AD-784 824
ON A MEASURE OF PROGRAM STRUCTURE i
Robert Noyes Chanon

Carnegie-Mellon University

- 4"‘9%

N

i

Prepared for: {
/

Defense Advanced Research Projects Agency d
i

Air Force Office of Scientific Research i
:

November 1973 K

DISTRIBUTED BY:

e

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

J

siala bt . - FR - deade . L O
i e e s
UNCLASSIFIED
SECURITY CLASSIFICATION OF Th1s Bad 110, oot Bavke rod
eTak alal - o ~ o : 4 =
REPORT DOCUMEHTATION PAGE . BEFOSE COMDLETDNG FORY
IA%E.}C%?TJNUj&éES ? 4 B 1. 4 3 5 T TEOVT FCCESEION (1) 3. REGIPIERT'S CAT ALOG KUMD LI
: 143 AD 757 524
= < ,S L
4. TITLE (and Subtitls) Y. TYPE OF REPQRT & PERIOD COVIERED
ON A MEASURE OF PROGRAM STRUCTURL Interim

& FERFORMING GRG REPGRT NUMBEK

7. AUTHOR(a) 8. CONTRACT OR GHANT NUMHE k(e)
Robert Noyes Chanon F44620-73-C-0074
9. PERFORMING ORGANIZATION NAME AHO ADORESS 10, PROGRAM ELEMLNT, PROJECT, 175:’. 1
. . . ARE A & WORK UNIT NUMBERS

Carnegic-Mellon University

Department of Computer Science 61101D

Pittsburgh, PAa 15213 AD24L66
11 CONTROLLING OFFICE NAME ANO ADDRESS B 12. REPORT OATE i
Defense Advanced Research Projects Agency November, 1973

1400 Wilson Blvd 13. NUMBER OF PAGES

Arlington, VA 22209 295

T4, MONITORIHG AGENCY NAME & ADORESS(I different {rom Controlling Office) 1S. SECURITY CLASS, (ol thia report)

Air Force Office of Scicntific Rcsearch/>4,/77

1400 Wilson Blvd UNCLASSIFILED
Arlington, VA 22209 T5a GECLASSIFICATION GOWNGRADING
SCHEOULE

16. DISTRIBUTION STATEMENT (of this Koport)

Approved for public releasze; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the abstract enterad In Block 20, 1{ differont {rom Report)

18. SUPPLEMENTARY NOTES

19. KEY WQROS /Contlnue on reverae slde I{ neceasary and Ident!ly by block number)

20. ABSTRACT rContinue on revsrae slde il necesaery and identify by block numbar)
Program structurc has bcen discussed as bcing an important influcnce on thc

case with which, programs can be constructed, verified, undcrstood, and changed}
This thesis proposes a dcfinition for program structurc, a mcthod for construct
ing programs, and a mcasure for program structure. The usefunlness of this
measure as a tool for determining and coutrolling structure is evaluated.

The measure uses the information theorctic concept of exMcess entropy to deter-
mine the extent to which assumptions made by identificd prrts of programs are

shared and thus influence structure. Scveral programs are developed using

FORM
DD 1 JAN 73]473 EDITION OF 1 NOV 6515 OBSOLETE

. UNCLASSIFTED

L e TRITY CLASSIFICATION OF THIS B AGE (When Date Trtered)

o A SN YR et o T

UNCLASSTFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Fntared)

20. (abstract cont.)

wechanical aids to rccord assumptions and computer entropy loadings. These
applications of the measure are evaluated and discussed.

UNCLASSIFIED

PeSrIRI s ATIAM AL TUIC DACE/UWhan Nata Fotarent

12 a ot R I e g T bt e

ON A MEASURE OF PROGRAM STRUCTURE
Robert Noyes Chanon

Department of Compuler Science
Carnegie-Metlon University
Pittsburgh, Pa. 19213
November, 1973

Submitted to Carnegic-Metlon Universily in partial fulfiliment of the
requirements for the degree of Doctor of Philosophy. This work was
supported in part by the Advanced Research Projects Agency of the Office
of the Secretary of Defence [Contract F44620-73-C-0074) monitored by the
Air Force Office of Scienlific Research and by the National Science
Foundation [Contracts GJ 37728 and GJ 32259] This document has been

approved for public release and contract sale; its distribution s
unlimited.

DDC

ABSTRACT

Program structure has been discus,ed as being an important
influence on the ease with which programs can be constructed, verified,
understood, and changed. Yet the notion of program structure has
remained a vague and imprecisely defined concept. This thesis proposes
a definiticn and a measure for program structure and evaluates the
usefulness of the measure as a tool for determining and controlling
structure in a program.

Applications of the measure require that the assumptions which
objects make be precisely stated These are defined to include
assumptions about the nature and use of variables and data; conditions
relating to the correct execution of the program; and assumptions about
the program environment in which the text is executed. Top-down
programming by stepwise refinement forms the basis for a proposed
methodology that permits these assumptions to be stated as a program is
constructed.

The measure uses the information theoretic concept of excess
entropy - entropy loading - to determine the extent to which assumptions
are shared. Entropy loading calculations also provide a way of
comparing different decompositions of a program. Unfortunately, finding
the best decompositions of all but small programs seems intractable.
Consequently, several heuristics are stated that attempt to establish
bounds on the growth of entropy Ioadings for elaborations of
decompositions suggested at early stages in a development.

Several programs are developed using mechanical aids to record
assumptions and compute entropy loadings. Since each development
preserves assumptions at every elaboration, this information need not be
deduced from program text when the program is studied or is to be
modified. Entropy loading figures at each stage allow different
decompositions to be compared and provide either a basis for choosing a
decomposition or grounds for actually modifying the program to achieve
better structure, These developments illustrate the proposed
methodology and show that the measure produces results that are usually
consistent with the definition of program structure as well as the
informal notion of structure from the literature.

Without mechanical aids, however, applications of these techniques
to practical problems would be tedious and difficult. This and other
difficulties motivate further research about this important but elusive
property of programs: their structure.

Bt i b i B Sl Gt - e e e

ACKNOWLEDGEMENTS

I would like to express my appreciation to David L. Parnas for his
patience and guidance during the early stages of research for this
thesis. Special thanks are also due to the members of the thesis
committee for their persistent criticism and helpful suggestions: John
McCredie, Mary Shaw, William Wulf, and John Grason.

This thesis has relied heavily on the work of E. W. Dijkstra as a
source for examples and intuitive notions about the meaning of structure
in programs,

TABLE OF CONTENTS

Abstract
Acknowledgements
Table of Contents

INTRODUCTION
Chapter I: REVIEW OF PREVIOUS WORK

Aspects of Good Structure

Influencing Structure - A Review of the Literature
Prcgram Structure: A Definition

Summary

Chapter 1I: MAKING ASSUMPTIONS EXPLICIT

Objects and Assumptions
A Design Methodology for Preserving Assumptions
Object/Assumption Tables
An Example of Objects and Their Assumptions
A GCD Computation
Summary

Chapter III: A MEASURE OF PROGRAM STRUCTURE

Definition of a Measure

Applying the Measure to Object/Assumption
Tables for Programs

The Clustering Problem

Heuristics for Using the Measure

Saturation in Object/Assumption Tables

On the Probability of Change of Assumptions

Chapter IV: USING THE MEASURE

Introduction

A GCD Computation: Three Versions

A Sequences Problem

Heapsort

The Problem of the Eight Queens and a Telegram
Problem: A Discussion

13
15

16

16
18
27
27
31
44

45
45
51
59
62
66
72
72
73

108
136

165

PR U

TR TS NTR B R s o e L R N, S o s P ar L Y

Chapter V: ON ASPECTS OF USING THE MEASURE

Review of Results Demonstrated
by the Examples
Advantages of Using the Measure
Difficulties of Using the Measure
Aids to Applying the Measure and
Suggestions for Future Research
Conclusions

BIBLIOGRAPHY

Appendix I: A Markov Algorithm Processor
Appendix II: Comments on a Note on Compiler Struct: e

184

184
192
195

1197
199

201

204
292

N T e Lot g e s cote b b il san ke Eaae UL L e e L A (il b i ¥ L TR T it paly 2 oo Ut e £ KL = N "
o N - & " 3 b EREL W R Y s i el il M el E s T = e b L et Ll S B TR T N T T T i) e T

INTRODUCTION

Dijkstra[DJ1-5], Wirth[W], Naur[NAL-2], Parnas[PAL], and
Mills[MI1-2] have stressed the importance of designing software as
collections of small programs, whose interrelations are well understood.
Such software is said to have good structure. Unfortunately, not every
piece of software which consists of a collection of small programs has
good structure. Nor do the informal methods, described in the papers
above, necessarily guarantee good structure. The goal of this thesis
has been to investigate the behavior of a mathematical tool - entropy
loading - as a measure of the goodness of structure and as a guide which
can help to preserve good structure in a collection of programs that

constitutes the decomposition of a piece of software.

The work of Simon[SI] and Alexander[AL], concerning complexity in
systems, and the work of Dijkstra[DJI-5] and Parnas[PAl] strongly
suggest that system decompositions having good structure possess the

following properties:

(1) the information requrred to study, understand, and verity
single parts of a system is supplied in conjunction with those
parts, and relatively little information about the rest of the
system is required;

(2) single parts can be drastically changed - changed algorithm,

1 changed data structures - without requiring much knowledge of
the rest of the system and withoui changing the rest of the
system, i.e. drastic changes can actually be confined to
singie parts;

(3) should an error occur as a result of the failure of one small
part to function correctly, the error can be localized to that
part of the system quickly and easily, permiting the error to
be repaired using only a knowledge of that part;

4 & Y
LR LA T (L Pl IE

INTRODUCTION 2

(8) during system construction, distinct working groups can be
given assignments to write separate sets of parts, and the
assignments can be completed with very little communication
among the groups.

Many programs, even some that are regarded as good programs, fail
to possess one or several of these properties - with undesirable
results. Programs that fail to meet these standards frequently require
that miany design decisions be understood before a small portion of the
program can be understood. Seemingly unrelated portions often make many
subtle assumptions about each other, assumptions that are difficu|t‘ to
deduce from the program text or documentation. Hence, in order to
change a portion, the consequences of the change must be understood in
the context of a large part of the program. Shared assumptions between
identified parts will be called interactions. Simon[S1] and
Alexander[AL] suggest that by controlling these interactions, limiting

the amount of code that each connects, and displaving the structure of

the program, the four properties mentioned above are approached.

In order to control interactions, it s first necessary to
explicitly observe the assumptions made by parts of a program.
Techniques for making these observations are demonstrated, along with a
tabular format for recording them once they have been noted. This
record can then be used to compare different decompositions of the
program, The comparisons are made by using an entropy loading
calculation described by van Emden[vE2). The calculation has long been

used in areas such as information theory, physics, and ecology. This

thesis investigates its applicability to data representing the

b s e

INTRODUCTION 3

assumptions of program parts. The entropy loading measure was chosen
because it had the potential for distinguishing, in a mathematical way,
programs that possess properties consistent with good structure from
programs that do not. This mathematical tool enables a designer to note
the existence of interactions between the parts of his design. As a
result, he should be able to better understand and to control the

effects of his assumptions.

Applications of these methods produce results that are usually
consistent with intuitive notions - in the sense of Dijkstra and Wirth -
about what constitutes good program structure. Programs that have been
regarded as "good" are shown to have better properties than programs
regarded as "bad". Several "good" programs have even been improved.
Several anomolies of the measure as well as the costs and difficulties

encountered while applying it are also discussed.

The chapters that follow give a definition of structure and
interaction and show how the effects of interactions can be measured.
These techniques are also den.onstrated on numerous examples that have
been used elsewhere [DJ3,W,HEMK1]

Specifically,

Chapter 1 examines part of the iiterature about software design. It
then presents a definition of program structure that motivates the
techniques used in this thesis.

Chapter 1l describes how a design methodology - structured
programming[DJ1] - and a proof technique[HO1] can be used to find
the interrelations in a program. Interrelations are observed in an

example and summarized in object/assumption tables.

Chapter 1II presents an entropy loading measure that can be used to

ot e e Ty oy

Fre v odaa

INTRODUCTION 4

formally evaluate the relative merits of different decompositions
of a program. The advantages as well as the shortcomings of the
measure are discussed.

Chapter IV demonstrates the use of the measure to observe and control
program structure. Several examples are developed using the
heuristics described in Chapter IIL

Chapter V discusses and evaluates the results of this thesis.

Finally, two appendices follow the conclusions: the first presents a

larger example and the second uses the measure as a basis for discussing

the paper, Compiler Structure[MK1].

(4

CHAPTER |

REVIEW OF PREVIOUS WORK

This chapter begins by stating several properties of programs which
seem to have good structure. Next, several design methodologies and
conventions for representing programs are examined to see to what extent
they lead to good structure. Each is shown to have the potential for
leading to bad structure unless the issue of structure is explicitly
considered. As a result of this examination, a definition of program
structure is proposed in terms of the interrelations among the parts of
a program, The analysis and control of structure motivates the

methodology used in this thesis.

ASPECTS OF GOOD STRUCTURE

Dijkstra("On Our Inability To Do Much"[DJl,pp 1-3]) points out that
a person’s powei of comprehension is too meager to deal with all the
detail in a large program. However, he asserts that the computer owes
its existence to its ability to execute large, complicated programs.
Consequently, we must find ways to organize large programs which allow
people to deal with them, yet utilize a computer well Several

properties of such programs are:

(1) Ease of verification

Good programs can be proved correct by dealing with only small
parts of the program, regardless of whether the proof is carried
out by a person or a machine.

(2) Ease of understanding

ey T

REVIEW OF PREVIOUS WORK 6
ASPECTS OF GOOD STRUCTURE

The text of a good program, along with its documentation, describes
the program in sufficient detail that it can be understood, and

(a) Single parts of good programs are understandable in terms
of their text and documentation. (In fact, the documentation

of a good program is not separate from the program.)

(b) There is an understandable path from the abstract method
being implemented to the final detailed code.

(¢) Decisions along this path are explicit and can therefore
be evaluated as either good or bad.

(3) Ease of maintenance and change
Good programs, because the effects of single parts and the
assumptions made by them are understandable, can be changed and
maintained with relative ease. Little effort need be spent
deducing the consequences of changes when compared with the effort
needed to implement the changes.
Dijkstra has demonstrated the role the stricture of a program plays.
His observations were motivated by the verificalion issue. For example,
he ciles the problem of verifying the correct behavior of a hardware
multiplier[DJ1]. If we regard the device as a "black box", then all
possible multiplications must be performed and verified as being
correct. Alternatively, the internal structure of the device can ke

examined, and a convincing argument about the correctness of the device

can be produced. This second approach is the only feasible one.

The structure of a program has direct effects on the three

properties of good programs mentioned above. Some of these effects are:

(1) Program verification is tractable if the amount of detail
required for the verification can be comprehended by the human or A
mechanical verifier. This means that the parts of a program and E
the relations among those parts are sufficiently simple that
theorems relevant to the correctness question can be easily stated
and easily proved.

e N S S L P L P R ae————

REVIEW OF PREVIOUS WORK 7

ASPECTS OF GOOD STRUCTURE

(2) "Underslanding a program" is a less formal view of program
verification. When we say that we "understand" a program we mean
that we understand how it works - that we believe it behaves the
way it is purported to behave. Since we don’t attempt to
understand programs as "black boxes", the single parts and their
interrelations must be sufficiently simple that understanding is
possible.

(3) Maintaining or changing a program requires that the places to
change be found, the changes constructed, and the constructions
verified. This implies that the parts to be changed must not only
be identifiable to a programmer but that the effects of those
changes in the context of the entire program be limited. Herce,
the parts which are to be changed and their interrelations with the
rest of the program must be kept within a programmer’s grasp.

INFLUENCING STRUCTURE - A REVIEW OF THE LITERATURE

A few techniques have been proposed to help contrcl program

structure.

Knuth[KN1] has described a "classic" paradigm in which a system is
designed from the "top down" in terms of subroutines, and coded from the
"bottom up". He emphasizes the mechanism of the subroutine as a tool
for allowing attention to be focused on one design decision, postponing
the consideration of other details. This approach can help to display
the structure of a program. However, the desirable properties cf the

programs which the methodology produces are never stated.

Wirth[W] provides examples where program text is written in a
top-down, step-wise manner. His model pays particular attention to the
importance of verification and mentions the potential difficulties which

might accompany an attempt to change a program. The Eight Queens

e (i i W PEARRUAE] 1) RN ot (SR P TY | T, L) T L T W T

REVIEW OF PREVIOUS WORK

INFLUENCING STRUCTURE - A REVIEW OF THE LITERATURE

Problem, which is presented as an example in Chapter 1V, and based on
the development by Wirth, shows a situation where decisions about
control flow have been separated from decisions about data

representation.

Naur[NA2] states a specific criterion which he claims should be
used to guide decision making in the design process. He proposes that
the global requirements of a problem shouid be used to deduce a set of
"associated actions which guarantee that these requirements are always
met” - programming by action clusters. Here the importance of
describing the effects of these operations precisely is stressed.
Program verification then becomes more tractable than otherwise.
Unfortunately, the initial statement of the problem used to demonstrate
the method is imprecise, and design decisions which precisely define the
problem to be solved are never stated but simply appear in the code.
Further, one of the global requirements must be considered in at least
one place other than the action cluster which was specifically
associated with it. This oversight regarding interrelations among the
program parts results in an error which is documented by
Leavenworth[LE]. In addition, Naur emphasized the importance of
considering the relationships of global properties as a program s

written, but made no attempt to display these relationships.

The issue of structure was first stressed by Dijkstra[DJl] in terms.

of a programming methodology called "structured programming”. Dijkstra

has carefully chosen his examples. Each represents the outcome of a

i B T T o

T o ey, Mmoo megeh o _uo b Ougt 0 b el b e - £

T R v R ol e, (I N Wt i W 0 ¢ MR ey e T LR R G gar i g

REVIEW OF PREVIOUS WORK 9
INFLUENCING STRUCTURE - A REVIEW OF THE LITERATURE

careful search in which many choices were rejected. These choices and

] the reasons for their rejection are seldom stated.

1 | Each example problem is presented in terms of a coilection of
carefully derived sub-problems which together solve the original
problem. The arrangemen! and relationships of these sub-problems allow %

the correctress of his programs to be verified as they are written.

Verifications are established by informal proofs of correctness and by
direct applications of an axiom system due to Hoare[HOl]. Dijkstra has
shown that verification in terms of the representations suggested by the
programming methodology is tractable for systems which are not just

examples of the methods[DJ4]. }

Lastly, Dijkstra recognizes the importance of producing programs

which are maintainable and changable ("On Program Families"[DJ1]).

Mills[MI1,MI2] and Baker[BA] have adopted the structured

programming methodology to the extent that precise coding conventions E

are selected in order to convert programs containing parts which have
yet to be elaborated directly into code. Their conventions are
justified by a ‘“structure theorem" due to Boehm and Jacopinifas :
described in an appendix to MI1] These conventions include maintaining
a program library of (perhaps) dummy entries so that high level program
texts - containing references to code which has yet to be elaborated -
can be compiled and verified. They also observe a convention where PL/I .’

text representing any single program part is always less than a page (55

REVIEW OF PREVIOUS WORK
INFLUENCING STRUCTURE - A REVIEW OF THE LITERATURE

lines) in length. The verification aspect receives specific attention
through attempts to formally verify texts. Besides formal verification,
several programmers read the texts and either conclude that they are
correct or correct them. Some of these conventions, however, can lead
to bad structure. For example, if programmers are encouraged to read
the texts of other programmers, it is possible that unstated assumptions
which would adversely affect the maintainability and changability of the
program will be made. Much attention is paid to a variety of control

structures eg., texts must be go to-less.

Besides these methodologies, efforts have been made to design and
implement programming languages which restrict the kinds of syntactic
structures that can actually be used to represent programs. The intent
is to eliminate the use of language constructs which have a high
probability of leading to poorly structured, complex code. For example,
without adequate descriptions of the relationships among various pieces
of code in a program, the unbridied use of the go to statement makes it
impossible to guarantee good properties in all but the smallest
programs. Dijkstra[DJ6] noted this difficulty and suggested that the
go to statement be avoided. As a result, at least one programming
language (BLISS[WRH]) has no go to statement and go to-less programming
is advocated as a good programming practice. Indeed, some go to-less
programs do not possess many of the bad properties of some programs

containing go to statements, but such programs, just by virtue of the

absence of the go to, are not guaranteed to have good structure.

3
E
s;
;
E.:
|

AT

i

REVIEW OF PREVIOUS WORK 11
INFLUENCING STRUCTURE - A REVIEW OF THE LITERATURE

Some so-called implementation languages[W1,WRH] have attempted to
make it possible for cooperating programmers to write good programs.
These languages have eliminated or restricted the use of many syntactic
constructs which seem to lead to bad structure. None, however, is
accompanied by a methodology which suggests how it should be used to
produce programs which have good structure. That this is a severe
shortcoming is apparent in the light of the developments of T$5/360 and
the MULTICS operating systems: TSS was written in the assembly language
for the IBM 360/67, MULTICS in an implementation language based on PL/I
Both systems have similar goals. However, MULTICS encountered many of

the same development problems as did TSS.

Snowdon[SN] has described an interactive system which attempts to
provide an environment which aliows programs to be expressed in much the
same way as they would be developed using the structured programming
methodology. But, even here, there is no specific description of how
the .language is meant to be used. Further, no emphasis is placed on the
manner in which different "abstract machines" are or should be related
to one another. Using the language in no way guarantees good structure

in the resulting programs.

Parnas[PA1-PA4] has addressed the issue of how to produce pieces of
software which have good properties by stressing the importance of
precise specifications for the independent modules which make up the

piece of software. The policy of “hiding" information which a module

does not need is used extensively. The only information which is

it

e T = LT ST I T

it Yariah
e

REVIEW OF PREVIOUS WORK 12
INFLUENCING STRUCTURE - A REVIEW OF THE LITERATURE

available to the implementor of a module (and hence to the module) is
presented in the specifications of the modules. The effect of such a
policy is to restrict interrelations among modules to those which can be
deduced from the specifications. (These may still be very subtle.)
Systems which are produced using this methodology have the following
properties:

(1) Once the specifications for each module have been written, the

system can be constructed in a straightforward way, based solely on

the information contained within the specifications.

(2) The system can be verified as correct if the specifications

lead to a correct solution of the problem for which the system was

designed and if each module can be verified as meeting its

specification,

(3) The overall system is understandable if its behavior can be

deduced from the specifications with reasonable ease. Each module

is understandable if:

(a) the interrelations among the functions which comprise it
are understandable and

(b) the implementation of each function is understandable.
(4) Individual portions of the system can be changed so that the
good properties of the system are preserved, but only if those
changes are made within single modules. So long as a module meets
its specifications, it can be freely changed. Extensions to the
system, however, imply changes to the specification itself. Such
changes must be consistent with those portions of the system which
remain[PA4].
If the interrelations which are deducible from the specification are
numerous and complicsted, a system may have bad properties (Note the

parallel between this phenomenon and programs produced using the

structured programming methodology). Assigning tasks to modules is as

important as the specifications, which may, themselves, be difficult to

R SN W ot

REVIEW OF PREVIOUS WORK 13

INFLUENCING STRUCTURE - A REVIEW OF THE LITERATURE

write. Parnas’ work has been criticized because he provides incomplete
guidelines about how module partitions should be constructed However,
the work provides a framework which has good implications for ease of
understanding and ease of maintenance and change. It also provides a
model which has been successfully used in constructing software in many

versions with different implementations of each module.

PROGRAM STRUCTURE: A DEFINITION

Dijkstra[DJ1-DJ4] has demonstrated a process by which he constructs
programs that have good structure but has not emphasized the properties
of the relationships among the parts which make the structure good. In
all his examples, the relationships among the program parts have been
few in number and so straightforward as i» be easily neglected. In
every instance, the relationships among the sub-parts inside a part have
been far more numerous than the relationships among the parts.
Parnas[PAl] stated a definition of program structure in terms of modules
and connections. The modules are those portions of a program which are
specifically indicated in the written description of the program -
perhaps its documentation. The connections among the modules "are the
assumptions which the modules make about each other." These connections
are much more extensive than the calling sequences and control block
formats shown in most descriptions. The definition stated below is a

modification of the definition due to Parnas. Objects are construed to

be any program parts which have net effects on the state of the program

REVIEW OF PREVIOUS WORK 14
PROGRAM STRUCTURE: A DEFINITION

or its data. The term interaction is further defined as a shared
assumption among two or more objects. Hence, the assumptions which the
objects of a program make include the connections, which in turn include
the interactions. Consequently, we have the definition:
Program Structure is the set of interactions which exist among
identified objects in a program as well as the ways those objects
are organized to form the whole program.
The definition implies that any program possesses structure. The
aspects of good structure at the beginning of this chapter, however,
imply that programs having good structure are constructed from objects

whose interactions and assumptions are apparent or are easily deducible.

The key emphasis in this definition is that good structure is determined
by interactions among objects and not just the organization of the

objects.

The definition motivates the model which is used in this thesis to
develop and represent programs. This model is developed in Chapter II,
but has two properties which arise directly from the definition of

program structure,

(1) Objects are constructed in an organized way, using the top-down
and step-wise construction techniques of Dijkstra and Wirth.

1 (2) Interactions are explicitly recognized and recorded and are
& used to suggest ways of maintaining good structure in a program.

REVIEW OF PREVIOUS WORK g
PROGRAM STRUCTURE: A DEFINITION

SUMMARY

This chapter first presented a list of several aspects of good program
structure. Next, several programming methods were discussed with
respect to the ways they influence program structure. Lastly, a
definition of program structure, emphasizing - interactions among the
objects of a program, was stated. This definition motivates the

methodology that is described in Chapters 1j, 11}, and Iv.

In Chapter 1l, the nature of these interactions is investigated and

a proposal for keeping track of them is made.

1

CHAPTER i

MAKING ASSUMPTIONS EXPLICIT

This chapter first describes the kinds of assumptions which have
been observed among the objects of a program and then describes a
methodology for actuaily displaying them. Next, object/assumption
tables are demonstrated as a way of recording observed assumptions. In
chapter IIl, such tables will be used to state the measure of program

structure which is investigated in this thesis. In the remaining

chapters, object/assumption tables will be maintained for each example

to which the measure is applied. Finally, an example program is
examined in order to observe the assumptions made by its objects and to

demonstirate the proposed methodology.

OBJECTS AND ASSUMPTIONS

Chapter | asserted that program structure is determined by the
objects of a program and their interactions, where interactions are
defined to be assumptions shared among objects. In point of fact,
objects don’t make assumptions. Rather, assumptions are made by a
designer/programmer and are used as guides to construct objects.
Dijkstra[DJ1,0J2] has displayed objects in the form of English
statements which describe the intent of various parts of, as yet,
incomplete programs. Seldom are the assumptions which were used to
construct them stated precisely. This situation first poses the

question of what kinds of assumptions are made.

MAKING ASSUMPTIONS EXPLICIT |7
OBJECTS AND ASSUMPTIONS
The classification of assumptions below has sufficed for the
examples developed in this thesis. Since the notion of an assumption is
subjective, other researchers might wish to add to this list.
(1) Relationships which must hold prior to the execution of an
object in order for its eifects to be realized.
(2) Assumptions about data, e.g. assumptions about the meaning and
interpretation of values contained in simple variables or data
structures; assumptions about the position of information in data
structures; assumptions about accessibility of data; etc.
(3) Assumptions about the environment in which an object s
executed, e.g. frequency of use of an object; order in which
computations will be performed; machine precision; assumptions

about factors outside the control of the program.

(8) Assumptions based upon mathematical theorems which are relevant
to the problem being solved.

(These classifications will be referred to in the next section.)

Next, the problem arises as to how these assumptions can be found
and stated. A tempting approach would be to examine a complete program,
understand it, and record the assumptions which objects make - the
objects being deduced by the examiner from the code and its
documentation. In all but the smallest programs, this approach is
extremely difficult. Both objects and their assumptions must be deduced
from detailed code. This is a result of the so-called
abstraction/implementation dilemma, ie. it is frequently possible to
find a program which implements an abstraction, but it is usually

difficult to deduce the abstraction from an implementation of that

abstraction.

N P P L AT DT T TR

MAKING ASSUMPTIONS EXPLICIT
OBJECTS AND ASSUMPTIONS

The only feasible approach is to observe assumptions as a program is

|
being constructed.
¥
)
4

A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

The proposed methodology is based upon the "top-down", “"step-wise

refinement” methods suggested by Dijkstra and Wirth. We begin by
describing the original problem in terms of a set of assumptions that
constrain the problem and a set of final conditions ,(post-conditions)
that describe the net effects the program is intended to produce. Here,
it is wvital that the specifications of the problem be precisely stated.
A notation due to Hoare[HOl, HO2] will be used to describe this

situation:

Here, P are the assumptions, Q are the post-conditions, and S is program
text or an explicit description of what an object does. Next, S is
described as an arrangement of "simpler" computations whose effects are
meant to lead from P to Q. Each "simpler" computation possesses its own
pre-conditions and post-conditions. Clearly, this descriptive process
can be continued as deeply as necessary. We idenlify these "“simpler"
computations - as well as the original S - as the objects referred to in
the definition of program structure. In the past, objects have been
describec informalty in English. Such descriptions serve only as

reminders for what the assumptions and post-conditions of an object

MAKING ASSUMPTIONS EXPLICIT 19
A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

really are. This kind of informality can aliow important detail to be
neglected and can obscure the intent of the object. Henderson and
Snowdon[HE] showed an example where this difficulty actually led to an

incorrect program.

The assumptions, post-conditions, and intended effects of each
object must be precisely described so that a program can be verified.
In the example which appears at the end of this chapter, such a

correctness argument will be presented explicitly.

The assumptions which are used to construct an object will be
identified by first noting the post-condition which is meant to hold
after the object is executed. Next, the effects of the object will be
examined in order to answer the following four questions:

(1) What relationships “must" hold prior to the execution of the

object in order for the effects to lead to the post-condition? (The

answers to this question are the "weakest” such relationships.)

(2) What kinds of actions are needed, permitted, or used with

respect to the data or variables mentioned in the object to insure

that the post-condition *olds?

(3) What information about the context in which the object is meant

to execute is needed, permitted, or used to insure the

post-condition?

(4) What theorems are needed or used by the object and what

theorems is the object permitted to use in order to insure the

post-condition?
Each question corresponds directly to one of the four classifications of
assumptions listed at the beginning of this chapter. The answers to

these questions constitute a set of distinct assumptions which are meant

to include the connections and interactions described in Chapter 1. A

ot fon e i Lt

MAKING ASSUMPTIONS E#PLICIT 20
A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

record of these assumptions will be used by the measure which is
described in Chapter IIl. These questions are meant to be guides for
finding those relationships or requirements which seem to determine
program structure. As the examples will indicate, these kinds of
assumptions, when associated with objects, allow applications of the
measure to yield values which are usually consistent with the definition

of structure from Chapter L

The answers to question (1) have been characterized, in part, by
Dijkstra[DJ5, yet unpublished], as the weakest pre=conditions of an
object. Dijkstra has described rules for finding these weakest
pre-conditions for assignmenis, conditional statements, and while
statements, as well as certain kinds of recursive procedures. These
rules, called predicate transformers, will be wused to help derive
assumptions for objects in the examples. It should be noted, however,
that these predicate transformers are specific to the target language
into which the examples are developed. (The following paragraphs define
weakest pre-conditions and predicate transformers in more detail. These
paragraphs may be skipped during a first reading of this thesis.)

¥ ¥ ¥

Specifically, if P represents a post-condition for an object S and
fS is the predicate transformer for S then fS(P) represents the weakest
precondition for S which guarantees that P will hold after an execution
of S&. Dijkstra provides criteria for finding predicate transformers

that can be applied to other kinds of syntactic constructs as well. The

P T e DU TR -G N A TV 0w R 0 STL PR] s T LN - | SR T
L o

e A O S

e e S el T g B L X

A Ty Py 6

N S T

MAKING ASSUMPTIONS EXPLICIT
A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

fundamental idea is to find consistent rules that provide weakest
pre-conditions, given a post-condition and a particular instance of some
construct. Even if such a rule cannot be found in general, an
assumption can usually be constructed for specific cases that are of
interest. For example, if S iv an assignment, i.e. X « E, then

f"ASSIGNMENT"(P) = P: E - X

where E is the expression being assigned; X is the variable which is
assigned the value of E; and P: E - X is the predicate which results by
replacing all occurrences of X in P by E For example, if S is
di=c+dandPis axc+bxd=Ax*B then the weakest pre-condition
which results from applying the predicate transformer is a * ¢ + b * (c

+d) = A% B

The predicate transformer for binary selection

(if B then S1 else 52)

f"BINARY SELECTION™(P) = (B A fSI(P)) or (-B A {S2(P))
Similarly,
{"CONCATENATION"(P) = {S1({S2(P))

is the predicate transformer for Sl1 ; S2

Besides displaying several predicate transformers, Dijkstra has
proven a theorem about predicate transformers which is based on the
following definition:

If two predicate transformers fS and fS’ satisfy the property that

for all P, fS(P) o {S(P) then "tS is as strong as fS™ and "{S’ is
as weak as fS".

A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

MAKING ASSUMPTIONS EXPLICIT

The theorem can now be stated:
Theorem of Monotonicity: Whenever in a predicate transformer fS,
formed by concatenation and/or selection and/or recursion, one of
the constituent predicate transformers is replaced by one as
weak(strong) as the original one, the resulting predicate
transformer is as weak(strong) as fS.

For constructions such as while B do S1 or repeat Sl until B
explicit predicate transformers are not presented. Instead, for the
while construction, the Fundamental Invariance Theorem for Repetition
has been proven, i.e.

If S is while B do Si and Q is a post-condition for Sl, then

((QAB)>SHQ) 2 ((QA fS(true)) o {S(Q A ~B).

This theorem along with the Theorem of Monotonicity can be used to find

pre-conditions which imply the weakest pre-condition for a while

construction or a repeat construction. For example, 1f
((Q A B) 2 fSIQ) A (Q A {S(true))

is used to replace the weakest pre-condition for a while construction,

given (Q A -B) as the post-condition, then the Theorem of Monotonicity

asserts that the pre-conditions which result from applications of
selection, concatenation, and recursion will be as strong as any formed
by using the weakest pre-condition for the while construction. Further,
if
S. repeat S1 until B

is interpreted as

S1; S while -B do Sl;
then

fS1(((Q A -B) o tSLQ) A (Q A S(true)))

FAEE e S it

T IO | T Oy e e ol el

MAKING ASSUMPTIONS EXPLICIT 23
A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

is as strong as fS(Q A B). A difficulty arises, however, when we
attempt to display fS(true) whenever S is a while construction.
Informally, fS(true) can be interpreted as the "weakest pre-condition
for S which guarantees that S terminates”. It is frequently possible to
find conditions which guarantee termination, but it is more difficult to
prove that a particular termination condition is the weakest. However,
any condition for termination, say X, implies the weakest pre-condition
for S to terminate, ie. X o fS(true) so that the Fundamental

Invariance Theorem for Repetition allows

((Q A B) 2 fS1(Q) > ((Q A X) 2 fS(Q A -B))

Hence, if ((Q A B) o fSHQ) A~ (Q A X) is used to replace the weakest
pre-condition for a while construction, given (Q A -B) as the
post-condition, then, subject to the conditons of the Theorem of
Monotonicity, this predicate will be as strong as any formed by using

the weakest pre-conditon for the while construction.

t * *

The notion of a "weakest pre-condition" can be used informally to
suggest essential relationships which must hold prior to the execution
of an object which is not yet represented in the target language. In
short, these assumptions should insure that the object is correct, given

the post-conditions which hold after the object is executed.

"Weakest pre-conditions” are simply relationships which must hold

prior to the execution of an object and do not include descri'ptions of

MAKING ASSUMPTIONS EXPLICIT 24
A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

the capabilities which must be available to the objects. For example,
in order to execute an assignment, access rights for variables are not
mentioned explicitly, ie. if a post-condition for d = d + ¢ s

a ¥ ¢ + d % b

fl

A x B, then even though the assumption

(a + b) *xc +b=xd

A * B must hold, the assighment requires write
access to d and read access to d and c, but requires no access to a, b,
A, or B. Similar arguments can be made for examples of assumptions
about program environment and assumptions which are theorems from

mathematics, i.e. assumptions which are answers to questions (3) and

(4).

Assumptions associated with objects that occur at early stages of a
development must usually be deduced informally. At later stages, formal
methods - such as the techniques of Dijkstra[DJ5] - can be used to find
some of the assumptions. It should be clear, however, that the depth to
which refinements are made is up to the discretion of the designer. In
some of the examples, refinements have been made to the statement level
in order to apply Dijkstra’s techniques directly. In general,
refinements which imply greater detal than the constructs for which a
set of predicate transformers have been found seems ill-advised since
that kind of detail involves operations which are available to all the
objects. The section in Chapter III which discusses the probability of

change of assumptions provides further evidence to justify this choice.

Since interactions are of major interest when structure in a

program is examined, the assumptions of an object should be represented

R DA e
o

T

A S G

MAKING ASSUMPTIONS EXPLICIT 25
A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

as a conjunction of single assumptions. This kind of representation
allows interactions to be observed easily. In particular, the next
section describes a tabular scheme for recording assumptions where this

kind of representation is particularly helpful.

To summarize, the assumptions associated with an object should

describe its requirements as cempletely as possible.

The question now arises as to how objects should be elaborated.
Each object will be elaborated as an arrangement of sub-objects, each
possessing its own assumptions and post-conditions. Frequently, such an
elaboration may not require all the assumptions which are made by the
object which is being elaborated. For example, if

P{S}Q
where P represents the assumptions of an object {S} with post-condition
Q and X and Y can be found such that P 2 X and Y © Q and X {S} Y then
the elaboration of {S} can be made using only the assumptions implied by

X, rather than all those implied by P.

As an aid to finding X and Y, we adopt the guideline suggested by
Parnas[PAl] where we attempt to describe {S} via a specification which
"hides" as many of the assumptions in P as possible. This same
guideline can be applied at the initial stage of program development as

well. Any time this guideline is used, however, we include P > X and

Y o Q as assumptions of S.

ST o L i A S »
peonmalind, b tthe s o R BRI A A B s 1 Bl Rkt sk O

MAKING ASSUMPTIONS EXPLICIT 26
A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

A common example of information hiding, where these additional
assumptions will not be included, involves concatenations of several
objects, perhaps the result of some elaboration. Weakest pre-conditons
associated with a concatenation of several objects frequently include
clauses which are of no relevance to individual objects in the
concatenation. For example, if a post-condition for
X ==X + Ly =y -1liisx>4Ay <2 then the weakest pre-condition
for x := x + 1 is x > 3 Ay < 3. In order to satisfy the post-condition
for the concatenation, the first assighment required no information
about x and the second required no information about y, but their
combined effects led to the post-condition. For this reason, in a
concatenation only those clauses in a post-condition which are changed
as a result of the effects of an object will be listed as assumptions
for that object. This choice can be justified by observing that if
A A B {S} C A B and no elaboration of S can be made such that A {S} C
makes B false then A {S} C A B. Since this is just a theorem from
mathematics, the section which discusses Probability of Change of

Assumptions justifies the omission of these unaffected clauses.

To summarize:
(1) The methodology addresses programs in a "top-down" fashion.

(2) The assumptions which are associated with each object are
answers o the four questions stated earlier.

(3) If an object is elaborated and it is possible to find X and Y
such that if P{S}Q and P > X and Y ® Q and X{S}Y then P o X and
Y 2 Q will augment the assumptions associated with S.

(4) Each program will be verified by showing that the assumptions
associated with that object imply a pre-condition which was derived

T TR s Wil

ot S

b i

o o i B

2 S L

MAKING ASSUMPTIONS EXPLICIT 27
OBJECT/ASSUMPTION TABLES

by considering the effects of the object along with the
post-condition which is to hold after it is executed.

OBJECT/ASSUMPTION TABLES

In order to record the assumptions which will be associated with
objects, object/assumption tables will be constructed for programs.
These tables will be used extensively in Chapter IV. The table is

defined for all objects I and assumptions J such that

1, if object 1 makes assumption J
T(1,J) =
0, otherwise
In the examples, some care has been taken to represent assumptions as

conjunctions of “simpler" assumptions, where each conjunct corresponds

to a column in the object/assumption table.

AN EXAMPLE OF OBJECTS AND THEIR ASSUMPTIONS

The example which follows is meant to demonstrate the way
assumptions are deduced and recorded, and should not be construed as
typical of the amount of detail that should be preserved in all
programs, The choice was made to refine objects so that the final
program consisted of single statements or parts of statements, thus
displaying explicit pre-conditions - in the Dijkstra sense - as well as
assumptions of other kinds. As a consequence of this detail, the

development proceeds very slowly if it is read from beginning to end.

Nevertheless, if objects are to be understandable without additional

MAKING ASSUMPTIONS EXPLICIT 28
AN EXAMPLE OF OBJECTS AND THEIR ASSUMPTIONS

context, assumptions must be stated wherever they are made. For this
reason, a map is provided that summarizes the example. The example can
best be studied by studying first the map and then the objects in terms
of their assumptions, post-conditions, and effects. Postpone studying
the verifications and object/assumption tables until the program itself

is generally understood.

The objects of each of the programs in this thesis are described

by:

(1) assumptions for the object.

(2) an explicit statement of the effects of the object, ie. what
this object actually does. (Note that the effects of an object are
not necessarily the same as the post-conditions for an object, e.sg.
the post-conditions associated with a particular assignment
statement may be quite different from the net effects of that
assignment.)

(3) post-conditions for the object - a description of what every
version of the object must do.

(4) a verification and check that the assumptions stated in (1) and
the effects stated in (2) imply the post-conditions. (These
verifications are informal. They are presented only for the first
few examples.)

(5) a display of that portion of an object/assumption table which
is appropriate to the object (assumptions which are added as a
result of hiding information from an elaboration are indicated by a

+" in each table rather than a "1").
Each object will be named by an object name defined by:
<object name> = : <object number> :

<object number> ::= <positive integer> |
<object number> . <positive integer>

These names allow the ancestry of an object to be related to the rest of

e o

MAKING ASSUMPTIONS EXPLICIT 29
AN EXAMPLE OF OBJECTS AND THEIR ASSUMPTIONS

a program. For example, if object :105.3.2: is to be elakorated as
three new objects, then the names for the sub-objects will be

:10.5.3.2.1;, :10.5.3.2.2;, and :10.5.3.2.3:.

For the purposes of these examples, the target language for the
programs can be regarded as a dialect of ALGOL 60 and is identical with
a language used by Dijkstra[DJ3].

A GCD COMPUTATION

:1: (pg. 31)

N

:1.1: (32) :1.2: (32)

| I

:1.1.1: (34) :1.2.1: (34)

\ (x « a)

:1.1.1.1: (36) :1.1.1.2: (36}
(while a # b do
:1.1.1.2%)

/ :1.1.1.2.1: (37)
:1.1.1.2.1.1: (39) :l.1.1.2.1.2: (39) :1.1.1.2.1.3: (39)
(if a > b then

:1.1.1.2.1.2:
else
11.1.1.2.1.3: 3)
:1.1.1.2.1.2.1: (41) :1.1.1.2.1.3.1: (4])
(a «a-b) (b «b - a)

Object :l: assumes that positive integer values are contained in
variables a and b and has the cffect of assigning to x the value of the
greatest common divisor of the initial contents of a and b (symbolized
by A and B, respectively).

MAKING ASSUMPTIONS EXPLICIT 30
A GCD COMPUTATION

Cbject :1.1: leaves the value of gecd(ab) in a and object :1.2: assigns
the value of a to x.

The theorem that (gcd(ab) = gcd(AB) A a = b) > a = gcd(AB) is hidden
from :1.1.1: and a = gcd(A,B) is hidden from :1.2.1.

Object :1.1.1.1: controls the execution of :1.1.1.2: which maintains the
invariant (a < a> v b < b)) A gcd(ab) = gcd(AB), where a’ and b’ are

the values of a and b prior to each iteration.

Object :1.1.1.2.1: hides the invariant gcd(a,b) = gcd(A,B).

Finally, objects 111121015 :1.1.1.2.1.2;, and :1.1,1.2.1.3:
implement a conditional statement which results in (a < a v b < b’) A
ged(a,b) = ged(a’,b’).

G e B it Ly et R

RO

ol B L

MAKING ASSUMPTIONS EXPLICIT 3!
A GCD COMPUTATION

A GCD COMPUTATION

This example, based on a program due to Dijkstra[DJ3 pp. 33-41],
is constrained so that it uses neither multiplication nor division to

compute the greatest common divisor of two positive integers.

Compute the value of the pgreatest common divisor of the
initial(positive) contents of the integer variables a and b, and leave
the result in the wvariable x, without using either multiplication or
division. The assumption that neither multiplication nor division is to
be used in the program is an assumption which must be made by all the
objects. It is identified as assumption "0" and in Chapter I will be
shown to have no effect on the possible ways of decomposing the program.

object :1:

assumptions: a >0 b >0 A symbolizes the initial value of a,
B symbolizes the initial value of b, a is an integer
variable, b is an integer variable, write access to
x is required, read and write access is required for
both a and b, neither multiplication nor division is
to be used

:1: COMPUTE THE GCD OF a AND b, LEAVE THE RESULT IN
THE VARIABLE x, WITHOUT USING EITHER MULTIPLICATION
OR DIVISION.

effects and
post=condition: x = gcd(A,B)

verification: Since the gcd of any two positive integers is always
defined and is computable, the computation s
feasible,

Gasiaa 2
e o) e b

T e I T e

b il cdat el e o e i

MAKING ASSUMPTIONS EXPLICIT 32
A GCD COMPUTATION

The object/assumption table for :1: is

assumptions

objects 0 1 234567 89 1011
K Phdt 1

0) neither multiplication nor division is to be used
1)a>0,b >0, aandb are integer variables
2) A symbolizes the initial value in a and
B symbolizes the initial value in b
3) write access to x is required
4) write access to a 1s required
5) read access to a is required
10) write access to b is required ;
11) read access to b is required

- We elaborate :1: as

HNE

assumptions: a >0 b >0, A symbolizes the initial value of a, 1
B symbolizes the initial value of b, a is an integer 4

variable, b is an integer variable, read and write
access to a and b is required, neither :
multiplication nor division is to be used 4

:1.1: REPLACE THE VALUE OF a BY gcd(A,B)

. effects and 1
post-condition: a = gcd(A,B) E
: :
.‘" 11.2:]
assumptions: a = gcd(AB), write access to x is required, read 1
: access to a s required, neither multiplication nor
0 division is to be used
:1.2: REPLACE THE VALUE OF x BY THE VALUE CONTAINED 1
IN a.
effects: X = a
post=condition: x = ged(A,B)
verification: In order for x = gcd(AB) to hold after :1.2: given
that its effect is x = a, its assumptions must be a
= gcd(A,B). But this is guaranteed as the

post-condition of :1.1:

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

object/assumption table for :1.1: :1.2:

01234567 89101l
10 I T I I 11
‘.20 1 |

0) neither multiplication nor division is to be used
1) a>0,b >0, aand b are integer variables
2) A symbolizes the initial value in a and
B symbolizes the initial value in b
3) write access to x is required
4) write access to a is required
5) read access to a is required
6) a = gcd(A,B)
10) write access to b is required
11) read access to b is required

33

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

Consider next an elaboration of :l.l1: If the values of a and b can be
modified so that a = b and gcd(ab) = gcd(AB) then a = gcd(AB). This
means that by adding

(a = b A ged(ab) = gcd(AB)) > a = gcd(A,B)
to the assumptions of :1.1: we can write
:1.1.1:
assumptions: a >0, b >0, A symbolizes the initial value of a,
B symbolizes the initial value of b, a is an integer
variable, b is an integer variable, read and write
access is required for both a and b, and neither
multiplication nor division is to be used
:1.1.1: MAKE a = b SUCH THAT gcd(a,b) = gcd(A,B).
affects and
post=condition: a = b, ged(a,b) = gcd(AB)

An elaboration of :1.2: can be made If we observe that

gcd(A,B) > true

Q
]

and

U}

X =a > x = gcd(A,B)
But since :1.2: assumes a = gcd(A,B) we can write

b L2

n
Q

post=condition: X

9 assumplions: write access to x is required, read access to a is
3 required, neither multiplication nor division is to
: be used

l.2.l: x «~ a

effect and

PRI A O G SIS TYRTI (Y G e

B

q o B ¢
.

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

As a result, the object/assumption table for :l.l,
:1.2.1: is :

0123456782910l
sl /0 T T T 11
.28] [T R G
flered [TN T I 11
$1.2. 08 1 1

0) neither multiplication nor division is to be used
1)a>0,b >0, aand b are integer variables
2) A symbolizes the initial value in a and
B symbolizes the initial value in b
3) write access to x is required
4) write access to a is required
%) read access to a is required
6) a = gcd(A,B)
7) (a = b) A gcd(AB) = gcd(a,b) o a = gcd(AB)
8) x = a 2 x = gcd(A,B)
9) a = gcd{A,B) o true
10) write access to b is required
11) read access to b is required

:1.2:,

:1.1.1,

35

and

Ei.‘ MAKING ASSUMPTIONS EXPLICIT 36
; A GCD COMPUTATION
Adopting the convention that a’ and b’ equal the values of a and b just
E prior to the most recent execution of :1.1.1.2: we elaborate 111
:1.1.1.1:
assumptions: a >0, b >0 A symbolizes the initial value of a,
B symbolizes the initial value of b, a is an integer
variable, b is an integer variable, read access s
required for both a and b, a and b’ equal the
respective values of a and b oprior to the last
execution of :1.1.1.2;, [(a < a v b < b) A
g ged(ab) = ged(AB) A a # b) 2 (@ # b A ged(a,b) =
i ged(a’,b") A max(a’,b") > max({a,b)],
ged(a,b)=gcd(A,B), neither multiplication nor
division is to be used
E’, :1.1.1.1: while a # b do
] 1112
t‘ assumptions: a >0, b >0 A symbolizes the initial value of a, '
Fl B symbolizes the initial value of b, a is an integer
] variable, b is an integer variable, read and write !
access is required for both a and b, a' and b’ equal)
the respective values of a and b prior to the last 3
execution of :1.1.1.2;, a # b, gedlab) = gcd(AB),
neither multiplication nor division is to be used
:1.1.1.2: DECREASE EITHER a, b, OR BOTH a AND b SUCH ;
THAT ged(ab) = ged(AB). :
effect and 1
post=-condition: (a <a v b <b) gedlab) = gcd(AB)

effects and
post-condition: a = b, gcd{a,b) = gcd(A,B)

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

The object/assumption table for :1.1.1.1: and :1.1.1.2: is 3

K

01234567 89 101112131415 :ﬁ

e 1d Pl !) :
fiede.2i 11 11 111 11

1) a>0,k >0, aandb are integer variables \';

2) A symbolizes the initial vaiue in a and

B symbolizes the initial value in b
4) write access to a is required
5) read access to a is required
10) write access to b is required
11) read access to b is required
12) @’ and b’ equal the respective vaiues of a and b
prior to the fast execution of :1.1.1.2:
13) (({(a<a” v b<b’) A ged(a,b)=gcd(AB) A a#b) 2
(agb A gedlab) = gcd(A,B)) A max(a’,b’) > max(a,b))
14) ged(a,b) = ged(AB)

15 a # b
If we add the following assumption to :1.1.1.2: we can "hide" A and B
from :1.1.1.2.1:

[(ged(a,b)=gcd(A,B)>
(ged(a’,b”)=gcd(a,b), holds prior to executing :1.1.1.2.1:)] and

[(ged(a’,b’)=gcd(a,b), holds after executing :1.1.1.2.1:)>
(ged(a,b)=gcd(A,BN]

This is verifiable in the context of :1.1.1.2: and :1.1.1.1:
:1.1.1.2.1:
assumptions: a >0, b >0 a and b are integer variables, A

symbolizes the initial value of a and B symbolizes
the initial value of b, read and write access is
required for both a and b, a and b’ equal the
respective values of a and b prior to the last 3
execution of :1.1.1.2;, ged(a,b) = ged(a’,b’), e
neither multiplication nor division is to be used

:1.1.1.2.1: DFCREASE EITHER a, b, OR BOTH a AND b
SUCH THAT ged(a,b) = ged(a’,b).

effects and
post-condition: (a <a orb<b’) gedla,b) = ged(a',b’)

e

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

The table for :1.1.1.2: and :1.1.1.2.1: is
01234567 889 101112:314151617

il ba i 28 L I T B [O I T ¢

e |- e 2e e (N I 11 [

0) neither muitiplication nor division is to be used
1)a>0,b >0, aandb are integer variables
2) A symbolizes the initial value in a and
B symbolizes the initial value in b
4) write access to a is required
B) read access to a is required
10} write access to b is required
11) read access to b is required
12) 3’ and b’ equal the respective values of a and b

prior to the last execution of :1.1.1.2:

14) ged(a,b) = ged(A,B)

I5) a#b

16) [(gcd(a,b)=gcd(A,B))>
(gcd(a’,b’)=gcd(a,b), holds prior to executing :1.1.1.2.1:)] and
[(gcd(a’,b’)=gcd(a,b), holds after executing :1.1.1.2.1:)o

(ged(a,b)=gcd(A,B))
17) ged(a,b) = ged(a’b’)

38

colh o Sl G a e s e e S

o c e o i i

MAKING ASSUMPTIONS EXPLICIT 39
A GCD COMPUTATION

We can now elaborate :1.1.1.2.1: as

1.1b2l L

assumptions:

11.hh2 2.

assumptions:

effect and

post-condition:

:1.1.1.2.1.3:

assumptions:

effect and

post-condition:

post-condition;

verification:

a >0 b >0 aand b are integer variables, read
access o a is requrred, read access to b s
required, 8’ and b’ equal the respective values of a

and b prior to the last execution of :1.1.1.2:, a #
b, (a > b A gcd@) = gedla-bb) v a < b A
gcd(@,b’) = ged(a,b-a), neither multiplication nor

division is to be used

(LLL2L L if a > b then

ped(a’b’) = ged(a-bb), a > 0, b > 0, a and b are

integer variables, write access to a s required,
read access to a is required, read access to b is
required, &’ and b’ equal the respective values of a
and b prior to the last execution of :.1.1.2:
neither multiplication nor division is to be used

:1.1.1.2.1.2: DECREASE a BY b.

a has been decreased by b.

else

ged(@'h’) = ged(ab-a), a > 0, b > 0, a and b are

integer variables, read access to a is required,
write access to b is required, read access to b is
required, & and b’ equal the respective values of a
and b prior to the last execution of :1.1.1.2:,
neither multiplication nor division is to be used

:1.1.1.2.1.3: DECREASE b BY a.

b has been decreased by a
ged(ahy) = ped(@,b’), (a < a or b < b”)
given that a # b and the other initial conditions

the assumptions for :L1.L.21.1: is a theorem from
mathematics.

s pe By & o S g gl B

MAKING ASSUMPTIONS EXPLICIT 40
A GCD COMPUTATION

The object/assumption table for these parts is then:

0123456789 1011121314151617181920
Slege g 201018 1l | 11 1 |
Slege 2 e 28 11 11 1 !
4014102138 i1 | Pt |

0) neither multiplication nor division is to be used

1)a>0,b >0, aand b are integer variables

4) write access to a is required

5) read access to a is required

10) write access to b is required

11) read access to b is required

12) a’ and b’ equal the respective values of a and b
prior to the last execution of :1.1.1.2:

15) a#b

18) (a > b A ged(a’,b’) = ged(a-b,b) v
a < b A gedlab’) = gedab-a)

19) ged(a’,b’) = ged(a-b,b)

20) ged(a’,b’) = gcd(a,b-a)

B Soita A VaX A gt e LD R A

MAKING ASSUMPTIONS EXPLICIT 4]
A GCD COMPUTATION

Lastly, if we add

ged(a',b’) = ged(a,b-a) o true

and

b decreased by a > gcd(ab)=gcd(a’,b’)
to the assumptions of :1.1.1.2.1.3: and

ged(a’,b’)=gcd(a-h,b) o true

and

a decreased by b 2 gcd(a,b)=gcd(a’b’)
to the assumptions of :1.1.1.2.1.2;, we can elaborate these objects to
:1.1.1.2.1.2.1:

assumptions: write access to a is required, read access to a is

effects and
post-condition:

and
:1.1.1.2.1.3.1;

assumptions:

effects and
post-condition:

required, read access to b is required, neither
mulliplication nor division is to be used

11112121 a e a-b

a decreased by b

read access to a is required, write access to b is
required, read access to b is required, neither
multiplication nor division is to be used

11213 b « b - a

b decreased by a

FITITTRTL WIS ST F ¥ UL IOt PR PR

e S e Rt e T S B e g i B

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

The relevant tables are:

01234567 89 10111213141516171819202122
Slelee2-1028 11 11 11 no#
1-1-1-2-1.3¢ 11 l 111 ¢
S1e1-1-2-1-2- 10 1 11 1
Sl -2 1318 1] 11

0) neither multiplication nor division is to be used
1) a>0,b >0, aand b are integer variables
4) write access to a is required
5) read access to a is required
10) write access to b is required
11) read access to b is required
12) a> and b’ equal the respective values of a and b
prior to the last execution of :1.1.1.2:
19) pged(a’,b’) = ged(a-b,b)
20) ped(a’,b’) = ged{a,b-a)
21) ped{a’,b’) = ged{ab-a) > true,
I»> decreased by a 2 ged(a’,b’) = ged(a,b)
22) pged(a’,b’) = ged(a-b,b) > true,
a decreased by b 2 gcd(ab) = ged(a’,b’)

42

MAKING ASSUMPTIONS EXPLICIT 43
A GCD COMPUTATION

Below is a display of the entire table. This table will be used in
; chapter 1V to evaluate different decompositions of the program, and to
observe where interactions were introduced as the program was developed.

01234567 89 10111213141516171819202122
fgd | A I A I
CHE (1 T O T bl
tle2 1 (D T T
Sl [S T B I
RFAE I ol
PP bl | L
9 ieree2s [O R O T R T
P28 Pl 1 1l P
Sl 2 R | bl | |
4 S22 11 Il W P
o112 3 P I L1l P
S22 1t I !
1 ez 3ot | I ‘
1 0) neither multiplication nor division is to be used E
: 1) a>0,b >0, aand b are integer variables i
3 2) A symbolizes the initial value in a and
¢ B symbolizes the initial value in b .
3) write access to x is required 4
4) write access to a is required
5) read access to a is required
,- 6) a = gcd(A,B)
7) (@ = b) A gcd(AB) = ged(a,b) > a = gcd(A,B) E
. 8) x = a > x = gcd(AB)
9) a = gcd(A,B) > true ;
2 10) wrile access to b is required 2
A 11) read access to b is required]
12) @* and b’ equal the respective values of a and b
prior to the last execution of :1.1.1.2:
i 13) (({a<a’ v b<b’) A gediab)=gcd(A,B) A a#h) >
(a#b A gecd(a,b) = gcd(AB)) n max(a',b’) > max(a,b))
14) ged(a,b) = ged(A,B) .
15) a # b 1
16) [(gcd(a,b)=gcd(A,B))> i
(ged(a’,b’)=gcd(a,b), holds prior to executing :1.1.1.2.1:)] and 3
& [(ged(a’,b’)=gcd(a,b), holds after executing :1.1.1.2.1:)> ‘-:
(gcd(a,b)=gcd(A,B))] b
- 17) ged(a,b) = ged(a',b’) 1

18) (a > b A ged(a’,b’) = gedla-b,b) v
a<b A gedayb’) = ged(ab-a) 3
19) ged(a’,b’) = ged{a-b,b)
20) ged(a’,b’) = ged{a,b-a)
21) ped(a’,b’) = ged(ab-a) o true,
b decreased by a > gecd(a,b’) = ged(a,b)
22) ped(a’,b’) = gcd(a-b,b) > true,
a decreased by b > gcd(ab) = ged(a’,b’)

MAKING ASSUMPTIONS EXPLICIT 44
SUMMARY

SUMMARY

The definition of program structure in Chapter 1 has been used to
explicitly describe the kinds of assumptions which are associated with
objects. These assumptions include the “pre-conditions”, described by
Dijkstra[DJ5], as well as assumptions about the capabilities an object
must have in order to achieve its effects. Lastly, a program is
developed in order to demonstrate the way assumptions are preserved and
recorded. The object/assumption table for this program will be used in
Chapter IV in order to examine various decompositions of the program in

the light of the measure which is presented in Chapter IlL

T e Yy A R o s ot ek . ! e

i g e e

. Bk i et B R bl il 0 5 o S S e b bon iyt aib i J i, A R i PR e PR T R IR
Gld A f sy o i i f i s e il e e e e e i S b e S R e L M il p el e s Te s a5 ety O IR T I,

i

CHAPTER 1l

A MEASURE OF PROGRAM STRUCTURE

This chapter presents and justifies a calculation which is used to

measure how much groups of objects in a program interact. Next, it is

shown that the problem of finding an arrangement of objects which
interacts least is tractable only for small programs. Instead, several

theorems and heuristics are presented which provide useful guidelines

¥
y
5
&
z:'.
b

for controlling interactions as a program is developed. Lastly, it is

s st

) observed that certain assumptions should affect structure less than
others. For example, assumptions which are not subject to change -
theorems from mathematics - can safely be shared without influencing the
difficulty of changing a program. Consequently, the definition of the

measure is modified to incorporate this notion.

DEFINITION OF A MEASURE

Dictionary definitions of the word "measure" use phrases such as
"reference standards to which something s valued", "a criterion", or
"extent, degree or quantity”. These phrases and the definition of
program structure from chapter 1l suggest that a measure of program
structure should provide a valuation of the interactions among
identified groups of objects in a program. Van Emden[vEl,vE2] has

described a calculation based on data contained in an object/assumption

table which characterizes the degree to which collections of objects

interact. The calculation is called entropy loading. Choosing this

T NPT T T L T T T T T Vo P T

A MEASURE OF PROGRAM STRUCTURE
DEFINITION OF A MEASURE

calculation as a measure of program structure is justified if we regard
programs as complex systems which have identifiable objects which, in
turn, possess properties - in this case, an object has the properties of
making or not making certain assumptions. van Emd:n[vE2] has shown that
entropy loading provides a measure of what Williams and Lambert[WL] call
an "association". Informally, this means that the calculation indicates
the degree to which designated collections of objects are similar to one
another, Entropy loading measures the amount of information shared
among collections of objects as opposed to the information used inside
each collection. Alexander[AL] and Watanabe[WA] have also used similar
techniques to analyze complex systems, In the present application,
where object/assumption tables represent programs, desighers can use the
calculation as a guide for controlling interactions among collections of

objects which are designated as subsystems.

En’ >ading is defined for some subset of the rows, say S, of
an object/assumption table containing n rows. Suppose that the objects
in S are partitioned into two sets A and B such that A U B = S and
A n B = <empty>. The eniropy loading of S for the partition into A and
B is defined to be

C(S) = H(A) + H(B) - H(S)
where

H(X)

Z 1 (ny/n) log (n/nj)

log n - (1/n) 2 i n; log (n)

46

AR

A MEASURE OF PROGRAM STRUCTURE
DEFINITION OF A MEASURE

To determine the n's

(a) construct a table containing only those columns of S which
contain at least one occurrence of a "1" in the subset of rows, X.

(b) regarding each row in this table as a one-zero pattern, the

nys are the number of occurrences of each distinct pattern (Note
that the sum of all n’s equals n, the number of rows in S.)

For example, if a set of rows, S, is

abcdef
1/TO000O0
20000001
31000100
4010011
51001011
6000010

Let A be the rows {1,2,3} and B the rows {4,5,6}, then H(S) = HA u B) =
log 6 since at least one "1" occurs in every column, and each row is
distinct. Similarly, H(A) can be computed by noting that at least one

"1" occurs in A only in columns 3, d, and f, and from

| f

X
O

OO OO O —
OO O — O O
QO — — O — O

1 O O occurs once; O O 1 occurs three times; O 1 O occurs once; and
0 0 0 occurs once, then

H(A) = log 6 - (1/6) 3 log 3 (%)

Similarly, since at least one "1" occurs in columns b, ¢, e, and f
of B, 0 0 0 0 occurs twice; 0 0 O 1 occurs once; 1 0 1 1 occurs once;

011 1 occurs once; and 0 O | O occurs once, ano

H(B) = log 6 - (1/6) * 2 log 2

47

A MEASURE OF PROGRAM STRUCTURE
DEFINITION OF A MEASURE
Finally,

C(S) = C(AUB)=log6 -(1/6)%(2log2 +3log 3)

The calculation can be applied to A and B, and hence to any binary

tree decomposition of S. Thatis, f A=EUF and EnF = <empty> then
C(A) = C(E U F) = H(E) + H(F) - H(A)
Note that H(A) is the same value as in (#), and that E and F define a
set of columns from all the rows of the subset S. For example, if E is
{1} and F is {2,3} then
H(E) = log 6 - (1/6) (5 log 5)
and
H(F) = log 6 - (1/6) (2 log 2 + 3 log 3)
and
C(A) = C(EUF) =1log 6 -(1/6) (D log D + 2log 2)

Hence, an entropy loading value can be computed for each non-terminal

node of a binary tree which represents some partition of S.

Entropy loading has several properties(van Emden[vEl]). The most

important of these are

(1) C is always non-negalive.

= Compty> and S = E UF, E N F = compty>

() S=AUB, ANB
U F) then A and B interact less than do E and F.

and C(A U B) ¢ C(E

INTERPRETING THE MEASURE

Intuitively, entropy loading represents the extent to which

information is shared between two groups of objects. Thus it

48

s o o

B N I Y I T

il e e s i e

o

o i

A MEASURE OF PROGRAM STRUCTURE

INTERPRETING THE MEASURE

characterizes a partitnn of the objects in a program, given the
assumplions those objects make. As a measure of structure, this means
that groups of objects iiuaving small entropy loadings possess better
structure than other groups of those objects having larger entropy
loadings - at least according to the definition of structure appearing

in Chapter L

A consequence of this property sometimes permits groups of objects
that share the same number of assumptions to be distinguished. For
example, except for the order of their rows, the two tables below are

identical.

utl010 ullol0
v|0010 v (0010
wi0110 21001
Tx[0100 “w|ol10
y {0001 x {0100
z 11001 y |0001
Hu,v,w,x,y,2) = log 6
H(u,v,w) = log 6
H(x,y,2) = log 6 - (1/3) log 2

C((uyv,w), (xy,2)) log 6 - (1/3) log 2
H(u,v,z)
H(w,x,y)
C((wv,2), (wx,y))

log 6 - (1/3) log 2
log 6 - (2/3) log 3
log 6 - log 2

Objects (uv,w) share two assumptions with objects (x,y,2) and (uv,2)
share two assumptions with (w,x,y). However, the entropy loading for
((uv,2),(w,x,y) is less than the entropy loading for
((uv,W)(x,y,2)). This occurs because two assumptions are shared among

u, v, z and one assumptlion is shared among w, x, y but only one

assumption is shared among u, v, w and only one assumption is shared

49

e B R

ma (e S

S o T TR T

-

G~

s g

e e

A MEASURE OF PROGRAM STRUCTURE

INTERPRETING THE MEASURE

among X, y, z. Thus entropy loadings can often distinguish different
(acompositions even though the number of shared assumptions among the

subsets of each decomposition is the same.

In one sense, the measure can also be used to compare different
programs. Since a program s regarded as a partitioned collection of
objects, where each object makes assumptions, any program represents a
system whose structure can be measured. Hence, comparisons of entropy
loadings for two different programs allow the structure implied by the
partitions of the objects in each program to be compared. Using the
measure to compare programs, however, does not seem to be useful unless
the programs are related in some other way. For example, it is
conceivable that a large program and a small program might be
partitioned so that their entropy loadings are approximately the same.
Such a comparison only indicates that the relative amounts of sharing in
each program, for the selected partitions, are about the same.
Analogously, a comparison of two programs in terms of the number of
statements each contains depends on the way a statement is defined for
each program. If in one program a statement is an assembly language
instruction and in another a statement is a FORTRAN statement, the
programs can be compared, but the comparison may not be very useful.
Dijkstra[DJl in the seclion,"On Comparing Programs"] has cited similar
difficulties for other kinds of comparisons except where a magping can
be found that associates the parts of the programs being compared. Such

a mapping can be found if the programs that are compared represent

50

e e At bkt

R

3
s
w

A MEASURE OF PROGRAM STRUCTURE
INTERPRETING THE MEASURE

successive stages in the step-wise construction of a program. One such
mapping consists of associating an object with the objects into which it
is refined. This mapping motivates the methods described in the next

section,

These interpretations of the measure permit the definition of
entropy loading to be extended in order to characterize a partition
containing more than two sets of objects. If S is partitioned into n
subsets, sy, $2, .. , sp then C can be defined as

C(51,52,5n) = (2 i H(s)) - H(S).
Here, C is non-negative and indicates the amount of sharing inside the
subsets relative to the amount of sharing among them. Note, however,
that just a single figure characterizes this partition. Further, there
seems to be no useful relationship between the values that result from

applications of the original defirition and this extended one.

APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS

We propose to use the measure to suggest ways of controlling
interactions as a program is developed. Elaborations which lead to high
entropy loading values at late stages in the development of a program

are to be avoided. This 1s demonstrated by the exampies in Chapter IV.

We demonstrate several theorems which are relevant to fixed sets of
rows from a table. These theorems justify several heuristics which are

explained in this chapter and used in Chapter IV. The fixed sets of

Lo obiine - e ana o ci e Rt SRR 3 adtha ks i e 3R S

51

A MEASURE OF PROGRAM STRUCTURE
APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS
rows (the sets S used in the definition of the measure) will be N-th
stages in the object/assumption table for a program.
The N-th stage is defined to be all the objects whose <object
name>'s consist of N integers separated by periods and those
objects whose names consist of fewer than N integers but which

will never be elaborated.

Informally, the N-th stages consist of the terminal nodes, at each

elaboration, in the map for the development. For example, stage 1 of

the development of the gcd computation consisted of object :l:; stage 2
consisted of objects :l1.1: and :1.2; stage 4 consisted of :1.1.1.1y
:1.1.1.2;, and :l.2.1. After the theorems have been proved, several
heuristics will be staied for controlling interactions by usug a

development at stage N-1 to suggest bounds for entropy loadings at stage

N.

Theorem 1: Given:
(1) o collection | rows S = A u B and
A n B = <empty> where A contains a rows and B

contains b rows;

(2) S makes assumptions P = C u D and
C n D = <empty>;

(3) any row in A makes assumptions only in C and any
row in B makes assuraptions only in D;

(4) a < b and a ic as small as possible for S,
subject to (1), (2), and (3).

Conclude:

C(A U B) achieves its minimum value for S = A U B
and

logla + b) - 1/(a + b) * (alog a + b log b)

A MEASURE OF PROGRAM STRUCTURE 53
APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS

Informally, the diagram shows the areas containing ones and possibly
zeros as shaded, where A corresponds to some subset of rows in S which
contains as few rows as possible.

N

Proof:
H(A) = log(a + b) - (1 /(a + b)) (blog b + 2 alog a)

where 2. ; a = a and the subscripted a’s correspond to the partition of

Similarly

A imposed by C.

H(B) = log{a + b) - (1 / (a + b)) (alog a + 2 ; b; log by

whete Z i bj = b and the subscripted b's correspond to the partiticn of

B imposed by D. Lastly,
HA uB) =log (a+b)-(l /(a+b)(Zaloga+zibloghb)
and
H(A) + H(B) - HA u B) = log (a + b) - (1 /(a+b)(alog a + b log b)
Now the restriction that a be as small as possible is necassary since
log(a+b)-(a log a » b log b)/(a+b) =
(af(a+b)) log({a+b)/a) + (b/(a+b)) log{{a+b)/b)
and for a and b positive integers, the right side reaches its maximum

when a = b and its minimum for tho smaliest a. Note that the roles of a

and b can be reversed.//

et o bk et i

il b i e T b)

A MEASURE OF PROGRAM STRUCTURE
APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS
Consequently, the best decompositions are known for tables that
satisfy the conditions of the theorem. Aithough this theorem applies
only to an entire table, analogous results can be obtained for
decompositions of objects in A as well as B. Minimal entropy loadings
occur for analogous partitions of A and B but their values cannot be
derived directly from the above theorem. Another theorem states that
objects which make identical assumptions should occur in the same subset

of a partition.

Theorem 2: Given:
(1) a collection of s rows, S = A v B and
A n B = <empty> where A contains a rows and B
contains b rows and a + b = s;
(2) a2 b;
(3) there is a collection of P rows which is a
subset of S, containing p rows, p > 1 and p < s,
which make identical assumptions;
(8) P n A and P n B are both non-empty;

Conclude:

There exist A’ and B such that A v B = §,
A'n B = <empty> and A’ =AU P and B' =B - P and

CCAuB)2C(AUB)
Proof: Since C(A u B) and C(A’ U B’) contain a term which is identical,
namely H(A U B), it we show that H(A’) + H(B) < HA) + H(B) then the

theorem is proved.

Consider firs: the expansion of H(A), i.e.

H(A) = log (a + b) - (I/(a + b)) (R + (p + 1) log (p + 1))

e L A R AR B P e i i el e L e il b i o Lot « {ob S

54

e s

F YT e e VN LS DT G 0 0 LT Y et LIRS R Chll gl it et TR e el e R A L i e b L el e Lasga B d i b o e dda it LA O

A MEASURE OF PROGRAM STRUCTURE 55
APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS

where R is the sum of those terms describing subsets of a partition, but
excluding the subset which contains the P identical rows. Here, p + t

equals the number of rows contained in the subset of the partition

induced by A but containing P. Note that t > 0 and is just the
difference between the number of rows in the subset of the partition

induced by A, but containing P, and p.

Similarly

H(B) = log (a + b) - (1/(a + b)) (T + (p + u) log (p + u))

where T and u play analogous roles to R and t. Now, H(A) = H(A’) since

the partition determined by A’ is identical to the partition determined
by A. But,
H(B’) = log (a + b) - (1/(a + b)) (T"+(p +) log (p + W)
We must show that
(Ifta+ D) (T +(p+u)log (p +u)) 2
(1/@+b) (T +(p+ulog(p+u)

The two sides are equal if the assumptions made by B’ are identical to

those made by B. Further, if the assumptions made by B’ are not the

same as those made by B, then B’ makes fewer assumptions than B. In

this

tast case, there are a finite number of terms of T which

correspond to subsets of a partition with respect to B’ which contain

fewer items than the corresponding subsets for a partition with respect

to B. This means that v’ 2 u and for some finite number of terms in T,
there are identical terms in T’ and there are terms in T' greater than

the corresponding ones in T. We then must show that after excluding the

A MEASURE OF PROGRAM STRUCTURE
APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS
identical terms in T and T’ that the remaining ierms in (¥1): T + (p +
u’) log (p + u) are greater than or equal to the remaining terms in
(%2): T + (p + u) log (p + u). Denote by

2) g log qj
the remaining terms in (x1). Denote by

Zirilogr
the remaining terms in (¥2), where

Ziti=aid
Note that there are fewer qj’s than ris and that each gqj is the sum of
several of the r{s which correspond to the subset of rows which q;
designates. This means that if

ZkCklogexs{Zkck)log (ke
then
Zirilog ri<2jajlog gj

and the theorem is proved.

But, Z « cx log cx < (Z k ¢k) log (Z k ck) since for ¢, 2 1 it
is just the logarithms of both sides of the inequality
k(e Tek) sCZpen) TCakaw
(where "T" indicates exponentiation). [/
Theorem 3: If a set of rows S satisfies the following

conditions:
(a) S makes k assumptions (p1,p2,P3-+Pk)
(b) S is partitioned into n sets such that
there are q; elements in the first, qz in the
socond,., qn in the n-th set, where each set

is denoted by s, 1 <i < nm;

(c) the rows in a particular s; are identical;

A MEASURE OF PROGRAM STRUCTURE
APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS
(d) pj is made by sj, i S j Sk

then the minimal entropy “loadings are achieved for a
decomposition of the form

Sh=| Sn

A table which illustrates the conditions of the thearem is

J

Proof: Assume that Z i.j,2.on @ = M. The proof is by induction on m

which indicates the subsets s; of S. Observe that if m = 1
H(s)) = log M - (1/M) (M log M) =0
and that
H(U jjyemn si) = H(S).
Hence C(sy U (U yppun s)) = 0, which is the minimum value which
any decomposition could have. (Here, U means "the union of".) Assume

that for j < m, the entropy loadings for the partition of S indicated by

Sm-| U jamian Si

are as small as possible. We wish to show that the entropy loadings for

A MEASURE CF PROGRAM STRUCTURE
APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS

7 L
S N

Sm-l)\

Y

Sm immé1peeon Si
are as small as possible. Note that
Hisme1) = 1og M = (1/M) (Z isiyom i 108 Gi
+ (Z iameteon G) 108 (Z iemedron G D
and that
H(U jame2ran Si) = HS)
Suppose there is an A and B such that A u B = U wmpn G and AnB-=
<empty> but that
(£): C(A U B) < C(smei U (U jeme2sn Si)]
Clearly a row of sp makes all the k assumptions and if at least one row
of spis in A and at least one row of sp is in B then
C(A U B) = log M = (1/M) (Z ia1san Qi 108 Qi) >
C(smetr Y (U japns2ion Si N
Hence, sp must be in either B or A, say B, and C(A U B) = H(A). But the
smallest such value equals H(smsy), Wwhich contradicts the assumption
(¥). Therefore, by the principle of mathematical induction, the theorem

is proved.//

Several observations regarding entropy loading can now be
justified:

(1) Theorem 1 describes a situation for which the best entropy

loading values are known. If programs are constructed with these

properties, we know how they should be decomposed.

(2) Theorem 2 suggests that objects which make identical
assumptions should occur in the same portions of a decomposition.

58

e ARG A

PRI

0 B Gt e i s

iR e iR L

A MEASURE OF PROGRAM STRUCTURE
APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS

(3) Theorem 3 provides a best decomposition for a situation where
different objects actually share several assumptions.

THE CLUSTERING PROBLEM

It now seems reasonable to ask whether there are ways of finding the

best decomposition of a given N-th stage. If this were possible, we
could observe whether best decompositions of early stages are really
borne out by a development. If at any stage of finding a best

decomposition, the set to be decomposed contains N items, then

2 imtpemNV /(2 (N =)]+ X

(where m = N/2 and X is N! / ((N/2) = (N/2)) / 2 if N is even and
NV JCCON/2 Y = (N - N/2)Y if Nis odd)

partitions can be examined, and the best entropy loading value and its
corresponding partition retained. Except for small N, this calculation
is intractable. For this reason, several authors have attempted to find
ways of determining best decompositions - "clusterings" - without having
to examine all the partitions. vanEmden[vEl] has mentioned some of
these methods, and has shown that the most popular of them are at best

heuristics. Each fails for trivial object/assumption tables

Is it reasonable to look for a tractable algorithm which can find a
best decomposition? (The next paragraphs may be skipped at a first
reading. The important result is simply that an affirmative answer to

the question would be very surprising.)

¥ ¥ %

59

ISP TG ok el & CORA

Sl Sl o e

o s s i

N

e ok o

A MEASURE OF PROGRAM STRUCTURE
THE CLUSTERING PROBLEM

As of this writing, the answer to the above question is not known.
However, a particular recognition problem provides evidence to suspect
that there is no such tractable algorithm. To describe this recognition
problem, we present several definitions and theorems due to Cook[COO]
and Karp[KAl]

Definition 1: P is the class of languages recognizable by one-tape

Turing machines which operate in polynomial time.

Definition 2: n is the class of functions from Z¥ into 2% defined
by one-tape Turing machines which operate in polynomial time.

* Definition 3: Let L and M be languages. Then L « M (L is roducible
to M) if there is a function f ¢ m such thet f(x) € M if and only

if x € L.

Lemma 1 (Karp): If L «« M and M € P then L ¢ P.

Let P, denote the class of subsets of 2% x 2% which are
recognizable in polynomial time. Given Ly € Pz and a polynomial p, we
define L as:

L = {x| there exists y such that <x,y> €Ly and log(y) < p(log(x))}
L is said to be derived from Lp by polynomial-bounded existential
quanfication and NP is the set of languages derived from Pz by
polynomial-bounded existential quantification, i.e. NP can be thought

of as the set of languages which are recognizable, non-deterministically

in polynomial time.

Now define the satisfiability problem

SATISFIABILITY

INPUT: ¢l and c2 and .. cp (in conjunctive normal form)

PROPERTY: The conjunction of the given clauses is satisfiable; i.e.
there is a set
S © {X1X2X3y: - - XX 1X20X3y- - - Xn)
such that

60

e i AR e R D S b s g o b2 Ub SO ey

i b B e i b e e s o b2 oo a dien e L T N P (A (R Vet |

A MEASURE OF PROGRAM STRUCTURE 61
THE CLUSTERING PROBLEM

(a) S does not contan a complementary pair of
hterals
(b) S n cx # <empty> k=1,2,.,p.

Theorem(Cook): If L ¢ NP then L o SATISFIABILITY.

Corollary: P = NP f and only 1f SATISFIABILITY ¢ P.

Karp has shown that a large number of problems can play the role of

SAISFIABILITY in the above theorem. Such problems are called complete

Definition 4: The language L is (polynomial) complete if
a)L ¢ NP
b) SATISFIABILITY « L
Theorem (Karp): Either all complete languages are in P, or none of them
are. The former aiternative nolds if and only if P = NP.
Theorem (Karp). SATISFIABILITY o PARTITION where PARTITION is defined as
INPUT: (¢),€2,€3, .. ,¢m) ¢ ZM, positive integer m-tuples.

PROPERTY: There is a set I < {1,23,.,m} such that 2 ¢ = 2 ¢
where each i is an element of | and each j is not an element of [

It would be surprising, indeed, if all the complete problems were in P.
We now show that a recognition problem related to the measure is al
least complete.
Theorem: PARTITION « LOG 2 CLUSTERING

where LOG 2 CLUSTERING is defined to be

INPUT: a (0-1) matrix, S, having N rows and M
columns.

PROPERTY: there exists a clustering A U B = S,
A n B = <empty> such that C(A v B) = log 2.

Proof: Let N = ¢, | ¢,

e . R = il I -t I S T WY T P SR WY e e T — I PRTTERENTTINN Em——"

A MEASURE OF PRGGRAM STRUCTURE 62
THE CLUSTERING PROBLEM

Llet M =m

Ly 2 ketronlet Sk € 1S 2 katpenied Cho
S[IJ] = where an, upper bound for a summation of 0
equals O and an upper bound grealer
than N means N+1.
0, otherwise.
Now, if (c|¢o,..,cm) has a partition with the desired properties then

we choose as a set A, all those rows corresponding to the ¢’s in a

single set of the partiton; the rest of the rows constituting B. Then

H(A) = log N - (1/N) [2 k ck log cx] - (1/2) log (N/2)

where k is an element of |

HB) = log N - (1/N) [4 « ck log ¢k] - (1/2) log (N/2)

where k is not an element of |

HAUB) =log N-(I/N)[Zk cklog ek +2jclogci]

where k is an element of | but where j is not an element of L
Hence, C(A u B) = log N - log Nf/2 = log 2. For all other matrices of
the form described at the beginning of the proof, there is no partilion

which leads to a C value of log 2.//

Intuitively, this problem s not as difficult as the general
clustering problem, yet a solution to the clustering problem, does not

solve the partition problem, for the encoding above.

¥ % £

e - CRTETGS Y IR RS TN erre——m— T v v, w— ot s aden & o

A MEASURE OF PROGRAM STRUCTURE 63
THE CLUSTERING PROBLEM
In short, a tractable solution to the clustering problem would be

very surprising.

HEURISTICS FOR USING THE MEASURE

But just a solution to the ctustering problem for an object/assumption
table whose objects have many interactions really is not of much
interest. Making the best of a bad design job is not of much interest.
Programs should instead be composed of parts which interact very nttle.
As programmers, we can modify the tables which represent our programs in
order to improve their structure. This s not the case for data in an
ecological study, for example, where an object/assumption table is fixed

and a best decomposition might be of interest.

In chapter 1V, the example developed in chapter 11 wilt be examined
using, of the measure. The measure is used in two ways. First, at early
stages in a development the best decompositions are found. In most
cases this is traclable because the number of objects is small. Second,
if entropy toading figures for an elaboration of the objects in a best
decomposition seem too large, altempts are made 1to modify the
object/assumption table and the program so that the good properties of
the eartier decomposition are preserved. The heuristics used are

surmmarized below:

Assume we have a deccmposition at the N-th stage in which the parts of

A MEASURE OF PROGRAM STRUCTURE
HEURISTICS FOR USING THE MEASURE

the decomposition interact little, and that an elaboration has been made

to the (N+1)-st stage.

(1) Compute as a rough lower bound, RLB, for the entropy loading at
the (N+1)-st stage, the entropy loading with respect to the N-th
stage decomposition, where each object which was elaborated s
replaced by as many new objects as appear in the (N+1)-st stage
such that each object makes NO assumptions.
For example, if the table below represents part of a table to
the N-th stage and at the (N+1)-st stage the object X s
elaborated to three objects, we compute the entropy loadings
with respect to the decomposition at the N-th stage, but
replacing X by three rows of zeros.

00...
X 10 . 11}———— |00.
T |00..

stage N stage (N+1)

This computation takes into account the incicased size of the
table, but introduces new objects which do not interact at all.

(2) As a rough upper bound, RUB, for the entropy loadings at the
(N+1)-st stage, compute the entropy loadings with respect to the N-th
stage decompostion where each object which was elaborated is replaced by
as many new objects as appear in the (N+l)-st siage, such that each new
object is identical with its parent.

These guides are only rough indicators. The reader can generate simple
situations where expansions lead to smaller or larger entropy loading
values than those indicated. For many cases, however, they are quite
useful.

(3) Now compute the entropy loadings of the (N+1)-st stage and compare
its value with RLB and RUB. We clearly wish to make each elaboration so
that the entropy loadings are as close to RLB as possible.

(8) 1f entropy loadings are greater than RUB, then several cases arise
which involve interactions resulting from one or several of the
following

(a) new assumptions not appearing at the N-th stage

(b) assumptions which appear at the N-th stage and are shared
by the parents of subsets for which RUB is exceeded

64

o il o W e Bl B V- (g i R g WSSV oy W R . AT pl Raihia o o L
e o el o - - e e e b e Baniad da e el b e s o R L i e L e

A MEASURE OF PROGRAM STRUCTURE 65
HEURISTICS FOR USING THE MEASURE

There are several possible actions

(a) Accept the interactions that are present and proceed with
the development.

(2) Attempt to localize the assumphions not appearing at the
N-th stage to a single subset of the decomposition at the

(N+1)-st stape. Tihis amphes that a new structure, for which
the new objects do not have a parent, has been mposed on the
(N+1)-st stage. An attempt should be made to place these

objects in some subset where, excepl for the new assumplions,
as much nformation as possible 15 shared. (This technique s
consistent with Theorem 2.)

Chapter IV will display several examples where this technique
can and cannot be used.

(3) Attempt to find some other decomposition of the objects.

Hopefully, such a choice will resull in few changes in the
ortginal decompostion.

SATURATION IN OBJECT/ASSUMPTION TABLES

It should be noted that the suggestions i the last secion are
only heuristics which can aid in evaluating the goodness of Qa
decomposition. One situation which occurred when several examples were
analyzed will be called saluralion in an object/assumption table for a
decomposition. Staed simply, ihis siuation occurs whenever a table 1s
decomposed to a depth where further attempts at decomposing subsets of
cerfain objects results in identical entropy loading values for all
possible decompositions, In a saturated table, the measure provides no
help in distingushing decompositions, Saturalion occurs most
frequently whenaver a small number of objects together make many
assumptions. Frequenily, further refinements of objects lead to tables

wiich are nol saturated for a decomposttion, This seems to occur

T T T

TR, A PR T (v

ke B L e S . = Ak > Sl b o it Bitalie, S T e

A MEASURE OF PROGRAM STRUCTURE

SATURATION IN OBJECT/ASSUMPTION TABLES

whenever existing assumptior become tocalized to a small number of
objects relative to the total number at a given stage. Examples of this
situation are cited in the next chapter. Saturation indicates bad
structure in the sense that all the objects at a particutar stage share

much information.

ON THE PROBABILITY OF CHANGE OF ASSUMPTIONS

The examples in Chapter 1l indicate that objects make many
assumptions even In small programs. Yet, sone of the assumptions are
never likely to change even after major modifications of the program.
Intuitively, these assumptions seem to have less influence on the
structure of a program from one modification to the next than do
assumptions which are very likety to change. Theorems from mathematics
have already been cited as assumptions which can never be wrong and
hence have zero probability of change. However, assumptions based on
say "the position of information in a controt block", which have a very
high probability of change, have a great infiuence on structure from
modification to modification. Theoretically, every assumption could be
rated with a probabiity of change, even if that rating is simplty a
retative one, eg. that one set of assumptions has a greater

probability of change than another.

In this section, we extend the measure to take into account a

probability of change for cach assumption. This extension is shown to

be consistent with the definition of entropy loading.

66

ok Er Rl o al

g e Al

T -

.F.

T T L

il L R

A MEASURE OF PROGRAM STRUCTURE
ON THE PROBABILITY OF CHANGE OF ASSUMPTIONS

First, note the property:

If an assumption, say X, is shared by every (no) row in some set of
rows then for any decomposition of that set, the entropy loadings
computed when considering X are identical with the entropy loadings
computed when not considering X,

Proof: Just observe that any partition determined by a set of

assumptions other than X is not changed if X is added to the set of

assumptions,

Next, observe that no matter how many objects make assumptions which can
never change or regardless of where those assumptlions are made, there
will be no ill effects because of those assumptions, should the program
ever be changed. For this reason, unchanging information can be
distributed without affecting the ease of either maintainence or change.
However, these assumptions are relevant to understanding the program and
should be listed in a specification or at least in the object/assumption
tabte. Consequently, we modify the entropy loading calcutation so that
it remains consistent with the properties stated at the beginning of the
chapter, but allows assumptions which are certain to change (probability
of change = 1) to have the same effects as before and permits
assumptions which will never change to exert no effects. The
modification also has the property that 1 can be computed for any set

of assumptions having any probability of change values associated with

each assumption,

67

DT TR s P, Ly DR

A MEASURE OF PROGRAM STRUCTURE
ON THE PROBABILITY OF CHANGE OF ASSUMPTIONS

The only change involves the way H(X) is computed. As before,

H(X)

log N - (1/N) 2, n, log n;

2 i (nj /N) log (N/n;) (*)

where the ns correspond to the number of rows in each subset of a
partition imposed by the assumptions of X on the N rows. (%) above is
the standard definition of entropy from information theory - and has all
its properties - if we interpret n,/N as a probability so long as
2 {nj /N) = L

From this point of view, n; need not be an integer. Instead, we compute
the n’s as follows.

(1) Choose a function of one variable, f, defined on the closed

interval [0,1] such that f(x) 2 x and f is strictly monotonic (such

a function is just the probability of change itself).

(2) Construct a new table as follow

(u) £l the table with those columns from the original table
whose probability of change is 1 and associate with each of

the N rows a value, w, = 1 for the i-th row. (if the table
has no such columns, create a new table with N rows, w; = 1,
ki = i and containing a single column each entry of wskich
equals 1)

So long as there are assumptions which allow (b) to be
executed, repeat (b), (c), and {d).

(b) Select a single assumption, say P with probability of
change p, from those that reman (ignoring all assumptions
whose probability of change equals zero), attach this column
to the new table, and select the value of the parameter, n, as
follows:

if the number of occurrences of "1" is less than N/2 in
the column for P, then let n be 1; otherwise 0.

(c) for each row of the table which does not contain an entry
for assumption P, say |, choose its entry to be identical with
the entry for P in row i, 1 € i < N, such that k; = kj. (this

68

n grr s

e

Lo o e

et T e W it

Y R O g g gy T e T 2z 4 2 | a2 s go PE N R RS TR o Rl e it bt il Ll S dit e cu il P Wy VPN RE T TN, VR Y ety T) R AP Y N

5 A MEASURE OF PROGRAM STRUCTURE 69
: ON THE PROBABILITY OF CHANGE OF ASSUMPTIONS

.' i
: step will not need to be performed the first time (b) is)
: executed) :
1 (d) For each row in the new table, say i, which has an entry
for P which equals n, add a new row, j, to the table which is §
identical to row i except that the entry for P is 1 - n and 3
set wj to w, - f(p) ¥ w, and w; equal to f(p) * w, 1
(3) Now for each pattern of 1's and 0’s, sum the respective w’s to j
get a set of sy’s and compute H(X) as :
HX) = 2 j (s)/N) log (N/sj) as H(X)
The result of this computation is independent of !he order in which the ‘
! |
3 assumptions are used in the algorithm. The value is consistent with the]
1 observations stated earlier. The improvements of Chapter IV will use 4
: these ideas as a primary justification for ignoring certain assumptions. ‘a
q
A An example of this computation is indicated by the table below:
3 1 5.25
: 01 1
[I 01
1 10
1 01
0 01
where the value above each column represents the probability of change
3
of the assumption associated with that column (this value will be used
as f).
3 After step (a), the new table is £

D WK — X
—— b — £
Q= - — QO

DT TR T T WO T | T O G © L ¥ ATy AR 'mw-u.'\J

A MEASURE OF PROGRAM STRUCTURE
ON THE PROBABILITY OF CHANGE OF ASSUMPTIONS

After selecting a remaining assumption, and executing b

n =1 and

k w 1| b
1 1 0 1
2 1 1 0
3 1 1 1
4 |1 1 O
5 1 0 0
(c) need not be executed, but aiter (d), the table is
k w | b
1 5 0 1
2 1 1 0
3 5 1 1
4 1 1 0
5 1 0 0
1 5 0 O
3 5 1 0

Next, (b) is executed leaving n = 0 and the table

k w 1 5 25
1 5 0 1 1
2 1 1 0 1
3 5 1 1 0
4 1 1 0 1
5 1 0 O 1
1 5 0 0

3 5 1 0

After executing (c), the table is

k w | 5 .25
1 5 0 1 1
2 1 1 0 1
3 5 1 1 0
4 1 1 0 |
5 1 0 0 1
1 5 0 0 1
3 5 1 0 O

70

gt L

e T

i

Wy el =

[

,|
» 1
B a R B e L D s

I L 1, P T 11 & L N R SRR g T o L .y xS0 Ape Vi TS | I LD P e e RS S 1+ WL S O L ¢ e SRS YW | ST T T TP T T |

A MEASURE OF PROGRAM STRUCTURE 71
ON THE PROBABILITY OF CHANGE OF ASSUMPTIONS

Lastly, after executing (d) the table is

k w 1 b .25
1 5 0 | 1
2 | 1 O |
3 .2H 1 1 0
4 1 1 0 1
5 1 0 0 l
15 0 0 1
3 et 1 0 0
3 37% | | 1
3 3% 1 0 1

Hence, H for this table can be computed from

oll b
101 2375
110 .125
001 15
100 .125
111 375

The effect of this calculation has been to modify the influences of
assumptions whenever entropy loading calculations are computed.
Consequently, this same calculation can be used to modify the influences
of assumptions for other properties besides “probability of change"”.

For example, if the relation "importance of assumptions" can be

established for a program, this modified calculation can be used.

CHAPTER IV

USING THE MEASURE

The heuristics described in Chapter Il which provide suggested
bounds for entropy loading values are used as guides to control
interactions between the parts of a decomposition. Entropy loading
values for various decompostions of the example from Chapter II are
displayed. In addition, several other examples are developed using the

measure as a guide.

INTRODUCTION

Chapters | and Il provided a definition of program structure along
with techniques for preserving assumptions which help to determine
structure. Chapter Il described a numerical calculation - entropy
loading - which can use these assumptions to compare the "goodness" of
different guesses at what the components of a decomposition of a program
are. The theorems in Chapter III form the basis for methods of
constructing elaborations for components in an initial decomposition.
These methods are used to insure that components interact little in the
final program, either by verifying the presence of reasonable
interactions or by indicating that elaborations which interact less

should be sought. Such programs have a good chance of satisfying the

properties stated in the Introduction to this thesis.

Ll T pr g NN TR e Sl TR T A M T RSy L il i o L e WA I A E T I T AT

USING THE MEASURE 73
INTRODUCTION
These methods are first demonstrated with respect to the GCD

example frcm Chapter Il

A GCD 'COMPUTATION

Despite the small size of the GCD program, entropy loading
calculations can be wused to show that certain decompositions of the
objects have greater interactions between their parts than others. (For
the following discustion, it is assumed that the probabiiity of change
of all assumptions is one, ie. that ali assumptions are likely to
change and have potentially the same influence on structure.) Below is

the object/assumption tabie for the GCD computation from Chapter Il

1234567 89 10111213141516171819202122

0

i3 I O 11

ER R 1 T R T ¢ 11

e | R U A

Sl I I N 11

fe20 00 1 11

e 11 | L

CE E N B2 I T N A il 11 e

S 2 gd 11 1 11 Lo
el 2ot L | 1l] |
Shedede2on-28 11 L 11 ¢
O O O - R c 11 | 111 1 ¢
LI O VO - 2 - N T | 11 1

Sl 2013018 | | 11

0) neither multiplication nor division is to be used
1)a>0,b >0, aandb are integer variables
2) A symbolizes the initial value in a and
B symbolizes the initial value in b

3) write access to x is required

} write access to a is required
5) read access to a is required

6) a = gcd(A,B)

7) (@ = b) A gcd(A,B) = ged(ab) o a = ged(A,B)
8) x = a > x = gcd(A,B)
9) a = gcd(A,B) o true

P T

e A -

T TRy

e S s ity i i il e ol Ll T e it
SRS b G

USING THE MEASURE 74
A GCD COMPUTATION

10) write access to b is required
11) read access to b 15 required
12) a’ and b’ equal the respective values of a and b
prior to the last execution of :1.1.1.2:
13) (((a<a’ v b<b’) A gcd(a,u)=gcd(AB) A a#b) 2
(a#b A ged(ab) = gcd(AB)) A max(a'b”) > max(a,b))
14) g-d(a,b) = gcd(A,B)
1B) a#b
16) [(ged(a,b)=gcd(A,B))>
(ged(a’b”)=gcd(a,b), holds prior to executing :1.1.1.2.1:)] and
[(ged(a',b*)=gcd(a,b), holds after executing :1.1.1.2.1:)>
(ged(a,b)=gcd(A,B))]
7) ged(a,b) = ged(a’,b’)
8) (a > b A ged(a’,b’) = ged(a-b,b) v
< b A ged(a',b’) = gedla,b-a)
19) gcd(a’,b’) ged(a-b,b)
20) ped(a’,b’) = gcd(a,b-a)
21) ged(a’,b’) = ged(a,b-a) 2 true,
b decreased by a o gecd(a’b’) = ged(ab)
22) ged(a’,b’) = ged(a-b,b) o true,
a decreased by b 2 ged(a,b) = ged(a’,b’)

The map for the deveiopment is
A GCD COMPUTATION
:1: (pg. 31)

—
:1.1: (32) :11.2: (32)

:1.1.1: (34) :1.2.1: (34)

/ \ (x « a)

:1.1.1.1¢ (36 :1.1.1.2: (
(while a # b do
:1.1.1.2%)

/ :1.1.1.2.1: (37)
.1.1.1.2.1.1. (39) :1.1.1.2.1.2: (39) .1.1.1.2.1.3. (39)
(if a > b then

:1.1.1.2.1.2:
else
:1.1.1.2.1.3: 5)
1.1.1.2.1.2.1: (41) :1.1.1.2.1.3.1: (41)

(a «a-b) (b «b-a

USING THE MEASURE 75
A GCD COMPUTATION

Object :l: assumes that positive integer values are contained in
variables a and b and has the effect of assigning to x the value of the
greatest common divisor of the initial contents of a and b (symbolized
by A and B, respectively).

Object :l.1: leaves the value of gcd(ab) in a and object :1.2: assigns
the value of a to x.

The theorem that (gcd(ab) = gcd(AB) A a = b) > a = gcd(AB) is hidden
from :1.1.1: and a = gcd(A,B) 1s hidden from :1.2.1..

Object :l.1.1.1: contruis the execution of :1.1.1.2: which maintains the

invariant (a < a’ v b < b’) A gedlab) = gcd(AB), where a' and b’ are
th 2 values of a and b prior to each iteration.

Object :1.1.1.2.1: hides the invariant gcd(ab) = gcd(A,B).

Finally, objects :1.1.1.2.1.1 :1.1.1.2.1.2,, and :1,1.1.2.1.3:
implement a conditional statement which results in (a < a v b < b’) A
ged(a,b) = ged(a’,b’).

Not surprisingly, the bhest[l] decomposition for the development

represented by the terminal nodes of the tree

v
1:/ \ i1
| |

1.1 :1.2.1:

N

11.1.1.1: ;11120

:1. .2:

is a decomposition into two parts: (1111 :1.1.1.2) (while a # b

do .. , decrease a, b or both so that gcd(ab) = gcd(AB)) and

(:1.21) (x « a)

[1] Of two decompositions for the same objects, one decomposition is
said to be "better" than arother if, starting at the root, a difference i
in entropy loading values i1s found at some node and that decomposition i
4 has the smaller entropy loading value et that node. Clearly, this '
comparison is only meaningful for decompositions which are based on
trees which have the same shape to the stage where they are compared.

USING THE MEASURE 76
A GCD COMPUTATION

with entropy loading value .637[2] which is identical with the values of
the rough lower bound (RLB) and rough upper bound (RUB) for the

expansion from

/ \
£E ol.2
| |
3l.1.L: 1.2.1:

.

This indicates that the assignment of a to x interacts least.
Similarly, after refining :1.1.1.2: to :l.1.1.21: the entropy loading
of (:1.1.1.1::1.1.1.21:) and (:1.21:) s agan equal to .637.
Refinements of :1.1.1.2.1:; however, show that RLB and RUB are indeed
“rough” bounds since for (:1.1.1.1; :1.1.1.21:) and C(l.2.1), RLB s
951 and RUB s 1.33, but the actual entropy loading for (%)
L £3 18 3% 08 £ 1841 FR A s T :1.1.1.2.1.93) and (1210
is 500, indicating that the distribution of the increased number of
assumptions in the new table causes less interaction between the two
subsets of the partition. The best decompostion of () appears below,

with the entropy loading vaiues at each non-terminal node.

‘.':-00
:1.1.1.1 " ol 673
si.1.1.21.1;
(fa>b "\Qn .l,l.l. 1.31)

(av—a—:,bﬁb-a)

[2) The numerical values representing entropy loadings are all computed
with respect to natural iogarithms and not logarithms to the base 2.

USING THE MEASURE
A GCD COMPUTATION
However, the refinements of -1.1.1.2.1.2: and :1.1.1.2.1.3: lead to a
program whose best decomposition is
(A)
500 500

P AN

:1.2.1:>\950 Q20 N\ .950

/'/\
:1.1.1.2.1.2.1: 673 :1.1.1.2.1.3. 1 673
P P\

A 1213010 GLLLI Q12120 7 GLLLL,
01120000 1121000

Further, the decomposition

:1.2.1: :.05

(:L.1.Ly s L L2110 ? (:l.l.lel2l;, :1.1.1.2.1.3.1)

is better than
(C)

¢Lir2.tel;
1112 1.3 1)

In particular, the best decomposition before the last refinement is not
the best decomposition after the refinement. The reasons for this
result are obvious from an examination of the object/assumption table
(in the light of the above calculations, but are, perhaps, not so
obvious without them). The assumptions made by :1.1.1.2.1.2: (decrease

a by b) and :1.1.1.2.1.3: (decrease b by a) are more numerous than for

USING THE MEASURE

A GCD COMPUTATION

their refinements. These additional assumptions increase the number of
subsets in the partitions which determine the H values, but do so in a
way which indicates littie relative interaction among the subsets of the
decomposition, However, since the final refinement involves few
assumptions, there is greater relative interaction for the same
decomposition. From the standpoint of interactions alone, the best
decompositions are indicated in (A), and in a larger, but similar,
example work assignments might be made based upon these decompasitions.
This decor'position separates the actions of assigning values to
variables from the mechanisms which control these operations. Hence,
the measure indicates that the control mechanisms interact most since
they require more information about the program. However, should a
designer wish to distribute more information, in the form of assumptions
at earlier stages, the decompositions in (B) or (C) might be more

appropriate,

A different elaboration of this version might arise by observing

that for each execttion of the body of the loop, two tests are made for

each modification of either a or b.

USING THE MEASURE
A GCD COMPUTATION

GCD Computation (Version I1)

:1.1.1.2.1: (80)
(decrease a, b or both
so that gcd(a,b) = ged(A,B))

e

(1.1 12,11 (81) 1.1.1.2.1.2: (82)
N I ~~
(c) :1.1.1.2. 111 (d) :1.1.1.2.e.1.2: (e) i1 112 1.2.1: () :1.1.1.2.1.2.2:
(while a > b do) (84) (while b > a do) (85)
(84) (85)

(grl.1.1.2.1.1.2.1: (87) (h):1.1.1.2.1.2.2.1:(87)
(A «a-hb) (beb-a)

The development of this version s identical with the development in
Chapter 11 up to :lL.l.1.2.1. Version | maintains the invariant
ged(a,b) = ged(a',b’) but version 1l requires that a or b or both have
been modified more than once, If possible.

Object :1.1.1.2.1.1: decreases a until it vecomes smaller than b, but
maintains the invariant ged(ab) = ged(a’,b’).

Object :1.1.1.2.1.2° makes b smaller than a, but maintains the invariant
ged(ab) = ged(a’,b’),

Objects :1.1.1.2.1.1: and :l.1.1.2.1.2.1: are while constructions that
control :1.1.1.2.1.1.2: and :1.1.1.2.1.2.2: respechively.
Lastly, :l.1.1.2.1.1.2.1: and :l.1.1.2.1.221: are elahorations from

which are hidden information about the invariants that are being
maintained.

USING THE MEASURE
A GCD COMPUTATION

A new elaboration of :1.1.1.2: might be

:1.1.1.2.1:
assumptions:

effects and
post=-condition:

neither multiplication nor division is to be used
and a > 0, b > 0, a and b are integer variables, A
symbolizes the initial value of a and B symbolizes
the initial value of b, a is an integer variable,
read and write access is required for both a and b,
a’ and b’ equal the respective values of a and b
prior to the last execution of :l.1.1.2; ged(ab) =
gcd(AB) = ged(ab) = gedab), ged(ab) =
ged(a'b”), :1.1.1.21: is the body of a loop which
makes the test "a # b"

:1.1.1.2.1: DECREASE EITHER a, b, OR BOTH a AND b
SUCH THAT ged(ab) = ged(a'b’) WHERE a OR b HAVE
BEEN MODIFIED MORE THAN ONCE, IF POSSIBLE.

(a < a or b < b)) gecdlab) = ged@p), if.
possible, more than one modification of a or b
should occur for each test of the outer loop.

USING THE MEASURE
A GCD COMPUTATION

The best decomposition for the three objects is
(GL.2.13) GLLLLy :1 b L2.12)) 637 [1]

:1.1.1.2.1: 15 elaborated next

;
E 111,211
By

assumptions: a>0Ab>0Aaandb are integer variabler,

3 write access to a is required, read access to a is

; required, read access to b s required, a’ and b’

. equal the respective values of a and b prior to the

3 last execution of :1.1.1.2;, gcdab) = ged(a’,b’),

] :1.1.1.2.1: is the body of & loop which makes the
test "a # b", neither multiplication nor division is
to be used

:1.1.1.2.1.1: IF POSSIBLE, MAKE a SMALLER THAN b !
SUCH THAT gcd(a,b) = ged(a’,b")

effects and
post-condition: a £ a' A ged(ab) = ged(a’)b’) A a™>b’ D bza

[1] This notation will be used instead of tree diagrams to indicate a

decomposition and the entropy loading values for non-terminal nodes.

(The value of an instance of <number> represents the entropy loading
1 value for the parenthesized pair to its left.)

<decomposition> u= (<part list> <part list>)} <number> |
(<part list> <part lis|>)

<part list> = <decomposition> | <simple part list>

<simple pari list> = <object name> |
<cimple part hst> , <object name>

:1.1.1.2.1.2:

assumptions:

effects and

3 post-condition:

verification:

USING THE MEASURE 82
A GCD COMPUTATION

a>0 A Ab>0nAaand b are integer variables, read
access to a s required, write access lo b s
required, read access to b s requred, a and b’
equal the respective values of a and b prior to the

jast execution of :1.1.1.2:; gecdlab) = ged(alh’),
neither muitiphcation nor division 15 to be used
:1.1.1.2.1: 1s the body of a loop which makes the
test "a # b"

:1.1.1.2.1.2: IF POSSIBLE, MAKE b SMALLER THAN a
SUCH THAT gcd(a,b)=gcd(a’b”)

ged(a,b) = ped(a'b’) A bsb’ A (b’ >a>azb)

To show that the post-condition for :l.l1.1.2.1:
Pous, e, (a < a v b <« by A gecdlab) =
ged(a',b’), if possible, more than one modification
of a or b should occur for cach test of the ouler
ioop, holds.

Case 1: if a > & then b = a and a < a, since
after the execution of :l.1.1.2.1.2:;, pgcdlab) =
ged(a’',b’).

Case 2: If b > a then a z b which means that b’ >
b. But since ged(a,b) = ged{a’,b”) the
post-condition hoids.

If more than one modification of either a or b can
be made, this elaboration will make more than one
such modification.

L i

USING THE MEASURE
A GCD COMPUTATION

The relevant table is then

1234567 89101112131415161718
1 11 111 1 11
1 11 11 [
1 1 [1

0) neither multiplication nor division is to be used

1) a>0,b >0, aand b are integer variables

4) write access to a is required

5) read access to a is required

10) write access to b is required

11) read access to b is required

12) a” and b’ equal the respective values of a and b
prior to the last execution of :1.1.1.2:

17) ged(a,b) = ged(a’,b’)

18) :1.1.1.2.1: is the body of a
loop which makes the test "a # b"

RLB and RUB for this expansion both equal 1.04, but the

best

decomposition has better entropy loading values than RLB and RUB would

suggest, and is derived from the last stage, i.e.

((:1.2.1:) (G1.1.11y) L2000y 11 12.1.2:)) 1.38) 562

LS Ll e R s <

USING THE MEASURE
A GCD COMPUTATION

Expanding :1.1.1.2.1.1: and :1.1.1.2.1.2: gives

(c) :1.1.1.2.1.1.1:

assumptions:

(d) :1.1.1.2.1.1.2:

assumptions:

effect and
post-condition:

effect and
post=condition:

a>0Ab>0naandb are integer variables, read
access to a s required, read access to b s
required, a’ and b’ equal the respective values of a
and b prior to the last execution of :1.1.1.2;,
ged(ab) = ged(alb’), ged@b’) A a2 b o
ged(a'b’) = ged(a-bb), neither multiplication nor
division is to be used

:1.1.1.2.1.1.1: while a > b do

a>0Ab>0nAaand b are integer variables,
write access to a is requred, read access to a is
required, read access to b s required, »° and b’
equal the respective values of a and b prior to the
last execution of :1.1.1.2;, gcd(ab) = gedla’b’),
ged(ab) = ged(a-bb), neither multiplication nor
division is to be used

:1,1.1.2.1.1.2: DECREASE a BY b

a has been decreased by b.

a>0Ab>0n aand b are integer variables,
ged(a',b’) = ged(a,b)

USING THE MEASURE 85
A GCD COMPUTATION

Similarly, we elaborate :1.1.1.2.1.2:
(e) :1.1.1.2.1.2.1:

assumptions: a>0Ab>0Aaandb are integer variables, read
access to a is required, read access to b is
required, a’ and b’ equal the respective values of a
and b prior tc the last execution of :1.1.1.2:
ged(ab) = ged(@b’), (gedab’) A b > a) >
ged(a’,b’) =gcd(a,b-a), neither multiplication nor
division is to be used.

:1.1.1.2.1.2.1: while b > a do

(f) :1.1.1.2.1.2.2:

assumptions: a>0Ab>0Aaandb are integer variables, read
access to a is required, write access to b s
required, read access to b is required, a’ and b’
equal the respective values of a and b prior to the
last execution of :1.1.1.2;, gecd(ab) = ged(a’b’),
ged(a',b”y = ged(ab-a), neither multiplication nor
division is to be used
:1.1.1.2.1.2.2: DECREASE b BY a

effect and

post-condition: b has been decreased by a

effects and
post-condtion: a>0Ab>0nA aand b are integer variables,
ged(a,b) = ged(a’,b”)

USING THE MEASURE
A GCD COMPUTATION

The tabie for {hese two parts is then

01234567 809 101112131415161718192021222324
11 0d 11 1 1
1-1- 28 11
1.2 1% 11
1.2 2¢ 11

1 1

11 1
11 1
11 1
11 1

1

1

1 1

0) neither multiplication nor division is to be used

1) a>0,b >0, a and b are integer variables

4) write access to a is required

5) read access to a is required

10) write access to b is required

11) read access to b is required

12) a’ and b’ equal the respective values of a and b
prior to the last execution of :1.1.1.2:

17) ged(a,b) = ged(a’,b”)

19) ged(a’,b’) = ged(a-b,b)

20) ged(a’,b’) = ged(a,b-a)

23) (ged(a’p’) A a > b) 2 ged(a’b’) = ged(a-b,b)

24) (ged(a’b) A b > a) o ged(a’,b’) = ged(a, b-a)

For
((:1.2.19) (G111 1¢1L2. 0 11010 1.2.1.20) #1) %2
RLB is *1 = .868
RUB is *x1 = .451 and *2 = .868
but the actual loadings for the above elaboration are
((:1.2.1) (:1.1.1.1) (e, d) (e,) 133) .868) .451
Here the inner loops appear in two distinct subsets. It should be noted
that if the while constructions appear together the entropy loading
figures do not chang:, ie. ((¢c,e)(d,f) 1.33. Further,
(e)(d,e,t) 124
This is the same entropy loading value for all other decompostitions of
¢, d, @, and f where one subset contains just a single object.

Lastly, the assignments can be elaborated if we add assumptions to the

table as follows

USING THE MEASURE 87
A GCD COMPUTATION

01234567 809 10111213141516171818202122
j. 28] (I 1 (I B
c2. 20]] 111 1 (I

0) neither multiplication nor division is to be used
4) write access o a is required
5) read access to a is required
10) write access to b is required
11) read access to b is required
12) @’ and b’ equal the respective values of a and b
prior to the last execution of :1.1.1.2:
17) ged(a,b) = ged(a’,b’)
19) ged(a’,b’) = ged(a-b,b)
20) ged(a’,b’) = ged(a,b-a)
21) ged(a’,b’) = ged(a,b-a) o true,
b decreased by a > ged(a',b’) = ged(a,b)
22) ged(a’,b’) = ged(a-b,b) o true,
a decreased by b > gecd(a,b) = ged(a’,b’)

(g) :1.1.1.2.1.1.2.1:

assumptions: write access to a is required, read access to a is
required, read access to b is required

:1.1.1.21.1.21: a « a -b.
effects and
post-condition: a decreased by b
and
(h) :1.1.1.2.1.2.2.1:
assumptions: read access to a is required, write access to b is

required, read access to b is required
:1.1.1.2.1.221: b « b - a

effects and
post-condition: b decreised by a

Now, note the following entropy loading calculations, where a names
:1.2.1: and b names :1.1.1.1;
(A): ((a) ((b) ((c,g)(e,h)) 1.79) 1.33) .451

but that

(B): ((a) ((b) ((c,@)(g,h) 101)133).451

T AT a—

T

B MRy TR, T e
. . e . Y T T L T TR T T e
? " et sl s SO

USING THE MEASURE 88
A GCD COMPUTATION

and
(C): ((a) ((g, h)(b)(c,e) 101) L0OL).45]

(A) corresponds to a decomposition which s based on the best
decomposition at the last stage. Both (B) and (C) are better
decompositions for the program representation from which several
assumptions are hidden. (B) corresponds to the situation in version 1
where control mechanisms appear together. Here ¢ and e represent the
two inner while constructions. (C) indicates that the objects which

assign values to x, a and b interact with the program less than the

control mechanisms.

ot e ez S o e sy 1S

]

USING THE MEASURE
A GCD COMPUTATION

A final version of the progran can be elaborated, in much the same way
as above, but where even more assumptions are made by the objects.

Specifically:

Compute the value of the greatest <common divisor of the
initial(positive) contents of the integer variables a and b, and leave
the result in the variable x; also leave in the variable y the value of
the least common multiple of a and b, i.e. a*b / ged(ab), but without
using either multiplication or division.

A GCD Computation (Version 11I)

:1: (90)

2

:1.1: (91) :1.2: (91)

| |

:1.1.1: {93) (a) :1.2.1: (93)

S

(b) :1.1.1.0: (96) (¢) :1.1.1.1: (95) (d) :1.1.1.2: (99)
(c « 0;d « a) (while a # b do ...)

S
(@) :1.1.1.2.1: (98) (f):1.1.1.2.2: (98)
f

il N

(g) :1.1.1.2.1.1: (h) ;111212 (ixl.l1.2.2.1: (j) :1.1.1.2.2.2:
(while a > b do) {100) (while b > a do) (101)
(100) (101) \
(k) :1.1.1.2.1.2.1: (I :1.1.1.2.2.2.1;
(aca-bjded+c) (beb-acec+d
(105) (105)

This development is essentially identical with version Il except that
the least common muitiple (lcm) of the initial contents of a and b is
computed in addition to the gcd of these values.

:1: states the problem. :l.1: has the effect of leaving ¢ + d = AsxB/
gcd(A,B) and a = gcd(AB).

:1.2: assigns x the value of gcd(AB) and y the value of lem(AB). The
relationships ¢ + d = Icm(A,B) and a = gcd(A,B) are hidden from :1.2.1:.

USING THE MEASURE 90
A GCD COMPUTATION

Object :1.1.1.0: was introduced to mtialize «¢ and d so that the
invariant A * B = a # ¢ + b * d holds, prior to the execution of
0 153) 59) 0 g

The remainder of the tree 1s the same as the co'responding objects in
version Il except that the invariant A + B = a x ¢ + b * d is maintained
in addition to gcd(AB) = gcd(a,b).

ks

assumptions: neither multiphcation nor division is to be usec
and a > 0, b > 0, A symbohzes the imtial value of
a, B symbolize- the imtal value of b, a is an
integer variable, b is an integer variable, write
access to x is required, write access to y s
required, neither multiplication nor division is to
be used :1: COMPUTE THE GCD AND THE LCM OF a AND b,
LEAVE THE GCD IN THE VARIABLE x AND THE LCM IN THE

VARIABLE vy.
effects and
post-condition: x = gcd(AB) Ay = lem(AB) i
verification: Since the ged and lem of any two positive integers !

are always defined and are computable, the
computation 15 feasible.

The object/assumption table for :l:1s

0123456789 10111213141516171819202122232425
K (LR e R i |

0) neither multiplication nor division 1s to be used
1) a>0,b>0, aandb are integer variables
2) A symbolizes the imitial value in a and
B symbolizes the initial value in b
3) write access to x 1s required
4) write access to a is required
5) read access to a 1s required
10) write access to b 1s required
11) read access to b 1s required
25) write access to y is required

USING THE MEASURE
A GCD COMPUTATION

We elaborate :1: as
sl s

assumptions:

effects and
post-condition:

S22k

assumptions:

effects:

post-cordition:

vearification:

neither multiplication nor division 1s to be used
and a > 0, b > 0, A symbolizes the initial value of
a, B symbolizes ihe initial value of b, a is an
integer variable, b is an integer variable, write
access to a s required, write access is required
for ¢, write access is required for d, ¢ and d are
integer variables, neither multiplication nor
division is to be used, (a=b A gcd(AB) = gcdla,b) A
atc + bxd = AsB) > a = gcd(AB) A ¢ + d = Iem(A,B)

:1.1: REPLACE THE VALUE OF a BY gcd(A,B) AND LEAVE
THE EXPRESSION ¢ + d EQUAL TO lem(A,B)

a = gcd(AB) A ¢ + d = lem(AB)

a = gcd(AB), write access to x is required, read
access to a 1s requred, ¢ and d are integer
variables , ¢ + d = lecm(AB), write access to y is

required, read access is required for both ¢ and d,
neither muitiplication nor division i1s to be used

:1.2: REPLACE THE VALUE OF x BY THE VALUE CONTAINED
IN a AND THE VALUE OF y BY ¢ + d.

x
L}

any =lem(AB)

x
“

gcd(A.B)

In order for x = gcd(AB) and y = lem(AB) to hold
after :1.2;, given that its effect 1s x = a and y =
¢ + d, its assumptions must be a = gcd(AB) and ¢ +
d = lem(AB). But this is pguaranteed as the
post-condition of :l.l. Further, :1.1: requires
the same assumptions as :l: plus the ability to
store into a.

USING THE MEASURE 92
A GCD COMPUTATION

object/assumption table for :1.1;, g2

0123456789 101112131415161718192021222324252627282930
1 (1 ST TS | 1l } 11
i 2%] [T 1 1

0) neither multiplication nor division is to be used

1) a>0,b>0,aand b are integer variables

2) A symbolizes the mitial value in a and
B symbolizes the initial value in b

3) write access to x is required

4) write access to a is required

5) read access to a is required

6) a = gcd(AB)

7) (a=b A gcd(a,b)=gcd(AB) A axc+brd=A«B) >
(a=gcd(A,B) A c+d=lcm(A,B))

10) write access to b is required

11) read access to b is required

25) write access to y 1s required

26) ¢ and d are integer variables

27) read access is required tor both ¢ and d

287 ¢ +d = lcm(A,B)

29) write access is required for ¢

30) write access is required for d

USING THE MEASURE 93
A GCD COMPUTATION

Next an elaboration of :1.1: can be made by hiding
(a=b A ged(ab)=gcd(A,B) A axc+bxd: A%B) 2
(a=gcd(A,B) A c+d=lcm(A,B))
(This has already appeared as an assumption for :1.1:)
ofolk. 1

assumptions: neither multiplication nor division is to be used
and a > 0, b > 0, A symbolizes the initial value of
a, B symbolizes the initial value of b, a is an
integer variable, b is an integer variable, read and
write access is required for both a and b, ¢ and d
are integer variables , read access is required for
both ¢ and d, write access is required for c, write
access is required for d, neither multiplication nor
division is to be used

:1.1.1: MAKE a = b SUCH THAT ged(a,b) = gcd(A,B) AND
¢ AND d SUCH THAT a%c + bxd = A+B.

effects and
post-condition: a = b, ged(ab) = gcd(A,B) A axc + bxd = AsxB
An elaboration of :1.2: can be made if we observe that
(a = gcd(AB) A c+d = lcm(A,B)) > true
and

(x =any=c+d>(x=gcdAB) Ay =Ilcm(AB))

But since :1.2: assumes a = gcd(A,B) we can write

(a) :1.2.1:

assumptions: write access to x is required, read access to a is
required, write access to y is required, ¢ and d are
integer variables , read access is required for both
¢ and d, neither multiplication nor division is to
be used
il2l:x « a5y « ¢ + d;

effect and

post-condition: Xx=avy=c¢c+d

USING THE MEASURE 94
A GCD COMPUTATION

As a result, the object/assumption table for :1.1, :1.2; :.l.1: and
:1.2.1: is

01234567 89 10ii12131415161718192021222324252627282930
DRUD 11 1 bl
[| feerre 1 I

o

I
I
I
l I

0) neither multiplication nor division is to be used
1) a>0,b>0,aand b are integer variables
2) A symbolizes the initial value in a and
B symbolizes the initial value in b
3) write access to x is required
4) write access to a is required
5) read access to a is required
6) a = gcd(AB)
8) (a = gcd(A,B) A c+d = lem(A,B)) o true
9)(x =any=c+d o ({x=gcdAB) Ay =icm(AB)
10) write access to b i1s required
11) read access to b is required
25) write access to y is required
26) ¢ and d are integer variables
27) read access is required for both ¢ and d
28) ¢ + d = lem(A,B)
29) write access is required for ¢
30) write access is required for d

USING THE MEASURE 95
A GCD COMPUTATION

Adopting the convention that a’ a3d b’ equal the values of a and b just
prior to the most recent execution of :1.1.1.2: we elaborate :1.1.1:

(c) :1.1.1.1:

assumptions: neither multiplication nor division is to be used
and a > 0, b > 0, A symbolizes the initial value of
a, B symbolizes the initial value of b, a is an
integer variable, k is an integer variable, read
access is required for both a and b, a’ and b’ equal
the respective values of a and b prior to the last
execution of :1.1.1.2;, [((a < a v b < b) A
ged(ab) = gcd(AB) A a # b) © (a # b A gedlab) =
ged(ab’)) A max(alb’) > max(ab))], ¢ and d are
integer variables, a*c + bxd = AxB, neither
multiplication nor division is to be used

:1.1.1.1: while a # b do :1.1.1.2:;
post-condition: a = b, gcd(a,b) = gcd(A,B), ¢ + d = icm(AB)
(d) :1.1.1.2:

assumptions: neither multiplication nor division is to be used
and a > 0, b > 0, A symbolizes the initial value of
a, B symbolizes the intial value of b, a is an
integer variable, b is an integer variable, read and
write access is required for both a and b, a’ and b’
equal the respective values of a and b prior to the
last execution of :1.1.1.2;, a # b, gecdlab) =
gcd(AB), write access is required for ¢, write
access is required for d, read access is required
for both ¢ and d, ¢ and d are integer variables ,
axc + bxd = A+B, neither multiplication nor division
is to be used

:1.1,1.2: DECREASE EITHER a, b, OR BOTH a AND b SUCH
THAT gcd(ab) = gcd(A,B) AND INCREASE ¢, d OR 30TH
SUCH THAT axc + bxd = AxB.

offect and
post=condition: (a<a vbc<b) gedlab) = ged(AB)

e S T T T T R e e R e TR R R R B R v o i i S S s N e s B T A e e TR w

USING THE MEASURE 96
A GCD COMPUTATION

Note that the condition asc + bxd = AtB cannot be guaranteed since no

values have been assigned to ¢ or to d and since no previous part of the

program has guaranteed this condition. Hence, :1.1.1.0: is introduced

as
1 (b) :1.1.1.0:
assumptions: ¢ and d are integer variables, write access is

required for ¢, write access is required for d, A =

: a A B =Db, read access to a is required, read access
: to b is required, neither multiplication nor
k division is to be used and a > 0, b > 0, a and b are
3 integer variables, A and B symbolize the respective
i initial values of a and b, neither multipliction nor
F division is to be used j
i :1.1.1.0: ASSIGN VALUES TO ¢ AND d SUCH THAT aec ;
g btd = AsB, ie. c « 0;d « a;
effects: c=0nd=a |

post=condition: a*c + bxd = AsB

verification: Since A=aand B=bandc =0 and d = a then a * ¢
+bsd=az%b

Here the statement of :1.1.1.0: also includes its
own elaboration. Most of the assumptions for
:1.1.1.0: could be hidden from an elaboration which
would read "ASSIGMN /FRO TO ¢ AND THE VALUE OF a TO
d”.

P R

| USING THE MEASURE 97
'; A GCD COMPUTATION

The object/assumption table is then: !

(b) $1-4-1-00
(c) HE T P P
(d) - O O -

il [| 1 11 1
11 1 [1 1 |
11 1

01234567809 1011121314151617181920212223242526272829303132
!

!

| (I 1 11 11 111

0) neither multiplication nor division is to be used

1) a>0,b >0, aandb are integer variables

2) A symbolizes the initial value in a and
B symbolizes the initial value in b

4) write access to a is required

5) read access to a is required

10) write access to b is required

11) read access to b is required

12) a* and b’ equal the respective values of a and b
prior to the last execution of :1.1.1.2:

13) (((a<a’ v b<b’) A gecd(a,b)=gcd(A,B) A a#b) >

(a#b A ged(a,b) = gcd(A,B)) A max(a’,b’) > max(a,b))

14) ged(a,b) = gcd(A,B)

15)a ¢ b

25) write access to y is required

20) ¢ and d are integer variables

27) read access is required for both ¢ and d

29) write access is required for ¢

30) write access is required for d

31) axc + bxd = AsB

32 A=anB=b

Because of the large number of assumptions made by a, b, ¢, and d ali

possible decompositions have the same entropy loading values. This is

an instance of saturation in a table. The decomposition which was best
for the previous developments cf this program at this stage is

! ((a) ((b) (¢ ,d) 1.39) 1.39

USING THE MEASURE 98
A GCD COMPUTATION

We add the following assumption to :1.1.1.2:
ged(a’h’) = ged(ab) = ged(ab) = ged(AB)
{e) :1.1.1.2.1:

assumptions: a>0Ab>0Aaandb are integer variables, A
symbolizes the initial value in a and B symbolizes
the initial value in b write access to a s
required, read access to a is required, read access
to b is required, @ and b’ equal the respective
valuee of a and b prior to the last execution of
1.1.1.2;, ged(ab) = ged(@p’), ¢ and d are
integer variables , read access is required for both
¢ and d, write access is required for ¢, write
access is required for d, axc + bxd = AB, neither
multiplication nor division is to be used

:1.1.1.2.1: IF POSSIBLE, MAKE a SMALLER THAN b SUCH
THAT ged(ab) = ged(a’b’) AND MAKE ¢ AND d SUCH
THAT a%c + bd = A+B.

effects and

post-condition: a < a A gedlab) = ged(a'h’) A a>b’ 3 b2a A axc
+ bxd = AsB8
(f) :1.1.1.2.2:
assumptions: a>0Ab>0nAaand b are integer variables, A

symbolizes the initial value in a and B symbolizes
the initial value in b read access to a is required,
write access to b is required, read access to b s
required, a' and b’ equal the respective values of a
and b prior to the last execution of :1.1.1.24,
ged(ab) = ged(@’h’), ¢ and d are integer variables
, read access is required for both ¢ and d, write
access is required for c, write access is required
for d, axc + bxd = AxB, neither multiplication nor
division is to be used

:1.1.1.2.2: IF POSSIBLE, MAKE b SMALLER THAN a SUCH
THAT gcd(a,b)=gcd(a’,b’) AND MAKE ¢ AND d SUCH THAT
akc +bxd = AsB.

effects and
post-condition: ged(ab) = ged(a'b’) A bsb’ A (b’ >a> a2 b)

. verification: To show that the post-condition for :1.1.1.2: holds,
ie. (a < a v b < b) A gedlab) = ged(@',b’) axc

USING THE MEASURE 99
: A GCD COMPUTATION

+ bxd = A#B, holds. Case l: if a° > b’ then b 2 a
and a < a', since after the execution of
:1.1.1.2.1.2;, ged(ab) = ged(a',b’).

Case 2: If b’ > a then a 2 b which means that b’ >
b. But since gecdlab) = ged(a'b’) the
post-condition holds. For both cases, axc + bxd =
AxB also holds.

The relevant table is then

01234567 89 10111213141516171819202122232425262728293031
@ tipez22 111 10 11 | 11 1
@ 0.2 111 1 N | TR T

0) neither multiplication nor division is to be used

1) a>0,b >0, aand b are integer variables

2) A symbolizes the initial value in a and

B symbolizes the initial value in b

4) write access to a is required

5) read access to a is required

10) write access to b is required

11) read access to b is required

12) a’ and b’ equal the respective values of a and b
£ prior to the last execution of :i.1.1.2:
i 25) write access to y is required

26) ¢ and d are integer variables

27) read access is required for both ¢ and d

29) write access is required for ¢

30) write access is required for d

31) atc + bxd = AxB '

32) A=anB=5b

RLB is ((a) ((b) (¢, d)) .950) .950
RUB is ((a) ((b) (¢,d) 1.33) 1.33

Unfortunately, the actual values are

((a) ((b) ((c) (@, f)) 161)161) 133
This is also a best decomposition. One reason for this increase in
entropy loadings is because more assumptions are shared among the

objects.

o

USING THE MEASURE 100
A GCD COMPUTATION

We elaborate :1.1.1.2.1: as
(@ ¢1.1.1.2.1.1¢

assumplions: a>0Ab>0naand b are integer variables, A
symbolizes the initial value in a and B symbolizes
the initial value in b read access to a is required,
read access to b is required, a' and b’ equal the
respective values of a and b prior to the last
execution of :1.1.1.2;, gecd(a,b) = ged(a’,b’),
ged(a’b’) A a > b o ged@b’) = gcd(a-b,b), ¢ and
d are integer variables , a¥c + bxd = AxB, neither
multiplication nor division is to be used

:1.1.1.2.1.1: while a > b do
(hy :1.1.1.2.1.2:

assumptions: a>0Ab>0A aand b are integer variables, A
symbolizes the initial value in a and B symbolizes
the nitial value in b write access to a is
required, read access to a is required, read access
to b is required, a and b’ equal the respective
values of a and b prior to the last execution of
of LI 2 ged(a,b) = ged(a’,b’), ged(a’,b’) =
ged(a-bb) A AxB = (a-b)¥c + bx(d+c), ¢ and d are
integer variables , axc + bxd = AxB, read access is
required for both ¢ and d, write access is required
for d, neither multiplication nor division is to be
used

:1.1.1.2.1.2: DECREASE a BY b AND INCREASE d BY c.

effects and

post-conditions: a has been decreased by b and d has been increased
by ¢

eftect and

post=contition: a>0Ab>0A aand b are integer variables,

ged(a’,b") = ged(ab), axc + bxd = A+B

USING THE MEASURE 101
A GCD COMPUTATION

Similarly, we elaborate :1.1.1.2.2:

(i) :1.1.1.2.2.1:

assumptions:

6 :1.1.1.2.2.2:

assumptions:

effects and

post-conditions:

effects and
post-condition:

a>0Ab>0Aaand b are integer variables, A
symbolizes the initial value in a und B symbolizes
the initias value in b read access to a is required,
read access to b is required, a’ and b’ equal the
respective values of a and b prior to the last
execution of :1.1.1.2;, ged(a,b) = ged(a’,b’),
(ged(at’) A b > a) > ged(a’b’) =gcd(ab-a), ¢ and
d are integer variables , atc + b#d = A#B, neither
multiplication nor division is to be used

:1.1.1.2.2.1: while b > a do

a>0Ab>0Aaand b are integer variables, A
symbolizes the initial value in a and B symbolizes
the initial value in b read access to a is required,
write access to b is required, read access {o b is
required, a° and b’ equal the respective values of a
and b prior to the last execution of :1.1.1.2
ged(ab) = ged(a'b’), ged(a’b’) = ged(ab-a) A A«B
= ax(c+d) + (b-a)xd, ¢ and d are integer variables,
atc + bxd = A#B, read access is required for both ¢
and d, write access is required for ¢, neither
multiplication nor division is to be used

:1.1.1.2.2 2: CECREASE b BY a AND INCREASE ¢ BY d;

b has been decreased by a and ¢ has been increased
by d

a>0Ab>0Aaand b are integer variables,
ged(a,b) = ged(a’b’) A axc + bxd = AsB

USING THE MEASURE 102
A GCD COMPUTATION

The tabie for these two parts is then

01234567 89 1011121314151617181920212223242526272829303 1

B TR O TS LR 1 11 1 1 1 I
)y sp.pp21-88 110 11 11 1o W 11
0 e’ 1 il 1 1o I
iy 2pn 2@ a0 1 y Wl 1 1 T

0) neither multiplication nor division 1s to be used
1)a>0,b >0, a and b are integer variables
2) A symbolizes the imtal value in a and
B symbolizes the initial value in b
4) write access to a1s required
5) read access to a s required
10) write access to b i1s required
11) read access to b 1s required
12) a’ and b’ equal the respective values of a and b
prior to the last execution of :1.1.1.2:
17) ped(ab) = ged(a’,b?)
19) ped(a’,b’) = gedla-b,b) A AsB = (a-b)xc + bx(d+c)
20) ped(a’,b’) = gedlab-2) A AsB = a¥(c+d) + (b-a)xd
23) (gcd(a’b’) A a > b A axc + bxd = AxB) > ged(a',b’) = ged(a-b,b) A AxB = (a-b)xc
+ b¥(d+c))
24) (ged(a’b’) A b > a A asc + brd = AsB) D ged(a'b’) = ged(a, b-a) A axc + bxd =
AxB
25) write access to y is required
26) ¢ and d are integer variables
27) read access 15 required for both ¢ and d
28) ¢ +d = lem(AB)
29) write access is required for ¢
30) write access 1s required for d
31) axc + bxd = AxB

USING THE MEASURE 103
A GCD COMPUTATION

RLB and RUB from
((a) ((b) ((c) (@, f)}
for the above exparsion are
RLB: ((a) ((b) ((c) (@, f)).796) .796
RUB: ((a) ((b) ((¢) (@, 1)) 155) 155) |54
The actual entropy loading values are
((a) ((b) ((e) (g, h,i,j) 148)175) 1.28
which is again a best decomposition. If (g, h, i, j) is decomposed,
the best decomposition is
Cg,iY(h,j} 156
which indicates that the bodies of the two loops interact less with the

control mechanisms for those loops than do the loops with each other.

USING THE MEASURE 104
A GCD COMPUTATION

Lastly, the assignments can be elaboratec if we adZ assumptions to the

r table as follows
{
3
01234567809 1011121314151617185¢02122232425262728233031
&) o220 0 - T L I
W sonn-222228 101 | L I y ¢ TR

0) neither multiplication nor division is to be used

1) a>0, b >0, aand b are integer variables

4) write access to a is required

5) read access to a is required

10) write access to b s required

11) read access tc b is required

12) a’ and b’ equal the respective values of a and b
prior to the last execution of :1.1.1.2:

17) ged(ab) = gcd(a’,p’)

19) ged(a’,b’) = gecd(a-b,b)

20) gcd(a’,b") = gcd(a,b-a)

21) (ged(a’b’) = ged(ab-a) A AxB = (a-b)xc + bx(d+c)) D frue,
b decreased by a 2 ged(a'b’) = gedlab)

22) (ged(a',b’) = gedla-b,b) A AB = ax(c+d) + (b-a)xd) > true,
a decreased by b o gcd(ab) = gcd(a'b™

23) (gcd(a’,b’) A @ > b A axc + bxd = AsB) = gedia’b’) = ged(a-b,b) A

AxB = (a-b)xc + bx(d+c))

24) (gcd(a’b’) A b > a A axc + bxd = AsB) > gudla'b’) = gcd(a, b-a) A

axc + bxd = A*B

25) write access to y is required

26) ¢ and d are integer variables

: 27) read access is required for both ¢ and d

28) ¢ + d = icm(A,B)

29) write access 1s required for ¢

30) write access is required for d

31) axc + bxd = AsB

USING THE MEASURE 105
A GCD COMPUTATION

(k) :1.1.1.2.1.2.1:

assumptions: write access to a is required, read access to a is
required, read acress to b is required read access
is required for both ¢ and d, write access s
required for d, neither multiplication nor division
is to be used

:1.1.1.2121l:a«a-b;ded+c

effects and

post-condition: a decreased by b and d increased by c.
and
@ :1.1.1.222.]:
assumptions: read access to a is required, write access to b is

required, read access to b is required read access
is required for both ¢ and d, write access s
required for ¢, neither multiplication nor division
is to be used

:11.1.1.2221: b e b -acec+d;

effects and
post=condition: b decreased by a and ¢ increased by d

USING THE MEASURE
A GCD COMPUTATION

Now we can display the table for this new development.

123456789 1011121314151617181920212223242526272829303132
b
(I 1

(a)
(b)
(c)
(d)

|]
|]
|]
i i
i i
|]
i
|

(e) @
|
i
|
|
|
|
i

]

2

] H

P

1-1.0%
HE O T P

]

]

1

1

1

1

]

1

]

n

)
(g) :
(h) :
(i)
()
(k)
(N

N NN NN NN

0) neither multiplication nor division is to be used

1) a>0,b >0, aand b are integer variables

2) A symbolizes the initial value n a and
B symbolizes the initial value in b

3) write access to x i1s required

4) write access to a is required

5) read access to a is required

6) a = gcd(A,B)

7) (a=b A pcdla,b)=gcd(A,B) A axc+bxd=AxB) >
(a=gcd(A,B) A c+d=lcm(A,B))

8) (a = gcd(A,B) A c+d = lem(A,B)) o true

9 (x =any=c+d>(x=gcdAB) Ay =Iicm(AB))

10) write access to b is required

11) read access to b 1s required

12) a’ and b’ equal the respective values of a and b
prior to the last execution of :1.1.1.2:

13) (({a<a’ v b<b’) A ged(a,b)=gcd(A,B) A a#b) o

(a#b A gcd(a,b) = gcd(A,B)) A max(a'b’) > max(a,b))

14) ped(ab) = gcd(A,B)

15) a # b

16) ped(ab) = ged(AB) = ged(a’,b’) = ged(a,b)

17) ged(ah) = ged(a’,b")

18) (a > I A ged(a’,b’) = ged(a-bb) v
a < b A ged(ab) = gedlab-a)

19) gcd(a’b’) = ged(a-b,b) A AxB = (a-b)sc + bx(d+c)

20) ped(a',b’) = ged(a,b-a) A AxB = ax(c+d) + (b-a)xd

21) (gcd(a’b’) = ged(a,b-a) A AxB = (a-b)xc + bx(d+c)) > true,
b decreased by a > pcd(a’,b’) = gcd(a,b)

22) (ged(a'b’) = ged(a-b,b) A AxB = at(c+d) + (b-a)*d) > true,
a decreased by b > gcd(ab) = ycd(a’b’)

USING THE MEASURE 107
A GCD COMPUTATION

23) (ged(a',b’) A a > b A axc + bxd = A*B) o ged(a'b’) = ged(a-b,b) A

AxB = (a-b)xc + b(d+c))

24) (ged(a'b’) A b > a A axc + bxd = AxB) D ged(a'b’) = ged(a, b-a) A

axc + bxd = AsB

25) write access to y is required

26) ¢ and d are integer variables

27) read access is required for both ¢ and d

28) ¢ +d = lcm(A,B)

29) write access is required for ¢

30) write access is required for d

31) axc + bxd = AsB

32) A=anB=b

Even though information has been hidden from (k) (I), entropy loadings

remain the same as for the previous decompositions for
(g,i)Ch,j)

but increase for ((¢) ((g ,i) (k, 1)) ie.

(@) ((b) () ((g ,i)(k,I)N1B5)1.75)1.75) 1.28

Because little information was hidden from the ob’ects at early stages,

entropy loadings tended to be larger than in versions | and Il

The three versions of this gcd computation have indicated that
control mechanisms usuelly share more assumptions in a program than the
objects whose execution is being controlled. These examples also
illustrated several instances where information was hidden from obhiects.
In versions 1 and 1l, this resulted in entropy loadings that were
smaller than corresponding ioadings had assumptions not been hidden.
Version 1ll, however, indicated that more information was shared than in
versions | and Il. Entropy loading figures can be improved if the texts

which compute the gcd are separated from those which compute the lcm.

USING THE MEASURE
A SEQUENCES PROBLEM

A SEQUENCES PROBLEM
This example 1s also due to Dijkstra[DJ3 pp.53-63], but makes use

of some of the notational conventions due to Hoare[HO3]. The specific
conventions are:

a) <emply> is a sequence
b) if x is a sequence and d can be an eiement of
a sequence then
x7d is a sequence

¢) The only sequences are those defined by (a) and (b)
d) (x~d).last = d

e) initial(x7™d) = x

fy e =ly=2) = (¥=yre

g) d.first = d

h) x # <emply> 2 (x7d).first = x.first

i) final(d) = <empty>

) x # <empty> 2 final(x™d) = final(x)"d

last, initial, first, and final are
not defined for <empty>.

k) length(<empty>) = 0

1) length(x—d) = succ(iength(x))

m) x:d means x « xd

n) d from x means d « x.first; x « final(x)

0) d back from x means d « x.iast; x « initial(x)
p) from x means x « finai(x)

q) back from x means x « initial(x)

Consider the sequences constructed from the digits 1, 2, and 3
which contain no occurrence of two adjacent, identical subsequences.
Call these sequences "good". Several examples of good sequences are

1

21

1312
31213

Several sequences which are not "good" are

22
123123
321232123

The problem can now be stated:

A S e — —

USING THE MEASURE 109
A SEQUENCES PROBLEM

Assuming that there exists a good sequence of length 100, write a
program which generates the list of good sequences In lexicographic
order up to and including thz first good sequence of length 100.
(Here, 1 precedes 2 which precedes 3).

A SEQUENCES PROBLEM

(1 (110)

— /7 \\

(11 (112) (@) :1.2: (112) :1.3: (113) :1.4: (113)
(while length(S)
100 do
begin
:1.3; :1.4:
end)

(b) :1.1.1: (119) (¢) :1.3.1(119) (d) :1.4.1: (116)
(S « <empty>; - (S « next (PRINT(S);)

length(S) « 0; // , gouod
~ 7 sequence;)
e 7 |

(@) :1.3.1.1:(118) (f) :1.3.1.2:(118) (g) :1.3.1.3:(119) (h) :1.3.1.4:(119)
(5:70) (repeat (S « next (set GOOD to
21:8.1/8: larger mean "S is
:1.3.1.4: sequence; a good seq.;)
until GOOD)
(1) :1.3.1.3.1:(122) (j) :1.3.1.3.2:(122)
\ Slast « Slast + 1

(k) :1.3.1.3.1.1:(123)
{while S.last = 3 do
back from S;)

(h :2.1:(130) (m) :2.2:(130) (n) :2.3:(130)
length(S) is length S.last is d[length] write access to
S.ast is
dllength] « ...
(0) :2.4: S « S™.. (131) (p) :25: (131) (q) :2.6: (131)
length « length + 1; back from S S « <emply>
dllength] « .. length « length - 1 tength « O
(r) :2.7: read access to elements (s) :2.8: write access to S
of S. d[l] .. d{length] di1] « .., .. dllength] « ..
(132) (132)

This problem requires that a lst of lexicographically ordered sequences

USING THE MEASURE 110
A SEQUENCES PROBLEM

of 1's, 2’5, and 3’, containing no adjacent identical subsequences, be
printed. This list should terminate with the first sequence whose
length is 100.

Object :l.1: sets S to <empty> Objects :1.3: and :1.4: generate and
p-int the next good sequence. Object :1.2: controls objects :1.3: and
:1.4: until a sequence of length 100 is produced.

4 Object :1.3.1.1: extends S with 0. Objects :1.3.1.3: and :1.3.1.4:
produce the next lexicographically larger sequence and test whether it
is a good sequence. :1.3.1.3: and :1.3.1.4: are controlled by :1.3.1.2:
until a good sequence is found.

Objects :1.3.1.3.1.1: and :1.3.1.3.2: remove traiing 3s from S and
increment the last element of S by 1.

b e SR

Objects :2.1: through :2.8: implement the operations required by the
objects to manipulate 4 sequence. S is implemented in terms of an array
and several simple variables.

ol

! assumptions: 0S = <empty>, INIT(RS) is defined to be {if
length(R) = O then true else Rfirst = Sfdirst A
INIT(final(R), final(S))} A a "good” sequence is
defined to be "a sequence of 1's, 2s, and 3’s
containing no adjacent identical subsequences” A Q
represents the sequence of lexicographically ordered
"go0d" sequences, there exists a good sequence of
tength 100

:1: OUTPL# THE INITIAL PORTION OF THE SEQUENCE OF
LEXICOG#APHICALLY ORDERED SEQUENCES OF 1's, 2°s,AND
3's, SUCH THAT NO SEQUENCE CONTAINS TWO ADJACENT
IOENTICAL SUBSEQUENCES. TERMINATE THE LIST WITH THE
FIRST SUCH SEQUENCE WHOSE LENGTH EQUALS 100.

effects ano
post=-conditions: INIT(0S,Q) A length(OS.last) = 100

verification: If there exists a "good" sequence of length 100 and
the effects of :1: agree with the post-condition,
the post-condition is satisfied.

USING THE MEASURE 111
A SEQUENCES PROBLEM

The object/assumption table for :l: is

1)
2)

3)

123
11

0S = <emply>

INIT(R,S) is defined to be {if length(R) = O then true

olse R.first = S.first A INIT(final(R)final(S))}

A a "good” sequence 1s defined to be "a sequence of 1's, 2’s, and
3’s containing no adjacent identical subsequences”

A Q represents the sequence of lexicographically

ordered "good" sequences

there exists a good sequence of length 100

USING THE MEASURE 112
A SEQUENCES PROBLEM

We elaborate :1: as follows, with all the pre-conditions derived

1.1

assumptions:

effects and
post-conditions:
(a) :1.2:

assumptions:

effects and
post-conditions:

verification:

requires ability to set S to <empty> and length(S)
to 0, 0S5 = <empty>, INIT(RS) is defined to be {if
length(R) = O then true else Rfirst = S.first ~
INIT(final(R), final(S))} A a "good" sequence s
defined to be "a sequence of 1's, 2's, and 3's
containing no adjacent identical subsequences” A Q
represents the sequence of lexicographically ordered
"good” sequences, there exists a good sequence of
length 100

:1.1: SET SEQUENCE S TO <empty> AND length(S) TO
ZERO.

S = <empty», length(S) = 0, INIT(0S,Q)
length(OS.last) = 100

INIT(R,S) is defined to be {if length(R) = O then
true else R.first = S.first A
INIT(final(R),final(S))} A a ‘"good" sequence s
defined to be "a sequence of 1%, 2's, and 3’
containing no adjacent identical subsequences” A Q
represents the sequence of lexicographically ordered
"good" sequences, there exists a good sequence of
length 100, INIT(0S,Q) A OS.last = S, INIT(OS™"next
lexicographically larger good sequence than the
valuee in $"Q), (INIT(0SQ) A OQSlast = S A
length(S) # 100) > INIT(OS~"next lexicographically
larger good sequence than the wvalue in S"Q
requires ability to read length(S),

:1.2: while length(S) # 100 do
begin :1.3: ; :1.4: end;

INIT(0S,Q), length(OS.last) = 100

The pre-condition for the while construction holds
since (1) we assume that there exists a gooo
sequence of length equal to 100; (2) OS = <empty>
intially; (3) and that the first good sequence
satisfies the pre-condition.

— e R e

USING THE MEASURE
A SEQUENCES PROBLEM

:1.3:

assumptions:

offects:

post-conditions:

:1.4:

assumptions:

effects:

post-conditions:

INIT(R,S) is defined to be {if iength(R) = O then
true eise R.first = S.first A
INIT(final(R),final(S))} A a "good" sequence s
defined to be "z sequence of 1's, 2's, and 3’s
containing no adjacent identical subsequences" A Q
represents the sequence of lexicographically ordered
"good” sequences, requires ability to write each
element of S, requires ability to access each
element of S, requires ability to concatenate onto
S, ie. S « §7d, requires ability to delete from
the end of S, ie. back from S, INIT(0OS,Q) A
OSiast = S A QOSlast = S, INIT(OS™"next
lexicographically larger good sequence than the
value in $",Q)

:1.3: TRANSFORM S TO THE NEXT GOOD SEQUENCE AFTER
ITS CURRENT CONTENTS

S « "next good sequence after S"

INIT(0S7S,Q)

INIT(R,S) is defined to be {if length(R) = O then
true else R.first = S.first A
INIT(final(R),final(S))} A a "good" sequence s
defined to be "a sequence of 1I's, 2%, and 3’s
containing no adjacent identical subseqguences" A Q
represents the segience of lexicographically ordered
"good” sequences, INIT(0S7S,Q), requires ability to
access each element of §,

:1.4: PRINT(S);
0S « 0575

INIT(OS,Q) A OS.last = S

USING THE MEASURE
A SEQUENCES PROBLEM

The object/assumption table for this part is

4567 8910111213
]
AP
$). 20
¢ 1.3
HE RN

1) 0S = <empty>

27 WIT(R,S) is defined to be {if length(R) = O then true
olse R.first = S.first A INIT(final(R),final(S));
A a "good" seqrence is defined to be “a sequence of 1’s, 2’s, and
3’s containing no adjacent identical subsequences”
A Q represents the sequence of lexicog' apiucally
ordered "good" sequences

3) there exists a good sequence of length 100

4) requires ability 10 set S to <empty> and
length(S) to O

5) INIT(0S,Q) A OSlast = S A OS.last = S

6) (INIT(05,Q) A OS.dast = S A length(S) # 100) o
INIT(OS™"next lexicographically larger good sequence than
the value in $",Q)

7) requires ability to read length(S)

8) INIT(OS™"next lexicographically larger good sequence than
the value in $",Q)

9) INIT(0STS,Q)

10) requires ability to access each element of S

12) requires ability to concatenate onto S, ie. S « S7d

13) requires ability to delete from the end of S, i.e. back from S

We can hide considerable information from the refinement for :1.1: by
adding

(Assumptions 1), 2), 3) > true) A (S = <empty> A length(S) = 0 >
Assumptions 1), 2), 3))

Similarly, :1.4: PRINT(S)) does not require INIT(OS7S,Q). Hence we
add

(INIT(0S™S,Q) 2 true) A (0S = 0SS where 0S’ equals OS prior to :1.4:)
D> (INIT(0S,Q) A OS.last = S) A OS.last = S))

USING THE MEASURE 115
A SEQUENCES PROBLEM

Further, for :1.3: (TRANSFORM S TO THE NEXT GOOD SEQUENCE AFTER ITS
CURRENT CONTENTS.) we can add the assumption below. (In the remainder
of this development, "illt is usad as an abbreviation for the phrase "“is
lexicographically less than")

(INIT(OS™"next good sequence after current sequence in S$"Q) A
INIT(0S,Q) A OSldast = S o S equals S prior to executing :1.3: A S is a
good sequence) A (Vx[S’ ilit x ilit S > x is not a good sequence] A S is
a good sequence A S £ S’ o INIT(0STS,Q))

The elaborations are

(b) :1.1.1:

assumptions: requires ability to set S to <empty> and length(S)
to O
:1.1.1: SET SEQUENCE S TO <empty> AND length(S) TO
ZEROQ.

effects and

post-conditions: S = <empty>, length(S) = 0

(¢) :1.3.1:

assumptions: INIT(R,S) is defined to be {if length(R) = O then
true else R.first = S.first A
INIT(final(R),final(S))} A a "good" sequence s
defined to be "a sequence of 1’s, 2’s, and 3’s
containing no adjacent identical subsequences” A Q
represents the sequence of lexicographically ordered
"good" sequences, requires ability to access each
element of S, requires ability to write each element
of S, requires ability io concatenate onto S, i.e.
S « S™d, requires ability to delete from the end of
S, ie. back from S, §° = S, prior to executing
:1.3: A S is a good sequence
:1.3.1: TRANSFORM S TO THE NEXT GOOD SEQUENCE AFTER
ITS CURRENT CONTENTS

effects: S ¢ "next good sequence after S"

post-conditions: Vx[S* illt x illt S o x is not a good sequence] A S

is a good sequence N S # S >

USING THE MEASURE
A SEQUENCES PROBLEM
(d) :1.4.1:
assumptions; requires ability to access each element of S
:1.4.1: PRINT(S)

effects: 0S « 0S™5

post-conditions: (0S = 0SS where OS’ equals OS prior to :1.4:)

USING THE MEASURE 117
A SEQUENCES PROBLEM

The table
12346567889 1011121314151617

ST HER .
(a) :y.2: BEEEER

1.3 1 1 I e ¢

t). 4t i o +
(b) HAPE R o]
(¢) 1348 1 R !
(d) :y.4.48 !

1) 0S = <empty>
2) INIT(R,S) is defined to be {if length(R) = O then true
olse Rfirst = S.first A INIT(final(R)final(S))}
A a "good" sequence is defined to be "a sequence of 1’s, 2’s, and
3’s containing no adjacent identical subsequences”
A Q represents the sequence of lexicographically
ordered "good" sequences
3) there exists a good sequence of length 100
4) requires ability to set S (o <empty> and
length(S) to O
5) INIT(0OS,Q) A OSlast = S
6) (INIT(0S,Q) A OS.dast = S A length(S) # 100) >
INIT(OS™"next lexicographically larger good sequence than
the value in $"Q)
7) requires ability to read length(S)
8) INIT(OS™"next lexicographically larger good sequence than
the value in S"Q)
9) INIT(0STS,Q)
10) requires ability to access each element of S
11) requires ability to write each element of S
12) requires ability to concatenate onto S, i.e. S « S7d
13) requires ability to delete from the end of S, i.e. back from S
14) (Assumptions 1), 2), 3) > true) A
(S = <empty> A length(S) = O > Assumptions 1), 2), 3))
15) (INIT(OS—"next good sequence after current sequence in $"Q)
A INIT(OS,Q) A OS.last = S o
S’ equals S prior to executing :1.3: A S is a good sequence)
A (Vx[S” illt x ilit S o x is not a good sequence]
A S is a good sequence NS # S’ D
INIT(0OS7S,Q))
16) (INIT(0S™S,Q) > true) A (0S = 0SS where OS’ equals OS prior to
:11.4;

o (INIT(OS,Q) A OS.last = S
A OS.last = G))
17) S’ =S A Sis a good sequence

USING THE MEASURE 118
A SEQUENCES PROBLEM
After hiding information from :l.1.1; :1.3.1:; and :1.4.1:;, the Dbest
decomposition is

((b) (a,c,d) 562
where (b) sets S to <empty> and e, ¢, d compute good sequences and
print, respectively.

Next we elaborate :1.3.1: to

(e) :1.3.1.1:
assumptions: INIT(R,S) 1s defined to be {if length(R) = O then
true else R.first = S.first A
INIT(final(R),final(S))} A a "good" sequence s
defined to be "a sequence of 1's, 2's, and 3’
containing no adjacent identical subsequences” A Q
represents the sequence of lexicographically ordered
"good" sequences, requires ability to corcatenate
onto §,ie. S« S57d, S =S ASis agood sequence
:1.3.1.1: EXTEND S WITH ZERG;
effects: S =570
post-conditions: initial(S) is a good sequence A S.last = 0
(f) :1.3.1.2:
assumptions: INIT(R,S) 15 defined to be {if length(R) = O then
true else R.first = S.first A
INIT(final(R),final(S))} A a "good” sequence s
defined to be "a sequence of I’s, 2’s, and 3’s
containing no adjacent identical subsequences” A Q
represents the sequence of lexicographically ordered
"good” sequences, requires read access to the
boolean wvariable GOOD, S" = S, Ix[S" it x A
length(x) < length(S") A x is a good sequence] A
initial(S) is good) A S.dast = 0 > S is not good)
:1.3.1.2: repeat :1.3.1.3: ; :1.3.1.4: ; until GOOD;
post-conditions: GOOD A there is no sequence s such that S” illt s

illt S A s is a good sequence

USING THE MEASURE 119
A SEQUENCES PROBLEM

(g) :1.3.1.3:

assumptlions:

effects and

post-conditions:

(h) :1.3.1.4:

assumptions:

effects:

post-conditions:

INIT(R,S) is defined to be {if length(R) = O then
true else Rfirst & S.first A
INIT(final(R),final(S))} A a "good" sequence s
defined to be "a sequence of 1’s, 2%, and 3’s
containing no adjacent identical subsequences" A Q
represents the sequence of lexicographically ordered
"good” sequences, requires abilily 1o access each
element of S, requires ability to write each element
of S, requires ability to concatenate onto S, ie.
S « S7d, requires ability to delete from the end of
S, ie. back from S5 S" = 5, 3x[S" it x length(x)
< length(S")]

:1.3.1.3: SET S TO BE THE NEXT LEXICOGRAPHICALLY

LARGER SEQUENCE AFTER THE CONTENTS OF S AT THE START

OF :13.1.3;, (IE §"), SUCH THAT length(S) <
length(S").

S" it S, length(S) < length(S"), ~Ix[S" illt x
ilit 8}, initial(S) is good, SJast ¢ {1,2,3}

INIT(R,S) is defined to be {if iength(R) = O then
true else R first = S.first A
INIT(final(R),final(S))} A a "good" sequence s
defined to be "a sequence of 1s, 25, and 3’
conlaining no adjacent identical subsequences" A Q
represenls the sequence of lexicographically ordered
"good” sequences, requires abilily to access each
element of S, inilialS) is a good sequence,
requires wrile access to the boolean variable GOOD

:1.3.1.4: SET THE VARIABLE, GOOD, TO MEAN "S is a
good sequence”

GOOD = if "S is a good sequence" then true else
falso

GOOD = it "S is a good sequence” then true else
false, S # &

USING THE MEASURE 120
A SEQUENCES PROBLEM

verification: Note first that the following are theorems:

(a) If initial(S) is a good sequence, but S is not a
good sequence, then no extension of S will be good.

(b) The only time S should be extended, in an effort
to find lexicographically larger good sequences is
when S itself is a good sequence.

Now, the only place in the above program where S is
extended is at :1.3.1:;, where S is guaranteed to be
good. :1.3.3: guarantees that no relevant sequence
is missed,

The object/assumption table now becomes:

1234567 89 101112131415161718192021222324
l 1 l

1
1 1

< 1.3¢ 1 1111 11
1 1

1) 0S = <empty>
2) INIT(R,S) is defined to be {if length{(R) = O then true
olse R.first = S.first A INIT(final(R),final(S))}
A a "good" sequence is defined to be "a sequence of 1’s, 2’s, and
3’s containing no adjacent identical subsequences"”
A Q represents the sequence of lexicographically
ordered "good" sequences
3) there exists a good sequence of length 100
4) requires ability to set S to <empty> and
length(S) to O
5) INIT(OS,Q) A OS.last = S
6) (INIT(0S,Q) A OS.last = S A length(S) # 100) o
INIT(OS™"next lexicographically larger good sequence than
the value in S",Q)
7) requires ability to read length(S)
8) INIT(OS™"next lexicographically largr good sequence than
the value in 5"Q)
9) INIT(0S7S,Q)
10) requires ability to access each element of S
11) requires ability to write each element of S
12) requires ability to concatenate onto S, iie. S « S7d
13) requires ability to delete from the end of S, i.e. back from S
14) (Assumptions 1), 2), 3) o true) A
(S = <empty> A length(S) = 0 > Assumptions 1), 2), 3))
15) INIT(OS™"next good sequence after current sequence in 5",Q)
A INIT(OS,Q) A OS.last = S o
S’ equals S prior to executing :1.3: A S is a good sequence
A Yx[S’ illt x illt S o x is not a good sequence]

USING THE MEASURE
A SEQUENCES PROBLEM

A S is a good sequence A S # S’ D
INIT(0S7TS,Q)
16) (INIT(OSTS,Q) o true) A
(0S = 0S’™S where 0S’ equals OS prior to :1.4:
o (INIT(0S,Q) A OS.last = S
A OS.last = 9))
17) S =S A S is a good sequence
18) initial(S) is a good sequence
19)
20) requires read access to the boolean variable GOOD
21) requires write access to the boolean variable GOOD
22) 3Ix[S" ilit x A length(x) < length(S") A
x is a good sequence] A [(initial(S) is good) A S.last = O
> S is not good]
23) S" =5
24) 3x[S" ilit x length(x) < length(S™)]

The expansion of {¢) - :1.3.1.3: - implies
RLB: ((b) (a,c,d)) .053"
RUB: ((b) (a,c,d)) .410
with the actual entropy loadings
(b)(a,u,t,g,h,d) 410
The best decomposition of this elaboration is
((b) ((d) ((a) ((e) ((H (g, h) 1.28) 1.28) .956) .683) 410
Here,(b) sets S to <empty>(d) prints S, (a) is the outer loop while

construction and (e) extends S with a zero. In this example, the

objects which calculate the next lexicographically larger sequence and

which decide whether S is a good sequence interact most.

USING THE MEASURE 122
A SEQUENCES PROBLEM

Consider next an expansion of :1.3.1.3:

(i1):1.3.1.3.1:

assumptions: INIT(R,S) is defined to be {if length(R) = O then
true else R.first = S.first A
INIT(final(R),fina(S))} A a "good" sequence s
defined to be "a sequence of l’s, 25, and 3’s
containing no adjacent identical subsequences” A Q
represents the sequence of lexicographically ordered
“good" sequences, S" = 5, initial(S) is a good
sequence A 0 s Slast < 3, ability to read S.last,
requires ability to delete from the end of S, ie.

back from S
:1.3.1.3.1: REMOVE TRAILING 3's FROM S

effects and

post-conditions: INIT(S,5"), initial(S) is a good sequence A O <
S.last £ 3

{j:1.3.1.3.2:

assumptions: INIT(R,S) is defined to be {if length(R) = O then

true else R.first = S.first A

INIT(final(R),fina(S))} A a "good" sequence s
defined to be "a sequence of 1l's, 2s, and 3’s
containing no adjacent identical subsequences” A Q
represents iiic sequence of lexicographically ordered
"good" sequences, ability to read S.last, ability to
write S.last

:1.3.1.3.2: S.last « Slast + 1
effects and
post=conditions: S" illtS, length(S) < length(S"), -3[S" it x ilit
SJ, imhial(S) is good, S.ast ¢ {1,2,3}
The expansicn of :1.3.1.3: suggests
RLB: ((b) ((d) ({(a) ((e) (f, g, h) .562) .801) .563) .138
RUB: ((b) ({d) {(a) ((e) (f, g, h) 1.32).900) .693) .377

and the actual entropy loadings are

((b) ((d) (@) ((@) ((h) (X i,)

USING THE MEASURE
A SEQUENCES PROBLEM

1.21) .662).727) .900) 562) .377

Since the assumptions made by an object imply any subset of those
assumptions, we can add an additional assumption to :1.3.1.3.1:(the
object which removes trailing three’s) and hide "initial(S") is good and
0 < S.ast < 3" from its expansion :1.3.1.3.1.1:

(k):1.3.1.3.1.1:

assumptions: INIT(R,S) is defined to be {if length(R) = O then
true else R.first = S.first A
INIT(final(R),final(S))} A a "good” sequence s
defined to be "a sequence of 1s, 2s, and 3’s
containing no adjacent identical subsequences” A Q
represents the sequence of lexicographically ordered
"good" sequences, S" = S, ability to read S.last,

requires ability to delete from the end of S, ie.
back from S

:1.3.1.3.1.1: while S.last = 3 do
back from S;

effects and
post-conditions: INIT(S,5") A S.last # 3

The entropy loadings of the previous decomposition are identical for the
refinement including the elaboration for :1.3.1.3.1.1:.
:1.3.1.4:(decide whether S is a good sequence) can be expanded by hiding

most of the assumptions of :1.3.1.4: However, the assumption

"initial(S) is a good sequence" simplifies the calculations since only

adjacent sequences, one of which contains S.last, need be considered.

USING THE MEASURE 124
A SEQUENCES PROBLEM

The table for the program is now

123456789 10111213141516171819202122232425262728

1 i {0
L R +
(@) :y.28 TEEIEL
1- 3¢ | 1 [T T T
$1.40 1 11 k4
(b) Shele s |
(€) :y.3.48 1 EER I
(d) 21418 1
(e) :y.3. 1.1 | 1 |
() :y.3.28 i I
(g) 1.3 138 | RN n
(h :1.3 4.4 1 1 1 1
(i) 3300 1 I .
() :1.3.0.32 | 1l
(K) :1.3 1.3 118 | | | |

1) 0S = <empty> /
2) INIT(R,S) is defined to be {if length(R) = O then true "
olse R.irst = Sfirst A INIT(final(R),final(S))}
A a "good" sequence is defined to be "a sequence of 1’s, 2's, and
3’s containing no adjacent identical subsequences”
A Q represents the sequence of lexicographically
ordered "good" sequences
3) there exists a good sequence of length 100
4) requires ability to set S to <empty> and
length(S) to O
5) INIT(0S,Q) A OS.ast = S
6) (INIT(0S,Q) A OS.last = S A length(S) # 100) =
INIT(OS™"next lexicographically larger good sequence than
the value in S"Q)
7) requires ability to read length(S)
8) INIT(OS™"next lexicographically larger good sequence than
the value in S",Q)
9) INIT(OSTS,Q)
10) requires ability to access each element of S
11) requires ability to write each element of S
12) requires ability to concatenate onto S, ie. § « S7d
13) requires ability to delete from the end of S, i.e. back from S
14) (Assumptions 1), 2), 3) true) A
(S = <empty> A length(S) = 0 o Assumptions 1), 2), 3))
15) INIT(OS™'next good sequence after current sequence in S",Q)
A INIT(0S,Q) ~ OS.last = S o
S’ equals S prior to executing :1.3: A S is a good sequence
A Yx[S* illt x illt S > x is not a good sequence]
A S is a good sequence A S # S D
INIT(OS™5,Q)
16) (INIT(0OSTS,Q) 2 true) A

USING THE MEASURE
A SEQUENCES PROBLEM

(OS = 0S’™S where 0S’ equals OS prior to :1.4:
2 (INIT(0S,Q) A OS.last = S
A OS.last = S))
17) S' =S A S is a good sequence
18) initial(S) is a good sequence
19)
20) requires read access to the boolean variable GOOD
21) requires write access to the boolean variable GOOD
22) 3x[S" it x A length(x) < length(S") A
x is a good sequence] A [(initial(S) is good) A S.last = 0
> S is not good]
23) S" =5
24) 3x[S" illt x length(x) < length(S™)]
25) initial(S) is a good sequence A
0 < Slast £ 3
26) (Assumptions 2, 13,23,25, 27) >
(Assumptions 2, 13, 23, 27)
27) ability to read S.last
28) ability to write S.last

USING THE MEASURE 126

A SEQUENCES PROBLEM

At about this stage in the development, Dijkstra introduces a data
structure, namely an array d[1:100] to hold the digits of S. The
variable, length, is introduced such that S.last = d[length). By making
this decision, all references to operations involving S or the operator
length require additional assumptions. These assumptions are as

follows:

“ability to access length(S)" becomes
length
d is an array which contains the digits of S, one digit per element A
the variable length indexes the last element of S A the sequence is
empty when length = 0, ability to read the variable length
"ability to read S.last” becomes
d[length]
and assumes
d is an array which contains the digits of S, one digit per element A
the variable length indexes the last element of S A the sequence is
empty when length = 0, ability to read the variable length, ability to
read d[length]
"ability to write S.last" becomes
d[length] « ...
d is an array which contains the digits of S, one digit per element A
the variable !ength indexes the last element of S A the sequence is
empty when length = 0, ability to read the variable length, ability to
write dlength]
“ability to concatenate onto S" becomes

length « length + 1; d[length] « ...

and assumes

d is an array which contains the digits of S, one digit per element A
the variable !ength indexes the last element of S A the sequence is
empty when length = O, ability to read the variable length, ability to
write the variable length, ability to write d[length]

USING THE MEASURE 127
A SEQUENCES PROBLEM

"ability to delete from the end of S, i.e. back from S" becomes

length « length - |;

and assumes
d is an array which contains the digits of S, one digit per element A
the variable length indexes the last element of S A the sequence is
empty when length = 0, ability to read the variable length, ability to
write the variable length

"ability to set S to <empty>" becomes

length « O;

and assumes
d is an array which contains the digits of S, one digit per element A
the variable length indexes the last element of S A the sequence is
empty when length = 0, ability to write the variable length,

"ability to read every element of S" requires
d is an array which contains the digits of S, one digit per element A
the varizble length indexes the last element of S A the sequence is
empty when length = 0, ability to read the variable length, ability to
read every element of d
"ability to write every element of S" requires
d is an array which contains the digits of S, one digit per element A
the variable length indexes the last element of S A the sequence is

empty when length = 0, abiiity to read the variable length, ability - {o
write the variable length, ability to write every element of d

The object/assumption table for this introduction is

s i i ‘sl

e —TrT

USING THE MEASURE 128
A SEQUENCES PROBLEM

i
2.

—
..
- -

o
-
N

e

R B
3.
3.
2.
.
.
Sl
3.
3.
3.
.

»
LI 3
—

.
-
- -
*
L .
-
-

N
.28
.3
.42

.3 1%

. 328
<3118

CICICOIR SR

(A]

.

- = e e =
-
-
-
- o e e e
— e e e -
-

w

1) 0S = <empty>
2) INIT(R,S) is defined to be {if length(R) = O then true
else R.first = S.first A INIT(final(R),final(S))}
A a "good" sequence is defined to be "a sequence of I’s, 2’s, and |
3’s containing no adjacent identical subsequences”
A Q represents the sequence of lexicographically
ordered "good" sequences
| 3) there exists a good sequence of length 100
i 4) requires ability to set S to <empty> and
} length(S) to 0
5) INIT(0S,Q) A OS.last = S :
| 6) (INIT(0S,Q) A OS.last = S A length(S) # 100) > |
| INIT(OS™"next lexicographically larger good sequence than
the value in $",Q)
! 7) requires ability to read length(S)
| 8) INIT(OS™"next lexicographically larger good sequence than
; the value in $",Q)]
? 9) INIT(0S™S,Q) ;
| 10) requires ability to access each element of S
11) requires ability to write each element of S .
12) requires ability to concatenate onto S, ie. S « S~d 1
13) requires ability to delete from the end of S, i.e. back from S ?
14) (Assumptions 1), 2), 3) > true) A
(S = <empty> A lenglh(S) = 0 > Assumptions 1), 2), 3))
15) INIT(OS™"next good sequence after current sequence in S$"Q)
A INIT(OS,Q) A OS.last = § o
S’ equals S prior to executing :1.3: A S is a good sequence
A Yx[S" ilit x ilit S > x is not a good sequence]
A S is a good sequence A S # S’ o
INIT(0$7S,Q) ;
16) (INIT(0OS75,Q) > true) A
(0S = 0S’™S where 0S’ equals OS prior to :1.4:
2 (INIT(0S,Q) A OS.last = S

USING THE MEASURE
A SEQUENCES PROBLEM

A OS.last = S))
S’ =S AS is agood sequence
initial(S) is a good sequence

requires read access to the boolean variable GOOD
requires write access to the boolean variable GOOD
3x[S" illt x A length(x) < length(S") A
x is a good sequence] A [(initial(S) is good) A S.last = 0
> S is not good]
S"=5
3x[S" illt x length(x) < length{S"}]
initial(S) is a good sequence A
0 < S.last <3
(Assumptions 2, 13,23,25, 27) o
(Assumptions 2, 13, 23, 27}
ability to read S.last
ability to write S.last
d is an array which contains the digits of S,
one digit per element A the variable length
indexes the last element of S A the sequence is
empty when length = 0
30) ability to read the variable length
31) ability to write the variable length
32) ability to write d[length]
33) ability to read d[length]
34) ability to read every element of d
35) ability to write every element of d

It will be noted that the shared information between the parts has

increased significantly by the decision to distribute all the

information about the implementation of the sequence. In particular,

the entropy isadings for the last decomposition are
((b) ((d) ((a) ((@) ((h) () (k,j)
1.21) 1.21) 191) 138) 1.21) 1.21
All these values are greater than or equal to the correspording values

from the same decomposition of the previous table.

As an alternative to distributing additional assumptions throughout
the program, objects can be created which provide the effects which are

needed.

USING THE MEASURE 130
A SEQUENCES PROBLEM

() :2.1:

assumptions:

effects:

post-conditions:

{m) :2.2:

assumptions:

effects:

post-conditions:

(n) :2.3:

assumptions:

effects:

post-conditions:

d is an array which contains the digits of S, one
digit per element A the variable length indexes the
last element of S A the sequence is empty when
length = O, ability to read the variable length

:2.1: PROVIDE THE ABILITY TO ACCESS THE LENGTH OF S,
LE. ACCESS THE VALUE OF length

length(S) = length

length(S) equals the length of S according to the
definition of length

d is an array which contains the digits of S, one
digit per element A the variable length indexes the
last element of S A the sequence is empty when
length = 0, ability to read the variable length,
ability to read dflength]

:2.2: PROVIDE THE ABILITY TO READ S.ast, 1E. SET
THE VALUE OF S.last TO d[length]

S.last = d[length]

S.last equals the value of the last element of S
according to the definition of S.last

d is an array which contains the digits of S, one
digit per element A the variable length indexes the
last element of S A the sequence is empty when
length = 0, ability to read the variable length,
ability to write d[length]

:2.3: PROVIDE THE ABILITY TO WRITE Slast IE.
dllength] « ..

S.last can be used as a name to cause a value to be
stored into d[length]

A value has been assigned to A.last

USING THE MEASURE 131
A SEQUENCES PROBLEM

(o) :2.4:

assumplions:

effects and

post-conditions:

(p) :2.5:

assumptions:

effects and

post-conditions:

(q) :2.6:

assumptions:

effects:

post-conditions:

d is an array which contains the digits of S, one
digit per element A the variable length indexes the
last element of S A the sequence is empty when
length = 0, ability to read the variable length,
ability to write the wvariable length, ability to
write d[length]

:2.4: PROVIDE THE ABILITY TO CONCATENATE ONTO S,
LE. length « length + ; d[length] « ..

The definition for concatenation is satisfied

d is an array which contains the digits of S, one
digit per element A the variable length indexes the
last element of S A the sequence is empty when
length = O, ability to read the variable length,
ability to write the variable length

:2.5: PROVIDE THE ABILITY TO DELETE THE END OF S,
LE. back from S, LE. length « length -1;

the definition for back from S is satisfied.

d is an array which contains the digits of S, one
digit per element A the variable length indexes the
last element of S A the sequence is empty when
length = O, ability to write the variable length

:2.6: PROVICE THE ABILITY TO SET S TO <empty> LE.
length « O

length = Q

S = <empty>

USING THE MEASURE 132
A SEQUENCES PROBLEM

(r) :2.7:

assumptions: d is an array which contains the digits of S, one
digit per element A the variable length indexes the
last element of S A the sequence is empty when
length = 0, ability to read the variable length,
ability to read every element of d

:2.7: PROVIDE THE ABILITY TO READ EVERY ELEMENT OF S
LE. READ ACCESS to d[1] .. d[length]

effects and

post~conditions: every element of S is readable
(s) :2.8:
assumptions: d is an array which contains the digits of S, one

digit per element A the variable length indexes the
last element of S A the sequence is empty when
iength = 0, ability to read the wvariable length,
ability to write every element of d

:2.8: PROVIDE ABILITY TO WRITE EVERY ELEMENT OF S
dii] « .., .. ,d[length] « ...

effects and
post-conditions: every element of S has been made writable.

| USING THE MEASURE 133
F A SEQUENCES PROBLEM

The table for the program with these additional parts is

(r)
(s)

E
F
| 1234567809 1011121314151617181920212223242526272829303132333435
E vl :
e 1111 ¢
(@)). 2: AT
$.3% I 1 | T O I
2. 48 1 11 4
; (b) P P 1
| 1348 I RN I
: () 1.4 :
(6) :y.3.¢.1: 1 I 1
() 3.2 | R
‘ $).3.1.3 1 R I
(h) :1.3.1.a ! | I !
() =pageaar | T
GY =raoea2r 11
(k) 13030008 ! I I
(l) 2.3 11
(m) :2.2¢ -)
(n) :2.3: o
(0) :2.4: EER
(p) :2.5 R
(@) :2. Lo
1o, |
:2. 1

1) 0S = <empty>
2) INIT(R,S) is defined to be {if length(R) = O then true
olse Rfirst = S.first A INIT(final(R)final(S)}
A a "good" sequence is defined to be "a sequence of 1’s, 2’s, and
3’s containing no adjacent identical subsequences”
A Q represents the sequence of lexicographically
ordered "good" sequences
3) there exists a good sequence of length 100
4) requires ability to set S to <empty> and
length(S) to O
5) INIT(0S,Q) A OS.last = S
6) (INIT(OS,Q) A OS.ast = S A length(S) # 100) o
INIT(OS™"next lexicographically larger good sequence than

: the value in §",Q)

; 7) requires ability to read length(S)

1 8) INIT(OS™"next lexicographically larger good sequence than
i the value in $",Q)

k 9) INIT(0S~S,Q)

10) requires ability to access each element of S

11) requires ability to write each element of S

12) requires ability to concatenate onto S, i.e. S « 57d

13) requires ability to delete from the end of S, i.e. back from S

USING THE MEASURE 134
A SEQUENCES PROBLEM

14) (Assumptions 1), 2), 3) 2 true) A
(S = <empty> A length(S) = 0 > Assumptions 1), 2), 3))
15) INIT(OS™"next good sequence after current sequence in S",Q)
A INIT(OS,Q) A OS.last = S >
S’ equals S prior to executing :1.3: A S is a good sequence
A Yx[S’ ilit x ilit S o x is not a good sequence]
A S is a good sequence A S # ' D
INIT(OS™S,Q)
16) (INIT(0S™S,Q) o true) A
(0S5 = 05'~S where 0S’ equals OS prior to :1.4:
o (INIT(0S,Q) A OS.last = S
A QS.last = S))
17) S =S A S is a good sequence
18) initial(S) is a good sequence
19)
20) requires read access to the boolean variable GOOD
21) requires write access to the boolean variable GOOD
22) 3x[S" illt x A length(x) < length(S") A
x is a good sequence] A [(initial(S) is good) A S.last = 0
o> S is not good]
23) §" =S
24) 3x[S" illt x length(x) < length(S")]
25) initial(S) is a good sequence A
0 < Slast < 3
26) (Assumptions 2, 13,23,25, 27) >
(Assumptions 2, 13, 23, 27)
27) ability to read S.last
28) ability to write S.last
29) d is an array which contains the digils of S,
one digit per element A the variable length
indexes the last element of S A the sequence is
empty wien length = 0
30) ability to read the variable length
31) ability to write the variable length
32) ability to write d[length]
33) ability to read d[length]
34) ability to read every element of d
35) ability to write every element of d

An examination of this table leads to the following decomposition. It
shows better entropy loading values than for the table where the
implementation information is distributed

((b) ((*) ((d) ((a) ((e) ((h) (H) (k,)

987) .711).744) .831) .377) .497) .234

PN X R L e e

USING THE MEASURE 135
A SEQUENCES PROBLEM
= (D (P ((s) ((m) ((q) n) (o0, p))
1.1.) 1.02) .920) .942) .974) .88l
This example indicates that complicated interpretations of the contents
of variables can lead to high entropy loadings if that information is

distributed. The structure can be improved if additional objects are

introduced which provide the effects of these complicated assumptions.

USING THE MEASURE
HEAPSORT

HEAPSORT

The sorting algorithm HEAPSORT has been described[WIL],
explained[KN2], and verified(via the text of TREESORT3[LO]). However,
these descriptions and proofs remain difficult to follow, not because
the algorithm is difficult, but because a reader must understand
operators which manipulate a tree structure in terms of an
implementation of that tree structure as an array. In this example,
TREESORT3 is developed by establishing its correctness in terms of
operators which manipulate an arbitrary binary tree. The operators and
their definitions are a subset of a module definition due to
Parnas[PA2). The definitions are only meant to be descriptions of the
general capabilities of the operators which will be implemented. As the
dzvelopment proceeds, information which simplifies these implementations
will be distributed and the results will be examined using
object/assumption tables and the measure.

LS() Left Son(i)
initial value: defined prior to execution of the algorithm below.
effect: error call if there is no definition of the left son
of node i; otherwise the name of the left son of
node .
RS(i) Right Son(i)

initial value: defined prior to the execution of the aigorithm

below.
effect: error call if there is no definition of the right
son
of node i; otherwise the name of the right son of

node i.

ELS(i) Exists Left Son(i)

possible values: true, false
effect: error call if node i has no direct ancestor.

USING THE MEASURE 137
HEAPSORT

ERS(i) Exists Right Son(i)
possible values: true, false
effect: error call if node i has no direct ancestor.
VAL®) VALue(i)
initial value: set prior to the execution of the algorithm below.
effect: error call if VAL() is undefined.
SVA(i,v) Set Value(i,v)

This function has no value.
effect: error call of node i has no direct ancestor;
otherwise VAL(i) = v

DEL() DELete(i)

This function has no value.

effect: error call if i has no direct ancestor or
error call if LS(i) or RS(i) are undefined;
otherwise VAL(i) becomes undefined and i is never
again a possible value of RS or LS.

Only after the algorithm is developed, are the implementations of the

operators described.

USING THE MEASURE
HEAPSORT

Below is a map describing this development.

HEAPSORT
s :1: (139)
{
(a) :1.1: (139) (b) :1.2: (140) (c) :1.3: (140) (d) :1.4: (141) (e) :1.5: (142)
‘ M while i#1do :1.4: B[1] « VAL(root)

\k-ﬁ

(f) :1.1.2: (144) (g) :1.1.3: (145) (h) :1.1.4: (146) (i) :1.1.5: (146)
i «f; while i#0 do modify tree e f
begin so that A()
:1.1.4: ; :1.15
end

(u) :1.1.2.1: (158) (x) :1.1.4.1: (159) (v) :1.15.1: (158)
i €fendv?2 siftup(i) 1efef-1

() :L4.0: (189) (k) :1.4.2: (149) 7 () :1.43: (150) (m) :1.4.4: (150)
B[i] « VAL(root) h « g modify tree so iei-1
/ SVA(rootVAL(h) that A(root)

DEL(h)

(w) :1.4.2.1: (159) (y) :1.4.3.1: siftup(root) (160)
hei
SVA(root,VAL(h))
DEL(h)

(z) :3: (161)
Transform tree so that A(j)
if A(LS(j)) and A(RS(j))

(n) :2.1: (153) (o) :2.2: (154) (p) :2.3: (154)
VAL(k), i.e. SVA(j,k), ie. ERS()), t.e.
VAL « TREE[K] TREE[] « x ERS « it 2¢j+1 > NN then
false eise true

(q) :2.4: (155) (r) :25: (155) (s) :2.6: (156) () :2.7: (156)
ELS()) i.e. RS(j), re. LS(j), ie. DEL(j), i.e.
if 2%j > NN then RS « 2%j + | LS « 2%j NN « NN - 1
false eise irue

USING THE MEASURE

HEAPSORT

assumptiors:

effects and

post-conditions:

{a) :1.1:

assumptions:

effects and

post=-conditions:

requires read access to n, the number of nodes in
the original tree, requires read access to n, write
access required for the elements of array B,
requires DEL, requires VAL, requires LS, requires
RS, requires ELS, requires ERS

.1: GIVEN A BINARY TREE, HAVING n > 1 NODES AND A
SET OF FUNCTIONS: ERS, ELS, VAL, LS, RS, SVA,
DEL[PA2], PRODUCE AN ARRAY OF VALUES, B, SUCH THAT

THERE IS A ONE TO ONE ONTO MAPPING FROM THE INITIAL
VALUES OF THE NODES OF THE TREE TO THE ELEMENTS OF

139

THE ARRAY B AND SUCH THAT THE ELEMENTS OF THE ARRAY

ARE ARRANGED IN ASCENDING ORDER.

Vi[l < i < n > B[i] s Bi+]]] A there exists a one
to one onto mapping from .he node values of the
initial tree to the elements B[1},.,.B[n] of the
array

A() is defined to be Vx[(x is a node of the tree
and x = i or x is a descendent of i) 2 ((ELS(x) °
VAL(x) 2 VAL(LS(x) A (ERS(x) = VAL(x) 2
VAL(RS(x))))] where "x is a descendent of i" means
“there exists a composition of the functions LS and
RS, say C, such that x = C(i), requires ERS,
requires ELS, requires RS, requires LS, requires
VAL, requires SVA, root, names the node such that
every node which is not root is a descendent of root
A requires read access to root

:1.1: TRANSFORM THE TREE SUCH THAT A(root) AND THAT

THERE EXISTS A ONE TO ONE ONTO MAPPING FROM THE NODE

VALUES OF THE INITIAL TREE TO THE CURRENT NODE
VALUES OF THE TREE.

A(root), there exists a one-one onto mapping of the
node values of the initial tree to the current node
values

USING THE MEASURE 140
r HEAPSORT
: 7124
assumptions: requires read access to n, requires write access to
[the integer variable i, A(root), there exists a
i one-one onto mapping of the node values of the
: initial tree to the current node values
! :1.2: i e n;
y
‘
effacts: i =n
post=conditions: A(root), there exists a one-one onto mapping of the
node values of the initial tree to the current node
values, i = n
(c) :1.3:
assumptions: Vili < j < n o B[j] s B[j+l) there exists a

one-one mapping from the initial contents of the
tree to the current contents of the tree and B[K], i
< k < n, Afroot), i 2 1 A i equals the number of
nodes in the tree A post-conditions for :1.4: >
assumptions for :1.4: A i is decreased by 1 at each
iteration, requires read access to the integer
variable i

:1.3: while i # 1 do :1.4:

effects and

post-conditions: there exists a one-one mapping from the initial
contents of the tree to the current contents of the
tree and B(k], 1 <k s n

USING THE MEASURE

HEAPSORT

(d) :1.4:

assumptions:

effects and
post-conditions:

A(i) is defined to be ¥x[(x is a node of the tree

and x = i or x is a descendent of i) > ((ELS(x) >
VAL(X) = VAL(LS(x)) A (ERS(x) > VALKx) 2
VAL(RS(x))))] where "x is a descendent of i" means

"there exists a composition of the functions LS and
RS, say C, such that x = C(i), requires ERS,
requires ELS, requires RS, requires LS, requires
VAL, requires SVA, requires DEL, write access
required for the elements of array B, requires read
access to the integer variable i, requires write
access to the integer variable i, root, names the
node such that every node which is not root is a
descendent of root A requires read access to root,
(ERS() > A(RS(M) A (ELSG) > AWLSO), Vili <]
< n o B[j] < B[j+!], there exists a one-one mapping
from the initial contents of the tree to the current
contents of the tree and B[k], i < k < n, A(root)

:1.4: TRANSFORM THE TREE AND B SUCH THAT Viji < j <
n o B[j] < B[j+1]], SUCH THAT THERE EXISTS A ONE TO

141

ONE MAPPING FROM THE INITIAL CONTENTS OF THE TREE TO

THE CURRENT CONTENTS OF THE TREE AND THE ELEMENTS
B[k], i < k < n, AND THAT A(root).

Vili < j < n o B[j] s B[j*1]), there exists a
one-one mapping from the initial contents of the
tree to the current contents of the tree and B[k]), i
< k < n, A(root)

USING THE MEASURE

HEAPSORT

(@) :1.5:

assumptions:

offects:

post=conditions:

requires VAL, root, names the node such that every
node which is not root is a descendent of root A
requires read access to root, write access required
for the elements of array B, there exists a one-one
mapping from the initial contents of the tree to the
current contents of the tree and B[k], i < k £ n,
Vj[l <j <n> B[] sB[j+1]]

:1.5: B[1] « VAL(root);

B[1] = VAL(root)

Vi[ll i < n > B[i] s B[i+l]] A there exists a one
to one onto mapping from the node values of the
initial tree to the elements B[1]..B[n] of the
array

142

R ————— .Y TR

USING THE MEASURE
HEAPSORT

(a)
(b)
(c)
(d)
(o)

1)

2)
3)
4)
5)
6)
7)
8)
9)

13)
14)
15)

16)
17)
19)

22)
23)

25)
30)

31)

1234567 89 10111213141516171819202122232425262728293031

e (I I O I 1
(N R I I [

. .
O b W -
ITEYS

A(i) is defined to be
Vx[(x is a node of the tree and x =i or
x is a descendent of i) o
((ELS(x) o VAL(x) 2 VAL(LS(x)) A
(ERS(x) > VAL(x) 2 VAL(RS(x)))]

where "x is a descendent of i" means "there exists a
composition of the functions LS and RS, say C,
such that x = C(i)

requires ERS

requires ELS

requires RS

requires LS

requires VAL

requires SVA

requires DEL

write access required for the elements of

array B

requires read access to the integer variable i
requires write access to the integer variable i
root, names the node such that every node

which is not root is a descendent of root A requires
read access to root

requires read access to n

there exists a one-one onto mapping of the

node values of the initial tree to the current node values
(ERS(1) > A(RS(iM) A (ELSG) > ALS()

Vili <j <n>B[j]sBlj+l]

there exists a one-cne mapping trom the initial contents
of the tree to the current contents of the tree and
B(k),i <k <n

A(root)

i 2 1 Ai equals the number of nodes in the tree A
post-conditions for :1.4: > assumptions for :1.4: A
i is decreased by 1 at each iteration

Vil <j <n>B[j]<B[j+!]]

there exists a one-one onto mapping of the initial
tree to the current contents of the tree and

Blk),i sksn

SEn e b e

USING THE MEASURE 144
HEAPSORT

: j The best decomposition is

((@) (kY (¢ ,d,e)) 1.33) 105

-

and any further decomposition of ¢, d, e leads to an entropy loading of
1.61. Hence, for this decomposition, saturation has occurred for (¢ ,
d , @). At this stage, the transformation of the tree so that A(root)

interacts least with the other objects. Next, :1.1: is elaborated.

) :1.1.2:

assumptions: ability to set f such that it has produced no
values A the tree is finite A the tree contains at
least one node, f is defined to be the value i such
that (i has not been produced by a call of f since f
was last initialized) otherwise the value of f is 0
A (the nodes of the tree are named by integers which
are not equal to 0) requires write access to the
integer variable i

:1.1.2: INITIALIZE f; 1 « f;

effects and

post=conditions: i names a node such that for this execution of the
while construct, for all previous values held by i,
KGi) A i has not held the current value A if i has
named all the nodes then i = 0

USING THE MEASURE 145

HEAPSORT

(g) :1.1.3:

assumptions: requires read access to the integer variable |,
root, names the node such that every node which is
not root is a descendent of root A requires read
access to root, f is defined to be the value i such
that (i has not been produced by a call of f since f
was last initialized) otherwise the value of f is O
A (the nodes of the tree are named by integers which
are not equal to 0) (if ERS() then A(RS(i)) else
true) A (if ELSG) then A(LS(i)) else true) , i
names a node such that for this execution of the
while construct, for all previous values held by |,
A(i) A i has not held the current value A if i has
named all the nodes then i = O

:1.1.3: while i # O do
begin
A 045 21,18
end
offects: i = 0, i names a node such that for this execution
of the while construct, for all previous values held

by i, Ali) A i has not held the current value A if i
has named all the nodes then i = 0

post-conditions: there exists a one-one onto mapping of the node
values o! the initial tree to the current node
values, A(ioot)

USING THE MEASURE

HEAPSORT

(h) :1.1.4:

assumplions:

effects and
post-conditions:

(i) :1.1.5:

assumptions:

effects and
post=conditions:

(ERS() 2 ARSM) A (ELS() > A(LS())), requires
read access to the integer variable i, A(i) s
defined to be Vx[(x is a node of the tree and x = i
or x is a descendent of i) 2 ((ELS(x) 2 VAL(x) 2
VAL(LS(X)) A (ERS(x) 2 VAL(x) 2 VALRS())] where

x is a descendent of i" means “there exists a
composition of the functions LS and RS, say C, such
that x = C(i), requires ERS, requires ELS, requires
RS, requires LS, requires VAL, requires SVA

:1.1.4: MODIFY THE TREE SUCH THAT A(i) AND THAT THE
NODE VALUES ARE PERMUTED.

A(i), there exists a one-one onto mapping of the
node values of the initial tree to the current node
values

f is defined to be the value i such that (i has not
been produced by a call of f since f was last
initialized) otherwise the value of f is 0 A (the
nodes of the tree are named by integers which are
not equal to 0) (if ERS(i) then A(RS(i)) else true)
A (if ELSG) then A(LS(i)) else true) requires
write access to the integer variable i

11.15: 0 « f;

i names a node such that for this execution of the
while construct, for all previous values held by i,
A(i) A i has not heid the current value A if i has
named all the nodes theni = 0

146

USING THE MEASURE 147
HEAPSORT

The object assumption table is now

123456789 1011121314151617181920212223242526272829303 13233
g L T T T O I I |
(a) :y. PENUNN I
(b) iy
(c) D
(d) D
(o) iy
(f) HITE
() 1.
(h) ¢.
() 24.4.

N -

-
e oo oo oo

| T O T T I I 11 1
1 1 !

w

H W N
oe a0 o

1
{0 T O U
|

(3]
L

1) A(i) is defined to be
Vx[(x is a node of the tree and x =i or
x is a descendent of i) 2
((ELS(x) > VAL(+: 2 VAL(LS(x)) A
(ERS(x) > VAL(x) 2 VAL(RS(x)))]
where "x is a descendent of i" means “there exists a
composition of the functions LS and RS, say C,
such that x = C(i)
2) requires ERS
3) requires ELS
4) requires RS
) requires LS
6) requires VAL
7) requires SVA
8) requires DEL
9) write access required for the elements of
array B
10) f is defined to be the value i such that
(i has not been produced by a call of f since f was last
initialized) otherwise the value of f is 0 A
(the nodes of the tree are named by integers which are
not equal to 0)
11) (ERS(i) > A(RS()) A (ELS() > A(LS(M
13) requires read access to the integer variable i
14) requires write access to the integer variable i
15) root, names the node such that every node
which is not root is a descendent of root A requires
read access to root
16) requires read access to n, the number of nodes in the
original tree
17) there exists a one-one onto mapping of the
node values of the initial tree to the current node values
19) (ERS(root) o A(RS(root)) A (ELS(root) 2 A(LS(root)))
21) ability to set f such that it has produced no values A
the tree is finite A
the tree contains at least one node

e T R e —

USING THE MEASURE
HEAPSORT

22) Vij[i < j<n>8B[j] s B[j+l]
23) there exists a one-one mapping from the initial contents
of the tree to the current contents of the tree and

B[k}, 1 <k sn

25) A(root)

30) i 21 A i equals the number of nodes in the tree A
post-conditions for :1.4: o assumptions for :1.4: A
i is decreased by | at each iteration

31) V[l <j <n>B[j] s B[j+l])
there exists a one-one onto mapping of the initial
tree to the current contents of the tree and
Bk, i sksn

33) i names a node such that
for this execution of the while construct,
for all previous values held by i, A(i) A
i has not held the current value A if i has named
all the nodes then i = O

RLB and RUB are
RLB: ((a) ((b) (¢ ,d,e)) 1.07)00
RUB: ((a) ((b) (¢ ,d, e)) 1.07) .90
But the acutal .elaboration has entropy loadings
((t,g,h,i)l(b)(c,d,n)) 1.49) 19]
One reason for this marked increase in entropy loading values is that
information about the variable i is shared between parts where such
sharing did not occur at the last stage. A better decomposition is
((f) ((b) ((e) ((e) (()) (g, h)
191) 1.73) 1.73) 1.67) 1.49) 1.49
Unfortunately, this decomposition, though better, seems arbitrary.
Here, (f) (i « f] interacts least, ut (g) and (h) that help transform
the tree so that A(root), interacts most. In this instance, the
decomposition suggested by the last stage is not a good one at this

stage.

USING THE MEASURE 149
HEAPSORT

Next, :1.4: is elaborated.

(j) :1.4.1:

assumptions: write access required for the elements of array B,
requires VAL, requires read access to the integer
variable i, root, names the node such that every
node which is not root is a descendent of root A
requires read access to root
:1.4.1: B[i] « VAL(root);

offects: B[i] = VAL(root)

offects and
post-conditions: there exists a one-one mapping from the initial
contents of the tree to the current contents of the
tree and B[k}, i <k £ n
(k) :1.4.2:

assumptions: requires read access to h, there exists a one-one
mapping from the initial contents of the tree to the
current contents of the tree and Bk, + < k < n,
requires write access to h, root, names the node
such that every node which s not root is a
descendent of root A requires read access to root,
requires VAL, requires SVA, requires DEL, there
exists a function g which names a node, i, such that
NOT(ERS(i) v ELS(i))

:1.4.2: h « g; SVA{root, VAL(h)); DEL(h);

effects and

post-conditions: there exists a one-one onto mapping from the
initial nodes of the tree to the current nodes of
the tree and B[k}, i S k £ n

USING THE MEASURE

HEAPSORT

() :1.4.3:

assumptions:

effects and

post=conditions:

(m) :1.4.4:

assumptions:

effects and

post=conditions:

A(i) is defined to be VYx[(x is a node of the tree
and x = i or x is a descendent of i) > ((ELS(x) >
VAL(x) 2 VALLS(x)) A (ERS(x) o VAL(x) =2
VAL(RS(x))))] where "x is a descendent of i" means
“there exists a composition of the functions LS and
RS, say C, such that x = C() requires ERS,
requires ELS, requires RS, requires LS, requires
VAL, requires SVA, (ERS() = A(RS() A (ELS() >
A(LS(M

:1.4.3: MODIFY THE TREE SUCH THAT A(root) AND THAT
THE NODE VALUES ARE PERMUTED

A(root), Vj[i < j < n > B[] s B[j*l] A there
exists a one-one onto mapping of the initial tree to
the current contents of the tree and B[k],i S k £ n

requires read access to the integer variable |,
requires write access to the integer variable i,
A(root), Vj[i € j < n 2 B[j] s B[j+1] A there exists
a one-one onto mapping of the initial tree to the
current contents of the tree and B[k],i sk < n

144: 0« i - 1;

Yili < j < n o B[j] s B[j+l), there exists a
one-one mapping from the initial contents of the
tree to the current contents ot the tree and B[K], i
< k € n, A(root)

150

USING THE MEASURE
HEAPSORT

Below is the object/assumption table for this elaboration

123456789 1011121314151617181920212223242526272829303 132
G) e | | Lo
(k) :1.4q 2t Ll I Ll

M :1.4.3: (I TR I T
(m) :,. 4

1) AG) is defined to be
Vx[(x is a node of the tree and x =1 or
x is a descendent of i) o
((ELS(x) o VAL(x) 2 VAL(LS(x)) A
(ERS(x) o VAL(x) 2 VAL(RS(x)))]

where "x is a descendent of i" means "there exists a
composition of the functions LS and RS, say C,

such that x = C(i)

requires ERS

requires ELS

requires RS

requires LS

requires VAL

requires SVA

requires DEL

write access required for the elements of

array B

requires read access to the integer variable i
requires write access to the integer variable i
root, names the node such that every node

which is not root is a descendent of root A requires
read access to the variable root

(ERS(root) o A(RS(root))) A {ELS(root) o A(LS(root)))
there exists a one-one mapping from the initial contents
of the tree to the current contents of the tree and
Blk), i <k <n

A(root)

there exists a function g which names a node, i, such
that NOT(ERS() v ELS(i))

requires read access to h

requires write access to h

Vili < j <n > B[j] < B[j+1] A

there exists a one-one onto mapping of the initial
tree to the current contents of the tree and

B[k}, i <k sn

RLB and RUB for this elaboration are

RLB: ((f) ((b) (@) ((¢) (i) ((d) (g, h)

00) 1.19) 1.29) 1.16) 1.03) L.16

USING THE MEASURE
HEAPSORT

RUB: ((f) ((b) ((e) ((c) () (d) (g, h)

1.77) 154) 1.64) 169) 1.47) 1.37

The actucal entropy loadings are

() ((b) ((&) () (D j,k,1,m)

(g,h)215)154)1.67)1.89) 1.29) 1L.29
A better decomposition is
((f) ((b) (&) (i) ((e) m) ((k, 1)) (g,h)

1.85) 1.77) 1.67) 1.67) 1.54) 1.54) 1.29) 1.29

The algorithm to this stage of development represents a solution to
the problem as it was originally posed. Next, an implementation
decision is made which has the potential for simplifying the
construction of the functions f and g as well as the functions which
operate on the tree. This decision represents the original n nodes in
the array elements TREE[1}.., TREE[n), where the names of the nodes
are their array indices and for 1 < k $ n, LS(k div 2) = k it k is
cven and RS(k div 2) = k if k is odd and VAL(k) = TREE[k). This

representation has several important properties:

(a) ERS(k) > ELS(k)

(b) 1f TREE contains m 2 | elements (nodes) in TREE[1],..
TREE[m)] then ERS(k) is defined to be 2+k + 1 < m and ELS(K) is
defined to be 2xk £ m for positive integer k.

(¢) if TREE contains m 2 | elements (nodes) in TREE[L],..,
TREE{m] and m is a variable which indicates the number of
elements in the tree, DEL(m) is accomplished by the assigrent
mem- 1

(d) (ELS(k) o (LS(K) = 2%k)) A (ERS(k) > (RS(k) = 2%k + 1))

USING THE MEASURE
HEAPSORT
These properties also simplify the construction of f and g
Specifically, f is calied only after a previous call of f, whose value
is f’, has been used to transform the tree such that A(f’). Hence,

:1.1.2: INITIALIZE f; 0 « f;
can be written as

iefendv 2

can be written as
jefef-1;

since A(K) is vacuously true if k is a terminal node of the tree.

Similarly, the function g can be defined to equal the value of i as

defined in :1.2: and decremented in :1.4.4:

Lastly, the definition of root is 1 which indicates that TREE[l] is

the root node of the tree.

These properties together provide definitions for the tree

operations as follows.

(n) :2.1:

assumptions: TREE is a one-dimensional array containing n
elements, ie. TREE[1).., TREE[n]), and contains
the representation of the tree in the form RS()) =
TREE[2¢j + 1] and LS()) = TREE[2#]], assumes read
access to TREE, parameter for VAL is always legal

:2.1: COMPUTE VAL(K), i.e. VAL « TREE[K};

effects and
post-conditions: VAL equals the value of node k in the tree

TR UE o

USING THE MEASURE 154
HEAPSORT

(o) :2.2:

assumptions: TREE is a one-dimensional array containing n
elements, ie. TREE[1},., TREE[n), and contains
the representation of the tree in the form RS()) =
TREE[2%j + 1] and LS(j) = TREE[2%j], assumes write
access to TREE, j names an integer in the range 1 to

n and it is meaningful to assign x to an element of
TREE

12.2: COMPUTE SVA(jx), i.e. TREE[j] « x;

effects and

post-conditions: the value of x has been assigned to node |
(p) :2.3:
assumptions: TREE is a one-dimensional array containing n

elements, i.e. TREE[1}.., TREE[n]), and contains
the representation of the tree in the form RS(j) =
TREE[2%j + 1] and LS(j)) = TREE[2%j), parameter for
ERS is a positive integer, requires read access to
the variable NN, NN indicates the number of nodes
currently in TREE, such that TREE[i), 1 s i € NN is
a node of the tree

.2.3: COMPUTE ERS()) ie. ERS « if 2%¢j + 1 ° NN
then false else true;

effects and
post-conditions: ERS = the value "there exists a right son of i

USING THE MEASURE

HEAPSORT

() :2.4:

assumptions:

effects and

post=conditions:

(r) :2.5:

assumptions:

effects and

post=conditions:

TREE is a one-dimensional array containing n
elements, ie. TREE[1].., TREE[n], and contains
the representation of the tree in the form RS(j)) =
TREE[2%j + 1] and LS(j)) = TREE[2%]]), parameter for
ELS is a positive integer , requires read access to
the wvariable NN, NN indicates the number of nodes
currently in TREE, such that TREE[i], 1 < i < NN is
a node of the tree

:2.4: COMPUTE ELS(j)) i.e. ELS « it 2%) > NN then
false else true;

ELS equals the value of "there exists a left son of

TREE is a one-dimensional array containing n
elements, ie. TREE(1],.., TREE[n], and contains
the representation of the tree in the form RS(j)) =
TREE[2%j + 1] and LS(j) = TREE[2%j], parameter for
RS is legal for the current state of the TREE

:2.5: COMPUTE RS(j), ie. RS « 2%) + 1

RS equals the index of the right son of |

i85

USING THE MEASURE

r HEAPSORT
(s) :2.6:

! assumptions:

]

.

E effects and

1 post=conditions:
(t) :2.7:

assumptions:

effects and
post=conditions:

TREE is a one-dimensional array containing 0
elements, i.e. TREE[1],., TFEE[n], and contains
the representation of the tree in the form RS(j) =
TREE[2¢j + 1] and LS(j) = TREE[2%)], parameter for
LS is meaningful

:2.6: COMPUTE LS()) ie. LS « 2%

LS equals the index of the left son of j

TREE is a one-dimensional array containing n
elements, i.e. TREE[1]),., TREE[n]), and contains
the representation of the tree in the form RS(j) =
TREE[2*) + 1] and LS()) = TREE[2#j], parameter for
DEL always names the current value in NN, requ.res
read access 1o the variable NN, requires write
access to the variable NN, NN indicates the number
of nodes currently in TREE, such that TREE[i], 1 < i
< NN is a node of the tree

:2.7: COMPUTE DEL(j) ie. NN « NN -1;

node j has been deleted from the tree

USING THE MEASURE
HEAPSORT

The object/assumption table for this elaboration is:
34353637383940414243444546

(n) :2. 4 I

(0) :2.2: I

{P) :2.3: I

Q) :2.4: i I o

(r) :2.5: 1

{s) :2.6: i

O 2.5 i I

34) TREE is™a one-dimensional array containing n elements, ie.
TREE[1),.., TREE[n], and contains the representation of the
tree in tpe form RS(j) = TREE[2#j + 1] and
LS(j) = TREE[2#))]

35) assumes read access to TREE

36) assumes write access to TREE

37) parameter for VAL is always legal

38) j names an integer in the range | to n and
't is meaningful to assign x to an element of TREE

39) parameter for ERS is a positive integer

40) parameter for ELS is a positive integer

4]) parameter for RS is legal for the current state of the TREE

42) parameter for LS is legal

43) parameter for DEL always names the current value in NN

44) requires read access to the variable NN

45) requires write access to the variable NN

46) NN indicates the number of nodes currently in TREE, such
that TREE[i], 1 <1 < NN is a node of the tree

A good decomposition of this development is
(Ok) () ((b) () ((1) ((c) (Um) ((k, @) ((j)
(g,h) 1.42)139)139)1.28)120) 1.16).96).96) .67
where
x: ((n) ((@) () () (t,p, 9).70).72).75) .83

The addition of these new objects improves the entropy loadings for the

former decomposition.

157

USING THE MEASURE 158
HEAPSORT

The objects which elaborate the definitions of f and g are:

(u) :1.1.2.1:

assumptions: f 1s called only after the immediately preceding
call of f, whose value is f{’, has been used to
transform the tree such that A(f’) A the sequence of
values n div 2, ., 0 is a sequence of node value
which satisfy all the assumptions of :1.1.4; read
access required for f, TREE is a one-dimensional
array contaning n elements, ie. TREE[1]),..,
TREE[n], and contains the representation of the tree
in the form RS(j)) = TREE[2%j + 1] and LS()) =
TREE[2%)], requires write access to the integer
variable 1, requires read access to n, the number of
nodes in the original tree,

112100« f € ndiv

effects and

post-conditions: | names a node such that for this execution of the
while construct, for all previous values held by i,
A() A 1 has not held the current value A if i has
named all the nodes then i = O, (ERS()) > A(RS(i))
A (ELSG) > A(LS())

(v) :1.15.1:

assumptions: f is called ony after the immediately preceding
call of f, whose value 1s f', has b-en used to
transform the tree such that A(f) A the sequence of
values n div 2, ., 0 1s a sequence of node value
which satisfy all the assumptions of :l1.1.4; read
access required for f, write access requred for f,
TREE is a one-aimensional array containing n
elements, e TREE[1},., TREE[n], and contains
the representation of the tree in the form RS(j)) =
TREE[2%j + 1] and LS(}) = TREE[2#j], requires read
access to n, the number of nodes in the original
tree

.16t e fef -

effects and

post-conditions: i names a node such that for this execution of the
while construct, for all previous values held by i,
A(i) A 1 has not held the current value A if i has
named ali the nodes then i = 0

USING THE MEASURE
HEAPSORT

(w) :1.4.2.1:

assumptions: requires read access to h, requires write access to
h, there exists a one-one mapping from the initial
contents of the tree to the current contents of the
tree and B[k], i < k < n, root, names the node such
that every node which is rot root is a descendent of
root A requires read sccess to the wvariable root,
requires VAL, requires SVA, requires DEL, TREE is a
one-dimensional array containing n elements, i.e.
TREE[1]...., TREE[n], and contains the
representation of the tree in the form RS(j) =
i TREE[2%) + 1] and LS(j) = TREE[2#j], the number of
elements in the tree equals the value of i. Hence
node i has no descendants, requires read access to
the integer variable i

o

:1.4.2.1: h « i; SVA(root,VAL(h)); DEL(h);

effects and
post=-conditions: there exists a one-one onto mapping from the
initial nodes of the tree to the current nodes of
the tree and B{k], i < k < n
Lastly, most of the tree operations can be localized to one object by

making the following elaborations:
(x) :1.1.4.1:

assumplions: the assumptions of :1.1.4: o (there exists a
procedure, siftup(j), which assumes that (ELS(j) >
A(LS(M A (ERS()) 2 ARS(j)) and resuits in A(j),
(ERS(I) o ARS()) A (ELS() > A(LS()), requires
read access to the integer variable i

:1.1.4.1: sittup(i);

effects and

post-conditions: A(i), there exists a one-one onto mapping of the
node values of the initial tree to ithe current node
values

159

USING THE MEASURE

HEAPSORT

(y) :1.43.1:

assumptions:

effects and
post-conditions:

the assumptions of :1.43: 2 (there exists a
procedure, siftup(j), which assumes that (ELS(j) =
A(LS())) A (ERS()) > A(RS(j)) and results in A(j)
, root, names the node such that every node which is
not root is a descendent of root A requires read
access to the wvariable root, (ERS{root) >
A(RS(root))) A (ELS(root) o A(LS(root)))

:1.4.3.1: siftup(root);

Alroot), Vj[i ¢ j < n 2 B[j] < B[j+1] A there
exists a one-one onto mapping of the initial tree to
the current contents of the tree and B[k], i s k < n

160

USING THE MEASURE 161
HEAPSORT

(z) :3:

assumptions: (ERS() o A(RS(N) A (ELSG) = A(LS()), ERSG) o
ELS(i), assumes read/write access to NOLOOP, j, t,
copy, requires ERS, requires ELS, A() is defined to
be Vx[(x is a node of the tree and x = i or x is a
descendent of i) o ((ELS(x) > VAL(x) 2 VAL(LS(x)) A
(ERS(x) o VAL(x) 2 VAL(RSx)))] where "x is a
descendent of 1" means “there exists a composition
of the functions LS and RS, say C, such that x =
C(i), requires RS, requires LS, requires VAL,
requires SVA, (ELS()) = AWLSGM A (ERS() =
A(RS(j)))

:3: siftup(j):
copy « VAL());
repeat
begin
NOLOOP « true;
it ELS(j) then
begin
it ERS(j) then
begin
if VAL(RS(j)) > VAL(LS())) then
t « RS())
else
t « LS())
end;
it VAL(t) > copy then
begin
SVA(j, VAL(t))
1€y
NOLOOP « faise;
end
ond
end
until NOLOOP;
SVA(j, copy);

effects and
post-conditions:
A(the vaiue of j on entry to siftup)

USING THE MEASURE
HEAPSORT

The object assumption table for these additional objects is

162

1234567809 1011121314151617181920212223242526272829

(u) P
(v) :.
(w) .
(x) .
(y) =

(z) :3: BERERR I

L5 b - —~ -
R
—0

34353637383940414243444546474849505152535455

(u)).
(V) HE P
(w) 2.
(x) 2.
(y) :,.)
(z) :3: 11

DD = - -
C s o

1) A() is defined to be
Y¥x[(x 1s a node of the tree and x =1 or
x 15 a descendent of i) o
((ELS(x) o VAL(x) 2 VAL(LS(x)) A
(ERS(x) > VAL(x) 2 VAL(RS(x)))]
where "x is a descendent of i" means "there exists a
composition of the functions LS and RS, say C,
such that x = C(i)

2) requires ERS

3) requires ELS

4) requires RS

5) requires LS

6) requires VAL

7) requires SVA

8) requires DEL

9) write access required for the elements of
array U8

10) f is defined to be the value i such that
(i has not been produced by a call of f since f was last

initiahized) otherwise the value of fis 0 A
(the nodes of the tree are named by integers which are
not equal to 0)

11) (ERSG) 2 A(RSG)) A (ELSG) > A(LSG))

12) there exists a one-one onto mapping of the node
values prior to the transformation to the node
values after

13) requires read access to the integer variable i

14) requires write access to the integer variable |

15) rool, names the node such ‘hat every node
which 1s not root is a descendent of root A requires
read access to the variable root

16) requires read access to n, the number of nodes in the

USING THE MEASURE 163

HEAPSORT

original tree

17) there exists a one-one onto mapping of the
node values of the imtial tree to the current node values

18) i =n

19) (ERS(root) > A(RS(root))) A (ELS(root) > A(LS(root)))

20) A()

21) ability to set f such that it has produced no values A

the tree is finite A
the tree contains at least one node

22) Vj[i <j < n > B[j]s B[j+1)

23) there exists a one-one mapping ‘rom the initial contents
of the tree to the current conients of the tree and
Bk, <k ¢n

24) (ERS(root) > A(RS(root))) A (ELS(root) > A(LS(root)))

25) A(root)

26) there exists a function g which names a node, 1, such
that NOT(ERS(i) v ELS(i))

27) requires read access to h

28) requires write access to h

29) there exists a one-one onto mapping trom the
initial nodes of the tree to
the current nodes of the tree and B[k], i < k < n

30) 1+ 21 A equals the number of nodes in the tree A

post-conditions for :1.4: > assumptions for :1.4: A
i is decreased by | at each iteration

31) V[l < j <n > B[j] < B[j+l]]

32) Vj[i sj<no>8[j]<B[j+l]A
there exists a one-one onto mapping of the initial
tree to the current contents of the tree and
Bk, i <k <n

33) i names a node such that
for this execution of the while construct,
tor all previous values held by i, A(i) A
i has not held the current value A if i has named
all the nodes then i = 0

34) TREE is a one-dimensional array containing n elements, i.e.
TREE[1],.., TREE[n], and contains the representation of the
tree in the form RS(j) = TREE[2¢j + 1] and
LS()) = TREE[2%;]

35) assumes read access to TREE

36) assumes write access to TREE

37) parameter for VAL is always legal

38)) names an integer in the range 1 to n and
it is meaningful to assign x to an element of TREE

39) parameler for £RS is a positive inleger

40) parameter for ELS is a positive integer

41) paramerer for RS is legal for the current state of the TREE

42) parameler tor LS is legal

43) parameter for DEL always names the current value in NN

44) reqguires read access to the variable NN

USING THE MEASURE
HEAPSORT

45) requires write access to the variable NN

46) NN indicates the number of nodes currently in TREE, such that
TREE[i}, 1 <i < NN is a node of the tree

47) ERS(i) o ELSG)

48) assumes read/write access to NOLOOP, j, t, copy

49) f is called only after the immediately preceding call of f,
whose value is f, has been used to transform the tree such that
A(f') A the sequence of values n div 2, .., 0
is a sequence of node value which satisfy all the assumptions
of :1.1.4:

50) read access required for f

51) write access required for f

52) the assumptions of :1.1.4: o (there exists a procedure,
siftup()), which assumes that (ELS(j) @ A(LS()) A (ERS(j) o ARS()M

and results in A())

53) the assumptions of :1.4.3: o (there exists a procedure,
siftup(j), which assumes that (ELS(j) 2 A/.S()) A (ERS()) 2 ARS()H
and results in A(j))

54) (ELS()) @ ALS()) A (ERS(j) 2 ARS()

55) the number of elements in the tree equals the value of i. Hence
node i has no descendants

A good decomposition for this elaboration is
((y) ((b) (%) ((2) (iw) ((u, v) ((m (@) ((c) ()
((j,x) 144)138)130) L.10)
1.19) 1.08) 1.04) 1.01) 1.00) .71

where (x) consists of objects n through t.

This decomposition localizes the tree operations to the objects (%)

from the previous decomposition and the uses of the function f to (u)

amd (v). Entropy loading figures are highei wien information about the

implementation of the tree is distributed.

USING THE MEASURE 165
THE PROBLEM OF THE EIGHT QUEENS AND A TELEGRAM PROBLEM: A DISCUSSION

THE PROBLEM OF THE EIGHT QUEENS AND A TELEGRAM PROBLEM: A DISCUSSION

The developments for the GCD Computation, the Sequences Problem,
and Heapsort demonstrated applications of the techniques described in
Chapters 11 and Il Similar developments have been constructed for the
Eight Queens Problem[W] and a Telegram Problem[HE). A complete
presentation of these developments contributes little to demonstrating
the techniques which have already been presented. Instead, the results
of these developments are described.

THE PROBLEM OF THE EIGHT QUEENS

The discussion which follows represents an analysis of the
development due to Wirth[W], using the measure at each stage. Early
stages possess good structure but much information is shared in the

final solution. This problem can be stated as:

Find an arrangement of ewght chess queens on an 8 x 8 chess
board such that no queen is attacked by any other fie. such
ihat each row, column, and diagonal contains at most on
qgueen).

The first stage in Wirth’s solution is

variabie board, pointer, safe;
considerfirstcolumn;
repeat
begin
trycolumn;
if safe ihen
bagin
seiqueen;
considernextcolumn
end
olse

regress
ond
until lasicoidone or regressoutoffirstcol;

USING THE MEASURE 166
THE PROBLEM OF ThE EIGHT QUEENS

This stage is accompanied by the following informal descriptions:

considerfirstcol. The problem essentially consists of inspecting
the safety of squares. A pointer variable designates the currently
inspected square. The column in which this square lies is called
the currently inspected column. This procedure initializes the
pointer to denote the first column.

trycolumn. Starting at the current square of inspection in the
considered column, move down the column either until a safe square
is found, in which case the Boolean variable safe is set to true or
until the last square i1s reached and is also unsafe, in which case
the variable safe is set to false.

setqueen. A queen is positioned onto the last inspected square.

considernextcolumn. Advance to the next column and initialize its
pointer of inspection.

regress Regress to a column where it is possible to move the
posmoned queen further down, and remove the queens positioned in
the columns over which regression takes place. (Note that we may
regress cver at most two columns. Why?)
These informal descriptions do not provide adequate information about
the reguiresments of each procedure. For example, considerfirstcolumn
can be interpreted as only ruyuanng that the column pointer be
initialized, when in fact the program requires that both the pointer
desginating the current square of inspection be initialized as well.
This requirement might be suggested by the description of
considernextcolumn bu not necessarily from the description of
considerfirstcolumn alone. Thus, the collective descriptions provide

the necessary information for implementing all the procedures, but each

individual description does not provide enough information for

implementing that procedure.

USING THE MEASURE 167
THE PROBLEM OF THE EIGHT QUEENS

Next, trycolumn and regress are ciaborated. (To this stage, Wirth
has made no mention of the requirements for lastcoldone or
l regressoutoffirstcol.)

procedure trycolumn;
repeat
begin
advancepointer;
testsquare
end
until safe or lastsquare;

procedure regress;
begin
l reconsiderpriorcolumn;
if NOT(regressoutoifirstcol) then

begin
removequeen;
if lastsauare then
begin
reconsiderpriorcolumn; ‘I
if NOT(regressoutoffirstcol) then '
removequeen
end
end
end;
In order for these elaborations to be correct, certain unstated
assumptions must be satisfied. Two of tli2se are
(1) Since the first operation in trycolumn increments the pointer
of inspection, its initial value (set by considerfirstcolumn or
considernextcolumn must have the value that no squares are ignored.
(2) reconsiderpriorcolumn must have the effect of extablishing the
context of the immediately preceding column,
A
To this stage, Wirth has carefully represented the solution so that l
trycolumn and regress interact littie with the main program. i
1

Next, Wirth makes the design decision that the variable j will be

the column pointer and the array x[1:8] will be the square pointers.

USING THE MEASURE 168
THE PROBLEM OF THE EIGHT QUEENS

Thus x[j] is the square pointer for the j-th column, 1 s j < 8. Below
are the elaborations of these objects along with the assumptions which
they make.

:110:

assumptions: i is the column pointer, equires write access 1o
j, assumes the name of the first column is 1, the
array x is an array of pointers such that x[j]
indicates a square name in column j, requires write
access to the array x, the accessed value of X must
be set to zero since ftrycolumn will immediately
increment it by 1, assumes the name of the first row

is |
:10: procedure considerfirstcolumn;
begin
je b
x[1}]« O
snd
effects and
post=-conditions: j = 1 and the requirements for trycolumn are
satisfied.
i1l
assumptions: j is the column pointer, requires read access to j,

requires write access to j, the array x is an array
of pointers such that x[j] indicates a square name
in column j, requires write access to the array x,
the accessed value of x must be set to zero since
trycolumn will immediately increment it by 1,
assumes the name of the first row s 1, assumes
considernextcolumn will be invoked only when there
is a column named j + |

:11: procedure considernextcolumn;
begin
jei+ b
x(}] « O;
end;

effects and

post-conditions: j 1s incremented by 1 and the requirements for
trycolumn are satisfied.

RN

USING THE MEASURE 169
THE PROBLEM OF THE EIGHT QUEENS

112¢

assumptions:

effects and

post=conditions:

:13:

assumptions:

effects and

post=conditions:

:14:

assumptions:

effects and

post=conditions:

j is the column pointer, requires read access to j,
requires write access to b assumes
reconsiderpriorcolumn will be invoked only when
there is a column named j - 1

:12: procedure reconsiderpriorcoiumn;
I'TLE N

the column pointer has been set to the immediately
preceding column

j 's the column pointer, requires read access to j,
the rame of the next square in a column equals the
current square name plus 1, assumes advancepointer
will only be called if there exists a ‘next" square
in the current column, the array x is an array of
pointzrs such that x[j] indicates a square name In
column |, requires read access to the array x,
requires write access to the array x

:13: procedure advancepointer;
(]« xlil + L

x[j] has been incremented by 1 to name the next
square in column |

assumes the number ci rows is 8, the array x is an
array of pointers such that x[j] indicates a square
name in column), requires read access to the array
X, J is the cciumn pointer, requires read access to
)

:14; Boolean procedure lastsquare;

lastsquare « x[j] = &;

lastsquare = true, if the last square in the

current column is named by the square pointer; faise
otherwise.

UL‘NG THE MEASURE 170
THE PROBLEM OF THE EIGHT QUEENS

:15:

assumptions: j is the column pointer, requires read access to i
assumes the number of column is 8

:15: Boolean procedure lastcoldone;
lastcoidone « j > &;

effects and

post-conditions: jastcoldone = true if the columr pointer naines a
column which is greater than the name o1 the last
column.

:16:
assumptions: j is the column pointer, requires read access to IR

assumes the name of the first column is 1

:16: Boolean procedure regressoutoftirstcol;
regressoutoffirstcol « j > 1;

effects and
post-conditions: regressoutoffirstcol = true, if the column pointer
names a column whick is less than the name of the
first column
Next, Wirth observes that by introducing the Boolean arrays a, b,
and ¢ with the meanings
a[k] = true: no queen is positioned in row k,
b[k] = true: no queen is positioned in [-diagonal k, and
c[k] = true: no queen is positioned in \-diagonal k.
testsquare, setqueen, and removesquare can easily be impiemented if the
index ranges for a, b, and ¢ are chosen carefully. The observation that
1, .. , 8 names the eight rows suffices for the range of k for a.
Further, since the sums of the subscripts for squares on a board
(board[1:8, 1:8)) in the /[-diagonals is umique for each diagonal and
identical for each square in a single /-diagonal, an appropriate

subscript range for b is 2, .. , 16. Similarly, the difference of the

subscripts (first subscript minus second subscript) for \-diagonals is

USING THE MEASURE 171
THE PROBLEM OF THE EIGHT QUEENS

unique for each \-diagonal and identical for each square in a
\-diagonal. This suggests that the subscript range for ¢ shoud be -7,

S

Consequently, the elaboraiions:

assumptions: j is the column pointer, requires read access to j,
requires write access to Boolean variable safe,
assumes the number of rows is B, assumes the name of
the first row is 1, the array x is an array of
pointers such that x[j] indicates a square name in
column i, requires read access to the array x, the
sum of the indices in a singile [-diagonal are
identical and lie in the range 2,.,16; the sum of
the indices in a \-diagonal are identical and lie in
the range -7,.7; , @ak] = ftrue: no queen s
positioned in row k, read access required for a,
b[k] = true: no queen is positione” in [-diagonal k,
read access to b required, c[k] = true: no queen is
positioned in \-diagonal k, read access to ¢
required

:17: procedure testsquare;
safe « a[x[j]] A b{j + x[}]} A <[- x[i]}

offects and
post=conditions: safe = frue, if In column j, square x[j] is not
attacked by any queen in columns I, .. , j-1

USING THE MEASURE
THE PROBLEM OF THE EIGHT QUEENS

:18:

assumplions:

effects and
post-conditions:

:19:

assumptions:

effects and
post-conditions:

| 1s the column pointer, requires read access fo |,
assumes the number of rows 1s S, assumes the name of
the first row s |, the array x s an array of
pointers such that x{)] indicates a square name In
column §, requires read access to the array x, the
sum of the indices in a single [-diagonal are
identical and lie wn the range 2,.16; the sum of
the ndices n a \-diagonal are identical and lie in
the range -7,.,7; , ak] = true: no queen s
positioned in row Kk, write access required for a,
b(k] = true: no queen 1s positicned n [-diagonal Kk,
write access to b requrred, c[k] = true: no queen is
positioned in \-diagonal k, write access to ¢
required

:18: presadure setqueen;
a[x[j]] « by * x[j]} « c[j - %3]} « false;

a qgueen s positioned in column §, square x[j}, and
its influence in the appropriate row, and the two
diagonals 15 cet

j 15 the column pointer, requires read access to |,
the array x 15 an array of ponters such that x{j]
indicates a square name In column J, assumes the
number of rows 15 8, assumes the name of the first
row 1s |, requires reod access to the array x, the
sum of the indices in a single [-diagonal are
identical and lLe in the range 2,.,16; the sum of
the indices i a \-diagonal are identical and le
the range -7,.7; , ar)] = ftrue: no queen
positioned 1N row Kk, wrile access required tor
b{k] = true: nn queen s positioneo n [-diagonal
write access to b required, c[k] = true: no queen
positioned in \-diagonal k, write access o
reguired

:19: procedure removequeen;

alx(j]] « bly + x(4]} « <[y - x()]] « true;

a queen i1s removed from column j, as well as the
appropriate row and diagonals

USING THE MEASURE 173

THE

PROBLEM OF THE EIGHT QUEENS

Below is the object assumption table for these parts.

2100
11t
328
2138
2)14%
3158
216t
178
318
$19%

1)
2)
3)
4q)

5)
6)
7)

8)
9)

10)
11)
12)
13)
19)

15)
16)

17)
18)
19)
20)
21)
22)
23)
24)
25)
26)

234567 8091011121314151617181920212223242526
(| I P
& S 11
1 L}

I i P 2
i1 | I i
|

i
I
I
I
]
1
|
]
|
I
| 11 i I

I
1
|
|
i i
|
I
|
|

) is the column pointer
requires read access to |
requires write access to | ;
the array x is an array of pointers such that x[j] indicates a
square name in column)
requires read access to the array x
requires write access to the array x
the accessed value of x must be set to zzro since trycolumn
will immediately increment it by |
the name of the next square in a column equals

the current square name plus |
acsumes advancepointer will only be called if there

exists a "next” square in the current column

assumes the number of rows ¢ 8

assumes the number of column s 8

assumes the name of the fir<t column is |1

assumes the name of the first row is 1

assumes considernextcolumn will be invoked only when
there is a column named ; + 1

requires write access to Boolean variable safe

the sum of the indices in a singie /-diagonal are identical
and lie in the range 2,.,16; 12 sum of the indices

in a \-diagonal are identical and lie in the range -7,.,7;
a[k] = true: no queen 1= positioned in row k

read access required for a

write access required for a

b[k] = true: no queen is positiorea n /-diagonal «

read access to b required

wrile access to b required

c{k] = true: no queer is positioned in \-diagonal k

read access to ¢ required

write access o ¢ required

assumes reconsiderpriorcoiumn will be invoked only when
there is a column named | - |

ey

USING THE MEASURE 174
THE PROBLEM OF THE EIGHT QUEENS
In the absence of the remaining portions of the table, (objects and
assumptions for the main program, trycolumn, and regress) it is still
meaningful to compute entropy loadings for the portion displayed. This
is justified because objects .!0: through :19: do not share specific
assumptions with the main program or trycolumn, or regress.
Consequently, the best decomposition to this stage, must involve two
large parts - :10: through :19: and the main program, trycolumn, regress
- which are then further decomposed. A good decomposition for the
displayed obects is:

((:15:) ((:16:) ((:12:) ((:13:, :142) ((:10: , :112) ((:172)

((:18:,:19:) 1.83) 1.64) 1.42) .94) .64) .64

Better entropy loading figures can be found by noting that :10:
(considerfirstcol) and :11: (considernextcol) share information not only
about | but also about «x. By introducing a new object :20:
(initsqofinspect), and modifying :10: and :ll:; a decomposition where

:10: and :11: emerge sooner as a subset of a good decomposition can be

found.

USING THE MEASURE
THE PROBLEM OF THE EIGHT QUEENS

Below are the relevant objects:

:10:

assumptions:

offects and

post-conditions:

(1l

assumptions:

effects and

posi-conditions:

J is the column pointer, requires write access o
J, assumes the name of the first column Is 1,
requircs abiity to invoke initsqofinspect wlich
sets the square of inspection to a value which s
the proper initiaization for examining the squares
in a column named by |

:10: procedure considerfirstcolum,
begin
Bl
imitsqofinspect;
end

j = 1 A x[1] =0, x{1] can be incremented by | to
satisfy the requirements for trycolumn

j 15 the column pointer, requires read access to |,
requires write access to j, requires ability to
invoke initsgofinspect which sets the square of
inspection to i value which is the proper
initialization for examin'ng the squares in a column
named by j, assumes considernexicolumn will be
invoked only when there is a column named | + 1

:11: procedure considernextcolumn;
begin
J)+ L
initsqofinspect;
end;

j 15 incremented by | and the cquare pointer for
the next column equals 0, to satisfy the
requirements for trycolumn.

USING THE MEASURE
THE PROBLEM OF THE EIGHT QUEENS

:20:

assumplions:

effects and
post-conditions:

j is the column pointer, requires read access to |,
the array x is an array of pointers such that x[j]
indicates a square name in column j, requires wrile
access to the array x, the accessed value of x must
be set to zero since trycolumn will immediately
increment it by 1, assumes the name of the first row
is 1

:20: procedure initsqofinspect;
x(j] « 0;

x[j] = O and can be incremented by 1 to satisty the
requirements for trycolumn.

USING THE MEASURE 177

THE

2100
LR
s128
$138
s 142
:15¢
160
HE 4]
‘188
19!
1208

1)
2)
3)
4)

5)
6)
7)

8)
9)

10)
11)
12)
13)
14)

15)
16)

17)
18)
19)
20)
21)
22)
23)
24)
25)
26)

PROBLEM OF THE EIGHT QUEENS

The object/assumption table is now:

234567 89 101112131415161718182021222324252627
1 1 1
1 1 1
1 1

j is the « slumn pointer
requires read access to |
requires write access to j
the array x 1s an array of pointers such that x[}] indicates a
square name in column |
requires read access to the array x
requires write access to the array x
the accessed value of x must be set to zero since trycolumn
will immediately increment it by 1
the name of the next square in a column equals

the current square name plus 1
assumes advancepointer will only be called if there

exists a "next" square in the current column

assumes the number of rows is 8

assumes the number of column is 8

assumes the name of the first column is |

assumes the name of the first row i« 1

assumes considernextcolumn will be invoked only when
there is a column named ; + 1

requires write access to Boolean variable safe

the sum of the indices in a single /-diagonal are identical
and lie in the range 2,.,16; the sum of the indices

in a \-diagonal are identical and I'e in the range -7,..,7;
a[k] = true: no queen is positioned in row k

read access required for a

write access required for a

b[k] = true: no queen is positioned in /-diagonal k

read access to b required

write access to b requircd

¢[k] = true: no queen is positioned in \-diagonal k

read access to ¢ required

write access to ¢ required

assumes reconsiderpriorcolumn will be invoked only when
there is a column named j - 1

USING THE MEASURE 178
THE PROBLEM OF THE EIGHT QUEENS

27) requires abilily to invoke initsqofinspect which
sets the square of inspection to a value
which is the proper initialization for examining
the squares in a column named by)

The former decomposition, grouping :20: with :10: and :11: is
((:152) ((162) ((:12:) ((:13:, :142) ((:10: , :11:, :20:)
((:17:) :18:, :19:) 1.77) 1.69) 1.39) .86) .60) .60

A better decomposition is

((:152) ((:162) ((:12:) ((:10:, :11:) (G:13:, :14:) ((:20:)

(172 Ci8:, :19:)) 1.77) 159) 1.39) .66) .86) .60) .60

Wir'h concludes the development by observing that read accesses to
x occur more frequently than write accesses to x (This is apparent from
the table, so long as :13: and :21: are executed less frequently than
all the objects which read x.) Consequently, it 1s suggested that since
array accesses are usually more costly than access to simple variables,
a new variable, i, can be introduced such that x[j] « i is always
executed before) is incremenled and i = x[j} 1s executed after j is
decreased. The effect of introducing this change and distributing
information about 1, is to increase the entropy loadings of the above

decomposition,

Lastly, in the final version of the man program, information about
i, x, and j 15 freely disiributed. This causes the main program to
interact with objects with which it did not interact at earlier stages.

As a result, entropy loading figures for the decomposition become

larger, and in some cases lead to saturation where it did not occur at

USING THE MEASURE 179
THE PROBLEM OF THE EIGHT QUEENS

earlier stages. Further, changes in the meaning or use of x or j imply

that many changes will have to be made throughout the program.

A TELEGRAM PROBLEM

Henderson and Snowdon[HS] hae proided a development and an analysis
of a program which was produced using the techniques of structured
programming. The program, however, was shown to contain at least one

"bug”. The authors claim that one stage in the development of more
information about the program environment was distribuled than was
necessary. As a result, the programmer forgot some of this detail at a
later stage, thus causirg the error. This observation suggests that
objects in the development were allowed to interact more than was
necessary. It also suggests that by not explicitly obsering
assumptions, programmers construct assumptions which may or may nct be
correct. The discussion below first states the problem and then

presents the deelopment due to Henderson and Snowdon [HE] to the point

where the error occurred. Shared assumptions are emphasized.

The Problem

A program is required to process a stream of telegrams.
This stream is avalable as a sequence of leiters, digits, and
blanks on some deice and can be transferred in sections of
predetermined size into a buffer area where it is to be
processed. The words in the telegrams are scparated by
sequences of blanks and each telegram i1s delimited by the word
"L111". The stream is terminated by the occurrence of the
empty telegram, that is a telegrem with no words. Each
telegram is to be processed to determine the number of
charpeable words and to check for occurrences of overlength

USING THE MEASURE 180
A TELEGRAM PROBLEM

words. The words "77Z7" and "STOP" are not chargeable and
words of more than twelve characters are considered
overlength. The result of the processing is to be a neat
histing of the telegrams, each accompanied by the word count
and a message indicating the occurrence of an overlength word.
Before proceeding, it should be noted that the description of the
problem is not as precise as it should be. Aside from an incomplete
description of the specific behavior of commands which invoke input
operations as well as operations which select single characters from the
butfer, the definition of a "word" is not precise enough. The strings
"2222" and "STOP" are not chargeable words, but from the program which
is presented, a telegram consisting of zero or more occurrences of
"STOP" followed by "22Z1" is considered to be an empty telegram. This
interpretation is not consistent with this author’s understanding of the
statement of the problem. Nevertheless, Henderson and Snowdon develop a

solution as follows (The object names have been added in order to

clarify the ancestry of objects.)

:1.1: INITIALIZE FOR WHOLE PROGRAM;
:1.2; repeat

begin

:1.3: INITIALIZE FOR NEW TELEGRAM,

:1.4: PROCESS TELEGRAM

end
until EMPTY TELEGRAM;
This program requires that at least one telegram be part of the
input and that an emply telegram must occur. It seems questionable
whether :1.1: and :1.3: should be stated in this stage. As with

version Il of the GCD computation, such initializations seem more

natural if they emerge as a result of satisfying the assumptions of

USING THE MEASURE 181
A TFLEGRAM PROBLEM

certain objects.
Next, :1.4: PROCESS TELEGRAM, is elaborated as

:1.4.1: COUNT, CHECK, AND PRINT WORDS;

:1.4.2: PRINT WORD COUNT AND CHECK MESSAGE;
Object :1.4.2: assumes that a count of the number of words and a check
for overlength words is available. Further, it is assumed that :l1.4.1:
provides this information. Hence, in the absence of an explicit attempt
to hide the mechanisms which provide this information :1.4.1: and
:1.4.2: must share several az-umptions. All assumptions about telegram
syntax and information about what is to be recorded for each telegram is
contained in :1.4.1. No assumptions about the explicit manner of

inputting text have yet been made.

The elaboration of :1.4.1: is

:1.4.1.1: repoat
begin
:1.4.1.2: EXTRACT WORD;
:1.4.1.3: if WORD 1S CHARGEABLE then
:1.4.1.4: COUNT WORG;
:1.4.15: if WORD IS TOO LONG then
:1.4.1.6: SET CHECK FLAG;
:1.4.1.7: PRINT WORD;
end
until WORD 1S "2Z2ZZ%

:1.4.1.2: requires information about what constitutes a word, i.e. the
next sequence of non-blank characters. :1.4.1.3: requires information
about which words are chargeable, ie. words which are not "STOP" or
L. :1.4.1.5: requires the information about what constitutes an

Objects :1.4.1.4: and :1.4.1.6: require variables that

overiength word.

USING THE MEASURE 182

A TELEGRAM PROBLEM

reflect the state of the number of words in the current telegram and
whether any overlength words have occurred in this telegram. At this
point, the values of these variables are observed to require some kind
of initialization. Thus, :1.3;, :1.4.1.4: and :1.41.6: share

assumptions,

Object :1.4.1.2;, EXTRACT WORD, :s elaborated as

:1.4.1.2.1: SET WORD EMPTY INITIALLY;

:1.4.1.2.2: ADJUST INPUT;

:1.4.1.2.3: repeai

:1.4.1.2.4: EXTRACT LETTER

until LETTER IS SPACE;

This elaboration is really the source of the error which occurs in
the final program. Until this stage, all assumptions have been
concerned with tha properties of telegrams, but :1.4.1.2.2:, ADJUST
INPUT, necessarily introduces assumptions about the way input is
performed or at least about how the buffer is managed. Similarly,
:1.4.1.2.4:;, EXTRACT LETTER, makes some of these assumptions.
:11.4.1.2.4:. This implies that these objects <chare assumptions which
are not directly related to the task of extracting the next word from
the telegram. The descriptions are also not precise. The authors
comment that the condition

first letter of input # space

must hold prior to the execution of :1.4.1.23: Ths condition is not

necessarily suggested as the effect of the phrase, ADJUST INPUT.

P S —___p Y Tl T T I TEHW

USING THE MEASURE 183
A TELEGRAM PRCBLEM

A clearer elaboration might be

repeal
EXTRACT LETTER
until LETTER IS NOT A SPACE;
SET WORD TO EMPTY;
repeat
begin
CONCATENATE LETTER TO THE RIGHT END OF WORD;
EXTRACT LETTER
end
until LETTER IS A SPACE;
(Implicit in both elaborations is the assumption that a space always
follows a word, even if a letter is the last character of the entire
input file. The authors solve this difficulty by concatenating a space
to the end of each input record) This second elaboration localizes all
assumptions about handiing input to EXTRACT LETTER and its elaborations.

As a result, entropy loading figures for decompositions of the program

involving this second elaboration are generally lower than for the

original program,

CHAPTER V

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS

Chapter IV presented examples of how entropy loading calculaiions
could be used as guides to help control program structure. (Appendix |
applies these techniques to a larger program.) This chapter first
summarizes the major results of each example. Next, the potential
advantages of using the methodology and ihe measure are stated. Using
the measure in a practical situation, however, poses certain
difficulties. These are listed and form the basis for several

suggestions for future research.

REVIEW OF RESULTS DEMONSTRATED BY THE EXAMPLES

This thesis has investigated the question of whether a particular
methodology describes program structure as defined in Chapter II. The
methodology under investigation uses a mathematical calculation, called
entropy loading, in two ways. First, given a development of a program
where the assumptions have been preserved at each stage, entropy loading
figures can compare different arrangements of objects in an attempt to
discover which groupings of objects interact least. Such decompositions
might suggest ways for constructing a set of modules whose combined
effects solve the origiral problem. Second, if a particular
decomposition is suggested at early stages in a development, entropy

loading figures can be used to observe whether the development at later

stages still possesses similar structural prooerties. If good structure

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 185
REVIEW OF RESULTS DEMONSTRATED BY THE EXAMPLES

is not preserved, the object/assumption table (in which the assumptions

are preserved) might suggest ways of localizing certain assumptions to

existing or new objects.

In Chapter 1V, three versions of a program that computes the
greatest common divisor are analyzed. The map for version I and the
trees corresponding to two decompositions of the final program appear

below.

A GCD COMPUTATION

:1: (pg. S1)
/
1 1: (32) 12 (32)

111 (34) 121 (34)

:1.1.1.1: (36) :1.1.1.2: (36)
(while a # b do f

1 1e25) i

:1.1.1.2.1: (37)
" o~ \
/ J/ ’ \
:1.1.1.2.1.1: (B9) :1.1.1.2.1.2: (39) :1.1.1.2.1.3: (39)
(if a > b then | |
dlal- 1202
else

:11.1.1.2.1.3:) I

L1202, (6L) L2180 (6L

Beea-=zj T -0 - &)

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS
REVIEW OF RESULTS DEMONSTRATED BY THE EXAMPLES

{A)
/.:‘“\ . 500 500
\-\.
Jdoal: N.950 or 980
" “\\
1112020 673 :1.1.1.2.1.3.1: 673
N
:1.1.1.2.1.3.1: Gl Ll 11112120 (:1.1.1.1s
:1.1.1.2.1.19)
1.1 1.2.1.1)
(B)
500
:1.2.1: 1.05
(i 4e ol 020,14 (:1.1.1.2.1.2.1,

:1.1.

JERE-EE B,

This analysis corresponds to an attempt to find the best way of
decomposing this fixed program. The measure indicated that the best
decomposition of the program is decomposition (A). The part which
interacts least with the rest of the program is :1.2.1: that assigns the
value of a to «x Objects :.1.1.2.1.2.1: and :1.1.1.2.1.3.1: assign
values to a and b and also require more information than :1.2.1: but
less information than :l.1.1.1: and :1.1.1.2.1. 1. These last objecis
determine the fiow of control within the program. This result is
consistent with the definition of structure and our intuitive ideas. In
this example, the assumptions associated with the control mechanisms
include information about what is being controiled. No atternpt was made
to hide that information. However, the objects being controlled were
constructed wiihout making assumptions about mechanisms that control
them. Decomposition (B) is slightly worse because the statements (a « a

- b, b « b - a) require read and write access to both a and b. Hence,

1

186

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS
REVIEW OF RESULTS DEMONSTRATED BY THE EXAMPLES
more information is localized to a single subset than in (A) where write

access to a and b are separated.

Version Il is similar to version | except that the construction
ifa>bthena-a-belseb«b-g
is replaced by
while a > b doa« a-b
whileb>adob« b - g
Here, the best decomposition,

((a) ((g , h) (b) ((c, @) 1.01) 1.01) .451

indicates that (a) [x « a] interacts least with the rest of the program

and that of the remaining portion, (g , h) (a « a - b, b « b - a)
interacts least with the control mechanisms b (while a # b do) and (¢ ,

e) (while a > b do, while b > a do).

Version Il illustrates a development simiar to version 1II, but in
addition to computing the greatest common divisor of a and b, their
least common multiple is also computed. Here, the decomposition

((a) ((b) ((e) ((k, D) (g,) 1.55) 1.75) 1.75) 1.28
indicates that (a) [x « a y « ¢ + ¢] interacts least with the rest
of the program, but that the control mechanisms for the irner loops as
well as the statements which they control interact most. Object b (¢ «
O; d ¢ a) initializes ¢ and d, but really shares little information with
the rest of the program. Similarly, object ¢ (while a # b do)
controls the inner loops but interacts little with the mechanisms which

decrease a and b. Note that the entropy loading figures for this

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 183
REVIEW OF RESULTS DEMONSTRATED BY THE EXAMPLES

decomposition are larger than the corresponding figures for version L.
This occurs because the objects in version Il make assumptions that are

shared in more complicated ways than the objects in version Il

The development of the sequences problem shows that distributed
information about a scheme for representing data can lead to
unnecassarily complicated structure. This example produces a list of
lexicographically ordered sequences such that each sequence contains
only 1’s, 2’s and 3’s, but no adjacent idertical subsequenzes The list
is terminated by the first such sequence containing 100 digits. The
development to the stage where information abuu! the representation of a
sequence in terms of an array reSL;Ited in the decomposition

((b) ((d) ((a) ((@) ((h) ((f) (k, j»

1.21) 1.21) 1.91) 1.38) 1.21) 1.21
Entropy loadings for this decomposition are all greater than or equal to
entropy loadings for the same oecomposition where implementati’om'
information was not distributed. This suggests that the implementation
information be localized to one or several objects. In this case,
additional objects were introduced. This resulted in entropy loadings
that were smaller and very close to the entropy loadings for the
decomposition prior to elaborating the implementation. Thus, the
measure provided indications that motivated a rearrangement of the

program so that the reasonably good structure of the early stages was

preserved in the final program.

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 189
REVIEW OF RESULTS DEMONSTRATED BY THE EXAMPLES

The example that develops a sorting program based on the algorithm
HEAPSORT attempts to present a program in terms of the model that |
probably motivated the algorithm: a binary tree representing the data to
be sorted. One reason for attempting this exercise was to first

N describe the algorithm without presenting all the details ot its

implementation. Then a particular representation for the binary tree -
as a linear array - is introduced. As a consequence of this decision, J
information about the representation can be localized to certain objects
without adversely atfecting the decompositions suggested at earlier

stages. Although applications of the measure eventually suggested a

decomposition that localized almost all assumptions about the
representation to one object (:3; the siftup procedure), earlier
decompositions had to be discarded. One reason for this occurrence is
that the smali number of objects make many assuriptions, As a resuit,
saturation occurred at several early stages. Further, since nore of the
assumptions were weighted with “probability of change” figures, some of
the decompositions seemed o be counter to the author’s view of what a
good decomposition should be. For example, the two objects invoking the
procedure siftup do not form a single subset in the decomposition that

is presented - probably because one call of siftup uses 1 as its

parameter, and i is used throughout the program, where the other call

uses root as its parameter, and root is used in few places.

The example that presents the Eight Queens Problem shows several

improvements in a program that already possesses fairly good structure.

. i

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 190
REVIEW OF RESULTS DEMONSTRATED BY THF EXAMPLES

First, the procedures considerfirstcolumn and considernextcolumn not
only share information about how the columns of the chess board are
arranged and named, but also about certain requirements of another
object, trycolumn. By creating a new object, initsqofinspect, a
decomposition that was already rather good was slightly improved. In
Wirth’s original program, the objects considernextcolumn and
considerfirstcolumn not only share information about the names and

ordering of columns of squares on a chess board, but also about how the

squares are represented and about some of the assumptions made by
trycolumn. initsqofinspect contains these assumptions about trycolumn
and thus helps to improve the structure of the program. The final
version of Wirth’s program distributed information that was not shared
at earlier stages, thus making these decompositions worse than they need
be. This corresponds to the similar situaticn in the development of the

sequences problem. Saturation was also apparent at early stages.

The discussion of the telegram problem was presented in order to
emphasize the importance of precisely stated assumptions. Henderson and
Snowdon{HE] have stated that informal Englisn comments are not

sufficient to suggest the assumptions which objects make or the affects

thev are intended to produce. For example, the condition

first letter of input # space
is not necessarily suggesied by the phrase "ADJUST INPUT". Such
imprecision is mentioned as a potential source for errors in a program. i

The example also cites a portion of the development where apparently too

ke i e S S

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS
REVIEW OF RESULTS DEMONSTRATED BY THE EXAMPLES

much detail was introduced. The elaboration of :1.4.1.2;, EXTRACT WORD,
introduces an object that caters to the requirements of the input
device. This implies that the elaboration of ADJUST INPUT and EXTRACT
LETTER will probably share assumptions about the nature of the input
device. An alternative is presented that localizes all this information
to EXTRACT LETTER. The entropy loading figures, though not displayed,

indicate that this new version possesses better structure.

Appendix | applies the measure to a development of a Markov
Algorithm interpreter. Although the analysis of the example is

length y, several results can be stated here:

(1) The structure imposed at the initial stages, i.e.
alphabet and generic input, algorithm input, error handling
during input, algorithm execution, and error handling during
execution, could be maintained in the final wversion if
additional objects were introduced to provide access to the
results of these additional objects. For example, objects
which created internal representations of rules were
introduced along with accessors to this information. These
emerged together in a subset after those subsets that
constituted the structure at the initial stages.

(2) Due to the large number of objects and assumptions,
several clerical aids had to be used extensively. These aids,
and suggestions for extending them, are described in a later
section.

(3) As in the development of HEAPSORT, several good
decompositions found at intermediate stages had to oe
discarded. This was necessary because later elaborations
resulted in objects that shared mucih information with objects
that existed prior to the elaboration. For example, the rule
input portion was elaborated after the portion that handled
alphabets and generic input. The eariier decomposition had to
be modified. A similar situation occurred when the algorithm
execution part was alaborated.

191

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 192
REVIEW OF RESULTS DEMONSTRATED BY THE EXAMPLES

Appendix I discussed a paper on Compiler Structure[M K} This
paper asserted that special care should be taken to describe the
languages at the interfaces between vertically fragmented modules in a
compiler. However, because of the results from the Markov Algorithm
Interpreter, it was concluded that as much information about these
languages should be hidden. Instead, only creators and accessors of the

needed information should be provided.

ADVANTAGES OF USING THE MEASURE

This thesis has applied a measurement function based on entropy
loadings to evaluate decompositions of programs. These applications
produced resuits that usually corresponded to intuitive ideas about
structure in programs. Unfortunately, there are practical problems
about deciding the relative importance of assumptions as well as
problems about determining and manipulating assumptions and tables.
These problems impede the effective use of the measure and methodology.
Details of the advantages and disadvantages of using the measure are

discussed in this and the next section.

In order to apply the measure, the methodology requires that the
objects and assumptions be explicitly stated - not only at early stages
in the design process, but also in the final program. Ideally each
object is accompanied by the assumptions it makes so that the object is
understandable without requiring additional context. This feature is

typically no present in the more traditional approaches to design and

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 193
ADVANTAGES OF USING THE MEASURE

programming. Further, the assumptions made by objects are summarized in
object/assumption tables. This summaiy makes it possible to observe the

assumptions that are shared among objects without needing to deduce them

from the program text. This is especially helpful whenever entropy
loading figures become larger than anticipated. Under these
circumstances, other decompositions are suggested more readily than in

situations where object/assumption tables are not available.

The measure provides a way of comparing different decomrositions of
a program at each stage in its development. These comparisciis help to
substantiate decisions to reject or retain a decomposition. As 2
result, there are at least quantitative grounds for arguing for or
against a decomposition rather than primarily intuitive ones. The

sequences example emphasizes this point.

The act of "hiding" information can be explicitly represented by
the methodology. Hidden information is preserved in object/assuinption

tables.

Decompositions resulting from applications of the measure can
possess some of the properties advocated by Parnas[PA1,PA2,PA3] In
particular, subsets that share few assumptions can suggest modules
similar to those described by Parnas. For example, the analysis of the
Markov Algorithm interpreter suggests that objects which create and

manipulate Markov rules should appear in a single subset even though

they are invoked from portions which interact little. Further, the

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 194
ADVANTAGES OF USING THE MEASURE

I

| descriptions of objects required by the methodology can help to suggest
specifications similar to those proposed by Parnas. One characteristic

o/ these specifications is that each describes the intended behavior of

a function without stating an algorithm that implements it. Many of
tt these behavioral descriptions occur among the assumptions of objects at
i early stages in the development of a program. These can be used to help
generate Parnas-type specifications. As an example, below is a

specification for a function which might be used by the first version of

the GCD computation

function PGCD(a,b) - a and b are integer parameters.

effects: ERC1 if a <0
ERC2 if b<O
ged(ab) = ged(a'b’) A ((° # b’)
(a<aorb<b)

This specification was found by using tests for the assumptions to

suggest error calls and describing the effects of objects as part of the

effects of the function. An important property of the error calls is

that each represents some testable condition. Some assumptions may not

represent such conditions. Since predicates relating to the correct

behavior of objects appear as assumptions, the objects can be

constructed with these assumptions in mind. Specifically, a
designer/programmer will be, perhaps, more conscious of the explicit
demands his objects must meet. The error that occurred in the Telegram

Problem might not have occurred had these assumptions been explicit.

ON ASPECTS OF USING THE MEASURE: SuwiMARY, EVALUATION, CONCLUSIONS 195
ADVANTAGES OF USING THE MEASURE

Again because assumptions are presented explicitly, changes in a
program that require violations of some assumptions can be made more
easily than under circumsiances where assumptions are not stated. A
programmer need only examine the object/assumption table to determine
which assumptions are violated. As a result, the affected objects can
be changed. The overhead of deducing the effects of changes from

program text and other traditional aids is eliminated.

DIFFICULTIES OF USING THE MEASURE

It should be apparent that entropy loading calculations can be
computed easily once the assumptions made by objects have been displayeu
in an object/assumption table. Finding these assumptions, however, is
often a painstaking process. This process is made even more difficult
by what seems to be a natural tendency to postpone the task of stating
assumptions. As a result, the task becomes more difficult because the
assumptions made by earlier stages must be deduced frecm a conicxt that
is different from the context that motivated those stages. Most often
this exercise of stziing assumptions and using the measure to check
various decompositions leads to results that might already have been
expected. The interes’ing cases, of course, are those where this
exercise led to unexpected results or actually uncovered an error. The
decompositions found during the middle middle stages in the development

of HEAPSORT as well as during the middle stages of the Markov Algorithm

Interpreter did not possess good structure at later stages. This

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 196

DIFFICULTIES OF USING THE MEASURE

occurred because objects that were elaborated after those stages shared
many assumptions with earlier elaborations of objects. Lastly,
instances where several designers are elaborating different objects or
where objects are elaborated without a knowledge of other objects often
lead to incompatible representations of similar assumptions.
Consequently, interactions may not be represented properly in

object/assumption tables.

Of the different kinds of assumptions, the most difficult to state
are weakest pre-conditions for objects. This difficulty is not
surprising in the light of all the practical difficulties associated
with program verification. Once found, however, these assumptions
provide vital information about the reaqurements of objects.
Assumptions about program environment are more easily recognized, but
can frequgntly be overlooked. For example, a designer working on an
elaboration of a single object might make an assumption so frequently
that he omits it from the object/assumption tabie. This could lead to
an eventual decomposition where this unstated assumption is violated.
Probably the easiest assumptions to state are the mathematical theorems
relevant to the problem aid the assumptions about data. The theorems
are often related to the weakest pre-conditions. The assumptions about
data refer to those items that are explicitly stated in many informal
descriptions of objects and relate to items that are analogous to what

will be manipulated in the language which implements the program.

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 197
DIFFICULTIES OF USING THE MEASURE

In addition to the difficulties in stating assumptions, there are
difficuities involved in just manipulating tables and selecting
decompositions for which to compute entropy loadirgs. Object/assumption

tables can become large sven for small numbers of objects.

In chapter 1II, certain kinds of object/assumption tabies were
cited for which all deccompositions had identical entropy loadings.
Hence, the measure was unable to distinguish among them. This was
called saturation in object/assumption tables. Saturation occurs most
frequently whenever a small number of ubjects share many assumptions.
The developments of HEAPSORT and the Markov Algorithm Interpreter

displayed instances of saturation.

In all but the simplest situations, it is difficuit to assign

"probability of change" figures or ‘"relative importance” to assumptions,

Consequently, all the assumptions in the examples wers treated as though

they were of equal importance.

Without the help of mechanical aids, the process of construciing
programs using the methodology ard the measure is tedious and time
consuming. An experienced programmer might oe able to construct

programs having good structure in far less time.

AIDS TO APPLYING THE MEASURE AND SUGGESTIONS FOR FUTURE WORK

As aids to help solve some of the difficulties stated in the last

section, several programs have been constructed. These programs perform

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS
AIDS TO APPLYING THE MEASURE AND SUGGESTIONS FOR FUTURE WORK

the following tasks:

(1) input and maintain files of assumptions

(2) input and maintain abbreviated descriptions of objects and
their assumptions.

(3) produce object/assumption tables given files generated by (1)
and (2).

(4) produce listings of objects given files generated by (1) and
(2).

(5) compute entropy loading calculations, RLB's, and RUB’s given
object/assumption tables produced by (3).

These pregrams have been used to help produce all the examples in
Chapter IV ano in the appendices. Each is intended to help solve some
clerical or tedious aspect of using the measure. As the examples
indicate, a great deal of text might need to be manipulated for even

small programs. These programs have been written to execute in an

interactive environment. This has proved to be helpful when entropy

loading calculations were performed. Values for RLB, RUB and the actual

entropy loadings could be compared quickly in this kind of environment.

However, in order to use the measure in more realistic and
practical situations, the fcllowing topics suggest areas for future

research:

(1) Since assumptions about the meaning and interpretation of
variables occur so frequently, and since explicitly transcribing
them - or their names - to identified objects is tedious and time
consuming, mechanical aids should be available that allow a
programmer to state these assumptions only once - perhaps as part
of some declaration. Then, the program support should
automatically associate the appropriate given specific constructs
and specific post-conditions.

198

.

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS
AIDS TO APPLYING THE MEASURE AND SUGGESTIONS FOR FUTURE WORK

(2) Assumptions about control and frequency of use of objects
should be expressable precisely.

(3) Because the process of making assumptions can require careful
and time consuming thought, as many assumptions as possible should
be generated mechanically.

(4) Because of the substantial difficulties associated with
applying the measure, additional measures of structure should be

sought.

CONCLUSIONS

The purpose of this thesis has been to help clarify the notion of
structure in programs and to evaluate the behavior of a particular
measure of structure. The most difficult aspects of applying the
measure relate to the process of making assumptions explicit. Many of
these difficulties can be obviaied by mechanical aids that can be part
of the environment in which the measure is to be used. The information
about programs provided by the measure makes possible comparisons of
different decompositions of a program. This is demonstrated in Chapter
IV and the appendices. If interactions are more extensive than is
desirable, the object/assumplion table tells exactly which assumptions

are shared and can suggest that certain assumptions be localized to new

or existing objects. Parnas-type specifications seem to be deducible in

a direct way from the assumptions made by objects and their effects.

This thesis has attempted to demonstrate, use, and evaluate a
definition and measure of program structure. It represents an attempt

to extend the notion of structure from its role as an aesthetic tool to

a useful and measurable aid for finding good programs. Despite several

199

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 200
CONCLUSIONS

significant shortcomings, the measure provides a quantitative valuation

of a heretofor vague concept.

P R = e —

)

n L

BIBLIOGRAPHY

[AL] Alexander, C. Notes on the Synthesis of Form,
Harvard University Press, 1964

(BA] Baker, F.T. Chief programmer team management of produc.ion
programming. IBM Systems Journal v.11,n0.1,
January, 1972, pp. 56-73

[COO0] Cook, S.A. The complexity of theorem proving procedures.
Proc. of the Third Annual Symposium on Theory of Computing,
ACM, May, 1971, pp. 151-157

{DJ1] Dijkstra, EW. Notes on structured programming,
Structured Programming, Academic Press, 1972

[DJ2] Dijkstra, EW. A constructive approach to the problem
of program correctness. BIT 8 (1968) pp.174-186

{DJ3] Dijkstra, E. W. EWD316: A Short Introduction to the Art of
Programming, Eindhoven, The Netherlands, 1971

[DJ4) Dijkstra, EW. The structure of the T.H.E. multiprogramming
system. CACM 11 (1968) pp. 341-346

[DJ5] Dijkstra, EW. On the axiomatic definition of semantics.
(unpublished ms.)

[DJ6] Dijkstra, EW. Go to statement considered harmful.
CACM 11, 3 (March 1968)

[H] Heymanns, F. A Markov Algorithm Interpreter,
(unpublished program)

[HE] Henderson, P. and R. Snowdon, An experiment in structured
programming. BIT 12 (1972), pp. 38-53

[HO1] Hoare, C.A.R. An axiomatic basis for computer
programming. CACM 12 (1969) pp. 576-580

[HO2] Hoare, C.A.R. Proof of a program: FIND
CACM 14 (January 1971) pp.39-45

[HO3] Hoare, C.AR. Notes on data structuring. Structured
Programming, Academic Press, 1972

BIBLIOGRAPHY 202

[\A] Karp, RM. Reducibiity among combinatorial problems.
Complaxity of Computer Computations, RE. Miller and
JW. Thatcher, eds., Pienum Press, 1972

[KI}] King, JC. A Program Verifier, Ph. D. Thesis,
Dept. of Computer Science,
Carnegie-Mellon University, 1969

[KN1] Knuth,D.E. Fundamental Algorithms, Addison-Wesley,
1968, pp. 187-189

[KN2] Knuth, D.E. Sorting ind Searching, Addison-Wesley,
1972, pp. 145- .47

[LE] Leavenwzcin, B. Peview of paper by P. Naur ["Programming
by action clusters." BIT 9, 3 (1969), 250-258].
Computing Reviews 11, 7 (July 1970), Rev. 19,420

[LO] London, RL. Certification of algorithm 245 Treesort3:
proof of zalgorithms - a new kind of certification.
CACM 13 (1970) pp.371-373

[MI1] Mills, HD. Top down programming in large systems.
Debuggzing Techniques in Large Systems, R. Rustin, ed,,
Prentice Hall, 1970, pp. 41-55

[MI2] Mills, H.D. Structurod Programming,
IBM: Federal Systems Division, Gaithersburg, 1970

[MK] McKeeman, W.M, Horning, J, and Wortman, D.B. A Compiler
Generetor, Prentice-Hall, 1970

[MK1] McKeeman, WM. Compiler Structure, Technical Report CSRG-23,
University of Toronto, January, 1973

[NA2] Naur, P. Programming by action clusters. BIT 9
(1969) pp.250-258

[PA1] Parnas, DL. Information Distribution Aspects of Design
Methodology, Proceedings of the IFIP Congress, 1971

[PA2] Parnas, D.L. A Technique for Software Mod.le Specification
' with Examples, CACM 15, (May 1972 pp 330-336

[PA3] Parnas, D.L. On the Crileria to be Used in Decomposing
Systems intc Modulas, CACM 15 (December 1972)
pp 1053-1058

BIBLIOGRAPHY 203
[PA4) Parnas, D.L. Some Conclusions from an Experiment in
Software Engineering Techniques, FJCC, 1972
[SN] Snowdon, R.A. PEARL: An Interactive System for the Preparation
and Validation of Structured Programs. Computing Laboratory,
University of Newcastle upon Tyne, 1971
[VE1] van Emden, MH. An Analysis of Complexity,
Ph. D. Thesis, Mathematisch Centrum, Amsterdam, 1971
[VE2] van Emden, MH. The heirarchical decomposition of
complexity. Machine Intelligence 5, Dale and Michie, eds.,
Edinburgh University Press, 1970, pp. 361-380
[WA] Watanabe, S. Information theoretical analysis
of multivariate correlation. IBM Journal of Research and
Development, 1960, pp.66-82
[WIL] Williams, JW.J. Heapsort. CACM 7 (1964) pp.347-348
[(WL] Williams, W. and Lambert, JM. Multivariate methods in plant
ecology I. The Journal of Ecology, 47, pp. 83-101
(W] Wirth, N. Program development by stepwise refinement.
CACM 14, (April 1971), pp. 221-227
(W1] Wirth, N. PL/360, A programming language for the 360

computers, J. ACM 15, 1 (January 1968) pp. 37-74

[{WRH] Wulf, W.A,, Russell, D.B. and Habermann, AN. BLISS: A
language for systems programming. CACM 14, 12
(December 1971) pp. 780-790

R CHTE T o

APPENDIX 1: A MARKOV ALGORITHM PROCESSOR 204

APPENDIX I: A MARKOV ALGORITHM PROCESSOR

This appendix contains a development of a Markov algorithm
processor, based upon an initial and informal description. The
development shows how assumptions can be preserved in a somewhat larger
example than any which appeared in Chapter 1l. The guidelines stated in
Chapter Il are applied at various stages of the development. The
result includes a complete program which inputs and interprets labelled
and unlabelled Markov algorithms and several modifications to the basic
program. These modifications represent several reasonable changes which
can easily be made in the basic program, but which would be difficult or

tedious to make in other representations of the same program.

The following document serves as the basis for the development that

follows.

MARKOV ALGORITHM INTERPRETER

The interpreter is to be designed so that it executes both labelled
and unlabelled Markov algorithms. If the algorithm is not terminated by
the dot convention, then execution should halt when the final rule of
the algorithm is not applicable. A "blank" character is retained as the
first character of the register so that all append rules are applicable.

. Data File

A. Parameter Zard - This must be the first card of the file of

input cards. If the card is blank, the register’s contents
will be printed only at the termination of the algorithm. Its
contents will be printed after the execution of each

applicable rule if a non-blank character appears in column 1.

B. Header Card - This card indicates the title of the algorithm,
the alphabets, and the generic variables (if any) for each
alphabet. The syntax of the heading is given in V. There are
no format restrictions.

P I S ML O W) P — T S W 7 Ty e

-

APPENDIX 1: A MARKOV ALGORITHM PROCESSOR 205

C. Algorithm - A single replacement rule is punched on zach
card. Its format is as follows:

Cols. 1-3 Right-justified integer label. Since this
label has significance only in the control of a
labelled Markov algorithm, it is optional in
the case of an unlabelled one.

Col 4 A colon
Cols. 5-80 <Markov Rule> <Successor>;

D. Data - A single data card containing an initial character
string must be supplied for each execution of the algorithm.
A semicolon indicates the termination of the character string.
As many data cards as desired may be included.

E. Algorithm Terminator - A card with a comma (,) punched in the
first column indicates: (1) the termination of the data for an
algorithm, and (2) an additional algorithm will follow.

F. End-of-file - A card with commas punched in both columns one
and two terminates the data for the last algorithm in the

file.

ll. Sample Data File

The following unlabeled Markov algorithm reverses the order of the
characters initially placed in the register. The first character of
each line, which is assumed to represent a single card, is assumed to be
the character punched in the first column of the card. (Note: The
labels are optional in this case.)

REVERSE(A,B,C,D,EF);,GH;(+,-);

006:++:-;

001:-G:G-;

002:-+:-;

003:-:;

004:+HG:G1H;

005::+;

IV. Restrictions

APPENDIX I: A MARKOV ALGORITHM PROCESSOR

A. The maximum number of alphabets is 10.

B. The maximum number of characters in any alphabet is 30.

206

C The maximum number of generic variables, over all alphabets, is

10.

D. The algorithm must have labels in the range 1 to 100.

E. The register wili hold a maximum of 500 characters.

V. Markov Algorithm Syntax

<Algorithm> ::= <Heading> <Body>
<Heading> ::= <Title> <Declaration>
<Title> ::= <Character string>
<Declaration> ::= (<Alphabet>); <Generic Declaration>; |
<Declaration>
(<Alphabet>); <Generic Declaration>;
<Alphabet> ::= <Character> | <Alphabet><Character>

<Generic Declaration> u= <empty> | <Generic list>

<Generic list> u= <Character> |
<Generic list>,<Character>

<Body> u= <Rule>; | <Body> <Rule>;

<Rule> = <Label> : <Markov Rule> <Successor>
<Label> ::= <Digit> | <Label> <Digit>

<Markov Rule> ::= <Side> : <Side>

<Side> = <empty> | <Character String>

<Character String> = <Character> |
<Character String> <Character>

<Successor> ::= <empty> | . |, <Label>

<Character> ::= <all characters which can be punched
"o ll:" ".II>

into a card except ", ",

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 207

The following development is based on an unpublished program due to
F. Heymanns[H]. in its original form, many assurmptions were shared
throughout the program, thus making it difficult to understand and
change. The fundamental ideas, however, are sound. What follows is an
attempt to use these ideas but to preserve the initial structure in the
final program. The attempt emphasizes the use of these ideas. Some
readers, however, may be able to construct other programs having better

structure.

The measure is used at various stages to suggest possible
decompositions. One good decomposition seems {0 possess many of the
properties suggested by Parnas as being important in a system. That
decomposition bears only a superficial resemblance to an initial
decomposition which is described in the next paragraph. Below is an
initial decompostion of the Markov algorithm processor represented as a
transition diagram. The arcs indicate paths for error conditions as
well as transitions corresponding to the occurrence of commas as the

first characters of input cards. ("E" indicates an "error” path.)

? .
create program enwronme;t./\[i:

’ :
[’Mowss a new algoriil
E)

process error discovered process parameters and heading)
in parameters, heading ory
rule input

tE

B e
_;<end-of-fn3<’—w
1) a5

process error discovered process data for this algc@
during data input or
algorithm execution

Note that each state requires a knowledge that cards containing a comma

APPENDIX |I: A MARKOV ALGORITHiA PROCESSOR 208

in columr ";)ne and commas in columns one and two force the processor to
be initialized to accept a new algorittm or to terminate. Implicit in
the diagrar is the ability of each state to input a card image. Many of
the interactions caused by this shared information can be eliminated b/
removing the ability to input a card image to a new state, and to
include in this state all information regarding the meaning of cards

containing commas in the first two columns. This choice is a direct

application of the “information hiding " principle which is justified by

the value of the measure. Below is the new state diagram.

\

/_—7 .
create program environment
to process a new algorithm

process error discovered in
parameter, heading or rule input

@E_C_E{f parameters, heading 2=

o B
process rules

process data for this algorithm)

process error discovered)

during data input or
algorithm execution ‘

> get next image
) '
(end of file f

APPENDIX |I: A MARKOV ALGORITHM PROCESSOR 209

A map for the first stages in this development appears below.

il

,/’,:;/I\

(a) :1.1: (210) (b) :1.2: (219) (e) :1.3: (211) (d) :1.4: (211)

initialize process input and process register
parameter store rules. images by the
and heading stored algorithr.
cards.

:1.5: (211) process end-of-file conditicn

(f) :2: '212) read and store a card image
(g) :3: (213) process error occurring in algorithm input part

(h) :4: (213) process error occurring in algorithm execution part

(i) :1.2.1: (215) (j) :1.2.2: (216)
read card and set pr. input and process
headmg card.

(k) .1.2.2.‘. (216) (1) :1.2.2.2: (217) (m) :1.2.2.3: (217)
set failurc to iterate over \ find left paren.
ERRHEAD / m n, o \

//

(n) :1.2.2.47: (218) (o) :1.2.25: (219)
process alphabet set failure to RULES
and generics.

APPENDIX 1: A MARKOV ALGORITHM PROCESSOR 210

(a) :1.1:
assumptions:

eoffects and

post-conditions:

(b) :1.2:

assumptions:

effects and

post-conditions:

:1.1: PROVIDE ALL NECESSARY INITIALIZATIONS;

all necessary initializations have been made

requires the ability to invoke :3:; ERFOR, with a
string message, requires ability to invok: NEXTCARD
which makes a new card image <vailable, ie.
aoility to invoke :2: and returns to the invoker
only if a card for the current algorithm s
available, NEXTCHAR is the veclue of the character
which immediately follows the character of the
current card image produced by the last call of
NEXTCHAR

:1.2: INPUT AND PROCESS THE PARAMETER CARD;
INPUT AND PROCESS THE HEADING CARD;

parameter card and heading card have been correctly
processed

(c) :1.3:

assumptions:

effects and

post=-conditions:

(d) :1.4:

assumptions:

effects and

post-conditions:

(@) :1.5:

assumptions:

effects and

post-conditions:

APPENDIX |: A MARKOV ALGORITHM PROCESSOR 211

requires the ability to invoke :3: ERROR, with a
string message, requires ability to invoke NEXTCARD
which makes a new card image available, i.e.
ability to invoke :2: and returns to the invoker
only if a card for the current algorithm s
avallable, NEXTCHAR is the wvalue of the character
which immediately follows the character of the
current card image produced by the last call of
NEXTCHAR

:1.3: INPUT AND PROCESS THE RULES FOR THIS
ALGORITHM,

all ruies for this algorithm have been inputted

requires ability to invoke NEXTCARD which makes a
new card image available, i.e. ability to invoke
:2: and rcturns to the invoker only if a card for
the current algorithm is available, NEXTCHAR is the
value of the character which immediately follows the
character of the current card image produced by the
last call of NEXTCHAR

:1.4: PROCESS THE DATA IMAGES WITH RESPECT TO THE
STORED ALGORITHM,;

all data images for this algorithm have been
processed

an end-of-file condition has occurred

:1.5: PROCESS END-OF-FILE CONDITION AND TERMINATE;

the Markov aligorithm processor has been terminated

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 212

(f) :2:

assumptions:

effects and
post-conditions:

requires the ability to invoke the termination of
the entire program, ie. :1.5: ENDOFFILE, requires
the ability to invoke, ALGINIT (:1.1.1:) the start
of processing for a new algorithm, CP is an index
into C and indexes the last character which was
produced as a value from NEXTCHAR, After an
execution of NEXTCARD, :2:;, CP must equal 0, write
access required for CP, C[1] .. C[80] contains the
characters, in order, of the card image which is
inputted as a result of the last execution of
GETIMAGE, requires read access to C, requires
ability to invoke GETIMAGE which inputs a card and
returns to the caller only if a card was inputted,
"" in columns | and 2 indicate that the program is
to terminate and a "" in column 1 only indicates
that a new algorithm is to be processed

:2: READ A CARD AND STORE THE 80 CHARACTERS IN
SUCCESSIVE LOCATIONS OF THE ARRAY C, IE
C[1],..C[80] LE. GETIMAGE.

if C[1] = COMMA then
begin
if C[2] = COMMA then invoke end-of-file state
(:1.59
else invoke algorithm initialization state
end
else CP « 0O

a new card image has been read and the appropriate
transition made.

APPENDIX I: A MARKOV ALGORITHM PROCESSOR

(g) :3:

assumptions:

effects and

post-conditions:

(h) :4:

assumptions:

effects and

post-conditions:

requires ability to invoke NEXTCARD which makes a
new card image available, i.e. ability to invoke
:2: and returns to the invoker only if a card for
the current algorithm s available, requires ability
to print the string argument which is passed as the
parameter to ERROR, ability to perform printing
operations

:3: AN ERROR WAS DISCOVERED BY THE ALGORITHM INPUT
PART;
INDICATE THE ERROR;
READ AND PRINT ALL THE REMAINING IMAGES FOR THIS
ALGORITHM;
while true do

begin

READCARD,

PRINTCARD

end;

string parameter has been printed along with all
remaining card images for the algorithm being
processed

requires ability to invoke NEXTCARD which makes a
new card image available, i.e. ability to invoke
2: and returns tc the invoker only if a card for
the current algorithm is available, NEXTCHAR is the
value of the character which immediately follows the
character of the current card image produced by the
fast call of NEXTCHAR, requires ability to invoke
:1.4: which processes the remaining data images for
this algorithm, ability to perform printing
operations

:4: AN ERROR WAS DISCOVERED BY THE ALGORITHM
EXECUTION PART;

INDICATE THE ERROR;

READ A NEW DATA CARD ;

INVOKE THE ALGORITHM EXECUTION PART;

a new data image has been read and the execution
part has been processed

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 214

The object/assumption table for these objects is:

1234567889 101112131415]
(a) :,. |

(b)
(c)
(d)
(e)
(f) :2: RESERE R
(g) :3 I g i
(h) :q: 1 1l

N o WA -
se se oo

1) requires the ability to invoke :3:, ERROR, with a string message
2) requires ability to invoke NEXTCARD which makes a new card image
available, i.e. ability to invoke :2: and returns to the invoker
only if a card for the current algorithm is available
3) NEXTCHAR is the value of the character which immediately
follows the character of the current card image produced by
the last call of NEXTCHAR 1
4) an end-of-file condition has occurred]
5) requires the ability to invoke the termination of the entire k
program, i.e. :1.5: ENDOFFILE J
6) requires the ability to invoke, ALGINIT (:1.1.1:) |
the start of processing for a new algorithm
7) CP is an index into C and indexes the last character which '
was produced as a value from NEXTCHAR. After an execution
of NEXTCARD, :2:, CP must equal 0
8) write access required for CP
9) C[1] .. C[80] contains the characters,
in order, of the card image which is inputted as a result
of the last execution of GETIMAGE
10) requires read access to C
11) requires ability to invoke GETIMAGE which inputs a card
and returns to the caller only if a card was inputted i
12) ",” in columns | and 2 indicate that the program is to terminate

and a "," in column | only indicates that a new algorithm

sk oo

e

e

ol o e e

is to be processed

13) requires ability to print the string argument which is passed as
the parameter io ERROR

14) ability to perform printing operations i

15) requires ability to invoke :1.8: which processes the remaining
data images for this algorithm

APPENDIX I: A MARKOV ALGORITHM PROCESSOR

A good decomposition for these objects is
((a) ((@) () (g, h)(d)(b,c) .97)108).14).20)0
Here, objects (g) and (h) process errors, objects (b) and (¢) input the

algorithm and object (d) interprets it. Not surprisingly, the lack of

assumptions made by the initialization part leaves the entropy loading

figure at 0. Next, :1.2: is elaborated

(i) :1.2.1:

assumplions: requires ability to invoke NEXTCARD which makes a
new card image available, ie. ability to invoke
:2: and returns to the invoker only if a card for
the current algorithm is available, NEXTCHAR is the
value of the character which immediately follows the
character of the current card image produced by the
last call of NEXTCHAR, requires write access to PR,
pr = {rue means ‘"print the register after each
successful application of a rule; otherwise d not
print the register after each successful application
of a rule

:1.2.1: READ A NEW CARD IMAGE;
SET THE FUNCTION pr TO INDICATE WHETHER OR NOT THE
REGISTER CONTENTS SHOULD BE PRINTED, LE.

NEXTCARD;
pr « if NEXTCHAR = "1" then true else false;

effects and
post-conditions: pr = true if the register is to be printed after
each successful rule application; false otherwise

APPENDIX I1: A MARKOV ALGORITHM PROCESSOR

() :1.2.2:

assumptions: requires the ability to invoke :3: ERROR, with a

string message, requires ability to invoke NEXTCARD

F which makes a new card image available, i.e.
ability to invoke :2: and returns to the invoker
4 only if a «card for the current algorithm s
available, NEXTCHAR is the value of the character
which immediately follows the character of the
current card image produced by the last call of
NEXTCHAR, MAXA equals the maximum number of
alphabets permitted for an algorithm, requires read
access to MAXA, ability to set the failure routine
for NEXTCHAR, ie. FAIL can be assigned a name
] which can be invoked if no more characters are
4 available from NEXTCHAR

:1.2.2: INPUT AND PROCESS THE HEADING CARD IMAGE;

] effects and
post-conditions: The heading card image has been correctly processed

(k) :1.2.2.1:

sssumptions: ability to set the failure routine for NEXTCHAR,
ie. FAIL can be assigned a name which can be
invoked if no more characters are available from
NEXTCHAR, requires ability to invoke NEXTCARD which
makes a new card image available, i.e. ability to
invoke :2: and returns to the invoker only if a card
for the current algorithm is available,

:1.2.2.1: SET THE FAILURE ROUTINE FOR NEXTCHAR TO BE
ERRHEAD; NEXTCARD;

effects and
post-conditions: ERRHEAD has been set as the failure routine for
NEXTCHAR and a new card image has been read

APPENDIX i1: A MARKOV ALGORITHM PROCESSOR 217

() :1.2.2.2:

assumptions:

effects and

post=-conditions:

(m) :1.2.2.3:

assumptions:

offects and

post=conditions:

a failure routine has been set it NEXTCHAR cannot
provide additional characters from the current
image, either no alphabets have been processed of
all alphabets processed have been correct

1.2.2.2

repeat
begin
:1.2.2.3:;
:1.2.2.4: ;
:11.2.25
end

until false;

The heading card has been correctly processed and
is error free.

a failure routine has been set if NEXTCHAR cannot
provide additional characters from the current
image, read access to DOT, COMMA, COLON, SEMI, OPEN,
CLOSE which contain the wvalues of ", " ™"
""" "), assumes write access to CHAR, assumes
read access to CHAR, NEXTCHAR is the value of the
character which immediately follows the character of
the current card image produced by the last call of
NEXTCHAR, a failure routine has been set if NEXTCHAR
cannot provide additional characters from the
current image

:1.2.2.3: SCAN FOR A LEFT PARENTHESIS, LE.
repeat

CHAR « NEXTCHAR
until CHAR = OPEN;

CHAR is an open parenthesis.

APPENDIX |1: A MARKOV ALGORITHM PROCESSOR

(n) :1.2.2.4:

agsumptions: ability to set the faiure routine for NEXTCHAR,

ie. FAIL can be assigned a name which can be

invoked if no more characters are available from

NEXTCHAR, assumes wnte access to CHAR, assumes read

access to CHAR, requires the ability to invoke :3;

ERROR, with a string message, NEXTCHAR is the value

' of the character which immediately follows the
character of the current card image produced by the

last call of NEXTCHAR, MAXA equals the maximum

number of alphabets permitted tor an algorithm,

requires read access to MAXA, NA equals the number

. of alphabets which have been processed thus far for
the current algorithm, requires read accesss to NA,

requires write access to NA, read access to DOT,

' COMMA, COLON, SEMI, OPEN, CLOSE which contain the
values of " "0 "% (") ERRHEAD

assumes compete control when invoked and handles

error messages and further processing,, requires

ability to invoke STORGEN which stores the content

of CHAR, if legal, otherwise invokes the apporpriate

error, requires ability to invoke STORALPH, which

stores the alphabet character 1if all requirements

are met,otherwise STORALPH invokes appropriate error

routines, requires ability to invoke ALPHFIN which

cmpletcs any needed processing after an entire

alphabet has been stored

effects and
post=conditions: A single alphabet and its generics has been
correctly processed

APFENDIX {: A MARKOV ALGORITHM PROCESSOR 219

(o) :1.2.2.5:

as;umptions: ability to set the failure routine for NEXTCHAR,
iie. FAIL can be assigned a name which can be
invoked if no more characters are available from
NEXTCHAR, requires ability to invoke RULES which
names the rule input part, but since RULES is a
jabel in the main program a go to statement can be
used

:1.2.2.5: SETFAIL(RULES);
offects and
post=conditions: failure routine for NEXTCHAR has been set to the
next stage of processing
Below is map for the elaboration of :1.2.2.4:

and several objects used ty the elaboration.

(p) :1.2.2.4.1: (220) (q) :1.2.2.4.2: (221) (r) :1.2.2.4.3: (222)
process alphabet part. process generic terminate processing
part. for an alphabet.
(s) :11: (225) get next character
(1) :12: (226) store a generic for the current alphabet
(u) :13: (227) store a character into the current alphabet
(v) :14: (228) terminate processing for current alphabet

(w) :15: (228) test whether space exhausted.

(x) :16: (229) test whether character is a legal
alphabetic or generic

(y) :17: (229) test whether generic has already been used

(2) :18: (230) test whether character has already occurred
in this alphabet.

APPENDIX I: A MARKOV ALGORITHM PROCESSOR

{p) :1.2.2.4.1:

assumptions:

offects and

ERRHEAD assumes compete control when invoked and
handles error messages and further processing,
NEXTCHAR is the value of the character which
immediately follows the character of the current
card image produced by the last call of NEXTCHAR, NA
equals the number of alphabets which have been
processed thus far for the current algorithm,
requires read accesss to NA, MAXA equals the maximum
number of alphabets permitted for an algorithm,
requires read access to MAXA, requires write access
to NA, assumes write access to CHAR, assumes read
access to CHAR, requires the ability to invoke :3;
ERROR, with a string message, ability to set the
fallure routine for NEXTCHAR, ie. FAIL can be
assigned a name which can be invoked if no more
characters are available from NEXTCHAR, read access
to DOT, COMMA, COLON, SEMI, OPEN, CLOSE which
contain the wvalues of " "% "% %, "¢,
requires read/write access to NOIT, which controls a
loop that process alphabets, requires ability to
invoke STORALPH, which stores the alphabet character
if all requirements are metotherwise STORALPH
invokes appropriate error routines

:1.2.2.4.1: PROCESS ALPHABET PART -

if NA + 1 > MAXA then ERROR("TOO MANY ALPHABETS");
SETFAIL(ERRHEADNAME);
NOIT « talse;

repeat
begin
CHAR « NEXTCHAR;
STORALPH;
CHAR « NEXTCHAR;
if CHAR # COMMA then
begin
it CHAR # CLOSE or NEXTCHAR # SEMI then
ERRHEAD
else
NOIT « true
end
end
until NOIT;

NA « NA + |;

APPENDIX |1: A MARKOV ALGORITHM PROCESSOR

post-conditions: a single alphabet has been successfully processed
and stored, NA equals the number of alphabets which
have been processed thus far for the current
algorithm

(q) :1.2.2.4.2:

assumptions: assumes write access to CHAR, assumes read access
to CHAR, read access to DQOT, COMMA, COLON, SEMI,
OPEN, CLOSE which contain the values of ", "'
O, NEXTCHAR is the value of the
character which immediately follows the character of
the current card image produced by the last call of
NEXTCHAR, requires read/write access to MOIT1, which
controls a loop that processes generics, ERRHEAD
assumes compete control when invoked and handles
error messages and further processing, requires
ability to invoke STORGEN which stores the content
of CHAR, if legal, otherwise invokes the apporpriate
error

:1.2.2.42: PROCESS GENERIC VARIABLES FOR THIS
ALPHABET -

CHAR « NEXTCHAR;
NOIT] « false;
if CHAR # SEMI then
begin
repeat
begin
STORGEN;
CHAR « NEXTCHAR;
it CHAR # COMMA then
begin
it CHAR # SEMI then ERRHEAD
vise NOIT! « true
end
el:e CHAR « NEXTCHAR
end
until NOIT1;
end;

effects and
post-conditions: the generic part of the alphabet has
stccessfully processed.

APPENDIX I: A MARKOV ALGORITHM PROCE3SOR 222

(r) :1.2.2.4.3:

assumptions: requires ability to invoke ALPHFIN which cmpletes
any needed processing after an entire alphabet has
been stored

:1.2.2.4.3: ALPHFIN;

effects and
post~conditions: final processing for an alphabet is completed

The object/assumption table for this expancion is

1234567 89 10111213141516171819202122232425262728293031323334353637:
11 11

111 111
1 1

.

RIS S SIS

5 WA -
*s s e

1
: 1 1 [1
5: 1 1
-4 13 1 l 111 111 I I T O I
- 4. 28 1 111 1 11
- 4. 38 1

O N I L L

-
o
e
.
NN

1) requires the ability to invoke :3:, ERROR, with a string message
2) requires ability to invoke NEXTCARD which makes a new card image
available, i.e. ability to invoke :2: and returns to the invoker
only if a card for the current algorithm is available
3) NEXTCHAR is the value of the character which immediately
follows the character of the current card image produced by
the last call of NEXTCHAR
4) an end-of-file condition has occurred
5) requires the ability to invoke the termination of the entire
program, i.e. :1.5: ENDOFFILE
6) requires the ability to invoke, ALGINIT (:1.1.1:)
the start of processing for a new algorithm
7) CP is an index into C and indexes the last character which
was produced as a value from NEXTCHAR. After an execution
of NEXTCARD, :2:, CP must equal 0
8) write access required for CP
9) C[1] .. C[80] contains the characters,
in order, of the card image which is inputted as a resuit
of the last execution of GETIMAGE
10) requires read access to C
11) requires ability to invoke GETIMAGE which inputs a card
and returns to the caller only if a card was inputted
12) " in columns 1 and 2 indicate that the program is to terminate

and a "," in column 1 only indicates that a new algorithm

APPENDIX |: A MARKOV ALGORITHM PROCESSOR 223

is to be processed
13) requires ability to print the string argument which is passed as
the parameter to ERROR
14) ability to perform printing operations
15) requires ability to invoke :1.4: which processes the remaining
data images for this algorithm
16) requires write access to PR
17) pr = true means "print the register after each successful
application of a rule; otherwise d not print the register
after each successful application of a rule
18) MAXA equals the maximum number of alphabets permitted for
an algorithm
19) requires read access to MAXA
20) ability to set the ‘ailure routine for NEXTCHAR, i.e. FAIL
can be assigned a nam2 which can be invoked if no more characters
are available from NEXTCHAR
21) NG contains the number of generic variables encountered
for the current algorithm
22) CG[i], ! 2 £ NG, equals the i-th generic variable
encountered for the current algorithm
23) AG[i], | <i 2 NG, equals the alphabet name which
CG[i] is a generic variable
24) a failure routine has been set if NEXTCHAR cannot
provide additional characters from the current image
25) read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE which
contain the values of ", ", "", %" “(", ")
26) assumes write access to CHAR
27) assumes read access to CHAR
28) requires ability to invoke RULES which names the rule input
part, but since RULES is a labe! in the main program
a go to statement can be used
29) ERRHEAD assumes compete control when invoked
and handles error messages and iurther processing
30) NA equals the number of alphabets which have been processed
thus far for the current algorithm
31l) requires read accesss to NA
32) requires wrile access to NA
33) requires read/write access to NOIT, which controls a
loop that process alphabets
34) requires ability to invoke STORALPH, which stores the alphabet
character if all requirements are met,otherwise STORALPH
invokes appropriate error routines
35) requires read/write access to NOIT1, which controls a loop 2
that processes generics
36) requires abihty to invoke STORGEN which stores the content
of CHAR, if legal, otherwise invokes the apporpriate

error

37) requires ability to invoke ALPHFIN which cmpletes any
needed processing after an entire alphabet has been
stored

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 224

38) either no alphabets have been processed of all alphabets
processed have been correct

This table involves two stages of elaboration. RLB and RUB for the

elaboration of :1.2: to :1.2.1: and :1.2.2: are
RUB: ((a) ((e) ((h ((g, h)(d) (b,c)).94) 106).14).19)0
RLB: ((a) ((e) ((Hh ((g,h){d(b,ec) .94).99).07).10)0
but the actual expansion leads to
((8) ((@) ((f) ((g, h)((d)(c) (i,j)10).94).99).07).10)0
Expanding :1.2.2: leads to RLB and RUB
RUB: ((a) ((e) (() ((g, h) ((d) ((e) (i, j)
88)123).79).983).12).16)0
RLB: ((a) ((e) (() ((g, h) ((d) (e) (i,)
0).88).86).93).04).05)0
but the actual entropy loadings are
(@) (@) (N ((g,h)d) D(k,I,m,n,o)
1.33)159)136) 1.48).12).16)0
A better decomposition is
((@) (@) () () (k,0)({(m,n)(i)(d,c,g,h)
1.33) 1,20) 1.33) .54) .36) .12)0
After examining RLB and RUB for the expansion of :1.2.2.4; the
following good decomposition was found |
((a) (@ (N DWW W(k,0)((m,q,p)

((iY((d,c,g,h)) 134)1.12)1.26).49).09).12).16)0

T T T p——

APPENDIX 1: A MARKOV ALGORITHM PROCESSOR 225

The major parts in this decomposition are (1) the algorithm
interpretation and input parts along with the error processing that can
occur there (¢ ,d, g, h) (2) alphabet and generic input parts (m

y P, q) and (3) the parts that set failure routines.

(s) :11:

assumptions: requires ability to invoke FAIL which correctly
determines which objects assume control, a failure
routine has been set if NEXTCHAR cannot provide
additional characters from the current image, C[1]
C[80] contains the characters, in order, of the
card image which is inputted as a result of the last
execution of GETIMAGE, requires read access to C, CP
is an index into C and indexes the last character ‘
which was produced as a value from NEXTCHAR. After :
an execution of NEXTCARD, :2:, CP must equal O, read |
access required for CP, write access required for CP

:11: NEXTCHAR: CP « CP + 13
if CP > 80 then

FAIL

clse

NEXTCHAR « C{CP};

effects and

post-conditions: the value of :l1: is set to be C[CP], ie. the
next available character in the current image, and
if no more characters are available, the failure
ruuline is execuied

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 226

(t) :12:

assumptions:

effects and
post=conditions:

requires the ability to invoke :3: ERROR, with a
string message, NA equals the number of alphabets
which have been processed thus far for the current
algorithm, requires read accesss to NA, read and
write access required for the wvariable 1, requires
ability to invoke TESTLEGAL which returns only if
CHAR is not "%, "" ™" ™", requires ability to
invoke TESTGEN which returns only if CHAR is not
equal to an already used generic variable for this
algorithm, A names a one-dimensional array, which
from UPA to its upper bound contains alphabetic
characters, requires read access for A, AG[i}, 1 s i
< NG, equals the alphabet name which CG[i] is a
generic variable, requires write access to CG,
CG[i}, 1 < 1 < NG, equals the i-th generic variable
encountered for the current algorithm, NG contains
the number of generic variables encountered for the
current algorithm, requires read access to NG,
requires write access to NG, requires write access
to AG, assumes read access to CHAR, CHAR contains
the next unstored character from the alphabet or
generics being currently processed, AL[l]
AL[NA] names the index of the lower bound of the
characters in an alphabet ie. AL[i] is the lower
bound for the i-th alphabet and AL[i-1] is the upper
bound for that alphabet, where AL[0] equals the
initial value plus 1 of UPA, requires read access to
AL, requires ability to invoke ERRGEN, which assumes
control and invokes an appropriate error routine,

:12: STORGEN

TESTLEGAL;

TESTGEN;

for 1 « UPA step 1 untii AL[O] -1 do
if CHAR = A[I] then ERRGEN;

NG « NG + I;

if NG > MAXG then ERROR ("TOO MANY GENERIC
VARIABLES");

CG[NG] « CHAR;

AGING] « NA;

content of CHAR has been stored as a generic
variable with respect to the alphabet currently
being processed

—

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 227

| (u) :13:
2ssumptions: requires ability to invoke TESTLEGAL which returns
only if CHAR is not "% " " ™" requires

eiiecis and
post=conditions:

-

ability to invoke TESTGEN which returns only if CHAR
is not equal to an already used generic variable for
this algorithm, requires ability to invoke TESTAL
which returns only if CHAR is not equal to a
character which has already occurred in the alphabet
currently being processed, requires aoility to
invoke TEST which returns only if there storage
space as indicated by the values of LPA and UPA, UPA
names the last cell of an array into which an
alphabetic character was stored, counting from the
top of some one-dimensional array. UPA s
decremented by 1 each time an available cell needs
to be named, requires read access to UPA, requires
write access to UPA, A names a one-dimensional
array, which from UPA to its upper bound contains
alphabetic characters, requires write access for A,
assumes read access to CHAR, CHAR contains the next
unstored character from the alphabet or generics
being currently processed

:13: STORALPH

TESTLEGAL;
TeSTGEN;
TESTAL;

UPA « UPA - 1;
TEST;
A[UPA] «CHAR;

the contents of CHAR has been currectly stored as
an alphabet character in the current alphabet

Lond oWy e e e e

APPENDIX |: A MARKOV ALGORITHM PROCESSOR 228

(v) :14:

assumptions:

effects and
post~conditions:

(w) :15:

assumptions:

effects and
post-conditions:

AL[1} .. AL[NA] names the index of the lower
bound of the characters in an alphabet, ie. AL[i]
is the lower bound for the i-th alphabet and AL[i-1]
is the upper bound for that alphabet, where AL[O]
equals the initial value plus 1 of UPA, requires
write access to AL, NA equals the number of
alphabets which have been processed thus far for the
current algorithm, requires read accesss to NA, UPA
names the last cell of an array into which an
alphabetic character was stored, counting from the
top of some one-dimensional array. UPA s
decremented by 1 each time an available cell needs
to be named, requires read access to UPA

:14: ALPHFIN

AL[NA] « UPA;

lower bound for alphabet NA has been set

requires the ability to invoke :3: ERROR, with a
string message, UPA names the last cell of an array
into which an alphabetic character was stored,
counting from the top of some one-dimensional array.
UPA is decremented by 1 each time an available cell
needs to be nramed, requires read access to UPA, LPA
names the las cell of an array into which rules are
stored, counting from the Ilower bound of a
one-dimensional array . LPA is incremented by one
each time an available cell needs to be named,
requires read access to LPA, LPA and UPA are index
variables for the same array

19 TEST LE
if LPA 2 UPA then
ERROR("ALGORITHM TEXT TOO LARGE OR TOO MANY
ALPHABET
CHARACTERS");

there is an available storage location for a rule
rule character or an alphabetic character or a
generic

o ant

APPENDIX |: A MARKOV ALGORITHM PROCESSOR 229

(x) :16:

assumptions:

effects and

post-conditions:

(y) :17:

assumptions:

efiecis anud

post=conditions:

read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE
which contain the wvalues of ", " " " (",
)", requires the ability to invoke :3: ERROR, with
a string message, assumes read access to CHAR, CHAR
contains the next unstored character from the

alpnabet or generics being currently processed

:i6:
TESTLEGAL, LE.

it CHAR = COLON or CHAR = DOT or CHAR = COMMA or
CHAR = SEMI then
ERROR("ILLEGAL CHARACTER");

CHAR is not a colon, period, comma, or semicolon

assumes read access to CHAR, CHAR contains the next
unstored character from the alphabet or generics
being currently processed, NG contains the number of
generic variables encountered for the current
algorithm, reguires read access to NG, CG[i], ! < i
< NG, equais the i-th generic variable encountered
for the current algorithm, requires read access to
CG, requires ability to invoke ERRGEN, which assumes
conirol and invokes an appropriate error routine,
requires read/write access to J

:17: TESTGEN LE.

for J « 1 step | untii NG do
it CHAR = CG[J] then ERRGEN;

CHAR has not occurred before as a generic variable

APPENDIX |: A MARKOV ALGORITHM PRCCESSOR 230

i (z) :18:

: assumptions: requires read/write access to K, NA equals the
number of alphabets which have been processed thus
far for the current algorithm, requires read accesss
to NA, requires the ability to invoke :3:; ERROR,
with a string message, UPA names the last cell of an
array into which an alphabetic character was stored,
counting from the top of some one-dimensional array.
UPA is decremented by 1 each time an available cell
needs to be named, requires read access to UPA, A
l names a one-dimensional array, which from UPA to its

upper bound contains alphabetic characters, requires
read access for A, assumes read access to CHAR, CHAR
contains the next unstored character from the
alphabet or generics being currently processed,
requires read access to AL, AL[1] .. AL[NA] names
] the index of the lower bound of the characters in an
alphabet, ie. AL[i] is the lower bound for the
i-th alphabet and AL[i-1] is the upper bound for
that alphabet, where AL[0] equals the initial value
plus 1 of UPA

TR

:18: TESTAL LE.
jor K « UPA step 1 until AL[NA] - 1 do
if CHAR = A[K] then
ERROR("CHARACTER APPEARS TWICE IN ALPHABET");

effects and
post=conditions:

CHAR has not occurred already it the alphabet being
processed

P T PR AR T el e—

APPENDIX 1: A MARKOV ALGORITHM PROCESSOR 231

123456789 101112131415161718192021222324252627282930313233343536373£39404 |
(s) :1: HNER I 1
() 12 11 I 1 1
(W))3 I

(v) 24 11

(w) 15

(x) 16t 4 1o

(y) 217 I I

(2) :18 | 11

4243044546474849505152535456575859606 1 6263646566676 869
(s) 2y

(t) =2 NEEBEERENRE 1
(u) :)3: 11 I I min
(v) :q: | |
(w) 252]
(x) :16: |

(y) =172: I I I o
(2) =8 11 11 I 1

1) requires the abilty to invoke :3: ERROR, with a string message
2) requires ability to invoke NEXTCARD which makes a new card image
available, i.e. ability to invoke :2: and returns to the invoker
only if a card for the current algorithm is available
3) NEXTCHAR is the value of the character which immediately
follows the character of the current card image produced by
the last call of NEXTCHAR
4) an end-of-file condition has occurred
%) requires the ability to invoke the {crmination of the entire
program, i.e. :1.5: ENDOFFILE
6) requires the ability to invoke, ALGINIT (:1.1.1:)
the start of processing for a new algorithm
7) CP is an index into C and indexes the last character which
was produced as a value from NEXTCHAR. After an execution
of NEXTCARD, :2:, CP must equal 0
8) write access required for CP
9) C[1] .. C[80] contains the characters,
in order, of the card image which is inputted as a result
of the last execution of GETIMAGE
10) requires read access to C
11) requives ability to invoke GETIMAGE wlich inputs a card
and returns to the caller only if a card was inputted
12) " in columns 1 and 2 indicate that the program is to terminate
and a "" in column 1 only indicates thal a new algorithm
is to be processed
13) requires ability to print the string argument which is passed as
the parameter to ERROR
14) ability to perform printing operations
15) requires apbihty to invoke :1.4: which processes the remaining

A T NG TR T ar Y MRy e R SN ST i apea—

ax i b b A L o B et e T e o o T e

—

APPENDIX |I: A MARKOV ALGORITHM PROCESSOR 232

data images for this algorithm
16) requires write access to PR
17) pr = true means "print the register after each successful
application of a rule; otherwise d not print the register
after each successful application of a rule
18) MAXA equals the maximum number of alphabets permitted for
an algorithm
19) requires read access to MAXA
20) ability to set the failure routine for NEXTCHAR, i.e. FAIL
can be assigned a name which can be invoked if no more characters
are available from NEXTCHAR
21) NG contains the number of generic variables encount_red
for the current algorithm
22) CG[i], 1 <i < NG, equals the i-th generic variable
encountered for the current algorithm
23) AG[i), i <i s NG, equals the alphabet name which
CG[i] is a generic variable
24) a failure routine has been set if NEXTCHAR cannot
provide additional characters from the current image
25) read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE which
contain the values of "%, """ %" ",)"
26) assumes write access to CHAR
27) assumes read access to CHAR
28) requires ability to invoke RULES which names the rule input
part, but since RULES is a label in the main program
a go to statement can be used
29) ERRHEAD assumes compete control when invoked
and handies error messages and further processing
30) NA equals the riumber of alphabets which have been processed
thus far for the current algorithm
31) requires read accesss to NA
32) requires write access to NA
33) requires read/write access to NOIT, which controls a
loop that process alphabets
34) requires ability to invoke STORALPH, which stores the alphabet
character ii ull requirements are met,otnerwise STORALPH
invokes appropriate error routines
35) requires read/write access to NOIT1, which controls a loop
that processes generics
36) requires ability to invoke STORGEN which stores the content
of CHAPR, if legal, otherwise invokes the apporpriate
error
37) requires ability to invoke ALPHFIN which cmpletes any
needed processing after an entire alphabet has been
stored
38) either no alphabets have been processed of all alphabets
processed have been correct
39) requires ability to invoke FAIL which correctly determines
which objects assume control
40) read access required for CP

APPENDIX 1: A MARKOV ALGORITHM PROCESSOR 233

41)
42)

43)

44)

45)
46)

47)
48)
49)
50)

51)

52)
53)

54)

55)

56)

57)
58)
59)

60)
61)
62)

63)
64)
65)
66)
67)
68)
69)

read and write access required for the variable |
requires ability to invoke TESTLEGAL which returns only if

CHAR 15 not ", " """

requires ability to invoke TESTGEN which returns only if

CHAR is not equal to an already

used generic variable for this algorithm

A names a one-dimensional array, which from UPA to its
upper bound contains alphabetic characiers

requires read access for A

NG contains the number of generic veriables encountered
for the current algorithm

requires read access to NG

requires write access to NG

requires write access to AG

CHAR contains the next unstored character

from the alphabet or generics being currently processed
AL[1] .. AL[NA] names the index of the lower bound of the
characters in an alphabet, i.e. AL[i] is the lower

bound for the i-th alphabet and AL[i-1] is the

upper bound for that aiphabet, where AL[G] equals the
initral value plus | of UPA

requires read access to AL

requires ability to invoke ERRGEN, which assumes
control and invokes an appropriate error routine

requires ability to invoke TESTAL which returns only If
CHAR is not equal to a ch-racter which has already occurred in the
alphabet currently being pro.~ssed

requires ability to invoke TEST which returns only if there
storage space as indicated by the values of LPA and UPA
UPA names the last cell of an array into which an alphabetic
character was stored, counting from the top of some
one-dimensional array. UPA is decremented by |}

each time an available cell needs to be named

requires read access to UPA

requires write access to UPA

A names a one-dimensional array, which from UPA to its
upper bound contains alphabetic characters

requires write access for A

requires write access to AL

LPA names the las cell of an array into which rules

are siored counting from the lower bound of a
one-ditiensional array . LPA is incremented by one each
time an available cell needs to be named

requires read access to LPA

LPA and UPA are ‘ndex variables for the same array
requires read access to CG

requires write access to CG

requires read/write access to J

requires read/write access to K

requires read access tor A

APPENDIY |t £ MARKOV ALGORITHM PROCESSOR 234

MAfter examining entropy loading values for these new objects, the
following good decomposition was fourd
((a) ((r) (&) () ((s) () ((k,0) (i)
(d,g,h)((v,w)Uy,u)(z,Y

(m,q,p)) 1.66)1.48) 1.44) 1.44) 131)

1.00) 1.02).47).41)55).36).10).12)0
This decomposition is similar to the decomposition at the last stage.
Because objects (r) ... (v) were introduced, 'the generic and alphabet

input parts interact strongly with the rest of the program.

APPENDIX 1: A MARKOV ALGORITHM PROCESSOR 235

Next, :1.3: that inputs rules, is elaborated. A map for this
elaboration, as well as a map for several objects invoked by the

elaboration of :1.3:, appears below.

(xa) :1.3.1: (236) set failure routine to ERRULENAME.
(x%b) :1.3.2: (236) initialize for rule input.

/(*c) :1.3.3: (236) get a new input card.
P

:1.3: “—— (%d) :1.3.4: (237) as lcng as the input card is a rule, keep
\ executing :1.3.5: and :1.36:

(%e@) :1.3.5: print card; input and store rule.
(%f) :1.3.6: (237) get a new input card.

(xg) :1.3.7: (238) process end of rules conditions.

(%kh) :1.3.5.1: (238) print card
(%i) :1.3.5.2: (238) initialize for new rule.
/’(*j) :1.3.5.3: (238) process rule label.
:1.3.5: — (%K) :1.35.4: (239} collect left part of rule.
i(*l) :1.3.5.5: (239) mitialize for right part.
(%km) :1.3.5.6: (240) collect and store right part.

(%n) :1.3.5.7: (241) collect and store successor label.

(%0) :20: (242) input a label.

(xp) :21: (243) store a label.

(%q) :30: (244) mark rule as a terminal rule.

(%r) :31: (245) process successor part of rule.
(%s) :32: (246) make a character part of this rule.

(xt) :33: (247) initialize for rule processing.

| APPENDIX |: A MARKOV ALGORITHM PROCESSOR 236

(%u) :34: (248) initialize for processing a new rule.
: (xv) :35: (249) initialize for processing right part of rule.
] (xw) :36: (250) process end of all rule input conditions.

(%x) :37: (250) check whether the current card should be
interpreted as a rule.

] (xa) :1.3.1:

assumptions: requires ability to set the failure routine for
NEXTCHAR, i.e. the ability to invoke SETFAIL with a
variable which names the part which is to be invoked
if no more characters are available from NEXTCHAR,
ERRULENAME contains the value which indicates a
routine which can take control if an error s
discovered as rules are being stored, requires read
access to ERRULENAME

:1.3.1: SETFAIL(ERRULENAME);

effects and
post-conditions: failure routine for NEXTCHAR has been set to the
part named by ERRULENAME

(xb) :1.3.2:

assumptions: requires ability to invoke INITRA, which
initializes the input part for rules for a new
algorithm

:1.3.2: EXECUTE ANY NEEDED INI7IALIZATIONS FOR
INPUTTING THE RULES FOR AN ALGORITHM, LE. INITRA;

effects and
post-conditions: rule input part can correctly accept a set of rules

for a new algorithm
(%c) :1.3.3:

assumptions: requires ability to invoke NEXTCARD which makes a
new card image available, i.e. ability to invoke
:2: and returns to the invoker only if a card for
the current algorithm is available

:1.3.3: NEXTCARD;

effects and
post=conditions: a new card image has been read and is available

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 237

(xd) :1.3.4;

assumptions:

effects and

post-conditions:

(xe) :1.3.5;

assumptions:

etfects and

post-conditions:

(xf) :1.3.6:

assumptions:

effects and
post-conditions:

requires ability to invoke CARDISRULE which
determines whether the current card image is to be
interpreted as as a rule or not

:1.3.4:

while CARDISRULE do
begin
:1.35: ;
:1.3.6:
end;

all rules for this algorithm have been successfully
inputted

requires ability to invoke PRINTCARD which prints
the current card image,

:1.53.5: PRINTCARD;
INPUT AND STORE A RULE;

card image has been printed and a single rule has
been correctly inputted

requires ability to invoke NEXTCARD which makes a
new card image aveilable, i.e. ability to invoke
:2: and returns to the invoker only if a card for
the current algorithm is available

:1.3.6: NEXTCARD;

a new card image has been inputted and is available

e L L

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 238

(xg) :1.3.7:

assumptions:

offects and

post=conditions:

(xh) :1.3.5.1:

assumptions:

effects and

post=conditions:

(xi) :1.3.5.2:

assumptions:

effects and

post-conditions:

(%j) :1.35.3:

assum.ptions:

offects and

post-conditions:

requires ability to invoke EDR, end of rules
condition processor

:1.3.7: EDR;

all end-of -rule conditions have been correctly
resolved

Next, :1.35: which inputs a single rule, s
elaborated.

requires ability to invoke PRINTCARD which prints
the current card image

:1.3.5.1: PRINTCARD;

current card image has been printed

requires ability to invoke INITR which initializes
for inputting a new rule

:1.3.5.2: INITIALIZE FOR THIS RULE LE. INITR;

rule input is properly initialized to accept a new
rule

requires ability to invoke LABL which collects a
label terminated by the character in TERM and leaves
the integer label value in LAB, requires ability to
invoke STORLABEL which associates the label with the
current rule, requires write accesc to TERM, read
access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE which

contain the values of “", " ", " "(",

:1.3.5.3: TERM « COLON;
LABL;
STORLABEL;

label of current rule has been correctly processed
and associated with the current rule

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 239

(xk) :1.3.5.4:

assumptions: NEXTCHAR is the value of the character which
immediately follows the character of the current
card image produced by the last call of NEXTCHAR, a
failure routine has been set it NEXTCHAR cannot
provide additional characters from the current
image, read access to DOT, COMMA, COLON, SEMI, OPEN,
CLOSE which contain the wvalues of "", "' ™"
""",)", assumes write access to CHAR,

requires ability to invoke TESTLEGAL which returns
only if CHAR is not "", "" " ™" ability to

invoke STORCHAR which returns only if the content of
CHAR could be successfully stored with rule being
processed

:1.3.5.4: COLLECT AND STORE LEFT PART OF RULE, IE.

CHAR « NEXTCHAR;
while CHAR # COLON do

begin
TESTLEGAL;
STORCHAR;
CHAR « NEXTCHAR
end;
effects and
post=conditions: the left part of a rule has been correctly stored
(x1) :1.3.5.5:
assumptions: requires ability to invoke INITRIGHT which
initializes for processing the input of a right part
of a rue

:1.35.5: INITIALIZE FOR RIGHT HALF RULE PROCESSING
LE. INITRIGHT

effects and
post-conditions: the right half of the rule can be correctly
[} processed

B e i e e

APPENDIX I: A MARKOV ALGORITHM PROCESSOR

{%m) :1.3.5.6:

assumptions:

effects and
post-conditions:

NEXTCHAR s the value of the character which
immediately follows the character of the current
card image produced by the last call of NEXTCHAR, a
failure routine has been set if NEXTCHAR cannot
provide additional characters from the current
image, assumes write access to CHAR, assumes read
access to CHAR, requires ability to invoke TESTLEGAL
which returns only if CHAR s not "" "% "%
", read access to DOT, COMMA, COLON, SEMI, OPEN,
CLOSE which contain the vaues of " "% "
""" "), ability to invuke STORCHAR which
returns only if the content of CHAR could be
successfully stored with rule being processed

:1.3.5.6: COLLECT AND STORE RIGHT HALF OF RULE LE.

CHAR « NEXTCHAR;
while CHAR # DOT A CHAR ¢ SEMI A CHAR ¢ COMMA do
begin
TESTLEGAL;
STORCHAR,;
CHAR « NEXTCHAR
ond;

right half of the rule has been correctly processed

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 241

(%xn) :1.35.7:

assumptions: read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE
which contain the wvalues of " "% " " ",
")*, requires the abity to invoke :3: ERROR, with
a string message, which does not return but handles
further processing, assumes read access to CHAR, a
failure routine has been set if NEXTCHAR cannot
provide additional characters from the current
image, assumes write access to CHAR, NEXTCHAR is the
value of the character which immediately follows the
character of the current card image produced by the
last call of NEXTCHAR, requires ability to invoke
PROCTERM which indicates a rule as a terminal rule;
requires ability to invoke PROCSUC which processes
the successor part of a rule, requires read access
to LAB, requires write access to TERM, requires
ability to invoke LABL which collects a label
terminated by the character in TERM and leaves the
integer label value in LAB, a necgative value in LAB
indicates that no label was collected

:1.35.7: COLLECT AND PROCESS SUCCESSOR PART OF
RULE, LE.

if CHAR # SEMI then
begin
if CHAR = DOT then
begin
PROCTERM;
CHAR « NEATCHAR,;
if CHAR # StMI then
ERROR("RULE NOT CORRECT")
end
else
if CHAR = COMMA then
begin
TERM « SEMI;
LABL;
if LAB < O then
ERROR("SUCCESSOR MISSING")
PROCSUG;
end;
end;

effects and
post-conditions: the successor part of the current rule has been
correctly processed

T . T T TN

(x0) :20:

assumptions:

offects and
post-conditions:

APPENDIX |2 A MARKOV ALGORITHM PROCESSOR 242

Below are the elaborations of the additional
functions which are needed.

a failure routine has been set if NEXTCHAR cannot

provide additional characters from the current
image, TERM contains the non-digit character which
is expected to terminate a label, requires read
access to TERM, assumes write access to CHAR,
assumes read access to CHAR, NEXTCHAR is the value
of the character which immediately follows the
character of the current card image produced by the
last call of NEXTCHAR, the digits "0", "I", "2%
, "9" are represented by character codes such that
“0" - ZERO = 0, .. ,"9" - ZERO = 9 and the only
legal label characters are digits and BLANK,
read/write access to LAB is required, legal range of
labels is 1 through 100, BLANK contains the
representation of a space and ZERO contains the
representation of a zero, requires read access to
BLANK and ZERO , requires the ability to invoke :3;,
ERROR, with a string message, which does not return
but handles further processing

:20: LABL, LE.
LAB « -1;
CHAR « NEXTCHAR;
while CHAR # TERM do
begin
if CHAR 2 7ERO A CHAR 2 ZcRO + 9 then
LAB « (if LAB 2 O then 10 * LAB + CHAR - ZERO
else CHAR - ZERO)
else
if CHAR # BLANK then
ERROR("ILLEGAL CHARACTER IN LABEL")
CHAR « NEXTCHAR
end;

if LAB = 0 or LAB > 100 then
ERROR("LABEL OUT OF RANGE");

return the value of LAB;

a syntactically correct label has been
concatenated, if control returns to caller; if no
label has been concatenated, the value -1 s
returned

APPENDIX I: A MARKOV A_GORITHM PROCESSOR 243

(xp) :21:

assumptions: assumes LAB contains a legal label name or -1 which
indicates that no label has been concatenated,
requires read access to LAB, requircs write access
to LAB, NI names the rule being currently inputted,
requires read access to NI, requires ihe ability to
invoke :3:, ERROR, with a string message, which does
not return but handles further processing, R names a
one-dimensional array which contains pointers to
rules such that label i names rule R[i}; R[] = O
means label i is not defined; R[i] > O means the
label is defined and R[i] is a pointer to the rule
it namws; R[i] < 0 means that label i is undefined
but has been referenced by rule -R[i] and is the
head of a chain, A names a one-dimensional array
which from its lower bound to LPA contains
representations of rules, requires write access fcr
A, after rule initialization, A[N1] - | = NR, NI
names the current rule A[N1] = -1, N2 = Nl+l, A[N2]
= 2, NE = Nl + 2 and the location which is the name
of the immediately preceding rule names the current
rule. thus if NI" is the value of NI prior to this
initialization then A[NI1’] = NI - unless NR = 1 in
which case the previous value of NI is not defined

:21: STORLABEL

if LAB > O then

begin

if R[LAB] > 0 than ERROR("DOUBLE LABEL
OCCURRENCE");

if R[LAB] = 0 ihen R[LAB] « NI
eise
while R[LAB] < 0 do
begin
TEMP « - R[LABJ;
R[LAB] « A[TEMP);
A[TEMP] « NI
end;
end;

effects and
post-conditions: label LAB has been stored and all undefined
references to LAB have been resolved

R ey

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 244
(xq) :30:
assumptions: after rule initialization, A[N1] - 1 = NR, N1 names

the current rule A[N1] = -1, N2 = Nl+l, A[N2] = 2,
NE = NI + 2 and the location which is the name of
the immediately preceding rule names the current
rule. thus if N1’ is the value of Nl prior to this
initialization then A[N1’] = NI - unless NR = 1 in
which case the previous value of Nl is not defined,
requires read access to N2, requires write access
for A, A names a one-dimensional array which from
its lower bound to LPA contains representations of
rules, a value of -1 in A[N2] indicates that the
rule is a terminal rule

:30: PROCTERM, LE.
A[N2] « -1;

effects and
post=conditions: the rule is marked as terminal

APPENDIX 1: A MARKOV ALGORITHM PROCESSOR

W NF T e POl a ae—

(xr) :31:

assumptions:

effects and
post=-conditions:

atter rule initialization, A[N1] - 1 = NR, NI names
the current rule A[N1] = -1, N2 = Nl+1, A[N2] = 2,
NE = NI + 2 and the location which is the name of
the immediately preceding rule names the current
rule. thus if N1' is the value of N1 prior to this
initialization then A[N1’}] = N1 - unless NR = 1 in
which case the previous value of N1 is not defined,
R names a one-dimensional array which contains
pointers to rules such that label i names rule R[i};
R[i] = O means label i is not defined; R[i] > O
means the label is defined and R[i] is a pointer to
the rule it namws; R[i] < O means that label i is
undefined but has been referenced by rule -R[i] and
is the head of a chain, requires write access to R,
requires read access to R, A names a one-dimensional
array which from its lower bound ‘o LPA contains
representations of rules, requires write access for
A, assumes LAB contains a legal label name or -1
which indicates that no label has been concatenat:d,
requires read access to N2, requires read access to
LAB

:31: PROCSUC, LE.

if R[LAB] > O then A[N2] « R[LAB]
else
if R[LAB] = O .hen
begin
R[LAB] « -N2;
A[N2] « O
end
else
begin
A[N2] « R[LABJ;
R[LAB] « -N2
end;

the successor to the current rule has been set or
made part of a chain of rules which have the same,
yet undefined, successor

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 246

(xs) :32:
assumptions: requires read access to NE, NE names a cell in A
such that A[NE] indicates the current number of
characters in the rule part being processed - left

part if the left part is being processed or right
part if the right part is being processed, assumes
read access to CHAR, NG contans the number of
generic variables encountered for the current
algorithm, requires read access to NG, CG[i}, 1 < i
< NG, equals the i-th generic variable encountered
for the current algorithin, requires read access to
CG, LPA names the las cell of an array into which
rules are stored, counting from the lower bound of a
one-dimensional array . LPA is incremented by one
each time an available cell needs to be named,
requires read accesss to NA, requires write access
to LPA, requires ability to invoke TEST which
returns only if there storage space as indicated by
the values of LPA and UPA, requires read/write
access to L, A names a one-dimensional array which
from its lower bound to LPA contains representations
of rules, requires write access for A

:32: STORCHAR LE.
Lel;

while | € NG A CG[L] # CHAR do

Lel + 1

LPA « LPA + |;
TEST;
if L > NG then
A[LPA] « CHAR
olse
A[LPA] « - L;
A[NE] « A[NE] + 1;

effects and

pcst-conditions: A[LPA] is negative if CHAR was a generic and
-A[LPA] then indexes the generic in CG; otherwise
A[LPA] IS CHAR. A[NE] contains tne number of
characters encountered thus far for the rule part
being processed

APPENDIX 1: A MARKOV ALGORITHM PROCESSOR 247

(xt) :33:

assumptions:

etfects and
post-conditions:

at most 100 lahels are permitted and their
definitions appear in the one-dimensional array
R[1:100] such that R[] contains the definition of
label i when the label is interpreted as a positive
integer, R names a one-dimensional array which
contains pointers to rules such that label i names
rule R[i} R[i] = O means label i is not defined;
R[i] > O means the label is defined and R[i] is a
pointer to the rule it namws; R[i] < O means that
label i is undefined but has been referenced by rule
-R[i] and is the head of a chain, requires write
access to R, NR indicates the rulename which is
currently being processed requires write access to
NR,

:33: INITRA LE.

NR « 0;
SETFAIL(ERRULENAME);

for H « 1 step 1 until 100 do R[H] « O;

the error routine for NEXTCHAR is set to ERRULE and
all iabel definitions are set to 0, ie. undefined

T -

APPENDIX I: A MARKOV ALGORITHM PROCESSOR

(xu) :34:

assumplions:

effects and
post=conditions:

NR indicates the rulename which is currently being
processed, requires write access to NR, LFA names
the las cell of an array into which rules are
stored, counting from the Ilower bound of a
one-dimensional array . LPA is incremented by one
each time an available cell needs to be named,
requires read accesss to NA, requires write access
to LPA, requires ability to invoke TEST which
returns only if there storage space as indicated by
the values of LPA and UPA, A names a one-dimensional
array which from its lower tound to LPA contains
representations of rules, after rule initialization,
A[N1] - 1 = NR, N1 names the current rule A[N1] =
-1, N2 = NIl+l, A[N2] = 2, NE = NI + 2 and the
location which is the name of the immediately
preceding rule names the current rule. thus if NI’
is the value of NI prior to this initialization then
A[NI’] = NI - unless NR = 1 in which case the
previous value of Nl is not defined, requires read
access to N2, requires write access to N2, NE names
a cell in A such that A[NE] indicates the current
number of characters in the rule part being
processed - left part if the left part is being
processed or right part if the right part is being
processed, requires read access to NE, requires
write access to NE

:34: INITR - initialize for new rule i.e.

NR « NR + 1
LPA « LPA + 4
TEST;

A[LPA - 3] « NR;
if NR > 1 then A[N1] « LPA - 2;
Nl « LPA - 2;
A[NL] ¢ -1;

N2 « LPA - 1
A[N2] « 2;

NE « LPA;

ANE] « O;

after rule initialization, A[N1] - 1 = NR, N1 names
the current rule A[N1] = -1, N2 = N1+1, A[N2] = 2,
NE = N1 + 2 and the location whith is the name of
the immediately preceding ruie names the current
rule. thus if N1’ is the value of N1 prior to this
initialization then A[NI’J] = NI - unless NR = 1 in
which case the previous value of Nl is not defined

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 249

(%kv) :35:

assumptions:

effects and
post=conditions:

after rule initialization, A[N1] - 1 = NR, Nl names
the current rule A[NI] = -1, N2 = Nl+}, A[N2] = 2,
NE = NI + 2 and the location which is the name of
the immediately preceding rule names the current
rule. thus if NI’ is the value of Nl prior to this
initialization then A[NI'] = Nl - unless NR = 1 in
which case the previous value of N1 is not defined,
LPA names the las cell of an array into wkich rules
are stored, counting from the lower bound of a
one-dimensional array . LPA is incremented by one
each time an available cell needs to be named,
requires rcad accesss to NA, requires write access
to LPA, requires ability to invoke TEST which
returns only if there storage space as indicated by
the values of LPA and UPA, NE names a cell in A such
that A[NE] indicates the current number of
characters in the rule part being processed - left
part if the left part is being processed or right
part if the right part is being processed, requires
read access to NE, requires write access to NE

:35: INITRIGHT LE.
LPA « LPA + [;
TEST;

NE « LPA;

AINE] « 0;

A[NE] = O and indicates the current number of
characters in the night half of the current rule

APPENDIX 1: A MARKOV ALGORITHM PROCESSOR

(xw) :36:

i G it

assumptions:

effects and

post-conditions:

(xx) :37:

assumptions:

effects and

post-conditions:

R names a one-dimensional array which contains
pointers to rules such that label i names rule R[i);
Ri] = O means label i is not defined; Ri] > O
means the label is defined and R[i] is a pointer to
the rule it namws; R[i] < O means that label i is
undefined but has been referenced by rulz -R[i] and
is the head of a chain, requires read access to R,
NR indicates the rulename which is currently being
processed, requires read access to NR, requires the
ability to invoke :3: ERROR, with a string message,
which does not return but handles further
processing, requires read/write access to Q :36: EDR
LE.

for Q « 1 step 1 until 100 do
if R[Q] < O then ERROR("UNDEFINED LABEL(S)")

if NR < O then ERROR("ALGORITHM CONTAINS NO RULES")

a set of rules has successfully been inputted and
constitutes a syntactically correct algorithm

read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE
which contain the values of ™" "% ™" %" "(
2, Q] .. C[80] contains the characters, in
order, of the card image which is inputted as a
result of the last execution of GETIMAGE, requires
read access to C, a colon in column 4 when
processing rules indicates that the card is to be

interpreted as a rule
:37: CARDISRULE LE.

C[4] = COLON

true if card is to be interpreted as a rule; false
otherwice

APPENDIX I: A MARKOV ALGORITHM PROCESSOR

123456789 10111213141516171819202122232425262728293031
l

C WO

@ W

R R RS A

[ARNANA

.3
. 3

(B}

424344454647484950515253545556575859606162636465666708€9

A I B IS S R

ss so se se ss se e oo

[ARN AN AR AR AR AR SN

C £ L K -G = O N
ce oo es eo ee e ec () L

APPENDIX I: A MARKOV ALGORITHM PROCESSOR

L) L)
%* *
X

-~
X
S
—

> oo os s

L)
*
2

Ly
(%0) :20
$2

-

*

¥

4

.
N I I U RC R R

W ww
W N -

70717273747576777879808182838485868788899091

D
Y

O U g Y J g dN o
T e+ e T T T ee ee e

S O b WN -
e e oo oo se ss oo

~
.

929394959697 989900010203040506070£0910111213141516171819
il

OO O OO N DLW -
- - - - ee o0 oo oo ss e e

252

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 233

{*xx) HeVH] ,

1) requires the ability to invoke :3:, ERROR, with a string message,
which does not return but handles further processing
2) requires ability to invoke NEXTCARD which makes a new card image :
available, 1.e. ability to invoke :2: and returns to the invoker |
only if a card for the current algorithm is available
3) NEXTCHAR is the value of the character which immediately
follows the character of the current card image produced by
the last cali of NEXTCHAR
4) an end-of-file condition has occurred
5) requires the ability to invoke the termination of the entire
program, i.e. :1.5: ENDOFFILE
6) requires the ability to invoke, ALGINIT (:1.1.1:)
the start of processing for a new algorithm
7) CP is an index into C and indexes the last character which
was produced as a value from NEXTCHAR. After an execution
of NEXTCARD, :2:, CP must equal O
8) write access required for CP
9) C[1] .. C[80] contains the characters, .
in order, of the card image which is inputted as a result !
of the last execution of GETIMAGE ,
10) requires read access to C |
11) requires ability to invoke GETIMAGE which inputs a card '
and returns to the caller only if a card was irputted
12) "" in columns 1 and 2 indicate that the program is to terminale
and a "" in column 1 only indicates that a new algorithm
is to be processed
13) requires ability to print the string argument which is passed as
the parameter to ERROR
14) abihty to perform printing operations
15) requires abiity to invoke :1.4: which processes fhe remaining
data images for this algorithm
16) requires write access to PR
17) pr = true means "print the register after each successful
application of a rule; otherwise d not print the register
after each successful application of a rule
18) MAXA equals the maximum number of alphabets permitted for
an algorithm
19) requires read access to MAXA
20) requires ability to set the failure routine for NEXTCHAR, ie.
1 the ability to invoke SETFAIL with a variable which names
' the part which is to be invoked If no more characters are
available from NEXTCHAR
21) NG contains the number of generic variables encountered
for the current aigorithm
22) CG[i], 1 <1 < NG, equals the i-th generic variable
encountered for the current algorithm J
23) AG[i], 1 si € NG, equals the alphabet name which :
CG[i] is a generic variable

P .

iz oo iy ma o ke

APPENDIX I: A MARKOV ALGORITHM PROCESSOR

24) a fallure rouline has been set if NEXTCHAR cannot
provide additional characters trom the current image
25) read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE which
contain the values of "", ", " " "(", """
26) assumes write access to CHAR
27) assumes read access to CHAR
28) recquires ability to invoke RULES which names the rule input
part, but since RULES 15 a label in the main program
a go to statement can be used
29) ERRvicaD assumes compele control when invoked
and nhandies error messages and further processing
30) NA equals the number of alphabets which have been processed
thus far tor the current algorithin
31) requires read accesss to NA
32) requires write access to NA
33) requires read/write access to NOIT, which controls a
loop that process alpnabets
34) requires ability to invoke STORALPH, which stores the alphabet
characier .t all requirements are met,otherwise STORALPH
invokes appropriate error routines
35) requires read/write access to NOITL, which controls a loop
that processes generics
36) requires ability to invoke STORGEN which stores the content
of CHAR, if legal, otherwise invokes the apporpriale
errci
37) requires ability to invoke ALPHFIN which cimpletes any
needed processing afler an entire alphabet has been
stored
38) either no alphabets have been processed ef all alphabcts
processed have been correct
39) requires abiity to invoke FAIL which correctly determines
which objecis assume control
40) read access required for CP
41) read and wrile access required for the variable |
42) requires asbility to invoke TESTLEGAL which returns only if
CHAR 1s not ", " e, "
43) requires ability to invoke TESTGeN which returns only if
CHAR 1s not equal to an already
used generic variable for this algorithm
44) A names a one-dimensional array, which from UPA to its
upper bound contains alphabetic characters
45) requires read access for A
46) NG contains the number of generic variables encountered
for the current algoritiun
47) requires read access to NG
48) requires wrile access 10 NG
49) requires write access 1o AG
50) CHAR contains the next unstored character
from the alphabet or generics being currently processed
51) AL[1] .. AL[NA] names the index of the lower bound of the

254

APPENDIX I: A MARKOV Al GORITHM PROCESSOR

52)
53)

54)

55)

56)

57)
58)
59)

60)
61)
62)

63)
64)
65)
66)
67)
68)
69)
70)

71)

72)
73)
74)

75)

76)

characters in an alphabet, re. AL[i] 1s the lower

bound for the i-th alphabet and AL[i-1] is the

upper bound for that alphabet, where AL[O] equals the

imtial vatue plus 1 of UPA
requires read access to AL

requires abihity to invoke ERRGEN, which assumes
control and invokes an appropriate error routine
requires ability to invoke TESTAL which returns only if
CHAR is not equal to a character which has alread;, occurred

alphabet currently being processed

requires ability to mvoke TEST which returns

only if there

storage space as indicated by the values of LPA and UPA
I'PA names the last cell of an array into which an alphabetic
character was stored, counting from the iop of some
one-dimensional array. UPA is decremented by |

each time an available cell needs to be named

requires read access to UPA
requires write access to UPA

A names a one-dimensional array, which from UPA to its

upper bound contains alphabetic characters

requires wrile access for A
requires wrile access to AL

LPA names the las cell of an array into which rules

are stored, counting trom the lower bound of a

one-dunensional array . LPA is incremented by one each

time an available cell needs to be named

requires read access to LPA

LPA and UPA are index variables for the same array

requires read access to CG
requires write access to CG
requires read/wriie access to J
requires read/write access to K
requires read access for A

requires ability to invoke INITRA, which imtiaiizes the

input part ror rules for a new algoritnm

requires abihity to imvoke CAHRUISRULE wihren determines
whether the current card image 1s to be interpreted as

as a rule or not

requires abihity to invoke PRINTCARD
which prints the current card image

requires ability to invoke EDR, end of rules condition

processor

requires ability to invoke INITR which initializes

for inputting a new rule

requires ability to invore LABL which collects a label
terminated by the character iri TERM and leaves the integer

label value in LAB

requires ability to invoke STORLABEL which associates

the tabel with the current ruie
requires write access to TERM

APPENDIX |: A MARKOV ALGORITHM PROCESSOR 256

78)

79)

80)

8l)
82)
83)

84)

85)
86)
87)

88)
89)

90)
91)

92)

93)
94)
95)
96)

97)
98)

ability to invoke STORCHAR which returns only if the
content of CHAR could be successfully stored with rule
being processed
requires nbility to invoke INITRIGHT which initializes
for processing the nput of a right part of a rule
requires ability to invoke PROCTERM which indicates a rule as
a terminal rule; requires ability to invoke PROCSUC
which processes the successor part of a rule
requires read access to LAB
a negative value in LAB indicates that no label was collected
after rule initialization, A[NL] - t = NR, NI names the
current rule A[N1] = -1, N2 = N1+1, A[N2] = 2, NE = N1 + 2
and the location which is the name of the
immediately preceding rule names the current rule. thus if
NI’ is the value of N1 prior to this initialization
then A[NI'] = NI - unless NR = 1 in which case the previous
value of Nl is not defined
R names a one-dimensionar array
which contains pointers to rules such that label i
names rule R[i];
R[i] = O means label i is not defined;
R(i] > O means the label is defined and -
R[i] is a pcinter to the rule it namws;
R[i] < O means that label i is undefined but has
been referenced by rule -R{i] and is
the head of a chain
requires write access to R
requires read access to R
A names a one-dimensional array which from its
lower bound to LPA contains representations of rules
requires read access to NE
NE names a cell in A such tivat A[NE] indicates the current number
of characters in the rule part being processed - left part
if the left part is being processed or right part if the
right part 1s being processed
requires write access to LPA
at most 100 labels are permitted and their definitions
appear in the one-dimensional array R[1:100] such that
R[i] contains the defimition of label i when the label
is interpreted as a positive integer
NR indicates the rulename which is currently
being processed
requires read access to NR
requires write access to NR
requires write access to NE
TERM contains the non-digit character which is expected
to terminate a label
requires read access to TERM
the digits "0", "1", "2", ..., "9" are represented by character
codes such that "0" - ZERO =« 0, .. ,"9" - ZERO = 9

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 257

and the only legal label characters are digits and BLANK
99) read/write access to LAB 1s required
! 100) legal range of labels 1s | through 100
i 101) BLANK contains tie representation of a space and ZERQ
1 contains the representation of a zero
102) requires read access to BLANK and ZERQ
! 104) assumes LAB contains a legal label name or -1 which
indicates that no label has been concatenated
109) requires write access to LAB
106) N1 names the rule being currently inputted
107) requires read access to NI
108) ERRULENAME contains the value which indicates a routine
which can take control if an error is discovered as rules
are being stored
109) requires read access to ERRULENAME
110) requires read access to N2
] 111) requires read/write access to L
112) requires write access to N2
113) a colon in column 4 when processing rules indicates that
the card 1s to be interpreted as a rule
114) requires read/write access to Q
115) a value of -1 in A[N2] indicates that the
rule 15 a terminal rule
116) ERRHEADNAME s a variable which names the routine ERRHEAD
117) requires read access to ERRHEADNAME
118) RULESNAME is a variable which names the routine RULES which
inputs the rules for an algorithm
119) requires read access to RULESNAME
RUB for the expansion of :1.3: is

.

((a) ((r) ((e) ((H) s) ((h ((K, 0) (D
((d,g,h)((v,w)y, u)z,t)
(m,q,p) 1.73)128)155)150)139) L.11)
1.12).39)35).47).30).08).10)0
The actual loadings are
((a) ((r) ((@) (1) ((s) () ((K, 0) D)
(d,g,h)((v,w)({x
((%2, %b , xc , %d , %o , %t , %g) ((y,u)((2,1t)

(m,q,p)) 1.29)1.28).83)1.16)1.02).96).98) 54)

S5) 47) .90) 07).10)0

APPENDIX | A MARKOV ALGORITHM PROCESSOR 258

These vaues are mostly lower than the RUB for the expansion.
Consequently, no attempt will be made to find a better decomposition for

this stage.

RUB for the expansion of :1.3.5: is
((a) ((r) (@) () ((s) () ((K, 0) ()
((d,g,h)((v,w)((x)
((%a, %b, %c , %d, %e , xf, *g) ((y,u)((z,1)
(m,q,p) 1.03)106).83).91).65).87).88) .48
31).42).26).08).09)0
Unfortunately, the actual loadings are
((@) ((r) ((e) ((f) ((s) () ((Kk, o) (i)
((d,g,h)((v,w)x
((xa, xb , %c , %d , %h , *xi , %), xk , x| ,
*xm , xn , xf,xg) ((y,u)(Cz,t)
(m,q,p) 1.29)1.28).83) 1.16)102).96).98) 54)
35) .47) .30) .07) .10
A modification of this decomposition leads to the following better
decomposition
((@) ((r) ((@) () ((s) () ((k,0) (D
(d,g,h)((v,w)(x
((%a , %b , *%c , %d , xh , %i , %j, x|,
xf,xg)((y,u)(z,t)

(m,q,p, %k, *m,xn)) 157) 1.41) 1.39) 136)

.97) 100) 101).47).49) .60).26).07).09)0

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 259

Here, those objects that recognize and store information for the rule
execution part (m , q , %k , *m , %n) interact most with the rest of
the program. Also, those objects that control and invoke the above
mentioned objects share much information and appear grouped together (
%a , %b, %c¢ , %d , %h , %i , xj , % , *g , *f). Since the remaining
objects in the table will be used - in part - by the expansion of :1.4;,

an analysis of the entropy loadings involving them is postponed until

after the elaboration of :1.4.

APPENDIX 1: A MARKOV ALGORITHM PROCESSOR 260

Below is a map of the elaboration of :1.4: and most of the remaining
objects.

(>a) :l41: (262) control input of the inital register
contents and markov algorithm execution,

(>b) :1.42: (262) print card; input initial register
contents.

(>¢) :1.43.1: (263) initiaize for execution of currently
stored algorithm and the current register contents.

/()d) :1.4.3.2: (264) control attempts to apply the rules.
’%n) :1.4.3.3: (264) attempt to apply current rule.
-

:1.4: — Of) :1.43.4: (265) replace matched string and possibly print

the register contents; set next rule to the successor for a
successful application of the current rule.

(>g) :1.435: (265) set next rule to be the successor for a
failure to match left part of current rule.

\(>h) :1.436: (266) terminate algorithm interpretation if
necessary.

(>1) :40: (267) search ftor an instance of the left halt of a
rule in the register.

(>j) :41: (269) replace matched string by the right half of
the current rule.

(Ok) :42: (270) adjust the register to accomodate the right
half of the current rule.

O :43: (271) insert the nght half of the current rule into
the register.

(Om) :44: (272) test whether a generic variable matches a
character in the register.

(On) :45: (272) test whether a rule character 1s a generic.
(>0) :46: (273) get a character from the left part of a rule.

Op) :47: (273) get the successor for a rule that corresponds
to a successful application of the rule.

(>q) :48: (273, get the successor for a rule that corresponds
to an unsucces:ful applicaticn of the rule.

APPENDIX |: A MARKOV ALGORITHM PROCESSOR 261
(Or) :49: (274) get the location of the first charecter of the ‘
left part of the current rule.
(>s) :50: (274) indicate an error in the heading for an
algorithm,
(t) :51: (275) invoke the rule input part of the program. :
(Ou) B52: (274) indicate an error in a rule.
Ov) :B53: (275) indicate an error in an initial register data
image
Ow) :54: (275) indicate a generic variable occurring in the
data.
Ox) B5: (273) initialize all generic variables to be
undefined.
(Oy) :65: (276) get character from the rfght part of the
current rule.

(>z) :66: (276) test whether a generic variable is defined.

(<a) :67: (276) get the length of the right part of the
current rule.

(<b) :68: (277) get the character associaled with a generic
variable.

(¢c) :70: (277) get the length of the left part of the current
ruie.

|

APPEND!IX i: A MARKOQV ALGORITHM PROCESSOR 262

Below is an elaboration of :1.4:; which executes an algorithm with
respect to its data images

(>a) :1.4.1:

. assumptions: assumes all rules have been inputted correctly;
] assumes that the current card isrepresents an
initial register contents; assumes that NEXTCARD
returns control only if a data image is available
for the current algorithm
:1.4.1: repeat
. begin
! :1.4.2: ;
01408 3
:1.4.4;
end
until fatse;
(Ob) :1.4.2:
assumptions: requires the ability to invoke :4: ERRORE, with a

string message, which does not return but handles
further processing at the execution stage, requires
ability to invoke PRINTCARD which prints the current
card image, ERRDATANAME contains a value which
indicates a routine which ndicates a routine which
can take control if an error is discovered while an
initial register contents is being input, requires
read access to ERQDATANAME, requires ability to set
the failure routine for NEXTCHAR, ie. the ability
to invoke SETFAIL with a variable which names the
part which is to be invoked if no more characters
are available from (NEXTCHAR, REG, is a
one-dimensional array which coniains the characters
in the register, assumes write access to REG,
assumes read access to MAXRL which contains the
maximum number of characters permitted in the
register, NEXTCHAR is the value of the character
which immediately follows the character of the
current card image produced by the last call of
NEXTCHAR, requires ability to invoke TESTLEGAL which
returns only if CHAR is not """ "% S
requires ability to invoke TESTGEN which returns
only if CHAR is not equal to an already used generic
variable for this algorithm, requires write access
to RL, requrres read/write access to RPP which is
used as a temporary register position pointer when
the register is being iniially filled, requires
read/write access to RC which is used to contain
single characters from the current data card when

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 263

effects and

post-conditions:

(>¢) :1.43.1:

assumptions:

eoffects and

post=conditions:

the register is being filled, read access to DOT,
COMMA, COLON, SEMI, OPEN, CLOSE which contain the

values of ll'll, “,ll, ll:“’ i (“’ ne

:1.4.2: PRINTCARD; INPUT THE INITIAL REGISTER
CONTENTS, LE

PRINTCARD;
SETFAIL(ERRDATANAME);
RPP « 0;

RC « NEXTCHAR;

while RC # SEMI do
begin
RPP « RPP + |;
if RPP > MAXRL then

ERRORE("REGISTER OVERFLOW");

TESTLEGAL;
TESTGEN;
REG[RPP] « RC;
RC « NEXTCHAR;
end;

RL « RPP;

an initial register contents has been correctly set
into the register and RL contains the number of
characters in the register

the name of the first rule is 2, MAXT1 contains the
number of trial rule applications still permitted
for this execution of an algorithm, requires write
access to MAXT], write access to RULENAME required,
RULENAME names the rule currently being processed

:1.43.1: INITIALIZE PROCESSING FOR CURRENT
ALGORITHM WITH CURRENT REGISTER CONTENTS, LE.

RULENAME « 2;
MAXT1 « MAXT;

processing initialized for current algorihm and
register contents

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 264 }
(>d) :1.4.3.2:
assumplions: RULENAME names the rule currently being processed,
requires read access to TRM, FIN is a result of
NOSUC which indicates that there are no more rules
which can be applied, requires read access o FIN,
read access to RULENAME required, TRM is a result of
SUCSUC and UNSUCSUC which indicates that the ,
algorithm should terminate, i.e. TERM names no
legal and indicates termination

:1.4.3.2: while RULENAME # TERM A RULENAME # FIN do
begin

:1.433: ;

:1.43.4: ;

:1.435: ;

:1.4.3.6: ;

end:

effects and
post-conditions: :n algorithm has been executed with respect to an
initial register contents

(>e) :1.4.3.3:

assumptions: requires ability to invoke SEARCH which searches
for a match of the left part of rule RULENAME, and
which returns the value true if a match is found,
false otherwise, requires the ability to invoke :4;
ERRORE, with a string message, which does not return
but handles further processing at the execution
stage, MAXTl contains the number of trial rule
applications still permitted for this execution of
an algorithm, requires read access to MAXTI,
requires write access to MAXT]

:1.4.3.3:

MAXT] « MAXTI - I;
if MAXT1 < O then cRRORE("MAXIMUM NUMSER OF TRIALS EXCEEDED")
if SEARCH then

:1.4.3.4: else :1.4.35: ;

effects and

post-condilions: the rule, RULENAME, has been applied, if possible, 1
to the register contents and a new successor rule
has been set in RULENAME

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 265

0Of) :1.4.3.4:

assumptions:

effects and

post=canditions:

(>g) :1.435:

assumptions:

eftects and

post=condi‘ions:

RULENAME names the rule currently being processed,
requires ability to invoke REPLACE, which has the
»ffect of replacing the register contents with the
right part of the rule named by RULENAME, where the
left part was matched, requires the ability to
invoke SUCSUC which iias the value of the success to
rule RULENAME for a successful application of rule
RULENAME, write access to RULENAME required,
requires read access to PR, pr = true means “print
the register after each successful application of a
rule; otherwise d not print the register after each
successful application of a rule, requires the
ability to invoke PRINTREG which prints the contents
of the register

:1.4.3.4: REPLAZE;
RULENAME « SUCSUC;
if PR then PRINTREG;

the right part of rule, RULENAME, has replaced the
left-most occurrence of the left part of the rule,
RULENAME

RULENAME names the rule currently being processed,
requires the ability to invore IINSUCSUC which has
the wvalue of the name of the successof to rule
RULENAME after an uncuccessful application of rule
RULENAME, write access to RULENAME required,

:1.4.3.5: RULENAME « UNSUCSUC;

RULENAME contains the name of the rule which is to
be attempted next if the current rule could not be
applied successfully

APPENDIX I A MARKOV ALGORITHM PROCESSOR 266

(Oh) :1.43.6:

assumptions:

effects and
post-conditions:

RULENWWE names the rule currently being processed,
requires the ability to invoke :4:;, ERRORE, with a
string message, which does not return but handles
further processing at the execution stage, requires
the ability to invoke PRINTREG which prints the
contents of the register, pr = true mzans “print the
register after each successful application of a
rule; otherwise d not print the register after each
successful application of a rule, requires read
access to PR, if RULENAME = TRM then dot termination
has occurred, otherwise the rules have been
exhausted, read access to RULENAME required, TRM is
a result of SUCSUC and UNSUCSUC which indicates that
the algorithm should terminate, ie. TERM names no
legal and indicates termination

:1.4.3.6: if RULENAME = TRM then
begin
it NOT(PR) then
PRINTREG;
ERRORE("DOT TERMINATION")
end

else
ERRORE("RULES EXHAUSTED")

The appropriate termination message has been
printed and ERRORE has been invoked to handle
further processing

(>i) :40:

assumptions:

APPENDIX I: A MARKOV ALGORITHM PROCESSOR

requires the ability to invoke LEFT which names the
location which is the first character of the left
part of rule, RULENAME, requires ability to invoke
LENGTHL which has the wvalue of the number of
characters in the left part of the rule named by its
parameter, RULENAME names the rule currently being
processed, read access to RULENAME required, LEM
names the number of the character in the left part
of the rule currently being processed, requires read
access to LEN, requres write access to LEN, LFT
names the starting location for the left part of the
current rule name, requires read access to LFT,
requires write access to LFT, requires read/write
access to NOSUC, RL contains the current register
length, requires read access to RL, requires ability
to invoke RULLFTCHR(A,B) which produces the value of
the B-th character of the left part which starts at
A, and requires ability to invoke INITGEN which sets
the definitions of all generic variables to be
undefined, RP names the character position where a
character sequence is to be replaced, requires read
access to RP, requires write access to RP, requires
ability to invoke GENERIC which has the value true
it its parameter represents a pgeneric variable,
requires read/write access to CC, requires
read/write access to LHP, REG, is a one-dimensional
array which contains the characters in the register,
assumes read access to REG

:40: SEARCH IE.

LFT « LEFT(RULENAL'Z);
LEN e LENGTHL(RULENAME),
NOSUC « true;
if RL > LEN then
begin
RP « O;
while RP < RL + | - 'EN A NOSUC do
begin
RP « RP + |
LHP « I;
NOSUC « false;
INITGEN,;
while LHP < LEN A NOT(NOSUC) do
begin
CC « RULLFTCHR(LFT, LHP);

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 268

if GENERIC(CC) then
begin
if NOT(MATCHGEN(CC, R.G[RP + LHP - 1]) then
NOSUC + ftrue
end
else
if CC # REG[RP + LHP - 1] then
NOSUC « true
LHP « LHP + |
end;
end;
end;
SEARCH « NOT(NOSUC);

vifects and

post-conditions: SEARCH =t-ue if the left part of rule RULENAME
matches a substring of the register and sets up
internal variables whicn can be used by REPLACE for
replacing the first occurrence of a match from the
left end of the register by the right part of rule
RULENAMEL; false otherwise

APPENDIX I: A MARKOY ALGORI1HM PROCESSOR 269

(>)) :41:

assumptions:

effects and
post-conditions:

requires ability to invoke LENGTHL which has the
value of the number of characters in the left part
of the rule named by its parameter, requires the
ability to invoke :4:;, ERRORE, with a string
message, which does not return but handles further
processing at the execution stage, requires ability
to invoke ADJUST whose first parameter indicates the
number of characters in the left part of a rule and
whose second parimeter indicates the number of
characters in the right part of the rule. ADJUST
modifies the register, if necessary, so that the
right part can be inserted where the matched left
part is, requires abiity to invoke INSERT which
inserts the appropriate right part over the matched
left part, requires ability to invoke LENGTHR which
returns the value of the number of characters in the
right part of the rule named by its parameter,
requires rezd/wiite access to LEN and LENR, requires
read access to LENR, requires write access to LENR

:41: REPLACE | E.

LENR « LENGTHR(RULENAME);

LENL « LENGTHL(RULENAME);

if RL - LENL + LENR > MAXRL then
ERRORE("REGISTER OVERFLOW"),

ADJUST(LENL,LENRY);

INSERT;

the right part of rule, RULENAME, has replaced the
leftmost occurrence of the left part of RULEMAME

APPENDIX 1: A MARKOV ALGORITHit PROCESSOR

{>k) :42:

assumptions: RL conrtains the current regisier length, requires
read access to R.L, requires write access to RL,
requires read access to L1, Le, and TP; L1 contains
the length of a character sequence being replaced by
a character sequence of length L2, REG, is a
one-dimensional array which contains the characters
in the register, assumes read access to REG, assumes
write access 1o REG, RP names the character position
where a characler sequence 1s 1o be replaced,
requires read access 1o RP, assumes L1 # L2

:42: ADJUST(LL,L2); LE.

if L1 < L2 then
begin
for TP « RL step -1 until RP + L1 do
REG[TP + L2 - L1] « REG[TP];

end
else
begin
for TP « RP + L1 step | uniil RL do
REG[TP + L2 - L1] « REG[TP];
end;

RL « RL + N2 - NI;

effects and

post-conditions: the register is modified so thal a replacement of a
string sterting at RP of lengih L1 can take place
correctly ior a string of length L2

APFENDIX I: A MARKOV ALGORITHM PROCESSOR 271

1) :43:

assumptions: requires read wrnite access to TQ and CQ, RP names
the character position where a character sequence 1s
to be replaced, requires read access to RP, requires
abiity to invoke GENERIC which has the value true
if its parameter represents a generic variable,
requires ability to invoke RULRTCHAR(A) which
returns the character which 1s the A-th character of
the right side of rule RULENAME, requires the
ability to invoke UNDEF(A) which returns the value
frue if A s an undefineu generic variable
representation for thus rule application; false
otherwise, requires abily to invoke VALG(A) which
prodices the character associated with the generic
representation A for this rule application, requires
the ability to invoke :4:; ERRORE, with a siring
message, which does not return but handles further
processing at the execution stage, REG, is a
one-dimensional array which contains the characters
in the register, assumes write access to REG,
assumes LENR contains the length of the string being
inserted, requires read access to LENR

:43: INSERT LE.
fer TQ « | step 1 until LENR do
begin
CO ~ RULRTCHAR(TQ)
if GENERIC(CQ) then
begin
if UNDEF(CQ) then
ERRORE("UNDEFINED GENERIC USED IN RIGHT PART OF RULE")
else REG[RP + TQ - 1] « VALG(CQ)
end
olse
REG[RP + TQ - 1] « CQ
end;

effects and
post-conditions: the characters in the right part of a rule have
been stored into successive locations of REG
starting at RP

APPENDIX 1: A MARKOV ALGORITHM PROCESSOR 272

(>m) :44:

sssumptions:

effects and

post~conditions:

(>n) :45:

sssumptions:

offects cnd

post-conditions:

(>o) :46:

sssumptions:

AL[1] .. AL[NA] names the index of the lower
bound of the characters in an alphabet, i.e. AL[i]
is the lower bound for the i-th alphabet and AL[i-1]
is the upper bound for that alphabet, where AL[0]
equals the initial value plus 1 of UPA, requires
read access to AL, AG[i], 1 < i £ NG, equals the
alphabet name which CG[|] is a generic variable,
requires read access to AG, G is a one-dimensional
array such that G[i] = -1 if generic variable i is
not defined after a successful search for a left
part of a rulei, otherwise G[i] > O and is the
character corresponding to the generic i, requires
read access to G, requires write access to G,
requires read/write access to NMAT

:44: MATCHGEN/CC,Q) 1E. NMAT ¢ {rue; if G'-CC] < O
then begin T « AL[AG[-CC]}; while NMAT A T <
AL[AG[-CC] -1] do begin if Q = A[T] then begin
G[-CC] « A[T); NMAT « false end; end else if G[-CC]
= Q then NMAT « f{slse

MATCHGEN « NOT(NMAT);

MATCHGEN = true if the generic indicated by CC is
matched by Q; false otherwise

assumes that a generic in a rule has been saved as
a negative value
:45: GENERIC(S) LE.
GENERIC « S < 0;

GENERIC = true if S represents a generic variable;
false otherwise

requires read access for A, assumes Q is a legal
character pointer into the left

APPENDIX I: A MARKOV ALGORITHM PROCESSOR

effects and

post-conditions:

Op) :47:

assumptions:

effects and

post-conditions:

(>q) :48:

assumptions:

effects and

post=conditions:

:46: RULLFTCHR(P,Q) LE.

RULCHAR « A[P + Q + 2};

RULLFTCHR = the Q-th character in the left part of
the rule named by P

requires read access for A, assumes A[RULENAME + 1]
names the successor for rule RULENAME for a
successful application of rule RJLENAME, RULENAME
names the rule currently being processed, read
access to RULENAME required,

:47: SUCSUC « A[RULENAME + 1];

SUCSUC names the rule to be tried next after a
successful applicalion of rule, RULENAME

requires read access for A, RULENAME names the rule
currently being processed, read access to RULENAME
required, assumes A[RULENAME] names the successor
rule for rule RULENAME after an unsuccessful
application of rule RULENAME

:48: UNSUCSUC « A[RULENAME];

UNSUCSUC names the rule to be tired next after an
unsuccessful application fo rule RULENAME

APPENDIX I: A MARKOV ALGORITHM PROCESSOR

(>r) :49:

sssumplions:

effects and

post=conditions:

(>s) 50:

assumplionz:

effects and

post-conditions:

0Ot) S1:

assumptions:

effects and

post-conditivnz:

Ou) H2:

assumplions:

effects and
post-conditions:

assumes X + 2 is an index which names the first
character of the left part of a rule -1

:49: LEFT(X) LE.
LEFT « X + 2

LEFT is a value which names the left part of rule X

requires the ability to invoke :3: ERROR, with a
string message, which does not return but handles
further processing

$50: ERRHEAD, LE.
ERROR("HEADING NOT CORRECT");

:3;, ERROR, has been invoked and handles all
further processing

requires ability to invoke RULES which names the
rule input part, but since RULES is a label in the
main program a go to statement can be used

B51: go to RULES;

the rule input part of the program is given control
for further processing

requires the ability to invoke :3: ERROR, with a
string message, which does not return but handles
further processing
H52: ERRULE 1. E.

ERROR("RULE NOT CORRECT");

:3;, ERROR, has been invoked and handles further
processing

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 275

(>v) :563:

sssumptions:

offects and

post-conditions:

Ow) 54:

assumptions:

offects and

post-conditions:

(>x) :55:

assumptions:

effects and

post-conditions:

requires the ability to invoke :3: ERROR, with a
string message, which does not return but handles
further processing

53: ERRDATA LE.

ERRORE("DATA NOT CORRECT")

+3:;, ERROR, has been invoked and handles further
processing

requires the ability to invoke :3:;, ERROR, with a
string message, which does not return but handles
further processing

54: ERRGEN L.E.

ERROR("GENERIC VARIABLE IN DATA");

:3:, ERROR, has been invoked and handles further
processing

requires read/write access to QK, G is a
one-dimensional array such that G[i] = -1 if generic
variable i is not defined after a successful search
for a left part of a rulei, otherwise G[i] > 0 and
is the character corresponding to the generic i,
requires write access to G, NG contains the number
of generic variables encountered for the current
algorithm, requires read access to NG

:55: INITGEN LE.

for QK « 1 step 1 until NG do
GlQK] « -1;

the definitions of the generic variables have been
sel to undefined

APPENDIX |: A MARKOV ALGORITHM PROCESSOR 276

(>y) :65:

assumptions:

effects and

post-conditions:

(>z) :66:

assumptions:

eftects and

post=conditions:

(<a) :67:

assumptions:

eftects and

post=conditions:

requires read access for A, assumes Y is a legal
character pointer into the right part of a rule
whose first character is named by X + LENGTHL(X) +
4, requires ability to invoke LENGTHL which has the
value of the number of characters in the left part
of the rule named by its parameter

:65: RULRTCHR(X,Y) LE.
RULRTCHR « A[X + LENGTHL(X) + 3 + Y] ;

RULRTCHR is the Y-th character in the right part of
rule X

G is a one-dimensional array such that G[i] = -* if
generic variable i is not defined after a successtul
search for a left part of a rulei, otherwise G[i] >
0 and is the character corresponding to the generic
i, requires read access to G

:66: UNDEF(X) LE. UNDEF « G[-X] > 0;

UNDEF = true if no definition for the generic
indicated by X exists; otherwise fals¢
requires read access for A, requires ability to

invoke LENGTHL which has the value of the number of
characters in the left part of the rule named by its
parameter, assumes A[X <+ LENGTHL(X) + 3] is the
number of characters in the right part of rule X

:67: LENGTHR(X) LE.

LENGTHR « A[X + LENGTHL(X) + 3};

LENGTHR equals the length of the right part of the
rule indicated by X

APPENDIX I1: A MARKOV ALGORITHM PROCESSOR 277

(<b) :68:

assumptions:

offects and

post-conditions:

(<e) :70:

assumptions:

eoffects and

post-conditions:

G is a one-dimensional array such that G[i] = -1 if
generic variable i is not defined after a successful
search for a left part of a rulei, otherwise G[i] >
0 and is the character corresponding to the generic
i, requires read access to G

:68: VALG(X) LE.
VALG « G[-X};

VALG equals the character associated with the
generic variable indicated by X

requires read access for A, assumes read access to
X and assumes that the length of the left part of a
rule named by X is contained in A{X + 2]
:70: LENGTHL(X) LE.

LENGTHL « A[X + 2J;

LENGTHL is the length in characters of the left
part of the rule named by X

=

APPENDIX i: A MARKOV ALGORITHM PROCESSOR 278

>a
>b
>c
>d
>e
>

>h
i
4
>k
M
>m
o
>0
>p
>q
or
>$
"
u
paY
W
X
>y
>2
<a
<b
<¢

o
e s N D D

1688
708

T EE R

1234567 89 10111213141516171819202122232425

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 279

28293031323334353637383940414243444546474849505 | 52

N

73 1.4

> iy.q.2: 11

> :1.4.3.18

A :y.4.3.2:

>).4.3.3:

2 i1.4.3.4

8 1438

>h :i.4.36¢

) 1400

> 418

b SEEPTH

Mo 243t

dm iqaq: 1
>n g5

>0 46 1
> a7t)
>q 48t |
>r iag

> g0l

ooge 1

U :g28

>V g3

>W iggl

>X igst 11
by test |
>2 iget

@ g7 1
<b :4a:

¢ :70¢ 1

APPENDIX I: A MARKOV ALGORITHM PROCESSOR

72
>8 1.4 1%
o .4 28 |
>@ 1.4.3.1%
>d :1.4.3.28
20 $).4.3.3:
> :1.4.3-4°
>2 1.4.3.-5
h :1.4.3.6¢
Y ta0l
> sart
YK ig2¢
M a3
>m 44t
>n igs:
>0 g6t
> ig7¢
>q ‘tas
>r g9
>S ig0¢
2ot
>u g2
>V ig3l
W iggt
>X igst
Yy lemt
22 g6t
@ :p7t
<b :6st

¢ 700

280

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 281

202122232425262728293031
]]

$1.4.12 1
b :j.g.28 {100 T T A N A 1
> $41.4.3-1° 1
d :4.4.3.28
> :1.4.3.3¢ ! 1
 :1.4.3.42
>6 $1.-6.3.5°
>h :1.4.3.6]
dYi 408 1!
di g1t 1
>k g2 111]
M 438 1 11
>m :4q:
M 5t
20 g0
> tar
>q :ast
or igqt
>8 g0
b2 ST YT
u gol
v g3t
W igg¢
X g5t
d¥ 658
22 e
@8 :¢7¢
<b st

€ ty0¢

‘ APPENDIX I: A MARKOV ALGORITHM PROCESSOR 282

32333435363738394041424344454647484950515253545556575859606 16263646566

\| >a .43
b :y.a 20
>)43 % 11
d)43 2 RERR
> :).4.3. 3 | 11
2 1434 1 11 1
>6 :1.4.3.5% | |
>h :1.4.3 6% 11 111
i 1400] I T T T T T O T O I |
> :a): 1
>k ig2: 11
M 143t
>m a4t 1111
b I T-H |
20 a6t 1
> iar | 1
>q a8t 1 l
or a0t
>s ig0¢
bl SN T TH
ou g3t
v lsgl
W iggt
>X g8t 11
>y ie5: 1
22 66t 11
<@ g7t 1
<b :gs 1
<€ 70t

APPENDIX I: A MARKOV ALGORITHM PRCCESSOR 283

>a
>b
>¢
>d
ve
>

>h
M
%)
>k
M|
>m
on
>0
>p
>q
or
>s
>t
ou
>V
>w
>x
>y
2
<a
<b
<c

1)

2)

3)

4q)
5)
6)
7)

8)
9)

676868707172737475767778798081828384858687888990919293

e oo e
ee oo

WWwwnN —
Sl

D W N —
e oo

......
Woe
a2

.
(-]

a2
P N

F- -3
w N
ve s oo

1 1111
taq: !
: 45
462
147
s 48
149% |
HTY
:5)°
t528
1538
154
155: |
165¢ |
66°
te7% |
‘68
t700 1
requires the ability to invoke :3:, ERROR, with a string message,
which does not return but handles further processing
requires ability to invoke NEXTCARD which makes a new card image
available, i.e. ability to invoke :2: and returns to the invoker
only if a card for the current algorithm is available
NEXTCHAR is the value of the character which immediately
follows the character of the current card image produced by
the last call of NEXTCHAR
an end-of-file condition has occurred
requires the ability to invoke the termination of the entire
program, i.e. :1.5: ENDOFFILE
requires the ability to invoke, ALGINIT (:1.1.1:)
the start of processing for a new algorithm
CP is an index into C and indexes the last character which
was produced as a value from NEXTCHAR. After an execution
of NEXTCARD, :2:, CP must equal 0
write access required for CP
C[1] .. C[80] contains the characters,
irn order, of the card image which is inputted as a result

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 284

of the last execution of GETIMAGE
10) requires read access to C
11) requires ability to invoke GETIMAGE which inputs a card
and returns to the cailer only if a card was inputted
12) “" in columns 1 and 2 indicate that the program is to terminate
and a "," in cclumn 1 only indicates that a new algorithm
is to be processed
13) requires ability to print the string argument which is passed as
the parameter to ERROR
14) ability to perform printing operations
15) requires ability to invoke :1.4: which processes the remaining
data images for this algorithm
16) requires write access to PR
17) pr = true means “print the register after each successful
apolication of a rule; otherwise d not print the register
after each successful application of a rule
18) MAXA equals the maximum number of alphabets permitted for
an algorithm
19) requires read access to MAXA
20) requires ability to set the failure routine for NEXTCHAR, i.e.
the ability to invoke SETFAIL with a variable which names
the part which is to be invoked if no more characters are
available from NEXTCHAR
21) NG contains the number of generic variables encountered
for the current algorithm
22) CG[i], 1 < i < NG, equals the i-th generic varizble
encountered for the current algorithm
23) AG[i}, | <i < NG, equals the alphabet name which
CG[i} is a generic variable
24) a failure routine has been set if NEXTCHAR cannot
provide additional characters from the current image
25) read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE which
contain the values of “", ", ™" " "(",)"
26) assumes write access to CHAR
27) assumes read access to CHAR
28) requires ability to invoke RULES which names the rule input
part, but since RULES is a label in the main program
a go to statement can be used
29) ERRHEAD assumes compete control when invoked
and handles error messages and further processing
30) NA equals the number of alphabets which have been processed
thus far for the current algorithm
31) requires read accesss to NA
32) requires write access to NA
33) requires read/write access to NOIT, which controls a
loop that process alphabets
34) requires ability to invoke STORALPH, which stores the alphabet
character if all requirements are met,otherwise STORALPH
invokes appropriate error routines
35) requires read/write access to NOIT1, which controls a loop

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 285

that processes generics
36) requires ability to invoke STORGEN which stores the content
of CHAR, if legal, otherwise invokes ihe apporpriate
error
37) requires ability to invoke ALPHFIN which cmpletes any
needed processing after an entire alphabet has been
stored
38) either no alphabets have been processed of all alphabets
processed have been correct
39) requires ability to invoke FAIL which correctly determines
which objects assume control
40) read access required for CP
41) read and write access required for the variable |
42) requires ability to invoke TESTLEGAL which returns only if
CHAR is not “", “" ", ™"
43) requires ability to invoke TESTGEN which returns only if
CHAR is not equal to an already
used generic variable for this algorithm
44) A names a one-dimensional array, which from UPA to its
upper bound contains alphabetic characters
45) requires read access for A
46) NG contains the number of generic variables encountered
for the current algorithm
47) requires read access to NG
48) requires write access to NG
49) requires write access to AG
50) CHAR contains the next unstored character
from the alphabet or generics being currently processed
51) AL[1] .. AL[NA] names the index of the lower bound of the
characters in an alphabet, i.e. AL[i] is the lower
bound for the i-th alphabet and AL[i-1] is the
upper bound for that alphabet, where AL[0] equals the
initial value plus 1 of UPA
52) requires read access to AL
53) requires ability to invoke ERRGEN, which assumes
control and invokes an appropriate error routine
54) requires ability to invoke TESTAL which returns only if
CHAR is not equal to a character which has already occurred in the
alphabet currently being processed
55) requires ability to invoke TEST which returns only if there
storage space as indicated by the values of LPA and UPA
56) UPA names the last cell of an array into which an alphabetic
character was stored, counting from the top of some
one-dimensional array. UPA is decremented by 1
each time an available cell needs to be named
57) requires read access to UPA
58) requires write access to UPA
59) A names a one-dimensional array, which from UPA to its
upper bound contains alphabetic characters
60) requires write access for A

APPENDIX I: A MARKOV ALGORITHM PROCESSOR

61)
62)

63)
64)
65)
66)
67)
68)
69)
70)

71)

72)
73)
74)

75)

76)
77)
78)
79)
80)
81)

82)
83)

84)

requires write access to AL

LPA names the las cell of an array into which rules

are stored, counting from the lower bound of a

one-dimensional array . LPA is incremented by one each

time an zvailable cell needs to be named

requires read access to LPA

LPA and UPA are index variables for the same array

requires read access to CG

requires write access to CG

requires read/write access to J

requires read/write access to K

requires read access for A

requires ability to invoke INITRA, which initializes the

input part for rules for a new algorithm

requires ability to invoke CARDISRULE which determires
whether the current card image is to be interpreted as

as a rule or not

requires ability to invoke PRINTCARD

which prints the current card image

requires ability to invoke EDR, end of rules condition
processor

requires ability to invoke INITR which initializes

for inputting a new rule

requires ability to invoke LABL which collects a label
terminated by the character in TERM and leaves the integer
label value in LAB

requires ability to invoke STORLABEL which associates

the label with the current rule

requires write access to TERM

ability to invoke STORCHAR which returns only if the
content of CHAR could be successfuily stored with rule
being processed

requires ability to invoke INITRIGHT which initializes

for processing the input of a right part of a rule

requires ability to invoke PROCTERM which indicates a rule as
a terminal rule; requires ability to invoke PROCSUC

which processes the successor part of a rule

requires read access io LAB

a negative value in LAB indicates that no label was collected
after rule initialization, A[N1] - 1 = NR, N1 names the
current rule A[N1] = -1, N2 = N1+1, A[N2] = 2, NE = NI + 2
and the location which is the name of the
immediately preceding rule names the current rule. thus if
N1’ is the value of N1 prior to this initialization
then A[NI1’] = N1 - unless NR = 1 in which case the previous
value of NI is not defined

R names a one-dimensional array
which contains pointers to rules such that label i
names rule R[i};
R[i] = O means label i is not defined;

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 287

85)
86)
87)

88)
89)

90)
9l)

99)
100)
101)

102)
104)

105)
106)
107)
108)

109)
110)
111)
112)
113)

114)

R(i] > O means the label is defined and
R[i] is a pointer to the rule it namws;
R[i] < O means that label i is undefined but has
beer: referenced by rule -R[i] and is
the head of a chain
requires write access to R
requires read access to R
A names a one-dimensional array which from its
lower bound to LPA contains representations of rules
requires read access to NE
NE names a cell in A such that A[NE] indicates the current number
of characters in the rule part being processed - left part
if the left part is being processed or right part if the
right part is being processed
requires write access to LPA
at most 100 labels are permitted and their definitions
appear in the one-dimensional array R[1:100] such that
R[i] contains the definition of label i when the label
is interpreted as a positive integer
NR indicates the rulename which is currently
being processed
requires read access to NR
requires write access to NR
requires write access to NE
TERM contains the non-digit character which is expected
to terminate a label
requires read access to TERM
the digits "0", "1", "2", .., "9" are represented by character
codes such that "0" - ZERO = 0, .. ,"9" - LERO = 9
and the only legal label characters are digits and BLANK
read/write access to LAB is required
legal range of labels is 1 through 100
BLANK contains the representation of a space and ZERO
contains the representation of a zero
requires read access to BLANK and ZERO
assumes LAB contains a legal label name or -1 which
indicates that no label has heen concatenated
requires write access to LAB
N1 names the rule being currently inputted
requires read access o N1
ERRULENAME contains the value which indicates a routine
which can take control if an error is discovered as rules
are being stored
requires read access to ERRULENAME
requires read access to N2
requires read/write access to L
requires write access to N2
a colon in column 4 when processing rules indicates that
the card is to be interpreted as a rule
requires read/write access to Q

APPENDIX 1: A MARKOV ALGORITHM PROCESSOR

115) a vaiue of -1 in A[N2] indicates that the
ruie is a terminal rule
116) ERRHEADNAME is a variable which names the routine ERRHEAD
117) requires read access to ERRHEADNAME
118) RULESNAME is a variable which names the routine RULES which
inputs the rules for an algorithm
119) requires read access to RULESNAME
120) assumes all rules have been inputted correctly;
assumes that the current card isrepresents an initial register
contents; assumes that NEXTCARD returns control only it
a data image is available for the current algorithm
121) requires the ability to invoke :4: ERRORE, with a string
message, which does not return but handles further processing
at the execution stage
122) ERRDATANAME contains a value which indicates a routine
which indicates a routine which can take control if an error is
discovered while an initial register contents is being input
123) requires read access to ERRDATANAME
124) REG, is a one-dimensionai array which contains
the characters in the register
125) assume: read access to REG
126) assumes write access to REG
127) requires read/write access to RPP which is used as
a temporary register position pointer when the register
is being iniiaily filled
128) requiras read/write access to RC which is used
to contain single characters from the current data card when
the register is being fiiled
129) assumes read access to MAXRL which contains the maximum number
of characters permitted in the register
130) requires write access to MAXTI
131) requires write access to RL
132) the name of the first rule is 2
133) MAXT! contains the number of irial rule applications
still permitted for this execution of an algorithm
134) write access to RULENAME required
135) requires read access to TRM
136) FIN is a resuit of NOSUC which indicates that there are no more
rules which can be applied
137) requires read access to FIN
138) read access to RULENAME required
139) TRM is a result of SUCSUC and UNSUCSUC which
indicates that the algorithm should terminate, i.e. TERM
names no legal and indicates termination
140) requires ability to invoke SEARCH which
searches for a match of the left part of rule
RULENAME, and which returns the value true if
a match is found, false otherwise
141) requires read access to MAXTL
142) requires ability to invoke REPLACE, which has the effect of

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 289

143)

144)

145)

146)
147)

148)

i49)

150)
151)
152)
163)

154)

replacing the register contents with the right part of the

rule named by RULENAME, where the left part was matched
requires the ability to invoke SUCSUC which has the value of the
success to ruie RULENAME for a successful application

of rule RULENAME

requires the ability to invoke UNSUCSUC which has

the value of the name of the successof to rule RULENAME

after an unsuccessful application of rule RULENAME

assumes A[RULENAME + 1] names the successor for rule RULENAME
for a successful application ot rule RULENAME

requires read a cess to PR

requires the ability to invoke PRINTREG which

prints the contents of the register

if RULENAME = TRM then dot termination has occurred, otherwise
the rules have been exhausted

G is a one-dimensional array such that G[i] = -1 if generic
variable i is not defined after a successful search for a left

part of a rulei, otherwise G[i] > 0

and is the character corresponding to the generic i

requires read access to G

requires write access to G

requires read/write access to NMAT

assumes that a generic in a rule has been saved

as a negafive value

assumes Q is a legal character pointar into the left

part of a rule whose first character is P + 3

155)
156)

157)

158)

159)
160)
161)

162)
163)
164)
165)
166)
167)

168)

169)

assumes A[RULENAME] names the successor rule for rule RULENAME
after an unsuccessful application of rule RULENAME

requires the ability to invoke LEFT which names the location
which is the first character of the left part of rule, RULENAME
requires ability to invoke LENGTHL which has the value of tle
number of characters in the left part of the rule named

by its parameter

LEN names the number of the character in the left part

of the rule currently being processed

requires read access to LEN

requires write access to LEN

LFT names the starting location for the left part of the current
rule name

requires read access to LFT

requires write access to LFT

requires read/write access to NOSUC

RL contains the current register length

requires read access to RL

requires ability to in.nke RULLFTCHR(A,B) which

produces the value of (he B-th character of

the left part which starts at A

RP names the character position where a

character sequence is to be replaced

requires read access to RP

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 290

170) requires write access to RP
171) assumes L1 # L2
172) requires abil'ty to invoke GENERIC which
has the value true if its parameter represents a
generic variable
173} requires read/write access to CC
174) requires read/write access to LHP
175) requires ability to invoke ADJUST whose first parameter
indicates the number of characters in the left part
of a rule 'nd whose second parameter indicates the number
of characters in the right part of th- rule. ADJUST
modifies the register, if necessary, so that the right
part can be inserted where the matched left part is
176) requires ability to invoke INSERT which inserts the appropriate
right part over the matched left part
177) requires ability to invoke LENGTHR which returns the value
of the number of characters in the right
part ¢of the rule named by its parameter
178) requires read/write access to LEN and LENR
179) requires read access to LENR
180) requires write access to LENR
181) requires read acress to L1, Lz, and TP; .1 contains the
length of a character sequence being replaced by a
character sequence of length L2
182) requires read write access to TQ and CQ
183) requires ability to invoke RULRTCHAR(A) which returns the
character which is the A-th character of the right side
of rule RULENAME
184) requires the ability to invoke UNDEF(A) which returns the value
true if A is an undefined generic variable
representation for this rule application; false otherwise
185) requires ability to invoke VALG(A) which produces the
character associated with ihe generic representation A
for this rule application
186) assumes LENR contains the length of the string
being inserted
187) requires read access to AG
188) assumes Y is a legal character pointer into the right part
of a rule whose first character is named by X + LENGTHL(X) + 4
189) assumes X + 2 is an index which names the first character of the
feft part of a rule -1
190) assumes A[X + LENGTHL(X) + 3] is the number of characters
in the right part of rule X
191) assumes read access to X and assumes that the length
of the left part of a rule named by X is contained in A[X + 2]
192) requires read access to RULENAME
193) reavires read/write access-tc QK

APPENDIX 1: A MARKOV ALGORITHM PROCESSOR 291

An analysis of the final stage using the measure has led to the
following good decomposition
((a) (On) (Or) (O ((r) ((Ga) (@) ((f)
((>s, >y, >w) ((s) ((kx) (1} ((k, 0) ((i) ((g, h)
((v, w) ((x) ((%a, %b, %, %d, *f, xg, %h, %i, %;j, *I)
(¢, >d, >, >g) ((<b, >z, >x, >m)
((>0, >y, >p, 2q, <, <a) (e, >h, dv)
((ks, %r, %q, %u, %v) ((uy, y) (O}, >k i, >, >b)
((2, t) ((%o0, %p, %w, kt) ((m, p, q) ((kk, %n, %m))
156) 1.65) 152) 1.60) 1.35) 1.41) 1.20) .92)
52).82)1.08)1.25)1.02).65).77).32).34)

53).50).47).22).04).04).04).04).05).05)0

This decomposition is not the best decomposition, but it illustrates the
resuit of using the measure to produce a good decomposition which
satisfies several of the properties stated in the Introduction.
Specifically, those objects which manipulate the representation of rules
appear together. This situation along with others demonstrates that the
decomposition appears to have several of the independence properties
stressed by Parnas. The parts FAIL, SETFAIL, and the initialization
portion, though not elaborated here, localize detailed information about

the flow of control in the program and interact little with the previous

elaborations.

APPENDIX ll: COMMENTS ON A NOTE ON COMPILER STRUCTURE

McKeeman[MK1], in a paper entitied "“Compiler Structure”, has
presented several guides that ad in fragmenting a compiler into
modules. Does such a modularization possess good structure in the sense
of the definition and measure presented in this thesis? It is probably
the case that these modularizations could have good structure, but good

structure is not guaranteed.

The two kinds of fragmentation discussed are vertical fragmentation

and horizontal fragmentation.

Vertical fragmentation corresponds to decomoositions whose modules
may be regarded as “passes” oOr "phases" in the compilation process.
Each module accepts as input the output of a previous module. Thus, a

possible vertical decomposition for & compiler is

INPUT (analyze text to produce
a sequence of single characters)
SCAN (analyze single characters to
J prcduce tokens)
PARSE (analyze tokens to produc: a
\L parse tree)
SYNTHESIS (analyze parse tree to produce
¢ a computation tree)
GENEFATE (analyze computation tree to
1/ produce language specific code)
EMIT (analyze language specific code to
& get machine specific code)
OUTPUT (analyze code to get executable

or loadable text)

e me n _ m il o ol o Tl L gh s L o .

| APPENDIX {l:COMMENTS ON A NOTE ON COMPILER STRLCTURE 293

McKeeman stresses the importance of precisely describing the
intermediate languages that connect the modules and provides examples of
such intermediate languages. Hence, pairs of successive modules share
information about their intermediate languages. This can lead to many
interactions between adjacent modules. An alternative that has been
displayed in Appendix | and in the work of Parnas, is to provide
additional modules which make information about the intermediate
languages available. This eliminates the need for sharing the entire
grammar of the intermediate language. Thus changes to these
iniermediate languages correspond to adding or deleting or changing
functions at the interface. The measure indicates that the modules in
this alternative interact less than in the modularization suggested by

McKeeman - at the expence of requiring additional moduies.

horizontal fragmentation can be used to further fragmant .nodules in

some vertical fragmentation. ‘

APPENDIX 11: COMMENTS ON A NOTE ON COMPILER STRUCTURE 294

McKeeman presents the foilowing Horizontal fragmentation for the module

SYNTHESIS

FAN OUT

P7ANNS

NULL DEFINE OPERAND OPERATE ASSIGN SEQUENCE

4

FAN IN

FAN OUT is intended to pass appropriate parts of the phrase structure
tree or canonical parse to the modules beneath it. FAN IN, recombines
the results of these modules into a computation tree or sequence of

actions.

The final decomposition shown in Appendix | and the modularizations
suggested by Parnas[PA1-5] indicate that the boundaries of these modules

may not be as "clean" as the diagram suggests. For example, information
contained in the SYMBOL TABLE module may re required by more modules
than are indicated by the arrows. (Indeed, similar kinds of modules

displayed in [MK] share far more assumptions ‘han are indicated by

either diagrams or text.) Further, assumptions made by different modules

s e — s s s e e i

APPENDIX 11: COMMENTS ON A NOTE ON COMPILER STRUCTURE 295

may suggest additional modules in order to maintain the independence
properties suggested by the diagram. Indeed, FAN IN and FAN OUT may
well share enough assumptions to warrant large parts of them to be

written as acditional modules.

Stronger statements than thece can only be made if more detailed

information about the intended behavior of the modules is presented.

