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20. (abstract cont.) 

a more basic shceme that is. 

The design of a practical system is discussed for the FORTRAN IV language. 
The system was impleir.^ntcd and tested with programs Laving different behavi- 
oral characteristics. In order to have a basis for comparing the results, 
variants cf the system were constructed which approximate the behavior of 
WATIF, FORTRAN IV G, and FORTRAN IV H compilers. The test programs were 
run under th.-se systems. The results show that adaptive FORTRAN performs 
as well or better than any of the variant systems at each specific test puin 
and significantly better than any one of thorn across the entire range of 
test points. 
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Abstract 

This thesis investigates adaptive compiler systems that perform, during 

program execution, code optimizations based on the dynamic behavior of the 

program as opposed to current approaches that employ a fixed code 

generation strategy, i.e., one in which a predetermined set of code 

optimizations are applied at compile-time to an entire program. The main 

problems associated with such adaptive systems are studied in general: which 

optimizations to apply to what parts of the program and when. Two 

different optimization strategies result: an ideal scheme which is not practical 

to implement, and a more basic scheme that is. 

The design of a practical system is discussed for the FORTRAN IV 

language. The system was implemented and tested with programs having 

different behaviorial characteristics. In orde to have a basis for conparing 

the results, variants of the system were constructed which approximate the 

behavior of WATFIV, FORTRAN IV G, and FORTRAN IV H compilers. The test 

programs were run under these systems. The results show that adaptive 

FORTRAN perform», as well or better than any of the variant systems at each 

specific test point, and significantly better than any one of them across the 

entire range of test points. 

   -- ■ -■ -- ■ - — - 
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Chapter I 

Introduction 

A   serious   disadvantage   of  current  compilers  is   that   they  do  not   take 

into   account   a   program's   behavior   in   the   generation   of   object   code.     In 

particular,   the   code   generation   phases   of   these   compilers   employ   a   fixed 

compile-time   strategy,  i.e.,   the  degree  of  code  optimization  is   predetermined 

and   the   optimizations   are   applied   uniformly   to   each   section   of   a   program, 

independent  of  how often the section is executed.    As  a consequence, special 

purpose  compilers  have  been designed to handle a specific class of programs 

or   to   meet   specific   needs,   and   the   decision   of   which   compiler   to   use   is 

placed   upon   the   user.     For  example,  for  the   FORTRAN  language  there  exist 

on    the    same    machine    three    special    purpose    compilers    having    different 

trade-offs     between     compile     time     and     code     efficiency,     viz.,    WATFIV, 

fORTRAN-IV G   and   FORTRAN-IV H.     WATFIV   k)   designeo   to   handle   jobs   for 

which  compile  time  is a major factor.    FORTRAN-IV G produces fairly efficient 

code   by   applying   some   local   optimizations      FORTRAN-IV H   is   designed   for 

production    programs.      It    produces   highly   efficient   code,   but   there    is    a 

substantial increase in compilation time. 

This thesis investigates a ri/nomic run-time code optimization strategy 

based on the dynamic behavior of the program. Motivation for such a 

system   stems   from   the   empirical   evidence   produced   by   the   research   of 

1 
- -  — -.. *.          nifr nViii' iiirt   an ti i i-  '^UMIIM       -   —  --     -■   -  . ». 
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Knuth [Knu70], Darden and Heller [Dar70], Ingalls [Ing71] and Jasik [Jas71], 

viz., that a s^ali part of a program {<bt) accounts for a large part of its 

execution time (>50'/.). Their schemes can be classified as "iterative 

optimization" which involve a feedback loop between the system and the user. 

The user's program is monitored via software or hardwanj, and the system 

produces an executioi profile of where the program is spending its time. 

Using this profile, the user optimizes his program and runs it again, obtaining 

another profile; and so forth. Major drawbacks to such an approach are the 

limitations placed on the amount of optimization the user can perform, and 

the inclusion of the user m the feedback loop. We advocate removing the 

user from this feedback loop and automating the process. 

Our major goal is to demonstrate not only that it is possible to 

construct such an au'omated system, but that it is worthwhile, i.e., that it can 

perform, for almost all programs, as well or better than any special purpose 

compiler employing a fixed code generation strategy. 

1.1  Current Optimization Techniques 

The development of code optimization strategies has been under 

investigation since 1965. This initial research cuimmrted in a set of machine 

independent optimizations that are applicable to most high level languages 

[cf. AII69]. The development of more efficient algorithms for these "classical" 

optimizations   has   been   the  object  of  study   by   other   investigator,  notaoly 

'- ■      .....     .■■—   -—^ —■ - MMM^Ml 
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Lowry and Medlock [Low69] and Cock and Schwartz [Coc70]. The 

effectiveness of these optimizations was clearly demonstrated in the 

FORTRAN-IV H compiler of Lowry and Medlock, who stated that even though 

thrre was a 407. increase in compilation time, the object code was 252 

smaller and executed three times faster than that producsd by the 

FORTRAN-IV G compiler. 

The goal of this research is to demonstrate the effectiveness of 

applying code optimization at run-time instead of at compile-time. It suffices 

to select optimizations from among the "classical" optimizations, for they are 

just as applicable at run-time. There were a number of selection criteria 

that are worth mentioning. Foremost, we wanted to include enough machine 

independent and dependent optimizations to produce results of broad 

significance. Also, the optimizations must have been ^roen by others to be 

effective, i.e., they produce a significant decrease in execution time for the 

effort expended. 

The set of  machine independent optimizations selected were: 

1) Constant Folding: performing operations whose operands 
are known. This technique is particularly beneficial for 
code generated to calculate the address of an array 
element. 

2) Common Subexpression Elimination (CSE): eliminating 
redundant expression computations. 

3) Code Motion (CM): moving operations invariant within a 
loop outside the loop. 

L—*-—*-'  --J-a.  :*- -  ..:. MHWiMMiftittM —   - ^   - ~   _. L-- ■    ■   -*■- — —-■ 



■ ' ■ "■ "'         MI   pii"    in    mmimmmm^~ ■■PWPW—"W»™ 

The    set    of    machine    dependent    optimizations    selected    (which    are 

applicable to most  machines) are: 

1) replacing   a   multiplication  or  division   by   a   power  of   2 
with a shift. 

2) setting memory to 0 or -1  by special instructions. 

3) delaying   negation   operators   to   exploit   load   and   store 
negative  instructions. 

A)   deleting multiplications by  1 or additions of 0. 

5) performing     operations     directly     to      memory,     e.g., 
incrementation or decrementation by a small constant. 

6) use   of   index   registers  for  DO loops  and  for  accessing 
array elements. 

7) effective   use   of   registers   by   an   appropriate   register 
allocation policy. 

The  algorithms for the selected optimizations have certain characteristics 

that  influence the  design and structure of any system which employs run-time 

optimization.     First,   the   algorithms   do   not   operate   on   the   program   source 

text,   but   on   some    intermediate   form.     The   compiler   must   generate   this 

intermediate   form   (regardless  of  when the optimizations  are   applied).     Since 

these  optimization  algorithms  are  to be invoked at  run-lime, the  intermediate 

form was chosen so that it could be directly executed (interpreted). 

Second, the algorithms do not operate at the basic instruction level, but 

on aggregates of instructions cr groups of aggregates (loops). The compiler 

will have to decompose the program into these basic aggregates. 

-J....^^..^.-^.,     . ..._.. 
 ■—  -—'-~—~'~-~' 
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Third, certain algorithms rely on control flow analysis. The compiler (or 

loader) will have to generate a form for encoding the flow relationships. The 

form we will uce is a directed graph. 

Finally, the optimizations can be applied individually, and usually must 

be applied in a given order. These two characteristics are important in that 

they allow for gradual optimization of the program, a concept fundamental to 

our approach which is predicated on and supported by recent empirical 

results on program behavior, 

1.2 Empirical Results on Program Behavior 

Recent investigations by Knuth [Knu70], Ingalls [Ing71] and Darden and 

Heller [Dar70] found that a small portion of the code in typical programs 

accounted for most of the execution time. Knuth studied a varied collection 

of FORTRAN programs covering a wide variety of applications, and found that 

less than 47. of a program accounts for more than 507, of its execution time. 

He suggested that the system produce a program's profile, i.e., a histogram 

showing the frequency counts of the executable statements, which can reveal 

where the program is spending its time. This infori..ation would then be 

used by the user or compiler in deciding what part of the program to 

optimize. 

Ingalls participated in Knuth's investigation and his paper pursues the 

notion   of   a   system   producing   the   execution   profile   of   a   program.     He 

^■■—  -v  - —- ■ - --■-  -    ■    iMM täma i ä^Mg^jt  -----  i -—■ — ■ --      -         ■     -    ■■«-■-      -"» 
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concludes   that   current   optimizations   have   taken   us   about   as   far   as is 

worthwhile,  and that  if  further gains  are to be made, optimizations such as 

in-line I/O editing or expansion of subroutines in-line should be developed, or 

the   sytem  should  produce  feedback  information  (i.e., an execution  profile) to 

the user that tells him where his program is spending most of its time. He 

found that for all the programs studied, 37. of the statements made up 507. 

of the program's execution time. 

Darden and Heller studied the performance of two compilers and an 

assembler, and founj that for the systems tested, at most 37. of the code 

accounted for more than 607. of the execution time. These percentages are 

taken from their graphs given in Figure 1.1. They advocated producing a 

histogram of processor time hy blocks of memory locations. Using this 

profile, the user would optimize the critical sections of the code and run the 

system again. This iterative optimization procedure would be repeated until 

there was little improvement in overall performance. They tried this 

technique on an ALGOL compiler and found that after four iterations they had 

improved the compiler's speed by a factor of 10 while only rewriting 57 of 

the code. 

       - ■ _. --        -     -   - - ^--- ■ -     - -^ 
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Figure 1.1 Cumulative distribution of CPU time. For a typical FORTRAN 
compiler, over 60 percent of the central processor's time is spent in 
executing only 1 percent of the code. Clearly, that 1 percent of the code is 
the area to optimize. In fact, 10 percent of the code accounts for 90 
percent of the execution time of all the systems tested by the authors. 
(Reprinted from COMPUTER DECISIONS, October, 1970, page 29-33, copyright 
1970, Hayden Publishing Co.) 
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Ar> inference from thuse empirical results is thai the amount of effort 

that should be e-ponded to optimize a section of code should be proportional 

to the execution time that section represents. It is Jso felt that the 57.-507. 

empirical rule is universally rue since a wide class of problems were studied 

by the various authors. 

A majo'- drawback to these approaches is that the user is included in 

the feedback loop. We feel that the oxecutior profile is a useful concept 

which has other advantages (such as a debugging aid, or pointing out to the 

user that he should use a different algorithm or restiucture his data). 

However, fit utility as a,i optimization tool has its limitations with respect to 

the user. First, it requires tue user to oe knowledgeable with optimization 

techniques. Second, for those optimizations tnat cannot be performed at the 

source level, the user must resort to wrilmg in machine language which he 

must learn, thus defeating the purpose of using a high level language. 

Finally, the  user may introduce more bugs into the program. 

The user could overcome these limitations, but we assert (and this 

thesis will show) that the process of using the execution profile to optimize 

the appropriate sections of the program can be done automatically at the 

source language level without user intervention. 

.^,-L.-.. ^    -J^.^- ■^■J........  — ■    "        - 
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1.3 An Adaptiv« Compilsr 

There are a number of automated approaches that we could take. The 

profile could be fed back to the compiler the next t.me the program is 

comp.led. Using the profile, the compiler could optimize the appropriate 

sections of the program. However, which code sections to optimize may vary 

from run to run if, for example, the program's behavior is sensitive to its 

input data. Therefore, a feedback sys'.em does not seem to provide fel best 

solution. 

A more desirable approach would be to perform code optimizations 

while the program * running. That is, the system would dynamically adapt 

the comp^ed code ^response to the program's dynamic behavior. Such a 

system we t>'rm an adaptive^ system. 

This thesis will show that an adaptive compiler system is a feasible and 

worthwhile alternat.ve to current compiler construction approaches. We will 

first turn our attention to solving the problems of determining which section 

of code to optimize, when to optimize it, and how much optimization to apply 

to it. Our goal is to find a solution that minimizes the overhead incurred in 

answering these questions, for we want the system to perform well across 

the entire execution time spectrum.    Then, in order to prove the technique is 

t The lerm adaptive is not meant to imply that the compiler self-adapts to 
its env.ronment. i.e., keeping statistics on the constructs used most frequently 

and thereby producing more efficient code for them. 

-  —■~— ^^—^-^._, - -   --- —    - -     ^^^.^^^t^^^ 
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feas(ble, we will discuss the design and implementation of an adaptive system 

for the FORTRAN-IV language. To show the adaptive FORTRAN system is 

worthwhile, its performance will be measured on a variety of test programs 

having different characteristics. In order to evaluate tne performance 

measurements in a me?ningful and unbiased manner, the adaptive compiler will 

be transformed into systems that generate code comparable to that produced 

by WATFIV, FORTRAN-IV G and FORTRAN-IV H. Then the test programs will 

be run under these systems and the pertonnance measurements compared 

with those of the adaptive system. 

... -■■-        - --■ ■■■*■---■■• - '-.'■■-   -^.^ 



I 

■' " ■ ____ — vm     ■■ ■RIBH.|      l««upim —     -     null   mmii    t   vupn i    ..i  jimniw^^i^ir^^wmm* 

V 

M 

Chapter II 

Adaptive Compiler Systems 

In this chaper we will look at the problems associated with constructing 

an adaptive compiler and present solutions that can be realistically 

implemented.    The basic issues that we will address are: 

1) what information must be collected during the 
translation ana loader phases to lacilitate run-lime 
optimization, 

2) the characteristics of the code the translator must 
produce for the optimizers, 

3) methods for grouping the code into bljcks to facilitate 
its processing by the optimizers, 

4) attributes of code blocks that can be metered to 
determine which blocks to optim ze, 

5) methods for determining which optimizations to apply to 
the code blocks and when, 

and   6/ control   of   the  running  program  so  optim zation  can   be 
intermixed with execution. 

Three of the issues, viz., determining which code blocks to optimize, 

when, and how much, form the basis for any dynamic optimization strategy. 

We will discuss two strategies. The first, iterative dynamic optimization (see 

Section 2.4), is based on a mathematical model, which represents an exact 

formulation for solving the problem of what to optimize and how much, but 

not when. The scheme is impractical to use (see Section 2.4.2), but it is 

presented   because   the   solution   of   such   a   formulation,   regardless   of   how 

■■-—-—-^ -— ■-•   ■■-"         ■ -         I     l"r^«r    ^      ■•-    ■•J■^^'~^*'fc*,        ■■*» 
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inefficient, would give us a standard to compare against other schema. It is 

possible to obtain such an absolute measure of performance (see Chapter 5), 

but even for one program it would require a tremendous amount of work. 

Since dynamic optim^atio-i has never been studied before, it was felt that 

the primary goal of thü 'hesis was to see if the approach was vaild instead 

of spenuing time to obtain the best performance curve for a few programs. 

Therefore, we formulated a more direct approach, the incremental dynamic 

optimization scheme (see Section 2.5), which incurs very little overhead. It is 

a heuristic approach based rn the notion th?t one optimization at a time 

should be applied to a rode block, and the assumption that the execution 

time pe program run for a code blov'k is proportional to the frequency with 

which it is executed. Such an assurrption allows a frequency count to be 

used as a meti ; for ontrolling flie adaption process. This count is a 

function of the code block's attributes, such as size, level of nesting, etc.. 

To control the execution and invoke an optimization strategy requires a 

ouper'isor. We will describe the operational cha-acteristics for such a 

supervisor in genpral, and specifically for a system employing the incremental 

dynamic optimization strategy. 

In the following chapters, we will describe the design, implementation 

and performance of an actual system that employs incremental dynamic 

optimization and incorporates the ideas expounded in this chapter. Since the 

ite'ative  dynamic  optimization  scheme  in  Section 2.4  is  not  pertinent  to  this 
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description, it may be bypassed on a first reading without loss of continuity. 

2.1  Overall Design Consideration' 

The primary goal in the design of an adaptive compilir system is to 

minimize the total cost of running a program. This goal has direct 

implications with respect to the design of the translator and the dynamic 

optimization strategy. 

The design of the translator can proceed along the lines currently 

employed in the construction of any translator, but it must be as efficient as 

possible. This menns that: 1) it should expend a minimum of e^C't in 

translating the source code, in particular, not performing any optimizations 

that can be done more effectively and efficiently at run-timej 2) it should 

employ the best translating algorithms available; C^ it should itself be 

optimized   and 4) it should be one passt and compile directly to core. 

In terms of the dynamic optimization strategy, minimizing total cost 

requires the optimization algorithms to be efficient, and the overhead incurred 

by  deciding  whe'» to porform what opii.rtization on wi ch sections of code to 

t A second pass jver the object code ic needed to complete the translation 
process, e.g., allocate data storage, patch addresses, patch forward references, 
relocate the object code, etc.. This second pass of the compilation process is 
handled by a program which, due to its similarity to others of th.? same 
name, we shall call a loader. 
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be small compared to the expected payoff. 

There are four basic design decisions that must be made; they are a 

consequence of both the fact thai optimization is to be performed at run-time 

and the nature of the optimizers. First, an internal representation of the 

source code that can be efficiently manipulated by the oplimizers must be 

selected. This internal form cannot be machine language because at this level 

too much information that will be needed by the optimizers hai. been lost, 

and it should not be the source code because the source code does not 

explicitly indicate the structure of the program and takes too much time to 

scan. Possible internal forms include: Polish notation, quadruples, triples, 

indirect triples, or trees (cf. [Gri71]). The translator can produce the internal 

form as object code, for it is amenable to being executed (interpreted). For 

the translator also to produce machine language would be a waste of effort 

because empirical evidence shows that some sections of code will not be 

executed often enough to warrent it. 

Second, the internH form (which we will assume is an n-tuple that 

denotes an "instruction") must be grouped according to the program's 

structure into aggregates so that the optimizations which require global flow 

information can be applied. It is a characteristic of the classical optimizations 

that we will employ (see Section 1.1) that they operate on two kinds of 

aggregates: a group of sequential instructions terminated by an unconditiont' 

branch   (a   basic   block)  and   a  group  of   basic  blocks  which  form  a  loop-like 
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structure (a 6«gment). Initially, as the internal form is being generated, it is 

partitioned by the translator into basic blocks. As the program executes, 

optimizations are performed on those basic blocks executed moti frequently. 

In order for additional optimizations to be performed, the segment containing 

an opltimized basic block must be formed. The process of combining basic 

blocks or segments into a (larger) segment is called fusion, and constitutes a 

new optimization. 

Third,  a dynamic optimization strategy  must  be  proposed, i.e., a scheme 

for    determining    which    basic    blocks    or    segments    to    optimize,    which 

optimizations  to   apply   and  when  to  perform the  optimizations.     Even  though 

there  is  more  information available at run-time than at compile-timo to aid in 

making   these  decisions,  it   is  not  complete  (we  cannot   predict   a   program's 

future  behavior with absolute accuracy).    A reasonable approach is to assume 

that  future  behavior of  a  program will  be similar to past behavior, for  it  is 

better to base the decision-making on this information than none at all.    Such 

an assumption is not uncommon; it is often made in other areas of computer 

science   (e.g.,  paging   algorithms   and  schedulers).    As   is   the   case  with  the 

other  areas, we are susceptible to anomalies.    For example, it is possible to 

waste optimization effort :f the program terminated soon after the effort was 

expended, or the program is phased and after the optimization of a phase it 

Is   only   executed   a   few   times   more   and  then  never  executed   again.     By 

selecting  a strategy that causes optimization of basic blocks or segments to 

be gradual, the amount of effort wasted can be kept tolerably small. 
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Finally,  means  for  controlling  the  execution of  a  program so  it  can  be 

adapted   must   be   determined.     Basic   blocks   and  segments   are   the   discrete 

units    of    execution.     A   logical   point   at   which   to   interrupt   a   program's 

execution   for   adaption   is  when  control   passes  between  two  nasic  blocks  or 

segments, since  program status is well defined at such points, and the amount 

of  state  information  required  to  record this status  if small.    When execution 

is   interrupted,   data   which   aids   in   the   decisions   made   by   the   dynamic 

optimization   strategy   is   collected,   and   it   is  decided   whether   to   invoke   the 

dynamic    optimization    strategy    and    perform   optimizations.     If   control    of 

execution is distributed amongst the individual basic blocks and segments, then 

aporopriate    instructions    must    be    inserted   in   the    code    to    perform    the 

functions   just   described.    Another   approach  is  to  centralize  these   functions 

and   control   of   execution   in   a  supervisor  which  causes  the   basic  blocks  or 

segments to be executed one at a time.    This is the approach we will follow 

for   the   system  to   be   implemented.    The  supervisor, known  as  the  seement 

driver,   is   advantageous   for   another   reason.     During   the   execution   of   the 

program, some  parts of  it  will  be in interpretive code, while other parts wili 

be  in  machine  language.    The supervisor can conveniently decide whether to 

execute a basic block or segment oirectly or call an interpreter. 

The structure of an adaptive compiler system is now apparent. Source 

code is translated by a fast and efficient translator into an internal form that 

is grouped into basic blocks. Execution of the program is controlled by a 

segment  driver  and optimization by a dynamic optimization strategy.    Various 
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optimizations are applied to basic blocks and/or segments as execution 

proceeds and the performance of the program warrents. A new optimization, 

fusion, is necessary for grouping basic blocks into segments. In the following 

sections, we will define more precisely the concepts of basic block, segment, 

fusion, and segment driver, and propose two dynamic optimization strategies. 

2.2 Basic blocks and Segmentst 

When performing code optimizations, it is advantageous to partition the 

program according to its flow of control into basic blocks. A basic blocK is 

a linear sequence of instructions with the first instruction being the single 

entry point. The block is terminated by one or more branch instructions, the 

last of which is unconditional while the others (if any) are conditional. All 

code between the first instruction and the h'-nches is executed in sequence. 

A program's flow of control may be represented by a cirected control 

flow graph in which a node represents a basic block and an edge represents 

a   flow   path.     Those   basic   blocks   that   branch   to   a   given   block   are   Its 

t In this section, some of the definitions follow the terminology introduced by 
Allen [AII69, AII70] (viz., basic block and directed control flow graph) and 
Lowery and Medlock [Low69] (viz., predominance), while others pertaining to 
directed graphs can be found in any introductory textbook on graph theory 
(cf. [Har69]) (viz., immediate successor or predecessor, subgraph, path and 
strongly connected region). 

-;--j--^-'-' •■■jt - ... ■• - - ■- -■ - ■-"■ - ' --- '■ -■ ■— ' >'■■■ —^ -■■ — ■ - —'-■-■■-'■'-■- - — ■ -■ -^—^- ^ ■--  ^— '■*'*— 



"'^■■■"■■■,"""" ^^mmn^mm* "■ ^WPBiWiW« FW^wmwiw wim 

18 

immediate predecessors. Likewise, those blocks branched to by a given basic 

block are its immediate successors. A basic block may have more than one 

immediate predecessor or successor, including itself. Program entry blocks 

have no predecessors, and program terminating blocks have no successors. A 

basic block Bi predominates a block B2 if every path along a sequence of 

successors from a program entry block to 82 always passes through Bi. 

The basic block is the smallest program unit commonly considered for 

optimization. However, t.ore is a limit to the amount of optimization that can 

be performed on a basic block, and in order to perform additional 

optimization it is necessary to consider more global context. Since it is 

desirable to optimize those basic blocks executed repetitively, some loop-like 

structure must be imposed on the flow graph. Two loop-like constructs have 

been described in the literature: the strongly connected region [AII69] and 

the interval [Coc70, AII70]. A strongly connected region is a subgraph of 

the flow graph in which there is a path leading from any block in the region 

to every other block. The region may have several entry points. An 

interval is the maximal single entry subgraph of the flow graph in which all 

closed paths contain the entry block. 

We introduce another similar, but not equivalent, concept called a 

segment. With respect to a given strongly connected region (loop) in the 

directed control flow graph, a segment is the minimal directed subgraph with 

the following properties: 
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1) The segment contains all the basic blocks in the loop. 

2) There is a single entry blocK. This entry blocK may 
have one or more immediate predecessors of which at 
least one is not contained in the segment. Those 
im.vödiate predecessors of the the entry block that are 
predominated by it are contained in the segment. 

3) Except for the entry block, all immediate predecessors 
of each basic block in the segment are contained in the 
segment. 

4) The segment, A,, and another segment, Aj, are either 
disjoint, i.e., they have no besic blocks in common and 
therefore are parallel structures, or one is embedded 
inside the other. If AjnAj-Aj, then Aj is embedded 
inside Aj, and Aj is said to cover segment Aj. 

Thus,  if  a  loop  has  a  single  entry  block, it  is  identical  to  a  segment 

whose  segment entry block is the same  as the loop entry block.    If the  loop 

has   multiple  entry  points,  the  segment   is  the  loop extended  to  include   the 

minimum number of basic blocks satisfy.m   properties 2, 3 and 4.    Property 4 

defines a properly nested set of segments, and allows the optimizations to be 

ordered in the manner suggested by Allen [AII69]. 

Examples:       (a) Segments: 2,-{2,3} (b) Segments: 2'-{2}, 2"-{2,3} 

1 
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(c) Segments: 2'-{2,3,4,5}        (d) Segments: 2'-{2,3A5,6} 

Unlike a strongly connected region, there is not necessarily a path 

leading from any block in a segment to any other block because of ii^e 

requirement that a segment have a single entry point. A segment always 

contains a strongly connected region, but the single entry point Irr the 

segment may not necessarily be contained in the region. Consider example 

(d) above in which segment 2' contains the strongly connected region {4,5,6} 

which has two entry points (blocks 4 and 5), and the entry point of the 

segment (block 2) is not contained in the region. Like a segment, an Interval 

contains a single entry point, but it does not necessarily contain a closed 

path, and the intervals of a graph are disjoint. In example (b) above, the 

intervals are {1} and {2,3}. 

The concept of a segment wa- chosen over that of a strongly 

connected region or inte'val because of the simplicity of the algorithm for 

constructing them.    The  algorithm is an iterative process.    A block which is 
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executed repetitively can be used to start the segment. Given such a block, 

and considering a segment already formec as a basic unit, it is possible to 

construct the segment containing the blocK knowing just the immediate 

predecessors of each basic block in the flow graph. A basic block's list of 

immediate predecessors can be constructed from the branches that terminate 

each basic block.   This -an be done either by the compiler or by the loader. 

2.3 Fusion 

When a segment is formed via fusion, what optimizations are applicable 

to it depend on how embedded segments are treated, i.e., whether or not the 

new   segment   is considered to be  a homogeneous structure  with  respect  to 

future   optimizations.    Define  the  ootimization state of  a basic  block/segment 

to  be  the  result  of  the  application of  an optimization.    As optimizations  are 

performed   on   a   basic   block/segment,   they   will   advance   through   different 

optimization   states.     One   basic   block/segment   is   said   to   have   a   higher 

optimization  state than another if more optimizations have been applied to it. 

If we employ homogeneous fusion, then the optimization state of a segment is 

uniform,   i.e.,   is  the  maximum  optimization  state  of  its constituents,  and  the 

result   is   a   homogeneous   segment.     If   the   segment   contains   no   embedded 

segments, then its optimization state is the maximum optimization state of its 

basic  blocks; otherwise  it  is the  maximum optimization state of the segments 

it   covers.     In  order  to  advance  the  segment  to its optimization state  it  may 

be   necessary   to  perform  one  or   mo'e  optimizations on  its  embedded  basic 
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blocks/segments. For future optimizations, the covering segment could be 

considered a discrete unit. But this has a distinct disadvantage if at the time 

of fusion the embedded basic blocKs/segments have not attained the highest 

optimization state, for the effect of additional optimizations on these 

embedded units will never be realized. Alternatively, if the identity of the 

embedded basic blocKs/segments is retained, further optimization could be 

applied to them before being applied to the covering segment. The only 

constraint is that all units attain the same optimization state. 

If   on   the   other   hand   we   employ   non-homogeneous   fusion,   a   segment 

and  its embedded basic blocks/segments exist at different optimization states, 

and   the   result   is   an   non-homogeneous   segment.     This   approach   is   more 

restrictive    from    an   optimization   point   of   view   in   the   sense   that    the 

optimizations   that   are   applicable   to   a  segment   and  the  segments   it   covers 

defend  on  the current optimization state of each.    There  are  a  number  of 

ways   optimizations   can   take   place.     One   method   is   to   let   the   covering 

segment   control   when  the   embedded  segments   get  optimized  further.     For 

example,  when  a  segment  is  to  be  optimized, its embedded segments  could 

first  be  advanced to their next optimization state, starting with the innermost 

one   and  working  outwards.    Other   approaches  are  to  let  each  segment   be 

optimized  separately  at  its own rate, or to freeze the optimization state of 

each embedded segment at the time of fusion and let future optimizations be 

applied only to the covering segment. 
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The result of fusion is a machine language segment that is formed by 

combining the machine language for each of the segment's basic blocks. The 

machine language segment is to be consicered a basic unit with respect to 

execution, i.e., transfer of control between basic blocks within the segment 

should not be processed by the supervisor. To accomplish this, branches 

which terminate a basic block must be treated differently depending on 

whether they are internal or external to the segment. An Internal branch is 

a branch in which the basic block being branched to (destination) is in the 

same segment as the basic block containing the branch (source), and the 

destination is not the segment entry block; otherwise it is an external branch. 

If a branch is internal to the segment, then it can be eliminated if it is 

to an immediate successor; otherwise it can be performed directly. If the 

branch is external to the segment, it must go through the supervisor. Once 

the segment becomes totally optimized, any branches to its entry block can 

be made directly. 

When forming the physical segment, it is not clear whether to perform 

homogeneous or non-homogeneous fusion. We will defer this discussion until 

the next chapter where we will present empirical evidence as to the merits 

of each. There is, however, a general observation that we can make. When 

a segment is formed by fusion, the segments that will oe included in it (if 

any) will have ruached a high optimization state, if not the highest. This 

follows from the fact that embedded segments execute at a greater frequency 
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than their covering segment. Therefore, fusion that produces a homogeneous 

segment may tend to apply too much optimization too soon, while producing a 

non-ho nogeneous segment causes the optimization of the segment to be more 

gradual 

Fusion is thus seen to be an important optimisation, for it determines 

the highest optimization state attainable for the segments involved, and thus 

has a strong influence on a pr'^.am's performance. How to incorporate 

fusion into the overall optimization scheme is another of the basic problems 

in controlling dynamic optimization. We now present two dynamic optimization 

schemes based on different metrics that treat fusion differently. 

2.4 Iterative Dynamic Optimization 

The first dynamic optimization scheme is based on a cost metric, the 

total run-time cost associated with executing a program which is being 

adapted. This cost consists of the execution cost plus the optimization cost, 

and is a function of time and storage space. It includes optimization costs in 

order to guarantee that optimization will be gradual and performed when It 

pays to do so. Informally, we want to minimize the total run-time cost for a 

program. This means interrupting the program's execution periodically and, by 

Knowing its past behavior, determining how it should have been optimized so 

that the total run-time cost would have been less than it actually was. 
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The scheme considers only the optimization of segments (which are 

determined prior to the start of execution), not of basic blocks. It is a 

non-homogeneous optimization scheme in which th^ rate of optimization for 

segments is free to vary, i.e., there is no restriction on the number of 

segments that can be optimized at one time, or the number of optimizations 

that can be applied to each segment. For the latter, we make the restriction 

that there be no backtracking, i.e., once a segment is optimized, it cannot be 

"deoptimized" back to what it was previously. The goal is to find the 

combination of optimizations that minimize the cost metric. This approach is a 

natural way to proceed, and has the advantage th-,t fusion is not an issue 

(and therefore simplifies the formulation). 

2.4.1 A Mathematical Model for Segment Optimization 

Let 

/HA;}, j-l,2,...,N . 

be  the set of segments for the directed control flow graph of a program P. 

Suppose    there    exists    an   ordered    set    of    separate    and    distinct    code 

optimizations 

{CU i-l,2,...,m 

These   optimizations  are  known as singular optimizations, and  are ordered   in 

he sense of  applicability, i.e., Oi must be applied before O2, O2 before O3, 

etc..    The composite optimization Oij(i<j) is the transformation 0j...0i which can 

be  applied to  a segment only if the transformation Oi.i...Oi has already been 
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applied. 

The  result of the application of one or mce optimizatiois to I segment 

A  is  called  a  representation, R(A), of  the segment.    For  a segment  AjC/l, the 

only possible ordered representations that it may attain are: 

RfiAt) " OiAi 
RtCAi) - Oi«HA|) - 0i2Ai 

IWA|)  - 0m(...02(0iAi))...) - OinA 

R, is said to have a higher optimization state than R, if i>j. 

The current representation of a segment is the result of the application 

of the composite optimization 0^, for some j. If the current representation 

for segment Aj is R/A,), then for additional optimizations the segment is 

constrained to take on a new representation RK(AJ), where j<ksm. Not all 

new representations are possible. A feasible representation is one which 

does not violate the constraint that the optimizations are ordered. If one 

segment is not covered by another, then there is no restriction on what new 

representation it can attain. However, if one sogment covers another, the 

covering segment cannot be optimized such that its otimization state is 

greater than that of the embedded segment. The new representation for the 

segment defines the optimizations that must be applied. That It, since the 

composite optimization Ou has already been applied, it is only necessary to 

apply the composite optimization Ojk (if lmK than this is the null optimization). 
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Consider a subset Ac/] which consists of n<N segments executed since 

optimization was last performed. Define the n-tuple R - <R(Ai),...,R(An)> with 

the property ln<?t each R(AI) is a feasible, ordered representation of equal or 

higher optimization state than the current reoresen^ation of Aj. The goal 

now is to find the n-tuple R that minimizes the cost metric. 

Let    Cj(R(Aj))    be    the    cosi    associated    with    segment    Aj    being    in 

representation R(Aj), i.e., 

C(R(A1)) - CMRiAj)) ♦ CtidKAt)) 

where      Clj   is   the   cost   of   executing  segment   Aj   in   representition 
WAj), 

C2j     is     the     cost     of     changing     segment     A.'s     current 
representation to R{A,). 

The exact forms of Cl and C2 depend on how computer resources are 

accounter for, but in general they are a function of execution time, T, and 

core space, S. As a concrete example, consider the case where a user is 

charged for how much processor time he uses and (just) the core he uses. 

The cost associated with that part of core which is fixed is a constant that 

c^n be ignored. This fixed storage includes the run-time support package, 

data storage (since we are only considering code optimizations), and the 

interpreter! In order to simplify the model, we ignore the time required to 

allocate and release core and to perform overlays.    The form of Cl is then 

CljMAj)) - K^TiMAj)) + K2 * SjWAj)) * «E Tk(R(AK)) 
.-I 
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where       Ki  is the cost for processor time, 

K2  is the cost of core storage used per unit of time, 

T.WA,))   is    the   time   expended   executing   segment   Aj   in 

representation R(A|), 

S.WA,))    is    the    amount    of    core    needed    to    store    MM 
representation R{A,) of segment A,. 

Cli   is   that   fraction   of   the   total   cost   for   segment   A,,   i.e.,  the   sum   of   its 

processor   cost   plus   its   core   storage   cost   (the   summation   term   represents 

total execution time). 

The form of C2 is similar to that for Cl, but now we need to know 

the time to perform the transformation and the space occupied by each 

optimizer. These optimizer-dependent parameters are easily obtained once 

the optimizers are programmed. Suppose for each optimization, Oj, there 

exists a function E^q) which gives the execution time to perform the 

optimization on a section of code consisting of q basic units, where a basic 

unit is related to the internal form and may be the number of nodes in the 

tree, the number of tuples, etc.. Let S(Oi) be the amount of core needed to 

store the optimizer that performs optimization Oj. If segment Aj consists of 

q,  basic units, then 

C2j(R(Al)) - 031(0,) 

t The interpreter is always assumed to be in core because it simplifies the 
formulation and it is highly likely that there will be at least some part of the 
program to be interpreted (as evidenced from the empirical result on program 

behavior). 
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where  03,(0^)  is  the  cost  to  perform opt mization Oj.    If  0,  is the singular 

optimization Oj, then 

C3j<0)) - K| * Efa) + K2 * S(Oj) I E^qi) . 

If Oj is the composite optimization Oi,, then 

j J 
mOu) - Ki * 2 «k * E^qj) + K2 * 2 «k * S(OK) * Uf*) 

k-1 k-1 

where  (5k = 0  if  Ok  has  already  been applied to  A,; otherwise  1.    That  is,  if 

the  current   representation  of  segment  Aj  is  Rv(Ai), then  the cost  associated 

with the  composite optimization Oiv is zero, and C3J(0IJ) is just the cost of 

performing  the  composite  optimization Owj, ^v.    These  equations  assume  the 

optimizers   reside   in   core   only   while  they   are   needed,  i.e.,  that   they   are 

overlayed. 

The   total   cost   associated   with  a  program   in  which  segment   Aj   is   in 

representation R(A() is 

c - 2 cm*» 
i-1 

(1) 

The  objective  is  to  find  an  n-tuple, R, of  representations  such  that  C  Is  a 

minimum, i.e., solve 

min C 
R 

subject to the constraints: 

TiMAj)) > 0 

(2) 

(3) 

2 Si(R(Aj)) i S 
i-1 

(4) 
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where S is the toidl amount of available core storage. Constraint (4) 

requires that the new representations, R, for the segments all fit in core 

simultaneously. 

An n-tuple of representations that solves (2) subject to the constraints 

(3) and (4) is known as the optimal policy with respect to the set A for 

executing P. The initial optimal policy for executing P i« to perform no code 

optimizations and interpret the internal form produced by the compiler. Such 

a policy is in keeping with the philosophy of dynamic optimization (see 

Section 2.1). After P has executed for a while, a new optimal policy is 

determined accord.rg to (2). This policy is put into effect, and P allowed to 

continue execution. Later on, P's execution is again interrupted and a new 

optimal policy determined.    This process is continued until P terminates. 

2.4.2 Practicality of Using the Model 

The .terative dynamic optimization strategy has thre« serious 

disadvantages which make it impractical to use. First, it only determines 

which ;pRments to optimize and what their new representations should be, 

not when to determine a new optimal policy. Second, there is the problem 

of obtaining a numeric solution to (2). Any algorithm for solving (2) must be 

such .hat the total solution time expended during a run is a small fraction of 

the total execution time. To the best of our knowledge, the only way to 

solve (2) is by a combinatorial search, which tends to be time consuming. 

Third, there  is  the  inability to generate the required data.    In optimizing the 
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cost, it is necessary to determine the execution time, Ti(R(Aj)), and space 

requirements, S.WA,)), for the new representation R(Ai) of segment Aj. Since 

the effect of an optimization on a segment cannot be ascertained, without 

actually performing the optimization, T, and S, have to be predicted. This is 

undesirable because a polity so determined is only as good as the 

predictions. However, if the program's behavior is known a priori, it is 

possible to solve (2) and obtain an absolute measure of performance (see 

Chapter 5). 

The model is therefore of more use in determining a standard against 

which other schema can be compared than being used in practive. We now 

present a more practcal app.oach in which the rate of optimization is more 

gradual  than for the iterative dynamic optimization scheme. 

2.5 Incremental Dynamic Optimization 

The incremental dynamic optimization scheme is based on the assumption 

that the total execution time for a basic block/segment is proportional to the 

frequency with which it is executed. This assumption allows a frequency 

count to be used as a metric for deciding not only which basic block/segment 

to optimize, but when to apply optimization. Each time the basic block or 

segment is executed, this count is incremented! When it exceeds a 

predetermined threshold, the basic block or segment  is  advanced to the next 

t In practice, the count is decremented until it becomes negative. 
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representation by the application of the next optimization. Therefore, 

optimization is applied incrementally, i.e., one optimization at a time to one 

basic blocK/segment at a time. Fusion is automatically handled by this 

scheme since it is just one of the possible optimizations. 

Define the optimization count for an op^mization to represent the 

number of times a basic block or segment is to be executed in its current 

representation before applying the optimization (this is the threshold alluded 

to above). The optimization count associated with a basic block or segment 

must have the properties that it is proportional to the basic block/segment's 

execution time, and it determines the proper time at which to optimize the 

basic block/segment. Therefore, an optimization count will not be the same 

for each basic block/segment. Instead, it will be some function of the basic 

block/segment's characteristics, such as the length of the basic block/segment 

measured in some appropriate units, the basic block/segment's level of nest „ 

in a loop structure, or the amount of effort required to apply the next 

optimization. 

The optimization counts will be determined empirically. First, they will 

be estimated and treated as consttnts, then an empirical study made to 

determine what function of the basic block/segment's characteristics is most 

appropriate. 

As an example of a possible function to study empirically, consider the 

following    method    for    deriving    optimization   counts.     Assume    time    is    a 
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measurement of effort, and a basic block/segmert consists of q basic units, 

where a basic unit depends on the internal form, e.g., for trees a basic unit 

is a node, for n-tuples, an individual n-tuple, etc.. Suppose for each 

optimization, Oj, there exists a function Ei(q), which represents the time to 

perform the optimization on a basic block or segment consisting of q basic 

units, and tji, is the time to execute basic block/segment Aj once in the 

ordered representation fy. Then an estimate of the optimization count, njj, 

for basic block/segment Aj in the order 3d representation Rj is 

n» - EifajVlj,).! , i-l,2,...,m 

where m is the total number of distinct optimizations, and tjo is the time to 

interpret the basic block/segment once, n^ is the number of times the basic 

block/segment Aj can be executed in representation Rj.i before its total 

cummulative execution time is the same as the time it would take to perform 

the next optimization Oj. n^ represents an upper bound because it would be 

wasteful to spend more time executing the basic block/segment than it would 

take to optimize it. Therefore the actual optimization count used should be 

some fraction of nj;. 

The quantity In must be estimated. When the basic block/segment is 

first executed, let the supervisor clock its execution. This measurement Is 

exact for a basic block because its execution is sequential. But for a 

segment it is an approximation since segments contain loops and internal 

branching. Therefore, we can assume the segment's timing to be exact only 

if   we   assume   its   future   behavior  will   be  the  same   as   its  past   behavior. 

I 
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Knowing   U,   the   supervisor   can   now   calculate   the   basic   block/segment's 

optimization count. 

2.6 The Segment Driver 

Optimization  and execution of  a program are under the control of the 

segment driver.    Execution of a program proceeds one basic block or segment 

at   a   time.     At   the   start   of  execution,  the  segment  driver  is  called  with  a 

parameter    indicating   which   basic   block   or   segment   to   execute.     Before 

executing  c basic  block/segment, the segment driver decides whether or  not 

to   optimize.     If   optimization   is   to   be   performed,   it   decides   which   basic 

blocks/segments    to   optimize   and   how   much,   and   calls   the   appropriate 

optimizers.    Then it executes the basic block/segment.    If the executable code 

is   Interpretive,   a   subroutine   call   is  made  on  the   interpreter;  otherwise   a 

subroutine call  is  made on the machine language representation of the basic 

block or segment. 

During the execution of the code, there may be a call on a 

subprogram} these calls may be nested. To execute the subprogram, the 

segment driver is called recursively. Execution of the subprogram proceeds 

as just described, but any calls on the interpreter must be recursive, for the 

interpreter may have made the subprogram call. 

Execution   of   the   basic   block  or   segment   is   terminated   by   a   branch 

insiruction   to   another   basic  block or  segment.    If  the  branch  occurs  in   a 
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basic block or is external to a segment, control is returned to the segment 

driver by a subroutine return which passes back the destination of the 

branch instruction. Branches internal to a segment are performed directly, 

while a return from a subprogram causes an exit from the segment driver. 

This entire process, depicted in Figure 2.1, is repeated until an 

instruction that terminates the program is executed 

The system we implemented and will describe employs the incremental 

dynamic optimization strategy. The segment driver for such a system 

operates as just described, except now the optimization count determines 

when to optimize. 

When a basic block/segment is to be executed, the segment driver 

decrements its associated optimization count. If the result is negative, the 

next optimization in sequence is performed; this calculates a new optimization 

count for the basic block/segment. Then the basic block/segment is executed 

as previously described. The modified flowchart of the segment driver is 

given in Figure 2.2. 
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Machine Language 

Call Machine 
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3 
Figure 2.1: The Execution Cycle for a General Segment Driver 
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♦-basic block/segment number 

OptCntj*-OptCntj-l 

& 
OptCntj : 0)~ Z 

OptState, ? 

0 

Call Oi 

m-1 

Call 0m 

< 
Representation Z> 

Interpretive I   Machine language 

Call Interpreter Call Machine 
Language Code 

Figure 2.2: Execution Cycle of Segment Driver 'or Incremental Dynamic Optimization 
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Chaper III 

The Adaptive FORTRAN System 

Whereas the previous chapter was concerned with adaptive systems in 

general, this chapter will describe a particular adaptive FORTRAN system; this 

system was implemented and its performance has been measured. 

FORTRAN-IV was selected as the source language because: 1) it is one of the 

most widely used programming languages and hence is a rich source of 

example programs and comparisons with existing system., 2) it contains 

enough interesting constructs to give credibility to the va idation results; and 

3) many of the compile-time optimization algorithms currently in use were 

deve'oped for FORTRAN compilers; they are well understood and are easily 

adapted for use at run-time. 

The Adaptive FORTRAN system is based on the incremental dynamic 

optimization scheme described in the previous chapter (see Section 2.5). It 

employs four basic optimizations (constant folding, fusion, common 

subexpression elimination, and code motion), and has two generators for 

translating the internal representation of the source code (quadruples) to 

machine language. The chapter is divided into two major sections. The first 

sectlot will describe the organization of the system (i.e., the different system 

modules and the function of each), design criteria and implementation details. 

The bulk of this section may be bypassed on a first reading without loss of 

continuity.    However, it is suggested that the introduction to Section 3.1.2 on 
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the system's structure be read and Figure 3.1 be looked at. The second 

section is important, for it describes the final system and how It was arrived 

at through an evolutionary chain of systems. The latter discussion also 

includes a presentation of the final system's optimization states and their 

associated optimization counts. We will defer a discussion on the performance 

of  the system until the next chapter. 

3.1  The System's Design and Implementation Specifications 

So that the Adpative Fortran system may be clearly understood and 

duplicated, a detailed description of its design and implementation is 

presented. 

3.1.1 The Adaptive FORTRAN Language 

In order to demonstrate that our technique is workable and valid, it is 

not necessary to strictly adhere to the formal definition of FORTRAN-IV or to 

implement the entire language. We assume the reader is faniliar with 

FORTRAN-IV. Instead of describing the complete subset, we therefore list all 

the features in FORiTJAN-IV that were altered, extended or deleted. The 

following extensions and alterations were made: 

!>   allow an arbitrary number of dimensions for arrays, 

2) allow multiple assignment statements, 

3) allow    the    use   of   real   as   well   as   integer   control 
variables in DO statements, 
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4) allow the use of parameters as initial, incrementation, 

and terminal values in DO statements, 

5) allow the use of negative increments in DO statements, 

6) allow the use of expressions in output lists, 

7) perform automatic conversion of real to integer type 
for subscripts, in relational expressions and in DO 

statements, 

8) indue exclusive OR and equivalence as logical 

operators. 

The following features were deleted: 

1) the use of embedded blanks in identifiers, 

2) the use of double precision and complex arithmet!c as 

types, 

3) usage of the computed GO TO statement, 

4) usage of the PAUSE statement, 

5) usage of auxilliary and unformatted I/O statements, 

6) the use of the DO-implied specification in I/O lists, 

7) usage of the DATA statement, 

8) usage of the EQUIVALENCE specification statement, 

9) the use of statement functions, 

10) the requirement that symbolic names which identify 
statement types or operators may not be reserved 

words, 

11) the ability to compile program units separately. 

These modifications were made because they simplified the experiments 

without affecting their results. 
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3.1.2 Structure of the System 

The process of running a FORTRAN program is broken down into three 

major   phases:   1) the   compilation   of   FORTRAN   source   code   to   relocatable 

quads; 2) the  loading of the relocatable quads to absolute quads; and 3) the 

execution   of   the   program.     Execution   of   the   program   is   controlled   by   a 

supervisor  known  as the  segment driver (see Section 2.6) which conditionally 

invokes   an  optimizer  before  allowing  a  basic  block or  segment  to  execute. 

Fxecution   of   a   basic   block   or   segment   is   performed   either   by:   I) the 

interpreter which interprets the quads; or 2) the machine language equivalent 

of   the  quads, called  as  a  subroutine.    When  optimization  is  performed,  the 

optimizer   performs   transformations   on   the   quads   and   creates   a   machine 

language   segment   by calling  appropriate generators.    The decision of  when 

and what to optimize is controlled by the optimization count and optimization 

state  associated with tie basic block/segment.    However, performance of the 

system  depends  on  the optimization states selected and how  the  associated 

optimization counts are determined. 

The ability to change these two optimization control parameters easily 

and thereby produce different systems whose performance can be studied 

was a major design criterion applied in the design and implementation of the 

optimizers. Each optimizer is designed as a self-contained module which 

accepts as an input parameter the basic block/segment to be optimized. It 

either   deduces  all  the  information  it  needs  to  perform the  optimization or 
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obtains it from the segment table (a common data structure accessible to all 

optimizers). An optimizer module consists of two subroutines: one which 

performs the optimization algorithm and a second which makes all the control 

decisions associated with the optimization. Typical control decisions are: 

performing possible setups, calling the optimization algorithm, changing the 

optimization state and optimization count for the basic block/segment, calling 

machine language generators, optionally outputting statistics about the 

optimization (e.g., processing time, number of quads manipulated or modified) 

and performing any cleanup functions. This modular construction isolates 

those few parts of the system that must be modified in order to produce a 

different experimental system. 

The structure of the system is shown in Figure 3.1. 

The bulk of the system was written ;n t'.ISS-10 [Bli71], a systems 

programming language for the DEC PDP-10. Those portions of the system 

written in machine language were the segment driver (hand optimized to 

minimize overhead) and »he run-time FORTRAN support package (the 

mathematical routines, I/O package, etc.) borrowed from the PDP-10 FORTRAN 

system with slight modifications. 

The entire system is loaded at once into approximately 50K 36 bit 

words. This is no«: necessary; the three phases could be overlaid (and would 

be in a production quality system). Again, this does not affect the validity of 

the results. 
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3.1.2.1   The Compiler 

The first phase in running a FORTRAN program is the translation of the 

FORTRAN source text into the internal form manipulated by the optimizers. 

The internal form selected is a quadruple, or quad for short, which consists 

of an operation, OP, two operands, Al and A2, and a result temporary, T. A 

quad has the form: 

(OP, Al, A2, T). 

The  compiler  is one pass and compiles relocatable quads direciiy to core.    It 

occupies  approximately  9K of  core  and compiles at the rate of  nearly  9,000 

cards/minute.     Its   structure   is   modeled  after  an  ALGOL  compiler  written  by 

the author and fellow colleagues [Hay71]. 

I 

A secondary function of the compiler is to partition the program into 

basic blocks. Code is compiled into a basic block until the occurrence of one 

of several conditions in the source text, at which time the basic block is 

terminated and another one started.    The conditions are: 

1) a labeled statement (except a FORMAT statement), 

2) a subroutine or function call (except for a library 
function or output subroutine call, since they produce no 
side effects, i.e., they do not change the value of a 
variable), 

3) a "call exit" (e.g., STOP, RETURN) or END statement, 

4) statement(s) which cause the generation of a 
consecutive sequence of conditional transfer operations 
possibly terminated by an unconditional transfer (see 
Appendix A, Section A.2.3, specifically the arithmetic and 
logical IF). 

i 
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5) a GO TO statement, 

or 6) a READ statement. 

During compilation each result generated in a basic block is associated 

with a unique temporary location. This is to facilitate the translation of 

quads to machine language and the optimization of the basic block. (Since 

these are intermediate results pertinent only to the basic block in which they 

occur, a different basic block may utilize the same temporary locations. See 

Appendix B, Section B.l.) 

3.1.2.2 The Loader 

After all program units have been compiled, the relocatable quads are 

immediately loaded by a loader (see Section 2.1) if the program contains no 

errors. The loader occupies less than 0.5K of core, and is very fast (all the 

relocatable quads are in core). 

The primary function of the loader is to load the quads into absolute 

core locations; this requires changing relative locations to absolute and 'back 

patching' aHdress fields. Before the loading process can commence, the 

loader must first determine how the program is to be laid out in core 

memory, i.e., it must determine thn starting absolute address for each 

reloca ion base (the unit of storage into which code is compiled). All 

compiled addresses are relative to one of several relocation bases: sequential 

instruction     storage,     out-of-sequence     instruction     storage,    own     storage, 
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temporary   storage,   non-COMMON   variable   storage,   blank   COMMON   storage, 

labeled COMMON storage, library storage, and segment table storage. 

The  second  function of  the loader is to build the segment table, which 

is  crucial  for  the  adaptive  process.    Each entry in this table contains  all tl, 

information   about   a  basic  block that  is  needed  by  the  cptimizers.    A  single 

entry in the table consists of the following information fields: 

1) QUADREP: The address of the basic block's first quad. 
Initialization occurs at load time (the compiler 
generates the starting address of each basic 
block under the segment table relocation 

base). 

2) CURREP: 

3) SEGNO: 

A)  OPTCNT: 

The absolute address of the current 
representation of the basic block. When the 
block is executed, this address determines 
how it is executed. The initial value is the 
address of the quad interpreter; when the 
basic block's quads are translated to machine 
language, the value is the starting address 
of the machine language. 

The segment number to which the basic 
block belongs when the basic block is fused 
into a segment. Initially it is equal to the 
basic block number. After fusion, it is the 
block number of the segment's entry block. 
Thus, the identity of an embedded segment 
is lost. In the case of non-homogeneous 
fusion, embedded segments are remembered 
by saving on a list the block number of the 
first and last block of the segment. This 
list is ascoriated with the covering segment 
by saving a pointer to it in another field 
appended to the segment table. 

The basic block/segment's optimization count. 
This field is decremented by the segment 
driver each time the basic block/segment is 
executed by the segment driver. When it 
goes   negative,   the   basic   block/segment   is 
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optimized according to the OPTSTATE field. 

5) OPTSTATE:   The     optimization     state     of     the      basic 
block/segment. This field determines which 
optimization is to be performed next on the 
basic block/segment when the OPTCNT field 
goes negative. 

6) PREDPT:        A pointer to the first item in the linked list 
of immediate predecessors for the basic 
block. This list contains the block number 
of all basic blocks that are immediate 
predecessors of the block in increasing 
order. 

7) LASTPRED:    A   pointer   to   the   last   item   in   the   basic 
block's immediate predecessor list. 

8) QB: 

9) MLB: 

10) AEN- <Y: 

The address of the first quad branch 
instruction in the basic block. This field is 
used when it is necessary to move the 
machine language for the basic block and 
the quad branch instrucfcns must 
consequently be retranslated k machine 
language. 

The starting address of the machine 
language translation of the quad branch 
instruction(s) in the basic block. When the 
machine language for a basic block is moved, 
only those machine language instructions 
from CURREP to this address need be 
moved. 

The machine language address of the 
alternate entry point to the segment's entry 
block. The segment's invariant quads are 
affixed to the start of the segment's entry 
block (see Section 3.1.3.3). When the 
segment is translated to machine language, 
the CURREP field points to the first machine 
language instruction of the segmert's entry 
block, i.e., to the invariant code. But the 
invariant code need only be executed once, 
hence any internal branch to the segment's 
entry block need only go to the alternate 
entry    point.      When    the    quads    for    the 
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segment entry block are translated to 
machine language, the AENTRY field is set so 
all subsequent quads of the segment that 
branch to the entry block will be translated 
to branch to the address specified by it. 

After   the   program   is   loaded,  the   loader  initializes  the  segment   table. 

The fields are initialized to the following values: 

1) CURREP is set to the address of the interpreter, 

2) SEGNO is set to the basic block's block number which 
is identical to the entry's placement in the segment 
table (numbers starting at 1). Thus the block number is 
used as an index into the table. 

3) AENTRY is set to zero, 

4) OPTCNT is set to a constant which determines how long 
the basic block is to be interpreted (see Section 3.2), 

5) OPTSTATE is set to zero (see Section 3.2 for the 
possible values this field may attain and their meanings), 

6) PREDPT and LASTPRED are set as the quads of each 
basic block are scanned in the generation of the 
immediate predecessor lists. The quads of a basic block 
are scanned backwards, since in order to determine 
immediate predecessors it is necessary to examine only 
the branch instructions which terminate the basic block. 

7) QB is set when the immediate prccewessors are being 
generated, for the first branch instruction in the basic 
block is the last branch instruction scanned (see (6) 
above). 

After    the    segment    table    has    been    initialized    and    the    immediate 

predecessors   generated,   the   loader   examines   the   loop   structure   of    the 

program.    Based on the loop structure  it  changes the OPTSTATE and OPTCNT 

fields  of  certain basic  blocks.    This part  of  the loader is dependent  entirely 

on   the   incremental   dynamic   optimization   scheme   employed.     Therefore   we 

i 
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defer discussing the details of this loop structure analysis until Section 3.2. 

The   loader   terminates   by   passing   control   to   the   segment   driver   and 

specifying to it the tir:t basic block in the main program to be executed. 

3.1.2.3 The Execution Phase 

Execution    of    the    program    is    controlled    by    the    segment    driver 

(see Section 2.6).     The   mam   loop   of   the   segment   driver   consists   of   two 

machine  language instructions: one decrements the OPTCNT field for the  basic 

block/segment  being  executed and  tests  if  the count  has  gone  negative;  the 

other   calls  the  interpreter  or  machine  language segment  as  a  subroutine.    If 

the   optimization   count   goes   negative,   the   basic   block/segment   is   optimized 

according   to   the   OPTSTATE   field   before   being  executed.     Execution   of   the 

basic    block/segment   is   terminated   by   a   branch   instruction   that   transfers 

control  out ot the basic block/segment.    The branch behaves as a subroutine 

return  so control  is  returned to the segment driver, which executes the next 

basic  block/segment  specified by the  branch.    Thus the overhead  incurred  is 

two  machine language  instructions in the segment driver plus the number of 

instructions   to   effect   the   branch.     If   the   branch   is   being   interpreted   the 

overhead is approximately 12 machine language instructions} if it is in machine 

language, the overhead is two instructions. 

It should be pointed out that not only does the segment driver call the 

interpreter,   but   that   it   is   possible   for   the  interpreter   to  call   the   segment 

■ ■  ——- 
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driver. Therefore, both routines must be recursive. The latter situtation 

arises when the interpreter calls a subprogram unit. The reasons for the 

recursive call is that the segment driver controls the execution and 

optimization of the program, i.e., execution and optimization proceeds one 

basic block/segment at a .ime. Calling a subprogram unit is the only case in 

which the execution of a basic block/segment is interrupted while other basic 

blocks/segments are executed (and possibly optimized). Centralizing the 

control of execution and optimization in the segment driver provides a clean 

interface between the interpreter, the optimizers, and the program sections in 

machine language, and enables the control to be changed easily so different 

systems can be constructed and experimented with. The segment driver can 

also be directly called recursively if the basic block/segment is in machine 

language and contains a call on a subprogram unit. The reason is the same 

as for the indirect recursive call, but now the quad calling the subprogram 

has been translated to equivalent machine language, i.e., code which is 

identical to that executed by the interpreter. A subprogram return is the 

only branch out of a basic block/segment in which control is not to be 

passed back to the segment driver, but back to the point where the segment 

driver was called recursively. To effect the exit from the segment driver, 

the subprogram return passes back a block number of zero which the 

segment driver executes. The CURREP field for block zero in the segment 

table points to an alternate entry point in the segment driver which contains 

the   exit   code.     Thus   the   same   control   mechanism   is   used   to   effect   all 
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branches out of a basic blocK/segment. 

Program execution thus consists of executing, via the segment driver, 

one basic block/segment at a time with optimiz?iions intermixed. We now 

turn our attention to the various optimizations implemented. 

3.1.3 The Optimizations 

Adaptive FORTRAN uses four machine independent optimizations: constant 

folding,   non-homogeneous  fusion,  common  subexpression  elimination   and  code 

motion, and  a host of machine dependent optimizations.    There  are a number 

of   reasons   why   these   optimizations   were   selected  over   other   possibilities. 

First,   these   optimizations   are   the   most   commonly   used  ones.     Second,  they 

allow   us   to  construct  systems  similar  in  characteristics  to  existing  compilers 

against    which    it    is   possible    to   compare   the   Adaplive   FORTRAN   system 

(see Chapter 4).    Third, to show the flexibility of the system, we wanted to 

include  optimizations that  applied both to basic blocks and segments.    Finally, 

we   wanted   to   include  enough  optimizations  to  prove  the  technique  was  not 

only  feasible, but  that  the  system could perform at least  as well  as current 

compiler systems. 

There are two machine language generators which apply various 

machine dependent optimizations. The first is the "dumb" code generator, 

which performs straight forward translation of quads to machine language. It 

is    used    when   individual   basic   blocks   are   being   optimized.     The   second 

- - - —  - j  -.    _ -  . . „   -_*   MMMMMM 
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machine language generator is the "fair" code generator, which is considerably 

more sophisticated. It utilizes information gathered from the translation of 

previous quads and in certain cases combines consecutive quads in order to 

generate more efficient machine language. It is used to generate machine 

langtage for optimized segments. 

Optimization is either at the basic block level (fusion and/or the "dumb" 

code generator), or the segment level (common subexpression elimination or 

code motion in combination with the "fair" code generator). Regardless of 

which is used, the net effect is the creation of machine language from the 

basic block/segment's quads. For a segment, the machine language for each 

basic block must occupy consecutive core for execution purposes. Therefore, 

it is built piecemeal by appending the machine language for successive basic 

blocks in the segment. 

If an optimization has no effect on a basic block and the proper 

machine language exists, all machine language instructions except those for 

the branches (which terminate the basic block) can be moved because they 

are position independent. The branches must be retranslated. (The 

instructions which must be moved can be determined from (he CURREP and 

MQB fields for the basic block in the segment table. The QB field specifies 

where the quads are located for the branches that must be retranslated.) 

If  the  machine language for the basic block does not exist, the  proper 

generator   is  called  and  it  will  compile  the  machine  language directly  to  the 
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end of the machine language segment being formed. Since the segment is 

built piecemeal, there is a problem with forward branches lo blocks not yet 

processed. This is handled by chaining the branch instructions t&]ether and 

then patching them when the block is processed. 

The  translation  (or  retranslation) of quad  branches Is handled  specially 

in  order  to  minimize  the overhead for inter-block transfers.    The problem  is 

determining the correct machine language to be generated for the branch, i.e., 

whether   any   should   be  generated   at   all,   and   if   so,  whether  the   machine 

language   should   perform   the   branch   direct!)-   or   go   through   the   segment 

driver.    The  correct  decision depends on whether  the branch is internal  or 

external to a segment (see Section 2.3).    For an external branch, the machine 

language goes through the segment driver so the destination will be optimized 

further.    In the case of an internal branch, either:  1) no machine language is 

generated if the branch is unconditional and the destination is the next basic 

block;   or   2) the   machine   language   performs   the   branch   directly   via   the 

CURREP/AENTRY   field   in   the   segment   table   because   optimization   of   the 

destination    is    controlled   by   its   segment   entry    block.     After   the   final 

optimization has  been performed on a segment, a branch in one of its basic 

blocks to the entry block is considered to be internal so it will be performed 

directly. 

Whether   the   branch  is  external,  internal  via  CURREP or  internal   via 

AENTRY is encoded in the quad (see Appendix A, Section A.3, specifically the 
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BTY tag). The current value of the tag aids in determining the correct 

machine language to be generated and saves having to regenerate the 

information. It is updated whenever the branch is translated or retranslated 

to machine language in order to reflect the (possible) change in status of its 

containing basic block brought about by the application of an optimization. 

We turn novy to a brief description of each optimizer in order to give 

a clear understanding of how they work (and their limitations). 

3.1.3.1  Fusion 

When a basic block has been executed enough times, it is fused into a 

segment having the properties given in Section 2.2. The fusion process 

consists of two parts: th» logical determination of the segment containing the 

basic block and the physical creation of the machine language segment. 

The logical segment is determined by the fusion rlgorithm which utilizes 

the immediate predecessor lists and the SEGNO field in the segment table (for 

bypassing the examination of immediate predecessor lists of basic blocks 

already fused into a segment). As a consequence of the algorithm, a segment 

consists of a set of consecutively numbered blocks, i.e., a segment is a 

contiguous section of the segment table. After the segment is formed, the 

SEGNO fields of all basic blocks in the segment are changed to be the block 

number of the segment entry block. 

  ----■—---  ■ -      ■       - -■■: ^-    ^.-     -   -       -        ■ 
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The physical machine language segment is created by the control 

section of the fusion module. Adaptive FORTRAN uses non-homogeneous 

fusion. If the machine language for a basic block already exists, it is used; 

otherwise the basic block's quads are translated to "dumb" code. 

Finally, the fusion optimizer determines the new optimization state and 

optimization count for the new segment (see Section 3.2 for the precise 

values used and how the optimization count is determined). 

3.1.3.2 Common Subexpression Elimination (CSE) 

The CSE optimizer eliminates common subexpressions from a basic block. 

The optimizer is not applied to the segment taken as a whole, but to each 

basic block contained in the segment whose optimization state indicates CSE 

has not yet been performed (embedded segments may already have had CSE 

performed on them). 

The optimization is performed on the quad representation of the basic 

block. All modifications are made directly to the quads; temporary locations 

may therefore be used more than once (in the original compiled code each 

result of a basic block was assigned a unique temporary) and no-operation 

(NOP) instructions placed where common subexpressions have been eliminated. 

The CSE algorithm makes two passes over the basic block's quads. The 

prepass   searches  for  replacement  operations on  simple  vi.;iables  and,  using 

.,^..:..^^..^.     -   .. .... 
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this  information, determines  the limit for earh quad, i.e., the first  quad which 

changes   the   value   of   one   of   its   arguments. The limit   of   a  quad   puts   a 

bound   on   the   quads   that   must   be  searched when searching  for   a  common 

subexpression. 

The second pass over the quads searches for common subexpressions, 

i.e., for two quads that have identical operation codes and input arguments. 

This search is accomplished by scanning forward to the limit of the quad. If 

an identical quad is found, it is replaced by a NOP and the usage of the 

result temporary for the NOP'ed quad is searched for (it must occur in a 

quad that occurs after the NOP'ed quad but before the limit of the quad) and 

changed to be the result temporary of the identical quad. 

Since  the  optimizer  ,ias already collected  information on the location of 

each   quad   involving   a   replacement   operation,  these  quads   are  searched  for 

pairs  from  which  the  intermediate temporary can be eliminated, i.e., for quad 

sequences of the form: 

(OP.V.E.T) or (0P,E,V,T) 
(=.T.,V) 

which can be collapsed to: 

(0P,V,E,V) or (0P,E,V,V) 

where OP is a binary or unary operator, V is a simple variable, E is a result 

temporary   or   simple   variable  and  T  is  a   result   temporary.    This  collapsing 

enables  the  machine  language generators to  produce more efficient code, and 

saves   then   from   having   to   regenerate   the   same   information   in   order   to 
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perform the collapsing themselves. 

Since each basic block of the segment is processed separately, the 

machine language segment is generatec simultaneously. After CSE is 

performed on the basic block its quads are translated to machine language 

using the "fair" code generator. If the optimization state of the basic block 

inoicates CSE has already been performed, then the "fair" code already exists 

and it is simply moved in a manner identical to that previously described. 

The entire process is controlled by the control section of the module 

which also determines the new optimization state for each basic block and 

the new optimization count for the segment. 

3.1.3.3 Code Motion (CM) 

Code motion eliminates invariant quads in a segment. A quad is 

invariant if the arguments of its operation are invariant within the segment. 

Invariant quads are replaced by a NOP and are collected together in a new 

basic block called the invariant code block. This block is logically appended 

to the segment's entry block. It is not physically appended to the entry 

block for implementation reasons: 1) certain optimizations assume (for 

efficiency purposes) that the quads for each basic block occupy contiguous 

memory locations, and to append the invariant quads would require moving 

quads to make room and updating the segment table; and 2) it provides a 

cleaner   solution   to   the   problem  of   how   to   translate   to   machine   language 

---'-- -    ■     -   - - — ■ ■ ■ — ■ -^ - 
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internal branches to the entry block, for these branches should not be to the 

invariant code block. 

To   logically   connect   the   invariant  code  block  with  the   segment   entry 

block,   the   invariant   block  is   terminated  by   a  special   branch  quad   of   the 

form: (JUMP.EB.QREP.QBR).    EB is  the  block number  of  the  entry  block, QREP 

is   the   QUADREP   field   from   tne   segment   table   for   the   entry   block   and   is 

known  as  the  alternate entry  point to the segment, and QBR is the QB 'eld 

from    the    segment    table   for    the   entry   block.     These    three    pieces   of 

information   constitute   what   is   needed  to   move   the   entry   block's   machine 

language  or  to  generate  its  machine language     The  invariant  code  block is 

made the new segment entry block by changing in the segment table for the 

old entry block: 

1)   the  QUADREP  'ield  to  the  address of  the  first  quad  in 
the invariant block, 

and   2)   the QB field to the  address of the special branch quad 
which terminates the invariant code block. 

See Appendix B, Section B.l for an example of an invariant code block, 

the  machine language generated for it, and the entry block associated with it 

(especially the code generated for a branch to the alternate entry point). 

The CM algorithm first makes sure CSE has been performed on each 

basic block in the segment (no machine language is generated). Then In 

order to find the invariant quads, it makes two passes over each basic block 

in   the  segment.     In  the  first   pass,  it  constructs  a  list  of  all  variables  or 

■      -i ■ ii—^»             — 
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indirect results that are not invariant. Using this list, it then searches each 

basic block for invariant quaosj however it processes only the invariant code 

biocK for embedded segments which have already had CM applied to them. 

Let the quad being processed by CM be of the form: 

Ql:      (0P,A1,A2,T1) 

If the quad is invariant, i.e., its arguments Al and A2 are invariant, then how 

It  is  processed  depends  on whether or not  it  is  in  an invariant  code  block 

and if it already exists in the new invariant code block. 

Suppose Ql does not already exist in the new invariant block. If Ql is 

not in an invariant code block, then the quad (0P,A1,A2,T3) is added to the 

new invariant code block, where T3 is a new unique temporary (using a new 

unique temporary is necessary since basic blocks share the same temporary 

locations). Then Ql is replaced by the quad (REPL,T3„T1), read Tl«-T3, if Tl 

must be in memory (see Appendix A, Section A.3, specifically the SR tag); 

otherwise with a NOP. All occurrences of Tl occurring after Ql irt the basir 

block are replaced by T3. If Ql is in an invariant code block, Tl is a 

unique temporary, so the quad (0P,A1,A2,T1) is inserted into the new 

invariant code block and Ql  replaced with a NOP. 

If on the other hand Ql is already in the new invariant code block, 

then it is a common subexpression that is invariant in more than one bas'c 

block (recall CSE is performed only on individual basic blocks of a segment, 

not on the segment taken as a whole).   Let the common subexpression in the 
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new invariant code block be of the form: (0P,A1,A2,T2). Then if Ql is in in 

invariant code block, Tl is a unique temporary and it suffices to insert the 

quad (REPL,T2„T1) in the new invariant block and replace Ql with a NOP. If 

Ql is not in an invariant code block, then Ql is replaced by the quad 

(REPL,T2„T1) if Tl must be in memory; otherwise with a NOP. All 

occurrences of Tl occurring after Ql in the basic block are replaced by T2. 

The  net effect  of  the  algorithm is to cause quad,   to "bubble" to the 

outermost segment (loop) of which they are invariant. 

The control section of the CM module invokes the CM algorithm and 

then generates the machine language segment. For those basic blocks in 

which invariant code was removed and for the entry block to which invariant 

code was appended, machine language is regenerated using the "fair" code 

generator. The ("fair") machine language for the remaining basic blocks 

already exists and is moved in a manner identical to that previously 

described. 

As is the case for the other optimizers, the final function performed by 

the   module's  control section  is  to  determine  the  new  optimization  state  for 

the   basic   blocks   of the   segment   and   the   new   optimization   count   for   the 

segment (see Section 3.2 for the exact values used). 

III!.Mil .InlMi     I   II   „~    -— ■      -    —* 
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3.1.3.4 The "Dumb" Coda Machine Language Generator 

The "dumb" code generator operates on basic blocks, and is invoked 

when it is no longer advantageous to interpret a basic block or when a basic 

block is fused into a segment and is still in interpretive code form. In 

keeping with the philosophv of incremental dynamic optimization (i.e., gradual 

optimization of a section of code), it is a fairly straightforward translation of 

quads to machine language, and employs a trivial register allocation scheme 

and some of the less sophisticated machine dependent optimizations. 

The register allocation algorithm uses four working registers that It 

assigns on a round robin basis. When a register is needed, 'ne algorithm 

checks if the register after the last register assigned is free. If not. It 

generates code to store the register in its associated temporary. A 

temporary is associated with a register when it is the result temporary of a 

quad. Once the temporary is used as an argument, it is disassociated from 

the register because each result generated in a basic block uses a unique 

temporary. Variables are not associated with a register. For those 

operations (e.g., int -jer division) that require two consecutive registers, a 

single register is first locöted in the manner just described. Then if the next 

higher register is in use, code is generated to store it. 

Generation of the machine language is table driven. For each possible 

quad op-code, there is a control word which specifies what machine language 

is  to  be  generated  and how.    The control word is broken into a  number  of 

■fckJM^IP^.^aMMfc,.. - -■■   
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fields: the type of the operation, the register specification of the arguments, 

the register specification of the result, whether the quad has embedded 

machine language, the number of machine language instructions to be 

generated, a pointer to the machine language instructions, an indicator for 

CSE and CM eligiblity, and a switch to differentiate between conditional and 

unconditional branches. Encoded in the address fields of the machine 

language instructions are integers specifying which argument of the quad to 

use. 

The generator does not maKe a fine distinction between the op-codes 

and therefore does not generate specialized code to handle each situation, 

but instead classifies the op-codes into four groups. The operation type field 

in the control word specifies which class the op-code belongs In: commutative 

binary, non-commutative binary, unary and all others. The quad is processed 

according to this operation type. 

As a result of this classification of operations, the number of machine 

dependent optimizations that can be performed is limited. These optimizations 

consist of: 

1) the  use  of  "immediate" instructions  for  literal  constants 
(constants less than 18 bits), 

2) the use of indexing for indirect results, 

and 3) recognizing for a binary or unary operation the 
arguments are in a register and utilizing that register in 
forming the result. 

■■«—IIM—1   I 
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The translator» of quad branches to machine language is a special case; 

processing is as previously described. If machine language is generated for 

an internal branch, it performs the branch directly through the CURREP field 

in the segment table. 

The  "dumb"  code  generator  occupies  approximately   1.5K of core.    It  is 

fairly fast, taking on the average of 550MS to process a quad.    The generated 

code   executes   approximately   9   time   faster   than   it   takes   to   interpret   the 

equivalent quads. 

3.1.3.5 The "Fair" Code Machine Language Generator 

The "fair" code generator is applied to segments, one basic block at a 

time. It is invoked after the CSE or CM optimizer has been applied to the 

segment. 

Generation of the machine language involves a thorough case analysis 

of the variables for each operation m order that the most appropriate 

PDP-10 instructions can be used. The PDP-10 instruction set is quite 

extensive; most instructions have a basic form plus a number of variants. To 

utilize the complete instruction set and therefore generate the "ultimate" 

machine language would involve an unreasonable amount of effort, certainly 

more than necessary to validate our approach. Therefore, the operations 

were ranked according to frequency of usage w'th a corresponding detailed 

analysis. 
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The  case  analysis  for  the  binary  and unary operators  is  based on  the 

mode  of  the  arguments involved.    The possible modes and a brief  reason for 

each are: 

1) MEM: argument    in    memory.      This    mode    handles 
variables that are in memory and results that 
have to be stored in order to free a 
register. 

2) REG. argument   m   a   register.     This   mode   is   for 
retaining variables across replacement 
statements and intermediate results. 

3) MUM: argument   is   a   number.     This   mode   permits 
the processing of literal constants (constants 
less than 18 bits) and constant folding. 

4) REG+NUM:   argument  is the result of  adding the contents 
of a regist*?: to a number. This mode delays 
the generation of the addition so that if the 
a-gument is used as an indirect result, 
indexing can be used (the NUMber is the 
address field and the REGister the indexing 
register). 

Using  the  mode of  an argument  as a coordinate  label  and an argument 

to   label   each   dimension,   a   code   arra/   is  constructed  for   each   binary   and 

unary operation (cf. [Gri71j).    Each element of the array contains the code to 

be   generated  for   that  particular  case.    For  the  binary  operators, there  are 

16  possible  cases, while  for  the unary operations there are only four cases 

corresponding to the four modes. 

Most of the cases are subdivided into subcases. The correct subcase 

is selected according to information stored in either of two data structures: 

the  temp table or  the register table.    There is one entry  in the temp table 

— - - -  ■ A —  - 
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for each temporary used in the basic blockj each entry consists of six fields: 

1) Mode of temporary result: 
a) MEM: result has been stored into memory 
b) NUM: result is a folded number 
c) REG: result is in a register 
d) REG+NUM: result is a register plus a 

number 

2) Register associated with temporary, i.e., the register the 
result occupies. 

3) Range of temporary, i.e., the address of the last quad 
that uses the temporary. When the quad is processed, 
the temporary is disassociated from the register it is in. 

4) Neg-bit, which indicates the negative of the temporary 
is required. This bit permits the generation of negation 
instructions to be delayed, and therefore allows multiple 
negations to cancel one another or special instructions 
to be generated (e.g., load/store negative, subtract 
instead of add, etc.). 

5) Information field, which contains the address of a 
constant or the value of a folded constant or literal. 

6) Number indicator, which identifies the number in the 
information field; either: 

a) the number is not a result of foldirj and 
the information field contains the address 
of the constant, 

b) the number is the result of folding and 
the information field contains the value of 
the constant (which is not a literal). 
Whenever an instruction is generated that 
uses tms constant, storage must be 
assigned for it and initialized to its value, 

c) the information field contains the value 
of a literal (folded or otherwise). 

The   register   table   contains  ore   entry   for   each   working   register;  each 

entry consists of eight fields: 

J 
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1) Mode of the register: 
a) register has no associated temporary. 
b) register     has    an    associated    temporary 

whose mode»HREG" 
c) register     has    an    associated    temporary 

whose mode-"REG*NUMH 

2) The use of the register, which indicates how many 
temporaries with mode="REG+NUMM are associated with 
the register. 

3) The variable counter, which indicates how many 
variables are associated with the register. This allows 
variables to be retained in registers after a replacement 
operation and thereby possibly avoids the generation of 
a reduandant load instruction. 

4) The address of the associated temporary with 
mode-"REG". 

5) Fields for specifying the address of variables associated 
with the register (there may be up to four). 

The   information   contained   in   these   two   data   structures   permits   the 

following machine dependent optimizations: 

1) constant folding, 

2) use of special instructions to set memory to 0 or -1, 

3) use of shift instructions for multiplication or division by 
powers of 2, 

4) delaying negation operators to make use of load/store 
negative instructions, permiting the usage Of complement 
instructions for an operation, or deleting successive 
negation operations, 

5) use of "immediate" instructions for operations involving 
literal constants as arguments, 

6) use of indexing for indirect results (subscripting), 

I 
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7) performing operations directly to memory, e.g., 
incrementation or decrementation by a literal constant or 
for quads of the form: (OP,V,E,V) where V is a simple 
variable and E is a simple variable or result, 

8) performing operations both to memory and a register 
simultaneously, e.g., for quads of the form: (OP^E.V), 

These   optimizations   are   but   a  small  sample  of   the   optimizations   that 

could   be   performed   if   we   were   to  exploit   the   full   instruction   set   of   the 

PDP-10.    They were selected because they have a high payoff for the effort 

invested. 

The   operations   were   broken   down   into   three   classes   with   varying 

degrees of  analysis applied.    The most detailed analysis is performed on the 

integer   arithmetic   operators:   binary   +,-.*./   and   unary   minus,   since   integer 

arithmetic is required in frequently used language constructs (e.g., for counter 

variables   that   control   the   number   of   times   a   loop   is   executed   or   for 

subscript  variables  that  reference array elements).    For the binary operators 

there  are  three code  matrices, each designed to handle quads of  a specific 

form (see Appendix C for the V code matrix).    The three forms are: 

(BIN0P,E1,E2,T) 
(BIIM0P,V,E,V) 
(BINOP,E,V,V) 

where  BINOP is one of  the  binary operators ♦,-,*,/; E, El  and E2 are either 

simple variables, results or indirect results; V is a simple variable*, and T is a 

temporary.    There are two code vectors for unary minus.    One handles quads 

of  the form (-,E„T) while the other is for quads of the form (-,V„V). 

- '*-^-~*" ■- -- —- ^i. —■—- 
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The next class of operations consists of the floating point arithmetic 

and logical operators. There is one code matrix to handle the binary floa^ng 

point arithmetic and logical operators. Parameters to the code matrix are the 

machine language instructions for the operator that handle the different cases. 

There are separate code vectors for unary floating point negation and logical 

not. 

The final class of operations includes all the remaining operations. The 

entire analysis is performed by one subroutine, and the production of the 

m. hine language is table driven as it was for the "dumb" code generator. 

However, the analysis is more involved due to the different modes the 

arguments may attain. 

Most of the analysis is independent of the operation being performed, 

but there are two types of operations that require special processing. The 

first special case involves the branch operations. The analysis for 

determining the correct machine language is identical to that previously 

described except that now there is another case to consider if CM was 

applied to the segment. This involves external branches to the segment 

entry block. If an invariant code block was appended to the segment entry 

b'ock by CM, then these external branches must be to the alternate entry 

point and not to the invariant block. For these external branches, the 

machine language performs the branch directly through the AENTRY field in 

the   segment  table  instead  of  the  CURREP field which is  the  address  of  the 

.... ■  - 
_ 



invariant   block's  machine  language.    If CM did not create  an invariant   block, 

then   external   branches   to   the   entry block   are   direct   through   the   CURREP 

field,  not   through  the  segment  driver, since CM is the  last  optimization  that 

can be applied. 

The other special case is for relational operators. This is the only 

other case besides CSE m which a sequence of quads is examined in order 

to produce more efficient machine language. The FORTRAN construct being 

optimized is the logical IF of the form: 

IF(El ROP E2)S 

where   ROP   is   a   relational   operator   and   S   is   a   statement.     The   quads 

generated  for  this  construct can be found in Appendix A, Sections A.2.1   and 

A.2.3, but it is basically the pair: 

(R0P,E1,E2,T) 
(OP.T, ,) 

that   is   being  combined  to  eliminate  the  intermediate  logical  result  T,  where 

OP is either BF, BT, STOPT, EXTST or EXTFT (see Appendix A, Table A.1). 

Germane to the generation of efficient optimized code is the effective 

use of the registers. Whereas the quads operate strictly on temporaries, the 

generated machine language instructions use registers, and it is up to the 

machine language generator to control how the registers are utilized. One 

means of using the registers effectively is for the generator to remember 

what variables and results reside in which registers so that those registers 

can    be    used    to    form   further    results,   thereby    avoiding   redundant    load 
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operations. Thus, for example, the fact a binary operator is commutative is 

recognized so the result is formed in the register occupied by one of the 

arguments (if either argument is already in a register) or if a replacement 

statement of a result into a simple variable is generated, the variable is 

associated with the register so it will not be reloaded if used later. 

The other means for controlling the use of registers resides in the 

register allocation algorithm, which is invoked whenever a register is needed. 

The algorithm assigns the least recently used of the 10 working registers. 

When a register is needpHi the registers (actually the register table) are 

searched starting with the last register assigned. First a search for a 

register not in use is made. If this fails (i.e., all registers are in use), then 

a search for a register with no associated temporary is made, starting with 

the first. This search is effect vely for a register that only has variables 

associated with it. If this fails, tien it is necessary to store a register 

containing a result. A search is made for a register with an asscciated 

temporary having the minimum number of associated variables. If this fails, 

then all registers have a mode of "REG+NUM", so the register with the 

smallest number of associated temporaries is selected. Code is generated to 

perform the addition and store the result. 

There are cases (e.g., integer division) when two consecutive registers 

are needed. There is another form of the register allocation algorithm that is 

identical   to   the  one  just  described,  but  which  searches  for  two  consecutive 

— i  .   __J_ 
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registers possessing the same properties. If both registers do not have the 

same property, another search is made to find at least one with thr desired 

property. Only if this fails is a search continued for two consecutive 

registers with another identical property. 

The "fair" code generator requires approximately 10K of core. It takes 

on the average twice as long to process a quad as the "dumb" code 

generator, i.e., approximately 1200/15. However, code generated for a basic 

block runs on the average twice as fast as the cade generated by the 

"dumb" code generator. 

3.2 The System's Optimization States and The r Associated Optimisation Counts 

Performance of the system depends on: 1) how the fusion optimizer 

forms a machine language segment (homogeneous versus n?n-homogeneous); 

2) what optimizations are applied (individually or in comhination) and in what 

order; and 3) the optimization counts. The modularity of the system and the 

isolation of the code that controls the behavior of the optimizers provide the 

ability to change the adaptive strategy easily and thereby produce 

operationally different systems. 

Approximately 15 different systems were constructed and tested before 

the final form was determined. As each system was tested, more insight into 

the dynamic optimization process was gained. The performance of each 

successive    system    was    analyzed   and   this   led   to   experiments    involving 
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variations   in   the   control   functions.     The   final   system   is   a   result   of   this 

evolutionary  process. 

The first systems tested used homogeneous fusion; all basic blocks in a 

segment simultaneously attain the same optimization state, which is the 

maximum optimization state of any basic block contained in the new segment. 

By studying the performance curves it became apparent that performance was 

not satisfactory for small execution times. It was deduced that during the 

early stages of a programs execution, too much optimization was being 

applied too soon. The problem then wa'j to obtain satisfactory performance 

for small execution times without degrading performance for medium-to-large 

execution times. 

The first attempt to defer the optimization process was to change the 

optimization counts and keep the optimization states fixed. The optimizations 

and their order or application were: translation of basic blocks to "dumb" 

code, homogeneous fusion, CSE and CM. This approach did not prove to be 

sufficient mainly because embedded segments tend to attain a high 

optimization state and thereby cause the covering segment to be optimized 

too fast. 

The next set of systems used non-homogeneous fusion as described in 

Section 3.1.3.1. The results were better than that achieved using 

homogeneous fusion but still not satisfactory, for while it improved 

performance   for   small   execution   times,   it   degraded   performance   for   large 
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execution times. The reason was that the optimization state of embedded 

segments became frozen. To compensate for this, all embedded segments 

were advanced to their next optimization state before an optimization (CSE or 

CM) was performed. This improved the performance for large execution 

times, but degraded the performance for medium execution times. Therefore, 

another approach was needed for controlling the optimization rate of 

embedded segments. 

We decided to perform a pre-analysis on the loop structure of the 

program before execution started, and to change the optimization state and 

optimization count of certain basic blocKs from their initialized values 

according to their depth of nesting in the loop structure. We first attempted 

to increase the optimization rate of innermost loops since they are executed 

the most frequently and »herefore should be optimized first. We hoped the 

additional optimization time would be negligible compared to the savings in 

execution time. Only innermost loops consisting of two or fewer basic blocks 

were considered. Three different ways in which the initial optimization of 

these innermost segments could be allowed to proceed were considered: 

1) The  translation of  a basic block's quads to "dumb" code 
if the basic block is executed more than once. 

2) Fusion  to  "dumb" code  if  any basic block in a segment 
is executed more than once. 

and   3) Total  optimization of  a segment  if  any basic block in it 
is executed more than once. 

The  results were encouraging, with the second of the three approaches being 
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the most promising. However, performance for medium execution times was 

still being Jegraded because the optimization rates of the non-innermost 

segments were the same. Therefore, the loop analyzer was modified to 

recognize in ^rmost and outermost segments, thereby partitioning the 

segments into three classes. The outermost segment's optimization count for 

the last optim,i:ation uate was made smaller than that for other embedded 

segments because its execution rate is slower than that for these other 

segments and therefore it should not bn executed the same number of times 

before being totally optimized. This '.nal modification produced the most 

favorable results. 

The  optimization  states  for  the  final system on whose  performance  we 

shall  report  in the next chapter were as follows: 

0: translate the interpretive code for the basic block to 
"dumb" machine language. 

1: perform a non-homogeneous fusion of the basic block 
into a segment. Basic blocks in interpretive code are 
translated to "dumb" machine language; blocks in machine 
language are moved as is with their branches 
retranslated. 

2:   perform    code    motion    on    the    ss^ient.      Before the 
optimization     is     performed,     the     CSE     algorithm is 
performed on all basic blocks in the scgp.ent.    After the 
optimization,    the    quads    of    each    basic    block are 
translated to "fair" machine language. 

Note  that  CSE  is  not  a separate optimization, but is combined with CM. 

The   reason   was   that   the   time   to   generate   the   machine   language   segment 

using  the "fair" code generator is appreciably larger than the time to perform 

 —.— 
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the CSE or CM algorithm. Therefore, the combined time to perform CSE and 

CM separately is much greater than ti H time to perform the combination, 

berause the machine language segment m^:1 be generated twice. 

The optimization crunts associated with each of the optimization states 

depend on the loop structure of the program. In the loop classification that 

follow, the triplet (C0)C1,C2) represents the optimization counts for 

optimization states 0, 1  and 2 respectively: 

1) innermost segments (i.e., loops): (0,1,50). Thus 
innermost segments are fused into "dumb" machine 
language if executed once, then totally optimized. The 
loop analyzer initializes the optimization state and count 
for basic blocks belonging to an innermost segment to 
1. 

2) outeirnost segments: (6,15,n) where n ■ 10 if the 
lengtn of the segment (in basic blocks) is <, 10, 
otherwise 2*length. 

3) other segments: (6,15,200). 

4) entire subprogram: (6,15,n) where n is the same as in 
2). However, CM is not performed as the last 
optimization; instead CSE is applied to all the basic 
blocks in the subprogram. It makes no sense to remove 
invariant quads out of a subprogram because the entire 
subprogram is always executed when called. Thus the 
entire subprogram is considered a segment and 
processed as any other segment with respect to 
optimization. What constitutes an outermost loop inside 
a subprogram depends on whether the subprogram is 
called from within a loop. It is assumed that this is 
always the case for it this assumption is not made, 
experiments indicate that system performance is 
degraded. 

Since   the   third   optimization   count   is   determined   prior   to   program 

execution, it  must be saved.    This is accomplished by appending another field 

w -■ ■—■ 
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to the segment table. 

Finally, an explanation of how the optimizati' n counts were determined 

is in order. The final values given above are based on fmiings obtained by 

experimenting with a system that employed homogeneous fusion. 

Corresponding to that system's four optimization states, there were four 

optimization counts: OP0, 0P1, OP2, and ÜP3. Initially, basic blocks and 

segments were treated uniformly. The optimization counts for those in the 

same optimization state were assigned a constant value that did not depend 

on  any  attribute ov the basic olocK or segment.    The values selected and the 

reasons were: 

1) OP0«1O OP0 controls when a basic block is translated 
to "dumb" code. Since translation time is 550;is/quad 
and interpretation time is approximately 25;'S/quad) an 
upper bound on the number of times the basic block 
should be interpreted before being translated is 
550/25-22 times. However, this calculation does not 
take into coo-:,deration the execution time of the new 
representation. if the basic block continues to be 
executed, it would pay to translate sooner because its 
execution time win be less. Thus, a fraction of 22 was 
selected, viz., approximately   1/2. 

2) OPU15. Determining OPi is harder, because the 
amount of time required to perform the homogeneous 
fusion algorithm is a function of the length of the 
segment and cannot be determined a priori. Therefore, 
the value choosen is based on the fact that fusion 
should be performed as soon as possible,, but not 
before the bemfits of being in "dumb" code could be 
felt, i.e., the effort required to translate quads to 
"dumb" code should .<ot be wasted. 

3) 0P2=35. Since CSE produces code that is at least 
twice aj fast as that produced by fusion to "dumb" 
code, a value was choosen which is approximately twice 
OPI. 
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4) OP3-70. Because the benifits of going from CSE-^air" 
code to CM-Mfair-M code are not as great as go ng from 
fused "dumb" code to CSE-"fairH code, a vake was 
choosen that could delay performing CM t^r a 
reasonable  amount  of  time. 

In   an   attempt   to   improve   performance   for   small  execution   times   these 

optimization   counts   were   varied   slightly,  with   no   appreciable   results.     Since 

OP3    was    thought    to    be    the    most    critical    factor,   other    functions    for 

determining   it   were  tned  based  on  the  length  of   the  segment   measured   in 

either   number   of   quads  or   number  of   basic   blocks,  e.g.,  taking   the   natural 

logarithm   or   a  constant  multiple.    The  most   promising was  taking  a  constant 

multiple (2) of the lengtn measured in basic blocks. 

It became apparent that constant optimization counts were not sufficient 

to significantly improve performance. Further improvements were made by 

changing to non-homogeneous usion, combining CSE with CM, and not treating 

segments uniformly, but classifying them according to their level of nesting in 

a loop structure. This necessitated adjusting the optimization counts 

accordingly.    The values choosen are given above; the reasons are: 

1) innermost segments: Cl-1 for there is no reason to 
per'orn. any optimization if the segment is not executed 
at least once. To totally optimize the segment after it 
it executed once results m too murh optimization being 
applied too soon Therefore, total optimization is 
delayed, and since CSE was combined with CM, 
C2-OPWOP2-50. 

2) outermost segments and entire subprograms: CO-OPC-10 
proved to be too high a value, while Cl«5 was minimal. 
Therefore, C0-6 was choosen. Cl-OPl-15 for the same 
reasons given for OPi. C2 is a multip | of vhe length 
of the segment measured m basic blocks because this 
function    was    experimentally    the    most    promising    for 
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determining    when    the    final    optimization    should    be 
performed. 

3) other segments: C2-200 because 0P3 was considered to 
be too small for a segment that is in a loop structure 
at least three levels deep. Based on an analysis of 
how many times such a loop could be executed in such 
a loop structure, 200 seemed a reasonable choice. 

It     is    unfortunate    that    the    optimization    counts    were    determined 

heuristically  and  a  more theoretical  basis was  not found.    But the excellent 

performance results presented in the next chapter speak for themselves. 

■ - ■ 
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Figure 3.1: Structural Organization of the Adaptive FORTRAN System 
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Chapter IV 

Validation and Experimental Results 

IT this chapter we present the experimental evidence which 

demonstrates that dynamic optimization is a workable and valid technique. 

The demonstration strategy consists of implementing the Adaptive FORTRAN 

system described in the previous chapter, and measuring its performance on 

an  appropriate program mix. 

In order to evaluate Adaptive FORTRAN'S performance measurements, it 

is necessary to compare the results with those obtained by running the Süme 

set of test programs under other types of FORTRAN compilers, viz., WATFIV, 

FORTRAN-IV G and FORTRAN-IV H. To do this for various machines would 

not, unfortunately, provide a meaningful comparison due to the differences in 

the machines and thoir compilers. For the comparisons to be meaningful, the 

same compiler, optimizers, machine language generator:, and object machine 

should be used. 

Therefore, the approach taken is to transform the Adaptive FORTRAN 

system into systems that resemble those three real compilers. It is against 

those three compilers, plus the JEC POP-10 FORTRAN compiler (F40), that the 

Adaptive FORTRAN system is compared. We will present the results of 

running the test programs under the five different systems ir tabular and 

graphical form, and discuss their implications. 
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4.1  Compirativ« Compiler Systems 

In order to have a basis for evaluating how dynamic optimization 

compares to current compilers, it is necessary to tun a number of test 

programs under different compiler systems and to compare the performance 

measurements. For FORTRAN, there are three well Known classes of FORTRAN 

compilers that  might be used for comparison purposes: 

1) WATFIV: 

2) F0RTRAN-1V G: 

3) FORTRAN-IV H: 

a one pass compiler that compiles 
directly to core, it is very fast and 
the code produced is fairly decent. 

usually a multi-pass compiler that 
produces a relocatable object module 
that must be loaded by a standard 
system loader. It compiles relatively 
fast and generates code that is better 
than that produced by WATFIV. 
Optimization is at the basic block level. 
The generated code is comparable to 
that produced by CSE and the "fair" 
code generator. 

F4e, the PDP-ie FORTRAN compiler, 
can be classified as a G-iype compiler 
except that optimization is at the 
statement level. It compiles relocatable 
code to a disk file. A standard system 
loader creates in core an absolute load 
module fiom one or more relocatable 
object mot jles. This load module can 
be saved m a file on disk and called 
for execution. 

a multi-pass optimizing compiler that 
optimizes the entire program at 
compile-time. The       output       is       a 
relocatable object module. The compiler 
is usually a few times slower than 
FORTRAN-IV G. However, the object 
code is usually two or three tims 
faster than that produced by 
FORTRAN-IV G (see Low[69]). 
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There are a number of practical problems in making the comparisons. 

First, not many compute-s have all three compilers available. Second, the 

differences in character,sties of various computers (e.g., speed, word size, and 

instruction set) must be taken into account; this complicates the comparisons. 

Finally, the differences between the compilers themselves, e.g., the parsing 

and code generation techniques employed, the type of machine language 

generated, and the run-time support package must be taken into account. 

The ideal situation would be to have all the compiler systems run on 

the same machine and to use the same compiling techniques, optimizers, 

machine language generators and run-time support package. The construction 

of these compiler systems was considered to be too large an undertaking. 

Therefore, a more expedient approach was taken in which the Adaptive 

FORTRAN system (AF) was transformed to resemble each of the other three 

compilers. It was easy to make the necessary changes because of the way 

AF w-, constructed (see Sections 3.1.2 end 3.1.3). The main discrepancy 

between the transformed systems and the actual compilers lies not in the 

type of code produced, but in the way it is produced. Each transformed 

system uses the Adaptive FORTRAN compiler to translate FORTRAN source text 

into quads. After loading the quads, but before starting execution, the quads 

are translated to the machine language form that most resembles the code 

produced by the compiler be'ng emulated. We feel this discrepancy in no 

way alters the validity of ths test results, since the use of a consistent 

approach does not bias the results. 

-   ■ — ■   -■ --■   -      -       ■ - 



The  three  transformed systems  and  the manner  in which they  produce 

code are: 

1) AFW: resembles WATFIV. The entire program is 
translated to "dumb" code before execution starts. 
A true WATFIV compiler does not produce quads, 
but compiles machine language directly. Like 
WATFIV, AFW compiles in one pass directly to 
core. But whereas WATFIV's machine language is 
absolute and requires some patching before 
execution starts, AFW produces relocatablp quads 
which      must       be       loaded. Therefore,      the 
compiler-loader phases of a WATFIV compiler 
probably would be slightly faster than those for 
AFW. 

2) AFG: resembles FORTRAN-IV G. CSE is performed on 
all the program's basic blocks and then the entire 
program is translated to "f?ir" code before the 
start of execution. A FORTRAN-IV G compiler 
usually produces relocatable machine language 
directly to a disk file. The absolute load module 
is created from the relocatable object modules by 
a standard system loader. Since these modules 
are on disk, load-time should be greater than tnat 
for AFG which uses a specialized in core loader 
(see  Section 3.1.2.2). The       compile-tir.)       for 
FORTRAN-IV G should be comparable to the 
combined time required by AFG to compile and 
load the program and perform the translation of 
the quads to machine language. Therefore, the 
compiler-loader phases of AFG should be slightly 
faster than that for FORTRAN-IV G 

3) AFH: resembles FORTRAN-IV H. All optimizations are 
applied to the entire program which is then 
translated to "fair" code before the start of 
execution. CSE is first performed on each basic 
block in the entire program. Then the segments 
are formed via fusion starting with the innermost 
ones and working outwards. The list of segments 
and their order of processing is given to the 
system, not deduced by it. As each segment is 
formed, OK/ is performed on it. After all 
segments are formed, the entire program is 
translated   to   "fair"   code.     A   true   FORTRAN-IV H 
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compiler also produces an internal form such as 
quads which its optimizers process (of. (Low69]). 
The compiler-loader phases of AFH should bs 
slightly faster than that for FORTRAN-IV H for the 
same reasons given above for AFG. 

These    three    compiler   systems   form   the    basis   against   which   AF   is 

compared.     The   i erformance  of   eacn  system   was   measured   by   running   the 

same set  of  test  programs under each. 

4.2 The Test Programs 

In order to draw meaningful conclusions about t.ie performance of AF, it 

is necessary to run a number of test programs under it that have different 

characteristics Care must be exercised in selecting the test programs to 

avoid biasing the results. For any compiler system, it is always possiKe to 

construct a program that makes it look miserable or one that makes it look 

good. To ensure that the test programs are representative of the type of 

programs written in the real world, both the published literature and students 

were used as sources. 

A number of criteria were used to select the test programs from the 

potential candidates; the/ were designed to test if the usage of AF is 

restrictive. The main criterion was to select programs with differing loop 

structures, e.g., a different number of loops, loop lengths (measured in basic 

blocks) and loop nestings. The reason was that we wanted to test AF's 

performance    both   on   those   class   of   programs   it   was   designed   for   (i.e., 

- ■      -- — 
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programs for which 57. of the code accounts for 50% of the execution time) 

and on those that do not fall into this classification. 

Second, we wanted programs that have parameter(s) that can be varied 

to control their execution time. This allows us to study the performance of 

AF for small, medium and large execution times, and determine if performance 

is a function of the execution time. 

Finally, we wanted programs that were compute bound in order to do a 

worse cas? analysis. I/O bound programs were not selected because the I/O 

handlers are not part of the user's program and cannot therefore be 

optimized by the system, and if the program performs any I/O, the I/O time 

is a constant for a fixed test point regardless of the version of the 

experimental compiler system being run under. Thus, the analysis of the 

results is unaltered since it is the difference between the measurements that 

is relevant when making comparisons. 

The   four   test   nrograms  selected  (see  Appendix B  for  a  listing   of   the 

source) and their characteristics are: 

1) EE- A student electrical engineering problem. 
•) Control parameters; 02. and 031, increments 

that control the accurracy of the results 02 
and 03 respectively. For the test runs, 021 
was held fixed while 031 was allowed to 
vary. 

b) Program units: Main program unit only 
c) Number of statements: 51 
d) Number of basic blocks: 9 
e) Number of individual loops: 1 
f) Loop size: 7 basic blocks 
g) Loop nesting: 1 single level 

kMM^M^MB  , MM ■HMMMMal 
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This program is to typify the type of 
program written by a student. It was obtained 
from an EE student [McW72]. 

2) SIEVE2: A prime number generator [Cha67]. 
a)   Control   parameter:   K,  the   number   of   pri nes 

to be generated 
Program units: Main program unit only 
Number of statements: 86 
Number of  basic blocks: 27 

e) Number of individual loops: 7 
f) Loop sizes(in basic blocks): 

l,2(2)A5(2),25t 
Loop nesting: 

1 single level 
5 double level 
1 triple level 

b) 
O 
d) 

g) 

This algorithm is a modification of Chartres' 
algorithm in that it generates the first K primes 
instead of all the primes < M. 

3) LES: A linear equation solver [For67 and Mol72]. 
a) Control      parameter:     N,     the     number     of 

variables 
b) Program    units:    Main    program    u:iit    plus    2 

suborogram units 
c) Number of statements: 97 
d) Number of basic blocks: 45 

MAIN:  15 
DECOMP: 20 
SOLVE:  10 

e) Number of individual loops: 13 
MAIN: A' 
DECOMP: 5 
SOLVE: 4 

f) Loop sizes(in basic blocks): 
MAIN:  1,2,4(2) 
DECOMP:  1(2),3A18 
SOLVE:  1(2),3(2) 

t The notation is to be interpreted as follows: for the 7 individual loops, one 
is of size 1, two of size 2, one of size 4, two of size 5, and one of size 
25. 

i^MMjBaMMMBB J 
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g)   Loop nesting: 
MAIN: 2 single level 

2 double level 
DECOMP: 1 single level 

3 double level 
1 triple level 

SOLVE: 2 single level 
2 double level 

. 

The original algorithm given in the textbook 
by Forsythe and Moler [For67] consists of two 
subroutines, llowpver, Moler later published new 
subroutines that were a modification of, and 
replacement for, the corresponding original 
routines [Mol72]. Theso were the routines used 
in the program. The test matrices were 
generated by the program and correspond to 
Example 3.6 in the book by Gregory and 
Karney [Gre69] (see Appendix B, Section B.2). 

4) QZ: An eigenvalue problem [Mc!73]. 
a) Control parameter: N, the size of the square 

input matrix 
b) Program   units:   Main   program   unit   plus   9 

subprogram units 
c) Number of statements: 654 
d) Number of basic blocks: 323 

MAIN: 9 
QZ: 7 
QZHES: 66 
QZIT: 97 
QZVAL: 49 
QZVEC: 77 
HSH3: 5 
HSH2: 5 
CHSH2: 5 
CDIV: 3 

e) Number of individual loops: 51 
MAIN: 2 
QZHES: 19 
QZIT: 12 
QZVAL: 4 
QZVEC: 14 
HSH3, HSH2, CHSH2, CDIV: 0 
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f) Loop sizesdn basic blocks): 
MAIN: 2,5 
QZHES: 2(12),3,5)7(2)>21,23,32 
QZIT: 2(7))3I9110,44,66 
QZVAL: 2(3),42 
QZVEC: 2(6),3(2),5,7,18,19(2),48 

g) Loop nesting: 
MAIN:  1  single level 

1  double level 
QZHES: 3 single level 

7 double level 
9 triple level 

QZIT: 3 single level 
2 double level 
7 triple level 

QZVAL:  1  single level 
3 double level 

QZVEC: 3 single level 
7 double level 
4 triple level 

This program was obtained from Stewart and 
is described, but not given in his paper with 
Moler [Mol73]. The test matrices are generated 
by the program and were suggested by Stewart 
(see Appendix B, Section F3.5). This algorithm is 
interesting in that the intermediate quantities 
produced by the program may not be the ';ame 
owing to rounding errors. Consequently, the 
execution times are theoretically not strictly 
comparable. However, for practical purposes 
they are, i.e., the timings depend in a uniform 
manner on the size of the matrix. 

Each  of   these   test   programs  were  run  under  AF,  AFW, AFG  and  AFH, 

plus   F40,   the   FORTRAN-IV   compiler   on   the  PDP-10.     We   now   present   the 

results of tnese test runs. 
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4.3 Th« Test Results 

The performance of each compiler system is measured by obtaining the 

total run-time for a test program as a function of its control parameter, 

where total run-time is the sum of compilation time, load time and execution 

time. The timings were made on a PDP-KA10 computer system with Ampex 

core having a l.S^s read/write c/cle. In order to obtain accurate timings, it 

is necessary to run the compiler systems with no load on the computer 

system, for timings are sensitive to the system load. During a test run, the 

computing environment consisted of the monitor, the I/O handlers and the 

particular compiler system being tested. Identical computer runs produced the 

same timings so there is no statistical fluxuation in the results. A IOJAS clock 

was used to make the timings, which are given here in seconds. 

The   results   of   the   test   runs   are   presented   in  tabular   and   graphical 

form.    There are five tables for each program (Tables 4.1-4.4): 

1) Compiler and Loader Timing Statistics 
The   following  statistics  are  tabulated  for  F40,  AFW, 

AFG, AFH, and AF: 
a)   Compilation time, 
I)   Load time, 
c) Total of a) and b), 
d) Optimization    time,    i.e.,    that    part    of    the 

compilation time spent optimizing the program, 
e) The   percent   of   the   compilation   time   spent 

optimizing, i.e., 
(optimization time/compilation time)«100. 
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2) Execution Times 
The execution times of the program for F40, AFW, 

AFG, AFH and AF are tabulated as a function of ine 
control parameter. Data points were taken until the 
amount of time spent optim^ing th? program became 
constant, i.e., until no more op'imizations were 
performed. 

3) Total Run-time 
The total run-time (compilation time r>lus load time 

plus execution time) is tabulated M a function of the 
control parameter for F40, AFW, AFG, AFH and AF. 

4) Total Run-time Ratios 
This table indicates the relative speed of AF as 

compared to each of the compiler systems. The ratio 
of total run-times is tabulated as a function of the 
control parameter. 

5) Ar Optimize: ^n Statistics 
The following statistics are tabulated as a function 

of the control parameter: 
a) Exec tion time, 
b) Optir ization time, i.e., that part of the 

execution time spent dynamically optimizing 
the program, 

c) The percent cf the execution time spent 
optimizing the program, i.e., 

(optimization time/compilation time)*100. 

The tf ird table of total run-times represents the measurements for 

comparing the performance of each compiler system against AF. In order to 

compare the systems visually, this table is preset ' in graphical form for 

each test program (Figures 4.1-4.4), The coordinates of the graph are the 

total run-time versus the control parameter. The data for each of the 

compiler systems is plotted on the same set of axes thereby producing a set 

of performance curves that can easily be compared. 

. 

■ ■-•    -^   ■- ■"-■——^f ■ ■ -■ ••   ■  - -■ - -*■  
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In order to further demonstrate the effects of dynamic optimization, we 

constructed another compiler system, AFI, which performs no optimizations, but 

runs the program interpretively. Table 4.5 shows the results of the initial 

test points for the test programs QZ and LES. These results are plotted on 

the corresponding graphs. 

Finally, we were interested in studying the behavior of AF for very 

small execution times because the optimization time then constitutes a Lrge 

percentage of the execution time. We wanted to see how the fraction of 

execution time devoted to optimiz^iion grows and finally peaKs. Refined 

measurements were made for the test programs QZ and LES, and the results 

are tabulated in Table 4.5. The results also were used in accurately plotting 

the initial portion of the corresponding performance curves. 

-■ —'- . .u       -■    ■ -  - - - -   - 
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Table 4.1a    Compiler and Loader Timing Statistics for EE 

Compilation Load Optimization 7. of 
Time 

3.37 

Time 

2.25 

Total 

5.62 

Time Compilation 

F40 ___- 

AFW .59 .03 .62 .07 11.86 

AFG .77 .03 .80 .25 32.47 
AFH .81 .03 M* .29 35.80 
AF .52 .03 .55   

C3I 

Table 4.1b    Execution Times for EE 

F40 AFW AFG AFH AF 

.5 41.40 35.13 32.82 30.74 31.04 
1.0 20.75 17.70 16.55 15.51 15.81 
2.0 10.63 9.09 850 7.96 8.27 
4.Ü 5.48 4.69 4.39 4.12 4.42 
6.0 3.85 3.28 3.08 2.88 3.19 
8.0 3.02 2.58 2.42 2.27 2.57 

C3I 

Table 4.1c    Total Run-time for EE 

F40 AFW AFG AFH AF 

0.5 47.02 35.75 33.63 31.58 31.59 
1.0 26.37 18.32 17.35 16.35 16.36 
2.0 16.25 9.71 9.30 8.80 8.82 
4.0 11.10 5.31 5.19 4.96 4.97 
6.0 9.47 3.90 3.88 3.72 3.74 
8.0 8.64 3.20 3.22 3.11 3.12 

 ii^iiieiMMiH 
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Table 4.Id   Total Run-tim« Ratios for EE 

C3I      F40/AF      AFW/AF      AFG/AF      AFH/AF 

Ö.5 1.49 1.13 1.06 .99 

1.0 1.61 1.12 1,06 .99 

2.0 1.84 1.00 IJM .^9 

4.0 2.23 1.07 1.04 .99 

6.0 2.53 1.04 1.04 .99 

8.0 2.77 1.03 1.03 .99 

Table 4.1«    AF Optimization Statistics for EE 

Execution Opt imization 7. of 

C3I Time 

31.04 

Time Execution 

0.5 .31 1.00 

1.0 15.81 .31 1.96 

2.0 8.27 .31 3.75 

4.0 4.42 .31 7.01 

6.0 3.19 .3i 9.72 

8.0 2.57 .31 12.06 

i—llliiH*ftl    il^riMlilMiiMM   «iMIfciiTil — - . - ■ -        -   - - -————^- 
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Tabl« 4.2a    Compiler and Loader Timing Statistics for SIEVE2 

Table 4.2b    Execution Times for SIEVE2 

F40 AFW AFG AFH 

Compilation Load Optimization 7. of 

F40 

rime Time 

2.43 

Total 

6.88 

Time Compilation 

4.45 
AFW .77 .17 .94 .11 14.29 

AFG .89 .17 1.06 .23 25.84 

AFH 1.03 .17 1.20 .37 30.10 

AF .66 .17 .83   

AF 

10 .07 .06 .06 .02 .12 

20 .07 .07 .06 .02 .15 

30 .07 .07 .06 .02 .20 

40 .07 .08 .07 .03 .21 

50 .07 .08 .07 .03 .47 

60 .07 .09 .08 .03 .47 

70 .03 .10 .08 .04 .47 

80 .10 .11 .09 .04 .48 

90 .IP .11 .09 .05 .48 

100 .10 .12 .10 .05 .49 

200 .18 .23 .16 .12 .55 

300 .28 .37 .25 .21 .64 

400 .38 .52 .34 .30 .73 

500 .52 .70 .44 .41 .83 

600 .65 .89 .56 .52 .95 

700 .78 1.09 .68 .65 1.07 

800 .95 1.29 .80 .77 1.19 

900 1.10 1.51 .93 .91 1.33 

1000 1.27 1.75 1.07 1.05 1.46 

       " --^a-^^-^-^-. 
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Tabl« 4.2c    Totti Run-tim« for SIEVE2 

F40 AFW AFG AFH 

Tabl« 4.2d    Total Run-tim« Ratios for SIEVE2 

AF 

10 6.95 1.00 1.12 1.22 .95 
20 6.95 1.01 1.12 1.22 

QR 
30 6.95 !.01 1.12 1.22 1.03 
40 6.95 1.02 1.13 1.23 1.04 
50 6.95 1.02 1.13 1.23 1.30 
60 6.95 1.03 1.14 1.23 1.30 
70 6.96 1.04 1.14 1.24 1.30 
80 6.98 1.05 1.15 1.24 1.31 
90 6.98 1.05 1.15 1.25 1.31 
100 6.98 1.06 1.16 1.25 1.32 
200 7.06 1.17 1.22 1.32 1.3S 
300 7.16 1.31 1.31 1.41 1.47 
400 7.26 1.46 1.40 1.50 1.56 
500 7.40 1.64 1.50 1.61 1.66 
600 7.53 1.83 1.62 1.72 1.78 
700 7.66 2.03 1.74 1.85 1.90 
800 7.83 2.23 1.86 1.97 2.02 
900 7.98 2.45 1.99 2.11 2.16 
1000 8.15 2.69 2.13 2.25 2.29 

F40/AF      AFW/AF      AFG/AF      AFH/AF 

10 7.32 1.05 1.18 1.28 
20 7.09 1.03 1.14 1.24 
30 6.75 .98 1.09 1.18 
40 6.68 .98 1.08 1.18 
50 5.35 .78 .87 .95 
60 5.35 .79 .88 .95 
70 5.35 .80 .88 .95 
80 5.33 .80 .88 .95 
90 5.33 .80 .88 .95 
r>« 5.29 .80 .88 .95 
20« 5.11 .85 .88 .96 
300 4.87 .90 .89 .96 
400 4.65 .94 .90 .96 
500 4.46 .99 .90 .97 
600 4.23 1.03 .91 .97 
700 4.03 1.07 .92 .97 
800 3.88 1.10 .92 .98 
900 3.69 1.13 .92 .98 
1000 3.56 1.17 .93 .98 

- ""- ■■-- .-.. -^ — .-■. . —A—   -"■■■■ —" • — 
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Tabl« 4.2«    AF Optimization Statistics for SIEVE2 

Execution      Optimization      7. of 
K        Time Time Execution 

10 .12 .05 41.67 
20 .15 .07 46.67 

30 .20 .11 55.00 
40 .21 .11 52.38 
50 .47 .37 78.72 
60 .47 .37 78.72 
70 .47 .37 78.72 
SO .48 .37 77.08 
90 .48 .37 7>.08 
100 .49 .3/ 75.51 
200 .55 .37 67.27 
300 .64 .37 57.81 
400 .73 .37 50.68 
500 .83 .37 44.58 
600 .95 .37 38.95 
700 1.07 .37 34.58 
800 1.19 .37 31.09 
900 1.33 .37 27.82 
1000 1.46 .37 25.34 

i 
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Tabl« 4.3a   Compiler and Loader Timing Statistics for LES 

Compilation Load Optimization 7. of 
Time Time Total Time Compilation 

R0 6.68 2.20 8.88 .«.- 

AFW .99 .10 1.09 .17 17.17 
AFG 1.20 .10 1.30 .38 31.67 
AFH 1.30 .10 1.40 .48 36.92 
AF .82 .10 .92     

Table 4.3b    Execution Times for LES 

F40 AFW AFG AFH AF 

5 
1.3 
15 

43 

70 

.08 

.25 

.65 
1.42 
2.62 
4.37 
6.82 

10.07 
14.08 
19.17 
25.32 
32.68 
41.33 
51.38 

.09 

.25 

.62 
1.31 
2.42 
4.04 
6.29 
9.25 

13.04 
17.75 
23.48 
30.32 
38.39 
47.78 

.10 

.21 

.48 

.98 
1.78 
2.94 
4.56 
6.69 
9.41 

12.79 
16.91 
21.83 
27.62 
34.38 

.02 

.11 

.31 

.68 
1.27 
2.12 
3.29 
4.83 
6.79 
9.21 

12.16 
15.68 
19.81 
24.62 

.25 

.56 

.85 
1.36 
2.04 
2.90 
4.14 
5.68 
7.65 

10.08 
13.03 
16.70 
20.84 
25.66 

■ - -    ■ 
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N 

Tabie 4 3c    Total Run-tim« for LES 

F40 AFW AFG AFH AF — 

5 8.96 1.18 1.40 1.52 1.17 
10 9.13 1.34 1.51 1.61 1.48 
15 0 53 1.71 1.78 1.81 1.77 
20 10.30 2.40 2.28 2.18 2.28 
2F-> 11.50 3.51 3.08 2.77 2.96 
30 13.25 5.13 4.24 3.62 3.82 
35 15.70 7.38 5.86 4.79 5.06 
40 18.95 10.34 7.99 6.33 6.60 
45 22.96 14.13 10.71 8.29 8.57 
50 28.05 18.84 14.09 10.71 11.00 
55 34.20 24.57 18.21 13.66 13.95 
60 41.56 31.41 23.13 17.18 17.62 
65 50.21 39.48 28.92 21.31 21.76 
70 60.26 48.87 35.68 26.12 26.58 

Tkht« 4 3d    Total Run-time Ratios for LES 

IN!      F40/AF      AFW/AF      AFG/AF      AFH/AF 

5 7.66 1.01 1.20 1.30 
10 6.17 .91 J.02 1.09 
15 5.38 .97 1.01 1.02 
20 4.42 1.05 1.00 .96 
25 3.89 1.19 1.04 .94 
30 3.47 1.34 1.11 .95 
35 3.10 1.46 1.16 .95 
40 2.87 1.57 1.21 .96 
45 2.68 1.65 1.25 .97 
50 2.55 1.71 1.28 .97 
55 2.45 1.76 1.31 .98 
60 2.36 1.78 1.31 .98 
65 2.31 1.81 1.33 .98 
70 2.27 1.84 1.34 .98 

l 
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Tabl • 4.3«    AF Optimization Statistics for L 

Execution Optimization t of 
N Time Time Execution 

5 .25 .09 36.00 
10 .56 .29 51.79 
15 .85 .34 40.00 
20 1.36 .45 33.09 
20 2.04 .54 26.47 
30 2.90 .54 18.62 
35 4.14 .61 1473 
40 5.68 .61 10.74 
45 7.65 .61 7.97 
50 10.08 .61 6 0L 
55 13.03 .61 4.68 
60 16.70 .77 461 
65 20.84 .77 3.69 
70 25.66 .77 3.00 

■   ■'■ ■       ■      - ■■    — —   - ■ - - - —    - •-- 
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Table 4.4a Compih >r and Loader Timing Statistice for QZ 

Compilati on Load Optimization t of 
Time Time 

3.83 

Total 

70.83 

Time Compilation 

F40           67.00 .._. 

AFW          10.12 .58 10.70 1.65 16.30 
AFG          13.58 .58 14.16 5.11 37.63 
AFH           15.16 .58 15.74 6.69 44.13 
AF               8.47 .58 9.05   

N 

Table 4.4b    Execution Times for QZ 

F40 AFW AFG AFH AF 

5 .45 .62 .52 .74 2.29 
10 2.70 3.02 2.03 2.04 4.81 
15 7.42 7.85 4.94 4.46 7.63 
20 15.42 15.89 9.69 8.34 12.02 
25 30.17 30.70 18.33 15.39 20.32 
30 48.13 48.^3 28.63 23.65 23.63 
35 73.62 73.57 43.12 35.22 40.34 
40 109.75 109.05 63.38 51.41 56.74 
45 149.85 150.91 87.33 70.4'^ 75.81 
50 204.45 200.21 115.41 1253 98.04 

N 

Table 4.4c    Total Run-time for QZ 

F40 AFW AFG AFH AF 

5 71.28 11.32 14.68 16.48 11.34 
10 73.53 13.72 16.19 17.78 13.86 
15 78.25 18.55 19.09 20.20 16.68 
20 86.25 26.59 23.85 24.08 21.07 
25 101.00 41.40 32.49 31.13 29.37 
30 118.96 59.13 42.79 39.39 37.68 
35 144.45 84.27 57.28 50.96 49.39 
40 180.58 119.75 77.54 67.15 65.79 
45 220.68 I61.6I 101.49 86.16 84.86 
50 275.28 210.91 129.57 108.32 107.09 

 -  - -■■    '■■■  ■   ■   ■ ■- ■- 
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Tabl« 4.4d    Total Run-tim« Ratios for QZ 

N      R0/AF      AFW/AF      AFG/AF      AFH/AF 

5 6.29 .99 1.29 1.45 
10 5.31 .98 1.17 1.28 
15 4.69 1.11 1.14 1.21 
20 4.09 1.26 1.13 1.14 
25 3.44 1.41 1.11 1.06 
30 3.16 1.57 1.14 1.05 
35 2.92 1.71 1.16 1.03 
^0 2.74 1.82 1.18 1.02 
45 2.60 1.90 1.20 1.02 
50 2.57 1.97 1.21 1.01 

Table 4.4e    AF Optimization Statistics for QZ 

Execution Optimization     t of 
N Time Time Execution 

5 2.29 1.44 62.88 
10 4.81 2.48 51.56 
15 7.63 2.77 36.30 
20 12.02 3.20 26.62 
25 20.32 4.39 21.60 
30 28.63 4.40 15.37 
35 40.34 4.48 11.11 
40 56.74 4.65 8.20 
45 75.81 4.65 6.13 
50 98.04 4.65 4.74 

.^...^^.^.: v..  ■....■>-..■.—^.^.L--   ■■   ■    ■   ..   .   .^.^ ■   ,.-.     .. ...^.^^^***tMlm 
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Tabl« 4.5a    AFI Timings for QZ 

N 

5 
10 
15 

Execution 
Time 

2.58 
16.69 
46.10 

Total 
Run-time 

11.63 
25.74 
55.15 

Table 4.5b    AFI Timings for LES 

Execution Total 
N Time Run-time 

5 .28 1.20 
10 1.30 2.22 
15 3./9 4.71 
20 8.40 9.32 
25 15.80 16.72 

   —■  ■ ■ - ■ -- _-<         - ... 
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N 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Table 4.6a    Refined AF Timings for Q2 

Execution      Optimization      7. of 
Time Time Execution 

.17 
A2 

1.08 
1.72 
2.29 
2.74 
3.16 
^.09 
4.26 
4.81 

.00 

.18 

.59 
1.01 
1/44 
1.70 
1.95 
2.38 
2.41 
2.48 

0.00 
42.86 
54.63 
58.72 
62.88 
62.04 
61.71 
58.19 
56.57 
51.56 

Total 
Run-time 

9.22 
9.47 

10.13 
10.77 
11.34 
11.79 
12.21 
13.14 
13.31 
13.86 

Table 4.(>b    Refined AF Timings for LES 

N 

1 
2 
3 

9 
10 

Execution 
Tims 

.08 

.12 

.17 

.21 

.25 

.35 

.41 

.47 

.49 

.56 

Optimization 
Time 

.00 

.03 

.06 

.08 

.09 

.18 

.22 

.26 

.26 

.29 

t of 
Execution 

0.00 
25.00 
35.29 
38.10 
36.00 
51.43 
53.66 
55.32 
53.06 
51.79 

Total 
Run-time 

1.00 
1.04 
1.09 
1.13 
1.17 
1.27 
1.33 
1.39 
1.41 
1.48 

^.« - _ 
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4.4 Analysis of T«st Results 

Before ans'yzing the position of the AF performance curve relative to 

the curves for AFW, AFG and AFH, we first analyze the relative positions o* 

the AFW, AFG and AFH curves and see if they conform to expectations. 

AFW, AFG and AFH differ only in the amount of compile-time 

optimization they apply to a program, an'-i thus in the efficiency of the 

machine language they produce. At the start of execution, ine AFH curve 

lies above the AFG curve which in turn lies above the AF\A curve. Because 

of the relative efficiency of the code, the AFW curve eveniually will cross 

the other two, and the AFG curve will cross the AFH curve. These 

crossover points occur when the difference in compilation ume equals the 

difference in execution time. It is expected then that if a program is run 

long enough, the AFW curve will lie obove the AFG curve which in turn will 

lie above the AFH curve. If, however, the additional optimization (CM) 

performed by AFH has no effect, i.e., does not remove any invariant quads 

from any loop, then the effort is wasted and the AFG curve will lie below 

the AFH curve. 

By checking the tables and figures for each test program, it is seen 

that the curves follow this behavior pattern. Only for the test program 

SIEVE2 does the AFG curve lie below the AFH curve. The reason is exactly 

that given above, viz., CM has no effect. An examination of the optimization 

results showed that the loops did not contain any invariant quads. 

I 
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The performance curves for the four test programs indicate that the 

range of applicability for AFG is very narrow since the crossover point 

between AFW and AFG is very close to the crossover point for AFG and 

AFH. One can only conjecture that AFG is not necessary, i>nd that c ■» 

should run under either AFW or AFH depending on the length of execution. 

As for the AF curve, it is expected to initially li? be\OM all the other 

curves since It performs no initial optimizations. This is indeed the case. If 

a program is run long enough, the AF curve wih asymptotically become 

parallel to the AFH curve because the executable code becomes ider.t<cal to 

that produced by AFH. Indications are that it approaches the AFH curve from 

above if the time to totally optimize the program exceeds the compile-time 

optimization time for AFH; otherwise it approachen "t from below. 

There is a range in which the AF curve r ight cross over one or more 

of the other curves and then cross back under. This occurs for small 

execution times. The width of the range seems to depend on the diversity 

of the program's loop structure. Consider each test program in terms of 

increasingly diverse loop structures: 

1) EE (see Figure 4.1): A short program having one loop 
which constitutes most of the program. Since this loop 
is an innermost loop, the only difference between AF 
and AFH is that AF first translates the loop to "dumb" 
code which is executed before beinj, totally optimized. 
Hence, AF's execution times differ from those for AFM 
by a constant. 

2) bicVt2 (see Figure 4.2): Like EE, this program contains 
a main execution loop which constitutes most of the 
program   and   gets   totally   optimized   almost   immediately. 

-■■-^      ■ ■■   -——  ■ ~i^-*—i.-..-.— .   *'-'^--—^—--       ■■   ■ --  -—        ■    ■- —■-.-..--.- 
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However, it contains a few embedded loops and is 
therefore considered an outermost loop. Hence its 
optimization is more gradual than the loop in EE, but 
net gradual enough because representations are change 1 
before it is necessary. The spike occurring at the 
beginning of the AF curve is due to CM having no 
effect on the outermost loop. This optimization time is 
wasted and the machine language segment is identical to 
that produced by Cl'E. 

3) LES (see Figure 4.3): This program consists of three 
program units, each containing a number of loops. Each 
subprogram unit contains a doubly nested loop which 
accounts for most of its execution time. The one 
program unit gets called only once so the benifits of 
total optimization are wasted if the program does not 
run lung enough. The other program unit is called 
repetitively so eventually the double loop and the entire 
subprogram get totally optimized. The results are 
excellent, for only AFW is slightly better than AF for 
small execution times. The initial part of the AF curve 
is not smooth due to the optimization pertabations which 
are more apparent for small execution times. 

4) QZ wee Figure 4.4): This program contains the most 
diverse 'nop structure and consists of 10 program units. 
Four of the units constitute the main part of the 
program, and each is called only once. There are a 
large number of inner loops of 1-2 basic blocks whose 
early optimization probably contributes to the fact that 
the AF curve is the best of any test programs. This is 
also the only case in which the time for total dynamic 
Optimization is smaller than AFH's optimization time. The 
initial part of the AF curve is not smooth for the same 
reason stated for LES. 

The   test   results  indicate   that  AF  does   not  outperform  all   the  other 

systems   across   the  entire  spectrum of  run-times,  but  that  for  a  particular 

program there is a given range in which one compiler system Is preferential 

over   any   of   the   others.     However,  AF   Is   better   than   any   other   single 

compiler  »ystem  over the spectrum.    Thus, we conclude that it  is better to 

. -,.-.. r.—.   .^k.*.Jz—^—*^^~^.-J^t.^~*^^^^*.*.^.- -.■ .   .. ........»—.■—.-.-..._,... . ■ ... .- ..    ■ 
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build one compiler system to cover 'he run-time spectrum than three 

separate specialized compiler systems, each designed for a different range of 

the  spectrum. 

"— -  ■'       - —  
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Chapter V 

Conclusions 

This   dissertation   investigated   the   possibility   of   improving   the   cost 

effectiveness  of   code  optimization.    Whereas  current   approaches  apply  code 

optimization   equally   to   the   entire   program   at   compile-time,   our   approach 

exploits dynamically the observed behavioral characteristics of  programs, viz., 

that  a small  part  (57.) of the code accounts for  a  large portion (507.) of the 

execution   time.     We   studied,   in   general,  the   problems   of   performing   code 

optimizations  at  run-time, i.e., dynamically determining  which  sections  of  code 

to   optimize,   how    much   optimization   to   apply,   and   when   to   apply   that 

optimization.     This   resulted   in   the   specification   of   a   number   of   adaptive 

schema.     The   most   promising   scheme  was  incremental   dynamic  optimization 

which uses optimization counts to determine which section of code to optimize 

and    when.     The   effect   is   gradual   optimization   of   a   pro-jram,   i.e.,   one 

optimization   is   applied   to   one   section  of  code   at   a  time.    The   longer   the 

program executes, the more optimized a section becomes.    Using this scheme, 

a   prototype   system   was   built   for   an   interesting   subset   of   the   FORTRAN 

language.    Performance of this system, Adaptive FORTRAN (AF), was measured 

on a representative set of programs.    In order to make unbiased comparisons 

with   existing   compiler   systems,   the   adaptive   system   was   transformed   into 

various   "normal"   compiler   systems   that   generate   code   analogous   to   that 

produced   by   WATFIV,   FORTRAN-IV G  and  FORTRAN-IV K    The  same  ect  of 

^              ... _ 
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test    programs    were    run    under    these    transformed    systems,    and    the 

performance measurements compared against those for AF. 

The results were very encouraging. While AF did not outperform each 

of the other systems at all points in the run-time spectrum, it iid perform 

better over the spectrum than did any other single compiler system. The 

major remaining problem lies in controlling the rate of op imization, AF's 

performance curves look worst for small-medium run-times, indicating too much 

optimization is being applied too soon. More research is needed to find a 

better means for controlling the optimization rate. 

AF is the last of an evolutionary chain of exnerimental systems and 

there is every reason to believe it is possible to construct other variants 

which control optimization better and outperform all fixeu-strategy systems 

everywhere in the run time spectrum. The first line of attack should be to 

continue working with optimization counts. The method for estimating 

optimization counts presented in Section 2.5, viz., using the performance 

curves, E(q), for each optimization, should be explored. It would not be 

difficult to obtain such curves. Determining optimization counts heuristically 

has its limitations, for we found it hard to change an optimization count so 

oniy a portion of the performance curve is affected. Therefore, if any 

appreciable progress is to be made, a more theoretical basis for determinirg 

them must be developed. After this line of attack has been exhausted, other 

computationally feasible mechanisms and/or parameters for controlling the rate 

.. ..^       ■ lHiHiiiMillüi'til 
- ■'   ■ •    ■-■- ■   ■'-■ 

■— "—<-^-'-—« 
-  — ■   -   —^ —- 



t 

113 

of optimization should be explored. 

In   order   to   evaluate   how   good   the   incremental   dynamic   optimization 

scheme  is, and determine exactly how much bettor we can expect to do, the 

absolute  measure  of  performance should be obtained, for  each  test  program, 

using   the   iterative   dynamic   optimization   scheme.     Using   a   large   amount   of 

computing   effort,  this   performance   curve  can  be  obtained  in  the   following 

manner.    First, certain measurements must be made.    For each optimizer, this 

consists of determing  its  performance curve, E(q), and its space requirements. 

For   earh   segment   of   the   program,  measurements  Ol   its   execution   time   and 

space  requirements in all possible representations must be made     Using these 

measurements,   optimal    policies   can   be   determined    at    run-time   over   the 

execution   spectrum.     But   since   it   is   not   known   when   to   determine   such 

policies,   they   would   have   to   be   oontimjousty   determined,   say   after   the 

exec.'tion   of   a   basic   block   or   segment,   or   a   quantum   of   execution   time. 

When  the  policy changes  determines when to optimize.    Using these  results, 

the   program  would  then  be  run  for  a given  test  point,  policies  changed  at 

the    appropriate    time,    and    its    execution    time    measured.      The    entire 

performance   curve   for   the   program  can  be  obtained   in   this   manner.     The 

resulting  curve does  not  contain the time required to determine the optimal 

policy; therefore it is the absolute best one can expect from any strategy. 

We feel that we have demonstrated a worthwhile alternative to compiler 

design that should be considered seriously.    The approach makes more sense, 

-   - -       . .. -    MOMBHaantM^^UM MMMMMMtfMaBMWMl 
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from an implementation viewpoint, than building many special purpose 

compilers. The system can be built in an incremental fashion because of its 

modularity. Each step consists of programming and debugging an i otimizer 

module and then adding it to the system. The final product is an adaptive 

compiler that does not require much more effort to build ihan a full 

optimizing compiler. AF was built in this manner: in 3 man months we had 

programmed the compiler and interpreter, and had programs running. Then 

each optimizer was programmed in 1/2 to 1 man month, debugged and added 

to the system.    In less than a man year, the system was completed. 

It is clear that such an implementation approach is open ended up 4o a 

point, for one can keep improving the eiticiency of the generated code by 

adding more efficient optimizations until one exh-.usts optimizations. There 

are other well defined optimizations that work with the same internal form 

we produce; they should be added to the system and the performance 

measurements retaken, e.g., strength reduction, opening subroutines, and other 

machine dependent optimizations. There is one problem associated with 

adding more optimizationo that became apparent as we constructed AF, viz., 

controlling the rate of optimization becomes harder. The means of control 

must be defined more sharply. This is the main reason why AF's optimization 

counts are determined as a function of the programs loop structure. As each 

optimizer was added, it became apparent that basic blocks and segments 

could no longer be treated uniformly with respect to the optimization counts. 

  ■  ■   ■ -'■ -  -■ ■■■"■^—--'"    ---   —' ^.a-^ ^-j,    | .   - ,, . ....■^ .>■-......J.-^.-.^. ... -..^.      ,,,   ir--—-■ "- -  ^.—,-.      --  ~* 
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Thus we see that additional research is needed to more clearly 

understand dynamic optimization and to refine the current approach. 

However, other areas are suggested on which further research should be 

conducted. It would be interesting to see if some hardware features can be 

developed to aid in controlling optimization. One beneficial feature would be 

for determining which section of code is being executed the most. There is 

one existing hardware feature we have not exploited for improving execution 

time, viz., micro-programming. There are two areas in the system that could 

utilize this feature. One is in interpreting the internal form produced by the 

compiler. Instead of writting a program to interpret it, micro-code could be 

developed for each operation. The other area is in the machine language 

generators. Instead of generating optimized code, specialized micro-code could 

be generated that performs the optr^U .s more efficiently. 

Finally, the implications of our ideas should be studied with respect to 

conversational languages as indicated by Mitchell IMit70]. He stated that a 

major problem in designing an interactive prosramming system is determining 

how to get efficiency and flexibility, two opposing constraints, to co-exist. 

His solution was to build an interpreter/compiler system. In such a system, a 

program is partially interpreted (to provide flexiblity for the user) or 

compiled (to provide efficient use of the computer) depending on its usage 

and constancy over some period of time. We see no conceptual problem in 

incorporating dynamic optimization into such a system in (rder to further 

improve  efficiency.    All  that  we would be doing  is  replacing  the mechanism 
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that controls the compilation of code with a more refined one. Whenever 

changes are made to the program, the internal form used by the interpreter 

could be regenerated for those sections of the program affected, and their 

optimization state reset so they would be executed interpretivelv As the 

program executes, these code sections would again be dynamically optimized. 

In summary then, our test results indicate that the adaptive pro-.ess is 

a worthwhile and promising technique. As our understanding of program 

behavior increases and our programming styles become more formalized, it 

may turn out to be one of the most sensible approaches for designing 

compiler systems. 
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Appendix A 

The Compiled Code 

To aid in syntax analysis, optimization and code generation, the compiler 

translates the source code into an internal form. A number of internal forms 

art possible: Polish notation, quadruples, triples, indirect triples or trees 

(cf. Gries [Gri71]). Optimizing compilers have been built using different 

internal forms, viz., FORTRAN IV H [Low69] uses quadruplets, 

FORTRAN II [AI169] uses indirect triples, and BLISS [Bli71] uses trees. Which 

form to use is a matter of taste. 

The adaptive FORTRAN compiler uses two internal forms. The 

compile-time internal form is Polish postfix which is used for syntax analysis 

and code generation. The run-time internal form is the generated code and 

consists of quadruplest, or quads for short. This form is an expanded 

version of the smaller and more consise source code in which language 

car structs (e.g., DOs, IFs, subscripts, tests) are expressed as basic operations. 

A.l  Quadruples 

There are a number of reasons why quads were selected as the 

run-time internal form. The main reason was that they were a convenient 

form   that   could   be   efficiently   processed   by   the   optimizers   and   executed 

t Also known as three address code. 
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interpretively.    Other reasons were: 

1) A   quad   is   self   contained,  i.e.,  it   is   not   necessary   to 
reference   the   result  of  another  quad  when  processing 
its arguments. 

2) Quads   appear   in   the   order  In  which  they   are   to   be 
executed. 

3) Functions   will   know   precisely   where   to   return   their 
results. 

For a single binary operator, quads have the form: 

(OP, ARGi, ARG2, ARG3) 

where  ARGi  and ARG2  specify the operands, ARG3 the result temporary, and 

OP    the    operation    to    be    performed.     Not   all   operations    require    three 

arguments;    some    require    one    (e.g.,   branches)    while    others    two    (e.g., 

conversions of type and unary operators).   As a convention, unused positions 

of  a quad are left blank. 

A.2 Code Generated for each FORTRAN Construct 

The adaptive FORTRAN compiler is one pass and generates relocatable 

interpretive code(i.e., quads) directly to core. If the program contains no 

errors, the relocatable code is loaded by a fast loader which maps 

relocatable addresses into absolute addresses and allocates data storage. 

The generated cede for some of the FORTRAN constructs is strictly 

quads (e.g., arithmetic operations); others are a combination of quads and 

machine language (e.g., calls to mathematical functions); while others are pure 

- - - .. ,.-.■- ^,..-J^„      ■  -^-—.. . .   
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machine language (e.g., I/O). Thus when the program is loaded, the 

instruction storage consists of quads with possible embedded machine language 

and pure machine language compiled out of sequence. 

The  descriptions  of  the  generated code given  belov   use  the  following 

programming conventions: 

1) POP 10 machine language is represented in MACRO-10 
assembly language (cf. [PDP71aj). 

2) A colon following a symbol indicates the symbol is a 
label. 

3) The   character  V  preceding  a  symbol   indicates   indirect 
addressing! 

4) A period following a symbol indicates it represents a 
FORTRAN UUO (cf. [PDP71b]), i.e., a call on the FORTRAN 
run-time support system. 

5) A period represents the current address. 

6) For arithmetic operations, the basic mnemonic has a 
single letter prefix to indicate the arithmetic mode: 

a) no prefix - integer OP 
b) F - floating point OP 
c) D - double precision OP 

_    d) C - complex OP 
e) L - logical OP 
f) S - string OP 

A complete  list  of  the OP mnemonics is given in  Table 
A.1 along with a brief description. 

7) The meta-language variables used in the syntactic forms 
aro the same as those used in the American Standard 
Fortran Report [ASF66]. Their meanings are generally 
obvious from context. 

t MACRO-10 uses a 'a' symbol instead, a convention we will not follow. 
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8) The   subscripted   letter   T   as   an   argument   of   a   quad 
represents a temporary. 

9/ addr{v) represents the address of v. 

10) Formatted data words are specified by the pseudo-ops 
DATA, DESC1, DESC2, DESC3 and TEXT. Their internal 
representations are given in Figure A.l. 

A.2.1  Expression« 

A. Aritmetic 

a) Binary operator 

FORM:      ei  <bop> 62 

CODE:      (OP, ti, 62, T) 

where        <bop> ::- +|-|*|/|** 

The OP mnemonics can be found in Table A.l. 

b) Negation 

FORM:      -e 

CODE:     (NEC, e, , T) 

B. Relational 

FORM:      ei <rop> 02 

CODE:      (OP, •!, 02, T) 

where        <rop> ::- .LT.|.LE.|.EQ.|.NE.|.GE.|.GT. 

me OP mnemonics can be found in Table A.l. 

C. Logical 

a) Binary operator 

FORM:      ei <lop> 02 

■--     •--   -L^.     —    .■,.!.,.J-^Jm^J^-J-  ..    ..   .._. 
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CODE:      (OP, ti, 62, T) 

where        <lop> ::- .AND.|.OR. |.X0R.|.EQV. 

The OP mnemonics can be found in T.-ble A.l. 

b) Unary .NOT. 

FORM:      .NOT. e 

CODE:      (NOT, e, , T) 

A.2.2 Assignment Statement 

FORM:      Vj ■ Vf ■ - ■ V» ■ • 

CODE:      (REPL, e, , V|)      j-1 n 

A.2.3 Control Statements 

A. GO TO statements 

a) Unconditional 

FORM:      GO TO k 

CODE:      (B, »k', , ) 
k': DATA addr(k) 

b) Assigned 

FORM:      GO TO v 

CODE:      (B, »v, , ) 

c) ASSIGN statement 

FORM:      ASSIGN k TO v 

where v is a simple variable. 

CODE:      (REPL, k, , v) 

(into data storage) 

1 
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B. IF statement 

a) Arithmetic 

FORM:      IF(e)K1,k2,K3 

where k, is a statement label or assigned variable. 

1) Ki^ka 

CODE:      (BLZ, e, »kj', ) 
(BEZ, e, *K2', ) 
(B. *K3', , ) 

ki'i   DATA addrlk!) 
ka'i  DATA addr(k2) 
K3':   DATA addriks) 

2) k1=k2 

CODE:       (BGZ. e, *k3/
( ) 

(B, »Ki', , ) 

3) kt«ka 

CODE:       (BEZ, e, »ki', ) 
(B, *k1', , ) 

4) k2-k3 

CODE:      (BLZ, e, ikj', ) 
(B, *k2', , ) 

b) Logical 

FORM:      IF(e)S 

CODE:      (BF, e, L, ) 
{code for S) 

U    I 

1) S is GO TO k 

CODE:      (BT, e, *k', ) 

(into data storage) 
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2) 0 is STOP 

CODE:      (STOPT, e, , ) 

3) S is RETURN 

CODE:      (EXTFT/EXTST, e, , ) 

C. Subprogram call 

a) Subroutine 

1) FORM:   CALL s 

CODE:  (CALLS, *s',  LI, ) 
LI: DATA 0 
s': DATA addr(s) 

2) FORM:   CALL s(a1,a2,...,an) 

(out of sequer«.e) 
(into data storage) 

CODE:       (CALLS, *s', LI, ) 
LI:   DATA n 

DESC1  TYj.ARi.Li.addrU!) 

DESCl TYn,AR,„Ln,addr(an) 

where      TYj is the type of a, (see Table A.2), 
ARj is the arithmetic of a, (see Table A.3), 
Lj Is the das* of a) (see Table A.4). 

b) Function 

FORM:      f(a1,a2^.,an) 

CODE:       (CALLF, *i't LI, T) 
LI:   DATA n 

DESCl TYllARi,Li,addr(a1) 

where 

DESCl TYr,ARn,Ln,addr(an) 

T   is   the  temporary  storage  location  where   'he 
functional value is to be returned. 
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c} Basic external library function 

FORM:      xlf(ai,....an) 

CODE:      (XCT, xlf , , T) 
ARG      <type code of ai>,addr(ai) 

ARG     <type code of an>,addr(an) 

where ARG has the same format as I/O UUO's (see 
Sec. A,2.4). T is the temporary storage location 
where the functional value is to be returned. 

D. RETURN statement 

FORM:      RETURN 

a) Subroutine 

CODE:      (EXITS, , , ) 

b) Function 

CODE:      (EXITF, fV) , ) 

where      iv is the address of the functional value. 

E. DO statement 

FORM:      DO k v=ei,e2,e3 

where      v is a simple variable, 
ej are arithmetic expressions which are converted 
to the type of v. 03 may be omitted, in which 
case it is  1. 

a) 63 not a constant 

CODE:       (REPL, ei, , v) 
LI:   {range of DO} 

(ADD, v, 63, v) 
(SUB, v, ft^, Ti) 
(NEGL, TL es, Tf) 
(3LEZ, T2, LI, ) 
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b) 63 a conctant 

1) e3>0 

CODE:       (REPL, 9%, , v) 
LI:   {range of DO} 

(ADD, v, 63, v) 
(BLE, v, 62, LI) 

2) e3<0 

CODE:       (REPL, »i, , v) 
LI:   [rangt of DO} 

OJOO, V, 63, v) 
(BGE, v, 62, LI) 

F. CONTINUE statement 

FORM:      CONTINUE 

CODE:      none 

G. END statement 

FORM:      END 

CODE:      (STOP, , , ) (only for the main program) 

A.2.4 I/O Statements 

I/O is performed by the PDP-10 FORTRAN I/O package. Since this 

section of code is fixed, it can not be optimized at run time. Hence I/O time 

is constant regardless of the optimizations made to the code. It would be 

wasteful (timewise) to have to transform interpretive I/O code to machine 

language. Therefore, the compiled code is identical to that produced by the 

PDP-10 FORTRAN compiler, F40. For a description of the FORTRAN UUO's IN., 

O'JT.,   DATA.,   SLIST.     and   FIN.,   and   ARG   and   type   codes,  see   the   POP-16 

1 
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FORTRAN handbook [PDP71b]. 

In  what  follows, the  code  is given in MACRO-10 format.    Also, R0  and 

Rl  represent machine rtglstor« 0 and 1 respectively. 

A. Initialization 

CODE:      MOVE      Reformat pointer> 

a) Input 

FORM:      READ f.list 
READ f 
READ(u,f)list 
REAC;u,f) 

READ(u,f,E\D-c)list 
READ(u,f.ERR=d)list 
READ(u)f,END=c,ERR=d)list 

CODE:       IN. Rl,<unit number> 
or     MOVE R0,<integer variable> 

HRRM R0, .+1 
IN. R1,0 

(if ERR or END specified) 
MOVE R0,<label pointer> 
HRRM R0,*<END/ERR> 

where END/ERR are ceils containing the address of 
END. and ERR., the cells used by the I/O 
package. 

b) Output 

FORM: PRINT f,list 
PRINT f 
TYPE Mitt 
TYPE f 
WRITE(u,f)list 
WRITE(u,f) 

CODE:      OUT. 
or    MOVE 

HRRM 
OUT. 

Rl,<unit number> 
R0,<integer variable> 
R0, .-t-l 
R1,0 

- 
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B. Data transmission and I/O lists 

FORM;       ELEz.-.En 

where       rl   can   be   a   simple   variable,   subscriptec1    'irable, 
expression or array name, but not a DO-ir-    ^ed list. 

a) Simple variable, constant, or expression (result) 

1) non-parameter 

CODE:       DATA.       <type code>,<variabMconstant/result> 

2) parameter 

CODE:       DATA.       <type codeV<parameter Ctll> 

b) Array 

1) non-adjustable dimensions 

CODE:       SUST.      <type code>,<base address of array> 
ARG 0,<number of elements> 

2) adjustable dimensions 

CODE:       MOVE R0,addr(DVEC)+n+l 
HRRM R0, .+2 
SLIST. <type code>,*<parameter cell> 
ARG 0,0 

where      DVEC is the array's dope vector (see Sec. A.2.5). 

c) Subscripted variable 

CODE: DATA.      <type code>,-<temp storage cell> 

where        <temp storage cell> contains the address of the array 
element. 

C. Termination 

CODE:      FIN.      0,0 
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Since the I/O code is in machine language, it cannot be mixed 

with the interpretive code. Therefore it is compiled out of sequence 

under a different relocation base, in order to execute it, it is made 

into a subroutine: 

<l/0 routined BYTE        0 
{I/O code} 
JRST        2,*<l/0 routine> 

To execute the routine, the following quad is compiled: 

(JSR, <l/0 routine>, , ) . 

The  effect of  the JSR is the execution of the machine language 

instruction: 

JSR      0,<I/O routine> . 

When the  JSR quad  is transformed to  machine  language, the  JSR 

machine language instruction is generated. 

D) FORMAT statement 

FORM:      k FORMAT(Si,S2,...,Sn) 

CODE: 
k'l DATA     addr(k) 
k:   TEXT      •(Si^.-Sn)' 

(into data storage) 
(out of sequence) 
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A.2.5 Array Declarations 

An    array   declarator    may    appear    in    a   DIMENSION   sttlement,    type 

declaration or COMMON statement. 

FORM:      v(d1,d2,...,dn) 

where      dj are integers or simple integer variables, 
n is the dimension of the array. 

CODE:      (generated foi   arrays with adjustable dimensions) 
(PUSHJ, ADEC, , ) 
DATA        n 
DATA        addr(DVEC) 
DESC2      Ri.addrWi) 

DESC2      Rn,addr(dn) 

where 

a) ADEC is the run time array declaration routine which 
generates the dummy array's dope vector, DVEC. The dope 
vector has the form: 

DVEC: DATA FUDGE 
DATA 

■ 

Dz 

• 

DATA D„ 
DATA SIZE (number of elements) 

b) Rj is the reference of dj (see Table A.5). 

c) If   v   is   a  dummy   parameter,   its   value  will  be  set   by   the 
run-time   routine   PSA   and   depends   on   the   corresponding 
actual parameter.    If the actual parameter is: 

1) a   subscripted  variable,   PSA  stores  the  address 
of this element into v, 

■ -      ■   — -      - ^. 
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2) an array name, PSA stores the BASEV of the 
array into v. If the array name is not itself a 
parameter, its descriptor to PSA contains the 
BASEyi if a parameter, the parameter cell 
contains the BASEy. 

A.2.6 Array References 

References to array elements must contain the number of subscripts 

that corresponds to the number of dimensions declared for the array. 

Element v(eite2,-,en) is at location: 

BASEy + (ei*D1+...+e„»Dn) + FUDGEV      (1) 

where 

a^ BASEy is the address of the first element of the array v 
which has ei*...*en elements. 

b) Dj is defined recursively as follows; 

Di - 1 
Dj - ei.itDi.! 

c) FUDGEy - -(D1+...+Dn) 

A) Array with non-adjustable dimensions 

In  this  case,  all  the  information  necessary  to evaluate 

(1) at compile-time is stored in the dictionary along with the 

array's data descriptor. 

1) Array not a dummy parameter 

n-1 (ADD, ei, Fv, Ti) 

 -   -  -  - - ' ■- ■«- - ■ -■' I 
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n>l (MPY, e2, D2, Ti) 
(ADD, Tj, ei, T2) 
(MPY, eg, D3, T3) 
(ADD, T3, T2, T4) 

(MPY, en, Dm T2„.3) 
(ADD,  T2n.3,  l2n 4.  "'■20-2) 
(ADD, T2n-2.  Fv, T2„.i) 

where      Fv ■ BASEV + FUDGEy 

2) Array a dummy parameter 

Replace the last instruction above with: 

(ADD, T2n-2/ei, v, lin.i) 
(ADD, Ta,.!, FUDGEv, T2n) 

where      v   is   the  dummy   oarameter  whose  value   is   the 
BASE of the actual parameter, 

FUDGEv   is   the   FUDGE   for   the   dummy   array 
parameter    calculated    from    its    declaration    at 
compile time. 

B) Array with adjustable dimensions 

n-1 

n>l 

(ADD, v, DVEC, JO 
(ADD, Ti, ei, T2) 

(ADD, v, DVEC, Ti) 
(ADD, Tx, •*, T2) 
(MPY, e2I DVEC+1, T3) 
(ADD, T3, Tf, Ti,) 

where 

(MPY, en, DVEC+n-1, T»Mi) 

(ADD, T2MI1 T2n-2. Tzn) 

v   is   the  dummy  parameter  whose  value   is  the 
BASE of the actual parameter. 

I 

—t    -^-W^.^-^.  .  ...L ^  W..^.^-..   .     I^.... 
  -■■•       - "-   -' '--    ^ ,-- 



Li.ipiBi-1    nviwm  IIL.J i    i    \ummim*t*r**vr*m^mFm 

132 

A.2.7  Subprograms 

A. FUNCTION Subprograms 

FORM:      t FUNCTION Kai^-.a,,) 

where      t is optional and can be INTEGER, REAL or LOGICAL, 
aj is a dummy parameter. 

Functions   must   have   at   least   one   dummy   parameter.     A 

RETURN  statement  must  be  supplied.    The  name  of  the  function  Is 

treated   as   a  scalar  variable  for  stc.   >g  the  value  of  the   function. 

Storage for the functional value is allocated as for normal scalars. 

Functions are referenced within expressions and return a 

value. The codu generated for a function reference is given In 

Section A.2.3. 

B. SUBROUTINE Subprograms 

FORM: SUBROUTINE s 

or     SUBROUTINE s(ai,a2,...,an) 

where    a, is a dummy parameter. 

C. Code generated for a subprogram definition 

CODE: (PUSHJ, PSA, , ) 
DATA       n 
DESC3      TY^AR^psii 

DESC3      TYn,ARn,psin 

where      PSA is the run time parameter assignment routine, 
TYj is the type of aj (see Table A.2), 
ARj is the arithmetic of aj (see Table A.3), 
psij is the parameter storage index for aj. 
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PSA matches the actual parameters with the formal 

parameters. Since all parameters are call by address, no conversion 

of type is possible. Therefore arithmetics must match. Using 

{TY.AR.L} In the subprogram reference and {TY.AR} in the 

subprogram definition, PSA calcuhtes the address of the actual 

parameter and moerts it into the corresponding psi. Thus, 

references to the actual parameter is indirect through its psi. 

A.3 Internal Representation of Quads 

The   internal   representation   for   quads   on   the   PDP-10   requires   two 

36-bit  words: 

QUAD1      0P,SR,BTY,CiIC2,Ti,T2,T3,ll,l2,l3.addr(ARGi) 

QUAD2      addr(ARG2),addr(ARG3) 

having t',e format: 

QUAD1 
7     1211111111 18 

I 

18 18 
QUAD2 

J 

The 11-bit control field after OP is a set of tag bits which represent 

information about the data found in the associated ARG or the address type 

of the associated ARG. Tag bits IHs are set by the compiler; tag bits 

C1-C2, Ti-Ta, and SR are set by the loaderi and tag bit BTY is set by the 

machine language generators. 
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The function of each tag bit is: 

1) Indirect addressing indicators I1-I3 
If |j is O, ARGj is the address of the operand; if I, 

is I, ARGj contains the address of the operand (indirect 
result or parameter). 

2) Teniporary address indicators T1-T3 
Tj is 1 if ARGj is the address of a temporary; 

otherwise 0. These indicators exist for efficiency 
purposes. Temporarys are the most heavily processed 
entities, and even though it is possible at run time to 
determine if an address represents a temporary, to do 
so would increase the processing overhead needlessly. 

3) Constant  address indicators C1-C2 
Cj is 1 if ARGj is the address o* a constant. Again 

these indicators exist for efficiency purposes. They aid 
the machine language generators in determining if It is 
possible to use an "immediate" instruction. 

4) Branch type indicator  BTY 
Set whenever the branch is translated or 

retranslated to machine language to insure the proper 
code is generated (see Section 3.4). This tag bit is 
applicable only to branch instructions. Basically it is 
used to distinguish whether the branch is to a basic 
block that is external or internal to the segment 
containing it. It must be updated whenever new 
segments are formed or optimizations applied. 

5) Store result temporary indicator SR 
If SR is 1, the machine language generator compiles 

a store instruction to force the storing of the 
temporary's associated register into the temporary. This 
is necessary when a temporary is referenced in machine 
language generated by the compiler. This machine 
language is never altered, and consequently when the 
quad is translated to machine language, its result must 
be stored in the result temporary. 

111*1 iifcf 11  ■■ ^MMMcflaaaMMMtaaul 
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Table A.l    Th« List of Quad OP codes 

Octal       Mnemonic       Description 

000 NOP No operation 
001 ADD Integer add 
002 FADD Floating add 
003 DADD Double precision add 
004 CADD Complex add 
005 SUB Integer subtract 
006 FSUB Floating subtract 
007 ' DSUB D.P. subtract 
010 CSUB Cc iplex subtract 
011 MPY Integer multiply 
012 FMPY Floating multiply 
013 DMPY D.P. multiply 
014 CMPY Complex multiply 
015 DIV Integer divide 
016 FDIV Floating divide 
017 DDIV D.P. divide 
020 CDIV Complex divide 
021 FXFX Integer to integer power 
022 FLFL Floating to floating power 
023 DPDP D.P. to D.P. power 
024 CXCX Complex to complex power 
025 FLFX Floating to integer power 
026 DPFX D.P. to integer power 
027 CXFX Complex to integer power 
030 NEG Integer negate 
031 FNEG Floating negate 
032 DNEG D.P. negate 
033 CNEG Complex negate 
034 LREPL Logical replacement 
035 SREPL String replacement 
036 REPL Integer replacement 
037 FREPL Floating replacement 
040 DREPL D.P. replacement 
041 CREPL Complex replacement 
042 AND Logical and 
043 NOT Logical not 
044 OR Logical or 
045 XOR Logical exclusive or 
046 EQV Logical equivalence 
047 JEQ String - 
050 EQ Integer - 
051 FEQ Floating - 
052 DEQ D.P. - 

ARG3«-ARGi+ARG2 

;.RG3*-ARG1-ARG2 

ARG3«-ARGi*ARG2 

ARG3<-ARG1/ARG2 

ARG3<-ARGi«»ARG2 

ARG3<-ARG1 

ARG3«-ARGi 

ARG3<-ARGi/sARG2 
ARG3*-ARGi 
ARG3t-ARGivARG2 
ARG3«-ARGi xor ARG2 
ARG3«-ARGi»ARG2 
ARG3«-(ARGi-ARG2) 

— ■ ■ 
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Tabl« A.l (COiK ) 

Octal Mnemonic Description 

053 CEQ Complex  « 
054 SNE String  ft ARG3HARG1MRG2) 
055 NE Integer t 
056 FNE Floating t 
057 ONE O.P. t 
060 CNE Complex H 
061 SGT String > ARG3«-(ARGi>ARG2) 
062 GT Integer > 
063 FGT Floating > 
064 DGT D.P. > 
065 SGE String > ARG3«-(ARGi^ARG2) 
056 GE Integer i 
067 FGE Floating > 
070 DGE D.P. > 
071 SLT String < ARG34-(ARGi<ARG2) 
072 LT Integer < 
073 FLT Floatn». < 
074 DLT D.P. < 
075 SLE String < ARG3«-(ARG1<ARG2) 
076 LE Integer < 
077 FLE Floating < 
100 OLE D.P. < 
101 MOD Integer mod ARGs^-ARGi mod ARG2 
102 AMOD Floating mod 
103 ISIGN Integer sign ARG3«-sgn(ARG1)*|ARG2l 
104 SIGN Floating sign 
105 ToIGN D.P. sign 
106 IABS Integer abs ARG3HARG1I 
107 ABS Floating abs 
110 DABS D.P. abs 
111 CABS Complex abs 
112 INT Real to integer truncation ARG34-sgnARGi*enti«r | AF 
113 AINT Real to real truncation 
114 IDINT D.P. to integer truncation 
115 IFIX Real to integer conversion ARG3<-enti«r ARGi 
116 FLOAT Integer to real conversion 
117 CVSI String to integer conversion 
120 CVSR String to real conversion 
121 CVSD String 10 D.P. conversion 
122 CVSC String to complex conversion 
123 B Branch to ARGi 
124 BGZ Branch to ARG2 if ARGi>0 
125 BF Branch to ARG2 if ARGx-fals« » 
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Table Al  (cont.) 

Octal       Mnemonic       Description 

126 
127 
130 
131 
132 

133 
134 
135 
136 
137 
140 

141 

142 

143 

145 
146 

147 
150 
151 

152 

BLZ 
BEZ 
BLEZ 
STOP 
NEGL 

FNEGL 
DNEGL 
EXITS 
BLE 
BGE 
CALLF 

EXITF 

JSR 

XCT 

144   PUSHJ 

JUMP 
CALLS 

STOPT 
EXTST 
EXTFT 

BT 

Branch to ARG;> if ARGi<0 
Branch to ARG;> if ARGi-0 
Branch to ARG;> if ARGi<0 
Stop execution 
Integer conditional negate ARGaHf AR^2<0 then 

-ARGi else ARGi 
Floating conditional negate 
D.P. conditional negate 
Return from subroutine 
Branch to ARG3 if ARGi<ARG2 
Branch to ARG3 if ARG12ARG2 
Gail the function at ARGi.    ARG3 is the temporary 
for the functional value.    ARG2 is the address of 
the formal parameter descriptor list. 
Return from function.    ARGi contains the functional 
value. 
Simulate PDP-10 JSR instruction.    The routine is at 
ARGi (used to call I/O subroutines). 
Simulate PDP-i0 XCT instruction.    Instruction to be 
executed is at ARGi <used to call external library 
functions).    ARG3 is the functional result. 
Simulate PDP-10 PUSHJ instruction.    The stack used 
is the BUSS run time stack [Bli71].    The routine to 
be called is at ARGi <used to call the run-time 
support routines ADEC and PSA). 
Branch to ARGi (marks end of a basic block) 
Call subroutine at ARGi.    ARG2 is the address of 
the formal parameter descriptor list. 
Stop execution if ARGi-true 
Return from subroutine if ARGi=true 
Return from function if ARGi-true.    ARG2 contains 
the functional value. 
Branch to ARG2 if ARGi-true 

I 
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Table A.2    Operand Typ« (TY) 

Octal Type 

00 simple variable 
10 array with non-adjustable dimensions 
11 array with adjustable dimensions 
20 function subprogram 
21 subroutine subprogram 
22 library subprogram 
23 external subprogram 

Table A.3    Operand Arithmetic (AR) 

Octal Arithmetic 

0 universal 
1 logical 
2 string 
3 integer 
4 real 
5 double precision 
6 complex 

Table A.4 Operand Class (L) 

Octal Class 

1 identifier 
2 constant 
3 result 
4 indirect result 
5 parameter 

Table A.5    Operand Reference (R) 

Octal Reference 

0 
1 
2 

normal variable 
COMMON variable 
parameter 
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Figur« A.l     Internal Representations of Formatted Data Words 

36 
DATA 

DESC1 

DESC2 

DESC3 

TEXT 

6 6 6 18 

12 18 

6 6 6 18 

^ 

7 7 7 7 7      1 
1 r s 
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Appendix B 

Source Listings of the Test Programs and a Detailed Example 

This appendix contains the source listings of all the test programs used 

for   validation  of  the  system,  along  with the complete  system output  for  a 

matrix multiplication program.    This detailed example is the same as that used 

by Allen [AII69]. 

B.l  A Detailed Example: Matrix Multiplication 

A) The Source Listing 

1. INTEGER X^0,50), Y(50,50), Z(50,50) 
2. C INITIALIZE  X AND Y 
3. DO 10 1-1,50 
4. DO 10 J-1,50 
5. X{I,JH+J 
6. Y(l,J)»M0D(l,J) 
7. 10 CONTINUE 
8. DO 3 1=1,50 
9. DO 3 J-1,50 

10. Z(l,J)=0 
11. DO 3 K-1,50 
12. 3 Z(I,J)-Z(I,J)+X(I,K)*Y(K,J) 
13. TYPE 20,X,Y,Z 
14. 20 F0RMAT(5(5I5/)/) 
15. STOP 
16. END 
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B) Listing of Jource with Interpretive Code 

ArOK'BAN  VfBSiON'   I 10172 li>l>m   l^.^ PlU 

03 00 00 00 000000  7/7777777/77 
CJ 00 00 00 000001  OOOUDOOOOCOO 
 BIOCK I 
63  CI   00  00 OOCLC.       0O00O00O0O0O 

00100               I. MTCGeR x(bObC)   VlbO.iO], /(bC 
00/00              2.        C INIT.«ll/f  X MO  » 
00300              3. DO   10 MJH 

03  00 00 00 C00003       OOCOOO^OOCOI 
ocioo   a.     oo 10 j.1.50 

03 oo co oo oooooa occooocoooe' 
e i 03 oo oo oeococ i> 00x000003 00000c 
ei oe oc 00 oeooo/ 67(cooocooo; oocooo 
.......... 7 
63 01 00 00 ooouo? 000000000000 

tOiOO 5.        X(lj).I.J 
01 03 00 Ob 000000 1/0000000003 000000 
0! 00 00 00 000006 6?<1000000e03 ocoooo 
••»••••»•910CK 3 
G3 01 00 00 00000] 000000000010 
03 0« 00 00 OOCrOb 777777777717 
01 Ob 03 00 OCOOIO OOOOOOOOCOOI OOCOOO 
01 00 Ob 00 000017 OOOCOOOOOOOC 010000 
Ol 00 03 0-1 000010 000 000000001 bQOOO? 

00600     6.        V(U).M00l;J) 
• I   05  Ob  00   000016 000000000000 000001 
0:   00  00 00  C00020 I 700010C00r!3  OOOOCO 
03  05  00 00 OCOOOG O00C0OCOO6?3 
91   05  03  00   00C077 000000030001   OOCOOO 
Ol   0«  Ob  00   OOOC70 OOOOOOOOOOOO   000300 
C,   M   03   00   00002G OOOCOOOOOOOb  OCOOOG 

00/00 7. 10 CONIiNUE 
Ol   Ob  05  00  000030 000000000000 OOOOOI 
Ol   00  00  00  000037 I 70001000007  000000 

00800              8                       DO 3 MM 
Ol 00 00 CD 000030 620000000000 COOOOO 
• •••BLOCK 0 
63 Ol 00 CO COOOOO 00CO0C00O03G 
03 00 00 00 000007 OCOOOOOCCOCO 
©I 05 03 05 000036 OOOOOOCOCOOI 000003 
Ol 05 03 00 000000 57000000000! 000000 
Ol 00 00 00 000002 62000000C006 COOOOO 
•••••••••OlOCK 5 
63 01 00 00 000005 COOOOOOOOOOO 
Ol 05 03 05 OOCC'.O 000000000000 00000] 
Ol 05 03 «0 000006 570000000000 00CC90 
Ol 03 00 00 OOOOSO 620000000C06 000000 
 ••••BI.OC< r> 
63  Ol   00 00 000006 000000000052 

00900              9                       DO  3 J-I.50 
Ol 03 00 05 000057 170000000003 000003 
Ol 00 00 00 000050 620000000007 000000 
• ••BIOCK 7 
63  Ol   «0 00 000007 GOOOOOOOOCbG 

OIOOO I0. 7(U).0 
Ol 03 CO 05 C0C0r,6 170000000003 000000 
01 00 00 CO 000060 620000000310 COOOOO 
•••••••••BIOCK > 
63 01 00 00 000010 000000000062 
03 05 00 00 OOOOIC 00000001 lr77 
01 05 03 00 0000G7 000000000001 000000 
01 04 05 00 000060 COOOOOOOOOOO COOOOO 
01 00 03 00 000066 000000000001 000010 

01 100    II.        00 3 K.1.50 
03 00 00 00 OOOCI I ooocoooooooo 
01 03 00 00 000070 1700010000II COOOOO 

• 1200    12.   3    /(UW(U).X(lW.Y(KJ) 
01 03 00 Ob 000072 170000000003 000000 
0. 00 00 00 000070 620000000011 000000 

be; 

OOCOOO 
COOOOO 

COOOOO 
JO.IOOl 
Of 1)002 

000003 
000002 

ocoooo 
000005 
000006 

C00007 
030006 

COOOOO 

PAGE l-l 

DAT* r»ut 
DATA rAist 

DATA COOOOOOOOOOO 

DATA 000000000001 

DATA 000000000062 
(»CPL , 00000000001 . 0 
(JUMP  , 000002     , 0 

, 1 

, J 

OAIA 000000000010 
DATA 000000000061 

(MPV , J                         . 00000000050 , TO* 
IA00 10»                    ,1                         .Tit 
fADD , Tit                    ,00000000003  ,  T7J 

DATA COOOOOOOOOOO 

OOOOOI («EPl , 00000000001 , 0 
ocoooo (JUMP , 000003     . 0 

:no , 1 , J         , T3» 
{am . T3» 0         ..'?» 
DATA 000000000623 

(MPV , J , 00000000050 , TO» 
Mt .  M( .1         . T6» 
(ADD , T5« . 00000002051 , T6« 

(MOD , 1 , J         , T« 
(BEPt . T7« . 0         «T6» 

(JUMP 

DATA 000000000036 
00010    DATA COOOOOOOOOOO 

OOOOOI (AüO , j      . oooooeooooi , J 
000003 (BIE , J       , oooooooooso 000003 
COOOOO (JUMP , 000005     , 0 , • 

DATA 000000000004 
030000 (ADD , 1        , 00000000001 , 1 
000002 Hi , 1      . oooooooooso 000002 
COOOOO (JUMP . 000006     . 0 , t 

DATA 003000000052 

COOOOO (REPl . oooooooooei . e , 1 
ocoooo (JUMP , 000007     , 0 , 0 

DATA 000000000 «6 

OOOOOI («EPL . ooooooooooi , e , J 
ocoooo (JUMP , 000010    , • , • 

DATA 000000000062 
DATA 000000011527 

COOOOO (MPY , J        . 00000000050 , TS» 
OOOOOI (ADD .'SI       ,1 , 19» 
000002 (ADD . TIM 

DATA ooocoooooooo 
000002 RPl , 0000000000« , 0 «TIM 

016516 (BEPl . ooecoocoooi , o , K 
COOOOO (JUMP , 000011     , • , 0 

.       ■.:     -..     -:..   
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AF0«T8«»(   VfPSK»;   lltm 12/0/72   1137.07 Ufa 

.........BLOC«  9 

63  «I   00 00 00001 I 000000000076 
03   00  00 00 O0C007 000000000011 

01   Of  03  00  000076 000 000000001 

01   00   05  00   OCOIOO 000000000000 
01   00   CJ  00   000102 00000001C00I 

01   O-i   03  60  000100 000000000001 

01   00   09  00   000106 000000000003 

• I 00 03 00 0001 10 ooooooooocoo 

01 OS 03 00 000112 OOOOOOOIG'316 

01 00 09 00 0001 10 OOOOOOOOOOCC 

01   00   03  00   000116 000000000007 
• 130«           13.                    TVPf 20X».7 

0!   OS  03  00   OOOll'O OOOOOOOOOOOl 

01   00   05  00   000122 OOOOOOOCOO'I 

01   00   03  00   000124 OC4CO0OCO0I? 
01   00   09  00   000126 OOOOOCOCOOIO 

Ol   00   04  00  000130 004000000005 

01   04   00 00   000137 170001000016 

01   05  03  05  000130 OO00000IG5I6 

01   05  03  00 000136 5/COOO0i6516 

01   00 00 00 000140 620000000012 
.........a.oc« 10 
63  01   00 00 000012 0OOC00ÜC0102 

• I 0* 03 05 000102 OOOC00000001 

01 05 03 00 000104 570000000001 

01   00 00 00 000146 £20000000013 
• •»•••••BLOCK   11 
63 01 00 00 000013 000000000150 

01 09 03 09 000150 OOOOOOOOOCOO 

01 05 03 00 COOI'j.' 57000000000. 

01 00 00 00 000154 C 20 000000010 

• • »BlOCK 12 

63  01   00 00 000010 000000000156 

02 00 00 00 OOOOCO 000000000000 

02 03 0« 00 000001 200000000012 
02  00 00 00 000002 017040777777 

• 1480 14.        20 F0BM»T(5(515/)/) 

02  05  00 00 000003 025000000002 

02  00 00 00 000004 320000000704 

(8  C"i  00 00 000005 025000000706 
ft  00 00 00 000006 320000000 704 

02 09 00 00 000007 0250000116)2 
02  00 00 00 000010 320000000704 

02  00 00 00 0C001I 071000000000 
02  02  00 CO 000012 254 12000f 
01 02  00 00 000196 6l00C0r 

09  0?  00 00 000012 OOCOOC 

02 00 00 00 000013 24l5250iilt. 

07   00 00 00 000014 379365127522 
• ISM 15. STOP 
• 160« 16. END 

01 00 00 00 000160 544000000000 

01 00 00 00 000162 620000000019 

• •»•••••BLOCK 13 

63 01 M 00 000019 000000000160 

01 00 00 00 000164 540000000000 

• I 00 00 00 000166 620000000000 

01 00 00 00 000170 OOOOOOOOOOOl 

OOCCOO OOCOOL 

000000 0000. 

000010 OOOCC. 
000004 000003 

OOOOOO cooooo 
000010 COOCoS 
000000 CC0006 

OOCOCO 000007 

000009 000010 

OOCCOO 000011 

016916 0CC0I2 

OOOOOG 000013 

0C0013 000010 

0C0010 000019 

cooooo 000002 
00CC03 016516 
000004 000011 

cooooo 000000 

000003 000001 
000004 000010 

OOOOCO cooooo 

000003 cooooo 
000004 00CC07 

00000» 000000 

-o cooooo 

000000 OOOOCO 

000000 000000 

OOCOCO 000000 

000000 000000 

00003 

PA« 1-7 

OATA ooooooooowe 
DATA 0000000000II 

(MPV J , 00000000090 .Til« 
(ADO TIM , 1 TI2t 
(ADO TI7« , 00000004991 , TI3« 
(MPV J , 0000000009« , TI4« 
(ADO TIOI , 1 116» 
(ADO T15I , 00000004991 . us« 
(MPY ■ . eOOC?900090 , TI7« 
(AOO TI7» , 1 TIM 
(ADO Til« .•000««e««49 TIM 

(MPV J , 00000000050 , T7»« 
(ADD T20» , * , Tilt 
(ADD T?l< , 00000007491 , T22« 
(MPY • T19I *T77« , T73« 
(ADD • T16I , T73I , TZ4« 
(«PL T24t , • ■TIM 
(ADD K , 00000000001 . K 
(BLE K , 0000000009« 000011 
(JUMP •00017 , • • 

DATA 

(ADD J . 00000000001 J 
(BlE i , 00000000090 000010 
(JUMP 000013 . 0 • 

OATA OOCOOOOOOIbO 

(ADO , i , cocoooooeoi , i 
(BLE , 1 , COOOOOOCIOO 

(JUMP , 000014        , • ,« 

DATA 
DATA 

MOVE 
OUT. 

SL1ST. 
RUG 
SLIST. 

ARC 
SLIST. 
ADG 
FIN, 
JUST 

(JSR 
OATA 
TEXT 
TEXT 

(STOP 
(JUMP 

00C000000IS6 
OOOOOOOOOCOO 
01.00070« 

01,777777 

OCX 

00,100704 
«o.v 

00,004704 

002 
00,004704 

00.000000 
07 ,> 00000« 

0 , 0 

000000000013 
(9(91 

9/)/) 

0 

000019 

OATA 
(STOP       , 0 
(JUMP      , 0 

STAUT 

. 0 

. • 

l   Ml ili••»-"--*-—^~ ■ " --' 
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C) Listing of Immediate Predecessors 

BASIC BLOCK IMMEDIATE PREDECESSOR(S) 
1 NONE 
2 1 5 
3 2 4 
4 3 
5 4 
6 5 
7 5 11 
8 7 10 
9 8 9 

10 9 
U 10 
12 11 
13 NONE 

D) The Directed Graph 
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E) Listing of Code Optimizations 

The program was constructed so that the entire main loop 

would become totally optimized. The main loop consists of 

statements 8 thru 12, or basic blocks 6 thru 11. The partial listing 

of the optimized code given below is only for these blocks. 

The optimization of the program can be summarized as follows: 

1) Fusion of segment 9 (basic block 9) 
Since the main loop consists of three nested 

DO loops, the corresponding segments will be 
optimized in the order they are embedded, 
starting with the innermost one. Thus, segment 
9 is optimized first, and since it is the 
innermost segment, it is fused to "dumb" code 
after being executed once interpretively. Since 
the segment is not yet totally optimized, the 
conditional BLE branch to itself is processed by 
the segment driver so the segment's 
optimization count will be decremented. 

2) Code Motion on segment 9 
Segment 9 is now totally optimized. First 

CSE is performed on each of its basic blocks 
(one in this case). Four redundant 
subexpressions are removed from basic block 9: 
the 4th, 5th, 6th and 10th quads. The first 
three represent the second subscript calculations 
for Z(I,J), while the fourth involves the common 
subscript calculation for J. Also, the 15th quad 
is combined with the 14th, eliminating the 
intermediate temporary. Then code motion 
results in three calculations involving the 
segment invariants I and J being moved to the 
front of the segment: the 1st, 2nd, and 3rd 
quads. Unique temporaries are assigned to the 
results of these invariant quads, and they 
replace the original temporaries. Thus the 
result of the 1st quad is used both in the 2nd 
quad and the 11th quad, and the 3rd qa ds's 
result   is   used  in  the   14th  quad.     Finally,   the 

fcM    - If       -     I I ■! I       II   —ia^—IM—BlM 
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resulting quads are compiled to "fair" code. 
Notice that the conditional B'.E branch is 

now direct and to the alternate entry point of 
the segment, i.e., to the point after the 
invariant code. 

3) Translating basic blocks 8 and  10 
The remaining basic blocks of the yet 

unfcrmed segment 8 are now translated to 
"dumb" machine language. 

4) Fusion of segment 8 (basic blocks 8-10) 
Next, segment 8 is formed. The machine 

language is t.on-homogenous with respect to the 
degree of optimization performed on its basic 
blocks: the embedoed segment 9 is already 
totally optimized, while the rest of its blocks 
have been translated to "dumb" code. Since 
the machine language for all the segment's basic 
blocks exists, it is only necessary to combine 
the machine language for each block, at the 
same time retranslating the branches. Notice 
that no code is generated for the intra-segment 
JUMP'S and the direct branch of segment 9 now 
reflects where the new alternate entry point is 
located. 

5) Code Motion on segment 8 
Finally, segment 8 is totally optimized. This 

means performing CSE on basic blocks 8 and 
10, then code motion on the entire segment. 
These optimizations have no effect. When 
forming the machine language segment, basic 
blocks 8 and 10 are compiled to "fair" code, 
but since the machine language for segment 9 
already exists, it need only be moved. The 
branches of each basic block are again 
retranslarted resulting in the unconditional BLE 
branch of block 10 being made direct. 

6) Optimization of segment 7 (basic blocks 7-11) 
The optimization for this segment proceeds 

as for segment 8 in a straight forward manner. 

 —-■ ; ■ -■■ - 
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FUStO  BLOCKS       9   THBU      9 

TRANSLATING  BlOC«       9 

037276 (MPV , 033661 03734 1      037530) 

053765 MOV! 04   000062 

(»37(>6 MUL 04,  03 366 1 

•12230 (ADD 037530 U    0 . 03253 11 

053287 ADO 04   033660 

032212 (ADD , 032531 037345     037532) 

053770 ADOl 04    045407 

•12234 (MPy .  fJ 31.61 , 037341     037533) 

053771 MOVf 1 05   000067 

OS3277 IMUl 05, 033S«! 

•32236 (ADD . 037533 033660 ,  037534' 

0537'3 ADO 05   03366© 

•37240 (ADO 037534 . CJ7345     0i?535) 

063774 ADOl 05   045407 

•37242 (MPY ,  057376 ,  03234 1      037536) 

063775 MOVE' 06   000067 

053776 IMUl 06,  C I'J/O 

032244 (ADO , 037536 . 0336Ü0     03753') 

053277 ADO 06   033660 

•32246 (ADO 037537 , 037:147     03/54 0) 

053300 ADOl 06   03J577 

0327S0 (MP» 033661 , 03734 1   , 03/44 11 

C5330I M0VF1 07   000067 

0*3302 MH 0/   033661 

032252 (ADD , 03754 1 , 057376     03750?) 

053303 ADO 07   0573 76 

0322M (ADD '.  037547 . 037343  ,  037543; 

053304 ADDI 07   040503 

NHM (MPV .•037540 «037543     037544) 

053305 MOVE 06, 0C000O(U.) 

05330r> Ml 06*000007 

032260 (ADO «037535 , 032644   , C3r545) 

053307 MOVE 05   000000(05'. 

M33IO ADO 05   000006 

•32267 (BfPl , 037545 000000   .037537) 

053311 MOVEM 05 «000004 

•37764 (ADO . 057378 037340     057376) 

0533  2 MOVEI C   000001 

053313 ADO 0'. 057376 

0533 14 MOVEM 07   057176 

•37766 (BIC . 0573^6 , 03734!      OOOOll) 

053315 MOVEi 15. 0000: 1 

053316 CAMG 07   037341 

•53317 POPJ 17   000000 

•9277* (JU** . 000012 COOOOO     000000) 

•53370 MOVtl 15, CCOOI? 

053321 POPJ 17   000000 

QOAOS   TRANSlATtB . II 

COOt   MOTION  ON  SlGMfNT 

CSC   ON  HICiCK I 

QOAOS  ELlMlNAltO ■      4 

QUADS REMOVED •      3 

COMPILING  M.Of < 9 

•53372 (MPV 033651 03734     ,  037546) 

053337 MOVE 04   013661 

•53333 IMUU ti  ccoor.7 

•53334 MOVEM •4   017546 

W3374 (ADD 032546 0336U0     03254 7) 

053335 MOVE 04,  037546 

•51136 AOO 04   033660 

•51337 MOVEM 04   037547 

053328 (AOO 037547 . 037345  , 037550) 

053340 A031 04   045407 

•5314 1 MOVEM 04   03?55C 

•53110 (JUM> oooo:i 037778 . 0377G6) 

03727» (NOP oooeoo . OOOCCO . 000000) 

0^2730 (NOP 000000 oooooo   OOOPPO; 

•91212 (NOP ooo.-oo 000000  , OOOOOO) 

•37734 (NOP t^iOOO OOOOOO     OOOOOO) 

«2216 (NOP 000000 OOOOOO     OOOOOO! 

«3774« (NOP 000000 OOOOOO     OOOOOO) 

037247 (MPV ,  057376 03734 1      03751«) 

053347 MOVE 04   057376 

053343 IMULI 04   000062 

037244 (AOO .  037536 033660     032637) 

053344 ADO 04,  033660 

037746 (ADD , 032537 1. 1 ..■  . C3754») 

037756 WOP ocecvO COOOOO     COOOCK 

037252 (ADD . 032540 052376 . 03?647i 

053345 MOVE 05   037546 

053146 ADD 05   «57376 

0377'J (ADD , 037542 . 037343 . 032543) 

037/56 (MPV ,•037540 •037643  . 037544) 

05334 7 MOVE 04   033677(04) 

053350 MM 04   040503(05) 

032760 (ADD «037550 . 037544  ..037550) 

063351 AODtJ 04.037550 

032767 (NOP .  OOOOOO COOOOO     OOOOOO) 

•32764 (ADO C67376 ,  03734 0     052376) 

053357 AOS 05   C57376 

037266 (BLC , 057376 03734 1   , OOOOll) 

053353 CAMG 65   032341 

063354 JRST 00   003342 

•37770 (JUMP ,  000617 OOCOOO     00000«) 

053365 MCVEl 15.  000012 

053366 POPJ 17 oooceo 

QUADS  COMPIIEO  .      14 

TRANSIAIINC)  BLOCK       « 

037717 (MPV ,  033661 037341     032530) 

053357 MOVEI 04,  C000C2 

•53360 IMUl 04   0.13561 

037214 (ADO , 032530 . nMM . 037631) 

053361 AOO 04   033660 

032216 (ADO ,  037531 . 032345 . 032532) 

053367 ADOl 04   045407 

032220 (REPL . 037346 OOCOOO «032532) 

053363 VOVEl 05,  COOOOO 

063364 MOVEM 05 ,.000004 

032227 (REPL .  037340 OOOOOO     052376) 

053365 MOVEI 05, OOOOOI 

053366 MOVEM •5,  0623/6 

037224 (JUMP .  OOOOll OOOOOO     OCVIOJO) 

063367 MOVEi i5. eoceii 

053370 POPJ 17.  OOOOOO 

QUADS  TRANSIATEO  • 6 

TRANSLATING BLOCK      10 

032277 (ADO 033661 03734« . 033661) 

0533/1 MOVEI 04   OOOOOI 

0533 77 ADD 04.  033661 

«533/3 MOVEM 04   033561 

037774 (BLC .  0J3661 03734 1      000010) 

05:11/4 MOVEI 15.  000010 

0533/5 CAMG 04   03;'34 1 

1.3376 PQPJ 17. 009000 

mm (JUMP ,  000013 .  OOOOOO     COOOOO) 

0533'/ MOVEI 15, 003013 

053400 POPJ !/   OOCOO« 

QUADS   TRANSLATED  . 3 

FUSED  BLOCKS       ■   THRU     10 

MOVING  B10CK       I   TO  053401 
037274 (JUMP     .  «00011 

MOVING  BLOCK       9   TO  0514 11 

«00000     0000««) 

•32266         (RLE .  062376  . 01734 1   , OOOOll) 
063437 CAMG         05. 03734 1 
053433 JRST          CO,  053471 

0377/0         (JUMP .  00001?      «««000 , OOOOOO 

MOVING  RIOCK     I«  TO  051414 
012274 (BLE . 033661 . 03234 1   . 0( 

053437 MOV . 15. 00001« 

•5344« CAMG •4   03234 1 

05344 1 ^onj 17   00«««0 

000010) 

(JUMP     ,  •«•Oil     OOOOOO     COOOOO' 
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COOf   MOIUK  OH  SEGMtmi 

CSC   ON  BLOCK       S 

QUADS  EllM!MTEO 

MOVU 

POfJ 

ll, 00OOI3 

17,  OCCCOC 

CSt  0*1 BlOC« 10 

QUADS  ILMiNATED   ■ 0 

NO  QUADS  BE MOVED 

COMPllKllG  B'OCK 1 

03?71? (MP» 033661 . 03734 1   .  0375301 

053144 MOVE 0«   C3366I 
053443 IMUU 04   OOOOC? 

032714 (ADO ,  037530 0336S0 , 032531) 

D'J3.146 »TO 04. 033660 

03/?IS (ADD . 03'531 032345     C32532) 
03/770 (WPl . 037j4ri 000000 ,.032537) 

C'344? SEI2M 00   04540/(0«) 
037777 («EPl 0J7340 OOOCOO     0573;6) 

053450 MOVEI 00   000001 

063451 MOVIM 04   052376 

032774 (JUMP 0OO0I1 000000     COOOO«) 

QUADS  COMPIIED  •       6 

MOVING BlOCK       9   TO   053057 

032766          (BIE       ,  057376 ,  032341      00001 I) 

0r>34 73         CAMG 05   037341 

Ori3fl74         JUST CO   053462 

0322/0         (JUMP     ,  0000! 7 .  000000 .  OOOCOO) 

COMPllINC   1)1 OC« 10 

1)372/2 (ADD 033661 ,  032340 ,  033661) 

0534/5 AOS 04   033661 
0322/0 (BU 033l>GI ,  0J734I   ,  000010) 

0030 76 CAMG 04   037341 

C'530 7 7 JUST 00   05304« 

«327/6 (JUMP . COCO 13 . ooo"oo   oeooooj 

0'J3-.00 MOVEI 15.  000013 

053301 POPJ 17.  000000 

QUADS  COMPiKO  .       J 

TBANSlAIlNr.  BlOC«        7 

032706 (»EPl ,  037340 OCCCCO     033661) 

053507 Mnvfi 00   000001 

0635^-; MOVEk 04   033661 
0322:o (JUMP .  000010 OOCOOO     000000) 

053504 MOVEI 15. 000010 

053505 POPJ 17   000000 
QUADS   THANSlAUO   . 7 

THANSLAIINQ  BlOCK      1 1 

032300 (ADD 033G60 037300     033660) 

053506 MOVfl 00   00000! 
053507 ADD 00   033660 

053510 ■VOVtM 00. 033660 
03730? (BLE ,  013GG0 03730 1      000007) 

053511 MOVEI 15. 000007 

053517 CAM;, 0«   03730 1 

053513 POPJ 17.  COCCOO 
037304 (JUMP .  000014 000000 .  OOOCOO) 

0535 14 MOVEI 15. 0000)0 

0535 IS POPJ 17.  OOOCOO 

QUADS   IBANSlAttO • j 

'USED  BLOCKS 7   THKU     I I 

MOVMG  BlOCK 7   10  053516 

032210 (JUMP        000010     OOOCOO     OOOCOO) 

MOVING  BlOCK »   TO   053520 

032720 (JUMP        00001 I      000000 .  OOOCOO] 

MOVING  BlOCK 9   TO  093576 

032266 (Bit       . 05237«  . 032341   . 000011) 

05354 7         CAMG 05. 03230 1 

053550         JUST 00   053538 

032270         (JUMP ,  000012 ,  00000« . ««««««) 

MOVING BlOCK     10 TO 053951 

032270          (BIE ,  03366 1 . 032341      000010) 

053952         CAMG 00   037341 

053553         JRST 00   053520 

032276         (JUMP .  000013 OOOCOO . COCCOO) 

MOVING BlOCK II   TO  053594 
032302 (BIE . 033GS0 , 032341      0060071 

063557 MOVEI 16   000007 
05316« CAMG 04.  032341 
053 5ü: POPJ 17. cooeco 

032300 (JUMP oecoio . 000000     0001««) 
053562 MOVEI 15. «00014 
063563 POPJ 17, 000000 

COOC   MOTION ON  SEGMENT 

CSE  ON BLOCK       7 

QUADS  ELIMINATED  . 

CSE   ON BlOCK      I| 

QUADS  EUMINATCO • 

NO  QUADS  Bl MOVED 

COMPILING BLOCK       7 
037206         (BEPt , 037300 COOOCO     033661) 

053564 MOVEI 04, 000001 
C53565 MOVfM 00, 033661 

137710 (JUMP 

QUADS  COMPIIED  •       2 
««««10 ,  OOOOCC     COOOO«) 

MOVING  BlOCK I   to   093566 

«37724 (JUMP     ,  000011 

MOVING BLOCK 9  TO  053574 

032266 

COOOO« , 000360) 

(BLE ,  052376  , «3234 1   , COCO I I) 

0! 1619        CAMC 09, 03234' 

0536 IG JBST 00   053604 

032270 (JUMP        000012      COOOCO .  COOOO«) 

MOVING BLOCK     10 TO 093617 

0372/4 (BLE .  033661   , 032341   .  COCOI«) 

053620 CAMG 04. 032341 

«93621 JBST 00. 093966 

»32276 (JUMP .  000013      00«««« .  000000) 

COMPILING  BlOCK      11 

032300        (ADO 033660 032340 . 033,60) 

063622 AOS 04. 033660 

032302         (BIE , 033660 03234 1   .  0000 17) 

053623 CAMG 04. «3234 1 

053624 J«ST «0.  063564 
032304         (JUMP .  00014 OOOCOO . 060009) 

053625 MOVEI 19,  COCO 14 

05362'"' POPJ 17,  COOOO« 
QUADS COMPILED .      3 

ii mi riii rfiii in _ . — -     ..-. 
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B.2 Th« Linear Equation Solver: LES 

7 

J 

a 

I 
I 
1 

h 

9 

It 
1 ! 

II. 
II. 
0 

I). 
i a 
17. 

.» 
IS 

20. 
.■ 

;.■ 

}} 

.'.■ 

?i. 

76. 

?7 

?ll 

^) 
K 

31 

J7 

33. 

I.i 

39. 

3b 

37. 

1« 

39 

.0 

■'. ; 

o?. 

03 

«a. 
«s 
«6 

«/. 
M 
89. 
00 
51. 
•J? 

53 
5a. 
55. 
56 
5/ 
51 
59 
60 
61. 
0? 
I. ' 
r i 

'.' 
M 
67 

( « 
'■'1 

7«. 

71 

7?. 

'3 

7«. 

75. 
1* 
77 

70 

MATmx   iivUSiON UiVS  A  l.M.A^  (QUA'iOS  SOIVH 

BttS.   I)  «IG0»IIHM «?3i;ArM   HMfifKi   19'7)774) 

71 »OUSVIMtui . ANil MOJSCfl. "COMPUTt»  SCHjHOH 

Of   IWAD   A.UtUBAlC   SfSTlim*.  P8(MlCt HAU 

fVi.KWOOO CliflSXJ. 19C/. 

3! OBICOH»»).   AND «A«M*i)l . "A  COUttriOfl Ot 

MA'UiCiS FO'    TtSIWG  COMPU'A'iONA.   ALGOHllMMS". 

WHtV-KTI« ICCNCI, WW  »00« 1^69 

SUOWOUIIWS  USID  A«l   W   '1-051   VWi  IN  THt   UXIBOO«, Rfl 

II»  OIPlArlMfNIJ CiVtN 8»  Mean   « AlGOUi'MM  673. 

DEAL   AC Co .OOlflMOC; 

»i'fG!«  •P(1CC1 
»tAOII7)N 

F0SMA'(r)X17) 

T»Pf   3N 

fiBMAIl    N   .     I?) 

»I'M. 100 

(ilvaftlt   KS'   MATtn 

SEt   131,  EKAMfif    If, 

A    A(U|.N-ABS(i-J) 

n •  W   J J    .WO   10  9 

79 NM1JI-I 

H V JO   7   K.IMMl 

■ 1 KPM-I 

I-.' M.IP«) 

*) i -• i; v. 

to. B!M)^(«) 

t5 0(K)-T 

80. DO   7   I.KP 1M 

t7         7 B(l) B(l).A(IX).T 

»H DO  i  «n.lMMI 

n KMIJJ KB 

M, K.KMI-I 

tl B(K).U(K)/A(K)() 

92. T.-BC«) 

93. DO  8   MXMI 

9i.     a B(i)-B(l)>A(l)()»T 

95         9 B(l)-B(l)/A(l.ll 

9G Ul UIRN 

3' ENO 

00 I i.lft 

00 I J>IN 

A(U)^.I J 

A(J O.A(IJ) 

MA>lg   PSCGC'M 

CAU   0EC0Ml>i\v~ «A P) 

«(iP(N)  M    0)GO  10  JO 

1VPE   00 

i OUMAH    MAIIIIX   <,'Nr,i)lA9) 

STOP 

DO  io J.: >< 
00  70  UtM 

B(JM.O 

THt   J1H CAU  P80;)JC15   ti B  I'i£   JTH CO('..MN  0'   THE   WVERSt 

CAti StonfHHDMABf) 
IW 

SUBHOUT W   Dt'OMPlNWIMA.IP) 

»EAI   A(K. .MNOIM)! 

INlfCE»  IPIW.M) 

IP(N)* I 

oo a K.\N 

IF«  H. N)G0   '0  5 

«P I.K.I 

KM 

DO   I   MTPIN 

iMABSIAiUO) .GI. AB5i»(«<IXI))M.l 

CONI^Uf 

l(>|K).M 

»(M  Nt, K)'P<t().-IP(N) 

I.A(MJil 

A(MJ().AIK)<; 

A(KX).' 

M'   IQ    0)00   "J   i 
00  7   l-K^IAJ 

AOX). A(tK)/I 

DO 0 J.KPIN 

1.A(M J) 

A(M,J|.A(« J) 

A(KJ).t 

'(I   tft   0.)G0   '0 4 
DO 3   -«IN 

A(ij;.A(lJ).A(ijj).' 

CrN'lNDE 

inni«*) i«. ejiP('j)-o 

CON'lNOf 

■TUM 

M 

SuenO'.fiNE S01V!;^^^', w/fl*) 

■(At  ,-.:■.>/■.•■. 

WIEGE»  IPIXOMI 

.   ■- 
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B.3 A Prim« Number Generator: SIEVE2 
1. 

in 

C 

1UIIIWWI      WIWIIWl  W»^»   •     vi« * M 

tl'   CACM   IOS(MPt. 19«7). P. 570 

2 c AlGOBiTHM  311   "'Ml   NuMBf» GEWaAIM 2 

3 c IHt  AlROBitM H»S MEN MCOifieO  10 G£Nt«ATC   M 

I c FOSt  « P»>MIS  IHSItAO Of   'ME  PRMCS  M 

5 c 
6 c NOUi  IHESE   »BE   7149« PfllMFE  USS  1MAK   10..5 

7 c 
1 c USING  M,I0..6 AS AH LPPE« BCUW)   AN UPPEB BOUND Of 700 

9 c Will   SUffiCF  FOB   IMt   ABBAVS QßQSQ* AND B» 

10 c UI. 27«SQBI(IOa>G)'lMI0<6,-?0OI 

II. iN'EGEfl  Q(?00)CQ(?00!S1J(700)M?OOI*B(7COI 

17. INIEGEB P(?5eO«) 

13 INUGEB  tJJJ«ll(AlJ8ßN 

■0 10GICAI   T 

It. P(l)-2 

1« MM 
17. P(2).3 

II J.3 

19 JJ.3 

N K.3 

21. B(3).3 

n P(3)-5 

n Q(3).25 
7« DQ(3).I» 

75 SQ(3).30 

7r, BEAD1I2)KK 

31. / FOBMAURX.IS) 

?B 'VPI   3X« 

7« 9 lOBMAIC  K   •    ,15) 

3C U-l                                        • 

31. 0 I..!Bljf 

37 0N.6 ON 

33 DO 2« l'3JJ 

31 ■4» 
35 IF(N  M. Q('B|)C0  TO 70 

3fi Q'>R).N.0Q(lU! 

3' BQl.Pl.S9<lB»-0Q(l«) 

3« I./AISE 

39 if{i   HI   1J)Q0   TO  70 

no JJOJ-I 

«1. IfllB  M. J)Cl'  TO  70 

07 M>l 
03 B(J)-J 

DC 0(J)-r(J)»P(J) 

05 SQ(J)-6iP(J) 

or. 0r((J)-SQ(Jl«(l'(P(J).3))-7t(l(J 

0 7, ^n CONTINUE 

OS IflWOT. T)G0   TO tO 

09. K.K.I 

bo P(«).N 

II, 1F(«  iQ. KK)ST0P 

57. 30 |f(JJ  it). 3)G0  TO SO 

53 JJOJI 
i,/i lf(Q(ll(JJ)l   IT. 0(R(JJ.|)))G0  TO 3- 

■jj. c SIFT  50BT 

5h 0R(3).B(3) 

57. IF(JJ .It. «)G0 TO 90 

5« 00   110 KI.OJJ 

»9. l.iB-l 

CO 00 ir(«(B|IB))  ,GE   a(«B(l)))G0  TO   110 

61. BB(l'l).BB(ll 

67 l.l-l 

r,3 IF(I  .GE, 3)G0  TO   '-0 

M i le gB(l.|)4(IB) 

65 c MM SOBT 

H 90 t.i 

6! M 
M, JROJ.I 

69. 50 if(Q(BB(lBl) .01   0(R(JR1))GO TO  120 

70 B(l).B»tlfl) 

71 ■4bl 
77, lF(IB  .GT.  JJICO  TO  70 

'3 GO   TO   130 

70 170 B(i).B(Jfl) 

7». JS.JB.I 

)6, MJ" Mt, J)G0 TO 60 

77 130 i.l. 1 

7», GO  TO  50 

79, 60 l-l.l 

8 0 B(I)J1R(«) 

m. ».«•I 

R? IF(IB  .It. JJ)G0 TO bO 

R3 70 JJ<3 

to to IMMN 
t5. GO TO  It 

«6 END 
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B.4 A Student Electrical Engineering Problem: EE 

1. •LAI.   t\f.l 

i CI.961 6 

1 VB.I20 

«. 0.D8OO 

1. CZUI. 

b C2U-I00 

7. CIWI, 

1 C7L.C2ltlE.6                             ' 

1. CAI.C7U.lt 6 

10. t7i.C2l. I(.6 

II. C3.I. 

1? C3J.I00. 

.1 »fA0(l^)C3' 

,'1 2 fORM,M(Gx;3,l) 

II IVPf   3CJI 

It, 3 FMMAII   CDi • 'f%.\\ 

17. CMla It-* 
it. CJU.C3Ltl£.6 

I'J C3<.C1i«lt-6 

2«. C2.C21 

21. OMAX.O 

a. VMtx-0 

n C3'Jt3'.0 

i\ C7JtSt.O 

2». 40 A. (JtC2.CI)/(7.a.Ci.C?) 

?K B.!Jail'(0iC?.C?.Ci.CI)/(2.l)>CI.C2) 

27 070.VU/11/C1.I/C2.I/C3) 

n K2.1 '(H.B)»l(A.B)tQ;0 V« 'B.Q?0/l).;!, C !• I/C2» 

29. m-a?o«? 
10 BASt. Kl>(A.B).iK?.(A Bjj 

31 Ql'TP.«l.(BA?.l)..((A.M,.(  l/(B.fl))).«^«aAS[i.((A-H).(-1/(0.8)1) 

■it vp.|70.C2I(i'{.2.Q70 C3 

■■" U-.S.(CltVB«VH.l)?TP.Q7II   CV.<J?0ia70/C3) 

34. lf(C2   OT. C20)G0   TO  30 

IS. »(U   11   UMAX)C0   10   50 

ir, »(VO .IT. 2«0)G0  TO  50 

37 VMAX.VO 

;H UMAX.U 

39. C3Bf5T.C3 

40 C^BtSI.C? 

41. H C7.C2.C2i 

42 at io no 
M 30 C7.C71 

44 pr(C3  a\. C.3U)G0  TO   100 

<-.-, Cl.C3.C3i 

46 co io ao 

47 100 C7fl(3T.C?BIST.H6 

•a. C3BfST.C3aiSl.ltb 

•f TYPE   I.C7DeSIC3BfSI VMAKUMAX 

M 1 1 CDMA : (fiX C2 .MX C3 ,9X.V0«X WATTS  /£r 17.5) 

1! EUD 

. .    _ .... ■    .. --^.—^-^^^—^>^.-J.J.^.-.^—,_^-^.^-^-..J^-^J..... 
    - ■ 

   -.-^.^-.._^.-^- 
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8.5 A Generalized Eigenvalue Problem: QZ 

1. c (W  AlGOaill'M 78 T . 0. 

2 C »If- MOtfBcn. *Nn stiwwii.G.w.. >•: »IGOäIIHM FOB 79, DO 3« HM 
3 c M   CiMBALI/lD   MATB.X   ElGlMVALtK   PkOaUMS" N T . T . NIMM 
• c SIAM  J. NG'MtR   »NAl. 9,01DtC.   1972), 81. 3« CONTINUE 
5. c 82 T  .    T/RHO 
6 OiMCNSiO«!  A(60.60)fi(6O,6O»(60.S0)^R(60). 83 DO 4« 1.1* 
; 1                        AI(60)BT(58),lT(bO) 80 B(U)  • B(iJ)  .  T.B(IL) 

s c DIMENSION 8AM(50) 85, 06 CONTINUE 
9 BrAD(l2000iN 86 50 CONTINUE 

10 200« F0I)MAT(6X.I21                                                                                       j 87 00 80 .MM 
11. 1VPC   2001K                                                                                          1 88 T . a 
1? 2001   r-WMATC  H  .   a)                                                                                \ 89 DO 60 MN 
13 c GEt..-.lATt  TEST OAIA »0, T   ■  T   . B(I.I).A(1J) 
10. DO 20 MM 91 60 CONTINUE 

■•. A8(l).l 92. T  .  -T/RHO 

■». BHI).NI.| 93, 00   7« LIN 
i;. 00   10 J.IM 90 A(U) . A(U) . T.BCI.L) 

M A(U)  • AB(.) 96 70 CONTINUE 
19 B(U) ■ HUM 96, 1« CONTINUE 

?0, X(U)  •   0 97. mi,D •  5.B 

?1. 1»      CONTINUE 98. 00  90 l.LIN 

?2. *<l,l)  . 2..A(I.I) 99. 8(I.L) .a 
Z3 Bd 1) • 2.<B(1,I) 100. 90 CONTINUC 

?« 2» CONIINUE iei. 100 CONTINUE 

?5 CAll   Q7('JONAÜ It 8/»R>'dt.ll.IUU X) 102. r(N it. 2) GO TO  17« 

76 00  30 UIM 103 NN,2 . N-2 

2/. BAM(l)   .  AB(I)/Bt(l) 100, DO  16« K.INM2 

7* PRINT   IOOIJIAM(l)A^l)Br(l| 106 ■1   • K.I 

29 00  «0 J.IN.S 106. NKI   -N-IM 

30 00              PBiNl   ie01*(.l.l)X(.M.»,X(.l-2.l|X(.l<3.l).X(J.4,l) 107 DO   15« LB-INKI 
31 1001     f08MAT(   'JIIMI 108 I . NIB 
32 3»    CONTINUE 109. LI  •  L.I 
J.) STOP 110. CALL  HSH2(A(IX)A(LIX)UIÜ7,V1,V2) 
JO ENO III. if (til   NE    1.) GO  TO   125 
Jb c 112. 00   II« J-KN 

M SUWIOITM   OZ(ND)iABfPSAirBALFlBETA,ITE«, 113. T   • A(LJ)  . U2.A(tU) 

3; 1                               »AVVX; 1 10. A(LJ)  . A(lj)  . TaVI 

3*. DIMENSION  A(ND.NO)i)(NUND-. '^»(WALf KW«TA(N), 115. A(IIJ)  . A(IIJ)  .  T.V2 

39 1                        X(N1>«).IIII(N) 116. 110 CONIWUt 
OC. 10GICAI   WANTX 117. A<ll*) . 0. 
01 CAU   Q»ME5(NDNA0WANTX.X) III. 00   120 MN 

02 CAU   Q2iI(NaNAiJIPaiPSAiPSB.ITfR,WANTXX) 119. T   ■ Bd.J)  . UoUUlJ) 

03 CALL   Q:VAL(NUNAi)fPSflAlFBAlFIBtTA,WANTXA) 12«. O(IJ)  . O(IJ)  .  TlVI 
00 »(WANTX) CAU   (j:vtC(NONA,BfPSA£PSBALF«AlFI. 121. Bll U)  . B(tlJ)   .  T.V2 

«t, IBETAJO 122. 128 CONTINUE 

OG RETURN 123. 126 CALL  HSH2(UL l,L 1)8(1 l,t).J l;J2V l,V2) 
0/ ENO 124. F(UI   NE.   1) GO  TO   15« 

08 c I2S. DO   130 bUI 

09 SUDB0U1INE  QZHESCNDNABWANTX» 126. T   • B(ltl)  .  U2.B(l,t) 

60 DIMENSION A|NDNO)0(NOND)X(NDND) 127. a(l,LI) • Bd.tl) I  TaVI 

61 LOGICAL   WANTX 12«. BKL)  ■ 0(1,1)  .  TaV2 

02 lf(>WT.WANTX) GO TO   10 129. !30 CONTINUE 

53 DO 3 blM 17«. B(LI,L) • «. 

50 DO  2  J.IM 131. DO   14« I.IN 

6V x(u) ■ e 132. T   . A(l,ll) . U2.A(i,l) 

M 2  CONTINUE 133. A(I,LI)  •  A(l.tl)  .  TaVI 

57. MM •  I 134. »(1,1) . A(l,t) . TaV2 

M 3 CONTINUE 139. 14« CONTINUC 

09 I0 NMI  ■ N I 136. 1F(N0T. WANTX) GO TO   IB« 

GO 00   10«  I-17JMI 137. DO   M MA 
II, 11   •  L>l 13«. T  . X(l.ll)  . U2aX(l,L) 

62 S  •  0. 139. K(l,ll) . X(UI) • TaVI 

63 00  20 I.LIN 14«. X(U) . X(l,i;  . T.V2 

bO. IF(ABS(B(I.I)) er. s) s ■ ABsmaiH 141. 145 CONTINUE 

66. 2«       CONTINUE 142. 150 CONTINUt 

66 »(S  £Q   0) GO TO   10« 143. 16« CONTINUE 

67 IMAHS;»,'! D)  «T. S) S  •  ABS(B(L.L)) 144. 170 CONTINUE 

(.8 R  .0. '             145. RETURN 

M 00  26  l-LN 146. ENO 

/o B(I,L)  • B(I.L)/S 147. C 
71, R  • R  • B(I,L)»2 14«. SUBROUTME  q7lt(Ni)NAB£PS£PSA£PS0.1TEB,WANTX» 
72 25      CONTINUE 149. DIMENSION A(NDND)B(NONO)X(N0N0) 
•■3 R ■ SQBT(a) 15«. DIMENSION  lUB(N) 

70 ifiHd ,1) .IT. 0.) a .  a 161. LOGICAL   WANIXXIO 

76 m <) ' BU.L) ■ R 152. ANORM .  0 

76 BMO  • RaB(L.L) 153. BNORM  .  0 

7 7 00 SO MIH >            154. 00   115  MN 

11 IIMI   __ —    • -  t •MIM^^MM J 



■Pi 1  

152 

155. mm • o 
IM. AM  .  0. 

It?. IfV  m     1)  Ml  •  ABS(A(I,1-I)) 

IM >"t   •  0. 

IM 00   180 J.1M 

16«. ANI . ANI  . ABSlAdJ)) 

If . DM  • t)M  • ABSIBIUII 
IG? 18C com tu 
103 'MAN!   C.  ANORM)  ANOOM  . AM 

IM. ■i ;■•'.   .CT. BMODM) BNORM . BMI 

IM IM COMiNut 

IM £P5A  . CPS.ANOUM 

Kl (PSB  • EPStBSOliM 

IM. M  . N 

IG9. ?Ö0 IFtM  U. 2) GO  tO  390 

17* DO  770  .IMM 

171 L   AtlB-l 
17? lf(L   iQ.   1) CO   10  760 

173. iMABS(A(i,L-l» .lt. EPSA) CO 10 730 

17«. 270 CMTtU 

I7S. 2J0 Adll) . a 

IN If(l   IT. M-l) CO  TO 260 

171 M  .  L-l 

in. CO TO 200 

179. ?60 1F(ABS(B(L,L))   GT. EPS8) GO  TO  300 

IM OUU .  0 

181 11   •  M 

1«? CAl L MSH2(A(t UXl 1 Di) 1112.V 1 ,V2) 
183 IF(UI   ME.   1.) GO  TO  .'HO 

IM 00  7'C J.IN 

its. T   •  A(U)  • U2.A(LIJ) 

IM. A(U)  . AUJ)  •   T.VI 

It7 A(Uj)  . A(llJ)  .   T.V7 

108 T ■ B(U) • U2ieiLlJ) 

IM BUJ) . BdJ) .T.VI 

IC B(llJ) . BdlJ) . T1V2 

191 770 COMiNUE 

IM. ?80 t . 11 

IM CO  TO 230 

IM. 300  Wl   .M| 

IM l 1   •  Ul 

IM CONST   .  0.75 

111 ITES(M)  .    IHM   .   | 

IM. »(ITEB(M)  £Q    |) GO  TO  305 

IM iFIAOiWM.M  1))  .IT. CCNST.0.D1) CO TO 30& 

»M IF(AaS(A(M  IV7)) .LT. CONST.CL07) CO  10 305 

101. IF(IUP(M)  iQ.   10) GO  TO 310 

2m. l'tlT£R(M)   GI.  30)  GO   TO  380 

?CJ 305 BII   ■ 6(1 L) 

204. B22 . BKUI) 

205. IF(ABS(877)   II, fSB) U72  . EPSB 

20G B31  • B(M1M1) 

20/ IMA8S(B33) .LT. IPSB) B33  . EPSB 

IM BAI   . B(MM) 

(M l((A83IBa<l)  .LT. EPSB) »U  • EPSB 
?:o All   .AU .l/BII 

211. *I2 . A(LAI),B2? 

na AJI   • Adl.D/Bll 

21J A22  • A(L1.L1)/B22 

114 A33   •   AlWLMIi  im 

2 IS. A3«   .  A(MIW)/6'1'1 

216, A«J  . A(M^I)/B33 

?;; A««  . A(M*)/B«« 

m BI2 • ß(L,ll)/B22 

tu 83« • B(MIM)/B«« 

??0 AlO • ((A33-AII)>(A««.AII)  . A3«<A03  • A«3« 

??l 1                • AI2  - Al I.lll? 

7?7 A20 • (A?? Al l A? l.ijl?)  .  (A33-AI1)  .  {Mt-t 

??3 A30 .  A[L.2.LI)/B72 
??a. GO  TO  315 

2ZS. 310 AlO .  U 

27G. A20 •  0. 

??/ AS© .   1.1505 

m 315 OLDI   . ABS(A(MM-I)) 

229. 0102  • A(JS|A(M  l^ ?)) 

2JC. »(MOI.WANtX)  LODI   •  L 

731 KWANTK)  LO«l   •   1 

A«3.B3«<A I l)/A?I 

A«3iB3« 

237 IF(MOT.WANTX) MOBN  . M 

233 IF(WANTX) MOHN • N 

23« 00 36« MWI 
735. MIO   • KM MI 

IM Kl   • K.l 

237 KZ . K.2 

238 O   .  K.3 

?1'J »(«3  .CT. M) K3  M 

2«0. KMI   ■  K-l 

Nl. 1F(KM1   .LT. L) KMI   .L 

7«? »(«  IQ. 1) CALL   HSli3(A10A20A30JJIiJ2iJ3,VI,V2,V3) 

2«3. IF(K.GT.l   AND. KLTWI) 

2«« CAl l HSH3(A(KJ(M l)A(K 1 JMIMttJM DJJ1 U2U3,V 1 ,V2,»3) 

Hl IF(K  IQ   Ml) CALL  MSH2(A(KXMl)A(KU<Ml)XlliJ2,VI,V2) 

206. IF(UI M.  1) GO TO 325 

2« 7. DO  370 J.KMIWO»N 

?a8 T  • A(KJ)  . U2.A(K|J) 

209. IF(MIO)  T   .  T   . U3«A(K2^) 

250. A(KJ)  . A(K.J)  .  T.VI 

}b\ A(KU) . A(KIJ)  •  T.V2 

;.2 IF(MID)  A(K2J)   •  A(K7J)  •  T.V3 

y a T   -  B(KJ)  . U2.B(KU) 

25«. IF(MID) T   . T   . U3.B(K2J) 

255 ll(K J)  • BIM  .T.VI 

256 HIK:       . B(KI, )  .  T.V2 

257. IF(MID) B(K2J)      8(K2J)  •  T.V3 

258. 320 CONTINUE 
> 

259 if(K fQ. L) CO TO 325 

760 A(KIJ(.||  .   0. « 
261 IF(MID)  A(K2JM)  •  8. 

262. 3?5 IF(K XQ. Ml) GO TO 300 

263. CALL MSH3(B(K7«)fl(K2.Kl)i)«7.K)ÜIW2JU3,VI,V2,V3) 

26«. IF(OI  m.  1.) GO TO 3«0 

265 DO  330  I40R1X3 

26^ T   .  A(l)(7)  . U2.A(I^I)  . U3.A(1J() 

267. A(IJ(2) •  A(K?)  .  T.VI 

208 AdKl) . A(l((l)  .  T.V2 

269. A(IJ() . AdX)  .  T.V3 

270. T  • B(IJ(2) • U2.B(IX 1) • U3.8(l*) 

271. 9(1X2) . 8(1X2) «T.VI 

2/2. J(IXI) • B(1XI)  •  T.V7 

273. B(IX)  ■  IKK)  •  T.V3 

27«. 330 CONTINUE 

270. B(K2X) •  0. 

7'6 0(K?XI)  •  0. 

277. IF(.NOI.WANTX) GO  TO  300 

278. 00  335  MM 

2/9. T   •  X(1X2)  • U2.XdXI)  • U3.XdX) 

?«0. X(IK2)  • XdX2)  •  T.VI 

281. X(IXI)  - X(IXI)  • TlM 

282. X(IX)  • X(IX)  •     T.V3 

783 335 CONTINUE 

280 30 0 CAL l  HSH2(B(K 1X 1 IflCK 1XW1 iW.V 1 ,V2) 

285. »(Ul   M.   1.) GO   TO 360 

286. DO 350 I.L0RIX3 

28 7. T   -  A(IXI)  . U2.A(IX) 

?88 A(IXI) . AdXI) .  T.VI 

280. A(IX) • A(IX)  •  T.V2 

290. T   - B(IXI)  • U2.B(1X) 

291. B(IXI) • BIIXI) •  I.VI 

MI. B(IX) • B(IX) • T,V7 

793 350 CONTINUE 

IM B(KIX) • 0. 

795, IF(MOT.WANTX) GO  TO 360 

296. DO  355  MM 

297. I   .  X'lXI)  • U2.X(IX) 

298 X(IXI) • X(1XI)  •  T.VI 

799 X(IX) • X(IX)  •  T.V2 

300 356 CONTINUC 

301 360 CONTINUE 

302. GO   TO  200 

303 380 00 385 MV 

30«. ITCR(I)  •  -1 

305. 385 CONTINUE 

300 390 CONTINUE 

307. RETURN 

308 END 

J 
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309 
31«. 
311. 
312. 
313 
311 
31». 
316. 
317. 
31«. 
319. 
3?0 
371. 
322. 
323 
374 
32V 
32C 
327 
321 
323. 
330 
331 
332 
333. 
331. 
33S. 
33G. 
337 

J3«. 
339 
310 
311. 
312 
313 
311. 
315 
316. 
317 

318 
319 
350. 
Ml. 
3M. 
353 
351. 
355. 
356. 
357. 
35S. 
359. 
360. 
361. 
362. 
M, 
361. 
365. 
366. 

367. 
368 
369. 
370. 
371. 
372. 
373. 
371. 

378. 
376. 
377. 

378. 
379. 
380. 
381. 
382. 
383. 
381. 
385. 

120 

025 

130 

135 

115 
15(1 

160 

SUBBOUTiNf   qZV»l(NDAI,Aa,EPSB.MfMiriKTA,W(MJTX1X) 

OlMl MM A(lilOM»B(NOMO)^lFa(N)AlFI(N)KTA(N)X(M)M)) 
LOGICAL   WAMXMIP 
M  •  N 
CONTMUC 

"(M   iQ    I) GO  TO 110 
IF(A(MM I)  M    0.) GO  TO 120 
AIF>(M)  . AIM») 
e(TA(M) . B(MM) 
AlM(M)   .   ». 

M   .  M-l 
GO  TO 19« 
I   • M-l 

»(AflStBd.D) XJT, IPSB) GO  TO «25 
BILL) • e. 

CAU  MSH2(A(l,l)A(Ml)AIIU2,Vl,V2) 
GO   TO 160 

»(Ans(U(MM)) .GT. EPS8) GO TO 13« 
U(MM;  .  0. 

CAU   MSH2(A(MW)A(M1)AJIXI2,VI.V2) 
BN  •  0. 
GO  TO 135 

AN  . ABS(A{1,1))  • ABS(A(IM» • ABSIAtM.l)) • ABS(A(M*)) 
BN  ■ ABS(B(LI.))  •  ABStBUM)  • ABS(B(MAi()) 

All • AC I i,'AS 
AI2 . A(LM)/AN 
A2I • A(M.l)/AN 
A22 . A(M,M)/AN 
Bl I • Bd.lJ/BN 
BI2 • B(IX)/BN 
B22 • B(MM)/aN 
C • (AlIIB22 • A22>BII 
D - (A22>BII . AlliB22 

I f  A2laB22a(AI2aBI I 
'HO  .IT. 0.) GO   TO 180 
iF(C .Ct. 0.) I • (C 
lf(C .U. 0.) E • (C 
All  .All  . i.lli i 
All  . AI2 -  E«ai2 
A22 ■ A22 • E«a22 
FLIP  •  (ABS(AII).AEIS(AI2||  GE. IABS(A2 l).A8S(A22|) 
»(FLIP« CALL  HSM2(AI2AIUJ4IU2,VI.V2) 
»(.NOT/IIP) CAU   HSH2(A22^2IUliJ2.VI,V2) 
IF(UI  M    I.) GO TO 150 
DO 110 MM 

T   • A(I,M)  . U2.A(I,L) 
A(IV)  • A(IX)  • Vl.T 
A(U)  .  A(U)  . V2.T 
T  .  MdWl  . U2tB(IL) 
BIIM>  • B(IM)  • *|«t 
B{IL)  • BO.ll  • V2<T 

CONTINUE 
»(.NOT WANTX) GO   TO  150 
DO  115  !■ IM 

T   • X(IM) . U2.X(l,l) 
X(IM)  .  X{IM)  •  Vl.T 
X(l.t) . X(I.L)  • V2>T 

CONTINUE 
IF(8N  £Q.  0.) GO  TO 17» 
FLIP  . AN   GE. A0S(E)«BN 
IF(FIIP) CALL  HSH2(B(L,L)fl(M,L)UliJ2,Vl,V2) 
'F(J«T/LIP) CALL  HSH2(A(L,L)^(MA)iJlJJ2,VI,V2) 
IF(UI   .NE.   I.) GO  TO 17» 
00  170 MM 

T   .  A(LJ)  . U2«A(MJ) 
A(LJ) . A(LJ) . Vl.T 
A(MJ) . A(MJ) . V2«T 
T   ■ B(IJ)  ■ U2<B(MJ) 
li(U)  • 8(1 Jl  • VlaT 

V2aT 
170 
175 

A2l«3l2)/2. 
A? 1.3 12)..2/I. 

Aii.ai2) 

SQaT(D))/(BII>B22) 
SQI)T(0))/(8lliB22) 

B(M J) . B(MJ) 
CONIWUt 
A(M,L)  .  0. 
B(MIL)  •  0. 
ALHl(L) .  A(L.l) 
ALFR(M) .  A.(MW 
BCTA(L) . b(L.L) 

386. 
387. 
ans 
389 
390 
39 1 
392 
393. 
391 
395 
396 
397. 

398. 
399. 
100 
401. 
107 
«03 
101. 
105. 
106. 
107 
10« 
109 
110. 
'111. 
4 12. 
413. 
lie 
115. 
416. 
117 
1)8. 
119. 
420. 
121. 
027, 
121 
121 
125. 
426. 
427 
428. 

129. 
130. 
131. 
432 
433. 
431 
135. 
436. 
437. 

438. 
439. 
410. 
141 

442. 
443. 
444. 
445 
446. 
447. 
448 
449. 

450. 
451. 

«52. 
153. 
454. 
455, 
456. 
457 
4 58 

«99. 
460 

«61. 
«62 

«MM 

i SQI)>CZiA2l 
S5I.A22 

SSB.B22 

SSa.A22 

BCTA(M) 
ALFI(M)  .  0 
ALFKL)  .  0 
M  . M-2 
GO  TO 490 

«8«      EB • CAB 11 «822) 
El  ■  SQB!( D)/(B1I.B22) 
Ai!R . All   -  [B.B1 I 
All! • EllBII 
A120  .  *I7  • (8.812 
AI2I  ■ EI.BI2 
A? IB   .  A2I 

A2II > 6. 
A22R  • A22- IB.822 
A22I •  li.82? 
FLIP  • (ABS(AIIR).ABS(AIII).ABS(AI2»>A8S(AI2I))   GE. 

I (ABS(A21B!.A85{A27B).ABS(A22I1) 
IF(FLIP) CALL   CHSH2(AI2B»l2l.-AII»,.AIIi«SZB«l) 

IF(MOT/LIP| CALL  CHtH2(A22RA22l,-A2IR,-A2IIC;MR«l) 
FLIP  . AN  fg. (ABS(EB).A6S(EI))>BN 
IMUIP) CALL   CHSM2(c;.BII.SZB.ai2SZuai2, 

I SZ8.B22,S/i'B27,CQSQflSQli 
1F(.N0T/IIP) CALL  CMSh2(C?.A 1 l-SZB.A l2Sil.A 12 

I r./.A2 1.57B.A?25?i.AJ2,CQS()B5y.l 
5SB  .  SQB.S/B   . SOi.SZi 
SSI  • SQRtSZl  -  SQI.S70 
TR  . CQ.CZ.All   . CQ.S7B.A12 
Tl . CQ«S2I>AI2 - SQI>C2«A2I  . 
BOB ■ cQ.c.'.u.i • CQ>S;B.BI2 

BDI  • CQ>SZI>B:2  •  5SI.B22 
B  •  SQBKBDB.BDB   . BDI«BDI) 
BETA(l)  . BN«a 
ALFR(l)  . ANa(TRaBDR  •   Tl.BDI)/B 
ALFKL)  • AN.l'B.BOl  .  TI«BOB)/B 
TB  .  S5R.A11   .  SQB.C7.AI2  - C0.S«.A21   • CQ>C2aA22 
Tl  .  -S£I>AII   -  SQi.CZ.A12  . CQaS;i<A2l 
BOB  . SSB.BIl   - SQB.C7.B12 • CQ.CZ.922 
BDI  •   -SSIaBII   -  SqiaCZaBIZ 
R •  SQBKBDB.BOB  . BOIaBDi) 
BETA(M)  . BN«B 
..LFR(M)  .  *N.(TS.BDa  .  TlaBOO/R 
AIFl(M)  . ANa(TBaBOI  -   TI.BOB)/B 
M  • M-2 

«90 If (M  GT.  0) GO  TO 400 
RETURN 
END 

SUBROUTINE  QIVEC(N0MAB£P5AEPSBALFRALFIfl(TAX) 
DIMENSION  A(NDMD)B(N0AO)AlFa(N)ALFI(N)BCTA(N)MNDM» 
LOGICAL  FlIP 
M  . N 

500 CONTINUE 
IF(ALFI(M) m.  0.) GO  TO  990 
ALFM  .  A1FB(M) 
BETM  . BETA(M) 
IF(ABS(ALFM)   IT. EFSA) ALFM . «. 
IF(ABS(BETM) .LT. EPSB) BtTM . »i 
»MM  .   I. 
I  a M-l 
IF»  iQ. 0) GO TO 940 

910      CONTINUE 
LI . M 
SL • 0. 
00 SI» MIN 

SI  . SL   • (BETMaA(U)-AlFMaB(LJ))aB(JJM) 
519 CONTINUE 

F(l IQ.  I) GO TO 920 
IF|A(L.L-I)  ME.  0.) GO  TO  936 

52« 0  • BEIM.A(U)  - ALFMaB(lX) 
IF(D £Q. OJ 0  . (EPS*-EPSB)/2, 
B(LM  .    Sl/D 
1 • l-l 
GO  TO  640 

930 la Ul 
SK  ■  0, 
DO 939 MIX 

SK  . SK  • (BE1M.*(K,J)-ALFM.B|KJ)).B(JM) 

1 
- ""     -      - -  J 
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003. m CONTINUC 540. M  ■  N Cf.fl K«  .  BtTM.ftl««)      /MtM.BKJO 54 1. 600 CONHNUE Ä6». «I   .  UfIM.A(K.U  -  AltMiBIK.l) 547. DO 670 l.lfl 
dG6. UK . BE 'M.*(l«) 543 S  ■   0. 167 TLt   .  BCM.na.l)      »[fM.Bll.) 544 DO 610 .- ;M 

aas. 
0   .   tlllTU       Kl.IU 

»(0 id. o) a . (tPSA.cPsai/7. 
545 

546. 610 

S  . S.  X(IJ).B(J«) 

CONTINUE 

■ 71 
WlAt)   .   (IlK.SK   ■   I«.SL)/0 

FUP  .  MWTWI   GE. ABStUm 
547. 

548. It« 
X(l*)  .  S 

COSIINUE 0 77. IF(f,pP) fl(«M)  . .(S*   .   t«l.B(l*W/I« 541 M  ■  M-1 
«73. 

4 74. 
wum/im a*«« . .(» , lu.BuwH/Ti« 

I   •  1-7 
550. f(M  .GT.  0) GO   TO 600 
551 M  . H 

174. 

476. 

IM #11   CT.  0) GO  TO  51Ü 

M  .  M   1 
657. 630 CONTINU 

«71 GO   IU  590 
553. s . 0. 

«T« m «IMS   •   AltS(M. 1) 
554. ir(AlFl(M)  M.  OJ GO  TO 650 

479. AIM!   .   Ald(M. 1) 
555. 00  636   kU 

M« BETM   .   Uf IA(M   1) 
656. R   ■  ABS(X(IW) 

48 >. MR   .   U-l 
55'. »(» .IT. S) GO  TO 636 

4S2. Ml   ■   M 
55«. S  ■ R 

413. 

484. 

485. 

B(M. IM8)   .   A;MI.O(WM)iOtlM.A(M>l-l)) 

B(M-l.MI)   .   (atlM.A(MW).AlMe.B(MJH)),'(B£lM.A;MM-|)) 
B(M.MB)   .   0. 

5 59. 

560. 

HI, 
635 

0  ■  XdM) 

CONTINUE 

00 640  M* 

486. B(M*«I)  .   -1. 
567 XdM)  •  X(IW)/D 

487. t . M.; 
563 MO CON IINUE 

CRB »(L   Id-  0) GO  TO  585 
564 M  • M-l 

flK4 IM CONTINUE 
565. GO TO 6S0 

490. 11   •  M 
566 (/JC 00  655  I.I* 

491. Sia • o 
50 7. R  .  X(IA(.|)..7 . X(IA«)..7 

(n, Sll  •  0. 
5GR *(«   IT. S) GO  T3 665 

4)3. 00 5G5 M IM 
569. S  . R 

IM 

49S. 
TR . BETM.AUJ) . AlM^Bd.,) 

Tl . -AiMi.eaj; 

5 70. 

57|. 
DB  .  XO*-!) 

oi . X(IM 

«M. SIR  • SIR  .   TB.BUVR)  .  Ti4B(J,Mi) 

ill  ■  Sll   .   TR.B(JAi(l)  .   TI,B(JJHR) 

5/7. 

5/3. 

■II CONTINUE 

DO 660  klU 

IN 56» CONTMUI 
5/4. 

CAu e0WMmMUl(IMa>MWJi.lMI 
499. lF(i   .Eg.   |)  CO  TO  570 

675. (.CO CONTINUE 

100 l'(A(U.|)  M   CO GO  TO  575 
576. M  . M 7 

SOI. 

507 

570 OR   .  BEIM.AU.i)      ALMä.BUl) 

Di  ■    AlM,.B(l.U 

577. 

5/8 
690  F(M   GT.  0) GO  TO 630 

700 BE URN 

■-.01 

504 
CAl.  COIV(-SlR. S^IMOIMIM*)AIM) 
t   •  11 

579, 

680.        C 

(NO 

Ml GO TO us 681. SIIBROUTM HSH3(A 1A7A3A) 1 U2)J3V\.t2S3) 

HI 5/5 K  •  11 
587. IMA7£g.O. AUO. A3iQ.0J GO  TO   10 

107 SK«   .  0 
583. 1 ■  ABS(AI)  .  ABS(A?)  . ABS(A3) 

'JCR S<l  .   0. 
681 Ul . Al/S 

509 DO   580 J-l iW 
585. u? . A7/S 

510 TU  . BfTM.A(il.j;   .  ALM5,e(i(J) 
586. ui • A3/S 

511 Tl .    AIM'.B(»;.J) 
587. B • SQRT(UI.U|.U7.U7.U3iU3) 

lit. 
513 

SKR  ■  SKR   .   IR«L)(JVS)  .  II.B(JVI) 

SKI  .  SKI  .  TP..B(vVl)  .   Il.B(JW»i 

588. 

589. 
lf(UI   IT.   OJ   R   .   -R 

VI   .   (Ul   . R)/M 

51« 580 CONTMUI 
IM V7 .    U?/« 

515 

516. 
TKKR  .  BETM.A(KX)  ■  AlMa.8«*) 

TKKl  .  .AIM..B!KX) 

591. 

697 

V3 

Ul 

■  -US/R 

-   1. 

517. 

518 
TKIR   .  DITM.AIK.l)      AIMR.BIKL) 

TKU  .    AlMi.B(K,l) 

593. 

594. 
U7 

U.l 

■ V7/VI 

•  V3/VI 

519. 

570. 
TlKB   .  BtTM.A(lX) 

TlKl   -   0. 

595. 

596. 
BE TURN 

10 Ul   .  0. 

571. 

577. 

»3 

S74. 

575. 

576 

57? 

578. 

579 

530 

531. 

537 

Til»   . B[IM.fl(: i;      ALMR^BfU) 

Till   .   .AlMr.BU.l) 

OR  .  TKKR.IUB   .   TKKI.TUI  .   TKlB.TcKB 

Dl  .   TKKR.TUi   .   I«i,TtU   ■   TKU.UH 

"(OR (Q, 0  AND, DUliO.) DR . (tPSA.[PS8)/7. 

CAU   COWTiKR.Siu.lKKi.SlB.TKKi.SlI 

597. 

598. 

599.        C 

600. 

601. 

607. 

■03 

RETURN 

INO 

SUBROUTINE  HSH7(AI>l7iJIJU?.VI,V7) 

lf(A7  iQ. OJ 60  TO   10 

S  . ABS(AI)  . ABS(A7) 

Ul   .  Al/S 
1 

7 
TlKB.SKl.TK^R.SiMidn.siB, 

MfiUNl M9)B(IMI)) 
HIP  . (A0S(TKKR).AB5(IKK;)) .GE. AB5(TtKR) 

IF(fllP) CAU  C0lV(-5KR-TKiR.B(iVe).TKl,.B(lA«l). 

604. 

605. 

606. 

60/. 

U7  . A7/S 

«  • SQRT(UI«U|.U7.U7) 
IF(UI    n.  0.)  B  .  -B 

VI   .  ^Ul   . R)/R 
1 

■SKI-TKIR.BJL^I TKLI»B(L/KR) 60«. V7 . -U7/R 2 TKKR.Tl«,fl(K»(R)i)(K^I)) 609. Ul •  1. 533 

535. 

536. 

537. 

538. 

539. 

ITWOT/UP) CAU  C0IV(.5tR-luR.0(lWa).Tai.B".WI). 610. U7 . V7.'V1 
I 

■sii-Tufl^advo-Tiu.Buw), 611. RETURN 

*                                                Ua.TinjBMOJRM) 
I  . 1-7 

585       lF(l  .GT. 0) GO  TO 560 

M  . M 7 

59«  lf(M  «T.  0) GO  TO  500 

617. 

613. 

614. 

615.        C 

616. 

10 Ul . e. 

RETURN 

END 

SUBROUTINE  CHSH7(A IB A 11 mo A7i r co c.t 

■  ■■in—  mmi 
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Appendix C 

Code Matrices for Integer '+' 

In order to show in detail the form of the analysis used by the 

"fair" code machine language generator for the arithmetic and logical 

operators (see Chapter 3, Section 3.1.3.5), this appendix contains the 

code matrices for integer addition. There are two code matrices; one 

for quads of the form ( + ,V,E,V) or ( + ,E,V,.V) with the first two arguments 

commuted, and one for quads of the form (+,EI,E2,T), where El, E2, and 

E are arguments that may be simple variables, parameters, results or 

indirect result:; Visa simple varlbale, parameter, or indirect result; 

and T is a temporary result. Each matri contains 16 cases, depending 

on the mode of the operands. There are four possible operand modes: 

MEM, NUM, REG, and REG+NUM. Thus, for example, the case "MEM/REG(s)" 

means the first operand is Ir memory while the second is in register s. 

The logic of a case analysis is presented in tabular form with 

the following conventions: 

I) Toe machine language instructions generated are 
expressed In MACRO-iQ [PDPTIal], the assembly 
language for the PDP-IO. Curly brackets are used 
for the conditional generation of information. 
Thus, for examplö, 

MOVE   r,{*}EI 
means to generate a MOVE instruction with r as 
the register field, address of El as the address 
field, and the indirect bit set if tag bit I 
of the '+' quad is set (see Appendix A, Section 
A.3). 

■■A--,, .-^■' . ■.:..^... ^  ^^.■.... ....^.v,-..- -  -■•- ■■'■  jjcukkiu .....     ■ ■ ■ —  - 
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2) The information that controls the analysis resides 
in fields in the temp or register table, or tag 
bits in the f-i ' quad. The mnemonics for the tigs, 
along with their meaning, can be found in Appendix 
A, Section A.3. The mnemonics and their meanings 
for fields in the register and temp table are: 

mnemonic 

RANGE 
NB 
INFO 
USES 

meaning 

range field of temp entry 
neg-bit field of temp entry 
information field of temp entry 
use field of register entry 

To reference fields in the tables, an indexing 
scheme is used with the name of the operand being 
the index. For example, 

NBCE2] ♦ »♦• 

means set the neg-bit   in the temp table entry for 
E2  (a temporary)  to plus. 

3)  The following variables are used: 

variable 

0 
r 

meani ng 

the address of the  •+'  quad. 
an  unused  register.    This 
register   is allocated by the 
register allocation algorithm. 
Initially,  the register has 
no associated temporary or 
variable. 
registers containing the operands. 
a literal constant, folded 
or otherwise. 
address of a constant, folded 
or otherwise. 

4) The following shorthand notation is used for table 
headings: 

s,t 
L 

symbol 

N 

+ 

temp 
cons 
lit 

mean i nc 

set indirect tag bit of '+' quad 
neg-bit field of temp plus 
neg-bit -field of temp negative 
temporary tag bit of •♦' quad set 
operand is a constant 
operand is a I ireral 

1 
-■■ -■-  . - J 
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action 

'reset temp mode' 

•El *■*  E2' 

'same as k' 

meaning 

reset the mode of the temp 
from "REG" to "REG+NUM" 
with the number set to zero. 
If Q«RANGE[temp], then set 
the USES fieid of its associated 
register to I. 
interchange the attributes 
of the two operands. 
the analysis Is the same as 
for case k. 

CI Code Matrix for ( + ,V,E,V) or (+E,V,y)  Commuted 

1. MEM/MEM 

MOVE  r,{*}E 
ADDB  r,{»}V 

2. MEM/NUM 

2.1 E a constant: same as (I) 

2.2 E a Ii teraI 

E=l 

AOS  r,{*}V 

:J\*0 
not 

MOVEI  r,E 

ADDB  r,{*}V 

2.3 E a temp with mode^'NUM" 

MOVE  r,E 

folded cons I it 

same as (h 

3. MEM/REG(s) 

3.1 E an indirect temp 

'reset temp mode' 
'same as (4)' 

3.2 E a temp 

same as (2.2) 

0<RANGE[E] Q=RANGECE] 

+ - + — 

ADDM  s,{«}V SUBM   s,{*}V 
MOVNS  {*} 

ADDB  s,{*}V MOVNS s 
ADDB  s,{*}V 

—'—'—■—■ 
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3.3 E not a temp 

no temp associated with s | temp associated with s 

AÜDM       s,P}V ADDB      s,{»}V 

4.   MEM/REG(s)+NUM 

4.1   Q<RANGE[F] or   (0=RANGE[E] and U5ES[s>l) 

temp *temp 

+ - + - 

MOVE 

cons 

r,5 

lit cons l it 

MOVNS  s 
"negate L" 

ADD r,C ADD 1 r,L oUB r,C SUBI  r,L 
MOVE  r,L(s) 
ADDB  r,{#}V 

4.2 Q=nANGECE] and USES[s]=l 

tenp *temp 

cons 1 it same 
s rep 

as (4.1) 
lacing r 

wi" 

ADD s.C 

+ 

ADÜI c 
J 1 I 

ADDB s,{ »}v MOVNS 
ADDB $1 {•)V 

5.   NUM/MEM   (impossible) 

6.NUM/NUM  (impossible) 

7. NUM/REG(s) (impossible) 

8. NUM/REG(s)+NUM (impossible) 

9. REG(5)/MEM 

9.1 V an ind irect temp 

'reset temp mode' 
'same as (13)' 

9.2 V in a register 

no temp associated with s 

ADD  s>{*}E 

MOVEM 5,{«}V 

temp associated with s 

MOVE  r,{*}E 

ADDB  r,{»}V 

urn       in*       -- - 
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10. RE6(s)/NUM 

10.1 V an indirect temp 

'reset temp mode' 
'same as (14)• 

10.2 No temp associated with s 

cons 1 it 

ADD   s C E«l E^I/0 
MOVEM s,V 

AOS  s,V not " H 

ADDI   s,L 

MOVEM 

ADD 

s,L 

s,L 

10.3 Temp associated with s: same as (2) 

I. REG(t)/REG(s) 

i I.I V an i ndirect temp 

'reset temp node' 
'same as (15)' 

11.2 V in a register: same as (3) 

12. REG(t)/REG(s)+NUM 

12.1 V an indirect temp 

'reset temp mode' 
'same as (16)' 

12.2 Temp associated with t: same as (4) 

12.3 no temp associated with t 

temp *temp 

+ - + - 

AÜÜ 

cons 1 11 

SUB 

cons 

t.s 

I it 

MOVNS  s 
"negate L" 

ADD t,C ADD I  t, L 

MOVEM 

SUB t,C SUBI  t,L 
ADD   t,L(s) 
MOVEM t,V 

_J 
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For cases 13-16, V is a temp with mode="REG+NUM" whero NUM is a 

literal.  In order to use the literal as an index, it must be positive, 

Before code for the case Is generated, the neg-bit is checked. 

+ 

V MOVNS 

"negate L" 

MOVE 
ADDM 

13.  REG(s)+NlJM/MEM 

r,{»}E 
r,L(s) 

4. REG(s)+NUM/NUM 

14.1 E a constant: same as (13) 

14.2 E a I iteral 

E=l 

AOS  L(s) 

E/I^O 

not 

MOVEI r,E MOVE  r,E 

ADDM  r,L(s) 

14.3 E a temp with mode="NUM" 

folded cons 

same as (13) 

lit 

same as (14.2) 

15. REG(t)+NUM/REG(s) 

15.1 E an indirect temp 

'reset mode of temp' 
'same as (16)' 

15.2 E not a temp 

ADDM  s,L(t) 

15.3 E a temp 

+ 

ADDM  s,L(t) SUBM  s,L(t) 
MOVNS L(t) 

■ -       .... ^  
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16. REG(t)+NUM/REG(s)+NUM 

16.1 Q=RANGECEl and USES[s]=l 

temp *temp 

cons lit + - 

ADD  s,C 

+ 

ADDI  s,L ■— MOVNS  s 
"negate L" 

MOVNS  s MOVE  s,L(s) 

ADDM s,L(t) 

16.2 Q<RANGE[E] or (Q=RANGECE] and USES[s]>l) 

te mp *temp 

+ - + _ 

MOVE 

cons lit 

MOVN 

cons lit 

MOVNS i 
"negate L 

ADD r,C ADDI  r.L SUB r,C SUBI  r,L MOVE r,L(s) 

ADDM r,L(t) 

0.2 Code Matrix for (+,E\,t2,J) 

I. MEM/MEM 

MOVE  r,{*}EI 
ADD   r,{»}E2 

2. MEM/NUM 

E2 not * 

MOVE  r>{*}EI 
"associate Num with T" 

3. MEM/REG(s) 

3.1 l2 set 

'reset temp mode' 
•El «-^2' 
'same as (13)' 

E2 

same as (I) 

—    na. i i ■ ■ 
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3.2 t2 a temi) 

Q<fWlGErE2l 

MOVE r,s 

ADD  r,{*}EI 

0=RANGECE2] 

ADD  s,{*}EI SUB  s,{*}EI 

SUB  r,{«}EI 

NBfT] f  NBCE2] 

3.3 E2 not a temp 

no temp associated with E2 

ADD s>{*}EI 

temp associated with E2 

MOVE r,S 
ADD  r,{»}EI 

NB[TD -^ ' + ' 
"associate s with T" 

4. MEM/REG(s)+NUM 

'El -w E2' 
'seme as (13)' 

5. NUM/MEM 

'El •*-*  E2' 
'sa.ne as (2)' 

6. NUMI/NUM2 

6.1 I. set: same as (2) 

6.2 "associate NUMI+NUM2 with T" 

7. NUM/REG(s) 

7.1 I  set: same as (3) 

7.2 'El -H* £2' 
'same as (10)' 

8. NUMI/REG(s)+NUM2 

B.I I. set 

'El ♦♦ £2' 
'same as (13)' 

- - - -  
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8.2 Q<RANGECE2] or (Q=RANGE[E2] and USESCs]>l) 

temp *temp 

MOVE    r,s + - 

+ - 

MOVE 
"associa 

MOVNS    s 

INF0CT>^UMI+NUM2     ll.F0[T>NUM2-NUM! 

NBCT]^BCE2] 

"negate L" 

r,L(s) 
te NUMI  with T" 

"associate p with T+NUM" 

8.3 Q=RANGECE2] an£ U3ES[s>l 

same as (8.2) except replace r with s and delete the 
'MOVE r,«' instruction 

9. REG(s)/MEM 

'LI ♦♦ E2' 
'same as (3)' 

10. REG(s)/NUM 

10.I I  set 

'El ■*-*■ r.2' 

'same c'5 (3)' 

10.2 I  set 

'reset mode of temp' 
'same as (14)' 

10.3 El a temp 

Q<RANG ECEI] Q=RANG ECEI] 

+ - + - 

MOVE    r,s MOVN    r,s "associate NUM "associate -NUM 

"associate NUM with with T" with T" 

T+NUM" "associate s with T+NUM" 
"associate 
NB[T>' + ' 

r with T+NUM" NBCT>NB[EI] 

III - - - -     - - - - -  --— 
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10.4 El not a temp 

no associated temp 

"assoc. s with 
T+NUM" 

associated temp 

mode of reg="TEMPM 

MOVE r,s 
"assoc. r with 
T+NUM" 

mode of REG="T+NUM" 

"assoc. s with 
T+NUM" 

"associate NUM with T" 

II. REG(t)/REG(s) 

I I. I I. set 

'reset mode of temp' 
'same as (15)' 

11.2 l2 set 

'reset mode of temp9' 
'El «-* E2'       l 

'same as (15)' 

11.3 El and E2 temps 

a) Q<RANGE[EI] and Q<RANGE[E2j 

MOVE    r,t 
rR -^ r 

E -«- s 
SW ♦ M 

b) 0<RANGE[EI] and 0=RANGE[E2] 

'R 
E 

s 
t 

SW ■»■ 0' 

c) Q=RANGErEI] and Q<RANGE[E2] 

»R ♦ t 
E -«- s 
SW * I' 

d) Q^RANGECEI] and Q=RANGE[E2] 

•R ♦ f 
E «- s 
SW ♦ I1 

lilMII       II ■      - - -   ' *~. ■■MMtaMMMHli 
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\EI 
E2\ + m 

+ 
ADD    R,E 

NB[T>' + ' 

SUB 

sw=o 

R.E 

SW=I 

NBET]^'-' NB[T>, + ' 

SUB 

sw=o SW=I 

ADD    R,E 

NBCTZH-'-' 

NB[T>• + , NBC^'-' 

"associate R with T" 

11.4 El a ten.p and E2 not a temp 

•El -w E2, 

' 3ame as (11.5) 

11.5 El not a temp 

It.5.I temp associated with t: same as (3) 

11.5.2 no temp associated with t 

E2 not a temp 

ADD t,s 

E2 a temp 

ADD t,s 

NBCT>' + , 
SUB t,s 

12. REG(t)/REG(s)+NUM 

'El *-*  E2' 
'same as (15)' 

13. REG(s)+NUM/MEM 

13.1   Q<RANGE[EI] or   (Q=RANGE[El] and  USES[s]>l) 

temp 

MOVE    r,s 

ADD    r,{*}EI SUB    r,{*}EI 

NBCTj-e^fEl] 

"associate r with T+NUM" 
"associate NUM with T" 

temp 

El + 

MOVNS s 
"negate L" 

MOVE r,LU) 
ADD  r,{*}EI 

NBET]-«-^' 
"assoc. r with T" 

UM        mi na in   tmimmätm ■   
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13.2 Q=RANGE[EI] ond USESC?3*I 

same as  (II.M   but replace r with s and  remove the 
'MOVE    r,s'   instruction 

14.  RE6(s)+NUM|/NUM2 

14.1 I     set:   same as   (13) 

14.2 'El  -Hf £2' 
'same as  (8)' 

l^.  RE6(t)+NUM/REG(s) 

15.1 I     set 

'reset mode of  temp' 
'same as  (16)' 

15.2 E2 a temp 

15.2.1   Q<RANGtCE2] and_ (Q<RANGE[El] or  (Q-RANGECEI] and USES[t]>i) 

jfemp *temp 

MOVE    r,t 

E2I 
Ef 

ftDD    r,s 
MB^T>' + , 

SUB    r,s 
MBCT>' + ' 

SUB   r,s 
NBLT]*-'-' 

El       + 

MOVNS  t 
"negate L" 

ADO   r,s 
NECT>'-' 

"associate  r with T+NUM" 

MOVE r,L(t) 

E2      + 

ADD    r,! SUB   r.s 
"associate  r  with T" 

15.2.2 0<RANGECE2] and_ (0=RANGE[EI] and  USESCt>l) 

same as   (15.2.1)  except replace r with t and delete 

the   'MOVE    r,t'   instruction 

■ ■— — 

-     —J— —- 
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15.2.3 Q=RANGE[E2] and_ (Q<RANGE[El] or (0=RANGE[El] and USES[t]>l)) 

Ei temp 

E2N 

ADD s,t 
NB[;T>' + , 

"NUM^T" 

SUB s,t 
NB[T>'-' 
"-NUM'vT" 

SUB s,t 
NGCT>, + ' 
"-NUNM" 

ADD 5,t 
NB[T>,-' 
"NUM'vT" 

E2 + 

^emp 

MOVNS t 
"negate L" 

El 

ADD    s,L(t) 
NB[T>, + , 

SQIB    s,L(t) 

"associate NUM with T" 
"associate s with T" 

"associate s with T+NUM" 

15.2.4 Q=RANGE[E2] and_ (Q=RANGE[El] and USES[t>l) 

E2 ftemp temp 

same as (15.2.3) same as (15.2.2) 

15.3 E2 not a temp 

15.3.1 temp associated with s: same as (13) 

15.3.2 no temp associated with s 

El temp 

ADD s, t 
"NUM^T" 

SUB s,t 
"-NUM^T" 

"sVr+NUM" 
NBCT>, + , 

temp 

MOVNS t 
"negate L" 

ADD s,L(t) 
"sM-" 

NB[T>, + ' 

16.   REG(t)+NUMI/REG(s)+NUM2 

Let 61 = (Q<RANGE[E!ll or    Q=RANGECEl] and_USESCt>l)  and_ 

(Q<RANGE[E2] or Q=RANGECE2] and_ USESCs]>t) 

ß2=(0<R«NGECEl] or Q=RANGE[EI] anC[ USESCt]> I)  and_ 

(Q=RANGECE2] and_ USESCs>l ) 

B3 = (Q=RANGECEI] and_ USES[t>l) and_ 

(Q<RANGECE2] or Q-RANGECE2;j and_ USES[s]>l) 

ßu = (Q=RANGE[El] and_ USESCt>l)  and_ 

(Q=RANGEi:E2] and USES[s>l) 

  i it   tm ttmtm -—    - -■ -    '     ■      - -  ■- ■- ^t^m^t^mm 
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16.1 El and »temp, E2 and * temp 

El + t? 

MOVNS t 
"negate El" 

16.I.I Bj 

MOVE r,LI(t) 
ADD  r,L2(s) 

"assccicite r with T" 
NBCT>' + ' 

16.1.2 62 

16.2 

E2 

MOVE s,L2(i,) 
ADD  s,LI(t) 

"associate s with T" 
NBCT>? + ' 

16.1.3 83 

MOVE t,LI(t) 
ADD  t,L2(s) 

"associate t with T" 
NBC^'H-' 

16.1.4 61+:  same as  (16.1.3) 

El  not an *temp 

16.2.1   Bj 

not an * temp 

MOVE r,s 

E2 
El 

ADD    r.t 
INF0CT>NUMi+NUM2 
NB[T>, + , 

SUB    r,t 
INF0[TlKWUM2-NUMt 
NBCT>' + r 

MOVNS s 
"negate E2" 

SUB r.t 
INF0[T>NUM2~NUMI 

ADD    r.t 
INFOCTJ-H^UMI+NUM2 
NB[T>'-' 

"associate r with T+NUM" 

E2 + 

*temp 

MOVNS s 
"negate L" 

El 

MOVE r,L(s) MOVN r,L(s) 

ADD r,t 

"associate r with T+NUMI" 
"associate NUMI with T" 

16.2.2 ß2: same as (16.2.1) except replace r with s and remove 
the »MOVE r.s' instruction 
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16.2.3 ß3 

E2 not an *temp 

.E2 
El 

ADD t,s 
INFO[T>NUMI+NUM:' 
NB[T>, + , 

SUB    t.S 
INFCCT>NUMI-NUM? 
NB^T>'-, 

SUB    t,s 
INF0[T>NUMI-NUM2 
NB[T>, + , 

ADD t,s 
I NF0[T>NUM I+NUM: 
NB[T>l-, 

"associate t with T+NUM" 

16.2.4 ß^ 

E2  not an *tefT'p *temp 

*temp 

E2 + 

MOVNS s 
"negöte I 

El  4 

ADD t,L(s) SUb t#LCs) 

"associate t with T+NUMI' 
"associate NUMI with T" 

same as (16.2.2) same as (16.2.3) 

16.3 El an * temp, E2 not an *temp 

»El  <«. F2' 
'same as   (16.2;' 

          ^    ■ — mämtmmammmlm J 
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