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ABSTRACT 

Program structure has been discus..ed as being an important 
influence on the ease with which programs can be constructed, verified, 
understood, and changed. Yet the notion of program structure has 
remained a vague and imprecisely defined concept. This thesis proposes 
a definition and a measure for program structure and evaluates the 
usefulness of the measure as a tool for determining and controlling 
structure in a program. 

Applications of the measure require that the assumptions which 
objects make be precisely stated. These are defined to include 
assumptions about the nature and use of variables and data; conditions 
relating to the correct execution of the program; and assumptions about 
the program environment in which the text is executed. Top-down 
programming by stepwise refinement forms the basis for a proposed 
methodology that permits these assumptions to be stated as a program is 
constructed. 

The measure uses the information theoretic concept of excess 
entropy - entropy loading - to determine the extent to which assumptions 
ire     shared. Entropy    loading    calculations    also    provide    a    way    of 
comparing different decompositions of a program. Unfortunately, finding 
the best decompositions of all but small programs seems intractable. 
Consequently, several heuristics are stated that attempt to establish 
bounds on the growth of entropy loadings for elaborations of 
decompositions suggested at early stages in a development. 

Several programs are developed using mechanical aids to record 
assumptions and compute entropy loadings. Since each development 
preserves assumptions at every elaboration, this information need not be 
deduced from program text when the program is studied or is to be 
modified. Entropy     loading     figures    at    each    stage    allow    different 
decompositions to be compared and provide either a basis for choosing a 
decomposition or grounds for actually modifying the program to achieve 
better      structure. These      developments     illustrate      the      proposed 
methodology and show that the measure produces results that are usually 
consistent with the definition of program structure as well as the 
informal notion of structure from the literature. 

Without mechanical aids, however, applications of these techniques 
to practical problems would be tedious and difficult. This and other 
difficulties motivate further research about this important but elusive 
property of programs: their structure. 
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INTRODUCTION 

Dijkstra[DJl-5]) Wirth[W], Naur[NAl-2], ParnasLPAl], and 

Mills[MIl-2] have stressed the importance of designing software as 

collections of small programs, whose interrelations are well understood. 

Such software is said to have good structure. Unfortunately, not every 

piece of software which consists of a collection of small programs has 

good structure. Nor do the informal methods, described in the papers 

above, necessarily guarantee good structure. The goal of this thesis 

has been to investigate the behavior of a mathematical tool - entropy 

loading - as a measure of the goodness of structure and as a guide which 

can help to preserve good structure in a collection of programs that 

constitutes the decomposition of a piece of software. 

The work of Simon[Sl] and Aiexander[AL], concerning complexity in 

systems, and the work of Dijkstra[DJl-5] and Parnas[PAl] strongly 

suggest that system decompositions having good structure possess the 

following properties: 

(1) the information required to study, understand, and verify 
single parts of a system is supplied in conjunction with those 
parts, and relatively little information about the rest of the 
system is required; 

(2) single parts can be drastically changed - changed algorithm, 
changed data structures - without requiring much knowledge of 
the rest of the system and without changing the rest of the 
system, i.e. drastic changes can actually be confined to 

single parts; 

(3) should an error occur as a result of the failure of one small 
part to function correctly, the error can be localized to that 
part of the system quickly and easily, permitmg the error to 
be repaired using only a knowledge of that part; 

mammmm    ■■- '.-^^-aanfäumutaum Mliftafiiiii>-- ■■■■     -             .    ^■ataiMtaa»,.... ,i  .-... 
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INTRODUCTION <= 

(4) during system construction, distinct working groups can be 
given assignments to write separate sets of parts, and the 
assignments can be completed with very little communication 

among the groups. 

Many   programs, even some  that  are  regarded  as good  programs, fail 

to    possess    one    or    several    of    these    properties    -    with    undesirable 

results.      Programs   that   fail   to   meet   these   standards   frequently   require 

that   many   design  decisions   be  understood  before  a  small  portion  of  the 

program can be understood.    Seemingly unrelated portions often make many 

subtle   assumptions   about   each   other,   assumptions   that   are   difficult   to 

deduce   from   the   program   text   or   documentation.      Hence,   in   order   to 

change  a  portion, the consequences of the change  must  be understood in 

the  context  of  a large part of the  program.    Shared assumptions between 

identified       parts      will      be      called      interactions. Simon[Sl]      and 

Alexander[AL]    suggest    that    by    controlling    these    interactions,    limiting 

the   amount   of   code   that   each  connects,  and  displaying  the  structure   of 

the program, the four properties mentioned above are approached. 

In order to control interactions, it is first necessary to 

explicitly observe the assumptions made by parts of a program. 

Techniques for making these observations are demonstrated, along with a 

tabular format for recording them once they have been noted. This 

record can then be used to compare different decompositions of the 

program. The comparisons are made by using an entropy loading 

calculation described by van Emden[vE2]. The calculation has long been 

used in areas such as information theory, physics, and ecology. This 

thesis      investigates      its      applicability      to      data      representing      the 

- - ■——- , ■..-■..- :,.■: • .-   •■- - ■ . . •-.. 
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INTRODUCTION J 

assumptions of program parts. The entropy loading measure was chosen 

because it had the potential for distinguishing, in a mathematical way, 

programs that possess properties consistent with good structure from 

programs that do not. This mathematical tool enables a designer to note 

the existence of interactions between the parts of his design. As a 

result, he should be able to better understand and to control the 

effects of his assumptions. 

Applications of these methods produce results that are usually 

consistent with intuitive notions - in the sense of Dijkstra and Wirth - 

about what constitutes good program structure. Programs that have been 

regarded as "good" are shown to have better properties than programs 

regarded as "bad". Several "good" programs have even been improved. 

Several anomolies of the measure as well as the costs and difficulties 

encountered while applying it are also discussed. 

The     chapters     that     follow    give     a    definition    of     structure     and 

interaction   and   show   how   the   effects   of   interactions   can   be   measured. 

These   techniques   are   also  demonstrated  on  numerous  examples   that  have 

been used elsewhere [DJ3,W,HE,MK 1 ]. 

Specifically, 

Chapter I examines part of the literature about software design. It 
then presents a definition of program structure that motivates the 
techniques used in this thesis. 

Chapter II describes how a design methodology - structured 
programming[DJll - and a proof technique[H01] can be used to find 
the interrelations in a program. Interrelations are observed in an 
example and summarized in object/assumption tables. 

Chapter   III   presents   an   entropy   loading   measure   that   can   be   used   to 
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INTRODUCTION ^ 

formally evaluate the relative merits of different decompositions 
of a program. The advantages as well as the shortcomings of the 
measure are discussed. 

Chapter IV demonstrates the use of the measure to observe and control 
program structure. Several examples are developed using the 
heuristics described in Chapter III. 

Chapter V discusses and evaluates the results of this thesis. 

Finally,    two    appendices    follow    the   conclusions:   the   first    presents    a 

larger  example  and  the second uses the measure as a basis for discussing 

the paper, Compiler Structure[MKl]. 
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CHAPTER I 

REVIEW OF PREVIOUS WORK 

This chapter begins by stating several properties of programs which 

seem to have good structure. Next, several design methodologies and 

conventions for representing programs are examined to see to what extent 

they lead to good structure. Each is shown to have the potential for 

leading to bad structure unless the issue of structure is explicitly 

considered. As a result of this examination, a definition of program 

structure is proposed in terms of the interrelations among the parts of 

a program. The analysis and control of structure motivates the 

methodology used in this thesis. 

ASPECTS OF GOOD STRUCTURE 

DijkstraC'Qn Our Inability To Do Much"[DJl,pp 1-3]) points out that 

a person's powe. of comprehension is too meager to deal with all the 

detail in a large program. However, he asserts that the computer owes 

its existence to its ability to execute large, complicated programs. 

Consequently, we must find ways to organize large programs which allow 

people to deal with them, yet utilize a computer well. Several 

properties of such programs are: 

(1) Ease of verification 

Good programs can be proved correct by dealing with only small 
parts of the program, regardless of whether the proof is carried 
out by a person or a machine. 

(2) Ease of understanding 

~~ilim**um*~^. ..■4-... -.    ..._., . .       - ■■     ■- ^ *..*.~^u~**~k--m~~.   ■-       ^  
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REVIEW OF PREVIOUS WORK 
ASPECTS OF GOOD STRUCTURE 

The text of a good program, along with its documentation, describes 
the program in sufficient detail that it can be understood, and 

(a) Single parts of good programs are understandable in terms 
of their text and documentation. (In fact, the documentation 
Of a good program is not separate from the program.) 

(b) There is an understandable path from the abstract method 
being implemented to the final detailed code. 

(c) Decisions along this path are explicit and can therefore 
be evaluated as either good or bad. 

(3) Ease of maintenance and change 

Good programs, because the effects of single parts and the 
assumptions made by them are understandable, can be changed and 
maintained     with     relative    ease. Little    effort     need     be     spent 
deducing the consequences of changes when compared with the effort 
needed to implement the changes. 

DijKstra    has   demonstrated   the   role   the   structure   of   a   program   plays. 

His   observations   were   motivated   by   the   verification   issue.     For   example, 

he   cites   the   problem   of   verifying   the   correct   behavior   of   a   hardware 

multiplier[DJl].       If    we   regard   the   device   as   a   "black   box",   then    ail 

possible     multiplications     must     be     performed    and    verified     as     being 

correct.        Alternatively,    the    internal    structure   of    the    device    can    be 

examined,   and   a  convincing  argument   about   the correctness  of   the  device 

can be produced.   This second approach is the only feasible one. 

The    structure    of    a    program    has    direct    effects    on    the    three 

properties of good programs mentioned above.   Some of these effects are: 

(1) Program verification is tractable if the amount of detail 
required for the verification can be comprehended by the human or 
mechanical verifier. This means that the parts of a program and 
the relations among those parts are sufficiently simple that 
theorems relevant to the correctness question can be easily stated 
and easily proved. 

iliMlllMiiiilii»r»l'i-|i n1  , .. ..,.-.^,...,.^,...,...^. .         __ ..^ 
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REVIEW OF PREVIOUS WORK 

ASPECTS OF GOOD STRUCTURE 

(2) "Understanding a program" is a less formal view of program 
verification. When v/e say that we "understand" a program we mean 
that we understand how it works - that we believe it behaves the 
way it is purported to behave. Since we don't attempt to 
understand programs as "black boxes", the single parts and their 
interrelations must be sufficiently simple that understanding is 
possible. 

(3) Maintaining or changing a program requires that the places to 
change be found, the changes constructed, and the constructions 
verified. This implies that the parts to be changed must not only 
be identifiable to a programmer but that the effect? of those 
changes in the context of the entire program be limited. Hence, 
the parts which are to be changed and their interrelations with the 
rest of the program must be kept within a programmer's grasp. 

INFLUENCING STRUCTURE - A REVIEW OF THE LITERATURE 

A    few    techniques    have    been    proposed   to   help   control    program 

structure. 

Knuth[KNl] has described a "classic" paradigm in which a system is 

designed from the "top down" in terms of subroutines, and coded from the 

"bottom up". He emphasizes the mechanism of the subroutine as a tool 

for allowing attention to be focused on one design decision, postponing 

the consideration of other details. This approach can help to display 

the structure of a program. However, the desirable properties of the 

programs which the methodology produces are never stated. 

Wirth[W]   provides   examples   where program   text   is   written   in    a 

top-down,   step-wise   manner.     His   model pays   particular   attention   to  the 

importance   of   verification   and   mentions the   potential   difficulties   which 

might   accompany   an   attempt   to   change a   program.     The   Eight   Queens 

"-——"—-'-~--— ■- ■     ■       -—>—^—^^- ^MJ-hrthMw ' r1iimMWBli^i^l^^^^«y-:"v-^^-^^litfVtrt.Tl>lllh|-l1l-^~-.   ■:'•*'-**■ 
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REVIEW OF PREVIOUS WORK 
INFLUENCING STRUCTURE - A REVIEW OF THE LITERATURE 

Problem,   which   is   presented as   an example   in  Chapter   IV,  and   based  on 

the    development    by   Wirth, shows   a   situation   where   decisions   about 

control      flow      have     been separated     from     decisions     about     data 

representation. 

Naur[NA2] states a specific criterion which he claims should be 

used to guide decision making in the design process. He proposes that 

the global requirements of a problem should be used to deduce a set of 

"associated actions which guarantee that these requirements are always 

met" - programming by action clusters. Here the importance of 

describing the effects of these operations precisely is stressed. 

Program verification then becomes more tractable than otherwise. 

Unfortunately, the initial statement of the problem used to demonstrate 

the method is imprecise, and design decisions which precisely define the 

problem to be solved are never stated but simply appear in the code. 

Further, one of the global requirements must be considered in at least 

one place other than the action cluster which was specifically 

associated with it. This oversight regarding interrelations among the 

program parts results in an error which is documented by 

Leavenworth[LE]. In    addition,    Naur    emphasized    the    importance    of 

considering    the    relationships    of    global    properties    as    a    program    is 

written, but made no attempt to display these relationships. 

The issue of structure was first stressed by Dijkstra[DJl] in terms 

of a programming methodology called "structured programming". Dijkstra 

has   carefully   chosen   his   examples.      Each   represents   the   outcome   of   a 

M^MMMM —             ■ B^iMlrtilWiBMl<BMi',ii"-|''(iil   ■■'T^ilW[-iTr^^fiilln
L
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REVIEW OF PREVIOUS WORK 
INFLUENCING STRUCTURE - A REVIEW OF THE LITERATURE 

careful   search  in  which  many  choices  were  rejected.     These  choices  and 

the reasons for their rejection are seldom stated. 

Each example problem is presented in terms of a collection of 

carefully derived sub-problems which together solve the original 

problem. The arrangement and relationships of these sub-problems allow 

the correctness of his programs to be verified as they are written. 

Verifications are established by informal proofs of correctness and by 

direct applications of an axiom system due to Hoare[H01]. Dijkstra has 

shown that verification in terms of the representations suggested by the 

programming methodology is tractable for systems which are not just 

examples of the methods[DJ4]. 

Lastly, Dijkstra recognizes the importance of producing programs 

which are maintainable and changabie ("On Program Families"[DJl]). 

Mills[MIl,MI2] and Baker[BA] have adopted the structured 

programming methodology to the extent that precise coding conventions 

are selected in order to convert programs containing parts which have 

yet to be elaborated directly into code. Their conventions are 

justified by a "structure theorem" due to Boehm and Jacopini[as 

described in an appendix to Mil]. These conventions include maintaining 

a program library of (perhaps) dummy entries so that high level program 

texts - containing references to code which has yet to be elaborated - 

can be compiled and verified. They also observe a convention where PL/I 

text  representing any single program part  is always less than a page (55 

M   
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10 

lines) in length. The verification aspect receives specific attention 

through attempts to formally verify texts. Besides formal verification, 

several programmers read the texts and either conclude that they are 

correct or correct them. Some of these conventions, however, can lead 

to bad structure. For example, if orogrammers are encouraged to read 

the texts of other programmers, it is possible that unstated assumptions 

which would adversely affect the maintainability and changability of the 

program will be made. Much attention is paid to a variety of control 

structures eg., texts must be go to-less. 

Besides   these  methodologies,  efforts  have  been  made  to  design  and 

implement    programming   languages   which   restrict   the   kinds   of   syntactic 

structures   that   can  actually   be   used  to  represent  programs.     The  intent 

is    to    eliminate    the    use    of    language    constructs    which    have    a    high 

probability   of   leading   to   poorly   structured,  complex  code.     For   example, 

without   adequate   descriptions   of   the   relationships   among   various   pieces 

of   code   in   a   program, the   unbridled  use  of  the  go to statement   makes  it 

impossible     to     guarantee     good     properties    in    all    but     the     smallest 

programs.       Dijkstra[DJ6]   noted   this   difficulty   and   suggested   that   the 

go   to   statement   be   avoided.      As   a   result,   at   least   one   programming 

language  (BLISS[WRH]) has  no  go to statement  and go to-less programming 

is   advocated   as   a  good   programming  practice.     Indeed,  some   go  to-less 

programs   do   not   possess   many   of   the   bad  properties  of  some   programs 

containing   go   to   statements,   but   such   programs,   just   by   virtue   of   the 

absence of the go to, are not guaranteed to have good structure. 
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Some so-called implementation languages[Wl,WRH] have attempted to 

make it possible for cooperating programmers to write good programs. 

These languages have eliminated or restricted the use of many syntactic 

constructs which seem to lead to bad structure. None, however, is 

accompanied by a methodology which suggests how it should be used to 

produce programs which have good structure. That this is a severe 

shortcoming is apparent in the light of the developments of TSS/360 and 

the MULTICS operating systems: TSS was written in the assembly language 

for the IBM 360/67, MULTICS in an implementation language based on PL/I. 

Both systems have similar goals. However, MULTICS encountered many of 

the same development problems as did TSS. 

Snowdon[SN] has described an interactive system which attempts to 

provide an environment which allows programs to be expressed in much the 

same way as they would be developed using the structured programming 

methodology. But, even here, there is no specific description of how 

the language is meant to be used. Further, no emphasis is placed on the 

manner in which different "abstract machines" are or should be related 

to one another. Using the language in no way guarantees good structure 

in the resulting programs. 

Parnas[PAl-PA4] has addressed the issue of how to produce pieces of 

software which have good properties by stressing the importance of 

precise specifications for the independent modules which make up the 

piece of software. The policy of "hiding" information which a module 

does    not    need    is    used   extensively.       The   only   information   which    is 
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available to the implementor of a module (and hence to the module) is 

presented in the specifications of the modules. The effect of such a 

policy is to restrict interrelations among modules to those which can be 

deduced from the specifications. (These may still be very subtle.) 

Systems which are produced using this methodology have the following 

properties: 

(1) Once the specifications for each module have been written, the 
system can be constructed in a straightforward way, based solely on 
the information contained within the specifications. 

(2) The system can be verified as correct if the specifications 
lead to a correct solution of the problem for which the system was 
designed and if each module can be verified as meeting its 
specification. 

(3) The overall system is understandable if its behavior can be 
deduced from the specifications with reasonable ease. Each module 
is understandable if: 

(a) the    interrelations   among   the   functions   which   comprise    it 
are understandable and 

(b) the implementation of each function is understandable. 

(4) Individual portions of the system can be changed so that the 
good properties of the system are preserved, but only if those 
changes are made within single modules. So long as a module meets 
its specifications, it can be freely changed. Extensions to the 
system, however, imply changes to the specification itself. Such 
changes must be consistent with those portions of the system which 
remain[PA4]. 

If    the    interrelations    which    are    deducible    from    the    specification    are 

numerous   and  complicated,  a  system  may  have  bad  properties  (Note   the 

parallel    between    this    phenomenon    and    programs    produced    using    the 

structured   programming   methodology).     Assigning   tasks   to   modules   is   as 

important    as   the   specifications,   which   may,   themselves,   be   difficult   to 
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write. Parnas1 work has been criticized because he provides incomplete 

guidelines about how module partitions should be constructed, However, 

the work provides a framework which has good implications for ease of 

understanding and ease of maintenance and change. It also provides a 

model which has been successfully used in constructing software in many 

versions with different implementations of each module. 

PROGRAM STRUCTURE: A DEFINITION 

Dijkstra[DJl-DJ4] has demonstrated a process by which he constructs 

programs that have good structure but has not emphasized the properties 

of the relationships among the parts which make the structure good. In 

all his examples, the relationships among the program parts have been 

few in number and so straightforward as to be easily neglected. In 

every instance, the relationships among the sub-parts inside a part have 

been far more numerous than the relationships among the parts. 

Parnas[PAl] stated a definition of program structure in terms of modules 

and connections. The modules are those portions of a program which are 

specifically indicated in the written description of the program - 

perhaps its documentation. The connections among the modules "are the 

assumptions which the modules make about each other." These connections 

are much more extensive than the calling sequences and control block 

formats shown in most descriptions. The definition stated below is a 

modification of the definition due to Parnas. Objects are construed to 

be  any  program parts which have net effects on the state of the program 

MHMilll -   —-■ -M^ MMMi. 
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or its data. The term interaction is further defined as a shared 

assumption among two or more objects. Hence, the assumptions which the 

objects of a program make include the connections, which in turn include 

the interactions.   Consequently, we have the definition: 

Program Structure is the set of interactions which exist among 
identified objects in a program as well as the ways those objects 
are organized to form the whole program. 

The    definition    implies    that    any    program    possesses    structure.        The 

aspects    of    good   structure   at   the   beginning   of   this   chapter,   however, 

imply   that   programs   having   good   structure   are   constructed   from   objects 

whose   interactions   and   assumptions   are   apparent   or   are  easily   deducible. 

The   key   emphasis   in   this  definition  is  that   good  structure  is  determined 

by    interactions    among    objects    and   not    just    the   organization   of    the 

objects. 

The   definition   motivates   the model   which   is   used   in   this   thesis to 

develop   and   represent   programs. This  model  is  developed  in Chapter II, 

but    has    two    properties    which arise    directly    from    the    definition of 

program structure. 

(1) Objects   are  constructed  in an organized way, using the  top-down 
and step-wise construction techniques of Dijkstra and Wirth. 

(2) Interactions    are    explicitly    recognized    and   recorded    and   are 
used to suggest ways of maintaining good structure in a program. 
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SUMMARY 

This chapter first presented a list of several aspects of good program 

structure. Next,    several    programming    methods    were    discussed    with 

respect to the ways they influence program structure. Lastly, a 

definition of program structure, emphasizing interactions among the 

objects of a program, was stated. This definition motivates the 

methodology that is described in Chapters II, III, and IV. 

In   Chapter   II,   the   nature   of   these   interactions   is   investigated   and 

a proposal for keeping track of them is made. 
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CHAPTER II 

MAKING ASSUMPTIONS EXPLICIT 

This chapter first describes the kinds of assumptions which have 

been observed among the objects of a program and then describes a 

methodology     for     actually    displaying    them. Next,    object/assumption 

tables are demonstrated as a way of recording observed assumptions. In 

chapter Hi, such tables will be used to state the measure of program 

structure     which     is    investigated    in    this    thesis. In    the    remaining 

chapters, object/assumption tables will be maintained for each example 

to which the measure is applied. Finally, an example program is 

examined in order to observe the assumptions made by its objects and to 

demonstrate the proposed methodology. 

OBJECTS AND ASSUMPTIONS 

Chapter I asserted that program structure is determined by the 

objects of a program and their interactions, where interactions are 

defined to be assumptions shared among objects. In point of fact, 

objects don't make assumptions. Rather, assumptions are made by a 

designer/programmer and are used as guides to construct objects. 

Dijkstra[DJl,DJ2] has displayed objects in the form of English 

statements which describe the intent of various parts of, as yet, 

incomplete programs. Seldom are the assumptions which were used to 

construct     them     stated     precisely. This     situation    first     poses    the 

question of what kinds of assumptions are made. 
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The classification of assumptions below has sufficed for the 

examples developed in this thesis. Since the notion of an assumption is 

subjective, other researchers might wish to add to this list. 

(1) Relationships which must hold prior to the execution of an 
object in order for its effects to be realized. 

(2) Assumptions about data, e.g. assumptions about the meaning and 
interpretation of values contained in simple variables or data 
structures; assumptions about the position of information in data 
structures; assumptions about accessibility of data; etc. 

(3) Assumptions about the environment in which an object is 
executed, e.g. frequency of use of an object; order in which 
computations will be performed; machine precision; assumptions 
about factors outside the control of the program. 

(4) Assumptions based upon mathematical theorems which are relevant 

to the problem being solved. 

(These classifications will be referred to in the next section.) 

Next, the problem arises as to how these assumptions can be found 

and stated. A tempting approach would be to examine a complete program, 

understand it, and record the assumptions which objects make - the 

objects being deduced by the examiner from the code and its 

documentation. In all but the smallest programs, this approach is 

extremely difficult. Both objects and their assumptions must be deduced 

from      detailed      code. This      is      a      result      of      the      so-called 

abstraction/implementation dilemma, i.e. it is frequently possible to 

find a program which implements an abstraction, but it is usually 

difficult to deduce the abstraction from an implementation of that 

abstraction. 

i****************^*^^ --.  *...... J,^....J,- 
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The   only   feasible   approach   is   to   observe   assumptions   as   a   program   Is 

i 

beinß constructed. 

i 

\ 

A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS 

The proposed methodology is based upon the "top-down", "step-wise 

refinement" methods suggested by DijKstra and Wirth. We begin by 

describing the original problem in terms of a set of assumptions that 

constrain the problem and a set of final conditions , (post-conditions) 

that describe the net effects the program is intended to produce. Here, 

it is vital that the specifications of the problem be precisely stated. 

A notation due to Hoare[HOi, H02] will be used to describe this 

situation: 

P {S}Q 

Here, P are the assumptions, Q are the post-conditions, and S is program 

text or an explicit description of what an object does. Nr:xt, S is 

described as an arrangement of "simpler" computations whose effects are 

meant to lead from P to Q. Each "simpler" computation possesses its own 

pre-conditions and post-conditions. Clearly, this descriptive process 

can be continued as deeply as necessary. We identify these "simpler" 

computations - as well as the original S - as the objects referred to in 

the definition of program structure. In the past, objects have been 

described informally in English. Such descriptions serve only as 

reminders    for    what    the   assumptions   and   post-conditions   of   an   object 
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really are. This kind of informality can allow important detail to be 

neglected and can obscure the intent of the object. Henderson and 

Snowdon[HE] showed an example where this difficulty actually led to an 

incorrect program. 

The assumptions, post-conditions, and intended effects of each 

object must be precisely described so that a program can be verified. 

In the example which appears at the end of this chapter, such a 

correctness argument will be presented explicitly. 

The    assumptions    which   are   used   to   construct   an   object will   be 

identified    by    first    noting   the    post-condition   which   is   meant to   hold 

after   the   object   is   executed.      Next,   the   effects   of   the   object will   be 

examined in order to answer the following four questions: 

(1) What relationships "must" hold prior to the execution of the 
object in order for the effects to lead to the post-condition? (The 
answers to this question are the "weakest" such relationships.) 

(2) What kinds of actions are needed, permitted, or used with 
respect to the data or variables mentioned in the object to insure 
that the post-condition Holds? 

(3) What information about the context in which the object is meant 
to execute is needed, permitted, or used to insure the 
post-condition? 

(4) What theorems are needed or used by the object and what 
theorems is the object permitted to use in order to insure the 
post-condition? 

Each   question   corresponds   directly   to   one   of   the   four   classifications   of 

assumptions   listed   at   the   beginning   of   this   chapter.      The   answers   to 

these   questions   constitute   a  set  of  distinct  assumptions  which  are  meant 

to   include   the   connections   and   interactions   described   in   Chapter   I.      A 

i^MMBM^H   ■ 
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record of these assumptions will be used by the measure which is 

described in Chapter III. These questions are meant to be guides for 

finding those relationships or requirements which seem to determine 

program structure. As the examples will mdicatü, these kinds of 

assumptions, when associated with objects, allow applications of the 

measure to yield values which are usually consistent with the definition 

of structure from Chapter I. 

The answers to question (1) have been characterized, in part, by 

Dijkstra[DJ5, yet unpublished], as the weakest pre-conditions of an 

object. Dijkstra     has     described     rules     for    finding    these     weakest 

pre-conditions for assignments, conditional statements, and while 

statements, as well as certain kinds of recursive procedures. These 

rules, called predicate transformers, will be used to help derive 

assumptions for objects in the examples. It should be noted, however, 

that these predicate transformers are specific to the target language 

into which the examples are developed. (The following paragraphs define 

weakest pre-conditions and predicate transformers in more detail. These 

paragraphs may be skipped during a first reading of this thesis.) 

*     *     * 

Specifically, if P represents a post-condition for an object S and 

fS is the predicate transformer tor S then fS(P) represents the weakest 

precondition for S which guarantees that P will hold after an execution 

of    S. Dijkstra    provides    criteria    for    finding    predicate    transformers 

that   can   be   applied   to  other   kinds  of  syntactic  constructs   as  weil.     The 

kü ■Ml   mnatmimim^^mim*. 
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fundamental idea is to find consistent rules that provide weakest 

pre-conditions, given a post-condition and a particular instance of some 

construct. Even if such a rule cannot be found in general, an 

assumption can usually be constructed for specific cases that are of 

interest.   For example, if S i;  an assignment, i.e.   X ♦- E, then 

f"ASSIGNMENT"(P) = P; E -^ X 

where E is the expression being assigned; X is the variable which is 

assigned the value of E; and P: E -> X is the predicate which results by 

replacing all occurrences of X in P by E. For e.'xample, if S is 

d := c + d and Pisa*c+b*d = A*B then the weakest pre-condition 

which results from applying the predicate transformer is a * c + b * (c 

+ d) = A * B. 

The predicate transformer for binary selection 

(if B then SI else S2 ) 

is 

f"BINARY SELECTIGN'XP) = ( B A fSl(P) ) or ( -B A fS2(P) ) 

Similarly, 

f"CONCATENATION"(P) = fSK fS2{P) ) 

is the predicate transformer for 81 ; S2. 

Besides     displaying    several    predicate    transformers,    Dijkstra    has 

proven   a   theorem   about   predicate   transformers   which   is   based   on   the 

following definition: 

If two predicate transformers fS and fS' satisfy the property that 
for all P, fS(P) 3 fS'(P) then "fS is as strong as fS'" and "fS' is 
as weak as fS". 
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The theorem can now be stated: 
Theorem of Monotonicity: Whenever in a predicate transformer fS, 
formed by concatenation and/or selection and/or recursion, one of 
the constituent predicate transformers is replaced by one as 
weak(strong) as the original one, the resulting predicate 
transformer is as weak{strong) as fS. 

«. 

For constructions such as while B do 81 or repeat Si until B 

explicit predicate transformers are not presented. Instead, for the 

while construction, the Fundamental Invariance Theorem for Repetition 

has been proven, i.e. 

If S is while B do SI and Q is a post-condition for SI, then 

(( Q A B ) 3 fSUQ)) 3 (( Q A fS(true)) = fS( Q A -B )). 

This  theorem  along  with the Theorem of Monotonicity can be used to find 

pre-conditions     which     imply    the    weakest     pre-condition    for    a    while 

construction or a repeat construction.   For examplp, if 

((Q A B) ^ fSl(Q)) A (Q A fS(true)) 

is   used   to   replace   the   weakest   pre-condition   for   a   while   construction, 

given   (Q  A  -B)   as   the   post-condition,  then  the  Theorem  of   Monotonicity 

asserts     that     the     pre-conditions    which    result     from    applications    of 

selection,   concatenation,   and   recursion   will   be   as   strong   as   any   formed 

by   using   the   weakest   pre-condition  for   the   while  construction.     Further, 

if 

is interpreted as 

S: repeat 81 until B 

Si; S'; while -B do 81; 

then 

fSl(((Q A -^B) = fSKQ)) A (Q A fS^true))) 
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is as strong a. fS(Q A B). A difficulty arises, however, when we 

attempt to display fS(true) whenever S is a while construction. 

Informally, fS(true) can be interpreted as the "weaKest pre-condition 

for S which guarantees that S terminates". It is frequently possible to 

find conditions which guarantee termination, but it is more difficult to 

prove that a particular termination condition is the weaKest. However, 

any condition for termination, say X, implies the weakest pre-condition 

for S to terminate, i.e. X n> fS(true) so that the Fundamental 

Invariance Theorem for Repetition allows 

UQ A B) 3 fSKQ)) a ((Q A X) 3 fS(Q A iB)) 

Hence, if ((Q A B) ^ fSKQ)) A (Q A X) is used to replace the weakest 

pre-condition for a while construction, given (Q A -B) as the 

post-condition, then, subject to the conditons of the Theorem of 

Monotonicity, this predicate will be as strong as any formed by using 

the weakest pre-conditon for the while construction. 

4r        *        * 

The notion of a "weakest pre-condition" can be used informally to 

suggest essential relationships which must hold prior to the execution 

of an object which is not yet represented in the target language. In 

short, these assumptions should insure that the object is correct, given 

the post-conditions which hold after the object is executed. 

"Weakest    pre-conditions"   are   simply   relationships   which   must   hold 

prior   to   the   execution  of   an  object   and  do   not   include   descriptions  of 
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the capabilities which must be available to the objects. For example, 

in order to execute an assignment, access rights for variables are not 

mentioned explicitly, i.e. if a post-condition for d := d + c is 

a*c + d*b = A*B, then even though the assumption 

(a + b)*c + b*d=A*B must hold, the assignment requires write 

access to d and read access to d and c, but requires no access to a, b, 

A, or B. Similar arguments can be made for examples of assumptions 

about program environment and assumptions which are theorems from 

mathematics, i.e. assumptions which are answers to questions (3) and 

(4). 

Assumptions associated with objects that occur at early stages of a 

development must usually be deduced informally. At later stages, formal 

methods - such as the techniques of DijK5tra[DJ5] - can be used to find 

some of the assumptions. It should be clear, however, that the depth to 

which refinements are made is up to the discretion of the designer. In 

some of the examples, refinements have been made to the statement level 

in     order      to     apply     Dijkstra's     techniques     directly. In     general, 

refinements which imply greater detail than the constructs for which a 

set of predicate transformers have been found seems ill-advised since 

that kind of detail involves operations which are available to all the 

objects. The section in Chapter III which discusses the probability of 

change of assumptions provides further evidence to justify this choice. 

Since interactions are of major interest when structure in a 

program  is  examined,  the  assumptions of  an object should be  represented 
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as a conjunction of single assumptions. This kind of representation 

allows interactions to be observed easily. In particular, the next 

section describes a tabular scheme for recording assumptions where this 

kind of representation is particularly helpful. 

To summarize, the assumptions associated with an object should 

describe its requirements as completely as possible. 

The question now arises as to how objects should be elaborated. 

Each object will be elaborated as an arrangement of sub-objects, each 

possessing its own assumptions and post-conditions. Frequently, such an 

elaboration may not require all the assumptions which are made by the 

object which is being elaborated.   For example, if 

P {S}Q 

where   P  represents  the  assumptions of  an object  {S} with  post-condition 

Q and X and Y can be found such that P ^ X and Y ^ Q and X {8} Y then 

the  elaboration of  {S} can  be made using only the assumptions implied by 

X, rather than all those implied by P. 

As an aid to finding X and Y, we adopt the guideline suggested by 

Parnas[PAl] where we attempt to describe {S} via a specification which 

"hides" as many of the assumptions in P as possible. This same 

guideline can be applied at the initial stage of program development as 

well. Any time this guideline is used, however, we include P ^ X and 

Y ^ Q as assumptions of S. 
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A common example of information hiding, where these additional 

assumptions will not be included, involves concatenations of several 

objects, perhaps the result of some elaboration. Weakest pre-conditons 

associated with a concatenation of several objects frequently include 

clauses which are of no relevance to individual objects in the 

concatenation. For        example,        if        a        post-condition        for 

x := x + 1; y := y - 1; is x > 4 A y < 2 then the weakest pre-condition 

for x := x + 1 is x > 3 A y < 3. In order to satisfy the post-condition 

for the concatenation, the first assignment required no information 

about x and the second required no information about y, but their 

combined effects led to the post-condition. For this reason, in a 

concatenation only those clauses in a post-condition which are changed 

as a result of the effects of an object will be listed as assumptions 

for that object. This choice can be justified by observing that if 

A A B {S} C A B and no elaboration of S can be made such that A {8} C 

makes B false then A {8} C A B. Since this is just a theorem from 

mathematics, the section which discusses Probability of Change of 

Assumptions justifies the omission of these unaffected clauses. 

To summarize: 

(1) The methodology addresses programs in a "top-down" fashion. 

(2) The assumptions which are associated with each object are 
answers to the four questions stated earlier. 

(3) If an object is elaborated and it is possible to find X and Y 
such that if P{8}Q and P 3 X and Y D Q and X{8}Y then P D X and 
Y ^ Q will augment the assumptions associated with S. 

(4) Each program will be verified by showing that the assumptions 
associated   with   that   object   imply   a  pre-condition  which  was   derived 

- - -    -"  ^.^ .^■■.._,.■      .. ^ .^.„.^..hh..,^ 
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by     considering     the     effects     of     the     object     along     with     the 
post-condition which is to hold after it is executed. 

OBJECT/ASSUMPTION TABLES 

In   order   to   record   the   assumptions   which   will   be associated   with 

objects,    object/assumption    tables    will    be    constructed for    programs. 

These   tables   will   be   used   extensively   in   Chapter   IV. The   table   is 

defined for all objects I and assumptions J such that 

jl, if object I makes assumption J 
T(I,J) =    i 

[0, otherwise 

In   the  examples, some  care  has  been taken to  represent  assumptions  as 

conjunctions   of   "simpler"   assumptions,   where   each   conjunct   corresponds 

to a column in the object/assumption table. 

AN EXAMPLE OF OBJECTS AND THEIR ASSUMPTIONS 

The example which follows is meant to demonstrate the way 

assumptions are deduced and recorded, and should not be construed as 

typical of the amount of detail that should be preserved in all 

programs. The choice was made to refine objects so that the final 

program consisted of single statements or parts of statements, thus 

displaying explicit pre-conditions - in the Dijkstra sense - as well as 

assumptions of other kinds. As a consequence of this detail, the 

development proceeds very slowly if it is read from beginning to end. 

Nevertheless,    if    objects    are    to    be    understandable    without    additional 
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context, assumptions must be staled wherever they are made. For this 

reason, a map is provided that summarizes the example. The example can 

best be studied by studying first the map and then the objects in terms 

of their assumptions, post-conditions, and effects. Postpone studying 

the verifications and object/assumption tables until the program itself 

is generally understood. 

The   objects   of   each   of   the   programs   in   this   thesis   are   described 

by: 

(1) assumptions for the object. 

(2) an explicit statement of the effects of the object, i.e. what 
this object actually does. (Note that the effects of an object are 
not necessarily the same as the post-conditions for an object, e.g. 
the post-conditions associated with a particular assignment 
statement may be quite different from the net effects of that 
assignment.) 

(3) post-conditions for the object - a description of what every 
version of the object must do. 

(4) a verification and check that the assumptions stated in (1) and 
the effects stated in (2) imply the post-conditions. (These 
verifications are informal. They are presented only for the first 
few examples.) 

(5) a display of that portion of an object/assumption table which 
is appropriate to the object (assumptions which are added as a 
result of hiding information from an elaboration are indicated by a 
"+" in each table rather than a "1"). 

Each object will be named by an object name defined by: 

<object name> ::= : <object number> : 
<object number> ::= <positive integer> | 

<object number> . <positive integer> 

These  names  allow  the  ancestry of an object to be related to the rest of 
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a program. For example, if object :10.5.3.2: is to be elaborated as 

three new objects, then the names for the sub-objects will be 

:10.5.3.2.1:, :10.5.3.2.2:, and :10.5.3.2.3:. 

For the purposes of these examples, the target language for the 

programs can be regarded as a dialect of ALGOL 60 and is identical with 

a language used by Dijkstra[DJ3]. 

A GCD COMPUTATION 

:1: (pg. 31) 

:1.1: (32) :1.2: (32) 

:1.1.1.1: (36) 
(while a ^ b do 

:1.1.1.2:;) 

:1.1.1: (34) :1.2.1: (34) 
(x ♦- a) 

:1.1.1.2: (36) 

:1.1.1.2.1: (37) 

:1.1.1.2.1.1: (39)   :1.1.1.2.1.2: (39)   :1.1.1.2.1.3: (39) 
( if a > b then 

:1.1.1.2.1.2: 
else 

:1.1.1.2.1.3: ;) 

:1.1.1.2.1.2.1: (41)   :1.1.1.2.1.3.1: (41) 
(a ♦- a - b) (b <- b - a) 

Object :1: assumes that positive integer values are contained in 
variables a and b and has the effect of assigning to x the value of the 
greatest common divisor of the initial contents of a and b (symbolized 
by A and B, respectively). 

    —- —-  —;-—'■'— 
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Object :1.1: leaves the value of gcd(a,b) in a and object :1.2: assigns 
the value of a to x. 

The theorem that (gcd(a>b) = gcdiA.B) A a = b) = a = gcd(A)B) is hidden 
from :1.1.1: and a = gcd(A,B) is hidden from ii.2.1:. 

Object :i.1.1.1: controls the execution of :1.1.1.2: which maintains the 
invariant (a < a' v b < b') A gcd(a)b) = gcd{A,B), where a' and b' are 
the values of a and b prior to each iteration. 

Object :1.1.1.2.1: hides the invariant gcd(a)b) = gcd(A,B). 

Finally, objects :1.1.1.2.1.1:, :1.1.1.2.1.2:, and :1.1.1.2.1.3: 
implement a conditional statement which results in (a < a' v b < b') A 
gcd(a)b) = gcdla'.b'). 

^to itfiiiiajiti^\--^i^^^.^.^^^ 
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A GCD COMPUTATION 

This example, based on a program due to Dijkstra[DJ3 pp. 33-41], 

is constrained so that it uses neither multiplication nor division to 

compute the greatest common divisor of two positive integers. 

Compute the value of the greatest common divisor of the 
initial(positive) contents of the integer variables a and b, and leave 
the result in the variable x, without using either multiplication or 
division. The assumption that neither multiplication nor division is to 
be used in the progreim is an assumption which must be made by all the 
objects. It is identified as assumption "0" and in Chapter III will be 
shown to have no effect on the possible ways of decomposing the program. 

object di 

assumptions: 

effects and 
post-condition: 

verification: 

a > 0, b > 0, A symbolizes the initial value of a, 
B symbolizes the initial value of b, a is an integer 
variable, b is an integer variable, write access to 
x is required, read and write access is required for 
both a and b, neither multiplication nor division is 
to be used 

:1: COMPUTE THE GCD OF a AND b, LEAVE THE RESULT IN 
THE VARIABLE x, WITHOUT USING EITHER MULTIPLICATION 
OR DIVISION. 

x = gcd(A,B) 

Since the gcd of any two positive integers is always 
defined and is computable, the computation is 
feasible. 

^.m,.:.......,-l..-,...»J .^a.H.^^^t^J........     :■.:  „** 
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The object/assumption table for :1: is 

assumptions 
Objects o   1   23456789   1011 

: l: 111111 '.   1 

0) neither multiplication nor division is to be used 
1) a > 0, b > 0, a and b are integer variables 
2) A symbolizes the initial value in a and 

B symbolizes the initial value in b 
3) write access to x is required 
4) write access to a is required 
5) read access to a is required 
10) write access to b is required 
11) read access to b is required 

We elaborate :1: as 

:l.i: 

assumptions: a   >   0,   b   >  0,   A  symbolizes  the   initial   value  of   a, 
B symbolizes the initial value of b, a is an integer 
variable, b is an integer variable, read and write 
access to a and b is required, neither 
multiplication nor division is to be used 

:1.1: REPLACE THE VALUE OF a BY gcd(A,B) 

effects and 
post-condition; a = gcd(A,B) 

:1.2: 

assumptions: a   =   gcdiA.B),   write   access   to   x   is   required,   read 
access    to    a    is    required,    neither    multiplication    nor 
division is to be used 

:1.2: REPLACE THE VALUE OF x BY THE VALUE CONTAINED 
IN a. 

effects: x = a 

post-condition: x = gcd(A)B) 

verification: In   order   for   x   =  gcd(A,B)  to   hold   after   :1.2:,   given 
that   its   effect   is   x   =   a,  its   assumptions   must   be   a 

gcd(A,B). But     this     is     guaranteed     as     the 
post-condition of :1.1:. 

-    ■- 
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l- i: 

1-2S 

0123456789   1011 

I   I   1       1   1 II 

1 111 

0) neither multiplication nor division is to be used 
1) a > 0, b > 0, a and b are integer variables 
2) A symbolizes the initial value in a and 

B symbolizes the initial value in b 
3) write access to x is required 
4) write access to a is required 
5) read access to a is required 
6) a = gcdCA.B) 
10) write access to b is required 
11) read access to b is required 
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Consider next an elaboration of :1.1:. If the values of a and b can be 
modified so that a = b and gcd(a,b) = gcctfA.B) then a = gcd(A,B). This 
means that by adding 

(a = b A gcd{a,b) = gcd(A,B)) = a = gcd(A,B) 

to the assumptions of :1.1: we can write 

:i.l.i: 

assumptions: 

effects and 
post-condition: 

a > 0, b > 0, A symbolizes the initial value of a, 
B symbolizes the initial value of b, a is an integer 
variable, b is an integer variable, read and write 
access is required for both a and b, and neither 
multiplication nor division is to be used 

:1.1.1: MAKE a = b SUCH THAT gcd(a,b) = gcd(A)B). 

a = b, gcd{a,b) = gcd(A,B) 

An elaboration of ;1.2: can be made if we observe that 

a = gcd(A,B) 3 true 
and 

x = a 3 x = gcd(A,B) 

ßut since :1.2: assumes a = gcd(A,B) we can write 

:1.2.1: 

assumptions: write   access   to  x  is  required,  read  access  to  a  is 
required,    neither    multiplication    nor    division    is    to 
be used 

;1.2.1: x *- a 

effect and 
post-condition: 

J 
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As    a    result,    the    object/assumption    table    for    :1.1,   :1.2:,    :1.1.1:,    and 
:1.2.1: is 

0   I   23456789   1011 

♦ I   1 

5 

si- i: 
5|-2i 

: i, 9. i: 

0) neither multiplication nor division is to be used 
1) a > 0, b > 0, a and b are integer variables 
2) A symbolizes the initial value in a and 

B symbolizes the initial value in b 
3) write access to x is required 
A) write access to a is required 
5) read access to a is required 
6) a = gcdiA.B) 
7) (a = b) A gcd(A)B) = gcd(a,b) 3 a = gcd(AIB) 
8) x = a = x = gcd(A)B) 
9) a = gcd(A)B) ^ true 
10) write access to b is required 
11) read access to b is required 

{ 
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Adopting   the   convention  that   a'  and  b' equal  the  values of   a  and  b  just 
prior to the most recent execution of :1.1.1.2: we elaborate :1.1.1: 

il.1.1.1: 

assumptions: 

:1.1.1.2: 

assumptions: 

effect and 
post-condition: 

effects and 
post-condition: 

a > 0, b > 0, A symbolizes the initial value of a, 
B symbolizes the initial value of b, a is an integer 
variable, b is an integer variable, read access is 
required for both a and b, a' and b' equal the 
respective values of a and b prior to the last 
execution of il.1.1.2:, [(a < a' v b < b') A 

gcd(a)b) = gcd(A)B) A a ?! b) ^ (a H b A gcd(a,b) = 
gcd^'.b1)) A maxte'.b') > max(a)b)]) 

gcd(aIb)=gcd{A)B)) neither multiplication nor 
division is to be used 

:1.1.1.1: while a t b do 

a > 0, b > 0, A symbolizes the initial value of a, 
B symbolizes the initial value of b, a is an integer 
variable, b is an integer variable, read and write 
access is required for both a and b, a' and b' equal 
the respective values of a and b prior to the last 
execution of :1.1.1.2:, a ft b, gcd(a,b) = gcd(A,B)l 
neither multiplication nor division is to be used 

:1.1.1.2: DECREASE EITHER a, b, OR BOTH a AND b SUCH 
THAT gcd{a,b) = gcd(A,B). 

(a < a' v b < b1), gcd(a,b) = gcd(A,B) 

a = b, gcd(a,b) = gcd(A,B) 
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111 1 1111 
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1) a > 0, b > 0, a and b are integer variables 
2) A symbolizes the initial value in a and 

B symbolizes the initial value in b 
4) write access to a is required 
5) read access to a is required 
10) write access to b is required 
11) read access to b is required 
12) a' and b' equal the respective values of a and b 

prior to the last execution of :1.1.1.2: 
13) (((a^1 v b^) A gcd{a1b)=gcd(A,B) A a^b) = 

(a/b A gccKa.b) = gcd(A,B)) A maxia'.b1) > max(a,b)) 
14) ßccKa.b) = gcdlA.B) 
15) a H b 

If   we   add   the   following   assumption   to   :1.1.1.2:  we   can   "hide"   A   and   B 
from :1.1.1.2.1: 

[(gcd(a,b)=Bcd(A,B))=) 
(gcd(a,

)b
,)=gcd(a)b), holds prior to executing :1.1.1.2.1:)] and 

[(gcd(a,,b')=gcd(a,b)) holds after executing :1.1.1.2.1:)3 
(gcd(a,b)=gcd(A,B))] 

This is verifiable in the context of :1.1.1.2: and :1.1.1.1:. 

:1.1.1.2.1: 

assumptions: a > 0, b > 0, a and b are integer variables, A 
symbolizes the initial value of a and B symbolizes 
the initial value of b, read and write access is 
required for both a and b, a' and b' equal the 
respective values of a and b prior to the last 
execution of :1.1.1.2:, gcd(a,b) = gcd^'.b'), 
neither multiplication nor division is to be used 

:1.1.1.2.1:   DFCREASE   EITHER   a,   b,  OR   BOTH   a   AND   b 
SUCH THAT gcd(a,b) = gcd{a,,b'). 

effects and 
post-condition: (a < a' or b < b'), gcd(a,b) = gcd(a'(b') 
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The table for :1.1.1.2: and -,1.1.1.2.1: is 

I- 1- !• 2' 
|. |. i. 2- ['• 

0123456789   101 I 12!3MI5I6I7 

111        11 111        11* 

II II 111 II 

0) neither multiplication nor division is to be used 
1) a > 0, b > 0, a and b are integer variables 
2) A symbolizes the initial value in a and 

B symbolizes the initial value in b 
4) write access to a is required 
5) read access to a is required 
10) write access to b is required 
11) read access to b is required 
12) a' and b1 equal the respective values of a and b 

prior to the last execution of :1.1.1.2: 
14) gcd(a)b) = gcd(A)B) 
15) a ?! b 
16) [(gcd(a,b)=gcd(A)B))3 

(gcd(a,
)b

,)=gcd(alb)) holds prior to executing :1.1.1.2.1:)] and 
[(gcd(a,,b,)=gcd(a,b)) holds after executing :1.1.1.2.1:):) 

{gcd(a,b)=grd(A)B))] 
17) gcd(a,b) = gcd(a,,b') 

m - •—■-"- .MMM^MMMH^Bi attftU^. ^... /.^^j.--.-...:. .^ ..■■..■..■■•...-.--..:..■-■--.- lWVliwtTlVti>fflfi^ ii'i'r- 



TW'T^"!™*'''''''''''"'»^^ ^W-«™W«VI,WV«™TWWWWW^ ««fiiaw.w^jtwjjt^Rei 

MAKING ASSUMPTIONS EXPLICIT 
A GCD COMPUTATION 

39 

We can now elaborate ;1.1.1.2.1: as 

:1.1.1.2.1.1: 

assumptions: 

:1.1.1.2.1.2: 

assumptions: 

effect and 

post-condition: 

:1.1.1.2.1.3: 

assumptions: 

effect and 

post-condition: 

po';t-condition; 

verification: 

a   >  0.  b  >  0,   a   and   b   are   integer  variables,  read 
access    to    a    is     required,    read    access    to b     is 

required,   a1   and   b'   equal   the   respective   values of   a 
and   b   prior   to   the   last   execution   of   :1.1,1.2:, a   ^ 

b,    (a   >   b   A   gcdia'.b1)   =   gcd(a-b)b)   v   a   < b    A 

gcd^',^)     =     gcd(a,b-a),     neither     multiplication nor 
division is to be used 

:1.1.1.2.1.1: if a > b then 

gcdCa'.b') = gccKa-b.b), a > 0, b > 0, a and b are 
integer variables, write access to a is required, 
read access to a is required, read access to b is 

required, a' and b' equal the respective values of a 

and b prior to the last execution of :1.1.1.2:, 
neither multiplication nor division is to be used 

:1.1.1.2.1.2; DECREASE a BY b. 

a has been decreased by b. 

else 

gcd(a,,b1) = gcd(a,b-a), a > 0, b > 0, a and b are 

integer variables, read access to a is required, 

write access to b is required, read access to b is 

required, a' and b1 equal the respective values of a 

and b prior to the last execution of :1.1.1.2:, 
neither multiplication nor division is to be used 

:1.1.1.2.1.3; DECREASE b BY a. 

b has been decreased by a 

gcd(a,b) = gcdCaVb'), (a < a' or b < b1) 

given   that   a   ?*   b   and   the   other   initial   conditions 
the    assumptions   for    :1.1.1.2.1.1:   is   a   theorem   from 
mathematics. 
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: 1. 1. 1. 2- I- is 
: i. |. 1.2. 1.2? 

: 1, |. i.2. 1.3s 

0123156789 101 I 121314151617181920 

II 1 1111 

1111 I i 

III II I 

0) neither multiplication nor division is to be used 
1) a > 0, b > 0, a and b are integer variables 
4) write access to a is required 
5) read access to a is required 
10) write access to b is required 
11) read access to b is required 
12) a' and b1 equal the respective values of a and b 

prior to the last execution of si.1.1.2: 
15) a H b 
18) (a > b A gcd^'.b') = gcd(a-b,b) v 

a < b A gcd^'.b') = gcd{a,b-a) 
19) gcdCa'.b') = gcdte-b.b) 
20) gcdla^') = gcd(a)b-a) 
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Lastly, if we add 

gcdia'.b') = gcd(a,b-a) =>   true 
and 

b decreased by a   = gcd(a,b)=gcd{a,,b,) 

to the assumptions of :1.1.1.2.1.3: and 

gcd(a,,b,)=gcd(a-b)b) = true 
and 

a decreased by b   ^ gcdia.b^gcd^'.b1) 

to the assumptions of :1.1.1.2.1.2:, we can elaborate these objects to 

:i.1.1.2.1.2.1: 

41 

assumptions: 

effects and 
post-condition: 

and 

:1.1.1.2.1.3.1! 

assumptions: 

effects and 
post-condition: 

write access to a is required, read access to a is 
required, read access to b is required, neither 
multiplication nor division is to be used 

:1.1.1.2.1.2.1: a ^ a - b. 

a decreased by b 

read access to a is required, write access to b is 
required, read access to b is required, neither 
multiplication nor division is to be used 

:1.1.1.2.1.3.1: b ♦- b - a. 

b decreased by a 

HMM .^MtiiäLumHuaaafemmu***-^^^   , .„- ■iMiaiüiHlMrtllMi(ltiiiMlliTll in ÜiUiMltigi-Vef'muiri h- ■ i/rl,^>^-iÄi^*^^,i»iÄv-tÄ-:,A,i« 



HWa^PP?fWl**«p?»WP?'WW!9''^^ ^.i.i,tiiiWl»MU»»t(^(U«|J,M.U..U|^^ 

MAKING ASSUMPTIONS EXPLICIT 
A GCD COMPUTATION 

The relevant tables are: 
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2- 1- 2' 

2- l-3: 

2- 1- 2- 

2- I-3- 

0111213141516171819202122 
ii i      ♦ 

0123456789 

1111 I 

II 1 II 
III I 

I                   I 11 

0) neither multiplication nor division is to be used 
1) a > 0, b > 0, a and b are integer variables 
4) write access to a is required 
5) read access to a is required 
10) write access to b is required 
11) read access to b is required 
12) a' and b' equal the respective values of a and b 

prior to the last execution of :1.1.1.2: 
19) gccKa'.b') = gcdla-b.b) 
20) ßcd(a,,b') = gcd(a,b-a) 
21) gccKa'.b') = gcd{a)b-a) = true, 

b decreased by a   ^ gcd^'.b1) = gcd(a,b) 
22) Gcd^'.b') = gcd(a-b,b) = true, 

a decreased by b   ^ gcd(a)b) = gccKa',b') 
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ßdow is a display of the entire table. This table will be used in 
chapter IV to evaluate different decompositions of the program, and to 
observe where interactions were introduced as the program was developed. 

si' 
: |. i: 

5i-2: 
: i- l 

•\-2 

''I- I 

'' I- l 

5|. I 

51. 1 

•-]■ 1 

' !• 1 

51-  1 

0 I   23^)56789 10 

1 1 I 1 I I I 

III 11 * I 

1            I        1   I       *  * 

I   !   I        I   I I 

1J 

2- 

2- I 

2- I 

2- 1 

2- 1 

2- 1 

2- 1 

II2131415I6I7I8I9202122 

1   * 

0) neither multiplication nor division is to be used 
1) a > 0, b > 0, a and b are integer variables 
2) A symbolizes the initial value in a and 

B symbolizes the initial value in b 
3) write access to x is required 
4) write access to a is required 
5) rrad access to a is required 
6) a = gcdCA.B) 
7) (a = b) A gcd(A,B) = gcdia.b) 3 a = gcd{A)B) 
S) x  = a D x  = gcd(A,B) 
9) a  = gcd(A>B) => true 
10) write  access to b is required 
11) read access to b is required 
12) a' and b' equal the respective values of a and b 

prior to the last execution of ;1.1.1.2: 
13) (((a^1 v b^1) A gcd(a1b)=gcd(A)B) A a^b) o 

(a^b A gcd(a,b) = gcd(A,B)) A max(a,,b') > max(a,b)) 
14) Rcd(a,b> = gcd(A)B) 
15) a ^ b 
16) [(gcd(a)b)=gcd{A,B))3 

(gcd(a,,b,)=gcd(a,b)) holds prior to executing ;1.1.1.2.1:)] and 
[(gcd(a,

)b
,)=gcd(a,b)) holds after executing :1.1.1.2.1:)= 

(gcd(a)b)=gcd{A)B))] 
17) gccKa.b) = gcdte'.b') 
IS) (a > b A gcdCa'.b1) = gcd(a-b>b) v 

a < b A gcd(a^b,) = gcd(a,b-a) 
19) ücd(a^b,) = gcd(a-b,b) 
20) gcdW) = gcd(a,b-a) 
21) gcd{a,,b,) = gcd(a,b-a) o true, 

b decreased by a    3 gcd^b') = gcd(a,b) 
22) i^cdla'.b7) - gcd(a-b,b) o true, 

a decreased by b      => gcd(a,b) = gcd^'.b') 

| 
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SUMMARY 

The definition of program structure in Chapter I has been used to 

explicitly describe the kinds of assumptions which are associated with 

objects. These assumptions include the "pre-conditions", described by 

DijKstra[DJ5]) as well as assumptions 3bout the capabilities an object 

must have in order to achieve its effects. Lastly, a program is 

developed in order to demonstrate the way assumptions are preserved and 

recorded. The object/assumption table foi this program will be used in 

Chapter IV in order to examine various decompositions of the program in 

the light of the measure which is presented in Chapter III. 
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CHAPTER III 

A MEASURE OF PRÜGRAM STRUCTURE 

This chapter presents and justifies a calculation which is used to 

measure how much groups of objects in a program interact. Next, it is 

shown »hat the problem of finding an arrangement of objects which 

interacts least is tractable only for small programs. Instead, several 

theorems and heuristics are presented which provide useful guidelines 

for controlling interactions as a program is developed. Lastly, it is 

observed that certain assumptions should affect structure less than 

others. For example, assumptions which are not subject to change - 

theorems from mathematics - can safely be shared without influencing the 

difficulty of changing a program. Consequently, the definition of the 

measure is modified to incorporate this notion. 

DEFINITION OF A MEASURE 

Dictionary definitions of the word "measure" use phrases such as 

"reference standards to which something is valued", "a criterion", or 

"extent, degree or quantity", These phrases and the definition of 

program structure from chapter II suggest that a measure of program 

structure should provide a valuation of the interactions among 

identified groups of objects in a program. Van Emden[vEl,vE2] has 

described a calculation based on data contained in an object/assumption 

table which characterizes the degree to which collections of objects 

interact. The    calculation    is    called    entropy    loading.        Choosing    this 
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calculaUon as a measure of program structure is justified if we regard 

programs as complex systems which have identifiable objects which, in 

turn, possess properties - in this case, an object has the properties of 

making or not making certain assumptions, van Emd:;n[vE2] has shown that 

entropy loading provides a measure of what Williams and Lambert[WL] call 

an "association". Informally, this means that the calculation indicates 

the degree to which designated colledionb of objects are similar to one 

another. Entropy loading measures the amount of information shared 

among collections of objects as opposed to the information used inside 

each collection. Alexander[AL] and Watanabe[WA] have also used similar 

techniques to analyze complex systems. in the present application, 

where object/assumption tables represent programs, designers can use the 

calculation as a guide for controlling interactions among collections of 

objects which are designated as subsystems. 

En' , jading is defined for some subset of the rows, say S, of 

an object/assumption table containing n rows. Suppose that the objects 

in S are partitioned into two sets A and B such that A U B = S and 

A n B = <empty>. The entropy loading of S for the partition into A and 

B is defined to be 

C(S) = H(A) + H(B) - H{S) 

where 

H(X) = I , (n./n) log (n/n,) 

= log n - (1/n) Z i "i log (ni) 

- --.^^^-li^-^.H— 
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To determine the nfs 

(a) construct a table containing only those columns of S which 
contain at least one occurrence of a "1" in the subset of rows, X. 

(b) regarding each row in this table as a one-zero pattern, the 
Hj's are the number of occurrences of each distinct pattern (Note 
that the sum of all n^s equals n, the number of rows in S.) 

For example, if a set of rows, S, is 

a b c d e f 
1 
? 
3 

5 
6 

Let  A  be  the  rows  {1,2,3} and B the rows  {4,5,6}, then H(S) = H(A U B) = 

log   6   since   at   least   one   "1"   occurs   in   every   column,  and   each   row   is 

distinct.       Similarly,   H(A)   can   be   computed   by   noting   that   at   least   one 

"1" occurs in A only in columns a, d, and f, and from 

a cl f 

10 0 0 0 0 
0 0 0 0 0 1 
0 0 0 1 0 0 
0 10 0 1 1 
0 0 10 1 1 
0 0 0 0 1 0 

1 0 0 
0 0 i 
0  1 0 
0 0 1 
0 0 1 
0 0 0 

1   0   0   occurs   once;  0   0   1   occurs  three  times;  0   1   0  occurs  once;  and 

0 0 0 occurs once, then 

H(A) = log 6 - (1/5) 3 log 3 (*) 

Similarly, since at least one "1" occurs in columns b, c, e, and f 

of B, 0 0 0 0 occurs twice; 0 0 0 1 occurs once; 10 11 occurs once; 

Olli occurs once; and 0010 occurs once, ana 

H(B) = log 6 - (1/6) * 2 log 2 
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Finally, 

C(S) = C(A u B) = log 6   - (1/6) * ( 2 log 2 + 3 log 3) 

The   calculation  can  be  applied  to  A and B, and  hence  to  any  binary 

tree decomposition of S.   That is, if A = E u F and E n F = <efnpty> then 

C(A) = ClE u F) = H(E) + H(F) - H(A) 

Note   that   H(A)   is   the   same   value   as   in   (*),   and   that   E   and   F   define   a 

set   of   columns   from   all   the  rows  of  the  subset   S.     For   example,  if   E   is 

{1} and F is {2,3} then 

H(E) - log 6 - (1/6) ( 5 log 5 ) 

and 

H(F) = log 6 - (1/6) ( 2 log 2 + 3 log 3 ) 

and 

C(A) = C(E u F) = log 6 - (1/6) { 5 log 5 + 2 log 2 ) 

Hence,   an   entropy   loading   value   can   be   computed   for   each   non-terminal 

node of a binary tree which represents some partition of S. 

Entropy   loading   has   several   propertieslvan   Emden[vEl]).      The   most 

important of these are 

(1) C is always non-negative. 

(2) If  S  =  A  U  B, A  n B =  <Gmpty>  and SsEUF.EflFs <orripty> 
and C(A U B) < C(E U F) then A and B interact less than do E and F. 

INTERPRETING THE MEASURE 

Intuitively,     entropy     loading     represents     the     extent     to     which 

information     is     shared     between     two    groups    of     objects. Thus     it 
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characterizes a partition of the objects in a program, given the 

assumptions those objects make. As a measure of structure, this means 

that groups of objects having small entropy loadings possess better 

structure than other groups of those objects having larger entropy 

loadings - at least according to the definition of structure appearing 

in Chapter I. 

A consequence of this property sometimes permits groups of objects 

that share the same number of assumptions to be distinguished. For 

example, except for the order of their rows, the two tables below are 

identical. 

u 1010 u 1010 
V 0010 V 0010 
w OHO z 

w 
1001 

X 0100 0110 

y 0001 X 0100 
z 1001 y 0001 

hKu.v.w.x y.z) = log 6 
H(u,v,w) = log 6 
H(x,y,z) = log 6 - (1/3) log 2 

C( (u,v,w), (x,y,z) ) = log 6 - (1/3) log 2 

l-Ku.v.z) = log 6 - (1/3) log 2 
H{w,x,y) = log 6 - (2/3) log 3 

C( (u,v,z), (w,x,y) ) = log 6 - loi I 2 

Objects (u,v,w) share two assumptions with objects (x,y,z) and (u,v,z) 

share two assumptions with (w,x,y). However, the entropy loading for 

((u,v,z),(w,x,y)) is less        than        the        entropy loading        for 

((u.v.wMx.y.z)). This occurs because two assumptions are shared among 

u, v, z and one assumption is shared among w, x, y but only one 

assumption   is   shared   among   u,  v,  w   and  only   one   assumption   is   shared 
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among x, y, z. Thus entropy loadings can often distinguish different 

.'^compositions even though the number of shared assumptions among the 

subsets of each decomposition is the same. 

In   one   sense,   the   measure   can   also   be   used   to   compare   different 

programs.      Since   a   program   is   regarded   as   a   partitionpd   collection   of 

objects,   where   each   object   makes  assumptions,  any   program  represents   a 

system   whose  structure  can  be  measured.    Hence, comparisons of  entropy 

loadings   for   two   different   programs   allow   the   structure   implied   by   the 

partitions   of   the   objects   in   each   program   to   be   compared.      Using   the 

measure  to compare programs, however, does not seem to be useful unless 

the    programs    are    related    in   some   other   way.       For    example,   it    is 

conceivable     that     a    large    program    and    a    small    program    might    be 

partitioned   so   that    their   entropy   loadings   are   approximately   the   same. 

Such   a   comparison   only   indicates   that   the   relative   amounts   of   sharing   in 

each     program,     for     the     selected     partitions,     are     about     the     same. 

Analogously,   a   comparison   of   two   programs   in   terms   of   the   number   of 

statements   each   contains  depends  on  the   way  a  statement   is  defined  for 

each   program.      If   in   one   program   a   statement   is   an   assembly   language 

instruction    and    in    another    a   statement    is    a    FORTRAN   statement,    the 

programs   can   be   compared,  but   the  comparison   may   not   be  very   useful. 

DijKstra[DJl    in    the    scction,"On   Comparing    Programs"]    has   cited   similar 

difficulties   for   other   kinds   of   comparisons   except   where   a   mapping   can 

be  found  that   associates  the  parts of  the  programs  being  compared.    Such 

a   mapping   can   be   found   if   the   programs   that   are   compared   represent 

50 

inrfiiiiin i"ii --■ --—-i ■■■ -J^-^.>.^—.^-O^-M,,.,     .    



Ipw'wwi.Aiii'ujiww'm 

A MEASURE OF PROGRAM STRUCTURE 
INTERPRETING THE MEASURE 

51 

successive stages in the step-wise construction of a program. One such 

mapping consists of associating an object with the objects into which it 

is refined. This mapping motivates the methods described in the next 

section. 

These interpretations of the measure permit the definition of 

entropy loading to be extended in order to characterize a partition 

containing more than two sets of objects. If S is partitioned into n 

subsets, si, S2, ... , sn tuen C can be defined as 

C(si,S2)...,r.n) = (Zi H(Si)) - H(S). 

Here, C is non-negative and indicates the amount of sharing inside the 

subsets relative to the amount of sharing among them. Note, however, 

that just a single figure characterizes this partition. Further, there 

seems to be no useful relationship between the values that result from 

applications of the original definition and this extended one. 

APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS 

We propose to use the measure to suggest ways of controlling 

interactions as a program is developed. Elaborations which lead to high 

entropy loading values at late stages in the development of a program 

are to be avoided.   This is demonstrated by the examples in Chapter IV. 

We demonstrate several theorems which are relevant to fixed sets of 

rows from a table. These theorems justify several heuristics which are 

explained   in   this   chapter   and   used   in   Chapter   IV.      The   fixed   sets   of 
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rows   (the   sets   S   used   in   the   definition   of   the   measure)   will   be   N-th 

stages in the object/assumption table for a program. 

The N-th stage is defined to be ail the objects whose <object 
name>,s consist of N integers separated by periods and those 
objects whose names consist of fewer than N integers but which 
will never be elaborated. 

Informally, the N-th stages consist of the terminal nodes, at each 

elaboration, in the map for the development. For example, stage 1 of 

the development of the gcd computation consisted of object :1:; stage 2 

consisted of objects :1.1: and :i.2:; stage 4 consisted of :1.1.1.1:, 

si.1.1.2:, and :1.2.1s. After the theorems have been proved, several 

heuristics will be staled for controlling interactions by usit.g a 

development at stage N-l to suggest bounds for entropy loadings at stage 

N. 

Theorem 1: Given; 

(1) a collection i rows S = A U B and 
A n B = <empty> where A contains a rows and B 
contains b rows; 

(2) S makes assumptions P = C U D and 
C n D = <empty>; 

(3) any row in A makes assumptions only in C and any 
row in B makes assumptions only in D; 

(4) a < b and a is as small as possible for S, 
subject to (1), (2), and (3). 

Conclude: 

C(A u B) achieves its minimum value for S = A u B 

and 

log(a + b) - l/{a + b) * (a log a + b log b) 
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Informally, the diagram shows the areas containing ones and possibly 
zeros as shaded, where A corresponds to some subset of rows in S which 
contains as few rows as possible. 

C D 

B 

/// 
0 

0 '/X 

Proof: 

H(A) = log(a + b) - (1 / (a + b)) (b log b + Z i   ai log ai) 

where  ^ i  ai  =  a  and   'he  subscripted a's correspond to  the  partition  of 

A imposed by C.   Similarly 

H(B) = log(a + b) - (1 / (a + b)) (a log a + Z i bj log b|) 

where   ^ j bj =  b  and  the  subscripted  b's correspond  to the  partition  of 

B imposed by D.    Lastly, 

H(A u B) = log (a + b) - (1 / (a + b)) (Z i aj log ai + Z i bi log b, ) 

and 

H(A) + H(B) - H(A U B) = log (a + b) - (1 / (a + b) (a log a + b log b) 

Now   the   restriction   that   a   be   as   small   as   possible   is   necessary   since 

log(a+b)-(a log a -* b log b)/(a+b) = 

(a/(a+b)) log((.a+b)/a) + (b/(a+b)) log((a+b)/b) 

and   for   a   and   b   positive   integers,   the   right   side   reaches   its   maximum 

when  a  =  b  and its minimum for  the smallest a.    Note that the roles of  a 

and b can be reversed.// 
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Consequently, the best decompositions are known for tables that 

satisfy the conditions of the theorem. Although this theorem applies 

only to an entire table, analogous results can be obtained for 

decompositions of objects in A as well as B. Minimal entropy loadings 

occur for analogous partitions of A and B but their values cannot be 

derived directly from the above theorem. Another theorem states that 

objects which make identical assumptions should occur in the same subset 

of a partition. 

Theorem 2: Given: 

(1) a collection of s rows, S = A U B and 
A n B = <empty- where A contains a rows and B 
contains b rows and a + b = s; 

(2) a > b; 

(3) there is a collection of P rows which is a 
subset of S, containing p rows, p > 1 and p < s, 
which make identical assumptions; 

(4) P n A and P n B are both non-empty; 

Conclude: 

There exist A' and B' such that A' u B' = S, 
A' n B1 = <empty> and A' = A u P and B' = B - P and 

C( A u B ) > C( A' u B1 ) 

Proof:   Since   C(A   U   B)   and  UA'   U   B1)  contain   a  term  which   is   identical, 

namely   H(A  u  B),  if  we  show  that  HIA') + H(B') < H(A)  +  H(B) then  the 

theorem is proved. 

Consider first the expansion of H(A), i.e. 

H(A) = log (a + b) - (l/(a + b)) (R + (p + t) log (p + t)) 
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where R is the sum of those terms describing subsets of a partition, but 

excluding the subset which contains the P identical rows. Here, p + t 

equals the number of rows contained in the subset of the partition 

induced by A but containing P. Note that t > 0 and is just the 

difference between the number of rows in the subset of the partition 

induced by A, but containing P, and p. 
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Similarly 

H(B) = log (a + b) - (l/(a + b)) (T + (p + u) log (p + u)) 

where  T  and u  play  analogous roles to R and t.    Now, H(A) ■ KA') since 

the   partition   determined   by   A'   is   identical   to   the   partition   determined 

by A.   But, 

HO') = log (a + b) - (l/(a + b))   (T' + (p + u') log (p + u')). 

We must show that 

(l/(a + b)) ( r + (p + u') log (p + u')) > 

(l/(a + b)) ( T + (p + u) log (p + u)) 

The two sides are equal if the assumptions made by B' are identical to 

those made by B. Further, if the assumptions made by B' are not the 

same as those made by B, then B' makes fewer assumptions than B. In 

this last case, there are a finite number of terms of T' which 

correspond to subsets of a partition with respect to B' which contain 

fewer items than the corresponding subsets for a partition with respect 

to B. This means that u' > u and for some finite number of terms in T, 

there are identical terms in T' and there ore terms in T' greater than 

the corresponding ones in T.    We then must show that after excluding the 

-"---— | tedkMatttt^v^...,^«...^^ 



nwiiijipiiiM.^.iimiim.iiwBnwwipiii.1 .j i »■ i».«nii,iii«»w«miiuuii iniRMKna ■.«.www.  i. mm. «ji •111 J«i>u»w<iT<M|llwuw.MPnimiw»p«illil.i. IIMJiu IIHIIIIIWIIH mim 

A MEASURE OF PROGRAM STRUCTURE 
APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS 

56 

identical terms in T and T' that the remaining ierms in (*1): T' + (p + 

u') log (p + u') are greater than or equal to the remaining terms in 

(*2): T + (p + u) log (p + u).   Denote by 

1 i qj log qj 

the remaining terms in (*1).   Denote by 

Z i n log n 

the remaining terms in (*2), where 

2 i n = Z i qj- 

Note  that   there   are  fewer qj's  than  r^s  and  that  each qj is  the  sum  of 

several   of   the   rj's   which correspond   to   the   subset   of   rows   which   qi 

designates.   This means that if 

2, k ck log ck < ( Z k Ck ) log ( Z k Ck ) 

then 

Z i n log r, < £ j qj log qj 

and the theorem is proved. 

But,  Z k  ck  log  ck  <  (  Z k Ck  )  log (  Z k Ck  ) since  for  cj, 2  1  it 

is just the logarithms of both sides of the inequality 

k ( Ck T Ck ) < ( Z k Ck ) T ( Z k CK) 

(where "T" indicates exponentiation).   // 

Theorem 3: If     a     set     of     rows     S    satisfies     the     following 
conditions: 

(a) S maker, k assumptions (pi,P2.P3.-.Pk)! 

(b) S is partitioned into n sets such that 
there are qi elements in the first, qg in the 
sticond,..., qn in the n-th set, where each set 
is denoted by Sj, 1 < i < n; 

(c) the rows in a particular Sj are identical; 
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(d) pj is made by Sj, i < j < k 

then   the   minimal   entropy' loadings   are   achieved   for   a 
decomposition of the form 

Sn-l sn 

A table which illustrates the conditions of the theorem is 

si 

S3 

Pi 92      Pk 

1 

0 

Proof:  Assume  that  £ i.i,2.-.n  Pi  =  M.    The  proof  is  by  induction on  m 

which indicates the subsets Sj of S.   Observe that if m = 1 

H(S|) = log M - (1/M) (M log M) = 0 

and that 

H( U ).!,...,„ si ) = H(S). 

Hence   C(   si   U   (   U  i.2,...»n  Sj  ))  =  0,  which  is  the  minimum  value  which 

any   decomposition   could   have.     (Here,  U  means  "the   union  of".)  Assume 

that for j < m, ihe entropy loadings for the partition of S indicated by 

sm-l U i-mi-in si 

are  as  small  as possible.    We wish to show that the entropy loadings for 
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si 

sm-1 

sm U j.m+i,....n si 

are as small as possible.   Note that 

H(sm+i) - log M - (1/M) ( 2 i-b-.m q. log q, 

+ ( L i.m*b-.n qi ) log ( Z i-m-b-.n <* » 

and that 

H( U i.m*2.-.n Si ) = H(S) 

Suppose there is  an A and B such that A U B = U ^.....n Oi and A n B = 

<empty> but that 

(*):   C(A u B) < C( smti U ( U inm*2.-)n s, )) 

Clearly   a   row  of   sn makes  all the  k assumptions and if  at  least one  row 

of sn is in A and at least one row of sn is in B then 

C(A u B) = log M - (1/M) (I i.i,.".n ^i log ^ ) > 

C( sm»i u ( U j.m+2,-,n si )) 

Hence. sn must  be in either B or A. say B. and C(A U B) = H(A).    But the 

smallest    such   value    equals   H(sm+l).   -hich   contradicts   the    assumption 

(*).      Therefore,   by   the   principle   of   mathematical   induction,  the   theorem 

is proved.// 

Several     observations     regarding     entropy     loading    can     now     be 

justified: 

(1) Theorem 1 describes a situation for wh,ch ^e best entropy 
loading values are known. If programs are constructed w.th these 

properties, we know how they should be decomposed. 

(2) Theorem 2 suggests that objects which make identical 
assumptions should occur in the same portions of a deCompos,t.on. 
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(3)  Theorem  3  provides  a  best  decomposition  for  a situation  where 
different objects actually share several assumptions, 

THE CLUSTERING PROBLEM 
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It now seems reasonable to ask whether there are ways of finding the 

best decomposition of a given N-th stage. If this were possible, we 

could observe whether best decompositions of early stages are really 

borne out by a development. If at any stage of finding a best 

decomposition, the set to be decomposed contains N items, then 

Z i.l.-.mtN! / (ü * (N - I)!) ] + X 

(where   m   =  N/2   and  X   is   N!  / {(N/2)!  *  (N/2)!)  /  2  if  N  is  even   and 
N! /( ( N/2 )! * (N -   N/2 )!) if N is odd) 

partitions   can   be   examined,   and  the   best   entropy   loading  value   and  its 

corresponding    partition   retained.      Except   for   small   N,   this   calculation 

is   intractable.     For   this   reason,  several   authors   have   attempted   to   find 

ways   of   determining  best   decompositions  -  "clusterings"  -  without   having 

to   examine   all   the   partitions.      vanEmden[vEl]   has   mentioned   some   of 

these  methods, and has shown that the most popular of them are at best 

heuristics.    E^ch fails for trivial object/assumption tables. 

Is it reasonable to look for a tractable algorithm which can find a 

best decomposition? (The next paragraphs may be skipped at a first 

reading. The important result is simply that an affirmative answer to 

the question would be very surprising.) 

*     *     * 
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As of this writing, the answer to the above question is not known. 

However, a particular recognition problem provides evidence to suspect 

that there is no such tractable algorithm. To describe this recognition 

problem, we present several definitions and theorems due to CooK[COO] 

and Karp[KAl]. 
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Definition 1: P is the class of languages recognizable by one-tape 
Turing machines which operate in polynomial time. 

Definition 2: n is the class of functions from £* into Z* defined 
by one-tape Turing machines which operate in polynomial time. 

Definition 3: Let L and M be languages. Then L oc M (L is reducible 
to M) if there is a function f ( n such that f(x) i M if and only 

if x c L. 

Lemma 1 (Karp): If L c/. M and M € P then L i P. 

Let P2 denote the class of subsets of Z* * Z* which are 

recognizable in polynomial time. Given L2 < P2 and a polynomial p, we 

define L as: 

L = {x| there exists y such that <x,y> <L2 and log{y) < p(log{x))} 

L is said to be derived from L2 by polynomial-bounded existential 

quar'fication and NP is the set of languages derived from P2 by 

polynomial-bounded existential quantification, i.e. NP can be thought 

of as the set of languages which are recognizable, non-deterministically 

in polynomial time. 

Now define the satisfiability problem 

SATISFIABILITY 
INPUT: cl and c2 and ... cp (in conjunctive normal form) 
PROPERTY:   The   conjunction   of   the   given   clauses   is   satisfiable;   i.e. 

there is a set 
S <= {x|,x2,X3,. ..,xn;X|,X2lX3,. ...Xn) 
such that 
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(a) S    does    not    contain    a    complementary    pair    of 
literals 
(b) S n ci, / <empty>, k=l12,...,p. 

Theorem(Cook); If L < NP then L ot SATlSFlABlliTY. 

Corollary: P = NP if and only if SATISFIABILITY ( P. 

Karp  has  shown that  a  large  number of problems can play  the  role of 

SA1SFIABILITY in the above theorem.   Such problems are called complete 

Definition 4: The language L is (polynomial) complete if 

a) L ( NP 
b) SATISFIABILITY u L 

Theorem   (Karp):   Either   all   complete   languages   are   in   P,  or   none   of   them 
are.    The former alternative nolds if and only if P = NP. 

Theorem (Karp): SATISFIABILITY u PARTITION where PARTITION is defined as 

INPUT; (C|)C2IC3,... ,cm) ( Zm, positive integer m-tuples. 

PROPERTY:   There   is   a   set    1   c   {1,2,3,...,™}   ouch   that   Z   C|   =   Z  <=) 
where each i is an element of  1 and each j is not an element of  I. 

It   would   be   surprising,   indeed,   if   all   the   complete   problems   were   in   P. 

We   now   show   that   a   recognition   problem   related   to   the   measure   is   at 

least complete. 

Theorem: PARTITION u  LOG 2 CLUSTERING 

where LÜG 2 CLUSTERING is defined to be 

INPUT:    a    (0-1)    matrix,    S,    having    N    rows    and    M 
columns. 

PROPERTY:    there    exists    a    clustering    A    U    B    =    S, 
A n B = <empty> such that C(A u B) = log 2. 

Proof: Let N = Z i c, 
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Let M = m 
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S[1)J] [ 1. L k-l.--.l-l   Ck  <  1 ^ ^ k-l.-.i+l   CK, 

where an, uppor bound for a summation of 0 
equals 0 and an upper bound greater 
than N means N+l. 

^ 0, otherwise. 

Now,    if    (C|,c^,...,cm)    has    a    partition    with   the   desired properties    then 

we   choose   as   a   set   A,   all   those   rows   corresponding to   the   c's   in   a 

single set of the partiton; the rest of the rows constituting B.   Then 

H(A) = log N - (1/N) [ Z k ck log ck ] - (1/2) log (N/2) 

where k is an element of I. 

H(B) = log N - (1/N) [ Z k ck log ck ] - (1/2) log (N/2) 

where k is not an element of I. 

H(A u B) = log N - (1/N) [ Z k   ck log ck + Z i C) log CJ ] 

where k is an element of i but where j is not an element of I. 

Hence,  C(A   u   B)   =   log   N  -   log   N/2   =  log  2.     For  all  other   matrices  of 

the   form   described   at   the   beginning   of   the   proof,   there   is   no   partition 

which leads to a C value of log 2.// 

Intuitively, this problem is not as difficult as the general 

clustering problem, yet a solution to the clustering problem, does not 

solve the partition problem, for the encoding above. 

*     *     » 
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In short, a tractable solution to the clustering problem would be 

very surprising. 

HEURISTICS FOR USING THE MEASURE 

But just a solution to the clustering problem for an object/assumption 

table whose objects have many interactions really is not of much 

interest. Making the best of a bad design job is not of much interest. 

Programs should instead be composed of parts which interact very iitlle. 

As programmers, we can modify the tables which represent our programs in 

order to improve their structure. This is not the case for data in an 

ecological study, for example, where an object/assumption table is fixed 

and  a best decomposition might oe of interest. 

In chapter IV, the example developed in chapter 11 will be examined 

using of the measure. i he measure is used in two ways. First, at early 

stages in a development the best decompositions are found. In most 

cases this is tractable because the number of objects is small. Second, 

if entropy loading figures for an elaboration of the objects in a best 

decomposition seem too large, attempts are made to modify the 

Object/assumption table and the program so that the good properties of 

the earlier decomposition are preserved. The heuristics used are 

summarized oelow; 

Assume   we   have  a  decomposition  at   the  N-lh  stage  in  which  the  parts  of 
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6A 

the   decomposition   interact   little,   and   that   an  elaboration   has   been   made 

to the (N+D-st stage. 

(1) Compute as a rough lower bound, RLB, for the entropy loading at 
the (N+l)-st stage, the entropy loading with respect to the N-th 
stage decomposition, where each object which was elaborated is 
replaced by as many new objects as appear in the (N+l)-st stage 
such that each object makes NO assumptions. 

For example, if the table below represents part of a table to 
the N-th stage and at the (N+l)-st stage the object X is 
elaborated to three objects, we compute the entropy loadings 
with respect to the decomposition at the N-th stage, but 
replacing X by three rows of zeros. 

^-—-— oo... 
X 10 . 1 1 00... .   i 1 

"■"   ^—^ 00... 

;tage N stage (N+l) 

This    computation    takes    into    account    the    increased    size    of    the 
table, but introduces new objects which do not interact at all. 

(2) As a rough upper bound, RUB, for the entropy loadings at the 
(N+l)-st stage, compute the entropy loadings with respect to the N-th 
stage decompostion where each object which was elaborated is replaced by 
as many new objects as appear in the (N+D-st stage, such that each new 
object is identical with its parent. 

These   guides   are  only  rough indicators.    The  reader can generate  simple 
situations   where   expansions lead   to   smaller   or   larger   entropy   loading 
values than those indicated. For many cases, however, they are quite 

useful. 

(3) Now compute the entropy loadings of the (N+l)-st stage and compare 
its value with RLB and RUB. We clearly wish to make each elaboration so 
that the entropy loadings are as close to RLB as possible. 

(4) If entropy loadings are greater than RUB, then several cases arise 
which involve interactions resulting from one or several of the 

following 

(a) new assumptions not appearing at the N-th stage 

(b) assumptions   which   appear   at   the   N-th  stage   and   are   shared 
by the parents of subsets for which RUB is exceeded 

 --    -   
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There iire several possible actions 

(a)   Accept   the   interactions   that   are   present   and   proceed   v<ith 

the development. 

(2) Attempt to localize the assumptions not appearing at the 
N-th stage to a single subset of the decomposition at the 

(N+l)-st stage. Chis implies that a new structure, for which 

the now objects do not have a parent, has been imposed on the 

(N+l)-sl stage. An attempt should be made to place these 
objects in some subset where, except for the new assumptions, 

as much information as possible is shared. (This technique is 

consistent with Theorem 2.) 

Chapter IV will display several examples where this technique 

can and cannot  be used. 

(3) Attempt to find some other decomposition of the objects. 

Hopefully, such a choice will result in few changes in the 

original decomposition. 

SATURATION IN OBJECT/ASSUMPTION TABLES 

It should be noted that the suggestions in the last sec1 ion are 

only heuristics which can aid in evaluating the goodness of a 

decomposition. One situation which occurred when several examples were 

analyzed will bo called saturation in an object/assumption table for a 

decomposition. Sla\ed simply, this situation occurs whenever a table is 

decomposed to a depth whore further attempts at decomposing subsets of 

certain objects results in identical entropy loading values for all 

possible decompositions. In a saturated table, the measure provides no 

help       m      distinguishing      decompositions. Saturation      occurs      most 

frequently whenever a small number of objects together make many 

assumptions. Frequently, further refinements of objects lead to tables 

which    are    not    saturated    for    a   decomposilion.       This   seems    to   occur 
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whenever existing assumptio' become localized to a small number of 

objects relative to the total number at a given stage. Examples of this 

situation are cited in the next chapter. Saturation indicates bad 

structure in the sense that all the objects at a particular stage share 

much information. 

ON THE PROBABILITY OF CHANGE OF ASSUMPTIONS 

The examples in Chapter II indicate that objects make many 

assumptions even in small programs. Yet, some of the assumptions are 

never likely to change even after major modifications of the program. 

Intuitively, these assumptions seem to have less influence on the 

structure of a program from one modification to the next than do 

assumptions which are very likely to change. Theorems from mathematics 

have already been cited as assumptions which can never be wrong and 

hence have zero probability of change. However, assumptions based on 

say "the position of information in a control block", which have a very 

high probability of change, have a great influence on structure from 

modification to modification. Theoretically, every assumption could be 

rated with a probability of change, even if that rating is simply a 

relative one, e.g. that one set of assumptions has a greater 

probability of change than another. 

In this section, we extend the measure to take into account a 

probability of change for each assumption. This extension is shown to 

be consistent with the definition of entropy loading. 
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First, note the property; 

If an assumption, say X, is shared by every (no) row in some set of 
rows then for any decomposition of that set, the entropy loadings 
computed when considering X are identical with the entropy loadings 
computed when not considering X. 

Proof:     Just     observe    that     any     partition    determined    by    a    set     of 

assumptions   other   than   X   is   not   changed   if   X   is   added   to   the   set   of 

assumptions. 

Next, observe that no matter how many objects make assumptions which can 

never change or regardless of where those assumptions are made, there 

will be no ill effects because of those assumptions, should the program 

ever be changed. For this reason, unchanging information can be 

distributed without affecting the ease of either maintainencc or change. 

However, these assumptions are relevant to understanding the program and 

should be listed in a specification or at least in the object/assumption 

table. Consequentiy, we modify the entropy loading calculation so that 

it remains consistent with the properties stated at the beginning of the 

chapter, but allows assumptions which are certain to change (probability 

of change » 1) to have the same effects as before and permits 

assumptions     which    will    never     change    to    exert    no    effects. The 

modification also has the property that i! can be computed for any set 

of assumptions having any probability of change values associated with 

each assumption. 
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The only change involves the way H(X) is computed.   As before, 

H(X) = log N - (1/N) Z, n, log n, 

= Z , (ni /N) log (N/nj) (*) 

where the n/s correspond to the number of rows in each subset of a 

partition imposed by the assumptions of X on the N rows. (*) above is 

the standard definition of entropy from information theory - and has all 

its properties - if we interpret n^N as a probability so long as 

I i (ni /N) = 1. 

From  this  point  of  view, rvj need not be  an integer.    Instead, we compute 

the nj's as follows. 

(1) Choose a function of one variable, f, defined on the closed 
interval [0,1] such that f(x) > x and f is strictly monotonic (such 
a function is just the probability of change itself). 

(2) Construct a new table as follow •; 

(a) fill the table with those columns from the original table 
whose probability of change is 1 and associate with each of 
the N rows a value, w, = 1 for the i-th row. (if the table 
has no such columns, create a new table with N rows, w, = 1, 
k, = i and containing a single column each entry of v.-^teich 
equals  1) 

So long as there are assumptions which allow (b) to be 
executed, repeat (b), (c), and (d). 

(b) Select a single assumption, say P with probability of 
change p, from those that remain (ignoring all assumptions 
whose probability of change equals zero), attach this column 
to the new table, and select the value of the parameter, rt, as 
follows: 

if   the   number   of   occurrences   of   "1"   is   less   than   N/2   in 
the column for P, then let n be 1; otherwise 0. 
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(c) for each row of the table which does not contain an entry 
for assumption P. say j, choose its entry to be identical with 
the   entry   for   P  in  row   i,   1   <  i   <  N,  such  that   k|  =  kj.     (this 
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step will not need to be performed the first time (b) is 
executed) 

(d) For each row in the new table, say i, which has an entry 
for P which equals n, acid a new row, j, to the table which is 
identical to row i except that the entry for P is 1 - n and 
set wj to w, - f(p) * w, and w, equal to f(p) * w,. 

(3)   Now   for   each   pattern of   I's  and  O's, sum  the  respective  w's  to 
get  a set of sj's and compute H(X) as 

H{X) = I j (sj/N)   log (N/sj) as H{X) 

The   result   of   this  computation  is  independent  of  the   order  in  which  the 

assumptions   are   used  in  the  algorithm.     The  value is consistent  with the 

observations   stated   earlier.      The   improvements   of   Chapter   IV   will   use 

these ideas as a primary justification for ignoring certain assumptions. 

An example of this computation is indicated by the table below: 

1 .5 .25 
0 1    1 
1 0 1 
1 1 0 
1 0 1 
0 0    1 

where   the  value   above  each column represents  the  probability of  change 

of   the   assumption   associated   with   that   column   (this  value  will   be   used 

as f). 

After step (a), the new table is 

k     w     1 
1      1 0 
2     ] 1 
3     ] 1 
4 1 
5 {     0 
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After selecting a remaining assumption, and executing b 

n »• 1 and 
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k    w 1 .5 
1     1 0 1 
2     1 1 0 
3     1 1 1 
4     1 1 0 
5     1 0 0 
uted, bi it after (d), th 

k     w 1 .5 
1     .5 0 1 
2     1 1 0 
3     .5 1 1 
4     1 1 0 
5     i 0 0 
1     .5 0 0 
3     .5 1 0 
leaving rt =■ 0 and tt 

k     w 1 .5     .25 
1     .5 0 1       1 
2     1 1 0       1 
3     .5 1 1       0 
4     1 1 0       i 
5     1 0 0       1 
1     .5 0 0 
3     .5 1 0 

After executing (c), the table is 

k w 1 .5 .25 
1 .5 0 1 1 
2 1 1 0 1 
3 .5 1 1 0 
4 1 1 0 1 
5 1 0 0 1 
1 .5 0 0 1 
3 .5 1 0 0 
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Lastly, after executing (d) the table is 

k w 1     .5 .25 
1 .5 Oil 
2 1 10 1 
3 .125 1      1 0 
4 1 10 1 
5 1 0 0 1 
1 .5 0 0 1 
3 .125 1 0 0 
3 .375 1 1 1 
3 .375 1     0 1 

Hence, H for this table can be computed from 

Oil .5 
101 2.375 
110 .125 
001 1.5 
100 .125 
111 .375 

The effect of this calculation has been to modify the influences of 

assumptions whenever entropy loading calculations are computed. 

Consequently, this same calculation can be used to modify the influences 

of assumptions for other properties besides "probability of change". 

For example, if the relation "importance of assumptions" can be 

established for a program, this modified calculation can be used. 
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CHAPTER IV 

USING THE MEASURE 

The heuristics düscribed in Chapter III which provide suggested 

bounds for entropy loading values are used as guides to control 

interactions between the parts of a decomposition. Entropy loading 

values for various decompostions of the example from Chapter II are 

displayed. In addition, several other examples are developed using the 

measure as a guide. 

INTRODUCTION 

Chapters I and II provided a definition of program structure along 

with techniques for preserving assumptions which help to determine 

structure. Chapter III described a numerical calculation - entropy 

loading - which can use these assumptions to compare the "goodness" of 

different guesses at what the components of a decomposition of a program 

are. The theorems in Chapter III form the basis for methods of 

constructing elaborations for components in an initial decomposition. 

These methods are used to insure that components interact little in the 

final program, either by verifying the presence of reasonable 

interactions or by indicating that elaborations which interact less 

should be sought. Such programs have a good chance of satisfying the 

properties stated in the Introduction to this thesis. 
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These methods are first demonstrated with respect to the GCD 

example frcm Chapter II. 

A GCD COMPUTATION 

Despite the small size of the GCD program, entropy loading 

calculations cai be used to show that certain decompositions of the 

objects have greater interactions between their parts than others. (For 

the following discusi ion, it is assumed that the probability of change 

of all assumptions is one, i.e. that all assumptions are likely to 

change and have potentially the same influence on structure.) Below is 

the object/assumption table for the GCD computation from Chapter II. 

0123^)56789  101 1 1213M 1516171819202122 
• 

1 

1   1   1 

1   1   1 

1   I   1 

1   1       * 

1   1 

1   1 

2 

1 1   1   1 

1       1   1 

1   1 

♦ * 

1   1 

2 

1 

• 1 

■ 1 

• 1 

• 1 

• 1 

1 

■ 1 

1- |! 

1- 2' 

1- 2' 1 

121 

1- 2- 1 

1- 2- 1 

!■ 2- 1 

1- 2- 1 

1   1   1 

1   1   1 
:                1   1 

■ |!             11 
■2-             11 
•3!             11 

■ 2- 1 ••        1 

• 3- \'        1 

1       1 

1   1 

1   1 

1   J 

1   1 

1   1 

1   i   1 

1 1 1 

1 1 

1   1 

1 1 1 

1 

1   1 

1 1 ♦ 

1    ♦ 

0) neither multiplication nor division is to be used 
1) a > 0, b > 0, a and b are integer variables 
2) A symbolizes the initial value in a and 

B symbolizes the initial value in b 
3) write access to x is required 
4} write access to a is required 
5) read access to a is required 
6) a = gcd(A,B) 
7) (a = b) A gcdCA.B) = gcd(a,b) a a = gcd(A,B) 
8) x = a => x = gcd(A)B) 
9) a = gcd(A,B) => true 

mm   
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10) write access to b is required 
11) read access to b io required 
12) a' and b' equal the respective values of a and b 

prior to the last execution of il.1.1.2: 
13) ({(ao1 v b^) A gcd(a,b)=gcd(A,B) A aHb) = 

(a/b A gcd(a,b) = gcd(A)B)) A max(a',b') > max(a,b)) 

14) grd{a,b) = gcd(A1B) 
15) a F^ b 
16) [(gcd(a)b)=gcci(A)B))= 

(gcd(a,
(b

,)=gcd{a)b)) holds prior to executing :1.1.1.2.1:)] and 
[(gcd(a,,b,)=gcd(a,b), holds after executing :1.U.2.1:):> 

(gcd{a)b)=gcd(AlB))] 
17) Ecd(a,b) = gcdte'.b') 
18) (a > b A 600(3'^') = gcd(a-b)b) v 

a < b A gcdla'.b1) = gcd(a)b-a) 
19) gcd(a,

1b') = gcdCa-b.b) 
20) gcdla'.b') = gcd(a)b-a) 
21) gcdCa'.b1) = gcd(a,b-a) o true, 

b decreased by a   ^ gcd(a^b,) = gcd(a)b) 
22) gcd(a^b,) = gcd(a-b,b) o true, 

a decreased by b     ^ gcd(a,b) = ßcd(a,,b,) 

The map for the development is 

A GCD COMPUTATION 

:1: (pg. 31) 

:1.1: (32) :1.2: (32) 

I 1 
:1.U: (34) :1.2.1: (34) 

(x «- a) 
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:1.1.1.1: (36) 
(while a ^ b do 

:1.1.1.2:;) 

:1.1.1.2: (36) 

:1.1.1.2.1: (37) 

:1.1.1.2.1.1: (39) 
( if a > b then 

:1.1.1.2.1.2: 
else 

:1.1.1.2.1.3: ;) 

:1.1.1.2.1.2: (39)   :1.1.1.2. 1.3: (39) 

:1.1.1.2.1.2,1: (41) 
(a «- a - b) 

•.1.1.1.2.1.3.1: (41) 
(b <- b - a) 
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Object     :1:     assumes     that     positive     integer     values are     contained     in 
variables   a   and   b   and  has  the  effect  of  assigning  to x   the  value  of  the 
greatest common divisor of the initial contents of a and b (symbolized 
by A and B, respectively). 

Object :1.1: leaves the value of gcdla.b) in a and object :1.2: assigns 
the value of a to x. 

The theorem that (gcd{a,b) = £cd(A,B) A a = b) 3 a = gcd(A1B) is hidden 
from :1.1.1: and a = gcdIA.B) is hidden from •A.Z.I'.. 

Object :1.1.1.1: controls the execution of :1.1.1.2: which maintains the 
invariant (a < a' v b < b') A gcdUb) = gcd(A>B), where a' and b' are 
tl 3 values of a and b prior to each iteration. 

Object :1.1.1.2.1: hides the invariant gcd(a,b) = gcd{A(B). 

Finally, objects :1.1.1.2.1.1:, ;1.1.1.2.1.2:, and :1.1.1,2.1.3: 
implement a conditional statement which results in (a < a' v b < b') A 
gcd{a,b) = gcd^',^). 

Not     surprisingly,     the     best[l]     decomposition     for     the     development 

represented by the terminal nodes of the tree 

:1: 

:1.1: 

:1.1.1: 

:1.2: 

:1.2.1: 

:1.1.1.1: :1.1.1.2: 

is a decomposition into two parts: (:1.1.1.1:, ;1.1.1.2:) (while a F' b 

do ... , decrease a, b or both so that gcd(a,b) = gcd(A,B) ) and 

(:1.2.1:) ( x <- a ) 

[1] Of two decompositions for the same objects, one decomposition is 
said to be "better" than another if, starting at the root, a difference 
in entropy loading values is found at some node and that decomposition 
has the smaller entropy loading value a* that node. Clearly, this 
comparison is only meaningful for decompositions which are based on 
trees which have the same shape to the stage where they are compared. 
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However,    the    refinements    of      1.1.1.2.1.2;    and    :1.1.1.2.1.3;    lead    to    a 

program whose best decomposition is 

(A) 

500 

:1.2.1 

500 

or 

;1.1.1.2.1.2.1; \   .673 

;1.1.1.2.1.3.1;'       (;1.1.1.1;, 
;1.1.1.2.1.1: 

Further, the decomposition 

;1.1.1.2.1.3.1; \.673 
\ 

:1  1  I./ !,? 1, (;1.1.1.1;, 
;1.1.1.2.1.1;) 

(B) 

.500 

;1.2.1; 

(:1.1.1.1:, ;1.1.1.2.1.1;) 

is better than 

1.05 

(;1.1.1.2.1.2.1;, ;1.1.1.2.1.3.1) 

(C) 

•.1.2.1 

:1.1.1.1 

;1.1,1.2.1.1; 

1.05 

(;1.1.1.2.1.2.1:, 
:1.1.1.2.1.3.1:) 

In particular, the best decomposition before the last refinement is not 

the best decomposition after the refinement. The reasons for this 

result are obvious from an examination of the object/assumption table 

(in the light of the above calculations, but are, perhaps, not so 

obvious without them). The assumptions made by :1.1.1.2.1.2; (decrease 

a   by   b)   and   :1.1.1.2.1.3:  (decrease   b  by   a   )  are  more  numerous  than  for 

  ■    I ;  _ _  
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their refinements. These additional assumptions increase the number of 

subsets in the partitions which determine the H values, but do so in a 

way which indicates little relative interaction among the subsets of the 

decomposition. However,    jmce    the     final     refinement     involves    few 

assumptions, there is greater relative interaction for the same 

decomposition. From the standpoint of interactions alone, the best 

decompositions are indicated in (A), and in a larger, but similar, 

example work assignments might be made based upon these decompositions. 

This decoi.-position separates the actions of assigning values to 

variables from the mechanisms which control these operations. Hence, 

the measure indicates that the control mechanisms interact most since 

they require more information about the program. However, should a 

designer wish to distribute more information, in the form of assumptions 

at earlier stages, the decompositions in (B) or (C) might be more 

appropriate. 

A different elaboration of this version might arise by observing 

that for each execution of the body of the loop, two tests are made for 

each modification of either a or b. 
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GCD Computation (Version II) 

:1.1.1.2.1; (80) 
(decreaoe a, b or both 

so that gcd(a,b) = gcd(A,B) ) 

;1.1.1.2.1.1: (81) ;1.1.1.2.1.2: (82) 

(c) :1.1.1.2.1.1.1;   (d) ;1.1.1.2.1.1.2; (e) ;1.1.1.2.1.2.1:   (f) ;1.1.1.2.1.2.2: 
(while a > b do )       (84) 

(84) 
(while b > a do ) 

(85) 
(85) 

(g):l.1.1.2.1.1.2.1: (87) 
(a «- a - b) 

(h):1.1.1.2.1.2.2.1;(87) 
( b ♦- b - a ) 

The development of this version is identical with the development in 
Chapter      II     up     to     :1.1.1.2.1;. Version     I     maintains     the     invariant 
gcd(ii,b) = gcd^'.b') but version 11 requires that a or b or both have 
been modified more than once, if possible. 

Object :1.1.1.2.1.1: decreases a until it oecomes smaller than b, but 
maintains the invariant gcd(a,b) = gccKa'.b'). 

Object :1.1.1.2.1.2; makes b smaller than a, but maintains the invariant 
gcd(alb) - gcd^'.b'). 

Objects :1.1.1.2.1.1: and :1.1.1.2.1.2.1: are while constructions that 
control ;1.1.1.2,1.1.2; and :1.1.1.2.1.2.2: respectively. 

Lastly, :1.1.1.2.1.1.2.1; and ;1.1.1.2.1.2.2.1; are elaborations from 
which are hidden information about the invariants that are being 
maintained. 
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A new elaboration of :1,1.1.2: might be 

:1.1.1.2.1: 
assumptions: neither multiplication nor division Is to be used 

and a > 0, b > 0, a and b are integer variables, A 
symbolizes the initial value of a and B symbolizes 
the initial value of b, a is an integer variable, 
read and write access is required for both a and b, 
a' and b' equal the respective values of a and b 
prior to the last execution of :1.1.1.2:, gcd^a.b) = 
gcd(A,B) 5 gcdW) = gcd(a,b), pccKa.b) - 
gccKa'.b'), ;1.1.1.2.1: is the body of a loop which 
makes the test "a i1 b" 

:1.1.1.2.1: DECREASE EITHER a, b, OR BOTH a AND b 
SUCH THAT gcdCa.b) = gcdU'.b1) WHERE a OR b HAVE 
BEEN MODIFIED MORE THAN ONCE, IF POSSIBLE. 

effects and 
post-condition: (a < a' or b < b'), gcd(a)b) = gcdU'.b'), if 

possible, more than one modification of a or b 
should occur for each test of the outer loop. 
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The best decomposition for the three objects is 

((:1.2.i:) (tl.l.l.l;, il.l.1.2.1:)) .637 [1] 

il.1.1.2.1: is elaborated next 

:1.1.1.2.1.1: 

assumptions: 

effects and 
post-condition: 

a>0Ab>0Aa and b are integer variable, 
write access to a is required, read access to a is 
required, read access to b is required, a' and b' 
equal the respective values of a and b prior to the 
last execution of 11.1.1.2:, gcd(a,b) - gcd^b'), 
il.l.1.2.1: is the body of a loop which makes the 
test "a t b", neither multiplication nor division is 
to be used 

:1.1.1.2.1.1;   IF   POSSIBLE,   MAKE   a   SMALLER   THAN   b 
SUCH THAT gcd(a,b) = gcdW) 

a < a' A gcd(a,b) = gcd(a,,b') A a^b' o b'^a 

[1] This notation will be used instead of tree diagrams to indicate a 
decomposition and the entropy loading values for non-terminal nodes. 
(The value of an instance of <number> represents the entropy loading 
value for the parenthesized pair to its left.) 

<decompo5ition> ::= ( <part list> <part list> ) <number> | 
( <part list> <part list> ) 

<part list; 
<decomposition> | <simple part list> 

<simple pa'-i list" ::= <object name> | 
<simple part list> , <object name> 
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:1.1.1.2.1.2: 
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assuTiptions; a>0Ab>0Aa and b are integer variables, read 
access to a is required, write access to b is 
required, read access to b is required, a1 and b' 
equal the respective values of a and b prior to the 
last execution of il.1.1.2:, gcc)(a,b) = gcd^',^), 
neither multiplication nor division is to be used 
;1.1.1.2.1: is the body of a loop which makes the 
test "a t b" 

effects and 
post-condition: 

verification: 

:1.1.1.2.1.2:    IF   POSSIBLE,   MAKE   b   SMALLER   THAN   a 
SUCH THAT gcdUbHgcdia» 

gcd(a,b) = gcdia'.b') A bib' A (b' > a ^ a > b) 

To show that the post-condition for :1.1.1.2.1: 
K.üs, i.e. (a < a' v b < b1) A gcci(a,b) = 
Bcd(a',b'), if possible, more than one modification 
of a or b should occur for each lest of the outer 
loop, holds. 

Case    1:   if   a'   >   b1   then   b   >   a   and   a   <   a",   since 
after      the      execution     of      :1.1.1.2.1.2;,     gcd(a,b) 
ßccKa». 

Case 2: If b' > a then a ^ b winch means that b' > 
b. But       since      Bcd(a,b)       =       gcd(a,,b,)       the 
post-condition holds. 

if more than one modification of either a or b can 
be made, this elaboration will make more than one 
such modification. 
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The relevant table is then 

: |. |. i. 2. is 

: i. |, |, 2. i- i: 

: |, \. \. 2- |. 2: 

0123156789 101112131415161718 

II    II 111    III 

II    It II        II 

II      I III        II 

0) neither multiplication nor division is to be used 
1) a > 0, b > 0, a and b are integer variables 
4) write access to a is required 
5) read access to a is required 
i0) write access to b is required 
11) read access to b is required 
12) a' and b' equal the respective values of a and b 

prior to the last execution of ;1.1.1.2; 
17) gcd(a,b) = gcdte'.b') 
18) :1.1.1.2.1: is the body of a 

loop which makes the test "a / b" 

RLB and RUB for this expansion both equal 1.04, but the best 

decomposition has better entropy loading values than RLB and RUB would 

suggest, and is derived from the last stage, i.e. 

((:1.2.1:) (01.1.1.10 (;i.1.1.2.1.1:, :1.1.1.2.1.2:)) 1.38) .552 

■ III I Ml— M^HUÜMi 
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Expanding :1.1.1.2.1.1: and :l.1.1.2.1.2: gives 

(c) :U.1.2.1.1.1: 

assumptions: 

(d) :1.1.1.2.1.1.2: 

assumptions: 

•fleet and 
post-condition: 

effect and 
post-condition: 

a > 0 A b > 0 A a and b are integer variables, read 
access to a is required, read access to b is 
required, a' and b1 equal the respective values of a 
and b prior to the last execution of :1.1.1.2:, 
gcd(a,b) = gcd(a',b,)l gcd^b') A a > b = 
gcd(a',b') = gcd(a-b,b), neither multiplication nor 

division is to be used 

:1.1.1.2.1.1.1: while a > b do 

a > 0 A b > 0 A a and b are integer variables, 
write access to a is required, read access to a is 
required, read access to b is required, a' and b' 
equal the respective values of a and b prior to the 
last execution of :1.1.1.2:, gcd(a,b) = gcd^b1), 
gcdte'.b') = gcd(a-b,b), neither multiplication nor 
division is to be used 

:1.1.1.2.1.1.2: DECREASE a BY b 

a has been decreased by b. 

a   >   0   A   b   >  0   A   a   and   b   are   integer   variables, 

gcdCa'.b') = gcdUb) 

mmtma tm^mamt '■'■■■ if n i afuiiiiM il .     im r ■ iiiMiiMrri-i 'i 
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Similarly, we elaborate :1.1.1.2.1.2; 

(e) :i.1.1.2.1.2.1: 

assumptions: 

(f) :1.1.1.2.1.2.2: 

assumptions: 

effect and 
post-condition: 

effects and 
post-condtion: 

a>0Ab>0Aa and b are integer variables, read 
access to a is required, read access to b is 
required, a' and b' equal the respective values of a 
and b prior to the last execution of il.1.1.2:, 
gcdUb) = gcdte'.b'), (gcd(a1b'> A b > a) => 
gcd(a,,b,) =gccl(a)b-a), neither multiplication nor 
division is to be used. 

:1.1.1.2.1.2.1: while b > a do 

a>0Ab>0Aa and b are integer variables, read 
access to a is required, write access to b is 
required, read access to b is required, a' and b' 
equal the respective values of a and b prior to the 
last execution of si.1.1,2:, gcd(a,b) = gcd^b'), 
gcdCa'jb1) = gccKa.b-a), neither multiplication nor 
division is to be used 

:1.1.1.2.1.2,2: DECREASE b BY a 

b has been decreased by a 

a>0Ab>0Aa   and  b   are  integer  variables, 
gcd(a,b) = gcd(a,,b') 

LJMMHH t^UtmmtttM^am 
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The table for these two parts is then 

0123456789  101112131415161718192021222324 

(c) : |. 1- 1.2' !■ 1- 15 11 

(d) :i. l- 1.2- !• l-2: 1   1 
(e) : i. ]. 1.2- i- 2' l: l  l 

(f) :|- !• 1-2- 1-2-25 II 

1 1 

1 1 
1 1 

0) neither multiplication nor division is to be used 
1) a > 0, b > 0, a and b are integer variables 
4) write access to a is required 
5) read access to a is required 
10) write access to b is required 
11) read access to b is required 
12) a' and b' equal the respective values of a and b 

prior to the last execution of :1.1.1.2: 
17) gcd(a,b) = gcdCa'.b1) 
19) ßcdia'.b') = gcd{a-b,b) 
20) gcd^'.b') = gcdlaVa) 
23) (gcd^'.b') A a > b) 3 gcdte'.b') = gcd(a-b,b) 
24) (gcd^'.b') A b > a) 3 gcdU'.b') = &cd{a, b-a) 

For 

((:1.2.1s) ((:1.1.1.1:)(:1.1.1.2.1.1:,:!.1.1.2.1.2:)) *1) *2 

RLB is *1 = .868 

RUB is *1 = ,451 and *2 = .868 

but the actual loadings for the above elaboration are 

((:l.2.1) (dl.l.l.l:) (( c , d ) ( e , f )) 1.33) .868) .451 

Here   the   inner   loops   appear   in  two  distinct   subsets.     It   should   be   noted 

that    if    the    while    constructions    appear    together    the    entropy    loading 

figures do not change, i.e.   ( ( c , o ) ( d , f )) 1.33.   Further, 

(( c ) ( d , e , f )) 1.24 

This   is   the   same   entropy   loading  value  for  all  other   decompostitions  of 

c, d, e, and f where one subset contains just a single object. 

Lastly,   the   assignments  can   be  elaborated  if  we   add  assumptions   to  the 

table as follows 

   >^M.~~.—^— .. 
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0123456789   101 11213M15I61 7 1819202122 
(d)    . i. |. 1.2. |. 1.2J 

(f)     : |. |. |. 2. 1- 2. 2' 
1   I 1   1 

I   I   I 

♦ 

1       * 

0) neither multiplication nor division is to be used 
4) write access to a is required 
5) read access to a is required 
10) write access to b is required 
11) read access to b is required 
12) a' and b1 equal the respective values of a and b 

prior to the last execution of ;1.1.1.2: 
17) ucdUb) = gcdte'.b') 
19) gcdte'.b') = gcd{a-blb) 
20) Gcd^'.b1) = gcdla.b-a) 
21) gcdCa'.b1) = gcd(a,b-a) a true, 

b decreased by a   => Bcdia'.b') = gcd{alb) 
22) gcd^.b') = gcd(a-b)b) a true, 

a decreased by b     s gcd(a,b) = gcdia'.b') 

(g) -.1.1.1.2.1.1.2.1; 

assumptions: 

effects and 
post-condition: 

and 

(h) :1.1.1.2.1.2.2.1: 

assumptions: 

write   access   to   a   is   required,  read  access   to   a  is 
required, read access to b is required 

:1.1.1.2.1.1.2.1: a <- a - b. 

a decreased by b 

read   access   to   a   is   required,  write   access   to   b   is 
required, read access to b is required 

:1.1.1.2.1.2.2.1: b <- b - a. 

effects and 
post-condition: b decreised by a 

Now,    note    the    following   entropy   loading   calculations,   where    a   names 

:1.2.1: and b names :1.1.1.1:, 

(A): ((a) ((b) (( c , g) ( e , h )) 1.79 ) 1.33 ) .451 

but that 

(B): ((a) ((b) (( c , e ) ( g , h )) 1.01 ) 1.33 ) .451 

l_^-_^_ «MMflMMMMi 
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(C): ((a) (( g . h ) ((b) ( c , e )) 1.01 ) 1.01) .451 

(A)    corresponds    to    a    decomposition    which    is    based    on    the    best 

decomposition     at     the     last     stage. Both    (B)    and    (C)    are     better 

decompositions for the program representation from which several 

assumptions are hidden. (B) corresponds to the situation in version 1 

where control mechanisms appear together. Here c and e represent the 

two inner while constructions. (C) indicates that the objects which 

assign values to x, a and b interact with the program less than the 

control mechanisms. 
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A final version of the progran can be elaborated, m much the same way 

as above, but where even more assumptions are made by the objects. 

Specifically: 

Compute the value of the greatest common divisor of the 
initial(positive) contents of the integer variables a and b, and leave 
the result in the variable x; also leave in the variable y the value of 
the least common multiple of a and b, i.e. a*b / gcdUb), but without 
using either multiplication or division. 

A GCD Computation (Version 111) 

:1: (90) 

:1.1: (91) :1.2: (91) 

i I 
:l.l.l:{93) (a) :1.2.1: (93) 

(x «- a) 

(b) :1.1.1.0: (96) (c) ll.l.Us (95) (d) :1.1.1.2: (95) 
(c «- 0; d «- a) (while a ^ b do ...) 

(e) :1.1.1.2.1: (98) (f):l.1.1.2.2: (98) 

(g) :1.1.1.2.1.1: (h) :1.1.1.2.1.2: (i):l.1.1.2.2.1: (j) :1.1.1.2.2.2: 
(while a > b do )       (100) (while b > a do ) (101) 

(100) (101) 

(k) :1.1.1.2.1.2.1: 
(a «- a - b; d «- d + c) 
(105) 

(I) :1.1.1.2.2.2.1: 
(b <- b - a; c ♦- c + d) 

(105) 

This development is essentially identical witn version 11 except that 
the least common multiple (Icm) of the initial contents of a and b is 
computed in addition to the gcd of these values. 

ill states tha problem. :1.1: has the effect of leaving c+d = A*B/ 
gcd(A,B) anJ a = gcd(A,B). 

:1.2: assigns x the value ot gcd(A,B) and y the value of lcm(A,B). The 
relationships c + d = lcm(A,B) and a = gcd(A,B) are hidden from :1.2.1:. 

ya^M^^MI ....*-   ..-.-.-...       ■■aaiiMliriMlto —MBaMaaaM«. 
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Object ;1.1.1.0: was introduced 
invariant A*B = a»c+b 

:1.1.1.1:. 

to    initialize    c    and 
»   d   holds,   prior   to 

d    so    that    the 
the   execution   of 

The remainder ot the tree is the same as the co responding objects in 

version 11 except that the invariant A*B = a*c + b*dis maintained 

in addition to gcd(A1B) ■ gcd(a,b). 

til 

assumptions: 

effects and 
post-condition: 

verification: 

neither multiplication nor division is to be used 
and a > 0, b > 0, A symbolizes the initial value of 

a, B symbolize'- the initial value of b, a is an 
integer variable, b is an integer variable, write 

access to x is required, write access to y is 
required, neither multiplication nor division is to 

be used :1: COMPUTE THE GCD AND THE LCM OF a AND b, 

LEAVE THE GCD IN THE VARIABLE x AND THE LCM IN THE 

VARIABLE y. 

x = gcd(A,B) A y = lcm(A,B) 

Since the gcd and lern of any two positive integers 

are always defined and are computable, the 

computation is feasible. 

The object/assumption table for :i: is 

I   2 3 16  6/89   10111213141516171819202122232425 

I    1   1   1   I 11 > 

0) neither multiplication nor division is to be used 

1) a > 0, b > Ü, a and b are integer variables 

2) A symbolizes the initial value in a and 

B symbolizes the initial value in b 

3) write access to x is required 

4) write access to a is required 

5) read access to a is required 
10) write access to b is required 

11) read access to b is required 
25)    write access to y is required 

mmmm 
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We elaborate ill as 

ll.ll 

assumptions: 

effects and 
post-condition: 

;1.2: 

assumptions: 

effects: 

post-condition: 

neither multiplication nor division is to be used 
and a > 0, b > 0, A symbolizes the initial value of 
a, B symbolizes ihe initial value of b, a is an 
integer variable, b is an integer variable, write 
access to a is required, write access is required 
for c, write access is required for d, c and d are 
integer        variables,        neither        multiplication nor 
division   is   to   be   used,  (a=b   A  gcdIA.B)  =  gcd(a,b)  A 

a»c + b*d = A*B) = a = gcd(A,B) A c + d = lcm(A,B) 

ll.ll REPLACE THE VALUE OF a BY gcd(A,B) AND LEAVE 
THE EXPRESSION c + d EQUAL TO lcm(A,B) 

a = gcd(A,B) A c + d - lcm(A,B) 

a = Bcd(A,B), write access to x is required, read 
access to a is required, c and d are integer 
variables , c + d = lcm(A,B), write access to y is 
required, read access is required for both c and d, 
neither multiplication nor division is to be used 

:1.2: REPLACE THE VALUE OF x BY THE VALUE CONTAINED 
IN a AND THE VALUE OF y BY c + d. 

x  = a A y = lcm(A,B) 

x = Gcd(A.B) 

verification: In   order   for   x   =  gcd(A,B)  and  y   =  lcm(A,B)  to   hold 
after :1.2;, given that its effect is x = a and y = 
c + d, its assumptions must be a -= gcd(A,B) and c + 
d = lcm(A,B). But this is guaranteed as the 
post-condition     of     il.U Further,     il.li     requires 
the same assumptions as ill plus the ability to 
store into a. 

mm   ■ - 
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l- I« 
\-2'' 

0   12 3^56789   10111213M 151617 18192021222320252627282930 

M I     I I      1 M ' '  ' 
.ill '      '   ' 

0) noither multiplication nor division i,. to be used 
1) a > 0, b > 0, a and b are integer variables 

2) A symbolizes the initial value in a and 
B symbolizes the initial value in b 

3) write access to x is required 
4) write access to a is required 
5) read access to a is required 
6) a •= gcd(A1B) 
7) (a=b A gcd(a,b)=Bcd(A>B) A a*c+b*d=A»B) = 

(a=gcd(A,B) A c+d=lcm(A,B)) 
10) write access to b is required 
11) read access to b is required 
25) write access to y is required 
26) c and d are integer vanaDles 
27) read access is required tor both c and d 
28) c + d = IcrrKA.B) 
29) write access is required for c 
30) write access is required for d 

--—*'**"*' ■     -    —^....^ai^M—i 
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Next an elaboration of :1.1: can be made by hi'ling 

(a=b A gcci(a1b)=gcd(AIB) /\ a»c+b*d= A*B) ^ 

(a=gcd(A,B) A c+d=lcm(A,B)) 

(This has already appeared as an assumption for :1.1;.) 

:1.1.1: 

assumptions: 

effects and 
post-condition: 

neither multiplication nor division is to be used 
and a > 0, b > 0, A symbolizes the initial value of 
a, B symbolizes the initial value of b, a is an 
integer variable, b is an integer variable, read and 
write access is required for both a and b, c and d 
are integer variables , read access is required for 
both c and d, write access 'S required for c, write 
access is required for d, neither multiplication nor 
division is to be used 

: 1.1.1: MAKE a = b SUCH THAT gcd(a,b) = gcd(A,B) AND 
c AND d SUCH THAT a*c + b*d = A«B. 

a = b. gcd(a,b) = gcd(A,B) A a*c + b*d = A»B 

An elaboration of :1.2: can be made if we observe that 

(a = gcd(A,B) A c+d = lcm(A,B)) ^ true 
and 

<x-aAy=c + d)3(x = gcd(A,B) A y = lcm(A,B)) 

But since ;1.2: assumes a = gcd(A,B) we can write 

(a) :1.2.1: 

assumptions: write   access   to   x   is   required,  read   access  to   a   is 
required, write access to y is required, c and d are 
integer variables , read access is required for both 
c and d, neither multiplication nor division is to 
be used 

effect and 
post-condition: 

:1.2.1: x «- a; y «- c + d; 

x=a, y=c + d 

MMH ■MMtt MMM — ■■--' "-'" ^.-.^ 
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As     a    result,    the    object/assumption    table    for    :1.1,    •.1.2:,    ;1.1.1:,    and 
:1.2.1: is 

(a) 

i- M 
12: 

I-1 1: 

1-2- |l 

0123456789   101 II2I3I4I6I6I7I8I9202I222324252627282930 

I   I   I       I   I II 111 

1 I       1   I       ♦  ♦ III 

III        II I   I I 
I        I 

I   I 

0) neither multiplication nor division is to be used 
1) a > 0, b > 0, a and b are integer variables 
2) A symbolizes the initial value in a and 

B symbolizes the initial value in b 
3) write access to x is required 
4) write access to a Is required 
5) read access to a is required 
6) a = gcd(A>B) 
8) (a = gcd(A,B) A c+d = lcm(A,B)) 3 true 
9) (x = a A y = c + d) 3 (x = gcdiA.B) A y = lcm(A,E3)) 
10) write access to b is required 
11) read access to b is required 
25) write access to y is required 
26) c and d are integer variables 
27) read access is required for both c and d 
28) c + d = lcm(A,B) 
29) write access is required for c 
30) write access is required for d 

MHMMMOM - - ■ MUMMmai— 11«M**^i   ■!«■■■ i   1 ■ ■    -' ■- ....  
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Adopting   the   convention  that  a' a^d  b' equal  the  values ot  a  and  b  just 
prior to the most recent execution of :1.1.1.2: we elaborate :1.1.1: 

(c) :1.1.1.1: 

assumptions: 

post-condition: 

(d) :1.1.1.2: 

assumptions: 

neither multiplication nor division is to be used 
and a > 0, b > 0, A symbolizes the initial value of 
a, B symbolizes the initial value of b, a is an 
integer variable, b is an integer variable, read 
access is required tor both a and b, a' and b1 equal 
the respective values of a and b prior to the last 
execution of :1.1.1.2:, [{(a < a' v b < b') A 

gcd(a,b) = gcdiA.B) A a ?< b) --Ma !< b A gcd(a,b) = 
gcd^b')) A max(a,,b') > max(a,b))], c and d are 
integer variables, a*c + b*d = AtB, neither 
multiplication nor division is to be used 

:1.1.1.1: while a ^ b do :1.1.1.2: ; 

a = b, gcdla.b) = gcd<A,B), c + d = lcm{A,B) 

neither multiplication nor division is to be used 
and a > 0, b > 0, A symbolizes the initial value of 
a, B symbolizes the initial value of b, a is an 
integer variable, b is an integer variable, read and 
write access is required for both a and b, a' and b' 
equal the respective values of a and b prior to the 
last execution of :1.1.1.2:, a ^ b, gcd(d,b) = 
gcd(A,B), write access is required for c, write 
access is required for d, read access is required 
for both c and d, c and d are integer variables , 
a*c + b*d = A+B, neither multiplication nor division 
is to be used 

: 1.1.1.2: DECREASE EITHER a, b, OR BOTH a AND b SUCH 
THAT gcü(a,b) = gcd(A,B) AND INCREASE c, d OR 30TH 
SUCH THAT a*c + b*d = A*B. 

effect and 
post-condition: (a < a' v b < b'), gcd{a)b) = gcd(A,B) 

mmm ■MBMftft..^.« I^MH IMMMMMi 
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The object/assumption table is then: 

(b) l|, |. |.ot 
(c) l|.i.|.|l 
(d) l|. |. i.fl 

0123456789 10!1121311151017181920212223242526272829303132 

1111 1                                                              I            I   I        I 

1111 I   1   1   I                                                 I                    > 

I   1   I       I   i 11111                                             I   I       I   I   I 

0) neither multiplication nor division is to be used 
1) a > 0, b > 0, a and b are integer variables 
2) A symbolizes the initial value m a and 

B symbolizes the initial value in b 
4) write access to a is required 
5) read access to a is required 
10) write access to b is required 
11) read access to b is required 
12) a' and b' equal the respective values of a and b 

prior to the last execution of :1.1.1.2: 
13) (Ua^' v b^') A gcd(a>b)=6cd(A)B) A a^b) 3 

{atb A gcd(a(b) = gcd(A1B)) « maxte'.b') > max(a,b)) 
H) gcdia.b) = gcd(A)B) 
15) a ^ b 
25)   wnte access to y is required 
2ö) c and d are integer variables 
27) read access is required for both c and d 
29) write access is required for c 
30) write access is required for d 
31) a*c + b*d = A*B 
32) A = a A B = b 

Because of the large number of assumptions made by a, b, c, and d all 

possible decompositions have the same entropy loading values. This is 

an instance of saturation in a table. The decomposition which was best 

for the previous developments cf this program at this stage is 

((a) ((b) ( c , d )) 1.39 ) 1.39 

■MM MMB  ■■"■'       ■ .._, 
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(e) :1.1.1.2.1: 

assumptions: a > 0 A b > 0 A a and b are integer variables, A 
symbolizes the initial value in a and B symbolizes 
the initial value in b write access to a is 
require«.', read access to a is required, read access 
to b is required, a' and b' equal the respective 
valuer of a and b prior to the last execution of 
tl.Ulj, gcd{a,b) ■ gcd^b'), c and d are 
integer variables , read access is required for both 
c and d, write access is required for c, write 
access is required for d, a*c + b*d = A*B, neither 
multiplication nor division is to be used 

: 1.1.1.2.1: IF POSSIBLE, MAKE a SMALLER THAN b SUCH 
THAT gcd{a,b) = gcd(a',b') AND MAKE c AND d SUCH 
THAT a*c + b*d = A*B. 

effects and 
post-condition: 

(f) :1.1.1.2.2: 

assumptions: 

a   <   a'   A  gcd(a,b)   =   gcd^b')  A   a^b'  o   b'^a  A  a*c 

+ b*d = A*B 

a>0Ab>0Aa and b are integer variables, A 
symbolizes the initial value in a and B symbolizes 
the initial value in b read access to a b required, 
wnte access to b is required, read accer.s to b is 
required, a' and V equal the respective values of a 
and b prior to the last execution of :1.1.1.2:, 
gcd(a,b) = gcd(a',b'), c and d are integer variables 
, read access is required for both c and d, write 
access is required for c, write access is required 
for d, a*c + b*d = A*B, neither multiplication nor 

division is to be used 

:1.1.1.2.2: IF POSSIBLE, MAKE b SMALLER THAN a SUCH 
THAT gcd^bHgcdte» AND MAKE c AND d SUCH THAT 

a*c +b*d = A*B. 

effects and 
post-condition: 

verification: 

gcd(a,b) = gcdta» A bib' A (b' > a D a > b) 

To   show   that   the   post-condition   for   :1.1.1.2:   holds, 
i.e.      (a   <   a'   v   b   <   b')   A   gcd(a1b)   =   gcd(a,,b')   a*c 

_^—l_^^_li-li —-  -        ■ -- 
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.. b*d = A*B, holds. Case 1: if a' > b' then b > a 
and a < a', since after the execution of 
:1.1.1.2.1.2;, gcd(a(b) ■ gcdte'.b'). 

Case 2: If b' > a then a > b which means that b' > 
b. But       since      gcd(a,b)       =      gcd(a^b,)      the 
post-condition   holds.      For   both   cases,   a*c   +   b*d   = 
A*B also holds. 

The relevant table is then 

0123456789  101 II21314I5I6I71819202122232425262728293031 
tt)   t|. |. I.f'tt       1   |   |       |   | 11 1 I   1       I   I   1 

(f) t|. i. i.rt*    i i i      i IM ' i'ii 

0) neither multiplication nor division is to be used 
1) a > 0, b > 0, a and b are integer variables 
2) A symbolizes the initial value in a and 

B symbolizes the initial value In b 
4) write access to a is required 
5) read access to a is required 
10) write access to b is required 
11) read access to b is required 
12) a' and b' equal the respective values of a and b 

prior to the last execution of :i.l.l.2: 
25) write access to y is required 
26) c and d are integer variables 
27) read access is required for both c and d 
29) write access is required for c 
30) write access is required for d 
31) a*c + b*d = A*B 
32) A = a A B = b 

RLB is ( (a) ((b) ( c , d )) .950 ) .950 

RUB is ( (a) ((b) ( c , d )) 1.33 ) 1.33 

Unfortunately, the actual values are 

((a) ((b) ((c) ( G , f )) 1.61 ) 1.61 ) 1.33 

This   is   also   a    best   decomposition.      One   reason   for   this   increase   in 

entropy    loadings    is    because   more   assumptions   are   shared   among   the 

objects. 

- ■■ •MMMBMMI «■■ - -- J 
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We elaborate :1.1.1.2.1: as 

(g) :!.1.1.2.1.1: 

assumptions: a > 0 A b > 0 A a and b are integer variables, A 
symbolizes the initial value in a and B symbolizes 
the initial value in b read access to a is required, 
read access to b is required, a' and b' equal the 
respective values of a and b prior to the last 
execution of :1.1.1.2:, gcd(a,b) = gcd(a',b'), 
gcd^b') A a > b o ICdUMrt - gcd(a-b,b), c and 
d are integer variables , a*c + b*d ■ A*B, neither 
multiplication no' division is to be used 

:1.1.1.2.1.1: while a > b do 

(h) :1.1.1.2.1.2: 

assumptions: a > 0 A b > 0 A a and b are integer variables, A 
symbolizes the initial value in a and B symbolizes 
the initial value in b write access to a is 
required, read access to a is required, read access 
to b is required, a' and b' equal the respective 
values of a and b prior to the last execution of 
:1.1.1.2:, gcd(a,b) = gcdU», gcd^b') 
gcd(ab,b) A A*B - (a-b)*c + b+id+c), c and d are 
integer variables , a*c ♦ b*d = A^B, read access is 
required for both c and d, write access is required 
for d, neither multiplication nor division is to be 

used 

:1.1.1.2.1.2: DECREASE a BY b AND INCREASE d BY c. 

effects and 
post-conditions: 

effect and 
post-contition: 

a has been decreased by D and d has been increased 

by c 

a   >   0   A   b   >  0  A   a   and   b   are   integer   variables, 

gcdla'.b') = gcd{a,b), a»c + b*d = A*B 

■ —'— mm  -^ ■■ - ■ '*•— 
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Similarly, we elaborate ;l.l.l.2.2: 

(i) :1.1.1.2.2.1: 

assumptions: 

(j) :1.1.1.?.2.2: 

assumptions: 

effects and 
post-conditions: 

effects and 
post-condition: 

a>0Ab>0Aa and b are integer variables, A 
symbolizes the initial value in a «nd B symbolizes 
the initial value m b read access to a is required, 
read access to b is required, a' and b' equal the 
respective values of a and b prior to the last 
execution of :1.1.1.2:, gcd(a,b) = gcd^a'^'), 
(gcdUb1) A b > a) ^ gcd(a',b') =gcd(a,b-a), c and 
d are integer variables , a*c + b*d = A*B, neither 
multiplication nor division is to be used 

:1.1.1.2.2.1: while b > a do 

a>0Ab>0Aa and b are integer variables, A 
symbolizes the initial value in a and B symbolizes 
the initial value in b read access to a is required, 
write access to b is required, read access to b is 
required, a' and b' equal the respective values of a 
and b prior to the last execution of :1.1.1.2:, 
gcd(a,b) = gcdia», gcdW) = gcd(a,b-a) A A*B 
= a*(c+d) + {b-a)*d, c and d are integer variables, 
a*c + b*d = A*B, read access is required for both c 
and d, write access is required for c, neither 
multiplication nor division is to be used 

:1.1.1.2.2 2: CECREASE b BY a AND INCREASE c BY d; 

b has been decreased by a and c has been increased 
by d 

a>0Ab>0Aa   and   b   are   integer   variables, 
gcd(a,b) = gcd^b') A a*c ♦ b*d = A*G 

w—m MMMMMBMt MAMM|^^teaka|MaMMMflhdMk^dta 
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The tabie for these two parts is then 

(g) 
(h) 
(i) 
(J) 

0 I 23166789 101 I 121314161617181920212223242526272829303 I 

I- !■ 1- 2. 1- i:   1 I 1           1 11                   I                       1           I                   • 

!• I- 1-2- I- 25   I I 1       I   1 II                   II                           '•           '   > 

1- I- 1- 2- 2- 1:   I 1 I           I II                   I                           '       '                   ' 

}■ 1- |.2 2- 2*   1 I I           I 111                   I           1                       1111 

0) neither multiplication nor division is to be used 
1) a > 0, b > 0, a and b are integer variables 
2) A oymboli?es the initial value in a and 

B symbolizes the initial value in b 
4) write access to a is required 
5) read access to a is required 
10) write access to b is required 
11) lead access to b is required 
12) a' and b' equal the respective values of a and b 

prior to the last execution of :1.1.1.2: 
17) p.cd(a,b) - gccKa'.b') 
19) i-cdia'.b') = Gcd(a-b,b) A A*B = (a-b)*c ♦ b*(d-t-c) 
20) ucd^'.b') = Bcd(a,b-a) A A»B = a*(c+d) + (b-a)*d 
23) (eccKa'.b1) A a > b A a*c  + b*d = A*B) ^ gcdia'.b') = &cd(a-b,b) A A*B = (a-b)*c 

J  b*(d+c) ) 
24) (gcd(a'Ib') A b > a A a»c * b*d = A*B ) ^ gcdla'.b') ■ gcd(a, b-a) A a*c ♦ b*d - 

A*B 
25) write access to y is required 
26) c  and d are integer variables 
27) read access is required for botn c and d 
28) c  + d  - lcm(A>B> 
29) write access is required for c 
30) write access is required for d 
31) a*c  ♦ b»d = A»B 

HMM —   1 
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RLB and RUB from 

((a) ((b) ((c) ( • , f )))) 

for the above expansion are 

RLB: ((a; ((b) ((e) ( e , f ))) .796 ) .796 

RUB: ((a) ((b) ((c) ( e , f )) 1.55 ) 1.55 ) 1.54 

The actual entropy loading values are 

((a) ((b) ((c) ( g , h , i , j )) 1.48 ) 1.75 ) 1.28 

which   is   again   a   best   decomposition.     If  (   g  ,  h  ,  i,  j   )  is  decomposed, 

the best decomposition is 

(( g . i ) ( h , j )) 1,55 

which   indicates   that   the   bodies  of   the  two  loops   interact   less  with  the 

conirol mechanisms for those loops than do the loops with each other. 

•M^MMMM -   - - '   - ■'—■    - J 
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Lastly,   the   assignments   can   be  elaborates   if   we   add   «sumptions   to  the 

table as follows 

00   : |. i- i- 2- i- 2:   l   1   l 
(I)     : |. |. |. 2- 2 2?   1   l   I 

0   I   2  T  4  5 6  7  8 9   101 1 1213MI5161718'^02122232^25262728293031 

1       ♦ II II 
1       ♦ I   I        I        I 

1   i I   I 

I    I 1 

0) neither multiplication nor division is to be used 
1) a •> 0, b > 0, a and b are mteger variables 
4) write access to a is required 
5) read access to a is required 
10) write access to b is required 
11) read access to b is required 
12) •' and b' equal the respective values of a and b 

prior to the last execution of il.1.1.2: 
17) Gcd(a)b) - gcdU'.b') 
19) BCdd^*) = gcd(a-b1b) 
20) gcdCa» = gcdUb-a) 
21) (gcdUMtf - gcd(a,b-a) A A*B - (a-b)*r + b*(d+c) )   3 tru«, 

b decreased by a    ^ gca(a^b,) = gcdl^.b; 
22) (gcd^'.b') = gcd(a-b,b) A A*B - a*(r+d) + (b-b)»d) ^ true, 

a decreased by b     => gcd(a,b) = gcd(a\b') 
23) (gcd(a^b,) A a > b A a*c + b*d = A»B) 3 gcdla'.b') = gcd(a-b,b) A 

A*B = (a-b)*c + b*(d+c) ) 
24) (gcd(a^b,) A b > a A a*c + ü*d = A»B ) ^ gc.Ka'.b') - gcd(a, b-a) A 

a*c + b*d = A*B 
25) write access to y is required 
26) c and d are integer variables 
27) read access is required for both c and d 
28) c  + d = lcm(A,B) 
29) write access is required for c 
30) write access is required for d 
31) a*c + b*d ■ A*B 

-■--■■ 
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(K) :1.1.1.2.1.2.1: 

assumptions: 

effects and 
post-condition: 

and 

(I) :1.1.1.2.2.2.1: 

assumptions: 

effects and 
post-condition: 

.write access to a is required, read access to a is 
required, read acress to b is required read access 
is required for both c and d, write access is 
required for d, neither multiplication nor division 
is to be used 

:1.1.1.2.1.2.1: a ^ a - b; d ♦- d ♦ c; 

a decreased by b and d increased by c. 

read access to a is required, write access to b is 
required, read access to b is required read access 
is required for both c and d, write access is 
required for c, neither multiplication nor division 
is to be used 

:1.1.1.2.2.2.1: b «- b - a; c <- c + d; 

b decreased by a and c increased by d 

mm - -     ■ ■ 
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Now we can display the table for this new development. 

: It 
0 2 3 4 

1   1   1   1 

5  6  7  8 

1        1 

1 101112131415161; 

1   1 

i- \- 

\-2' 

1   1        1 

1 1   1       * ♦ 

1   1 

|. 1- M 1   1        1 1   1 
(a) I-2- |l 1 
(b) 1- !■ \0'- 

(c) 1- l< 1- M 1   1        1 1   1   1 

(d) |. 1- 125 1   1        1 III       II 

(e) |. |, 1.2. |t 1   1        1 

(f) ■ !■ 1- 1- 2- 25 III                    1 

(g) ! |. l. |.|, |. |l 

(h) : |. |. |. 2- l-l« 1   1        1 

(i) : 1- 1- 1- 2- 2- l: 

(J) 1 |. |. |. 2- 2  2'- III                   1 

(k) 1 |. |. |. 2- 1- 2 • 1 1            1 

(1) ||, |. ). 2- 2- 2- |t| 1   1 

121314151617181920212223242526272829303132 

I 

1    1 

I    I 

1    1 

1        I 

I I   I 
I I    I 
I I 

I I 

I I 

1 1 

I I 

0) neither multiplication nor division is to be used 
1) a > 0, b > 0, a and b are integer variables 
2) A symbolizes the initial value in a and 

B symbolizes the initial value in b 
3) write access to x is required 
4) write access to a is required 
5) read access to a is required 
6) a = gcd(A,B) 
7) (a=b A gcdUb)=gcd{A,B) f\ a*c+b*d=A*B) a 

(a=gcd(A,B) A cHi=lcm(A,B)) 
8) (a = Gcd(A,B) A CK! = Ici^A.B)) a true 
9) (x = a A y -- c  + d) D (x = gcd(A,B) A y = IcmlA.B)) 
10) write access to b is required 
11) read access to b is required 
12) a' and b' equal the respective values of a and b 

prior to the last execution of il.1.1.2: 
13) (((a<cV v b^V) A gcd(a.b)=gcd(A,B) A a^b) 3 

(a^b A gcd(a,b) = gcdlA.B)) A rnax^.b') > max(a,b)) 
14) ucdUb) = gcd{A,B) 
15) a ^ b 
16) |'cd(a,b) ■ gccKA.B) = gcd^'.b') = gcd(a)b) 
17) gccKa.h) = gccKa'.b') 
18) (a > h A gccKa',^) = gcd(a-b,b) v 

a < u A gcdia'.b') ■ gcd(a,b-a) 
19) BCd<«',b*) = gcd(a-b,b) A A*B = (a-b)*c + b*(d+c) 
20) gcd^a'.b') = gcd(a,b-a) A A*B = at(c+d) + (b-a)*d 
21) (gcd(a^b,) = gcd(a,b-a) A A*B = (a-b)*c ♦ b*(d+c) )   = true, 

b decreased by a    3 gcd^'.b1) = gcd(a,b) 
22) (gcd(a^b,) - gcd(a-b,b) A A*B = a*(c+d) + (b-a)*d) = true, 

a decreased by b     ^ gcdia.b) ■ jcdla'.b') 

mm »u 
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23) igcdia'.bl A a > b A a*c + b*d = A*B) ^ gcd(a',b') ■ gcd(a-b,b) A 

A*B = (a-b)*c + b*(d+c) ) 
24) (gcd^'.b') A b > a A a*c + b*d - A*B ) 3 gcd(a^b,) ■ gcd(a, b-a) A 

a*c + b*d - A*B 
25) write access to y is required 
26) c and d are integer variables 
27) read access is required for both c and d 
28) c + d = lcm(A,B) 
29) write access is required for c 
30) write access is required for d 
31) a*c + b*d = A*B 
32) A = a A S = b 

Even   though   information   has   been   hidden   from   (K)  (I),  entropy   loadings 

remain the same as for the previous decompositions for 

( g , ' M h , j ), 

but increase for ((c) (( g , i ) ( k , I )) ), i.e. 

((a) ((b) ((c) (( g , i ) ( k , I )) 1.55 ) 1.75 ) 1.75 ) 1.28 

Because   little   information   was   hidden   from   the   ob eels   at   early   stages, 

entropy loadings tended to be larger than in versions I and II. 

The three versions of this gcd computation have indicated that 

control mechanisms usually share more assumptions in a program than the 

objects whose execution Is being controlled. These examples also 

illustrated several instances where information was hidden from oSects. 

In versions I and II, this resulted in entropy loadings that were 

smaller than corresponding loadings had assumptions not been hidden. 

Version III, however, indicated that more information was shared than in 

versions I and II. Entropy loading figures can be improved if the texts 

which compute the gcd are separated from those which compute the Icm. 

■-■■■-    --■ ■ -  -■  -'■ ^ —- -    ■ 
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A SEQUENCES PROBLEM 

This   example   is   also   due   to   DiJKstra[DJ3   pp.53-63],   but   makes   use 

of   some   of   the   notational   conventions   due   to   Hoare[H03].     The   specific 

conventions are: 

a) <empty> is a sequence 
b) if x is a sequence and d can be an element of 

a sequence then 
x^"d is a sequence 

c) The only sequences are those defined by (a) and (b) 
d) (x^d).last = d 
e) initiaKx^d) = x 
f) x~(y'^) = (x~y)~z 
g) d.first = d 
h) x ^ <empty> 3 (x^dMirst = x.first 
i) finaKd) = <empty> 
j) x ^ <empty> ^ finaKx^d) ■ finaKxPd 

last, initial, first, and final are 
not defined for <empty>. 

k) length(<empty>) = 0 
I) lengtWx^d) = succdengthU)) 
m) x^d means x «- x^d 
n) d from x means d «- x.first; x «- final(x) 
o) d back from x means d *• x.last; x »• initial(x) 
p) from x means x ♦- finaKx) 
q) back from x means x *- initial(x) 

Consider the sequences constructed from the digits 1, 2, and 3 

which contain no occurrence of two adjacent, identical subsequences. 

Call these sequences "good".    Several examples of good sequences are 

1 
21 
1312 
31213 

Several sequences which are not "good" are 

22 
123123 
321232123 

The problem can now be stated: 

—-—  '—^ — i i ii  -. i. J 
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Assuming that there exists a good sequence of length 100, write a 
program which generates the list of good sequences in lexicographic 
order up to ar.d including tn? first good sequence of length 100. 
(Here, 1 precedes 2 which precedes 3). 

A SEQUENCES PROBLEM 

:1: (110) 

\ 

:1.1: (112) (a) :1.2: (112)       .-1.3: (113) :1.4! (113) 
(while lenp,th(S) 

H  100 do 
begin 
:1.3:i :1.4: 

end ) 

(b) :1.1.1: (115) 
(5 «- <empty>; 
length(S) «- 0; 

(c) :1.3.1;(115) (d) :1A1: (116) 
(S «- next (PRINT(S);) 

z  good 
sequence;) 

:1.3.1.3:(il< (e) :1.3.1.1:(118) (f) :1.3.1.2:(1 IS) (g) ;1.3.1.3:(119) (h) :1.3.1.4:(119) 
( S-.'^O) (repeat (S - next (set GOOD to 

:1.3.1.3: larger mean "S is 
: 1.3.1.4: sequence; a good seq.;) 

until GOOm, 

(0 :1.3.1.3.1:(122) (j) :1.3.1.3.2:(122) 
S last •■ S.last + 1 

(k) :1.3.1.3.1.1:(123) 
(while S.last = 3 do 

back from S;) 

(I) :2.1:(130) (m) :2.2:(i30) (n) :2.3.-(l30) 
length(S) is length    S.last is d[lengtn] write access to 

S.last is 
d[length] ♦- ... 

(o) :2.4: S - S~..    (131)   (p) :2.5: (131) (q) ;2.6: (131) 
length •- length +  1; back from S S <- <empty> 
d[length] »■ ... length «- length - 1 length ♦- 0 

(r) :2.7: read access to elements     (s) :2.8: write access to S 
of S.      d[l] ... d[length] d[l] - .... ... d[length] ♦- ... 

(132) (132) 

This   problem   requires   that   a   list   of   lexicographically   ordered   sequences 

M^MMMMM 
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of \% Ss, and Ts, containing no adjacent identical subsequences, be 
printed. This list should terminate with the first sequence whose 

length is  100. 

Object :1.1: sets S to <empty>. Objects ;1.3: and :1.4: generate and 
n-nt the next good sequence. Object ;i.2: controls objects :1.3: and 
:1.4: until a sequence of length 100 is produced. 

Object :1.3.1.1: extends S with 0. Objects :1.3.1.3: and :1.3.1.4: 
produce the next lexicographically larger sequence and test whether it 
is a good sequence. :1.3.1.3: and :1.3.1.4: ar? controlled by :1.3.1.2: 

until a good sequence is found. 

Objects :1.3.1.3.1.1: and :1.3.1.3.2: remove trailing 3's from S and 
increment the last element of S by 1. 

Objects t2.ll through :2.8: implement the operations required by the 
objects to manipulate a sequence. S is implemented in terms of an array 

and several simple variables. 

:1: 

assumptions: OS = <empty>, 1NIT(R,S) is defined to be {if 
length(R) = 0 then true else R.first = S.first A 

INIKfinaKR), final(S))} A a "good" sequence ^ is 
defined to be "a sequence Of 1% 2,s( and S's 
containing no adjacent identical subsequences" A Q 
represents the sequence of lexicogrnphically ordered 
"good" sequences, there exists a good sequence of 
length  100 

ill OUTPL^THE INITIAL PORTION OF THE SEQUENCE OF 
LEXICOÖ^PHICALLY ORDERED SEQUENCES OF 1% 2's,AND 
3'*, «& THAT NO SEQUENCE CONTAINS TWO ADJACENT 
IDENTICAL SUBSEQUENCES.   TERMINATE THE LIST WITH THE 
FIRST SUCH SEQUENCE WHOSE LENGTH EQUALS 100. 

effects anO 
post-coi7ditions; 

vertficalion: 

INIT(ÜS,Q) A length(OS.Iast) = 100 

If there exists a "good" sequence of length 100 and 
the effects of si: agree with the post-condition, 
the post-condition is satisfied. 

mt*m   
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The object/assumption table for :1: is 

«is 
1   2 3 

I   I   I 

1) OS = <empty> 
2) INmR.S) is defined to be (if length(R) = 0 then true 

else R.first = S.first A INlKfinaKRMinaKS))} 
A a "good" sequence is defined to oe "a sequence of I's, Z's, and 
3*5 containing no adjacent identical subsequences" 
A Q represents the sequence of lexicographically 
ordered "good" sequences 

3) there exists a good sequence of length 100 

MMMM ^Ma — - -   ■ 
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We elaborate :1: as follows, with all the pre-conditions derived 

:1.1: 

assumptions: requires   ability   to   set   S   to   <empty>   and   length(S) 
to 0, OS = <empty>, 1NIT(R,S) is defined to be {if 
length(R) = 0 then true else R.first = S.first A 

INIKfinaKR), final(S))} ^ a "good" sequence s 
defined to be "a sequence of I's, 2,s, and 3 s 
containing no adjacent identical subsequences" A Q 
represents the sequence of lexicographically ordered 
"good" sequences, there exists a good sequence of 

length 100 

:1.1: SET SEQUENCE S TO <empty> AND length(S) TO 

ZERO. 

effects and 
post-conditions: 

(a) :1.2: 

assumptions: 

effects and 
post-conditions; 

verification: 

S      =      <empty>,      length(S) 
length(OS.Iast) = 100 

0,      1NIT(0S,Q), 

INI'HR.S)   is   defined   to   be   {if   length(R)   =   0   then 
true else R.first = S.first A 

INIT{final(R),final(S))} A a "good" sequence is 
defined to be "a sequence of I's, 2^, and S's 
containing no adjacent identical subsequences" A Q 
represents the sequence of lexicographically ordered 
"good" sequences, there exists a good sequence of 
length 100, 1NIT(0S,Q) A OS.Iast = S, INrr(OS~"next 
lexicographically larger good sequence than the 
value in S"^), (1NIT(0S,Q) A OS.Iast = S A 

length's) t 100) ^ INmOS^'next lexicographically 
larger good sequence than the value in S",Q) 
requires ability to read length(S), 

:1.2: while length(S) ^ 100 do 
begin :1.3: ; (Ml end; 

INmoS.Q), length(OS.Iast) = 100 

The pre-condition for the while construction holds 
since (1) we assume that there exists a goo-' 
sequence of length equal to 100; (2) OS = <empty> 
initially; (3) and that the first good sequence 
satisfies the pre-condition. 

^MMMMMMMWaB — 
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:1.3: 

assumptions: 

effects: 

post-conditions: 

:1.4: 

assumptions: 

effects: 

post-conditions: 

1NIT(R,S)   is   defined   to   be   {if   length(R)   =   0   then 
true else R.first = S.first A 

INlT(final(R),final(S))} A a "good" sequence is 
defined to be "i sequence of I's, 2,s( and 3's 
containing 10 adjacent identical subsequences" A Q 
represents the sequence of lexicographically ordered 
"good" sequences, requires ability to \fcrife each 
element of S, requires ability to access each 
element of S, requires ability to concatenate onto 
S, i.e. S •■ S^d, requires ability to delete from 
the end of S, i.e. back from S, INIKOS.Q) A 

OS.iasl = $ A OS.Iast = S, INlT(OS""next 
laxicographically larger good sequence than the 
value in S'^Q) 

:1.3: TRANSFORM S TO THE NEXT GOOD SEQUENCE AFTER 
ITS CURRENT CONTENTS 

S «- "next good sequence after S" 

1NIT(0S^S,Q) 

INIKR.S)   is   defined   to   be   {if   length{R)   =   0   then 
true else R.first = S.first A 

lNIT(final(R),final(S))) A a "good" sequence is 
defined to be "a sequence of I's, 2^, and 3's 
containing no adjacent identical subsecuences" A Q 
represents the sequence of lexicographically ordered 
"good" sequences, INITCOS'^Q), requires ability to 
access each element of S, 

:1.4: PRINT(S); 

OS «- OS^S 

1N1T(0S,Q) A OS.Iast = S 

.  .. ,__. 
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The object/assumption table for this part is 

1   23456789   10111213 

]'- 

1- 1 

!• 2 
!• 3 

1-4 

I i 

I  I 

t      I   1   I   i 

I I      1  I  I   I 

I   1 

1) OS - <empty> 
2) .MIW.S) is defined to be {if lenglhW = 0 then true 

olse R.first = S.flrst A lNlT(final(R),final{S))J 
A a "good" sep'jnce il defined to be "a sequence of i's, 2'$, and 
y's containing no adjacent identical subsequences" 
A Q represents the sequence of lexicog apincally 
ordered "good" sequences 

3) there exists a good sequence of length 100 
4) requires ability io set S to <empty> and 

length(S) to 0 
5) IN1T(0S,Q) A OS.iast - 8   A OS.Iast = S 
6) (IN1T(03,Q) A OS.Iast = S   A length{S) H 100) D 

INl^OS^'next lexicographically larger good sequence than 
the value in S",Q) 

7) requires ability to read length(S) 
8) INI^OS^'next lexicographically larger good sequence than 

the value in 5",Q) 
9) iNIT(OS^S,0) 
10) requires ability to access each element of S 
12) requires ability to concatenate onto S, i.e. S «- S^d 
13) requires ability to delete from the end of S, i.e. back from S 

We   can   hide   considerable   information   from   the   refinement   for   :1.1:   by 
adding 

(Assumptions    1),   2),   3)   =>   true)   A   (S   =   <empty>   A   length{S)   =   0   ^ 
Assumptions 1), 2), 3) ) 

Similarly,    :1.4:(    PRIMT(S)   )   does    not   require    INIT(0S^S,Q). 
add 

Hence   we 

(INIT(OS'""S)Q)  ^  true) A (OS  = OS'^S where OS' equals OS prior to :1.A: ) 
^ (1NIT(0S,Q) A OS.Iast = S ) A OS.Iast = S)) 

■M. in M* lamm 111    illl!     I   !       
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Further, for :1.3: (TRANSFORM S TO THE NEXT GOOD SEQUENCE AFTER ITS 
CURRENT CONTENTS.) we can add the assumption below. (In the remainder 
of this development, "illt is us^d as an abbreviation for the phrase "is 
lexicographically less than".) 

( INWOS^'Viext good sequence after current sequence in S",Q) A 

IN1T(0S,Q) A OS.Iast = S => S' equals S prior to executing :1.3: A S is a 
good sequence) A (VX[S' illt x illt S = x is not a good sequence] A S is 
a good sequence A S f« S' = 'N1T(0S'"*S,Q) ) 

The elaboratons are 

(b) :1.1.1: 

assumptions: requires   ability   to  set   S  to  <empty>  and   length(S) 
to 0 

:1.1.1:  SET  SEQUENCE  S  TO <empty>  AND length(S) TO 
ZERO. 

effects and 
post-conditions: S = <empty>, length(S) » 0 

(c) :1.3.1: 

assumptions: 

effects: 

post-conditions: 

INIT(R,S)   is   defined   to   be   {if   length(R)   -   0   then 
true else R.first = S.first A 

INmfinaKPMinaKS))} "good" sequence is 

defined to be "a sequence of I's, 2,s, and S's 
containing no adjacent identical subsequences" A Q 
represents the sequence of lexicographically ordered 
"good" sequences, requires ability to access each 
element of S, requires ability to write each element 
of S, requires ability lo concatenate onto S, i.e. 
S «- S^d, requires ability to delete from the end of 
S, i.e. back from S, S' = S, prior to executing 
:1.3: A S is a good sequence 

:1.3.1s TRANSFORM S TO THE NEXT GOOD SEQUENCE AFTER 
ITS CURRENT CONTENTS 

b «- "next good sequence after S" 

Vx^'  illt  x   illt  S  => x is not  a good sequence]  A S 
is a good sequence A S ^ S' = 

■■ mtea^MMmm 
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(d) ilA.ll 

assumptions: 

effects: 

post-conditions: 

requires ability to access each element of S 

:1A1: PRIW(S); 

OS *■ OS^S 

(OS = OS'^S where OS' equals OS prior to :1.4:) 

MMMMMM ■MMHBMiMi ■   „    .L-    ^„.^.. 
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The able 

12 3 4 5 6  7 8 9  1011121314151617 

(a)   . 

(b) 
(c) 
(d) 

i- i« 

|.2> 
I-3S 
1.4: 

|. I- |i 

I-3- \' 

'- |< 4' I« 

1111 

11       1111 

1           1           1       1   1   I   1      * 

1                            II 

1 

1                                1111                1 

1 

1) ( 
2) 1 

)S = <empty> 
Nrr(R,s) is def ned to be {if iongtWR) = 0 ihon 1 rue 

olse R.first ■ S.first A INIT(final(R),final(S))} 
A a "good" sequence is defined to be "a sequence of I's, 2's, and 
3'$ containing no adjacent identical subsequences" 
A Q represents the sequence of lexicographically 
ordered "good" sequences 

3) there exists a good sequence of length 100 
4) requires ability to set S to <empty> and 

lengtMS) to 0 
5) INIT(0S,Q) A OS.Iast = S 
6) (1NIT(0S,Q) A OS.Iast - S   A lengtWS) H 100) => 

lNIT(OSÄ"next lexicographically larger good sequence than 
the value in S",Q) 

7) requires ability to read length(S) 
8) ^^(QS^'next lexicographically larger good sequence than 

the value in S"(Q) 
9) INIT(OS'-S>Q) 
10) requires ability to access each element of S 
11) requires ability to write each element of S 
12) requires ability to concatenate onto S, i.e. S *■ S^d 
13) requires ability to delete from the end of S, i.e. back from S 
14) (Assumptions 1), 2), 3) o true) A 

(S ■ <empty> A length(S) = 0 ^ Assumptions 1), 2), 3) ) 
15) (INIT(OS""next good sequence after current sequence in S",Q) 

A INIT(0S,Q) A OS.Iast = S ^ 
S1 equals    S prior to executing :1.3: A S is a good sequence) 

A (Vx^' illt x illt S 3 x is not a good sequence] 
A S is a good sequence A S ?< S' ^ 
1NIT(0S^S,Q) ) 

16) (IN1T(0SÄS,Q) => true) A (OS ■ 0S'"S where OS' equals OS prior to 
:1.4: 

^ (INIT(0S,Q) A OS.Iast = S 
A OS.Iast = S)) 
17) S' = S A S is a good sequence 

'--- MMMtM 
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After     hiding     information    from    :1.1.1:,    :1.3.1:,    and    tlAl:,    the    best 

decomposition is 

((b) ( a , c , d )) .562 

where   (b)   sets   S   to   <empty>   and   a,  c,  d  compute   good   sequences   and 

print, respectively. 

Next we elaborate :1.3.1: to 

(e) ;1.3.1.i: 

assumptions: 

effects: 

post-conditions: 

(f) : 1.3.1.2: 

assumptions: 

post-conditions: 

INIKR.S)   is   defined   to   be   {if   length(R)   =   0   then 
true else R.first = S.first A 

INlKfinaKRMmaKS))} A a "good" sequence is 

defined to be "a sequence of Ts, 2,s, and 3'$ 

containing no adjacent identical subsequences" A Q 

represents the sequence of lexicographically ordered 

"good" sequences, requires ability to concatenate 

onto S, i.e.   S «- S^d, S' = S A S is a good sequence 

: 1.3.1.1: EXTEND S WITH ZERO; 

S = S'^O 

initial(S) is a good sequence A S.last = 0 

INIT(R,S)   is   defined   to   be   {if   length(R)   =   0   then 
true else R.first = S.first A 

lNIT{final(R),final(S))} A a "good" sequence is 

defined to be "a sequence of I's, 2,s, and 3,s 
containing no adjacent identical subsequences" A Q 

represents the sequence of lexicographically ordered 

"good" sequences, requires read access to the 

boolean variable GOOD, S" = S, 3x[S" lilt x A 

lengtWx) < length(S") A x is a good sequence] A 

Llinitial(S) is good) A S.last = 0 => S is not good] 

: 1.3,1.2: repeat : 1.3.1.3: ; : 1.3.1.4: ; until GOOD; 

GOOD   A   there   is   no   sequence   s   such   that   S"  illt   s 

illt S A s is a good sequence 

-■"■-■   - •■-■•' 
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(g) :1.3.1.3: 

assumptions: 

effects and 
post-conditions: 

(h) : 1.3.1.4: 

assumptions: 

effects: 

post-conditions: 

1N1T(R,S)   is   defined   to   be   {if   length{R)   =   0   then 
true else R.first ■ S.first A 

lNIT(finül(R),final(S))} A a "good" sequence is 
defined to be "a sequence of I's, Z's, and S's 
containing no adjacent identical subsequences" A Q 
represents the sequence of lexicographically ordered 
"good" sequences, requires ability to access each 
element of S, requires ability to write each element 
of S, requires ability to concatenate onto S, i.e. 
S «- S^d, requires ability to delete from the end of 
S, i.e. back from S, S" = S, 3x[S" lilt x length(x) 
< length(S")] 

: 1.3.1.3: SET S TO BE THE NEXT LEXICOGRAPHICALLY 
LARGER SEQUENCE AFTER THE CONTENTS OF S AT THE START 
OF :1.3.1.3:, (I.E.   S"), SUCH THAT length(S) < 
iength(S"). 

S"    ilit    S,    lenp,th(S)    <    lenglh(S"),    ^[S"    ilit    x 
illt SI inittal(S) is good, S.last ( {1,2,3} 

INIT{R,S)   is   defined   to   be   {if   iength{R)   =   0   then 
true else R.first = S.first A 

INIT(final(R),final(S))} A a "good" sequence is 
defined to be "a sequence of I's, 2^, and 3,s 
containing no adjacent identical subsequences" A Q 
represents the sequence of lexicographically ordered 
"good" sequences, requires ability to access each 
element of S, initiaHS) is a good sequence, 
requires write access to the boolean variable GOOD 

: 1.3.1.4: SET THE VARIABLE, GOOD, TO MEAN "S is a 
good sequence" 

GOOD   ■   if   "S   is   a   good   sequence"  then  true  else 
false 

GOOD 
false, S ?< S' 

if   "S   is   a   good   sequence"  then  true  else 

■  - • • 
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verification: Note first that the following are theorems: 

(a) If initial(S) is a good sequence, but S is not a 
good sequence, then no extension of S will be good. 

(b) The only time S should be extended, in an effort 
to find lexicographically larger good sequences is 
when S itself is a good sequence. 

Now, the only place in the above program where S is 
extended is at :1.3.1:, where S is guaranteed to be 
good. :1.3.3: guarantees that no relevant sequence 
is missed. 

The object/assumption table now becomes: 

(e) 
(f) 
(g) 
(h) 

1) 
2) 

123456789  101112131415161718192021222324 
1-3. |. I: 

1-3- 1-25 

I-3- I'l* 
I• 3- I • 4! 

1 

I   I   I   I 

1 

1 
I       I   I 

I   I 

3) 
4) 

5) 
6) 

7) 
8) 

9) 
10) 
11) 
12) 
13) 
14) 

15) 

OS = <empty> 
INIT(R,S) is defined to be {if length(R) = 0 then true 
olse R.first = S.first A INIT(final{R),final(S))} 
A a "good" sequence is defined to be "a sequence of I's, 2^, and 
3^ containing no adjacent identical subsequences" 
A Q represents the sequence of lexicographically 
ordered "good" sequences 
there exists a good sequence of length 100 
requires ability to set S to <empty> and 
length(S) to 0 
INIT(OS,Q) A OS.Iast - S 
(IN1T(0S,Q) A OS.Iast - S   A length(S) * 100) = 

INIT(OS^"next lexicographically larger good sequence than 
the value in S",Q) 

requires ability to read longth(S) 
lNlT(OS'^"next lexicographically larg« r good sequence than 

the value in S",Q) 
INIT(OS~S,0) 
requires ability to access each element of S 
requires ability to write each element of S 
requires ability to concatenate onto S, i.e. S <- S^d 
requires ability to delete from the end of S, i.e. back from S 
(Assumptions 1), 2), 3) 3 true) A 

(S ■ <empty> A length(S) - 0 ^ Assumptions 1), 2), 3) ) 
INIT(OS^"next good sequence after current sequence in S",Q) 

A INIT(OS,Q) A OS.Iast - S ^ 
S' equals    S prior to executing :1.3: A S is a good sequence 
A Vx[S' illt x illt S 3 x is not a good sequence] 

i 

.^_-—a— 1 iMimlMliii j 
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A S is a good sequence A S »< S' ^ 
iNlKOS^S.Q) 

16) (INIKOS^S.Q) ^ true) A 

(OS ■ OS'^S where OS' equals OS prior to :1.4: 
3 (INIKOS.Q) A OS.Iast = S 

A OS.IasJ      S)) 
17) S' - S A S is a good sequence 
18) initial(S) is a good sequence 
19) 
20) requires read access to the boolean variable GOOD 
21) requires write access to the boolean variable GOOD 
22) 3x[S" illt x A length(x) < length(S") A 

x is a good sequence] /\ [(initial(S) is good) A S.last = 0 
3 S is not good] 

23) S" = S 
24) 3x[S" illt x length{x) < length{S")] 

The expansion of (c) - :1.3.1.3: - implies 

RLB: ((b)   ( a , c , d )) .053 

RUB: ((b) ( a , e , d )) .410 

with the actual entropy loadings 

((b) ( a , o , f , g , h , d )) .410 

The best decomposition of this elaboration is 

((b) ((d) ((a) ((e) ((f) ( g , h )} 1.28 ) 1.28 ) .956 ) .683 ) .^10 

Hore^b)   sets   S   to   <empty>1(d)   prints   S,   (a)   is   the   outer   loop   while 

construction    and   (e)   extends   S   with   a   zero.       In   this   example,   the 

objects    which   calculate   the   next   lexicographically   larger   sequence   and 

which decide whether S is a good sequence interact most. 

■■M. -        ■ ■    i   ■!    I MiMtdh^MI 
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Consider next an expansion of :1.3.1.3: 

(0:1.3.1.3.1: 

assumptions: 

effects and 
por.t-conditions: 

(j):1.3.1.3.2: 

assumptions: 

INIKR.S)   is   defined   to   be   {if   lengtWR)   =   0   then 
true else R.first = S.first A 

INlT(final(R),final(S))} A a "good" sequence is 
defined to be "a sequence of l'», 2,s, and 3^ 
containing no adjacent identical subsequences" A Q 
represents the sequence of lexicographically ordered 
"good" sequences, S" = S, initial(S) is a good 
sequence A 0 < S.last < 3, ability to read S.last, 
requires ability to delete from the end of S, i.e. 
back from S 

: 1.3.1.3.1: REMOVE TRAILING 3,s FROM S 

INIT(S,S"),   mitiaKS)   is   a   good   sequence   A   0    < 
S.last < 3 

INIT(R,S)   is   defined   to   be   {if   length(R)   =   0   then 
true else R.first = S.first A 

INIT(final(R),final(S))} A a "good" sequence is 
defined to be "a sequence of I's, 2's, and 3,s 
containing no adjacent identical subsequences" A Q 
represents the sequence of lexicographically ordered 
"good" sequences, ability to read S.last, ability to 
write S.last 

: 1.3.1.3.2: S.last ♦- S.last + 1 

effects ami 
post-conditions; S"    WHS,    length(S)    <    lengtWS"),    ^[S"   illt    x    illt 

S], imtial(S) is good, S.last ( {1,2,3} 

The expansion of :i.3.1.3: suggests 

RLB: ((b) ((d) ((a) ((e) ( f , g , h ) .562 ) .801 ) .563 ) .138 

RUB: ((b) ((d) ((a) ((e) ( f , g , h ) 1.32 ) .900 ) .693 ) .377 

and the actual entropy loadings are 

((b) ((d) ((a) ((e) ((h) ((IX   i , j ) 

■MM  — ■■    ■'- -—■ -"" 
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1.21    ) .662 ) .727 ) .900 ) .562 ) .377 

Since    the    assumptions   made   by   an   object imply   any   subset   of   those 
assumptions,    we    can    add    an    additional assumption    to    :1.3.1.3.1:(the 
object   which   removes   trailing   three's)   and hide   "mitiaKS")   is   good   and 
0 < S.last < 3" from its expansion :1.3.1.3.1.1: 

00:1.3.1.3.1.1: 

assumptions: INIKR.S)   is   defined   to   be   {if   length(R>   =   0   then 
true else R.first = S.first A 

lNIT(final(R),final(S))} A a "good" sequence is 
defined to be "a sequence of I's, 2^, and 3^ 
containing no adjacent identical subsequences" A Q 
represents the sequence of lexicographically ordered 
"good" sequences, S" = S, ability to read S.last, 
requires ability to delete from the end of S, i.e. 
back from S 

:1.3.1.3.1.1: while S.last = 3 do 

back from S; 

effects and 
post-conditions: iNIT(S,S") A S.last t 3 

The   entropy   loadings   of   the  previous  decomposition  are   identical   for   the 

refinement including the elaboration for :1.3.1.3.1.1:. 

:1.3.1A(decide  whether  S is a good sequence) can be expanded by hiding 

most     of     the     assumptions     of     :1.3.1.4:. However,    the    assumption 

"initial(S)    is    a    good    sequence"    simplifies    the    calculations    since    only 

adjacent sequences, one of which contains S.last, need be considered. 

HMMMMMMMMi ■   ■ ■ --        itm -     —-   —  ii   irrrf— - —* — 
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The table for the program is now 

1« 
i- 1« 

(a)   : |.2« 
13: 
1- ^J 

(b)   I 1« l- 1' 

(0 1-3- 1« 
(d) |.4. |t 
(e) ■ 1-3- 1- 1« 
(f) ! I-3' I- 2: 

(g) It'» \-3- 
(h) I 1.3. |.4l 

(i) :|-3- 1-3' |! 

(j) : 1-3- 1-3  2: 

(k) : 13- 13- 1- I« 

1  23456789  10111213101516171819202122232425262728 

I   I   1 

I   1   I   I * 
II       1   1   I   1 
I 1 I       I   1   I   I      * 

1 II 
I 

1   I   I   I 

1 

1 

till 

1 
I 

1 

I       I   1 
1   I 

1       I       I 

; 

I   1 

1) OS = <empty> 
2) 1NIT(R,S) is defined to be {if longth(R) = 0 then true 

else R.first = S.first A lNlT(f:nal{R),final(S))} 
A a "good" sequence is defined to be "a sequence of I's, 2's, and 
G's containing no adjacenf identical subsequences" 
A Q represents the sequence of lexicographically 
ordered "good" sequences 

3) there exists a good sequence of length 100 
4) requires ability to set S to <3mpty> and 

length(S) to 0 
5) 1NIT(OS,0) A OS.Iast = S 
6) (INIHOS.Q) A OS.Iast = S   A length(S) t 100) ^ 

lNIT(OS~"next lexicographically larger good sequence than 
the value in S",Q) 

7) requires ability to read length{S) 
8) INI^OS^'next lexicographically larger good sequence than 

the value in S",Q) 
9) |N1T(0S~S,Q) 
10) requires ability to access each element of S 
11) requires ability to write each element of S 
12) requires ability to concatenate onto S, i.e. S «■ S^d 
13) requires ability to delete from the end of S, i.e. back from S 
14) (Assumptions  1), 2), 3) => true) A 

(S = <empty> A length(S) >» 0 = Assumptions 1), 2), 3) ) 
15) iNlT(OS~"next good sequence after current sequence in S",Q) 

A INIT(OS.Q) A OS.Iast - S ^ 
S' equals   S prior to executing :1.3: A S is a good sequence 
A Vx^' illt x illt S ^ x is not a good sequence] 
A S is a good sequence A S ^ S' ^ 
1NIT(0S'-S,Q) 

16) (INIT(0S~S,Q) 3 true) A 

mmmtmm^mm. J 
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(OS = OS'^S where OS' equals OS prior to :IA: 
^ (INIKOS.Q) A OS.Iasl = S 

A OS.Iast ■ S)) 
17) S' = S A S is a good sequence 
18) initial(S) is a good sequence 
19) 
20) requires read access to the boolean variable GOOD 
21) requires write access to the boolean variable GOOD 
22) 3x[S" Hit x A length(x) < length(S") A 

x is a good sequence] A [(initial(S) is good) A S.last = 0 
^ S is not good] 

23) S" = S 
24) 3x[S" ilit x length(x) < length(S")] 
25) initial(S) is a good sequence A 

0 < S.last < 3 
26) (Assumptions 2, 13,23,25, 27) D 

(Assumptions 2, 13, 23, 27) 
27) ability to read S.last 
28) ability to write S.last 

I 

IM ■ -- ^tm^^mm^t^ltmilm "-.       
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At about this stage in the development, Dijkstra introduces a data 

structure, namely an array d[l:100] to hold the digits of S. The 

variable, length, is introduced such that S.last - d[length]. By making 

this decision, all references, to operations involving S or the operator 

length require additional assumptions. These assumptions are as 

follows: 

"ability to access iengtKS)" becomes 

length 

d is an array which contains the digits of S, one digit per element A 

the variable length indexes the last element of S A the sequence is 
empty when length = 0, ability to read the variable length 

"ability to read S.last" becomes 

d[length] 

and assumes 

d is an array which contains the digits of S, one digit per element A 

the variable length indexes the last element of S A the sequence is 
empty when length - 0, ability to read the variable length, ability to 
read d[length] 

"ability to write S.last" becomes 

d[length] «- ... 
d   is   an   array   which  contains  the  digits  of   S,  one  digit   per  element  A 

the   variable   length   indexes   the   last   element   of   S   A  the   sequence   is 
empty   when   length   -  0,   ability  to  read  the  variable   length,  ability   to 
write d[length] 

"ability to concatenate onto S" becomes 

length *- length + 1; d[length] ♦- ... 

and assumes 

d   is   an   array   which  contains  the  digits  of   S,  one  digit   per  element A 
the   variable   length   indoxes   the   last   element   of   S   A   the   sequence is 
empty   when   length   -  0,   ability  to  read  the  variable   length,  ability to 
write the variable length, ability to write d[length] 

i^^MMBMM ,  -■■ M^MaM --—**"^1-^- 
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"ability to delete from the end of S, i.e.   bacK from S" becomes 

length «- length - 1; 

and assumes 

d is an array which contains the digits of S, one digit per element A 
the variable length indexes the last element of S A the sequence is 
empty when length ■ 0, ability to read the variable length, ability to 
write the variable length 

"ability to set S to <empty>" becomes 

length «- 0; 

and assumes 

d is an array which contains the digits of S, one digit per element A 
the variable length indexes the last element of S A the sequence is 
empty when length ■ 0, ability to write the variable length, 

"ability to read every element of S" requires 

d is an array which contains the digits of S, one digit per element A 

the variable length indexes the last element of S A the sequence is 
empty when length = 0, ability to read the variable length, ability to 
read every element of d 

"ability to write every element of S" requires 

d is an array which contains the digits of S, one digit per element A 

the variable length indexes the last element of S A the sequence is 
empty when length = 0, ability to read the variable length, ability [o 
write the variable length, ability to write every element of d 

The object/assumption table for this introduction is 

^M ■ 
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A OS.Iast - S)) 
17) S' - S A S is a good sequence 
18) initial(S) is a good sequence 
19) 
20) requires read access to the boolean variable GOOD 
21) requires write access to the boolean variable GOOD 
22) 3x[S" illt x A longth(x) < lengtWS") A 

x is a good sequence] A [(initiai(S) is good) A S.lasl = 0 
3 S is not good] 

23) S" - 5 
24) 3x[S" illt x length{x) < lengths')] 
25) initiaKS) is a good sequence A 

0 < S.last < 3 
26) (Assumptions 2, 13,23,25, 27) = 

(Assumptions 2, 13, 23, 27) 
27) ability to read S.last 
28) ability to write S.last 
29"/   d is an array which contains the digits of S, 

one digit per element A the variable length 
indexes the last element of S A the sequence is 
empty when length = 0 

30) ability to read the variable length 
31) ability to write the variable length 
32) ability to write d[length] 
33) ability to read d[length] 
34) ability to read every element of d 
35) ability to write    every element of d 

It    will   be    noted   that   the   shared   information   between   the   parts   has 

increased      significantly      by      the     decision     to     distribute      all      the 

information    about   the   implementation   of   the   sequence.      In   particular, 

the entropy   ladings for the last decomposition are 

((b) ((d) ((a) ((e) ((h) ((f) ( k , j )) 

1.21 ) 1.21 ) 1.91 ) 1.38 ) 1.21 ) 1.21 

All   these   values   are   greater   than  or  equal  to  the  corresponding  values 

from the same decomposition of the previous table. 

As an alternative to distributing additional assumptions throughout 

the program, objects can be created which prov de the effects which are 

needed. 

■    - 
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(I) .2.1: 

assumptions: 

•ffects: 

post-conditions: 

(m) .2.2: 

assumptions: 

•ffects: 

post-conditions: 

(n) :2.3: 

assumptions: 

effects: 

post-conditions: 

d is an array which contains the digits of S, one 
digit per element A the variable length indexes the 
last element of S A the sequence is empty when 
length = 0, ability to read the variable length 

:2.1: PROVIDE THE ABILITY TO ACCESS THE LENGTH OF S, 
I.E.   ACCESS THE VALUE OF length 

length(S) - length 

longth{S)  equals   the   length   of   S   according   to   the 
definition of length 

d is an array which contains the digits of S, one 
digit per element A the variable length indexes the 
last element of S A the sequence is empty when 
length ■ 0, ability to read the variable length, 
ability to read d[length] 

:2.2:   PROVIDE   THE   ABILITY   TO   READ   S.last,   I.E.      SET 
THE VALUE OF S.last TO d[length] 

S.last = d[length] 

S.last equals the value of the last element of S 
according to the definition of S.last 

d is an array which contains the digits of S, one 
digit per element A the variable length indexes the 
last element of S A the sequence is empty when 
length = 0, ability to read the variable length, 
ability to write d[length] 

:2.3:    PROVIDE    THE    ABILITY    TO    WRITE    S.last    I.E. 
d[length] «- ... 

S.last can be used as a name to cause a value to be 
stored into d[length] 

A value has been assigned to A.last 

MMMMMMBMi UMMBfl --   —-- ._ 
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(o) :2A 

assumptions: 

effects and 
post-conditions: 

(p) :2.5: 

assumptions: 

effects and 
post-conditions: 

(q) :2.6: 

assumptions: 

effects: 

post-conditions: 

d is an array which contains the digits of S, one 
digit per element A the variable length indexes the 
last element of S A the sequence is empty when 
length = 0, ability to read the variable length, 
ability to write the variable length, ability to 
write d[length] 

:2.4;   PROVIDE   THE  ABILITY  TO  CONCATENATE  ONTO  S, 
I.E.   length ♦- length + 1; d[length] «- ... 

The definition for concatenation is satisfied 

d is an array which contains the digits of S, one 
digit per element A the variable length indexes the 
last element of S A the sequence is empty when 
length = 0, ability to read the variable length, 
ability to write the variable length 

:2.5:  PROVIDE  THE  ABILITY  TO  DELETE  THE  END OF S, 
I.E.   back from S, I.E.   length ♦- length -1; 

the definition for back from S is satisfied. 

d is an array which contains the digits of S, one 
digit per element A the variable length indexes the 
last element of S A the sequence is empty when 
length = 0, ability to write the variable length 

:2.6:   PROVIDE   THE  ABILITY  TO  SET  S  TO  <empty>   I.E. 
length »- 0 

length = 0 

S ■ <empty> 

■MM 
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(r) 2.7: 

assumptions: d   is   an   array  which  contains  the  digits  of   S,  one 
digit per element A the variable length indexes the 
last element of S A the sequence is empty when 
length = 0, ability to read the variable length, 
ability to read every element of d 

■.2.7: PROVIDE THE ABILITY TO READ EVERY ELEMENT OF S 
I.E.    READ ACCESS to d[l] ...   d[length] 

effects and 
post-conditions: 

(s) :2.8: 

assumptions: 

every element of S is readable 

d is an array which contains the digits of S, one 
digit per element A the variable length indexes the 
last element of S A the sequence is empty when 
length = 0, ability to read the variable length, 
ability to write every element of d 

:2.8: PROVIDE ABILITY TO WRITE EVERY ELEMENT OF S 
d[l] «- .... ...   , d[length] «- ... 

effects and 
post-conditions: every element of S has been made writable. 

tm^^mt 
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The table for the program with these additional parts is 

I   23456789   1011121314161617181920212223242526272829303132333435 

III       • 

|l 1  1  1 

(a)   : 
hi' 
1-25 

1-3: 

14: 

1  1  1  1 

11      1111 

I         1         1     1 

I                      1  ) 
(b)   : 1- 1- i: 

1-3- |! 

1 

(d)   • I-4- |J 
(e) 1-3- 1- IS 

(f) !•» 1-2! 

1-3- I-3S 
(h) 1-3- 14: 

(i) I-3- 13- 1«       1 

(j) 1-3- I-3- 2'-          1 
00 ! I-3- I-3- Mi    1 
(1) •2- |1 
(m) !2.2: 

(n) !2-3J 
(o) :2-4: 

(P) '•2& 

(q) 12-tf 
(r) 1 2. 7: 

(s) ''2&i 

1)   OS = <err ipty> 
2)    1 NIT(R,S) is defined to be {if len 

I 1 1 

I I 1 

1    I I 

I 1 

I     I 
I 1 

olse R.first = S.first A INIT(final(R),final(S))} 
A a "good" sequence is defined to be "a sequence of 1's, 2's, and 
3'$ containing no adjacent identical subsequences" 
A Q represents the sequence of lexicographically 
ordered "good" sequences 
there exists a good sequence of length 100 
requires ability to set S to <empty> and 
length(S) to 0 
INIKOS.Q) A OS.iast = S 
(INIT(0S,Q) A OS.iast - S   A length(S) r< 100) ^ 

INITOS'^'next lexicographically larger good sequence than 
the value in S",Q) 

requires ability to read length(S) 
INWOS^'next lexicographically larger good sequence than 

the value in S",Q) 
9) INmOS^S.Q) 
10) requires ability to access each element of S 
11) requires ability to write each element of S 
12) requires ability to concatenate onto S, i.e. S «- S^d 
13) requires ability to delete from the end of S, i.e. back from S 

3) 
4) 

5) 
6) 

7) 
8) 

1 
I      I 
I  1  I 
I   1 

I 

1 

l 

mamt 
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14) (Assumptions 1), 2), 3) => true) A 

(S = <empty> A longth(S) = 0 = Assumptions 1), 2), 3) ) 
15) INIT{OS^"next good sequence after current sequence in S",Q) 

A IN1T(0S,Q) A OS.Iast = S ^ 
S' equals    S prior to executing :1.3: A S is a good sequence 
A Vx[S' illt x ilit S D x is not a good sequence] 
A S is a good sequence A S ^ S' ^ 
INIKOS^S.Q) 

16) (irJlT(OS^S.Q) a true) A 

(Ob = OS'~S where OS' equals OS prior to il.4> 
=> (INIT(OS,Q) A OS.Iast = S 

A OS.Iast = S)) 
S' = S A S is a good sequence 

initial(S) is a good sequence 
17) 
18) 
19) 
20) 
21) 
22) 

23) 
24) 
25) 

26) 

27) 
28) 
29) 

30) 
31) 
32) 
33) 
34) 
35) 

requires read access to the boolean variable GOOD 
requires write access to the boolean variable GOOD 
3x[S" illt x A length(x) < length(S") A 

x is a good sequence] A [(initial(S) is good) A S.last ■ 0 
a S is not good] 

S" = S 
3x[S" illt x length(x) < lengths")] 
initial(S) is a good sequence A 
0 < S.last < 3 

(Assumptions 2, 13,23,25, 27) :> 
(Assumptions 2, 13, 23, 27) 

ability to read S.last 
ability to wpie S.last 
d is an array which contains the digits of S, 
one digit per element A the variable length 
indexes the last element of S A the sequence is 
empty wren length = 0 
ability to read the variable length 
ability to write the variable length 
ability to write d[length] 
ability to read d[length] 
ability to read every element of d 
ability to write   every element of d 

An   examination   of   this   table   leads   to   the   following   decomposition.      It 

shows    better    entropy    loading   values   than   for   the   table   where   the 

implementation information is distributed 

((b) ((*) ((d) ((a) ((e) ((h) ((f) ( k , j )) 

.987 ) .711 ) .744 ) .831 ) .377 ) .497 ) .234 

M^M 
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*: (d) Ur) Us) {(m) Uq) ((n) ( o , p )) 

1.1. ) 1.02) .920 ) .942 ) .974 ) .881 

This   example   indicates   that   complicated   interpretations   of   the   contents 

of    variables   can   lead   to   high   entropy   loadings   if   that   information   is 

distributed.      The   structure   can   be   improved   if   additional   objects   are 

introduced which provide the effects of these complicated assumptions. 

MMMMtaaaMH •• i————^^^—,. 
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HEAPSORT 

The      sorting      algorithm      HEAPSORT     has      been     described[WlL], 

explained[KN2](   and   verified(via   the   text   of   TREES0RT3[L0]).      However, 

these   descriptions    and   proofs   remain   difficult   to   follow,   not   because 

the    algorithm    is    difficult,    but    because    a    reader    must    understand 

operators     which     manipulate     a     tree    structure     in     terms     of     an 

implementation   of   that   tree   structure   as   an   array.      In   this   example, 

TREES0RT3    is   developed   by   establishing   its   correctness   in   terms   of 

operators   which   manipulate   an  arbitrary  binary  tree.     The  operators   and 

their     definitions     are     a     subset     of     a     module     definition     due     to 

Parnas[PA2].      The   definitions   are  only  meant  to   be  descriptions  of   the 

general   capabilities  of   the  operators which will  be  implemented.     As  the 

development   proceeds,   information   which   simplifies   these   implementations 

will      be     distributed     and     the     results     will     be     examined     using 

Object/assumption tables and the measure. 

LS(i) Left Son(i) 

initial value:   defined prior to execution of the algorithm below. 
effect: error call if there is no definition of the left son 

of node i; otherwise the name of the left son of 
node i. 

RS(i) Right Son(i) 

initial value:   defined prior to the execution of the algorithm 
below. 

effect: error call if there is no definition of the right 
son 
of node i; otherwise the name of the right son of 
node i. 

ELS(i) Exists Left 5on(i) 

possible values: true, false 
effect: error call if node i has no direct ancestor. 

UMMMi    -—-'-■■ 
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ERS(i) Exists Right Son(i) 

possible values: true, false 
effect: error call if node i has no direct ancestor. 

VALd) VALue(i) 

initial value:   set prior to the execution of the algorithm below, 
effect: error call if VAL(i) is undefined. 

SVAd.v) Set Valued.v) 

This function has no value. 
effect: error call of node i has no direct ancestor; 

otherwise VAL(i) = v 

DEL(i) DELeted) 

This function has no value. 
effect: error call if i has no direct ancestor or 

error call if LS(i) or RSd) are undefined; 
otherwise VAL(i) becomes underined and i is never 
again a possible value of RS or LS. 

Only    after   the   algorithm   is   developed,   are   the   implementations   of   the 

operators described. 

<mm J 
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Below is a map describing this development. 

HEAPSORT 
ill (139) 

(a) :1.1: (139) (b) :1.2: (140) (c) :1.3: (140)   (d) :1.4: (141) (e) :1.5: (142) 
while i^ldo :1.4: \      B[l] «- VAL(root) 

(f) :1.1.2: (144)   (g) :1.1.3: (145)   (h) :1.1.4: (146)   (i) ii.XAi (146) 
i *- f; while i^O do      modify tree I «- f; 

begin so that A(i) 
:1.1.4: | :1.1.5 
end 

(u) :1.1.2.1: (158) 
i «- f <- n div 2 

(x) -.1.1.4.1: (159)       (V) :1.1.5.1: (158) 
siftup(i) i ♦- f ♦- f - 1 

(j) :1.4.1: (149)        (k) :1.4.2: (149) (I) :1.4.3: (150)       (m) :1.4.4: (150) 
B[i] <- VAL(rool) , h ♦- g; modify tree so i ♦- i - 1 

SVA(root,VAL(h))        that A(rool) 
DEL(h) 

(w) jlA2.li (159) 
h *■ i 
SVA(root(VAL(h)) 
DEL(h) 

(y) :1.4.3.1; siftup(root) (160) 

(Z) :3: (161) 
Transform tree so that A(j) 
if A(LS(j)) and A(RS(j)) 

(n) :2.1: (153) (o) :2.2: (154) 
VAL(k)F i.e. SVA^.k), i.e. 

VAL ♦- TREE[k] TREE[j] •■ x 

(p) :2.3: (154) 
ERS(j)> i.e. 

ERS *• if 2*j + l > NN then 
false eise true 

(q) :2.4: (155)           (r) :2.5: (155) (s) :2.6: (156)     (t) :2.7: (156) 
ELS(j) i.e.            RS(j), i.e. LS(j), i.e.           DEL(j), i.e. 
if 2*i > NN then   RS «- 2*j + 1 LS ^ 2*j                NN «• NN - I 

false else irue 

_-—___-^_-1-_ — — " ■*—     —^ 
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assumptiors: 

effects and 
post-conditions: 

requires read access to n, the number of nodes in 
the original tree, requires read access to n, write 
access required for the elements of array B, 
requires DEL, requires VAL, requires LS, requires 
RS, requires ELS, requires EPS 

:!: GIVEN A BINARY TREE, HAVING n >  1  NODES AND A 
SET    OF    FUNCTIONS:    ERS.    ELS,   VAL,    LS,    RS,    SVA, 
DEL[PA2], PRODUCE AN ARRAY OF VALUES, B, SUCH THAT 
THERE IS A ONE TO ONE ONTO MAPPING FROM THE INITIAL 
VALUES OF THE NODES OF THE TREE TO THE ELEMENTS OF 
THE ARRAY B AND SUCH THAT THE ELEMENTS OF THE ARRAY 
ARE ARRANGED IN ASCENDING ORDER. 

Vi[l   <  i  < n ^  B[i] < B[i + 1]] A there exists  a one 
to   one   onto mapping from   .he node   values   of the 
initial     tree to     the elements     B[l],...,B[n]     of the 

array 

(a) il.ll 

assumptions: A(i) is defined to be Vx[(x is a node of the tree 
and x = i or x is a descendent of i) ^ ((ELS(x) ^ 
VAL(x) > VAL(LS(x)) A (ERS(x) => VAL(x) > 
VAL(RS(x))))] where "x is a descendent of i" means 
"there exists a composition of the functions LS and 
RS, say C, such that x = C(i), requires ERS, 
requires ELS, requires RS, requires LS, requires 
VAL, requires SVA, root, names the node such that 
every node which is not root is a descendent o^ root 
A requires read access to root 

:1 1: TRANSFORM THE TREE SUCH THAT A(root) AND THAT 
THERE EXISTS A ONE TO ONE ONTO MAPPING FROM THE NODE 
VALUES   OF   THE   INITIAL  TREE  TO  THE  CURRENT  NODE 

VALUES OF THE TREE. 

i 

1 

effects and 
post-conditions: A(root), there exists a one-one onto mapping of the 

node values of the initial tree to the current node 

values 

 mm 
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:1.2: 

assumptions: requires read access to n, requires write access to 
the integer variable i, A(root), there exists a 
one-one onto mapping of the node values of the 
initial tree to the current node values 

:1.2:    i *■ n; 

effects: 

post-conditions: 

(c) :1.3: 

assumptions: 

I effects and 
post-conditions: 

A(root), there exists a one-one onto mapping of the 
node values of the initial tree to the current node 

values, i = n 

Vj[i < j < n 3 B[j] < B[j+1]) there exists a 
one-one mapping from the initial contents of the 
tree to the current contents of the tree and B[k], i 
< K S n, A{root), i > 1 A i equals the number of 
nodes in the tree A post-conditions for il.4i ^ 
assumptions for :1.4: A i is decreased by 1 at each 
iteration, requires read access to the integer 

variable i 

:1.3: while i ^  1 do :1.4: 

there exists a one-one mapping 
contents of the tree to the current 
tree and B[k], i < k < n 

from   the   initial 
contents   of   the 

M^^M ^mgm 
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(d) :1.4: 

assumptions: 

effects and 
post-conditions: 

A(i) is defined to be Vx[(x is a node of the tree 
and x - i or x is a descendent of i) ^ ((ELS(x) ^ 
VAL(x) > VAL(LS(x)) A (ERS(X) => VAL(x) 2 
VAL(RS(x))))] where "x is a descendent of i" means 
"there exists a composition of the functions LS and 
RS, say C, such that x = C(i), requires ERS, 
requires ELS, requires RS, requires LS, requires 
VAL, requires SVA, requires DEL, write access 
required for the elements of array B, requires read 
access to the integer variable i, requires write 
access to the integer variable i, root, names the 
node such that every node which is not root is a 
descendent of root A requires read access to root, 
(ERS(i) ^ A(RS(i))) A (ELS(i) ^ A(LS(i))), Vj[i < j 
< n 3 B[j] < B[j + 1], there exists a one-one mapping 
from the initial contents of the tree to the current 
contents of the tree and B^], i < K < n, A(root) 

:1.4:   TRANSFORM THE TREE AND B SUCH THAT Vj[i < j < 
n a B[j] < B[j + 1]], SUCH THAT THERE EXISTS A ONE TO 
ONE MAPPING FROM THE INITIAL CONTENTS OF THE TREE TO 
THE CURRENT COMENTS OF THE TREE AND THE ELEMENTS 
BO], i < k < n, AND THAT A(root). 

Vj[i <   j   <   n   3   B[j]   < B[j+1],   there   exists   a 
one-one mapping    from    the initial    contents    of    the 
tree   to the   current   contents of   the  tree   and  B[k],  i 
< k < n, A(root) 

■ ii 
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(•) :1.5: 

assumptions: 

effects: 

post-conditions: 

requires VAL, root, names the node such that every 
node which is not root is a descendent of root A 

requires read access to root, write access required 
for the elements of array B, there exists a one-one 
mapping from the initial contents of the tree to the 
current contents of the tree and B[K], i < k < n, 
Vj[l < j < n 3 B[j] < B[j+1]] 

:1.5: B[l] <- VAUroot); 

B[l] - VAUroot) 

Vi[l   < i  < n ^ B[i] < B[i + 1]] A there exists  a one 
to   one   onto mapping from   the   node   values   of the 
initial     tree to     the elements     B[l],...,B[n]     of the 
array 

MMM^ urn. Imamm   -    - 
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(a) 
|1 

(b) 1-25 
(c) l-3: 

(d) 1.41 
(e) l|.«t 

123456789  101112I3I4I5I6I7I8I9202I2223242526272829303I 

I   1   I   I   I   I   I   I I 

I   I   I   1   I   I   I I 

III I 

I   I   I   I   I I   I   I 

I 

I 

I   I   I 

I 

I 

I   I 

I   I 

I 

I 

1) 
i   or 

2) 
3) 
4) 
5) 
6) 
7) 
8) 
9) 

A(i) is defined to be 
Vx[(x is a node of the tree and x 

x    is a descendent of i) ^ 
((ELS(x) ^ VAL(x) > VAL(LS(x)) A 
(ERS(x) o VAL(x) > VAL(RS(x))))] 

where "x is a descendent of i" means "there exists a 
composition of the functions LS and RS, say C, 
such that x = Cd) 
requires ERS 
requires ELS 
requires RS 
requires LS 
requires VAL 
requires SVA 
requires DEL 
write access required for the elements of 
array B 

13) requires read access to the integer variable i 
14) requires write access to the integer variable i 
15) root, names the node such that every node 

which is not root is a descendent of root A requires 
read access to root 

16) requires read access to n 
17) there exists a one-one onto mapping of the 

node values of the initial tree to the current node values 
19)    (ERSd) ^ A(RS<i))) A (ELSd) ^ A(LS(i))) 
22) Vj[i < j < n D B[j] < B[j+1] 
23) there exists a one-cne mapping from the initial contents 

of the tree to the current contents of the tree and 
B[k], i < k < n 

25)   A(root) 
30) i  >   1  A i equals the number of  nodes in the tree A 

post-conditions for :1.4: 3 assumptions for ;1.4: A 
i is decreased by  1 at each iteration 

31) Vj[l < j < n ^ B[j] < B[j + 1]] 
there exists a one-one onto mapping of the initial 
tree to the current contents of the tree and 
B[k], i < k < n 

J 
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The best decomposition is 

((a) ((t) ^ c , d , • )) 1.33 ) 1.05 

and  any  further  decomposition of  c, d, • leads to  an entropy  loading of 

1.61.      Hence,   for   this   decomposition,  saturation  has   occurred   for   (   e  , 

d   ,   •   ).     At   this   stage,  the   transformation of  the  tree  so  that   A(root) 

interacts least with the other objects.   Next, rl.il is elaborated. 

(f) :1.1.2: 

assumptions: ability to set f such that it has produced no 
values A the tree is finite A the tree contains at 
least one node, f is defined to be the value i such 
that (i has not been produced by a call of f since f 
was last initialized) otherwise the value of f is 0 
A (the nodes of the tree are named by integers which 
are not equal to 0), requires write access to the 
integer variable i 

:i.l.2: INITIALIZE f; i <- f; 

effects and 
post-conditions: i names a node such that for this execution of the 

while construct, for all previous values held by i, 
A(i) A i has not held the current value A if i has 
named all the nodes then i » 0 



II I" 11   II ■»P^i^BPFW^^It^,  '"I 

1 
USING THE MEASURE 145 
HEAPSORT 

(g) :1.1.3: 

assumptions: requires read access to the integer variable i, 
root, names the node such that every node which is 
not root is a descendent of root A requires read 
access to root, f is defined to be the value i such 
that (i has not been produced by a call of f since f 
was last initialized) otherwise the value of f is 0 
A (the nodes of the tree are named by integers which 
are not equal to 0) (if ERS(i) then A(RS(i)) •!«• 
true) A (if ELS(i) then A(LS(i)) else true) , i 
names a node such that for this execution of the 
while construct, for all previous values held by i, 
A(i) A i has not held the current value A if i has 
named all the nodes then i - 0 

:1.1.3: while i ^ 0 do 

begin 

:1.1.4: ; :1.1.5: 

end 

effects: i = 0, i names a node such that for this execution 
of the while construct, for all previous values held 
by i, A(i) A i has not held the current value A if i 
has named all the nodes then i = 0 

post-conditiom; there exists a one-one onto mapping of the node 
values o the initial tree to the current node 
values, Adoot) 
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(h) li.iAx 

assumptions: (ERS(i) 3 A(RS(i))) A (ELS(i) = A(LS(i))), requires 
read access to the integer variable i, A(i) is 
defined to be Vx[(x is a node of the tree and x - i 
or x is a descendent of i) => ((ELS(x) :> VAL(x) > 
VAL(LS(x)) A (ERS(x) o VAL(x) > VAL(RS(x))))] where 
"x is a descendent of i" means "there exists a 
composition of the functions LS and RS, say C, such 
that x = C(i), requires ERS, requires ELS, requires 
RS, requires LS, requires VAL, requires SVA 

: 1.1.4: MODIFY THE TREE SUCH THAT A(i) AND THAT THE 
NODE VALUES ARE PERMUTED. 

effects and 
post-conditions: 

(i) :1.1.5: 

assumptions: 

effects and 
post-conditions: 

A(i), there exists 
node values of the 
values 

a  one-one   onto   mapping   of   the 
initial   tree   to   the   current   node 

f  is defined to  be the value i  such that (i  has  not 
been   produced   by   a   call   of   f   since   f was   last 
initialized)   otherwise    the    value   of    f    is 0   A   (the 
nodes   of   the  tree  are  named  by   integers which   are 
not   equal   to   0)   (if   ERSd)   then   A(RS(i)) else   true) 
A    (if    ELS(i)    then    A(LS(i))    else    true) ,    requires 
write access to the integer variable i 

:1.1.5: i ♦- f; 

i names a node such that for this execution of the 
while construct, for all previous values held by i, 
A(i) A i has not held the current value A if i has 
named all the nodes then i ■ 0 
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The object assumption table is now 

12 3 4 5 6 7 8 9  101112131415161718192021222324252627282930313233 

(a)   I 
M                               i 
|. |l                        ii 

1   1   1   1   1   1   1                              1 

1   1   1   1   1                                  > 

(b)   l I-2S 1        1   1 1 

(0   i |>fl 1 1   1        1 

(d) {•4S                                  11 1   1   1   1   1   1   1                 111                > 1   1        1 

(e) |.|l 1            1                          1 1 

(f) ||. I.ft 1                 1 1 

(e) : I- 1.3! 1   1        1        1 

(h) I|. |.4*.                             1   1 1   1   1   1   1                1        1 

(i) l|. 1-55 1   1            1 

i   or 
1) A(i) is defined to be 

Vx[(x is a node of the tree and x 
x    is a descendent of i) => 
((ELS(x) 3 VALK > VAL(LS(x)) A 

(ERS(x) 3 VAUx/ > VAL(RS(x))))] 
where "x is a descendent of i" means "there exists a 
composition of the functions LS and RS, say C, 
such that x = Cd) 

2) requires ERS 
3) requires ELS 
4) requires RS 
5) requires LS 
6) requires VAL 
7) requires SVA 
8) requires DEL 
9) write access required for the elements of 

array B 
10) f is defined to be the value . such that 

(i has not been produced by a call of f since f was last 
initialized) otherwise the value of f is 0 A 

(the nodes of the tree are named by integers which are 

not equal to 0) 
11) (ERSd) :> A(RS(i))) A (ELSd) => A(LSd))) 
13) requires read access to the integer variable i 
14) requires write access to the integer variable i 
15) root, names the node such that every node 

which is not root is a descendent of root A requires 

read access to root 
16) requires read access to n, the number of nodes m the 

original tree 
17) there exists a one-one onto mapping of the 

node values of the initial tree to the current node values 
19)   (ERS(root) ^ A(RS(root))) A (ELS(root) = A(LS(root))) 
21)   ability to set f such that it has produced no values A 

the tree is finite A 

the tree contains at least one node 

a—m -__ J 
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22) Vj[i < j < n o B[j] < B[jM] 
23) there exists a one-one mapping from the initial contents 

of the tree to the current contents of the tree and 
B[k], i < K i n 

25)   A(root) 
30) i i  1 A i equals the number of nodes in the tree A 

post-conditions for :i.4: 3 assumptions for il.4l A 
i is decreased by 1 at each iteration 

31) Vj[l < j < n D B[j] < B[j + 1]] 
there exists a one-one onto mapping of the initial 
tree to the current contents of the tree and 
B[K], i < k < n 

33)   i names a node such that 
for this execution of the while construct, 
for all previous values held by i, A(i) A 
i has not held the current value A if i has named 
all the nodes then i ■ 0 

RLB and RUB are 

RLB: ((■; ((b) ( c , d , • )) 1.07 ) 0.0 

RUB: ((a) ((b) ( c , d , e )) 1.07 ) .90 

But the acutal elaboration has entropy loadings 

(( f , g , h . • ) (( b ) ( c , d , • )) 1.49 ) 1.91 

One   reason   for   this   marked   increase   in   entropy   loading   values   is   that 

information   about   the   variable   i   is   shared   between   parts   where   such 

sharing did not occur at the last stage.   A better decomposition is 

((f) ((b) ((•) ((c) m ((d) ( g . h )) 

1.91 ) 1.73 ) 1.73 ) 1.67 ) 1.49 ) 1.49 

Unfortunately, this decomposition, though better, seems arbitrary. 

Here, (f) [i «- f] interacts least, ut (g) and (h) that help transform 

the tree so that A(root), interacts most. In this instance, the 

decomposition suggested by the last stage is not a good one at this 

stage. 

aaMMi       .. .       ^. 
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Next, :1.4: is elaborated. 

(j) :1A1: 

assumptions: 

effects: 

effects and 
post-conditions: 

(K) :IA2: 

assumptions: 

write access required for the elements of array B, 
requires VAL, requires read access to the integer 
variable i, root, names the node such that every 
node which is not root is a descendent of root A 

requires read access to root 

: 1.4.1: B[i] •- VAL(root); 

B[i] - VAL(root) 

there exists a one-one mapping from the initial 
contents of the tree to the current contents of the 

tree and B[k], i < k < n 

requires read access to h, there exists a one-one 
mapping from the initial contents of the tree to the 
current contents of the tree and B[K], i < k < n, 
requires write access to h, root, names the node 
such that every node which is not root is a 
descendent of root A requires read access to root, 
requires VAL, requires SVA, requires DEL, there 
exists a function g which names a node, i, such that 

NOKERSd) v ELS(i)) 

-.1.4.2:   h f g; SVA(root, VAL(h)); DEL(h); 

effects and 
post-conditions: there exists a one-one onto mapping from the 

initial nodes of the tree to the current nodes of 

the tree and B[k], i < k < n 

MM 
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(I) :1A3: 

assumptions: A(i) is defined to be Vx[(x is a node of the tree 
and x " i or x is a descendent of i) ^ ((ELS(x) 3 
VAL(x) > VAULS(x)) A (ERS(x) o VAL(x) > 
VAL(RS(x))))] where "x is a descendent of i" means 
"there exists a composition of the functions LS and 
RS, say C, such that x = C{i), requires ERS, 
requires ELS, requires RS, requires LS, requires 
VAL, requires SVA, (ERSd) => A(RS(i))) A (ELS(i) => 
A(LS{i))) 

:1A3: MODIFY THE TREE SUCH THAT A(root) AND THAT 
THE NODE VALUES ARE PERMUTED 

effects and 
post-conditions: 

(m) :1A4: 

assumptions: 

A^oot), Vj[i < j < n 3 B[j] < B[j+1] A there 
exists a one-one onlo mapping of the initial tree to 
the current contents of the tree and B[k], i S k < n 

requires read access to the integer variable i, 
requires write access to the integer variable i, 
A(root), Vj[i < j < n 3 B[j] < B[j+1] A there exists 
a one-one onto mapping of the initial tree to the 
current contents of the tree and B[k], i < k S n 

:1A4: i «- i - 1; 

effects and 
post-conditions: VJ[I <   j    <   n   3   B[j]   < B[j+1],   there   exists   a 

one-one mapping    from    the initial   contents    of    the 
tree   to the   current   contents of   the  tree   and   B[k],  i 
< k < n, A(root) 
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Below is the object/assumption table for this elaboration 

(J) 
(k) 

(I) 
(m) 

D 

I-4- !< 
|.4. 2: 

I- 4-3S 
1.4. ^: 

1   23456789   1011121314151617 181920212223242526272829303132 

II II 
III 1 I I   1   I 

1   I   I   I   I   1   I                                 I               I 

II I I 

A(i) is defined to be 
Vx[(x is a node of the tree and x - 1    or 

x    is a descendent of 1) ^ 
({ELS(x) o VAL(x) > VAL(LS(x)) A 

(ERS(x) 3 VAL(x) > VAL(RS(x))))] 
where "x is a descendent of i" means "there exists a 
composition of the functions LS and RS, say C, 
such that x = C(i) 

2) requires ERS 
3) requires ELS 
4) requires RS 
5) requires LS 
5)      requires VAL 
7) requires SVA 
8) requires DEL 
9) write access required for the elements of 

array B 
13) requires read access to the integer variable i 
14) requires write access to the integer variable i 
15) root, names the node such that every node 

which is not root is a descendent of root A requires 
read access to the variable root 

19)    (ERS(root) 3 A(RS{root))) A aLS(root) ^ A(LS(root))) 
23)    there exists a one-one mapping from the initial contents 

of the tree to the current contents of the tree and 
B[k], i < k < n 

25) A(root) 
26) there exists a function g which names a node, 1, such 

that N0T(ERS(i) v ELSd)) 
27) requires read access to h 
28) requires write access to h 
32)    Vj[i < j < n D B[j] < B[j+1] A 

there exists a one-one onto mapping of the initial 
tree to the current contents of the tree and 
B[k]> 1 < k < n 

RLB and RUB for this elaboration are 

RLB: ((f) ((b) ((•) ((c) (d) ((d) ( I , h )) 

0.0 ) 1.19 ) 1.29 ) 1.16 ) 1.03 ) 1.16 

■MMM mam MHMa 
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RUB: ((f) ((b) ((e) ((c) ((i) ((d) ( g , h )) 

1.77 ) 1.54 ) 1.64 ) 1.59 ) 1.47 ) 1.37 

The actucal entropy loadings are 

((f) ((b) ((•) ((c) (0) (( j , K , I , m ) 

( | , h )) 2.15 ) 1.54 ) 1.67 ) 1.89 ) 1.29 ) 1.29 

A belter decomposition is 

((f) ((b) ((e) ((i) ((c) ((m) (( K , I ) ((j) ( g , h )) 

1.85 ) 1.77 ) 1.67 ) 1.67 ) 1.54 ) 1.54 ) 1.29 ) 1.29 

The algorithm to this stage of development represents a solution to 

the problem as it was originally posed. Next, an implementation 

decision is made which has the potential for simplifying the 

construction of the functions f and g as well as the functions which 

operate on the tree. This decision represents the original n nodes in 

the array elements TREE[1],..., TREE[n], where the names of the nodes 

pre their array indices and for 1 < k < n. LS( k div 2 ) - k if k is 

even and RS( k div 2 ) = k if k is odd and VAL(k) - TREE[k]. This 

representation has several important properties: 

(a) ERS(k) 3 ELS(k) 

(b) If TREE contains m > 1 elements (nodes) m TREE[1],..., 
TREE[m] then ERS(k) is defined to be 2*k + 1 < m and ELS(k) is 
defined to be 2*k ^ m for positive integer k. 

(c) if TREE contains m > 1 elements (nodes) in "iREE[l])..., 
TRE£|>] and m is a variable which indicates the number of 
elements in the tree, DEL(m) is accomplished by the assignnent 

m «- m - 1. 

(d) ( ELS(k) D (LS(k) = 2*k )) A ( ERS(k) 3 ( RS(k) - 2*k + 1 )). 
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These properties also simplify the construction of f and g. 

Specifically, I is called only after a previous call of f, whose value 

is f, has been used to transform the tree such that W).   Hence, 

:l.i.2: INITIALIZE f; i ♦- f; 

153 

can be written as 

and 

i «- f «- n div 2; 

:U.5: i *- U 

can be written as 

i  ♦- f  4- f   -   1| 

since A(k) is vacuously tiue if k is a terminal node of the tree. 

Similarly,   the   function   g  can  be   aefined   to   equal   the  value  of   i   as 

defined in :1.2: and decremented m :1A4: 

Lastly,   the   definition   of   root   is   1   which   indicates   that   TREE[1]   is 

the root node of the tree. 

These     properties     together     provide     definitions     for     the     tree 

operations as follows 

(n) :2.1: 

assumptions: 

effects and 
post-conditions: 

TREE    is    a    one-dimensional    array    containing    n 
elements,    i.e. TREE[1],...,    TREE[n],     and    contains 
the representation of the tree in the form RS(j) - 
TREE[2*j + 1] and LS(j) = TREE[2*j], assumes read 
access to TREE, parameter for VAL is always legal 

:2.1: COMPUTE VAL(k), i.e.   VAL <- TREE[k]; 

VAL equals the value of node k m the tree 

l^^^Mtf M^HaMaakOBHaa 
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(0) :2.2: 

assumptions: 

effects and 
post-conditions: 

(p) :2.3: 

assumptions: 

effects and 
post-conditions: 

TREE    is    a    one-dimensional    array containing    n 
elements,    i.e.         TREE[1]      TREE[n], and    contains 
the   representation   of   the   tree   in   the form   RS(j)   - 
TREE[2*j   +   1]   and   LS(j)   -   TRE£[2*j], assumes   write 
access to TREE, j names  an  integer  in the  range  1  to 
n   and  it   is   meaningful   to   assign   x  to an  element  of 

TREE 

:2.2: COMPUTE SVA(j,x), i.e.   TREE[j] ♦- x; 

the value of x has been assigned to node j 

TREE    is    a    one-dimensional    array    containing    n 
elements,    i.e. TREE[1],...,    TREE[n],    and    contains 
the representation of the tree in the form RS(j) ■ 
TREE[2*j ♦ 1] and LS(j) = TREE[2*j], parameter for 
ERS is a positive integer, requires read access to 
the variable NN, NN indicates the number of nodes 
currently in TREE, such that TREE[i], 1 S i < NN if 

a node of the tree 

■.2.3: COMPUTE ERS(j) i.e. ERS <- if 2*j + 1 ' NN 
then false else true; 

ERS = the value "there exists a right son of j" 

MMMMI 
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(q) :2.4: 

assumptions: 

effects and 
post-conditions: 

TREE    is    a    one-dimensional    array    containing    n 
elements,    i.e. TREE[1 ],...,     TREE[n],     and    contains 
the representation of the tree in the form RS(j) ■ 
TREE[2*j ♦ 1] and LS(j) = TREEOj], parameter for 
ELS is a positive integer , requires read access to 
the variable NN, NN indicates the number of nodes 
currently in TREE, such that TREE[i], 1 ^ i < NN is 
a node of the tree 

:2.4:   COMPUTE   ELS(j)   i.e. 
false else true; 

ELS   <-   if   2*j   >   NN   then 

ELS equals the value of  "there exists a left son of 

(r) :2.5: 

assumptions: 

effects and 
post-conditions: 

TREE    is    a    one-dimensional    array    containing    n 
elements,     i.e. TREE[1 ],...,     TREE[n],    and    contains 
the representation of the tree in the form RS(j) ■ 
TREE[2*j + 1] and LS(j) = TREE[2*j], parameter for 
RS is legal for the current state of the TREE 

:2.5: COMPUTE RS(j), i.e.   RS «- 2*j + 1 

RS equals the index of the right son of j 

— ■"-• - -- ■ 
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(>) .2.6: 

assumptions: 

effects and 
post-conditions: 

(t) :2.7: 

assumptions: 

TREE    is    a    one-dimensional     :rray    containing    A 

elements,     i.e. TREE[1]     TFEE[n],     and    contains 
the representation of the tree in the form RS(j) - 
TREE[2*j + 1] and LS(j) - TREE[2«j], parameter for 
LS is meaningful 

■.2.6: COMPUTE LS(j) i.e.   LS <- 2*j 

LS equals the index of the left son of j 

TREE    is    a    one-dimensional    array    containing    n 
elements,     i.e. TR£E[1],...,    TREE[n],     and    contains 
the representation of the tree in the form RS(j) ■ 
TREE[2*j + 1] and LS(i) = TREE[2*i], parameter for 
DEL always names the current '. ,Mue in NN, requ.res 
read access '.o the variable NN, requires write 
access to the variable NN, NN indicates the number 
of nodes currently in TREE, such that TREE[i], 1 < i 
< NN is a node of the tree 

:2.7: COMPUTE DEL(j) i.e.   NN *■ NN -1; 

effects and 
post-conditions: node j has been deleted from the tree 

m*m •__ mm 
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The object/assumption table for this elaboration is: 

343536373&3M0fl 14243444546 
I       I 

I        I 
I I       I 

I I       I 

(n) 2' 1 

2- 2 
•2-3 
24 

!2-5 
'2b 

(t) !2- 7 I I  I 

34) TREE is^a cne^ämenoional array containing n elements, i.e. 
TREE[1 ],,!.,  rREE[n], and contains the representation of the 
tree in tpe form RS(j) - TREE[2*j + 1] and 
LS(j) - TREE[2*j] 

35) aG$u.ines read access to TREE 
36) assumes write access to TREE 
37) parameter for VAL is always legal 
38) j names an integer in the range 1 to n and 

:t is meaningful to assign x to an element of TREE 
39) parameter for ERS is a positive integer 
40) parameter for ELS is a positive integer 
41) parameter for RS is legal for the current state of the TREE 
42) parameter for LS is legal 
43) parameter for DEL always names the current value in IMN 
44) requires read access to the variable NN 
45) requires write access to the variable NN 
46) NN indicates the number of nodes currently in TREE, such 

that TREE[i], 1 < i < NN is a node of the tree 

A good decomposition of this development is 

((*) ((f) ((b) ((I) ((i) ((c) ((m) (( k , e ) ((j) 

( g , h )) 1.42 ) 1.39 ) 1.39 ) 1.28 ) 1.20 ) 1.16 )   36 ) .96 ) .67 

where 

«: ((n) ((o) ((r) (U) ( t , p ,   q ) .70 ) .72 ) .75 ) .83 

The   addition  of   these  new  objects  improves  the  entrop/  loadings for  the 

former decomposition. 
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The objects which elaborate the definitions o< ( and g are: 

(u) :1.1.2.1: 

assumptions: 

effects and 
post-conditions: 

(v) :1.1.5.1: 

assumptions 

f is called only after the immediately preceding 
call of f, whose value is V, has been used to 
transform the tree such that A(f') A the sequence of 
values n div 2, ..., 0 is a sequence of node value 
which satisfy all the assumptions of -.[.[A:, read 
access required for f, TREE is a one-dimensional 
array      containing      n      elements,      i.e. TREE[1])..., 
TREE[n]I and contains the representation of the tree 
in the form RS(j) - TREE[2*j + 1] and LS(j) - 
TREE[2*j], requires write access to the integer 
variable i, requires read access to n, the number of 
nodes in the original tree, 

:1.1.2.1: i ♦- f <- n div 2; 

i names a node such that for this execution of the 
while construct, for all previous values held by i, 
A(i) A i has not held the current value A if i has 
named all the nodes then i - Ü, (ERSO) ^ A(RS(i))) 
A (ELSd) 3 A(LS(i))) 

f is called on,y after the immediately preceding 
call of f, whosp value is V, has b en used to 
transform the tree such that A(n A the sequence of 
values n div 2, .... 0 is a sequence of node value 
which satisfy all the assumptions of -.I.IA:, read 
access required for f, write access required for f, 
TREE is a one-amicnsional array containing n 
elements,     i.e. TREE[ I ],...,     TREE[n],     and     contains 
the representation of the tree m the form RS{j) = 
TREL[2«j ♦ 1] and LS(i) = TREE[2*j], requires read 
access to n, the number of nodes in the original 

tree 

:1.1.5.1: i «- f - f - 1; 

effects and 
post-conditions: i names a node such that for this execution of the 

while construct, for all previous values held by i. 
Ad) A i has not held the current value A if i has 
named all the nodes then i = 0 



USING THE MEASURE 
HEAPSORT 

159 

(w) ilA2.li 

assumptions: requires read access to h, requires write access to 
h, there exists a one-one mapping from the initial 
contents of the free to the current contents of the 
tree and B[k]1 i < k < n, root, names the node such 
that every node which is rot root is a descendent of 
root A requires read recess to the variable root, 
requires VAL, requires SM, requires DEI., TREE is a 
one-dimensional     array     containing     n     elements,     i.e. 
TREE[1]  TREE[n], and contains the 
representation of the tree in the form RS(j) ■ 
TREE[2*j + 1] and LS(j) - TREE[2*j], the number of 
elements in the tree equals the value of i. Hence 
node i has no descendants, requires read access to 
the integer variable i 

ll.42.ii h 4- i; SVA(root,VAL(h))i DEL(h); 

effects and 
post-conditions: there    exists    a   one-one   onto    mapping from   the 

initial    nodes   of   the   tree   to   the   current nodes   of 
the tree and Bik], i < k < n 

Lastly,   moi.t   of   the   tree   operations   can   be   localized   to   one object   by 

making the following elaborations: 

(x) :1.1.4.1: 

assumptions: 

effects and 
post-conditions: 

the assumptions of :1.1.4: ^ (there ex sts a 
procedure, siftup(j), which assumes that (ELS(j) 3 
A(LS()))) A (ERS(j) ^ MRS(j})) and results in A{j„ 
(ERSd) a A(RS{i))) A (ELS(I) 3 A(LSu)>), requires 
read access to tho integer variable i 

:1.1.4.1: siftupd); 

A(i), there exists a one-one onto mapping of the 
node values of the initial treo to the current node 
values 
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(y) :1A3.1: 

assumptions: 

•ffacts and 
post-conditions: 

the    assumptions    of    ;1A3:    :> (there    exists    a 
procedure,    siftup(j)l    which    assumes that    (ELS(j)    3 
A(LS(j)))   A   (ERS(j)   3   A(RS(j)))   and results   in   A(j)) 
, root, names the node such that every node which is 
not    root   is   a   descendent   of   root A   requires   read 
access       to      the      variable      root, (ERS(root)      = 
A(RS(root))) A (ELS(root) = A(LS(root))) 

li.43.ll siffup(root); 

A(root), Vj[i s j < n D B[j] < B[j + 1] A there 
exists a one-one onto mapping of the initial tree to 
the current contents of the tree and B[K], i < k < n 
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(2) :3: 

assumptions: (ERSd)   ^   A(RS(i)))   A   (ELS(i)   ^   A(LS(i))),   ERSd)   ^ 
ELS(i), assumes read/wnte access to NOLOOP, j, t, 
copy, requires ERS, requires ELS, A{i) is defined to 
be Vx[(x is a node of the free and x » i or x is a 
descendenf of 0 o ((ELS(x) o VAL(x) > VAL(LS(x)) A 

(ERS(x) o VAL(x) 2 VAL(RS'x))))] where "x is a 
descendenf of i" means "there exists a composition 
of the functions LS and RS, say C, such that x = 
Cd), requires RS, requires LS, requires VAL, 
requires SVA, (ELS(j) = A(LS{j))) A (ERS(j) => 
A(RS(j))) 

:3: siftup(j): 
copy •■ VAL(j)i 
repeat 

begin 
NOLOOP •• true; 
if ELS(j) then 

begin 
if ERS(j) then 

begin 
if VAL{ RS{j) ) > VAL( LS(j) ) then 

t - RS(j) 
else 

t * LS(j) 
end; 

if VAL(t) > copy then 
begin 
SVA(j. VAL(t)); 

J •■ '; 

NOLOOP «- false; 
end 

und 
end 

until NOLOOP; 
SVA(j, copy); 

affects and 
post-conditions: 

A(the value of j on entry to siftup) 
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The object assumption table for these additional objects is 

lu) 1- 1' 2- 1 
(v) !• !• 5- 1 
(w) 1- 1- A- 1 
(x) 1- • 2- 1 

(y) 1-4-3   1 

(z) 3'- 

(u) 1- 1- 2   1 
(v) 1- 1' 5- 1 
(w) 111   1 
(x) 1- A- 2- 1 

(y) l|<4«3< l 
(2) •35 

I   23456769  101112I3I4I5I6I7I8I9202I2223242626272829 

I       I 

I 

I       t 

I   I   I 1   I 

I   I   I   I   I   I   I I 

34353637383940414243444546474849505152535455 

1 I I 

I III 

I 

I I 

1 

I I I 

1) A(i) is defined to bo 
Vx[(x is a node of the tree and x = i   or 

x    is a descendent of i) ^ 
((ELS(x) o VAUx) > VAL(LS{x)) A 

(ERS(x) o VAL(x) > VAL(RS(x))))] 
where "x is a descendent of i" means "there exists a 
composition of the functions LS and RS, say C, 
such that x = Cd) 
requires ERS 
requires ELS 
requires R3 
requires LS 
requires VAL 
requires SVA 
requires DEL 
write access required for the elements of 
array U 

f is defined to be the value i such that 
(i has not  been produced by a call of f since f was last 
initialled) otherwise the value of f is 0 A 

(the nodes of the tree are named by integers which are 
not eqtal to 0) 

11) (ERS(i) o A(Rl3(i))) A (ELS(t) * A(LS(i))) 
12) there exists a one-one onto mapping of the node 

values pnor to the transformation to the node 
value", after 

13) requires read access to the integer variable i 
14) requires write access to the integer variable i 
15) root, names the node such ',nat every node 

which is not root is a descenusnt of root A requires 
read access to the variable root 

16) requires read access to n, the number of nodes m the 

2) 
3) 
4) 
b) 
6) 
7) 
B) 
9) 

10) 

„________ _ 
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original tree 
17) there exists a one-one onto mapping of the 

node values of the initial tree to the current node values 
18) i - n 

19) (ERS(root) ^ A(RS(root))) A (ELS(root) 3 A(LS(root))) 
20) A(i) 

21) ability to set f such that it has produced no values A 

the tree is finite A 

the tree contains at least one node 
22) VJ[I < j < n 3 B[j] <, B[j+1] 
23) there exists a one-one mapping from the initial contents 

Of the tree to the current contents of the tree and 
B[K]) i < k < n 

24) (ERS(füot) 3 A(RS(root))) A (ELS(root) 3 A(LS(root))) 
25) A{root) 
26) there exists a function g which names a node, i, such 

that NOKERSd) v ELSd)) 
27) requires read access to h 
28) requires write access to h 
29) there exists a one-one onto mapping trom the 

initial nodes of the tree to 
the current nodes of the tree and B[k], i < k < n 

30) i > 1 A i equals the number of nodes in the tree A 

post-conditions for ti.4: => assumptions for :1.4: A 

i is decreased by  1 at each iteration 
Vj[l < j < n D BCJ] S B[J + lj] 
VJ[I g J < n a B[j] < B[j+1] A 

there exists a one-one onto mapping of the initial 
tree to the current contents of the tree and 
B[k], i < k < n 
i names a node such that 
for INs execution of the while construct, 
for all previous values field by i, Ad) A 

i has not held the current value A if i has named 
all the nodes then i ■ 0 
TREE is a one-oimensional array containing n elements, i.e. 
TRE£[1 ],..., TREE[n], and contains the representation of the 
tree in the form RS(j) - TREE[2»i * 1] and 
LS(j) = TREEC2tj] 
assumes read access to TREE 
assumes write access to TREE 

37) parameter for VAL is always legal 
38) j names «in integer in the range 1 to n and 

it is meaningful to assign x to an element of TREE 
parameter for tR3 is a positive mleper 
par.imeier for ELS is a positive integer 
parameter for RS is legal for the current state of the TREE 
parameter for LS is legal 
pardmeter tor DEL always names the current value in IMN 
requires tead access to the variable NN 

31) 
32) 

33) 

34) 

35) 
36) 

39) 
40) 
41) 
42) 
43) 
44) 

_>■ I—MMMM—in 
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45) 
46) 

47) 
48) 
49) 

50) 
51) 
52) 

and 
53) 

54) 
55) 

requires write access to the variable NN 
NN indicates the number of nodes currently in TREE, such that 
TREE[i], 1 < i < NN is a node of the tree 

ERSd) => ELSd) 
assumes read/write access to N0L00P, j, t, copy 
f is called only after the immediately preceding call of f, 
whose value is V, has been used to transform the tree such that 
AO') A the sequence of values n div 2, .... 0 
is a sequence of node value which satisfy all the assumptions 

of :1.1.4: 
read access required for f 
write access required for f 
the assumptions of 81.1.4: :> (there exists a procedure, 
siftup(j), which assumes that (ELS()) o A(LS(j))) A (ERS(j) = A(RS(j))) 

results in A(i) 
the assumptions of :1.4.3: ^ (there exists a procedure, 
siftup(j), whicn assumes that (ELS(j) 3 A''S(j))) A (ERS(j) o A(RS(j))) 

and results in A(j)) 
(ELS(j) o A(LS(j))) A (ERS(j) => A(RS(j))) 
the number of elements in the tree equals the value of i.   Hence 

node i has no descendants 

A good decomposition for this elaboration is 

((y) ((b) ((«) ((2) (vw) (( u , v ) ((m ((•) ((c) ((g) 

(( j , x )) 1.44 ) 138 ) 130 ) 1.10 ) 

1.19 ) 1.08 ) 1.04 ) 1.01 ) 1.00 ) .71 

where (*) consists of objects n through t. 

This   decomposition   localizes   the   tree  operations   to   the   objects (*) 

from   the   previous   decomposition   and   the   uses   of   the   function   f   to (u) 

amd   (v).     Entropy  loading  figures  are  highe;   when information  about the 

implementation of the tree is distributed. 

— — .^HMi 
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THE PROBLEM OF THE EIGHT QUEENS AND A TELEGRAM PROBLEM: A DISCUSSION 

The developments for the GOD Computation, the Sequences Problem, 

and Heapsort demonstrated applications of the techniques described in 

Chaplbrs II and III. Similar developments have been constructed for the 

Eight Queens Problem[W] and a Telegram Problem[HE]. A complete 

presentation of these developments contributes IWIe to demonstrating 

the techniques which have already been presented. Instead, the results 

of these developments are described. 

THE PROBLEM OF THE EIGHT QUEENS 

The     discussion     which     follows     represents     an     analysis     of     the 

development   due   to   Wirth[W],   using   the   measure   at   each  stage.     Early 

stages    possess   good   structure   but   much   information   is   shared   in   the 

final solution.    This problem can be stated as: 

Find   an   arrangement  of  eight  chess  queens on  an 8 x  8 chess 
board   such  that   no  queen  is  attacked  by  any  other ^i.e.     such 
that    each    row,   column,   and   diagonal    contains    at most    on. 
queen). 

The first stage in Wirth's solution is 

variäbiü board, pointer, safe; 
considorfirstcolumn; 
repeat 

begin 
trycoiumn; 
if sare then 

bo^m 
tetqueen; 
considernextcoiumn 
end 

else 
regress 

und 
until laMcoidone or regressoutoffirs'col; 
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This stage is accompanied by the following informal descriptions: 

considerfirstcol. The    problem    essentially    consists    of    inspecting 
♦he safety of squares. A pointer variable designates the currently 
inspected square. The column in which this square lies is called 
the currently inspected column. This procedure initializes the 

pointer to denote the first column. 

trycolumn. Starting at the current square of inspection in the 
ronsidered column, move down the column either until a safe square 
is found, in which case the Boolean variable safe is set to tru« or 
until the last square is reached and is also unsafe, in which case 

the variable safe is set to false. 

sotqueen.   A queen is portioned onto the last inspected square. 

considernextcolumn. Advance to the next column and initialize its 

pointer of inspection. 

regress. Regress to a column where it is possible to move the 
positioned queen further down, and remove the queens positioned m 
the columns over which regression takes place. (Note that we may 
regress ever at most two columns.   Why?) 

These    informal   descriptions   do   not   provide   adequate   information   about 

the   re^uiresments   of   each   procedure.      For   example,   considerfirsteolumn 

can    be    interpreted    as    only    nyjinng    that    the    column    pointer    be 

initialized,    when    in    fact    the    program   requires   that    both   the   pointer 

desgmatmg    the    current    square    of    inspection    be    initialized    as    well. 

This      requirement      might      be      suggested      by      the      description      of 

considernextcolumn      bu      not      necessarily      from      the      description      of 

considerfirsteolumn     alone. Thus,    the    collective    descriptions     provide 

the   necessary   information   for   implementing   all   the   procedures,   but   each 

individual      descr.ption      does      not      provide     enough     information     for 

implementing that procedure. 

mitm 
■ ■ - M 
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Next,   trycolumn   and   regress   are   elaborated.     (To   this   stage,  Wirth 

has     made     no     mention     of     the     requirements     for     lastcoldone     or 

regressoutoffirstcol.) 

procedure trycolumn; 
repeat 

begin 
advancepointer; 
testsquare 
end 

until safe or lastsquare; 

procedure regress; 
begin 
reconsiderpriorcolumn; 
if NOT(regressoutoffirstcol) then 

begin 
removequeen; 
if lastsquare then 

begin 
reconsiderpriorcolumn; 
if NOT(regressoutoffirstcol) then 

removequeen 
end 

end 
end; 

In     order     for     these    elaborations    to    be    correct,    certain    unstated 

assumptions must be satisfied.   Two of III«M  are 

(1) Since the first operation in trycolumn increments the pointer 
of inspection, its initial value (set by considerfirstcolumn or 
considernextcolumn must have the value that no squares are ignored. 

(2) reconsiderpriorcolumn must have the effect of extablishing the 
context of the immediately preceding column. 

To   this   stage,  Wirth   has   carefully   represented  the   solution   so  that 

trycolumn and regress interact little with the main program. 

Next,   Wirth   makes   the   design   decision  that   the   variable   j   will   be 

the   column   pointer   and   the   array   x[l:8]   will   be   the   square   pointers. 

mm—m mmmmmumt 
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Thus x[j] is the square pointer for the j-th column, 1 S j < 8. Below 

are the elaborations of these objects along with the assumptions which 

they make. 

:iO: 

assumptions: j   is   the   column   pointer,   ,equires   write   access   to 
j, assumes the name of the first column is 1, the 
array x is an array ot pointers such that x[j] 
indicates a square name in column j, requires write 
access to the array x, the accessed value of x must 
be set to zero since trycolumn will immediately 
increment it by 1, assumes the name of ;he first row 

is 1 

:10: procedure considerfi'stcolumn; 
begin 

J - ll 
x[l] f 0 
end 

effects and 
post-conditions. 

:11: 

assumptions: 

j    =    1    and   the   requirements   for   trycolumn   are 

satisfied. 

j i5 the column pointer, requires read access to j, 
requires write access to j, the array x is an array 
of pointers sucn that x[j] indicates a square name 
in column j, requires write access to the array x, 
the accessed value of x must be set to zero since 
trycolumn will immediately increment it by 1, 
assumes the name of tne first row is 1, assumes 
considernextcoiumn will be invoked only when there 

is a column named j + 1 

till procedure considernextcoiumn; 

begin 

) ♦- J + li 
x[j] - 0; 
end; 

effects and 
post-conditions: j   is   incremented   by   1   and   the   requirements   for 

trycolumn are satisfied. 

L  -.Mg^^^^M - 
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:12: 

assumptions: 

effects and 
post-conditions: 

:13: 

assumptions: 

effects and 
post-conditions: 

:U: 

assumptions: 

effects and 
post-conditions: 

j   is  the  column  pointer,  requires  read access  to  j, 
requires          write         access         to         j, assumes 
reconsiderpriorcolumn     will     be     invoked only     when 
there is a column no^ied j      1 

:12: procedure reconsiderpriorcolumn; 

j *- j - 1; 

the column  pointer  has  been set  to the immediately 
preceding column 

j s the column pointer, requires read access to j, 
the r ame of the next square in a coiumn equals the 
current square name plus 1, assumes advancepointer 
will only be called if there exists a next" square 
in the current column, the array x is an array of 
pointers such that x[j] indicates a square name in 
column j, requires read access to the art qy x, 
requ res write access to the array x 

:13: procedure advancepointer; 

x[j] *- *[j] + li 

x[j]  has   been  incremented  by   1   to  name  the  next 
square in column j 

assumes the number r, rows is 8, the array x is an 
array of pointer; such that x[j] indicates a square 
name m column |, requires read acess to the array 
x, j is the roiunm pointer, requires read access to 

j 

:14: Boolean procedure lastsquare; 
lastsquare •■ x[j] = 8; 

lastsquare = true, if the last square in the 
current column is named by the square pointer; false 
otherwise. 
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:15: 

assumptions: 

effects and 
post-conditions: 

:16: 

assumptions: 

j   ;s  the   column   pointer,  requires   read   access  to  j, 
assumet the number of column is 8 

:15; Boolean procedure lastcoldone; 
lastcoldone «- j > 8; 

lastcoldone = true if the column pointer nf>;nes a 
column which is greater than the name Oi the last 
column. 

j   is  the  column  pointer,  requires  read  access  to  j, 
assumes the name of the first column is 1 

effects and 
post-conditions: 

:16: Boolean procedure regressoutoffirstcolj 
regressoutoffirstcol ♦- j > 1; 

regressoutoffirstcol = true, if the column pointer 
names a column which is less than the name of the 
first column 

Next,   Wirth   observes   that   by   introducing   the   Boolean   arrays   a,   b, 

and c with the meanings 

a[k] = true: no queen is positioned in row k, 
b[k] = true: no queen is positioned in /-diagonal k, and 
c[k] = true: no queen is positioned in \-diasonal k. 

testsquare,   setqueen,   and   removesquare  can   easily   be   implemented   if   the 

index   ranges   for   a,  b, ard c  are  chosen carefully.    The observation that 

1,   ...       ,   8   names   the   eight   rows   suffices   for   the   range   of   k   for   a. 

Further,    since    the    sums    of    the    subscripts   for   squares    on    a    board 

(board[l:8,    1:8])   in   the   /-diagonals   is   unique   for   each   di.igonal   and 

identical     for     each     square     m    a    single     /-diagonal,    an     appropriate 

subscript   range   for   D   is   2,   ...      ,   16.      Similarly,  the   difference   of   the 

subscripts    (first    subscript    minus    second    subscript)   for    \-diagonals    is 

t—mm 
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:i8: 

assumptions: 

•ffvcts and 
post-conditionr,: 

:19: 

assumptions: 

effect-,  and 

post-conditions: 

j is the column pointer, requires read access to j, 

aosumes the number of row, is S, acsum:". the name of 

the fir'-.t row r. 1, the array x is an array of 
pointer' such that x[)] indicates a square name .n 
column j, lequires read access to the array x, the 

cum of the indices m a single /-diagonal are 

identical and lie m the range ?, ,16; the sum of 

the indices m a \-diagonal nre identical and he m 
the range -7,.. ,7; , t[k] ■ tru«; no queen is 

positioned in row k, write access required for a, 

b[k] » true: no queen is pMitlOfltd m /-diagonal k, 

write access to b requirsd, c[k] •= tru«; no queen is 

positioned m \-diagonal K, write access to c 

required 

:18: pm'ddure setqueen; 

aW)]] - b[j  ♦ x[jj] - e[j - x[j]] *- <alse; 

a qijoen it positioned in column i, square x[)J1 and 
its influrncc in the appropriate row, and tue two 

diagonals is set 

j is the column pointer, lequiics read access to j, 
the array x is an arr.iy of pointers such that x[j] 

indicates a '.quare name in column j, assumes the 

number of rows is 8, assumes the name of the first 

row is 1, requires reod access to the array x, the 

sum of tne indices m a single /-diagonal are 

identical and lie m tne ran^.e ?, ,16; the sum of 
the indices in a \-diagonal are identical and lie in 

tne range -7,...,7; , ■[K] ■ true: no queen is 
püsitioneci m row k, write access required tor a, 

b[kj ■ true: no que"n n positioneo in /-diagonal k, 

write access to b required, c[k] ■ true: no queen is 

positioned m \-diagonal k, write access to c 

required 

:19: procedure removequeen; 

•WiM •" ^[j ♦ x[j]] •■ c[j - x[j]J * true; 

a   queen   is   removed   from  column   j,   as   well   as   the 

appropriate row and diagonals 
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In the absence of the remaining portions of the table, (objects and 

assumptions for the mam program, trycolumn, and regr««) it is still 

meaningful to compute entropy loadings for the portion displayed. This 

is justified because objects .:0: through :19: do not share specific 

assumptions with the mam program or trycolumn, or regress. 

Consequently, the best decomposition to this stage, must involve two 

large parts - :10: through :19: and the mam program, trycolumn, regress 

- which ar ? then further decomposed. A good decomposition for the 

displayed objects is: 

((:15:) ((:16:) ((:12:) «a3l , ll4t) ((:10: , lUt) U:!?:) 

((:18: , :19:)) 1.83 ) 1.64 ) 1.42 ) .94 ) .64 ) .64 

Better entropy loading figures can be found by noting that :10: 

(considerfirstcol) and :11: (considernextcol) share information not only 

about j but also about x. By introducing a new object :20; 

(initsqofmspect), and modifying :10: and :11:, a decomposition where 

.10: and till emerge sooner as a subset of a good decomposition can be 

found. 
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Below are the relevant objects: 

:10: 

••sumptions: j   is   the   column   pointer,   requires   Mite   access   to 

j, assumes the name of the first column is 1, 
requires ability to invoke mitsqofmspect whrch 

sets the square of inspection to a value which is 
the proper initialization for exiimming the squares 

in a column named by j 

:10: procedure considerfirstcolum. . 

begi" 

j - li 
iMitsqofmspecti 

end 

effects and 
post-conditions: )  =   1   A  x[l] ■ 0, x[l] can be incremented by   I  to 

satisfy the requirements for trycolumn 

:11; 

assumptions; j   is   the   colunn   pointer,  requires  read   access   to   ), 

requires wr.te access to j, requirps ability to 

invoke mitsqofmspect which sets ihe square of 
inspection to J value which is the proper 

initialization for exami rig the squares in a column 

named by j, assumes considernextcolumn will be 

invoked only when there is a column named j +  1 

ill) procedure conr.idernextcoiumn; 

begin 

j ♦- j + i; 
mif.qüim'jpuu, 
end; 

effects and 
post-conditions: j is incremented by 1 and the squ.ire pointer for 

the next column equals 0, to satisfy the 

requirements for trycoiumn 
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■.20: 

asEumplions. j is the column pointer, i equires read access to j, 
the array x is an array of pointers such that x[j] 
indicates a square name in column j, requires write 
access to the array x, the accessed value of x must 
be set to zero since trycolumn will immediately 
increment it by 1, assumes the name of the first row 
is 1 

•fleets and 
post-conditions: 

.20: procedure mitsqofinspect; 
x[j] - 0; 

x[j] - 0 and can be incremented by 1 to satisfy the 
requirements for trycolumn. 

M 
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The object/assumption table is now: 

*IOS 

»IM 

lit« 
l|4l 

llfl 

Mai 
S|9i 

120S 

2 3 4 5 6 7 8 9   101112131415161718192021222324252627 

1 1 1 

1   I 

I   I   I   I 
I   I 

1   I 

II       II 
I   1 

I   I 
1   1 

I   I 

1 

1) j is the 1  >lumn pointer 
2) requires read access to j 
3) requires write access to ) 
4) the array x is an array of pointtrs such that x[j] indicates a 

square name in column j 
5) requires read access to the array x 
6) requires write access to the array x 
7) the accessed value of x mu^t be set to zero since trycolumn 

will immediately increment it by 1 
8) the name of the next square in a column equals 

the current square name plus 1 
9) assumes advancepomter will only be called if there 

exists a "next" square in the current column 
10) assumes the number of rows is 8 
11) assumes the number of column is 8 
12) assumes the name of the first column is 1 
13) assumes the name of the first row i;.  1 
14) assumes considernextcolumn will be invoked only when 

there is a column named j + 1 
15) requires write access to Boolean variable safe 
16) the sum of the indices in a single /-diagonal are iJe^tical 

and lie in the range 2,...,16; the sum of the indices 
in a \-diaponal are identical and 1 e in the range -7,...,7; 

17) a[k] «= true: no queen is positioned in row k 
18) read access required for a 
19) write access required for a 
20) b[k] «= true: no queen is positioned in /-diagonal K 
21) read access to b required 
22) write accco? to b requin d 
23) c[K] ■ true: no queen is positioned in \-di8gonal K 
24) read access to c required 
25) write access to c required 
26) assumes teconsiderpnorcolumn will be invoked only when 

there is a column named j - 1 



•WWW^^^WWMWW^^ i i imimmmmimm 

USING THE MEASURE 178 

THE PROBLEM OF " HE EIGHT QUEENS 

27)   requires ability to invoke milsqofinspect which 
sets the square of inspection to a value 
which is the proper initialization for examining 
the squares in a column named by j 

The former decomposition, grouping :20: with :10: and :11: is 

«:1S:) (OIW ««12:) «tl3i . (Ut) «JIOI . ills , -.20:) 

«1170 (-18: , :19:)) 1.77 ) 1.59 ) 1.39 ) .86 ) .60 ) .60 

A better decomposition is 

((:15:) U:16:) ((il20 ((tlOi . lilt) ((ll3l , «14») ((l20t) 

((«170 (:i8: . :19:)) 1 77 ) 1.59 ) 1.39 ) .66 ) .86 ) .60 ) .60 

Wi'h concludes the development by observing that read accesses to 

x occur more frequently than write accesses to x (This is apparent from 

the table, sn long as :13: and :21: are executed less frequently than 

all the objects which read x.) Consequently, it is suggested that since 

array accesses are usually more costly than access to simple variables, 

a new variable, i, can be introduced such that x[)] ♦- i; is always 

executed before ) is incremented and i - x[)]i is executed after j is 

decreased. The    effect    of    introducing    this    change    and    distributing 

information    about    i,   is   to   increase   the   entropy   loadings   of   the   above 

decompObi^in. 

Lastly, m the final version of the mam program, information about 

i, x, and j i« freely disiributed. This causes the mam program to 

interact with objects with which it did not interact at earlier stages. 

As a result, entropy loading figures for the decomposition become 

larger,   and   in   some   cases   lead   to   saturation   where   it   did  not   occur   at 
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earlier   stages.     Further, changes  in  the  meaning or   use  of  x  or  j  imply 

that many changes will have to be made throughout the program. 

A TELEGRAM PROBLEM 

Henderson and Snowdun[HS] hae proided a development and an analysis 

of a program which was produced using the techniques of structured 

programming. The program, however, was shown to contain at least one 

"bug". The authors claim that one stage in the development of more 

information about the program environment was distributed than was 

necessary. As a result, the programmer forgot some of this detail at a 

later stage, thus causing the error. This observation suggests that 

objects in the development were allowed to interact more than was 

necessary. It      also     supgests     that      by     not     explicitly     obsering 

assumptions,  programmers construct  assumptions which may or  may net be 

correct. The    discussion    below    first    states    the    problem    and    then 

presents   the  deetopment due to Henderson and Snowdon [HE] to the point 

where the error occurred.   Shared assumptions are emphasized. 

Th* Problem 

A program is required to process ■ stream of telegrams. 
This stream is available as a sequence of letters, digits, and 
blanks on some deice and can be transferred in sections of 
predetermined size into a buffer area where it is to be 
processed. The words in the telegrams are separated by 
sequences of blanks and each telegram is delimited by the word 
"TLL'L". The stream is terminated by the OCCUrrtfKi of the 
empty telegram, that is a telegram with no words. Each 
telegram is to be processed to determine the number of 
chargeable   words   and   to   check   for   occurrences   of   overlenglh 

■—il Ü I ■ f 11 
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words. The words "ZZZZ" and "STOP" are not chargeable and 
words of more than twelve characters are considered 
overlength. The result of the processing is to be a neat 
listing of the telegrams, each accompanied by the word count 
and a message indicating the occurrence of an overlength word. 

Before    proceeding,    it    should    be    noted    that    the    description    of    the 

problem   is   not   as   precise   as   it   should   be.     Aside   from   an   incomplete 

description    of    the    specific   behavior   of   commands   which   invoke   input 

operations   as   well   as   operations   which   select   single  characters  from  the 

buffer,   the   definition   of   a   "word"   is   not   precise   enough.     The   strings 

"ZZZ7"  and  "STOP" are not chargeable words, but from the program which 

is    presented,    a    telegram   consisting   of   zero   or   more   occurrences   of 

"STOP"   followed   by   "ZZZZ"  is considered  to  be  an empty  telegram.     This 

interpretation   is   not   consistent   with   this   author's   understanding   of   the 

statement of the problem.    Nevertheless, Henderson and Snowdon develop a 

solution    as   follows   (The   object   names   have   been   added   in   order   to 

clarify the ancestry of objects.) 

ll.ll INITIALIZE FOR WHOLE PROGRAM; 

:1.2: repeat 
begin 
:1.3: INITIALIZE FOR NEW TELEGRAM; 
tl.4) PROCESS TELEGRAM 
end 

until EMPTY TELEGRAM; 

This   program   requires   that   at   least   one   telegram   be   part   of   the 

input   and  that  an empty telegram must occur.    It seems questionable 

whether    :1.1:   and   :1.3;   should   be   stated   in   this   stage.      As   with 

version   III   of   the   GOD  computation,   such   initializations   seem   more 

natural   if   they   emerge   as   a  result   of   satisfying  the  assumptions  of 

MMM MM 
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certain objects. 

Next, tl.4i PROCESS TELEGRAM, is elaborated as 

: 1.4.1: COUNT, CHECK, AND PRINT WORDS: 

: 1.4.2: PRINT WORD COUNT AND CHECK MESSAGE; 

Object :1.4.2: assumes that a count of the number of words and a check 

for overlenglh words is available. Further, it is assumed that :1.4.1: 

provides this information. Hence, in the absence of an explicit attempt 

to hide the mechanisms which provide this information :1.4.1: and 

:1.4.2: must share several a:-umptions. All assumptions about telegram 

syntax and information about what is to be recorded for each telegram is 

contained m :1.4.1:. No assumptions about the explicit manner of 

inputting text have yet been made. 

The elaboration of :1.4.1: is 

: 1.4.1.1: repoat 
begin 
: 1.4.1.2: EXTRACT WORD; 
:1.4.1.3: if WORD IS CHARGEABLE then 

: 1.4.1.4: COUNT WORD; 
:1.4.1.5; if WORD IS TOO LONG then 

:1.4.1.6: SET CHECK FLAG; 
: 1.4.1.7; PRINT WORD; 
end 

until WORD IS "ZZZZ"; 

:1.4.1.2:   requires   information   about   what   constitutes   a   word,   i.e.      the 

nexf    sequence    of    non-blank   characters.       :1.4.i.3:   requires   information 

about   which   words   are  chargeable, i.e.     words  which  are  not  "STOP" or 

"ZZZZ".        :1.4.1.5:    requires    the   information    about    what    constitutes    an 

overlength   word.      Objects   :1A1.4:   and   :1.4.1.6:   require   variables   that 
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reflect the state of the number of words m the current telegram and 

whether any overlength words have occurred in this telegram. At this 

point, the values of these variables are observed to require some kind 

of       initialization. Thus,      :1.3:,      :1A1.4:       and       il.41.il      share 

assumptions. 

Object :1A1.2:, EXTRACT WORD, .s elaborated as 

: 1.4.1.2.1: SET WORD EMPTY INITIALLY; 

:1A1.2.2: ADJUST INPUT; 

:1A1.2.3: repeei 
:iA1.2A EXTRACT LETTER 

until LETTER IS SPACE; 

This   elaboration   is   really   the   source   of   the   error   which   occurs   In 

the     final     program. Until    this    stage,    all    assumptions    have    been 

concerned    with    the    properties    of    telegrams,    but    :1A1.2.2:,    ADJUST 

INPUT,    necessarily    introduces    assumptions    about    the    way    input    is 

performed    or    at    least    about   how   the   buffer    is   managed.       Similarly, 

:1.4.1.2.4:,      EXTRACT     LETTER,     makes     some     of     these     assumptions. 

:1A1.2.4:.        This    implies    that    these   objects    rhare    assumptions   which 

are   not   directly   related   to   the   task   of   extracting   the   next   word   from 

the    telegram.        The    descriptions   a-e   also   not    prec^e.       The   authors 

comment that the condition 

first letter of input ^ space 

must   hold   prior   to   the   execution   of   :1.4.1.2.3:.      Ths   condition   is   not 

necessarily suggested as the effect of the phrase, ADJUST INPUT. 

-__ •MhtaaM—-  
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A clearer elaboration might be 

repeat 
EXTRACT LETTER 

until LETTER IS NOT A SPACE; 

SET WORD TO EMPTY; 

repeat 
begin 
CONCATENATE LETTER TO THE RIGHT END OF WORD; 
EXTRACT LETTER 
end 

until LETTER IS A SPACE; 

(Implicit    in    both   elaborations   is   the   assumption   that   a   space   always 

follows    a   woid,   even   if   a   letter   is   the   last   character   of   the   entire 

input   file.       The   authors   solve   this   difficulty   by   concatenating   a   space 

to   the   end   of   each   input   record.)  This   second   elaboration   local zes   all 

assumptions   about   handling  input  to EXTRACT  LETTER and its elaborations. 

As   a   result,   entropy   loading   figures   for   decompositions   of   the   program 

involving    this    second    elaboration    are    generally    lower    than    for    the 

original program. 



CHAPTER V 

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 

Chapter IV presented examples of how entropy loading calcula.ions 

could be used as guides to help control program structure. (Appendix I 

applies these techniques to a larger program.) This chapter first 

summarizes the major results of each example. Next, the potential 

advantages of using the methodology and ihe measure are stated. Using 

the measure m a practical situation, however, poses certain 

difficulties. These     are    listed    and    form    the    basis    for    several 

suggestions for future research. 

REVIEW OF RESULTS DEMONSTRATED BY THE EXAMPLES 

This thesis has investigated the question of whether a particular 

methodology describes program structure as defined in Chapter II. The 

methodology under investigation uses a mathematical calculation, called 

entropy loading, in two ways. F.rst, given a development of a program 

where the assumptions have been preserved at each stage, entropy loading 

figures can compare different arrangements or objects in an attempt to 

discover which groupings of objects interact least. Such decompositions 

might suggest ways for constructing a set of modules whose combined 

effects      solve      the     original     problem. Second,     if     a     particular 

decomposition is suggested at early stages m a development, entropy 

loading figures can be used to observe whether the development at later 

stages   still   possesses   similar   structural   prüjerties.      If   good   structure 

MMM 
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is not preserved, the object/assumption table (in which the assumptions 

are preserved) might suggest ways of localizing certain assumptions to 

existing or new objects. 

In Chapter IV, three versions of a program that computes the 

greatest common divisor are analyzed. The map for version I and the 

trees corresponding to two decompositions of the final program appear 

below. 

A GCD COMPUTATION 

til (pg. 31) 

lUt (32) :1.2: (32) 

:U.l: (34) :1.2.1: (34) 
(x »■ a) 

:1.1.1.1: (36) 
(while a ?< b do 

:1.1.1.2:j) 

:1.1.1.2: (36) 

:t.1.1.2.1: (37) 
v 

\ 
:1.1.1.2.1.1: (39)   :1.1.1.2.1.2: (39)   :1.1.1.2.1.3: (39) 
( if a > b then 

:i.1.1.2.1.2: 
■IM 

:1.1.1.2.1.3: ;) 

tU.t2.I2.;: (Al)   :1.1 l.Zl.3.1; (41) 
\a «- a - c; z *- o - n 

■ ■ - "■ ■— iwm 11   ii     II     ii  f. ^m 
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:!.1.1.2.1.3.1:       (:1.1.1.1:, 
:1.1.1.2.1.1:) 

:1.I 1.2 1.1:) 

(•.1.1.1.1:. 

(B) 

:1.2.1: 

Ol.l.i 1:, :1.1.1.2.1.1:) 
a.l.l.J 1.3.1) 

.500 

1.05 

(:1.1.1.2.1.2.1:, 

This analysis corresponds to an attempt to find the best way of 

decomposing this fixed program. The measure indicated that the best 

decomposition of the program is decomposition (A). The part which 

interacts least with the rest of the program .s :1.2.1: that assigns the 

value    of     a    to    x. Objects    :1.1.1.2.i.2.i:    and    :1.1.1.2.1.3.1:    assign 

values   to   a   and   b   and   also   require   more   information   than   :1.2.1:   but 

less    information    than    :1.1.1.1:    and    :1.1.1.2.1.1:.       These    last    objeas 

determine    the    flow    of    control    within   the    program.       This    result    is 

consistent   with   the   definition   of   structure   and   our   intuitive   ideas.      In 

this    example,    the    assumptions   associated   with   the   control    mechanisms 

include   information  about  what  is  being controlled.    No  attempt  was  made 

to   hide   that   information.      However,  the   objects   bemg   controlled   were 

constructed   wuhout    maKmg   assumptions   about   mechanisms   that   control 

them.     Decomposition (B)  is  slightly worse  because  the statements (a •- a 

-  b,  b  <-  b  -  a) require read and write access to both a and b.    Hence, 

 .. . ^ftiiMi 
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more   information   is   localized  to  a single subset  than  in  (A)  where  write 

access to a and b are separated. 

Version II is similar to version I except that the construction 

if a > b then a ♦- a - b «Is« b ♦- b - a; 

is replaced by 

while a>bdoa«-a-b; 
while b>adob«-b-ai 

Here, the best decomposition, 

((a) {(| , h)  (b) ((c , •)) 1.01 ) 1.01 ) .451 

indicates   that   (a)  [x   «-  a]  interacts  leset  with  tne  rest  of   the   program 

and   that   of   the   remaining   portion,  (g   ,   h)  (a   ♦-   a   -   b,  b   «-   b   -   a) 

interacts   least   with  the  control  mechanisms  b (while  a  ^  b  do)  and  (c , 

•) (while a > b do, while b > a do;. 

Version III illustrates a development similar to version II, but in 

addition to computing the greatest common divisor of a and b, their 

least common multiple is also computed.   Here, the decomposition 

((a) ((b) ((c) m , I) (g , •» 1-55 ) 1.75 ) 1.75 ) 1.28 

indicates that (a) [ x «- a; y «- c + d; ] interacts least with the rest 

of the program, but that the control mechanisms for the inner loops as 

well as the statements which the/ control interact most. Object b (c «- 

Oj d <- a) initializes c and d, but really shores little information with 

the rest of the program. 5im^rly, object c ( while a H b do ) 

controls the inner loops but interacts little with the mechanisms which 

decrease    a    and   b.       Note   that   the   entropy   loading   figures   for   this 

11—I Ml     — 
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decomposition are larger than the corresponding figures for version II. 

This occurs because the objects in version III make assumptions that are 

shared in more complicated ways than the objects in vers.on II. 

The   development   of   the   sequences   problem   shows   that   distributed 

information     ubout     a     scheme    for    representing    data    can     lead     to 

unnecosoarily   complicated   structure.      This   example   produces   a   list   of 

lexicographically    ordered   sequences   such   that   each   sequence   contains 

only   i's,   2^   and   S's,   but   no   adjacent   identical   subseauer.c?^      Tlie   list 

is   terminated   by   the   first   such   sequence   containing   100   digits.      The 

development to the stage where information ab-iu'  the representation of a 

sequence in terms of an array resulted in the decomposition 

((b) ((d) ((a) ((e) ((h) («) (k , j)) 

1.21 ) 1.21 ) 1.91 ) 1.38 ) 1.21 ) 1.21 

Entropy   loadings  for   this  decomposition  are  all  greater  than  or  equal  to 

entropy    loadings    for    the    tame    decomposition    where    implementation- 

information   was   not   distributed.      This   suggests   that   the   implementation 

information    be    localized    to    one    or    several    objects.        In    this    case, 

additional   objects   were   introduced.      This   resulted   in   entropy   loadings 

that    were   smaller    and   very   close   to   the   entropy   loadings   for   the 

decomposition    prior    to    elaborating    the    implementation.        Thus,    the 

measure    provided    indications    that    motivated    a    rearrangement    of   the 

program   so   that   the   reasonably  good  structure  of  the  early  stages  was 

preserved m the final program. 
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The  example   that  develops a sorting prosram based on the   algorithm 

HEAPSORT   attempts   to   present   a   program   m   terms   of   the   model   that 

probably   motivated  the  algorithm:  a  binary  tree  representing  the  data  to 

be    sorted.       One    reason    for    attempting   this   exercise    was   to    first 

describe     the     algorithm    without    presenting    all    the    details    of    its 

implementation.      Then   a   particular   representation  for   the   binary   tree   - 

as   a   linear   array   -   is   introduced.     As   a  consequence  of   this   decision, 

information   about   the   representation  can  be  localized  to  certain  objects 

without    adversely    affecting    the    decompositions    suggested    at    earlier 

stages.       Although   applications   of   the   measure   eventually   suggested   a 

decomposition      that      localized      almost      all      assumptons      about      the 

representation     to     one     object     {:3:,    the    siftup     procedure),    earlier 

decompositions   had   to   be  discarded.     One  reason  for  this  occurrence   is 

that   the  small   number  of  objects  make  ruany  assunptions.     As   a   result, 

saturation  occurred   at   several  early  stages.     Further,  since   nor e   of   the 

assumptions   were  weighted  with  "probability  of  change" figures, some  of 

the  decompositions  seemed  to  be counter  to the  author's view of  what  a 

good  decomposition should be.    For example, the two objects  invoking the 

procedure   siftup   do   not   form   a   single   subset   in   the   decomposition   that 

is    presented    -    probably    because   one   call   of   siftup   uses    i    as   its 

parameter,   and   i   is   used   throughout   the   program,   where   the   other   call 

uses root as its parameter, and root is used in few places. 

The  example   that   presents  the  Eight  Queens  Problem  shows  several 

improvements  in  a  program  that  already  possesses  fairly  good  structure. 
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First, the procedures considertirslcolumn and considernextcülumn not 

Only share information about how the columns of the chess board are 

arranged and named, but also about certain requireiu-»nts of another 

object,     trycolumn. By     creating    a    new    object,    initsqofinspect,    a 

decomposition that was already rather good was slightly improved. In 

Wirth's original program, the objects considernextcolumn and 

considerfirstcolumn not only share information about the names and 

ordering of columns of squares on a chess board, but also about how the 

squares are represented and about some of the assumptions made by 

trycolumn. initsqofinspect    contains    these    assumptions    about    trycolumn 

and thus helps to improve the structure of the program. The final 

version of WirtIVs program distributed information that was not shared 

at earlier stages, thus making these decompoctions worse than they need 

be. This corresponds to the similar situation in the development of the 

sequences problem.   Saturation was also apparent at early stages. 

The discussion of the telegram problem was presented in order to 

emphasize the importance of precisely stated assumptions. Henderson and 

Snowdon[HE] have stated that informal Englisn comments are not 

sufficient to suggest the assumptions which objects make or the affects 

thev are intended to produce.   For example, the condition 

first letter of input i1 space 

is    not    necessarily   sugges;ed   by   the   phrase   "ADJUST   INPUT".       Such 

imprecision   is   mentioned   as   a   potential  source  for  errors  in   a  program. 

The example also cites a portion of the development where apparently too 
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much detail was introduced. The elaboration of ilALZt, EXTRACT WORD, 

introduces an object that caters to trie requirements of the input 

device. This implies that the elaboration of ADJUST INPUT and EXTRACT 

LETTER will probably share assumptions about the nature of the input 

device. An alternative is presented that localizes all this information 

to EXTRACT LETTER. The entropy loading figures, though not displayed, 

indicate that this new version possesses better structure. 

Appendix    1   applies   the   measure   to   a   development   of   a   Markov 

Algorithm     interpreter. Although    the    analysis    of    the    example    is 

length y, ;everal results can be stated here: 

(1) The structure imposed at tne initial stages, i.e. 
alphabet and generic input, algorithm input, error handling 
during input, algorithm execution, and error handling during 
execution, could be maintained in the final version if 
additional objects were introduced to provide access to the 
results of these additional objects. For example, objects 
which created internal representations of rules were 
introduced along with accessois to this information. These 
emerged together in a subset after those subsets that 
constituted the structure at the mitial stages. 

(2) Due to the large number of objects and assumptions, 
several clerical aids had to be used extensively. These aids, 
and suggestions for extending them, are described in a later 
section. 

(3) As in the development of HEAPSORT, several good 
decompositions found at intermediate stages had to be 
discarded. This was necessary because later elaborations 
resulted in objects that shared much information with objects 
that existed prior to the elaboration. For example, the rule 
input portion was elaborated after the portion that handled 
alphabets and generic input. The earlier decomposition had to 
be modified. A similar situation occurred when the algorithm 
execution part was elaborated. 

mmmm ^MCMtfMlita^ 
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Appendix II discussed a paper on Compiler Structure[M K]. This 

paper asserted that special care should be taken to describe the 

languages at the interfaces between vertically fragmented modules in a 

(.ompiler. However, because of the results from the Markov Algorithm 

Interpreter, it was concluded that as much information about these 

languages should be hidden. Instead, only creators and accessors of the 

needed information should be provided. 

ADVANTAGES OF USING THE MEASURE 

This thesis has applied a measurement function based on entropy 

loadings to evaluate decompositions of programs. These applications 

produced results that usually corresponded to intuitive ideas about 

structure in programs. Unfortunately, there are practical problems 

about deciding the relative importance of assumptions as we'l as 

problems about determining and manipulating assumptions and tables. 

These problems impede the effective use of the measure and methodology. 

Details of the advantages and disadvantages of using the measure are 

discussed in this and the next section. 

In order to apply the measure, the methodology requires that the 

objects and assumptions be e/plicitly stated - not only .-«t early stages 

in the design process, but also in the final program. Ideally each 

object is accompanied by the assumptions it makes so that the object is 

understandable without requiring additional context. This feature is 

typically   no   present   in   the   more   traditional   approaches   to   design   and 
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programming. Further, the assumptions made by objects are summarized in 

object/assumption tables. This summaf/ makes it possible to observe the 

assumptions that are shared among objects without needing to deduce them 

from the program text. This is especially helpful whenever entropy 

loading     figures     become     larger     than     anticipated. Under     these 

circumstances, other decompositions are suggested more readily than in 

situations where object/assumption tables are not available. 

The measure provides a way of comparing different decompositions of 

a program at each stage in its development. These compariscMS help to 

substantiate decisionr to reject or retain a decomposition. As a 

result, there are at least quantitative grounds for arguing for or 

against a decomposition rather than primarily intuitive ones. The 

sequences example emphasizes this point. 

The act of "hiding" information can be explicitly represented by 

the methodology. Hidden information is preserved in object/assumption 

tables. 

Decompositions resulting from applications of tne measure can 

possess some of the properties advocated by Parnas[PAl,PA2,PA3]. In 

particular, subsets that share few assumptions can suggest modules 

similar to those described by Parnas. For example, the analysis of the 

Markov Algorithm interpreter suggests that objects which create and 

manipulate Markov rules should appear in a single subset even though 

they    are    invoked    from    portions   which   interact    little.       Further,   the 

.. 
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descriptions of objects required by the methodology can help to suggest 

specifications similar to those proposed by Parnas. One characteristic 

o' thMi speciftcations is that each describes the intended behavior of 

a function without stating an algorithm that implements it. Many of 

these behavioral descriptions occur among the assumptions of objects at 

early stages in the development of a propram. These can be used to help 

generate Parnas-type specifications. As an example, below is a 

specfication for a function which might be used by the first version of 

the GOD computation 

function PGCD(a,b) - a and b are integer parameter?.. 

effects: ERC1 if a S 0 
ERC2 if b < 0 
gcd(a,b) - gcdte'.b') A ((a' H b1) a 

(a < a' or b < b')) 

This   specification   was   found   by   using   tests   for   the   assumptions   to 

suggest   error  calls  and  describing  the  effects of objects  as  part  of  the 

effects   of   the   function.      An   important   property   of   the   error   calls   is 

that  each  represents  some testable condition.    Some  assumptions may not 

represent    such   conditions.       Since   predicates   relating   to   the   correct 

behavior    of    objects    appear    as    assumptions,    the    objects    can    be 

constructed     with     these     assumptions     in     mind. Specifically,     a 

designer/programmer   will   be,   perhaps,   more   conscious   of   the   explicit 

demands his objects must meet.    The error that occurred in the Telegram 

Problem might not have occurred had these assumptions been explicit. 
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Again because assumptions are presented explicitly, changes in a 

program that require violations of some assumptions can be made more 

easily than under circumstances where assumptions are not stated. A 

programmer need only examine the object/assumption table to determine 

which assumptions are violated. As a result, the affected objects can 

be changed. The overhead of deducing the effects of changes from 

program text and other traditional aids is eliminated. 

DIFFICULTIES OF USING THE MEASURE 

It should be apparent that entropy loading calculations can ba 

computed easily once the assumptions made by objects have been displayeu 

in an object/assumption table. Finding these assumptions, however, is 

often a painstaking process. This process is made even more difficult 

by what seems to be a natural tendency to postpone the task of stating 

assumptions. As a result, the task becomos more difficult because the 

assumptions made by earlier stages must be deduced from a coni-xt that 

is different from the context that motivated those stages. Most often 

this exercise of skiing assumptions and using the measure to check 

various decompositions 'eads to results that might already have been 

expected. The interesting cases, of course, are those where this 

exercise led to unexpected results or actually uncovered an error. The 

decompositions found during the middle middle stages in the development 

of HEAPSORT as well as during the middle stages of the Markov Algorithm 

Interpreter    did    not    possess   good   structure    at    later   stages.       This 
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occurred because objects that were elaborated after those stages shared 

many     assumptions     with    earlier    elaborations    of     objects. Lastly, 

instances where several designers are elaborating different objects or 

where objects are elaborated without a knowledge of other objects often 

lead to incompatible representations of similar assumptions. 

Consequently, interactions may not be represented properly in 

object/assumption tables. 

Of   the   different   Kinds   of   assumptions,   the   most   difficult   to   state 

•'re     weakest     pre-conditions     for     objects. This    difficulty     is     not 

surprising in tne light of all the practical difficulties associated 

with program verification. Once found, however, these assumptions 

provide vital information about the reouirements of objects. 

Assumptions about program environment are more easily recognized, but 

can frequently be overlooked. For example, a designer working on an 

elaboration of a single object might make an assumption so frequently 

that he omits it from the object/assumption table. This could lead to 

an eventual decomposition where this unstated assumption is violated. 

Probably the easiest assumptions to state are the mathematical theorems 

relevant to the problem a id the assumptions about data. The theorems 

are often related to the weakest pre-conditions. The assumptions about 

data refer to those items that are explicitly stated in many informal 

descriptions of objects and relate to items that are analogous to what 

will be manipulated in the language which implements the program. 
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In addition to the difficulties m stating assumptions, there are 

difficulties involved in just manipulating tables and selecting 

decompositions for which to compute entropy loadings. Object/assumption 

tables can become large even for small numbers of objects. 

4 

In chapter III, certain kinds of object/assumption tables were 

cited for which all decompositions had identical entropy loadings. 

Hence, the measure was unable to distinguish among them. This was 

called saturation in object/assumption tables. Saturation occurs most 

frequently whenever a small number of objects share many assumptions. 

The developments of HEAPSORT and the Markov Algorithm Interpreter 

displayed msiances of saturation. 

In all but the simplest situations, it i« difficult to assign 

"probability of change" fipures or "relaWe importance" to assumptions. 

Consequently, all the assumptions in the examples wer-; treated as thojgh 

they were of equal importance. 

Without the help of mechanical aids, the process of construviing 

programs using the methodology and the measure is tedious and time 

consuming. An experienced programmer might oe able to construct 

programs having good structure in tar less. time. 

AIDS TO APPLYING THE MEASURE AND SUGGESTIONS FOR FUTURE WORK 

As aids to help solve some of the difficulties stated in the last 

section, several programs have been constructed.    These programs perform 

 ,    
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the following tasks: 

(1) input and maintain files of assumptions 

(2) input    and    maintain    abbreviated    descriptions    of    objects    and 
their assumptions. 

(3) produce   object/assumption   tables   given   files   generated   by   (1) 

and (2). 

(4) produce   listings   of   objects   given   files   generated   by   (1)   and 
(2). 

(5) compute    entropy    loading   calculations,   RLB's,   and    RUB's   given 
object/assumption tables produced by (3). 

These   pr^pr^ms   have   been   used   to   help   produce   all   the   examples   in 

Chapter   IV  ana  m  the  appendices.     Each  is  intended to  help solve  some 

clerical    or    tedious   aspect   of   using   the   measure.      As   the   examples 

indicate,   a   great   deal   of   text   might   need   to   be   manipulated   for   even 

small   programs.      These   programs   have   been   written   to   execute   in   an 

interactive   environment.      This   has   proved   to   be   helpful   when   entropy 

loading  calculations  wore  performed.    Values  for RLB, RUB and the  actual 

entropy loadings could be compared quickly in this kind of environment. 

However, m order to use tne measure in more realistic and 

practical situations, the fc'lowmg topics suggest areas for future 

research: 

(1) Sines assumptions about the meaning and interpretation of 
variables occur so frequently, and smce explicitly transcribing 
them - or their names - to identified objects is tedious and time 
consuming, mechanical aids should be available that allow a 
programmer to state these assumptions only once • perhaps as part 
of      some     declaration. Then,     the     program     support     should 
automatically associate the appropriate given specific constructs 
and specific post-conditions. 

t 
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(2) Assumptions about control and frequency of use of objects 
should be expressable precisely. 

(3) Because the process of making assumptions can require careful 
and time consuming thought, as many assumptions as possible should 
be generated mechanically. 

(4) Because of the substantial difficulties associated with 
applying the measure, additional measures of structure should be 
sought. 

CONCLUSIONS 

The   purpose   of   this   thesis   has   been   to   help   clarify   the   notion   of 

structure    in    programs   and   to   evaluate   the   behavior   of   a   particular 

measure    of    structure.        The    most    difficult    aspects   of    applying    the 

measure   relate   to   the   process  of   making   assumptions  pxplicit.     Many   of 

these   difficulties   can   be   obviated   by   mechanical   aids   that   can   be   part 

Of  the  environment  m which the measure  is to be used.    The  information 

about   programs  provided  by  the   measure   makes  possible  comparisons  of 

different   decompositions   of   a   program.     This   is   demonstrated   in  Chapter 

IV    and    the    appendices.       If    interactions   are   more   extensive    than   is 

desirable,    the    object/assumption    table    tells    exactly   which    assumptions 

are   shared   and  can suggest  tnat  certain  assumptions be  localized  to  new 
• 
or   existing   objects.     Parnas-type   specifications  seem  to  be  deducible   in 

a direct way from the assumptions made by objects and their effects. 

This thesis has attempted to demonstrate, use, and evaluate a 

definition and measure of program structure. It represents an attempt 

to extend the notion of structure from its role as an aesthetic tool to 

a   useful   and   measurable  aid  for  finding  good  programs.     Despite  several 
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CONCLUSIONS 

significant    shortcomings,   the   measure   provides   a   quantitative   valuation 

of a heretofor vague concept. 

MMMM^MM 
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APPENDIX I: A MARKOV ALGORITHM PROCESSOR 

This    appendix    contains    a    development    of    a    Markov    nlgorithm 

processor,     based    upon    an    initial     and    informal    description. The 

development shows how assumptions can be preserved in a somewhat larger 

example than any which appeared in Chapter II. The guidelines stated in 

Chapter III are applied at various stages of the development. The 

result includes a complete program which inputs and interprets labelled 

and unlabelled Markov algorithms and several modifications to the basic 

program. These modifications represent several reasonable changes which 

can easily be made in the basic program, but which would be difficult or 

tedious to make in other representations of the same program. 

The  following document serves as the basis for the development that 

follows. 

MARKOV ALGORITHM INTERPRETER 

The interpreter is to be designed so that it executes both labelled 
and unlabelled Markov algorithms. If the algorithm is not terminated by 
the dot convention, then execution should halt when the final rule of 
the algorithm is not applicable. A "blank" character is retained as the 
first character o* the register so that all append rules are applicable. 

II.    Data File 

A. Parameter Card - This must be the first card of the file of 
input cards. If the card is blank, the register's contents 
will be printed only at the termination of the algorithm. Its 
contents will be printed after the execution of each 
applicable rule if a non-blank character appears in column 1. 

B. Header Card - This card indicates the title of the algorithm, 
the alphabets, and the generic variables (if any) for each 
alphabet. The syntax of the heading is given in V. There are 
no format restrictions. 

- aaMM___^iaAaaa_M^ •^MaMMHiaaa ._... .-—.^^  
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C. Algorithm - A single replacement rule is punched on .,ach 
card.    Its format is as follows: 

Cols.         i-3        Right-justified    integer    label. Since    this 
label   has   significance   only   in   the control   of   a 
labelled     Markov     algorithm,    it     is optional     in 
the case of an unlabelled one. 

Col a A colon 

Cols.   5-80 <Markov Wule> <Successor>; 

D. Data - A single data card containing an initial character 
string must be supplied for each execution of the algorithm. 
A semicolon indicates the termination of the character string. 
As many data cards as desired may be included. 

E. Algorithm Terminator - A card with a comma (,) punched in the 
first column indicates: (1) the termination of the data for an 
algorithm, and (2) an additional algorithm will follow. 

F. End-of-file - A card with commas punched in both columns one 
and two terminates the data for the last algorithm in the 
file. 

Ill,    Sample Data File 

The following unlabeled Markov algorithm reverses the order of the 
characters initially placed in the register. The first character of 
each line, which is assumed to represent a single card, is assumed to be 
the character punched in the first column of the card. (Note: The 
labels are optional in this case.) 

REVERSE(A,B1C)D,E,F);G,H,(+,-);; 

006:++:-; 

00l:-G:G-, 

002:- + :-; 

003:-:.; 

004:+HG:G^; 

005::+; 

IV.    Restrictions 

—*-  ,    . .  __^^^__—         - 
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A. The maximum number of alphabets is 10. 

B. The maximum number of characters in any alphabet is 30. 

C      The  maximum  number  of  generic variables, over  all  alphabets, is 

10. 

D. The algorithm must have labels in the range 1 to 100. 

E. The register will hold a maximum of 500 characters. 

V.     Markov Algorithm Syntax 

<Algorithm> ::= <Heading> <Body> 

<Heading> ::= <Titie> <Dcviaration> 

<Title> ::= <Character string> 

<Declaration> ::= (<Alphabef>); <Generic Declaration>; | 
<Declaration> 
(<Alphabet>); <Generic Declarations 

<Alphabet> ::= <Character> | <Alphabet>,<Character> 

<Ceneric Declaration> ::= <empty> | <Generic list> 

<Generic list> ::= <Character> | 
<Generic list>,<Character> 

<Body> ::- <Rule>; | <Body> <Rule>; 

<Rule> ::- <Label> : <Markov Rule> <Successor> 

<Labol> ::- <Digit> | <Label> <Digit> 

<Markov Rule> ::- <Side> : <Side> 

<Side> ::= <empty> | <Character String> 

<Character String> ::- <Character> | 
Character String> <Character> 

<Successor> ::- <empty> | . I , <Label> 

<Character> ::= <all characters which can be punched 
into a card except   , , 

I) n      II n      N I 
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The following development is based on an unpublisheo program due to 

F. Heymanns[H]. in its original form, many assumptions were shared 

throughout the program, thus making it difficult to understand and 

change. The fundamental ideas, however, are sound. What follows is an 

attempt to use these laeas but to preserve the initial structure in the 

final program. The attempt emphasizes the use of these ideas. Some 

readers, however, may be able to construct other programs having better 

structure. 

The measure is used at various stages to suggest possible 

decompositions. One good decomposition seems to possess many of the 

properties suggested by Parnas as being important in a system. That 

decomposition bears only a superficial resemblance to an initial 

decomposition which is described in the next paragraph. Below is an 

initial decompostion of the Markov algorithm processor represented as a 

transition diagram. The arcs indicate paths for error conditions as 

well as transitions corresponding to the occurrence of commas as the 

first characters of input cards.   ("E" indicates an "error" path.) 

process error discovered 
^rameters, heading or 
input /'"'" 

create program environment Tg^- 
to process a new a|goriUj 

E  _ 
process parameters dnd headinif) 

end-of-fil 

X/^process error discovered )    ^process data for this algnrithmX 
[   during data input or 
Valgorithm execution 

Note  that  each state requires a knowledge that cards containing a comma 

m        ■ ---  -    ■   -      ■—   
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in column one and commas in columns one and two force the processor to 

be initialized to accept a new algorithm or to terminate. Implicit in 

the diagram is the ability of each state to input a card image. Many 0* 

the interactions caused by this shared information can be eliminated b/ 

removing the ability to input a card image to a new stale, and to 

include in this state all information regarding the meaning of cards 

containing commas in the firrt two columns. This choice is a direct 

application of the "information hiding " principle which is justified by 

the value of the measure.   Below is the new state diagram. 

1 
create program environment 
to process   a new algorithm 

•MSM ^H-^^t-^^ 
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A map for the first stages in this development appears below. 

(a) :1.1: (210)   (b) »1.2« (210) (c) :1.3: (211) (d) :1.4: (211) 
initialize process input and process register 

parameter store rules.        images by the 
and heading stored algorithr.i. 
cards. 

:1.5: (211) process end-of-file condition 

(f) P: '?!?) read and store a card image 

(g) :3: (213) process error occurring in algorithm input part 

(h) :4: (213) process error occurring in algorithm execution part 

(i) :1.2.1: (215) 
read card and set pr. 

(j) :1.2.2: (216) 
input and process 
heading card. 

(K) :1.2.2.': (216) (I) :1.2.2.2: (217) (m) :1.2.2.3: (217) 
set failur:   to /      iterate over     \    find left paren. 
ERRHEAD / m. n, o 

/ 

(n) :1.2.2.^ (218)      (o) :1.2.2.5: (219) 
proct^s alphabet set failure to RULES 
and generics. 

- —■■ tmtwä 
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(a) il.ll 

assumptions: 

effects and 
post-conditions: 

(b) :1.2: 

assumptions: 

effects and 
post-conditions: 

:1.1: PROVIDE ALL NECESSARY INITIALIZATIONS; 

all necessary initializations have been made 

requires the ability to invoke :3:, ERF OP, with a 
string message, requires ability to invok i NEXTCARD 
which makes a new card image fvailable, i.e. 
ability to ir.voke :2: and returns to the invoker 
only if a card for the current algorithm is 
available, NEXTCHAR is the vclue of the character 
which immediately follows the character of the 
current card image produced by the last call of 
NEXTCHAR 

-.1.2: INPUT AND PROCESS THE PARAMETER CARD; 
INPUT AND PROCESS THE HEADING CARD; 

parameter card and heading card have been correctly 

processed 
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(c) :1.3: 

assumptions: 

•fleets and 
post-conditions: 

(d) -A A: 

assumptions- 

.'     »    9 . 

Q 

effects and 
post-r cnditions: 

(e) tlA 

assumptions: 

effects and 
post-conditions: 

requires the ability to invoke :3:, ERROR, with a 
string message, requires ability to invoke NEXTCARD 
which makes a new card image available, i.e. 
ability to invoke :2: and returns to the invoker 
only if a card for the current algorithm is 
available, NEXTCHAR is the value of the character 
which immediately follows the character of the 
current card image produced by the last call of 
NEXTCHAR 

:1.3:    INPUT    AND    PROCESS    THE    RULES    FOR    THIS 
ALGORITHM; 

all rules for this algorithm have been inputted 

requires ability to invoke NEXTCARD which makes a 
new card image available, i.e. ability to invoke 
:2: and returns to the mvoker only if a card for 
the rurrent algorithm is available, NEXTCHAR is the 
value of the character which immediately follows the 
character of the current card image produced by the 
last call of NEXTCHAR 

»1.4: PROCESS THE DATA IMAGES WITH RESPECT TO THE 
STORED ALG0R1THM; 

all    data    images    for    this    algorithm    have    been 
processed 

an end-of-file condition has occurr-d 

:1.5: PROCESS END-OF-FILE CONDITION AND TERMINATE; 

the Markov algorithm processor has been terminated 

 ■  -  ■ ■^^' 
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(f) :2: 

assumptions: 

effects and 
post-conditions: 

requires the ability to invoke the termination of 
the entire program, i.e. :1.5: ENDQFFILE, requires 
the ability to invoke, ALGIN1T (:1.1.1;) the start 
of processing for a new algorithm, CP is an index 
into C and indexes the last character which was 
produced as a value from NEXTCHAR. After an 
execution of NEXTCARD, :2:( CP must equal 0, write 
access required for CP, C[l] ... C[80] contains the 
characters, in order, of the card image which is 
inputted as a result of the last execution of 
GETIMAGE, requires read access to C, requires 
ability to invoke GETIMAGE which inputs a card and 
returns to the caller only if a card was inputted, 
"," in columns 1 and 2 indicate that the program is 
to terminate and a "," m column 1 only indicates 
that a new algorithm is to be processed 

:2: READ A CARD AND STORE THE 80 CHARACTERS IN 
SUCCESSIVE LOCATIONS Or THE ARRAY C, I.E. 
C[1],..,C[80] I.E.   GETIMAGE. 

if C[l] = COMMA then 
begin 
if C[2] = COMMA then invoke end-of-file state 

01.5:) 
else invoke aigornhm initialization state 

end 
else CP ♦- 0 

a new card image has been read and the appropriate 
iransiiiun made. 

-- - 
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(B) :3: 

assumptions: 

effects and 
post-conditions: 

(h) :4: 

assumptions: 

effects and 
post-conditions: 

requires ability to invoke NEXTCARD which makes a 
new card image available, i.e. ability to invoke 
:2: and returns to the invoker only if a card for 
the current algorithm is available, requires ability 
to print the string argument which is passed as the 
parameter to ERROR, ability to perform printing 
operations 

:3: AN ERROR WAS DISCOVERED BY THE ALGORITHM INPUT 
PART; 
INDICATE THE ERROR; 
READ AND PRINT ALL THE REMAINING IMAGES FOR THIS 
ALGORITHM; 
while true do 

begin 
READCARD; 
PRINTCARD 
end; 

string parameter has been printed along with all 
remaining card images for the algorithm being 
processed 

requires ability to invoke NEXTCARD which makes a 
new card image available, i.e. ability to invoke 
:2: and returns lc the invoker only if a card for 
the current algorithm is available, NEXTCHAR is the 
value of the character which immediately follows the 
character of the current card image produced by the 
last call of NEXTCHAR, requires ability to invoke 
AA: which processes the remaining data images for 
this algorithm, ability to perform printing 
operations 

A:   AN   ERROR   WAS   DISCOVERED   BY   THE   ALGORITHM 
EXECUTION PART; 
INDICATE THE ERROR; 
READ A NEW DATA CARD ; 
INVOKE THE ALGORITHM EXECUTION PART; 

a  new data image has been read and the execution 
part has been processed 

m 
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The object/assumption table for these objects is: 

(a) 
(b) 
(c) 
(d) 
(e) 
(f) 

(s) 
(h) 

1) 
2) 

3) 

4) 
b) 

6) 

7) 

8) 
9) 

10) 
ID 

12) 

13) 

14) 
15) 

l- \t 

\-2'' 

1-3S 
I.4I 
l-fti 

3: 

4 = 

1   23456789  101112131115 

1   1   I 

1   I   1 

1   I 

1   1   1   1   1   I   I   1 

I   I 

I    I I   I 

requires the ability to invoke :3:, ERROR,   with a string message 
requires ability to invoke NEXTCARD which makes a new card image 
available, i.e. ability to invoke :2: and returns to the invoker 
only if a card for the current algorithm is available 
NEXTCHAR is the value of the character which immediately 
follows the character of the current card image produced by 
the last call of NEXTCHAR 
an end-of-file condition has occurred 
requires the ability to invoke the termination of the entire 
program, i.e. :1.5: ENDOFFILE 

requires the ability to invoke, ALG1N1T 01.1.1:) 
the start of processing for a new algorithm 

CP is an index into C and indexes the last character which 
was produced as a value from NEXTCHAR.   After an execution 
of NEXTCARD, :2:, CP must equal   0 

write access required for CP 
C[l] ... C[80]   contains the characters, 

in order, of the card image which is inputted as a result 
of the last execution of GETIMAGE 

requires read access to C 
requires ability to invoke GETIMAGE which inputs a card 

and returns to the caller only if a card was inputted 
"," in columns 1 and 2 indicate that the program is to terminate 
and a "," in column 1 only indicates that a new algorithm 
is to be processed 

requires ability to print the string argument which is passed as 
the parameter lo ERROR 

ability to perform printing operations 
requires ability to invoke :1.4: which processes the remaining 
data images for this algorithm 

■ 
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A good decomposition for these objects is 

((■) ((•) ((f) (( g ,   h ) ((d) ( b , c )) .97 ) 1.08 ) .14 ) .20 ) 0 

Here,   objects   (g)   and   (h)   process   errors,  objects   (b)   and  (c)  input   the 

algorithm   and   object   (d)   interprets   it.      Not   surprisingly,   the   lacK   of 

assumptions   made   by   the   initialization   part   leaves   the   entropy   loading 

figure at 0.    Next, :1.2: is elaborated 

(i) :I.2.1: 

assumptions: 

•ffacts and 
post-conditions: 

requires ability to invoke NEXTCARD which makes a 
new card image available, i.e. ability to invoke 
:2: and returns to the mvoker only if a card for 
the current algorithm is available, NEXTCHAR is the 
value of the character which immediately follows the 
character of the current card image produced by the 
last call of NEXTCHAR, requires write access to PR, 
pr ■ true means "print the register after each 
successful application of a rule; otherwise d not 
print the register after each successful application 
of a rule 

: 1.2.1: READ A NEW CARD IMAGE; 
SET THE FUNCTION pr TO INDICATE WHETHER OR NOT THE 
REGISTER CONTENTS SHOULD BE PRINTED, I.E. 

NEXTCARD; 
pr «- if NEXICHAR = "1" then true else false; 

pr   -   true   if   the   register   is   to   be   printed   after 
each succeisfui rule application; false otherwise 
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(j) :1.2.2: 

assumptions: 

effects and 
post-conditions: 

(k) :1.2.2.1: 

assumptions: 

effects and 
post-conditions: 

requires the ability to invoke :3:, ERROR, with a 
string message, requires ability to invoke NEXTCARD 
which makes a new card image available, i.e. 
ability to invoke :2: and returns to th;.- invoker 
only if a card for the current algorithm is 
available, NEXTCHAR is the value of the character 
which immediately follows the character of the 
current card image produced by the last call of 
NEXTCHAR, MAXA equals the maximum number of 
alphabets permitted for an algorithm, requires read 
access to MAXA, ability to set the failure routine 
for NEXTCHAR, i.e. FAIL can be assigned a name 
which can be invoked if no more characters are 
available from NEXTCHAR 

:1.2.2: INPUT AND PROCESS THE HEADING CARD IMAGE; 

The heading card image has been correctly processed 

ability to set the failure routine for NEXTCHAR, 
i.e. FAIL can be assigned a name which can be 
invoked if no more characters are available from 
NEXTCHAR, requires ability to invoke NEXTCARD which 
makes a new card image available, i.e. ability to 
invoke :2: and returns to the invoker only if a card 
for the current algorithm is available, 

: 1.2.2.1: SET THE FAILURE ROUTINE FOR NEXTCHAR TO BE 
ERRHEAD; NEXTCARD; 

ERRHEAD   has   been   set   as   the   failure   routine   for 
NEXTCHAR and a new card image has been read 
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(I) :1.2.2.2: 

assumptions; a failure routine has been set if NEXTCHAR cannot 
provide additional characters from the current 
image, either no alphabets have been processed of 
all alphabets processed have been correct 

:1.2.2.2: 

effects and 
post-conditions: 

(m) : 1.2.2.3: 

assumptions: 

effects and 
post-conditions; 

repeat 
begin 
:1.2.2.3: 
:1.2.2.4: 
:1.2.2.5 
end 

until false; 

The  heading card has been correctly  processed  and 
is error free. 

a failure routine has been set if NEXTCHAR cannot 
provide additional characters from the current 
image, read access to DOT, COMMA, COLON, SEMI, OPEN, 
CLOSE which contain the values of •V, V, ":", 
";"i "<", ")", assumes write access to CHAR, assumes 
read access to CHAR, NEXTCHAR is the value of the 
character which immediately follows the character of 
the current card image produced by the last call of 
NEXTCHAR, a failure routine has been set if NEXTCHAR 
cannot provide additional characters from the 
current image 

: 1.2.2.3: SCAN FOR A LEFT PARENTHESIS, I.E. 
repeat 

CHAR «- NEXTCHAR 
until CHAR - OPEN; 

CHAR is an open parenthesis. 

■M^ 
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(n) •A.2.2A: 

assumptions: ability    to   cet   the   fanure   routine   for   NEXTCHAR, 
i.e.       FAIL   can   be   assigned   a   name   which   can   be 
invoked    if    no    more    characters    ere    avjiiiable    from 
NEXTCHAR, assumes write access to CHAR, assumes read 
access   to   CHAR,   requires   the   ability   to   invoke   :3:, 
ERROR,   with   a   string  message, NEXTCHAR  is  the  value 
of     the     character     whicn     immediately     follows     the 
character   of   the   current   card   image   produced   by   the 
last    call    of    NEXTCHAR,    MAXA    equals    the    maximum 
number     jf     alphabets     permitted    tor     an    algorithm, 
requires  read  access  to  MAXA, NA equals  the  number 
of   alphabets  which  have  been  processed  thus   far  for 
the   current   algorithm,   requires   read   accesss   to   NA, 
requires    write    access   to   NA,   read    access   to   DOT, 
COMMA,   COLON,   SEMI,  OPEN,  CLOSE  which   contain   the 
values     of     'V',     ".",     ":",     V.     T,     T     ERRHEAD 
assumes   compete   control   when   invoked   and   handles 
error     messages     and     further     processim,,     requires 
ability   to   invoke   STORGEN   which   stores   the   content 
of   CHAR,   if   leg^l,   otherwise   invokes   the   apporpriate 
error,    requires    ability    to    invoke    STORALPH,    which 
otores    the     alphabet    character    if    all    requirements 
are   met,otherwise  STORALPH invokes  appropriate  error 
routines,    requires    ability    to    invoke    ALPHF1N    which 
cmplelos     any     needed    processing    after     an    entire 
alphabet has been stored 

: 1.2.2.4: PROCESS AN ALPHABET AND ITS GENERiCS; 

effects and 
post-conditions: A    fmgle    alphabet    and    its    generic*    has    been 

correctly processeo 

•MMMaMMM» 
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(0)   1.2.2.5: 

as .umptions: 

offsets and 
post-conditions: 

ability to set the failure routine for NEXTCHAR, 
i.e. FAIL can be assigned a name which can be 
invoked if no more characters are available from 
NEXTCHAR, requires ability to invoke RULES which 
names the rule input part, but since RULES is a 
label in the main program a go to statement can be 

used 

:1.2.2.5: SETFAIL{RULES); 

failure  routine  for   NEXTCHAR  has  been  set  to  the 
next stage of processing 

Below is map for the elaboration of -.1.2.2.4: 
and several objects used by the elaboration. 

(p) :1.2.2A1: (220)   (q) :1.2.2A2: (221)   (r) :1.2.2A3: (222) 
process alphabet part. process generic terminate processing 

part. for an alphabet. 

(s) :11: (225) get next character 

(!) :12: (226) store a generic for the current alphabet 

(u) :13: (227) store a character into the current alphabet 

(v) :14: (228) terminate processing for current alphabet 

(w) :15: (228) test whether space exhausted. 

(x) :16: (229) test whether character is a legal 
alphabetic or generic 

(y) :17: (229) test whether generic has already been used 

(i) :18: (230) test whether character has already occurred 
in this alphabet. 

■■^■HaaaMMM *m^mam*mmmm I IM I I III |M II 
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(p) :1.2.2A1: 

assumptions: ERRHEAD assumes compete control when invoked and 
handles error messages and further processing, 
NEXTCHAR is the value of the character which 
immediately follows the character of the current 
card image produced by the last call of NEXTCHAR, NA 
equals the number of alphabets which have been 
processed thus far for the current algorithm, 
requires read accesss to NA, MAXA equals the maximum 
number of alphabets permitted for an algorithm, 
requires read access to MAXA, requires write access 
to NA, assumes write access to CHAR, assumes read 
access to CHAR, requires the ability to invoke :3:, 
ERROR, with a string message, ability to set the 
failure routine for NEXTCHAR, i.e. FAIL can be 
assigned a name which can be invoked if no more 
characters are available from NEXTCHAR, read access 
to   DOT,   COMMA,   COLON,   SEMI,   OPEN,   CLOSE   which 
.... . .1111 II M 11." M." "/" "V 

contain the values of . , , , • . 11 v > ' » 
requires read/write access to NOIT, which controls a 
loop that process alphabets, requires ability to 
invoke STQRALPH, which stores the alphabet character 
if all requirements are met.otherwise STORALPH 
invokes appropriate error routines 

: 1.2.2.4.1: PROCESS ALPHABET PART - 

if NA + 1 >   MAXA then ERRORC'TOO MANY ALPHABETS"); 
SETFAIL(ERRHEADNAME); 
NOIT <- false; 

affects and 

repeal 
begin 
CHAR <- NEXTCHAR; 
STORALPH; 
CHAR «- NEXTCHAR; 
if CHAR t COMMA then 

begin 
if CHAR ^ CLOSE or NEXTCHAR t* SEMI then 

ERRHEAD 
else 

NOIT «- true 
end 

end 
until NOIT; 

NA *- NA + 1; 

yBgj-- 
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post-conditions: 

(q) :1.2.2A2: 

assumptions: 

a   single alphabet   has   been  successfully   processed 
and  stored, NA equals  the  number  of  alphabets  which 
have    been processed    thus    far    for    the    current 
algorithm 

assumes write access to CHAR, assumes read access 
to CHAR, read access to DOT, COMMA, COLON, SEMI, 
OPEN, CLOSE which contain the values of ".", ",", 
":", ";", "(", ")", NEXTCHAR is the value of the 
character which immediately follows the character of 
the current card image produced by the last call of 
NEXTCHAR, requires read/write access to Kolli, which 
controls a loop that processes generics, ERRHEAD 
assumes compete control when invoked and handles 
error messages and further processing, requires 
ability to invoke STORGEN which stores the content 
of CHAR, if legal, otherwise invokes the apporpriate 
error 

: 1.2.2.4.2:    PROCESS    GENERIC    VARIABLES    FOR    THIS 
ALPHABET - 

CHAR *■ NEXTCHAR; 
NOin *■ false; 
if CHAR / SEMI then 

begin 
repeat 

begin 
STORGEN; 
CHAR *■ NEXTCHAR; 
if CHAR t COMMA then 

begii) 
if CHAR t SEMI then ERRHEAD 
eise N01T1 *■ true 
end 

el.e CHAR «- NEXTCHAR 
end 

until Norrit 
end; 

effects and 
post-conditions: the    generic    part    of    the    alphabet 

successfully piucessed. 
has    been 

^MMMH -   -"-- ■• 
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(r) :1.2.2.4.3: 

assumptions: 

effects and 
post-conditions: 

requires ability to invoke ALPHF1N which cmpletes 
any needed processing after an entire alphabet has 
been stored 

: 1.2.2A3: ALPHFIN; 

final processing for an alphabet is complettd 

The object/assumption table for this exp^ntion is 

(i) 
(j) 
00 
(I) 
(m) 
(n) 
(o) 

(P) 
(q) 
(r) 

1) 
2) 

3) 

4) 
5) 

6) 

7) 

8) 
9) 

10) 
11) 

12) 

1-2- !> 

\-2-2' 

2- 2- 
2- 2- 
2-2- 

2' 

3- 

|, 9. 2- fl! 

I- 2- 2- S'' 

I-2- 2-4   \'' 

1- 2- 2-A' 2' 

|. 2- 2-4-35 

I 23456789   10111213141516171819202122232425262728293031323334353637: 

II II 
111 III 

I 1 
I 

I I I I I 
II 111        I I I   I I t I   I   I I 

1 I 
11 111        I I I   1 I I I t I 

I I I I   I II 
1 

requires the ability to invoke :3:, ERROR,   with a string message 
requires ability to invoke NEXTCARD which makes a new card image 
available, i.e. ability to invoke :2: and returns to the invoker 
only if a caru for the current algorithm is available 
NEXTCHAR is the value of the character which immediately 
follows the character of the current card Nffge produced by 
the last call of NEXTCHAR 
an end-of-file condition has occurred 
requires the ability to invoke the termination of the entire 
program, i.e. :1.5: ENDOFFILE 

requires the ability to invoke, ALG1NIT Ol.l.l:) 
the start of processing for a new algorithm 

CP is an index into C and indexes the last character which 
was produced as a value from NEXTCHAR.   After an execution 
of NEXTCARD, :2:, CP must equal   0 

write access required for CP 
C[l] ... C[80]   contains the characters, 

in order, of the card image which is inputted as a result 
of the last execution of GET1MAGE 

requires read access to C 
requires ability to invoke GETIMAGE which inputs a card 

and returns to the caller only If a card was inputted 
V in columns 1 and 2 indicate that the program is to terminate 
and a "," in column 1 only indicates that a new algorithm 

^^Mi 
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is to be processed 
13) requires ability to print the string argument which is passed as 

the parameter to ERROR 
14) ability to perform printing operations 
15) requires ability to invoke :1.4: which processes the remaining 

data images for this algorithm 
16) requires write access to PR 
17) pr = true means "print the register aHer each successful 

application of a rule; otherwise d not print the register 
after each successful application of a rule 

18) MAXA equals the maximum number of alphabets permitted for 
an algorithm 

19) requires read access to MAXA 
20) ability to set the 'ailuro routine for NEXTCHAR, ..e. FAIL 

can be assigned a nafrv* which can be invoked if no more characters 
are available from NEXTCHAR 

21) NG contains the number of generic variables encountered 
for the currprii algorithm 

22) CG[i]( 1  < i < NG, equals the i-th generic variable 
encountered for the current algorithm 

23) AG[i], 1 < i < NG, equals the alphabet name which 
CG[iJ is a generic variable 

24) a failure routine has been set if NEXTCHAR cannot 
provide additional characters from the current image 

25) read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE   which 
contain the values of ".", "V, ":", ";", "(", ")" 

26) assumes write access to CHAR 
27) assume^ read access to CHAR 
28) requires ability to invoke RULES which names the rule input 

part, but since RULES is a label in the main program 
a go to statement can be used 

29) ERRHEAD assumes compete control when invoked 
and handles    error messages and .urther processing 

30) NA equals the number of alphabets which have been processed 
thus far for the current algorithm 

31) requires read accesss to NA 
32) requires write access to NA 
33) requires read/write access to N01T, which controls a 

loop that process alphabets 
34) require? ability to invoke STORALPH, which stores the alphabet 

character if all requirements are met.otherwise STORALPH 
invokes appropriate error routines 

35) requires read/write access to N0IT1, which controls a loop 
that processes g^nerics 

36) requites ability to invoke STORGEN which stores the content 
of CHAR, if legal, otherwise invokes the apporpriate 
error 

37) requires ability to invoke ALPHFIN which cmpletes any 
needed processing after an entire alphabet has been 
stored 

MM 
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38)   either no alphabets have been processed of all alphabets 
processed have been correct 

This   table   involves   two   stages   ot   elaboration.      RLB   and   RUB   for   the 

elaboration of ;1.2: to :1.2.1: and :1.2.2: are 

RUB: ((a) ((e) ((f) (( g , h ) ((d) ( b , c )) .94 ) 1.06 ) .14 ) .19 ) 0 

RLB: ((a) ((e) ((f) (( g , h ) ((d) ( b , c )) .94 ) .99 ) .07 ) .10 ) 0 

but the actual expansion leads to 

((a) ((•/ ((f) (( g , h ) ((d) ((e)   ( i , j ) 1.0 ) .94 ) .99 ) .07 ) .10 ) 0 

Expanding :1.2.2: leads to RLB and RUB 

RUB: ((a) ((e) ((f) (( g , h ) ((d) ((c)   ( i , j )) 

.88 ) 1.23 ) .79 ) .93 ) .12 ) .16 ) 0 

RLB: ((a) ((e) ((f) (( g . h ) ((d) ((c)   ( i , j )) 

0 ) .88 ) .86 ) .93 ) .04 ) .05 ) 0 

but the actual entropy loadings are 

((a) ((e) ((f) (( g , h ) ((d) ((c) ((i) ( k , I , m , n , o)) 

1.33 ) 1.59 ) 1.36 ) 1.48 ) .12 ) .16 ) 0 

A better decomposition is 

((a) ((e) ((f) ((I) (( k , o ) (( m , n ) ((i) ( d , e, g . h )) 

1.33 ) 1.20 ) 1.33 ) .54 ) .36 ) .12 ) 0 

After     examining    RLB    and    RUB    for    the    expansion    of    :1.2.2.4:,    the 

following good decomposition was found 

((a) ((e) ((r) ((f) ((I) (( k , o ) (( m , q , p ) 

((i) (( d , c, g , h )) 1.34 ) 1.12 ) 1.26 ) .49 ) .09 ) .12 ) .16 ) 0 

•_^^MM -   -- ■  - -  ■   ■ - 
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The 'najor parts in this decomposition are (1) the algorithm 

interpretation and input parts along with the error processing that can 

occur there ( c , d , g , h ); (2) alphabet and generic input parts ( m 

, p , q ); and (3) the parts that set failure routines. 

(s) :11: 

assumptions: 

effects and 
post-conditions: 

requires ability to invoke FAIL which correctly 
determines which objects assume control, a failure 
routine has been set if NEXTCHAR cannot provide 
additional characters from the current image, C[l] 

C[80] contains the characters, in order, of the 
card image which is inoutted as a result of the last 
execution of GETIMAGE, requires read access to C, CP 
is an index into C and indexes the last character 
which was produced as a value from NEXTCHAR. After 
an execution of NEXTCARD, :2:, CP must equal 0, read 
access required for CP, write access required for CP 

:11; NEXTCHAR: CP «- CP + 1; 
if CP > 80 then 
KAIL 
else 
NEXTCHAR «- CLCPj; 

the   value   or   :11:   is set   to   be   C^P],   i.e.      the 
next    available    character in   the   current    image,    and 
it     no    more     rharacters are    available,    the     failure 
loüiine is execuieci 

-- 
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• 
(t) .12: 

assumptions: requires the ability to invoke :3:, ERROR, with a 
string message, NA equals the number of alphabets 
which have been processed thus far for the current 
algorithm, requires read accesss to NA, read and 
write access required for the variable 1, requires 
ability to invoke TESTLEGAL which returns only if 
CHAR is not ,,.,,, ",", T, ":", requires ability to 
invoke TESTGEN which returns only if CHAR is not 
equal to an already used generic variable for this 
algorithm, A names a one-dimensional array, which 
from UPA to its upper bound contains alphabetic 
characters, requires read access for A, AG[i], 1 S i 
< NG, equals the alphabet name which CG[i] is a 
generic variable, requires write access to CG, 
CG[i], 1 < i < NG, equals the i-th generic variable 
encountered for the current algorithm, NG contains 
the number of generic variables encountered for the 
current algorithm, requires read access to NG, 
requires write access to NG, requires write access 
to AG, assumes read access to CHAR, CHAR contains 
the next unstored character from the alphabet or 
gerierics being currently processed, AL[1] 
AL[NA] names the index of the lower bound of the 
characters in an alphabet i.e. AL[i] is the lower 
bound for the i-th alphabet and AL[i-l] is the upper 
bound for that alphabet, where AL[0] equals the 
initial value plus 1 of UPA, requires read access to 
AL, requires ability to invoke ERRGEN, which assumes 
control and invokes an appropriate error routine, 

:12: STQRGEN 

TESTLEGAL; 
TESTGEN; 
for I «- UPA step 1 until AL[0J -1 do 

if CHAR •= A[I] then ERRGLN; 

NG *- NG + 1; 
if NG > MAXG then ERROR ("TOO MANY GENERIC 
VARIABLES"); 

CG[NG] «- CHAP; 
AG[NG] «- NA: 

effects and 
post-conditions: content of CHAR has been stored as a generic 

variable with respect to the alphabet currently 
being processed 

mtmm—* 



APPENDIX I:  A MARKOV ALGORITHM PROCESSOR 227 

(u) :13: 

zssumptions: requires ability to invoke TESTLEGAL which returns 
only if CHAR .s not ".", V, "", ":", requires 
ability to invoke TESTGEN which returns only if CHAR 
is not equal to an already used generic variable for 
this algorithm, requires ability to invoke TESTAL 
which returns only if CHAR is not equal to a 
character which has already occurred in the alphabet 
currently being processed, requires aoility to 
invoke TEST which returns only if there storage 
space as Indicated by the values of LPA and UPA, UPA 
names the last cell of an array into which an 
alphabetic character was stored, counting from the 
top     of     some     one-dimensional     array. UPA     is 
decremented by 1 each time an available cell needs 
to be named, requires read access to UPA, requires 
write access to UPA, A names a one-dimensional 
array, which from UPA to its upper bound contains 
alphabetic characters, requires write access for A, 
assumes read access to CHAR, CHAR contains the next 
unstored character from the alphabet or generics 
being currently processed 

:13: STÜRALPH 

YtSTLEGALj 
IcSTGEN; 
TESTAL; 

UPA «- UPA - 1; 
TEST; 
A[UPA] ^CHAK; 

eiiecis dud 
posi-conditions: the  contenls  ot  CHAR  has  been correctly  stored  as 

an alphabet character in the current alphabet 

MOHiM IIIMI .. ^—^—^-J^.-. .. 
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(v) il4: 

assumptions: 

effects and 
post-conditions: 

(w) :15: 

assumptions: 

effects and 
post-conditions: 

AL[l] ... AL[NA] names the index of the lower 
bound of the characters m an alphabet, i.e. AL[i] 
is the lower bound for the i-th alphabet and AL[i-l] 
is the upper bound for that alphabet, where AL[0] 
equals the initial value plus 1 of UPA, requires 
write access to AL, NA equals the number of 
alphabets which have been processed thus far for the 
current algorithm, requires read accest-.s to NA, UPA 
names the last cell of an array info which an 
alphabetic character was stored, counting from the 
top     of     some     one-dimensional     array. UPA     is 
decremented   by   1   each   time   an   available   cell   needs 
to be named, requires read access to UPA 

:H: ALPHFIN 

AL[NA] «- UPA; 

lower bound for alphabet NA has been set 

requires the ability to invoke :3:, ERROR, with a 
string message, UPA names the last cell of an array 
into which an alphabetic character was stored, 
counting from the top of some one-dimen:.ional array. 
UPA is decremented by 1 each time an available cell 
needs to be named, requires read access to UPA, LPA 
names the las cell of an array into winch rules are 
stored, counting from the lower bound of a 
one-dimensional array . LPA is incremented by one 
each time an available cell needs to be named, 
requires read access to LPA, LPA and UPA are index 
variables for the same array 

:15: TEST I.E. 
if LPA > UPA then 

ERRORC'ALGORiTHM TEXT TOO LARGE OR TOO MANY 
ALPHABET 

CHARACTERS"); 

there is an available storage location for a rule 
rule character or an alphabetic character or a 
generic 

__ --- - 
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(z) :18: 

assumptions: requires read/write access to K, NA equals the 
number of alphabets which have been processed thus 
far for the current algorithm, requires read accesss 
to NA, requires the ability to invoke :3:, ERROR, 
with a string message, UPA names the last cell of an 
array into which an alphabetic character was stored, 
counting from the top of some one-dimensional array. 
UPA is decremented by 1 each time an available cell 
needs to be named, requires read access to UPA, A 
names a one-dimensional array, which from UPA to Its 
upper bound contains alphabetic characters, requires 
read access for A, assumes read access to CHAR, CHAR 
contains the next unstored character from the 
alphabet or generics being currently processed, 
requires read access to AL, AL[1] ... AL[NA] names 
the index of the lower bound of »he characters in an 
alphabet, i.e. AL[i] is the lower bound for the 
i-th alphabet and AL[i-l] is the upper bound for 
that alphabet, where AL[0] equals the initial value 
plus 1 of UPA 

:18: TESTAL I.E. 
for K <- UPA stop 1 until AL[NA] - 1 do 

if CHAR = A[K] then 
ERRORfCHARACTER APPEARS TWICE IN ALPHABET"); 

effects and 
post-conditions. 

CHAR has not occurred already irt the alphabet being 
processed 

«MMMMMM   
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1 2 3 4 5 6 7 4 9 1011 I2I3I4ISI6I 7 I8l9202l2223242526272829303l3233313536o/3e39404 1 

(s) « W' 
(t) '\2'   \ 
(u) •\3'- 
(v) 1 |4| 
(w) : 15s    1 
(x) : 16'    | 

(y) '• 17! 
(z) : is:   l 

till 1 

I I I 

I I 

I I 

I 

1 1 

1 1 

I 1 

I I 

424341451647481950515253545657585960616263646566676869 
(0) 

(t) 
(U) 
(V) 

(w) 
(X) 

(y) 
U)     litt 

||> 

12: 

13! 
I4: 

IS! 

It« 
17: 

1  1 1 1     1 1 1 1 1 1 1 

111 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 

1 1 

1  1 

1 1 1 

1 

1) requires the ability to invoke -.d:, ERROR,   with a string message 
2) requires ability to invoke NEXTCARD which makes a new card image 

available, i.e. ability to invoke :2: and returns to the invoker 
only if a card tor the current algorithm is available 

3) NEXTCHAR is the value of the character which immediately 
follows the character of the current card image produced by 
the last call of NEXfCHAR 

4) an end-of-file condition has occurred 
5) requires the ability to invoke the lormmation of the entire 

program, i.e. :1.5: ENOOFFILE 
6) requires the ability to invoke, ALGINIT (:1.1.1;) 

the start of processing for a new algorithm 
7) CP is an index into C and indexes the last character which 

was piüducod as a value from NEXTCHAR.   After an execution 
of NEXTCARD, :2:, CP must equal   0 

8) write access required for CP 
9) C[i] ... C[80]   contains the characters, 

in order, of the card image which is inputted as a result 
of the last execution of GETIMAGE 

10) requires read access to C 
11) requres ability to invoke GETIMAGE wlncli inputc a card 

and returns to the caller only if a card was inputted 
12) "," in columns 1 and 2 indicate that the program is to terminate 

and a "," in column 1 only indicates that a new algorithm 
is to be processed 

13) requires ability to print the string argument which is passed as 
trie parameter to ERROR 

14) ability to perform printing operations 
lb)    requires aoiiity to invoke :1.4; wnich processes the remaining 

MMMMMIM 
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19) 
20) 

21) 

data images for this algorithm 
16) requires write access to PR 
17) pr = truo means "print the register after each successful 

application of a rule; otherwise d not print the register 
after each successful application of a rule 

18) MAXA equals the maximum number of alphabets permitted for 
an algorithm 

requires read access to MAXA 
ability to set the failure routine for NEXTCHAR, i.e. FAIL 
can be assigned a name which can be invoked if no more characters 
are available from NEXTCHAR 
NG contains the number of generic variables encountered 

for the current dlgonthm 
22) CG[i]) 1 < i < NG, equals the i-th generic variable 

encountered for the current algorithm 
23) AG[i], i < i < NG, equals the alphabet name which 

CG[i] is a generic variable 
24) a failure routine has been set if NEXTCHAR cannot 

provide ddditional characters from the current image 
25) read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE   which 

.     .        .. , #    n n     M M     n if     ii it     if/ii     IIVII 
contain the values of   . ,   , ,   : ,   \,   ( ,   ) 
assumes write access to CHAR 
assumes reod access to CHAR 
requires ability to invoke RULES which names the rule input 
part, but since RULES is a label in the main program 
a go to statement can be used 
ERRHEAD assumes compete control when invoked 

and handles   error messages and further processing 
NA equals the r.^mber of alphabets which have been processed 

thus far for the current algorithm 
requires read accesss to NA 

requires write access to NA 
requires read/write access to NOIT, which controls a 

loop that process alphabets 
34)    requires ability to invoke STORALPH, which stores the alphabet 

character ii ail requirements are met.otnerwise STORALPH 
invokes appropriate error routines 

requires read/write access to NOiTl, which controls a loop 
that processes generics 

requires ability to invoke STORGEN which stores the content 
of CHAP, if legal, otherwise invokes the apporpriate 
error 

37) requires ability to invoke ALPHFIN which cmpletes any 
needed processing after an entire alphabet has been 
stored 

38) either no alphabets have been processed of all alphabets 
processed have been correct 

39) requires ability to invoke FAIL which correctly determines 
which objects assume control 

40) read access required for CP 

26) 
27) 
TB) 

29) 

30) 

31) 
32) 
33) 

35) 

36) 

MMM 
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44) 

45) 
46) 

48) 
49) 
50) 

51) 

52) 
53) 

41) read and write access required for the variable 1 
42) requires ability to invoke TtSTLEGAL which returns only if 

LHAK ii> not    . ,   , ,   ; ,   : 

43) requires ability to invoke TESTGEN which returns only if 
CHAR is not equal    to an already 

used generic variable for this algorithm 
A names a one-dimensional array, which from UFA to its 
upper bound contains alphabetic characters 
requites read access for A 
NG contains the number of generic variables encountered 

for  the current algorithm 
47)    requires redd access to NG 

requires write access to NG 
requires write access to AG 
CHAR contains the next unstored character 
from the alphabet or genencs   being currently processed 
AL[1] ... AL[NAJ names the index of the lower bound of the 
characters in an alphabet, i.e. AL[i] ts the lower 
bound for the i-th alphabet and AL[i-lj is the 
upper bound for that aiphabet, where AL[0] equals the 
initial value plus  i of UFA 
requires re.id access to AL 
requires ability to invoke ERRGEIM, which assumes 

control and invokes an appropriate error routine 
54)    requires ability to invoke TESFAL which returns only if 

CHAR is not equal to a cl .racter which has already occurred   in the 
alphabet currently being pro^ssed 
requires ability to invoke TEST which returns   only if there 
storage sp.ice as indicated by the values of LFA and UFA 

56)    UPA names the last cell of an array into which an alphabetic 
character was stored, i ountmg from the top of some 
one-dimensional array.   UFA is decremented by 1 
each time an available cell needs to be named 
require? read   access to UFA 
requires write access to UFA 
A names ■ one-dimensional array, wnich from UFA to its 
upper bound contains alphabetic characters 
requires write access for A 
requires write access to AL 
LPA names the las cell of an array into which rules 
are stored   counting from the lower bound of a 
one-ditnensional array .   LFA is incremented by one each 
time an available cell needs to be named 
requires read access to LFA 
LPA and UFA are index variables for the same array 
requires read access to CG 
requires write access to CG 
requires read/write access to J 
requires read/write access to K 
requites read access tor A 

55) 

57) 
58) 
59) 

60) 
61) 
62) 

63) 
64) 
65) 
66) 
67) 
68) 
69) 
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After    examining    entropy    loading   values    for    these   new   objects,   the 

following good decomposition was found 

((a) ((r) ((•) ((f) ((s) ((I) ( ( k , o ) ((i) 

((d,8,h)((v,w) ((x) ((c) (( y , u ) (( z , t) 

( m , q , p )) 1.66 ) 1.48 ) 1.44 ) 1.44 ) 1.31 ) 

1.00 ) 1.02 ) .47 ) .41 ) .55 ) .36 ) .10 ) .12 ) 0 

This    decomposition   is   similar   to   the   decomposition   at   the   last   stage. 

Because   objects   (r)   ...      (v)  were  introduced,  the  generic  and  alphabet 

input parts interact strongly with the rest of the program. 
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Next,     :1.3:     that     inputs    rules,    is    elaborated. A    map    for    this 

elaboration,   as   well   as   a   map   for   several   objects   invoked   by   the 

elaboration of :1.3:, appears below. 

(*a) : 1.3.1: (236) set failure routine to ERRULENAME. 

(*b) :1.3.2: (236) initialize for rule input. 

(*c) :1.3.3: (236) get a new input card. 

:1.3:     (*d)   :1.3.4:   (237)   as   long   as   the   input   card   is   a   rule,  keep 
executing :1.3.5: and :1.3.6:. 

(*e) :1.3.5: print card; input and store rule. 

(*f) :1.3.6: (237) get a new input card. 

(*g) :1.3.7: (238) process end of rules conditions. 

(*h) :1.3.5.1: (238) print card 

(«i) :1.3.5.2: (238) initialize for new rule. 

(*j) : 1.3.5.3: (238) process rule label. 

- (*K) :1.3.5.4: (239) collect left part of rule. 

(*l) :1.3.5.5: (239; initialize for right part. 

(*m) :1.3.5.6: (240) collect and store right part. 

(*n) :1.3.5.7: (241) collect and store successor label. 

:1.3.5: 

(*o) :20: (242) input a label. 

(*p) :21: (243) store a label. 

(*q) :30: (244) mark rule as a terminal rule. 

(*r) :31: (245) process successor part of rule. 

(«s) :32: (246) make a character part of this rule. 

(*t) :33: (247) initialize for rule processing. 

Hg^jUuri^U^^^^^ 
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(*u) :34: (248) initialize for processing a new rule. 

(*v) :35: (249) initialize for processing right part of rule. 

(«w) :36: (250) process end of all rule input conditions. 

(#x)    :37:   (250)   check   whether   the   current   card   should   be 
interpreted as a rule. 

(*a) :1.3.1: 

assumptions: requires ability to set the failure routine for 
NEXTCHAR, i.e. the ability to invoke SETFAIL with a 
variable which names the part which is to be invoked 
if no more characters are available from NEXTCHAR, 
ERRULENAME contains the value which indicates a 
routine which can take control if an error is 
discovered as rules are being stored, requires read 
access to ERRULENAME 

:1.3.1: SETFAIL(ERRULENAME); 

effects and 
post-conditions: 

(*b) :1.3.2: 

assumptions: 

effects and 
post-conditions: 

(«c) : 1.3.3: 

assumptions: 

effects and 
post-conditions: 

failure   routine  for   NEXTCHAR  has  been  set  to  the 
part named by ERRULENAME 

requires      ability      to 
initializes     the     input     part 
algorithm 

invoke      IN1TRA,      which 
for     rules    for     a    new 

:1.3.2:    EXECUTE    ANY    NEEDED    INITIALIZATIONS    FOR 
INPUTTING THE RULES FOR AN ALGORITHM, I.E.   INITRA; 

rule   input   part  can correctly   accept   a  set  of  rules 
for a new algorlt'im 

requires ability to invoke NEXTCARD which makes a 
new card image available, i.e. ability to invoke 
:2: and returns to the invoker only if a card for 
the current algorithm is available 

: 1.3.3: NEXTCARD; 

a new card image has been read and is available 

r-^.m*mtm . -   •^^ 
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(*d) :1.3.4: 

assumptions: requires    ability    to    invoke    CARDISRULE    which 
determines   whether   the   current   card   image   is   to   be 
interpreted as as a rule or not 

: 1.3.4: 

effects and 
post-conditions: 

(*e) :1.3.5: 

assumptions: 

effects and 
post-conditions: 

(*f) :1.3.6: 

assumptions: 

effects and 
post-conditions: 

while CARDISRULE do 
begin 
:1.3.5: ; 
:1.3.6: 
end; 

all   rules   for  this  algorithm   have   been  successfully 
Inputted 

requires   ability   to   invoke   PRINTCARD   which   prints 
the current card image, 

: 1.3.5: PRINTCARD; 
INPUT AND STORE A RULE; 

card  image  has been  printed  and  a  single  rule has 
been correctly inputted 

requires ability to invoke NEXTCARD which makes a 
new card image available, i.e. ability to invoke 
:2: and returns to the invoker only if a card for 
the current algorithm is available 

: 1.3.6: NEXTCARD; 

a new card image has been inputted and is available 

Ji 
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(*g) :1.3.7: 

assumptions: 

«fleets and 
post-conditions: 

(*h) : 1.3.5.1: 

assumptions: 

effects and 
post-conditions: 

(«i) :1.3.5.2: 

assumptions: 

effects and 
post-conditions: 

(*j) :1.3.5.3: 

assumptions: 

effects and 
post-conditions: 

requires    ability    to    invoke    EDR,    end    of    rules 
condition processor 

: 1.3.7: EDR; 

all   end-of    -rule   conditions   have   been   correctly 
resolved 

Next,     tltSAi,     which     inputs     a     single     rule,     is 
elaborated. 

requires   ability   to  invoke   PRINTCARD  which   prints 
the current card image 

: 1.3.5.1: PRINTCARD; 

current card image has been printed 

requi-es    ability   to   invoke    INITR   which   initializes 
for inputting a new rule 

:1.3.5.2: INITIALIZE FOR THIS RULE I.E.   INITR; 

rule   input   is   properly   initialized   to   accept   a   new 
rule 

requires ability to invoke LABL which collects a 
label terminated by the character in TERM and leaves 
the integer label value in LAB, requires ability to 
invoke STQRLABEL which associates the label with the 
current rule, requires write accesr to TEflM, read 
access to DOT, COMMA, COLON, SEMI, OPEN. CLOSE which 
contain the values of ".", •'.", ":", ";", "(", ")" 

: 1.3.5.3: TERM «■ COLON; 
LABL; 
STORLABEL; 

label   of   current   rule  has   been   correctly   processed 
and associated with tho current rule 

w^^^mma^mammm -—  ■     -  i ill   !■ 1 ■       il 
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(*K) : 1.3.5.4: 

assumptions: 

effects and 
post-conditions: 

(*l) :1.3.5.5: 

assumptions: 

effects and 
post-conditions: 

NEXTCHAR is the value of the character which 
immediately follows the chiracter of the current 
card image produced by the last call of NEXTCHAR, a 
failure routine has been set if NEXTCHAR cannot 
provide additional characters from the current 
image, read access to DOT, COMMA, COLON, SEMI, OPEN, 
CLOSE which contain the values of "", ",", ":", 
";", "(", ")", assumes write access to CHAR, 
requires ability to invoke TESTLEGAL which returns 
only if CHAR is not ".", ",", ";", V, ability to 
invoke STORCHAR which returns only if the co.itent of 
CHAR could be successfully stored with rule being 
processed 

: 1.3.5.4: COLLECT AND STORE LEFT PART OF RULE, I.E. 

CHAR «- NEXTCHAR; 
while CHAR H COLON do 

begin 
TESTLEGAL; 
STORCHAR; 
CHAR •- NEXTCHAR 
end; 

the left part of a rule has been correctly stored 

requires ability to invoke 1NITRIGHT which 
initializes for processing the input of a right part 
of a ruie 

: 1.3.5.5:   INITIALIZE  FOR  RIGHT  HALF  RULE  PROCESSING 
I.E.    INITRIGHT 

the    right    half    of    the    rule    can    be    correctly 
processed 

^MMi^ mmtm 
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(*m) :1.3.5.6: 

assumptions: NEXTCHAR is the value of the character which 
immediately follows the character of the current 
card image produced by the last call of NEXTCHAR, a 
failure routine has been set if NEXTCHAR cannot 
provide additional characters from the current 
image, assumes write access to CHAR, assumes read 
access to CHAR, requires ability to invoke TESTLEGAL 
which returns only if CHAR is not ".", ",", ";", 
":", read access to DOT, COMMA, COLON, SEMI, OPEN, 
CLOSE which contain the va ues of ".", ",", ":", 
";", "(", '■)", abiMy to invoke STORCHAR which 
returns only if the content of CHAR could be 
successfully stored with rule being processed 

: 1.3.5.6: COLLECT AND STORE RIGHT HALF OF RULE I.E. 

CHAR - NEXTCHAR; 
while CHAR ^ DOT A CHAR ^ SEMI A CHAR H COMMA do 

begin 
TESTLEGAL; 
STORCHAR; 
CHAR - NEXTCHAR 
end; 

effects and 
post-conditions: right half of the rule has been correctly processed 

L 
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(»n) :1.3.5.7: 

assumptions: read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE 
... .      . .. ' II  II II  M H   M II  II »/" 

which contain the values of . , , , : , it \ , 
")", requires the ability to invoke :3:, ERROR, with 
a string message, which does not return but handles 
further processing, assumes read access to CHAR, a 
failure routine has been set if NEXTCHAR cannot 
provide additional characters from the current 
image, assumes write access to CHAR, NEXTCHAR is the 
value of the character which immediately follows the 
character of the current card image produced by the 
last call of NEXTCHAR, requires ability to invoke 
PROCTERM which indicates a rule as a terminal rule; 
requires ability to invoke PROCSUC which processes 
the successor part of a rule, requires read access 
to LAB, requires write access to TERM, requires 
ability to invoke LAQL which collects a label 
terminated by the character in TERM and leaves the 
integer label value in LAB, a nrgative value in LAB 
indicates that no label was collected 

: 1.3.5.7: COLLECT AND PROCESS SUCCESSOR PART OF 
RULE, I.E. 

if CHAR 4 SEMI then 
begin 
if CHAR = DOT then 

bef.in 
Ph JCTtRM; 
CHAR «- NEXTCHAR; 
if CHAR ,t SEMI then 

ERRORC'RULE NOT CORRECT") 
end 

else 
if CHAR = COMMA then 

begin 
TERM «- SEMI; 
LABL; 
if LAB < 0 then 

ERRORC'SUCCESSOR MISSING") 
PROCSUC; 
end; 

end; 

effects and 
post-condittons: the   successor   part   of   the   current   rule   has   been 

correctly processed 
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Below      are      the     elaborations 
functions which are needed. 

of     the     additional 

(*o) :20: 

assumptions: a failure routine has been set if NEXTCHAR cannot 
provide additional characters from the current 
image, TERM contains the non-digit character which 
is expected to terminate a label, requires read 
access to TERM, assumes write access to CHAR, 
assumes read access to CHAR, NEXTCHAR is the value 
of the character which immediately follows the 
character of the current card image produced by the 
last call of NEXTCHAR, the digits "0", "1", "2", ... 
, "9" are represented by character codes such that 
"0" - ZERO = 0, ... ,"9" - ZERO = 9 and the only 
legal label characters are digits and BLANK, 
read/write access to LAB is required, legal range of 
labels is 1 through 100, BLANK contains the 
representation of a space and ZERO contains the 
representation of a zero, requires read access to 
BLANK and ZERO , requires the ability to invoke :3:, 
ERROR, with a string message, which does not return 
but handles further processing 

:20: LABL, l.E 
LAB *- -I; 
CHAR •- NEXTCHAR; 
while CHAR H TERM do 

begin 
if CHAR > ZERO A CHAR < ZERO + 9 then 

LAB ♦- (if LAB > 0 then 10 * LAB + CHAR - ZERO 
else CHAR - ZERO) 

else 
if CHAR t BLANK then 

ERRORC'ILLEGAL CHARACTER IN LABEL"); 
CHAR «- NEXTCHAR 

end; 

if LAB = 0 or LAB > 100 then 
ERRORfLABEL OUT OF RANGE"); 

return the value of LAB; 

effects and 
post-conditions: a       syntactically      correct label       has been 

concatenated,    if    control    returns    to caller; if     no 
label     has     been    concatenated, the value -1     is 
returned 

mmmmm 
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(*p) :21: 

assumptions: 

effects and 
post-conditions: 

assumes LAB contains a legal label name or -1 which 
indicates that no label has been concatenated, 
requires read access to LAB, requires write access 
to LAB, Nl names the rule being currently inputted, 
requires read access to Nl, requires ihe ability to 
invoke :3:, ERROR, with a string message, which does 
not return but handles further processing, R names a 
one-dimensional array which contains pointers to 
rules such that label i names rule R[i]; R[i] = 0 
means label i is not defined; R[i] > 0 means the 
label is defined and R[i] is a pointer to the rule 
it namws; R[i] < 0 means that label i is undefined 
but has been referenced by rule -R[i] and is the 
head of a chain, A names a one-dimensional array 
which from its lower bound to LPA contains 
representations of rules, requires write access for 
A, after rule initialization, A[N1] - 1 = NR, Nl 
names the current rule A[N1] = -1, N2 = Nl + 1, A[N2] 
■ 2, NE = Nl + 2 and the location which is the name 
Of the immediately preceding rule names the current 
rule. thus if NT is the value of Nl prior to this 
initialization then A[Nr] = Nl - unless NR = 1 in 
which case the previous value of Nl is not defined 

:21: STQRLABEL 

if LAB > 0 then 
begin 
if R[LAB] > 0 than ERRQRC'DOUBLE LABEL 

OCCURRENCE"); 

if R[LAB] = Ü then R[LAB] «- Nl 
•IM 
while R[LABJ < U do 

begin 
TEMP ♦- - R[LAB]; 
R[LAB] - A[TEMP]; 
A[TEMP] «- Nl 
end; 

end; 

label    LAB    has    been    stored    and    all    undefined 
references to LAB have been resolved 
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(»q) :30: 

assumptions: after rule initialization, A[N1] - 1 = NR, Nl names 
the current rule A[N1] - -1, N2 » Nl + l, A[N2] - 2, 
NE - Nl + 2 and the location which is the name of 
the immediately preceding rule names the current 
rule. thus if Nl' is the value of Nl prior to this 
initialization then A[Nr] = Nl - unless NR = 1 in 
which case the previous value of Nl is not defined, 
requires read access to N2, requires write access 
for A, A names a one-dimensional array which from 
its lower bound to LPA contains representations of 
rules, a value of -1 in A[N2] indicates that the 
rule is a terminal rule 

:30: PROCTERM, I.E. 
A[N2] «- -1; 

•ffects and 
post-conditions: the rule is marked as terminal 
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(*r) :31: 

assumptions: after rule initialization, A[N1] - I = NR, Nl names 
the current rule A[N1] = -I, N2 - Nl + 1, A[N2] = 2, 
NE = Nl + 2 and the location which is the name of 
the immediately preceding rule names the current 
rule. thus if Nl' is the value of Nl prior to this 
initialization then A[Nr] ■ Nl - unless NR - 1 in 
which case the previous value of Nl is not defined, 
R names a one-dimensional array which contains 
pointers to rules such that label i names rule R[i]; 
R[i] - 0 means label i is not defined; R[i] > 0 
means the label is defined and R[i] is a pointer to 
the rule it namws; R[i] < 0 mea'is that label i is 
undefined but has been referenced by rule -R[i] and 
is the head of a chain, requires write access to R, 
requires read access to R, A names a one-dimensional 
array which from its lower bound '.o LPA contains 
representations of rules, requires write access for 
A, assumes LAB contains a legal label name or -1 
which indicates that no label has been concatenated, 
requires read access to N2, requires read access to 
LAB 

:31: PROCSUC, I.E. 

if R[LAB] > 0 then A[N2] «- R[LAB] 
els« 

if R[LAB] = 0 .hen 
begin 
R[LAB] <- -N2j 
A[N2] f 0 
end 

else 
begin 
A[N2] * R[LAB]; 
R[LAB] ♦- -N2 
end; 

effects and 
post-conditions: the successor to the current rule has been set or 

made part of a chain of rules which have the same, 
yet undefined, successor 

M^ 
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(«s) .32: 

assumptions: requires read access to NE, NE names a cell in A 
such that A[IME] indicates the current number of 
characters in the rule part being processed - left 
part if the left part is being processed or right 
part if the right part is being processed, assumes 
read access to CHAR, NG contains the number of 
generic variables encountered for the current 
algorithm, requires read access to NG, CG[i], 1 < i 
< NG, equals the i-th generic variable encountered 
for the current algorithm, requires read access to 
CG, LPA names the las cell of an array into which 
rules are stored, counting from the lower bound of a 
one-dimensional array . LPA is incremented by one 
each time an available cell needs to be named, 
requires read accesss to NA, requires write access 
to LPA, requires ability to invoke TEST which 
returns only if there storage space as indicated by 
the values of LPA and UPA, requires read/write 
access to L, A names a one-dimensional array which 
from its lower bound to LPA contains representations 
of rules, requires write access for A 

:32: STQRCHAR I.E. 

L - 1; 

while I < NG A CG[L] ^ CHAR do 
L «- L + 1; 

LPA «- LPA + 1; 
TEST; 
if L > NG then 

A[LPA] ♦- CHAR 
els« 

A[LPA] ♦- - L; 
A[NE] •• A[NE] ♦ 1; 

effects and 
post-conditions: A[LPA] is negative if CHAR was a generic and 

-A[LPA] then indexes the generic in CGj otherwise 
A[I.PA] IS CHAR A[NE] contains tne number of 
characters encountered thus far for the rule part 
being processed 

L "*"•—-—- 
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(#t) :33: 

assumptions: at most 100 labels are permitted and their 
definitions appear in the one-dimensional array 
R[l:100] such that R[i] contains the definition of 
label i when the label is interpreted as a positive 
integer, R names a one-dimensional array which 
contains pointers to rules such that label i names 
rule R[i]; R[i] - 0 means label i is not defined; 
R[i] > 0 means the label is defined and R[i] is a 
pointer to the rule It namwsj R[i] < 0 means that 
label i is undefined but has been referenced by rule 
-R[i] and is the head of a chain, requires write 
access to R, NR indicates the rulename which is 
currently being processed requires write access to 

NR, 

:33: 1N1TRA I.E. 

NR <- 0; 
SETFAIL(ERRULENAME); 

for H ♦- 1 step 1 until 100 do R[H] ♦- 0-, 

effects and 
post-conditions: the error routine for NEXTCHAR is set to ERRULE and 

ail label definitions are set to 0, i.e.   undefined 

MM ____—._ 
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(*u) :34: 

assumptions: NR indicates the rulename which is currently being 
processed, requires write access to NR, LPA names 
the las cell of an array into which rules are 
stored, counting from the lower bound of a 
one-dimensiünal array . LPA is incremented by one 
each time an available cell needs to be named, 
requires read accesss to NA, requires write access 
to LPA, requires ability to invoke TEST which 
returns only if there storage space as indicated by 
the values of LPA and DPA, A names a one-dimensional 
array which from its lower bound to LPA contains 
representations of rules, after rule initialization, 
A[N1] - 1 « NR, Nl names the current rule A[N1] - 
-1, N2 - Nl + 1, A[N2] - 2, NE = Nl + 2 and the 
location which is the name of the immediately 
preceding rule names the current rule. thus if NT 
is the value of Nl prior to this initialization then 
A[Nr] = Nl - unless NR = 1 in which case the 
previous value of Nl is not defined, requires read 
access to N2, requires write access to N2, NE names 
a cell in A such that A[NE] indicates the current 
number of characters in the rule part being 
processed - left part if the left part is being 
processed or right part if the right part is being 
processed, requires read access to NE, requires 
write access to NE 

:34: 1NITR - initialize for new rule i.e. 

•ffecte and 
post-conditions: 

NR «- NR + 1; 
LPA ♦- LPA ♦ 4; 
TEST; 
A[LPA - 3] «■ NR; 
if NR > 1 then A[N1] «- LPA - 2; 
Nl •■ LPA - 2; 
A[N1] «- -1; 
N2 «- LPA - 1; 
A[N2] «- 2; 
NE ♦- LPA; 
A[NE] «- 0; 

after rule initialization, A[N1] - 1 = NR, Nl names 
the current rule A[N1] - -1, N2 - Ml + 1, A[N2] = 2, 
NE - Nl +2 and the location which is the name of 
the immediately preceding rule names the current 
rule. thus if NT is the value of Nl prior to this 
initialization then A[Nr] = Nl - unless NR = 1 in 
which case the previous value of Nl is not defined 
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(*v) :35: 

assumptions: 

effects and 
post-conditions: 

after rule initialization, A[N1] - 1 = NR, Nl names 
the current rule A[Ni] ■ -1, N2 = Nl + 1, A[N2] = 2, 
NE - Nl + 2 and the location which is the name of 
the immediately preceding rule names the current 
rule. thus if NT is the value of Nl prior to this 
initialization tnen A[Nr] = Nl - unless NR = 1 in 
which case the previous value of Nl s not defined, 
LPA names the las cell of an array into wHch rules 
are stored, counting from the lower bound of a 
one-dimensional   array LPA   is   incremented   by   one 
each time an available cell needs to be named, 
requires read accesss to NA, requires write access 
to LPA, requires ability to invoke TEST which 
returns only if there storage space as indicated by 
the values of LPA and UPA, NE names a cell in A such 
that A[NE] indicates the current number of 
characters in the rule part being processed - left 
part if the left part is being processed or right 
part if the right part is being processed, requires 
read access to NE, requires write access to NE 

:35: INITRIGHT I.E. 

LPA •- LPA + i; 
TESTi 
NE - LPA; 
A[NE] «- 0; 

A[NE]   ■   0   and   indicates   the   current   number   of 
characters in iiie right half of the current rule 

MiaMH tA-na^^l^^^^^H 
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(*w) -.36: 

assumptions: R names a one-dimensional array which contains 
pointers to rules such that label i names rule R[i]i 
R[i] = 0 means label i is not defined; R[i] > 0 
means the label is defined and R[i] is a pointer to 
the rule it namws; R[i] < 0 means that label i is 
undefined but has been referenced by ruh -R[i] and 
is the head of a chain, requires read access to R, 
NR indicates the rulename which is currently being 
processed, requires read access to NR, requires the 
ability to invoke :3:, ERROR, with a string message, 
which does not return but handles further 
processing, requires read/write access to Q :36: EDR 
I.E. 

for   Q <- 1 step 1 until 100 do 
if R[Q] < 0 then ERRORC'UNDEFINED LABEUS)"); 

if NR < 0 then ERRORC'ALGORITMM CONTAINS NO RULES"); 

effects and 
post-conditions: a  set   of   rules   has  successfully   been   Inputted   and 

constitutes a syntactically correct algorithm 

(*x) :37: 

assumptions: read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE 
which contain the values of . , i , • i » » v > 
")", C[l] ... C[80] contains the characters, in 
order, of the card image which is inputted as a 
result of the last execution of GETIMAGE, requires 
read access to C, a colon in column 4 when 
processing rules ind;cates that the card is to be 
interpreted as a rule 

:37: CARD13RULE I.E. 

C[4] = COLON 

effects and 
post-conditions: true   if   card   is   to   be   irterpreted   »»s   a  rule;  false 

otherwise 



wmi^mmimmimm mimmmm "    ■J" ' yw^m^mmimmi^m 

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 2S1 

(*a)   : 1.» Il 
(*b)  : 1-3-25 
(*c)   : I-33S 
(#d)  : I-3' 4« 
V*e)   : hS-fl 
(*f)   : 1-3- 6: 

(*g)   : 13- 7: 

(#h)   : 1-3-5- IS 

(*i)    : I-3-5- 2: 

(*j)   : 1-3- 5-3J 
(«K)   : 1.3.5.4: 

(*l)    : I.3.5.5: 

(*m) : i-S'b'e*- 
(*n)   : 13-5-7J 
(*o)   : 20! 
(*p)   1 Ill 
(*q)   : 305 
(*r)   : 3I: 

(*s)   : 32^ 
(*t)   : 33S 
(*u)   : 34: 
(*v)   : 355 
(*W)   ! 36! 
(*X)    ! 37: 

(*a) ! I-3- |! 
(*b) ! 1-3 25 
(*c) : I-3-3» 
(«d) l|-3- '*• 
(*o) '■ i-a-s' 
(*<"; 5 1- 3  0: 

(«Si 51.3-7« 
l*h) : I3- b- 1« 

l*i) 5 1 • 3- b- Y' 

(*i) ' I-3-5-3- 
(*k) II.3. b »/• 
i*i) l|'3  b- b' 
(*m> J 1-3- b- 6: 

(*i»; :i-3b-7: 
(*ü/ I'cQi 

(*p) »tl« 
(*q) :3ü: 

(*r) I3|] 
(*s) :32; 
l*t) * (       * •OJ* 

^u) Jü^J 
(^v) S3b: 

vvw/ :oü; 

(*x) :37: 
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70717273747576777879808182838485868788899091 

l*a)  : i-3i: 
(*b) : {■3-2' 

(*c)   : 1.3.35 
(*d) : 1-3'OS 
(*«) : |.3-5S 
(*f)   : 1-3-3S 
(*g) : I-3-7S 
(*h)  : I-35- l! 
(*i)   : I-3-52! 
(*j)   : ht-^ai 
(*K)  : |.35-4: 

(*l)   : I-3-5-5S 
(*m) : I3-5.65 
(*n)  : 1.35-7J 
(*o)  : 20S 
(*p)  : 2|S 
(*q)   : 305 
(*r)   : 315 
(#S)   : 325 
(*t)   1 335 
(*u)   i 345 
(*v)  | 355 
(*w) . 365 
(*x) 375 

(*a) t|.» 15 
(*b; ! 1-3- 2: 

(*c) ! 1-3-35 
(*d) :i-3-45 

(*e) 5 1-3-55 
(*f) Si-3-65 
(*6) 5|'o  75 
(*h) 5 13  5' 15 
(*i) 5 1-3-5-2: 

(*j) 5 1.3-5'35 
(*k) 5 1-3-5-«5 

(*l) 5 1 ■ 3- 5- 55 
(*m) 5 IS-5-65 
(*n) 5 |. 3-5-7s 

(«o) 5 205 
(*p) 5215 
(«q) 5 305 
(*r) 5315 

(*s) 5 325 
(*t) 5 335 
(*u) 5 345 
(*v) 5 355 
(*w) 5 365 
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I I I 1 I 

I 1 
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I 1 I 1 

I 1 I I 
I I I 
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(*x)   ta?: l 

1) requires the abilily to invoke :3:, ERRO'S,   with a string message, 
which does not return but handles further processing 

2) requires ability to invoke IMEXTCARD which makes a new card image 

available, i.e. ability to invoke :2: and returns to the invoker 
only if a card for the current algorithm is available 

3) NEXTCHAR is the value of the character which immediately 

follows the character of the current card image produced by 

the last call of NEXTCHAR 
4) an end-of-file condition has occurred 
5) requires the ability to invoke the termination of the entire 

program, i.e. :1.5: ENDQFFILE 
6) requires the ability to invoke, ALGIN1T (:1.1.1:) 

the start of processing for a new algorithm 
7) CP is an index into C and indexes the last character which 

was produced as a value from NEXTCHAR.   After an execution 

of NEXTCARD, :2:, CP must equal    0 

8) write access required for CP 
9) C[l] ... C[80]   contains the characters, 

in order, of the card image which is inputted as a result 

of the last execution of GET1MAGE 

10) requires read access to C 
11) requires ability to invoke GET1MAGE which inputs a card 

and returns to the caller only if a card was inputted 
12) "," in columns 1 and 2 indicate that the program is to terminate 

and a "," m column 1 only indicates that a new algorithm 

is to be processed 
13) requires ability to print the string argument which is passed as 

the parameter to ERROR 
14) ability to perform printing operations 
15) requires ability to invoke ;1.4: which processes the rema;ning 

data images for this algorithm 

16) requires write access to PR 
17) pr  = true means "print the register alter each successful 

application of a rule; otherwise d not print the register 

after each successful application of a ruie 
18) MAXA equils the maximum number of alphabets permitted for 

an algorithm 

19) requires read access to MAXA 
20) requires ability to set the failure routine for NEXTCHAR, i.e. 

the ability to invoke SETEA1L with a variable which names 

the part which is to be invoked if no more characters are 

available from NEXTCHAR 
21) NG contains the number of generic variables encountered 

for the current aigonthm 
22) CG[iJ,  1  < i < NG, equalo the i-th generic variable 

encountered for the current alr.onthm 
23) AG[i], 1 < i < NG, equals the alphabet name which 

CG[i] is a generic variable 
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24) a failure routine has been bet if NcXTCHAR cannot 

provide additional ciiaracters nom the current image 

25) read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE   which 

contain the values of ".", ",", ":", ";", "C, ")" 
26) avsumes wnie access to CHAR 

27) as.umes mad access to CHAW 
28) reauires ability to invoke RULES whicr. names the rule input 

part, but unc« RULES is a label in the mam program 

a go io ot.itfment can be used 

29) ERIJIIC-MO tssumes compete control when invoked 
and handles   error message", and further processing 

30) NA equals the number of alphabets which have been processed 

thus far for the current algorithm 

31) requires read accesss to NA 

32) requires write access to NA 

33) requres read/wnie access to NOIT, which controls a 
loop that process alphabets 

34) requires ability to invoke STCRALPH, which sto'es the alphabet 

characier .f all requirements are mot.otherwiao ! TORALPH 

invoke*., •ppropriatfl error routines 
35) requires rer-a/write access to N01T1, which contiols a loop 

that  proce:.'..es gOMriCS 
36) require , abilit/ to invoke STORGEN which stores the content 

of CKUR, if lepal, otherwise invokes the apporpnate 
errc. 

37) requires ability to invoke ALPHF1N which cmpletes any 
needed processing after an entire alphabet has been 
stored 

38) either no alphabets have been processed rf all alphabets 

processed 'n.i'e been correct 

39) requires abi'ity to invoke FAIL which correctly determines 

which objects assume control 

40) read access required for CP 

41) read and write access requued ior the variable I 

42) requires abilit/ to invoke IESTLEGAL whicn returns only if 
^ I   J ,.      5 A       II   It        II   II tl   II H    II 
LH/VH  is  not    . ,    , ,    ; ,    : 

43) •■equires ability to invoke TESTGCN which returns only if 

CHAR is not equal    to an already 

used generic variable for this algorithm 
44) A names a onf-dirnc-nr.ional array, which from UPA to its 

upper bound contains alphabetic characters 

45) requires read access for A 
46) NO contain'-, the number of generic variables encountered 

for the current algorithm 

47) requires read accev. to NG 

48) requires wnie KC*S( io NG 
49) requires wnie «cces: to AG 
50) CHAR conumv;, me ne<<t unstored character 

from the alphabet or genencs   being currently processed 

51) AL[1] ... ALiNAJ names the index of the lower bound of the 

ammm Mi _   
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characters in an alphabei, i.e. AL[I] is the lower 
bound tor the i-th alphtibot and AL[i-l] is the 

upper bend tor thiit alphabet, where AL[0] equals the 

initial value plus 1 ot ÜPA 

52) requires read access to AL 
53) requires ability to invoke ERRGEN, which assumes 

control  and invokes an appropriate error routine 

54) requires ability to invoke TESTAL which returns only if 

CHAR is not eqi-al to a character which has a\ros&, occurred   in the 

alphabot currently b*inf processed 
55) requires ability to invoke TEST which teturn1:   only if there 

storage space as indicated by the values of LPA and UFA 
56) I'PA names the last cell of an array into which an alphabetic 

character was stored, counting from the top of some 

one-dimensional array.   UPA is decremented by 1 
each time an available cell needs to be named 

57) requires read    access to UPA 

58) requires write access to UPA 

59) A names a one-dimensional array, which from UPA to its 

upper bound contains alphabetic characters 

60) requires write access for A 

61) requires write access to AL 
62) LPA names the las cell of an array into which rules 

are stored, counting from the lower bound of a 

one-dmiensional array .   LPA is incremented by one each 
time an available cell needs to be named 

63) requires read access to LPA 

64) LPA and UPA are index variables for the same array 

65) requires read access to CG 
66) requires write acress to CG 

67) requires rcad/wriie access to J 

68) requires read/wrue KCtSS to K 

69) requires read access for A 
70) requires ability to invoke IN1TRA, which initializes the 

input  part tor rules for a new algoninm 

71) requires aoility to invoke CAkblijPULE wlvcn determines 

whether the current card image is to be interpreted as 

as a rule or not 

72) requires ability to invoke PP1NTCARD 

which prints the current card image 

73) requires ability to invoke EDR, end of rules condition 
processor 

74) requires nbiiity to invoke INiTR which initializes 
for inputting a new rule 

75) requires ability to invoke LABL which collects a label 
trrmmated by the character ir. TERM and leaves the integer 

label value in LAB 

76) requires ability to invoke STQRLABEL which associates 

the label with the current rule 
/7)    requires write access to TERM 

■n mm 
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78) 

79) 

80) 

81) 
82) 
83) 

84) 

85) 
86) 
87) 

88) 
89) 

90) 
91) 

92) 

93) 
94) 
95) 
96) 

97) 
98) 

ability to invoke STQRCHAR which returns only if the 
conteni of CHAR could be successfully stored with rule 
being processed 

requires   ibility to invoke INITRiGHT which initializes 
for processing the input of a right part of a rule 

requires ability to invoke PRQCTERM which indicates a rule as 
a terminal rule; requires ability to invoke PROCSUC 
which processes the successor part of a rule 

requires re^d access to LAB 
a negative value in LAB indicates that no label was collected 
after rule initialization, A[N1J - 1 ■ NR, Nl names the 
current rule A[N1] - -1, N2 = Nl + 1, A[N2] - 2, NE - Nl + 2 
and the location which is the name of the 
immediately preceding rule names the current rule, thus if 
NT is the value of Nl    prior to this initialization 
then A(Nr] ■ Nl - unless NR =• 1 in which case the previous 
value of Nl is not defined 

R names a one-dimensionai array 
which contains pointers to rules such that label i 
names rule R[i]; 
R[i] = 0 means label i is not defined; 
R[i] > 0 means the label is defined and 

R[i] is a pointer to the rule it namws; 
R[i] < 0 means that label i is undefined but has 

been referenced by rule -R[i] and is 
the head of a chain 

requires write access to R 
requires read KCtSf to R 
A names a one-dimensiona' array whicn from its 
lower bound to LPA contains representations of rules 

requires read access to NE 
NE names a cell in A such that A[NEj indicates the current number 
of characters in the rule part being processed - left part 
if the left part is being processed or right part if the 
right part is being processed 

requires write access to LPA 
at most   100 labels are permitted and their definitions 

appear m the one-dimensional array R[l;100] such that 
R[i] contains the definition of label i when the label 
is interpreted as a positive integer 

NR indicates the rulename which is currently 
being processed 

requires read access to NR 
requires write access to NR 
requires    write access to NE 
TERM contains the non-digit character which is expected 
to terminate a label 
requires read access to TERM 
the digits "0", "1", "2", ... , "9" are represented by character 
codes such that "0" - ZERO - 0, ... ,"9" - ZERO - 9 
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and the only legal label characters are digits and BLANK 
99) rcad/wnte access to LAB is required 
100) legal ran^e of labels is 1 through 100 
101) BLANK contains the representation of a space and ZERO 

contains the representation of a zero 
102) requires read access to BLANK and ZERO 
104) assumes LAB contains a legal label name or -1  which 

indicatns that no label h.is been concatenated 
105) require, write access to LAB 
106) Nl  rumwt the rule being currently inputted 
107) requires read access to Nl 

ERRULENAME contains the value which indicates o routine 
which cm take control if an error is discovered as rules 
are being stored 
requires read access to ERRULENAME 
requires read access to N2 
requires read/write access to L 
requires write access to N2 

113) a colon in column 4 when processing rules indicates that 
the card is to be interpreted as a rule 

114) requires read/write access to Q 
115) a value of -1 in A[N2J indicates that the 

rule is a terminal rule 
116) LRRHLADNAME it a vanabln wlncn names the routine ERRHEAD 
117) requires read ace.".-. lo tRRHEADNAME 
118) RULE5NAME is a vdnable which names the routine RULES which 

inputs the rules for an algorithm 
119) requires read KCtM to RULLSNAME 
RUB for the expansion of :1.3: is 

108) 

109) 
110) 
111) 
112) 

((a) ((f) ((e) ((f) (ft) ((I) ( ( k . o ) ((i) 

(( d , g , h ) ( ( v , w / u x) ((C) (( y . u ; (( z , t ) 

( m , q , p )) 1.73 ) 1.28 ) 155 ) 1.50 ) 1.39 ) 1.11 ) 

1.12 ) .39 ) .35 ) A7 ) .30 ) .08 ) .10 ) 0 

The actual loadings are 

((a) ((r) ((e) ((f) ((•) ((i) M k , o ) ((i) 

(( d , g , h ) ( ( v , w ) (( x) 

(( *' , *b , *c , *d , *e , *f , *g ) (( y , u ) (( 2 , t ) 

( m , q , p ))  1.29 ) 1.28 ) .83 ) 1.16 ) 1.02 ) .96 ) .98 ) 54 ) 

35 I  47 ) .oU ) .07 )   10 ) 0 

mm MM mmm 
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These va ues are mostly lower than the RUB for the expansion. 

Consequently, no attempt will be made to find a better decomposition for 

this stage. 

RUB for the expansion of :1.3.5: is 

((a) ((r) {(•) {(f) ((s) ((I) ( ( k , o ) ({.) 

(( d , g , h ) ( ( v , w ) {( x) 

(( *a , *b , *c , *d , *« , *f , *g ) (( y , u ) (( z , t ) 

( m , q , p )) 1.03 ) 1.06 ) .83 ) .91 ) .65 ) .87 ) .88 ) .48 

.31 ) .42 ) .26 ) .08 ) .09 ) 0 

Unfortunately, the actual loadings are 

{(a) ((r) Ue) ((f) ((•) ((I) ( ( k , o ) ((i) 

(( d , g , h ) ( f v , w ) (( x) 

(( *a , *b , *c , *d , *h , *i , *j , *k , *l , 

«m , *n , *f , *g ) (( y , u ) (( i , 1 ) 

( m , q , p )) 1.29 ) 1.28 ) .83 ) 1.16 ) 1,02 ) .96 ) .98 ) .54 ) 

.35 ) .47 ) .30 ) .07 ) .10 

A    modification    of    this    decomposition    leads    to    the    following    better 

decomposition 

{(a) ((r) ((•) ((f) ((•) ((I) ( ( k , o ) ((i) 

(( d , g , h ) ( ( v , w ) (( x) 

((  *a , *b , *c , *d , *h , *i , *j , *i , 

*f , *g M( y , u ) (( 2 , i ) 

( m , q , p , *k , *m , *n )) 1.57 ; 1.41 ) 1.39 ) 1.36 ) 

.97 ) 1.00 ) 101 ) .47 ) .49 ) .60 ) .26 ) .07 ) .09 ) 0 
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Here, those objects that recognize and store information for the rule 

execution part ( m , q , *K , *m , *n ) interact most with the rest of 

the program. Also, those oujects that control and invoke the above 

mentioned objects share much information and appear grouped together ( 

«a , *b, «e , *d , «h , *i , *j , *l , *g , *f ). Since the remaining 

objects in the table will be used - in part - by the expansion oi :1.4:, 

an analysis of the entropy loadings involving them is postponed until 

after the elaboration of il.4t 

■^MMBM. 
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Below   is   a   map   of   the   elaboration   of   il.4i  and  most   of   the  remaining 
objects. 

(>a)      :1A1:      (262)     control      input     of     the     initial     register 
'contents and markov algorithm execution. 

Ob)       :1A2:      (262)      print       card;      input       initial      register 
contents. 

(>c)     :1A3.1:     (263)     initialize     for     execution     of     currently 
stored algorithm and the current register contents. 

(>d) :1A3.2: (264) control attempts to apply the rules. 

(>•) :1A3.3: (264) attempt to apply current rule. 

il.4i Of) :1A3.4: (265) rpplrfce matched string and possibly print 
the register contents; set next rule to the successor for a 
successful aophcation of the current rule. 

Og)   ; 1.4.3.5:   (265)   set   next   rule   to   be   the   successor   for   a 
failure to match left part of current rule. 

Oh)      :1A3 6:     (266)     terminate      algorithm     interpretation     if 
necessary. 

(>i)   :40!   (267)   search   for   an   mstanre   of   the   left   half   of   a 
rule in the register. 

Oj)    :41:   (269)    replace   matched   string   by    the    right    half   of 
the current rule. 

Ok)    :42:   (270)    adjust    the    register    to   accomodate   the   right 
half of the current rule. 

01)    :1'I3:   (271)    insert   the   right    ludf   uf   the   current   rule   into 
the register. 

Om)    :44:    (272)    test   whether    a   generic   variable   matches    a 
character m the register. 

On) :45: (272) test whether a rule character is a generic. 

(>o) :46: (273) get a character from the left part of a rule. 

Op)   -Al:   (2/3)   get   the   successor   for   a   rule   that   corresponds 
to a successful application of the rule. 

Oq)   :48:   (273;   get   the   successor   for   a   rule   that   corresponds 
to an unsucces ful application of the rule. 

_ 
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Or)   :49:   (274)   get   the   location   of   the   first   charecter   of   the 
left part of the current rule. 

(>s)    :50:    (274)    indicate    an    error    in    the    heading    for    an 
algorithm. 

(>t) All (275) invoke the rule input part of the program. 

(>u) :52: (274) indicate an error in a rule. 

(>v)   :53:   (275)   indicate   an   error   in   an   initial   register   data 
image 

(>w)   :54:   (275)   indicate   a   generic   variable   occurring   in   the 
data. 

Ox)      :55:     (273)     initializa     all     generic     variables     to     be 
undefined. 

Oy)    :65:   (276)   get   character    from    the   right    part    of    the 
current rule. 

Oz) :66: (276) test whether a generic variable is defined. 

(<a)    :67:    (276)    get    the    length    of    the    right    part    of    the 
current rule. 

(<b)    :68:   (277)   get   the   character   associated   with   a   generic 
variable. 

«c)   :70:  (277)  get   the   length  of   the   left   part  of  the  current 
ruie. 
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Below    is    an    elaboration   of    :1.4:,   which    executes    an    algorithm    with 
respect to its data images 

(>«) ilAli 

assumptions: 

(>b) :1A2: 

assumptions: 

assumes all rules have been inputted correctly; 
assumes that the current card isrepresents an 
initial register contents; assumes that NEXTCARD 
returns control only if a data image is available 
for the current algorithm 

:1A1: repeat 
begin 
:1A2: ; 
:1A3: ; 
:1A4: 
end 

until false; 

requires the ability to invoke A, ERRQRE, with a 
string message, which does not return but handles 
further processing at the execution stage, requires 
ability to invoke PRINTCARD which prints the current 
card image, ERRDATANAME contains a value which 
mdictites a routine whicn indicates a routine which 
can take control if an error is discovered while an 
initial register contents is oemg input, requires 
read access to ERTOATANAME, requires ability to set 
the failure routine for NEXTCHAR, i.e. the ability 
to invoke SETFA1L with a variable which names the 
part which b to be invoked if no more characters 
are available from NEXTCHAR, REG, is a 
one-dimensional array which comams the characters 
m the register, assumes write access to REG, 
assumes read access to MAXRL which contains the 
maximum number of characters permitted in the 
register, NEXTCHAR is the value of the character 
which immediately follows the character of the 
current card image produced by the last call of 
NEXTCHAR,  requires   ability   to  invoke  TEoTLEGAL  which 

i ■ « #^l  1 A n II   H II   M M   M tl   II 

returns only if CHAR is not . , , , ; , : , 
requires ability to invoke TCSTGEN which returns 
only if CHAR is not equal to an already used generic 
variable for this algorithm, requires write access 
to RL, requires read/write access to RPR which is 
used as a temporary register position pointer when 
the register is being mnally filled, requires 
read/write access to RC which is used to contain 
single    characters   from    the    current    data   card   when 

^^m 
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the register is being filled, read access to DOT, 
COMMA, COLON, SEMI, OPEN, CLOSE which contain the 
values of "", ",", ":", "j", T, ")" 

: 1.4.2:     PRINTCARDj     INPUT     THE     INITIAL     REGISTER 
CONTENTS, I.E 

PRINTCARD; 
SETFAIL(ERRDATANAME); 
RPP «■ 0; 

RC «- NEXTCHAR; 
while RC / SEMI do 

begin 
RPP •■ RPP + 1; 
if RPP > MAXRL then 

ERROREC'REGISTER OVERFLOW); 
TESTLEGALj 
TESTGEN; 
REG[RPP] <- RC; 
RC «- NEXTCHAR; 
end; 

RL •- RPP; 

effects and 
post-conditions: 

(>c) il.43.il 

assumptions: 

an initial register contents has been correctly set 
into the register and RL contains the numbei of 
characters in the register 

the name of the first rule is 2, MAXT1 contains the 
number of trial rule applications still permitted 
for this execution of an algorithm, requires write 
access to MAXT1, write access to RULENAME required, 
RULENAME names the rule currently being processed 

:1A3.1:       INITIALIZE      PROCESSING       FOR      CURRENT 
ALGORITHM WITH CURRENT REGISTER CONTENTS, I.E. 

RULENAME «- 2; 
MAXT1 «- MAXT; 

effects and 
post-conditions: processing    initialized    for    current    aigori'.hm    and 

register contents 
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(>d) :1A3.2: 

assumptions: RULENAME names the rule currently being procpssed, 
requires read access to TRM, FIN is a result of 
NOSUC which indicates that there are no more rules 
which can be applied, requires read access to FIN, 
read access to RULENAME required, TRM is a result of 
5UCSUC and UNSUCSUC which indicates that the 
algorithm should terminate, i.e. TERM names no 
legal and indicates termination 

: 1.4.3.2: while RULENAME t TERM A RULENAME * FIN do 
begin 
:1A3.3: j 
:1.4.3.4 
: 1.4.3.5 
: 1.4.3.6 
end 

effects and 
post-conditions: 

(>e) :1.4.3.3: 

assumptions: 

;n  algorithm  has  been  executed  with respect  to  an 
initial register contents 

requires ability to invoke SEARCH which searches 
for a match of the left part of rule RULENAME, and 
which returns the value true if a match is found, 
false otherwise, requires the ability to invoke :4:( 
ERRQRE, with a string message, which does not return 
but handles further processing at the execution 
stage, MAXT1 contains the number of trial rule 
applications still permitted for this execution of 
an algorithm, requires read access to MAXT1, 
requires write access to MAXT1 

:1.4.3.3: 

effects and 
post-conditions: 

MAXT1 «- MAXT1  - 1; 
if MAXT1 < 0 ther. LRRQREC'MAXIMUM NUMBER OF TRIALS EXCEEDED"); 
if   SEARCH then 

:1 4.3.4: else :1.4.3.5: ; 

the rule, RULENAME, has been applied, if possible, 
to the register contents and a new successor rule 
has been set in RULENAME 

MBMMi 
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Of) :1A3.4: 

assumptions: 

effects and 
post-ctnditions: 

(>g) :1A3.5: 

assumptions: 

effects and 
post-condi ions: 

RULENAME names the rule currently being processed, 
requires ability to invoke REPLACE, which has the 
'ffect of replacing the register contents with the 
right part of the rule named by RULENAME, where the 
left part was matched, requires the ability to 
invoke SUCSUC which hat the value of the success to 
rule RULENAME for a successful application of rule 
RULENAME, write access to RULENAME required, 
requ res read access to PR, pr = true ireans "prnt 
the register after each successful application of a 
rule; otherwise d not print the register after each 
successful application of a rule, requires the 
ability to invoke PRINTREG which prints the contents 
of the register 

:IA.3A- REPLACE; 
RULENAME «- SUCSUC; 
if PR then PRINTREG; 

the right part of rule, RULENAME, has replaced the 
left-most occurrence of the left part of the rule, 
RULENAME 

RULENAME names the rule currently being processed, 
requires the ability to invOKQ IINSUCSUC which has 
the value of tne name of the successof to rule 
RULENAME after an unsuccessful application of rule 
RULENAME, write access to RULENAME required, 

:1A3.5:   RULENAME »■ ONSUCSUC; 

RULENAME contains the name of the rule which is to 
be attempted next if the current rule could not be 
applied successfully 
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(>h) :1.4.3.6: 

assumptions: RULEN^lvC names the rule currently being processed, 
requires the ability to invoke A:, ERRGRE, with a 
string message, which does not return but handles 
further processing at the execution stage, requires 
the ability to invoke PRINTREG which prints the 
contents of the register, pr = true ^jans "print the 
register after each successful application of a 
rule; otherwise d not print the register after each 
successful application of a rule, requires read 
access to PR, if RULEiNAME = TRM then dot termination 
has occurred, otherwise the rules have been 
exhausted, read access to RULENAME required, TRM is 
a result of SUCSUC and UNSUCSUC which indicates that 
the algorithm should terminate, i.e. TERM names no 
legal and indicates termination 

:1A3.6: if RULENAME = TRM then 
begin 
it NOT(PR) then 

PRINTREG; 
ERROREC'DOT TERMINATION") 

end 
else 

ERROREC'RULES EXHAUSTED"); 

effects and 
post-conditions: The    appropriate    termination 

printed    and    ERRGRE    has    been 
further processing 

message 
invoked 

has    been 
to    handle 

mm mm- 
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(>i) :40: 

asEUtnptions: requires the ability to invoke LEFT which names the 
location which is the first character of the left 
part of rule, RULENAME, requires ability to invoke 
LENGTHL which has the value of the number of 
characters m the left part of the rule named by its 
parameter, RULENAME names the rule currently being 
processed, reaa access to RULENAME required, LEN 
names the number of the character m the left oarf 
of the rule currently being processed, requires read 
access to LEN, requires write access to LEN, LFT 
names the starting location for the left part of the 
current rule name, requires read access to LFT, 
requires write access to LFT, requires read/write 
access to NOSUC, RL contains the current register 
length, requires read access to RL, requires ability 
to invoke RULLFTCHR(A,B) which produces the value of 
the B-th character of the left part which starts at 
A, and requires ability to invoke INITGEN which sets 
the definitions of ail generic variables to be 
undefined, RP names the character position where a 
character sequence is to be replaced, requires read 
access to RP, requires write access to RP, requires 
ability to invoke GENERIC which has the value true 
if its parameter represents a generic variable, 
requires read/write access to CC, requires 
read/wnte accfiss to LHP, REG, is a one-dimensional 
array which contains the characters in the register, 
assumes read access to REG 

:40: SEARCH I.E. 

LFT K LEFTlRULENAt.'Ei'i 
LEN «- LENGiHLvRULENAME); 
NOSUC »■ »rue; 
if RL > LEN then 

begin 
RP - 0; 
whue RP < RL + 1 - ' EN A NOSUC do 

begin 
RP •- RP +  1 
LHP «- 1; 
NOSUC ^ false; 
INI! GEN; 
while LHP < LEN A NOT(NOSUC) do 

begin 
CC «- RULLFTCHRa^T, LHP); 
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if GENERIC(CC) 1h«n 
b«gm 
if NOKMATCHGEMCC, Rd[RP ♦LHP - 1] ) th«n 

NOSUC *■ irue 

end 
•It« 

if CO 4 REG[RP ♦LHP - 1] fh«n 

NOSUC *■ fru« 
LHP ♦- LHP ♦ 1 

end; 
er.d; 

end; 
SEARCH - NOT(NOSUC); 

t ifects and 
post-conditions: SEARCH =t-ue if the left part of rule RULENAME 

matches a substrng of the regirter and sets up 

internai variables whicn can be used by REPLACE for 
replacing the first occurrence of a match from the 
left end of the register by the right part of rule 

RULENAME; false otherwise 
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(>j) «41« 

assumptions: 

effects and 
post-conditions: 

requires ability to invoke LENGTHL which has the 
value of the number of characters in the left part 
of the rule named by its parameter, requires the 
ability to invoke :4:, ERRQRE, with a string 
message, which does not return but handles further 
processing at the execution stage, requires ability 
to invoke ADJUST whose first parameter indicates the 
number of characters in the left part of a rule and 
whose second par imefer indicates the number of 

characters in the right part of the rule. ADJUST 
modifies the register, if necessary, so that the 
right part can be inserted where the matched left 
part is, requires ability to invoke INSERT which 
inserts the appropriate right part over the matched 
left part, requires ability to invoke LENGTHR which 
returns the value of the number of characters in the 
right part of the rule named by its parameter, 
requires rec'J/wnte access to LEN and LENR, requires 

read access to LENR, requires write access to LENR 

:41: REPLACE I.   E. 

LENR - LENGTHRtRULENAME); 
LENL - LENGTHL(RULENAME); 
if RL - LENL • LENR > MAXRL then 

ERRQREC'REGISrEH OVERFLOW"), 
ADJUST(LENL,LENR); 
INSERT; 

the   right   part   of   rule,  KULtNAME,  has  replaced  the 
leftmost occurrence of the left part of RULEMAME 
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(>K) :42: 

assunptions: RL contains the current register length, requires 
read access to RL. requires write access to RL, 
requires read access to LI, L2, and TP; LI contains 
the length of a ..hcracter sequence being replaced by 
a character sequence of length L2, REG, is a 
one-dimensional array which contains the characters 
in the register, assumes read access to REG, assumes 
write access to REG, RP names the character position 
where a character sequence is to be replaced, 
requires read access to RP, assumes LI * L2 

■A2: ADJUST(L1,L2)! I.E. 

H LI < L2 th«n 
bsgin 
for TP ^ RL step -1 until RP + LI do 

REG[TP ♦ L2 - LI] «- REGITP]; 

•nd 
•is« 

begin 
for TP •- RP + LI step 1 until RL do 

REG[TP ♦ L2 - L1J «- REG[TP]; 

end; 

RL ♦- RL + N2 - Nl; 

effects and 
post-conditions: the register is modified so that a replacement of a 

string slrrling at RP of length LI can take place 
correctly .or a string of length L2 

tm—m 
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01) =43: 

assumptions: 

affects anj 
post-conditions: 

requires read write access to TQ and CQ, RP names 
the character position where a character sequence is 
to be replaced, requires read access to RP, requires 
ability to invoke GENERIC which has the value Iru« 
if its parameter represents a generic variable, 
requires ability to invoke RULRTCHAR{A) which 
returns the character winch is the A-th character of 
the right side of run; RULENAME, requires the 
ability to invoke LM)EF(A) which returns the value 
♦ru» if A is an undefmeu generic variable 
representation for this rule application; falsa 
otherwise, requires ability to invoke VALG(A) which 
prodnres the character associated with the generic 
representation A for this rule application, requires 
the .ibilify to mvoke :4:, ERRQRE, with a string 
message, which does not return but handles further 
processing at the execution stage, REG, is a 
one-dimensional array which contains the characters 
in the register, assumes write access to REG, 
assumes LENR contains the length of the sfrmg being 
inserted, requires read access to LENR 

:43: INSERT I.E. 
for   JQ -  1 step i until LENR do 

begin 
CO - RULRTCMARirQ); 
if GENERIC(CQ) then 

begin 
if UNÜEHU Q) then 

ERRORtrUNüEFINED GENERIC USED IN RIGHT PART OF RULE") 
else REGiRP * TQ - 1] «- VALG(CO) 
end 

else 
REG[RP ♦ TU  • 1] •- CQ 

end; 

the characters in the right pari of a rule have 
been stored into successive locations of REG 
starting at RP 

J 
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(>m) :44: 

•tsumptionr 

•ffccU and 
post-conditions: 

On) :45: 

issumptiont: 

effects   -.nd 
post-conditions: 

(>o) Mt 

■•sumptions: 

AL[1] ... AL[NA] names the index of the lower 
bound of the characters in an alphabet, i.e. AL[i] 
is the lower bound for the i-fh alphabet and AL[i-l] 
is the upper bound for that alphabet, where AL[0J 
equals the initial value plus 1 of UPA, requires 
read access to AL, AG[i], 1 < i < NG, equals the 
alphabet name which CG[i] is a generic variable, 
requires read access lo AG, G is a one-dimensional 
array such that G[i] - -1 if generic variable i is 
not defined after a successful search for a left 
part of a rulei, otherwise G[i] > 0 and is the 
character corresponding to the generic i, requires 
read access to G, requires write access to G, 
requires read/wnte access to NMAT 

:44: MATCHGENCCQ) I.E. NMAT - true; if Gr-CC] < 0 
then begin T <- AL[AG[-CC]]; while NMAT A T < 
AL[AG[-CC] -1] do begin if Q = A[T] then begin 
G[-CC] ♦- A[T]; NMAT ♦- false end; end else if G[-CC] 
- Q then NMAT ♦- hlse 

MATCHGEN •- NOT(NMAT); 

MATCHGEN  = true if  the generic  indicated  by CC is 
matched by Q; false otherwise 

assumes thai  a generic in a rule has been saved   is 
a negative value 

:45: GENERIC(S) I.E. 

GENERIC ♦- S < 0; 

GENERIC   «=   true  if   S  represents  a  generic   variable; 
false otherwise 

requires   read   access   for   A,  assumes   Q   is   a   legal 
character pointer into the left 

■■ 
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effects and 
post-conditions: 

Op) :A7: 

assumptions: 

:46: RULLFTCHR(P.Q) IE. 

RULCHAR <- A[P + Q ♦ 2]; 

RULLFTCHR  -  the Q-th character  in  the  left  part  of 
the rule named by P 

requires read access <or A, assumes A[RULEIMAME + 1] 
names the successor (or rule RULENAME for a 
successful application of rule RULENAME, RULENAME 
names the rule currently being processed, read 
access to RULENAME required, 

effects and 
post-conditions: 

(>q) :48: 

assumptions: 

effects and 
post-conditions: 

:47: SUCSUC «- A[RULLNAME +  I] ; 

SUCSUC   na^es   the   rule   to   be   tried   next   after   a 
successful application of rule, RULENAME 

requires read access for A, RULENAME names the rule 
currently being processed, read access to RULENAME 
required, assumes A[RULLNAME] names the successor 
rule for rule RULENAME after an unsuccessful 
application of rule RULENAME 

:48: UNSUCSUC - A[RULENAME]; 

UNSUCSUC names  the rule to be ti ie.,i next  after  an 
unsuccessful application to rule RULENAME 
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Or) :49: 

•«sumptions. 

•ffacts and 
post-conditions: 

(>t) :50: 

assumption; 

effects and 
post-conditions: 

(>t) :5l: 

assumptions: 

effects and 
post-condiliunr 

(>U) :52: 

assumptions: 

•fleets and 
post-conditions: 

assumes   X   +  2  is  an  index  which  names  the   first 
character of the left part of a rule -1 

:49: LEFT(X) I.E. 
LEFT «- X ♦ 2; 

LEFT is a value which names the left part of 'ule X 

requires the ability to invoke :3:, ERROR, with a 
string message, which does not return but handles 
further processing 

:50: ERRHEAD, I.E. 

ERROR<"HEADING NOT CORRECT"); 

:3:,    ERROR,    has    been    invoked    and    handles    al1 

further processing 

requires ability to invoke RULES which names the 
rule input part, but since RULES is a label in the 
mam program a go to statement can be used 

:51:   to »o RULES; 

the  rule  input  part of  the  program  is  given  control 
for further processing 

requires the ability to invoke :3:, ERROR, with a 
string message, which does not return but handles 
further processing 

:52: ERRULE I.   E. 

ERRORfRULE NOT CORRECT")) 

:3:, ERROR, has been invoked and handles further 
processing 

■biM 
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(>v) :53: 

assunptions 

affects and 
post-conditions: 

(>w) .54: 

assumptions: 

effects and 
post-conditions; 

(>x) :55: 

assumptions: 

effects and 
post-conditions: 

requires the ability to invoke :3:, ERROR, with a 
string message, which does not return but handles 
further processing 

:53: ERRDATA I.E. 

ERROREC'DATA NOT CORRECT"); 

*3:, ERROR, has been invoked and handles further 
processing 

requires the ability to invoke :3:, ERROR, with a 
string message, which does not return but handles 
further processing 

:54: ERRGEN I.E. 

ERRORC'GENERIC VARIABLE IN DATA")} 

:3:, ERROR, has been invoked and handles further 
processing 

requires read/write access to QK, G is a 
one-dimensional array such that G[i] » -1 if generic 
variable i is not defined after a successful search 
for a left part of a rulei, otherwise G[i] > 0 and 
is the character corresponding to the generic i, 
requires write access to G, NG contains the number 
of generic variables encountered for the current 
algorithm, requires read access to NG 

:55: INITGEN I.E. 

for QK «- 1 step 1 until NG do 
G[QK] - -I; 

the   definitions  of   the  generic   variables   have   been 
set to undefined 
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(>y) :65: 

assumptions: 

effects and 
post-conditions: 

Ox) :66. 

assumptions 

effects and 
post-conditions: 

«a) :67: 

assumptions: 

effects and 
post-conditions: 

requires read access for A, assumes Y is a legal 
character pointer into the right part of a rule 
whose first character is named by X + LENGTHL(X) + 
4, requires ability to invoke LEIMGTHL which has the 
value of the number of characters in the left part 
of the rule named by its parameter 

:65: PULRTCHRW.Y) I.E. 
RULRTCHR ♦- A[X + LENGTHL(X) + 3 + Y] ; 

RULRTCHR is the Y-th character in the right  part of 
rule X 

G is a one-dimensional array such that G[i] - -' if 
generic variable i is not defined after a successful 
search for a left part of a rulei, otherwise G[i] > 
0 and is the characttr corresponding to the generic 
i, requires read access to G 

:66: UNDEF(X) I.E.   UNDEF .- G[-X] > 0; 

UNDEF    -   true   if    no   definition   for   the   generic 
indicated by X exists; otherwise false 

requires read access for A, requires ability to 
invoke LtNGTHL which has the value of the number of 
characters m the left part of the rule named by its 
parameter, assumes A[X -i LENGTHL(X) + 3] is the 
number of characters in the right part of rule X 

:67: LENGTHR(X) I.E. 

LENGTHR •• A[X + LENGTHL(X) ♦ 3]; 

LENGTHR equals the  length of the  right  part  of  the 
rule indicated by X 
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(<b) :68: 

assumptions: 

effects and 
post-conditions; 

«e) :70: 

assumptions: 

effects and 
post-conditions: 

G is a one-dimensional array such that G[i] - -1 if 
generic variable i is not defined after a successful 
search for a left part of a rulei, otherwise G[i] > 
0 and is the character corresponding to the generic 
i, requires read access to G 

:68: VALG(X) I.E. 

VALG ♦- Gf-X]; 

VALG   equals    the   character    associated   with   the 
generic variable indicated by X 

requires read access for A, assumes read access to 
X and assumes that the length of the left part of a 
rule named by X is contained in A(X ♦ 2] 

:70: LEIMGTHUX) I.E. 

LENGTHL «- A[X + 2]; 

LENGTHL   is   the   length   in   characters   of   the   left 
part of the rule named by X 
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>■    : 1 • 4- 1 '• 
>b    : I.4.2: 

>c    : I-4-3' \- 
>d    : 14-3- Z- 
>•    : I./J-3-3! 
>f     : 1.4.34: 
>g    : 1-4. 3-55 
>h    : 14. 3-65 
>i     ! not 
>j     1 415 
>k    ! 42: 
>l       ! 43*. 
>m 44: 
>n 4*5 
>o 465 

>P 475 

>q :48: 
>r !495 
>8 :505 1 
>t !5|5 
>u 5 525 1 
>v 5535 1 
>w 5545 1 
>x 5555 

>y 5 655 
>2 5 665 
<a 5 675 
<b 5 685 
<c 5 705 

I   23456789  101112I3I4I5I6I7I8I9202I22232425 

I 1 1 

mm 
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>J : |. 4. 1: 

>b 5|-4-2: 
>c S|-4-3- 1 
>d S|•/! 3-2 
>• 5I-4-3-3 
>f : 1.4.3-4 

>g !l-4-3.5 
>h ! 1   4-3'6 
>i !40: 

>j l4tl 
>k !42: 
>l !43S 
>m !44: 
>n 45S 
>o 46: 

>P 47: 

>q mß 
>r 49: 
>s     : 50! 
>t        ! Ill 
>u    : 52? 
>V      ! 53s 
>w   : 54: 
>x     : 55J 

>y   : 65: 
>z    : 66: 
<a    : 67: 
<b    : 68: 
<c    : 70: 

28293031323334353637383940414243444546474849505 i 52 

I I 

I I 

I I 
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>d t|>4- !• 
>b 5 1   4-25 
>c : 1   4-3- |S 
>d : 1. 4. 3. 2: 
>o *• 1 • 4- 3- 3-' 
)f : 14. 3. 45 

>g 11.4, 3. 5: 
>h 5 I-4-3-6J 
>i :40S 

>J I4|l 
>k !42: 

>l !43S 
>m I44I 
>n :45: 

>o :46S 
>P -.47: 

>q :48S 
>r 5495 
>s :50s 
>t Itl* 
>u 'b2'- 
>v 'b3'' 
>w :54: 
>x :55s 
>y :65: 
>z :66: 
<a :67: 
<b 1«* 
<c :70s 

72 

1 
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>a     : 1-4- |S 
>b    : 1-4-2S 

>c    : ]-4-3- 1 
>d    : I-4-3-2 
>•    : I4-3-3 
>f     : I-4-3-4 
>B    : 1   4-3-5 
>h    : I-4-3-6 
>i     : 40: 

>j     1 4|S 
>k    : 42: 
>l 43S 
>m 445 
>n «i 
>o MO^ 

>P ',47: 

>q !48: 
>r :49: 

>s = 50: 
>t !5|S 
>u !52! 
>v 5 53! 
>w tut 
>x :55: 

>y ses*- 
>z He'- 
<a Itfl 
<b *68: 
<c :70s 

202122232425262728293031 

I 
I   I   I   I       I   I   I   I       I 

I   I 
I 

I   I   I 

I I       1 

< 

iJimm   ■ -- - - - 
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3233343536373839404142434446464 /48495051526354565657585960616263646666 
>• 14- |1 
>b    : 1-4 2 = 
>c     : 1   4- 3 1 1   1   1 
>d    : 1-4- 3 2 1 1   1   1   1 
>«      ! I-4- 3- 3 1 1   1 
>f     : 14- 3- * 1 1   1            1 

>g    1 1.4- 3 5 1 1 
>h    ! 1-4. 3 b i   1 1 1 
>i     : 40: 1 1)111 1   1   1   1   1   1 

>j     1 4|S 1 
>k    i 425 1   1 

>l     . 435 
>m 445 1   1   1 1 
>n 455 1 
>o 465 1 

>P 475 1 1 
>q 485 1 1 
>r 495 

>s 505 

>t !5|5 
>u !52! 
>v !535 

>w !54S 

>x !555 1 

>y 5 655 1 
>2 5 665 i   1 
<a 5675 1 
<b 5 685 1   1 
<c 5 705 

M^^M 
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>a : 1.4. || 

>b : 1-4 2! 

>e ! 14-3 1 
>d , 1-4 3 2 
>• . I-4-3- 3 
>f I-4-3- 4 

>I I-4-3- 5 
>h 1 4-3- 6 
>i 40 1 1 1 1   1 

>J 41 
>K 42 1 1   1 
>l 43 1 1     1 

>m 44 
>n 45 
>o 46 

>P 47 

>q 48 
>r 49 
>s 50 
>t '51 
>u 52 
>v 53 
>w 54 
>x 55 

>y 65 
>z 66 
<a !67 
<b 68 
<c !70 

6768697071 72737475767778798081828384858687888990919293 

I   I   I   I   I   I 

I   I   I   I   I 

I 

1) requires the ability to invoke ;3:, ERROR,   with a string message, 
which does not return but handles further processing 

2) requires ability to invoke NEXTCARD which makes a new card image 
available, i.e. ability to invoke :2: and returns to the invoker 
only if a card for the current algorithm is available 

3) NEXTCHAR is the value of the character which immediately 
follows the character of the current card image produced by 
the last call of NEXTCHAR 

4) an end-of-file condition has occurred 
5) requires the ability to invoke the termination of the entire 

program, i.e. :1.5: ENDOFFILE 
6) requires the ability to invoke, ALGINIT Ol.l.l:) 

the start of processing for a new algorithm 
7) CP is an index into C and indexes the last character which 

was produced as a value from NEXTCHAR.   After an execution 
of NEXTCARD, ^r, CP must equal   0 

8) write access required for CP 
9) C[l] ... C[80]   contains the characters, 

in order, of the card image which is inputted as a result 

BMMHIMMb MM 
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of the last execution of GETIMAGE 
requires read access to C 
requires ability to invoke GETIMAGE which inputs a card 

and returns to the cailer only if a card was inputted 
"," in columns 1 and 2 indicate that the program is to terminate 
and a "," In column 1 only indicates that a new algorithm 
is to be processed 

requires ability to print the string argument which is passed as 
the parameter to ERROR 

ability to perform printing operations 
requires ability to invoke :1.4l which processes the remaining 
data images for this algorithm 

requires write access to PR 
pr = true means "print the register after each successful 

apolication of a rule; otherwise d not print the register 
after each successful application of a rule 

MAXA equals the maximum number of alphabets permitted for 

an algorithm 
requires read access to MAXA 
requires ability to set the failure routine for NEXTCHAR, i.e. 

the ability to invoke SETFAIL with a variable which names 
the part which is to be invoked if no more characters are 
available from NEXTCHAR 

NG contains the number of generic variables encountered 
for the current algorithm 

CG[i], 1 < i < NG, equals the i-th generic variable 
encountered for the current algorithm 

AG[i],  1  < i < NG, equals the alphabet name which 
CG[i] is a generic variable 
a failure routine has been set if NEXTCHAR cannot 
provide additional characters from the current image 
read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE   which 
contain the values of   . ,   , ,   : ,   , ,   \ ,   l 
assumes write access to CHAR 
assumes read access to CHAR 
requires ability to invoke RULES which names the rule input 
part, but since RULES is a label in the main program 
a go to statement can be used 
ERRHEAD assumes compete control when invoked 

and handles   error messages and further processing 
NA equals the number of alphabets which have been processed 

thus far for the current algorithm 
requires read accesss to NA 

requires write access to NA 
requires read/write access to N01T, which controls a 

loop that process alphabets 
requires ability to invoke STORALPH, which stores the alphabet 

character if all requirements are met.otherwise STORALPH 
invokes appropriate error routines 

35)    requires read/write access to N01T1, which controls a loop 

10) 
11) 

12) 

13) 

14) 
15) 

16) 
17) 

18) 

19) 
20) 

21) 

22) 

23) 

24) 

25) 

26) 
27) 
28) 

29) 

30) 

31) 
32) 
33) 

34) 
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that processes genencs 
36) requires ability to invoke STORGEN which stores the content 

of CHAR, if legal, otherwise invokes v'ie apporpnate 
error 

37) requires ability to invoke ALPHFIN which cmpletes any 
needed processing after an entire alphabet has been 
stored 

38) either no alphabets have been processed of all alphabets 
processed h^ve been correct 

39) requires ability to invoke FAIL which correctly determines 
which objects assume control 
read access required for CP 
read and write access required for the variable I 
requires ability to invoke TESTLEGAL which returns only if 
f* l 1 A n      . *      ——*      ••  tl        MM       MM       MM LHAK IS not    . ,    , ,   ; ,   : 

requires ability to invoke TESTGEN which returns only if 
ChAR is not equal   to an already 

used generic variable for this algorithm 
A names a one-dimensional array, which from UPA to its 
upper bound contains alphabetic characters 
requires re^d access for A 
NG contains the number of generic variables encountered 

for  the current algorithm 
requires read access to NG 
requires write access to NG 
requires write access to AG 
CHAR contains the next unstored character 
from the alphabet or generics   being currently processed 
AL[1] ... AL[NA] names the index of the lower bound of the 
characters in an alphabet, i.e. AL[i] is the lower 
bound for the i-th alphabet and AL[i-l] is the 
upper bound for that alphabet, where AL[0] equals the 
initial value plus  1 of UPA 

52) requires read access to AL 
53) requires ability to invoke ERRGEN, which assumes 

control and invokes an appropriate error routine 
54) requires ability to invoke TESTAL which returns only if 

CHAR is not equal to a character which has already occurred   in the 
alphabet currently being processed 

55) requires ability to invoke TEST which returns   only if there 
storage space as indicated by the values of LPA and UPA 

56) UPA names the last cell of an array into which an alphabetic 
character was stored, counting from the top of some 
one-dimensional array.   UPA is decremented by 1 
each time an available cell needs to be named 

57) requires read    access to UPA 
58) requires write access to UPA 
59) A names a one-dimensional array, which from UPA to its 

upper bound contains alphabetic characters 
60) requires write access for A 

40) 
41) 
42) 

43) 

44) 

45) 
46) 

47) 
48) 
49) 
50) 

51) 
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61) requires write access to AL 
62) LPA names the las cell of an array into which rules 

are stored, counting from the lower bound of a 
one-dimensional array .   LPA is incremented by one each 
time an evailabie cell needs to be named 

63) requires read access to LPA 
64) LPA and UPA are index variables for the same array 
65) requires read access to CG 
66) requires write access to CG 
67) requires read/write access to J 
68) requires read/wnte access to K 
69) requires read access for A 
70) requires ability to invoke 1NITRA, which initializes the 

input part for rules for a new algorithm 
71) requires ability to invoke CARD13RULE which determines 

whether the current card image is to be interpreted as 
as a rule or not 

72) requires ability to invoke PRINTCARD 
which prints the current card mage 

73) requires ability to invoke EDR, eid of rules condition 
processor 

74) requires ability to invoke 1NITR wnich initializes 
for inputting a new rule 

75) requires ability to invoke LABL which collects a label 
terminated by the character in TERM and leaves the integer 
label value in LAB 

76) requires ability to invoke STORLABEL which associates 
the label with the current rule 

77) requires write access to TERM 
78) ability to invoke STORCHAR which returns only if the 

content of CHAR could be successfully stored with rule 
being processed 

79) requires ability to invoke INITRiGHT which initializes 
for processing the input of a right part of a rule 

80) requires ability to invoke PROCTERM which indicates a rule as 
a terminal rule; requires ability to invoke PROCSUC 
which processes the successor part of a rule 

81) requires read access lo LAB 
82) a negative value in LAB indicates that no label was collected 
83) after rule initialization, A[N1] - 1 = NR, Nl names the 

current rule A[N1] = -1, N2 = Nl + 1, A[N2] = 2, NE = Nl + 2 
and the location which is the name of the 
immediately preceding rule names the current rule, thus if 
NT is the value of Nl   prior to this initialization 
♦lien A[Nr] = Nl - unless NR - 1 in which case the previous 
value of Nl is not defined 

84) R names a one-dimensional array 
which contains pointers to rules such that label i 
names rule R[i]; 
R[i] = 0 means label i is not defined; 

. 
mmm 
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85) 
86) 
87) 

88) 
89) 

90) 
91) 

92) 

93) 
94) 
95) 
96) 

97) 
98) 

99) 
100) 
101) 

102) 
104) 

105) 
106) 
107) 
108) 

109) 
110) 
111) 
112) 
113) 

114) 

R[i] > 0 means the label is defined and 
R[i] is a pointer to the rule it namws; 

R[i] < 0 means that label i is undefined but has 
been referenced by rule -R[i] and is 
the head of a chain 

requires write access to R 
requires read access to R 
A names a one-dimensional array which from its 
lower bound to LPA contains representations of rules 

requires read access to IME 
NE names a cell in A such that A[NE] indicates the current number 
of characters in the rule part being processed - left part 
if the left part is being processed or right part if the 
right part is being processed 

requires write access to LPA 
at most  100 labels are permitted and their definitions 

appear in the one-dimensional array R[l:100] such that 
R[i] contains the definition of label i when the label 
is interpreted as a positive integer 

NR indicates the rulename which is currently 
being processed 

requires read access to NR 
requires write access to NR 
requires   write access to NE 
TERM contains the non-digit character which is expected 
to terrninote a label 
requires read access to TERM 
the digits "0", "1", "2", ... , "9" are represented by character 
codes such that "0" - ZERO = 0, ... ,"9" - ztRO - 9 

and the only legal label characters are digits and BLANK 
read/write access to LAB is required 

legal range of labels is 1 through 100 
BLANK contains the representation of a space and ZERO 
contains the representation of a zero 
requires read access to BLANK and ZERO 
assumes LAB contains a legal label name or -1 which 
indicates that no label has heen concatenated 
requires write access to LAB 
Nl names the rule being currently inputted 
requires read access to Nl 
ERRULENAME contains the value which indicates a routine 
which can take control if an error is discovered as rules 
are being stored 
requires read access to ERRULENAME 
requires read access to N2 
requires read/write access to L 
requires write access to N2 
a colon in column 4 when processing rules indicates that 
the card is to be interpreted as a rule 
requires read/write access to Q 

^■MM 
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115) a value of -1 in A[N2] indicates that the 
rule is a terminal rule 

116) ERRHEADNAME is a variable which names the routine ERRHEAD 
117) requires read access to ERRHEADNAME 
118) RULESNAME is a variable which names the routine RULES which 

inputs the rules for an algorithm 
119) requires read access to RULESNAME 
120) assumes all rules have been inputted correctly; 
assumes that the current card isrepresents an initial register 
contents; assumes that NEXTCAPD returns control only if 
a data image is available for the current algorithm 
121) requires the ability to invoke :4:, ERRORE, with a string 

message, which does not return but handles further processing 
at the execution stage 
ERRDATANAME contains a value which indicates a routine 
which indicates a routine which can take control if an error is 
discovered while an initial register contents is being input 
requires read access to ERRDATANAME 

124)    REG, is a one-dimensional array which contains 
the characters in the register 
assume.-, read access to REG 
assumes write acctss to REG 
requires read/write access to RPR which is used as 
a »emporary register position pointer when the register 
is being miially filled 
requires read/write access to RC which is used 

to contain single characters from the current da*a card when 
the register is being filled 

129)   assumes read access to MAXRL which contains the maximum number 
of characters permitted in the register 
requires write access to MAXT1 
requires write access to RL 
the name of the first rule is 2 

133) MAXT1 contains the number of trial rule applications 
still permitted for this exe' ution of an algorithm 

134) write access to RULENAME required 
135) requires read access to TRM 
136) FIN is a result of NOSUC which indicates that there are no more 

rules which can be applied 
137) requires read access to FIN 
138) read access to RULENAME required 
139) TRM is a result of SUCSUC and UNSUCSUC which 

indicates that the algorithm should terminate, i.e. TERM 
names no legal and indicates termination 

140) requires ability to invoke SEARCH which 
searches for a match of the left part of rule 
RULENAME, and which returns the value true if 
a match is found, false otherwise 
requires read access to MAXT1 
requires ability to invoke REPLACE, which has the effect of 

122) 

123) 

125) 
126) 
127) 

128) 

130) 
131) 
132) 

141) 
142) 

m—m 
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replacing the register contents with the right part of the 
rule named by RULENAME, where the left part was matched 

143) requires the ability to invoke SUCSUC which has the value of the 
success to rule RULENAME for a successful application 
of rule RULENAME 

144) requires the ability to invoke UNSUCSUC which has 
the value of the name of the successof to rule RULENAME 
after an unsuccessful application of rule RULENAME 

145) assumes A[RULENAME + 1] names the successor for rule RULENAME 
for a successful application ot rule RULENAME 

146) requires read a cess to PR 
147) requires the ability to invoke PRINTREG which 

prints the contents of the register 
148) if RULENAME = TRM then dot termination has occurred, otherwise 

the rules have been exhausted 
149) G is a one-dimensional array such that G[i] ■ -1 if generic 

variable i is not defined after a successful search for a left 
part of a rulei, otherwise G[i] > 0 
and is the character corresponding to the generic i 

150) requires read access to G 
151) requires write access to G 
152) requires read/write access to NMAT 
153) assumes that a generic in a rule has been saved 

as a negative value 
154) assumes Q is a leg.jl character pointer into the left 
part of a rule whose first character is P + 3 
155) assumes A[RULENAME] names the successor rule for rule RULENAME 

after an unsuccessful application of rule RULE.MAME 
156) requires the ability to invoke LEFT which names the location 

which is the first character of the left part of rule, RULENAME 
157) requires ability to invoke LENGTHL whicn has the value of the 

number of characters in the left part of the rule named 
by its parameter 

158) LEN names the number of the character   in the left part 
Of the rule currently being processed 

159) requires read access to LEN 
160) requires write access to LEN 
161) LET names the starting location for the left part of the current 

rule name 
162) requires read access to LF T 
163) requires write access to LET 
164) requires read/write access to NOSUC 
165) RL contains the current register length 
166) requires read access to RL 
167) requires ability to in nke RULLFTCHR(A1B) which 

produces the value of .he B-th character of 
the left part which starts at A 

168) RP names the character position where a 
character sequence is to be replaced 

169) requires read access to RP 

Hi um I ^. i-^i 
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170) 
171) 
172) 

173) 
174) 
175) 

requires write access to RP 
assumes LI    r1 L2 
requires abii ty to invoke GENERIC which 
has the value true if its parameter represents a 
generic variable 
requires read/write access to CC 
requires reed/write access to LHP 
requi-es ability to invoke ADJUST whose first parameter 
indicates the number of characters in the left part 
of a rule    r.d whose second parameter indicates the number 
of characters in the right part of th   rule.   ADJUST 
modifies the register, if necessary, so that vhe right 
part can be inserted where the matched left oart is 
requires ability tc invoke INSERT which inserts the appropriate 
right part over the matched left part 
requires ability to invoke LENGTHR which returns the value 
of the number of characters in the right 
part c; the rule named by its parameter 
requires read/write access to '.EN and '.ENR 
requires read access to LENR 
requires write access to LENR 
requires read ac-ess to LI, L2, and TP; i.l contains the 
length of a character sequence oeing replaced by a 
character sequence of length   L2 
requires read write access to TQ and CQ 
requires ability to invoke RULRTCHAR(A) which returns the 
character which is the A-th character   of the right side 
Of rule RULENAMF 
requires the ability to invoke UNDEF(A) which returns the value 
true if A is an undefined generic variable 
representation for this rule application; false otherwise 
requires ability to invoke VALG(A) which produces the 
character associated with ;he generic   epresentation A 
for this rule application 
assumes LENR contains the length of the string 
being inserted 
requires read access to AG 
assumes Y is a legal character pointer into the right pa't 

of a rule whose first character is named by X + LENGTHL(X) + 4 
189) assumes X + 2 is an index which names the first character of the 

left part of a rule -1 
190) assumes A[X + LENGTHL(X) + 3] is the number of characters 

in the right part of rule X 
191) assumes read access to X and assumes that the length 

of the left part of a rule named by X is contained in A[X + 2] 
192) requires read access to RULENAME 
193) reauires read/write access tc QK 

176) 

177) 

178) 
179) 
180) 
181) 

182) 
183) 

184) 

185) 

186) 

187) 
188) 
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An    analysis   of    the   final   stage   using   the   measure   has   led   to   the 

following good decomposition 

((a) (On) (Or) (04) ((r) ((>a) ((•) ((f) 

(( >8, >u, >w) ((s) ((*x) m ((K, 0 m ((g, h) 

((v, w) ((x) ((*a, *b, *c, «d, *f, *g, *h, *i, *j, *1) 

(Oc, >d, >f, >g) («b, >2, >x, >m) 

(Oo, >y, >p, >q, <c, <a) ({>; >h, >v) 

{{*s, *r, #q, *u, *v) ((u, y) (Oj, >k, >i, >l, >b) 

((z, t) ((*o, *p, *w, *t) ((m, p, q) ((*k, *n, *m)) 

1.56 ) 1.65 ) 1.52 ) 1.60 ) 1.35 ) 1.41 ) 1.20) .92 ) 

.52 ) .32 ) 1.08 ) 1.25 ) 1.02 ) .65 ) .77 ) .32 ) .34 ) 

.53 ) .50 ) .47 ) .22 ) .04 ) .04 ) .04 ) .04 ) .05 ) .05 ) 0 

i 

This   decomposition   is   not   the   best  decomposition,   but   it   illustrates   the 

result   of   using   the   measure   to   produce   a   good   decomposition   which 

satisfies     several     of     the     properties    stated     in     the     Introduction. 

Specifically,   those   objects   which   manipulate   the   representation   of   rules 

appear  together.     This  situation  along  with others  demonstrates  that  the 

decomposition   appears   to   have   several   of   the   independence   properties 

stressed   by   Parnas.       The   parts   FAIL,   SETFAIL,   and   the   initialization 

portion,   though   not   elaborated   here,   localize   detailed   information   about 

the  flow  of  control   in  the  program and interact  little  with  Ihe  previous 

elaborations. 

— - 
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McKeeman[MKl], in a paper entitled "Compiler Structure", has 

presented several guides thüt aid in fragmenting a compiler into 

modules. Does such a modularization possess good structure in the sense 

of the definition and measure presented in this thesis? It is probably 

the case that these modularizations could have good structure, but good 

structure is not guaranteed. 

The   two   kinds   of   fragmentation   discussed   are  vertical   fragmentation 

and horizontal fragmentation. 

Vertical   fragmentation   corresponds   to   decomoositions   whose modules 

may    be   regarded   as   "passes"   or   "phases"   >r,   the   compilation process. 

Each   module   accepts   as   input   the  output  of  a previous  module. Thus»  a 

possible vertical decomposition for ? compiler is 

INPUT 

SCfi SCAN 

PARSE 

SYNTHESIS 

GENERATE 

1 
EMIT 

OUTPUT 

(analyze text to produce 
a sequence of s.ngle characters) 

(analyze single characters to 
prcJuce tokens) 

(analyze tokens to produu   a 
parse tree) 

(analyze parse tree to produce 
a computation tree) 

(analyze computation tree to 
produce language specific code) 

(analyze language specific code to 
get machine specific code) 

(ana'yze code to get executable 
or loadable text) 

  .   . 
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McKeeman stresses the importance of precisely describing the 

intermediate languages that connect the modules and provides examples of 

such intermediate languages. Hence, pairs of successive modules share 

information about their intermediate languages. This can lead to many 

interactions between adjacent modules. An alternative that has been 

displayed in Appendix I and in the work of Parnas, is to provide 

additional modules which make information about the intermediate 

languages available. This eliminates the need for sharing the entire 

grammar     of     the     intermediate     language. Thus     changes    to    these 

intermediate languages correspond to adding or deleting or changing 

functions at the interface. The measure indicates that the modules in 

this alternative interact less than in the modularization suggested by 

McKeeman - at the expence of requiring additional modues. 

horizontal   fragmentation  can  be   used  to  further  fragn.ont   nodules  in 

some vertical fragmentation. 

 adUitu-a-MM 
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McKeeman   presents   the   following  Horizontal  fragmentation  for   the   module 

SYNTHESIS 

FAN OUT 

NULL     DEFINE     OPERAND     OPERATE     ASSIGN     SEQUENCE 

FAN OUT is intended to pass appropriate parts of the phrase structure 

tree or canonical parse to the modules beneath it. FAN IN, recombmes 

the results of these modules into a computation tree or sequence of 

actions. 

The final decomposition shown in Appendix 1 and the modularizations 

suggested by Parnas[PAl-5] indicate that the boundaries of these modules 

may not be as "clean" as the diagram suggests. For example, information 

contained in the SYMBOL TABLE module may '"e required by more modules 

than are indicated by the arrows. (Indeed, similar kinds of modules 

displayed in [MK] share far more assumptions 'han are indicated by 

either   diagrams   or   text.)   Further,  assumptions   made   uy  different   modules 

— ■ 
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may suggest additional modules in order to maintain the independence 

properties suggested by the diagram. Indeed, FAN IN and FAN OUT may 

well share enough assumptions to warrant large parts of them to be 

written as ac'ditional modules. 

Stronger   statements   than  the^e  can  only   be   made   if   more  detailed 

information about the intended behavior of (he modules is presented. 

^,^_Ma-—1—_-_-_~_        - 


