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ABSTRACT

This thesis concerns itself witt, progress that has been made in the development of a
better model of computer chess. We consider the fact that chess programs have made
almost no gain in strength, as measured on the human scale, in the period 1968 - 1873,
as indicative that the popular model of computer chess is near the limits of its
exploitability. ;
Some indication of why this could be so is provided in a chapter which discusses some
very basic fiaws in the current popular model of computer chess. Most serious of these
is the Horizon Effect which is shown to cause arbitrary errors in the performance of
any program employing a maximum depth in conjunction with a quiescence procedure.

We see the problem of computer chess as two-fold. There is the representation of
chess as a knowledge domain. Such a representation allows:

1) Situations to be recognized
2) Problems to be stated
3) Results to be expressed, and

4) Intermediate knowledge to be saved.

A major portion of the thesis addresses itself to the development of a representation
detailed enough to support the above requirements.

The second as.ect of the problem is tiiat a verification method is required to validate
any proposed course of action. This is because it is seldom possible to establish a move
(part of a course of action) as correct, based solely on the properties that the move
may have. The usual vurification method employed ‘n computer chess is tree searching,
and we do not differ “are. However, in today's most successful programs tree
searching is used both for discovery and verification, and we object to the former use.
When tree searches are used for discovery, they tend to produce bushy (high branching
factor) trees. This is what creates the exponential explosion which severely limits the
depths to which current programs can effectively probe.

The thesis investigates the problems of how a more effective use of the representation
avoids the need for much discovery tree searching. It a!'so examines the problem of
how tu make a tree search converge naturally, without any externally specified limits on
the depth and width of the search. Several new tree searching heuristics are
introduced.

A program (CAPS-II) has been developed during the research reported herein. It is
only concerned with the tactical (conservation of material) aspects of chess. It does not
play very good chess by current computer chess standards. However, it is able to do
well certain tasks that current programs can not do and could never be extended to do.
This includes circumnavigating very large search spaces. CAPS-II regularly is allowed
to go to a depth of 10 ply compared with the 5 ply for today’s best programs. This is
an increase of about three orders of magritude in the size of the virtua! search space,
and the research points to ways for further extending this.




We have tested CAPS-II for its tactical ability, and it does quite well on sets of
problems that are used to measure tactical chess know-how in humans. Since CAPS-II
depends more on concepts and less on searching than today’s programs, it is able to
solve some problems with long principal variations while failing to solve others which
could have been solved by shallow exhaustive searches.

Among: tha more significant developments in the research is a Causality Facility which is
able to deal in a general manner with cause and effect issues and thus produce a radical
narrowing of searches aimed at '“~covery of the remedy for a certain cause. Both
causes and effects are described iiv the representation, and these descriptions can be
used b, move generators and for making deductions.
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INTRODUCTION

Even before computers were commercially available, scientists were concerning

themselves with the problems of computer chess. The first serious attempt to treat the

3 ' problem of how a computer could play chess was made by Claude Shannon [Shannon,
(1950)]. However, no programs that could play complete games of chess appeared until

. the late fifties [Kister, ot. al. (1957), Newell, et. al. (1958), Bernstein, et.al. (1959)).
This was also the tims period during which the field of Artificial Intelligence was

beginning to emerge. However, these early programs played very weak chess and could

1 only hope to beat beginners.

A historic correspondence chess match was held in the middle sixties between a
computer program a! Stanford University and a program at the Moscow Institute of
: Physics. Although this was the first occasion of computers competing against each
other, the quality o/ play did not attract much attention. The first program to attract
wide attention ‘was that of Greenblatt [Greenblatt, (1967)]). It played in human
tournaments and soon achieved a Class "C" rating, which is just below the median of the
human scale for tournament chess players. However, in the intervening years no
program has been able to achieve a stable rating above the "C" class.

This thesis concerns itself with a framework within which a Master level chess
program could be built. We consider the fact that little advance in the strength of chess
programs has been achieved since the 1968 Greeenblatt program as indicative that
there is something wrong with the model of chess that is currently in popular use. In
Chapter I we examine some of these problems. We show the need for programs to
probe considerably deeper than they do now. We also show that tive Horizon Effect is a
limiting factor on the accuracy of evaluations, which can only be overcome by quiescing !
all parameters used in any terminal evaluation function

These considerations lead us to aim for a model of chess which has a naturally
converging tree search of unlimited depth. Q' - research is aimed at achieving this, and
has two major directions. The first is to find additional tree control methods for
converging the search. These include partitioning the search prob'em into several goal
states, using new level of aspiration methods, and making comparisons among nodes in
the tree in order to achieve termination criteria. Among the latter is a Causality
Facility, which can make cause/effect decisions about a set of consequences that
occurred in a given sub-tree.

The second method, on which the first partly depends, is to develop better
representations of chess. This involves developing constructs that can reasonably
project a future board state some three to seven ply away from the current position.
We achieve this by noticing certain critical relations between pieces and squares.
Pieces are then bound to those ralations that must be maintained in order for the
current situation to retain its stability.

We apply the above notions to the development of a Tactics Analyzer. A Tactics
Analyzer is a program that is able to determine if in a given position a sequence of |
forcing moves exists that can change the material balance of the position. Such a
program should be able to determine the material quisscence of any position. In our
ultimate program, the Tactics Analyzer would be a basic unit for determining the tactical
quiescence of any node. Thus it could be used for determining the tactical feasibility of
any idea (move) suggested by a strategical agency.
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A chess playing program that corresponds to the above notions has been developed
during this research. Its name is CAPS-II (Chess As Problem Solving, Version 2). It is
quite good at solving tactical middle-game problems, and can solve many deep problems
that are out of reach of today’s programs. It produces trees with a branching factor of
1.5 tc 3.0, which diverge two to three times more slowly than today’s standard trees.
The program does not play a good complete game of chess, because there are still
several tactical perceptual mechanisms which have not been programmed, and because it
does not have the positional knowledge needed for evaluating positions and guiding
end-game play. Since a chess program, like a chain, hangs by its weakest link, these
factors currently limit the program’s performance. However, the basic approach
appears successful in that the above weaknesses can be overcome by additional
programming without significantly affecting the program’s branching factor. In fact
several unimplemented ideas give promise of further significant reduction in the
branching factor.

In reading this thesis, it may be useful to consider the following: Chapter I gives
some basic insight into the generic problems of today’s generation of chess programs
and what would have to be done to overcome these in a significant way. Chapter Il
explains the structure of our program, and is essential for a deep understanding of the
work reported herein. Chapter 111 explains the representation and gives examples of its
use. Chapter IV performs a similar function for the tree searching method used here.
Chapter V gives data deriving frcm large scale tests of the program. Chapter VI treats

some meta issues and speculates about how certain issues raised by the research could
be resolved.

Since the vocabulary of chess is somewhat specialized, and since we define many
new constructs in this work, we have provided « glossary to aid the reader.




CHAPTER |
SOME NECESSARY CONDITIONS FOR A MASTER CHESS PROGRAM #

In this chapter we derive the motivation for the work reported in this thesis. But
this is not a philosophical chapter. The Horizon Effect is examined for the first time in
its full complexity. Other chronic problems plaguing the current generation of chess
programs are also investigated. Deductions made about the necessary properties of a
program that would not be afflicted with these problems lead to the formulation of the
model, for which the work reported herein is a first implementation step.

A. THE HORIZON EFFECT

When branches in a tree search must be terminated prior to a legal termination
point (according to the rules of the game), it is necessary to assign a value (an interim
value other than win, lose, or draw) to the terminal node, which then allows comparison
with other terminal nodes. This is usually done by invoking a static evaluation function.
In games where a search to legal termination is not possible, no other recourse appears
possible. An interesting phenomenon arises from the interaction of the artificial
termination of the search and the fact that all the terms in the static evaluation function
are evaluated at this terminal point. The result of this combination is that for the game
playing program, reality exists in terms of the output of the static evaluation function,
and anything that is not detectable at evaluation time does not exist as far as the
program is concerned. This interesting fact is present in all tree searches in any chess
program that we know of, and causes aberrations in program behavior.

First let us consider some salient aspects of a terminal evaluation. Who has ihe
advantage in Figure 1.1? Merely counting the material on the board would result in an
evaluation of "equal”. However, one side is about to capture the other’s queen and thus
win the game. Since dramatic changes in the status quo are possible, we clearly cannot
evaluate this position unless we can estimate the effact of these changes. This involves
trying to construct a likely sequence of moves that would lead to a more stable
situation. For this we also must know who moves first. What we are dealing with here
is the concept of quiescence. A non-quiescent position cannot be evaluated properly
without resorting to special approximations in order to attempt to find its quiescent
value. Thus in Figure 1.1, it would be enough to know that the side-on-move can make
a winning capture. This can be done by either extending the analysis one more ply or
by doing a static analysis of the position considering whose turn to play it is. This
example establishes the need for quiescence analysis.

However, the problem reaches much deeper than this. Let us say that a program
does not do quiescence analysis, or does it improperly, so that it regarcs the position in
Figure 1.1 as equal. Then a logical consequence of this would be that White to play in
Figure 1.2 would play QxR in a depth one search. This is so since QxR results in an
"equal” position at evaluation time, whereas other moves would not have such a
"beneficial” effect. This is an elementary instance of the Horizon Effect. The Horizon
Effect causes programs to make moves which are inferior, due to the fact that in some
branch there exists a terminal position which was not quiesced or improperly quiesced.

(%) An earlier version of this chapter [Berliner, (1973)] constituted the major portion of
a paper presented at the 3rd International Joint Conference on Artificial Intelligence,
Stanford University, 1973.
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The above example is due to lack of quiescence of the final position.

Examples of the The Horizon Effect have been observed by several researchers
[Strachey (1952), Greenblatt (1967), Berliner (1970), Atkin et. al. (1971)] in game
playing programs. However the complete phenomemon has never received a name in
the literature nor have its causes and effects been properly cataloged. The regimen of
insisting on a quiescence analysis (which as we have seen is necessary) results in
today’s programs in a two domain search. One domain is the regular search, and the
other the quiescence search. The criteria for admitiing moves to the search are
different in the two domains. It is sometimes possible to shift the analysis of a
particular problem in a position from the search domain into the quiescence domain. |f
this can be done in such a way that it will produce a superior evaluation while also
producing an incorrect analysis (as sean by a chess player superior in strength to the
program), the program will prefer the incorrect analysis and possibly make a bad move
because of this. When the Horizon Effect results in creating diversions which
ineffectively delay an unavoidable consequence or make an unachievable one appear
achievable, we call it an instance of the Negative Horizon Effect. This is the
phenomenon previously reported in the literature. It can best be shown by a typical
example.

1. The Negative Horizon Effect

In Figure 1.3 it is White’s turn to play, and for expository simplicity let us
suppose the search is to be limited to three ply (it is relatively easy to construct
examples at any given depth). What will happen ir the above position is that the
program will try to play 1. B-QN3 and after P-B5, .. Anything, it is time to do a
static evaluation. This usually consists of a materiai quiescence analysis, together
with a calculation of other coefficients of an evaiuation function. The material
quiescence analysis could consist of trying all capture sequences and accepting the
minimax value if it is an improvement for the side starting the sequence. Other
quiescence procedures are alse possible, but in essence they should yield the same
value. Now at the end of the above 3-ply sequence, the program will coma to the
conclusion that it will lose the Bishop on N3, and.will continue its search for
something better. It will eventually come upon 1. P-K5 and recognize that if now
PxB, then 2. PxN is good for White. Therefore it will consider as best for Black to
play PxP, after which White plays 2. B-QN3. Since we are now at maximum depth of
the regular search (the search horizon), this positior: will be evaluated using the
standard procedure. The quiescence analysis will show that White has saved his
Bishop since there is no sequence of capiures which will win the Bishop. Alas, it is
only after the next move that the program finds out that the non-capture threat of
P-B5 has not been met by this diversion.lt then looks for other ways of parting with
material worth less than a Bishop in order to postpone the inevitable day when the
Bishop will finally be trapped and captured. In this case 2. RxB would no doubt be
tried next since after NxB, 3. B-QN3, "saving" the Bishop by giving up the Rook for
the Black Bishop is preferred to losing it. We have seen programs indulge in this
type of folly for five to six successive moves, resulting in going from a position in
which they are well ahead to one in which they are hopelessly behind.

In this case the Horizon Effect is due to improper quiescence. The quiescence
procedure used only includes captures but not moves that attack trapped pieces.
Thus the improper quiescence leads the program to believe something exists that
really does not.




A clever device to prevent this behavior was invented by Greeenblatt
[Greenblatt (1967)] and is also used by the Northwestern University group [Atkin
et. al. 1971) This consists essentially of exiending a new principal variation
another two ply, to see whether the reason it was considered superior, will contiaue
to obtain. In the above example, this will result in finding that the threat of P-B5
does not go away, and thus a potential sequence of blunders is averied. However
extending a principal variation two ply can only disrover whether a one move threat
has or has not been dissapated. Thicats requiring two ar more moves can not be
dealt with effectively in this manner. This is usually not noticed, since today’s best
programs perform at a level of skill where two move threats are rare and far from
the major cause of concern for their developers. However, it is clear that the
Horizon Effect can not be dealt with adequately by merely shifting the horizon.

2. The Positive Horizon Effect

The Positive Horizon Effect is different in that irstead of trying to avert some
unavoidable consequences, the program prematurely grabs at a consequence that
can be imposed on an opponent later in a more effective form, or else tries to
adjust the timing of moves so that some unachievable effect appears to have been
achieved because of improper quiescence. This phenomenon has been largely
overlooked in the literature, but is reported in a previous paper [Berliner (1970)].
Figure 1.4 shows an example of the Positive Horizon Effect where the program
adjusts the timing of moves in order to take advantage of a lack of proper
quiescence at maximum depth.

It is White to play and the search is being conducted to a depth of five ply.
Since nothing tactical can be achieved; the program will try to find some way of
improving its position. A natural candiate would be the move N-K5, which places
the knight on an important central square and also increases White’s control of
space significantly. Unfortunately, this maneuver does not work as Black’s reply,
P-Q3 forces the knight back whenever it moves to K5. However, the program will
find the following (ingenious!) way of getting the knight there anyway. It will play
1. PxP and after 1.--PxP, 2. RxR, BxR, 3. N-K5 maximum depth will have been
reached. Since no captures result in any basic change in the position and since
nothing is done to see whether the position of the knight on K5 is relatively
permanent, White will have "achieved" his goal of significantly improving his
position. Of course, after Black’s next move when the norizon moves forward two
ply, White will discover his error. However, in thz2 mean time he has made a
commiting decision (1. PxP) in the belief that it woule lead somewhere, and it in fact
did not. In this way, today’s better programs teeter and totter along in a game.

An example of the Positive Horizon Eff¢ci that illustrates throwing away a
positional advantage is shown in Figure 1.5. Here, if the evaluation function is
aware of the beneficial effect of controlling an open file, and if the search is again
being conducted to three ply, the most likely continuation wi be 1. PxP ch, PxP,
2. R-KR1 with control of the open file and "some advantage". The fact that on the
next move Black can answer R-KRI, after which White’s advantage has largely
evapcrated is not recognized. Neither is the key fact that Black can do absolutely
nothing to prevent White from opening the file whenever he likes (for human
players there is the dictum "do not open a file until you are ready to use it").
However today's programs would almost certainly reject the correct 1. R-KR1 since
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after Black plays R-KRl and White plays 2. PxPch, it is time to invoke the
quiescerce procedure which produces PxP. Now in contrast to the earlier variation,
control of the open file is cisputed 2nd the evaluation will not be as favorable for
White. Nor would it be if any 2nd move other than 2. PxPch were played. Clearly,
a program could recognize the value of playing 1. R-KR1 before 1. Px? ch, only if it
were secure in the knowledge that the file can be ooened at a later time by PxP
and that if Black plays PxP, he will merely incur an equally difficult problem in
defence of the KRP as he has now in defence of the KR-file. In fact having once
played 1. R-KR1 and getting the answer R-KRI, a program that has reaso: ed thus
far should have little difficulty in now playing 2. R-R2 since opening the file at the
present moment is not advantageous and making room for the other Rook could help.
It should be noted that incorporating the human players® dictum appears extremely
difficult as the issue of "ready to use it" is one requiring dynamic judgements, in
which even good human players make mistakes at times.

Another example of grabbing too soon at an advantzge (this time a material
advantage) can be seen in Figure 1.6. Here it is White to play and the search is
again to a depth of three ply. The program notices that it can play 1. P-Q7 and if
Black does not now play NxP, 2. NxN, then it would get a new Queen. It sees that in
this way it can increase it’s material superiority. It may or may not notice that
will then have to face the formidable task of mating with a Bishop and Knight. The
interesting thing about this position is that the maneuver 1. B-K5 followr:d by
2. B-Q4 cannot be prevented and results in forcing the Pawn through to a Queen
without letting Black give up the Knight for it, thus simplifying the win greatly. Hcre
the important point is that there is a consequence on the horizon, and the pros:am
insists on realizing it withir the horizon of the search as otherwise it docs not exist.
As a result, a consequence .hich cculd have turned out to be very beneficia', turns
out to only have a small benefit. If the issue of whether or not the pawn is
promotable ard what the |. rgest penalty that can be exacted for it, were separated
from the function that counts material in all terminal positions then it would be
possible to treat this problem separately and possibly come to the correct
conclusion with respect to it. Thus the promotable pawn could be regarded like
money in the bank, and would not be spent until a survey ¢f various ways of
spending it was complete. By concentrating on detected issues it should be possible
to avoid the premature throwing away of winning advantages (hat one frequently
finds in today’s programs. In fact, the main reason for the demonstrated lack of
tolerance of complexity of today’s chess programs is that their evaluation function
insists on maximizing, in terms of a preconceived set of evaluation terms, anything
that it detects within the search horizon, and thus all too frequently destroys an
advantageous situation beiore it really has a chance to bloom.

3. What can be done about the Horizon Effect

It is important to distinguish betweer ine Positive and Negative Horizon Effects.
In both cases, a phenomenon is detected during the regular search, and an
inappropriate response to this phenomen:n is then made because of the analysis in
the quiescence or terminal evaluation piase. In the Negative Horizon Effect, the
response consists of the program belizving that the undesirable effect has gone
away or been gotten rid of at a lower cost than the original impact of the effect.
This illusion is caused by the program manipulating the timing of moves so that a
certain posion will occur at the search horizon. The Negative Horizon EHect can




be gotten rid of if the regimen for the regular search were the same as the regimen
for the quiescence search. This is the approach used in this research. Another
possibility would be te ma.ntain descrintions of all undesirable effects encountered,
and then include investigations of these described effects in the quiescence analysis.

' the Positive Horizon Effect, two things can happen. A desirable consequence can
be detected, and the program then foois itself into thinking that this consequence is
achievable (again by manipulating the timing of moves), even though it really is not.
This was the case in Figure 1.4. The othe: situation is where the detected effect is
realizable, but in a much better form than what the progran discovers (Figures 1.5
and 1.6). In such cases, it is usually not possible to blame the tree ~earch. Rather,
this is a function of knowledge; knowing that the detected phenomenon may be
realizable in a better form, and then applying technigues (which may not be tree
searching) to determining if this is possible. For example in Figure 1.6, a five ply
search could not be blamad for not finding the right solution. However, once the
problem of finding the maximum gain for promoting the passed pawn is detected, a
method must exist for dealing with this. When tree searching is not adequate, some
general knowledge may suffice. For instance, knowing that the Black knight in
Figure 1.6 can be attacked could be sufficient. In this last example, we do not wish
to imply that such a paradigm will always react optimally to every position. Rather
it has the facilities for reacting optimally to phenomena detected during the search.
The phenomena must be detected,and describable. Further the methods for finding
the optimum are subject to the same risks that all problem solving processes are;
however, such methods must be made part of any proper quiescence analysis or
terminal evaluation.

B. NEED FOR A GLOBAL STRATEGY

Another basic problem, the need for a glotal strategy, is shown in Figure 1.7. Here
White is to play and every one of today’s programs would conduct a 5-ply search and
then play 1. K-K3. A summary of its findings during this trze search might run a
follows: it decided that P-B7 would lose the pawn to K-K2, and therefore decided to
move the King to the most central location available (thi is a quantity recognized by the
evaluation function). On the next move, having already achieved its "optimum" position,
the program would be faced with a problem that all hill climbers face when they reach
the top: How to back down as little as possible? Accordingly there would occur either
K-Q2 or K-B3. The point of this whole example is to show the hopeless kill-climbing
characteristics of current program designs. In the giver position, even a poor human
player would recognize that there is nothing to be gained by the above maneuvers.
The real problem is that today’s programs mix their strategical and tactical objectives
during the search. Thus the above position rould be handled effectively if a tactical
search were first done and this came to the conclusion that P-B7 only resulted in losing
the Pawn. There being no other tactical tries, control would then revert to a strategical
module which would try to improve the position of any and all pieces. Since, in this
simplified situation, we only have the King as a candidate, the next step would be to try
to find an optimum or near optimum position for the King and determine if it could get
there. Here we must not rely solely on a static, preconceived notion of centrality,
although that certainly is a part of the picture, but more importantly we seek a
functional optimum. This can be found by noting that the Black KNP and KP are not
defended by Pawns and could possibly be attacked by the King, and also that our own
KBP couid possibly benefit from having our King near it. Next, a null move analysis
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could be carried cut, consisting of moving the White King around without looking at
intzrvening moves, to see if we can find a path to any of the desired squares. This will
eventually yield the correct idea of infiltrating with the White King via QR3, which wins
easily. Acdmittedly the control structure that could evoke such Lehavior would present
some problems. Mos* of the problems in chess are tactical (immediate) problems and for
this reason, the lack of global ideas is frequently obscured in today’s programs.

However, it is absolutely necessary to he able tc generate global goals in order to avoid
hill climbing behavior.

We have touched above only on the relatively simple problem of finding the correct
way to proceed. A far more difficult proolem, which would also have to be faced by the
Master strength progra:r is to judge whether the position can be won or is a draw. A
simple "pawn ahead" judgement is not enough. There may be other endgames from
which to choose, in which the program is also a pawn ahead. In the position being
discussed, for instance, if a further Whiis Pawn were at QN4, and a Black Pawn at its

QN4, the position would be a draw. Clearly dynamic judgemcils of this type are
absolutely necessary.

C. CALCULATION OF LONG TACTICAL SEQUENCES

In Figure 1.8, we see a much better understood problem than any of the above. It is
the problem of calculating in depth. Here White to play can execute a mating
combination requiring an initial Queen sacrifice and nine further moves, a total of 19 ply
as follows: 1. Q-R5ch, NxQ, 2. PxPch, K-N3, 3. B-B2ch, K-N4, 4. R-B5ch, K-N3, 5. R-B6ch,
K-N4, 6. R-N6ch, K-R5, 7. R-Kach, N-B5, 8. RxNch, K-R4, 9. P-N3, Any, 10. R-R4 mate.
This combination was played by a former World Champion while playing a total of 20
games simultaneously. The reason no program that looks at 10 or more alternatives at
every node can play the correct move i that the principal variation to justify the initial
queen sacrifice extends much, much further than the 5-ply depth that is about all that is
possible with a program that gets bicied in the exponential explosion of investigating
10 sprouts from every node. Now it is quite possible ta play Master level chess without
playing such long combinations, but it is necessary to be able to defend oneself against
such long sequences. In the author’s experience, one must at least once a game be able
to look 14 or more ply ahead. As far as the above example goes, we believe that 997
of all Masters would solve it as well as a high pnrcentage of Experts and Class A
players. What is really difficult about the example is not the simplz unravelling of the
main line, which having few branches is tairly linear, but the ronception of the position,
and that such a solution involving chasing the King up the board might exist in it.

One could argue that just because good players can solve such problems, this does
not show the requirement for the program to see to such depths in order to play at the
Master level. What this would mean is that the program would have to rely almost
exclusively ¢n static, non-tree-search computations for its moves. But we have already
shown in Figures 1.4 and 1.5 that static notions must be combined with dynamic tests in
depth in order to yield correct results. So a program that could not look 10 ply ahead
would be subject to any 10-ply deep threat that comes along. Even though the main
thrust of most such threats could no doubt be muted, it would be inevitable that some
concession would have to be made. This type of thrust and parry is at the heart of
Master play. Even more importantly, a program that cannot look 10 ply ahead could
never conceive a five move threat of Its awn which is dependent on adverse action.
The evidence is quite overwhelming.

N
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D. THE UNRELIABILITY OF STATIC ANALYSIS
1. The Safety of Pieces

Another interesting phenomenon, that of reality or illusion, that afflicts all of
today’s best programs can be seen in Figure 1.9. Here it is White’s turn to play.
The first thing that the evaluation function will discover is that White has both of his
Rooks "en prise" (captirable by the opponent under favorable conditions). If this
position has occured at some node which is eligible for sprouting, then moves that
move either of the rooks to a "safer" place vill receive good recommendations. |f
the node is a terminal node, then it will be consiosred as not satisfactory for White,
as it is presumed that at least one of the Rooks will be lost. In actuality, neither of
the Rooks is in danger. If Black plays QxR then R-B8 mate, and if PxR, then QxPch,
K-N1, Q-R7ch, K-B1, P-N7¢ch followed by P-N8=Qch wins quickly. Even stranger is
the fact that if this position occurs somewhere in the tree below the top node, and
if, say, two ply earlier White had played RxP(KB6) as a sacrifice which it turns out
could not have been accepted, ther in today’s programs there would now be no
knowledge of the sacrifice at KB6 when the position is tendered for evaluation two
ply later. Rather the Rook would be considered en prise. Indirect defences of this
type are seen all the time in Master chess. Clearly, if a program aspires to this
level it must bo able to handle such problems. Part of the solution consists in
noting the functional overloading of the pieces that are thought of as doing the
capturing. Here the Black Queen s guarding a check on the back rank apart from
attacking the White Rook. Also the Black KNP is guarding a Pawn and a check, while
attacking the White Rook. However this is not enough, since it is quite possible that
the checks that are being defended against are quite harmless, and it would be folly

to try to determine, without further searching, the exact potency of every check on
the board.

2. The Value of Material can depend on Dynamic Considerations

Another problem, that of dynamic evaluation of material, is depicted in
Figure 1.10. Here with either side to play, White’s pawn cannot be stopped from
queening, while Black’s pawns are going nowhere fast. Yet there is no doubt that
every one of today’s programs, if playing Black woula refuse a draw in this position,
and it is also very clear that only a very weak human player would offer a draw
with White. The programs’ rationale is that three passed pawns are better than
one. The problem here is one of recognizing the dynamic potential of the White
passed pawn whick cannot be caught. It is true that in this case the job can be
done statically be merely noting the distances of the White Pawn and the Black King
from the queening square. However, if the Black Pawns were all advanced three
squares, the computation would have to be done dynamically, since there is a
possibility they may arrive first. Similar dynamic ideas, which no program can at
present handle we!, are the notion of a defenceless King by reason of no
surrounding men of his own to help defend him, and the notion of cooperation
among various men rather than only assessing the goodness of their individual
positions. Such notions require dynamic exploration to determine the degree of
their applicability in a given position. However, in a program where terminal
evaluation must be done very quickly because of the large number of nodes that
must be evaluated, siich luxuries are not possible. We are here directly confronted
with a basic limitation of the generate and test approach. ‘vhen it does not allow
enough time to do a detailed evaluation of the nodes visited.
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E. EFFICIENCY ISSUES

Our last two examples deal with situations that present-day programs can handle.
However, the method by which they do this is terribly inefficient and could not be used
if one wanted to do tree searches which could extend even a little deeper than the
current five ply. The first of these preblems is the probiem of defence. It is relatively
easy to recognize attacks and develop criteria for judging the value of most attacks.
However, this is rot so with defence. The problem is that in order jor a defence to
exist, a threat must first be known. All threats are not of the simple type such as
threatening a capture. It is the deep threat, the effect of which shows up only in the
backed-up value of the current variation, that is not easy to counter. This would be
especially true when the initial move of such a threat does not accomplish anything
obvious. In such cases present technology is able to only determine the magnitude of
the threat’s effect. Figure 1.11 shows a position of this type. Here it is Black’s turn to
play and the search is being conducted to a deptl: of five ply. If Black plays a normal
aggressive move such as 1.-- P-R7, he will find that after 2. Q-K8 ch, RxQ, 3. RxR he is
mated. The search will then eventually revert to the point where Black played P-R7.
Now in most of today’s programs we would be armed with the killer heuristic {which
says that against any new proposed moave try the "killer” Q-K&ch first). This would
indeed result in the efficient dismissal of the next 15 or so moves likely to be tested.
However the fact remains that each of these alier»ztives is being served up in a
generate and test made, and the program can consider itself fortunate if it discovers the
only defence (Q-K5) before it has exhausted half the legal moves. A much better way
of handling this problem through the CAUSALITY FACILITY is demonstrated in Chapter lIl.

Our final example in Figure 1.12 shows another subtle consideration. In this position
with White to play, programs that look five ply deep have an excellent chance of finding
the mate in three moves: 1. BxPch, K-R1, 2. B-N6¢ch, K-N1, 3. Q-R7 mate. If such a
program, due to the fact that White is behind in material, were only .o look at capiures
of pieces of greater or equal value to the current deficit, and checks (an assumption
which reguires soms praprocassing) and to siog ol liva ply dapth Hor which it wouwld ba
difficult to establish a logical reason), there would still be about 100 bottom positions to
examine before the mate is found. Here any tournament caliber human player 'would
recognize the situation immediately as one of a set of Queen and Bishop mates He
would only have to determine the functional need to guard the King escape squars at
KB2, to determine what the correct sequence is and that it does lead to mate. The
critical thing here is not that a progrem couldn’t find the mate once the diagrammed
position is reached, but that in advanced chess play such situations accur frequently in
deep parts of a tree as a reason why some other move fails. If a program spends 100
nodes investigating such a well known pattern, then there is a detinite limit on the
amount of work the program can be expected to do. The answer here quite obviously
is W& have a repeloire of frequantly cccurring petterns avaiiable to the program
together with some guidance to determine the exact applicability of any particular
pattern. In the above case, recognition of the Queen and Bishop functionally bearing on
the undefendad KR7 square, together with the position of the Black King hemmed in by
some of its own pieces is the bhasic pattern. The dynamic analysis reveals that the King
could escape over KB2 if thic were not kept under continued guard. With these
constraints, the number of variations to bs examined are very few.
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F. SOME CONCLUSIONS

Let us examine some potential models of computer chess. All the complete mode's
are clearly too time or space consuming. Therefore, the most reasonable course
appears to be to rely upon models that construct trees of possibilities but with some
limitations imposed upon the growth of the trees. Now depending upon how we define
these limits, we have a tractable problem. The real questior, and that addressed in this
chapter, is how these limits can be defined and implemented in order to include the
range of performance exhibited by chess masters while still keeping the problem
tractable.

Let us summarize the requirements no‘ed earlier:

1) In Figures 1.1 to 1.6 we saw the Horizon Effect in operation. We also saw that the
two-ply extension of each new principal variaticn is only a stop-gap measure, which
prevents one move debacles (anyone who doesn’t belisve this is invited to try
Figure 1.13 out on his program). What can be done about the Horizon Effect?
Clearly the problem is due to the fact that some term in the static evaluation
function is evaluated "prematurely”. Prematurely here means that a noticable
change in the value of the term can be forced, without any compensatory change in
any other term(s). From this, one can deduce that there can be no arbitrary depth
limit imposed on the search. The decision as to whether to terminate the search at
a node or continue, has to be a function of the information that exists at that node
and how this relates to the quiescence of each and every term in the evaluation
function. For instance, if we have an evaluation function that would consider it bad
to have a bishop blocked in by its own pawns, then some efiort must be expended
to determine the permanency of such situations. In general wiiat is required is a
procedure to determine the quiescence of every term in the evaluation function and
in cases of non-quiescence, a procedure (i generating moves or applying some
static means of reaching a quiescence decision. This should not be construed as
meaning that perfect knowledge of the future status of each parameter in the
evaluation function is required. In fact some practical maximum depth or time iimits
must exist. Thus only a finite set of resourses can be expended to determine the
true future status, and some controlled error will no doubt have to be tolerated.
However, the resulting error by this method should be orders of magnitude smaller
(a so-called judgement error) than the errors produced currently by the Horizon
Effect. In present day programs, quiescence is pursued only for the material
parameter. And even this frequently does not work out satisfactorily, sirce usually
only cantures are considered, while forks, mate threats, etc. are ignored.

2) From Figure 1.7 we saw the need for having global goals and being able to
determine something about the feasibility of such proposed goals. This may involve
procedures of considerable complexity in order to answer basic questions about the
value of any node. All of which adds to the potential evaluation time required at a
node.

3) From Figure 1.8, we saw that the program must on occasion be able to calculate
precise variations to a depth of 14-ply and possibly more. This in no way means
that every move should be calculated to this depth nor that when a move is, that
every branch would go to this depth also. However, the besic facility to allow
probing to at least this depth must exist.
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4) From Figure 1.9 we saw the need to diagnose certain dynamic properties of

positions, and the requirement to communicate such data to other nodes in the tree.

; This need exists in order to avoid faulty interpretation and the necessity of
otherwise "discovering America" over and over again.

One key to detecting that something may not be as it appears statically, is the
] . use of a functional analysis. In Figure 1.9, the initial indication that neither of the
] Rooks is capturable is that eacii of their attackers is also defending something of
3 importance. Sometimes it is possible to resolve such function conflicts statically by
] noting that another piece can assume the required functional role without itself
becoming overburdened. When this is not possible, the validity of a potential
function conflict must be established dynamically by tree searching. In later
chapters of this thesis, we examine the notion of lemmas. Lemmas store

intermediate information that has been discovered, and can be used to avoid the
above problems.

5) From the defence problem in Figure 1.11, we see a need for communication within
a search tree. A proper description of a set of undesirable consequences can save
tremendous effort in finding problem solutions if such exist, or moving on to more
fruitful endeavors if not. The adequacy of the descriptive language is important as
it must be used to test whether the set of consequences were ca.sed by the !atest
move, and to provide an input to move generators that could find an appropriate
answer to the problem. For this purpose, functional relations which describe
attacks that occured, and path information which describes paths traversed by
moving pieces and paths over which threats occurred, appear to be among the
required elements of the language.

6) The functional relations mentioned in the previous examples are in a sense
patterns involving two pieces or a piece and a square. Certain clues can be gained
by searching these patterns when they focus about a common square or piece.
However, from the example of Figure 1.12 we can see the need for a still higher
level of pattern abstraction. Here we are looking for groups of pieces which form a
pattern around some interesting focus. In the example cited, the KR7 square witn
the White Queen and Bishop attacking it, and the Black King are the focal points
which should suffice 1o index inlo the correcl paliern, which will then produce a :
pointer to a routine for deciding if we are confronted with an exploitable instance
of the pattern in question.
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Above, we have assembled the beginning of a set of requirements for a program
that could have the power to play Master level chess. It does not take long to dismiss
the possibility of extending the current generation of chess program to meet the above
requirements. It is quite enough to realize that such a program requires about a factor
of 20 of additional time for each additional two ply of depth that it searches.

G. STRUCTURAL REQUIREMENTS FOR A PROGRAM

In 1958 Newell, Simon, and Shaw [Newell, et. al. (1958)), argued that "As analysis

F

deepens, greater computing effort per position soon pays for itself, since it slows the «g

growth in number of positions to be considered”. This is well substantiated in the ACM :

tournaments which have convincingly shown the superiority of programs that search a Z

subset of legal moves and evaluate a moderate amount, over programs that search all i
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legal moves end evaluate little. Clearly it is time to move again, and more substantially,
in the direction of more evaluation and less search. The requirements demonstrated
here show a need to do possibly ten or more times as muci* processing at a node than
Is currently done. This means that, for equivalent computing power, we are faced with
generating trees of at most 5000 nodes distributed throughout the search space. The
Greenblatt and Northwestern Unlversity programs have an effective branching factor of
5 to 6 (where number of bottom nodes = BF ™P™). |f it is assumed that the search is
lImited to 14-ply, then the branching factor must be less than 1.9, if we are to stay
within 5000 nodes.

Actually this is a meaningful measure only for trees which have a maximum depth.
In order for a tree of no maximum depth to converge, a necessary and sufficient
condition is that for any arbitrary node 3 (| P[ i]) < 1 (where P[ i] is the probability of i
sprouts). Clearly the less 3 (i P[ i]) is, the more rapidly the tree will converge. It
appears resonable that tree convergence could be achieved without arbitrary bounds, i
it were possibie to do meaningful comparisons of the state of any node with the states
of earlier nodes in the tree branch being investigated. Comparisons could involve how
earlier expectations are holding up, and whether moves that are eligible for testing
have appropriate thematic relationships to what has gone before. The numbar of such
comparisons grows linearly with depth thus providing ever more conditions for stopping
the search oi not investigating an arbitrary move.

To guide the ssarch mechanisms are needed which can at linear cost provide
analysis at a node so that the exponential cost of discovery and/or verification due to
tree searching is drastically reduced. It appears reasonable that the more powerful (in
the sense of greater depth) the prediction mechanism, the better the effect on program
performance. Here the functional analysis and pattern recognition mentioned earlier
clearly are de tned to play a part, with the former being an essential el>ment of the
latter. Also the communication of defensive requirements appears vitally necessary. In
fact since dissatisfaction with a result is a relative matter, one might consider using
backed-up descriptions to discover ways of heightening the success of whatever is
being attempted at present.

Lastly, one can see the overriding importance of quiescence of concepts being used
in the evaluation procedure. The evidence is quite overwhelming that the attempt to
drive all evaluations into a quiescent state should be the major force that determines
the shape of the tree. Thus, while today’s programs use up nearly all their time trying
to assure tactical quiescence, this will now have to be done by less complete methods in
order to make way fer the additional facilities required. It is interesting to compare this
derived role of quiescence as the main guiding force, with the control structure of the
1958 Newell, Simon and Shaw program [Newell, et.al. (1958)] which was apparently
derived from a concern with human behavior.

The requirements derived in this chpater appear to be necessary for Master chess.
However, they are almost certainly not suffzient. Masters know a great deal of chess
knowledge which has as yet not been encoded in any program, and will probably have
to be placed In a long-term memory for occaslonal reference. We have avoided
discussing what a minimum quantity of such data might look like, since until the
necessary mechanisms fcr its use are In place, so that it would be possible to
experiment, there would be little scientlfic validity in such speculation. There is also the
problem of doing at least some learning in order to avoid repeating obvious errors In
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identical situations. However, an organization which takes account of the conditions
noted here is almost certainly necessary to make significant progress beyond the
present state of the art, and its implementation should strive to be extendable to the
problems of learning and further pattern encodings, as these prove necessary. In the
immediate future, the major problem appears to be how to produce a search of the
economy of that proposed, while retaining at least the same reliability 2s evidenced by
today’s programs which use a more complete search strategy.
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CHAPTER II

STRUCTURE OF THE PRCGRAM

A. DESIGN CONSIDERATIONS

In Chapter I we have shown that programs tnat pay costs that are an exponential
function of depth for discovering interesting things about a chess position will never
attain the Master level of play. Therefore, if a program is ultimately to aspire to this
level of play it must use more effective methods, These methods must be essentially
linear in cost as a function of depth. By operating on a given position they should give
clues as to what are the most worthwhile things to consider doing and what are the
essential features that will be the key to evaluating this position. The type of complex
inter-relations that we mean here are usually refered to as patterns. But patterns can
be composed of very few elements or of many, and even very simple patterns have
their information to deliver. Consider the domain of written language. Here a vertical
line could be considered a pattern element. This element is encompassed in some of the
letters, and letters are essential elements of words which are essential elements of
phrases. Thus, it is to be expected that a viable pattern scheme for chess should have
basic elements that can be combined recursively to make more powerful patterns.

The fact that patterns can be composed suggests that best results are to be
obtained by designing the information structure for a chess program from the bottom
up. Thus what are needed are some basic elements of patterns which can be used to
form ever higher level patterns. Based upon insights gained as a subject in chess
perception experiments [Chase and Simon, (1973a, 1973b)] in the Psychology
Department at CMU, as well as introspective evidence, the following basic elements were
chosen. The most basic element is the legal move since this is really what chess is all
about and cannot be dismissed. Legal moves and moves that would be legal if one or
two things about the current position were changed can be represented as bearing
relations. By considering certain points on the board more important than others, it is
possible to consider legal moves dealing with those points as more important than legal
moves which do not deal with any such point. Thus arises the notion of a functional
relation. A functional relation assigns a given piece a specific meaningful role with
respect to another piece or square. This is the second level building block in our
hierarchy of information structures. Relations of this type show up again and again in
chess perceptual expsriments to which we had access. Apart from this, our earlier
program [Berliner, (1970)] was continually confronted with questions of which piece was
responsible for which actions on the board, Since actions were usually only
summarized, there was no longer any way of knowing the agencies responsible for the
final output. This made it impossible to differentiate such situations as two pieces being
defended by different pieces or by the same piece. Clearly, when both defensive tasks
are being performed by a single piece there is a possibility of overburdening that piece,
which would not exist if the two defences were independent. The need to be able to
get at such information, long after the initial evaluation that a plece is defended has

taken place, was also a major consideration for a data structure that preserves such
relations.

Another important aspect in the design is the accuracy issue. In chess the only
sure way to establish truth is to do a COMPLETE tree search, Short of that, one can
attempt many different methods of ascertaining the truth about a set of features on the
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chess board, but one must bear in mind that any such method is approximate and
subject to error. However, even in the domain of approximations there are methods
that are more approximate than others. Based upon the 1958 observation of Newell, et.
al. that good exploitation of information at a node slows down the exponential growth
of searching, it appeared very worthwhile to expend the maximum effort in trying to
ascertain the truth about each issue dealt with. Such an effort would be expended even
when this meant considerably increasing the complexity of the program. Furthermore,
even very great static accuracy is no guarantee that these results would not be later
upset by something that a more knowlegable agency in the program finds out. There
certainly exist situations where almost any static analysis will fail. In such cases, there
could be a series of inversions of truth, where each successive court of appeal to the
real truth reverses the findings of the previous court. Finally, the actual truth could

only be found out by a complete tree search, which would in most instances be
unrealizable.

Another consideration is the executability of the ultimate chess program. To
determine the capability of a program, it is more or less necessary to test it in an
environment similar to that in which humans play chess. The playing demonstration is
usvally done in a tournament of either other programs or a mix of humans and
programs. Therefore it is important in choosing the representation to consider that a
program will be asked to produce chess moves at a rate of approximately three minutes
per move. One of our design objectives has been to generate trees with between 200
to 500 nodes, which means that it would be possible to spend appruximately one-half
second per node. Since the basic design philosophy also called for computing as much
as is reasonably possible before leaving a node, the efficiency of performing certain
basic  operations becomes parsmount in the light of the three-minutes-per-move
constraint.

For this reason the language Lisp [McCarthy, et. al, (1965)] which is frequently
chosen for projects in artificial intelligence was ruled out, since the computing cost of
searching lists for every datum is prohibitive at this staga of the hardware art. This
does not, however, rule out the need for certain higher level data to exist in list form.
But, there appeared to be many lower level operatiors for which a more hard and fast
approach would work, and It was here that great efficiency was desired. Therefore, a
language was required which could take full advantage of the set manipulation
instructions in the hardware (PDP-10). The language chosen was Bliss [Wulf, et. al,,
(1971)], which is an ALGOL-like implementation language, developed at Carnegie-Mellon
University, which makes use of almost all machine commands and produces highly
optimized code. Thus the members of a particular set can be represented as "on" bits
in a bit vector. It is then possible to find the set intersection of two sets by simply
"anding” their vectors. The other set theoretic operations are alsc simply performed. It
is easy to see that this method of data analysis for frequently used data, is much faster

than the similar list processing technique. These techniques are used for all lower level
data.

Given the above considerations, we can begin to lay out a concrete design. First
consider a set of bearing relationships (defined in detail below) which specify certain
attributes about moves and potential captures that are possible on the board at present

or would be if some minimal change occured. These bearing relations between pieces

and squares are stored in tables for quick reference. As the analysis of a given
position proceeds, certain of these relations are picked out as being more important
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than others -- those that are essential to the stability or instability t, at characterizes
the current chess position on the board. Among the relations that are interesting are
those that defend or attack a piece, defend or attack an important square, deny access
to a square for a useful move, etc.

The restriction for information to be abstracted above the bearing relationship level
is for it to be "meaningful®. For this an arbitrating process must exist to decide which
relations are meaningful and which are not. Such a process must decide, for instance,
what is needed to defend a piece. If this piece is not attacked, then clearly nothing is
needed to defend it, while if it is multiply attacked, several pieces may be needed. Or it
may be possible to determine that a major fraction of the piece will be lost regardiess
of how many times it is defended, as would be the case if a pawn attacked a queen. We
call the relations that have meaning, in the above sense, "functions”, after Newell and
Simon [Mewell and Simon, (1972)]. In this way functions represent the fabric of the
chess position.

The 5coard analysis process can be extended to include other things besides the
safely of pieces. This involves sich things as unoccupied squares from which double
attacks can be made. When the fuiclicn assignment phase is completed, a description of
tne board noting certain basic situations (the piece on square X is en prise) and
inter-dependencies (piece Y defends both square A and Bj exists. From this description,
it is then possible to detect potential moves that have utility for the moving side. The
next step is to evaluate these moves in the description environment, which allows
detecting not only useful properties of the suggested move, but any function conflicts
which it raises. These function conflicts could result in a move, which at first glance
appears foolish (it puts a piece en prise), being evaluated as potentially verv good.
This is when a piece that apparently could capture it, is otherwise committec.

Having found a set of potentially useful moves, we want to try them in some order
according to their potential. This is done in the usual tree search paradigm. However,
we wish to be more sensitive to issues that come up than the current generation of
programs. Specifically, if something unfavorable happens, we want to be able to decide
if this was due to some blunder just tried in the analysis, or if it was unavoidable at this
node. This requires a facility which can make cause/effect decisions by comparing
descriptions of a move with descriptions of what happened. This in turn requires
facilities which can accumulate deep descriptions of consequences. When a causality
decision is made, we want to address all the resources of the program to solving the
detected problem, and abandon the searching of moves which may at one time have
appeared appropriate, but no longer appear so. Finally, we want to have a level of
aspiration for the program. This level is to define the expected value of the top
position in the search tree. When a result that is clearly better or worse than this is
found, we want to be able to readjust the expectation and possibly re-examine the
analysis to see if it can be further improved.

The following sections describe how this program structure is implemented. We
take up first the various levels of the data structure, how its elements are computed,
and how elements at higher levels are dependent on those at lower levels. Next, we
discuss move generation and the static evaluation procedure for proposed moves and
for positions. The last portion of the chapter deals with the control structure for the
program. in following the descriptions in this chapter it will be useful to refer to Figure
2.1 which is a rough flow diagram of the computational sequence. Any new position
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(node) is processed by SETUP, which computes the lowest level of data, then OCCUP,
which computes what is going on on a square, and then FEATRS, which computes
across-the-board effects. Then a goal state determination is made and move generation
proceeds. The proposed moves are then evaluated by EVALUATE and the best is
selected for tree searching. If the node is ever returned to during the search, the first
decision made is whether the current goai state s stiil considered adequate. The

program then proceeds to find a new goal stat. or select the next move for testing
accordingly.

B. DATA STRUCTURC
1. Board Geometrical Primitives

The program has access to the following tables which give frequently required
information dealing with the geometry of the chess board, without having to
compute these each time.

VUE(SQ,TP) - Provides the set of all squares that would be legally accessible to a
piece of type TP, located on square SQ on an otherwise empty board. The
information for one SQ-TP pair is contained in a two-word bit vector.

CLR(S01,5Q2) - Provides the set of all squares on a straight line between squares
SQ1 and SQ2 (two word bit-vector). If SQ1 and SQ2 are not on a straight line, then
the va'e of the first word is -1. Since a PDP-10 word is 36 bits and only 32 are
needed to represent one-half of the chess board, the last four bits in the first word
of CLR give the direction between the two points which define the straight line.
The last four bits of the second word are used to define the distance, as a king
moves, between the pair of squares. -

BEND{(SQ,DTN) - Gives the name of the last square along the diagonal direction DTN,
starting from square SQ.

2. Representation of an Actual Board Position

Each board position is represented as 1040 PDP-10 words. Table II-1 is a
summary of this data structure.
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TABLE II-1 - Data Structure for each Board Position

Datum  Size(MHords) Tupe Purpose
NUM 64 Vector Name of Piece on each Square
WHR 33 Vector Location of Piece by Name
TYP £ Vector Type of Piece on each Square
TP 33 Vector Type of Piece by Name
MOB 33 Vector (field) Mobility of Piece by Name
MAT 2 Vector Value of Material for each Side
BRD 2 Bit-vector Occupied/Unoccupied for each Square
PCS 1 Fields Status Information
SPACE 256 Vector Free Space Area (lists and Movestack)
PTR 1 Word Pointer into SPACE (next avail. word)
POSIT 1 Word Positional Value of Position
VALUE 1 Word Static Evaluation of Position
WTHRT 1 Field List Header - White Threats
BTHRT 1 Field List Header - Black Threats
WMISS 1 Field List Header - White Unworkable Threats
BMISS 1 Field List Header - Black Uniorkable Threats
WIDEA 1 Field List Header - White Vacating Moves

9 BIDEA 1 Field List Header - Black Vacating Moves

3 FCTN 33 Vector (field) List Headers - Piece Functions

1 BLOK 33 Vector (field) List Headers - Blocking Relations
PINS 33 Vector (field) List Headers - Piece Pin Status
FTRS 64 Vector (field) List Headers - Functions by Squares
oCy 64 Vector(field) Occupiability of Squares
KMOB 4 Bit-vector Safe Squares for each King
DIR 64 Bit-Vector Array Bearing Relation
OTHRU B4 Bit-Vector Array Bearing Relation
ETHRU 64 Bit-Vector Array Bearing Relation
oBJ 64 Bit-Vector Array Bearing Relation

e DSC 64 Bit-Vector Array Bearing Relation

0 TSQ 64 Vector Threats on each Square

2 BEH 16 Bit-vector Array Names of Pieces Behind Pauns
SAME 14 Bit-Vector Array Names of Piece of Like Movement
INT 24 Bit-vector Array Targets for each Type
BEST 2 Vector(field) Best Material Threat Squares
MVPTR 1 Word(fields) Ptrs to Movestack (last tried, etc.)
PDIR 8 Bit-vector Array Names of Pawns on each File
DPATH 2 Bit-vector Squares on Defensive Paths
GN 1 Word Current Goal State
TPATH 4 Bit-vector Part of Refutation Description
RPATH 4 Bit-vector Part of Refutation Description
RSQS 4 Bit-vector Part of iiefutation Description
TGTSAS 4 Bit-vector Part of Fefutation Description
RPCS 2 Bit-vector Part of Fefutation Description
RTGTS 2 Bit-vector Part of Refutation Description

The above data structure does not add up to 1040 wo. ds since several data
items are fields in the same vector.
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a. Piece Identifying Primitives

This section concerns itself with the data that are generated at the lowest
level of abstraction during the board analysis. The squares of the chess board
are numbered from O to 63 starting in the lower left-hand corner on White’s
side of the board, and moving horizontally from left to right until the top
right-hand corner is reached.

TYP - is a vector of 64 words representing the type of occupant of each cquare
of the chess board. Table II-2 shows the legal types.

TABLE II-2 - Piece Types

TYPE WHITE BLACK
Empty 8 8
King 1 -1
Queen 2 -2
Rook 3 -3
Bishop 4 -4
Knight 5 -5
Paun not on 7th rank 6 -6
Pakn on 7th rank 7 -7

NUM - is a vector of 64 words representing the name of each occupant of each
square of the the chess board. Table 1I-3 gives the piece naming scheme.
Names are assigned in order of increasing piece value, with knights coming
before bishops.

TABLE I1I-3 - Piece Names

Color of Occupant Range of Values
Empty Squéire 7}
White 1-16
Black 17 - 32

TP - is a 33-word vector which gives the type of a piece when referenced by
name.

WHR - is a 33-word vector which gives the square of a piece when referenced
by name.

BRD - is a two-word bit-vector which has bits turned on for every square that
is occupied.

b. Piece to Square Relations

Let us define a bearing relation R(PC,SQ) as a relation of a piece to a
square. A piece, PC, is said to have bearing relation R on square SQ, if piece PC
bears with relation R on square SQ. We can now define the following hLearing
relations:
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DIR(PC,SQ) - A piece, PC, bears DIR on square SQ if, were SQ occupied by a king
of the opposite color as PC, this king would be in check by PC. Intuitively, the
relation DIR defines the direct control of a piece over a square. Direct control
is the ability to capture on a square.

OTHRWXPC,SQ) - A piece, PC, hears OTHRU on square SQ if PC would be bearing
DIR on square SQ, if it were not for another (intervening) piece of the same
color as PC which has a DIR relation on SQ. Intuitively, the bearing relation
OTHRU defines the ability of a piece to control a squaie through one of its own
pieces. Such relations occur, for example, when two rooks of the same color
are lined up on the same file.

ETHRW(PC,SQ) - A piece, PC, bears ETHRU on square SQ if PC would be bearing
DIR on square SQ, if it were not for one (intervening) piece of the opposite
color which has a DIF! relation to SQ. Intuitively, this relation defines the ability
of a piece to contrel a square through an enemy man that is also controlling the
square.

DSC(PC,SQ) - A piece, PC, bears DSC on square SQ if PC would be bearing DIR
on square SQ, if it were not for a piece of its own color, which is NOT bearing
DIR on SQ. Intuitively, this corresponds to the ability of PC to make a
discovered attack on the square if the intervening piece were to be removed.

OBXPC,5Q) - A piece, PC, bears 0BJ on square SQ if PC would be bearing DIR
on square SQ, if it were not for a piece of the opposite color, that is NOT
bearing DIR on SQ. Intuitively, this corresponds to a pin ray by the bearing
piece through the intervening piece (subject of the pin) and looking for an
object to pin it to further down the line.

The above are the basic bearing relations that are noted. They are
computed by SETUP. Each relationship is preserved in its own table. Tables
are laid out to have 64 words each, one per square on the board. Each word is
then treated as a bit-vector with bits corresponding to the names of the pieces,
and an "on" bit indicating the relationship exists.

¢. Other Low Level Data

BEH(PC,PWN) - is a 16-word bit-vector. A piece, PC, has the relation BEH to a
pawn, PWN, if it is a rook or a queen and is behind PWN (as it would advance),
and bears DIR, or OTHRU, or ETHRU on the square on which PWN is located. Bits
are set for the name of each such piece in the word corresponding to PWN.
Intuitively, this corresponds to knowing the names of the pieces that can affect
from behind, the pawn’s ability to advance.

PDIR(PWNFIL) - is an 8-word bit-vector. Ilf a pawn, PWN, is on file, FIL, its
name bit is set in the word corresponding to FIL. This provides a quick
overview of open fles and other information about pawn structure.

BLOK - is a vector of lists hanging from list headers named BLOK and associated
with the names of pieces. Each list gives the names of sliding pieces which
would bear DIR on this piece if all other pieces were removed, and also gives
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the direction between the two pieces. Intuitively, this corresponds to the BLOK
list giving the names of all pieces whose action this piece could ultimately block,
while neither piece moved.

MAT - This is a two-word vector which gives the value of material on the board
for each side. Values are computed according to Table 1I-4, which are the usual
values for material multiplied by 50 and made somewhat more precise in the
case of wnight and bishop.

TABLE 1I-4 - Value of Material

Piece Type Value
Paun 58
Knight 160
Bishop 165
Rook 25
Queen 450
King 1550

PCS - Is a word that contains the fnol loding subfields:

WPC - gives the number of pieces that White has.

BPC - gives the number of pieces that Black has.

WPP - gives the number of pauns that White has.

BPP - gives the number of pauns that Black has.

WCAS - is a two bit field that indicates uhether White still

has King-side and Queen-side castling rights.

BCAS - is a tuwo bit field that indicates whether Black s¢il |

has King-gide and Queen-side castling rights.

FIL - is a field uhose value is zero except when the previous
move was a tuo square paun advance, in which case it takes
the value of the file on which this occurred, files being
numbered in ascending order from 1 to 8 starting
with the OR-file (needed for en passant captures),

All the data in this section are computed by SETUP.

d. Other Data

The remaining words of the 1040 which are associated with every position
can be found in Table lI-1 above. Only the following structure is worth
describing at this point. The others will be described in detail when the
computation that writes on them is described.

SPACE s a free space area of 256 words in which list structured data grows.
The left-most nine bits of each list member in SPACE are reserved as a pointer
to the next word in the list. The moveslack for proposed moves is also kept in
this area.
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The data which represent each board position exist in a stack which has a
1040 word segment for each depth of the search tree.

3. Retaining Imnartant Relations

PINS - While computing the bearing relationships during SETUP, the program alss
notices all obvious pins; ttat is, those that depend only on the relative values of the
pinning piece and the object of the pin. Information about pins is stored in lists in
SPACE with a list header for each piece existing as a nine-bit field in the 33-word
vector FCTN. This field is called PINS. A list is used here since it is possible for a
piece to be pinned in several directions. For each direction a word in the list gives
the direction of the pin, the name of the object square (the one on which the pin
object resides), the value that would be lost on the object square if the pinned
piece were to move, and up to three names of pinners doing the pinning.

Once the program has meaningful pin information together with the above
bearing Cata, it can embark on a meaningful square by square analysis of the board.
The following data are computed for each st,uare by the sub-routine QCCUP:

OCY(COLOR, SQ) - The value of the largest valued piece of side COLOR that can
safely land on square SQ. These data are stored in two 8-bit fields in the vector
NUM where they can be addressed by $Q and COLOR.

If a square is occupied then the safety of the piece that is there is computed.
Since at a later stage, the knowledge of which objects are worth attacking by which
men is crucial, the safety of a piece is determined to be in one of five categories:

COMPLETELY EN PRISE - The full value of the piece on this square is subject to loss
on the opponent’s next mave.

PARTLY EN PRISE - Only part of the value of the piece on this square may be
captured with gain, but not the full value of the piece will be lost (i.e. a rook
attacked by a bishop and defended a pawn),

BARELY DEFENDED - No capture with gain is possible now, but attacking this square
with any one more unit of force will make this piece at least partly en prise.

COMPLETELY OVERPROTECTED - The piece is safe against any further single attack
by a piece of equal or greater value (i.e. a pawn which is attacked by one pawn
and defended by two pawns).

PARTLY OVERPROTECTED -The piece is safe against a set of single attack types, but
not safe against the complementary set (ie. a knight which is attacked by a rook
and defended by a king and queen is safe against attacks by queen and king, but
not against attacks by any lesser piece).

FTRS - It is interesting to note that the above categories were developed
empirically. The initial notion applied here was the categories which one finds in
chess books; namely en prise, safe, and overprotected. The need for splitting two
of the categories will be explained later. The result of the piece safety computation
is storec in the eight right-most bits of the vector FTRS. The result is stated in




terms of how many units of material (with pawn=1 and king=31) are at stake on this
square. Six bits zre used to indicate this number of units of material, and two bits
indicate upon which side the onus rests to restore the balance.

OCCUP - The sub-routine OCCUP is used to compute the above data, but it can also
be called by FEATRS to determine what is happening on a square. Its arguments
are a square name, a task, and a bit-vector naming the pieces bearing on this
square that should be considered in the computation. The most usual task is to
calculate OCY and enpriseness for a square, but other tasks are mentioned below.
OCCUP lines up the pieces in the passed argument for each side in the ontimum
order of employment. It then uses a minimax calculation to determine the actual
value of each quantity. In ordering the pieces, OCCU™ will use the value of a piece
unless it is pinned or is itself a pinner of a giece in the passed argument. Each
pinned piece goes onto a special internal list which gives the name of the piece and
the value of the pin object. Each pinner goes on another interral list which has the
name of the piece and the name of the pinnee. It is possible for a piece to be on
both lists at the same time. OCCUP also has a mecnanism which notices pieces
bearing on the square in the OTHRU and ETHRU categories. These pieces are put
into special tables according to the name of the intervening piece. When a piece is
invoked in the calculation, a check of this table is made. If another piece was
bearing "thru” this piece, that new piece is put into the appropriate bearing lists
before the computation goes on. The rule for employing pinned pieces is not to
employ a pinned piece until there is no longer any piece available which is of lesser
value than the value of the object of the pin. The rule for employing pinners,
where the pinned piece also bears on the square, is to release the pin only when
the pinner is the least valuable piece available and is capturing a more valuable
piece. As shown in Chapter V, OCCUP does an excellent job of computing
occupiability.  This is quite important as the program’s outlook is very much
conditioned by the accuracy of the information received at any level of
understanding. If the correct value is underestimated, then the program could
ignore important features, while if it is overestimated the program could spend time
in useless activity. In situziions where errors could occur, the latter type is of
course preferred.

OCCUP is genera' enough to resolve a large set of problems dealing with a
square. It can be called for various purposes with inputs differing from the usual
bearing relationships. For instance, if there was a question as to whether a check
on the rank from a given square was likely to succeed, OCCUP would be passed only
the identities of horizontally moving pieces belonging to the checking side and
bearing on that square, plus all defensive pieces. The resulting calculation would
pronounce the square safe or unsafe in terms of the survival of the function, e.g.
the checu.

Whenever OCCUP is dealing with something of value, e.g. an occupied square, a
pawn promotion, or a high-powered attacking move, it assigns functions to all pieces
invoked during the computation. These functions are in the form of a relation from
a piece to a square and can be of four different types:

1) ATTACKING - Involved in the aggressive purpose for which the
computation was invoked.
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2) DEFENDING - Defending against the purpose for which the computation
was invoked.

3) OVERPROTECTING - Providing a presently unneeded defensive unit
against tho aggressive purpose of the computation.

4) SUPPORTING - Providing protective support to a piece when it carries
out an attack on this square without itself participating in the attack.

FCTN, FTRS - When a function is assigned, it is put into each of two linked lists.
One list is FCTN which has a header associated with the name of the function
performing piece, while referencing the function type and the name of the square
on which it is being performed. The other list is FTRS which is associated with the
square on which the function is being performed, while referencing the name of the
function performing piece and the function type. This makes cross-referencing of
functionai committments easier than if only one list existed.

DPATH - When QCCUP assigns a DEFENSIVE function to a sliding piece of the side
that just moved, it puts the names of all the squares on this defensive path into the
bit-vector DPATH. DPATH thus records all the squares on which the moving side
can block a defensive path.

4. Analysis of Board Features Using Knowledge from Several Squares

Having obtained quite accurate information about each square, it is now possible
to examine the full board for interesting tactical features. This is done by the
sub-routine FEATRS. First certain square problems which could not be determined
accurately on the first pass, are rectified. FEATRS checks all occupied squares to
see if any piece could be a pin object, and if such a pin has not been detected
previously. Such pins could be complicated enough so as not to have been picked
up on the first pass; e.g. they could depend upon the safety of the pin object, or
involve more than one pinner acting on the same pin line. Initially, information on
the safety of each piece was not available, nor was it clear whether there was more
than one piece acting along the same line. However, the first pass of OCCUP across
all squares has clarified these problems. Now, if any such new pins are discovered,
they are cataloged, and all functions of the newly pinned piece are re-examined, and
reassigned if necessary. The process of discovering undiscovered pins scans the
board only once. It is clear that situations exist in which the order of discovery
makes a difference on the final interpretation of all the pins on the board. However,
it is also clear that repeating the discovery process can lead to cycles from which
some arbitrary escape must be arranged anyway. Therefore, we have opted for the
single extra scan of the board. We have never noticed a problem in evaluation due
to misinterpretation of pins.

POSIT - FEATRS next gets an estimate of which side is controlling the most space in
the given position. This computation is o summation over the whole board of
(OCY(White) - OCY(Black)) x centrality factor. This quantity is not used at present,
but is intended to yield categories of space control (great, medium, even) for future
use. It is stored in the word POSIT.

SAME - The vector TP is now examined and pieces of like types are put together

—— e
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into elements of the bit-vector SAME. SAME has bits set for names of pieces.
Sameness here means functional similarity. Thus a queen is the same as a bishop,
but not vice versa.

MOB - Next the effective mobility of each piece is computed. This consists of first
noting the squares to which a piece could pseudo-legally move. (A pseudo-legal
move is one that would be legal if it were allowed to move a piece in such a way
that the king of the side on move would be in check after the move, or if castling
while in check were allowed.) Then credit is given for each square which can safely
be occupied by the piece in question. GSafety is here determined using the OCY
values previously computed for each square. The mobility count for each piece is
stored in a five-bit field named MOB which is in the vector FCTN, where it can be
accessed by name of piece. Pieces that are found to have sub-standard mobility
have the LMP (low mobility piece) bit in this vector set to preserve this fact. Table
II-5 gives the minimum mobility requirements for each piece type. Any piece with
mobility less than or equal o the given values is a low mobility piece. The king is
always considered 1o be a low mobility piece. Any pinned piece is also a low
mobility piece.

TABLE 1I-5 - Minimum Mobility of Types

Piece Type Minimum Standard Mobility
Queen 3
Rook 1
Bishop 2
Knight 2
Pawn g

KMOB - The mobility of each king receives special attention. For each square that is
in the VUE of the king from its present location, the following determination is made.
If the square is occupied by a piece of the king's color, no action is taken. Else, if
any opposite colored piece bears DIR on the square, the lowest valued such piece is
assigned the function of guarding this king escape square. Else, the bit
corresponding to this square in the vector KMOB is set to indicate that the king has
mobility to this square.

INT - The next analysis task that FEATRS undertakes is to identify for each piece
type, all worthwhile targets. A worthwhile target is one which would change its en
prise status if a piece of this type were to attack it. This information is then stored
in bit-vectors in the array INT, which is accessed by piece type. The bit-vectors
contains "on" bits for each square that has an interesting target on it. Since this
information is frequently used later for evaluation of suggested moves, it is very
desirable that it be as accurate as possible. Here is where the issue of, for
instance, COMPLETELY OVERPROTECTED versus PARTLY OVERPROTECTED become:
important. A pawn which is defended by king and queen and attacked by a rook is
PARTLY OVERPROTECTED. This causes the program to decide that this is a target of
interest 10 pieces below the value of a rook, but not to those of value of a rook and
above. If the pawn were merely regarded as OVERPROTECTED, then this interest of
the lower valued pieces in attacking it would not be noticed statically.
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WTHRT, BTHRT - FEATRS now scans all squares. For each piece that can presently
move to a given square, it determines whether the piece can make a double attack
or an attack on a low mobility piece or a capture on this square. Moves which are
deemed effective, in the sense that there appear tc be no reasons for their
non-success, are put into lists of effective attacks. These lists hang from the list
headers WTHRT and BTHRT and accumulate White threats and Black threats
respectively.

WMISS, BMISS - Moves which are not effective are put into lists of moves which
could be resurrected by considering across-board effects. These lists hang from
the headers WMISS and BMISS.

The method for determining effectiveness is to look at the OCY of the square,
and if it indicates that the moving piece cannot be captured on this square without
loss, to assume the attack has merit. In this case the appropriate attacking function
is assigned to the threatening piece, and no defensive functions are assigned. In
cases where the piece can be captured without loss, OCCUP is called with the
element of the array SAME corresponding to the TYPE of the attacking piece.
OCCUP then assigns all necessary attacking, supporting and defensive functions and
delivers the verdict which assigns the attack to one of the THRT or MISS lists.

WIDEA, BIDEA - When a square in the INT vec'or of a piece type is found to have a
piece of that type bearing DSC ox it, FEATRS finds the intervening piece that could
make this discovered attack possitie. This piece is then put on one of the idea lists
hanging from the headers WIDEA and BIDEA for White and Black ideas respectively.
When squares, on which double attacks and attacks on low mobility pieces can take
place, are occupied by a piece of the same color as the piece that would like to
make the attack there, these blocking piece names are aiso put on the appropriate
idea list.

TSQ - Whenever a square is found on which a piece of the moving side has a threat
(as distinct from a capture on that square) the value of the threat is added into the
element of the vector TSQ corresponding to that square. TSQ thus keeps track of
the threat potential of each square. This is done regardless of whether the threat
was deemed to be successful or not, as long as the target square is not occupied by
a piece of the attacking piece’s color. The values in TSQ allow the identification of
key squares, and sometimes make possible the occupation of such a square by
another piece, considering that if it were captured the recapturing piece would be
able to execute a threat there. Values are also added into TSQ for squares on
which pieces reside that have discovery threats. In this way if a move involving
this piece is being evaluated, the discovered threat potential will always be known
regardless of any other reason for moving the piece. Thus TSQ serves two
functions. For occupied squares, a value indicates discovery potential, while for
unoccupied squares it indicates threat potential on that square.

BEST - Finally, the lists WTHRT and BTHRT are scanned, and capture threats found
there are put into the vector BEST which contains the names of up to five squares
for each side in order of the amount threaiened on that sauare.
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C. MOVE GENERATION

There have been two basic types of move generating procedures in previous chess
programs. One consists of passing all legal moves in review and applying some
evaluation process to each of them. The other method for generating moves is
evocative, relyin, on certain goal oriented processes that exist in the program to
suggest moves that should be investigated. Clearly the latter approach has certain
risks, since it is possible to reach a position in which no move generator will suggest
the right move and this would result in a performance fzilure. In a pass-in-review type
of approach, all legal moves would at least be known, whether or not the merits of the
correct one were recognized. This would allow certain “fall-back" procedures that could
ultimately locate such a move. However in the current program the evocative approach
was chosen, since it clearly fits in better with the philosophy of getting away from the
generate and test, bushy tree searching method.

All move generation is done in respe se to condilions detected during program
operation. For instance on first seeing a position at any node in the tree, FEATRS and
OCCUP have put interesting tactical moves into the various lists available for this
purpose as explained above. These lists then serve as input to the simple move
generators which are discussed below. Likewise, on return to a node from deeper in
the tree, certain information gained during the search produces specifications for moves
that wou'd result in defending against a detected "deep” threat, or make an attempted
tactic possibly work better. The nature of this deep information is discussed later in
this chapter under the CAUSALITY FACILITY.

A move stack for generated moves exists in SPACE. It grows from the opposite end
as the free space area for lists. The two halves of the word MVPTR keep track of the
location of the last move put on the stack and the last move searched. All generated
moves are searched for duplication bafore being put on the move stack.

The basic move generators consist of the {nllowing:

OCCUPY(SQ) - is a move generator which generates all pseudo-legal moves to square SQ
for the side on move. One of the uses of OCCUPY is in generating captures.

MOVEAWAY(SQ) - is a move generator which generates all pseudo-legal moves for the

piece on square SQ. It is useful in defence considerations and for generating discovery
moves.,

INTERPOSE(S?):,5Q2) - SQI and SQ2 define a straight line with SQl being the name of
the square on which an attacker resides and SQ2 being the square on which a target
resides. INTERPOSE then finds all intervening squares using the genmetrical primitive
CLR, and then repeatedly calls on OCCUPY to provide the complete set of interposing
moves. Before doing this, INTERPOSE first finds the value of the altacker, and sets a
global constant which lets OCCUPY know that moves that counter-attack the attacker
along the specified line are to get special heuristic credit.

MOVTOCON(SQ) - generates the set of all pseudo-legal moves which bring a piece of the
moving side which at present does not have DIR control of this square into a position
where it does.
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These move generators are invoked at various points in the program where
intelligence has been gathered that makes it desirable to find moves of a certain type.
For instance if a discovered attack possiblity has been found, then MOVEAWAY is called
with the square name of the masking piece. If a defensive condition has been found
that makes it desirable to guard a certain square on which an opponents strong move
lands, then MOVTOCON is called with that square name. The full details of when and in
response to what conditions move generation occurs are presented later in this chapter
under goal states.

D. THE STATIC EVALUATION PROCEDURE FOR PROOSED MOVES

There are two basic methods of evalu.ting a proposed move, and there are good
examples in the literature of each method. One way is to execute the proposed move
and score the resulting position, as is done in J. BIIT [Berliner, (1970)], CHESS 3.5
[Atkin, et. al., (1971)] and others. The other method is to score the transition to a new
position implied by the proposed move, using all properties of the old position and the
differential properties of the move. This method is used by Greenblatt [Greenblatt, et.
al,, (1°57)) The second method is more economical, since it avoids the work of setting
up the derived position (which would have to be done for every proposed move before
one is selected). However this latter method involves more special code to score the
transition, rather than using the existing code for scoring a position. Also, there is
difficulty in developing a good scoring procedure for transitions, since it is desired to
have the properties of the old position plus the differential properties of the move
equal the properties of the new position.

We chose the second method not only for reasons of efficiency, but also since a
major purpose of the whole program is to be selective about potentially good moves.
The evaluation procedure uses factors which regularly involve predicting consequences
tive ply in advance (as for instance in an exchange calculation on a square). Since
looking at a position after a move is made, only advances the knowledge one ply
whereas scoring the transition advances it no ply, this gain seemed rather trivial in
terms of the depth of prediction involved. It was also desired to have a handle on the
actual properties of a move since this information can be used to determine thematic
relations between moves. However, this use is not implemented in the present program.

The evaluation procedure used involves scoring the effect of a proposed move on
an existing position. The resulting score after the evaluation is an integer, which
represents an optimistic view of what the proposed move could accomplish. To facilitate
this process, any move which is proposed gets a quantitative recommendation from the
agency which proposes it. The amount of the recommendation is a function only of the
effect that the move could have (according to the proposing agency) if it were
successful. How much of this value is actually given to the move depends on the
evaluation procedure.

EVALUATE (the evaluation sub-routine) first determines the safety of the new
square for the moving piece. This is done using the CCY values explained above. If the
olece cannot be captured without loss on the destination square, then it gets credit for
whatever value its recommending agency gave it. However, if it can be captured
without loss, the following procedure is performed: Each opposing piece that has been
assigned a defensive function on that square has its FCTN list examined to see what
other functions it has. The following quantities are then computed:
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DEFENSIVE OVERLOAD = Maximum [across all squares on which this piece has
defensive functions] (The number of material * units at stake on this square (as
recorded in FTRS) + the TSQ value tor that square).

DECOY VALUE = Maximum value (any opposing piece that has a defensive function
on this square).

DISTRACT VALUE = Maximum [across all opposing pieces that have a defensive

function on this squarel (Value of any en prise piece on which this defensive piece
has an attacking function).

REDEEMING VALUE = Maximum (DEFENSIVE OVERLOAD, DECOY VALUE/2, DISTRACT
VALUE/2).

The coefficients used above have been developed over the life of the program, and
the present values merely reflect a reasonable stale of things. No claim for optimality
is made. In addition there are still several lesser effects not yet programmed because
the adjustment process on the above factors is still going on. Among these lesser
effects are: 1) Whether a piece that has a defensive function would have to relinquish a
blocking function (other than pinned which is noled); and 2) Whether a piece that has an
attacking or supporting function on this square could unblock some favorable line.

Based on the above, an adjustment to the threat value associated with a proposed
move is made. If the gain (or loss) associated with capturing the moving piece, plus the

redeeming value, are less than the threat value, then the threat is reduced to that value,
otherwise it is left the same.

Next, all moves that retain threat credit for giving a check through the above
procedure are evaluated for the effectiveness of the check.  This consists of
determining whether the checking piece would be giving up any king escape guarding
functions which it has been assigned, and which can nol be taken over by another piece.
Also every king escape square in the vector KMOB that can be controlled by this check
is noted. After this the total number of escape squares available to the king are
counted and the check is evaluated according to the degree of mobility left to the king,
with a completely immobilizing check getting a large bonus.

EVALUATE then determines if the moving piece is pinned, and if so, subtracts the
expected loss from the value ot the move. If the move was recommended by an agency
in charge of finding defensive moves (see discussion of GOAL STATES below) it
probably received a heuristic value for ils defensive polential. Such terms are now
added in. Any change in the centrality of the moving piece causes a relatively small
addition or subtraction from the value of the move. This tends to cause the program to
prefer centralizing moves when all else is equal.

If the move is a capture, its evaluation is adjusled upward for any defensive
function the captured piece may have had on a BARELY DEFENDED or PARTLY EN PRISE
piece. Upward evaluation also occurs for any attacking functions that the captured
piece had on any EN PRISE pieces. If the moving piece had functions on other squares
than the one to which it is moving, an adjustment must be made for these. Here any
defensive functions on pieces that were barely defended result in a debit, as do
attacking functions on pieces that were en prise. In all this, if the captured piece had a
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function on a square, and the moving piece had a complimentary function on the same
square (i.e. one has an attacking or supporting function and the other a defensive one)
then no adjustment is made.

Finally, any pieces wich are still known to be en prise are evaluated in such a way
3s to give slightly more credit to the slde which is about to move. This evaluation is far
from optimum since it fails to account for two pieces which are mutually en prise, or the
possiblity that the side which is enduring the strongest threat may counter it rather
than going ahead with its own best capture. During the early stages of program
development this caused little trouble. It is, however, a major source of error now, and
will be corrected during the next program revision.

E. THE STATIC EVALUATION PROCEDURE FOR POSITICNS
Two evaluations are developed for each node in the tree. They are:

NOMINAL VALUE - This evaluation counts the material on the board and gives credit to
each side for all their material threats as cataloged in BEST, the side that it to move
getting slightly more credit for its threats. This value is stored in the word VALUE.

PESSIMISTIC VALUE (from the point of view of the side that is to move) - This
evaluation counts the material on the board and then adds in only the
side-which-just-moved’s best capture threat. If this result is more favorable than the
Nominal Value, then the Nominal Value is used. The CLAIM SYSTEM (sue discussion in
Section F3b below) determines whether the Pessimistic Value will be preserved for use
during tree pruning.

Since these evaluations only deal with imminent captures (as distinct from forking
threats, for instance) they are less than ideal in their estimating capacity. However, at
present they are reasonably good estimators, and because of their simple structure it
would be easy to up-grade them when required.

F. CONTROL STRUCTURE
1. On the Applicability of Effort Expended During Tree Searching

Consider the following paradigm: Two domains A and B are given. An optimum
solution to a given problem can be obtained by taking the correct element from A
and matching it with the correct element from B. If the correct solution can only be
recognized by comparing it with any other possible solution, the amount of work
that needs to be done to find such a solution is proportional to |A| x [B]. Now,
assume domains A and B could be sub-divided into domains Al and A2, and Bl and
B2. If it can be ascertained that no solution could exist in Al x B2 ndr in A2 x Bi,
then clearly much work in finding a solution cauld be saved. Even if we were not
sure that no solutions existed in Al x B2, but merely that the likelihood was very
low, then much work could still be saved on the average by searching Al x B2 later
than domains which have higher likelihoods. This basic notion is behind the
following discussion.

In all of the chess programs that we know to exist today, all moves are
examined and then graded along a common dimension with subsequent selection of
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the N best. We consider this practice as inadequate, since the selecting dimensions
could vary considerably depending upon the position.  This is partizularly true of
situations where defence is re uired. Present day programs have great difficulty
with such situations, since scoring moves statically for their defensive potential is
clearly more difficult than doing this for attacking moves, and may be nearly
impossible. This is because it is impossible to be 1007 sure of what is really
attacked (e.g. can this atiacked pawn really be captured safely, or is this check
going to lead to mate or is it meaningless), nor can one be sure whelher the right
way to meet an attack is by retreating, or somehow interfering with the attack. The
problem is further compounded by the fact that only a fraction of the moves with
defensive potential can usually be included in the N best that are allowed to be
searched at each node. Therefore, it was decided that defence should be a discrete
activity in the analysis process, and should be activaled when required, rather than
have moves with "good defensive potential" mixed in with moves of other "“good
potential",

Similarly tactics, positional play, and long-term sirategy should be separated
from each other. Tactical moves are made in order to gain or avoid losing material
and are usually of the highest degree of importance. Positional advantages are
usually of lower order than the most minimal material advantage. They can be
brought about as a result of tactics which leaves material unchanged, or without any
tactics at all. We certainly want to react to both methods of obtaining a positional
advantage. Positional gains at the end of a tactical variation can be noted for very
minimal additional computational cost. In today’s programs this virtue is made into a
vice. Mixing posii.onal and tactical moves in a given search tree with the hope of
discovering hoth kinds of advantages results in much additional work. This is S0,
since tactical advantages almost always outweigh positional ones. Thus, the
necessary work to find tactical stability is increades by one 1o two orders of
riagnitude for a 5-ply search. When positional factors are separated from tactics,
these can be pursued after tactics has failed to find a clear-cut solution. In this
case, positional moves can be investigated one after another for TACTICAL
feasibility. The savings come from the fact that the search need not be concerned
with both issues simultaneously, and positional stability (at the playing ability of
today’s programs) would not necessitate the deep rummaging that is done to assure
tactical soundness.

In the same manner, long-term stratesical issues should be separated from both
tactics and position play. Long-termn strategy need be invoked only rarely, to
decide on a long-range goal of lower order than such things as material and
positional advantages; e.g. move pieces into position for a king-side attack, or in
this type of position a knight is better than a bishop. These rare invocations of
strategy should be made only when these usually background issues become
important, thus avoiding the need tc re-examine strategical issues at every node in
the tree.

Another division of labor is possible in the area of attacking moves. Some
attacks appear more workable than others. Some attacks would be more potent
shouid they sucieed. By investigating moves that are most likely to succeed before
moves that have greater potential but lesser likelihood, it is possible to establish
firm Alpha and Beta values (see discussion in Section 3) which help in trimming
branches containing unworkable ideas. Mixing likely-to-succeed moves in with
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high-potential moves b, giving some weight to each along a common dimension,
reduces the ability to introduce the more efficient searching order.

By thus partitioning the problem and actively controlling which partition is being
applied, it is possible to realize huge savings in tree size. Below, we describe the
partitions of the present program, and how the analysis can proceed from partition
to partition, occasionally making decisions to skip one or more partitions along the
way,

2. CONTROL OF THE GOAL STRUCTURE AT A NODE
a. THE CAUSALITY FACILITY

The CAUSALITY FACILITY allows determining whether a set of consequences
can be definitely dissociated from the last move tried at a node. Only the
detection of this condition allows fixing the blame for a set of consequences on
something that existed before the search came to this node. Once it is known
that the node has inherited a problem, the necessary mechanisms can be set in
motion for trying to solve it. Causality is established by comparing a
description of a set of consequences (the Refutation Description) with a
description of a move. The CAUSALITY FACILITY then decides whether the
consequences could have in any way been made possible by the move made.
We describe here the data used by the CAUSALITY FACILITY. How the
CAUSALITY FACILITY gathers this data and uses it for comparisons and decision
making will be found in the examples of Chapter III.

During the backup process, whenever a result is acceptable to Alpha-Beta,
the following data are collected at that node for use by the CAUSALITY
FACILITY. These data constitute the Refutation Description.,

RPCS - is a nit-vector which has bits representing names of pieces. The name
bit of the pi-ce that moved to produce this node is set in this vector.

RSQS - is a bit-vector with bits representing squares on the board. The bit
corresponding to the destination square of the move {hat produced this node is
set in RSQS.

RPATH - is a bit-vector with bits representing squares on the board. The bit
for any square across which a sliding piece moved in making the made move is
set in RPATH. If the move was a non-capture pawn move, then all squares over
which it passed including the destination also have bits set for them.

RTGTS - is a bit-vector with bits representing name of targets. A comparison is
made of BEST for this node with BEST one ply previously. Any squares which
are now named as containing material targets, but were not mentioned in the
previous BEST, have bits set for the name of the piece on this square to
indicate that this threat was created by the last move.

TGTSQS - is a bit-vector with bits representing squares on the board. A
comparison is made of BEST for this node with BEST one ply previously. Any
squares which are now named as containing material targets, but were not
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mentioned in the previous BEST, have bits set for them to indicate that this
threat was created by the last move.

TPATH - is a bit-vector with bits representing squares on the board. For any
TGTSQS detected above, if a piece that has an ATTACKING function on this
square is a sliding piece, then all the intervening squares have bits set for them
in TPATH,

Once this information i. generated, it is accumulated during the backing-up
process of the tree search. This is done by forming the union of the current
description and the previously existing description whenever a node’s value is
accepted. Thus when returning to a node, a coaplete descripiion of all that
each side has accomplished lower in the tree and how, is available. A discussion
of what the CAUSALITY FACILITY contributes to the tree search may be found
in later chapters.

b. GOAL STATES

GN - Goal states are a scheme for partitioning the moves that may be looked at
at each node. A goal state defines intuitively a condition and explicitly a set of
moves that are appropriate to the problem as perceived by the program. Only
these moves may be searched as long as this goal state is in charge. This
produces the desired economy as explained above. A node is always in one and
only one of the following goal states (which is preserved in the word GN).

AGGRESSIVE - This state consists of discovering and proposing moves in the
following four categories:

STRONG WORKABLE ATTACKS - Double attacks and attacks on low mobility
pieces that are deemed workable.

STRONG UNWORKABLE ATTACKS - Double attacks and attacks on low
mobility pieces that are not deemed workable (but could be justified by
other across the board factors).

SQUARE VACATING MOVES - Discovered attacks and moves which vacate a
square that another piece would like to occupy.

SINGLE ATTACKS - Moves that only altack one piece or have one threat but
have another beneficial aspect such as improving the position of the

attacking piece or opening a line for another piece. (Not implemented thus
far).

There are several DEFENSIVE states:

PREVENTIVE DEFENCE - This state is invoked when the side on move firds itself
significantly ahead of expectation (EXPCT) in material. The state then generates
moves which attempt to consolidate the material plus by defending against any

apparent threats.

NOMINAL DEFENCE - Invoked only when the position is deemed worth deferding




and no previously tried goal state has produced a good move, nor has a clear
enemy threat been noticed in the process. This state defends against apparent
threats in the hope that this will satisfy the needs of this node.

DYNAMIC DEFENCE - This state is actuated wher a search has returned to a
riode with an unsatisfactory value, and the last move tried at this node was
blameless. Information backed up during the tree search (the Refutation

Description), is examined to determine what the nature of the problem is. Then
the move generators are activated to try to

1) Capture pieces that participated in the refutation,

2) Block the paths of any such pieces,

3) Block the threat paths of any piece, against targets which were not actually
captured,

4) Move away or protect target pieces, and
5) Protect squares to which refutation pieces moved.

These moves receive quantitative recommendations according to what they
appear to be doing in helping with the solution of the problem. They then pass
through the usual static evaluation, and are tried in order of decreasing value.

MISCELLANEQUS States:

STRATEGY - This state is invoked only at depths which were specified on input.
The strategy implemented here is to call the legal move generator .f TECH
(Gillogly, (1972)], which does & positional sort on the legal moves. These are
then tried in the given order, with the proviso that moves that were already
searched are not searched again. Since this in effect means opening up the
search completely, STRATEGY is invoked only at the top of the tree in the
current program. This is a very primitive way of looking at strategy. However,
the module is completely independent of everything else, and could be replaced
incrementally by more sophisticated procedures. Within the present study,
which is focussed on the tactical component of chess play, it permits a minimal
completion to a total chess program capable of playing complete games. This
facilitates comparison with other programs (see Chapter V).

KING IN CHECK - When the king is in check, this state is invoked directly, since
the set of legal moves is usually small and can be sorted effectively based upon
knowlege of the safety of squares for the pieces,

¢. RULES FOR CHANGING GOAL STATES

The program is able to invoke and change goal state or abandon a node
dependent upon:

1) What an initial analysis of the position indicates is the cofrect state.
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2) Whether a satisfactory result has been obtained in this state.
3) Whether any more moves recommended by this state remain io be tested.
4) What the CAUSALITY FACILITY indicates about causes.
These relationships are explained in detail in Chapter IV.
3. CONTROL OF THE GROWTH OF THE TREE

The program employs a depth-first tree search to a maximum depth of 10 ply.
It uses many standard tree control devices and several that are believed not to
have been incorporated in any previous program. Many of these devices do not
work on absolute reference points in making their decisions, but rather use relative
values determined at a higher level of control. These relative values deal with level
of aspiration, which is discussed after the individual mechanisms are explained.

a. The Problem of When and How to Stop

Ideally, to determine the tactical value of the tcp node in a tree, all
branches that have to be searched should eventually terminate in a quiescent
position (one in which neither side has a threat). However, such positions are
very rare. Therefore, it is much more usual to stop searching because the
current position is now outside of the bounds of reasonable consequences that
could have derived from the top .osition. What this means is that we must have
some idea of what is reasonable, e.g. an expectancy, which is represented in
the program by the variable EXPCT. We also need to have a margin around this
expectancy which will define the limits of reasonableness. This is the constant
MARG. With these constructs, we can hegin to make such tests. However, even
here there are problems. In a non-quiescent position it can sometimes be very
difficult to tell whether having lost material is detrimental (it could have been a
sound sacrifice) or whether having gained material is advantageous (it could
have been a trap).

For this reason, we have devised the following method of dealing with the
reasonableness issue. Whenever a move is proposed, we develop an optimistic
evaluation of its potential. That is we give credit for anything that may work in
its favor and only debit it in a minimal way for any negative characteristics it
may have. This tends to prevent moves that have any good features from being
overlooked.

When a position is evaluated, we develop two values for the position: 1) A
Pessimistic Value that is an estimate of the worst that could happen to the side
on move if the opponent were able o carry out his strongest threat, and 2) A
Nominal Value which is the best estimate (although in very non-quiescent
positions this could be fraught with error) of the value of the position. In
general, the search at a node continues as long as there are moves which have
a potential greater or equal to that already attained. However, if the initial
Pessimistic Evaluation of the node or any result that is returned by the tree
search is MARG greater than EXPCT, the search at this node stops. The
reasoning is that, if this value holds up, we will readjust the expectation for the
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position and redo the search. Otherwise, we are only dealing with a spurious
branch of the analysis.

b. Mechanisms that Deal with the Value of ¢ Node

The following mechanisms operatz on the value of a node in order to stop
the search, and/or change the evaluation environment.

ALPHA-BETA - This device prevents the tree search from investigating branches
of the virtual tree which have already been superceded based upon values
found in another part of the tree. This is done by retaining two reference
values (ALPHA for the side on move and BETA for the other side) for each node
which show the best result that each side has achieved so far. Then it would be
senseless for the program to investigate any branch which could not be
minimaxed to yield a value in the range specified by the two values. Excellent
treatments of the implementation and properties of the Alpha-Beta tree pruning
algorithm can be found in Slagle and Dixon, (1969) and Nillson, (1971). The most
advanced analysis to-date of the potential savings in the tree search achieved
by the algorithm is Fuiler, et. al., (1973).

CLAIM SYSTEM WITHIN ALPHA-BETA - This is a new concept used for the first
time in this program. The idea is the following: Even if Alpha and Beta define a
range of contention within which the program is currently trying to find tne
best solution, it is possible to help things along further. Suppose that the
search reaches a point where a terminal evaluation can be made, and it turns
out that White is a rook behind what he was at the top of the tree. The
backing-up mechanisms of the tree search have no idea whether this was due to
pressures on White which resuited in him losing a rook, or whether White tried
an unsound sacrifice while under no pressure at all. Conseauently, if the result
is within the Alpha-Beta limits, the back-tracking process now concerns itself
with how White can avoid losing the rook. This would be appropriate only if the
rook were not voluntarily sacrificed, in which case it would be appropriate to
look only at moves for White which could make the sacrifice sound.

In order to avoid spending time solving such unneccessary problems, the
CLAIM SYSTEM does not allow any ALPHA value (best so far for the side on
move) to remain lower than the Pessimistic Value for this position. For instance,
suppose that in a given position Black’s best threat is equal to EXPCT minus the
value of a pawn (Black is always striving for the most negative values and White
the riost positive). However, the ALPHA value which describes the best White
hes #chieved thus far is EXPCT minus the value of a rook. Before going on,
ALPHA is adjusted to be EXPCT minus the value of a pawn, thus narrowing the
range of contention. Then if White were iater to sacrifice a rook unsoundly, the
search could never become concerned with how to achieve anything less for
White than EXPCT minus the value of a pawn (which he is considered to have
achieved already at the node in question). This algorithm is especially effective
when ALPHA and BETA are far apart. There is a certain risk in this methad, as
in the forward prune heuristic (described below), that a position’s potential will
not be properly appreciated. However, this is a normal risk associated with
generating sparse trees and the risk should lessen as the program improves in
its abilities.
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POSITION REPETITION WITHIN A BRANCH OF THE TREE - This device checks the
current posiiion against previous positions in the same branch of the tree to
see if a position repetition with the same side on move has occurred. This is
necessary if perpetual checks and other forms of (forced) repetition are to be
recognized as draws.

POSITION REPETITION WITHIN GAME - This device checks a move made by the
opponent to see whether it results in a repetion of some earlier position in the
game. If so, then a switch is set which causes every position generated during
the tree search to be compared with hash-table entries representing all
previous positions in the game. Any repetition that is found results in a value

of “draw” being assigned to that node and causes the tree search to back up
from that point.

STOP WHEN AHEAD - This heuristic causes backup at a node where the
pessimistic evaluation is significantly higher in value than was expected at the
top of the tree.

SUCCESS IN DEFENCE - This heuristic operates only when a node is in one of
the DEFENSIVE goal states. Suppose in such a state, a value is backed up, which
is greater or equal to EXPCT. Then if the material at this node plus the
side-to-move’s best threat are not greater than the backed up value, the search
at this node stops. The rationale is that the defensive states are for the
purpose of finding satisfactory solutions to defensive problems, and not for
finding ways of improving prospects in excess of this.

SATISFIED -~ If at any node a value is reached which deviates from EXPCT by
more than MARG, the search at that node is stopped. This is done, even though
other moves may be available for testing, on the assumption that this will not be
a principal variation in the final analysis. At a later stage of development i’
would probably be desirable to mark such values so that they can be identified
as a certain type of estimate during backup, and then further action could be
taken at the iop of the tree if desired.

MAX. JEPTH - There is a maximum depth (cu rently 10 ply) beyond which
the program can not search. When this depth is hit, we assign the nominal value
of the bottom node to this branch.

TOTAL EFFORT LIMIT - If the top node is in the STRATEGY state and two
minutes of CPU time have already been used for this move, then no additional
searching is done if a satisfactory move has alread, been found. This is the
only effort limit that exists at present. As the program becomes more involved
in playing games, it is expected that others will be implemented.

¢. Mechanisms that Deal with the Value of a Move

FORWARD PRUNE - This mechanism compares the Static Value of a proposed
move with the ALPHA value at that node. If the move’s value is worse than
ALPHA, the proposed move is rejected without testing. Since the comparison
involves taking the static value of a move and comparing it with the value oi a
position in the tree, some errors could be made here. Therefore, as explained
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earlier, the static value for the proposed move is optimistic so as to minimize
the likelihood of rejecting a move that may succeed.

CAUSALITY REORDERING - This mechanism is invoked whenever the search
returns to a given node. In such a situation, the backed-up Refutation
Description indicates why the move made was held to its current limit of
effectiveness. [If this was less than the maximum to which this player could
aspire (as defined by Alpha-Beta), the Program generates the set of moves that
could do something about this description. It then looks on the move stack of as
yet untried moves at that node, and promotes any untried move that was
mentioned in the set of moves generated from the Refutation Description. This
device thus reorders previously suggested moves because of information gained
from the depth search. It does not however revalue the move, so that such a
move could still be pruned by the forward prune device.

4. Level of Aspiration

After much experimentation, the following scheme for level of aspiration has
emerged. Two limits of aspiration (Alpha and Beta) are needed in order for each
side to know what is the maximum it can hope to achieve. An expectation (EXPCT) is
needed, that is the best estimate of the value of the position at the top of the tree.
Around this expected value, a margin (MARG) is defined. If a value, that differs from
EXPCT by more than MARG, is ever backed up to the top of the tree, EXPCT is
changed to that value, and the search is redone,

Alpha and Beta are set initially at plus and minus infinity. The value of MARG is

set permanently at 687 of the value of a pawn. EXPCT is provided on input of a

position and retained from one tree search to the next as the minimaxed value of

the last tree search. If a value that is greater than EXPCT plus MARG is ever

backed up to the top of the tree, the foliowing occurs: EXPCT is set to the value

that has just been backed up. The new Alpha-Beta limits become plus infinity and

EXPCT minus a very small quantity. The search is repeated uniess the value

returned is sufficiently high to guarantee a completely winning position for the side ;

3 making the gain. An algebraically opposite adjusiment is made if the valye returned
to the top of the tree is EXPCT minus MARG. In order to prevent oscillations in the
] value of EXPCT, a very conservative view of evaluation must be taken. This means
s that wherever there is doubt about what the terminal value of a position is, the §
value closest to EXPCT must be chosen. Otherwise, it is possible for a value to be :

raturned to the top of the tree which cannot be substantiated in further searches.
This matter is treated fully in Chapter IV.




CHAPTER 111

THE REPRESENTATION AND ITS ADVANTAGES

This chapter presents a discussion of the organization of the data that make up tne
representation and how these data are used. It follows up on the definitions and

constructions of Chapter Il and uses these in providing a more commanding overview of
the program.

In order for a chess program to be both a good player and efficient, it is necessary
that:

1) Good moves be proposed for investigation

2) The goodness of proposed moves correspond somewhat to the order in which they
are to be investigated.

3) The ultimate goodness of any proposed move be recognized

Whereas the tree search is charged with delivering an ultimate verdict about any
proposed move, the data structure is charged wilh statically finding important moves
and doing this economically. Thus we are interested in this chapter with the recognition

equipment that must exist in order to support the latter effort. There are two main
points to notice:

1) The recognition machinery must be capable of finding worthwhile moves even if

their properties are somewhat hidden. We present examples of this and of how it is
achieved.

2) The recognition machinery must be able to reject worthless moves in order to avoid
wasting the efforts of the tree search. Clearly this notion cannot be carried to the
extreme, where the recognition machinery would be charged with producing just
one move at the top node which would always be the best. Instead we take an
intermediate attitude, and allow several moves to be proposed, but impose a
stricture of reasonableness. This stricture is rather subjective, but must get
tougher as the recognition machinery improves. Thus it is possible continuously to
find new ways of improving the recognition machinery in order to notice a new
tacet of a move/position which makes that move unreasonable in that position
environment, or makes the move important in that position environment.

We show examples of good tactical moves that our method finds, which current
standard methods fail to find. We also show examples of moves that the recognition
machinery effectively excludes (by giving them a very poor rating), which programs
with less sensitive recognizers would include and thus waste tree searching time. Being
sensitive to the goodness of moves narrows the width of the search tree, making
searching to greater depth possible. The representation is primarily used in move
generation, move evaluation, and the creation of descriptions. These facets are treated
in turn. We present first a brief review of the pertinent parts of Chapter II.
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A. HOW IS THE REPRESENTATION ORGANIZED

The most primitive elements in the representation are the pseudo-legal moves which
define the possible transitions from position to position that coule ve allowable under
the rules of chess. Upon this structure is erected the notion of a bearing relationship.
This is a relationship of a piece to a square, and in our usage tells under what
conditions the piece could pseudo-legally move to that square The basic bearing
relations used in this program are defined and explained in Chapter Il. They are DIR,
OTHRU, ETHRU, DSC, and OBJ. These relations are sufficient to be able to determine
whether a piece can:

1) Participate in a capture with or without an intervening piece participating.
2) Be a pinner of an opposing piece.
3) Be the source of a discovered attack if one of its own pieces were to clear the line.

_In addition, the relation BLOK indicates when a given piece is in the way of any
sliding piece, between that piece’s present location and the edge of the board. Another
important relation is BEH which tells which pieces, not presently able to control the
squares to which a pawn can advance, would be able to control these as the pawn
advances. This involves rooks and queens behind the pawn. The totality of the above
relations makes it possible to determine statically what squares are available to a given
piece from its present location under a variety of simple conditions.

The next level of abstraction involves using the above information to rummage
about ‘he board, without doing tree searching. Certain points on the board are
considered to be important, and analytic routines are invoked to discover the state that
these important points are in. This involves such things as the apparent safety of
every piece on the board. The program begins to thus put an interpretation on what is
going on on the board. Functions, which specify a piece, a role it plays, and a square on
which this role is played, serve to remember key roles of various pieces in the
interpretation. The following types of functions have been found useful; it being a
sufficient condition for one function type to differ from another, if it at any point
requires a different analytical treatment: ATTACKING, DEFENSIVE, SUPPORTING,
OVER-PROTECTING, PINNING, GUARDING THE ESCAPE SQUARE OF A
LOW-MOBILITY-PIECE, and BLOCKING A SQUARE. Among the BLOCKING functions, there
also exist dysfunctions, which serve against the best interests of the side whose piece
this is. This occurs, for instance, when a piece block's an escape square for one of its
own pieces. Functions are assigned to pieces only when a meaningful role for the
piece-function combination is found. Special routines arbitrate over the meaningfulness
issue, assigning, for instance, DEFENSIVE functions only when something needs to be
defended.

B. HOW IS THE REPRESENTATION USED

1. Move Generation

The above described information environment is well suited to detecting
meaningful tactical moves. It can be used for finding aggressive moves that are:
captures, double attacks by one piece, attacks on a low mobility piece, moves that




cause a discovered attack, and moves that remove a piece that at present has a
blocking dysfunction. This in turn creates new functional assignments associated
with maintaining and defending against the threatening moves. It can also be used
for generating moves that defend against the statically (without tree se2rching)
noticed threats.

If the search ever returns to a node with a defensive problem, a Refutation
Description will be available tr describe the problem. This description is examined
and appropriate defensive rwoves are generzied from it. In all cases, the
recommending agency has some idea of why 2 move is being proposed and assigns a
heuristic quantitative recommendation to the move according to what it may be
expected to accomplish should it be successful.

2. Move Evaluation

There are two general advantages to the use of this representation in the move
evaluation process. The first is that it is detailed enough so that it is possible to
evaluate the effect of a move simply by scoring the move in the environment of the
old position, rather than by setting up the new position. This results in a definite
saving in computing time. The second advantage is that the assignment of functions
results in binding certain pieces to certain important duties on the chess board.
These duties are considered to be essential if the existing stability of the current
position is to be maintained. Therefore when a move results in a perturbation of
these functions it is possible to examine the representation in an attempt to gauge
the effect of such a disturbance. From the experience we have had, it is possible to
both notice effects which would take up to seven ply to unfold in an actual game,
and to estimate the maximum possible effect due to such a perturbation with good
reliability. These effects involve noticing whether a piece is moving en prise,
whether any piece that is set to capture another is committed to other important
duties, and whether a moving piece clears or blocks any important squares.
Optimism is introduced by giving fuli credit for any effect favorable to the moving
side, and only a small partial debit for effects that are unfavorable.

To understand perturbation of a position it is important to be aware of the
various types of moves that can occur and how their merits can be determined. For
instance, it is quite usual in programs such as the Greenblatt and Northwestern
programs, to include all moves that are checks or captures, even if they involve loss
of material, just on the chance that some other fictors exist which may make such a
move successful. Those “other factors" would, liowever, have to be discovered at
the exponential cost of tree searching. The present program can, because of its
refined analytical methods, rule out many checks and captures as completely
worthless. This would occur when, for instance, a capture will result in loss of
material without causing commensurate "disturbing effects" on the position. The
ability to optimistically gauge such disturbing effects and thus dismiss certain
“sacrificial" moves as having absolutely no sacrificial merit, is one of the things that
our evaluation function is be able to deal with effectively. It should be noted that
the expedient of including all checks and captures is not a panacea, since many
double attack moves or other forceful moves which do not fall into the class of
checks and captures, appear to lose material but actually are correct sacrifices.
Moves of this type are frequently not discovered by today’s better programs,
whereas our program makes the discrimination quite well. For example, in the
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position in Figure 3.1 the Greenblatt 1968 program (which had already achieved a
class C rating) plays 0-0 for White while in the tournament mode, instead of N-N6
winning the exchange. In Figure 3.2 from the game TLCH - CHESS 35
(Northwestern) ACM Tournament - 1971, it is Black to play. He can win a piece by
1.-- NxB because if 2, RxN then B-Q5, 3. Q-N3, QR-K1, 4. K-B2 QxBPch wins a whole
rook. But instead CHESS 3.5 played 1.--KR-N1. It is clear that the wrong move was
made because the program failed to understand that 2.--B-Q5 pinning the rook, also
made the Black queen invulnerable, This is substantiated by the fact that Black did
eventually play NxB winning the exchange, after he had previously played QxQP,
getting the queen away from the tender spot. All this is rather strange as the
Northwesten program sets up the position resulting fro.n every move it wants to
evaluate. Thus even after 2.--B-Q5 is set up, it still does not know that the queen
is safe. While both these programs play very good tactical chess (for chess
programs), these examples are typical of things that they do not do well, and that
cannot be covered up by a catch-all such as "Try all captures and checks". Our
program solves both problems correctly.

The evaluating procedure is programmed tc iook for the main perturbing effects
that can occur. These are known in the chess literature as: 1) Guard destruction,
2) Piece overloading, 3) Decoying, 4) Line Blocking, 5) Unblocking, and
6) Desperados. We take up each in turn.

a. Guard Destruction

Guard destruction results from a capture of a piece which has one or more
functions to perform. It is possible to detect this effect by simply setting up
the position resulting from the move, However, as previously explained this is a
cost which can be avoided. With the use of functions, it is quite easy to note
the disappearance of functions associated with a capture, and to also note their
valuec. It would also be useful to know when the piece whose functions are
being destroyed can be recaptured, and whether it is possible to do this so as
to restore all functions without relinquishing any new ones. This feature has
not yet been implemented.

Figure 3.3 shows a simple example of guard destruction, White to play can
play 1. RxBch, PxR, 2. QxN and thus gain material. In this case, the simpls rule
of trying ail captures finds the solution too. However, If the capture RxBch
were not acsociated with some sacrificial theme, there would be no point in it.
Such cases would just result in wasted tree searching effort.

In our program the move 1. RxBch is noticed because it is a capture. The
captured bishop is known to have the function of guarding the knight on K5.
Since that knight now becomes endangered whereas it was previously save, the
REDEEMING VALUE of 1. RxBch becomes higher than the loss of the rook for a
bishop that the move entailed. This results in a strong recommendation for the

move,

b. Piece Overloading

Piece overloading occurs when a piece that has a specific function also has
another function to perform which cannot be performed at the same time. The
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piece will become overioaded when either function is demanded of it. It wil be
successfully overloaded, if the cost of demanding the first function is riot
greater than the reward to be gained as a result of the second function kaving
to be relinquished. Some simple examples will help to clarify this: If a pawn is
guarding each of two other pawns, then it would not be worthwhile for a bishop
to capture one of the pawns at a net loss of 2 units, in order for some other
piece to be able to capture the second pawn worth one unit. However, if a
pawn is guarding each of two knights, then if a rook were to capture one of the
knights (for a net loss of two units) in order for some other piece to capture
the other knight for an ultimate net gain of one unit, this would be worthwhile.

Figure 3.4 shows a simple example of piece overioading. Here White to play
can play 1. RxN, PxR, 2, QxN. 1t is the pawn which is overloaded by having two
functions to fuifill and not being able to do both satistactorily. Our program
notices the move i. RxN because it is a capture. Since the defending pawn has
another defensivc function on its FCTN list, it is found to be overloaded. Since
the value of the overioad is equal to the value of the knight on QB4, it creates a
REDEEMING VALUE which makes the loss of the rook for a knight worthwhile. It
is important to note the economics of such transactions; e.g. there is no point in
starting with 1. QxN as the amount that can be recovered is not worth the
investment made. As a mutter of iact, 1. QxN is evaluated as below the value of
the existing position.

¢. Decoying

Piece decoying is a relatively simple idea which involves the sacrifice of
some amount of material in order to bring to a new square an opponent’s piece
of greater value than the amount sacrificed. In a successful decoy sacrifice, the
decoyed piece will then be attacked, and a net gain will result. The king is the
piece that is most often dscoyed; however, possibilities also exist with lesser
valued pieces. The crucial information item here is again the function
(defensive), which tells which piece will be decoyed. This information is
absolutely essential, as simply knowing whether or not a piece is defended will
not result in distinguishing between sacrifices that have decoy value and tiicse
that simply bring a very low valued piece to a new square.

Figure 3.5 shows the simplest type of decoy sacrifice. In the position it is
White to play znd he can mate in two moves by the sequence 1. QxPch, KxQ,
2. PxPmate. The present program finds this sequence without any
back-tracking. This is due exclusively to the DECOY VALUE that EVALUATE
associates with 1. QxPch. Many contemporary programs would investigate the
moves QxPch, QxBch, PxP, and other attacking and capturing moves. In such
programs the move QxBch would almost certainly be preferred to QxPch, since
both moves give check, but the former captures a more valuable piece.
However, the issue here is not capturing the most valuable piece, but luring the
most valuable piece into a new position. In this connection, EVALUATE gives the
move 1. QxBch an unsatisfactory static rating, since giving up the queen for a
bishop and the iuring of a rook to a new position does not get a satisfactory
REDEEMING VALUE. The check gets no credit at all, since the recapturing rook
has no other functions to perform. In fact the only sacrificial move besides
1. QxPch which gets an above average rating is 1. PxP which opens up a line on
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liie enemy king. All ths other sacrificial moves do not have adequate properties
to merit a high rating. It should however be pointed out that if the Black rook
were not at KNI, both QxBch and QxPch would be tried in that order and neither
found to be sucessful. However, the algorithms only help in detecting which
violent moves have no potential, not which ones are guaranteed to succeed. For
that, the tree searc!i is required.

d. Blocking and Unblocking

Blocking and unblocking involve complicated problems, some of which are
not addressed by this program. We turn first to those that are. It is possible
to block the defensive function path of an enemy man, thus making the object of
its protection undefended. This is noticed in the program by checking the
destination square of a move against DPATH; a catalog of squares on which
defensive paths can be intercepted. If the destination square of a move is
mentioned in DPATH, EVALUATE finds all pieces that bear DIR on this square. It
then checks the DEFENSIVE functions of each such opposing piece, to find which
cross the given squaro. For this it uses CLR(function piece location, function
square). For every defensive function that crosces this square, EVALUATE
raises the evaluation of the proposed move according to the value of what this
function defends. It is also possible to block an enemy attack or support path.
However, this is a defensive gesture and is treated as part of the defensive
move generation procedure.

An example of defensive path blocking can be seen in Figure 3.6. Here the
correct move, 1. R-B7, is originally noticed by FEATRS since it forks the Black
queen and the KNP. It is put on the list WMISS, that has moves not likely to
succeed, since the terminal square is unsafe. EVALUATE then notices that the
move intersects the defensive path of the Black queen bearing on its KN2. Now,
TSQ(Black’s KN2) indicates that this is a square where White is at present
threatening to give check (with the queen). This results in the value of the
move 1. R-B7 getting enough heuristic credit to establish it, based upon its
static evaluation, as one of the potentially best moves in this position,
Ultimately, mechanisms should be added which will be charged with proposing
such function path intersecting moves; however, the present program is limited
to merely detecting such occurrences in moves proposed by other agencies.

In unblocking, it is possible to move an own man that has a BLOCKING
dystunction, and thus make a previously blocked move possible. This would
occur, for example, when a knight is occupying a square on which a queen would
like to give check. This is noticed in EVALUATE by checking the origin square of
a move in the vector TSQ. This will indicate the vacating potential of this
square, both for other pieces that would like to get there and for discovered
attacks. Thus the discovered attack is also an unblocking move, and the utility
of such a move is noticed at the same time, when TSQ is examined. A simple
example of an unblocking move is shown in Figure 3.7. White to play can
unblock the square K5 where the bishop can give check by moving the knight
that is there. This can be done most forcefully and effectively by 1. NxPch and
as Black must recapture BxN, White follows up with 2. B-KSmate. The move
1. NxPch is orginally found by OCCUP, but put on the WMISS list because the
checking square is adequately defended. EVALUATE later assigns a high value
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to the move because it vacates a checking square while giving check and
capturing a pawn. Thus our program finds the winning sequence easily.

It Is also possible to take advantage of the fact tliat ar enemy piece has a
blocking functlon. This is done by evoking any other function that it may have
(overloading). Thus, If it were to exercise the other function it would no longer
be on the square on which the blocking function had to be performed. The
rules for piece overloading apply pertectly well to this case. In fact such
overloading is noticed as part of the piece overloading calculation described in
Chapter II. A simple example of a sacrifice to achieve unblocking is shown in
Figure 3.8. Here White can play 1. QxPch since the reply PxB unblocks the path
of the White KNP thus allowing 2. P-N7mate. In our program the capture
1. QxPch is notices by OCCUP and put on the list WMISS because the capture is
defended against. In EVALUATE the blocking function of the Black KNP is

noticed (it blocks a check by the White KNP) and the move thus receives a high
value. The mate is then found immediately.

Finally, moving a pinned piece is also an unblocking move, but one with
undesirable side effects for the moving side. EVALUATE checks the PINS list
associated with the moving piece’s nara to see if it was pinned. It then debits

the evaluation of the move by the maximum valued piece, that moving the
pinned piece will expose.

EVALUATE is aware of all the above cases of blocking and unblocking and
credits and debits the value of any proposed move accordingly. In addition,
there are cases involving opening of lines by moving a piece that presently
limits the scope of one or more other pieces. This happens, for instance, i¢ a
knight moved in order to clear a path to a square where a queen could give
check. This is not noted by the preser.. grogram. There are also moves that
produce side effects in the process of clesring a line. Such a move is 1. N-N6 In

Figure 3.1 above where the line clearance creates a pin and at the same time
takes advantage of it

The present program handles these more complicated unblocking moves as
follows: If there is any square, that has an object of Interest (in the vector INT)
to the piece that is belng unmasked, anywhere on the line that is being
unmasked, the proposed move receives heuristic credit for one-third of the
value of this object of interest. This is far from an ideal solution. For instance,
the analysis for Figure 3.1 should start by noticing that moving the knight clears
the path to the Black rook on QR which is in the INT vector of the White rook.

" Then it should notice that the Black pawn on QR2 is bearing on QN6 and thus is

rasponsible for its protection. Then when this pawn s also found to be on the
newly opened line, the possibility of a pin arises, and this should be enough to
fully justify trying the move. Besides the above, there are unblocking
possibillties associated with every plece that could participate in a projected

capture sequence on a square. This seems to be the full scope of blocking and
unblocking possibilities.




8. Desperados

A desperado is a piece that tries to sell its life as dearly as possible. This
can occur when it is trapped and bound to be lost. However, a more important
case occurs when the piece is subject to capture, while an equivalent valued
enemy piece is also subject to capture. Consider the position in Figure 3.9. If
White were to play 1. RxQ, then Black could reply RxQ and the position would
remain materially equal. Likewise, if White moved the queen away, Black could
do the same without any change in the material balance. However, if White
could use his first move to capture something, and thus sell his queen dearly, he
could make a gain if Black’s queen was still capturable after this. Thus in
Figure 3.9, White can win by playing 1. QxN. Now if Black tries the
counter-desperado QxR (QxN does not work because of QxQ), White wins with
2. QxRch followed by 3. RxQ. Thus it takes three desperado sacrifices in
sequence to produce the correct solution. Our program finds both the
desperado moves 1. QxN and 1. QxR atiractive using the procedure explained
oelow. It eventually finds 1. QxN to be correct by tree searching,.

Detecting useful desperagu moves is up to the board evaluation portion of
EVALUATE. All captures are always proposed in the AGGRESSIVE goal state.
The potential of a desperado caplure can be found when the relative threat
picture for both sides is knowr Thus, it is up to the board evaluation
computation to determine that after 1. QxN above both queens are en prise, but
Black cannot remove his from attack while capturing the White queen (as could
occur for instance after 1. QxR). In a program that always tries all captures,
desperado sequences will always be found, as long as they terminate within the
search horizon. However, many existing programs must waste a lot of time
checking out foolish captures, if the other necessary conditions for the
desperado do not exist to warrant the investigation.

f. Recognizing the Futility of Certain Moves

Figure 3.10 shows examples of moves, which the present program statically
recognizes as worthless, that would however be searched by any program using
the "all checks and captures" paradigm. White to play has four checks here and
two captures and none of them are even slightly worthwhile. In the present
program none of these moves gets enough of a REDEEMING VALUE to justify the
amount of material that is expected to be lost in the transaction. Take for
instance, the move QxRch. The rook is defended by the knight which has no
other functions to perform. Thu: there is no overload. When the queen is
recaptured it will decoy the knight to a new position, but losing a queen for
rook is too much of a cost to achieve this. The captured rook has only one
defensive function to perform: guarding the check at Q4. However, since the
capturing piece is also the one which would give the check against which the
rook is guarding, this is detected as not being a guard destruction. Finally,
moving the queen to Q8 does not block or unblock any important lines, and
conditions are not ripe for a desperado (no enemy queen also en prise).
Therefore this move receives a rating below the EXPCT for the position, and will
not be searched unless some desperate set of circumstances are found to exist
(they do not exist in the given position). The remaining checks and captures are
evaluated as poor in a similar way.
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Now consider the same position with an additional White rook on K1. In this
new situation, the Black rcok at QI has a new functicn: guarding the check by
the White rook at K8. This would now provide some juctification for the move
QxRch, since it would destroy the guard against the check by the rook. That
QxRch coes not in fact ultimately work, is not important. With a few more
changes in the position, it could be made to result in a mate. Hence, there is
some potential in the move, with a White rook bearing on K8. There is NO
potential in the move QxRch in the original position. The lack of a data structure
which allows such functional comparisons could make it p-actically impossible to
detect the difference in the two situations. This in turn makes for wastec tree
searching effort.

3. Creating and Passing Descriptions

Another use of the representation is in the creating of descriptions which can
be passed to some agency which could use the description to try to solve a
problem. The usual format is that the description is accumulated during the search
process as this moves from node to node. If the description is found to be relevant
to a problem at a node, facilities in the program attempt to apply it. The only

tacility of this type in the present program is the CAUSALITY FACILITY, which is
described tozether with examples in Section D below.

Two other possibilities for creating and using descriptions have been discovered
while developing this program. However, neither of these is implemented as yet.
The first is the use of themes to restrict the combinatorial explosion of tree
searching. It would be possible, wnen evaluating a move, to keep track of why a
move received a REDEEMING VALUE if it was a sacrificial move, or why it was
recommended if not. This could be put into a description associated with the move,
and would be passed forward as the tree search went deeper. The contents of all
descriptions associated with the moves of a given side in the variation being
presently examined, would constitute the theme which is being attempted. Then
criteria would have to be set up by which all proposed moves would be judged.
This would involve not only recognizing the potential of a move, as is done at
present, but also wiether the move should be tried here. This means consideri '8
whether the move was also possible earlier, and whether it appears to continue the
“thetne" to this point. There are several problems still associated with defining how
a move can be accepiable to a theme.

The other use of descriptions that we envisage is the development of
intermediate data from Refutaiion Descriptions. These descriptions would take the
form of a lemma that is posited about things that could happen in a given position.
Thus, if the capture of a rook allowed a mate in three, then certain key elements of
the position relating to the capture and the mating sequence (as described in the
Refutation Description) would be abstracted from the position. Then, if in a direct
descendant of this position, these key e'ements still pertained, the view would be
taken that the capture of the rook is stili not feasible. How lemmas can be
constructed and used is discussed in more detail in Chapter VI.

In the remainder of this chapter, we present examples from the program’s
performance that illustrate how the above described facilities operate in a practical
environment.

T L
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C. EXAMPLES OF THE STATIC ANALYSIS PROCESS

In the first example, we present a complete view of all the higher level data
generated as part of the static representation of a position. These data are generated
from lower level data (location of pieces, bearing relations, etc.) by the routines OCCUP
and FEATRS as explained in Chapter 1. The moves generated from these data and then

evaluated as part of the AGGRESSIVE state are also shown. We refer to the position in
Figure 3.11.

Table IlI-1 shows the occupiabilities of each square. The table is in the form of a
chessboard with squares corresponding to the squares of Figure 3.11. The top entry
in each square pertains to the occupiability for White, the lower entry for Black. The
number indicates the value of highest valued piece for that side that would be safe
there. This is using the standard values of the pieces, e.g. pawn=l, etc, to king=31.
When the letter associated with the number ic S (safe), this indicates that if a piece of
the side whose OCY this is, is presently bearing »n this square, it would be safe there.
If the letter is N (not safe), only pieces not at present bearing on this square would be
safe there. For example, consider White's QBS square. The values here are 2 N and 1
S respectively. This means that White pieces worth 2 points or less but not presently
bearing on this square would be safe there. This excludes the pawn that is presently
bearing on the square. The value for Black indicates that any piece worth | point or
less and presently bearing (or not bearing) on the square would be safe there. This is
clearly true; however, the pieces presently bearing on the square, each being worth
more than 1 point would not be safe there.
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TABLE IlI-1 - Occupiabi' ties of Squares

BN | BN | 8N | @8N | @N 1| 31N

I 31 N

I'31S 131S 1315 131S 1315 | 31N

I 31 N

I BN 1 BN | BN | 9N

8N

I
I 3N 1315

I 31 S

I
I 35S

I 31 S

9 1S

I 1N BN | BN | BN

8 N

8N

'31S | 3N 1315 1315 | 95 |

318

1IN

g5

I BN

2N

315

I
I 158 35S 8N 3 M 3N

85

I 31 S




I - 16

Table 1lI-2 shows the physical blocking relations of pieces blocking each other’s
movement. It should be noted that there is no functional meaning associated with these

relations,
TABLE IlI-2 - Blocking Relations
Blocking Fiece Blocks Path of Ending on
Black Rook on Q1 Black Rook on QR1 KR1
Black Bishop on 0Bl Black Rook on QR1 KR1
Black Bishop on QB1 Black Rook on Q1 0R1
Black Bishop on KBl Black Rook on Q1 KR1
: Black Knight on K1 Black Rook on Q1 KR1
. Black Knight on K1 Black Rook on QR1 KR1
: Black Pawn on K3 Black Bishop on 0Bl KR6
Black Pawn on K3 White Rook on K1 K8
Black Paun on QR2 Black Rook on QR1 OR8
Black Pawn on QR2 White Rook on QR1 ORS8
Black Paun on QN2 Black Queen on QB2 QR2
Black Paun on QN2 Black Bishop on QB1 QR3
Black Pawn on QN2 White Queen on KB3 QOR8
Black Paun on KB?2 Black Queen on QB2 KR2
Black Pawun on KB2 White Queen on KB3 kB8
1 Black Paun on KN2 Black Queen on QB2 KR2
i Black Paun on KN2 Black Bishop on KBl KR3
g White King on KNI White Rook on QR1 KR1
: White King on KNI White Rook on K1 KR1
White Rook on K1 White Rook on QR1 KR1
1 White Bishop on Q3 Black Rook on Q1 Q8
Wnite Bishop on Q3 White Queen on KB3 0OR3
White Knight on K5 Black Queen on QB2 KR7
White Knight on K5 White Rook on K1 K8
White Pawn on KB2 White Queen on KB3 KB1
White Paun on KN2 White Quuen on KB3 KR1
White Pawn on QR3 Black Rook on QR1 ORS8
White Paun or QR3 White Rook on QORI OR8
White Paun on QB3 Black Queen on OB2 0BS8
White Paun on QB3 White Queen on KB3 QRrR3
White Pawn on 0B3 White Bishop on Q2 QRS

bhite Paun on Q4 Black Rook on Qi 08




Piece Name

White Paun
White Paun
White Paun
White Paun
White Paun
White Paun

on
on
on
on
on
on

Q4

aB3
arR3
KR2
KN2
KB2

White Knight on KS
White Bishop on Q3
White Bishop on Q2
White Rook on Kl
White Rook on OR1
White Quuen on KB3

White King
Black Paun
Black Paur
Black Paun
Black Paun
Black Paun
Black Paun

on
on
on
on
on
on
on

KN1
KN2
KB2
aNZ2
ar2
KR3
K3

Black Knight on K1

Black Bishop on KBI
Black Bishop on QB1

Black Rook on Kl
Black Rook on QOR1
Black Queen on 0B2
Black King on KNI
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TABLE 11I-3 - Piece Mobilities
Effective Mobility (Number of Squares)

By

(*) Indicates a low mobility piece
(*x) Indicates a pinned piece
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Piece

Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Black
Uhi te
Uhi te
Uhi te
Uhi te
White
Uhi te
Whi te
White
Uhite
Uhi te
Whi te
White
Uhits
Uhi te
White
White
White
Whi te
Whi te
Whi te
WUhite

King on KN1
King on KN1
King on KN1
King on KN1
Queen on QB!
Queen on QB2
Queen on QB2
Queen on QB2
Queen on 0OB2
Oueen on 0OB2
Queen on QB2
Queen on 0B2
Rook on QR1
Rook on Q1
Rook on Q1
Rook on Q1
Rook on Q1
Bishop on (OBl
Bishop on 0Bl
Bishop on KB1
Bishop on KB1
Bishop on KB1
Knight on K1
Knight on Kl
Pawn on KB2
Paun on KN2
King on KN1
King on KN1
Queen on KB3
Queen on KB3
Queen on KB3
Queen on KB3
Queen on KB3
Queen on KB3
Queen on KB3
Queen on KB3
Rook on QR1
Rook on K1
Rook on Kl
Bishop on 02
Bishop on Q2
Bishop on Q2
Bishop on Q2
Bishop on Q3
Bishop on Q3
Knight on K5
Knight on K5
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TABLE IlI-4 - Assigned Functions

Function

Oefends
Defends
Defends
Overprotects
Attacks
Attacks
Attacks
Attacks
Overprotects
Oefends
Defends
Overprotects
Overprotects
Attacks
Attacks
Overprotects
Overprotects
Defends
Oefends
Attacks
Attacks
Overprotects
Overprotects
Overprotects
Overprotects
Defends
Oefends
Overprotects
Attacks
Attacks
Overprotects
Overprotects
Attacks
Attacks
Attacks
Attacks
Defends
Overprotects
Overprotects
Overprotocts
Oefends
Defends
Attacks
Guards
Attacks
Oefends
Overprotects

Square

KR2
KB2
KBl
KB1
KR7
aB3
QB3
KS

QN2
KB2
KB2
Q1

QR2
ae

Qs

aBl1
K1

QN2
QN2
aNS
QRE
KR3
aB2
KN2
K3

KR3
KR2
KR2
KB8
QR8
KB2
KN2
QN2
QN2
KB7
KB7
QR3
aR1
KS

K1

aBs3
aB3
KR6
KR7
KR7
a3
Q3

Reason

Attack on LMP (king)
Occupant

Pin Object

Occupant

Pin Object

Occupant

Muitiple Attack
Occupant

Occupant

Attack on LMP (king)
Occupant

Occupant

Occupant

Pin Object

Occupant

Occupant

Occupant

Occupant

Attack on LMP (rook)
Multiple Attack
Occupant

Occupant

Occupant

Occupant

Occupant

Occupant

Pin Object

Occupant

Pin Object

Pin Object

Occupant

Occupant

Occupant

Attack on LMP (rook)
Occupant

Attack on LMP (king)
Occupant

Occupant

Occupant

Occupant

Occupant

Multiple Attack
Occupant

King Escape Square
Attack on LMP (king)
Pin Object
Occupant




Knight on KS Attacks KB7 Occupant
Paun on KN2 Overprotects KB3 Occupant
Paun on QB3 Defends ONG Multiple Attack
Pawn on 0B3 Defends Q4 Occupant
Paun on Q4 Defends K5 Occupant

TABLE IlI-5 - Piece Safety
Piece Status

White Bishop 02 Target of Interest to

White Paun QR3 " " " " "
White Paun QB3 "
White Paun Q4 "
Black Paun KB2 Target of Interest to White
Black Rook aR1 - " " " "

In Table IlI-5 each of the pieces mentioned is barely defended. There are no en
prise pieces in Figure 3.11, and all other pieces are overprotected.

The only piece on a pinned piece list is the Black pawn on QN2. MAT shows
material to be even. POSIT indicates White has a very large space advantage. There
are no moves on lists WTHRT or BTHRT meaning that there are no workable threats for
either side. The list WMISS (White unworkable threats) contains the following moves
and threat values (ranging from pawn=1 to king=31):

TABLE 111-6 - List WMISS

Move Threat Value
QxPch 31
B-R7ch 31
BxP (%]
QxNP 5
NxP 8

The list BMISS (Black’s unworkable threats) contains the following moves and threat
values:

TABLE IlI-7 - List BMISS
Move Threat Value

B-NS
BxP
QxP
RxP
QxN

The list WIDEA (White Ideas) is empty. The list BIDEA (Black ldeas) contains the
idea of moving the Black pawn on QR2 in order to discover an attack on the White pawn
on QRS3.
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After all the moves suggested for White above are evaluated in the AGGRESSIVE
state the move stack looks as follows:

TABLE II1-8 - Move Stack

Move  Evaluation (deviation from MAT value, 50 units = one pawn)

B-R7ch 1129
QxPch 1000
NxP 36
BxP -109
Q>NP -353

From this information bese, the program begins its search at the top node. The
position is an advanced example of a decoy sacrifice. The program tries the propoased
moves in the order given. Nothing works until 1. NxP is tried. This is found to win a
pawn because if then QxN, the queen has been decoyed to a new position, and the
further overload sacrifice 2. B-R7ch forces the king io abandon its protection of the
queen.

Figure 3.12 shows an advanced example of guard destruction. It is Black to play
and he can mate in two moves by 1.--QxNch, since 2. RxQ, is answered by R-N8mate.
Here the program quickly recognizes the merit of QxNch since the knight is involved in
defending the check at KN8 and the recapturing White rook also, while the two Black
rooks which are not invclved in the capture are known to also have checking functions
at KN8. It is clear that most contemporary programs would also solve this problem,
since 1. QxNch is a member of the set of checks and captures. The present program
however, only looks at the move because of the destruction of the guarding (defensive)
functions involved in capturing the knight and the overloading of the White rook, both of
which guard the check. It is also interesting to note that the thing that is being guarded
is a check and not a material object. This could lead to sacrifices for the sake of
meaningless checks; however, at present the tree search is charged with determining
the ultimate utility of a check.

An advanced example of piece overloading can be seen in Figure 3.13. Here Black
to play wins a pawn plus additional material by 1.--BxP. The bishop cannot be captured
by the rook because it is defending against the threat of R-K8ch followed by R-R8mate.
And if the bishop is captured by he knight then QxRch wins more material. However,
the latter continuation is forced as otherwise Q-N7mate will occur. This also prevents
White from ever playing QxR. The program finds its way through all these complexities.
However, since it does not recognize mate threats, it proposes the move BxP only as a
tricky method of winning a pawn, rather than part of an involved way of creating a
mating threat.

An :xample of compound themes involving unblocking and piece overloading can be
seen 1) Figure 3.14. Here the White rook at N6 is occupying a square on which the
White queen could give check. Therefore the goal of moving it is generated, and among
the moves suggested is RxRPch. This move also overloads the Black pawn on KN2,
which has been assigned the function of defending the pawn and the rook check at KR3,
and also the pawn and the check by the knight at KB3. The program then does not
have much difficulty in finding the sequence 1. RxRPch, PxR, (KxR, 2. Q-N6émate),
2. NxPch, K-R1, 3. Q-N8mate or 1.--K-N1, 2. NxPch, K-B2, 3. Q-N6mate.

P




i - 21

7. 9B %,
%W@ W, E
AR //%/%
% AR Y
% //( ///U//
%W o %
;//\y_,{/ 7 %

Z

% % %d%@

Figure 3.12
Black to Play

7, % e
7@/,&1/

X 7 DA%
am% 7, 0%,
77 //%
7 /,

Yoy i .
W WRY &

Figure 3.13
Black to Play

0, 0 N %
@;%,@ e
%;&ﬂ@aé
%, %, A9
TR %27 y
4&//% A 2
ISy /u/&¢
7 % DR

Figure 3.14
White to Play




b o

I - 22

An example of how the program notices the survival of a function in the face of an
imminent capture of ihe function-performing piece can be seen in Figure 3.15. Here
White has several moves which have attractive features. Of the three major
possibilities -- RxR, N-B7ch, and Q-B8ch -- the latter appears the leasi attractive on
cursory examination, as it appears to put the queer en prise. However, the program
notices that after the capture, the White rook can recapture with survival of the
checking function for which the queen move was originally selected, and therefore tries
this move first. This results in finding a mate in two moves in the minimum number of
nodes. Q-B8ch is preferred to N-B7ch since the latter case the check is seen to not
have function survival value and thus has only the capability to win the exchange as a
result of a capture sequence on KB7.

An example of the important concept of function retention is seen in Figure 3.16.
This position occurs in one of the problems in "Win at Chess", just one move before the
principal variation is discovered. Black to play can mate in one move by NPxNmate.
There is, however, a similar move, QPxNch, which is not adequate since it allows the
White king to escape. When this position is reached, the program notices the functional
committment of the QP to guarding the White K4 square, and also finds that no other
piece can pick up this committment should the QP relinquish it. Since controlling that
square makes the difference between the king having none or one escape squares, the
program assigns a considereably larger static value to NPxN, than to QPxN. As a result,
the mate is found immediately, instead of possibly selecting the other move and finding

that the king escapes, whereupon a later rel'rn to this position is required to find the
right move.,

In Figure 317, we see an example of how the program uses some representational
information no. having to do with functions. Here the Black queen is seen to have only
two safe squares to which it could move. This is below what is considered minimum
standard mobility for a queen and thus generates the goal of attacking it. Thereafter,
the program does not take long to find the sequence 1. P-KN4, QxBP, 2. R-K2 winning
the queen. We are not 1007 satisfied with how the notion of low mobility is
implemented in this program. For instance, in Figure . 18 the Black queen can be won
despite the fact that it has four safe squares which pu's it above the minimum mobility
requirement. Therefore the goal of attacking the queen is never articulated, and the
saquence 1. R-RI, Q-N6, 2. B-B2, Q-N5, 3. R-R4, QxNP, 4. B-R7ch is never found.
Conceivably it may be better for determining a queen’s mobility to consider the number
of avenues that have safe squares on them. In this case the queen has only two such
avenues, which should br few enough to make it a likely target. Despite this
shortcoming, it is clear that chasing the queen (single attack) only when it is a low
mobility piece is very much to be preferred to examining all attacks on it at all times.
The latter can result in much useless tree searching.

D. EXAMPLES OF THE USE OF THE CAUSALITY FACILITY

The data structure associated with the CAUSALITY FACILITY was presented in
Chapter Il. This section explains how it operates and gives examples.

1. Philosophy Behind the CAUSALITY FACILITY

During the tree search, each backing-up of a potential new principal variation
and each move that produces an Alpha-Beta prune contributes data to the
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Refutation Description associated with it. These data deal with changes in the
representation of the position brought about when the move that is about to be
backed up was executed. This Refutation Description is carried backward to any
node that the tree search backs up to. There, if the results of the last move tried
were not satisfactory, the CAUSALITY FACILITY consults the Refutation Description
in order to decide what can be done about it.

To understand the value of having a rich representation for this, consider what
is possible without it. For instance, assume a sequence of moves resulted in a loss
of material. Best current practice would be to remember the first move of the
backed-up variation as the "killer", and then try it first on every move that is
served up from here on in the generate ana test mode. If the representation was
richer and we could get a complete description of all moves in the backed-up
variation, then it would be possible to determine 'he sequence of moves that
produced this result. We would then be limited to do'ng things about this sequence
only. This would include such things as suggestions to move or defend any
captured piece, capture or pin any capturer, or block the path of any moving piece.
However, to the best of our knowledge no one is using such a scheme, possibly
because it is incomplete.

The present program ras a much more complete understanding of a set of
consequences. The set of data that the program abstracts from a position and
sends back up the tree was discussed in Chapter II. This includes a knowledge of
all squares critical to the transportation of pieces that moved, squares on which
pieces became targets, and squares over which threats passed. It also includes the
names of all pieces that moved or became targets.

When returning to a node, the CAUSALITY FACILITY correlates this description
with changas thai accurred in the data structure as a result of the move tried at
this node. This includes noticing changes in the OCY of critical squares, changes in
threats as noted in BEST, and whether any unbiocking of critical paths occurred as a
result of the last move. Making comparisons of these quantities with the Refutation
Description makes it possible to decide whether this move could be to blame for
what happened. Whenever this is not the case, the search for a direct method of
preventing what happened can begin. For instance, assume a knight was lost as a
result of a double attack which also involved the king. Then moving the king away,
or blocking the threat path to the king are validated as goals for meeting the threat,
as well as doing things about ti . knight and trying to capture the attacking piece or
glard the squares on which attacks occurred. The first two goals of this set would
not show up in the principal variation, since the major threat is usually avoided.
Thus, the present method gets directly at the whole set of consequences, not
merely those which were executed in the principal variation.

The CAUSALITY FACILITY, does very well at generating defences to deep
threats, as is demonstrated later in this section. As a consequence, it is not
nacessary to make decisions about the gocdness of certain moves for “"defensive
putposes” a priori. Rather, it is possible to wait to see if a defensive problem
occuis and then generate the moves that do something about this description. While
this is a major advance in the state of the art, it is still considerably short of human
performance. First, there are situations in which many defensive moves are
suggested, and the program is unable to assign accurate enough values to these
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moves to prevent a certain amount of hit-or-miss searching. Second, the problem of
indirect defences is not treated at all. An indirect defence occurs when a threat is
met by playing a move that would allow the execution of a desirable move sequence
ONLY if the opponent tried to realize his threat. This is quite different frem a
counter-attack, since the indirect defence is intended to produce its result only
when the opponent persists in his attack. A typical indirect defence would involve
preparing to move a piece through a square that would be vacated in the process of
attempting to execute the threat. The method for detecting indirect defences is to
make a null move and then execute the opponent’s detccted threat sequence. In the
final position, the indirect defender now tries to find two moves in succession which
would produce a favorable result. One of these moves would then have to be
substituted for the null move in order to make the indirect defence work. However,
implementing schemes such as this is beyond the scope of the effort reported
herein,

2. An Expository Example

We now turn to examples of how the CAUSALITY FACILITY operates.
Figure 3.19 shows a position in which Black to play has a defensive task. White is
threatening mate in two beginning with 1. Q-K8ch. When the program is presented
this position, it finds no particularly inviting offensive moves siice all the Black
queen checks are adequately guarded and there are no double attack moves. It
therefore asks the STRATEGY routine for a move and starts out with 1.--P-R7.

Now White proceeds 2. Q-K8ch, RxQ, 3. RxRmate. This result causes the backing
up process to begin, and with it the accumulation of the Refutation Description.
Here, we will only follow the process associated with the White moves, since the
process associated with the Black moves, even though it also goes on, yields no
meaningful results in this case. After the moves 1.--P-R7, 2. Q-K8&ch, RxQ,
3. RxRmate, the search begins to back up. When the move 3. RxRmate becomes part
of the local principal variation during the backup process, a description of the
change in environment that it produced is generated. This description consists of
putting the name of the moving rook into RPCS (refutation pieces), putting its
destination into RSQS (refutation squares), and putting the squares on its path
(K3,K4,K5,K6, and K7) into RPATH. Since the move resulted in a capture, the name of
the captured piece is noted in RTGTS (pieces that became target during the
refutation). The move resulted in a change in the threat picture in so far as the
Black king is now attacked when it wasn’t one ply earlier. This fact is incorporated
by noting the square of the threatened piece (the Black king) in TGTSQS, its name in
RTGTS, and putting the path squares (KB8) associated with the threat into TPATH.
The above entries describe the essential points of interest in the current position
and the important changes from the previous one. As the new principal variation
continues to survive during backup, this Refutation Description is backed up too.

The first place where this Refutation Description can be used is one ply further
up the tree, at the point where Black played 2.--RxR. Here, a causal test is
performed which shows that the move 2.--RxR could have caused the consequences
described in the Refutation Description since it moved to a square mentioned in
RSQS. The exact nature o1 other tesis performed as part of the causal test are
described later in this example. Since the consequences could have been caused by
the last move played, the search at this node continues. But first a set of
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counter-causal moves are generated, which could be tried in an effort to avoid the
consequences anyway. However, here they are useless since there was only one
legal move, and that has already been tried.

As backing up continues and the move 2. Q-K8ch becomes part of the new
principal variation, a description of it is generated. This consists of putting the
name of the queen into RPCS, putting K8 it to RSQS, and (since the queen did not
Cross any squares) putting no path squarer into RPATH. The ncting of the new
threat to the Black king (as against its stat.s one ply previously) causes its square
to go into TGTSQS, its name to go into RTGTS, and the name of the square on the
threat path (KB8) goes into TPATH,

When this move is backed up, the union of the new description and the existing
Refutation Descriptior s produced. When the backing up process reaches the point
where Black originally played 1.--P-R7 this description is examined. The following
tests are made by the CAUSALITY FACILITY to determine whether the move
1.--P-R7 could nave brought on the consequences described in the Refutation
Description. First a test is performed to see whether the move resulted in moving
onto an R3QS square. This is not so. Then a check is made to see whether the
name of the moving piece is mentioned in RTGTS (became a later target). This is
also not so. Then a check is made to see whether the move vacated a square
mentioned in RPATH or TPATH (making a refutation move or threat across this
square possible). This, too, is not so. Then each square mentioned in RSQS or
TGTSQS is checked in the representation before and after the move 1.--P-R7 to see
if something about the move cauced either fewer of own pieces to bear DIR on such
a square, or more of the opponent’s pieces to bear DIR on such a square. We are
interested here both in whether the move resulted in unprotacting such a point, and
whether it could have permitted a new enemy piece to bear on the sguare, Here
this involves only K8 and KN8, and no change in the control cf those tquares
occurred. The final test involves noting the pin status of all pieces mentioned in
RPCS to see if any such piece was pinned before the made move, and unpinned
immediately afterwards. This, too, is not so. Therefore, the conclusion is reached
that 1.--P-R7 could ac* have caused the consequences, and these must therefore
have been inherited from above.

The counter-causal move generator is now invoked in order to generate those
moves that can directly counter this description. The counter-causal move
generator calls MOVTOCON to generate moves which add new DIR bears on all
squares mentioned in RSQS. Yere there is only one square (K8) and there is no new
way to defend it. Next it calls OCCUPY with the squares of any piece mentioned in
RPCS, ir order to generate moves which capture pieces involved in the refutation.
These pieces are the White queen and -ook, and here neither of them are
capturable. An additional facility which is not yet in the program could impede the
movement of such action pieces by trying to pin tnem against something of greater
or equal value to the actual consequences in the principal variation. Next, OQCCUPY
is called with every square mentioned in RPATH and TPATH, to generate moves
which block such paths. This yields Q-Kdch, Q-K5, Q-K6 and R-KB1. Then
MOVTOCON is called with the names of squares in TPATH, with the idea that putting
a piece in position to occupy such a threat path r.ay defend the threat. Here the
only square in TPATH is KBI, and thus the move N-QZ2 is generated. Finally, an
attempt is made to remove targets by calling MOVEAWAY with the name of any
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square mentioned in TGTSQS which 1s occupied by a piece mentioned in RTGTS.
This yields the move K-R1. A check is then made to see if any piece mentioned in
RTGTS 1s a low mobihity piece which is not presently allacked. Here, the Black king
quatifies and MOVEAWAY is called with the names of squares that are presently
occupied by any king’s own piece and to which the king could otherwise have
access. However, here neither the KBP nor the KRP can be moved. Thus the
counter-causal move generator ends up with suggesting six moves: Q-K4ch, Q-K5,
Q-K6, R-KBI, N-Q2, and K-R1. After a litlle tree searching, \he program decides that
the oplimum variation for both sides is: 1.--Q-K5, 2. Rx9, PxR. It does not
recognize that Black now has a winning position (all of White's threats have been
met and there is no effeclive method of prevent the queening of the Black QRP), but
it does find this only defence very quickly.

3. An Example from Actual Play

The above example was specificatly constructed for expository purposes. In
actual practlice, the program uses the CAUSALITY FACILITY continuously to solve
problems ranging from very simple ones (having & man en prise), to quite complex
ones (a series of forcing moves terminating in a gain). The CAUSALITY FACILITY
operates in all sub-trees of the search. Most instances of the application of
causality only become apparent when one watches the program in a mode where it
prints out all moves tried in the searct and all causahty decisions made. What tends
10 happen s thal a problem s iscovered, and if non-causality cannot be
estabhished, then nothing happens.  Otherwise, the search begins on whatever
counter-attacking moves are left plus the counter-causal moves that have been
proposed. Usually the problem can be solved satisfactorily at the node. If not, then
the search reverts to the n.de in the tree two ply above and the same thing goes
on there. Thus, the solving procedure 15 applied recursively at any node that is a
candidate, and continues until a solution is found. It is easiest to observe the
process when it happens at the top node; however, one should bear in mind that the
same thing happens for any sub-tree in the search.

The example in Figure 3.20 comes from a gane played between TECH (White)
and CAPS-IL. It 1s Black to play. CAPS-1l staris out by trying 1.--QPxP, 2. QxNP,
OxN, 3. QxR. After investigating this variation for a while, it decides that Black does
not gel sufficient compensation for the material lost. it then backs up to where
2.--QxN was played and determines that there 1s no defence there. When the
search returns to Ihe pomnt where 1.--QPxP was played the program decides that it
15 faced with a threat that was nol caused by the last move. It therefore decides to
examine the Refulation Description and generate the set of counter-causal moves.
First the other aggressive move that was proposed, BPxF, is deleted as not having
enough counter force fo be seriously consider2d as impeding |he opponent’s known
threat. The following counter-causar moves are then generated, given with
dupticates together with the reason they were generated. Moving away a target or
@ piece that was captured: N-B3, N-k2, N-R3, P-KN4, P-KN3, P-KR3, P-KR4. Blocking
a RPATH: P-kB3, N-KB3, Q-B3. Protecting an RS(QS sguare: K-BlI, Q-B3, Q-N4.
Increasing the mobihty ot a low mobility piece that became a target but 1s not
presently attacked: P-KR4, P-kR3. When evalualed, the roves are put in the
following preference order: N-B3, N-K2, K-Bi, N-R3, P-KR4, Q-N4, P-KR3, P-KB3,
P-KN4, P-KN3, Q-B3. The program then tries the moves in the given arder untit it
finds one that nroduces a value grealer or equal to EXPCT, which 1s equal material.
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1.--N-B3 15 eventually found to be unsatistactory because of 2. P-K7 winning the
queen. 1.--N-K2 is also bad because of 2. QxNP. 1.--K-Bl is rejected because of
2. Q-B4 winning a pawn. Similarly, all moves down to P-B3 are rejected as losing
material, most very quickly. 1.--P-B3 is found to be a satisfactory defensive move
so the last three moves on the list are never tested. The program is still somewhat
¢lumsy in homing in on the only correct solution. However, we feel it is to its credit
that the correct defensive move was among those proposed immediately upon
analyzing the Refutation Description. This is so, since the move P-B3 has really no
other qualities to recommend it, and could easily be overlooked by a program that
only investigates an arbitrary number of moves of some predetermined character.

4. Causality Reordering

An example of how the program uses causality in order to improve its attacking
processes can be seen in Figure 3.21. Here it is Black tc pay. After spending some
time on non-productive issues the program finds the perpetual check: 1.--B-R7¢h,
2. K-Rl, B-Q3ch, 3. K NI with repetition of position. It then raises EXPCT to
equality (Black was down in material in the original position), and looks to cee if
there is something better. The next taing tried is 2.--B-B2ch, 3. K-N1, (here there
is no repetition of posiion and th~ functional similarity is not discernable to the
program), B-R7ch and now a repetition is again noted. Next the program backs up
one ply and tries 3.--R-R&ch, 4. KxR, Q-Rbch, 5. Q-R3 and decides this position is
not good for Black. It then begins to back up, generating a Refutation Description
of all of White’s (the refuting side because there was a cut-off) moves. The first
point where something can be done about the description is at the point where
Black played 2.--B-B2ch. Here the Refutation Description is used to generate the
set of counter-causal moves. This set is then matched with the moves already on
the move stack. Any matching move is promoted to a place higher in the move
stack. The move that matches the counter-causal set most frequently is promoted
to the highest place. In this case the Refutation Description mentions the king and
queen as refuting pieces, xnd mentions the path of the queen in blocking the check.
Nothing can be done about capturing the king or queen, but among the discovered
checks with the bishop that have already been proposed is B-N6ch, which matches a
move in the counter-causal set proposed for the purpose of blocking the queen’s
path.  The program then tries 2.--B-N6ch, 3. K-Rl, B-R7ch and again finds the
repetition of position. Backing up one ply, it tries 3.--R-R8ch, 4.KxR, Q-Rb5ch,
5. K-R1, Q-R7mate. This variation is forced and nothing can be done about it so the
search 1s exited and the progam announces mate in five moves. It should be pointed
out that things do not always work out so favorably when counter-causal
reordering is invoked. [f the imitial idea tried is unworkable, then moves that help a
hopeless cause are promoted. However, by and large, the mechanism helps
considerably more than it hinders.

5. Some Current Deficiencies

An example of how the CAUSALITY FACILITY 1s not as powerful as human
notions of causality can be seen in Figure 3.22. Here it is White to play, and he Is
faced with a threat to his rook at K3. The program first tries 1. Q-B4 which is
suggested by the AGGRESSIVE state. This move eventually fails because of the
variation 1.--0xQ, 2. PxQ, BxRch, etc. When the search returns to the point where
I. Q-B4 was played, an examination of the Refutation Description shows that (since
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the move 1.--QxQ was played by Black) White’s QB4 is an RSQS square. Since
1. Q-B4 put a man onto an RSQS square, the program considers it possible that the
consequences were caused by the last move. Thus it is not possible for the causal
test to decide that the loss of the White rook at K3 can not be attributed to the
move 1. Q-B4. For this reason the program does not understand that it is facing
some consequences inherited from above in the tree. Later, the program reverts to
the NOMINAL DEFENSE state and concentrates on finding defences for the rook at
K3. However, a human player would probably not have had much trouble discerning
in the Refutation Description, two problems. The first would have to do with the
status of the White rook at K3; the other with the status of the Black queen at Q4.
fhese problems are seen to be independent, and thus the Refutaticr. Dascription can
be seen as uncovering two problems; one of which was caused by the made move,
and the other was not. This would then save time in getting to the crux of the
matter, which is the defense of the rook on K3. However, this type of problem is
not a serious inhibitor of the program’s performance.




CHAFTER IV
BOUNDING THE TREE SEARCH
A. GENERAL CONSIDERATIONS

In Chapter | the need for a search that was controlled Ly the requirements and
values found at its nodes was established. This is in contradistinction to a search that
v:ould be mainly controlled by a collection of preset parameters such as a maximum
depth beyond which no probing (or only for special types of moves) is allowed.
However, merely specifying the need for a flexible, no depth-limit search is not enough.
An algorithm must be found that makes executing such a search a tractable problem.
This chapter addresses this problem.

Two general techniques are employed. The first is the use of any workable method
to try to establish a given node as a terminal rode. In our program this involves
defining several reference levels some of whicii are global and some of which are .ocal
to a node. These reference levels are computed dynamically as functions of the chess
position they refer to, and serve to provide criteria for when a certain position no
longer has the desired degree of goodness, or is far better than one could reasonably
expect. Comparisons can be made between the reference levels at two nodes on the
branch of the tree being currently investigated. Having both nominal and pessimistic
evaluations of positions available also increases the types of comparisons that can be
made. Individual moves are also subject a reference level test, which would thus
dismiss poorly valued moves without further processing.

The second technique, which has never been used in a chess program before, is to
partition the problem of move selection at a node into a set of hierarchical
sub-problems. The reasoning behird this is similar to that presented in Chapter Il for
partitioning chess into the hierarchical sub-problems of tactics, position play, and long
term strategy.

To explain the advantage of such a scheme consider the following. Let us assume
that there are N legal moves at a node. Of this set, we are prepdred to search K. If we
are using a Greenblatt type of searching scheme [Greenblatt, et. al, (1967)], K will be
determined by the current depth (e.g. a predetermined set of K's exist, and the
magnitude of its elements decrease with depth; i.e. 9,9,6,6,3). In our scheme, K car be
considered to be the number of moves that could in any conceivable way influence the
tactics of the position at a given node. Since this is a non-rumeric bound, we can never
be sure how large K will be; it is a function of the position, expectation levels, etc.
Howeve-, in our partitioning scheme, we assert that there are a maximum of P
sub-problems to be solved at any node. Further, 2ssociated with each sub-problem is a
goal state, and these goal states can be strictly ordered. This mears that if an invoked
goal state delivers a satisfactory answr, then it is assumed to be the correct answer.
There is a certain risk in this, but careful partitioning of moves into goal states
minimizes this.

The whole point of partitioning is the following. The K moves that we are prepared
to search are partitioned in such a way that every move goes into the highest partition
for which it qualifies. P, the number of possible sub-problems (partitions) can be as
high as five. This means that we need only deal with somewhat more than K/5 moves at




a time. Moves that could have something to recommend them, but not in the current
goal state, would never be included in the search if the present goal state produced a
satisfactory answer. The logic of manipulating goal states provides that, when it
becomes clear that a certain goal state will no longer satisfy the problem requirements,
goal state transition rules are invoked to select the next appropriate goal state. These
transition rules utilize certain information, relating to why the last state failed to
produce a satisfactory answer, in deciding on the next state. When transiting to the
new goal state, only those proposed moves that alsc qualify for the new goal state are
retained. It should be evident that such mass pruning of alternatives is a very powerful
technique. For instance, if it is found that a defensive problem such as a threatened
mate existed, it would be possible to ignore a very high percentage of all attacking
moves, that would otherwise be searched because they had a high static rating. In
practice, we find that the ultimate move selected at a node comes from the first goal
state tried nearly 507 of the time. Furthermore, the ordering of proposed moves within
a goal state makes it likely that a satisfactory move is found before one-half of the
moves in that state are explored. As the problem is explored in depth, its exponential
growth rate is then correspondingly smaller.

B. PROPERTIES OF A GOOD SEARCH ALGORITHM

In devising 2 good search algorithm, one is mindful of avoiding, or at least
mirimizing, the exponential explosion that is the present stumbling block of all chess
programs. However, an attempt to mitigate the effects of exponential growth must not
leave important moves out of the analysis. Many programs, beginning with Bernstein
[Bernstein, et. al, (1959)}, have had search algorithms which limited the number of
moves that could be searched at each depth. This resulted in being able to apply some
control to the total amount of tree searching effort that the program engaged in.
However, prespecifying the number of moves to be looked at has certain disadvantages.
In a complex situation, it is possible that many moves have features to recommend them.
However, the issue of over-riding importance could be one that is very difficult to
detect (such as an impending mate). In such a case, a saving move such as moving the
pawn in front of the king to create an escape square could be ommitted from tne
analysis since so many statically superior moves were found to be looked at (many
reasonable attacking moves which failed to solve this problem). For this reason, the
search sometimes produced results that were considerably below the expectation level
that existed at the start of the tree search. To combat such problems, Greenblatt would
then reinitialize the search and allow all moves at the top depth to be investigated.
This was later somewhat generalized by the Northwestern group to allow investigation
of all moves at odd depth levels (for the machine’s moves) when an unpleasant situation
presented itself. However, we felt that this was still not general enough, since if an
opponent’s good move (at an even depth) was not looked at, this could also cause a
misappraisal of the position. Therefore we wanted a uniform treatment of every node,
which would allow the investigation of interesting moves as long as there were some
that could have an impact on the appraisal of that node. This meant being sensitive to
the problem conditinns associated with the node, so that one could be reasonably sure
cf the importance of any move to be investigated. It also meant being sensitive enough
to abandon nodes quickly when an abnormally good result was found. As long as the
search process can be justified as being sensitive to the problems at a node, the whole
algorithm can be justified. More importantly, in order to improve such an algorithm, it is
only necessary to do a better job of specifying sensitivity. And this in turin should
result in search trees with still smaller branching factors.
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In order to support the above objectives it is necessary to have very definite
noticns of what the expected value of a top node in a tree search is, and what an
abnormal departure from that value is, Then methods must be available for changing
the expected value of the top node as unexpected events occur.

In the past, programs such as the Greenblatt program have handled this problem by
setting Alpha and Beta to plus and minus one pawn from the expected value of the top
node. This has the advantage of restricting the initial search to "meaningful" branches
of the tree. However, it has the disadvantage that sometimes a search returns without
any move. Then all that is known Is that something outside the normal range from the
expected value can be forced on one of the opponents. No clue as to the magnitude of
the sudden change nor any indication of what moves it is related to is available.
Therefore there is no follow-up choice except to redo the tree search with greater
lattitude on where Alpha and Beta are set and on the number of moves which are
investigated at each depth. However, when a principal variation and a value are
returned by every search, it is possible to determine what caused the perturbation and
have an initial estimate of wt al the real value of the top position is.

To control the search, 1t is useful to have five reference levels.
1) EXPCT defines the expected value of the top node.

2) ALPHA and BETA define absolutely only the best that each side has achieved so far
at this node (and conversely the best that each side can hope to achieve). Alpha
will be used to mean the value for the player on move at a given node, and Beta the
value for the other player.

3) The question of what is a reasonzble departure from EXPCT is handied by plus and
minus MARG. The value of a node (position) will be said to DIFFER SIGNIFICANTLY
trom EXPCT if its value is assessed to be different from EXPCT by at lezst the value
of the constant MARG. The current valye of MARG is 687 of the value of a pawn,

Since Alpha and Beta are nol artificially set at the start, every search will return
not only a move but also a principal variation. These can then serve as a starting point

for a new search, should one be required. The additional cost of this extra bookkeeping
is trivial.

The tree control reference levels are shown in Figure 4.1. Alpha and Beta define
the range of contention at a node. This means that no value outside these limits can
ever be backed up 1o this node. EXPCT is the expected value of the top node. EXPCT
plus and minus MARG define the range of aspiration. Vvhen a value outside this range is
found, it is considered to be significantly different from the expected value. This causes
immediate backing up, without trying to find a stilt more deviant value. Thus this value
is not driven to quiescence as are the values within the range of aspiration. Therefore
before backing up, one must be sure that the value being backed up is realistic. i.e.
that it can be achieved if it becomes the new EXPCT.

A property of ovzr-riding importance is that the whole search must strive for
quiescence. This was shown in Chapter 1. It means that for any facet of a position that
is being explored (in this case tactics) no judgement should be rendered unless the
value found has been quiesced as well as possible or it is outside the range of values
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that are reasonably derived from the original position. For iactical quiescence, a simple
swap analysis is not sufficient, because certain attacking and defending moves can have
a profound influence on the true value of the position. Thus it turns out that the whole
search from the top of the tree must be a quiescence analysis. In fact it is correct to
equate the notion of a tactical chess program with a tactical quiescence analyzer. This
could mean that some branche: could be terminated almost immediately while others
may have to be pursued 20 or more ply in order to achieve a valid judgement of a
terminal node (although in CAPS-11 we are at present able to go oniy to a depth of 10
ply). This is in sharp distinction to the current generation of programs where the
search proceeds to some prearranged maximum depth, and then an inadequate
quiescence method (swap analysis) is invoked.

When qualifying moves for the tree search, we want to assure periinence. This
means that not only must the move have been proposed by a knowledgatle and
germaine agency, but the move must be considered to have a reasonable chance to
improve on the status quo. Thus we want to generate a static evaluation cf the move
which will yield an optimistic outlook on its potential.

It at any time a value is found at any node in the tres which is better for the side
to move than EXPCT plus MARG, then this is assumed to be an unusually satisfactory
result and no attempt to improve upon it will be made at that time. The reasoning
behind this is that .his value is very likely to turn out to be unsubstantiable. In that
case it will be dismissed more quickly if no further effort is spent in trying to find the
local optimum. If, on the other hand, the value does survive back to the top of the ree,
then resetting EXPCT tc the new value forms a firm basis for conducting the next tree
search. In that case the tree search is done over starting with the prsition defined by
the end of the principal variation. When the tree search terminates with a value that is
not significantly different from expectation, then it is assumed to be an optimal value.

This process clearly converges eventuaily on a value which is optimum according to the
above set of definitions.

C. THE ACTUAL TREE CONTROL ALGORITHM

1. Overview

The basic tree search used by the program is a depth first, mini-maxed search
with Alpha-Beta pruning. This has been supplemented by algorithms which make
risk decisions involving terminating the search at the point of testing. Some of
these algorithms are new and others are relatively standard. All mechanisms (with
the exception of the CAUSALITY FACILITY which was treated fully in Chapter 111)

will be explained as they are encountered. During the tree search the basic
emphasis will he on:

Cd ey e et

1) Trying to find properties of the current node which allow termination of the
search at that point,

2) Making deductions about the current goal state which may lead to abandoning
the state or the node, and

3) Forward pruning of proposed moves which fail to have certain necessary
properties, in order to limit the number of descendants of any parent node.
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Our treatment of this subject will be to exemine first the decisions made when
arriving at a node for the first time. Then we will discuss the allowable set of
manipulations of goal states. Next, we look at how to decide whether or not to
search a proposed move. Afier that we investigate decisions en ountered when
leaving a nade that has not been cut off. Finally, we examine the decisions made
when returning to the top of the tree.

2. Decisions Made When Arriving at a Node for the First Time

When first arriving at a node, several tests are made to see whether it is even
necessary to process this node at all.

a. Position Repetition

A check is made against all earlier positions in the variation currently being
investigated to determine whether this position has occurred earlier with the
same side on move. This would mean a repetition of position, and a value of
"draw” would be assigned to the node and backup would be ordered. Similarly,
if at least one position repetition has occurred in the game and nothing has
happened since then to prevent further repetitions, then a check is made of the
position a! the current node to see if it is in the hash coded file of all previous
positions in the game. Conations that can prevent position repetions with
previous situations in the game are: moving a pawn, making a capture, or
castling (all irreversible actions).

b. Significantly Ahead of EXPCT

After the new node is statically ev~iuated, another check is performed. If
the current material is significantly ahead =f EXPCT for the side whose turn it is
to move, then if the pessimistic evaluation of this position is still significantly
ahead of EXPCT then the pessimistic value is assigned this position and backup
is ordered. The pessimistic value is the lesser of the current material plus
opponent’s best threat, and the nominal value of the position.

One may question why the ressimistic value should be assigned. The reason
is that when the search at a node is terminated as described above, this is
almost invariably a non-quiescent value. If such a value should survive all the
way to the top of the tree, then this will become the new EXPCT for the next
trea search. So if the estimate at the terminated node exceeds that which can
in reality be achieved from the top node position, the program could well be in
a state on the next search in whizh it cannot fulfill the new EXPCT. This would
then result in EXPCT being reset to a lower value, and oscilation could result
from this. Therefore, whenever an estimate 15 made for backing-up purposes, it
should be conservative with respect to EXPCT. This means that if a value is
significantly greater than EXPCT then only the pessimistic value of this position
may be backed up. Likewise, if a value is significantly below EXPCT, the
optimistic value of the position must be backed up. Clearly, if the new estimate
does not remain significantly different from EXPCT then the conditions for node
termination have no: been met. The foregoing may be easier to visualize by
referring to Figure 4.1.




¢. Claim System

After the test for signifizantly ahead of EXPCT, the Alpha value (which
represents the best that the side on move here has achieved thus far in this
branch) at this node 1s examined to see if it can reasonably be re-evaluated to a
value closer to the Beta value for this node. This is the CLAIM SYSTEM. The
logic behind the CLAIM SYSTEM is as follows: Alpha and Beta define a range of
contention that is being investigated in the current branch. Any value outside
this range cannot be returned up the iree, since it would represent a logical
mistake by one side or the other to get into a variation with such a value when
a better variation can be forced in some other part of the tree. However, if the
pessimistic evaluation of this position is better for the side on move than the
local Alpha value, then some gain has clearly already been achieved. Thus if
would be eminently illogical to allow the range of contention to remain at its
original settings when it has been detected thal one side has achieved an
improvement over these settings (althongh this has not been confirmed by a
search).  Narrowing the range of contention in this manner allows more
Alpha-Beta prunes to occur once the search begins to back up. The only risk in
this procedure is that the pessimistic estimate on which the re-evaluation is
based may be inaccurate. There is some risk to this, as there is too in making a
forward prune. However, the opportunity to make additional prunes makes this
risk worthwhile, and all rvaluation functions are subject to such problems and
could cause similar errors.

Consider a situation where the range of contention at a node is currently
EXPCT plus and minus the value of a rook. The current position is materially
equai to EXPCT and the only threat by the side not on move is directed against
a pawn. Cleariy, ir this situation the side on move has already achieved a result
which is better than the EXPCT minus the value of a rook that he was currently
being given credit for. It would then be fllogical to consider returning a value
to this node which is lower that EXPCT minus the value of a pawn. If later in
this variation, the side now on move were to unsoundly sacrifice a knight, this
result would be recopnized as outside the limits of reality, once the backing-up
process began. This wuuld recult in an Alpha-Beta prune, meaning that the loss
of the knight can not be forced. This 1s a correct action if the previous
evaluation causing the CLAIM SYSTEM action was correct. This paradigm thus
allows early prunes of branches containing faulty co:abinations.

There are of course serious problems in trying lo determine statically what
the magnitude of any threat really is. However, that 1s not a problem of tree
searching theory, but rather a problem of improving evaluation functions. The
expediency, of avoiding such dangerous decisions by doing more tree searching,
is precisely why most of today’s programs cannot explore enough of the search
space that it is necessary to survey n order for significant improvements in
playing strength to occur. Suffice it lo say that the present program has
enough of a grasp of threats (somewhat greater than that of contemporary
programs) as delineated in Chapter III, so as not to make too many mistakes
here. As evaluation improves, so will the effectiveress of this mechanism. In
the meantime it both allows effective Alpha-Beta pruning of variations involving
wild sacrifices, and establishes a m:inmimum value for the current node; a value
that the program 1s only allowed to improve on as the search progresses.
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3. Manipulation of Goal States

Figure 4.2 shows the partitioning of the problem space. At the top, chess is
divided into STRATEGY and TACTICS. TACTICS can be invoked at any node and
always geis preference if it finds a solution that is better than EXPCT. Otherwise,
STRATEGY can be invoked, but only at depth one in the present program. The
purpose of STRATEGY is to at least supply a move if TACTICS fails to propose one.
A higher aim is to play the most "strategical" move in situations where no clear
tactic is required. In later versions, improvements in this module can make
STRATEGY a method of proposing moves that meet long-range goals. The TRACING
state can be invoked only at the start of a tree search and is responsible only for
bringing the search to the end of the curient principal variation. Any other statr,
can follow it.

TACTICS is in turn partitioned into six goal states through which the progiram

can pass. These are: PREVENTIVE DEFENCE (defending unexpected gains),

AGGRESSIVE, NOMINAL DEFENCE (answering detected but unproven threats),

DYNAMIC DEFENCE (answering a specific refutation detected during data backup),

and KING IN CHECK. No claim is made that the partitioning in this program is

optimum. It attempts to follow that employed by good human players, and it coes

3 appear to succeed in sub-dividing the legal move space into manageable sub-spaces.

informally, the logical inter-relation between the goal states is as follows:
KING IN CHECK is invoked only when the king is in check.

In case the king is not in check, it is determined if the side on move is
significantly ahead of ZXPCT in material. 1f so, and if the opponent has any
statically detected threats, the PRCVENTIVE DEFENCE state is entered. Otherwise,
the AGGRESSIVE state is invoked. The above logic determines the initial goal state
at a node.

The NOMINAL DEFENCE state is for positions whose potential is considered
; worthwhile, but the opponent has a statically detected threat against material which
the AGGRESIVE state was not able to handie.

The DYNAMIC DEFENCE state is the last court of appeal. It can be invoked from
any move generating state in response to a Refutation Description backed up by the ‘
CAUSALITY FACILITY, if the problem was not caused by the last move. | 3

& Goal State Transitions

l
The way the program progresses through the goal states, once having 15
reached a given node, is shown in Figure 4.3. The goal state at each active i
node in the tree is remembered in the variable GM This means that goal states |
do not change because of departure and rei.'rn to a node, but only because of i
overt decisions made in the course of problem solving at the node. Similarly, 4
the move stack at each node is available for inspection until the node is finally
quitted. Thus, any move examined in one goal state will not be tried again if

suggested by another. i3
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The "Return to Node" block at the top of Figure 4.3 shows the decision
structure tha! pertains when returning to a node in most goal states. It is
invoked as a sub-routine by the main transition diagram in the lower half of
Figure 4.3. RELI is the relation between the backed-up value and EXPCT that
when true allows exitinz the node immediately. Otherwise, the CAUSALITY
FACILITY is invoked. The CAUSALITY FACILITY compares the description of
what is best play below this node (the Refutation Description), with the
description of the move made at the node. Based on this comparison, it makes
the decision as to whether the consequences could have been crused by the
present move. In either case, a list of counter-causal moves is generated.
These moves attempt to do something about the Refutation Description that has
been backed up. The exact methods are described in Chapter Il

REL2 specifies a relationship between the backed-up value and EXPCT. This
relates to whether the backed-up value is satisfactory with respect to the aims
of the goal staie that the node is currently in. If an unsatistactory value has
been backed up to this node, and the causal analysis reveals that this could not
have been caused by the last move tricd at this node, it means that a problem
has been inherited from higher in the tree. In that case, a transition to a new
goal state occurs. If, on the other hand, the result is not deemed to have been
caused by the Iast move or if REL2 does not obtain, then the program merely
does a reordering of the untried moves on the move stack, moving those
mentioned most often in the counter-causal list to the top of the untried stack.
This will result in their being tried earlier, but does not change their value.

Following now the flow chart in the lower part of Figure 4.3, we see that
the first determination made is whether the king is in check. If so we go to the
KING IN CHECK state in which all legal moves are generated. These are tested
in order of decreas.ng evaluation. If a value is ever backed up to this node
which is significantly greater than LXPCT, the node is exited permanently. If the
CAUSALITY FACILITY detects a consequence which could not have been caused
by the last move tried, the state is changed to DYNAMIC DEFENCE, but the move
stack remains the same. A:s long as there is no such occurrence, causal
reordering of the untried moves takes place.

If the king is not in check and if the side on move is significantly ahead of
EXPCT in material then if the pessimistic evaluation of this node is also
significantly greater than EXPCT the cc .«ditions for backing up have been met.
If the latter condition has not been fulfiiicd, then it means that the opponert still
has some important threats (else the pessimistic rvaluation would be better). In
this case, the PREVENTIVE DEFENCE state is entered. Here all moves that move
a threatened piece, capture an attacker, block an attacking line, or defend a
threatened piece are generated If this set of moves, when submitted to tree
searching fails to maintain the significantly greater than EXPCT advantage or if
any dynamic problem not caused by the tested move is detected then the
AGGRESSIVE state is entered. This means that the attempt at consolidating the
gains has failed, and the program resorts to the more usual method of dealing
with a node.

It is possible to get to the AGGRESSIVE state as above, or if the material
significantly ahead o EXPCT test fails initially. This means that we know of no

%
10
;3.-'




v -

11

Return to Node Neclslons (REL1, RFL2)

Could
Aave Reen
Caused

Causallty Facllity
Compare fenerate Causal
Move With | Counter- |=-—= Reorderling
Refutatlion Causa!l 0f Moves
NDescriptlo | Moyes ‘ LOn Stack |

Su— e e e e o — e —n ——— o o—

KING IN
CHECK
STATE

Return To
Node
Declslons

(> , <)

1

Delete
nsuffliclen
Counter-At

¥

If Not Caused

King In

Add Counter
Causal

Moves To

DYHAMI
DEFENCE
STATE

FIGURE 4,3 - Goal State Transition Dlagram

MAT Pess,
»» EXPCT Eval, ») Backup
Check M ¥ EXPCT Y I
H N
Whan
AGGRESSIVE Stack PREVENTIVE
STATE DEFENCE
Empty STATE NOTE:
>> means
Signiflicantly
F Greater
Return To Not Return to
Node Cause Node
Neclslons Declislons
{ 3 ., ¢
When
Stack
Empt
Ex:’:‘f“;' Fllg. For STRATEGY
EXPCT ¥ Strate Y STATE
N
Return To
Node Optim'l N Y ack=up
Declslons Eval. 2 Backup Value »3»
( ) EXPCT EXPCT
Whe
Y tack N N
Empty
NOMINAL Last Back-up
DEFENCE Move In Value 2
STATE rin. EXP




reasons at the moment why the side on move should not try to make a
successful attacking move. As shown in Figure 4.2, the AGGRESSIVE state is
really a set of move generaling states. The details of each move generator are
explained in Chapter Il. The stales are arranged so as to generate moves in
order of forcefulness. Upon evaluation a likelihood of success measure exists.
A sorting routine then arranges the moves according to likelihood of success
within forcefulness. This results in generating all moves that have aggressive
potential (with the exception of moves that only involve an attack on a single
non-low-mobility man, this feature not having been implemented as yet).

Aftar an AGGREZSSIVE move has been selected for tree searching, and the
search has returr:d to this node, several things can happen. If the program has
found a move that is significantly betler than EXPCT, it will exit this node
permanently. If the backed-up value is not significantly better than EXPCT, then
the CAUSALITY FACILITY is invoked to do causal analysis and reordering of
untried moves. If the backed-up value is less than EXPCT, and if the
consequences could not have been caused by the last move tried, then the
DYNAMIC DEFENCE state is entered. Otherwise, the program selects the next
move from the move stack until it exhausts the proposed moves in the
AGGRESSIVE state. In that cace, if the nominal evaluation of the position is not
less than EXPCT, a check is made to see if this node is at a depth that makes it
eligible for STRATEGY. If so, this state is entered. Otherwise, thz node is
exited (i.e. BACKUP). 1f no successful AGGRESSIVE rove wa. found tien if the
nominal evaluation of the position were less thar EXPCT and the optimistic
evaluation greater or equal to EXPCT, then it means that the opponent must
have a threat. Since the nosition has the potential to produce a satisfactory
value, the NOMINAL DEFENCE state is entered.

The NOMINAL DEFENCE state is charged with producing defences against
statically reccgnized threats. 1t is only invoked when no AGGRESS!VC moves
have succeeded and the position is considered worthwhile. If in any prior
processing of this node, a backed-up threat had been recognized, then this state
would be by-passed in favor of DYNAMIC DEFENCE. This is very logical, since
NOMINAL DEFENCE deals only with statically recognized threats, and one can
never be sure that such a "threat" is really a threat. The move generators of
the NOMINAL DEFENCE state »re described in Chapter 1. They produce moves
that defend threatened points, move away the pieces on these squares, capture
their attackers and block attacking lines. The NOMINAL DEFENCE state is exited
as soon as a move which produces a backed-up value greater or equal to EXPCT
is found. If in the process of testing moves, the CAUSALITY FACILITY finds a
threat that could not have been caused by the last move tested at this node,
then the DYNAMIC DEFENCE state is entered.

The DYNAMIC DEFENCE state is invoked whenever a deep problem has been
detected during back up, which was clearly not made possible by the last move
tried. The counter-causal moves which are deemed to be the only ones that can
do something about this description, have already been generated by the
CAUSALITY FACILITY. Now all moves on the stack which are not mentioned in
the counter-causal list, or which do not have a counter punch at least equal and
opposite to the caused value (with respect to EXPCT) are de'sted. The
remaining counter-causal moves are puched onto the stack in order of
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evaluation. These moves are now tested until a value is backed up which is
greater or ewual to EXPCT. Then if the material plus the best threat of the side
to move are not larger than the backed-up value, the node is exited. Otherwise,
the search contiriues until all proposed moves have been tried.

In the present program, the STRATEGY state performs the function of
parading all legal moves for testing. It does this only at the top node of the
tree (in the current program), and only when the AGGRESSIVE state has failed
to produce anything worthwhile. The move generator of the STRATEGY state
emphasizes the centralizing and mobilizing effect of each move. It is, in fact, the
TECH [Gillogly, (1972)] move generator which is availab.e to this program as a
sub-routine. If a value is ever backed up which is significantly greater than
EXPCT, the node is exited. Otherwise, when the move that is now in the
principal variation is proposed, if the current Alpha at the node is greater or
equal to EXPCT, the node is exited. Otherwise, the search continues as long as
there are moves to try.

b. Inter-relationship of Goal States at Different Nodes

During the development of the program, it became apparent that there exist
relations which limit the type of goal state that can be a successor to a
particular goal state earlier in the branch being currently investigated. One
example of such a relationship is the notion of “"loss of initiative". Intuitively,
this could be thought of as a situation where a move which was proposed by
the AGGRESSIVE state at a particular node leads to a defensive state at a later
node without anything else worthwhile being accomplisiiad in the interim. This
should then constitute a reason for node ‘ermination. We tried two different
implementations of this particular idea, but neither one worked satisfactorily.
However, we feel that there is on'y a question of the correct formulation
involved here; the basic idea appears very workable, in fact, necessary for tree
searching economy.

There also exists a relation between STRATEGY and TACTICS. This is that
TACTICS must be available 1o discriminate between feasible strategical moves
and non-feasible ones. The reverse does not apply. The only place that we
know of, that strategy serves in evaluating tactical ideas, is at the end of a
tactical variation, in evaluating its strategical impact. But this can usually be
done by static analysis without resorting to tree searching. The gist of this
relation is captured very well in this program.

4. Decisions Mare When Examining a Proposed Move

Every proposed move is statically evaiuated before being put on the move
stack. The details of this evaluation were discussed in detail in Chapter 1. When it
comes time to try a move at a node, the top move on the move stack is selected for
examination. The move is guaranteed to be relevant to the current goal state as
otherwise it weuld have been deleted during goal state change. The value of the
rmove is then tested tu see if it is greater than the Alpha value at the node. If S0,
the move is tried and the search continues. Otherwise, the move is deleted and the
next move on the stack is examined. This mechanism is known as forward pruning
(Slagle, (1971)] in the literature. In this program the number of moves ihat are
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forward pruned during a tree search regularly approximates the total number of
nodes in the final tree. This makes it the most powerful overt device used in the
tree search. It is difficult to compare its power with the covert action of
Alpha-Beta, which prunes not single alternatives but all remaining alternatives at a
node. Thus the power of a single Alpha-Beta prune could be several times that of a
forward prune, dependent largely on the expected branching factor of the program.

Another device for controlling the pertinence of moves was tried during this
research. However, it failed to perform |he desired services and was ultimately
abandonned. This device is variously called the search-and-scan strategy [Nowell
and Simon, (1972)] or dynamic ordering [Slagle, (1971)] It has previously been
implemented in the problem solving MATER program [Baylor and Simon, (1966)] and
in the chess playing program COKO-Iil [Kozdrowicki and Cooper, (1973)]. This
strategy has also been subjected to theoretical investigations by Kozdrowicki
[Kozdrowicki, (1968)]. In this program it was implemented as follows: Before a
move is selected for further searching at depth N, the value of the most powerful
move in the current stack is found. Since moves are evaluated optimistically, this
presumably rep esents the maximum effect achievable at this node. Now a search is
conducted backward up the current variation, stopping at depths that are an even
numbered distance away from the depth N. At each such depth, M, the static value
of the last move tried is compared with the maximum effect at depth N. The
algorithm now looks for situations where these two values are farther apart than a
constant called the RELUCTANCE. In such a case, an attempt is made to determine
whether there exists an as yet untried move at depth M, of somewhat greater
power (called the THRESHOLD), than the static evaluation of the current alternative
at depth M. If so, the move being currently tried at depth M is given a new static
evaluatic v equal to its maximum effect at depth N and is put into a new place on the
riove stack according to this value. It is also marked as naving been previously
searched. The most highly evaluated alternative on the move stack at depth M is
now chosen for searching, with the search reverting to depth M. The purpose of
the device is thus to arrange that the search not be side-tracked in a sub-branch
which appears less promising than one somewhere else.

This algorithm was found to do very well in situations where some clear
achievement was possible, either a gain or preventing a loss. However, in the
run-of-the-mill situation it produced a tremendous amourt of useless retraction of
moves, and multiplied the usual search effort by a factor of ten or more. It is
possible that the RELUCTANCE, which was set equal tc one pawn, was set too low.
It is also possible that the THRESHOLD, which was set equal to one pawn, was set
oo low. Another possibility is that the loss of causal information associated with
the retraction of the search to depth M was responsible for a general lack of
understanding of what was heppening. However, the most likely cause of this
failure was that reverting to an earlier level in the search prevents the usual
backing up during which the Alpha-Beta algorithm has an opportunity to terminate
nodes which are superceded. Since Alpha-Beta plays a rather important role in
trimming the search tree (see Table IV-1) the loss of this capability probably
accounts for the results found. Quite possibly, some additional tests are required to
detect board positions in which nothing unusual appears achievable and in such
cases scan search should not be used. We did notice that the low RELUCTANCE and
THRESHOLD values made little differerce, whether a mate was to be {zund or merely
a small amount of material was at stake. Where the algorithm failed w.as in
situations where no change in material could be effected.
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Another device was invented during this project, but has not yet been
implemented. We call it thematic testing. The idea is to prevent moves that have
little to do with one another from being concatenated in a search, even though they
rmay ivdividually appear to be worthwhile. [f several interesting but unrelated
moves exist, the cost of searching them in every possible order is great. The
savings that can be realized by only looking at “"meaningful" sequences can
therefore be significant. A possible implementation of this idea is the following:
During evaluation, moves are partitioned into two classes: those that clearly "work"
such as favorable captures, -4 those that are not "sure to work" but have
redeeming features. Each move ihat falls into the latter class is marked to indicate
the sacrificial themes which constitute the redeeming features. These themes as
explained in Chapter III are decoying, overloading, and unblocking, etc. Associated
with each theme is a set of squares which are pertinent to the execution of the
theme. Whenever a move has passed the forward prune test and is the candidate
for sprouting, the following operations are performed: If the move is not a
redeemed move (it clearly works) then it is passed. If some theme marks have been
set earlier in this variation for the side on move, then if this move is a redeemed
move, the following tests are done: If this move was not also on the move stack at
some earlier depth in the current variation (it was not an interesting move before),
then it is passed. If it did appear, but is now given a higher static evaluation than it
was earlier, it is also passed. Otherwise, at least one of the theme marks on the
proposed move must coincide with one of the set theme marks from earlier in the
variation. If this condition is not satisfied, then the move is deemed to be irrelevant
to the continuation of any enterprising action that has gone before, and is not
searched. In all cases, themes and squares associated with redeeming moves a.e
carried forward for use of future nodes.

This algorithm tries to define "continuation" of a sacrificial theme. In this it
asserts that several decoy moves may be strung together, but not a decoy followed
by an overload sacrifice. This is generally correct, but may at times impose a
stricture that would cause missing a good continuation. Also it is clear that all
“clearly workable" moves should not be searched in any arbitrary order. An
example of this is what could happen in a king and queen versus king endgame.
Here there would be near infinite sequences of workable checks by the queen.
However, nothing would be accomplished unless the losing king was already
considerably restricted. This type of problem can be solved by recognizing certain
properties of the parent position. To recognize these properties would involve
detection and analysis of configurations of chunks [Chase and Simon, (1973a)], and
resultant classification of positions. Many necessary types of chunks would deal
with relationships between pieces, that are different from bearing relations (i.e.
king safety). Further sophistication in the development of themes would this be
dependent on having better recognition facilities.

5. Decisions Made When Leaving a Node That Has Not Been Cut Off

When leaving a node (BACKUP in Figure 4.3), after having exhausted ali
proposed moves in all invoked states, one !inc check is made. If all nroposed
rmoves had to be examined, then there is a great likelihood that no satisfactory move
was found and that the valre of this node is below EXPCT. On exit from a node a
check is therefore made tu see if the value o! the node is significantly below EXPCT.
If it is, then if the current value of material is better than this, but is still




significantly below EXPCT, this value is assigned the node. This is done to get the
most conservative estimate of the value of a position for backing-up purposes. The
set of reasons for doing this was presented above at the beginning of section C.

6. Decisions Made When keturning to the Top of the Tree

When the tree search is exited at the top node, there are still some decisions to
be made These decisions have to do with whether the result reported by the
search is considered satisfactory or whether it is deemed necessary to further
refine the results of the search. Refinement may be necessary, since the search is
terminated at any node at which a result that is significantly different from EXPCT is
encountered. Such a terminalion only guarantees a result significantly different
from EXPCT, but does not gu-rantee that its magnitude could not be greater. Thus
any result, that is backed up to the very top, may not be optimum.

Therefore when a result that is significantly different from EXPCT is returned, it
is necessary to redo the search to see if a value that is an even greater distance
from EXPCT can be found. Due to the mechanics of the search, we can be sure that
any value that is returned to the top of the tree is conservative. Therefore, if a
more optimum value exists, it must be still more different from EXPCT than the
returned value and in the same algebraic direction. Before starting out on redoing
the search, the value of EXPCT is reset to lhe returned value of the last search.
Alpha and Beta at the top of the tree are reset to embrace the range from the new
EXPCT to infinity in the correct algebraic direction. The principal variation
associated with the search is also saved, and the new search begins at the tail end
of this variation. Since taking conservative estimates at all terminated nodes
assures that any value returned by the next tree search must lie between the new
ALPHA and BETA, we can be sure that this procedure cannot cycle and must
ultimately converge on a value. In practice the greatest number of such
progressive deepenings of the search that we have noticed is four. We use the
term progressive deepening for this procedure, as this seems to correspond well to
the phenomenon with this name that psychologists have observed in human chess
players [De Groot (1965)]. However the deepening takes place only with respect to
the value of the position, not with respect to an understanding of it.

This method of organizing the search has been found to be clearly superior to
the usual alternative of finding tke best move at every node. Finding an optimum at
every node even after a value significantly different from EXPCT has been found,
means much of this work inevitably is wasted, as this whole branch has a great
likelihood of being cut off. Since there are many false leads that the program is
continually following, values significant!, different from EXPCT occur frequently.
However, not many of them survive to the top of the tree. Thus a single value
significantly different from EXPCT assumes the character of an anomaly, and results
in the other side using his resources to reiute it. This will actually occur an
overwhelming percentage of the time. However, in the case where the anoma'v
actually survives, the cost is doing the search over again. This cost is clearly a
linear function of the time for one tree search, and is thus much cheaper than the
cost of following unlikely consequences to a conclus’on, which is an exponential
function.
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Whenever a value is returned io the tcp of the tree which is within the bounds
of EXPCT plus or minus MARG. n is known to be optimum with respect to the
capability of the program. In that case, EXPCT is set to the value returned by the
search and the principal variation is saved before making the move. If the
opponent’s next move corresponds to the one expected by the principal variation,
the next search begins at the tail of the retained principal variation.

D. DISTUSSION AND RESULTS

The work on an effective method of heuristic tree searching is probably the most
important general contribution of this thesis. One need only consider the facts
presented in Chapter 1, to see how centrai {o the whole business of getting a computer
to play good chess is the problem of keeping the growth of the tree under control. As
reference points for the results here obtained, the following should be kept in mind: The
rate of exponential growth of a search tree is proportional to the average number of
moves searched at a node. The average chess position contains about 35 legal moves
[Slater, (1950)]. The average middle game position contains slightly more moves than
this, and most of the positions tested with this grogram were of this type. Consider a
position with 35 legal moves, where all moves are to be searched and the order of
searching is random. If in this situation every potential terminal node were to have a
different vatue, then the expected branching factor under an Alpha-Beta search is
approximately 15 (using formulas in [Fuller, et. al, (1973]). A program such as TECH
(Gillogly, (1972)], which searches all legal moves but has many branch endings with
equal terminal value, and also uses some ordering in the searching of moves, has a
branching facto- of about 8 to 10. The branching factor for programs such as the
Northwestern program or the Greenblatt-program which search only a select sub-set of
all legal moves is about 5 to 6. Human beings are known to searcn trees of arbitrary
depth and produce no more than 200 nodes in the process [Newe!l and Simon, (1973)].
Since human searching thus converges instead of diverging, its branching factor must be
less than 1.0, although some maximum effort rules almost certainly exist also.

The data reported in this chapter was collected during runs of CAPS-II on two basic
tasks: sequences of problems from "Win at Chess" [Reinfeld, (1958)] (the basic
calibrating task for the program), and game fragments. The book "Win at Chess" is a
collection of 300 chess combinations from Master practice. It is considered a basic work
on chess tactics and is frequently referenced as such. It can be classified as a
moderately advanced irstrument for teaching chess tactics to human beings. We will
specify the nature of the task wherever any data are presented. The following data
were collected on sequences of problems from "Win at Chess". Figure 4.4 shows the
characteristic distribution of number of successors to a node, across all nodas in the
trec. No data was of course ir.:luded for nodes at maximum depth, which are not
eligible for sprouting. The distribution has the excellent fealur2 that by far the most
probable number of successors is one. However the expected number of successors
across the distribution is 2.0. This is considerably better than those of other programs,
but still a good way from what would be necessary for natural convergence of the
search. The problem is that the weighted effect of the number of zero-successors
(which is the next most prevalent category by far) is still not enough to outweigh the
right hand side of the curve which although it harbors infrequent occurences, still has
enough weight to prevent convergence.
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Before analyzing the mechanisms in the program that produce the specirum shown,
another important phenomenon having to do with the structure of trees generated by
this program will be examined. It turns out that the expected number of successors --
2.0, found above does not predict actual tree size correctly. One would normally do this
by assuming that the number of bottom nodes is equal to the branching factor raised to
the “maximum depth” power. Here the formula predicts 1024 bottom nodes for our
depth 10 searches. Since the average number of bottom nodes was between 50 and
60, this prediction is too high by a factor of 20. Further data collected shows that the
assumption that there is an equal likelihood of a node sprouting, regardless of where it
is in the tree, is incorrect. In fact, there is a strong dependence between nodes at
successive depths. Thus a negative correlation exists between the expected veiue of
the number of succissors at a node and the number of nodes its parent had (si:e also
section E below). The expected number of successor-successors that a node has can be
seen in Figure 45 to be 2.3. If the branching factor for two ply of search is 2.3, then it
must be 1.5 for a single ply. This turns out to predict actual tree sizes on this task
very well. This low growth rate, corapared to the branching factor of 5 to 6 for more
conventional programs, makes it possible for this program to go quite a bit deeper in its
search than these other programs.

Data taken on game fragments had all the above characteristics, except that the
branching factors were larger. Thus the expected number of successors at a node was
2.5, and the expected number of successor-successors was 4.8. This comes out to a
branching factor of about 2.2. Apparently in positions which have a sharp tactical
character, such 5 the ones in "Win at Chess", the program does less searching before

coming to a conclusion (right or wrong) than it does in positions which are less sharp
and represent the more usual state of affairs. In all the data we collected, the highest
branching factor ever encountered was in a game fragment; it was about 3.0.

Let us now consider the spectrum of likely number of successors of non-bottom
nodes as shown in Figure 4.4. That over 507 of all these nodes have but one suzcessor
indicates that most problems the program deals with are well defined in terms of its
ability to handle them. This does not mean that all problems the program investigates
are worthwhile ones, in terms of some high human criterion, but merely that the
problems it proposes to investigate are usually well formed enouvgh so that a solution
can be reached hased on the first alternative tried.

The grossest exceptions to this occur at the right-hand tail of the curve. Here the
program clearly does not understand what the problem is and thrashes about exhausting
suggested alternatives until it either finds an acceptable one or exhausts the supply of
suggested moves. The state in which this most often oc-urs is the DYNAMIC DEFENCE
state. Here there are frequently many moves suggested to counter a particular
problem. While {he set of suggested moves is almost always adequate to the need, the
methods of assigning heuristic values to moves proposed in response to these
descriptions is still not very good. As a result, the program sometimes has to g0
thrcugh a large set of moves before finding an adequate one. However, it is felt that
this problem is not of a permanent nature and only requires the application of some
effort to improve the assignment of heuristic values, together with the possibility of
further monitoring of the progress of the defence which could lead to the application of
additional causal information.
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The real reason for the success of the tree searching paradigm lies in the ability to
stop the search at any arbitrary node, based on the semantics of the node in relation to
the problem environment. These results are presented in Table IV-1. The data were
collected over 37 randomly selected problems from "Win at Chess" and 24 consecutive
positions in a game fragment played by CAPS-1I. The figures given are as a percentage
of the total number of nodes in the trees.

TABLE IV-1 - Performance of Tree Controf Devices

Effect Problem Positions Game Positions
Foruard Prunes of Proposed Moves 181% 98%
Nodes at Maxdepth 23% 25%
Zern-Successor Nodes not at Maxdepth 16% 16%
Nodes Terminated by Alpha-Beta 37% 33%
Found Result Sig. Gtr. EXPCT 2% 1%
Found a Satisfactory Defence 1% 1%
Found no Defensive Moves 8.3% 8.4%
Position not Worth Defending b% 3%

Let us try to inlerpret these results. The tolal number of forward prunes of proposed
moves is approximately equal to the total number of moves searched. This points out
several things. For one, the device is indispensable, since otherwise the total amount of
work that the program would have to do would increase tremendously. This is due to
the fact that not only would twice as many nodes have to be examined, but in all
likelihood most of these would have successors which in turn would have sucessors until
the reason for the static rejection of the move is discovered dynamically. Secondly, the
reason that the forward prune device gets much work to do is that many inadequate
moves are proposed. This is an inevitable consequence of the proposing mechanisms,
which attempt to understand the underlying structure of the position and propose any
move which affects this structure in a desired way. Clearly, many of the moves
proposed will affect the structure, but cause some patently obvious other problem in
the process. These moves could be weeded out right after evaluation takes place;
however, we prefer to keep them on the move stack for examination in other
eventualities.

The above data show that about 247 of ail nodes in the tree are bottom nodes.
This compares with 167 of zero-successor nodes at higher levels in the tree; these
being due to some of the above specified mechanisms. Thus 407 of all zero-successor
nodes in the tree are self-terminating (not a function of maximum depth). If one adjusts
this self-terminating 167 of all nodes to consider as a base only non-bottom nodes, then
217 of all nodes eligible for s routing are found not to sprout. This corresponds well
with the 237 of Figure 4.4; that data coming from a different run of the program. The
detailed reasons for the occurrence of zero-successor nodes are analyzed below.

From Table IV-1, one can see the important role of the Alpha-Beta pruning
algorithm.  The number of such prunes is equal to about 357 of the total of all nodes
searched. The Alpha-Beta pruning algorithm is a well studied device [Slagle and Dixon,
(1969)]. It is known that it cannot generate logical errors in the search, and that its
maximum efficiency is proportional to the square root of the number of bottom nodes
that would be generated under minimax. In this program its efficiency is hard to
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estimate since the branches that are being cut off are of varying lengths. This is due to
the fact that the cut-offs occur at varying depths and many backed-up values do not
originate at the maximum depth (due to non-bottom zero-successor nodes). However,
Alpha-Beta clearly contributes significantly. This is shown by the data, and also by the
fact that the Search-and-Scan algorithm (which essentially disabled Alpha-Beta)
produced so much larger trees in many cases.

The percentage of zero-successor nodes in a tree search is about 217 of all
non-bottom nodes. There are four tests that can terminate a non-bottom node without
a successor. These are: 1) Alpha and Beta equal or crossed, 2) Ahead of EXPCT in
material and opponent has no compensating counter-threat, 3) N3 acceptable moves
suggested Ly any state, and 4) Position repetition noted.

TABLE IV-2 - Causes of Zero-Successor Nodes

Effect Problem Positions Game Positions
Alpha and Beta equal or crossed 60% 85%
Significantly Ahead of EXPCT 3% 1%
No Satisfactory Moves Proposed 36% 13%
Position Repetition 1% 1%

Table 1V-2 shows the relative frequency af occurence of each of these cases. The
most obvious thing that stands out from these data, i1s the overwhelming role played by
the Alpha and Beta equal pruning rule. T'e fact that it accounts for about three-fourth
of the zero-successor nodes must in large measure account for the slow growth rate of
trees in this paradigm. The Alpha and Beta equal rule is in turn made possible by the
Claim System. The only way, that Alpha and Beta could be (become) equal while
descending in the tree, is for an agency to be able to narrow the range between them
during this time. Thus the Claim System examines the Alpha at a new node, in an
attempt to limit it to the maximum effect obtainabie by the opponent in the position.

The next most powerful effect, which accouiits for almost all the rest of the action,
is the fact that in about one-fifth of all positions that are terminated without search, no
satisfactory move was proposed. This effect appears to be due to a combination of
mechanisms. First of all there is close control on the goal states which are allowed to
propose moves. Second, the evaluation of moves (while far from excellent) is adequate
enough so that moves that are proposed to solve some problem but fail to solve a more
global requirement, are evaluated correspondingly. Thirdly, the forward prune device,
which refuses to search any move that does not evaluate to be equal or better than the
current Alpha value, causes rejection of moves so that when no adequate move has
been proposed, none will be searched.

It is interesting to note that the two devices that are most commonly written about
and implemented in the cause of node termination -- significantly ahead of EXPCT, and
position repetition -- account for only about 27 of the action between them. Of these,
the significantly ahead of EXPCT test is usually implemented by setting Alpha and Beta
at the top of the tree to EXPCT plus and minus MARG and then finding Alpha-Beta
prunes which show that a position ouside these limits has been found. The fact that
two orders of magnitude more prunes are possible in our program shows that
sensitivity to other parameters of a position can have a big pay-off. It should be

1
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pointed out that since malerial balance is ihe only term in the terminal evaluation
function, the likelihood of Alpha and Beta becoming equal is considerably greater than if
the terminal evaluation also included small values for other terms such as mobility, etc.
However, far from being a criticism of the present approach, this just points out the
importance of not mixing tactical and positional values in the search, and rather treating
them in hierarchical fashion.

Since the data were collected across a large number of positions involving about
50,000 nodes in total, we feel some significance can be attached to the difterence in
performance of the first three tests on the two lasks. It is quite reasonable to assume
that the averace game position was more bland in character than the tactically sharp
positions of "Win at Chess" The likelihood of not being able to propose any move
which met a node’s requirements appears to be higher in sharp positions, and this is
borne out by the data. Such posilions are also more likely to produce a node in which
one side is significantly ahead of EXPCT in material, and since the board state is
turbulent, less likely to produce a situation in which Alplia and Beta can be squeezed

together by the Claim System. This appears to be a reascnable interpretation of the
data in Table 1V-2,

Once searching from a node has begun it is possible to return to that node with new
information that makes if unneccessary to search further at that node. One such item of
information is a backed-up value leading to an Alpha-Beta prune. However, there are
other mechanisms in the program which can also terminate a node, bul depend on the
value of EXPCT and on the current goal state for their power. The following
mechanisms can terminate a node when returning 1o il: 1) Alpha-Beta pruning, 2) A
result significantly better than EXPCT has been found, 3) A result greater than or equal
to EXPCT was found while pursuing a defensive task, 4) The currert defensive task is
hopeless (all suggested moves have been rejected), and 5) The current position is not
worth defending (after having rejected all AGGRESSIVE moves). Table IV-3 shows the
relative frequency of occurence of each of these as a percent of all non-bottom nodes
with one or more successors.

TABLE IV-3 - Reasons for Termination of Nodes with Successors

Effect Problem Positions Game Positions
Alpha-Beta Cut-off bl.6% 56.2%
Found Result Sig. Gtr. EXPCT 3.1% 1.87
Found a Satisfactory Defence 2.0% 1.1%
Found no Defensive Moves 8.5% 8.6%
Position not Worth Defending 18.0% 5.1%

Again the effect of these devices is somewhat greater in the sharp problem
positions, than in the game positions. This is part accounts for the larger branching
factors obtained in the latter type of position.

Alpha-Beta plays a dominant role in this set of mechanisms. However, it is
impossible to tell from the data collected how many of the Alpha-Beta prunes would
have been realized without the operation of the Claim System. In those cases where
Alpha was reduced wilhout producing an "Alpha and Beta Equal or Crossed” condition,
the reduction must have helped in producing later Alpha-Beta prunes. It is important to
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understand exactly what the meaning of an Alpha-Beta prune is. When such a prune
occurs, the last move tried at this node was good enougti to produce a refutation of an
earlier move by the opponent. Thus it is not necessary to look at any more moves at
this node. “this phenomenon occurred in the vast majority of nodes which had sprouts,
indicating that the program is spending most of its time refuting unsound moves.
However, our statistics do not show what goal state produced the move that resulted in

the prune, nor how many prior moves had been tried. But Figure 4.4 is a good estimate
of the latter quantity.

The mechanisms "Found Result Significantly Greater EXPCT" and "Found a
Satisfactory Defence" also are indicative of a degree of success at this node. However,
in these cases a result is produced which could become part of a principal variation or
else result in an Alpha-Beta prure at a node an even number of ply higher in the tree.
In contrast, "Found No Defensive Moves" and "Posiiion not Worth Defending” are

admissions of inadequacy which will probably produce an Alpha-Beta prune at some
higher node an odd number of ply away.

The "Found Result Significantly Greater than EXPCT" test shows ‘hat a small
percentage of such results appear. Even so, it is clear that continuing the search in
such cases is more wasteful than redoing the search if such a result survives to the top
of the tree. Likewise, the notion of being on defence and having found a satisfactory
one contributes a small amount to overall node termination.

The “Current Position Not Worth Defending” test is the complement of the "Position
Significantly Ahead of EXPCT" test in Table IV-2. In such a case, the side on move is
behind in material but appears to have some threats which could rectify the situation.
After these threats have been examined, and found t» be inadequate, the situation is
re-examined in terms of material on the board and capture threats still pending (even
though the latter were not immediately evecutable). If this evaluation still is not enough
to reach the EXPCT level, the search is abandoned. The number of such prunes turns
out to be many times greater than the complementary test; a result that appears to
indicate that our methods of detecting threats give the benefit of the doubt to the party
not on move. Then when these threats are found not to be dangerous, the other test
prunes the node. This shows another advantage of the goal state approach, since it

would otherwise be impossible to pause for re-examination after having examined all
AGGRESSIVE moves.

Our statistics do not indicate how the remaining nodes that had successors were
terminated. Logically this must have occurred either when the AGGRESSIVE state
produced a satisfactory move, or in the KING IN CHECK state, or by exhaustion of 2l
suggested moves.

E. A THEORETICAL ANALYSIS OF TREE GROWTH

There has been quite a bit of work done on trying to understand how search trees
grow. This has been possible since CAPS-I] has branching factors in the range of 1.5 to
3.0, making it possible to examine trees over a reasonable range of maximum depths
without causing computationally intractable tasks. In order to understand tree growth,
it is necessary to consider the anatomy of a node at sprouting time. If a position is
tactically “alive" then it is possible for the move generator in charge (which in practice
means the AGGRESSIVE or one of the DEFENSIVE ones) to generate many mcves which
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it feels can matenally affect the value of thal node. Whenever a move 1s actually

tendered for searching, it must pass the forward prune test, which does not allow any 3
move to be tested whose optimistic static value does not equal or exceed the Alpha .
value for that mode. Further, if a result is ever backed up to this node, which is ]
significantly better than EXPCT, then the search at this node is immcdiately abandoned.

Now, let us consider the optimum value (VAL) of the position at any node in the tree
as being the minimaxed re<ult of a complete seaich of that nade’s sub-tree. Assuming
the position is tactically alive, then the number of moves that will be scarched is a
function of how many moves are statically evaluated as better or equal to Alpha, and
the algebraic relation of Alpha, VAL and EXPCT to one another. If one allows the
relatiors: equal (-), somewhat greater (>), significantly greater (>>), somewhat less (<),
and significantly less (<<), then 125 cases can be distinguished. Let us associate ">"
with being less than MARG greater, and ">>" with being MARG or more greater. Then if
A > B, and B > C, then either A > C or A >> C. There are then 31 valid relationships
among Alpha, EXPCT, and VAL. Many of these rases fall into classes where one
relationship 15 of over-riding importance. Let us examire these classes. 1

I Alpha >> EXPCT, then by the rules of our search no more sprouts will he looked
at, and the search backs up. This takes care of six cases leaving 25.

It EXPCT > or > VAL, then we are trying to solve an impossible problem at this
node since we can never find a move that will come up to EXPCT. Hopefully such cases
are rapidly disposed of in the present pregram by causality. If that fails then many
moves could be searched in vain. This takes care of 1] more cases, leaving 14.

It Alpha > or >> VAL, the program is again wasting its time at this node since it has
. already achieved a better value than it can hope to find here. The forward prune test
) must be counted on here to dismiss mar., propo.ed moves as being inferiar to what has
already been achieved. However, if Alpha is only slighty larger than VAL, or if the
situation is full of unresolved tactical complexity, then the forward prune could very
well not be sensitive enough to eliminate a significant portion of the work at such a

node. This class encompasses nine cases, but only three new ones, leaving 11.

If VAL >> EXPCT then we can find a solution at this point which will allow backing
uUp as soon as such a significantly greater value is founc. Experience has shown that
the program is usually able to find such highly successfil moves quickly, thus this class
is of little concern. There are five cases in this class, lzaving six.

The remaining six cases are:

1? Alpha = VAL = EXPECT. Here no improvetaent is possible and the forward prune
can not be of any help since any proposed "good” move muct be at least a little
better than Alpha (due to optimism). Therefore much searclung could take place
here while the program is in the AGGRESSIVE state, trying every possibility in the
hope of finding a mave that makes a difference. We conjecture that this case is a
major cause of higher branching factors.

2) Alpha < EXPCT < VAL >> Alpha. Here improvement of the existing Alpha is possible,
however, since no value >> EXPCT is achievable, the program may likely have to !
search through all proposed alternatives. There are two exceplions to this: in a
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DEFENSIVE state the (ree sea-ch is exited when a value 2 EXPCT is found, and, if
the best value at ttis node is fcund quickly, the new Alpha may produce some
forward prunes of the remaining moves.

3) VAL = EXPCT >> Alpha. This case is very similar to the one above, except no
forward prune help can be expected.

4) Alpha = EXPCT < VAL. If this occurs in a DEFENSIVE state, the program will
back-track. Otherwise, if the small improvement in the position is found quickly then
hopefully forward prune will cut down the remaining work,

5) Alpha = VAL > EXPCT. Here no improvement is possible. In a DEFENSIVE state
back-track occurs, but in other states no help from forward prune can be expected.

6) VAL = EXPCT > Alpha. Here some improvement is possible and termination can
occur quickly if in a DEFENSIVE state. Otherwise, much searching will occur until all
alternatives are exhausted.

On examination of the above cases, it becomes clear that many states exist where
the program will engage in what appears to the informed observer (for he knows the
value of VAL while the program does not) as generating and testing. This occurs when
the program is in the AGGRESSIVE state and no VAL >>EXPCT is achievable. While we
can think of no sure way of preventing this behavior, it is conceivable that limiting the
number of AGGRESSIVE tries at a node when EXPCT has already been achieved is a
good possibility, This could be reasonably safe if it were only applied to the analysis

moves of the program’s side, and if (say) the tuo four ply of search were unaffected by
this rule.

In actual play two types of situations have been identified; those in which the
program can find what is to it a clearly best move, and those situations in which it can
not. By clearly best, we mean that the backed-up value assigned to such a move be at
least MARG more than any other value that can be backed up. In situations where there
is no clearly best tactical move and the position is tactically “alive”, the program may go
into an extended search, as the chance of a damaging situation from one of the above
classes occuring is very high. If the situation is not tactically alive, then the search will
usually terminate relatively quickly, with some tactically acceptable move which was
either proposed by the AGGRESSIVE state or the STRATEGY state becoming the move
made. In situations where a clear-cut solution exists, the program will usually find it in
less than five minutes of CPU time; occasionally taking up to 10 minutes in cases where
it makes many false starts. It has also been noticed that in positions that have a sharp
character (as for instance those in "Win at Chess"), or in positions where the program
thinks it has found a superior move, the branching factor across the whole tree is
approximately 1.5. This would be very tolerable, if it were valid for all positions,
However, in positions that are tactically alive with many possibilities but no clear-cut
solution, the branching factor tends to go up to 3.0, which while considerably better
than the 5.0 to 6.0 found in most of today’s programs, still tends to produce rather
gigantic trees for 10-ply searches. For instance, with a constant branching factor of
3.0, a 10-ply tree would contain almost 30,000 non-terminal nodes, as against 112
non-terminal nodes for a branching factor of 1.5.
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Below, three exampies of tree grn.th are examined. The experimental technique
used was to run CAPS-II a' varying depths on the same problem and note the width of
the resuiting trees. By the width at depth "n", we mean the total number of nodes that
were sprouted in the whole tree at depth "n" during the search. We will try to show
that there is a pronounced difference between the growth patterns of trees, depending
strictly upon the notion of a clearly best meove. To do this, we examire the same
position under search conditions which allow finding a clearly best move und under
conditions which do not,

The first example derives from the position in Figure 4.6, and is one in which
CAPS-II is unable to find a clearly best move no matter how deep the search, up to 15
ply (for an explanation of this see Figure 5.12). These results are shown in Figure 4.7,
which gives the results for depth 5, 7, 9, 11, 13, and 15 searches. The graph shows a
general exponential growth of the tree with increasing depth. Actually the width of the
tree at a given depth tends to decline very slightly as the depth of search goes up (we
call this the "Flattening Effect"). However, in any individual tree one can at besi hupe
to see a slight slowing of the exponential growth. This could be due to such factors as
1) greater opportunity for cut-offs at greater depth because of the way the Claim
System works to press Alpha and Beta toward each other, or 2) depletion of material
making it more difficult to come up with meaningful tactical issues. However, both of
these effects seem to be of a very low order. Although they probably exist, they are
very much subordinated to the effects that cause individual positions to be more or 'ess
tactically alive.

The following points shr uld be noted with respect to this example and 'he next:
Whenever the cirve moves n a sideways or slightly downward direction it means that
the side on move is coming to grips with whatever the problem may happen to be (or
conversely it may be posin: problems) at the rate of approximately one node for every
parent node. On the other hand, when there is a considerable vertical rise it means that
the side on move here is either having to search a bit to find the right response in
order to raise Alpha up to EXPCT, or it is busy generating one offensive try after
another without much success. This frequently results in a pattern of a side-wise step
followed by an exponential rise (the step phenomenon). This indicates that one side
(the exponential rise side) is either busy trying to pose issues which the other side has
little trouble turning aside, or it is having trouble reacting to a threat. In either case,
the exponential rise is an indicator that this side is having problems coming to grips
with the position.

The second example derives from the position in Figure 4.8, and the tree growth
graph is shown in Figure 4.9. This graph shows growth curves foi depth 7, 9, i1, 13,
and 15 searches. To understand what happens here, it is important to know the
solution to the problem which is: 1. R-R8, after whicn White threatens to queen the
pawn, winning, while Black cannot play 1.--RxP because of 2. R-R7ch winning the rook.
So Black’s only alternative is to keep ctiecking the White king on the rank, which for
most computer type analyses, will result ‘1 postponing any real consequences over the
search horizon. However, White wins tr 2 position quite easily by merely approaching
the Black rook with his king until an effactive check can no longer be given. However,
this requires 13 ply of searching as frilows: 1. R-R8, R-R8ch, 2. K-B2, R-R7ch, 3. K-K3,
R-Réch, 4. K-Q4, R-Rbch, 5. K-B5, R-Rdch, 6. K-N6, R-R8, 7. P-R8=Q. Therefore the
program must search to depth 13 in order to find a proper solution to this problem. In
that light, it can be seen that the curves for depths 7 through 11 show a general
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exponential increase as the program looks in vain for a solution and fans out in the
process of doing so. It is interesting to note the step phenomenon at the end of each
of these curves, but not prior to that. The flat part of the curve is always coming on
the last even ply, which would make it Black’s move, and the rise 1s coming on White’s
reply. The explanation for this, is that Black is trying the capture RxP 0. this ply and
now White plays R-R7ch. We are now at maximum depth and the procedure for a
situation where the king is in check ‘s to use the evaluation of the best of all legal
replies. Here, any king move results in a situation where both rooks are attacking each
other. This is again in an area of incompeience of the current terminal evaluation
function, and thus this position is considered a; nearly even. Because of this, it appears
that the move RxP is successful (but only when made this close to maximum depth) and
White continues to look for alternatives to R-R7ch. It investigates R-B8ch as the only
meaningful alternative, but finds that Black’s answer KxR is too strong. This drama is
played out again and again at the horizon of each search, and accounts for the step
phenomenon tails which show that White is having a problem which Black has no trouble
coping with at this point.

The first break in this pattern is for the curve i~belled 13W. In this curve the
program thought it found a superior move (the right answer). However, it only managed
to get to a situation in which it got a favorable (but incorrect) verdict from the terminal
evaluation function. The principal variation for that search was: 1. R-R8, R-R8ch,
2. K-R2, R-R7ch, 3. K-R3, R-Réch, 4. K-R4, R-RSch, 5. K-R5, R-Rach, 6. K-R6, R-R3ch,
7. K-R7. In this position the terminal evaluation function gives more credit for the
threat to promote the pawn than for Black’s threat to capture it. Therefore this
position is considered as constituting progress for White. We are aware of this problem
in the terminal evaluation, and il will be fixed in an early future version of the program.

The recson the king marches up the edge of the board is that there is a heuristic in
the program which rewards decentralizing the king. This is very useful in middle games,
and since almost all tests of the program were in middle game situations, no attempt was
made to provide additional sensitivity to which phase of the game the current situation
is in. This can be easily done by something as simple as counting pieces to decide that
tne end-game heuristics should now be used. That would call for king centrality instead.
With that in mind, we put a temporary patch in CAPS-1i which rewarded centralizing the
king, and ran the problem again. This time the curve labelled 13R was generated, and
the principal variation was: 1. R-R8, RxP, 2. R-R7ch, K-N1, 3. RxR, indicating that the
program had been unable to find anything better for Black than losing his rook. A look
at the tree print-out confirmed that it had indeed found the correct solution. It is
interesting to note that this curve is considerably lower (comprising about one-half the
number of nodes) than the curve 13W. This indicates that the more appropriate
guidance provided by the "centralize" heuristic not only got to the right answer, but
considerably shortened the solution process.

A final curve witn the "centralize" heuristic is the one labelled 15R, which is run at
depth 15 just to determine the additional amount of work the program does when given
more depth freedom. The thing that is very noticable about Figure 4.9 is the definite
curve flattening, once the program has reached the proper solution depth. In Chapter
V1, we will speculate as to how this problem would be solved using lemmas.

The final example in Figure 4.10 shows curves for depth 9, 11, 13, 15,17, and 19
searches of a position (Figure 4.11) that CAPS-II did not understand, but in which it
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found a (to itself) satisfactery solution. Although the problem can be solved at well
below 9-ply depth, the program’s perceptual mechanisms were not good enough to
discover the key move. However, it finds a solution to wihat it conceives of as the main
problem. This same solution comes out again and again as the depth of search is
increased. Since the position is tactically alive, the program acts as if the critical depth
for solving this problem is well below the nine ply that is represented in the first curve.
Here we see a perfect illustration of the flattening effect. The curve at each increasing
denth has a smaller slope than any before it. This is a real phenomenon, and is
probably due to the fact that once 2 "solution" is found, it is possible to get many
cut-offs and thus slow the growth of tha tree.

One final observation is useful in trying to understand tree growth. That is that
most positions appear to have their own step phenomenon characteristic. If this is true,
then in each position the play for one side is relatively easy and for the other relatively
diiticult.  The step phenomenon can be seen in the three graphs we have just
presented. For instance in Figure 4.7, nodes generated in moving from even to odd
plies move sideways, and those from odd to even move up. In Figure 4.9, odd to even
move sideways, and c.en {0 odd move up. And in Figure 4.10, there is a very
pronounced effect of odd to even moving sideways, and even to cdd moving up. This
step phenomenon has been reported by other researchers and is almost certainly
related to the workings of the Alpha-Beta pruning algorithm. For instance, if one can
correlate one side esiablishing a good Alpha value near the top of the tree, with this
being an "easy" position for that side, then one can see how this would make it easy to
turn aside voluminous but meaningless gestures by the other side.
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CHAPTER V
PERFORMANCE OF THE PROGRAM

In this chapter, we examine the tests that have been performed using the program.
These tests range from very simple ones on the effectiveness of the data structure, to
full games played by the program. After each presentation of results of the tests, we
present those conclusions which seem warranted, and pose those open questions that
were raised and appear unanswerable at present.

A. A TEST ON THE REPRESENTATION

Since all of the program’s ability to understand structure in chess is dependent
upon the primitives it computes in every position, a great deal of effort was of
necessity expended to see that such primitives yielded correct results as far as could
be determined. This was certainly achievad for simple things such as the different
bearing relationships. Also, things such as the correct noticing of pins, correct
assignment of functions, correct noticing of the various types of attacks, the causality
facility, etc. were established to be very reliable. However, the occupiability (OCY)
computation was not always correct. This is of concern since many judgements CAPS-II
makes depend on this value, and when errors exist these may cause lost opportunities
or increased tree searching activity in order to recover. In view of this, a short test
sequence was run on the first 20 moves of Game I of the recent Fischer-Spassky chess
match. The test sequence involved 40 positions, with 64 squares per position and two
values { White and Black) per square. This comes to 5120 observations. Over this set,
CAPS-1I computed 3 occupiabilities wrong, e.g. an error rate of approximately
six-hundredth of one percent. The author in checking the output of CAPS-II made
approximately 6 to 8 times that many mistakes in the checking process, that is, there
were on the order of 20 situations where the author thought the computed result was
wrong at first glance, but it turned out to be correct. This appears to indicate that the
program’s perceptual accuracy in this dimension is already superior to that of a master,
and probably the present degree of refinement of the computation is too high.
Nevertheless, all the errors turned out to be due to situations where a pinned piece’s
influence on a square was wrongly calculated. We now know how to fix this problem
and expect to do so during a future program revision.

B. TESTS ON CHESS POSITIONS

Most of the development and testing of the program was on the set of problems
contained in the bock "Win at Chess” [Reinfeld, (1958)]). This was because this volume
is rich in examples of functions being performed by pieces, and how disturbing those
functions can lead to tactical combinatiors. The prcgram was originally constructed with
a view toward solving these problems, and many of the features in the program arose
from considerations of what it would take to solve specific problems in the set. When
an initial version of the program that seemed to perform somewhat as desired was first
prought up, it was tested on the first four problems in "Win at Chess” plus three other
problems which the author had selected as important. The program was debugged and
small improvements were made on it until it reached a level of performance which
appeared reasonable, considering the program’s basic problem solving facilities. At this
time, the program could only solve one out of the first four problems in "Win at Chess"
correctly, and had not been tested on any of the others. This version of the program
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was then tested on the first 20 problems and managed to get seven of these correct.
This series of tests revealed further bugs which were corrected. The resulting program
was named CAPS-] (Chess as Problem Solving).

1. CAPS-] Tests

CAPS-I was ther tested on the first 100 problems in "Win at Chess". This book
is organized into chapters of 20 problems each, with the intention that each
succeedirg chapter be more difficult than the last. However, there has been no
standardization of this difficulty factor through experimentation. Thus, though there
is a general difficulty trend, there seems to be quite a bit of variability from chapter
to chapter. The tests of CAPS-l1 were run under ihe following conditions. If it
failed to solve the problem by the time the number of nodes in the tree reached
500, the solving process was terminated and it was counted as wrong. In scoring
these and all other results, it was usually quite easy to tell whother the answer was
correct or not. However, in some cases the program got the first move correct, but
the supporting analysis as evidenced by the principal variation and the tree print
out were not convincing. In such cases one-half credit was given. Table V-1 shows
the resuits of these tests.

TABLE V-1
Chapter ] 11 111 1v v All
Number right 12 11 12 18.5 S 48.5
Avg. nodes (right) 49.3 80.1 115.2 136.7 158.2 183.6
Avg. nodes (uwrong) 65.0 37.0 60.0 64.0 53.5 56.1

Avg. nodes (uwrong+unfin) 195.5 152.8 280.8 11z.4 282.3 189.3

As can be seen, CAPS-] got 485 problems correct out of 100. In 15 of the
problems, it had to be stopped at 500 nodes without having found a solution. This
means that in 857 of the problems CAPS-1 wes able to deliver an answer within 500
nodes (about two minutes of CPU time). It is interesting to note that the average
number of nodes required to solve the problems goes up as a function of increasing
chapter number (difficulty). However, that is the only thing that correlates well with
difficulty as it exists in the book. Other interesting data items are that the amount
of effort on problems that were finished incorrectly is rather constant and usually
less than the effort on problems solved correctly. Considering both wrong and
untinished in the same category by assigning 500 nodes for all unfinished problems
seems to only obscure any effects that are present.

CAPS-] appeared to have a reasonable perceptual grasp of what the task was in
a given position. What we mean by perception, here and later in this chapter, is the
ability of the program to statically diagnose generally what the problem is and what
moves are likely to play a part in the soluiion. The above is borne out by the data;
the program usually terminating quickly. In cases where its static analysis routines
could decode the position and find the key move at the top, the program did very
well when little other analysis was required. In cases where the decoding was
unsuccessful or where further complicated analysis was required, the program
would either terminate in standard time with an incorrect answer, or go into a
generate and test mode in more complex positions until it eventually ran out of
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alternatives. In analyzing the output trees, one could notice several instances of
logical failure in the tree search, which prevented CAPS-I from recognizing valid
defences. This resuited in CAPS-I doing much better in problems where straight
forward albeit perceptually hidden solutions were possible, than in situations where
a certain amount of dynamic analysis was necessary. CAPS-I also played ordinary
games of chess very poorly.

2. CAPS-II's General Performance

As a result of these tests, a few additions and improvements to the data
structure were made. However, the most effort in the development of CAPS-1I went
into tree searching. It was found that there were logical inconsistencies in the way
goal state changes were implemented, and this sometimes allowed CAPS-I tc ignore
problems by simply not going to the correct goal state, or leaving the correct one
prematurely. The result of correcting this logic was a noticeable increase in tree
size. However, this was absolutely necessary as such logic errors clearly could not
be tolerated. Besides this, all the non-standard tree searching devices discussed in
Chapter IV were developed for CAPS-II. As a result, this version of the program
showed great improvement in application of its searching effort. Also the accuracy
of its performance went up to the point where it was clearly in the class with the
average program that competed in the anhual ACM tournaments. The program was
then retested, this time on the first 200 problems in "Win at Chess". This time it
was decided to use a time criterion, instead of counting the number of nodes. Five
minutes was set as a maximum time. The reason for using time was so that the
results could be compared to the performance of other programs and human
players. A tabulation of the performance of CAPS-II in the same format as Table
V-1 above can be seen in Table V-2. For purposes of this table, the number of
nodes was established using time in seconds multiplied by 45, which is
approximately the average number of nodes processed per second.

TABLE V-2
Chapter I 11 111 Iv v Al l
Number right 12 14 12 55 18.5 7 56
Avg. nodes (right) 167.8 226.4 206.1 453.6  285.3 268.6
Avg. nodes (urong) 227.2 269.1  346.C 371.7 237.8 281.6

Avg. nodes (wrong+unfin) 508.8 449.1 490.0 806.4 436.8 537.3

Comparing these results with Table V-1, we note that CAPS-I1 did 167 better on
the problem set than did CAPS-1. This was a uniform achievement, CAPS-11 not
scoring worse on any chapter than CAPS-I. There were, however, five instances
that were solved by the earlier version and not by CAPS-II. At first glance one
might ascribe the better performance of CAPS-II to the fact that it had five minutes
of time available, while CAPS-I had only about two minutes. To refute this idea, the
15 problems on which CAPS-I failed to finish were run for five minutes. Qf these,
CAPS-I was able to finish only one with a correct result, thus indicating that the
discrepancy in performance was due to other factors.
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TABLE V-3

Chapter VI VI VIII IX X All
Number right 7 8 5 12.5 6 38.5
Avg. nodes (right) 181.7 429.3 144.8 512.1 412.6 356.9
Avg. nodes (urong) 238.5 231.3 458.6 318.5 526.8 375.6

Avg. nodes (wrong+unfin) 837.8 697.5 636.8 466.6 879.3 725.4

CAPS-1I's performance on the second hundred problems in "Win at Chess" is
summarized in Table V-3. Across the set of 200 problems, CAPS-II achieved 47.25
7 correct. Attesting to the fact that the first one hundred are simpler than the
second one hundred are the ~omparative percentages of correct solutions, 567 and
38.57 respectively. One can also detect a general increase in time taken by the
program on all problems, whether solved correctly or not, as a function of chapter
number. However, there is quite a bit of variability here.

In examining the trees generated by CAPS-II, it was possitle to discern a much
rnore workmanship-like approach to problem solving. In these trees issues arose
and were dealt with in a satisfactory manner until an appropriate conclusion was
reached. This was in clear distinction to the problem solving of CAPS-I which was
highly perception dependent, and unable to follow issues very well to their
conclusion. This is also manifested by the fact that CAPS-I could make practically
no headway on the more difficult problems in later chapters of "Win at Chess",
whereas CAPS-II did many of these very well and would have obtained a higher
score but for several malperformances of the terminal evaluation function, and four
cases of problems being solved in times of between five and ten minutes. We
consider the logic of tree searching in CAPS-II to be very close to absolutely
correct. However, an apparent penalty of this greater consistency in searching, has
been a tendency for the program to search too much in situations in which it cannot
find a solution that is clearly superior to any other. The answer to this would
appear to be algorithms ‘which still further restrict the moves which are allowed to
be searched. Alsc, an ¢ffective method is needed for hopping around in the tree
when results indicate that branches of greater promise than the one currently being
looked at, have as yet not been investigated.  Upgrading the uses of the
representation, as suggested in examples later in ihis chapter would very likely
raise the performance level of CAPS-I] on these problems by 20 to 307.

A graph showing comparative performances of a Class "A" player, TECH, and
CAPS-II is shown in Figure B.1. Here the task was the first 200 problems in "Win at
Chess", and all solutions had to be achieved in five minutes (of CPU time in the case
of the programs) or less. The Class "A" player achieves a clear superiority over
both programs. In fact, his performance on any chapter is only exceeded once by
either program, and that is by CAPS-II in chapter IX. This chapter seemed to be
exceptionally weil suited to the talents of CAPS-II as it scored much higher than
would be expected considering the difficulty of the chapter. This chapter seemed to
be largely made up of problems which required a clever first move, together with
precise calculation of deep principal variations. More detail on this phenomenon is
given later in this chapter. Over the whole problem set, CAPS-II did a few
percentage points better than TECH, However, there were marny reversals of form
from chapter to chapter.
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A more illuminating view of the relative performances of CAPS-1l and TeCH can
be seen in Table V-4,

TABLE V-4

Depth Both Right TECH Oniy CAPS-11 Only Both Wrong Total

1 1 1 g g 2
2 6 4 8 ) 18
3 26 7 8 2 33
4 23 16 1 2 42
5 1 3 13 11 28
6 ) 0 11 20 31
7 ) ) S 10 15
3 ) 0 1 9 10
3 8 ) 6 3 9
19 a ) 1 4 5
>10 ) ) ) 11 11
TOTAL 55 31 38 72 196

(*¥) These totals do not sum to 200, hecause problems on which partial credit was
given are not included.

This table shows the performance of TECH versus CAPS-II on individual
problems as a function of the depth of the principal variation. Depth is defined as
the depth of the deepest non-capture in any branch of the principal variation. This
definition is being used mainly because of the structure of TECH, in whict. all
capture sequences are examined as part of the quiescence process. Thus if a
principal variation ends with one or more captures, these would be included as part
of the quiescence analysis, if the search went to the depth of the previous
non-capture move in that variation. This is not an unreasonable definition of depth,
since in most positions there exist sequences of captures which either do not
disturb the status quo or reap the fruits of the previous moves. Both these
situations can be considered to be "self-evident” extrapolations of the current
position; e.g. not related to any additional depth of search.

The interesting thing about Table V-4 is the very pronounced skewing of results
as a function of depth. TECH because of its exhaustive search does not miss any
problems of depth 1 or 2. Then as the amount of work increases, the probability of
TCCH failing to solve a problem goes up steadily, until it can no longer solve any
problems of depth 6 or greater in the five minutes allowed. On the other hand,
CAPS-11 misses a certain percentage of all problems, at every depth. The
percentage increases slighly as a function of depth, but the most important point to
note is that CAPS-IlI, because of its approach, is able to solve some problems at
every depth because the exponential explosion does not hurt it as much as a more
conventionally designed program. It is reasonable to assume that as its perceptual
facilities improve, CAPS will continue to increase the percentage it solves correctly
at any depth. The conclusions associated with this table are probably the single
most important ones in this thesis.




TABLE V-5

% CAPS-1

% CAPS-11

1-2 12 62 62 I
: 3-4 48 56 71 t
1 5-6 2k 45 48

7-8 8 38 38

9-18 5 48 40

>18 6 B )

When one uses the depth criterion to examine the performance of CAPS-I
versus CAPS-II on the first 100 problems, the results in Table V-5 are obtained.
These show rather clearly that the main performance increment came on prollems
of depth three and four. This tends to bear out our earlier analysis that many of
the problems were heavily dependent on perception. This would apply to the
problems with short principal variations, e.g. one and two ply. The longer principal
variations are associated mainly with problems with rather straigh-forward winning
sequences not involving any intricate defences or many sub-variations. this only
leaves the problems of medium length, many of which required detailed analysis of
offensive and defensive ideas in order to bring in a correct answer.

TABLE V-6
1 Depth Total % Right/CAPS-11 % Right/ClLass "A"

1 3 50 108

2 10 60 98

3 33 73 91

4 42 57 79

5 29 50 69

6 31 35 61

7 15 33 67

8 11 13 73

9 10 60 70

ie 5 20 49

>10 11 2 18

It is interesting to contrast the results of CAPS-II versus TECH with a
comparison of CAPS-II versus the Class "A" player as shown in Table V-6. Here the
Class "A" human player very clearly excells the program in every category. This is,
in our judgement, indicative of his greater understanding and flexibility of approath.
However, the Class "A" player does not completely dominate CAPS-II’s performanc. .




Depth Both Right Class "A" Only CAPS-11 Only Both Wrong
1 1 1 o 2
2 6 3 %] 1
3 21 9 3 7}
4 20 13 4 5
5 8 12 6 2
6 6 13 S 7
7 2 8 3 2
8 1 6 ) 3
9 5 2 1 2
18 B 2 1 3
>18 %] 2 8 8

TABLE V-7

This can be seen in Table V-7 which shows the comparative performance of the
two on individual problems. Again the Class "A" player has the far superior
performance. However, the next to last column shows that there were quite a few
instances where CAPS-II was able to solve problems that the Class "A" player did
not solve. This, in any case, serves to encourage us into believing that the basic
approach has considerable potential, and will allow producing ever better programs
as more and more of the details of tactical perception and analysis are built in.

Since the book "Win at Chess" was made up exclusively of examples extracted
from Master play, it was felt that CAPS-1] should also be tested on more mundane
examples of the type that computer programs are likely to run into in their
everyday existence. For this purpose a set of such tactical problems was extracted
from the repertoire of the Northwestern University program (NWP) [Atkin, et.al,,
(1965)] as it performed in winning the first three ACM Computer Championships.
This comprised a set of nine games which can be found in the open literature. We
examined these games, and extracted from them 43 positions which had singular
tactical solutions. This included all the most difficult positions in these games and
most of tnose with medium difficulty, plus a very few that were rather simple (e.g.
requiring only a capture that could not be rebuffed). The positions were selected in
such a way as to attempt to get as many defensive problems as possible into the
set. However, this resulted in getting only seven defensive problems. The difficulty
was that the solution had to be singular, and while there were many defensive
situations, there were not many with a clear-cut defence that was superior to any
other. The problems were also chosen in such a way as to ignore whether the NWP
was the one on move or not. However, 35 out of the 43 problems turned out to be
with the NWP on move. We attribute this to the fact that this program was forcing
the play in most instances, and since most of the problems are aggressive problems,
this division resulted. Since these problems arose in an environment where moves
were not individually timed, but rather groups of moves were timed, we decided to
allow CAPS-II as much time as it needed to terminate on each problem. The search
was again conducted to depth nine. This resulted in CAPS-1I exceeding five minutes
of CPU time on two of the problems. However, its average time over the whole set

was only 87 seconds per problem, which is well below the allowed average of 180
seconds.
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TABLE V-8

Depth Cases % Right/CAPS-11 % Right/ NW % Right/NW Oppnts

1 6 100 100 ---
2 18 70 90 ~——
3 6 67 --- 67
4 11 53 73 -—--
S 1 8 -—- 8
6 6 42 67 -—
7 8 --- --- -—-
8 1 108 100 ~——
9 2 % 8 ]
TOTAL 43 65 75 58

The results of these tests can be seen in Table V-8. The first thing to notice is
that this provlem set is considerably easier than the "Win at Chess" set as
evidenced by the fact that CAPS-I1I scored 657 right versus only 47.257 right in the
"Win at Chess" set. Other than that, the program does not do nearly as well on the
problem set as the NWP did in actual play. This we attribute to the greater
completeness and debuggedness of the NWP. There were, however, five instances
in which CAPS-II found the correct solution to a problem that the NWP did not find.
These problems were in situations involving pins (which apparently the NWP does
not handle too well) and where a deep sequence of moves was required to diagnose
the correct move at the top. When one compares the performance of CAPS-II
against the performance of NWP’s opponents, the situations is quite different.
Although the sample contains only eight cases, it seems rather clear that CAPS-I] is
better able to do incisive tactical things than the average NWP opponent. Again this
does not signify a great deal since some of the NWP opponents were very weak.
Also there is as yet next to no positional or strategical knowledge in CAPS-II.
However, it does show, that even in its present state, it can in restricted situations
outperform programs with a more complete approach.

An interesting test which helps to reveal some of the program’s perceptual
ability was performed on a sequence of 14 positions from the book "Rate Your Own
Chess" [Bloss, (1972)]. These positions are all mates in two or three moves, with
one exception which was a mate in four. The book was written with the idea of
finding a device that discriminates playing strength in a simple way. The method
used was to correlate the amount of time taken to solve a problem with the playing
strength of the solver. The 14 positions tested were the ones which produced the
best correlations. CAPS-Il was given these positions without any special
instructions which might cause it to consider only sub-classes of the moves it would
normally consider. One interesting result of this test was that CAPS-I] solved 5 out
of the 14 positions correctly in 5 seconds or less. This apears to speak highly for
CAPS-II's ability to diagnose and carry out simple attacks on ihe king. This in turn
is due to the perceptual processing that the prugram engages ', which does a very
good job of noticing powerful attacking moves. On the probiem which was the
single greatest discriminator of playing strenth, CAPS-II achieved the highest
possible rating, a grandmaster rating, by solving the problem in 5 seconds. (It
should be noted that the subjects across which the test set was standardized did
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not include any players above expert strength, so this is an extrapolated result by
the author of the book). Significantly, in solving this problem, the program made a
wrong start on the correct idea, used the causality facility to find the correct
implementation of the idea, raised the level of aspiration as an intermediate gain of
a pawn was found, and deepened the solution to find the mate in three moves (all in
five seconds).

For the five problems it solved in five seconds or less, the program achievea a
rnaster rating. For the set of 14 problems, CAPS-II solved 11 correctly and
achieved a class A rating. However, these ratings are inflated. The book’s author
recommends giving a rating of about 1400 (bottom of class C) for all ~-oblems that
are not solved correctly. However, this clearly causes statistical distortions when
the player being rated is below the class C level. For instance, TECH which is a
1250 rated program, achieved a rating near 1600 on the set of problems. However,
we are here not trying to establish a rating for the program, but rather to poirt to
some indicators of its perceptual potentia!.

3. Anaiysis of Selected Problems

Probably the most outstanding thing CAPS-II has ever done is to solve the
problem in Figure 5.2. This is a famous combination stretching a full five moves for
each side from the text position. The program looked at many possibilities,
generating a tree of 897 nodes, but delivered the correct principal variation,
letter-perfect as it is in the book. An investigation of the analysis tree showed it
also correctly diagnosed all sub-variations. Only the motivation for the initial move
left any room for something short of enthusiasm. The correct move and essential
sub-variations are:

1. NxP!, PxN, 2. QxKPch, K-Rl, 3. Q-K7!, Q-N1, 4. RxPch!, OxR,
5. OxRch winning
3. 0-06ch, followed by OxR
3. OQ-K7ch, folloued by OxR.

Because of the depth of this combination, we feel quite safe in saying that no
program in the world today could duplicate this performance in any standard time
frame. There are two side points worth mentioning: First, 1. QxPch, K-Bl leads
nowhere. Second, 1. NxP was not chosen because the KBP is blocking a check and
is thus overloaded. This function is not yet in the program, and it was thus
fortunate that the knight move was suggested because it clears a square from which
an attack (by the KBP) can be carried out on a low mobility piece (the Black queen).
Third, since the program only searches ahead nine ply, the final position in the
principal variation was processed as follows: since the king was in check, all legal
moves were generated. The best that Black was fount] to be able to do was to give
back a knight thus leaving White two pawns ahead.

In Figure 5.3 we see another interesting aspect of the program, one which was
replicated quite a few times during the series of tests. It is White to play and
CAPS-II very rapidly finds: 1. QxPch, KxQ, 2. N-N6ch, K-N1, 3. R-R8ch, K-B2,
4. R-B8ch, QxR, 5. P-Q6mate. Then in retracing the search it finds that by moving
the king to Bl in response to 1. QxPch, Black can put up great resistance. In fact it
does not find the win of more than the original pawn, but concludes that |. QxPch is
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clearly the best move anyway. It is typical of human analysts, that the whole idea
of refusing the queen sacrifice is not even mentioned in the solution to the problem,

An interesting example of CAPS-II's ability can be seen in Figure 5.4, The
author noticed this position in "Attack and Defence in Modern Chess Tactics”
[Pachman, (1973)], a chess textbook. Here it was presenter as showing an
interesting maneuvcr in which a knight was relocated with gain of time. Pachmann’s
solution runs 1. Q-R6ch, k-¥4, 2. Q-K&ch, K-Q5, 3. Q-Q5ch, K-K6, 4. Q-Q3ch, K-B7,
5. Q-Bl, K-N6, 6. N-K2ch, K-R5, 7. Q-Rlch K-N4, 8. Q-R5ch, K-B3, 9. Q-Réch, K-K4,
10. Q-Kémate.

The solution had several sub-variations and seemad somewhat contrived to this
author, who thought a quicker mate should be possible. After a few minutes
thought, I discovered a mate in five as follows: 1. Q-R6¢h, K-K4, 2. Q-Ké6ch, K-Q5,
3. Q-Kdch, K-B4, 4. Q-Q5¢ch, any, 5. Q-NSmate. This seemed like a reasonable task to
give CAPS-1l, so I did. To my surprise the program found a mate in four by
1. Q-Réch, K-K4, 2.Q-Kéch, K-Q5, 3. Q-Q5¢ch, K-K6, 4. N-Qlmate. It took CAPS-II 50
seconds of CPU time to find this. To-date it is the only instance of this program
outdoing its author. It is interesting to note that a new version of the program now
being worked on, which does “opping around in the tree, found the same mate in
only 9 seconds of CPU time.

In order to shed some light on the details of the trees that CAPS-II generates,
we present the next two examples. The first is seen in Figure 5.5. The associated
tree iIs shown in Figure 5.6. This tree is quite representative of the medium size
trees generated by CAPS-IL

In order to interpret these trees, the following should be noted. The number
preceeding a move is the depth at which this move is being considered, while the
letter pair following the move is the goal state for that node at the time the move is
being tried. For instance "0. B-R7ch AG" means the move B-R7ch is being

considered at depth O while the program is in geal state AG. Goal state encodings
are as follows:

AG - AGGRESSIVE

DOC - DYNAMIC DEFENCE

KC - KING IN CHECK

KD - KING IN CHECK (DYNAMIC DEFENCE)
ND - NOMINAL DEFENCE

PD - PREVENTIVE DEFENCE

R - STRATEGY

CAPS-II start; cut with 0. B-R7ch and first looks at the response 1. K-R1 which
is given precedence because it decentralizes the king the most. Because of the way
aggressive rmoves are presently being generated, the move 2. B-Q3ch is not
specifically eliciteo since it does not cause a double attack or an attack on a low
mobility piece. The fact that it is a discovered check is known in another move
generator, but the two ideas making a double threat are not connected at the top
level in the present version. Therefore CAPS-II generates the various discovered
checks that are possible and tries them one at a time in generate and test fashion.
This occupies lines 001 through 048 before it finally stumbles onto the correct
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Figure 5.6

8. B-R7ch AG 1. K-Rl hC 2. B-N6ch RG 3. K-N1 KC 4. B-R7ch RG ool
4. BxPch ARG 5. BxB KC 002

6. R-R8ch ARG 7. kxR KC 8. 0-R4ch RG 003
8. P-KR4 ARG 004

6. OxPch AG 7. KxQ kC 8. RxPch ARG 805

6. RxB AG 7. kxR AG 8. R-Béch RG 806

8. 0-B3ch AG 007

8. Q-B4ch AG 008

g 8. 0-B7ch ARG 009
i 8. 0xPch ARG 810
2. 0-Nbch RG 811
i 8. 0-B2ch ARG 012
. 4. R-R8ch AG 5. KxR Y. 013
1 6. 0-Réch ARG 7. k-Nl KC 8. B-R7ch ARG 014
3 8. BxPch  HG 815
8. Q-R7¢h AG 816

8. 0-R8ch ARG 817

4. RxP AG 5. BxR AG 018

4 6. BxBch AG 7. kxB KC 8. Q-R4ch AG 019
- 8. 0-B3ch ARG 820
i 8. G-B7ch ARG 8z
8. OvPch  AG 22

8. 0-N6ch AG 823

[ 8. 0-B2ch AG 824

4 6. B-R7ch ARG 7. Kk-Rl KC 8. B-N6ch ARG 025
b 8. OxPch ARG 826
1 8. B-B5ch RG 827

8. B~Nlch ARG 828

8. B-kéch RG 829

8. B-Q3ch RG 830

8. B-B2ch ARG 831

] 8. B-N8ch HG 832

3 6. R-R8ch AG 7. KxR KC 8. 0-Réch ARG 033
4 8. P-KR4  HG 034

2. B-h4ch ARG 3. K-N1  KC 8135

2. B-BS¢ch RG 3. K-N1 K€ &. B-R7ch RG 036

4. R-R8ch AG 5. KxR ¥.C 037

6. O0-R4ch AG 7. K-N1 KC 8. 0-R7ch ARG 038

8. B-R7ch AG 039

6. P-KR4& ARG 840

4. OxPch ARG 5. Kx0O KC 84l
6. R-R7ch AG 7. K-N1 KC 8. R-R8ch ARG 842




1. K-81

6. R-B4ch AG 7. K-KI

6. OxRch DD 7. KxR

6. B-N6ch DD 7. KxB

6. R-K4 0D 7. QxBP

6. Q-R4 0D

6. R-R8mate

6. R-R8mate

6. R-R8mate

6. Kx@ KC 7. RxB

6. BxQ KC 7. R-08

6. R-R8mate

6. B-03 PD 7. QGxPch
7. 0-KS
7. QxRch

RAISE EXPCT 4146

8. R-R8ch AG 1. KxR
6. RxPch ARG 7. BxR

6. GxPch AG 7. KxR

6. Q-N8ch HAG 7. KxQ

6. Q-R8ch AG 7. K-K2

6. B-Néch AG 7. K-N1

6. B-K4ch ARG
6. B-BS5ch ARG 7. K-NI

2. B-Q3ch

KC 2. Q-R3ch

KC 8. Q-Réch
8. B-N6ch
8. QxRch
8. R-R8ch

KC
KC 8., 0-N3ch

PD Q-B3ch
QxRch
B-N6ch

0-a3

0 o o

AG 8. OxR

AG

AG 8. KxQ

AG 8. BxQ

AG 8. BxQ

KC 2. Q-Réch
KC 8. Q-R8ch

KC

KC

KC 8. G-Réch

KC B-R7ch
BxPch
Q-R7ch

Q-R8ch

o 0 0

KC

=]

. Q-R7ch
. B-R7ch

4., Q-Né4

AG 3. Q-R4 KC 4. RxQch
3. K-N1 ¥C 4. BxQ

AG 3. R-K2 KC 4. QxRch
4. RxPch

AG

DD

DD

DD

AL
AG
0D

00
0D

4, 8-03

PD

3. R-03
KC

KD 4. QxRch

PD

KC

(Khite expects to win at least a paun)

AG 3. K-N1
AG

AG

AG

ARG
AG

AG
AG

AG

5.

KC 4. Q-R7ch ,AG 5.

4, B-R7ch AG 5.

AG
AG
AG
AG

AG

. GxRch

. K-N1

BxP

KxQ
KxR

. RxB

. OQxB

Q-K5

. UxPch

. OxRch

a-Ké

. R-K2

K-Bl

K-R1

AG

KC
AG

KC
KC

AG

AG

0D

00

00

00

KC

KC

KC

849

050
851

052
853
854
855
056
857

058

‘959

060
861
862
863

864
065
066
067
068
069
e7e
671
872
673
074
875
876

e7?
678

879
080
(:1:
082
083
084
085
086
687
088

089
096

!
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DO O

. K-N1

KxQ
KxR

KxR

K-N1

. K-Rl

. KxR

KxQ

. KxR

. Q-R4ch ARG 7. K-NI

ARG 7. KxB

KC

KC
KC

KC
KC

KC

KC

KC

KC

KC

AG

KC

KC
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B-R7ch

« Q-R7¢ch

. RxQch

BxQ

. P-KR4

. RxPch

B-R7ch

. R-Néch

R-R7¢ch

. R-Néch

. B-N6ch

1-Réch
P-KR4

RxPch
R-R7ch
R-Néch

R-Béch
Q-B3ch

. Q-B4ch
« Q-B7¢ch

QxPch
Q-N6ch
Q-B2ch

. B-R7ch
. BxPch

Q-R7ch

« Q-R8ch

R-Béch
Q-B3ch
Q-Béch
Q-87¢h

RG
RG

RG
RG

ARG

RG

ARG
ARG

ARG

RG

ARG

RG
ARG

AG
ARG
ARG

RG
RG
RG
RG
ARG
RG
AG

RG
RG
RG
AG

AG
AG
ARG
ARG

R-R7¢ch

« R-Néch

R-R8ch

. R-N7¢ch

« R/7xP
4. R-R4

R-RB
R-RS

. B-R7ch

BxPch

4, RxP

AG

RG

RG
RG

RG
RG
RG
RG

RG

RG 5. BxB

4, R-RBch ARG 5. KxR

AG 5. BxR

KC

KC

KC

KC
KC

KC

KC

ARG

897
098

099
108

181

102

le3
104
185
106
187
188
109

118
111
112

113
114

115
116
117
118

119

120
121
122
123

124
125
126

127
128
129
138
131
132
133

134
135
138
137
138

139

148

141
142
143
144
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. B-R7ch

R-R8ch

. Q-Réch

P-KR4&

+ RxPch

Q-Réch

P-KR4

. R-R7ch

« R-Néch

QxPch

R-R8ch

QxQ

Q-Réch

. P-KR&

RxPch

R-R7¢ch

AG

AG

AG

AG

AG

AG

AG

AG

AG

AG

AG

AG

AG

AG

AG

AG

. K-R1

. KxR

. K-N{

KxR

« K-N1

. K-N1

+ K-Rs

. KxQ

KxR

. RxQ

. K-N1

. KxR

. K-Ni

KC

KC

KC

KC

KC

KC

KC

KC

KC

AG

KC

KC

KC

 Oo

o 0O o O O 0 o

o Qo

o o 0 o O

. QxPch

Q-N6ch
Q-B2ch

B-N6ch
B-B5ch
B-Nich
B-Kéch
B-Q3ch
B-B2ch
B-N8ch

Q-Réch
P-KR4

. B-N8ch
. Q-R8ch

. R-R7ch
. R-Bé&ch

. B-Kéch

. B-B5ch

Q-R7ch

. B-R7ch

R-R8ch
R-N7ch
RxP
R-R4
R-RE
R-RS

R-Réch

. RxB

Q-Réch

. P-KR4

. R-R8ch

. B-Nlch

. B-R7ch
. Q-R7ch

R-R7ch

+ R-B4ch

. R-R8ch

\Y

AG
AG
AG

AG
AG
AG
AG
AG
AG
AG

RG
AG

AG
AG

AG
AG

RG

AG

RG
AG

AG
AG
AG
AG
AG
AG

AG

AG

AG
AG

AG

AG

AG
AG

AG
AG

AG

3. KxB

3. K-N1

3. K-N1

3. K-N1

KC

KC

KC

KC

4.

o

R-R8ch

+ QxPch

B-R7ch

. R-R8ch

. QxPch

. 0-N&

B-R7ch
R-R8ch

. QxPch

AG 5.

AG 5.

AG
AG 5.

AG 5.

AG 5.

AG
AG 5.

AG S,

KxR

KxQ

KxR

KxQ

BxB

KxR

KxQ

KC

KC

KC

KC

PD

KC

KC

145
146
147

148
149
158
151
152
153
154

155
156

157
158

159

160
161
162

163

164
165
166
167

168

169
179
171
172
173
174
175

176

177
178

178
180

181

182
183
184
185

186
187

188
189

198
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6.

. R-Né4ch

. B-R7ch

. QxPch

. R-R8ch

RxP

. BxBeh

. B=R7¢ch
. R-R8ch

B-R7ch
R-R8ch

. QxPch

B-R7ch
R-R8ch

QxPch

RxQch

AG

AG

AG

AG
AG

AG
ARG

AG

AG

AG

AG

AG

7.

BxR

. K-R1

. KxQ

. Kxk

. K-B1

. BxR

7. KxB

. KxR

KxR

. KxQ

KxR

KxQ

BxR

KC

KC

KC

KC

KC

AG

KC

KC

KC

KC

KC

KC

KC

8. R-N7ch
8., R/7xP
8. R-R4
8. R-R6
8. R-RS

. B-N6ch
. B-BSch
. B-Nich
. B-Kéch
B8-Q3ch
. B-B2ch
. B-N8ch

G G0 G o o O o

Co

R-R7ch
8. R-N4ch

Co

. O-Réch
8. P-KR4

2. B-Q3ch

[ 8]

. U-R3ch

. B-R7ch
R-Bé4ch
-B3ch
Q-B4ch
. Q-B7¢ch
QxPch

Q-N6ch
Q-B2ch

G G0 00 00 O o o N

Co

Q-Réch
8. P-KR4

o

. Q-Réch
8. P-KR4

o

+ R-R7ch
8. R-N&ch

8. (-Réch
8. P-KRé4

8. R-R7¢ch
8. R-Néch

8. QxPch
8. Q-R4
8- B-NS

AG
RG
RG
AG
AG

AG
AG
AG
AG
RG
AG
RG

AG
AG

AG
ARG

RG

RG
AG
AG
AG
AG
AG
ARG
AG

AG
AG

AG
AG

AG
AG

AG
AG

RG
AG

RG
AG
RG

3. G-Ré

3. K-N1

3. R-K2

3. K-RI

KC

KC

KC

[N

4.

‘N

4.

‘l

RxP

RxQch

. Bx(

. OUxRch

. E-N6eh

« B-BS¢ch

B-BSch

B-Kéch

B-Q3ch

AG S, BxR

AG

AG

AG

AG

RE

AG

ARG

5.

5.

5.

K-NI

. BxP

. Kx@

K-N1

K-N1

K-N1

K-N1

Q-R4

AG

KC

AG

KC

KC

KC

KC

KC

KC

191
182
193
194
195

196

197
198
199
208
281
282
203
284

285
286

287
288

289

218

211

212
213
214
215
216
217
218
219

228
221
222

223
224
225
226

227
228

229
230
231
232

233
234

235

236
237
238
238
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6. BxQ

6. BxQ

6. R-R3ch

. R-R4
R-N7¢ch
. RxB

. R-R6

. R-RS

oo,

6. R-Récis

6. B-R7ch

6. Q-R7ch
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31. B-R7ch

Principal Variation = 3]. 8-R7ch
Number ot Nodes = 489
Time taken = 115 secs.

AG

AG

AG

AG
AG
AG
RG
AG

RG

AG

RG

S6
56
SG
S6
56
S6
SG
S6

7. K-N1

7. RxB

7. RxB

7. KxR

7. KxR

7. K-N1

7. K-R1

7. K-Bl

(Move made)

AG

RG

KC

KC

KC

KC

KC

N

[+~
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. B-N6

. P-QR4

P-QR4

UxPch

. B-R7¢ch

R-Néch

. R-R8ch

B8-N6ch
B-B5ch
B-Nlch
B-Kéch
B-Q3ch
B-B2ch
B-N8ch

Q-R8ch

]

PO

RG

RG
RG

RG
RG
RG
RG
ARG
RG
RG
RG

AG

5. K-NI

5. B-R4

3. K-B1 KC 4. Q-R3ch ARG 5, R-k2

3. KxQ KC 4. R-R7ch AG 5. K-NI

4. R-Néch ARG 5. K-Rl

3. KxR KC 4. Q-Réch RG 5. K-Ni

4. P-KR4  nG

KC

KD

KC

KC

KC

KC

» K-B1, 32. Q-R3ch, R-K2, 33, B-03, QxRch, 34. BxQ, R-Q8

240

2641
242
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2646
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248
248
2580
251
252
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268
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263
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265
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267
268
269
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2. B-Q3ch. Thereafter it quickly decides that this wins for White and in line 051
backtracks to depth | and tries the other king move at that point. The move
2. Q-R3ch is tried first here, sirce il is the only safe check and allows the king no
escape squares. This move for some strange reason is a difficult one for humans
(possibly because it involves moving a piece away from the scene of action to
deliver a "long" check; see Chapter VI). Then on 3.--R-K2 CAPS-II tries 4. QxRch
and 4. RxPch with no useful results in 2 portion of the tree tasting until line 063.

Up to now the White side has always been under control of the AGGRESSIVE
state. Having exhausted the suggestions of the AGGRESSIVE move generators, and
still finding the position satisfactory, the program now goes into the NOMINAL
DEFENCE state in which 1t notices that it has a rook and the QBP en prise. Many
moves proposed to solve this defensive problem. Among them is the move 4. B-Q3,
which is proposed on both accounts. Through a tortuitous accident Q3 is a square
trom which the White queen can fork the Biack queen and the Black rook at QI.
This results in a TSQ vaiue being assigned this square. Further, when a different
piece considers moving to this square, even though it may be unsate, the piece is
regarded as safe (on the assuinption that if It were caplured the recapture would
result in the threat for which the TSQ value was assigned in the first place. Thus
the move 4. B-Q3 is regarded as moving to a safe square while centralizing the
bishop and accomplishing the defence of the rook. This is moet fortunate. The
correct reasoning should be that it clears a path to a mating square (R8) for the
rook, and simultaneously attacks the queen, but this 15 outside the present capability
of the program. However, once the move is tried, 1t quickly becomes apparent that
Black must lose his queen since it is altacked and R-R&male is also threatened. By
line 080, CAPS-1l has established that it must win at ieast a pawn (a rather
conservalive view) and announces this together w:th an upward change in its level
of aspiration.

It now begins to try the other recommended, bul as yet untried, moves at the
top level to see if there 1s something better. |t takes from line 084 to line 102 to
dismiss the sacrifice 0. R-R8ch, which humans aiso consider worth looking into.
Then it takes from line 103 to line 120 to dismiss ihe relatively senseless sacrifice
0. QxPch. After that it goes back to 0. B-R7ch which, due to the reordering rules
has now filtered back to the top of the untried maves stack. It then spends from
line 120 to line 211 generating a remarkably sinilar sub-tree to the one that was
originally generated for 0. B-R7ch. The variaiions stemming trom |. K-R1 are more
elaborately treated. However, the variations stemming from 1. K-Bl, which is now
the principal variation, are quickly terminated and it is not necessary to go through
the discovery of the key move 4. B-Q3 again, since it is stored in the principal
variation. This whole epicode brings out an interesting point which could lead to
improvements in the control structure. Here 0. B-R7ch is being searched while
another recommended move, 0. RxP has ac yet not been examined. This should
probably not be done white 0. B-R7ch is still the principal variation. Then if all
aggressive suggestions are exhausted and the result is higher that the original
expectation, all searching can terminate. On the other hand, if another wvariation
were to supercede the present principal variation, then it would be all right to
re-examine it. In this case, such a rule would result in a saving of about 357 of the
effort on this position. CAPS-1| then spends from line 212 to line 265 investigating
another senseless sacrifice, 0. RxP. After that, control reverts to STRATEGY, which
proposes eight moves, none of which are appealing enough to be searched by




T D e e o 18

v -2l

CAPS-II. When STRATEGY suggests the move which is now the principal variation,
the whole search comes to a halt. Thus CAPS-II has a bit of good luck here. If it
were not for the en prise position of the White rook at KBI, the problem would not
be solved. As pointed out above, the move 4. B-Q3 should be recognized as a
double attack, after which the solution would come off smoothly.

An example of a small tree can be seen in Figure 5.7. This tree derives from
the position in Figure 5.8, which is at the crisis point of a famous opening trap.
Here it is very much to CAPS-II's credit that it finds and dismisses the obvious line
in a mere nine nodes (line 002 and 003). In returning from this variation, it decides,
based on causality and alternative considerations, that the results of this line cannot
be upset at any point after depth 0. This means that the program recognized that
the consequences of 0. PxB (e.g. 1. QxQch, 2. KxO, 3. BxPch, and 5. BxR) could not
have been sensibly avoided below the depth O level in the tree. This is in itself a
tremendous feat, rivalling the economy with which a human could make such a
decision. The CAUSALITY FACILITY gets exclusive credit for this work, which avoids
what could have been a search of considerable magnitude, if all the “sensible"
alternatves at depths 4, 6, and 8 were to be explored, in the style of most of
today’s programs. The program then fixes on the correct idea, O. QxN, and again
cliscovers the principal variation on the first try. Thus by line 005, it has found the
essence of the whole solution as usually presented in textbooks. However, in line
007 it begins a whole new and interesting tack in the analysis. The move 1. P-B4 is
suggested by the AGGRESSIVE state as a multi-purpose pawn move. It turns out
also to create a flight square for the king. In protecting the bishop at N5, and thus
renewing the attack on the Black queen, the mate at Q8 is again indirectly
threatened (this is not statically known to the program). Line 007 through 014 are
now spent finding and verifying a defence to the Q-Q8mate threat. Once 2. Q-Q3 is
found to hold onto Black’s gains, CAPS-II tries three other suggestions from
DYNAMIC -DEFENCE in lines 015 to 017, before coming to the conclusion that the
level of aspiration should be raised. After that it quickly dismisses Black’s only
remaining alternative, and recognizing that there is no move at the top which can
improve on the present principal variation, it outputs its move. The value of the
position, as frequently happens when there is one clearly superior move, is
underestimated. However, that does not hurt anything, us the important thing is
that it not exceed what can be achieved. On a later move, the level of aspiration
would again be raised.

4. Some Current Deficiencies

The next few examples deal with things that the program does not handle
properly at present. In Figure 5.9 White to play wins quickly with 1. R-K8, QxR,
2. Q-B6 and the threat of Q-R8mate can not be met. This turns out to be very
simple for even moderately advanced human players, since they all recognize the
basic pattern of the White queen and bishop on the long diagonal in conjunction
with the particular weakened Black king position. However, our program doesn’t
have an inkling of the solution. There are several reasons for this, the primary one
being that it does not yet generate moves that threaten mate. Let us assume that a
facility for generating moves that threaten mate did exist in CAPS-I. Then the
program would be able to find 2. Q-B6 and follow through the subsequent mate.
However, it would still not be able to play the preliminary 1. R-K8. We dwell on this
example as prototypical of a whole series of problems. The approach to solving
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Figure 5,7

0. PxN KC 1. OxQch AG 2. KxO KC 3. BxPeh ARG 4, B-K2 ARG 5. BxR RG 082
6. B-NSch ARG 7, K-Ql KC 8. PxP ARG 803
8. QxN KC 1. BxQ ARG 2. B-NSch AG 3. Q-02 KC 4. BxQch ARG 5. KxB KC 804
6. PxB RG 7. PxP ARG 005
1. 0-Q8ch AG 2. KxO KC 3. R-Qlch ARG 4. N-Q2 KC 006

1. P-B4 ARG 2. QxP PD 3. Q-Q8mate 887

2. Q-B4 PD 3. Q-Q8mate 008

2. 0-Q3 PD 3. QxQ ARG 4. BxQ RG 5. PxKP RG 009
6. BxP PD 7. P-URé ARG ) 010

3. PxKP ARG 4. QxP PD 5. Q-Q8mate a1l

4. Q-Q2 PO 5. PxP RG 012
5. P-0R& DD 013
5. P-QR3 DD 814

1. P-QR3 DD 2. QxB PD 815
1. P-QRé DO 2. QxB PD 3. RPxP AG 4. RxR PO 816 b
i 1.P-B5 DC 2.0x8  PD 817 !
018
RAISE EXPCT 4086 (Black stands better) 019 :
820 ;
0. K-K2 KC 1. N-Q5¢ch PD 0821
'; - RE— QxN (Move made)
Principal Variation = 9,-——- OxN, 10. P-B4, 0-Q3, ll. PxKP, 0-02, 12, PxP

Number of nodes = 49
Time taken = 12 SECS.
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such problems, involving preparation, is extremely important. If it is not done
economically, the program can be bogged down forever in searching patterns or
doing means-end analysis for many unimplementable ends. Here two basic solutions
appear possible. The first involves trying the move 1.Q-B6 and finding that it leads
to nothing after 1.--QxQ. Then it is necessary to establish that this threat would be
worthwhile if the Black queen were not in a position to play QxQ. This would
generate a lemma binding the Black queen to a defensive function on the square
KB6. This in turn would give rise to the goal of attacking a piece with a defensive
function, and so 1. R-K8 would ultimately be generated. The second approach
1 involves noticing the bacic pattern of queen and bishop on the long diagonal which
is attainable in the original position. Then noticing tha' the Biack queen prevents its
attainment, gives rise to the goal of distracting the Black queen. Both approaches
4 require some very good indicator of which threats or patterns are worth trying to
get to work when they do not work immediately. For instance, the immediate 1.Q-K5
also threatens mate or assumes a desirable pattern. This is then met with P-B3
atier which 2. QxP wins a pawn. Now white could be satisfied with this or try to
get rid of the blocking KBP or look for some other method of getting the queen on g
the diagonal. It is not an easy nroblem. '

R TRt s
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The problem in Figure 5.10 is very illuminating for understanding a certain kind
of myopia that today’s programs have. It will presumably be cured when a lemma
facility exists, but the present program is still susceptable to this problem. In this
position 1. QxR does not work because of 1.--BxPch winning the White queen, as the
program quickly finds out. The actual solution is 1. P-Q6 (blocking the bishop’s
diagonal), BxP, 2. RxB winning. However, the program nex! tries 1. PxP and now
gives the Black response 1.--PxP a low rating because it leaves the rook en prise. i
This is very strange to human eyes, since we have already established that the rook
is not really en prise as long as BxPch is possible. Clearly, what is needed here
again is a lemma facility which makes some statements about the safety of the Black
rook and under what conditions these are true. As a result of the above internal :
misunderstandings, CAPS-II finally decides it can win a pawn by 1. PxP, and 4
completely misses the lemma upsetting idea of 1. P-Q6.

A simpler problem, which also came up in Game I note H, below, is seen in
Figure 5.11. Here Black to play can win material by the simple 1.--R-Bl attacking
the White queen and x-raying the White rook. The reason CAPS-II fails to find this
move is that the White rook is considered as being overprotected by the queen and
thus 1.--R-Bl is only a single attack on a piece which is not low in mobility. The
solution to this problem consists of placing all pieces defended or overprotected by y
a given piece, on the interest vector of any attacking piece when it is attacking the
piece that has these defensive functions. In the above position, this would result in
the rook at QBl being considered undefended when a move that attacks its
defender is being examined. Then 1.--R-Bl should be found rather easily.

Another interesting failure, due to a function that is as yet not implemented. can
be seen in Figure 5.12. Here it is Black to play and the winning idea is 1.--M-Réch
with the following two variations:

2. PxN, QxPch, 3. K-Rl, QxPmate and
2. RxN, QxQ!, 3. RxQ, R-08ch and mate next move.
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The program finds the first variation very well, but in the second it misses the
critical move 2.--QxQ because it sees the queen is defended and it does not
consider decoying the White rook to K4 after having sacrificed a knight to be a
sensible idea. The important point (that is not implemented in CAPS-II) is that the
White rook also blocks a check at Q3 by the Black rook. This is the function of the
White rook that becomes critically overloaded, but which is not noticed. It is worth
noting that CAPS-II is smart enough not to just try the capture 2. QxQ on the
grounds that it doesn’t lose anything.

In Figure 5.13, we see another interesting mating pattern, which of course is not
known to CAPS-II. With White to play there is a mate in two with 1. Q-N6)
(threatening Q-R7mate), PxQ, 2. NxPmate. The failure here is again due to the
inability of CAPS-II to notice mating threat.. The move 1. Q-N6 even when tried is
only considered to be useful for attacking the KBP. Actually CAPS-I1I realizes that
the queen may be safe on N6 since this is a square where a White knight can give
check, and this fact is known to the data structure. However, it does not have
access to the idea of a mate threat. Instead of the book solution, the program finds
an interesting but inferior solution, which we present because it shows a certain
degree of ingenuity. CAPS-l1I likes 1. N-K3 (threatening queen and pawn,
whereupon RxN loses the queen by the discovered attack NxPch). If instead
1.--Q-Bi, 2. N-N6ch wins even more material, so the program succeeded in finding
a clear win, but not the right one.

C. FULL GAMES PLAYED

We next present two games that were played between CAPS-II and TECH playing at
depth 3. These games are probably more illustrative of the strengths and weaknesses
of CAPS-II in its present state, than any other evidence presented. It was originally
hoped to match our program with TECH playing at tournament setling where it takes
about three minutes per move. However, it became clear after these games that there
is still quite a bit of work to be done before this would be a match in which our
program had a chance to win. As it was, there was a great time mismatch in the
contest; TECH taking about 20 seconds of CPU time per move as against about 6 minutes
per move for CAPS-II. However, this and other existing gaps seem fairly sure to be
narrowed in the near future. The comments on the games are intended to be insightful
for the structure of the programs rather than to arbitrate over what move is the best in
each situation.



WHITE- CAPS-11

. P-K4

. N-KB3
P-Q4
NxP
NxN  (A)
N-B3
FxP
B-NSch
. BxBch
18. Q-K2ch
11. 0-0
12. B-B4
13. N-K4
14, QxN
15. B-KS
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GAME |
BLACK- TECH (Depth 3)

P-X4
N-UB3
PxP
N-B3
NPxN
P-Q4
PxP
B-Q2
QxB
B-K2
0-0
P-QS5
NxN
OR-N1
R-N5 (B)

(A) The combination of this move and the next
However, CAPS-II plays the first move search

result it can achieve.

(B) This illustrates a frailty of TECH;
those that are equal to the tactica
centralizing and mobilizing. Since RxP does not win anythi

(C) Apparently with a view toward 16.

(D) Again the first acceptable tactical move is chosen.
play PxP as QxP/3 recovers the pawn with interest, ho

inane.

(£) 19.-- P-Q6 is much superior.

(F) A very instructive blunder. White thinks he will w

21.--RxB, 22. Q-Bl attacks both rooks.,

(G) At this point in the analysis performed by CAPS-1I on the previous move, several 1
remedies were suggested for Black. R/5xBP and R/7xBP were searched and found to
Several moves were suggested to remove or defend each of
pt the two above mentioned received a high
d pruning device. The instructive thing is that

be tactically inadequate.
the rooks, but none of the these exce
enough static score to pass the forwar
QxP was suggested by the defensive move generator both to def
and the rook at KBS.
highest static rating.

aken with gain.

16.
17.
18.
19.
28,
2108
22.
23.
24,
25.
26,
27.
28.
29,

lly best result.

P-QR3 (C)
Q-Q3
Q-Bé4ch
P-QB3 (1}
PxP

BxP?? (F)
G-B1

QxP

Q-B8ch
QxRch

K-R1

RxR

R-BS ?
R-B1

is weaker than the immediate 5.N-QB3.
ed that is equal tactically to the best

it makes the positionally preferred move of all
Here positional means most
ng, R-N5 is preferred.

--RxP, 17. BxP and both the rook and the QRP are

attacked, or if 16.--R-QRS, then 17. P-QB3 since now the rook is undefended. However,
in the first line the QRP can never be t

Strangely enough Black cannot 1
wever the move is positionally

in a pawn in this way since after

end the rook at QN7
In CAPS-II when a move is multiply suggested it retains the
However, the important point of a move having two useful
functions, each of which it should receive credit for, was lost.
partially remedied.

This has since been

P-KB4
RxP

K-R1
P-BS (E)
P-B3

RxB

xP (B
R/7xBP1! (H)
R-B1
RxQch
RxRch
BxP
0-08ch
OxRmate
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(H) A tremendously strong move after which White must lose additional large amounts of
material, e.g. 24. Q-K8ch, R-Bl and there is no good defense to the threat of RxRmate.

GAME 11

WHITE - TECH (Depth 3) BLACK - CAPS-II

1. P-K4 P-K4 17. BxP Q-R4ch

2. N-KB3 N-QB3 18. P-QB3?? (D) R-K1

3. P-Q4 PxP 19. B-X4 B-B3 (E)
4. NxP 0-RS  (A) 28. P-0ON4 Q-K4 (F)
5. N-0B3 B-B4 21. P-B3 P-B4

6. B-K3 NxN 22. 0-0 PxB

7. BxN BxB 23. PxPch N-B3

8. OxB Q-KB3 24, QxP OxBP?? (B)
9. P-K5S Q-K2 25. OR-B1 (H) QxP

18. N-05 a-al 26. RxB K-N1 (D)
11. P-K6 P-KB3 (B) 27. R-B7 ! K-B1?? ()
12. B-ON5?? P-0B3 28. RxP? 0-K2?2? (K)
13. PxPch BxP 29. RxO RxR

14, Q-K3ch K-B1 38. RxNch K-N1

15, B-B4 PxN 31. QxR P-R4

16. ExP B-RS (C) 32. R-B8mate

(A) In moves four through seven, one can again see the lack of positional influence in
Black’s play.

(B) This fine defensive move has been previously discussed in Chapter IIl. Now it is
TECH’s turn to show its weaknesses. 12. B-N5 is also played when TECH searches to
depth five, since it is the positionally preferred move which loses no material in the
analysis: 12.--P-B3, 14. PxPch, BxP, 15. Q-K4ch and the quiescence analysis shows that
Black can start no sequence of CAPTURES at this point that yields any gain in material.
The fact that sieces remain en prise does not register with TECH, but CAPS-II is
not fooled b, istance of the Horizon Effect.

(C) Very imaginative, but B-KN5 preventing 0-0-0 would be better. Now White would
be well advised to castle Q-side instead of taking the pawn. Then there would be
threats of Q-R3ch, BxN, and BxP and only 17. 0-0-0, N-K2!, would hold on, 18. BxP
being met by Q-B2! threatening the bishop and mate at QB7 and thus only losing a
pawn. Both programs are unaware of this.

(D) White has many problems and cannot see to the end of it all. If 18. Q-Q2, R-Kich,
19. K-Q1, R-QI wins. If 18. Q-B3, QxQch, 19. PxQ, R-N1, followed by BxP regains the
pawn since 20. B-K4, R-Kl, 21. P-B3, P-B4 loses the bishop. If 18. K-Bl, Q-N4ch,
19. K-N1, QxB, 20. Q-R3ch, N-K2, 21. QxB, QxNP recovers the pawn. If 18. K-Ql, BxPch,
19. KxB, Q-B2ch, 20. Any, QxB again reestablishes the status quo. It is not clear if
CAPS-II worked all this out, since it was running in a mode with no tree print out.
However, considering its general performance level and the fact that it took quite some
time on its 16th move, I consider it highly likely that it worked out something similar te
this since all the variations are rather forcing even though they are deep. One thing is
clear, this is the first time in annotating computer chess games, that 1 felt such a deep
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analysis was an attempt to explain what was actually being calculated. Now, TECH,
being unable to see far enough, thinks it can hold onto the pawn, but instead gets into a
pin which loses another piece.

(E) This seems rather strange since 19.--P-B4 wins the bishop more cleanly. However,
there is intrinsically nothing wrong with the move since 20. BxB, RxQch, 21. PxR, Q-N3 is
worse for White than losing the bishop.

(F) Here CAPS-II begins to go positionally astray. This move is made as being the most
centraliazing of several that are equal materially. It is worth noting that it relies on the
variation 21. BxB, QxPch winning everything, which might however be somewhat
dbscure for human eyes. However, the move is a positional error, since Q-R3

preventing K-side castling and covering the Black QRP, and also Q-R6 are considerably
stronger.

(G) With his last move White got a little more out of the position than Black need have
allowed. However, here the obvious QxKP threatening mate was more than sufficent to
win. Instead CAPS-II thinks it can win two pawns.

(H) In performing its analysis the program did not consider this move, since chasing the
queen is considered pointless. CAPS-1I does not consider this a double attack, since the
bishop is "over-protected" by the queen. This problem is known to us since it also
occurred in several of the "Win at Chess” positions (see the discussion of Figure 5.11
above). Here it provides a glaring example of how important superfine specification of ,
all detail is if one wants to have a program that economically and yet effectively "-'*
operates in its environment. What we mean is that clearly generating all attacks on a 3
queen is a waste of time unless it is a low mobility piece. However, when a queen is '
attackable a special routine is required which now places all pieces that the queen is .
currently charged with defending or over-protecting on the potential target list. Then 3
the effect of this move would be noticed by the aggressive move generators.

(I) Now Black notices that White is threatening mate in three moves by 27. R/6xNch, ;

PxR, 28. RxPch, K-R1, 29. Q-B7mate. TECH would have had to be running at depth 6 ]

before it could have decided on the move 27. RxNch, so it clearly had no such intentions. ;
4 However, the deeper searching program is looking for truth, since that will ultimately
pay off best, and is not concerned with its opponent’s frailties. Therefore the text
'{ move, which meets the threat. However, in this position which is difficult by master
standards, neither program really understands what is going on. Objectively speaking,
atter the text, White has a winning position. The only defence, leading to a draw, was
26.--R-K2!, 27. Q-R8ch, R-K1, 28. Q-R7. White cannot play 27. R-B8ch because K-B2! |
wins. Nor can Black play 26.--Q-K2 because of 27. R-B7, Q-K3, 28. P-K5, QxKP, and [
White mates in three beginning with 29. R-B7ch.

] (J) This blunder is due to a level of aspiration problem which is very difficult to trace [
] since CAPS-II took 45 minutes of CPU time on this move. The correct move is ‘
27.--Q-Bl, after which White can still win by 28. Q-Q4 threatening ihoth Q-B4ch and
P-K5. Then 28.--RxP does not work because of 29. QxR, NxQ, 30. RxQch, KxR, {
31. R-B8ch. On a rerun of this position, when the program was given the expectation of
maintaining the status quo materially, it did play 27.--Q-B1. Therefore we conjecture
that CAPS-1I was expecting to win the KP, and now when it finds out this is no longer i
possible, it failed to adjust its level of aspiration downward properly and thus makes a 1




blunder allowing mate in three by 28. R-B7ch, K-N1, 29. RxPch, K-B1, 30. Q-B7mate.
However, TECH fails to see this since it is a depth 6 effect, and in turn makes a blunder.

(K) A horrible move just when the game could be saved by 28.--R-K2!, after which
White could no longer win. 1t is very instructive, in terms of understanding the intricacy
of program structure, to see how this happened. CAPS-II looked at 28.--R-K2 but in
the variation 29. RxR, QxR, 3C. QxQch, the move 30.--KxQ is evaluated only in terms of
its offensive potential due to the way CAPS-II is organized. (This has since been
remedied). This meant that 30.--KxQ was known to recover the queen, but there was
no knowledge that it would also protect the en prise knight. The static score for this
move was therefore so low (since it was expected that a knight would be lost in any
case) that the move was not searched on the first pass, and CAPS-1l came to the
conclusion that about three pawns worth must be lost for Black. The level of aspiration
was then reset accordingly and the Alpha and Beta values at the top were set to what
was thought to be an optimistic loss of three pawns for Black and plus infinity for
White. Now with the lower level of aspiration, the move 30.--KxQ was searched and the
whole variation was found to produce a very good result for Black. However, when this
was backed up to the top, it was cut off by Alpha-Beta as being outside the limits of
what Black could achieve. So the utility of 28.--R-K2 could not become known due to
the initial error by the static evaluation function and the consequences which followed
it. One might suggest that this would not have happened if Alpha and Beta had been
reset to plus and minus infinity on the second search after the level of aspiration had
been reset. However, this approach has been iried previously in this program, and has
at times resulted in the program getting into an infinite loop as follows: When the
second search in done, the real value of the move 28.--R-K2 would be found. However,
this is so much better than the revised expectation that another search is performed
with a higher level of expectation. However, now the static value of 30.--KxQ is not
high enough to be searched, so a low value is returned to the top of the tree, and the
expectation is lowered again, etc. To prevent this, the current paradigm is necessary.
However, this move shows how closely each agency must work with every other if the
present economy is to be achieved, and how frequently a mistake by one agency cannot
be covered up by a combination of actions of the others, This point is pursued further
in chapter VI. After the move in text, the game becomes hopeless.
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CHAPTER VI
REFLECTIONS, CONCLUSIONS AND RECOMMENDATIONS
A. DOES BEING A GOOD CHESS PLAYER HELP DOING CHESS RESEARCH
The author is a iormer Correspondence Chess World Champion, and has been among
the top ranked over-tie-board players in the U. S. for over 20 years. As such, | am
frequently asked how much my beimg a top chess player has helped in doing this

research. The following statements summarize my attitude toward th.. matter:

1. There is nothing in this thesis that is inherently dependent on having more than a
rudimentary knowledge of chess.

ro

Being a good player makes it easier to discriminate inadequacies in the behavior of
a program, not only in the actual selection of a move but aiso in the methods that
support this. Some of these inadequacies may appear quite normal to a weaker
player. Being able to discriminate problems is the first step toward finding a
solution. Thus being a good player has helped to identify certain problems that
other models of chess have, and that early versions of this work had. It has also

helped in discriminating useful facets that other disciplines (psychology in this case)
have had to offer.

This is the totality of effects that I have noted. I seems clear, however, that at
some later stage in the development of chess programs, higher level knowledge
must be available to such a program. This knowledge must either be input from a
2ood human player or, if a machine is capable of assimilating such knowledge from
its environment, then probably a good human player should supervise this activity.

B. ON MODELS OF PHENOMENA

In science there is a spectrum along which models of phenomena can be arranged.
At one end of the spectrum one finds such universal models as relativistic mechanics
which are considered to explain completely the phenonmena with which they concern
themselves. At the other end of the spectrum one finds the statistical type of laws such
as those in agriculture relating to crop yields. It is no accident that sciences that deal
in universal laws are considered to be the firmer sciences, since these laws allow much
more quantitative prediction.

It appears that not much has been done in computer chess toward moving in a

direction of universals. It is considered adequate to merely specify moves which have a
good statistical chance of being appropriate, and then let the tree search weed out the
good from the bad. However, as we have noted earlier in this document, the tree
search is overburdened. It is therefore incumbent on the designer of a chess program
to do all he can to relieve the tree search of unnecessary work by using his data well.
This involves not taking the statistical posture if it can be avoided.

Consider the following example. A knight move exists which forks two major pieces.
However, the square on which the fork could take place is guarded by a pawn. The
statistical method considers the value of the major pieces that would be attacked as
positive features, and the fact that the knight could be captured as a negative factor.
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Summing all these would probably yield an evaluation which indicates the move is worth
trying. However, there is one overwhelming causative feature here which such an
approach ignores. That is, that if the knight were captured all its threats would also
disappear. Therefore the primary question that must be asked is whether the pawn
that will be doing the capturing is rendering any other important services for the
opponent. Only if this is true, is if even worth considering the impact oi the move, since
the capture of the knight could then produce other consequences. Clearly, using such
AND/OR sequential logic produces a much superior utilization of the information at hand.
This is the approach that we have tried to follow in this work. We consider the AND/OR
description of events on the chess board to be an approach with no limits on its
accuracy, given only that we are willing to continue the process of adding tests as long
as this proves useful. Our experience with this approach indicates that it is many times

more powerful in perceiving worth, than a statistical approach which would consider two
to three times as much information.

C. ON BRINGING UP THE PROGRAM

The author has developed one previous chess program [Berliner, (1970)] which
belonged in the class of programs spawned by the initial efforts of Greenblatt. Since a
program of that type has a fairly well defined structure, the process of bringing up and
improving such a program involves implementing well defined control structures and
then adding ever more analysis and evaluation procedures to the program to improve its
acumen. The work on tree searching may irclude some consideration of what types of
move go into the quiescence analysis, and how to adjust the width of search for
different depths of the tree under various time constraints. Other than that, all the
effort is in getting the right moves into the search and then improving the terminal
evaluation function in order to detect worthwhile advantages. In the current program,
however, each of these tasks had new dimensions.

During the development of the program, the author was confronted with three
generic problems which kept reappearing. This was true even though each time the
problem was dealt with in such a manner as to make it go away at that point in the
development process. These problems were:

The Move Proposal Problem - Making sure that the correct move in a given position
is in fact generated by some move generator.

The Move Appreciation Problem - Making sure that once a move had been

generated, its potential is properly evaluated so that it will be searched at a reasonable
point in the total analysis.

The Move Selection Problem - Making sure that the tree search does not grow too
large, while at the same time making sure that no incorrect decisions within the tree
cause sub-trees with meaningful nodes to be cut off.

The move proposal probiem involves having special move generators for each
purpose. Thus if a move generator is not complete or a purpose not defined, important
legal moves may not be generated. This is quite different than just assigning high
values to "good” moves in a pass-in-review type move generator. Firstly, the set of
purposes is vast, and some are inevitably left out. Secondly, a move generator which is
complete for a particular purpose may still be very blind to what else any move
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suggested by it may accomplish or destroy. This raises problems for the evaluation
function which must accept the word of a move generator that this is a worthwhile
move, while at the same time trying to evaluate the move in a more global context.

The move appreciation method in this program attempts to be more of an AND/OR
discrimination iree, rather than a sum of factors type of selection procedure. It became
clear early in the development of the program, *hat the factors mentioned in Chapter III
do not sum very well. Therefore, the evaluation was developed to respond to factors
that appeared importaint in the environment. Frequently, when several important
factors pointed in opposite directions, it was sufficient to note that one pointed in a
tavorable direction. Thus this was an OR condition; something that would be difficult to
construct in a sum of factors scheme. However, such decisions also allowed worthless
moves to come under scrutiny. Thus, there was usually an additional nested AND level
which again posed restrictions on the move qualification process. This procedure of
adding more conditions and attempting to do away with statistical appraisals of factors
contirued throughout the development of the program.

Finally, move selection, which in effect is determined by the structure of the search
tree, was a continuing problem. The different goal states evolved from needs that the
program evinced, since the absence of such a goal state would frequently send the
program off on a wild goose chase. Also the transition rules between goal states
provided meny opportunities for making design errors. It was our experience that
apparently air-tight definitions of transition conditions frequently had a loop-hole which
was sooner or later found by the program and used to miscarry the analysis. Needless
to say, any tree search which could perpetuate such logic errors could not be held
responsible for the validity of its output. As mentioned in Chapter V, almost the whole
effort in going from CAPS-] to CAPS-II was in straightening out this aspect. There
were also several tree pruning rules which failed to work out and later hid to be
removed; however, the goal state management problem was paramount in this area until
it became solid.

D. WHERE DOES THE POWER COME FROM

The present program does not yet play as well as even our previous program. This
is due mainly to its lack of consistency. However, this does not disturb us. The
mandate for a program that can play really well is that it be able to search deeply when
required and discriminate effectively at all times. The present program is well on its
way to doing this. It already has deep searching capability, and we expect this to
increase in the near future. It does not do much positional and strategical evaluation.
However, since it looks at a very limited number of nodes, the multiplication factor for
additional computing done at each node is low. Therefore, additional discrimination
facilities can probably be put in at low computing cost when tactics has reached the
appropriate level of competence. We consider the present program extendable to first
getting rid of the remaining tactics problems and then addressing the positional and
strategic aspects of the game. We expect to be able to do this without significantly
altering the time it takes for the program to make a move.

Thus, our program’s power is manifest not in its abili.y to beat its opponents, but
rather in its ability to circumnavigate a large search space. This derives partly from the
representation, and partly from the management of the tree search. We consider first

the influence of the representation in providing structure which slows exponential
growth.

O e e
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1. The Representation

We can consider power to be related to the depth of projection of a particular
device. Thus a device which projects a future state of the board two ply from now
is more powerful than one that projects a state one ply from now. It is also
obvious that power is not linearly related to the depth oi projection since we are
dealing with an exponential growth process. Table VI-1 shows the depth projecting
capabilities of the various bearing relationships.

TABLE VI-1 - Depth Projection of Bearing Relationships

Relation Depth

DIR 1

0BJ 2

ETHRU 2 (minimum)
psc 3

0THRU 3 (minimum)

To see how we arrive at these figures consider the relation DSC(PC, SQ). This
relation states that if a certain intervening piece were to move away, PC would then
be able to move to SQ. Clearly, that requires a three ply sequence: The intervening
piece moves, the opponent moves, and then PC moves. Thus if SQ were known to
contain some interesting target, knowing the relation DSC would allow projection >f
part of a board state that could not occur for at least three ply. For some of the
relations such as ETHRU and OTHRU which are transitive, the depth projection could
be even higher depending upon the number of intervening pieces that exist
between PC and SQ. Clearly the role of knowing that there is a target of interest
on SQ should not be minimized. Otherwise, just knowing that a certain piece could
reach a certain square, would not give much useful knowledge in the attempt to
reduce the rate of exponential growth.
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While bearing relations give information about what is possible, functions * give
information about what is essential, given a particular world view of what is going
on on the board. Thus while moving an intervening piece away to create a
discovered attack could lead to some gain, it is not clear that it will unless there is a
worthwhile target which can in fact be captured with impunity. However, moving
away a piece that has a defensive function to fulfill will much more frequently cause
a loss. Table VI-2 shows the projection potential of the various functions. The
minimums can be worked out from the definition of the function; the maximums are
those that could reasonably be encountered in a game situation.

(x) The first known use of functional analysis in chess is in a Carnegie Institute of
Technology term paper entitled "Chess Program" by Duane R. Packard and Thomas P.
Cunningham. In this paper which was inspired by Dr. Allen Newell the authors apply a
functional analytic method to several chess positions. The method was used to simulate
the playing of one game. 3
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TABLE VI-2 - Depth Projection of Functions

Function Minimum Depth Practical Maximum

Attacking (a material object)
Attacking (a threat square)
Defending (a material object)
Defending (a threat square)
Blocking (opponents activity)
Blocking (own activity)
Guarding Escape Square

NWNESEN W
—
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The above maximiims occur when there are several functions associated with a
single objective on a square. When the program is investigating function conflict
(overloading), we are prniccting a minimum of three-ply; e.g. capture on square A,
recapture on square A and capture on square B. If the squares on which the
overloading takes place have many functions associated with them the projection
could easily be 8 or more ply. It is true that most of today’s programs have data
structures than will allow them to predict what is going to happen on an OCCUPIED
square most of the time. However, the present structure also deals with:

1) Squares that are blocking important activity that is to take place on another
square.

2) Squares to which certain pieces could potentially move.

3) Conflicts that arise when a piece needs to perform functions on more than one
square.

Thus the above data structure serves to point to tactical goals which could be
reasonably be expected to be achieved many moves away. This is due to the fact
that functions are assigned alternately for each side so as either to create a balance
or an imbalance. This fact is then noted. It is then possible for the program to
judge what would happen if one unit of strength were added or taken away. Thus
if one views tactics as the domain of what can be accomplished by forcing moves,
then the data structure is well equipped to tell what kinds of things can be
influenced and how to influence them. Since this influence could take many ply of
searching to unravel, the data structure can point to features which are out of the

perceptual domain of any program we know of. Thus it is possible to generate
moves which could:

1) Begin a chain of captures of indefinite length leading to a gain in material ;
(capture of an en prise piece). ]
2) Require an immediate response to prevent such a sequence from becoming i
possible (single threat moves). 1

3) Make possible a future gain by invoking more than one of the above type of
threats with a single move (multiple threat moves).

4) Capture an apparently well defended piece because one of its defenders has
another important duty to perform.
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5) Occupy an appparently well defended square because one of its defenders has
another important duty to perform.

6) Have a good likelihood of causing a gain by attacking a low mobility piece that
will have difficulty in removing itself from danger.

All the above presume tht everything on the board except what concerns the
square(s) in question is inconsequential. This is a simplifying assumption that
frequently proves to be wrong. However, it does provide a basis for doing
business, and the tree search still arbitrates over the ultimate worth of any move.
Thus as long as the tree search is not asked to do too much work -- leading to
unacceptable levels of exponential growth -- this method is satisfactory. It can
always be improved by the simple expedient of finding a few more of the moves to
be worthless. This is done by adding some more AND/OR conditions to the static
analysis. Each new condition is added as a test at a tip node of the present
discrimination tree. If there are N tip nodes, adding a new test to the tree adds 1/N
to the length of the average path in the tree. Thus this procedure adds computing
cost in inverse proportion to the number of branches already existing in the
discrimination tree. This cost goes down as a function of the size of the
discrimination tree; a most commendable property, especially when compared to the
expenential cost of tree searching.

2. The Tree Search

It is more difficult to explain why the tree search is powerful. There does not
appear to be much question that it is more powerful than the standard approach.
The branching factors are 1/3 to 1/2 that of standard programs. This can not be
explained away by saying that this program does not play as well as the best
standard programs. The fact is that these branching factors have been more or less
maintained throughout the development of the program. The largest increase in the
size of the branching factor came during the time when several errors in the
transition rules between goal states were found. On the other hand, the addition of
the PREVENTIVE DEFENCE goal state resulted in a noticeable decrease in tree size.
As the program gets better, the branching factors do not change significantly. One
could associate getting better with searching more moves and/or being better able
to evaluate terminal positions. The latter does not change the branching factor.
However, we have found that as more moves tend to be searched, it is possible to
either partition the problem further, thus creating more goal states, or to improve
the specification that decides which moves are really pertinent, thus eliminating
some moves from the search. This also improves the ordering of proposed moves,
and tends to maintain the branching factor about where it was.

The tree search appears to derive most of its power from the partitioning idea,
rather than from the set of stopping rules. Of the new stopping rules, the Claim
System seems to be the most powerful. Also, the ability to stop and retrace the
search (search-and-scan) because of a neglected alternative at a previous node
appears important, when it can be implemented correctly.

The partitioning of move selection at a node, however, seems to be mainly
responsible for the fact that 507 of all nodes have only one successor. It is the
ability to find quickly the correct goal state for a node, and then have only a limited
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number of moves be associated with the goal state that provides the selectivity of
the tree searching method. As mentioned elsewhere, much improvement in this is
still possible. Most of the goal states can be further broken down. The
AGGRESSIVE state is a grod example. With an adequate amount of analysis of the
position at a node, and with theme information to further restrict things, it should be
possible to limit the moves that are generated to those attacking a specific piece or
dealing only with a small set of squares. This type of further subdivision would
probably help the DYNAMIC DEFENCE state most. For deep consequence
descriptions, as many as 20 or so moves may be generated. Some further
selectivity in the descriptive process or in the goal state must be found here.

E. HOW CAN LEMMAS BE IMPLEMENTED

We have at several places in this document referred to lemmas which could be used
to save information from one position to the next, both within a tree and from tree to
tree. We will now make these notions more concrete. Lemmas are to be used to save
information about a possible move, from a position in which this information is first
discovered. Let us look at the four possible categories into which a move can fall with
respect to its static evaluation and actual goodness.

1) A move is statically evaluated as good and is good
2) A move is statically evaluated as good and is bad
3) A move is statically evaluated as bad and is good
4) A move is statically evaluated as bad and is bad.

Moves in categories 3 and 4 are never tried by the program. This, incidentally,
brings out the importance of evaluating all moves optimistically, since we would like to
have the occurence of moves in category 3 be very, very low. Wher a move is in
category 1, there is also no problem since the move will be accepted as good by the
program and its view is thus consistent. The moves in category 2 pose the problem
that lemmas address. They appear to be g00d or have some redeeming features, bt
are not. Furthermore, they end up being tested again and again in slightly different
environments, since positions in a search tree are highly auto-correlated. In most
instances, the same result comes out --- they are rejected. This is because, although
the position is slighly changed, there are still some basic factors in the position that
prevent the possibly good move from being good. Lemmas address the retaining of this
essential constancy of the position with respect to this move.

Moves in category 2 can be further classified into those appearing to be strictly
good and those that are worth trying because they have some redeeming features. In
the first class are the moves 1.--QxR and PxR in Figure 1.9 (page 1-9). 1t is relatively
easy to construct iemmas for this type of move. When it is tried and refuted, the
backing up process will bring back the Refutation Description contained in RPCS, RSQS,
RPATH, RTGTS,TGTSQS, and TPATH. To this must now be added the present iocation of
all pieces that participated in the refutation. The lemma also receives a value, which is
the amount that would be lost if the move were tried. Then a condition for this move
not to be rejected on account of the lemma in future positions is:




1) That one or more of the named pieces no longer is in its old position.

2) That one or more of the named pieces now has a new defensive function, worth at
least the value of the lemma, that it has been assigned.

3) That one or more of the squares named as path squares in the Refutation
Description is now occupied when it was not before

4) That one or more of the threat path squares has a new piece that can now occupy
it and could not have in the position in which the lemma was discovered

B) That one or more of the squares that was an RSQS square is now controlled by an
own man when it was not before.

Unless one of these conditions is fulfilled, there should be no essential change in the
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