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I.   INTRODUCTION 

During the 1950's the phrase "automatic programming" described the process 

carried out by assemblers aid compilers, i.e. the translation of a program written in 

ora language into another where the "meaning" is preserved and the target language 

is interpretable. Since then there have been many advances in programming languages 

and their associated processors allowing the user to specify at higher levels, or in 

more natural ways, how the computation should proceed and removing the users 

responsibility for such things as storage management, resource allocation, etc. 

In the resent project, we have sought to develop methods that will further 

automate or augment the programming process by generating programs over several 

domains in a suitably defined environment given a statement of what they are to 

accomplish, i.e. programming by assertion rather than algorithmically. We seek to 

generate programs using a statement of the v-esired program's properties rather than 

compiling from one detail specification of the flow of control into another. It is in this 

sense that we uso the term automatic programming. Automatic programming may be 

further dist'r.^uished from compiling by its use of a semantic model together with a 

deduction capability. It is to be expected, however, that as progress is r.ade in 

automata program generation that research in compilation will be benefited. 

As the field of Artificial Intelligence has matured, problem solving techniques 

have been developed that have allowed us to seriously consider building automatic 

programming system. Some very influential ideas came from the Heuristic Compilfr 

[Simon 1963] and the GPS [Newell and Simon 1963] projects, i.e. the notion of building 

up a program in a state-space tree search using a problem reduction procedure. This 

is certainly basic, almost subconsciously so, to the present project and has been 

widely used by others 

 m ■ 
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INTRODUCTION 

üuring the   ■ 960's much of the theory of problem solvmg was associated w.th 

tree or graph searchmg methods.   Well Known techmques for restricting the search by 

usmg evaluate functions, "mm.maxmg". the u-fi method, etc. may be found in [Nilsson 

1971], [Samuel  1963J.   Later automatic programming work, still dependmg heav.ly on 

search   strateg.es,   sougnt   to   represent   the   domain  semantics   and  carry   out   the 

deduction in first order logic using the principle of resolution [Green 1969], [Waldinger 

and Lee 1969J.   A more powerrui (generated deeper proofs) general deduction system 

combining resolution, equally and algebraic simplification was reported in [Allen and 

LucKham 1970].   A great deal of the systems' efforts were spent in search because 

most  facts   were  uniformly  represented as  axioms  in clause  form  and  the  search 

strategies were large.y syntactic.   Greater efficency was gained in a system built by 

separating the heuristic search from the deduction and employing the GPS paradigm 

Ifikes and Nilsson 1971]. 

The difficulty ,n these systems of usmg facts to gutde the search has prevented 

them from solvmg hard vor humans) problems or generating complex programs.   It har 

become   dear   that   in   addition   to   a   manageable   basic   problem   solving   method. 

Knowledge, both general and domain specific, must be provided in a funct.onally useful 

way  to enable the system >o fmd a solution.   During the last two years language 

systems   that   allow   the   user  to  easily embed  knowledge   at  al.   levels   have   been 

developed.   Other useful features are pattern matching, pattern evoked procedures, 

tlex.ble control structures, multiple contexts and processes [Hewitt   1569], [Sussman 

and McDermott 1972], [Kulifson et al. 1972]. [Feldman et al. .972], [Tesler. Enea and 

SmUh  1973J.   Our use of some of these features wm be described m later sections. 

Taking advantage of some or these features and refining the notion of semantics mm a 

■-   -            —-    ■- A    
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natural language understanding system reported in [Winograd 1971]. Other automatic 

programming or debugging systems are [Deutsch 1973] and [Sussman 1973]. Some 

general descriptions and useful classifications of the components of an »utomatic 

programming system have been g;ven in [Balzer 1972]. The closure of all these 

capabilities is yet to be fully exploited in a problem solving or automatic programming 

system. 

Procedural Knowledge may be distinguished from declarative in that the 

information content is expressec within the flow of control of a computation (in the 

general sense) sequence, i.e. the data from which useful information may be extracted 

is the program itself. This is probably the most efficient information access scheme of 

all. An intelligent system in which all information is expressed procedurally will rely 

more Heavily ^perhaps totally) on tne current state of computation to determine its 

future behaviour than a system utilizing declarative facts and also be, necessarily, 

more dependent on the ordering of its knowledge. 

However, the aistmction begins to blur when we consider how a system may 

effectively utilize declarative information and how given a general computational model, 

e.g. problem reduction algorithm as in our system, declarative facts may be translated 

into procedures. Another example of this is the "questionnaire programming" approach 

for customizing business application systems. Progress has been made in defining 

model specification languages having procedural and non-procedural components 

[Hewitt 1969],[Martin 1973], [Hammer, howe and Wladawsky 1974]. Even a resolution 

based tneorem prover with an appropriate protocol language Une procedural part) can 

efficiently use its knowledge to solve a problem [Allen and Luckham 1973], [Sticket 

1974J. 

——,—  - .       . -        — ——^^■»———  
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Research in verifying existing programs [Floyd 1967], [King 1969], [Katz and 

Manna 1973], [Milner 1972] has contributed to our understanding of programs and we 

have found (not surprisingly) that the kinds of facts required to verify programs are 

not distinct from those required for the synthesis of correct programs. Progress has 

also been made in defining axioms and rules of inference for the semantics of 

programming languages [Hoare 1969] and in particular with respect to the 

programming language PASCAL [Hoare and Wirth 1972]. This Logic of Programs has 

been further developed and used as a basis for a verification system in [Igarashi, 

London and Luckham 1973J. As a logical basis for an automatic programm ng system 

this logic is especially cunvement since the rules are intuitively clear, the system 

operation may be easily formalized and correctness considered, and rule applications 

proceed in natural (for humans) steps. 

The objectives of the present project have been to extend the theory of 

semantic definitions to describe automatic programming problems and to design and 

implement a system that uses this information in a functionally useful way to 

atuomaticaily, or interactively, generate programs. 

The particular formalism developed to define the programming environment (or 

f-RAME) called tlv FRAME language, will be shown to have elements whose form 

corresponds to statements in the Logic of Program^. It is based or- a typed, free 

variable first oroyr logic in which statements may have truth values of either true, 

false or undetermined. The frame language consists of primitive procedures, logical 

axioms, definitions, iterative schemes and additional information about these rules and 

the relations in them. Other rules of program composition, referred to as standard 

rules (described in Section 2), ar« built into the system and needn't be specified for 

each frame, i.e. composition rule, conditional rule, etc. 

 . ■ ■   • —  — - ■■   
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The frame language may be viewed as an mtermediate level model specification 

language   that   .s   non-procedural   and   domain  mdependent.    It   was   motivated   by 

observing that in the general deduction systems prev.ously mentioned there was mor« 

information in the ax.oms than was bemg used operationally, i.e. there were different 

kinds of ax.oms and relations (see Section 3) that should be treated differently by the 

system.   For example the trutn value of some relations are functions of the state, or 

FLUENT [McCarthy and Hayes 1969] and some are NON-FLUENT.   For efficiency some 

relations could be handled in a two-valued logic, i.e. TOTAL, and others require the 

generality   of   a  three-valued   logic.    Also  search  guidance   information   should   be 

provided  (embedded) at  all  levels.   For  example compared with  a  rc-solution based 

system we would like to choose the best "set-of-support" at each level of deduction. 

We also wanted a language extendible to, or translatable from a higher level, more 

natural input language, e.g. recursion equations for the Fibonacci series example in 

Section   3   and   the   factorial   example   in   Section   6.    A   frame   actually   describes 

programming  techniques,  t,,?  extens.veness  of  which determine   the   complexity  of 

programs produceable using it. 

Given a frame, F, a problem for program construction may be stated as a pair 

<I.G>. where 1 is an input assertion and G is an output assertion. The program 

generation task is to construct a program A such that l{A}r, where M This process 

may be viewed as a search in the logic of programs tor a proof that the generated 

program satisfies the given input-output assertions. A solution to the problem is the 

sequence of rules o' inference and axioms used in the proof. This view allows us to 

show correctness of the formal methods for program construction. The correctness of 

the program actually generated by the system wiil depend on our ability to implement 

-  
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the formal algorithm. The solution, or output, programs are written in a subset of 

ALGOL containing procedure calls, assignments, while «oops and conditional statements. 

Program construction is by simulated execution where iterative rules with associated 

output assertions are used to update the computation model for simulating the 

execution of a loop. 

Tha application domains studied and in which programs have been generated are 

numerical computation, symbolic manipulation, guidance procedures for a robot, 

assembly and repair of machinery, and sequential planning together with generating 

contingency plans for a wid. range of decision MMng problems. Though we have 

here pursued a course of develop.ng one system then applying it to several domains 

by merely changing the content of the frame definitions, it is expected that for 

practical performance, tne form of the system definitions will depend on the domain. 

For example this is currently happening in researcn attempting to appiy Jhis system to 

auiormting data base management tasks [Gerntsen 1974J and automated repair of 

machinery [Luckham and Buchanan iy7<4]. 

The rules of inference, axioms and other logical facts expressed in the frame 

definitions are translated into a backtrack problem reduction system augmented by 

special search procedures L3ing ihese facts. The target language of this translation is 

LISP using primitives and backtracking facilities of Micro-Planner [Hewitt 1971], 

[Sussman and Winograd 1972]. This subgoaling system recursively applies to a goal 

the rules of the frame to generate subgoals whose solution imply a solution to the 

original goal. 

As an auxilary to the subgoaling system is an ADVICE system with an associated 

language that allows the user to guide tte search, modify the frame, restrict rule 

._       . ^  - -      ■ -      ■     - ■        -■  -■■    ■    - -..    --——^1—».t^-»^ ■-+         ^-w^^^^ ^J.-. 
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applications and rece.ve interactive feed-back during program construction.   This 

described in Section 3. 

is 

1 
LIBRARY 4 

FRAME, 
PROBLEM, 
ADVICE, 

1 

i 
-> 

«- 
TRANSLATOR ■# 

BACKTRACK 
PROBLEM 
SOLVER 

PROGRAl>1 
ASSEMBLER 

-> OUTPUT 
PROGRAM 

1 

t 1   T i INPUT 
STACK OF 
SUB- 
PROCEDURE 
PROBLEMS 

OUTPUT 

Figure 1.    Main System Components 

The  main components of  the system are shown in figure  1.   The  user  may 

interactively specify a frame and provide some initial advice (model acquisition phase). 

This is eventually translated into a subgoahng problem solver to which a problem may 

be given, i.e. a goal which the problem solver seeks to achieve using the rules of the 

frame (program generation phase).   If a solution program is constructed, the user may 

incrementally extend it, i.e. pose another prob.em which takes the output assertion of 

the current solution program as its input assertion.   The user may also optimize it, or 

generalize it and place N in the program library for future inclusion in a generated 

program.   If the program contains conditional calls to as yet ung^nerated procedures 

(see Section 5), these subpiODlems may be attempted.  Subproblems may also arise by 

declaring some primitive procedures defined in the frame to be assumptions to br 

expanded into concrete programs.   This provides a rather rudimentary, at this time, 

interactive structured program development facility. 

■ ■    ^ -.- . . - 
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INVRODUCTION 

1.1   CONTRIBUTIONS 

Some   of   fhe   areas   uf   wor^   along   which   progress   has   been   made   and 

contributions to the field may be noted are as follows: 

(1) Extending the theory of semantic definitions for defining semantics of programming 

languages to define automatic program generation env.ronments. A relation has also 

become more clear betwee: the kind of assertions needed to verify programs and 

those required to synthesize correct programs, e.g. (ompare loop invariants used in 

our system with inductive assertions tor program verification. 

(2) A prototype system has oeen developed that is useful in a study to determine the 

feasiLiity of building an automatic programming system to augment the programmer in 

the following ways: 

(a) Automatic or  interactive generation of possible solution programs for 

application domains suitably described, 

(b) The   usefulness   of   an   automated   system   to   handle   bookkeeping 

details.check consistency, applicability, etc., 

(c) The feasabilny of an interactive struciured development system, 

(d) The feasabiiity of interactively building up complex programs by allowing 

incremental program extension, library access, structured development, 

and contingency plunmng. 

(3) A demonstration is made that declarative facts can be incorporatedttranslaied) into 

an efficient problem solving search procedure which uses these facts at all levels of 

search. 

(4) A typed, free variable first-order logic in which statements may have truth values 

of true, false, or undetermined has been shown to be a natural logical basis for 

automatically generating conditional statements in a program. 

■■    - -   -■-- - ■— " 
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INTRODUCTION 9 

(5) The iterative rule computation scheme has a correspondence to t'^e principal of 

mathematical induction and is a useful way to represent loop structure for a program 

to be generated. 

To the nagging question '<hi\ it may be as hard (or harde,) to specify a frame as 

it Is to write the program, the following answers may be given: 

(1) Yes, but we are learning how to program by assertion, and develop defining 

formalisms and methods for efficiently nanipulatmg facts and rules. 

(2) A frame may contain many atomic units of information whose interaction when 

faced with a novel goal is not easily predictable. For example the robotics frame 

defined in Section 7 may be used to general many different programs. 

(3) An interactive facility for constructing programs with the extendable features 

mentioned above can pctentially augment the human programmer. 

(4) Experience with our frame language has been helpful in investigating the basic 

information requireci to construct programs, now the task of raising the level of 

lanpjage interaction to a more natural (and useful) level will be aided. 

- ■- -..-...^i . —    - - ■      ■-■■■ J —J- '■ 
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1.2   EXTENSIONS 

The foliowmg specf.c research problems are suggested as natural extens.ons of 

this work (i.e. problems we didn't solve/: 

(the -eader may want to scan these now then come back to them after rrading 

further) 

(1) In the area of conditional statement generation: 

(a) Introduce probabilistic dec.s.on theory to determ.ne preference amunc 

cüniingfer,v/ problems. 

(b) Oevelop criteria for recognizing equivalent or similar subproblems. 

(O Design a more flexible mechanism for managing scope, program structure 

and contingency ptl selection. Since then is no reason to prefer the 

trunk patn. the structure of the output program should not be fixed 

from that point on. 

M Compute completely correct input-output assertions for programs heving 

arbitrary nesting of conditional statements. 

(2) In the area of automating structured programming: 

(a) Develop a human engmeered interactive system.   Regardless of how the 

-theology" says we should prog-am, there is something basic to the 

human condition about how we do program and style improvement must 

be made within that framework. 

(b) Develoo techniques for managing side effects. 

(c) Do lookahead or design a bottom-up. outside-m. etc. component. 

(3> In the area of generating programs with looping structure: 

(a) Implement some form of the recursion rule[Hoßre IJ^öy]. 

 -  --■    ■- 
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(b) Develop efficient and more complete methods for updating  the oiate 

consistently.    Design   criteria   for   detecting   inconsistent   states   and 

prevent them from invalidating the program. 

(c) Generate while loops but reduce th& IHormation that the  user  must 

provide. For example, in iterative rules the systt- sh-Jd reasonably 

deduce the contiol test or output assertion. 

(d) Buld in the iterative rule (analcgous to the way the com'itional rule is 

built in). This is really trymg to do induction. We would likt the ability 

to analyze a computation trace, recognize loop structure and generate a 

while loop. 

(4) A higher level or more comprehensive input language should be developed. It will 

probably be domain dependent. 

(5) Explore the impücMions of various logics for programs as a basis for automatic 

programming. In [McCarthy and Hayes 1969] various logics are discussed for 

intelligent systems. 

(6) Stnve to free the problem solver from being so dependent on the ordering of goals 

in a condition to be achieved or the ordering of applicable rules. Develop reordering 

strategies, lookahead, etc. 

(7) In the area or parallel processes: 

(a) Generate programs for parallel machines. 

(b) Develop criteria for splitting up a generated sequential program into 

subtasks for coorerating sequential processes. 

(8) Exploit multiple processes and multiple contexts to increase the power of the 

problem solvers, e.g. a better answer to the question of why a node failed could yield 

■utomatic correction. 

■ ■ -      
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(9) Orgamze a library of eene a,ed programs and develop strategies for its access. 

(10) Study the proolem of vahdat.on of program spec.f.ca.on. Determ.ne cons.siency 

and adequacy of a programm,ng model. Hrove property of the family of programs 

constructable from tne same rrame. Study the .nvanants of data structure under 

^ppiicafon of a r.m.ly o, programs. y.g. do lhey moo.fy the tree orderedness of a iabel 

labid. 

-    -    - 
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1.3   COMMtMTS UN THE FUTURE OF AUTOMATIC PROGRAMMING 

The need for some automation In the task of software production is beccm.ng 

increasingly clear. System are Betting b.gger and more complex wh,ch has caused 

mamtena.ice cost to rise (It is now 50 per cent of the programmmg budget). Software 

ccats too mucn, it isn't rel.able, takes too long to develop and its difficult to modify or 

fix. Programming has not attained the maturity to c'.vel.p standard engineering 

pract.ces w.tn their attendant reliability that otter disciplines have. Research in 

a^ümatic programmmg seeks to understand the nature of the task 3nd thereby 

improve oroduciion. 

There are many d mens.uns along which automatic programming will progress. 

There   is   the   theoretical   di,„^ion   whicn   implies   gaining   a   more   fundamental 

understanding of the meaning of programs and developing descriptive and useful logics 

for   automatic   programming  problems   that  permit  a   ngorous  investigation   of   the 

properties of  a program.   A(M| the pragmatic dimension, we will be  interested in 

augmenting  current  practice with  state  of the  art  techniques.   There  is   also  the 

heuristic dimension which contains the multitude of ideas, systems and ad hoc notions 

for   which  there   is no  Good  log.cal  description nor  is  there  any current  practical 

application, but through them we gam understanding into the nature of the problem. 

The   foliuwmg  are  a  list  of  rather  random comments on the  future  of   automatic 

programming based on our experience. 

O) (vore emphasis will be placed on higher level descriptive formalisms and 

programmmg languages to detme programming environments. The level will be raised 

to accumouaie the nun^rogrammer as we.i as to ease the job of the professional. 

Some of these advances wii. require major breakthroughs in Artificial Intelligence, e.g. 

  -- — -  - ■      __J_^M^Mi^_^. 
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dynamic acquisition of models, recognition of incomplete or inconsistent modals, or 

further rk velopment in representing knowlege in a functionally useful way. 

(2) Larger »oftwdre facilities will be develop, d for systems to conta.n more facts. 

Deduction will be efficiently encoded (perhaps specialized as in the theorem prover 

over the integers in [King and Floyd 1970]). 

(3) Specialized domain application sys\c-r.z will be built that will rival human abilities 

(perhaps the standard five year time estimate will do). Compared with the present 

system these will require new kinds of built in facts, different advice needs and 

computation schemes. To make real progress trar rerring technology developed in one 

system to the improvement of another in perhaps a different domain we must focus on 

the methods used to embed knowledge or define the environment rather than just 

loading the system with facts and ad hoc tricks or using a human interface that only its 

creator can understand. The field is so young that too much time shouldn't bo spent 

hand tuning a system once the basic methods are exploited. 

(4) There are some short term payoffs (within 5 years) for augmenting programmers, 

e.g. better interactive debugging systems, languages permitting user assertions to be 

checked and better optimizers. Within a narrow domain present technology can yield 

good performance. Automntic programming will not replace the programmer but will 

raise the educational level tor those who would do computer assisted program 

construction. With respect tc program synthesis we should strive to generate 

programs of the type that people understand and can write with some effort so that 

program synthesis does not get completely lost in futuristic AI research. Within 

current technology the size Of the generateabie programs will be small (one page) and 

complexity will be gained by combining and extending them with interactive aids. 

- -■■ 

■...-  
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(5) INTERACTIVE systems will be developed that will do mundane logical chocking, 

answering "what if" questions, and building up complex programs modularly such that 

the system will only have to focus on o* e small problem at a time. 

(6) Within the forseeable future final production level syst^ns will not be automatically 

produced but the ability to produce prototype systems quickly to test design ideas will 

be a significant aid to software production. 

— -^ 
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In Section 2 a short description of the logic of programs is given in which the 

frame definitions and p'üjram construction rules are formulated. A simple txamplt is 

given that illustrates how a problem is formulated and the meaning of a solution, 

oection 3 describes the frame definition language, advice language and output program 

language. In Section 4 the systems use of information during the problem solving 

process is described. Sections 5 and 6 present the system methods for generating 

conditional state-nents and iterative loops respectively. Section 7 descibes the 

programming aids provided in the system for the user to interactively generate more 

complex programs. In Section 8 is given tne formal program generation algorithm and a 

description of the proof of its correctness. Section 9 is intended to document the 

system implementation to the level tnat would be reasonably useful in designing an 

expanded system, illustrative examples of frames grid generated programs are given in 

Sections '6,6, 6,7 a*id -.ppendix A.  Appendix Ü contains a complete interactive session. 

-■- _ 
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2.   LOGICAL BASIS FOR SEMANTIC DEFINITIONS 

In this saction we will bnefly describe how frames can be formulated within the 

Logic of Programs. Later sections will expand on tne frame formalism and its use. 

Program generation may then be viewed as a search for a proof within the Logic of 

Programs that tne generated program satisfies its input-output assertions. In Section 

8 the formal algorithm will be given and correctness of solutions considered. 

A distinction should be made between the problem solving algorithms and their 

implementation in any particular system where an implemented system must fall short 

of   the   formal   algorithm.    For   example   program   correctness   will   depend   upon 

maintaining consistency of  each state occuring during program construction, yet in 

general  the task of determning state consistency is undecidable.   However limited 

deduction is carried out and special mechaniams to detect common inconsistencies, e.g. 

single valuedness of progrem variable;, rre implemented. 

NOTATION:        x,y,z(u,v,w...variabies, 
X,Y,Z,... lists of variables, 
f,g,n.... tunctions, 
s,t... tunctiunal terms, 

G.I.P.Q.^iS,... Eoolean expressions (essentially formulas of first order 
logic with standard functions and predicates for equality, 
numbers, lists and other data types), 

P(X) denotes the formula obtained by replacing each free variable in P 
by a new variable from X, 

{3X)P(X) denotes existential quantification over all X-voriables in P(X), 

A,B,C,... programs and program parts in an Algol-like plan language 
(details in Section 3), 

p,q,... procedure names, 

oi,ß,\,... substitutions of terms for variables, also denoted by (<x«-t>). 

P(t) denotes the result of replacing x by t everywhere in P(x). 

u/S denotes the OWPOSITION of u and ß; Eocß -(EcO/J for all 
expressions E. 

mOmtMm -* ■■     - — '--^ '—I  1 II I ■Mil -     --^^^— J..^-... - ■ n    .■ .    lairnitiifM 
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We assume the ex.stence of a fixed arbitrary ordering of literals defined in the 

trame (atoms and negat.ons of atoms) which is simply used as a computational aid for 

descnbmg and .mplementmg the rule of invariance defined in Section 2.2 and not for 

any heuristic advantage. 

■■'■■ ^*^~. -         - -    —      -       -   n ■ 
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2.1 LOGIC OF PROGRAMS 

We review briefly the elements of an inference system for proving properties of 

programs [Hoare 1969]. This description is taken from [Igarashi, London. Luckh.m 

1973]. 

STATEMENTS of the log'c are of three kinds: 

(t) Boolean expressions, (hencefortn often called ASSERTIONS) 

(ii)        statements of the form P{A}Q where P.Q are Boolean expressions and A is . 

program or program part. 

P{A}Q means ".f P is true of the input state and A halts (or halts normally in 

the case that A contains a GO TO to a label not in A) then Q is true of tne 

output state". 

(Hi)       Procedure declarations, p PROC H where p is a procedure name and R is a 

program (the body of p). 

A RULE OF INFERENCE is a transformation rule from the conjunction of a set of 

statements (premisses, say H, .....K, ) to a statement (conclusion, say K) of kind (ii). 

Such rules are denoted by 

Hi _*. 

The concept of PROOF in the logic of programs is defined in the usual way as a 

sequence of statements that are either axioms or obtained from previous members of 

the sequence by a rule. A proof sequence is a proof of its end statement. 

NOTATION: We use H ||- K to denote that K can be proved by assuming H. H |- K 

denotes the same thing for f.rst order logic. It is sometimes helpful to denote 

statements that are problems or subproblems for the program generator to solve by 

P{?}Q. 

         •— ^^^.^ j- 
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2.2 FRAME RULES 

The RULES in a frame F are of three krnds: 

(a) PROCEDURES transform states mto states and are expressed as statements in 

the logic of programs. 

(b) SCHEMES are methods for .onstruc.mg programs and are expresed as rules of 

inference in the logic of programs. 

(0 RELATIONAL LAWS: defm.hons and ax.oms wh.ch hold m all states and serve to 

"complete" mcomplete state descriptions by permitting first order deduction of 

other elements of a state from those given. 

Given a frame F a problem for program construction may be stated as a pair 

<I.G>I where I is an input assertion (or initial state) and G i. the output assertion (or 

goal that must be true m the output state). The program construction task is to 

construct a program A such that I{A)r( where M A solution is the sequence of rules 

of F used in the construction of the solution program A. 

NOTATION and RESTRICTIONS: Q u F . R denotes that R is a logical consequence of Q 

and the ax.oms of F. Assertions describing states are denoted by UV-AOV- These 

assertions ^but not the assertions in rule definitions) are restricted to be conjunctions 

of atomic assertions. We write *] to denote that R is a conjunct in I. L(F) denotes the 

logic of F,i.e. the set of consequences of the rules of F. Substitutions u do not 

replace any variable that occurs in the initial state I. Expressions, all of whose 

variables occur in the initial state are called "fully instantiated". 

STANDARD FRAME RULES: A set of standard rules are assumed to be part of every 

frame. These are rules implemented in the program construction methods of the 

problem solving algorithm: 

RO.   Assignment Mxiums: 

--     -■■•-- ■-■■! - ■ —— "   ._        -       -      ■   ._ ■ -. -^-^ > .,    —    , -     —  
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(i)  Simple Assignment: P(t)[» -t}P(x) 

(ii)  Conditional Assignment: (3Z)P{Z){IF P(W) THEN Y«-W}P(Y) 
-(3Z)P(Z)A0(Y){IF P(W) THEN Y*-W}Q(Y) 

where Y-variables in P(Y) do not occur  in P(W)( W-variables are 
special variables ocurring only in conditional assignments, and Y^-W 

TufL^6 Sequence 0, simPle assignments between members of Y 
and W that occur m the same argument positions in P(Y) and P(W). 

Rl.  Rule of Consequence:    P^Q.OfAjR   P{A}Q,Q3R 

P{A}R P{A}R 

R2.   Rule of Composition:    P{A}Q,Q{ö}rt 

P{A;B}R 

r<3.  Rule of Invariance:  if P{A}Q and I u F = P then I{A}InV(0,I) 
where if Pi.h^-.Kn are the conjuncts of I 
m the fixed order, then  I8 - Q, 
for ü<m<n,  W« - Vi A f^  if ^(lm u F D .R,,) 

ImM = In  otherwise, 
and   Inv(Q,I) = ln. 

M.  Change of Variables:    P{x){A(x)}Q(x) where y is not a 

  special variable. 
Ky){M(y>}(<(y) 

R5.  Conditional Rule:    PAQ{A}R,  PA-Q{B}R 

P{» Q THEN A ELSE B}R 

R6.   Undetermined values: If r{?}G cinnot be solved and 
-U'uF D .G) then G is UNDETERMINED in I'. 

STANDARD RULES 

REMARKS:   (i)   The   axioms   Rü(ii)  dehne   the   semantics   of   conditional   assignment 
statements ur.ed primarily in the system during the assembly of wNle loops    Thi 
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e 1,00 P(W, w.thm the IF statement is interpreted as a call to a Boolean procedure 
tnat, -successful w.ll bind the W-Parameters to values from the state that make it 
lurM °U';,COnv

|
ent,0n 's t0 ^Mrt W-variables as "special variables" onfy occurrinR in 

su h cond.t.onal ass.gnments.  An alternative would be to define a typed procedu e for 

ssl^nt To ^ ' v   Ü2   ,ha,  WÜU,d   retUrn   ,he   «PP^priate^value    or   Xlc assgnment  to the  Y-vanaoles.   We felt that  the conditional assignment  made  the 
desired semantics more iransparent however. ~   maae  Trie 

ItitJlun^nl 0f mva:iance means that during a state transformation and a new 
sta ement Q becomes true m I that the function Inv(Q(I) will return Q union these fete 
ml that do not coniradict Q.  We therefore do not need "frame axioms" to handle the 

co^al^l^e^lt^ "'^ gUideS the SySte- decisi- t0 «-erate 

INPUT FRAME RU ES: In addition to the standard rules, a frame may contain rules of 

the following types (these constitute the user defined elements of the frame): 

51. Primitive procedures (or operators): tne rule defining procedure p is of the form 

P{p}0. The assertions P and Q are the pre- and post-conditions of p. p must contain a 

procedure name and parameter list. 

52. Iterative rules: an .terative rule definition containing the Boolean expressions 

Rbasis). Q(loop mvariant). iteration step goal). Uco.trol test) and G(rule goal) is a 

rule of inference of the form: 

(a) P.|-0,QAL{-'»R,  R{??)QV-L 

piwhiiü L do fprya 

where the free variables of R and L occur in Q.   Such rules are permitted not to 

contain P or L.in which case they correspond to inferences of the form: 

(b) Q, OA^G{?}R, R{??}OVG 

0{while ^G do ?;??}G 

S3.  Definitions.  A definition of G in terms of P is a logical equivalence |- P-G. 

S4  Axioms.  A frame fcxium P is a logical axiom |- P. 

mi in iit'mniiaMiMMi ■ i nnaMiaiii«——MO 
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Terms and predicates in assertions may contain calls to LISP functions. If the 

frame definition contains functional terms or predicate tests that are evaluated by Coilf 

to LISP functions, the set of premisses must be expanded to include both the input- 

output assertions for thsse function calls and the logical axioms for the relevant data 

types. 

REMARKS (i) The iterative schemes S2 permit the definition of methods for constructing 
loops; they are instances of: 

WEAK ITERATION RULE:      QAL{B]QV-L 

Q{WHILE L DO BH 

where Q is the invariant of the loop. The meaning of |-Q in the premiss is that the rule 
may only be applied in states where Q is a first order consequence of the state 
description. The program part ?? is restricted to be a sequence of assignment 
statements (see Section 6). 

(ii) Inconsistencies may arise in several different ways in frames. The axioms can be 
inconsistent, or the post conditions of a rule can be inconsistent with the axioms. Also 
the elements of iterative schemes must satisfy some simple consistency criteria 
(section 6). 

(iii) Note that each frame rule has a goal. The goal of a procedure is its postcondition; 

the goal of an axiom or definition is its consequent. 

The following lemma is useful in proving properties of conditional assignments 

[Igarashi,London,Luckham 1973]: 

OR-LEMMA P{A}Q, k{A}S 

HvR{A}0vS 

 ■—---  -  .^I..  . , 
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2.3 A SiWPLE KObOTiC EXAMPLE 

We will now consider a simple robotics environment and its description within 

me formalism. In me context of this example we will then consider formulating the 

oofreeitwM uf woiMom, 

Consider tha following «riime und problem: 

iWPUr KRAfviE KÜLE3: 

r'l.   Hrocodure:  ütyr^doii 

MI u,y//\A fu.y/AKüLiü rix)AL0X{z;{stanJon(x,2)}üf^x,z). 

K2.  Hrocedure:  biop-up 

KObOT(x)AOK(x,y)AaTACi<Eü(i:,y){stcp-upvx,y,z)}ON(x,z). 

K3.  Iterative Rulo:  climb 

hOuO r^()AOK(. J,y)/\S rACKE0(u,y)AOi\jT0P(M){?}0f\l{W,u) 

hOüOT^M)AÜK(ivl,y)ASTACKEÜ(u,y){WHILEONTüP(M)ÜO BEGIN ?;?? END}ONTOP(M) 

K4.  Axiom:  K0Lür(x)A3y^üi^/,y)AVz^TACKEÜ(z,y))«0NT0P(x). 

I-KOCLEM 

i:  Küo0rvt.l)/»L0Xxüi)ALCX^^)AL0Xvu3iAATtül,L)AATtiw1,L) 
AiJTACKEUUÜ,Ui) A ÜTACKEÜ(b3,b2). 

L:   OiJTOrv.M) 

PROBLEM 1: CUMBiNG 

REMMMO: (i; The itorj-tivu ruio says "A suiution to the problum of MtMbinj one box at 
a time, can bo mod to consiruci a WHILE loop that solves tho problem of climbing a 
siack of boxos". 1 ho rulo diifines the meaning of WHILE in the (nvironment. Or ya 
rnuy rujard mo rule as an induction principio for the environment. 

(ii) Tho program part '({ in the conclusion of the iterative rule transforms the situalion 
aftor Kne execution of the loop body (Y) back into one in which the invariunl is cgoln 
true ir trie tout is true: 

Üi\l{x,u){??}ROüOT(x)AON(x,y)ASTACKED(u,y). 

We roitnot 'if to Lo u üüMUJI)CO of asüi^rtments. 

Oii; Trie ^J of ciittto is ONTUKM), the negation of the control test in this exatnpiu. 

__. 
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T >t<n4«n(ll,ill) 

«»Cr.DVAiioo 3 onwo«) tIACUB(a,T) 

• t«piip(K.Y,U) 

CILal, 

Qowofdo 

S.EARCH_FOR  buLUriut\S  TO THE CLIMBINH PRORT^i 
Figure  2 

Sleps MM by , search p,occat,re in so|vmg thjs prob|em ^^ ^^^ ^ ^^ 

2. It starts with state sitUat,on 1 and dete,m„s by (ogical reasoning from I end th. 

m*m which operators have pre-conditions that are true in 1 . „ applies these 

operators and updates the slate to the new state us,n6 ;he ruie of inveriance. D 

repeats .his process on ,he new states. Node 6 indicates the initiation o. , 

subprobten, (the premiss « the iterative rule) with a new initie, state (the invarient) 

which is a subset o. the state above it at Node 5. The soiutions correSpondinB to the 

paths shown in fiyure 2 are: 

(i)   I(standon(M.bl)!stepup(M>Bl.B2)istepup(M(B2)53)}0NT0P(M). 

(ü) I{standon(M,Öl);y«-Bljü-B2; 
WHILE ONTOP(M) DO BEGIN 

1 
-- - -     ■     ---   --    --- .  - — 
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stepup{M,y,u); 
y«-u; 

IF STACK£0(w,y)THEN u*-w; 
ENOjONTOP(M) 

where the assignments within the WHILE loop correspond to the ?? of the iterative 

rule.  The variable w is a special variable. 

Using   the   frame   rules   we   can  now   construct   a   proof   of   the   statement 

I{solution)G within the logic of programs. 

1. I='(R0ö0T(M)AAT(M(L)AAT(Q1,L)AE.ÜX(ö1)) 

2. I{standon(M(öl)}ülM(M,öl)ASTACKED(ö2,bl)AF<0B0T(M)l(Fl,R4,Rl,R3 

3. 0N(M,B 1 )ASTACKtWB2>Q 1 )AR0B0T(M){y*-B I; 

u«-B2}ROBOT(M)AüN(M,y)ASTACKEü(u)y)R0(i)(R2)R3 

4. I{standon(M,Bl);y«-Bl;u-B2}RObOT{M)A0N(M,y)ASTACKE[Xu,y) 2,3,R2 

5. f<ÜÖOT(M)AüN(M.y)ASTACK£D(u,v){stepup(M,y,u)}0N(M,u)AR0BOT(M)F2,R4 

6. R0BOT(M)AON0vJ,u){/<-uiHüBOT(M)AÜN(M,y) kO.RS 

7. 0N(M(y)A3zSTACKt[Xz.y){lF STACK£D{w./)THEN u-w}ON(M,y)ASTACKE[Xu,y) R0,R3 

8. -32STACK£D(2,y)AÜNT0P(M){iF STACKED(w,y)THEN u^-wjONTOPCM)  RO 

9. (ON(M1y)A3zSTACK£ü(z,y))v(^zSr/»CKED(z,y)A0NrüP(M)) 
{IF STACKED(w,y)TH£N u-w}(0N(M,yhSTACK£ü(u,y))v ONTOP(M)  OR-Lemma 7,8. 

10. R0B0T(M)A0N(MIy)A^(3z)S rACK£D(z,y) o ONTOP(M)      F4, 
^(0N(M(y)A3zSTACKED(z,y))v0NT0P(M) 

SSSIS^^ ^STMCKEU^y) 3 lON(M,y)A3zSTACK£D(z,y))vONTOP(M) 
RObüT(lvl)AOIsKM,y) a (0N(ivl,y)A3zSTMCKED(z1y))vÜNT0P(M) 

11. ROBOT(M)AON(M,y)ASTACK£Ü(u,y){stepup(M,y)u)iy*-u; 
IF STACK£D(w(y)TH£N u-w}{ON(M,y)ASTACKEü(u,y))v ONTOP(M) 5,6,10,9.R2,R1 

12. ROBOTlM)AON(M,y)ASTACKEü<u,y){WHILE^ONTOP(M) DO ...}ONTOP(M) ll^l.Fa 

13. Usolution (ii)}ONTOP(M) 4,12,R2 

PKOOF of lisolution (ii))G 

— —   
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We refer to a formal proof of L(F)||-I{A}G as a correctness proof. The existence 

of such a pruot implies only that the program is correct relative to the frame. If we 

modify the frame we can investigate the correctness of solution (ii) in the extended 

frame by analyzing the proof of l{solution (ii)}0NT0P(M) by checking to see if any step 

uses facts from an intermediate state situation P that contradict the extra logical rules. 

We in effect carry uut a "pruur checking" operation for consistency of each step with 

the additional facts.  This process practically avuids search. 
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3.   DEFININI THE PROGRAMMING ENVIRONMENT 

In this section the Frame definition formalism is presented. This includes the 

Frame language the Advice language, and the output Program language. A compleW) 

example of an input frame, together witn advice, and the resulting output pre gram is 

given. 

3.1 FRAME LANGUAGE 

3.1.1 ASScRTlONS: The syntax for assertions used in definitions of rules, axioms and 

state descriptions is shown in figure 3. 

<variublo> ::» <identitier> 
<function symbc^ :;-■ <io'entifier> 
predicate symbo > ::= <identifier> 
<term> ::- <variable>|(<funciion symbol>)| 

(<furictiün symbolxaryümeni list>) 
<argument list> ::= <lürm>|<term>,<art;ument list> 
<functional term> ::- (EV<term>)|(EVN<term>)j<türm> 
<aiomic formula> ::- <predicale symbül>(<predictite argument list>) 
<predicate a-gument list-- ::- <functional term>|<functiünal term>, 

<prediciite argument list> 
<literal> ::= <atomic furmula>|-<atornic türmula> 
<literal element> ::- <literal>|RtQU£ST(<literai>)|f<assertio;i>} 
<disjunction> ::- <literal element>|<literal elemert><or><disjunction> 
<assertion> ::- <disjunction>|<disjunction><and><ai.<sertion> 
<at d> :;- A|ä 
<0i> ::» v|» 

SYNTAX OF ASSERTIONS 
Figure 3. 

Identifiers are strings of characters not containing the negation symbol, "i" nor 

the usual LISP delimiters, e.g., blanks, commas or parentheses. The <ur> connectives 

have higher precedence than the <and> connectives and a logical condition is 

terminated by a semicolon, ";H.  For example, 

P(x) v Q(x) A k(x,y) A S(Z,x) v {T(Z) A MV)}; 

represents the uxprussion 

tP(x) v Q(V)] A Mx,y) A [S(Z,x) v [T(Z) A M(V)]] 

-  
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in fully parenthesized notation. 

The only constructs whose meaning requires special explanation are ^functional 

term>, <literal element>, and the connectives "&" and "•". 

If a term is in the scope of the modifier "EV then all functions in (hat term are 

applied to their arguments (i.e. evaluated as LISP functions) when '.nat litaral is used in 

the problem-solving process. "EVN" further specifies that the functions to be 

evaluated have numerical values. The default convention is that the »orr is 

manipulated as an unevaluated symbolic expression. The "REQUEST" modifier, v.hich 

takes a literal as its argument, alters the way that literal is treated by the problem 

solver. This is discussed in Section 4 

The AND connective is denoted by "A" . Thus a state satisfies the assertion AAB 

if it satisfies both A and B.  The weaker THAND connective is denoted by &.  Exclusive 

OR is denoted by V. 

3.1.2 STATE   DESCRIPTIONS:   Assertions   specifying   states   are   restricted   to   be 

conjunctions of literals. 

3.1.3 AXIOMS: Axioms are stated in either of the forms PsQ or P, where P and Q are 

assertions. They hold in all states and are used to complete a given state description 

by deduction of other elements of a state from those given. 

3.1.4 RULES: There are three types of rules: primitive procedures, definitions, and 

iterative rules. 

(a) A primitive procedure is specified by a name, an argument list, and its pre and 

post-conditions, i.e. 

P {f (xi .....Xk )}Q where P and Q are assertions in which xi ,..,xK are free, and 

f is the procedure name. 

^^_ .... J. ._ —         i _^._ 
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The variables are formal parumetars of the procedure.   They may be "bound" by 

substitution of actual parameters when the procedure is applied to a state 

For example consider the operator, 

move(Rl,01,Ll,L2):,'Rl makes 01 from Li to L2"; 
with preconditions, 

ROBOT(Rl) A MOVABLE(Ol) A AT(01,L1) A AT(R1(LI) A. 0mi,02,Ll)', 
and postconditions, 
AT(01,L2) A AT(R1,L2); 

When a primitive procedure is defined it may be declared to be an ASSUMPTION. 

If it is used in a successful program construction, then the user is informed and is 

given the opportunity to carry out a structured program development of this non- 

primitive operation.  This is described in Section 7. 

(b) A definitional rule is of the form RiS where R and S are assertions. The relation, S, 

is given as the postcondition of the rule. The meaning of a definition is that whenever 

it is desired that S be true it is equivalent to establish the truth of R. A definition is 

often used to shorten assertions in rules by defining a single relation as equivalent to 

an often used condition. 

(c) Iterative rules specif; conditions that if satisfied justify the assembly of a "while" 

loop to achieve the associated goal.   They are instances of the iterative rule S2 in 

Section 2.2, and are defined by giving: 
(i; A name, e.g. TLOOP, (without parameters). 
(ii)        A basis assertion P. 

(iii)       A loop invariant assertion Q that specifies relations that must be true in 

the state prior to each iteration. 

An iteration step assertion R that specifies the goals to be achieved (iv) 

during an execution of the loop body. 

(v)        An iterative goal G, the assertion considered achievable by the iterative 

process. 

(vi)       The format of  iterative  rules also allows the specification of  a loop 

control test L and an output assertion S if they differ from G. 

■lliriMliMIMUMMilMÜi—I 
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The rule, 
TLOOP 
PiQ-fliGiiiS; 
wnere P.Q.R.G.L and S are assertions, 
defines the iterative rule "TLOOP" 
associated with the goal G. 

b) 

3.1.5 SPECIAL AXIOMS: After the rules and initial state have been cefined the system 

requests the following information for each predicate symbol P that has been 

mentioned.  The system use of this information is discussed in Section 4. 

a) "Is P a function of the state?" The intent of this classification is to separate 

those relations whose truth value may be affected by a state 

transformation, i.e., FLUENT relations.from those whose truth value is 

constant over all achievable worlds, i.e., NON-FLUENT relations such as 

"ROBOTW, "INTEGER(Y)". 

"Is knowledge represented using P partial?" A partial relation may have 

truth values TRUE, FALSE, or UNDETERMINED. Partial relations may be used 

to represent incomplete knowledge of the world which may cause 

conditional statements to be generated as explained in Section 5. A 

relation may be declared "uncertain" which implies an absence of 

knowledge about it so that is assigned a truth value of undetermined a 

priori. If P is not "partial" it is "total" and can only have truth values of 

either true or false. Thus rule R6 applies to partial predicates only. 

"Does P have a uniqueness property in certain argument positions?" A 

"yes" answer indicates that P cannot be true for two sequences of 

argument values that differ only at one of those positions thai are unique. 

The unique positions are given using the notation, {Xl,*,X3,V-.Xn), for 

c) 

„ „„^ -.. -- "—-——' -—   - ■ --   
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example, to des.gnate the second and tourth argument positions.   For each 

unique argument position in relation P^Uan). an axiom is "built-in" from 

which a contradiction may be established with P(bl bn) that differs in a 

unique position and matches elsewhere. 

The statement, "an object can only be in one place at one time", is expressed by, 

ATfXl.*).   If We add, "and only one object can be at any place", then we 

UM AT(v). 

3.1.e IMUFBATION Aigebraic ***** ru,es may be given „ simp|j(/ the |erms 

•hat  ma, occur i„ s{lbgoals during ,h8 probtem so|vin8 phase   ^ ^.^ ^ 

driven b, a UM. of r^s o. ,he for. s-t wbore s and t are ,ermSi occurrence, of M 

ore replaced by tu for any substitution *. 

The output format uf any functional term may be specified by the user by jiving 

e rule in which its input prefi, form is on the left, e.B, (PLUS X Y) . (X.V). 

■   -■ -•    - --  -    -  m   ■ 



■ ' " wiimii       m 

DEFINING THE PROGRAMMING ENVIRONMENT 

COMMAND  SYNTAX 

TRY <rulel> BEFORE <ruleLJ> 

FOR <rule> [FIRST]   TRY <literal> 

DELETE {<rule>,<literal>, 
<advicc  nuni>] 

ADD{<rule>,<liceral>j 

ALTER <rule> 

ASSUME  {<rule>,<literal>3 

RESTRICT <rule>{TO,FROM} 
<rule   list> 

ADVICE 

STATUS 

33 
ACTION   PERFORMED 

Use  <rulel> before  <rMle,?> to 
develop a   subgoal, 

PAIRWISE   INEQUALITIES  <proc> 

RECURSIVE <rule> 

Change   the  precondition Q of <rule: 
to <literal>     &   Q   if  "FIRST" is 
given otherwise  Q v  <literül.>. 

If <ru]e> is  given,   remove  thrt 
rule.     If <literal> then alfei 
state  to make  <literal> not  true, 
If <advice  num> then delete   the 
associated  advice  and  undo  its 
effects  on  the   system. 

If <rule> is  given  then accept a 
new rule.     If <literal> then alter 
state   to make  <literal> true. 

<rule> may  be  modified, 

If   ^rule> is  given   then an assumed 
rule may  be defined. 
If <literal>  then alter  state  to 
make <literal>  true  and mark  it as 
an assumption. 

For any goal  in Q,   if  "TO" is given 
then only  rules   in <rule   list>may 
be used,   if  "FROM"  then no rule  in 
<rule  list> will   be  used. 

All  advice  given  that  session  is 
displayed. 

The   following   information  is dis- 
played : 

-rules  entered and  goals 
pending  In  current  subgoal 
tree, 

-rules and  goals   in  longest 
path  obtained   so  far, 

-currently constructed  program 
segment 

-longest  program  segment 
constructed   so  far. 

Pairwise equality is prohibited 
in primitive procedure argument 
positions  containing  "*". 

The  rule may  be used  directly  to 
achieve  a  goal   in  its  pre-condition, 
otherwise  it may  not. 

Figure 4 

__ -     -  ■      ■---■■ 
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3.2.   ADVICE LANGUAGE 

The advice facility ,s mtended to enable the user to .mpose structure relevant to 

solving a partKular problem upon an already defmed frame. This additional structure 

includes preference orderings among goals and rules, and restrictons on the search 

space. The preferences may also reflect the kind of solution the user wants. 

Advice is given during program generation by means of an interact.ve facility. 

The advice subsystem may be entered by respond.ng to a system query, "DO YOU 

HAVE ADVICE?" , or by typmg any Key durmg program generation. The user may 

request to see the current path in the subgoal tree (.e. rules entered and goals 

pending, and rece.ve a d.agnosis of the cause of any failure. This is useful in deciding 

what advice to give. 

The advice system enters a read loop recogmzing and numbering commands from 

the language shown m f,gure 4 In the language syntax, opnonal symbols are enclosed 

in T and Ti enclosing a hst of symbols m T and T indicates that one must be 

chosen, <rule> is a rule name; <rule list> is a list of rule names, <proc> is a primitive 

procedure name, <adv.ce num> is of the form W. where n is an integer; and Q 

denotes the pre-condition of <rule>. 

After advice has been given the system may be directed to reject the rule it is 

currently using, if any. or to try (perhaps re-try) the current rule. 

The  advice  facil.ty  is  an important tool for experimenting  interactively with 

different frames to determ.ne the.r adequacy and soundness.  At present, the language 

is rudimentary and should be extended. 

3.3 PROGRAMMING LANGUAGE 

The generated programs are expressed in an elementary ALGOL-like longuage 

- -   - -   k^^MMMMMB 
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which includes block structure, assignment statements, conditional statements, while 

loops, and non-recursive procedures calls. The procedures may be typed, including 

Boolean, and may have side effects in addition to the value returned. The procedure 

parameters are normally called by value except in the case of special W-variables in 

conditional assignments (rule ROfsection 2). 

L —  ~* - - 
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3.4  AN EXAMPLE 

Consider the task of writing a program to compute the nth Fibonacci number for 

some integer n. This tasK has been posed in [Balzer 1972]. The basic information 

required is the recursive definition and the basis values. One way to express this in 

the Frame language -ses the following predicates with the indicated meanings: 

VFIB(X,Y): "The value of the X Fibonacci number is Y", 
C(X,Y):   "The contents of the variable X is Y", 
FIB(X,Y):  "The vanable X contains the Y Fibonacci number, 
INTEGERS):  "X is an integer", 
ISVAR(X):  "X is a variable", 
>(X,Y):   "X is greater than Y" 
NEWVAR(X,Y):  "X and Y are local variables" 

The problem is ISVAR(X3)AINTEGER(N){?}FIB(X3IN). 

The frame contains: 

1. Axioms VFIB(l,l)and VFIB((ADD1 l),2Kthese define initial values). 

2. Axiom 
TAFIB 

VFWm/1^2^18"5081^081 VI)>,V3)A 'm^LUS V2 V3»5 

(defines VFIB(V1,V4; for terms beyond the initial values). 

3. An iterative rule (named TFIB) with goal FIB(X3,N); this rule defines the conditions 

to be satisfied during an iterative upward computation. The basis condition (to initial 

the counter and program variables) is: 

NEWVAR(VlfV2)AlNTEGER(V8)AC(Vl,(ADDl 1))AC(V211)AC(V3,(AD01 1));. 

The loop invariant condition is: 

C(V1,V5)AC(V2,V9)AC(V3,V10)AVFIB(V5,V10)AVFIB((SUB1 V5),V9);. 

ize 

This states that at each «ntry to the loop body, if the value in the counter is i and the 

values in the program variables are | and k then j is the ith Fibonacci number and k is 

the (i-Dst Fibonacci number. 

-  - - 



■■   I»11"        "'•• '■111 "■—«■■ ""■  ■ ■■' MwiMa^^ 

DEFINING THE PROGRAMMING ENVIRONMENT 

The iteration step condition 

C(V1,(ADD1 V5))AFIB(V2,V5)AFIB(V3,(ADD1 V5)); 

specifies what the iteration step is to accomplish. The control test, >(V5,V8) and 

output assertion FIB{V3,V8) are given. 
4.  A definition of FIB in terms of VFI8 and C 

TDFIB 
VFIB(V2,V3)AC(V4IV3);  FI8(V4,V2); 

37 

an 

5.  A simple primitive procedure for assignment is also given, i.e. 

^(V1,A1) 
ISVAR(Vl)jC(Vl,Al);. 

No rules are csclared as assumptions. The additional information given to complete the 

frame specification is shown in figure 5, and a program generated from this frame Is 

shown in figure 6. 
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PREDICATE  SYMUOL FLUKVT ~~—~ ~~  
' '— rAHT 1A1 UNIQUEN::SS 

»t. TKUE riui ' Eii(,c'^ VFIH TKl'F FALSE 
lffrEC:E« KALSE JJH« VUBC..) 
" TRW Jr.* FALSE 
ISVAR FALSE J^2 FALSE 

SIMPLIFICATION  KITES: FUNCTION OITTHUT  lYMTAXl 

(ADD:   (mi X)}    .X (ADD1  X)  -   (X+l) 

(SUBI (Aooi x;; -. x VSUBI X) - (x-i) 

  ,PLUS  X  Y)   -   (X+Y) 

ADVICE:     TRY TFIB  BEtORE TDFIB 

RECURSIVE TAFIB 

Figure  5 

flH»»♦•••».•♦•»»•*•. .»»»,,»,»,„,.»„,,,,.,,,, 

PROCl   (X3,N) 
ISVAR(X3);im-E(;ER;N); 
COMMEOT 
INPITT  ASSERTION 
NONE 
OUTPUT  ASSERTION 
FIH(X3,N) 

BEGIN 
vi - (i+i): 
Y2  - 1; 
X3 - (l+l); 
WHILE    -,>(Yl,N)   DO 

bEGIN 
Yl - (Yl + 1); 
Z2 - X3; 
X5 -  (X3 + Y2); 
Y2  ^ Z2; 
END 

END 

Figure  6 

L   
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4.   PROBLEM SOLVING PROCESSES 

During the process of problem solving and program generation, information is 

needed at many points to reduce the search space or to produce reasonable programs. 

Some of the information is provided in the frame specification by statements about the 

rules and predicates; other useful facts are provided to the problem solver in the form 

of rather simple advice. Roughly speaking, there are six basic processes in the 

problem-solving system where extra facts can help: (a) pattern matching, (b) 

development of nodes in the subgoal tree, (c) updating the state description (i.e. 

implementing invariance), (d) backtracking in the subgoal tree, (e) conditional branching, 

(f) assembly of programs. Each fact (as opposed to a rule or axiom) in a frame 

specification and each sort of advice has at least one function in speeding up a basic 

process. Below we describe some of the ways in which the present variety of facts 

and advice is used. 

(1) OR-Node Selection. When more than one rule can be applied to reduce a given 

goal, some selection and preference criteria are needed. By using the advice 

system,the rules and axioms that may be applied to achieve goals within the 

precondition of a rule or axiom may be restricted to or excluded from a given list. 

Also, a preference ordering may be specified among rules and axioms with common 

post-conditions. Goals within the preconditions of axioms are always restricted to 

deduction within the current state, i.e. can be reduced only by use of other axioms, 

and do not cause a state transformation nor add any construct to the generated 

program. 

(2) Predicate Classification. A predicate P is classified according to the Kind of 

subgoaling permitted to achieve a goal of the form P(t).  If P is declared to be NON- 

■ 
__^  - -   



«wniwmvnnPRmmpw^w ■■ ■■ ■—■   ■   ■ ■•" 

40 
PROBLEM SOLVING PROCESSES 

FLUENT, then any goal literal containing P can be achieved only by deduction from the 

current state. No rules (procedure, iterative or definitional) are applied. FLUENT goals 

are attempted by deduction and slate transformation. If a fluent predicate occurs in a 

literal which is the argument of the REQUEST modif.er, then it is treated as a non- 

fluent. 

(3) Goal Ordering. The achievement of a condition (and the efficiency of the output 

program) is strongly influenced by the ordering of its subgoals. In particular, ihe 

bindings of variables occurring in goals may be determined by earlier achieved 

instances. In some cases only certain orderings will permit achievement. An objective 

of an automatic problem solving system is to determine the optimal subgoal ordering, 

but at present this is provided by the user when the Frame is defined and may be 

altered by advice. However, the system automatically orders non-fluent goals first in a 

condition; this relatively short achievement search is used both as a quick rejection 

strategy and to get variable bindings of the correct type for the remaining fluent 

goals. 

(4) Recurring failures. When failure occurs in some subtree prior to successfully 

solving a subproblem, its causes should be used to avoid repeating the same failure in 

the continued search if possible. At present this must be handed using the interactive 

«KJvius system. This informs the user of the current path in the subgoal tree, current 

program generated, and goals that fail, thus allowing interactive correction when a 

repetition occurs. These situations can also be eliminated by placing the (eventual) 

successful subprograms on the program library for use as MACROS. 

(5) Repetition. Certain types of looping behavior in the subgoaler are prevented using 

the feature of the Frame language that allows a rule to be declared recursive or non- 

-—-   -- - 
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recursive. If declared non-recursive, then that rule will not be used directly to 

achieve a goal in its pre- condition and it will not be entered twice to achieve the 

same instance of its post-condition within the same subgoal tree. A more general 

mechanism should consider not only the current goat and rule but also the current 

state as well. 

(6) Truth Values. Though the underlying semantics is three valued, search efficiency is 

gained by restricting relations involving certain predicate symbols to be two valued. If 

a predicate P is declared to be TOTAL, then failure tc achieve P indicates that -P is 

true. Only true positive instances of total predicates are stored in the state. The rule 

of undetermined values is not applicable to literals involving total predicates. The 

additional processing required for PARTIAL predicates is described in Section 5. 

(7) Useless Procedure Calls. In some cases, the application „nd generation of 

redundant or trivial procedure calls are detected and avoided. At the moment this is 

done by placing restrictions in the frame on the actual parameters of primitive 

procedures. The s/stem will not use an instance of a primitive procedure that contains 

pairwise equality between its actual parameters that has been prohibited by the user. 

For example, the advice "PAIRWISE EQUALITY K/iOVE(xl,x2,*,«r will cause the rejection 

of the procedure call "MOVE(MAN,CHAIR,P,P)r'. 

(8) Uniqueness Properties. Uniqueness or single-valuedness in argument positions of 

certain predicates is sufficiently important to justify a special mechanism rather than 

to rely on deduction using axioms. The designation of certain argument positions as 

unique is equivalent to efficiently building in axioms of a particular form, e.g. P(xl,*) 

represents the axiom, 

P(xi,x2) A x2 »< x3  ■» -P{xl,x3). 

These special axioms are used for consistency checking (in the implementation of the 

rule of invariance) when the state is updated. 
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(9) Context Linking. The context, which includes the state and bindings on subgoals 

currently pending at a node, should be available to aid search decisions, e.g. 

instantiations of subgoals or choice of rule, at descendent nodes in the subgoal tree. 

The system has a mechanism that if requested will keep track of the instantiated goals 

at each level of the subgoal tree so that their variable bindings are available when 

attempting lower level goals that precede them in the depth first ordering. This is 

used to instantiate the lower level goals. For example, suppose Q(b) A P(a) is a 

condition to be achieved and a primitive procedure R(y) A P(X) {p(x,y)}Q(y) is applied 

to achieve Q(b), then for the P(x) in the precondition of p, P(a) will be used since it 

must be achieved at the higher level anyway, i.e., 

/     \ 
/ \ 

Q(b)       P(a) 
A 

/     \ 
R(b) P(x)(<x*-a>) 

This heuristic may be viewed as the opposite of subsumption, the strategy being to 

get ground instances as soon as possiblu to help avoid long searches using rules. This 

is a rather restrictive strategy that may exclude solutions and is only used when 

requested by the user. 

(10) Evaluation of Predicates and Functions. For certain predicates occurring in 

subgoals, achievement is most efficient by direct evaluation. If a literal occurring in a 

goal is formed with a predicate that has a LISP definition, then that literal is evaluated 

as a LISP statement. Special processes or even subsystems can thereby be linked into 

program generation. Evaluation of arbitrary functions occurring in terms in arguments 

of goal literals is done if the function occurs in the scope of an EV modifier. These 

evaluations assume the soundness of implicit axioms describing the LISP definitions, 
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«nd the consistency of these axioms with the Frame. For example, the equality- 

predicate, M-M, is evaluated using the LISP "EQUAL", and the predicate 

NEWVAR(xl,x2....,xn) takes an arbitrary number of arguments and binds each Frame 

variable xi to a new program variable (for use perhaps as a local variable in a block). 

(11) Simplification rules. Rules of the form s ■» t where s and t are terms, may be 

included in the Frame. Such rules are applied to simplify terms in goals by replacing 

occurrences of su by tot. This not only reduces the complexity of terms in the 

subgoal tree, but it also modifies the pattern matching process and the set of rules 

that can be applied to reduce a goal. 

(12) Computing Input/Output Assertions. In Section 2 primitive procedures were 

viewed as Frame rules of the 'jrm ||-P{p}Q, where P and Q are the pre and 

postconditions for p. The conditions P and Q may also be v.ewed as sufficient input 

and output assertions for p , that must be satisfied by the actual parameters of p. For 

any generated program segment A, the input assertion Ia is computed as the 

conjunction of all literals, I, from a state that were used in achieving subgoals 

encountered during the generation of A and did not occur in that state as a result of a 

postcondition of a procedure whose generation in A preceded the addition of I to Ia. 

The output asser' on Oa is the conjunction of literals added to a state during the 

generation of A that are true in the final state. The usefulness of computing sufficient 

input and output assertions for a program or segment thereof will become apparent 

when we discuss program generalization and the construction of conditional 

statements. 

All of these applications of facts and advice with the exception of (12), are 

intended to have a direct effect on reducing the growth of the subgoal tree (process 

--- --    ■ -- — — -   ■ '"L-- ■.-^-...—.. .—.-^,-.. . ....   .■■.-.  
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(b)). In addition, the pattern matching process (a) is extended by (11); (c) is aided by 

the restriction of trutn values and the special axioms (6,8); (e) is ».ependent on (6 and 

12); (f) is aided by (3,7,11,12). There are other techniques, mainly details of the 

implementation, some of them heuristic, that affect problem solver, particularly the 

backtrack (d), the updating (c) and assembly of programs (f) (e.g. the implementation of 

the A connective by software interrupts that protect already achieved goals, includes 

certain assumptions about backtracking when an ANO-node tails). 

_^_ ■ ■ —  —    -- 
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5. GENERATION OF CONDITIONAL STATEMENTS 

Conditional statements are generated in situations where the rule of 

undetermined values {R6) applies or when the outcome of a primitive procedure is 

uncertain. In this section the system methods for constructing conditionals will be 

described and an example given. The question of extending the formal algorithm and 

the correctness proof is considered. 

5.1 UNCERTAIN  PRECONDITIONS 

As previously mentioned, relations involving partial predicates may have truth 

values of TRUE. FALSE, or UNDETERMINED, whereas all other relations must be either 

TRUE or FALSE.   Partially valued predicates are intended to express the possibility of 

an uncertainty or lack of knowledge about a state arising during the problem solving 

and program generation phase of the system.  The formal algorithm for deciding when 

an uncertainty has arisen is rule R6.  As with invariance, the implementation of R6 is 

only an approximation to the formal rule.  The system may give up too early, but this, 

in itself, does not lead to incorrect programs, merely redundant ones. 

5.1.1 UNDETERMINED VALUES.   During the generation of a program, uncertainty may 

arise when a precondition for the application of a rule is UNDETERMINED with respect 

to the current state.   The implementation of the rule R6 is described by the following 

definitions: 

DEFINITION A literal I is UNDETERMINED in a state S if the following conditions hold: 

(i)  pred(l) is partial, 
and  (ii)  the system halts without solving S{?}l, 
and (ili)  the system cannot prove SuFs-^l. 

Condition (ii) means that I is not true in S nor can S be transformed into a state 

--   - - -  -    •nMMMMMy 
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in which I is true. If condition (ii) is true and 4 is true in S then I must retain a truth 

value of FALSE md the precondition subgoal I must fail. Failure to prove H from S 

establishes a truth value of UNDETERMINED for I with respect to S. This definition 

applies to fluent and nonfluent l.terals but since the truth value of a "nonfluent" cannot 

be changed by a state transformation, for them, it is sufficient to use only the logical 

axioms in deciding condition (ii). 

For the more general case in which the precondition may be a disjunction of 

literals we have the definition, 

DEFINITION A disjunction of literals {I. ]U is UNDETERMINFD in a state S if at least 

one literal is UNDETERMINED and no literal can be achieved from S. 

■—   , .» ■ ---- 
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5.2 CONDITIONAL STATEMENTS 

When a pre-condition P is UNDETERMINED in a state S, a conditional branch is 

inserted in the solution program.  If P is a single literal I, then program generation may 

continue either along the path in which I is assumed to be TRUE and in which future 

goals are attempted with respect to state S U{l}, or along the path in which M is 

assumed to be TRUE using state S UH).  The system convention has been to generate 

a call to a yet ungenerated procedure for the latter case.   The tasks of generating 

such contingency programs are placed in a subproblem stacK for later attention (see 

Section 5.5).   Program generation continues, by convention, along the path using state 

S U {I}.   This path is referred to as the "trunk" program of the tree of contingency 

programs generated while attempting to achieve the main goal.  The path selection at 

present is rather ad hoc since no assignments of probability are made at the points of 

uncertainty.   For an undetermined disjunction 11 } 
i i=l" 

if -I i       then 

if -I2      then 

"f A then P* 

OlSQ p,,. -1 

• 

clsu Pi 
else pj 

where each p,   is a call to a program to achieve a selected goal G 

from state S, - I A (I, 1 i-j+l & i<,n } A {.I,  , i<;i<jj } and p, is the trunk 

program segment which satisfies SAl^p,, )G and forms the else-statement in the main- 
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clause of the conditional. Each member of the set of triples {(pi , S| ,G):lSjim} is 

placed in the stack of contingencies and program generation continues for pa The 

assumed literal, li, is removed from the state following the generation of the ELSE 

clause in the trunk program if it .s not in the output assertion. 
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5.3 SELECTION OF CONTINGENCY  GOAL 

The goal G to be achieved by the contingency programs is selected from the set 

o* goals in the subgoal tree that are global to the undetermined precondition. Let us 

refer to the set of goals which are below G in the subgoal tree, as the SCOPE of G. 

The particular G chosen and its associated scope affect the length of pa , duplication 

among contingency programs, degree of difficulty in generating contingency programs 

and validity of their use. If the structure of the trunk program is to remain fixed 

during contingency program generation then the choice of G cannot be ('sferred. The 

block structure of our program language imposes the restriction that for any 

conditionals in pg, a contingency goal G' must not have a greater scope than G. There 

Is also the problem that if G is not fully instantiated then inconsistent instantiations 

may occur in different contingency programs which must validly rejoin the main 

program following the ELSE clause. The present system selects the least global fully 

instantiated goal thereby satisfying the block nesting constraint and minimizing the 

scope while avoiding the problem of handling deferred instantiation. This selection 

process is always effective in the present system since the top level goal is fully 

instantiated. 

5.4 REJOIN  CONDITIONS 

When a contingency progran is generated its output state must satisfy certain 

conditions, he.eafter called the rejoin condition, for return of control to the trunk 

program to be correct. Consider the case of an undetermined goal L in state S and a 

contingency goal G in figure 7 . Let A and B be program segments that satisfy S A 

L{A}G and S A -.L{B}G and let C be the rest of the trunk program. 

_^.   ^.   . .. -■..--. ^ .-. _ ...  . ^—■  
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NO 

A YES 

A 

>' 
■L 

C 

Figure 7 

Let R be the output state of B obtained by applying invariante; thus S/H.{B)R 

and RaG. Similarly, let SAL{A}P where P^G, and let Q be the sufficient subset of P 

required as input to C (see Section 4(12)). Then, the ktJOlN CONDITION for B is RoQ. 

B is s-iid to have BAD SIDE EFFECTS if in fact FoQ cannot be established. 

  - 
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5.5 SUBPROBLEM STACK 

The task of generating a contingency procedure is specified by the quadruple: 

(<procname> <stale> <goal> <rejOincond>) 
where, 

<prccname> is the name of the yet ungenerated procedure that must 
satisfy <-state>{<procname>)<goal> A <rejoincond>. 

At the point in the planning when the uncertainty is encountered, the first three 

elements of the quadruple are placed in a stack. The rejoin condition is not known at 

this time since it involves the input assertion for the trunk segment C following the 

point where control returns from the contingency plan to the trunk plan. After C is 

generated, the rejoin condition is computed and stored as the fourth element of the 

quadruple. 

When planning has been completed fur a trunk procedure, if the subproblem 

stack is not empty then contingency planning may be done by removing a quadruple 

from the stack and posing this as a program generation task. The state of the system 

is initialized to the specified contingency state and the subgoaling system is given 

<goal> as its main goal, if it is successful in achieving a state in which the main goal is 

true then a test is made to see if the rejoin condition is true in that state. If it is then 

the procedure declaration is adjoined to its trunk program. If the condition cannot be 

proved, the system allows the user two alternatives: (i) Mark the call to the program 

as an error exit in the trunk program, or (ii) "Fit" the program to the trunk progrüm by 

posing the currently untrue rejoin condition as a new goal, constructing a new program 

segment that achieves it, and appending this segment to the end of the contingency 

program. 

This process of generating a trunk procedure which tt.ay create new contingency 

.  -■ - ■i^MMiMaMa - J—__^_»j 
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tasks then generating contingency procedures as directed by the user may continue 

until all contingencies have been processed and the stack is exhausted. 

5.6 COMPUTATION OF INPUT-OUTPUT ASSERTIONS 

The computation of input-output assertions for programs not containing 

conditionals is described in Section 4(12). The uncertainty as to which path 

computation will follow in a program containing conditional statements compl.cates 

these assertions. The input-output assertions in this case must be computed 

incrementally as each contingency program is generated. 

In the conditional statement shown in figure 7, suppose we know the minimal 

input and output assertions for A and B, say P{A}Q and R{B}S. then the input and 

output assertions for the conditional statement are 

(L A P) v K A R){if L then A else 8)0 v S. 

To reduce computation, We use the simpler sufficient input assertion P A R, 

(Note that PAR should be consistent since it is a subconjunct of a previous state). 

There doesn't appear to be a simplifying approximation for output assertions . 

m—Ägb^w——^—^M^-a^_HMa^ 
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5.7 UNCERTAIN  PRIMITIVE PROCEDURES 

A primitive procedure q defined by P{q}0 has an uncertain outcome if Q is a 

disjunction. In the present system, disjunctive post-conditions use the exclusive OR 

connective, "•". This allows us to define frame procedures that have an intended 

result hut may be unreliable. It is assumed that exactly one of the possible outcomes 

will us »rue in the output state . At the point where an uncertain operator is applied, 

the problem solver has no knowledge of what the outcome will be and a conditional 

statement must be generated. Let Q be the disjunction of literals {lifi»!. The first 

outcome li is considered to be the normal (goal) result of executing q. Following the 

inclusion of q in the program in state S, a conditional statement of the following form is 

generated. 

if - li then 

if " ll  A Ij  A -«I3  A.,.A -. \„  then   p2 

else  if -^ 1;  A - |2 A I3 A - I4 A...A -^ ln   then pa 

• 

else   if - Ij  A - l2  A...A - In.i     A ln    then pn 

else  p^i 

where each Pi , 2 i j <; n, is a call to a program to achieve l| from state S| - S U {l| } 

U {^ l| : i r ; & 1 S i S n} and p^i is an error exit. The contingency states will 

correspond to the n ways of assigning exactly one literal true and the remaining 

literals false. 

... —  
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5.8 AN EXAMPLE 

Suppose a procedure is to be generated for a man to travel from San Francisco 

to New York given three modes of travel, i.e., flying, driving, or walking This is similar 

to the "airport problem" discussed in [McCarthy 1959]. A FRAME for this problem 

consists of defining a primitive procedure for each mode of travel, an initial slate, and 

relation information as shown in figure 8. A few of the contingency programs 

generated are shown in rigure 9. 

^^ 
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FKOCl   H\N MVC) 

KUB MAN   ;Al'l..  MM;   ;\'\A\T.   1111   iAIRFORT   VYC   ; 
come NT 
mWT  AMIRTION; 

AT MW HOW   XCLEAR   n.-J.  lv\K/\tE /\AT   ICW (AKA(.i; /AT   1111   SI n 
AniCI mi n;i.u^ sro NYC 'Ki.;s HMV 

\MIVABU  CAUCE Sid   «WALKABU  IMMl. UMCE 
OLTRT  A88ERTIO:;: 
AT   UM.1 Slo ^T  (ni  XYC  'AT   .'WN  NYC   ; 
COMMEVT 

CKOCU ATlEMJTS_H)_At:illE\T:_    AT   M,\';  V.x 
PROClC ATTE>mS~IO ACHIEVE"    AT MAN GARAGE 
FKOC    ATTE>lfTS_TO_ÄCHIEVE      AT MAN GARAGE 
FROC-   AIIt.'lKlS^U) ACHIEVE*    AT MAN C\KACE 
PKUC    ATTE.,lFIS_IO_Ai(IILVE~    AT  M\N STO 
woe. AHEKPTI_IO_ACHIEVE"  AT MAN sto 
PROC3  ATTEMPrSJO ACHIEVE      AI   MXN .NYC 
FKÜC    AT1EMPTS   IO^ACHIEVE"    AT   MAN NYC   ; 

BEGIN 
If -flltl  1111     THEN 

PRO(     >ttN NYC 
ELSE 

BEGIN 
IF tLEAR SiU  N-YC;   THEN 

PKOCj  MAN  .NYC 
Kill 

htCl.N 

ir -KINS BM;   THE:; 
PROC-   MAN Slü, 

ELSE 
BEGIN 

IF -DKIVABLE  GARAGE  SFO,   THEN 
FKüC.   MAN SFO, 

ELSE 
BEGIN 

IF -«LEAR  HOME  GARAGE    THEN 
IF -THASL'MBRELLA   MAN    THEN 

PROC'    S\N   GARAGE; 
ELSE  PROC    MAN  CARACE 

ELN 
BEGIN 

IF-iWALKABLE  HOME GARAGE)   THEN 
PROCl;  MAN GARAGE, 

ELSE 

KCIM 
WALK  ^N HOME  GARAGE 
END 

END 

DRIVE MAN   BMV GARAGE  SFO, 
END 

I -.,1 

FLY MAN Fill  SFO  NYC 1 
IF -AT(MAN NYC)   TIUN 

IF -ATCIAN ;,Y'J)   A CRASHED (Til I   SFO NYC) 
PROCl1(MAN NYC) 

ELSE   PRl"EK(MAN   NYC) 

ENDENÜ 

END 

PROC ;MAN NYC | 
R0B'M\N);ALTO  BMU1, ; 
COM>ENr 

INPL'T.ASSERTION': 

AT MAN HOME ACLEAR  HOME  GARAGElAAT: BMJ  GARAGE'IARUNS ' BFK • 
ADRIVABLE  GARAGE  NIC ; AWAI.KABLE vHOME GARAGE, 

Figure  9 
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(AT HAN GAKACE) 
[AT MAN CARACE) 
AT MAN WRAGE) 

(AT MAN NYC) 
(AT MAN NYC); 

OUTPUT_ASSEKiION: 
AT   KMJ  NYC)AAT.MAN  WC); 
COtMENT 

PROCl'   ATTEMITS_T0_ACII1EVE 
PRocis ATTEMPTS^TO'ACKIEVE 

PROCU ATTtNRI TO ACHIEVE 

PROC13 ATTEHPrS~Tü~ACMlEVE 
PRUCl^ AITEMPTS^TO ACHIEVE 

BEGIN 

IF-.RUNS,bMJ)  THEN 
PROCI. (MAN NYC) 

ELSE 
BEGIN 

IF-.URIVABLEiG/.RAGE  NYC)  THEN 
PROCliiMAN  1IYC) 

ELSE 
BEGIN 

IP-1 CLEARiHOME  GARAGE)  THEN 
IF-illASCMIRELLAiMAN)  THEN 

PROCU  MAN GARAGE) 
ELSE  PROC'^MAN (ARACE I 

ELSE 
BEGIN 

IF-.WALKAB .E.HOME GARAGE)   THEN 
PROCI6(,iAN  GARAGE) 

ELSE 

BEGIN 

WALK (MAN HOME  GARAGE); 
END 

END 
DRIVEfMAN  HMJ IARAGE  NYC) 

END 
END 

END 

PROC-.   M\N SPO) 
ROb' ^N); 
COMMENT 
I.NPD1    ASSERlxON: 
AT(MA?: HOMI.j'CLWR'HüME SK3)AWALKABLE (HOME SPO) 
OUTPUT    ASSERTION: - ' 
AT  MAN ""SPO J ; 
COMMENT 

PROC 5 ATTEMPTS_TO_ACHIEVE_   ;AT MAN SPO) 
PROC.^.  ATTEMPrS_TO_ACHIEVE_    AT MAN SPO) 
PROC J ATTEMPTS  TO ACHIEVE     (AT MAN SPO); 

BEGIN 

IP-iCLEAR(HOMF. SPO)   THEN 

IF-OIASUNIIRELLA(MAN)  THEN 
pRoa^'MAN iro] 

ELSE   PROC -fMAN SPO) 
ELSE 

BEGIN 

IF-^WALKABLE  HOME SPO)  THEN 
PROC.'^ (MAN SFO) 

ELSE 
BEGIN 

WALK(M^N  HOME SPO) 
END 

END 

END 

PROCir'(MAN NYC) 
ROB MAN); 
COMME.TT 

INPUT JVSSERTION: 

AT(HAN  HOME)ACLEAR(HOME  NYC)AWALKABLE(HOME  NYC) 

Figure  9  - continued 
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OUm'T_ASSl-:RIION: 

AT MAN^NYC ; 
COMMKNT 

PROC.'    ATTCNnS_TO_ACHICVt     'AT H\N NVCi 
PKOC      AiTtMITS_TO AtHIEVE_    Al   M,\N NVC ! 
PROC,'   ATTeNPn~TO~ACHtEVC      Ai MAN NYCl- 

BtGIN ' 

IK-iCLEAK  IIOMK  NYC^   THEN 

IK -1HASL;ilik£I.IA  HANI  THEN 
PRÜC     ,MAN NYCl 

tl.SE   PRIX:.''   'MAN NYC^ 
ELSE 

ICCIN 
IK-'WALKAHU: HOME NYC) THEN 

PROC'0 MAN NYC) 
ELSE 

BEGIN 

WALK  MAN  HOME  NYC1 

END 
ENU 

END 

Figure  9  -  continued 

^*— — --   - — -     *.**  "-         -- -     —"-    ■     - -—       ■■- -■—■■--^-^-l r.-^„          ..     .„-^ 
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5.9 CORRECTNESS 

Conditional statements will be correctly generated if the system methods are an 

accurate implementation of the conditional rule, R5, presented in Section 2. Referring 

to figure 7 in Section 5.4, if we let S be the output state of C then by construction and 

by verifying the rejoin conditions we have, 

(1) IAL{A}GAQ, 

(2) IA-L{B)GAR, 

(3) Q{C}S, 
(4) |- H = Q, (rejoin condition verification) 

and the correctness argument may then be completed as follows, 

(5) I A -L{B}G A Q,  (2(4,Consequence Rule) 
(6) I{if L then A else B}G A Q, Unconditional Rule) 
(7) I{if L then A else BiCJS, (3,6,Composition Rule). 

It should be noted that if conditional statements occur in B then R may only be 

an approximation of the true output state resulting from executing B zs discussed in 

Section 5.6. Similarly Q may be only an approximation of the truo input assertion for 

the remainder of the program. In these cases an incorrect program may result. 

However the above argument serves as a justification for the system methods. 

■ - - ■ 
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6.   GENERATION OF ITERATIVL7 STATEMENTC 

An iterative rule allows the program generator to construct a WHILE loop 

provided it can construct a loop body to satisfy the premisses of th<s rule. Ultimately 

such rules should require the user merely to specify an invariant in order to have the 

s/stem write a correct iterative program. At the moment, the user needs to furnish 

some additional relevant facts. The algorithms used in the system to implement 

iterative rules of the form 32 (Section 2) and to assemble while loops are described 

briefly and an example given. Details of of the system implementation are found in 

Section 9. 

6.1 PREMISSES FOR CONSTkUCTING A LOOP 

An   iterative   rule   is   defined   by   the   assertions   P(basis),   Odoop   invariant/, 

ROteration step goal), G(rule goal), Lkontrol test) and S(output assertion).  All the free 

variables in R and L must be among the free variables in Q.   In order to use the rjle, 

to achieve U?}G say, the formal algorithm requires that a.l of the following subgoals be 

achieved or be true: 
(i) Construct A such that UF)||- I{A)P 
(ii)        L(F)|- I{A}Q 
(ill)       Construct B sucn that UF)||-QAL{B}R 

(iv)       L(F) |- QAL{B}(3Z)Q(Z)VW3Z)Q(Z)AM.(Y)) 

(V)        construct C such that L(F) ||- QAL{BiC}Qv-L 

Note thr.t (ii) and (iv) are restricted to first order rules (consequence, invariance, and 

the frame axioms).   The input state for (iii) is ij/\L   In addition, an iterative rule must 

satisfy the following minimal consistency requirements within the frame F. 

(vi)   -(S u F 3 L) and S u F = G. 

The conclusion of the rule is:     I{AiWHILE L DO BEGIN B;C END}G. 

Iterative frame rules are instances of the iteration rule [Hoare 1969]: 

QAL{A}Q, 'JA-L^G 

_--„____J1-. M^MM 
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Q{WHILE L DO A}G . 

It is possible to derive a weak form of the rule: 

OAUAIQVM., -UG 

Q1WHILE L 00 A}G . 

The weaK form allows the invanant to tail on ex.t from the loop. We have found 

the weaK form convenient to use in many examples. 

The present implementation sets up clauses (i) - (iv) as a THAND of subgoals to 

be achieved. More specifically, suppose an iterative rule is mvoKed to solve the 

problem I{?}G.  Let V be the list of variables m Q.  The system does the following: 

(1) A program segment p(P) is generated such that I{p(P)}r and TüF |- P ( p(P) 

may be empty). 

(2) An instance (JK of the loop invariant must be true in the state 1', i.e. \ - {<vi 

«- si >,....<v„ ^ sn ^ is constructed such that I'uF 9 Q\. (3) A program segment 

p(R) is generated such that Q A LWOR" and TuF = R. 

(4)  It  is  checked  that   VuF^Q/Sv^L for some  substitution   ß  and   a  set  of 

conditional assignment statements C is constructed such that riC}Q v 4. 

Thus, at the moment, clause Qv) «nsures that C need contain only conditional 

assignments.   In the future we would want to relax Ml restriction. It is assumed that 

the user's definition of the rule satisfies (vi). The user may omit S or L; in the latter 

case -• G is used as the control test. 

MMMri 
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6.2 ASSEMBLY OF WHILE LOOPS 

After the premisses have been acnieved, a loop is assembled as follows: 

(1) Let Y and W be two distinct lists of variables in one-to-one correspondence 

witn V.   For eacn <v, ♦- s, > < A co is.trud an initial assignment statement "yt *" 

S| ".  Let "Y ♦- S" denote "yi •••l »yi«*t| M Vn •■ sn ;"■ 

(2) The WHILE loop may then be assembled m the form: 

pkPh 
Y-S; 
WHILE L(V)  00 

LEGlN 
piK(Y))j 
If Q(W) THEN Y ♦- W; 
END 

where   0(W)   is   an   expression   containing   calls   to   boolean   procedures   indicated 

(syntactically) by the presence of the special W-vanabies (Section 2, Kule RO). 

There are many heuristics in the system to reduce the number of program 

variables, i.e. y's and w's generated, to select the relevant portion of Q to be used in 

conditional assignment statements, to generate simple assignment statements (whose 

right hand sides are functional terms composed from functions in (he frame) instead of 

conditional assignments, and to eliminate unnecessary assignment statements in the 

assembled program. These may all be classmed as optimizations, some of which are 

done as the "WHILE" loop is assembled and others during a laiur optimization phase. 

6.3 UPDATING THE STATE 

After the while statement has been generated, the system updates the stale. If 

an explicit output assertion S is given then the rule of invariante is applied in the 

same manner as with the postcondition of a primitive procedure. In the absence of an 

output assertion, a special update procedure runs the loop mterpretiveiy on the state 

,_-__ 
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until the goal G becomes true. The resultant statt» is used in further planning. This 

latter method is useful when the global effects of the loop compulation are so 

extensive, or jven unpredictable, that an explicit specification of S is difficult. It may 

result in excessive update computation, particularly when loops are nested. 

6.4 AN EXAMPLE 

As an example of "while" loop generation consider the task of genereti',f5 a 

program to compute the value of n factorial tor some positive integer n where 

multipli:ation is not a primitive operation but is done by repeated addition. The Frame 

for tnis problem is shown in tigure 10. Also used is the primitive procedure for 

assignment used in the example in Section 3. To achieve the goal "FACT(X0,N)" the 

system applies the iterative rule TKACT. The premises are achieved according to 

Section 6.1 whicn results in an application of another iterative rule TPROD. The 

premises of TPRÜO are achieved, the "innär" loop assembled and optimized and state is 

updated witn respect to the output assertion. The assembled while loop is appended 

to the iteration step program for TFACT. The "outer" loop is then assembled and 

optimized and the state further updated reflecting the total state transformation of an 

execution of the neslcd loop program. 

The output prcgrarr after optimization with statements labeled accordirg to their 

source ot (t,eneraton in the algorithm is shown in figure 11. Note that successive 

values ot the program variables are obtained by simple assignment siaiemonts rather 

than by conditional assignment as described in the algorithm. This is the result of 

applying system heuristics which are able to use the arnhmetic operations PLUS and 

Müüi which are primitive tunctions in the trame, to 'eplace the conditional 

assignments. 

■ i      —mmMtnm*mmmmm*t 
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RELATIONS MKHNiriON lU ENT PARTIAL UNIQUENESS 

VFACT(X.V) "The value  of  Y   lactorlal   ii X" TKL'E FALSE VFACiC,») 

C(X.Y) "The contents of  variable  X   i» Y" TRUE IALSE e x,' 

FACTX.Y) "The variable X contain« Y   factorial" TRUE FALSE FACT  X.«) 

VPRODICT  X,V Z) "X  is  equal   to  tlic  product   of  Y  and  Z" TRUE lALSF FALSE 

INTEGER(X) "X  Is an   Integer" FALSE IALSE 1 ALSE 

ISVAR'X) "X  ii  a  variable" FALSE 1ALSE FALSE 

NXWVAR, X 1 "X  la  a   new   local   variable" TRUE FALSE IALSE 

•(X.Y) "X equals Y" TRUE 1ALSE FALSE 

AXIOM ANTECEDENT CONSEOUEHCE 

TAFACT [■(V9,l)Aa{V10ll)] 
V   VFACTlCDIV  VJ  V10),:SUBl   Vlß)); 

VFAtTiVi.Vlf); 

TAPROI) (-(V5.ß)A.(V^.Ö)) 

v   VPROUUCTUMINI'S  V^,Vi),(SUBl   V6),W3)| 
vraoi>ucT(v$,vi ,v))i 

: lii'i.'KI'^TlON  RULES 

(AIiDKSUBl  X))  - X 
(SUBl(AUDl  X))    • X 
(HINl-SlPLUS  X Y)Y)  --. X 
(DIV'PRÜD  X Y)Y)  -. X 

ifNcrioN oiTPiT s'l.^r.vx 

AI)Dl X) • (X + I) 
SUBl X) - (X - I) 
PLUS   X Y)  "   (X + Y) 

Figure   10 

.   _. _ ..      „     ___  _.   . .. - - -  
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ITEK/VllVK   Kll.tS 

RULE   SAMT. 

RAS IS   CONimiQN 

TtACT 

NfU'VAK   WvAlNTECER.V.. 

AVCACTV^ ,V»    AC^V .V 

AC(V7,V6); 

TPHOn 

NEWVAK(V4 lAC^ VU.C) 

AC(fl,0)j 

INVARIANT i   v .viiJ)Ac W3tV9) 

AVJACTi V.'.VIC- ; 

C(V'»,V6)AC(V1,V 

AVPRODL'LTV^,;'  ,V3); 

riEKArnv; STEP 

UM. 

TEST 

C(V(',(ADI)1 V19))A 
PRuüUCT;v,'.VU,(Ar)Dl V10)); 

EACT'v.SV*) ; 

C(VU,(AÜD1 V6)) 
C( VI, (PLUS vr,,V3))i 

PKOUUCT;Vl,V2,V3); 

-T-(V6,V2); 

OUTPUT ASSKKTION C(V3.(FAC VU)); C(Vl,(PROD W?,V5J); 

Figur« 10 - continued 

! 

■         .. ■ —     -"    



"■^^^"^ ■ ■    I 

66 

p(P)(TFACT)- 

Initial Assignmcnt- 
(TFACT) 

GENERATION OF ITERATIVE STATEMENTS 

PRÜC1(X0 N) 

ISVAR(xy;);lNTEc;ER(N); 

COMMENT 

INPUT ASSERTIONS: 

NONE 

OUTPUT ASSERTIONS: 

C(Xy4   (FAC N)); 

BEGIN 

- X^ -  1; 

— YV - 1 ; 

WHILE -1=    (Yh   N)   IX) 

p(P)(TPROü) (Optimized Out)> 

Initial Assignment (TPROU/ 

p(R) (TPROD;- 

UPDATE Assignments (TPROD) 
(Optimized Out) 

BEGIW 

Yh -  (Yl+  +  1); 

rYl - p; 

Jß - P; 

WHILE -!= (Yl   Xji)   DO 

BEGIN 

|Y2 »- {\? + Yl+); 

(Y!  - (Yl + 1); 

END 

UPDATE Assignment (TFACTr Xp - Y2 ; 

END 

END 

p(R)(TFACT) 

Figure 11 
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7.   PROGRAMMING AIDS 

The complexity of programs that can be generated using the system is increased 

by some simple facilities described in this section. The capabilities discussed here are 

incremental extension of a current program, use of a program library, and expansion o' 

assumptions. 

The system enables a user to plan incremental extensions of a program simply 

by saving each completed program segment A and its output state 0 in a stack. The 

user may then pose a new goal G and solve the problem OtB}G The composition A;B 

will then be output. He may choose to start from any previously saved state and 

associated program segment. 

7.1   PROGRAM LIBRARY 

When a program A has been generated to solve H{A)Q, the user may request 

that it be "generalized" and filed in the program library where it may be accessed by 

the subgoalrr (similar use of a Itf rary in robot planning is reported in [FiKes.Hart, and 

Nilsson 1972]). 

Generalization is a process which constructs a procedure declaration for the 

library as follows. Let I and 0 be tie input-output assertions comouted for A during 

its construction. We assume P^I, O-QAO', and 1{A}0. The non-fluent conjuncts of I are 

taken as the type declarations, their variables being the parameters cf the new 

procedure. These actual parameters are replaced throughout I{A}0 by new formal 

parameter variables. An entry of the form: 

((<procname> <goal> <effects> <type conditions> <state condition>)<body>) 

is made in the library, where <procname> is a name and parameter list, <goal> is Q, 

<effects> is 0', <büdy> is A, and it is assumed that 

<type conditions> A <state condition>{<procn8me>}<goal> A <effects> 

. --.-  ...   ..-■_,      -- 
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Library procedures are used during program generation by matching on the 

«goa^ then establishing the <type conditions> and <state conditions> as subgoals in 

that order. If the conditions are satisfied then the instantiated <body> is included in 

the program. The system requirement of achieving the input assertions and processing 

the output assertion during update for a program taken from the library prevent its 

incorrect use in a particular program. There is no attempt to organize the library for 

efficient selection; the system merely tries all library procedures before any frane 

rule. 

As an example of program assembly using the library consider the task of 

building a tower to reach an object, i.e. achieve "HAS(M9r. Use will be made of a 

library program to find and put on shoes which achieves WEARIN<M,SHOES), previously 

generated using the same Frame. The generated program is then extended 

interactively by posing a new goal, AT(M,P). 

A robotics frame for this problem is shown in figure 12, and the generated 

programs in figure 13. 

■ 
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PKOl'l (M IHOU) 
UMOI  M   iCHAII GIAIR. IjCUJTMKS  SHOES;- 
COMMI:N r 
INPUT   ASSKKIION: 
HEICHT M    0     ^AT^^I P)AAT tHAIK.~  COKNEK! 
ÜLiPlT_ASSERnON: 
AT  H CORNERJAIÜL-NU  M SIIUES ,AWEARINCiM  SHOES   ■ 
U)MM-::.T 

PRO'"    ATTEMPTSJO ACHIEVE       POUND  M  SHOES) • 
KCIH 
TRAVELS   P  UIK.KK   ; 
IF -4M1ER  SH;)' S  CNAIK )  THEN 

PROC?vM SHOtS) 
ELSE 

BEOI N 
FIND H SHOES CORNER; 
END 

PUT ON N SHOES 
mo 

PROC.} ,M B) 

CXNTM',B0X  K   ;iCU,r,1£S   SH0ES^IR  ^IK.)iBOX1..,.3UPPU1SE0C);BOXBf);BOX;B3) 
INPLT_ASSERriÜN; 

Awr^r'r" T  SU)Cl^'CHr M (3   )AAT;CHAIR.    CORNER lAATiB*   SLOC' 
AHEICH1   I  MAiTAOMIlCHT«  U AAT(l6   SLOC)AATfB; SLOC) 
OnPUT_ASSERriUN: ' 

Al{'!rIi'FM;^h«i'',',A"-I(B4 L'WSTACK£D(B4 B7  U)AAT(B6  U) 
AST»rKEli(B6  hi,  U)A3TACKHElf;ilT(4 U/vHASfM B)AHF1CHT(M 0! 
AWWCM.WOMJAimMIIC M,SHOES J-^IB^M^TACKE^'BJ^ U) ; 

TRAVEL'M   ^(ORNER; ; 
IF-UNDER   SIOES  CHAIR. )   THEN 

AnembUd (.„(XJ   „   ;(i0Esj 

'f01"  > ELSE 
Llhrary Bt(:,N 

FIND M SHOES CORNERi 
END 

UT ON N SHOES ' ; 
TRXVETVfTuRNER  SLOt); 

MOVE M H    SLOC  U   ; 
TRAVEL M U  Smc); 
MOVE M  B..   SLOC U); 
LIFT M   H..   U); 
CLIhfl M H-  ü)i 
STACK M th   IT   U] ; 
CLIMd H B*   U); 
»3-2; 

IF  NEXT BOX WU   »fc)  THEN 
ZU   - Wi* ; 

WHILE-iSTACKHEICHT   i.  U)  DO 
BEGIN 
Z3 - ADDllYJ); 
Yl - YU ; 
IF STACKED  VI Wl  U)  THEN 

Zl - Wl, 
WHILE-HEIGHT(Ml)DO 

BEGIN 
UNCLIMB M VI   B)j 
Yl - Zl; 
IF STACKED  VI Wl  U)  THEN 

Zl  - Wl; 
END 

STEPOFF M B7  U); 
TRAVEL M U SLOC); 
MOVF.M Z*   SLOC  U); 

Figure  13 
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7.2  EXPANSION OF ASSUMPTIONS 

A basic capability for •tructurina programs is provided by interactively allowing 

the user at any level in program generation to define a primitive procedure, P{p)Q, as 

an assumption. The program generator will then use p as usual except at each point 

of call to p in the program the current state P and current goal G will be saved. The 

triple <p(r,G> is placed in a stack of subtasks for later expansion. 

When a program containing assumed primitive procedures has been generated, 

the user is given the list of assumptions his program depends on and allowed to 

selectively expand them in terms of lower level procedures. For the subtask <p,I',G>, 

the state is initialized to P, the frame may be changed, G is given as the goal.and a 

body for the procedure p is generated. 

Consider the example given in Section 6 of computing the value of n factorial 

where multiplication is not a primitive operation. The initial frame is the same except 

that in place of an iterative rule for multiplication, there is an assumed primitive 

procedure 

ISVAR(Vl){times(Vl,V2lV3))PF<ODUCT(Vl,V21V3), 

where PR0OUCT(Vl,V2lV3)C(Vll(PR00 V2,V3)). 

The program generated using this frame is given in figure 14. To expand the 

non-primitive procedure "timesWl.ViWr tne full frame including the iterative product 

rule is given and the sub-program generated is shown in figure 15. 

In the current implementation it is assumed tht the expanded sub-programs will 

have no side effects. However this assumption could be removed by a mechanic 

similar to checking rejoin conditions for contingency programs (Section 5.4). 

To develop a useful structured programming .ystem interaction appears 

essential along with further study about how humans do (or should do) programming. 

  - -  - i   ii—■——■—i 
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n    .   : 
isvAH <: iiwtv i 
(UMMIM 
ISPll  AbSKKriOH: 
MINK 
mrtnn ASUITIOM: 
■   •;   IAC u))i 
LOHrttNT 
THIS   IWCMM "l-LIiS  ON M   rOtUMIK A.SS'.'MtTli);.   ■ 

riMJ:s 
■l ir, 
10 m   1 ; 
VI   -   I, 
WHILE ~ ^ Yl   N',   W) 

Mm 
n - VUl; 
TIMES xc x: VI 
tND 

u 

i igure  14 

riru.s o vi zi) 
mu  Xw); 
OOMC ■n' 
INFLT   ASSEKTIOS: 
NONE 
OITTFLT   ASSEttTION: 
c x;   VFKÜD VI Zl)); 

BEGIN 
>:; - .'. 
v. -(*; 
wHiiE -1 -(Y:   Yl,  IW 

UECIN 
YC - Y +1; 
Xv* - Xi-+Zl; 
LSD 

END 

ligure  15 
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8.   CORRECTNESS Or TM£ FORMAL ALGORITHM 

The basic problem solvmg a^ontnm .mplemt .ted m the system i. that of 

Problem reduct^n subgoahng w.n bacKtracK. In th.s seCon the formal algorithm w.ii 

be given and a proof of its correctness sketched. 

8.i   BACKTRACK PROGRAMMING 

BacKtracK programming describes an exhaustive search procedure appropriate 

for solving problems of tMe form: 

Cven a collection of sets X^X^..^ (g0a,s to bi achieved), select a sequence of 

elements i*^..,^, one .rom each * (. wa/ üf ^^ ^ ^ ^ ^ ^ 

criterion function f(xi x->    v ) ie m    ■  • ■ 
*i**~*i 'S m .ximized.   !n general t may be numerical valued or 

s-ply have the values of either "success" or "faHure" for any sequence (xl(x2 xk). Ks 

n.  and   ,t   is   possible   to  deterge  whether  or  not  a  partial  solution   ,s   mherently 

suboptimal, i.e   ,t there .oes not exist a successru. M X. g.en the current .no.ce of 

To control such a search a program must have the abilities to enumerate the 

alternatives tor selection at the Mh level, e.g.. x,,^....^ (enumerate function), se.ect 

one. say %1 (choose funchon). and repeat M, process at successively h.gher levels. 

"- k*1, k42 ^ e,,her fhe ^h ^ - stained or a partial solution (x^x^.x.....^). 

P^ n. is reached that is inherently suboptimal, i.e.. no selection can be made at -eve. p 

that is correct with respect to the previous choices already made. In the latter case 

the program must -bacKtr8cK.. t0 a prt!vi0us |eve|( ^ ^ ^ ^^ | ^ ^^^^^ 

different from previous level K selection, can be made that achieves a correct Kth 

level solut-on (unchoose function). The process then continues in the -torward" 

d-rect-on.   Ultimately either an nth ,evel sequence is found ih.t ,s satisfactory or the 
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operation of the program has proven that a solution does not exist, i.e., the program 

has "backtracked" to the Oth level and has failed to solve the problerrv 

- ^M—«■—I !■      I 
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8.2   TRAVERSING THAND-ÜR-AND SUBGOAL TREES 

Programs are generated by using rules and axioms to prove that the cutput 

program transforms the initial state into one in which the given goal cond.t.on is true. 

Frame rules act as partial functions on the domam of possible states, defined only or, 

those states in wh.ch their premisses a e true and transformmg them mto states m 

which their postconditions (or goal conditions) are true. 

In figure 16 is given the subgoal tree traversed during the solution of the 

example problem g, en m Section 2. Goat nodes are labeled with the goal and an 

mteger indicating the order of ach.evement in the depth-first search. Rule nodes (used 

to expand the goals) arc labeled witn the rule name and an integer indicating the ordor 

of successful application. In the tree absence of angle marks indicate OR connect.on. a 

Unfit angle marK indicates AND connection and double angle marks mdicate THAND 

connectii. n. 

PROBLEM   1 :   TlLuND-OR-AND TREE  SEARCH 

Figurt   Ifa 



-«—" 

THE FORMAL ALGORITHM 79 

m 

Program generation is done by computing on a triple <G',r,A>, where G' is the 

subgoal to be attempted next, V s the current state and A is the current progra 

segment. For each rule used, an instantiation of the associated program construct, if 

•ny, is added to A using rule R2. The general form of rules to txpand goals (as 

explained in Section 2.1) is. 

Hi K, 

K 

The instantiation of program constructs is built up in a substitution u that 

replaces variables in the «rame rules by terms from the initial state. For any rule if 

Kot-G' then that rule is applicable to the achievement of G' and the premisse-, 

Hl^i-.HnO^ are the subgoals whose solution implies G'. We assume for the computation 

of u that variables in different applications of the same rule are distinct. 

The syntax of assertions used m rules, axioms, definitions and state descriptiotis 

is given in Section 3.1.   Consider the restrictions that the exclusive or "•" is used only 

as a top level connective m oisjundive postconditions of primitive procedures and the 

thand "&" is only used to connect the premisses of an iterative rule (which in fact 

follows the current implementation though its effect can be gained in any rule using 

•dvice).   Then for any <goal node>, say G' in state 1', the THAND-OR-AND solution tree 

Tr that may be rooted at G' is Described by the following grammar Gr: 

<goal node> ::- <true goal>|<prim proc>|<def>|<it rule>|<undetermined goal> 
<prim proc> ;:- <assertion> 
<def> ::- <as5ertion> 
<it rule> ::- (<b8Sis> A <invariant>) & <it step> 
<basis> ::- <asserfion> 
<inva'-iant> ::■ <assertiün> 
<it step> ::- <assortion> 
<assertion> ::■ <disjunction>|<disjunction> A <assertion> 
<disjunction> ::- <goal node>|<goal node> v <disjunction> 
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where if ff is a <true goal> then QbNVF C V* .nd <undetermmed go.l> is as 

o.f.ned m Sect.on 5. A foil spechcahon of the formal algor.thm for processmg 

undeterm.ned goals would mclude a formalizat.on of the subproblem stack, the method« 

for choosmg contingency goals, assembly of cond.tionai statements, keeo.ng track of 

the goals ,n the scope of a cont.ngency goal and contingency state manipulation. 

However since the concepts mvolved are descnbed quite completely in Sect.ons 5 and 

9 they will not be dealt witn further here. 

The definition of an achieved goal node G' in a THAND-OR-AMD tree is: 

(1) If G' is a «-true B0al> then it is achieved, 

(2) If ff has OR subgoals then it is achieved iff at least one of its subgoals 

is achieved, 

(3) If G' has AND subgoals then it is achieved iff all of its subgoals are 

achieved and remam true m the resulting state. 

(4) If G' has THANO subgoals then it is achieved iff all of its subgoals have 

been achieved. 

Further details on these kinds of problems may be found in INilsson 1971]. 

If G' is achieved under (2). (3), or (4) (i.e. by rule application), then 1' is updated 

by Inv(Kod,n and a procedure call or a while loop may be appended to A. 

Search algorithms of this type may be conveniently implemented using any of 

the new languages that oirectly support subgoal tree generation, backtrack, and . data 

base [Hewitt 1971. Sussman and Wmograd 1972], [Rulifson et al. 1972]. 

  - -    .__^^^——■ 
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8.3   LABELED, ORDERED SUBGOAL TREES 

Be'cf. we can consider correctness, the notion of a labeled, ordered THAND-OR- 

AND subgoal tree, say Tr, must be formalized. Let Tr be a solution tree generated by 

the algorithm during a successful program generation, S be the set of nodes in Tr, .-nd 

R^SXS be a partial ordering on S. Let J be another relation on S defined in terms of h 

by: 

xJy iff (Vx,y)[xRy A - yRx A (VzXzi'y A zRy 3 zRx]]. 

For x,y<S, xJy means that y is the R-Jirect descendent of x, or x is the R-dired 

ancestor of y. 

DEFINITION A structure Tr - <S,R> is a tree if the allowing properties are satisfied: 

(1) There is a root element of the tree, i.e., (jx),(Vy)[y(S ^ xRy], 

(2) For x,y,z tS, if xJz and yJz then x-y 

DEFINITION A structure Tr - <S,R,L> is an ordered tree if the following properties are 

satisfied: 

(1) Tr - <S,R> is a tree, 

(2) For each x(S, L is a total ordering of {y : xJy}, 

(3) For each x,y,z (S, if xLy and yRz and xHy then xLz, 

(4) For each x,y,2 <S, if xLy and xRz and Xf'y then zLy. 

The relation L orders tht nodes of Tr in depth-f rst achievement order, e.g., 

/ 

M 
3      6 

/\    /\ 
12 4    5 

Let V be the set of goals achieved in Tr instantiated by o^.   The function f will be 

called the labeling function. 

- MM 
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DEFINITION A structure  Tr  - <SVRLf> is . l.h.i^   o w     -. . a,vlKlL,r> is « labeled, ordered tree if the following 

properties are satisfied: 

(1) Tr - <S,R,L> is an ordered tree, 

(2) The function f maps S onto V. 

Let Gr be the grammar descnb.ng solut.on subgoal trees and let Tr - <S.V.RtL.f> be . 

labeled, orde-ed tree. 

DEFINITION Tr i, a labeled, ordered THAND-OR-ANO subgoal tree rooted at G' in Gr if 

the following properties are satisfied: 

(1) If x<S is the root of the tree <S,R> then f(x) - G', 

(2) If 3y(S such that f(v) i X and xRy and x^y then f(x) is not a <true 

goal>(i.e. x is not a leaf node). 

<3) If yi.....yn i {y : xjy), where y.Ly, tor Kj then there ex.st some fr.me 

rule having postcondmon (or |Ml) f(x) and premisses ffy,),... (f(yn). 

W. wll refer to such trees as solution trees m the next section. 

___ 
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8.4  CORRECTNESS 

For any output program generated by the system the associatrd solution 

(sequence of axioms and rules used) provides a proof within the logic of programs 

given in Section 2 that the program satisfies the given input-output asser ions. 

Because of implementation limitations, heuristic system methods, and consistency 

requirements in a fr-j-r.c definition whicn the user may violate a system generated 

program ^ay in fact be incorrect, however we will show that from a solution tt>.o Ir 

genera'ed by the formal algorithm to solve the problem <1,G> with properties as 

defined, a correctness proof of the solution can be given. Conditions for correctness of 

the procedure for generating conditional statements was given in Section 5. 

We may show by induction on the ordering of nodes in Tr that the oiitDL* 

program A solves the problem, i.e. L(F) ||-I(A)G by showing it to be true for each 

subgoal and partial program, i.e. if x<tS is the root of the tree and f(x) «• G then for any 

y<S such that xRy , HF) ||-l{A'}f(y), where A' is the partial program in the tnpio 

computed by the achievement of t(y). 

Let G' - f(x) be such that Vy(S xLy, then G'(V is a <true goa^, i.e. it labels the 

leftmost leaf node of Tr, and L(F) K-bQ*. 

As an induction hypothesis assume that for an arbitrary G'-f(y; such that y is 

not the root of fr that LvF) H-liA'^y). We will then show that this must imply L(F) i|- 

I{A"}f{z), where yLz and either zJy or (jx)|>Jy /v xJz A - zJy], where M' and A" are the 

generated program segments in the associated triples. 

Consider the cases for the triple <G'ir,A'>, 

(1) If G' labels a leaf node of Tr then L(F) ||-r U F D G' and the state and 

program segment are unchanged by its achievement.  This implies L(F) ||-I{A'}G'. 

(2) If G' labels a non-leaf node x of Tr then we have the following subcases, 
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An i„st,nc. o. . ***, procedur. ru,. ^^ ^ ^ ^ ^.^ ^ ^ 

0« » K Hs mmmm * MUM by |h. ch.ng. of MMIM r* M By hypothesis 

IW I- P« s,nc. propor.y ,3, of fh, dofiniflon „, , So|uho„ lre. ,s s.llsfie4 The ru|. 

of co„s.qü,w. mplle% L(F) „. f^^ ^ .^^^ ^^.^ L(F) |HI^^ ^^ 

'" - I-MfW).  By fh. rülo 0( compos,t,on R3 we may ^^^ A. wj|h ^ ^ ^ ^ 

induction hypothosis w. conclud. th.t L(F) i|.|(AW)r, whor. I" . K 

For th, csos in which .„st.oces of definitions or iter.hv. ,ules .r, .pptipd t0 

«Nov. r, th. .ndoction stop may a,so b. pro«d e5tabl,shlng l(F) „. ^   ^ 

'0rm" d,"i" n,a)' »• ,0Und '" tB- " L-Kh.. W.}   This discussion was 

■nfondod to iustify ,h. focmai „ethods mp,e«n„d in th. sys.on, by showin, th., 

undor c.rt.in „.„„ption. .bout sofution „..s . corroctn.» prpof en b. ,,„.„. 

 ■!■   M 





9.   SYSTEM UtSCHlPTlON 

Th.s   section   will   document   the   system  implementation   to   the   end   that   its 

operat.on  m.ght   be  better  understood  and  to  the conceptual  level  that   wouU  be 

reasonably    helpful    m   des.gnmg    a   more   expanded   system.     The    system    was 

implemented in LISP using MICPO-PLANNElR primitives [Sussman and Winograd. 1971], 

with which we will assume the reader has some fam.li?rity.   MICRO-PLANNER was a 

very   preliminary   version  of   RUNNER  [Hewitt.   197^    Many   of   our   programmmg 

triumphs   modifying   MICRO-PLANNc*   and   wntmg   new   pnmit.ves   are   no   longer 

necessary in light of the new languages now available [Sussman, 1972]([RulifSon et al. 

1972]. 

9.1 OVERVIEW OF INTERACTIVE SYSTEM USE 

The interactive decision points and programs called at the top level are shown ir 

t'gure 1". (This is a flow chart of the top ievel LISP function SUBGOAL.) The system 

basically has three segments: 

(1) a Frame translation program (see Section 9.2), 

(2) a set of programs for program generation called from SUBGOAL and using a 

translated Frame, 

(3) a set of pnrritives that modify and extend MICRO-PLANNtR. 

The   user's   interaction   witn   the   system   shown   m   figum   17   is   informally 

described by the toiiowmg procedure: 

(1) A f.lename may be given as an argument to SUBGOAL If the f.le contains a 

Frame defm.t.on then the translator is read in, the Krame defm.t.on translated 

and loaded. If the f.le contains a translated Frame then .t is simply loaded. It no 

filename is g.ven then a Frame definition to be translated and loaded is given 

interactively from the terminal. 
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(2)      When prompted by the system, the user .nputs a goal to be achieved by *» 

p. ogram to be generated. 

O)      If the user de.res to g.ve adv.ce to the system relive to the g.ver, EoaI then 

the advice system is called. 

M)      The sub8o,„„g syslem USeS lhe transl,ted Frame „  ^^ ^ ^^ _ 

Pf^m «hieing ,he 60al. „ unsJcteM)u| the user nay try ^^ w|,h ^ 

advice (go to (3)). 

(5)       If rejcn condl,(ons (see SeCons M and 9..) are pend.ng for th.s genera.ed 

procedure then they are tested for sat.sfachon.   ,f they are not sat.sfied then 

the user may attempt to extend the procedure to y.eld a state -n which they *• 

true.    If he chooses not to do th.s or the system ta.ls in .ts attempt then an 

error ex,t i. subst.tuted for any call to that procedure m ,ts trunK program. 

(6)      If the  user elects, the program may be ophm.ed accordmg to some s.mple 

cr.ter,a. e.g. ehm.nahon of  dead assignment statements  and reduction of  the 

number of program vanaoles. 

m      The user na, then choose (o have the generated program generated and fited 

in a program library. 

(8)      1 he program .s then displayed for visual inspection. 

O) If there are conc'.t,0nal statements tsee action 9.5) then the user may e.ect to 

do contingency pro.ram generate. If so then the state, goal pending and 

answer i. .n.t.alized from the stack uf contingency tasks (go to (3)). 

(10) If any assumed primitive procedures occur m the generated program the user l5 

•nformed and may structurally (see Soct.on 9.7, develop each assumption 

procedur, call  by gener.t.ng a program whose input  and output  assertions 
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match the pre and postconditions of the assumed primitive procedure (Initialize 

the state and go to (3)). 

(11)    The program may now either be incrementally extended from the current state 

by givmg an add.tional goal (go to (2)) or any previously completed program 

segment and final state may be returned to and extended. 

In  Appendix  b  is  an example  of  an  interactive dialogue  including  a  Frame 

translation and program generation. 
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9.2 PROCEDURAl REPRESENTATION OF A FRAME 

In Section 8 the basic problem reduction subgoaling algorithm was given and in 

Section 4 associated problem solving processes using Frame information were 

described. In this section a more detailed description of the function and form of a 

translated Frame will be given. The translation and use of iterative rules anc tho 

generation of conditional statements will be given in Sections 9.6 and 9.5 respectively. 

9.2.1 SOME ELEMENTS OF MICRO-PLANNER 

Assuming general familiarity with MICRO-PLANNER we will briefly describe a few 

basic primitives and theorem :/pes as used in the system description (see [Sussman 

and Winograd, 1971] or Baumgart, 1972]). In the current implementation, <p1ttern> 

will represent seme relation. In a more general treatment <pattern> could represent 

at. arbitrary Boolean expression of relations. Pattern matching is restricted to simple 

unification. 

The control structure is a backtrack stack interpreter consisting o* a program 

representation, a processor state, a processor and a push down stack of all previous 

states the procesror has been through since the beginning of a particular computation. 

The processor may backtrack to a previous state and exhaustively search a subgoal 

tree in a depth-first manner trying all possible variable bindings and applicable 

theorems to return success ultimately to the top goal node. 

(1) (THGOAL <pattern> <recommendation>). If no <recomm6ndation> is given then 

THGOAL simply searches the data base for an assertion that matches the 

pattern. If it finds one, it succeeds and carries out the unification substitution 

for any variables in the pattern, otherwise it fails. If a <recommendäiion> is 

given it will be of the form, (THTBF <filter>), where <filter> is the name of a 
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unary LISP funct.on that selects from candidate THCONSE theorems to be called 

■tor a data base searcn has MM   The atom THTRUE is the always true filter, 

i.e. allows any matchmg theorem to be tried. 

(2)      (THNOT <argument>).  THNOT faiis (f its <argument> succeeds, other.-^e it fails. 

O)      (THASSERT  <sKeleton>  <recommendat(on.,.    The  <sKeleton>  may e.ther   be   a 

theorem name to be put on a ready-to-use M or an .nstant.ated relation that is 

to  be   added  to   the data  base.    THASSERT ta-.s only  .f  it  tries to  assert   a 

<skeleton> already eK.stmg e.ther on the ready-to-use M or in the data base. 

If a <reCommendahon> I, glven lt Wlll be of the ^ (THTBF ^^ ^ 

<filter> .s the name of a unary LISP function that selects from candidate THANTE 

theorems to be called. 

«)      (THrWASt   Skeleton«  Olrl   III  ll,|l.ii >    The  <skcleton>  may  5ither   ^   , 

,he0r■, ,0 be remo-d »• "y-'o-u* M or an .„stantiated r.l.Uon 

that I. ,o be removed from the data base. MM« Mk only i( i! tries „ 

remove a <SKeleton> M does no. e„st edher on ,he read,-,o-use M or in the 

data base. R a <recommendat1on> ,s given ,, will be of ihe form, (THTBF 

«filter», where <fi„er> > the name of a Unary L.SP funcon .ha. selects fro», 

candidate TWMSMG theorems to bo called. 

(5) (THOR <ar6l>...<arBn>.   n« succt,ds i( one 0, „ ^^ ^^ ^ 

evaluation is left fo r,6ht.  Th,s construct is used to implement logical dis.unc.ion. 

(6) (THSETQ  <^>  <ei>  ...  <v,r„> <en>,   This  pr,mitive  ass,gns  the  ^^  o) 

express,on   <ei>   „   , able   <var|>  „,   „^    ^   ^^   ^   ^ 

evaluated. This assignment ,s undone if fa.lure backs up to ,t. A oirnp,, 

extensirn provided the funct.on THSET which does evaluate its first argument 

but is otherwise equivalent to THSETQ. 

I  Ml    ■   ■ -   - -   ■     - ■ -——— -   -    ■■ 
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(7)      Theorems.   Theorerv. are pattern evoked ana have the format: 

(DEFPROP <name>(<type> '-"arlist> <pattern> <body>) THEOREM) 

where 
^ame^ is an atomic theorem name, 
<type> is the theorem type, 
<varlist> is the list of variables used, 
<pattern> is a relation for pattern match invocation, 
<body> \z a sequence of statements having the syntax of the body of a LISP PROG. 

The list (<type> <varlist> <pattern> <body>) is of curse attached to the property list 

of <name> under the indicator THEOREM as a result of the DEFPROP. 

"Inere are three types of theorems: 

(■)    Consequent   theorems  (THCOMSE)  are   call-d  by   i   match   between   the 

pattern of a THGOAL statement and »he theorem pattern, 

(b)    Erasing theorems (THERAS1NG) are called by a match between a relation 

skeleton of a THERASE statement and the theorem pattern. 

(0    Antecedent theorems (THANTE) are called by a match between a relation 

skeleton of a THASSEKT statement and the theorem pattern. 

If  a  theorem's  pattern  is  matched by  the appropriate  calling statement  then  the 

<varlist> is bound and body is executed such that for .ne theorem to succeed each 

statement   must   succeed  (return  non-nil)  with  the  capability  for   backtracking  to 

discover an instantiation and/or subgoal tree rooted at that statement that returns 

successfully.  THERAS1NG and THANTE theorems do not return a value and are assumed 

to  succeed as  it  affects the success of the calling statement; however, THC0N3E 

theorems return either a success or a failure value that determines the success of the 

calling statement. 

-■ —  
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9.2.2 SPeCIFICATION AND BASIC FUNCTIONS OF FRAME RULES 

When a primitive procedure is initially input the following information is put on 

the property list of the atomic procedure name: 
(1) preconditions, 
(2) postconditions, 
(3) argument list, 
(4) whether or not the procedure is an assumption, 
(5) whether or not the procedure is recursive, 
(6) inequalities desired in argument pcsitions, 
(7) indicator of rule type, i.e. primitive procedure. 

Except for   argument  list specifications {;3) and (6)), the analogous information for 

axioms and defimt-ons is initially stored the same way. 

On the property list of eacn predicate symhol is stored the following: 
(1) argument list, 
(2) whether or not the relation is a fluent, 
(3) whether or not the relation is partial, 
(4) argument positions having the uniqueness properly. 

The internal data structure used to represent assertions after input is a list of 

lists where the interpretation of juxtaposition of elements is conjunction at the top 

level   and  alternates  between  conjunction and disjunction  at  successive  levels  of 

nesting.   At the bottom level a literal is represented as a list of negation sign (if any), 

predicate symbol and the arguments.  For example the assertion, 

P(X) v Q(Y) A -*(X,Y) A S(Z,X) v tnH A MV)}; 

is represented as 

(«P X) (Q Y)) (*. R X V)K(S 1 XK((T Z))((M V))))). 

This internal representation is clearly adequate ft assertions input using the 

syntax given in Section 3. 

A translated rule for a primitivt procedure contains the basic functional 

segments shown in figure 18. An actual example of a primitive procedure definition 

and its translated form is given in Section 9.2.3.1.   The pattern is the poslcondition 

■ i  ■ ii ■■! -- ■   ■■    -■     ■■■- —--"- --   - ■ -     ...  ... ■_... ...    , m,, ,— 
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achieved by an application of the procedure. The interactive program jllows the user 

to enter the Advice System then return tor continuation of subgoaling. Trace 

information of current path and goals ponding is displayed. Nonfluent preconditions 

are achieved first then the fluent preconditions. The mechanism for achieving a 

conjunction of fluent goals is described in Section 9.2.3.2. Processing to make the 

state consistent with the postcondition next to be asserted is carried out. The 

instantiated procedure call is appended to the oartially generated program followed Ly 

processing for collecting input-output assertions, forming correct block structure in 

nested conditional statements and diagnostic output to the user. 

■■ MMMMMBMMMM J 
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CALLING PATTERN 

INTERACTIVE AND TRACE PROGRAMS 

ACHIEVEMENT OF NON-FLUENT PRECONDITIONS 

ACHIEVEMENT OF FLUENT PRECONDITIONS 

STATE CONSISTENCY PROCESSING 

ASSERTION OF POSTCONDITIONS 

ASSEMBLY OF PROCEDURE CALL INTO PROGRAM 

MISCELLANEOUS PROCESSING 
(INPUT-OUTPUT ASSERTION, BLOCK STRUCTURE, DIAGNOSTICS) 

FUNCTIONAL SEGMENTS OF RULES FOR PRIMITIVE PROCEDURES 
FIGUKE ia 

-^—■ -■■--- . - . .     ._...-. 
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9.2.3 FRAME TRANSLATION 

A Frame defined using the lang tage described in Section 3 is translated into a 

set of LISP functions and MICRO-PLANNER theorems that form the basis for the 

subgoaler. In particular for each rule or axiom, one or more MICRO-PLANNER THCONSE 

theorems is constructed, for each distinct predicate symbol a THERASING theorem is 

generrted to implement the conjunction connective. The initial state description is 

converted to assertions placed in the data base. 

9.2.3.1 TRANSLATION PROCEDURE 

The translation is carried out according to the following procedure: 

(1) The appropriate input device, i.e. terminal or disk, from which to rea^ the Frame 

definition is sekcted. 

(2) For   each  rule  defined  the  information  listed  in  Section  9.2.2  is  input   ^nd 

internalized. 

(3) The initial state expressed in the syntax of conditions is input and internalized. 

(4) For each predicate symbol used, the information listed in Section 9.2.2 is input 

and internalized. 

(5) The user may request context linking or performance statistics to be gathered. 

(6) Algebraic simplification rules may be given of the form, 

t •* V, where t.t* are terms, 

which are used to reduce t to t' should t occur in an argument of a relation in a 

THGOAL statement, e.g. 

(MINUS(PLUS X,Y)Y) -» X, 

where X and Y may be bound to arbitra'-y terms to which the rules will be 

applied recursively. 

h'mtKt i ■ il——WM—i 
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(/)      Conversion rules for more readable output syntax for functions occurring in the 

generated program are specified in the form, 

t - ot , where t is a term and <* is an expression in the new syntax, 

which are used to produce the final output form of the generated program, e.g. 

(PLUS X Y) - (X + Y), 

where X and Y may be bound tc arbitrary terms to which the rules will be 

applied recursively. 

(8)      The conjunction of literals given to form the initial state is asserted into the data 

base according to the following rules giving the assertion made for a literal I as 

a function of being negated or partial. 

(a) If I - P(tl,...tn), for some predicate P, then assert P(tlh..,tn), 

(b) If I - -P(tl,...,tn) and P is total then assert nothing, 

(c) If I - -P(tl,...(tn) and P is partial then assert, by convention, NP(tl^.,tn). 

(9) For each predicate symbol used generate a THERASING theorem and some global 

variables whose form and use in implementing conjunction are described in 

Section 9.2.3.2. 

(10) For each rule defined, a THCONSE theorem b generated implementing the 

functions shown in figure 18, i.e. 

(a) Tho calling pattern is the rule postcondition. 

(b) For  each  total  precondition literal  I  a THGOAL statement  is  generated 

according to thü rules: 

(i) If I - P(tl,...,tn) and P is non fluent then 

"(THGOAUP od(tl)...oi(tn)KTHTbF KILTERAX))" 

where FLTERAX is a LISP filter function which permits only dedu-.tion 

  ._,. 
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using the axioms relative to the current state and ot transforms ti into .. 

valid MICRO-PLANNER term. 

(ii) If I - ^(tl^.tn) and P is non-fluent then 

H(THNOT(THGOAL(P ^(tl)...^(tn)KTHTBF F1LTERAX)))" 

(iii) If I - P(tl,...,tn) and P is fluent then 

"(THGOAUP ^(tl)...^(tn))(THTBF FILTEROP))" 

where FILTEROP is a LISP function which controls the choice of rules or 

axiorm. entereo on the basis of advice given, if any. 

(iv) If I - .P(tl tn) and P is fluent then 

"(THNOT{THGOAL(P ^(tl)„.^(tn)KTHTBF FILTEROP)))" 

A Boolean expression of these statements corresponding to the precondition is 

generated.    The  implementation  of  conjunction  and other  functiona;   parts  of   the 

theorem are described in latar sections. 

(11)    The translated Frame is then loaded, i.e. functions, global variables and theorems 

defined and theorems asserted.  The user may now begin program generation. 

As an example of i translated rule consider the primitive procedure, 

ROB(R1)A^ILLED(R1)AAT{R1,L1)ACLEAR(L1,L2)VHASUMBRELLA{R1) 

AWALKADLE(Ll,L2){walk{Rl,Ll,L2)}AT(Rl)L2). 

which transktes into the Micro-Planner theorem shown in figure 19 

wh,ch is labeled according to the basic functional segments described in Section 9.2.2 

and shown in figure 18. 

- ■■- ■- ■ - 
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INTERACTIVE 

AND  TRACE 

NON-FLUENTS 

ACHIEVEMENT 

OF 

FLUENT GOALS 

UPDATING  THE 

STATE 

ASSERT    P.C. 

ASSEMBLE   SOLN 
11LOCK STRUCTURE 
CHECKING Ttcotn) 

(kJL LI U Rl Dl  ILSTtMLK  IQUO'C  (L2 PIMM 
(AT   (THV Rll   1IHV Ul  Rl 
(1HSEIO  MHW LCI»)   UKW OCT»)) 
IIHUNIOUt  LSTIMLKI 
ItRtEPBIM UAL*   («T   (IK; »11   (THV LZI  RM 
(T»«CEINf011 
(TMOR   I   ITRftCtlNFO? UOLKM 
(COM) ((TTTINI  (ROVICLSTS)l  (T TM 
ITHGOK   IRC»   (THV »1 Ml 
(THCONO   (iTHNOT   (THCOAl   (KILLED   I IHV Cl 1  »Ml   Tl 

(T   (IHÜOfll   (NTILLEO  (THV Rll  Rl   ITHTBF  rRTEROPMM 
I THCONO   (ITHANO   (THASVAL   (THV RIM I 

(THSETB  (THV NULLEDlWCSl   (CONS  (LIST   (TW RIM   (TW «KlLLEDfiÄGSM M 
f|   IM 

(THCOOt   («T   (IW Rll   (IW HI   Rl   (THTBT  riLICROPM 
(THCONO   UTHONO   (TH«SWl   (IMVLIM   (THASVflL   (THVR1M1 

(THSETO  (THV «TOPCSI   (COW  (LIST   (THV Rl I   (THV LIM   (TW «TflBCSMM 
(T   TM 

(THO«  ITHAND   (THCONO   1 1 THCOAL   ICLE«   (Tt*/ Lll   (TW LZ>  R)   (THTBF  riLTtWPM   Tl 
((THCOAL   («CLEAR  (TMU LP   (THV LZI  »M   (THTAILII 
(T 

(UNCERTLIT  (LIST  (OJOTE aEA»)  (THV Lll  (TW L2I  (OUOTt RM 
T 
lOUOTE   (CLEAR  (THV Lll   (THV U)  RM 
lOUOTE   INCLEA*  (THV Lll   (THV LZI  RMIII 

(THCONO   ((TW4«  (TiUSVOl   (THV Llli   (IMASVAL   (THV Hill 
(IHSE'O  (IW CLEAPABCSl 

(CONS (LIST  (THV Lll  (TW LZM  IT:" CLEARAUCSMII 
(T  IM) 

(THAW   (THCONO   ((TMCOAL   (Hf.SLinO»t:L"-   ("«JR1I  Rl   (»HTBf  FILTEROPM   Tl 
MTHCOAl   INMAJJMBRELLa  (THV Rll  RM   (THTAILM 
(I 

(UNCERTLiT  (LIST  (QUOTE HASUrflRCLLAI  (THV Rll  (QUOTE Rll 
I 
(DUOIE   IHASLmdRtLLA  (THV Rll  Rll 
(QUOTE   INHASUnORCLLA  UMl.' »11  RDM) 

(THCONO   KTHAHD  (THASVAL   (THV RIM I 
(THSETQ   (TMU HHSirBRfLlAAifCS) 

(CONS  (LIST   (THV Rll)  (THV HASUMBRtLLAARCS M M 
(T  TIM 

(CONOSTAT   (TW CCLI   Til 
(THCONO (1THCOAL  IUAli«.BLE  (TW LI)  (THV LZI R)  (THTBT riLTEROPM  Tl 

KTHCOAC   (NUALIIA8LE   (TW Lll   (THV LZI  RM   (TICAILM 
(T 

(UNCERTLIT (LIST  (QUOTE UAL KABLE I  (THV LD  (IHV LZI  (QUOTE Rll 
NIL 
(QUOIC   (UALKABLE   (THV Lll   MHV LZI  RM 
(QUOTE   («MALKAdLE   (THV Lll   'IHV LZI  RMMI 

(CONOSTAT  (THV CCL) NIL) 
(THCONO   ((THMNO   (THASUAL   iTW LZM   (TMASVAC   (THV LUD 

(THSETQ (THV MAUA8LEARCS)  (CONS (LIST  (TW Lll  (THV LZM  (TW HALKABLt ARCS 1111 
(T   Tl) 

(THCONO   ((NULL   (THV UALIAOIEARCSII   Tl 
II  (THSCTO (THV UHCKABLEARCSI  (COR (THV IWLKABLtARCSM  T TIM 

(THCONO   ((NULL   (THV ATARCSM   Tl   (T   (THSETQ  (TW ATARCSl   (COR  (THV ATARCSI)   T  TIM 
(THCONO  ((NaL  (THV NKILLtDARGSM  Tl 

(T   (THSETQ   (IMV NMLLED1RCSI   (CD»   (THV NKILLEOARCSM   T   TIM 
(THCONO   ((THCOHL   IH.<5UM8»ELI.A  (THV Rl)  RM 

(THCONO  I (NULL   (THV HA5UMe?ELLAA»CSII  Tl 
IT  ITHSCTQ (THV HA5UM6RELLAARCS)  (COR (THV HASUfBRtLLWIRCS 11 T T))!) 

(T T)) 
(THCONO  KTHtOAL  (CLEAR  (THV LI)   (THV LZ) »M 

(THCDNO   ((NULL   (IHV CLEARAPCSM   T) 
(T   (IHSfTQ   (THV CLEARARCS)   (COR  (THV CLEARARCSM   T  Till) 

(T Tl) 
(THCONO  UTHANO   (TMASVAL   (THV LZM   (IHASVAl   (THVL1MI  Tl   (T   (THFf.ILIII 
(IHCONO  ((EQUAL   (THV LZI   (TW L1M   (THTAILM   (T   Tl) 
(THCONO  ((THGOAL  (AT  (THV Rll  (TW 01) RM  (THSETQ (THV ATIhsI.  (LIST (THV Rll  (THV 01111) 

(T Til 
(THCONO ((THCOAL  (AT  (THV Rl)  (TW 01) RM  ITHERASE (AT (THV Rll  (THV Oil Rl  (THTBr TMTRUEII) 

(T  TM 
(THCONO  l(TH£»(iSE   IUP0NC PATH))   (THTAIL  THCOREUM  (T TM 
(TH5ET   (CAR   (THV ANSI) 

(CONS (CONS (QUOTE UALKI  (LIST  (IHV Rll  (THULU  ITHVLZIII  (EVAL  (CAR (THV ANSMM) 
(THSETQ (THV DU.IT5)  (CONS (CDAR CD  (THV OBLITSID 
(THAS5EBT   (AT   (THV Rl I   (THV LZ)  »)l 
(THSETQ  (THV ASSEWTLITS) 

(CONS (LIST  (LIST  (QUOTE AT)  (THV Rll  (THV LZ)  (OUnTE Rll  (LIST  (QUOTE Al  lOUOTE RID 
ITHU ASSERTLIISID 

(PRINT  (REVERSE  (EVAL  (CAR (THV ANSI)))) 
(SETO CANS (REVERSE  (EVAL  (CAR (THV ANSMID 
(CONO ((»GREAT  (LENGTH GANS)  (LENGTH LGANSM  (SETQ I.CWS CANS!)  (T T)) 
(THDO (TERPRIM 
(CONO ((EQ (QUOTE  IF)  (CAOAR CTM  (ELSECLAUSED  IT (THSETP CT  (COR CT) T T)))) 

Figure   19 
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9.2.3.2 IMPLEMENTATION OF CONJUNCTION 

The basic idea for implementing the achievement of a conjunction of goals, Gi A 

G2 A...A C, is to prevent the falsification of any Gj, 1 S i S n, until all d are achinved, 

thus creating a state in which the conjunction is true. 

For each fluent predicate symbol, say P, used there is a global variable createc, 

i.e., PARGS, which is initialized to the value NIL and will hold a stack of instances of P 

that are to be preserved during the achievement of the conjunction. This is done by 

adding the instance(s) of the literal(s) whose achievement causes the current g^al in 

the conjunction, say G( , 1 S i < n, to be true to the appropriate stack before G^i is 

attempted. When the entire conjunction has been achieved the literals for each G| in 

that conjunction are popped from the stack. The LISP function that generates this 

code is recursive for arbitrary boolean conditions satisfying the syntax. 

A THERA?ING theorem is also generated for each P(Xl,...,Xn) as follows: 

(DEFPROP PGREMLIN 
(THERASINU (Xl...Xn) 

(P(THVXl)...(THVXn) 
(THCOND((MEMB£R(LIST(THV X1)...(THV Xn)) 

(THV PARGS)) 
(THASSEHKWRONG PATH))))) 

(THEOREM), 

where THV is a MICRO-PLANNER indicator that its argument is a variable. 

If some instance P(tl,...,tn) is to be erased to maintain state consistency (see 

Section 9.2.3.4) then the act of erasing will call PGREMLIN which will assert the flag 

(WRONG PATH) into the data base if (tl tn) is a member of PARGS.  Such an assertion 

is responded to in the THCONSE theorem in which the erasure occurred by generating 

the following statement after the erase statement: 

(THCOND((THERASE(WRONG PATH))(THFAIL THEOREM)KT T)). 
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The THERASE statement in the above will succeed only if (WRONG PATH) existed 

m the data base which was caused by an invalid erasure detected in the THERASING 

theorem. The flag seems necessary since success or failure in the THERASING theorem 

does not affect the success of the THCONSE theorem causing the erasure. The failure 

of the THCONSE theorem will force the system to try to find anoiher theorem 

corresponding to anoiher rule that ooes not ralsiry a gual in the conjunction. 

- ■ ■-  
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9.2.3.3 CONTEXT LINKING 

This   feature   discussed   in   Section  4  is  implemented  by   denot.ng   certain 

assertions in the data base as be.ng "hypothetical" or not part of the state and used 

only in connection with this feature.   If requested MICRO-PLANNER code is generated 

to precede the achievement of the precondit.on goals for rules and axions and If 

carry out the following functions: 

(1) The precondition goals are attempted relative to the hypothetical portior. of 

the data base only to determine possible variant, bindings. 

(2) The instantiated precondition goals are asserted into the hypothetical oata 

base for use in descendant rule applications in the subgoal tree. 

Following the achievement of the preconditions of a rule, the hypothetical data 

base is restored to the state at rule entry. 

9.2.3.4  UNIQUENESS PROPERTIES 

Updating the state is discussed m Section 4 as an application of the invariance 

rule. -Building in" axioms defining uniqueness or single valuedness of certain relation 

argument position has proven useful for state consistency processing. 

When a Krame is defined an argument position of any relation may be designated 

to be unique by respondmg to a system query with an asterisk in that position. 

Multiple argument positions may be so dosignated 

Before an instantiated postcondition, P(tl,...,ti,..,tn) is asserted, contradictory 

literals in the data base are removed. For each position designated as unique, suppose 

the ith. the goal P(tl...,X,...,tn) is attempted with a new unbound variable in the ith 

position. If it is successful, i.e. X is now bound to vaKX). then P(tl,..,va|(XWn) is 

erased. 

-        
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For example consider the predicate AT(X,Y) - "Object X is at location Y", where 

both argument positions are unique, i.e. AT(M). Then in the state update portion of 

the theorem the following code is generated: 

(THC0ND((THGOAL(AT(THV XKTHV Ü1))) 
(THERASe(AT(THV X)(THV D1)KTHT3F THTRUE))) 

(TT)) 
(THCOND((TH£RASE(WRONG PATH)KTHFAIL TMEO^MM 

(TT)) 
(TrlCOND((THGOAL(AT(THV D2HTHV Y))) 

(TH£RASE(AT(THV D2KTHV Y)KTHTBF THTRUF))) 
(TT)) 

(THCOND((TH£RASE(WRONG PATMWTHFAI. THEOREM)) 
(T T)), 

where Dl and 02 are unbound variables. 

This process assures that if the state is consistent with respect to uniqueness 

properties initially that this consistency will be maintained. 

 - ■- ■ - 
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9.2.3.5   INTEPNAL REPRESENTATION OF GENERATED PROGRAM 

A program segment generated by the system is repre«'jnted internally in a list 

data structure satisryirg the following syntax: 

<program> 
<bl0CK> 

::■ <block> 
::«• (<statement-list>) 

<s*atement-list> 
<5;tatement> 
<staiement> 
<statement> 
<statement> 
<statement> 
<procname> 

:» <statement>|<statement><statement-list> 
- (<procname><arglist>) 
- (IF<condition> THEN <stetement>) 
= (IF <condition> THEN <f tatement> ELSE <block>) 
- (WHILE <cündiiion> ÜO <block>) 
■ (<- <identitier><öxpression>) 
:- <identifier> 

where, 
<identifier>   is an ALGOL ide itifier, 
<expres$ion>  is a LISP functional expression in prefix form, 
<condition>    is a Boolean expression satisfying the syntax 

Riven in Section 3, 
<arglist>      is list of arguments each of which is either 

an <ideniifier> or an <expression> 

For example, 

((«- XO IK- Yl IKWHILE ->(Y1 N) D0((*- Yl (ADD1 Yl»(TIMES XO XO Yl))), 

is the factorial program in Section 7.   The above syntax speci'ication describes *he 

structure of programs that may be generated by the system. 

A partially generated program is actually maintained in a stack (a list with access 

only from the front) of "GENSYMed" variables which is pointed to by a global variable 

ANS. Each time a deeper level of nesting is required, i.e. to generate the body of a 

WHILE loop or nested conditional statements, a new variable name is added to the top 

of the stack and initialized to NIL. Program constructs generated at this level are 

assigned to the variable at the top of the stack via ANS using a THSET. When a level 

is emerged from the value of the top element is appended on to the value of the next- 

to-top element and the stacK is popped. 

When a generated program is output it is translated into a subset of ALGOL in 

the obvious way with nesting n the list structure corresponding to block nesting. 

■     -   ^mmm ■■■ 
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9.3 THE STATE UPDATING METHODS 

The upcJjtmg of a state to the new state resulting from the application of a 

rame rule is formulated by invariante which in general is no) computable.   Some of 

the more common causes of inconsistencies are hanJIeo by the uniqueni-bi prop^ity 

mechanism described in Section 9.2.3.4.   Also relevant to this topic is the discussion of 

conjunction implementation m Section 9.2.3.2.   As explained in Section 6, updating .,,e 

state after the application of an iterative rule may be either impossible or impractic»! 

unless the user provides an output assertion for the iterative ruL- in which case the 

rule of : ivariance is applied as witn a primitive procedure postcondition.   The results 

Of   applying   the  rule  ot   invanance  are   influenced by  the  tixed,  though   arbitrary, 

ordering of the literals.   To compute Invd.Q) a subset of I that is consistent with Q is 

sought.    Since in general the choice of the R|<| to be removed that  prevents the 

derivation of a contradiction witn Q is -ot unique, the ordering determines the deletion, 

if any. 

The system philosopny has been that inconsistencies are of no concern unless 

they affect the correctness of the tenerated program. Consistent witn this is a 

suggested approach that if an inconsistency is detected, say during some aviomatic 

deduction, that 'he choice of literals in I to be deleted be guided by the following, 

(1) Ine infrrmation as to the stüte literals used to prove each previous goal as the 

program has been generated could be kept as an extension of the input-output 

assert computation (described later). 

(2) The literals to be removed should be those that least affect the program, i.e. 

either those as yet unused or those most recently used since program generation 

wouid have to back up to tnat point then proceed atter the deletion. 

— — -■- — ■       
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The actual Micro-Planner code generated to 

procedure has been applied .s shown in figure 19. 

105 

update the state aftrr a primitive 

-M^^ i,^_i^..J-.^.  - -     ■■- - ■        -         -- 
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9.4  CCMPUTAI ION OF INPUT-OUTP'JT ASSERTIONS 

The compulation of input-output assertions requires the extension of the 

MICRO-PLANNER system to include a trace stack containing rules entered, goals 

ending anc' goals achieved from the state, i.e. leaf nodes in the subgoal tree. This 

data structure is in addition to those which are a normal part of the MICRO-PLANNER 

Processor.   This stack is a list data structure satisfying the foMowing syntax: 

<trace-srack> ::» (<rule-list>) 
<rule-lict> ::- <rule-use>j<'ule-üse><ruie-list> 

<rule-use> "-«<ruie-name><current-e02l>)<flag-list><achieved-goal-list>) 
<achieved-goal-list>::-<achieved-goal>|<achieved-goal>vaLi!lRVed-goal-list> 

where, 

<achieved-goal>  is an instantiated precondition subgoal of ihe rule 
that has been acnieved dirtctly trom tie state, 

<current-goal>    is the current precondition subgoal pending in 
the rule for whose achievement rules above it in the 
stacK have ^deo entsred, 

<flag-iist> is a sequence of zero or more nags used to determine 
proper block nesting in conditional statements 
(Section 9.5). 

For example the trace stack may appear as, 

(((Tl (P XI a)KQ a)K(T2 (R a X2)KS a b))), 

a* some stage of a computation and have the meanmg, 

(1) S(a,b/ fias been achieved from the st'.te in 12, 

(2) R(a,X2) is currently pending in T2 and Tl has been entered to att impt its 

iichievement, 

(3) 0(a) has been achieved from the state in Tl, and 

(4) P(Xl,a) is currently being attempted. 

As each rule, say T, is successfully applied, before its <rule-use> is popped from 

the trace stack, its <achieved-goal-list> is conditionally added onto a global variable. 

- ■ 
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DBLITS. Similarly if T has post cond.tions or output assertions to add to the sta.e they 

are conditiona.ly added onto a global variable. ASSERTLITS. The condition in both 

cres is that this occurrence of T will appear in It» completed subgoal tree. 

For   any  generated program  segment  A.  the  input  assertion   I.   and  output 

assertion 0, may be computed as follows. 

(D By comp^ing each addition to DBLITS and ASSERTLITS in order of ad-iition. 

those members of DBLITS that became true in the state as result of an 

assertion, (i.e. are members of ASSERTLITS), 'rom a previous rule are 

deleted. 

(2)    Redundancies m DBLITS are removed yielding the input assertion Ia. 

O)    The output assertion 0. is the non-redundant conjunction of all members of 

ASSERTLITS that are true witn respect to the final output state of A. 

i 
■■-     - -■      ■   
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9.5   GENERATION OF CONDITIONAL STATEMENTS 

In Section 5 the algorithms for generating conditional statements were 

described. In this beclion some of the details of the implementation will be given. 

Topics to be covered include implementation of goal nodes containing partial relations, 

contingency go? selection and its use, and associaii' n of rejoin conditions with 

contingency programs. 

9.5.1   GOAL NODES CONTAINING PARTIAL RELATIONS 

Let L be a precondition subgoal literal containing ,3 partial relation.   The code 

generated to attempt achievement of L is of the form: 

(THCOND ML) T) 
(o^L) (THFAIL)) 
(T (UNCERTLIT L SWITCH))) 

where     <*(L) is the appropriate THGOAL statement from for L as described in Section 

9.2.3.1;   and   UNCERTLIT   is   a   LISP   function   or   two   arguments,   i.e.   an 

undetermined literal, L, and a switch value indicating whether this goal occurs 

in a conjunciian (T) or in a disjunction (NIL). 

The function UNCERTLIT does the following: 

(1) Appends L to a global variable UNCERL1ST, 

(2) Returns not[SWITCH]. 

If L is in a oisjunction then UNCERTLIT returns NIL, which forces the 

next literal, it any, to be tried before the disjunction is declared undetermined 

and a conditional statement generated.  See definitions in Section 5.1. 

Either as the last statement of a THOR statement (which implements disjunction) 

or immediately following a THC0NÜ statement like the above, a call to the LISP function 

CONDSTAT is generated witn behavior: 

—    na*—a——d 
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(1) If   null[UNCERTLIST] then  if   in  a  disjunction  return  NlUcauses   failure) 

otherwise T(success). 

(2) If   not[null[UNCERTLlST]]   thyn   generate   a   conditional   statemer.t    and 

contingency tasks as described In Section 5 and detailed in ^oJlon 9.5.2. 

For example the disjunctive goal (see example in Appendix A;, 

VAR(x) V LP(x) V RP(x) V OPM, 

will result in the 'ollnwing code generated by the frame translator: 

(THOR(THCÜND((THG0AL(VAR(THVX)))T) 
<(THGOAUNVAR(THV X))) (THFA1L)) 
(T(UNCtRTLlT(LIST(QUOTE VAR)(THV X))T))) 

vTHCOND((THGOAL(LP(THVX)))T) 
((THGOAUNLP(THV X))) (THFAIL)) 
(T{UNCERTLIT(LlST(gUOTE LPXTHV X))T))) 

(THCOND<(THGOAL(kP(THV X))) T) 
((THGOAL(NRP(THV X)))(THFAIL)) 
(T(UNCERTLIT(LIST(QUOT£ RPKTHV X))T))) 

(THCOND((THG0AL(OP(THV X)))T) 
((THGOAL(NOP(THV X)))(THFAIL)) 
(T(UNCERTLIST(LIST(QIX)TE OPKTHV X))T))) 

(CONDSTAT(THV CGL)T)) 

where CGI. is a variable having as value the post condition of (ht 

rule and is used in the contingency goal selection procedure.  The goal 
-EMPTYW, 

occurring in a conjunction will result In the generation of the 

following code 

(THCOND((THGOAL(NEMPTY{THV X)))T) 
{(THGOAL(EMPTY(THV X))KTHFAIL)) 
(T(UNCERTLIT(LIST(QUOTE NEMPTYKTHV X))NIL))) 

(CONDSTATE(THV CGDNIL) 

This code generated when the frame is translated will if executed at progr-m 

generation time call the necessary construction procedures .o generate conditional 

statements as further described in the next section. 

- ■ ■ - ■ - ■ — - 
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9.5.2   IMPLEMENTATION OF CONDITIONAL STATEMENT GENERATION 

When a goal is found to have an indetermined truth value as defined in Section 

5 and implemented according to Section y.5.', the global variable UNCERTLIST is <at »o 

the list of undetermined literals (perhaps mor« than or» literal 'f G is a c'.^unctio^ 

The following procedure is then carried out: 

(1)    The trace stack is searched from the top (current rule entered^ to fird fht 

pending goat of smallest scope that is ' lly instantiated, say G* and to «it 

(RPLACA) a flag.i.e. "It--, for each member of UNDERTLIST in the <rule-use> 

above G*, e.g.  for rule names T and goals pending G, 

(.. ((T G) If ...) «r G«)...)...). 

These flags in the trace stack will signal the end of the else tlai-.c anc 

the   point   of   rejoin   for   the   contingency   programs   called   from   the 

conditional sta ement and generated later. 

(2)    The conditional siatement is generated as described in Section 5.2.   In 

particular for eacn member of UNCERTLIST, say L, a new procedure name, 

say p, is generated, the appropriate state, say S, is created and the triple 

(p,S,G*) is placed on [he subproblem stack. 

(3>    An expression of the form, 

(IK <i THElvLdK -U THEN p^ ELSE p„ ^...ELSE) 

is added to the top variaole in the ANS stack.   Note that the fina. tls« 

clause is left empty but will be filled in with what was called the trunk 

program segment in Section 5.2. 

(4)    The list or new procedure names generated in step (2) is "CONSed" to a 

yiubal vühüble PROCLIST. 

  - — iii«« " '   1 mt m *mmm ^ummam*atummm 
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(5) A new answer variable name is generated added to the top of ANS and 

initialized. 

(6) Program generation continues until a rule has been successfully applied 

that has some IF flags on its <rule-use> entry in the trace stack. The 

following steps are then carried out: 

(a) Append the value of the top variable in ANS to the next-to-the-top 

variable and pop ANS. (note: This places the trunk program as the 

else clause) 

(b) Form the triple ((CAR PROCLIST) DBLITS ASSERTLITS) using current 

values of these global variables and add it on to the variable 

PROCDATA to be used later to conputt the rejoin condition for ihe 

programs named in (CAR PROCLIST) 

REMARK: ANS and PROCLIST are managed as LIFO stacks which correspond 

to  the  entering  and exiting of Uocks  in  the generated  program.    This 

assures that the correct elements will always be at the top of the stacks 

and arbitrary Jcoth of block resting is allowed. 

(7)   After the trunk program Kas been completely generated, each triple In 

PROCDATA is accessed.   Each consists of a list of procedure names having 

the same rejoin point in the trunk program, and the v/glues of DBLITS and 

ASSERTLITS at the point of rejoin.   The sufficient input assertion for the 

program segment from the point of rejoin to the may be computed by by 

removing from the values of DBLITS and ASSERTLITS at final output state 

their respective values at the point of rejoin then following the algorithm 

described in Section 9.4.   This input assertion must be provable from the 

— -   ■ -- 
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final output state of each procedure in the list when it is generated (see 

Section 5.^) and is stored as an additional element of each associateu triple 

in the subproblem stack. 

^^^. •^m — - iirfW 
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9.6  ASSEMBLY OF WHILE LOOPS 

In Section 8 problem reductior search in a THAND-OP-AND tree was descriued 

and in Section 6.1 the subgoal structure of a node expanded using an iterative rule 

was given, i.e. the premises that must be achieved to justify the construction of a loop. 

The subgoaling system provides program segments and substitution information 

allowing the loop assembly phase to fully satisfy the premises and construct a WHILE 

loop. This formal algorithm is sketched in Section 6 and now the methods implemented 

will be considered in more detail. 

The inputs to the loop assembler will first be described. Next the system 

methods will be given for computing the successions of values for p-ogram variables to 

have during successive iterations of the loop. Here some of the methods are decidely 

neuristic in an effort to reduce the number of generated program variable and 

associated assignment statements. Then we describe the generation of the update 

assignment statements and thoir assembly with the other program segments to 

produce a complete while loo^. 

9.6.1   INPUTS TO LOOP ASSEMBLER 

Consider an iterative rule applied to achieve I{?}G defined by the assertions 

P(basis), Q(invariart), R(iteration step goal), G(rule goal), L(control test) and S{output 

assertion) and whore V is the list of variables in Q. The inputs required for loop 

assembly are as follows. 

(1)    A basis program segment p(H; is given that ?chieves the basis condition 

from state I, i.e. I{p(P)}r and I' P. 

(i)    An instance Q\ of the loop inva'iant is given such that I'l-QX, where \- 

{<v1*-si>,...,<vn4-sn>}.   The substitution \ is  actually constructed by this 

  mm   
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deduction and will be used to provide initial values for system generated 

program variables corresponding to certain V| determined below. 

(3) The formal algorithm calls for the generation of a iooa body program 

segment p(R) that achieves the iteration step goal from the state QAL, i.e. 

0AL{p(R)}r and fc R. This is to assure that the generation of p(R) did not 

depend on particular properties of individual constants not shared by 

others of the same type in the domain and that p(R) would, in general, be 

incorrect. For example witn respect to the integers zero has an additive 

property not shared by other integers, i e. identity. In the current 

implementation p(R\) is generated such that r{p(RX))r", where QXALX are 

true in P, then p(RX) is generalised as described below. 

(4) An instance QX' of the loop invariant is given such that r"|- QX', where X' - 

{<v1«-ti>^.,<vn«-tn>}. Since the invariant is a characterization of relations in 

the subset of the state relevant to the iteration, comparing QX and QX' will 

reveal instances of value "changes" that should be computed using system 

generated loop control variables. 

(5) An instance of the loop control test, i.e. LX, is given. 

In practice by taking the entire state P as the input state from which to achieve 

R in step 3, the user's rasponsibility to express in Q ail properties needed in the 

subgoal tree rootnd at R is reduced. 

_^.. - 
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9.6.2   COMPUTING SUCCESSIONS OF VALUES 

It is assumed that the loop invariant Q characterizes the relations existing at 

each iteration among values of program variables. In particular all free variables in R 

and L must be among the free variables in Q. Therefore significant program variable 

value changes are given by comparing successive instances of Q, i.e. Q\ and QX' for the 

first iteration. If for eac argument position in each relation in Q a different program 

variable is generated then a correct computation rule for updating the vakes in the 

program variables is a conditional assignment statement as described in Section 6 

where each argument position in Q has a different w-variable. That some optimization 

(i.e. reduction of the number of program variables) could be done at program 

generation time is suggested by two observations: 

(1) Many of the values in corresponding argument positions in Q\ and QX' will 

not change, i.e. they are constant for the loop, 

(2) Many of those that do change may be controlled using the same program 

variable. 

Since the frame language allows functional terms some successive values may be 

of the form, S| goes to f(si). In this case direct functional assignments of the form, Y| 

•■ f(Y|) may be efficiently placed at the top of the loop to avoid repeated computation. 

These ideas have led to a number of optimization heuristics which are intended to 

either: 

(1)  reduce the number of generated program variables, 
or  (2)  recognize successive values related by a function and asset.ible direct 

functional assignments, 
or  (3)  reduce the portion of Q required in a conditional assignment. 

By   comparing   respective   argument   positions   in   QX   and   QX'   the   system 

recognizes two kinds of computation rules relating successive values, namely functional 

-   - -^————  • mm .  —»^— 
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computation, e.g. t, - Us,), and Boolean expressions. e.g. Tfc.M where TcQ. The 

system constructs a list of significant change pairs each corresponding to one of the 

following cases: 

(1) s,  and t,  are symboll.c expressions related by the formula TcQ and are 

represented by ((Si.tjm. 

(2) si and t, are symbollic expressions related by a function f which is evaluated 

(using e.ther EV or EVN). i.e. I, - Us,) and are represented by (s, t,, f(s(). Not. 

that in this case .t is not sufficient to search terms in Q or R to find the function 

f. During the generation of p(R) the subgoal troe rooted at R is traced to retur,-. 

the function f. if any. used to compute a succession of values in the 'oop. 

(3) st  and t,  are symbollic expressions related by a function f which is not 

evaluated but left in symbol.c form, and are represented by (s,. f(s(). Us,)). 

—  ■■ - - -   ■ 
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9.6.3  ASSEMBLY OF PROGRAM SEGMENTS 

Given the inputs specified in Section 9.6.1  and the change list described in 

Section 9.6.2, the loop assembly procedure does the following: 

1. Generates a pair <Y|, Zi> of control variables to taKe on the successions of 

values during loop execution for eacn change pair This is to cover the case in 

which both S| and t| occur in p(R) and we want to avoid the complexity of 

considering statement order in p(R). 

2. Constructs assignment statements that initialize the control variables prior to 

looo entry, their values for e<i-h execution of the loop so that an instance of the 

loop invariant will be true each timt the loop body is entered, 

3. Substitutes control variabbles for their values in the loop body 

4. Aosembles these proram segments together to form a "while" loop. 

The detailed loop assembly procedure will now be given.  The change pairs are 

given on a list CL and will either be of the form U«c,/3)T) or (od,/(?,F). 

(1) Set PA to the first change pair on the change list CL.  If all change pairs have beer 

processed then go to (8). 

(2) Generate  a new  pair of variables Y and Z to be used for  predecessor  and 

successor values respectively. 

(3) Add (Y ♦- u) and (Y «- Z) at the ends of piP) and p(R) respectively. 

Justification: The assignment (Y *- u) is an initialization of the variable Y to the initial 

value oc and is done after the basis program p(P) prior to loop entry. The assignemtn 

(Y ♦• Z) updates the variable Y after the iteration program IP with the successor of Its 

former value which It is anticipated will be in Z in preparation for the next execution 

of the loop body. 

— 
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(4) Add the replacement pa,r U, Y) to the predecer.or replacement list ALP and (A Z) 

to the successor replacement list ALS for later substitution. 

(5) If the change pair PA ut.lizes a function then add the assignment (Z . F) to the 

successor function assignment hst SASG. remove the first change pair from CL. and go 

to (1). 

Justification: The function F .s a fully instantiated funct.on whose value is equivalent to 

4-   This step causes Z to get the successor value as required in step (3). 

(6) Generate  a  new  variable W to be used as a call  by reference variable  in  a 

conditional assignment statement and substitute W for all occurences of fi in T. 

Justification: W will hold the successor value for the conditional assignment to Z. 

(7) Add the condit-onal ass.gnment (IF T THEN Z - W, to the conditional assignment list 

SASGR, remove the first change pair from CL and go to (1). 

Justification: The relat.on T » assumed to specfy the ordering between successive 

values that will be taKen on by the control var.ables V and I, i.e. using T the successor 

of Y may be deduced. This of course -mplies the computability of T as a procedure call 

at execution time. 

(8) Substitute var.ables for values in SASG and SASGR using the closure of ALP. 

Justification: By closing the assoc.ation lists under subst.tution dependence upon the 

order of substitution into SASG and SASGR is avo.ded.   Subsitution into successor 

assignments  only  for  predecessor values  using their  associated variables  (Y's)  is 

sufficient and in fact required because: 

(a) Any successor value that may have occurred in a relation T has already been 

substituted for by W. 

(b) A successor value is by our conventions the new value that is computed as a 

- ■ -  ■ — ' — -  -■ - -    
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result of executing the loop body and occurs as an argument in the invariant Q . By 

generating a distinct pair of control variables for each change pair, we separate 

the successor assignments so that each is a function of predecessor values only. 

Since the successor value of one change pair may be the predecessor of another 

this restriction is necessary. 

(9) Substitute variables for values in p(R) and L using the closure of ALP annd ALS. 

(10) Assemble a "while" loop in the following form: 

P(P); 
SASGRi 
while -• L do 

begin 
SASG; 
PW-, 
SASGRJ 

end 

Remark: Ambiguities may arise because of equalities among elements in the change of 

values list, i.e. {($u t^ ... (s*. t,)).  There are thee cases, i.e. 

(a) Vi,j [i^j A s,^s,] A 3y[Mj A t,-!,! 

(b)Vi,j [MjAt||iti]A3y[MjAt|-tll 

(c) Vi,j [Mj A s^s, A tii't,] A 3i,j[i^ A srtj 

These are resolved by referencing a trace of variable bindings in the subgoal 

tree associated with each cccurence of each value or by simply re-achieving the 

iteration step condition R from state I" until the ambiguities disappear. 

To illustrate the process of computing a succession of values generating 

successor assignments and substituting into them consider two examples from frames 

treated sarlier. 

Consider a slight variant of the iterative rule TUP in figure 12 and we have, 

Q\ - 0N(M,B1,U) A STACKED(B2,B1,U) A SMALLER(B2,B1), and 

 ■ - —■ ■ -              ■■ -   
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QV - (WM.B2.U) A STACKED(B3,B2.U) A SMALLER(B3(B2) 

which results in a change pair of the form, 

((B1.B2) STACKe[XB2.Bl,U) A SMALLER(B2,B1)). 

and the successor assignment, (after substitution using ALP) 

IF STACrtLKWi vl U)ASMALLER(W1 Yl) THEN 
Zl «- Wl; 

As another example the .terative rule TFACT in figure  10 yields, (where we 

assume here that PROD is a primitive mumphcation function) 

Q\ - C(X0(1) A C(X1,0) A FACT(1,0), and 

QX' - C(X0,(PR0D KADDl 0))) A C(XI.(ADD1 0)) A FACT ((PROD 1 (ADD1 0)). (ADD1 

0)), 
which results in the change pairs, 

(0,(ADD1 0), (AUDI 0)) and (1,(PR0D 1(ADD 0)),(Pk0D KADDl 0))) 

and  successor  assignments, (after  substitution from closure  of  ALP  and  syntactic 

transformation from prefix functions as specified in the frame) 

Yl - (Yi * 1); 
Y2MY2« Yl); 

After the loop has been assembled, control is given to an update procedure 

which applies the rule of invariance using the given output assertion S as previously 

described. If no output assertion is given then the loop is interpretively executed until 

the goal G is true. This is required to provide a correct initial state for continued 

program generation. 

__ 
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9.7 STRUCTURED PROGRAMMING 

The objective of structured programming is to provide mental and organza.hnal 

tools by which the programmer may create large systems while keeping the problem 

complexity firmly within his mental grasp at each step of the creation. In Section / the 

current rather rudimentary features in the system were briefly described a J an 

example given. 

Structured programming consists of constructing a program to soKe a parucuiar 

problem by specifying a sequence of operations in which the operations are no? 

necessarily "primitive" to the interpreter, e.g. computer, human, etc., but if successfully 

carried our will correctly solve the proolem. Kor each operation in the sequence the* 

is not primitive i.e. the procedure is declared to be an assumption, the function it 

performs becomes a subproblem <p,I,G> for the system that may be similarly expandeci 

into a sequence of perhaps again non-primitive operations. The process continues by 

step-wise refining each operation until the problem can be solved correctly using only 

"primitive" operations. The relationship between higher level operations and the 

equivalent sequences of sub-operations that may be generated by successive levels of 

structured development take the form of a tree with the initial generated program at 

the root. 

During the structured development process an overall structure for the program 

is built up that primitive constructs will have to tit into. An implicit system assumption 

is that a lower level operation will not have side effects that affect the correctness of 

the overal structure containing it. This is essentially a "top-down" process, i.e., one 

proceeding from the general functional description level down to specification of 

primitives.  However, there is a "buttom-up" component thai occurs when on the basis 
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of   information  gained  whit«   generating  lower   level  primitives,  or   to  satisfy   the 

requirements of using them, the overall structure, i.e.. operat.on. previously generated 

at a higher(closer to the root) level, must be modified.  This may result in bacKVacking 

if these modifications invalidate any previously specified operation.   Also the over ,'1 

structure may be modified by shifting a high level operation specifration to one which 

utilizes more mathematical properties of the problem domain.   In the current system 

any bottom-up component and shifts(modifications; to higher level operations are do, . 

interactively   by   using   the   adv.ce   system.    A   useful   automation   of   structured 

programming should provide more powerful control and record keeping facilities fo 

the traversing trie structured development tree. 

The growing popularity of structured programming and its apparent usefulness 

tor software understandability land therefore reliability) indicates the need for 

continued resoarcn to automate this process. Certainly it is poss.ble now to build an 

interactive structured programming system that can handle the top-down expansion, 

Loitom-up backtracking and shifts at any level for the augmentation of the 

prcjrimmer. 

 -  aMaH__Mia 
■  -  -   



mmi __ ^^^r^mrmmim mmmmmumm 1 "  

123 

APPENDIX A: EXAMPLES 

1.   A Simple Translator from Infix to Polish Notation 

This example illustrates the generation of conditional Ranches within 'oops in a 

program to convert strings of symbols in infix form into strings in polish forrr ■ e. 

"(X+Y*Z)- converts to "XY^." This is a common symbol man.pulat.on tas. in a 

compiler. The example shows how the system can be used to program in a structured 

"top down" manner. 

A fully parenthesized, syntactically correct infix expression of a specified length 

is given as input and on output a result stack S contains the Polish string. A working 

stack R is used during the translat.on. We may consider the basic data structures 

(stacks)..e. variables, constructors.te.g. push) and selectors (e.g. pop)),and the primitive 

operators as given.   Then.m this case.the user proceeded in the following steps. 

(1) First the actions of the top level of the program were described by declarative 

statements (i.e. the definitions of RECOGNIZED and PROCESSYM in terms of basic 

concepts such as "X is a left parenthesis", and intermediate concepts such as "pop 

operators from stack X and push them onto stack Y" 

(2) Then at the second level. Rules - in this case iterative rules - were given tor 

writing loops that implement the intermediate concepts. In doing this.the user specified 

the major characteristics of a loop and left the system wiin the details ot deciding 

whether to write such a loop.and if so. with the choice of local variables.the acttal 

operations in the loop body and their order.(in so far as that was not specified ) and 

with looking after the updating of the local variables. Thus in order to write the top 

level loop. TSLOOP, to achieve PüLTSL(T,U.V). the user must have "thought out" on 

invariant relation between the elements manipulated by the loop body and what the 

t^_J„»__—„^ - - — 
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8o,ls o. «, |00D body were (|n this case orie o( ^ gM|s js a ^ ^ co^p| 

REOOQNKEW.Y.W  The system, « i, use5 ite rule ln eaMtnjeth, the output| w|ii 

construct , («p bodl, ,ncluding upd3je .iSsig„mentSi ^ as5emb(e ,t Mg i WHILE 

IriMMt SimiLry, in lh,s example th. user h.s supptied iterative rules for POPOPS 

anr" POPHOPS. 

The »„.put program insists c a main program, i.e. PRod, cont8inin8 . 

compound conditiona, statement „h,tn Splits „p lhe cases ,„ proces!;ng as , ^^ 

oi the input symbot. Each aiiowable input symbol must be either of type uarieble. 

operetor, (eft parenthes.s. or ngh, parenthesis. The main program proceses the case 

in which the input symbol .s an operator and generates calls to contingency programs, 

PROC3, PROM, , P,oc5, ,o be generated for the other three alternatives. The 

procedure calls PhOC2, PKü;6, i PNOCT result in error exits. 

Th« various parts of the l-rame definition will be given below followed by the 

yeneraied programs. 

  - ———-   
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RELATIONS USED IN THE FRAME DEFINITION: 

RELATION INTERPRETATION FLUEN1 PARTIAL UNIQUENESS 

C(X,Y) "Contents of X is Y" TRUE FALSE C(X,») 

INTEGER(X) "X is an inteper" TRUE FALSE FALSE 

VAR(X) "X is a variable" FALSE TRUE FALSE 

LP(X) "X is a left paren" FALSE TRUE FALSE 

RP(X) "X is a rignt paren" FALSE TRUE FALSE 

ÜP(X) "X is an operator" FALSE TRUE FALSE 

ISVAR(X) "X is a program var- 
iable" 

FALSE FALSE FALSE 

NEXTSYM(X) "A value for X is 
input" 

TRUE FALSE FALSE 

f<EC0GNIZ£D(X,Y,2) "Symbol X is recog-         TRUE 

ni;ced wrt stacKs Y Ä Z" 
FALSE FALSE 

PR0C£SSYM(X.Y,2) "Symbol X is processec 

wrt stacKs Y & Z" 
TRUE FALSE FALSE 

>(X,Y) "X is greater than 
Y" 

FALSE FALSE FALSE 

<(X,Y) "X is less than Y" FALSE FALSE FALSE 

POLIShKX) "X contains a Polish 
sequence" 

TRUE FALSE FALSE 

FOLTSUX.Y.Z) Translate an infix 
string x symbols 
lung to Polish 
using stacks 
Y and Z" 

TRUE FALSE FALSE 

-(X.Y) "X is equal to Y" FALSE- FALSE FALSE 

PUSH£ü(X,Y) "X is pushed onto Y" TRUE FALSE FALSE 

POPPELHX) ''X is popped" TRUE FALSE FALSE 

TOPPED(X,Y,Z) "The top symbol of TRUE FALSE TOPFED(X,Y,») 

-     ■        -  -■ ■imiriin    
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POPOPS(X,Y) 

POPHOPS(X,Y,Z) 

S rACKSIZE(X,Y) 

STACK(X) 

EMPTY(X) 

stack Y of size 
Z is assigned to X" 

"Pop operators from        TRUE FALSE 
X and push onto Y" 

"Pop operators from        TRUE FALSE 
Y that have greater 
priority than X and 
push onto Z" 

"Size of stack X is TRUE FALSE 
Y" 

"X is a stack" FALSE        FALSE 

"Stack X is empty" FMLSE        TRUE 

FALSE 

FALSE 

STACKSIZE(X,*) 

FALSE 

FALSE 

ITERATIVE RULES: 

NAME: 
BASIS: 
INVARIANT: 
ITERATION STFP: 
CONTROL TEST: 
OUTPUT ASSERTION: 
GOAL: 

TSLOOP 
N£WVAR(X,Y) A C(X,0) 
COW) A INT£G£R(W) A STACK(V) A STMCK(U) A ISVAR(Y) 
C(X,(AÜ01 m A NEXT3YM(Y) A RECOGNIZED(Y,U,V) 
>(X,T) 
PÜLISH(V) 
POLTSUT,U,V) 

NAME: 
BASIS: 
INVARIANT: 
ITERATION STEP: 
CONTROL TEST: 
OUTPUT ASSERTION: 
GOAL: 

RLOOP 
NEWVAROO A STACKSIZETO A TOPPEIXX.U.Z) 
C(X,Y) A ={Y,(TOP U)) A STACK(U) A STACK(V) A STACKSIZE(U,W) 
PU3HEÜ(X,V) A POPPEÜ(U) A TOPP£LKX,U,W) 
■ORX) 
POPÜPStU,V) 
PÜPCPS(U,V) 

NAME: 
BASIS: 
INVARIANT: 
ITERATION STEP: 
CONTROL TEST: 
OUTPUT PoSERTION: 
GOAL: 

0L00P 
NEWVAR(X) A STACKS1ZE(U,T) A TOPPEÜ(X,U,T) 
C(X,Y) A =(Y,(T0P U)) A STACK(U) A STACK(V) A STACKSIZE(U,W) 
PUSHED(X,V) A POPPED(U) A TOFPED(X,U,W) 
■CPOO v <uPRIORITY XKPRIOR1TY Z)) 
PÜHHüPS(Z,U,V; 
POPHOPS(Z,U,V) 

-     - ■     -    ^  - - 
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PRIMITIVE PROCEDURE      PRE-CONDITIONS POST-CONDITIONS 

P'Jsh(X,Y) 

"Push symbol X 
onto stack Y" 

pop(X) 
"Pop stack X" 

getnext(X) 
"Get next symbol' 

HX.Y) 
"Assign Y to X" 

top(X,Y) 
"Put top of stack 
YinX" 

ISVAR(X) A STACK(Y) 
A STACKSIZE{Y,Z) 

STACK(X) A STACKS1ZE{X,Y) 
A -EMPTY(X) 

ISVAR(X) 

ISVAR(X) 

ISVAR(X) A STACK(Y) 
A STACKSIZE{Y(Z) 

PUSHED<X,Y) 
A STACKSIZE(X,(SUB1 Y» 

POPPED<X) 
A STACKSIZE(X,(SUB1 Y)) 

NEXTSYM(X) 

C(X)Y) 

TOPPED(X,Y,Z) 
A C(X,(TOP Y)) 

DEFINITIONS: 

BODY OF DEFINITION 
RELATION DEFINED 

(VAR(X) v LP(X) v RP(X) v 0P(X)) A PROCESSYM(X,Y,Z) 

VAR(X) A PUSHEDOU) 

LP(X) A PUSHED(X,Y) 

RP(X) A POPOPS(Y,Z) A POPPED(X) 

OP(X) A POPHOPS(X,Y,Z) A PUSHED(X,Y) 

-(X,Ü) v lNTE&ER{(SUai X)) 

INITIAL STATE: 

STACKS A STACK(R) A STACKSIZE(S,I) A STACKSIZE(R,J) 

ALGEBRAIC SIMPLIFICATION:    (SUBKADDl X)) -> X 

RECOGNIZED(X,Y,Z) 

PROCESSYM<X,Y,Z) 

PROCESSYM(X,Y,Z) 

PROCESSYM(X>Y,Z) 

PROCESSYM(X,Y,Z) 

INTEGER(X) 

  - - .,— MM 
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PR0C1 (N R S) 

ISVAR(X 1 );1SVAR(X2);ISVAR(X3);STACK(S);STACK(R); 
COMMENT 
INPUT tCONDlTIOlMS: 
STACKS1Z£(R J)ASTACKSIZE(S I) 
0UTPUT:C0N01TI0NS: 
POLISKS); 
COMMENT 
PR0C6 ATTEMPTS:TO:ACHI£VE: (POPPED R) 
PR0C5 ATTEMPTS:T0:ACH1EVE: (PHOCE33YM X2 R S) 
PRÜC4 ATT£MPTS:TÜ:ACH1EVE: (PRQCESSYM X2 R S) 
PR0C3 ATTEMPTStTCfcACHIEVEi (PROCESSYM X2 R S) 
PH0C2 ATTEMPTS. rü:ACHIEV£: (PROCESSYM X2 R S): 

BEGIN 
XI <-ü; 
WHILE ->(X1 N) DO 

BEGIN 
Zl MXl+U 
GETNEXT(X2); 
IF -OP(X2; THEN 

IF -RP(X2) THEN 
IF -VAR(X2) THKN 

IF -LP(X2) THEN 
PROC2(X2 R S) 

ELSE PRÜC3(X2 R S) 
ELSE PküC4(X2 R S) 

V.LSt PROC6(X2 R S) 
ELSE 

BEGIN 
TOP(X3 R); 

WHILE OP(X3) A -<((PRI0RITY X3KPRI0RITYX2)) DO 
BEGIN 
PU3H(X3 C) 
IF EMPTY(R) THEN 

PROCC(R) 
ELSE 

BcGIN 
POP(R); 
END 

T0P(X3 R)j 
END 

PUSH(X2 R)j 
END 

XI  4-Z1 
END 

END 

I-ROC3 (X2 R S) 
1SVAK(X2);STACK(R); 
COMMENT 

— J 
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INPUT:CONDITIONS: 
STACKSIZE(R I) 
OUTPUT:C0NDITI0NS: 
STACKS1ZE(R (ADD1 1))APUSHED(X2 Rh 

BEGIN 
PUSH(X2 R); 
END 

PR0C4 (X2 R S) 
ISVAR(X2);STACK(S)i 
COMMENT 
INPUT:CONDITIONS: 
STACKSIZE(S I) 
OUTPUT:COND1TIONS: 
STACKSIZE(S (ADD1 I))APUSHED(X2 S); 

BEGIN 
PUSH(X2 S); 
END 

PROC5 (X2 R S) 
ISVAR(X4);STACK(S);STACK(R); 
COMMENT 
INPUT :CONDITIONS: 
STACKSIZE(R J)ASTACKSIZE(S I) 
OUTPUT:CONDITIONS: 
POPOPS(R S); 
COMMENT 
PROC7 ATTEMPTS:TO:ACHIEVE: (POPPED R) j 

BEGIN 
TOP(X4 R); 
WHILE OP(X4) DO 

BEGIN 
PU3H(X4 S) 
IF EMPTY(R) THEN 

PROC7(R) 
ELSE 

BEGIN 
POP(R)i 
END 

TOP(X4 R); 
END 

IF EMPTY(R) THEN 
PR0C8(R) 

ELSE 
BEGIN 
POP(R); 
END 

END 

»«■■^■MaatMMMi 
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2.   Integer Square Root Problem 

As an example of generating a progrant for numerical computation consider the 

task of computing the largest integer k for a given n such that k ts 'ess than or equal 

to the square root of n.   An essential fact formalied in the Frame definition is that the 

difference between the itn and d + l/st squares is 2i+l, i.e. 

(I*l)a -ia -i8 ♦ 2i ♦ 1 -i*  -2i ♦ 1 -i + i ♦ 1. 

This  allows  the  simple  iterative   upward computation  for   any  i,  using  two 

variables Yl and Y2 and only the arithmetic operation of addition, of i in Yl and (i+lT 

in Y2 such that when the value in Y2 exceeds n then Yl will have the desired value k. 

The Frame definition in addition to a primitive procedure for assignment is given 

below followed by the generated program. 

-..   .          .   ^ ^ „^^^jjm 
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RELATION INTERPRETATION FLUENT PARTIAL UNIQUENESS 

C(X,Y) "Contents of X is Y" TKUE FALSE C{X,t) 
>(X,Y) "X is greater than Y" FALSE FALSE FALSE 
ISQRT(X(Y) "X contains the 

integer square 
root Of "Y" 

TRUE FALSE ISQRT(X,») 

VSQ(X,Y) "X equals Y  " TRUE FALSE FALSE 
ISVAR(X) "X is a variable" FALSE FALSE FALSE 

ITERATIVE RULE: 

NAME: TSQ 
BASIS: NtWVAR(X) A C(X,(ADD1 0)) A C(W,0) 
INVARIANT: CW.Y) A C(X(Z) A VS0(Z,(AD01 Y» 
ITERATION STEP: aw/ADO 1 Y)) A C(X,(PLUS Z(ADDi(PLUS(ADDl YKADD1 Y))))) 
CONTROL TEST: >(Z,V) 
OUTPUT ASSERTION:           ISQRT(W,V) 
GOAL: IS0RT(W,V) 

AXIOMS: 

VSQ((ADD1 0),{AÜ01 Ü)) 
VS0<(M1NUS Z(AÜÜHPLUS Y Y))MSUB1 Y» c VSQ(Z,Y) 

INITIAL STATE: 

ISAVR(XO) 

ALGtbRAIC SIMPLIFICATION: 

(SUBKADDl X))-+X 
(MINUS (PLUS X Y)Y) -» X 

  ■MMMriMMUMnnMaiMaai 



132 
APPENDIX A 

PROCKXO N) 
ISAVR(XO); 
COMMENT 
INPUT ASSERTION: 
NONE 
OUTPUT ASSERTION: 
ISQRTCXO.N); 

BEGIN 
XO«-Ü; 
Y2 «■ (Ü+1); 
WHILE -> (Y2(N) 00 

BEGIN 
X0 4-(X0 ♦ 1); 
Y2 ♦■ (Y2 ♦ ((XO ♦ XO) ♦ Ih 
END 

END 

in—Mmh - - -- - -— —J.■^-^—J-J—-—^-- 
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3.  Hand-Eye Tasks 

In a simple robotics environment an "eye" (usually a Vidicon TV camera) may be 

used to locate objects on a table and a computer contolled arm carries out 

manipulatory tasks with these objects. We assume the identity and location of the 

objects in the scene have been discovered and are given in the initial state. 

Programs written for autonomous robot control must be capable of on carrying 

some sort of dialogue with the real world since most relations will be partial and the 

outcome of operations will not be totally reliable. Conditional calls to contingency 

procedures is one way of establishing this dialogue. 

The frame definition is given below toilowpd by a generated program. 

■Hb*M*U^HtMi ■ '  ——   -    -        -    - -   -" ' .   ■   —  ■...  .    ^■...  
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RELATIONS Ü3ED ffJ 7M£ PftAMt D^fNITtöN: 

«ELATION        mmejfitm       tuxm PAWfIAL UNlOUCNfSG 

ATCX.Y) 
HAS(K.V) 
r-vf" r\rM<X,Y,2> 

COLLlDtCKX.Y.ZrX 

DROf»f»b:U(W,K,Y,2) 

AVAlLASLt(K,Y) 

MIS3ED<K.Yr2) 

RDBOTCX) 

"X is «t tocation Y" 
"X ha-, Y" 
"V cnn rotwh 
from V lo r* 

collldoo 
b«lv/ot)h Y afvi r* 
"W drow»«»« V 
lootwoofi Y anü 2* 
'> 16 üv'Hllöblt' 
flt Y" 
"X missed Y 
»t 2* 

MlÜE 

TAUE 

TRUt 

THUE 

TAUE 

TWüE 

KALSE 

KAISE 
PAt^E 

PALSE 

PALSt 

r«uE 

FALSE 

PAl^E 

AKX,*) 
PAl sr 

'PALSt 

PALSE 

PAI.SE 

PALSE 

FALSE 

FALSE 

PRIMITIVE PROCEDÜRt 

rmtH/klXIXX) 
"Al reiches 
tnm a to UT 

tf«ns.port<Al,OUU2) 
"Al transports 01 
frow Ll toL2" 

p.cKup(Al,OUU 
"Al picks up 01 
•t Ll" 

putdown<Al,Ol,Ll) 
"Al puts down 01 
•t Ll" 

mK*\Al) A O3J(0l) A W^Äl(Öi)    {AWl.L^ A AT<AI l "» 
A **£*$ ^WM «WH-LicmÄi.iu2) 
A CA^ACH(AUi,^) A WJCfc^üCAl .01 L11^» 

ROÜOTXAi) A 0»SJWi) A AWU«) 
A - MAÄA1,02) A AV»LAtÄ.«dl,Ln 
A ATXAMl) 

ROOOnADAHA^Al^O 
AMTvAl,LU 

HÄ%(Al .^i) ♦ W55tO(A i ,01 .L1) 

MA»(Al^i) 

INITIAL STATE: 

ROBOT(ARM) A 0BJ(BLKl) A AT{BLK1.P) A ATtAMMI 

- - ■'■  
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PROCKBLKl ARM P S) 
ROBOKARM); OBJ(BLKl); 
COMMENT 
INPUT.-CONDITIONS: 
AT(BLK1 P) A AVAILABLE(BLK1 P) A CANREACKARM S P) 
A CANREACKARM P S) 
OUTPUTiCONDITIONS: 
HAS(ARM BLK1) A AT(ARM S) A AT(BLK1 S)i 

BEGIN 
IF - AVAILABLE(BLK1 P) THEN 

PROC2(ARM BLK1) 
ELSE 

BEGIN 
IF - CANREACKARM S P) THEN 

PROC3(ARM P) 
ELSE 

BEGIN 
REACH(ARM S P); 
IF - AT(ARM P) THEN 

IF - AT(ARM P) A COLLIDEWARM S P) THEN 
PR0C4(ARM P) 

ELSE PROC5(ARM P) 
END 

PICKUP(ARMBLKIP) 
IF - HAS(ARM BLK1) THEN 

IF - HAS(ARM BLK1) A MISSECKARM BLK1 P) THEN 
PROC6(ARM BLK1) 

ELSE PROC7(ARM BLK1) 
END 

IF - CANREACH(ARM P S) THEN 
PRÜC1Ü(BLK1 S) 

ELSE 
BEGIN 
TRANSPORT(ARM BLK1 P S); 
IF - AT(BLK1 S) THEN 

IF - AT(BLK1 S) A DROPPECKARM BLK1 P S) THEN 
PROCIKBLKl S) 

ELSE PROC12(bLKl S) 
END 

END 

,^1Bk__1_MBiaaaatti 
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4.   n-Queens Puzzle 

To illustrate how the program generation system may be used to solve puzzles, 

a backtrack problem solving algorithm (see Section 9.1) is axiomatized in the frame 

definition language to solve the n-^ueens puzzle. The object of this puzzle is to place 

n queens on an n x n chessboard such that they are mutually non-attacking, the 

algorithm proceeds by placing queens on the board a column at a time, backing up 

when no placement is possible. 

The frame definition for this problem is given below followed by a generated 

solution programs for the 4-0ueens and S-yueens cases. 

■ - - -  -■ __—^^„^.^—  — _._  __^J^_^J^.^^_ 
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RELATIONS USED IN THE FRAME DEFINITION: 

RELATION INTERPRETATION FLUENT PARTIAL UNIQUENESS 

SAFE(X,Y) "Square X,Y is safe" TRUE FALSE FALSE 
bOTHSAF£(W,X,Y,Z) "Square W,X is safe TRUE FALSE FALSE 

wrt square Y,Z" 
ALLSAFE(X,Y,Z) "Square X,Y is safe 

wrt columns 1,..,Z" 
TRUE FALSE FALSE 

QUtEN(X(Y) "A queen is on 
Square X,Y" 

TRUE FALSE FALSE 

QPLACED(X,Y,Z) "Queens are placed 
in columns X,..,Z" 

TRUE FALSE FALSE 

-(X,Y) "X is equal to Y" FALSE FALSE FALSE 
PLACED(X) "X queens have 

been placed" 
TRUE rALSE FALSE 

PRIMITIVE PROCEDURE      PRE-CONDITION POST-CONDITION 

piacequeen(I,J) SAF£(I,J) QUEENOJ) 
Place queen on square I,J" 

AXIOMS: 

ANTECEDENT CONSEQUENT 

•UD v MJ,1)A ALLSAFE(I,J,J)} SAFE(I,J) 

-(K, 1) v {REQUESTtQUEENUP.fEVMSUBl K)))) ALLSAFEd J K 
A B0THSAFE(UIP<(EVN(SUB1 K)))A ALLSAFE(U{EVN(SUBl K)))} 

-(11.12) A -=((EVN(PLUS II J1)),(EVN(PLUS 12 J2))) 
■((EVN(D1FFERENC£ II J1)),(EVN(DIFFERENCE 12 J2))) 

BOTHSAFE(IMl,I2,J2) 

DEFINITIONS: 

BODY OF DEFINITION RELATION DEFINED 

QPLACELXUN) -(I,(EVN(ADD1 N))) A HJ,0) A -(J,(EVN(ADD1 N))) 
v {QUEENUJ) A QPLACED{1,(EVN{ADD1 J)),N)} 
v QPLACED((EVN(ADD1 DUN) 

QPLACeD(l,l,N) PLACEtXN) 

INITIAL STATE: (empty) 

■     -   -        •--- —    —■■ 
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PR0C1 
BEGIN 

PLACEQUEEN(2 Dj 
PLACE0U££N(4 2); 
PLACEQUEtNd 3); 
PLACEQUEEN(3 4h 
END 

PROC1 
BEGIN 
PLACEOU£EN(2 iy, 
PLACE0UEEN(5 2); 
PLACEOUEEN(7 3); 
PLACEQUEENd 4); 
PLACE0UEEN(3 5); 
PLACEQUEEN{8 6); 
PLACEOUEEN(6 7h 
PLACE0UEEN(4 Bh 
END 

  . .. -  
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APPENDIX B - AN INTERACTIVE SESSION 

A sample interactive session is here presented to illustrate the system's use in 

frame definition and program generation.  Statements typed by the user will always be 

prompted by "«M.   The top level system function is "SUBGOAL" which is called in the 

manner given below to accept a frame definition from the terminal.   Comments to aid 

the reader's understanding of the dialogue will be enclosed in quotes. 
♦(SUBGOAL) 
"The system now enters an interactive mode for Frame definition." 
«  »  *  ♦   SEMANTIC FRAME DEFINITION * »  ♦  » 

RULE TYPE* AXIOM 
RULE NAME« AOlMTOP 
IS THIS AN ASSUMPTION?* NIL 
IS THE RULE DIRECTLY RECURSIVE?« NIL 
INEQUALITIES IN ARGUMENT POSITIONS« NIL 
PRECONDITIONS: 
« ROBOT(Xl) A ON(Xl,X2) A -STACKED<X3,X2)! 
POSTCONDITIONS: 
« ONTÜP(XI); 

RULE TYPE« PRIMITIVE PROCEDURE 
RULE NAME« STAND0N(R1,Z1) 
IS THIS AN ASSUMPTION?« NIL 
IS THE RULE DIRECTLY RECURSIVE?« NIL 
INEQUALITIES IN ARGUMENT POSITIONS« NIL 
PRECONDITIONS: 
« ROBOT(Rl) A ON(Rl,Wl) A BOX(Zl) A CLOTHES(Ol) A WEARING(R1,01) 
A AT(Z1,Y1) A AT(R1,Y1); 
POSTCONDITIONS: 
« ONWl.Zl); 

RULE TYPE« PRIMITIVE PROCEDURE 
RULE NAME« DRESS(R1,01) 
IS THIS AIM ASSUMPTION?« T 
IS THE RULE DIRECTLY RECURSIVE?« NIL 
INEQUALITIES IN ARGUMENT POSITIONS« NIL 
PRECONDITIONS: 
« ROBOT(Rl) A CLOTH£S(01); 
POSTCONDITIONS: 
* WEARING(Rl,01)i 

RULE TYPE* PRIMITIVE PROCEDURE 
RULE NAME« TRAVEL(R1,L1,L2) 
IS THIS AN ASSUMPTION?« NIL 
IS THE RULE DIRECTLY RECURSIVE?« NIL 

- - ■— -'■■■■ ■ — 
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INEQUALITIES IN ARGUMENT POSITIONS» (RU,) 
PHECONDITIONS: *" ' 
* ROBOT(Rl) A AT(R1,L1) A . O^Rl^Ll)« 
POSTCONDITIONS: vww.Ll)', 
* AT(R1,L2); 

RULE TYPE» PRIMITIVE PROCEDURE 
RULE NAME* STEPURXl.Yl.Zl) 
IS THIS AN ASSUMPTION'* NIL 
IS THE RULE DIRECTLY RECURSIVE?* NIL 

♦ O^Xl.Zl); 

RULE TYPE* ITERATIVE 
RULE NAME* ITONTOP 

iSJt!!S RULE DIRECTLY RECURSIVE?* NIL 
BASIS CONDITION: 
* ROBOT(Xl) A Omi,X2)i 
INVARIANT: 

*0N(X1,X3)ASTACKED(X4,X3); 
ITERATION STEP CONDITION- 
* O^XLX^); 
CONTROL TEST* NIL 
OUTPUT ASSERTION* NIL 
GOAL* ONTOP(Xl); 

RULE TYPE* NIL 

INITIAL STATE: 

SEMANTIC PROPERTIES OF RELATIONS: 

IS ROBOT(Rl) A FUNCTION OF THE STATE'* NIL 
IS ROBOT(Rl) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPERTIES* NIL 

\l tlZÜW i FUNCTI0N 0F THE STATE?* T IS AT(R1,L1) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPERTIES* (Rl,*) 

IS STACKED<X4(X3) A FUNCTION 0" THE STATE?* T 
IS STACKED(X^3) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPERTIES* (X4,*) 

-    -   —    — -   -  .-   ..  . 
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IS BOX(Zl) A FUNCTION OF THE STATE?« NIL 
IS BOX(Zl) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPERTIES* NIL 

IS ONTOP(Xl) A FUNCTION OF THE STATE?* T 
IS ONTOP(Xl) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPERTIES* NIL 

IS CLOTHES(Ol) A FUNCTION OF THE STATE?» NIL 
IS CLOTHES(Ol) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPEKTIES* NIL 

IS WEARING(R1,01) A FUNCTION OF THE STATE?* T 
IS WEARING(R1,01) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPERTIES* NIL 

IS ÜN(X1,Z1) A FUNCTION OF THE STATE?* T 
IS ÜN(X1,Z1) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPERTIES* (Xl,*) 

FILENAME* DSK:PCLI 
TRACE MODE?* T 
PERFORMANCE STATISTICS?* T 
LOOKAHL'AD?* NIL 
ALGEBRAIC SIMPLIFICATION?* NIL 

SUBGOALING SYSTEM GENERATED!!! 
"A subgoaling system corresponding to the Frame has now been generated 
and the system may now receive a goal to achieve." 

SUBMIT GOAL« ÜNTOP(M) 
UO YOU WANT THE PROGRAM L1BR ^RY?* NIL 
DO YOU HAVE ANY ADVICE?* T 
«*« ENTERING ADVICE SYSEM *** 
»1* TRY STANDON BEFORE STEPUP 
«2« NIL "Exit advice system and begin program generation." 

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH: 
—ITONTOP 

RULES ENTERED AND GOALS PENDING IN CURRENT SIUBGOAL TREE PATH: 
—(ITONTOP(ON M X2))STANDON 

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH: 
—(ITONTOP(ON M X2))(STANDON(WEARING M SHOES))DRESS 

«DRESS M SHOES)) 
"Current program segment generated is displayed in this form." 

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH: 

 i   ■ »i in ----- --      - —-     —  
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™(ITONTOP(ON M X2)KSTANC)0N(AT M L))TRAVEL 

((DRESS M SHOESXTRAVEL M CORNER D) 
UuRESS M SHOESXTRAVEL M CORNER LKSTANDON M Bl) 
"This cons'.tutes the basis program for the iterative rule." 

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH: 
—(ITONTOP(ON M B2))STANDON 

STANDON IS FAILING!!! 
—(-ON M Wl) WAS THE LOSER 
"STANDON is only applicable for climbing from ground level." 

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH: 
—(ITONTOP(ON M B2))STEPUP 

((STEP M Bl B2)) 
"This is part of the loop body." 

RULES ENTERED ANf GOALS PENDING IN CURRENT SUBGOAL TREE PATH: 
—(ITONTORONTOP M))AONTOP 
"The system now interpretively updates the state until the goal Is 
true, then the while loop is assembled." 

DO YOU WANT TO OPTIMIZE THE PROGRAM?« NIL 
IS THIS PLAN USEFUL ENOUGH TO GENERALIZE?* T 
IS THIS A PROCEDURE WITHOUT SIDE EFFECTS?» NIL 

THE GOAL (ONTOP M) IS ATTAINABLE BY THE FOLLOWING PROGRM: 
"The desired program has been generated and will now be displayed." 

PROCKM) 
ROBOT(M);CI SHOES)i(BOX(Bl)iBOX(B2); 
COMMENT 
INPUT ASSERTIONS: 
AT(M CORNER) A AT(B1 L) A STACKED(B2 Bl) 
OUTPUT ASSERTIONS: 
WEARING(M SHOES) A AT(M L) A ONTOP(M); 
COMMENT 
THIS PROGRAM RELIES ON THE FOLLOWING ASSUMPTIONS: 
(DRESS); 

BEGIN 
DRESS(M SHOES); 
TRAVEL(M CORNER L); 
STANDON(M Bl); 
Yl «-B1; 
IF STACKED(W1 Yl) THEN 

21 ♦- Wl; 
WHILE - ONTOP(M) DO 

BEGIN 
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ST£PUP(M Yl ZI); 
Yl «-Z1 
IF STACKECKWl Yl) THEN 

ZI «-W1; 
END 

END 

DO YOU WANT TO DO STRUCTURED PROGRAM DEVELOPMENT?* T 

TRYING—((DRESS M SHOESKWEARING M SHOESXSTATl.AST)) 
"This task triple consists of procedure name, goal and state." 

DO YOU HAVE ANY ADVICE?« T 

♦♦♦ENTERING ADVICE SYSTEMS 
•li ADD PUT-ON 

RULE TYPE^ PRIMITIVE PROCEDURE 
RULE NAME* PUT-ONW.Ol) 
IS THIS AN ASSUMPTIOIM?* NIL 
IS RULE DIRECTLY RECURSIVE?* NIL 
INEQUALITIES IN ARGUMENT POSITIONS* NIL 
PRECONDITIONS: 
* ROBOT(Rl) A CLOTHES(Ol) A FOUND(R1,01)J 

POSTCONDITIONS: 
*WEARING(R1,01); 

RULE TYPE* PRIMITIVE PROCEDURE 
RULE NAME* nNU(Rl1OI>Ll) 
IS THIS AN ASSUMPTION?* NIL 
IS RULE DIRECTLY RECURSIVE?* NIL 
INEQUALITIES IN ARGUMENT POSITIONS* NIL 
PRECONDITIONS: 
* ROBOT(Rl) A CHAIR(02) A AT(02,L1) A AT(R1,L1) A UNDER(01,02); 
POSTCONDITIONS: 
* FOUNO(Rl,Ol); 

RULE TYPE* NIL 

INITIAL STATE: 
* CHAIR(CHAIRl) A CHAIR(CH/!IR2) A AT(CHAIR1,CORNER) 
A AT(CHAIR2,CORNER); 

SEMANTIC PROPERTIES OF RELATIONS: 

IS FüUND(Rl,ül) A FUNCTION OF THE STATE?* T 
is FOUND(RI,OI) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPERTIES* NIL 

IS CHAIR(02) A FUNCTION OF THE STATE?* NIL 

-   
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IS CHAIR(02) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPERTIES» NIL 

IS UND£R(01,02) A FUNCTION OF THE STATE?» T 
IS U\U£R(01I02) PARTIAL?« T 
ARGUMENT UNIQUENESS PROPERTIES« NIL 

ALGEBRAIC SIMPLIFICATION?« NIL 

SUBGOALING SYSTEM GENERATED!!! 
"The Frame addition has now been translated." 

«2« DELETE DRESS 
«3« NIL 
"Exit Advice system." 

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH: 
—(PUT-ON<FOUND M SHOES))FIND 

((FIND M SHOES CORNER)) 
((IF(-UNDER SHOES CHAIR1) THEN (PROC2 M SHOES) 
ELSE((FIND M SHOES CORNER))KPUT-ON M SHOES)) 
"The conditional statement is generated since i* is not known where 
the shoes are." 

DO YOU WANT TO OPTIMIZE THE PROGRAM?« NIL 
IS THIS PROGRAM USEFUL ENOUGH TO GENERALIZE?« T 
IS THIS PROCEDURE WITHOUT SIDE EFFECTS?« NIL 

THE GOAL (WEARING M SHOES) IS ATTAINABLE BY THE FOLLOWING PROGRAM: 
"This procedure is the structured expansion of the non-primitive 
procedure DRESS called m PROC1." 

DRESS(M SHOES) 
ROBOT(M);CLOTHES(SHOES)jCHAIR(CHAIRlh 
COMMENT 
INPUT ASSERTIONS: 
AT(M CORNER) A AT(CHAIR1 CORNER) 
OUTPUT ASSERTIONS: 
WEARING(M SHOES) A FOUND(M SHOES) A WEARING(M SHOESh 
COMMENT 
PROC2 ATTEMPTS TO ACHIEVE FOUND(M SHOES); 

BEGIN 
IF -UNDER(SHOES CHAIR 1) THEN 

PROC2(M SHOES) 
ELSE 

BEGIN 
FIND(M SHOES CORNER); 
END 

PUT-ON(M SHOES) 

l—Mi I 
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END 

DO YOU WANT TO DO CONTINGENCY PLANNING'» T 
WHAT IS YOUR PREFERENCE? 
 IF NONE TYPE NIL» NIL 

TRYING—(PROC2 (FOUND M SHOESKSTAT2.CST)) 
"The contingency task tnple consists of procedure name, goal and state." 

DO YOU HAVE ANY ADVICE?» NIL 

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH: 

((FIND M SHOES CORNER)) 
DO YOU WANT TO OPTIMIZE THIS PROGRAM?» NIL 
13 THIS PROGRAM USEFUL ENOUGH TO GENERALIZE'» T 
IS THIS PROCEDURE WITHOUT SIDE EFFECTS?» NIL " 

THE GOAL FOUND(M SHOES) IS ATTAINABLE BY THE FOLLOWING PROGRAM: 

PRÜC2(M SHOES) 
KOBOT(M)|CHAIR(CHAIR2); 
CüiviMENT 
INPUT ASSERTIONS: 
AT(CHAIR2 CORNER) A AT(M CORNER) 
OUTPUT ASSERTIONS: 
FOUND(M SHOES); 
COMMENT 

PROC3 ATTEMPTS TO ACHIEVE FOUND(M SHOES)- 
BEGIN 

IF -UNDER(SHOE3 CHAIR2) THEN 
PKOC3(M SHOES) 

ELSE 
BEGIN 
FIND(M SHOES CORNER); 
END 

END 

DO YOU WANT 70 DO CuNHNGENCY PLANNiNG'* NIL 
DO YOU WANT TO CONTINUE FROM THE CUKKENF STATE?» NIL 

MMH —..,.■-—>—-^     -    .         - 
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