 
Black Bi shop on QB1 1ft 
Black Rook on Kl 2 
Black Rook on QR1 1ft 
Black Queen on QB2 5 
Black King on KN1 1« 

(*) Indicates a low mobility piece 
(**) Indicates a pinned piece 
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TABLE 111-4 - Assigned Functions 

P i ece 

Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 
Black 

King on KN1 
King on KN1 
King on KN1 
King on KN1 
Queen on QEk 
Queen 
Queen 
Queen 
Queen 
Queen 
Queen 
Queen 
Rook 
Rook 
Rook 
Rook 
Rook 

on 
on 
on 
on 
on 
on 
on 

Uh 
Uh 
Uh 
Uh 
Uh 
Uh 
Uh 
Uh 
Uh 
Uh 
Uh 
Uh 
Uh 
Uh 
Uh 
Uhi 
Uh 
Uh 

te 
te 
te 
te 
te 
te 
te 
te 
te 
te 
te 
te 
t3 

te 
te 
te 
te 
te 

on 
on 
on 
on 
on 

Bishop on 
B i shop on 
Bishop on 
Bishop on 
Bishop on 
Knight on 
Knight on Kl 
Pawn on KB2 
Pawn on 
King on 
King on 
Queen on 

QB2 
QB2 
QB2 
QB2 
QB2 
QB2 
QB2 

QR1 
Ql 
Ql 
Ql 
Ql 

QB1 
QB1 
KB1 
KB1 
KB1 
Kl 

KN2 
KN1 
KN1 
KB3 
KB3 
KB3 
KB3 
KB3 
KB3 
KB3 
KB3 

QR1 
Kl 

Uhite 
Uhite 
Uhite 

Queen on 
Queen on 
Queen on 
Queen on 
Queen on 
Queen on 
Queen on 
Rook on 
Rook on 
Rook on Kl 
B i shop on Q2 
Bishop on Q2 
B i shop on Q2 
B i shop on Q2 
B i shop on Q3 
Bishop on Q3 
Knight on KS 
Knight on K5 

Function 

Defends 
Defends 
Defends 
Dverprotects 
Attacks 
Attacks 
Attacks 
Attacks 
Dverprotects 
Defends 
Defends 
Dverprotects 
Dverprotects 
Attacks 
Attacks 
Dverprotects 
Dverprotects 
Defends 
Defends 
Attacks 
Attacks 
Dverprotects 
Dverprotects 
Dverprotects 
Dverprotects 
Defends 
Defends 
Dverprotects 
Attacks 
Attacks 
Dverprotects 
Dverprotects 
Attacks 
Attacks 
Attacks 
Attacks 
Defends 
Dverprotects 
Dverprotects 
Dverprotects 
Defends 
Defends 
Attacks 
Guards 
Attacks 
Defends 
Dverprotects 

Square 

KR2 
KB2 
KB1 
KB1 
KR7 
QB3 
QB3 
K5 
QN2 
KB2 
KB2 
Ql 
QR2 
QB 
05 
QB1 
Kl 
QN2 
QN2 
QN5 
QR6 
KR3 
QB2 
KN2 
K3 
KR3 
KR2 
KR2 
KB8 
QR8 
KB2 
KN2 
QN2 
QN2 
KB7 
KB7 
QR3 
QR1 
K5 
Kl 
QB3 
GB3 
KRG 
KR7 
KR7 
03 
Q3 

Reason 

Ü1P (king) Attack on 
Occupant 
Pin Object 
Occupant 
Pin Object 
Occupant 
Multiple Attack 
Occupant 
Occupant 
Attack on LMP (king) 
Occupant 
Occupant 
Occupant 
Pin Object 
Occupant 
Occupant 
Occupant 
Occupant 
Attack on Ü1P (rook) 
Multiple Attack 
Occupant 
Occupant 
Occupant 
Occupant 
Occupant 
Occupant 
Pin Object 
Occupant 
Pin Object 
Pin Object 
Occupant 
Occupant 
Occupant 
Attack on LMP (rook) 
Occupant 
Attack on LMP (king) 
Occupant 
Occupant 
Occupant 
Occupant 
Occupant 
Multiple Attack 
Occupant 
King Escape Square 
Attack on LMP (king) 
Pin Object 
Occupant 
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White Knight on K5 
White Pawn on KN2 
Whi te Pawn on QB3 
Whi te Pawn on QB3 
Whi te Pawn on Q4 

Attacks KB7 Occupant 
Overprotects KB3 Occupant 
Defends QN4 Multiple Attack 
Defends Q4 Occupant 
Defends K5 Occupant 

P i ece 

White B i shop 02 
White Pawn QR3 
White Pawn QB3 
White Pawn 04 
Black Pawn KB2 
Black Rook 0R1 

TABLE III-5  - Piece Safety 

Status 

Target of  Interest  to Black 

Target of   Interest   to White 

In Table III-5 each of the pieces mentioned is barely defended. There are no en 
prise pieces in Figure 3.11, and all other pieces are overprotected. 

The only piece on a pinned piece list is the Black pawn on QN2. MAT shows 
material to be even. POSIT indicates White has a very large space advantage. There 
are no moves on lists WTHRT or BTHRT meaning that there are no workable threats for 
either side. The list WMISS (White unworkable threats) contains the following moves 
and threat values (ranging from pawn-1 to king-31): 

TABLE III-6 - List WMISS 

Move Thr sat Value 
QxPch 31 
B-R7ch 31 
BxP e 
QxNP 5 
NxP 0 

The list BMISS (Black's unworkable threats) contains the following moves and threat 
values: 

Move 

B-N5 
BxP 
QxP 
RxP 
QxN 

TABLE III-7 - List BMISS 

Threat Value 

3 
8 
1 
8 
8 

The list WIDEA (White Ideas) is empty. The list BIDEA (Black Ideas) contains the 
idea of moving the Black pawn on QR2 in order to discover an attack on the White pawn 
on QR3. 
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After all the moves suggested for White above are evaluated In the AGGRESSIVE 
state the move stack looks as follows: 

TABLE III-8 - Move Stack 

Move     Evaluation (deviation from MAT value, 50 units - one pawn) 

B-R7ch 
QxPch 
NxP 
BxP 
QxNP 

1129 
18BB 

3B 
-189 
-353 

From this information base, the program begins its search at the top node. The 
position is an advanced example of a decoy sacrifice. The program tries the proposed 
moves in the order given. Nothing works until 1. NxP is tried. This is found to win a 
pawn because if then QxN, the queen has been decoyed to a new position, and the 
further overload sacrifice 2. B-R7ch forces the king to abandon its protection of the 
queen. 

Figure 3.12 shows an advanced example of ^uard destruction. It is Black to play 
and he can mate in two moves by l.~QxNch, since 2. RxQ, is answered by R-N8mate. 
Here the program quickly recognizes the merit of QxNch since the knight is involved in 
defending the check at KN8 and the recapturing White rook also, while the two Black 
rooks which are not involved in the capture are known to also have checking functions 
at KN8. It is clear that most contemporary programs would also solve this problem, 
since 1. QxNch is a member of the set of checks and captures. The present program 
however, only looks at the move because of the destruction of the guarding (defensive) 
functions involved in capturing the knight and the overloading of the White rook, both of 
which guard the check. It is also interesting to note that the thing that is being guarded 
is a check and not a material object. This could lead to sacrifices for the sake of 
meaningless checks; however, at present the tree search is charged with determining 
the ultimate utility of a check. 

An advanced example of piece overloading can be seen in Figure 3.13. Here Black 
to play wins a pawn plus additional material by 1.—BxP. The bishop cannot be captured 
by the rook because it is defending against the threat of R-K8ch followed by R-R8mate. 
And if the bishop is captured by he knight then QxRch wins more material. However, 
the latter continuation is forced as otherwise Q-N7mate will occur. This also prevents 
White from ever playing QxR. The program finds its way through all these complexities. 
However, since it does not recognize mate threats, it proposes the move BxP only as a 
tricky method of winning a pawn, rather than part of an involved way of creating a 
mating threat. 

An ixample of compound themes involving unblocking and piece overloading can be 
seen m Figure 3.H. Here the White rook at N6 is occupying a square on which the 
White queen could give check. Therefore the goal of moving it is generated, and among 
the moves suggested is RxRPch. This move also overloads the Black pawn on KN2, 
which has been assigned the function of defending the pawn and the rook check at KR3, 
and also the pawn and the check by the knight at KB3. The program then does not 
have much difficulty in finding the sequence 1. RxRPch, PxR, (KxR, 2. Q-NSmate), 
2. NxPch, K-Rl, 3. Q-N8mate or 1.--K-N1, 2. NxPch, K-B2, 3. Q-N6mate. 
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An example of how the program notices the survival of a function in the face of an 
imminent capture of the function-performing piece ran be seen in Figure 3.15. Here 
White has several moves which have attractive features. Of the three major 
possibilities - RxR, N-B7ch, and Q-B8ch -- the latter appears the least attractive on 
cursory examination, as it appears to put the queer, en prise. However, the program 
notices that after the capture, the White rook can recapture with survival of the 
checking function for which the queen move was originally selected, and therefore tries 
this move first. This results in finding a mate in two moves in the minimum number of 
nodes. Q-B8ch is preferred »o N-B7ch since the latter case the check is seen to not 
have function survival value and thus has only the capability to win the exchange as a 
result of a capture sequence on KB7. 

An example of the important concept of function retention is seen in Figure 3.16. 
This position occurs in one of tlv problems in "Win at Chess", just one move before the 
principal variation is discovered. Black to play can mate in one move by NPxNmate. 
There is, however, a similar move, QPxNch, which is not adequate since it allows the 
White king to escape. When this position is reached, the program notices the functional 
committment of the QP to guarding the White K4 square, and also finds that no other 
piece can pick up this committment should the QP relinquish it. Since controlling that 
square makes the difference between the king having none or one escape squares, the 
program assigns a considereably larger static value to ISIPxN, than to QPxN. As a result, 
the mate is found immedidtely, instead of possibly selecting the other move and finding 
that the king escapes, wnereupon a later return to this position is required to find the 
right move. 

In Figure 3 17, we see an example of how the program uses some representational 
information no, having to do with functions. Here the Black queen is seen to have only 
two safe squares to which it could move. This is below what is considered minimum 
standard mobility for a queen and thus generates the goal of attacking it. Thereafter, 
the program does not take long to find the sequence 1. P-KN4, QxBP, 2. R-K2 winning 
the queen. We are not 1007, satisfied with how the notion of low mobility is 
implemented in this program. For instance, in Figure i 18 the Black queen can be won 
despite the fact that it has four safe squares which p^s it above the minimum mobility 
requirement. Therefore the goal of attacking the queen is never articulated, and the 
sequence 1. R-Rl, Q-N6, 2. B-B2, Q-N5, 3. R-R4, QxNP, 4. B-R7ch is never found. 
Conceivably it may be better for determining a queen's mobility to consider the number 
Of avenues that have safe squares on them. In this case the queen has only two such 
avenues, which should bf few enough to make it a likely target. Despite this 
shortcoming, it is clear that chasing the queen (single attack) only when it is a low 
mobility piece is very much to be preferred to examining all attacks on it at all times. 
The latter can result in much useless tree searching. 

D.   EXAMPLES OF THE USE OF THE CAUSALITY FACILITY 

The  data  structure  associated with the CAUSALITY FACILITY was  presented  in 
Chapter II.   This section explains how it operates and gives examples. 

1.   Philosophy Behind the CAUSALITY FACILITY 

During the tree search, each backing-up of a potential new principal variation 
and   each   move   that   produces   an   Alpha-Beta   prune   contributes   data   to   the 
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Refutation Description associated with it. These aafa deal with changes in the 
representation of the position brought about when the move that is about to be 
backed up was executed. This Refutation Description is carried backward to any 
node that the tree search backs up to. There, if the results of the last move tried 
were not satisfactory, the CAUSALITY FACILITY consults the Refutation Description 
in order to decide what can be done about it. 

To understand the value of having a rich representation for this, consider what 
is possible without it. For instance, assume a sequence of moves resulted in a loss 
of material. Best current practice would be to remember the first move of the 
backed-up variation as the "killer", and then try it first on every move that is 
served up from here on in the generate ana test mode. If the representation was 
richer and we could get a complete description of all moves in the backed-up 
variation, then it would be possible to determine »he sequence of moves that 
produced this result. We would then be limited to do ng things about this sequence 
only. This would include such things as suggestions to move or defend any 
captured piece, capture or pin any capturer, or block the path of any moving piece. 
However, to the best of our knowledge no one is using such a scheme, possibly 
because it is incomplete. 

The presefit program has a much more complete understanding of a set of 
consequences. The set of data that the program abstracts from a position and 
sends back up the tree was discussed in Chapter II. This includes a knowledge of 
all squares critical to the transportation of pieces that moved, squares on which 
pieces became targets, and squares over which threats passed. It also includes the 
names of all pieces that moved or became targets. 

When returning to a node, the CAUSALITY FACILITY correlates this description 
with changes that occurred in the data structure as a result of the move t-ied at 
this node. This includes noticing changes in the OCY of critical squares, changes in 
threats as noted in BEST, and whether any unblocking of critical paths occurred as a 
result of the last move. Making comparisons of these quantities with the Refutation 
Description makes it possible to decide whether this move could be to blame for 
what happened. Whenever this is not the case, the search for a direct method of 
preventing what happened can begin. For instance, assume a knight was lost as a 
result of a double attack which also involved the king. Then moving the king away, 
or blocking the threat path to the king are validated as goals for meeting the threat, 
as well as doing things about tl ; knight and trying to capture the attacking piece or 
gLdrd the squares on which attacks occurred. The first two goals of this set would 
not show up in the principal variation, since the major threat is usually avoided. 
Thus, the present method gets directly at the whole set of consequences, not 
merely those which were executed in the principal variation. 

The CAUSALITY FACILITY, does very well at generating defences to deep 
threats, as is demonstrated later in this section. As a consequence, it is not 
necessary to make decisions about the goodness of certain moves for "defensive 
purposes" a priori. Rather, it is possible to wait to see if a defensive problem 
occurs and then generate the moves that do something about this description. While 
this is a major advance in the state of the art, it is still considerably short of human 
performance. First, there are situations in which many defensive moves are 
suggested, and the program is unable to assign accurate enough values to these 
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moves to prevent a certain amount of hit-or-miss searching. Second, the problem of 
indirect defences is not treated at ail. An indirect defence occurs when a threat is 
met by playing a move that would allow the execution of a desirable move sequence 
ONLY if the opponent tried to realize his threat. This is quite different from a 
counter-attacK, since the indirect defence is intended to produce its result only 
when the opponent persists in his attack. A typical indirect defence would involve 
preparing to move a piece through a square that would be vacated in the process of 
attempting to execute the threat. The method for delecting indirect defences is to 
make a null move and then execute the opponent's detected threat sequence. In the 
final position, the indirect defender now tries to find two moves in succession which 
would produce a favorable result. One of these moves would then have to be 
substituted for the null move in order to make the indirect defence work. However, 
implementing schemes such as this is beyond the scope of the effort reported 
herein. 

2. An Expository Example 

We now turn to examples of how the CAUSALITY FACILITY operates. 
Figure 3.19 shows a position in which Black to play has a defensive task. White is 
threatening mate in two beginning with 1. Q-K8ch. When the program is presented 
this position, it finds no particularly inviting offensive moves smce all the Black 
queen checks are adequately guarded and there are no double attack moves. It 
therefore asks the STRATEGY routine tor a move and starts out with 1.—P-R7. 

Now White proceeds 2. Q-K8ch, RxQ, 3. RxRmate. This result causes the backing 
up process to begin, and with it the accumulation of the Refutation Description. 
Here, we will only follow the process associated with the White moves, since the 
proce:? associated with the Black moves, even though it also goes on, yields no 
meaningful   results   in   this   case.     After   the   moves   1.--P-R7,  2.   Q-K8ch,   RxQ, 
3. RxRmate, the search begins to back up. When the move 3. RxRmate becomes part 
of the local principal variation during the backup process, a description of the 
change in environment that it produced is generated. This description consists of 
putting the name of the moving rook into RPCS (refutation pieces), putting its 
destination into RSQS (refutation squares), and putting the squares on its path 
(K3,K4,K5,K6, and K7) into RPATH. Since the move resulted in a capture, the name of 
the captured piece is noted in RTGTS (pieces that became target during the 
refutation). The move resulted in a change in the threat picture in so far as the 
Black king is now attacked when it wasn't one ply earlier. This fact is incorporated 
by noting the square of the threatened piece (the Black king) in TGTSQS, its name in 
RTGTS, and putting the path squares (KB8) associated with the threat into TPATH. 
The above entries describe the essential points of interest in the current position 
and the important changes from the previous one. As the new principal variation 
continues to survive during backup, this Refutation Description is backed up too. 

The first place where this Refutation Description can be used is one ply further 
up the tree, at the point where Black played 2.—RxR. Here, a causal test is 
performed which shows that the move 2.—RxR could have caused the consequences 
described in the Refutation Description since it moved to a square mentioned in 
RSQS. The exact nature oi other tests performed as part of the causal test are 
described later in this example. Since the consequences could have been caused by 
the   last   move  played, the  search  at  this  node continues.     But  first   a  set  of 
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counter-causal moves are generated, which could be tried in an effort to avoid the 
consequences anyway. However, here they are useless since there was only one 
legal move, and that has already been tried. 

As backing up continues and the move 2. Q-KSch becomes part of the new 
principal vacation, a description of it is generated. This consists of putting the 
name of the queen into RPCS, putting K8 ir to RSQS, and (since the queen did not 
cross any squares) putting no path squarer into RPATH. The noting of the new 
threat to the Black king (as against its staKs one ply previously) causes its square 
to go into TGTSQS, its name to go into RTGTS, and the name of the square on the 
threat path (KB8) goes into TPATK 

When this move is backed up, the union of the new description and the existing 
Refutation Descriptior is produced. When the backing up process reaches the point 
where Black originally played 1.--P-R7 this description is examined. The following 
tests are made by the CAUSALITY FACILITY to determine whether the move 
1.—P-R7 could nave brought on the consequences described in the Refutation 
Description. First a test is performed to see whether the move resulted in moving 
onto an R3QS square. This is not so. Then a check is made to see whether the 
name of the moving piece is mentioned in RTGTS (became a later target). This is 
also not so. Then a check is made to see whether the move vacated a square 
mentioned in RPATH or TPATH (making a refutation move or threat across this 
square possible). This, too, is not so. Then each square mentioned in RSQS or 
TGTSQS is checked in the representation before and after the move 1.—P-R7 to see 
if something about the move caused either fewer of own pieces to bear DIR on such 
a square, or more of the opponent's pieces to bear DIR on such a square. We are 
interested here both in whether the move resulted in unprot?cting such a point, and 
whether it could have permitted a new enemy piece to bear on the square. Here 
this involves only K8 and KN8, and no change in the control of those «quares 
occurred. The final test involves noting the pin status of all pieces mentijned in 
RPCS to see if any such piece was pinned before the made move, and unpinned 
immediately afterwards. This, too, is nol so. Therefore, the conclusion is reached 
that 1.--P-R7 could noi have caused the consequences, and these must therefore 
have been inherited from above. 

The counter-causal move generator is now invoked in order to generate those 
moves that can directly counter this description. The counter-causal move 
generator calls MOVTOCON to generate moves which add new DIR bears on all 
squares mentioned in RSQS. Mere there is only one square (K8) and there is no new 
way to defend it. Next it calls OCCUPY with the squares of any piece mentioned in 
RPCS, In order to generate moves which capture pieces involved in the refutation. 
These pieces are the White queen and -ook, and here neither of them are 
capturable. An additional facility which is not yet in the program could impede the 
movement of such action pieces by trying to pin tnem against something of greater 
or equal value to the actual consequences in the principal variation. Next, OCCUPY 
is called with every square mentioned in RPATH and TPATH, to generate moves 
which block such paths. This yields Q-K4ch, 0-K5, Q-KG and R-KB1. Then 
MOVTOCON is called with the names of squares in TPATH, with the idea that putting 
a piece in position to occupy such a threat path r, ay defend the threat. Here the 
only square in TPATH is KB1, and thus the move N-Q2 is generated. Finally, an 
attempt  is made to remove targets by calling MQVEAWAY with the name of any 

  — ——— - 



mmmmf tmrnmrn imn*ivmfim-*mmmmf**m 

ill   - 29 

square mentioned in TGTSQS which is occupied by a piece mentioned in RTGTS. 
This yields the move K-RJ. A check is then made to see if any piece mentioned in 

RTGTS is a low mobility piece which is not presently attacked. Here, the Black kina 
qualifies and MOVEAWAY is called with the names of squares that are presently 
occupied by any king's own piece and to which the king could otherwise have 
access. However, here neither the KBP nor the KRP can be moved. Thus the 

counter-causal move generator ends up with suggesting six moves: Q-K4ch, Q-K5, 

0-K6, R-KB1, N-Q2, and K-Rl. After a little tree searching, »he program decides that 
the optimum variation for both sides is: l.-Q-KB, 2. RxO, PxR. It does not 

recognize that Black now has a winning position (all of White's threats have been 

met and there is no effective method of prevent the queening of the Black QRP), but 
it does find this only defence very quickly. 

3.   An Example from Actual Play 

The above example was specifically constructed for expository purposes. In 
actual practice, the program uses the CAUSALITY FACILITY continuously to solve 

problems ranging from very simple ones (having a man en prise), to quite complex 
ones (a series of forcing moves terminating in a gain). The CAUSALITY FACILITY 

operates in all sub-trees of the search. Most instances of the application of 
causality only become apparent when one watches the program in a mode where it 

prints out all moves tried in the searcl" and all causality decisions made. What tends 

;o happen is that a problem is Mscovered, and if non-causality cannot be 
established, then nothing happens. Otherwise, the search begins on whatever 

counter-attacking moves are left plus the counter-causal moves that have been 

proposed. Usually the problem can be solved satisfactorily at the node. If not, then 

the search reverts to the n .de in the tree two ply above and the same thing'goes 

on there. Thus, the solving procedure is applied recursively at any node that is a 
candidate, and continues until a solution is found. It is easiest to observe the 

process when it happens at the top node; however, one should bear in mind that the 
same thing happens for any sub-tree in the search. 

The example in Figure 3.20 comes from a game played between TECH (White) 
and CAPS-Ii. it is Black to play. CAPS-1I sla-ts out by trying l.-OPxP, 2. QxNP, 

QxN, 3. QxR. After investigating this variation for a while, it decides that Black does 

not get sufficient compensation for the material lost, it then backs up to where 

^.--QxN was played and determines that there is no defence there. When the 

search returns to the pomt where l.--QPxP was played the program decides that it 

is faced with a threat that was not caused by the last move. It therefore decides to 

examine the Refutation Description and generate the set of counter-causal moves. 

First the other aggressive move that was proposed, BPxP, is deleted as not having 

enough counter force to be seriously considered as impeding the opponent's known 

threat. The following counter-causal moves are then generated, given with 

ciuolicates together with the reason they were generated. Moving away a target or 

a PK?ce that was captured: N-B3. N-K2. N-R3, P-KN4, P-KN3, P-KR3, P-KR4 Blocking 

a RPATH: P-KB3, N-KB3. Q-B3. Protecting an RSQS square: K-Bl, Q-BS, Q-W. 
Increasing the mobility of a low mobility piece that became a target but is not 
presently attacked: P-KR4, P-KR3, When evaluated, the moves are put in the 

following preference order: N-B3. Ni-K2, K-Bl, N-R3, P-KR4, Q-N4, P-KR3, P-KB3, 

P-KNA, P-KN3, 0-B3. The program then tries the moves in the given order until it 

finds one that produces a value greater or equal to EXPCT, which is equal material. 

-    
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1.--N-B3 io eventually found to be unsatisfactory because of 2. P-K7 winning the 

queen. 1.--N-K2 is also bad because of 2. QxNP. 1.--K-B1 is rejected because of 

2. Q-EM winning a pawn. Similarly, all moves down to P-B3 are rejected as losing 

material, most very quickly. 1.--P-B3 is found to be a satisfactory defensive move 

so the last three moves on the list are never tested. The program is still somewhat 

clumsy in homing in on the only correct solution. However, we feel it is to its credit 

that the correct defensive move was among those proposed immediately upon 

analyzing the Refutation Description. This is so, since the move P-B3 has really no 

other qualities to recommend it, and could easily be overlooked by a program that 
only investigates an arbitrary number of moves of some predetermined character. 

4. Causa,ity Reordering 

An example of how the program uses causality in ord°r to improve its attacking 

processes can be seen in Figure 3.21. Here it is Black tc pay. After spending some 

time on non-productive issues the program finds the perpetual check: l.--B-R7ch, 

2. K-Rl, B-Q3ch, 3. K Ml with repetition of position. It then raises EXPCT to 

equality (Black was down in material in the original position), and looks to cee if 

there is something bette-. The next tning tried is 2.--B-B2ch, 3. K-Nl, (here there 

is no repetition of posi ion and t1^ functional similarity is not discernable to the 

program), B-R7ch and now a repetition is again noted. Next the program backs up 

one ply and tries 3.—R-RSch, 4. KxR, 0-R5ch, 5. 0-R3 and decides this position is 

not good for Black. It then begins to back up, generating a Refutation Description 

Of all of White's (the refuting side because there was a cut-off) moves. The first 

point where something can be done about the description is at the point where 
E^lack played 2.--B-B2ch. Here the Refutation Description is used to generate the 
set of counter-causal moves. This set is then matched with the moves already on 

the move stack. Any matching move is promoted to a place higher in the move 

stack. The move that matches the counter-causal set most frequently is promoted 

to the highest place. In this case the Refutation Description mentions the king and 
queen as refuting pieces, --nd mentions the path of the queen in blocking the check. 

Nothing can be done about capturing the king or queen, but among the discovered 

checks with the bishop that have already been proposed is B-N6ch, which matches a 

move in the counter-causal set proposed for the purpose of blocking the queen's 

path. The program then tries 2.—B-NSch, 3. K-Rl, B-R7ch and again finds the 

repetition of position. Backing up one ply, it tries 3.--R-R8ch, 4.KxR, 0-R5ch, 

b. K-Rl, Q-R7mate. This variation is forced and nothing can be done about it so the 

search is exited and the progam announces mate in five moves. It should be pointed 

out that things do not always work out so favorably when counter-causal 

reordering is invoked. If the initial idea tried is unworkable, then moves that help a 
hopeless cause are promoted. However, by and large, the mechanism helps 
considerably more than it hinders. 

5. Some Current Deficiencies 

An example of how the CAUSALITY FACILITY is not as powerful as human 

notions of causality can be seen in Figure 3 22. Here it is White to play, and he is 

faced with a threat to his rook at K3. The program first tries 1. Q-BA which is 

suggested by the AGGRESSIVE state. This move eventually fails because of the 
variation l.--OxQ, 2. PxQ, BxRch, etc. When the search returns to the point where 

1. Q-B^l was played, an examination of the Refutation Descrip'ion shows that (since 
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the move 1.—QxQ was played by Black) White's QB^i is an RSQS square. Since 
1. Q-B4 put a man onto an RSQS square, the program considers it possible that the 
consequences were caused by the last move. Thus it is not possiole for the causal 
test to decide that the los^ of the White rook at K3 can not be attributed to the 
move 1. Q-B4. For this reason the program does not understand that it is facing 
some consequences inherited from above in the tree. Later, the program reverts to 
the NOMINAL DEFENSE state and concentrates on finding defences for the rook at 
K3. However, a human player would probably not have had much trouble discerning 
in the Refutation Description, two problems. The first would have to do with the 
status of the White rook at K3; the other with the status of the Black queen at Q4. 
These problems are seen to be independent, and thus the Refutaticr: Description can 
be seen as uncovering two problems; one of which was caused by the made move, 
and the other was not. This would then save time in getting to the crux of the 
matter, which is the defense of the rook on K3. However, this type of problem is 
not a serious inhibitor of the program's performance. 
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CHAf TER IV 

BOUNDING THE TREE SEARCH 

A.   bENERAL CONSIDERATIONS 

In Ciiapter I the need for a search that was controlled ty the requirements and 
values found at its nodes was established. This is in contradistinction to a search that 
vould be mainly controlled by a collection of preset parameters such as a maximum 
depth beyond which no probing (or only for special types of moves) is allowed. 
However, merely specifying the need for a flexible, no depth-limit search is not enough. 
An algorithm must be found that makes executing such a search a tractable problem. 
This chapter addresses this problem. 

Two general tecnniques are employed. The first is the use of any workable method 
to try to establish a given node as a terminal node. In our program this involves 
defining several reference levels some of which are global and some of which are ,ocal 
to a node. These reference levels are computed dynamically as functions of the chess 
position they refer to, and serve to provide criteria for when a certain position no 
longnr has the desired degree of goodness, or is far better than one could reasonably 
expect. Comparisons can be made between the reference levels at two nodes on the 
branch of the tree being currently investigated. Having both nominal and pessimistic 
evaluations of positions available also increases the types of comparisons that can be 
made. Individual moves are also subject a reference level test, which would thus 
dismiss poorly valued moves without further processing. 

The second technique, which has never been used in a chess program before, is to 
partition the problem of move selection at a node into a set of hierarchical 
sub-problems. The reasoning behind this is similar to that presented in Chapter II for 
partitioning chess into the hierarchical sub-problems of tactics, position play, and long 
term strategy. 

To explain the advantage of such a scheme consider the following. Let us assume 
that there are N legal moves at a node. Of this set, we are prepared to search K. If we 
are using a Greenblatt type of searching scheme [Greenblatt, et. al., (1967)], K will be 
determined by the current depth (e.g. a predetermined set of K's exist, and the 
magnitude of its elements decrease with depth; i.e. 9,9,6,6,3). In our scheme, K car- be 
considered to be the number of moves that could in any conceivable way influence the 
tactics of the position at a given node. Since this is a non-rumeric bound, we can never 
be sure how large K will be; it is a function of the position, expectation levels, etc. 
Hownve-, in our partitioning scheme, we assert that there are a maximum of P 
sub-problems to be solved at any node. Further, associated with e?ch sub-problem is a 
goal state, and these goal states can be strictly ordered. This mears that if an invoked 
goal state delivers a satisfactory answ.?r, then it is assumed to be the correct answer. 
There is a certain risk in this, but careful partitioning of moves into goal states 
minimizes this. 

The whole point of partitioning is the following. The K moves that we are prepared 
to search are partitioned in such a way that every move goes into the highest partition 
for which it qualifies. P, the number of possible sub-problems (partitions) can be as 
high as five.   This means that we need only deal with somewhat more than K/5 moves at 
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a time. Moves that could have something to recommend them, but not in the current 
goal state, would never be included in the search if the present goal state produced a 
satisfactory answer. The logic of manipulating goal states provides that, when it 
becomes clear that a certain goal state will no longer satisfy the problem requirements, 
goal state transition rules are invoked to select the next appropriate goal state. These 
transition rules utilize certain information, relating to why the last state failed to 
produce a satisfactory answer, in deciding on the next state. When transiting to the 
new goal state, only tnose proposed moves that also qualify for the new goal state are 
retained. It should be evident that such mass pruning of alternatives is a very powerful 
technique. For instance, if it is found that a defensive problem such as a threatened 
mate existed, it would be possible to ignore a very high percentage of all attacking 
moves, that would otherwise be searched because they had a high static rating. In 
practice, we find that the ultimate move selected at a node comes from the first goal 
state tried nearly 507. of the time. Furthermore, the ordering of proposed moves within 
a goal state makes it likely that a satisfactory move is found before one-half of the 
moves in that state are explored. As the problem is explored in depth, its exponential 
growth rate is then correspondingly smaller. 

B.   PROPERTIES OF A GOOD SEARCH ALGORITHM 

In devising a good search algorithm, one is mindful of avoiding, or at least 
minimizing, the exponential explosion that is the present stumbling block of all chess 
programs. However, an attempt to mitigate the effects of exponential growth must not 
leave important moves out of the analysis. Many programs, beginning with Bernstein 
[Bernstein, et. al., (1959)], have had search algorithms which limited the number of 
moves that could be searched at each depth. This resulted in being able to apply some 
control to the total amount of tree searching effort that the program engaged in. 
However, prespecifying the number of moves to be looked at has certain disadvantages. 
In a complex situation, it is possible that many moves have features to recommend them. 
However, the issue of over-riding importance could be one that is very difficult to 
detect (such as an impending mate). In such a case, a saving move such as moving the 
pawn in front of the king to create an escape square could be ommitted from tne 
analysis since so many statically superior moves were found to be looked at (many 
reasonable attacking moves which failed to solve this problem). For this reason, the 
search sometimes produced results that were considerably below the expectation level 
that existed at the start of the tree search. To combat such problems, Greenblatt would 
then reinitialize the search and allow all moves at the top depth to be investigated. 
This was later somewhat generalized by the Northwestern group to allow investigation 
of all moves at odd depth levels (for the machine's moves) when an unpleasant situation 
presented itself. However, we felt that this was still not general enough, since if an 
opponent's good move (at an even depth) was not looked at, this could also cause a 
misappraisal of the position. Therefore we wanted a uniform treatment of every node, 
which would allow the investigation of interesting moves as long as there were some 
that could have an impact on the appraisal of that node. This meant being sensitive to 
the problem conditions associated with the node, so that one could be reasonably sure 
of the importance of any move to be investigated, it also meant being sensitive enough 
to abandon nodes quickly when an abnormally good result was found. As long as the 
search process can be justified as being sensitive to the problems at a node, the whole 
algorithm can be justified. More importantly, in order to improve such an algorithm, it is 
only necessary to do a better job of specifying sensitivity. And this in turn should 
result in search trees with still smaller branching factors. 
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In order to support the above objectives it is necessary to have very definite 
nofons of what the expected value of a top node in a tree search Tandwh n 
abnormal depar ure from that value is. Then methods must be availabl or changing 
the expected value of the top node as unexpected events occur. 

spttino*A! r*' To 7^ SUCh aS the Greenb,a,» ^gram have handled this problem by 
noJr8 ThP . ^n ^^ ,0 P,US and mmUS 0ne Pawn fr0m ,he e*Pected value of the top 
node     Th.s has the advantage of restricting the initial search to "meaningful" branches 

a y move'The0:^^     ^ ^ ^"^ ^ —times a search returns withou 
TZ.Z7    1        V       IS kn0Wn 'S ,ha, SOme,hing 0utside ,he norma, range from the 
fhe  sidln "h "" ^ ^ 0ne 0i ,he OPPOnen,S-   N0 Clue as »0 ^ magnitude of 
Therefore th-rf.6 Z T' ^"J™ 0f ^ m0VeS " is rela,ed ,0 - available. The efore  there ,s no follow-up cho,ce except to redo the tree search with greater 
latitude  on  where Alpha  and Beta are set  and on the number of moves whfch a'e 

Ruined h ^ "^ de.P,h; H0WeVer' When a Priricipal —^ -d a value ^ returned by every search. ,t ,s possible to determine what caused the perturbation and 
have an m.tral estimate of what the real value of the top position is. 

To control the search, it is useful to have five reference levels. 

1) EXPCT defines the expected value of the top node. 

2) ALPHA and BETA define absolutely only the best that each side has achieved so far 
•t this node (and conversely the best that each side can hope to achieve)     Alpha 

vWä ue f0
UrSfh «r3"/'6 Va,Ue ,0r ,he Player 0n m0Ve * a 8iven node. and Beta the value tor the other player. 

^^USZA^ t"'3^ ,S a;ea50neble dePar,ure Tom EXPCT is handled by plus and 
f nTpyprT , I V. e a n0de (p0Sit,0n) w,ll be said »« D"7™ SIGNIFICANTLY 
from EXPCT if ,ts value is assessed to be different from EXPCT by at least the value 
of the constant MARG.   The current value of MARG is 687 of the value of a pawn. 

not 0^^  h",  T* "* ^ ar,,flC,a"y ^ a, ,he Star,• ^^ *™* ™" return not only a move but also a principal variation.   These can then serve as a starting point 
for^new search, should one be required.   The additional cost of this extra booKKeeping 

The tree control reference levels are shown in Figure 4.1.   Alpha and Beta define 
the .ange o   contention at a node.   This means that no value outside these limits can 
ever be backed up In this node.   EXPCT is the expected value of the top node    EXPCT 
plus and mmus MARG define the range of aspiration.  When a value outside this range i 
found  .   is considered to be sigmficantly d.fferent from the expected value.   This causes 
immediate backmg up. without trying to find a still -nore deviant value.   Thus this value 
is not driven to qu.escence as are the values within the range of aspiration.   There fore 
before  backing one must  be sure that  the va|ue ^^ 

that it can be achieved if it becomes the new EXPCT. 

A   property  of  ovor-ndmg  importance  is  that  the whole  search must  strive   for 
quiescence.   Th.s was shown m Chapter I.   It means that for any facet of a position that 

value'founH^6? ^ ,hlS ' ^  ^"^ n0 JUd8emen, sh0uld be ^ndered unless  the 
value found has been quiesced as well as possible or it is outside the range of values 
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that are reasonably derived from the original position. For tactical quiescence, a simple 
swap analysis is not sufficient, because certain attacking and defending moves can have 
a profound influence on the true value of the position. Thus it turns out that the whole 
search from the top of the tree must be a quiescence analysis. In fact it is correct to 
equate the notion of a tactical chess program with a tactical quiescence analyzer. This 
could mean that some branches could be terminated almost immediately while others 
may have to be pursued 20 or more ply in order to achieve a valid judgement of a 
terminal node (although in CAPS-II we are at present able to go only to a depth of 10 
ply). This is in sharp distinction to the current generation of programs where the 
search proceeds to some prearranged maximum depth, and then an inadequate 
quiescence method (swap analysis) is invoked. 

When qualifying moves for the tree search, we want to assure pertinence. This 
means that not only must the move have been proposed by a knowledgable and 
germaine agency, but the move must be considered to have a reasonable chance to 
improve on the status quo. Thus we want to generate a static evaluation of the move 
which will yield an optimistic outlook on its potential. 

If at any time a value is found at any node in the tre.? which is better for the side 
to move than EXPCT plus MARG, then this is assumed to be an unusually satisfactory 
result and no attempt to improve upon it will be made at that time. The reasoning 
behind this is that .his value is very likely to turn out to be unsubstantiable. In that 
case it will be dismissed more quickly if no further effort is spent in trying to find the 
locaf optimum. If, on the other hand, the value does survive back to the top of the uee, 
then resetting EXPCT to the new value forms a firm basis for conducting the next tree 
search. In that case the tree search is done over starting with the position defined by 
the end of the principal variation. When the tree search terminates with a value that is 
not significantly different from expectation, then if is assumed to be an optimal value. 
This process clearly converges eventually on a value which is optimum according to the 
above set of definitions. 

C.   THE ACTUAL TREE CONTROL ALGORITHM 

1.   Overview 

The basic tree search used by the program is a depth first, mini-maxed search 
with Alpha-Beta pruning. This has been supplemented by algorithms which make 
risk decisions involving terminating the search at the point of testing. Some of 
these algorithms are new and others are relatively standard. All mechanisms (with 
the exception of the CAUSALITY FACILITY which was treated fully in Chapter III) 
will be explained as they are encountered. During the tree search the basic 
emphasis will be on: 

1) Trying to find properties of the current node which allow termination of the 
search at that point, 

2) Making deductions about the current goal state which may lead to abandoning 
the state or the node, and 

3) Forward   pruning  of  proposed  moves  which  fail  to  have  certain  necessary 
properties, in order to limit the number of descendants of any parent node. 

■■—-   rtlimn'i   i   nriiMBiMilnftl       -'■■     - — -ilmmM trriimi -    ■ i 
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Our treatment of this subject will be to expmine first the decisions made when 
arriving at a node for the first time. Then we will discuss the allowable set of 
manipulations of goal states. Next, we look at how to decide whether or not to 
search a proposed move. After that we investigate decisions en- ountered when 
leaving a node that has not been cut off. Finally, we examine the decisions made 
when returning to the top of the tree. 

2.   Decisions Made When Arriving at a Node for the First Time 

When first arriving at a node, several tests ore made to see whether it is even 
necessary to process this node at all. 

a. Position Repetition 

A check is made against all earlier positions in the variation currently being 
investigated to determine whether this position has occurred earlier with the 
same side on move. This would mean a repetition of position, and a value of 
"draw" would be assigned to the node and backup would be ordered. Similarly, 
if at least one position repetition has occurred in the game and nothing has 
happened since then to prevent further repetitions, then a check is made of the 
position at the current node to see if it is in the hash coded file of all previous 
positions in the game. Conations that can prevent position repetions with 
previous situations in the game are: moving a pawn, making a capture, or 
castling (all irreversible actions). 

b. Significantly Ahead of EXPCT 

After the new node is statically evaluated, another check is performed. If 
the current material is significantly aheavi of EXPCT for the side whose turn it is 
to move, then if the pessimistic evaluation of this position is still significantly 
ahead of EXPCT then the pessimistic value is assigned this position and backup 
is ordered. The pessimistic value is the lesser of the current material plus 
opponent's best threat, and the nominal value of the position. 

One may question why the pessimistic value r.hould be assigned. The reason 
is that when the search at a node is terminated as described above, this 's 
almost invariably a non-quiescent value. If such a value should survive all the 
way to the top of the tree, then this will become the new EXPCT for the next 
tree search. So if the estimate at the terminated node exceeds that which can 
in reality be achieved from the top node position, the program could well be in 
a state on the next search in whi:h it cannot fulfill the new EXPCT. This would 
then result in EXPCT being reset to a lower value, and oscilation could result 
from this. Therefore, whenever an estimate is made for backing-up purposes, it 
should be conservative with respect to EXPCT. This means that if a value is 
significantly greater than EXPCT then only the pessimistic value of this position 
may be backed up. Likewise, if a value is significantly below EXPCT, the 
optimistic value of the position must be backed up. Clearly, if the new estimate 
does not remain significantly different from EXPCT then the conditions for node 
termination have not been met. The foregoing may be easier to visualize by 
referring to Figure 4.1. 

 „„in „tdtm " —-  —- —— - -»-■■■ ■ •■ —- 
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c.  Claim System 

After the test for signifi:antly ahead of EXPCT, the Alpha value (which 
represents the best that ihe side on move here has achieved thus far in this 

branch) at this node is examined to see if it can reasonably be re-evaluated to a 
value closer to the Beta value for this node. This is the CLAIM SYSTEM The 

logic behind the CLAIM SYSTEM is as follows: Alpha and Beta define a range of 

contention that is being investigated in the current branch. Any value outside 

this range cannot be returned up Ihe tree, since it would represent a logical 

mistake by one side or the other to get into a variation with such a value when 
a better variation can be forced in some other part of the tree. However, if the 
pessimistic evaluation of this position is better for the side on move than the 

local Alpha value, then some gam has clearly already been achieved. Thus it 

would be eminently illogical to allow the range of contention to remain at its 

original settings when if h^s been detected that one side has achieved an 

improvement over these settings (although this has not been confirmed by a 
search). Narrowing the range of contention in this manner allows more 

Alpha-Beta prunes to occur once the search begins to back up. The only risk in 

this procedure is that the pessimistic estimate on which the re-evaluation is 
based may be inaccurate. There is some risk to this, as there is too in making a 

forward prune. However, the opportunity to make additional prunes makes this 
risk worthwhile, and all evaluation functions are subject to such problems and 
could cause similar errors. 

Consider a situation where the range of contention at a node is currently 

EXPCT plus and minus the value of a rook. The current position is materially 
equa, to EXPCT and the only threat by the side not or, move is directed against 

a pawn. Clearly, ir this situation the side on move has already achieved a result 

which is better than the EXPCT minus the value of a rook that he was currently 

being given credit for. It would then be illogical to consider returning a value 

to this node which is lower that EXPCT minus the value of a pawn. If later in 

this V3riation, the side now on move wure to unsoundly sacrifice a knight, this 

result would be recognized as outside the limits of reality, once the backmg-up 

process began. This wuulcl result in an Alpha-Beta prune, meaning that the loss 

of the knight can not be forced. This is a correct action if the previous 

evaluation causing the CLAIM SYSTEM action was correct. This paradigm thus 
allows early prunes of branches containing faulty combinations. 

There are of course serious problems in trying to determine statically what 
the magnitude of any threat really is. However, that is not a problem of tree 

searching theory, but rather a problem of improving evaluation functions. The 
expediency, of avoiding such dangerous decisions by doing more tree searching, 

is precisely why most of today's programs cannot explore enough of the search 
space that it is necessary to survey in order for significant improvements in 

playing strength to occur. Suffice it lo say that the present program has 

enough of a grasp of threats (somewhat greater than that of contemporary 

programs) as delineated in Chapter HI, so as not lo make too many mistakes 

here. As evaluation improves, so will Ihe effective, ess of this mechanism. In 

the meantime it both allows effective Alpha-Beta pruning of variations involving 

wild sacrifices, and establishes a minimimum value for the current node; a value 
that the program is only allowed to improve on as Ihe search progresses. 

 - —  —-■ '■—— ^- 
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3.   Manipulation of Goal States 

Figure fl.2 shows the partitioning of the problem space. At the top, chess is 
divided into STRATEGY and TACTICS. TACTICS can be invoked at any node and 
always gets preference if it finds a solution that is better than EXPCT. Otherwise, 
STRATEGY can be invoked, but only at depth one in the present program. The 
purpose of STRATEGY is to bt least supply a move if TACTICS fails to propose one. 
A higher aim is to play the most -strategical" move in situations where no clear 
tactic is required. In later versions, improvements in this module can make 
STRATEGY a method of proposing moves that meet long-range goals. The TRACING 
state can be invoked only at the start of ? tree search and is responsible only for 
bringing the search to the end of the current principal variation. Any other statr 
can follow it. 

TACTICS is in turn partitioned into six goal states through which the program 
can pass. These are: PREVENTIVE DEFENCE (defending unexpected gams), 
AGGRESSIVE, NOMINAL DEFENCE (answering detected but unproven threats), 
DYNAMIC DEFENCE (answering a specific refutation detected during data backup), 
and KING IN CHECK. No claim is made that the partitioning in this program is 
optimum. It attempts to follow that employed by good human players, and it doos 
appear to succeed in sub-dividing the legal move space into manageable sub-spaces. 

Informally, the logical inter-relation between the goal states is as follows: 

KING IN CHECK is invoked only when the king is in check. 

In case the king if not in check, it is determined if the side on move is 
significantly ahead of iXPCT in material. If so, and if the opponent has any 
statically detected thre.its, the PREVENTIVE DEFENCE state is entered. Otherwise, 
the AGGRESSIVE state is invoked. The above logic determines the initial goal state 
at a node. 

The NOMINAL DEFENCE state is for positions whose potential is considered 
worthwhile, but the opponent has a staticilly detected threat against material which 
the AGGRESIVE state was not able to handle. 

The DYNAMIC DEFENCE state is the last court of appeal. It can be invoked from 
any move generating state in response to a Refutation Description backed up by the 
CAUSALITY FACILITY, if the problem was not caused by the last move. 

a   Goa! State Transitions 

The way the program progresses through the goal states, once having 
reached a given node, is shown in Figure 4.3. The goal state at each active 
node in the tree is remembered in the varable GN This means that goal states 
do not change because of departure and rei.'rn to a node, but only because of 
overt decisions made in the course of problem solving at the node. Similarly, 
the move stack at each node is available for inspection until the node is finally 
quitted. Thus, any move examined in one goal state will not be tried again if 
suggested by another. 

. _     --..■:   ^j^ ■■^J..m,..tH ■..-.-^^,l.^-„,.^l 
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The "Return to Node" block at the top of Figure 4.3 shows the decision 
structure that pertains when returning to a node in most goal states. It is 
invoked as a sub-routine by the main transition diagram in the lower half of 
Figure 4.3. REL1 is the relation between the backed-up value and EXPCT that 
when true allows exiting the node immediately. Otherwise, the CAUSALITY 
FACILITY is invoked. The CAUSALITY FACILITY compares the description of 
what is best play below this node (the Refutation Description), with tho 
description of the move made at the node. Based on this comparison, it makes 
the dedsion as to whether the consequences could have been c'jsed by the 
present move. In either case, a list of counter-causal moves is generated. 
These moves attempt to do something about the Refutation Description that has 
been backed up.   The exact methods are described in Chapter III. 

REL2 specifies a relationship between the backed-up value and EXPCT. This 
relates to whether the backed-up value is satisfactory with respect to the aims 
of the goal state that the node is currently in. If an unsatisfactory value has 
been backed up to this node, and the causal analysis reveals that this could not 
have been caused by the last move tried at this node, it means that a problem 
has been inherited from higher in the tree. In that case, a transition to a new 
goal state occurs. If, on the other hand, the result is not deemed to have been 
caused by the Inst move or if REL2 does not obtain, then the program merely 
does a reordering of the untried moves on the move stack, moving those 
mentioned most often in the counter-causal list to the top of the untried stack. 
This will result in their being tried earlier, but does not change their value. 

Following now the flow chart in the lower part of Figure 4.3, we see that 
the first determination made is whether the king is ;n check. If so we &o to the 
KING IN CHECK state in which all legal moves are generated. These are tested 
in order of decreasing evaluation. If a value is ever backed v.p to this node 
which is significantly greater than LXPCT, the node is exited permanently. If the 
CAUSALITY FACILITY detects a consequence which could not have been caused 
by the last move tried, the state is changed to DYNAMIC DEFENCE, but the move 
stack remains the same. As: long as there is no such occurrence, causal 
reordering of the untried movet takes place. 

If the king is not in check and if the side on move is significantly ahead of 
EXPCT in material then if the pessimistic evaluation of this node is also 
significantly greater than EXPCT the c( (ditions for backing up have been met. 
If the latter condition has not been fulfitisd, then it means that the opponer* still 
has some important threats (else the pessimistic rv/aluation would be better). In 
this case, the PREVENTIVE DEFENCE state is entered. Here all moves that move 
a threatened piece, capture an attacker, block an attacking line, or defend a 
threatened piece are generated. If this set of moves, when submitted to tref» 
searching fails to maintain the significantly greater than EXPCT advantage or if 
any dynamic problem not caused by the tested move is detected then the 
AGGRESSIVE state is entered. This means that the attempt at consolidating the 
gains has failed, and the program resorts to the more usual method of dealing 
with a node. 

It is possible to get to the AGGRESSIVE state as above, or if the material 
significantly ahead o' EXPCT test fails initially.   This means that we know of no 

.. .-.-.■^-..—. ..■^.■.^...,..,.  ,-. 
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FIGURE U.3 - Goal State Transition Diagram 
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reasons at the moment why the side on move should not try to make a 
successful attacking move. As '•.hown in Figure 4.2, the AGGRESSIVE state Is 
really a set of move generating states. The details of each move generator are 
explained in Chapter II. The states are arranged so as to generate moves in 
order of forcefulness. Upon evaluation a likelihood of success measure exists. 
A sorting routine then arranges the moves according to likelihood of success 
within forcefulness. This results in generating all moves that have aggressive 
potential (with the exception of moves that only involve an attack on a single 
non-low-mobility man, this feature not having been implemented as yet). 

Aft.'r an AGGR1SSIVE move has been selected for tree searching, and the 
search has return-jd to this node, several things can happen. If the program has 
found a move that is significantly better than EXPCT, it will exit this node 
pe-manently. If the backed-up value is not significantly better than EXPCT, then 
the CAUSALITY FACILITY is invoked to do causal analysis and reordering of 
untried moves. If the backed-up value is less than EXPCT, and if the 
consequences could not have been caused by the last move tried, then the 
DYNAMIC DEFENCE state is entered. Otherwise, the program selects the next 
move from the move stack until it exhausts the proposed moves in the 
AGGRESSIVE state. In that ca?e, if the nominal evaluation of the position is not 
less than EXPCT, a check is made to see if this node is at a depth that makes it 
eligible for STRATEGY. If so, this state is entered. Otherwise, ths node is 
exitrd (i.e. BACKUP). If no successful AGGRESSIVE move w?.. found tnen if the 
nominal evaluation of the position were less than EXPCT and the opt'mistic 
evaluation greater or equal to EXPCT, then it means that the opponent must 
have a threat. Since the oosition has the potential to produce a satisfactory 
value, the NOMINAL DEFENCE state is entered. 

The NOMINAL DEFENCE state is charged with producing defences against 
statically recognized threats. It is only invoked when no AGGRESSIVü moves 
have succeeded and the position is considered worthwhile. If in any prior 
processing of this node, a backed-up threat had been recognized, then this state 
would be by-passed in favor of DYNAMIC DEFENCE. This is very logical, since 
NOMINAL DEFENCE deals only with statically recognized threats, and one can 
never be sure that such a "threat" is really a threat. The move generators of 
the NOMINAL DEFENCE state ^re described in Chapter II. They produce moves 
that defend threatened points, move away the pieces on these squares, capture 
their attackers and block attacking lines. The NOMINAL DEFENCE state is exited 
as soon as a move which produces a backed-up value greater or equal to EXPCT 
is found. If in the process of testing moves, the CAUSALITY FACILITY finds a 
threat that could not have been caused by ^he last move tested at this node, 
then the DYNAMIC DEFENCE state is entered. 

The DYNAMIC DEFENCE state is invoked whenever a deep problem has been 
detected during back up, which was clearly not made possible by the last move 
tried. The counter-causal moves which are deemed to be the only ones that can 
do something about this description, have already been generated by the 
CAUSALITY FACILITY. Now all moves on the stack which are not mentioned in 
the counter-caus?1 list, or which do not have a counter punch at least equal and 
opposite to the caused value (with respect to EXPCT) are delated. The 
remaining   counter-causal   moves   are   pushed   onto   the   stack   in   order   of 
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evaluation. These moves are now tested until a value is backed up which is 
greater or e^ual to EXPCT. Then if the material plus the best threat of the side 
to move are not larger than the backed-up value, the node is exited. Otherwise, 
the search continues 'jntil all proposed moves have been tried. 

In the present program, the STRATEGY state performs the function of 
parading all legal moves for testing. It does this only at the top node of the 
tree (in the current program), and only when the AGGRESSIVE state has failed 
to produce anything worthwhile. The move generator of the STRATEGY state 
emphasizes ihe centralizing and mobilizing effect of each move. It is, in fact, the 
TECH [Gillogly, (1972)] move generator which is availab.e to this program as a 
sub-routine. If a value is ever backed up which is significantly greater than 
EXPCT, the node is exited. Otherwise, when the move that is now in the 
principal variation is proposed, if the current Alpha at the node is greater or 
equal to EXPCT, the node is exited. Otherwise, the search continues as long as 
there are moves to try. 

b.   Inter-relationship of Goal States at Different Nodes 

During the development of the program, it became apparent that there exist 
relations which limit the type of goal state that can be a successor to a 
particular goal state earlier in the branch being currently investigated. One 
example of such a relationship is the notion of "lo^s of initiative". Intuitively, 
this could be thought of as a situation where a move which was proposed by 
the AGGRESSIVE state at a particular node leads to a defensive state at a later 
node without anything else worthwhile being accomplis(,°d in the interim. This 
should thtn constitute a reason for node :ermination. We tried two different 
implementations of this particular idea, but neither one worked satisfactorily. 
However, we feel that there is On'y a question of the correct formulation 
involved here; the basic idea appears very workable, in fact, necessary for tree 
searching economy. 

There also exists a relation between STRATEGY and TACTICS. This is that 
TACTICS must be available to discriminate between feasible strategical moves 
and non-feasible ones. The reverse does not apply. The only place that we 
know of, that strategy serves in evaluating tactical ideas, is at the end of a 
tactical variation, in evaluating its strategical impact. But this can usually be 
done by static analysis withoui resorting to tree searching. The gist of this 
relation is captured very well in this program. 

4.   Decisions MaHe When Examining a Proposed Move 

Every proposed move is statically evaluated before being put on the move 
stack. The details of this evaluation were discussed in detail in Chapter II. When it 
comes time to try a move at a node, the top move on the move stack is selected for 
examination. The move is guaranteed to be relevant to the current goal state as 
otherwise it would have been deleted during goal state change. The value of the 
move is then tested to see if it is greater than the Alpha value at the node. If so, 
the move is tried and the search continues. Otherwise, the move is deleted and the 
next move on the stack is examined. This mechanism is known as forward pruning 
[Slagle, (1971)] in the literature.    In this program the number of moves that are 
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forward pruned during a tree search regularly approximates the total number of 
nodes in the final tree. This makes it the most powerful overt device used in the 
tree search. It is difficult to compare its power with the covert action of 
Alpha-Beta, which prunes not single alternatives but all remaining alternatives at a 
node. Thus the power of a single Alpha-Beta prune could be several times that of a 
forward prune, dependent largely on the expected branching factor of the program. 

Another device for controlling the pertinence of moves was tried during this 
research. However, it failed to perform the desired services and was ultimately 
abandonned. This device is variously called the search-and-scan strategy [Newell 
and Simon, (1972)] or dynamic ordering [Siagle, (1971)]. It has previously been 
implemented in the problem solving MATER program [Baylor and Simon, (1966)] and 
in the chess playing program COKO-III [Kozdrowicki and Cooper, (1973)]. This 
strategy has also been subjected to theoretical investigations by Kozdrowicki 
[Kozdrowicki, (1968)]. In this program it was implemented as follows: Before a 
move is selected for further searching at depth N, the value of the most powerful 
move in the current stack is found. Since moves are evaluated optimistically, this 
presumably rep esents the maximum effect achievable at this node. Now a search is 
conducted backward up the current variation, stopping at depths that are an even 
numbered distance away from the depth N. At each such depth, M, the static value 
of the last move tried is compared with the maximum effect at depth N. The 
algorithm now looks for situations where these two values are farther apart than a 
constant called the RELUCTANCE. In such a case, an attempt is made to determine 
whether there exists an as yet untried move at depth M, of somewhat greater 
power (called the THRESHOLD), than the static evaluation of the current alternative 
at depth M. If so, the move being currently tried at depth M is given a new static 
cvaluatic i equal to its maximum effect at depth N and is put into a new place on the 
nove stack according to this value. It is also marked as having been previously 
searched. The most highly evaluated alternative on the move stack at depth M is 
now chosen for searching, with the search reverting to depth M. The purpose of 
the device is thus to arrange that the search not be side-tracked in a sub-branch 
which appears less promising than one somewhere elre. 

This algorithm was found to do very well in situations where some clear 
achievement was possible, either a gain or preventing a loss. However, in the 
run-of-the-mill situation it produced a tremendou«; amour t of useless retraction of 
moves, and multiplied the usual search effort by a factor of ten or more. It is 
possible that the RELUCTANCE, which was set equal to one pawn, was set too low. 
It is also possible that the THRESHOLD, which was set equal to one pawn, was set 
too low. Another possibility is that the loss of causal information associated with 
the retraction of the search to depth M was responsible for a general lack of 
understanding of what was n^ppening. However, the most likely cause of this 
failure was that reverting to an earlier level in the search prevents the usi'al 
backing up during which the Alpha-Beta algorithm has an opportunity to terminate 
nodes which are superceded. Since Alpha-Beta plays a rather important role in 
trimming the search tree (see Table 1V-1) the loss of this capability probably 
accounts for the results found. Quite possibly, some additional tests are required to 
detect board positions in which nothing unusual appears achievable and in such 
cases scan search should not be used. We did notice that the low RELUCTANCE and 
THRESHOLD values made little difference, whether a mate was to be found or merely 
a small amount of material was at stake. Where the algorithm failed V/as in 
situations where no change in material could be effected. 
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Another   device   was   invented   during   this   project,   but   has   not   yet   tn'en 
implemented.   We call it thematic testing.   The idea is to prevent moves that have 
httle to do with one another from being concatenated in a search, even though they 
may  hdividually  appear  to be worthwhile.    If several  interesting  but  unrelated 
moves exist, the cost of searching them in every possible order  is preat.    The 
savings   that   can   be   realized   by  only   looking   at   "meaningful"  sequences   can 
therefor«; be significant.    A possible implementation of this idea is the following: 
During evaluation, moves are partitioned into two classes: those that clearly "work" 
such   as   favorable  captures,   "H  those  that  are  not   "sure  to  work"  but   have 
redeeming features.   Each movc that falls into the latter class is marked to indicate 
the sacrificial themes which constitute the redeeming features.    These themes as 
explained in Chapter III are decoying, overloading, and unblocking, etc.   Associated 
with each theme is a set of squares which are pertinent to the execution of the 
theme.   Whenever a move has passed the forward prune test and is the candidate 
for   sprouting,   the   following   operations   are   performed:   If   the   move   is   not   a 
redeemed move (it clearly works) then it is passed.   If some theme marks have been 
set earlier m this variation for the side on move, then if this move is a redeemed 
move, the following tests are done: If this move was not also on the mo^e stack at 
some earlier depth in the current variation {if was not an interesting move before), 
then it is passed.   If it did appear, but is now given a higher static evaluation than it 
was earlier, it is also passed.    Otherwise, at least one of the theme marks on the 
proposed move must coincide with one of the set theme marks from earlier in the 
variation.   If this condition is not satisfied, then the move is deemed to be irrelevant 
to  the  continuation of  any enterprising action that has gone before, and is  not 
searched.    In all cases, themes and squares associated with redeeming moves a.e 
carried forward for use of future nodes. 

This algorithm tries to define "continuation" of a sacrificial theme. In this it 
asserts that several decoy moves may be strung together, but not a decoy followed 
by an overload sacrifice. This is generally correct, but may at times impose a 
stricture that would cause missing a good continuation. Also it is clear that all 
'clearly workable" moves should not be searched in any arbitrary order. An 

example of this is what could happen in a king and queen versus king endgame. 
Here there would be near infinite sequences of workable checks by the queen 
However, nothing would be accomplished unless the losing king was already 
considerably restricted. This type of problem can be solved by recognizing certain 
properties of the parent position. To recognize these properties would involve 
detection and analysis of configurations of chunks [Chase and Simon, {1973a)], and 
resultant classification of positions. Many necessary types of chunks would'deal 
with relationships between pieces, that are different from bearing relations (i.e. 
King safety). Further sophistication in the development of themes would thus be 
dependent on having better recognition facilities. 

5.   Decisions Made When Leaving a Node That Has Not Been Cut Off 

When leaving a node (BACKUP in Figure 4.3), after having exhausted all 
proposed moves in all invoked states, one finri check is made. If all -roposed 
moves had to be examined, then there is a great likelihood that no satisfactory move 
was found and that the vah'e of this node is below EXPCT. On exit from a nod? a 
check is therefore made tu see if the value o'i the node is significantly below EXPCT. 
If   it   is,  then  if  the  current  value of  material  is  better  than  this,  but   is  still 
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significantly below EXPCT, this value is assigned the node. This is done to get the 
most conservative estimate of the value of a position for backing up purposes. The 
set of reasons for doing this was presented above at the beginning of section C. 

6.   Decisions Made When Keturning to the Top of the Tree 

When the tree search is exited at the top node, there are still some decisions to 
be made These decisions have to do with whether the result reported by the 
search is considered satisfactory or whether it is deemed necessary to further 
refine the results of the search. Refinement may be necessary, since the search is 
terminated at any node at which a result that is significantly different from EXPCT is 
encountered. Such a termination only guarantees a result significantly different 
from EXPCT, but does not gu-rantee that its magnitude could not be greater. Thus 
any result, that is backed up to the very fop, may not be optimum. 

Therefore when a result that is significantly different from EXPCT is returned, it 
is necrssary to redo the search to see if a value that is an even greater distance 
from EXPCT can be found. Due to the mechanics of the search, we can be sure that 
any value that is returned to tht top of the tree is conservative. Therefore, if a 
more optimum value exists, it must be still more different from EXPCT than the 
returned value and in the same algebraic direction. Before starting out on redoing 
the search, the value of EXPCT is reset to the returned value of the last search. 
Alpha and Beta at the top of the tree are reset to embrace the range from the new 
EXPCT to infinity in the correct algebraic direction. The principal variation 
associated with the search is also saved, and the new search begins at the tail end 
of this variation. Since taking conservative estimates at all terminated nodes 
assures that any value returned by the next tree search must lie between the new 
ALPHA and BETA, we can be sure that this procedure cannot cycle and must 
ultimately converge on a value. In practice the greatest number of such 
progressive deepenings of the search that we have noticed is four. We use the 
term progressive deepening for this procedure, as this seems to correspond well to 
the phenomenon with this name that psychologists have observed in human chess 
players [De Groot (1965)]. However the deepening takes place only with respect to 
the value of the position, not with respect to an understanding of it. 

This method of organizing the search has been found to be clearly superior to 
the usual alternative of finding the best move at every node. Finding an optimum at 
every node even after a value significantly different from EXPCT has been found, 
means much of this work inevitably is wasted, as this whole branch has a great 
likelihood of being cut off. Since there are many false leads that the program is 
continually following, values significant!, different from EXPCT occur frequently. 
However, not many of them survive to the top of the tree. Thus a single value 
significantly different from EXPCT assumes the character of an anomaly, and results 
in the other side using his resources to reiute it. This will actually occur an 
overwhelming percentage of the time. However, in the rase where the anoma'v 
actually survives, the cost is doing the search over again. This cost is clearly a 
linear function of the time for one tree search, and is thus much cheaper than the 
cost of following unlikely consequences to a concluron, which is an exponential 
function. 
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Whenever a value is returned lo the top of the tree which is within the bounds 
of EXPCT plus or minus MARC, u is known to be optimum with respect to the 
capability of the program. In that case, EXPCT is set to the value returned by the 
search and the principal variation is soved before making the move. If the 
opponent's next move corresponds to the one expected by the principal variation, 
the next search begins at the fail of the retained principal variation. 

D.   DISCUSSION AND RESULTS 

The work on an effective method of heuristic tree searching is probably the most 
important general contribution of this thesis. One need only consider the facts 
presented in Chapter I, to see how central to the whole business of getting a computer 
to play good chess is the problem of keeping the growth of the tree under control. As 
reference points for the results here obtained, the following should be kept in mind: The 
rate of exponential growth of a search tree is proportional to the average number of 
moves searched at a node. The average chess position contains about 35 legal moves 
[Slater, (1950)]. The average middle game position contains slightly more moves than 
this, and most of the positions tested with this program were of this type. Consider a 
position with 35 legal moves, where all moves are to be searched and the order of 
searching is random. If in this situation every potential terminal node were to have a 
different value, then the expected branching factor under an Alpha-Beta search is 
approximately 15 (using formulas in [Fuller, et. al., (1973]). A program such as TECH 
[Gillogly, (1972)], which searches all legal moves but has many branch endings with 
equal terminal value, and also uses some ordering in the searching of moves, has a 
branching factor of about 8 to 10. The branching factor for programs such as the 
Northwestern program or the Greenblatt'program which search only a select sub-set of 
all legal moves is about 5 to 6. Human beings are known to sear.n trees of arbitrary 
depth and produce no more than 200 nodes in the process [Newell and Simon, (1973)]. 
Since human searching thus converges instead of diverging, its branching factor must be 
less than 1.0, although some maximum effort rules almost certainly exist also. 

The data reported in this chapter was collected during runs of CAPS-1I on two basic 
tasks: sequences of problems from "Win at Chess" [Reinfeld, (1958)] (the basic 
calibrating task for the program), and game fragments. The book "Win at Chess" is a 
collection of 300 chess combinations from Master practice. It is considered a basic work 
on chess tactics and is frequently referenced as such. It can be classified as a 
moderately advanced instrument for teaching chess tactics to human beings. We will 
specify the nature of the task wherever any data are presented. The following data 
were collected on sequences of problems from "Win at Chess". Figure 4.4 shows the 
characteristic distribution of number of successors to a node, across all nod^s in the 
treo. No data was of course ir.:luded for nodes at maximum depth, which are not 
eligible for sprouting. The distribution has the excellent feature that by far the most 
probable number of successors is one. However the expected number of successors 
across the distribution is 2.0. This is considerably better than those of other programs, 
but still a good way from what would be necessary for natural convergence of the 
search. The problem is that the weighted effect of the number of zero-successors 
(which is the next most prevalent category by far) is still not enough to outweigh the 
right hand side of the curve which although it harbors infrequent occurences, still has 
enough weight to prevent convergence. 
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E?efore analyzing the mochan.sms in the program that produce the spectrum shown 
another important phenomenon having to do with the structure of trees generated by 
this program will be examined. It turns out that the expected number of successors -- 
2.0. found above does not predict actual tree size correctly. One would normally do this 
by assuming that the number of bottom nodes is equal to the branching factor raised to 
the maximum depth" power. Here the formula predicts 102/1 bottom nodes for our 
depth 10 searches. Since the average number of bottom nodes was between 50 and 
60, this prediction is too high by a factor of 20. Further data collected shows that the 
assumption that there is an equal likelihood of a node sprouting, regardless of where it 
is in the tree, is incorrect. In fact, there is a strong dependence between node^ at 
successive depths. Thus a negative correlation exists between the expected v?;ue of 
the number of successors at a node and the number of nodes its parent had (soe also 
section E below). The expected number of successor-successors that a node has can be 
seen in Figure 4.5 to be 2.3. If the branching factor for two ply of search is 2.3, then it 
must be 1.5 for a single ply. This turns out to predict actual tree sizes on this task 
very well. This low growth rate, compared to the branching factor of 5 to 6 for more 
conventional programs, makes it possible for this program to go quite a bit deeper in its 
search than these other programs. 

Data taken on game fragments had all the above characteristics, except that the 
branching factors were larger. Thus the expected number of successors at a node was 
2.5, and the expected number of successor-successors was 4.8. This comes out to a 
branching factor of about 2.2. Apparently in positions which have a sharp tactical 
character, such ,3 the ones in "Win at Chess", the program does less searching before 
coming to a conclusion (right or wrong) than it does in positions which are less sharp 
and represent the more usual state of affairs. In all the data we collected, the highest 
branching factor ever encountered was in a game fragment; it was about 3.0. 

Let us now consider the spectrum of likely number of successors of non-bottom 
nodes as shown in Figure 4.4. That over 50^ of all these nodes have but one successor 
indicates that most problems the program deals with are well defined in terms of its 
ability to handle them. This does not mean that all problems the program investigates 
are worthwhile ones, in terms of some high human criterion, but merely that' the 
problems it proposes to investigate are usually well formed enough so that a solution 
can be reached based on the first alternative tried. 

The grossest exceptions to this occur at the right-hand tail of the curve Here the 
program clearly does not understand what the problem is and thrashes about exhausting 
suggested alternatives until it either finds an acceptable one or exhausts the supply of 
suggested moves. The state in which this most often occurs is the DYNAMIC DEFENCE 
state. Here there are frequently many moves suggested to counter a particular 
problem. While the set of suggested moves is almost always adequate to the need, the 
methods of assigning heuristic values to moves proposed in response to these 
descriptions is still not very good. As a result, the program sometimes has to go 
through a large set of moves before finding an adequate one. However, it is felt that 
this problem is not of a permanent nature and only requires the application of some 
effort to improve the assignment of heuristic values, together with the possibility of 
further monitoring of the progress of the defence which could lead to the application of 
additional causal information. 
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The real reason for the success of the tree searching paradigm lies in the ability to 
stop the search at any arbitrary node, based on the semantics of the node in relation to 
the problem environment. These results are presented in Table IV-1. The data were 
collected over 37 randomly selected problems from "Win at Chess" and 24 consecutive 
positions in a game fragment played by CAPS-II. The figures given are as a percentage 
of the total number of nodes in the trees. 

TABLE IV-1 - Performance of Tree Control Devices 

Effect Problem Posi t ions 

Fornard Prunes of  Proposed Moves 101% 
Nodes  at  flaxdepth 23% 
Zero-Successor  Nodes  not   at Maxdepth    1G% 
Node's  Terminated by Alpha-Beta 37% 
Found  Result  Sicj.   Gtr.   EXPCT 2% 
Found  a  Satisfactory Defence 1% 
Found  no Defensive hoves 0.3% 
Position  not  Worth Defending G% 

Game Posi t ions 

98% 
25% 
1G% 
33% 

1% 
1% 
0.4% 
3% 

Let us try to interpret these results. The total number of forward prunes of proposed 
moves is approximately equal to the total number of moves searched. This points out 
several things. For one, the device is indispensable, since otherwise the total amount of 
work that the program would have to do would increase tremendously. This is due to 
the fact that not only would twice as many nodes have to be examined, but in all 
likelihood most of these would have successors which in turn would have sucessors until 
the reason for the static rejection of the move is discovered dynamically. Secondly, the 
reason that the forward prune device gets much work to do is that many inadequate 
moves are proposed. This is an inevitable consequence of the proposing mechanisms, 
which attempt to understand the underlying structure of the position and propose any 
move which affects this structure in a desired way. Clearly, many of the moves 
proposed will affect the structure, but cause some patently obvious other problem in 
the process. These moves could be weeded out right after evaluation takes place; 
however, we prefer to keep them on the move stack for examination in other 
eventualities. 

The above data show that about 247 of ail nodes in the tree are bottom nodes. 
This compares with 162 of zero-successor nodes at higher levels in the tree; these 
beinf, due to some of the above specified mechanisms. Thus 40^ of all zero-successor 
nodes in the tree are self-terminating (not a function of maximum depth), if one adjusts 
this self-terminating 167. of all nodes to consider as a base only non-bottom nodes, then 
217 of all nodes eligible for sf routing are found not to sprout. This corresponds well 
with the 232 of Figure 4.4-, that data coming from a different run of the program. The 
detailed reasons for the occurrence of zero-successor nodes are analyzed below. 

From Table IV-1, one can see the important role of the Alpha-Beta pruning 
algorithm. The number of such prunes is equal to about 357 of the total of all nodes 
searched. The Alpha-Beta pruning algorithm is a well studied device [Slagle and Dixon, 
(1969)]. It is known that it cannot generate logical errors in the search, and that its 
maximum efficiency is proportional to the square root of the number of bottom nodes 
that   would  be generated under minimax.    In this program its efficiency is  hard to 
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estimate since the branches that are being cut off are of varying lengths. This is due to 
the fact that thei cut-offs occur at varying depths and many backed-up values do not 
originate at the maximum depth (due to non-bottom zero-successor nodes). However, 
Alpha-Beta clearly contributes significantly. This is shown by the data, and also by the 
fact that the Search-and-Scan algorithm (which essentially disabled Alpha-Beta) 
produced so much larger trees in many cases. 

The percentage of zero-successor nodes in a tree search is about 217, of all 
non-botto-n nodes. There are four tests that can terminate a non-bottom node without 
a successor. These are: 1) Alpha and Beta equal or crossed, 2) Ahead of EXPCT in 
material and opponent has no compensating counter-threat, 3) No acceptable moves 
suggested by any state, and 4) Position repetition noted. 

TABLF I\/-2 - Causes of Zero-Successor Nodes 

Effect Problem Posi tions Game Posi t ions 

Alpha  and Beta equal   or crossed 
Significantly Ahead of EXPCT 
No Satisfactory Hoves Proposed 
Posi t ion Repeti tion 

88% 85% 
3% 1% 

36% 13% 
1% 1% 

Table 1V-2 shows the relative frequency of occurence of each of these cases. The 
most obvious thing that stands out from these data, is the overwhelming role played by 
the Alpha and Beta equal pruning rule. T'te fact that it accounts for about three-fourth 
of the zero-successor nodes must in large measure account for the slow growth rate of 
trees in this paradigm. The Alpha and Beta equal rule is in turn made possible by the 
Claim System. The only way, that Alpha and Beta could be (become) equal while 
descending in the tree, is for an agency to be able to narrow the range between them 
during this time. Thus the Claim System examines the Alpha at a new node, in an 
attempt to limit it to the maximum effect obtainable by the opponent in the position. 

The next most powerful effect, which accounts for almost all the rest of the action, 
is the fact that in about one-fifth of all positions that are terminated without search, no 
satisfactory move was proposed. This effect appears to be due to a combination of 
mechanisms. First of all there is close control on the goal states which are allowed to 
propose moves. Second, the evaluation of moves (while far from excellent) is adequate 
enough so that moves that are proposed to solve some problem but fail to solve a more 
global requirement, are evaluated correspondingly. Thirdly, the forward prune device, 
which refuses to search any move that does not evaluate to be equal or better than the 
curront Alpha value, causes rejection of moves so that when no adequate move has 
been proposed, none will be searched. 

It is interesting to note that the two devices that are most commonly written about 
and implemented in the cause of node termination — significantly ahead of EXPCT, and 
position repetition — account for only about 27. of the action between them. Of these, 
the significantly ahead of EXPCT test is usually implemented by setting Alpha and Beta 
at the top of the tree to EXPCT plus and minus MARG and then finding Alpha-Beta 
prunes which show that a position ouside these limits has been found. The fact that 
two orders of magnitude more prunes are possible in our program shows that 
sensitivity to other parameters of a position can have a big pay-off.    It  should be 
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pointed out that since material balance is the only term in the terminal evaluation 
function, the likelihood of Alpha and Beta becoming equal is considerably greater than if 
the terminal evaluation also included small values for other terms such as mobility, etc. 
However, far from being a criticism of the present approach, this just points out the 
importance of not mixing tactical and positional values in the search, and rather treating 
them in hierarchical fashion. 

Since the data were collected across a large number of positions involving about 
50,000 nodes in total, we feel some significance can be attached to the difference in 
performance of the first three tests on the two tasks. It is quite reasonable to assume 
that the average game position was more bland in character than the tactically sharp 
positions of "Win at Chess". The likelihood of not being able to propose any move 
which met a node's requirements appears to be higher in sharp positions, and this is 
borne out by the data. Such positions are also more likely to produce a node in which 
one side is significantly ahead of EXPCT in material, and since the board state is 
turbulent, less likely to produce a situation in which Alpha and Beta can be squeezed 
together by the Claim System. This appears to be a reasrnable interpretation of the 
data in Table 1V-2. 

Once searching from a node has begun it is possible to return to that node with new 
information that makes if unneccessary to search further at that node. One such item of 
information is a backed-up value leading to an Alpha-Beta prune. However, there are 
other mechanisms in the program which can also terminate a node, but depend on the 
value of EXPCT and on the current goal state for their power. The following 
mechanisms can terminate a node when returning to it: 1) Alpha-Beta pruning 2) A 
result significantly better than EXPCT has been found, 3) A result greater than or'equal 
to EXPCT was found while pursuing a defensive task, 4) The current defensive task is 
hopeless (all suggested moves have been rejected), and 5) The current position is not 
worth defending (after having rejected all AGGRESSIVE moves). Table IV-3 shows the 
relative frequency of occurence of each of these as a percent of all non-bottom nodes 
with one or more successors. 

TABLE IV-3 - Reasons for Termination of Nodes with Successors 

Effect Problem Positions      Game Positions 

Alpha-Beta Cut-off Bl.B0/, 5G.2% 
Found Result Sig.   Gtr.   EXPCT 3.1% 1.8/' 
Found  a Satisfactory Defence 2.0% 1,1% 
Found  no Defensive Moves Q.St 0.B% 
Position  not  Uorth  Defendincj 10.0% 5.1% 

Again the effect of these devices is somewhat greater in the sharp problem 
positions, than in the game positions. This is part accounts for the larger branching 
factors obtained in the latter type of position. 

Alpha-Beta plays a dominant role in this set of mechanisms. However, it is 
impossible to tell from the data collected how many of the Alpha-Beta prunes would 
have been realized without the operation of the Claim System. In those cases where 
Alpha was reduced without producing an "Alpha and Beta Equal or Crossed" condition, 
the reduction must have helped in producing later Alpha-Beta prune..   It is important to 
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understand exactly what the meaning of an Alpha-Beta prune is. When such a prune 
occurs, the last move tried at this node was good enough to produce a refutation of an 
earher move by the opponent. Thus it is not necessary to look at any more moves at 
this node, i his phenomenon occurred in the vast majority of nodes which had sprouts, 
indicating tnat the program is spending most of its time refuting unsound moves 
However, our statistics do not show what goal state produced the move that resulted in 

|e»uPr .T; n0r h0W many Pri0r m0Ves had been tried  But FiSure «-A is a good estimate of the latter quantity. 

The mechanisms "Found Result Significantly Greater EXPCT" and "Found 
Satisfactory Defence" also are indicative of a degree of success at this node. However, 
in these cases a result is produced which could become part of a principal variation or 
else result in an Alpha-Beta prunp at a node an even number of ply higher in the tree. 
In contrast, Found No Defensive Moves" and "Posiiion not Worth Defending" are 
admissions of inadequacy which will probably produce an Alpha-Beta prune at some 
higher node an odd number of ply away. 

The "Found Result Significantly Greater than EXPCT" test shows Jhat a small 
percentage of such results appear. Even so, it is clear that continuing the search in 
such cases is more wasteful than redoing the search if such a result survives to the top 
of the tree. Likewise, the notion of being on defence anc' having found a satisfactory 
one contributes a small amount to overall node termination. 

The "Current Position Not Worth Defending" test is the complement of the "Position 
Significantly Ahead of EXPCT" test in Table IV-2. In such a case, the side on move is 
behind m material but appears to have some threats which could rectify the situation 
After these threats have been examined, and found to be inadequate, the situation is 
re-exammed in terms of material on the board and capture threats still pending (even 
hough the latter were not immediately eyecutable). If this evaluation still is not enough 

to reach the EXPCT level, the search is abandoned. The number of such prunes turns 
out to be many times greater than the complementary test; a result that appears to 
indicate that our methods of detecting threats give the benefit of the doubt to the party 
not on move. Then when these threats are found not to be dangerous, the other test 
prunes the node.   This shows another advantage of the goal state approach, since it 

ArnorflneIWiSe be impossible t0 Pause for re-examinatioi- after having examined all 
AtaGKESSIVE moves. 

Our statistics do not indicate how the remaining nodes that had successors were 
terminated. Logically this must have occurred either when the AGGRESSIVE state 
produced a satisfactory move, or in the KING IN CHECK state, or by exhaustion of all 
suggested moves. 

E.   A THEORETICAL ANALYSIS OF TREE GROWTH 

There has been quite a bit of work done on trying to understand how search trees 
grow. This has been possible since CAPS-II has branching factors in the range of 1 5 to 
3.0, making it possible to examine trees over a reasonable range of maximum depths 
without causing computationally intractable tasks. In order to understand tree growth 
it Is necessary to consider the anatomy of a node at sprouting time. If a position is 
tactically alive" then it is possible for the move generator in charge (which in practice 
means the AGGRESSIVE or one of the DEFENSIVE ones) to generate many moves which 
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it feels can materially affect the value of that node. Whenever a move is actually 
tendered for searching, if must pass the forward prune test, which does not allow any 
move to be tested whose optimistic static value does not equal or exceed the Alpha 
value for that mode. Further, if a result is ever backed up to this node, which is 
significantly better than EXPCT, then the search at this node is immediately abandoned. 

Now, let us consider the optimum value (VAL) of the position at any node in the tree 
as being the mimmaxed result of a complete seaich of that node's sub-tree. Assuming 
the position is tactically alive, then the number of moves that will be searched is a 
function of how many moves are statically evaluated as better or equal to Alpha, and 
the algebraic relation of Alpha. VAL and EXPCT to one another. If one allows the 
relations: equal (-), somewhat greater (>). significantly greater (»), somewhat less (<), 
and significantly less («). then 125 cases can be distinguished. Let us associate ">" 
with being less than MARG greater, and "»" with bring MARG or more greater. Then if 
A > B, and B > C, then either A > C or A » C. There are then 31 valid relationships 
among Alpha, EXPCT. and VAL Many of these rases fall info classes where one 
relationship is of over-ridmg importance.  Let us examine these classes. 

If Alpha » EXPCT, then by the rules of our search no more sprouts will be looked 
at, and the search backs up.   This takes care of six cases leaving 25. 

If EXPCT > or » VAL, then we arc trying lo solve an impossible problem at this 
node since we can never find a move that will come up to EXPCT. Hopefully such cases 
are rapidly disposed of in the present program by causality. If that fails then many 
moves could be searched in vain.   This takes care of 11 more cases, leaving 14. 

If Alpha > or » VAL, the program is again wanting its time at this node since it has 
already achieved a better value than it can hope to find here. The forward prune test 
must be counted on here to dismiss mar,, propo.ed moves as being inferior to what has 
already been achieved. However, if Alpha is only slighty larger than VAL, or if the 
situation is full of unresolved tactical complexity, then the forward prune could very 
well not be sensitive enough to eliminate a significant portion of the work at such a 
node.   This class encompasses nine cases, but only three new ones, leaving 11. 

If VAL » EXPCT then we can find a solution at this point which will allow backing 
up as soon as such a significantly greater value is found. Experience has shown that 
the program is usually able to find such highly successfi.l moves quickly, thus this class 
is of little concern.   There are five cases in this class, leaving six. 

The remaining six cases are: 

V. Alpha = VAL = EXPECT. Here no improvement is possible and the forward prune 
can not be of any help since any proposed "good" move must be at least a little 
better than Alpha (due to optimism). Therefore much searching could take place 
here while the program is in the AGGRESSIVE state, trying every possibility in the 
hope of finding a move that makes a difference. We conjecture that this case is a 
majcr ranee of higher branching factors. 

2) Alpha < EXPCT < VAL » Alpha. Here improvement of the existing Alpha is possible, 
however, since no value » EXPCT is achievable, the program may likely have to 
search through all proposed alternatives.    There are two exceptions to this: in a 
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DEFENSIVE state the (ree search is exited v/hen a value i EXPCT is found, and, if 
the best value at this node is round quickly, the new Alpha may produce sorr,e 
forward prunes of the remaining moves. 

3) VAL - EXPCT » Alpha. This case is very similar to the one above, except no 
forward prune help ran be expected. 

4) Alpha - EXPCT < VAL If this occurs in a DEFENSIVE state, the program will 
back-track. Otherwise, if the small improvement in the position is found quickly then 
hopefully forward prune will cut down the remaining work. 

5) Alpha - VAL > EXPCT. Here no improvement is possible. In a DEFENSIVE state 
back-track occurs, but in other states no help from forward prune can be expected. 

6) VAL - EXPCT > Alpha. Here some improvement is possible and termination can 
occur quickly if in a DEFENSIVE state. Otherwise, much searching will occur until all 
alternatives are exhausted. 

On examination of the above cases, it becomes clear that many states exist where 
the program will engage in what appears to the informed observer (for he knows the 
value of VAL while the program does not) as generating and testing. This occurs when 
the program is in the AGGRESSIVE state and no VAL »EXPCT is achievable. While we 
can think of no sure way of preventing this behavior, it is conceivable that limiting the 
number of AGGRESSIVE tries at a node when EXPCT has already been achieved is a 
good possibility. This could be reasonably safe if it were only applied to the analysis 
moves of the program's side, and if (say) the too four ply of search were unaffected by 
this rule. 

In actual play two types of situations have been identified; those in which the 
program can find what is to it a clearly best move, and those situations in which it can 
not. By clearly best, we mean that the backed-up value assigned to such a move be at 
least MARG more than any other value that can be backed up. In situations where there 
is no clearly best tactical move and the position is tactically "alive", the program may go 
into an extended search, as the chance of a damaging situation from one of the above 
classes occuring is very high. If the situation is not tactically alive, then the search will 
usually terminate relatively quickly, with some tactically acceptable move which was 
either proposed by the AGGRESSIVE state or the STRATEGY state becoming the move 
made. In situations where a clear-cut solution exists, the program will usually find it in 
less than five minutes of CPU time; occasionally taking up to 10 minutes in cases where 
it makes many false starts. It has also been noticed that in positions that have a sharp 
character (as? for instance those in "Win at Chess"), or in positions where the program 
thinks it has found a superior move, the branching factor across the whole tree is 
approximately 1.5. This would be very tolerable, if it were valid for all positions. 
However, in positions that are tactically alive with many possibilities but no clear-cut 
solution, the branching factor tends to go up to 3.0, which while considerably better 
than the 5.0 to 6.0 found in most of today's programs, still tends to produce rather 
gigantic trees for 10-ply searches. For instance, with a constant branching factor of 
3.0, a 10-ply tree would contain almost 30,000 non-terminal nodes, as against 112 
non-terminal nodes for a branching factor of 1.5. 
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EJelow, three examples ol tree gro, th are examined. The experimental technique 
used was to run CAPS-1I a» varying depths on the same problem and note the width of 
the resulting trees. By the width at depth V, we mean the total number of nodes that 
were sprouted in the whole tree at depth V during the search. We will try to show 
that there is a pronounced difference between the growth patterns of trees, depending 
strictly upon the notion of a clearly best move. To do this, we examine the same 
position under search conditions which allow finding a clearly best move ynd under 
conditions which do not. 

The first example derives from the position in Figure 4.6, and is one in which 
CAPS-II is unable to find a clearly best move no matter how deep the search, up to 15 
ply (for an explanation of this see Figure 5.12). These results are shown in Figure 4 7 
which gives the results for depth 5, 7, 9, 11, 13, and 15 searches. The graph shows a 
general exponential growth of the tree with increasing depth. Actually the width of the 
tree at a given depth tends to decline very slightly as the depth of search goes up (we 
call this the "Flattening Effect"). However, in any individual tree one can at best hope 
to see a slight slowing of the exponential growth. This could be due to such factors as 
1) greater opportunity for cut-offs at greater depth because of the way the Claim 
System works to press Alpha and Beta toward each other, or 2) depletion of material 
making it more difficult to come up with meaningful tactical issues. However, both of 
these effects seem to be of a very low order. Although they probably exist, they are 
very much subordinated to the effects that cause individual positions to be more or ess 
tactically alive. 

The following points sht uld be noted with respect to this example and he next: 
Whenever the curve moves n a sideways or slightly downward direction it means that 
the side on move is cominf to grips with whatever the problem may happen to be (or 
conversely it may be posin: problems) at the rate of approximately one node for every 
parent node. On the other hand, when there is a considerable vertical rise it means that 
the side on move here is either having to search a bit to find thy right response in 
order to raise Alpha up to EXPCT, or it is busy generating one offensive try after 
another without much success. This frequently results in a pa'tern of a side-wise step 
followed by an exponential rise (the step phenomenon). This indcates that one side 
(the exponential rise side) is either busy trying to pose issues which the other side has 
little trouble turning aside, or it is having trouble reacting to a threat. In either case, 
the exponential rise is an indicator that this side is having problems coming to grips 
with the position. 

The second example derives from the position in Figure 4.8, and the tree growth 
graph is shown in Figure 4.9. This graph shows growth curves foi depth 7, 9, 11, 13, 
and 15 searches. To understand what happens hers, it is important to know' the 
solution to the problem which is: 1. R-R8, after whicn White threatens to queen the 
pawn, winning, while Black cannot play 1,-RxP because of 2. R-R7ch winning the rook. 
So Black's only alternative is to keep checking the White king on the rank, which for 
most computer type analyses, will result !i postponing any real consequences over the 
search horizon. However, White wins thj position quite easily by merely approaching 
the Black rook with his king until an effective check can no longer be given. However, 
this requires 13 ply of searching as fr,lows: 1. R-R8, R-R8ch, 2. K-B2, R-R7ch, 3 K-K3 
R-R6ch, 4. K-Q4, R-R5ch, 5. K-B5, R-R4ch, 6. K-N6, R-R8, 7. P-R8=Q. Therefore the 
program must search to depth 13 in order to find a proper solution to this problem. In 
that light, it can be seen that the curves for depths 7 through  11 show a general 
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Black to Play 
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exponential increase as the program looks in vain for a solution and fans out in the 
process of doing so. It is interesting to note the step phenomenon at the end of each 
of these curves, but not prior to that. The flat part of the curve is always coming on 
the last even ply, which would make it Black's move, and the rise is coming on White's 
reply. The explanation for this, is that Black is trying the capture RxP on this ply and 
now White plays R-R7ch. We are now at maximum depth and the procedure for a 
situation where the king is in check is to use the evaluation of the best of all legal 
replies. Here, any king move results in a situation where both rooks are attacking each 
other. This is again m an area of incompe^nce of the current terminal evaluation 
function, and thus this position is considered a. nearly even. Because of this, it appears 
that the move RxP is successful (but only when made this close to maximum depth) and 
White continues to look for alternatives to R-R7ch. It investigates R-B8ch as the only 
meaningful alternative, but finds that Black's answer KxR is too strong. This drama is 
playRd out again and again at the horizon of each search, and accounts for the step 
phenomenon tails which show that White is having a problem which Black has no trouble 
coping with at this point. 

The first break in this pattern is for the curve .^belled 13W. In this curve the 
program thought it found a superior move (the right answerV However, it only managed 
to get to a situation in which it got a favorable (but incorrect) verdict from the terminal 
evaluation function. The principal variation for that search was: 1. R-R8, R-R8ch, 
2. K-R2, R-R7ch, 3. K-R3, R-R6ch, 4. K-R4, R-R5ch, 5. K-R5, R-R^ch, 6. K-R6, R-R3ch, 
7. K-R7. In this position the terminal evaluation function gives more credit for the 
threat to promote the pawn than for Black's threat to capture it. Therefo-e this 
position is considered as constituting progress for White. We are aware of this problem 
in the terminal evaluation, and it will be fixed in an early future version of the program. 

The reason the king marches up the edge of the board is that there is a heuristic in 
the program which rewards decentralizing the king. This is very useful in middle games, 
and since almost all tests of the program were in middle game situations, no attempt was 
made to provide additional sensitivity to which phase of the game the current situation 
is in. This can be easily done by something as simple as counting pieces to decide that 
tne end-game heuristics should now be used. That would call for king centrality instead. 
With that in mind, we put a temporary patch in CAPS-II which rewarded centralizing the 
king, and ran the problem again. This time the curve labelled 13R was generated, and 
the principal variation was: 1. R-R8, RxP, 2. R-R7chl K-Ni, 3. RxR, indicating that the 
program had been unable to find anything better for Black than losing his rook. A look 
at the tree print-out confirmed that it had indeed found the correct solution. It is 
interesting to note that this curve is considerably lower (comprising about one-half the 
number of nodes) than the curve 13W. This indicates that the more appropriate 
guidance provided by the "centralize" heuristic not only got to the right answer, but 
considerably shortened the solution process. 

A final curve with the "centralize" heuristic is the one labelled 15R, which is run at 
depth 15 just to determine the additional amount of worK the program does when given 
more depth freedom. The thing that is very nolicable about Figure 4,9 is the definite 
curve flattening, once the program has reached the proper solution depth. In Chapter 
VI, we will speculate as to how this problem would be solved using lemmas. 

The final example in Figure 4.10 shows curves for depth 9, 11, 13, 15, 17, and 19 
searches of  a position (Figure 4.11) that CAPS-II did not understand, but in which it 
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found a (to itself) satisfactory solution. Although the problem can be solved at well 
below 9-ply depth, the program's perceptual mechanisms were not good enough to 
discover the key move. However, it finds a solution to wiiat it conceives of as the main 
problem. This same solution comes out again and again as the depth of search is 
increased. Since the position is tactically alive, the program acts as if the critical depth 
for solving this problem is well below the nine ply that is represented in the first curve. 
Here we see a perfect illustration of the flattening effect. The curve at each increasing 
de-)th has a smaller plope than any before it. This is a real phenomenon, and is 
probably due to the fact that once a "solution" is found, it is possible to get many 
cut-offs and thus slow the growth of the tree. 

One final observation is useful in »rying to understand tree growth. That is that 
most positions appear to have their own step phenomenon characteristic. If this is t,ue, 
th'in in each position the play for one side is relatively easy and for the other relatively 
difficult. The step phenomenon can be seen in the three graphs we have just 
presented. For instance in Figure 4.7, nodes generated in moving from even to odd 
plies move sideways, and those from odd to even move up. In Figure 4.9, odd to even 
move sideways, and even to odd move up. And in Figure 4.10, there is a very 
pronounced effect of odd to evon moving sideways, and even to odd moving up. This 
step phenomenon has been reported by other researchers and is almost certainly 
related to the workings of the Alpha-Beta pruning algorithm. For instance, if one can 
correlate one side establishing a good Alpha value near the top of tt-e tree, with this 
being an "easy" position for that side, then one can see how this would make it easy to 
turn aside voluminous but meaningless gestures by the other side. 
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CHAPTER V 

PERFORMANCE OF THE PROGRAM 

In this chapter, we examine the tests that have been performed using the program. 
These tests range from very simple ones on the effectiveness of the data structure, to 
full games played by the program. After each presentation of results of the tests, we 
present those conclusions which seem warranted, and pose those open questions that 
were raised and appear unanswerable at present. 

A.   A TEST ON THE REPRESENTATION 

Since all of the program's ability to understand structure in chess is dependent 
upon the primitives it computes in every position, a great deal of effort was of 
necessity expended to see that such primitives yielded correct results as far as could 
be determined. This was certainly schieved for simple things such as the different 
bearing relationships. Also, things r.uch as the correct noticing of pins, correct 
assignment of functions, correct noticing of the various types of attacks, the causality 
facility, etc. were established to be very reliable. However, the occupiability (OCY) 
computation was not always correct. This is of concern since many judgements CAPS-II 
makes depend on this valub; and when errors exist these may cause lost opportunities 
or increased tree searching activity in order to recover. In view of this, a short test 
sequence was run on the first 20 moves of Game I of the recent Fischer-Spassky chess 
match. The test sequence involved 40 positions, with 64 squares per position and two 
values ( White and Black) per square. This comes to 5120 observations. Over this set, 
CAPS-II computed 3 occupiabili'ie^ wrong, e.g. an error rate of approximately 
six-hundredth of one percent. The author in checking the output of CAPS-II made 
approximately 6 to 8 times that many mistakes in the checking process, that is, there 
were on the order of 20 situations where the author thought the computed result was 
wrong at first glance, but it turned out to be correct. This appears to indicate that the 
program's perceptual accuracy in this dimension is already superior to that of a master, 
and probably the present degree of refinement of the computation is too high. 
Nevertheless, all the errors turned out to be due to situations where a pinned piece's 
influence on a square was wrongly calculated. We now know how to fix this problem 
and expect to do so during a future program revision. 

B.  TESTS ON CHESS POSITIONS 

Most of the development and testing of the program was on the set of problems 
contained in the bock "Win at Chess" [Reinfeld, (1958)]. This was because this volume 
is rich in examples of functions being performed by pieces, and how disturbing those 
functions can lead to tactical combinatiors. The program was originally constructed with 
a view toward solving these problems, and many of the features in the program arose 
from considerations of what it would take to solve specific problems in the set. When 
an initial version of the program that seemed to perform somewhat as desired was first 
brought up, it was tested on the first four problems in "Win at Chess" plus three other 
problems which the author had selected as important. The program was debugged and 
small improvements were made on it until it reached a level of performance which 
appeared reasonable, considering the program's basic problem solving facilities. At this 
time, the program could only solve one out of the first four problems in "Win at Chess" 
correctly, and had not been tested on any of the others.   This version of the program 
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was then tested on the first 20 problems and managed to gel seven of these correct. 
This series of tests revealed further bugs which were corrected. The resulting program 
was named CAPS-I (Chess as Problem Solving). 

1.  CAPS-I Tests 

CAPS-I was then tested on the first 100 problems in "Win at Chess". This book 
is organized into chapters of 20 problems each, with the intention that each 
succeeding chapter be more difficult than the last. However, there has been no 
standardization of this difficulty factor through experimentation. Thus, though there 
is a general difficulty trend, there seems to be quite a bit of variability from chapter 
to chapter. The tests of CAPS-I were run under ihe following conditions. If it 
failed to solve the problem by the time the number of nodes in the tree reached 
500, the solving process was terminated and it was counted as wrong. In scoring 
these and all other results, it was usually quite easy to tell whether the answer was 
correct or not. However, in some cases the program got the first move correct, but 
the supporting analysis as evidenced by the principal variation and the tree print 
out were not convincing. In such cases one-half credit was given. Table V-l shows 
the results of ther.e tests. 

TABLE V-l 

Chapter 

Number  right 
Avg.   nodes   (right) 
Avg.   nodes   (wrong) 
Avg.   nodes   (grong+unfin)   195.5 

II III IV Al I 

13 11 12 18.5 5 48.5 
43.3 80.1 115.2 136.7 158.2 183.6 
65. e 37.8 60.8 64.8 53.5 56.1 
95.5 152.8 288.8 112.4 282.3 189.3 

As can be seen, CAPS-I got 48.5 problems correct out of 100. In 15 of the 
problems, it had to be stopped at 500 nodes without having found a solution. This 
means that in 857. of the problems CAPS-I w?s able to deliver an answer within 500 
nodes (about two minutes of CPU time). It is interesting to note that the average 
number of nodes required to solve the problems goes up as a function of increasing 
chapter number (difficulty). However, that is the only thing that correlates well with 
difficulty as it exists in the booK. Other interesting data items are that the amount 
of effort on problems that were finished incorrectly is rather constant and usually 
less than the effort on problems solved correctly. Considering both wrong and 
unfinished in the same category by assigning 500 nodes for all unfinished problems 
seems to only obscure any effects that are present. 

CAPS-I appeared to have a reasonable perceptual grasp of what the task was in 
a given position. What we mean by perception, here and later in this chapter, is the 
ability of the program to statically diagnosp generally what the problem is and what 
moves are likely to play a part in the solution. The above is borne out by the data; 
the program usually terminating quickly. In cases where its static analysis routines 
could decode the position and find the key move at the top, the program did very 
well when little other analysis was required. In cases where the decoding was 
unsuccessful or where further complicated analysis was required, the program 
would either terminate in standard time with an incorrect answer, or go into a 
generate and test mode in more complex positions until it eventually ran out of 
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alternatives. In analyzing the output trees, one could notice several instances of 
logical failure in the tree search, which prevented CAPS-1 from recognizing valid 
defences. This resulted in CAPS-I doing much better in problems where straight 
forward albeit perceptually hidden solutions were possible, than in situations where 
a certain amount of dynamic analysis was necessary. CAPS-I also played ordinary 
games of chess very poorly. 

2.   CAPS-Il's General Performance 

As a result of these tests, a few additions and improvements to the data 
structure were made. However, the most effort in the development of CAPS-I1 went 
into tree searching. If was found that there were logical inconsistencies in the way 
goal state changes were implemented, and this sometimes allowed CAPS-I tc Ignore 
problems by simply not going to the correct goal state, or leaving the correct one 
prtmaturely. The result of correcting this logic was a noticeable increase in tree 
size. However, this was absolutely necessary as such logic errors clearly could not 
be tolerated. Besides this, all the non-standard tree searching devices discussed in 
Chapter IV were developed for CAPS-II. As a result, this version of the program 
showed great improvement in application of its searching effort. Also the accuracy 
of its performance went up to the point where it was clearly in the class with the 
average program that competed in the annual ACM tournaments. The program was 
then retested, this time on the first 200 problems in "Win at Chess". This time it 
was decided to use a time criterion, instead of counting the number of nodes. Five 
minutes was set as a maximum lime. The reeson for using time was so that the 
results could be compared to the performance of other programs and humai"> 
players. A tabulation of the performance of CAPS-II in the same format as Table 
V-l above can be seen in Table V-2. For purposes of this table, the number of 
nodes was established using time in seconds multiplied by 4.5, which is 
approximately the average number of nodes processed per second. 

TABLE V-2 

Chapter 1 II III IV Al I 

Number  right 12 
Avg.   nodes   (right) 1G7.8 
Avg.   nodes   (wrong) 227.2 
Avg.   nodes   (wrong+unfin)   508.0 

14 12.5 10.5 7 56 
22G.4 20G.1 453.B 285.3 260.6 
263,1 346.5 371.7 297.0 291.6 
449.1 490.0 80B.4 43B.0 537.3 

Comparing these results with Table V-l, we note that CAPS-II did 167- better on 
the problem set than did CAPS-I. This was a uniform achievement, CAPS-II not 
scoring worse on any chapter than CAPS-I. There were, however, five instances 
that were solved by the earlier version and not by CAPS-II. At first glance one 
might ascribe the better performance of CAPS-II to the fact that it had five minutes 
of time available, while CAPS-I had only about two minutes. To refute this idea, the 
15 problems on which CAPS-I failed to finish were run for five minutes. Of these, 
CAPS-I was able to finish only one with a correct result, thus indicating that the 
discrepancy in performance was due io other factors. 
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TABLt V-3 

Chapter VI VIII IX Al I 

8 5 12.5 B 38.5 
429.3 144.B 512.1 412.B 356.9 
231.3 458.6 319.5 526.8 375. G 
G97.5 B3B.8 4GB. B 879.3 725.4 

Number   right 7 
Avg.   nodes   (right) 101.7 
Avg.   nodes   (wrong) 238.5 
Avg.   nodes   (wrong+unfin) 837.B 

CAPS-Il's performance on the second hundred problems in "Win at Chess" is 
summarized in Table V-3. Across the set of 200 problems, CAPS-1I achieved 47.25 
7 correct. Attesting to the fact that the first one hundred are simpler than the 
second one hundred are the comparative percentages of correct solutions, 567 and 
38.57. respectively. One can also detect a general increase in time taken by the 
program on all problems, whether solved correctly or not, as a function of chapter 
number.   However, there is quite a bit of variability here. 

In examining the trees generated by CAPS-II, it was possible to discern a much 
more workmanship-like approach to problem solving. In these trees issues arose 
and were dealt with in a satisfactory manner until an --ippropn^te conclusion was 
reached. This was in clear distinction to the problem solving of CAPS-I which was 
highly perception dependent, and unable to follow issues very well to their 
conclusion. This is also manifested by the fact that CAPS-I could make practically 
no headway on the more difficult problems in later chapters of "Win at Chess", 
whereas CAPS-II did many of these very well and would have obtained a higher 
score but for several malperformances of the terminal evaluation function, and four 
cases of problems being solved in times of between five and ten minutes. We 
consider the logic of tree searching in CAPS-II to be very close to absolutely 
correct. However, an apparent penalty of this greater consistency in searching, has 
been a tendency for the program to search too much in situations in which it cannot 
find a solution that is clearly superior to any other. The answer to this would 
appear to be algorithms which still further restrict ihe moves which are allowed to 
be searched. Also, ar; tffective method is needed for hopping around in the tree 
when results indicate tha^ branches of greater promise than the one currently being 
looked at, have as yet not been investigated. Upgrading the- uses of the 
representation, as suggested in examples later in inis chapter would very likely 
raise the performance level of CAPS-II on these problems by 20 to 307. 

A graph showing comparative performances of a Class "A" player, TECH, and 
CAPS-II is shown in Figure 5.1. Here the task was the first 200 problems in "Win at 
Chess", and all solutions had to be achieved in five minutes (of CPU time in the case 
of the programs) or less. The Class "A" player achieves a clear superiority over 
both programs. In fact, his performance on any chapter is only exceeded once by 
either program, and that is by CAPS-II in chapter IX. This chapter seemed to be 
exceptionally well suited to the talents of CAPS-II as it scored much higher than 
would be expected considering the difficulty of the chapter. This chapter seemed to 
be largely made up of problems which required a clever first move, together with 
precise calculation of deep principal variations. More detail on this phenomenon is 
given later in this chapter. Over the whole problem set, CAPS-II did a few 
percentage points better than TECH. However, there were many reversals of forw 
from chapter to chapter. 
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A more illuminating view of the relative performances of CAPS-I1 and TtCH can 
be seen in Table V-4. 

Geplh 

1 
2 
3 
4 
5 
G 
7 
8 
9 
13 
>ia 

TABLE V-4 

Both R ght TECH Only   CAPS 

1 1 
G 4 

24 7 
£0 IG 

1 3 
0 0 
0 0 
0 0 
0 0 
Ft 0 
0 0 

0 
0 
0 
1 

13 
11 

5 
1 
G 
1 
0 

Both Wrong Tot 

0 2 
0 10 
2 33 
2 42 

11 28 
20 31 
10 15 
9 10 
3 9 
4 5 

11 11 

TOTAL* 55 31 38 72 196 

(*) These totals do not sum to 200, because problems on which partial credit was 
given are not included. 

This table shows the performance of TECH versus CAPS-1I on individual 
problems as a function of the depth of the principal variation. Depth is defined as 
the depth of the deepest non-capture in any branch of the principal variation. This 
definition is being used mainly because of the structure of TECH, in which all 
capture sequences are examined as part of the quiescence process. Thus if a 
principal variation ends with one or more captures, these would be included as part 
of the quiescence analysis, if the search went to the depth of the previous 
non-capture move in that variation. This is not an unreasonable definition of depth, 
since in most positions there exist sequences of captures which either do not 
disturb the status quo or reap the fruits of the previous moves. Both these 
situations can be considered to be "self-evident" extrapolations of the current 
position; e.g.   not related to any additional depth of search. 

The interesting thing about Table V-4 is the very pronounced skewing of results 
as a function of depth. TECH because of its exhaustive search does not miss any 
problems of depth 1 or 2. Then as the amount of work increases, the probability of 
TECH failing to solve a problem goes up steadily, until it can no longer solve any 
problems of depth 6 or greater in the five minutes allowed. On the other hand, 
CAPS-Ii misses a certain percentage of all problems, at every depth. The 
percentage increases slighly as a function of depth, but the most important point to 
note is that CAPS-II, because of its approach, is able to solve some problems at 
every depth because the exponential explosion does not hurt it as much as a more 
conventionally designed program. If is reasonable to assume that as its perceptual 
facilities improve, CAPS will continue to increase the percentage it solves correctly 
at any depth. The conclusions associated with this table are probably the single 
roost important ones in this thesis. 
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TABLE V-5 

Depth 

1-2 
3-4 
5-6 
7-8 
9-16 
>18 

Total 

12 
48 
2. 

8 
5 
6 

% CAPS-1 

B2 
56 
45 
38 
48 

0 

X CAPS-11 

62 
71 
48 
38 
40 

8 

When one uses the depth criterion to examine the performance of CAPS-I 
versus CAPS-II on the first 100 problems, the results in Table V-5 are obtained. 
These show rather clearly that the main performance increment came on proLlems 
of depth three and four. This tends to bear out our earlier analysis that many of 
the problems were heavily dependent on perception. This would apply to the 
problems with short principal variations, e.g. one and two ply. The longer principal 
variations are associated mainly with problems with rather straigh-forward winning 
sequences not involving any intricate defences or many sub-variations, this only 
leaves the problems of medium length, many of which required detailed analysis of 
offensive and defensive ideas in order to bring in a correct answer. 

Depth 

1 
2 
3 
4 
5 
6 
7 
8 
9 
18 
>18 

Total 

3 
18 
33 
42 
29 
31 
15 
11 
IB 

5 
11 

TABLE V-6 

% Right/CAPS-11 

50 
B8 
73 
57 
50 
35 
33 
13 
68 
28 

0 

X Right/CLass "A" 

188 
98 
91 
79 
69 
61 
67 
73 
78 
48 
18 

It is interesting to contrast the results of CAPS-II versus TECH with a 
comparison of CAPS-II versus the Class "A" player as shown in Table V-6. Here the 
Class "A" human player very clearly excells the program in every category. Jh\% is, 
in our judgement, indicative of his greater understanding and flexibility of approach. 
However, the Class "A" player does not completely dominate CAPS-II's performance. 
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TABLE V-7 

Depth Both Ri ght Cl ass "A" Only CAPS -11 Only Both Wrong 

1 1 1 j 0 
2 6 3 0 1 
3 21 9 3 0 
4 28 13 4 5 
5 8 12 G 2 
G G 13 5 7 
7 2 8 3 2 
8 1 G 0 3 
9 5 2 1 2 
18 0 2 1 3 
>18 0 2 0 8 

This can be seen in Table V-7 which shows the comparative performance of the 
two on individual problems. Again the Class "A" player has the far superior 
performance. Howeve-, the next to last column shows that there were quite a few 
instances where CAPS-I! was able to solve problems that the Class "A" player did 
not solve. This, in any case, serves to encourage us into believing that the basic 
approach has considerable potential, and will allow producing ever better programs 
as more and more of the details of tactical perception and analysis are built in. 

Since the book "Win at Chess" was made up exclusively of examples extracted 
from Master play, it was felt that CAPS-II should also be tested on more mundane 
examples of the type that computer programs are likely to run into in their 
everyday existence. For this purpose a set of such tactical problems was extracted 
from the repertoire of the Northwestern University program (NWP) [Atkin, et.al., 
(1965)] as it performed in winning the first three ACM Computer Championships. 
This comprised a set of nine games which can be found in the open literature. We 
examined these games, and extracted from them 43 positions which had singular 
tactical solutions. This included all the most difficult positions in these games and 
most of inose with medium difficulty, plus a very few that were rather simple (e.g. 
requiring only a capture that could not be rebuffed). The positions were selected in 
such a way as to attempt to get as many defensive problems as possible into the 
set. However, this resulted in getting only seven defensive problems. The difficulty 
was that the solution had to be singular, and while there were many defensive 
situations, there were not many with a clear-cut defence that was superior to any 
other. The problems were also chosen in such a way as to ignore whether the NWP 
was the one on move or not. However, 35 out of the 43 problems turned out to be 
with the NWP on move. We attribute this to the fact that this program was forcing 
the play in most instances, and since most of the problems are aggressive problems, 
this division resulted. Since these problems arose in an environment where moves 
were not individually timed, but rather groups of moves were timed, we decided to 
allow CAPS-II as much time as it needed to terminate on each problem. The search 
was again conducted to depth nine. This resulted in CAPS-II exceeding five minutes 
of CPU time on two of the problems. However, its average time over the whole set 
was only 87 seconds per problem, which is well below the allowed average of 180 
seconds. 
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Depth Cases 

1 G 
2 IB 
3 G 
A 11 
5 1 
B G 
7 8 
8 1 
3 2 

TABLE V-8 

/CAP S-Il % Right/ NU 

188 180 
78 90 
G7   

59 73 
0   

42 G7 

100 100 
^8 0 

TOTAL 43 G5 75 

% Right/NU Oppnts 

G7 

8 

0 

50 

The results of these tests can be seen in Table V-8. The first thing to notice is 
that this problem set is considerably easier than the "Win at Chess" set as 
evidenced by the fact that CAPS-II scored 657. right versus only 47.25/S right in the 
"Win at Chess" set. Other than that, the program does not do nearly as well on the 
problem set as the NWP did in actual play. This we attribute to the greater 
completeness and debuggedness of the NWP. There were, however, five instances 
in which CAPS-II found the correct solution to a problem that the NWP did not find. 
These problems were in situations involving pins (which apparently the NWP does 
not handle too well) and where a deep sequence of moves was required to diagnose 
the correct move at the top. When one compares the performance of CAPS-II 
against the performance of NWP's opponents, the situations is quite different. 
Although the sample contains only eight cases, it seems rather clear that CAPS-II is 
better able to do incisive tactical things than the average NWP opponent. Again this 
does not signify a great deal since some of the NWP opponents were very weak. 
Also there is as yet next to no positional or strategical knowledge in CAPS-II. 
However, it does show, that even in its present state, it can in restricted situations 
outperform programs with a more complete approach. 

An interesting test which helps to reveal some of the program's perceptual 
ability^ was performed on a sequence of 14 positions from the book "Rate Your Own 
Chess" [Bloss, (1972)]. These positions are all mates in two or three moves, with 
one exception which was a mate in four. The book was written with the idea of 
finding a device that discriminates playing strength in a simple way. The method 
used was to correlate the amount of time taken to solve a problem with the playing 
strength of the solver. The 14 positions tested were the ones which produced the 
best correlations. CAPS-II was given these positions without any special 
instructions which might cause it to consider only sub-classes of the moves it would 
normally consider. One interesting result of this test was that CAPS-II solved 5 out 
of the 14 positions correctly in 5 seconds or less. This apears to speak highly for 
CAPS-II's ability to diagnose and carry out simple attacks on ;he king. This in turn 
is due to the perceptual processing that the program engages r,, which does a very 
good job of noticing powerful attacking moves. On the probiem which was the 
single greatest discriminator of playing strenth, CAPS-II achieved the highest 
possible rating, a grandmaster rating, by solving the problem in 5 seconds. (It 
should be noted that the subjects across which the test set was standardized did 

  ÜMl  —--—— --- I 
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not include any players above expert strength, so this is an extrapolated result by 
the author of the book). Significantly, in solving this problem, the program made a 
wrong start on the correct idea, used the causality facility to find the correct 
implementation of the idea, raised the level of aspiration as an intermediate gain of 
a pawn was found, and deepened the solution to find the mate in three moves (all in 
five seconds). 

For the five problems it solved in five seconds or less, the program achieved a 
master rating. For the set of 14 problems, CAPS-Ii solved 11 correctly and 
achieved a class A rating. However, these ratings are inflated. The book's author 
recommends giving a rating of about 1400 (bottom of class C) for all -oblems that 
are not solved correctly. However, this clearly causes statistical distortions when 
the player being rated is below the class C level. For instance, TECH which is a 
1250 rated program, achieved a rating near 1600 on the set of problems. However, 
we are here not trying to establish a rating for the program, but rather to poii.t to 
some indicators of its perceptual potential. 

3.   Analysis of Selected Proble mj 

Probably the most outstanding thing CAPS-II has ever done is to solve the 
problem in Figure 5.2. This is a famous combination stretching a full five moves for 
each side from the text position. The program looked at many possibilities, 
generating a tree of 897 nodes, but delivered the correct principal variation, 
letter-perfect as it is in the book. An investigation of the analysis tree showed it 
also correctly diagnosed all sub-variations. Only the motivation for the initial move 
left any room for something short of enthusiasm. The correct move and essential 
sub-variations are: 

1.   NxP!,   PxN,   2.   QxKPch,   K-Rl.   3. Q-K7!,  Q-Nl,   4.   RxPch!,   QxR, 
5.   QxRch    winning 

K-Bl, 3.  Q-Q6ch,   followed by QxR 
K-N2, 3.  Q-K7ch,   followed by QxR. 

Because of the depth of this combination, we feel quite safe in saying that no 
program in the world today could duplicate this performance in any standard time 
frame. There are two side points worth mentioning: First, 1. QxPch, K-Bl leads 
nowhere. Second, 1. NxP was not chosen because the KBP is blocking a check and 
is thus overloaded. This function is not yet in the program, and it was thus 
fortunate that the knight move was suggested because it clears a square from which 
an attack (by the KBP) can be carried out on a low mobility p'ece (the Black queen). 
Third, since the program only searches ahead nine ply, the final position in the 
principal variation was processed as follows: since the king was in check, all legal 
moves were generated. The best that Black was founri to be able to do was to give 
back a knight thus leaving White two pawns ahead. 

In Figure 5.3 we see another interesting aspect of the program, one which was 
replicated quite a few times during the series of tests. It is White to play and 
CAPS-II very rapidly finds: 1. QxPch, KxQ, 2. N-N6ch, K-Nl, 3. R-R8ch, K-B2, 
4. R-Q8ch, QxR, 5. P-Q6mate. Then in retracing the search it finds that by moving 
the king to Bl in response to 1. QxPch, Black can put up great resistance. In fact it 
does not find the win of more than the original pawn, but concludes that 1. QxPch is 
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Figure 5.2 

White to Play 
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Figure 5.3 

White to Play 
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Figure 5.4 

White to Play 
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clearly the best move anyway.   It is typical of human analysts, that the whole idea 
of refusing the queen sacrifice is not even mentioned in the solution to the problem. 

An interesting example of CAPS-II's ability can be seen in Figure 5.4. The 
author noticed this position in "Attack and Defence in Modern Chess Tactics" 
[Pachman, (1973)], a chess textbook. Here it was presented as showing an 
interesting maneuver in which a knight .vas relocated with gain of time. Pachmann's 
solution runs 1. Q-R6cli, K-M, 2. Q-K5ch, K-Q5, 3. Q-Q5ch, K-K6, 4. Q-Q3ch, K-B7, 
5. Q-Bl, K-N6, 6. N-K2ch, K-R5, 7. Q-Rlch K-N4, 8. Q-R5ch, K-B3, 9. Q-R6ch, K-K4, 
10. 0-K6mate. 

The solution had several sub-variations and seemed somewhat contrived to this 
?uthor, who thought a quicker mate should be possible. After a few minutes 
thought, I discovered a mate in five as follows; 1. Q-R6ch, K-K4, 2. Q-K6ch, K-Q5, 
3. Q-K^ch, K-B4, 4. Q-Q5ch, any, 5. Q-N5mate. This seemed like a reasonable task to 
give CAPS-Ii, so 1 did. To my surprise the program found a mate in four by 
1. 0-R6ch, K-K4, 2.Q-K6ch, K-QS, 3. 0-Q5ch, K-K6, 4. N-Qlmate. It took CAPS-II 50 
seconds of CPU time to find this. To-date it is the only instance of this program 
outdoing its author. It is interesting to note that a new version of the program now 
being worked on, which does hopping around in the tree, found the same mate in 
only 9 seconds of CPU time. 

In order to shed some light on the details of the trees that CAPS-II generates, 
we present the next two examples. The first is seen in Figure 5.5. The associated 
tree is shown in Figure 5.6. This tree is quite representative of the medium size 
trees generated by CAPS-II. 

In order to interpret these trees, the following should be noted. The number 
preceeding a move is the depth at which this move is being considered, while the 
letter pair following the move is the goal state for that node at the time the move is 
being tried. For instance "0. B-R7ch AG" means the move B-R7ch is being 
considered at depth 0 while the program is in goal state AG. Goal state encodings 
are as follows: 

AG - AGGRESSIVE 
DC     DYNAMIC DEFENCE 
KC - KING IN CHECK 
KD - KING IN CHECK (DYNAMIC DEFENCE) 
ND - NOMINAL DEFENCE 
PO - PREVENTIVE DEFENCE 
SR - STRATEGY 

CAPS-II starts out with 0. B-R7ch and first looks at the response 1. K-Rl which 
is given precedence because it decentralizes the king the most. Because of the way 
aggressive moves are presently being generated, the move 2. B-Q3ch is not 
specifically eliciteo since it does not cause a double attack or an attack on a low 
mobility piece. The fact that it is a discovered check is known in another move 
generator, but the two ideas making a double threat are not connected at the top 
level in the present version. Therefore CAPS-II generates the various discovered 
checks that are possible and tries them one at a time in generate and test fashion. 
This occupies lines 001  through 048 before it finally stumbles onto the correct 

^M, .^^L. 
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6. B-R7ch flG 1. K-Rl 

6. R-R8ch OG 7. l.yR 

6. QyPch OC 7. kxQ 

6. Ryß flG 7. UR 

6.   Q-R4ch    OG     7.   k,-Nl 

6.   BxBch      flG    7.  ÜB 

6.   B-R7ch    flG    7.   tURl 

6.   R-R8ch    flG    7.  KxR 

6.   Q-R4ch    flG    7.   K-Nl 

6.   P-KR4      flG 

V   -   V\ 

F iqure 5.6 

U    2. B-N6ch flG    3.   K-Nl 

kC    8. Q-R4ch RG 
8, P-t;R4 flG 

►.C     8. RyPch RG 

RG 8. R-ßiirh RG 
8, Q-B3ch nn 
8. Q-P6ch RG 
«. Q-B7ch RG 
8. CKPch RG 
8. Q-N6ch RG 
8. Q-ß2ch RG 

KC 8. R-R7ch RG 
8. ByPch RG 
8. Q-R7ch RG 
8. Q-R8ch RG 

IC 8. Q-B4ch RG 
8. Q-B3ch RG 
8. Q-B7ch HG 
6. OxPch RG 
8. Q-NGch RG 
8. Q-B2ch RG 

KC 8. B-N6ch RG 
8. OxPch RG 
8. B-B5ch RG 
8. B-Nlch RG 
8. B-Ktch RG 
8. B-Q3ch RG 
8. B-B2ch RG 
8. B-N8ch RG 

tcc 8. Q-R4ch RG 
8. P-kR4 RG 

ICC    4.  B-R7ch    flG 
4.  RxPch      RG    5.  BxB 

4.   R-R8ch    RG    5.   KyR 

4.   RyP RG    5.   BxR 

2. B-l-4cli RG    3.  i:-Nl 

2. B-B5ch RG    3.  K-Nl 

KC    8. Q-R7ch RG 
8. B-R7ch RG 

KC 

KC    4.   B-R7ch    RG 
4.   R-R8ch    RG    5.   KxR 

KC 

KC 

RG 

KC 

001 
002 
003 
004 

085 

006 
007 
008 
009 
010 
011 
C12 

013 
814 
015 
016 
017 

018 
0J9 
020 
021 
022 
023 
024 

025 
026 
027 
028 
029 
830 
031 
032 

033 
034 

035 

036 
037 
038 
039 

6.   R-R7ch    flG    7.  K-Nl KC 8. R-R8ch RG 
8. R-N7ch RG 
8. RvP RG 
8, R-R4 RG 
8. R-R6 RG 
8. R-R5 RG 

6.   R-N4ch    OG    7.   K-Rl        KC    8.  R-R4ch    flG 

4. QyPch  RG 5. KxQ KC 041 
042 
043 
044 
045 
046 
047 

048 
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1.  K-Bl 

6.   n-B4ch    RG    7.  K-Kl 

6. QxRch      DD    7.  KxR 

6. B-N6ch    DD    7.  KxB 

6. R-K4        DD    7.  QxBP 

6. Q-R4        DD 

6. R-R8mat« 

6. R-R8mate 

6. R-RSmata 

6. KxQ KC    7.  RxB 

6. BxQ KC    7. R-Q8 

6. R-R8mato 

2. B-Q3ch PG    3.  Q-R4 
3.  K-Nl 

KC    2. Q-R3ch RG    3.  R-K2 

KC    8. Q-R4ch RG 
8. B-N6ch 00 
8. QxRch 00 
8. R-R8ch 00 

KC 

KC    8. Q-N3ch RO 

PO 8. Q-B3ch RG 
8. QxRch 00 
6. B-N6ch 00 

4. Q-N4 RG 5. QxRch RG 649 

KC 4. RxQch RG 5. K-Nl KC ese 
rc 4. BxQ RG 5. BxP RG 851 

KG 4. QxRch RG 5. KxQ KC 652 
4. RxPch RG 5. KxR KC 653 

054 
655 
656 
657 

8. Q-Q3 00 

4. B-Q3 NO 

RG 8. QxR 

RG 

PD 

3. R-Q3   KD 4. QxRch  RG 
6. B-Q3 PD 7. QxPch RG 8. KxQ 

7. Q-K5 RG 8. BxQ 

7. QxRch  RG 8. BxQ 

KC 

PO 

KC 

RAISE EXPCT  4146  (White expects to win at least a pawn) 

8. R-R8ch RG 1. KxR 
6. RxPch RG 7. BxR 

6. QxPch RG 7. KxR 

6. Q-N8ch RG 7. KxQ 

6. Q-R8ch RG 7. K-K2 

8. B-NGch RG 7. K-Nl 

6. B-K4ch RG 
6. B-B5ch RG 7. K-Nl 

KC 2. Q-R4ch RG 3. K-Nl   KC 4, Q-R7ch .RG 
KC 8. Q-Rßch RG 

KC 

KC 

5. K-Bl KC 

KC 8. Q-R4ch RG 

KC 8. B-R7ch RG 
8. BxPch RG 
8. Q-R7ch RG 
8. Q-R8ch RG 

KC 8. Q-R7ch RG 
8. B-R7ch RG 

4. B-R7ch RG 5. K-Rl   KC 

658 

659 

666 
661 
662 
663 

664 
5. RxB RG 665 

666 
5. QxB RG 667 

668 
5. Q-K5 00 669 

676 
5. QxPch DO 671 

672 
5. QxRch 00 673 

674 
5. Q-K4 00 675 

676 

5. R-K2 KC 877 
878 

879 

686 
681 
682 
683 
684 
065 

686 

687 

688 

689 
696 
691 
692 
693 

694 
695 
896 
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6.   B-Nlch    fiC    7.  K-Nl 

6.   B-Q3ch    RC    7.  Q-R4 
7.  K-Nl 

e. QxPch flG 1. K*Q 
6. R-R8ch RG 7. KxR 
6. R-R4 no 
6. R-N7ch flG 7. KxR 
6. RxB RG 
6. R-R6 RG 
6. R-R5 RG 

6.   R-R4ch    RG    7.  K-Nl 

8. B-R7ch RG J,. K-Rl 

6. R-R8ch flG 7. KxR 

6. QxPch RC 7. KxQ 

6. RxB RG 7. KxR 

6.   Q-R4ch    RG    7.  K-Nl 

6.   P-KR4 RG 

6.   BxBch      flG    7.  KxB 

U    8. B-R7ch RG 
8. Q-R7ch RC 

KC    8. RxQch RG 
KC    8. BxQ flG 

2.  P-ICR4      RC 

KC    2.  RxPch      RC    3,  BxR 
KC 

KC 

KC 8. B-R7ch RG 
8. R-N4ch RG 

2. R-R7ch RG 3. K-Nl 

2. R-N4ch RC 3. BxR 

KC 2. B-NSch RG 3. K-Nl 

KC 8. 3-R4ch RC 
8. P-KR4 RC 

KC 8. RxPch RG 
8. R-R7ch RC 
8. R-N4ch RC 

RG 8. R-64ch RC 
8. Q-B3ch RC 
8. Q-B4ch flG 
8. Q-B7ch flG 
8. QxPch RC 
8. 0-N6ch RC 
8. Q-B2ch RG 

KC 8. B-R7ch RG 
- 8. BxPch RG 

8. Q-R7ch RC 
8. Q-R8ch RG 

KC 8. R-B4ch RC 
8. Q-B3cH RG 
8. Q-B4ch RG 
8. Q-B7ch RC 

5, K-Bl 

KC 4. R-R7ch AC 5. K-Nl 

4. R-N4ch RG 5. K-Rl 

KC 4. R-R8ch RG 5. KxR 
4. R-N7ch flG 5. KxR 

4. R/7xP RC 
4. R-R4 RG 
4. R-R6 RG 
4. R-R5 RG 

KC 

KC 4. B-R7ch RG 
4. BxPch  RC 5. BxB 

4. R-R8ch RG 5. KxR 

4. RxP RG 5. BxR 

KC 

KC 

KC 

flG 

097 
698 

899 
180 

181 

162 

KC 163 
164 
165 
166 
167 
168 
169 

KC 116 
111 
112 

KC 113 
KC 114 

115 
116 
117 
118 

119 

128 
121 
122 
123 

124 
125 
128 

127 
128 
129 
138 
131 
132 
133 

134 
135 
13? 
137 
138 

139 

146 

141 
142 
143 
144 
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6.   B-R7ch    BC    7.  K-Rl 

6. R-R8ch HG 7. KxR 

6. Q-R4ch OG 7. K-Nl 

6. P-KR4 RG 

6. RxPch flG 7. KxR 

6. Q-R4ch RG 7. K-Nl 

6. P-KR4  RG 

6. R-R7ch RG 7. K-Nl 

8. QxPch RG 
8. Q-N6ch PG 
8. Q-B2ch flG 

KC 8. B-N6ch AC 
8. B-B5ch flG 
8. B-Nlch flG 
8. B-K4ch RG 
8. B-Q3ch flG 
8. B-B2ch flG 
8. B-N8ch flG 

KC 8. Q-R4ch flG 
8. P-»CR4 HG 

2. B-N8ch RG 3. KxB 
ICC 8. Q-R8ch RG 

KC 8. R-R7ch flG 
8. R-B4ch RG 

2. B-K4ch RG 3. K-Nl 

2. B-B5ch RG 3. K-Nl 

KC 8. Q-R7ch RG 
8. B-R7ch RG 

KC 4. R-R8ch RG S. KxR 

4. QxPch  RG 5. KxQ 

KC 

KC 4. B-R7ch RG 
4. R-R8ch RG 5. KxR 

4. QxPch  RG S. KxQ 
8. R-R8ch RG 
8. R-N7ch RG 
8. RxP flG 
8, R-R4 flG 
8. R-R6 RG 
8. R-R5 flG 

6. R-N4ch RG 7. K-Ri   KC 8. R-R4ch RG 

6. QxPch RG 7. KxQ 

6. R-R8ch RG 7. KxR 

6. QxQ RG 7. RxQ 

6. Q-R4ch RG 7. K-Nl 

6. P-KR4 RG 

6. RxPch RG 7. KxR 

KC 8. RxB RG 

KC 8. Q-R4ch RG 
8. P-KR4 RG 

RG 8. R-R8ch RG 

2. B-Nlch RG 3. K-Nl 

KC 8. B-R7ch RG 
8. Q-R7ch RG 

KC 8. R-R7ch RG 
8. R-B4ch RG 

4. Q-N4   RG 5. BxB 

KC 4. B-R7ch RG 
4. R-R8ch RG 5. KxR 

4. QxPch  RG 5. KxQ 

KC 

KC 

KC 

KC 

PO 

KC 

KC 

6. R-R7ch RG 7. K-Nl   KC 8. R-R8ch RG 

145 
146 
147 

148 
149 
150 
151 
152 
153 
154 

155 
156 

157 
158 

159 

168 
161 
162 

163 

164 
165 
166 
167 

168 

169 
178 
171 
172 
173 
174 
175 

176 

177 
178 

179 
180 

181 

182 
183 
184 
185 

186 

187 
188 
189 

190 
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8. R-N7ch RG 
8. R/7xP RG 
8. R-R4 nc 
8. R-R6 flG 
8. R-R5 flG 

6. R-N4ch RG 7. BxR 

6. B-R7ch RG 7. K-Rl 

KC 

. RxP 

6. QxPch  00 7. KxQ 

6. R-R8ch AC 7. Kxft 

KC 8. B-N6ch flG 
8. B-B5ch RG 
8. B-Nlch RG 
8. B-K4ch RG 
8. B-Q3ch RG 
8. B-B2ch RG 
8. B-N8ch flG 

KC    8. R-R7ch RG 
8. R-N4ch RG 

RG 5. BxR 

KC 8. Q-R4ch flG 
8. P-KR4  flG 

2. B-Q3ch flG 3, 0-R4 

3. K-Nl 

3. R-K2 1. K-Bl KC 2. Q-R3ch flG 

e. RxP HG 1. BxR flG 2. B-R7ch flG 
b. BxBch RG 7.  KxB KC 8. 

8. 
8. 
8. 
8. 
8. 
8. 

R-B4ch 
Q-B3ch 
Q-B4ch 
Q-B7ch 
QxPch 
Q-N6ch 
Q-B2ch 

flG 
RG 
RG 
RG 
RG 
RG 
RG 

3. K-Rl 

KC 4. RxQch RG 5. K-Nl 

KC 4. BxQ RG 5. BxP 

KC 4. QxRch RG 5. KxQ 

KC 4. t-N6ch RG 5. K-Nl 

6. B-R7ch RG 
6. R-R8ch RG 7. KxR 

6. B-R7ch RG 
6. R-R8ch RG 7. KxR 

6. QxPch  RG 7. KxQ 

6. B-R7ch RG 
6. R-R8ch RG 7. KxR 

6. QxPch  RG 7. KxQ 

6. RxQch  RG 7. BxR 

KC 8. Q-R4ch flG 
8. P-KR4  flG 

KC 8. Q-R4ch RG 
8. P-KR4 RG 

KC 8. R-R7ch RG 
8. R-N4ch RG 

KC 8. Q-R4ch RG 
8. P-KR4 RG 

KC 8. R-R7eh flG 
8. R-N4ch RG 

KG 8. QxPch RG 
8. Q-R4 RG 
8. B-N6   RG 

4. B-B5ch RG 5. K-Ni 

4. B-B5ch RG 5. K-Nl 

4. B-K4ch RG 5. K-Nl 

4. B-Q3ch RG S. Q-R4 

191 
192 
193 
194 
195 

196 

RG 197 
198 
199 
208 
281 
202 
263 
284 

285 
286 

287 
288 

KC 289 

RG 218 

KC 211 

KC 212 
213 
214 
215 
216 
217 
218 
219 

228 
221 
222 

KC 223 
224 
225 
226 

227 
228 

KC 229 
238 
231 
232 

233 
234 

KC 235 

KC 236 
237 
238 
239 
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7.  K-Nl        KC    8.  B-N6        PO 

6-   BKQ AC    7.   RxB RC    8.  P-QR4      RO 

6.   BxQ 

6. R-R8ch OG 

6, R-R4 nc 
G. R-N7ch RG 
6. RkB RG 
6. R-R6 RG 
6. R-R5 RC 

6. R-R4c»- RC 

RC     7,   RxB 

7.   KxR 

7.   KxR 

7.   K-Nl 

6.   B-R7ch    RC    7.   K-Rl 

RC    8.   P-QR4      PO 

3.  K-Bl 

2.   QxPch      RG    3.   KxQ 

5.  (C-Nl 

S.   B-R4 

KC    4.  Q-R3ch    RC    5.   R-IC2 

KC    4.  R-R7ch    RC    5.   K-Nl 

KC    8.   B-R7ch    RG 
8.   R-N4ch    RG 

KC 
2. R-R8ch RG 
8. B-N6ch PC 
8. B-B5ch RG 
8. B-Nlch AC 
8. B-K4ch RC 
8. B-Q3ch RG 
8. B-B2ch nc 
8. B-N8ch RG 

4.  R-N4ch    RG    5.  K-Rl 

3.   KxR KC    4.  Q-R4ch    RG    5.   K-Nl 

e. Q-R7ch RG 7.  K-Bl 

e. R-B6 SG 
e. R-R6 SG 
0. R-R7 SC 
0. R-B5 SG 
8. Q-Q6 SG 
e. R-R5 SG 
0. B-N6 SC 
e. Q-K5 SC 

31 B-R7eh (hove ma 

KC    8.  Q-R8ch    RC 

4.  P-KR4      RC 

KC 

KD 

KC 

KC 

KC 

KC 

Principal  Variation . 31.  B-R7ch,  K-Bl,  32.  Q.RSch,  R-K2.  33. 
Number of  Nodes «489 . ,   JJ. 

Tim»   taken ■  115 secl. 

B-Q3,  QxRch,  34.   BxQ,  R-Q8 

246 

241 
242 

243 
244 

245 

246 
247 

248 
249 
258 
251 
252 

253 
254 
255 

256 
257 
258 
259 
268 
261 
262 
263 

264 

265 
266 
267 
268 
269 
270 
271 
272 
273 
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2. B-03ch. Thereafter it quickly decides that this wins for White and in line 051 
backtracks to depth 1 and tries the other king move at that point. The move 
2. Q-R3ch is tried first here, sirce it is the only safe check and allows the king no 
escape squares. This move for some strange reason is a difficult one for humans 
(possibly because it involves moving a piece away from the scene of action to 
deliver a "long" check; see Chapter VI). Then on 3.-R-K2 CAPS-I1 tries 4. QxRch 
and 4. RxPch with no useful results in 2 portion of the tree lasting until line 063. 

Up to now the White side has always been under control of the AGGRESSIVE 
state. Having exhausted the suggestions of the AGGRESSIVE move generators, and 
still find.ng the position satisfactory, the program now goes into the NOMINAL 
DEFENCE state in which it notices that it has a rook and the QBP en prise. Many 
moves proposed to solve this defensive problem. Among them is the move 4. B-03, 
which is proposed on both accounts. Through a fortuitous accident Q3 is a square 
from which the White queen can fork the BlacK queen and the Black rook at Ql. 
This results in a TSQ value being assigned this square. Further, when a different 
piece considers moving to this square, even though it may be unsafe, the piece is 
regarded as safe (on the assumption that if it were captured the recapture would 
result in the threat for which the TSQ value was assigned in the first place. Thus 
the move 4. B-Q3 is regarded as moving to a safe square while centralizing the 
bishop and accomplishing the defence of the rook. This is most fortunate. The 
correct reasoning should be that it clears a path to a mating square (R8) for the 
rook, and simultaneously attacks the queen, but this is outside the present capability 
of the program. However, once the move is tried, it quickly becomes apparent that 
Black must lose his queen since it is attacked and R-R8mate is also threatened. By 
line 080, CAPS-II has established that it must wm at least a pawn (a rather 
conservative view) and announces this together with an upward change in its level 
of aspiration. 

It now begins to try the other recommended, but as yet untried, moves at the 
top level to see if there is something better, it takes from line 084 to line 102 to 
dismiss the sacrifice 0. R-R8ch, which humans also consider worth looking into. 
Then it takes from line 103 to line 120 to disrniv. the relatively senseless sacrifice 
0. QxPch. After that it goes back to 0. B-R7ch which, due to the reordering rulRS 
has now filtered back to the top of the untried moves stack. It then spends from 
line 120 to line 211 generating a remarkably similar sub-tree to the one that was 
originally generated for 0. B-R7ch. The variations stemming from 1. K-Rl are more 
elaborately treated. However, the variations stemming from 1. K-Bl, which is now 
the principal variation, are quickly terminated and it is not necessary to go through 
the discovery of the key move 4. B-Q3 again, since it is stored in the principal 
variation. This whole episode brings out an interesting point which could lead to 
improvements in the control structure. Here 0. B-R7ch is being searched while 
another recommended move, 0. RxP has as yet not been examined. This should 
probably not be done while 0. B-R7ch is still the principal variation. Then if all 
aggressive suggestions are exhausted and the result is higher that the original 
expectation, all searching can terminate. On the other hand, if another variation 
were to supercede the present principal variation, then it would be all right to 
re-examine it. In this case, such a rule would result in a saving of about 357 of the 
effort on this position. CAPS-il then spends from line 212 to line 265 investigating 
another senseless sacrifice, 0. RxP. After that, control reverts to STRATEGY, which 
proposes  eight  moves, none of  which are appealing enough to be  searched by 
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CAPS-1I. When STRATEGY suggests the move which is now the principal variation, 
the whole search comes to a halt. Thus CAPS-II has a bit of good luck here. If it 
were not for the en prise position of the White rook at KB1, the problem would not 
be solved. As pointed out above, the move ^. B-03 should be recognized as a 
double attack, after which the solution would come off smoothly. 

An example of a small tree can be seen in Figure 5.7. This tree derives from 
the position in Figure 5.8, which is at the crisis point of a famous opening trap. 
Here it is very much to CAPS-II's credit that it finds and dismisses the obvious line 
in a mere nine nodes (line 002 and 003). In returning from this variation, it decides, 
based on causality and alternative considerations, that the results of this line cannot 
be upset at any point after depth 0. This means that the program recognized that 
the consequences of 0. PxB (e.g. 1. QxQch, 2. KxQ, 3. BxPch, and 5. BxR) could not 
have been sensibly avoided below the depth 0 level in the tree. This is in itself a 
tremendous feat, rivalling the economy with which a human could make such a 
decision. The CAUSALITY FACILITY gets exclusive credit for this work, which avoids 
what could have been a search of considerable magnitude, if all the "sensible" 
alternatves at depths 4, 6, and 8 were to be explored, in the style of most of 
today's programs. The program then fixes on the correct idea, 0. QxN, and again 
discovers the principal variation on the first try. Thus by line 005, it has found the 
essence of the whole solution as usually presented in textbooks. However, in line 
007 it begins a whole new and interesting tack in the analysis. The move 1. P-B4 is 
suggested by the AGGRESSIVE state as a multi-purpose pawn move. It turns out 
also to create a flight square for the king. In protecting the bishop at N5, and thus 
renewing the attack on the Black queen, the mate at Q8 is again indirectly 
threatened (this is not statically known to the program). Line 007 through 014 are 
now spent finding and verifying a defence to the Q-Q8mate threat. Once 2. Q-Q3 is 
found to hold onto Black's gains, CAPS-II tries three other suggestions from 
DYNAMIC DEFENCE in lines 015 to 017, before coming to the conclusion that the 
level of aspiration should be raised. After that it quickly dismisses Black's only 
remaining alternative, and recognizing that there is no move at the top which can 
improve on the present principal variation, it outputs its move. The value of the 
position, as frequently happens when there is one clearly superior move, is 
underestimated. However, that does not hurt anything, as the important thing is 
that it not exceed what can be achieved. On a later move, the level of aspiration 
would again be raised. 

4.   Some Current Deficiencies 

The next few examples deal with things that the program does not handle 
properly at present. In Figure 5.9 White to play wins quickly with 1. R-K8, QxR, 
2. Q-B6 and the threat of Q-R8mate can not be met. This turns out to be very 
simple for even moderately advanced human players, since they all recognize the 
basic pattern of the White queen and bishop on the long diagonal in conjunction 
with the particular weakened Black king position. However, our program doesn't 
have an inkling of the solution. There are several reasons for this, the primary one 
being that it does not yet generate moves that threaten mate. Let us assume that a 
facility for generating moves that threaten mate did exist in CAPS-II. Then the 
program would be able to find 2. Q-B6 and follow through the subsequent mate. 
However, it would still not be able to play the preliminary 1. R-K8. We dwell on this 
example ac prototypical of a whole series of problems.   The approach to solving 
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9.   PxN KC     1.   QxQch      RG    2.   KxQ 

6.   B-N5ch    fiC    7.   K-Ql        KC    8.  PxP 

?? 

Figur« 5.7 

KC    3.  B>Pch      flG    4.  B-K2        RC    5.  BxR 
RG 

6.  QxN 

6.  PxB 
KC     1.   BxQ RG    2.  B-N5ch    RG    3.  Q-Q2        KC    4.  BxQch      RC    5.  KxB 
RG    7.   PxP RG 

RG 

KC 

6.   BxP 

1.   Q-Q8ch    RG    2. KxO 

1.  P-B4        RG    2. QxP 

2. Q-B4 

2. Q-Q3 
PD    7.   P-QR4      RG 

KC 3. R-Qlch    RG    4.  N-Q2 

PO 3. Q-Q8inaie 

PD 3. Q-Q8mate 

PO 3. QxQ RG    4.  BxQ 

3.   PxKP RG    4.  QxP 

4.  Q-Q2 

PD 

PD    3.  RPxP 

PO 

RG    4.  RxR 

1. P-QR3 OD 2. QxB 

1. P-QR4 DO 2. QxB 

I.  P-B5       DC    2.  QxB 

RAISE EXPCT    4086       (Black  stands better) 

0.   K-K2        KC     1.   N-Q5ch    PD 

9     QxN move made) 

Principal   Variation . 9 QxN,   10.   P-B4,  Q-Q3,   11.   PxKP,  Q-Q2,   12.   PxP 
Number of  nodes  ■  49 

Time  taken =  12 SECS. 

RG    5.  PxKP        RG 

PD    5. Q-QSmate 

PO    5. PxP RG 

5. P-QR4      DO 

5. P-QR3      DO 

PO 

002 
003 

684 
005 

008 

007 

808 

089 
818 

811 

812 
813 
814 

015 

816 

817 
018 
019 
028 
821 
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Figure 5.8 

Black to Play 

% 
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'/A 
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Figure 5.9 

White to Play 
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wßt'wM'kßwß' 
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Figure 5.10 

White to Play 
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such problems, involving preparation, is extremely important. If it is not done 
economically, the program can be bogged down forever in searching patterns or 
doing means-end analysis for many unimplementable ends. Here two basic solutions 
appear possible. The first involves trying the move 1.Q-B6 and finding that it leads 
to nothing after 1.—QxQ. Then it is necessary to establish that this threat would be 
worthwhile if the Black queen were not in a position to play QxQ. This would 
generate a lemma binding the Black queen to a defensive function on the square 
KB6. This in turn would give rise to the goal of attacking a piece with a defensive 
function, and so 1. R-K8 would ultimately be generated. The second approach 
involves noticing the bacic pattern of queen and bishop on the long diagonal which 
is attainable in the original position. Then noticing tha* the Black queen prevents its 
attainment, gives rise to the goal of distracting the Black queen. Both approaches 
require some very good indicator of which threats or patterns are worth trying to 
get to work when they do not work immediately. For instance, the immediate 1.Q-K5 
also threatens mate or assumes a desirable pattern. This is then met with P-B3 
afier which 2. QxP wins a pawn. Now white could be satisfied with this or try to 
get rid of the blocking KBP or look for some other method of getting the queen on 
the diagonal.   It is not an easy problem. 

The problem in Figure 5.10 is very illuminating for understanding a certain kind 
of myopia that today's programs have. It will presumably be cured when a lemma 
facility exists, but the present program is still susceptable to this problem. In this 
position 1. QxR does not work because of l.--BxPch winning the White queen, as the 
program quickly finds out. The actual solution is 1. P-QS (blocking the bishop's 
diagonal), BxP, 2. RxB winning. However, the program next tries 1. PxP and now 
gives the Black response l.--PxP a low rating because it leaves the rook en prise. 
This is very strange to human eyes, since we have already established that the rook 
is not really en prise as long as BxPch is possible. Clearly, what is needed here 
again is a lemma facility which makes some statements about the safety of the Black 
rook and under what conditions these are true. As a result of the above internal 
misunderstandings, CAPS-II finally decides it can win a pawn by 1. PxP, and 
completely misses the lemma upsetting idea of 1. P-Q6. 

A simpler problem, which also came up in Game 11 note H, below, is seen in 
Figure 5.11. Here Black to play can win material by the simple 1.—R-Bl attacking 
the White queen and x-raying the White rook. The reason CAPS-II fails to find this 
move is that the White rook is considered as being overprotected by the queen and 
thus 1.--R-B1 is only a single attack on a piece which is not low in mobility. The 
solution to this problem consists of placing all pieces defended or overprotected by 
a given piece, on the interest vector of any attacking piece when it is attacking the 
piece that has these defensive functions. In the above position, this would result in 
the rook at QB1 being considered undefended when a move that attacks its 
defender is being examined.   Then 1.--R-B1 should be found rather easily. 

Another interesting failure, due to a function that is as yet not implemented, can 
be seen in Figure 5.12. Here it is Black to play and the winning idea is 1.—l^-RSch 
with the following two variations: 

2.   PxN,   QxPch,   3.   K-Rl.  QxPmate and 
2.   RxN,   QxQ!,     3.  RxQ,     R-Q8ch    and    mate next    move. 
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Black to Play 
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Figure 5.12 

Black to Play 
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mmm m mmm ^ % 
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Figure 5.13 

White to Play 
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The program finds the first variation very well, but in the second it misses the 
critical move 2.--QxQ because it sees the queen is defended and it does not 
consider decoying the White rook to K4 after having sacrificed a knight to be a 
sensible idea. The important point (that is not implemented in CAPS-11) is that the 
White rook also blocks a check at Q8 by the Black rook. This is the function of the 
White rook that becomes critically overloaded, but which is not noticed. It is worth 
noting that CAPS-II is smart enough not to just try the capture 2. QxQ on the 
grounds that it doesn't lose anything. 

In Figure 5.13, we see another interesting mating pattern, which of course is not 
known to CAPS-II. With White to play there is a mate in two with 1. Q-N6!, 
(threatening 0-R7mate), PxQ, 2. NxPmate. The failure here is again due to the 
inability of CAPS-II to notice mating threat.. The move 1. Q-N6 even when fried is 
only considered to be useful for attacking the KBP. Actually CAPS-II realizes that 
the queen may be safe on N6 since this is a square where a White knight can give 
check, and this fact is known to the data structure. However, it does not have 
access to the idea of a mate threat. Instead of the book solution, the program finds 
an interesting but inferior solution, which we present because it shows a certain 
degree of ingenuity. CAPS-II likes 1. N-K3 (threatening queen and pawn, 
whereupon RxN loses the queen by the discovered attack NxPch). If instead 
1.--Q-B1, 2. N-N6ch wins even more material, so the program succeeded in finding 
a clear win, but not the right one. 

C.   FULL GAMES PLAYED 

We next present two games that were played between CAPS-II and TECH playing at 
depth 3. These games are probably more illustrative of the strengths and weaknesses 
of CAPS-II in its present state, than any other evidence presented. It was originally 
hoped to match our program with TECH playing at tournament setting where it takes 
about three minutes per move. However, it became clear after these games that there 
is still quite a bit of work to be done before this would be a match in which our 
program had a chance to win. As it was, there was a great time mismatch in the 
contost; TECH taking about 20 seconds of CPU time per move as against about 6 minutes 
per move for CAPS-II. However, this and other existing gaps seem fairly sure to be 
narrowed in the near future. The comments on the games are intended to be insightful 
for the structure of the programs rather than to arbitrate over what move is the best in 
each situation. 
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GAME I 

WHITE- CAPS-l!        BLACK- TECH (Depth 3) 

1. P-K4 P-k''4 
2. N-KB3 N-QB: 
3. P-G4 PxP 
4. NxP N-B3 
5. NxN  (A) NPxN 
B. N-B3 P-Q4 
7. PxP PxP 
8. B-N5ch B-Q2 
3.   BxBch QxB 
18. Q-K2ch B-K2 
11. 0-0 0-0 
12. B-B4 P-Q5 
13. N-K4 NxN 
14. QxN QR-Nl 
15. B-K5 R-N5 

IB.   P-QR3       (C) P-KB4 
17. Q-Q3 RxP 
18. Q-B4ch K-Rl 
19. P-QB3  (D) P-B5 (E 
20. PxP P-B3 
21. BxP?? (F) RxB 
22. Q-Bl QxP (G) 
23. QxP R/7xBP!! 
24. Q-B8ch R-Bl 
25. QxRch RxQch 
26. K-Rl RxRch 
27. RxR BxP 
28. R-B5 ? Q-Q8ch 
29. R-Bl QxRmate 

(H) 

(B) 

(A) The combination of this move and the next is weaker than the immediate 5.N-QB3 
However. CAPS-II plays the first move searched that is equal tactically to the best 
result it can achieve. 

(B) This illustrates a frailty of TECH; it makes the positionally preferred move of all 
those that are equal to the tactically best result. Here positional means most 
centralizing and mobilizing.   Since RxP does not win anything, R-N5 is preferred. 

(C) Apparently with a view toward 16.-RxP( 17. BxP and both the rook and the QRP are 
attacked, or if 16.-R-QR5. then 17. P-QBS since now the rook is undefended. However, 
in the first line the QRP can never be taken with gain. 

^VAP*P ^eovPnaCCePtableJaCtiCa, m0Ve is Ch0sen- Stranee|y enough Black «nnot play PxP as QxP/S recovers the pawn with interest, however the move is positionally 

(E) 19.-- P-06 is much superior. 

Tl ARVveR
ry

9i)
nStn miVeHb,rd!r' White thinkS he Wi,, Win a pawn in this W since after dl.—HxQ, 22.  Q-Bl attacks both rooks. 

(G) At this point in the analysis performed by CAPS-II on the previous move, several 
remedies were suggested for Black. R/5xBP and R/7xBP were searched and found to 
be tactically madequate. Several moves were suggested to remove or defend each of 
the rooks, but none of the these except the two above mentioned received a hiph 
enough static score to pass the forward pruning device. The instructive thing is that 
QxP was suggested by the defensive move generator both to defend the rook at 0N7 
and the rook at KB5. In CAPS-II when a move is multiply suggested it retains the 
highest static rating. However, the important point of a move having two useful 
functions, each of which it should receive credit for. was lost. This has since been 
partially remedied. 
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(H) A tremendously strong move after which White must lose additional large amounts of 
material, e.g.   24.  Q-K8ch, R-Bl and there is no good defense to the threat of RxRmate. 

GAME II 

WHITE - TECH (Depth 3)     BLACK - CAPS-II 

1. P-K4 P-K4 
2. N-KB3 N-QB3 
3. P-Q4 PxP 
4. NxP Q-R5 
5. N-QB3 B-B4 
B. B-K3 NxN 
7. BxN BxB 
8. QxB Q-KB3 
9. P-K5 Q-K2 
18. N-Q5 Q-Ql 
11. P-KG P-KB3 
12. B-QN5?? P-QB3 
13. PxPch BxP 
14. Q-K3ch K-Bl 
15. B-B4 PxN 
IB. BxP B-R5 

(A) 

(B) 

(C) 

17. BxP Q-R4ch 
18. P-QB3?? (D) R-Kl 
19. B-K4 B-B3 (E) 
20. P-QN4 Q-K4  (F) 
21. P-B3 P-B4 
22. 0-0 PxB 
23. PxPch N-B3 
24. QxP QxBP?? (G) 
25. QR-B1  (H) QxP 
2G. RxB K-Nl  (I) 
27. R-B7 ! K-Bl??  (J) 
28. RxP? Q-K2?? (K) 
29. RxQ RxR 
38. RxNch K-Nl 
31. QxR P-R4 
32. R-B8mate 

(A) In moves four through seven, one can again see the lack of positional influence in 
Black's play. 

(B) This fine defensive move has been previously discussed in Chapter III. Now it is 
TECH's turn to show its weaknesses. 12. B-N5 is also played when TECH searches to 
depth five, since it is the positionally preferred move which loses no material in the 
analysis: 12.--P-B3, 14. PxPch, BxP, 15. 0-K4ch and the quiescence analysis shows that 
Black can start no sequence of CAPTURES at this point that yields any gain in material. 
The fact that nieces remain en prise does not register with TECH, but CAPS-II is 
not fooled b            istance of the Horizon Effect. 

(C) Very imaginative, but B-KN5 preventing 0-0-0 would be better. Now White would 
be well advised to castle Q-side instead of taking the pawn. Then there would be 
threats of Q-R3ch, BxN, and BxP and only 17. 0-0-0, N-K2!, would hold on, 18. BxP 
being met by Q-B2! threatening the bishop and mate at QB7 and thus only losing a 
pawn.   Both programs are unaware of this. 

(D) White has many problems and cannot see to the end of it all. If 18. Q-02, R-Klch, 
19. K-Ql, R-Ql wins. If 18. Q-B3, QxQch, 19. PxQ, R-Nl, followed by BxP regains the 
pawn since 20. B-K4, R-Kl, 21. P-B3, P-B4 loses the bishop. If 18. K-Bl, Q-N4ch, 
19. K-Nl, QxB, 20. Q-R3ch, N-K2, 21. QxB, QxNP recovers the pawn. If 18. K-Ql, BxPch, 
19. KxB, Q-B2ch, 20. Any, QxB again reestablishes the status quo. It is not clear if 
CAPS-II worked all this out, since it was running in a mode with no tree print out. 
However, considering its general performance level and the fact that it took quite some 
time on its 16th move, I consider it highly likely that it worked out something similar to 
this since all the variations are rather forcing even though they are deep. One thing is 
clear, this is the first time in annotating computer chess games, that I felt such a deep 
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analysis was an attempt to explain what was actually being calculated. Now, TECH, 
beinß unable to see far enough, thinks it can hold onto the pawn, but instead gets into a 
pin which loses another piece. 

(E) This seems rather strange since 19.~P-B4 wins the bishop more cleanly. However, 
there is intrinsically nothing wrong with the move since 20. BxB, RxQch, 21. PxR, Q-N3 is 
worse for White than losing the bishop. 

.(F) Here CAPS-II begins to go positionally astray. This move is made as being the most 
centraliazing of several that are equal materially. It is worth noting that it relies on the 
variation 21. BxB, QxPch winning everything, which might however be somewhat 
obscure for human eyes. However, the move is a positional error, since Q-R3 
preventing K-side castling and covering the Black QRP, and also Q-R6 are considerably 
stronger. 

(G) With his last move White got a little more out of the position than Black need have 
allowed. However, here the obvious QxKP threatening mate was more than sufficent to 
win.   Instead CAPS-II thinks it can win two pawns. 

(H) In performing its analysis the program did not consider this move, since chasing the 
queen is considered pointless. CAPS-II does not consider this a double attack, since the 
bishop is "over-protected" by the queen. This problem is known to us since it also 
occurred in several of the "Win at Chess" positions (see the discussion of Figure 5.11 
above). Here it provides a glaring example of how important superfine specification of 
all detail is if one wants to have a program that economically and yet effectively 
operates in its environment. What we mean is that clearly generating all attacks on a 
queen is a waste of time unless it is a low mobility piece. However, when a queen is 
attackable a special routine is required which now places all pieces that the queen is 
currently charged with defending or over-protecting on the potential target list. Then 
the effect of this move would be noticed by the aggressive move generators. 

(I) Now Black notices that White is threatening mate in three moves by 27. R/6xNch, 
PxR, 28. RxPch, K-Rl, 29. Q-B7mate. TECH would have had to be running at depth 6 
before it could have decided on the move 27. RxNch, so it clearly had no such intentions. 
However, the deeper searching program is looking for truth, since that will ultimately 
pay off best, and is not concerned with its opponent's frailties. Therefore the text 
move, which meets the threat. However, in this position which is difficult by master 
standards, neither program really understands what is going on. Objectively speaking, 
after the text. White has a winning position. The only defence, leading to a draw, was 
26.—R-K2!, 27. Q-R8ch, R-Kl, 28. Q-R7. White cannot play 27. R-B8ch because K-B2! 
wins. Nor can Black play 26.-Q-K2 because of 27. R-B7, 0-K3, 28. P-K5, QxKP, and 
White mates in three beginning with 29.   R-B7ch. 

(J) This blunder is due to a level of aspiration problem which is very difficult to trace 
since CAPS-II took 45 minutes of CPU time on this move. The correct move is 
27.—Q-Bl, after which White can still win by 28. Q-Q4 threatening ooth Q-B4ch and 
P-K5. Then 28.-RxP does not work because of 29. QxR, NxQ, 30. RxQch, KxR, 
31. R-B8ch. On a rerun of this position, when the program was given the expectation of 
maintaining the status quo materially, it did play 2/.--Q-B1. Therefore we conjecture 
that CAPS-II was expecting to win the KP, and now when it finds out this is no longer 
possible, it failed to adjust its level of aspiration downward properly and thus makes a 
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blunder allowing mate in three by 28. R-B7ch, K-Nl, 29. RxPch, K-Bl, 30. Q-B7mate. 
However, TECH fails to see this since it is a depth 6 effect, and in turn makes a blunder. 

(K) A horrible  move just when the game could be saved by 28.—R-K2!, after which 
White could no longer win.   It is very instructive, in terms of understanding the intricacy 
of program structure, to see how this happened.   CAPS-II looked at 28.--R-K2 but in 
the variation 29. RxR, QxR, 30. QxQch, the move 30.--KxQ is evaluated only in terms of 
its offensive  potential due  to the way CAPS-II is organized.    (This has since been 
remedied).   This meant that 30.--KxQ was known to recover the queen, but there was 
no knowledge that it would also protect the en prise knight.   The static score for this 
move was therefore so low (since it was expected that a knight would be lost in any 
case) that  the  move was  not searched on the first pass, and CAPS-II came to the 
conclusion that about three pawns worth must be lost for Black.  The level of aspiration 
was then reset accordingly and the Alpha and Beta values at the top were set to what 
was thought to be an optimistic loss of three pawns for Black and plus infinity for 
White.   Now with the lower level of aspiration, the move 30.-KxO was searched and the 
whole variation was found to produce a very good result for Black.  However, when this 
was backed up to the top, it was cut off by Alpha-Beta as being outside the limits of 
what Black could achieve.    So the utility of 28.-R-K2 could not become known due to 
the initial error by the static evaluation function and the consequences which followed 
it.   One might suggest that this would not have happened if Alpha and Beta had been 
reset to plus and minus infinity on the second search after the level of aspiration had 
been reset.   However, this approach has been Iried previously in this program, and has 
at   times  resulted  in  the  program getting into an infinite loop as follows: When the 
second search in done, the real value of the move 28.-R-K2 would be found.   However, 
this is so much better than the revised expectation that another search is performed 
with a higher level of expectation.    However, now the static value of 30.—KxQ is not 
high enough to be searched, so a low value is returned to the top of the tree, and the 
expectation is lowered again, etc.   To prevent this, the current paradigm is necessary. 
However, this move shows how closely each agency must work with every other if the 
present economy is to be achieved, and how frequently a mistake by one agency cannot 
be covered up by a combination of actions of the others.   This point is pursued further 
in chapter VI.  After the move in text, the game becomes hopeless. 
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CHAPTER VI 

REFLECTIONS, CONCLUSIONS AND RECOMMENDATIONS 

A.   DOES BEING A GOOD CHESS PLAYER HELP DOING CHESS RESEARCH 

The author is a former Correspondence Chess World Champion, and has been among 
the top ranked over-ti e-board players in the U. S. for over 20 years. As such, I am 
frequently asked how much my being a top chess player has helped in doing this 
research.  The following statements summarize my attitude toward th!. matter: 

1. There is nothing in this thesis that is inherently dependent on having more than a 
rudimentary knowledge of chess. 

2. Being a good player makes it easier to discriminate inadequacies in the behavior of 
a program, not only in the actual selection of a move but also in the methods that 
support this. Some of these inadequacies may appear quite normal to a weaker 
player. Being able to discriminate problems is the first step toward finding a 
solution. Thus being a good player has helped to identify certain problems that 
other models of chess have, and that early versions of this work had. It has also 
helped in discriminating useful facets that other disciplines (psychology in this case) 
have had to offer. 

3. This is the totality of effects that I have noted. It seems clear, however, that at 
some later stage in the development of chess programs, higher level knowledge 
must be available to such a program. This knowledge must either be input from a 
good human player or, if a machine is capable of assimilating such knowledge from 
its environment, then probably a good human player should supervise this activity. 

B.   ON MODELS OF PHENOMENA 

In science there is a spectrum along which models of phenomena can be arranged. 
At one end of the spectrum one finds such universal models as relativistic mechanics 
which are considered to explain completely the phenonmena with which they concern 
themselves. At the other end of the spectrum one finds the statistical type of laws such 
as those in agriculture relating to crop yields. It is no accident that sciences that deal 
in universal laws are considered to be the firmer sciences, since these laws allow much 
more quantitative prediction. 

It appears that not much has been done in computer chess toward moving in a 
direction of universal. It is considered adequate to merely specify moves which have a 
good statistical chance of being appropriate, and then let the tree search weed out the 
good from the bad. However, as we have noted earlier in this document, the tree 
search is overburdened. It is therefore incumbent on the designer of a chess program 
to do all he can to relieve the tree search of unnecessary work by using his data well. 
This involves not taking the statistical posture if it can be avoided. 

Consider the following example. A knight move exists which forks two major pieces. 
However, the square on which the fork could take place is guarded by a pawn. The 
statistical method considers the value of the major pieces that would be attacked as 
positive features, and the fact that the knight could be captured as a negative factor. 
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Summing all these would probably yield an evaluation which indicates the move is worth 
trying. However, there is one overwhelming causative feature here which such an 
approach ignores. That is, that if the knight were captured all its threats would also 
disappear. Therefore the primary question that must be asked is whether the pawn 
that will be doing the capturing is rendering any other important services for the 
opponent. Only if this is true, is if even worth considering the impact ov the move, since 
the capture of the knight could then produce other consequences. Clearly, using such 
AND/OR sequential logic produces a much superior utilization jf the information at hand. 
This is the approach that we have tried to follow in this work. We consider the AND/OR 
description of events on the chess board to be an approach with no limits on its 
accuracy, given only that we are willing to continue the process of adding tests as long 
as this proves useful. Our experience with this approach indicates that it is many times 
more powerful in perceiving worth, than a statistical approach which would consider two 
to three times as much information. 

C.   ON BRINGING UP THE PROGRAM 

The author has developed one previous chess program [Berliner, (1970)] which 
belonged in the class of programs spawned by the initial efforts of Greenblatt. Since a 
program of that type has a fairly well defined structure, the process of bringing up and 
improving such a program involves implementing well defined control structures and 
then adding ever more analysis and evaluation procedures to the program to improve its 
acumen. The work on tree searching may include some consideration of what types of 
move go into the quiescence analysis, and how to adjust the width of search for 
different depths of the tree under various time constraints. Other than that, all the 
effort is in getting the right moves into the search and then improving the ttrminal 
evaluation function in order to detect worthwhile advantages. In the current program, 
however, each of these tasks had new dimensions. 

During the development of the program, the author was confronted with three 
generic problems which kept reappearing. This was true even though each time the 
problem was dealt with in such a manner as to make it go away at that point in the 
development process.  The^e problems were: 

The Move Proposal Problem - Making sure that the correct move in a given position 
is in fact generated by some move generator. 

The Move Appreciation Problem - Making sure that once a move had been 
generated, its potential is properly evaluated so that it will be searched at a reasonable 
point in the total analysis. 

The Move Selection Problem - Making sure that the tree search does not grow too 
large, while at the same time making sure that no incorrect decisions within the tree 
cause sub-trees with meaningful nodes to be cut off. 

The move proposal problem involves having special move generators for each 
purpose. Thus if a move generator is not complete or a purpose not defined, important 
legal moves may not be generated. This is quite different than just assigning high 
values to "good" moves in a pass-in-review type move generator. Firstly, the set of 
purposes is vast, and some are inevitably left out. Secondly, a move generator which is 
complete for  a particular purpose  may still be very blind to what else any move 
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suggested by it may accomplish or destroy. This raises problems for the evaluation 
function which must accept the word of a move generator that this is a worthwhile 
move, while at the same time trying to evaluate the move in a more global context. 

The move appreciation method in this program attempts to be more of an AND/OR 
discrimination ^ree, rather than a sum of factors type of selection procedure. It became 
clear early in the development of the program, that the factors mentioned in Chapter III 
do not sum very well. Therefore, the evaluation was developed to respond to factors 
that appeared important in the environment. Frequently, when several important 
factors pointed in opposite directions, if was sufficient to note that one pointed in a 
favorable direction. Thus this was an OR condition; someihing that would be difficult to 
construct in a sum of factors scheme. However, such decisions also allowed worthless 
moves to come under scrutiny. Thus, there was usually an additional nested AND level 
which again posed restrictions on the move qualification process. This procedure of 
adding more conditions and attempting to do away with statistical appraisals of factors 
continued throughout the development of the program. 

Finally, move selection, which in effect is determined by the structure of the search 
tree, was a continuing problem. The different goal states evolved from needs that the 
program evinced, since the absence of such a goal state would frequently send the 
program off on a wild goose chase. Also the transition rules between goal states 
provided mciy opportunities for making design errors. It was our experience that 
apparently air-tight definitions of transition conditions frequently had a loop-hole which 
was sooner or later found by the program and used to miscarry the analysis. Needless 
to say, any tree search which could perpetuate such logic errors could not be held 
responsible for the validity of its output. As mentioned in Chapter V, almost the whole 
effort in going from CAPS-I to CAPS-II was in straightening out this aspect. There 
were also several tree pruning rules which failed to work out and later hid to be 
removed; however, the goal state management problem was paramount in this area until 
it became solid. 

D.   WHERE DOES THE POWER COME FROM 

The present program does not yet play as well as even our previous program. This 
is due mainly to its lack of consistency. However, this does not disturb us. The 
mandate for a program that can play really well is that it be able to search deeply when 
required and discriminate effectively at all times. The present program is well on its 
way to doing this. It already has deep searching capability, and we expect this to 
increase in the near future. It does not do much positional and strategical evaluation. 
However, since it looks at a very limited number of nodes, the multiplication factor for 
additional computing done at each node is low. Therefore, additional discrimination 
facilities can probably be put in at low computing cost when tactics has reached the 
appropriate level of competence. We consider the present program extendable to first 
getting rid of the remaining tactics problems and then addressing the positional and 
strategic aspects of the game. We expect to be able to do this without significantly 
altering the time it takes for the program to make a move. 

Thus, our program's power is manifest not in its abiü.y to beat its opponents, but 
rather in its ability to circumnavigate a large search space. This derives partly from the 
representation, and partly from the management of the tree search. We consider first 
the influence of the representation in providing structure which slows exponential 
growth. 
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1.   The Representation 

We can consider power to be related to the depth of projection of a particular 
device. Thus a device which projects a future state of the board two ply from now 
is more powerful than one that projects a state one ply from now. It is also 
obvious that power is not linearly related to the depth o. projection since we are 
dealing with an exponential growth process. Table VI-1 shows the depth projecting 
capabilities of the various bearing relationships. 

TABLE VI-1 - Depth Projection of Bearing Relationships 

Relation Depth 

DIR 1 
OBJ 2 
ETHRU 2 (minimum) 
DSC 3 
OTHRU 3 (minimum) 

To see how we ernve at these figures consider the relation DSC(PC, SQ). This 
relation states that if a certain intervening piece were to move away, PC would then 
be able to move to SQ. Clearly, that requires a three ply sequence: The intervening 
piece moves, the opponent moves, and then PC moves. Thus if SQ were Known to 
contain some interesting target, knowing the relation DSC would allow projection 3f 
part of a board state that could not occur for at least three ply. For some of the 
relations such as ETHRU and OTHRU which are transitive, the depth projection could 
be even higher depending upon the number of intervening pieces that exist 
between PC and SQ. Clearly the role of knowing that there is a target of interest 
on SQ should not be minimized. Otherwise, just Knowing that a certain piece could 
reach a certain square, would not give much useful Knowledge in the attempt to 
reduce the rate of exponential growth. 

While bearing relations give information about what is possible, functions * give 
information about what is essential, given a particular world view of what is going 
on on the board. Thus while moving an intervening piece away to create a 
discovered attacK could lead to some gain, it is not clear that it will unless there is a 
worthwhile target which can in fact be captured with impunity. However, moving 
away a piece that has a defensive function to fulfill will much more frequently cause 
a loss. Table VI-2 shows the projection potential of the various functions. The 
minimums can be worKed out from the definition of the function; the maximums are 
those that could reasonably be encountered in a game situation. 

(*) The first Known use of functional analysis in chess is in a Carnegie Institute of 
Technology term paper entitled "Chess Program" by Duane R. PacKard and Thomas P. 
Cunningham. In this paper which was inspired by Dr. Allen Newell the authors apply a 
functional analytic method to several chess positions. The method was used to simulate 
the playing of one game. 
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TABLE VI-2 - Depth Projection of Functions 

Funct ion Hinimum Depth 

Attacking (a material object) 
Attacking (a threat square) 
Defending (a material object) 
Defending (a threat square) 
Blocking (opponents activity) 
Blocking (own activity) 
Guarding Escape Square 

1 
3 
2 
4 
2 
3 
2 

Practical  Maximum 

5 
9 
8 

18 
8 
9 
B 

The above maximums occur when there are several functions associated with a 
single objective on a bq^re. When the program is investigating function conflict 
(overloading), we are projecting a minimum of three-ply; e.g. capture on square A, 
recapture on square A and capture on square B. If the squares on which the 
overloading takes place have many functions associated with them the projection 
could easily be 8 or more ply. It is true that most of today's programs have data 
structures than will allow them to predict what is going to happen on an OCCUPIED 
square most of the time.   However, the present structure also deals with: 

1) Squares that are blocking important activity that is to take place on another 
square. 

2) Squares to which certain pieces could potentially move. 

3) Conflicts that arise when a piece needs to perform functions on more than one 
square. 

Thus the above data structure serves to point to tactical goals which could be 
reasonably be expected to be achieved many moves away. This is due to the 'act 
that functions are assigned alternately for each side so as either to create a balance 
or an imbalance. This fact is then noted. It is then possible for the program to 
judge what would happen if one unit of strength were added or taken away. Thus 
if one views tactics as the domain of what can be accomplished by forcing moves, 
then the data structure is well equipped to tell what kinds of things can be 
influenced and how to influence them. Since this influence could take many ply of 
searching to unravel, the data structure can point to features which are out of the 
perceptual domain of any program we know of. Thus it is possible to generate 
moves which could: 

1) Begin a chain of captures of indefinite length leading to a gain in material 
(capture of an en prise piece). 

2) Require  an immediate response to prevent such a sequence from becoming 
possible (single threat moves). 

3) Make possible a future gain by invoking more than one of the above type of 
threats with a single move (multiple threat moves). 

^l) Capture an apparently well defended piece because one of its defenders has 
another important duty to perform. 

  ii-[iii«iiiiii 



i^MMiiiKMiiiiiii, "IMI.IIIIII Mii.nuiiiWi«iiim«^iwi««M*««mmiapn9^^^wiP'WMwijiww>in>np»Miim<iiwjMii   !ii<RPBppBp(piiippwHP«rw"m»iw.Pii«ii"w.M'w u.-ji« 

VI   -  6 

5) Occupy an appparently well defended square because one of its defenders has 
another important duty to perform. 

6) Have a good likelihood of causing a gain by attacking a low mobility piece that 
will have difficulty in removing itself from danger. 

All the above presume tht everything on the board except what concerns the 
square{s) in question is inconsequential. This is a simplifying assumption that 
frequently proves to be wrong. However, it does provide a basis for doing 
business, and the tree search still arbitrates over the ultimate worth of any move. 
Thus as long as the tree search is not asked to do too much work — leading to 
unacceptable levels of exponential growth -- this method is satisfactory. It can 
always be improved by the simple expedient of finding a few more of the moves to 
be worthless. This is done by adding some moro AND/OR conditions to the static 
analysis. Each new condition is added as a test at a tip node of the present 
discrimination tree. If there a-e N tip nodes, adding a new test to the tree adds 1/N 
to the length of the average path in the tree. Thus this procedure adds computing 
cost in inverse proportion to the number of branches already existing in the 
discrimination tree. This cost goes down as a function of the size of the 
discrimination tree; a most commendable property, especially when compared to the 
exponential cost of tree searching. 

2.   The Tree Search 

It is more difficult to explain why the tree search is powerful. There does not 
appear to be much question that it is more powerful than the standard approach. 
The branching factors are 1/3 to 1/2 that of standard programs. This can not be 
explained away by saying that this program does not play as well as the best 
standard programs. The fact is that these branching factors have been more or less 
maintained throughout the development of the program. The largest increase in the 
size of the branching factor came during the time when several errors in the 
transition rules between goal states were found. On the other hand, the addition of 
the PREVENTIVE DEFENCE goal state resulted in a noticeable decrease in tree size. 
As the program gets better, the branching factors do not change significantly. One 
could associate getting better with searching more moves and/or being better able 
to evaluate terminal positions. The latter does not change the branching factor. 
However, we have found that as more moves tend to be searched, it is possible to 
either partition the problem further, thus creating more goal states, or to improve 
the specification that decides which moves are really pertinent, thus eliminating 
some moves from the search. This also improves the ordering of proposed moves, 
and tends to maintain the branching factor about where it was. 

The tree search appears to derive most of its power from the partitioning idea, 
rather than from the set of stopping rules. Of the new stopping rules, the Claim 
System seems to be the most powerful. Also, the ability to stop and retrace the 
search (search-and-scan) because of a neglected alternative at a previous node 
appears important, when it can be implemented correctly. 

The partitioning of move selection at a node, however, seems to be mainly 
responsible for the fact that 507- of all nodes have only one successor. It is the 
ability to find quickly the correct goal state for a node, and then have only a limited 
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number of moves be associated with the goal state that provides the selectivity of 
the tree searching method. As mentioned elsewhere, much improvement in this is 
still possible. Most of the goal states can be further broken down. The 
AGGRESSIVE state is a good example. With an adequate amount of analysis of the 
position at a node, and with theme information to further restrict things, it should be 
possible to limit the moves that are generated to those attacking a specific piece or 
dealing only with a small set of squares. This type of further subdivision would 
probably help the DYNAMIC DEFENCE state most. For deep consequence 
descriptions, as many as 20 or so moves may be generated. Some further 
selectivity in the descriptive process or in the goal state must be found here. 

E.   HOW CAN LEMMAS BE IMPLEMENTED 

We have at several places in this document referred to lemmas which could be used 
to save information from one position to the next, both within a tree and from tree to 
tree. We will now make these notions more concrete. Lemmas are to be used to save 
information about a possible move, from a position in which this information is first 
discovered. Let us look at the four possible categories into which a move can fall with 
respect to its static evaluation and actual goodness. 

1) A move is statically evaluated as good and is good 

2) A move is statically evaluated as good and is bad 

3) A move is statically evaluated as bad and is good 

4) A move is statically evaluated as bad and is bad. 

Moves in categories 3 and 4 are never tried by the program. This, incidentally, 
brings out the importance of evaluating all moves optimistically, since we would like to 
have the occurence of moves in category 3 be very, very low. When a move is in 
category 1, there is also no problem since the move will be accepted as good by the 
program and its view is thus consistent. The moves in category 2 pose the problem 
that lemmas address. They appear to be good or have some redeeming features, b'jt 
are not. Furthermore, they end up being tested again and again in slightly different 
environments, since positions in a search tree are highly auto-correlated. In most 
instances, the same result comes out — they are rejected. This is because, although 
the position is slighly changed, there are still some basic factors in the position that 
prevent the possibly good move from being good. Lemmas address the retaining of this 
essential constancy of the position with respect to this move. 

Moves in category 2 can be further classified into those appearing to be strictly 
good and those that are worth trying because they have some redeeming features. In 
the first class are the moves 1.—QxR and PxR in Figure 1.9 (page 1-9). It is relatively 
easy to construct lemmas for this type of move. When it is tried and refuted, the 
backing up process will bring back the Refutation Description contained in RFCS, RSQS, 
RPATH, RTGTSJGTSQS, and TPATH. To this must now be added the present location of 
all pieces that participated in the refutation. The lemma also receives a value, which is 
the amount that would be lost if the move were tried. Then a condition for this move 
not to be rejected on account of the lemma in future positions is: 
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1) That one or more of the named pieces no longer is in its old position. 

2) That one or more of the named pieces now has a new defensive function, worth at 
least the value of the lemma, that it has been assigned. 

3) That  one  or  more  of  the  squares  named  as  path  squares  in  the  Refutation 
Description is now occupied when it was not before 

4) That one or more of the threat path sqi ares has a new piece that can now occupy 
it and could not have in the position in which the lemma was discovered 

5) That one or more of the squares that was an RSQS square is now controlled by an 
own man when it was not before. 

Unless one of these conditions is fulfilled, there should be no essential change in the 
position which would make the formerly not-good move, now good. Unfortunately this is 
not a complete mechanism, since it is possible to counter such a refutation indirectly. 
This means that at the end of such a variation, which formerly was a decisive refutation, 
we could now have a series of moves which make the refuter sorry he did his 
"refutation". This will usually take the form of having a man in a position to attack one 
of the RSQS square, when this man was not in such a position before. However, it could 
also come about by utilizing a line through a point that was vacated by either side's 
men during the refutation. However, an implementation which left out some of these 
fine points would undoubtedly do more good that harm, since refutations of refutations 
would tend to be rather deep variations that only very good opponents could calculate. 
Also, the indirect defence mechanisms discussed in Chapter II!, Section D, could possibly 
be used here. 

The problem of creating lemmas about a move that was considered worthwhile 
because it had redeeming features, but did not work out, is similar. Here again the 
Refutation Description plays a role. What has happened is that the redeeming features 
were not "redeeming" enough, so that the Refutation Description tells where the 
redeeming process failed. Therefore a necessary condition for a move with redeeming 
properties to be tried at some later stage is that one of the following be true: 

1) Any of five conditions mentioned above is true. 

2) The suggested move has some new redeeming features that it did not have before. 

3) An RSQS square is now attackable by one or more of own men which could not 
perform this service before 

While the above is still rather sketchy, there is enough information on how lemmas 
could be implemented and enough mechanisms already in place to try this soon. It is 
interesting to note that a much simpified form of this idea has been tried in a bridge 
analysis program [Berlekamp, 1963)]. It should be noted that it is important to express 
the lemma in a language which is neither too detailed nor too fuzzy. The former case 
would result in continuous re-examination as changes in single conditions, which by 
themselves do not upset the validity of the lemma, have to be looked into. The latter 
case could result in being unable to define or detect a critical change in the truth value 
of the lemma.    It should be apparent that lemmas can concern themselves with other 
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things than the material issues presented in the example below.   For instance, lemmas 
could be posited about the conditions under which control of an open file is retained. 

To illustrate an actual lemma in a rather simplified situation, consider the position in 
Figure 4.8 (page IV-31). Here after White plays 1. R-R8 Black tries RxP and finds out 
that it loses a rook after 2. R-R7ch. Thereafter, Black checks the White king along the 
rank and after every check tries again to play RxP; each time finding that this loses to 
R-R7ch. The first time this sequence was discovered a lemma could have been 
constructed. This lemma is of the type that applies to a move that appears to be good 
and is in actuallity bad. Here RPCS is the White rook located on KP8. If this rook were 
to move it would invalidate the lemma. RSQS s the set KR7 and QR7. If either of these 
squares were to get an additional Black man controlling them or a White man occupying 
them, it would invalidate the lemma. RPATH is the set of squares KN7, KB7, K7, Q7, QB7, 
QN7. If any piece were to newly occupy such a square it would invalidate the lemma. 
RTGTS are the Black king on KB2 and the Black rook which becomes a target on QR2 
when it takes the pawn there. If the king were to move this would invalidate the lemma; 
the rook plays no role, since it comes under attack on a different square from the one it 
is on now. TGTSQS is the set KB7 and QR7 and as long as no new defensive piece 
controls them the lemma remains valid. TPATH a'e the set of squares KN7, KB7, K7, 07, 
QB7, QN7. As long as no new piece occupies hese, or a defensive piece moves into a 
position to do so, the lemma remains valid. It is easy to check that the lemma will 
remain valid as long as the Black rook only moves up and down the QR-file. Since all 
the Black pieces are involved in the lemma, no additional piece can come to their help (a 
condition which might make an indirect defence possible). Thus, unless the White king 
manages to move to a newly precarious position (making a nev. counter-attack possible) 
the lemma remains valid. We have not yet determined a method of dealing with the 
latter situation. 

F.   SOME SPECULATIONS 

The following protocol was collected with myself as subject and data collector. It 
was written down immediately after first looking at the position in Figure 5.4 (page 
V-l 1). At thdt time I was struck by the curious inability to see the key move 2. Q-R3ch, 
which has been confirmed in other good players. However, there are other interesting 
features in this protocol too. It should be compared to Figure 5.5 (program's tree 
search) to get an appreciation of the differences in time allocation to problems that 
exist between a Master and the present program. As an instance of this, consider the 
amount of effort that it takes the Master to find the move 2. B-Q3ch (after 1. B-R7ch, 
K-Rl) as against the program's effort. 

Master Player's Protocol for Position in Figure 5,4 

Hell lets see here; if something is going to happen here it must be 81 
to the Black king. It's either going to be a combination with R-R8ch 02 
and the queen mating or something that starts with B-R7ch. Lets see. 83 
If R-R8ch  then KxR, Q-R4ch, K-Nl and the king is going to get away 84 
over  K2 unless I  can get the (White)  rook into it.  Uell how about 85 
B-R7wh. Clearly, K-Rl is no good since it  loses the queen; but what 8G 
about K-Bl? Not much point in RxPch or B-Q3 even if it worked. Lets 87 
see, B-Q3, RxB, R-R8ch, K-K2, Q-N5ch and K-Q2 and what has Uhite got? 88 
Nothing.  But (1.) R-R8ch is no good either. Uell  lets see after 89 
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B-R7ch, K-Bl at least we haven't sacrificed angthing, and if we get 
the rook to safety then Black's king is still uncomfortable. Q-Q6ch 
is pointless and there are no other checks — wait, Q-R3ch, now 
Black roust play R-K2 and the escape square is blocked. So B-Q3 then 
wine» defende the rook and threatens mate -<— and the queen too. So 
that is the sequence 1. B-R7ch, K-Bl, 2. Q-R3ch, R-K2, 3. B-Q3 wine 
at   least  the queen. 

The time for the above protocol was between 60 and 90 seconds. It is interesting 
to speculate what must have gone on in the Waster's head in order for the above 
protocol to come out at the English language level. Using the model of chess that we 
have been describing, here is what appears to be a necessary set of operations: 

In line 01 the Black king is singlad out as the most likely goal for meaningful moves. 
This means that a static analysis of the board has already discovered that the king is 
subject to one inevitably sound check (B-R7) and one check with decoy value (R-R8ch). 
This together with a presence of other White pieces in the vicinity of the Black king and 
a lack of defending pieces should be enough to invoke an "endangered king" chunk 
which would then require generating aggressive moves against the Black king. By lines 
02 to 03, the two checks appear to have nearly co-equal status in the scheme of things 
(a condition which is probably noted and could be used for later jumping back to such a 
neqlected alternative when the one currently being searched is not working out 
according to expectations). 

At line 04, the actual search begins. It is hard to tell whether "and the king is going 
to get away over K2" is a fact recognized statically, or whether the continuation of play 
(after 1. R-R8ch, KxR, 2. Q-R4ch, K-Nl) 3. Q-R7ch, K-Bl, 4. Q-R8ch, K-K2 was actually 
played out but not verbalized. My intuition says that the latter is ti ue. Then, when the 
king arrives at K2, the fact that it has several escape squares going further toward the 
queen-side is enough to convince the Master that the king has essentially made it to 
safety (a chunk of some kind associated with king safety is probably invoked here). 

At this point (line 05), some back-tracking occurs, apparently with the idia of 
finding a way to produce a meaningful role for the White rook on KB1. We know of no 
exact equivalent for this structure, and it would be done in our projected program by 
merely trying those rook moves which had merit when they were proposed. However, 
here the Master has apparently already discovered that moves of the rook, such as 
RxPch are of no value since the Black bishop on K3 has no other function to perform 
except guard this pawn. This must have been discovered at the same time that the 
initial structuring of the board took place and is now being saved in lemma form. This 
indicates that the sequence l.RxPch, BxR was possibly tried at the start and a lemma 
formed upon its rejection. However, the notion of reconfiguring the board so that the 
lemma is no longer valid appears to be a tool of the Master for which we as yei have 
no implementation ideas. 

When the Master fails to find something that can achieve this transformation, he 
then recalls the alternative at the top level in the tree and appears to hop directly back 
to try it (line 06). Again he starts out by classifying the alternatives for Black, 
apparently with the notion of retaining one for jumping back to, as he did at the 
previous ply. However, here he appears to select the worse alternative first and then 
immediately  finds  a  reason  for  permanently  rejecting it (line 06).     Thus  he  has 
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succeeded in forcing a slimming of the tree under consideration. But after starting to 
consider the other, better alternative, he finds himself stuck. Apparently the moves that 
he originally considered to be part of the "aggressive set" do not comprise an adequate 
continuation now. 

The lemma about RxPch is examined again and a new thougKi intrudes: moving the 
bishop to Q3 with the idea of clearing the line for a check at r<8 and also attacking the 
Black queen and defending the White rook (line 07). (Notice incidentally, that the Master 
has no problem in seeing statically that a bishop at Q3 would defend the rook at KB1 
through the Black queen at K7). The key move 2. Q-R3 check is not noticed, possibly 
because it was not in the original set of moves that were associated with the attack, or 
possibly because it involves moving a piece away from an area in which the attack is 
taking placs in order to delh-er a long check. In the latter case a definite concentration 
of perception appears to be taking place, having to do with sectors of the board. This 
may be due to a limitation of human short term memory, a problem that a machine 
apparently need not have. Having only generated the two alternatives, 2. RxPch and 
2. B-Q3, the Master again dismisses the former (probably by re-examining the lemma). 
Apparently he has grave doubts about the latter (possibly because the bishop is moving 
en prise, and he remembers that in a previous variation the king escaped over K2), but 
tries it anyway to see if some new knowledge can be discovered. He does a little tree 
searching (line 08) following out the only line of promising checks until he again comes 
to a divergence point (after 2. B-Q3, RxB, 3. R-R8ch, K-K2, 4. Q-N5ch, K-Q2 (the latter 
apparently selected statically as better for king escape purposes than P-B3)). Here he 
is again faced with a reformulation of the (ask, and decides that effectively nothing has 
been accomplished. So he again returns to the top to look at the previously rejected 
alternative which, however, has not been completely dismissed (line 09). 

Now there appears to be a critical comparison made about the sum of knowledge of 
the two candidate moves at the top (line 09 through 11). The critical distinction 
appears to be that one line sacrifices material, but since neither line appears to produce 
anything exceptional, it is probably better to concentrate on the one that at least does 
not invest any material. Thus there has been a shift of the expectation level, and the 
Master would now be satisfied to merely keep the Black king uncomfortable while 
securing the position of his own rook at KB1. When he returns to the critical position 
after 1. B-Q3ch, K-Bl, he therefore starts looking for new moves to investigate (line 
12). Before concentrating on the defence of the rook at KB1, he checks over the 
aggressive possibilities once more. He now notices a check (Q-Q6ch) which had been 
suppressed before (probably because it was seen to be well guarded against by the 
Black rook at Ql). Somehow, noticing this diagonal check brings out the possibility of 
the queen finding another square on this diagonal. Now everything falls into place. The 
fact that the reply R-K2 (to 2. Q-R3ch) is forced is probably found by extending the 
search, although this is not verbalized. However, the very thought of K2 becoming 
blocked appears to evoke something important from a previous analysis, e.g. the fact 
that the king always escaped across K2. Here there seems to be a lemma relating to 
the Black king's safety and the free square K2. Once a condition for nullifying this 
lemma is discovered, everything else works very quickly The notion of the mate on the 
back rank evokes the idea of moving the bishop. The bishop is also needed to defend 
the rook at KB1 as was discovered in a previous variation wiiich failed. The fact that 
this move also attacks the queen appears to be very secondary (line 14). The rest is 
merely a verification and summing up procedure. 
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It is very interesting to note the different kinds of mechanisms invoked here. In the 
perceptual area (recognizing the merit of moves statically) the program comes off fairly 
well. It found 2. Q-R3ch immediately, but took a long time to discover the value of 
2. B-Q3ch in the variation in which the king went to Rl. However, the Master clearly 
has tree control mechanisms which far outdo the program. He remembers critical nodes 
to return to when he gets stuck. He remembers facts in manipulable form and then does 
logical operations on them (i.e. the fact that the Black king always escapes across K2 
and that blocking this square may make the king a worthwhile target again). In these, 
he is able to maintain a locus of control much closer to the problem in the position than 
what the program is able to achieve. It seems reasonable to suppose that these 
facilities are not descriptive of Chess Masters alone, but rather of hum«ns as a species. 
However, in the hands of the Master, the effect is more pronounced. Thus some 
additional control methods proLably still need to be developed to obtain small search 
trees. There is one area where the program appeared to have an advantage. This is in 
the perception of Q-R3ch. Probably the initial analysis of the position told the Master 
to keep his perceptual scanning mechanisms concentrated on the right-hand side of the 
board. There is no doubt some efficiency involved in th s, as the recognizing of 
features all over the board would no doubt take longer than if only a certain sector had 
to be dealt with. However, a factor of two appears to be a doubtful saving, although it 
could possibly matter to an efficiency oriented mechanism. Instead, I wonder if there is 
not some need in the human to restrict his attention to a small part of the board in 
order to avoid losing things from short-term memory. This is a problem that computers 
do not appear likely to have, and thus a certain form of myopia could possibly never 
plague a program. 

The above analysis is very revealing about how search-and-scan is probably 
implemented in humans. The Master appears to remember nodes at which several 
competing alternatives existed. Then when the chosen alternative fails to work out 
according to expectation, he reiurns to the lowest node in the current variation which 
had such a choice point. So far this is very similar to our implementation. However, a 
noticable difference now appears. Instead of arbitrarily chosing the next alternative in 
line, the Master now sums up the knowledge about what he knows about the various 
alternatives, and based upon any of feveral tie-breaking criteria decides to try rne 
(possibly the same one from which he just retreated) or continue back up the tree. The 
critical difference appears to be that there is some knowledge (possibly lemma like) that 
has been backed up and is used for comparing the relative merit of alternatives along 
several dimensions. However, this knowledge must be gained through a validation 
procedure which at a minimum must characterize what the problem (that caused the 
move to fall short of expectation) is, and whether no other move existed on the way 
back up, which overcame this problem. This sounds very much like the standard 
back-tracking procedure for collecting refutation descriptions. The only thing that is 
missing is some higher level characterization of what the problem is. Based upon the 
above considerations, we wonder whether search-and-scan is not a surface 
phenomenon which is observed, but relies on a different paradigm (depth-first search) 
for its effect. In that case, knowing that a viable alternative exists at a previous node, 
becomes merely a signal for back-tracking. 
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GL   SUMMARY AND FUTURE 

1.  Contributions of this Thesis 

The most significant things In this thesis are: 

1) The CAUSALITY FACILITY and the method of collecting and using the Refutation 
Description (Our thoughts were first turned to the subset of collecting 
descriptions by some statements of Minsky [Minsky, (1968)]). 

2) The notion of problem partitioning and Goal States. 

3) The analysis of the Horizon Effect, both Positive and Negative, and its import on 
program design. 

4) The demonstration that quiescence must dominate control of the search and the 
progress made toward achieving this. 

5) The demonstration in this program that there are languages (with elements such 
as bearing relations, paths, and functions) which can serve to describe chess 
positions in such a way that the description can be used to predicate meaningful 
action elsewhere in the tree. 

6) The Claim System. 

7) The implementation of a scheme of functional analysis. 

8) The implementation of a tree searching scheme involving very sensitive level of 
aspiration methods and the ability to progressively deepen a potential solution. 

9) The ability to separate offensive from defensive issues in the tree search, and 
generate defensive moves in response to dynamic requirements. 

10) The reintroduction of a basic organization in which moves are generated for 
positive reasons. 

11) The notion of themes (unimplemented). 

12) The notion of lemmas (unimplemented). 

2.   Implications of this Work 

We feel that the above aspects of this work have been treated adequately in 
the pertinent sections of earlier chapters. We would, however, like to call special 
attention to the following implications of the above. 

The understanding of the Horizon Effect is particularly important to progress in 
Computer Chess. When one builds a program, it is not difficult to understand certain 
knowledge limitations that the program may have with respect to the domain of 
discourse. Similarly, if a verification procedure is incorporated in the program as is 
for chess the tree search, then it is possible to understand that certain things may 
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not be verifiable. As an instance of the latter, one can consider variations that only 
produce a definitive result at a depth bey.nd the maximum depth of the program 
However, the Horizon Effect produces results much more insidious than this. It can 
cause a program to ignore certain truths that it has already discovered. Thus the 
Horizon Effect is a source of almost unpredictable error -- for every new item of 
Knowledge in the evaluation, a new error can result. This type of error, since it is 
uncontrollable whenever a maximum depth exists, produces an upper bound on the 
effectiveness of any such program. Since all programs (including human ones) must 
have a maximum depth, we can only insist that such maximum depth be so far away 
from the top node in the tree, that in essentially all cases the effects being 
investigated have died out b, the time the maximum depth is reached. That is the 
importance of achieving quiescence, and without it a program will never play Master 
chess (nor probably Class A either). 

It is not clear whether the self-converging search that is needed for complete 
quiescence analysis is possible with the mechanisms developed and discussed in this 
thesis. However, on the basis of results already achieved with this program, it 
appears that the additional tree slimming that will be made possible by themes and 
lemmas will come close. This would create a vehicle which will allow a very large 
degree of custom handling of each node. Part of this custom handling would consist 
of defecting chunks of positional information by consulting a discrimination net of 
such information. This would then allow better classification of positions which in 
urn would allow better goal state discrimination. It appears as if additional 

facilities to supplement the free search are also needed. An instance of this is the 
ability to analyze null-move sequences. Such a facility could then be used for 1) 
Determining if a statically detected threat can really be carried out, 2) Postulating 
indirect defences (were it carried out, if I then took two moves in a row, what could 
I do), and 3) Analyzing the strategic feasibility of a plan by synthesizing the plan 
elements (moves) without initially considering opponent's replies. 

Further, even the units that are already performing well will probably have to 
be improved in order to achieve the type of efficiency that humans already possess 

™ ..Tr'6 in F,8Ure 3'22 (pa8e III-30)' which showed a basi'- deficiency in the 
CAUSALITY FACILITY, is indicative that a still higher level language may be required 
to separate a sequence of issues contained in a Refutation Descriptior This may 
consist of gathering frequently occurring configurations of the current descriptive 
elements (functions, paths, squares, etc.) and giving names to these. 

There appears to be little doubt that such improvements in level of abstraction 
is one of the powerful tools for improving programs. In this way they will be able 
to come to grips with problems in less time than if would take for a program that 
has a less abstract representation and which thus must pay the exponential cost of 
tree searching to make up for this. In this program, the functions, and the ability to 
generate and exploit different types of functions, make up the highest level of 
abstraction. This is quite good by present standards and is very helpful in guiding 
the program in being more selective. However, if is possible to consider a pattern 
of functions around an important square on the board as a chunk of chess 
information. Similarly, all the functions being performed by a specific piece could 
also be considered a chunk describing that piece's role in the scheme of things 
These chunks are essentially algorithmic in nature, and appear to involve nothing 
more than collecting the presently generated functions around some focus.   It may 
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then be possible to give names to such collections, depending upon its members. 
Besides this type of computed chunk, there are also chunks which seem to depend 
very little on the notion of what moves are possible. These chunks identify 
long-range goods and bads, and are essentially spatial in nature. They include such 
notions as what a safe king position is, and that certain pawn configurations are 
superior to others. Such higher level abstractions can be identified by consulting a 
discrimination net of known abstractions, to see if th3 one at hand is known. The 
implications of such a match then become actions for the program to try, and 
information that could be used in evaluation. 

On the basis of our experience with luvel of abstraction in this program, we 
conjectur» that continuing progress in chess will be dependent on the invention of 
ever higher level languages in which chess concepts can be expressed. Each such 
language level would then have an asymptote, defined by the power of the 
language, beyond which it would not be possible to improve the strength of the 
program, given that only a certain amount of time was available to compute a move. 
Also, as concepts are agglomerated into ever higher level concepts, we expect that 
they would get to be more fuzzy and would require a more complex control 
structure than used at present in order to produce the same level of reliability as 
can be obtained with less fuzzy concepts. We feel that this increased 
conceptualization is evident in the history of chess, and should make it possible 
ultimately to equal and exceed the performance of the best human players. 

The current method of controlling level of aspiration and expectation in the tree 
appears to work very well. Further, it appears to be very much like what the 
author feels he does when playing chess. The deepening of the search also follows 
the pattern of our own play, except that in the deepening process the program has 
gained knowledge only of the new expectation level. Instead humans also have 
refined their understanding of the position, and this is reflected in their not trying 
certain alternatives over again; not only because they do not meet the aspiration 
levels, but because something was noticed about the move during the last analysis, 
which changes the understanding of its candidacy. This feature of human search will 
hopefully be adequately supported by lemmas. During the tree search it is almort 
inevitable that some lemmas would be created at the top level of the tree, and these 
would then be used to guide the deepening process, and in doing the iree search 
after the opponent's next move. 

At present it is common to treat chess programming as a problem of imparting 
knowledge to a program. Yet we have pointed out that present models of chess 
have tremendous deficiencies in tree searching, representation of knowledge, and to 
some degree In organization of effort. Until a harmonious solution to these 
problems is found, ;t ;s not likely that infusion of more knowledge into a program 
will be o< any help. However, when a solution to the above exists, the problem of 
producing a Chess World Champion may very well rffduce to devising a method for 
such a program to acquire knowledge from experience. 

3.  Criteria for Progress 

Finally, I would like to propose three simple tests for deciding when a program 
is ready to compete with good human players: 



1) When such a program, recognizing that it can win some material, deliberately 
postpones such a maneuver, in the realization that it can be achieved later, 
possibly to greater advantage. This involves having a lemma that recognizes 
the material winning sequence and realizes that it still applies at the horizon. 
Thus the program will not be fooled into converting its advantage prematurely 
(Positive Horizon Effect) when a reason exists for delaying this gain. 

2) That such a program be able to win positions such as the one in Figure 1.7 
(page 1-9).   This involves having a long range planning facility. 

3) That such a program, when leaving its opening book, be able to continue the 
ideas behind the moves it previously made. This means that the moves that 
have been made so far must Iv associated with themes, which can then be used 
for guiding future play. It also means that certain lemmas may have to be 
posited (i.e. this pawn was sacrificed in order to get a lead in development, and 
is not considered to be a great asset to the opponent; e.g. don't be in a hurry 
to win it back). 
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GLOSSARY -/ 

AGGRESSIVE - A goal state that gtnerates all moves that result in attacks on low 
mobility pieces, double attacks, discovered attacks, captures, and moves that vacate 
important squares. 

ALPHA - A value, tssociated with a node in U<3 search tree, which represents the 
best result that the tide not-on-move at this node can hope to achieve. 

ALPHA-BETA - A tree pruning algorithm which eliminates branches in a depth-first 
mini-max search which can logically not yield an optimum solution since they have 
already been superceded elsewhere in the tree. 

ASPIRATION (level of) - A control scheme, involving the variables EXPCT, ALPHA and 
BETA, and the constant MARG, that determines when values found in the tree search 
make it logical to back up. 

BEH - The relation of a vertically bearing piece bearing on a pawn from behind, thus 
being able to control the square(s) in front of it as it advances. 

BETA - A value, associated with a node in the search tree, which represents the 
best result that the side on move at this node can hope to achieve. 

BRD - A bit-vector which indicates which squares are occupied. 

CAUSALITY FACILITY - A module of the program which can determine whether a set 
of consequences can be definitely dissociated from the last move tried at a node. 
The module also generates a set of counter-causal moves. 

CLAIM SYSTEM - A method of reducing the alpha value at a node to the maximum 
expectation of the opponent of the side to move at this node. 

CLR(SQ1,SQ2) - Defines the set of all squares on a straight line between squares 
SQ1 and SQ2. 

COUNTER-CAUSAL MOVES - A bag of moves which are generated by the CAUSALITY 
FACILITY in order to counter-act a Refutation Description. 

DECOY - A motive in a sacrifice of a man, intending to lure a more valurble man to 
the capture square. 

DIR{PC,SQ) - A bearing relation such that a piece, PC, bears DIR on square SQ if, 
were SQ occupied by a king of the opposite color as PC, this king would be in check 
by PC. 

DISTRACT VALUE (of a move) - The value of a move in getting an opposing man to 
quit another attack in the act of capturing the moving man. 

DSC(PC,S0) - A bearing relation such that a piece, PC, bears DSC on squaro SQ if PC 
would be bearing DIR on square SQ, if it were not for a piece of its ouvn color, 
which is NOT bearing DIR on SQ. 



Glossary  -  2 

DYNAMIC DEFENCE - A goal state which results in the producing of moves to 
counteract the causal description of some undesirable consequences that have been 
bacKed-up to this node. 

DYNAMIC EVALUATION - Evaluation of a position or move using a tree search. 

EN PRISE - A chess term indicating that a man is presently (partly) endangered. 

ETHRU(PC,SQ) - A bearing relation such that a piece, PC, bears ETHRU on square SQ 
if PC would be bearing DIR on square SQ, if it were not for one (intervening) piece 
of the opposite color which has a DIR relation to SQ. 

EVALUATE - The sub-routine that statically evaluates proposed moves. 

EXPOT - The expected value of the position represented by the top node of the 
search tree. 

FEATRS - A sub-routine of the program which computes the values of a set of 
features of the chess board. 

FUNCTION(PC,SQ,DUTY) - A binding of a piece. PC, to an important role. DUTY, on 
square, SQ. Roles can consist of Attacking, Defending, Blocking, Overprotecting, 
Supporting, Pinning, and Escape Square Guarding. 

GOAL STATE - A state that the tree search at a node can be in, which governs the 
types of moves selected for searching. 

HORIZON EFFECT - A problem that exists in tree searches to fixed depths which 
causes errors in terminal evaluation since not all terms in the evaluation function 
are driven to quiescence. 

INT - A vector that contains for every piece type the locations of all opposing 
pieces that woulc' become en prise if they were attacked by a piece of this type. 

INTERPOSE - A sub-routine that takes a pair of arguments which define a straight 
line and then generates all the pseudo-legal moves for the side on move to squares 
between the two arguments which define the end points. 

KING IN CHECK - A goal state that produces all legal moves when the king is in 
check. 

LOW MOBILITY PIECE (LMP) - A piece which has sub-standard mobility and is 
therefore judged to be a good target. 

MARG - A constant that defines the range of aspiration arocnd EXPCT. If a value 
which differs from EXPCT by more than MARG is found, it is said to differ 
significantly from expectation. 

MOVEAWAY - a sub-routine of one argument that generates all the pseudo-legal 
move of the piece occupying the argument square. 
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MOVTOCON - A sub-routine which takes as a single argument and generates all the 
pseudo-legal moves of the side on move by pieces which at the momoment do not 
bear DIR on the argument square, and which result in such a piece now bearing 
either DIR on the argument square or OTHRU or ETHRU through a piece which has a 
function on the argument square. 

NOMINAL DEFENCE - A goal state which results in producing moves directed solely 
at dsfendmg against threats that are statically detected but not necessarily proven 
to be effective. 

NOMINAL VAUE (of a position or node) - That value resulting from an evaluation of 
the position which is the best estimate of its value. 

OBJ(PC,SQ) - A bearing relation such that a piece, PC, bears OBJ on square SQ if PC 
would be bearing D!R on square SQ, if it were not for a piece of the opposite color, 
that is NOT bearing DIR on SQ. 

OCCUPY - A sub-routine of one argument that generates all the pseudo-legal moves 
of the side on move that result in occupying the -csuare named in the argument. 

OCCUR - A sub-routine that computes Occupiabilities under differing conditions. 

OCCUPIABILITY - A quantity that defines the degree of safety of a square for 
pieces of a given side. 

OCY(COLOR, SQ) - The value of Occupiability for square SQ and side COLOR. 

OTHRU(PC,SQ) - A bearing relation such that a piece, PC, bears OTHRU on square SQ 
if PC would be bearing DIR on square SQ, if it were not for another (intervening) 
piece of the same color as PC which has a DIR relation on SQ. 

OVERLOAD (DEFENSIVE) - A motive in making a sacrificial move, intending that a 
defender against the move made wil be forced to relinquish another defensive role. 

PESSIMISTIC VALUE (of a position or node) - That value of the position that 
considers all threats of the side not-on-move to be executable while considering 
none of the threats of the side on-move. 

PIECE - A chess piece, synonomous with chess man. 

PIN - A piece is said to be pinned, if moving it would allow the capture of a more 
valuable piece of its own side, when such a capture would not otherwise be 
possible. 

PIN ( BJECT - The piece that would be captured if a pinned man were to move. 

PREVENTIVE DEFENCE - A goal state which is invoked when the side on move is 
materially ahead of expectation, and results in generating moves intended to 
preserve the material advantage. 
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PSEUDO-LEGAL MOVE - A move that would be legal if leaving or moving a king into 
check were legal, and if castling whils in check were legal. 

REDEEMING VALUE (of a move) - A function of defensive overload, decoy value, and 
distract value, that is assigned to a move that on initial evaluation does not appear 
to be good. 

REFUTATION DESCRIPTION - A description of a set of tactical consequences in a 
sub-tree which is accumulated and backed up for use by the CAUSALITY FACILITY. 

RPATH - Part of the Refutation Description: the set of squares across which the 
refuting pieces moved. 

RPCS - Part of the Refutation Description: the set of pieces which participated 
(moved) in the refutation. 

RSQS - Part of the Refutation Description: the set of squares to which the refuting 
pieces moved. 

RTGTS - Part of the Refutation Description: the set of pieces which became newly 
attacked during the refutation. 

SETUP - The sub-routine that calculates the basic bearing relations once a new 
position has been reached in the analysis. 

STATIC EVALUATION - Evaluation of a position or move using analysis techniques 
not involving tree searching. 

STRATEGY - A goal state which results in moves being proposed one at a time from 
a "strategy" source (TEChTs positional move generator) and being tried until a 
satisfactory one is found. 

TGTSQS - Part of the Refutation Description: the set of squares on which pieces, 
that became newly attacked during the refutation, resided. 

TPATH - Part of the Refutation Description: the set of squares across which passed 
threats on newly attacked pieces. 

TYPE - The type of a chess piece, consisting of one of the set pawn, knight, bishop, 
rook, queen, or king. 

VUE(SQ,TP) - The set of all squares that would be legally accessible to a piece of 
type TP, located on square SQ on an otherwise empty board. 

   . , .. 
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