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ABSTRACT 

An invariant second-order closure program for compressible 

shear flows has been developed at A.H.A.P.  The program has 

been applied to study a simulation of the mixing region in a 

HF chemical laser.  Considerable insight Into the complex 

processes occurring in laser cavities has been achieved by 

these studies.  The results show that the assumptions used 

in the eddy viscosity and the turbulent kinetic energy closure 

methods are not completely valid for nonequilibrium flows such 

as in the chemical laser system. 

The results of studies of other shear flows with the same 

invariant second-order model are in generally good agreement 

with experimental measurements, but suggest the need for im- 

provement of the pressure diffusion model for high speed com- 

pressible flows. 

A "typical eddy" box model has been developed for compu- 

tation of higher-order correlations involving species, temper- 

atures and reaction rate fluctuations for closure of the turbu- 

lent, multi-species, reacting flow equations. 
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i. INTRODUCTION 

A second-order closure program for the investigation of 

compressible  chemically reacting, turbulent flow fields is 

under development at A.h.A.P.  For th« past several years 

A.R.A.P. has been in the forefront of the application of 

second-order modeling techniques to the calculation of 

turbulent shear flows.  These techniques have been success- 

fully applied to the calculation of planetary boundary layers 

free shear layers^, axisymmetric wakes', flat plate boundary 

layers  and other turbulent flow problems.  The new program 

will extend the methods developed in these studies to com- 

pressible flow problems involving highly exothermic chemical 

reactions (i.e., the turbulent mixing and reaction in a HF 

chemical laser).  The mixing in chemical lasers takes place 

under conditions of large local heat release.  The resulting 

interaction between the turbulence and the heat release is 

an important feature of the flew. 

During the past year, with sup^:rt from AFOSR Contract 

No. Fif4620-73-C-0027, we have employed the tehenique of 

second-order modeling to study various aspects of gas flows 

in chemical lasers and the effect of Reynolds number and wall 

roughness on the mixing in tne laser cavity.  Other problems 

of particular interest to the Air Force Weapons Laboratory 

have also been investigated.  These studies were summarized 

in the Interim Report of February I'.r^'.     in the past four 

months a number of additional studies on the laser flowfield 

have been completed and are discussed in this report.  The 

shear flow program has also been used to check some of the 

third-order models by comparison of program predictions to 

available experimental data for certain extensively studied 

   _ 
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the mixing region which may lead to an improvement in the laser 

performance . 

A cümparison of our second-order closure ino.iel with the 

eddy viscosity and tne kinetic energy approach bAa üeen made 

for1 the laser flow p.-oclem.  Figure 1 shows the results for 

the computation of an sidy vlacoslty "conatant11 

: U 'v '\ 

K 
'max 

Aü x (y 75 - y^)  üu x (y^ - y^) 

using the results for the heynuids atraae  u 'v' and the mean 

axial velocity ü obtained Prom r.he aecond-order cloaure 

program.  We see that K la neither a constant with the 

downstream distance  X nor with the Reynolds number, and 

the use of a simple eddy viacoaity in the mixing region of 

interest for a chemical leaer Mould ba Incorrect. The figure 

also shows the values for  K  obtained for a free snear layer 

for which we see that after a abort Initial region K cnes 

become a constant.  Therefore, In an equilibrium flow region, 

the eddy viscosity concept can be uaed with aome degree of 

success, but for nonequilibrium flona aa Li a .läse, cavity a inore 

sophisticated procedure like second-ordei zloaure muat be used. 

An elementary aecond-order closure procedure Is Lhe 

turbulent kinetic energy closure method aa developed, for 

example, by Harsha .  Figures 2a and 2b show the results of 

u v for t\ e our computation of the quantity 

laser flow field at.  he ■ 2xlo' and  2x10^.  We see that 
a,  can be, to a large ex+ent, treated as a constant across 

IMHMHMM te. -        , 
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O   Present study (cr0 = 11) 

Y/A Experimental data compiled 

by Birch & Eggers 
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Two program systems were developed to accomplish this task. 

Tne first program, TENSR, accepted differential equations in 

tensor notation as input.  The program expanded the terms accord- 

ing to the summation convention  (A B -► A" B-, + A Bp + A B-,) , 

and reproduced separate versions of the equations for each 

specified value of the free index or Indices  (C . = D. -♦ C , = 

D-^ C p = B2,   C , « D») ,  In addition, TENSR did extensive ,2 -  w2 
checking of the validity of  the  inputs,  allowed  the  substitution 

1  . „2  , „5 ' 4- ITo •»• U% • 0-» U , + V p + W -, = 0), 
,-1.        fC ) J ,X        yt- > J 

of symbols  (U . ■ 0 
and evaluated individual components of the Kronecker delta and the 

metric tensor.  The output of TENSR was edited by hand to remove 

terms not applicable to the problem at hand, i.e., terms that were 

negligible under tne boundary-layer assumptions. 

The resulting equations were inputs to the second program 

system, DIFFR, which constructed FORTRAN statements for com- 

puting the coefficients of the finite-difference equations 

corresponding to the input differential equations. 

These programs were very successful.  However, there was 

a major restriction,  Covariant differentiation was taken to 

be the same as partial differentiation.  In other words, the 

Christofftl symbols were taken to be zero.  The results were 

valid only for systems for which all the elements of the metric 

tensor are constants.  Thus, the only applications were for 

Cartesian coordinates. 

For the present effort it became necessary to solve even 

more complicated equations in cylindrical coordinates.  There- 

fore, the TENSB system has been revised so that it automatically 

produces the Chrlstoffel symbols associated with covariant dif- 

ferentiation.  Orthogonality was not assumed, so that it is 

possible for example, to introduce streamline coordinates by 

defining the metric appropriately. 

10 
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In making the x-evisions, ottier changes are being made in 

TENSR as expei'lenoe with It nas shown these changes to be 

desirable.  These include changing the verification section 

to make the verification routine more efficient.  Another 

chrnee Kill ni'-ike it possible to automatically accomplish at 

least some of the editing to remove negligible terms (mentioned 

above), if TENSR is so Instructed. 

No major Changes have been made In DIFFR, nor are any 

contemplated.  However, a successor program has been written 

Which produces more efficient FORTRAN coding from that produced 

by DIPFR. 

3. CONCLUSIÜN: 

Considerable Lneight Into the complex processes occurring 

in laser1 cavities has been achieved through the use of an in- 

variant second-order closure model of the turbulent flow 

equations.  The assumptions used in the eddy viscosity method 

and thd kinetic energy method are not completely valid for 

nonequil.1 brlum flows such as in the chemical laser system. 

Studies of different Incompressible shear flows with the 

same basic second-order model demonstrates that the general 

featares of such flows are descriued very well by an invariant 

model.  It is believed that, with a little more modeling effort 

for compressible flows (especially for th« pressure diffusion 

terms) all the Important details of compressible flows can also 

be adequately calculated by our second-order closure scheme 

without abandoning the riot ion of invariance. 

Significant progress has been made towards a reacting 

flow program with the development of the "typical eddy" box 

model for computation Of correlations involving species, 

temperature and reaction rate fluctuations. 
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