
"N

AD-784 815

A STUDY IN AUTOMATIC PROGRAMMING

CARNEGIE-MELLON UNIVERSITY

PREPARED FOR

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

AIR FOP:E OFFICE OF SCIENTIFIC RESEARCH

MAY 197^

DISTRIBUTED BY:

KJOi
National Technical Infonnation Service
U. S. DEPARTMENT OF COMMERCE

— -- i iii—^Mimi IM

i mwi* i i - i

UNCLASSIFIED
ICCUMTV CLMItriCATION O* TnU l»*OI '«n«'i ^■•i« ; n<»rort)

Ä-"«- 74-1426
REPORT DOCUMENTATION PAüE

U OÖV1 ACCCiitOM NO

4. TlTLF (••"<« Suhru;»)

A STUDY IN AUTOMATIC PROGKAWIING

7 AgTMORfiJ

Jack R. Buchanan

» PtRFOHMISO OROANIiATIOH r.*Mt AND ADDRfSS

Canu-j'ic-y.t. lion University
Deparcr IP.I ol Computer Selene«
Wtti bur ,1 , PA 1521 i

KKAl) INSTRUCTIONS
BEKORK (OMPL ET1NG KC H M

M* iff At Pfb
^EBion cctfCM ci S TYPE Of REPORT a PERIOD CCtfCNCO

Interim

6 PERFORMING OhG Rt

6 CONTRACT OP r.f./'NT .IDMBEP'»;

P44620-73-C-0074

10. PHOGRAW tLSWCNT PROIf TT. T
AREA 6 ftORK U' NUMbLRi

II CONTROLLING DFFiCE I'AME *SO ADDRESI

Defense Advanced R, search Proiccts Agency
1400 Wilson Blvd
Ar 1 i n ;U) n^ VA 22209^

14 MONITORING ACENCv NAME 6 AOOMCSWU MMMMti ttom Confroll/nj OltU*)

Air Force Office of Scimtific Research /, ;/>7
1400 Wilson Blvd
Arlington, \rA 22209

61101D
A02A66

12 REPORT DATE

Jtoy, 1974
13. NUMBER OF PAGES

lr)5
15 SECURITY CLAtS. ft Ihlt rmpotl)

UNCLASSIFIED

lb» DLCL AS5IFICATION CaWNGRACING
SCHLLlULE

16 OiSTRIBuTiOS STATEMtNT (cl l><lm Htpcrlj

Approved for- public release; distribution unlimited.

17 DISTRIBUTION jTATEMCNT fot thm «h.tf». . inffit In Block 30, II dlllmrtnl liary Hmporl)

<e SUPPLt"EN'AWv NOTES

19 KEY WORDS 'Con(/nu» on tr »fi» »id» //nec»»»«rv «nd IdmnHly by tlork number)

NATIONAI TFCHNICAI
ijRMATION SER:
SpnnKfieM VA .

FRAMF, has been developi_
the stater.enr of a problem. A frame, 1-, is fonrnilated within the Logic of

Programs (Hoire 196'J, Uoare and Wirth 1972) and includes primitive functions

UNCLASSIFIED DD | JAK"} 1^73 EDITION OF I NOV SS IS OBSOLETE

"i" WeWWtV CLASHFICATIOM OF^THIS PAr.E i»hrn H-IH rmrrrJ)

S/CURITY Cl ASSiriCATioi or THIS PAGE'»«"'" ''»'<• Umlmmlt

- - - — ■ - ■

"" '■' 1 ■■ —•

ÜNCLASSTFIEÜ

20. (;il)st r.uL cent .)

rJrlir^T: T!0'"; de£lnlti0B- ^ ~1« * Prcr« co^o.ltlo«. Given
S • wlu'r T i11'' •"" PrC8ra" COn-truC"«' «y '- »t-ted .. . pair <I -..;. wtere i u .„, u.put Mstrtioa and c li .m output Msertiou The- nr«
•f- f»jr-tlo„ t-l. t. to consLruct a progr« A sue., Lh^ ^ l" J ' . w. c

Uons c^eetn ü^t^ ,,rt,"",U" s;'tiHfi(- th« 8^0 luput-outpS ..ser-
eu^d. Carr*ct,l*M of ''ro«r— i««rut«l utlnt tk. fomui .igorithi is dis-

A frame is translated in'o , backtrack prallem solver augmented by spcei-.l
search procedu.-.s. The system is interactive, responds to simpleadv ' ■ and
•UOU. incremental and BtrUCtUted pro .,r,,m devilopJut.

xhe output or solution program is a subset of ALGOL containing procedure
calls, assignments, while loops and ccndi-ional statements^ prCtLdurt

UNCLASSIFIED
SFCuRtTv Cl ASSIflCATION OF T„|S PAGfUTi-n />.(» fn/r.

L —— -■ —■ - ■ ■ —

—— wmmvwmtmm**

MAY 1974

A STUDY IN AUTOMATIC PROGRAMMING

by

Jack R. Buchanan

ABSTRACT

m
a

am

F. s formulated w.th.n the Logic of ProSrarr,s [Hoare 1959. Hoare anS Widh 1972 TnH

«t1
por'miG::nfu:r,ons rd prüct'durcs' ^ M^£™"!%?

pa <IG wh^'rl I ITS I a Pr0b,em f0r Pr0Bram ******** may be stated as
Reneralt: T^L . S I T' aSSer,IOn and G ,S ^ 0^ asser^"- The progra,

.ncremenula„d
Th

s
e
trrr

codp:;;ne,:r^:0T
n<'s ^simpie advire a"d ai10-

....

Offe.reSorth.Wi'LSüP,P°,,ed;n SS 5? lhe Advanced Research ^<** *eency of the

- — •MM

jPP^ ■"^rfSfc''«
..»»...« 1. I

ACKNOWLEDGEMENTS

1 am very grateful to my adviso'- Dr. David C. LucKham for his constant encouragement
and guidance throughout the course of this research. He has contributfr" many ideas
and refinements to this work a«; it ha', progressed.

Many others have contributed to the development of this research through discussion
and programming suggestions to which I am very grateful. These include Bruce
Baumgart, Tom dinford, Horace Enea, Richard Pikes, Heter Hart, John McCarthy, Ni';
Nilsson, Richard Orban, David Smith, Dan Swmehart, and Larry Tesler.

oa:

i
_-~*

CONTENTS

1. INTRODUCTION
1.1 Contributions
1.2 txtensions
1.3 Future of Automatic Programming

2. LOGICAL BASIS FOR SEMANTIC DEFINITIONS
2.1 Logic of Programs
2.2 Frame Rules
2.3 A Simple Robotics Example

3. DCFMING THE PROGRAMMING ENVIRONMENT
3.1 Frame Language
3.2 Advice Language
3.3 Programming Language
3.4 An Example

4. PROBLEM SOLVING PROCESSES

5. GENERATION OF COKOiTIONAL STATEMENTS
5.1 Uncertain Preconditions
5.2 Conditional Stalements
5.3 Selection of Contingency Goal
5.4 Rejoin Conditions
5.5 Subprobium StacK
5.6 Computaiiun of Input-Output Assertions
5.7 Uncertain Primitive P-ocedures
5.3 An Example
5.y Correctness

6. GENERATION OF ITERATIVE STATEMENTS
G.l Premisses for Consirucling a Loop
C.2 AssemLiy of While [jops
G.3 Updating the State
6.4 An Example

7. PROGRAMMING AlUS
7.1 Program Library
7.2 Expansion of Assumptions

1
8
10
13

17
19
20
24

23
23
34
34
36

39

^.5
^5
47
<49

49
HI
52
53
54
59

CO
CO
62
C2
63

67
67
74

8. CORRECTNESS OF THE FORMAL ALGORITHM
ü.1 Uackircck Programming
3.2 Traversing THAND-OR-AND Treds
iJ.3 Liibeled, Ordered Subgoal Trees
b.4 Correciness

/C
70
73
iil
b3

■ —^—*—^«J

■—■■■

9. SYSTEM DESCRIPTION
9.1 Overview of Interactive Syctem Use
9.2 Procedural Keprecentation of a Frame
9.3 The State Updating Methods
9.4 Computation of Input-Output Assertions
9.5 Generation of Conditional Statements
9.6 Assembly of While Loops
9.7 Structured Programming

Appendix A: ADDITIONAL EXAMPLES
1. Translate from Infix to Polish
2. Intege- Square Root Problem
3. Hand-Eye Tüsks
4 Queens Prob'em

Appendix B: AN INTERACTIVE SESSION

REFFKENCES

86
86
89
104
106
1:3
U3
121

123
123
130
133
136

139

141

vT

. I«—I-

■ "II

LIST OF FIGURES

Figure

1 Main System Components

2 Search (or Solutions .0 Climbing Froble.n

3 Syiax for Assertions

4 Advice Language

5 Frame Information for Fibonacci Problem

6 Program tor hbonacci Problem

7 Conditional Statement biagram

8 Frame for Traveling Problem

9 Program for Traveling Problem

10 Frame for Factorial Problem

11 Program for Factorial Problem

12 Frame for Koboiics Prublem

13 Program for Robotics Problem

14 Program with Assumptions

15 Expanded Assumption

16 Problem 1: THMNÜ-QH-AND Tree Search

17 interactive System

18 Functional Segments of Rules

19 Translated Procedure

28

64

66

69

72

/a

94

x/ll

 - -- — — -- ■

lammrmmmmm*^^^^^^ ■nn» •■•ua in ^ „.. m > >i i •nm

L

-1

I. INTRODUCTION

During the 1950's the phrase "automatic programming" described the process

carried out by assemblers aid compilers, i.e. the translation of a program written in

ora language into another where the "meaning" is preserved and the target language

is interpretable. Since then there have been many advances in programming languages

and their associated processors allowing the user to specify at higher levels, or in

more natural ways, how the computation should proceed and removing the users

responsibility for such things as storage management, resource allocation, etc.

In the resent project, we have sought to develop methods that will further

automate or augment the programming process by generating programs over several

domains in a suitably defined environment given a statement of what they are to

accomplish, i.e. programming by assertion rather than algorithmically. We seek to

generate programs using a statement of the v-esired program's properties rather than

compiling from one detail specification of the flow of control into another. It is in this

sense that we uso the term automatic programming. Automatic programming may be

further dist'r.^uished from compiling by its use of a semantic model together with a

deduction capability. It is to be expected, however, that as progress is r.ade in

automata program generation that research in compilation will be benefited.

As the field of Artificial Intelligence has matured, problem solving techniques

have been developed that have allowed us to seriously consider building automatic

programming system. Some very influential ideas came from the Heuristic Compilfr

[Simon 1963] and the GPS [Newell and Simon 1963] projects, i.e. the notion of building

up a program in a state-space tree search using a problem reduction procedure. This

is certainly basic, almost subconsciously so, to the present project and has been

widely used by others

 m ■

■ -■■■

INTRODUCTION

üuring the ■ 960's much of the theory of problem solvmg was associated w.th

tree or graph searchmg methods. Well Known techmques for restricting the search by

usmg evaluate functions, "mm.maxmg". the u-fi method, etc. may be found in [Nilsson

1971], [Samuel 1963J. Later automatic programming work, still dependmg heav.ly on

search strateg.es, sougnt to represent the domain semantics and carry out the

deduction in first order logic using the principle of resolution [Green 1969], [Waldinger

and Lee 1969J. A more powerrui (generated deeper proofs) general deduction system

combining resolution, equally and algebraic simplification was reported in [Allen and

LucKham 1970]. A great deal of the systems' efforts were spent in search because

most facts were uniformly represented as axioms in clause form and the search

strategies were large.y syntactic. Greater efficency was gained in a system built by

separating the heuristic search from the deduction and employing the GPS paradigm

Ifikes and Nilsson 1971].

The difficulty ,n these systems of usmg facts to gutde the search has prevented

them from solvmg hard vor humans) problems or generating complex programs. It har

become dear that in addition to a manageable basic problem solving method.

Knowledge, both general and domain specific, must be provided in a funct.onally useful

way to enable the system >o fmd a solution. During the last two years language

systems that allow the user to easily embed knowledge at al. levels have been

developed. Other useful features are pattern matching, pattern evoked procedures,

tlex.ble control structures, multiple contexts and processes [Hewitt 1569], [Sussman

and McDermott 1972], [Kulifson et al. 1972]. [Feldman et al. .972], [Tesler. Enea and

SmUh 1973J. Our use of some of these features wm be described m later sections.

Taking advantage of some or these features and refining the notion of semantics mm a

■- - —- ■- A

|»ii" m^mmi^m^^*—""m*itm\mti imw^^m^ww »IIJII >iL n'm^mmmm^

INTKÜüUCTIOiM 3

natural language understanding system reported in [Winograd 1971]. Other automatic

programming or debugging systems are [Deutsch 1973] and [Sussman 1973]. Some

general descriptions and useful classifications of the components of an »utomatic

programming system have been g;ven in [Balzer 1972]. The closure of all these

capabilities is yet to be fully exploited in a problem solving or automatic programming

system.

Procedural Knowledge may be distinguished from declarative in that the

information content is expressec within the flow of control of a computation (in the

general sense) sequence, i.e. the data from which useful information may be extracted

is the program itself. This is probably the most efficient information access scheme of

all. An intelligent system in which all information is expressed procedurally will rely

more Heavily ^perhaps totally) on tne current state of computation to determine its

future behaviour than a system utilizing declarative facts and also be, necessarily,

more dependent on the ordering of its knowledge.

However, the aistmction begins to blur when we consider how a system may

effectively utilize declarative information and how given a general computational model,

e.g. problem reduction algorithm as in our system, declarative facts may be translated

into procedures. Another example of this is the "questionnaire programming" approach

for customizing business application systems. Progress has been made in defining

model specification languages having procedural and non-procedural components

[Hewitt 1969],[Martin 1973], [Hammer, howe and Wladawsky 1974]. Even a resolution

based tneorem prover with an appropriate protocol language Une procedural part) can

efficiently use its knowledge to solve a problem [Allen and Luckham 1973], [Sticket

1974J.

——,— - . . - — ——^^■»———

"■ ' ■■

H INTRODUCTION

Research in verifying existing programs [Floyd 1967], [King 1969], [Katz and

Manna 1973], [Milner 1972] has contributed to our understanding of programs and we

have found (not surprisingly) that the kinds of facts required to verify programs are

not distinct from those required for the synthesis of correct programs. Progress has

also been made in defining axioms and rules of inference for the semantics of

programming languages [Hoare 1969] and in particular with respect to the

programming language PASCAL [Hoare and Wirth 1972]. This Logic of Programs has

been further developed and used as a basis for a verification system in [Igarashi,

London and Luckham 1973J. As a logical basis for an automatic programm ng system

this logic is especially cunvement since the rules are intuitively clear, the system

operation may be easily formalized and correctness considered, and rule applications

proceed in natural (for humans) steps.

The objectives of the present project have been to extend the theory of

semantic definitions to describe automatic programming problems and to design and

implement a system that uses this information in a functionally useful way to

atuomaticaily, or interactively, generate programs.

The particular formalism developed to define the programming environment (or

f-RAME) called tlv FRAME language, will be shown to have elements whose form

corresponds to statements in the Logic of Program^. It is based or- a typed, free

variable first oroyr logic in which statements may have truth values of either true,

false or undetermined. The frame language consists of primitive procedures, logical

axioms, definitions, iterative schemes and additional information about these rules and

the relations in them. Other rules of program composition, referred to as standard

rules (described in Section 2), ar« built into the system and needn't be specified for

each frame, i.e. composition rule, conditional rule, etc.

 . ■ ■ • — — - ■■

INTRODUCTION
5

The frame language may be viewed as an mtermediate level model specification

language that .s non-procedural and domain mdependent. It was motivated by

observing that in the general deduction systems prev.ously mentioned there was mor«

information in the ax.oms than was bemg used operationally, i.e. there were different

kinds of ax.oms and relations (see Section 3) that should be treated differently by the

system. For example the trutn value of some relations are functions of the state, or

FLUENT [McCarthy and Hayes 1969] and some are NON-FLUENT. For efficiency some

relations could be handled in a two-valued logic, i.e. TOTAL, and others require the

generality of a three-valued logic. Also search guidance information should be

provided (embedded) at all levels. For example compared with a rc-solution based

system we would like to choose the best "set-of-support" at each level of deduction.

We also wanted a language extendible to, or translatable from a higher level, more

natural input language, e.g. recursion equations for the Fibonacci series example in

Section 3 and the factorial example in Section 6. A frame actually describes

programming techniques, t,,? extens.veness of which determine the complexity of

programs produceable using it.

Given a frame, F, a problem for program construction may be stated as a pair

<I.G>. where 1 is an input assertion and G is an output assertion. The program

generation task is to construct a program A such that l{A}r, where M This process

may be viewed as a search in the logic of programs tor a proof that the generated

program satisfies the given input-output assertions. A solution to the problem is the

sequence of rules o' inference and axioms used in the proof. This view allows us to

show correctness of the formal methods for program construction. The correctness of

the program actually generated by the system wiil depend on our ability to implement

-

npampwnam

INTRODUCTION

the formal algorithm. The solution, or output, programs are written in a subset of

ALGOL containing procedure calls, assignments, while «oops and conditional statements.

Program construction is by simulated execution where iterative rules with associated

output assertions are used to update the computation model for simulating the

execution of a loop.

Tha application domains studied and in which programs have been generated are

numerical computation, symbolic manipulation, guidance procedures for a robot,

assembly and repair of machinery, and sequential planning together with generating

contingency plans for a wid. range of decision MMng problems. Though we have

here pursued a course of develop.ng one system then applying it to several domains

by merely changing the content of the frame definitions, it is expected that for

practical performance, tne form of the system definitions will depend on the domain.

For example this is currently happening in researcn attempting to appiy Jhis system to

auiormting data base management tasks [Gerntsen 1974J and automated repair of

machinery [Luckham and Buchanan iy7<4].

The rules of inference, axioms and other logical facts expressed in the frame

definitions are translated into a backtrack problem reduction system augmented by

special search procedures L3ing ihese facts. The target language of this translation is

LISP using primitives and backtracking facilities of Micro-Planner [Hewitt 1971],

[Sussman and Winograd 1972]. This subgoaling system recursively applies to a goal

the rules of the frame to generate subgoals whose solution imply a solution to the

original goal.

As an auxilary to the subgoaling system is an ADVICE system with an associated

language that allows the user to guide tte search, modify the frame, restrict rule

._ . ^ - - ■ - ■ - ■ -■ -■■ ■ - -.. --——^1—».t^-»^ ■-+ ^-w^^^^ ^J.-.

■■.I ■ IMI I I ^^^»^^"^^•■^ '

INTRODUCTION

applications and rece.ve interactive feed-back during program construction. This

described in Section 3.

is

1
LIBRARY 4

FRAME,
PROBLEM,
ADVICE,

1

i
->

«-
TRANSLATOR ■#

BACKTRACK
PROBLEM
SOLVER

PROGRAl>1
ASSEMBLER

-> OUTPUT
PROGRAM

1

t 1 T i INPUT
STACK OF
SUB-
PROCEDURE
PROBLEMS

OUTPUT

Figure 1. Main System Components

The main components of the system are shown in figure 1. The user may

interactively specify a frame and provide some initial advice (model acquisition phase).

This is eventually translated into a subgoahng problem solver to which a problem may

be given, i.e. a goal which the problem solver seeks to achieve using the rules of the

frame (program generation phase). If a solution program is constructed, the user may

incrementally extend it, i.e. pose another prob.em which takes the output assertion of

the current solution program as its input assertion. The user may also optimize it, or

generalize it and place N in the program library for future inclusion in a generated

program. If the program contains conditional calls to as yet ung^nerated procedures

(see Section 5), these subpiODlems may be attempted. Subproblems may also arise by

declaring some primitive procedures defined in the frame to be assumptions to br

expanded into concrete programs. This provides a rather rudimentary, at this time,

interactive structured program development facility.

■ ■ ^ -.- . . -
— ■

^m

INVRODUCTION

1.1 CONTRIBUTIONS

Some of fhe areas uf wor^ along which progress has been made and

contributions to the field may be noted are as follows:

(1) Extending the theory of semantic definitions for defining semantics of programming

languages to define automatic program generation env.ronments. A relation has also

become more clear betwee: the kind of assertions needed to verify programs and

those required to synthesize correct programs, e.g. (ompare loop invariants used in

our system with inductive assertions tor program verification.

(2) A prototype system has oeen developed that is useful in a study to determine the

feasiLiity of building an automatic programming system to augment the programmer in

the following ways:

(a) Automatic or interactive generation of possible solution programs for

application domains suitably described,

(b) The usefulness of an automated system to handle bookkeeping

details.check consistency, applicability, etc.,

(c) The feasabilny of an interactive struciured development system,

(d) The feasabiiity of interactively building up complex programs by allowing

incremental program extension, library access, structured development,

and contingency plunmng.

(3) A demonstration is made that declarative facts can be incorporatedttranslaied) into

an efficient problem solving search procedure which uses these facts at all levels of

search.

(4) A typed, free variable first-order logic in which statements may have truth values

of true, false, or undetermined has been shown to be a natural logical basis for

automatically generating conditional statements in a program.

■■ - - -■-- - ■— "

M—— M—

INTRODUCTION 9

(5) The iterative rule computation scheme has a correspondence to t'^e principal of

mathematical induction and is a useful way to represent loop structure for a program

to be generated.

To the nagging question '<hi\ it may be as hard (or harde,) to specify a frame as

it Is to write the program, the following answers may be given:

(1) Yes, but we are learning how to program by assertion, and develop defining

formalisms and methods for efficiently nanipulatmg facts and rules.

(2) A frame may contain many atomic units of information whose interaction when

faced with a novel goal is not easily predictable. For example the robotics frame

defined in Section 7 may be used to general many different programs.

(3) An interactive facility for constructing programs with the extendable features

mentioned above can pctentially augment the human programmer.

(4) Experience with our frame language has been helpful in investigating the basic

information requireci to construct programs, now the task of raising the level of

lanpjage interaction to a more natural (and useful) level will be aided.

- ■- -..-...^i . — - - ■ ■-■■■ J —J- '■

Rl wi uiiiujmt^

10
INTRODUCTION

1.2 EXTENSIONS

The foliowmg specf.c research problems are suggested as natural extens.ons of

this work (i.e. problems we didn't solve/:

(the -eader may want to scan these now then come back to them after rrading

further)

(1) In the area of conditional statement generation:

(a) Introduce probabilistic dec.s.on theory to determ.ne preference amunc

cüniingfer,v/ problems.

(b) Oevelop criteria for recognizing equivalent or similar subproblems.

(O Design a more flexible mechanism for managing scope, program structure

and contingency ptl selection. Since then is no reason to prefer the

trunk patn. the structure of the output program should not be fixed

from that point on.

M Compute completely correct input-output assertions for programs heving

arbitrary nesting of conditional statements.

(2) In the area of automating structured programming:

(a) Develop a human engmeered interactive system. Regardless of how the

-theology" says we should prog-am, there is something basic to the

human condition about how we do program and style improvement must

be made within that framework.

(b) Develoo techniques for managing side effects.

(c) Do lookahead or design a bottom-up. outside-m. etc. component.

(3> In the area of generating programs with looping structure:

(a) Implement some form of the recursion rule[Hoßre IJ^öy].

 - --■ ■-

■ n ' ■ » »^- " . "»I»,»«

INTWDUCTION 11

(b) Develop efficient and more complete methods for updating the oiate

consistently. Design criteria for detecting inconsistent states and

prevent them from invalidating the program.

(c) Generate while loops but reduce th& IHormation that the user must

provide. For example, in iterative rules the systt- sh-Jd reasonably

deduce the contiol test or output assertion.

(d) Buld in the iterative rule (analcgous to the way the com'itional rule is

built in). This is really trymg to do induction. We would likt the ability

to analyze a computation trace, recognize loop structure and generate a

while loop.

(4) A higher level or more comprehensive input language should be developed. It will

probably be domain dependent.

(5) Explore the impücMions of various logics for programs as a basis for automatic

programming. In [McCarthy and Hayes 1969] various logics are discussed for

intelligent systems.

(6) Stnve to free the problem solver from being so dependent on the ordering of goals

in a condition to be achieved or the ordering of applicable rules. Develop reordering

strategies, lookahead, etc.

(7) In the area or parallel processes:

(a) Generate programs for parallel machines.

(b) Develop criteria for splitting up a generated sequential program into

subtasks for coorerating sequential processes.

(8) Exploit multiple processes and multiple contexts to increase the power of the

problem solvers, e.g. a better answer to the question of why a node failed could yield

■utomatic correction.

■ ■ -

m i
111 >m -~-

12
INTRODUCTION

(9) Orgamze a library of eene a,ed programs and develop strategies for its access.

(10) Study the proolem of vahdat.on of program spec.f.ca.on. Determ.ne cons.siency

and adequacy of a programm,ng model. Hrove property of the family of programs

constructable from tne same rrame. Study the .nvanants of data structure under

^ppiicafon of a r.m.ly o, programs. y.g. do lhey moo.fy the tree orderedness of a iabel

labid.

- - -

T --—————™—

IIMTROÜUCTIÜN
13

1.3 COMMtMTS UN THE FUTURE OF AUTOMATIC PROGRAMMING

The need for some automation In the task of software production is beccm.ng

increasingly clear. System are Betting b.gger and more complex wh,ch has caused

mamtena.ice cost to rise (It is now 50 per cent of the programmmg budget). Software

ccats too mucn, it isn't rel.able, takes too long to develop and its difficult to modify or

fix. Programming has not attained the maturity to c'.vel.p standard engineering

pract.ces w.tn their attendant reliability that otter disciplines have. Research in

a^ümatic programmmg seeks to understand the nature of the task 3nd thereby

improve oroduciion.

There are many d mens.uns along which automatic programming will progress.

There is the theoretical di,„^ion whicn implies gaining a more fundamental

understanding of the meaning of programs and developing descriptive and useful logics

for automatic programming problems that permit a ngorous investigation of the

properties of a program. A(M| the pragmatic dimension, we will be interested in

augmenting current practice with state of the art techniques. There is also the

heuristic dimension which contains the multitude of ideas, systems and ad hoc notions

for which there is no Good log.cal description nor is there any current practical

application, but through them we gam understanding into the nature of the problem.

The foliuwmg are a list of rather random comments on the future of automatic

programming based on our experience.

O) (vore emphasis will be placed on higher level descriptive formalisms and

programmmg languages to detme programming environments. The level will be raised

to accumouaie the nun^rogrammer as we.i as to ease the job of the professional.

Some of these advances wii. require major breakthroughs in Artificial Intelligence, e.g.

 -- — - - ■ __J_^M^Mi^_^.

IlllUlll^ill i^m^^^**

14 INTRODUCTION

dynamic acquisition of models, recognition of incomplete or inconsistent modals, or

further rk velopment in representing knowlege in a functionally useful way.

(2) Larger »oftwdre facilities will be develop, d for systems to conta.n more facts.

Deduction will be efficiently encoded (perhaps specialized as in the theorem prover

over the integers in [King and Floyd 1970]).

(3) Specialized domain application sys\c-r.z will be built that will rival human abilities

(perhaps the standard five year time estimate will do). Compared with the present

system these will require new kinds of built in facts, different advice needs and

computation schemes. To make real progress trar rerring technology developed in one

system to the improvement of another in perhaps a different domain we must focus on

the methods used to embed knowledge or define the environment rather than just

loading the system with facts and ad hoc tricks or using a human interface that only its

creator can understand. The field is so young that too much time shouldn't bo spent

hand tuning a system once the basic methods are exploited.

(4) There are some short term payoffs (within 5 years) for augmenting programmers,

e.g. better interactive debugging systems, languages permitting user assertions to be

checked and better optimizers. Within a narrow domain present technology can yield

good performance. Automntic programming will not replace the programmer but will

raise the educational level tor those who would do computer assisted program

construction. With respect tc program synthesis we should strive to generate

programs of the type that people understand and can write with some effort so that

program synthesis does not get completely lost in futuristic AI research. Within

current technology the size Of the generateabie programs will be small (one page) and

complexity will be gained by combining and extending them with interactive aids.

- -■■

■...-

INTRODUCTION 15

(5) INTERACTIVE systems will be developed that will do mundane logical chocking,

answering "what if" questions, and building up complex programs modularly such that

the system will only have to focus on o* e small problem at a time.

(6) Within the forseeable future final production level syst^ns will not be automatically

produced but the ability to produce prototype systems quickly to test design ideas will

be a significant aid to software production.

— -^

ID INTRODUCTION

In Section 2 a short description of the logic of programs is given in which the

frame definitions and p'üjram construction rules are formulated. A simple txamplt is

given that illustrates how a problem is formulated and the meaning of a solution,

oection 3 describes the frame definition language, advice language and output program

language. In Section 4 the systems use of information during the problem solving

process is described. Sections 5 and 6 present the system methods for generating

conditional state-nents and iterative loops respectively. Section 7 descibes the

programming aids provided in the system for the user to interactively generate more

complex programs. In Section 8 is given tne formal program generation algorithm and a

description of the proof of its correctness. Section 9 is intended to document the

system implementation to the level tnat would be reasonably useful in designing an

expanded system, illustrative examples of frames grid generated programs are given in

Sections '6,6, 6,7 a*id -.ppendix A. Appendix Ü contains a complete interactive session.

-■- _

17

2. LOGICAL BASIS FOR SEMANTIC DEFINITIONS

In this saction we will bnefly describe how frames can be formulated within the

Logic of Programs. Later sections will expand on tne frame formalism and its use.

Program generation may then be viewed as a search for a proof within the Logic of

Programs that tne generated program satisfies its input-output assertions. In Section

8 the formal algorithm will be given and correctness of solutions considered.

A distinction should be made between the problem solving algorithms and their

implementation in any particular system where an implemented system must fall short

of the formal algorithm. For example program correctness will depend upon

maintaining consistency of each state occuring during program construction, yet in

general the task of determning state consistency is undecidable. However limited

deduction is carried out and special mechaniams to detect common inconsistencies, e.g.

single valuedness of progrem variable;, rre implemented.

NOTATION: x,y,z(u,v,w...variabies,
X,Y,Z,... lists of variables,
f,g,n.... tunctions,
s,t... tunctiunal terms,

G.I.P.Q.^iS,... Eoolean expressions (essentially formulas of first order
logic with standard functions and predicates for equality,
numbers, lists and other data types),

P(X) denotes the formula obtained by replacing each free variable in P
by a new variable from X,

{3X)P(X) denotes existential quantification over all X-voriables in P(X),

A,B,C,... programs and program parts in an Algol-like plan language
(details in Section 3),

p,q,... procedure names,

oi,ß,\,... substitutions of terms for variables, also denoted by (<x«-t>).

P(t) denotes the result of replacing x by t everywhere in P(x).

u/S denotes the OWPOSITION of u and ß; Eocß -(EcO/J for all
expressions E.

mOmtMm -* ■■ - — '--^ '—I 1 II I ■Mil - --^^^— J..^-... - ■ n .■ . lairnitiifM

18
LOGICAL BASIS FOR SEMANTIC DEFINITIONS

We assume the ex.stence of a fixed arbitrary ordering of literals defined in the

trame (atoms and negat.ons of atoms) which is simply used as a computational aid for

descnbmg and .mplementmg the rule of invariance defined in Section 2.2 and not for

any heuristic advantage.

■■'■■ ^*^~. - - - — - - n ■

tKBSmUT^^

LOGICAL BASIS FOR SEMANTIC DEFINITIONS
!

2.1 LOGIC OF PROGRAMS

We review briefly the elements of an inference system for proving properties of

programs [Hoare 1969]. This description is taken from [Igarashi, London. Luckh.m

1973].

STATEMENTS of the log'c are of three kinds:

(t) Boolean expressions, (hencefortn often called ASSERTIONS)

(ii) statements of the form P{A}Q where P.Q are Boolean expressions and A is .

program or program part.

P{A}Q means ".f P is true of the input state and A halts (or halts normally in

the case that A contains a GO TO to a label not in A) then Q is true of tne

output state".

(Hi) Procedure declarations, p PROC H where p is a procedure name and R is a

program (the body of p).

A RULE OF INFERENCE is a transformation rule from the conjunction of a set of

statements (premisses, say H,K,) to a statement (conclusion, say K) of kind (ii).

Such rules are denoted by

Hi _*.

The concept of PROOF in the logic of programs is defined in the usual way as a

sequence of statements that are either axioms or obtained from previous members of

the sequence by a rule. A proof sequence is a proof of its end statement.

NOTATION: We use H ||- K to denote that K can be proved by assuming H. H |- K

denotes the same thing for f.rst order logic. It is sometimes helpful to denote

statements that are problems or subproblems for the program generator to solve by

P{?}Q.

 •— ^^^.^ j-

****mmmmimm

20
LOGICAL BASIS FOR SEMANTIC DEKINITIONS

2.2 FRAME RULES

The RULES in a frame F are of three krnds:

(a) PROCEDURES transform states mto states and are expressed as statements in

the logic of programs.

(b) SCHEMES are methods for .onstruc.mg programs and are expresed as rules of

inference in the logic of programs.

(0 RELATIONAL LAWS: defm.hons and ax.oms wh.ch hold m all states and serve to

"complete" mcomplete state descriptions by permitting first order deduction of

other elements of a state from those given.

Given a frame F a problem for program construction may be stated as a pair

<I.G>I where I is an input assertion (or initial state) and G i. the output assertion (or

goal that must be true m the output state). The program construction task is to

construct a program A such that I{A)r(where M A solution is the sequence of rules

of F used in the construction of the solution program A.

NOTATION and RESTRICTIONS: Q u F . R denotes that R is a logical consequence of Q

and the ax.oms of F. Assertions describing states are denoted by UV-AOV- These

assertions ^but not the assertions in rule definitions) are restricted to be conjunctions

of atomic assertions. We write *] to denote that R is a conjunct in I. L(F) denotes the

logic of F,i.e. the set of consequences of the rules of F. Substitutions u do not

replace any variable that occurs in the initial state I. Expressions, all of whose

variables occur in the initial state are called "fully instantiated".

STANDARD FRAME RULES: A set of standard rules are assumed to be part of every

frame. These are rules implemented in the program construction methods of the

problem solving algorithm:

RO. Assignment Mxiums:

-- -■■•-- ■-■■! - ■ —— " ._ - - ■ ._ ■ -. -^-^ > ., — , - —

—"•——— ■'"■"■ ~

LOGICAL BASIS FOR SEMANTIC DEFINITIONS 21

(i) Simple Assignment: P(t)[» -t}P(x)

(ii) Conditional Assignment: (3Z)P{Z){IF P(W) THEN Y«-W}P(Y)
-(3Z)P(Z)A0(Y){IF P(W) THEN Y*-W}Q(Y)

where Y-variables in P(Y) do not occur in P(W)(W-variables are
special variables ocurring only in conditional assignments, and Y^-W

TufL^6 Sequence 0, simPle assignments between members of Y
and W that occur m the same argument positions in P(Y) and P(W).

Rl. Rule of Consequence: P^Q.OfAjR P{A}Q,Q3R

P{A}R P{A}R

R2. Rule of Composition: P{A}Q,Q{ö}rt

P{A;B}R

r<3. Rule of Invariance: if P{A}Q and I u F = P then I{A}InV(0,I)
where if Pi.h^-.Kn are the conjuncts of I
m the fixed order, then I8 - Q,
for ü<m<n, W« - Vi A f^ if ^(lm u F D .R,,)

ImM = In otherwise,
and Inv(Q,I) = ln.

M. Change of Variables: P{x){A(x)}Q(x) where y is not a

 special variable.
Ky){M(y>}(<(y)

R5. Conditional Rule: PAQ{A}R, PA-Q{B}R

P{» Q THEN A ELSE B}R

R6. Undetermined values: If r{?}G cinnot be solved and
-U'uF D .G) then G is UNDETERMINED in I'.

STANDARD RULES

REMARKS: (i) The axioms Rü(ii) dehne the semantics of conditional assignment
statements ur.ed primarily in the system during the assembly of wNle loops Thi

- •■ " ■ ■ " • ■ MI w-Mii i mmmu pi

22
LOGICAL BASIS FOR SEMANTIC DEFINITIONS

e 1,00 P(W, w.thm the IF statement is interpreted as a call to a Boolean procedure
tnat, -successful w.ll bind the W-Parameters to values from the state that make it
lurM °U';,COnv

|
ent,0n 's t0 ^Mrt W-variables as "special variables" onfy occurrinR in

su h cond.t.onal ass.gnments. An alternative would be to define a typed procedu e for

ssl^nt To ^ ' v Ü2 ,ha, WÜU,d retUrn ,he «PP^priate^value or Xlc assgnment to the Y-vanaoles. We felt that the conditional assignment made the
desired semantics more iransparent however. ~ maae Trie

ItitJlun^nl 0f mva:iance means that during a state transformation and a new
sta ement Q becomes true m I that the function Inv(Q(I) will return Q union these fete
ml that do not coniradict Q. We therefore do not need "frame axioms" to handle the

co^al^l^e^lt^ "'^ gUideS the SySte- decisi- t0 «-erate

INPUT FRAME RU ES: In addition to the standard rules, a frame may contain rules of

the following types (these constitute the user defined elements of the frame):

51. Primitive procedures (or operators): tne rule defining procedure p is of the form

P{p}0. The assertions P and Q are the pre- and post-conditions of p. p must contain a

procedure name and parameter list.

52. Iterative rules: an .terative rule definition containing the Boolean expressions

Rbasis). Q(loop mvariant). iteration step goal). Uco.trol test) and G(rule goal) is a

rule of inference of the form:

(a) P.|-0,QAL{-'»R, R{??)QV-L

piwhiiü L do fprya

where the free variables of R and L occur in Q. Such rules are permitted not to

contain P or L.in which case they correspond to inferences of the form:

(b) Q, OA^G{?}R, R{??}OVG

0{while ^G do ?;??}G

S3. Definitions. A definition of G in terms of P is a logical equivalence |- P-G.

S4 Axioms. A frame fcxium P is a logical axiom |- P.

mi in iit'mniiaMiMMi ■ i nnaMiaiii«——MO

■ -.■»■*.,.,..■ m ■*•. ■

LOGICAL BASIS FOR SEMANTIC DEFINITIONS 23

Terms and predicates in assertions may contain calls to LISP functions. If the

frame definition contains functional terms or predicate tests that are evaluated by Coilf

to LISP functions, the set of premisses must be expanded to include both the input-

output assertions for thsse function calls and the logical axioms for the relevant data

types.

REMARKS (i) The iterative schemes S2 permit the definition of methods for constructing
loops; they are instances of:

WEAK ITERATION RULE: QAL{B]QV-L

Q{WHILE L DO BH

where Q is the invariant of the loop. The meaning of |-Q in the premiss is that the rule
may only be applied in states where Q is a first order consequence of the state
description. The program part ?? is restricted to be a sequence of assignment
statements (see Section 6).

(ii) Inconsistencies may arise in several different ways in frames. The axioms can be
inconsistent, or the post conditions of a rule can be inconsistent with the axioms. Also
the elements of iterative schemes must satisfy some simple consistency criteria
(section 6).

(iii) Note that each frame rule has a goal. The goal of a procedure is its postcondition;

the goal of an axiom or definition is its consequent.

The following lemma is useful in proving properties of conditional assignments

[Igarashi,London,Luckham 1973]:

OR-LEMMA P{A}Q, k{A}S

HvR{A}0vS

 ■—--- - .^I.. . ,

m l"«"1 ^^—■tmm~ mmt^^mm-

24 LOGICAL BASIS FOR SEMANTIC DEFINITIONS

2.3 A SiWPLE KObOTiC EXAMPLE

We will now consider a simple robotics environment and its description within

me formalism. In me context of this example we will then consider formulating the

oofreeitwM uf woiMom,

Consider tha following «riime und problem:

iWPUr KRAfviE KÜLE3:

r'l. Hrocodure: ütyr^doii

MI u,y//\A fu.y/AKüLiü rix)AL0X{z;{stanJon(x,2)}üf^x,z).

K2. Hrocedure: biop-up

KObOT(x)AOK(x,y)AaTACi<Eü(i:,y){stcp-upvx,y,z)}ON(x,z).

K3. Iterative Rulo: climb

hOuO r^()AOK(. J,y)/\S rACKE0(u,y)AOi\jT0P(M){?}0f\l{W,u)

hOüOT^M)AÜK(ivl,y)ASTACKEÜ(u,y){WHILEONTüP(M)ÜO BEGIN ?;?? END}ONTOP(M)

K4. Axiom: K0Lür(x)A3y^üi^/,y)AVz^TACKEÜ(z,y))«0NT0P(x).

I-KOCLEM

i: Küo0rvt.l)/»L0Xxüi)ALCX^^)AL0Xvu3iAATtül,L)AATtiw1,L)
AiJTACKEUUÜ,Ui) A ÜTACKEÜ(b3,b2).

L: OiJTOrv.M)

PROBLEM 1: CUMBiNG

REMMMO: (i; The itorj-tivu ruio says "A suiution to the problum of MtMbinj one box at
a time, can bo mod to consiruci a WHILE loop that solves tho problem of climbing a
siack of boxos". 1 ho rulo diifines the meaning of WHILE in the (nvironment. Or ya
rnuy rujard mo rule as an induction principio for the environment.

(ii) Tho program part '({ in the conclusion of the iterative rule transforms the situalion
aftor Kne execution of the loop body (Y) back into one in which the invariunl is cgoln
true ir trie tout is true:

Üi\l{x,u){??}ROüOT(x)AON(x,y)ASTACKED(u,y).

We roitnot 'if to Lo u üüMUJI)CO of asüi^rtments.

Oii; Trie ^J of ciittto is ONTUKM), the negation of the control test in this exatnpiu.

__.

uw i" i «ii i™in»»»»p«wi«i»w»w>mi"»winw*» ■PiBVPiIMP i w i ii ■HTCHMM

LOGICAL BASIS FOR SEMANTIC DEFINITIONS
25

T >t<n4«n(ll,ill)

«»Cr.DVAiioo 3 onwo«) tIACUB(a,T)

• t«piip(K.Y,U)

CILal,

Qowofdo

S.EARCH_FOR buLUriut\S TO THE CLIMBINH PRORT^i
Figure 2

Sleps MM by , search p,occat,re in so|vmg thjs prob|em ^^ ^^^ ^ ^^

2. It starts with state sitUat,on 1 and dete,m„s by (ogical reasoning from I end th.

m*m which operators have pre-conditions that are true in 1 . „ applies these

operators and updates the slate to the new state us,n6 ;he ruie of inveriance. D

repeats .his process on ,he new states. Node 6 indicates the initiation o. ,

subprobten, (the premiss « the iterative rule) with a new initie, state (the invarient)

which is a subset o. the state above it at Node 5. The soiutions correSpondinB to the

paths shown in fiyure 2 are:

(i) I(standon(M.bl)!stepup(M>Bl.B2)istepup(M(B2)53)}0NT0P(M).

(ü) I{standon(M,Öl);y«-Bljü-B2;
WHILE ONTOP(M) DO BEGIN

1
-- - - ■ --- -- --- . - —

 ■ ■

26
LOGICAL BASIS FOR SEMANTIC DEFINITIONS

stepup{M,y,u);
y«-u;

IF STACK£0(w,y)THEN u*-w;
ENOjONTOP(M)

where the assignments within the WHILE loop correspond to the ?? of the iterative

rule. The variable w is a special variable.

Using the frame rules we can now construct a proof of the statement

I{solution)G within the logic of programs.

1. I='(R0ö0T(M)AAT(M(L)AAT(Q1,L)AE.ÜX(ö1))

2. I{standon(M(öl)}ülM(M,öl)ASTACKED(ö2,bl)AF<0B0T(M)l(Fl,R4,Rl,R3

3. 0N(M,B 1)ASTACKtWB2>Q 1)AR0B0T(M){y*-B I;

u«-B2}ROBOT(M)AüN(M,y)ASTACKEü(u)y)R0(i)(R2)R3

4. I{standon(M,Bl);y«-Bl;u-B2}RObOT{M)A0N(M,y)ASTACKE[Xu,y) 2,3,R2

5. f<ÜÖOT(M)AüN(M.y)ASTACK£D(u,v){stepup(M,y,u)}0N(M,u)AR0BOT(M)F2,R4

6. R0BOT(M)AON0vJ,u){/<-uiHüBOT(M)AÜN(M,y) kO.RS

7. 0N(M(y)A3zSTACKt[Xz.y){lF STACK£D{w./)THEN u-w}ON(M,y)ASTACKE[Xu,y) R0,R3

8. -32STACK£D(2,y)AÜNT0P(M){iF STACKED(w,y)THEN u^-wjONTOPCM) RO

9. (ON(M1y)A3zSTACK£ü(z,y))v(^zSr/»CKED(z,y)A0NrüP(M))
{IF STACKED(w,y)TH£N u-w}(0N(M,yhSTACK£ü(u,y))v ONTOP(M) OR-Lemma 7,8.

10. R0B0T(M)A0N(MIy)A^(3z)S rACK£D(z,y) o ONTOP(M) F4,
^(0N(M(y)A3zSTACKED(z,y))v0NT0P(M)

SSSIS^^ ^STMCKEU^y) 3 lON(M,y)A3zSTACK£D(z,y))vONTOP(M)
RObüT(lvl)AOIsKM,y) a (0N(ivl,y)A3zSTMCKED(z1y))vÜNT0P(M)

11. ROBOT(M)AON(M,y)ASTACK£Ü(u,y){stepup(M,y)u)iy*-u;
IF STACK£D(w(y)TH£N u-w}{ON(M,y)ASTACKEü(u,y))v ONTOP(M) 5,6,10,9.R2,R1

12. ROBOTlM)AON(M,y)ASTACKEü<u,y){WHILE^ONTOP(M) DO ...}ONTOP(M) ll^l.Fa

13. Usolution (ii)}ONTOP(M) 4,12,R2

PKOOF of lisolution (ii))G

— —

wmmmmrmmmmmm**^^*^—™* ■■

LOGICAL BASIS FOR SEMANTIC DEFINITIONS 27

We refer to a formal proof of L(F)||-I{A}G as a correctness proof. The existence

of such a pruot implies only that the program is correct relative to the frame. If we

modify the frame we can investigate the correctness of solution (ii) in the extended

frame by analyzing the proof of l{solution (ii)}0NT0P(M) by checking to see if any step

uses facts from an intermediate state situation P that contradict the extra logical rules.

We in effect carry uut a "pruur checking" operation for consistency of each step with

the additional facts. This process practically avuids search.

"■^^'W'lll "i "i ■ —

28

3. DEFININI THE PROGRAMMING ENVIRONMENT

In this section the Frame definition formalism is presented. This includes the

Frame language the Advice language, and the output Program language. A compleW)

example of an input frame, together witn advice, and the resulting output pre gram is

given.

3.1 FRAME LANGUAGE

3.1.1 ASScRTlONS: The syntax for assertions used in definitions of rules, axioms and

state descriptions is shown in figure 3.

<variublo> ::» <identitier>
<function symbc^ :;-■ <io'entifier>
predicate symbo > ::= <identifier>
<term> ::- <variable>|(<funciion symbol>)|

(<furictiün symbolxaryümeni list>)
<argument list> ::= <lürm>|<term>,<art;ument list>
<functional term> ::- (EV<term>)|(EVN<term>)j<türm>
<aiomic formula> ::- <predicale symbül>(<predictite argument list>)
<predicate a-gument list-- ::- <functional term>|<functiünal term>,

<prediciite argument list>
<literal> ::= <atomic furmula>|-<atornic türmula>
<literal element> ::- <literal>|RtQU£ST(<literai>)|f<assertio;i>}
<disjunction> ::- <literal element>|<literal elemert><or><disjunction>
<assertion> ::- <disjunction>|<disjunction><and><ai.<sertion>
<at d> :;- A|ä
<0i> ::» v|»

SYNTAX OF ASSERTIONS
Figure 3.

Identifiers are strings of characters not containing the negation symbol, "i" nor

the usual LISP delimiters, e.g., blanks, commas or parentheses. The <ur> connectives

have higher precedence than the <and> connectives and a logical condition is

terminated by a semicolon, ";H. For example,

P(x) v Q(x) A k(x,y) A S(Z,x) v {T(Z) A MV)};

represents the uxprussion

tP(x) v Q(V)] A Mx,y) A [S(Z,x) v [T(Z) A M(V)]]

-

mtmmmrfm^mmmmmm

DEFINING THE PROGRAMMING ENVIRONMENT 29

in fully parenthesized notation.

The only constructs whose meaning requires special explanation are ^functional

term>, <literal element>, and the connectives "&" and "•".

If a term is in the scope of the modifier "EV then all functions in (hat term are

applied to their arguments (i.e. evaluated as LISP functions) when '.nat litaral is used in

the problem-solving process. "EVN" further specifies that the functions to be

evaluated have numerical values. The default convention is that the »orr is

manipulated as an unevaluated symbolic expression. The "REQUEST" modifier, v.hich

takes a literal as its argument, alters the way that literal is treated by the problem

solver. This is discussed in Section 4

The AND connective is denoted by "A" . Thus a state satisfies the assertion AAB

if it satisfies both A and B. The weaker THAND connective is denoted by &. Exclusive

OR is denoted by V.

3.1.2 STATE DESCRIPTIONS: Assertions specifying states are restricted to be

conjunctions of literals.

3.1.3 AXIOMS: Axioms are stated in either of the forms PsQ or P, where P and Q are

assertions. They hold in all states and are used to complete a given state description

by deduction of other elements of a state from those given.

3.1.4 RULES: There are three types of rules: primitive procedures, definitions, and

iterative rules.

(a) A primitive procedure is specified by a name, an argument list, and its pre and

post-conditions, i.e.

P {f (xiXk)}Q where P and Q are assertions in which xi ,..,xK are free, and

f is the procedure name.

^^_ J. ._ — i _^._

fmrn* «pv^)imiipHw«iPOT^v^^ni^vww*r*H«imm«H>i im*

30 DEFINING THE PROGRAMMING ENVIRONMENT

The variables are formal parumetars of the procedure. They may be "bound" by

substitution of actual parameters when the procedure is applied to a state

For example consider the operator,

move(Rl,01,Ll,L2):,'Rl makes 01 from Li to L2";
with preconditions,

ROBOT(Rl) A MOVABLE(Ol) A AT(01,L1) A AT(R1(LI) A. 0mi,02,Ll)',
and postconditions,
AT(01,L2) A AT(R1,L2);

When a primitive procedure is defined it may be declared to be an ASSUMPTION.

If it is used in a successful program construction, then the user is informed and is

given the opportunity to carry out a structured program development of this non-

primitive operation. This is described in Section 7.

(b) A definitional rule is of the form RiS where R and S are assertions. The relation, S,

is given as the postcondition of the rule. The meaning of a definition is that whenever

it is desired that S be true it is equivalent to establish the truth of R. A definition is

often used to shorten assertions in rules by defining a single relation as equivalent to

an often used condition.

(c) Iterative rules specif; conditions that if satisfied justify the assembly of a "while"

loop to achieve the associated goal. They are instances of the iterative rule S2 in

Section 2.2, and are defined by giving:
(i; A name, e.g. TLOOP, (without parameters).
(ii) A basis assertion P.

(iii) A loop invariant assertion Q that specifies relations that must be true in

the state prior to each iteration.

An iteration step assertion R that specifies the goals to be achieved (iv)

during an execution of the loop body.

(v) An iterative goal G, the assertion considered achievable by the iterative

process.

(vi) The format of iterative rules also allows the specification of a loop

control test L and an output assertion S if they differ from G.

■lliriMliMIMUMMilMÜi—I

mmmi -'— wmmm

DEFINING THE PROGRAMMING ENVIRONMENT 31

The rule,
TLOOP
PiQ-fliGiiiS;
wnere P.Q.R.G.L and S are assertions,
defines the iterative rule "TLOOP"
associated with the goal G.

b)

3.1.5 SPECIAL AXIOMS: After the rules and initial state have been cefined the system

requests the following information for each predicate symbol P that has been

mentioned. The system use of this information is discussed in Section 4.

a) "Is P a function of the state?" The intent of this classification is to separate

those relations whose truth value may be affected by a state

transformation, i.e., FLUENT relations.from those whose truth value is

constant over all achievable worlds, i.e., NON-FLUENT relations such as

"ROBOTW, "INTEGER(Y)".

"Is knowledge represented using P partial?" A partial relation may have

truth values TRUE, FALSE, or UNDETERMINED. Partial relations may be used

to represent incomplete knowledge of the world which may cause

conditional statements to be generated as explained in Section 5. A

relation may be declared "uncertain" which implies an absence of

knowledge about it so that is assigned a truth value of undetermined a

priori. If P is not "partial" it is "total" and can only have truth values of

either true or false. Thus rule R6 applies to partial predicates only.

"Does P have a uniqueness property in certain argument positions?" A

"yes" answer indicates that P cannot be true for two sequences of

argument values that differ only at one of those positions thai are unique.

The unique positions are given using the notation, {Xl,*,X3,V-.Xn), for

c)

„ „„^ -.. -- "—-——' -— - ■ --

-mm~*-^^~rm* ■"-
,l1" —■ - i ■ i i i —

32
DEFINING THE PROGRAMMING ENVIRONMENT

example, to des.gnate the second and tourth argument positions. For each

unique argument position in relation P^Uan). an axiom is "built-in" from

which a contradiction may be established with P(bl bn) that differs in a

unique position and matches elsewhere.

The statement, "an object can only be in one place at one time", is expressed by,

ATfXl.*). If We add, "and only one object can be at any place", then we

UM AT(v).

3.1.e IMUFBATION Aigebraic ***** ru,es may be given „ simp|j(/ the |erms

•hat ma, occur i„ s{lbgoals during ,h8 probtem so|vin8 phase ^ ^.^ ^

driven b, a UM. of r^s o. ,he for. s-t wbore s and t are ,ermSi occurrence, of M

ore replaced by tu for any substitution *.

The output format uf any functional term may be specified by the user by jiving

e rule in which its input prefi, form is on the left, e.B, (PLUS X Y) . (X.V).

■ -■ -• - -- - - m ■

■ ' " wiimii m

DEFINING THE PROGRAMMING ENVIRONMENT

COMMAND SYNTAX

TRY <rulel> BEFORE <ruleLJ>

FOR <rule> [FIRST] TRY <literal>

DELETE {<rule>,<literal>,
<advicc nuni>]

ADD{<rule>,<liceral>j

ALTER <rule>

ASSUME {<rule>,<literal>3

RESTRICT <rule>{TO,FROM}
<rule list>

ADVICE

STATUS

33
ACTION PERFORMED

Use <rulel> before <rMle,?> to
develop a subgoal,

PAIRWISE INEQUALITIES <proc>

RECURSIVE <rule>

Change the precondition Q of <rule:
to <literal> & Q if "FIRST" is
given otherwise Q v <literül.>.

If <ru]e> is given, remove thrt
rule. If <literal> then alfei
state to make <literal> not true,
If <advice num> then delete the
associated advice and undo its
effects on the system.

If <rule> is given then accept a
new rule. If <literal> then alter
state to make <literal> true.

<rule> may be modified,

If ^rule> is given then an assumed
rule may be defined.
If <literal> then alter state to
make <literal> true and mark it as
an assumption.

For any goal in Q, if "TO" is given
then only rules in <rule list>may
be used, if "FROM" then no rule in
<rule list> will be used.

All advice given that session is
displayed.

The following information is dis-
played :

-rules entered and goals
pending In current subgoal
tree,

-rules and goals in longest
path obtained so far,

-currently constructed program
segment

-longest program segment
constructed so far.

Pairwise equality is prohibited
in primitive procedure argument
positions containing "*".

The rule may be used directly to
achieve a goal in its pre-condition,
otherwise it may not.

Figure 4

__ - - ■ ■---■■

34
DEFINING THE PROGRAMMING ENVIRONMENT

3.2. ADVICE LANGUAGE

The advice facility ,s mtended to enable the user to .mpose structure relevant to

solving a partKular problem upon an already defmed frame. This additional structure

includes preference orderings among goals and rules, and restrictons on the search

space. The preferences may also reflect the kind of solution the user wants.

Advice is given during program generation by means of an interact.ve facility.

The advice subsystem may be entered by respond.ng to a system query, "DO YOU

HAVE ADVICE?" , or by typmg any Key durmg program generation. The user may

request to see the current path in the subgoal tree (.e. rules entered and goals

pending, and rece.ve a d.agnosis of the cause of any failure. This is useful in deciding

what advice to give.

The advice system enters a read loop recogmzing and numbering commands from

the language shown m f,gure 4 In the language syntax, opnonal symbols are enclosed

in T and Ti enclosing a hst of symbols m T and T indicates that one must be

chosen, <rule> is a rule name; <rule list> is a list of rule names, <proc> is a primitive

procedure name, <adv.ce num> is of the form W. where n is an integer; and Q

denotes the pre-condition of <rule>.

After advice has been given the system may be directed to reject the rule it is

currently using, if any. or to try (perhaps re-try) the current rule.

The advice facil.ty is an important tool for experimenting interactively with

different frames to determ.ne the.r adequacy and soundness. At present, the language

is rudimentary and should be extended.

3.3 PROGRAMMING LANGUAGE

The generated programs are expressed in an elementary ALGOL-like longuage

- - - - k^^MMMMMB

~

w^m^^m^^mim—^mmmmmmm

DEFINING THE PROGRAMMING ENVIRONMENT 35 f
which includes block structure, assignment statements, conditional statements, while

loops, and non-recursive procedures calls. The procedures may be typed, including

Boolean, and may have side effects in addition to the value returned. The procedure

parameters are normally called by value except in the case of special W-variables in

conditional assignments (rule ROfsection 2).

L — ~* - -

mm

DEFINING THE PROGRAMMING ENVIRONMENT

3.4 AN EXAMPLE

Consider the task of writing a program to compute the nth Fibonacci number for

some integer n. This tasK has been posed in [Balzer 1972]. The basic information

required is the recursive definition and the basis values. One way to express this in

the Frame language -ses the following predicates with the indicated meanings:

VFIB(X,Y): "The value of the X Fibonacci number is Y",
C(X,Y): "The contents of the variable X is Y",
FIB(X,Y): "The vanable X contains the Y Fibonacci number,
INTEGERS): "X is an integer",
ISVAR(X): "X is a variable",
>(X,Y): "X is greater than Y"
NEWVAR(X,Y): "X and Y are local variables"

The problem is ISVAR(X3)AINTEGER(N){?}FIB(X3IN).

The frame contains:

1. Axioms VFIB(l,l)and VFIB((ADD1 l),2Kthese define initial values).

2. Axiom
TAFIB

VFWm/1^2^18"5081^081 VI)>,V3)A 'm^LUS V2 V3»5

(defines VFIB(V1,V4; for terms beyond the initial values).

3. An iterative rule (named TFIB) with goal FIB(X3,N); this rule defines the conditions

to be satisfied during an iterative upward computation. The basis condition (to initial

the counter and program variables) is:

NEWVAR(VlfV2)AlNTEGER(V8)AC(Vl,(ADDl 1))AC(V211)AC(V3,(AD01 1));.

The loop invariant condition is:

C(V1,V5)AC(V2,V9)AC(V3,V10)AVFIB(V5,V10)AVFIB((SUB1 V5),V9);.

ize

This states that at each «ntry to the loop body, if the value in the counter is i and the

values in the program variables are | and k then j is the ith Fibonacci number and k is

the (i-Dst Fibonacci number.

- - -

■■ I»11" "'•• '■111 "■—«■■ ""■ ■ ■■' MwiMa^^

DEFINING THE PROGRAMMING ENVIRONMENT

The iteration step condition

C(V1,(ADD1 V5))AFIB(V2,V5)AFIB(V3,(ADD1 V5));

specifies what the iteration step is to accomplish. The control test, >(V5,V8) and

output assertion FIB{V3,V8) are given.
4. A definition of FIB in terms of VFI8 and C

TDFIB
VFIB(V2,V3)AC(V4IV3); FI8(V4,V2);

37

an

5. A simple primitive procedure for assignment is also given, i.e.

^(V1,A1)
ISVAR(Vl)jC(Vl,Al);.

No rules are csclared as assumptions. The additional information given to complete the

frame specification is shown in figure 5, and a program generated from this frame Is

shown in figure 6.

p 'l"i" ! ■PP

38
DEFINING THE PROGRAMMING ENVIRONMENT

PREDICATE SYMUOL FLUKVT ~~—~ ~~
' '— rAHT 1A1 UNIQUEN::SS

»t. TKUE riui ' Eii(,c'^ VFIH TKl'F FALSE
lffrEC:E« KALSE JJH« VUBC..)
" TRW Jr.* FALSE
ISVAR FALSE J^2 FALSE

SIMPLIFICATION KITES: FUNCTION OITTHUT lYMTAXl

(ADD: (mi X)} .X (ADD1 X) - (X+l)

(SUBI (Aooi x;; -. x VSUBI X) - (x-i)

 ,PLUS X Y) - (X+Y)

ADVICE: TRY TFIB BEtORE TDFIB

RECURSIVE TAFIB

Figure 5

flH»»♦•••».•♦•»»•*•. .»»»,,»,»,„,.»„,,,,.,,,,

PROCl (X3,N)
ISVAR(X3);im-E(;ER;N);
COMMEOT
INPITT ASSERTION
NONE
OUTPUT ASSERTION
FIH(X3,N)

BEGIN
vi - (i+i):
Y2 - 1;
X3 - (l+l);
WHILE -,>(Yl,N) DO

bEGIN
Yl - (Yl + 1);
Z2 - X3;
X5 - (X3 + Y2);
Y2 ^ Z2;
END

END

Figure 6

L

" " ' mm^'^mmimmm'mmmm

39

4. PROBLEM SOLVING PROCESSES

During the process of problem solving and program generation, information is

needed at many points to reduce the search space or to produce reasonable programs.

Some of the information is provided in the frame specification by statements about the

rules and predicates; other useful facts are provided to the problem solver in the form

of rather simple advice. Roughly speaking, there are six basic processes in the

problem-solving system where extra facts can help: (a) pattern matching, (b)

development of nodes in the subgoal tree, (c) updating the state description (i.e.

implementing invariance), (d) backtracking in the subgoal tree, (e) conditional branching,

(f) assembly of programs. Each fact (as opposed to a rule or axiom) in a frame

specification and each sort of advice has at least one function in speeding up a basic

process. Below we describe some of the ways in which the present variety of facts

and advice is used.

(1) OR-Node Selection. When more than one rule can be applied to reduce a given

goal, some selection and preference criteria are needed. By using the advice

system,the rules and axioms that may be applied to achieve goals within the

precondition of a rule or axiom may be restricted to or excluded from a given list.

Also, a preference ordering may be specified among rules and axioms with common

post-conditions. Goals within the preconditions of axioms are always restricted to

deduction within the current state, i.e. can be reduced only by use of other axioms,

and do not cause a state transformation nor add any construct to the generated

program.

(2) Predicate Classification. A predicate P is classified according to the Kind of

subgoaling permitted to achieve a goal of the form P(t). If P is declared to be NON-

■
__^ - -

«wniwmvnnPRmmpw^w ■■ ■■ ■—■ ■ ■ ■•"

40
PROBLEM SOLVING PROCESSES

FLUENT, then any goal literal containing P can be achieved only by deduction from the

current state. No rules (procedure, iterative or definitional) are applied. FLUENT goals

are attempted by deduction and slate transformation. If a fluent predicate occurs in a

literal which is the argument of the REQUEST modif.er, then it is treated as a non-

fluent.

(3) Goal Ordering. The achievement of a condition (and the efficiency of the output

program) is strongly influenced by the ordering of its subgoals. In particular, ihe

bindings of variables occurring in goals may be determined by earlier achieved

instances. In some cases only certain orderings will permit achievement. An objective

of an automatic problem solving system is to determine the optimal subgoal ordering,

but at present this is provided by the user when the Frame is defined and may be

altered by advice. However, the system automatically orders non-fluent goals first in a

condition; this relatively short achievement search is used both as a quick rejection

strategy and to get variable bindings of the correct type for the remaining fluent

goals.

(4) Recurring failures. When failure occurs in some subtree prior to successfully

solving a subproblem, its causes should be used to avoid repeating the same failure in

the continued search if possible. At present this must be handed using the interactive

«KJvius system. This informs the user of the current path in the subgoal tree, current

program generated, and goals that fail, thus allowing interactive correction when a

repetition occurs. These situations can also be eliminated by placing the (eventual)

successful subprograms on the program library for use as MACROS.

(5) Repetition. Certain types of looping behavior in the subgoaler are prevented using

the feature of the Frame language that allows a rule to be declared recursive or non-

-—- -- -

-W^^WI 'mm

PROBLEM SOLVING PRXESSES 41

recursive. If declared non-recursive, then that rule will not be used directly to

achieve a goal in its pre- condition and it will not be entered twice to achieve the

same instance of its post-condition within the same subgoal tree. A more general

mechanism should consider not only the current goat and rule but also the current

state as well.

(6) Truth Values. Though the underlying semantics is three valued, search efficiency is

gained by restricting relations involving certain predicate symbols to be two valued. If

a predicate P is declared to be TOTAL, then failure tc achieve P indicates that -P is

true. Only true positive instances of total predicates are stored in the state. The rule

of undetermined values is not applicable to literals involving total predicates. The

additional processing required for PARTIAL predicates is described in Section 5.

(7) Useless Procedure Calls. In some cases, the application „nd generation of

redundant or trivial procedure calls are detected and avoided. At the moment this is

done by placing restrictions in the frame on the actual parameters of primitive

procedures. The s/stem will not use an instance of a primitive procedure that contains

pairwise equality between its actual parameters that has been prohibited by the user.

For example, the advice "PAIRWISE EQUALITY K/iOVE(xl,x2,*,«r will cause the rejection

of the procedure call "MOVE(MAN,CHAIR,P,P)r'.

(8) Uniqueness Properties. Uniqueness or single-valuedness in argument positions of

certain predicates is sufficiently important to justify a special mechanism rather than

to rely on deduction using axioms. The designation of certain argument positions as

unique is equivalent to efficiently building in axioms of a particular form, e.g. P(xl,*)

represents the axiom,

P(xi,x2) A x2 »< x3 ■» -P{xl,x3).

These special axioms are used for consistency checking (in the implementation of the

rule of invariance) when the state is updated.

^mi^mmm^mmmw*~m^mm*mrm*^*^^**mai*~~ "viwu'v^r^mmmnmm***^™

42 PROBLEM SOLVING PROCESSES

(9) Context Linking. The context, which includes the state and bindings on subgoals

currently pending at a node, should be available to aid search decisions, e.g.

instantiations of subgoals or choice of rule, at descendent nodes in the subgoal tree.

The system has a mechanism that if requested will keep track of the instantiated goals

at each level of the subgoal tree so that their variable bindings are available when

attempting lower level goals that precede them in the depth first ordering. This is

used to instantiate the lower level goals. For example, suppose Q(b) A P(a) is a

condition to be achieved and a primitive procedure R(y) A P(X) {p(x,y)}Q(y) is applied

to achieve Q(b), then for the P(x) in the precondition of p, P(a) will be used since it

must be achieved at the higher level anyway, i.e.,

/ \
/ \

Q(b) P(a)
A

/ \
R(b) P(x)(<x*-a>)

This heuristic may be viewed as the opposite of subsumption, the strategy being to

get ground instances as soon as possiblu to help avoid long searches using rules. This

is a rather restrictive strategy that may exclude solutions and is only used when

requested by the user.

(10) Evaluation of Predicates and Functions. For certain predicates occurring in

subgoals, achievement is most efficient by direct evaluation. If a literal occurring in a

goal is formed with a predicate that has a LISP definition, then that literal is evaluated

as a LISP statement. Special processes or even subsystems can thereby be linked into

program generation. Evaluation of arbitrary functions occurring in terms in arguments

of goal literals is done if the function occurs in the scope of an EV modifier. These

evaluations assume the soundness of implicit axioms describing the LISP definitions,

m^pwwpi^www^^w^"»-1 (■■ ■ I» w*^i*mjmmmmm'mmmm**m^*^^^^ ||11"" ■■ •', "-^^mmmmmm^i^*

PRObLtN< SOLVING PROCESSES 43

«nd the consistency of these axioms with the Frame. For example, the equality-

predicate, M-M, is evaluated using the LISP "EQUAL", and the predicate

NEWVAR(xl,x2....,xn) takes an arbitrary number of arguments and binds each Frame

variable xi to a new program variable (for use perhaps as a local variable in a block).

(11) Simplification rules. Rules of the form s ■» t where s and t are terms, may be

included in the Frame. Such rules are applied to simplify terms in goals by replacing

occurrences of su by tot. This not only reduces the complexity of terms in the

subgoal tree, but it also modifies the pattern matching process and the set of rules

that can be applied to reduce a goal.

(12) Computing Input/Output Assertions. In Section 2 primitive procedures were

viewed as Frame rules of the 'jrm ||-P{p}Q, where P and Q are the pre and

postconditions for p. The conditions P and Q may also be v.ewed as sufficient input

and output assertions for p , that must be satisfied by the actual parameters of p. For

any generated program segment A, the input assertion Ia is computed as the

conjunction of all literals, I, from a state that were used in achieving subgoals

encountered during the generation of A and did not occur in that state as a result of a

postcondition of a procedure whose generation in A preceded the addition of I to Ia.

The output asser' on Oa is the conjunction of literals added to a state during the

generation of A that are true in the final state. The usefulness of computing sufficient

input and output assertions for a program or segment thereof will become apparent

when we discuss program generalization and the construction of conditional

statements.

All of these applications of facts and advice with the exception of (12), are

intended to have a direct effect on reducing the growth of the subgoal tree (process

--- -- ■ -- — — - ■ '"L-- ■.-^-...—.. .—.-^,-..■■.-.
- ■ - - --

 wm "■"n>W^^^^^MPIIiiMVPIP|IMP<m*Ps^V"nV« ^ ^^^i

44 PROBLEM SOLVING PROCESSES

(b)). In addition, the pattern matching process (a) is extended by (11); (c) is aided by

the restriction of trutn values and the special axioms (6,8); (e) is ».ependent on (6 and

12); (f) is aided by (3,7,11,12). There are other techniques, mainly details of the

implementation, some of them heuristic, that affect problem solver, particularly the

backtrack (d), the updating (c) and assembly of programs (f) (e.g. the implementation of

the A connective by software interrupts that protect already achieved goals, includes

certain assumptions about backtracking when an ANO-node tails).

^ ■ ■ — — --

Pminww« .mil HUB

45

5. GENERATION OF CONDITIONAL STATEMENTS

Conditional statements are generated in situations where the rule of

undetermined values {R6) applies or when the outcome of a primitive procedure is

uncertain. In this section the system methods for constructing conditionals will be

described and an example given. The question of extending the formal algorithm and

the correctness proof is considered.

5.1 UNCERTAIN PRECONDITIONS

As previously mentioned, relations involving partial predicates may have truth

values of TRUE. FALSE, or UNDETERMINED, whereas all other relations must be either

TRUE or FALSE. Partially valued predicates are intended to express the possibility of

an uncertainty or lack of knowledge about a state arising during the problem solving

and program generation phase of the system. The formal algorithm for deciding when

an uncertainty has arisen is rule R6. As with invariance, the implementation of R6 is

only an approximation to the formal rule. The system may give up too early, but this,

in itself, does not lead to incorrect programs, merely redundant ones.

5.1.1 UNDETERMINED VALUES. During the generation of a program, uncertainty may

arise when a precondition for the application of a rule is UNDETERMINED with respect

to the current state. The implementation of the rule R6 is described by the following

definitions:

DEFINITION A literal I is UNDETERMINED in a state S if the following conditions hold:

(i) pred(l) is partial,
and (ii) the system halts without solving S{?}l,
and (ili) the system cannot prove SuFs-^l.

Condition (ii) means that I is not true in S nor can S be transformed into a state

-- - - - - •nMMMMMy

tmnm "•■■■-

46
GENERATION OF CONDITIONAL STATEMENTS

in which I is true. If condition (ii) is true and 4 is true in S then I must retain a truth

value of FALSE md the precondition subgoal I must fail. Failure to prove H from S

establishes a truth value of UNDETERMINED for I with respect to S. This definition

applies to fluent and nonfluent l.terals but since the truth value of a "nonfluent" cannot

be changed by a state transformation, for them, it is sufficient to use only the logical

axioms in deciding condition (ii).

For the more general case in which the precondition may be a disjunction of

literals we have the definition,

DEFINITION A disjunction of literals {I.]U is UNDETERMINFD in a state S if at least

one literal is UNDETERMINED and no literal can be achieved from S.

■— , .» ■ ----

_J

 ■ ■

GENERATION OF CONDITIONAL STATEMENTS 47

5.2 CONDITIONAL STATEMENTS

When a pre-condition P is UNDETERMINED in a state S, a conditional branch is

inserted in the solution program. If P is a single literal I, then program generation may

continue either along the path in which I is assumed to be TRUE and in which future

goals are attempted with respect to state S U{l}, or along the path in which M is

assumed to be TRUE using state S UH). The system convention has been to generate

a call to a yet ungenerated procedure for the latter case. The tasks of generating

such contingency programs are placed in a subproblem stacK for later attention (see

Section 5.5). Program generation continues, by convention, along the path using state

S U {I}. This path is referred to as the "trunk" program of the tree of contingency

programs generated while attempting to achieve the main goal. The path selection at

present is rather ad hoc since no assignments of probability are made at the points of

uncertainty. For an undetermined disjunction 11 }
i i=l"

if -I i then

if -I2 then

"f A then P*

OlSQ p,,. -1

•

clsu Pi
else pj

where each p, is a call to a program to achieve a selected goal G

from state S, - I A (I, 1 i-j+l & i<,n } A {.I, , i<;i<jj } and p, is the trunk

program segment which satisfies SAl^p,,)G and forms the else-statement in the main-

I "■!■ ■ ■"!

GENtRATIOlM OF CONDITIONAL STATEMENTS

clause of the conditional. Each member of the set of triples {(pi , S| ,G):lSjim} is

placed in the stack of contingencies and program generation continues for pa The

assumed literal, li, is removed from the state following the generation of the ELSE

clause in the trunk program if it .s not in the output assertion.

GENERATION OF CONDITIONAL STATEMENTS 49

5.3 SELECTION OF CONTINGENCY GOAL

The goal G to be achieved by the contingency programs is selected from the set

o* goals in the subgoal tree that are global to the undetermined precondition. Let us

refer to the set of goals which are below G in the subgoal tree, as the SCOPE of G.

The particular G chosen and its associated scope affect the length of pa , duplication

among contingency programs, degree of difficulty in generating contingency programs

and validity of their use. If the structure of the trunk program is to remain fixed

during contingency program generation then the choice of G cannot be ('sferred. The

block structure of our program language imposes the restriction that for any

conditionals in pg, a contingency goal G' must not have a greater scope than G. There

Is also the problem that if G is not fully instantiated then inconsistent instantiations

may occur in different contingency programs which must validly rejoin the main

program following the ELSE clause. The present system selects the least global fully

instantiated goal thereby satisfying the block nesting constraint and minimizing the

scope while avoiding the problem of handling deferred instantiation. This selection

process is always effective in the present system since the top level goal is fully

instantiated.

5.4 REJOIN CONDITIONS

When a contingency progran is generated its output state must satisfy certain

conditions, he.eafter called the rejoin condition, for return of control to the trunk

program to be correct. Consider the case of an undetermined goal L in state S and a

contingency goal G in figure 7 . Let A and B be program segments that satisfy S A

L{A}G and S A -.L{B}G and let C be the rest of the trunk program.

_^. ^. . .. -■..--. ^ .-. _ ^—■

wm

50
GENERATION OF CONDITIONAL STATEMENTS

NO

A YES

A

>'
■L

C

Figure 7

Let R be the output state of B obtained by applying invariante; thus S/H.{B)R

and RaG. Similarly, let SAL{A}P where P^G, and let Q be the sufficient subset of P

required as input to C (see Section 4(12)). Then, the ktJOlN CONDITION for B is RoQ.

B is s-iid to have BAD SIDE EFFECTS if in fact FoQ cannot be established.

 -

wmm^Hmmmm ^mmm^
' ' ■"■ "

1 111

GENERATION OF CONDITIONAL STATEMENTS 51

5.5 SUBPROBLEM STACK

The task of generating a contingency procedure is specified by the quadruple:

(<procname> <stale> <goal> <rejOincond>)
where,

<prccname> is the name of the yet ungenerated procedure that must
satisfy <-state>{<procname>)<goal> A <rejoincond>.

At the point in the planning when the uncertainty is encountered, the first three

elements of the quadruple are placed in a stack. The rejoin condition is not known at

this time since it involves the input assertion for the trunk segment C following the

point where control returns from the contingency plan to the trunk plan. After C is

generated, the rejoin condition is computed and stored as the fourth element of the

quadruple.

When planning has been completed fur a trunk procedure, if the subproblem

stack is not empty then contingency planning may be done by removing a quadruple

from the stack and posing this as a program generation task. The state of the system

is initialized to the specified contingency state and the subgoaling system is given

<goal> as its main goal, if it is successful in achieving a state in which the main goal is

true then a test is made to see if the rejoin condition is true in that state. If it is then

the procedure declaration is adjoined to its trunk program. If the condition cannot be

proved, the system allows the user two alternatives: (i) Mark the call to the program

as an error exit in the trunk program, or (ii) "Fit" the program to the trunk progrüm by

posing the currently untrue rejoin condition as a new goal, constructing a new program

segment that achieves it, and appending this segment to the end of the contingency

program.

This process of generating a trunk procedure which tt.ay create new contingency

. -■ - ■i^MMiMaMa - J—__^_»j

52
GENERATION OF CONDITIONAL STATEMENTS

tasks then generating contingency procedures as directed by the user may continue

until all contingencies have been processed and the stack is exhausted.

5.6 COMPUTATION OF INPUT-OUTPUT ASSERTIONS

The computation of input-output assertions for programs not containing

conditionals is described in Section 4(12). The uncertainty as to which path

computation will follow in a program containing conditional statements compl.cates

these assertions. The input-output assertions in this case must be computed

incrementally as each contingency program is generated.

In the conditional statement shown in figure 7, suppose we know the minimal

input and output assertions for A and B, say P{A}Q and R{B}S. then the input and

output assertions for the conditional statement are

(L A P) v K A R){if L then A else 8)0 v S.

To reduce computation, We use the simpler sufficient input assertion P A R,

(Note that PAR should be consistent since it is a subconjunct of a previous state).

There doesn't appear to be a simplifying approximation for output assertions .

m—Ägb^w——^—^M^-a^_HMa^

I ■•■PPW^^"^^^-"«

GENERATION OF CONDITIONAL STATEMENTS 53

5.7 UNCERTAIN PRIMITIVE PROCEDURES

A primitive procedure q defined by P{q}0 has an uncertain outcome if Q is a

disjunction. In the present system, disjunctive post-conditions use the exclusive OR

connective, "•". This allows us to define frame procedures that have an intended

result hut may be unreliable. It is assumed that exactly one of the possible outcomes

will us »rue in the output state . At the point where an uncertain operator is applied,

the problem solver has no knowledge of what the outcome will be and a conditional

statement must be generated. Let Q be the disjunction of literals {lifi»!. The first

outcome li is considered to be the normal (goal) result of executing q. Following the

inclusion of q in the program in state S, a conditional statement of the following form is

generated.

if - li then

if " ll A Ij A -«I3 A.,.A -. \„ then p2

else if -^ 1; A - |2 A I3 A - I4 A...A -^ ln then pa

•

else if - Ij A - l2 A...A - In.i A ln then pn

else p^i

where each Pi , 2 i j <; n, is a call to a program to achieve l| from state S| - S U {l| }

U {^ l| : i r ; & 1 S i S n} and p^i is an error exit. The contingency states will

correspond to the n ways of assigning exactly one literal true and the remaining

literals false.

... —

"'" '

54 GENERATION OF CONDITIONAL STATEMENTS

5.8 AN EXAMPLE

Suppose a procedure is to be generated for a man to travel from San Francisco

to New York given three modes of travel, i.e., flying, driving, or walking This is similar

to the "airport problem" discussed in [McCarthy 1959]. A FRAME for this problem

consists of defining a primitive procedure for each mode of travel, an initial slate, and

relation information as shown in figure 8. A few of the contingency programs

generated are shown in rigure 9.

^^

■ " -11

56 GENERATION OF CONDITIONAL STATEMENTS

FKOCl H\N MVC)

KUB MAN ;Al'l.. MM; ;\'\A\T. 1111 iAIRFORT VYC ;
come NT
mWT AMIRTION;

AT MW HOW XCLEAR n.-J. lv\K/\tE /\AT ICW (AKA(.i; /AT 1111 SI n
AniCI mi n;i.u^ sro NYC 'Ki.;s HMV

\MIVABU CAUCE Sid «WALKABU IMMl. UMCE
OLTRT A88ERTIO:;:
AT UM.1 Slo ^T (ni XYC 'AT .'WN NYC ;
COMMEVT

CKOCU ATlEMJTS_H)_At:illE\T:_ AT M,\'; V.x
PROClC ATTE>mS~IO ACHIEVE" AT MAN GARAGE
FKOC ATTE>lfTS_TO_ÄCHIEVE AT MAN GARAGE
FROC- AIIt.'lKlS^U) ACHIEVE* AT MAN C\KACE
PKUC ATTE.,lFIS_IO_Ai(IILVE~ AT M\N STO
woe. AHEKPTI_IO_ACHIEVE" AT MAN sto
PROC3 ATTEMPrSJO ACHIEVE AI MXN .NYC
FKÜC AT1EMPTS IO^ACHIEVE" AT MAN NYC ;

BEGIN
If -flltl 1111 THEN

PRO(>ttN NYC
ELSE

BEGIN
IF tLEAR SiU N-YC; THEN

PKOCj MAN .NYC
Kill

htCl.N

ir -KINS BM; THE:;
PROC- MAN Slü,

ELSE
BEGIN

IF -DKIVABLE GARAGE SFO, THEN
FKüC. MAN SFO,

ELSE
BEGIN

IF -«LEAR HOME GARAGE THEN
IF -THASL'MBRELLA MAN THEN

PROC' S\N GARAGE;
ELSE PROC MAN CARACE

ELN
BEGIN

IF-iWALKABLE HOME GARAGE) THEN
PROCl; MAN GARAGE,

ELSE

KCIM
WALK ^N HOME GARAGE
END

END

DRIVE MAN BMV GARAGE SFO,
END

I -.,1

FLY MAN Fill SFO NYC 1
IF -AT(MAN NYC) TIUN

IF -ATCIAN ;,Y'J) A CRASHED (Til I SFO NYC)
PROCl1(MAN NYC)

ELSE PRl"EK(MAN NYC)

ENDENÜ

END

PROC ;MAN NYC |
R0B'M\N);ALTO BMU1, ;
COM>ENr

INPL'T.ASSERTION':

AT MAN HOME ACLEAR HOME GARAGElAAT: BMJ GARAGE'IARUNS ' BFK •
ADRIVABLE GARAGE NIC ; AWAI.KABLE vHOME GARAGE,

Figure 9

 - ■- —~—~

.—-—-—-—""-'*-——— m^mm^mrnw^m^mi mi i i , n uiiiiJviuiAMiHvmiMimvmi null* um ■■ um

GENERATION OF CONDITIONAL STATEMENTS 57

(AT HAN GAKACE)
[AT MAN CARACE)
AT MAN WRAGE)

(AT MAN NYC)
(AT MAN NYC);

OUTPUT_ASSEKiION:
AT KMJ NYC)AAT.MAN WC);
COtMENT

PROCl' ATTEMITS_T0_ACII1EVE
PRocis ATTEMPTS^TO'ACKIEVE

PROCU ATTtNRI TO ACHIEVE

PROC13 ATTEHPrS~Tü~ACMlEVE
PRUCl^ AITEMPTS^TO ACHIEVE

BEGIN

IF-.RUNS,bMJ) THEN
PROCI. (MAN NYC)

ELSE
BEGIN

IF-.URIVABLEiG/.RAGE NYC) THEN
PROCliiMAN 1IYC)

ELSE
BEGIN

IP-1 CLEARiHOME GARAGE) THEN
IF-illASCMIRELLAiMAN) THEN

PROCU MAN GARAGE)
ELSE PROC'^MAN (ARACE I

ELSE
BEGIN

IF-.WALKAB .E.HOME GARAGE) THEN
PROCI6(,iAN GARAGE)

ELSE

BEGIN

WALK (MAN HOME GARAGE);
END

END
DRIVEfMAN HMJ IARAGE NYC)

END
END

END

PROC-. M\N SPO)
ROb' ^N);
COMMENT
I.NPD1 ASSERlxON:
AT(MA?: HOMI.j'CLWR'HüME SK3)AWALKABLE (HOME SPO)
OUTPUT ASSERTION: - '
AT MAN ""SPO J ;
COMMENT

PROC 5 ATTEMPTS_TO_ACHIEVE_ ;AT MAN SPO)
PROC.^. ATTEMPrS_TO_ACHIEVE_ AT MAN SPO)
PROC J ATTEMPTS TO ACHIEVE (AT MAN SPO);

BEGIN

IP-iCLEAR(HOMF. SPO) THEN

IF-OIASUNIIRELLA(MAN) THEN
pRoa^'MAN iro]

ELSE PROC -fMAN SPO)
ELSE

BEGIN

IF-^WALKABLE HOME SPO) THEN
PROC.'^ (MAN SFO)

ELSE
BEGIN

WALK(M^N HOME SPO)
END

END

END

PROCir'(MAN NYC)
ROB MAN);
COMME.TT

INPUT JVSSERTION:

AT(HAN HOME)ACLEAR(HOME NYC)AWALKABLE(HOME NYC)

Figure 9 - continued

 ■ ■ ■

i^gmm^mmm

58
ÜtNERATION OF CONDITIONAL STATEMENTS

OUm'T_ASSl-:RIION:

AT MAN^NYC ;
COMMKNT

PROC.' ATTCNnS_TO_ACHICVt 'AT H\N NVCi
PKOC AiTtMITS_TO AtHIEVE_ Al M,\N NVC !
PROC,' ATTeNPn~TO~ACHtEVC Ai MAN NYCl-

BtGIN '

IK-iCLEAK IIOMK NYC^ THEN

IK -1HASL;ilik£I.IA HANI THEN
PRÜC ,MAN NYCl

tl.SE PRIX:.'' 'MAN NYC^
ELSE

ICCIN
IK-'WALKAHU: HOME NYC) THEN

PROC'0 MAN NYC)
ELSE

BEGIN

WALK MAN HOME NYC1

END
ENU

END

Figure 9 - continued

^*— — -- - — - *.** "- -- - —"- ■ - -— ■■- -■—■■--^-^-l r.-^„ .. .„-^

I«"■■" ■ m

GENERATION OF CONDITIONAL STATEMENTS 59

5.9 CORRECTNESS

Conditional statements will be correctly generated if the system methods are an

accurate implementation of the conditional rule, R5, presented in Section 2. Referring

to figure 7 in Section 5.4, if we let S be the output state of C then by construction and

by verifying the rejoin conditions we have,

(1) IAL{A}GAQ,

(2) IA-L{B)GAR,

(3) Q{C}S,
(4) |- H = Q, (rejoin condition verification)

and the correctness argument may then be completed as follows,

(5) I A -L{B}G A Q, (2(4,Consequence Rule)
(6) I{if L then A else B}G A Q, Unconditional Rule)
(7) I{if L then A else BiCJS, (3,6,Composition Rule).

It should be noted that if conditional statements occur in B then R may only be

an approximation of the true output state resulting from executing B zs discussed in

Section 5.6. Similarly Q may be only an approximation of the truo input assertion for

the remainder of the program. In these cases an incorrect program may result.

However the above argument serves as a justification for the system methods.

■ - - ■

■uwinuu nvmg^^m^m

60

6. GENERATION OF ITERATIVL7 STATEMENTC

An iterative rule allows the program generator to construct a WHILE loop

provided it can construct a loop body to satisfy the premisses of th<s rule. Ultimately

such rules should require the user merely to specify an invariant in order to have the

s/stem write a correct iterative program. At the moment, the user needs to furnish

some additional relevant facts. The algorithms used in the system to implement

iterative rules of the form 32 (Section 2) and to assemble while loops are described

briefly and an example given. Details of of the system implementation are found in

Section 9.

6.1 PREMISSES FOR CONSTkUCTING A LOOP

An iterative rule is defined by the assertions P(basis), Odoop invariant/,

ROteration step goal), G(rule goal), Lkontrol test) and S(output assertion). All the free

variables in R and L must be among the free variables in Q. In order to use the rjle,

to achieve U?}G say, the formal algorithm requires that a.l of the following subgoals be

achieved or be true:
(i) Construct A such that UF)||- I{A)P
(ii) L(F)|- I{A}Q
(ill) Construct B sucn that UF)||-QAL{B}R

(iv) L(F) |- QAL{B}(3Z)Q(Z)VW3Z)Q(Z)AM.(Y))

(V) construct C such that L(F) ||- QAL{BiC}Qv-L

Note thr.t (ii) and (iv) are restricted to first order rules (consequence, invariance, and

the frame axioms). The input state for (iii) is ij/\L In addition, an iterative rule must

satisfy the following minimal consistency requirements within the frame F.

(vi) -(S u F 3 L) and S u F = G.

The conclusion of the rule is: I{AiWHILE L DO BEGIN B;C END}G.

Iterative frame rules are instances of the iteration rule [Hoare 1969]:

QAL{A}Q, 'JA-L^G

_--„____J1-. M^MM

immm^^m^^^^

GENERATION OF ITERATIVE STATEMENTS
61

Q{WHILE L DO A}G .

It is possible to derive a weak form of the rule:

OAUAIQVM., -UG

Q1WHILE L 00 A}G .

The weaK form allows the invanant to tail on ex.t from the loop. We have found

the weaK form convenient to use in many examples.

The present implementation sets up clauses (i) - (iv) as a THAND of subgoals to

be achieved. More specifically, suppose an iterative rule is mvoKed to solve the

problem I{?}G. Let V be the list of variables m Q. The system does the following:

(1) A program segment p(P) is generated such that I{p(P)}r and TüF |- P (p(P)

may be empty).

(2) An instance (JK of the loop invariant must be true in the state 1', i.e. \ - {<vi

«- si >,....<v„ ^ sn ^ is constructed such that I'uF 9 Q\. (3) A program segment

p(R) is generated such that Q A LWOR" and TuF = R.

(4) It is checked that VuF^Q/Sv^L for some substitution ß and a set of

conditional assignment statements C is constructed such that riC}Q v 4.

Thus, at the moment, clause Qv) «nsures that C need contain only conditional

assignments. In the future we would want to relax Ml restriction. It is assumed that

the user's definition of the rule satisfies (vi). The user may omit S or L; in the latter

case -• G is used as the control test.

MMMri

62 GENERATION OF ITERATIVE STATEMENTS

6.2 ASSEMBLY OF WHILE LOOPS

After the premisses have been acnieved, a loop is assembled as follows:

(1) Let Y and W be two distinct lists of variables in one-to-one correspondence

witn V. For eacn <v, ♦- s, > < A co is.trud an initial assignment statement "yt *"

S| ". Let "Y ♦- S" denote "yi •••l »yi«*t| M Vn •■ sn ;"■

(2) The WHILE loop may then be assembled m the form:

pkPh
Y-S;
WHILE L(V) 00

LEGlN
piK(Y))j
If Q(W) THEN Y ♦- W;
END

where 0(W) is an expression containing calls to boolean procedures indicated

(syntactically) by the presence of the special W-vanabies (Section 2, Kule RO).

There are many heuristics in the system to reduce the number of program

variables, i.e. y's and w's generated, to select the relevant portion of Q to be used in

conditional assignment statements, to generate simple assignment statements (whose

right hand sides are functional terms composed from functions in (he frame) instead of

conditional assignments, and to eliminate unnecessary assignment statements in the

assembled program. These may all be classmed as optimizations, some of which are

done as the "WHILE" loop is assembled and others during a laiur optimization phase.

6.3 UPDATING THE STATE

After the while statement has been generated, the system updates the stale. If

an explicit output assertion S is given then the rule of invariante is applied in the

same manner as with the postcondition of a primitive procedure. In the absence of an

output assertion, a special update procedure runs the loop mterpretiveiy on the state

,_-__

GENERATION OF ITERATIVE STATEMENTS 63

until the goal G becomes true. The resultant statt» is used in further planning. This

latter method is useful when the global effects of the loop compulation are so

extensive, or jven unpredictable, that an explicit specification of S is difficult. It may

result in excessive update computation, particularly when loops are nested.

6.4 AN EXAMPLE

As an example of "while" loop generation consider the task of genereti',f5 a

program to compute the value of n factorial tor some positive integer n where

multipli:ation is not a primitive operation but is done by repeated addition. The Frame

for tnis problem is shown in tigure 10. Also used is the primitive procedure for

assignment used in the example in Section 3. To achieve the goal "FACT(X0,N)" the

system applies the iterative rule TKACT. The premises are achieved according to

Section 6.1 whicn results in an application of another iterative rule TPROD. The

premises of TPRÜO are achieved, the "innär" loop assembled and optimized and state is

updated witn respect to the output assertion. The assembled while loop is appended

to the iteration step program for TFACT. The "outer" loop is then assembled and

optimized and the state further updated reflecting the total state transformation of an

execution of the neslcd loop program.

The output prcgrarr after optimization with statements labeled accordirg to their

source ot (t,eneraton in the algorithm is shown in figure 11. Note that successive

values ot the program variables are obtained by simple assignment siaiemonts rather

than by conditional assignment as described in the algorithm. This is the result of

applying system heuristics which are able to use the arnhmetic operations PLUS and

Müüi which are primitive tunctions in the trame, to 'eplace the conditional

assignments.

■ i —mmMtnm*mmmmm*t

^^^mmi^i^m ■ -WIII mi i tmtm

GENERATION OF ITERATIVE STATEMENTS 6.'*

RELATIONS MKHNiriON lU ENT PARTIAL UNIQUENESS

VFACT(X.V) "The value of Y lactorlal ii X" TKL'E FALSE VFACiC,»)

C(X.Y) "The contents of variable X i» Y" TRUE IALSE e x,'

FACTX.Y) "The variable X contain« Y factorial" TRUE FALSE FACT X.«)

VPRODICT X,V Z) "X is equal to tlic product of Y and Z" TRUE lALSF FALSE

INTEGER(X) "X Is an Integer" FALSE IALSE 1 ALSE

ISVAR'X) "X ii a variable" FALSE 1ALSE FALSE

NXWVAR, X 1 "X la a new local variable" TRUE FALSE IALSE

•(X.Y) "X equals Y" TRUE 1ALSE FALSE

AXIOM ANTECEDENT CONSEOUEHCE

TAFACT [■(V9,l)Aa{V10ll)]
V VFACTlCDIV VJ V10),:SUBl Vlß));

VFAtTiVi.Vlf);

TAPROI) (-(V5.ß)A.(V^.Ö))

v VPROUUCTUMINI'S V^,Vi),(SUBl V6),W3)|
vraoi>ucT(v$,vi ,v))i

: lii'i.'KI'^TlON RULES

(AIiDKSUBl X)) - X
(SUBl(AUDl X)) • X
(HINl-SlPLUS X Y)Y) --. X
(DIV'PRÜD X Y)Y) -. X

ifNcrioN oiTPiT s'l.^r.vx

AI)Dl X) • (X + I)
SUBl X) - (X - I)
PLUS X Y) " (X + Y)

Figure 10

. _. _ .. „ ___ _. . .. - - -

II "l"!'!

n5 GENERATION OF ITERATIVE STATEMENTS

ITEK/VllVK Kll.tS

RULE SAMT.

RAS IS CONimiQN

TtACT

NfU'VAK WvAlNTECER.V..

AVCACTV^ ,V» AC^V .V

AC(V7,V6);

TPHOn

NEWVAK(V4 lAC^ VU.C)

AC(fl,0)j

INVARIANT i v .viiJ)Ac W3tV9)

AVJACTi V.'.VIC- ;

C(V'»,V6)AC(V1,V

AVPRODL'LTV^,;' ,V3);

riEKArnv; STEP

UM.

TEST

C(V(',(ADI)1 V19))A
PRuüUCT;v,'.VU,(Ar)Dl V10));

EACT'v.SV*) ;

C(VU,(AÜD1 V6))
C(VI, (PLUS vr,,V3))i

PKOUUCT;Vl,V2,V3);

-T-(V6,V2);

OUTPUT ASSKKTION C(V3.(FAC VU)); C(Vl,(PROD W?,V5J);

Figur« 10 - continued

!

■ .. ■ — -"

"■^^^"^ ■ ■ I

66

p(P)(TFACT)-

Initial Assignmcnt-
(TFACT)

GENERATION OF ITERATIVE STATEMENTS

PRÜC1(X0 N)

ISVAR(xy;);lNTEc;ER(N);

COMMENT

INPUT ASSERTIONS:

NONE

OUTPUT ASSERTIONS:

C(Xy4 (FAC N));

BEGIN

- X^ - 1;

— YV - 1 ;

WHILE -1= (Yh N) IX)

p(P)(TPROü) (Optimized Out)>

Initial Assignment (TPROU/

p(R) (TPROD;-

UPDATE Assignments (TPROD)
(Optimized Out)

BEGIW

Yh - (Yl+ + 1);

rYl - p;

Jß - P;

WHILE -!= (Yl Xji) DO

BEGIN

|Y2 »- {\? + Yl+);

(Y! - (Yl + 1);

END

UPDATE Assignment (TFACTr Xp - Y2 ;

END

END

p(R)(TFACT)

Figure 11

 ■ - -■-

r*^^m*^mwmv*^^iBmmi^~^vm*mm

6 7

7. PROGRAMMING AIDS

The complexity of programs that can be generated using the system is increased

by some simple facilities described in this section. The capabilities discussed here are

incremental extension of a current program, use of a program library, and expansion o'

assumptions.

The system enables a user to plan incremental extensions of a program simply

by saving each completed program segment A and its output state 0 in a stack. The

user may then pose a new goal G and solve the problem OtB}G The composition A;B

will then be output. He may choose to start from any previously saved state and

associated program segment.

7.1 PROGRAM LIBRARY

When a program A has been generated to solve H{A)Q, the user may request

that it be "generalized" and filed in the program library where it may be accessed by

the subgoalrr (similar use of a Itf rary in robot planning is reported in [FiKes.Hart, and

Nilsson 1972]).

Generalization is a process which constructs a procedure declaration for the

library as follows. Let I and 0 be tie input-output assertions comouted for A during

its construction. We assume P^I, O-QAO', and 1{A}0. The non-fluent conjuncts of I are

taken as the type declarations, their variables being the parameters cf the new

procedure. These actual parameters are replaced throughout I{A}0 by new formal

parameter variables. An entry of the form:

((<procname> <goal> <effects> <type conditions> <state condition>)<body>)

is made in the library, where <procname> is a name and parameter list, <goal> is Q,

<effects> is 0', <büdy> is A, and it is assumed that

<type conditions> A <state condition>{<procn8me>}<goal> A <effects>

. --.- -■_, --

11 in i mmvrmi^**fm F—"■--—-—-

b8 PROGRAMMING AIDS

Library procedures are used during program generation by matching on the

«goa^ then establishing the <type conditions> and <state conditions> as subgoals in

that order. If the conditions are satisfied then the instantiated <body> is included in

the program. The system requirement of achieving the input assertions and processing

the output assertion during update for a program taken from the library prevent its

incorrect use in a particular program. There is no attempt to organize the library for

efficient selection; the system merely tries all library procedures before any frane

rule.

As an example of program assembly using the library consider the task of

building a tower to reach an object, i.e. achieve "HAS(M9r. Use will be made of a

library program to find and put on shoes which achieves WEARIN<M,SHOES), previously

generated using the same Frame. The generated program is then extended

interactively by posing a new goal, AT(M,P).

A robotics frame for this problem is shown in figure 12, and the generated

programs in figure 13.

■

r »■■«p»""—•■»• «—■

72
PROGRAMMING AIDS

PKOl'l (M IHOU)
UMOI M iCHAII GIAIR. IjCUJTMKS SHOES;-
COMMI:N r
INPUT ASSKKIION:
HEICHT M 0 ^AT^^I P)AAT tHAIK.~ COKNEK!
ÜLiPlT_ASSERnON:
AT H CORNERJAIÜL-NU M SIIUES ,AWEARINCiM SHOES ■
U)MM-::.T

PRO'" ATTEMPTSJO ACHIEVE POUND M SHOES) •
KCIH
TRAVELS P UIK.KK ;
IF -4M1ER SH;)' S CNAIK) THEN

PROC?vM SHOtS)
ELSE

BEOI N
FIND H SHOES CORNER;
END

PUT ON N SHOES
mo

PROC.} ,M B)

CXNTM',B0X K ;iCU,r,1£S SH0ES^IR ^IK.)iBOX1..,.3UPPU1SE0C);BOXBf);BOX;B3)
INPLT_ASSERriÜN;

Awr^r'r" T SU)Cl^'CHr M (3)AAT;CHAIR. CORNER lAATiB* SLOC'
AHEICH1 I MAiTAOMIlCHT« U AAT(l6 SLOC)AATfB; SLOC)
OnPUT_ASSERriUN: '

Al{'!rIi'FM;^h«i'',',A"-I(B4 L'WSTACK£D(B4 B7 U)AAT(B6 U)
AST»rKEli(B6 hi, U)A3TACKHElf;ilT(4 U/vHASfM B)AHF1CHT(M 0!
AWWCM.WOMJAimMIIC M,SHOES J-^IB^M^TACKE^'BJ^ U) ;

TRAVEL'M ^(ORNER; ;
IF-UNDER SIOES CHAIR.) THEN

AnembUd (.„(XJ „ ;(i0Esj

'f01" > ELSE
Llhrary Bt(:,N

FIND M SHOES CORNERi
END

UT ON N SHOES ' ;
TRXVETVfTuRNER SLOt);

MOVE M H SLOC U ;
TRAVEL M U Smc);
MOVE M B.. SLOC U);
LIFT M H.. U);
CLIhfl M H- ü)i
STACK M th IT U] ;
CLIMd H B* U);
»3-2;

IF NEXT BOX WU »fc) THEN
ZU - Wi* ;

WHILE-iSTACKHEICHT i. U) DO
BEGIN
Z3 - ADDllYJ);
Yl - YU ;
IF STACKED VI Wl U) THEN

Zl - Wl,
WHILE-HEIGHT(Ml)DO

BEGIN
UNCLIMB M VI B)j
Yl - Zl;
IF STACKED VI Wl U) THEN

Zl - Wl;
END

STEPOFF M B7 U);
TRAVEL M U SLOC);
MOVF.M Z* SLOC U);

Figure 13

w^mmm^mv^mm** . ■■« m*K^

74
PROGRAMMING AIDS

7.2 EXPANSION OF ASSUMPTIONS

A basic capability for •tructurina programs is provided by interactively allowing

the user at any level in program generation to define a primitive procedure, P{p)Q, as

an assumption. The program generator will then use p as usual except at each point

of call to p in the program the current state P and current goal G will be saved. The

triple <p(r,G> is placed in a stack of subtasks for later expansion.

When a program containing assumed primitive procedures has been generated,

the user is given the list of assumptions his program depends on and allowed to

selectively expand them in terms of lower level procedures. For the subtask <p,I',G>,

the state is initialized to P, the frame may be changed, G is given as the goal.and a

body for the procedure p is generated.

Consider the example given in Section 6 of computing the value of n factorial

where multiplication is not a primitive operation. The initial frame is the same except

that in place of an iterative rule for multiplication, there is an assumed primitive

procedure

ISVAR(Vl){times(Vl,V2lV3))PF<ODUCT(Vl,V21V3),

where PR0OUCT(Vl,V2lV3)C(Vll(PR00 V2,V3)).

The program generated using this frame is given in figure 14. To expand the

non-primitive procedure "timesWl.ViWr tne full frame including the iterative product

rule is given and the sub-program generated is shown in figure 15.

In the current implementation it is assumed tht the expanded sub-programs will

have no side effects. However this assumption could be removed by a mechanic

similar to checking rejoin conditions for contingency programs (Section 5.4).

To develop a useful structured programming .ystem interaction appears

essential along with further study about how humans do (or should do) programming.

 - - - i ii—■——■—i

PROGRAMMING AlOS

n . :
isvAH <: iiwtv i
(UMMIM
ISPll AbSKKriOH:
MINK
mrtnn ASUITIOM:
■ •; IAC u))i
LOHrttNT
THIS IWCMM "l-LIiS ON M rOtUMIK A.SS'.'MtTli);. ■

riMJ:s
■l ir,
10 m 1 ;
VI - I,
WHILE ~ ^ Yl N', W)

Mm
n - VUl;
TIMES xc x: VI
tND

u

i igure 14

riru.s o vi zi)
mu Xw);
OOMC ■n'
INFLT ASSEKTIOS:
NONE
OITTFLT ASSEttTION:
c x; VFKÜD VI Zl));

BEGIN
>:; - .'.
v. -(*;
wHiiE -1 -(Y: Yl, IW

UECIN
YC - Y +1;
Xv* - Xi-+Zl;
LSD

END

ligure 15

 K^__. ..^^M^MMI

76

8. CORRECTNESS Or TM£ FORMAL ALGORITHM

The basic problem solvmg a^ontnm .mplemt .ted m the system i. that of

Problem reduct^n subgoahng w.n bacKtracK. In th.s seCon the formal algorithm w.ii

be given and a proof of its correctness sketched.

8.i BACKTRACK PROGRAMMING

BacKtracK programming describes an exhaustive search procedure appropriate

for solving problems of tMe form:

Cven a collection of sets X^X^..^ (g0a,s to bi achieved), select a sequence of

elements i*^..,^, one .rom each * (. wa/ üf ^^ ^ ^ ^ ^ ^

criterion function f(xi x-> v) ie m ■ • ■
*i**~*i 'S m .ximized. !n general t may be numerical valued or

s-ply have the values of either "success" or "faHure" for any sequence (xl(x2 xk). Ks

n. and ,t is possible to deterge whether or not a partial solution ,s mherently

suboptimal, i.e ,t there .oes not exist a successru. M X. g.en the current .no.ce of

To control such a search a program must have the abilities to enumerate the

alternatives tor selection at the Mh level, e.g.. x,,^....^ (enumerate function), se.ect

one. say %1 (choose funchon). and repeat M, process at successively h.gher levels.

"- k*1, k42 ^ e,,her fhe ^h ^ - stained or a partial solution (x^x^.x.....^).

P^ n. is reached that is inherently suboptimal, i.e.. no selection can be made at -eve. p

that is correct with respect to the previous choices already made. In the latter case

the program must -bacKtr8cK.. t0 a prt!vi0us |eve|(^ ^ ^ ^^ | ^ ^^^^^

different from previous level K selection, can be made that achieves a correct Kth

level solut-on (unchoose function). The process then continues in the -torward"

d-rect-on. Ultimately either an nth ,evel sequence is found ih.t ,s satisfactory or the

THE FORMAL ALGORITHM 77

operation of the program has proven that a solution does not exist, i.e., the program

has "backtracked" to the Oth level and has failed to solve the problerrv

- ^M—«■—I !■ I

78
THE FORMAL ALGORITHM

8.2 TRAVERSING THAND-ÜR-AND SUBGOAL TREES

Programs are generated by using rules and axioms to prove that the cutput

program transforms the initial state into one in which the given goal cond.t.on is true.

Frame rules act as partial functions on the domam of possible states, defined only or,

those states in wh.ch their premisses a e true and transformmg them mto states m

which their postconditions (or goal conditions) are true.

In figure 16 is given the subgoal tree traversed during the solution of the

example problem g, en m Section 2. Goat nodes are labeled with the goal and an

mteger indicating the order of ach.evement in the depth-first search. Rule nodes (used

to expand the goals) arc labeled witn the rule name and an integer indicating the ordor

of successful application. In the tree absence of angle marks indicate OR connect.on. a

Unfit angle marK indicates AND connection and double angle marks mdicate THAND

connectii. n.

PROBLEM 1 : TlLuND-OR-AND TREE SEARCH

Figurt Ifa

-«—"

THE FORMAL ALGORITHM 79

m

Program generation is done by computing on a triple <G',r,A>, where G' is the

subgoal to be attempted next, V s the current state and A is the current progra

segment. For each rule used, an instantiation of the associated program construct, if

•ny, is added to A using rule R2. The general form of rules to txpand goals (as

explained in Section 2.1) is.

Hi K,

K

The instantiation of program constructs is built up in a substitution u that

replaces variables in the «rame rules by terms from the initial state. For any rule if

Kot-G' then that rule is applicable to the achievement of G' and the premisse-,

Hl^i-.HnO^ are the subgoals whose solution implies G'. We assume for the computation

of u that variables in different applications of the same rule are distinct.

The syntax of assertions used m rules, axioms, definitions and state descriptiotis

is given in Section 3.1. Consider the restrictions that the exclusive or "•" is used only

as a top level connective m oisjundive postconditions of primitive procedures and the

thand "&" is only used to connect the premisses of an iterative rule (which in fact

follows the current implementation though its effect can be gained in any rule using

•dvice). Then for any <goal node>, say G' in state 1', the THAND-OR-AND solution tree

Tr that may be rooted at G' is Described by the following grammar Gr:

<goal node> ::- <true goal>|<prim proc>|<def>|<it rule>|<undetermined goal>
<prim proc> ;:- <assertion>
<def> ::- <as5ertion>
<it rule> ::- (<b8Sis> A <invariant>) & <it step>
<basis> ::- <asserfion>
<inva'-iant> ::■ <assertiün>
<it step> ::- <assortion>
<assertion> ::■ <disjunction>|<disjunction> A <assertion>
<disjunction> ::- <goal node>|<goal node> v <disjunction>

■^^^

80
THE KORMAL ALGORITHM

where if ff is a <true goal> then QbNVF C V* .nd <undetermmed go.l> is as

o.f.ned m Sect.on 5. A foil spechcahon of the formal algor.thm for processmg

undeterm.ned goals would mclude a formalizat.on of the subproblem stack, the method«

for choosmg contingency goals, assembly of cond.tionai statements, keeo.ng track of

the goals ,n the scope of a cont.ngency goal and contingency state manipulation.

However since the concepts mvolved are descnbed quite completely in Sect.ons 5 and

9 they will not be dealt witn further here.

The definition of an achieved goal node G' in a THAND-OR-AMD tree is:

(1) If G' is a «-true B0al> then it is achieved,

(2) If ff has OR subgoals then it is achieved iff at least one of its subgoals

is achieved,

(3) If G' has AND subgoals then it is achieved iff all of its subgoals are

achieved and remam true m the resulting state.

(4) If G' has THANO subgoals then it is achieved iff all of its subgoals have

been achieved.

Further details on these kinds of problems may be found in INilsson 1971].

If G' is achieved under (2). (3), or (4) (i.e. by rule application), then 1' is updated

by Inv(Kod,n and a procedure call or a while loop may be appended to A.

Search algorithms of this type may be conveniently implemented using any of

the new languages that oirectly support subgoal tree generation, backtrack, and . data

base [Hewitt 1971. Sussman and Wmograd 1972], [Rulifson et al. 1972].

 - - .__^^^——■

THE KORMAL ALGORITHM 81

8.3 LABELED, ORDERED SUBGOAL TREES

Be'cf. we can consider correctness, the notion of a labeled, ordered THAND-OR-

AND subgoal tree, say Tr, must be formalized. Let Tr be a solution tree generated by

the algorithm during a successful program generation, S be the set of nodes in Tr, .-nd

R^SXS be a partial ordering on S. Let J be another relation on S defined in terms of h

by:

xJy iff (Vx,y)[xRy A - yRx A (VzXzi'y A zRy 3 zRx]].

For x,y<S, xJy means that y is the R-Jirect descendent of x, or x is the R-dired

ancestor of y.

DEFINITION A structure Tr - <S,R> is a tree if the allowing properties are satisfied:

(1) There is a root element of the tree, i.e., (jx),(Vy)[y(S ^ xRy],

(2) For x,y,z tS, if xJz and yJz then x-y

DEFINITION A structure Tr - <S,R,L> is an ordered tree if the following properties are

satisfied:

(1) Tr - <S,R> is a tree,

(2) For each x(S, L is a total ordering of {y : xJy},

(3) For each x,y,z (S, if xLy and yRz and xHy then xLz,

(4) For each x,y,2 <S, if xLy and xRz and Xf'y then zLy.

The relation L orders tht nodes of Tr in depth-f rst achievement order, e.g.,

/

M
3 6

/\ /\
12 4 5

Let V be the set of goals achieved in Tr instantiated by o^. The function f will be

called the labeling function.

- MM

■T

82
THE FORMAL ALGORITHM

DEFINITION A structure Tr - <SVRLf> is . l.h.i^ o w -. . a,vlKlL,r> is « labeled, ordered tree if the following

properties are satisfied:

(1) Tr - <S,R,L> is an ordered tree,

(2) The function f maps S onto V.

Let Gr be the grammar descnb.ng solut.on subgoal trees and let Tr - <S.V.RtL.f> be .

labeled, orde-ed tree.

DEFINITION Tr i, a labeled, ordered THAND-OR-ANO subgoal tree rooted at G' in Gr if

the following properties are satisfied:

(1) If x<S is the root of the tree <S,R> then f(x) - G',

(2) If 3y(S such that f(v) i X and xRy and x^y then f(x) is not a <true

goal>(i.e. x is not a leaf node).

<3) If yi.....yn i {y : xjy), where y.Ly, tor Kj then there ex.st some fr.me

rule having postcondmon (or |Ml) f(x) and premisses ffy,),... (f(yn).

W. wll refer to such trees as solution trees m the next section.

THE FORMAL ALGORITHM 80

8.4 CORRECTNESS

For any output program generated by the system the associatrd solution

(sequence of axioms and rules used) provides a proof within the logic of programs

given in Section 2 that the program satisfies the given input-output asser ions.

Because of implementation limitations, heuristic system methods, and consistency

requirements in a fr-j-r.c definition whicn the user may violate a system generated

program ^ay in fact be incorrect, however we will show that from a solution tt>.o Ir

genera'ed by the formal algorithm to solve the problem <1,G> with properties as

defined, a correctness proof of the solution can be given. Conditions for correctness of

the procedure for generating conditional statements was given in Section 5.

We may show by induction on the ordering of nodes in Tr that the oiitDL*

program A solves the problem, i.e. L(F) ||-I(A)G by showing it to be true for each

subgoal and partial program, i.e. if x<tS is the root of the tree and f(x) «• G then for any

y<S such that xRy , HF) ||-l{A'}f(y), where A' is the partial program in the tnpio

computed by the achievement of t(y).

Let G' - f(x) be such that Vy(S xLy, then G'(V is a <true goa^, i.e. it labels the

leftmost leaf node of Tr, and L(F) K-bQ*.

As an induction hypothesis assume that for an arbitrary G'-f(y; such that y is

not the root of fr that LvF) H-liA'^y). We will then show that this must imply L(F) i|-

I{A"}f{z), where yLz and either zJy or (jx)|>Jy /v xJz A - zJy], where M' and A" are the

generated program segments in the associated triples.

Consider the cases for the triple <G'ir,A'>,

(1) If G' labels a leaf node of Tr then L(F) ||-r U F D G' and the state and

program segment are unchanged by its achievement. This implies L(F) ||-I{A'}G'.

(2) If G' labels a non-leaf node x of Tr then we have the following subcases,

84
THE FORMAL ALGORITHM

An i„st,nc. o. . ***, procedur. ru,. ^^ ^ ^ ^ ^.^ ^ ^

0« » K Hs mmmm * MUM by |h. ch.ng. of MMIM r* M By hypothesis

IW I- P« s,nc. propor.y ,3, of fh, dofiniflon „, , So|uho„ lre. ,s s.llsfie4 The ru|.

of co„s.qü,w. mplle% L(F) „. f^^ ^ .^^^ ^^.^ L(F) |HI^^ ^^

'" - I-MfW). By fh. rülo 0(compos,t,on R3 we may ^^^ A. wj|h ^ ^ ^ ^

induction hypothosis w. conclud. th.t L(F) i|.|(AW)r, whor. I" . K

For th, csos in which .„st.oces of definitions or iter.hv. ,ules .r, .pptipd t0

«Nov. r, th. .ndoction stop may a,so b. pro«d e5tabl,shlng l(F) „. ^ ^

'0rm" d,"i" n,a)' »• ,0Und '" tB- " L-Kh.. W.} This discussion was

■nfondod to iustify ,h. focmai „ethods mp,e«n„d in th. sys.on, by showin, th.,

undor c.rt.in „.„„ption. .bout sofution „..s . corroctn.» prpof en b. ,,„.„.

 ■!■ M

9. SYSTEM UtSCHlPTlON

Th.s section will document the system implementation to the end that its

operat.on m.ght be better understood and to the conceptual level that wouU be

reasonably helpful m des.gnmg a more expanded system. The system was

implemented in LISP using MICPO-PLANNElR primitives [Sussman and Winograd. 1971],

with which we will assume the reader has some fam.li?rity. MICRO-PLANNER was a

very preliminary version of RUNNER [Hewitt. 197^ Many of our programmmg

triumphs modifying MICRO-PLANNc* and wntmg new pnmit.ves are no longer

necessary in light of the new languages now available [Sussman, 1972]([RulifSon et al.

1972].

9.1 OVERVIEW OF INTERACTIVE SYSTEM USE

The interactive decision points and programs called at the top level are shown ir

t'gure 1". (This is a flow chart of the top ievel LISP function SUBGOAL.) The system

basically has three segments:

(1) a Frame translation program (see Section 9.2),

(2) a set of programs for program generation called from SUBGOAL and using a

translated Frame,

(3) a set of pnrritives that modify and extend MICRO-PLANNtR.

The user's interaction witn the system shown m figum 17 is informally

described by the toiiowmg procedure:

(1) A f.lename may be given as an argument to SUBGOAL If the f.le contains a

Frame defm.t.on then the translator is read in, the Krame defm.t.on translated

and loaded. If the f.le contains a translated Frame then .t is simply loaded. It no

filename is g.ven then a Frame definition to be translated and loaded is given

interactively from the terminal.

SYSTEM DESCRIPTION
87

(2) When prompted by the system, the user .nputs a goal to be achieved by *»

p. ogram to be generated.

O) If the user de.res to g.ve adv.ce to the system relive to the g.ver, EoaI then

the advice system is called.

M) The sub8o,„„g syslem USeS lhe transl,ted Frame „ ^^ ^ ^^ _

Pf^m «hieing ,he 60al. „ unsJcteM)u| the user nay try ^^ w|,h ^

advice (go to (3)).

(5) If rejcn condl,(ons (see SeCons M and 9..) are pend.ng for th.s genera.ed

procedure then they are tested for sat.sfachon. ,f they are not sat.sfied then

the user may attempt to extend the procedure to y.eld a state -n which they *•

true. If he chooses not to do th.s or the system ta.ls in .ts attempt then an

error ex,t i. subst.tuted for any call to that procedure m ,ts trunK program.

(6) If the user elects, the program may be ophm.ed accordmg to some s.mple

cr.ter,a. e.g. ehm.nahon of dead assignment statements and reduction of the

number of program vanaoles.

m The user na, then choose (o have the generated program generated and fited

in a program library.

(8) 1 he program .s then displayed for visual inspection.

O) If there are conc'.t,0nal statements tsee action 9.5) then the user may e.ect to

do contingency pro.ram generate. If so then the state, goal pending and

answer i. .n.t.alized from the stack uf contingency tasks (go to (3)).

(10) If any assumed primitive procedures occur m the generated program the user l5

•nformed and may structurally (see Soct.on 9.7, develop each assumption

procedur, call by gener.t.ng a program whose input and output assertions

mmm

88
SYSTEM DESCRIPTION

match the pre and postconditions of the assumed primitive procedure (Initialize

the state and go to (3)).

(11) The program may now either be incrementally extended from the current state

by givmg an add.tional goal (go to (2)) or any previously completed program

segment and final state may be returned to and extended.

In Appendix b is an example of an interactive dialogue including a Frame

translation and program generation.

•^mmmm

SYSTEM DESCRIPTION 89

9.2 PROCEDURAl REPRESENTATION OF A FRAME

In Section 8 the basic problem reduction subgoaling algorithm was given and in

Section 4 associated problem solving processes using Frame information were

described. In this section a more detailed description of the function and form of a

translated Frame will be given. The translation and use of iterative rules anc tho

generation of conditional statements will be given in Sections 9.6 and 9.5 respectively.

9.2.1 SOME ELEMENTS OF MICRO-PLANNER

Assuming general familiarity with MICRO-PLANNER we will briefly describe a few

basic primitives and theorem :/pes as used in the system description (see [Sussman

and Winograd, 1971] or Baumgart, 1972]). In the current implementation, <p1ttern>

will represent seme relation. In a more general treatment <pattern> could represent

at. arbitrary Boolean expression of relations. Pattern matching is restricted to simple

unification.

The control structure is a backtrack stack interpreter consisting o* a program

representation, a processor state, a processor and a push down stack of all previous

states the procesror has been through since the beginning of a particular computation.

The processor may backtrack to a previous state and exhaustively search a subgoal

tree in a depth-first manner trying all possible variable bindings and applicable

theorems to return success ultimately to the top goal node.

(1) (THGOAL <pattern> <recommendation>). If no <recomm6ndation> is given then

THGOAL simply searches the data base for an assertion that matches the

pattern. If it finds one, it succeeds and carries out the unification substitution

for any variables in the pattern, otherwise it fails. If a <recommendäiion> is

given it will be of the form, (THTBF <filter>), where <filter> is the name of a

mmmmrmmmmm^mmmmmm^i^^mmmmmmmmw^m

SYSTEM Df CCRIPTION

unary LISP funct.on that selects from candidate THCONSE theorems to be called

■tor a data base searcn has MM The atom THTRUE is the always true filter,

i.e. allows any matchmg theorem to be tried.

(2) (THNOT <argument>). THNOT faiis (f its <argument> succeeds, other.-^e it fails.

O) (THASSERT <sKeleton> <recommendat(on.,. The <sKeleton> may e.ther be a

theorem name to be put on a ready-to-use M or an .nstant.ated relation that is

to be added to the data base. THASSERT ta-.s only .f it tries to assert a

<skeleton> already eK.stmg e.ther on the ready-to-use M or in the data base.

If a <reCommendahon> I, glven lt Wlll be of the ^ (THTBF ^^ ^

<filter> .s the name of a unary LISP function that selects from candidate THANTE

theorems to be called.

«) (THrWASt Skeleton« Olrl III ll,|l.ii > The <skcleton> may 5ither ^ ,

,he0r■, ,0 be remo-d »• "y-'o-u* M or an .„stantiated r.l.Uon

that I. ,o be removed from the data base. MM« Mk only i(i! tries „

remove a <SKeleton> M does no. e„st edher on ,he read,-,o-use M or in the

data base. R a <recommendat1on> ,s given ,, will be of ihe form, (THTBF

«filter», where <fi„er> > the name of a Unary L.SP funcon .ha. selects fro»,

candidate TWMSMG theorems to bo called.

(5) (THOR <ar6l>...<arBn>. n« succt,ds i(one 0, „ ^^ ^^ ^

evaluation is left fo r,6ht. Th,s construct is used to implement logical dis.unc.ion.

(6) (THSETQ <^> <ei> ... <v,r„> <en>, This pr,mitive ass,gns the ^^ o)

express,on <ei> „ , able <var|> „, „^ ^ ^^ ^ ^

evaluated. This assignment ,s undone if fa.lure backs up to ,t. A oirnp,,

extensirn provided the funct.on THSET which does evaluate its first argument

but is otherwise equivalent to THSETQ.

I Ml ■ ■ - - - ■ - ■ -——— - - ■■

mmmm

SYSTEM DESCRIPTION gi

(7) Theorems. Theorerv. are pattern evoked ana have the format:

(DEFPROP <name>(<type> '-"arlist> <pattern> <body>) THEOREM)

where
^ame^ is an atomic theorem name,
<type> is the theorem type,
<varlist> is the list of variables used,
<pattern> is a relation for pattern match invocation,
<body> \z a sequence of statements having the syntax of the body of a LISP PROG.

The list (<type> <varlist> <pattern> <body>) is of curse attached to the property list

of <name> under the indicator THEOREM as a result of the DEFPROP.

"Inere are three types of theorems:

(■) Consequent theorems (THCOMSE) are call-d by i match between the

pattern of a THGOAL statement and »he theorem pattern,

(b) Erasing theorems (THERAS1NG) are called by a match between a relation

skeleton of a THERASE statement and the theorem pattern.

(0 Antecedent theorems (THANTE) are called by a match between a relation

skeleton of a THASSEKT statement and the theorem pattern.

If a theorem's pattern is matched by the appropriate calling statement then the

<varlist> is bound and body is executed such that for .ne theorem to succeed each

statement must succeed (return non-nil) with the capability for backtracking to

discover an instantiation and/or subgoal tree rooted at that statement that returns

successfully. THERAS1NG and THANTE theorems do not return a value and are assumed

to succeed as it affects the success of the calling statement; however, THC0N3E

theorems return either a success or a failure value that determines the success of the

calling statement.

-■ —

POTm*M»OT

92 SYSTiM DESCRIPTION

9.2.2 SPeCIFICATION AND BASIC FUNCTIONS OF FRAME RULES

When a primitive procedure is initially input the following information is put on

the property list of the atomic procedure name:
(1) preconditions,
(2) postconditions,
(3) argument list,
(4) whether or not the procedure is an assumption,
(5) whether or not the procedure is recursive,
(6) inequalities desired in argument pcsitions,
(7) indicator of rule type, i.e. primitive procedure.

Except for argument list specifications {;3) and (6)), the analogous information for

axioms and defimt-ons is initially stored the same way.

On the property list of eacn predicate symhol is stored the following:
(1) argument list,
(2) whether or not the relation is a fluent,
(3) whether or not the relation is partial,
(4) argument positions having the uniqueness properly.

The internal data structure used to represent assertions after input is a list of

lists where the interpretation of juxtaposition of elements is conjunction at the top

level and alternates between conjunction and disjunction at successive levels of

nesting. At the bottom level a literal is represented as a list of negation sign (if any),

predicate symbol and the arguments. For example the assertion,

P(X) v Q(Y) A -*(X,Y) A S(Z,X) v tnH A MV)};

is represented as

(«P X) (Q Y)) (*. R X V)K(S 1 XK((T Z))((M V))))).

This internal representation is clearly adequate ft assertions input using the

syntax given in Section 3.

A translated rule for a primitivt procedure contains the basic functional

segments shown in figure 18. An actual example of a primitive procedure definition

and its translated form is given in Section 9.2.3.1. The pattern is the poslcondition

■ i ■ ii ■■! -- ■ ■■ -■ ■■■- —--"- -- - ■ - ■_... ... , m,, ,—

—- HMW^<nHMl«B|P^^K wrm^m**^mi*mim^^^

SYSTEM DESCRIPTION 93

achieved by an application of the procedure. The interactive program jllows the user

to enter the Advice System then return tor continuation of subgoaling. Trace

information of current path and goals ponding is displayed. Nonfluent preconditions

are achieved first then the fluent preconditions. The mechanism for achieving a

conjunction of fluent goals is described in Section 9.2.3.2. Processing to make the

state consistent with the postcondition next to be asserted is carried out. The

instantiated procedure call is appended to the oartially generated program followed Ly

processing for collecting input-output assertions, forming correct block structure in

nested conditional statements and diagnostic output to the user.

■■ MMMMMBMMMM J

•■^W^Ki^^^^^-™i""^w^^—••■•I' mniini MMI

94
SYSTEM DESCRIPTION

CALLING PATTERN

INTERACTIVE AND TRACE PROGRAMS

ACHIEVEMENT OF NON-FLUENT PRECONDITIONS

ACHIEVEMENT OF FLUENT PRECONDITIONS

STATE CONSISTENCY PROCESSING

ASSERTION OF POSTCONDITIONS

ASSEMBLY OF PROCEDURE CALL INTO PROGRAM

MISCELLANEOUS PROCESSING
(INPUT-OUTPUT ASSERTION, BLOCK STRUCTURE, DIAGNOSTICS)

FUNCTIONAL SEGMENTS OF RULES FOR PRIMITIVE PROCEDURES
FIGUKE ia

-^—■ -■■--- . - . . ._...-.

".II.I. < *«■■ "«I ■M..WHM

SY'-TEH DESCRIPTION 95

9.2.3 FRAME TRANSLATION

A Frame defined using the lang tage described in Section 3 is translated into a

set of LISP functions and MICRO-PLANNER theorems that form the basis for the

subgoaler. In particular for each rule or axiom, one or more MICRO-PLANNER THCONSE

theorems is constructed, for each distinct predicate symbol a THERASING theorem is

generrted to implement the conjunction connective. The initial state description is

converted to assertions placed in the data base.

9.2.3.1 TRANSLATION PROCEDURE

The translation is carried out according to the following procedure:

(1) The appropriate input device, i.e. terminal or disk, from which to rea^ the Frame

definition is sekcted.

(2) For each rule defined the information listed in Section 9.2.2 is input ^nd

internalized.

(3) The initial state expressed in the syntax of conditions is input and internalized.

(4) For each predicate symbol used, the information listed in Section 9.2.2 is input

and internalized.

(5) The user may request context linking or performance statistics to be gathered.

(6) Algebraic simplification rules may be given of the form,

t •* V, where t.t* are terms,

which are used to reduce t to t' should t occur in an argument of a relation in a

THGOAL statement, e.g.

(MINUS(PLUS X,Y)Y) -» X,

where X and Y may be bound to arbitra'-y terms to which the rules will be

applied recursively.

h'mtKt i ■ il——WM—i

mm "■■"^^^ '" n

96
SYSTEM DESCRIPTION

(/) Conversion rules for more readable output syntax for functions occurring in the

generated program are specified in the form,

t - ot , where t is a term and <* is an expression in the new syntax,

which are used to produce the final output form of the generated program, e.g.

(PLUS X Y) - (X + Y),

where X and Y may be bound tc arbitrary terms to which the rules will be

applied recursively.

(8) The conjunction of literals given to form the initial state is asserted into the data

base according to the following rules giving the assertion made for a literal I as

a function of being negated or partial.

(a) If I - P(tl,...tn), for some predicate P, then assert P(tlh..,tn),

(b) If I - -P(tl,...,tn) and P is total then assert nothing,

(c) If I - -P(tl,...(tn) and P is partial then assert, by convention, NP(tl^.,tn).

(9) For each predicate symbol used generate a THERASING theorem and some global

variables whose form and use in implementing conjunction are described in

Section 9.2.3.2.

(10) For each rule defined, a THCONSE theorem b generated implementing the

functions shown in figure 18, i.e.

(a) Tho calling pattern is the rule postcondition.

(b) For each total precondition literal I a THGOAL statement is generated

according to thü rules:

(i) If I - P(tl,...,tn) and P is non fluent then

"(THGOAUP od(tl)...oi(tn)KTHTbF KILTERAX))"

where FLTERAX is a LISP filter function which permits only dedu-.tion

 ._,.

'■'■■*• "■"■ " m mmm

SYSTEM DESCRIPTION 97

using the axioms relative to the current state and ot transforms ti into ..

valid MICRO-PLANNER term.

(ii) If I - ^(tl^.tn) and P is non-fluent then

H(THNOT(THGOAL(P ^(tl)...^(tn)KTHTBF F1LTERAX)))"

(iii) If I - P(tl,...,tn) and P is fluent then

"(THGOAUP ^(tl)...^(tn))(THTBF FILTEROP))"

where FILTEROP is a LISP function which controls the choice of rules or

axiorm. entereo on the basis of advice given, if any.

(iv) If I - .P(tl tn) and P is fluent then

"(THNOT{THGOAL(P ^(tl)„.^(tn)KTHTBF FILTEROP)))"

A Boolean expression of these statements corresponding to the precondition is

generated. The implementation of conjunction and other functiona; parts of the

theorem are described in latar sections.

(11) The translated Frame is then loaded, i.e. functions, global variables and theorems

defined and theorems asserted. The user may now begin program generation.

As an example of i translated rule consider the primitive procedure,

ROB(R1)A^ILLED(R1)AAT{R1,L1)ACLEAR(L1,L2)VHASUMBRELLA{R1)

AWALKADLE(Ll,L2){walk{Rl,Ll,L2)}AT(Rl)L2).

which transktes into the Micro-Planner theorem shown in figure 19

wh,ch is labeled according to the basic functional segments described in Section 9.2.2

and shown in figure 18.

- ■■- ■- ■ -

"■'"» ■" ll"" ■M^

98

ITHCONSC
PATTERN

SYSTEM DESCRIPTION

INTERACTIVE

AND TRACE

NON-FLUENTS

ACHIEVEMENT

OF

FLUENT GOALS

UPDATING THE

STATE

ASSERT P.C.

ASSEMBLE SOLN
11LOCK STRUCTURE
CHECKING Ttcotn)

(kJL LI U Rl Dl ILSTtMLK IQUO'C (L2 PIMM
(AT (THV Rll 1IHV Ul Rl
(1HSEIO MHW LCI») UKW OCT»))
IIHUNIOUt LSTIMLKI
ItRtEPBIM UAL* («T (IK; »11 (THV LZI RM
(T»«CEINf011
(TMOR I ITRftCtlNFO? UOLKM
(COM) ((TTTINI (ROVICLSTS)l (T TM
ITHGOK IRC» (THV »1 Ml
(THCONO (iTHNOT (THCOAl (KILLED I IHV Cl 1 »Ml Tl

(T (IHÜOfll (NTILLEO (THV Rll Rl ITHTBF rRTEROPMM
I THCONO (ITHANO (THASVAL (THV RIM I

(THSETB (THV NULLEDlWCSl (CONS (LIST (TW RIM (TW «KlLLEDfiÄGSM M
f| IM

(THCOOt («T (IW Rll (IW HI Rl (THTBT riLICROPM
(THCONO UTHONO (TH«SWl (IMVLIM (THASVflL (THVR1M1

(THSETO (THV «TOPCSI (COW (LIST (THV Rl I (THV LIM (TW «TflBCSMM
(T TM

(THO« ITHAND (THCONO 1 1 THCOAL ICLE« (Tt*/ Lll (TW LZ> R) (THTBF riLTtWPM Tl
((THCOAL («CLEAR (TMU LP (THV LZI »M (THTAILII
(T

(UNCERTLIT (LIST (OJOTE aEA») (THV Lll (TW L2I (OUOTt RM
T
lOUOTE (CLEAR (THV Lll (THV U) RM
lOUOTE INCLEA* (THV Lll (THV LZI RMIII

(THCONO ((TW4« (TiUSVOl (THV Llli (IMASVAL (THV Hill
(IHSE'O (IW CLEAPABCSl

(CONS (LIST (THV Lll (TW LZM IT:" CLEARAUCSMII
(T IM)

(THAW (THCONO ((TMCOAL (Hf.SLinO»t:L"- ("«JR1I Rl (»HTBf FILTEROPM Tl
MTHCOAl INMAJJMBRELLa (THV Rll RM (THTAILM
(I

(UNCERTLiT (LIST (QUOTE HASUrflRCLLAI (THV Rll (QUOTE Rll
I
(DUOIE IHASLmdRtLLA (THV Rll Rll
(QUOTE INHASUnORCLLA UMl.' »11 RDM)

(THCONO KTHAHD (THASVAL (THV RIM I
(THSETQ (TMU HHSirBRfLlAAifCS)

(CONS (LIST (THV Rll) (THV HASUMBRtLLAARCS M M
(T TIM

(CONOSTAT (TW CCLI Til
(THCONO (1THCOAL IUAli«.BLE (TW LI) (THV LZI R) (THTBT riLTEROPM Tl

KTHCOAC (NUALIIA8LE (TW Lll (THV LZI RM (TICAILM
(T

(UNCERTLIT (LIST (QUOTE UAL KABLE I (THV LD (IHV LZI (QUOTE Rll
NIL
(QUOIC (UALKABLE (THV Lll MHV LZI RM
(QUOTE («MALKAdLE (THV Lll 'IHV LZI RMMI

(CONOSTAT (THV CCL) NIL)
(THCONO ((THMNO (THASUAL iTW LZM (TMASVAC (THV LUD

(THSETQ (THV MAUA8LEARCS) (CONS (LIST (TW Lll (THV LZM (TW HALKABLt ARCS 1111
(T Tl)

(THCONO ((NULL (THV UALIAOIEARCSII Tl
II (THSCTO (THV UHCKABLEARCSI (COR (THV IWLKABLtARCSM T TIM

(THCONO ((NULL (THV ATARCSM Tl (T (THSETQ (TW ATARCSl (COR (THV ATARCSI) T TIM
(THCONO ((NaL (THV NKILLtDARGSM Tl

(T (THSETQ (IMV NMLLED1RCSI (CD» (THV NKILLEOARCSM T TIM
(THCONO ((THCOHL IH.<5UM8»ELI.A (THV Rl) RM

(THCONO I (NULL (THV HA5UMe?ELLAA»CSII Tl
IT ITHSCTQ (THV HA5UM6RELLAARCS) (COR (THV HASUfBRtLLWIRCS 11 T T))!)

(T T))
(THCONO KTHtOAL (CLEAR (THV LI) (THV LZ) »M

(THCDNO ((NULL (IHV CLEARAPCSM T)
(T (IHSfTQ (THV CLEARARCS) (COR (THV CLEARARCSM T Till)

(T Tl)
(THCONO UTHANO (TMASVAL (THV LZM (IHASVAl (THVL1MI Tl (T (THFf.ILIII
(IHCONO ((EQUAL (THV LZI (TW L1M (THTAILM (T Tl)
(THCONO ((THGOAL (AT (THV Rll (TW 01) RM (THSETQ (THV ATIhsI. (LIST (THV Rll (THV 01111)

(T Til
(THCONO ((THCOAL (AT (THV Rl) (TW 01) RM ITHERASE (AT (THV Rll (THV Oil Rl (THTBr TMTRUEII)

(T TM
(THCONO l(TH£»(iSE IUP0NC PATH)) (THTAIL THCOREUM (T TM
(TH5ET (CAR (THV ANSI)

(CONS (CONS (QUOTE UALKI (LIST (IHV Rll (THULU ITHVLZIII (EVAL (CAR (THV ANSMM)
(THSETQ (THV DU.IT5) (CONS (CDAR CD (THV OBLITSID
(THAS5EBT (AT (THV Rl I (THV LZ) »)l
(THSETQ (THV ASSEWTLITS)

(CONS (LIST (LIST (QUOTE AT) (THV Rll (THV LZ) (OUnTE Rll (LIST (QUOTE Al lOUOTE RID
ITHU ASSERTLIISID

(PRINT (REVERSE (EVAL (CAR (THV ANSI))))
(SETO CANS (REVERSE (EVAL (CAR (THV ANSMID
(CONO ((»GREAT (LENGTH GANS) (LENGTH LGANSM (SETQ I.CWS CANS!) (T T))
(THDO (TERPRIM
(CONO ((EQ (QUOTE IF) (CAOAR CTM (ELSECLAUSED IT (THSETP CT (COR CT) T T))))

Figure 19

MHMMHMMHMMMIII UHMMBa^MMMM«

mawNM

SYSTEM DESCRIPTION 99

9.2.3.2 IMPLEMENTATION OF CONJUNCTION

The basic idea for implementing the achievement of a conjunction of goals, Gi A

G2 A...A C, is to prevent the falsification of any Gj, 1 S i S n, until all d are achinved,

thus creating a state in which the conjunction is true.

For each fluent predicate symbol, say P, used there is a global variable createc,

i.e., PARGS, which is initialized to the value NIL and will hold a stack of instances of P

that are to be preserved during the achievement of the conjunction. This is done by

adding the instance(s) of the literal(s) whose achievement causes the current g^al in

the conjunction, say G(, 1 S i < n, to be true to the appropriate stack before G^i is

attempted. When the entire conjunction has been achieved the literals for each G| in

that conjunction are popped from the stack. The LISP function that generates this

code is recursive for arbitrary boolean conditions satisfying the syntax.

A THERA?ING theorem is also generated for each P(Xl,...,Xn) as follows:

(DEFPROP PGREMLIN
(THERASINU (Xl...Xn)

(P(THVXl)...(THVXn)
(THCOND((MEMB£R(LIST(THV X1)...(THV Xn))

(THV PARGS))
(THASSEHKWRONG PATH)))))

(THEOREM),

where THV is a MICRO-PLANNER indicator that its argument is a variable.

If some instance P(tl,...,tn) is to be erased to maintain state consistency (see

Section 9.2.3.4) then the act of erasing will call PGREMLIN which will assert the flag

(WRONG PATH) into the data base if (tl tn) is a member of PARGS. Such an assertion

is responded to in the THCONSE theorem in which the erasure occurred by generating

the following statement after the erase statement:

(THCOND((THERASE(WRONG PATH))(THFAIL THEOREM)KT T)).

■•MV^MMM mimmmmm^mß

100
SYSTEM DESCRIPTION

The THERASE statement in the above will succeed only if (WRONG PATH) existed

m the data base which was caused by an invalid erasure detected in the THERASING

theorem. The flag seems necessary since success or failure in the THERASING theorem

does not affect the success of the THCONSE theorem causing the erasure. The failure

of the THCONSE theorem will force the system to try to find anoiher theorem

corresponding to anoiher rule that ooes not ralsiry a gual in the conjunction.

- ■ ■-

■ «"■I""..-« mmmtm^mm

SYSTEM DESCRIPTION
101

9.2.3.3 CONTEXT LINKING

This feature discussed in Section 4 is implemented by denot.ng certain

assertions in the data base as be.ng "hypothetical" or not part of the state and used

only in connection with this feature. If requested MICRO-PLANNER code is generated

to precede the achievement of the precondit.on goals for rules and axions and If

carry out the following functions:

(1) The precondition goals are attempted relative to the hypothetical portior. of

the data base only to determine possible variant, bindings.

(2) The instantiated precondition goals are asserted into the hypothetical oata

base for use in descendant rule applications in the subgoal tree.

Following the achievement of the preconditions of a rule, the hypothetical data

base is restored to the state at rule entry.

9.2.3.4 UNIQUENESS PROPERTIES

Updating the state is discussed m Section 4 as an application of the invariance

rule. -Building in" axioms defining uniqueness or single valuedness of certain relation

argument position has proven useful for state consistency processing.

When a Krame is defined an argument position of any relation may be designated

to be unique by respondmg to a system query with an asterisk in that position.

Multiple argument positions may be so dosignated

Before an instantiated postcondition, P(tl,...,ti,..,tn) is asserted, contradictory

literals in the data base are removed. For each position designated as unique, suppose

the ith. the goal P(tl...,X,...,tn) is attempted with a new unbound variable in the ith

position. If it is successful, i.e. X is now bound to vaKX). then P(tl,..,va|(XWn) is

erased.

-

102 SYSTEM DESCRIPTION

For example consider the predicate AT(X,Y) - "Object X is at location Y", where

both argument positions are unique, i.e. AT(M). Then in the state update portion of

the theorem the following code is generated:

(THC0ND((THGOAL(AT(THV XKTHV Ü1)))
(THERASe(AT(THV X)(THV D1)KTHT3F THTRUE)))

(TT))
(THCOND((TH£RASE(WRONG PATH)KTHFAIL TMEO^MM

(TT))
(TrlCOND((THGOAL(AT(THV D2HTHV Y)))

(TH£RASE(AT(THV D2KTHV Y)KTHTBF THTRUF)))
(TT))

(THCOND((TH£RASE(WRONG PATMWTHFAI. THEOREM))
(T T)),

where Dl and 02 are unbound variables.

This process assures that if the state is consistent with respect to uniqueness

properties initially that this consistency will be maintained.

 - ■- ■ -

mSM r—

SYSTEM DFSCRIPTION 103

9.2.3.5 INTEPNAL REPRESENTATION OF GENERATED PROGRAM

A program segment generated by the system is repre«'jnted internally in a list

data structure satisryirg the following syntax:

<program>
<bl0CK>

::■ <block>
::«• (<statement-list>)

<s*atement-list>
<5;tatement>
<staiement>
<statement>
<statement>
<statement>
<procname>

:» <statement>|<statement><statement-list>
- (<procname><arglist>)
- (IF<condition> THEN <stetement>)
= (IF <condition> THEN <f tatement> ELSE <block>)
- (WHILE <cündiiion> ÜO <block>)
■ (<- <identitier><öxpression>)
:- <identifier>

where,
<identifier> is an ALGOL ide itifier,
<expres$ion> is a LISP functional expression in prefix form,
<condition> is a Boolean expression satisfying the syntax

Riven in Section 3,
<arglist> is list of arguments each of which is either

an <ideniifier> or an <expression>

For example,

((«- XO IK- Yl IKWHILE ->(Y1 N) D0((*- Yl (ADD1 Yl»(TIMES XO XO Yl))),

is the factorial program in Section 7. The above syntax speci'ication describes *he

structure of programs that may be generated by the system.

A partially generated program is actually maintained in a stack (a list with access

only from the front) of "GENSYMed" variables which is pointed to by a global variable

ANS. Each time a deeper level of nesting is required, i.e. to generate the body of a

WHILE loop or nested conditional statements, a new variable name is added to the top

of the stack and initialized to NIL. Program constructs generated at this level are

assigned to the variable at the top of the stack via ANS using a THSET. When a level

is emerged from the value of the top element is appended on to the value of the next-

to-top element and the stacK is popped.

When a generated program is output it is translated into a subset of ALGOL in

the obvious way with nesting n the list structure corresponding to block nesting.

■ - ^mmm ■■■

104 SYSTEM DtSCRIPTION

9.3 THE STATE UPDATING METHODS

The upcJjtmg of a state to the new state resulting from the application of a

rame rule is formulated by invariante which in general is no) computable. Some of

the more common causes of inconsistencies are hanJIeo by the uniqueni-bi prop^ity

mechanism described in Section 9.2.3.4. Also relevant to this topic is the discussion of

conjunction implementation m Section 9.2.3.2. As explained in Section 6, updating .,,e

state after the application of an iterative rule may be either impossible or impractic»!

unless the user provides an output assertion for the iterative ruL- in which case the

rule of : ivariance is applied as witn a primitive procedure postcondition. The results

Of applying the rule ot invanance are influenced by the tixed, though arbitrary,

ordering of the literals. To compute Invd.Q) a subset of I that is consistent with Q is

sought. Since in general the choice of the R|<| to be removed that prevents the

derivation of a contradiction witn Q is -ot unique, the ordering determines the deletion,

if any.

The system philosopny has been that inconsistencies are of no concern unless

they affect the correctness of the tenerated program. Consistent witn this is a

suggested approach that if an inconsistency is detected, say during some aviomatic

deduction, that 'he choice of literals in I to be deleted be guided by the following,

(1) Ine infrrmation as to the stüte literals used to prove each previous goal as the

program has been generated could be kept as an extension of the input-output

assert computation (described later).

(2) The literals to be removed should be those that least affect the program, i.e.

either those as yet unused or those most recently used since program generation

wouid have to back up to tnat point then proceed atter the deletion.

— — -■- — ■

f— 1 ■ ■

SYSTEM DESCRIPTION

The actual Micro-Planner code generated to

procedure has been applied .s shown in figure 19.

105

update the state aftrr a primitive

-M^^ i,^_i^..J-.^. - - ■■- - ■ - --

■"^W»^»—«- I""" ■'

106
SYSTEM DESCRIPTION

9.4 CCMPUTAI ION OF INPUT-OUTP'JT ASSERTIONS

The compulation of input-output assertions requires the extension of the

MICRO-PLANNER system to include a trace stack containing rules entered, goals

ending anc' goals achieved from the state, i.e. leaf nodes in the subgoal tree. This

data structure is in addition to those which are a normal part of the MICRO-PLANNER

Processor. This stack is a list data structure satisfying the foMowing syntax:

<trace-srack> ::» (<rule-list>)
<rule-lict> ::- <rule-use>j<'ule-üse><ruie-list>

<rule-use> "-«<ruie-name><current-e02l>)<flag-list><achieved-goal-list>)
<achieved-goal-list>::-<achieved-goal>|<achieved-goal>vaLi!lRVed-goal-list>

where,

<achieved-goal> is an instantiated precondition subgoal of ihe rule
that has been acnieved dirtctly trom tie state,

<current-goal> is the current precondition subgoal pending in
the rule for whose achievement rules above it in the
stacK have ^deo entsred,

<flag-iist> is a sequence of zero or more nags used to determine
proper block nesting in conditional statements
(Section 9.5).

For example the trace stack may appear as,

(((Tl (P XI a)KQ a)K(T2 (R a X2)KS a b))),

a* some stage of a computation and have the meanmg,

(1) S(a,b/ fias been achieved from the st'.te in 12,

(2) R(a,X2) is currently pending in T2 and Tl has been entered to att impt its

iichievement,

(3) 0(a) has been achieved from the state in Tl, and

(4) P(Xl,a) is currently being attempted.

As each rule, say T, is successfully applied, before its <rule-use> is popped from

the trace stack, its <achieved-goal-list> is conditionally added onto a global variable.

- ■

11 ■ iJllilWIWI 1 mmmm

SYSTEM DESCRIPTION
107

DBLITS. Similarly if T has post cond.tions or output assertions to add to the sta.e they

are conditiona.ly added onto a global variable. ASSERTLITS. The condition in both

cres is that this occurrence of T will appear in It» completed subgoal tree.

For any generated program segment A. the input assertion I. and output

assertion 0, may be computed as follows.

(D By comp^ing each addition to DBLITS and ASSERTLITS in order of ad-iition.

those members of DBLITS that became true in the state as result of an

assertion, (i.e. are members of ASSERTLITS), 'rom a previous rule are

deleted.

(2) Redundancies m DBLITS are removed yielding the input assertion Ia.

O) The output assertion 0. is the non-redundant conjunction of all members of

ASSERTLITS that are true witn respect to the final output state of A.

i
■■- - -■ ■

warn w^m^^m^rm 1 •"■ ■■» •■

108 SYS""M DESCRIPTION

9.5 GENERATION OF CONDITIONAL STATEMENTS

In Section 5 the algorithms for generating conditional statements were

described. In this beclion some of the details of the implementation will be given.

Topics to be covered include implementation of goal nodes containing partial relations,

contingency go? selection and its use, and associaii' n of rejoin conditions with

contingency programs.

9.5.1 GOAL NODES CONTAINING PARTIAL RELATIONS

Let L be a precondition subgoal literal containing ,3 partial relation. The code

generated to attempt achievement of L is of the form:

(THCOND ML) T)
(o^L) (THFAIL))
(T (UNCERTLIT L SWITCH)))

where <*(L) is the appropriate THGOAL statement from for L as described in Section

9.2.3.1; and UNCERTLIT is a LISP function or two arguments, i.e. an

undetermined literal, L, and a switch value indicating whether this goal occurs

in a conjunciian (T) or in a disjunction (NIL).

The function UNCERTLIT does the following:

(1) Appends L to a global variable UNCERL1ST,

(2) Returns not[SWITCH].

If L is in a oisjunction then UNCERTLIT returns NIL, which forces the

next literal, it any, to be tried before the disjunction is declared undetermined

and a conditional statement generated. See definitions in Section 5.1.

Either as the last statement of a THOR statement (which implements disjunction)

or immediately following a THC0NÜ statement like the above, a call to the LISP function

CONDSTAT is generated witn behavior:

— na*—a——d

SYSTEM DESCRIPTION 109

(1) If null[UNCERTLIST] then if in a disjunction return NlUcauses failure)

otherwise T(success).

(2) If not[null[UNCERTLlST]] thyn generate a conditional statemer.t and

contingency tasks as described In Section 5 and detailed in ^oJlon 9.5.2.

For example the disjunctive goal (see example in Appendix A;,

VAR(x) V LP(x) V RP(x) V OPM,

will result in the 'ollnwing code generated by the frame translator:

(THOR(THCÜND((THG0AL(VAR(THVX)))T)
<(THGOAUNVAR(THV X))) (THFA1L))
(T(UNCtRTLlT(LIST(QUOTE VAR)(THV X))T)))

vTHCOND((THGOAL(LP(THVX)))T)
((THGOAUNLP(THV X))) (THFAIL))
(T{UNCERTLIT(LlST(gUOTE LPXTHV X))T)))

(THCOND<(THGOAL(kP(THV X))) T)
((THGOAL(NRP(THV X)))(THFAIL))
(T(UNCERTLIT(LIST(QUOT£ RPKTHV X))T)))

(THCOND((THG0AL(OP(THV X)))T)
((THGOAL(NOP(THV X)))(THFAIL))
(T(UNCERTLIST(LIST(QIX)TE OPKTHV X))T)))

(CONDSTAT(THV CGL)T))

where CGI. is a variable having as value the post condition of (ht

rule and is used in the contingency goal selection procedure. The goal
-EMPTYW,

occurring in a conjunction will result In the generation of the

following code

(THCOND((THGOAL(NEMPTY{THV X)))T)
{(THGOAL(EMPTY(THV X))KTHFAIL))
(T(UNCERTLIT(LIST(QUOTE NEMPTYKTHV X))NIL)))

(CONDSTATE(THV CGDNIL)

This code generated when the frame is translated will if executed at progr-m

generation time call the necessary construction procedures .o generate conditional

statements as further described in the next section.

- ■ ■ - ■ - ■ — -

I""l)l1 "" ' IIIIHIIIIIMIII I IIWHIMIII H I. JW Nil 11.1 I Ml I

110 SYSTEM DESCRIPTION

9.5.2 IMPLEMENTATION OF CONDITIONAL STATEMENT GENERATION

When a goal is found to have an indetermined truth value as defined in Section

5 and implemented according to Section y.5.', the global variable UNCERTLIST is <at »o

the list of undetermined literals (perhaps mor« than or» literal 'f G is a c'.^unctio^

The following procedure is then carried out:

(1) The trace stack is searched from the top (current rule entered^ to fird fht

pending goat of smallest scope that is ' lly instantiated, say G* and to «it

(RPLACA) a flag.i.e. "It--, for each member of UNDERTLIST in the <rule-use>

above G*, e.g. for rule names T and goals pending G,

(.. ((T G) If ...) «r G«)...)...).

These flags in the trace stack will signal the end of the else tlai-.c anc

the point of rejoin for the contingency programs called from the

conditional sta ement and generated later.

(2) The conditional siatement is generated as described in Section 5.2. In

particular for eacn member of UNCERTLIST, say L, a new procedure name,

say p, is generated, the appropriate state, say S, is created and the triple

(p,S,G*) is placed on [he subproblem stack.

(3> An expression of the form,

(IK <i THElvLdK -U THEN p^ ELSE p„ ^...ELSE)

is added to the top variaole in the ANS stack. Note that the fina. tls«

clause is left empty but will be filled in with what was called the trunk

program segment in Section 5.2.

(4) The list or new procedure names generated in step (2) is "CONSed" to a

yiubal vühüble PROCLIST.

 - — iii«« " ' 1 mt m *mmm ^ummam*atummm

'^" MM """"••""" " i < "" — —-—

SYSTEM DESCRIPTION 111

(5) A new answer variable name is generated added to the top of ANS and

initialized.

(6) Program generation continues until a rule has been successfully applied

that has some IF flags on its <rule-use> entry in the trace stack. The

following steps are then carried out:

(a) Append the value of the top variable in ANS to the next-to-the-top

variable and pop ANS. (note: This places the trunk program as the

else clause)

(b) Form the triple ((CAR PROCLIST) DBLITS ASSERTLITS) using current

values of these global variables and add it on to the variable

PROCDATA to be used later to conputt the rejoin condition for ihe

programs named in (CAR PROCLIST)

REMARK: ANS and PROCLIST are managed as LIFO stacks which correspond

to the entering and exiting of Uocks in the generated program. This

assures that the correct elements will always be at the top of the stacks

and arbitrary Jcoth of block resting is allowed.

(7) After the trunk program Kas been completely generated, each triple In

PROCDATA is accessed. Each consists of a list of procedure names having

the same rejoin point in the trunk program, and the v/glues of DBLITS and

ASSERTLITS at the point of rejoin. The sufficient input assertion for the

program segment from the point of rejoin to the may be computed by by

removing from the values of DBLITS and ASSERTLITS at final output state

their respective values at the point of rejoin then following the algorithm

described in Section 9.4. This input assertion must be provable from the

— - ■ --

MmfeTflOTm Nimevwiwmwv« 1 H ! ' ' '

112
SYSTEM DESCRIPTION

final output state of each procedure in the list when it is generated (see

Section 5.^) and is stored as an additional element of each associateu triple

in the subproblem stack.

^^^. •^m — - iirfW

IP^KzffPVIBW^HBK ^^^^PW^^«

SYSTEM DESCRIPTION 113

9.6 ASSEMBLY OF WHILE LOOPS

In Section 8 problem reductior search in a THAND-OP-AND tree was descriued

and in Section 6.1 the subgoal structure of a node expanded using an iterative rule

was given, i.e. the premises that must be achieved to justify the construction of a loop.

The subgoaling system provides program segments and substitution information

allowing the loop assembly phase to fully satisfy the premises and construct a WHILE

loop. This formal algorithm is sketched in Section 6 and now the methods implemented

will be considered in more detail.

The inputs to the loop assembler will first be described. Next the system

methods will be given for computing the successions of values for p-ogram variables to

have during successive iterations of the loop. Here some of the methods are decidely

neuristic in an effort to reduce the number of generated program variable and

associated assignment statements. Then we describe the generation of the update

assignment statements and thoir assembly with the other program segments to

produce a complete while loo^.

9.6.1 INPUTS TO LOOP ASSEMBLER

Consider an iterative rule applied to achieve I{?}G defined by the assertions

P(basis), Q(invariart), R(iteration step goal), G(rule goal), L(control test) and S{output

assertion) and whore V is the list of variables in Q. The inputs required for loop

assembly are as follows.

(1) A basis program segment p(H; is given that ?chieves the basis condition

from state I, i.e. I{p(P)}r and I' P.

(i) An instance Q\ of the loop inva'iant is given such that I'l-QX, where \-

{<v1*-si>,...,<vn4-sn>}. The substitution \ is actually constructed by this

 mm

114 SYSTEM DESCRIPTION

deduction and will be used to provide initial values for system generated

program variables corresponding to certain V| determined below.

(3) The formal algorithm calls for the generation of a iooa body program

segment p(R) that achieves the iteration step goal from the state QAL, i.e.

0AL{p(R)}r and fc R. This is to assure that the generation of p(R) did not

depend on particular properties of individual constants not shared by

others of the same type in the domain and that p(R) would, in general, be

incorrect. For example witn respect to the integers zero has an additive

property not shared by other integers, i e. identity. In the current

implementation p(R\) is generated such that r{p(RX))r", where QXALX are

true in P, then p(RX) is generalised as described below.

(4) An instance QX' of the loop invariant is given such that r"|- QX', where X' -

{<v1«-ti>^.,<vn«-tn>}. Since the invariant is a characterization of relations in

the subset of the state relevant to the iteration, comparing QX and QX' will

reveal instances of value "changes" that should be computed using system

generated loop control variables.

(5) An instance of the loop control test, i.e. LX, is given.

In practice by taking the entire state P as the input state from which to achieve

R in step 3, the user's rasponsibility to express in Q ail properties needed in the

subgoal tree rootnd at R is reduced.

_^.. -

Ml mmm ■■" ' '

SYSTEM DESCRIPTION 115

9.6.2 COMPUTING SUCCESSIONS OF VALUES

It is assumed that the loop invariant Q characterizes the relations existing at

each iteration among values of program variables. In particular all free variables in R

and L must be among the free variables in Q. Therefore significant program variable

value changes are given by comparing successive instances of Q, i.e. Q\ and QX' for the

first iteration. If for eac argument position in each relation in Q a different program

variable is generated then a correct computation rule for updating the vakes in the

program variables is a conditional assignment statement as described in Section 6

where each argument position in Q has a different w-variable. That some optimization

(i.e. reduction of the number of program variables) could be done at program

generation time is suggested by two observations:

(1) Many of the values in corresponding argument positions in Q\ and QX' will

not change, i.e. they are constant for the loop,

(2) Many of those that do change may be controlled using the same program

variable.

Since the frame language allows functional terms some successive values may be

of the form, S| goes to f(si). In this case direct functional assignments of the form, Y|

•■ f(Y|) may be efficiently placed at the top of the loop to avoid repeated computation.

These ideas have led to a number of optimization heuristics which are intended to

either:

(1) reduce the number of generated program variables,
or (2) recognize successive values related by a function and asset.ible direct

functional assignments,
or (3) reduce the portion of Q required in a conditional assignment.

By comparing respective argument positions in QX and QX' the system

recognizes two kinds of computation rules relating successive values, namely functional

- - -^———— • mm . —»^—

i^

116
SYSTEM DESCRIPTION

computation, e.g. t, - Us,), and Boolean expressions. e.g. Tfc.M where TcQ. The

system constructs a list of significant change pairs each corresponding to one of the

following cases:

(1) s, and t, are symboll.c expressions related by the formula TcQ and are

represented by ((Si.tjm.

(2) si and t, are symbollic expressions related by a function f which is evaluated

(using e.ther EV or EVN). i.e. I, - Us,) and are represented by (s, t,, f(s(). Not.

that in this case .t is not sufficient to search terms in Q or R to find the function

f. During the generation of p(R) the subgoal troe rooted at R is traced to retur,-.

the function f. if any. used to compute a succession of values in the 'oop.

(3) st and t, are symbollic expressions related by a function f which is not

evaluated but left in symbol.c form, and are represented by (s,. f(s(). Us,)).

— ■■ - - - ■

SYSTEM DESCRIPTION 117

9.6.3 ASSEMBLY OF PROGRAM SEGMENTS

Given the inputs specified in Section 9.6.1 and the change list described in

Section 9.6.2, the loop assembly procedure does the following:

1. Generates a pair <Y|, Zi> of control variables to taKe on the successions of

values during loop execution for eacn change pair This is to cover the case in

which both S| and t| occur in p(R) and we want to avoid the complexity of

considering statement order in p(R).

2. Constructs assignment statements that initialize the control variables prior to

looo entry, their values for e<i-h execution of the loop so that an instance of the

loop invariant will be true each timt the loop body is entered,

3. Substitutes control variabbles for their values in the loop body

4. Aosembles these proram segments together to form a "while" loop.

The detailed loop assembly procedure will now be given. The change pairs are

given on a list CL and will either be of the form U«c,/3)T) or (od,/(?,F).

(1) Set PA to the first change pair on the change list CL. If all change pairs have beer

processed then go to (8).

(2) Generate a new pair of variables Y and Z to be used for predecessor and

successor values respectively.

(3) Add (Y ♦- u) and (Y «- Z) at the ends of piP) and p(R) respectively.

Justification: The assignment (Y *- u) is an initialization of the variable Y to the initial

value oc and is done after the basis program p(P) prior to loop entry. The assignemtn

(Y ♦• Z) updates the variable Y after the iteration program IP with the successor of Its

former value which It is anticipated will be in Z in preparation for the next execution

of the loop body.

—

^^^M*w i w^WMaimpin mini i i um

118
SYSTEM DESCRIPTION

(4) Add the replacement pa,r U, Y) to the predecer.or replacement list ALP and (A Z)

to the successor replacement list ALS for later substitution.

(5) If the change pair PA ut.lizes a function then add the assignment (Z . F) to the

successor function assignment hst SASG. remove the first change pair from CL. and go

to (1).

Justification: The function F .s a fully instantiated funct.on whose value is equivalent to

4- This step causes Z to get the successor value as required in step (3).

(6) Generate a new variable W to be used as a call by reference variable in a

conditional assignment statement and substitute W for all occurences of fi in T.

Justification: W will hold the successor value for the conditional assignment to Z.

(7) Add the condit-onal ass.gnment (IF T THEN Z - W, to the conditional assignment list

SASGR, remove the first change pair from CL and go to (1).

Justification: The relat.on T » assumed to specfy the ordering between successive

values that will be taKen on by the control var.ables V and I, i.e. using T the successor

of Y may be deduced. This of course -mplies the computability of T as a procedure call

at execution time.

(8) Substitute var.ables for values in SASG and SASGR using the closure of ALP.

Justification: By closing the assoc.ation lists under subst.tution dependence upon the

order of substitution into SASG and SASGR is avo.ded. Subsitution into successor

assignments only for predecessor values using their associated variables (Y's) is

sufficient and in fact required because:

(a) Any successor value that may have occurred in a relation T has already been

substituted for by W.

(b) A successor value is by our conventions the new value that is computed as a

- ■ - ■ — ' — - -■ - -

■
SYSTEM DESCRIPTION 119

result of executing the loop body and occurs as an argument in the invariant Q . By

generating a distinct pair of control variables for each change pair, we separate

the successor assignments so that each is a function of predecessor values only.

Since the successor value of one change pair may be the predecessor of another

this restriction is necessary.

(9) Substitute variables for values in p(R) and L using the closure of ALP annd ALS.

(10) Assemble a "while" loop in the following form:

P(P);
SASGRi
while -• L do

begin
SASG;
PW-,
SASGRJ

end

Remark: Ambiguities may arise because of equalities among elements in the change of

values list, i.e. {($u t^ ... (s*. t,)). There are thee cases, i.e.

(a) Vi,j [i^j A s,^s,] A 3y[Mj A t,-!,!

(b)Vi,j [MjAt||iti]A3y[MjAt|-tll

(c) Vi,j [Mj A s^s, A tii't,] A 3i,j[i^ A srtj

These are resolved by referencing a trace of variable bindings in the subgoal

tree associated with each cccurence of each value or by simply re-achieving the

iteration step condition R from state I" until the ambiguities disappear.

To illustrate the process of computing a succession of values generating

successor assignments and substituting into them consider two examples from frames

treated sarlier.

Consider a slight variant of the iterative rule TUP in figure 12 and we have,

Q\ - 0N(M,B1,U) A STACKED(B2,B1,U) A SMALLER(B2,B1), and

 ■ - —■ ■ - ■■ -

—- ■"' " —— mmmmm—mm

120
SYSTEM DESCRIPTION

QV - (WM.B2.U) A STACKED(B3,B2.U) A SMALLER(B3(B2)

which results in a change pair of the form,

((B1.B2) STACKe[XB2.Bl,U) A SMALLER(B2,B1)).

and the successor assignment, (after substitution using ALP)

IF STACrtLKWi vl U)ASMALLER(W1 Yl) THEN
Zl «- Wl;

As another example the .terative rule TFACT in figure 10 yields, (where we

assume here that PROD is a primitive mumphcation function)

Q\ - C(X0(1) A C(X1,0) A FACT(1,0), and

QX' - C(X0,(PR0D KADDl 0))) A C(XI.(ADD1 0)) A FACT ((PROD 1 (ADD1 0)). (ADD1

0)),
which results in the change pairs,

(0,(ADD1 0), (AUDI 0)) and (1,(PR0D 1(ADD 0)),(Pk0D KADDl 0)))

and successor assignments, (after substitution from closure of ALP and syntactic

transformation from prefix functions as specified in the frame)

Yl - (Yi * 1);
Y2MY2« Yl);

After the loop has been assembled, control is given to an update procedure

which applies the rule of invariance using the given output assertion S as previously

described. If no output assertion is given then the loop is interpretively executed until

the goal G is true. This is required to provide a correct initial state for continued

program generation.

__

T M" '

SYSTEM DESCRIPTION 121

9.7 STRUCTURED PROGRAMMING

The objective of structured programming is to provide mental and organza.hnal

tools by which the programmer may create large systems while keeping the problem

complexity firmly within his mental grasp at each step of the creation. In Section / the

current rather rudimentary features in the system were briefly described a J an

example given.

Structured programming consists of constructing a program to soKe a parucuiar

problem by specifying a sequence of operations in which the operations are no?

necessarily "primitive" to the interpreter, e.g. computer, human, etc., but if successfully

carried our will correctly solve the proolem. Kor each operation in the sequence the*

is not primitive i.e. the procedure is declared to be an assumption, the function it

performs becomes a subproblem <p,I,G> for the system that may be similarly expandeci

into a sequence of perhaps again non-primitive operations. The process continues by

step-wise refining each operation until the problem can be solved correctly using only

"primitive" operations. The relationship between higher level operations and the

equivalent sequences of sub-operations that may be generated by successive levels of

structured development take the form of a tree with the initial generated program at

the root.

During the structured development process an overall structure for the program

is built up that primitive constructs will have to tit into. An implicit system assumption

is that a lower level operation will not have side effects that affect the correctness of

the overal structure containing it. This is essentially a "top-down" process, i.e., one

proceeding from the general functional description level down to specification of

primitives. However, there is a "buttom-up" component thai occurs when on the basis

 - - ■ - ■

^"" ■ - m wmmmmmm

122
SYSTEM DESCRIPTION

of information gained whit« generating lower level primitives, or to satisfy the

requirements of using them, the overall structure, i.e.. operat.on. previously generated

at a higher(closer to the root) level, must be modified. This may result in bacKVacking

if these modifications invalidate any previously specified operation. Also the over ,'1

structure may be modified by shifting a high level operation specifration to one which

utilizes more mathematical properties of the problem domain. In the current system

any bottom-up component and shifts(modifications; to higher level operations are do, .

interactively by using the adv.ce system. A useful automation of structured

programming should provide more powerful control and record keeping facilities fo

the traversing trie structured development tree.

The growing popularity of structured programming and its apparent usefulness

tor software understandability land therefore reliability) indicates the need for

continued resoarcn to automate this process. Certainly it is poss.ble now to build an

interactive structured programming system that can handle the top-down expansion,

Loitom-up backtracking and shifts at any level for the augmentation of the

prcjrimmer.

 - aMaH__Mia
■ - -

mmi __ ^^^r^mrmmim mmmmmumm 1 "

123

APPENDIX A: EXAMPLES

1. A Simple Translator from Infix to Polish Notation

This example illustrates the generation of conditional Ranches within 'oops in a

program to convert strings of symbols in infix form into strings in polish forrr ■ e.

"(X+Y*Z)- converts to "XY^." This is a common symbol man.pulat.on tas. in a

compiler. The example shows how the system can be used to program in a structured

"top down" manner.

A fully parenthesized, syntactically correct infix expression of a specified length

is given as input and on output a result stack S contains the Polish string. A working

stack R is used during the translat.on. We may consider the basic data structures

(stacks)..e. variables, constructors.te.g. push) and selectors (e.g. pop)),and the primitive

operators as given. Then.m this case.the user proceeded in the following steps.

(1) First the actions of the top level of the program were described by declarative

statements (i.e. the definitions of RECOGNIZED and PROCESSYM in terms of basic

concepts such as "X is a left parenthesis", and intermediate concepts such as "pop

operators from stack X and push them onto stack Y"

(2) Then at the second level. Rules - in this case iterative rules - were given tor

writing loops that implement the intermediate concepts. In doing this.the user specified

the major characteristics of a loop and left the system wiin the details ot deciding

whether to write such a loop.and if so. with the choice of local variables.the acttal

operations in the loop body and their order.(in so far as that was not specified) and

with looking after the updating of the local variables. Thus in order to write the top

level loop. TSLOOP, to achieve PüLTSL(T,U.V). the user must have "thought out" on

invariant relation between the elements manipulated by the loop body and what the

t^_J„»__—„^ - - —

1 " ' mmm vmmmmammmm mt^mww^m

124
APPENDIX A

8o,ls o. «, |00D body were (|n this case orie o(^ gM|s js a ^ ^ co^p|

REOOQNKEW.Y.W The system, « i, use5 ite rule ln eaMtnjeth, the output| w|ii

construct , («p bodl, ,ncluding upd3je .iSsig„mentSi ^ as5emb(e ,t Mg i WHILE

IriMMt SimiLry, in lh,s example th. user h.s supptied iterative rules for POPOPS

anr" POPHOPS.

The »„.put program insists c a main program, i.e. PRod, cont8inin8 .

compound conditiona, statement „h,tn Splits „p lhe cases ,„ proces!;ng as , ^^

oi the input symbot. Each aiiowable input symbol must be either of type uarieble.

operetor, (eft parenthes.s. or ngh, parenthesis. The main program proceses the case

in which the input symbol .s an operator and generates calls to contingency programs,

PROC3, PROM, , P,oc5, ,o be generated for the other three alternatives. The

procedure calls PhOC2, PKü;6, i PNOCT result in error exits.

Th« various parts of the l-rame definition will be given below followed by the

yeneraied programs.

 - ———-

niuiiwi>ii!<nip JIHIIII w^^^^mr^m

APPENDIX A
12

RELATIONS USED IN THE FRAME DEFINITION:

RELATION INTERPRETATION FLUEN1 PARTIAL UNIQUENESS

C(X,Y) "Contents of X is Y" TRUE FALSE C(X,»)

INTEGER(X) "X is an inteper" TRUE FALSE FALSE

VAR(X) "X is a variable" FALSE TRUE FALSE

LP(X) "X is a left paren" FALSE TRUE FALSE

RP(X) "X is a rignt paren" FALSE TRUE FALSE

ÜP(X) "X is an operator" FALSE TRUE FALSE

ISVAR(X) "X is a program var-
iable"

FALSE FALSE FALSE

NEXTSYM(X) "A value for X is
input"

TRUE FALSE FALSE

f<EC0GNIZ£D(X,Y,2) "Symbol X is recog- TRUE

ni;ced wrt stacKs Y Ä Z"
FALSE FALSE

PR0C£SSYM(X.Y,2) "Symbol X is processec

wrt stacKs Y & Z"
TRUE FALSE FALSE

>(X,Y) "X is greater than
Y"

FALSE FALSE FALSE

<(X,Y) "X is less than Y" FALSE FALSE FALSE

POLIShKX) "X contains a Polish
sequence"

TRUE FALSE FALSE

FOLTSUX.Y.Z) Translate an infix
string x symbols
lung to Polish
using stacks
Y and Z"

TRUE FALSE FALSE

-(X.Y) "X is equal to Y" FALSE- FALSE FALSE

PUSH£ü(X,Y) "X is pushed onto Y" TRUE FALSE FALSE

POPPELHX) ''X is popped" TRUE FALSE FALSE

TOPPED(X,Y,Z) "The top symbol of TRUE FALSE TOPFED(X,Y,»)

- ■ - -■ ■imiriin

immmm wwtm

126 APPENDIX A

POPOPS(X,Y)

POPHOPS(X,Y,Z)

S rACKSIZE(X,Y)

STACK(X)

EMPTY(X)

stack Y of size
Z is assigned to X"

"Pop operators from TRUE FALSE
X and push onto Y"

"Pop operators from TRUE FALSE
Y that have greater
priority than X and
push onto Z"

"Size of stack X is TRUE FALSE
Y"

"X is a stack" FALSE FALSE

"Stack X is empty" FMLSE TRUE

FALSE

FALSE

STACKSIZE(X,*)

FALSE

FALSE

ITERATIVE RULES:

NAME:
BASIS:
INVARIANT:
ITERATION STFP:
CONTROL TEST:
OUTPUT ASSERTION:
GOAL:

TSLOOP
N£WVAR(X,Y) A C(X,0)
COW) A INT£G£R(W) A STACK(V) A STMCK(U) A ISVAR(Y)
C(X,(AÜ01 m A NEXT3YM(Y) A RECOGNIZED(Y,U,V)
>(X,T)
PÜLISH(V)
POLTSUT,U,V)

NAME:
BASIS:
INVARIANT:
ITERATION STEP:
CONTROL TEST:
OUTPUT ASSERTION:
GOAL:

RLOOP
NEWVAROO A STACKSIZETO A TOPPEIXX.U.Z)
C(X,Y) A ={Y,(TOP U)) A STACK(U) A STACK(V) A STACKSIZE(U,W)
PU3HEÜ(X,V) A POPPEÜ(U) A TOPP£LKX,U,W)
■ORX)
POPÜPStU,V)
PÜPCPS(U,V)

NAME:
BASIS:
INVARIANT:
ITERATION STEP:
CONTROL TEST:
OUTPUT PoSERTION:
GOAL:

0L00P
NEWVAR(X) A STACKS1ZE(U,T) A TOPPEÜ(X,U,T)
C(X,Y) A =(Y,(T0P U)) A STACK(U) A STACK(V) A STACKSIZE(U,W)
PUSHED(X,V) A POPPED(U) A TOFPED(X,U,W)
■CPOO v <uPRIORITY XKPRIOR1TY Z))
PÜHHüPS(Z,U,V;
POPHOPS(Z,U,V)

- - ■ - ^ - -

^^^m*mmi

APPENDIX A
127

PRIMITIVE PROCEDURE PRE-CONDITIONS POST-CONDITIONS

P'Jsh(X,Y)

"Push symbol X
onto stack Y"

pop(X)
"Pop stack X"

getnext(X)
"Get next symbol'

HX.Y)
"Assign Y to X"

top(X,Y)
"Put top of stack
YinX"

ISVAR(X) A STACK(Y)
A STACKSIZE{Y,Z)

STACK(X) A STACKS1ZE{X,Y)
A -EMPTY(X)

ISVAR(X)

ISVAR(X)

ISVAR(X) A STACK(Y)
A STACKSIZE{Y(Z)

PUSHED<X,Y)
A STACKSIZE(X,(SUB1 Y»

POPPED<X)
A STACKSIZE(X,(SUB1 Y))

NEXTSYM(X)

C(X)Y)

TOPPED(X,Y,Z)
A C(X,(TOP Y))

DEFINITIONS:

BODY OF DEFINITION
RELATION DEFINED

(VAR(X) v LP(X) v RP(X) v 0P(X)) A PROCESSYM(X,Y,Z)

VAR(X) A PUSHEDOU)

LP(X) A PUSHED(X,Y)

RP(X) A POPOPS(Y,Z) A POPPED(X)

OP(X) A POPHOPS(X,Y,Z) A PUSHED(X,Y)

-(X,Ü) v lNTE&ER{(SUai X))

INITIAL STATE:

STACKS A STACK(R) A STACKSIZE(S,I) A STACKSIZE(R,J)

ALGEBRAIC SIMPLIFICATION: (SUBKADDl X)) -> X

RECOGNIZED(X,Y,Z)

PROCESSYM<X,Y,Z)

PROCESSYM(X,Y,Z)

PROCESSYM(X>Y,Z)

PROCESSYM(X,Y,Z)

INTEGER(X)

 - - .,— MM

«wni«ni i ■ *mim

■J

128
APPENDIX A

PR0C1 (N R S)

ISVAR(X 1);1SVAR(X2);ISVAR(X3);STACK(S);STACK(R);
COMMENT
INPUT tCONDlTIOlMS:
STACKS1Z£(R J)ASTACKSIZE(S I)
0UTPUT:C0N01TI0NS:
POLISKS);
COMMENT
PR0C6 ATTEMPTS:TO:ACHI£VE: (POPPED R)
PR0C5 ATTEMPTS:T0:ACH1EVE: (PHOCE33YM X2 R S)
PRÜC4 ATT£MPTS:TÜ:ACH1EVE: (PRQCESSYM X2 R S)
PR0C3 ATTEMPTStTCfcACHIEVEi (PROCESSYM X2 R S)
PH0C2 ATTEMPTS. rü:ACHIEV£: (PROCESSYM X2 R S):

BEGIN
XI <-ü;
WHILE ->(X1 N) DO

BEGIN
Zl MXl+U
GETNEXT(X2);
IF -OP(X2; THEN

IF -RP(X2) THEN
IF -VAR(X2) THKN

IF -LP(X2) THEN
PROC2(X2 R S)

ELSE PRÜC3(X2 R S)
ELSE PküC4(X2 R S)

V.LSt PROC6(X2 R S)
ELSE

BEGIN
TOP(X3 R);

WHILE OP(X3) A -<((PRI0RITY X3KPRI0RITYX2)) DO
BEGIN
PU3H(X3 C)
IF EMPTY(R) THEN

PROCC(R)
ELSE

BcGIN
POP(R);
END

T0P(X3 R)j
END

PUSH(X2 R)j
END

XI 4-Z1
END

END

I-ROC3 (X2 R S)
1SVAK(X2);STACK(R);
COMMENT

— J

APPENDIX A J29

INPUT:CONDITIONS:
STACKSIZE(R I)
OUTPUT:C0NDITI0NS:
STACKS1ZE(R (ADD1 1))APUSHED(X2 Rh

BEGIN
PUSH(X2 R);
END

PR0C4 (X2 R S)
ISVAR(X2);STACK(S)i
COMMENT
INPUT:CONDITIONS:
STACKSIZE(S I)
OUTPUT:COND1TIONS:
STACKSIZE(S (ADD1 I))APUSHED(X2 S);

BEGIN
PUSH(X2 S);
END

PROC5 (X2 R S)
ISVAR(X4);STACK(S);STACK(R);
COMMENT
INPUT :CONDITIONS:
STACKSIZE(R J)ASTACKSIZE(S I)
OUTPUT:CONDITIONS:
POPOPS(R S);
COMMENT
PROC7 ATTEMPTS:TO:ACHIEVE: (POPPED R) j

BEGIN
TOP(X4 R);
WHILE OP(X4) DO

BEGIN
PU3H(X4 S)
IF EMPTY(R) THEN

PROC7(R)
ELSE

BEGIN
POP(R)i
END

TOP(X4 R);
END

IF EMPTY(R) THEN
PR0C8(R)

ELSE
BEGIN
POP(R);
END

END

»«■■^■MaatMMMi

130 APPENDIX A

2. Integer Square Root Problem

As an example of generating a progrant for numerical computation consider the

task of computing the largest integer k for a given n such that k ts 'ess than or equal

to the square root of n. An essential fact formalied in the Frame definition is that the

difference between the itn and d + l/st squares is 2i+l, i.e.

(I*l)a -ia -i8 ♦ 2i ♦ 1 -i* -2i ♦ 1 -i + i ♦ 1.

This allows the simple iterative upward computation for any i, using two

variables Yl and Y2 and only the arithmetic operation of addition, of i in Yl and (i+lT

in Y2 such that when the value in Y2 exceeds n then Yl will have the desired value k.

The Frame definition in addition to a primitive procedure for assignment is given

below followed by the generated program.

-.. . . ^ ^ „^^^jjm

APPENDIX A 131

RELATION INTERPRETATION FLUENT PARTIAL UNIQUENESS

C(X,Y) "Contents of X is Y" TKUE FALSE C{X,t)
>(X,Y) "X is greater than Y" FALSE FALSE FALSE
ISQRT(X(Y) "X contains the

integer square
root Of "Y"

TRUE FALSE ISQRT(X,»)

VSQ(X,Y) "X equals Y " TRUE FALSE FALSE
ISVAR(X) "X is a variable" FALSE FALSE FALSE

ITERATIVE RULE:

NAME: TSQ
BASIS: NtWVAR(X) A C(X,(ADD1 0)) A C(W,0)
INVARIANT: CW.Y) A C(X(Z) A VS0(Z,(AD01 Y»
ITERATION STEP: aw/ADO 1 Y)) A C(X,(PLUS Z(ADDi(PLUS(ADDl YKADD1 Y)))))
CONTROL TEST: >(Z,V)
OUTPUT ASSERTION: ISQRT(W,V)
GOAL: IS0RT(W,V)

AXIOMS:

VSQ((ADD1 0),{AÜ01 Ü))
VS0<(M1NUS Z(AÜÜHPLUS Y Y))MSUB1 Y» c VSQ(Z,Y)

INITIAL STATE:

ISAVR(XO)

ALGtbRAIC SIMPLIFICATION:

(SUBKADDl X))-+X
(MINUS (PLUS X Y)Y) -» X

 ■MMMriMMUMnnMaiMaai

132
APPENDIX A

PROCKXO N)
ISAVR(XO);
COMMENT
INPUT ASSERTION:
NONE
OUTPUT ASSERTION:
ISQRTCXO.N);

BEGIN
XO«-Ü;
Y2 «■ (Ü+1);
WHILE -> (Y2(N) 00

BEGIN
X0 4-(X0 ♦ 1);
Y2 ♦■ (Y2 ♦ ((XO ♦ XO) ♦ Ih
END

END

in—Mmh - - -- - -— —J.■^-^—J-J—-—^--

APPENDIX A 133

3. Hand-Eye Tasks

In a simple robotics environment an "eye" (usually a Vidicon TV camera) may be

used to locate objects on a table and a computer contolled arm carries out

manipulatory tasks with these objects. We assume the identity and location of the

objects in the scene have been discovered and are given in the initial state.

Programs written for autonomous robot control must be capable of on carrying

some sort of dialogue with the real world since most relations will be partial and the

outcome of operations will not be totally reliable. Conditional calls to contingency

procedures is one way of establishing this dialogue.

The frame definition is given below toilowpd by a generated program.

■Hb*M*U^HtMi ■ ' —— - - - - - -" ' . ■ — ■... . ^■...

Best Available

Copy
for page 134

IM
APPCtVWXA

RELATIONS Ü3ED ffJ 7M£ PftAMt D^fNITtöN:

«ELATION mmejfitm tuxm PAWfIAL UNlOUCNfSG

ATCX.Y)
HAS(K.V)
r-vf" r\rM<X,Y,2>

COLLlDtCKX.Y.ZrX

DROf»f»b:U(W,K,Y,2)

AVAlLASLt(K,Y)

MIS3ED<K.Yr2)

RDBOTCX)

"X is «t tocation Y"
"X ha-, Y"
"V cnn rotwh
from V lo r*

collldoo
b«lv/ot)h Y afvi r*
"W drow»«»« V
lootwoofi Y anü 2*
'> 16 üv'Hllöblt'
flt Y"
"X missed Y
»t 2*

MlÜE

TAUE

TRUt

THUE

TAUE

TWüE

KALSE

KAISE
PAt^E

PALSE

PALSt

r«uE

FALSE

PAl^E

AKX,*)
PAl sr

'PALSt

PALSE

PAI.SE

PALSE

FALSE

FALSE

PRIMITIVE PROCEDÜRt

rmtH/klXIXX)
"Al reiches
tnm a to UT

tf«ns.port<Al,OUU2)
"Al transports 01
frow Ll toL2"

p.cKup(Al,OUU
"Al picks up 01
•t Ll"

putdown<Al,Ol,Ll)
"Al puts down 01
•t Ll"

mK*\Al) A O3J(0l) A W^Äl(Öi) {AWl.L^ A AT<AI l "»
A **£*$ ^WM «WH-LicmÄi.iu2)
A CA^ACH(AUi,^) A WJCfc^üCAl .01 L11^»

ROÜOTXAi) A 0»SJWi) A AWU«)
A - MAÄA1,02) A AV»LAtÄ.«dl,Ln
A ATXAMl)

ROOOnADAHA^Al^O
AMTvAl,LU

HÄ%(Al .^i) ♦ W55tO(A i ,01 .L1)

MA»(Al^i)

INITIAL STATE:

ROBOT(ARM) A 0BJ(BLKl) A AT{BLK1.P) A ATtAMMI

- - ■'■
- -- -- - -— ' ■ ^..^-^■.-^ J

APPENDIX A
135

PROCKBLKl ARM P S)
ROBOKARM); OBJ(BLKl);
COMMENT
INPUT.-CONDITIONS:
AT(BLK1 P) A AVAILABLE(BLK1 P) A CANREACKARM S P)
A CANREACKARM P S)
OUTPUTiCONDITIONS:
HAS(ARM BLK1) A AT(ARM S) A AT(BLK1 S)i

BEGIN
IF - AVAILABLE(BLK1 P) THEN

PROC2(ARM BLK1)
ELSE

BEGIN
IF - CANREACKARM S P) THEN

PROC3(ARM P)
ELSE

BEGIN
REACH(ARM S P);
IF - AT(ARM P) THEN

IF - AT(ARM P) A COLLIDEWARM S P) THEN
PR0C4(ARM P)

ELSE PROC5(ARM P)
END

PICKUP(ARMBLKIP)
IF - HAS(ARM BLK1) THEN

IF - HAS(ARM BLK1) A MISSECKARM BLK1 P) THEN
PROC6(ARM BLK1)

ELSE PROC7(ARM BLK1)
END

IF - CANREACH(ARM P S) THEN
PRÜC1Ü(BLK1 S)

ELSE
BEGIN
TRANSPORT(ARM BLK1 P S);
IF - AT(BLK1 S) THEN

IF - AT(BLK1 S) A DROPPECKARM BLK1 P S) THEN
PROCIKBLKl S)

ELSE PROC12(bLKl S)
END

END

,^1Bk__1_MBiaaaatti

136 APPENDIX A

4. n-Queens Puzzle

To illustrate how the program generation system may be used to solve puzzles,

a backtrack problem solving algorithm (see Section 9.1) is axiomatized in the frame

definition language to solve the n-^ueens puzzle. The object of this puzzle is to place

n queens on an n x n chessboard such that they are mutually non-attacking, the

algorithm proceeds by placing queens on the board a column at a time, backing up

when no placement is possible.

The frame definition for this problem is given below followed by a generated

solution programs for the 4-0ueens and S-yueens cases.

■ - - - -■ __—^^„^.^— — _._ __^J^_^J^.^^_

APPENDIX A 137

RELATIONS USED IN THE FRAME DEFINITION:

RELATION INTERPRETATION FLUENT PARTIAL UNIQUENESS

SAFE(X,Y) "Square X,Y is safe" TRUE FALSE FALSE
bOTHSAF£(W,X,Y,Z) "Square W,X is safe TRUE FALSE FALSE

wrt square Y,Z"
ALLSAFE(X,Y,Z) "Square X,Y is safe

wrt columns 1,..,Z"
TRUE FALSE FALSE

QUtEN(X(Y) "A queen is on
Square X,Y"

TRUE FALSE FALSE

QPLACED(X,Y,Z) "Queens are placed
in columns X,..,Z"

TRUE FALSE FALSE

-(X,Y) "X is equal to Y" FALSE FALSE FALSE
PLACED(X) "X queens have

been placed"
TRUE rALSE FALSE

PRIMITIVE PROCEDURE PRE-CONDITION POST-CONDITION

piacequeen(I,J) SAF£(I,J) QUEENOJ)
Place queen on square I,J"

AXIOMS:

ANTECEDENT CONSEQUENT

•UD v MJ,1)A ALLSAFE(I,J,J)} SAFE(I,J)

-(K, 1) v {REQUESTtQUEENUP.fEVMSUBl K)))) ALLSAFEd J K
A B0THSAFE(UIP<(EVN(SUB1 K)))A ALLSAFE(U{EVN(SUBl K)))}

-(11.12) A -=((EVN(PLUS II J1)),(EVN(PLUS 12 J2)))
■((EVN(D1FFERENC£ II J1)),(EVN(DIFFERENCE 12 J2)))

BOTHSAFE(IMl,I2,J2)

DEFINITIONS:

BODY OF DEFINITION RELATION DEFINED

QPLACELXUN) -(I,(EVN(ADD1 N))) A HJ,0) A -(J,(EVN(ADD1 N)))
v {QUEENUJ) A QPLACED{1,(EVN{ADD1 J)),N)}
v QPLACED((EVN(ADD1 DUN)

QPLACeD(l,l,N) PLACEtXN)

INITIAL STATE: (empty)

■ - - •--- — —■■

138
APPENDIX A

PR0C1
BEGIN

PLACEQUEEN(2 Dj
PLACE0U££N(4 2);
PLACEQUEtNd 3);
PLACEQUEEN(3 4h
END

PROC1
BEGIN
PLACEOU£EN(2 iy,
PLACE0UEEN(5 2);
PLACEOUEEN(7 3);
PLACEQUEENd 4);
PLACE0UEEN(3 5);
PLACEQUEEN{8 6);
PLACEOUEEN(6 7h
PLACE0UEEN(4 Bh
END

 . .. -

139

APPENDIX B - AN INTERACTIVE SESSION

A sample interactive session is here presented to illustrate the system's use in

frame definition and program generation. Statements typed by the user will always be

prompted by "«M. The top level system function is "SUBGOAL" which is called in the

manner given below to accept a frame definition from the terminal. Comments to aid

the reader's understanding of the dialogue will be enclosed in quotes.
♦(SUBGOAL)
"The system now enters an interactive mode for Frame definition."
« » * ♦ SEMANTIC FRAME DEFINITION * » ♦ »

RULE TYPE* AXIOM
RULE NAME« AOlMTOP
IS THIS AN ASSUMPTION?* NIL
IS THE RULE DIRECTLY RECURSIVE?« NIL
INEQUALITIES IN ARGUMENT POSITIONS« NIL
PRECONDITIONS:
« ROBOT(Xl) A ON(Xl,X2) A -STACKED<X3,X2)!
POSTCONDITIONS:
« ONTÜP(XI);

RULE TYPE« PRIMITIVE PROCEDURE
RULE NAME« STAND0N(R1,Z1)
IS THIS AN ASSUMPTION?« NIL
IS THE RULE DIRECTLY RECURSIVE?« NIL
INEQUALITIES IN ARGUMENT POSITIONS« NIL
PRECONDITIONS:
« ROBOT(Rl) A ON(Rl,Wl) A BOX(Zl) A CLOTHES(Ol) A WEARING(R1,01)
A AT(Z1,Y1) A AT(R1,Y1);
POSTCONDITIONS:
« ONWl.Zl);

RULE TYPE« PRIMITIVE PROCEDURE
RULE NAME« DRESS(R1,01)
IS THIS AIM ASSUMPTION?« T
IS THE RULE DIRECTLY RECURSIVE?« NIL
INEQUALITIES IN ARGUMENT POSITIONS« NIL
PRECONDITIONS:
« ROBOT(Rl) A CLOTH£S(01);
POSTCONDITIONS:
* WEARING(Rl,01)i

RULE TYPE* PRIMITIVE PROCEDURE
RULE NAME« TRAVEL(R1,L1,L2)
IS THIS AN ASSUMPTION?« NIL
IS THE RULE DIRECTLY RECURSIVE?« NIL

- - ■— -'■■■■ ■ —

140 I
APPENDIX B

INEQUALITIES IN ARGUMENT POSITIONS» (RU,)
PHECONDITIONS: *" '
* ROBOT(Rl) A AT(R1,L1) A . O^Rl^Ll)«
POSTCONDITIONS: vww.Ll)',
* AT(R1,L2);

RULE TYPE» PRIMITIVE PROCEDURE
RULE NAME* STEPURXl.Yl.Zl)
IS THIS AN ASSUMPTION'* NIL
IS THE RULE DIRECTLY RECURSIVE?* NIL

♦ O^Xl.Zl);

RULE TYPE* ITERATIVE
RULE NAME* ITONTOP

iSJt!!S RULE DIRECTLY RECURSIVE?* NIL
BASIS CONDITION:
* ROBOT(Xl) A Omi,X2)i
INVARIANT:

*0N(X1,X3)ASTACKED(X4,X3);
ITERATION STEP CONDITION-
* O^XLX^);
CONTROL TEST* NIL
OUTPUT ASSERTION* NIL
GOAL* ONTOP(Xl);

RULE TYPE* NIL

INITIAL STATE:

SEMANTIC PROPERTIES OF RELATIONS:

IS ROBOT(Rl) A FUNCTION OF THE STATE'* NIL
IS ROBOT(Rl) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* NIL

\l tlZÜW i FUNCTI0N 0F THE STATE?* T IS AT(R1,L1) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* (Rl,*)

IS STACKED<X4(X3) A FUNCTION 0" THE STATE?* T
IS STACKED(X^3) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* (X4,*)

- - — — - - .- .. .
— — ■—■^- -—"■

AMPtNUlX B 141

IS BOX(Zl) A FUNCTION OF THE STATE?« NIL
IS BOX(Zl) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* NIL

IS ONTOP(Xl) A FUNCTION OF THE STATE?* T
IS ONTOP(Xl) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* NIL

IS CLOTHES(Ol) A FUNCTION OF THE STATE?» NIL
IS CLOTHES(Ol) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPEKTIES* NIL

IS WEARING(R1,01) A FUNCTION OF THE STATE?* T
IS WEARING(R1,01) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* NIL

IS ÜN(X1,Z1) A FUNCTION OF THE STATE?* T
IS ÜN(X1,Z1) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* (Xl,*)

FILENAME* DSK:PCLI
TRACE MODE?* T
PERFORMANCE STATISTICS?* T
LOOKAHL'AD?* NIL
ALGEBRAIC SIMPLIFICATION?* NIL

SUBGOALING SYSTEM GENERATED!!!
"A subgoaling system corresponding to the Frame has now been generated
and the system may now receive a goal to achieve."

SUBMIT GOAL« ÜNTOP(M)
UO YOU WANT THE PROGRAM L1BR ^RY?* NIL
DO YOU HAVE ANY ADVICE?* T
«*« ENTERING ADVICE SYSEM ***
»1* TRY STANDON BEFORE STEPUP
«2« NIL "Exit advice system and begin program generation."

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
—ITONTOP

RULES ENTERED AND GOALS PENDING IN CURRENT SIUBGOAL TREE PATH:
—(ITONTOP(ON M X2))STANDON

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
—(ITONTOP(ON M X2))(STANDON(WEARING M SHOES))DRESS

«DRESS M SHOES))
"Current program segment generated is displayed in this form."

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:

 i ■ »i in ----- -- - —- —

lzl2 APPENDIX B

™(ITONTOP(ON M X2)KSTANC)0N(AT M L))TRAVEL

((DRESS M SHOESXTRAVEL M CORNER D)
UuRESS M SHOESXTRAVEL M CORNER LKSTANDON M Bl)
"This cons'.tutes the basis program for the iterative rule."

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
—(ITONTOP(ON M B2))STANDON

STANDON IS FAILING!!!
—(-ON M Wl) WAS THE LOSER
"STANDON is only applicable for climbing from ground level."

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
—(ITONTOP(ON M B2))STEPUP

((STEP M Bl B2))
"This is part of the loop body."

RULES ENTERED ANf GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
—(ITONTORONTOP M))AONTOP
"The system now interpretively updates the state until the goal Is
true, then the while loop is assembled."

DO YOU WANT TO OPTIMIZE THE PROGRAM?« NIL
IS THIS PLAN USEFUL ENOUGH TO GENERALIZE?* T
IS THIS A PROCEDURE WITHOUT SIDE EFFECTS?» NIL

THE GOAL (ONTOP M) IS ATTAINABLE BY THE FOLLOWING PROGRM:
"The desired program has been generated and will now be displayed."

PROCKM)
ROBOT(M);CI SHOES)i(BOX(Bl)iBOX(B2);
COMMENT
INPUT ASSERTIONS:
AT(M CORNER) A AT(B1 L) A STACKED(B2 Bl)
OUTPUT ASSERTIONS:
WEARING(M SHOES) A AT(M L) A ONTOP(M);
COMMENT
THIS PROGRAM RELIES ON THE FOLLOWING ASSUMPTIONS:
(DRESS);

BEGIN
DRESS(M SHOES);
TRAVEL(M CORNER L);
STANDON(M Bl);
Yl «-B1;
IF STACKED(W1 Yl) THEN

21 ♦- Wl;
WHILE - ONTOP(M) DO

BEGIN

— — ■ -- - - - - miummmmmtmmatmirmMmmtmtmam

IM

APPENDIX B 143

ST£PUP(M Yl ZI);
Yl «-Z1
IF STACKECKWl Yl) THEN

ZI «-W1;
END

END

DO YOU WANT TO DO STRUCTURED PROGRAM DEVELOPMENT?* T

TRYING—((DRESS M SHOESKWEARING M SHOESXSTATl.AST))
"This task triple consists of procedure name, goal and state."

DO YOU HAVE ANY ADVICE?« T

♦♦♦ENTERING ADVICE SYSTEMS
•li ADD PUT-ON

RULE TYPE^ PRIMITIVE PROCEDURE
RULE NAME* PUT-ONW.Ol)
IS THIS AN ASSUMPTIOIM?* NIL
IS RULE DIRECTLY RECURSIVE?* NIL
INEQUALITIES IN ARGUMENT POSITIONS* NIL
PRECONDITIONS:
* ROBOT(Rl) A CLOTHES(Ol) A FOUND(R1,01)J

POSTCONDITIONS:
*WEARING(R1,01);

RULE TYPE* PRIMITIVE PROCEDURE
RULE NAME* nNU(Rl1OI>Ll)
IS THIS AN ASSUMPTION?* NIL
IS RULE DIRECTLY RECURSIVE?* NIL
INEQUALITIES IN ARGUMENT POSITIONS* NIL
PRECONDITIONS:
* ROBOT(Rl) A CHAIR(02) A AT(02,L1) A AT(R1,L1) A UNDER(01,02);
POSTCONDITIONS:
* FOUNO(Rl,Ol);

RULE TYPE* NIL

INITIAL STATE:
* CHAIR(CHAIRl) A CHAIR(CH/!IR2) A AT(CHAIR1,CORNER)
A AT(CHAIR2,CORNER);

SEMANTIC PROPERTIES OF RELATIONS:

IS FüUND(Rl,ül) A FUNCTION OF THE STATE?* T
is FOUND(RI,OI) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* NIL

IS CHAIR(02) A FUNCTION OF THE STATE?* NIL

-

144 APPENDIX B

IS CHAIR(02) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES» NIL

IS UND£R(01,02) A FUNCTION OF THE STATE?» T
IS U\U£R(01I02) PARTIAL?« T
ARGUMENT UNIQUENESS PROPERTIES« NIL

ALGEBRAIC SIMPLIFICATION?« NIL

SUBGOALING SYSTEM GENERATED!!!
"The Frame addition has now been translated."

«2« DELETE DRESS
«3« NIL
"Exit Advice system."

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
—(PUT-ON<FOUND M SHOES))FIND

((FIND M SHOES CORNER))
((IF(-UNDER SHOES CHAIR1) THEN (PROC2 M SHOES)
ELSE((FIND M SHOES CORNER))KPUT-ON M SHOES))
"The conditional statement is generated since i* is not known where
the shoes are."

DO YOU WANT TO OPTIMIZE THE PROGRAM?« NIL
IS THIS PROGRAM USEFUL ENOUGH TO GENERALIZE?« T
IS THIS PROCEDURE WITHOUT SIDE EFFECTS?« NIL

THE GOAL (WEARING M SHOES) IS ATTAINABLE BY THE FOLLOWING PROGRAM:
"This procedure is the structured expansion of the non-primitive
procedure DRESS called m PROC1."

DRESS(M SHOES)
ROBOT(M);CLOTHES(SHOES)jCHAIR(CHAIRlh
COMMENT
INPUT ASSERTIONS:
AT(M CORNER) A AT(CHAIR1 CORNER)
OUTPUT ASSERTIONS:
WEARING(M SHOES) A FOUND(M SHOES) A WEARING(M SHOESh
COMMENT
PROC2 ATTEMPTS TO ACHIEVE FOUND(M SHOES);

BEGIN
IF -UNDER(SHOES CHAIR 1) THEN

PROC2(M SHOES)
ELSE

BEGIN
FIND(M SHOES CORNER);
END

PUT-ON(M SHOES)

l—Mi I

APPENDIX B
148

END

DO YOU WANT TO DO CONTINGENCY PLANNING'» T
WHAT IS YOUR PREFERENCE?
 IF NONE TYPE NIL» NIL

TRYING—(PROC2 (FOUND M SHOESKSTAT2.CST))
"The contingency task tnple consists of procedure name, goal and state."

DO YOU HAVE ANY ADVICE?» NIL

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:

((FIND M SHOES CORNER))
DO YOU WANT TO OPTIMIZE THIS PROGRAM?» NIL
13 THIS PROGRAM USEFUL ENOUGH TO GENERALIZE'» T
IS THIS PROCEDURE WITHOUT SIDE EFFECTS?» NIL "

THE GOAL FOUND(M SHOES) IS ATTAINABLE BY THE FOLLOWING PROGRAM:

PRÜC2(M SHOES)
KOBOT(M)|CHAIR(CHAIR2);
CüiviMENT
INPUT ASSERTIONS:
AT(CHAIR2 CORNER) A AT(M CORNER)
OUTPUT ASSERTIONS:
FOUND(M SHOES);
COMMENT

PROC3 ATTEMPTS TO ACHIEVE FOUND(M SHOES)-
BEGIN

IF -UNDER(SHOE3 CHAIR2) THEN
PKOC3(M SHOES)

ELSE
BEGIN
FIND(M SHOES CORNER);
END

END

DO YOU WANT 70 DO CuNHNGENCY PLANNiNG'* NIL
DO YOU WANT TO CONTINUE FROM THE CUKKENF STATE?» NIL

MMH —..,.■-—>—-^ - . -

M6

REFERENCES

A",n• iÄ& ™s. ^zJrtrXÄTirs p:ofrOT'" MACHINE
March, 1970. e (Eds•,' ^'"burgh University Press,

A"e„, ,. UJ^ O.C., Ä„ unpübllshed worh|ng paper| AI ^ ^ ^^^ ^^

8aUmba^east^
r0

u:X
A

1
,'Tr,e Re,ere''" Ma-'- A. Project Op^Un,

8üchaoa^::^:u^:°;:r9
o
7r

i"g ,he co"— -"—-.«^
BMrtv P.. pwx Thes,S| Un,versit/ o(^^^^ ^ ^^ i973

Feldman J. A., Low, J. R., Swrnehar-, U C Tavlo, R u -o . o
An ALGOL Based Laoguagi for Arl fei'af M ,? Cen, ^T1"1""*' I" SAIL,
Stanford Universily, 1972. Welhgence, Al Memo A1M-176,

r |kp< f? E* LJ * n r»

' MAiHINVlNTEaSE 7Nt97S20me NeW DireCti0nS '" Rob0f Pr0b,e'" Solving."

EiKes, R. E., Nilsson, N J "qrwrpc. « u A

P-,n8 to P.oBlen; Ä-SÄtÄ^ÄS - "—«

n0yd• kÄÄÄVÄ?« ,0 Pr0er'mS'" Pr«- - Symposium in Applied

Gerritsen, R., "Understanding Data Structures" Ph r, T., .
1971. ' *"*<""* . Ph.D. Thesis, Carnegie-Mellon University,

G-n, C. C, "Appl,cation o. Theorem-Proving ,0 Problem Solving," Proc. UCAI, 1969,

Hammer, M.M., Howe, W.Ü., Wladawskv I -a« r .

K .680, £ KeseWch^Ln ^gM^N?:';;^1™» t«W«-' W-.'.

H«*f. C., ■Oescr.phon and Theoret,cal Analysis o. Planner" Ph.O. Thes,s, MLT, ,m.

HOa^e■ Caul; lsnda
a:b^o';a

5M
,0r "^^ '"°*""^ 0— «M 12, 10,

Hoare, CAW., and VVirth u L„

Pascal, Berichte der F^T^iS!^ "* I"***** language
f^ovember 1972. ^^ Computer-W.ssenschaften 6, E.IK, Zur.ch!

^^^mmmmmmmmmmmi

147

Igarashi, S.; London, R.L; Luckham, D.C. , "Automatic Program Verification I: A LogicJ
Basis and Implementation", Stanford AIM 200, May 1973.

Katz, S. M., Manna, L, "A Heuristic Approach to Program Verification," Proc. UCAi, 1973.

King, J., Floyd, R.W., " Interpretation Oriented Theorem Prover Over Integers", Second
Annual ACM Symposium on Theory of Computing, 1970.

King, J., "A Program Verifier," Ph.D. Thesis, Carnegie-Mellon University, 1969.

Luckham, D.C., Buchanan, J.R., "Automatic Generation of Programs Containing Conditional
Statements", AISB Summer Conference, Sussex, 1974.

Martin, W.A., Unpublished Working Paper, Project MAC, MIT, 1973.

McCarthy, J., and Hayes, P. , "Some Philosophical Problems from the Standpoint of
Artificia; Intelligence" Machine Intelligence 4, pp. 463-502, Edinburgh
University Press.

Milner, R., "Logic tor Computable Functions Descriptions," Al Memo AIM-169, Stanford
University, 19/2.

Newell, A., Simon, H. A,, "GPS, A Program that Simulates Hu.ian Thought," COMPUTERS
AND THOUGHT, E. Feigenbaum and J. Feldman (Eds.), McGraw-Hill Book Co..
1963.

Nilsson, N, "Problem Solving Methods in Artficial Intelligence", McGraw-Hill, 1971.

Ruhfson, J. A., Uerkson, R. A., Waldinger, R. A., "QA^: A Procedural Calculus for Intuitive
Reasoning," AI Center Tech. Note 73, SIR, 1972.

Samuel, A. "Studies in Machine Learning Using the Game of Checkers," COMPUTERS AND
THOUGHT, E. Feigenbaum and J. Feldman (Eds.), McGraw-Hill Book Co., 1963.

Simon, H. A., "Experiments with a Heuristic Compiler," JACM 10 (Oct. 1963).

Stickel, M., "A ProgrEmmable Strategy Theorem Prover", Technical Report, Department
of Computer Science, Carnegie-Melion University, 19/4.

Sjssman, J., Winograd, T. , "Micro Planner Reference Manual", M.I.T. Project MAC Report

Sussman, G.J., Ph.D. Thesis, M.I.T., 1973.

Sussman, G. J. and McDermott, D. V, "Why Coniving is Better than Planning," Proc. FJCC
41 (Dec. 1972;.

Tesler, L. G., Enea, H J., Smith, D. C, "The LISP7Ü Pattern Matching System" Proc.
IJCAI, 1973.

«-^i

 ^MM

148

Waldinger, R. J. and Lee, R. C. T., "PROW: A Step Toward Automatic Program Writing,"
Proc. ÜCAI, 1969.

Winograd, T., "Procedures as a Representation for Data in a Computer Program for
Understanding Natural Language," Tech. Report MAC TR-84, M.I.T., 1971.

- —' «■ - ■ ■

