
Best
Available

Copy

1 w*m*^m**m "* ■ I ' >'•

AD-784 880

ADAPTIVE SYSTEMS FOR THE DYNAMIC
RUN-TIME OPTIMIZATION OF PROGRAMS

Gilbert Joseph Hansen

Carnegie - Mellon Universit

Prepared for:

Defense Advanced Research Projects Agency
Air Force Office of Scientific Research

March 1974

DISTRIBUTED BY:

KTui
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road. Springfield Va. 22151

■ -IMI I.M i niMiiii ■ i ■---■ ' • 1— - ■ - MaaMIMMBMaaai

v^^^^^mmmm "-■"^ ^~

UNCLASSIFIED
SF.CüRlTyCLA..:..MrAT,oN,-,f TH,, P^Tm^T^ZLmm

REPORT COCU/AENTATION PAGE

"~7 wsiFwfr~t4ü COVT ACCESilON NO

« TITLE C«nd Subf/f/«) ~" •

ADAP11VE SYSTEMS FOR THE DYNAMIC RUN-TIME
OPTIMIZATION OF PROGRAMS

KKAD INSTKUCflOVS
HTFOKK roMPLFTING PORM

T. AOTHOf<f«J

Gilbert Joseph Hansen

» PERFORMING OROAMZATtON NAMTÄND SIBSBr
Carneßle-Mcllm University
Department of Computer Science
Pittsburgh. M 15213

«f^PltNT-S CATALOG NOUUER 1

5. TYPE OF REPORT f PERIOD COVtREO

Interim

t PERFORMING ORG REPORT NUMBER"

« CONTRACT OR CRANVNUMBER/.J

F44620-73-C-00/4

'• CONTROLLING OFFICF. NAME AND ADDRESS ' " " ""

Defense Advanced Research Projects Aeencv
1400 Wilson Blvd

Air Force Office of Scientific Research / y V?
1400 Wilson Rlvd /,"''/
Arlington, VA 22209

,0- 5 KfVSA E M E N T. P RC J £ C T T A JT
A «E A 4 WORK UNIT NUMQi: RS

61101D
A02466

12 REPORT DATE

March, 1974
'J- NUMBER OF PACES

179
'S. SECURITY CLASS. Co/ IM. r.porf)

UNCLASSIFIED

,S*■ fcMEDULEFICAT,ON DO»"";RADINC

•6 UISTR^UT.ON STATEMENT fo/r/l/.R,por— " —

Approved for public release; distribution unlimited.

17 mm*',:>N ST
*

T
^^T S?... 5553 =SSS SS * 9 aSS S iSSm

IS. SUPPLEMENTARY NOTES

1» KEY WORDS CConKnu« on (>e«..ao' «ntf Identity by block r.umbmr)

R«iyrtMftM nd by

NATIONAL TECHNICAL
INFORMATION SERVICE
U S DflparlTinnt of Commerce

SRrinRfield VA 22:51

'TM oT"^' «o"";"« S «v.,„ ,(rf, „ nte,.,mrY 53 553-5 ,—.—,

DD I JAN 73 1473 COITION OF 1 NOVSS IS OBSOLETE
 UNCLAS SIFTED^ ___^

SECURITY CLASSIFICATION OF THTS PACE (H7,»n />«(.. E7r«.rfJ

I'-IMMMI

.^ mm K ■iv»w

UNCLASSIFIED
4tCuR|TY CLASSIC 17 *TICN OF THIS PAOCr^an Dar« F.nfrmd)

20. (abstract cont.)

a more basic shceme that is.

The design of a practical system is discussed for the FORTRAN IV language.
The system was impleir.^ntcd and tested with programs Laving different behavi-
oral characteristics. In order to have a basis for comparing the results,
variants cf the system were constructed which approximate the behavior of
WATIF, FORTRAN IV G, and FORTRAN IV H compilers. The test programs were
run under th.-se systems. The results show that adaptive FORTRAN performs
as well or better than any of the variant systems at each specific test puin
and significantly better than any one of thorn across the entire range of
test points.

CL.

UNCLASSIFIED
»r-/~ . .r». ■» « «ccirir ATION OF THIS PAOfHTinn Dtilm £«ri>r»d) J

■w■■■■■■■"^",^^^^■"■,l,■,' ■ m^mmm^mmm . , . ,, , — _ _ . .

ADAPTIVE SYSTEMS FOR THE DYNAMIC

RUN-TIME OPTIMIZATION OF PROGRAMS

Gilbert Joseph Hansen

I

Department of Computer Science
Carnegie-Mellon Uni'iirsity

Pittsburgh, Pennsylvania 15213
March, 1974

Submitted to Carnegie-Mellon Univ/ersity in
partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

• c D D

SEP 6 19^

B ^

This work was supported by the Advanced Research Projects Agency of the
office of the Secreiary of defense (F44620-73-C-0074) and is monitored by
the Air ^orce Office of Scientific Research. This document has been
approved for public release and sale; its distribution is unlimited.

it

■ — ■ - -

'■ mmwmmmtmmmmmmmmmmm^'m i JW • jip ■ >■ WM^^PH

Abstract

This thesis investigates adaptive compiler systems that perform, during

program execution, code optimizations based on the dynamic behavior of the

program as opposed to current approaches that employ a fixed code

generation strategy, i.e., one in which a predetermined set of code

optimizations are applied at compile-time to an entire program. The main

problems associated with such adaptive systems are studied in general: which

optimizations to apply to what parts of the program and when. Two

different optimization strategies result: an ideal scheme which is not practical

to implement, and a more basic scheme that is.

The design of a practical system is discussed for the FORTRAN IV

language. The system was implemented and tested with programs having

different behaviorial characteristics. In orde to have a basis for conparing

the results, variants of the system were constructed which approximate the

behavior of WATFIV, FORTRAN IV G, and FORTRAN IV H compilers. The test

programs were run under these systems. The results show that adaptive

FORTRAN perform», as well or better than any of the variant systems at each

specific test point, and significantly better than any one of them across the

entire range of test points.

 -- ■ -■ -- ■ - — -
— —,-,..,, .I. -

■yW^^W^BWM "I BIJ l •mmn^mmmmmwrnm •^-—^mm* im 11 u wB^^vm iiuii«i)mwii>ll.i " itr*r^^*^^mm ^HHpppanm^;««

Acknowledgements

My sincere appreciation and thanks go foremost to Professor William A.

Wulf, my thesis advisor, who originally suggested this topic, and who provided

constant inspiration and guidance throughout its development.

I am also indebted to Professors Mary Shaw, Jack McCredie, and John

Grason, members of my thesis committee, who helped r,hape the final form of

the thesis.

Finally, special thanks are due to the Department of Computer Science

for providing the excellent facilities and stimulaiing atmosphere in which to

carry out the research.

11

• -- --■-■ -- ■—--—'■ ■ —■ :■.--....■—. ^ -..^..■■..-..„■^ .
■ --

. ^i ^*—^m^.

■mipww^iiii.wMi HI i HI iiLill umim i in» ii
'■-'""*

Table of Contents

Abstract
AcKnowiedtjements
Table of Ccntento
Chapter I: introduction

1.1 Current Optimization Tecnmques
1.2 Empirical Results on Progran, behavior
1.3 An Adaptive Comoiler

Chapter II: Adaptive Compiler Systems
2.1 Overall Design Considerations
2.2 Bc'sic Blocks and Segments
2.3 Fusion
2.4 Iterative Dynamic Optimization

2.4.1 A Matncmatical Model for Segment Cotimization
2.4.2 Practicality of Usmjj the Model

2.5 incremental Dynamic Optimization
2.6 The Segment Driver
Figure 2.1 The Execution Cycle for a General Segment Driver
Figure 2.2 Execution Cycle of the Segment Driver for Incremental

Dynamic Optimization

Chapter III: The Adaptive FORTRAN System
3.1 The System's Design and Implementation Specifications

3.1.1 The Adaptive FORTRAN Language
3.1.2 Structure of the System

3.1.2.1 The Compiler
3.1.2.2 The Loader
3.1.2.3 The Execution Phase

3.1.3 Th3 Optimizations
3.1.3.1 Fusion
3.1.3.2 Common Subexpression Elimination (CSE)
o. 1.3.3 Code Motion (CM)
3.1.3.4 The "Dumb" Code Machine Language Generator
3.1.3.5 The "Fair" Code Machine Language Generator

3.2 The System's Optimization States and Their Associated
Optimization Counts

Figure 3.1: Structural Organization of the Adaptive FORTRAN System

Chapter IV: Validation and Experimental Results
4.1 Comparative Compiler Systems
4.2 The Test Programs
4.3 The Test Results

ii
iii
iv

1
2
5
9

11
J3
17
21
24
25
30
31
34
36
37

38
39
39
41
43
44
48
50
53
54
56
60
62
70

78

79

IV

I*nm*m^m.^ ■pwnpwi^ww

4.4

Tables 4.1a-e: EE Test Results
Tables 4.2a-e: SIEVE2 Test Results
Tables 4.3a-e: LES Test Results
Table- AAa-e: QZ Test Results
Tables 4.5a-b: AFI Timings for QZ and LES
Tables 4.6a-b: Retined AF Timings for QZ and LES

Analysis of Test Results
Figure 4.1: Performance Curves for EE
Figure 4.2: Performance Curves for S1EVE2
Figure 4.3: Performance Curves for LES
Figure 4.4: Performance Curves for QZ

Chapter V: Conclusions

Appendix A: The Compiled Code
A.1 Quadruples
A.2 Code Generated for each FORTRAN Construct

A.?.l Expressions
A.2.2 Assignment Statement
A.2.3 Control Statements
A.2.4 1/0 Statements
A.2.5 Array Declarations
A.2.6 Array References
A.2.7 Subprograms

A.3 Intenal Representation of Quads
Table A.l: The List of Quad OP codes
Table A.2: Operand Type (TY)
Table A.3: Operand Arithmetic (AR)
Table A.4: Operand Class (L)
Table A.5: Operand Reference (R)
Figure A.1: Internal Repressntations of Formatted Data Words

Appendix B: Source Listings of the Test Programs and a Detailed Example
6.1 A Detailed Example: Matrix Multiplication
B.2 Tho Lmear Equation Solver: LES
B.3 A Prime Number Generator: S1EVE2
B.4 A Student Electrical Engineering Problem: EE
B.5 An Eigenvalue Problem: QZ

Appendix C: Code Matrices for 'nteger V
C.l Code Matrix for (♦.V.E.V) or (♦.E.V.V) Commuted
C.2 Code Matrix for (•i-lEl,E2>T)

References

91
93
96
99

101
102
103
107
108
109
110

111

117
117
118
120
121
121
125
129
130
132
133
135
138
138
138
138
139

140
140
148
149
150
151

156
159
163

172

■ - ■ ■■■--■ I ■■ ■ I !■ IIIM

r
K

iiv>i>.<ii> ii IN p. .I.P ,1.1,.«. _ i .!■ i i i ii. -i i an ■■'■ii«n^nm^Hn«m(pip«^n^ mmmfmiwi

Chapter I

Introduction

A serious disadvantage of current compilers is that they do not take

into account a program's behavior in the generation of object code. In

particular, the code generation phases of these compilers employ a fixed

compile-time strategy, i.e., the degree of code optimization is predetermined

and the optimizations are applied uniformly to each section of a program,

independent of how often the section is executed. As a consequence, special

purpose compilers have been designed to handle a specific class of programs

or to meet specific needs, and the decision of which compiler to use is

placed upon the user. For example, for the FORTRAN language there exist

on the same machine three special purpose compilers having different

trade-offs between compile time and code efficiency, viz., WATFIV,

fORTRAN-IV G and FORTRAN-IV H. WATFIV k) designeo to handle jobs for

which compile time is a major factor. FORTRAN-IV G produces fairly efficient

code by applying some local optimizations FORTRAN-IV H is designed for

production programs. It produces highly efficient code, but there is a

substantial increase in compilation time.

This thesis investigates a ri/nomic run-time code optimization strategy

based on the dynamic behavior of the program. Motivation for such a

system stems from the empirical evidence produced by the research of

1
- - — -.. *. nifr nViii' iiirt an ti i i- '^UMIIM - — -- -■ - . ».

^ I "I ' WHV

Knuth [Knu70], Darden and Heller [Dar70], Ingalls [Ing71] and Jasik [Jas71],

viz., that a s^ali part of a program {<bt) accounts for a large part of its

execution time (>50'/.). Their schemes can be classified as "iterative

optimization" which involve a feedback loop between the system and the user.

The user's program is monitored via software or hardwanj, and the system

produces an executioi profile of where the program is spending its time.

Using this profile, the user optimizes his program and runs it again, obtaining

another profile; and so forth. Major drawbacks to such an approach are the

limitations placed on the amount of optimization the user can perform, and

the inclusion of the user m the feedback loop. We advocate removing the

user from this feedback loop and automating the process.

Our major goal is to demonstrate not only that it is possible to

construct such an au'omated system, but that it is worthwhile, i.e., that it can

perform, for almost all programs, as well or better than any special purpose

compiler employing a fixed code generation strategy.

1.1 Current Optimization Techniques

The development of code optimization strategies has been under

investigation since 1965. This initial research cuimmrted in a set of machine

independent optimizations that are applicable to most high level languages

[cf. AII69]. The development of more efficient algorithms for these "classical"

optimizations has been the object of study by other investigator, notaoly

'- ■ ■■— -—^ —■ - MMM^Ml

iijiiuiinj^nm^vwR«"1!!»'' ^i' ■ '' 11 *ir*i*mm^^*i^m*Mimmn

Lowry and Medlock [Low69] and Cock and Schwartz [Coc70]. The

effectiveness of these optimizations was clearly demonstrated in the

FORTRAN-IV H compiler of Lowry and Medlock, who stated that even though

thrre was a 407. increase in compilation time, the object code was 252

smaller and executed three times faster than that producsd by the

FORTRAN-IV G compiler.

The goal of this research is to demonstrate the effectiveness of

applying code optimization at run-time instead of at compile-time. It suffices

to select optimizations from among the "classical" optimizations, for they are

just as applicable at run-time. There were a number of selection criteria

that are worth mentioning. Foremost, we wanted to include enough machine

independent and dependent optimizations to produce results of broad

significance. Also, the optimizations must have been ^roen by others to be

effective, i.e., they produce a significant decrease in execution time for the

effort expended.

The set of machine independent optimizations selected were:

1) Constant Folding: performing operations whose operands
are known. This technique is particularly beneficial for
code generated to calculate the address of an array
element.

2) Common Subexpression Elimination (CSE): eliminating
redundant expression computations.

3) Code Motion (CM): moving operations invariant within a
loop outside the loop.

L—*-—*-' --J-a. :*- - ..:. MHWiMMiftittM — - ^ - ~ _. L-- ■ ■ -*■- — —-■

■ ' ■ "■ "' MI pii" in mmimmmm^~ ■■PWPW—"W»™

The set of machine dependent optimizations selected (which are

applicable to most machines) are:

1) replacing a multiplication or division by a power of 2
with a shift.

2) setting memory to 0 or -1 by special instructions.

3) delaying negation operators to exploit load and store
negative instructions.

A) deleting multiplications by 1 or additions of 0.

5) performing operations directly to memory, e.g.,
incrementation or decrementation by a small constant.

6) use of index registers for DO loops and for accessing
array elements.

7) effective use of registers by an appropriate register
allocation policy.

The algorithms for the selected optimizations have certain characteristics

that influence the design and structure of any system which employs run-time

optimization. First, the algorithms do not operate on the program source

text, but on some intermediate form. The compiler must generate this

intermediate form (regardless of when the optimizations are applied). Since

these optimization algorithms are to be invoked at run-lime, the intermediate

form was chosen so that it could be directly executed (interpreted).

Second, the algorithms do not operate at the basic instruction level, but

on aggregates of instructions cr groups of aggregates (loops). The compiler

will have to decompose the program into these basic aggregates.

-J....^^..^.-^., _..
 ■— -—'-~—~'~-~'

ii» i i i i« miMMi -•

5

Third, certain algorithms rely on control flow analysis. The compiler (or

loader) will have to generate a form for encoding the flow relationships. The

form we will uce is a directed graph.

Finally, the optimizations can be applied individually, and usually must

be applied in a given order. These two characteristics are important in that

they allow for gradual optimization of the program, a concept fundamental to

our approach which is predicated on and supported by recent empirical

results on program behavior,

1.2 Empirical Results on Program Behavior

Recent investigations by Knuth [Knu70], Ingalls [Ing71] and Darden and

Heller [Dar70] found that a small portion of the code in typical programs

accounted for most of the execution time. Knuth studied a varied collection

of FORTRAN programs covering a wide variety of applications, and found that

less than 47. of a program accounts for more than 507, of its execution time.

He suggested that the system produce a program's profile, i.e., a histogram

showing the frequency counts of the executable statements, which can reveal

where the program is spending its time. This infori..ation would then be

used by the user or compiler in deciding what part of the program to

optimize.

Ingalls participated in Knuth's investigation and his paper pursues the

notion of a system producing the execution profile of a program. He

^■■— -v - —- ■ - --■- - ■ iMM täma i ä^Mg^jt ----- i -—■ — ■ -- - ■ - ■■«-■- -"»

"I ' • ■ll ' ' i^mmn^'^^m- ^—„„—r-— ~—

concludes that current optimizations have taken us about as far as is

worthwhile, and that if further gains are to be made, optimizations such as

in-line I/O editing or expansion of subroutines in-line should be developed, or

the sytem should produce feedback information (i.e., an execution profile) to

the user that tells him where his program is spending most of its time. He

found that for all the programs studied, 37. of the statements made up 507.

of the program's execution time.

Darden and Heller studied the performance of two compilers and an

assembler, and founj that for the systems tested, at most 37. of the code

accounted for more than 607. of the execution time. These percentages are

taken from their graphs given in Figure 1.1. They advocated producing a

histogram of processor time hy blocks of memory locations. Using this

profile, the user would optimize the critical sections of the code and run the

system again. This iterative optimization procedure would be repeated until

there was little improvement in overall performance. They tried this

technique on an ALGOL compiler and found that after four iterations they had

improved the compiler's speed by a factor of 10 while only rewriting 57 of

the code.

 - ■ _. -- - - - - ^--- ■ - - -^

•PMP""" ■ ■""

!

iOO

80

1 60

t 40
CL.

Cumulative distribution of CPU time

20

FORTRAN COMPASS

ALGOL

0.03 0.1 0.3 10 3.Ö 10.0

Percent code

Figure 1.1 Cumulative distribution of CPU time. For a typical FORTRAN
compiler, over 60 percent of the central processor's time is spent in
executing only 1 percent of the code. Clearly, that 1 percent of the code is
the area to optimize. In fact, 10 percent of the code accounts for 90
percent of the execution time of all the systems tested by the authors.
(Reprinted from COMPUTER DECISIONS, October, 1970, page 29-33, copyright
1970, Hayden Publishing Co.)

- -- - - — "-■ il'm**amimiiia*Mimämtiitm'mut\\mi\ i i i I i .. „„■>.■.. - ■^.,.^ ..,..-. ■■^■.-.^.■.^i.^-. J

--—— • — —

Ar> inference from thuse empirical results is thai the amount of effort

that should be e-ponded to optimize a section of code should be proportional

to the execution time that section represents. It is Jso felt that the 57.-507.

empirical rule is universally rue since a wide class of problems were studied

by the various authors.

A majo'- drawback to these approaches is that the user is included in

the feedback loop. We feel that the oxecutior profile is a useful concept

which has other advantages (such as a debugging aid, or pointing out to the

user that he should use a different algorithm or restiucture his data).

However, fit utility as a,i optimization tool has its limitations with respect to

the user. First, it requires tue user to oe knowledgeable with optimization

techniques. Second, for those optimizations tnat cannot be performed at the

source level, the user must resort to wrilmg in machine language which he

must learn, thus defeating the purpose of using a high level language.

Finally, the user may introduce more bugs into the program.

The user could overcome these limitations, but we assert (and this

thesis will show) that the process of using the execution profile to optimize

the appropriate sections of the program can be done automatically at the

source language level without user intervention.

.^,-L.-.. ^ -J^.^- ■^■J........ — ■ " -

w**m^m^^^i mmw ■■^■■w.iiMPiPi. ii i mmrmmmm^m^mmmmmm^^^^'^^^'

1.3 An Adaptiv« Compilsr

There are a number of automated approaches that we could take. The

profile could be fed back to the compiler the next t.me the program is

comp.led. Using the profile, the compiler could optimize the appropriate

sections of the program. However, which code sections to optimize may vary

from run to run if, for example, the program's behavior is sensitive to its

input data. Therefore, a feedback sys'.em does not seem to provide fel best

solution.

A more desirable approach would be to perform code optimizations

while the program * running. That is, the system would dynamically adapt

the comp^ed code ^response to the program's dynamic behavior. Such a

system we t>'rm an adaptive^ system.

This thesis will show that an adaptive compiler system is a feasible and

worthwhile alternat.ve to current compiler construction approaches. We will

first turn our attention to solving the problems of determining which section

of code to optimize, when to optimize it, and how much optimization to apply

to it. Our goal is to find a solution that minimizes the overhead incurred in

answering these questions, for we want the system to perform well across

the entire execution time spectrum. Then, in order to prove the technique is

t The lerm adaptive is not meant to imply that the compiler self-adapts to
its env.ronment. i.e., keeping statistics on the constructs used most frequently

and thereby producing more efficient code for them.

- —■~— ^^—^-^._, - - --- — - - ^^^.^^^t^^^

9*m^^~ ii —^, vmmmma

10

feas(ble, we will discuss the design and implementation of an adaptive system

for the FORTRAN-IV language. To show the adaptive FORTRAN system is

worthwhile, its performance will be measured on a variety of test programs

having different characteristics. In order to evaluate tne performance

measurements in a me?ningful and unbiased manner, the adaptive compiler will

be transformed into systems that generate code comparable to that produced

by WATFIV, FORTRAN-IV G and FORTRAN-IV H. Then the test programs will

be run under these systems and the pertonnance measurements compared

with those of the adaptive system.

... -■■- - --■ ■■■*■---■■• - '-.'■■- -^.^

I

■' " ■ ____ — vm ■■ ■RIBH.| l««upim — - null mmii t vupn i ..i jimniw^^i^ir^^wmm*

V

M

Chapter II

Adaptive Compiler Systems

In this chaper we will look at the problems associated with constructing

an adaptive compiler and present solutions that can be realistically

implemented. The basic issues that we will address are:

1) what information must be collected during the
translation ana loader phases to lacilitate run-lime
optimization,

2) the characteristics of the code the translator must
produce for the optimizers,

3) methods for grouping the code into bljcks to facilitate
its processing by the optimizers,

4) attributes of code blocks that can be metered to
determine which blocks to optim ze,

5) methods for determining which optimizations to apply to
the code blocks and when,

and 6/ control of the running program so optim zation can be
intermixed with execution.

Three of the issues, viz., determining which code blocks to optimize,

when, and how much, form the basis for any dynamic optimization strategy.

We will discuss two strategies. The first, iterative dynamic optimization (see

Section 2.4), is based on a mathematical model, which represents an exact

formulation for solving the problem of what to optimize and how much, but

not when. The scheme is impractical to use (see Section 2.4.2), but it is

presented because the solution of such a formulation, regardless of how

■■-—-—-^ -— ■-• ■■-" ■ - I l"r^«r ^ ■•- ■•J■^^'~^*'fc*, ■■*»

■" "■ '■'""' ■ ■" ■ 1^-. .11 ^^mr~*mmmmi^mf*i^m^a*mi*m^m*******w*~vm

12

inefficient, would give us a standard to compare against other schema. It is

possible to obtain such an absolute measure of performance (see Chapter 5),

but even for one program it would require a tremendous amount of work.

Since dynamic optim^atio-i has never been studied before, it was felt that

the primary goal of thü 'hesis was to see if the approach was vaild instead

of spenuing time to obtain the best performance curve for a few programs.

Therefore, we formulated a more direct approach, the incremental dynamic

optimization scheme (see Section 2.5), which incurs very little overhead. It is

a heuristic approach based rn the notion th?t one optimization at a time

should be applied to a rode block, and the assumption that the execution

time pe program run for a code blov'k is proportional to the frequency with

which it is executed. Such an assurrption allows a frequency count to be

used as a meti ; for ontrolling flie adaption process. This count is a

function of the code block's attributes, such as size, level of nesting, etc..

To control the execution and invoke an optimization strategy requires a

ouper'isor. We will describe the operational cha-acteristics for such a

supervisor in genpral, and specifically for a system employing the incremental

dynamic optimization strategy.

In the following chapters, we will describe the design, implementation

and performance of an actual system that employs incremental dynamic

optimization and incorporates the ideas expounded in this chapter. Since the

ite'ative dynamic optimization scheme in Section 2.4 is not pertinent to this

-•-'■—'■-'■ '■ ■■ ■ ■ ■-•■-- imimrtma-1- -- ■^-..A-.-.^.. III*MIMI ■ im *m _ . ,. „^- ^^ ^

PW^inavw ii PI.-.—P.- ^*^m*^mm* ^^tmmm^^^^mmm, i mi^mm^nmi^m

13

description, it may be bypassed on a first reading without loss of continuity.

2.1 Overall Design Consideration'

The primary goal in the design of an adaptive compilir system is to

minimize the total cost of running a program. This goal has direct

implications with respect to the design of the translator and the dynamic

optimization strategy.

The design of the translator can proceed along the lines currently

employed in the construction of any translator, but it must be as efficient as

possible. This menns that: 1) it should expend a minimum of e^C't in

translating the source code, in particular, not performing any optimizations

that can be done more effectively and efficiently at run-timej 2) it should

employ the best translating algorithms available; C^ it should itself be

optimized and 4) it should be one passt and compile directly to core.

In terms of the dynamic optimization strategy, minimizing total cost

requires the optimization algorithms to be efficient, and the overhead incurred

by deciding whe'» to porform what opii.rtization on wi ch sections of code to

t A second pass jver the object code ic needed to complete the translation
process, e.g., allocate data storage, patch addresses, patch forward references,
relocate the object code, etc.. This second pass of the compilation process is
handled by a program which, due to its similarity to others of th.? same
name, we shall call a loader.

i. ■ mtk-m ■1»fc-L--:^ ■--■■" J- I w— .._* — — -■.--■- - ~ - • - ^ftniaii—■

14

be small compared to the expected payoff.

There are four basic design decisions that must be made; they are a

consequence of both the fact thai optimization is to be performed at run-time

and the nature of the optimizers. First, an internal representation of the

source code that can be efficiently manipulated by the oplimizers must be

selected. This internal form cannot be machine language because at this level

too much information that will be needed by the optimizers hai. been lost,

and it should not be the source code because the source code does not

explicitly indicate the structure of the program and takes too much time to

scan. Possible internal forms include: Polish notation, quadruples, triples,

indirect triples, or trees (cf. [Gri71]). The translator can produce the internal

form as object code, for it is amenable to being executed (interpreted). For

the translator also to produce machine language would be a waste of effort

because empirical evidence shows that some sections of code will not be

executed often enough to warrent it.

Second, the internH form (which we will assume is an n-tuple that

denotes an "instruction") must be grouped according to the program's

structure into aggregates so that the optimizations which require global flow

information can be applied. It is a characteristic of the classical optimizations

that we will employ (see Section 1.1) that they operate on two kinds of

aggregates: a group of sequential instructions terminated by an unconditiont'

branch (a basic block) and a group of basic blocks which form a loop-like

■ -- -— - - ■ - ■ — ■■ Hi b li MMMMai

1 " ' ■■ ',, .. ,

15

structure (a 6«gment). Initially, as the internal form is being generated, it is

partitioned by the translator into basic blocks. As the program executes,

optimizations are performed on those basic blocks executed moti frequently.

In order for additional optimizations to be performed, the segment containing

an opltimized basic block must be formed. The process of combining basic

blocks or segments into a (larger) segment is called fusion, and constitutes a

new optimization.

Third, a dynamic optimization strategy must be proposed, i.e., a scheme

for determining which basic blocks or segments to optimize, which

optimizations to apply and when to perform the optimizations. Even though

there is more information available at run-time than at compile-timo to aid in

making these decisions, it is not complete (we cannot predict a program's

future behavior with absolute accuracy). A reasonable approach is to assume

that future behavior of a program will be similar to past behavior, for it is

better to base the decision-making on this information than none at all. Such

an assumption is not uncommon; it is often made in other areas of computer

science (e.g., paging algorithms and schedulers). As is the case with the

other areas, we are susceptible to anomalies. For example, it is possible to

waste optimization effort :f the program terminated soon after the effort was

expended, or the program is phased and after the optimization of a phase it

Is only executed a few times more and then never executed again. By

selecting a strategy that causes optimization of basic blocks or segments to

be gradual, the amount of effort wasted can be kept tolerably small.

- - ^.MJU^Mi fcidl^M fiäu'u - ■ ■ ~-iir imhlMiritfMirtiai --■■-■ — ■

,, . *m<m*..*••*•< .. >■ ■«■>•.>«■■.>< M j.n.p. ■ ■ «um ■■(«■■ w^m«pvp^^>neiwii^«fu j^^«>^vv^iafi.u«ii ■ mn im wxm Ml ■ II llllll Ml ^WimK**t!tm^*^*!lf!fi*

16

Finally, means for controlling the execution of a program so it can be

adapted must be determined. Basic blocks and segments are the discrete

units of execution. A logical point at which to interrupt a program's

execution for adaption is when control passes between two nasic blocks or

segments, since program status is well defined at such points, and the amount

of state information required to record this status if small. When execution

is interrupted, data which aids in the decisions made by the dynamic

optimization strategy is collected, and it is decided whether to invoke the

dynamic optimization strategy and perform optimizations. If control of

execution is distributed amongst the individual basic blocks and segments, then

aporopriate instructions must be inserted in the code to perform the

functions just described. Another approach is to centralize these functions

and control of execution in a supervisor which causes the basic blocks or

segments to be executed one at a time. This is the approach we will follow

for the system to be implemented. The supervisor, known as the seement

driver, is advantageous for another reason. During the execution of the

program, some parts of it will be in interpretive code, while other parts wili

be in machine language. The supervisor can conveniently decide whether to

execute a basic block or segment oirectly or call an interpreter.

The structure of an adaptive compiler system is now apparent. Source

code is translated by a fast and efficient translator into an internal form that

is grouped into basic blocks. Execution of the program is controlled by a

segment driver and optimization by a dynamic optimization strategy. Various

 -.-. . .--.■ _. .-- - -.. - - - - ■— — ■ - - - — ■■ n^au^n-na

«■IJV.II .■■■u I " ■ ■■■ — ■ -f^-^ ■"■'■" IIIU ■iiu.nui i mwmmi**^^^^mimm*mmmm^m*i&m<iimiimi'ii''*'*K*^'*m*m'^m

17

optimizations are applied to basic blocks and/or segments as execution

proceeds and the performance of the program warrents. A new optimization,

fusion, is necessary for grouping basic blocks into segments. In the following

sections, we will define more precisely the concepts of basic block, segment,

fusion, and segment driver, and propose two dynamic optimization strategies.

2.2 Basic blocks and Segmentst

When performing code optimizations, it is advantageous to partition the

program according to its flow of control into basic blocks. A basic blocK is

a linear sequence of instructions with the first instruction being the single

entry point. The block is terminated by one or more branch instructions, the

last of which is unconditional while the others (if any) are conditional. All

code between the first instruction and the h'-nches is executed in sequence.

A program's flow of control may be represented by a cirected control

flow graph in which a node represents a basic block and an edge represents

a flow path. Those basic blocks that branch to a given block are Its

t In this section, some of the definitions follow the terminology introduced by
Allen [AII69, AII70] (viz., basic block and directed control flow graph) and
Lowery and Medlock [Low69] (viz., predominance), while others pertaining to
directed graphs can be found in any introductory textbook on graph theory
(cf. [Har69]) (viz., immediate successor or predecessor, subgraph, path and
strongly connected region).

-;--j--^-'-' •■■jt - ... ■• - - ■- -■ - ■-"■ - ' --- '■ -■ ■— ' >'■■■ —^ -■■ — ■ - —'-■-■■-'■'-■- - — ■ -■ -^—^- ^ ■-- ^— '■*'*—

"'^■■■"■■■,"""" ^^mmn^mm* "■ ^WPBiWiW« FW^wmwiw wim

18

immediate predecessors. Likewise, those blocks branched to by a given basic

block are its immediate successors. A basic block may have more than one

immediate predecessor or successor, including itself. Program entry blocks

have no predecessors, and program terminating blocks have no successors. A

basic block Bi predominates a block B2 if every path along a sequence of

successors from a program entry block to 82 always passes through Bi.

The basic block is the smallest program unit commonly considered for

optimization. However, t.ore is a limit to the amount of optimization that can

be performed on a basic block, and in order to perform additional

optimization it is necessary to consider more global context. Since it is

desirable to optimize those basic blocks executed repetitively, some loop-like

structure must be imposed on the flow graph. Two loop-like constructs have

been described in the literature: the strongly connected region [AII69] and

the interval [Coc70, AII70]. A strongly connected region is a subgraph of

the flow graph in which there is a path leading from any block in the region

to every other block. The region may have several entry points. An

interval is the maximal single entry subgraph of the flow graph in which all

closed paths contain the entry block.

We introduce another similar, but not equivalent, concept called a

segment. With respect to a given strongly connected region (loop) in the

directed control flow graph, a segment is the minimal directed subgraph with

the following properties:

..^ - ...;v .-,-,..., n.-^. .. .^-^.-,.
- -'■ ' ■-— -J^- - -— - — ■ -- --■ -.■■^.■.^.,. ...„■. . ^..^| , 11 i|rt|MaMiMiii1MIM^ai

I ■. I "»

19

1) The segment contains all the basic blocks in the loop.

2) There is a single entry blocK. This entry blocK may
have one or more immediate predecessors of which at
least one is not contained in the segment. Those
im.vödiate predecessors of the the entry block that are
predominated by it are contained in the segment.

3) Except for the entry block, all immediate predecessors
of each basic block in the segment are contained in the
segment.

4) The segment, A,, and another segment, Aj, are either
disjoint, i.e., they have no besic blocks in common and
therefore are parallel structures, or one is embedded
inside the other. If AjnAj-Aj, then Aj is embedded
inside Aj, and Aj is said to cover segment Aj.

Thus, if a loop has a single entry block, it is identical to a segment

whose segment entry block is the same as the loop entry block. If the loop

has multiple entry points, the segment is the loop extended to include the

minimum number of basic blocks satisfy.m properties 2, 3 and 4. Property 4

defines a properly nested set of segments, and allows the optimizations to be

ordered in the manner suggested by Allen [AII69].

Examples: (a) Segments: 2,-{2,3} (b) Segments: 2'-{2}, 2"-{2,3}

1
-._■-... ..^■... ..-,,_, - ■ -^. ^-o-

- - ■ - - ■ - ■ ■ — ■•-■■ -"*

■WWWWJW

20

(c) Segments: 2'-{2,3,4,5} (d) Segments: 2'-{2,3A5,6}

Unlike a strongly connected region, there is not necessarily a path

leading from any block in a segment to any other block because of ii^e

requirement that a segment have a single entry point. A segment always

contains a strongly connected region, but the single entry point Irr the

segment may not necessarily be contained in the region. Consider example

(d) above in which segment 2' contains the strongly connected region {4,5,6}

which has two entry points (blocks 4 and 5), and the entry point of the

segment (block 2) is not contained in the region. Like a segment, an Interval

contains a single entry point, but it does not necessarily contain a closed

path, and the intervals of a graph are disjoint. In example (b) above, the

intervals are {1} and {2,3}.

The concept of a segment wa- chosen over that of a strongly

connected region or inte'val because of the simplicity of the algorithm for

constructing them. The algorithm is an iterative process. A block which is

 ^ . .. _ . ._ —> ■^-J— ^M^-Mtel.MUBbMMuteMMa

"J wmv^mi^^^mn imm
. -^.*»i.J..|iiiiiiilMlll«i,«WW

1

21

executed repetitively can be used to start the segment. Given such a block,

and considering a segment already formec as a basic unit, it is possible to

construct the segment containing the blocK knowing just the immediate

predecessors of each basic block in the flow graph. A basic block's list of

immediate predecessors can be constructed from the branches that terminate

each basic block. This -an be done either by the compiler or by the loader.

2.3 Fusion

When a segment is formed via fusion, what optimizations are applicable

to it depend on how embedded segments are treated, i.e., whether or not the

new segment is considered to be a homogeneous structure with respect to

future optimizations. Define the ootimization state of a basic block/segment

to be the result of the application of an optimization. As optimizations are

performed on a basic block/segment, they will advance through different

optimization states. One basic block/segment is said to have a higher

optimization state than another if more optimizations have been applied to it.

If we employ homogeneous fusion, then the optimization state of a segment is

uniform, i.e., is the maximum optimization state of its constituents, and the

result is a homogeneous segment. If the segment contains no embedded

segments, then its optimization state is the maximum optimization state of its

basic blocks; otherwise it is the maximum optimization state of the segments

it covers. In order to advance the segment to its optimization state it may

be necessary to perform one or mo'e optimizations on its embedded basic

--■ • — "■ '~ -:.J.--.-■ --■ ^-- iga- - - . . -_._..—

w*^n^^*m*mm wmmmmmmmmi^*^^^*'^™*, ■

22

blocks/segments. For future optimizations, the covering segment could be

considered a discrete unit. But this has a distinct disadvantage if at the time

of fusion the embedded basic blocKs/segments have not attained the highest

optimization state, for the effect of additional optimizations on these

embedded units will never be realized. Alternatively, if the identity of the

embedded basic blocKs/segments is retained, further optimization could be

applied to them before being applied to the covering segment. The only

constraint is that all units attain the same optimization state.

If on the other hand we employ non-homogeneous fusion, a segment

and its embedded basic blocks/segments exist at different optimization states,

and the result is an non-homogeneous segment. This approach is more

restrictive from an optimization point of view in the sense that the

optimizations that are applicable to a segment and the segments it covers

defend on the current optimization state of each. There are a number of

ways optimizations can take place. One method is to let the covering

segment control when the embedded segments get optimized further. For

example, when a segment is to be optimized, its embedded segments could

first be advanced to their next optimization state, starting with the innermost

one and working outwards. Other approaches are to let each segment be

optimized separately at its own rate, or to freeze the optimization state of

each embedded segment at the time of fusion and let future optimizations be

applied only to the covering segment.

. - ... ■J.^-l- ... J.. :... - - -J~-""-';-^"-:----- J- - II' mn i in ^m

»,,"~" ~ ' m^^mmmmm mi a m.iimrmmimmmm''

23

The result of fusion is a machine language segment that is formed by

combining the machine language for each of the segment's basic blocks. The

machine language segment is to be consicered a basic unit with respect to

execution, i.e., transfer of control between basic blocks within the segment

should not be processed by the supervisor. To accomplish this, branches

which terminate a basic block must be treated differently depending on

whether they are internal or external to the segment. An Internal branch is

a branch in which the basic block being branched to (destination) is in the

same segment as the basic block containing the branch (source), and the

destination is not the segment entry block; otherwise it is an external branch.

If a branch is internal to the segment, then it can be eliminated if it is

to an immediate successor; otherwise it can be performed directly. If the

branch is external to the segment, it must go through the supervisor. Once

the segment becomes totally optimized, any branches to its entry block can

be made directly.

When forming the physical segment, it is not clear whether to perform

homogeneous or non-homogeneous fusion. We will defer this discussion until

the next chapter where we will present empirical evidence as to the merits

of each. There is, however, a general observation that we can make. When

a segment is formed by fusion, the segments that will oe included in it (if

any) will have ruached a high optimization state, if not the highest. This

follows from the fact that embedded segments execute at a greater frequency

_.. . _- ^ ..■,.. .-...^—.^^^
. ^..■■.,.— J.^._^J^^.J«M.ifa^---jy.-^i„'.JM

■«■U.1 ' "^Wi^MWPWKWIP^PHIIil^BBWII^^^—>l ' '" "I ■■ ll^w^^lBP»^IPW^i^»P<W»wpW^W>w™iHlHW>PB»(Hp|pT|lp»pifl«BIW^WW«l"»W»»*> l:ll MHIII.I. I

24

than their covering segment. Therefore, fusion that produces a homogeneous

segment may tend to apply too much optimization too soon, while producing a

non-ho nogeneous segment causes the optimization of the segment to be more

gradual

Fusion is thus seen to be an important optimisation, for it determines

the highest optimization state attainable for the segments involved, and thus

has a strong influence on a pr'^.am's performance. How to incorporate

fusion into the overall optimization scheme is another of the basic problems

in controlling dynamic optimization. We now present two dynamic optimization

schemes based on different metrics that treat fusion differently.

2.4 Iterative Dynamic Optimization

The first dynamic optimization scheme is based on a cost metric, the

total run-time cost associated with executing a program which is being

adapted. This cost consists of the execution cost plus the optimization cost,

and is a function of time and storage space. It includes optimization costs in

order to guarantee that optimization will be gradual and performed when It

pays to do so. Informally, we want to minimize the total run-time cost for a

program. This means interrupting the program's execution periodically and, by

Knowing its past behavior, determining how it should have been optimized so

that the total run-time cost would have been less than it actually was.

■ ■ - ■ - -•- ■■
■»■■MalUHtaUMIIM ■■^-^■— ■;. ^^.-^.^-^^..^^r^.^^.^^.^-

1*

The scheme considers only the optimization of segments (which are

determined prior to the start of execution), not of basic blocks. It is a

non-homogeneous optimization scheme in which th^ rate of optimization for

segments is free to vary, i.e., there is no restriction on the number of

segments that can be optimized at one time, or the number of optimizations

that can be applied to each segment. For the latter, we make the restriction

that there be no backtracking, i.e., once a segment is optimized, it cannot be

"deoptimized" back to what it was previously. The goal is to find the

combination of optimizations that minimize the cost metric. This approach is a

natural way to proceed, and has the advantage th-,t fusion is not an issue

(and therefore simplifies the formulation).

2.4.1 A Mathematical Model for Segment Optimization

Let

/HA;}, j-l,2,...,N .

be the set of segments for the directed control flow graph of a program P.

Suppose there exists an ordered set of separate and distinct code

optimizations

{CU i-l,2,...,m

These optimizations are known as singular optimizations, and are ordered in

he sense of applicability, i.e., Oi must be applied before O2, O2 before O3,

etc.. The composite optimization Oij(i<j) is the transformation 0j...0i which can

be applied to a segment only if the transformation Oi.i...Oi has already been

MdMaMMMMM» ir a. ■dfc.n iiMniaMii ifAMUulayi —" — 1 .„ .um ■'■■ - - ■ ■■—-- • Ä

m^K^tm^^m *fm " "• • '■' "■"" "" """

26

applied.

The result of the application of one or mce optimizatiois to I segment

A is called a representation, R(A), of the segment. For a segment AjC/l, the

only possible ordered representations that it may attain are:

RfiAt) " OiAi
RtCAi) - Oi«HA|) - 0i2Ai

IWA|) - 0m(...02(0iAi))...) - OinA

R, is said to have a higher optimization state than R, if i>j.

The current representation of a segment is the result of the application

of the composite optimization 0^, for some j. If the current representation

for segment Aj is R/A,), then for additional optimizations the segment is

constrained to take on a new representation RK(AJ), where j<ksm. Not all

new representations are possible. A feasible representation is one which

does not violate the constraint that the optimizations are ordered. If one

segment is not covered by another, then there is no restriction on what new

representation it can attain. However, if one sogment covers another, the

covering segment cannot be optimized such that its otimization state is

greater than that of the embedded segment. The new representation for the

segment defines the optimizations that must be applied. That It, since the

composite optimization Ou has already been applied, it is only necessary to

apply the composite optimization Ojk (if lmK than this is the null optimization).

--.^. .. ■■.-...:..- -..- ■■.,-.■.-..., ..:...^....
- -'- ■- ' -•-^'- -—;--■ ■ ■

------- -*.■-....- | |,, || m^1l^^mmlmfii^mkmMm

—in , ,;:ZZZ
-—. ■-•"' "• —»-^—^—■

27

Consider a subset Ac/] which consists of n<N segments executed since

optimization was last performed. Define the n-tuple R - <R(Ai),...,R(An)> with

the property ln<?t each R(AI) is a feasible, ordered representation of equal or

higher optimization state than the current reoresen^ation of Aj. The goal

now is to find the n-tuple R that minimizes the cost metric.

Let Cj(R(Aj)) be the cosi associated with segment Aj being in

representation R(Aj), i.e.,

C(R(A1)) - CMRiAj)) ♦ CtidKAt))

where Clj is the cost of executing segment Aj in representition
WAj),

C2j is the cost of changing segment A.'s current
representation to R{A,).

The exact forms of Cl and C2 depend on how computer resources are

accounter for, but in general they are a function of execution time, T, and

core space, S. As a concrete example, consider the case where a user is

charged for how much processor time he uses and (just) the core he uses.

The cost associated with that part of core which is fixed is a constant that

c^n be ignored. This fixed storage includes the run-time support package,

data storage (since we are only considering code optimizations), and the

interpreter! In order to simplify the model, we ignore the time required to

allocate and release core and to perform overlays. The form of Cl is then

CljMAj)) - K^TiMAj)) + K2 * SjWAj)) * «E Tk(R(AK))
.-I

-■- -'-■■ ■■ —- •— ---"*- - -- - ■ - — ■--■ — - — ^^^^^^J^^^^MÜ^^

VlWMViff^"' "" PPVH ww^m^^*^immrm P,.. .,.,*..

28

where Ki is the cost for processor time,

K2 is the cost of core storage used per unit of time,

T.WA,)) is the time expended executing segment Aj in

representation R(A|),

S.WA,)) is the amount of core needed to store MM
representation R{A,) of segment A,.

Cli is that fraction of the total cost for segment A,, i.e., the sum of its

processor cost plus its core storage cost (the summation term represents

total execution time).

The form of C2 is similar to that for Cl, but now we need to know

the time to perform the transformation and the space occupied by each

optimizer. These optimizer-dependent parameters are easily obtained once

the optimizers are programmed. Suppose for each optimization, Oj, there

exists a function E^q) which gives the execution time to perform the

optimization on a section of code consisting of q basic units, where a basic

unit is related to the internal form and may be the number of nodes in the

tree, the number of tuples, etc.. Let S(Oi) be the amount of core needed to

store the optimizer that performs optimization Oj. If segment Aj consists of

q, basic units, then

C2j(R(Al)) - 031(0,)

t The interpreter is always assumed to be in core because it simplifies the
formulation and it is highly likely that there will be at least some part of the
program to be interpreted (as evidenced from the empirical result on program

behavior).

 ■ - ■ ■- - ■ - ^ .-.--,.- , iiinii-iüi

———————, •»«■■■«————

where 03,(0^) is the cost to perform opt mization Oj. If 0, is the singular

optimization Oj, then

C3j<0)) - K| * Efa) + K2 * S(Oj) I E^qi) .

If Oj is the composite optimization Oi,, then

j J
mOu) - Ki * 2 «k * E^qj) + K2 * 2 «k * S(OK) * Uf*)

k-1 k-1

where (5k = 0 if Ok has already been applied to A,; otherwise 1. That is, if

the current representation of segment Aj is Rv(Ai), then the cost associated

with the composite optimization Oiv is zero, and C3J(0IJ) is just the cost of

performing the composite optimization Owj, ^v. These equations assume the

optimizers reside in core only while they are needed, i.e., that they are

overlayed.

The total cost associated with a program in which segment Aj is in

representation R(A() is

c - 2 cm*»
i-1

(1)

The objective is to find an n-tuple, R, of representations such that C Is a

minimum, i.e., solve

min C
R

subject to the constraints:

TiMAj)) > 0

(2)

(3)

2 Si(R(Aj)) i S
i-1

(4)

" ■ ■■-"-----■■ ■■- - - ■ ■ ^....-- ~ -" .^.■.■^^■-^>..^-^J.^^..V^^J4.^-^U.wJ-..-^... ■ . ■irtiiMiM' ii arni"! 1

«»■■wp^wwrw^ipwwgip«

30

where S is the toidl amount of available core storage. Constraint (4)

requires that the new representations, R, for the segments all fit in core

simultaneously.

An n-tuple of representations that solves (2) subject to the constraints

(3) and (4) is known as the optimal policy with respect to the set A for

executing P. The initial optimal policy for executing P i« to perform no code

optimizations and interpret the internal form produced by the compiler. Such

a policy is in keeping with the philosophy of dynamic optimization (see

Section 2.1). After P has executed for a while, a new optimal policy is

determined accord.rg to (2). This policy is put into effect, and P allowed to

continue execution. Later on, P's execution is again interrupted and a new

optimal policy determined. This process is continued until P terminates.

2.4.2 Practicality of Using the Model

The .terative dynamic optimization strategy has thre« serious

disadvantages which make it impractical to use. First, it only determines

which ;pRments to optimize and what their new representations should be,

not when to determine a new optimal policy. Second, there is the problem

of obtaining a numeric solution to (2). Any algorithm for solving (2) must be

such .hat the total solution time expended during a run is a small fraction of

the total execution time. To the best of our knowledge, the only way to

solve (2) is by a combinatorial search, which tends to be time consuming.

Third, there is the inability to generate the required data. In optimizing the

- - - i -- - — ■ ■ - —■- ■ - - i

!*»„«!, .'^mi^m^^Bm*'^^** mammmm»" ••'i u.i ...umiwmmmmnmtm ..MI IIIIMHMJ'WHWW

I *

31

cost, it is necessary to determine the execution time, Ti(R(Aj)), and space

requirements, S.WA,)), for the new representation R(Ai) of segment Aj. Since

the effect of an optimization on a segment cannot be ascertained, without

actually performing the optimization, T, and S, have to be predicted. This is

undesirable because a polity so determined is only as good as the

predictions. However, if the program's behavior is known a priori, it is

possible to solve (2) and obtain an absolute measure of performance (see

Chapter 5).

The model is therefore of more use in determining a standard against

which other schema can be compared than being used in practive. We now

present a more practcal app.oach in which the rate of optimization is more

gradual than for the iterative dynamic optimization scheme.

2.5 Incremental Dynamic Optimization

The incremental dynamic optimization scheme is based on the assumption

that the total execution time for a basic block/segment is proportional to the

frequency with which it is executed. This assumption allows a frequency

count to be used as a metric for deciding not only which basic block/segment

to optimize, but when to apply optimization. Each time the basic block or

segment is executed, this count is incremented! When it exceeds a

predetermined threshold, the basic block or segment is advanced to the next

t In practice, the count is decremented until it becomes negative.

km\)ammtä* i n ■ '■■ - —■*■- ■-.-l-.-^^-v- m* ---■ • - ■ ' ■ I Mrtil i V Tlltlil -■-——--■ - -— '^ ■ -•J"'

"—— i i^ön^w*™*i(«wp^iwiippp

representation by the application of the next optimization. Therefore,

optimization is applied incrementally, i.e., one optimization at a time to one

basic blocK/segment at a time. Fusion is automatically handled by this

scheme since it is just one of the possible optimizations.

Define the optimization count for an op^mization to represent the

number of times a basic block or segment is to be executed in its current

representation before applying the optimization (this is the threshold alluded

to above). The optimization count associated with a basic block or segment

must have the properties that it is proportional to the basic block/segment's

execution time, and it determines the proper time at which to optimize the

basic block/segment. Therefore, an optimization count will not be the same

for each basic block/segment. Instead, it will be some function of the basic

block/segment's characteristics, such as the length of the basic block/segment

measured in some appropriate units, the basic block/segment's level of nest „

in a loop structure, or the amount of effort required to apply the next

optimization.

The optimization counts will be determined empirically. First, they will

be estimated and treated as consttnts, then an empirical study made to

determine what function of the basic block/segment's characteristics is most

appropriate.

As an example of a possible function to study empirically, consider the

following method for deriving optimization counts. Assume time is a

a^^.^^...^-.,-— . ^_. .^^^a^Ofc.^-.-^-. —.. MJ-„.;..-=.._-- . ..>.-. - - - - -- — - (£*. -■— ---■■■■ ■-■-■- - ■ ^ - -■— . , ■

-'' mm MMWHMMIvmapM
tm*^m**m wmmnmmmm y i imMmv n MJII .• ■ , i u.

33

measurement of effort, and a basic block/segmert consists of q basic units,

where a basic unit depends on the internal form, e.g., for trees a basic unit

is a node, for n-tuples, an individual n-tuple, etc.. Suppose for each

optimization, Oj, there exists a function Ei(q), which represents the time to

perform the optimization on a basic block or segment consisting of q basic

units, and tji, is the time to execute basic block/segment Aj once in the

ordered representation fy. Then an estimate of the optimization count, njj,

for basic block/segment Aj in the order 3d representation Rj is

n» - EifajVlj,).! , i-l,2,...,m

where m is the total number of distinct optimizations, and tjo is the time to

interpret the basic block/segment once, n^ is the number of times the basic

block/segment Aj can be executed in representation Rj.i before its total

cummulative execution time is the same as the time it would take to perform

the next optimization Oj. n^ represents an upper bound because it would be

wasteful to spend more time executing the basic block/segment than it would

take to optimize it. Therefore the actual optimization count used should be

some fraction of nj;.

The quantity In must be estimated. When the basic block/segment is

first executed, let the supervisor clock its execution. This measurement Is

exact for a basic block because its execution is sequential. But for a

segment it is an approximation since segments contain loops and internal

branching. Therefore, we can assume the segment's timing to be exact only

if we assume its future behavior will be the same as its past behavior.

I

 i -., ^_. - -■--• -~— ■' - - ■■ •■' ' —■ ■

Knowing U, the supervisor can now calculate the basic block/segment's

optimization count.

2.6 The Segment Driver

Optimization and execution of a program are under the control of the

segment driver. Execution of a program proceeds one basic block or segment

at a time. At the start of execution, the segment driver is called with a

parameter indicating which basic block or segment to execute. Before

executing c basic block/segment, the segment driver decides whether or not

to optimize. If optimization is to be performed, it decides which basic

blocks/segments to optimize and how much, and calls the appropriate

optimizers. Then it executes the basic block/segment. If the executable code

is Interpretive, a subroutine call is made on the interpreter; otherwise a

subroutine call is made on the machine language representation of the basic

block or segment.

During the execution of the code, there may be a call on a

subprogram} these calls may be nested. To execute the subprogram, the

segment driver is called recursively. Execution of the subprogram proceeds

as just described, but any calls on the interpreter must be recursive, for the

interpreter may have made the subprogram call.

Execution of the basic block or segment is terminated by a branch

insiruction to another basic block or segment. If the branch occurs in a

--'■'—-*—'

mmmmirmt n i i-1

basic block or is external to a segment, control is returned to the segment

driver by a subroutine return which passes back the destination of the

branch instruction. Branches internal to a segment are performed directly,

while a return from a subprogram causes an exit from the segment driver.

This entire process, depicted in Figure 2.1, is repeated until an

instruction that terminates the program is executed

The system we implemented and will describe employs the incremental

dynamic optimization strategy. The segment driver for such a system

operates as just described, except now the optimization count determines

when to optimize.

When a basic block/segment is to be executed, the segment driver

decrements its associated optimization count. If the result is negative, the

next optimization in sequence is performed; this calculates a new optimization

count for the basic block/segment. Then the basic block/segment is executed

as previously described. The modified flowchart of the segment driver is

given in Figure 2.2.

■ -- ■--'-- —-'-
^-. -^—..i. --._^

... - ■ - ■ _ ____._.

^WW^WPW^BIP*»" i PI iimim^m*imm^m9i*m*m n I>IW i ■ llimpiLi u iviiiiMM R <uii mm

Basic blocK/segment
to execute

optimize? \~no —■

yes

Determine what
and how much

Call appropriate
optimizers

 (Form of code ? 1

Interpretive

Call Interpreter

Machine Language

Call Machine
Language Code

3
Figure 2.1: The Execution Cycle for a General Segment Driver

■■■-—-'•--'-"■ ii Hü Miiiiaiiii^iÜMii . -'■-- -■^■■*- J

^^^m*^w* PMHmmsppvMnmmvjp'w ■■* >

I
37

i
♦-basic block/segment number

OptCntj*-OptCntj-l

&
OptCntj : 0)~ Z

OptState, ?

0

Call Oi

m-1

Call 0m

<
Representation Z>

Interpretive I Machine language

Call Interpreter Call Machine
Language Code

Figure 2.2: Execution Cycle of Segment Driver 'or Incremental Dynamic Optimization

i
 .- - . - - ^—^- ^- --- . ■ -—-—^_^J^MM«.MJ«^^—1M1

I I If I « IWWP «cvvmw^ini* ' ^. ■« w^w^Bniii»IJI«U,HI 11 • "■ ' n »P^W^WH^IP.. ■■» ■ in^i^fipwf

39

Chaper III

The Adaptive FORTRAN System

Whereas the previous chapter was concerned with adaptive systems in

general, this chapter will describe a particular adaptive FORTRAN system; this

system was implemented and its performance has been measured.

FORTRAN-IV was selected as the source language because: 1) it is one of the

most widely used programming languages and hence is a rich source of

example programs and comparisons with existing system., 2) it contains

enough interesting constructs to give credibility to the va idation results; and

3) many of the compile-time optimization algorithms currently in use were

deve'oped for FORTRAN compilers; they are well understood and are easily

adapted for use at run-time.

The Adaptive FORTRAN system is based on the incremental dynamic

optimization scheme described in the previous chapter (see Section 2.5). It

employs four basic optimizations (constant folding, fusion, common

subexpression elimination, and code motion), and has two generators for

translating the internal representation of the source code (quadruples) to

machine language. The chapter is divided into two major sections. The first

sectlot will describe the organization of the system (i.e., the different system

modules and the function of each), design criteria and implementation details.

The bulk of this section may be bypassed on a first reading without loss of

continuity. However, it is suggested that the introduction to Section 3.1.2 on

■ ■-- ■ ■—■ • •— ■ -- ^ •

39

the system's structure be read and Figure 3.1 be looked at. The second

section is important, for it describes the final system and how It was arrived

at through an evolutionary chain of systems. The latter discussion also

includes a presentation of the final system's optimization states and their

associated optimization counts. We will defer a discussion on the performance

of the system until the next chapter.

3.1 The System's Design and Implementation Specifications

So that the Adpative Fortran system may be clearly understood and

duplicated, a detailed description of its design and implementation is

presented.

3.1.1 The Adaptive FORTRAN Language

In order to demonstrate that our technique is workable and valid, it is

not necessary to strictly adhere to the formal definition of FORTRAN-IV or to

implement the entire language. We assume the reader is faniliar with

FORTRAN-IV. Instead of describing the complete subset, we therefore list all

the features in FORiTJAN-IV that were altered, extended or deleted. The

following extensions and alterations were made:

!> allow an arbitrary number of dimensions for arrays,

2) allow multiple assignment statements,

3) allow the use of real as well as integer control
variables in DO statements,

■■ ■ • ■■ - —-■ >a>ui* - ' •-- i ■! i äma\ ■ mi

wp»" ■ ' ' ' II I I ■ ■'■■^

K

40

4) allow the use of parameters as initial, incrementation,

and terminal values in DO statements,

5) allow the use of negative increments in DO statements,

6) allow the use of expressions in output lists,

7) perform automatic conversion of real to integer type
for subscripts, in relational expressions and in DO

statements,

8) indue exclusive OR and equivalence as logical

operators.

The following features were deleted:

1) the use of embedded blanks in identifiers,

2) the use of double precision and complex arithmet!c as

types,

3) usage of the computed GO TO statement,

4) usage of the PAUSE statement,

5) usage of auxilliary and unformatted I/O statements,

6) the use of the DO-implied specification in I/O lists,

7) usage of the DATA statement,

8) usage of the EQUIVALENCE specification statement,

9) the use of statement functions,

10) the requirement that symbolic names which identify
statement types or operators may not be reserved

words,

11) the ability to compile program units separately.

These modifications were made because they simplified the experiments

without affecting their results.

Hill i 1 ■ I" T iHll II IIWI I - ' ■ ■ - ■ MafattHa|g||M||aa|

■ I ■■■ I IIHI ■ wmßmi^~ i mmmmmmm
m>u im IHM '—I." Mil

41

3.1.2 Structure of the System

The process of running a FORTRAN program is broken down into three

major phases: 1) the compilation of FORTRAN source code to relocatable

quads; 2) the loading of the relocatable quads to absolute quads; and 3) the

execution of the program. Execution of the program is controlled by a

supervisor known as the segment driver (see Section 2.6) which conditionally

invokes an optimizer before allowing a basic block or segment to execute.

Fxecution of a basic block or segment is performed either by: I) the

interpreter which interprets the quads; or 2) the machine language equivalent

of the quads, called as a subroutine. When optimization is performed, the

optimizer performs transformations on the quads and creates a machine

language segment by calling appropriate generators. The decision of when

and what to optimize is controlled by the optimization count and optimization

state associated with tie basic block/segment. However, performance of the

system depends on the optimization states selected and how the associated

optimization counts are determined.

The ability to change these two optimization control parameters easily

and thereby produce different systems whose performance can be studied

was a major design criterion applied in the design and implementation of the

optimizers. Each optimizer is designed as a self-contained module which

accepts as an input parameter the basic block/segment to be optimized. It

either deduces all the information it needs to perform the optimization or

i ürii ■■ mifr-"— - — '—■ ■—"' . J,-^._^. -^ ■ - ^ '

w^^^m^^n ■ -t^.mn^nm^f-w^r^mm^^^^mtmmmimm^m

42

obtains it from the segment table (a common data structure accessible to all

optimizers). An optimizer module consists of two subroutines: one which

performs the optimization algorithm and a second which makes all the control

decisions associated with the optimization. Typical control decisions are:

performing possible setups, calling the optimization algorithm, changing the

optimization state and optimization count for the basic block/segment, calling

machine language generators, optionally outputting statistics about the

optimization (e.g., processing time, number of quads manipulated or modified)

and performing any cleanup functions. This modular construction isolates

those few parts of the system that must be modified in order to produce a

different experimental system.

The structure of the system is shown in Figure 3.1.

The bulk of the system was written ;n t'.ISS-10 [Bli71], a systems

programming language for the DEC PDP-10. Those portions of the system

written in machine language were the segment driver (hand optimized to

minimize overhead) and »he run-time FORTRAN support package (the

mathematical routines, I/O package, etc.) borrowed from the PDP-10 FORTRAN

system with slight modifications.

The entire system is loaded at once into approximately 50K 36 bit

words. This is no«: necessary; the three phases could be overlaid (and would

be in a production quality system). Again, this does not affect the validity of

the results.

■■— -^■,-. —.- - -—-.——.——-—....—.. ■■— - ----- ■ ■•■■■ --■ ——■—-

- ■« ■IIH*IIHAMJjni^n^^MHI«HWL.*MMI.OTIWHI.MWPW«m<nP^PPI.I I I ■■ ' ' ■— •

43

3.1.2.1 The Compiler

The first phase in running a FORTRAN program is the translation of the

FORTRAN source text into the internal form manipulated by the optimizers.

The internal form selected is a quadruple, or quad for short, which consists

of an operation, OP, two operands, Al and A2, and a result temporary, T. A

quad has the form:

(OP, Al, A2, T).

The compiler is one pass and compiles relocatable quads direciiy to core. It

occupies approximately 9K of core and compiles at the rate of nearly 9,000

cards/minute. Its structure is modeled after an ALGOL compiler written by

the author and fellow colleagues [Hay71].

I

A secondary function of the compiler is to partition the program into

basic blocks. Code is compiled into a basic block until the occurrence of one

of several conditions in the source text, at which time the basic block is

terminated and another one started. The conditions are:

1) a labeled statement (except a FORMAT statement),

2) a subroutine or function call (except for a library
function or output subroutine call, since they produce no
side effects, i.e., they do not change the value of a
variable),

3) a "call exit" (e.g., STOP, RETURN) or END statement,

4) statement(s) which cause the generation of a
consecutive sequence of conditional transfer operations
possibly terminated by an unconditional transfer (see
Appendix A, Section A.2.3, specifically the arithmetic and
logical IF).

i
.■-.■J-.j., ,■ ■^..,-Mfcii ,-,rf-r—-v-^-... ..■ ..-.*. • -■--■ *■'-■■ ^*''^^ -'-•'•■ -■ -■■- ■ ^ —

44

5) a GO TO statement,

or 6) a READ statement.

During compilation each result generated in a basic block is associated

with a unique temporary location. This is to facilitate the translation of

quads to machine language and the optimization of the basic block. (Since

these are intermediate results pertinent only to the basic block in which they

occur, a different basic block may utilize the same temporary locations. See

Appendix B, Section B.l.)

3.1.2.2 The Loader

After all program units have been compiled, the relocatable quads are

immediately loaded by a loader (see Section 2.1) if the program contains no

errors. The loader occupies less than 0.5K of core, and is very fast (all the

relocatable quads are in core).

The primary function of the loader is to load the quads into absolute

core locations; this requires changing relative locations to absolute and 'back

patching' aHdress fields. Before the loading process can commence, the

loader must first determine how the program is to be laid out in core

memory, i.e., it must determine thn starting absolute address for each

reloca ion base (the unit of storage into which code is compiled). All

compiled addresses are relative to one of several relocation bases: sequential

instruction storage, out-of-sequence instruction storage, own storage,

- - - - - -- ~— - ' - - - - - - - _ .J-._- .-.— .. -^-^i ^■MMiMlHMftMHMd

■M«» I i «JII .1-.

45

temporary storage, non-COMMON variable storage, blank COMMON storage,

labeled COMMON storage, library storage, and segment table storage.

The second function of the loader is to build the segment table, which

is crucial for the adaptive process. Each entry in this table contains all tl,

information about a basic block that is needed by the cptimizers. A single

entry in the table consists of the following information fields:

1) QUADREP: The address of the basic block's first quad.
Initialization occurs at load time (the compiler
generates the starting address of each basic
block under the segment table relocation

base).

2) CURREP:

3) SEGNO:

A) OPTCNT:

The absolute address of the current
representation of the basic block. When the
block is executed, this address determines
how it is executed. The initial value is the
address of the quad interpreter; when the
basic block's quads are translated to machine
language, the value is the starting address
of the machine language.

The segment number to which the basic
block belongs when the basic block is fused
into a segment. Initially it is equal to the
basic block number. After fusion, it is the
block number of the segment's entry block.
Thus, the identity of an embedded segment
is lost. In the case of non-homogeneous
fusion, embedded segments are remembered
by saving on a list the block number of the
first and last block of the segment. This
list is ascoriated with the covering segment
by saving a pointer to it in another field
appended to the segment table.

The basic block/segment's optimization count.
This field is decremented by the segment
driver each time the basic block/segment is
executed by the segment driver. When it
goes negative, the basic block/segment is

- — — ■IMnilMMlHUiUi MMH^MMM ■MMiMMri

optimized according to the OPTSTATE field.

5) OPTSTATE: The optimization state of the basic
block/segment. This field determines which
optimization is to be performed next on the
basic block/segment when the OPTCNT field
goes negative.

6) PREDPT: A pointer to the first item in the linked list
of immediate predecessors for the basic
block. This list contains the block number
of all basic blocks that are immediate
predecessors of the block in increasing
order.

7) LASTPRED: A pointer to the last item in the basic
block's immediate predecessor list.

8) QB:

9) MLB:

10) AEN- <Y:

The address of the first quad branch
instruction in the basic block. This field is
used when it is necessary to move the
machine language for the basic block and
the quad branch instrucfcns must
consequently be retranslated k machine
language.

The starting address of the machine
language translation of the quad branch
instruction(s) in the basic block. When the
machine language for a basic block is moved,
only those machine language instructions
from CURREP to this address need be
moved.

The machine language address of the
alternate entry point to the segment's entry
block. The segment's invariant quads are
affixed to the start of the segment's entry
block (see Section 3.1.3.3). When the
segment is translated to machine language,
the CURREP field points to the first machine
language instruction of the segmert's entry
block, i.e., to the invariant code. But the
invariant code need only be executed once,
hence any internal branch to the segment's
entry block need only go to the alternate
entry point. When the quads for the

.^■■^-^„■.— , ..^ . - - in n iiinmii - —■"-

""« ■ "" ' "

47

segment entry block are translated to
machine language, the AENTRY field is set so
all subsequent quads of the segment that
branch to the entry block will be translated
to branch to the address specified by it.

After the program is loaded, the loader initializes the segment table.

The fields are initialized to the following values:

1) CURREP is set to the address of the interpreter,

2) SEGNO is set to the basic block's block number which
is identical to the entry's placement in the segment
table (numbers starting at 1). Thus the block number is
used as an index into the table.

3) AENTRY is set to zero,

4) OPTCNT is set to a constant which determines how long
the basic block is to be interpreted (see Section 3.2),

5) OPTSTATE is set to zero (see Section 3.2 for the
possible values this field may attain and their meanings),

6) PREDPT and LASTPRED are set as the quads of each
basic block are scanned in the generation of the
immediate predecessor lists. The quads of a basic block
are scanned backwards, since in order to determine
immediate predecessors it is necessary to examine only
the branch instructions which terminate the basic block.

7) QB is set when the immediate prccewessors are being
generated, for the first branch instruction in the basic
block is the last branch instruction scanned (see (6)
above).

After the segment table has been initialized and the immediate

predecessors generated, the loader examines the loop structure of the

program. Based on the loop structure it changes the OPTSTATE and OPTCNT

fields of certain basic blocks. This part of the loader is dependent entirely

on the incremental dynamic optimization scheme employed. Therefore we

i
--

^WW^w*^^^^"^ ~" ■■ ■■»■ — F- "i --T^T^««P^^^^^^I^W|»^^iBW^^PW-TTW—«^^T^-^-^—P——!-^»—-——■

48

defer discussing the details of this loop structure analysis until Section 3.2.

The loader terminates by passing control to the segment driver and

specifying to it the tir:t basic block in the main program to be executed.

3.1.2.3 The Execution Phase

Execution of the program is controlled by the segment driver

(see Section 2.6). The mam loop of the segment driver consists of two

machine language instructions: one decrements the OPTCNT field for the basic

block/segment being executed and tests if the count has gone negative; the

other calls the interpreter or machine language segment as a subroutine. If

the optimization count goes negative, the basic block/segment is optimized

according to the OPTSTATE field before being executed. Execution of the

basic block/segment is terminated by a branch instruction that transfers

control out ot the basic block/segment. The branch behaves as a subroutine

return so control is returned to the segment driver, which executes the next

basic block/segment specified by the branch. Thus the overhead incurred is

two machine language instructions in the segment driver plus the number of

instructions to effect the branch. If the branch is being interpreted the

overhead is approximately 12 machine language instructions} if it is in machine

language, the overhead is two instructions.

It should be pointed out that not only does the segment driver call the

interpreter, but that it is possible for the interpreter to call the segment

■ ■ ——-

 , p mimmm m^m^^^m**mm (^

49

driver. Therefore, both routines must be recursive. The latter situtation

arises when the interpreter calls a subprogram unit. The reasons for the

recursive call is that the segment driver controls the execution and

optimization of the program, i.e., execution and optimization proceeds one

basic block/segment at a .ime. Calling a subprogram unit is the only case in

which the execution of a basic block/segment is interrupted while other basic

blocks/segments are executed (and possibly optimized). Centralizing the

control of execution and optimization in the segment driver provides a clean

interface between the interpreter, the optimizers, and the program sections in

machine language, and enables the control to be changed easily so different

systems can be constructed and experimented with. The segment driver can

also be directly called recursively if the basic block/segment is in machine

language and contains a call on a subprogram unit. The reason is the same

as for the indirect recursive call, but now the quad calling the subprogram

has been translated to equivalent machine language, i.e., code which is

identical to that executed by the interpreter. A subprogram return is the

only branch out of a basic block/segment in which control is not to be

passed back to the segment driver, but back to the point where the segment

driver was called recursively. To effect the exit from the segment driver,

the subprogram return passes back a block number of zero which the

segment driver executes. The CURREP field for block zero in the segment

table points to an alternate entry point in the segment driver which contains

the exit code. Thus the same control mechanism is used to effect all

 II I !■! I II _—_ .— -

i^^^^^^^^^^"^— Mp^wwwn^PHvanvmvpiP

branches out of a basic blocK/segment.

Program execution thus consists of executing, via the segment driver,

one basic block/segment at a time with optimiz?iions intermixed. We now

turn our attention to the various optimizations implemented.

3.1.3 The Optimizations

Adaptive FORTRAN uses four machine independent optimizations: constant

folding, non-homogeneous fusion, common subexpression elimination and code

motion, and a host of machine dependent optimizations. There are a number

of reasons why these optimizations were selected over other possibilities.

First, these optimizations are the most commonly used ones. Second, they

allow us to construct systems similar in characteristics to existing compilers

against which it is possible to compare the Adaplive FORTRAN system

(see Chapter 4). Third, to show the flexibility of the system, we wanted to

include optimizations that applied both to basic blocks and segments. Finally,

we wanted to include enough optimizations to prove the technique was not

only feasible, but that the system could perform at least as well as current

compiler systems.

There are two machine language generators which apply various

machine dependent optimizations. The first is the "dumb" code generator,

which performs straight forward translation of quads to machine language. It

is used when individual basic blocks are being optimized. The second

- - - — - j -. _ - . . „ -_* MMMMMM

wpiRviBMiim HWWPIWP.iiiii

-wr^rwwj.wii in —IIUMM,

51

machine language generator is the "fair" code generator, which is considerably

more sophisticated. It utilizes information gathered from the translation of

previous quads and in certain cases combines consecutive quads in order to

generate more efficient machine language. It is used to generate machine

langtage for optimized segments.

Optimization is either at the basic block level (fusion and/or the "dumb"

code generator), or the segment level (common subexpression elimination or

code motion in combination with the "fair" code generator). Regardless of

which is used, the net effect is the creation of machine language from the

basic block/segment's quads. For a segment, the machine language for each

basic block must occupy consecutive core for execution purposes. Therefore,

it is built piecemeal by appending the machine language for successive basic

blocks in the segment.

If an optimization has no effect on a basic block and the proper

machine language exists, all machine language instructions except those for

the branches (which terminate the basic block) can be moved because they

are position independent. The branches must be retranslated. (The

instructions which must be moved can be determined from (he CURREP and

MQB fields for the basic block in the segment table. The QB field specifies

where the quads are located for the branches that must be retranslated.)

If the machine language for the basic block does not exist, the proper

generator is called and it will compile the machine language directly to the

 '■'■■■■■— — - -- -■..--■--.-.-. — ~ ^ - . _ MIMUMdH *- - '■■- - '■'— ■—

■P^^^^"»» pii n *i\\m*^i^m*mmi^^*^^m^^^*r^r^ Jill 1 IJ IRMH

end of the machine language segment being formed. Since the segment is

built piecemeal, there is a problem with forward branches lo blocks not yet

processed. This is handled by chaining the branch instructions t&]ether and

then patching them when the block is processed.

The translation (or retranslation) of quad branches Is handled specially

in order to minimize the overhead for inter-block transfers. The problem is

determining the correct machine language to be generated for the branch, i.e.,

whether any should be generated at all, and if so, whether the machine

language should perform the branch direct!)- or go through the segment

driver. The correct decision depends on whether the branch is internal or

external to a segment (see Section 2.3). For an external branch, the machine

language goes through the segment driver so the destination will be optimized

further. In the case of an internal branch, either: 1) no machine language is

generated if the branch is unconditional and the destination is the next basic

block; or 2) the machine language performs the branch directly via the

CURREP/AENTRY field in the segment table because optimization of the

destination is controlled by its segment entry block. After the final

optimization has been performed on a segment, a branch in one of its basic

blocks to the entry block is considered to be internal so it will be performed

directly.

Whether the branch is external, internal via CURREP or internal via

AENTRY is encoded in the quad (see Appendix A, Section A.3, specifically the

- !■ ^1 MMSM^^MMMfttfM ■ i ■ i nr- - * - - - — «•^«^MMMMMMMMMi

mmmf^fa^m ILUI i \\lanmm^*mmm^i^**~~^^*^^i^mKm^mm:mmi**m9mm*^w^!^*m^m

'

53

BTY tag). The current value of the tag aids in determining the correct

machine language to be generated and saves having to regenerate the

information. It is updated whenever the branch is translated or retranslated

to machine language in order to reflect the (possible) change in status of its

containing basic block brought about by the application of an optimization.

We turn novy to a brief description of each optimizer in order to give

a clear understanding of how they work (and their limitations).

3.1.3.1 Fusion

When a basic block has been executed enough times, it is fused into a

segment having the properties given in Section 2.2. The fusion process

consists of two parts: th» logical determination of the segment containing the

basic block and the physical creation of the machine language segment.

The logical segment is determined by the fusion rlgorithm which utilizes

the immediate predecessor lists and the SEGNO field in the segment table (for

bypassing the examination of immediate predecessor lists of basic blocks

already fused into a segment). As a consequence of the algorithm, a segment

consists of a set of consecutively numbered blocks, i.e., a segment is a

contiguous section of the segment table. After the segment is formed, the

SEGNO fields of all basic blocks in the segment are changed to be the block

number of the segment entry block.

 ----■—--- ■ - ■ - -■■: ^- ^.- - - - ■

. .. ^.^-^ >--

WIWB^^^IIBHHWWI" ■" ■ t^^^m^rnm^^m^^r^mm^m in m.i.iLi i «IIHI «^™*»wiwf»«www^pw"p ■»"■PM ■■ m-wwMmi.mim* ■ i . ^ ■ < wviwimmHH

54

The physical machine language segment is created by the control

section of the fusion module. Adaptive FORTRAN uses non-homogeneous

fusion. If the machine language for a basic block already exists, it is used;

otherwise the basic block's quads are translated to "dumb" code.

Finally, the fusion optimizer determines the new optimization state and

optimization count for the new segment (see Section 3.2 for the precise

values used and how the optimization count is determined).

3.1.3.2 Common Subexpression Elimination (CSE)

The CSE optimizer eliminates common subexpressions from a basic block.

The optimizer is not applied to the segment taken as a whole, but to each

basic block contained in the segment whose optimization state indicates CSE

has not yet been performed (embedded segments may already have had CSE

performed on them).

The optimization is performed on the quad representation of the basic

block. All modifications are made directly to the quads; temporary locations

may therefore be used more than once (in the original compiled code each

result of a basic block was assigned a unique temporary) and no-operation

(NOP) instructions placed where common subexpressions have been eliminated.

The CSE algorithm makes two passes over the basic block's quads. The

prepass searches for replacement operations on simple vi.;iables and, using

.,^..:..^^..^. -

mmmmmmm w ii II " ■ "l"1 ■ ' mm

55

this information, determines the limit for earh quad, i.e., the first quad which

changes the value of one of its arguments. The limit of a quad puts a

bound on the quads that must be searched when searching for a common

subexpression.

The second pass over the quads searches for common subexpressions,

i.e., for two quads that have identical operation codes and input arguments.

This search is accomplished by scanning forward to the limit of the quad. If

an identical quad is found, it is replaced by a NOP and the usage of the

result temporary for the NOP'ed quad is searched for (it must occur in a

quad that occurs after the NOP'ed quad but before the limit of the quad) and

changed to be the result temporary of the identical quad.

Since the optimizer ,ias already collected information on the location of

each quad involving a replacement operation, these quads are searched for

pairs from which the intermediate temporary can be eliminated, i.e., for quad

sequences of the form:

(OP.V.E.T) or (0P,E,V,T)
(=.T.,V)

which can be collapsed to:

(0P,V,E,V) or (0P,E,V,V)

where OP is a binary or unary operator, V is a simple variable, E is a result

temporary or simple variable and T is a result temporary. This collapsing

enables the machine language generators to produce more efficient code, and

saves then from having to regenerate the same information in order to

 ■—■■■^--•■"-— - <-..^-— -...—- ■.■J--.^ . - ■.— ...— ,.. _, .„■.■ I 'I II ■Mil ' ■-^

■pwainppmr^m^^Miw" I-^^B^^^WMPW^WII^WOPWUWIHIWW^WIW ^■■^"^■I i i > -^mmimmmmt

56

perform the collapsing themselves.

Since each basic block of the segment is processed separately, the

machine language segment is generatec simultaneously. After CSE is

performed on the basic block its quads are translated to machine language

using the "fair" code generator. If the optimization state of the basic block

inoicates CSE has already been performed, then the "fair" code already exists

and it is simply moved in a manner identical to that previously described.

The entire process is controlled by the control section of the module

which also determines the new optimization state for each basic block and

the new optimization count for the segment.

3.1.3.3 Code Motion (CM)

Code motion eliminates invariant quads in a segment. A quad is

invariant if the arguments of its operation are invariant within the segment.

Invariant quads are replaced by a NOP and are collected together in a new

basic block called the invariant code block. This block is logically appended

to the segment's entry block. It is not physically appended to the entry

block for implementation reasons: 1) certain optimizations assume (for

efficiency purposes) that the quads for each basic block occupy contiguous

memory locations, and to append the invariant quads would require moving

quads to make room and updating the segment table; and 2) it provides a

cleaner solution to the problem of how to translate to machine language

---'-- - ■ - - - — ■ ■ ■ — ■ -^ -
_j

fV l^^^^w^"^ wam**mm^wrm "^^"--^^^»■^^«■IWPiilPPPlP^WÄPPP^^'l^" -^—-■•■ -—i ^■■ujp^nmimMw«

f

57

internal branches to the entry block, for these branches should not be to the

invariant code block.

To logically connect the invariant code block with the segment entry

block, the invariant block is terminated by a special branch quad of the

form: (JUMP.EB.QREP.QBR). EB is the block number of the entry block, QREP

is the QUADREP field from tne segment table for the entry block and is

known as the alternate entry point to the segment, and QBR is the QB 'eld

from the segment table for the entry block. These three pieces of

information constitute what is needed to move the entry block's machine

language or to generate its machine language The invariant code block is

made the new segment entry block by changing in the segment table for the

old entry block:

1) the QUADREP 'ield to the address of the first quad in
the invariant block,

and 2) the QB field to the address of the special branch quad
which terminates the invariant code block.

See Appendix B, Section B.l for an example of an invariant code block,

the machine language generated for it, and the entry block associated with it

(especially the code generated for a branch to the alternate entry point).

The CM algorithm first makes sure CSE has been performed on each

basic block in the segment (no machine language is generated). Then In

order to find the invariant quads, it makes two passes over each basic block

in the segment. In the first pass, it constructs a list of all variables or

■ -i ■ ii—^» —

»-""" < imm^mmmtmr^ammm—^ liuiiidi.lOTil i i 1.1M11 m> ii ■ i ■■■■ NM • mmi

58

indirect results that are not invariant. Using this list, it then searches each

basic block for invariant quaosj however it processes only the invariant code

biocK for embedded segments which have already had CM applied to them.

Let the quad being processed by CM be of the form:

Ql: (0P,A1,A2,T1)

If the quad is invariant, i.e., its arguments Al and A2 are invariant, then how

It is processed depends on whether or not it is in an invariant code block

and if it already exists in the new invariant code block.

Suppose Ql does not already exist in the new invariant block. If Ql is

not in an invariant code block, then the quad (0P,A1,A2,T3) is added to the

new invariant code block, where T3 is a new unique temporary (using a new

unique temporary is necessary since basic blocks share the same temporary

locations). Then Ql is replaced by the quad (REPL,T3„T1), read Tl«-T3, if Tl

must be in memory (see Appendix A, Section A.3, specifically the SR tag);

otherwise with a NOP. All occurrences of Tl occurring after Ql irt the basir

block are replaced by T3. If Ql is in an invariant code block, Tl is a

unique temporary, so the quad (0P,A1,A2,T1) is inserted into the new

invariant code block and Ql replaced with a NOP.

If on the other hand Ql is already in the new invariant code block,

then it is a common subexpression that is invariant in more than one bas'c

block (recall CSE is performed only on individual basic blocks of a segment,

not on the segment taken as a whole). Let the common subexpression in the

L i • i a ill MMIM—irta*«« ' ' ■■ ■ ■■■ -■ ■-'-' '■-'■■ - ■ ' - - ■ - 1 irifcaiiii"

■ ' • •! mm • i im I ■ ■ i in I ^^mmm*~ » "i •'" • ■ IP"IIH

59

new invariant code block be of the form: (0P,A1,A2,T2). Then if Ql is in in

invariant code block, Tl is a unique temporary and it suffices to insert the

quad (REPL,T2„T1) in the new invariant block and replace Ql with a NOP. If

Ql is not in an invariant code block, then Ql is replaced by the quad

(REPL,T2„T1) if Tl must be in memory; otherwise with a NOP. All

occurrences of Tl occurring after Ql in the basic block are replaced by T2.

The net effect of the algorithm is to cause quad, to "bubble" to the

outermost segment (loop) of which they are invariant.

The control section of the CM module invokes the CM algorithm and

then generates the machine language segment. For those basic blocks in

which invariant code was removed and for the entry block to which invariant

code was appended, machine language is regenerated using the "fair" code

generator. The ("fair") machine language for the remaining basic blocks

already exists and is moved in a manner identical to that previously

described.

As is the case for the other optimizers, the final function performed by

the module's control section is to determine the new optimization state for

the basic blocks of the segment and the new optimization count for the

segment (see Section 3.2 for the exact values used).

III!.Mil .InlMi I II „~ -— ■ - —*

1 mmi^ m ^*^^mmm^ wm^mmi^mf* mmmm^mmm

60

3.1.3.4 The "Dumb" Coda Machine Language Generator

The "dumb" code generator operates on basic blocks, and is invoked

when it is no longer advantageous to interpret a basic block or when a basic

block is fused into a segment and is still in interpretive code form. In

keeping with the philosophv of incremental dynamic optimization (i.e., gradual

optimization of a section of code), it is a fairly straightforward translation of

quads to machine language, and employs a trivial register allocation scheme

and some of the less sophisticated machine dependent optimizations.

The register allocation algorithm uses four working registers that It

assigns on a round robin basis. When a register is needed, 'ne algorithm

checks if the register after the last register assigned is free. If not. It

generates code to store the register in its associated temporary. A

temporary is associated with a register when it is the result temporary of a

quad. Once the temporary is used as an argument, it is disassociated from

the register because each result generated in a basic block uses a unique

temporary. Variables are not associated with a register. For those

operations (e.g., int -jer division) that require two consecutive registers, a

single register is first locöted in the manner just described. Then if the next

higher register is in use, code is generated to store it.

Generation of the machine language is table driven. For each possible

quad op-code, there is a control word which specifies what machine language

is to be generated and how. The control word is broken into a number of

■fckJM^IP^.^aMMfc,.. - -■■
- ■■ '

..-■.. . — -^.-^ ^-^.■lll , inatfAmiArti—

61

fields: the type of the operation, the register specification of the arguments,

the register specification of the result, whether the quad has embedded

machine language, the number of machine language instructions to be

generated, a pointer to the machine language instructions, an indicator for

CSE and CM eligiblity, and a switch to differentiate between conditional and

unconditional branches. Encoded in the address fields of the machine

language instructions are integers specifying which argument of the quad to

use.

The generator does not maKe a fine distinction between the op-codes

and therefore does not generate specialized code to handle each situation,

but instead classifies the op-codes into four groups. The operation type field

in the control word specifies which class the op-code belongs In: commutative

binary, non-commutative binary, unary and all others. The quad is processed

according to this operation type.

As a result of this classification of operations, the number of machine

dependent optimizations that can be performed is limited. These optimizations

consist of:

1) the use of "immediate" instructions for literal constants
(constants less than 18 bits),

2) the use of indexing for indirect results,

and 3) recognizing for a binary or unary operation the
arguments are in a register and utilizing that register in
forming the result.

■■«—IIM—1 I

62

The translator» of quad branches to machine language is a special case;

processing is as previously described. If machine language is generated for

an internal branch, it performs the branch directly through the CURREP field

in the segment table.

The "dumb" code generator occupies approximately 1.5K of core. It is

fairly fast, taking on the average of 550MS to process a quad. The generated

code executes approximately 9 time faster than it takes to interpret the

equivalent quads.

3.1.3.5 The "Fair" Code Machine Language Generator

The "fair" code generator is applied to segments, one basic block at a

time. It is invoked after the CSE or CM optimizer has been applied to the

segment.

Generation of the machine language involves a thorough case analysis

of the variables for each operation m order that the most appropriate

PDP-10 instructions can be used. The PDP-10 instruction set is quite

extensive; most instructions have a basic form plus a number of variants. To

utilize the complete instruction set and therefore generate the "ultimate"

machine language would involve an unreasonable amount of effort, certainly

more than necessary to validate our approach. Therefore, the operations

were ranked according to frequency of usage w'th a corresponding detailed

analysis.

63

The case analysis for the binary and unary operators is based on the

mode of the arguments involved. The possible modes and a brief reason for

each are:

1) MEM: argument in memory. This mode handles
variables that are in memory and results that
have to be stored in order to free a
register.

2) REG. argument m a register. This mode is for
retaining variables across replacement
statements and intermediate results.

3) MUM: argument is a number. This mode permits
the processing of literal constants (constants
less than 18 bits) and constant folding.

4) REG+NUM: argument is the result of adding the contents
of a regist*?: to a number. This mode delays
the generation of the addition so that if the
a-gument is used as an indirect result,
indexing can be used (the NUMber is the
address field and the REGister the indexing
register).

Using the mode of an argument as a coordinate label and an argument

to label each dimension, a code arra/ is constructed for each binary and

unary operation (cf. [Gri71j). Each element of the array contains the code to

be generated for that particular case. For the binary operators, there are

16 possible cases, while for the unary operations there are only four cases

corresponding to the four modes.

Most of the cases are subdivided into subcases. The correct subcase

is selected according to information stored in either of two data structures:

the temp table or the register table. There is one entry in the temp table

— - - - ■ A — -

54

for each temporary used in the basic blockj each entry consists of six fields:

1) Mode of temporary result:
a) MEM: result has been stored into memory
b) NUM: result is a folded number
c) REG: result is in a register
d) REG+NUM: result is a register plus a

number

2) Register associated with temporary, i.e., the register the
result occupies.

3) Range of temporary, i.e., the address of the last quad
that uses the temporary. When the quad is processed,
the temporary is disassociated from the register it is in.

4) Neg-bit, which indicates the negative of the temporary
is required. This bit permits the generation of negation
instructions to be delayed, and therefore allows multiple
negations to cancel one another or special instructions
to be generated (e.g., load/store negative, subtract
instead of add, etc.).

5) Information field, which contains the address of a
constant or the value of a folded constant or literal.

6) Number indicator, which identifies the number in the
information field; either:

a) the number is not a result of foldirj and
the information field contains the address
of the constant,

b) the number is the result of folding and
the information field contains the value of
the constant (which is not a literal).
Whenever an instruction is generated that
uses tms constant, storage must be
assigned for it and initialized to its value,

c) the information field contains the value
of a literal (folded or otherwise).

The register table contains ore entry for each working register; each

entry consists of eight fields:

J

65

1) Mode of the register:
a) register has no associated temporary.
b) register has an associated temporary

whose mode»HREG"
c) register has an associated temporary

whose mode-"REG*NUMH

2) The use of the register, which indicates how many
temporaries with mode="REG+NUMM are associated with
the register.

3) The variable counter, which indicates how many
variables are associated with the register. This allows
variables to be retained in registers after a replacement
operation and thereby possibly avoids the generation of
a reduandant load instruction.

4) The address of the associated temporary with
mode-"REG".

5) Fields for specifying the address of variables associated
with the register (there may be up to four).

The information contained in these two data structures permits the

following machine dependent optimizations:

1) constant folding,

2) use of special instructions to set memory to 0 or -1,

3) use of shift instructions for multiplication or division by
powers of 2,

4) delaying negation operators to make use of load/store
negative instructions, permiting the usage Of complement
instructions for an operation, or deleting successive
negation operations,

5) use of "immediate" instructions for operations involving
literal constants as arguments,

6) use of indexing for indirect results (subscripting),

I

- ■ -

66

7) performing operations directly to memory, e.g.,
incrementation or decrementation by a literal constant or
for quads of the form: (OP,V,E,V) where V is a simple
variable and E is a simple variable or result,

8) performing operations both to memory and a register
simultaneously, e.g., for quads of the form: (OP^E.V),

These optimizations are but a small sample of the optimizations that

could be performed if we were to exploit the full instruction set of the

PDP-10. They were selected because they have a high payoff for the effort

invested.

The operations were broken down into three classes with varying

degrees of analysis applied. The most detailed analysis is performed on the

integer arithmetic operators: binary +,-.*./ and unary minus, since integer

arithmetic is required in frequently used language constructs (e.g., for counter

variables that control the number of times a loop is executed or for

subscript variables that reference array elements). For the binary operators

there are three code matrices, each designed to handle quads of a specific

form (see Appendix C for the V code matrix). The three forms are:

(BIN0P,E1,E2,T)
(BIIM0P,V,E,V)
(BINOP,E,V,V)

where BINOP is one of the binary operators ♦,-,*,/; E, El and E2 are either

simple variables, results or indirect results; V is a simple variable*, and T is a

temporary. There are two code vectors for unary minus. One handles quads

of the form (-,E„T) while the other is for quads of the form (-,V„V).

- '*-^-~*" ■- -- —- ^i. —■—-

17

The next class of operations consists of the floating point arithmetic

and logical operators. There is one code matrix to handle the binary floa^ng

point arithmetic and logical operators. Parameters to the code matrix are the

machine language instructions for the operator that handle the different cases.

There are separate code vectors for unary floating point negation and logical

not.

The final class of operations includes all the remaining operations. The

entire analysis is performed by one subroutine, and the production of the

m. hine language is table driven as it was for the "dumb" code generator.

However, the analysis is more involved due to the different modes the

arguments may attain.

Most of the analysis is independent of the operation being performed,

but there are two types of operations that require special processing. The

first special case involves the branch operations. The analysis for

determining the correct machine language is identical to that previously

described except that now there is another case to consider if CM was

applied to the segment. This involves external branches to the segment

entry block. If an invariant code block was appended to the segment entry

b'ock by CM, then these external branches must be to the alternate entry

point and not to the invariant block. For these external branches, the

machine language performs the branch directly through the AENTRY field in

the segment table instead of the CURREP field which is the address of the

.... ■ -
_

invariant block's machine language. If CM did not create an invariant block,

then external branches to the entry block are direct through the CURREP

field, not through the segment driver, since CM is the last optimization that

can be applied.

The other special case is for relational operators. This is the only

other case besides CSE m which a sequence of quads is examined in order

to produce more efficient machine language. The FORTRAN construct being

optimized is the logical IF of the form:

IF(El ROP E2)S

where ROP is a relational operator and S is a statement. The quads

generated for this construct can be found in Appendix A, Sections A.2.1 and

A.2.3, but it is basically the pair:

(R0P,E1,E2,T)
(OP.T, ,)

that is being combined to eliminate the intermediate logical result T, where

OP is either BF, BT, STOPT, EXTST or EXTFT (see Appendix A, Table A.1).

Germane to the generation of efficient optimized code is the effective

use of the registers. Whereas the quads operate strictly on temporaries, the

generated machine language instructions use registers, and it is up to the

machine language generator to control how the registers are utilized. One

means of using the registers effectively is for the generator to remember

what variables and results reside in which registers so that those registers

can be used to form further results, thereby avoiding redundant load

- ■ ™ i ■ ■■ ■■ ^■^M^MM^kMWM

-%i

69

operations. Thus, for example, the fact a binary operator is commutative is

recognized so the result is formed in the register occupied by one of the

arguments (if either argument is already in a register) or if a replacement

statement of a result into a simple variable is generated, the variable is

associated with the register so it will not be reloaded if used later.

The other means for controlling the use of registers resides in the

register allocation algorithm, which is invoked whenever a register is needed.

The algorithm assigns the least recently used of the 10 working registers.

When a register is needpHi the registers (actually the register table) are

searched starting with the last register assigned. First a search for a

register not in use is made. If this fails (i.e., all registers are in use), then

a search for a register with no associated temporary is made, starting with

the first. This search is effect vely for a register that only has variables

associated with it. If this fails, tien it is necessary to store a register

containing a result. A search is made for a register with an asscciated

temporary having the minimum number of associated variables. If this fails,

then all registers have a mode of "REG+NUM", so the register with the

smallest number of associated temporaries is selected. Code is generated to

perform the addition and store the result.

There are cases (e.g., integer division) when two consecutive registers

are needed. There is another form of the register allocation algorithm that is

identical to the one just described, but which searches for two consecutive

— i . __J_

70

registers possessing the same properties. If both registers do not have the

same property, another search is made to find at least one with thr desired

property. Only if this fails is a search continued for two consecutive

registers with another identical property.

The "fair" code generator requires approximately 10K of core. It takes

on the average twice as long to process a quad as the "dumb" code

generator, i.e., approximately 1200/15. However, code generated for a basic

block runs on the average twice as fast as the cade generated by the

"dumb" code generator.

3.2 The System's Optimization States and The r Associated Optimisation Counts

Performance of the system depends on: 1) how the fusion optimizer

forms a machine language segment (homogeneous versus n?n-homogeneous);

2) what optimizations are applied (individually or in comhination) and in what

order; and 3) the optimization counts. The modularity of the system and the

isolation of the code that controls the behavior of the optimizers provide the

ability to change the adaptive strategy easily and thereby produce

operationally different systems.

Approximately 15 different systems were constructed and tested before

the final form was determined. As each system was tested, more insight into

the dynamic optimization process was gained. The performance of each

successive system was analyzed and this led to experiments involving

 _ „. — - ■ ■ ■ .uMMauiuwaiiMiaMaiMM

71

variations in the control functions. The final system is a result of this

evolutionary process.

The first systems tested used homogeneous fusion; all basic blocks in a

segment simultaneously attain the same optimization state, which is the

maximum optimization state of any basic block contained in the new segment.

By studying the performance curves it became apparent that performance was

not satisfactory for small execution times. It was deduced that during the

early stages of a programs execution, too much optimization was being

applied too soon. The problem then wa'j to obtain satisfactory performance

for small execution times without degrading performance for medium-to-large

execution times.

The first attempt to defer the optimization process was to change the

optimization counts and keep the optimization states fixed. The optimizations

and their order or application were: translation of basic blocks to "dumb"

code, homogeneous fusion, CSE and CM. This approach did not prove to be

sufficient mainly because embedded segments tend to attain a high

optimization state and thereby cause the covering segment to be optimized

too fast.

The next set of systems used non-homogeneous fusion as described in

Section 3.1.3.1. The results were better than that achieved using

homogeneous fusion but still not satisfactory, for while it improved

performance for small execution times, it degraded performance for large

 —.— ,-■ - - -- ■ ■ - -.-..--

72

execution times. The reason was that the optimization state of embedded

segments became frozen. To compensate for this, all embedded segments

were advanced to their next optimization state before an optimization (CSE or

CM) was performed. This improved the performance for large execution

times, but degraded the performance for medium execution times. Therefore,

another approach was needed for controlling the optimization rate of

embedded segments.

We decided to perform a pre-analysis on the loop structure of the

program before execution started, and to change the optimization state and

optimization count of certain basic blocKs from their initialized values

according to their depth of nesting in the loop structure. We first attempted

to increase the optimization rate of innermost loops since they are executed

the most frequently and »herefore should be optimized first. We hoped the

additional optimization time would be negligible compared to the savings in

execution time. Only innermost loops consisting of two or fewer basic blocks

were considered. Three different ways in which the initial optimization of

these innermost segments could be allowed to proceed were considered:

1) The translation of a basic block's quads to "dumb" code
if the basic block is executed more than once.

2) Fusion to "dumb" code if any basic block in a segment
is executed more than once.

and 3) Total optimization of a segment if any basic block in it
is executed more than once.

The results were encouraging, with the second of the three approaches being

— ----- . ^ - .. -—^ .^—^ ...-._-.

73

the most promising. However, performance for medium execution times was

still being Jegraded because the optimization rates of the non-innermost

segments were the same. Therefore, the loop analyzer was modified to

recognize in ^rmost and outermost segments, thereby partitioning the

segments into three classes. The outermost segment's optimization count for

the last optim,i:ation uate was made smaller than that for other embedded

segments because its execution rate is slower than that for these other

segments and therefore it should not bn executed the same number of times

before being totally optimized. This '.nal modification produced the most

favorable results.

The optimization states for the final system on whose performance we

shall report in the next chapter were as follows:

0: translate the interpretive code for the basic block to
"dumb" machine language.

1: perform a non-homogeneous fusion of the basic block
into a segment. Basic blocks in interpretive code are
translated to "dumb" machine language; blocks in machine
language are moved as is with their branches
retranslated.

2: perform code motion on the ss^ient. Before the
optimization is performed, the CSE algorithm is
performed on all basic blocks in the scgp.ent. After the
optimization, the quads of each basic block are
translated to "fair" machine language.

Note that CSE is not a separate optimization, but is combined with CM.

The reason was that the time to generate the machine language segment

using the "fair" code generator is appreciably larger than the time to perform

 —.—

74

the CSE or CM algorithm. Therefore, the combined time to perform CSE and

CM separately is much greater than ti H time to perform the combination,

berause the machine language segment m^:1 be generated twice.

The optimization crunts associated with each of the optimization states

depend on the loop structure of the program. In the loop classification that

follow, the triplet (C0)C1,C2) represents the optimization counts for

optimization states 0, 1 and 2 respectively:

1) innermost segments (i.e., loops): (0,1,50). Thus
innermost segments are fused into "dumb" machine
language if executed once, then totally optimized. The
loop analyzer initializes the optimization state and count
for basic blocks belonging to an innermost segment to
1.

2) outeirnost segments: (6,15,n) where n ■ 10 if the
lengtn of the segment (in basic blocks) is <, 10,
otherwise 2*length.

3) other segments: (6,15,200).

4) entire subprogram: (6,15,n) where n is the same as in
2). However, CM is not performed as the last
optimization; instead CSE is applied to all the basic
blocks in the subprogram. It makes no sense to remove
invariant quads out of a subprogram because the entire
subprogram is always executed when called. Thus the
entire subprogram is considered a segment and
processed as any other segment with respect to
optimization. What constitutes an outermost loop inside
a subprogram depends on whether the subprogram is
called from within a loop. It is assumed that this is
always the case for it this assumption is not made,
experiments indicate that system performance is
degraded.

Since the third optimization count is determined prior to program

execution, it must be saved. This is accomplished by appending another field

w -■ ■—■

"■"

75

to the segment table.

Finally, an explanation of how the optimizati' n counts were determined

is in order. The final values given above are based on fmiings obtained by

experimenting with a system that employed homogeneous fusion.

Corresponding to that system's four optimization states, there were four

optimization counts: OP0, 0P1, OP2, and ÜP3. Initially, basic blocks and

segments were treated uniformly. The optimization counts for those in the

same optimization state were assigned a constant value that did not depend

on any attribute ov the basic olocK or segment. The values selected and the

reasons were:

1) OP0«1O OP0 controls when a basic block is translated
to "dumb" code. Since translation time is 550;is/quad
and interpretation time is approximately 25;'S/quad) an
upper bound on the number of times the basic block
should be interpreted before being translated is
550/25-22 times. However, this calculation does not
take into coo-:,deration the execution time of the new
representation. if the basic block continues to be
executed, it would pay to translate sooner because its
execution time win be less. Thus, a fraction of 22 was
selected, viz., approximately 1/2.

2) OPU15. Determining OPi is harder, because the
amount of time required to perform the homogeneous
fusion algorithm is a function of the length of the
segment and cannot be determined a priori. Therefore,
the value choosen is based on the fact that fusion
should be performed as soon as possible,, but not
before the bemfits of being in "dumb" code could be
felt, i.e., the effort required to translate quads to
"dumb" code should .<ot be wasted.

3) 0P2=35. Since CSE produces code that is at least
twice aj fast as that produced by fusion to "dumb"
code, a value was choosen which is approximately twice
OPI.

76

4) OP3-70. Because the benifits of going from CSE-^air"
code to CM-Mfair-M code are not as great as go ng from
fused "dumb" code to CSE-"fairH code, a vake was
choosen that could delay performing CM t^r a
reasonable amount of time.

In an attempt to improve performance for small execution times these

optimization counts were varied slightly, with no appreciable results. Since

OP3 was thought to be the most critical factor, other functions for

determining it were tned based on the length of the segment measured in

either number of quads or number of basic blocks, e.g., taking the natural

logarithm or a constant multiple. The most promising was taking a constant

multiple (2) of the lengtn measured in basic blocks.

It became apparent that constant optimization counts were not sufficient

to significantly improve performance. Further improvements were made by

changing to non-homogeneous usion, combining CSE with CM, and not treating

segments uniformly, but classifying them according to their level of nesting in

a loop structure. This necessitated adjusting the optimization counts

accordingly. The values choosen are given above; the reasons are:

1) innermost segments: Cl-1 for there is no reason to
per'orn. any optimization if the segment is not executed
at least once. To totally optimize the segment after it
it executed once results m too murh optimization being
applied too soon Therefore, total optimization is
delayed, and since CSE was combined with CM,
C2-OPWOP2-50.

2) outermost segments and entire subprograms: CO-OPC-10
proved to be too high a value, while Cl«5 was minimal.
Therefore, C0-6 was choosen. Cl-OPl-15 for the same
reasons given for OPi. C2 is a multip | of vhe length
of the segment measured m basic blocks because this
function was experimentally the most promising for

"^ mm

77

determining when the final optimization should be
performed.

3) other segments: C2-200 because 0P3 was considered to
be too small for a segment that is in a loop structure
at least three levels deep. Based on an analysis of
how many times such a loop could be executed in such
a loop structure, 200 seemed a reasonable choice.

It is unfortunate that the optimization counts were determined

heuristically and a more theoretical basis was not found. But the excellent

performance results presented in the next chapter speak for themselves.

■ - ■

78

I FORTRAN
| Source Text
I
v

Compiler

Relocatable
Quads

| Loader |

Absolute
Quads

Interpreter ->l
Segment
Driver

| Machine Language
-> I for Basic Blocks

| or Segment
L

Optimizers

A

I

| Machine |
| Language |
I Generators I

Figure 3.1: Structural Organization of the Adaptive FORTRAN System

■■ ■'■"'-

Tf

Chapter IV

Validation and Experimental Results

IT this chapter we present the experimental evidence which

demonstrates that dynamic optimization is a workable and valid technique.

The demonstration strategy consists of implementing the Adaptive FORTRAN

system described in the previous chapter, and measuring its performance on

an appropriate program mix.

In order to evaluate Adaptive FORTRAN'S performance measurements, it

is necessary to compare the results with those obtained by running the Süme

set of test programs under other types of FORTRAN compilers, viz., WATFIV,

FORTRAN-IV G and FORTRAN-IV H. To do this for various machines would

not, unfortunately, provide a meaningful comparison due to the differences in

the machines and thoir compilers. For the comparisons to be meaningful, the

same compiler, optimizers, machine language generator:, and object machine

should be used.

Therefore, the approach taken is to transform the Adaptive FORTRAN

system into systems that resemble those three real compilers. It is against

those three compilers, plus the JEC POP-10 FORTRAN compiler (F40), that the

Adaptive FORTRAN system is compared. We will present the results of

running the test programs under the five different systems ir tabular and

graphical form, and discuss their implications.

r

' ■' ■ '

4.1 Compirativ« Compiler Systems

In order to have a basis for evaluating how dynamic optimization

compares to current compilers, it is necessary to tun a number of test

programs under different compiler systems and to compare the performance

measurements. For FORTRAN, there are three well Known classes of FORTRAN

compilers that might be used for comparison purposes:

1) WATFIV:

2) F0RTRAN-1V G:

3) FORTRAN-IV H:

a one pass compiler that compiles
directly to core, it is very fast and
the code produced is fairly decent.

usually a multi-pass compiler that
produces a relocatable object module
that must be loaded by a standard
system loader. It compiles relatively
fast and generates code that is better
than that produced by WATFIV.
Optimization is at the basic block level.
The generated code is comparable to
that produced by CSE and the "fair"
code generator.

F4e, the PDP-ie FORTRAN compiler,
can be classified as a G-iype compiler
except that optimization is at the
statement level. It compiles relocatable
code to a disk file. A standard system
loader creates in core an absolute load
module fiom one or more relocatable
object mot jles. This load module can
be saved m a file on disk and called
for execution.

a multi-pass optimizing compiler that
optimizes the entire program at
compile-time. The output is a
relocatable object module. The compiler
is usually a few times slower than
FORTRAN-IV G. However, the object
code is usually two or three tims
faster than that produced by
FORTRAN-IV G (see Low[69]).

L HMMBMMI-AJKJ

 _
■ ' •■ ■■

81

There are a number of practical problems in making the comparisons.

First, not many compute-s have all three compilers available. Second, the

differences in character,sties of various computers (e.g., speed, word size, and

instruction set) must be taken into account; this complicates the comparisons.

Finally, the differences between the compilers themselves, e.g., the parsing

and code generation techniques employed, the type of machine language

generated, and the run-time support package must be taken into account.

The ideal situation would be to have all the compiler systems run on

the same machine and to use the same compiling techniques, optimizers,

machine language generators and run-time support package. The construction

of these compiler systems was considered to be too large an undertaking.

Therefore, a more expedient approach was taken in which the Adaptive

FORTRAN system (AF) was transformed to resemble each of the other three

compilers. It was easy to make the necessary changes because of the way

AF w-, constructed (see Sections 3.1.2 end 3.1.3). The main discrepancy

between the transformed systems and the actual compilers lies not in the

type of code produced, but in the way it is produced. Each transformed

system uses the Adaptive FORTRAN compiler to translate FORTRAN source text

into quads. After loading the quads, but before starting execution, the quads

are translated to the machine language form that most resembles the code

produced by the compiler be'ng emulated. We feel this discrepancy in no

way alters the validity of ths test results, since the use of a consistent

approach does not bias the results.

- ■ — ■ -■ --■ - - ■ -

The three transformed systems and the manner in which they produce

code are:

1) AFW: resembles WATFIV. The entire program is
translated to "dumb" code before execution starts.
A true WATFIV compiler does not produce quads,
but compiles machine language directly. Like
WATFIV, AFW compiles in one pass directly to
core. But whereas WATFIV's machine language is
absolute and requires some patching before
execution starts, AFW produces relocatablp quads
which must be loaded. Therefore, the
compiler-loader phases of a WATFIV compiler
probably would be slightly faster than those for
AFW.

2) AFG: resembles FORTRAN-IV G. CSE is performed on
all the program's basic blocks and then the entire
program is translated to "f?ir" code before the
start of execution. A FORTRAN-IV G compiler
usually produces relocatable machine language
directly to a disk file. The absolute load module
is created from the relocatable object modules by
a standard system loader. Since these modules
are on disk, load-time should be greater than tnat
for AFG which uses a specialized in core loader
(see Section 3.1.2.2). The compile-tir.) for
FORTRAN-IV G should be comparable to the
combined time required by AFG to compile and
load the program and perform the translation of
the quads to machine language. Therefore, the
compiler-loader phases of AFG should be slightly
faster than that for FORTRAN-IV G

3) AFH: resembles FORTRAN-IV H. All optimizations are
applied to the entire program which is then
translated to "fair" code before the start of
execution. CSE is first performed on each basic
block in the entire program. Then the segments
are formed via fusion starting with the innermost
ones and working outwards. The list of segments
and their order of processing is given to the
system, not deduced by it. As each segment is
formed, OK/ is performed on it. After all
segments are formed, the entire program is
translated to "fair" code. A true FORTRAN-IV H

IMVH — ——-
wiv^--.- —.

83

compiler also produces an internal form such as
quads which its optimizers process (of. (Low69]).
The compiler-loader phases of AFH should bs
slightly faster than that for FORTRAN-IV H for the
same reasons given above for AFG.

These three compiler systems form the basis against which AF is

compared. The i erformance of eacn system was measured by running the

same set of test programs under each.

4.2 The Test Programs

In order to draw meaningful conclusions about t.ie performance of AF, it

is necessary to run a number of test programs under it that have different

characteristics Care must be exercised in selecting the test programs to

avoid biasing the results. For any compiler system, it is always possiKe to

construct a program that makes it look miserable or one that makes it look

good. To ensure that the test programs are representative of the type of

programs written in the real world, both the published literature and students

were used as sources.

A number of criteria were used to select the test programs from the

potential candidates; the/ were designed to test if the usage of AF is

restrictive. The main criterion was to select programs with differing loop

structures, e.g., a different number of loops, loop lengths (measured in basic

blocks) and loop nestings. The reason was that we wanted to test AF's

performance both on those class of programs it was designed for (i.e.,

- ■ -- —
 ' ■

1 ■.M.I.IIH-I PP: PiP^F»w^iPWw«wni^

programs for which 57. of the code accounts for 50% of the execution time)

and on those that do not fall into this classification.

Second, we wanted programs that have parameter(s) that can be varied

to control their execution time. This allows us to study the performance of

AF for small, medium and large execution times, and determine if performance

is a function of the execution time.

Finally, we wanted programs that were compute bound in order to do a

worse cas? analysis. I/O bound programs were not selected because the I/O

handlers are not part of the user's program and cannot therefore be

optimized by the system, and if the program performs any I/O, the I/O time

is a constant for a fixed test point regardless of the version of the

experimental compiler system being run under. Thus, the analysis of the

results is unaltered since it is the difference between the measurements that

is relevant when making comparisons.

The four test nrograms selected (see Appendix B for a listing of the

source) and their characteristics are:

1) EE- A student electrical engineering problem.
•) Control parameters; 02. and 031, increments

that control the accurracy of the results 02
and 03 respectively. For the test runs, 021
was held fixed while 031 was allowed to
vary.

b) Program units: Main program unit only
c) Number of statements: 51
d) Number of basic blocks: 9
e) Number of individual loops: 1
f) Loop size: 7 basic blocks
g) Loop nesting: 1 single level

kMM^M^MB , MM ■HMMMMal

r

—— —

85

This program is to typify the type of
program written by a student. It was obtained
from an EE student [McW72].

2) SIEVE2: A prime number generator [Cha67].
a) Control parameter: K, the number of pri nes

to be generated
Program units: Main program unit only
Number of statements: 86
Number of basic blocks: 27

e) Number of individual loops: 7
f) Loop sizes(in basic blocks):

l,2(2)A5(2),25t
Loop nesting:

1 single level
5 double level
1 triple level

b)
O
d)

g)

This algorithm is a modification of Chartres'
algorithm in that it generates the first K primes
instead of all the primes < M.

3) LES: A linear equation solver [For67 and Mol72].
a) Control parameter: N, the number of

variables
b) Program units: Main program u:iit plus 2

suborogram units
c) Number of statements: 97
d) Number of basic blocks: 45

MAIN: 15
DECOMP: 20
SOLVE: 10

e) Number of individual loops: 13
MAIN: A'
DECOMP: 5
SOLVE: 4

f) Loop sizes(in basic blocks):
MAIN: 1,2,4(2)
DECOMP: 1(2),3A18
SOLVE: 1(2),3(2)

t The notation is to be interpreted as follows: for the 7 individual loops, one
is of size 1, two of size 2, one of size 4, two of size 5, and one of size
25.

i^MMjBaMMMBB J

■JJ.""1

g) Loop nesting:
MAIN: 2 single level

2 double level
DECOMP: 1 single level

3 double level
1 triple level

SOLVE: 2 single level
2 double level

.

The original algorithm given in the textbook
by Forsythe and Moler [For67] consists of two
subroutines, llowpver, Moler later published new
subroutines that were a modification of, and
replacement for, the corresponding original
routines [Mol72]. Theso were the routines used
in the program. The test matrices were
generated by the program and correspond to
Example 3.6 in the book by Gregory and
Karney [Gre69] (see Appendix B, Section B.2).

4) QZ: An eigenvalue problem [Mc!73].
a) Control parameter: N, the size of the square

input matrix
b) Program units: Main program unit plus 9

subprogram units
c) Number of statements: 654
d) Number of basic blocks: 323

MAIN: 9
QZ: 7
QZHES: 66
QZIT: 97
QZVAL: 49
QZVEC: 77
HSH3: 5
HSH2: 5
CHSH2: 5
CDIV: 3

e) Number of individual loops: 51
MAIN: 2
QZHES: 19
QZIT: 12
QZVAL: 4
QZVEC: 14
HSH3, HSH2, CHSH2, CDIV: 0

mmmmm —

87

f) Loop sizesdn basic blocks):
MAIN: 2,5
QZHES: 2(12),3,5)7(2)>21,23,32
QZIT: 2(7))3I9110,44,66
QZVAL: 2(3),42
QZVEC: 2(6),3(2),5,7,18,19(2),48

g) Loop nesting:
MAIN: 1 single level

1 double level
QZHES: 3 single level

7 double level
9 triple level

QZIT: 3 single level
2 double level
7 triple level

QZVAL: 1 single level
3 double level

QZVEC: 3 single level
7 double level
4 triple level

This program was obtained from Stewart and
is described, but not given in his paper with
Moler [Mol73]. The test matrices are generated
by the program and were suggested by Stewart
(see Appendix B, Section F3.5). This algorithm is
interesting in that the intermediate quantities
produced by the program may not be the ';ame
owing to rounding errors. Consequently, the
execution times are theoretically not strictly
comparable. However, for practical purposes
they are, i.e., the timings depend in a uniform
manner on the size of the matrix.

Each of these test programs were run under AF, AFW, AFG and AFH,

plus F40, the FORTRAN-IV compiler on the PDP-10. We now present the

results of tnese test runs.

"I»*WI I LI» I ■ I I I

4.3 Th« Test Results

The performance of each compiler system is measured by obtaining the

total run-time for a test program as a function of its control parameter,

where total run-time is the sum of compilation time, load time and execution

time. The timings were made on a PDP-KA10 computer system with Ampex

core having a l.S^s read/write c/cle. In order to obtain accurate timings, it

is necessary to run the compiler systems with no load on the computer

system, for timings are sensitive to the system load. During a test run, the

computing environment consisted of the monitor, the I/O handlers and the

particular compiler system being tested. Identical computer runs produced the

same timings so there is no statistical fluxuation in the results. A IOJAS clock

was used to make the timings, which are given here in seconds.

The results of the test runs are presented in tabular and graphical

form. There are five tables for each program (Tables 4.1-4.4):

1) Compiler and Loader Timing Statistics
The following statistics are tabulated for F40, AFW,

AFG, AFH, and AF:
a) Compilation time,
I) Load time,
c) Total of a) and b),
d) Optimization time, i.e., that part of the

compilation time spent optimizing the program,
e) The percent of the compilation time spent

optimizing, i.e.,
(optimization time/compilation time)«100.

■' ' ■ ' ■" J '>• '*.i

?

89

2) Execution Times
The execution times of the program for F40, AFW,

AFG, AFH and AF are tabulated as a function of ine
control parameter. Data points were taken until the
amount of time spent optim^ing th? program became
constant, i.e., until no more op'imizations were
performed.

3) Total Run-time
The total run-time (compilation time r>lus load time

plus execution time) is tabulated M a function of the
control parameter for F40, AFW, AFG, AFH and AF.

4) Total Run-time Ratios
This table indicates the relative speed of AF as

compared to each of the compiler systems. The ratio
of total run-times is tabulated as a function of the
control parameter.

5) Ar Optimize: ^n Statistics
The following statistics are tabulated as a function

of the control parameter:
a) Exec tion time,
b) Optir ization time, i.e., that part of the

execution time spent dynamically optimizing
the program,

c) The percent cf the execution time spent
optimizing the program, i.e.,

(optimization time/compilation time)*100.

The tf ird table of total run-times represents the measurements for

comparing the performance of each compiler system against AF. In order to

compare the systems visually, this table is preset ' in graphical form for

each test program (Figures 4.1-4.4), The coordinates of the graph are the

total run-time versus the control parameter. The data for each of the

compiler systems is plotted on the same set of axes thereby producing a set

of performance curves that can easily be compared.

.

■ ■-• -^ ■- ■"-■——^f ■ ■ -■ •• ■ - -■ - -*■

W^"^^ll ■! um

90

In order to further demonstrate the effects of dynamic optimization, we

constructed another compiler system, AFI, which performs no optimizations, but

runs the program interpretively. Table 4.5 shows the results of the initial

test points for the test programs QZ and LES. These results are plotted on

the corresponding graphs.

Finally, we were interested in studying the behavior of AF for very

small execution times because the optimization time then constitutes a Lrge

percentage of the execution time. We wanted to see how the fraction of

execution time devoted to optimiz^iion grows and finally peaKs. Refined

measurements were made for the test programs QZ and LES, and the results

are tabulated in Table 4.5. The results also were used in accurately plotting

the initial portion of the corresponding performance curves.

-■ —'- . .u -■ ■ - - - - - -

•mwimvmmmrm^m^m -—-•

91

Table 4.1a Compiler and Loader Timing Statistics for EE

Compilation Load Optimization 7. of
Time

3.37

Time

2.25

Total

5.62

Time Compilation

F40 ___-

AFW .59 .03 .62 .07 11.86

AFG .77 .03 .80 .25 32.47
AFH .81 .03 M* .29 35.80
AF .52 .03 .55

C3I

Table 4.1b Execution Times for EE

F40 AFW AFG AFH AF

.5 41.40 35.13 32.82 30.74 31.04
1.0 20.75 17.70 16.55 15.51 15.81
2.0 10.63 9.09 850 7.96 8.27
4.Ü 5.48 4.69 4.39 4.12 4.42
6.0 3.85 3.28 3.08 2.88 3.19
8.0 3.02 2.58 2.42 2.27 2.57

C3I

Table 4.1c Total Run-time for EE

F40 AFW AFG AFH AF

0.5 47.02 35.75 33.63 31.58 31.59
1.0 26.37 18.32 17.35 16.35 16.36
2.0 16.25 9.71 9.30 8.80 8.82
4.0 11.10 5.31 5.19 4.96 4.97
6.0 9.47 3.90 3.88 3.72 3.74
8.0 8.64 3.20 3.22 3.11 3.12

 ii^iiieiMMiH

■■ ■ '■ '■■ ■■' ■ mimn&mnmmimmin^r^mimm

92

Table 4.Id Total Run-tim« Ratios for EE

C3I F40/AF AFW/AF AFG/AF AFH/AF

Ö.5 1.49 1.13 1.06 .99

1.0 1.61 1.12 1,06 .99

2.0 1.84 1.00 IJM .^9

4.0 2.23 1.07 1.04 .99

6.0 2.53 1.04 1.04 .99

8.0 2.77 1.03 1.03 .99

Table 4.1« AF Optimization Statistics for EE

Execution Opt imization 7. of

C3I Time

31.04

Time Execution

0.5 .31 1.00

1.0 15.81 .31 1.96

2.0 8.27 .31 3.75

4.0 4.42 .31 7.01

6.0 3.19 .3i 9.72

8.0 2.57 .31 12.06

i—llliiH*ftl il^riMlilMiiMM «iMIfciiTil — - . - ■ - - - - -————^-

mmmr MM«
mmm

_—
mmmmmm

93

Tabl« 4.2a Compiler and Loader Timing Statistics for SIEVE2

Table 4.2b Execution Times for SIEVE2

F40 AFW AFG AFH

Compilation Load Optimization 7. of

F40

rime Time

2.43

Total

6.88

Time Compilation

4.45
AFW .77 .17 .94 .11 14.29

AFG .89 .17 1.06 .23 25.84

AFH 1.03 .17 1.20 .37 30.10

AF .66 .17 .83

AF

10 .07 .06 .06 .02 .12

20 .07 .07 .06 .02 .15

30 .07 .07 .06 .02 .20

40 .07 .08 .07 .03 .21

50 .07 .08 .07 .03 .47

60 .07 .09 .08 .03 .47

70 .03 .10 .08 .04 .47

80 .10 .11 .09 .04 .48

90 .IP .11 .09 .05 .48

100 .10 .12 .10 .05 .49

200 .18 .23 .16 .12 .55

300 .28 .37 .25 .21 .64

400 .38 .52 .34 .30 .73

500 .52 .70 .44 .41 .83

600 .65 .89 .56 .52 .95

700 .78 1.09 .68 .65 1.07

800 .95 1.29 .80 .77 1.19

900 1.10 1.51 .93 .91 1.33

1000 1.27 1.75 1.07 1.05 1.46

 " --^a-^^-^-^-.

pp—WP1 i — mw^m^mmmr'

94

Tabl« 4.2c Totti Run-tim« for SIEVE2

F40 AFW AFG AFH

Tabl« 4.2d Total Run-tim« Ratios for SIEVE2

AF

10 6.95 1.00 1.12 1.22 .95
20 6.95 1.01 1.12 1.22

QR
30 6.95 !.01 1.12 1.22 1.03
40 6.95 1.02 1.13 1.23 1.04
50 6.95 1.02 1.13 1.23 1.30
60 6.95 1.03 1.14 1.23 1.30
70 6.96 1.04 1.14 1.24 1.30
80 6.98 1.05 1.15 1.24 1.31
90 6.98 1.05 1.15 1.25 1.31
100 6.98 1.06 1.16 1.25 1.32
200 7.06 1.17 1.22 1.32 1.3S
300 7.16 1.31 1.31 1.41 1.47
400 7.26 1.46 1.40 1.50 1.56
500 7.40 1.64 1.50 1.61 1.66
600 7.53 1.83 1.62 1.72 1.78
700 7.66 2.03 1.74 1.85 1.90
800 7.83 2.23 1.86 1.97 2.02
900 7.98 2.45 1.99 2.11 2.16
1000 8.15 2.69 2.13 2.25 2.29

F40/AF AFW/AF AFG/AF AFH/AF

10 7.32 1.05 1.18 1.28
20 7.09 1.03 1.14 1.24
30 6.75 .98 1.09 1.18
40 6.68 .98 1.08 1.18
50 5.35 .78 .87 .95
60 5.35 .79 .88 .95
70 5.35 .80 .88 .95
80 5.33 .80 .88 .95
90 5.33 .80 .88 .95
r>« 5.29 .80 .88 .95
20« 5.11 .85 .88 .96
300 4.87 .90 .89 .96
400 4.65 .94 .90 .96
500 4.46 .99 .90 .97
600 4.23 1.03 .91 .97
700 4.03 1.07 .92 .97
800 3.88 1.10 .92 .98
900 3.69 1.13 .92 .98
1000 3.56 1.17 .93 .98

- ""- ■■-- .-.. -^ — .-■. . —A— -"■■■■ —" • —
 r

"RTT- mmmrnmm

95

Tabl« 4.2« AF Optimization Statistics for SIEVE2

Execution Optimization 7. of
K Time Time Execution

10 .12 .05 41.67
20 .15 .07 46.67

30 .20 .11 55.00
40 .21 .11 52.38
50 .47 .37 78.72
60 .47 .37 78.72
70 .47 .37 78.72
SO .48 .37 77.08
90 .48 .37 7>.08
100 .49 .3/ 75.51
200 .55 .37 67.27
300 .64 .37 57.81
400 .73 .37 50.68
500 .83 .37 44.58
600 .95 .37 38.95
700 1.07 .37 34.58
800 1.19 .37 31.09
900 1.33 .37 27.82
1000 1.46 .37 25.34

i
-■ —- — —>— ■ - ■■-**' MiiflMMMitfMil

Tabl« 4.3a Compiler and Loader Timing Statistics for LES

Compilation Load Optimization 7. of
Time Time Total Time Compilation

R0 6.68 2.20 8.88 .«.-

AFW .99 .10 1.09 .17 17.17
AFG 1.20 .10 1.30 .38 31.67
AFH 1.30 .10 1.40 .48 36.92
AF .82 .10 .92

Table 4.3b Execution Times for LES

F40 AFW AFG AFH AF

5
1.3
15

43

70

.08

.25

.65
1.42
2.62
4.37
6.82

10.07
14.08
19.17
25.32
32.68
41.33
51.38

.09

.25

.62
1.31
2.42
4.04
6.29
9.25

13.04
17.75
23.48
30.32
38.39
47.78

.10

.21

.48

.98
1.78
2.94
4.56
6.69
9.41

12.79
16.91
21.83
27.62
34.38

.02

.11

.31

.68
1.27
2.12
3.29
4.83
6.79
9.21

12.16
15.68
19.81
24.62

.25

.56

.85
1.36
2.04
2.90
4.14
5.68
7.65

10.08
13.03
16.70
20.84
25.66

■ - - ■

—— —""

97

N

Tabie 4 3c Total Run-tim« for LES

F40 AFW AFG AFH AF —

5 8.96 1.18 1.40 1.52 1.17
10 9.13 1.34 1.51 1.61 1.48
15 0 53 1.71 1.78 1.81 1.77
20 10.30 2.40 2.28 2.18 2.28
2F-> 11.50 3.51 3.08 2.77 2.96
30 13.25 5.13 4.24 3.62 3.82
35 15.70 7.38 5.86 4.79 5.06
40 18.95 10.34 7.99 6.33 6.60
45 22.96 14.13 10.71 8.29 8.57
50 28.05 18.84 14.09 10.71 11.00
55 34.20 24.57 18.21 13.66 13.95
60 41.56 31.41 23.13 17.18 17.62
65 50.21 39.48 28.92 21.31 21.76
70 60.26 48.87 35.68 26.12 26.58

Tkht« 4 3d Total Run-time Ratios for LES

IN! F40/AF AFW/AF AFG/AF AFH/AF

5 7.66 1.01 1.20 1.30
10 6.17 .91 J.02 1.09
15 5.38 .97 1.01 1.02
20 4.42 1.05 1.00 .96
25 3.89 1.19 1.04 .94
30 3.47 1.34 1.11 .95
35 3.10 1.46 1.16 .95
40 2.87 1.57 1.21 .96
45 2.68 1.65 1.25 .97
50 2.55 1.71 1.28 .97
55 2.45 1.76 1.31 .98
60 2.36 1.78 1.31 .98
65 2.31 1.81 1.33 .98
70 2.27 1.84 1.34 .98

l

"— ■ j^.-.». ..., ■...■..^ . .- ■■ ■•-—■--iliiiilMMfciMailMMiil - - ■■ ■ ■ - - -. -. ^ iiriiiM ii in f-"-' ^—«-^-'■■^— ■ - - -Jt

"' ' wm^mmmmm wnw^ww"-^™^!

98

Tabl • 4.3« AF Optimization Statistics for L

Execution Optimization t of
N Time Time Execution

5 .25 .09 36.00
10 .56 .29 51.79
15 .85 .34 40.00
20 1.36 .45 33.09
20 2.04 .54 26.47
30 2.90 .54 18.62
35 4.14 .61 1473
40 5.68 .61 10.74
45 7.65 .61 7.97
50 10.08 .61 6 0L
55 13.03 .61 4.68
60 16.70 .77 461
65 20.84 .77 3.69
70 25.66 .77 3.00

■ ■'■ ■ ■ - ■■ — — - ■ - - - — - •--

m^mBr****™ '^'l^" ' . HIUIIIIPU

99

Table 4.4a Compih >r and Loader Timing Statistice for QZ

Compilati on Load Optimization t of
Time Time

3.83

Total

70.83

Time Compilation

F40 67.00 .._.

AFW 10.12 .58 10.70 1.65 16.30
AFG 13.58 .58 14.16 5.11 37.63
AFH 15.16 .58 15.74 6.69 44.13
AF 8.47 .58 9.05

N

Table 4.4b Execution Times for QZ

F40 AFW AFG AFH AF

5 .45 .62 .52 .74 2.29
10 2.70 3.02 2.03 2.04 4.81
15 7.42 7.85 4.94 4.46 7.63
20 15.42 15.89 9.69 8.34 12.02
25 30.17 30.70 18.33 15.39 20.32
30 48.13 48.^3 28.63 23.65 23.63
35 73.62 73.57 43.12 35.22 40.34
40 109.75 109.05 63.38 51.41 56.74
45 149.85 150.91 87.33 70.4'^ 75.81
50 204.45 200.21 115.41 1253 98.04

N

Table 4.4c Total Run-time for QZ

F40 AFW AFG AFH AF

5 71.28 11.32 14.68 16.48 11.34
10 73.53 13.72 16.19 17.78 13.86
15 78.25 18.55 19.09 20.20 16.68
20 86.25 26.59 23.85 24.08 21.07
25 101.00 41.40 32.49 31.13 29.37
30 118.96 59.13 42.79 39.39 37.68
35 144.45 84.27 57.28 50.96 49.39
40 180.58 119.75 77.54 67.15 65.79
45 220.68 I61.6I 101.49 86.16 84.86
50 275.28 210.91 129.57 108.32 107.09

 - - -■■ '■■■ ■ ■ ■ ■- ■-
- ■--^———~^—■■

wmm p ■PW^vm^""

100

Tabl« 4.4d Total Run-tim« Ratios for QZ

N R0/AF AFW/AF AFG/AF AFH/AF

5 6.29 .99 1.29 1.45
10 5.31 .98 1.17 1.28
15 4.69 1.11 1.14 1.21
20 4.09 1.26 1.13 1.14
25 3.44 1.41 1.11 1.06
30 3.16 1.57 1.14 1.05
35 2.92 1.71 1.16 1.03
^0 2.74 1.82 1.18 1.02
45 2.60 1.90 1.20 1.02
50 2.57 1.97 1.21 1.01

Table 4.4e AF Optimization Statistics for QZ

Execution Optimization t of
N Time Time Execution

5 2.29 1.44 62.88
10 4.81 2.48 51.56
15 7.63 2.77 36.30
20 12.02 3.20 26.62
25 20.32 4.39 21.60
30 28.63 4.40 15.37
35 40.34 4.48 11.11
40 56.74 4.65 8.20
45 75.81 4.65 6.13
50 98.04 4.65 4.74

.^...^^.^.: v.. ■....■>-..■.—^.^.L-- ■■ ■ ■ ^.^ ■ ,.-. ^.^^^***tMlm
—-—---■-"—- ■-■■■ - --'

101

Tabl« 4.5a AFI Timings for QZ

N

5
10
15

Execution
Time

2.58
16.69
46.10

Total
Run-time

11.63
25.74
55.15

Table 4.5b AFI Timings for LES

Execution Total
N Time Run-time

5 .28 1.20
10 1.30 2.22
15 3./9 4.71
20 8.40 9.32
25 15.80 16.72

 —■ ■ ■ - ■ -- _-< - ...

102

N

1
2
3
4
5
6
7
8
9

10

Table 4.6a Refined AF Timings for Q2

Execution Optimization 7. of
Time Time Execution

.17
A2

1.08
1.72
2.29
2.74
3.16
^.09
4.26
4.81

.00

.18

.59
1.01
1/44
1.70
1.95
2.38
2.41
2.48

0.00
42.86
54.63
58.72
62.88
62.04
61.71
58.19
56.57
51.56

Total
Run-time

9.22
9.47

10.13
10.77
11.34
11.79
12.21
13.14
13.31
13.86

Table 4.(>b Refined AF Timings for LES

N

1
2
3

9
10

Execution
Tims

.08

.12

.17

.21

.25

.35

.41

.47

.49

.56

Optimization
Time

.00

.03

.06

.08

.09

.18

.22

.26

.26

.29

t of
Execution

0.00
25.00
35.29
38.10
36.00
51.43
53.66
55.32
53.06
51.79

Total
Run-time

1.00
1.04
1.09
1.13
1.17
1.27
1.33
1.39
1.41
1.48

^.« - _

103

4.4 Analysis of T«st Results

Before ans'yzing the position of the AF performance curve relative to

the curves for AFW, AFG and AFH, we first analyze the relative positions o*

the AFW, AFG and AFH curves and see if they conform to expectations.

AFW, AFG and AFH differ only in the amount of compile-time

optimization they apply to a program, an'-i thus in the efficiency of the

machine language they produce. At the start of execution, ine AFH curve

lies above the AFG curve which in turn lies above the AF\A curve. Because

of the relative efficiency of the code, the AFW curve eveniually will cross

the other two, and the AFG curve will cross the AFH curve. These

crossover points occur when the difference in compilation ume equals the

difference in execution time. It is expected then that if a program is run

long enough, the AFW curve will lie obove the AFG curve which in turn will

lie above the AFH curve. If, however, the additional optimization (CM)

performed by AFH has no effect, i.e., does not remove any invariant quads

from any loop, then the effort is wasted and the AFG curve will lie below

the AFH curve.

By checking the tables and figures for each test program, it is seen

that the curves follow this behavior pattern. Only for the test program

SIEVE2 does the AFG curve lie below the AFH curve. The reason is exactly

that given above, viz., CM has no effect. An examination of the optimization

results showed that the loops did not contain any invariant quads.

I
...^ :J...^J . ..- ■ ■.J-. -■^.. - _^:>.-....—,^..J.^

- ■- -"■-■■— -•-- ■ — —'—•-—'— ■■ - ■ "'-'-
.-^x. ^ ■,.^...^ .- .■,-.:..tJ. .i^. ^. - .^. ■..■■iif- |rt iiiiirjn in liin inn

104

The performance curves for the four test programs indicate that the

range of applicability for AFG is very narrow since the crossover point

between AFW and AFG is very close to the crossover point for AFG and

AFH. One can only conjecture that AFG is not necessary, i>nd that c ■»

should run under either AFW or AFH depending on the length of execution.

As for the AF curve, it is expected to initially li? be\OM all the other

curves since It performs no initial optimizations. This is indeed the case. If

a program is run long enough, the AF curve wih asymptotically become

parallel to the AFH curve because the executable code becomes ider.t<cal to

that produced by AFH. Indications are that it approaches the AFH curve from

above if the time to totally optimize the program exceeds the compile-time

optimization time for AFH; otherwise it approachen "t from below.

There is a range in which the AF curve r ight cross over one or more

of the other curves and then cross back under. This occurs for small

execution times. The width of the range seems to depend on the diversity

of the program's loop structure. Consider each test program in terms of

increasingly diverse loop structures:

1) EE (see Figure 4.1): A short program having one loop
which constitutes most of the program. Since this loop
is an innermost loop, the only difference between AF
and AFH is that AF first translates the loop to "dumb"
code which is executed before beinj, totally optimized.
Hence, AF's execution times differ from those for AFM
by a constant.

2) bicVt2 (see Figure 4.2): Like EE, this program contains
a main execution loop which constitutes most of the
program and gets totally optimized almost immediately.

-■■-^ ■ ■■ -—— ■ ~i^-*—i.-..-.— . *'-'^--—^—-- ■■ ■ -- -— ■ ■- —■-.-..--.-

105
?

However, it contains a few embedded loops and is
therefore considered an outermost loop. Hence its
optimization is more gradual than the loop in EE, but
net gradual enough because representations are change 1
before it is necessary. The spike occurring at the
beginning of the AF curve is due to CM having no
effect on the outermost loop. This optimization time is
wasted and the machine language segment is identical to
that produced by Cl'E.

3) LES (see Figure 4.3): This program consists of three
program units, each containing a number of loops. Each
subprogram unit contains a doubly nested loop which
accounts for most of its execution time. The one
program unit gets called only once so the benifits of
total optimization are wasted if the program does not
run lung enough. The other program unit is called
repetitively so eventually the double loop and the entire
subprogram get totally optimized. The results are
excellent, for only AFW is slightly better than AF for
small execution times. The initial part of the AF curve
is not smooth due to the optimization pertabations which
are more apparent for small execution times.

4) QZ wee Figure 4.4): This program contains the most
diverse 'nop structure and consists of 10 program units.
Four of the units constitute the main part of the
program, and each is called only once. There are a
large number of inner loops of 1-2 basic blocks whose
early optimization probably contributes to the fact that
the AF curve is the best of any test programs. This is
also the only case in which the time for total dynamic
Optimization is smaller than AFH's optimization time. The
initial part of the AF curve is not smooth for the same
reason stated for LES.

The test results indicate that AF does not outperform all the other

systems across the entire spectrum of run-times, but that for a particular

program there is a given range in which one compiler system Is preferential

over any of the others. However, AF Is better than any other single

compiler »ystem over the spectrum. Thus, we conclude that it is better to

. -,.-.. r.—. .^k.*.Jz—^—*^^~^.-J^t.^~*^^^^*.*.^.- -.■»—.■—.-.-..._,... . ■- .. ■
. .,.-.■. .■. .^^^ „^^ittj^fra.

106

build one compiler system to cover 'he run-time spectrum than three

separate specialized compiler systems, each designed for a different range of

the spectrum.

"— - ■' - —
—-...—-. ■....—^.

■■■••■- ■
'in - iiiriiiniii 1 in m r'--"-~"—^--^"--- ■-■ ■ ■ ■ ■ ^..—■...^—. ^^„^

.:. .^,^ '^■■mliM»r---l,-J,*-lx"- ■■■ - -^ •''■ - ~ ■ •• '- - -.-■^^.^—-^ ■■....—^.^-.f.^^-.!. ^-■..^^..^^.^ >. ■ ■.,■:,■, , i ,■■,■. ^. - ^.^^. ^■■.^■:,..

10_

.4

.1-

■■■ ■ ;

i

• ■

■

, ..

la

2Ö0 .300 400 5p0 600 700 8f)0 | 9il0 . lOOO

. ..

:

—T

W-

■

T

::
-

rr

■

::.:

d

•;.

:;;

•

■ •

■Hi i
—

:

■

■

' I

* H • -

11 .

I

...

•:

4
■ ■

.44

Ä

■

;.:.

4--

•

mriti

:

:

i

t;

,;.

r.

Ii

5:

"T

■■

;

r

■■rr

&J

!;■•

:/

H

::

—

r i ^"

tffl

.: i
:ir

ra :,

■■ *#i

H

mm
i
mi

4?

m
m m

:■
H-
c:i:

1.

m-

:..■ ;.!

r;^

"t'n:

-

tT+t

r
TH;

Hi

m

m

i
IT4

[■MM mir- ■ ■ '-■ -' • ■ -- ' ' - ■' -
J1-:"-"—^ ■ ^..H ■■ ||,<|f1||.|...-^.-^L, -.....—J^.. M ■-.■■ i-i.nr----—-- ——■ ..-i ,■ ill, a „if r--^-'---'-^"*"^-—— —

...... ■■■.... ..-..- ., - - - - ■ - - ■ ■ -^ ... - •

0
«1 u
z .

* I

l'i^i.~; 1): :J is 2) ^ .
1 . . —^ ' T— — - . , . . s©

Zt

h

Tilt
i L:

ft

±ir±

-U

—

m

m
li L
Ml rr

r-rt:

±44--

I-3|£lJz3>iJ_j4iii^45: i S
arj -.t-i

m
-riTpt

—t-

H Q

m
03.

Si
-44-

Hit

■ffl4

1 1 L.

m

SB

tr
ti
4

£S
TTr

il
i- ¥--i

^im

a
5d-

11 m

i

m f i

a

^^

■JZ±

rax

IL,

— - - ■■ ■. -■■ -■ ■■ - - ^^^^^M~^ w^^^^

I

II

Chapter V

Conclusions

This dissertation investigated the possibility of improving the cost

effectiveness of code optimization. Whereas current approaches apply code

optimization equally to the entire program at compile-time, our approach

exploits dynamically the observed behavioral characteristics of programs, viz.,

that a small part (57.) of the code accounts for a large portion (507.) of the

execution time. We studied, in general, the problems of performing code

optimizations at run-time, i.e., dynamically determining which sections of code

to optimize, how much optimization to apply, and when to apply that

optimization. This resulted in the specification of a number of adaptive

schema. The most promising scheme was incremental dynamic optimization

which uses optimization counts to determine which section of code to optimize

and when. The effect is gradual optimization of a pro-jram, i.e., one

optimization is applied to one section of code at a time. The longer the

program executes, the more optimized a section becomes. Using this scheme,

a prototype system was built for an interesting subset of the FORTRAN

language. Performance of this system, Adaptive FORTRAN (AF), was measured

on a representative set of programs. In order to make unbiased comparisons

with existing compiler systems, the adaptive system was transformed into

various "normal" compiler systems that generate code analogous to that

produced by WATFIV, FORTRAN-IV G and FORTRAN-IV K The same ect of

^ ... _
- --■ - ■MMtttliMfliMIIHtfBMIIIMttMll

112

test programs were run under these transformed systems, and the

performance measurements compared against those for AF.

The results were very encouraging. While AF did not outperform each

of the other systems at all points in the run-time spectrum, it iid perform

better over the spectrum than did any other single compiler system. The

major remaining problem lies in controlling the rate of op imization, AF's

performance curves look worst for small-medium run-times, indicating too much

optimization is being applied too soon. More research is needed to find a

better means for controlling the optimization rate.

AF is the last of an evolutionary chain of exnerimental systems and

there is every reason to believe it is possible to construct other variants

which control optimization better and outperform all fixeu-strategy systems

everywhere in the run time spectrum. The first line of attack should be to

continue working with optimization counts. The method for estimating

optimization counts presented in Section 2.5, viz., using the performance

curves, E(q), for each optimization, should be explored. It would not be

difficult to obtain such curves. Determining optimization counts heuristically

has its limitations, for we found it hard to change an optimization count so

oniy a portion of the performance curve is affected. Therefore, if any

appreciable progress is to be made, a more theoretical basis for determinirg

them must be developed. After this line of attack has been exhausted, other

computationally feasible mechanisms and/or parameters for controlling the rate

.. ..^ ■ lHiHiiiMillüi'til
- ■' ■ • ■-■- ■ ■'-■

■— "—<-^-'-—«
- — ■ - —^ —-

t

113

of optimization should be explored.

In order to evaluate how good the incremental dynamic optimization

scheme is, and determine exactly how much bettor we can expect to do, the

absolute measure of performance should be obtained, for each test program,

using the iterative dynamic optimization scheme. Using a large amount of

computing effort, this performance curve can be obtained in the following

manner. First, certain measurements must be made. For each optimizer, this

consists of determing its performance curve, E(q), and its space requirements.

For earh segment of the program, measurements Ol its execution time and

space requirements in all possible representations must be made Using these

measurements, optimal policies can be determined at run-time over the

execution spectrum. But since it is not known when to determine such

policies, they would have to be oontimjousty determined, say after the

exec.'tion of a basic block or segment, or a quantum of execution time.

When the policy changes determines when to optimize. Using these results,

the program would then be run for a given test point, policies changed at

the appropriate time, and its execution time measured. The entire

performance curve for the program can be obtained in this manner. The

resulting curve does not contain the time required to determine the optimal

policy; therefore it is the absolute best one can expect from any strategy.

We feel that we have demonstrated a worthwhile alternative to compiler

design that should be considered seriously. The approach makes more sense,

- - - . .. - MOMBHaantM^^UM MMMMMMtfMaBMWMl

114

from an implementation viewpoint, than building many special purpose

compilers. The system can be built in an incremental fashion because of its

modularity. Each step consists of programming and debugging an i otimizer

module and then adding it to the system. The final product is an adaptive

compiler that does not require much more effort to build ihan a full

optimizing compiler. AF was built in this manner: in 3 man months we had

programmed the compiler and interpreter, and had programs running. Then

each optimizer was programmed in 1/2 to 1 man month, debugged and added

to the system. In less than a man year, the system was completed.

It is clear that such an implementation approach is open ended up 4o a

point, for one can keep improving the eiticiency of the generated code by

adding more efficient optimizations until one exh-.usts optimizations. There

are other well defined optimizations that work with the same internal form

we produce; they should be added to the system and the performance

measurements retaken, e.g., strength reduction, opening subroutines, and other

machine dependent optimizations. There is one problem associated with

adding more optimizationo that became apparent as we constructed AF, viz.,

controlling the rate of optimization becomes harder. The means of control

must be defined more sharply. This is the main reason why AF's optimization

counts are determined as a function of the programs loop structure. As each

optimizer was added, it became apparent that basic blocks and segments

could no longer be treated uniformly with respect to the optimization counts.

 ■ ■ ■ -'■ - -■ ■■■"■^—--'" --- —' ^.a-^ ^-j, | . - ,,■^ .>■-......J.-^.-.^. ... -..^. ,,, ir--—-■ "- - ^.—,-. -- ~*

•mi^mmmmmmmmmwmm ■• • " ' mm

115

Thus we see that additional research is needed to more clearly

understand dynamic optimization and to refine the current approach.

However, other areas are suggested on which further research should be

conducted. It would be interesting to see if some hardware features can be

developed to aid in controlling optimization. One beneficial feature would be

for determining which section of code is being executed the most. There is

one existing hardware feature we have not exploited for improving execution

time, viz., micro-programming. There are two areas in the system that could

utilize this feature. One is in interpreting the internal form produced by the

compiler. Instead of writting a program to interpret it, micro-code could be

developed for each operation. The other area is in the machine language

generators. Instead of generating optimized code, specialized micro-code could

be generated that performs the optr^U .s more efficiently.

Finally, the implications of our ideas should be studied with respect to

conversational languages as indicated by Mitchell IMit70]. He stated that a

major problem in designing an interactive prosramming system is determining

how to get efficiency and flexibility, two opposing constraints, to co-exist.

His solution was to build an interpreter/compiler system. In such a system, a

program is partially interpreted (to provide flexiblity for the user) or

compiled (to provide efficient use of the computer) depending on its usage

and constancy over some period of time. We see no conceptual problem in

incorporating dynamic optimization into such a system in (rder to further

improve efficiency. All that we would be doing is replacing the mechanism

— ■ -— --— ■- -' - -- ■- ■--^■— .^^wV^^^l^i^^L^ U^a||tlvMHäft. ■ ■■■■ MMM^^^a^^M

ii. i ii i i, MI JI.I rmtmB*^^^*^mmmvm**W^* ppmvnrf*<m^mviwniBuiiiiiii ii^pnpn^w

116

that controls the compilation of code with a more refined one. Whenever

changes are made to the program, the internal form used by the interpreter

could be regenerated for those sections of the program affected, and their

optimization state reset so they would be executed interpretivelv As the

program executes, these code sections would again be dynamically optimized.

In summary then, our test results indicate that the adaptive pro-.ess is

a worthwhile and promising technique. As our understanding of program

behavior increases and our programming styles become more formalized, it

may turn out to be one of the most sensible approaches for designing

compiler systems.

. miittniiätii »a MI«H -im -- - ' - ■■■-■- --■ —-IM i - i ■ -■ ■ ^ ^■-. —.»-. -. ^*~**äm*i**äaikä*äL***^^^~i**^.*..^*-*^.,

i i nuiaiw »" ■■"■■ ■ ■ -" ' ii WKIJIIIWI inuiini i iii«|p||l|||

f

7

Appendix A

The Compiled Code

To aid in syntax analysis, optimization and code generation, the compiler

translates the source code into an internal form. A number of internal forms

art possible: Polish notation, quadruples, triples, indirect triples or trees

(cf. Gries [Gri71]). Optimizing compilers have been built using different

internal forms, viz., FORTRAN IV H [Low69] uses quadruplets,

FORTRAN II [AI169] uses indirect triples, and BLISS [Bli71] uses trees. Which

form to use is a matter of taste.

The adaptive FORTRAN compiler uses two internal forms. The

compile-time internal form is Polish postfix which is used for syntax analysis

and code generation. The run-time internal form is the generated code and

consists of quadruplest, or quads for short. This form is an expanded

version of the smaller and more consise source code in which language

car structs (e.g., DOs, IFs, subscripts, tests) are expressed as basic operations.

A.l Quadruples

There are a number of reasons why quads were selected as the

run-time internal form. The main reason was that they were a convenient

form that could be efficiently processed by the optimizers and executed

t Also known as three address code.

- --■■- — - ■ -• -^ ■ .■■II!» - . ^^...

'- ■ '" ■ ' '■—— ■« « mm9mi*mi^*mmm***mi^w~* ■»" "■ ""^ . m^tmmmmv" " ' ni\miwmm^mm^^ ■ »»^•IP-

Uf

interpretively. Other reasons were:

1) A quad is self contained, i.e., it is not necessary to
reference the result of another quad when processing
its arguments.

2) Quads appear in the order In which they are to be
executed.

3) Functions will know precisely where to return their
results.

For a single binary operator, quads have the form:

(OP, ARGi, ARG2, ARG3)

where ARGi and ARG2 specify the operands, ARG3 the result temporary, and

OP the operation to be performed. Not all operations require three

arguments; some require one (e.g., branches) while others two (e.g.,

conversions of type and unary operators). As a convention, unused positions

of a quad are left blank.

A.2 Code Generated for each FORTRAN Construct

The adaptive FORTRAN compiler is one pass and generates relocatable

interpretive code(i.e., quads) directly to core. If the program contains no

errors, the relocatable code is loaded by a fast loader which maps

relocatable addresses into absolute addresses and allocates data storage.

The generated cede for some of the FORTRAN constructs is strictly

quads (e.g., arithmetic operations); others are a combination of quads and

machine language (e.g., calls to mathematical functions); while others are pure

- - - .. ,.-.■- ^,..-J^„ ■ -^-—.. . .

imm 1— —.—■ rmmm ■"'"■-"- "■',

119

machine language (e.g., I/O). Thus when the program is loaded, the

instruction storage consists of quads with possible embedded machine language

and pure machine language compiled out of sequence.

The descriptions of the generated code given belov use the following

programming conventions:

1) POP 10 machine language is represented in MACRO-10
assembly language (cf. [PDP71aj).

2) A colon following a symbol indicates the symbol is a
label.

3) The character V preceding a symbol indicates indirect
addressing!

4) A period following a symbol indicates it represents a
FORTRAN UUO (cf. [PDP71b]), i.e., a call on the FORTRAN
run-time support system.

5) A period represents the current address.

6) For arithmetic operations, the basic mnemonic has a
single letter prefix to indicate the arithmetic mode:

a) no prefix - integer OP
b) F - floating point OP
c) D - double precision OP

_ d) C - complex OP
e) L - logical OP
f) S - string OP

A complete list of the OP mnemonics is given in Table
A.1 along with a brief description.

7) The meta-language variables used in the syntactic forms
aro the same as those used in the American Standard
Fortran Report [ASF66]. Their meanings are generally
obvious from context.

t MACRO-10 uses a 'a' symbol instead, a convention we will not follow.

 -'- -■■■■-— ■- ■-•"- ■
 ^-.-„.^ - -.- -..^- - ■ -.-^

120

8) The subscripted letter T as an argument of a quad
represents a temporary.

9/ addr{v) represents the address of v.

10) Formatted data words are specified by the pseudo-ops
DATA, DESC1, DESC2, DESC3 and TEXT. Their internal
representations are given in Figure A.l.

A.2.1 Expression«

A. Aritmetic

a) Binary operator

FORM: ei <bop> 62

CODE: (OP, ti, 62, T)

where <bop> ::- +|-|*|/|**

The OP mnemonics can be found in Table A.l.

b) Negation

FORM: -e

CODE: (NEC, e, , T)

B. Relational

FORM: ei <rop> 02

CODE: (OP, •!, 02, T)

where <rop> ::- .LT.|.LE.|.EQ.|.NE.|.GE.|.GT.

me OP mnemonics can be found in Table A.l.

C. Logical

a) Binary operator

FORM: ei <lop> 02

■-- •-- -L^. — .■,.!.,.J-^Jm^J^-J- _.
- -- ■ '—■*■ - J

El WH Win in ■ ■•"■ 'i'^^'mmim'm^ifmtimmiif'imi^r^m^»»! iwigwinmu i. <•"•

121

CODE: (OP, ti, 62, T)

where <lop> ::- .AND.|.OR. |.X0R.|.EQV.

The OP mnemonics can be found in T.-ble A.l.

b) Unary .NOT.

FORM: .NOT. e

CODE: (NOT, e, , T)

A.2.2 Assignment Statement

FORM: Vj ■ Vf ■ - ■ V» ■ •

CODE: (REPL, e, , V|) j-1 n

A.2.3 Control Statements

A. GO TO statements

a) Unconditional

FORM: GO TO k

CODE: (B, »k', ,)
k': DATA addr(k)

b) Assigned

FORM: GO TO v

CODE: (B, »v, ,)

c) ASSIGN statement

FORM: ASSIGN k TO v

where v is a simple variable.

CODE: (REPL, k, , v)

(into data storage)

1
'■—-'■ -- - tft^im 11 i!---1 --->"^—- ■ ——^-.^ —T- 1 .ri-M^mifrnn ■ 1 ■■ n 1* -- — ■ "■ -iiiitaiHTifar-^-'"- ■■ . --•—-^"——■ ^-^.^^■..—-..■-^- . —■ - ^-.-^■. .^...^.■^-■' .-.. — ■ ■■.:-....-.* ''-mit' ^ArUg^fik^mtälltttlM^ltNilitUlli J

W !■■■-■ i ■ ii ^■^^^^—WP^WPW——IWP—^www^^'^wwwr^i« ' II.^I '**1

122

B. IF statement

a) Arithmetic

FORM: IF(e)K1,k2,K3

where k, is a statement label or assigned variable.

1) Ki^ka

CODE: (BLZ, e, »kj',)
(BEZ, e, *K2',)
(B. *K3', ,)

ki'i DATA addrlk!)
ka'i DATA addr(k2)
K3': DATA addriks)

2) k1=k2

CODE: (BGZ. e, *k3/
()

(B, »Ki', ,)

3) kt«ka

CODE: (BEZ, e, »ki',)
(B, *k1', ,)

4) k2-k3

CODE: (BLZ, e, ikj',)
(B, *k2', ,)

b) Logical

FORM: IF(e)S

CODE: (BF, e, L,)
{code for S)

U I

1) S is GO TO k

CODE: (BT, e, *k',)

(into data storage)

. - „^■■..- ...^ ■—•_ -— ri. ■ ^^ - - - - 1 ■ 11 .M^^-jMa^taiiin ^^^dfl

 immmmmmmmm^m tm. II MP^Kl anviUfKI» «UMI 'mi-

123

2) 0 is STOP

CODE: (STOPT, e, ,)

3) S is RETURN

CODE: (EXTFT/EXTST, e, ,)

C. Subprogram call

a) Subroutine

1) FORM: CALL s

CODE: (CALLS, *s', LI,)
LI: DATA 0
s': DATA addr(s)

2) FORM: CALL s(a1,a2,...,an)

(out of sequer«.e)
(into data storage)

CODE: (CALLS, *s', LI,)
LI: DATA n

DESC1 TYj.ARi.Li.addrU!)

DESCl TYn,AR,„Ln,addr(an)

where TYj is the type of a, (see Table A.2),
ARj is the arithmetic of a, (see Table A.3),
Lj Is the das* of a) (see Table A.4).

b) Function

FORM: f(a1,a2^.,an)

CODE: (CALLF, *i't LI, T)
LI: DATA n

DESCl TYllARi,Li,addr(a1)

where

DESCl TYr,ARn,Ln,addr(an)

T is the temporary storage location where 'he
functional value is to be returned.

-^ ,.u.. ^..^^ ,...„ _—, - —— - - - --- — -- - ~ - -m, ■■ i -^ ^ -- -- -- -.>- ^ ■ ir M na—•■aüMM—■

PIPPW^BWWPWWW-»« vm^mmmrnmammmmmmmiiBm "• ■■ ■■ -1 rm^mmt^mrm^mrmmimnmmt « in .»^wnii^mmmi^B

124

c} Basic external library function

FORM: xlf(ai,....an)

CODE: (XCT, xlf , , T)
ARG <type code of ai>,addr(ai)

ARG <type code of an>,addr(an)

where ARG has the same format as I/O UUO's (see
Sec. A,2.4). T is the temporary storage location
where the functional value is to be returned.

D. RETURN statement

FORM: RETURN

a) Subroutine

CODE: (EXITS, , ,)

b) Function

CODE: (EXITF, fV) ,)

where iv is the address of the functional value.

E. DO statement

FORM: DO k v=ei,e2,e3

where v is a simple variable,
ej are arithmetic expressions which are converted
to the type of v. 03 may be omitted, in which
case it is 1.

a) 63 not a constant

CODE: (REPL, ei, , v)
LI: {range of DO}

(ADD, v, 63, v)
(SUB, v, ft^, Ti)
(NEGL, TL es, Tf)
(3LEZ, T2, LI,)

.. ■-.--:■.-...,. . .^ . -w^.^.U,.. ,^.. ... ■ ^■^■-

"I- I "I ■' H I ■!■ ■ I I ■■ I II 111. II I ■■■■■>< ■"' ■ ' —"™——"— ■--"■

125

b) 63 a conctant

1) e3>0

CODE: (REPL, 9%, , v)
LI: {range of DO}

(ADD, v, 63, v)
(BLE, v, 62, LI)

2) e3<0

CODE: (REPL, »i, , v)
LI: [rangt of DO}

OJOO, V, 63, v)
(BGE, v, 62, LI)

F. CONTINUE statement

FORM: CONTINUE

CODE: none

G. END statement

FORM: END

CODE: (STOP, , ,) (only for the main program)

A.2.4 I/O Statements

I/O is performed by the PDP-10 FORTRAN I/O package. Since this

section of code is fixed, it can not be optimized at run time. Hence I/O time

is constant regardless of the optimizations made to the code. It would be

wasteful (timewise) to have to transform interpretive I/O code to machine

language. Therefore, the compiled code is identical to that produced by the

PDP-10 FORTRAN compiler, F40. For a description of the FORTRAN UUO's IN.,

O'JT., DATA., SLIST. and FIN., and ARG and type codes, see the POP-16

1
— ~-—~- ■ ■■ — -■- ■ - ■ ■-■ - ■— -A-- ■ ■f-— - L,...,-.^...-.... ^.^.■..■....■..-—- ■ *w--— -»...■.. . .-■ — ..-■-■: ---.-.. ...„■^..^w...., „inf, iiriH-iiii-iniüiB

..n>...i.i ijiiininpiijiijiujii iiijuui i> i i i ii i i i.i>i>ini itm^tmiHmmmmi^^^^i^^—^v^mwimiK ■ .1 ■" '" .P i.im-. ■• J.« .. ■. . ■~<IWJ^

126

FORTRAN handbook [PDP71b].

In what follows, the code is given in MACRO-10 format. Also, R0 and

Rl represent machine rtglstor« 0 and 1 respectively.

A. Initialization

CODE: MOVE Reformat pointer>

a) Input

FORM: READ f.list
READ f
READ(u,f)list
REAC;u,f)

READ(u,f,E\D-c)list
READ(u,f.ERR=d)list
READ(u)f,END=c,ERR=d)list

CODE: IN. Rl,<unit number>
or MOVE R0,<integer variable>

HRRM R0, .+1
IN. R1,0

(if ERR or END specified)
MOVE R0,<label pointer>
HRRM R0,*<END/ERR>

where END/ERR are ceils containing the address of
END. and ERR., the cells used by the I/O
package.

b) Output

FORM: PRINT f,list
PRINT f
TYPE Mitt
TYPE f
WRITE(u,f)list
WRITE(u,f)

CODE: OUT.
or MOVE

HRRM
OUT.

Rl,<unit number>
R0,<integer variable>
R0, .-t-l
R1,0

-

■ -■-■---■- ■--■^-'mriMitihiifitiiBi uriiiiiaMJiMaiMfcaiüuftMaii -~~-- ■-- ■■
. .. s .■.,... -^ ■.■...-....^».^ ...■.^. ■ !! I ! ■■■ -■• — —

'■•Ill ' ' ■ IIJJ I1IBJJBIIIMIIIII I pill HUB II ll^llp^^^^P^I II I l Mil

rm

127

B. Data transmission and I/O lists

FORM; ELEz.-.En

where rl can be a simple variable, subscriptec1 'irable,
expression or array name, but not a DO-ir- ^ed list.

a) Simple variable, constant, or expression (result)

1) non-parameter

CODE: DATA. <type code>,<variabMconstant/result>

2) parameter

CODE: DATA. <type codeV<parameter Ctll>

b) Array

1) non-adjustable dimensions

CODE: SUST. <type code>,<base address of array>
ARG 0,<number of elements>

2) adjustable dimensions

CODE: MOVE R0,addr(DVEC)+n+l
HRRM R0, .+2
SLIST. <type code>,*<parameter cell>
ARG 0,0

where DVEC is the array's dope vector (see Sec. A.2.5).

c) Subscripted variable

CODE: DATA. <type code>,-<temp storage cell>

where <temp storage cell> contains the address of the array
element.

C. Termination

CODE: FIN. 0,0

.— ^.... .i^.—^^■i —........ - - - ■ -— ^ ■■ - ■-- --^-^^--—^-.i— ..„I^-J^—^.-.I_—,.*—.— ^-

r

-~n- i^w™fi«»^iw«ww»w ■■■iP^^W7!P^i^W^WWWI^IPiWPIPPiWw,*»iW"T^^^^'^^ ■" ! n "I-11 '•«

128

Since the I/O code is in machine language, it cannot be mixed

with the interpretive code. Therefore it is compiled out of sequence

under a different relocation base, in order to execute it, it is made

into a subroutine:

<l/0 routined BYTE 0
{I/O code}
JRST 2,*<l/0 routine>

To execute the routine, the following quad is compiled:

(JSR, <l/0 routine>, ,) .

The effect of the JSR is the execution of the machine language

instruction:

JSR 0,<I/O routine> .

When the JSR quad is transformed to machine language, the JSR

machine language instruction is generated.

D) FORMAT statement

FORM: k FORMAT(Si,S2,...,Sn)

CODE:
k'l DATA addr(k)
k: TEXT •(Si^.-Sn)'

(into data storage)
(out of sequence)

immim, ! n . ittftninannUi I ■ - - - - • - . ■ ■■ ■ ■ Maai-i« !■■ - - - - - .„^^^.t^m^m**.*^,*^*

r1
T" ■ IIII^IPI TW Hl IM-WP—^^i^— 1,1 ■■»■"" nmrnm

*

129

A.2.5 Array Declarations

An array declarator may appear in a DIMENSION sttlement, type

declaration or COMMON statement.

FORM: v(d1,d2,...,dn)

where dj are integers or simple integer variables,
n is the dimension of the array.

CODE: (generated foi arrays with adjustable dimensions)
(PUSHJ, ADEC, ,)
DATA n
DATA addr(DVEC)
DESC2 Ri.addrWi)

DESC2 Rn,addr(dn)

where

a) ADEC is the run time array declaration routine which
generates the dummy array's dope vector, DVEC. The dope
vector has the form:

DVEC: DATA FUDGE
DATA

■

Dz

•

DATA D„
DATA SIZE (number of elements)

b) Rj is the reference of dj (see Table A.5).

c) If v is a dummy parameter, its value will be set by the
run-time routine PSA and depends on the corresponding
actual parameter. If the actual parameter is:

1) a subscripted variable, PSA stores the address
of this element into v,

■ - ■ — - - ^.

I |i W» P-JiWT^W^PÜ^liU l-J lUIMfJI «^^^^^WIWPW* ^•Wi^^WP^^^flHBM^W|^liP^PW^»Wi^»,^W»WBJ>Wi|*lP«l^^WL" J "'M^l

130

2) an array name, PSA stores the BASEV of the
array into v. If the array name is not itself a
parameter, its descriptor to PSA contains the
BASEyi if a parameter, the parameter cell
contains the BASEy.

A.2.6 Array References

References to array elements must contain the number of subscripts

that corresponds to the number of dimensions declared for the array.

Element v(eite2,-,en) is at location:

BASEy + (ei*D1+...+e„»Dn) + FUDGEV (1)

where

a^ BASEy is the address of the first element of the array v
which has ei*...*en elements.

b) Dj is defined recursively as follows;

Di - 1
Dj - ei.itDi.!

c) FUDGEy - -(D1+...+Dn)

A) Array with non-adjustable dimensions

In this case, all the information necessary to evaluate

(1) at compile-time is stored in the dictionary along with the

array's data descriptor.

1) Array not a dummy parameter

n-1 (ADD, ei, Fv, Ti)

 - - - - - ' ■- ■«- - ■ -■' I

fcniiliiB iimmiw
 ' -...i. wf^^m^mmmmf

I
131

n>l (MPY, e2, D2, Ti)
(ADD, Tj, ei, T2)
(MPY, eg, D3, T3)
(ADD, T3, T2, T4)

(MPY, en, Dm T2„.3)
(ADD, T2n.3, l2n 4. "'■20-2)
(ADD, T2n-2. Fv, T2„.i)

where Fv ■ BASEV + FUDGEy

2) Array a dummy parameter

Replace the last instruction above with:

(ADD, T2n-2/ei, v, lin.i)
(ADD, Ta,.!, FUDGEv, T2n)

where v is the dummy oarameter whose value is the
BASE of the actual parameter,

FUDGEv is the FUDGE for the dummy array
parameter calculated from its declaration at
compile time.

B) Array with adjustable dimensions

n-1

n>l

(ADD, v, DVEC, JO
(ADD, Ti, ei, T2)

(ADD, v, DVEC, Ti)
(ADD, Tx, •*, T2)
(MPY, e2I DVEC+1, T3)
(ADD, T3, Tf, Ti,)

where

(MPY, en, DVEC+n-1, T»Mi)

(ADD, T2MI1 T2n-2. Tzn)

v is the dummy parameter whose value is the
BASE of the actual parameter.

I

—t -^-W^.^-^. L ^ W..^.^-.. . I^....
 -■■• - "- -' '-- ^ ,--

Li.ipiBi-1 nviwm IIL.J i i \ummim*t*r**vr*m^mFm

132

A.2.7 Subprograms

A. FUNCTION Subprograms

FORM: t FUNCTION Kai^-.a,,)

where t is optional and can be INTEGER, REAL or LOGICAL,
aj is a dummy parameter.

Functions must have at least one dummy parameter. A

RETURN statement must be supplied. The name of the function Is

treated as a scalar variable for stc. >g the value of the function.

Storage for the functional value is allocated as for normal scalars.

Functions are referenced within expressions and return a

value. The codu generated for a function reference is given In

Section A.2.3.

B. SUBROUTINE Subprograms

FORM: SUBROUTINE s

or SUBROUTINE s(ai,a2,...,an)

where a, is a dummy parameter.

C. Code generated for a subprogram definition

CODE: (PUSHJ, PSA, ,)
DATA n
DESC3 TY^AR^psii

DESC3 TYn,ARn,psin

where PSA is the run time parameter assignment routine,
TYj is the type of aj (see Table A.2),
ARj is the arithmetic of aj (see Table A.3),
psij is the parameter storage index for aj.

t'J- ■j" -■ '—'■- - - - ■-*-■ — ■ ■ ■ - -—-■ ■-- —■ ■ ■

1 "■ "
1 '
a, «iiiijiii •iii«l-

133

PSA matches the actual parameters with the formal

parameters. Since all parameters are call by address, no conversion

of type is possible. Therefore arithmetics must match. Using

{TY.AR.L} In the subprogram reference and {TY.AR} in the

subprogram definition, PSA calcuhtes the address of the actual

parameter and moerts it into the corresponding psi. Thus,

references to the actual parameter is indirect through its psi.

A.3 Internal Representation of Quads

The internal representation for quads on the PDP-10 requires two

36-bit words:

QUAD1 0P,SR,BTY,CiIC2,Ti,T2,T3,ll,l2,l3.addr(ARGi)

QUAD2 addr(ARG2),addr(ARG3)

having t',e format:

QUAD1
7 1211111111 18

I

18 18
QUAD2

J

The 11-bit control field after OP is a set of tag bits which represent

information about the data found in the associated ARG or the address type

of the associated ARG. Tag bits IHs are set by the compiler; tag bits

C1-C2, Ti-Ta, and SR are set by the loaderi and tag bit BTY is set by the

machine language generators.

. ——■— '- - •"—'—>.———^—^

mm ■ ■ "■ .^^—^»^—

134

The function of each tag bit is:

1) Indirect addressing indicators I1-I3
If |j is O, ARGj is the address of the operand; if I,

is I, ARGj contains the address of the operand (indirect
result or parameter).

2) Teniporary address indicators T1-T3
Tj is 1 if ARGj is the address of a temporary;

otherwise 0. These indicators exist for efficiency
purposes. Temporarys are the most heavily processed
entities, and even though it is possible at run time to
determine if an address represents a temporary, to do
so would increase the processing overhead needlessly.

3) Constant address indicators C1-C2
Cj is 1 if ARGj is the address o* a constant. Again

these indicators exist for efficiency purposes. They aid
the machine language generators in determining if It is
possible to use an "immediate" instruction.

4) Branch type indicator BTY
Set whenever the branch is translated or

retranslated to machine language to insure the proper
code is generated (see Section 3.4). This tag bit is
applicable only to branch instructions. Basically it is
used to distinguish whether the branch is to a basic
block that is external or internal to the segment
containing it. It must be updated whenever new
segments are formed or optimizations applied.

5) Store result temporary indicator SR
If SR is 1, the machine language generator compiles

a store instruction to force the storing of the
temporary's associated register into the temporary. This
is necessary when a temporary is referenced in machine
language generated by the compiler. This machine
language is never altered, and consequently when the
quad is translated to machine language, its result must
be stored in the result temporary.

111*1 iifcf 11 ■■ ^MMMcflaaaMMMtaaul

i"i»
IXiiiH —

135

Table A.l Th« List of Quad OP codes

Octal Mnemonic Description

000 NOP No operation
001 ADD Integer add
002 FADD Floating add
003 DADD Double precision add
004 CADD Complex add
005 SUB Integer subtract
006 FSUB Floating subtract
007 ' DSUB D.P. subtract
010 CSUB Cc iplex subtract
011 MPY Integer multiply
012 FMPY Floating multiply
013 DMPY D.P. multiply
014 CMPY Complex multiply
015 DIV Integer divide
016 FDIV Floating divide
017 DDIV D.P. divide
020 CDIV Complex divide
021 FXFX Integer to integer power
022 FLFL Floating to floating power
023 DPDP D.P. to D.P. power
024 CXCX Complex to complex power
025 FLFX Floating to integer power
026 DPFX D.P. to integer power
027 CXFX Complex to integer power
030 NEG Integer negate
031 FNEG Floating negate
032 DNEG D.P. negate
033 CNEG Complex negate
034 LREPL Logical replacement
035 SREPL String replacement
036 REPL Integer replacement
037 FREPL Floating replacement
040 DREPL D.P. replacement
041 CREPL Complex replacement
042 AND Logical and
043 NOT Logical not
044 OR Logical or
045 XOR Logical exclusive or
046 EQV Logical equivalence
047 JEQ String -
050 EQ Integer -
051 FEQ Floating -
052 DEQ D.P. -

ARG3«-ARGi+ARG2

;.RG3*-ARG1-ARG2

ARG3«-ARGi*ARG2

ARG3<-ARG1/ARG2

ARG3<-ARGi«»ARG2

ARG3<-ARG1

ARG3«-ARGi

ARG3<-ARGi/sARG2
ARG3*-ARGi
ARG3t-ARGivARG2
ARG3«-ARGi xor ARG2
ARG3«-ARGi»ARG2
ARG3«-(ARGi-ARG2)

— ■ ■
 - _ . . . - .. _. — — —

136

Tabl« A.l (COiK)

Octal Mnemonic Description

053 CEQ Complex «
054 SNE String ft ARG3HARG1MRG2)
055 NE Integer t
056 FNE Floating t
057 ONE O.P. t
060 CNE Complex H
061 SGT String > ARG3«-(ARGi>ARG2)
062 GT Integer >
063 FGT Floating >
064 DGT D.P. >
065 SGE String > ARG3«-(ARGi^ARG2)
056 GE Integer i
067 FGE Floating >
070 DGE D.P. >
071 SLT String < ARG34-(ARGi<ARG2)
072 LT Integer <
073 FLT Floatn». <
074 DLT D.P. <
075 SLE String < ARG3«-(ARG1<ARG2)
076 LE Integer <
077 FLE Floating <
100 OLE D.P. <
101 MOD Integer mod ARGs^-ARGi mod ARG2
102 AMOD Floating mod
103 ISIGN Integer sign ARG3«-sgn(ARG1)*|ARG2l
104 SIGN Floating sign
105 ToIGN D.P. sign
106 IABS Integer abs ARG3HARG1I
107 ABS Floating abs
110 DABS D.P. abs
111 CABS Complex abs
112 INT Real to integer truncation ARG34-sgnARGi*enti«r | AF
113 AINT Real to real truncation
114 IDINT D.P. to integer truncation
115 IFIX Real to integer conversion ARG3<-enti«r ARGi
116 FLOAT Integer to real conversion
117 CVSI String to integer conversion
120 CVSR String to real conversion
121 CVSD String 10 D.P. conversion
122 CVSC String to complex conversion
123 B Branch to ARGi
124 BGZ Branch to ARG2 if ARGi>0
125 BF Branch to ARG2 if ARGx-fals« »

L ■---—-- ---■ •- — — 1 am - - ■ - - — —
■ ■-

^M^MMHgMaMM

^^^—^^^— ^^^—^^^—

137

Table Al (cont.)

Octal Mnemonic Description

126
127
130
131
132

133
134
135
136
137
140

141

142

143

145
146

147
150
151

152

BLZ
BEZ
BLEZ
STOP
NEGL

FNEGL
DNEGL
EXITS
BLE
BGE
CALLF

EXITF

JSR

XCT

144 PUSHJ

JUMP
CALLS

STOPT
EXTST
EXTFT

BT

Branch to ARG;> if ARGi<0
Branch to ARG;> if ARGi-0
Branch to ARG;> if ARGi<0
Stop execution
Integer conditional negate ARGaHf AR^2<0 then

-ARGi else ARGi
Floating conditional negate
D.P. conditional negate
Return from subroutine
Branch to ARG3 if ARGi<ARG2
Branch to ARG3 if ARG12ARG2
Gail the function at ARGi. ARG3 is the temporary
for the functional value. ARG2 is the address of
the formal parameter descriptor list.
Return from function. ARGi contains the functional
value.
Simulate PDP-10 JSR instruction. The routine is at
ARGi (used to call I/O subroutines).
Simulate PDP-i0 XCT instruction. Instruction to be
executed is at ARGi <used to call external library
functions). ARG3 is the functional result.
Simulate PDP-10 PUSHJ instruction. The stack used
is the BUSS run time stack [Bli71]. The routine to
be called is at ARGi <used to call the run-time
support routines ADEC and PSA).
Branch to ARGi (marks end of a basic block)
Call subroutine at ARGi. ARG2 is the address of
the formal parameter descriptor list.
Stop execution if ARGi-true
Return from subroutine if ARGi=true
Return from function if ARGi-true. ARG2 contains
the functional value.
Branch to ARG2 if ARGi-true

I
T wifli^irr -— ■'■-*•■-- - --• -" ■ -

1
138

Table A.2 Operand Typ« (TY)

Octal Type

00 simple variable
10 array with non-adjustable dimensions
11 array with adjustable dimensions
20 function subprogram
21 subroutine subprogram
22 library subprogram
23 external subprogram

Table A.3 Operand Arithmetic (AR)

Octal Arithmetic

0 universal
1 logical
2 string
3 integer
4 real
5 double precision
6 complex

Table A.4 Operand Class (L)

Octal Class

1 identifier
2 constant
3 result
4 indirect result
5 parameter

Table A.5 Operand Reference (R)

Octal Reference

0
1
2

normal variable
COMMON variable
parameter

■lim if! ■■■-■--■■■ ■■■ ^i.^.jm^ ■ r iirir iHiiiifciiiilM illii
 J

139

.

Figur« A.l Internal Representations of Formatted Data Words

36
DATA

DESC1

DESC2

DESC3

TEXT

6 6 6 18

12 18

6 6 6 18

^

7 7 7 7 7 1
1 r s

[■■.w.ii-ii.miin i irifhMrtiMlilii r r Mill iiiiiw* riirnn --■-- -■■-■■ .-.■----.■ . ■ ■>>—*^-^-^.^Lt^»^.w^-.i>a^Maadl

r
\ko

Appendix B

Source Listings of the Test Programs and a Detailed Example

This appendix contains the source listings of all the test programs used

for validation of the system, along with the complete system output for a

matrix multiplication program. This detailed example is the same as that used

by Allen [AII69].

B.l A Detailed Example: Matrix Multiplication

A) The Source Listing

1. INTEGER X^0,50), Y(50,50), Z(50,50)
2. C INITIALIZE X AND Y
3. DO 10 1-1,50
4. DO 10 J-1,50
5. X{I,JH+J
6. Y(l,J)»M0D(l,J)
7. 10 CONTINUE
8. DO 3 1=1,50
9. DO 3 J-1,50

10. Z(l,J)=0
11. DO 3 K-1,50
12. 3 Z(I,J)-Z(I,J)+X(I,K)*Y(K,J)
13. TYPE 20,X,Y,Z
14. 20 F0RMAT(5(5I5/)/)
15. STOP
16. END

MMhAiatiiiMiirii MM m i mtai ■■.»----.-..--..-^..-■■,- —...-^ .^-^i^^^-.-^—^■..-^..■.^-^„..-. .-.. —^- _„ —'

■■ swm-*"--;-

141

B) Listing of Jource with Interpretive Code

ArOK'BAN VfBSiON' I 10172 li>l>m l^.^ PlU

03 00 00 00 000000 7/7777777/77
CJ 00 00 00 000001 OOOUDOOOOCOO
 BIOCK I
63 CI 00 00 OOCLC. 0O00O00O0O0O

00100 I. MTCGeR x(bObC) VlbO.iO], /(bC
00/00 2. C INIT.«ll/f X MO »
00300 3. DO 10 MJH

03 00 00 00 C00003 OOCOOO^OOCOI
ocioo a. oo 10 j.1.50

03 oo co oo oooooa occooocoooe'
e i 03 oo oo oeococ i> 00x000003 00000c
ei oe oc 00 oeooo/ 67(cooocooo; oocooo
.......... 7
63 01 00 00 ooouo? 000000000000

tOiOO 5. X(lj).I.J
01 03 00 Ob 000000 1/0000000003 000000
0! 00 00 00 000006 6?<1000000e03 ocoooo
••»••••»•910CK 3
G3 01 00 00 00000] 000000000010
03 0« 00 00 OOCrOb 777777777717
01 Ob 03 00 OCOOIO OOOOOOOOCOOI OOCOOO
01 00 Ob 00 000017 OOOCOOOOOOOC 010000
Ol 00 03 0-1 000010 000 000000001 bQOOO?

00600 6. V(U).M00l;J)
• I 05 Ob 00 000016 000000000000 000001
0: 00 00 00 C00020 I 700010C00r!3 OOOOCO
03 05 00 00 OCOOOG O00C0OCOO6?3
91 05 03 00 00C077 000000030001 OOCOOO
Ol 0« Ob 00 OOOC70 OOOOOOOOOOOO 000300
C, M 03 00 00002G OOOCOOOOOOOb OCOOOG

00/00 7. 10 CONIiNUE
Ol Ob 05 00 000030 000000000000 OOOOOI
Ol 00 00 00 000037 I 70001000007 000000

00800 8 DO 3 MM
Ol 00 00 CD 000030 620000000000 COOOOO
• •••BLOCK 0
63 Ol 00 CO COOOOO 00CO0C00O03G
03 00 00 00 000007 OCOOOOOCCOCO
©I 05 03 05 000036 OOOOOOCOCOOI 000003
Ol 05 03 00 000000 57000000000! 000000
Ol 00 00 00 000002 62000000C006 COOOOO
•••••••••OlOCK 5
63 01 00 00 000005 COOOOOOOOOOO
Ol 05 03 05 OOCC'.O 000000000000 00000]
Ol 05 03 «0 000006 570000000000 00CC90
Ol 03 00 00 OOOOSO 620000000C06 000000
 ••••BI.OC< r>
63 Ol 00 00 000006 000000000052

00900 9 DO 3 J-I.50
Ol 03 00 05 000057 170000000003 000003
Ol 00 00 00 000050 620000000007 000000
• ••BIOCK 7
63 Ol «0 00 000007 GOOOOOOOOCbG

OIOOO I0. 7(U).0
Ol 03 CO 05 C0C0r,6 170000000003 000000
01 00 00 CO 000060 620000000310 COOOOO
•••••••••BIOCK >
63 01 00 00 000010 000000000062
03 05 00 00 OOOOIC 00000001 lr77
01 05 03 00 0000G7 000000000001 000000
01 04 05 00 000060 COOOOOOOOOOO COOOOO
01 00 03 00 000066 000000000001 000010

01 100 II. 00 3 K.1.50
03 00 00 00 OOOCI I ooocoooooooo
01 03 00 00 000070 1700010000II COOOOO

• 1200 12. 3 /(UW(U).X(lW.Y(KJ)
01 03 00 Ob 000072 170000000003 000000
0. 00 00 00 000070 620000000011 000000

be;

OOCOOO
COOOOO

COOOOO
JO.IOOl
Of 1)002

000003
000002

ocoooo
000005
000006

C00007
030006

COOOOO

PAGE l-l

DAT* r»ut
DATA rAist

DATA COOOOOOOOOOO

DATA 000000000001

DATA 000000000062
(»CPL , 00000000001 . 0
(JUMP , 000002 , 0

, 1

, J

OAIA 000000000010
DATA 000000000061

(MPV , J . 00000000050 , TO*
IA00 10» ,1 .Tit
fADD , Tit ,00000000003 , T7J

DATA COOOOOOOOOOO

OOOOOI («EPl , 00000000001 , 0
ocoooo (JUMP , 000003 . 0

:no , 1 , J , T3»
{am . T3» 0 ..'?»
DATA 000000000623

(MPV , J , 00000000050 , TO»
Mt . M(.1 . T6»
(ADD , T5« . 00000002051 , T6«

(MOD , 1 , J , T«
(BEPt . T7« . 0 «T6»

(JUMP

DATA 000000000036
00010 DATA COOOOOOOOOOO

OOOOOI (AüO , j . oooooeooooi , J
000003 (BIE , J , oooooooooso 000003
COOOOO (JUMP , 000005 , 0 , •

DATA 000000000004
030000 (ADD , 1 , 00000000001 , 1
000002 Hi , 1 . oooooooooso 000002
COOOOO (JUMP . 000006 . 0 , t

DATA 003000000052

COOOOO (REPl . oooooooooei . e , 1
ocoooo (JUMP , 000007 , 0 , 0

DATA 000000000 «6

OOOOOI («EPL . ooooooooooi , e , J
ocoooo (JUMP , 000010 , • , •

DATA 000000000062
DATA 000000011527

COOOOO (MPY , J . 00000000050 , TS»
OOOOOI (ADD .'SI ,1 , 19»
000002 (ADD . TIM

DATA ooocoooooooo
000002 RPl , 0000000000« , 0 «TIM

016516 (BEPl . ooecoocoooi , o , K
COOOOO (JUMP , 000011 , • , 0

. ■.: -.. -:..

r

142

AF0«T8«»(VfPSK»; lltm 12/0/72 1137.07 Ufa

.........BLOC« 9

63 «I 00 00 00001 I 000000000076
03 00 00 00 O0C007 000000000011

01 Of 03 00 000076 000 000000001

01 00 05 00 OCOIOO 000000000000
01 00 CJ 00 000102 00000001C00I

01 O-i 03 60 000100 000000000001

01 00 09 00 000106 000000000003

• I 00 03 00 0001 10 ooooooooocoo

01 OS 03 00 000112 OOOOOOOIG'316

01 00 09 00 0001 10 OOOOOOOOOOCC

01 00 03 00 000116 000000000007
• 130« 13. TVPf 20X».7

0! OS 03 00 OOOll'O OOOOOOOOOOOl

01 00 05 00 000122 OOOOOOOCOO'I

01 00 03 00 000124 OC4CO0OCO0I?
01 00 09 00 000126 OOOOOCOCOOIO

Ol 00 04 00 000130 004000000005

01 04 00 00 000137 170001000016

01 05 03 05 000130 OO00000IG5I6

01 05 03 00 000136 5/COOO0i6516

01 00 00 00 000140 620000000012
.........a.oc« 10
63 01 00 00 000012 0OOC00ÜC0102

• I 0* 03 05 000102 OOOC00000001

01 05 03 00 000104 570000000001

01 00 00 00 000146 £20000000013
• •»•••••BLOCK 11
63 01 00 00 000013 000000000150

01 09 03 09 000150 OOOOOOOOOCOO

01 05 03 00 COOI'j.' 57000000000.

01 00 00 00 000154 C 20 000000010

• • »BlOCK 12

63 01 00 00 000010 000000000156

02 00 00 00 OOOOCO 000000000000

02 03 0« 00 000001 200000000012
02 00 00 00 000002 017040777777

• 1480 14. 20 F0BM»T(5(515/)/)

02 05 00 00 000003 025000000002

02 00 00 00 000004 320000000704

(8 C"i 00 00 000005 025000000706
ft 00 00 00 000006 320000000 704

02 09 00 00 000007 0250000116)2
02 00 00 00 000010 320000000704

02 00 00 00 0C001I 071000000000
02 02 00 CO 000012 254 12000f
01 02 00 00 000196 6l00C0r

09 0? 00 00 000012 OOCOOC

02 00 00 00 000013 24l5250iilt.

07 00 00 00 000014 379365127522
• ISM 15. STOP
• 160« 16. END

01 00 00 00 000160 544000000000

01 00 00 00 000162 620000000019

• •»•••••BLOCK 13

63 01 M 00 000019 000000000160

01 00 00 00 000164 540000000000

• I 00 00 00 000166 620000000000

01 00 00 00 000170 OOOOOOOOOOOl

OOCCOO OOCOOL

000000 0000.

000010 OOOCC.
000004 000003

OOOOOO cooooo
000010 COOCoS
000000 CC0006

OOCOCO 000007

000009 000010

OOCCOO 000011

016916 0CC0I2

OOOOOG 000013

0C0013 000010

0C0010 000019

cooooo 000002
00CC03 016516
000004 000011

cooooo 000000

000003 000001
000004 000010

OOOOCO cooooo

000003 cooooo
000004 00CC07

00000» 000000

-o cooooo

000000 OOOOCO

000000 000000

OOCOCO 000000

000000 000000

00003

PA« 1-7

OATA ooooooooowe
DATA 0000000000II

(MPV J , 00000000090 .Til«
(ADO TIM , 1 TI2t
(ADO TI7« , 00000004991 , TI3«
(MPV J , 0000000009« , TI4«
(ADO TIOI , 1 116»
(ADO T15I , 00000004991 . us«
(MPY ■ . eOOC?900090 , TI7«
(AOO TI7» , 1 TIM
(ADO Til« .•000««e««49 TIM

(MPV J , 00000000050 , T7»«
(ADD T20» , * , Tilt
(ADD T?l< , 00000007491 , T22«
(MPY • T19I *T77« , T73«
(ADD • T16I , T73I , TZ4«
(«PL T24t , • ■TIM
(ADD K , 00000000001 . K
(BLE K , 0000000009« 000011
(JUMP •00017 , • •

DATA

(ADD J . 00000000001 J
(BlE i , 00000000090 000010
(JUMP 000013 . 0 •

OATA OOCOOOOOOIbO

(ADO , i , cocoooooeoi , i
(BLE , 1 , COOOOOOCIOO

(JUMP , 000014 , • ,«

DATA
DATA

MOVE
OUT.

SL1ST.
RUG
SLIST.

ARC
SLIST.
ADG
FIN,
JUST

(JSR
OATA
TEXT
TEXT

(STOP
(JUMP

00C000000IS6
OOOOOOOOOCOO
01.00070«

01,777777

OCX

00,100704
«o.v

00,004704

002
00,004704

00.000000
07 ,> 00000«

0 , 0

000000000013
(9(91

9/)/)

0

000019

OATA
(STOP , 0
(JUMP , 0

STAUT

. 0

. •

l Ml ili••»-"--*-—^~ ■ " --'

—*^. ' -"■ "■• ' n ■KM

■■■■■■■Mm«

143

C) Listing of Immediate Predecessors

BASIC BLOCK IMMEDIATE PREDECESSOR(S)
1 NONE
2 1 5
3 2 4
4 3
5 4
6 5
7 5 11
8 7 10
9 8 9

10 9
U 10
12 11
13 NONE

D) The Directed Graph

^^^■"J"*"'"» "

144

E) Listing of Code Optimizations

The program was constructed so that the entire main loop

would become totally optimized. The main loop consists of

statements 8 thru 12, or basic blocks 6 thru 11. The partial listing

of the optimized code given below is only for these blocks.

The optimization of the program can be summarized as follows:

1) Fusion of segment 9 (basic block 9)
Since the main loop consists of three nested

DO loops, the corresponding segments will be
optimized in the order they are embedded,
starting with the innermost one. Thus, segment
9 is optimized first, and since it is the
innermost segment, it is fused to "dumb" code
after being executed once interpretively. Since
the segment is not yet totally optimized, the
conditional BLE branch to itself is processed by
the segment driver so the segment's
optimization count will be decremented.

2) Code Motion on segment 9
Segment 9 is now totally optimized. First

CSE is performed on each of its basic blocks
(one in this case). Four redundant
subexpressions are removed from basic block 9:
the 4th, 5th, 6th and 10th quads. The first
three represent the second subscript calculations
for Z(I,J), while the fourth involves the common
subscript calculation for J. Also, the 15th quad
is combined with the 14th, eliminating the
intermediate temporary. Then code motion
results in three calculations involving the
segment invariants I and J being moved to the
front of the segment: the 1st, 2nd, and 3rd
quads. Unique temporaries are assigned to the
results of these invariant quads, and they
replace the original temporaries. Thus the
result of the 1st quad is used both in the 2nd
quad and the 11th quad, and the 3rd qa ds's
result is used in the 14th quad. Finally, the

fcM - If - I I ■! I II —ia^—IM—BlM

m—i—

145

resulting quads are compiled to "fair" code.
Notice that the conditional B'.E branch is

now direct and to the alternate entry point of
the segment, i.e., to the point after the
invariant code.

3) Translating basic blocks 8 and 10
The remaining basic blocks of the yet

unfcrmed segment 8 are now translated to
"dumb" machine language.

4) Fusion of segment 8 (basic blocks 8-10)
Next, segment 8 is formed. The machine

language is t.on-homogenous with respect to the
degree of optimization performed on its basic
blocks: the embedoed segment 9 is already
totally optimized, while the rest of its blocks
have been translated to "dumb" code. Since
the machine language for all the segment's basic
blocks exists, it is only necessary to combine
the machine language for each block, at the
same time retranslating the branches. Notice
that no code is generated for the intra-segment
JUMP'S and the direct branch of segment 9 now
reflects where the new alternate entry point is
located.

5) Code Motion on segment 8
Finally, segment 8 is totally optimized. This

means performing CSE on basic blocks 8 and
10, then code motion on the entire segment.
These optimizations have no effect. When
forming the machine language segment, basic
blocks 8 and 10 are compiled to "fair" code,
but since the machine language for segment 9
already exists, it need only be moved. The
branches of each basic block are again
retranslarted resulting in the unconditional BLE
branch of block 10 being made direct.

6) Optimization of segment 7 (basic blocks 7-11)
The optimization for this segment proceeds

as for segment 8 in a straight forward manner.

 —-■ ; ■ -■■ -

' ■ 1 . ."■- ■ ■ m^rw^mrm^mm*^,**'^m

k

146

FUStO BLOCKS 9 THBU 9

TRANSLATING BlOC« 9

037276 (MPV , 033661 03734 1 037530)

053765 MOV! 04 000062

(»37(>6 MUL 04, 03 366 1

•12230 (ADD 037530 U 0 . 03253 11

053287 ADO 04 033660

032212 (ADD , 032531 037345 037532)

053770 ADOl 04 045407

•12234 (MPy . fJ 31.61 , 037341 037533)

053771 MOVf 1 05 000067

OS3277 IMUl 05, 033S«!

•32236 (ADD . 037533 033660 , 037534'

0537'3 ADO 05 03366©

•37240 (ADO 037534 . CJ7345 0i?535)

063774 ADOl 05 045407

•37242 (MPY , 057376 , 03234 1 037536)

063775 MOVE' 06 000067

053776 IMUl 06, C I'J/O

032244 (ADO , 037536 . 0336Ü0 03753')

053277 ADO 06 033660

•32246 (ADO 037537 , 037:147 03/54 0)

053300 ADOl 06 03J577

0327S0 (MP» 033661 , 03734 1 , 03/44 11

C5330I M0VF1 07 000067

0*3302 MH 0/ 033661

032252 (ADD , 03754 1 , 057376 03750?)

053303 ADO 07 0573 76

0322M (ADD '. 037547 . 037343 , 037543;

053304 ADDI 07 040503

NHM (MPV .•037540 «037543 037544)

053305 MOVE 06, 0C000O(U.)

05330r> Ml 06*000007

032260 (ADO «037535 , 032644 , C3r545)

053307 MOVE 05 000000(05'.

M33IO ADO 05 000006

•32267 (BfPl , 037545 000000 .037537)

053311 MOVEM 05 «000004

•37764 (ADO . 057378 037340 057376)

0533 2 MOVEI C 000001

053313 ADO 0'. 057376

0533 14 MOVEM 07 057176

•37766 (BIC . 0573^6 , 03734! OOOOll)

053315 MOVEi 15. 0000: 1

053316 CAMG 07 037341

•53317 POPJ 17 000000

•9277* (JU** . 000012 COOOOO 000000)

•53370 MOVtl 15, CCOOI?

053321 POPJ 17 000000

QOAOS TRANSlATtB . II

COOt MOTION ON SlGMfNT

CSC ON HICiCK I

QOAOS ELlMlNAltO ■ 4

QUADS REMOVED • 3

COMPILING M.Of < 9

•53372 (MPV 033651 03734 , 037546)

053337 MOVE 04 013661

•53333 IMUU ti ccoor.7

•53334 MOVEM •4 017546

W3374 (ADD 032546 0336U0 03254 7)

053335 MOVE 04, 037546

•51136 AOO 04 033660

•51337 MOVEM 04 037547

053328 (AOO 037547 . 037345 , 037550)

053340 A031 04 045407

•5314 1 MOVEM 04 03?55C

•53110 (JUM> oooo:i 037778 . 0377G6)

03727» (NOP oooeoo . OOOCCO . 000000)

0^2730 (NOP 000000 oooooo OOOPPO;

•91212 (NOP ooo.-oo 000000 , OOOOOO)

•37734 (NOP t^iOOO OOOOOO OOOOOO)

«2216 (NOP 000000 OOOOOO OOOOOO!

«3774« (NOP 000000 OOOOOO OOOOOO)

037247 (MPV , 057376 03734 1 03751«)

053347 MOVE 04 057376

053343 IMULI 04 000062

037244 (AOO . 037536 033660 032637)

053344 ADO 04, 033660

037746 (ADD , 032537 1. 1 ..■ . C3754»)

037756 WOP ocecvO COOOOO COOOCK

037252 (ADD . 032540 052376 . 03?647i

053345 MOVE 05 037546

053146 ADD 05 «57376

0377'J (ADD , 037542 . 037343 . 032543)

037/56 (MPV ,•037540 •037643 . 037544)

05334 7 MOVE 04 033677(04)

053350 MM 04 040503(05)

032760 (ADD «037550 . 037544 ..037550)

063351 AODtJ 04.037550

032767 (NOP . OOOOOO COOOOO OOOOOO)

•32764 (ADO C67376 , 03734 0 052376)

053357 AOS 05 C57376

037266 (BLC , 057376 03734 1 , OOOOll)

053353 CAMG 65 032341

063354 JRST 00 003342

•37770 (JUMP , 000617 OOCOOO 00000«)

053365 MCVEl 15. 000012

053366 POPJ 17 oooceo

QUADS COMPIIEO . 14

TRANSIAIINC) BLOCK «

037717 (MPV , 033661 037341 032530)

053357 MOVEI 04, C000C2

•53360 IMUl 04 0.13561

037214 (ADO , 032530 . nMM . 037631)

053361 AOO 04 033660

032216 (ADO , 037531 . 032345 . 032532)

053367 ADOl 04 045407

032220 (REPL . 037346 OOCOOO «032532)

053363 VOVEl 05, COOOOO

063364 MOVEM 05 ,.000004

032227 (REPL . 037340 OOOOOO 052376)

053365 MOVEI 05, OOOOOI

053366 MOVEM •5, 0623/6

037224 (JUMP . OOOOll OOOOOO OCVIOJO)

063367 MOVEi i5. eoceii

053370 POPJ 17. OOOOOO

QUADS TRANSIATEO • 6

TRANSLATING BLOCK 10

032277 (ADO 033661 03734« . 033661)

0533/1 MOVEI 04 OOOOOI

0533 77 ADD 04. 033661

«533/3 MOVEM 04 033561

037774 (BLC . 0J3661 03734 1 000010)

05:11/4 MOVEI 15. 000010

0533/5 CAMG 04 03;'34 1

1.3376 PQPJ 17. 009000

mm (JUMP , 000013 . OOOOOO COOOOO)

0533'/ MOVEI 15, 003013

053400 POPJ !/ OOCOO«

QUADS TRANSLATED . 3

FUSED BLOCKS ■ THRU 10

MOVING B10CK I TO 053401
037274 (JUMP . «00011

MOVING BLOCK 9 TO 0514 11

«00000 0000««)

•32266 (RLE . 062376 . 01734 1 , OOOOll)
063437 CAMG 05. 03734 1
053433 JRST CO, 053471

0377/0 (JUMP . 00001? «««000 , OOOOOO

MOVING RIOCK I« TO 051414
012274 (BLE . 033661 . 03234 1 . 0(

053437 MOV . 15. 00001«

•5344« CAMG •4 03234 1

05344 1 ^onj 17 00«««0

000010)

(JUMP , •«•Oil OOOOOO COOOOO'

—- • ' •• • " ■ ■ ■ '

^

147

COOf MOIUK OH SEGMtmi

CSC ON BLOCK S

QUADS EllM!MTEO

MOVU

POfJ

ll, 00OOI3

17, OCCCOC

CSt 0*1 BlOC« 10

QUADS ILMiNATED ■ 0

NO QUADS BE MOVED

COMPllKllG B'OCK 1

03?71? (MP» 033661 . 03734 1 . 0375301

053144 MOVE 0« C3366I
053443 IMUU 04 OOOOC?

032714 (ADO , 037530 0336S0 , 032531)

D'J3.146 »TO 04. 033660

03/?IS (ADD . 03'531 032345 C32532)
03/770 (WPl . 037j4ri 000000 ,.032537)

C'344? SEI2M 00 04540/(0«)
037777 («EPl 0J7340 OOOCOO 0573;6)

053450 MOVEI 00 000001

063451 MOVIM 04 052376

032774 (JUMP 0OO0I1 000000 COOOO«)

QUADS COMPIIED • 6

MOVING BlOCK 9 TO 053057

032766 (BIE , 057376 , 032341 00001 I)

0r>34 73 CAMG 05 037341

Ori3fl74 JUST CO 053462

0322/0 (JUMP , 0000! 7 . 000000 . OOOCOO)

COMPllINC 1)1 OC« 10

1)372/2 (ADD 033661 , 032340 , 033661)

0534/5 AOS 04 033661
0322/0 (BU 033l>GI , 0J734I , 000010)

0030 76 CAMG 04 037341

C'530 7 7 JUST 00 05304«

«327/6 (JUMP . COCO 13 . ooo"oo oeooooj

0'J3-.00 MOVEI 15. 000013

053301 POPJ 17. 000000

QUADS COMPiKO . J

TBANSlAIlNr. BlOC« 7

032706 (»EPl , 037340 OCCCCO 033661)

053507 Mnvfi 00 000001

0635^-; MOVEk 04 033661
0322:o (JUMP . 000010 OOCOOO 000000)

053504 MOVEI 15. 000010

053505 POPJ 17 000000
QUADS THANSlAUO . 7

THANSLAIINQ BlOCK 1 1

032300 (ADD 033G60 037300 033660)

053506 MOVfl 00 00000!
053507 ADD 00 033660

053510 ■VOVtM 00. 033660
03730? (BLE , 013GG0 03730 1 000007)

053511 MOVEI 15. 000007

053517 CAM;, 0« 03730 1

053513 POPJ 17. COCCOO
037304 (JUMP . 000014 000000 . OOOCOO)

0535 14 MOVEI 15. 0000)0

0535 IS POPJ 17. OOOCOO

QUADS IBANSlAttO • j

'USED BLOCKS 7 THKU I I

MOVMG BlOCK 7 10 053516

032210 (JUMP 000010 OOOCOO OOOCOO)

MOVING BlOCK » TO 053520

032720 (JUMP 00001 I 000000 . OOOCOO]

MOVING BlOCK 9 TO 093576

032266 (Bit . 05237« . 032341 . 000011)

05354 7 CAMG 05. 03230 1

053550 JUST 00 053538

032270 (JUMP , 000012 , 00000« . ««««««)

MOVING BlOCK 10 TO 053951

032270 (BIE , 03366 1 . 032341 000010)

053952 CAMG 00 037341

053553 JRST 00 053520

032276 (JUMP . 000013 OOOCOO . COCCOO)

MOVING BlOCK II TO 053594
032302 (BIE . 033GS0 , 032341 0060071

063557 MOVEI 16 000007
05316« CAMG 04. 032341
053 5ü: POPJ 17. cooeco

032300 (JUMP oecoio . 000000 0001««)
053562 MOVEI 15. «00014
063563 POPJ 17, 000000

COOC MOTION ON SEGMENT

CSE ON BLOCK 7

QUADS ELIMINATED .

CSE ON BlOCK I|

QUADS EUMINATCO •

NO QUADS Bl MOVED

COMPILING BLOCK 7
037206 (BEPt , 037300 COOOCO 033661)

053564 MOVEI 04, 000001
C53565 MOVfM 00, 033661

137710 (JUMP

QUADS COMPIIED • 2
««««10 , OOOOCC COOOO«)

MOVING BlOCK I to 093566

«37724 (JUMP , 000011

MOVING BLOCK 9 TO 053574

032266

COOOO« , 000360)

(BLE , 052376 , «3234 1 , COCO I I)

0! 1619 CAMC 09, 03234'

0536 IG JBST 00 053604

032270 (JUMP 000012 COOOCO . COOOO«)

MOVING BLOCK 10 TO 093617

0372/4 (BLE . 033661 , 032341 . COCOI«)

053620 CAMG 04. 032341

«93621 JBST 00. 093966

»32276 (JUMP . 000013 00«««« . 000000)

COMPILING BlOCK 11

032300 (ADO 033660 032340 . 033,60)

063622 AOS 04. 033660

032302 (BIE , 033660 03234 1 . 0000 17)

053623 CAMG 04. «3234 1

053624 J«ST «0. 063564
032304 (JUMP . 00014 OOOCOO . 060009)

053625 MOVEI 19, COCO 14

05362'"' POPJ 17, COOOO«
QUADS COMPILED . 3

ii mi riii rfiii in _ . — - ..-.

wmt • w tmm^mm^mmmmm ■■'- '■ ■"

148

B.2 Th« Linear Equation Solver: LES

7

J

a

I
I
1

h

9

It
1 !

II.
II.
0

I).
i a
17.

.»
IS

20.
.■

;.■

}}

.'.■

?i.

76.

?7

?ll

^)
K

31

J7

33.

I.i

39.

3b

37.

1«

39

.0

■'. ;

o?.

03

«a.
«s
«6

«/.
M
89.
00
51.
•J?

53
5a.
55.
56
5/
51
59
60
61.
0?
I. '
r i

'.'
M
67

(«
'■'1

7«.

71

7?.

'3

7«.

75.
1*
77

70

MATmx iivUSiON UiVS A l.M.A^ (QUA'iOS SOIVH

BttS. I) «IG0»IIHM «?3i;ArM HMfifKi 19'7)774)

71 »OUSVIMtui . ANil MOJSCfl. "COMPUTt» SCHjHOH

Of IWAD A.UtUBAlC SfSTlim*. P8(MlCt HAU

fVi.KWOOO CliflSXJ. 19C/.

3! OBICOH»»). AND «A«M*i)l . "A COUttriOfl Ot

MA'UiCiS FO' TtSIWG COMPU'A'iONA. ALGOHllMMS".

WHtV-KTI« ICCNCI, WW »00« 1^69

SUOWOUIIWS USID A«l W '1-051 VWi IN THt UXIBOO«, Rfl

II» OIPlArlMfNIJ CiVtN 8» Mean « AlGOUi'MM 673.

DEAL AC Co .OOlflMOC;

»i'fG!« •P(1CC1
»tAOII7)N

F0SMA'(r)X17)

T»Pf 3N

fiBMAIl N . I?)

»I'M. 100

(ilvaftlt KS' MATtn

SEt 131, EKAMfif If,

A A(U|.N-ABS(i-J)

n • W J J .WO 10 9

79 NM1JI-I

H V JO 7 K.IMMl

■ 1 KPM-I

I-.' M.IP«)

*) i -• i; v.

to. B!M)^(«)

t5 0(K)-T

80. DO 7 I.KP 1M

t7 7 B(l) B(l).A(IX).T

»H DO i «n.lMMI

n KMIJJ KB

M, K.KMI-I

tl B(K).U(K)/A(K)()

92. T.-BC«)

93. DO 8 MXMI

9i. a B(i)-B(l)>A(l)()»T

95 9 B(l)-B(l)/A(l.ll

9G Ul UIRN

3' ENO

00 I i.lft

00 I J>IN

A(U)^.I J

A(J O.A(IJ)

MA>lg PSCGC'M

CAU 0EC0Ml>i\v~ «A P)

«(iP(N) M 0)GO 10 JO

1VPE 00

i OUMAH MAIIIIX <,'Nr,i)lA9)

STOP

DO io J.: ><
00 70 UtM

B(JM.O

THt J1H CAU P80;)JC15 ti B I'i£ JTH CO('..MN 0' THE WVERSt

CAti StonfHHDMABf)
IW

SUBHOUT W Dt'OMPlNWIMA.IP)

»EAI A(K. .MNOIM)!

INlfCE» IPIW.M)

IP(N)* I

oo a K.\N

IF« H. N)G0 '0 5

«P I.K.I

KM

DO I MTPIN

iMABSIAiUO) .GI. AB5i»(«<IXI))M.l

CONI^Uf

l(>|K).M

»(M Nt, K)'P<t().-IP(N)

I.A(MJil

A(MJ().AIK)<;

A(KX).'

M' IQ 0)00 "J i
00 7 l-K^IAJ

AOX). A(tK)/I

DO 0 J.KPIN

1.A(M J)

A(M,J|.A(« J)

A(KJ).t

'(I tft 0.)G0 '0 4
DO 3 -«IN

A(ij;.A(lJ).A(ijj).'

CrN'lNDE

inni«*) i«. ejiP('j)-o

CON'lNOf

■TUM

M

SuenO'.fiNE S01V!;^^^', w/fl*)

■(At ,-.:■.>/■.•■.

WIEGE» IPIXOMI

. ■-

■ JV*|IIM^II«W-II '

149

B.3 A Prim« Number Generator: SIEVE2
1.

in

C

1UIIIWWI WIWIIWl W»^» • vi« * M

tl' CACM IOS(MPt. 19«7). P. 570

2 c AlGOBiTHM 311 "'Ml NuMBf» GEWaAIM 2

3 c IHt AlROBitM H»S MEN MCOifieO 10 G£Nt«ATC M

I c FOSt « P»>MIS IHSItAO Of 'ME PRMCS M

5 c
6 c NOUi IHESE »BE 7149« PfllMFE USS 1MAK 10..5

7 c
1 c USING M,I0..6 AS AH LPPE« BCUW) AN UPPEB BOUND Of 700

9 c Will SUffiCF FOB IMt ABBAVS QßQSQ* AND B»

10 c UI. 27«SQBI(IOa>G)'lMI0<6,-?0OI

II. iN'EGEfl Q(?00)CQ(?00!S1J(700)M?OOI*B(7COI

17. INIEGEB P(?5eO«)

13 INUGEB tJJJ«ll(AlJ8ßN

■0 10GICAI T

It. P(l)-2

1« MM
17. P(2).3

II J.3

19 JJ.3

N K.3

21. B(3).3

n P(3)-5

n Q(3).25
7« DQ(3).I»

75 SQ(3).30

7r, BEAD1I2)KK

31. / FOBMAURX.IS)

?B 'VPI 3X«

7« 9 lOBMAIC K • ,15)

3C U-l •

31. 0 I..!Bljf

37 0N.6 ON

33 DO 2« l'3JJ

31 ■4»
35 IF(N M. Q('B|)C0 TO 70

3fi Q'>R).N.0Q(lU!

3' BQl.Pl.S9<lB»-0Q(l«)

3« I./AISE

39 if{i HI 1J)Q0 TO 70

no JJOJ-I

«1. IfllB M. J)Cl' TO 70

07 M>l
03 B(J)-J

DC 0(J)-r(J)»P(J)

05 SQ(J)-6iP(J)

or. 0r((J)-SQ(Jl«(l'(P(J).3))-7t(l(J

0 7, ^n CONTINUE

OS IflWOT. T)G0 TO tO

09. K.K.I

bo P(«).N

II, 1F(« iQ. KK)ST0P

57. 30 |f(JJ it). 3)G0 TO SO

53 JJOJI
i,/i lf(Q(ll(JJ)l IT. 0(R(JJ.|)))G0 TO 3-

■jj. c SIFT 50BT

5h 0R(3).B(3)

57. IF(JJ .It. «)G0 TO 90

5« 00 110 KI.OJJ

»9. l.iB-l

CO 00 ir(«(B|IB)) ,GE a(«B(l)))G0 TO 110

61. BB(l'l).BB(ll

67 l.l-l

r,3 IF(I .GE, 3)G0 TO '-0

M i le gB(l.|)4(IB)

65 c MM SOBT

H 90 t.i

6! M
M, JROJ.I

69. 50 if(Q(BB(lBl) .01 0(R(JR1))GO TO 120

70 B(l).B»tlfl)

71 ■4bl
77, lF(IB .GT. JJICO TO 70

'3 GO TO 130

70 170 B(i).B(Jfl)

7». JS.JB.I

)6, MJ" Mt, J)G0 TO 60

77 130 i.l. 1

7», GO TO 50

79, 60 l-l.l

8 0 B(I)J1R(«)

m. ».«•I

R? IF(IB .It. JJ)G0 TO bO

R3 70 JJ<3

to to IMMN
t5. GO TO It

«6 END

150

B.4 A Student Electrical Engineering Problem: EE

1. •LAI. t\f.l

i CI.961 6

1 VB.I20

«. 0.D8OO

1. CZUI.

b C2U-I00

7. CIWI,

1 C7L.C2ltlE.6 '

1. CAI.C7U.lt 6

10. t7i.C2l. I(.6

II. C3.I.

1? C3J.I00.

.1 »fA0(l^)C3'

,'1 2 fORM,M(Gx;3,l)

II IVPf 3CJI

It, 3 FMMAII CDi • 'f%.\\

17. CMla It-*
it. CJU.C3Ltl£.6

I'J C3<.C1i«lt-6

2«. C2.C21

21. OMAX.O

a. VMtx-0

n C3'Jt3'.0

i\ C7JtSt.O

2». 40 A. (JtC2.CI)/(7.a.Ci.C?)

?K B.!Jail'(0iC?.C?.Ci.CI)/(2.l)>CI.C2)

27 070.VU/11/C1.I/C2.I/C3)

n K2.1 '(H.B)»l(A.B)tQ;0 V« 'B.Q?0/l).;!, C !• I/C2»

29. m-a?o«?
10 BASt. Kl>(A.B).iK?.(A Bjj

31 Ql'TP.«l.(BA?.l)..((A.M,.(l/(B.fl))).«^«aAS[i.((A-H).(-1/(0.8)1)

■it vp.|70.C2I(i'{.2.Q70 C3

■■" U-.S.(CltVB«VH.l)?TP.Q7II CV.<J?0ia70/C3)

34. lf(C2 OT. C20)G0 TO 30

IS. »(U 11 UMAX)C0 10 50

ir, »(VO .IT. 2«0)G0 TO 50

37 VMAX.VO

;H UMAX.U

39. C3Bf5T.C3

40 C^BtSI.C?

41. H C7.C2.C2i

42 at io no
M 30 C7.C71

44 pr(C3 a\. C.3U)G0 TO 100

<-.-, Cl.C3.C3i

46 co io ao

47 100 C7fl(3T.C?BIST.H6

•a. C3BfST.C3aiSl.ltb

•f TYPE I.C7DeSIC3BfSI VMAKUMAX

M 1 1 CDMA : (fiX C2 .MX C3 ,9X.V0«X WATTS /£r 17.5)

1! EUD

. . _ ■ .. --^.—^-^^^—^>^.-J.J.^.-.^—,_^-^.^-^-..J^-^J.....
 - ■

 -.-^.^-.._^.-^-

*m

I
151

8.5 A Generalized Eigenvalue Problem: QZ

1. c (W AlGOaill'M 78 T . 0.

2 C »If- MOtfBcn. *Nn stiwwii.G.w.. >•: »IGOäIIHM FOB 79, DO 3« HM
3 c M CiMBALI/lD MATB.X ElGlMVALtK PkOaUMS" N T . T . NIMM
• c SIAM J. NG'MtR »NAl. 9,01DtC. 1972), 81. 3« CONTINUE
5. c 82 T . T/RHO
6 OiMCNSiO«! A(60.60)fi(6O,6O»(60.S0)^R(60). 83 DO 4« 1.1*
; 1 AI(60)BT(58),lT(bO) 80 B(U) • B(iJ) . T.B(IL)

s c DIMENSION 8AM(50) 85, 06 CONTINUE
9 BrAD(l2000iN 86 50 CONTINUE

10 200« F0I)MAT(6X.I21 j 87 00 80 .MM
11. 1VPC 2001K 1 88 T . a
1? 2001 r-WMATC H . a) \ 89 DO 60 MN
13 c GEt..-.lATt TEST OAIA »0, T ■ T . B(I.I).A(1J)
10. DO 20 MM 91 60 CONTINUE

■•. A8(l).l 92. T . -T/RHO

■». BHI).NI.| 93, 00 7« LIN
i;. 00 10 J.IM 90 A(U) . A(U) . T.BCI.L)

M A(U) • AB(.) 96 70 CONTINUE
19 B(U) ■ HUM 96, 1« CONTINUE

?0, X(U) • 0 97. mi,D • 5.B

?1. 1» CONTINUE 98. 00 90 l.LIN

?2. *<l,l) . 2..A(I.I) 99. 8(I.L) .a
Z3 Bd 1) • 2.<B(1,I) 100. 90 CONTINUC

?« 2» CONIINUE iei. 100 CONTINUE

?5 CAll Q7('JONAÜ It 8/»R>'dt.ll.IUU X) 102. r(N it. 2) GO TO 17«

76 00 30 UIM 103 NN,2 . N-2

2/. BAM(l) . AB(I)/Bt(l) 100, DO 16« K.INM2

7* PRINT IOOIJIAM(l)A^l)Br(l| 106 ■1 • K.I

29 00 «0 J.IN.S 106. NKI -N-IM

30 00 PBiNl ie01*(.l.l)X(.M.»,X(.l-2.l|X(.l<3.l).X(J.4,l) 107 DO 15« LB-INKI
31 1001 f08MAT('JIIMI 108 I . NIB
32 3» CONTINUE 109. LI • L.I
J.) STOP 110. CALL HSH2(A(IX)A(LIX)UIÜ7,V1,V2)
JO ENO III. if (til NE 1.) GO TO 125
Jb c 112. 00 II« J-KN

M SUWIOITM OZ(ND)iABfPSAirBALFlBETA,ITE«, 113. T • A(LJ) . U2.A(tU)

3; 1 »AVVX; 1 10. A(LJ) . A(lj) . TaVI

3*. DIMENSION A(ND.NO)i)(NUND-. '^»(WALf KW«TA(N), 115. A(IIJ) . A(IIJ) . T.V2

39 1 X(N1>«).IIII(N) 116. 110 CONIWUt
OC. 10GICAI WANTX 117. A<ll*) . 0.
01 CAU Q»ME5(NDNA0WANTX.X) III. 00 120 MN

02 CAU Q2iI(NaNAiJIPaiPSAiPSB.ITfR,WANTXX) 119. T ■ Bd.J) . UoUUlJ)

03 CALL Q:VAL(NUNAi)fPSflAlFBAlFIBtTA,WANTXA) 12«. O(IJ) . O(IJ) . TlVI
00 »(WANTX) CAU (j:vtC(NONA,BfPSA£PSBALF«AlFI. 121. Bll U) . B(tlJ) . T.V2

«t, IBETAJO 122. 128 CONTINUE

OG RETURN 123. 126 CALL HSH2(UL l,L 1)8(1 l,t).J l;J2V l,V2)
0/ ENO 124. F(UI NE. 1) GO TO 15«

08 c I2S. DO 130 bUI

09 SUDB0U1INE QZHESCNDNABWANTX» 126. T • B(ltl) . U2.B(l,t)

60 DIMENSION A|NDNO)0(NOND)X(NDND) 127. a(l,LI) • Bd.tl) I TaVI

61 LOGICAL WANTX 12«. BKL) ■ 0(1,1) . TaV2

02 lf(>WT.WANTX) GO TO 10 129. !30 CONTINUE

53 DO 3 blM 17«. B(LI,L) • «.

50 DO 2 J.IM 131. DO 14« I.IN

6V x(u) ■ e 132. T . A(l,ll) . U2.A(i,l)

M 2 CONTINUE 133. A(I,LI) • A(l.tl) . TaVI

57. MM • I 134. »(1,1) . A(l,t) . TaV2

M 3 CONTINUE 139. 14« CONTINUC

09 I0 NMI ■ N I 136. 1F(N0T. WANTX) GO TO IB«

GO 00 10« I-17JMI 137. DO M MA
II, 11 • L>l 13«. T . X(l.ll) . U2aX(l,L)

62 S • 0. 139. K(l,ll) . X(UI) • TaVI

63 00 20 I.LIN 14«. X(U) . X(l,i; . T.V2

bO. IF(ABS(B(I.I)) er. s) s ■ ABsmaiH 141. 145 CONTINUE

66. 2« CONTINUE 142. 150 CONTINUt

66 »(S £Q 0) GO TO 10« 143. 16« CONTINUE

67 IMAHS;»,'! D) «T. S) S • ABS(B(L.L)) 144. 170 CONTINUE

(.8 R .0. ' 145. RETURN

M 00 26 l-LN 146. ENO

/o B(I,L) • B(I.L)/S 147. C
71, R • R • B(I,L)»2 14«. SUBROUTME q7lt(Ni)NAB£PS£PSA£PS0.1TEB,WANTX»
72 25 CONTINUE 149. DIMENSION A(NDND)B(NONO)X(N0N0)
•■3 R ■ SQBT(a) 15«. DIMENSION lUB(N)

70 ifiHd ,1) .IT. 0.) a . a 161. LOGICAL WANIXXIO

76 m <) ' BU.L) ■ R 152. ANORM . 0

76 BMO • RaB(L.L) 153. BNORM . 0

7 7 00 SO MIH > 154. 00 115 MN

11 IIMI __ — • - t •MIM^^MM J

■Pi 1

152

155. mm • o
IM. AM . 0.

It?. IfV m 1) Ml • ABS(A(I,1-I))

IM >"t • 0.

IM 00 180 J.1M

16«. ANI . ANI . ABSlAdJ))

If . DM • t)M • ABSIBIUII
IG? 18C com tu
103 'MAN! C. ANORM) ANOOM . AM

IM. ■i ;■•'. .CT. BMODM) BNORM . BMI

IM IM COMiNut

IM £P5A . CPS.ANOUM

Kl (PSB • EPStBSOliM

IM. M . N

IG9. ?Ö0 IFtM U. 2) GO tO 390

17* DO 770 .IMM

171 L AtlB-l
17? lf(L iQ. 1) CO 10 760

173. iMABS(A(i,L-l» .lt. EPSA) CO 10 730

17«. 270 CMTtU

I7S. 2J0 Adll) . a

IN If(l IT. M-l) CO TO 260

171 M . L-l

in. CO TO 200

179. ?60 1F(ABS(B(L,L)) GT. EPS8) GO TO 300

IM OUU . 0

181 11 • M

1«? CAl L MSH2(A(t UXl 1 Di) 1112.V 1 ,V2)
183 IF(UI ME. 1.) GO TO .'HO

IM 00 7'C J.IN

its. T • A(U) • U2.A(LIJ)

IM. A(U) . AUJ) • T.VI

It7 A(Uj) . A(llJ) . T.V7

108 T ■ B(U) • U2ieiLlJ)

IM BUJ) . BdJ) .T.VI

IC B(llJ) . BdlJ) . T1V2

191 770 COMiNUE

IM. ?80 t . 11

IM CO TO 230

IM. 300 Wl .M|

IM l 1 • Ul

IM CONST . 0.75

111 ITES(M) . IHM . |

IM. »(ITEB(M) £Q |) GO TO 305

IM iFIAOiWM.M 1)) .IT. CCNST.0.D1) CO TO 30&

»M IF(AaS(A(M IV7)) .LT. CONST.CL07) CO 10 305

101. IF(IUP(M) iQ. 10) GO TO 310

2m. l'tlT£R(M) GI. 30) GO TO 380

?CJ 305 BII ■ 6(1 L)

204. B22 . BKUI)

205. IF(ABS(877) II, fSB) U72 . EPSB

20G B31 • B(M1M1)

20/ IMA8S(B33) .LT. IPSB) B33 . EPSB

IM BAI . B(MM)

(M l((A83IBa<l) .LT. EPSB) »U • EPSB
?:o All .AU .l/BII

211. *I2 . A(LAI),B2?

na AJI • Adl.D/Bll

21J A22 • A(L1.L1)/B22

114 A33 • AlWLMIi im

2 IS. A3« . A(MIW)/6'1'1

216, A«J . A(M^I)/B33

?;; A«« . A(M*)/B««

m BI2 • ß(L,ll)/B22

tu 83« • B(MIM)/B««

??0 AlO • ((A33-AII)>(A««.AII) . A3«<A03 • A«3«

??l 1 • AI2 - Al I.lll?

7?7 A20 • (A?? Al l A? l.ijl?) . (A33-AI1) . {Mt-t

??3 A30 . A[L.2.LI)/B72
??a. GO TO 315

2ZS. 310 AlO . U

27G. A20 • 0.

??/ AS© . 1.1505

m 315 OLDI . ABS(A(MM-I))

229. 0102 • A(JS|A(M l^ ?))

2JC. »(MOI.WANtX) LODI • L

731 KWANTK) LO«l • 1

A«3.B3«<A I l)/A?I

A«3iB3«

237 IF(MOT.WANTX) MOBN . M

233 IF(WANTX) MOHN • N

23« 00 36« MWI
735. MIO • KM MI

IM Kl • K.l

237 KZ . K.2

238 O . K.3

?1'J »(«3 .CT. M) K3 M

2«0. KMI ■ K-l

Nl. 1F(KM1 .LT. L) KMI .L

7«? »(« IQ. 1) CALL HSli3(A10A20A30JJIiJ2iJ3,VI,V2,V3)

2«3. IF(K.GT.l AND. KLTWI)

2«« CAl l HSH3(A(KJ(M l)A(K 1 JMIMttJM DJJ1 U2U3,V 1 ,V2,»3)

Hl IF(K IQ Ml) CALL MSH2(A(KXMl)A(KU<Ml)XlliJ2,VI,V2)

206. IF(UI M. 1) GO TO 325

2« 7. DO 370 J.KMIWO»N

?a8 T • A(KJ) . U2.A(K|J)

209. IF(MIO) T . T . U3«A(K2^)

250. A(KJ) . A(K.J) . T.VI

}b\ A(KU) . A(KIJ) • T.V2

;.2 IF(MID) A(K2J) • A(K7J) • T.V3

y a T - B(KJ) . U2.B(KU)

25«. IF(MID) T . T . U3.B(K2J)

255 ll(K J) • BIM .T.VI

256 HIK: . B(KI,) . T.V2

257. IF(MID) B(K2J) 8(K2J) • T.V3

258. 320 CONTINUE
>

259 if(K fQ. L) CO TO 325

760 A(KIJ(.|| . 0. «
261 IF(MID) A(K2JM) • 8.

262. 3?5 IF(K XQ. Ml) GO TO 300

263. CALL MSH3(B(K7«)fl(K2.Kl)i)«7.K)ÜIW2JU3,VI,V2,V3)

26«. IF(OI m. 1.) GO TO 3«0

265 DO 330 I40R1X3

26^ T . A(l)(7) . U2.A(I^I) . U3.A(1J()

267. A(IJ(2) • A(K?) . T.VI

208 AdKl) . A(l((l) . T.V2

269. A(IJ() . AdX) . T.V3

270. T • B(IJ(2) • U2.B(IX 1) • U3.8(l*)

271. 9(1X2) . 8(1X2) «T.VI

2/2. J(IXI) • B(1XI) • T.V7

273. B(IX) ■ IKK) • T.V3

27«. 330 CONTINUE

270. B(K2X) • 0.

7'6 0(K?XI) • 0.

277. IF(.NOI.WANTX) GO TO 300

278. 00 335 MM

2/9. T • X(1X2) • U2.XdXI) • U3.XdX)

?«0. X(IK2) • XdX2) • T.VI

281. X(IXI) - X(IXI) • TlM

282. X(IX) • X(IX) • T.V3

783 335 CONTINUE

280 30 0 CAL l HSH2(B(K 1X 1 IflCK 1XW1 iW.V 1 ,V2)

285. »(Ul M. 1.) GO TO 360

286. DO 350 I.L0RIX3

28 7. T - A(IXI) . U2.A(IX)

?88 A(IXI) . AdXI) . T.VI

280. A(IX) • A(IX) • T.V2

290. T - B(IXI) • U2.B(1X)

291. B(IXI) • BIIXI) • I.VI

MI. B(IX) • B(IX) • T,V7

793 350 CONTINUE

IM B(KIX) • 0.

795, IF(MOT.WANTX) GO TO 360

296. DO 355 MM

297. I . X'lXI) • U2.X(IX)

298 X(IXI) • X(1XI) • T.VI

799 X(IX) • X(IX) • T.V2

300 356 CONTINUC

301 360 CONTINUE

302. GO TO 200

303 380 00 385 MV

30«. ITCR(I) • -1

305. 385 CONTINUE

300 390 CONTINUE

307. RETURN

308 END

J

•u- ^m^*~*m^^ "■•' " i.mwm ii i ui in i •--"——"-

153

309
31«.
311.
312.
313
311
31».
316.
317.
31«.
319.
3?0
371.
322.
323
374
32V
32C
327
321
323.
330
331
332
333.
331.
33S.
33G.
337

J3«.
339
310
311.
312
313
311.
315
316.
317

318
319
350.
Ml.
3M.
353
351.
355.
356.
357.
35S.
359.
360.
361.
362.
M,
361.
365.
366.

367.
368
369.
370.
371.
372.
373.
371.

378.
376.
377.

378.
379.
380.
381.
382.
383.
381.
385.

120

025

130

135

115
15(1

160

SUBBOUTiNf qZV»l(NDAI,Aa,EPSB.MfMiriKTA,W(MJTX1X)

OlMl MM A(lilOM»B(NOMO)^lFa(N)AlFI(N)KTA(N)X(M)M))
LOGICAL WAMXMIP
M • N
CONTMUC

"(M iQ I) GO TO 110
IF(A(MM I) M 0.) GO TO 120
AIF>(M) . AIM»)
e(TA(M) . B(MM)
AlM(M) . ».

M . M-l
GO TO 19«
I • M-l

»(AflStBd.D) XJT, IPSB) GO TO «25
BILL) • e.

CAU MSH2(A(l,l)A(Ml)AIIU2,Vl,V2)
GO TO 160

»(Ans(U(MM)) .GT. EPS8) GO TO 13«
U(MM; . 0.

CAU MSH2(A(MW)A(M1)AJIXI2,VI.V2)
BN • 0.
GO TO 135

AN . ABS(A{1,1)) • ABS(A(IM» • ABSIAtM.l)) • ABS(A(M*))
BN ■ ABS(B(LI.)) • ABStBUM) • ABS(B(MAi())

All • AC I i,'AS
AI2 . A(LM)/AN
A2I • A(M.l)/AN
A22 . A(M,M)/AN
Bl I • Bd.lJ/BN
BI2 • B(IX)/BN
B22 • B(MM)/aN
C • (AlIIB22 • A22>BII
D - (A22>BII . AlliB22

I f A2laB22a(AI2aBI I
'HO .IT. 0.) GO TO 180
iF(C .Ct. 0.) I • (C
lf(C .U. 0.) E • (C
All .All . i.lli i
All . AI2 - E«ai2
A22 ■ A22 • E«a22
FLIP • (ABS(AII).AEIS(AI2|| GE. IABS(A2 l).A8S(A22|)
»(FLIP« CALL HSM2(AI2AIUJ4IU2,VI.V2)
»(.NOT/IIP) CAU HSH2(A22^2IUliJ2.VI,V2)
IF(UI M I.) GO TO 150
DO 110 MM

T • A(I,M) . U2.A(I,L)
A(IV) • A(IX) • Vl.T
A(U) . A(U) . V2.T
T . MdWl . U2tB(IL)
BIIM> • B(IM) • *|«t
B{IL) • BO.ll • V2<T

CONTINUE
»(.NOT WANTX) GO TO 150
DO 115 !■ IM

T • X(IM) . U2.X(l,l)
X(IM) . X{IM) • Vl.T
X(l.t) . X(I.L) • V2>T

CONTINUE
IF(8N £Q. 0.) GO TO 17»
FLIP . AN GE. A0S(E)«BN
IF(FIIP) CALL HSH2(B(L,L)fl(M,L)UliJ2,Vl,V2)
'F(J«T/LIP) CALL HSH2(A(L,L)^(MA)iJlJJ2,VI,V2)
IF(UI .NE. I.) GO TO 17»
00 170 MM

T . A(LJ) . U2«A(MJ)
A(LJ) . A(LJ) . Vl.T
A(MJ) . A(MJ) . V2«T
T ■ B(IJ) ■ U2<B(MJ)
li(U) • 8(1 Jl • VlaT

V2aT
170
175

A2l«3l2)/2.
A? 1.3 12)..2/I.

Aii.ai2)

SQaT(D))/(BII>B22)
SQI)T(0))/(8lliB22)

B(M J) . B(MJ)
CONIWUt
A(M,L) . 0.
B(MIL) • 0.
ALHl(L) . A(L.l)
ALFR(M) . A.(MW
BCTA(L) . b(L.L)

386.
387.
ans
389
390
39 1
392
393.
391
395
396
397.

398.
399.
100
401.
107
«03
101.
105.
106.
107
10«
109
110.
'111.
4 12.
413.
lie
115.
416.
117
1)8.
119.
420.
121.
027,
121
121
125.
426.
427
428.

129.
130.
131.
432
433.
431
135.
436.
437.

438.
439.
410.
141

442.
443.
444.
445
446.
447.
448
449.

450.
451.

«52.
153.
454.
455,
456.
457
4 58

«99.
460

«61.
«62

«MM

i SQI)>CZiA2l
S5I.A22

SSB.B22

SSa.A22

BCTA(M)
ALFI(M) . 0
ALFKL) . 0
M . M-2
GO TO 490

«8« EB • CAB 11 «822)
El ■ SQB!(D)/(B1I.B22)
Ai!R . All - [B.B1 I
All! • EllBII
A120 . *I7 • (8.812
AI2I ■ EI.BI2
A? IB . A2I

A2II > 6.
A22R • A22- IB.822
A22I • li.82?
FLIP • (ABS(AIIR).ABS(AIII).ABS(AI2»>A8S(AI2I)) GE.

I (ABS(A21B!.A85{A27B).ABS(A22I1)
IF(FLIP) CALL CHSH2(AI2B»l2l.-AII»,.AIIi«SZB«l)

IF(MOT/LIP| CALL CHtH2(A22RA22l,-A2IR,-A2IIC;MR«l)
FLIP . AN fg. (ABS(EB).A6S(EI))>BN
IMUIP) CALL CHSM2(c;.BII.SZB.ai2SZuai2,

I SZ8.B22,S/i'B27,CQSQflSQli
1F(.N0T/IIP) CALL CMSh2(C?.A 1 l-SZB.A l2Sil.A 12

I r./.A2 1.57B.A?25?i.AJ2,CQS()B5y.l
5SB . SQB.S/B . SOi.SZi
SSI • SQRtSZl - SQI.S70
TR . CQ.CZ.All . CQ.S7B.A12
Tl . CQ«S2I>AI2 - SQI>C2«A2I .
BOB ■ cQ.c.'.u.i • CQ>S;B.BI2

BDI • CQ>SZI>B:2 • 5SI.B22
B • SQBKBDB.BDB . BDI«BDI)
BETA(l) . BN«a
ALFR(l) . ANa(TRaBDR • Tl.BDI)/B
ALFKL) • AN.l'B.BOl . TI«BOB)/B
TB . S5R.A11 . SQB.C7.AI2 - C0.S«.A21 • CQ>C2aA22
Tl . -S£I>AII - SQi.CZ.A12 . CQaS;i<A2l
BOB . SSB.BIl - SQB.C7.B12 • CQ.CZ.922
BDI • -SSIaBII - SqiaCZaBIZ
R • SQBKBDB.BOB . BOIaBDi)
BETA(M) . BN«B
..LFR(M) . *N.(TS.BDa . TlaBOO/R
AIFl(M) . ANa(TBaBOI - TI.BOB)/B
M • M-2

«90 If (M GT. 0) GO TO 400
RETURN
END

SUBROUTINE QIVEC(N0MAB£P5AEPSBALFRALFIfl(TAX)
DIMENSION A(NDMD)B(N0AO)AlFa(N)ALFI(N)BCTA(N)MNDM»
LOGICAL FlIP
M . N

500 CONTINUE
IF(ALFI(M) m. 0.) GO TO 990
ALFM . A1FB(M)
BETM . BETA(M)
IF(ABS(ALFM) IT. EFSA) ALFM . «.
IF(ABS(BETM) .LT. EPSB) BtTM . »i
»MM . I.
I a M-l
IF» iQ. 0) GO TO 940

910 CONTINUE
LI . M
SL • 0.
00 SI» MIN

SI . SL • (BETMaA(U)-AlFMaB(LJ))aB(JJM)
519 CONTINUE

F(l IQ. I) GO TO 920
IF|A(L.L-I) ME. 0.) GO TO 936

52« 0 • BEIM.A(U) - ALFMaB(lX)
IF(D £Q. OJ 0 . (EPS*-EPSB)/2,
B(LM . Sl/D
1 • l-l
GO TO 640

930 la Ul
SK ■ 0,
DO 939 MIX

SK . SK • (BE1M.*(K,J)-ALFM.B|KJ)).B(JM)

1
- "" - - - J

M^k> wmi^^mmmi .-—-^—-«>—

154

003. m CONTINUC 540. M ■ N Cf.fl K« . BtTM.ftl««) /MtM.BKJO 54 1. 600 CONHNUE Ä6». «I . UfIM.A(K.U - AltMiBIK.l) 547. DO 670 l.lfl
dG6. UK . BE 'M.*(l«) 543 S ■ 0. 167 TLt . BCM.na.l) »[fM.Bll.) 544 DO 610 .- ;M

aas.
0 . tlllTU Kl.IU

»(0 id. o) a . (tPSA.cPsai/7.
545

546. 610

S . S. X(IJ).B(J«)

CONTINUE

■ 71
WlAt) . (IlK.SK ■ I«.SL)/0

FUP . MWTWI GE. ABStUm
547.

548. It«
X(l*) . S

COSIINUE 0 77. IF(f,pP) fl(«M) . .(S* . t«l.B(l*W/I« 541 M ■ M-1
«73.

4 74.
wum/im a*«« . .(» , lu.BuwH/Ti«

I • 1-7
550. f(M .GT. 0) GO TO 600
551 M . H

174.

476.

IM #11 CT. 0) GO TO 51Ü

M . M 1
657. 630 CONTINU

«71 GO IU 590
553. s . 0.

«T« m «IMS • AltS(M. 1)
554. ir(AlFl(M) M. OJ GO TO 650

479. AIM! . Ald(M. 1)
555. 00 636 kU

M« BETM . Uf IA(M 1)
656. R ■ ABS(X(IW)

48 >. MR . U-l
55'. »(» .IT. S) GO TO 636

4S2. Ml ■ M
55«. S ■ R

413.

484.

485.

B(M. IM8) . A;MI.O(WM)iOtlM.A(M>l-l))

B(M-l.MI) . (atlM.A(MW).AlMe.B(MJH)),'(B£lM.A;MM-|))
B(M.MB) . 0.

5 59.

560.

HI,
635

0 ■ XdM)

CONTINUE

00 640 M*

486. B(M*«I) . -1.
567 XdM) • X(IW)/D

487. t . M.;
563 MO CON IINUE

CRB »(L Id- 0) GO TO 585
564 M • M-l

flK4 IM CONTINUE
565. GO TO 6S0

490. 11 • M
566 (/JC 00 655 I.I*

491. Sia • o
50 7. R . X(IA(.|)..7 . X(IA«)..7

(n, Sll • 0.
5GR *(« IT. S) GO T3 665

4)3. 00 5G5 M IM
569. S . R

IM

49S.
TR . BETM.AUJ) . AlM^Bd.,)

Tl . -AiMi.eaj;

5 70.

57|.
DB . XO*-!)

oi . X(IM

«M. SIR • SIR . TB.BUVR) . Ti4B(J,Mi)

ill ■ Sll . TR.B(JAi(l) . TI,B(JJHR)

5/7.

5/3.

■II CONTINUE

DO 660 klU

IN 56» CONTMUI
5/4.

CAu e0WMmMUl(IMa>MWJi.lMI
499. lF(i .Eg. |) CO TO 570

675. (.CO CONTINUE

100 l'(A(U.|) M CO GO TO 575
576. M . M 7

SOI.

507

570 OR . BEIM.AU.i) ALMä.BUl)

Di ■ AlM,.B(l.U

577.

5/8
690 F(M GT. 0) GO TO 630

700 BE URN

■-.01

504
CAl. COIV(-SlR. S^IMOIMIM*)AIM)
t • 11

579,

680. C

(NO

Ml GO TO us 681. SIIBROUTM HSH3(A 1A7A3A) 1 U2)J3V\.t2S3)

HI 5/5 K • 11
587. IMA7£g.O. AUO. A3iQ.0J GO TO 10

107 SK« . 0
583. 1 ■ ABS(AI) . ABS(A?) . ABS(A3)

'JCR S<l . 0.
681 Ul . Al/S

509 DO 580 J-l iW
585. u? . A7/S

510 TU . BfTM.A(il.j; . ALM5,e(i(J)
586. ui • A3/S

511 Tl . AIM'.B(»;.J)
587. B • SQRT(UI.U|.U7.U7.U3iU3)

lit.
513

SKR ■ SKR . IR«L)(JVS) . II.B(JVI)

SKI . SKI . TP..B(vVl) . Il.B(JW»i

588.

589.
lf(UI IT. OJ R . -R

VI . (Ul . R)/M

51« 580 CONTMUI
IM V7 . U?/«

515

516.
TKKR . BETM.A(KX) ■ AlMa.8«*)

TKKl . .AIM..B!KX)

591.

697

V3

Ul

■ -US/R

- 1.

517.

518
TKIR . DITM.AIK.l) AIMR.BIKL)

TKU . AlMi.B(K,l)

593.

594.
U7

U.l

■ V7/VI

• V3/VI

519.

570.
TlKB . BtTM.A(lX)

TlKl - 0.

595.

596.
BE TURN

10 Ul . 0.

571.

577.

»3

S74.

575.

576

57?

578.

579

530

531.

537

Til» . B[IM.fl(: i; ALMR^BfU)

Till . .AlMr.BU.l)

OR . TKKR.IUB . TKKI.TUI . TKlB.TcKB

Dl . TKKR.TUi . I«i,TtU ■ TKU.UH

"(OR (Q, 0 AND, DUliO.) DR . (tPSA.[PS8)/7.

CAU COWTiKR.Siu.lKKi.SlB.TKKi.SlI

597.

598.

599. C

600.

601.

607.

■03

RETURN

INO

SUBROUTINE HSH7(AI>l7iJIJU?.VI,V7)

lf(A7 iQ. OJ 60 TO 10

S . ABS(AI) . ABS(A7)

Ul . Al/S
1

7
TlKB.SKl.TK^R.SiMidn.siB,

MfiUNl M9)B(IMI))
HIP . (A0S(TKKR).AB5(IKK;)) .GE. AB5(TtKR)

IF(fllP) CAU C0lV(-5KR-TKiR.B(iVe).TKl,.B(lA«l).

604.

605.

606.

60/.

U7 . A7/S

« • SQRT(UI«U|.U7.U7)
IF(UI n. 0.) B . -B

VI . ^Ul . R)/R
1

■SKI-TKIR.BJL^I TKLI»B(L/KR) 60«. V7 . -U7/R 2 TKKR.Tl«,fl(K»(R)i)(K^I)) 609. Ul • 1. 533

535.

536.

537.

538.

539.

ITWOT/UP) CAU C0IV(.5tR-luR.0(lWa).Tai.B".WI). 610. U7 . V7.'V1
I

■sii-Tufl^advo-Tiu.Buw), 611. RETURN

* Ua.TinjBMOJRM)
I . 1-7

585 lF(l .GT. 0) GO TO 560

M . M 7

59« lf(M «T. 0) GO TO 500

617.

613.

614.

615. C

616.

10 Ul . e.

RETURN

END

SUBROUTINE CHSH7(A IB A 11 mo A7i r co c.t

■ ■■in— mmi

n^» m^mr*~m*^^*m^m^mimrmm

\5b

Appendix C

Code Matrices for Integer '+'

In order to show in detail the form of the analysis used by the

"fair" code machine language generator for the arithmetic and logical

operators (see Chapter 3, Section 3.1.3.5), this appendix contains the

code matrices for integer addition. There are two code matrices; one

for quads of the form (+ ,V,E,V) or (+ ,E,V,.V) with the first two arguments

commuted, and one for quads of the form (+,EI,E2,T), where El, E2, and

E are arguments that may be simple variables, parameters, results or

indirect result:; Visa simple varlbale, parameter, or indirect result;

and T is a temporary result. Each matri contains 16 cases, depending

on the mode of the operands. There are four possible operand modes:

MEM, NUM, REG, and REG+NUM. Thus, for example, the case "MEM/REG(s)"

means the first operand is Ir memory while the second is in register s.

The logic of a case analysis is presented in tabular form with

the following conventions:

I) Toe machine language instructions generated are
expressed In MACRO-iQ [PDPTIal], the assembly
language for the PDP-IO. Curly brackets are used
for the conditional generation of information.
Thus, for examplö,

MOVE r,{*}EI
means to generate a MOVE instruction with r as
the register field, address of El as the address
field, and the indirect bit set if tag bit I
of the '+' quad is set (see Appendix A, Section
A.3).

■■A--,, .-^■' . ■.:..^... ^ ^^.■....^.v,-..- - -■•- ■■'■ jjcukkiu ■ ■ ■ — -

157

2) The information that controls the analysis resides
in fields in the temp or register table, or tag
bits in the f-i ' quad. The mnemonics for the tigs,
along with their meaning, can be found in Appendix
A, Section A.3. The mnemonics and their meanings
for fields in the register and temp table are:

mnemonic

RANGE
NB
INFO
USES

meaning

range field of temp entry
neg-bit field of temp entry
information field of temp entry
use field of register entry

To reference fields in the tables, an indexing
scheme is used with the name of the operand being
the index. For example,

NBCE2] ♦ »♦•

means set the neg-bit in the temp table entry for
E2 (a temporary) to plus.

3) The following variables are used:

variable

0
r

meani ng

the address of the •+' quad.
an unused register. This
register is allocated by the
register allocation algorithm.
Initially, the register has
no associated temporary or
variable.
registers containing the operands.
a literal constant, folded
or otherwise.
address of a constant, folded
or otherwise.

4) The following shorthand notation is used for table
headings:

s,t
L

symbol

N

+

temp
cons
lit

mean i nc

set indirect tag bit of '+' quad
neg-bit field of temp plus
neg-bit -field of temp negative
temporary tag bit of •♦' quad set
operand is a constant
operand is a I ireral

1
-■■ -■- . - J

159

action

'reset temp mode'

•El *■* E2'

'same as k'

meaning

reset the mode of the temp
from "REG" to "REG+NUM"
with the number set to zero.
If Q«RANGE[temp], then set
the USES fieid of its associated
register to I.
interchange the attributes
of the two operands.
the analysis Is the same as
for case k.

CI Code Matrix for (+ ,V,E,V) or (+E,V,y) Commuted

1. MEM/MEM

MOVE r,{*}E
ADDB r,{»}V

2. MEM/NUM

2.1 E a constant: same as (I)

2.2 E a Ii teraI

E=l

AOS r,{*}V

:J*0
not

MOVEI r,E

ADDB r,{*}V

2.3 E a temp with mode^'NUM"

MOVE r,E

folded cons I it

same as (h

3. MEM/REG(s)

3.1 E an indirect temp

'reset temp mode'
'same as (4)'

3.2 E a temp

same as (2.2)

0<RANGE[E] Q=RANGECE]

+ - + —

ADDM s,{«}V SUBM s,{*}V
MOVNS {*}

ADDB s,{*}V MOVNS s
ADDB s,{*}V

—'—'—■—■

160

3.3 E not a temp

no temp associated with s | temp associated with s

AÜDM s,P}V ADDB s,{»}V

4. MEM/REG(s)+NUM

4.1 Q<RANGE[F] or (0=RANGE[E] and U5ES[s>l)

temp *temp

+ - + -

MOVE

cons

r,5

lit cons l it

MOVNS s
"negate L"

ADD r,C ADD 1 r,L oUB r,C SUBI r,L
MOVE r,L(s)
ADDB r,{#}V

4.2 Q=nANGECE] and USES[s]=l

tenp *temp

cons 1 it same
s rep

as (4.1)
lacing r

wi"

ADD s.C

+

ADÜI c
J 1 I

ADDB s,{ »}v MOVNS
ADDB $1 {•)V

5. NUM/MEM (impossible)

6.NUM/NUM (impossible)

7. NUM/REG(s) (impossible)

8. NUM/REG(s)+NUM (impossible)

9. REG(5)/MEM

9.1 V an ind irect temp

'reset temp mode'
'same as (13)'

9.2 V in a register

no temp associated with s

ADD s>{*}E

MOVEM 5,{«}V

temp associated with s

MOVE r,{*}E

ADDB r,{»}V

urn in* -- -

161

10. RE6(s)/NUM

10.1 V an indirect temp

'reset temp mode'
'same as (14)•

10.2 No temp associated with s

cons 1 it

ADD s C E«l E^I/0
MOVEM s,V

AOS s,V not " H

ADDI s,L

MOVEM

ADD

s,L

s,L

10.3 Temp associated with s: same as (2)

I. REG(t)/REG(s)

i I.I V an i ndirect temp

'reset temp node'
'same as (15)'

11.2 V in a register: same as (3)

12. REG(t)/REG(s)+NUM

12.1 V an indirect temp

'reset temp mode'
'same as (16)'

12.2 Temp associated with t: same as (4)

12.3 no temp associated with t

temp *temp

+ - + -

AÜÜ

cons 1 11

SUB

cons

t.s

I it

MOVNS s
"negate L"

ADD t,C ADD I t, L

MOVEM

SUB t,C SUBI t,L
ADD t,L(s)
MOVEM t,V

_J

162

For cases 13-16, V is a temp with mode="REG+NUM" whero NUM is a

literal. In order to use the literal as an index, it must be positive,

Before code for the case Is generated, the neg-bit is checked.

+

V MOVNS

"negate L"

MOVE
ADDM

13. REG(s)+NlJM/MEM

r,{»}E
r,L(s)

4. REG(s)+NUM/NUM

14.1 E a constant: same as (13)

14.2 E a I iteral

E=l

AOS L(s)

E/I^O

not

MOVEI r,E MOVE r,E

ADDM r,L(s)

14.3 E a temp with mode="NUM"

folded cons

same as (13)

lit

same as (14.2)

15. REG(t)+NUM/REG(s)

15.1 E an indirect temp

'reset mode of temp'
'same as (16)'

15.2 E not a temp

ADDM s,L(t)

15.3 E a temp

+

ADDM s,L(t) SUBM s,L(t)
MOVNS L(t)

■ - ^

163

16. REG(t)+NUM/REG(s)+NUM

16.1 Q=RANGECEl and USES[s]=l

temp *temp

cons lit + -

ADD s,C

+

ADDI s,L ■— MOVNS s
"negate L"

MOVNS s MOVE s,L(s)

ADDM s,L(t)

16.2 Q<RANGE[E] or (Q=RANGECE] and USES[s]>l)

te mp *temp

+ - + _

MOVE

cons lit

MOVN

cons lit

MOVNS i
"negate L

ADD r,C ADDI r.L SUB r,C SUBI r,L MOVE r,L(s)

ADDM r,L(t)

0.2 Code Matrix for (+,E\,t2,J)

I. MEM/MEM

MOVE r,{*}EI
ADD r,{»}E2

2. MEM/NUM

E2 not *

MOVE r>{*}EI
"associate Num with T"

3. MEM/REG(s)

3.1 l2 set

'reset temp mode'
•El «-^2'
'same as (13)'

E2

same as (I)

— na. i i ■ ■

164

3.2 t2 a temi)

Q<fWlGErE2l

MOVE r,s

ADD r,{*}EI

0=RANGECE2]

ADD s,{*}EI SUB s,{*}EI

SUB r,{«}EI

NBfT] f NBCE2]

3.3 E2 not a temp

no temp associated with E2

ADD s>{*}EI

temp associated with E2

MOVE r,S
ADD r,{»}EI

NB[TD -^ ' + '
"associate s with T"

4. MEM/REG(s)+NUM

'El -w E2'
'seme as (13)'

5. NUM/MEM

'El •*-* E2'
'sa.ne as (2)'

6. NUMI/NUM2

6.1 I. set: same as (2)

6.2 "associate NUMI+NUM2 with T"

7. NUM/REG(s)

7.1 I set: same as (3)

7.2 'El -H* £2'
'same as (10)'

8. NUMI/REG(s)+NUM2

B.I I. set

'El ♦♦ £2'
'same as (13)'

- - - -

165

8.2 Q<RANGECE2] or (Q=RANGE[E2] and USESCs]>l)

temp *temp

MOVE r,s + -

+ -

MOVE
"associa

MOVNS s

INF0CT>^UMI+NUM2 ll.F0[T>NUM2-NUM!

NBCT]^BCE2]

"negate L"

r,L(s)
te NUMI with T"

"associate p with T+NUM"

8.3 Q=RANGECE2] an£ U3ES[s>l

same as (8.2) except replace r with s and delete the
'MOVE r,«' instruction

9. REG(s)/MEM

'LI ♦♦ E2'
'same as (3)'

10. REG(s)/NUM

10.I I set

'El ■*-*■ r.2'

'same c'5 (3)'

10.2 I set

'reset mode of temp'
'same as (14)'

10.3 El a temp

Q<RANG ECEI] Q=RANG ECEI]

+ - + -

MOVE r,s MOVN r,s "associate NUM "associate -NUM

"associate NUM with with T" with T"

T+NUM" "associate s with T+NUM"
"associate
NB[T>' + '

r with T+NUM" NBCT>NB[EI]

III - - - - - - - - - --—

166

10.4 El not a temp

no associated temp

"assoc. s with
T+NUM"

associated temp

mode of reg="TEMPM

MOVE r,s
"assoc. r with
T+NUM"

mode of REG="T+NUM"

"assoc. s with
T+NUM"

"associate NUM with T"

II. REG(t)/REG(s)

I I. I I. set

'reset mode of temp'
'same as (15)'

11.2 l2 set

'reset mode of temp9'
'El «-* E2' l

'same as (15)'

11.3 El and E2 temps

a) Q<RANGE[EI] and Q<RANGE[E2j

MOVE r,t
rR -^ r

E -«- s
SW ♦ M

b) 0<RANGE[EI] and 0=RANGE[E2]

'R
E

s
t

SW ■»■ 0'

c) Q=RANGErEI] and Q<RANGE[E2]

»R ♦ t
E -«- s
SW * I'

d) Q^RANGECEI] and Q=RANGE[E2]

•R ♦ f
E «- s
SW ♦ I1

lilMII II ■ - - - ' *~. ■■MMtaMMMHli

167

\EI
E2\ + m

+
ADD R,E

NB[T>' + '

SUB

sw=o

R.E

SW=I

NBET]^'-' NB[T>, + '

SUB

sw=o SW=I

ADD R,E

NBCTZH-'-'

NB[T>• + , NBC^'-'

"associate R with T"

11.4 El a ten.p and E2 not a temp

•El -w E2,

' 3ame as (11.5)

11.5 El not a temp

It.5.I temp associated with t: same as (3)

11.5.2 no temp associated with t

E2 not a temp

ADD t,s

E2 a temp

ADD t,s

NBCT>' + ,
SUB t,s

12. REG(t)/REG(s)+NUM

'El *-* E2'
'same as (15)'

13. REG(s)+NUM/MEM

13.1 Q<RANGE[EI] or (Q=RANGE[El] and USES[s]>l)

temp

MOVE r,s

ADD r,{*}EI SUB r,{*}EI

NBCTj-e^fEl]

"associate r with T+NUM"
"associate NUM with T"

temp

El +

MOVNS s
"negate L"

MOVE r,LU)
ADD r,{*}EI

NBET]-«-^'
"assoc. r with T"

UM mi na in tmimmätm ■

168

13.2 Q=RANGE[EI] ond USESC?3*I

same as (II.M but replace r with s and remove the
'MOVE r,s' instruction

14. RE6(s)+NUM|/NUM2

14.1 I set: same as (13)

14.2 'El -Hf £2'
'same as (8)'

l^. RE6(t)+NUM/REG(s)

15.1 I set

'reset mode of temp'
'same as (16)'

15.2 E2 a temp

15.2.1 Q<RANGtCE2] and_ (Q<RANGE[El] or (Q-RANGECEI] and USES[t]>i)

jfemp *temp

MOVE r,t

E2I
Ef

ftDD r,s
MB^T>' + ,

SUB r,s
MBCT>' + '

SUB r,s
NBLT]*-'-'

El +

MOVNS t
"negate L"

ADO r,s
NECT>'-'

"associate r with T+NUM"

MOVE r,L(t)

E2 +

ADD r,! SUB r.s
"associate r with T"

15.2.2 0<RANGECE2] and_ (0=RANGE[EI] and USESCt>l)

same as (15.2.1) except replace r with t and delete

the 'MOVE r,t' instruction

■ ■— —

- —J— —-

169

15.2.3 Q=RANGE[E2] and_ (Q<RANGE[El] or (0=RANGE[El] and USES[t]>l))

Ei temp

E2N

ADD s,t
NB[;T>' + ,

"NUM^T"

SUB s,t
NB[T>'-'
"-NUM'vT"

SUB s,t
NGCT>, + '
"-NUNM"

ADD 5,t
NB[T>,-'
"NUM'vT"

E2 +

^emp

MOVNS t
"negate L"

El

ADD s,L(t)
NB[T>, + ,

SQIB s,L(t)

"associate NUM with T"
"associate s with T"

"associate s with T+NUM"

15.2.4 Q=RANGE[E2] and_ (Q=RANGE[El] and USES[t>l)

E2 ftemp temp

same as (15.2.3) same as (15.2.2)

15.3 E2 not a temp

15.3.1 temp associated with s: same as (13)

15.3.2 no temp associated with s

El temp

ADD s, t
"NUM^T"

SUB s,t
"-NUM^T"

"sVr+NUM"
NBCT>, + ,

temp

MOVNS t
"negate L"

ADD s,L(t)
"sM-"

NB[T>, + '

16. REG(t)+NUMI/REG(s)+NUM2

Let 61 = (Q<RANGE[E!ll or Q=RANGECEl] and_USESCt>l) and_

(Q<RANGE[E2] or Q=RANGECE2] and_ USESCs]>t)

ß2=(0<R«NGECEl] or Q=RANGE[EI] anC[USESCt]> I) and_

(Q=RANGECE2] and_ USESCs>l)

B3 = (Q=RANGECEI] and_ USES[t>l) and_

(Q<RANGECE2] or Q-RANGECE2;j and_ USES[s]>l)

ßu = (Q=RANGE[El] and_ USESCt>l) and_

(Q=RANGEi:E2] and USES[s>l)

 i it tm ttmtm -— - -■ - ' ■ - - ■- ■- ^t^m^t^mm

I 70

16.1 El and »temp, E2 and * temp

El + t?

MOVNS t
"negate El"

16.I.I Bj

MOVE r,LI(t)
ADD r,L2(s)

"assccicite r with T"
NBCT>' + '

16.1.2 62

16.2

E2

MOVE s,L2(i,)
ADD s,LI(t)

"associate s with T"
NBCT>? + '

16.1.3 83

MOVE t,LI(t)
ADD t,L2(s)

"associate t with T"
NBC^'H-'

16.1.4 61+: same as (16.1.3)

El not an *temp

16.2.1 Bj

not an * temp

MOVE r,s

E2
El

ADD r.t
INF0CT>NUMi+NUM2
NB[T>, + ,

SUB r,t
INF0[TlKWUM2-NUMt
NBCT>' + r

MOVNS s
"negate E2"

SUB r.t
INF0[T>NUM2~NUMI

ADD r.t
INFOCTJ-H^UMI+NUM2
NB[T>'-'

"associate r with T+NUM"

E2 +

*temp

MOVNS s
"negate L"

El

MOVE r,L(s) MOVN r,L(s)

ADD r,t

"associate r with T+NUMI"
"associate NUMI with T"

16.2.2 ß2: same as (16.2.1) except replace r with s and remove
the »MOVE r.s' instruction

W^^W"WPP»
1

■■wwwui mt mmt-if

171

16.2.3 ß3

E2 not an *temp

.E2
El

ADD t,s
INFO[T>NUMI+NUM:'
NB[T>, + ,

SUB t.S
INFCCT>NUMI-NUM?
NB^T>'-,

SUB t,s
INF0[T>NUMI-NUM2
NB[T>, + ,

ADD t,s
I NF0[T>NUM I+NUM:
NB[T>l-,

"associate t with T+NUM"

16.2.4 ß^

E2 not an *tefT'p *temp

*temp

E2 +

MOVNS s
"negöte I

El 4

ADD t,L(s) SUb t#LCs)

"associate t with T+NUMI'
"associate NUMI with T"

same as (16.2.2) same as (16.2.3)

16.3 El an * temp, E2 not an *temp

»El <«. F2'
'same as (16.2;'

 ^ ■ — mämtmmammmlm J

17^

References

AII69 Allen, F.E. Program Optimizations. In Annual Review in Automatic
Programming, Vol. 5, Pergamon, New YorK (1969), 239-307

AII70 Allen, F.E. Control Flow Arjlysis. In ACM Proceedings, of a
Symposium on Compiler Optimizat.on, SiGPLAN
Notices 5, 7 (JULY 1970), 1-19.

ASF66 ÜSASI FORTRAN. American Standards Association inc., New YorK,
(March 1966).

Bli71 BLISS Reference Manual. Computer Science Report, Carnegie-Mellon
University (Oct. 1971).

Cha67 Chartres. B.A. Algorithm 311 Prime Number Generator 2.
Comm. ACM 10, 9 (Sept. 1967), 570.

Coc70 CocKe, J. and Scnwartz, J.T. Programrnming Languages and their
Compilers. Preliminary notes (Second Edition). Courant institute of
Mathematical Sciences, New York University, (April 1970).

Dar70 Garden, Stephen C and Heller, Steven B. Streamline your Software
Development. Computer Decisions 2 (Oct. 1970;, 29-33.

For67 Forsythe, G.E. ano Mo er, C.B. Computer Solution of Lmoir
Algebraic Systems. Prentice-haii, Eng.ewood Cliffs, N.J., (1967).

Gre69 Gegory, R.T. and Kamey, D.L. A Collection of Matrices for Testing
Computational Algorithms, Wiley-lnterscience, New York, (1968).

Gri71 Gnes, D. Compiler Construction for Digital Computers. John Wiley
and Sons, Inc. (1971).

Har69 Harary, F. Graph Theory Addison-Wesiey Co. (1969).

Hay71 Haynam, O.E., Hansen, G.J. and Cook, R.P. A Tutorial on one-pass
Compiler Design. XDS User's Group 16th International Meeting, Vol 2
(Ma/ 1971).

Ing71 Ingalls, D. The Execution Time Profile as a Programming Tool. In
Design and Optimization of Compilers, edited by R. Rustm,
Prentice-Hall (1971), 107-128.

"

//J

Jas71 JasiK, S. Monitoring Execution on thi CDC 6000'$. In Design and
Optimization of Compilers, edited by R. Rustin, Prentice-Hall (1971),
129-136.

Knu70 Knuth, D.E. An Empirical Stud/ of FORTRAN Programs. IBM Report
RC 3276 (1970).

Low69 Lowry, E. and Medlock, C.W. Obiert Code Optimization.
Comm. ACM 12, 1 (Jan. 1969), 13-22.

McW72 McWiliiams, T.M. Private correspondence (1972).

Mit70 Mitchell, J.G. Design and Construction of Flexible and Efficient
Interactive Programmmp, Systems. Ph. D. thesis, Carnegie-Mellon
University, (June 1970), AD712721.

Mol72 Moler, C.B. Algorithm 423 Linear Equation Solver.
Comm. ACM 15, 4 (April 1972), 274.

Mol73 Meier, C.B. and Stewart, G.W. An Algorithm for Generalized Matrix
Eigenvalue Problems. SIAM J. Numer. Anal. 19, 2 (April 1973),
241-256.

PDP718 PDP10 Reference Manual. Digital Equipment Corp., Maynard,
Massachusetts (1971).

PDP71b PDPi0 Timesharing Handbook. Digital Equipment Coro., Maynard,
Massachusetts (1971).

