- Best
Available
Copy

AD-784 880

ADAPTIVE SYSTEMS FOR THE DYNAMIC
RUN-TIME OPTIMIZATION OF PROGRAMS

Gilbert Joseph Hansen

Carnegie-Mellon University

Prepared for:

Defense Advanced Research Projects Agency
Air Force Office of Scientific Research

March 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

i UNCLASSIFIED
SECURITY CL ASSIFICATION OF Twhis BAGE (Whan ’7... Entared)
REPORT COCUMENTATION PAGE ,,EF’;,*,;’;"C’(;igﬁggggN;m

.‘Aﬁsz—Nwik 74 - 1 4 3é 2. GOVT ATCESSION NO. ﬁBgN%C:;APOG#NU?Enyo

S. TYPE OF REPORT & PERIOD COVERED
Interim

4. TITLE (and Sudtitie)

S S -

ADAPTIVE SYST:MS FOR THE DYNAMIC RUN-TIME
OPTIMIZATION OF PROGRAMS

6§ PERFORMING ORG. REPORY NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBERTs)

Gilbert Joseph Hansen F44620-73-C-0074

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBLE RS
Carnegie=-Mellon University

Department of Computer Science 61101D
Pittsburgh, pPA 15213 A02466
' CONTROLLING OFFICF NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency March, 1974
1400 Wilson Blvd :

Arlington, VA 22209 179

14, MONITORING AGENTY NAME & ADDRESS7I/ dilierent lrom Controliing Oltice) 1S. SECURITY CLASS. (ol thie teport)

Air Force Office of Scientific Research/64,/77
1400 Wilson Blvd

Arlingtén, VA 22209

3. NUMBER OF PAGES

UNCLASSIFIED

152. DECL ASSIFICATION DOWN 3RADING
SCHEDULE

16. LISTRIBUTION STATEMENT (ol thle Report)

Approved for public release; distribution unlimited,

17. DISTRIBUTION STATEMENT (ef the ebetract entered in Block 20, 11 ditterent from Report)

18. SUPPLEMENTARY NOTES

.
19. XEY WORDS (Continue on reveree side if Receseary and ident!ly by block number)

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce ‘
Springfield VA 22151

20. ABSTRACTY fContinue on reveree eide If neceesery end Identily by biock number) 1
This thesis investigates adaptive compiler systems that perform, during pro-]
gram execution, code optimizations based on the dynamic behavior of the pro-
gram as opposed to current approaches that employ a fixed code generation |
strategy, i.e., one in vhich a predetermined set of code optimizations are
applied at compile-time to an entire program. The main problems associated » 1
with such adaptive systems are studied in general: which optimizations *o !
apply to what parts of the Program and when. Two different optimization
Strategies result: an ideal scheme which is not practical to implement, and

Dp Forw EOITIO ' s
D 7 1473 'TION OF ' NOV 6 ISOBSOLﬁTE UNCLASSI FIED

| SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

{

§

% L
. |

UNCL.ASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Fntered)

!
|

20. (abstract cont.) E .

a more basic shceme that is.

The design of a practical system is discussed for the FORTRAN IV language.
The system was implcirented and tested with programs naving different behavi-
oral cheracteristics. 1In order to have a basis for comparing the results,
variants & the system were constructed which approximate the behavior of

WATIF, FORTRAN iV G, and FORTRAN IV H compilers. The test programs were

run under these systems. The results show that adaptive FORTRAN performs
as well or better than any of the variant systems at each specific test poinL,

and significantly better than any one of them across the entire range of
test points.

UNCLASSI FIED

PECOUBITY £t ACSIFICATION OF THIS PAGE/When Date Eatared)]

. P -
T -. B T e

r——

ADAPTIVE SYSTEMS FOR THE DYNAMIC

RUN-TIME OPTIMIZATION OF PROGRAMS

Gilbert Joseph Hansen

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213
March, 1974

Submitted to Carnegie-Melion University in
partial fulfiliment of the requirements for the
degree of Doctor of Philosophy.

This work was supported by the Advanced Research Projects Agency of the :
office of the Secreiary of defense (F44620-73-C-0074) and is monitored by !
the Air Force Office of Scientific Research. This document has been

approved for public release and sale; its distribution is unlinited.

I b

i " 4

b 1 e e i B e e i e s R L L oy K w

Abstract

This thesis investigates adaptive compiler systems that perform, during
program execution, code optimizations based on the dynamic behavior of the
program as opposed to current approaches that employ a fixed code
generation strategy, ie, one in which a predetermined set of code
optimizations are applied at compile-time to an entire program. The main
problems associated with such adaptive syitems are studied in general: which
optimizations to apply to what parts of the program and when. Two
different optimization strategies result: an ideal scheme which is not practical

to implement, and a more basic scheme that is.

The design of a practical system is discussed for the FORTRAN IV
language. The system was implemented and tested with programs having
different behaviorial characteristics. In orde’ to have a basis for coraparing
the results, variants of the system were constructed which approximate the
behavior of WATFIV, FORTRAN IV G, and FORTRAN IV H compilers. The test
programs were run under these systems. The results show that adaptive
FORTRAN performs as well or better than any of the variant systems at each
specific test point, and significantly better than any one of them across the

entire range of test points.

Acknowledgements

My sincere appreciation and thanks go foremost to Professor William A.

R S T N CHEE T e EmmLy e -

Wulf, my thesis advisor, who originally suggested this topic, and who provided

constant inspiration and guidance throughout its development.

| am also indebted to Professors Mary Shaw, Jack McCredie, and John

Grason, members of my thesis committee, who helped shape the final form of

: the thesis.

I L P (I | PN A W T e T RS T SR

Finally, special thanks are due to the Department of Computer Science

for providing the excelient facilities and stimulating atmosphere in which to

carry out the research.

e g

Table of Contents

Abstract ii
Acknowledgements iii
Table of Ccntents iv
Chapter I: Introduction 1
1.1 Current Optimization Techniques 2
1.2 Empirical Results on Progran. Behavior]
1.3 An Adaptive Comopiler 9

Chapter Il: Adaptive Compiler Systems 11
2.1 Qverall Design Considerations 13
2.2 Basic Blocks and Segments 17
2.3 Fusion 21
2.4 lterative Dynamic Optimization 24

2.4.1 A Mathematical Model for Segment Cotimization 25
2.4.2 Practicality of Using the Model 30
2.5 Incremental Dynamic Optimization 31
2.6 The Segment Driver 34
Figure 2.1 The Execution Cycle for a General Segment Driver 36
Figure 2.2 Execution Cycie of the Segment Driver for Incremental 37

Dynamic Optimization

Chapter ill: The Adaptive FORTRAN System 38
3.1 The System’s Design and Implementation Specifications 39
3.1.1 The Adaptive FORTRAN Language 39
3.1.2 Structure of the System 4]
3.1.2.1 The Compiler 43

3.1.2.2 The Loader 44

3.1.2.3 The Execution Phase 48

3.1.3 Tha Optimizations 50
3.1.3.1 Fusion 53

3.:.3.2 Common Subexpression Elimination (CSE) 54

5.1.3.3 Code Motion (CM) 56

3.1.3.4 The "Dumb" Code Machine Language Generator 60

3.1.3.5 The "Fair" Code Machine Language Generator 62

3.2 The System’s Optimization States and Their Associated 70

Optimization Counts
Figure 3.1: Structural Organization of the Adaptive FORTRAN System 78

Chapter 1V: Validation and Experimental Results 79 |
4.1 Comparative Compiler Systems 80 _
4.2 The Test Programs 83
4.3 The Test Results 88 .
:
v

Tables 4.la-e: EE Test Resuits

Tables 4.2a-e: SIEVE2 Test Results

Tabies 4.3a-¢: LES Test Results

Tables 4.4a-e: QZ Test Resulls

Tables 4.5a-b: AF| Timings for QZ and LES

Tables 4.6a-b; Retined AF Timings for QZ and LES
4.4 Analysis of Test Resuils

Figure 4.1: Performance Curves for EE

Figure 4.2: Performance Curves for SIEVE2

Figure 4.3: Performance Curves for LES

Figure 4.4: Performance Curves for QZ

P g W o

!

Chapter V: Conclusions

Appendix A: The Compiled Code
A.1 Quadruples
A.2 Code Generated for each FORTRAN Construct
A.2.1 Expressions
A.2.2 Assignment Statement
A.2.3 Control Statements
A.2.4 |/O Statements
A.25 Array Ceaclarations
A.2.6 Array References
A.2.7 Subprograms
A.3 Internal Representation of Quads
Table A.l: The List of Quad OP codes
Table A.2: Operand Type (TY)
Table A.3: Operand Arithmetic (AR)
Table A.4: Operand Class (L)
Table A5: Operand Reference (R)
Figure A.l: internal Representations of Formatted Data Words

Appendix B: Source Listings of the Test Programs and a Detailed Example
B.l A Detailed Example: Matrix Multiplication
B.2 Thc Linear Equation Solver: LES
B.3 A Prime Number Generator: SIEVE2
B.4 A Student Electrical Engineering Problem: EE
B.5 An Eigenvalue Problem: QZ

Appendix C: Code Matrices for 'nteger '+’
C.1 Code Matrix for (+,VEV) or (+,E\V,V) Commuted
C.2 Code Matrix for (+,E1,E2,T)

References

91
93
96
99
101
102
103
107
108
109
110

111

117
117
118
120
121
121
125
129
130
132
133
135
138

138

138
138
139

140
140
148
149
150
1561

156
159
163

172

gl e L TN T A x5 e -—

Chapter |

Introduction

A serious disadvantage of current compilers is that they do not take
into account a program’s behavior in the generation of object code. In
particular, the code generation phases of these compilers employ a fixed
compile-time strategy, i.e, the degree of code optimization is predetermined
and the optimizations are applied uniformly to each section of a program,
independent of how often the section is executed. As a consequence, special
purpose compilers have been designed to handle a specific class of programs
or to meet specific needs, and the decision of which compiler to use is
placed upon the user. For example, for the FORTRAN language there exist
on the same machine three special purpose compilers having different
trade-offs between compile time and code efficiency, viz, WATFIV,
fORTRAN-IV G and FORTRAN-IV H. WATFIV is designea to handle jobs for
which compile lime is a major factor. FORTRAN-IV G produces fairly efficient
code by applying some local optimizations. FORTRAN-IV H is designed for
production programs. It produces highly efficient code, but there is a

substantial increase in compilation time.

This thesis investigates a dynamic run-time code optimization strategy
based on the dynamic behavior of the program. Motivation for such a

system stems from the empirical evidence produced by the research of

Knuth 'Knu70), Darden and Heller [Dar70), Ingalls [ing71] and Jasik [Jas71),
viz, that a small part of a program (<57) accounts for a large part of its
execution time (>507). Their schemes can be classified as ‘iterative

optimization" which involve a feedback loop between the system and the user.

The user’s program is monitored via software or hardware, and the system

| produces an executica profile of where the program is spending its time.

Using this profile, the user optimizes his program and runs it again, obtaining
another profile; and so forth. Major drawbacks to such an approach are the
limitations placed on the amount of optimization the user can perform, and
the inclusion of the user in the feedback loop. We advocate removing the

user from this feedback loop and automating the process.

Our major goal is to demonstrate not only that it is possible to
construct such an au'omated system, but that it is worthwhile, i.e, that it can
perform, for almost all programs, as well or better than any special purpose

compiler employing a fixed code generation strategy.

1.1 Current Optimization Techniques [

The development of code optimization strategies has been under
investigation since 1965. This initial research cuimincted in a set of machine
independent optimizations that are applicable to most high level languages

[ct. A69). The development of more efficient algorithms for these “classical”

optimizations has been the ubject of study by other investigators, notably :

Lowry and Medlock [Low69] and Cock and Schwartz [Coc70] The
effectiveness of these optimizations was clearly demonstrated in the
FORTRAN-IV H compiler of Lowry and Medlock, who stated that even though
there was a 407 increase in compilation time, the object code was 257
smaller and executed three times faster than that produced by the

FORTRAN-IV G compiler.

The goal of this research is to demonstrate the effectiveness of
applying code optimization at run-time instead of at compile-time. It suffices
to select optimizations from among the "classical” optimizations, for they are
just as applicable at run-time. There were a number of selection criteria
that are worth mentioning. Foremost, we wanted to include enough machine
independent and dependent optimizations to produce results of broad
significance. Also, the optimizations must have been proven by others to be
effective, i.e., they produce a significant decrease in execution time for the

effort expended.

The set of machine independent optimizations selected were:

1) Constant Folding: performing operations whose operands
are known. This technique is particularly beneficial for
code generated to calculate the address of an array
element.

2) Common Sutexpression Elimination (CSE): eliminating
redundant expression computations.

3) Code Motion (CM): moving operations invariant within a
loop outside the loop.

P I g P ——

The set of machine dependent optimizations selected (which are

applicable to most machines) are:

1) replacing a multiplication or division by a power of 2
with a shift.

2) setting memory to @ or -1 by special instructions.

3) delaying negation operators to exploit load and store
negative instructions.

4) deleting multiplications by 1 or additions of O.

5) performing operations directly to memory, e.g,
incrementation or decrementation by a small constant.

6) use of index registers for DO locps and for accessing
array elements.

7) affective use of registers by an appropriate register
ailocation policy.

The algorithms for the selected optimizations have certain characteristics
that influence the design and structure of any system which employs run-time
optimization. First, the algorithms do not operate on the program source
text, but on some intermediate form. The compiler must generate this
. intermediate form (regardless of when the optimizations are applied). Since
these optimization algorithms are to be invoked at run-time, the intermediate

form was chosen so that it could be directly executed (interpreted).

Second, the algorithms do not operate at the basic instruction level, but

on aggregates of instructions cr groups of aggregates (loops). The compiler

will have to decompose tne program into these basic aggregates.

Third, certain algorithms reiy on control flow analysis. The compiler (or
loader) will have to generate a form for encoding the flow relationships. The

form we will use is a directed graph.

Finally, the optimizations can be applied individually, and usually must
be applied in a given order. These two characteristics are important in that
they allow for gradual optimization of the program, a concept fundamental to
our approach which is predicated on and supported by recent empirical

results on program behavior.

1.2 Empirical Results on Program Behavior

Recent investigations by Knuth [Knu70], Ingalls [ing71] and Darden and
Heller [Dar70] found that a small portion of the code in typical programs
accounted for most of the execution time. Knuth studied a varied collection
of FORTRAN programs covering a wide variety of applications, and found that
less than 47 of a program accounts for more than 507 of its execution time.
He suggested that the system produce a program’s profile, i.e., a histogram
showing the frequency counts of the executable statements, which can reveal
where the program is spending its time. This infori.ation would then be
used by the user or compiler in deciding what part of the program to

optimize.

Ingalls participated in Knuth’s investigation and his paper pursues the

notion of a system producing the execution profile of a program. He

concludes that current optimizations have taken us about s far as is
worthwhile, and that if further gains are to be made, optimizations such as
in-line 1/0 editiné or expansion of subroutines in-line should be deveioped, or
the sytem should produce feedback information (i.e., an execution profile) to
the user that tells him where his program is spending most of its time. He
found that for all the programs studied, 37 of the statements made up 507

of the program’s execution time.

Darden and Heller studied the performance of two compilers and an
assembler, and founu that for the systems tested, at most 37 of the code
accounted for more than 607 of the execution time. These percentages are
taken from their graphs given in Figure 1.1. They advocated producing a
histogram of processor time by blocks of memory locations. Using this
profile, the user would optimize the critical sections of the code and run the
system again. This iterative optimization procedure would be repeated until
there was little improvement in overall performance. They tried this
technique on an ALGOL compiler and found that after four iterations they had
improved the compiler’s speed by a factor of 10 while only rewriting 57 of

the code.

R — ..

100
Cumulati\{e distribution of CPU time

80

N
o

FORTRAN COMPASS

o
o

Percent fime

N
o

0
003 01 03 10 30 100

\
Percent code

Figure 1.1 Cumulative distribution of CPU time. For a typical FCRTRAN
compiler, over 6@ percent of the central processor’s time is spent in
executing only 1 percent of the code. Clcarly, that 1 percent of the code is
the area to optimize. In fact, 10 percent of the code accounts for 90
percent of the execution time of all the systems tested by the authors.
(Reprinted from COMPUTER DECISICNS, October, 1970, page 29-33, copyright
1970, Hayden Publishing Co.)

An inference from these empirical results is thai the amourt of effort
that should be evperded to optimize a section of code should be proportional
to the execution time that section represents. It is ¢lso felt that the 57-507
empirical rule is universally ‘rue since a wice class of problems were studied

by the various authors.

A major drawback to these approaches is that the user is included in
the feedback loop. We feel that the oxecutior profile is a useful concept
which has other advantages (such as a debugging aid, or pointing out to the
user that he should use a different algorithm or restructure his data).
However, iis utility as an optimization tool has its limitations with respect to
the user. First, it requires the user to be knowledgeable with optimization
techniques. Second, for those optimizations tnat cannot be performed at the
source level, the user must resort to writing in machine language which he
must learn, thus defeating the purpose of using a high level language.

Finally, the user may introduce more bugs into the program.

The user could overcome these limitations, but we assert (and this
thesis will show) that the process of using the rxecution profile to optimize
the appropriate sections of the program can be done automatically at the

source larguage level without user intervention.

e

1.3 An Adaptive Compiler

There are a number of automated approaches that we could take. The
profile could be fed back to the compiier the next time the program is
compiled. Using the profile, the compiler could optimize the appropriate
sections of the program. However, which code sections to optimize may vary
from run to run if, for exampie, the program’'s behavior is sensitive to its
input data. Therefore, a feedback sysiem does not seem to provide the best

solution.

A more desirable approach would be to perform code optimizations
while the program ’is running. That is, the system would dynamically adapt
the compiled code i')response to the program’s dynamic behavior. Such a

system we term an adaptivet system.

This thesis will show that an adaptive compiler system is a feasible and
worthwhile alternative to current compiler construction approaches. We will
first turn our attention to solving the problems of determining which section
of code to optimize, when to optimize it, and how much optimization to apply
to it. Our goal is to find a solution that minimizes the overhead incurred in
answering these questions, for we want the system to perform well across

the entire execution time spectrum. Then, in order to prove the technique is

+ The ierm adaptive is not meant to imply that the compiler self-adapts to
its environment, i.e., keeping statistics on the constructs used most frequently
and thereby producing more efficient code for them.

:
E 10

feasible, we wili discuss the design and implementation of an adaptive system
| for the FORTRAN-IV language. To show the adaptive FORTRAN system is
worthwhile, its performance will be measured on a variety of test programs‘
having different characteristics. In order to evaluate the performance
measurements in a meaningful and unbiased manner, the adaptive compiler will
be transformed into systems that generate code comparable to that produced
by WATFIV, FORTRAN-IV G and FORTRAN-IV H. Then the test programs will
be run under these systems and the performance measurements compared

with those of the adaptive system.

e et L e L e s e e e Lot e s

o T . - . G

g R LR e Jra— - L TR T ErAN— - ea—— -

I

Chapter i

Adaptive Compiler Systems

In this chaper we will look at the problems associated with constructing
an adaptive compiler and present solutions that can be realistically
implemented. The basic issues that we will address are:

1) what information must be collected during the
translation and loader phases to f{acilitate run-time

optimization,

2) the characteristics of the code the translator must
produce for the optimizers,

3) methods for grouping the code into blocks to facilitate
its processing by the optimizers,

4) attributes of code blocks that can be metered to
determine which blocks to optimze,

5) methods for determining which optimizations to apply to
the code blocks and when,

and 6) control of the running program so optim'zation can be

intermixed with execution.

Three of the issues, viz., determining which code blocks to optimize,
when, and how much, form the basis for any dynamic optimization strategy.
We will discuss two strategies. The first, iterative dynamic optimization (see
Section 2.4), is based on a mathematical model, which represents an exact
formulation for solving the problem of what to optimize and how much, but
not when. The scheme is impractical to use (see Section 2.4.2), but it is

presented because the solution of such a formulation, regerdless of how

S o .. T T T . T - T Ty o o o il o o it sdddie

= et ip e

R g T o &

inefficient, would give us a standard o compare against other schema. It is
possible to obtain such an absolute measure of performance (see Chapter 5),
but even for one program it would require a tremendous amount of wark.
Since dynamic optimi.ation has never been studied before, it was felt that
the primary goal of ths thesis was to see if the approach was vaild instead
of spenuing time to obtain the best performance curve for a few programs.
Therefore, we formulated a more direct approach, the incremental dynamic
optimization scheme (see Section 2.5), which incurs very little overhead. It is
a heuristic approach based on the notion tha! one optimization at a time
should be applied to a code block, and the assumption that the execution
time pe: program run for a code block is proportional to the frequency with
which it is executed. Such an assumption allows a frequency count to be
used as a metrc for controlling the adaption process. This count is a

function of the code block’s attributes, such as size, level of nesting, etc..

To control the execution and invoke an optimization strategy requires a
supervisor. We will describe the operational characteristics for such a
supervisor in general, and specifically for a system employing the incremental

dynamic optimization strategy.

In the following chapters, we will describe the design, implementation
and performance of an actual system that employs incremental dynamic
optimization and incorporates the ideas expounded in this chapter. Since the

iterative dynamic optimization scheme in Section 2.4 is not pertinent to this

13

description, it may be bypassed on a first reading without loss of continuity.

2.1 Overall Design Consideration.

The primary goal in the design of an adaptive cumpiler system Is to
minimize the total cost of running a program. This goal has direct
implications with respect to the design of the transiator and the dynamic

optimization strategy.

The design of the translator can proceed along the lines currently
emrioyed in the construction of any translator, but it must be as efficient as
possible. This means that: 1) it should expend a minimum of e*‘oit in
transiating the source code, in particular, not performing any optimizations
that can be done more effectively and efficiently at run-time; 2) it should
employ the best translating algorithms available;)it should itself be

optimized: and 4) it should be one passt and compile directly to core.

In terms of the dynamic optimization strategy, minimizing total cost
requires the optimization algorithms to be efficient, and the overhead incurred

by deciding when to purform what opliimzation on wi ch sections of code to

+ A second pass sver the object code is needed to complete the transiation
process, e.g., allocate data storage, patch addresses, patch forward references,
relocate the object code, etc. This second pass of the compilation process is
handled by a program which, due to its similarity to others of the same
name, we shall call a loader.

14

be small compared to the expected payoff.

There are four basic design decisions that must be made; they are a
consequence of hoth the fact thz: optimization is to be performed at run-time
and the nature of the cptimizers. First, an internal repre~sentation of the
source code that can be efficiently manipulated by the opiimizers must be
selected. This internal form cannot be machine language because at this level
too much information that will be needed by the optimizers hac been lost,
and it should not be the source code because the source code does not
explicitly indicate the ctructure of the program and takes too much time to
scan. Possible internal forms include: Polish notation, quadruples, triples,
indirect triples, or trees (cf. [Gri71]). The translator can produce the internal
form as object code, for it is amenable to being executed (interpreted). For
the translator also to produce machine language would be a waste of effort
because empirical evidence shows that some sections of code will not be

executed often enough to warrent it.

Second, the internal form (which we will as:ume is an n-tuple that
denotes an “instruction) must be grouped according to the program’s
structure into aggregates so that the optimizations which require global flow
information can be applied. It is a characteristic of the classical optimizations
that we will employ (see Section 1.1) that they operate on two kinds of
aggregates: a group of sequential instructions terminated by an unconditiond!

branch (a basic block) and a group of basic blocks which form a loop-like

g —

15

structure (a segment). Initially, as the internal form is being generated, it is
partitioned by the translator into basic biocks. As the program executes,
optimizations are performed on those basic blocks executed moct frequently.
In ord‘er for additional optimizations to be performed, the segment containing
an op';timized basic block must be formed. The process of combining basic

blocks or segments into a (larger) segment is called fusion, and constitutes a

new optimization.

Third, a dynamic optimization strategy must be proposed, i.e., a scheme
for determining which basic blocks or segments to optimize, which

optimizations to apply and when to perform the optimizations. Even though

there is more information available at run-time than at compile-time to aid in

making these decisions, it is not complete (we cannot predict a program’s

future behavior with absolute accuracy). A reasonable approach is to assume
that future behavior of a program will be similar to past behavior, for it is

better to base the decision-making on this information than none at all. Such

P —— .

an assumption is not uncommon; it is often made in other areas of computer
science (e.g., paging algorithms and schedulers). As is the case with the
other areas, we are susceptible to anomalies. For example, it is possible to

waste optimization effort if the program terminated soon after the effort was

expended, or the program is phased and after the optimization of a phaée it
is only executed a few times more and then never executed again. By !
selecting a strategy that causes optimization of basic blocks or segments to 4

be gradual, the amount of effort wasted can be kept tolerably small. 1

16

Finally, means for controlling the execution of a program so it can be
adapted must be determined. Basic biocks and segments are the discrete
units of execution. A logical point at whica to interrupt a program’s
execution for adaption is when control passes between two basic blocks or
segments, since program status is well defined at such points, and the amount
of state information required to record this status is small. When execution
is interrupted, data which aids in the decisions made by the dynamic
optimization strategy is coliected, and it is decided whether to invoke the
dynamic optimization strategy and perform cotimizations. If contrel of
execution is distributed amongst the individual basic blocks and segments, then
aporopriate instructions must be inserted in the code to perform the
functions just des:ribed. Another approach is to centralize these functions
and control of execution in a supervisor which causes the basic blocks or
segments to be executed one at a time. This is the approach we will follow
for the system to be implemented. The supervisor, known as the segment
driver, is advantageous for another reason. During the execution of the
program, some parts of it will be in interpretive code, while other parts wili
be in machine language. The supervisor can conveniently decide whether to

execute a basic block or segment directly or call an interpreter.

The structure of an adaptive compiler system is now apparent. Source
code is translated by a fast and efficient translator into an internal form that
is grouped into basic blocks. Execution of the program is controiled by a

segment driver and optimization by a dynamic optimization strategy. Various

17 :

optimizations are applied to basic blocks and/or segments as execution
proceeds and the performance of the program warrents. A new optimization,
fusion, is necessary for grouping basic blocks into segments. In the following
sections, we will define more precisely the concepts of basic block, segment,

fusion, and segment driver, and propose two dynamic optimization strategies.

2.2 Basic blocks and Segmentst

When performing code optimizations, it is advantageous to partition the
program according to its flow of control into basic blocks. A basic block is
a linear sequence of instructions with the first instruction being the single

entry point. The block is terminated by one or more branch instructions, the

last of which is unconditional while the others (if any) are ccnditional. All

code between the first instruction and the hr=nches is executed in sequence.

A program’s flow of control may be represented by a cirected control
flow graph in which a node represents a basic block and an edge represents

a flow path. Those basic blocks that branch to a given block are its

* In this section, some of the definitions follow the terminology introduced by
Allen [All69, AlI7Q] (viz., basic block and directed control flow graph) and
Lowery and Medlock [Low69] (viz, predominance), while others pertaining to
directed graphs can be found in any introductory textbook on graph theory
(cf. [Har69]) (viz., immediate successor or predecessor, subgraph, path and
strongly connected region).

T T PRI, Lt 1. - PRUER GRS L e TYOE SO e g lon pry P L R TR e 1

18

immediate predecessors. Likewise, those blocks branched to by a given basic
block are its immediate successors. A basic block may have more than one
immediate predecessor or successor, including itself. Program entry blocks
have no predecessors, and program terminating blocks have no successors. A
basic block B; predominates a block Bz if every path along a sequence of

successors from a program entry block to B2 always passes through By.

The basic block is the smallest program unit commonly considered for
optimization. However, tiiare is a limit to the amount of optimization that can
be performed on a basic block, and in order to perform additional
optimization it is necessary to consider more global context. Since it is
desirable to optimize those basic blocks executed repetitively, some loop-like
structure must be imposed on the flow graph. Two loop-like constructs have
been described in the literature: the strongly connected region [All69] and
the interval [Coc70, Ali70]. A strongly connected region is a subgraph of
the flow graph in which there is a path leading from any block in the region
to every other block. The region may have several entry points. An
interval is the maximal single entry subgraph of the flow graph in which all

closed paths contain the entry block.

We introduce another similar, but no't equivalent, concept called a
segment. With respect to a given strongly ccnnected region (loop) in the

directed control flow graph, a segment is the minimal directed subgraph with

the following properties:

The segment contains all the basic blocks in the loop.

There is a single entry block This entry block may
have one or more immediate predecessors of which at
least one is not contained in the segment. Those
in:.cdiate predecessors of the the entry block that are
predominated by it are contained in the segment.

Except for the entry block, all immediate predecessors
of each basic block in the segment are contained in the
segment.

The segment, A, and another segment, A; are either
disjoint, i.e., they have no besic blocks in common and
therefore are parallel structures, or one is embedded
inside the other. If A;nA;=A; then A; is embedded
inside A, and A; is said to cover segment A;.

Thus, if a loop has a single entry block, it is identical to a segment
whose segment entry block is the same as the loop entry block. If the loop

has multiple entry points, the segment is the loop extended to include the

minimum number of basic blocks satistying properties 2, 3 and 4. Property 4

defines a properly nested set of segments, and allows the optimizations to be
ordered in the manner suggested by Allen [All69]

Examples: (a) Segments: 2'={2,3} (b) Segments: 2'={2}, 2"'={2,3}

(c} Segments: 2'={2,3,4,5} (d) Segments: 2'={2,3,4,5,6}

O

@O @R

. Unlike a strongly connected region, there is not necessarily a path
leading from any block in a segment to any other block because of iie
requirement that a segment have a single entry point. A segment always
contains a strongly connected region, but the single entry point f- the

segment may not necessarily be contained in the region. Consider example

(d) above in which segment 2' contains the strongly connected region {4,5,6}
which has two entry points (blocks 4 and 5), and the entry point of the
segment (block 2) is not contained in the region. Like a segment, an interval
contains a single entry point, but it does not necessarily contain a closed
path, and the intervals of a graph are disjoint. In example (b) above, the

intervals are {1} and {2,3}.

The concept of a segment wa:. chosen over that of a strongly

connected region or interval because of the simplicity of the algorithm for

constructing them. The algorithm is an iterative process. A block which is

executed repetitively can be used to start the segment. Given such a block,
and considering a segment already formed as a basic unit, it is possible to
construct the segment containing the block knowing just the immediate
predecessors of each basic block in the flow graph. A basic block’s list of
immediate predecessors can be constructed from the branches that terminate

each basic block. This can be done either by the compiler or by the loader.

2.3 Fusion

When a segment is formed via fusion, what optimizations are applicable
to it depend on how embedded segments are treated, ie, whether or not the

new segment is considered to be a homogeneous structure with respect to

future optimizations. Define the ootimization state of a basic block/segment

to be the result of the application of an optimization. As optimizations are
performed on a basic block/segment, they will advance through different
optimization states. One basic block/segment is said to have a higher
optimization state than another if more optimizations have been applied to it.
If we employ homogeneous fusion, then the optimization state of a segment is
uniform, i.e., is the maximum optimization state cf its constituents, and the
result is a homogeneous segment. If the segment contains no embedded
segments, then its optimization state is the maximum optimization state of its
basic blocks; otherwise it is the maximum optimization state of the segments
it covers. In order to advance the segment to its optimization state it may

be necessary to perform one or more optimizations on its embedded basic

22

blocks/segments. For fuiure optimizations, the covering segment could be
considered a discrete unit. But this has a distinct disadvantage if at the time
| of fusion the embedded basic blocks/segments have not attained the highest
I w

] optimization state, for the effect of additional optimizations on these

embedded units will never be realized. Alternatively, if the identity of the

embedded basic blocks/segments is retained, further optimization could be
applied to them before being applied to the covering segment. The only

constraint is that all units attain the same optimization state.

If on the other hand we employ non-homogeneous fusion, a segment
and its embedded basic blocks/segments exist at different optimization states,
and the result is an non-homogeneous segment. This approach is more
restrictive from an optimization point of view in the sense that the
optimizations that are applicable to a segment and the segments it covers
depend on the current optimization state of each. There are a number of
ways optimizations can take place. One method is to let the covering
segment control when the erbedded segments get optimized further. For
example, when a segment is to be optimized, its embedded segments could
first be advanced to their next optimization state, starting with the innermost
one and working outwards. Other approaches are to let each segment be
optimized separately at its own rate, or to freeze the optimization state of
each embedded segment at the time of fusion and let future optimizations be

applied only to the covering segment.

23

s

The result of fusion is a machine language segment that Is formed by
combining the machine language for each of the segment’s basic blocks. The
machine language segment is to be consicered a basic unit with respect to
execution, i.e., transfer of control between basic blocks within the segment
should not be processed by the supervisor. To accomplish this, branches
which terminate a basic block must be treated differently depending on
whether they are internal or external to the segment. An internal branch is
a branch in which the basic block being branched to (destination) is ir; the
same segment as the basic block containing the branch (source), and the

destination is not the segment entry block; otherwise it is an external branch.

If a branch is internal to the segment, then it can be eliminated if it is
to an immediate successor; otherwise it can be performed directly. If the
branch is external to the segment, it must go through the supervisor. Once
the segment becomes totally optimized, any branches to its entry block can

be made directly.

When forming the physical segment, it is not clear whether to perform
homogeneous or non-homogeneous fusion. We will defer this discussion until
the next chapter where we will present empirical evidence as to the merits
of each. There is, however, a general observation that we can make. When
a segment is formed by fusion, the segments that will be included in it (if
any) will have ruached a high optimization state, if not the highest. This

follows from the fact that embedded segments execute at a greater frequency

L m e i e L b s e B R o i e W ey e SN

than their covering segment. Therefore, fusion that produces a homogeneous

segment may tend to apply too much optimization too soon, while producing a

non-ho nogeneous segment causes the optimization of the segment to be more

gradual.

Fusion is thus seen to be an important optimization, for it determines

the highest optimization state attainable for fhe segments involved, and thus
has a strong influence on a program’s performance. How to incorporate
fusion into the overall optimization scheme is another of the basic problems
in controlling dynamic optimization. We now present two dynamic optimization

schemes based on different metrics that treat fusion differently.

2.4 Iterative Dynamic Optimization

The first dynamic optimization scheme is based on a cost metric, the
total run-time cost associated with executing a program which is being
adapted. This cost consists of the execution cost plus the optimization cost,
and is a function of time and storage space. It includes optimization costs in
order to guarantee that optimization will be gradual and performed when it
pays to do so. Informally, we want to minimize the total run-time cost for a
program. This means interrupting the program’s execution periodically and, by
knowing its past behavior, determining how it should have been optimized so l

that the total run-time cost would have been less than it actually was.

g

25

The scheme considers only the optimization of segments (which are
determined prior to the start of execution), not of basic blocks. It is a
non-homogeneous optimization scheme in which the rate of optimizition for
segments is free to vary, ie, there is no restriction on the number of
segments that can be optimized at one time, or the number of optimizations
that can be applied to each segment. For the latter, we make the restriction
that there be no backtracking, i.e., once a segment is optimized, it cannot be
"deoptimized" back to what it was previously. The goal is to find the
combination of optimizations that minimize the _cost metric. This approach is a
natural way to proceed, and has the advantage that fusion is not an issue

(and therefore simplifies the formulation).
2.4.1 A Mathematical Model for Segment Optimization

Let
A={A;}, j=1,2,.,N .
be the set of segments for the directed control flow graph of a program P.
Suppose there exists an ordered set of separate and distinct code
optimizations
{0}, j=1,2,ym
These optimizations are known as singular optimizations, and are ordered in
he sense of applicability, ie, O; must be applied before Oz, Oz before Og,
etc.. The composite optimization 0;(i<j) is the transformation 0,..0; which can

be applied to a segment only if the transformation 0;.;..0; has already been

P B o ok

O

26

applied.

The result of the application of one or mc:-e optimizations to 2 segment
A is called a representation, R(A), of the se,ment. For a segment A;€A, the
only possible ordered representations that it may attain are:

Ri(Aj) = 014
R2(A;) = 02(0;A;) = 052A;

Rm(Ai) = Om(..02(01A)..) = O1mA;

R; is said to have a higher optimization state than R; if i>j.

The current representation of a segment is the result of the application
of the composite o~timization Oy;, for some j. If the current representation
for segment A; is R;(A), then for additional optimizations the segment is
constrained to take on a new representation Ry(A;), where jsksm. Not all
new representations are possible. A feasible representation is one which
does not violate the constraint that the optimizations are ordered. |If one
segment is not covered by another, then there is no restriction on what new
representation it can attain. However, if one segment covers another, the
covering segment cannot be optimized such that its otimization state is
greater than that of the embedded segment. The new representation for the
segment defines the optimizations that must be applied. That is, since the
composite optimization Oy; has already been applied, it is only necessary to

apply the composite optimization O;x (if j=k, than this is the null optimization).

Gam e o onh o

- -

. T

27

Consider a subset AcA which consists of nSN segments executed since
optimization was last performed. Define the n-tuple R = <R(A;)..,R(Ap)> with
the property ‘net each R(A)) is a feasible, ordered representation of equal or
higher optimization state than the current renresentation of Ai. The goal

now is to find the n-tuple R that minimizes the cost metric.

Let Ci(R(A;)) be the cosi associated with segment A; being in
representation R(A)), i.e.,
C.(R(Aj)) = CLi(R(A))) + C2i(R(A;))

where Cl; is the cost of executing segment A; in representation
R(Ai))

C2, is the cost of changing segment AJ’s current
representation to R(A;).

The exact forms of Cl and C2 depend on how computer resources are
accounter for, but in general they are a function of execution time, T, and
core space, S. As a concrete example, consider the case where a user is
charged for how much processor time he uses and (just) the core he uses.
The cost associated with that part of core which is fixed is a constant that
con be ignored. This fixed storage includes the run-time support package,
data storage (since we are only considering code optimizations), and 'the
interpretert, In order to simplify the model, we ignore the time required to
allocate and release core and to perform overlays. The form of Cl is then

n
CLi(R(A)) = Ky # Ti(R(A)) + Kz * Si(R(A)) # % Ti(R(AK))

nm]

P R VT T —

28

where K; is the cost for processor time,
Ko is the cost of core storage used per unit of time,

T(R(A})) is the time expended executing segment A; in
representation R(A)),

Si(R(A))) is the amount of core needed to store the
representation R(A,) of segment A;

Cl; is that fraction of the total cost for segment A;, ie, the sum of its
processor cost plus its core storage cost (the summation term represents

total execution time).

The form of C2 is similar to that for Cl, but now we need to know
the time to perform the transformation and the space occupied by each
optimizer. These optimizer-dependent parameters are easily obtained once
the optimizers are programmed. Suppose for each optimization, O;, there
exists a function E(q) which gives the execution time to perform the
optimization on a section of code consisting of q basic units, where a basic
unit is related to the internal form and may be the number of nodes in the
tree, the number of tuples, etc. Let S(0;) be the amount of core needed to
store the optimizer that performs optimization 0;. If segment A; consists of
q; basic units, then

C2;(R(A)) = C3i(0;)

+ The interpreter is always assumed to be in core because it simplifies the
formulation and it is highly likely that there will be at least some part of the
program to be interpreted (as evidenced from the empirical result cn program
behavior).

where C3;(0;) is the cost to perform optmization 0;. If 0; is the singular
optimization O;, then
C3i(0;) = Ky #Eq) + K2 #S(0)) * Exq;) .
If 0; is the compasite optimization Oy;, then
J)
C3i(01;) = Ky ¢ 3 Sk x Exlai) + K2 # 2 8 * S(O) # Exla;)
k=1 k=1
where 8k =0 if Og has already been applied to A;; otherwise 1. That is, if
the current representation of segment A; is R (A;), then the cost associated
with the composite optimization Q;, is zero, and C3;(0y;) is just the cost of
performing the compusite optimization O;, j>v. These equations assume the
optimizers reside in core only while they are needed, i.e, that they are

overlayed.

The total cost associated with a program in which segment A; is in
representation R(A;) is
n
C = S Ci(RAD (1)
i=1
The objective is to find an n-tuple, R, of representations such that C is a

minimum, i.e., solve

min C
R

subject to the constraints:

TiR(A)) 2 ©

n
2 SiR(A)) s §
i=1

where § is the toial amount of available core storage. Constraint (4)
requires that the new representations, R, for the segments all fit in core

simultaneously.

An n-tuple of representations that solves (2) subject to the constraints
(3) and (4) is known as the optimal policy with respect to the set A for
executing P. The initial optimal policy for executing P is to perform no code
optimizations and interpret the internal form produced by the compiler. Such
a policy is in keeping with the philosophy of dynamic optimization (see
Section 2.1). After P has executed for a while, a new optimal policy is
determined accordirg to (2). This policy is put into eftect, and P allowed to
continue execution. Later on, P's execution is again interrupted and a new

optimal policy determined. This process is continued until P terminates.
2.4.2 Practicality of Using the Model

The iterative dynamic optimization strategy has three serious
disadvantages which make it impractical to use. First, it only determines
which zegments to optimize and what their new representations should be,
not when to determine a new optimal policy. Second, there is the problem
of obtaining a numeric sdlution to (2). Any algorithm for solving (2) must be
such :hat the total solution time expended during a run is a small fraction of
‘the total execution time. To the best of our knowledge, the only way to

solve (2) is by a combinatorial search, which tends to be time consuming.

Third, there is the inability to generate the required data. In optimizing the

ey ——

31

cost, it is necessary to determine the execution time, Ti(R(A;)), and space
requirements, Si(R(A))), for the new represzntation R(A;) of segment A;. Since
the effect of an optimization on a segment cannot be ascertained. without
actually performing the optimization, T; and S, have to be predicted. This is
undesirable because a policy so determined is only as good as the
predictions. However, if the program’s behavior is known a priori, it is
possible to solve (2) and obtain an absolute measure of performance (see

Chapter 5).

The model is therefore of more use in determining a standard against

which other schema can he compared than being used in practive. We now
present a more practcal app:iuach in which the rate of optimization is more

gradual than for the iterative dynamic optimization scheme.

2.5 Incremental Dynamic Gptimization

The incremental dynamic optimization scheme is based on the assumption -
that the total execution time for a basic block/segment is proportional to the 1
frequency with which it is executed. This assumption allows a frequency
count to be used as a metric for deciding not only which basic block/segment
to optimize, but when to apply optimization. Each time the basic block or
segment is executed, this count is incrementedt. When it exceeds a 1

predetermined threshoid, the basic block or segment is advanced to the next

t In practice, the count is decremented until it becomes negative. |

- P T . - i . 2

representation by the application of the next optimization. Therefore,
optimization is applied incrementally, ie, one optimization at a time to one
basic block/segment at a time. Fusion is automatically handled by this

scheme since it is just one of the possible optimizations.

Define the optimization count for an optimization to represent the
number of times a basic block or segment is to be executed in its current
representation before applying the optimization (this is the threshold alluded
to above). The optimization count associated with a basic block or segment
must have the properties that it is proportional to the basic block/segment’s
execution time, and it determines the proper time at which tc optimize the
basic block/segment. Therefore, an optimization count will not be the same
for each basic block/segment. Instead, it will be some function of the basic
block/segment’s characteristics, such as the length of the basic block/segment
measured in some appropriate units, the basic block/segment’s level of nest
in a loop structure, or the amount of effort required to apply the next

optimizaticn,

The optimization counts will be determined empirically. First, they will
be estimated and treated as constents, then an empirical study made to
determine what function of the basic block/segment’s characteristics is most

appropriate.

As an example of a possible function to study empirically, consider the

following method for deriving optimization counts. Assume time is a

33

measurement of effort, and a basic block/segment consists of q basic units,
where a basic unit depends on the internal form, eg., for trees a basic unit
is a node, for n-tuples, an individual n-tuple, etc. Suppose for each
optimization, O;, there exists a function Ei(g), which represenrts the time to
perform the optimization on a basic block or segment consisting of q basic
units, and t;, is the time to execute basic block/segment A; once in the
ordered representation R,. Then an estimate of the optimization count, ny;,
for basic block/segment A; in the orderad representation R; is
nji = Elqtyiae , i=1,2,.,m

where m is the total number of distinct optimizations, and t,e is the time to
interpret the basic block/segment once. nj; is the number of times the basic
block/segment A; can be executed in representation R;.; before its total
cummulative execution time is the same as the time it would take to perform
the next optimization O;. n;; represents an upper bound because it would be
wasteful to spend more time executing the basic block/segment than it would
take to optimize it. Therefore the actual optimization count used should be

some fraction of ny;.

The quantity tj must be estimated. When the basic block/segment is
first executed, let the supervisor clock its execution. This measurement is
exact for a basic block because its execution is sequential. But for a
segment it is an approximation since segments contain loops and internal
branching. Therefore, we can assume the segment’s timing to be exact only

if we assume its future behavior will be the same as its past behavior.

P . R — N R TN ST g T e ™

BT T R NS VU S —

{dad

34

Knowing t;x, the supervisor can now calculate the basic block/segment’s

optimization count.

2.6 The Segment Driver

Optimization and execution of a program are under the control of the
segment driver. Execution of a program proceeds one basic block or segment
at a time. At the start of execution, the segment driver is called with a
parameter indicating Wwhich basic block or segment to execute. Before
executing & basic block/segment, the segment driver decides whether or not
to optimize. If optimization is to be performed, it decides which hasic
blocks/segments to optimize and how much, and calls the appropriate
optimizers. Then it executes the basic block/segment. If the executable code
is interpretive, a subroutine call is made on the interpreter; otherwise @
subroutine call is made on the machine language representation of the basic

block or segment.

During the execution of the code, there may be a call on a
subprogram; these calls may be nested. To execute the subprogram, the
segment driver is called recursively. Execution of the subprogram proceeds
as just described, but any calls on the interpreter must be recursive., for the

interpreter may have made the subprogram call.

Execution of the basic block or segment is terminated by a branch

insiruction to another basic block or segment. If the branch occurs in a

T T M g P T . y T

basic block or is external to a segment, control is returned to the segment
driver by a subroutine return which passes back the destination of the
branch instruction. Branches internal to a segment are performed directly,

while a return from a subprogram causes an exit from the segment driver.

This entire process, depicted in Figure 2.1, is repeated until an

instruction that terminates the program is executec.

The system we implemented and will describe employs the incremental
dynamic optimization strategy. The segment driver for such a system
operates as just described, except now the optimization count determines

when to optimize.

When a basic block/segment is to be executed, the segment driver
decrements its associated optimization count. If the result is negative, the
next optimization in sequence is performed; this calculates a new optimization
count for the basic block/segment. Then the basic block/segment is executed
as previously described. The modified flowchart of the segment driver is

given in Figure 2.2.

Basic block/segment
to execute

optimize ?

Determine what

and how much
Call appropriate
optimizers
——«Gorm of codeD—
Interpretive Machine Language
Call Interpreter Call Machine
Language Code

Figure 2.1: The Execution Cycle for a General Segment Driver

il P - . T . o P T — P ™ i
B T I e L T Y

37

v

i«basic block/segment number
OptCnt;«OptCnt;-1

OptState; ?

L

—-@presentationi ?

Interpretive 1 Machine Language

\

Call Interpreter Call Ma}:hine
Language Code

Figure 2.2: Execution Cycie of Segment Driver for incremental Dynamic Optimization

R R G PP T . T W] ETT THNE T T ST TS NIy e g a7 s T e oy

Chaper ll

The Adaptive FORTRAN System

Whereas the previous chapter was concerned with adaptive systems in
general, this chapter will describe a particular adaptive FORTRAN system; this
system was implemented and its performance has been measured.
FORTRAN-IV was selected as the sourc: language because: 1) it is one of the
most widely used programming languages and hence is a rich source of
example programs and comparisons with existing system:; 2) it contains
enough interesting constructs to give credibility to the va.idation results; and
3) many of the compile-time optimization algorithms currently in use were
deve'oped for FORTRAN compilers; they are well understood and are easily

adapted for use at run-time.

The Adaptive FORTRAN system is based on the incremental dynamic
optimization scheme described in the previous chapter (see Section 2.5). It
employs four basic optimizations (constant folding, fusion, common
subexpression elimination, and code motion), and has two generators for
translating’ the internal representation of the source code (quadruples) to
machine language. The chapter is divided into two major sections. The first
sectior will describe the organization of the system (i.e, the different system
modules and the function of each), design criteria and implementation details.
The bulk of this section may be bypassed on a first reading without loss of

continuity. However, it is suggested that the introduction to Section 3.1.2 on

T

P T T——

39

the system's structure be read and Figure 3.1 be looked at. The second
section is important, for it describes the final system and how it was arrived
at through an evolutionary chain of systems. The latter discussion also
includes a presentation of the final system’s optimization states and their
associated optimization counts. We will defer a discussion on the performance

of the system until the next chapter.

3.1 The System's Design and implementation Specifications

So that the Adpative Fortran system may be clearly understood and
duplicated, a detailed description of its design and implementation s

presented.

3.1.1 The Adaptive FORTRAN Language

In order to demonstrate that our technique is workable and valid, it is
not necessary to strictly adhere to the formal definition of FORTRAN-IV or to
implement the entire language. We assume the reader is fariliar with
FORTRAN-IV. Instead of describing the complete subset, we therefore list all
the features in FORTRAN-IV that were altered, extended or deleted. The
following extansions and alterations were made:

1) allow an arbitrary number of dimensions for arrays,
2) allow multiple assignment statements,

3) allow the use of real as well as integer control
variables in DO statements,

4)

5)
6)

7)

8)

The following
1)

2)

3)
4)
5)
6)
7)
8)
9)

10)

11)

allow the use of parameters as initial, incrementation,
and terminal values in DO statements,

allow the use of negative increments in DO statements,
allow the use of expressions in output lists,

perform automatic conversion of real to integer type
for subscripts, in relational expressions and in DO

statements,

include exclusive OR and equivzience as logical
operators.

features were deleted:
the use of embedded blanks in identifiers,

the use of double precision and complex arithmetic as
types,

usage of the computed GO TO statement,

usage of the PAUSE statement,

usage of auxilliary and unformatted {/O statements,

the use of the DO-implied specification in 1/O lists,
usage of the DATA statement,

usage of the EQUIVALENCE specification statement,

the use of stafement functions,

the requirement that symbolic names which identify
statement types or operators may not be reserved

words,

the ability to compile program units separately.

These modifications were made because they simplified the experiments

without affecting their results.

3.1.2 Structure of the System

The process of running a FORTRAN program is broken down into three
major phases: 1) the compilation of FORTRAN source code to relocatable
quads; 2) the loading of the relocatable quads to absolute quads; and 3) the
execution of the program. Execution of the program is controlled by a
supervisor known as the segment driver (see Section 2.6) which conditionally
Invokes an optimizer before allowing a basic block or segment to execute.
Execution of a basic block or segment is performed either by: 1) the
interpreter which interprets the quads; or 2) the machine language equivalent
of the quads, called as a subroutine. When optimization is performed, the
optimizer performs transformations on the quads and creates a machine
language segment by calling appropriate generators. The decision of when
and what to optimize is controlled by the optimization count and optimization

state associated with tie basic block/segment. However, performance of the

system depends on the optimization states selected and how the associated

optimization counts are determined.

The ability to change these two optimization control parameters easily
and thereby produce different systems whose performance can be studied
was a major design criterion applied in the design and implementation of the -
optimizers. Each optimizer is designed as a self-contained module which

accepts as an input parameter the basic block/segment to be optimized. It

either deduces all the information it needs to perform the optimization or

42

obtains it from the segment table (a common data structure accessibie to all
optimizers). An optimizer module consists of two subroutines: one which
performs the optimization algorithm and a second which makes all the control
decisions associated with the optimization. Typical control decisions are:
performing possible setups, calling the optimization algorithm, changing the
optimization state and optimization count for the basic block/segment, calling
machine language generators, optionally outputting statistics about the
optimization (e.g., processing time, number of quads manipulated or modified)
and performing any cleanup functions. This modular construction isolates
those few parts of the system that must be modified in order to produce a

different experimental system.

The structure of the system is shown in Figure 3.1.

The bulk of the system was written in ELISS-10 [BIi71], a systems
programming language for the DEC PDP-10. Those portions of the system
written in machine language were the segment driver (hand optimized to
minimize overhead) and the run-time FORTRAN support package (the
mathematical routines, /0 package, etc.) borrowed from the PDP-10 FORTRAN

system with slight modifications.

The entire system is loaded at once into approximately 50K 36 bit
words. This is not necessary; the three phases could be overlaid (and would
be in a production quality system). Again, this does not affect the validity of

the results.

T TP p—

T T N R N R R g g N T T .

3.1.2.1 The Compiler

The first phase in running a FORTRAN program is the translation of the
FORTRAN source text into the internal form manipulated by the optimizers.
The internal form selected is a quadruple, or quad for short, which consists
of an operation, OP, two operands, Al and A2, and a result temporary, T. A
quad has the form:

(OP, Al, A2, T).
The compiler is one pass and compiles relocatable quads directly to core. It
occupies approximately 9K of core and compiles at the rate of nearly 9,000
cards/minute. Its structure is modeled after an ALGOL compiler written by

the author and fellow colleagues [Hay71].

A secondary function of the compiier is to partition the program into
basic blocks. Code is compiled into a basic block until the occurrence of one
of several conditions in the source text, at which time the basic block is
terminated and another one started. The conditions are:

1) a labeled statement (except a FORMAT statement),

2) a subroutine or function call (except for a library
function or output subroutine call, since they produce no
side effects, i.e, they do not change the value of a
variable),

3) a "call exit" (e.g., STOP, RETURN) or END statement,

4) statement(s) which cause the generation of a
consecutive sequence of conditional transfer operations
possibly terminated by an unconditional transfer (see
Appendix A, Section A.2.3, specifically the arithmetic and
logical IF).

44

5) a GO TO statement,

or 6) a READ statement.

During compilation each result generated in a basic block is associated
with a unique temporary location. This is to facilitate the transiation of
quads to machine language and the optimization of the basic block. (Since
these are intermediate results pertinent only to the basic block in which they
occur, a different basic block may utilize the same temporary locations. See

Appendix B, Section B.1.)

3.1.2.2 The Loader

After all program units have been compiled, the relocatable quads are
immediately loaded by a loader (see Section 2.1) if the program contains no
errors. The loader occupies less than 95K of core, and is very fast (all the

relocatablc quads are in core).

The primary function of the loader is to load the quads into absolute
core locations; this requires changing relative locations to absolute and ‘back
patching” address fields. Before the loading process can commence, the
loader must first determine how the program is to be laid out in core
memory, i.e., it must determine the starting absolute address for each
relocaiion base (the unit of storage into which code is compiled). All

compiled addresses are relative to one of several relocation bases: sequential

instruction storage, out-of-sequence instruction storage, own storage,

o

2) CURREP:

3) SEGNO:

4) OPTCNT:

is crucial for the adaptive process.

information about a basic block that is needed by the cptimizers.

1) QUADREP:

45

temporary storage, non-COMMON variable storage, blank COMMON storage,

labeled COMMON storage, library storage, and segment table storage.

] The second function of the loader is to build the segment table, which

entry in the table cunsists of the following information fields:

The address of the basic block’s first quad.
Initialization occurs at load time (the compiler
generates the starting address of each basic
blnck under the segment table relocation
base).

The absolute address of the current
representation of the basic block. When the
block is executed, this address determines
how it is executed. The initial value is the
address of the quad interpreter; when the
basic block’s quads are translated to machine
language, the value is the starting address
of the machine language.

The segment number to which the basic
block belongs when the basic block is fused
into a segment. Initially it is equal to the
basic block number. After fusion, it is the
block number of the segment’s entry bilock.
Thus, the identity of an embedded segment
is lost. In the case of non-homogeneous
fusion, embedded segments are remembered
by saving on a list the block number of the
first and last block of the segment, This
list is associated with the covering segment
by saving a pointer to it in another field
appended to the segment table.

The basic block/segment’s optimization count.
This field is decremented by the segment
driver each - time the basic block/segment is
executed by the segment driver. When it
goes negative, the basic block/segment is

Each entry in this table contains all tl.

A single

g

46

optimized according to the OPTSTATE field.

5) OPTSTATE: The optimization state of the basic

6) PREDPT:

7) LASTPRED:

8) QB:

9) MLB:

10) AENT«Y:

block/segment. This field determines which
optimization is to be performed next on the
basic block/segment when the OPTCNT field
goes negative.

A pointer to the first item in the linked list
of immediate predecessors for the basic
block. This list contains the block number
of all basic blocks that are immediate
predecessors of the block in increasing
order.

A pointer to the last item in the basic
block’s immediate predecessor list.

The address of the first quad branch
instruction in the basic block. This field is
used when it is necessary to move the
machine language for the basic block and
the quad branch instructions must
consequently be retranslated t. machine
language.

The starting address of the machine
language translation of the quad branch
instruction(s) in the basic block. When the
machine language for a basic block is moved,
only those machine language instructions
from CURREP to this address need be
moved.

The machine language address of the
alternate entry point to the segment’s entry
block. The segment’s invariant quads are
affixed to the start of the segment’s entry
block (see Section 3.1.3.3). When the
segment is translated to machine language,
the CURREP field points to the first machine
language instruction of the segmert’s entry
block, i.e., to the invariant code. But the
invariant code need only be executed once,
hence any internal branch to the segment’s
entry block need only go to the alternate
entry point. When the quads for the

segment entry block are translated to
machine language, the AENTRY field is set so
all subtsequent quads of the segment that
branch to the entry block will be transiated
to branch to the address specified by it.

After the program is loaded, the loader initializes the segment table.
The fields are initialized to the following values:
1) CURREP is set to the address of the interpreter,

2) SEGNO is set to the basic block’s block number which
is identical to the entry’s placement in the segment
table (numbers starting at 1). Thus the block number is
used as an index into the table.

AENTRY is set to zero,

OPTCNT is set to a constant which determines how long
the basic block is to be interpreted (see Section 3.2),

OPTSTATE is set to zero (see Section 3.2 for the
possible values this field may attain and their meanings),

PREDPT and LASTPRED are set as the quads of each
basic block are scanned in the generation of the
immediate predecessor lists. The quads of a basic block
are scanned backwards, since in order to determine
immediate predecessors it is necessary to examine only
the branch instructions which terminate the basic block.

QB is set when the immediate priclecessors are being
generated, for the first branch instruction in the basic
block is the last branch instruction scanned (see (6)
above).

After the segment table has been initialized and the immediate

predecessors generated, the loader examines the loop structure of the

program. Based on the loop structure it changes the OPTSTATE and OPTCNT

fields of certain basic blocks. This part of the loader is dependent entirely

on the incremental dynamic optimization scheme employed. Therefore we

48

defer discussing the details of this loop structure analysis until Section 3.2.

The loader terminates by passing control to the segment driver and

specifying to it the tuct basic block in the main program to be executed.

3.1.2.3 The Execution Phase

Execution of the program is controlled by the segment driver
(see Section 2.6). The main loop of the segment driver consists of two
machine language instructions: one decrements the OPTCNT field for the basic
block/segment being executed and tests if the count has gone negative; the
other calls the interpreter or machine language segment as a subroutine. If
the optimization count goes negative, the basic block/segment is optimized
according to the OPTSTATE field before being executed. Execution of the
basic block/segment is terminated by a branch instruction that transfers
control out ot the basic block/segment. The branch behaves as a subroutine
return so control is returned to the segment driver, which executes the next
basic block/segment specified by the branch. Thus the overhead incurred is
two machine language instructions in the segment driver plus the number of
instructions to effect the branch. If the branch is being interpreted the
overhead is approximately 12 machine language instructions; if it is in machine

language, the overhead is two instructions.

it should be pointed out that not only does the segment driver call the

interpreter, but that it is possible for the interpreter to call the segment

driver. Therefore, both routines must be recursive. The latter situtation

arises when the interpreter calls a subprogram unit. The reasons for the
recursive call is that the segment driver controls the execution and
optimization of the program, i.e, execution and optimization proceeds one
basic block/segment at a 'ime. Calling a subprogram unit is the only case in
which the execution of a basic block/segment is interrupted while cther basic
blocks/segments are executed (and possibly optimized). Centralizing the
control of execution and optimization in the segment driver provides a clean
interface between the interpreter, the optimizers, and the program sections in
machine language, and enables the control to be changed easily so different
systems can be constructed and experimented with. The segment driver can
also be directly called recursively if the basic block/segment is in machine
language and contains a call on a subprogram unit. The reason is the same
as for the indirect recursive call, but now the quad calling the subprogram
has been translated to equivalent machine language, i.e, code which is
identical to that executed by the interpreter. A subprogram return is the
only branch out of a basic block/segment in which control is not to be
passed back to the segment driver, but back to the point where the segment
driver was called recursively. To effect the exit from the segment driver,
the subprogram return passes back a block number of zero which the
segment driver executes. The CURREP field for block zero in the segment
table points to an alternate entry point in the segment driver which contains

the exit code. Thus the same control mechanism is used to effect all

T T g, e ——

50

branches out of a basic block/segment.

Program execution thus consists of executing, via the segment driver,
one basic block/segment at a time with optimizaiions intermixed. We now

turn our attention to the various optimizations implemented.

3.1.3 The Optimizations

Adaptive FORTRAN uses four machine independent optimizations: constant
folding, non-homogeneous fusion, common subexpression elimination and code
motion, and a host of machine dependent optimizations. There are a number
of reasons why these optimizations were selected over other possibilities.
First, these optimizations are the most commonly used ones. Second, they
allow us to construct systems similar in characteristics to existing compilers
against which it is possible to compare the Adapiive FORTRAN system
(see Chapter 4). Third, to show the flexibility of the system, we wanted to
include optimizations that applied both to basic blocks and segments. Finally,
we wanted to include enough optimizations to prove the technique was not
only feasible, but that the system couid perform at least as well as current

compiler systems.

There are two machine language generators which apply various
machine dependent optimizations. The first is the "dumb” code generator,

which performs straight forward translation of quads to machine language. It

is used when individual basic blocks are being optimized. The second

machine language generator is the "fair" code generator, which is considerably
more sophisticated. It utilizes information gathered from the translation of

previous quads and in certain cases combines consecutive quads in order to

generate more efficient machine language. It is used to generate machine

langi.age for optimized segments.

Optimization is either at the basic block level (fusion and/or the "dumb"”
code generator), or the segment level (common subexpression elimination or
code motion in combination with the “fair" code generator). Regardiess of
which is used, the net effect is the creation of machine language from the
basic block/segment's quads. For a segment, the machine language for each
basic block must occupy consecutive core for execution purposes. Therefore,
it is built piecemeal by appending the machine language for successive basic

blocks in the segment.

If an optinization has no effect on a basic block and the proper
machine language exists, all machine language instructions except those for
the branches (which terminate the basic block) can be moved because they
are position independent. The branches must be retransiated. (The
instructions which must be moved can be determined from the CURREP and
MQB fields for the basic block in the segment table. The QB field specifies

where the quads are located for the branches that must be retransiated.)

If the machine language for the basic block does not exist, the proper

generator is called and it will compile the machine |inguage directly to the

end of the machine language segment being formed. Since the segment is

built piecemeal, there is a problem with forward branches {0 blocks no! yet

processed. This is handled by chaining the branch instructions tozether and

then patching them when the blecck is processed.

The translation (or retransiation) of quad branches is handled specially
in order to minimize the overhead for inter-block transfers. The problem is
determining the correct machine language to be generated for the branch, i.e.,
whether any should be generated at all, and if so, whether the machine
language should perform the branch directly or go through the segment
driver. The correct decision depends on whether the branch is internal or
external to a segment (see Section 2.3). For an external branch, the machine
language goes through the segment driver so the destination will be optimized
further. In the case of an internal branch, either: 1) no machine language is
generated if the branch is unconditional and the destination is the next basic
block; or 2) the machine language performs the branch directly via the
CURREP/AENTRY field in the segment table because optimization of the
destination is controlled by its segment entry block. After the final
optimization has been performed on a segment, a branch in one of its basic
blocks to the entry block is considered to be internal so it will be performed

directly.

Whether the branch is external, internal via CURREP or internal via

AENTRY is encoded in the quad (see Appendix A, Section A.3, specifically the

BTY tag). The current value of the tag aids in determining the correct

machine language to be generated and saves having to regenerate the
information. It is updated whenever the branch is translated or retranslated
to machine language in order to reflect the (possible) change in status of its

containing basic block brought about by the application of an optimization.

We turn now to a brief description of each optimizer in order to give

a clear understanding of how they work (and their limitations).

3.1.3.1 Fusion

When a basic block has been executed enough times, it is fused into a
segment having the properties given in Section 2.2. The fusion process
consists of two parts: the logical determination of the segment containing the

basic block and the physical creation of the machine language segment.

The logical segment is determined by the fusion &igorithm which utilizes
the immediate predecessor lists and the SEGNO field in the segment table (for
bypassing the examination of immediate predecessor lists of basic blocks
already fused into a segment). As a consequence of the algorithm, a segment
consists of a set of consecutively numbered blocks, ie, a segment is a
contiguous section of the segment table. After the segment is formed, the
SEGNO fields of all basic blocks in the segment are changed to be the block

numbaer of the segment entry block.

The physical machine language segment is created by the control
section of the fusion module. Adaptive FORTRAN uses non-homogeneous
fusion. If the machine language for a basic block already exists, it is used;

otherwise the basic block’s quads are translated to "dumb" code.

Finally, the fusion optimizer determines the new optimization state and
optimization count for the new segment (see Section 3.2 for the precise

values used and how the optimization count is determined).

3.1.3.2 Common Subexpression Elimination (CSE)

The CSE optimizer eliminates common subexpressions from a basic block.
The optimizer is not applied to the segment taken as a whole, but to each

basic block contained in the segment whose optimization state indicates CSE

has not yet been performed (embedded segments may already have had CSE

performed on them).

The optimization is performed on the quad representation of the basic
block. All modifications are made directly to the quads; temporary locations
may therefore be used more than once (in the original compiled code each
result of a basic block was assigned a unique temporary) and no-operation

(NOP) instructions placed where common subexpressions have been eliminated.

The CSE algorithm makes two passes over the basic block’s quads. The

prepass searches for replacement operations on simple viiables and, using

e e e L L

e P — wr P . I r- e e e

this information, determines the limit for each quad, ie., the first quad which
changes the value of one cf its arguments. The limit of a quad puts a
bound on the quads that must be searched when searching for a common

subexpression.

The second pass over the quads searches for common subexpressions,
i.e, for two quads that have identical operation codes and input arguments.
This search is accomplished by scanning forward to the limit of the quad. If
an identical quad is found, it is replaced by a NOP and the usage of the
result temporary for the NOP'ed quad is searched for (it must occur in a
quad that occurs after the NOP’ed quad but before the limit of the quad) and

changed to be the result temporary of the identical quad.

Since the optimizer nas already collected information on the location of
each quad involving a replacement operation, these quads are searched for
pairs from which the intermediate temporary can be eliminated, i.e., for quad
sequences of the form:

(OP,V,E,T) or (OP,E,V,T)
(=,T,,V)

which can be collapsed to:

(OP,V,E\V) or (OPEV,V)
where OP is a binary or unary operator, V is & simple variable, E is a result
temporary or simple variable and T is a result temporary. This collapsing
enables the machine language generators to produce more efficient code, and

saves them from having to regenerate the same information in order to

perform the collapsing themselves.

Since each basic block of the segment is processed separately, the
machine language segment is generated simultaneously. After CSE s
performed on the basic block its quads are translated to machine language
using the "fair" code generator. If the optimization state of the basic block
incicates CSE has already been performed, then the “fair" code already exists

and it 1s simply moved in a manner identical to that previously described.

The entire process is controlled by the control section of the module
which also determines the new optimization state for each basic block and

the new optimization count for the segment.

3.1.3.3 Code Motion (CM)

Code motion eliminates invariant quads in a segment. A quad is
invariant if the arguments of its operation are invariant within the segment.
Invariant quads are replaced by a NOP and are collected together in a new
basic block called the invariant code block. This block is logically appended
to the segment’s entry block. It is not physically appended to the entry
block for implementation reasons: 1) certain optimizations assume (for
efficiency purposes) that the quads for each basic block occupy contiguous
memory locations, and to append the invariant quads would require moving

quads to make room and updating the segment table; and 2) it provides a

cleaner solution to the problem of how to translate to machine language

NSRRI p——

57

internal branches to the entry block, for these branches shou!d not be to the

invariant code block.

To logically connect the invariant code block with the segment entry
block, the invariant block is terminated by a special branch quad of the
form: (JUMP,EB,QREP,QBR). EB is the block number of the entry block, QREP
is the QUADREP field from the segment table for the entry block and is
known as the alternate entry point to the segment, and QBR is the QB field
from the segment table for the entry block. These three pieces of
information constitute what is needed to move the entry block’s machine
language or to generate its machine language. The invariant code block is
made the new segment entry block by changing in the segment table for the
old entry block:

1) the QUADREP field to the address of the first quad in
the invariant block,

and 2) the QB field to the address of the special branch quad
which terminates the invariant code block.

See Appendix B, Section B.l for an example of an invariant code block,
the machine language generated for it, and the entry block associated with it

(especially the code generated for a branch to the alternate entry point).

The CM algerithm first makes sure CSE has been performed on each
basic block in the segment (no machine language is generated). Then in

order to find the irvariant quads, it makes two passes over each basic block

in the segment. In the first pass, it constructs a list of all variables or

ERa

T g R T (PN T g L R P TPy e

indirect results that are not invariant. Using this list, it then searches each

basic block for invariant quads; however it processes only the invariant code

biock for embedded segments which have already had CM applied to them.

Let the quad being processed by CM be of the form:
Ql: (OPALA2,T1)
If the quad is invariant, ie. its arguments Al and A2 are invariant, then how
it is processed depends on whether or not it is in an invariant code block

and if it already exists in the new invariant code block.

Suppose Ql does not already exist in the new invariant block. If Ql is
not in an invariant code block, then the quad (OP,A1,A2,T3) is added to the
new invariant code block, where T3 is a new unique temporary (using a new
unique temporary is necessary since basic blocks share the same temporary
locations). Then Ql is replaced by the quad (REPL,T3,T1), read T1eT3, if Tl
must be in memory (see Appendix A, Section A3, specifically the SR tag)
otherwise with a NOP. All occurrences of Tl occurring after Q1 in the basit
block are replaced by T3. If Ql is in an invariant code block, Tl is a
unique temporary, so the quad (OP,ALA2,T1) is inserted into the new

invariant code block and Ql replaced with a NOP.

If on the other hand Q1 ic already in the new invariant code block,
then it is a common subexpression that is invariant in more than one basic
block (recall CSE is performed only on individual basic blocks of a segment,

not on the segment taken as a whole). Let the common subexpression in the

59

new invariant code block be of the form: (OP,A1,A2,T2). Then if Ql is in &n
invariant code block, Tl is a unique temporary and it suffices to insert the
quad (REPL,T2,T1) in the new invariant block and replace Q1 with a NOP. If
Ql is not in an invariant code block, then Ql is replaced by the quad
(REPL,T2,T1) if Tl must be in memory; otherwise with a NOP. All

occurrences of Tl occurring after Q1 in the basic block are replaced by T2.

The net effect of the algorithm is to cause quad. to "bubble" to the

outermost segment (loop) of which they are invariant.

The control section of the CM module invokes the CM algorithm and
then generates the machine language segment. For those basic blocks in
which invariant code was removed and for the entry block to which invariant
code was appended, machine language is regenerated using the "fair” code
generator.. The ("fair") machine language for the remaining basic blocks
already exists and is moved in a manner identical to that previously

described.

As is the case for the other optimizers, the final function performed by
the module’s control section is to determine the new optimization state for
the basic blocks of the segment and the new optimization count for the

segment (see Section 3.2 for the exact values used).

R O (P . ——

T S S - WCT | e Ui M T T T TR TRt

e —

3.1.3.4 The "Dumb” Code Machine Language Generator

The “"dumb" code generator operates on basic blocks, and is invoked
when it is no longer advantageous to interpret a basic block or when a basic
block is fused into a segment and is still in interpretive code form. In
keeping with the philosophy of incremental dynamic optimization (i.e., gradual
optimization of a section of code), it is a fairly straightforward translation of
quads to machine language, and employs a trivial register allocation scheme

and some of the less sophisticated machine dependent optimizations.

The register allocation algorithm uses four working registers that it
assigns on a round robin basis. When a register is needed, ne algorithm
checks if the register after the last register assigned is free. If not, it
generates code to store the register in its associated temporary. A
temporary is associated with a register when it is the result temporary of a
quad. Once the temporary is used as an argument, it is disassociated from
the register because each result generated in a basic block uses a unique
temporary. Variables are not associated with a register. For those
operations (e.g., ini ger division) that require two consecutive registers, a
single register is first located in the manner just described. Then if the next

higher register is in use, code is generated to store it.

Generation of the machine language is table driven. For each possible

quad op-code, there is a control word which specifies what machine language

is to be generated and how. The control word is broken into a number of

e

6l

fields: the type of the operation, the register specificatior of the arguments,
the register specification of the result, whether the quad has embedded
machine language, the number of machine language instructions to be
generated, a pointer to the machine language instructions, an indicator for
CSE and CM eligiblity, and a switch to differentiate between conditional and
unconditional branches. Encoded in the address fields of the machine

language instructions are integers specifying which argument of the quad to

use.

The generator does not make a fine distinction between the op-codes
and therefore does not generate specialized code to handle each situation,
but instead classifies the op-codes into four groups. The Opération type field
in the control word specifies which class the op-code belongs in: commutative
binary, non-commutative binary, unary and all others. The quad is processed

according to this operation type.

As a result of this classification of operations, the number of machine
dependent optimizations that can be performed is limited. These optimizations

consist of:

1) the use of "immediate" instructions for literal constants
(constants less than 18 bits),

2) the use of indexing for indirect results,
and 3) recognizing for a binary or unary operation the

arguments are in a register and utilizing that register in
forming the result.

ol e

62

The translation of quad branches to machine language is a special case;
processing is as previously described. If machine language is generated for
an internal branch, it performs the branch directly through the CURREP field

in the segment table.

The “"dumb" code generator occupies approximately 1.5K of core. it is
fairly fast, taking on the average of 550us to process a quad. The generated
code executes approximately 9 time faster than it takes to interpret the

equivalent quads.

3.1.35 The "Fair" Code Machine Language Generator

The "fair* code generator is applied to segments, one basic block at a
time. It is invoked after the CSE or CM optimizer has been applied to the

segment.

Generation of the machine language involves a thorough case analysis
of the variables for each operation in order that the most appropriate
PDP-10 instructions can be used. The PDP-10 instruction set is quite
extensive; most instructions have a basic form plus a number of variants. To
ulilize the complete instruction set and therefore generate the "ultimate”
machine language would involve an unreasonable amount of effort, certainly
more than necessary to validate our approach. Therefore, the operations

were ranked according to frequency of usage with a corresponding detailed

analysis.

is selected according to information stored in either of two data structures:

the temp table or the register table. There is one entry in the temp table

63
]
The case analysis for the binary and unary operators is based on the
mode of the arguments involved. The possible modes and a brief reason for
€ach are:
1) MEM: argument in memory. This mode handles
variables that are in memory and results that
have to be stored in order to free a
register.
2) REG: argument in a register. This mode is for
retaining variables across replacement
statements and intermediate resuits.
3) NUM: argument is a number. This mode permits
the processing of literal constants (constants
less than 18 bits) and constant felding.
4) REG+NUM: argument is the result of adding the contents
of a register to a number. This mode delays
the gcneration of the addition so that it the
argument is used as an indirect result,]
indexing can be used (the NUMber is the i
address field and the REGister the indexing i
register). ;
l
Using the mode of an argument as a coordinate label and an argument ;
P
to label each dimension, a code array is constructed for each binary and -
unary operation (cf. [Gri71]). Each element of the array contains the code to i
be generated for that particular case. For the binary operators, there are
16 possible cases, while for the unary operations there are only four cases
corresponding to the four modes.
Most of the cases are subdivided into subcases. The correct subcase
i
|

64

for each temporary used in the basic block; each entry consists of six fields:

1) Mode of temporary result:
a) MEM: result has been stored into memory
b) NUM: result is a folded number
¢) REG: result is in a register
d) REG+NUM: result is a register plus a
number

2) Register associated with temporary, ie., the register the
result occupies.

that uses the temporary. When the quad is processed,
the temporary is disassociated from the register it is in.

4) Neg=bit, which indicates the negative of the temporary
is required. This bit permits the generation of negation
instructions to be delayed, and therefore allows multiple
negations to cancel one another or special instructions
to be generated (e.g., load/store negative, subtract
instead of add, etc.).

i
l 3) Range of temporary, ie, the address of the last quad
t

5) Information field, which contains the address of a
constant or the value of a folded constant or literal.

6) Number indicator, which identifies the number in the
information field; either:

a) the number is not a result of foldir; and
the information field contains the address
of the constant,

b) the number is the result of folding and
the information field contains the value of
the constant (which is not a literal).
Whenever an instruction is generated that
uses tris constant, storage must be
assigned for it and initialized to its value,

¢) the information field contains the value
of a literal (folded or otherwise).

The register table contains one entry for each working register; each

entry consists of eight fields:

65

-

1) Mode of the register:
a) register has no associated temporary.
b) register has an associated temporary
whose mode="REG".
¢) register has an associated temporary
whose mode="REG+NUM",

2) The use of the register, which indicates how many
temporaries with mode="REG+NUM" are associated with
! the register.

3) The wvariable counter, whicih indicates how many
variables are associated with the register. This allows
variables to be retained in registers after a replacement
operation and thereby possibly avoids the generation of
a reduandant load instruction.

4) The address of the associated temporary with
mode="REG".

.A 5) Fields for specifying the address of variables associated
with the register (there may be up to four).

The information contained in these two data structures permits the
following machine dependent optimizations:

1) constant foiding,

2) use of special instructions to set memory to @ or -1,

3) use of shift instructions for multiplication or division by
powers of 2,

4) delaying negation operators to make use of load/store
negative instructions, permiting the usage of complement
instructions for an operation, or deleting successive
negation operations,

5) use of “immediate” instructions for operations involving
literal constants as arguments,

6) use of indexing for indirect results (subscripting), I

66

7) performing operations directly to memory, edg.,
incrementation or decrementation by a literal constant or
for quads of the form: (OPVEV) where V is a simple
variable and E is a simple variable or result,

8) performing operations both to memory and a register
simultaneously, e.g., for quads of the form: (OP,V,E,V).

These optimizations are but a small sample of the optimizations that
could be performed if we were o exploit the full instruction set of the
PDP-10. They were selected because they have a high payoff for the effort

invested.

The operations were broken down into three classes with varying
degrees of analysis applied. The most detailed analysis is performed on the
integer arithmetic operators: binary +,-%/ and unary minus, since integer
arithmetic is required in frequently used language constructs (e.g, for counter
variables that control the number of times a loop is executed or for
subscript variables that reference array elements). For the binary operators
there are three code matrices, each designed to handle quads of a specific
form (see Appendin C for the '+’ code matrix). The three forms are:

(BINOP,EL,E2,T)

(BINOP,V,E,V)

(BINOP,E,V,V)
where BINOP is one of the binary operators +,-%/; E, E1l and E2 are either
simple variables, results or indirect results; V is a simple variable; and T is a

temporary. There are two code vectors for unary minus. One handles quads

of the form (-E,T) while the other is for quads of the form (-,VaV)

67

The next class of operations consists of the floating point arithmetic
and logical operators. There is one code matrix to handle the binary floating
point arithmetic and logical operators. Parameters to the code matrix are the
machine language instructions for the operator that handle the different cases.
There are separate code vectors for unary floating point negation and logical

not.

The final class of operations includes all the remaining operations. The
entire analysis is performed by one subroutine, and the production of the
machine language is table driven as it was for the "dumb" code generator.
However, the analysis is more involved due to the different modes the

arguments may attain,

Most of the analysis is independent of the operation being performed,
but there are two types of operations that require special processing. The
first special case involves' the branch operations. The analysis for
determining the correct machine language is identical to that previously
described except that now there is another case to consider if CM was
applied to the segment. This involves external branches to the segment
entry block. If an invariant code block was appended to the segment entry
b'ock by CM, then these external branches must be to the alternate entry
point and not to the invariant block. For these external branches, the
machine language performs the branch directly through the AENTRY field in

the segment table instead of the CURREP field which is the address of the

68

invariant block’s machine language. If CM did not create an invariant block,
then external branches to the entry block are direct through the CURREP
field, not through the segment driver, since CM is the last optimization that

can be applied.

The other special case is for relational operators. This is the only
other case besides CSE in which a sequence of guads is gxamined in order
to produce more efficient machine language. The FORTRAN construct being
optimized is the logical IF of the form:

IF(E1 ROP E2)S
where ROP is a relational operator and S is a statement. The quads
generated for this construct can be found in Appendix A, Sections A.2.1 and
A.2.3, but it is basically the pair:

(ROP,E1,E2,T)
(OP,T, »)

that is being combined to eliminate the intermediate logical result T, where

OP is either BF, BT, STOPT, EXTST or EXTFT (see Appendix A, Table A.l).

Germane to the generation of efficient optimized code is the effective
use of the registers. Whereas the quads operate strictly on temporaries, ‘he
generated machine language instructions use registers, and it is up to the
machine language generator to control how the registers are utilized. One
means of using the registers effectively is for the generator to remember
what variables and results reside in which registers so that those registers

can be used to form further results, thereby avoiding redundant load

69

operations. Thus, for example, the fact a binary operator is commutative is
recognized so the result is formed in the register occupied by one of the
arguments (if either argument is already in a register) or if a replacement
statement of a result into a simple variable is generated, the variable is

associated with the register so it will not be reloaded if used later.

The other means for controlling the use of registers resides in the
register allocation algorithm, which is invoked whenever a register is needed.
The algorithm assigns the least recently used of the 10 working registers.
When a register is needed, the registers (actually the register table) are
searched starting with the last register assigned. First a search for a
register not in use is made. If this fails (ie, all registers are in use), then
a search for a register with no associated temporary is made, starting with
the first. This search is effect'vely for a register that only has variables
associated with it. If thic fails, then it is necessary to store a register
containing a result. A search is made for a register with an asscciated
temporary having the minimum number of associated variables. If this fails,
then all registers have a mode of "REG+NUM", so the register with the
smallest number of associated temporaries is selected. Code is generated to

perform the addition and store the result.

There are cases (e.g., integer division) when two consecutive registers

are needed. There is another form of the register allocation algorithm that is

identical to the one just described, but which searches for two consecutive

79

registers possessing the same properties. If both registers do not have the
same property, another search is made to find at least one with the desired

:
[property. Only if this fails is a search continued for two consecutive
E registers with another identical property.

The “fair" code generator requires approximately 10K of core. It takes
on the average twice as long to process a quad as the "dumb" code
generator, i.e., approximately 1200us. However, code generated for a basic
block runs on the average twice as fast as the cude generated by the

“"dumb" code generator.

3.2 The System's Optimization States and Therr Associated Optimization Counts

I TN PR q e T

Performance of the system depends on: 1) how the fusion optimizer
forms a machine language segment (homogeneous versus non-homogeneous);

2) what optimizations are applied (individually or in combination) and in what

order; and 3) the optimization counts, The modularity of the system and the
isolation of the code that controls the behavior of the optimizers provide the
ability to change the adaptive strategy easily and thereby produce

operationally different systems.

Approximately 15 different systems were constructed and tested before
the final form was determined. As each system was tested, more insight into
the dynamic optimization process was gained. The performance of each

successive system was analyzed and this led to experiments involving

T P T T e PO i T T TN T . . . T I Ty TNy T N eTTTY,, . - _— it

71

variations in the control functions. The final system is a result of this

evolutionary process.

The first systems tested used homogeneous fusion; all basic blocks in a
segment simultaneously attain the same optimization state, which is the
maximum optimization state of any basic block contained in the new segment.
By studying the performance curves it became apparent that performance was
not satisfactory for small execution times. It was deduced that during the
early stages of a programs execution, too much optimization was being
applied too soon. The problem then was to obtain satisfactory performance
for small execution times without degrading performance for medium-to-large

execution times.

The first attempt to defer the optimization process was to change the
optimization counts and keep the optimization states fixed. The optimizations

and their order or application were: transiation of basic blocks to "dumb”

code, homogeneous fusion, CSE and CM. This approach did not prove to be
sufficent mainly because embedded segments tend to attain a high
optimization state and thereby cause the covering segment to be optimized

too fast.

e

The next set of systems used non-homogeneous fusion as described in

Section 3.1.3.1. The results were better than that achieved using

homogeneous _fusion but still not satisfactory, for while it improved

performance for small execution times, it degraded performance for large

72

execution times. The reason was that the optimization state of embedded
segments became frozen. To compensate for this, all embedced segments
were advanced to their next optimization state before an optimization (CSE or
CM) was performed. This improved the performance for large execution
times, but degraded the performance for medium execution times. Therefore,
another approach was needed for controlling the optimization rate of

embedded segments. 8

We decided to perform a pre-analysis on the loop structure of the
program before execution started, and to change the optimization state and
optimization count of certain basic blocks from their initialized values
according to their depth of nesting in the loop structure. We first attempted
to increase the optimization rate of innermost loops since they are executed
the most frequently and ‘therefore should be optimized first. We hoped the
additional optimization time would be negligible compared to the savings in
execution time. Only innermost loops consisting of two or fewer basic blocks
were considered. Three different ways in which the initial optimization of
these innermost segments could be allowed to proceed were considered:

1) The transiation of a basic block’s quads to "dumb" code
if the basic block is executed more than once.

2) Fusion to "dumb" code if any basic block in a segment
is executed more than once.

and 3) Total optimization of a segment if any basic block in it
is executed more than once.

The results were encouraging, with the second of the three approaches being

b S e

73

the most promising. However, performance for medium execution times was
still being degraded because the optimization rates of the non-innermost
segmenrts were the same. Therefore, the loop analyzer was modified to
recognize in~ermost and outermost segments, thereby partitioning the
segmern(s into three classes. The outermost segment’s optimization count for
the last optimization ctate was made smaller than that for other embedded
segments because its execution rate is slower than that for these other
segments and therefore it should not bz executed the same number of times

before being totally optimized. This ‘nal modification produced the most

favorable results.

The optimization states for the final system on whose performance we
shall report in the next chapter were as follows:

0: franslate the interpretive code for the basic block to
"dumb" machine language.

l: perform a non-homogeneous fusion of the basic block
into a segment. Basic blocks in interpretive code are
translated to "dumb" machine language; blocks in machine
language are moved as is with their branches
retranslated.

2: perform code motion on the secment. Before the
optimization s performed, the C(SE algorithm s
performed on all basic blocks in the scgment. After the
optimization, the quads of each basic block are
translated to “fair" machine language.

Note that CSE is not a separate optimization, but is combined with CM.

The reason was that the time to generate the machine language segment

using the "fair" code generator is appreciably larger than the time to perform

74

the CSE or CM algorithm. Therefore, the combined time to perform CSE and
CM separately is much greater than tie time to perform the combination,

because the machine language sepment muct be generated twice.

The optimization counts associated with each of the optimization states
depend on the loop structure of the program. In the loop classification that
follow, the triplet (CO,C1,C2) represents the optimization counts for
optimization states 0, | and 2 respectively:

1) innermost segments (e, loops): (0,1,50). Thus
innermost segments are fused into “dumb" machine
language if executed once, then totally optimized. The
loop analyzer initializes the optimization state and count
for basic blocks belonging to an innermost segment to
1.

2) outermost segments: (6,15n) where n = 10 if the
lengtn of the segment (in basic blocks) is s 19,
otherwise 2klength.

3) other segments: (6,15,200).

4) entire subprogram: (6,15,n) where n is the same as in
2). However, CM is not performed as the last
optimization; instead CSE is applied to all the basic
blocks in the subprogram. It makes no sense to remove
invariant quads out of a subprogram because the entire
subprogram is always executed when called. Thus the
entire subprogram is considered a segment and
processed as any other segment with respect to
optimization. What constitutes an outermost loop inside
a subprogram depends on whether the subprogram is
called from within a loop. It is assumed that this is
always the case for it this assumption is not made,
experiments indicate that system performance s
degraded.

Since the third optimization count is determined prior to pregram

execution, it must be saved. This is accomplished by appending another field

T EmI———— W=y

T — P E—— p——

75

to the segment table.

Finally, an explanation of how the optimizatiin counts were determined
is in order. The final values given above are based on findings obtained by
experimenting with a system that employed homogeneous fusion.
Corresponding to that system’s four optimization states, there were four
optimization counts: OPO, OPl, OP2, and OP3. Initially, basic blocks and
segments were treated uniformly. The optimization counts for those in the
same optimization state were assigned a constant value that did not depend
on any attribute of the basic block or segment. The values selected and the
reasons were:

1) OPQ=10. OPO controls when a basic block is translated
to "dumb” code. Since translation time is 55@us/quad
and interpretation time is approximately 25ps/quad, an
upper bound on the number of times the basic block
should be interpreted before being translated is
550/25=22 times. However, this calculation does not
take into con<.deration the execution time of the new
representation. If the basic block continues to be
executed, it would pay to translate sooner because its
execution time will be less. Thus, a fraction of 22 was
selected, viz., approximately 1/2.

2) OP1=15. Determining OPl is harder, because the
amount of time required to perform the homogeneous
fusion algorithm is a function of the length of the
segment and cannot be determined a priori. Therefore,
the value choosen is based on the fact that fusion
should be performed as soor as possibl, but not
before the benifits of being in "dumb" code could be
feit, ie, the effort required to trenslate quads to
"dumb" code should ~ot be wasted.

3) 0P2=35. Since CSE produces code that is at least
twice as fast as that produced by fusion to "dumb"
code, a value was choosen which is ap,roximately twice

OP1.

4) OP3=70. Because the benifits of going from CSE-"fair®
code to CM-"fair" code are not as great as gong from
fused "dumb" code to CSE-"fair" code, a valie was
choosen that could delay performing CM tor a
reasonable amount of time.

In an attempt to improve performance for small execution times these
optimization counts were varied slightiy, with no appreciable results. Since
OP3 was thought to be the most critical factor, other functions for
determining it were tried based on the length of the segment measured in
either number of quads or number of basic blocks, e.g, taking the natural

logarithm or a constant muitiple. The most promising was taking a constant

multiple (2) of the length measured in basic blocks.

It became apparent that constant optimization counts were not sufficient
to significantly improve performance. Further improvements were made by
changing to non-homogeneous ‘usion, combining CSE with CM, and not treating
segments uniformly, but classifying them according to their level of nesting in
a loop structure. This necessitated adjusting the optimization counts
accordingly. The values choosen are given above; the reasons are:

1) innermost segments: Cl=1 for there is no reason to
perform any optimization if the segment is not executed
at least once. To totally optimize the segment after it
ic executed once resuits in too much optimization being
applied too soon. Therefore, total optimization is

delayed, and since CSE was combined with CM,
C2=0P1+0P2=50.

2) outermost segments and entire subprograms: CO=0P9=]10
proved to be too high a value, while Ci=5 was minimal.
Therefore, CO=6 was choosen. Cl=0Pl=15 for the same
reasons given for OPl. C2 is a multip2 of the length
of the segment measured in basic blocks because this
function was experimentally the most promising for

St

e

77

determining when the final optimization should be
performed.

3) other segments: C2=200 because OP3 was considered to
be too small for a segment that is in a loop structure
at least three levels deep. Based on an analysis of
how many times such a loop could be executed in such
a loop structure, 200 seemed a reasonable choice.
it is unfortunate that the optimization counts were determined

heuristically and a more theoretical basis was not found. But the excellent

performance results presented in the next chapter speak for themselves.

78

I
| FORTRAN

| Source Text

\

l d

'r

|

|

|
| |
| Compiler |

|
| Relocatable
| Quads
I

v
! !

| Loader]
l J

i
|
| Absolute
| Quads

I
v

! | |
Segment | | Machine Language |

Driver | €==e-- > | for Basic Blocks |
| | or Segment |
] l]

p— — ——— —
5
—
o
-
o
~
(1]
-
(]
=
A
]
'
]
1
]
\4

A
|
|

v

i |
Optimizers |

L J

—— >

|
Machine |
Language |
Generators |
]

— - T T T

Figure 3.1: Structural Organization of the Adaptive FORTRAN System

i

™~

Chapter IV

Validation and Experimental Results

ir this chapter we present the experimental evidence which
demonstrates that dynamic optimization is a workable and valid technique.
The demonstration strategy consists of implementing the Adaptive FORTRAN
system described in the previous chapter, and measuring its performance on

an appropriate program mix.

In order to evaluate Adaptive FORTRAN's performance measurements, it
is necessary to compare the results with those obtained by running the same
set of test programs under other types of FORTRAN compilers, viz., WATFIV,
FORTRAN-IV G and FORTRAN-IV H. To do this for various machines would
not, unfortunately, provide a meaningful comparison due to the differences in
the machines and their compilers. For the comparisons to be meaningful, the
same compiler, optimizers, machine language generatorc and object machine

should be used.

Therefore, the approach taken is to transform the Adaptive FORTRAN
system into systems that resemble those three real compilers. It is against
those three compilers, plus the OEC PDP-10 FORTRAN compiler (F40), that the
Adaptive FORTRAN system is compared. We will present the results of
running the test programs under the five different systems in tabular and

graphical form, and discuss their implications.

In order to have & basis for evaluating how dynamic optimization
compares to current compilers, it is necessary to run a number of test
programs under different compiler systems and to compare the performance

measureraents. For FORTRAN, there are three well known classes of FORTRAN

80

4.1 Comparative Compiler Systems

compilers that might be used for comparison purposes:

1) WATFIV:

2) FORTRAN-V G:

3) FORTRAN-IV H:

a one pass compiler that compiles
directly to core. It is very fast and
the code produced is fairly decent.

usually a multi-pass compiler that
produces a relocatable object module
that must be loaded by a standard
system loader. It compiles relatively
fast and generates code that is better
than that produced by WATFIV.
Optimization is at the basic block level.
The generated code is corparable to
that prcduced by CSE and the “fair"
code generator.

F40, the PDP-1©0 FORTRAN compiler,
can be classified as a G-iype compiler
except that optimization is at the
statement level. It compiles relocatable
code to a disk file. A standard system
loader creates in core an absolute load
module fiom one or more relocatable
object mocules. This load module can
be saved ar a file on disk and called
for execution.

a multi-pass optimizing compiler that
optimizes the entire program at
compile-time, The outyg ut is a
relocatable object module. The compiler
is usually a few times slower than
FORTRAN-IV G. However, the object
code is usually two or three timas
faster than that produced by
FORTRAN-IV G (see Low[69])

——

There are a number of practical problems in making the comparisons.

First, not many computers have all three compilers available. Second, the
differences in characteristics of various computers (e.g., speed, word size, and
instruction set) must be taken into account; this complicates the comparisons,
Finally, the differences between the compilers themselves, e.g., the parsing
and code generation techniques employed, the type of machine language

generated, and the run-time support package must be taken into account.

The ideal situation would be to have all the compiler systems run on
the same machine and to use he same compiling techniques, optimizers,
machine language generators and run-time support package. The construction
of these compiler systems was considered to be too large an undertaking.
Therefore, a more expedient approach was taken in which the Adaptive
FORTRAN system (AF) was transformed to resemble each of the other three
compilers. It was easy to make the necessary changes because of the way
AF w.. constructed (see Sections 3.1.2 and 3.1.3). The main discrepancy
between the transformed systems and the actual compilers lies not In the
type of code produced, but in the way it is produced. Each transformed
system uses the Adaptive FORTRAN compiler to traasiate FORTRAN source text
into quads. After loading the quads, but before starting execution, the quads
are translated to the machine language form that most resembles the code
produced by the compiler being emulated. We feel this discrepancy in no

way alters the validity of the test results, since the use of a consistent

approach does not bias the results.

St ok e

i

The three transformed systems and the manner in which they produce

code are:

1) AFW:

2) AFG:

3) AFH:

82

resembles WATFIV., The entire program s
Iranslated to "dumb" code before execution starts.
A true WATFIV compiler does not produce quads,
but compiles machine language directly. Like
WATFIV, AFW compiles in one pass directly to
core. But whereas WATFIV's machine language is
absolute and requires some patching before
execution starts, AFW produces relocatable quads
which must be loaded. Therefore, the
comriler-loader phases of a WATFIV compiler

protably would be slightly faster than those for
AFW.

resembles FORTRAN-IV G. CSE is performed on
all the program’s basic blocks and then the entire
program is translated to "fair" code before the
start of execution. A FORTRAN-IV G compiler
usually produces relocatable machine language
directly to a disk file. The absolute load module
is created from the relocatable object modules by
a standard system loader. Since these modules
are on disk, load-time should be greater than that
for AFG which uses a specialized in core loader
(see Section 3.1.2.2). The compile-tim: for
FORTRAN-IV G should be comparable to the
combined time required by AFG to compile and
load the program and perform the tiranslation of
the quads to machine language. Therefore, the
compiler-loader phzses of AFG should be slightly
faster than that for FORTRAN-IV G.

resembles FORTRAN-IV H. All optimizations are
applied to the entire program which is then
translated to “fair" code before the start of
execution. CSE is first performed on each basic
block in the entire program. Then the segments
are formed via fusion starting with the innermost
ones and working outwards. The list of segments
and their order of processing is given to the
system, not deduced by it. As each segment is
formed, CM is performed on it. After all
segments are formed, the entire program is
transiated to "fair" code. A true FORTRAN-IV H

T T T N

compiler also produces an internal form such as
quads which its optimizers process (cf. [Low69)).
The compiler-loader phases of AFH should bs
slightly faster than that for FORTRAN-IV H for the
same reasons given above for AFG.
These three compiler systems form the basis against which AF s

compared. The ierformance of eacn system was measured by running the

same set of test programs under each.

4.2 The Test Programs

In order to draw meaningful conclusions about tnhe performance of AF, it
is necessary to run a number of test programs under it that have different
characteristics. Care must be exercised in selecting the test programs to
avoid biasing the results. For any compiler system, it is always possitie to
construct a program that makes it look miserable or one that makes it look
good. To ensure that the test programs are representative of the type of
programs written in the real worid, both the published literature and students

were used as sources.

A number of criteria were used to select the test programs from the

potential candidates; they were designed to test if the usage of AF s

restrictive. The main criterion was to select programs with differing loop

structures, e.g., a different number of loops, loop lengths (measured in basic
blocks) and loop nestings. The reason was that we wanted to test AF’s

performance both on those class of programs it was designed for (i.e.,

programs for which 57 of the code accounts for 507% of the execution time)

and on those that do not fall into this classification.

Second, we wanted programs that have parameter(s) that can be varied
to control their execution time. This allows us to study the performance of
AF for small, medium and large execution times, and determine if performance

is a function of the execution time.

Finally, we wanted programs that were compute bound in order to do a

worse casc analysis. 1/0 bound programs were not selected because the 1/0

handlers are not part of the user’s program and cannot therefore be
optimized by the system, and if the program performs any 1/0, the 1/O time
is a constant for a fixed test point regardless of the version of the |
experimental compiler system being run under. Thus, the analysis of the
results is unaltered since it is the difference between the measurements that

is relevant when making comparisons. i

The four test orograms selected (see Appendix B for a listing of the
source) and their characteristics are:

1) EE: A student electrical engineering problem.

a) Control parameters: C2. and C3l, increments
that control the accurracy of the results C2
and C3 respectively. For the test runs, C2i
was held fixed while C3! was allowed to
vary.

b) Prugram units: Main program unit only

¢) Number of statements: 51

d) Number of basic blocks: 9

e) Number of individual loops: 1

f) Loop size: 7 basic blocks

g) Loop nesting: 1 single level

This program s to typify the type of
program wrillen by a student. It was obtained
from an EE student [McW72]

2) SIEVE2: A prime number generator [Cha67]).
a) Control parameter: K, the number of prines
to be generated
b) Program units: Main program umit only
¢) Number of statements: 86
d) Number of basic blocks: 27
e) Number of individual loops: 7
f) Loop sizes(in basic blocks):
1,2(2),4,5(2),25*
g) Loop nesting:
1 single level
5 double level
1 triple level

This algorithm is a modification of Chartres’
algorithm in that it generates the first K primes
instead of all the primes < M.

3) LES: A linear equation solver [For67 and Mol72])
a) Control parameter: N, the number of
variables
b) Program units: Main program ut plus 2
subprogram units
¢) Number cf statements: 97
d) Number of basic blocks: 45
MAIN: 15
DECOMP: 20
SOLVE: 10
Number of individual loops: 13
MAIN: 4
DECOMP: 5
SOLVE: 4
Loop sizes(in basic blocks):
MAIN: 1,2,4(2)
DECOMP: 1(2),3,4,18
SOLVE: 1(2),3(2)

+ The notation is to be interpreted as follows: for the 7 individual loops, one
is of size 1, two of size 2, one of size 4, two of size 5, and one of size
25.

g) Loop nesting:
MAIN: 2 single level
2 double level
DECOMP: 1 single level
3 double level
1 triple level
SOLVE: 2 single level
2 double level

. The original algorithm given in the textbook
1 by Forsythe and Moler [For67] consists of two
! subroutines. However, Moler later published new
i subroutines that were a modification of, and
t replacement for, the corresponding original
routines [Mol72]. Thes: were the routines used
in the program. The test matrices were
generated by the program and correspond to
Example 3.6 in the book by Gregory and
Karney [Gre69] (see Appendix B, Section B.2).

4) QZ: An eigenvalue problem [Mci73]
a) Control parameter: N, the size of the square
input matrix
b) Program units: Main program unit plus 9
subprogram units
¢) Number of statements: 654
d) Number of basic blocks: 323
MAIN: 9
Qs 7
QZHES: 66
QaT: 97
QZVAL: 49
QZVEC: 77
HSH3: 5
HSH2: 5
CHSH2: 5
CDIv: 3
e) Number of individual loops: 51
MAIN: 2
QZHES: 19
QaT: 12
QZvAL: 4
QZVEC: 14
HSH3, HSH2, CHSH2, CDIV: @

87

f) Loop sizes(in basic blocks):
MAIN: 2,5
QZHES: 2(12),3,5,7(2),21,23,32
QZT: 2(7),3,9,10,44,66
QZVAL: 2(3),42
QZVEC: 2(6),3(2)5,7,18,19(2),48
g) lLoop nesting:
MAIN: 1 single level
1 double level
QZHES: 3 single level
7 double level
9 triple level
QZT: 3 single level
] 2 double level
7 triple level
QZVAL: 1 single level
3 double level
QZVEC: 3 single level
7 double level
4 triple level

This program was obtained from Stewart and
is described, but not given in his paper with
Moler [Mol73]) The test matrices are generated
by the program and were suggested by Stewart
(see Appendix B, Section B5). This algorithm is
interesting in that the intermediate quantities
produced by the program may not be the same
owing to rounding errors. Consequently, the
execution times are theoretically not strictly
corparable. However, for practical purposes
they are, i.e., the timings depend in a uniform
manner on the size of the matrix.

Each of these test programs were run under AF, AFW, AFG and AFH,
plus F4@, the FORTRAN-IV compiler on the PDP-10. We now present the

results of these test runs,

<

4.3 The Test Results

The performance of each compiler system is measured by obtaining the
total run-time for a test program as a function of its control parameter,
where total run-time is the sum of compilation time, load time and execution
time. The timings were made on a PDP-KA10 computer systern with Ampex
core having a 1.8us read/write c.,cle. In order to obtain accurate timings, it
is necessary to run the compiler systems with no load on the computer
system, for timings are sensitive to the system load. During a test run, the
computing environment consisted of the monitor, the 1/O handlers and the
particular compiler system being tested. Identical computer runs produced the
same timings so there is no statistical fluxuation in the results. A 10Qus clock

was used to make the timings, which are given here in seconds.

The results of the test runs are presented in tabular and graphical
form. There are five tables for each program (Tables 4.1-4.4):

1) Compiler and Loader Timing Statistics
The following statistics are tabulated for F40, AFW,
AFG, AFH, and AF:

a) Compilation time,

t) Load time,

¢) Total of a) and b),

d) Optimization time, ie, that part of the
compilation time spent optimizing the program,

e) The percent of the compilation time spent
optimizing, i.e.,

(optimization time/compilation time)s100.

2) Execution Times
The execution times of the program for F40, AFW,
AFG, AFH and AF are tabulated as a function of ihe
control parameter. Data points were taken until the
amount of time spent optimizing tho program became
constant, e, untii no more opfimzations were
performed.

3) Total Run-time
The total run-time (compilation time plus load time

plus execution time) is tabulated as a function of the
control parameter for F40, AFW, AFG, AFH and AF.

4) Total Run-time Ratios
This table indicates the relative speed of AF as
compared to each of the compiler systems. The ratio
of total run-times is tabulated as a function of the
control parameter.

5) Ar Optimization Statistics
The following statistics are tabulated as a function
of the control parameter:
a) Execution time,
b) Optir-ization time, ie, that part of the
execution time spent dynamically optimizing
the orogram,
¢) The percent c¢f the execution time spent
optimizing the program, ie.,
(optimization time/compilation time)x100.

The ttird table of total run-times represents the measurements for
comparing the performance of each compiler system against AF. In order to
compare the systems visually, this table is present ' in graphical form for
each test program (Figures 4.1-4.4). The coordinates of the graph are the
total run-time versus the control parameier. The data for each of the
compiler systems is plotted on the same set of axes thereby producing a set

of performance curves that can easily be compared.

90

In order to further demonstrate the effects of dynamic optimization, we
constructed another compiler system, AFl, which performs no optimizations, but
runs the nrogram interpretively. Table 45 shows the results of the initial

test points for the test programs QZ and LES. These results are plotted on

the corresponding graphs.

Finally, we were interested in studying the behavior of AF for very
small execution times because the optimization time then constitutes a large
percentage of the execution time. We wanted to see how the fraction of
execution time devoted to optimizetion grows and finally peaks. Refined
measurements were made for the test programs QZ and LES, and the results
are tabulated in Table 4.6. The results also were used in accurately plotting

the initial portion of the corresponding performance curves.

o ——

Table 4.1a Compiler and Loader Timing Statistics for EE

Compilation Load Optimization 7 of
Time Time Total Time Compilation
3.37 2.25 5.62 -——— —ees
59 .03 .62 07 11.86
77 .03 .80 .25 32.47
.81 .03 .84 .29 35.89
52 .03 55 .- eeee-

Table 4.1b Execution Times for EE
F40 AFW AFG AFH AF
41.40 35.13 3232 30.74 31.04
20.75 17.70 1655 1551 15.81
10.63 9.09 850 7.96 8.27
5.48 4.69 439 412 4,42
3.85 3.28 3.08 2.88 3.19
3.02 258 2.42 2.27 257

Table 4.1c Total Run-time for EE
F40 AFW AFG AFH AF
47.02 35.75 33.63 3158 3159
26.37 18.32 1735 16.35 16.36
16.25 9.71 9.30 8.80 8.82
11.10 5.31 5.19 496 4,97
9.47 3.90 3.88 3.72 3.74
8.64 3.20 3.22 3.11 3.12

Table 4.1d Total Run-time Ratios for EE

C3| F40/AF AFW/AF AFG/AF AFH/AF

05 1.49 1.13 1.06 .99
1.0 1.61 1.12 1.06 .99
2.0 1.84 1.00 1.65 99
4.9 2.23 1.07 1.04 99
6.0 253 1.04 1.04 .99
8.0 2.77 1.03 1.03 .99

Table 4.1e AF Optimization Statistics for EE

Execution Optimization 7 of
c3l Time Time Execution

0.5 31.04) 1.00
1.0 15.81) 1.96
2.9 8.27) 3.75
4.0 4.42 31 701
6.0 3.19 31 9.72
8.0 257) 12,06

Table 4.2a Compiler

Fao

AFW
AFG
AFH
AF

10
20
30
40
59
60
70
80
90
100
200
300
400
500
600
700
800
900
1000

T e

and Loader Timing Statistics for SIEVE2

Compilation Load Optimization 7 of
Time Time Totel Time Compilation
4.45 2.43 6.88 —— meeee
77 17 .94 A1 14.29
.89 A7 1.06 .23 25.84
1.03 A7 1.20 37 30.10
.66 A7 .83 .——— emee-

Table 4.2b Execution Times for SIEVE2
Fa0 AFW AFG AFH AF
.07 06 06 .02 A2
.07 07 06 .02 15
.07 .07 06 02 .29
07 .08 07 .03 .21
07 08 07 .03 .47
.07 09 08 03 .47
08 19 .08 04 .47
.10 JL .09 04 .48
.10 A1 029 05 .48
.10 12 19 05 .49
.18 .23 16 A2 55
.28 37 .25 21 .64
.38 52 34 30 73
R3Y4 79 .44 41 .83
.65 89 56 52 .95
78 1.09 .68 .65 1.07
.55 1.29 .89 77 1.19
1.10 1.51 .93 91 1.33
1.27 1.75 1.07 1.05 1.46

94

Table 4.2¢ Total Run-time for SIEVE2

K F40 AFW AFG AFH AF
10 6.95 1.00 1.12 1.22 .95
20 6.95 1.01 1.12 1.22 9R
30 6.95 1.01 1.12 1.22 1.03
40 6.95 1.02 1.13 1.23 1.04
50 6.95 1.02 1.13 1.23 1.30
60 6.95 1.03 1.14 1.23 1.30
70 6.96 1.04 1.14 1.24 1.30
80 6.98 1.05 1.1 1.24 1.31
9¢ 6.98 1.05 1.15 1.25 131
100 6.98 1.06 1.16 1.25 1.32
200 7.06 1.17 1.22 1.32 1.38
300 7.16 1.31 131 1.41 1.47
400 7.26 1.46 1.40 1.50 1.56
500 7.40 1.64 1.50 1.61 1.66
600 7.53 1.83 1.62 1.72 1.78
700 7.66 2.03 1.74 1.85 1.90
800 7.85 2.23 1.86 1.97 2.02
900 7.98 2.45 1.99 211 2.16
1000 8.15 2.69 2.13 2.25 2.29

Table 4.2d Total Run-time Ratios for SIEVE2

K FAO/AF AFW/AF AFG/AF AFH/AF

10 7.32 1.05 1.18 1.28
20 7.09 1.03 1.14 1.24
30 6.75 98 1.09 1.18
40 6.68 .98 1.08 1.18
50 5.35 .78 .87 .95
60 5.35 79 .88 .95
70 5.35 .80 .88 .95
80 5.33 .80 .88 .95
90 5.33 .80 .88 .95
179 5.29 .80 .88 95
299 5.11 .85 .88 .96
300 4.87 .90 .89 .96
409 4.65 .94 .90 .96
500 4.46 .99 .90 .97
600 4,23 1.83 91 37
700 4.03 1,07 92 97
800 3.88 1.10 .92 .98
909 3.69 1.13 92 .98

1000 3.56 1.17 93 .98

o

Table 4.2e¢ AF Optimization Statistics for SIEVE2

10
20
30
40
50
60
70
80
90
100
200
300
400
500
600
700
800
900
1000

e

95

Execution Optimization 7 of
Time Time Execution
2 .05 41.67
.15 07 46.67
.20 A4 55.00
21 Al 52.38
.47 37 78.72
.47 37 78.72
47 37 78.72
48 37 77.08
.43 37 77.08
.49 37 7551
55 .37 67.27
.64 87 57.81
73 37 50.68
.83 37 4458
.95 37 38.95
1.07 37 3458
1.19 37 31.09
1.33 37 27.82
1.46 37 25.34

NETINW

Table 4.3a Compiler and Loader Timing Statistics for LES

Compilation Load Optimization 7 of

Time Time Total Time Compilation
F40 6.68 2.20 8.88 e i
AFW .99 10 1.09 A7 17.17
AFG 1.20 .10 1.30 .38 31.67
AFH 1.30 10 1.40 .48 36.92
AF 82 10 .92 -—-- ———--

Table 4.3b Execution Times for LES

N F40 AFW AFG AFH AF

5 .08 09 10 02 .25
19 .25 .25 21 q1 56
15 .65 .62 .48 31 .85
20 1.42 1.31 .98 .68 1.36
25 2.62 2.42 1.78 1.27 2.04
30 4.37 4,04 294 2.12 2.90
35 6.82 6.29 456 3.29 4.14
4? 10.07 9.25 6.69 4.83 5.68
45 14,08 13.04 9.41 6.79 7.65

50 19.17 17.75 12.79 9.21 10.08
55 25.32 23.48 16.91 12.16 13.08
60 32.68 30.32 21.83 15.68 16.70
65 41.33 38.39 27.62 19.81 20.84
70 51.38 47.78 3438 2462 25.66

Tabie 43¢ Total Run-time for LES

N Fde AFW AFG AFH AF

5 8.96 1.18 1.40 162 1.17
10 9.13 1.34 151 161 1.48
15 383 1.71 1.78 1.81 1.77
20 10.30 2.40 2.28 2.18 2.28
2% 11.50 351 3.08 2.77 2.96
30 13.25 5.13 4.24 3.62 3.82
35 15.70 7.38 5.86 4,79 5.06
40 18.95 10.34 7.99 6.33 6.60
45 22.96 14.13 10.71 8.29 857

50 28.05 18.84 14.09 le.71 11.00
55 34.20 2457 18.21 13.66 13.95
60 41.56 31.41 23.13 17.18 17.62
65 50.21 39.48 2892 2131 21.76
70 60.26 48.87 35.68 26.12 2658

Tahis 4.3d Total Run-time Ratios for LES

N F4Q/AF AFW/AF AFG/AF AFH/AF

5 7.66 1.0l 1.20 1.30
10 6.17 91 1.02 1.09
15 5.38 .97 1.01 1.02
20 4.42 1.05 1.00 .96
25 3.89 1.19 1.04 94
30 3.47 1.34 111 .95
35 3.10 1.46 1.16 .95
40 2.87 1.57 1.21 .96
45 2.68 1.65 1.25 97
50 2.55 1.71 1.28 .97
55 2.45 1.76 131 98
60 2.36 1.78 131 98
65 231 1.81 1.33 .98

70 2.27 i.84 1.34 .98

5
10
156
20
25
30
35
40
45
50
58
60
65
70

N

Execution
Time

Optimization

Table 4.3e¢ AF Optimization Statistics for LES

7 of
Execution

.25
56
.85
1.36
2.04
2.990
4,14
5.68
7.65
10.08
13.03
16.70
20.84
25.66

09
.29
34
.45
54
54
61
61
.61
61
61
J7
Yy
g7

36.00
51.79
40.00
33.09
26.47
18.62
14.73
10.74
7.97
€ 9L
4.68
461
3.69
3.00

99

Table 4.4a Compiler and Loader Timing Statistics for Q2
Compilation Load Optimization 7 of
Time Time Total Time Compilation
Fao0 67.00 3.83 70.83 S
AFW 10.12 58 10.70 1.65 16.30
AFG 13.58 58 1416 511 37.63
AFH 15.16 58 1574 6.69 44.13
AF 8.47 58 9.05 -~ emee-
Table 4.4b Execution Times for QZ

N F40 AFW AFG AFH AF

5 .45 .62 52 74 2.29

10 2.70 3.02 2.03 2.04 4.81

15 7.42 7.85 4.94 4.46 7.63

20 15.42 15.89 9.69 8.34 12.02

25 30.17 30.70 18.33 15.39 20.32

30 48.13 48.43 28.63 23.65 23.63

35 73.62 73.57 43.12 35.22 40.34

40 109.75 109.05 6338 51.41 56.74

45 149.85 150.91 87.33 70.42 75.81

50 204.45 200.21 115.41 92.58 98.04

Table 4.4¢ Total Run-time for QZ

N F40 AFW AFG AFH AF

5 71.28 11.32 14.68 16.48 11.34

10 73.53 13.72 16.19 17.78 13.86

15 78.25 18.55 19.09 20.20 16.68

20 86.25 26.59 23.85 24.08 21.07

25 101.00 41.40 32.49 31.13 29.37

30 118.96 59.13 42.79 39.39 37.68

35 144.45 84.27 5728 50.96 49.39

40 180.58 119.75 77.54 67.15 65.79

45 220.68 161.61 101.49 86.16 84.86

£0 275.28 210.91 12957 10832 107.09

Teble 4.4d Total Run-time Ratios for QZ

N F4Q/AF AFW/AF AFG/AF AFH/AF

5 6.29 .99 1.29 1.45
10 5.31 98 1.17 1.28
15 4.69 1.11 1.14 1.21
20 4.09 1.26 1.13 1.14
25 3.44 1.41 111 1.06
30 3.16 1.57 1.14 1.05
35 2.92 1.71 1.16 1.03
49 2.74 1.82 1.18 1.02
45 2.60 1.90 1.20 1.02
59 257 1.97 1.21 1.01

Table 4.4¢ AF Optimization Statistics for QZ

Execution Optimization 7 of

N Time Time ‘ Execution

5 2.29 1.44 62.88
10 481 2.48 5156
15 7.63 277 36.30
20 12.092 3.20 26.62
25 20.32 4,39 21.60
30 28.63 4.40 15.37
35 40.34 4.48 11.11
40 56.74 4.65 8.20
45 75.81 4.65 6.13

50 98.04 4.65 4.74

Table 4.5a AF| Timings for QZ

Execution Total
N Time Run-time
5 258 11.63
10 16.69 25.74
15 46.10 55.15

Table 45b AF! Timings for LES

Execution Total
N Time Run-time

.28 1.20
1.30 2.22
3.79 4.71
8.49 9.32

15.80 16.72

102

Table 4.6a Refined AF Timings for QZ

Execution Optimization 7 of Total
N Time Time Executiun Run-time
1 17 .00 0.00 9.22
2 R7Y .18 42.86 9.47
3 1.08 59 54.63 10.13
4 1.72 1.91 58.72 10.77
$ 2.29 1.44 62.88 11.34
6 2.74 1.70 62.04 11.79
7 3.16 1.95 61.71 12.21
8 4,09 2.38 58.19 13.14
9 4.26 241 56.57 13.31
10 481 2.48 51.56 13.86
Table 4.b Refined AF Timings for LES
Execution Optimization 7 of Total
N Time Time Execution Run-time
1 .08 00 0.00 1.00
2 12 03 25.00 1.04
3 17 .06 35.29 1.09
4 21 .08 38.10 1.13
5 .25 09 35.00 1.17
6 .35 18 51.43 1.27
7 41 .22 53.66 1.33
8 47 .26 55.32 1.39
9 49 .26 53.06 1.41
10 £d .29 51.79 1.48

4.4 Analysis of Test Results

Before anz!yzing the position of the AF performance curve relative to
the curves for AFW, AFG and AFH, we first analyze the relative positions of

the AFW, AFG and AFH curves and see if they conform to expectations.

AFW, AFG and AFH differ only in the amount of compile-time
optimization they apply to a program, an< thus in the efficiency of the
machine language they produce. At the start of execution, ithe AFH curve
lies above the AFG curve which in turn lies above the AFW curve. Because
of the relative efficiency of the code, the AFW curve eveniually will cross
the other two, and the AFG curve will cross the AFH curve. These
crossover points occur when the difference in compilation iime equals the
difference in execution time. It is expected then that if a program is run
long enough, the AFW curve will lie cbove the AFG curve which in turn will

lie above the AFH curve. If, however, the additional optimization (CM)

performed by AFH has no effect, ie, does not remove any invariant quads

from any loop, then the effort is wasted and the AFG curve will lie below

the AFH curve.

By checking the tables and figures for each test program, it is seen
that the curves follow this behavior pattern. Only for the test program
SIEVE2 does the AFG curve lie below the AFH curve. The reason is exactly
that given above, viz, CM has no effect. An examination of the optimizatien

results showed that the Icops did not contain any invariant quads.

104

The performance curves for the four test programs indicate that the
range of applicability for AFG is very narrow since the crossover point
between AFW and AFG is very close to the crossover point for AFG and
AFH. One can only conjecture that AFG is not necessary, ond that o =

should run under either AFW or AFH depending on the length of =xecution.

As for the AF curve, it is expected to initially li= below all the other
curves since It performs no initial uptimizations. This s indeed the case. If
a program is run long enough, the AF curve wili asymptotically become
parallel to the AFH curve because the executable code becomes ideitical to
that produced by AFH. Indications are that it approaches the AFH curve from
above if the time to totally optimize the program exceeds the compile-time

optimization time for AFH; otherwise it approache:; it from below.

There is a range in which the AF curve r.ght cross over one or more
of the other curves and then cross back under. This occurs for small
execution times. The width of the range seems to depend on the diversity
of the program’s loop structure. Consider each test program in terms of
increasingly diverse loop structures:

1) EE (see Figure 4.1): A short program having one loop
which constitutes most of the program. Since this ioop
is an innermost loop, the only difference between AF
and AFH is that AF first translates the loop to "dumb"
code which is executed before being totally optimized.
Hence, AF’s execution times differ from those for AH
by a constant.

2) SicVE2 (see Figure 4.2): Like EE, this program contains
a main execution loop which constitutes most of the
program and gets totally optimized almost immediately.

105

However, it contains a few embedded loops and is {
therefore considered an outermost loop. Hence its

optimization is more gradual than the loop in EE, but

not gradual endugh because representations are change !

before it is necessary. The spike occurring at the

beginning of the AF curve is due to CM having no

effect on the outermost loop. rhis optimization time is

wasted and the machine language segment is identical to

that produced by CCE.

3) LES (see Figure 4.3): This program consists of three
program units, each ccntaining a number of {sops. Each
subprogram unit contains a doubly nested loop which
accounts for most of its execution time. The one
program unit gets called only once so the benifits of
total optimization are wasted if the program does not
run long enough. The other program unit is called
repetitively so eventually the double loop and the entire
subprogram get totally optimized. The results are
excellent, for only AFW is slightly better than AF for
small execution times. The initial part of the AF curve
is not smooth due to the optimization pertabations which
are more apparent for smail execution times.

4) QZ «(cee Figure 4.4): This program contains the most
diverse 'nop structure and consists of 10 program units.
Four of the units constitute the main part of the
program, and each is called only once. There are a
large number of inner loops of 1-2 basic blocks whose
early optimization probably contributes to the fact that
the AF curve is the best of any test programs. This is
also the only case in which the time for total dynamic
optimization is smaller than AFH’s optimization time. The
initial part of the AF curve is not smooth for the same
reason stated for LES.

The test results indicate that AF does not outperform all the other
systems across the entire spectrum of run-times, but that for a particular
program there is a given range in which one compiler system is preferential
over any of the others, However, AF is better than any other single

compiler system over the spectrum. Thus, we conclude that it is better to

106

i build one compiler system to cover ‘'he run-time spectrum than three
separate specialized compiler systems, each designed for a different range of

the spectrum.

:

5]

P

st

Li | T
|

THE

BE

¥ 3 A

Fil

o S

LS B

(3428 18]

: Btk
i

|

!

¢

I
i b
|

|

- i |
] = Bw a0 ¥ !
] ity g $ 3 :
=i . s s .m.m .
* i e e ivei . S —

__;L_T_ FEE R
il

B

|

L

|
1
i
i

<7 e Mg

iT"']'l_

i

R s SR e e o S

|
4

P fom o
[

(RS =8
-

lr.l

douss e

L5 LSRE1 FEOC: ;

T
e

3

2

P Im i | P e 4
Ll — - v*’.lf - .
= -] - Py Twrrn
o FH S e s - Wrﬂ B =N
= i ¢ : - e g B Ay s T T |
i o = - L3 O ! gy G b .1 o o o
= s 1 BT b e SRS R
il - 3 e e e
I t 1 I T) o = =
' o g 3 H L A 3 1
: e I 1 @6 ¥ 31 G ‘B EUB R A D e
i P E1 b e T Ay & 2
i v+ 4 - I~ = h.f.'r 2!
i i e e Fu a Ll e S o)
i v 0 L & * il B W I B
o T o L)) 0
= = T T B ERRE=
A i = o= B
e T 3 - e

.;r.l
s
i

ek e s 15 % 1
- _,1_..”
a i - =
F : .
+
et -
4+F | i |
SRS _. _
| 9 i s g
-4 _ 1 !
3 .
." __
FEE T __ Im
e =3
=
as ' m

. .
—

Th-umy el
e N i

o

[RRE R

M
e — i
! =
% =5
il =
— —
j-e i -3
1 O‘xmyoll
, .
| 3 L
2 ==
; 523

|
L]

+
_
[2]

™

TOD HUI ST T V134NN
St~ v wmp owoa

(AT T

..._T_._‘,i‘::El I

T
T)
B By FE
4 i =t g 1
J»A—- ﬁwl.- JL'* | - [—
i1 e
! il (] [W e |
i ST

i yi iRde R -
! -

_ . e

i t

. |
e 1S = ‘_ J A
. 3 i Bo ik
._. - ..n| lm S el
i stz ity e
I ieEs Ean s LA
bl =1 JiA _ : S
T _|m‘.
s

1=
= [ac i

e

e :
. i 144 i
I s Y S R
. IV |“ 1t I,L[.x i H..T vIL.. ITHH‘:.
| ST RS I ! i
) RN 11 SR]
15 ERERY AN U R AR 0
<,] ms o ad pei e Hweal
| B8] .
s ESR 10 LAY A M
1 FEAS! VAN o NN
H L O el
o ITE) BadN! I wu. ELL |
. ThL B r+ P i
1 ' i =

=

i

Herrfidi. R e

Y ST0 N1 Iavm

‘OD ¥3ISS3I W 1IA4NIN
SNOISIAIQ OL X 53142 € =F_q 4

Hl

Chapter V

Conclusions

This dissertation investigated the possibility of improving the cost

effectiveness of code optimization. Whereas current approaches apply code
optimization equally to the entire program at compile-time, our approach
exploits dynamically the observed behavioral charscteristics of programs, viz.,
that a small part (57) of ths code accounts for a large portion (507) of the
execution time. We studied, in general, the problems of performing code
optimizations at run-time, ie., dynamically determining which sections of code
to optimize, how much optimization to apgly, and when to apply that
optimization. This resulted in the specification of a number of adaptive
schema. The most promising scheme was incremental dynamic optimization
which uses optimization counts to determine which section of code to optimize
and when. The effect is gradual optimization of a program, i.e., one
optimization is applied to one section of code at a time. The longer the
program executes, tlie more optimized a section becomes. Using this scheme,
a prototype system was built for an interesting subset of the FORTRAN
language. Performance of this system, Adaptive FORTRAN (AF), was measured
On a representative set of programs. In order tc make unbiased comparisons
with existing compiler systems, the adaptive system was transformed into

various "normal” compiler systems that generate code analogous to that

produced by WATFIV, FORTRAN-IV G and FORTRAN-IV H. The same cot of

112

test programs were run under these transformed systems, and the

performance measurements compared against those for AF.

The results were very encouraging. While AF did not outperiorm each
of the other systems at all points in the run-time spectrum, it Jid perform
better over the spectrum than did any other single compiler system. The
major remaining problem lies in controlling the rate of op'imization. AF’s
performance curves look worst for small-medium run-times, indicating too much
optimization is being applied too soon. More research is needed to find a

better means for controlling the optimization rate.

AF is the last of an evolutionary chain ¢f experimental systems and
there is every reason to believe it Is possible to construct other variants
which control optimization better and outperform all fixeu-strategy systems
everywhere in the run time spectrum. The first line of attack should be to
continue working with optimization counts. The method for estimating
optimization counts presented in Section 25, viz, using the performance
curves, E(q), for each optimization, should be explored. It would not be
difficult to obtain such curves. Determining optimization counts heuristically
has its limitations, for we found it hard to change an optimization count so
oniy a portion of the performance curve is affected. Therefore, if any
appreciable progress is to bc made, a more thzoretical basis for determinirg
them must be developed. After this line of attack has been exhausted, other

computationally feasible mechanisms and/or parameters for controlling the rate

g Sl ., e " -

113

of optimization should be explored.

In order to evaluate how good the incremental dynamic optimization
scheme is, and determine exactly how much better we can expect to do, the
absolute measure of performance should be obtained, for each test program,
using the iterative dynamic optimization scheme. Using a large amount of
computing effort, this performance curve can be obtained in the following
manner. First, certain measurements must be made. For each optimizer, this
consists of determing its performance curve, E(q), and its space requirements.
Foi earh segment of the program, measurements cf its execution time and
space requirements in all possible representations must be made. Using these
measurements, optimal policies can be determined at run-time over the
execution spectrum. But since it is not known when to determine such
policies; they would have to be continuous'’ determined, say after the
execution of a basic block or segment, or a quantum of execution time.
When the policy changes determines when to optimize. Using these results,
the program would then be run for a given test point, policies changed at
the appropriate time, and its execution time measured. The entire
performance curve for the program can be obtained in this manner. The
resulting curve does not contain the time required to determine the optimal

policy; therefore it is the absolute best one can expect from any strategy.

We feel that we have demonstrated a worthwhile alternative to compiler

design that should be considered seriously. The approach makes more sense,

i — o D T ey g e, @

S e e B i i ah arees s Cime o

114

from an implementation viewpoint, than building many special purpose
compilers. The system can be built in an incremental fashion because of its
modularity. Each step consists of programming and debugging an ootimizer
module and then adding it to the system. The final product is an adaptive
ccmpiler that does not require much more effort to build than a full
optimizing compiler. AF was built in this manner: in 3 man mconths we had
programmed the compiler and interpreter, and had programs running. Then
each optimizer was programmed in 1/2 to 1 man month, debugged and added

to the system. In less than a man year, tte system was completed.

It is clear that such an implementation approach is open ended up ‘o a
point, for one can keep improving the eificiency of the generated code by
adding more efficient optimizations until one exh-usts optimizations. There
are other well defined optimizations that work with the same internal form
we produce; they should be added to the system and the performance
measurements retaken, e.g.,, strength reduction, opening subroutines, and other
machine dependent optimizations. There is one problem associated with
adding more optimizations that became apparent as we constructed AF, viz,
controlling the rate of optimization becomes harder. The means of control
must be defined more sharply. This is the main reason why AF’s optimization
counts are determined as a function of the programs loop structure. As each
optimizer was added, ii became apparent that basic blocks and segments

could no longer be treated uniformly with respect to the optimization counts.

PR PR | T .

Thus we see that additional research is needed to more clearly
understand dynamic opiimization and to refine the current approach.
However, other areas are suggested on which further research should be
conducted. It would be interesting to see if some hardware features can be
developed to aid in controlling optimization. One beneficial feature would be
for determining which section of code is being executed the most. There is
one existing hardware feature we have nct exploited for improving execution
time, viz., micro-programming. There are two areas in the system that could
utilize this feature. One is in interpreting the internal form produced by the

compiler. Instead of writting a program to interpret it, micro-code could be

developed for each operation. The other area is in the machine language
generators. Instead of generating optimized code, specialized micro-code could

be generated that performs the operatiors more efficiently.

Finally, the implications of our ideas should be studied with respect to
conversational languages as indicated by Mitchell |Mit70]. He stated that a
major problem in designing an interactive programming system is determir.ing
how to get efficiency and flexibility, two opposing constraints, to co-exist.
His solution was to build an interpreter/compiler system. In such a system, a
program is partially interpreted (to provide flexiblity for the user) or
compiled (to provide efficient use of the computer) depending on its usage
and constancy over some period of time. We see no corceptual problem in
incorporating dynamic optimization into such a system in cider to further

improve efficiency. All that we would be doing is replacing the mechanism

ST T VIO IS) ——

116

that controls the compilation of code with a more refined one. Whenever
changes are made to the program, the internal form used by the interpreter
could be regenerated for those sections of the program affected, and their
optimization state reset so they would be executed interpretively. As the

program executes, these code sections would again be dynamically optimized.

In summary then, our test results indicate that the adaptive prozess is
a worthwhile and promising technique. As our understanding of program
behavior increases and our programming styles become more formalized, it

may turn out to be one of the most sensible approaches for designing

compiler systems.

17

Appendix A

The Compiled Code

To aid in syntax analysis, optimization and code generation, the compiler
translates the source code into an internal form. A number of internal forms
are possible: Polish notation, quadruples, triples, indirect triples or trees
(cf. Gries [Gri71]). Optimizing compilers have been built using different
internal forms, viz,, FORTRAN IV H [Low69] uses quadruplets,
FORTRAN 1l [All69] uses indirect triples, and BLISS [Bli71] uses trees. Which

form to use is a matter of taste.

The adaptive FORTRAN compiler uses two internal forms. The

compile-time internal form is Polish postfix which is used for syntax analysis

and code generation. The run-time internal form is the generated code and
consists of quadruplest, or quads for short. This form is an expanded
version of the smaller and more consise source code in which language]

constructs (e.g.,, DOs, IFs, subscripts, tests) are expressed as basic operations.

A.l Quadruples

There are a number of reasons why quads were selected as the

run-time internal form. The main reason was that they were a convenient

R | T v —

form that could be efficiently processed by the optimizers and executed

+ Also known as three address code. 1

118

interpretively. Other reasons were:
1) A quac is self contained, i, it is not necessary to
reference the result of another quad when processing
its arguments.

2) Quads appear in the order in which they are to be
executed.

3) Functions will know precisely where to return their
results.

For a single binary operator, quads have the form:
(OP, ARG;, ARGz, ARG3)
where ARGy and ARGz specify the operands, ARGz the result temporary, and
OP the operation to be performed. Not all operations require t'hree
arguments; some require one (e.g, branches) while others two (e.g.,
conversions of tyre and unary operators). As a convention, unused positions

of a quad are left blank.

A.2 Code Generated for each FORTRAN Construct

The adaptive FORTRAN compiler is one pass and generates relocatable
interpretive code(i.e., quads) directly to core. If the program contains no
errors, the relocatable code is loaded by a fast loader which maps

relocatable addresses into absolute addresses and allocates data storage.

The generated ccde for some of the FORTRAN constructs is strictly
quads (e.g., arithmetic operations); others are a combination of quads and

machine language (e.g,, calls to mathematical functions); while others are pure

[P .

119

machine language (e.g, 1/0). Thus when the program is losded, the
instruction storage consists of quads with possible embedded machine language

and pure machine language compiled out of sequence.

The descriptions of the generated code given belov use the following
programming conventions:

1) PDP 10 machine language is represented in MACRO-10
assembly language (cf. [PDP71a)).

2) A colon following a symbol indicates the symbol is a
label.

3) The character ‘¢’ preceding a symbol indicates indirect
addressingt.

4) A period following a symbol indicates it represents a
FORTRAN UUO (cf. [PDP71b)), i.e, a call on the FORTRAN
run-time support system.

5) A period represents the current address.

6) For arithmetic operations, the basic mnemonic has a
single letter prefix to indicate the arithmetic mode:

a) no prefix - integer OP
b) F - floating point OP
¢) D - double precision OP
d) C - complex OP

e) L - logical OP

f) S - string OP

A complete list of the OP mnemonics is given in Table
A.l along with a brief description.

7) The meta-language variables used in the syntactic forms
aro the same as those used in the American Standard
Fortran Report [ASF66] Their' meanings are generally
obvious from context.

* MACRO-10 uses a ‘@ symbol instead, a convention we will not follow.

120

&) The subscripted letter T as an argument of a quad
represents a temporary.

9, addr(v) represents the address of v.
10) Formatted data words are specified by the pseudo-ops

DATA, DESCl, DESC2, DESC3 and TEXT. Their internal
representations are given in Figure A.l.

A.2.1 Expressions
A, Aritmetic

a) Binary operator

] FORM: e; <bop> ey

L. . CODE: (0P, ey, €2, T)

where <bop> u=m +|-|%|/|sx
The OP mnemonics can be found in Table A.l.
b) Negation
FORM: -e
CODE: (NEG, e, , T)
B. Relstional
FORM: e; <rop> e,
CODE: (OP, e, e2, T)
where <rop> u= .LT.|.LE.|.EQ.|.NE.|.GE.|.GT.

The OP mnemonics can be found in Table A.l.

C. Logical
a) Binary operator

FORM: e; <lop> ej

121

..’. ! CODE: (0P, e}, e2, m

where <lop> = ,AND.].OR.|.XOR.|.EQV.

The OP mnemonics can be found in Tzble A.l.

b) Unary .NOT.

FORM: .NOT. e

CODE: (NOT, e, , T)

A.2.2 Assignment Statement
FORM: v) m vy = ., mv, me

CODE: (REPL, e, , v;) jm=l,.,n

A.2.3 Control Statements

A. GO TO statements

a) Unconditional

FORM: GO TO k

CODE: (B. *k,)))
ks DATA addr(k) (into data storage)

b) Assigned

FORM: GO TO v

CODE: (B, v, ,)

Ly ey ———

¢) ASSIGN statement

FORM: ASSIGN k TO v

where v is a simple variable.

CODE: (REPL, k, , v)

B. IF statement

a) Arithmetic
FORM: IF(e)kq,ko,ka
where k; is a statement label or assigned variable.
1) kyrkarkg

CODE: (BLZ, e, *ky’,)
(BEZ, e, *ky',)
5. (B) *ka'. ’)
k't DATA addr(ky)
ko't DATA addr(kp) (into data storage)
k3t DATA addr(kg)

2) Ki=ko

CODE: (BGZ, e, *kg’,)
(BI *kl'l])

3) ky=kg

CODE: (BEZ, e, *kp',)
(B, *ky', ,)

4) kg=kgz
CODE: (BLZ, e, *ky’,)
(B, *kp’, ,)
b) Logical
FORM: IF(e)S

CODE: (BF, e, L,)
{code for S}
L]

1) Sis GO TO k

CODE: (BT, e, *x/,)

2) 5 is STOP
CODE: (STOPT, e, ,)
3) S is RETURN
CODE: (EXTFT/EXTST, e, ,)
C. Subprogram call
a) Subroutine
1) FORM: CALL s
CODE: (CALLS, s/, L1,)
Ll: DATA © (out of sequer.e)
s': DATA addr(s) (into data storage)
2) FORM: CALL s(ay,azy..,ap)

CODE: (CALLS, »s', L1,)
Ll: DATA n

DESC1 TY;,ARy,Ly,addr(ay)

DESC1 TYn,ARpLn,addr(ap)

TY; is the type of a; (see Table A.2),
AR; is the arithmetic of a; (see Table A.3),
L; is the class of a; (ses Table A.4).

b) Function
FORM: f(ajy,a2,..,ap)
CODE: (CALLF, *f, L1, T)

L1: DATA n
DESC1 TY;,AR;,Ly,addr(ay)

DESCI TYn,ARn,Ln,addf(an)

where T is the temporary storage location where !
functional value is to be returned.

124

c) Basic external library function
FORM: xlif(aj,...ap)

CODE: (XCT, xif , , T)
ARG <type code of aj>,addr(ay)

ARG <type code of ap>addr(ap)
where ARG has the same format as 1/0 UUQO’s (see
Sec. A2.4). T is the temporary storage location
where the functional value is to be returned.
D. RETURN statement
FCRM: RETURN
a) Subroutine
CODE: (EXITS, ())
b) Function
CODE: (EXITF, f,, ,)
where f, is the address of the functional value.
E. DO statement
FORM: DO k v=ejezes
where v is a simple variable,
e; are arithmetic expressions which are converted
to the type of v. ez may be omitted, in which

case it is 1.

a) ez not a constant

CODE: (REPL, ey, , V)
L1: {range of DO}
(ADD, v, e3, v)
(SUB, v, eq, Ty)
(NEGL, Ty, ez T2)
(BLEZ, T2, L1,)

R ——

b) eg a conctant
1) e320
CODE: (REPL, e3, , V)
L1: {range of DO}
(ADD, v, e3, v)
(BLE, v, ep, L1)
2) e3<0
CODE: (REPL, ey, , V)
Ll: {ringe of DO}
(~0D, v, ez, V)
(BGE, v, ey, L1)
F. CONTINUE statement
FORM: CONTINUE
CODE: none
G. END statement
FORM: END

CODE: (STOP, , ,) (only for the main program)

A.2.4 1/0 Statements

I/O is performed by the PDP-10 FORTRAN I/O package. Since this
section of code is fixed, it can not be optimized at run time. Hence 1/0O time
is constant regardiess of the optimizations made to the code. It would be
wasteful (timewise) to have to transform interpretive 1/0 code to machine
language. Therefore, the compiled code is identical to that produced by the
PDP-10 FORTRAN compiler, F40. For a description of the FORTRAN UUO’s IN,,

0JT., DATA, SLIST. and FIN, and ARG and type codes, see the PDP-i®

FORTRAN handbook

In what follo

(PDP71b]).

ws, the code is given in MACRO-10 format. Also, RO and

Rl represent machine regictars @ and 1 respectively.

A. Initializatio

n

CODE: MOVE RIl,<format pointer>

a) Input

where

b) Output

FORM: READ f,list
READ f
READ(u,f)list
REAC{u,f)
READ(u,f,END=c)list
READ(u,f,ERR=d)list
READ(u,f,END=c,ERR=d)list

CODE: IN. R1,<unit number>
or MOVE RO,<integer variable>
HRRM RO, .+1
IN. R1,0

(if ERR or END specified)
MOVE RO,<label pointer>
HRRM RO,*<END/ERR>

END/ERR are cells containing the address of
END. and ERR, the cells used by the 1/0
package.

FORM: PRINT f,ist
PRINT f
TYPE f,list
TYPE f
WRITE(u,f)list
WRITE(u,f)

CODE: OuT. R1,<unit number>
or MOVE RO,<integer variable>
HRRM RO, .+1
OuT. R1,0

s—v . o o L= = o1 z - =3 . = B i B i]

127 1

B. Data transmission and 1/O lists
FORM: EyE2,En

where ~, can be a simple variable. subscriptec arable,
expression or array name, but not a DO-ir- 1ed list. ‘

a) Simple variable, constant, or expression (result)

1) non-parameter

g CODE: DATA. <type code><variable/constant/result>

t 2) parameter

CODE: DATA. <type code>s<parameter cell
b) Array
1) non-adjustable dimensions

CODE: SLIST. <type code><base address of array>
ARG 0,<number of elements>

2) adjustable dimensions

CODE: MOVE RO,addr(DVEC)+n+1

3 HRRM RO, .+2
SLIST. <type code>x<parameter cell>
ARG 0,0

where DVEC is the array’s dope vector (see Sec. A.2.5).

c) Subscripted variable

CODE: DATA. <type code>*<temp storage cell>
where <temp storage cell> contains the address of the array
element.

C. Termination

CODE: FIN. 90,0

128

Since the 1/0 code is in machine language, it cannot be mixed
with the interpretive code. Therefore it is compiled out of sequence
under a different relocation base. In order to execute it, it is made
into a subroutine:

<I/0 routine>: BYTE 0
{I/0 code}
JRST 2,5<1/0 routine>

To execute the routine, the following quad is compiled:

(JSR, <I/0Q routine>, ,) .

The effect of the JSR is the execution of the machine language

instruction:

JSR 0,<l/0 routine> .

When the JSR quad is transformed to machine language, the JSR

machine language instruction is generated.

D) FORMAT statement

FORM: k FORMAT(S;,52,....Sn)

CODE:
ks DATA addr(k) (into data storage)
ki TEXT *(S1,52pSn) (out of sequence)

A.25 Array Declarations

An array declarator may appear in a DIMENSION stitement, type
declaration or COMMON statement.
FORM: v(dj,d2,..,.dn)

where d; are integers or simple integer variables,
n is the dimension of the array.

CODE: (generated for arrays with a.justable dimensions)
_ (PUSHJ, ADEC, ,)

: DATA n

DATA addr(DVEC)

DESC2 Ry,addr(d;)

? DESC2 Rp,addr(dn)

where

a) ADEC is the run time array declaration routine which
generates the dummy array’s dope vector, DVEC. The dope
vector has the form:

DVEC: DATA FUDGE
DATA D2

DATA Dn
DATA SIZE (number of elements)

b) R; is the reference of d; (see Table AS5).
¢) If v is a dummy parameter, its value will be set by the

run-time routine PSA and depends on the corresponding
actual parameter. If the actual parameter is:

1) a subscripted variable, PSA stores the address !
of this element into v,

130

2) an array name, PSA stores the BASE, of the
array into v. If the array name is not itself a
parameter, its descriptor to PSA contains the
BASE,; if a parameter, the parameter cell
contains the BASE,.

A.2.6 Array References

References to array elements must contain the number of subscripts
that corresponds to the number of dimensions declared for the array.
Element v(ej,e2,.,es) is at location:

BASE, + (ej*Dj+..+e tD,) + FUDGE, (1)
where

a) BASE, is the address of the first element of the array v
which has e;%..te, elements.

b) D; is defined recursively as follows:

Dy = 1
D = e,.1*D;4

c) FUDGE, = -(Dy+..+Dp)
A) Array with non-adjustable dimensions
In this case, all the information necessary to evaluate
(1) at compile-time is stored in the dictionary along with the
array’s data descriptor.
1) Array not a dummy parameter

n=] (ADD, e Fo T1)

131

n>1 (MPY, ez, D2, T1)
(ADD, Tl, ey, T2)
(MPY, eg, D3, T3)
(ADD, T3, T2, Ta)

(MPY, €ny Dm T2!\-3)

(ADD, T2n-3, 12n.4, T2n-2)

(ADD, T2n-2» Fv’ T2n-1)
where F, = BASE, + FUDGE,

2) Array a dummy parameter

Replace the last instruction above with:

(ADD, Tzn_z/ely \{ T2n-1)
(ADD, T2,.1, FUDGE,, T2p)

where v is the dummy parameter whose value is the
BASE of the actual parameter,

FUDGE, is the FUDGE for the dummy array
parameter calculated from its declaration at
compile time,

B) Array with adjustable dimensions

n=1 (ADD, v, DVEC, Ty)
(ADDo Tlv e1, T2)

n>1 (ADD, v, DVEC, Ty)
(ADD, Ty, ey, T2)
(MPY, ez, DVEC+1, T3)
(ADD, T3, T2, Ta)

(MPY, epn, DVEC+n-l, T2p.1)
(ADD, T2p-1» T2n-2, T2n)

where v is the dummy parameter whose value is the
BASE of the actual parameter.

BT S i T N T VI RO EET . W T IR T I

132

A.2.7 Subprograms

A. FUNCTION Subprograms

FORM: t FUNCTION f(aj,a2,..,ap)

where t is optional and can be INTEGER, REAL or LOGICAL,
a; is a dummy parameter.

Functions must have at least one dummy parameter. A
RETURN statement must be supplied. The name of the function is
treated as a scalar variable for stc. 'g the value of the function.

Storage for the functional value is allocated as for normal scalars.

Functions are referenced within expressions and return a
value. The code generated for a function reference is given in

Section A.2.3.

B. SUBROUTINE Subprograms

FORM: SUBROUTINE s
or SUBROUTINE s(aj,a2,..ap)

where a; is a dummy parameter.

C. Code generated for a subprogram definition

CODE: (PUSHJ, PSA, ,)
DATA n
DESC3 TY4,ARy,psiy

DESC3 TYpARppsin

where PSA is the run time parameter assignment routine,
TY; is the type of a; (see Table A.2),
AR, is the arithmetic of a; (see Table A.3),
psi; is the parameter storage index for a;.

P T e LY. G N g T— ey NN T e

L E ek e o

133

PSA matches the actual parameters with the formal
parameters. Since all parameters are call by address, no conversion
of type is possible. Therefore arithmetics must match. Using
{TY,ARL} in the subprogram r>ference and {TY,AR} in the
subprogram definition, PSA calculates the address of the actual
parameter and inserts it into the corresponding psi. Thus,

references to the actual parameter is indirect through its psi.

A.3 Internal Representation of Quads

The internal representation for quads on the PDP-10 requires two
36-bit words:

QUADLI OP,SRBTY,C;,C2, Ty ,T2,T3,l3,12,l3,addr(ARG))
QUAD2 addr(ARG;),addr(ARG3)

having t'.e format:
7 1211111t 18

QUADL [IR

| N

1AL
{11l J

18 18
QuAD2 [| !
L | |

The 11-bit control field after OP is a set of tag bits which represent
information about the data found in the associated ARG or the address type
of the associated ARG. Tag bits lj-l3 are set by the compiler; teg bits

Cy-Cz, T1-Tg, and SR are set by the loader; and tag bit BTY is set by the

machine language generators.

134

The function of each tag bit is:

1) Indirect addressing indicators |j-Ig
If 1; is ©, ARGy is the address of the operand; if ij
is 1, ARG, contains the address of the operand (indirect
result or parameter).

2) Temporary address indicators Ti-Ta
T, is 1 if ARG; is the address of a temporary;
otherwise ©. These indicators exist for efficiency
purposes. Temporarys are the most heavily processed
entities, and even though it is possible at run time to
determine if an address represents a temporary, to do
so would increase the processing overhead neediessly.

3) Constant address indicators C;-C2
C; is 1 if ARG; is the address of a constant. Again
these indicators exist for efficiency purposes. They aid
the machine language generators in determining if it is
possible to use an "immediate” instruction.

4) Branch type indicator BTY

Set whenever the branch is translated or
retransiated to machine language to insure the proper
code is generated (see Section 3.4). This tag bit is
applicable only to branch instructions. Basically it is
used to distinguish whether the branch is to a basic
block that is external or internal to the segment
containing it. It must be updated whenever new
segments are formed or optimizations applied.

5) Store resuit temporary indicator SR
if SR is 1, the machine language generator compiles
a store instruction to force the storing of the
temporary’s associated register into the icmporary. This
is necessary when a temporary is referenced in machine
fanguage generated by the compiler. This machine
fanguage is never altered, and consequently when the
quad is translated to machine language, its result must
be stored in the result temporary.

135

Table A.l The List of Quad OP codes

Octal Mnemonic Description

200 NOP No operation

001 ADD Integer add ARG3«ARG; +ARG2
002 FADD Floating add

003 DADD Double precision add

004 CADD Complex add

005 suB Integer subtract #RG3+ARG; -ARG2
006 FSUB Floating subtract

007 DSUB D.P. subtract

010 csuB Ce splex subtract

ol1 MPY integer multiply ARG3+ARG;*ARG-
012 FMPY Floating multiply :

013 DMPY D.P. multiply

014 CMPY Complex multiply

015 DIV Integer divide ARG3+ARG;/ARG>2
016 FOIV Floating divide

017 DDV D.P. divide

020 CDIv Complex divide

021 FXFX integer to integer power ARG3«ARG; #*ARG2
022 FLFL Floating to floating power

023 DPDP D.P. to D.P. power

024 CXCX Complex to complex power

025 FLFX Floating to integer power

026 DPFX D.P. to integer power

027 CXFX Complex to integer power

030 NEG Integer negate ARG3+-ARG;

031 FNEG Floating negate

032 DNEG D.P. negate

033 CNEG Complex negate

034 LREPL Logical replacement ARG3+ARG;

035 SREPL String replacement

036 REPL Integer replacement

037 FREPL Floating replacement

040 DREPL D.P. replacement

041 CREPL Complex replacement

042 AND Logical and ARG3+ARGjAARG2
043 NOT Logical not ARG3+-~ARG;

044 OR Logical or ARG3+ARG;VARG2
045 XOR Logical exclusive or ARG3+ARG; xor ARG2
046 EQV Logical equivalence ARG3+ARG*ARG2
047 JEQ String = ARG3+(ARG;=ARG2)
050 EQ Inieger =

051 FEQ Floating =

052 DEQ DP. =

136

" Table Al (com)

Octal Mnemonic Description

053 CEQ Complex =

054 SNE String # ARG3+(ARG#ARG2)
055 NE Integer #

056 FNE Floating #

057 DNE DP. #

060 CNE Complex #

061 SGT String > ARG3+(ARG;>ARG2)
062 GT integer >

063 FGT Floating >

064 DGT DpP. >

065 SGE String 2 ARG3+(ARG12ARG2)
066 GE integer 2

067 FGE Floating 2

079 DGE DP. 2

071 SLT String < ARG3«(ARG;<ARG2)
072 LT Integer <

073 FLT Floatine <

074 DLT DP. <

975 SLE String < ARG3+(ARG;<ARG3)
076 LE integer <

077 FLE Floating <

100 DLE DP. <

101 MOD Integer mod ARG3+ARG; mod ARG
102 AMOD Floating mod

103 ISIGN Integer sign ARG3+sgn(ARG;)* | ARG2 |
104 SIGN Floating sign :

105 CsIGN D.P. sign ,

106 IAR3S Integer abs ARG3z¢« | ARGy |

107 ABS Floating abs

110 DABS D.P. abs

111 CABS Complex abs

112 INT Real to integer truncation ARG3¢sgnARG; *entier | ARG; |
113 AINT Real to real truncation

114 IDINT D.P. to integer truncation

115 IFIX Real to integer conversion ARGz«entier ARG;
116 FLOAT Integer to real conversion

117 Cvsi String to integer conversion

120 CVSR String to real conversion

121 CvsD String 10 D.P. conversion

122 CvsC String to complex conversion

123 B Branch to ARG,

124 BGZ Branch to ARGz if ARG;>0

125 BF Branch to ARG, if ARGj=false

137

Table A.l (cont.)

i Octal Mnemonic Description

126 BLZ Branch to ARG, if ARG;<®

127 BEZ Branch to ARG, if ARG;=0

130 BLEZ Branch to ARG, if ARG;<0

131 STOP Stop execution

132 NEGL Integer conditional negate ARG3«if ARG2<0 then

-ARG; else ARG;

133 FNEGL Floating conditional negate

134 DNEGL D.P. conditional negate

135 EXITS Return from subroutine

136 BLE Branch to ARG;3 if ARGj<ARG,

137 BGE Branch to ARG3 if ARGj2ARG2

140 CALLF Cail the function at ARG;. ARGj3 is the temporary
for the functional value. ARG, is the address of
the formal parameter descriptor list.

141 EXITF Return from function. ARG; contains the functional
value.

142 JSR Simulate PDP-10 JSR instruction. The routine is at
ARG; (used to call I/0 subroutines).

143 XCT Simulate PDP-10 XCT instruction. Instruction to be

executed is at ARG; (used to call external library
functions). ARG3 is the functional result.

144 PUSHJ Simulate PDP-10 PUSHJ instruction. The stack used
is the BLISS run time stack [BIi71]. The routine to
be called is at ARG; (used to call the run-time
sugpport routines ADEC and PSA).

145 JUMP Branch to ARG; (marks end of a basic block)

146 CALLS Call subroutine at ARG;. ARG, is the address of
the formal parameter descriptor list.

147 STOPT Stop execution if ARG)=true

150 EXTST Return from subroutine if ARGj=true

151 EXTFT Return from function if ARGy=true. ARG, contains

the functional value.
152 BT Branch to ARGy if ARG;=true

T T — —

Table A.2 Operand Type (TY)

Octal

00
10
11
20
21
22
23

Type

simple variable

array with non-adjustable dimensions
array with adjustable dimensions
function subprogram

subroutine subprogram

library subprogram

external subprogram

Table A.3 Operand Arithmetic (AR)

Octal

DA DWN —O

Arithmetic

universal

logical

string

integer

real

double precision
complex

Table A4 Operand Class (L)

Octal

ADHWN —

Class

identifier
constant

result

indirect result
parameter

Table A5 Operand Reference (R)

Octal

0
1
2

Reference

normal variable
COMMON variable
parameter

da v

139

A7]| e s .

Figure A.l Internal Representations of Formatted Data Words

-
; : 36
F i DATA | |
[: | |
B+ | 6 6 6 18
DESCl | T I l |
L | l |
6 12 18
; L |
' 6 6 6 18
; DESC3 | T 1
: =< }
1

e

Appendix B

Source Listings of the Test Programs and a Detailed Example

This appendix contains the source listings of all the test programs used
for validation of the system, along with the complete system output for a
matrix multiplication program. This detailed example is the same as that used
by Allen [Ali69].

B.1 A Detailed Example: Matrix Multiplication

A) The Source Listing

1. INTEGER X(50,50), Y(50,50), Z(50,50)
2. c INITIALIZE X AND Y
3. DO 10 1=1,50

4. DO 10 J=1,50

5: x(l)J)‘l*‘J

6. Y(l,J)=MOD(I,J)

7. 10 CONTINUE

8. DO 3 I=1,50

9. DO 3 J=1,50

10. 2(1,J)=0

11. DO 3 K=150

12. 3 Z(1,J)=2(1,)+ X(,K)*Y(K,J)
13. TYPE 20,X,Y,Z

14, 20 FORMAT(5(515/)/)

15. STOP

16. END

A AT G o g

- e I

L o L o

141

B) Listing of Jource with Interpretive Code

AFORTRAN VERSION: 110172 12:84/722 1:3748 P3fa PAGE 1-1
03 00 00 00 000000 IR RRRRRRNRN OATA TRUE
CJ 00 00 00 000001 000000060000 OATA FALSE
vsesepeveBlOCK |
63 €1 00 00 00CCOI 000000000000 OATA 000000000000
00100 1. INTEGER X(50.50), ¥150.50), 7(50.50)
00200 2. C INITIALIZE X AND ¥
€03¢0 3 00 10 150
GJ 00 00 00 CO0003 00CO00CO0CS! OATA 000000000001
00400 4. 0 10 J.150
03 00 00 00 000004 000000000067 OATA 000000000062
C1 €3 00 05 000COC 1+002C000003 000000 00C000 (REPL , 00OOOOO000! , © o
01 €C 0C D0 D0C002 6260000¢0002 ©0C000 000000 (JUMP |, 000002 . 9 . €
veoeeeeeeeBOCK 2
63 Of 00 00 000002 ©00000000004 DATA 000000000004
00500 5. X(1.4)ebed
61 03 00 ©Y 000004 17000000003 000000 000001 (REPL , 0000000000) , © . d
0! 00 00 00 000006 624000000003 000000 000000 (JumP |, 800003 , @ , @
sssvspvesllOCK J
63 ©1 00 00 000003 000000000010 OATA 000000000010
03 0% 00 00 00CC05 7171777777017 OCATA -00000000006)
©1 05 03 04 0CC010 ©14000000001 000004 000000 (mPY . d , 00000000050 , TOS
61 04 05 04 000012 004CO000000¢ 0C000C 000001 (AOO . T08 . , TI8
01 04 03 Ot ¢00014 004000000001 690093 000002 (AGO . Tis ~00000000043 , 1728
00600 ; Y{1.4)sMO0(1 J)
01 ¢5 05 04 0000iI6 004000000000 000001 000003 (AOD ot L d , 138
€1 04 00 04 C00020 170C010C0003 0000CO 000002 (REPL , T3S . 0 aT28
03 05 00 00 0C0006 000CE0C0A62] OATA 000000004623
21 05 03 064 00C022 ©144000000001 €0CO04 000004 (MPY o d , 00000000050 , T4$
01 04 05 04 000024 ©040002000024 000000 000005 (ADD , 148 N , 158
€. €4 €3 04 000026 004000000005 000006 000006 (ADD , 158 , 000000€245) , 168
00700 7. 10 CONTINUE
Q1 05 ©5 04 000030 404000000000 ©00001 C00007 {MOO A o4 , 178
61 04 00 &1 000032 170001000007 000000 Q30006 (REPL , T78 , @ ATES
00800 8 60 3 11,50
©1 00 00 €0 000038 624 000000 00 (JUMP | 000004 , 0 . 0
sedeeseesBlLOCK &
63 01 00 00 CO0004 000000000035 CATA 000000000036
03 00 00 00 000002 0CO00COCCO04 20010 OATA 000000000004
01 65 03 05 000036 004000000001 000C03 00000} (A0 .4 . 00000000001 , J
©1 05 01 00 000C4Ad 570000CCCOGH 000004 000003 (BLE , 4 , 90000000050 , 000003
©1 00 00 0D 000042 624000000005 000000 000000 (Jump , 000005 , @ .0
sosvsusaasBLOCK 5
63 01 00 ©0 000005 000000000044 CATA 0000000000448
©1 05 03 05 000034 004000¢ 000003 (AOO b , decoeceedel , |
©1 05 03 0 000046 570000000000 000004 000002 (BLE o , 00000000050 , 000002
Q1 00 00 00 0C0050 624 X (UMP 200006 .0 . @
sesnveseeBLOCK G
63 @1 00 00 000CU6 000000000052 OATA 000000000052
09300 9. 00 3 J-150
©1 03 60 ©5 000052 170000000003 000000 000000 REPL , 00000000001 , © o |
01 00 00 00 000054 62 7 (JUMP | 000007 , 0 . 0
vss20202eB10CK 7
63 01 €0 00 000087 COOO00COOOCSE OQATA 000700000756
01000 10. 2(1.4)-0
©1 03 00 05 COCO%5 170000000003 000000 000001 (REPL , 00000000001 , © old)
01 00 00 €O 000060 624 10 (JUumP , 00C0I0 . 0 ' 0
sesssaveeBLOCK 8
63 O 00 00 000010 £00000000062 OATA 000000000062
03 05 00 00 000010 Q00000011727 OATA 000000011527
01 05 03 04 000062 044000000001 000004 000000 (MPY) , 00000000050 , T3S
©1 04 05 04 000064 004000000000 000000 000001 (A0 , 188 N , 198
€1 04 03 04 000066 004000000001 Q00010 000002 (AOO , 198 , 00000004951 , 1108
01100 11 00 3 X150
€3 00 00 00 000CI1 000000000000 OATA 200000000000
01 €3 60 04 00070 170001000011 ©00000 000002 (REPL , 00000000000 , © aTiIo8
ol200 12, 3 20)eT (10 x{1K)mY (X)
01 03 20 05 000072 176000000003 000000 016516 (REPL , 00000000001 , © K
0] 00 00 00 000074 B240 1 (uwe o001 . 0 . @

142
AFORTRAN VERSION: 110172 12/4/72 13147 P3ra PAGE 1-2
seunsnnneBlOCK 9
63 01 00 00 000011 000000000076 OATA 000000000476
03 00 00 60 000007 00000000001 | 00003 OATA 00000000001 |
01 05 03 04 000076 044000000001 ©0C004 00000 MY Ly . 00000000030 , T1 18)
01 04 0% 04 0CO10C 004000000000 000000 0000. , (ADD , TIIS . . Ti2s)
Q1 04 C3 04 000102 ©GA00005C001 000010 00000, (ADD , T128 , 00000004981 , TI38)
01 05 €3 64 000104 044000000001 000004 000003 MPY Ly » 00000000050 , 7148)
€1 03 05 04 000106 004000000C03 0000NO 000004 (ADD |, Tyas N , TI58) .
01 04 03 04 000110 004000000C04 000010 000CYS (ADD , TiI58 , 0000000495) , T168)
01 05 03 04 000112 044000016516 000004 000006 (MPY K , 00002900050 , T178)
01 04 05 04 000114 ©030000000C6 OCCOCO 000007 (AD0 , Ti78 N , Tiss)
0! 04 04 000116 004000000007 0SCO05 000010 (A0, T3S 00000000049 , T198)
01300 13. TYPE 20x Y2
01 05 €3 01 000120 22000000001 00C004 00001 [T S , 00000000030 , 7208)
01 04 05 3 000122 0010000C001] 016516 080012 (ADD , T208 K , 1218)
01 04 63 04 000124 0CA0000C00I2 000006 000013 (aoo , T218 , 00000002451 , 1228)
01 04 04 04 000126 03400GOCO0I0 000013 000014 (MPY aTi98 aT228 , 1238)
01 04 04 04 000130 001004000005 0CO0Id 00001S (ADO aTi6S , 1238 , T2a8)
01 ©4 00 04 000132 170001000815 000000 000002 (REPL , T248 .0 ati13s)
01 05 €3 05 000134 004000016516 000003 016516 [CY-T I ¢ , 00000000001 , K)
01 03 03 00 000136 570000016516 000004 00001 | BLE X , 00000000050 , 000011)
01 ©0 @0 00 000149 624000000012 000000 000000 (JuMP 000012 .0 .0)
snnnenvesBLOCK 10
63 01 00 00 000012 000000000142 DATA 000000000142
01 0° 03 05 000142 004000000001 000003 000001 (a00 . 00000000001 , J)
3 01 03 03 00 000144 570000000001 000004 000010 [{: TN S , 60000000050 , 000010)
01 00 00 00 000146 624000000013 0000CI 000000 (JUMP | 000013 , 0 ,)
sssnnneesBlOCK |1}
1 63 ©1 00 00 000013 000000000150 DATA 200000000150
01 05 03 05 000150 004 000003 00000 (a00 1 , 00000000001 , |)
‘8 01 05 ©3 00 00015 57000000000.° 000004 000007 [(: (S , 00000000950 , 900007)
. 01 00 00 00 000154 (24000000014 (UMP , 200014 , 0 , @)
sesseennsBlOCK |2
63 01 00 00 000014 000C00000156 OATA 000000000156 4
02 00 00 00 000000 000000000000 OATA 000000000000
02 63 00 00 000001 200040000012 MOVE 01,000208 ;
62 00 00 00 000002 017040777777 ouT, 01,777777]
0lae0 14, 20 FORMAT(5(5i8/)/) h
02 05 00 00 000003 025000000002 SLIST. 00X i
02 00 00 00 000004 320000004704 ARG 0004704
02 £3 00 00 000005 25000004706 SLIST. ooy
€2 00 00 00 000006 320000004704 ARG 20,000704
02 05 00 00 000007 025000011612 SUST, 002
02 00 00 00 000010 320000001704 ARG 00,004704
02 00 00 00 0CO0I1 071000000000 FIN, ©0,000000
©2 02 00 00 000012 25412000¢ RST 022000000
01 02 @0 00 000156 610000¢ %0 000000 (SR, 0 , 0 , 0)
€ 2 0% 00 000012 00COOC 00020 OATA 000000000013
02 00 C0 00 000013 2415250370 .. TEXT (581
G2 00 00 00 000014 325365127522 TEXT NN
oisee 18. SToP
1600 16. END
01 00 00 00 000160 54 00 (sTop , 0 . 0 . 0)
01 00 00 00 000162 624 15) (JUMP |, 000015 , 0 X)
snnponnesBLOCK 13
63 01 00 00 000015 00CO00000 164 DATA 000000000164
01 00 00 00 000164 544 0 (sTOP , © , 0 , 0)
0] 00 00 00 000166 624 (uwe 0 . 0 . 0)
01 00 00 00 000170 ©OORO00000) START 000000000001

B R ——

s il - o e

et o R " o

143

C) Listing of Immediate Predecessors

BASIC BLOCK IMMEDIATE PREDECESSOR(S)

1 NONE
2 1 8
3 2 4
4 3
5 4
6 5
7 6 11
8 7 10
9 & 9
10 9
11 10
12 11
13 NONE

D) The Directed Graph

144

E) Listing of Code Optimizations

The program was constructed so that the entire main loop
would become totally optimized. The main loop consists of
statements 8 thru 12, or basic blocks 6 thru 11. The partial listing

of the optimized code given below is only for these blocks.

The optimization of the program can be summarized as follows:

1) Fusion of segment 9 (basic block 9)

Since the main loop consists of three nested
DO loops, the corresponding segments will be
optimized in the order they are embedded,
starting with the innermost one. Thus, segment
9 is optimized first, and since it is the
innermost segment, it is fused to "dumb"™ code
after being executed once interpretively. Since
the segment is not yet totally optimized, the
conditional BLE branch to itself is processed by
the segment driver so the segment’s
optimization count will be decremented.

2) Code Motion on segment 9

Segment 9 is now totally optimized. First
CSE is performed on each of its basic blocks
(one in this case). Four redundant
subexpressions are removed from basic block 9:
the 4th, 5th, 6th and 10th quads. The first
three represent the second subscript calculations
for Z(l,J), while the fourth involves the common
subscript calculation for J. Also, the 15th quad
is combined with the 14th, eliminating the
intermediate temporary. Then code motion
results in three calculations involving the
segment invariants | and J being moved to the
front of the segment: the lst, 2nd, and 3rd
quads. Unique temporaries are assigned to the
results of these invariant quads, and they
replace the original temporaries. Thus the
result of the Ist quad is used both in the 2nd
quad and the 11th quad, and the 3rd qu.ds’s
result is used in the 14th quad. Finally, the

resuiting quads are compiled to "fair" code.

Notice that the conditional BLE branch is
now direct and to the alternate entry point of
the segment, iz, to the point after the
invariant code.

3) Translating basic blocks 8 and 10

The remaining basic blocks of the yet
unfcrmed segment 8 are now translated to
“durab”™ machine language.

4) Fusion of segment 8 (basic blocks 8-10)

Next, segment 8 is formed. The machine
language is 1on-homogennus with respect to the
degree of optimization performed on its basic
blocks: the embedded segment 9 is already
totally optimized, while the rest of its blocks
have been transiated to "dumb" code. Since
the machine language for all the segment’s basic
blocks exists, it is only necessary to combine
the machine language for each block, at the
same time retranslating the branches. Notice
that no code is generated for the intra-segment
JUMP’s and the direct branch of segment 9 now
reflects where the new alternate entry point is
located.

5) Code Motion on segment 8

Finally, segment & is totally optimized. This
means performing CSE on basic blocks 8 and
190, then code motion on the entire segment.
These optimizations have no effect. Wrten
forming the machine language segment, basic
blocks 8 and 10 are compiled to “fair" code,
but since the machine language for segment 9
already exists, it need only be moved. The
branches of each basic block are again
retransiarted resulting in the unconditional BLE
branch of block 10 being made direct.

6) Optimization of segment 7 (basic blocks 7-11)

The optimization for this segment proceeds
as for segment 8 in a straight forward manner.

FUSED BLOCKS

9 THRU

TRANSLATING BLOCK 9

032228

32230

032232

32234

03223

032240

032242

032244

632246

032250

032252

0322%4

032256

032260

632262

632264

032266

032220

(MPY
053265
053266

(ADD
053267

(ADD
053270

(MPY
053271
033272

(ADD
053273

(ADD
053274

(mPY
053279
053276

(ADD
053277

(ADD
053200

(MPY
£5330!
053202

{ADD
033303

(ADD
053304

(MPY
053305
053206

{ADD
033307
033310

(REPL
053311

(ADD
053312
053313
033214

(BLE
053315
053316
053317

(NP
053320
0%3321

QUADS TRANSLATED «

CODE MOTION ON

CSE ON BLOCK

SEGMENT

QUADS ELIMINATED «
QUADS REMOVED » 3

COMPILING BLOCK
0533322

992324

053330
032228
032238
632232
032234
32238
632240

9
(MPY
053332
033333
053324
(ADD
033335
033236
033337
(ADD
033340
033341
(Jme
(NoP
(NOP
(NoP
(NoP
(noP
(NoP

03366 | , 032341 , (32530)
MOVEl 04, 000062
MUL o4, 033661
, 032530 , 033660 , 032531)
ADD 04, 033660
, 032531 , 03234% . 032532)
ADDI 04, 045407
€33661 , 032341 , 032533)
MOVEl 05, 000062
IMUL 0%, 033661
032533 033660 , 032538)
ADD 05, 033660
032534 , 032345 . 03253%)
ADD! 0%, 045407
052376 , 032341 , 032536)
MOVE! 06, €00062
UL 06, 052476
032536 , 033660 C0A2537)
ADD 06 03166¢
, 032537 , 032242 , 032540)
ADDI 06, 033577
., 033661 , 032341 , 032541)
MOVEl 07, 0000G2
MUL 07, 033661
, 032541 , 052376 ©32542)
ADD 07, €52376
', 032542 , 032343 . 032543
ADDI 07, 040503
2032520 »032543 , €32544)
MOVE 06, 0€0000(06)
UL 05 9000007
AC32535 , 032544 , €3:545)
MOVE 05 00000XC5)
ADD 05, 000006
, 032%4% , 00C00C #C32532)
MOVEM 059000004
, 052376 , 032340 , 052376)
MOVEl 07 (00C00|
ADD 07, 22376
MOVEM 07, €52376
, 052376 , €32341 ©000941)
MOVE! |5, CCCOI |
CAMG 07. €3224!
POPJ 17, 000000
, 000012 . £00000 , 000000)
MOVEl 1%, €00012
POPJ 17, 000000
18

, 033661 , €3234 , 032446)
MOVE 04, 033661

MUl €4 cooon2

MOVEM 04 032546
032846 , 033660 , 032547)
MOVE 04, 032546

ADD 04, 033669
MOVEM 07, 032547

, 032542 , 032343 , 032550)
ADDI 04, 0a54€7

MOVEM 04, 032950
000011 , €32226 , 032266)
000000 , 00003 , 00C000)
, 900000 , 000000 , 000000}
000200 , 000000 , 000000)
L0000 , 000000 000000)
o . , 0)
, 000000 . 000000 , ©00000)

032242

032244
032248

032250
032252

0322%4

0322%

032260

032262
032264

032266

032270

{MPY
053342
0532343

(ADD
052344

(ADD

(NOP

(ADD
053345
053246

(ADD

(mpyY
053347
033250

(ADD
053251

{NOP

(ADD
053352

(BLE
053352
053354

(Jump
03335%
0533%6

QUADS COMPILED » 14

TRANSLATING BLOCK 8

032212

032214

032216

032220

032222

032224

(mPY
053357
053360
(ADD
053361
(ADD
053362
(REPL
033363
053264
(REPL
053265
053366
(Jump
053367
053370

QUADS TRANSLATED -

TRANSLATING BLOCK 10

032272

032274

€32276

QUADS TRANSLATED «

FUSED BLOCKS

MOVING 810CK
032224

MOVING BLOCK
032266

032270

MOVING BLOCK
032274

032278

, 052376 , 032341 , 032536)
MOVE 04, 052376
iMULI e84, 000062
, 032536 , €33660 , 032537)
ADD 04, 032660
, 032937 , 032242 , €32540)
, 06030 . CO0COD . 00000C)
, 032%46 , 052376 , 032%42)
MOVE €5, 032546
ADD 05, 052376
, 032642 , 032343 , 032543)
032540 8032543 , 032544)
MOVE 04 0335772(04)
MUL 04, 04C503(05)
»032250 , 032544 #032550)
ACDE 045032550
, 000000 , €O00CO , ©0C000)
, 652376 , 037340 , 052376)
A0S ob, €52376
, 0423726 |, 032341 , 000Q11)
CAMG ¢5 032341
JRST 00, 053342
, 00012 00CC00 000COR)
MCVE! 15 00c0I12
POPJ 17, 000000

, €33G61 032341 , 032530)
MOVE! 06, CCO062
MyL 04, 013661

, 032530 , €33650 , 032531)
ADD o4, 0336GC

., 032531, 032345 , 032%32)
ADD! 04, 015607

, 032346 , 000000 »032532)
MOVEY 05, $C0000
MOVEM 052000004

, 032340 , ©O0000 . ©52376)
MOVEL 09, 000031
MOVEM 08, 052376

, 000011 , 000000 , OCLIVO)
MOVE! 15, 00€0I |
POPY 17, 000000

6

(ADD , 033661 , 032340 , 033661)
093371 MOVE!l 4, 000001
053372 ADD 04, 033661
053373 MOVEM 04, €33661

(ME , 033661 , 032341 , 000010)
053474 MOVE! 15, 000010
053375 CAMG 04, 032341
133376 POPY 17, 0000¢C

(JUMP , 000013 , 0000CO , 000020)
053377 MOVEL 15, €O0CIA
053400 POPJ 17, €00000

3
8 THRU 10
8 10 05340!

(JUMP , 800011 , 000000 , 000000}
9 10 093411

(BLE . 052376 , 632341 , 000011)
053432 CAMG 05, 032341
053433 RST 00, 053421

(JUMP , 000012 , 000000 , ©O00OC)

10 T0 033434

, 033661 , 032341 , 000010)
MOV!, 15, 000010
CAMG 04, 032341
rony 17, 000000

, 990013 , 000000 000000

(BLE
053437
033440
033441

(Jume

053442 MOVEI 15, 000013
053443 POPy 12, 000000
CODE MOT'UN ON SEGMENT 8

CSE ON BLOCK

QUADS ELIMNATED «

053547
053550 JRST

CAMG

05, 032341
00, 053536

032270 (JUMP, 900012 , 000000 , ©00000)
MOVING BLOCK 10 1D 053351
032274 (BLE , 0336681 , 032341 , 000010)
053552 CAMG 04, 032341
053553 JRST 00, 053520

CSE ON BLOCK 10
QUADS ELIMINATED - 0
NO QUADS REMOVED

COMPILING BLOCK 8

032212 (MPY , 033661 , 032341 , 032530)
053444 MOvVE 04, €33661
053445 MULI 04, 000062

032214 (ARDD , 032530 , 033660 , 032531)
£53a46 w0 01, 033660

032216 (ADD |, 03531 . 032345 (¢32532)

032220 (REPL , 032346 , 000000 ,0032532)
053447 SETIM 00, 045407(00)

032222 (REPL 032340 , 000000 ., 052376)
053450 MOVEI 04, 00000|
053451 MOVEM 04, 052376

032224 (JUMP , CO0011 . 000000 , C00000)

QUADS COMPILED « 6

MOVING BLOCX 9 TO 053452
032266 (BLE , 052376 , 032341 , 000011)
053473 CAMG 05, 032341
053474 JRST €0. 053462
032270 (JUmP | 0000!2 , 000000 , 000CO0)

COMPILING BLOCX 10

V32272 (ADO |, 033661 , 832340 , 033661)
053475 A0S 04, 33661

032274 (BLE . 033661 , 032341 , 000010)
0534716 CAMG 04, 032341
©s3477 ST 00 ¢hlada

032276 (JUMP | £00013 , 000700 0C0000)
053500 MOVEl 15, 000013
053301 POPY 127, 000000

QUADS COMPILtD » 3

TRANSLATING BLOCK ?

032266 (REPL , 032340 0CCO00 , 0I3661)
053502 MOVFI 04, 000001
053572 MOVEM 04, 033661

032210 (JUMP 000010 , 00CO00 , 000000)
053504 MOVE! 15, 000010
033505 POPY 17. 000000

QUAOS TRANSLATED « 2

TRANSLATING BLOCK |
€3230n (AOD |, 833650 , ©32340 , ©33660)
053505 MOVE! 04, 0000C!
053507 ADO 01, 032660
053510 VIVEM 04, 033660
032302 (BLE , 033660 , 032341 , 000007)

053511 MOVE! 15, 000007
053512 CAMG €4, 032341
053513 POPJ 17, COCCOO

032304 (JUMP 000014 , 000000 , 000000)
053514 MOVEl 15, 000014
053515 POP) 17, 000000
QUADS TRANSLATED « 2

FUSED BLOCKS 7 THRU 11

MOVING BLOCK 7 10 053516
032210 (JUMP . 000010 , 000000 , 000000)

MOVING BLOCK 8 TD 053520
032224 (JUMP 000011 , €00000 , 000000)

MOVING BLOCK 9 T0 053526
032266 (BLE , 052378 , 032341 , 000011)

e s' g P s w s B e e et

032278 (JUMP | 000013 , 000000 , 000000)

MOVING BLOCK 1] 10 053%54

032302 (BLE , D33660 , 032341 , 000007)
053557 MOVEl 15, 000007
053,560 CAMG 04, 032341
05350 ! POPY 17, 000000

032304 (JUMP | DO0O1A , 000000 , ©00N00)
053562 MOVEI 15, 000014
053563 POPJ 17, 000000

CODE MOTION ON SEGMENT 7

CSE ON BLocK 7
QUAOS ELIMINATED « @

CSE ON BLOCK 11
QUADS ELIMINATED « D
NO QUADS REMOVED

COMPILING BLOCK 7
032206 (REPL , 032340 , 000000 , 033661)
053564 MOVEI 04, 800001
033565 MOVEM 04, 033661
€32210 (JUMP | 200010 , 000000 , 00C00E)
QUADS COMPILED = 2

MOVING BLOCK 8 TD 053566
032224 (JUMP , 000011 , 000000 , 000000)

MOVING BLOCK 9 TO 053%74
032266 (BLE , 052376 , €32341 , 000011)
021615 CAMG 05, 03234
054616 RST 00, 053604
032270 (JUMP , 000012 , 000000 , 000008)

MOVING BLOCK 10 TO 053617
032274 (BLE , 033661 , 032341 , 000010)
053620 CAMG 04, 32341
©5362 | JRST 00, 053%66
32276 (JUMP , 900013 , 000000 , 0DOODR)

COMPILING BiOCK 1)

032300 (ADD | 033660 , 032240 , 034360)
053622 A0S 04, 033660

032302 (BLE , D33660 , ©323a1 , 0000)7)
053623 CAMG o4, 632341
053624 JRST 00, 053564

032300 (JUMP , 960018 , 000000 , DOPOOS)
053625 MOVEl 15, 000014
05362~ POPJ 17, 000000

QUADS COMPILED « 3

Cow@® DD wN —

D wn

=% 5T

<

~
- o

~

d

~
[™

~
o

~
B

~
(=)

NN
= -

-~
-

-
"o

(o
~

[
o

[
e 3

w
o

T
%)

w
bl

>
o

o

o
~

Y
w

B
=4

o
@

o
[

o
~

49,

2

oR

ae.

C
c
C
c
c
C
C
c
C
c
<
¢
C

(sl

o v D W

8.2 The Linear Equation Solver: LES

MATRIX INVIRSION USAG A LINEAR I QUATION SOLVER

REFS. 1) ALGORTHM G23ICACM IS G(ARRL 1972)274)
2) POUSYTHL G . AND MOIRCR "COMPUTER SCLUTION
OF {NEAR ALOEBRAIC LYSTEMS™ PRINTICE RALL
ENGLEWOOD CLFFSK U 196G/
J) GRECOSY R T, AND KARNEYD L. “A COLLECTION Of
MATRCLS FO TESTING COMPUTATIONA, ALGORITHMS™
WILLY WTEE ,CHENCE, NFW YORK 1969,

SUBHOUTINES LSED ARI NOT THOSE C:VEN N THE T[XTBODOK, BYI
T REPIACEMENTS GIVEN BY MOLER W ALGORITHM 42)

REAL A(:CO 1C0)}B!100)

INTEGER (00!

READ! 120N

FORMA T((4 12)

Vel N

FORMAT(N & (2)

NOM.100

GENERATE TEST MATIIX A A{iJIsN ABS(I-4)
SEE 12), EXAMPLE 16

oo N

0 | JeiN
Al)N
Al 0-A(1LI)

MAN PROGEAM

CAlL DECCMINNOMA #)
IF{P(N) NE C)GO TO 30
Tvet ec

CHMAT(MAIRIX SINGLAR
sTOP

00 10 Js!IN

00 20 kIN

B(l}le0 0

B(J) 1.0

THE JTH CAIL PRODUCES N B 10f JTH COLLMN OF THE INVERSE
CALL SOLVEINNDMA R W)
END

SUEROUT NE DEZOMP(NNTIM A IP)
REAL A(M. MNDIM) T
INTEGER IP(NDM)
PIN)» |

0O 6 X IN

Wk £Q NGO T0 8
KP oK |

M

08 | 1KPIN
F(ABS(A(LX)) GT. ABSIAIMK)}M.I
CONTNUE

W)

IF(M NE, X}P(N)s-IP(N)
ToAMX)
A(MXJeA(K K]

AlRKeT

F1 EQ 0j)GO 16 O
00 2 k1IN

AKX AIX)/1

00 4 JXPIN

TAM)

A(M J)A(K J)

LIL

W{T EQ 0)GO 10 &
00 3 KPIN
AL RO AKX T
CONTINUE

F(A(KK) £Q QJIP(M).0
CONTINUE

RE TURN

END

SUBROUTINE SOLVEINAT MAB)
REAL A(NDMNDIM)DING M) T
WYEGER IP(NDM)

78.
79
80.
R
82
8]

rA,

L]

86,

R7

BR.
89,
90.
9l
92.
91
94,
9%,

96

97.

Wiy Q. 1)GO 10 9
NM eN-

J0 7 KeINM]
KP oK |

MeiP(K)

1 e8(M}
B(M)B(K)
(k)T

08 7 LKPIN
8(1) BU-A(IX}eT
00 B xBsINM]
XM | N.KB

KeKM 14}
B(K)B(K) /AIKK}
T.-B(K)

00 8 11xM|
B8(1)-B(NA{IX)wT
B8(1)B(1)/A(1,1)
RE TURN

END

T el it b id S —————a w —— AL _ L s T

149
¥
I B.3 A Prime Number Generator: SIEVE2

I C REF: CACM 108(5FP1.1967), P. 570 78. GO 10 %50
2 ¢ ALGORITHM J11: PRIME NUMBER GENERATOR 2 79 60 lele 1
3 C THE ALGOR!TM HAS BEEN MODIFKED TO GENERATE THE 80 R(1)sRR(R)
'} [4 FIRST X PRIMES INSTEAD OF THE PRIMES M, g1, ReRe |
5. 4 82 R LE, JIGO T0O 60
6. [4 NOTE: THERE ARE 78498 PRIMES LESS THAN 10seb. 83 70 FI%]
7 C 8a4. 80 NeN«ON
8 C USING M:10ee6 AS AN LPPER BOUND. AM UPPER BOUND Of 200 85, GO 10 10
9. [4 WILL SUFFICF FOR THE ARRAYS QDQSQAR AND RR g6, END
10 [4 (I£. 2.745QRT(1088G) LN(10¢6,4200)

il INTEGER Q(200)DQ{200)SqQ(Z200)R(200) RR(200)

12. INTEGER #{25000)

13 INTEGER 1LJJJXXKNJRDN

\a, LOGICAL 1

15, P 1)2

16. DNeZ

17, P(2):3

18 43

19. 42

20. K3

21 R({1):3

22, £{3):5

23 Q(2)-25

24, DQ(3)-10

25 $Q(3):30

26. READ(I 2)XK

22 z FORMA 1(GX,15)

28 TyPr 3rK

29, k] FORMAT(" K » I5)

30. N-/ .

3. 10 TeTRUE

3z, ON-6-DN

22. 00 20 113JJ

aa, RWR(Y)

35. (N NE. QUR)GO TO 20

36 QUiR)-NDQ(H)

7. DQ(R)«SQ(R)-DQ(R)

38 T.FALSE, :
39. F(I NE. JJIGO 10 20

a0 Jdedded

a) (R NE JGU 1O 20

az. Jodel

a3. R(J)-J

aa. QU)o P}

a5, 5QlJ)«GePlJ)

a6, DAL J)«SQUIN8(1+(P(J); I))-20 QLY

a7, 20 CONTINUC

[13 F(NOT. TGO TO 80

a9, Kool

50. P{K)eN

51. IFKk £Q XK)STOP

52. a0 #()J £Q GO 10 80

53, Jdedd-1

L F(QIR(II) LT, QIR(JII1NGO T0 Iv

93, c SIFT SORT

56. RR{3)+R(3)

57 IF(JJ LT, 4)GO TO 90

58. DO 110 R4y

99. leIR-1

60. a0 IF(QIR{M)) .GE. QIWR(INIGO 10 110

Gl RR(l+ 1)eRR(1)

62. tol-]

63. F{l GE. 3)GO 10 %0

64. 110 RR(l+})-R(R)

6% [4 MERGE SORT

66. 90 123

67. Re3

G8. JReJde)

69. 50 F(QRR(IRY) GT. QIR(JR)GO TO 120

70. R(J)sRR(R)

7. RelRe |

72. IF(R .GT. JNKGO T0 70 3
73. GO 10 130

74, 120 R(N-RUR)

‘75 SRR

76. IF(JR GT, GO 10 60

7”7 130 ek}

B.4 A Student Electrical Engineering Problem: EE

REAL K1X2

C1.96¢ 6

vB.i120

R.GB00

C2ue .

C2u-100.

261,

C2L.C2Le 1L-6

C2U-CUs 1L-6

C21C2'e 16

€.l

€3J-100.

READ(12)CT

FORMAT(GXF3 1)

TYPt JC

FORMAT(€31+ 'S3.1)
CJCIe 1t -6

C3UCIs 1E-6

CICeit-6

c2.C21

UMAX.0

YMAX.O

CINST0

C23E57.0

A (24C2+C1)/(2eReC1aC2)
BeLQUT(GeC2eC2.C1eC) /(20ReC1eC2)
Q20-vB/(1/C1:1/C2.1/C)

K2+ 1/(8:8)8((AH)eG20 VO /RG20/Re, 1. C1e1/C2Y)
X1-Q20 k2

OASL. K 1a(AB) /(KT e(A B))

QZTPK 1o (BAST)we((Acilja(- 1 /(BeB)))-x 26BASE ww({(A-B)s(-1/(D+8)))
V0. 128.G21P/C2.G20 C2
Use50(C1eVBevH.G2TPeG2TP /C2.Q7200320/CT)
F(CZ GT. CUIGO 10 30

(U AL UMAXIGO TO 50

¥(v0 LT 240)GO TO %0
YMAXY O

UMAX

CIBFST.CI

C28EST.C2

C2.C2:C21

GO 10 40

C€2.C21

F{C3 GT. CIUIGO 10 100
€3.€3.¢I

GO 13 40

C2BE5T.C20E5Te 1E6
CIFCSTCIVESTe L6

TYPL 1 C20ESTLIBEST VMAXLMAX
FORMAT(6X €2 11X 'CI 9%, VO BX WATIS',/4F 12.5)
€ND

SO B wN

151

g

8.5 A Generalized Eigenvalue Problem: Q2

. ¢ Q7 ALGORITHM 78. 1.0
2 C REF: MOLERCH. AND STEWART.GW. "A% ALGORITHM FOR 79. 0D 36 LN
ﬁ i 3. ¢ THE GENERALIZED MATRX EIGENVALUE PROBLEMS™, 80. T e T o 8(IL)eB(II)

Q. [4 SIAM J. NUMER, ANAL, 94(DEC. 1972), sl Je CONT INUE

5. ¢ 82. T . . TRHO

6. DIMENSION A(50.50) B(50,50)X(50.50) AR(50), 83. DO 40 LN

7. 1 A50)BT(50),1T(50) 8a, 8(1J) » 8(1J) + TaB(IL)
8. [4 DIMENSION RAM{50) 85, a0 CONTINUE

9. READ(1 2000N 88. 50 CONTINUE

10. 2000 FORMAT(6X,2) 87. DO 80 J.IN

1. TVPE 2001N 88 T.0

12. 2001 TORMAT(' N « '12) 89. 00 60 LN

13. ¢ GEN.YATE TEST DATA 90. T - T o B(LLeA(IJ)

14, 00 20 1IN 91. 60 CONTINUE

'8, AR(1)al 92. T« -T/RHO

‘s BT(1)eN-le1 93. DO 70 LN

17 D0 10 JIN 94, A1) « A(LJ) o TeB(IL)
18. Al1J) = AR() 95. 70 CONTINUE

19. 8(iJ) « 87() 96. 80 CONTINUE
20, X(1J) « O 97. B(14) « -SeR
21 16 CONTINUE 98, DO 90 LLIN
22. A(L) « 2.0A0) 99. 8(IL) »0.
23. 8L - 2.08(1) 100. 90 CONTINUVE
2a. 20 CONTINUE 1el. 100 CONT INUE
25. CALL QI(SONAD.1E-8ARAIBTIT,TRUE.X) 102 ¥(N LE. 2) GO T0 170
26. C DO 30 wIN 103. NM2 o N-2
27. ¢ RAM(I) « AR()/BT(1) 104, DO 16D K- INM2
. ¢ PRINT 1001 RAM()AR(NBT(1) 105, X1 s Kol
29, ¢ 00 40 JINS 106. NKI -NK-)
30. [1] PRINT 1001 X(J.1)X(Je 1)) X(2: 210 X(J+3,1) X(J+8.1) 107, 0O 150 (BINKI
31, C 100l FORMAT("SE12.4) 108. L o N-1B
32. € 36 CONTINUE 109, Lo Lt
2. SToP 110. CALL HSH2(A(LX)A(L LX)U1L2VIV2)
aa, END 1. F(UI NE. 1) GO TO 12%
3. ¢ na. 00 110 JeKN
36. SUBROUTINE QZINDSABEPSALFRALFIBETAJTER, 113. T s A(LJ) o U2eA(L 1)
ar. 1 WANTXX) 118, AlLJ) » A(LS) Tavi
3s. DIMENSION AINDND)BINUND) A LFRINJALFN)BETA(N), 115, ALLJY) « A(LLJ) « Tov2
39. 1 X(NYND)IT " H(N) 116. 110 CONTINUE
ao. LOGICAL WANTX 17. AlLIX) « D
a1, CALL QUHES(NDNADWANTX X) 118, DO 120 JLN

a2, CALL QUITINONAHIPSEPSAEPSETERWANTX X) 119, T o B(LJ) o UcoB(LIJ)
a3, CALL QZVALINDNADBEPSBALFRALFIBETAWANTX X) 120. 8(LJ) « B(LJ) + Tev)
aq, F(WANTX) CALL QIVEC(NONABEPSAEPSBALFRALFI, 121, B(LIJ) » B(LIJ) + TaV2
an, IBETAX) 122. 120 CONTINUE
46. RE TURN 123, 125 CALL HSH2(LIL 1L DAL LLIBIN2VIV2)
ar, END 128, IF(U1 NE. 1) GO TO 150
a8, C 125. DO 130 lel g

a9, SUBROUTINE QZHESINONAD WANTX X) 126. T« B(ILL) o U2eB(IL)
50. DIMENSION A(NDNO)B(NOND) X(NOND) 127. BUILL) « B(LI) o Tevi
51, LOGICAL WANTX 128. 8(IL) » B(LL) + Tev2
52. ¥(NOTWANTX) GO TO 10 129. 130 CONTINUE

53. 00 3 LIN 150 B(LIL) « €

54, 00 2 JeIN i, DO 148 LIN

55, X(1J) « © 132. T s A(LT) o U20A(IL)
56. 2 CONTINUE { 133. ACLLT) o A(LLE) o Tavi
57. (1) 1. 134, A(lLL) » A(IL) » Tev2
58. 3 CONTINUE 135. 1ae CONTINUE

9. 16 NM1 » N-| 136. F(NOT, WANTX) GO 10 180
60. 00 100 LeINM) 137. DO 185 b IN

Gl L1 e Lol 138, T o X(1L1) ¢ U2eX{IL)
62. S0 139, X(LL1) « X{IL1) o Tavi
63. 00 20 ILLIN 140. X(1L) © X(IL} o Tav2
68, F(ABS(B(IL)) BT. S) S « ABS(B(IL)) 141, 1a% CONTINUE

65. 20 CONTINUE 182, 150 CONTINUE

66. #(S £Q. ©) GO TO 100 143, 166 CONTINUE

67. E(ABS(B(LL)) GT. S) S « ABS(BILL)) L 144, 170 CONTINUE

68. R -0 145, RETURN

69. 00 25 1N 146. END

70. 8(IL) « 8(IL)/S 147. 4

71, . R » R« B(IL)ne2 J 1a8. SUBROUTINE QZIT(NONADEPSEPSAEPSDITERWANTX X) 3
72. 25 CONTINUE 149, DIMENSION A(NOAID)B(NDND)X(NOND)
73. R » SQRT(R) 150, DIMENSION ITER(N)

74, FBILL) LT. Q) R » R 151, LDGICAL WANTXMID

7%, B(LL) » BlLL) + R 152, ANORM « @,

76. RHO » RoB(LL) 153. BNORM « 0.

77 00 50 JiLIN v 154, 00 185 LIN

155,
156.
152

158.
159

160,

161.
162.
163
164.
16%
166.

167,

168.
169,
170.
171,
172.
173.
174,
175,
176.
177,
178.
1753.
180.
181,
182,
183.
i84.
189%.
186.
187.
188.
189.
190.
191,
192,
193.
194.
19%
196,
197,
198.
199.
200
201.
202.
203.
204,
205,
2¢6
207,
2C8.
209.
210.
211.
212,
212,
214
215,
216.
217
218.
219.
220.
221,
222.
223.
224,
225,
226.
227,
228.
229,
230.
231,

ITER() = ©
ANl . O
IF(1 NE. 1) ANI o ABS(A(L-1))
BN! « 0,
DO 18C JuIN
ANl = ANI « ABS(A(IJ))
BNI « BNI « ABS(8(1.))
180 CONTINUE
F(ANI GT. ANORM) ANORM « AN|
¥{BNI .GT. BNORM) BNORM « BNI
185 CONTINUE
EPSA « EPSYANORM
EPSD « EPSeBNORM
M.oN
200 F(M LE. 2) GO T0 390
00 220 LBeIM
L sM.1Bs1
F(L EQ. 1) GO T0 260
IF{ABS(A(L,L-1)) .LE. EPSA) GO TO 230
220 CONTINUE
230 AfLL-1) » 0.
F(L LT. M-1) GO T0 260
MLl
GO To 200
260 IF(ABS(B(L L)) .GT. EPSB) GO TO 3CO
B(LL) . @
Ll = L)
CALL HSH(A(LLAL LU IL2VIV2)
IF(UI NE. 1) GO 10 280
0O 270 JLN
T o AlLY « UZeA(LI)
ALY o ALY o Tevi
AL1) o A(L1J) o Tev2
T = Bl « U2e8B(L 1Y)
B(LA) « B{iJ) +Tev]
BlLid) « B(LIY) o Tev2
270 CONTINUE
280 L o L1
60 10 230
300 M1 « M|
L1 = Le]
CONST « 0.7%
ITERIM) o ITER(M) o |
W(TER(M) EQ 1) 6O TO 305
F(ABS(AMM. 1)) LT, CCNSTe0.D1) GO TO 305
F(ABS(AM-1M.2)) .LT. CONSTeCLD2) GO 10 30%
IF(ITER(M) £Q. 10) 60 10 310
IF(ITER(M) 67, 30) GO To 380
30% BIl « B(LL)
B22 « B{LIL1)
F(ABS(B22) LT. £PSB) B22 - EPSB
831 « B(MIMI)
I(ABS(B33) .LT. £PSB) B3I + EPSE
BAA « B(MM)
IF(AB3(BAA) .L1. EPSB) BAA » EPSB
ALl o A(LLYBITI
A2 « A(LLI/B22
A21 « AlLIL)BI
A22 « A(L1LI1)/B22
A33 » AMIMI/BII
A34 . AM(|M)/BAQ
AQ3 . A(MM])/BII
Add « AMM)/BAAQ
812 - B(L.L1)/B22
834 . B(MIM)/Bad
A10 « ((A33-A11)s(AA-AL1) - AJAsAAD + AQ32B3AsAI 1)/A2]
] o« AIZ - Al1sB12
A20 - (A22-A11-A218B12) - (A33-Al11) - (AQ4-A1I) + AQ3=BIA
A30 - A(Le211)/B22
GO T0 315
310 AIO - @
A20 . O
A0 » 1.1605
318 OLD| «» ABS(AIMM-1))
OLD2 « ABS(AIM-1M-2))
F(NOT.WANTX) LOR| » L
F(WANTX) LORL » |

232.
233,
234,
235,
236.
237.
238.
239.
240.
2a).
242

24).
244,
245,
246,
247,
248.
249.
250.
251

Y4

25

254,
255,
256.
257.
258.
259,
260.
261

262.
262,
264.
26%5.
266.
267.
268.
269,
270.
271.
272,
273,
274.
275,
276.
277.
278,
279,
280.
281,
282.
282.

285,
286.
287.
288.
289.
290.
291,
292.
293.
294,
295,
296.
297,
298,
299,
300.
301.
302,
302.
304,
305,
306.
307,
J08.

F(NOTWANTX) MORN « M
F(WANTX) MORN = N
DO 360 Kl M1
MIO = KNEM)
Kl = Kel
K2 = Ke2
KJ ~ K3
F(K3 6T, M) K3 M
KM » K-1
(KM LT, 1) KM oL
(K £Q. L) CALL HSHIA10AZ0AICU | U2LIVIVZVI)
FKGT.L AND. KLTMI)
| CALL HSHI(AKXMIA(K I XM1)AKZXM DU 1 LU2U3V I V2,V3)
F(K EQ. M1) CALL HSH2(AKXM A(KIXM LI U2VIN2)
F(UI NE. 1) GO TO 32%
DO 320 J-KM| MORN
T o AKJ) ¢ U2eAKIJ
MDY T = T + UJeA(K2J)
AKJ) « AKJ) » Tovi
AlKIJ) = ALY « Tov2
IF(MID) A(KZJ) « A(K2J) « TeV3
T » B(KJ) « UZeB(K1Y)
IFMIO) T o T o UIeBIK2J)
B(KJ) » BKJ) « TeVI
B(K1," « B{KI,) « Tev2
IF(MID) B(K2J) - B(K2J) + Tev3
320 CONTINUE
(X £Q. 1) GO TO 32%
AKIX-1) « 0,
IF(MI0) A(K2X-1) « @
2% IF(K EQ. MI) GJ TO 340
CALL HSHI(B(K2X2)B(X2K 1) B(K2K)U I LU2L3V 1 V2 V3)
IF(UI NE. 1) GO 10 340
DO 330 1LORIXI
T « AlIK2) « U2eA(IXI) ¢ UBeA(IX)
A(1K2) = A(IX2) + TeV]
A(IKI) « A(IKI) o Tev2
A(IX) » A(IX) ¢ TeVd
T - B(1x2) « U2eB(1X1) « UIeB(IX)
1X2) « B{IX2) + TeVI
(K1) « BIXD) o Tev2
B(1K) « B(IX) + TeV]
330 CONTINUE
B(x2X) « O.
B(x2X1) « ©.
F{NOTWANTX) GO T0 340
00 335 IIN
T o X(1X2) o U2eX(1X1) + UBeX(IX)
X(1X2) « X(1X2) « TeV|
X(X1) = X(IX1) o Tev2
X(1X) » X(1X) + Tevd
33% CONTINUL
340 CALL HSH(BIKIX 1B(KIX)ILIUZVIV2)
KU1 NE 1) GO TO 360
00 350 1.lORIXI
T o A(IX1) « U2sA(IX)
A(IXD) « A(IXT) o TeVI
A(IK) = A(IX) o Tov2
T « BX1) « U2eB(1X)
B{IX1) = B{IXI) + Tev]
B(1X) » B{IX) ¢ Tav?
350 CONTINUE
B(KIX) » 0.
IF(NOT.WANTX) GO T0 360
D0 355 s IN
T o XUXT) o UZeX(IX)
(K1) « X(1X1) + TeV)
X(1X) o X(1K) « Tev2
355 CONTINUE
360 CONTINUE
GO T0 200
380 00 385 LIM
ATER(D) = -1
385 CONTINUE
390 CONTINUE
RE TURN
ENC

1 3le

.
! Jl12.
3
| 3la,
315.
316.
317,
318,
318.
320.
3zl
322,
323
324,
325.
326.
327.
328.
329.
330
33
332.
333.
334.
335.
336.
337,
338,
339.
3a0.
3a).
J42.
343,
344,
345.
J4a6.
347,
Jas.
343
350,
351,
352.
353,
354,
355,
35%6.
357,
358.
359.
J60.
361,
362,
363,
364.
365.
366.
3672,
368.
369,
37e0.
371.
72,
373.
374,
37s.
37e.
377
378.
378.
380.
sl
2.
383.
38a.
385.

309, <

aie

420

425

aa0

a4s5
a50

460

a70
75

153

SUBROUTINE QIVALINONA B EPSBALFRALFIBETAWANTX X)
OIMESION A(NDND) B(ND NO) ALFR(N) ALF KN) BE TAIN)X(NONO)
LOGICAL WANTXFL®
MoN
CONTINUE
F(M £Q. 1) GO To 410
F{A(MM-1) NE. 0) GO TO 420
ALFR(M) « A(MM)
BETA(M) - B(MM)
ALFKM) » 0.
M e M-}
60 10 age
L s MY
F(ABS(B(LL)) GT. EPSB) 6O 10 425
BlLL) - @
CALL HSH2(A(LLAMM.LL 1U2V1V2)
GO To 460
F(ADBS(B(MM)) GT. EPSB) GO 10 430
B(MM) - 0.
CALL HSH2(AMMAMLIL | U2V 1¥2)
BN - 0.
60 10 435
AN « ABS(A(LL)) ¢ ABS(A{LM)) « ABS(AML)) « ABS{A(MM))
BN « ABS(B(LL)) « ABS(B(LM)) « ABS(BIMM))
All « A(LL)/AN
A12 o A(LM)/AN
A21 o AML)/AN
A22 « A(MM)/AN
BI1 « BILL)/EN
812 » BILM)/BN
822 « B(MM)/BN
C « (A118B22 + A224B1) - A218812)72.
0 « (A22sB11 - A114822 - A210B12)as2/4,
o A2108220(A120B11 - AlINBI2)
F{0 .LT. 0) 60 10 480
F(C BE. 0) € = (C « SQRT(0)/(BI12822)
IF(C LT. 0) € « (C - SQRT(0)/(B18822)
All « AYI - E0BII
A12 « AI2 - EeBI2
A22 « A22 - EeB22
FLP + (ABS(AI INABS(A12)) GE. (ABS(AZ1):ABS(A22))
F(FLIPY CALL HSH2(AI12A 11 UAN2Y1N2
FINOTELIP) CALL HSH2(A22A2101U2VIN2)
F(UI NE. 1) GO 10 450
00 440 1IM
T = A(IM) « U2eA(iL)
A{IM) « A(IM) « VIiaT
A(IL) o ALY « V2uT
T « BIM) + U2e8B(IL)
BOIM) « BOM) ¢ Viel
B(1L) « B(IL) « VZ2uT
CONTINUE
F(NOT.WANTX) GO 10 450
00 445 1IN
T o X(IM) ¢ UZaX{IL)
X(IM) » X(IM) « VinT
X(IL) « X(IL) ¢ V2T
CONTINUE
IF(BN £Q. ©) 60 T 475
FLIP « AN GE, ADS(E)sBN
W(FLIP) CALL HSH2(B(LL)BMLIUIU2VIV2)
FINOTFLIP) CALL HSHZ(A{LLAIMLILIL2VIVD)
F(U1 NE. 1) GO TO 475
00 470 JLN
T o A(LJ) ¢ U2eAMY)
A(LJ) « A(LJ) ¢ VieT
AMJ) « AMJ) + V21
T « B(LJ) » U2eB(MJ)
B(LA) » B(LY) ¢ VIeT
BIMY) - B(MJ) + v2uT
CONTINUE
A(ML) - @
BML) « €
ALFR(L) - A(LL)
ALFR(M) » AN
BETA(L) » b{LL)

386,
387,
ass.
389.
390
3g1.
392.
393.
394,
385,
396.
397,
398.
399.
400,
a01.

4903,
404,
405.
406.
407.
408.
a09.
q10.
aly,
412,
a13.
a10
a5,
a16.
a17.
qa18.
a1s.
a2o0.
a21.
a27.
a23.
a2a,
a25.
a26.
a27.
a2e.
a2s.
a30.
a3).
a32.
a33.
a3a.
435.
436.
437,
438.
439,
aq0.
aa4).
442,
an3.
aaa,
a4s.
a46.
qa7,
aas,
LLE-2
as0.
as5).
452,
453,
a54.
455,
a56.
a57,

a59,
460.
a6y,
462,

480 ER . C/B112DB22)

BETA(M) « B(MM)
ALFIM) - ©.
ALFKL) - ©

Mo M2

GO 10 430

€l « SQRT{-0)/(B11s822)

AR o AlL - ERaBII

ALIl » ElaB 1)

A12R o AI2 - EREBI2

Al21 « ElB 2

A2IR - A2I

A21) « 0

A22R » A22- EReB22

A221 « ElsB2?

FLIP - {ABS(A| IR):ABS(A | 11):ABS(A |2R):ABS(A121)) GE.

| {ABS(A2 IR)-ABS(A22R) :ABS(A221))

F(FLIP) CALL CHSH2(A12RA121-A1IR-AI1ILI SIRSTY)
F(NOTFLIP) CALL CHBH2(A22RA22I-A2IR,-A211C2 SIRST))

FLIP o« AN GE. (ABS(ER)-ABS(E!})eBN

F(FLP) CALL CHSH2(CZnBI1+5IReB 125214812,

! S7RB225714822LQ5QR5QN)
IF{NOTFLIP) CALL CHSH2(CZsAl|+SIReA12STInAI12,
1 CInA21+SI%0A22 5116 A22LQ5QR 5G1)

SSR « SQReSIR « SQteSII
§SI » SQRaSI! - SQSIR
TR o CQaCInAll + CQeSIRRAI2 + SQReCZaA2) « §SR0A22
T1 » CQeSIA |2 - SQieCleA2] + §SIsA22
BOR « CQuCZeBII| + CQuSIR+DI2 » SSReB22
B80! » CQeSZInBI2 « SSIsB22
R « SQRT(BORBDR « BOILBOI)
BETA(L) » BNeR
ALFR{L) o ANe(TRsBOR « TIhBDN/R
ALFKL) o ANs(TReBOI - TIsBOR)/R
TR » SSReAll - SQReC2eA 12 - CQuSIReA2| » CQuCleA22
T« -SCinAll - SQInCluA12 « CQuSIinA2|
BOR « SSRaBII - SQReCZeB12 » CQaCleB22
B0l « -SShB11 - SQIsClaB12
R + SQRT(BORsBOR « BOIDOI)
BETA(M) - BNaR
ALFR(M) o ANB(TRaBDR + TinBON/R
ALFKM) « ANs(TRRBD! - TisBOR)/R
Mo M-2
a90 F(M GT. 0) GO TO 400
RETURN
ENOD

SUBROUTINE QIVECINONABEPSAEPSBALFRALFISETAX)
OIMENSION A(NONO)B{ND NO)ALFR(N) ALF KN} BE T A(N) X(NONO)
LOGICAL FLW
M N
500 CONTINUE
F(ALFI{M) NE. 0) GO T0 550
ALFM « ALFR{M)
BETM « BETA(M)
F(ABS(ALFM) LT, EFSA) ALFM o 0.
F(ABS(BETM) LT, EPSB) BETM « €.
B(MM) « 1.
L s M-I
F(L EQ. 0) GO TO 540
510 CONTINUE
LI e Lo}
SL -0
00 515 JoLIM
SL » SL « (BETMeA(LJ)-ALFMeB(L J))aB(IM)
818 CONTINUE
F{L £Q. 1) GO 10 520
IF{A(LL-1) NE. ©) GO TO 539
520 0 « BETMeA(LL) - ALFMeB{LL)
F(0 EQ.) O « (EPSAEPSB)/2.
B(LM) « SLAD
LoeLel
GO T0 %40
530 X - L-l
SK o 0
D0 535 JelIM
8K « SKX ¢ (BETMaA(KJ)-ALFMaB(X))aB(IM)

CONTINUEC
TKK o BETMeA(KK) . A|FMeB(KK)
TKL « BETMWA(KL) - ALFMaBIK)
TIK - BE TMeA(LK)
TUL o BETMeAILL) - ALFMaB(L L)
D+ TkKkelLL IKLsT{K
(D £Q. 0) D « (EPSA.CPSBY/2
BLM) « (TikeSK . TKKeS|)/D
FUP o ADS(IxK) GE. ABS(T(K)
WIFLP) BICM) o (SK .« TkLaBILM))/ KK
IFCNOTELIP) BIKM) o -(SL « TUIoB(LM)/TLK
Let.2
¥(lL G1, 0) GO 10 510
MM
GO 10 590
ALMR o ALFR{M-|)
ALMI = ALFiM.])
BETM . BLTA(M-1)
MR o M.
M. M
BM-IMR) « AIMaDIMM) (BE TMe A(MM. 1))
BimM 1M (uL'M-A(MM).AW-'J-B(MW)/(MTM-A(MM-l))
BIMMR) o 0.
BMM) o -],
L+Mm2
F(L £Q. 0) GO TO 85
CONT NUE
L)oo Lot
SR + 0
Sl - ¢
DO 565 Jel IM
TR o HETMOA(L) - ALM20B(L)
Tl o -ALMIeB!| J)
SLR « SLR « TReB(JMR) - TByM}
Stle S o TReB(IMIY TieB(JMR)
CONTMUE
F(o £Q 1) GO 1D 570
FALLL-1) NE ©) GC TO 575
DR « BETMeA{LL) ALMRSB(LL)
DI« ALM.eB(LL)
CALL CDIV{.SLR. S, DRDIBL MR)BUL M)
Loetel
GO 10 585
Kool
SKR . Q.
Skl . D,
DO 580 J-LIm
TR « BETMeA(XJ) - ALMIWB(K)
Ti e ALMIB(YY)
SKR - SKR + TReBIJMA) - TieB(JM)
SKI « SKI o TP:BI M) o TieB{ima)
CONTINUE
TKKR . BETMe AKK) - ALMReB(KX)
TKKI o -ALMieR{XX)
TKIR o BiTMeA(KL) - ALMReB(K)
TKLI o ALMiB(X L)
TLKR o BETMeA(X)
TLK) - Q.
TULR o BETMOAl () ALMReB(L §]
TULL « CALMLB(L L)
DR = TKKRTLLR - TRKIsTLUI - TK{ReT KR
DV » TKKReTLLT o ThK0T{(R - TKLieT(KR
IF(OR £Q. O £ND. DILGB) CR » (EPSALEPSD)/2.
CALL COIVITIKROHKR.TKKS o 5L RTKK I 51 5,
TLKReSGKI.TKXR@SLI-TKN e SR,
DRDiB(M) BIL MiY)
FLIP « (ABS(TKKR):ABS(TKKD)) GE. ABS{T(KR)
IF(FLIP) CALL CDIV(-SKR-YK(E-BUN?)-TKL'-B(LM).
-SK1-TKLReBIL M1)-TK LIsB{L MR)
TR Tk B{K MR} B(K M1))
IF{NOTFLIP) CALL CDIV(-SLR TULReDILMRYTLLI0BL MI),
“SLETULReB(L MI)-TLLISB{LMR),
TLKR.TLKIB(K MR) B(X M)
Lel2
(L GT. 0) GO 10 5GO
M M2

530 F(M GT. 0) GO 10 500

G110

620

630

660

690
700

Mo.N
CONTINUE
00 620 IN
S .0
00 610 JeIM
S o Se X{12)eB(JM)
CONTINUE
X{(IM) « §
CONTINUE
Mo M)
IF(M .G1. 0) GO To 600
Moo N
CONTINUE
S0
IF(ALF (M) NE. @) GO TO 650
00 635 LN
R o ABS(X(IM)
F(R .LT. S) GO 10 635
§$ R
0 - x(IM)
CONTINUE
DO 640 1IN
X(IM) - X(IM)/D
CONTINUE
M e M.
Go 10 650
00 655 leI N
Roo X(IM-1)we2 o X(I1M)s02
IFR .LT. §) GO T 655
S . R
DR « X(iM-1)
DI « X(IM)
CONTINUE
00 660 I IN

CALL COV(XOIM- 1) X(1M) DR DILX(IM- 1) X(1M))

CONTINUE

M o M2
F(m .GT. 0) Go 10 630
RETURN
END

SUBROUTINE HSH3(A 1 A2 A3 L1203 vivava)
IF(A2EQO. AND. A3EQ.0) GO TO 10
S s ABS(A1) « ABS(A2) « ABS(A3)
Ul « Al/S

U2 - A2/5

U3 « A3/S

R« SQRT(UIsU 1:U2eU24U3003)
F(UI LT. 8) R « -R

Yie (Ul o« RIM

v2 » -U2R

v3 . .UIR

Ul -).

v2 - V2N

U3 . vang

RETURN

(VI)

RETURN

END

SUBROUTINE HSH2(A 1 A2U1 L2V 1¥2)
(A2 £Q. 0) GO To 10
S « ABS(AI1) + ABS(A2)
Ul » AI/S

U2 « A2/5

R« SQRT(U 1aU14U2sU2)
FUL LT, QY R « R

VI e Ul e)M

v2 . u2m

Ul - L

U2 » vawvi

RETURN

Ul .o

RETURN

END

SUBROUTINE CHSH2(A IRA1 IA2RA21C SR SI)

6i7.

627

631

cau.

643,

5E5.
e,
€47,

508,
645,
ws0
-LAN
652.
653,
B854,

1%

20

155

FIAZREQ.S. AND. A2LEQQ) GO TO 10
F(NIREQ.O. AND. AILEQ.Q) GO TO 20
4 « SQRT{AIReA IRA e 1)

C-R

SR« (AIReARAIIBAZ) AR

St e 1leA2R) R

-

C.Cm

SR« SRA

3l « SIM

RETURN

[B

5R « @

5 e O

WETURN

ce0

Sq - L.

Sle @

RETURN

END

SUBROUTINE COIVIXRXIYRYIZRLI)
F(ABS(YR) LT. ABS(YD) GO TO 10
WR « XR/VR

Wl e XI/YR

Vi« YI/VR

O« L o Vievl

IR « (WR + WiV)/D

Zl o (W) - WReVI)/D

RETUAN

WR « XR/VI

wi o« XI/M1

VR « YR/VI

0« VRaVR « |,

IR « (WReVR « WO/

2t « (WisvR - WR)/O

RETURN

END

e e =

WET SIS Y

code matrices for integer addition.

on the mode of the operands.

MEM, NUM, REG, and REG+NUM,

Appendix C

Code Matrices for Integer '+'

In order to show in detail the form of the analysis used by the
"fair" code machine language generator for the arithmetic and logical

operators (see Chapter 3, Section 3.1.3.5), this appendix contains the

for quads of the form (+,V,E,V) or (+,E,V.V) with the first two arguments
commuted, and one for quads of the form (+,El,E2,T), where El, E2, and

E are arguments that may be simple variables, parameters, results or
indirect resulvz; V is a simple varibale, parameter, or indirect result;

and T is a temporary result. Each matri contains 16 cases, depending

means the first operand is ir memory while the second is in register s.

The logic of a case analysis is presented in tabular form with

the following conventions:

1) Toe machine language instructions generated are

expressed in MACRO-10 [PDF71a’l, the assembly
language for tne PDP-10. Curly brackets are used
for the conditional generation of information.
Thus, for example,

MOVE r,{*}EI
means to generate a MOVE instruction with r as
the register field, address of E! as the address
field, and the indirect bit set if tag bit |
of the '+' quad is set (see Appendix A, Secf'on
A.3).

There are two code matrices; one

There are four possible operand modes:

Thus, for example, the case "MEM/REG(s)"

2) The information that cootrols the analysis resldes
in fields in the temp or register table, or tag
bits in the '4' quad. The mnemonics for the tags,
along with their meaning, can be found in Appendix
A, Section A.3. The mnemonics and their meanings
for fields in the register and temp table are:

mnemonic meaning

RANGE range field of temp entry

NB neg-bit field of temp entry
INFO information field of temp entry
USES use field of register entry

To reference fields in the tables, an indexing

scheme is used with the name of the operand being
the index. For example,

NBLEZ2] « '+!

means set the neg-bit in the temp table entry for
E2 (a temporary) to plus.

3) The following variables are used:

variable meaning
Q the address of the '+' quad.
r an unused register. This

register is allocated by the
register allocation algorithm.
Initially, the register has
no associated temporary or

variable.
$,t registers containing the operands.
L a literal constant, folded

or otherwise.
C address of a constant, folded

or otherwise.

4) The following shorthand notation is used for table
headings:

sxmbol meaning

¥ indirect tag bit of '+' quad set
¥ neg-bit field of temp plus

- neg-bit field of temp negative
temp temporary tag bit of '+' quad set
cons operand is a constant

lit operand is a liveral

158

As code is generated, fields in the temp and register tables must
be updated. Only those updations pertinent to the clarification of
the machine language generated are included in the logic. Some updations
are given explicitly, while others are indicated by enclosing them in

double quotes. The latter updations are:

update meaning
"associate Reg with T" update the correct register and
or "RegnT" temp table entry to reflect that

Reg contains T.
"associate Reg with T+NUM" update the correct register and

or "RegVT+NUM" temp table entry to reflect that
Reg contains T which has mode =
"REGHNUM",
"associate Num with T" Num is a number which resides in
or "NUMAT" a temp. Associate it with the

result temp T by moving in the
temp table the number indicator
and information fields of the
temp containing Num to the
corresponding fields of T.

"negate E" E is a temp. Perform the following
modifications to its entry in the
temp table:

INFOCE] <« =INFO[E]
NBLE] « '+!

Subcases for a case are numbered using the Dewey decimal notation.
For example, if k is the number of a crzc, k.|, ... , k.m are its subcases,
kelol, oo , kolon are the sub-subcases of subcase «.!, etc. . The logic
for a case is to be read sequentially with subcases being disjoint and
code not appearing under any subcase being common to all subcases. Some
cases are similar, and to avoid duplication, one case is transformed into
another by taking certain actions. The actions are enclosed in single

quotes and are:

159

from "REG" to "REG+NUM"
with the number set to zero.

If Q=RANGE[temp], then set

the USES fieid of its assoclated
register to I.

C.I Code Matrix for (+,V,E,V) or (+E,V,V) Commuted

I. MEM/MEM

MOVE r,{*}E
ADDB r,{¥*}V

2. MEM/NUM
2.1 £ a constant: same as (1)
2.2 E a literal
E=| E£1#0

A0S r,{*}v not *

2.3 E a temp with mode="NUM"

iolded cons | lit

same as (I)I same as (2.2)
3. MEM/REG(s)
3.1 E an indirect temp

'reset temp mode'
'same as (4)!'

MOVElI r,E | MOVE r,E
ADDB r,{*}V

action meaning
'reset temp mode' reset the mode of the temp

' 'El «> E2! interchange the attributes
of the two operands.
'same as k' the analysis is the same as
for case k.

e

3.2 E a temp
Q<RANGE[E] Q=RANGE[E]
+ - + -
ADDM s, {*}V | SusMm s,{*}V] ADDB s,{*}V]| MOVNS s
MOVNS {¥*} ADDB s,{*}V

160

3.3 E not a temp

no temp associated with s | temp associated with s

ADDB s, {*}V | ADDM, s, {*}V
4. MEM/REG(s)+NUM

4.1 Q<RANGE[E] or (Q=RANGE[E] and USES[s]>1)

temp *temp

+ - + -
MOVE r,s MOVN r,s — | MOYNS s
" "
cons | lit cons | lit ReGERe: 1.

MOVE r,L(s)

ClLIE Is ’
ADD r,C |ADDI ", kel SUE r,vl sugl r,L ADDE . {*}V
4.2 Q=TANGELE] and USES[s]=I
temp *temp
cons lit same as (4.1) with
ADD s,C ADDI s, & hepdmeling [

+ -

ADDE s, {*}V| MOVNS
ADDB s, {*}V

in

v

. NUM/MEM (impossible)

(o)

NUM/NUM (impossible)
7. NUM/REG(s) (impossible)
8. NUM/REG(s)+NUM (impossible)

9. REG(s)/MEM
9.1 V an indirect temp

'reset temp mode!
'same as (13)!

9.2V in a register

no temp associated with s [Temp associated with s

ADD s, (*}E l MOVE r,{*)E
ADDB r,{*}V

MOVEM s, {*}v

161

| 10. REG(s)/NUM
10.1 V an indirect temp

'reset temp mode'
'same as (14)!

10.2 No temp associated with s

cons lit
ADD s C E=1 E£1#0
MOVEN: &7 | X3 s,V not * *
ADDI s,L| ADD s,L
MOVEM | s, L

10.3 Temp associated with s: same as (2)

1. REG{t)/REG(s)
1.1 V an indirect temp

'reset temp mode'
'same as (15)!

1.2 V in a register: same as (3)

12. REG(1)/REG(5)+NUM
2.1 V an indirect temp

'reset temp mode']
'same as (16)!'

12.2 Temp associated with t: same as (4)

12.3 no temp associated with t

temp *temp
+ = 2 -
ADD 1,5 SUB t,s —— |MOWNS s
" "
o . conk| |1+ negate L j
ADD t,L(s)
ADD T,CI ADD! t,L | SuB f.CI SUBL 1L wovem t,V

MOVEM t,V l

For cases 13-16, V is a temp with mode="REG+NUM" where NUM is a
literal. In order to use the literal as an index, it must be positive.
Before code for the case is generated, the neg-bit is checked.

+ -
MOVNS V

' "negate L"

I3, REG(s)+NUM/MEM

MOVE r,{*}E
ADDM r,L(s)

. REG(s)+NUM/NUM
4.1 E a constant: same as (13)
14.2 E a literal
E=| E#1£0
A0S L(s) not *
MOVElI r,EIMOVE r,E
ADDM r,L(s)

14.3 E a temp with mode="NUM"

folded cons | lit

same as (I13) lsame as (14,2)

15, REG(t)+NUM/REG(s)
15.1 E an indirect temp

'reset mode of temp'
'same as (16)!

15.2 E not a temp
ADDM s,L(%)
I15.3 E a temp
+ | -

ADDM s, L(+) | SUBM s,L(t)
MOVNS L(1)

163

16. REG(1)+NUM/REG (5) +NUM
16.1 Q=RANGE[ET and USES[s]=I

temp *+emp
cons lit + -

ADD s,C 1| ADDI s,L] = |MOVNS s
+ _ "negate L"

MOVNS s MOVE s,L(s)

ADDM s, L(t)
16.2 Q<RANGELE] or (Q=RANGE[E] and USES[s]>1)

temp *temp
+ = e "
MOVE r,s MOVN r,s — |MowNs .
cons | Lit cons | I it regats. 1=
ao r,claoot rilsus rclousl ru| MOVE FiLES)

ADDM

C.2 Code Matrix for (+,El,E2,T)

. MEM/MEM
MOVE r,{*}EI
ADD r,{*}E2
2. MEM/NUM
E2 ot * | E2 %

MOVE r,{*}EI same as (1)
"associate Num with T"

3. MEM/REG(s)

3.1 I2 set
'reset temp mode'
'El <« E2!
'same as (13)'

P P U T o e e N NNy ——————r P W R

r,L(t)

T A R R I W N ———

164

3.2 E2 a temp

Q<RAMGE[E2]] Q=RANGE[E2]

MOVE r,s + :

+ | - ADD s,{*}EI| SUB s,{*}EI
ADD r,{*)EIlSUB r,{*}El

NB[T] « NB[E2]
3.3 E2 not a temp
no temp associated with E2 | temp associated with E2

ADD s,{*}EI MOVE r,s
ADD r,{*}EI

NBLT] « '+
"associate s with T"

MEM/REG (s)+NUM
'El < E2!
'same as (13)!
NUM/MEM

'El <> E2!
'sane as (2)'
NUM I /NUM2

6.1 If set: same as (2)

6.2 "associate NUMI+NUM2 with T"

NUM/REG(s)

7. I| set: same as (3)

7.2 'El < E2!
'same as (10)!

NUM I /REG (s)+NUM2

8.1 lI set

'El <« E2!
'same as (13)!

| 165

8.2 Q<RANGE[E2] or (Q=RANGE[E2] and USES[s]>I)

‘ temp *temp
MOVE r,s + =
+ I - —— |Mows s
" "
INFOLT JeNUMI +NUMZ | 11500 T JeNUM2-NUM | negate L
MOVE r,L(s)
NELTJNeLE2] "associate NUM| wlth T"

"assoclate r wlth T+NUM"
8.3 Q=RANGE[E2] and USES[sJsl

same as (8.2) except replace r with s and delete the
'MOVE r,s' instruction

R T NP T L M TR e

9. REG(s)/MEM

'Ll > E2
'same as (3)!

10. REG(s)/NUM

10.1 I2 set
'El < 2!
'same a5 (3)!
10.2 |, set

|
'reset mode of temp'
'same as (14)'

10.3 El a temp
Q<RANGE[EI] Q=RANGE[E 1]
+ - + -
MOVE r,s |MOVN r,s "assoclate NUM | "associate -NUM
0 " "
"associate NUM with IR with T
T+NUM" "associate s with T+NUM"
"associate r with T+NUM" NBL TJ«+NB[EI]
NBLTJ«'+!

10.4 El not a temp

no associated temp associated temp
! "assoc. s with mode of reg="TEMP" | mode of REG="T+NUM"
18
TR MOVE r,s "assoc. s with
"assoc., r with T+NUM"
THNUM"

"associate NUM with T"

Il. REG(1)/REG(s)

1.l I| set

'reset mode of fempl'
'same as (15)'

1.2 1

EEE Ty e

2 set

'reset mode of fempz'
F 'El «> E2!
: 'same as (15)!

El and E2 temps
a) Q<RANGE[E!] and Q<RANGE[E2]

MOVE r,t
'R+«r
E«s
SW « I

b) Q<RANGELEI] and Q=RANGE[E2]

'R+« s
E« ¢t
SW « 0!

c) Q=RANGE[EI] EQQ_Q<RANGE[E2]

'R« ¢t
E«s
SW <« |

d) Q=RANGELE!] and Q=RANGE[EZ2]

'R « ¢t
E«s
SW <« I

167

'El <« E2!
'same as (11.5)

1.5 El not a temp

El

EZ + =
ADD R,E SUB R,E

+ NBLT]«'+' SW=0 SW=|

NBLTJ«'-"' | NBLTJ«'+!

suB R,E ADD R,E

- Sw=0 | SW=| NB[TJ+'-'

NBLTJ«'+' | NB[TI+!-'

"associate R with T"
1.4 El a tenp and E2 not a temp

I1.5.1 temp associated with t: same as (3)

11.5.2 no temp associated with t

12. REG(1)/REG(s)+NUM

'El « E2!
'same as (15)!

I3. REG(s)+NUM/MEM

E2 not a temp E2 a temp
ADD t,s + -
ADD t,s| SUB t,s
NBLTJ«'+!

13.1 Q<RANGELEI] or (Q=RANGELEI] and USES[s1>1)

aal . e " aa T e T - o

E2 temp *temp
MOVE r,s £l + pr
3 - | : — |movns s
" "
ADD r,{*}EI | SUB r,{*}EI negate L
T MOVE r,L(3)
walr n
NBLTJ«n2lE1] 00 *IEl
"associate r with T+NUM" ‘it
"associate NUM with T" wB[T]* . |
assoc. rwith T

168

13.2 Q=RANGE[E] and USES[-]=|

same as (ll.1' but replace r with s and remove the

'"MOVE

14, REG(s)+NUM|/

4.1 I2 set:

14.2 2| +—
'same a

r,s' instr

NUM?2
same as (

E2!
s (8)!

15, REG(1)+NUM/REG(s)

uction

13)

15.1 I2 set
'reset mode of temp'
'same as (16)!

15.2 £E2 a temp

15.2. 1 Q<RANGELE2] and (Q<RANGELEIT or (Q=RANGE[E(] and USES[t+3>1))

El temp *temp
MOVE r,t El + S
E2 —— |MOVNS t
£l ¥ = "nejate L"
ADD r,s {SUB r,s MOVE r,L(1)
T ONBLTIe +1f NBCT e -
- L. 2 0+ -
_ pPUB r,s |AXD r,s |ADD r,sl SuB r,s
140 - .
LTI+ NELTe -1 L ccociate © with T
"associate r with T+NUM"

15.2.2 O<RANGE[E2] and (0=RANGE[E!] and USES[tJ=1)

same as (15.2.1) except replace r with t and delete

the 'MOVE

r,T' instruction

15.2.3 Q=RANGE[E2] and (Q<RANGELEI] or (Q=RANGE[EI] and USES[tJ>1))
Ei temp *+emp
El E2 + =

£ i = — |mowns t
ADD s,t [SUB s,t "negate L"
NBLTI'+HNGLT e+t |

||NUM'\‘T" "_NUM'\’TH E |

ADD s,L(+) | SUB s,L(T)
SuB s,t |ADD s,t {NB[T]«'+! NBL T J«'-!
| . | | I |
NB[T]* " wB[TJ+" "associate NUM with T"
=NUMAT NUMAT . N 1
"associate s with T"

"associate s with T+NUM"
Q=RANGE[E2] and (Q=RANGE[EI] and USES[t+]=1)

E2 *temp | temp
same as (l5.2.3)|same as (15.2.2)
15.3 E2 not a temp

15.3.1 temp associated with s: same as (13)

15.3.2 no temp associated with s
El temp *+emp
EL + - El + -

ADD s,t|SUB s,t| — |MOVNS t
PNUMAT" | "-NUMAT™ "negate L"

"sAT+NUM" ADD s,L(D)
NB[T]+| +1! "gnT"
NBLTJ«'+'

. REG(1)+NUM| /REG (5)+NUM2
Let B)=(Q<RANGELEI] or Q=RANGE[EI] and USES[+]>1) and
(Q<RANGE[E2] or Q=RANGE[E2] and USES[s]>#)

B,=(Q<RANGELE!] or Q=RANGE[EI] and USES[+]>1) and
(Q=RANGE[E2] and USES[s#1)

B3=(Q=RANGE[E!] and USES[t]=1) and
(Q<RANGE[E2] or Q=RANGE[E2]] and USES[s]>1)

B, =(Q=RANGE[EI] and USES[tlel) and
(Q=RANGE[E2] and USES[sJ=I)

170

o

l6.1 El and *temp, E2 and * temp

El + - 2+ | -
—— | MOVNS ¢ ~—= | MOVNS s
"negate EI" "negate E2"
16.1.1 8
MOVE r,LI(t)
ADD r,L2(s)
"asscciate r with T"
NBLTJ«'+!
16.1.2 B,
MOVE s,L2(s) 5
ADD s,LI(t) |
"associate s with T"]
NBLTJ«'+! i
16.1.3 B4 :
MOVE +,L1(t) .
ADD t,L2(s) f
"associate t with T"]
NBLTJ«'+! ;
16.1.4 By: same as (16.1.3)
16.2 EI not an *temp
16.2.1 8,
E2 not an * temp *+emp 1
MOVE r,s E2 + -
E2 — | MOVNS s
EINN + - "negate L"
ADD r,t SuB r,t El + | -
! -
* ngggig:?“”'*”“”z ng?gl?f?“”z "M Tvove kL [o, Lesy ;
ADD r,t
SUB r,t ADD r,t 1 . : T
= |INFOLTIehum2-NUMI | INFOLT Jettumi+humz |,2550C fatte T e
NB[TJ«'+! NB[TJ«'-'
"associate r with T+NUM"

16.2.2 By: same as (16.2.1) except replace r with s and remove |
the 'MOVE r,s' instruction

2 e e — "

171

16.2.3 B4

E2 not an *temp *temp

£2 £2 4+ -

Ed - = — — [Mows s
ADD t,s SUB t,s "negzte L"

+ | INFOLTINUMI+NUMZD | INFOLT J+NUMI -NUM2 £l + _
NBLT}'+' MB[TJ«'+!

ADD t,L(s)| SuB 1,L(c)

SuB t,s ADD t,s N . ,

- [INFOLTFeNUMI-NUMZ | INFOLT JeNUMT +NUM2 ,:::gg:::: ;U;:*CJ;’“LTJT'
NBLTJ«'-" NB[T J«'-!

"associate t with T+NUM"

16.2.4 B,

E2 not an *temp l *temp

same as (l6.2.3)l same as (16.2.3)

16.3 El an * temp, E2 not an *temp

'El «— (2!
'same as (16.2)"

Ali69

Ali70

ASF66

BIi7}

Chab?7

Coc70

Dar70
For67
Greb69
Gri71

Har69

Hay71

ing71

172

References

Allen, F.E. Program Optimizations. In Annual Review in Automatic
Programming, Vol. 5, Pergamon, New York (1969), 239-307.

Allen, F.E. Control Flow Anilysis. In ACM Proceedings, of a
Symposium on Compiler Optimization, SIGPLAN
Notices 5, 7 (JULY 1970), 1-19.

USASI FORTRAN. American Standards Association Inc, New York,
(March 1966).

BLISS Reference Manual. Computer Science Report, Carnegie-Mellon
University (Oct. 1971).

Chartres, B.A. Algorithm 311 Prime Number Generator 2.
Comm. ACM 10, 9 (Sept. 1967), 579.

Cocke, J. and Schwartz, JT. Programmming Languages and their
Compilers. Preliminary notes (Second Edition). Courant institute of
Mathematical Sciences, New York University, (April 1970).

Darden, Stephen C and Heller, Steven B. Streamline your Software
Development. Computer Decisions 2 (Oct. 1970), 29-33.

Forsythe, G.E. and Moler, C.B. Computer Solution of Lincar
Algebraic Systems. Prentice-Hall, Engiewood Cliffs, N.J, (1967).

Gegory, R.T. and Karney, DL. A Collection of Matrices for Testing
Computational Algorithms, Wiley-Interscience, New York, (1968).

Gries, D. Compiler Construction for Digital Computers. John Wiley
and Sons, Inc. (1971).

Harary, F. Graph Theory. Addison-Wesley Co. (1969).
Haynam, GE., Hansen, G.J. and Cook, RP. A Tutorial on one-pass

Compiler Design. XDS User's Group 16th International Meeting, Vol 2
(May 1971).

Ingalls, D. The Execution Time Profile as a Programming Tool. In
Design and Optimization of Compilers, edited by R. Rustin,
Prentice-Hall (1371), 1e7-128.

—

173

Jas71 Jasik, S. Monitoring Execution on the CDC 6000’s. In Design and

Optimization of Compilers, edited by R. Rustin, Prentice-Hall (1971),
129-136.

Knu7@ Knuth, D.E. An Empirical Study of FORTRAN Programs. 1BM Report
RC 3276 (1970).

Low69 Lowry, E. and Medlock, C.W., Object Code Optimization.
Comm. ACM 12, 1 (Jan. 1969), 13-22.

McW72 McWilliams, T.M. Private correspondence (1972).

Mit70 Mitchell, JG. Design and Construction of Flexible and Efficient
Interactive Programming Systems. Ph. D. thesis, Carnegie-Mellon
University, (June 1970), AD712721.

Mol72 Moler, C.B. Algorithm 423 Linear Equation Solver.
Comm. ACM 15, 4 (April 1972), 274.

Mol73 Mcler, C.B. and Stewart, GW. An Algorithm for Generalized Matrix

Eigenvalue Problems. SIAM J. Numer. Anal. 19, 2 (April 1973),
241-256.

PDP71a PDPl0 Reference Manual. Digital Equipment Corp., Maynard,
Massachusetts (1971).

POP71b PDP10 Timesharing Handbook. Digital Equipment Corp., Maynard,
Massachusetts (1971).

