
^PSWPSPWfPjipi^BPjrjrwHssiP^

AD-784 824

ON A MEASURE OF PROGRAM STRUCTURE

Robert Noyes Chanon

Carnegie-Mellon University

■«w**'
/
/

Prepared for:

Defense Advanced Research Projects Agency

Air Force Office of Scientific Research

November 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

J

lirilUMMIII imHM'Mftwiiir'iiiiitf^ \ :

t&mr?mi*mi*!SGm^*WVSl****&im'1''^^

UNCLASSIFIED
SECURITY Cf-tSlf il ."Al;..':! OF THIS PACtf r.ii.-, h.'lm l-i-fird,

REPORT DOCUMENTATION PAGL

, REPORT NUMBER , ,1 -, ;

AFOoR - TR" ?4- 14 35
]?. OOVT ACCESSION NO,

«. TITLE ('•nd SuliUU-,)

ON A MEASURE OF PROGRAM STRUCTURE

READ IN TUUCTIONS
BKFa'^E COMPLETING KORN

3. RECIPIENT'S (.AT ••»LOO NUMBER

gj> 7S'/ U4.

7. AUTHORf/O

Robert Noyes Chanon

!.. TYPE Of RfiPORT & PERIOD COVERI D

Interim

G PERFORMING OMG REPORT HUMPER

8. CONTRACT OR GRANT NUMBERftJ

F44620-73-C-0074

9. PERPORMING OHGAMW.ATION NAME AND ADDRESS

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, PA 15213

II CONTROLLING OFFICE NAML AND ADDRESS

Defense Advanced Research Projects Agency

1400 Wilson Blvd
Arlington, VA 22209,

T« MONITJfmiO ».-.tMCY NAME ft A'JDR E.;.5r// IIIHIMMU Irom ConltollMt OllUe)
Air Force Office of Scientific Researchy^/^r]

1400 Wilson Blvd
Arlingt,on, VA 22209

y-

10. PROGRAM ELEMENT. PROJi CT, TASK
AREA t ViOHK UNIT NUMBERS

61101D
A02A66

12. RLPONT DATE

November, 1973
13. NUMBLY OF PACEf.

295
15. SECURITY CLASS, (ol Ihln rcpntl)

UNCLASSIFIED

'isi. DECLASSIFICATION'DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (at IhU Kaiiort)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol Ih» abllmcl entofxd In Block 30, II dlllarcnl Irom KeporlJ

18. SUPPLEMENTARY NOTES

19. KEY WORDS rConllnue on reverse «/da // necessary und Idenllly by block number)

Rapi ■ ' I .
NATI0NAI PI MNlCAl
INFORMATION '-: ;

ipartment of I

20 ABSTRACT (Contlnut on «v.r*» n/d« It neee.Mfy onrf Idtnllty by block number) ^r..^l. i„f\.,r.nrP on the
Program structure has been discussed as being an important influence on the
ease with which, programs can be constructed, verified, understood and changed
This thesis proposes a definition for program structure, a method for construe
ins programs, and a measure for pro-ran, structure. The usefulness of this
measure as a tool for determining and controlling structure is evaluated.
The measure uses the information theoretic concept of excess entropy to deter-

mine the extent to which assumptions made by identified parts of programs are
shared and thus influence, structure. Several programs are developed using

DD /, AS 73
1473 EDITION OF I NOV 65 IS OBSOLETE

X
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE CH'.rn /Ml., Ir.irrrd)

 -■'-- «Mrtur ini-alM

™,IJ".M< »»«■i»iii*ii»iiiii,i.<i«HH!i)n^".'««»' ■>-«' ■■WII •■■»• «wuii»" ■'■■" " ■".fil-ipiw». ■ ...■-.■I««<IM»IIH«, iivmMi'm\i*.»mmr*i' » vm/1 T"»—».>'W«IIIU »»»WWI.I " i»i.-. T-- -» ." »■w- M

UNCLASSIFIED
SECUniTY CLASSIFjCATION OF THIS P AC-rfH-^on O.l« rn(,f. .0

20. (abstract; cont.)

mechanical aids to record assumptions and computer entropy loadings. These
applications of the measure, are evaluated and discussed.

// UNCLASSIFIED
ir TI-MC o A .-f ^u i.-o rtmtm Fnl»

■•^ -.-v^^»»^^^^..^.^— ^.^^M- m „mi^tuiiiimmHimm _^.

^«»«i^W^WimmTOB.iJBjllfl.Yli»«^^^ IJl^ilMH !>-">"WBP^J!i'>k» JM

ON A MEASURE OF PROGRAM STRUCTURE

Robert Noyes Chanon

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pa. 15213
November, 1973

Submitted to Carnegie-Mellon University in partial fulfillment of the
requirements for the degree of Doctor of Philosophy. This work was
supported in part by the Advanced Research Projects Agency of the Office
of the Secretary of Defence [Contract F44620-73-C-0074] monitored by the
Air Force Office of Scientific Research and by the National Science
Foundation [Contracts GJ 37728 and GJ 32259]. This document has been
approved for public release and contract sale; its distribution is

unlimited.

D D C

SEP fi 1974

ISEUUTE
- B ^

HM^MMMM —- - - -—~~~~*M*~~~~*^ ^~>- ■■■ - ■ .

•PWiM iflip^i^iwp^ik.u.JM.iyi.wwjii^iu|%ii^jw^i||^yii

ABSTRACT

Program structure has been discus..ed as being an important
influence on the ease with which programs can be constructed, verified,
understood, and changed. Yet the notion of program structure has
remained a vague and imprecisely defined concept. This thesis proposes
a definition and a measure for program structure and evaluates the
usefulness of the measure as a tool for determining and controlling
structure in a program.

Applications of the measure require that the assumptions which
objects make be precisely stated. These are defined to include
assumptions about the nature and use of variables and data; conditions
relating to the correct execution of the program; and assumptions about
the program environment in which the text is executed. Top-down
programming by stepwise refinement forms the basis for a proposed
methodology that permits these assumptions to be stated as a program is
constructed.

The measure uses the information theoretic concept of excess
entropy - entropy loading - to determine the extent to which assumptions
ire shared. Entropy loading calculations also provide a way of
comparing different decompositions of a program. Unfortunately, finding
the best decompositions of all but small programs seems intractable.
Consequently, several heuristics are stated that attempt to establish
bounds on the growth of entropy loadings for elaborations of
decompositions suggested at early stages in a development.

Several programs are developed using mechanical aids to record
assumptions and compute entropy loadings. Since each development
preserves assumptions at every elaboration, this information need not be
deduced from program text when the program is studied or is to be
modified. Entropy loading figures at each stage allow different
decompositions to be compared and provide either a basis for choosing a
decomposition or grounds for actually modifying the program to achieve
better structure. These developments illustrate the proposed
methodology and show that the measure produces results that are usually
consistent with the definition of program structure as well as the
informal notion of structure from the literature.

Without mechanical aids, however, applications of these techniques
to practical problems would be tedious and difficult. This and other
difficulties motivate further research about this important but elusive
property of programs: their structure.

' Hktfim,\i«t< irfiiiimM
 ,

itaaiai^ai!«^i&i««*iif!a<i»*,,^ilfeÄ^^

PWWP'S^WJS^WPPPRWHW' «■5W!^B^nW»!IW»W!TWi»ipfl^!^5P^PWBSW^^^

ACKNOWLEDGEMENTS

I would like to express my appreciation to David L Parnas for his
patience and guidance during the early stages of research for this
thesis. Special thanks are also due to the members of the thesis
committee for their persistent criticism and helpful suggestions: John
McCredie, Mary Shaw, William Wulf, and John Grason.

This thesis has relied heavily on the work of E. W. Dijkstra as a
source for examples and intuitive notions about the meaning of structure
in programs.

 ■ -— ■ ■ 1 ■ iiaiiMiiiiiiaiiiiiiiiMitiiiwiiitiirii ■

IW«WUUWJWS!W!IIBWIIIWIMJHP,^

TABLE OF CONTENTS

Abstract ü
Acknowledgements jjj
Table of Contents |v

INTRODUCTION !

Chapter I: REVIEW OF PREVIOUS WORK 5

Aspects of Good Structure 5
Influencing Structure - A Review of the Literature 5
Program Structure: A Definition 13
Summary 15

Chapter II: MAKING ASSUMPTIONS EXPLICIT 16

Objects and Assumptions 16
A Design Methodology for Preserving Assumptions IS
Object/Assumption Tables 27
An Example of Objects and Their Assumptions 27

A GCD Computation 31
Summary 44

Chapter III: A MEASURE OF PROGRAM STRUCTURE 45

Definition of a Measure 45
Applying the Measure to Object/Assumption

Tables for Programs 51
The Clustering Problem 59
Heuristics for Using the Measure 62
Saturation in Object/Assumption Tables
On the Probability of Change of Assumptions 66

Chapter IV: USING THE MEASURE 72

Introduction 72
A GCD Computation; Three Versions 73
A Sequences Problem 108
Heapsort 136
The Problem of the Eight Queens and a Telegram

Problem; A Discussion 165

IV

iirtiMiiaagate^a^fj.i^fr^uaiMj^ i iiMiiiilillliiMfMlllilliliiilBiftii'-liii-'iiiiii w..

TgQfQflffgfflgMI^flQQgQ!!^^

Chapter V: ON ASPECTS OF USING THE MEASURE 184

Review of Results Demonstrated
by the Examples

Advantages of Using the Measure
Difficulties of Using the Measure
Aids to Applying the Measure and

Suggestions for Future Research
Conclusions

184
192
195

197
199

BIBLIOGRAPHY

Appendix 1: A Markov Algorithm Processor
Appendix II: Comments on a Note on Compiler Structure

201

204
292

immm tm L. ^„^—*^. ■'-'--■-- '■■■ ^.-..^ - --■^■.iiiiniiiiiiir»iiiM-irt'ia'iM»iiiiii

&,^sWWJ-w-',WUJ-«fc-''*J'Ä,'l''g^

INTRODUCTION

Dijkstra[DJl-5]) Wirth[W], Naur[NAl-2], ParnasLPAl], and

Mills[MIl-2] have stressed the importance of designing software as

collections of small programs, whose interrelations are well understood.

Such software is said to have good structure. Unfortunately, not every

piece of software which consists of a collection of small programs has

good structure. Nor do the informal methods, described in the papers

above, necessarily guarantee good structure. The goal of this thesis

has been to investigate the behavior of a mathematical tool - entropy

loading - as a measure of the goodness of structure and as a guide which

can help to preserve good structure in a collection of programs that

constitutes the decomposition of a piece of software.

The work of Simon[Sl] and Aiexander[AL], concerning complexity in

systems, and the work of Dijkstra[DJl-5] and Parnas[PAl] strongly

suggest that system decompositions having good structure possess the

following properties:

(1) the information required to study, understand, and verify
single parts of a system is supplied in conjunction with those
parts, and relatively little information about the rest of the
system is required;

(2) single parts can be drastically changed - changed algorithm,
changed data structures - without requiring much knowledge of
the rest of the system and without changing the rest of the
system, i.e. drastic changes can actually be confined to

single parts;

(3) should an error occur as a result of the failure of one small
part to function correctly, the error can be localized to that
part of the system quickly and easily, permitmg the error to
be repaired using only a knowledge of that part;

mammmm ■■- '.-^^-aanfäumutaum Mliftafiiiii>-- ■■■■ - . ^■ataiMtaa»,.... ,i .-...

|j^l^«MpiV.WWJW**«W^ i.«iij«Mi>!n

INTRODUCTION <=

(4) during system construction, distinct working groups can be
given assignments to write separate sets of parts, and the
assignments can be completed with very little communication

among the groups.

Many programs, even some that are regarded as good programs, fail

to possess one or several of these properties - with undesirable

results. Programs that fail to meet these standards frequently require

that many design decisions be understood before a small portion of the

program can be understood. Seemingly unrelated portions often make many

subtle assumptions about each other, assumptions that are difficult to

deduce from the program text or documentation. Hence, in order to

change a portion, the consequences of the change must be understood in

the context of a large part of the program. Shared assumptions between

identified parts will be called interactions. Simon[Sl] and

Alexander[AL] suggest that by controlling these interactions, limiting

the amount of code that each connects, and displaying the structure of

the program, the four properties mentioned above are approached.

In order to control interactions, it is first necessary to

explicitly observe the assumptions made by parts of a program.

Techniques for making these observations are demonstrated, along with a

tabular format for recording them once they have been noted. This

record can then be used to compare different decompositions of the

program. The comparisons are made by using an entropy loading

calculation described by van Emden[vE2]. The calculation has long been

used in areas such as information theory, physics, and ecology. This

thesis investigates its applicability to data representing the

- - ■——- , ■..-■..- :,.■: • .- •■- - ■ . . •-..

»Sr^f'^B'WrtmiPWWSSWWSRlBWBPn'WWl^WfpPTWM^

INTRODUCTION J

assumptions of program parts. The entropy loading measure was chosen

because it had the potential for distinguishing, in a mathematical way,

programs that possess properties consistent with good structure from

programs that do not. This mathematical tool enables a designer to note

the existence of interactions between the parts of his design. As a

result, he should be able to better understand and to control the

effects of his assumptions.

Applications of these methods produce results that are usually

consistent with intuitive notions - in the sense of Dijkstra and Wirth -

about what constitutes good program structure. Programs that have been

regarded as "good" are shown to have better properties than programs

regarded as "bad". Several "good" programs have even been improved.

Several anomolies of the measure as well as the costs and difficulties

encountered while applying it are also discussed.

The chapters that follow give a definition of structure and

interaction and show how the effects of interactions can be measured.

These techniques are also demonstrated on numerous examples that have

been used elsewhere [DJ3,W,HE,MK 1].

Specifically,

Chapter I examines part of the literature about software design. It
then presents a definition of program structure that motivates the
techniques used in this thesis.

Chapter II describes how a design methodology - structured
programming[DJll - and a proof technique[H01] can be used to find
the interrelations in a program. Interrelations are observed in an
example and summarized in object/assumption tables.

Chapter III presents an entropy loading measure that can be used to

 ^.l^^..^.t...M^,W..J.r,,:J.....^:..,V,^V,.,„:^ ,

WlIiiU<l.l«Wl^^i^<^WJflUWIIIjmV>Min.«in».lllM'lll!mPBMMmw J IMHII 11 wrnmmmmmmmmmmmmummimmmm

INTRODUCTION ^

formally evaluate the relative merits of different decompositions
of a program. The advantages as well as the shortcomings of the
measure are discussed.

Chapter IV demonstrates the use of the measure to observe and control
program structure. Several examples are developed using the
heuristics described in Chapter III.

Chapter V discusses and evaluates the results of this thesis.

Finally, two appendices follow the conclusions: the first presents a

larger example and the second uses the measure as a basis for discussing

the paper, Compiler Structure[MKl].

 --' iiiiiiiMiiiiMüii ^d.i^^»^^^^.^,.,.^..^^,...^.,^..^,.!^^.^^ ..;.■ ■ . ,.,

PPWJWWiPBWWfPPPippifPBIPWPB!*^^

CHAPTER I

REVIEW OF PREVIOUS WORK

This chapter begins by stating several properties of programs which

seem to have good structure. Next, several design methodologies and

conventions for representing programs are examined to see to what extent

they lead to good structure. Each is shown to have the potential for

leading to bad structure unless the issue of structure is explicitly

considered. As a result of this examination, a definition of program

structure is proposed in terms of the interrelations among the parts of

a program. The analysis and control of structure motivates the

methodology used in this thesis.

ASPECTS OF GOOD STRUCTURE

DijkstraC'Qn Our Inability To Do Much"[DJl,pp 1-3]) points out that

a person's powe. of comprehension is too meager to deal with all the

detail in a large program. However, he asserts that the computer owes

its existence to its ability to execute large, complicated programs.

Consequently, we must find ways to organize large programs which allow

people to deal with them, yet utilize a computer well. Several

properties of such programs are:

(1) Ease of verification

Good programs can be proved correct by dealing with only small
parts of the program, regardless of whether the proof is carried
out by a person or a machine.

(2) Ease of understanding

~~ilim**um*~^. ..■4-... -. ..._., . . - ■■ ■- ^ *..*.~^u~**~k--m~~. ■- ^

H»WUIUI,.UIJ.III .yii«,. ,^^^5><WBiBW!mi^»pp»|9^^TOf^^^^»"™t?»mwwppis^pwwi^

REVIEW OF PREVIOUS WORK
ASPECTS OF GOOD STRUCTURE

The text of a good program, along with its documentation, describes
the program in sufficient detail that it can be understood, and

(a) Single parts of good programs are understandable in terms
of their text and documentation. (In fact, the documentation
Of a good program is not separate from the program.)

(b) There is an understandable path from the abstract method
being implemented to the final detailed code.

(c) Decisions along this path are explicit and can therefore
be evaluated as either good or bad.

(3) Ease of maintenance and change

Good programs, because the effects of single parts and the
assumptions made by them are understandable, can be changed and
maintained with relative ease. Little effort need be spent
deducing the consequences of changes when compared with the effort
needed to implement the changes.

DijKstra has demonstrated the role the structure of a program plays.

His observations were motivated by the verification issue. For example,

he cites the problem of verifying the correct behavior of a hardware

multiplier[DJl]. If we regard the device as a "black box", then ail

possible multiplications must be performed and verified as being

correct. Alternatively, the internal structure of the device can be

examined, and a convincing argument about the correctness of the device

can be produced. This second approach is the only feasible one.

The structure of a program has direct effects on the three

properties of good programs mentioned above. Some of these effects are:

(1) Program verification is tractable if the amount of detail
required for the verification can be comprehended by the human or
mechanical verifier. This means that the parts of a program and
the relations among those parts are sufficiently simple that
theorems relevant to the correctness question can be easily stated
and easily proved.

iliMlllMiiiilii»r»l'i-|i n1 ,,.-.^,...,.^,...,...^. . __ ..^

7wfwp>-!mmBwwR=™5!SWswip!Ps»WW^ i.nHijjmiui ..uftmuiHmmm .m«'.

REVIEW OF PREVIOUS WORK

ASPECTS OF GOOD STRUCTURE

(2) "Understanding a program" is a less formal view of program
verification. When v/e say that we "understand" a program we mean
that we understand how it works - that we believe it behaves the
way it is purported to behave. Since we don't attempt to
understand programs as "black boxes", the single parts and their
interrelations must be sufficiently simple that understanding is
possible.

(3) Maintaining or changing a program requires that the places to
change be found, the changes constructed, and the constructions
verified. This implies that the parts to be changed must not only
be identifiable to a programmer but that the effect? of those
changes in the context of the entire program be limited. Hence,
the parts which are to be changed and their interrelations with the
rest of the program must be kept within a programmer's grasp.

INFLUENCING STRUCTURE - A REVIEW OF THE LITERATURE

A few techniques have been proposed to help control program

structure.

Knuth[KNl] has described a "classic" paradigm in which a system is

designed from the "top down" in terms of subroutines, and coded from the

"bottom up". He emphasizes the mechanism of the subroutine as a tool

for allowing attention to be focused on one design decision, postponing

the consideration of other details. This approach can help to display

the structure of a program. However, the desirable properties of the

programs which the methodology produces are never stated.

Wirth[W] provides examples where program text is written in a

top-down, step-wise manner. His model pays particular attention to the

importance of verification and mentions the potential difficulties which

might accompany an attempt to change a program. The Eight Queens

"-——"—-'-~--— ■- ■ ■ -—>—^—^^- ^MJ-hrthMw ' r1iimMWBli^i^l^^^^«y-:"v-^^-^^litfVtrt.Tl>lllh|-l1l-^~-. ■:'•*'-**■

-.I- wppw ^^-^^^^^^^^^-^^^^^^^^^^^^ ^^^^^^^—^■^^^^^—

REVIEW OF PREVIOUS WORK
INFLUENCING STRUCTURE - A REVIEW OF THE LITERATURE

Problem, which is presented as an example in Chapter IV, and based on

the development by Wirth, shows a situation where decisions about

control flow have been separated from decisions about data

representation.

Naur[NA2] states a specific criterion which he claims should be

used to guide decision making in the design process. He proposes that

the global requirements of a problem should be used to deduce a set of

"associated actions which guarantee that these requirements are always

met" - programming by action clusters. Here the importance of

describing the effects of these operations precisely is stressed.

Program verification then becomes more tractable than otherwise.

Unfortunately, the initial statement of the problem used to demonstrate

the method is imprecise, and design decisions which precisely define the

problem to be solved are never stated but simply appear in the code.

Further, one of the global requirements must be considered in at least

one place other than the action cluster which was specifically

associated with it. This oversight regarding interrelations among the

program parts results in an error which is documented by

Leavenworth[LE]. In addition, Naur emphasized the importance of

considering the relationships of global properties as a program is

written, but made no attempt to display these relationships.

The issue of structure was first stressed by Dijkstra[DJl] in terms

of a programming methodology called "structured programming". Dijkstra

has carefully chosen his examples. Each represents the outcome of a

M^MMMM — ■ B^iMlrtilWiBMl<BMi',ii"-|''(iil ■■'T^ilW[-iTr^^fiilln
L
l-',!,l.^t--Slli-rir.rVii'fi>rV -vi-

MVUf-Himvt-mr'Uß JJWJJWW"ii"JiHii -■^wwpip^aBpww'^wsciseBaB»™^^

REVIEW OF PREVIOUS WORK
INFLUENCING STRUCTURE - A REVIEW OF THE LITERATURE

careful search in which many choices were rejected. These choices and

the reasons for their rejection are seldom stated.

Each example problem is presented in terms of a collection of

carefully derived sub-problems which together solve the original

problem. The arrangement and relationships of these sub-problems allow

the correctness of his programs to be verified as they are written.

Verifications are established by informal proofs of correctness and by

direct applications of an axiom system due to Hoare[H01]. Dijkstra has

shown that verification in terms of the representations suggested by the

programming methodology is tractable for systems which are not just

examples of the methods[DJ4].

Lastly, Dijkstra recognizes the importance of producing programs

which are maintainable and changabie ("On Program Families"[DJl]).

Mills[MIl,MI2] and Baker[BA] have adopted the structured

programming methodology to the extent that precise coding conventions

are selected in order to convert programs containing parts which have

yet to be elaborated directly into code. Their conventions are

justified by a "structure theorem" due to Boehm and Jacopini[as

described in an appendix to Mil]. These conventions include maintaining

a program library of (perhaps) dummy entries so that high level program

texts - containing references to code which has yet to be elaborated -

can be compiled and verified. They also observe a convention where PL/I

text representing any single program part is always less than a page (55

M
""i*»"^^""""-- - - ■■...■i..'.v..»..^>..i,^.j^.,.>.aJ.,,..,.-;.,:

■ ■ --w.™

REVIEW OF PREVIOUS WORK
INFLUENCING STRUCTURE - A REVIEW OF THE LITERATURE

10

lines) in length. The verification aspect receives specific attention

through attempts to formally verify texts. Besides formal verification,

several programmers read the texts and either conclude that they are

correct or correct them. Some of these conventions, however, can lead

to bad structure. For example, if orogrammers are encouraged to read

the texts of other programmers, it is possible that unstated assumptions

which would adversely affect the maintainability and changability of the

program will be made. Much attention is paid to a variety of control

structures eg., texts must be go to-less.

Besides these methodologies, efforts have been made to design and

implement programming languages which restrict the kinds of syntactic

structures that can actually be used to represent programs. The intent

is to eliminate the use of language constructs which have a high

probability of leading to poorly structured, complex code. For example,

without adequate descriptions of the relationships among various pieces

of code in a program, the unbridled use of the go to statement makes it

impossible to guarantee good properties in all but the smallest

programs. Dijkstra[DJ6] noted this difficulty and suggested that the

go to statement be avoided. As a result, at least one programming

language (BLISS[WRH]) has no go to statement and go to-less programming

is advocated as a good programming practice. Indeed, some go to-less

programs do not possess many of the bad properties of some programs

containing go to statements, but such programs, just by virtue of the

absence of the go to, are not guaranteed to have good structure.

,i..l<..,„>-..«....«..l.Jamfaajkat^iVa..;..-».,i „.-i....,:. , .;, , „ . ,..^J.,.-,w-.;1...:-.,,M^.-Ja^^.U.....:.',,..,. .„..,. ■.. 1_^,. . ;,.,Jii

^^!

REVIEW OF PREVIOUS WORK

INFLUENCING STRUCTURE - A REVIEW OF THE LITERATURE
11

Some so-called implementation languages[Wl,WRH] have attempted to

make it possible for cooperating programmers to write good programs.

These languages have eliminated or restricted the use of many syntactic

constructs which seem to lead to bad structure. None, however, is

accompanied by a methodology which suggests how it should be used to

produce programs which have good structure. That this is a severe

shortcoming is apparent in the light of the developments of TSS/360 and

the MULTICS operating systems: TSS was written in the assembly language

for the IBM 360/67, MULTICS in an implementation language based on PL/I.

Both systems have similar goals. However, MULTICS encountered many of

the same development problems as did TSS.

Snowdon[SN] has described an interactive system which attempts to

provide an environment which allows programs to be expressed in much the

same way as they would be developed using the structured programming

methodology. But, even here, there is no specific description of how

the language is meant to be used. Further, no emphasis is placed on the

manner in which different "abstract machines" are or should be related

to one another. Using the language in no way guarantees good structure

in the resulting programs.

Parnas[PAl-PA4] has addressed the issue of how to produce pieces of

software which have good properties by stressing the importance of

precise specifications for the independent modules which make up the

piece of software. The policy of "hiding" information which a module

does not need is used extensively. The only information which is

■ ■ - mm ^.t*lU,:,l..-^.,.r „.,-,..,.,.,...,,,,.<..:..*.,.,.:..^,..:>..: -■■■---^■'~ ■''^•^■M|mi|l|tt|-af«f liTr " __.

- ■

REVIEW OF PREVIOUS WORK
INFLUENCING STRUCTURE - A REVIEW OF THE LITERATURE

12

available to the implementor of a module (and hence to the module) is

presented in the specifications of the modules. The effect of such a

policy is to restrict interrelations among modules to those which can be

deduced from the specifications. (These may still be very subtle.)

Systems which are produced using this methodology have the following

properties:

(1) Once the specifications for each module have been written, the
system can be constructed in a straightforward way, based solely on
the information contained within the specifications.

(2) The system can be verified as correct if the specifications
lead to a correct solution of the problem for which the system was
designed and if each module can be verified as meeting its
specification.

(3) The overall system is understandable if its behavior can be
deduced from the specifications with reasonable ease. Each module
is understandable if:

(a) the interrelations among the functions which comprise it
are understandable and

(b) the implementation of each function is understandable.

(4) Individual portions of the system can be changed so that the
good properties of the system are preserved, but only if those
changes are made within single modules. So long as a module meets
its specifications, it can be freely changed. Extensions to the
system, however, imply changes to the specification itself. Such
changes must be consistent with those portions of the system which
remain[PA4].

If the interrelations which are deducible from the specification are

numerous and complicated, a system may have bad properties (Note the

parallel between this phenomenon and programs produced using the

structured programming methodology). Assigning tasks to modules is as

important as the specifications, which may, themselves, be difficult to

""-■--"-^ .^■..-...■-- ■|lr-|ni«i1il--^,-"-^^ttimH-<ilii-|ini I U'M&£<;4ikät^&M.^J..v

....

REVIEW OF PREVIOUS WORK
INFLUENCING STRUCTURE - A REVIEW OF THE LITERATURE

13

write. Parnas1 work has been criticized because he provides incomplete

guidelines about how module partitions should be constructed, However,

the work provides a framework which has good implications for ease of

understanding and ease of maintenance and change. It also provides a

model which has been successfully used in constructing software in many

versions with different implementations of each module.

PROGRAM STRUCTURE: A DEFINITION

Dijkstra[DJl-DJ4] has demonstrated a process by which he constructs

programs that have good structure but has not emphasized the properties

of the relationships among the parts which make the structure good. In

all his examples, the relationships among the program parts have been

few in number and so straightforward as to be easily neglected. In

every instance, the relationships among the sub-parts inside a part have

been far more numerous than the relationships among the parts.

Parnas[PAl] stated a definition of program structure in terms of modules

and connections. The modules are those portions of a program which are

specifically indicated in the written description of the program -

perhaps its documentation. The connections among the modules "are the

assumptions which the modules make about each other." These connections

are much more extensive than the calling sequences and control block

formats shown in most descriptions. The definition stated below is a

modification of the definition due to Parnas. Objects are construed to

be any program parts which have net effects on the state of the program

MHMilll - —-■ -M^ MMMi.

...............
■■■ ■ ■ ' ■ :■ ■ ^■1

REVIEW OF PREVIOUS WORK
PROGRAM STRUCTURE: A DEFINITION

14

or its data. The term interaction is further defined as a shared

assumption among two or more objects. Hence, the assumptions which the

objects of a program make include the connections, which in turn include

the interactions. Consequently, we have the definition:

Program Structure is the set of interactions which exist among
identified objects in a program as well as the ways those objects
are organized to form the whole program.

The definition implies that any program possesses structure. The

aspects of good structure at the beginning of this chapter, however,

imply that programs having good structure are constructed from objects

whose interactions and assumptions are apparent or are easily deducible.

The key emphasis in this definition is that good structure is determined

by interactions among objects and not just the organization of the

objects.

The definition motivates the model which is used in this thesis to

develop and represent programs. This model is developed in Chapter II,

but has two properties which arise directly from the definition of

program structure.

(1) Objects are constructed in an organized way, using the top-down
and step-wise construction techniques of Dijkstra and Wirth.

(2) Interactions are explicitly recognized and recorded and are
used to suggest ways of maintaining good structure in a program.

immmjm^
A^W^^^^J»...,^;—.,,>...... '.mfmvimm*—' - - 'iiiiii ifiMfa-^«*«*^'»*»^«»^«*^^.*^..^.. .^ ^... . .- - ^

■" ■ ■ ■ ■

REVIEW OF PREVIOUS WORK
PROGRAM STRUCTURE: A DEFINITION

15

SUMMARY

This chapter first presented a list of several aspects of good program

structure. Next, several programming methods were discussed with

respect to the ways they influence program structure. Lastly, a

definition of program structure, emphasizing interactions among the

objects of a program, was stated. This definition motivates the

methodology that is described in Chapters II, III, and IV.

In Chapter II, the nature of these interactions is investigated and

a proposal for keeping track of them is made.

<■*-....J,.^-.,^:., ^^MM «tfMMHM^MMMHMM —" - - — ■■" ■■ ■- ■■■ - ■ ■ ^__ , ■■ ■ ■■ -U -- -■-■' ■■ - ■■■■: ■■ ... -■

■

CHAPTER II

MAKING ASSUMPTIONS EXPLICIT

This chapter first describes the kinds of assumptions which have

been observed among the objects of a program and then describes a

methodology for actually displaying them. Next, object/assumption

tables are demonstrated as a way of recording observed assumptions. In

chapter Hi, such tables will be used to state the measure of program

structure which is investigated in this thesis. In the remaining

chapters, object/assumption tables will be maintained for each example

to which the measure is applied. Finally, an example program is

examined in order to observe the assumptions made by its objects and to

demonstrate the proposed methodology.

OBJECTS AND ASSUMPTIONS

Chapter I asserted that program structure is determined by the

objects of a program and their interactions, where interactions are

defined to be assumptions shared among objects. In point of fact,

objects don't make assumptions. Rather, assumptions are made by a

designer/programmer and are used as guides to construct objects.

Dijkstra[DJl,DJ2] has displayed objects in the form of English

statements which describe the intent of various parts of, as yet,

incomplete programs. Seldom are the assumptions which were used to

construct them stated precisely. This situation first poses the

question of what kinds of assumptions are made.

mtmt^^^mtmm^tmmmmm MHMlMlilliiMHü ■ ■■nr «Mr- "•■- ^■t->-^"- —w-^. ■■MM-.t||.M ■!■■.. , ,

MAKING ASSUMPTIONS EXPLICIT
OBJECTS AND ASSUMPTIONS

17

The classification of assumptions below has sufficed for the

examples developed in this thesis. Since the notion of an assumption is

subjective, other researchers might wish to add to this list.

(1) Relationships which must hold prior to the execution of an
object in order for its effects to be realized.

(2) Assumptions about data, e.g. assumptions about the meaning and
interpretation of values contained in simple variables or data
structures; assumptions about the position of information in data
structures; assumptions about accessibility of data; etc.

(3) Assumptions about the environment in which an object is
executed, e.g. frequency of use of an object; order in which
computations will be performed; machine precision; assumptions
about factors outside the control of the program.

(4) Assumptions based upon mathematical theorems which are relevant

to the problem being solved.

(These classifications will be referred to in the next section.)

Next, the problem arises as to how these assumptions can be found

and stated. A tempting approach would be to examine a complete program,

understand it, and record the assumptions which objects make - the

objects being deduced by the examiner from the code and its

documentation. In all but the smallest programs, this approach is

extremely difficult. Both objects and their assumptions must be deduced

from detailed code. This is a result of the so-called

abstraction/implementation dilemma, i.e. it is frequently possible to

find a program which implements an abstraction, but it is usually

difficult to deduce the abstraction from an implementation of that

abstraction.

i****************^*^^ --. *...... J,^....J,-
■ -—

MAKING ASSUMPTIONS EXPLICIT
OBJECTS AND ASSUMPTIONS

18

The only feasible approach is to observe assumptions as a program Is

i

beinß constructed.

i

\

A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

The proposed methodology is based upon the "top-down", "step-wise

refinement" methods suggested by DijKstra and Wirth. We begin by

describing the original problem in terms of a set of assumptions that

constrain the problem and a set of final conditions , (post-conditions)

that describe the net effects the program is intended to produce. Here,

it is vital that the specifications of the problem be precisely stated.

A notation due to Hoare[HOi, H02] will be used to describe this

situation:

P {S}Q

Here, P are the assumptions, Q are the post-conditions, and S is program

text or an explicit description of what an object does. Nr:xt, S is

described as an arrangement of "simpler" computations whose effects are

meant to lead from P to Q. Each "simpler" computation possesses its own

pre-conditions and post-conditions. Clearly, this descriptive process

can be continued as deeply as necessary. We identify these "simpler"

computations - as well as the original S - as the objects referred to in

the definition of program structure. In the past, objects have been

described informally in English. Such descriptions serve only as

reminders for what the assumptions and post-conditions of an object

Üüi lü —— -—--—^- --■—■iiim1|tiiriiinirm *^^_ n-in Yiiiii;TiA'ir-,'-iiiit»VJfl,'.^rVi-iiiTlh;ii

ipmi,i#.ujiw,"fliu^ WMfWPWPT

MAKING ASSUMPTIONS EXPLICIT
A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

19

really are. This kind of informality can allow important detail to be

neglected and can obscure the intent of the object. Henderson and

Snowdon[HE] showed an example where this difficulty actually led to an

incorrect program.

The assumptions, post-conditions, and intended effects of each

object must be precisely described so that a program can be verified.

In the example which appears at the end of this chapter, such a

correctness argument will be presented explicitly.

The assumptions which are used to construct an object will be

identified by first noting the post-condition which is meant to hold

after the object is executed. Next, the effects of the object will be

examined in order to answer the following four questions:

(1) What relationships "must" hold prior to the execution of the
object in order for the effects to lead to the post-condition? (The
answers to this question are the "weakest" such relationships.)

(2) What kinds of actions are needed, permitted, or used with
respect to the data or variables mentioned in the object to insure
that the post-condition Holds?

(3) What information about the context in which the object is meant
to execute is needed, permitted, or used to insure the
post-condition?

(4) What theorems are needed or used by the object and what
theorems is the object permitted to use in order to insure the
post-condition?

Each question corresponds directly to one of the four classifications of

assumptions listed at the beginning of this chapter. The answers to

these questions constitute a set of distinct assumptions which are meant

to include the connections and interactions described in Chapter I. A

i^MMBM^H ■

".' ■-!•."■ miifiim.n^»^.i»u ■I)I..IIIII.I j(ia«nn!pnni.iiia^iaiji n IIUWII,I.I i ■■'■m•■■■•■ iifm^m3mmm'mmiiii.vi>ii9mrmmmmmmm*mmmrwm***<''i"' i.n inni»i«mi.

MAKING ASSUMPTIONS EXPLICIT
A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

20

record of these assumptions will be used by the measure which is

described in Chapter III. These questions are meant to be guides for

finding those relationships or requirements which seem to determine

program structure. As the examples will mdicatü, these kinds of

assumptions, when associated with objects, allow applications of the

measure to yield values which are usually consistent with the definition

of structure from Chapter I.

The answers to question (1) have been characterized, in part, by

Dijkstra[DJ5, yet unpublished], as the weakest pre-conditions of an

object. Dijkstra has described rules for finding these weakest

pre-conditions for assignments, conditional statements, and while

statements, as well as certain kinds of recursive procedures. These

rules, called predicate transformers, will be used to help derive

assumptions for objects in the examples. It should be noted, however,

that these predicate transformers are specific to the target language

into which the examples are developed. (The following paragraphs define

weakest pre-conditions and predicate transformers in more detail. These

paragraphs may be skipped during a first reading of this thesis.)

* * *

Specifically, if P represents a post-condition for an object S and

fS is the predicate transformer tor S then fS(P) represents the weakest

precondition for S which guarantees that P will hold after an execution

of S. Dijkstra provides criteria for finding predicate transformers

that can be applied to other kinds of syntactic constructs as weil. The

kü ■Ml mnatmimim^^mim*.

pipUl^L, .J|.«||WJ'^PWWAW^

MAKING ASSUMPTIONS EXPLICIT
A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

21

fundamental idea is to find consistent rules that provide weakest

pre-conditions, given a post-condition and a particular instance of some

construct. Even if such a rule cannot be found in general, an

assumption can usually be constructed for specific cases that are of

interest. For example, if S i; an assignment, i.e. X ♦- E, then

f"ASSIGNMENT"(P) = P; E -^ X

where E is the expression being assigned; X is the variable which is

assigned the value of E; and P: E -> X is the predicate which results by

replacing all occurrences of X in P by E. For e.'xample, if S is

d := c + d and Pisa*c+b*d = A*B then the weakest pre-condition

which results from applying the predicate transformer is a * c + b * (c

+ d) = A * B.

The predicate transformer for binary selection

(if B then SI else S2)

is

f"BINARY SELECTIGN'XP) = (B A fSl(P)) or (-B A fS2(P))

Similarly,

f"CONCATENATION"(P) = fSK fS2{P))

is the predicate transformer for 81 ; S2.

Besides displaying several predicate transformers, Dijkstra has

proven a theorem about predicate transformers which is based on the

following definition:

If two predicate transformers fS and fS' satisfy the property that
for all P, fS(P) 3 fS'(P) then "fS is as strong as fS'" and "fS' is
as weak as fS".

imiiii iritnüfllüi ■ ■ ■——"— - ,

ppg^^g^smnmRHnpnnipi!^^

MAKING ASSUMPTIONS EXPLICIT
A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

22

The theorem can now be stated:
Theorem of Monotonicity: Whenever in a predicate transformer fS,
formed by concatenation and/or selection and/or recursion, one of
the constituent predicate transformers is replaced by one as
weak(strong) as the original one, the resulting predicate
transformer is as weak{strong) as fS.

«.

For constructions such as while B do 81 or repeat Si until B

explicit predicate transformers are not presented. Instead, for the

while construction, the Fundamental Invariance Theorem for Repetition

has been proven, i.e.

If S is while B do SI and Q is a post-condition for SI, then

((Q A B) 3 fSUQ)) 3 ((Q A fS(true)) = fS(Q A -B)).

This theorem along with the Theorem of Monotonicity can be used to find

pre-conditions which imply the weakest pre-condition for a while

construction or a repeat construction. For examplp, if

((Q A B) ^ fSl(Q)) A (Q A fS(true))

is used to replace the weakest pre-condition for a while construction,

given (Q A -B) as the post-condition, then the Theorem of Monotonicity

asserts that the pre-conditions which result from applications of

selection, concatenation, and recursion will be as strong as any formed

by using the weakest pre-condition for the while construction. Further,

if

is interpreted as

S: repeat 81 until B

Si; S'; while -B do 81;

then

fSl(((Q A -^B) = fSKQ)) A (Q A fS^true)))

 — ■ I II ■ ^fcMIM^llMl 1111 . _ _ _

MLIlUm IIIWMIV.II^II. mil III-,* \l*mni~ Ml'■ <■ JIIWI"«»I1IIIW1JJ»^1. " 1.1. «^•"Wi»*..iv-w.j:,i,jj,iiWyH«^(^y|lppiSii|WjjiWWiW

MAKING ASSUMPTIONS EXPLICIT
A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

23

is as strong a. fS(Q A B). A difficulty arises, however, when we

attempt to display fS(true) whenever S is a while construction.

Informally, fS(true) can be interpreted as the "weaKest pre-condition

for S which guarantees that S terminates". It is frequently possible to

find conditions which guarantee termination, but it is more difficult to

prove that a particular termination condition is the weaKest. However,

any condition for termination, say X, implies the weakest pre-condition

for S to terminate, i.e. X n> fS(true) so that the Fundamental

Invariance Theorem for Repetition allows

UQ A B) 3 fSKQ)) a ((Q A X) 3 fS(Q A iB))

Hence, if ((Q A B) ^ fSKQ)) A (Q A X) is used to replace the weakest

pre-condition for a while construction, given (Q A -B) as the

post-condition, then, subject to the conditons of the Theorem of

Monotonicity, this predicate will be as strong as any formed by using

the weakest pre-conditon for the while construction.

4r * *

The notion of a "weakest pre-condition" can be used informally to

suggest essential relationships which must hold prior to the execution

of an object which is not yet represented in the target language. In

short, these assumptions should insure that the object is correct, given

the post-conditions which hold after the object is executed.

"Weakest pre-conditions" are simply relationships which must hold

prior to the execution of an object and do not include descriptions of

 -******-**-"*-" --v- - . ^.- , „,,m,|i^^aMMiM,i,^.,fc| ^. LJ ^_ ■ . ■.,.

IW7?W»«»WBWIWSHPrWS"W«W^

MAKING ASSUMPTIONS EXPLICIT
A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

24

the capabilities which must be available to the objects. For example,

in order to execute an assignment, access rights for variables are not

mentioned explicitly, i.e. if a post-condition for d := d + c is

a*c + d*b = A*B, then even though the assumption

(a + b)*c + b*d=A*B must hold, the assignment requires write

access to d and read access to d and c, but requires no access to a, b,

A, or B. Similar arguments can be made for examples of assumptions

about program environment and assumptions which are theorems from

mathematics, i.e. assumptions which are answers to questions (3) and

(4).

Assumptions associated with objects that occur at early stages of a

development must usually be deduced informally. At later stages, formal

methods - such as the techniques of DijK5tra[DJ5] - can be used to find

some of the assumptions. It should be clear, however, that the depth to

which refinements are made is up to the discretion of the designer. In

some of the examples, refinements have been made to the statement level

in order to apply Dijkstra's techniques directly. In general,

refinements which imply greater detail than the constructs for which a

set of predicate transformers have been found seems ill-advised since

that kind of detail involves operations which are available to all the

objects. The section in Chapter III which discusses the probability of

change of assumptions provides further evidence to justify this choice.

Since interactions are of major interest when structure in a

program is examined, the assumptions of an object should be represented

liiiMriltte<iMäiiifr»*m«i^iilriii<>i[ihitlti^imillMiiiMllilllhat>^r- u^.J,. ^ _^ . -... ,

IWWWTOWrrawS^T^RJS^BBjaBWWHWpP^^

...-.■ ■: ■■ -■ ■

MAKING ASSUMPTIONS EXPLICIT
A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

25

as a conjunction of single assumptions. This kind of representation

allows interactions to be observed easily. In particular, the next

section describes a tabular scheme for recording assumptions where this

kind of representation is particularly helpful.

To summarize, the assumptions associated with an object should

describe its requirements as completely as possible.

The question now arises as to how objects should be elaborated.

Each object will be elaborated as an arrangement of sub-objects, each

possessing its own assumptions and post-conditions. Frequently, such an

elaboration may not require all the assumptions which are made by the

object which is being elaborated. For example, if

P {S}Q

where P represents the assumptions of an object {S} with post-condition

Q and X and Y can be found such that P ^ X and Y ^ Q and X {8} Y then

the elaboration of {S} can be made using only the assumptions implied by

X, rather than all those implied by P.

As an aid to finding X and Y, we adopt the guideline suggested by

Parnas[PAl] where we attempt to describe {S} via a specification which

"hides" as many of the assumptions in P as possible. This same

guideline can be applied at the initial stage of program development as

well. Any time this guideline is used, however, we include P ^ X and

Y ^ Q as assumptions of S.

M —^ -■• ■- - - ■■ -- Kimiiiit\«iii ••'---■■■■■■■■■•■■■-■ ■■■'■ ■■ ■■■■ ■■■ ■ ■■'■■. ■■.^-.i i.; .■,—:■.■....■> .^,:..—. . ^u..^_

»•spnjPTrajjsBPPB^H!*»"!^ »•™**r-.™m>j'fm-.w™!mmm*mT-~ •»mm,>!'*'"-'*mv'*. '■■ IM

MAKING ASSUMPTIONS EXPLICIT
A DESIGN METHODOLOGY FOR PRESERVING ASSUMPTIONS

26

A common example of information hiding, where these additional

assumptions will not be included, involves concatenations of several

objects, perhaps the result of some elaboration. Weakest pre-conditons

associated with a concatenation of several objects frequently include

clauses which are of no relevance to individual objects in the

concatenation. For example, if a post-condition for

x := x + 1; y := y - 1; is x > 4 A y < 2 then the weakest pre-condition

for x := x + 1 is x > 3 A y < 3. In order to satisfy the post-condition

for the concatenation, the first assignment required no information

about x and the second required no information about y, but their

combined effects led to the post-condition. For this reason, in a

concatenation only those clauses in a post-condition which are changed

as a result of the effects of an object will be listed as assumptions

for that object. This choice can be justified by observing that if

A A B {S} C A B and no elaboration of S can be made such that A {8} C

makes B false then A {8} C A B. Since this is just a theorem from

mathematics, the section which discusses Probability of Change of

Assumptions justifies the omission of these unaffected clauses.

To summarize:

(1) The methodology addresses programs in a "top-down" fashion.

(2) The assumptions which are associated with each object are
answers to the four questions stated earlier.

(3) If an object is elaborated and it is possible to find X and Y
such that if P{8}Q and P 3 X and Y D Q and X{8}Y then P D X and
Y ^ Q will augment the assumptions associated with S.

(4) Each program will be verified by showing that the assumptions
associated with that object imply a pre-condition which was derived

- - - -" ^.^ .^■■.._,.■ .. ^ .^.„.^..hh..,^

üppppppuii j..iwni«ip».i««un,iiimi i.u.i i.iiiiiu.iiiiinwMumü.,i. . JJIWMUI .I. . mim—»"inww*)tKv*.m>ij.>\'miiuw. „i mituijjiuf.mnmi'>wmmn).\i ^mmsmmmffM

MAKING ASSUMPTIONS EXPLICIT
OBJECT/ASSUMPTION TABLES

27

by considering the effects of the object along with the
post-condition which is to hold after it is executed.

OBJECT/ASSUMPTION TABLES

In order to record the assumptions which will be associated with

objects, object/assumption tables will be constructed for programs.

These tables will be used extensively in Chapter IV. The table is

defined for all objects I and assumptions J such that

jl, if object I makes assumption J
T(I,J) = i

[0, otherwise

In the examples, some care has been taken to represent assumptions as

conjunctions of "simpler" assumptions, where each conjunct corresponds

to a column in the object/assumption table.

AN EXAMPLE OF OBJECTS AND THEIR ASSUMPTIONS

The example which follows is meant to demonstrate the way

assumptions are deduced and recorded, and should not be construed as

typical of the amount of detail that should be preserved in all

programs. The choice was made to refine objects so that the final

program consisted of single statements or parts of statements, thus

displaying explicit pre-conditions - in the Dijkstra sense - as well as

assumptions of other kinds. As a consequence of this detail, the

development proceeds very slowly if it is read from beginning to end.

Nevertheless, if objects are to be understandable without additional

■— --■ mm '"' ■■"■ -■-^^»'^^'^■^^''^^"■■■^--■■■'VJJ.^.-..IJ..I.UI.I.. -^^..M...M,.^-i..»^,.l ,,..,..lmj»iMu^^iKM|Mt1fi|t||'|1-^^..- ;-m ,^. . ■ , .

pffiW»!»WÄW5n»W»>f!W?'BI»SHffiB«P!^

MAKING ASSUMPTIONS EXPLICIT
AN EXAMPLE OF OBJECTS AND THEIR ASSUMPTIONS

28

context, assumptions must be staled wherever they are made. For this

reason, a map is provided that summarizes the example. The example can

best be studied by studying first the map and then the objects in terms

of their assumptions, post-conditions, and effects. Postpone studying

the verifications and object/assumption tables until the program itself

is generally understood.

The objects of each of the programs in this thesis are described

by:

(1) assumptions for the object.

(2) an explicit statement of the effects of the object, i.e. what
this object actually does. (Note that the effects of an object are
not necessarily the same as the post-conditions for an object, e.g.
the post-conditions associated with a particular assignment
statement may be quite different from the net effects of that
assignment.)

(3) post-conditions for the object - a description of what every
version of the object must do.

(4) a verification and check that the assumptions stated in (1) and
the effects stated in (2) imply the post-conditions. (These
verifications are informal. They are presented only for the first
few examples.)

(5) a display of that portion of an object/assumption table which
is appropriate to the object (assumptions which are added as a
result of hiding information from an elaboration are indicated by a
"+" in each table rather than a "1").

Each object will be named by an object name defined by:

<object name> ::= : <object number> :
<object number> ::= <positive integer> |

<object number> . <positive integer>

These names allow the ancestry of an object to be related to the rest of

mmm '-'■-"' -'~.^^i»l^«'lM«aMJ^aia»>J^-l!i.,.t,-:...... ^.t...;.... , _. ■,.:,;.■_ v^.;....,j^,lvt^^.., ;.,..... . , . . -•..■-■■! ■■ ■ _ .

ppipgpnp.l ■.(■.UK 1IIII..I1KI.II1.I ^IILll,pH^la■PW*^n■NI!V.n"V"M!|)l,•M"•W".^<, ' ■"ll M ..(■].W»lW.«lBlHl»»Wllil!i"^J!i!IW)II.Pl|PJ>ll"»lllPlllPil.lP'MM,PIWi.P.MlW«llV''"»>"W.W Jl WJQfKm

MAKING ASSUMPTIONS EXPLICIT
AN EXAMPLE OF OBJECTS AND THEIR ASSUMPTIONS

29

a program. For example, if object :10.5.3.2: is to be elaborated as

three new objects, then the names for the sub-objects will be

:10.5.3.2.1:, :10.5.3.2.2:, and :10.5.3.2.3:.

For the purposes of these examples, the target language for the

programs can be regarded as a dialect of ALGOL 60 and is identical with

a language used by Dijkstra[DJ3].

A GCD COMPUTATION

:1: (pg. 31)

:1.1: (32) :1.2: (32)

:1.1.1.1: (36)
(while a ^ b do

:1.1.1.2:;)

:1.1.1: (34) :1.2.1: (34)
(x ♦- a)

:1.1.1.2: (36)

:1.1.1.2.1: (37)

:1.1.1.2.1.1: (39) :1.1.1.2.1.2: (39) :1.1.1.2.1.3: (39)
(if a > b then

:1.1.1.2.1.2:
else

:1.1.1.2.1.3: ;)

:1.1.1.2.1.2.1: (41) :1.1.1.2.1.3.1: (41)
(a ♦- a - b) (b <- b - a)

Object :1: assumes that positive integer values are contained in
variables a and b and has the effect of assigning to x the value of the
greatest common divisor of the initial contents of a and b (symbolized
by A and B, respectively).

 —- —- —;-—'■'—
Lai«^^w. ;.;^...-,. .^ ■-. ^ .^.. ,-,.^v.ir^Mi

|PP!l!^«P(BlipWH8B^aBW»pi',SPpW!E!^^

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

30

Object :1.1: leaves the value of gcd(a,b) in a and object :1.2: assigns
the value of a to x.

The theorem that (gcd(a>b) = gcdiA.B) A a = b) = a = gcd(A)B) is hidden
from :1.1.1: and a = gcd(A,B) is hidden from ii.2.1:.

Object :i.1.1.1: controls the execution of :1.1.1.2: which maintains the
invariant (a < a' v b < b') A gcd(a)b) = gcd{A,B), where a' and b' are
the values of a and b prior to each iteration.

Object :1.1.1.2.1: hides the invariant gcd(a)b) = gcd(A,B).

Finally, objects :1.1.1.2.1.1:, :1.1.1.2.1.2:, and :1.1.1.2.1.3:
implement a conditional statement which results in (a < a' v b < b') A
gcd(a)b) = gcdla'.b').

^to itfiiiiajiti^\--^i^^^.^.^^^

MMwmm^pww^i uwimiiHiwi wu«■«■■« . J yi i« i.)ii»ji»mii. \n iwmmmm^m^mwmmimmmii^mm^m

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

31

A GCD COMPUTATION

This example, based on a program due to Dijkstra[DJ3 pp. 33-41],

is constrained so that it uses neither multiplication nor division to

compute the greatest common divisor of two positive integers.

Compute the value of the greatest common divisor of the
initial(positive) contents of the integer variables a and b, and leave
the result in the variable x, without using either multiplication or
division. The assumption that neither multiplication nor division is to
be used in the progreim is an assumption which must be made by all the
objects. It is identified as assumption "0" and in Chapter III will be
shown to have no effect on the possible ways of decomposing the program.

object di

assumptions:

effects and
post-condition:

verification:

a > 0, b > 0, A symbolizes the initial value of a,
B symbolizes the initial value of b, a is an integer
variable, b is an integer variable, write access to
x is required, read and write access is required for
both a and b, neither multiplication nor division is
to be used

:1: COMPUTE THE GCD OF a AND b, LEAVE THE RESULT IN
THE VARIABLE x, WITHOUT USING EITHER MULTIPLICATION
OR DIVISION.

x = gcd(A,B)

Since the gcd of any two positive integers is always
defined and is computable, the computation is
feasible.

^.m,.:.......,-l..-,...»J .^a.H.^^^t^J........ :■.: „**

)mSWWIpifM"iy,ll!M WHW^^^ I »yjlll I)J,I lilWWP,. _),«U|i|!JIUU|JIJi||l

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

32

The object/assumption table for :1: is

assumptions
Objects o 1 23456789 1011

: l: 111111 '. 1

0) neither multiplication nor division is to be used
1) a > 0, b > 0, a and b are integer variables
2) A symbolizes the initial value in a and

B symbolizes the initial value in b
3) write access to x is required
4) write access to a is required
5) read access to a is required
10) write access to b is required
11) read access to b is required

We elaborate :1: as

:l.i:

assumptions: a > 0, b > 0, A symbolizes the initial value of a,
B symbolizes the initial value of b, a is an integer
variable, b is an integer variable, read and write
access to a and b is required, neither
multiplication nor division is to be used

:1.1: REPLACE THE VALUE OF a BY gcd(A,B)

effects and
post-condition; a = gcd(A,B)

:1.2:

assumptions: a = gcdiA.B), write access to x is required, read
access to a is required, neither multiplication nor
division is to be used

:1.2: REPLACE THE VALUE OF x BY THE VALUE CONTAINED
IN a.

effects: x = a

post-condition: x = gcd(A)B)

verification: In order for x = gcd(A,B) to hold after :1.2:, given
that its effect is x = a, its assumptions must be a

gcd(A,B). But this is guaranteed as the
post-condition of :1.1:.

- ■-

,..:..„..^..,...-.,,.,,;.,.....„ .._...-, .: u.^- ■■' ■■-■■' ^aaäariM^-..-L..'.. . ■■ .. , , ^ ..-,:'^.^v

HWiiiiii«iMuw""-m>i>.ujii ii Miimw»"" «-""'■»^J<-»»W«III, «uiii ui iawmiwi!mi'"fv^"""" •■ > •■ H*IWJI»äW»L, . IIIUIH«I*P.II. Hi" «»ui «M!» i^i ML JIUPHI-U

■ .•: , : - ■ HI - MN MB ■■ "- "-

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

object/assumption table for :1.1:, :1.2:

33

l- i:

1-2S

0123456789 1011

I I 1 1 1 II

1 111

0) neither multiplication nor division is to be used
1) a > 0, b > 0, a and b are integer variables
2) A symbolizes the initial value in a and

B symbolizes the initial value in b
3) write access to x is required
4) write access to a is required
5) read access to a is required
6) a = gcdCA.B)
10) write access to b is required
11) read access to b is required

Jl^C.^^^ , . ■■ -•■•■■ • -^ I — - ■ ■ ■ ■ -'~' ■■ ~ .A

piB.p^j<mWjaaUy!i.4IUiiW|lj«wli.iiul i'winiiiiwii^w^iüppipBj UWJMÜW ■ ■ i iM)jp»i^a^nqM^iiinMipj>iiiii.i>iOTnTC^>>iiuiiwLwiiwqfinin>«^n«n>

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

34

Consider next an elaboration of :1.1:. If the values of a and b can be
modified so that a = b and gcd(a,b) = gcctfA.B) then a = gcd(A,B). This
means that by adding

(a = b A gcd{a,b) = gcd(A,B)) = a = gcd(A,B)

to the assumptions of :1.1: we can write

:i.l.i:

assumptions:

effects and
post-condition:

a > 0, b > 0, A symbolizes the initial value of a,
B symbolizes the initial value of b, a is an integer
variable, b is an integer variable, read and write
access is required for both a and b, and neither
multiplication nor division is to be used

:1.1.1: MAKE a = b SUCH THAT gcd(a,b) = gcd(A)B).

a = b, gcd{a,b) = gcd(A,B)

An elaboration of ;1.2: can be made if we observe that

a = gcd(A,B) 3 true
and

x = a 3 x = gcd(A,B)

ßut since :1.2: assumes a = gcd(A,B) we can write

:1.2.1:

assumptions: write access to x is required, read access to a is
required, neither multiplication nor division is to
be used

;1.2.1: x *- a

effect and
post-condition:

J

■i^.^-.^.^..^..... :.,. .■.., ,■.-,„■:_■: :., , ii iifMiiiiiliilii'liMiiilMi^^ ._.

|IUI>MIIL».IWWIWI juiUV l,iUMi>.!WK'.lli"UlUJUimiil P.ii«iwl»l»l4JMI.i«Jiw»>i"i^'»v.w,i .■ ^•.>"-i.m^na»'ll»-HWÜPM»>UJ(l IWIII|^J.«IWWIHIW.WIM1|',HW"P1<.J " TTr-^-«—• »■■ i *...*..<..p.

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

35

As a result, the object/assumption table for :1.1, :1.2:, :1.1.1:, and
:1.2.1: is

0 I 23456789 1011

♦ I 1

5

si- i:
5|-2i

: i, 9. i:

0) neither multiplication nor division is to be used
1) a > 0, b > 0, a and b are integer variables
2) A symbolizes the initial value in a and

B symbolizes the initial value in b
3) write access to x is required
A) write access to a is required
5) read access to a is required
6) a = gcdiA.B)
7) (a = b) A gcd(A)B) = gcd(a,b) 3 a = gcd(AIB)
8) x = a = x = gcd(A)B)
9) a = gcd(A)B) ^ true
10) write access to b is required
11) read access to b is required

{

«MHHMM JtaarimiiiiUlMAIiliilWlii M -- ■

BRilsnreapiPiWWSppHp^WWPW!*^^

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

36

Adopting the convention that a' and b' equal the values of a and b just
prior to the most recent execution of :1.1.1.2: we elaborate :1.1.1:

il.1.1.1:

assumptions:

:1.1.1.2:

assumptions:

effect and
post-condition:

effects and
post-condition:

a > 0, b > 0, A symbolizes the initial value of a,
B symbolizes the initial value of b, a is an integer
variable, b is an integer variable, read access is
required for both a and b, a' and b' equal the
respective values of a and b prior to the last
execution of il.1.1.2:, [(a < a' v b < b') A

gcd(a)b) = gcd(A)B) A a ?! b) ^ (a H b A gcd(a,b) =
gcd^'.b1)) A maxte'.b') > max(a)b)])

gcd(aIb)=gcd{A)B)) neither multiplication nor
division is to be used

:1.1.1.1: while a t b do

a > 0, b > 0, A symbolizes the initial value of a,
B symbolizes the initial value of b, a is an integer
variable, b is an integer variable, read and write
access is required for both a and b, a' and b' equal
the respective values of a and b prior to the last
execution of :1.1.1.2:, a ft b, gcd(a,b) = gcd(A,B)l
neither multiplication nor division is to be used

:1.1.1.2: DECREASE EITHER a, b, OR BOTH a AND b SUCH
THAT gcd{a,b) = gcd(A,B).

(a < a' v b < b1), gcd(a,b) = gcd(A,B)

a = b, gcd(a,b) = gcd(A,B)

.-^■«..■■u^-..:...-....^...-.......-.. | ■..,^,.,^.i^—^ Mli2&m*A~i~l,..,.■..'.,. , , v..^..,^...!:....^.!. ..^.^ ■...- ^.w,.., ...'■„^

PT'^^PSW^W^lBWP^WRBlf^^PPWPW'^^^wi^^ mumiimm*. ,"i!«wiwiii».ii»»ipi|H| w -«mimmiiw wsw«

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

The object/assumption table for :1.1.1.1: and :1.1.1.2: is

: |. (. i. |:

:i. i. 1.2:

0123456789 101112131415

111 1 1111

III II 111 II

37

1) a > 0, b > 0, a and b are integer variables
2) A symbolizes the initial value in a and

B symbolizes the initial value in b
4) write access to a is required
5) read access to a is required
10) write access to b is required
11) read access to b is required
12) a' and b' equal the respective values of a and b

prior to the last execution of :1.1.1.2:
13) (((a^1 v b^) A gcd{a1b)=gcd(A,B) A a^b) =

(a/b A gccKa.b) = gcd(A,B)) A maxia'.b1) > max(a,b))
14) ßccKa.b) = gcdlA.B)
15) a H b

If we add the following assumption to :1.1.1.2: we can "hide" A and B
from :1.1.1.2.1:

[(gcd(a,b)=Bcd(A,B))=)
(gcd(a,

)b
,)=gcd(a)b), holds prior to executing :1.1.1.2.1:)] and

[(gcd(a,,b')=gcd(a,b)) holds after executing :1.1.1.2.1:)3
(gcd(a,b)=gcd(A,B))]

This is verifiable in the context of :1.1.1.2: and :1.1.1.1:.

:1.1.1.2.1:

assumptions: a > 0, b > 0, a and b are integer variables, A
symbolizes the initial value of a and B symbolizes
the initial value of b, read and write access is
required for both a and b, a' and b' equal the
respective values of a and b prior to the last
execution of :1.1.1.2:, gcd(a,b) = gcd^'.b'),
neither multiplication nor division is to be used

:1.1.1.2.1: DFCREASE EITHER a, b, OR BOTH a AND b
SUCH THAT gcd(a,b) = gcd{a,,b').

effects and
post-condition: (a < a' or b < b'), gcd(a,b) = gcd(a'(b')

MHMi^M j^mtjllgmmsmjtUjUmgjä^l ;...-....- ■ ■

.

■-'■■^„■■■^••.■■S-tMlil***.............

BT!^W5'W?e!fW»™»TO5T!»i»w-=^

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

38

The table for :1.1.1.2: and -,1.1.1.2.1: is

I- 1- !• 2'
|. |. i. 2- ['•

0123456789 101 I 12!3MI5I6I7

111 11 111 11*

II II 111 II

0) neither multiplication nor division is to be used
1) a > 0, b > 0, a and b are integer variables
2) A symbolizes the initial value in a and

B symbolizes the initial value in b
4) write access to a is required
5) read access to a is required
10) write access to b is required
11) read access to b is required
12) a' and b1 equal the respective values of a and b

prior to the last execution of :1.1.1.2:
14) gcd(a)b) = gcd(A)B)
15) a ?! b
16) [(gcd(a,b)=gcd(A)B))3

(gcd(a,
)b

,)=gcd(alb)) holds prior to executing :1.1.1.2.1:)] and
[(gcd(a,,b,)=gcd(a,b)) holds after executing :1.1.1.2.1:):)

{gcd(a,b)=grd(A)B))]
17) gcd(a,b) = gcd(a,,b')

m - •—■-"- .MMM^MMMH^Bi attftU^. ^... /.^^j.--.-...:. .^ ..■■..■..■■•...-.--..:..■-■--.- lWVliwtTlVti>fflfi^ ii'i'r-

TW'T^"!™*'''''''''''"'»^^ ^W-«™W«VI,WV«™TWWWWW^ ««fiiaw.w^jtwjjt^Rei

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

39

We can now elaborate ;1.1.1.2.1: as

:1.1.1.2.1.1:

assumptions:

:1.1.1.2.1.2:

assumptions:

effect and

post-condition:

:1.1.1.2.1.3:

assumptions:

effect and

post-condition:

po';t-condition;

verification:

a > 0. b > 0, a and b are integer variables, read
access to a is required, read access to b is

required, a1 and b' equal the respective values of a
and b prior to the last execution of :1.1,1.2:, a ^

b, (a > b A gcdia'.b1) = gcd(a-b)b) v a < b A

gcd^',^) = gcd(a,b-a), neither multiplication nor
division is to be used

:1.1.1.2.1.1: if a > b then

gcdCa'.b') = gccKa-b.b), a > 0, b > 0, a and b are
integer variables, write access to a is required,
read access to a is required, read access to b is

required, a' and b' equal the respective values of a

and b prior to the last execution of :1.1.1.2:,
neither multiplication nor division is to be used

:1.1.1.2.1.2; DECREASE a BY b.

a has been decreased by b.

else

gcd(a,,b1) = gcd(a,b-a), a > 0, b > 0, a and b are

integer variables, read access to a is required,

write access to b is required, read access to b is

required, a' and b1 equal the respective values of a

and b prior to the last execution of :1.1.1.2:,
neither multiplication nor division is to be used

:1.1.1.2.1.3; DECREASE b BY a.

b has been decreased by a

gcd(a,b) = gcdCaVb'), (a < a' or b < b1)

given that a ?* b and the other initial conditions
the assumptions for :1.1.1.2.1.1: is a theorem from
mathematics.

■ - - ■-■ - ■ ■ ■ - :- ■■ ■ ! I i'lViii-llBiy-'^--*^ ^.■'.•■-■■" _J __.

tmwiMin»'Pf«iji HIUHUJUII ii.>p.iiiiHi i ™ in ■IIIII).IW^JWI,W.|>P<|U'INI.IIIUMMI.I .i-. ii!",j.^ii«»iwi»^iHJmiwikii,iwpjAi.j>iwwHP*p^wpip»!P^i|pp.iiiiiii.ijiiji i i . wmm^f^immin

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

The object/assumption table for these parts is then:

40

: 1. 1. 1. 2- I- is
: i. |. 1.2. 1.2?

: 1, |. i.2. 1.3s

0123156789 101 I 121314151617181920

II 1 1111

1111 I i

III II I

0) neither multiplication nor division is to be used
1) a > 0, b > 0, a and b are integer variables
4) write access to a is required
5) read access to a is required
10) write access to b is required
11) read access to b is required
12) a' and b1 equal the respective values of a and b

prior to the last execution of si.1.1.2:
15) a H b
18) (a > b A gcd^'.b') = gcd(a-b,b) v

a < b A gcd^'.b') = gcd{a,b-a)
19) gcdCa'.b') = gcdte-b.b)
20) gcdla^') = gcd(a)b-a)

^„^.-^■-^.^■..^■^^^L^^^^^^

ipSWIWWIHWSWWWf^

..■-r,...-,.

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

Lastly, if we add

gcdia'.b') = gcd(a,b-a) => true
and

b decreased by a = gcd(a,b)=gcd{a,,b,)

to the assumptions of :1.1.1.2.1.3: and

gcd(a,,b,)=gcd(a-b)b) = true
and

a decreased by b ^ gcdia.b^gcd^'.b1)

to the assumptions of :1.1.1.2.1.2:, we can elaborate these objects to

:i.1.1.2.1.2.1:

41

assumptions:

effects and
post-condition:

and

:1.1.1.2.1.3.1!

assumptions:

effects and
post-condition:

write access to a is required, read access to a is
required, read access to b is required, neither
multiplication nor division is to be used

:1.1.1.2.1.2.1: a ^ a - b.

a decreased by b

read access to a is required, write access to b is
required, read access to b is required, neither
multiplication nor division is to be used

:1.1.1.2.1.3.1: b ♦- b - a.

b decreased by a

HMM .^MtiiäLumHuaaafemmu***-^^^ , .„- ■iMiaiüiHlMrtllMi(ltiiiMlliTll in ÜiUiMltigi-Vef'muiri h- ■ i/rl,^>^-iÄi^*^^,i»iÄv-tÄ-:,A,i«

HWa^PP?fWl**«p?»WP?'WW!9''^^ ^.i.i,tiiiWl»MU»»t(^(U«|J,M.U..U|^^

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

The relevant tables are:

42

2- 1- 2'

2- l-3:

2- 1- 2-

2- I-3-

0111213141516171819202122
ii i ♦

0123456789

1111 I

II 1 II
III I

I I 11

0) neither multiplication nor division is to be used
1) a > 0, b > 0, a and b are integer variables
4) write access to a is required
5) read access to a is required
10) write access to b is required
11) read access to b is required
12) a' and b' equal the respective values of a and b

prior to the last execution of :1.1.1.2:
19) gccKa'.b') = gcdla-b.b)
20) ßcd(a,,b') = gcd(a,b-a)
21) gccKa'.b') = gcd{a)b-a) = true,

b decreased by a ^ gcd^'.b1) = gcd(a,b)
22) Gcd^'.b') = gcd(a-b,b) = true,

a decreased by b ^ gcd(a)b) = gccKa',b')

mmmtltimm ■ttttOklttWMttMWUMMMiilMBI Ümiiirliliii i,-^-.f,^.^-;..vf^i^iv...a.^;^^.i.t;Gi«^^;1L,aU^^>.u;'.. j&iiäai

^^*T*nWMWVW*fiii4fki;W^..1) ,i|,J)'^-H^IHill.l»!^^-iT.'?i'MPJ: V-MT-^ww^ j.iiy_!j|ijB^|ijjWJjiipyj.^i,.J^■*^^i^iV.'^^^M,.u^>(.i)«^^^M-f ^.^-^.^WJ-Wl*!.!-!..*!^ ■*('-("f.■ >LWttWw^-l■*L^^IW.^*W^.^fll*^UI^^!MJH.^.^P.,^.""'?T5Z^P^?PW??PSPEW^H

■ ■

MAKING ASSUMPTIONS EXPLICIT
A GCD COMPUTATION

43

ßdow is a display of the entire table. This table will be used in
chapter IV to evaluate different decompositions of the program, and to
observe where interactions were introduced as the program was developed.

si'
: |. i:

5i-2:
: i- l

•\-2

''I- I

'' I- l

5|. I

51. 1

•-]■ 1

' !• 1

51- 1

0 I 23^)56789 10

1 1 I 1 I I I

III 11 * I

1 I 1 I * *

I ! I I I I

1J

2-

2- I

2- I

2- 1

2- 1

2- 1

2- 1

II2131415I6I7I8I9202122

1 *

0) neither multiplication nor division is to be used
1) a > 0, b > 0, a and b are integer variables
2) A symbolizes the initial value in a and

B symbolizes the initial value in b
3) write access to x is required
4) write access to a is required
5) rrad access to a is required
6) a = gcdCA.B)
7) (a = b) A gcd(A,B) = gcdia.b) 3 a = gcd{A)B)
S) x = a D x = gcd(A,B)
9) a = gcd(A>B) => true
10) write access to b is required
11) read access to b is required
12) a' and b' equal the respective values of a and b

prior to the last execution of ;1.1.1.2:
13) (((a^1 v b^1) A gcd(a1b)=gcd(A)B) A a^b) o

(a^b A gcd(a,b) = gcd(A,B)) A max(a,,b') > max(a,b))
14) Rcd(a,b> = gcd(A)B)
15) a ^ b
16) [(gcd(a)b)=gcd{A,B))3

(gcd(a,,b,)=gcd(a,b)) holds prior to executing ;1.1.1.2.1:)] and
[(gcd(a,

)b
,)=gcd(a,b)) holds after executing :1.1.1.2.1:)=

(gcd(a)b)=gcd{A)B))]
17) gccKa.b) = gcdte'.b')
IS) (a > b A gcdCa'.b1) = gcd(a-b>b) v

a < b A gcd(a^b,) = gcd(a,b-a)
19) ücd(a^b,) = gcd(a-b,b)
20) gcdW) = gcd(a,b-a)
21) gcd{a,,b,) = gcd(a,b-a) o true,

b decreased by a 3 gcd^b') = gcd(a,b)
22) i^cdla'.b7) - gcd(a-b,b) o true,

a decreased by b => gcd(a,b) = gcd^'.b')

|

- mmttM \'tälfoi^K\\atili'-ikl'"'AM6i*iiAi*J.\.K

l!nä^™*»»!Pr!™n^J!!!*i?n^^

MAKING ASSUMPTIONS EXPLICIT
SUMMARY

44

SUMMARY

The definition of program structure in Chapter I has been used to

explicitly describe the kinds of assumptions which are associated with

objects. These assumptions include the "pre-conditions", described by

DijKstra[DJ5]) as well as assumptions 3bout the capabilities an object

must have in order to achieve its effects. Lastly, a program is

developed in order to demonstrate the way assumptions are preserved and

recorded. The object/assumption table foi this program will be used in

Chapter IV in order to examine various decompositions of the program in

the light of the measure which is presented in Chapter III.

-" '--• miiniiiüi ii •---^ ■■ -'-— ■- - ■■ • — ——■-- — mfc.rt.. , . , , .

rK^Trw*»?-?3'TOF^^S^^

■ ■ ■ ■ ■ ■ ■..,.;... ..-.,

¥6

CHAPTER III

A MEASURE OF PRÜGRAM STRUCTURE

This chapter presents and justifies a calculation which is used to

measure how much groups of objects in a program interact. Next, it is

shown »hat the problem of finding an arrangement of objects which

interacts least is tractable only for small programs. Instead, several

theorems and heuristics are presented which provide useful guidelines

for controlling interactions as a program is developed. Lastly, it is

observed that certain assumptions should affect structure less than

others. For example, assumptions which are not subject to change -

theorems from mathematics - can safely be shared without influencing the

difficulty of changing a program. Consequently, the definition of the

measure is modified to incorporate this notion.

DEFINITION OF A MEASURE

Dictionary definitions of the word "measure" use phrases such as

"reference standards to which something is valued", "a criterion", or

"extent, degree or quantity", These phrases and the definition of

program structure from chapter II suggest that a measure of program

structure should provide a valuation of the interactions among

identified groups of objects in a program. Van Emden[vEl,vE2] has

described a calculation based on data contained in an object/assumption

table which characterizes the degree to which collections of objects

interact. The calculation is called entropy loading. Choosing this

■ IHMUMII - -'L—— iniTi^iiMttMttattMnittifcMyMii MMtiriftifrn'-Virrr--1- (SWrti **..

«ifW^u.,-aa^^^wu^^fAi^jiifti^u. ...^.jiu^m

A MEASURE OF PROGRAM STRUCTURE
DEFINITION OF A MEASURE

46

calculaUon as a measure of program structure is justified if we regard

programs as complex systems which have identifiable objects which, in

turn, possess properties - in this case, an object has the properties of

making or not making certain assumptions, van Emd:;n[vE2] has shown that

entropy loading provides a measure of what Williams and Lambert[WL] call

an "association". Informally, this means that the calculation indicates

the degree to which designated colledionb of objects are similar to one

another. Entropy loading measures the amount of information shared

among collections of objects as opposed to the information used inside

each collection. Alexander[AL] and Watanabe[WA] have also used similar

techniques to analyze complex systems. in the present application,

where object/assumption tables represent programs, designers can use the

calculation as a guide for controlling interactions among collections of

objects which are designated as subsystems.

En' , jading is defined for some subset of the rows, say S, of

an object/assumption table containing n rows. Suppose that the objects

in S are partitioned into two sets A and B such that A U B = S and

A n B = <empty>. The entropy loading of S for the partition into A and

B is defined to be

C(S) = H(A) + H(B) - H{S)

where

H(X) = I , (n./n) log (n/n,)

= log n - (1/n) Z i "i log (ni)

- --.^^^-li^-^.H—

!»»**|S»!l!p«(ppip»IBIG™SWP»^ «f

A MEASURE OF PROGRAM STRUCTURE
DEFINITION OF A MEASURE

47

To determine the nfs

(a) construct a table containing only those columns of S which
contain at least one occurrence of a "1" in the subset of rows, X.

(b) regarding each row in this table as a one-zero pattern, the
Hj's are the number of occurrences of each distinct pattern (Note
that the sum of all n^s equals n, the number of rows in S.)

For example, if a set of rows, S, is

a b c d e f
1
?
3

5
6

Let A be the rows {1,2,3} and B the rows {4,5,6}, then H(S) = H(A U B) =

log 6 since at least one "1" occurs in every column, and each row is

distinct. Similarly, H(A) can be computed by noting that at least one

"1" occurs in A only in columns a, d, and f, and from

a cl f

10 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 10 0 1 1
0 0 10 1 1
0 0 0 0 1 0

1 0 0
0 0 i
0 1 0
0 0 1
0 0 1
0 0 0

1 0 0 occurs once; 0 0 1 occurs three times; 0 1 0 occurs once; and

0 0 0 occurs once, then

H(A) = log 6 - (1/5) 3 log 3 (*)

Similarly, since at least one "1" occurs in columns b, c, e, and f

of B, 0 0 0 0 occurs twice; 0 0 0 1 occurs once; 10 11 occurs once;

Olli occurs once; and 0010 occurs once, ana

H(B) = log 6 - (1/6) * 2 log 2

--— »Mi^MtaiM^MMlMMiMalMMMttMM BUrtmhtoMiftmrtiii m n h'win -ir ■■tn^WTtiwiAl^iiiMn ' *iiilA-:i

J1i«.iiiluiJ.IU,iwWIW«WWW«»l«"»',Wi WlW,,W»^4mW"«,PWWWIMMIJ#W 11 IB.l IliUJ »■■'•«.^»».»•FMWUHWffliJ.Wllillll l^UI).ll^MI,W»*iWifllfUf|iWi ■ 11 ..MUlllipJM, ,l|l|l*l.,l]p»l

A MEASURE OF PROGRAM STRUCTURE
DEFINITION OF A MEASURE

48

Finally,

C(S) = C(A u B) = log 6 - (1/6) * (2 log 2 + 3 log 3)

The calculation can be applied to A and B, and hence to any binary

tree decomposition of S. That is, if A = E u F and E n F = <efnpty> then

C(A) = ClE u F) = H(E) + H(F) - H(A)

Note that H(A) is the same value as in (*), and that E and F define a

set of columns from all the rows of the subset S. For example, if E is

{1} and F is {2,3} then

H(E) - log 6 - (1/6) (5 log 5)

and

H(F) = log 6 - (1/6) (2 log 2 + 3 log 3)

and

C(A) = C(E u F) = log 6 - (1/6) { 5 log 5 + 2 log 2)

Hence, an entropy loading value can be computed for each non-terminal

node of a binary tree which represents some partition of S.

Entropy loading has several propertieslvan Emden[vEl]). The most

important of these are

(1) C is always non-negative.

(2) If S = A U B, A n B = <Gmpty> and SsEUF.EflFs <orripty>
and C(A U B) < C(E U F) then A and B interact less than do E and F.

INTERPRETING THE MEASURE

Intuitively, entropy loading represents the extent to which

information is shared between two groups of objects. Thus it

 —'-*~±^~~-^~t H I i "*M£*M*MM.iH&dfe3Mtfc.

1 .■■■..; ■

A MEASURE OF PROGRAM STRUCTURE
INTERPRETING THE MEASURE

49

characterizes a partition of the objects in a program, given the

assumptions those objects make. As a measure of structure, this means

that groups of objects having small entropy loadings possess better

structure than other groups of those objects having larger entropy

loadings - at least according to the definition of structure appearing

in Chapter I.

A consequence of this property sometimes permits groups of objects

that share the same number of assumptions to be distinguished. For

example, except for the order of their rows, the two tables below are

identical.

u 1010 u 1010
V 0010 V 0010
w OHO z

w
1001

X 0100 0110

y 0001 X 0100
z 1001 y 0001

hKu.v.w.x y.z) = log 6
H(u,v,w) = log 6
H(x,y,z) = log 6 - (1/3) log 2

C((u,v,w), (x,y,z)) = log 6 - (1/3) log 2

l-Ku.v.z) = log 6 - (1/3) log 2
H{w,x,y) = log 6 - (2/3) log 3

C((u,v,z), (w,x,y)) = log 6 - loi I 2

Objects (u,v,w) share two assumptions with objects (x,y,z) and (u,v,z)

share two assumptions with (w,x,y). However, the entropy loading for

((u,v,z),(w,x,y)) is less than the entropy loading for

((u.v.wMx.y.z)). This occurs because two assumptions are shared among

u, v, z and one assumption is shared among w, x, y but only one

assumption is shared among u, v, w and only one assumption is shared

MWMMHMi -j - - mi—^——aaft—MMifiim , ^- ;-v---., ,.' ..i--,-

^pgppqilljHjljailjPBjpil^jjSpjWWP'!'^''^

A MEASURE OF PROGRAM STRUCTURE

INTERPRETING THE MEASURE

among x, y, z. Thus entropy loadings can often distinguish different

.'^compositions even though the number of shared assumptions among the

subsets of each decomposition is the same.

In one sense, the measure can also be used to compare different

programs. Since a program is regarded as a partitionpd collection of

objects, where each object makes assumptions, any program represents a

system whose structure can be measured. Hence, comparisons of entropy

loadings for two different programs allow the structure implied by the

partitions of the objects in each program to be compared. Using the

measure to compare programs, however, does not seem to be useful unless

the programs are related in some other way. For example, it is

conceivable that a large program and a small program might be

partitioned so that their entropy loadings are approximately the same.

Such a comparison only indicates that the relative amounts of sharing in

each program, for the selected partitions, are about the same.

Analogously, a comparison of two programs in terms of the number of

statements each contains depends on the way a statement is defined for

each program. If in one program a statement is an assembly language

instruction and in another a statement is a FORTRAN statement, the

programs can be compared, but the comparison may not be very useful.

DijKstra[DJl in the scction,"On Comparing Programs"] has cited similar

difficulties for other kinds of comparisons except where a mapping can

be found that associates the parts of the programs being compared. Such

a mapping can be found if the programs that are compared represent

50

inrfiiiiin i"ii --■ --—-i ■■■ -J^-^.>.^—.^-O^-M,,., .

Ipw'wwi.Aiii'ujiww'm

A MEASURE OF PROGRAM STRUCTURE
INTERPRETING THE MEASURE

51

successive stages in the step-wise construction of a program. One such

mapping consists of associating an object with the objects into which it

is refined. This mapping motivates the methods described in the next

section.

These interpretations of the measure permit the definition of

entropy loading to be extended in order to characterize a partition

containing more than two sets of objects. If S is partitioned into n

subsets, si, S2, ... , sn tuen C can be defined as

C(si,S2)...,r.n) = (Zi H(Si)) - H(S).

Here, C is non-negative and indicates the amount of sharing inside the

subsets relative to the amount of sharing among them. Note, however,

that just a single figure characterizes this partition. Further, there

seems to be no useful relationship between the values that result from

applications of the original definition and this extended one.

APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS

We propose to use the measure to suggest ways of controlling

interactions as a program is developed. Elaborations which lead to high

entropy loading values at late stages in the development of a program

are to be avoided. This is demonstrated by the examples in Chapter IV.

We demonstrate several theorems which are relevant to fixed sets of

rows from a table. These theorems justify several heuristics which are

explained in this chapter and used in Chapter IV. The fixed sets of

MMBM •
J
-^-~'-

,
^

J
"^*°

,M
**^^*^^--—- - - .. ■ .^—^— _ , .

Wf^«M^.WW!W.p«ll««'!>"IU'^^ «JlllJ.lll'ülIRWWHaM!

A MEASURE OF PROGRAM STRUCTURE
APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS

52

rows (the sets S used in the definition of the measure) will be N-th

stages in the object/assumption table for a program.

The N-th stage is defined to be ail the objects whose <object
name>,s consist of N integers separated by periods and those
objects whose names consist of fewer than N integers but which
will never be elaborated.

Informally, the N-th stages consist of the terminal nodes, at each

elaboration, in the map for the development. For example, stage 1 of

the development of the gcd computation consisted of object :1:; stage 2

consisted of objects :1.1: and :i.2:; stage 4 consisted of :1.1.1.1:,

si.1.1.2:, and :1.2.1s. After the theorems have been proved, several

heuristics will be staled for controlling interactions by usit.g a

development at stage N-l to suggest bounds for entropy loadings at stage

N.

Theorem 1: Given;

(1) a collection i rows S = A U B and
A n B = <empty> where A contains a rows and B
contains b rows;

(2) S makes assumptions P = C U D and
C n D = <empty>;

(3) any row in A makes assumptions only in C and any
row in B makes assumptions only in D;

(4) a < b and a is as small as possible for S,
subject to (1), (2), and (3).

Conclude:

C(A u B) achieves its minimum value for S = A u B

and

log(a + b) - l/{a + b) * (a log a + b log b)

-■"■■■ ——......-., - —L^——M

isiiiQilpvsmiritBrwiii^

A MEASURE OF PROGRAM STRUCTURE
APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS

53

Informally, the diagram shows the areas containing ones and possibly
zeros as shaded, where A corresponds to some subset of rows in S which
contains as few rows as possible.

C D

B

///
0

0 '/X

Proof:

H(A) = log(a + b) - (1 / (a + b)) (b log b + Z i ai log ai)

where ^ i ai = a and 'he subscripted a's correspond to the partition of

A imposed by C. Similarly

H(B) = log(a + b) - (1 / (a + b)) (a log a + Z i bj log b|)

where ^ j bj = b and the subscripted b's correspond to the partition of

B imposed by D. Lastly,

H(A u B) = log (a + b) - (1 / (a + b)) (Z i aj log ai + Z i bi log b,)

and

H(A) + H(B) - H(A U B) = log (a + b) - (1 / (a + b) (a log a + b log b)

Now the restriction that a be as small as possible is necessary since

log(a+b)-(a log a -* b log b)/(a+b) =

(a/(a+b)) log((.a+b)/a) + (b/(a+b)) log((a+b)/b)

and for a and b positive integers, the right side reaches its maximum

when a = b and its minimum for the smallest a. Note that the roles of a

and b can be reversed.//

 ■ ■ ■ bikiH.tliabk.iM

|^W.Vlt?-"l^«W'TO.>V.Wp|»»glPU,)|»j^W^

A MEASURE OF PROGRAM STRUCTURE
APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS

54

Consequently, the best decompositions are known for tables that

satisfy the conditions of the theorem. Although this theorem applies

only to an entire table, analogous results can be obtained for

decompositions of objects in A as well as B. Minimal entropy loadings

occur for analogous partitions of A and B but their values cannot be

derived directly from the above theorem. Another theorem states that

objects which make identical assumptions should occur in the same subset

of a partition.

Theorem 2: Given:

(1) a collection of s rows, S = A U B and
A n B = <empty- where A contains a rows and B
contains b rows and a + b = s;

(2) a > b;

(3) there is a collection of P rows which is a
subset of S, containing p rows, p > 1 and p < s,
which make identical assumptions;

(4) P n A and P n B are both non-empty;

Conclude:

There exist A' and B' such that A' u B' = S,
A' n B1 = <empty> and A' = A u P and B' = B - P and

C(A u B) > C(A' u B1)

Proof: Since C(A U B) and UA' U B1) contain a term which is identical,

namely H(A u B), if we show that HIA') + H(B') < H(A) + H(B) then the

theorem is proved.

Consider first the expansion of H(A), i.e.

H(A) = log (a + b) - (l/(a + b)) (R + (p + t) log (p + t))

»»•■•■■MriMt« t^m Bh-lilaai.ftiHVrHii mr ■^— — ' :iin flt.-'il'r i"^.^^!'!'^^'/^'^.-^^»1, i

j^wwMrji^ssjwi^^u^wiijpi^^ imM^^Jn:» «mm'Mij.viiim

A MEASURE OF PROGRAM STRUCTURE

APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS

where R is the sum of those terms describing subsets of a partition, but

excluding the subset which contains the P identical rows. Here, p + t

equals the number of rows contained in the subset of the partition

induced by A but containing P. Note that t > 0 and is just the

difference between the number of rows in the subset of the partition

induced by A, but containing P, and p.

55

Similarly

H(B) = log (a + b) - (l/(a + b)) (T + (p + u) log (p + u))

where T and u play analogous roles to R and t. Now, H(A) ■ KA') since

the partition determined by A' is identical to the partition determined

by A. But,

HO') = log (a + b) - (l/(a + b)) (T' + (p + u') log (p + u')).

We must show that

(l/(a + b)) (r + (p + u') log (p + u')) >

(l/(a + b)) (T + (p + u) log (p + u))

The two sides are equal if the assumptions made by B' are identical to

those made by B. Further, if the assumptions made by B' are not the

same as those made by B, then B' makes fewer assumptions than B. In

this last case, there are a finite number of terms of T' which

correspond to subsets of a partition with respect to B' which contain

fewer items than the corresponding subsets for a partition with respect

to B. This means that u' > u and for some finite number of terms in T,

there are identical terms in T' and there ore terms in T' greater than

the corresponding ones in T. We then must show that after excluding the

-"---— | tedkMatttt^v^...,^«...^^

nwiiijipiiiM.^.iimiim.iiwBnwwipiii.1 .j i »■ i».«nii,iii«»w«miiuuii iniRMKna ■.«.www. i. mm. «ji •111 J«i>u»w<iT<M|llwuw.MPnimiw»p«illil.i. IIMJiu IIHIIIIIWIIH mim

A MEASURE OF PROGRAM STRUCTURE
APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS

56

identical terms in T and T' that the remaining ierms in (*1): T' + (p +

u') log (p + u') are greater than or equal to the remaining terms in

(*2): T + (p + u) log (p + u). Denote by

1 i qj log qj

the remaining terms in (*1). Denote by

Z i n log n

the remaining terms in (*2), where

2 i n = Z i qj-

Note that there are fewer qj's than r^s and that each qj is the sum of

several of the rj's which correspond to the subset of rows which qi

designates. This means that if

2, k ck log ck < (Z k Ck) log (Z k Ck)

then

Z i n log r, < £ j qj log qj

and the theorem is proved.

But, Z k ck log ck < (Z k Ck) log (Z k Ck) since for cj, 2 1 it

is just the logarithms of both sides of the inequality

k (Ck T Ck) < (Z k Ck) T (Z k CK)

(where "T" indicates exponentiation). //

Theorem 3: If a set of rows S satisfies the following
conditions:

(a) S maker, k assumptions (pi,P2.P3.-.Pk)!

(b) S is partitioned into n sets such that
there are qi elements in the first, qg in the
sticond,..., qn in the n-th set, where each set
is denoted by Sj, 1 < i < n;

(c) the rows in a particular Sj are identical;

„^^utgttmm^utitmMiitmimtimm I - - -- ----- ^—nf-^ .

iap*wwi«iiiiBjji. iwii.. III»IILIIIJW.)*I>.II"">»I>»I«I»U«IWW^WJMWP'I«" «UP^WIW' > "i i «..jiiu«w«*i^^f«p«n^<*^fmp<w^^wvwi>fniniiM<miiin>iuji^.v*u vup^rv^nmn^m^

A MEASURE OF PROGRAM STRUCTURE
APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS

57

(d) pj is made by Sj, i < j < k

then the minimal entropy' loadings are achieved for a
decomposition of the form

Sn-l sn

A table which illustrates the conditions of the theorem is

si

S3

Pi 92 Pk

1

0

Proof: Assume that £ i.i,2.-.n Pi = M. The proof is by induction on m

which indicates the subsets Sj of S. Observe that if m = 1

H(S|) = log M - (1/M) (M log M) = 0

and that

H(U).!,...,„ si) = H(S).

Hence C(si U (U i.2,...»n Sj)) = 0, which is the minimum value which

any decomposition could have. (Here, U means "the union of".) Assume

that for j < m, ihe entropy loadings for the partition of S indicated by

sm-l U i-mi-in si

are as small as possible. We wish to show that the entropy loadings for

- - JliinTlti'iliMi'llliMliiiillillliltllirlliHltll-liW r---- .^^.-^.^.m^,^.^...... ii wiiMttMllhiiMllllHilltlMllti-liliiil n

»iwii,,.iipiimi„i»iii m .luii null ■. üi..(,mi|».mw,.»i"i.i.iw»»^ i. n ■'^.•"■iiw«'i"'iiw'k^ii,wiij«wwpiuii,iiyjui^ii]^w>»»^(ppwwi»wiwuM"J,i(i»MLJii !i .Jwuiuinnjji^mjuinn«

:P^TTHC/MS^OSASSUMPT1ON TABLES POP PROGRAMS

si

sm-1

sm U j.m+i,....n si

are as small as possible. Note that

H(sm+i) - log M - (1/M) (2 i-b-.m q. log q,

+ (L i.m*b-.n qi) log (Z i-m-b-.n <* »

and that

H(U i.m*2.-.n Si) = H(S)

Suppose there is an A and B such that A U B = U ^.....n Oi and A n B =

<empty> but that

(*): C(A u B) < C(smti U (U inm*2.-)n s,))

Clearly a row of sn makes all the k assumptions and if at least one row

of sn is in A and at least one row of sn is in B then

C(A u B) = log M - (1/M) (I i.i,.".n ^i log ^) >

C(sm»i u (U j.m+2,-,n si))

Hence. sn must be in either B or A. say B. and C(A U B) = H(A). But the

smallest such value equals H(sm+l). -hich contradicts the assumption

(*). Therefore, by the principle of mathematical induction, the theorem

is proved.//

Several observations regarding entropy loading can now be

justified:

(1) Theorem 1 describes a situation for wh,ch ^e best entropy
loading values are known. If programs are constructed w.th these

properties, we know how they should be decomposed.

(2) Theorem 2 suggests that objects which make identical
assumptions should occur in the same portions of a deCompos,t.on.

58

-^^-^*J"to-^^^J^-J- —- i MihiiiMiiiiiliiiaMiiirtiii^^ - , ^ - L~.. ... ^■i-.-v^u«».^^^. -

i|^AlW^«fm^ipuj|BJP^^

-■^.-■■■'; -

A MEASURE OF PROGRAM STRUCTURE
APPLYING THE MEASURE TO OBJECT/ASSUMPTION TABLES FOR PROGRAMS

(3) Theorem 3 provides a best decomposition for a situation where
different objects actually share several assumptions,

THE CLUSTERING PROBLEM

59

It now seems reasonable to ask whether there are ways of finding the

best decomposition of a given N-th stage. If this were possible, we

could observe whether best decompositions of early stages are really

borne out by a development. If at any stage of finding a best

decomposition, the set to be decomposed contains N items, then

Z i.l.-.mtN! / (ü * (N - I)!)] + X

(where m = N/2 and X is N! / {(N/2)! * (N/2)!) / 2 if N is even and
N! /((N/2)! * (N - N/2)!) if N is odd)

partitions can be examined, and the best entropy loading value and its

corresponding partition retained. Except for small N, this calculation

is intractable. For this reason, several authors have attempted to find

ways of determining best decompositions - "clusterings" - without having

to examine all the partitions. vanEmden[vEl] has mentioned some of

these methods, and has shown that the most popular of them are at best

heuristics. E^ch fails for trivial object/assumption tables.

Is it reasonable to look for a tractable algorithm which can find a

best decomposition? (The next paragraphs may be skipped at a first

reading. The important result is simply that an affirmative answer to

the question would be very surprising.)

* * *

MMMttM —"--*—■— -■■ -- - -"' .-i^w.^.—:^-'.. -.^ . ,.^;.....J...,^_.,„.....,;

F <PII.II. ,ir.»u>-»v i IIIJIIM^III, . 11 in. ■•i nixmi^.i IBII.WII. .H.U.HHU.OIVMW.". ^»^-r-, ..u.^v^u,. m.<,l.T..miIy i< ,.< ..^ w^. ! ,,. t., ,,. ijay.iwf.vbiiKiii-aij.vmi.iV»^»! u'l lill«ipi imvnVa^^M

A Ml£ASURE OK PROGRAM STRUCTURE
THE CLUSTERING PROBLEM

As of this writing, the answer to the above question is not known.

However, a particular recognition problem provides evidence to suspect

that there is no such tractable algorithm. To describe this recognition

problem, we present several definitions and theorems due to CooK[COO]

and Karp[KAl].

60

Definition 1: P is the class of languages recognizable by one-tape
Turing machines which operate in polynomial time.

Definition 2: n is the class of functions from £* into Z* defined
by one-tape Turing machines which operate in polynomial time.

Definition 3: Let L and M be languages. Then L oc M (L is reducible
to M) if there is a function f (n such that f(x) i M if and only

if x c L.

Lemma 1 (Karp): If L c/. M and M € P then L i P.

Let P2 denote the class of subsets of Z* * Z* which are

recognizable in polynomial time. Given L2 < P2 and a polynomial p, we

define L as:

L = {x| there exists y such that <x,y> <L2 and log{y) < p(log{x))}

L is said to be derived from L2 by polynomial-bounded existential

quar'fication and NP is the set of languages derived from P2 by

polynomial-bounded existential quantification, i.e. NP can be thought

of as the set of languages which are recognizable, non-deterministically

in polynomial time.

Now define the satisfiability problem

SATISFIABILITY
INPUT: cl and c2 and ... cp (in conjunctive normal form)
PROPERTY: The conjunction of the given clauses is satisfiable; i.e.

there is a set
S <= {x|,x2,X3,. ..,xn;X|,X2lX3,. ...Xn)
such that

 MHMMHÜiilUMliU »»^^.w..i.g^^J^»JjaMj..JM^^.ft.w.-.-^J-t^-»^.-.«»--i

|

A MEASURE OF PROGRAM STRUCTURE 61
THE CLUSTERING PROBLEM

(a) S does not contain a complementary pair of
literals
(b) S n ci, / <empty>, k=l12,...,p.

Theorem(Cook); If L < NP then L ot SATlSFlABlliTY.

Corollary: P = NP if and only if SATISFIABILITY (P.

Karp has shown that a large number of problems can play the role of

SA1SFIABILITY in the above theorem. Such problems are called complete

Definition 4: The language L is (polynomial) complete if

a) L (NP
b) SATISFIABILITY u L

Theorem (Karp): Either all complete languages are in P, or none of them
are. The former alternative nolds if and only if P = NP.

Theorem (Karp): SATISFIABILITY u PARTITION where PARTITION is defined as

INPUT; (C|)C2IC3,... ,cm) (Zm, positive integer m-tuples.

PROPERTY: There is a set 1 c {1,2,3,...,™} ouch that Z C| = Z <=)
where each i is an element of 1 and each j is not an element of I.

It would be surprising, indeed, if all the complete problems were in P.

We now show that a recognition problem related to the measure is at

least complete.

Theorem: PARTITION u LOG 2 CLUSTERING

where LÜG 2 CLUSTERING is defined to be

INPUT: a (0-1) matrix, S, having N rows and M
columns.

PROPERTY: there exists a clustering A U B = S,
A n B = <empty> such that C(A u B) = log 2.

Proof: Let N = Z i c,

^JaM*'*a^*1'^'Mi*^^^^^Jik-^^J^^-^"--^ " -■^..-....- . ■ ^-^..^—^-^^.1||>|n

^^^^Hf^rnHRaiiiMJiii numy m U-'JWP-I.^U.W^.J.

A MEASURE OF PROGRAM STRUCTURE
THE CLUSTERING PROBLEM

Let M = m

62

S[1)J] [1. L k-l.--.l-l Ck < 1 ^ ^ k-l.-.i+l CK,

where an, uppor bound for a summation of 0
equals 0 and an upper bound greater
than N means N+l.

^ 0, otherwise.

Now, if (C|,c^,...,cm) has a partition with the desired properties then

we choose as a set A, all those rows corresponding to the c's in a

single set of the partiton; the rest of the rows constituting B. Then

H(A) = log N - (1/N) [Z k ck log ck] - (1/2) log (N/2)

where k is an element of I.

H(B) = log N - (1/N) [Z k ck log ck] - (1/2) log (N/2)

where k is not an element of I.

H(A u B) = log N - (1/N) [Z k ck log ck + Z i C) log CJ]

where k is an element of i but where j is not an element of I.

Hence, C(A u B) = log N - log N/2 = log 2. For all other matrices of

the form described at the beginning of the proof, there is no partition

which leads to a C value of log 2.//

Intuitively, this problem is not as difficult as the general

clustering problem, yet a solution to the clustering problem, does not

solve the partition problem, for the encoding above.

* * »

- ■ rfii ■■■■f imftiiiMiMiMiii i

' ^' iivi'''"^■■■■■H^^^

A MLASURE OF PROGRAM STRUCTURE
THE CLUSTERING PROBLEM

In short, a tractable solution to the clustering problem would be

very surprising.

HEURISTICS FOR USING THE MEASURE

But just a solution to the clustering problem for an object/assumption

table whose objects have many interactions really is not of much

interest. Making the best of a bad design job is not of much interest.

Programs should instead be composed of parts which interact very iitlle.

As programmers, we can modify the tables which represent our programs in

order to improve their structure. This is not the case for data in an

ecological study, for example, where an object/assumption table is fixed

and a best decomposition might oe of interest.

In chapter IV, the example developed in chapter 11 will be examined

using of the measure. i he measure is used in two ways. First, at early

stages in a development the best decompositions are found. In most

cases this is tractable because the number of objects is small. Second,

if entropy loading figures for an elaboration of the objects in a best

decomposition seem too large, attempts are made to modify the

Object/assumption table and the program so that the good properties of

the earlier decomposition are preserved. The heuristics used are

summarized oelow;

Assume we have a decomposition at the N-lh stage in which the parts of

63

■um ii n«-- ■■ ■ ■•_-.^^—^.^^^

fir -WVlfOW;,^^

A MEASURE OF PROGRAM STRUCTURE
HEURISTICS FOR USING THE MEASURE

6A

the decomposition interact little, and that an elaboration has been made

to the (N+D-st stage.

(1) Compute as a rough lower bound, RLB, for the entropy loading at
the (N+l)-st stage, the entropy loading with respect to the N-th
stage decomposition, where each object which was elaborated is
replaced by as many new objects as appear in the (N+l)-st stage
such that each object makes NO assumptions.

For example, if the table below represents part of a table to
the N-th stage and at the (N+l)-st stage the object X is
elaborated to three objects, we compute the entropy loadings
with respect to the decomposition at the N-th stage, but
replacing X by three rows of zeros.

^-—-— oo...
X 10 . 1 1 00... . i 1

"■" ^—^ 00...

;tage N stage (N+l)

This computation takes into account the increased size of the
table, but introduces new objects which do not interact at all.

(2) As a rough upper bound, RUB, for the entropy loadings at the
(N+l)-st stage, compute the entropy loadings with respect to the N-th
stage decompostion where each object which was elaborated is replaced by
as many new objects as appear in the (N+D-st stage, such that each new
object is identical with its parent.

These guides are only rough indicators. The reader can generate simple
situations where expansions lead to smaller or larger entropy loading
values than those indicated. For many cases, however, they are quite

useful.

(3) Now compute the entropy loadings of the (N+l)-st stage and compare
its value with RLB and RUB. We clearly wish to make each elaboration so
that the entropy loadings are as close to RLB as possible.

(4) If entropy loadings are greater than RUB, then several cases arise
which involve interactions resulting from one or several of the

following

(a) new assumptions not appearing at the N-th stage

(b) assumptions which appear at the N-th stage and are shared
by the parents of subsets for which RUB is exceeded

 -- -

■^ jj»w«i»(i»»i"-,i"iiaÄ>.w*"*''»*,1i',«W'-"".,,-*1jfl!l»'«,,i'J|-— <-L;i.lwm**qi .11 iim.liiJWIIP^Wl^4'SO^ ^~T!^'~ ■«.»»^•Jl.ww

A MEASURE OF PROGRAM STRUCTURE

HEURISTICS FOR USING THE MEASURE

65

There iire several possible actions

(a) Accept the interactions that are present and proceed v<ith

the development.

(2) Attempt to localize the assumptions not appearing at the
N-th stage to a single subset of the decomposition at the

(N+l)-st stage. Chis implies that a new structure, for which

the now objects do not have a parent, has been imposed on the

(N+l)-sl stage. An attempt should be made to place these
objects in some subset where, except for the new assumptions,

as much information as possible is shared. (This technique is

consistent with Theorem 2.)

Chapter IV will display several examples where this technique

can and cannot be used.

(3) Attempt to find some other decomposition of the objects.

Hopefully, such a choice will result in few changes in the

original decomposition.

SATURATION IN OBJECT/ASSUMPTION TABLES

It should be noted that the suggestions in the last sec1 ion are

only heuristics which can aid in evaluating the goodness of a

decomposition. One situation which occurred when several examples were

analyzed will bo called saturation in an object/assumption table for a

decomposition. Sla\ed simply, this situation occurs whenever a table is

decomposed to a depth whore further attempts at decomposing subsets of

certain objects results in identical entropy loading values for all

possible decompositions. In a saturated table, the measure provides no

help m distinguishing decompositions. Saturation occurs most

frequently whenever a small number of objects together make many

assumptions. Frequently, further refinements of objects lead to tables

which are not saturated for a decomposilion. This seems to occur

M^MMM^M „^.~. ^ ■ -^ ^ ,.-„. ~ II IIMIllllTaCaniaBüaBM

■- -■ -^-wwj(rT»<»p=' ■

A MEASURE OF PROGRAM STRUCTURE
SATURATION IN OBJECT/ASSUMPTION TABLES

whenever existing assumptio' become localized to a small number of

objects relative to the total number at a given stage. Examples of this

situation are cited in the next chapter. Saturation indicates bad

structure in the sense that all the objects at a particular stage share

much information.

ON THE PROBABILITY OF CHANGE OF ASSUMPTIONS

The examples in Chapter II indicate that objects make many

assumptions even in small programs. Yet, some of the assumptions are

never likely to change even after major modifications of the program.

Intuitively, these assumptions seem to have less influence on the

structure of a program from one modification to the next than do

assumptions which are very likely to change. Theorems from mathematics

have already been cited as assumptions which can never be wrong and

hence have zero probability of change. However, assumptions based on

say "the position of information in a control block", which have a very

high probability of change, have a great influence on structure from

modification to modification. Theoretically, every assumption could be

rated with a probability of change, even if that rating is simply a

relative one, e.g. that one set of assumptions has a greater

probability of change than another.

In this section, we extend the measure to take into account a

probability of change for each assumption. This extension is shown to

be consistent with the definition of entropy loading.

66

——— -..-.■..-
-"—*"—- — ■" - ----—•—-

■ -Twrwi^-

■ ■ .■ .•-.: ■'-■■.•-:

A MEASURE OF PROGRAM STRUCTURE
ON THE PROBABILITY OF CHANGE OF ASSUMPTIONS

First, note the property;

If an assumption, say X, is shared by every (no) row in some set of
rows then for any decomposition of that set, the entropy loadings
computed when considering X are identical with the entropy loadings
computed when not considering X.

Proof: Just observe that any partition determined by a set of

assumptions other than X is not changed if X is added to the set of

assumptions.

Next, observe that no matter how many objects make assumptions which can

never change or regardless of where those assumptions are made, there

will be no ill effects because of those assumptions, should the program

ever be changed. For this reason, unchanging information can be

distributed without affecting the ease of either maintainencc or change.

However, these assumptions are relevant to understanding the program and

should be listed in a specification or at least in the object/assumption

table. Consequentiy, we modify the entropy loading calculation so that

it remains consistent with the properties stated at the beginning of the

chapter, but allows assumptions which are certain to change (probability

of change » 1) to have the same effects as before and permits

assumptions which will never change to exert no effects. The

modification also has the property that i! can be computed for any set

of assumptions having any probability of change values associated with

each assumption.

67

IM^^MM^MMm ... ,.^. .^;...-■.-... ;,.... .-,_..,. .. ■ .- ■■■-■^Vfi-r-, ih-friMiillii»
- ■ -

Pr "IW"""!.. --

A MEASURE OF PROGRAM STRUCTURE
ON THE PROBABILITY OF CHANGE OF ASSUMPTIONS

The only change involves the way H(X) is computed. As before,

H(X) = log N - (1/N) Z, n, log n,

= Z , (ni /N) log (N/nj) (*)

where the n/s correspond to the number of rows in each subset of a

partition imposed by the assumptions of X on the N rows. (*) above is

the standard definition of entropy from information theory - and has all

its properties - if we interpret n^N as a probability so long as

I i (ni /N) = 1.

From this point of view, rvj need not be an integer. Instead, we compute

the nj's as follows.

(1) Choose a function of one variable, f, defined on the closed
interval [0,1] such that f(x) > x and f is strictly monotonic (such
a function is just the probability of change itself).

(2) Construct a new table as follow •;

(a) fill the table with those columns from the original table
whose probability of change is 1 and associate with each of
the N rows a value, w, = 1 for the i-th row. (if the table
has no such columns, create a new table with N rows, w, = 1,
k, = i and containing a single column each entry of v.-^teich
equals 1)

So long as there are assumptions which allow (b) to be
executed, repeat (b), (c), and (d).

(b) Select a single assumption, say P with probability of
change p, from those that remain (ignoring all assumptions
whose probability of change equals zero), attach this column
to the new table, and select the value of the parameter, rt, as
follows:

if the number of occurrences of "1" is less than N/2 in
the column for P, then let n be 1; otherwise 0.

68

(c) for each row of the table which does not contain an entry
for assumption P. say j, choose its entry to be identical with
the entry for P in row i, 1 < i < N, such that k| = kj. (this

■MttHMMMHM MMMHitfHIiÜ ■■ ■ ■ ■ I llll »Ill Hill

■Wlll«l(SW"V.'llJWIJraW'rJWT!!!™»7"«^>»'- -»^^CTTIJJJ

A MEASURE OF PROGRAM STRUCTURE
ON THE PROBABILITY OF CHANGE OF ASSUMPTIONS

step will not need to be performed the first time (b) is
executed)

(d) For each row in the new table, say i, which has an entry
for P which equals n, acid a new row, j, to the table which is
identical to row i except that the entry for P is 1 - n and
set wj to w, - f(p) * w, and w, equal to f(p) * w,.

(3) Now for each pattern of I's and O's, sum the respective w's to
get a set of sj's and compute H(X) as

H{X) = I j (sj/N) log (N/sj) as H{X)

The result of this computation is independent of the order in which the

assumptions are used in the algorithm. The value is consistent with the

observations stated earlier. The improvements of Chapter IV will use

these ideas as a primary justification for ignoring certain assumptions.

An example of this computation is indicated by the table below:

1 .5 .25
0 1 1
1 0 1
1 1 0
1 0 1
0 0 1

where the value above each column represents the probability of change

of the assumption associated with that column (this value will be used

as f).

After step (a), the new table is

k w 1
1 1 0
2] 1
3] 1
4 1
5 { 0

69

~- .^ ..■■..__ ,.^.^^JJ--.... , ,-,-, 1-minnümin ..■■*,» ^.«^-Ws'A-Ht».iw(<Wl»**«S*»li««.{'

'WIWSIWW-1 ."!:"W.>)»M»»a^i«i«-vr^'

A MEASURE OF PROGRAM STRUCTURE
ON THE PROBABILITY OF CHANGE OF ASSUMPTIONS

After selecting a remaining assumption, and executing b

n »• 1 and

70

k w 1 .5
1 1 0 1
2 1 1 0
3 1 1 1
4 1 1 0
5 1 0 0
uted, bi it after (d), th

k w 1 .5
1 .5 0 1
2 1 1 0
3 .5 1 1
4 1 1 0
5 i 0 0
1 .5 0 0
3 .5 1 0
leaving rt =■ 0 and tt

k w 1 .5 .25
1 .5 0 1 1
2 1 1 0 1
3 .5 1 1 0
4 1 1 0 i
5 1 0 0 1
1 .5 0 0
3 .5 1 0

After executing (c), the table is

k w 1 .5 .25
1 .5 0 1 1
2 1 1 0 1
3 .5 1 1 0
4 1 1 0 1
5 1 0 0 1
1 .5 0 0 1
3 .5 1 0 0

Hi ""—"-'-' — .-..^--■^^^^■a^-^. .. ifvUtmiJr.l.^',»

f -v.mrr T.MMwu.wf iwi.i. «'HW^WMWHI«.1^^*. ' ■ , . ^.. .. .- .. ^^.^^^^^.^ ^

A MEASURE OF PROGRAM STRUCTURE
ON THE PROBABILITY OF CHANGE OF ASSUMPTIONS

Lastly, after executing (d) the table is

k w 1 .5 .25
1 .5 Oil
2 1 10 1
3 .125 1 1 0
4 1 10 1
5 1 0 0 1
1 .5 0 0 1
3 .125 1 0 0
3 .375 1 1 1
3 .375 1 0 1

Hence, H for this table can be computed from

Oil .5
101 2.375
110 .125
001 1.5
100 .125
111 .375

The effect of this calculation has been to modify the influences of

assumptions whenever entropy loading calculations are computed.

Consequently, this same calculation can be used to modify the influences

of assumptions for other properties besides "probability of change".

For example, if the relation "importance of assumptions" can be

established for a program, this modified calculation can be used.

71

MMUkM --• - ■ - iffMliiai'iimfir li ■■'"-•' •■-■ ! ^ i , . ■'■'

'

CHAPTER IV

USING THE MEASURE

The heuristics düscribed in Chapter III which provide suggested

bounds for entropy loading values are used as guides to control

interactions between the parts of a decomposition. Entropy loading

values for various decompostions of the example from Chapter II are

displayed. In addition, several other examples are developed using the

measure as a guide.

INTRODUCTION

Chapters I and II provided a definition of program structure along

with techniques for preserving assumptions which help to determine

structure. Chapter III described a numerical calculation - entropy

loading - which can use these assumptions to compare the "goodness" of

different guesses at what the components of a decomposition of a program

are. The theorems in Chapter III form the basis for methods of

constructing elaborations for components in an initial decomposition.

These methods are used to insure that components interact little in the

final program, either by verifying the presence of reasonable

interactions or by indicating that elaborations which interact less

should be sought. Such programs have a good chance of satisfying the

properties stated in the Introduction to this thesis.

hau. ■'-——-~ ■- -■' \^äitäiilimitttt»i^miMtlliimtimismimm^n, ■-n i . .■.^;-.1,.„..,!.^.i. ■ i-.'ü

T^w^Bw^KTOTW' ■ m

USING THE MEASURE
INTRODUCTION

73

These methods are first demonstrated with respect to the GCD

example frcm Chapter II.

A GCD COMPUTATION

Despite the small size of the GCD program, entropy loading

calculations cai be used to show that certain decompositions of the

objects have greater interactions between their parts than others. (For

the following discusi ion, it is assumed that the probability of change

of all assumptions is one, i.e. that all assumptions are likely to

change and have potentially the same influence on structure.) Below is

the object/assumption table for the GCD computation from Chapter II.

0123^)56789 101 1 1213M 1516171819202122
•

1

1 1 1

1 1 1

1 I 1

1 1 *

1 1

1 1

2

1 1 1 1

1 1 1

1 1

♦ *

1 1

2

1

• 1

■ 1

• 1

• 1

• 1

1

■ 1

1- |!

1- 2'

1- 2' 1

121

1- 2- 1

1- 2- 1

!■ 2- 1

1- 2- 1

1 1 1

1 1 1
: 1 1

■ |! 11
■2- 11
•3! 11

■ 2- 1 •• 1

• 3- \' 1

1 1

1 1

1 1

1 J

1 1

1 1

1 i 1

1 1 1

1 1

1 1

1 1 1

1

1 1

1 1 ♦

1 ♦

0) neither multiplication nor division is to be used
1) a > 0, b > 0, a and b are integer variables
2) A symbolizes the initial value in a and

B symbolizes the initial value in b
3) write access to x is required
4} write access to a is required
5) read access to a is required
6) a = gcd(A,B)
7) (a = b) A gcdCA.B) = gcd(a,b) a a = gcd(A,B)
8) x = a => x = gcd(A)B)
9) a = gcd(A,B) => true

mm

■

USING THE MEASURE
A GCD COMPUTATION

10) write access to b is required
11) read access to b io required
12) a' and b' equal the respective values of a and b

prior to the last execution of il.1.1.2:
13) ({(ao1 v b^) A gcd(a,b)=gcd(A,B) A aHb) =

(a/b A gcd(a,b) = gcd(A)B)) A max(a',b') > max(a,b))

14) grd{a,b) = gcd(A1B)
15) a F^ b
16) [(gcd(a)b)=gcci(A)B))=

(gcd(a,
(b

,)=gcd{a)b)) holds prior to executing :1.1.1.2.1:)] and
[(gcd(a,,b,)=gcd(a,b), holds after executing :1.U.2.1:):>

(gcd{a)b)=gcd(AlB))]
17) Ecd(a,b) = gcdte'.b')
18) (a > b A 600(3'^') = gcd(a-b)b) v

a < b A gcdla'.b1) = gcd(a)b-a)
19) gcd(a,

1b') = gcdCa-b.b)
20) gcdla'.b') = gcd(a)b-a)
21) gcdCa'.b1) = gcd(a,b-a) o true,

b decreased by a ^ gcd(a^b,) = gcd(a)b)
22) gcd(a^b,) = gcd(a-b,b) o true,

a decreased by b ^ gcd(a,b) = ßcd(a,,b,)

The map for the development is

A GCD COMPUTATION

:1: (pg. 31)

:1.1: (32) :1.2: (32)

I 1
:1.U: (34) :1.2.1: (34)

(x «- a)

74

:1.1.1.1: (36)
(while a ^ b do

:1.1.1.2:;)

:1.1.1.2: (36)

:1.1.1.2.1: (37)

:1.1.1.2.1.1: (39)
(if a > b then

:1.1.1.2.1.2:
else

:1.1.1.2.1.3: ;)

:1.1.1.2.1.2: (39) :1.1.1.2. 1.3: (39)

:1.1.1.2.1.2,1: (41)
(a «- a - b)

•.1.1.1.2.1.3.1: (41)
(b <- b - a)

 -■i-,-. ^--■.-.^•^■1,.--...-;j^Mait',-iriinifr^-^^-.--i

v*~*mm^fi^mmm*^mmmmm*^nmmmmmmmmmmmmm mmmmmf'K'^^mmmmmmm iliiililPLiUljii;

USING THE MEASURE
A GCD COMPUTATION

75

Object :1: assumes that positive integer values are contained in
variables a and b and has the effect of assigning to x the value of the
greatest common divisor of the initial contents of a and b (symbolized
by A and B, respectively).

Object :1.1: leaves the value of gcdla.b) in a and object :1.2: assigns
the value of a to x.

The theorem that (gcd{a,b) = £cd(A,B) A a = b) 3 a = gcd(A1B) is hidden
from :1.1.1: and a = gcdIA.B) is hidden from •A.Z.I'..

Object :1.1.1.1: controls the execution of :1.1.1.2: which maintains the
invariant (a < a' v b < b') A gcdUb) = gcd(A>B), where a' and b' are
tl 3 values of a and b prior to each iteration.

Object :1.1.1.2.1: hides the invariant gcd(a,b) = gcd{A(B).

Finally, objects :1.1.1.2.1.1:, ;1.1.1.2.1.2:, and :1.1.1,2.1.3:
implement a conditional statement which results in (a < a' v b < b') A
gcd{a,b) = gcd^',^).

Not surprisingly, the best[l] decomposition for the development

represented by the terminal nodes of the tree

:1:

:1.1:

:1.1.1:

:1.2:

:1.2.1:

:1.1.1.1: :1.1.1.2:

is a decomposition into two parts: (:1.1.1.1:, ;1.1.1.2:) (while a F' b

do ... , decrease a, b or both so that gcd(a,b) = gcd(A,B)) and

(:1.2.1:) (x <- a)

[1] Of two decompositions for the same objects, one decomposition is
said to be "better" than another if, starting at the root, a difference
in entropy loading values is found at some node and that decomposition
has the smaller entropy loading value a* that node. Clearly, this
comparison is only meaningful for decompositions which are based on
trees which have the same shape to the stage where they are compared.

atum ^MMMMMMftaMB JIMltmfmrm mhi ■ ! i i i i - - — - - -^- ■ - -

^•^mtmmmmmmmtmf^mmm rnm^^rnHmmmmmmmmmmmmm^m

USING THE MEASURE
A GCD COMPUTATION

77

However, the refinements of 1.1.1.2.1.2; and :1.1.1.2.1.3; lead to a

program whose best decomposition is

(A)

500

:1.2.1

500

or

;1.1.1.2.1.2.1; \ .673

;1.1.1.2.1.3.1;' (;1.1.1.1;,
;1.1.1.2.1.1:

Further, the decomposition

;1.1.1.2.1.3.1; \.673
\

:1 1 I./ !,? 1, (;1.1.1.1;,
;1.1.1.2.1.1;)

(B)

.500

;1.2.1;

(:1.1.1.1:, ;1.1.1.2.1.1;)

is better than

1.05

(;1.1.1.2.1.2.1;, ;1.1.1.2.1.3.1)

(C)

•.1.2.1

:1.1.1.1

;1.1,1.2.1.1;

1.05

(;1.1.1.2.1.2.1:,
:1.1.1.2.1.3.1:)

In particular, the best decomposition before the last refinement is not

the best decomposition after the refinement. The reasons for this

result are obvious from an examination of the object/assumption table

(in the light of the above calculations, but are, perhaps, not so

obvious without them). The assumptions made by :1.1.1.2.1.2; (decrease

a by b) and :1.1.1.2.1.3: (decrease b by a) are more numerous than for

 ■ I ; _ _

n-^-wp-w-^- viMmwmmwmmmmmHmmmmmm^*™*™ ^ «■'«

USING THE MEASURE
A GCD COMPUTATION

78

their refinements. These additional assumptions increase the number of

subsets in the partitions which determine the H values, but do so in a

way which indicates little relative interaction among the subsets of the

decomposition. However, jmce the final refinement involves few

assumptions, there is greater relative interaction for the same

decomposition. From the standpoint of interactions alone, the best

decompositions are indicated in (A), and in a larger, but similar,

example work assignments might be made based upon these decompositions.

This decoi.-position separates the actions of assigning values to

variables from the mechanisms which control these operations. Hence,

the measure indicates that the control mechanisms interact most since

they require more information about the program. However, should a

designer wish to distribute more information, in the form of assumptions

at earlier stages, the decompositions in (B) or (C) might be more

appropriate.

A different elaboration of this version might arise by observing

that for each execution of the body of the loop, two tests are made for

each modification of either a or b.

^MM ■airiiiiflrtMiifttiiirniMMi I liliililiii i : ■ ■ ""^ jiOTYMTlMMr r..lr.itfj

tBmmmmmmmmmmmiimmmmm*^mmKtjmmmimm&m***'m**m^m^, .niinußi*.^' ii^iiigiiMiiiHinniappiMiiipipippn

USING THE MEASURE
A GCD COMPUTATION

79

GCD Computation (Version II)

:1.1.1.2.1; (80)
(decreaoe a, b or both

so that gcd(a,b) = gcd(A,B))

;1.1.1.2.1.1: (81) ;1.1.1.2.1.2: (82)

(c) :1.1.1.2.1.1.1; (d) ;1.1.1.2.1.1.2; (e) ;1.1.1.2.1.2.1: (f) ;1.1.1.2.1.2.2:
(while a > b do) (84)

(84)
(while b > a do)

(85)
(85)

(g):l.1.1.2.1.1.2.1: (87)
(a «- a - b)

(h):1.1.1.2.1.2.2.1;(87)
(b ♦- b - a)

The development of this version is identical with the development in
Chapter II up to :1.1.1.2.1;. Version I maintains the invariant
gcd(ii,b) = gcd^'.b') but version 11 requires that a or b or both have
been modified more than once, if possible.

Object :1.1.1.2.1.1: decreases a until it oecomes smaller than b, but
maintains the invariant gcd(a,b) = gccKa'.b').

Object :1.1.1.2.1.2; makes b smaller than a, but maintains the invariant
gcd(alb) - gcd^'.b').

Objects :1.1.1.2.1.1: and :1.1.1.2.1.2.1: are while constructions that
control ;1.1.1.2,1.1.2; and :1.1.1.2.1.2.2: respectively.

Lastly, :1.1.1.2.1.1.2.1; and ;1.1.1.2.1.2.2.1; are elaborations from
which are hidden information about the invariants that are being
maintained.

HMMMHMiMiMi tarn MMM uatatmj,*.-.*

jHf^BW^n^mt^mmnr^ßmwm ill» _imMMMmmmmm^wm*i*& HHPJII iiiinvi«iivw>LUW||tijiiip|L.M».pii> Lijnud.iniLiLiiiii.,iiii, jj.iiuwiwMwii ii mwämmmmmimtm

USING THE MEASURE
A GCD COMPUTATION

80

A new elaboration of :1,1.1.2: might be

:1.1.1.2.1:
assumptions: neither multiplication nor division Is to be used

and a > 0, b > 0, a and b are integer variables, A
symbolizes the initial value of a and B symbolizes
the initial value of b, a is an integer variable,
read and write access is required for both a and b,
a' and b' equal the respective values of a and b
prior to the last execution of :1.1.1.2:, gcd^a.b) =
gcd(A,B) 5 gcdW) = gcd(a,b), pccKa.b) -
gccKa'.b'), ;1.1.1.2.1: is the body of a loop which
makes the test "a i1 b"

:1.1.1.2.1: DECREASE EITHER a, b, OR BOTH a AND b
SUCH THAT gcdCa.b) = gcdU'.b1) WHERE a OR b HAVE
BEEN MODIFIED MORE THAN ONCE, IF POSSIBLE.

effects and
post-condition: (a < a' or b < b'), gcd(a)b) = gcdU'.b'), if

possible, more than one modification of a or b
should occur for each test of the outer loop.

MMMMMMMMta itutimmmmmmmt ■..■....■.-■-. ..^-.....-J. ,..,. '-• mi,;ii-ti'v■,.■,■,■>r",^,,-^i

mmm^'!nimimmmmmmm>^^m»f^»»tmtwmuk.mw!i /mmmmm' .I«J«J>III umiupuu w,l\mmmmmmw.*m^>^^mmmmm i i nwip .» (mwi i jnuu

USING THE MEASURE
A GCD COMPUTATION

81

The best decomposition for the three objects is

((:1.2.i:) (tl.l.l.l;, il.l.1.2.1:)) .637 [1]

il.1.1.2.1: is elaborated next

:1.1.1.2.1.1:

assumptions:

effects and
post-condition:

a>0Ab>0Aa and b are integer variable,
write access to a is required, read access to a is
required, read access to b is required, a' and b'
equal the respective values of a and b prior to the
last execution of 11.1.1.2:, gcd(a,b) - gcd^b'),
il.l.1.2.1: is the body of a loop which makes the
test "a t b", neither multiplication nor division is
to be used

:1.1.1.2.1.1; IF POSSIBLE, MAKE a SMALLER THAN b
SUCH THAT gcd(a,b) = gcdW)

a < a' A gcd(a,b) = gcd(a,,b') A a^b' o b'^a

[1] This notation will be used instead of tree diagrams to indicate a
decomposition and the entropy loading values for non-terminal nodes.
(The value of an instance of <number> represents the entropy loading
value for the parenthesized pair to its left.)

<decompo5ition> ::= (<part list> <part list>) <number> |
(<part list> <part list>)

<part list;
<decomposition> | <simple part list>

<simple pa'-i list" ::= <object name> |
<simple part list> , <object name>

^mm atmmmam^bäL^. tbAfattiM* viktttim *m<< ■'

f^mmmmmmmmmmm wmrnmmmin .J m_mmmmmif*mmmm mummm^mmmm • iww".»»* . 1» i ,Miinl|IBWIippi(l^ipwp(i|5|BHiW V-'m .mmymaimi'^

USING THE MEASURE
A GCD COMPUTATION

:1.1.1.2.1.2:

82

assuTiptions; a>0Ab>0Aa and b are integer variables, read
access to a is required, write access to b is
required, read access to b is required, a1 and b'
equal the respective values of a and b prior to the
last execution of il.1.1.2:, gcc)(a,b) = gcd^',^),
neither multiplication nor division is to be used
;1.1.1.2.1: is the body of a loop which makes the
test "a t b"

effects and
post-condition:

verification:

:1.1.1.2.1.2: IF POSSIBLE, MAKE b SMALLER THAN a
SUCH THAT gcdUbHgcdia»

gcd(a,b) = gcdia'.b') A bib' A (b' > a ^ a > b)

To show that the post-condition for :1.1.1.2.1:
K.üs, i.e. (a < a' v b < b1) A gcci(a,b) =
Bcd(a',b'), if possible, more than one modification
of a or b should occur for each lest of the outer
loop, holds.

Case 1: if a' > b1 then b > a and a < a", since
after the execution of :1.1.1.2.1.2;, gcd(a,b)
ßccKa».

Case 2: If b' > a then a ^ b winch means that b' >
b. But since Bcd(a,b) = gcd(a,,b,) the
post-condition holds.

if more than one modification of either a or b can
be made, this elaboration will make more than one
such modification.

———— -— - MMMMMMMM». 4 IM n inimi^finiltiTmiüliWiirilrTiiihfilini'iifr'il '■-'tf'i

■pBpwWnpWBWPWIBSSWB»» ^mmmmmmmmmmmmm^^mm^mmm *'' '" m i^mmmmmtmmmmme.ntn. i > I.J. mu

:' ■

USING THE MEASURE
A GCD COMPUTATION

83

The relevant table is then

: |. |. i. 2. is

: i. |, |, 2. i- i:

: |, \. \. 2- |. 2:

0123156789 101112131415161718

II II 111 III

II It II II

II I III II

0) neither multiplication nor division is to be used
1) a > 0, b > 0, a and b are integer variables
4) write access to a is required
5) read access to a is required
i0) write access to b is required
11) read access to b is required
12) a' and b' equal the respective values of a and b

prior to the last execution of ;1.1.1.2;
17) gcd(a,b) = gcdte'.b')
18) :1.1.1.2.1: is the body of a

loop which makes the test "a / b"

RLB and RUB for this expansion both equal 1.04, but the best

decomposition has better entropy loading values than RLB and RUB would

suggest, and is derived from the last stage, i.e.

((:1.2.1:) (01.1.1.10 (;i.1.1.2.1.1:, :1.1.1.2.1.2:)) 1.38) .552

■ III I Ml— M^HUÜMi

JIlUUl.l I I,■,HU liPi|iPllipPHPiP^n»P(Wi«BWP«SI!fl»WpiP'"»*W^^

USING THE MEASURE
A GCD COMPUTATION

SA

Expanding :1.1.1.2.1.1: and :l.1.1.2.1.2: gives

(c) :U.1.2.1.1.1:

assumptions:

(d) :1.1.1.2.1.1.2:

assumptions:

•fleet and
post-condition:

effect and
post-condition:

a > 0 A b > 0 A a and b are integer variables, read
access to a is required, read access to b is
required, a' and b1 equal the respective values of a
and b prior to the last execution of :1.1.1.2:,
gcd(a,b) = gcd(a',b,)l gcd^b') A a > b =
gcd(a',b') = gcd(a-b,b), neither multiplication nor

division is to be used

:1.1.1.2.1.1.1: while a > b do

a > 0 A b > 0 A a and b are integer variables,
write access to a is required, read access to a is
required, read access to b is required, a' and b'
equal the respective values of a and b prior to the
last execution of :1.1.1.2:, gcd(a,b) = gcd^b1),
gcdte'.b') = gcd(a-b,b), neither multiplication nor
division is to be used

:1.1.1.2.1.1.2: DECREASE a BY b

a has been decreased by b.

a > 0 A b > 0 A a and b are integer variables,

gcdCa'.b') = gcdUb)

mmtma tm^mamt '■'■■■ if n i afuiiiiM il . im r ■ iiiMiiMrri-i 'i

pmn^^wivmw««». im "i i'i ' i'" l,l "■ i.' " viamm—W^^mfmm« > "i uiniumtmn. li^wjin.iiiHHB WIJ^U 11. HI IIHIPI.« IU iiiij. 11 i J uaiwivn^nim«

■, ■ ■ ■ ■

USING THE MEASURE
A GCD COMPUTATION

85

Similarly, we elaborate :1.1.1.2.1.2;

(e) :i.1.1.2.1.2.1:

assumptions:

(f) :1.1.1.2.1.2.2:

assumptions:

effect and
post-condition:

effects and
post-condtion:

a>0Ab>0Aa and b are integer variables, read
access to a is required, read access to b is
required, a' and b' equal the respective values of a
and b prior to the last execution of il.1.1.2:,
gcdUb) = gcdte'.b'), (gcd(a1b'> A b > a) =>
gcd(a,,b,) =gccl(a)b-a), neither multiplication nor
division is to be used.

:1.1.1.2.1.2.1: while b > a do

a>0Ab>0Aa and b are integer variables, read
access to a is required, write access to b is
required, read access to b is required, a' and b'
equal the respective values of a and b prior to the
last execution of si.1.1,2:, gcd(a,b) = gcd^b'),
gcdCa'jb1) = gccKa.b-a), neither multiplication nor
division is to be used

:1.1.1.2.1.2,2: DECREASE b BY a

b has been decreased by a

a>0Ab>0Aa and b are integer variables,
gcd(a,b) = gcd(a,,b')

LJMMHH t^UtmmtttM^am

PiipiilPiipi|Iip"WP«-WW^»WWHf«fPP|PBIIBP^^ K~~T^^mm*mi^m*m

USING THE MEASURE
A GCD COMPUTATION

86

The table for these two parts is then

0123456789 101112131415161718192021222324

(c) : |. 1- 1.2' !■ 1- 15 11

(d) :i. l- 1.2- !• l-2: 1 1
(e) : i.]. 1.2- i- 2' l: l l

(f) :|- !• 1-2- 1-2-25 II

1 1

1 1
1 1

0) neither multiplication nor division is to be used
1) a > 0, b > 0, a and b are integer variables
4) write access to a is required
5) read access to a is required
10) write access to b is required
11) read access to b is required
12) a' and b' equal the respective values of a and b

prior to the last execution of :1.1.1.2:
17) gcd(a,b) = gcdCa'.b1)
19) ßcdia'.b') = gcd{a-b,b)
20) gcd^'.b') = gcdlaVa)
23) (gcd^'.b') A a > b) 3 gcdte'.b') = gcd(a-b,b)
24) (gcd^'.b') A b > a) 3 gcdU'.b') = &cd{a, b-a)

For

((:1.2.1s) ((:1.1.1.1:)(:1.1.1.2.1.1:,:!.1.1.2.1.2:)) *1) *2

RLB is *1 = .868

RUB is *1 = ,451 and *2 = .868

but the actual loadings for the above elaboration are

((:l.2.1) (dl.l.l.l:) ((c , d) (e , f)) 1.33) .868) .451

Here the inner loops appear in two distinct subsets. It should be noted

that if the while constructions appear together the entropy loading

figures do not change, i.e. ((c , o) (d , f)) 1.33. Further,

((c) (d , e , f)) 1.24

This is the same entropy loading value for all other decompostitions of

c, d, e, and f where one subset contains just a single object.

Lastly, the assignments can be elaborated if we add assumptions to the

table as follows

 >^M.~~.—^— ..

^"■•I ■■"'"■'"■■*«J»|ini"«l"^i"n|PW»""»"i'"l> ' <i I llH^Wt^W^ ■""nfww^iwjii <> ■ IM wrvir^mmmmmi

v ■■ ' ■

USING THE MEASURE
A GCD COMPUTATION

87

0123456789 101 11213M15I61 7 1819202122
(d) . i. |. 1.2. |. 1.2J

(f) : |. |. |. 2. 1- 2. 2'
1 I 1 1

I I I

♦

1 *

0) neither multiplication nor division is to be used
4) write access to a is required
5) read access to a is required
10) write access to b is required
11) read access to b is required
12) a' and b1 equal the respective values of a and b

prior to the last execution of ;1.1.1.2:
17) ucdUb) = gcdte'.b')
19) gcdte'.b') = gcd{a-blb)
20) Gcd^'.b1) = gcdla.b-a)
21) gcdCa'.b1) = gcd(a,b-a) a true,

b decreased by a => Bcdia'.b') = gcd{alb)
22) gcd^.b') = gcd(a-b)b) a true,

a decreased by b s gcd(a,b) = gcdia'.b')

(g) -.1.1.1.2.1.1.2.1;

assumptions:

effects and
post-condition:

and

(h) :1.1.1.2.1.2.2.1:

assumptions:

write access to a is required, read access to a is
required, read access to b is required

:1.1.1.2.1.1.2.1: a <- a - b.

a decreased by b

read access to a is required, write access to b is
required, read access to b is required

:1.1.1.2.1.2.2.1: b <- b - a.

effects and
post-condition: b decreised by a

Now, note the following entropy loading calculations, where a names

:1.2.1: and b names :1.1.1.1:,

(A): ((a) ((b) ((c , g) (e , h)) 1.79) 1.33) .451

but that

(B): ((a) ((b) ((c , e) (g , h)) 1.01) 1.33) .451

l_^-_^_ «MMflMMMMi

mwiiii.iLi.UK.^MLJijiU,, jufl^!.jijji,uiiiw..j!.*Wp^jWWpjiijiW^W4HBWiWi,1_iiu_,, ill^mmmmm^mmmmmmimm^mmm^Km^mn.iKmiid!..m,1,.iii ma.mnvtmmimau^

USING THE MEASURE
A GCD COMPUTATION

and

88

(C): ((a) ((g . h) ((b) (c , e)) 1.01) 1.01) .451

(A) corresponds to a decomposition which is based on the best

decomposition at the last stage. Both (B) and (C) are better

decompositions for the program representation from which several

assumptions are hidden. (B) corresponds to the situation in version 1

where control mechanisms appear together. Here c and e represent the

two inner while constructions. (C) indicates that the objects which

assign values to x, a and b interact with the program less than the

control mechanisms.

MHM ■-"—- —■ MM mmmm ''-'-■ •■'.■■ — ■■ --*..■-.—^-.■. .■.-.■-.

1"I" II I"1" I lHB^Pri^^W^"l«PWll»UM 1.1 !■ ■ I • ■ v^mmmmimim • ■-■'■ l"1 ' ' wmm^^

USING THE MEASURE
A GCD COMPUTATION

89

A final version of the progran can be elaborated, m much the same way

as above, but where even more assumptions are made by the objects.

Specifically:

Compute the value of the greatest common divisor of the
initial(positive) contents of the integer variables a and b, and leave
the result in the variable x; also leave in the variable y the value of
the least common multiple of a and b, i.e. a*b / gcdUb), but without
using either multiplication or division.

A GCD Computation (Version 111)

:1: (90)

:1.1: (91) :1.2: (91)

i I
:l.l.l:{93) (a) :1.2.1: (93)

(x «- a)

(b) :1.1.1.0: (96) (c) ll.l.Us (95) (d) :1.1.1.2: (95)
(c «- 0; d «- a) (while a ^ b do ...)

(e) :1.1.1.2.1: (98) (f):l.1.1.2.2: (98)

(g) :1.1.1.2.1.1: (h) :1.1.1.2.1.2: (i):l.1.1.2.2.1: (j) :1.1.1.2.2.2:
(while a > b do) (100) (while b > a do) (101)

(100) (101)

(k) :1.1.1.2.1.2.1:
(a «- a - b; d «- d + c)
(105)

(I) :1.1.1.2.2.2.1:
(b <- b - a; c ♦- c + d)

(105)

This development is essentially identical witn version 11 except that
the least common multiple (Icm) of the initial contents of a and b is
computed in addition to the gcd of these values.

ill states tha problem. :1.1: has the effect of leaving c+d = A*B/
gcd(A,B) anJ a = gcd(A,B).

:1.2: assigns x the value ot gcd(A,B) and y the value of lcm(A,B). The
relationships c + d = lcm(A,B) and a = gcd(A,B) are hidden from :1.2.1:.

ya^M^^MI*- ..-.-.-... ■■aaiiMliriMlto —MBaMaaaM«.

W^^mt^m^^^^mmr mm^^mm

USING THE MEASURE
A GCD COMPUTATION

90

Object ;1.1.1.0: was introduced
invariant A*B = a»c+b

:1.1.1.1:.

to initialize c and
» d holds, prior to

d so that the
the execution of

The remainder ot the tree is the same as the co responding objects in

version 11 except that the invariant A*B = a*c + b*dis maintained

in addition to gcd(A1B) ■ gcd(a,b).

til

assumptions:

effects and
post-condition:

verification:

neither multiplication nor division is to be used
and a > 0, b > 0, A symbolizes the initial value of

a, B symbolize'- the initial value of b, a is an
integer variable, b is an integer variable, write

access to x is required, write access to y is
required, neither multiplication nor division is to

be used :1: COMPUTE THE GCD AND THE LCM OF a AND b,

LEAVE THE GCD IN THE VARIABLE x AND THE LCM IN THE

VARIABLE y.

x = gcd(A,B) A y = lcm(A,B)

Since the gcd and lern of any two positive integers

are always defined and are computable, the

computation is feasible.

The object/assumption table for :i: is

I 2 3 16 6/89 10111213141516171819202122232425

I 1 1 1 I 11 >

0) neither multiplication nor division is to be used

1) a > 0, b > Ü, a and b are integer variables

2) A symbolizes the initial value in a and

B symbolizes the initial value in b

3) write access to x is required

4) write access to a is required

5) read access to a is required
10) write access to b is required

11) read access to b is required
25) write access to y is required

mmmm

■■ IJII p I lll.p I wmww—^m m »

USING THE MEASURE
A GCD COMPUTATION

91

We elaborate ill as

ll.ll

assumptions:

effects and
post-condition:

;1.2:

assumptions:

effects:

post-condition:

neither multiplication nor division is to be used
and a > 0, b > 0, A symbolizes the initial value of
a, B symbolizes ihe initial value of b, a is an
integer variable, b is an integer variable, write
access to a is required, write access is required
for c, write access is required for d, c and d are
integer variables, neither multiplication nor
division is to be used, (a=b A gcdIA.B) = gcd(a,b) A

a»c + b*d = A*B) = a = gcd(A,B) A c + d = lcm(A,B)

ll.ll REPLACE THE VALUE OF a BY gcd(A,B) AND LEAVE
THE EXPRESSION c + d EQUAL TO lcm(A,B)

a = gcd(A,B) A c + d - lcm(A,B)

a = Bcd(A,B), write access to x is required, read
access to a is required, c and d are integer
variables , c + d = lcm(A,B), write access to y is
required, read access is required for both c and d,
neither multiplication nor division is to be used

:1.2: REPLACE THE VALUE OF x BY THE VALUE CONTAINED
IN a AND THE VALUE OF y BY c + d.

x = a A y = lcm(A,B)

x = Gcd(A.B)

verification: In order for x = gcd(A,B) and y = lcm(A,B) to hold
after :1.2;, given that its effect is x = a and y =
c + d, its assumptions must be a -= gcd(A,B) and c +
d = lcm(A,B). But this is guaranteed as the
post-condition of il.U Further, il.li requires
the same assumptions as ill plus the ability to
store into a.

mm ■ -

1f*m^m^m*~mm^**imm^^ iniii iijiiiMiiiinpinipip«nmn "■ u " ^ '"i "m^mmrmm^f^^^^^mm^WKwmim^m^^^^^

USING THE MEASURE
A GCD COMPUTATION

object/assumption table for il.lt, :1.2:

92

l- I«
\-2''

0 12 3^56789 10111213M 151617 18192021222320252627282930

M I I I 1 M ' ' '
.ill ' ' '

0) noither multiplication nor division i,. to be used
1) a > 0, b > 0, a and b are integer variables

2) A symbolizes the initial value in a and
B symbolizes the initial value in b

3) write access to x is required
4) write access to a is required
5) read access to a is required
6) a •= gcd(A1B)
7) (a=b A gcd(a,b)=Bcd(A>B) A a*c+b*d=A»B) =

(a=gcd(A,B) A c+d=lcm(A,B))
10) write access to b is required
11) read access to b is required
25) write access to y is required
26) c and d are integer vanaDles
27) read access is required tor both c and d
28) c + d = IcrrKA.B)
29) write access is required for c
30) write access is required for d

--—*'**"*' ■ - —^....^ai^M—i

""«"'J' mmmmmmmmmmmm

USING THE MEASURE
A GCD COMPUTATION

93

Next an elaboration of :1.1: can be made by hi'ling

(a=b A gcci(a1b)=gcd(AIB) /\ a»c+b*d= A*B) ^

(a=gcd(A,B) A c+d=lcm(A,B))

(This has already appeared as an assumption for :1.1;.)

:1.1.1:

assumptions:

effects and
post-condition:

neither multiplication nor division is to be used
and a > 0, b > 0, A symbolizes the initial value of
a, B symbolizes the initial value of b, a is an
integer variable, b is an integer variable, read and
write access is required for both a and b, c and d
are integer variables , read access is required for
both c and d, write access 'S required for c, write
access is required for d, neither multiplication nor
division is to be used

: 1.1.1: MAKE a = b SUCH THAT gcd(a,b) = gcd(A,B) AND
c AND d SUCH THAT a*c + b*d = A«B.

a = b. gcd(a,b) = gcd(A,B) A a*c + b*d = A»B

An elaboration of :1.2: can be made if we observe that

(a = gcd(A,B) A c+d = lcm(A,B)) ^ true
and

<x-aAy=c + d)3(x = gcd(A,B) A y = lcm(A,B))

But since ;1.2: assumes a = gcd(A,B) we can write

(a) :1.2.1:

assumptions: write access to x is required, read access to a is
required, write access to y is required, c and d are
integer variables , read access is required for both
c and d, neither multiplication nor division is to
be used

effect and
post-condition:

:1.2.1: x «- a; y «- c + d;

x=a, y=c + d

MMH ■MMtt MMM — ■■--' "-'" ^.-.^

., . ,..... ,..,.., mrmmim^m^mi^-m

USING THE MEASURE
A GCD COMPUTATION

94

As a result, the object/assumption table for :1.1, •.1.2:, ;1.1.1:, and
:1.2.1: is

(a)

i- M
12:

I-1 1:

1-2- |l

0123456789 101 II2I3I4I6I6I7I8I9202I222324252627282930

I I I I I II 111

1 I 1 I ♦ ♦ III

III II I I I
I I

I I

0) neither multiplication nor division is to be used
1) a > 0, b > 0, a and b are integer variables
2) A symbolizes the initial value in a and

B symbolizes the initial value in b
3) write access to x is required
4) write access to a Is required
5) read access to a is required
6) a = gcd(A>B)
8) (a = gcd(A,B) A c+d = lcm(A,B)) 3 true
9) (x = a A y = c + d) 3 (x = gcdiA.B) A y = lcm(A,E3))
10) write access to b is required
11) read access to b is required
25) write access to y is required
26) c and d are integer variables
27) read access is required for both c and d
28) c + d = lcm(A,B)
29) write access is required for c
30) write access is required for d

MHMMMOM - - ■ MUMMmai— 11«M**^i ■!«■■■ i 1 ■ ■ -' ■-

wmmmmmmi^^^

USING THE MEASURE
A GCD COMPUTATION

95

Adopting the convention that a' a^d b' equal the values ot a and b just
prior to the most recent execution of :1.1.1.2: we elaborate :1.1.1:

(c) :1.1.1.1:

assumptions:

post-condition:

(d) :1.1.1.2:

assumptions:

neither multiplication nor division is to be used
and a > 0, b > 0, A symbolizes the initial value of
a, B symbolizes the initial value of b, a is an
integer variable, b is an integer variable, read
access is required tor both a and b, a' and b1 equal
the respective values of a and b prior to the last
execution of :1.1.1.2:, [{(a < a' v b < b') A

gcd(a,b) = gcdiA.B) A a ?< b) --Ma !< b A gcd(a,b) =
gcd^b')) A max(a,,b') > max(a,b))], c and d are
integer variables, a*c + b*d = AtB, neither
multiplication nor division is to be used

:1.1.1.1: while a ^ b do :1.1.1.2: ;

a = b, gcdla.b) = gcd<A,B), c + d = lcm{A,B)

neither multiplication nor division is to be used
and a > 0, b > 0, A symbolizes the initial value of
a, B symbolizes the initial value of b, a is an
integer variable, b is an integer variable, read and
write access is required for both a and b, a' and b'
equal the respective values of a and b prior to the
last execution of :1.1.1.2:, a ^ b, gcd(d,b) =
gcd(A,B), write access is required for c, write
access is required for d, read access is required
for both c and d, c and d are integer variables ,
a*c + b*d = A+B, neither multiplication nor division
is to be used

: 1.1.1.2: DECREASE EITHER a, b, OR BOTH a AND b SUCH
THAT gcü(a,b) = gcd(A,B) AND INCREASE c, d OR 30TH
SUCH THAT a*c + b*d = A*B.

effect and
post-condition: (a < a' v b < b'), gcd{a)b) = gcd(A,B)

mmm ■MBMftft..^.« I^MH IMMMMMi

"■'■" ■WP^^^WIIIUII 11 I 11

USING VHE MEASURE
A GCD COMPUTATION

97

The object/assumption table is then:

(b) l|, |. |.ot
(c) l|.i.|.|l
(d) l|. |. i.fl

0123456789 10!1121311151017181920212223242526272829303132

1111 1 I I I I

1111 I 1 1 I I >

I 1 I I i 11111 I I I I I

0) neither multiplication nor division is to be used
1) a > 0, b > 0, a and b are integer variables
2) A symbolizes the initial value m a and

B symbolizes the initial value in b
4) write access to a is required
5) read access to a is required
10) write access to b is required
11) read access to b is required
12) a' and b' equal the respective values of a and b

prior to the last execution of :1.1.1.2:
13) (Ua^' v b^') A gcd(a>b)=6cd(A)B) A a^b) 3

{atb A gcd(a(b) = gcd(A1B)) « maxte'.b') > max(a,b))
H) gcdia.b) = gcd(A)B)
15) a ^ b
25) wnte access to y is required
2ö) c and d are integer variables
27) read access is required for both c and d
29) write access is required for c
30) write access is required for d
31) a*c + b*d = A*B
32) A = a A B = b

Because of the large number of assumptions made by a, b, c, and d all

possible decompositions have the same entropy loading values. This is

an instance of saturation in a table. The decomposition which was best

for the previous developments cf this program at this stage is

((a) ((b) (c , d)) 1.39) 1.39

■MM MMB ■■"■' ■ .._,

 "!■ Mini nia.iqn^«mw«i i i imi.i. ■wpnvanm* mtm*mmmmm*

USING THE MEASURE
A GCD COMPUTATION

We add the following assumption to :1.1.1.2:

gcd(a,,b') = gcdUb) s gccKa.b) ■ gcdCA.B)

98

(e) :1.1.1.2.1:

assumptions: a > 0 A b > 0 A a and b are integer variables, A
symbolizes the initial value in a and B symbolizes
the initial value in b write access to a is
require«.', read access to a is required, read access
to b is required, a' and b' equal the respective
valuer of a and b prior to the last execution of
tl.Ulj, gcd{a,b) ■ gcd^b'), c and d are
integer variables , read access is required for both
c and d, write access is required for c, write
access is required for d, a*c + b*d = A*B, neither
multiplication nor division is to be used

: 1.1.1.2.1: IF POSSIBLE, MAKE a SMALLER THAN b SUCH
THAT gcd{a,b) = gcd(a',b') AND MAKE c AND d SUCH
THAT a*c + b*d = A*B.

effects and
post-condition:

(f) :1.1.1.2.2:

assumptions:

a < a' A gcd(a,b) = gcd^b') A a^b' o b'^a A a*c

+ b*d = A*B

a>0Ab>0Aa and b are integer variables, A
symbolizes the initial value in a and B symbolizes
the initial value in b read access to a b required,
wnte access to b is required, read accer.s to b is
required, a' and V equal the respective values of a
and b prior to the last execution of :1.1.1.2:,
gcd(a,b) = gcd(a',b'), c and d are integer variables
, read access is required for both c and d, write
access is required for c, write access is required
for d, a*c + b*d = A*B, neither multiplication nor

division is to be used

:1.1.1.2.2: IF POSSIBLE, MAKE b SMALLER THAN a SUCH
THAT gcd^bHgcdte» AND MAKE c AND d SUCH THAT

a*c +b*d = A*B.

effects and
post-condition:

verification:

gcd(a,b) = gcdta» A bib' A (b' > a D a > b)

To show that the post-condition for :1.1.1.2: holds,
i.e. (a < a' v b < b') A gcd(a1b) = gcd(a,,b') a*c

^—l^^_li-li —- - ■ --

——"- -'

USING THE MEASURE
A GCD COMPUTATION

P»WWPVPW^"W!PffWTI i wumiJj mp

1
99

.. b*d = A*B, holds. Case 1: if a' > b' then b > a
and a < a', since after the execution of
:1.1.1.2.1.2;, gcd(a(b) ■ gcdte'.b').

Case 2: If b' > a then a > b which means that b' >
b. But since gcd(a,b) = gcd(a^b,) the
post-condition holds. For both cases, a*c + b*d =
A*B also holds.

The relevant table is then

0123456789 101 II21314I5I6I71819202122232425262728293031
tt) t|. |. I.f'tt 1 | | | | 11 1 I 1 I I 1

(f) t|. i. i.rt* i i i i IM ' i'ii

0) neither multiplication nor division is to be used
1) a > 0, b > 0, a and b are integer variables
2) A symbolizes the initial value in a and

B symbolizes the initial value In b
4) write access to a is required
5) read access to a is required
10) write access to b is required
11) read access to b is required
12) a' and b' equal the respective values of a and b

prior to the last execution of :i.l.l.2:
25) write access to y is required
26) c and d are integer variables
27) read access is required for both c and d
29) write access is required for c
30) write access is required for d
31) a*c + b*d = A*B
32) A = a A B = b

RLB is ((a) ((b) (c , d)) .950) .950

RUB is ((a) ((b) (c , d)) 1.33) 1.33

Unfortunately, the actual values are

((a) ((b) ((c) (G , f)) 1.61) 1.61) 1.33

This is also a best decomposition. One reason for this increase in

entropy loadings is because more assumptions are shared among the

objects.

- ■■ •MMMBMMI «■■ - -- J

 —" HMU. M *mm -^i

USING THE MEASURE
A GCD COMPUTATION

100

We elaborate :1.1.1.2.1: as

(g) :!.1.1.2.1.1:

assumptions: a > 0 A b > 0 A a and b are integer variables, A
symbolizes the initial value in a and B symbolizes
the initial value in b read access to a is required,
read access to b is required, a' and b' equal the
respective values of a and b prior to the last
execution of :1.1.1.2:, gcd(a,b) = gcd(a',b'),
gcd^b') A a > b o ICdUMrt - gcd(a-b,b), c and
d are integer variables , a*c + b*d ■ A*B, neither
multiplication no' division is to be used

:1.1.1.2.1.1: while a > b do

(h) :1.1.1.2.1.2:

assumptions: a > 0 A b > 0 A a and b are integer variables, A
symbolizes the initial value in a and B symbolizes
the initial value in b write access to a is
required, read access to a is required, read access
to b is required, a' and b' equal the respective
values of a and b prior to the last execution of
:1.1.1.2:, gcd(a,b) = gcdU», gcd^b')
gcd(ab,b) A A*B - (a-b)*c + b+id+c), c and d are
integer variables , a*c ♦ b*d = A^B, read access is
required for both c and d, write access is required
for d, neither multiplication nor division is to be

used

:1.1.1.2.1.2: DECREASE a BY b AND INCREASE d BY c.

effects and
post-conditions:

effect and
post-contition:

a has been decreased by D and d has been increased

by c

a > 0 A b > 0 A a and b are integer variables,

gcdla'.b') = gcd{a,b), a»c + b*d = A*B

■ —'— mm -^ ■■ - ■ '*•—

pp» " "■ "II. ■IP1I1W""W>WI»H

USING THE MEASURE
A GCD COMPUTATION

101

Similarly, we elaborate ;l.l.l.2.2:

(i) :1.1.1.2.2.1:

assumptions:

(j) :1.1.1.?.2.2:

assumptions:

effects and
post-conditions:

effects and
post-condition:

a>0Ab>0Aa and b are integer variables, A
symbolizes the initial value in a «nd B symbolizes
the initial value m b read access to a is required,
read access to b is required, a' and b' equal the
respective values of a and b prior to the last
execution of :1.1.1.2:, gcd(a,b) = gcd^a'^'),
(gcdUb1) A b > a) ^ gcd(a',b') =gcd(a,b-a), c and
d are integer variables , a*c + b*d = A*B, neither
multiplication nor division is to be used

:1.1.1.2.2.1: while b > a do

a>0Ab>0Aa and b are integer variables, A
symbolizes the initial value in a and B symbolizes
the initial value in b read access to a is required,
write access to b is required, read access to b is
required, a' and b' equal the respective values of a
and b prior to the last execution of :1.1.1.2:,
gcd(a,b) = gcdia», gcdW) = gcd(a,b-a) A A*B
= a*(c+d) + {b-a)*d, c and d are integer variables,
a*c + b*d = A*B, read access is required for both c
and d, write access is required for c, neither
multiplication nor division is to be used

:1.1.1.2.2 2: CECREASE b BY a AND INCREASE c BY d;

b has been decreased by a and c has been increased
by d

a>0Ab>0Aa and b are integer variables,
gcd(a,b) = gcd^b') A a*c ♦ b*d = A*G

w—m MMMMMBMt MAMM|^^teaka|MaMMMflhdMk^dta

mtm" mmmmmmiumi i.i i-

USING THE MEASURE
A GCD COMPUTATION

102

The tabie for these two parts is then

(g)
(h)
(i)
(J)

0 I 23166789 101 I 121314161617181920212223242526272829303 I

I- !■ 1- 2. 1- i: 1 I 1 1 11 I 1 I •

!• I- 1-2- I- 25 I I 1 I 1 II II '• ' >

1- I- 1- 2- 2- 1: I 1 I I II I ' ' '

}■ 1- |.2 2- 2* 1 I I I 111 I 1 1111

0) neither multiplication nor division is to be used
1) a > 0, b > 0, a and b are integer variables
2) A oymboli?es the initial value in a and

B symbolizes the initial value in b
4) write access to a is required
5) read access to a is required
10) write access to b is required
11) lead access to b is required
12) a' and b' equal the respective values of a and b

prior to the last execution of :1.1.1.2:
17) p.cd(a,b) - gccKa'.b')
19) i-cdia'.b') = Gcd(a-b,b) A A*B = (a-b)*c ♦ b*(d-t-c)
20) ucd^'.b') = Bcd(a,b-a) A A»B = a*(c+d) + (b-a)*d
23) (eccKa'.b1) A a > b A a*c + b*d = A*B) ^ gcdia'.b') = &cd(a-b,b) A A*B = (a-b)*c

J b*(d+c))
24) (gcd(a'Ib') A b > a A a»c * b*d = A*B) ^ gcdla'.b') ■ gcd(a, b-a) A a*c ♦ b*d -

A*B
25) write access to y is required
26) c and d are integer variables
27) read access is required for botn c and d
28) c + d - lcm(A>B>
29) write access is required for c
30) write access is required for d
31) a*c ♦ b»d = A»B

HMM — 1

HPP^ ———^■•■IIPWIPWBWWPPI

USING THE MEASURE
A GCD COMPUTATION

103

RLB and RUB from

((a) ((b) ((c) (• , f))))

for the above expansion are

RLB: ((a; ((b) ((e) (e , f))) .796) .796

RUB: ((a) ((b) ((c) (e , f)) 1.55) 1.55) 1.54

The actual entropy loading values are

((a) ((b) ((c) (g , h , i , j)) 1.48) 1.75) 1.28

which is again a best decomposition. If (g , h , i, j) is decomposed,

the best decomposition is

((g . i) (h , j)) 1,55

which indicates that the bodies of the two loops interact less with the

conirol mechanisms for those loops than do the loops with each other.

•M^MMMM - - - ' - ■'—■ - J

■^■•W"«""'

USING THE MEASURE
A GCD COMPUTATION

104

Lastly, the assignments can be elaborates if we add «sumptions to the

table as follows

00 : |. i- i- 2- i- 2: l 1 l
(I) : |. |. |. 2- 2 2? 1 l I

0 I 2 T 4 5 6 7 8 9 101 1 1213MI5161718'^02122232^25262728293031

1 ♦ II II
1 ♦ I I I I

1 i I I

I I 1

0) neither multiplication nor division is to be used
1) a •> 0, b > 0, a and b are mteger variables
4) write access to a is required
5) read access to a is required
10) write access to b is required
11) read access to b is required
12) •' and b' equal the respective values of a and b

prior to the last execution of il.1.1.2:
17) Gcd(a)b) - gcdU'.b')
19) BCdd^*) = gcd(a-b1b)
20) gcdCa» = gcdUb-a)
21) (gcdUMtf - gcd(a,b-a) A A*B - (a-b)*r + b*(d+c)) 3 tru«,

b decreased by a ^ gca(a^b,) = gcdl^.b;
22) (gcd^'.b') = gcd(a-b,b) A A*B - a*(r+d) + (b-b)»d) ^ true,

a decreased by b => gcd(a,b) = gcd(a\b')
23) (gcd(a^b,) A a > b A a*c + b*d = A»B) 3 gcdla'.b') = gcd(a-b,b) A

A*B = (a-b)*c + b*(d+c))
24) (gcd(a^b,) A b > a A a*c + ü*d = A»B) ^ gc.Ka'.b') - gcd(a, b-a) A

a*c + b*d = A*B
25) write access to y is required
26) c and d are integer variables
27) read access is required for both c and d
28) c + d = lcm(A,B)
29) write access is required for c
30) write access is required for d
31) a*c + b*d ■ A*B

-■--■■

. -^,.--... ..-:■. . .,. .

1 "IW-I—P"

USING THE MEASURE
A GCD COMPUTATION

105

(K) :1.1.1.2.1.2.1:

assumptions:

effects and
post-condition:

and

(I) :1.1.1.2.2.2.1:

assumptions:

effects and
post-condition:

.write access to a is required, read access to a is
required, read acress to b is required read access
is required for both c and d, write access is
required for d, neither multiplication nor division
is to be used

:1.1.1.2.1.2.1: a ^ a - b; d ♦- d ♦ c;

a decreased by b and d increased by c.

read access to a is required, write access to b is
required, read access to b is required read access
is required for both c and d, write access is
required for c, neither multiplication nor division
is to be used

:1.1.1.2.2.2.1: b «- b - a; c <- c + d;

b decreased by a and c increased by d

mm - - ■ ■

^■^^WPWi^W^W ' " " ■ mm "

USING THE MEASURE
A GCD COMPUTATION

106

Now we can display the table for this new development.

: It
0 2 3 4

1 1 1 1

5 6 7 8

1 1

1 101112131415161;

1 1

i- \-

\-2'

1 1 1

1 1 1 * ♦

1 1

|. 1- M 1 1 1 1 1
(a) I-2- |l 1
(b) 1- !■ \0'-

(c) 1- l< 1- M 1 1 1 1 1 1

(d) |. 1- 125 1 1 1 III II

(e) |. |, 1.2. |t 1 1 1

(f) ■ !■ 1- 1- 2- 25 III 1

(g) ! |. l. |.|, |. |l

(h) : |. |. |. 2- l-l« 1 1 1

(i) : 1- 1- 1- 2- 2- l:

(J) 1 |. |. |. 2- 2 2'- III 1

(k) 1 |. |. |. 2- 1- 2 • 1 1 1

(1) ||, |.). 2- 2- 2- |t| 1 1

121314151617181920212223242526272829303132

I

1 1

I I

1 1

1 I

I I I
I I I
I I

I I

I I

1 1

I I

0) neither multiplication nor division is to be used
1) a > 0, b > 0, a and b are integer variables
2) A symbolizes the initial value in a and

B symbolizes the initial value in b
3) write access to x is required
4) write access to a is required
5) read access to a is required
6) a = gcd(A,B)
7) (a=b A gcdUb)=gcd{A,B) f\ a*c+b*d=A*B) a

(a=gcd(A,B) A cHi=lcm(A,B))
8) (a = Gcd(A,B) A CK! = Ici^A.B)) a true
9) (x = a A y -- c + d) D (x = gcd(A,B) A y = IcmlA.B))
10) write access to b is required
11) read access to b is required
12) a' and b' equal the respective values of a and b

prior to the last execution of il.1.1.2:
13) (((a<cV v b^V) A gcd(a.b)=gcd(A,B) A a^b) 3

(a^b A gcd(a,b) = gcdlA.B)) A rnax^.b') > max(a,b))
14) ucdUb) = gcd{A,B)
15) a ^ b
16) |'cd(a,b) ■ gccKA.B) = gcd^'.b') = gcd(a)b)
17) gccKa.h) = gccKa'.b')
18) (a > h A gccKa',^) = gcd(a-b,b) v

a < u A gcdia'.b') ■ gcd(a,b-a)
19) BCd<«',b*) = gcd(a-b,b) A A*B = (a-b)*c + b*(d+c)
20) gcd^a'.b') = gcd(a,b-a) A A*B = at(c+d) + (b-a)*d
21) (gcd(a^b,) = gcd(a,b-a) A A*B = (a-b)*c ♦ b*(d+c)) = true,

b decreased by a 3 gcd^'.b1) = gcd(a,b)
22) (gcd(a^b,) - gcd(a-b,b) A A*B = a*(c+d) + (b-a)*d) = true,

a decreased by b ^ gcdia.b) ■ jcdla'.b')

mm »u

I J 11 ^^^w *mmmv*^*ammmm*mmmii^tmmmmmm*'*~~—

USING THE MEASURE
A GCD COMPUTATION

107

23) igcdia'.bl A a > b A a*c + b*d = A*B) ^ gcd(a',b') ■ gcd(a-b,b) A

A*B = (a-b)*c + b*(d+c))
24) (gcd^'.b') A b > a A a*c + b*d - A*B) 3 gcd(a^b,) ■ gcd(a, b-a) A

a*c + b*d - A*B
25) write access to y is required
26) c and d are integer variables
27) read access is required for both c and d
28) c + d = lcm(A,B)
29) write access is required for c
30) write access is required for d
31) a*c + b*d = A*B
32) A = a A S = b

Even though information has been hidden from (K) (I), entropy loadings

remain the same as for the previous decompositions for

(g , ' M h , j),

but increase for ((c) ((g , i) (k , I))), i.e.

((a) ((b) ((c) ((g , i) (k , I)) 1.55) 1.75) 1.75) 1.28

Because little information was hidden from the ob eels at early stages,

entropy loadings tended to be larger than in versions I and II.

The three versions of this gcd computation have indicated that

control mechanisms usually share more assumptions in a program than the

objects whose execution Is being controlled. These examples also

illustrated several instances where information was hidden from oSects.

In versions I and II, this resulted in entropy loadings that were

smaller than corresponding loadings had assumptions not been hidden.

Version III, however, indicated that more information was shared than in

versions I and II. Entropy loading figures can be improved if the texts

which compute the gcd are separated from those which compute the Icm.

■-■■■- --■ ■ - -■ -'■ ^ —- - ■

USING THE MEASURE
A SEQUENCES PROBLEM

108

A SEQUENCES PROBLEM

This example is also due to DiJKstra[DJ3 pp.53-63], but makes use

of some of the notational conventions due to Hoare[H03]. The specific

conventions are:

a) <empty> is a sequence
b) if x is a sequence and d can be an element of

a sequence then
x^"d is a sequence

c) The only sequences are those defined by (a) and (b)
d) (x^d).last = d
e) initiaKx^d) = x
f) x~(y'^) = (x~y)~z
g) d.first = d
h) x ^ <empty> 3 (x^dMirst = x.first
i) finaKd) = <empty>
j) x ^ <empty> ^ finaKx^d) ■ finaKxPd

last, initial, first, and final are
not defined for <empty>.

k) length(<empty>) = 0
I) lengtWx^d) = succdengthU))
m) x^d means x «- x^d
n) d from x means d «- x.first; x «- final(x)
o) d back from x means d *• x.last; x »• initial(x)
p) from x means x ♦- finaKx)
q) back from x means x *- initial(x)

Consider the sequences constructed from the digits 1, 2, and 3

which contain no occurrence of two adjacent, identical subsequences.

Call these sequences "good". Several examples of good sequences are

1
21
1312
31213

Several sequences which are not "good" are

22
123123
321232123

The problem can now be stated:

—-— '—^ — i i ii -. i. J

USING THE MEASURE
A SEQUENCES PROBLEM

109

Assuming that there exists a good sequence of length 100, write a
program which generates the list of good sequences in lexicographic
order up to ar.d including tn? first good sequence of length 100.
(Here, 1 precedes 2 which precedes 3).

A SEQUENCES PROBLEM

:1: (110)

\

:1.1: (112) (a) :1.2: (112) .-1.3: (113) :1.4! (113)
(while lenp,th(S)

H 100 do
begin
:1.3:i :1.4:

end)

(b) :1.1.1: (115)
(5 «- <empty>;
length(S) «- 0;

(c) :1.3.1;(115) (d) :1A1: (116)
(S «- next (PRINT(S);)

z good
sequence;)

:1.3.1.3:(il< (e) :1.3.1.1:(118) (f) :1.3.1.2:(1 IS) (g) ;1.3.1.3:(119) (h) :1.3.1.4:(119)
(S-.'^O) (repeat (S - next (set GOOD to

:1.3.1.3: larger mean "S is
: 1.3.1.4: sequence; a good seq.;)

until GOOm,

(0 :1.3.1.3.1:(122) (j) :1.3.1.3.2:(122)
S last •■ S.last + 1

(k) :1.3.1.3.1.1:(123)
(while S.last = 3 do

back from S;)

(I) :2.1:(130) (m) :2.2:(i30) (n) :2.3.-(l30)
length(S) is length S.last is d[lengtn] write access to

S.last is
d[length] ♦- ...

(o) :2.4: S - S~.. (131) (p) :2.5: (131) (q) ;2.6: (131)
length •- length + 1; back from S S <- <empty>
d[length] »■ ... length «- length - 1 length ♦- 0

(r) :2.7: read access to elements (s) :2.8: write access to S
of S. d[l] ... d[length] d[l] - d[length] ♦- ...

(132) (132)

This problem requires that a list of lexicographically ordered sequences

M^MMMMM

USING THE MEASURE
A SEQUENCES PROBLEM

110

of \% Ss, and Ts, containing no adjacent identical subsequences, be
printed. This list should terminate with the first sequence whose

length is 100.

Object :1.1: sets S to <empty>. Objects ;1.3: and :1.4: generate and
n-nt the next good sequence. Object ;i.2: controls objects :1.3: and
:1.4: until a sequence of length 100 is produced.

Object :1.3.1.1: extends S with 0. Objects :1.3.1.3: and :1.3.1.4:
produce the next lexicographically larger sequence and test whether it
is a good sequence. :1.3.1.3: and :1.3.1.4: ar? controlled by :1.3.1.2:

until a good sequence is found.

Objects :1.3.1.3.1.1: and :1.3.1.3.2: remove trailing 3's from S and
increment the last element of S by 1.

Objects t2.ll through :2.8: implement the operations required by the
objects to manipulate a sequence. S is implemented in terms of an array

and several simple variables.

:1:

assumptions: OS = <empty>, 1NIT(R,S) is defined to be {if
length(R) = 0 then true else R.first = S.first A

INIKfinaKR), final(S))} A a "good" sequence ^ is
defined to be "a sequence Of 1% 2,s(and S's
containing no adjacent identical subsequences" A Q
represents the sequence of lexicogrnphically ordered
"good" sequences, there exists a good sequence of
length 100

ill OUTPL^THE INITIAL PORTION OF THE SEQUENCE OF
LEXICOÖ^PHICALLY ORDERED SEQUENCES OF 1% 2's,AND
3'*, «& THAT NO SEQUENCE CONTAINS TWO ADJACENT
IDENTICAL SUBSEQUENCES. TERMINATE THE LIST WITH THE
FIRST SUCH SEQUENCE WHOSE LENGTH EQUALS 100.

effects anO
post-coi7ditions;

vertficalion:

INIT(ÜS,Q) A length(OS.Iast) = 100

If there exists a "good" sequence of length 100 and
the effects of si: agree with the post-condition,
the post-condition is satisfied.

mt*m

MIHBHMBi

USING THE MEASURE
A SEQUENCES PROBLEM

111

The object/assumption table for :1: is

«is
1 2 3

I I I

1) OS = <empty>
2) INmR.S) is defined to be (if length(R) = 0 then true

else R.first = S.first A INlKfinaKRMinaKS))}
A a "good" sequence is defined to oe "a sequence of I's, Z's, and
3*5 containing no adjacent identical subsequences"
A Q represents the sequence of lexicographically
ordered "good" sequences

3) there exists a good sequence of length 100

MMMM ^Ma — - - ■

USING THE MEASURE
A SEQUENCES PROBLEM

112

We elaborate :1: as follows, with all the pre-conditions derived

:1.1:

assumptions: requires ability to set S to <empty> and length(S)
to 0, OS = <empty>, 1NIT(R,S) is defined to be {if
length(R) = 0 then true else R.first = S.first A

INIKfinaKR), final(S))} ^ a "good" sequence s
defined to be "a sequence of I's, 2,s, and 3 s
containing no adjacent identical subsequences" A Q
represents the sequence of lexicographically ordered
"good" sequences, there exists a good sequence of

length 100

:1.1: SET SEQUENCE S TO <empty> AND length(S) TO

ZERO.

effects and
post-conditions:

(a) :1.2:

assumptions:

effects and
post-conditions;

verification:

S = <empty>, length(S)
length(OS.Iast) = 100

0, 1NIT(0S,Q),

INI'HR.S) is defined to be {if length(R) = 0 then
true else R.first = S.first A

INIT{final(R),final(S))} A a "good" sequence is
defined to be "a sequence of I's, 2^, and S's
containing no adjacent identical subsequences" A Q
represents the sequence of lexicographically ordered
"good" sequences, there exists a good sequence of
length 100, 1NIT(0S,Q) A OS.Iast = S, INrr(OS~"next
lexicographically larger good sequence than the
value in S"^), (1NIT(0S,Q) A OS.Iast = S A

length's) t 100) ^ INmOS^'next lexicographically
larger good sequence than the value in S",Q)
requires ability to read length(S),

:1.2: while length(S) ^ 100 do
begin :1.3: ; (Ml end;

INmoS.Q), length(OS.Iast) = 100

The pre-condition for the while construction holds
since (1) we assume that there exists a goo-'
sequence of length equal to 100; (2) OS = <empty>
initially; (3) and that the first good sequence
satisfies the pre-condition.

^MMMMMMMWaB —

USING THE MEASURE
A SEQUENCES PROBLEM

113

:1.3:

assumptions:

effects:

post-conditions:

:1.4:

assumptions:

effects:

post-conditions:

1NIT(R,S) is defined to be {if length(R) = 0 then
true else R.first = S.first A

INlT(final(R),final(S))} A a "good" sequence is
defined to be "i sequence of I's, 2,s(and 3's
containing 10 adjacent identical subsequences" A Q
represents the sequence of lexicographically ordered
"good" sequences, requires ability to \fcrife each
element of S, requires ability to access each
element of S, requires ability to concatenate onto
S, i.e. S •■ S^d, requires ability to delete from
the end of S, i.e. back from S, INIKOS.Q) A

OS.iasl = $ A OS.Iast = S, INlT(OS""next
laxicographically larger good sequence than the
value in S'^Q)

:1.3: TRANSFORM S TO THE NEXT GOOD SEQUENCE AFTER
ITS CURRENT CONTENTS

S «- "next good sequence after S"

1NIT(0S^S,Q)

INIKR.S) is defined to be {if length{R) = 0 then
true else R.first = S.first A

lNIT(final(R),final(S))) A a "good" sequence is
defined to be "a sequence of I's, 2^, and 3's
containing no adjacent identical subsecuences" A Q
represents the sequence of lexicographically ordered
"good" sequences, INITCOS'^Q), requires ability to
access each element of S,

:1.4: PRINT(S);

OS «- OS^S

1N1T(0S,Q) A OS.Iast = S

. .. ,__.

USING THE MEASURE
A SEQUENCES PROBLEM

114

The object/assumption table for this part is

1 23456789 10111213

]'-

1- 1

!• 2
!• 3

1-4

I i

I I

t I 1 I i

I I 1 I I I

I 1

1) OS - <empty>
2) .MIW.S) is defined to be {if lenglhW = 0 then true

olse R.first = S.flrst A lNlT(final(R),final{S))J
A a "good" sep'jnce il defined to be "a sequence of i's, 2'$, and
y's containing no adjacent identical subsequences"
A Q represents the sequence of lexicog apincally
ordered "good" sequences

3) there exists a good sequence of length 100
4) requires ability io set S to <empty> and

length(S) to 0
5) IN1T(0S,Q) A OS.iast - 8 A OS.Iast = S
6) (IN1T(03,Q) A OS.Iast = S A length{S) H 100) D

INl^OS^'next lexicographically larger good sequence than
the value in S",Q)

7) requires ability to read length(S)
8) INI^OS^'next lexicographically larger good sequence than

the value in 5",Q)
9) iNIT(OS^S,0)
10) requires ability to access each element of S
12) requires ability to concatenate onto S, i.e. S «- S^d
13) requires ability to delete from the end of S, i.e. back from S

We can hide considerable information from the refinement for :1.1: by
adding

(Assumptions 1), 2), 3) => true) A (S = <empty> A length{S) = 0 ^
Assumptions 1), 2), 3))

Similarly, :1.4:(PRIMT(S)) does not require INIT(0S^S,Q).
add

Hence we

(INIT(OS'""S)Q) ^ true) A (OS = OS'^S where OS' equals OS prior to :1.A:)
^ (1NIT(0S,Q) A OS.Iast = S) A OS.Iast = S))

■M. in M* lamm 111 illl! I !

wamfmmmmmm^''^,^m,^wmf,i"rw^m^^mi^^^mm^mm^mw^ " 'tl **^^*m^m^mmim » p n vmw^v^m^mmmi^*^™^*mim9^mmmmi**^t^^*m^^**'i'™*mm9

USING THE MEASURE
A SEQUENCES PROBLEM

115

Further, for :1.3: (TRANSFORM S TO THE NEXT GOOD SEQUENCE AFTER ITS
CURRENT CONTENTS.) we can add the assumption below. (In the remainder
of this development, "illt is us^d as an abbreviation for the phrase "is
lexicographically less than".)

(INWOS^'Viext good sequence after current sequence in S",Q) A

IN1T(0S,Q) A OS.Iast = S => S' equals S prior to executing :1.3: A S is a
good sequence) A (VX[S' illt x illt S = x is not a good sequence] A S is
a good sequence A S f« S' = 'N1T(0S'"*S,Q))

The elaboratons are

(b) :1.1.1:

assumptions: requires ability to set S to <empty> and length(S)
to 0

:1.1.1: SET SEQUENCE S TO <empty> AND length(S) TO
ZERO.

effects and
post-conditions: S = <empty>, length(S) » 0

(c) :1.3.1:

assumptions:

effects:

post-conditions:

INIT(R,S) is defined to be {if length(R) - 0 then
true else R.first = S.first A

INmfinaKPMinaKS))} "good" sequence is

defined to be "a sequence of I's, 2,s, and S's
containing no adjacent identical subsequences" A Q
represents the sequence of lexicographically ordered
"good" sequences, requires ability to access each
element of S, requires ability to write each element
of S, requires ability lo concatenate onto S, i.e.
S «- S^d, requires ability to delete from the end of
S, i.e. back from S, S' = S, prior to executing
:1.3: A S is a good sequence

:1.3.1s TRANSFORM S TO THE NEXT GOOD SEQUENCE AFTER
ITS CURRENT CONTENTS

b «- "next good sequence after S"

Vx^' illt x illt S => x is not a good sequence] A S
is a good sequence A S ^ S' =

■■ mtea^MMmm

I U I II awv«"! I ■■'• Ml III III iiisv^Wm

USING THr MEASURE
A SEQUENCES PROBLEM

116

(d) ilA.ll

assumptions:

effects:

post-conditions:

requires ability to access each element of S

:1A1: PRIW(S);

OS *■ OS^S

(OS = OS'^S where OS' equals OS prior to :1.4:)

MMMMMM ■MMHBMiMi ■ „ .L- ^„.^..

■p^p-m-p .»»>■•>■ um i mmrmmm^^mmmimm^Bim '■■•i

USING THE MEASURE
A SEQUENCES PROBLEM

117

The able

12 3 4 5 6 7 8 9 1011121314151617

(a) .

(b)
(c)
(d)

i- i«

|.2>
I-3S
1.4:

|. I- |i

I-3- \'

'- |< 4' I«

1111

11 1111

1 1 1 1 1 I 1 *

1 II

1

1 1111 1

1

1) (
2) 1

)S = <empty>
Nrr(R,s) is def ned to be {if iongtWR) = 0 ihon 1 rue

olse R.first ■ S.first A INIT(final(R),final(S))}
A a "good" sequence is defined to be "a sequence of I's, 2's, and
3'$ containing no adjacent identical subsequences"
A Q represents the sequence of lexicographically
ordered "good" sequences

3) there exists a good sequence of length 100
4) requires ability to set S to <empty> and

lengtMS) to 0
5) INIT(0S,Q) A OS.Iast = S
6) (1NIT(0S,Q) A OS.Iast - S A lengtWS) H 100) =>

lNIT(OSÄ"next lexicographically larger good sequence than
the value in S",Q)

7) requires ability to read length(S)
8) ^^(QS^'next lexicographically larger good sequence than

the value in S"(Q)
9) INIT(OS'-S>Q)
10) requires ability to access each element of S
11) requires ability to write each element of S
12) requires ability to concatenate onto S, i.e. S *■ S^d
13) requires ability to delete from the end of S, i.e. back from S
14) (Assumptions 1), 2), 3) o true) A

(S ■ <empty> A length(S) = 0 ^ Assumptions 1), 2), 3))
15) (INIT(OS""next good sequence after current sequence in S",Q)

A INIT(0S,Q) A OS.Iast = S ^
S1 equals S prior to executing :1.3: A S is a good sequence)

A (Vx^' illt x illt S 3 x is not a good sequence]
A S is a good sequence A S ?< S' ^
1NIT(0S^S,Q))

16) (IN1T(0SÄS,Q) => true) A (OS ■ 0S'"S where OS' equals OS prior to
:1.4:

^ (INIT(0S,Q) A OS.Iast = S
A OS.Iast = S))
17) S' = S A S is a good sequence

'--- MMMtM

 'II 1 " .1. i -.i -mum mi •OT^^WK^a|ipn«app«>wmnOTmq^«miiui i ■■ M •™*^*mmm

USING THE MEASURE

A SEQUENCES PROBLEM

118

After hiding information from :1.1.1:, :1.3.1:, and tlAl:, the best

decomposition is

((b) (a , c , d)) .562

where (b) sets S to <empty> and a, c, d compute good sequences and

print, respectively.

Next we elaborate :1.3.1: to

(e) ;1.3.1.i:

assumptions:

effects:

post-conditions:

(f) : 1.3.1.2:

assumptions:

post-conditions:

INIKR.S) is defined to be {if length(R) = 0 then
true else R.first = S.first A

INlKfinaKRMmaKS))} A a "good" sequence is

defined to be "a sequence of Ts, 2,s, and 3'$

containing no adjacent identical subsequences" A Q

represents the sequence of lexicographically ordered

"good" sequences, requires ability to concatenate

onto S, i.e. S «- S^d, S' = S A S is a good sequence

: 1.3.1.1: EXTEND S WITH ZERO;

S = S'^O

initial(S) is a good sequence A S.last = 0

INIT(R,S) is defined to be {if length(R) = 0 then
true else R.first = S.first A

lNIT{final(R),final(S))} A a "good" sequence is

defined to be "a sequence of I's, 2,s, and 3,s
containing no adjacent identical subsequences" A Q

represents the sequence of lexicographically ordered

"good" sequences, requires read access to the

boolean variable GOOD, S" = S, 3x[S" lilt x A

lengtWx) < length(S") A x is a good sequence] A

Llinitial(S) is good) A S.last = 0 => S is not good]

: 1.3,1.2: repeat : 1.3.1.3: ; : 1.3.1.4: ; until GOOD;

GOOD A there is no sequence s such that S" illt s

illt S A s is a good sequence

-■"■-■ - •■-■•'

mm i ivi ■lliawwmppPM-1 ■ nai li .« ■ ■^»-'^■^^^»•^'■^IP

USING THE MEASURE
A SEQUENCES PROBLEM

119

(g) :1.3.1.3:

assumptions:

effects and
post-conditions:

(h) : 1.3.1.4:

assumptions:

effects:

post-conditions:

1N1T(R,S) is defined to be {if length{R) = 0 then
true else R.first ■ S.first A

lNIT(finül(R),final(S))} A a "good" sequence is
defined to be "a sequence of I's, Z's, and S's
containing no adjacent identical subsequences" A Q
represents the sequence of lexicographically ordered
"good" sequences, requires ability to access each
element of S, requires ability to write each element
of S, requires ability to concatenate onto S, i.e.
S «- S^d, requires ability to delete from the end of
S, i.e. back from S, S" = S, 3x[S" lilt x length(x)
< length(S")]

: 1.3.1.3: SET S TO BE THE NEXT LEXICOGRAPHICALLY
LARGER SEQUENCE AFTER THE CONTENTS OF S AT THE START
OF :1.3.1.3:, (I.E. S"), SUCH THAT length(S) <
iength(S").

S" ilit S, lenp,th(S) < lenglh(S"), ^[S" ilit x
illt SI inittal(S) is good, S.last ({1,2,3}

INIT{R,S) is defined to be {if iength{R) = 0 then
true else R.first = S.first A

INIT(final(R),final(S))} A a "good" sequence is
defined to be "a sequence of I's, 2^, and 3,s
containing no adjacent identical subsequences" A Q
represents the sequence of lexicographically ordered
"good" sequences, requires ability to access each
element of S, initiaHS) is a good sequence,
requires write access to the boolean variable GOOD

: 1.3.1.4: SET THE VARIABLE, GOOD, TO MEAN "S is a
good sequence"

GOOD ■ if "S is a good sequence" then true else
false

GOOD
false, S ?< S'

if "S is a good sequence" then true else

■ - • •

rmmmmm^mmmmmimmmm^^mtmimmm mmmm~^m ■ ' '• »i

USING THE MEASURE
A SEQUENCES PROBLEM

120

verification: Note first that the following are theorems:

(a) If initial(S) is a good sequence, but S is not a
good sequence, then no extension of S will be good.

(b) The only time S should be extended, in an effort
to find lexicographically larger good sequences is
when S itself is a good sequence.

Now, the only place in the above program where S is
extended is at :1.3.1:, where S is guaranteed to be
good. :1.3.3: guarantees that no relevant sequence
is missed.

The object/assumption table now becomes:

(e)
(f)
(g)
(h)

1)
2)

123456789 101112131415161718192021222324
1-3. |. I:

1-3- 1-25

I-3- I'l*
I• 3- I • 4!

1

I I I I

1

1
I I I

I I

3)
4)

5)
6)

7)
8)

9)
10)
11)
12)
13)
14)

15)

OS = <empty>
INIT(R,S) is defined to be {if length(R) = 0 then true
olse R.first = S.first A INIT(final{R),final(S))}
A a "good" sequence is defined to be "a sequence of I's, 2^, and
3^ containing no adjacent identical subsequences"
A Q represents the sequence of lexicographically
ordered "good" sequences
there exists a good sequence of length 100
requires ability to set S to <empty> and
length(S) to 0
INIT(OS,Q) A OS.Iast - S
(IN1T(0S,Q) A OS.Iast - S A length(S) * 100) =

INIT(OS^"next lexicographically larger good sequence than
the value in S",Q)

requires ability to read longth(S)
lNlT(OS'^"next lexicographically larg« r good sequence than

the value in S",Q)
INIT(OS~S,0)
requires ability to access each element of S
requires ability to write each element of S
requires ability to concatenate onto S, i.e. S <- S^d
requires ability to delete from the end of S, i.e. back from S
(Assumptions 1), 2), 3) 3 true) A

(S ■ <empty> A length(S) - 0 ^ Assumptions 1), 2), 3))
INIT(OS^"next good sequence after current sequence in S",Q)

A INIT(OS,Q) A OS.Iast - S ^
S' equals S prior to executing :1.3: A S is a good sequence
A Vx[S' illt x illt S 3 x is not a good sequence]

i

.^_-—a— 1 iMimlMliii j

'" "■ " •"' 11 I" II H I II I wm^^*m*mmmw**m**^miwmn > " ' " ■■ ■■»«■ m iiuiJWiP.ainn««Pi«nn WIIII .rnrnrnrnr*".! » ' "m

USIN'J THE MEASURE
A SEQUENCES PROBLEM

121

A S is a good sequence A S »< S' ^
iNlKOS^S.Q)

16) (INIKOS^S.Q) ^ true) A

(OS ■ OS'^S where OS' equals OS prior to :1.4:
3 (INIKOS.Q) A OS.Iast = S

A OS.IasJ S))
17) S' - S A S is a good sequence
18) initial(S) is a good sequence
19)
20) requires read access to the boolean variable GOOD
21) requires write access to the boolean variable GOOD
22) 3x[S" illt x A length(x) < length(S") A

x is a good sequence] /\ [(initial(S) is good) A S.last = 0
3 S is not good]

23) S" = S
24) 3x[S" illt x length{x) < length{S")]

The expansion of (c) - :1.3.1.3: - implies

RLB: ((b) (a , c , d)) .053

RUB: ((b) (a , e , d)) .410

with the actual entropy loadings

((b) (a , o , f , g , h , d)) .410

The best decomposition of this elaboration is

((b) ((d) ((a) ((e) ((f) (g , h)} 1.28) 1.28) .956) .683) .^10

Hore^b) sets S to <empty>1(d) prints S, (a) is the outer loop while

construction and (e) extends S with a zero. In this example, the

objects which calculate the next lexicographically larger sequence and

which decide whether S is a good sequence interact most.

■■M. - ■ ■ i ■! I MiMtdh^MI

wmm "' '• • •'

USING THE MEASURE
A SEQUENCES PROBLEM

122

Consider next an expansion of :1.3.1.3:

(0:1.3.1.3.1:

assumptions:

effects and
por.t-conditions:

(j):1.3.1.3.2:

assumptions:

INIKR.S) is defined to be {if lengtWR) = 0 then
true else R.first = S.first A

INlT(final(R),final(S))} A a "good" sequence is
defined to be "a sequence of l'», 2,s, and 3^
containing no adjacent identical subsequences" A Q
represents the sequence of lexicographically ordered
"good" sequences, S" = S, initial(S) is a good
sequence A 0 < S.last < 3, ability to read S.last,
requires ability to delete from the end of S, i.e.
back from S

: 1.3.1.3.1: REMOVE TRAILING 3,s FROM S

INIT(S,S"), mitiaKS) is a good sequence A 0 <
S.last < 3

INIT(R,S) is defined to be {if length(R) = 0 then
true else R.first = S.first A

INIT(final(R),final(S))} A a "good" sequence is
defined to be "a sequence of I's, 2's, and 3,s
containing no adjacent identical subsequences" A Q
represents the sequence of lexicographically ordered
"good" sequences, ability to read S.last, ability to
write S.last

: 1.3.1.3.2: S.last ♦- S.last + 1

effects ami
post-conditions; S" WHS, length(S) < lengtWS"), ^[S" illt x illt

S], imtial(S) is good, S.last ({1,2,3}

The expansion of :i.3.1.3: suggests

RLB: ((b) ((d) ((a) ((e) (f , g , h) .562) .801) .563) .138

RUB: ((b) ((d) ((a) ((e) (f , g , h) 1.32) .900) .693) .377

and the actual entropy loadings are

((b) ((d) ((a) ((e) ((h) ((IX i , j)

■MM — ■■ ■'- -—■ -""

WP"'!"1 • m '» t >mmiimfmm^i^im^mimmm^mntmiiiujHnmmmi^^m<w^wammmmmm'm^-^mm^'' > • mim in ■-^mmwmw^mm^mmm

USING THE MEASURE
A SEQUENCES PROBLEM

123

1.21) .662) .727) .900) .562) .377

Since the assumptions made by an object imply any subset of those
assumptions, we can add an additional assumption to :1.3.1.3.1:(the
object which removes trailing three's) and hide "mitiaKS") is good and
0 < S.last < 3" from its expansion :1.3.1.3.1.1:

00:1.3.1.3.1.1:

assumptions: INIKR.S) is defined to be {if length(R> = 0 then
true else R.first = S.first A

lNIT(final(R),final(S))} A a "good" sequence is
defined to be "a sequence of I's, 2^, and 3^
containing no adjacent identical subsequences" A Q
represents the sequence of lexicographically ordered
"good" sequences, S" = S, ability to read S.last,
requires ability to delete from the end of S, i.e.
back from S

:1.3.1.3.1.1: while S.last = 3 do

back from S;

effects and
post-conditions: iNIT(S,S") A S.last t 3

The entropy loadings of the previous decomposition are identical for the

refinement including the elaboration for :1.3.1.3.1.1:.

:1.3.1A(decide whether S is a good sequence) can be expanded by hiding

most of the assumptions of :1.3.1.4:. However, the assumption

"initial(S) is a good sequence" simplifies the calculations since only

adjacent sequences, one of which contains S.last, need be considered.

HMMMMMMMMi ■ ■ ■ -- itm - —- — ii irrrf— - —* —

m^" "■-"— wr*~~m~^*r~-~r~~ • ll1" i ■ " " ■■■

USING THE MEASURE
A SEQUENCES PROBLEM

124

The table for the program is now

1«
i- 1«

(a) : |.2«
13:
1- ^J

(b) I 1« l- 1'

(0 1-3- 1«
(d) |.4. |t
(e) ■ 1-3- 1- 1«
(f) ! I-3' I- 2:

(g) It'» \-3-
(h) I 1.3. |.4l

(i) :|-3- 1-3' |!

(j) : 1-3- 1-3 2:

(k) : 13- 13- 1- I«

1 23456789 10111213101516171819202122232425262728

I I 1

I 1 I I *
II 1 1 I 1
I 1 I I 1 I I *

1 II
I

1 I I I

1

1

till

1
I

1

I I 1
1 I

1 I I

;

I 1

1) OS = <empty>
2) 1NIT(R,S) is defined to be {if longth(R) = 0 then true

else R.first = S.first A lNlT(f:nal{R),final(S))}
A a "good" sequence is defined to be "a sequence of I's, 2's, and
G's containing no adjacenf identical subsequences"
A Q represents the sequence of lexicographically
ordered "good" sequences

3) there exists a good sequence of length 100
4) requires ability to set S to <3mpty> and

length(S) to 0
5) 1NIT(OS,0) A OS.Iast = S
6) (INIHOS.Q) A OS.Iast = S A length(S) t 100) ^

lNIT(OS~"next lexicographically larger good sequence than
the value in S",Q)

7) requires ability to read length{S)
8) INI^OS^'next lexicographically larger good sequence than

the value in S",Q)
9) |N1T(0S~S,Q)
10) requires ability to access each element of S
11) requires ability to write each element of S
12) requires ability to concatenate onto S, i.e. S «■ S^d
13) requires ability to delete from the end of S, i.e. back from S
14) (Assumptions 1), 2), 3) => true) A

(S = <empty> A length(S) >» 0 = Assumptions 1), 2), 3))
15) iNlT(OS~"next good sequence after current sequence in S",Q)

A INIT(OS.Q) A OS.Iast - S ^
S' equals S prior to executing :1.3: A S is a good sequence
A Vx^' illt x illt S ^ x is not a good sequence]
A S is a good sequence A S ^ S' ^
1NIT(0S'-S,Q)

16) (INIT(0S~S,Q) 3 true) A

mmmtmm^mm. J

■mi UV» wmwrn^m w^m* '^^'^^•mr^m^^mm ■ ■■ - '« "' ""i« ■ «" " ■'""

1
USING THE MEASURE
A SEQUENCES PROBLEM

125

(OS = OS'^S where OS' equals OS prior to :IA:
^ (INIKOS.Q) A OS.Iasl = S

A OS.Iast ■ S))
17) S' = S A S is a good sequence
18) initial(S) is a good sequence
19)
20) requires read access to the boolean variable GOOD
21) requires write access to the boolean variable GOOD
22) 3x[S" Hit x A length(x) < length(S") A

x is a good sequence] A [(initial(S) is good) A S.last = 0
^ S is not good]

23) S" = S
24) 3x[S" ilit x length(x) < length(S")]
25) initial(S) is a good sequence A

0 < S.last < 3
26) (Assumptions 2, 13,23,25, 27) D

(Assumptions 2, 13, 23, 27)
27) ability to read S.last
28) ability to write S.last

I

IM ■ -- ^tm^^mm^t^ltmilm "-.

tmmmm*i*mi^^~im iiwnm^mm*if*mil''l'mmm*m^ u.,iimjinu«w^^^w»»i liijwaniii«^»^!«!^

USING THE MEASURE
A SEQUENCES PROBLEM

126

At about this stage in the development, Dijkstra introduces a data

structure, namely an array d[l:100] to hold the digits of S. The

variable, length, is introduced such that S.last - d[length]. By making

this decision, all references, to operations involving S or the operator

length require additional assumptions. These assumptions are as

follows:

"ability to access iengtKS)" becomes

length

d is an array which contains the digits of S, one digit per element A

the variable length indexes the last element of S A the sequence is
empty when length = 0, ability to read the variable length

"ability to read S.last" becomes

d[length]

and assumes

d is an array which contains the digits of S, one digit per element A

the variable length indexes the last element of S A the sequence is
empty when length - 0, ability to read the variable length, ability to
read d[length]

"ability to write S.last" becomes

d[length] «- ...
d is an array which contains the digits of S, one digit per element A

the variable length indexes the last element of S A the sequence is
empty when length - 0, ability to read the variable length, ability to
write d[length]

"ability to concatenate onto S" becomes

length *- length + 1; d[length] ♦- ...

and assumes

d is an array which contains the digits of S, one digit per element A
the variable length indoxes the last element of S A the sequence is
empty when length - 0, ability to read the variable length, ability to
write the variable length, ability to write d[length]

i^^MMBMM , -■■ M^MaM --—**"^1-^-

 ' "" '" •'•"' ••'" '■•■

USING THE MEASURE
A SEQUENCES PROBLEM

127

"ability to delete from the end of S, i.e. bacK from S" becomes

length «- length - 1;

and assumes

d is an array which contains the digits of S, one digit per element A
the variable length indexes the last element of S A the sequence is
empty when length ■ 0, ability to read the variable length, ability to
write the variable length

"ability to set S to <empty>" becomes

length «- 0;

and assumes

d is an array which contains the digits of S, one digit per element A
the variable length indexes the last element of S A the sequence is
empty when length ■ 0, ability to write the variable length,

"ability to read every element of S" requires

d is an array which contains the digits of S, one digit per element A

the variable length indexes the last element of S A the sequence is
empty when length = 0, ability to read the variable length, ability to
read every element of d

"ability to write every element of S" requires

d is an array which contains the digits of S, one digit per element A

the variable length indexes the last element of S A the sequence is
empty when length = 0, ability to read the variable length, ability [o
write the variable length, ability to write every element of d

The object/assumption table for this introduction is

^M ■

mm^i^im^mmmm» mmmitv ■■■ m **'<*mt*mmmm'imi^***^'mt->«" m*mm*^*^mmm

USING THE MEASURE
A SEQUENCFS PROBLEM

129

A OS.Iast - S))
17) S' - S A S is a good sequence
18) initial(S) is a good sequence
19)
20) requires read access to the boolean variable GOOD
21) requires write access to the boolean variable GOOD
22) 3x[S" illt x A longth(x) < lengtWS") A

x is a good sequence] A [(initiai(S) is good) A S.lasl = 0
3 S is not good]

23) S" - 5
24) 3x[S" illt x length{x) < lengths')]
25) initiaKS) is a good sequence A

0 < S.last < 3
26) (Assumptions 2, 13,23,25, 27) =

(Assumptions 2, 13, 23, 27)
27) ability to read S.last
28) ability to write S.last
29"/ d is an array which contains the digits of S,

one digit per element A the variable length
indexes the last element of S A the sequence is
empty when length = 0

30) ability to read the variable length
31) ability to write the variable length
32) ability to write d[length]
33) ability to read d[length]
34) ability to read every element of d
35) ability to write every element of d

It will be noted that the shared information between the parts has

increased significantly by the decision to distribute all the

information about the implementation of the sequence. In particular,

the entropy ladings for the last decomposition are

((b) ((d) ((a) ((e) ((h) ((f) (k , j))

1.21) 1.21) 1.91) 1.38) 1.21) 1.21

All these values are greater than or equal to the corresponding values

from the same decomposition of the previous table.

As an alternative to distributing additional assumptions throughout

the program, objects can be created which prov de the effects which are

needed.

■ -

. _.. ^ -■..■..■■ ..---.... ^-... J^..

^mmmmmmu mmtm%Mmßt nvwm iwwfim^^mm^^mi^^m^^mmmmmm*

USING THE MEASURE
A SEQUENCES PROBLEM

130

(I) .2.1:

assumptions:

•ffects:

post-conditions:

(m) .2.2:

assumptions:

•ffects:

post-conditions:

(n) :2.3:

assumptions:

effects:

post-conditions:

d is an array which contains the digits of S, one
digit per element A the variable length indexes the
last element of S A the sequence is empty when
length = 0, ability to read the variable length

:2.1: PROVIDE THE ABILITY TO ACCESS THE LENGTH OF S,
I.E. ACCESS THE VALUE OF length

length(S) - length

longth{S) equals the length of S according to the
definition of length

d is an array which contains the digits of S, one
digit per element A the variable length indexes the
last element of S A the sequence is empty when
length ■ 0, ability to read the variable length,
ability to read d[length]

:2.2: PROVIDE THE ABILITY TO READ S.last, I.E. SET
THE VALUE OF S.last TO d[length]

S.last = d[length]

S.last equals the value of the last element of S
according to the definition of S.last

d is an array which contains the digits of S, one
digit per element A the variable length indexes the
last element of S A the sequence is empty when
length = 0, ability to read the variable length,
ability to write d[length]

:2.3: PROVIDE THE ABILITY TO WRITE S.last I.E.
d[length] «- ...

S.last can be used as a name to cause a value to be
stored into d[length]

A value has been assigned to A.last

MMMMMMBMi UMMBfl -- —-- ._

~-^m^*m*mmim

USING THE MEASURE
A SEQUENCES PROBLEM

131

(o) :2A

assumptions:

effects and
post-conditions:

(p) :2.5:

assumptions:

effects and
post-conditions:

(q) :2.6:

assumptions:

effects:

post-conditions:

d is an array which contains the digits of S, one
digit per element A the variable length indexes the
last element of S A the sequence is empty when
length = 0, ability to read the variable length,
ability to write the variable length, ability to
write d[length]

:2.4; PROVIDE THE ABILITY TO CONCATENATE ONTO S,
I.E. length ♦- length + 1; d[length] «- ...

The definition for concatenation is satisfied

d is an array which contains the digits of S, one
digit per element A the variable length indexes the
last element of S A the sequence is empty when
length = 0, ability to read the variable length,
ability to write the variable length

:2.5: PROVIDE THE ABILITY TO DELETE THE END OF S,
I.E. back from S, I.E. length ♦- length -1;

the definition for back from S is satisfied.

d is an array which contains the digits of S, one
digit per element A the variable length indexes the
last element of S A the sequence is empty when
length = 0, ability to write the variable length

:2.6: PROVIDE THE ABILITY TO SET S TO <empty> I.E.
length »- 0

length = 0

S ■ <empty>

■MM

PVü^mwnpiMwawMi mmm* KL iniiumn«! fmmmimmmmrmimmmv^immmm mmmimrmm^^**mvmrmm*

USING THE MEASURE
A SEQUENCES PROBLEM

132

(r) 2.7:

assumptions: d is an array which contains the digits of S, one
digit per element A the variable length indexes the
last element of S A the sequence is empty when
length = 0, ability to read the variable length,
ability to read every element of d

■.2.7: PROVIDE THE ABILITY TO READ EVERY ELEMENT OF S
I.E. READ ACCESS to d[l] ... d[length]

effects and
post-conditions:

(s) :2.8:

assumptions:

every element of S is readable

d is an array which contains the digits of S, one
digit per element A the variable length indexes the
last element of S A the sequence is empty when
length = 0, ability to read the variable length,
ability to write every element of d

:2.8: PROVIDE ABILITY TO WRITE EVERY ELEMENT OF S
d[l] «- , d[length] «- ...

effects and
post-conditions: every element of S has been made writable.

tm^^mt

wmm**mmmm •*™^B*m^m*v***mm

USING THE MEASURE
A SEQUENCES PROBLEM

133

The table for the program with these additional parts is

I 23456789 1011121314161617181920212223242526272829303132333435

III •

|l 1 1 1

(a) :
hi'
1-25

1-3:

14:

1 1 1 1

11 1111

I 1 1 1

I 1)
(b) : 1- 1- i:

1-3- |!

1

(d) • I-4- |J
(e) 1-3- 1- IS

(f) !•» 1-2!

1-3- I-3S
(h) 1-3- 14:

(i) I-3- 13- 1« 1

(j) 1-3- I-3- 2'- 1
00 ! I-3- I-3- Mi 1
(1) •2- |1
(m) !2.2:

(n) !2-3J
(o) :2-4:

(P) '•2&

(q) 12-tf
(r) 1 2. 7:

(s) ''2&i

1) OS = <err ipty>
2) 1 NIT(R,S) is defined to be {if len

I 1 1

I I 1

1 I I

I 1

I I
I 1

olse R.first = S.first A INIT(final(R),final(S))}
A a "good" sequence is defined to be "a sequence of 1's, 2's, and
3'$ containing no adjacent identical subsequences"
A Q represents the sequence of lexicographically
ordered "good" sequences
there exists a good sequence of length 100
requires ability to set S to <empty> and
length(S) to 0
INIKOS.Q) A OS.iast = S
(INIT(0S,Q) A OS.iast - S A length(S) r< 100) ^

INITOS'^'next lexicographically larger good sequence than
the value in S",Q)

requires ability to read length(S)
INWOS^'next lexicographically larger good sequence than

the value in S",Q)
9) INmOS^S.Q)
10) requires ability to access each element of S
11) requires ability to write each element of S
12) requires ability to concatenate onto S, i.e. S «- S^d
13) requires ability to delete from the end of S, i.e. back from S

3)
4)

5)
6)

7)
8)

1
I I
I 1 I
I 1

I

1

l

mamt

mm tmmm^mmmmmmmi " i " "■"

1
USING THE MEASURE
A SEQUENCES PROBLEM

134

14) (Assumptions 1), 2), 3) => true) A

(S = <empty> A longth(S) = 0 = Assumptions 1), 2), 3))
15) INIT{OS^"next good sequence after current sequence in S",Q)

A IN1T(0S,Q) A OS.Iast = S ^
S' equals S prior to executing :1.3: A S is a good sequence
A Vx[S' illt x ilit S D x is not a good sequence]
A S is a good sequence A S ^ S' ^
INIKOS^S.Q)

16) (irJlT(OS^S.Q) a true) A

(Ob = OS'~S where OS' equals OS prior to il.4>
=> (INIT(OS,Q) A OS.Iast = S

A OS.Iast = S))
S' = S A S is a good sequence

initial(S) is a good sequence
17)
18)
19)
20)
21)
22)

23)
24)
25)

26)

27)
28)
29)

30)
31)
32)
33)
34)
35)

requires read access to the boolean variable GOOD
requires write access to the boolean variable GOOD
3x[S" illt x A length(x) < length(S") A

x is a good sequence] A [(initial(S) is good) A S.last ■ 0
a S is not good]

S" = S
3x[S" illt x length(x) < lengths")]
initial(S) is a good sequence A
0 < S.last < 3

(Assumptions 2, 13,23,25, 27) :>
(Assumptions 2, 13, 23, 27)

ability to read S.last
ability to wpie S.last
d is an array which contains the digits of S,
one digit per element A the variable length
indexes the last element of S A the sequence is
empty wren length = 0
ability to read the variable length
ability to write the variable length
ability to write d[length]
ability to read d[length]
ability to read every element of d
ability to write every element of d

An examination of this table leads to the following decomposition. It

shows better entropy loading values than for the table where the

implementation information is distributed

((b) ((*) ((d) ((a) ((e) ((h) ((f) (k , j))

.987) .711) .744) .831) .377) .497) .234

M^M

■ ' '^^^^^mmmi^im**^ " iii.iiiiii *wmm*^mm*- ^^^w^w^p^m

USING THE MEASURE
A SEQUENCES PROBLEM

135

*: (d) Ur) Us) {(m) Uq) ((n) (o , p))

1.1.) 1.02) .920) .942) .974) .881

This example indicates that complicated interpretations of the contents

of variables can lead to high entropy loadings if that information is

distributed. The structure can be improved if additional objects are

introduced which provide the effects of these complicated assumptions.

MMMMtaaaMH •• i————^^^—,.

• "I-'«I"II' «I I' -^^r^^tmmnmmmrm m. »•mm ii i\tmmimmiuimimm mia^^mjwm*^^ wnm i«^a«^w<r

USING THE MEASURE
HEAPSORT

136

HEAPSORT

The sorting algorithm HEAPSORT has been described[WlL],

explained[KN2](and verified(via the text of TREES0RT3[L0]). However,

these descriptions and proofs remain difficult to follow, not because

the algorithm is difficult, but because a reader must understand

operators which manipulate a tree structure in terms of an

implementation of that tree structure as an array. In this example,

TREES0RT3 is developed by establishing its correctness in terms of

operators which manipulate an arbitrary binary tree. The operators and

their definitions are a subset of a module definition due to

Parnas[PA2]. The definitions are only meant to be descriptions of the

general capabilities of the operators which will be implemented. As the

development proceeds, information which simplifies these implementations

will be distributed and the results will be examined using

Object/assumption tables and the measure.

LS(i) Left Son(i)

initial value: defined prior to execution of the algorithm below.
effect: error call if there is no definition of the left son

of node i; otherwise the name of the left son of
node i.

RS(i) Right Son(i)

initial value: defined prior to the execution of the algorithm
below.

effect: error call if there is no definition of the right
son
of node i; otherwise the name of the right son of
node i.

ELS(i) Exists Left 5on(i)

possible values: true, false
effect: error call if node i has no direct ancestor.

UMMMi -—-'-■■

■"^"" " 11 l'IIU i ii laiPwii^uM Jiwi ill ii ii W1i« ii p. IP.!.-., ip.i.. .1. -»»w '" '•"■ ■ """^

USING THE MEASURE
HEAPSORT

137

ERS(i) Exists Right Son(i)

possible values: true, false
effect: error call if node i has no direct ancestor.

VALd) VALue(i)

initial value: set prior to the execution of the algorithm below,
effect: error call if VAL(i) is undefined.

SVAd.v) Set Valued.v)

This function has no value.
effect: error call of node i has no direct ancestor;

otherwise VAL(i) = v

DEL(i) DELeted)

This function has no value.
effect: error call if i has no direct ancestor or

error call if LS(i) or RSd) are undefined;
otherwise VAL(i) becomes underined and i is never
again a possible value of RS or LS.

Only after the algorithm is developed, are the implementations of the

operators described.

<mm J

i^^^»«««i«B«nfi^nipanni>iiwwi luiivi^ipapmpMmwmuppiiiiimiiwii i i i »J» jm»»«. ■nuumw^^wpp^f mmmmmm****!*'*'!'«''-'«!''''''' iit<**^*mmmmqß

USING THE MEASURE
HEAPSORT

133

Below is a map describing this development.

HEAPSORT
ill (139)

(a) :1.1: (139) (b) :1.2: (140) (c) :1.3: (140) (d) :1.4: (141) (e) :1.5: (142)
while i^ldo :1.4: \ B[l] «- VAL(root)

(f) :1.1.2: (144) (g) :1.1.3: (145) (h) :1.1.4: (146) (i) ii.XAi (146)
i *- f; while i^O do modify tree I «- f;

begin so that A(i)
:1.1.4: | :1.1.5
end

(u) :1.1.2.1: (158)
i «- f <- n div 2

(x) -.1.1.4.1: (159) (V) :1.1.5.1: (158)
siftup(i) i ♦- f ♦- f - 1

(j) :1.4.1: (149) (k) :1.4.2: (149) (I) :1.4.3: (150) (m) :1.4.4: (150)
B[i] <- VAL(rool) , h ♦- g; modify tree so i ♦- i - 1

SVA(root,VAL(h)) that A(rool)
DEL(h)

(w) jlA2.li (159)
h *■ i
SVA(root(VAL(h))
DEL(h)

(y) :1.4.3.1; siftup(root) (160)

(Z) :3: (161)
Transform tree so that A(j)
if A(LS(j)) and A(RS(j))

(n) :2.1: (153) (o) :2.2: (154)
VAL(k)F i.e. SVA^.k), i.e.

VAL ♦- TREE[k] TREE[j] •■ x

(p) :2.3: (154)
ERS(j)> i.e.

ERS *• if 2*j + l > NN then
false eise true

(q) :2.4: (155) (r) :2.5: (155) (s) :2.6: (156) (t) :2.7: (156)
ELS(j) i.e. RS(j), i.e. LS(j), i.e. DEL(j), i.e.
if 2*i > NN then RS «- 2*j + 1 LS ^ 2*j NN «• NN - I

false else irue

_-—___-^_-1-_ — — " ■*— —^

mm m^mmm

USING THE MEASURE
HEAPSORT

139

assumptiors:

effects and
post-conditions:

requires read access to n, the number of nodes in
the original tree, requires read access to n, write
access required for the elements of array B,
requires DEL, requires VAL, requires LS, requires
RS, requires ELS, requires EPS

:!: GIVEN A BINARY TREE, HAVING n > 1 NODES AND A
SET OF FUNCTIONS: ERS. ELS, VAL, LS, RS, SVA,
DEL[PA2], PRODUCE AN ARRAY OF VALUES, B, SUCH THAT
THERE IS A ONE TO ONE ONTO MAPPING FROM THE INITIAL
VALUES OF THE NODES OF THE TREE TO THE ELEMENTS OF
THE ARRAY B AND SUCH THAT THE ELEMENTS OF THE ARRAY
ARE ARRANGED IN ASCENDING ORDER.

Vi[l < i < n ^ B[i] < B[i + 1]] A there exists a one
to one onto mapping from .he node values of the
initial tree to the elements B[l],...,B[n] of the

array

(a) il.ll

assumptions: A(i) is defined to be Vx[(x is a node of the tree
and x = i or x is a descendent of i) ^ ((ELS(x) ^
VAL(x) > VAL(LS(x)) A (ERS(x) => VAL(x) >
VAL(RS(x))))] where "x is a descendent of i" means
"there exists a composition of the functions LS and
RS, say C, such that x = C(i), requires ERS,
requires ELS, requires RS, requires LS, requires
VAL, requires SVA, root, names the node such that
every node which is not root is a descendent o^ root
A requires read access to root

:1 1: TRANSFORM THE TREE SUCH THAT A(root) AND THAT
THERE EXISTS A ONE TO ONE ONTO MAPPING FROM THE NODE
VALUES OF THE INITIAL TREE TO THE CURRENT NODE

VALUES OF THE TREE.

i

1

effects and
post-conditions: A(root), there exists a one-one onto mapping of the

node values of the initial tree to the current node

values

 mm

USING THE MEASURE
HEAPSORT

140

:1.2:

assumptions: requires read access to n, requires write access to
the integer variable i, A(root), there exists a
one-one onto mapping of the node values of the
initial tree to the current node values

:1.2: i *■ n;

effects:

post-conditions:

(c) :1.3:

assumptions:

I effects and
post-conditions:

A(root), there exists a one-one onto mapping of the
node values of the initial tree to the current node

values, i = n

Vj[i < j < n 3 B[j] < B[j+1]) there exists a
one-one mapping from the initial contents of the
tree to the current contents of the tree and B[k], i
< K S n, A{root), i > 1 A i equals the number of
nodes in the tree A post-conditions for il.4i ^
assumptions for :1.4: A i is decreased by 1 at each
iteration, requires read access to the integer

variable i

:1.3: while i ^ 1 do :1.4:

there exists a one-one mapping
contents of the tree to the current
tree and B[k], i < k < n

from the initial
contents of the

M^^M ^mgm

1 USING THE MEASURE
HEAPSORT

141

(d) :1.4:

assumptions:

effects and
post-conditions:

A(i) is defined to be Vx[(x is a node of the tree
and x - i or x is a descendent of i) ^ ((ELS(x) ^
VAL(x) > VAL(LS(x)) A (ERS(X) => VAL(x) 2
VAL(RS(x))))] where "x is a descendent of i" means
"there exists a composition of the functions LS and
RS, say C, such that x = C(i), requires ERS,
requires ELS, requires RS, requires LS, requires
VAL, requires SVA, requires DEL, write access
required for the elements of array B, requires read
access to the integer variable i, requires write
access to the integer variable i, root, names the
node such that every node which is not root is a
descendent of root A requires read access to root,
(ERS(i) ^ A(RS(i))) A (ELS(i) ^ A(LS(i))), Vj[i < j
< n 3 B[j] < B[j + 1], there exists a one-one mapping
from the initial contents of the tree to the current
contents of the tree and B^], i < K < n, A(root)

:1.4: TRANSFORM THE TREE AND B SUCH THAT Vj[i < j <
n a B[j] < B[j + 1]], SUCH THAT THERE EXISTS A ONE TO
ONE MAPPING FROM THE INITIAL CONTENTS OF THE TREE TO
THE CURRENT COMENTS OF THE TREE AND THE ELEMENTS
BO], i < k < n, AND THAT A(root).

Vj[i < j < n 3 B[j] < B[j+1], there exists a
one-one mapping from the initial contents of the
tree to the current contents of the tree and B[k], i
< k < n, A(root)

■ ii

USING THE MEASURE
HEAPSORT

142

(•) :1.5:

assumptions:

effects:

post-conditions:

requires VAL, root, names the node such that every
node which is not root is a descendent of root A

requires read access to root, write access required
for the elements of array B, there exists a one-one
mapping from the initial contents of the tree to the
current contents of the tree and B[K], i < k < n,
Vj[l < j < n 3 B[j] < B[j+1]]

:1.5: B[l] <- VAUroot);

B[l] - VAUroot)

Vi[l < i < n ^ B[i] < B[i + 1]] A there exists a one
to one onto mapping from the node values of the
initial tree to the elements B[l],...,B[n] of the
array

MMM^ urn. Imamm - -

mmwmmmmft'i'immmm^m'- ^m^f^^immanm^mavMi«.

USING THE MEASURE
HEAPSORT

143

(a)
|1

(b) 1-25
(c) l-3:

(d) 1.41
(e) l|.«t

123456789 101112I3I4I5I6I7I8I9202I2223242526272829303I

I 1 I I I I I I I

I I I 1 I I I I

III I

I I I I I I I I

I

I

I I I

I

I

I I

I I

I

I

1)
i or

2)
3)
4)
5)
6)
7)
8)
9)

A(i) is defined to be
Vx[(x is a node of the tree and x

x is a descendent of i) ^
((ELS(x) ^ VAL(x) > VAL(LS(x)) A
(ERS(x) o VAL(x) > VAL(RS(x))))]

where "x is a descendent of i" means "there exists a
composition of the functions LS and RS, say C,
such that x = Cd)
requires ERS
requires ELS
requires RS
requires LS
requires VAL
requires SVA
requires DEL
write access required for the elements of
array B

13) requires read access to the integer variable i
14) requires write access to the integer variable i
15) root, names the node such that every node

which is not root is a descendent of root A requires
read access to root

16) requires read access to n
17) there exists a one-one onto mapping of the

node values of the initial tree to the current node values
19) (ERSd) ^ A(RS<i))) A (ELSd) ^ A(LS(i)))
22) Vj[i < j < n D B[j] < B[j+1]
23) there exists a one-cne mapping from the initial contents

of the tree to the current contents of the tree and
B[k], i < k < n

25) A(root)
30) i > 1 A i equals the number of nodes in the tree A

post-conditions for :1.4: 3 assumptions for ;1.4: A
i is decreased by 1 at each iteration

31) Vj[l < j < n ^ B[j] < B[j + 1]]
there exists a one-one onto mapping of the initial
tree to the current contents of the tree and
B[k], i < k < n

J

mn*~mm*i'^~^~' »■"—■ i i i ivM^wi^Hn *rmgim^*~*m ^■^■■^w^^i^ ■ > ■ ••^•^^mm

USING THE MEASURE
HEAPSORT

144

The best decomposition is

((a) ((t) ^ c , d , •)) 1.33) 1.05

and any further decomposition of c, d, • leads to an entropy loading of

1.61. Hence, for this decomposition, saturation has occurred for (e ,

d , •). At this stage, the transformation of the tree so that A(root)

interacts least with the other objects. Next, rl.il is elaborated.

(f) :1.1.2:

assumptions: ability to set f such that it has produced no
values A the tree is finite A the tree contains at
least one node, f is defined to be the value i such
that (i has not been produced by a call of f since f
was last initialized) otherwise the value of f is 0
A (the nodes of the tree are named by integers which
are not equal to 0), requires write access to the
integer variable i

:i.l.2: INITIALIZE f; i <- f;

effects and
post-conditions: i names a node such that for this execution of the

while construct, for all previous values held by i,
A(i) A i has not held the current value A if i has
named all the nodes then i » 0

II I" 11 II ■»P^i^BPFW^^It^, '"I

1
USING THE MEASURE 145
HEAPSORT

(g) :1.1.3:

assumptions: requires read access to the integer variable i,
root, names the node such that every node which is
not root is a descendent of root A requires read
access to root, f is defined to be the value i such
that (i has not been produced by a call of f since f
was last initialized) otherwise the value of f is 0
A (the nodes of the tree are named by integers which
are not equal to 0) (if ERS(i) then A(RS(i)) •!«•
true) A (if ELS(i) then A(LS(i)) else true) , i
names a node such that for this execution of the
while construct, for all previous values held by i,
A(i) A i has not held the current value A if i has
named all the nodes then i - 0

:1.1.3: while i ^ 0 do

begin

:1.1.4: ; :1.1.5:

end

effects: i = 0, i names a node such that for this execution
of the while construct, for all previous values held
by i, A(i) A i has not held the current value A if i
has named all the nodes then i = 0

post-conditiom; there exists a one-one onto mapping of the node
values o the initial tree to the current node
values, Adoot)

' ' ■'-'-■ " ■ ' - -

USING THE MEASURE
HEAPSORT

146

(h) li.iAx

assumptions: (ERS(i) 3 A(RS(i))) A (ELS(i) = A(LS(i))), requires
read access to the integer variable i, A(i) is
defined to be Vx[(x is a node of the tree and x - i
or x is a descendent of i) => ((ELS(x) :> VAL(x) >
VAL(LS(x)) A (ERS(x) o VAL(x) > VAL(RS(x))))] where
"x is a descendent of i" means "there exists a
composition of the functions LS and RS, say C, such
that x = C(i), requires ERS, requires ELS, requires
RS, requires LS, requires VAL, requires SVA

: 1.1.4: MODIFY THE TREE SUCH THAT A(i) AND THAT THE
NODE VALUES ARE PERMUTED.

effects and
post-conditions:

(i) :1.1.5:

assumptions:

effects and
post-conditions:

A(i), there exists
node values of the
values

a one-one onto mapping of the
initial tree to the current node

f is defined to be the value i such that (i has not
been produced by a call of f since f was last
initialized) otherwise the value of f is 0 A (the
nodes of the tree are named by integers which are
not equal to 0) (if ERSd) then A(RS(i)) else true)
A (if ELS(i) then A(LS(i)) else true) , requires
write access to the integer variable i

:1.1.5: i ♦- f;

i names a node such that for this execution of the
while construct, for all previous values held by i,
A(i) A i has not held the current value A if i has
named all the nodes then i ■ 0

"m *>-i iH«iaBnfMa*«pnMP«B«Mippnpvw "

1
USING THE MEASURE
HEAPSORT

147

The object assumption table is now

12 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233

(a) I
M i
|. |l ii

1 1 1 1 1 1 1 1

1 1 1 1 1 >

(b) l I-2S 1 1 1 1

(0 i |>fl 1 1 1 1

(d) {•4S 11 1 1 1 1 1 1 1 111 > 1 1 1

(e) |.|l 1 1 1 1

(f) ||. I.ft 1 1 1

(e) : I- 1.3! 1 1 1 1

(h) I|. |.4*. 1 1 1 1 1 1 1 1 1

(i) l|. 1-55 1 1 1

i or
1) A(i) is defined to be

Vx[(x is a node of the tree and x
x is a descendent of i) =>
((ELS(x) 3 VALK > VAL(LS(x)) A

(ERS(x) 3 VAUx/ > VAL(RS(x))))]
where "x is a descendent of i" means "there exists a
composition of the functions LS and RS, say C,
such that x = Cd)

2) requires ERS
3) requires ELS
4) requires RS
5) requires LS
6) requires VAL
7) requires SVA
8) requires DEL
9) write access required for the elements of

array B
10) f is defined to be the value . such that

(i has not been produced by a call of f since f was last
initialized) otherwise the value of f is 0 A

(the nodes of the tree are named by integers which are

not equal to 0)
11) (ERSd) :> A(RS(i))) A (ELSd) => A(LSd)))
13) requires read access to the integer variable i
14) requires write access to the integer variable i
15) root, names the node such that every node

which is not root is a descendent of root A requires

read access to root
16) requires read access to n, the number of nodes m the

original tree
17) there exists a one-one onto mapping of the

node values of the initial tree to the current node values
19) (ERS(root) ^ A(RS(root))) A (ELS(root) = A(LS(root)))
21) ability to set f such that it has produced no values A

the tree is finite A

the tree contains at least one node

a—m -__ J

m^mmmmmm^imm^mmm^^^m iiLi-nm nn^OTHIP^' !■ i iiiiMi III.II linn i IIW i.a n •n^pi^iiiiiniiiim i IW^PW!^^~~"l

USING THE MEASURE
HEAPSORT

148

22) Vj[i < j < n o B[j] < B[jM]
23) there exists a one-one mapping from the initial contents

of the tree to the current contents of the tree and
B[k], i < K i n

25) A(root)
30) i i 1 A i equals the number of nodes in the tree A

post-conditions for :i.4: 3 assumptions for il.4l A
i is decreased by 1 at each iteration

31) Vj[l < j < n D B[j] < B[j + 1]]
there exists a one-one onto mapping of the initial
tree to the current contents of the tree and
B[K], i < k < n

33) i names a node such that
for this execution of the while construct,
for all previous values held by i, A(i) A
i has not held the current value A if i has named
all the nodes then i ■ 0

RLB and RUB are

RLB: ((■; ((b) (c , d , •)) 1.07) 0.0

RUB: ((a) ((b) (c , d , e)) 1.07) .90

But the acutal elaboration has entropy loadings

((f , g , h . •) ((b) (c , d , •)) 1.49) 1.91

One reason for this marked increase in entropy loading values is that

information about the variable i is shared between parts where such

sharing did not occur at the last stage. A better decomposition is

((f) ((b) ((•) ((c) m ((d) (g . h))

1.91) 1.73) 1.73) 1.67) 1.49) 1.49

Unfortunately, this decomposition, though better, seems arbitrary.

Here, (f) [i «- f] interacts least, ut (g) and (h) that help transform

the tree so that A(root), interacts most. In this instance, the

decomposition suggested by the last stage is not a good one at this

stage.

aaMMi .. . ^.

1 '•l ■■ ~~*r*m^^^m m&mmmm w\w^mmmmmm •ap^MP^^ "WW»

■m

USING THE MEASURE
HEAPSORT

149

Next, :1.4: is elaborated.

(j) :1A1:

assumptions:

effects:

effects and
post-conditions:

(K) :IA2:

assumptions:

write access required for the elements of array B,
requires VAL, requires read access to the integer
variable i, root, names the node such that every
node which is not root is a descendent of root A

requires read access to root

: 1.4.1: B[i] •- VAL(root);

B[i] - VAL(root)

there exists a one-one mapping from the initial
contents of the tree to the current contents of the

tree and B[k], i < k < n

requires read access to h, there exists a one-one
mapping from the initial contents of the tree to the
current contents of the tree and B[K], i < k < n,
requires write access to h, root, names the node
such that every node which is not root is a
descendent of root A requires read access to root,
requires VAL, requires SVA, requires DEL, there
exists a function g which names a node, i, such that

NOKERSd) v ELS(i))

-.1.4.2: h f g; SVA(root, VAL(h)); DEL(h);

effects and
post-conditions: there exists a one-one onto mapping from the

initial nodes of the tree to the current nodes of

the tree and B[k], i < k < n

MM

r wt^^mmmf**^ •^emm. w^vm^imtmi^m

USING THE MEASURE
HEAPSORT

150

(I) :1A3:

assumptions: A(i) is defined to be Vx[(x is a node of the tree
and x " i or x is a descendent of i) ^ ((ELS(x) 3
VAL(x) > VAULS(x)) A (ERS(x) o VAL(x) >
VAL(RS(x))))] where "x is a descendent of i" means
"there exists a composition of the functions LS and
RS, say C, such that x = C{i), requires ERS,
requires ELS, requires RS, requires LS, requires
VAL, requires SVA, (ERSd) => A(RS(i))) A (ELS(i) =>
A(LS{i)))

:1A3: MODIFY THE TREE SUCH THAT A(root) AND THAT
THE NODE VALUES ARE PERMUTED

effects and
post-conditions:

(m) :1A4:

assumptions:

A^oot), Vj[i < j < n 3 B[j] < B[j+1] A there
exists a one-one onlo mapping of the initial tree to
the current contents of the tree and B[k], i S k < n

requires read access to the integer variable i,
requires write access to the integer variable i,
A(root), Vj[i < j < n 3 B[j] < B[j+1] A there exists
a one-one onto mapping of the initial tree to the
current contents of the tree and B[k], i < k S n

:1A4: i «- i - 1;

effects and
post-conditions: VJ[I < j < n 3 B[j] < B[j+1], there exists a

one-one mapping from the initial contents of the
tree to the current contents of the tree and B[k], i
< k < n, A(root)

w****~~*^mmmmm mmmi****m

USING THE MEASURE
HEAPSORT

151

Below is the object/assumption table for this elaboration

(J)
(k)

(I)
(m)

D

I-4- !<
|.4. 2:

I- 4-3S
1.4. ^:

1 23456789 1011121314151617 181920212223242526272829303132

II II
III 1 I I 1 I

1 I I I I 1 I I I

II I I

A(i) is defined to be
Vx[(x is a node of the tree and x - 1 or

x is a descendent of 1) ^
({ELS(x) o VAL(x) > VAL(LS(x)) A

(ERS(x) 3 VAL(x) > VAL(RS(x))))]
where "x is a descendent of i" means "there exists a
composition of the functions LS and RS, say C,
such that x = C(i)

2) requires ERS
3) requires ELS
4) requires RS
5) requires LS
5) requires VAL
7) requires SVA
8) requires DEL
9) write access required for the elements of

array B
13) requires read access to the integer variable i
14) requires write access to the integer variable i
15) root, names the node such that every node

which is not root is a descendent of root A requires
read access to the variable root

19) (ERS(root) 3 A(RS{root))) A aLS(root) ^ A(LS(root)))
23) there exists a one-one mapping from the initial contents

of the tree to the current contents of the tree and
B[k], i < k < n

25) A(root)
26) there exists a function g which names a node, 1, such

that N0T(ERS(i) v ELSd))
27) requires read access to h
28) requires write access to h
32) Vj[i < j < n D B[j] < B[j+1] A

there exists a one-one onto mapping of the initial
tree to the current contents of the tree and
B[k]> 1 < k < n

RLB and RUB for this elaboration are

RLB: ((f) ((b) ((•) ((c) (d) ((d) (I , h))

0.0) 1.19) 1.29) 1.16) 1.03) 1.16

■MMM mam MHMa

m^^*mmm—*~~~< I n "i

USING THE MEASURE
HEAPSORT

152

RUB: ((f) ((b) ((e) ((c) ((i) ((d) (g , h))

1.77) 1.54) 1.64) 1.59) 1.47) 1.37

The actucal entropy loadings are

((f) ((b) ((•) ((c) (0) ((j , K , I , m)

(| , h)) 2.15) 1.54) 1.67) 1.89) 1.29) 1.29

A belter decomposition is

((f) ((b) ((e) ((i) ((c) ((m) ((K , I) ((j) (g , h))

1.85) 1.77) 1.67) 1.67) 1.54) 1.54) 1.29) 1.29

The algorithm to this stage of development represents a solution to

the problem as it was originally posed. Next, an implementation

decision is made which has the potential for simplifying the

construction of the functions f and g as well as the functions which

operate on the tree. This decision represents the original n nodes in

the array elements TREE[1],..., TREE[n], where the names of the nodes

pre their array indices and for 1 < k < n. LS(k div 2) - k if k is

even and RS(k div 2) = k if k is odd and VAL(k) - TREE[k]. This

representation has several important properties:

(a) ERS(k) 3 ELS(k)

(b) If TREE contains m > 1 elements (nodes) m TREE[1],...,
TREE[m] then ERS(k) is defined to be 2*k + 1 < m and ELS(k) is
defined to be 2*k ^ m for positive integer k.

(c) if TREE contains m > 1 elements (nodes) in "iREE[l])...,
TRE£|>] and m is a variable which indicates the number of
elements in the tree, DEL(m) is accomplished by the assignnent

m «- m - 1.

(d) (ELS(k) D (LS(k) = 2*k)) A (ERS(k) 3 (RS(k) - 2*k + 1)).

mmmmmi' ■< ■> ' < l>v«in)nan«nmniW«qiPi«*niic&iwi iiiiiii^m<q««RaiiNnp

USING THE MEASURE
HEAPSORT

These properties also simplify the construction of f and g.

Specifically, I is called only after a previous call of f, whose value

is f, has been used to transform the tree such that W). Hence,

:l.i.2: INITIALIZE f; i ♦- f;

153

can be written as

and

i «- f «- n div 2;

:U.5: i *- U

can be written as

i ♦- f 4- f - 1|

since A(k) is vacuously tiue if k is a terminal node of the tree.

Similarly, the function g can be aefined to equal the value of i as

defined in :1.2: and decremented m :1A4:

Lastly, the definition of root is 1 which indicates that TREE[1] is

the root node of the tree.

These properties together provide definitions for the tree

operations as follows

(n) :2.1:

assumptions:

effects and
post-conditions:

TREE is a one-dimensional array containing n
elements, i.e. TREE[1],..., TREE[n], and contains
the representation of the tree in the form RS(j) -
TREE[2*j + 1] and LS(j) = TREE[2*j], assumes read
access to TREE, parameter for VAL is always legal

:2.1: COMPUTE VAL(k), i.e. VAL <- TREE[k];

VAL equals the value of node k m the tree

l^^^Mtf M^HaMaakOBHaa

•«■«WWVPWII'W • Uli in i in I llWl •mmmm^wmmim 11 -^ ' •■ "-

USING THE MEASURE
HEAPSORT

154

(0) :2.2:

assumptions:

effects and
post-conditions:

(p) :2.3:

assumptions:

effects and
post-conditions:

TREE is a one-dimensional array containing n
elements, i.e. TREE[1] TREE[n], and contains
the representation of the tree in the form RS(j) -
TREE[2*j + 1] and LS(j) - TRE£[2*j], assumes write
access to TREE, j names an integer in the range 1 to
n and it is meaningful to assign x to an element of

TREE

:2.2: COMPUTE SVA(j,x), i.e. TREE[j] ♦- x;

the value of x has been assigned to node j

TREE is a one-dimensional array containing n
elements, i.e. TREE[1],..., TREE[n], and contains
the representation of the tree in the form RS(j) ■
TREE[2*j ♦ 1] and LS(j) = TREE[2*j], parameter for
ERS is a positive integer, requires read access to
the variable NN, NN indicates the number of nodes
currently in TREE, such that TREE[i], 1 S i < NN if

a node of the tree

■.2.3: COMPUTE ERS(j) i.e. ERS <- if 2*j + 1 ' NN
then false else true;

ERS = the value "there exists a right son of j"

MMMMI

USING THE MEASURE
HEAPSORT

155

(q) :2.4:

assumptions:

effects and
post-conditions:

TREE is a one-dimensional array containing n
elements, i.e. TREE[1],..., TREE[n], and contains
the representation of the tree in the form RS(j) ■
TREE[2*j ♦ 1] and LS(j) = TREEOj], parameter for
ELS is a positive integer , requires read access to
the variable NN, NN indicates the number of nodes
currently in TREE, such that TREE[i], 1 ^ i < NN is
a node of the tree

:2.4: COMPUTE ELS(j) i.e.
false else true;

ELS <- if 2*j > NN then

ELS equals the value of "there exists a left son of

(r) :2.5:

assumptions:

effects and
post-conditions:

TREE is a one-dimensional array containing n
elements, i.e. TREE[1],..., TREE[n], and contains
the representation of the tree in the form RS(j) ■
TREE[2*j + 1] and LS(j) = TREE[2*j], parameter for
RS is legal for the current state of the TREE

:2.5: COMPUTE RS(j), i.e. RS «- 2*j + 1

RS equals the index of the right son of j

— ■"-• - -- ■

USING THE MEASURE
HEAPSORT

'56

(>) .2.6:

assumptions:

effects and
post-conditions:

(t) :2.7:

assumptions:

TREE is a one-dimensional :rray containing A

elements, i.e. TREE[1] TFEE[n], and contains
the representation of the tree in the form RS(j) -
TREE[2*j + 1] and LS(j) - TREE[2«j], parameter for
LS is meaningful

■.2.6: COMPUTE LS(j) i.e. LS <- 2*j

LS equals the index of the left son of j

TREE is a one-dimensional array containing n
elements, i.e. TR£E[1],..., TREE[n], and contains
the representation of the tree in the form RS(j) ■
TREE[2*j + 1] and LS(i) = TREE[2*i], parameter for
DEL always names the current '. ,Mue in NN, requ.res
read access '.o the variable NN, requires write
access to the variable NN, NN indicates the number
of nodes currently in TREE, such that TREE[i], 1 < i
< NN is a node of the tree

:2.7: COMPUTE DEL(j) i.e. NN *■ NN -1;

effects and
post-conditions: node j has been deleted from the tree

m*m •__ mm

USING THE MEASURE
HEAPSORT

157

The object/assumption table for this elaboration is:

343536373&3M0fl 14243444546
I I

I I
I I I

I I I

(n) 2' 1

2- 2
•2-3
24

!2-5
'2b

(t) !2- 7 I I I

34) TREE is^a cne^ämenoional array containing n elements, i.e.
TREE[1],,!., rREE[n], and contains the representation of the
tree in tpe form RS(j) - TREE[2*j + 1] and
LS(j) - TREE[2*j]

35) aG$u.ines read access to TREE
36) assumes write access to TREE
37) parameter for VAL is always legal
38) j names an integer in the range 1 to n and

:t is meaningful to assign x to an element of TREE
39) parameter for ERS is a positive integer
40) parameter for ELS is a positive integer
41) parameter for RS is legal for the current state of the TREE
42) parameter for LS is legal
43) parameter for DEL always names the current value in IMN
44) requires read access to the variable NN
45) requires write access to the variable NN
46) NN indicates the number of nodes currently in TREE, such

that TREE[i], 1 < i < NN is a node of the tree

A good decomposition of this development is

((*) ((f) ((b) ((I) ((i) ((c) ((m) ((k , e) ((j)

(g , h)) 1.42) 1.39) 1.39) 1.28) 1.20) 1.16) 36) .96) .67

where

«: ((n) ((o) ((r) (U) (t , p , q) .70) .72) .75) .83

The addition of these new objects improves the entrop/ loadings for the

former decomposition.

USING THE MEASURE
HEAPSORT

158

The objects which elaborate the definitions o< (and g are:

(u) :1.1.2.1:

assumptions:

effects and
post-conditions:

(v) :1.1.5.1:

assumptions

f is called only after the immediately preceding
call of f, whose value is V, has been used to
transform the tree such that A(f') A the sequence of
values n div 2, ..., 0 is a sequence of node value
which satisfy all the assumptions of -.[.[A:, read
access required for f, TREE is a one-dimensional
array containing n elements, i.e. TREE[1])...,
TREE[n]I and contains the representation of the tree
in the form RS(j) - TREE[2*j + 1] and LS(j) -
TREE[2*j], requires write access to the integer
variable i, requires read access to n, the number of
nodes in the original tree,

:1.1.2.1: i ♦- f <- n div 2;

i names a node such that for this execution of the
while construct, for all previous values held by i,
A(i) A i has not held the current value A if i has
named all the nodes then i - Ü, (ERSO) ^ A(RS(i)))
A (ELSd) 3 A(LS(i)))

f is called on,y after the immediately preceding
call of f, whosp value is V, has b en used to
transform the tree such that A(n A the sequence of
values n div 2, 0 is a sequence of node value
which satisfy all the assumptions of -.I.IA:, read
access required for f, write access required for f,
TREE is a one-amicnsional array containing n
elements, i.e. TREE[I],..., TREE[n], and contains
the representation of the tree m the form RS{j) =
TREL[2«j ♦ 1] and LS(i) = TREE[2*j], requires read
access to n, the number of nodes in the original

tree

:1.1.5.1: i «- f - f - 1;

effects and
post-conditions: i names a node such that for this execution of the

while construct, for all previous values held by i.
Ad) A i has not held the current value A if i has
named all the nodes then i = 0

USING THE MEASURE
HEAPSORT

159

(w) ilA2.li

assumptions: requires read access to h, requires write access to
h, there exists a one-one mapping from the initial
contents of the free to the current contents of the
tree and B[k]1 i < k < n, root, names the node such
that every node which is rot root is a descendent of
root A requires read recess to the variable root,
requires VAL, requires SM, requires DEI., TREE is a
one-dimensional array containing n elements, i.e.
TREE[1] TREE[n], and contains the
representation of the tree in the form RS(j) ■
TREE[2*j + 1] and LS(j) - TREE[2*j], the number of
elements in the tree equals the value of i. Hence
node i has no descendants, requires read access to
the integer variable i

ll.42.ii h 4- i; SVA(root,VAL(h))i DEL(h);

effects and
post-conditions: there exists a one-one onto mapping from the

initial nodes of the tree to the current nodes of
the tree and Bik], i < k < n

Lastly, moi.t of the tree operations can be localized to one object by

making the following elaborations:

(x) :1.1.4.1:

assumptions:

effects and
post-conditions:

the assumptions of :1.1.4: ^ (there ex sts a
procedure, siftup(j), which assumes that (ELS(j) 3
A(LS()))) A (ERS(j) ^ MRS(j})) and results in A{j„
(ERSd) a A(RS{i))) A (ELS(I) 3 A(LSu)>), requires
read access to tho integer variable i

:1.1.4.1: siftupd);

A(i), there exists a one-one onto mapping of the
node values of the initial treo to the current node
values

USING THE MEASURE
HEAPSORT

160

(y) :1A3.1:

assumptions:

•ffacts and
post-conditions:

the assumptions of ;1A3: :> (there exists a
procedure, siftup(j)l which assumes that (ELS(j) 3
A(LS(j))) A (ERS(j) 3 A(RS(j))) and results in A(j))
, root, names the node such that every node which is
not root is a descendent of root A requires read
access to the variable root, (ERS(root) =
A(RS(root))) A (ELS(root) = A(LS(root)))

li.43.ll siffup(root);

A(root), Vj[i s j < n D B[j] < B[j + 1] A there
exists a one-one onto mapping of the initial tree to
the current contents of the tree and B[K], i < k < n

USING THE MEASURE 161
HEAPSORT

(2) :3:

assumptions: (ERSd) ^ A(RS(i))) A (ELS(i) ^ A(LS(i))), ERSd) ^
ELS(i), assumes read/wnte access to NOLOOP, j, t,
copy, requires ERS, requires ELS, A{i) is defined to
be Vx[(x is a node of the free and x » i or x is a
descendenf of 0 o ((ELS(x) o VAL(x) > VAL(LS(x)) A

(ERS(x) o VAL(x) 2 VAL(RS'x))))] where "x is a
descendenf of i" means "there exists a composition
of the functions LS and RS, say C, such that x =
Cd), requires RS, requires LS, requires VAL,
requires SVA, (ELS(j) = A(LS{j))) A (ERS(j) =>
A(RS(j)))

:3: siftup(j):
copy •■ VAL(j)i
repeat

begin
NOLOOP •• true;
if ELS(j) then

begin
if ERS(j) then

begin
if VAL{ RS{j)) > VAL(LS(j)) then

t - RS(j)
else

t * LS(j)
end;

if VAL(t) > copy then
begin
SVA(j. VAL(t));

J •■ ';

NOLOOP «- false;
end

und
end

until NOLOOP;
SVA(j, copy);

affects and
post-conditions:

A(the value of j on entry to siftup)

USING THE MEASURE
HEAPSORT

162

The object assumption table for these additional objects is

lu) 1- 1' 2- 1
(v) !• !• 5- 1
(w) 1- 1- A- 1
(x) 1- • 2- 1

(y) 1-4-3 1

(z) 3'-

(u) 1- 1- 2 1
(v) 1- 1' 5- 1
(w) 111 1
(x) 1- A- 2- 1

(y) l|<4«3< l
(2) •35

I 23456769 101112I3I4I5I6I7I8I9202I2223242626272829

I I

I

I t

I I I 1 I

I I I I I I I I

34353637383940414243444546474849505152535455

1 I I

I III

I

I I

1

I I I

1) A(i) is defined to bo
Vx[(x is a node of the tree and x = i or

x is a descendent of i) ^
((ELS(x) o VAUx) > VAL(LS{x)) A

(ERS(x) o VAL(x) > VAL(RS(x))))]
where "x is a descendent of i" means "there exists a
composition of the functions LS and RS, say C,
such that x = Cd)
requires ERS
requires ELS
requires R3
requires LS
requires VAL
requires SVA
requires DEL
write access required for the elements of
array U

f is defined to be the value i such that
(i has not been produced by a call of f since f was last
initialled) otherwise the value of f is 0 A

(the nodes of the tree are named by integers which are
not eqtal to 0)

11) (ERS(i) o A(Rl3(i))) A (ELS(t) * A(LS(i)))
12) there exists a one-one onto mapping of the node

values pnor to the transformation to the node
value", after

13) requires read access to the integer variable i
14) requires write access to the integer variable i
15) root, names the node such ',nat every node

which is not root is a descenusnt of root A requires
read access to the variable root

16) requires read access to n, the number of nodes m the

2)
3)
4)
b)
6)
7)
B)
9)

10)

„________ _

USING THE MEASURE
HEAPSORT

163

original tree
17) there exists a one-one onto mapping of the

node values of the initial tree to the current node values
18) i - n

19) (ERS(root) ^ A(RS(root))) A (ELS(root) 3 A(LS(root)))
20) A(i)

21) ability to set f such that it has produced no values A

the tree is finite A

the tree contains at least one node
22) VJ[I < j < n 3 B[j] <, B[j+1]
23) there exists a one-one mapping from the initial contents

Of the tree to the current contents of the tree and
B[K]) i < k < n

24) (ERS(füot) 3 A(RS(root))) A (ELS(root) 3 A(LS(root)))
25) A{root)
26) there exists a function g which names a node, i, such

that NOKERSd) v ELSd))
27) requires read access to h
28) requires write access to h
29) there exists a one-one onto mapping trom the

initial nodes of the tree to
the current nodes of the tree and B[k], i < k < n

30) i > 1 A i equals the number of nodes in the tree A

post-conditions for ti.4: => assumptions for :1.4: A

i is decreased by 1 at each iteration
Vj[l < j < n D BCJ] S B[J + lj]
VJ[I g J < n a B[j] < B[j+1] A

there exists a one-one onto mapping of the initial
tree to the current contents of the tree and
B[k], i < k < n
i names a node such that
for INs execution of the while construct,
for all previous values field by i, Ad) A

i has not held the current value A if i has named
all the nodes then i ■ 0
TREE is a one-oimensional array containing n elements, i.e.
TRE£[1],..., TREE[n], and contains the representation of the
tree in the form RS(j) - TREE[2»i * 1] and
LS(j) = TREEC2tj]
assumes read access to TREE
assumes write access to TREE

37) parameter for VAL is always legal
38) j names «in integer in the range 1 to n and

it is meaningful to assign x to an element of TREE
parameter for tR3 is a positive mleper
par.imeier for ELS is a positive integer
parameter for RS is legal for the current state of the TREE
parameter for LS is legal
pardmeter tor DEL always names the current value in IMN
requires tead access to the variable NN

31)
32)

33)

34)

35)
36)

39)
40)
41)
42)
43)
44)

_>■ I—MMMM—in

USING THE MEASURE
HEAPSORT

164

45)
46)

47)
48)
49)

50)
51)
52)

and
53)

54)
55)

requires write access to the variable NN
NN indicates the number of nodes currently in TREE, such that
TREE[i], 1 < i < NN is a node of the tree

ERSd) => ELSd)
assumes read/write access to N0L00P, j, t, copy
f is called only after the immediately preceding call of f,
whose value is V, has been used to transform the tree such that
AO') A the sequence of values n div 2, 0
is a sequence of node value which satisfy all the assumptions

of :1.1.4:
read access required for f
write access required for f
the assumptions of 81.1.4: :> (there exists a procedure,
siftup(j), which assumes that (ELS()) o A(LS(j))) A (ERS(j) = A(RS(j)))

results in A(i)
the assumptions of :1.4.3: ^ (there exists a procedure,
siftup(j), whicn assumes that (ELS(j) 3 A''S(j))) A (ERS(j) o A(RS(j)))

and results in A(j))
(ELS(j) o A(LS(j))) A (ERS(j) => A(RS(j)))
the number of elements in the tree equals the value of i. Hence

node i has no descendants

A good decomposition for this elaboration is

((y) ((b) ((«) ((2) (vw) ((u , v) ((m ((•) ((c) ((g)

((j , x)) 1.44) 138) 130) 1.10)

1.19) 1.08) 1.04) 1.01) 1.00) .71

where (*) consists of objects n through t.

This decomposition localizes the tree operations to the objects (*)

from the previous decomposition and the uses of the function f to (u)

amd (v). Entropy loading figures are highe; when information about the

implementation of the tree is distributed.

— — .^HMi

USING THE MEASURE 165
THE PROBLEM OF THE EIGHT QUEENS AND A TELEGRAM PROBLEM: A DISCUSSION

THE PROBLEM OF THE EIGHT QUEENS AND A TELEGRAM PROBLEM: A DISCUSSION

The developments for the GOD Computation, the Sequences Problem,

and Heapsort demonstrated applications of the techniques described in

Chaplbrs II and III. Similar developments have been constructed for the

Eight Queens Problem[W] and a Telegram Problem[HE]. A complete

presentation of these developments contributes IWIe to demonstrating

the techniques which have already been presented. Instead, the results

of these developments are described.

THE PROBLEM OF THE EIGHT QUEENS

The discussion which follows represents an analysis of the

development due to Wirth[W], using the measure at each stage. Early

stages possess good structure but much information is shared in the

final solution. This problem can be stated as:

Find an arrangement of eight chess queens on an 8 x 8 chess
board such that no queen is attacked by any other ^i.e. such
that each row, column, and diagonal contains at most on.
queen).

The first stage in Wirth's solution is

variäbiü board, pointer, safe;
considorfirstcolumn;
repeat

begin
trycoiumn;
if sare then

bo^m
tetqueen;
considernextcoiumn
end

else
regress

und
until laMcoidone or regressoutoffirs'col;

USING THE MEASURE
THE PROBLEM OF THE EIGHT QUEENS

166

This stage is accompanied by the following informal descriptions:

considerfirstcol. The problem essentially consists of inspecting
♦he safety of squares. A pointer variable designates the currently
inspected square. The column in which this square lies is called
the currently inspected column. This procedure initializes the

pointer to denote the first column.

trycolumn. Starting at the current square of inspection in the
ronsidered column, move down the column either until a safe square
is found, in which case the Boolean variable safe is set to tru« or
until the last square is reached and is also unsafe, in which case

the variable safe is set to false.

sotqueen. A queen is portioned onto the last inspected square.

considernextcolumn. Advance to the next column and initialize its

pointer of inspection.

regress. Regress to a column where it is possible to move the
positioned queen further down, and remove the queens positioned m
the columns over which regression takes place. (Note that we may
regress ever at most two columns. Why?)

These informal descriptions do not provide adequate information about

the re^uiresments of each procedure. For example, considerfirsteolumn

can be interpreted as only nyjinng that the column pointer be

initialized, when in fact the program requires that both the pointer

desgmatmg the current square of inspection be initialized as well.

This requirement might be suggested by the description of

considernextcolumn bu not necessarily from the description of

considerfirsteolumn alone. Thus, the collective descriptions provide

the necessary information for implementing all the procedures, but each

individual descr.ption does not provide enough information for

implementing that procedure.

mitm
■ ■ - M

USING THE MEASURE
THE PROBLEM OF THE EIGHT QUEENS

167

Next, trycolumn and regress are elaborated. (To this stage, Wirth

has made no mention of the requirements for lastcoldone or

regressoutoffirstcol.)

procedure trycolumn;
repeat

begin
advancepointer;
testsquare
end

until safe or lastsquare;

procedure regress;
begin
reconsiderpriorcolumn;
if NOT(regressoutoffirstcol) then

begin
removequeen;
if lastsquare then

begin
reconsiderpriorcolumn;
if NOT(regressoutoffirstcol) then

removequeen
end

end
end;

In order for these elaborations to be correct, certain unstated

assumptions must be satisfied. Two of III«M are

(1) Since the first operation in trycolumn increments the pointer
of inspection, its initial value (set by considerfirstcolumn or
considernextcolumn must have the value that no squares are ignored.

(2) reconsiderpriorcolumn must have the effect of extablishing the
context of the immediately preceding column.

To this stage, Wirth has carefully represented the solution so that

trycolumn and regress interact little with the main program.

Next, Wirth makes the design decision that the variable j will be

the column pointer and the array x[l:8] will be the square pointers.

mm—m mmmmmumt

USING THE MEASURE
THE PROBLEM OF THE EIGHT QUEENS

168

Thus x[j] is the square pointer for the j-th column, 1 S j < 8. Below

are the elaborations of these objects along with the assumptions which

they make.

:iO:

assumptions: j is the column pointer, ,equires write access to
j, assumes the name of the first column is 1, the
array x is an array ot pointers such that x[j]
indicates a square name in column j, requires write
access to the array x, the accessed value of x must
be set to zero since trycolumn will immediately
increment it by 1, assumes the name of ;he first row

is 1

:10: procedure considerfi'stcolumn;
begin

J - ll
x[l] f 0
end

effects and
post-conditions.

:11:

assumptions:

j = 1 and the requirements for trycolumn are

satisfied.

j i5 the column pointer, requires read access to j,
requires write access to j, the array x is an array
of pointers sucn that x[j] indicates a square name
in column j, requires write access to the array x,
the accessed value of x must be set to zero since
trycolumn will immediately increment it by 1,
assumes the name of tne first row is 1, assumes
considernextcoiumn will be invoked only when there

is a column named j + 1

till procedure considernextcoiumn;

begin

) ♦- J + li
x[j] - 0;
end;

effects and
post-conditions: j is incremented by 1 and the requirements for

trycolumn are satisfied.

L -.Mg^^^^M -

USING THE MEASURE
THE PROBLEM OF THE EIGHT QUEENS

169

:12:

assumptions:

effects and
post-conditions:

:13:

assumptions:

effects and
post-conditions:

:U:

assumptions:

effects and
post-conditions:

j is the column pointer, requires read access to j,
requires write access to j, assumes
reconsiderpriorcolumn will be invoked only when
there is a column no^ied j 1

:12: procedure reconsiderpriorcolumn;

j *- j - 1;

the column pointer has been set to the immediately
preceding column

j s the column pointer, requires read access to j,
the r ame of the next square in a coiumn equals the
current square name plus 1, assumes advancepointer
will only be called if there exists a next" square
in the current column, the array x is an array of
pointers such that x[j] indicates a square name in
column j, requires read access to the art qy x,
requ res write access to the array x

:13: procedure advancepointer;

x[j] *- *[j] + li

x[j] has been incremented by 1 to name the next
square in column j

assumes the number r, rows is 8, the array x is an
array of pointer; such that x[j] indicates a square
name m column |, requires read acess to the array
x, j is the roiunm pointer, requires read access to

j

:14: Boolean procedure lastsquare;
lastsquare •■ x[j] = 8;

lastsquare = true, if the last square in the
current column is named by the square pointer; false
otherwise.

Ul.NG THE MEASURE
THE PROBLEM OF THE EIGHT QUEENS

170

:15:

assumptions:

effects and
post-conditions:

:16:

assumptions:

j ;s the column pointer, requires read access to j,
assumet the number of column is 8

:15; Boolean procedure lastcoldone;
lastcoldone «- j > 8;

lastcoldone = true if the column pointer nf>;nes a
column which is greater than the name Oi the last
column.

j is the column pointer, requires read access to j,
assumes the name of the first column is 1

effects and
post-conditions:

:16: Boolean procedure regressoutoffirstcolj
regressoutoffirstcol ♦- j > 1;

regressoutoffirstcol = true, if the column pointer
names a column which is less than the name of the
first column

Next, Wirth observes that by introducing the Boolean arrays a, b,

and c with the meanings

a[k] = true: no queen is positioned in row k,
b[k] = true: no queen is positioned in /-diagonal k, and
c[k] = true: no queen is positioned in \-diasonal k.

testsquare, setqueen, and removesquare can easily be implemented if the

index ranges for a, b, ard c are chosen carefully. The observation that

1, ... , 8 names the eight rows suffices for the range of k for a.

Further, since the sums of the subscripts for squares on a board

(board[l:8, 1:8]) in the /-diagonals is unique for each di.igonal and

identical for each square m a single /-diagonal, an appropriate

subscript range for D is 2, ... , 16. Similarly, the difference of the

subscripts (first subscript minus second subscript) for \-diagonals is

t—mm

■"■

USING THE MEASURE

THE PROBLEM OF THE EIGHT QUEENS

172

:i8:

assumptions:

•ffvcts and
post-conditionr,:

:19:

assumptions:

effect-, and

post-conditions:

j is the column pointer, requires read access to j,

aosumes the number of row, is S, acsum:". the name of

the fir'-.t row r. 1, the array x is an array of
pointer' such that x[)] indicates a square name .n
column j, lequires read access to the array x, the

cum of the indices m a single /-diagonal are

identical and lie m the range ?, ,16; the sum of

the indices m a \-diagonal nre identical and he m
the range -7,.. ,7; , t[k] ■ tru«; no queen is

positioned in row k, write access required for a,

b[k] » true: no queen is pMitlOfltd m /-diagonal k,

write access to b requirsd, c[k] •= tru«; no queen is

positioned m \-diagonal K, write access to c

required

:18: pm'ddure setqueen;

aW)]] - b[j ♦ x[jj] - e[j - x[j]] *- <alse;

a qijoen it positioned in column i, square x[)J1 and
its influrncc in the appropriate row, and tue two

diagonals is set

j is the column pointer, lequiics read access to j,
the array x is an arr.iy of pointers such that x[j]

indicates a '.quare name in column j, assumes the

number of rows is 8, assumes the name of the first

row is 1, requires reod access to the array x, the

sum of tne indices m a single /-diagonal are

identical and lie m tne ran^.e ?, ,16; the sum of
the indices in a \-diagonal are identical and lie in

tne range -7,...,7; , ■[K] ■ true: no queen is
püsitioneci m row k, write access required tor a,

b[kj ■ true: no que"n n positioneo in /-diagonal k,

write access to b required, c[k] ■ true: no queen is

positioned m \-diagonal k, write access to c

required

:19: procedure removequeen;

•WiM •" ^[j ♦ x[j]] •■ c[j - x[j]J * true;

a queen is removed from column j, as well as the

appropriate row and diagonals

w« mi^m^mr^m' ■ •iininiiin. Liimi 1 ■ ' tmnimi^m^^m^mi

USING THE MEASURE
THE PROBLEM OF THE EIGHT QUEENS

174

In the absence of the remaining portions of the table, (objects and

assumptions for the mam program, trycolumn, and regr««) it is still

meaningful to compute entropy loadings for the portion displayed. This

is justified because objects .:0: through :19: do not share specific

assumptions with the mam program or trycolumn, or regress.

Consequently, the best decomposition to this stage, must involve two

large parts - :10: through :19: and the mam program, trycolumn, regress

- which ar ? then further decomposed. A good decomposition for the

displayed objects is:

((:15:) ((:16:) ((:12:) «a3l , ll4t) ((:10: , lUt) U:!?:)

((:18: , :19:)) 1.83) 1.64) 1.42) .94) .64) .64

Better entropy loading figures can be found by noting that :10:

(considerfirstcol) and :11: (considernextcol) share information not only

about j but also about x. By introducing a new object :20;

(initsqofmspect), and modifying :10: and :11:, a decomposition where

.10: and till emerge sooner as a subset of a good decomposition can be

found.

„

USING THE MEASURE

THE PROBLEM OF THE EIGHT QUEENS

175

Below are the relevant objects:

:10:

••sumptions: j is the column pointer, requires Mite access to

j, assumes the name of the first column is 1,
requires ability to invoke mitsqofmspect whrch

sets the square of inspection to a value which is
the proper initialization for exiimming the squares

in a column named by j

:10: procedure considerfirstcolum. .

begi"

j - li
iMitsqofmspecti

end

effects and
post-conditions:) = 1 A x[l] ■ 0, x[l] can be incremented by I to

satisfy the requirements for trycolumn

:11;

assumptions; j is the colunn pointer, requires read access to),

requires wr.te access to j, requirps ability to

invoke mitsqofmspect which sets ihe square of
inspection to J value which is the proper

initialization for exami rig the squares in a column

named by j, assumes considernextcolumn will be

invoked only when there is a column named j + 1

ill) procedure conr.idernextcoiumn;

begin

j ♦- j + i;
mif.qüim'jpuu,
end;

effects and
post-conditions: j is incremented by 1 and the squ.ire pointer for

the next column equals 0, to satisfy the

requirements for trycoiumn

I^^IBWPII««^ ■ ■"■■■■■'

USING THE MEASURE
THE PROBLEM OF THE EIGHT QUEENS

176

■.20:

asEumplions. j is the column pointer, i equires read access to j,
the array x is an array of pointers such that x[j]
indicates a square name in column j, requires write
access to the array x, the accessed value of x must
be set to zero since trycolumn will immediately
increment it by 1, assumes the name of the first row
is 1

•fleets and
post-conditions:

.20: procedure mitsqofinspect;
x[j] - 0;

x[j] - 0 and can be incremented by 1 to satisfy the
requirements for trycolumn.

M

mnPWV^« HLIVHVIIM^I ^^^v^^m^m^m^mm

USING THE MEASURE
THE PROBLEM OF THE EIGHT QUEENS

177

The object/assumption table is now:

*IOS

»IM

lit«
l|4l

llfl

Mai
S|9i

120S

2 3 4 5 6 7 8 9 101112131415161718192021222324252627

1 1 1

1 I

I I I I
I I

1 I

II II
I 1

I I
1 1

I I

1

1) j is the 1 >lumn pointer
2) requires read access to j
3) requires write access to)
4) the array x is an array of pointtrs such that x[j] indicates a

square name in column j
5) requires read access to the array x
6) requires write access to the array x
7) the accessed value of x mu^t be set to zero since trycolumn

will immediately increment it by 1
8) the name of the next square in a column equals

the current square name plus 1
9) assumes advancepomter will only be called if there

exists a "next" square in the current column
10) assumes the number of rows is 8
11) assumes the number of column is 8
12) assumes the name of the first column is 1
13) assumes the name of the first row i;. 1
14) assumes considernextcolumn will be invoked only when

there is a column named j + 1
15) requires write access to Boolean variable safe
16) the sum of the indices in a single /-diagonal are iJe^tical

and lie in the range 2,...,16; the sum of the indices
in a \-diaponal are identical and 1 e in the range -7,...,7;

17) a[k] «= true: no queen is positioned in row k
18) read access required for a
19) write access required for a
20) b[k] «= true: no queen is positioned in /-diagonal K
21) read access to b required
22) write accco? to b requin d
23) c[K] ■ true: no queen is positioned in \-di8gonal K
24) read access to c required
25) write access to c required
26) assumes teconsiderpnorcolumn will be invoked only when

there is a column named j - 1

•WWW^^^WWMWW^^ i i imimmmmimm

USING THE MEASURE 178

THE PROBLEM OF " HE EIGHT QUEENS

27) requires ability to invoke milsqofinspect which
sets the square of inspection to a value
which is the proper initialization for examining
the squares in a column named by j

The former decomposition, grouping :20: with :10: and :11: is

«:1S:) (OIW ««12:) «tl3i . (Ut) «JIOI . ills , -.20:)

«1170 (-18: , :19:)) 1.77) 1.59) 1.39) .86) .60) .60

A better decomposition is

((:15:) U:16:) ((il20 ((tlOi . lilt) ((ll3l , «14») ((l20t)

((«170 (:i8: . :19:)) 1 77) 1.59) 1.39) .66) .86) .60) .60

Wi'h concludes the development by observing that read accesses to

x occur more frequently than write accesses to x (This is apparent from

the table, sn long as :13: and :21: are executed less frequently than

all the objects which read x.) Consequently, it is suggested that since

array accesses are usually more costly than access to simple variables,

a new variable, i, can be introduced such that x[)] ♦- i; is always

executed before) is incremented and i - x[)]i is executed after j is

decreased. The effect of introducing this change and distributing

information about i, is to increase the entropy loadings of the above

decompObi^in.

Lastly, m the final version of the mam program, information about

i, x, and j i« freely disiributed. This causes the mam program to

interact with objects with which it did not interact at earlier stages.

As a result, entropy loading figures for the decomposition become

larger, and in some cases lead to saturation where it did not occur at

^^«^■ww^^OTVWi^^imH«rw«i■ ■ M !■ ■ -in mm^mKfBjmm^^—^mmmrmim'<' * ' ■IIIMI^^^^^W^^^^P-^^M mi ■ »■■■^■■v «^^^^^n^*^w^«iii m

USING THE MEASURE 179
THE PROBLEM OF THE EIGHT QUEENS

earlier stages. Further, changes in the meaning or use of x or j imply

that many changes will have to be made throughout the program.

A TELEGRAM PROBLEM

Henderson and Snowdun[HS] hae proided a development and an analysis

of a program which was produced using the techniques of structured

programming. The program, however, was shown to contain at least one

"bug". The authors claim that one stage in the development of more

information about the program environment was distributed than was

necessary. As a result, the programmer forgot some of this detail at a

later stage, thus causing the error. This observation suggests that

objects in the development were allowed to interact more than was

necessary. It also supgests that by not explicitly obsering

assumptions, programmers construct assumptions which may or may net be

correct. The discussion below first states the problem and then

presents the deetopment due to Henderson and Snowdon [HE] to the point

where the error occurred. Shared assumptions are emphasized.

Th* Problem

A program is required to process ■ stream of telegrams.
This stream is available as a sequence of letters, digits, and
blanks on some deice and can be transferred in sections of
predetermined size into a buffer area where it is to be
processed. The words in the telegrams are separated by
sequences of blanks and each telegram is delimited by the word
"TLL'L". The stream is terminated by the OCCUrrtfKi of the
empty telegram, that is a telegram with no words. Each
telegram is to be processed to determine the number of
chargeable words and to check for occurrences of overlenglh

■—il Ü I ■ f 11

^^*^m i I«I wmmimmmmtmm m*mfw*^™m'^*^i**'*^**t * i mm^^mmm—wm*^ mmm^wmm

USING THE MEASURE
A TELEGRAM PROBLEM

180

words. The words "ZZZZ" and "STOP" are not chargeable and
words of more than twelve characters are considered
overlength. The result of the processing is to be a neat
listing of the telegrams, each accompanied by the word count
and a message indicating the occurrence of an overlength word.

Before proceeding, it should be noted that the description of the

problem is not as precise as it should be. Aside from an incomplete

description of the specific behavior of commands which invoke input

operations as well as operations which select single characters from the

buffer, the definition of a "word" is not precise enough. The strings

"ZZZ7" and "STOP" are not chargeable words, but from the program which

is presented, a telegram consisting of zero or more occurrences of

"STOP" followed by "ZZZZ" is considered to be an empty telegram. This

interpretation is not consistent with this author's understanding of the

statement of the problem. Nevertheless, Henderson and Snowdon develop a

solution as follows (The object names have been added in order to

clarify the ancestry of objects.)

ll.ll INITIALIZE FOR WHOLE PROGRAM;

:1.2: repeat
begin
:1.3: INITIALIZE FOR NEW TELEGRAM;
tl.4) PROCESS TELEGRAM
end

until EMPTY TELEGRAM;

This program requires that at least one telegram be part of the

input and that an empty telegram must occur. It seems questionable

whether :1.1: and :1.3; should be stated in this stage. As with

version III of the GOD computation, such initializations seem more

natural if they emerge as a result of satisfying the assumptions of

MMM MM

'■ ' —»^w~— ~»—»~«—p— ■" ■■

USING THE MEASURE
A TfLEGRAM PROBLEM

181

certain objects.

Next, tl.4i PROCESS TELEGRAM, is elaborated as

: 1.4.1: COUNT, CHECK, AND PRINT WORDS:

: 1.4.2: PRINT WORD COUNT AND CHECK MESSAGE;

Object :1.4.2: assumes that a count of the number of words and a check

for overlenglh words is available. Further, it is assumed that :1.4.1:

provides this information. Hence, in the absence of an explicit attempt

to hide the mechanisms which provide this information :1.4.1: and

:1.4.2: must share several a:-umptions. All assumptions about telegram

syntax and information about what is to be recorded for each telegram is

contained m :1.4.1:. No assumptions about the explicit manner of

inputting text have yet been made.

The elaboration of :1.4.1: is

: 1.4.1.1: repoat
begin
: 1.4.1.2: EXTRACT WORD;
:1.4.1.3: if WORD IS CHARGEABLE then

: 1.4.1.4: COUNT WORD;
:1.4.1.5; if WORD IS TOO LONG then

:1.4.1.6: SET CHECK FLAG;
: 1.4.1.7; PRINT WORD;
end

until WORD IS "ZZZZ";

:1.4.1.2: requires information about what constitutes a word, i.e. the

nexf sequence of non-blank characters. :1.4.i.3: requires information

about which words are chargeable, i.e. words which are not "STOP" or

"ZZZZ". :1.4.1.5: requires the information about what constitutes an

overlength word. Objects :1A1.4: and :1.4.1.6: require variables that

'**~*<mmmimmm'mmmmmi^^*r ■ ■■ ■ ■ '

USING THE MEASURE
A TELEGRAM PROBLEM

182

reflect the state of the number of words m the current telegram and

whether any overlength words have occurred in this telegram. At this

point, the values of these variables are observed to require some kind

of initialization. Thus, :1.3:, :1A1.4: and il.41.il share

assumptions.

Object :1A1.2:, EXTRACT WORD, .s elaborated as

: 1.4.1.2.1: SET WORD EMPTY INITIALLY;

:1A1.2.2: ADJUST INPUT;

:1A1.2.3: repeei
:iA1.2A EXTRACT LETTER

until LETTER IS SPACE;

This elaboration is really the source of the error which occurs In

the final program. Until this stage, all assumptions have been

concerned with the properties of telegrams, but :1A1.2.2:, ADJUST

INPUT, necessarily introduces assumptions about the way input is

performed or at least about how the buffer is managed. Similarly,

:1.4.1.2.4:, EXTRACT LETTER, makes some of these assumptions.

:1A1.2.4:. This implies that these objects rhare assumptions which

are not directly related to the task of extracting the next word from

the telegram. The descriptions a-e also not prec^e. The authors

comment that the condition

first letter of input ^ space

must hold prior to the execution of :1.4.1.2.3:. Ths condition is not

necessarily suggested as the effect of the phrase, ADJUST INPUT.

-__ •MhtaaM—-

IPHII* II 1*911 I III |i UflPVP^M^ ^■^PPPPI^»^»«^fPW»^^-Pf^

USING THE MEASURE
A TELEGRAM PROBLEM

183

A clearer elaboration might be

repeat
EXTRACT LETTER

until LETTER IS NOT A SPACE;

SET WORD TO EMPTY;

repeat
begin
CONCATENATE LETTER TO THE RIGHT END OF WORD;
EXTRACT LETTER
end

until LETTER IS A SPACE;

(Implicit in both elaborations is the assumption that a space always

follows a woid, even if a letter is the last character of the entire

input file. The authors solve this difficulty by concatenating a space

to the end of each input record.) This second elaboration local zes all

assumptions about handling input to EXTRACT LETTER and its elaborations.

As a result, entropy loading figures for decompositions of the program

involving this second elaboration are generally lower than for the

original program.

CHAPTER V

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS

Chapter IV presented examples of how entropy loading calcula.ions

could be used as guides to help control program structure. (Appendix I

applies these techniques to a larger program.) This chapter first

summarizes the major results of each example. Next, the potential

advantages of using the methodology and ihe measure are stated. Using

the measure m a practical situation, however, poses certain

difficulties. These are listed and form the basis for several

suggestions for future research.

REVIEW OF RESULTS DEMONSTRATED BY THE EXAMPLES

This thesis has investigated the question of whether a particular

methodology describes program structure as defined in Chapter II. The

methodology under investigation uses a mathematical calculation, called

entropy loading, in two ways. F.rst, given a development of a program

where the assumptions have been preserved at each stage, entropy loading

figures can compare different arrangements or objects in an attempt to

discover which groupings of objects interact least. Such decompositions

might suggest ways for constructing a set of modules whose combined

effects solve the original problem. Second, if a particular

decomposition is suggested at early stages m a development, entropy

loading figures can be used to observe whether the development at later

stages still possesses similar structural prüjerties. If good structure

MMM

«in ■iiimi \uinmi**Hmi^m*^m*mf*m&G*m,^^'^*^^mF1lfmm™**^m**'1 lf'* ^-^ mmmmm ^r^^^m^^^lK^

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 185
REVIEW OF RESULTS DEMONSTRATED BY THE EXAMPLES

is not preserved, the object/assumption table (in which the assumptions

are preserved) might suggest ways of localizing certain assumptions to

existing or new objects.

In Chapter IV, three versions of a program that computes the

greatest common divisor are analyzed. The map for version I and the

trees corresponding to two decompositions of the final program appear

below.

A GCD COMPUTATION

til (pg. 31)

lUt (32) :1.2: (32)

:U.l: (34) :1.2.1: (34)
(x »■ a)

:1.1.1.1: (36)
(while a ?< b do

:1.1.1.2:j)

:1.1.1.2: (36)

:t.1.1.2.1: (37)
v

\
:1.1.1.2.1.1: (39) :1.1.1.2.1.2: (39) :1.1.1.2.1.3: (39)
(if a > b then

:i.1.1.2.1.2:
■IM

:1.1.1.2.1.3: ;)

tU.t2.I2.;: (Al) :1.1 l.Zl.3.1; (41)
\a «- a - c; z *- o - n

■ ■ - "■ ■— iwm 11 ii II ii f. ^m

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 186

REVIEW OF RESULTS DEMONSTRATED BY THE EXAMPLES

:!.1.1.2.1.3.1: (:1.1.1.1:,
:1.1.1.2.1.1:)

:1.I 1.2 1.1:)

(•.1.1.1.1:.

(B)

:1.2.1:

Ol.l.i 1:, :1.1.1.2.1.1:)
a.l.l.J 1.3.1)

.500

1.05

(:1.1.1.2.1.2.1:,

This analysis corresponds to an attempt to find the best way of

decomposing this fixed program. The measure indicated that the best

decomposition of the program is decomposition (A). The part which

interacts least with the rest of the program .s :1.2.1: that assigns the

value of a to x. Objects :1.1.1.2.i.2.i: and :1.1.1.2.1.3.1: assign

values to a and b and also require more information than :1.2.1: but

less information than :1.1.1.1: and :1.1.1.2.1.1:. These last objeas

determine the flow of control within the program. This result is

consistent with the definition of structure and our intuitive ideas. In

this example, the assumptions associated with the control mechanisms

include information about what is being controlled. No attempt was made

to hide that information. However, the objects bemg controlled were

constructed wuhout maKmg assumptions about mechanisms that control

them. Decomposition (B) is slightly worse because the statements (a •- a

- b, b <- b - a) require read and write access to both a and b. Hence,

 .. . ^ftiiMi

■' ' " ■ ' ■ I'll

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 187
REVIEW OF RESULTS DEMONSTRATED BY THE EXAMPLES

more information is localized to a single subset than in (A) where write

access to a and b are separated.

Version II is similar to version I except that the construction

if a > b then a ♦- a - b «Is« b ♦- b - a;

is replaced by

while a>bdoa«-a-b;
while b>adob«-b-ai

Here, the best decomposition,

((a) {(| , h) (b) ((c , •)) 1.01) 1.01) .451

indicates that (a) [x «- a] interacts leset with tne rest of the program

and that of the remaining portion, (g , h) (a ♦- a - b, b «- b - a)

interacts least with the control mechanisms b (while a ^ b do) and (c ,

•) (while a > b do, while b > a do;.

Version III illustrates a development similar to version II, but in

addition to computing the greatest common divisor of a and b, their

least common multiple is also computed. Here, the decomposition

((a) ((b) ((c) m , I) (g , •» 1-55) 1.75) 1.75) 1.28

indicates that (a) [x «- a; y «- c + d;] interacts least with the rest

of the program, but that the control mechanisms for the inner loops as

well as the statements which the/ control interact most. Object b (c «-

Oj d <- a) initializes c and d, but really shores little information with

the rest of the program. 5im^rly, object c (while a H b do)

controls the inner loops but interacts little with the mechanisms which

decrease a and b. Note that the entropy loading figures for this

11—I Ml —

"-"•"" ■n ii i muni mm^mm^^ ^ "• •""• wtm

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 188
REVIEW OF RESULTS DEMONSTRATED BY THE EXAMPLES

decomposition are larger than the corresponding figures for version II.

This occurs because the objects in version III make assumptions that are

shared in more complicated ways than the objects in vers.on II.

The development of the sequences problem shows that distributed

information ubout a scheme for representing data can lead to

unnecosoarily complicated structure. This example produces a list of

lexicographically ordered sequences such that each sequence contains

only i's, 2^ and S's, but no adjacent identical subseauer.c?^ Tlie list

is terminated by the first such sequence containing 100 digits. The

development to the stage where information ab-iu' the representation of a

sequence in terms of an array resulted in the decomposition

((b) ((d) ((a) ((e) ((h) («) (k , j))

1.21) 1.21) 1.91) 1.38) 1.21) 1.21

Entropy loadings for this decomposition are all greater than or equal to

entropy loadings for the tame decomposition where implementation-

information was not distributed. This suggests that the implementation

information be localized to one or several objects. In this case,

additional objects were introduced. This resulted in entropy loadings

that were smaller and very close to the entropy loadings for the

decomposition prior to elaborating the implementation. Thus, the

measure provided indications that motivated a rearrangement of the

program so that the reasonably good structure of the early stages was

preserved m the final program.

v

 mi—li—aM—i M*_>^

fm» ' ii tmi^^m^^mmm^mw • • ■•■"• i laaMmmp^^p^^MMW^a^niH^nnviiW"« ■" „i M">" ■■■ ■»iip.pii-i um IJI IUWIIIIIIIII—W^W^IIII mt i t. \ trm^rmmmmm^gm

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 189
REVIEW OF RESULTS DEMONSTRATED BY THE EXAMPLES

The example that develops a sorting prosram based on the algorithm

HEAPSORT attempts to present a program m terms of the model that

probably motivated the algorithm: a binary tree representing the data to

be sorted. One reason for attempting this exercise was to first

describe the algorithm without presenting all the details of its

implementation. Then a particular representation for the binary tree -

as a linear array - is introduced. As a consequence of this decision,

information about the representation can be localized to certain objects

without adversely affecting the decompositions suggested at earlier

stages. Although applications of the measure eventually suggested a

decomposition that localized almost all assumptons about the

representation to one object {:3:, the siftup procedure), earlier

decompositions had to be discarded. One reason for this occurrence is

that the small number of objects make ruany assunptions. As a result,

saturation occurred at several early stages. Further, since nor e of the

assumptions were weighted with "probability of change" figures, some of

the decompositions seemed to be counter to the author's view of what a

good decomposition should be. For example, the two objects invoking the

procedure siftup do not form a single subset in the decomposition that

is presented - probably because one call of siftup uses i as its

parameter, and i is used throughout the program, where the other call

uses root as its parameter, and root is used in few places.

The example that presents the Eight Queens Problem shows several

improvements in a program that already possesses fairly good structure.

 —^--^-M—^~~-

■■'). I' IJI^^^^, 11 m^w^immmm* m^^mrm* « m, iii^m*^~**m^*~ i^mtmnmmmrummimmm r fjmw mwmmtim

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 190
REVIEW OF RESULTS DEMONSTRATED BY THF EXAMPLES

First, the procedures considertirslcolumn and considernextcülumn not

Only share information about how the columns of the chess board are

arranged and named, but also about certain requireiu-»nts of another

object, trycolumn. By creating a new object, initsqofinspect, a

decomposition that was already rather good was slightly improved. In

Wirth's original program, the objects considernextcolumn and

considerfirstcolumn not only share information about the names and

ordering of columns of squares on a chess board, but also about how the

squares are represented and about some of the assumptions made by

trycolumn. initsqofinspect contains these assumptions about trycolumn

and thus helps to improve the structure of the program. The final

version of WirtIVs program distributed information that was not shared

at earlier stages, thus making these decompoctions worse than they need

be. This corresponds to the similar situation in the development of the

sequences problem. Saturation was also apparent at early stages.

The discussion of the telegram problem was presented in order to

emphasize the importance of precisely stated assumptions. Henderson and

Snowdon[HE] have stated that informal Englisn comments are not

sufficient to suggest the assumptions which objects make or the affects

thev are intended to produce. For example, the condition

first letter of input i1 space

is not necessarily sugges;ed by the phrase "ADJUST INPUT". Such

imprecision is mentioned as a potential source for errors in a program.

The example also cites a portion of the development where apparently too

 mil i

ffm^mimm^mrmmmimmi »»i«p^^^i"i^^™ww*p«p"^wwi»wHBrawp^»pii^pi mmmm<m*^~^v^**^^^mmm

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 191
REVIEW OF RESULTS DEMONSTRATED BY THE EXAMPLES

much detail was introduced. The elaboration of ilALZt, EXTRACT WORD,

introduces an object that caters to trie requirements of the input

device. This implies that the elaboration of ADJUST INPUT and EXTRACT

LETTER will probably share assumptions about the nature of the input

device. An alternative is presented that localizes all this information

to EXTRACT LETTER. The entropy loading figures, though not displayed,

indicate that this new version possesses better structure.

Appendix 1 applies the measure to a development of a Markov

Algorithm interpreter. Although the analysis of the example is

length y, ;everal results can be stated here:

(1) The structure imposed at tne initial stages, i.e.
alphabet and generic input, algorithm input, error handling
during input, algorithm execution, and error handling during
execution, could be maintained in the final version if
additional objects were introduced to provide access to the
results of these additional objects. For example, objects
which created internal representations of rules were
introduced along with accessois to this information. These
emerged together in a subset after those subsets that
constituted the structure at the mitial stages.

(2) Due to the large number of objects and assumptions,
several clerical aids had to be used extensively. These aids,
and suggestions for extending them, are described in a later
section.

(3) As in the development of HEAPSORT, several good
decompositions found at intermediate stages had to be
discarded. This was necessary because later elaborations
resulted in objects that shared much information with objects
that existed prior to the elaboration. For example, the rule
input portion was elaborated after the portion that handled
alphabets and generic input. The earlier decomposition had to
be modified. A similar situation occurred when the algorithm
execution part was elaborated.

mmmm ^MCMtfMlita^
■— ■ - —. —

,. mm..<m~ |p|»»<^rW""^PW"»i™>"""»^«"""l«"IWW''»^>'^'^""»«W«»""'«^""l"M>"WWIBPWW«WI»<»p "'■

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 192
REVIEW OF RESULTS DEMONSTRATED BY THE EXAMPLES

Appendix II discussed a paper on Compiler Structure[M K]. This

paper asserted that special care should be taken to describe the

languages at the interfaces between vertically fragmented modules in a

(.ompiler. However, because of the results from the Markov Algorithm

Interpreter, it was concluded that as much information about these

languages should be hidden. Instead, only creators and accessors of the

needed information should be provided.

ADVANTAGES OF USING THE MEASURE

This thesis has applied a measurement function based on entropy

loadings to evaluate decompositions of programs. These applications

produced results that usually corresponded to intuitive ideas about

structure in programs. Unfortunately, there are practical problems

about deciding the relative importance of assumptions as we'l as

problems about determining and manipulating assumptions and tables.

These problems impede the effective use of the measure and methodology.

Details of the advantages and disadvantages of using the measure are

discussed in this and the next section.

In order to apply the measure, the methodology requires that the

objects and assumptions be e/plicitly stated - not only .-«t early stages

in the design process, but also in the final program. Ideally each

object is accompanied by the assumptions it makes so that the object is

understandable without requiring additional context. This feature is

typically no present in the more traditional approaches to design and

MMHM

■ .PI ««.a i wim^^mimm**^' in—^«»^^^^.-^miiwiiuMj in m J M 11 ^^fm^^rm • !•■•■• i ' ' ^

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 193
ADVANTAGES OF USING THE MEASURE

programming. Further, the assumptions made by objects are summarized in

object/assumption tables. This summaf/ makes it possible to observe the

assumptions that are shared among objects without needing to deduce them

from the program text. This is especially helpful whenever entropy

loading figures become larger than anticipated. Under these

circumstances, other decompositions are suggested more readily than in

situations where object/assumption tables are not available.

The measure provides a way of comparing different decompositions of

a program at each stage in its development. These compariscMS help to

substantiate decisionr to reject or retain a decomposition. As a

result, there are at least quantitative grounds for arguing for or

against a decomposition rather than primarily intuitive ones. The

sequences example emphasizes this point.

The act of "hiding" information can be explicitly represented by

the methodology. Hidden information is preserved in object/assumption

tables.

Decompositions resulting from applications of tne measure can

possess some of the properties advocated by Parnas[PAl,PA2,PA3]. In

particular, subsets that share few assumptions can suggest modules

similar to those described by Parnas. For example, the analysis of the

Markov Algorithm interpreter suggests that objects which create and

manipulate Markov rules should appear in a single subset even though

they are invoked from portions which interact little. Further, the

..
-~-—

' "•■■ m mm" -"' ■'■■

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 194

ADVANTAGES OF USING THE MEASURE

descriptions of objects required by the methodology can help to suggest

specifications similar to those proposed by Parnas. One characteristic

o' thMi speciftcations is that each describes the intended behavior of

a function without stating an algorithm that implements it. Many of

these behavioral descriptions occur among the assumptions of objects at

early stages in the development of a propram. These can be used to help

generate Parnas-type specifications. As an example, below is a

specfication for a function which might be used by the first version of

the GOD computation

function PGCD(a,b) - a and b are integer parameter?..

effects: ERC1 if a S 0
ERC2 if b < 0
gcd(a,b) - gcdte'.b') A ((a' H b1) a

(a < a' or b < b'))

This specification was found by using tests for the assumptions to

suggest error calls and describing the effects of objects as part of the

effects of the function. An important property of the error calls is

that each represents some testable condition. Some assumptions may not

represent such conditions. Since predicates relating to the correct

behavior of objects appear as assumptions, the objects can be

constructed with these assumptions in mind. Specifically, a

designer/programmer will be, perhaps, more conscious of the explicit

demands his objects must meet. The error that occurred in the Telegram

Problem might not have occurred had these assumptions been explicit.

--"-- "-

«igiiiw>ipii*ww<«iRm^nminwm<piiaii i, '~>i^*m*m*wmm^~**m^m>immmmmm&mm^nr*mimii*mm^**'^*m*<*limm*'

ON ASPECTS OF USING THE MEASURE: SUMMARY. EVALUATION, CONCLUSIONS 195
ADVANTAGES OF USING THE MEASURE

Again because assumptions are presented explicitly, changes in a

program that require violations of some assumptions can be made more

easily than under circumstances where assumptions are not stated. A

programmer need only examine the object/assumption table to determine

which assumptions are violated. As a result, the affected objects can

be changed. The overhead of deducing the effects of changes from

program text and other traditional aids is eliminated.

DIFFICULTIES OF USING THE MEASURE

It should be apparent that entropy loading calculations can ba

computed easily once the assumptions made by objects have been displayeu

in an object/assumption table. Finding these assumptions, however, is

often a painstaking process. This process is made even more difficult

by what seems to be a natural tendency to postpone the task of stating

assumptions. As a result, the task becomos more difficult because the

assumptions made by earlier stages must be deduced from a coni-xt that

is different from the context that motivated those stages. Most often

this exercise of skiing assumptions and using the measure to check

various decompositions 'eads to results that might already have been

expected. The interesting cases, of course, are those where this

exercise led to unexpected results or actually uncovered an error. The

decompositions found during the middle middle stages in the development

of HEAPSORT as well as during the middle stages of the Markov Algorithm

Interpreter did not possess good structure at later stages. This

— ■ — -■ - -

mmmmmmim wmm iii.i ■ niimiwpviHipw mmmmmm^^i^r*'.'' ■■■■! " »

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 196
DIFFICULTIES OF USING THE MEASURE

occurred because objects that were elaborated after those stages shared

many assumptions with earlier elaborations of objects. Lastly,

instances where several designers are elaborating different objects or

where objects are elaborated without a knowledge of other objects often

lead to incompatible representations of similar assumptions.

Consequently, interactions may not be represented properly in

object/assumption tables.

Of the different Kinds of assumptions, the most difficult to state

•'re weakest pre-conditions for objects. This difficulty is not

surprising in tne light of all the practical difficulties associated

with program verification. Once found, however, these assumptions

provide vital information about the reouirements of objects.

Assumptions about program environment are more easily recognized, but

can frequently be overlooked. For example, a designer working on an

elaboration of a single object might make an assumption so frequently

that he omits it from the object/assumption table. This could lead to

an eventual decomposition where this unstated assumption is violated.

Probably the easiest assumptions to state are the mathematical theorems

relevant to the problem a id the assumptions about data. The theorems

are often related to the weakest pre-conditions. The assumptions about

data refer to those items that are explicitly stated in many informal

descriptions of objects and relate to items that are analogous to what

will be manipulated in the language which implements the program.

- -- ^ T > n -■ ' ■- — M^rf^^^MAA ■ n iiHiimn

■»" ii mjiiji itmmmmmm^mm^^^^^^^^mmmmitmmmi^^^i^^^'n* i i'»w«»«^npww-«w™iiii-ii i >.i i ■ I.JIIHIH mi^^^m^m

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 197
DIFFICULTIES OF USING THE MEASURE

In addition to the difficulties m stating assumptions, there are

difficulties involved in just manipulating tables and selecting

decompositions for which to compute entropy loadings. Object/assumption

tables can become large even for small numbers of objects.

4

In chapter III, certain kinds of object/assumption tables were

cited for which all decompositions had identical entropy loadings.

Hence, the measure was unable to distinguish among them. This was

called saturation in object/assumption tables. Saturation occurs most

frequently whenever a small number of objects share many assumptions.

The developments of HEAPSORT and the Markov Algorithm Interpreter

displayed msiances of saturation.

In all but the simplest situations, it i« difficult to assign

"probability of change" fipures or "relaWe importance" to assumptions.

Consequently, all the assumptions in the examples wer-; treated as thojgh

they were of equal importance.

Without the help of mechanical aids, the process of construviing

programs using the methodology and the measure is tedious and time

consuming. An experienced programmer might oe able to construct

programs having good structure in tar less. time.

AIDS TO APPLYING THE MEASURE AND SUGGESTIONS FOR FUTURE WORK

As aids to help solve some of the difficulties stated in the last

section, several programs have been constructed. These programs perform

 ,

■■W"W«»^I^""»W"»"« ■wrm mmmm mm*^im*mm w^^^^^^^m^mm^m

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 198
AIDS TO APPLYING THE MEASURE AND SUGGESTIONS FOR FUTURE WORK

the following tasks:

(1) input and maintain files of assumptions

(2) input and maintain abbreviated descriptions of objects and
their assumptions.

(3) produce object/assumption tables given files generated by (1)

and (2).

(4) produce listings of objects given files generated by (1) and
(2).

(5) compute entropy loading calculations, RLB's, and RUB's given
object/assumption tables produced by (3).

These pr^pr^ms have been used to help produce all the examples in

Chapter IV ana m the appendices. Each is intended to help solve some

clerical or tedious aspect of using the measure. As the examples

indicate, a great deal of text might need to be manipulated for even

small programs. These programs have been written to execute in an

interactive environment. This has proved to be helpful when entropy

loading calculations wore performed. Values for RLB, RUB and the actual

entropy loadings could be compared quickly in this kind of environment.

However, m order to use tne measure in more realistic and

practical situations, the fc'lowmg topics suggest areas for future

research:

(1) Sines assumptions about the meaning and interpretation of
variables occur so frequently, and smce explicitly transcribing
them - or their names - to identified objects is tedious and time
consuming, mechanical aids should be available that allow a
programmer to state these assumptions only once • perhaps as part
of some declaration. Then, the program support should
automatically associate the appropriate given specific constructs
and specific post-conditions.

t

I ■ WMWIWVIM*
1

IIP'11 PI

ON ASPECTS OF USING THE MEASURE: SUMMARY, EVALUATION, CONCLUSIONS 199
AIDS TO APPLYING THE MEASURE AND SUGGESTIONS FOR FUTURE WORK

(2) Assumptions about control and frequency of use of objects
should be expressable precisely.

(3) Because the process of making assumptions can require careful
and time consuming thought, as many assumptions as possible should
be generated mechanically.

(4) Because of the substantial difficulties associated with
applying the measure, additional measures of structure should be
sought.

CONCLUSIONS

The purpose of this thesis has been to help clarify the notion of

structure in programs and to evaluate the behavior of a particular

measure of structure. The most difficult aspects of applying the

measure relate to the process of making assumptions pxplicit. Many of

these difficulties can be obviated by mechanical aids that can be part

Of the environment m which the measure is to be used. The information

about programs provided by the measure makes possible comparisons of

different decompositions of a program. This is demonstrated in Chapter

IV and the appendices. If interactions are more extensive than is

desirable, the object/assumption table tells exactly which assumptions

are shared and can suggest tnat certain assumptions be localized to new
•
or existing objects. Parnas-type specifications seem to be deducible in

a direct way from the assumptions made by objects and their effects.

This thesis has attempted to demonstrate, use, and evaluate a

definition and measure of program structure. It represents an attempt

to extend the notion of structure from its role as an aesthetic tool to

a useful and measurable aid for finding good programs. Despite several

I IIMlll MaaMMaaMMaMM>^M MMaaaaa

" ••••~~*m^mKmm*~m*mmt i* uummmini, ■■■nun n ^•^•^^^mmmm

ON ASPECTS OF USING THE MEASURE; SUMMARY, EVALUATION, CONCLUSIONS 200

CONCLUSIONS

significant shortcomings, the measure provides a quantitative valuation

of a heretofor vague concept.

MMMM^MM
' - ■ - - ■

ÜB^W^^wp^wwipi^BWW ■ «I.I !■•■ mi» ■■>■..WIM«■^wwvwOTv^M^^^nv^n

'.C l

BIBLIOGRAPHY

[AL] Alexander, C. Notes on the Synthesis of Form,
Harvard University Press, 1964

[BA] BaKer, F.T. Chief programmer team management of produc'.ion
programming. IBM Systems Journal v.ll.no.l,
January, 1972, pp. 56-73

[COO] Cook, S.A. The complexity of theorem proving procedures.
Proc of the Third Annual Symposium on Theory of Computing,
ACM, May, 1971, pp. 151-157

[DJ1J Dijkstra, E W. Notes on structured programming,
Structured Programming, Academic Press, 1972

[DJ2j Dijkstra, E.W. A constructive approach to the problem
of program correctness. BIT 8 (1968) pp.174-186

[DJ3] Dijkstra, E. W. EW0316: A Short Introduction to the Art of
Programming, Eindhoven, The Netherlands, 1971

[DJ4] Dijkstrd, E.W. The structure of the T.H.E. multiprogramming
system. CAGM 11 (1968) pp. 341-346

[DJ5J Dijkstra, E.W. On the axiomatic definition of semantics,
(unpublished ms.)

[DJ6] Dijkstra, E.W. Go to statement considered harmful.
CAGM 11, 3 (March 1968)

[H] Heymanns, F. A Markov Algorithm Interpreter,
(unpublished program)

[HE] Henderson, P. and H. Snowdon, An experiment in structured
programming. BIT 12 (1972), pp. 38-53

[HOI] Hoare, C.A.R. An axiomatic basis for computer
programming. CAGM 12 (1969) pp. 576-580

[H02] Hoare, C.A.R. Proof of a program: FIND
CAGM 14 (January 1971) pp.39-45

[H03j Hoare, C.A.R. Notes on data structuring. Structured
Programming, Academic Press, 1972

I

■

■ ■ PJ>ii«U«l , ■ IMIHI WWW^I^^I ' im **—mmim9mi*. m ^pnw^i ^•^VWWPPIPWWWSI«" m^n^n* i i nmimmmi .n.\m

BIBLIOGRAPHY 202

[>AJ Karp, R.M. Reducibihty among combmdtonal problems.
Complaxily of Compulor Computations, R.E. Miller and
J.W. Thatcher, eds., Plenum Press, 1972

[KI] King, J.C. A Program Verifier, Ph. D Thesis,
Dept. ot Computer Science,
Carnegie Mellon University, 1969

[KNi] Knuth.D.E. Fundamental Algorithms, Addison-Wesley,
1963, pp. 187-189

[KN2] Knuth, D.E. Sorting ind Searching, Addison-Wesley,
1972, pp. 145-47

[LE] Leavenwo. m, B. Review of paper by P. Naur ["Programming
by action ckisters." BIT 9, 3 0969), 250-258].
Computing Reviews 11, 7 (July 1970), Rev. 19,420

[LO] London, R L. Certification of algorithm 245 Treesort3;
proof of algorithms - a new kind of certification.
CACM 13 11970) pp.371-373

[Mil] Mills, KD. Top down programming m large systems.
DebuggniR Techniques in Large Systems, R. Rustm, ed.,
Prentice Hail, 1970, pp 41-55

[M12] Mills, M.D. StructuroJ Programming,
IBM; Federal Systems Division, Gaithersbürg, 1970

[MK] McKeeman, W.M., Horning, J., and Wortman, D.B. A Compiler
Generator, Prentice-Hall, 1970

[MK1] McKeeman, W.M. Compiler Structur«, Technical Report CSRG-23,
University of Toronto, January, 1973

[NA2] Naur, P. Programming by action clusters. BIT 9
(1969) pp.250-258

[PA1] Parnas, D.L. Information Distribution Aspects of Design
Methodology, Proceedings of the IFIP Congress, 1971

[PA2] Parnas, D.L. A Technique for Software Module Specification
with Examples, CACM 15, (May 1972' pp 330-336

[PA3] Parnas, D.L On the Criteria to be Used in Decomposing
Systems inte Modul«, CACM 15 (December 1972)
pp 1U53-1058

■BMMi^B.

^PP^^^WWWP"^"^**"11-1^1"'1 W»^^^^^WiW«^^WI"W^i"«WlW AWW^J^IWi I IM * " mw'i*m' l"-i ■ . mmwm*wwmmmmmw\ ■■ 11 RMV^H

BIBLIOGRAPHY 203

[PA4] Parnas, D.L. Somo Conclusions from an Experiment in
Software Engineering Techniques, FJCC, 1972

[SN] Snowdon, R.A. PEARL: An Interactive System for the Preparation
and Validation of Structured Programs. Computing Laboratory,
University of Newcastle upon Tyne, 1971

[vEl] van Emden, M.H. An Analysis of Complexity,
Ph. D. Thesis, Mathematisch Centrum, Amsterdam, 1971

[vE2] van Emden, M.H. The heirarchical decomposition of
complexity. Machine Intelligence 5, Dale and Michie, eds.,
Edinburgh University Press, 1970, pp. 361-380

[WA] Wafanabe, S. Information theoretical analysis
of multivanate correlation. IBM Journal of Research and
Development, I960, pp.66-S2

[WIL] Williams, J.W.J. Heapsort. CACM 7 (1964) pp.347-348

[WL] Williams, W. and Lambert, J.M. Multivariate methods in plant
ecology i. The Journal of Ecology, 47, pp. 83-101

[W] Wirth, N. Program development by stepwise refinement.
CACM 14, (April 1971), pp. 221-227

[Wl] Wirth, N. PL/360, A programming language for the 360
computers. J. ACM 15, 1 (January 1968) pp. 37-74

[WRH] Wulf, W.A., Russell, D.B. and Habermann, AN. BLISS: A
language for systems programming, CACM 14, 12
(December 1971) pp. 780-790

feM ——^■^■'**~*M^'11^——-- - mi -—

WOT^WV ■" •*»^mmmmmmm*mm*'m^^m'

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 204

APPENDIX I: A MARKOV ALGORITHM PROCESSOR

This appendix contains a development of a Markov nlgorithm

processor, based upon an initial and informal description. The

development shows how assumptions can be preserved in a somewhat larger

example than any which appeared in Chapter II. The guidelines stated in

Chapter III are applied at various stages of the development. The

result includes a complete program which inputs and interprets labelled

and unlabelled Markov algorithms and several modifications to the basic

program. These modifications represent several reasonable changes which

can easily be made in the basic program, but which would be difficult or

tedious to make in other representations of the same program.

The following document serves as the basis for the development that

follows.

MARKOV ALGORITHM INTERPRETER

The interpreter is to be designed so that it executes both labelled
and unlabelled Markov algorithms. If the algorithm is not terminated by
the dot convention, then execution should halt when the final rule of
the algorithm is not applicable. A "blank" character is retained as the
first character o* the register so that all append rules are applicable.

II. Data File

A. Parameter Card - This must be the first card of the file of
input cards. If the card is blank, the register's contents
will be printed only at the termination of the algorithm. Its
contents will be printed after the execution of each
applicable rule if a non-blank character appears in column 1.

B. Header Card - This card indicates the title of the algorithm,
the alphabets, and the generic variables (if any) for each
alphabet. The syntax of the heading is given in V. There are
no format restrictions.

- aaMM___^iaAaaa_M^ •^MaMMHiaaa ._... .-—.^^

»n '•*• i »i i ii iiiii»»piip^iiw»i mmi .m^wm*mmmmm**mmmmm^*m**mrm^*immmiii ii 111

APf'ENDIX I: A MARKOV ALGORITHM PROCESSOR 205

C. Algorithm - A single replacement rule is punched on .,ach
card. Its format is as follows:

Cols. i-3 Right-justified integer label. Since this
label has significance only in the control of a
labelled Markov algorithm, it is optional in
the case of an unlabelled one.

Col a A colon

Cols. 5-80 <Markov Wule> <Successor>;

D. Data - A single data card containing an initial character
string must be supplied for each execution of the algorithm.
A semicolon indicates the termination of the character string.
As many data cards as desired may be included.

E. Algorithm Terminator - A card with a comma (,) punched in the
first column indicates: (1) the termination of the data for an
algorithm, and (2) an additional algorithm will follow.

F. End-of-file - A card with commas punched in both columns one
and two terminates the data for the last algorithm in the
file.

Ill, Sample Data File

The following unlabeled Markov algorithm reverses the order of the
characters initially placed in the register. The first character of
each line, which is assumed to represent a single card, is assumed to be
the character punched in the first column of the card. (Note: The
labels are optional in this case.)

REVERSE(A,B1C)D,E,F);G,H,(+,-);;

006:++:-;

00l:-G:G-,

002:- + :-;

003:-:.;

004:+HG:G^;

005::+;

IV. Restrictions

—*- , . . __^^^__— -

' ' mmmm**'^mam*r'^mm*~" • . > imm***«* qnvnai iim^r^immmiimmmmm

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 206

A. The maximum number of alphabets is 10.

B. The maximum number of characters in any alphabet is 30.

C The maximum number of generic variables, over all alphabets, is

10.

D. The algorithm must have labels in the range 1 to 100.

E. The register will hold a maximum of 500 characters.

V. Markov Algorithm Syntax

<Algorithm> ::= <Heading> <Body>

<Heading> ::= <Titie> <Dcviaration>

<Title> ::= <Character string>

<Declaration> ::= (<Alphabef>); <Generic Declaration>; |
<Declaration>
(<Alphabet>); <Generic Declarations

<Alphabet> ::= <Character> | <Alphabet>,<Character>

<Ceneric Declaration> ::= <empty> | <Generic list>

<Generic list> ::= <Character> |
<Generic list>,<Character>

<Body> ::- <Rule>; | <Body> <Rule>;

<Rule> ::- <Label> : <Markov Rule> <Successor>

<Labol> ::- <Digit> | <Label> <Digit>

<Markov Rule> ::- <Side> : <Side>

<Side> ::= <empty> | <Character String>

<Character String> ::- <Character> |
Character String> <Character>

<Successor> ::- <empty> | . I , <Label>

<Character> ::= <all characters which can be punched
into a card except , ,

I) n II n N I

1 iiimiii ■■ i ii mgmmm**1' l IIII«>I«P>« mwit .MM. . I ui^F^m^^^^w^P^M^mm^HnNvivpi^^ppi

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 207

The following development is based on an unpublisheo program due to

F. Heymanns[H]. in its original form, many assumptions were shared

throughout the program, thus making it difficult to understand and

change. The fundamental ideas, however, are sound. What follows is an

attempt to use these laeas but to preserve the initial structure in the

final program. The attempt emphasizes the use of these ideas. Some

readers, however, may be able to construct other programs having better

structure.

The measure is used at various stages to suggest possible

decompositions. One good decomposition seems to possess many of the

properties suggested by Parnas as being important in a system. That

decomposition bears only a superficial resemblance to an initial

decomposition which is described in the next paragraph. Below is an

initial decompostion of the Markov algorithm processor represented as a

transition diagram. The arcs indicate paths for error conditions as

well as transitions corresponding to the occurrence of commas as the

first characters of input cards. ("E" indicates an "error" path.)

process error discovered
^rameters, heading or
input /'"'"

create program environment Tg^-
to process a new a|goriUj

E _
process parameters dnd headinif)

end-of-fil

X/^process error discovered) ^process data for this algnrithmX
[during data input or
Valgorithm execution

Note that each state requires a knowledge that cards containing a comma

m ■ --- - ■ - ■—

»»■"IW«W"WT!P<1PWPP»""T'»W" •"^■"»■■iBIP^^«^-'^"'^ »~i. i .j.waiiiHaMmnw^ ■miniiwmiii i »U i ^"^^BBPm»

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 208

in column one and commas in columns one and two force the processor to

be initialized to accept a new algorithm or to terminate. Implicit in

the diagram is the ability of each state to input a card image. Many 0*

the interactions caused by this shared information can be eliminated b/

removing the ability to input a card image to a new stale, and to

include in this state all information regarding the meaning of cards

containing commas in the firrt two columns. This choice is a direct

application of the "information hiding " principle which is justified by

the value of the measure. Below is the new state diagram.

1
create program environment
to process a new algorithm

•MSM ^H-^^t-^^

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 209

A map for the first stages in this development appears below.

(a) :1.1: (210) (b) »1.2« (210) (c) :1.3: (211) (d) :1.4: (211)
initialize process input and process register

parameter store rules. images by the
and heading stored algorithr.i.
cards.

:1.5: (211) process end-of-file condition

(f) P: '?!?) read and store a card image

(g) :3: (213) process error occurring in algorithm input part

(h) :4: (213) process error occurring in algorithm execution part

(i) :1.2.1: (215)
read card and set pr.

(j) :1.2.2: (216)
input and process
heading card.

(K) :1.2.2.': (216) (I) :1.2.2.2: (217) (m) :1.2.2.3: (217)
set failur: to / iterate over \ find left paren.
ERRHEAD / m. n, o

/

(n) :1.2.2.^ (218) (o) :1.2.2.5: (219)
proct^s alphabet set failure to RULES
and generics.

- —■■ tmtwä

APPENDIX It A MARKOV ALGORITHM PROf tSSOR 210

(a) il.ll

assumptions:

effects and
post-conditions:

(b) :1.2:

assumptions:

effects and
post-conditions:

:1.1: PROVIDE ALL NECESSARY INITIALIZATIONS;

all necessary initializations have been made

requires the ability to invoke :3:, ERF OP, with a
string message, requires ability to invok i NEXTCARD
which makes a new card image fvailable, i.e.
ability to ir.voke :2: and returns to the invoker
only if a card for the current algorithm is
available, NEXTCHAR is the vclue of the character
which immediately follows the character of the
current card image produced by the last call of
NEXTCHAR

-.1.2: INPUT AND PROCESS THE PARAMETER CARD;
INPUT AND PROCESS THE HEADING CARD;

parameter card and heading card have been correctly

processed

w^cm^m wm* mm

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 211

(c) :1.3:

assumptions:

•fleets and
post-conditions:

(d) -A A:

assumptions-

.' » 9 .

Q

effects and
post-r cnditions:

(e) tlA

assumptions:

effects and
post-conditions:

requires the ability to invoke :3:, ERROR, with a
string message, requires ability to invoke NEXTCARD
which makes a new card image available, i.e.
ability to invoke :2: and returns to the invoker
only if a card for the current algorithm is
available, NEXTCHAR is the value of the character
which immediately follows the character of the
current card image produced by the last call of
NEXTCHAR

:1.3: INPUT AND PROCESS THE RULES FOR THIS
ALGORITHM;

all rules for this algorithm have been inputted

requires ability to invoke NEXTCARD which makes a
new card image available, i.e. ability to invoke
:2: and returns to the mvoker only if a card for
the rurrent algorithm is available, NEXTCHAR is the
value of the character which immediately follows the
character of the current card image produced by the
last call of NEXTCHAR

»1.4: PROCESS THE DATA IMAGES WITH RESPECT TO THE
STORED ALG0R1THM;

all data images for this algorithm have been
processed

an end-of-file condition has occurr-d

:1.5: PROCESS END-OF-FILE CONDITION AND TERMINATE;

the Markov algorithm processor has been terminated

 ■ - ■ ■^^'

I '■ " '■■ -'P1 —■-■'■■ "•" " ' ' ' "um mm\nm^m*mmi^*^mmi m^^nrm^mm mmv-ni ^e^mmim

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 212

(f) :2:

assumptions:

effects and
post-conditions:

requires the ability to invoke the termination of
the entire program, i.e. :1.5: ENDQFFILE, requires
the ability to invoke, ALGIN1T (:1.1.1;) the start
of processing for a new algorithm, CP is an index
into C and indexes the last character which was
produced as a value from NEXTCHAR. After an
execution of NEXTCARD, :2:(CP must equal 0, write
access required for CP, C[l] ... C[80] contains the
characters, in order, of the card image which is
inputted as a result of the last execution of
GETIMAGE, requires read access to C, requires
ability to invoke GETIMAGE which inputs a card and
returns to the caller only if a card was inputted,
"," in columns 1 and 2 indicate that the program is
to terminate and a "," m column 1 only indicates
that a new algorithm is to be processed

:2: READ A CARD AND STORE THE 80 CHARACTERS IN
SUCCESSIVE LOCATIONS Or THE ARRAY C, I.E.
C[1],..,C[80] I.E. GETIMAGE.

if C[l] = COMMA then
begin
if C[2] = COMMA then invoke end-of-file state

01.5:)
else invoke aigornhm initialization state

end
else CP ♦- 0

a new card image has been read and the appropriate
iransiiiun made.

-- -

■ '■ ' —^——— 1' ■ " ' ' ■ ' ' ■' ■■" "

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 213

(B) :3:

assumptions:

effects and
post-conditions:

(h) :4:

assumptions:

effects and
post-conditions:

requires ability to invoke NEXTCARD which makes a
new card image available, i.e. ability to invoke
:2: and returns to the invoker only if a card for
the current algorithm is available, requires ability
to print the string argument which is passed as the
parameter to ERROR, ability to perform printing
operations

:3: AN ERROR WAS DISCOVERED BY THE ALGORITHM INPUT
PART;
INDICATE THE ERROR;
READ AND PRINT ALL THE REMAINING IMAGES FOR THIS
ALGORITHM;
while true do

begin
READCARD;
PRINTCARD
end;

string parameter has been printed along with all
remaining card images for the algorithm being
processed

requires ability to invoke NEXTCARD which makes a
new card image available, i.e. ability to invoke
:2: and returns lc the invoker only if a card for
the current algorithm is available, NEXTCHAR is the
value of the character which immediately follows the
character of the current card image produced by the
last call of NEXTCHAR, requires ability to invoke
AA: which processes the remaining data images for
this algorithm, ability to perform printing
operations

A: AN ERROR WAS DISCOVERED BY THE ALGORITHM
EXECUTION PART;
INDICATE THE ERROR;
READ A NEW DATA CARD ;
INVOKE THE ALGORITHM EXECUTION PART;

a new data image has been read and the execution
part has been processed

m

————-— -—■

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 214

The object/assumption table for these objects is:

(a)
(b)
(c)
(d)
(e)
(f)

(s)
(h)

1)
2)

3)

4)
b)

6)

7)

8)
9)

10)
ID

12)

13)

14)
15)

l- \t

\-2''

1-3S
I.4I
l-fti

3:

4 =

1 23456789 101112131115

1 1 I

1 I 1

1 I

1 1 1 1 1 I I 1

I I

I I I I

requires the ability to invoke :3:, ERROR, with a string message
requires ability to invoke NEXTCARD which makes a new card image
available, i.e. ability to invoke :2: and returns to the invoker
only if a card for the current algorithm is available
NEXTCHAR is the value of the character which immediately
follows the character of the current card image produced by
the last call of NEXTCHAR
an end-of-file condition has occurred
requires the ability to invoke the termination of the entire
program, i.e. :1.5: ENDOFFILE

requires the ability to invoke, ALG1N1T 01.1.1:)
the start of processing for a new algorithm

CP is an index into C and indexes the last character which
was produced as a value from NEXTCHAR. After an execution
of NEXTCARD, :2:, CP must equal 0

write access required for CP
C[l] ... C[80] contains the characters,

in order, of the card image which is inputted as a result
of the last execution of GETIMAGE

requires read access to C
requires ability to invoke GETIMAGE which inputs a card

and returns to the caller only if a card was inputted
"," in columns 1 and 2 indicate that the program is to terminate
and a "," in column 1 only indicates that a new algorithm
is to be processed

requires ability to print the string argument which is passed as
the parameter lo ERROR

ability to perform printing operations
requires ability to invoke :1.4: which processes the remaining
data images for this algorithm

■

" " .IIIIIHIIIBPIIH I wimmmmmmmimim ^m* •m^rwmmmmmmm ■ m

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 215

A good decomposition for these objects is

((■) ((•) ((f) ((g , h) ((d) (b , c)) .97) 1.08) .14) .20) 0

Here, objects (g) and (h) process errors, objects (b) and (c) input the

algorithm and object (d) interprets it. Not surprisingly, the lacK of

assumptions made by the initialization part leaves the entropy loading

figure at 0. Next, :1.2: is elaborated

(i) :I.2.1:

assumptions:

•ffacts and
post-conditions:

requires ability to invoke NEXTCARD which makes a
new card image available, i.e. ability to invoke
:2: and returns to the mvoker only if a card for
the current algorithm is available, NEXTCHAR is the
value of the character which immediately follows the
character of the current card image produced by the
last call of NEXTCHAR, requires write access to PR,
pr ■ true means "print the register after each
successful application of a rule; otherwise d not
print the register after each successful application
of a rule

: 1.2.1: READ A NEW CARD IMAGE;
SET THE FUNCTION pr TO INDICATE WHETHER OR NOT THE
REGISTER CONTENTS SHOULD BE PRINTED, I.E.

NEXTCARD;
pr «- if NEXICHAR = "1" then true else false;

pr - true if the register is to be printed after
each succeisfui rule application; false otherwise

■1»«W»^HW""»»^|WI»» —~— IWW" mn^mmmmmm^*

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 216

(j) :1.2.2:

assumptions:

effects and
post-conditions:

(k) :1.2.2.1:

assumptions:

effects and
post-conditions:

requires the ability to invoke :3:, ERROR, with a
string message, requires ability to invoke NEXTCARD
which makes a new card image available, i.e.
ability to invoke :2: and returns to th;.- invoker
only if a card for the current algorithm is
available, NEXTCHAR is the value of the character
which immediately follows the character of the
current card image produced by the last call of
NEXTCHAR, MAXA equals the maximum number of
alphabets permitted for an algorithm, requires read
access to MAXA, ability to set the failure routine
for NEXTCHAR, i.e. FAIL can be assigned a name
which can be invoked if no more characters are
available from NEXTCHAR

:1.2.2: INPUT AND PROCESS THE HEADING CARD IMAGE;

The heading card image has been correctly processed

ability to set the failure routine for NEXTCHAR,
i.e. FAIL can be assigned a name which can be
invoked if no more characters are available from
NEXTCHAR, requires ability to invoke NEXTCARD which
makes a new card image available, i.e. ability to
invoke :2: and returns to the invoker only if a card
for the current algorithm is available,

: 1.2.2.1: SET THE FAILURE ROUTINE FOR NEXTCHAR TO BE
ERRHEAD; NEXTCARD;

ERRHEAD has been set as the failure routine for
NEXTCHAR and a new card image has been read

m*m*^^m .^pn M>«V 1 iMimmommm^**^^*^***

APPENDIX 1: A MARKOV ALGORITHM PROCESSOR 217

(I) :1.2.2.2:

assumptions; a failure routine has been set if NEXTCHAR cannot
provide additional characters from the current
image, either no alphabets have been processed of
all alphabets processed have been correct

:1.2.2.2:

effects and
post-conditions:

(m) : 1.2.2.3:

assumptions:

effects and
post-conditions;

repeat
begin
:1.2.2.3:
:1.2.2.4:
:1.2.2.5
end

until false;

The heading card has been correctly processed and
is error free.

a failure routine has been set if NEXTCHAR cannot
provide additional characters from the current
image, read access to DOT, COMMA, COLON, SEMI, OPEN,
CLOSE which contain the values of •V, V, ":",
";"i "<", ")", assumes write access to CHAR, assumes
read access to CHAR, NEXTCHAR is the value of the
character which immediately follows the character of
the current card image produced by the last call of
NEXTCHAR, a failure routine has been set if NEXTCHAR
cannot provide additional characters from the
current image

: 1.2.2.3: SCAN FOR A LEFT PARENTHESIS, I.E.
repeat

CHAR «- NEXTCHAR
until CHAR - OPEN;

CHAR is an open parenthesis.

■M^

'" ' ' ' "■ •|i'"

APPENDIX It A MARKOV ALGORITHM PROCESSOR 218

(n) •A.2.2A:

assumptions: ability to cet the fanure routine for NEXTCHAR,
i.e. FAIL can be assigned a name which can be
invoked if no more characters ere avjiiiable from
NEXTCHAR, assumes write access to CHAR, assumes read
access to CHAR, requires the ability to invoke :3:,
ERROR, with a string message, NEXTCHAR is the value
of the character whicn immediately follows the
character of the current card image produced by the
last call of NEXTCHAR, MAXA equals the maximum
number jf alphabets permitted tor an algorithm,
requires read access to MAXA, NA equals the number
of alphabets which have been processed thus far for
the current algorithm, requires read accesss to NA,
requires write access to NA, read access to DOT,
COMMA, COLON, SEMI, OPEN, CLOSE which contain the
values of 'V', ".", ":", V. T, T ERRHEAD
assumes compete control when invoked and handles
error messages and further processim,, requires
ability to invoke STORGEN which stores the content
of CHAR, if leg^l, otherwise invokes the apporpriate
error, requires ability to invoke STORALPH, which
otores the alphabet character if all requirements
are met,otherwise STORALPH invokes appropriate error
routines, requires ability to invoke ALPHF1N which
cmplelos any needed processing after an entire
alphabet has been stored

: 1.2.2.4: PROCESS AN ALPHABET AND ITS GENERiCS;

effects and
post-conditions: A fmgle alphabet and its generic* has been

correctly processeo

•MMMaMMM»

lauimiii ■ iiMuiijamniiai u jmi tm^^m^*^* HJMIBaiHnH«! w^*r*mmmmm*n^ ■ ^lPPIB^»^»i™^WlB^

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 219

(0) 1.2.2.5:

as .umptions:

offsets and
post-conditions:

ability to set the failure routine for NEXTCHAR,
i.e. FAIL can be assigned a name which can be
invoked if no more characters are available from
NEXTCHAR, requires ability to invoke RULES which
names the rule input part, but since RULES is a
label in the main program a go to statement can be

used

:1.2.2.5: SETFAIL{RULES);

failure routine for NEXTCHAR has been set to the
next stage of processing

Below is map for the elaboration of -.1.2.2.4:
and several objects used by the elaboration.

(p) :1.2.2A1: (220) (q) :1.2.2A2: (221) (r) :1.2.2A3: (222)
process alphabet part. process generic terminate processing

part. for an alphabet.

(s) :11: (225) get next character

(!) :12: (226) store a generic for the current alphabet

(u) :13: (227) store a character into the current alphabet

(v) :14: (228) terminate processing for current alphabet

(w) :15: (228) test whether space exhausted.

(x) :16: (229) test whether character is a legal
alphabetic or generic

(y) :17: (229) test whether generic has already been used

(i) :18: (230) test whether character has already occurred
in this alphabet.

■■^■HaaaMMM *m^mam*mmmm I IM I I III |M II

pH.i in mii«pa»p ^■{^.•■^■miw^^llllimpg I I. ""•'* — Ill ■■■■I ■«•I "«wnpwitnmaMHM

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 220

(p) :1.2.2A1:

assumptions: ERRHEAD assumes compete control when invoked and
handles error messages and further processing,
NEXTCHAR is the value of the character which
immediately follows the character of the current
card image produced by the last call of NEXTCHAR, NA
equals the number of alphabets which have been
processed thus far for the current algorithm,
requires read accesss to NA, MAXA equals the maximum
number of alphabets permitted for an algorithm,
requires read access to MAXA, requires write access
to NA, assumes write access to CHAR, assumes read
access to CHAR, requires the ability to invoke :3:,
ERROR, with a string message, ability to set the
failure routine for NEXTCHAR, i.e. FAIL can be
assigned a name which can be invoked if no more
characters are available from NEXTCHAR, read access
to DOT, COMMA, COLON, SEMI, OPEN, CLOSE which
.... . .1111 II M 11." M." "/" "V

contain the values of . , , , • . 11 v > ' »
requires read/write access to NOIT, which controls a
loop that process alphabets, requires ability to
invoke STQRALPH, which stores the alphabet character
if all requirements are met.otherwise STORALPH
invokes appropriate error routines

: 1.2.2.4.1: PROCESS ALPHABET PART -

if NA + 1 > MAXA then ERRORC'TOO MANY ALPHABETS");
SETFAIL(ERRHEADNAME);
NOIT <- false;

affects and

repeal
begin
CHAR <- NEXTCHAR;
STORALPH;
CHAR «- NEXTCHAR;
if CHAR t COMMA then

begin
if CHAR ^ CLOSE or NEXTCHAR t* SEMI then

ERRHEAD
else

NOIT «- true
end

end
until NOIT;

NA *- NA + 1;

yBgj--

■Wi ll11»' "■ mmm* •'•< '"" ^"■»■^

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 221

post-conditions:

(q) :1.2.2A2:

assumptions:

a single alphabet has been successfully processed
and stored, NA equals the number of alphabets which
have been processed thus far for the current
algorithm

assumes write access to CHAR, assumes read access
to CHAR, read access to DOT, COMMA, COLON, SEMI,
OPEN, CLOSE which contain the values of ".", ",",
":", ";", "(", ")", NEXTCHAR is the value of the
character which immediately follows the character of
the current card image produced by the last call of
NEXTCHAR, requires read/write access to Kolli, which
controls a loop that processes generics, ERRHEAD
assumes compete control when invoked and handles
error messages and further processing, requires
ability to invoke STORGEN which stores the content
of CHAR, if legal, otherwise invokes the apporpriate
error

: 1.2.2.4.2: PROCESS GENERIC VARIABLES FOR THIS
ALPHABET -

CHAR *■ NEXTCHAR;
NOin *■ false;
if CHAR / SEMI then

begin
repeat

begin
STORGEN;
CHAR *■ NEXTCHAR;
if CHAR t COMMA then

begii)
if CHAR t SEMI then ERRHEAD
eise N01T1 *■ true
end

el.e CHAR «- NEXTCHAR
end

until Norrit
end;

effects and
post-conditions: the generic part of the alphabet

successfully piucessed.
has been

^MMMH - -"-- ■•

mimmmm^mm*^imm^immmm
1,1 i"1"" LIU IKPII ■«•«■«_<«> I

APPENDIX It A MARKOV ALGORITHM PROCESSOR 222

(r) :1.2.2.4.3:

assumptions:

effects and
post-conditions:

requires ability to invoke ALPHF1N which cmpletes
any needed processing after an entire alphabet has
been stored

: 1.2.2A3: ALPHFIN;

final processing for an alphabet is complettd

The object/assumption table for this exp^ntion is

(i)
(j)
00
(I)
(m)
(n)
(o)

(P)
(q)
(r)

1)
2)

3)

4)
5)

6)

7)

8)
9)

10)
11)

12)

1-2- !>

\-2-2'

2- 2-
2- 2-
2-2-

2'

3-

|, 9. 2- fl!

I- 2- 2- S''

I-2- 2-4 \''

1- 2- 2-A' 2'

|. 2- 2-4-35

I 23456789 10111213141516171819202122232425262728293031323334353637:

II II
111 III

I 1
I

I I I I I
II 111 I I I I I t I I I I

1 I
11 111 I I I 1 I I I t I

I I I I I II
1

requires the ability to invoke :3:, ERROR, with a string message
requires ability to invoke NEXTCARD which makes a new card image
available, i.e. ability to invoke :2: and returns to the invoker
only if a caru for the current algorithm is available
NEXTCHAR is the value of the character which immediately
follows the character of the current card Nffge produced by
the last call of NEXTCHAR
an end-of-file condition has occurred
requires the ability to invoke the termination of the entire
program, i.e. :1.5: ENDOFFILE

requires the ability to invoke, ALG1NIT Ol.l.l:)
the start of processing for a new algorithm

CP is an index into C and indexes the last character which
was produced as a value from NEXTCHAR. After an execution
of NEXTCARD, :2:, CP must equal 0

write access required for CP
C[l] ... C[80] contains the characters,

in order, of the card image which is inputted as a result
of the last execution of GET1MAGE

requires read access to C
requires ability to invoke GETIMAGE which inputs a card

and returns to the caller only If a card was inputted
V in columns 1 and 2 indicate that the program is to terminate
and a "," in column 1 only indicates that a new algorithm

^^Mi

WPiWWPIIiWPW"^""""!"""- i i n,,imtmmnm*^mmmmtm

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 223

is to be processed
13) requires ability to print the string argument which is passed as

the parameter to ERROR
14) ability to perform printing operations
15) requires ability to invoke :1.4: which processes the remaining

data images for this algorithm
16) requires write access to PR
17) pr = true means "print the register aHer each successful

application of a rule; otherwise d not print the register
after each successful application of a rule

18) MAXA equals the maximum number of alphabets permitted for
an algorithm

19) requires read access to MAXA
20) ability to set the 'ailuro routine for NEXTCHAR, ..e. FAIL

can be assigned a nafrv* which can be invoked if no more characters
are available from NEXTCHAR

21) NG contains the number of generic variables encountered
for the currprii algorithm

22) CG[i](1 < i < NG, equals the i-th generic variable
encountered for the current algorithm

23) AG[i], 1 < i < NG, equals the alphabet name which
CG[iJ is a generic variable

24) a failure routine has been set if NEXTCHAR cannot
provide additional characters from the current image

25) read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE which
contain the values of ".", "V, ":", ";", "(", ")"

26) assumes write access to CHAR
27) assume^ read access to CHAR
28) requires ability to invoke RULES which names the rule input

part, but since RULES is a label in the main program
a go to statement can be used

29) ERRHEAD assumes compete control when invoked
and handles error messages and .urther processing

30) NA equals the number of alphabets which have been processed
thus far for the current algorithm

31) requires read accesss to NA
32) requires write access to NA
33) requires read/write access to N01T, which controls a

loop that process alphabets
34) require? ability to invoke STORALPH, which stores the alphabet

character if all requirements are met.otherwise STORALPH
invokes appropriate error routines

35) requires read/write access to N0IT1, which controls a loop
that processes g^nerics

36) requites ability to invoke STORGEN which stores the content
of CHAR, if legal, otherwise invokes the apporpriate
error

37) requires ability to invoke ALPHFIN which cmpletes any
needed processing after an entire alphabet has been
stored

MM

wi m i ivmmm^*mmi***^^*^***^liimmm m^mmmtm^mmmmmmmmmmm ■BM^^^^'TWf^

APPENDIX I: A MARKOV ALGORITHM PROCtSSOR 224

38) either no alphabets have been processed of all alphabets
processed have been correct

This table involves two stages ot elaboration. RLB and RUB for the

elaboration of ;1.2: to :1.2.1: and :1.2.2: are

RUB: ((a) ((e) ((f) ((g , h) ((d) (b , c)) .94) 1.06) .14) .19) 0

RLB: ((a) ((e) ((f) ((g , h) ((d) (b , c)) .94) .99) .07) .10) 0

but the actual expansion leads to

((a) ((•/ ((f) ((g , h) ((d) ((e) (i , j) 1.0) .94) .99) .07) .10) 0

Expanding :1.2.2: leads to RLB and RUB

RUB: ((a) ((e) ((f) ((g , h) ((d) ((c) (i , j))

.88) 1.23) .79) .93) .12) .16) 0

RLB: ((a) ((e) ((f) ((g . h) ((d) ((c) (i , j))

0) .88) .86) .93) .04) .05) 0

but the actual entropy loadings are

((a) ((e) ((f) ((g , h) ((d) ((c) ((i) (k , I , m , n , o))

1.33) 1.59) 1.36) 1.48) .12) .16) 0

A better decomposition is

((a) ((e) ((f) ((I) ((k , o) ((m , n) ((i) (d , e, g . h))

1.33) 1.20) 1.33) .54) .36) .12) 0

After examining RLB and RUB for the expansion of :1.2.2.4:, the

following good decomposition was found

((a) ((e) ((r) ((f) ((I) ((k , o) ((m , q , p)

((i) ((d , c, g , h)) 1.34) 1.12) 1.26) .49) .09) .12) .16) 0

•_^^MM - -- ■ - - ■ ■ -

1 APPENDIX I: A MARKOV ALGORITHM PROCESSOR 225

The 'najor parts in this decomposition are (1) the algorithm

interpretation and input parts along with the error processing that can

occur there (c , d , g , h); (2) alphabet and generic input parts (m

, p , q); and (3) the parts that set failure routines.

(s) :11:

assumptions:

effects and
post-conditions:

requires ability to invoke FAIL which correctly
determines which objects assume control, a failure
routine has been set if NEXTCHAR cannot provide
additional characters from the current image, C[l]

C[80] contains the characters, in order, of the
card image which is inoutted as a result of the last
execution of GETIMAGE, requires read access to C, CP
is an index into C and indexes the last character
which was produced as a value from NEXTCHAR. After
an execution of NEXTCARD, :2:, CP must equal 0, read
access required for CP, write access required for CP

:11; NEXTCHAR: CP «- CP + 1;
if CP > 80 then
KAIL
else
NEXTCHAR «- CLCPj;

the value or :11: is set to be C^P], i.e. the
next available character in the current image, and
it no more rharacters are available, the failure
loüiine is execuieci

--

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 226

•
(t) .12:

assumptions: requires the ability to invoke :3:, ERROR, with a
string message, NA equals the number of alphabets
which have been processed thus far for the current
algorithm, requires read accesss to NA, read and
write access required for the variable 1, requires
ability to invoke TESTLEGAL which returns only if
CHAR is not ,,.,,, ",", T, ":", requires ability to
invoke TESTGEN which returns only if CHAR is not
equal to an already used generic variable for this
algorithm, A names a one-dimensional array, which
from UPA to its upper bound contains alphabetic
characters, requires read access for A, AG[i], 1 S i
< NG, equals the alphabet name which CG[i] is a
generic variable, requires write access to CG,
CG[i], 1 < i < NG, equals the i-th generic variable
encountered for the current algorithm, NG contains
the number of generic variables encountered for the
current algorithm, requires read access to NG,
requires write access to NG, requires write access
to AG, assumes read access to CHAR, CHAR contains
the next unstored character from the alphabet or
gerierics being currently processed, AL[1]
AL[NA] names the index of the lower bound of the
characters in an alphabet i.e. AL[i] is the lower
bound for the i-th alphabet and AL[i-l] is the upper
bound for that alphabet, where AL[0] equals the
initial value plus 1 of UPA, requires read access to
AL, requires ability to invoke ERRGEN, which assumes
control and invokes an appropriate error routine,

:12: STQRGEN

TESTLEGAL;
TESTGEN;
for I «- UPA step 1 until AL[0J -1 do

if CHAR •= A[I] then ERRGLN;

NG *- NG + 1;
if NG > MAXG then ERROR ("TOO MANY GENERIC
VARIABLES");

CG[NG] «- CHAP;
AG[NG] «- NA:

effects and
post-conditions: content of CHAR has been stored as a generic

variable with respect to the alphabet currently
being processed

mtmm—*

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 227

(u) :13:

zssumptions: requires ability to invoke TESTLEGAL which returns
only if CHAR .s not ".", V, "", ":", requires
ability to invoke TESTGEN which returns only if CHAR
is not equal to an already used generic variable for
this algorithm, requires ability to invoke TESTAL
which returns only if CHAR is not equal to a
character which has already occurred in the alphabet
currently being processed, requires aoility to
invoke TEST which returns only if there storage
space as Indicated by the values of LPA and UPA, UPA
names the last cell of an array into which an
alphabetic character was stored, counting from the
top of some one-dimensional array. UPA is
decremented by 1 each time an available cell needs
to be named, requires read access to UPA, requires
write access to UPA, A names a one-dimensional
array, which from UPA to its upper bound contains
alphabetic characters, requires write access for A,
assumes read access to CHAR, CHAR contains the next
unstored character from the alphabet or generics
being currently processed

:13: STÜRALPH

YtSTLEGALj
IcSTGEN;
TESTAL;

UPA «- UPA - 1;
TEST;
A[UPA] ^CHAK;

eiiecis dud
posi-conditions: the contenls ot CHAR has been correctly stored as

an alphabet character in the current alphabet

MOHiM IIIMI .. ^—^—^-J^.-. ..

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 228

(v) il4:

assumptions:

effects and
post-conditions:

(w) :15:

assumptions:

effects and
post-conditions:

AL[l] ... AL[NA] names the index of the lower
bound of the characters m an alphabet, i.e. AL[i]
is the lower bound for the i-th alphabet and AL[i-l]
is the upper bound for that alphabet, where AL[0]
equals the initial value plus 1 of UPA, requires
write access to AL, NA equals the number of
alphabets which have been processed thus far for the
current algorithm, requires read accest-.s to NA, UPA
names the last cell of an array info which an
alphabetic character was stored, counting from the
top of some one-dimensional array. UPA is
decremented by 1 each time an available cell needs
to be named, requires read access to UPA

:H: ALPHFIN

AL[NA] «- UPA;

lower bound for alphabet NA has been set

requires the ability to invoke :3:, ERROR, with a
string message, UPA names the last cell of an array
into which an alphabetic character was stored,
counting from the top of some one-dimen:.ional array.
UPA is decremented by 1 each time an available cell
needs to be named, requires read access to UPA, LPA
names the las cell of an array into winch rules are
stored, counting from the lower bound of a
one-dimensional array . LPA is incremented by one
each time an available cell needs to be named,
requires read access to LPA, LPA and UPA are index
variables for the same array

:15: TEST I.E.
if LPA > UPA then

ERRORC'ALGORiTHM TEXT TOO LARGE OR TOO MANY
ALPHABET

CHARACTERS");

there is an available storage location for a rule
rule character or an alphabetic character or a
generic

__ --- -

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 230

(z) :18:

assumptions: requires read/write access to K, NA equals the
number of alphabets which have been processed thus
far for the current algorithm, requires read accesss
to NA, requires the ability to invoke :3:, ERROR,
with a string message, UPA names the last cell of an
array into which an alphabetic character was stored,
counting from the top of some one-dimensional array.
UPA is decremented by 1 each time an available cell
needs to be named, requires read access to UPA, A
names a one-dimensional array, which from UPA to Its
upper bound contains alphabetic characters, requires
read access for A, assumes read access to CHAR, CHAR
contains the next unstored character from the
alphabet or generics being currently processed,
requires read access to AL, AL[1] ... AL[NA] names
the index of the lower bound of »he characters in an
alphabet, i.e. AL[i] is the lower bound for the
i-th alphabet and AL[i-l] is the upper bound for
that alphabet, where AL[0] equals the initial value
plus 1 of UPA

:18: TESTAL I.E.
for K <- UPA stop 1 until AL[NA] - 1 do

if CHAR = A[K] then
ERRORfCHARACTER APPEARS TWICE IN ALPHABET");

effects and
post-conditions.

CHAR has not occurred already irt the alphabet being
processed

«MMMMMM

APPENDIX It A MARKOV ALGORITHM PROCESSOR 231

1 2 3 4 5 6 7 4 9 1011 I2I3I4ISI6I 7 I8l9202l2223242526272829303l3233313536o/3e39404 1

(s) « W'
(t) '\2' \
(u) •\3'-
(v) 1 |4|
(w) : 15s 1
(x) : 16' |

(y) '• 17!
(z) : is: l

till 1

I I I

I I

I I

I

1 1

1 1

I 1

I I

424341451647481950515253545657585960616263646566676869
(0)

(t)
(U)
(V)

(w)
(X)

(y)
U) litt

||>

12:

13!
I4:

IS!

It«
17:

1 1 1 1 1 1 1 1 1 1 1

111 1

1 1 1 1 1

1 1 1 1 1

1 1

1 1

1 1

1 1 1

1

1) requires the ability to invoke -.d:, ERROR, with a string message
2) requires ability to invoke NEXTCARD which makes a new card image

available, i.e. ability to invoke :2: and returns to the invoker
only if a card tor the current algorithm is available

3) NEXTCHAR is the value of the character which immediately
follows the character of the current card image produced by
the last call of NEXfCHAR

4) an end-of-file condition has occurred
5) requires the ability to invoke the lormmation of the entire

program, i.e. :1.5: ENOOFFILE
6) requires the ability to invoke, ALGINIT (:1.1.1;)

the start of processing for a new algorithm
7) CP is an index into C and indexes the last character which

was piüducod as a value from NEXTCHAR. After an execution
of NEXTCARD, :2:, CP must equal 0

8) write access required for CP
9) C[i] ... C[80] contains the characters,

in order, of the card image which is inputted as a result
of the last execution of GETIMAGE

10) requires read access to C
11) requres ability to invoke GETIMAGE wlncli inputc a card

and returns to the caller only if a card was inputted
12) "," in columns 1 and 2 indicate that the program is to terminate

and a "," in column 1 only indicates that a new algorithm
is to be processed

13) requires ability to print the string argument which is passed as
trie parameter to ERROR

14) ability to perform printing operations
lb) requires aoiiity to invoke :1.4; wnich processes the remaining

MMMMMIM

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 232

19)
20)

21)

data images for this algorithm
16) requires write access to PR
17) pr = truo means "print the register after each successful

application of a rule; otherwise d not print the register
after each successful application of a rule

18) MAXA equals the maximum number of alphabets permitted for
an algorithm

requires read access to MAXA
ability to set the failure routine for NEXTCHAR, i.e. FAIL
can be assigned a name which can be invoked if no more characters
are available from NEXTCHAR
NG contains the number of generic variables encountered

for the current dlgonthm
22) CG[i]) 1 < i < NG, equals the i-th generic variable

encountered for the current algorithm
23) AG[i], i < i < NG, equals the alphabet name which

CG[i] is a generic variable
24) a failure routine has been set if NEXTCHAR cannot

provide ddditional characters from the current image
25) read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE which

. . .. , # n n M M n if ii it if/ii IIVII
contain the values of . , , , : , \, (,)
assumes write access to CHAR
assumes reod access to CHAR
requires ability to invoke RULES which names the rule input
part, but since RULES is a label in the main program
a go to statement can be used
ERRHEAD assumes compete control when invoked

and handles error messages and further processing
NA equals the r.^mber of alphabets which have been processed

thus far for the current algorithm
requires read accesss to NA

requires write access to NA
requires read/write access to NOIT, which controls a

loop that process alphabets
34) requires ability to invoke STORALPH, which stores the alphabet

character ii ail requirements are met.otnerwise STORALPH
invokes appropriate error routines

requires read/write access to NOiTl, which controls a loop
that processes generics

requires ability to invoke STORGEN which stores the content
of CHAP, if legal, otherwise invokes the apporpriate
error

37) requires ability to invoke ALPHFIN which cmpletes any
needed processing after an entire alphabet has been
stored

38) either no alphabets have been processed of all alphabets
processed have been correct

39) requires ability to invoke FAIL which correctly determines
which objects assume control

40) read access required for CP

26)
27)
TB)

29)

30)

31)
32)
33)

35)

36)

MMM

^

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 233

44)

45)
46)

48)
49)
50)

51)

52)
53)

41) read and write access required for the variable 1
42) requires ability to invoke TtSTLEGAL which returns only if

LHAK ii> not . , , , ; , :

43) requires ability to invoke TESTGEN which returns only if
CHAR is not equal to an already

used generic variable for this algorithm
A names a one-dimensional array, which from UFA to its
upper bound contains alphabetic characters
requites read access for A
NG contains the number of generic variables encountered

for the current algorithm
47) requires redd access to NG

requires write access to NG
requires write access to AG
CHAR contains the next unstored character
from the alphabet or genencs being currently processed
AL[1] ... AL[NAJ names the index of the lower bound of the
characters in an alphabet, i.e. AL[i] ts the lower
bound for the i-th alphabet and AL[i-lj is the
upper bound for that aiphabet, where AL[0] equals the
initial value plus i of UFA
requires re.id access to AL
requires ability to invoke ERRGEIM, which assumes

control and invokes an appropriate error routine
54) requires ability to invoke TESFAL which returns only if

CHAR is not equal to a cl .racter which has already occurred in the
alphabet currently being pro^ssed
requires ability to invoke TEST which returns only if there
storage sp.ice as indicated by the values of LFA and UFA

56) UPA names the last cell of an array into which an alphabetic
character was stored, i ountmg from the top of some
one-dimensional array. UFA is decremented by 1
each time an available cell needs to be named
require? read access to UFA
requires write access to UFA
A names ■ one-dimensional array, wnich from UFA to its
upper bound contains alphabetic characters
requires write access for A
requires write access to AL
LPA names the las cell of an array into which rules
are stored counting from the lower bound of a
one-ditnensional array . LFA is incremented by one each
time an available cell needs to be named
requires read access to LFA
LPA and UFA are index variables for the same array
requires read access to CG
requires write access to CG
requires read/write access to J
requires read/write access to K
requites read access tor A

55)

57)
58)
59)

60)
61)
62)

63)
64)
65)
66)
67)
68)
69)

APPENDIX !•• /: MARKOV ALGORITHM PROCESSOR 234

After examining entropy loading values for these new objects, the

following good decomposition was found

((a) ((r) ((•) ((f) ((s) ((I) ((k , o) ((i)

((d,8,h)((v,w) ((x) ((c) ((y , u) ((z , t)

(m , q , p)) 1.66) 1.48) 1.44) 1.44) 1.31)

1.00) 1.02) .47) .41) .55) .36) .10) .12) 0

This decomposition is similar to the decomposition at the last stage.

Because objects (r) ... (v) were introduced, the generic and alphabet

input parts interact strongly with the rest of the program.

MMM—a»i

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 235

Next, :1.3: that inputs rules, is elaborated. A map for this

elaboration, as well as a map for several objects invoked by the

elaboration of :1.3:, appears below.

(*a) : 1.3.1: (236) set failure routine to ERRULENAME.

(*b) :1.3.2: (236) initialize for rule input.

(*c) :1.3.3: (236) get a new input card.

:1.3: (*d) :1.3.4: (237) as long as the input card is a rule, keep
executing :1.3.5: and :1.3.6:.

(*e) :1.3.5: print card; input and store rule.

(*f) :1.3.6: (237) get a new input card.

(*g) :1.3.7: (238) process end of rules conditions.

(*h) :1.3.5.1: (238) print card

(«i) :1.3.5.2: (238) initialize for new rule.

(*j) : 1.3.5.3: (238) process rule label.

- (*K) :1.3.5.4: (239) collect left part of rule.

(*l) :1.3.5.5: (239; initialize for right part.

(*m) :1.3.5.6: (240) collect and store right part.

(*n) :1.3.5.7: (241) collect and store successor label.

:1.3.5:

(*o) :20: (242) input a label.

(*p) :21: (243) store a label.

(*q) :30: (244) mark rule as a terminal rule.

(*r) :31: (245) process successor part of rule.

(«s) :32: (246) make a character part of this rule.

(*t) :33: (247) initialize for rule processing.

Hg^jUuri^U^^^^^

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 236

(*u) :34: (248) initialize for processing a new rule.

(*v) :35: (249) initialize for processing right part of rule.

(«w) :36: (250) process end of all rule input conditions.

(#x) :37: (250) check whether the current card should be
interpreted as a rule.

(*a) :1.3.1:

assumptions: requires ability to set the failure routine for
NEXTCHAR, i.e. the ability to invoke SETFAIL with a
variable which names the part which is to be invoked
if no more characters are available from NEXTCHAR,
ERRULENAME contains the value which indicates a
routine which can take control if an error is
discovered as rules are being stored, requires read
access to ERRULENAME

:1.3.1: SETFAIL(ERRULENAME);

effects and
post-conditions:

(*b) :1.3.2:

assumptions:

effects and
post-conditions:

(«c) : 1.3.3:

assumptions:

effects and
post-conditions:

failure routine for NEXTCHAR has been set to the
part named by ERRULENAME

requires ability to
initializes the input part
algorithm

invoke IN1TRA, which
for rules for a new

:1.3.2: EXECUTE ANY NEEDED INITIALIZATIONS FOR
INPUTTING THE RULES FOR AN ALGORITHM, I.E. INITRA;

rule input part can correctly accept a set of rules
for a new algorlt'im

requires ability to invoke NEXTCARD which makes a
new card image available, i.e. ability to invoke
:2: and returns to the invoker only if a card for
the current algorithm is available

: 1.3.3: NEXTCARD;

a new card image has been read and is available

r-^.m*mtm . - •^^

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 237

(*d) :1.3.4:

assumptions: requires ability to invoke CARDISRULE which
determines whether the current card image is to be
interpreted as as a rule or not

: 1.3.4:

effects and
post-conditions:

(*e) :1.3.5:

assumptions:

effects and
post-conditions:

(*f) :1.3.6:

assumptions:

effects and
post-conditions:

while CARDISRULE do
begin
:1.3.5: ;
:1.3.6:
end;

all rules for this algorithm have been successfully
Inputted

requires ability to invoke PRINTCARD which prints
the current card image,

: 1.3.5: PRINTCARD;
INPUT AND STORE A RULE;

card image has been printed and a single rule has
been correctly inputted

requires ability to invoke NEXTCARD which makes a
new card image available, i.e. ability to invoke
:2: and returns to the invoker only if a card for
the current algorithm is available

: 1.3.6: NEXTCARD;

a new card image has been inputted and is available

Ji

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 238

(*g) :1.3.7:

assumptions:

«fleets and
post-conditions:

(*h) : 1.3.5.1:

assumptions:

effects and
post-conditions:

(«i) :1.3.5.2:

assumptions:

effects and
post-conditions:

(*j) :1.3.5.3:

assumptions:

effects and
post-conditions:

requires ability to invoke EDR, end of rules
condition processor

: 1.3.7: EDR;

all end-of -rule conditions have been correctly
resolved

Next, tltSAi, which inputs a single rule, is
elaborated.

requires ability to invoke PRINTCARD which prints
the current card image

: 1.3.5.1: PRINTCARD;

current card image has been printed

requi-es ability to invoke INITR which initializes
for inputting a new rule

:1.3.5.2: INITIALIZE FOR THIS RULE I.E. INITR;

rule input is properly initialized to accept a new
rule

requires ability to invoke LABL which collects a
label terminated by the character in TERM and leaves
the integer label value in LAB, requires ability to
invoke STQRLABEL which associates the label with the
current rule, requires write accesr to TEflM, read
access to DOT, COMMA, COLON, SEMI, OPEN. CLOSE which
contain the values of ".", •'.", ":", ";", "(", ")"

: 1.3.5.3: TERM «■ COLON;
LABL;
STORLABEL;

label of current rule has been correctly processed
and associated with tho current rule

w^^^mma^mammm -— ■ - i ill !■ 1 ■ il

m^m^rwi**^mmqmmmmmiim*m~^*> i " »•w*^mmimm " ! • ■■ •!■ ■ •■■iiiiii»—^nnnp

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 239

(*K) : 1.3.5.4:

assumptions:

effects and
post-conditions:

(*l) :1.3.5.5:

assumptions:

effects and
post-conditions:

NEXTCHAR is the value of the character which
immediately follows the chiracter of the current
card image produced by the last call of NEXTCHAR, a
failure routine has been set if NEXTCHAR cannot
provide additional characters from the current
image, read access to DOT, COMMA, COLON, SEMI, OPEN,
CLOSE which contain the values of "", ",", ":",
";", "(", ")", assumes write access to CHAR,
requires ability to invoke TESTLEGAL which returns
only if CHAR is not ".", ",", ";", V, ability to
invoke STORCHAR which returns only if the co.itent of
CHAR could be successfully stored with rule being
processed

: 1.3.5.4: COLLECT AND STORE LEFT PART OF RULE, I.E.

CHAR «- NEXTCHAR;
while CHAR H COLON do

begin
TESTLEGAL;
STORCHAR;
CHAR •- NEXTCHAR
end;

the left part of a rule has been correctly stored

requires ability to invoke 1NITRIGHT which
initializes for processing the input of a right part
of a ruie

: 1.3.5.5: INITIALIZE FOR RIGHT HALF RULE PROCESSING
I.E. INITRIGHT

the right half of the rule can be correctly
processed

^MMi^ mmtm

ijnviiLii wmr^^^m ' • ' ' ""m

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 240

(*m) :1.3.5.6:

assumptions: NEXTCHAR is the value of the character which
immediately follows the character of the current
card image produced by the last call of NEXTCHAR, a
failure routine has been set if NEXTCHAR cannot
provide additional characters from the current
image, assumes write access to CHAR, assumes read
access to CHAR, requires ability to invoke TESTLEGAL
which returns only if CHAR is not ".", ",", ";",
":", read access to DOT, COMMA, COLON, SEMI, OPEN,
CLOSE which contain the va ues of ".", ",", ":",
";", "(", '■)", abiMy to invoke STORCHAR which
returns only if the content of CHAR could be
successfully stored with rule being processed

: 1.3.5.6: COLLECT AND STORE RIGHT HALF OF RULE I.E.

CHAR - NEXTCHAR;
while CHAR ^ DOT A CHAR ^ SEMI A CHAR H COMMA do

begin
TESTLEGAL;
STORCHAR;
CHAR - NEXTCHAR
end;

effects and
post-conditions: right half of the rule has been correctly processed

L

■> lau«*

1 APPENDIX I: A MARKOV ALGORITHM PROCESSOR 241

(»n) :1.3.5.7:

assumptions: read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE
... ' II II II M H M II II »/"

which contain the values of . , , , : , it \ ,
")", requires the ability to invoke :3:, ERROR, with
a string message, which does not return but handles
further processing, assumes read access to CHAR, a
failure routine has been set if NEXTCHAR cannot
provide additional characters from the current
image, assumes write access to CHAR, NEXTCHAR is the
value of the character which immediately follows the
character of the current card image produced by the
last call of NEXTCHAR, requires ability to invoke
PROCTERM which indicates a rule as a terminal rule;
requires ability to invoke PROCSUC which processes
the successor part of a rule, requires read access
to LAB, requires write access to TERM, requires
ability to invoke LAQL which collects a label
terminated by the character in TERM and leaves the
integer label value in LAB, a nrgative value in LAB
indicates that no label was collected

: 1.3.5.7: COLLECT AND PROCESS SUCCESSOR PART OF
RULE, I.E.

if CHAR 4 SEMI then
begin
if CHAR = DOT then

bef.in
Ph JCTtRM;
CHAR «- NEXTCHAR;
if CHAR ,t SEMI then

ERRORC'RULE NOT CORRECT")
end

else
if CHAR = COMMA then

begin
TERM «- SEMI;
LABL;
if LAB < 0 then

ERRORC'SUCCESSOR MISSING")
PROCSUC;
end;

end;

effects and
post-condittons: the successor part of the current rule has been

correctly processed

*i^mm^w*mmmmK' ■vmnHMr-na

APPENDIX 1: A MARKOV ALGORITHM PROCESSOR 242

Below are the elaborations
functions which are needed.

of the additional

(*o) :20:

assumptions: a failure routine has been set if NEXTCHAR cannot
provide additional characters from the current
image, TERM contains the non-digit character which
is expected to terminate a label, requires read
access to TERM, assumes write access to CHAR,
assumes read access to CHAR, NEXTCHAR is the value
of the character which immediately follows the
character of the current card image produced by the
last call of NEXTCHAR, the digits "0", "1", "2", ...
, "9" are represented by character codes such that
"0" - ZERO = 0, ... ,"9" - ZERO = 9 and the only
legal label characters are digits and BLANK,
read/write access to LAB is required, legal range of
labels is 1 through 100, BLANK contains the
representation of a space and ZERO contains the
representation of a zero, requires read access to
BLANK and ZERO , requires the ability to invoke :3:,
ERROR, with a string message, which does not return
but handles further processing

:20: LABL, l.E
LAB *- -I;
CHAR •- NEXTCHAR;
while CHAR H TERM do

begin
if CHAR > ZERO A CHAR < ZERO + 9 then

LAB ♦- (if LAB > 0 then 10 * LAB + CHAR - ZERO
else CHAR - ZERO)

else
if CHAR t BLANK then

ERRORC'ILLEGAL CHARACTER IN LABEL");
CHAR «- NEXTCHAR

end;

if LAB = 0 or LAB > 100 then
ERRORfLABEL OUT OF RANGE");

return the value of LAB;

effects and
post-conditions: a syntactically correct label has been

concatenated, if control returns to caller; if no
label has been concatenated, the value -1 is
returned

mmmmm

PWW»™""^ i '■ "P ■^^■»•■•»i ■*«"Pi*pip^wp»mp«wp»wwiww^

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 243

(*p) :21:

assumptions:

effects and
post-conditions:

assumes LAB contains a legal label name or -1 which
indicates that no label has been concatenated,
requires read access to LAB, requires write access
to LAB, Nl names the rule being currently inputted,
requires read access to Nl, requires ihe ability to
invoke :3:, ERROR, with a string message, which does
not return but handles further processing, R names a
one-dimensional array which contains pointers to
rules such that label i names rule R[i]; R[i] = 0
means label i is not defined; R[i] > 0 means the
label is defined and R[i] is a pointer to the rule
it namws; R[i] < 0 means that label i is undefined
but has been referenced by rule -R[i] and is the
head of a chain, A names a one-dimensional array
which from its lower bound to LPA contains
representations of rules, requires write access for
A, after rule initialization, A[N1] - 1 = NR, Nl
names the current rule A[N1] = -1, N2 = Nl + 1, A[N2]
■ 2, NE = Nl + 2 and the location which is the name
Of the immediately preceding rule names the current
rule. thus if NT is the value of Nl prior to this
initialization then A[Nr] = Nl - unless NR = 1 in
which case the previous value of Nl is not defined

:21: STQRLABEL

if LAB > 0 then
begin
if R[LAB] > 0 than ERRQRC'DOUBLE LABEL

OCCURRENCE");

if R[LAB] = Ü then R[LAB] «- Nl
•IM
while R[LABJ < U do

begin
TEMP ♦- - R[LAB];
R[LAB] - A[TEMP];
A[TEMP] «- Nl
end;

end;

label LAB has been stored and all undefined
references to LAB have been resolved

jt.piiffl fmm iiiijHiim ■nwww^win^ ' " ' ' " i l ■-■■!" ■•I" i" "' ■■ ii***^m^mmmm*mmmmmmm****~*immm*mmmmt\

APPENDIX It A MARKOV ALGORITHM PROCESSOR 244

(»q) :30:

assumptions: after rule initialization, A[N1] - 1 = NR, Nl names
the current rule A[N1] - -1, N2 » Nl + l, A[N2] - 2,
NE - Nl + 2 and the location which is the name of
the immediately preceding rule names the current
rule. thus if Nl' is the value of Nl prior to this
initialization then A[Nr] = Nl - unless NR = 1 in
which case the previous value of Nl is not defined,
requires read access to N2, requires write access
for A, A names a one-dimensional array which from
its lower bound to LPA contains representations of
rules, a value of -1 in A[N2] indicates that the
rule is a terminal rule

:30: PROCTERM, I.E.
A[N2] «- -1;

•ffects and
post-conditions: the rule is marked as terminal

r " • tmimm* **m*imm***^^*m ■I I' IN I !»■—^•^^^■»»^■w ■"•'■"'■i""w~^"«

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 245

(*r) :31:

assumptions: after rule initialization, A[N1] - I = NR, Nl names
the current rule A[N1] = -I, N2 - Nl + 1, A[N2] = 2,
NE = Nl + 2 and the location which is the name of
the immediately preceding rule names the current
rule. thus if Nl' is the value of Nl prior to this
initialization then A[Nr] ■ Nl - unless NR - 1 in
which case the previous value of Nl is not defined,
R names a one-dimensional array which contains
pointers to rules such that label i names rule R[i];
R[i] - 0 means label i is not defined; R[i] > 0
means the label is defined and R[i] is a pointer to
the rule it namws; R[i] < 0 mea'is that label i is
undefined but has been referenced by rule -R[i] and
is the head of a chain, requires write access to R,
requires read access to R, A names a one-dimensional
array which from its lower bound '.o LPA contains
representations of rules, requires write access for
A, assumes LAB contains a legal label name or -1
which indicates that no label has been concatenated,
requires read access to N2, requires read access to
LAB

:31: PROCSUC, I.E.

if R[LAB] > 0 then A[N2] «- R[LAB]
els«

if R[LAB] = 0 .hen
begin
R[LAB] <- -N2j
A[N2] f 0
end

else
begin
A[N2] * R[LAB];
R[LAB] ♦- -N2
end;

effects and
post-conditions: the successor to the current rule has been set or

made part of a chain of rules which have the same,
yet undefined, successor

M^

iv^wp^P«mi«PM*pN*pw«i iHfivi. im ''^m^^^^tm^mmmtK

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 246

(«s) .32:

assumptions: requires read access to NE, NE names a cell in A
such that A[IME] indicates the current number of
characters in the rule part being processed - left
part if the left part is being processed or right
part if the right part is being processed, assumes
read access to CHAR, NG contains the number of
generic variables encountered for the current
algorithm, requires read access to NG, CG[i], 1 < i
< NG, equals the i-th generic variable encountered
for the current algorithm, requires read access to
CG, LPA names the las cell of an array into which
rules are stored, counting from the lower bound of a
one-dimensional array . LPA is incremented by one
each time an available cell needs to be named,
requires read accesss to NA, requires write access
to LPA, requires ability to invoke TEST which
returns only if there storage space as indicated by
the values of LPA and UPA, requires read/write
access to L, A names a one-dimensional array which
from its lower bound to LPA contains representations
of rules, requires write access for A

:32: STQRCHAR I.E.

L - 1;

while I < NG A CG[L] ^ CHAR do
L «- L + 1;

LPA «- LPA + 1;
TEST;
if L > NG then

A[LPA] ♦- CHAR
els«

A[LPA] ♦- - L;
A[NE] •• A[NE] ♦ 1;

effects and
post-conditions: A[LPA] is negative if CHAR was a generic and

-A[LPA] then indexes the generic in CGj otherwise
A[I.PA] IS CHAR A[NE] contains tne number of
characters encountered thus far for the rule part
being processed

L "*"•—-—-

mrm*~^~^*r~m*im^^^mwm*w*m**r*~-*~'wi^mrmfmmm*''**l1***'**l~w^*~m~*l*~*^** ■m^^MW^LMWIVIIIilM lliailllll SMI

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 247

(#t) :33:

assumptions: at most 100 labels are permitted and their
definitions appear in the one-dimensional array
R[l:100] such that R[i] contains the definition of
label i when the label is interpreted as a positive
integer, R names a one-dimensional array which
contains pointers to rules such that label i names
rule R[i]; R[i] - 0 means label i is not defined;
R[i] > 0 means the label is defined and R[i] is a
pointer to the rule It namwsj R[i] < 0 means that
label i is undefined but has been referenced by rule
-R[i] and is the head of a chain, requires write
access to R, NR indicates the rulename which is
currently being processed requires write access to

NR,

:33: 1N1TRA I.E.

NR <- 0;
SETFAIL(ERRULENAME);

for H ♦- 1 step 1 until 100 do R[H] ♦- 0-,

effects and
post-conditions: the error routine for NEXTCHAR is set to ERRULE and

ail label definitions are set to 0, i.e. undefined

MM ____—._

■ ' ■ • i Hl ' MW mim^*^*

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 248

(*u) :34:

assumptions: NR indicates the rulename which is currently being
processed, requires write access to NR, LPA names
the las cell of an array into which rules are
stored, counting from the lower bound of a
one-dimensiünal array . LPA is incremented by one
each time an available cell needs to be named,
requires read accesss to NA, requires write access
to LPA, requires ability to invoke TEST which
returns only if there storage space as indicated by
the values of LPA and DPA, A names a one-dimensional
array which from its lower bound to LPA contains
representations of rules, after rule initialization,
A[N1] - 1 « NR, Nl names the current rule A[N1] -
-1, N2 - Nl + 1, A[N2] - 2, NE = Nl + 2 and the
location which is the name of the immediately
preceding rule names the current rule. thus if NT
is the value of Nl prior to this initialization then
A[Nr] = Nl - unless NR = 1 in which case the
previous value of Nl is not defined, requires read
access to N2, requires write access to N2, NE names
a cell in A such that A[NE] indicates the current
number of characters in the rule part being
processed - left part if the left part is being
processed or right part if the right part is being
processed, requires read access to NE, requires
write access to NE

:34: 1NITR - initialize for new rule i.e.

•ffecte and
post-conditions:

NR «- NR + 1;
LPA ♦- LPA ♦ 4;
TEST;
A[LPA - 3] «■ NR;
if NR > 1 then A[N1] «- LPA - 2;
Nl •■ LPA - 2;
A[N1] «- -1;
N2 «- LPA - 1;
A[N2] «- 2;
NE ♦- LPA;
A[NE] «- 0;

after rule initialization, A[N1] - 1 = NR, Nl names
the current rule A[N1] - -1, N2 - Ml + 1, A[N2] = 2,
NE - Nl +2 and the location which is the name of
the immediately preceding rule names the current
rule. thus if NT is the value of Nl prior to this
initialization then A[Nr] = Nl - unless NR = 1 in
which case the previous value of Nl is not defined

'"" ""—""■" i i i i u^m^^^mi ——

APPtNDIX I: A MARKOV ALGORITHM PROCESSOR 249

(*v) :35:

assumptions:

effects and
post-conditions:

after rule initialization, A[N1] - 1 = NR, Nl names
the current rule A[Ni] ■ -1, N2 = Nl + 1, A[N2] = 2,
NE - Nl + 2 and the location which is the name of
the immediately preceding rule names the current
rule. thus if NT is the value of Nl prior to this
initialization tnen A[Nr] = Nl - unless NR = 1 in
which case the previous value of Nl s not defined,
LPA names the las cell of an array into wHch rules
are stored, counting from the lower bound of a
one-dimensional array LPA is incremented by one
each time an available cell needs to be named,
requires read accesss to NA, requires write access
to LPA, requires ability to invoke TEST which
returns only if there storage space as indicated by
the values of LPA and UPA, NE names a cell in A such
that A[NE] indicates the current number of
characters in the rule part being processed - left
part if the left part is being processed or right
part if the right part is being processed, requires
read access to NE, requires write access to NE

:35: INITRIGHT I.E.

LPA •- LPA + i;
TESTi
NE - LPA;
A[NE] «- 0;

A[NE] ■ 0 and indicates the current number of
characters in iiie right half of the current rule

MiaMH tA-na^^l^^^^^H

' ' ■"• wmmm^mmtmimmmim '" ■ ' "

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 250

(*w) -.36:

assumptions: R names a one-dimensional array which contains
pointers to rules such that label i names rule R[i]i
R[i] = 0 means label i is not defined; R[i] > 0
means the label is defined and R[i] is a pointer to
the rule it namws; R[i] < 0 means that label i is
undefined but has been referenced by ruh -R[i] and
is the head of a chain, requires read access to R,
NR indicates the rulename which is currently being
processed, requires read access to NR, requires the
ability to invoke :3:, ERROR, with a string message,
which does not return but handles further
processing, requires read/write access to Q :36: EDR
I.E.

for Q <- 1 step 1 until 100 do
if R[Q] < 0 then ERRORC'UNDEFINED LABEUS)");

if NR < 0 then ERRORC'ALGORITMM CONTAINS NO RULES");

effects and
post-conditions: a set of rules has successfully been Inputted and

constitutes a syntactically correct algorithm

(*x) :37:

assumptions: read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE
which contain the values of . , i , • i » » v >
")", C[l] ... C[80] contains the characters, in
order, of the card image which is inputted as a
result of the last execution of GETIMAGE, requires
read access to C, a colon in column 4 when
processing rules ind;cates that the card is to be
interpreted as a rule

:37: CARD13RULE I.E.

C[4] = COLON

effects and
post-conditions: true if card is to be irterpreted »»s a rule; false

otherwise

wmi^mmimmimm mimmmm " ■J" ' yw^m^mmimmi^m

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 2S1

(*a) : 1.» Il
(*b) : 1-3-25
(*c) : I-33S
(#d) : I-3' 4«
V*e) : hS-fl
(*f) : 1-3- 6:

(*g) : 13- 7:

(#h) : 1-3-5- IS

(*i) : I-3-5- 2:

(*j) : 1-3- 5-3J
(«K) : 1.3.5.4:

(*l) : I.3.5.5:

(*m) : i-S'b'e*-
(*n) : 13-5-7J
(*o) : 20!
(*p) 1 Ill
(*q) : 305
(*r) : 3I:

(*s) : 32^
(*t) : 33S
(*u) : 34:
(*v) : 355
(*W) ! 36!
(*X) ! 37:

(*a) ! I-3- |!
(*b) ! 1-3 25
(*c) : I-3-3»
(«d) l|-3- '*•
(*o) '■ i-a-s'
(*<"; 5 1- 3 0:

(«Si 51.3-7«
l*h) : I3- b- 1«

l*i) 5 1 • 3- b- Y'

(*i) ' I-3-5-3-
(*k) II.3. b »/•
i*i) l|'3 b- b'
(*m> J 1-3- b- 6:

(*i»; :i-3b-7:
(*ü/ I'cQi

(*p) »tl«
(*q) :3ü:

(*r) I3|]
(*s) :32;
l*t) * (* •OJ*

^u) Jü^J
(^v) S3b:

vvw/ :oü;

(*x) :37:

12 3 0 5 6 7 8 9 10111213141516171819202122232425262728293031

I

1 1 I

I I I 1

1111

1 1 1

1 1

1 1

02434445464748495051525354555657585960616263646566670869

I 1

M ft*1 I^MMMMi^M^

■"" ■■■•"" ' ■ >■ "' '■ ' ^p^PBPPWBwpwwmw '" iiiimwt^mmi^mmmmmiim

^

APPENDIX I: A MARKOV ALGOKlTHM PROCESSOR 252

70717273747576777879808182838485868788899091

l*a) : i-3i:
(*b) : {■3-2'

(*c) : 1.3.35
(*d) : 1-3'OS
(*«) : |.3-5S
(*f) : 1-3-3S
(*g) : I-3-7S
(*h) : I-35- l!
(*i) : I-3-52!
(*j) : ht-^ai
(*K) : |.35-4:

(*l) : I-3-5-5S
(*m) : I3-5.65
(*n) : 1.35-7J
(*o) : 20S
(*p) : 2|S
(*q) : 305
(*r) : 315
(#S) : 325
(*t) 1 335
(*u) i 345
(*v) | 355
(*w) . 365
(*x) 375

(*a) t|.» 15
(*b; ! 1-3- 2:

(*c) ! 1-3-35
(*d) :i-3-45

(*e) 5 1-3-55
(*f) Si-3-65
(*6) 5|'o 75
(*h) 5 13 5' 15
(*i) 5 1-3-5-2:

(*j) 5 1.3-5'35
(*k) 5 1-3-5-«5

(*l) 5 1 ■ 3- 5- 55
(*m) 5 IS-5-65
(*n) 5 |. 3-5-7s

(«o) 5 205
(*p) 5215
(«q) 5 305
(*r) 5315

(*s) 5 325
(*t) 5 335
(*u) 5 345
(*v) 5 355
(*w) 5 365

1 1

I 1 1 1 1

I I

I I I 1 I

I 1

1 1

I 1 I 1

I 1 I I
I I I

92939495969/989900010203040506070c:J910m2l3l'li516l718i9

1111111
1111

I 1

I I

^Mi mm—m

-■■•*MMMBaNi^MBBMIMMHMI^MaMM"*Mai

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 2J3

(*x) ta?: l

1) requires the abilily to invoke :3:, ERRO'S, with a string message,
which does not return but handles further processing

2) requires ability to invoke IMEXTCARD which makes a new card image

available, i.e. ability to invoke :2: and returns to the invoker
only if a card for the current algorithm is available

3) NEXTCHAR is the value of the character which immediately

follows the character of the current card image produced by

the last call of NEXTCHAR
4) an end-of-file condition has occurred
5) requires the ability to invoke the termination of the entire

program, i.e. :1.5: ENDQFFILE
6) requires the ability to invoke, ALGIN1T (:1.1.1:)

the start of processing for a new algorithm
7) CP is an index into C and indexes the last character which

was produced as a value from NEXTCHAR. After an execution

of NEXTCARD, :2:, CP must equal 0

8) write access required for CP
9) C[l] ... C[80] contains the characters,

in order, of the card image which is inputted as a result

of the last execution of GET1MAGE

10) requires read access to C
11) requires ability to invoke GET1MAGE which inputs a card

and returns to the caller only if a card was inputted
12) "," in columns 1 and 2 indicate that the program is to terminate

and a "," m column 1 only indicates that a new algorithm

is to be processed
13) requires ability to print the string argument which is passed as

the parameter to ERROR
14) ability to perform printing operations
15) requires ability to invoke ;1.4: which processes the rema;ning

data images for this algorithm

16) requires write access to PR
17) pr = true means "print the register alter each successful

application of a rule; otherwise d not print the register

after each successful application of a ruie
18) MAXA equils the maximum number of alphabets permitted for

an algorithm

19) requires read access to MAXA
20) requires ability to set the failure routine for NEXTCHAR, i.e.

the ability to invoke SETEA1L with a variable which names

the part which is to be invoked if no more characters are

available from NEXTCHAR
21) NG contains the number of generic variables encountered

for the current aigonthm
22) CG[iJ, 1 < i < NG, equalo the i-th generic variable

encountered for the current alr.onthm
23) AG[i], 1 < i < NG, equals the alphabet name which

CG[i] is a generic variable

APPENDIX I: A MARKO^ ALGORITHM PROCESSOR 254

24) a failure routine has been bet if NcXTCHAR cannot

provide additional ciiaracters nom the current image

25) read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE which

contain the values of ".", ",", ":", ";", "C, ")"
26) avsumes wnie access to CHAR

27) as.umes mad access to CHAW
28) reauires ability to invoke RULES whicr. names the rule input

part, but unc« RULES is a label in the mam program

a go io ot.itfment can be used

29) ERIJIIC-MO tssumes compete control when invoked
and handles error message", and further processing

30) NA equals the number of alphabets which have been processed

thus far for the current algorithm

31) requires read accesss to NA

32) requires write access to NA

33) requres read/wnie access to NOIT, which controls a
loop that process alphabets

34) requires ability to invoke STCRALPH, which sto'es the alphabet

characier .f all requirements are mot.otherwiao ! TORALPH

invoke*., •ppropriatfl error routines
35) requires rer-a/write access to N01T1, which contiols a loop

that proce:.'..es gOMriCS
36) require , abilit/ to invoke STORGEN which stores the content

of CKUR, if lepal, otherwise invokes the apporpnate
errc.

37) requires ability to invoke ALPHF1N which cmpletes any
needed processing after an entire alphabet has been
stored

38) either no alphabets have been processed rf all alphabets

processed 'n.i'e been correct

39) requires abi'ity to invoke FAIL which correctly determines

which objects assume control

40) read access required for CP

41) read and write access requued ior the variable I

42) requires abilit/ to invoke IESTLEGAL whicn returns only if
^ I J ,. 5 A II It II II tl II H II
LH/VH is not . , , , ; , :

43) •■equires ability to invoke TESTGCN which returns only if

CHAR is not equal to an already

used generic variable for this algorithm
44) A names a onf-dirnc-nr.ional array, which from UPA to its

upper bound contains alphabetic characters

45) requires read access for A
46) NO contain'-, the number of generic variables encountered

for the current algorithm

47) requires read accev. to NG

48) requires wnie KC*S(io NG
49) requires wnie «cces: to AG
50) CHAR conumv;, me ne<<t unstored character

from the alphabet or genencs being currently processed

51) AL[1] ... ALiNAJ names the index of the lower bound of the

ammm Mi _

r
APPENDIX I: A MARKOV Al GORITHM PROCE? .OR 265

characters in an alphabei, i.e. AL[I] is the lower
bound tor the i-th alphtibot and AL[i-l] is the

upper bend tor thiit alphabet, where AL[0] equals the

initial value plus 1 ot ÜPA

52) requires read access to AL
53) requires ability to invoke ERRGEN, which assumes

control and invokes an appropriate error routine

54) requires ability to invoke TESTAL which returns only if

CHAR is not eqi-al to a character which has a\ros&, occurred in the

alphabot currently b*inf processed
55) requires ability to invoke TEST which teturn1: only if there

storage space as indicated by the values of LPA and UFA
56) I'PA names the last cell of an array into which an alphabetic

character was stored, counting from the top of some

one-dimensional array. UPA is decremented by 1
each time an available cell needs to be named

57) requires read access to UPA

58) requires write access to UPA

59) A names a one-dimensional array, which from UPA to its

upper bound contains alphabetic characters

60) requires write access for A

61) requires write access to AL
62) LPA names the las cell of an array into which rules

are stored, counting from the lower bound of a

one-dmiensional array . LPA is incremented by one each
time an available cell needs to be named

63) requires read access to LPA

64) LPA and UPA are index variables for the same array

65) requires read access to CG
66) requires write acress to CG

67) requires rcad/wriie access to J

68) requires read/wrue KCtSS to K

69) requires read access for A
70) requires ability to invoke IN1TRA, which initializes the

input part tor rules for a new algoninm

71) requires aoility to invoke CAkblijPULE wlvcn determines

whether the current card image is to be interpreted as

as a rule or not

72) requires ability to invoke PP1NTCARD

which prints the current card image

73) requires ability to invoke EDR, end of rules condition
processor

74) requires nbiiity to invoke INiTR which initializes
for inputting a new rule

75) requires ability to invoke LABL which collects a label
trrmmated by the character ir. TERM and leaves the integer

label value in LAB

76) requires ability to invoke STQRLABEL which associates

the label with the current rule
/7) requires write access to TERM

■n mm

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 256

78)

79)

80)

81)
82)
83)

84)

85)
86)
87)

88)
89)

90)
91)

92)

93)
94)
95)
96)

97)
98)

ability to invoke STQRCHAR which returns only if the
conteni of CHAR could be successfully stored with rule
being processed

requires ibility to invoke INITRiGHT which initializes
for processing the input of a right part of a rule

requires ability to invoke PRQCTERM which indicates a rule as
a terminal rule; requires ability to invoke PROCSUC
which processes the successor part of a rule

requires re^d access to LAB
a negative value in LAB indicates that no label was collected
after rule initialization, A[N1J - 1 ■ NR, Nl names the
current rule A[N1] - -1, N2 = Nl + 1, A[N2] - 2, NE - Nl + 2
and the location which is the name of the
immediately preceding rule names the current rule, thus if
NT is the value of Nl prior to this initialization
then A(Nr] ■ Nl - unless NR =• 1 in which case the previous
value of Nl is not defined

R names a one-dimensionai array
which contains pointers to rules such that label i
names rule R[i];
R[i] = 0 means label i is not defined;
R[i] > 0 means the label is defined and

R[i] is a pointer to the rule it namws;
R[i] < 0 means that label i is undefined but has

been referenced by rule -R[i] and is
the head of a chain

requires write access to R
requires read KCtSf to R
A names a one-dimensiona' array whicn from its
lower bound to LPA contains representations of rules

requires read access to NE
NE names a cell in A such that A[NEj indicates the current number
of characters in the rule part being processed - left part
if the left part is being processed or right part if the
right part is being processed

requires write access to LPA
at most 100 labels are permitted and their definitions

appear m the one-dimensional array R[l;100] such that
R[i] contains the definition of label i when the label
is interpreted as a positive integer

NR indicates the rulename which is currently
being processed

requires read access to NR
requires write access to NR
requires write access to NE
TERM contains the non-digit character which is expected
to terminate a label
requires read access to TERM
the digits "0", "1", "2", ... , "9" are represented by character
codes such that "0" - ZERO - 0, ... ,"9" - ZERO - 9

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 257

and the only legal label characters are digits and BLANK
99) rcad/wnte access to LAB is required
100) legal ran^e of labels is 1 through 100
101) BLANK contains the representation of a space and ZERO

contains the representation of a zero
102) requires read access to BLANK and ZERO
104) assumes LAB contains a legal label name or -1 which

indicatns that no label h.is been concatenated
105) require, write access to LAB
106) Nl rumwt the rule being currently inputted
107) requires read access to Nl

ERRULENAME contains the value which indicates o routine
which cm take control if an error is discovered as rules
are being stored
requires read access to ERRULENAME
requires read access to N2
requires read/write access to L
requires write access to N2

113) a colon in column 4 when processing rules indicates that
the card is to be interpreted as a rule

114) requires read/write access to Q
115) a value of -1 in A[N2J indicates that the

rule is a terminal rule
116) LRRHLADNAME it a vanabln wlncn names the routine ERRHEAD
117) requires read ace.".-. lo tRRHEADNAME
118) RULE5NAME is a vdnable which names the routine RULES which

inputs the rules for an algorithm
119) requires read KCtM to RULLSNAME
RUB for the expansion of :1.3: is

108)

109)
110)
111)
112)

((a) ((f) ((e) ((f) (ft) ((I) ((k . o) ((i)

((d , g , h) ((v , w / u x) ((C) ((y . u ; ((z , t)

(m , q , p)) 1.73) 1.28) 155) 1.50) 1.39) 1.11)

1.12) .39) .35) A7) .30) .08) .10) 0

The actual loadings are

((a) ((r) ((e) ((f) ((•) ((i) M k , o) ((i)

((d , g , h) ((v , w) ((x)

((*' , *b , *c , *d , *e , *f , *g) ((y , u) ((2 , t)

(m , q , p)) 1.29) 1.28) .83) 1.16) 1.02) .96) .98) 54)

35 I 47) .oU) .07) 10) 0

mm MM mmm

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 258

These va ues are mostly lower than the RUB for the expansion.

Consequently, no attempt will be made to find a better decomposition for

this stage.

RUB for the expansion of :1.3.5: is

((a) ((r) {(•) {(f) ((s) ((I) ((k , o) ({.)

((d , g , h) ((v , w) {(x)

((*a , *b , *c , *d , *« , *f , *g) ((y , u) ((z , t)

(m , q , p)) 1.03) 1.06) .83) .91) .65) .87) .88) .48

.31) .42) .26) .08) .09) 0

Unfortunately, the actual loadings are

{(a) ((r) Ue) ((f) ((•) ((I) ((k , o) ((i)

((d , g , h) (f v , w) ((x)

((*a , *b , *c , *d , *h , *i , *j , *k , *l ,

«m , *n , *f , *g) ((y , u) ((i , 1)

(m , q , p)) 1.29) 1.28) .83) 1.16) 1,02) .96) .98) .54)

.35) .47) .30) .07) .10

A modification of this decomposition leads to the following better

decomposition

{(a) ((r) ((•) ((f) ((•) ((I) ((k , o) ((i)

((d , g , h) ((v , w) ((x)

((*a , *b , *c , *d , *h , *i , *j , *i ,

*f , *g M(y , u) ((2 , i)

(m , q , p , *k , *m , *n)) 1.57 ; 1.41) 1.39) 1.36)

.97) 1.00) 101) .47) .49) .60) .26) .07) .09) 0

APPENDIX I: A MARKOV ALGORITHM PROCESSOR

Here, those objects that recognize and store information for the rule

execution part (m , q , *K , *m , *n) interact most with the rest of

the program. Also, those oujects that control and invoke the above

mentioned objects share much information and appear grouped together (

«a , *b, «e , *d , «h , *i , *j , *l , *g , *f). Since the remaining

objects in the table will be used - in part - by the expansion oi :1.4:,

an analysis of the entropy loadings involving them is postponed until

after the elaboration of il.4t

■^MMBM.

APPENDIX It A KrtAtfKOV ALGORITHM PROCESSOR 260

Below is a map of the elaboration of il.4i and most of the remaining
objects.

(>a) :1A1: (262) control input of the initial register
'contents and markov algorithm execution.

Ob) :1A2: (262) print card; input initial register
contents.

(>c) :1A3.1: (263) initialize for execution of currently
stored algorithm and the current register contents.

(>d) :1A3.2: (264) control attempts to apply the rules.

(>•) :1A3.3: (264) attempt to apply current rule.

il.4i Of) :1A3.4: (265) rpplrfce matched string and possibly print
the register contents; set next rule to the successor for a
successful aophcation of the current rule.

Og) ; 1.4.3.5: (265) set next rule to be the successor for a
failure to match left part of current rule.

Oh) :1A3 6: (266) terminate algorithm interpretation if
necessary.

(>i) :40! (267) search for an mstanre of the left half of a
rule in the register.

Oj) :41: (269) replace matched string by the right half of
the current rule.

Ok) :42: (270) adjust the register to accomodate the right
half of the current rule.

01) :1'I3: (271) insert the right ludf uf the current rule into
the register.

Om) :44: (272) test whether a generic variable matches a
character m the register.

On) :45: (272) test whether a rule character is a generic.

(>o) :46: (273) get a character from the left part of a rule.

Op) -Al: (2/3) get the successor for a rule that corresponds
to a successful application of the rule.

Oq) :48: (273; get the successor for a rule that corresponds
to an unsucces ful application of the rule.

_

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 261

Or) :49: (274) get the location of the first charecter of the
left part of the current rule.

(>s) :50: (274) indicate an error in the heading for an
algorithm.

(>t) All (275) invoke the rule input part of the program.

(>u) :52: (274) indicate an error in a rule.

(>v) :53: (275) indicate an error in an initial register data
image

(>w) :54: (275) indicate a generic variable occurring in the
data.

Ox) :55: (273) initializa all generic variables to be
undefined.

Oy) :65: (276) get character from the right part of the
current rule.

Oz) :66: (276) test whether a generic variable is defined.

(<a) :67: (276) get the length of the right part of the
current rule.

(<b) :68: (277) get the character associated with a generic
variable.

«c) :70: (277) get the length of the left part of the current
ruie.

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 262

Below is an elaboration of :1.4:, which executes an algorithm with
respect to its data images

(>«) ilAli

assumptions:

(>b) :1A2:

assumptions:

assumes all rules have been inputted correctly;
assumes that the current card isrepresents an
initial register contents; assumes that NEXTCARD
returns control only if a data image is available
for the current algorithm

:1A1: repeat
begin
:1A2: ;
:1A3: ;
:1A4:
end

until false;

requires the ability to invoke A, ERRQRE, with a
string message, which does not return but handles
further processing at the execution stage, requires
ability to invoke PRINTCARD which prints the current
card image, ERRDATANAME contains a value which
mdictites a routine whicn indicates a routine which
can take control if an error is discovered while an
initial register contents is oemg input, requires
read access to ERTOATANAME, requires ability to set
the failure routine for NEXTCHAR, i.e. the ability
to invoke SETFA1L with a variable which names the
part which b to be invoked if no more characters
are available from NEXTCHAR, REG, is a
one-dimensional array which comams the characters
m the register, assumes write access to REG,
assumes read access to MAXRL which contains the
maximum number of characters permitted in the
register, NEXTCHAR is the value of the character
which immediately follows the character of the
current card image produced by the last call of
NEXTCHAR, requires ability to invoke TEoTLEGAL which

i ■ « #^l 1 A n II H II M M M tl II

returns only if CHAR is not . , , , ; , : ,
requires ability to invoke TCSTGEN which returns
only if CHAR is not equal to an already used generic
variable for this algorithm, requires write access
to RL, requires read/write access to RPR which is
used as a temporary register position pointer when
the register is being mnally filled, requires
read/write access to RC which is used to contain
single characters from the current data card when

^^m

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 263

the register is being filled, read access to DOT,
COMMA, COLON, SEMI, OPEN, CLOSE which contain the
values of "", ",", ":", "j", T, ")"

: 1.4.2: PRINTCARDj INPUT THE INITIAL REGISTER
CONTENTS, I.E

PRINTCARD;
SETFAIL(ERRDATANAME);
RPP «■ 0;

RC «- NEXTCHAR;
while RC / SEMI do

begin
RPP •■ RPP + 1;
if RPP > MAXRL then

ERROREC'REGISTER OVERFLOW);
TESTLEGALj
TESTGEN;
REG[RPP] <- RC;
RC «- NEXTCHAR;
end;

RL •- RPP;

effects and
post-conditions:

(>c) il.43.il

assumptions:

an initial register contents has been correctly set
into the register and RL contains the numbei of
characters in the register

the name of the first rule is 2, MAXT1 contains the
number of trial rule applications still permitted
for this execution of an algorithm, requires write
access to MAXT1, write access to RULENAME required,
RULENAME names the rule currently being processed

:1A3.1: INITIALIZE PROCESSING FOR CURRENT
ALGORITHM WITH CURRENT REGISTER CONTENTS, I.E.

RULENAME «- 2;
MAXT1 «- MAXT;

effects and
post-conditions: processing initialized for current aigori'.hm and

register contents

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 264

(>d) :1A3.2:

assumptions: RULENAME names the rule currently being procpssed,
requires read access to TRM, FIN is a result of
NOSUC which indicates that there are no more rules
which can be applied, requires read access to FIN,
read access to RULENAME required, TRM is a result of
5UCSUC and UNSUCSUC which indicates that the
algorithm should terminate, i.e. TERM names no
legal and indicates termination

: 1.4.3.2: while RULENAME t TERM A RULENAME * FIN do
begin
:1A3.3: j
:1.4.3.4
: 1.4.3.5
: 1.4.3.6
end

effects and
post-conditions:

(>e) :1.4.3.3:

assumptions:

;n algorithm has been executed with respect to an
initial register contents

requires ability to invoke SEARCH which searches
for a match of the left part of rule RULENAME, and
which returns the value true if a match is found,
false otherwise, requires the ability to invoke :4:(
ERRQRE, with a string message, which does not return
but handles further processing at the execution
stage, MAXT1 contains the number of trial rule
applications still permitted for this execution of
an algorithm, requires read access to MAXT1,
requires write access to MAXT1

:1.4.3.3:

effects and
post-conditions:

MAXT1 «- MAXT1 - 1;
if MAXT1 < 0 ther. LRRQREC'MAXIMUM NUMBER OF TRIALS EXCEEDED");
if SEARCH then

:1 4.3.4: else :1.4.3.5: ;

the rule, RULENAME, has been applied, if possible,
to the register contents and a new successor rule
has been set in RULENAME

MBMMi

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 265

Of) :1A3.4:

assumptions:

effects and
post-ctnditions:

(>g) :1A3.5:

assumptions:

effects and
post-condi ions:

RULENAME names the rule currently being processed,
requires ability to invoke REPLACE, which has the
'ffect of replacing the register contents with the
right part of the rule named by RULENAME, where the
left part was matched, requires the ability to
invoke SUCSUC which hat the value of the success to
rule RULENAME for a successful application of rule
RULENAME, write access to RULENAME required,
requ res read access to PR, pr = true ireans "prnt
the register after each successful application of a
rule; otherwise d not print the register after each
successful application of a rule, requires the
ability to invoke PRINTREG which prints the contents
of the register

:IA.3A- REPLACE;
RULENAME «- SUCSUC;
if PR then PRINTREG;

the right part of rule, RULENAME, has replaced the
left-most occurrence of the left part of the rule,
RULENAME

RULENAME names the rule currently being processed,
requires the ability to invOKQ IINSUCSUC which has
the value of tne name of the successof to rule
RULENAME after an unsuccessful application of rule
RULENAME, write access to RULENAME required,

:1A3.5: RULENAME »■ ONSUCSUC;

RULENAME contains the name of the rule which is to
be attempted next if the current rule could not be
applied successfully

APPENDIX It A MARKOV ALGORITHM PROCESSOR 266

(>h) :1.4.3.6:

assumptions: RULEN^lvC names the rule currently being processed,
requires the ability to invoke A:, ERRGRE, with a
string message, which does not return but handles
further processing at the execution stage, requires
the ability to invoke PRINTREG which prints the
contents of the register, pr = true ^jans "print the
register after each successful application of a
rule; otherwise d not print the register after each
successful application of a rule, requires read
access to PR, if RULEiNAME = TRM then dot termination
has occurred, otherwise the rules have been
exhausted, read access to RULENAME required, TRM is
a result of SUCSUC and UNSUCSUC which indicates that
the algorithm should terminate, i.e. TERM names no
legal and indicates termination

:1A3.6: if RULENAME = TRM then
begin
it NOT(PR) then

PRINTREG;
ERROREC'DOT TERMINATION")

end
else

ERROREC'RULES EXHAUSTED");

effects and
post-conditions: The appropriate termination

printed and ERRGRE has been
further processing

message
invoked

has been
to handle

mm mm-

■ i i. i mirm^mm^mrmm^

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 267

(>i) :40:

asEUtnptions: requires the ability to invoke LEFT which names the
location which is the first character of the left
part of rule, RULENAME, requires ability to invoke
LENGTHL which has the value of the number of
characters m the left part of the rule named by its
parameter, RULENAME names the rule currently being
processed, reaa access to RULENAME required, LEN
names the number of the character m the left oarf
of the rule currently being processed, requires read
access to LEN, requires write access to LEN, LFT
names the starting location for the left part of the
current rule name, requires read access to LFT,
requires write access to LFT, requires read/write
access to NOSUC, RL contains the current register
length, requires read access to RL, requires ability
to invoke RULLFTCHR(A,B) which produces the value of
the B-th character of the left part which starts at
A, and requires ability to invoke INITGEN which sets
the definitions of ail generic variables to be
undefined, RP names the character position where a
character sequence is to be replaced, requires read
access to RP, requires write access to RP, requires
ability to invoke GENERIC which has the value true
if its parameter represents a generic variable,
requires read/write access to CC, requires
read/wnte accfiss to LHP, REG, is a one-dimensional
array which contains the characters in the register,
assumes read access to REG

:40: SEARCH I.E.

LFT K LEFTlRULENAt.'Ei'i
LEN «- LENGiHLvRULENAME);
NOSUC »■ »rue;
if RL > LEN then

begin
RP - 0;
whue RP < RL + 1 - ' EN A NOSUC do

begin
RP •- RP + 1
LHP «- 1;
NOSUC ^ false;
INI! GEN;
while LHP < LEN A NOT(NOSUC) do

begin
CC «- RULLFTCHRa^T, LHP);

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 268

if GENERIC(CC) 1h«n
b«gm
if NOKMATCHGEMCC, Rd[RP ♦LHP - 1]) th«n

NOSUC *■ irue

end
•It«

if CO 4 REG[RP ♦LHP - 1] fh«n

NOSUC *■ fru«
LHP ♦- LHP ♦ 1

end;
er.d;

end;
SEARCH - NOT(NOSUC);

t ifects and
post-conditions: SEARCH =t-ue if the left part of rule RULENAME

matches a substrng of the regirter and sets up

internai variables whicn can be used by REPLACE for
replacing the first occurrence of a match from the
left end of the register by the right part of rule

RULENAME; false otherwise

MP^"^^"^

APPENDIX I: A MARKOV ALGORI.HM PROCESSOR 269

(>j) «41«

assumptions:

effects and
post-conditions:

requires ability to invoke LENGTHL which has the
value of the number of characters in the left part
of the rule named by its parameter, requires the
ability to invoke :4:, ERRQRE, with a string
message, which does not return but handles further
processing at the execution stage, requires ability
to invoke ADJUST whose first parameter indicates the
number of characters in the left part of a rule and
whose second par imefer indicates the number of

characters in the right part of the rule. ADJUST
modifies the register, if necessary, so that the
right part can be inserted where the matched left
part is, requires ability to invoke INSERT which
inserts the appropriate right part over the matched
left part, requires ability to invoke LENGTHR which
returns the value of the number of characters in the
right part of the rule named by its parameter,
requires rec'J/wnte access to LEN and LENR, requires

read access to LENR, requires write access to LENR

:41: REPLACE I. E.

LENR - LENGTHRtRULENAME);
LENL - LENGTHL(RULENAME);
if RL - LENL • LENR > MAXRL then

ERRQREC'REGISrEH OVERFLOW"),
ADJUST(LENL,LENR);
INSERT;

the right part of rule, KULtNAME, has replaced the
leftmost occurrence of the left part of RULEMAME

'——"—' "^"""^

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 270

(>K) :42:

assunptions: RL contains the current register length, requires
read access to RL. requires write access to RL,
requires read access to LI, L2, and TP; LI contains
the length of a ..hcracter sequence being replaced by
a character sequence of length L2, REG, is a
one-dimensional array which contains the characters
in the register, assumes read access to REG, assumes
write access to REG, RP names the character position
where a character sequence is to be replaced,
requires read access to RP, assumes LI * L2

■A2: ADJUST(L1,L2)! I.E.

H LI < L2 th«n
bsgin
for TP ^ RL step -1 until RP + LI do

REG[TP ♦ L2 - LI] «- REGITP];

•nd
•is«

begin
for TP •- RP + LI step 1 until RL do

REG[TP ♦ L2 - L1J «- REG[TP];

end;

RL ♦- RL + N2 - Nl;

effects and
post-conditions: the register is modified so that a replacement of a

string slrrling at RP of length LI can take place
correctly .or a string of length L2

tm—m

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 271

01) =43:

assumptions:

affects anj
post-conditions:

requires read write access to TQ and CQ, RP names
the character position where a character sequence is
to be replaced, requires read access to RP, requires
ability to invoke GENERIC which has the value Iru«
if its parameter represents a generic variable,
requires ability to invoke RULRTCHAR{A) which
returns the character winch is the A-th character of
the right side of run; RULENAME, requires the
ability to invoke LM)EF(A) which returns the value
♦ru» if A is an undefmeu generic variable
representation for this rule application; falsa
otherwise, requires ability to invoke VALG(A) which
prodnres the character associated with the generic
representation A for this rule application, requires
the .ibilify to mvoke :4:, ERRQRE, with a string
message, which does not return but handles further
processing at the execution stage, REG, is a
one-dimensional array which contains the characters
in the register, assumes write access to REG,
assumes LENR contains the length of the sfrmg being
inserted, requires read access to LENR

:43: INSERT I.E.
for JQ - 1 step i until LENR do

begin
CO - RULRTCMARirQ);
if GENERIC(CQ) then

begin
if UNÜEHU Q) then

ERRORtrUNüEFINED GENERIC USED IN RIGHT PART OF RULE")
else REGiRP * TQ - 1] «- VALG(CO)
end

else
REG[RP ♦ TU • 1] •- CQ

end;

the characters in the right pari of a rule have
been stored into successive locations of REG
starting at RP

J

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 272

(>m) :44:

•tsumptionr

•ffccU and
post-conditions:

On) :45:

issumptiont:

effects -.nd
post-conditions:

(>o) Mt

■•sumptions:

AL[1] ... AL[NA] names the index of the lower
bound of the characters in an alphabet, i.e. AL[i]
is the lower bound for the i-fh alphabet and AL[i-l]
is the upper bound for that alphabet, where AL[0J
equals the initial value plus 1 of UPA, requires
read access to AL, AG[i], 1 < i < NG, equals the
alphabet name which CG[i] is a generic variable,
requires read access lo AG, G is a one-dimensional
array such that G[i] - -1 if generic variable i is
not defined after a successful search for a left
part of a rulei, otherwise G[i] > 0 and is the
character corresponding to the generic i, requires
read access to G, requires write access to G,
requires read/wnte access to NMAT

:44: MATCHGENCCQ) I.E. NMAT - true; if Gr-CC] < 0
then begin T <- AL[AG[-CC]]; while NMAT A T <
AL[AG[-CC] -1] do begin if Q = A[T] then begin
G[-CC] ♦- A[T]; NMAT ♦- false end; end else if G[-CC]
- Q then NMAT ♦- hlse

MATCHGEN •- NOT(NMAT);

MATCHGEN = true if the generic indicated by CC is
matched by Q; false otherwise

assumes thai a generic in a rule has been saved is
a negative value

:45: GENERIC(S) I.E.

GENERIC ♦- S < 0;

GENERIC «= true if S represents a generic variable;
false otherwise

requires read access for A, assumes Q is a legal
character pointer into the left

■■

mmm^i^^mm

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 173

effects and
post-conditions:

Op) :A7:

assumptions:

:46: RULLFTCHR(P.Q) IE.

RULCHAR <- A[P + Q ♦ 2];

RULLFTCHR - the Q-th character in the left part of
the rule named by P

requires read access <or A, assumes A[RULEIMAME + 1]
names the successor (or rule RULENAME for a
successful application of rule RULENAME, RULENAME
names the rule currently being processed, read
access to RULENAME required,

effects and
post-conditions:

(>q) :48:

assumptions:

effects and
post-conditions:

:47: SUCSUC «- A[RULLNAME + I] ;

SUCSUC na^es the rule to be tried next after a
successful application of rule, RULENAME

requires read access for A, RULENAME names the rule
currently being processed, read access to RULENAME
required, assumes A[RULLNAME] names the successor
rule for rule RULENAME after an unsuccessful
application of rule RULENAME

:48: UNSUCSUC - A[RULENAME];

UNSUCSUC names the rule to be ti ie.,i next after an
unsuccessful application to rule RULENAME

im tmmmrmK^mm immimw '

APPENDIX 1: A MARKOV ALGORITHM PROCESSOR 274

Or) :49:

•«sumptions.

•ffacts and
post-conditions:

(>t) :50:

assumption;

effects and
post-conditions:

(>t) :5l:

assumptions:

effects and
post-condiliunr

(>U) :52:

assumptions:

•fleets and
post-conditions:

assumes X + 2 is an index which names the first
character of the left part of a rule -1

:49: LEFT(X) I.E.
LEFT «- X ♦ 2;

LEFT is a value which names the left part of 'ule X

requires the ability to invoke :3:, ERROR, with a
string message, which does not return but handles
further processing

:50: ERRHEAD, I.E.

ERROR<"HEADING NOT CORRECT");

:3:, ERROR, has been invoked and handles al1

further processing

requires ability to invoke RULES which names the
rule input part, but since RULES is a label in the
mam program a go to statement can be used

:51: to »o RULES;

the rule input part of the program is given control
for further processing

requires the ability to invoke :3:, ERROR, with a
string message, which does not return but handles
further processing

:52: ERRULE I. E.

ERRORfRULE NOT CORRECT"))

:3:, ERROR, has been invoked and handles further
processing

■biM

■■ »w"i»M mt i

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 275

(>v) :53:

assunptions

affects and
post-conditions:

(>w) .54:

assumptions:

effects and
post-conditions;

(>x) :55:

assumptions:

effects and
post-conditions:

requires the ability to invoke :3:, ERROR, with a
string message, which does not return but handles
further processing

:53: ERRDATA I.E.

ERROREC'DATA NOT CORRECT");

*3:, ERROR, has been invoked and handles further
processing

requires the ability to invoke :3:, ERROR, with a
string message, which does not return but handles
further processing

:54: ERRGEN I.E.

ERRORC'GENERIC VARIABLE IN DATA")}

:3:, ERROR, has been invoked and handles further
processing

requires read/write access to QK, G is a
one-dimensional array such that G[i] » -1 if generic
variable i is not defined after a successful search
for a left part of a rulei, otherwise G[i] > 0 and
is the character corresponding to the generic i,
requires write access to G, NG contains the number
of generic variables encountered for the current
algorithm, requires read access to NG

:55: INITGEN I.E.

for QK «- 1 step 1 until NG do
G[QK] - -I;

the definitions of the generic variables have been
set to undefined

1 I' '■■ ^^*^^mmmmm

APPENDIX it A MARKOV ALGORITHM PROCESSOR 276

(>y) :65:

assumptions:

effects and
post-conditions:

Ox) :66.

assumptions

effects and
post-conditions:

«a) :67:

assumptions:

effects and
post-conditions:

requires read access for A, assumes Y is a legal
character pointer into the right part of a rule
whose first character is named by X + LENGTHL(X) +
4, requires ability to invoke LEIMGTHL which has the
value of the number of characters in the left part
of the rule named by its parameter

:65: PULRTCHRW.Y) I.E.
RULRTCHR ♦- A[X + LENGTHL(X) + 3 + Y] ;

RULRTCHR is the Y-th character in the right part of
rule X

G is a one-dimensional array such that G[i] - -' if
generic variable i is not defined after a successful
search for a left part of a rulei, otherwise G[i] >
0 and is the characttr corresponding to the generic
i, requires read access to G

:66: UNDEF(X) I.E. UNDEF .- G[-X] > 0;

UNDEF - true if no definition for the generic
indicated by X exists; otherwise false

requires read access for A, requires ability to
invoke LtNGTHL which has the value of the number of
characters m the left part of the rule named by its
parameter, assumes A[X -i LENGTHL(X) + 3] is the
number of characters in the right part of rule X

:67: LENGTHR(X) I.E.

LENGTHR •• A[X + LENGTHL(X) ♦ 3];

LENGTHR equals the length of the right part of the
rule indicated by X

"•■■ - " •■•»■ ■■-""—'■'■,

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 277

(<b) :68:

assumptions:

effects and
post-conditions;

«e) :70:

assumptions:

effects and
post-conditions:

G is a one-dimensional array such that G[i] - -1 if
generic variable i is not defined after a successful
search for a left part of a rulei, otherwise G[i] >
0 and is the character corresponding to the generic
i, requires read access to G

:68: VALG(X) I.E.

VALG ♦- Gf-X];

VALG equals the character associated with the
generic variable indicated by X

requires read access for A, assumes read access to
X and assumes that the length of the left part of a
rule named by X is contained in A(X ♦ 2]

:70: LEIMGTHUX) I.E.

LENGTHL «- A[X + 2];

LENGTHL is the length in characters of the left
part of the rule named by X

lUW" I «iw^i^r»"^ "» —■ ^-

APPENDIX It A MARKOV ALGORITHM PROCESSOR 278

>■ : 1 • 4- 1 '•
>b : I.4.2:

>c : I-4-3' \-
>d : 14-3- Z-
>• : I./J-3-3!
>f : 1.4.34:
>g : 1-4. 3-55
>h : 14. 3-65
>i ! not
>j 1 415
>k ! 42:
>l ! 43*.
>m 44:
>n 4*5
>o 465

>P 475

>q :48:
>r !495
>8 :505 1
>t !5|5
>u 5 525 1
>v 5535 1
>w 5545 1
>x 5555

>y 5 655
>2 5 665
<a 5 675
<b 5 685
<c 5 705

I 23456789 101112I3I4I5I6I7I8I9202I22232425

I 1 1

mm

1 ■" i^m^mm^^^m

APPENDIX I: A MARKCV ALGORITHM PROCESSOR 279

>J : |. 4. 1:

>b 5|-4-2:
>c S|-4-3- 1
>d S|•/! 3-2
>• 5I-4-3-3
>f : 1.4.3-4

>g !l-4-3.5
>h ! 1 4-3'6
>i !40:

>j l4tl
>k !42:
>l !43S
>m !44:
>n 45S
>o 46:

>P 47:

>q mß
>r 49:
>s : 50!
>t ! Ill
>u : 52?
>V ! 53s
>w : 54:
>x : 55J

>y : 65:
>z : 66:
<a : 67:
<b : 68:
<c : 70:

28293031323334353637383940414243444546474849505 i 52

I I

I I

I I

1
APPENDIX I: A MARKOV ALGORITHM PROCESSOR 280

>d t|>4- !•
>b 5 1 4-25
>c : 1 4-3- |S
>d : 1. 4. 3. 2:
>o *• 1 • 4- 3- 3-'
)f : 14. 3. 45

>g 11.4, 3. 5:
>h 5 I-4-3-6J
>i :40S

>J I4|l
>k !42:

>l !43S
>m I44I
>n :45:

>o :46S
>P -.47:

>q :48S
>r 5495
>s :50s
>t Itl*
>u 'b2'-
>v 'b3''
>w :54:
>x :55s
>y :65:
>z :66:
<a :67:
<b 1«*
<c :70s

72

1

— I I Uli IIIWIIIII ■■ 'I" ■ I ■ 11

1 APPENDIX I: A MARKOV ALGORITHM PROCESSOR 281

>a : 1-4- |S
>b : 1-4-2S

>c :]-4-3- 1
>d : I-4-3-2
>• : I4-3-3
>f : I-4-3-4
>B : 1 4-3-5
>h : I-4-3-6
>i : 40:

>j 1 4|S
>k : 42:
>l 43S
>m 445
>n «i
>o MO^

>P ',47:

>q !48:
>r :49:

>s = 50:
>t !5|S
>u !52!
>v 5 53!
>w tut
>x :55:

>y ses*-
>z He'-
<a Itfl
<b *68:
<c :70s

202122232425262728293031

I
I I I I I I I I I

I I
I

I I I

I I 1

<

iJimm ■ -- - - -

mmmmm " •■" ' <" • • ■ ■ - ■ ■

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 282

3233343536373839404142434446464 /48495051526354565657585960616263646666
>• 14- |1
>b : 1-4 2 =
>c : 1 4- 3 1 1 1 1
>d : 1-4- 3 2 1 1 1 1 1
>« ! I-4- 3- 3 1 1 1
>f : 14- 3- * 1 1 1 1

>g 1 1.4- 3 5 1 1
>h ! 1-4. 3 b i 1 1 1
>i : 40: 1 1)111 1 1 1 1 1 1

>j 1 4|S 1
>k i 425 1 1

>l . 435
>m 445 1 1 1 1
>n 455 1
>o 465 1

>P 475 1 1
>q 485 1 1
>r 495

>s 505

>t !5|5
>u !52!
>v !535

>w !54S

>x !555 1

>y 5 655 1
>2 5 665 i 1
<a 5675 1
<b 5 685 1 1
<c 5 705

M^^M

■ I ■ I •«■|MV^< -- — ""

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 283

>a : 1.4. ||

>b : 1-4 2!

>e ! 14-3 1
>d , 1-4 3 2
>• . I-4-3- 3
>f I-4-3- 4

>I I-4-3- 5
>h 1 4-3- 6
>i 40 1 1 1 1 1

>J 41
>K 42 1 1 1
>l 43 1 1 1

>m 44
>n 45
>o 46

>P 47

>q 48
>r 49
>s 50
>t '51
>u 52
>v 53
>w 54
>x 55

>y 65
>z 66
<a !67
<b 68
<c !70

6768697071 72737475767778798081828384858687888990919293

I I I I I I

I I I I I

I

1) requires the ability to invoke ;3:, ERROR, with a string message,
which does not return but handles further processing

2) requires ability to invoke NEXTCARD which makes a new card image
available, i.e. ability to invoke :2: and returns to the invoker
only if a card for the current algorithm is available

3) NEXTCHAR is the value of the character which immediately
follows the character of the current card image produced by
the last call of NEXTCHAR

4) an end-of-file condition has occurred
5) requires the ability to invoke the termination of the entire

program, i.e. :1.5: ENDOFFILE
6) requires the ability to invoke, ALGINIT Ol.l.l:)

the start of processing for a new algorithm
7) CP is an index into C and indexes the last character which

was produced as a value from NEXTCHAR. After an execution
of NEXTCARD, ^r, CP must equal 0

8) write access required for CP
9) C[l] ... C[80] contains the characters,

in order, of the card image which is inputted as a result

BMMHIMMb MM

wn^w^aw ■ ■" ii ■inn ^^^mm

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 284

of the last execution of GETIMAGE
requires read access to C
requires ability to invoke GETIMAGE which inputs a card

and returns to the cailer only if a card was inputted
"," in columns 1 and 2 indicate that the program is to terminate
and a "," In column 1 only indicates that a new algorithm
is to be processed

requires ability to print the string argument which is passed as
the parameter to ERROR

ability to perform printing operations
requires ability to invoke :1.4l which processes the remaining
data images for this algorithm

requires write access to PR
pr = true means "print the register after each successful

apolication of a rule; otherwise d not print the register
after each successful application of a rule

MAXA equals the maximum number of alphabets permitted for

an algorithm
requires read access to MAXA
requires ability to set the failure routine for NEXTCHAR, i.e.

the ability to invoke SETFAIL with a variable which names
the part which is to be invoked if no more characters are
available from NEXTCHAR

NG contains the number of generic variables encountered
for the current algorithm

CG[i], 1 < i < NG, equals the i-th generic variable
encountered for the current algorithm

AG[i], 1 < i < NG, equals the alphabet name which
CG[i] is a generic variable
a failure routine has been set if NEXTCHAR cannot
provide additional characters from the current image
read access to DOT, COMMA, COLON, SEMI, OPEN, CLOSE which
contain the values of . , , , : , , , \ , l
assumes write access to CHAR
assumes read access to CHAR
requires ability to invoke RULES which names the rule input
part, but since RULES is a label in the main program
a go to statement can be used
ERRHEAD assumes compete control when invoked

and handles error messages and further processing
NA equals the number of alphabets which have been processed

thus far for the current algorithm
requires read accesss to NA

requires write access to NA
requires read/write access to N01T, which controls a

loop that process alphabets
requires ability to invoke STORALPH, which stores the alphabet

character if all requirements are met.otherwise STORALPH
invokes appropriate error routines

35) requires read/write access to N01T1, which controls a loop

10)
11)

12)

13)

14)
15)

16)
17)

18)

19)
20)

21)

22)

23)

24)

25)

26)
27)
28)

29)

30)

31)
32)
33)

34)

MMH — - J

 mmt • " m ■•-^i

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 285

that processes genencs
36) requires ability to invoke STORGEN which stores the content

of CHAR, if legal, otherwise invokes v'ie apporpnate
error

37) requires ability to invoke ALPHFIN which cmpletes any
needed processing after an entire alphabet has been
stored

38) either no alphabets have been processed of all alphabets
processed h^ve been correct

39) requires ability to invoke FAIL which correctly determines
which objects assume control
read access required for CP
read and write access required for the variable I
requires ability to invoke TESTLEGAL which returns only if
f* l 1 A n . * ——* •• tl MM MM MM LHAK IS not . , , , ; , :

requires ability to invoke TESTGEN which returns only if
ChAR is not equal to an already

used generic variable for this algorithm
A names a one-dimensional array, which from UPA to its
upper bound contains alphabetic characters
requires re^d access for A
NG contains the number of generic variables encountered

for the current algorithm
requires read access to NG
requires write access to NG
requires write access to AG
CHAR contains the next unstored character
from the alphabet or generics being currently processed
AL[1] ... AL[NA] names the index of the lower bound of the
characters in an alphabet, i.e. AL[i] is the lower
bound for the i-th alphabet and AL[i-l] is the
upper bound for that alphabet, where AL[0] equals the
initial value plus 1 of UPA

52) requires read access to AL
53) requires ability to invoke ERRGEN, which assumes

control and invokes an appropriate error routine
54) requires ability to invoke TESTAL which returns only if

CHAR is not equal to a character which has already occurred in the
alphabet currently being processed

55) requires ability to invoke TEST which returns only if there
storage space as indicated by the values of LPA and UPA

56) UPA names the last cell of an array into which an alphabetic
character was stored, counting from the top of some
one-dimensional array. UPA is decremented by 1
each time an available cell needs to be named

57) requires read access to UPA
58) requires write access to UPA
59) A names a one-dimensional array, which from UPA to its

upper bound contains alphabetic characters
60) requires write access for A

40)
41)
42)

43)

44)

45)
46)

47)
48)
49)
50)

51)

-—""-'" ^urmtmm^^mrmm^mB^^mm mmmmmmmmm

APPENDIX It A MARKOV ALGORITHM PROCESSOR 286

61) requires write access to AL
62) LPA names the las cell of an array into which rules

are stored, counting from the lower bound of a
one-dimensional array . LPA is incremented by one each
time an evailabie cell needs to be named

63) requires read access to LPA
64) LPA and UPA are index variables for the same array
65) requires read access to CG
66) requires write access to CG
67) requires read/write access to J
68) requires read/wnte access to K
69) requires read access for A
70) requires ability to invoke 1NITRA, which initializes the

input part for rules for a new algorithm
71) requires ability to invoke CARD13RULE which determines

whether the current card image is to be interpreted as
as a rule or not

72) requires ability to invoke PRINTCARD
which prints the current card mage

73) requires ability to invoke EDR, eid of rules condition
processor

74) requires ability to invoke 1NITR wnich initializes
for inputting a new rule

75) requires ability to invoke LABL which collects a label
terminated by the character in TERM and leaves the integer
label value in LAB

76) requires ability to invoke STORLABEL which associates
the label with the current rule

77) requires write access to TERM
78) ability to invoke STORCHAR which returns only if the

content of CHAR could be successfully stored with rule
being processed

79) requires ability to invoke INITRiGHT which initializes
for processing the input of a right part of a rule

80) requires ability to invoke PROCTERM which indicates a rule as
a terminal rule; requires ability to invoke PROCSUC
which processes the successor part of a rule

81) requires read access lo LAB
82) a negative value in LAB indicates that no label was collected
83) after rule initialization, A[N1] - 1 = NR, Nl names the

current rule A[N1] = -1, N2 = Nl + 1, A[N2] = 2, NE = Nl + 2
and the location which is the name of the
immediately preceding rule names the current rule, thus if
NT is the value of Nl prior to this initialization
♦lien A[Nr] = Nl - unless NR - 1 in which case the previous
value of Nl is not defined

84) R names a one-dimensional array
which contains pointers to rules such that label i
names rule R[i];
R[i] = 0 means label i is not defined;

.
mmm

w^p»■^w•^^^■^^WP■!■■W'''"• •^~mm*~^mwi \vmm

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 287

85)
86)
87)

88)
89)

90)
91)

92)

93)
94)
95)
96)

97)
98)

99)
100)
101)

102)
104)

105)
106)
107)
108)

109)
110)
111)
112)
113)

114)

R[i] > 0 means the label is defined and
R[i] is a pointer to the rule it namws;

R[i] < 0 means that label i is undefined but has
been referenced by rule -R[i] and is
the head of a chain

requires write access to R
requires read access to R
A names a one-dimensional array which from its
lower bound to LPA contains representations of rules

requires read access to IME
NE names a cell in A such that A[NE] indicates the current number
of characters in the rule part being processed - left part
if the left part is being processed or right part if the
right part is being processed

requires write access to LPA
at most 100 labels are permitted and their definitions

appear in the one-dimensional array R[l:100] such that
R[i] contains the definition of label i when the label
is interpreted as a positive integer

NR indicates the rulename which is currently
being processed

requires read access to NR
requires write access to NR
requires write access to NE
TERM contains the non-digit character which is expected
to terrninote a label
requires read access to TERM
the digits "0", "1", "2", ... , "9" are represented by character
codes such that "0" - ZERO = 0, ... ,"9" - ztRO - 9

and the only legal label characters are digits and BLANK
read/write access to LAB is required

legal range of labels is 1 through 100
BLANK contains the representation of a space and ZERO
contains the representation of a zero
requires read access to BLANK and ZERO
assumes LAB contains a legal label name or -1 which
indicates that no label has heen concatenated
requires write access to LAB
Nl names the rule being currently inputted
requires read access to Nl
ERRULENAME contains the value which indicates a routine
which can take control if an error is discovered as rules
are being stored
requires read access to ERRULENAME
requires read access to N2
requires read/write access to L
requires write access to N2
a colon in column 4 when processing rules indicates that
the card is to be interpreted as a rule
requires read/write access to Q

^■MM

p** ■ «■ > •"'• ' 'm^mmmmmmmm^'^^^

f
APPENDIX I: A MARKOV ALGORITHM PROCESSOR 288

115) a value of -1 in A[N2] indicates that the
rule is a terminal rule

116) ERRHEADNAME is a variable which names the routine ERRHEAD
117) requires read access to ERRHEADNAME
118) RULESNAME is a variable which names the routine RULES which

inputs the rules for an algorithm
119) requires read access to RULESNAME
120) assumes all rules have been inputted correctly;
assumes that the current card isrepresents an initial register
contents; assumes that NEXTCAPD returns control only if
a data image is available for the current algorithm
121) requires the ability to invoke :4:, ERRORE, with a string

message, which does not return but handles further processing
at the execution stage
ERRDATANAME contains a value which indicates a routine
which indicates a routine which can take control if an error is
discovered while an initial register contents is being input
requires read access to ERRDATANAME

124) REG, is a one-dimensional array which contains
the characters in the register
assume.-, read access to REG
assumes write acctss to REG
requires read/write access to RPR which is used as
a »emporary register position pointer when the register
is being miially filled
requires read/write access to RC which is used

to contain single characters from the current da*a card when
the register is being filled

129) assumes read access to MAXRL which contains the maximum number
of characters permitted in the register
requires write access to MAXT1
requires write access to RL
the name of the first rule is 2

133) MAXT1 contains the number of trial rule applications
still permitted for this exe' ution of an algorithm

134) write access to RULENAME required
135) requires read access to TRM
136) FIN is a result of NOSUC which indicates that there are no more

rules which can be applied
137) requires read access to FIN
138) read access to RULENAME required
139) TRM is a result of SUCSUC and UNSUCSUC which

indicates that the algorithm should terminate, i.e. TERM
names no legal and indicates termination

140) requires ability to invoke SEARCH which
searches for a match of the left part of rule
RULENAME, and which returns the value true if
a match is found, false otherwise
requires read access to MAXT1
requires ability to invoke REPLACE, which has the effect of

122)

123)

125)
126)
127)

128)

130)
131)
132)

141)
142)

m—m

mmm****mmim ■ 11. m^^/mmm ^mm^^mm^*m^jm

APPCNDIX It A MARKOV ALGORITHM PROCESSOR 289

replacing the register contents with the right part of the
rule named by RULENAME, where the left part was matched

143) requires the ability to invoke SUCSUC which has the value of the
success to rule RULENAME for a successful application
of rule RULENAME

144) requires the ability to invoke UNSUCSUC which has
the value of the name of the successof to rule RULENAME
after an unsuccessful application of rule RULENAME

145) assumes A[RULENAME + 1] names the successor for rule RULENAME
for a successful application ot rule RULENAME

146) requires read a cess to PR
147) requires the ability to invoke PRINTREG which

prints the contents of the register
148) if RULENAME = TRM then dot termination has occurred, otherwise

the rules have been exhausted
149) G is a one-dimensional array such that G[i] ■ -1 if generic

variable i is not defined after a successful search for a left
part of a rulei, otherwise G[i] > 0
and is the character corresponding to the generic i

150) requires read access to G
151) requires write access to G
152) requires read/write access to NMAT
153) assumes that a generic in a rule has been saved

as a negative value
154) assumes Q is a leg.jl character pointer into the left
part of a rule whose first character is P + 3
155) assumes A[RULENAME] names the successor rule for rule RULENAME

after an unsuccessful application of rule RULE.MAME
156) requires the ability to invoke LEFT which names the location

which is the first character of the left part of rule, RULENAME
157) requires ability to invoke LENGTHL whicn has the value of the

number of characters in the left part of the rule named
by its parameter

158) LEN names the number of the character in the left part
Of the rule currently being processed

159) requires read access to LEN
160) requires write access to LEN
161) LET names the starting location for the left part of the current

rule name
162) requires read access to LF T
163) requires write access to LET
164) requires read/write access to NOSUC
165) RL contains the current register length
166) requires read access to RL
167) requires ability to in nke RULLFTCHR(A1B) which

produces the value of .he B-th character of
the left part which starts at A

168) RP names the character position where a
character sequence is to be replaced

169) requires read access to RP

Hi um I ^. i-^i

M1""'. ' '" " MI in *\t*mm^l^mr*r~ « i iwiujHijii "I^WWIWW^WIPÜ^-TPBI^ÖP«"! 11 III I IM|

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 290

170)
171)
172)

173)
174)
175)

requires write access to RP
assumes LI r1 L2
requires abii ty to invoke GENERIC which
has the value true if its parameter represents a
generic variable
requires read/write access to CC
requires reed/write access to LHP
requi-es ability to invoke ADJUST whose first parameter
indicates the number of characters in the left part
of a rule r.d whose second parameter indicates the number
of characters in the right part of th rule. ADJUST
modifies the register, if necessary, so that vhe right
part can be inserted where the matched left oart is
requires ability tc invoke INSERT which inserts the appropriate
right part over the matched left part
requires ability to invoke LENGTHR which returns the value
of the number of characters in the right
part c; the rule named by its parameter
requires read/write access to '.EN and '.ENR
requires read access to LENR
requires write access to LENR
requires read ac-ess to LI, L2, and TP; i.l contains the
length of a character sequence oeing replaced by a
character sequence of length L2
requires read write access to TQ and CQ
requires ability to invoke RULRTCHAR(A) which returns the
character which is the A-th character of the right side
Of rule RULENAMF
requires the ability to invoke UNDEF(A) which returns the value
true if A is an undefined generic variable
representation for this rule application; false otherwise
requires ability to invoke VALG(A) which produces the
character associated with ;he generic epresentation A
for this rule application
assumes LENR contains the length of the string
being inserted
requires read access to AG
assumes Y is a legal character pointer into the right pa't

of a rule whose first character is named by X + LENGTHL(X) + 4
189) assumes X + 2 is an index which names the first character of the

left part of a rule -1
190) assumes A[X + LENGTHL(X) + 3] is the number of characters

in the right part of rule X
191) assumes read access to X and assumes that the length

of the left part of a rule named by X is contained in A[X + 2]
192) requires read access to RULENAME
193) reauires read/write access tc QK

176)

177)

178)
179)
180)
181)

182)
183)

184)

185)

186)

187)
188)

laiHaaaB_aBaHk_ __ . ■ -M.V.w- ^^MMHI

" I IIW™^^«BIPHIP»|I. i i "PI"»PIB»WPF»^WWI"II.IIII»I«I i u «mm*m**»iiini*mi m^ms^imm^mmimm^l^mm* ^mm iw«im

APPENDIX I: A MARKOV ALGORITHM PROCESSOR 291

An analysis of the final stage using the measure has led to the

following good decomposition

((a) (On) (Or) (04) ((r) ((>a) ((•) ((f)

((>8, >u, >w) ((s) ((*x) m ((K, 0 m ((g, h)

((v, w) ((x) ((*a, *b, *c, «d, *f, *g, *h, *i, *j, *1)

(Oc, >d, >f, >g) («b, >2, >x, >m)

(Oo, >y, >p, >q, <c, <a) ({>; >h, >v)

{{*s, *r, #q, *u, *v) ((u, y) (Oj, >k, >i, >l, >b)

((z, t) ((*o, *p, *w, *t) ((m, p, q) ((*k, *n, *m))

1.56) 1.65) 1.52) 1.60) 1.35) 1.41) 1.20) .92)

.52) .32) 1.08) 1.25) 1.02) .65) .77) .32) .34)

.53) .50) .47) .22) .04) .04) .04) .04) .05) .05) 0

i

This decomposition is not the best decomposition, but it illustrates the

result of using the measure to produce a good decomposition which

satisfies several of the properties stated in the Introduction.

Specifically, those objects which manipulate the representation of rules

appear together. This situation along with others demonstrates that the

decomposition appears to have several of the independence properties

stressed by Parnas. The parts FAIL, SETFAIL, and the initialization

portion, though not elaborated here, localize detailed information about

the flow of control in the program and interact little with Ihe previous

elaborations.

— -
HUI —■—'— - ...--- ___,_- MM

-mm mm,.mm,m., . wm m^m^^m^m^^^

APPENDIX II: COMMENTS ON A NOTE ON COMPILER STRUCTURE

McKeeman[MKl], in a paper entitled "Compiler Structure", has

presented several guides thüt aid in fragmenting a compiler into

modules. Does such a modularization possess good structure in the sense

of the definition and measure presented in this thesis? It is probably

the case that these modularizations could have good structure, but good

structure is not guaranteed.

The two kinds of fragmentation discussed are vertical fragmentation

and horizontal fragmentation.

Vertical fragmentation corresponds to decomoositions whose modules

may be regarded as "passes" or "phases" >r, the compilation process.

Each module accepts as input the output of a previous module. Thus» a

possible vertical decomposition for ? compiler is

INPUT

SCfi SCAN

PARSE

SYNTHESIS

GENERATE

1
EMIT

OUTPUT

(analyze text to produce
a sequence of s.ngle characters)

(analyze single characters to
prcJuce tokens)

(analyze tokens to produu a
parse tree)

(analyze parse tree to produce
a computation tree)

(analyze computation tree to
produce language specific code)

(analyze language specific code to
get machine specific code)

(ana'yze code to get executable
or loadable text)

 . .

mmmmmm "•>" ~^^"^«»»»HBF-' i i in« «in mum^mmmn^ mummmmm^^-mmi^i^mm^^tm^fmf

APPENDIX II:COMMENTS ON A NOTE ON COMPILER STRUCTURE 293

McKeeman stresses the importance of precisely describing the

intermediate languages that connect the modules and provides examples of

such intermediate languages. Hence, pairs of successive modules share

information about their intermediate languages. This can lead to many

interactions between adjacent modules. An alternative that has been

displayed in Appendix I and in the work of Parnas, is to provide

additional modules which make information about the intermediate

languages available. This eliminates the need for sharing the entire

grammar of the intermediate language. Thus changes to these

intermediate languages correspond to adding or deleting or changing

functions at the interface. The measure indicates that the modules in

this alternative interact less than in the modularization suggested by

McKeeman - at the expence of requiring additional modues.

horizontal fragmentation can be used to further fragn.ont nodules in

some vertical fragmentation.

 adUitu-a-MM

^^^•^^^m-^mw^^mwmv^mnm*™ - i -■ in w i i liiH «i jm

APPENDIX II:COMMENTS ON A NOTE ON COMPILER STRUCTURE 294

McKeeman presents the following Horizontal fragmentation for the module

SYNTHESIS

FAN OUT

NULL DEFINE OPERAND OPERATE ASSIGN SEQUENCE

FAN OUT is intended to pass appropriate parts of the phrase structure

tree or canonical parse to the modules beneath it. FAN IN, recombmes

the results of these modules into a computation tree or sequence of

actions.

The final decomposition shown in Appendix 1 and the modularizations

suggested by Parnas[PAl-5] indicate that the boundaries of these modules

may not be as "clean" as the diagram suggests. For example, information

contained in the SYMBOL TABLE module may '"e required by more modules

than are indicated by the arrows. (Indeed, similar kinds of modules

displayed in [MK] share far more assumptions 'han are indicated by

either diagrams or text.) Further, assumptions made uy different modules

— ■

w^mmmi^wmm^mm*~~~~~'^~mi^mr~**m-*i^mm i m • tmm^m*immmmm—m > •'m^*m*w*i^imm** mtm**"***^*^

APPFNDIX II: COMMENTS ON A NOTE ON COMPILER STRUCTURE 295

may suggest additional modules in order to maintain the independence

properties suggested by the diagram. Indeed, FAN IN and FAN OUT may

well share enough assumptions to warrant large parts of them to be

written as ac'ditional modules.

Stronger statements than the^e can only be made if more detailed

information about the intended behavior of (he modules is presented.

^,^_Ma-—1—_-_-_~_ -

