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FOREWORD

This report was prepared by Br. Peter S. Maybeck of the Control
Elements Branch, Flight Control Division, Air Force Fiight Dynamics
taboratory, Wright-Patterson Air Force.Base, Ohio.

The work was initiated under Project Work Unit Number 19870248. This
report cevers work performed during the period from November 1972 through
March 1973. The manuscript was released by the author in May 1973 for
publication as a technical report.

This technical report has been reviewed and is approved.

GEORGE H. PURCELL

Chief

Control Systems Development Branch
Flight Control Division

AF Flight Dynamics Laboratory
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ABSTRACT

This-report develops the algorithm for deriving attitude, heading,
and navigation information from a strapdown inertial system. Beginning
with the fundamental physical relationships, it develops all required
.equations and progresses to the onboard implementation of the algorithm.

Significant features of the algorithm include:

(1) Computations performed in the wander azimuth coordinate frame to
provide a system capable of operating in the polar regions;

(2) Separation intc four loops of different iteration rates. This
maintains rapid, accurate updating of the direction cosine matrix
involving vehicle attitude, while processing other information and
extracting display data at appropriately slower rates;

(3) Fourth order Runge-Kutta integration of quaternions, using
second order rate extraction, to update the attitude direction cosine
matrix;

(4) Specification of the computations that require double precision
for adequate performance;

(5) Third order damping of the vertical channel by means of
barometric altimeter data.

The applicability of this algorithm to a range of vehicle and mission

environments is indicated, the required adaptations being easily performed
for each particular implementation.
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SECTION 1
INTRODUCTION

In a gimballed inertial system, the gyros and accelerometers are
located on a platform whose orientation with respect to the vehicle is
determined by a set of gimbals. The gyro outputs are used to drive
gimbal motors in such a way as to maintain the platform in alignment
with some desired coordinate frame, regardless of the vehicle orientation
in space. Thus, the accelerometer outputs are coordinatized in that
desired frame, and navigation information can easily be generated by
performing computations in the instrumented coordinate system. Further-
more, the vehicle orientation with respect to that coordinate system can
be determined by observing the angles formed between the various gimbals.

On the other hand, the gyros and accelerometers of a strapdown system
are attached to the vehicle body, and therefore provide signals propor-
tioned to specific force and angular rate between the inertial and body
frames, coordinatized in the body frame. The inertial measurement unit
{tseif is significantly simpler than a gimballed system, allowing easier
maintenance and part replacement, while not being limited in performance
by the imperfect response of the gimballing mechanization. Furthermore,
instrument redundancy is more readily accommodated in a strapdown con-
figuration. However, the simplicity of the strapdown system is gained
at the expense of subjecting the gyros and accelerometers to a more
severe environment, that of the vehicle itself. Furthermore, the com-
putational load is greater, since the onboard computer must maintain a#
analytical representation of the desired coordinate frame, in addition
to the calculations it would perform with a gimbalied system.

This report develops the algorithm for deriving attitude, heading,
ard navigation information from a strapdown system. It will be imple-
mented in an onboard computer during a strapdown development and
evaluation project sponsored jointly by the Air Force Flight Dynamics
Laboratory and the Army Electronics Command.
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Significant features of the algorithm inciude:

(1) Computations performed in the wander azimuth coordinate frame to
provide a system capable of operating in the polar regions;

(2) Separation into four loops of different iteration rates. This
maintains rapid, accurate updating of the direction cosine matrix
involying vehicle attitude, while processing other information and
extracting display data at appropriately slower rates;

(3) Fourth order Runge-Kutta integration of quaternions, using
second order rate extraction, to update the attitude direction cosine
matrix;

(4) Specification of the computations that require double precision
for adequate performance;

(5) Third order damping of the vertical channel by means of baro-
metric altimeter data.

The report is arranged in the following manner. Section II introduces
the appropriate notation and coordinate frames, and then it describes the
relationships among coordinate frames by means of direction cosine
matrices and Euler angles. Furthermore, the time propagation of the
direction cosine matrix is described in terms of differential equations
for the matrix entries and equivalently in terms of quaternions. Section
1I1 presents a conceptual description of the algorithm and then develops
the details of its various segments. Section IV considers the aspects of
onboard implementation, as integration methods, processing rates, and
rate estraction from gyro output pulse counters. The final algorithm is
also exhibited in the form of scalar equations. In conclusion, Section V
indicates the applicability of this algorithm to a range of vehicle and
mission environments.
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. SECTION II 3
' FUNDAMENTALS :
- 1. NOTATION

A brief description of the notation to be employed is presented in
this section. It may appear somewhat cumbersome at first, but the

clarity it lends to the technical developments warrants its use [Ref- i
. ‘ erences 2, 11].

Certain letters will be used as subscripts or superscripts to specify
particular coordinate frames. These are:

. i = inertial; with origin at the earth's center and nonrotating with
respect to inertial space

. e = earth; origin at the earth's center and nonrotating with respect
" to the earth; the unit vectors point toward the equator and the
- Greenwich meridian (Xe)’ equator and 90°E (ye), and the North

Pole (ze).

N {
: n = north-east-down; centered at the vehicle CG and pointing north .
Y (x,), east (y,), and down (z,).

S

p = "platform"; wander azimuth coordinate system centered at the
vehicle CG and displaced from the n frame-by an angle (- a) about
Zp» where the usual convention is used: that positive angles are

defined as clockwise as one looks in-the directin of the axis ~
about which the rotation is made.

|
‘i

N . 3y b 2}
&mr»LwMDL’*T’;‘i"“E}‘l“%*MMMm wett o AR real

b = body; centered at the vehicle CG, with Xy, along the longitudinal

axis, ¥y out the right side, and z; out the underside of the
vehicle.

Vectors are represented by an underscored lower case letter, and a
superscript denotes the coordinate frame in which the vector is expressed
mathematically. For example, _f_b is the specific force vector expressed
as a three-dimensional vector quantity coordinatized in the body (vehicle)
frame. Angular velocity vectors will additionally have two subscripts,

R

e

W i

throses
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denoting the two reference frames between which the angular velocity
exists. The quantity o ti’e is the angular velocity from the inertial
frame to the earth frame, represented as a three-dimensional vector
coordinatized in the body frame.

Components of vector quantities are denoted by the same lower case
letter, without underscoring but with a subscript x, y, or z. Thus, fg
and o ti)ex are the body frame x-components (longitudinal) of f and w i
respectively.

e

The three-by-three direction cosine matrix that transforms a vector
from one coordinate frame to another is denoted by an underscored capital
C, with subscript denoting the original frame and superscript for the
new frame. For instance, € ;’ is the matrix that transforms a vector from

the b frame to the i frame, as
i b

(1
For convenience, the elements of this matrix are normally written without
the subscript and superscript once the matrix itself is delineated. :
Equation 1 thus becomes .
) [ CieCi3 f?] [
y{CaiCeas [3 (@) '
t

f3) ©31CxL33 'z’J

Fere the subscripts (1, 2, 3) and (x, ¥, z) are interchangeable. Each
elenent of C  1s a direction cosine between the unit vectors of the b
and i frames. For instance, c]2 is the direction cosine between the x
(or 1) axis of the i frame and the y (or 2) axis of the b frame.

The inverse of a direction cosine matrix is simply its transpose,
denoted with a superscript T:

Freirseyt &
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The values of the entries of a direction cosine matrix can be
specified completely by their initial conditions and knowledge of the
angular rates between the two frames of interest. For instance, € b (t)
{or C i (t) } is specified by an initial condition and knowledge of

either ﬂ,’ orw ib’ the anyular rate from the i frame to the b frame,
coordinatizgd in either frame. (Note that w ?b = - gi’ and similarly

5] :b 2 -u ;i ). In system diagrams, this dependence will be represented
as in Figure 1. The angular velocity w !i)b used to propagate the direction

cosine matrix enters the block labelled g_; from above or below. Vectors
that are to be transformed by the matrix enter the block from the side.

Writing out the propagation relations explicitly will employ a "cross-
matrix". This matrix is defined to be the three-by-three matrix which,
when postmultiplied by a vector coordinatized in the appropriate frame,
yields the result of performing a cross-product on that vector in those
coordinates. Let r be some vector in the b frame, and suppose one
desires to compute {(w ipX L )b; the matrix W ?lt: is defined to satisfy

wh b= (gpx)® {4)
Thus, W 3F 1s defined as

b b
0 -~wihzw by
ﬂab!: = ?bz o '“’tl)bx (5)
b b
"wiby Wibx O p
/" b
where the entries are the components of the vectjo;‘ 9 gp

Time derivatives of coordinatized vector ;.\:antities will be denoted
by a dot above the quantity or the operator.p preceding the quantity:
£ SV Pep (6)
3
With physical vectors (for instance x, as opposed to gc_b which is the
set of three scalars that defines x in terms of body coordinates), the
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operator p will bear a subscript to depict the coordinate frame used
to observe the rate of change of the vector in question. With this
notation, the Theorem of Coriolis becomes, for any vector v ,

Py = ppy twpXy (1)

2. COORDINATE VYSTEM RELATIONSHIPS: DIRECTION COSINES

AND 'EULER ANGLES

The coordinate systems of particular interest for this report are
the body (b), wander azimuth or “platform" {p), and earth (e) frames,
First of all, the strapdown instruments provide information coordinatized
in the body frame, while algorithm computations will be conducted in the
wander azimuth frame. Further, the relationship between these two frames
will specify the aircraft attitude. Finally, the relationship between
the wander azimuth frame and the earth frame will determine the location
of the vehicle.

There are two familiar means of describing rotations of one coordinate
frame relative to another. Euler angles are a set of three rotations
taken in a specified order to generate the desired orientation. The same
orientation can be uniquely described by means of the nine direction
cosines that exist between the unit vectors of the two frames. Whereas
there 1s no redundancy in the Euler angle description, there are six
constraints on the direction cosines (the sums of the squares of elements
in a single row or column equal unity). Despite this redundancy, the
direction cosine technique is preferable because the Euler angle de-
scription has an indeterminate orientation (analytical "gimbal lock")
and a surrounding region of poor resolution.

The final algorithm in this report will employ two direction cosine
matrices, one propagated by conventional means and the other evaluated as
a function of an appropriate quaternfon. Essentially, a quaternion is a
means of describing angular orientation with four parameters, the minimum
redundancy that removes the indeterminate points of three-parameter
descriptions. Although the toop computations use direction cosines, the




et e e e e e e B o

AFFOL-TR-73-80

data extracted for display or autopilot inputs is most conveniently ex-
pressed in the form of Euler angles. Thus, the subsequent sections will
delineate the calculation of Euler angles from the corresponding direction
cosine matrices.

a. Wander Azimuth and Earth Frames

Figure 2 portrays the relationship between the earth and wander
azimuth frames. When the three angles, X, L and a, are 7aro, the wander
azimuth ¢ 'me is oriented so that x_ is aligned with Zys yp with Ya» and
2z, with X A positive rotation of A\, the longitude, is taken about
the x  axis. Subsequently, a negative rotation about the displaced Yo
axis, of magnitude L (latitude), is made. Finally, 2 negative rotation
about the displaced z_ axis is made, of magnitude o (wander azimuth
angle). Use of a negative rotation was chosen arbitrarily to conform to
the usual definition of a as a counterclockwise rotation as seen from
above.

From the figure it can be seen that geographic latitude, rather than
geocentric, will be used to describe position on the earth. Thus z, is
normal to the elliptical surface of the earth rather than in the direction
of the earth center. Throughout the development of this report, the
ellipticity of the earth w'11 be accounted for, but higher order effects
and local geoid perturbations will be neglected.

The dfrection cosine matrix C g can be developed as the product of
individual rotation matrices. First the p frame is rotated to align the

axes as xp =20 yp = Yo and zp R Then rotations of A abnut xp,

-L abou} yp, and -q about zp are performed in that order, Thus,

cosa-sina Of jecost.O sljjt O O 00 l]

¢hx Jsnacosao{ |0 1 O [j0 coshsmNjO t © (8)
0 O ] junLOcosLiO=sin\ cosA||-1 O ©
2
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Figure 2. Wander Azimuth ("Platform") and Earth Coordinate Frames
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Now if the elements of _c_«g are identified as

Cn Ci2 CISJ

€= [Cau Cez Cas ()
Cyu Cx CsaJ\
then the individual elements are :
Cjy= ~cosa sinL cosh + sina sink
Cpp¥—cosa sinl. sinA — sina cosh
Ci3= cosa cosl 4
Cyz=sina sinl cosh = cosa'sinA
i 10)
Cop==sina sinL sinA + cosa tosh (
Coa= snQ cosL
Cy = =cost. oo\
C3z2 —cosL sinh
€332 = sinl
To obtain the latitude, longitude, and wander azimuth from the
elements of g » the following calculations are made
L = sidl(~Cy) (m
Ap = tan(Cap/Cqy) (12)
ap = mn"(Ca/C.;) (]3)

The subscript p denotes principal values in Equatiens 12 and 13.

Latitude is defined in the range (-90°, 90°), which coincides with the
principal values of the sin‘1 function, and thus there is no ambiguity
to the solution of Equation 11. However, X is defined over (-180°, 180°)
and a over {0°, 360°), whereas the principal values of the tan™' function
1ie within (-90°, 90°). The ambiguity can be resolved by observing the
sign of the elements C31 and Cw. Since cos L is nonnegative, these
elements yield the sign of -cos A and cos a respectively., Table 1
demonstrates the evaluation of the true X and a values as a function of

these signs.

10

n
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Sign of Ap

+

Sign of ap

+

TABLE I
LONGITUDE AND WANDER AZIMUTH EVALUATIONS

LONGITUDE (1)

Sign of 031 A Evaluation
- ©
+ Ap 180
- Ap
- Ap
]
+ Ap+l80

WANDER AZIMUTH («)

Sign of C]3 o Evaluation
+
%

- ©

ap+180

- +180°

&) 180

-]

+ ap+360

1

Quadrant
(-180°, -90°)
(-20°, 0°)
{0°, 90°)

(90°, 180°)

Quadrant
(0°, 90°)
(90°, 180°)
(180°, 270°)

(270°, 360°)
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Using conventional propagation of the direction cosine matrix, it is
possible to neglect the propagation of cll’ CZI' and 03] if these values
are not required for other computations. The elements c,l and CZI will
not-be used at all, and C3] is required only to compute the value of
Tongitude. However, by manipulating the relations of Equation 10, it can

be shown that

C317.C23C12 ~C22Cs3 (14)
Thus, only six of the nine direction cosines will be propagated, and
Equation 14 used to calculate the value of c31 for the longitude

evaluation.

b. Wander Azimuth and Body Frames

Figure 3 presents the relationships between the wander azimuth and
body frames. Rotating the wander azimuth frame through a positive
rotation of o ebout z_ yields a north-east-down coordinate frame. From
there the ordinary Euler angles of yaw (y), pitch (8), and roll () yield
the aircraft attitude. Consequently, the matrix gg can be composed of
the product of three rotation matrices, (¢ + a) about z),, then & about
the displaced Yps and ¢ about Xt

1 0 O |cos@ O-sm8||costy+a) sinfyp+a) 0

= fo cosp snp| |0 1 0 |Fsnty+a) costy+a 0 (15)
O-sin¢ cosp| {snf O cosf 0 o] \
The inverse transformation will be of direct interest, so define
LTIRIFRH
€)= | Ta T Tis| = QgT (16)
iy T Ty

12
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LINE PARALLEL TO
xp=yp PLANE -

R T RN L)

e Rt B W

%
i

! EAST

NOTE: ORIGIN OF p FRAME DISPLACED FROM THAT OF b FRAME
ONLY FOR CLARITY OF DIAGRAM; THEY ARE ACTUALLY
COINCIDENT AT VEHICLE C3.

[P R

Figure 3. Wander Azimuth (*Platforn*) and Body Ccordinate Frases
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Using this definition, the individual elements become

Ty = cos{y +a ) cosf

Ty = cos{y +a) sinf sing -sin(Y +a) cos¢p

Tia = cos(Y +a) sinf cos +sin({y+a) sing

Tar = sinly +acosd

Tap = sy +@) sinb sinp+cos{y +alcoscp \17)
Taaz sm'(\p +a)sind cosg=cos(y +alcosd

Ty = ~sin8

T = c0sf sing

Ta3 = cos@ cos

The values of {y + a), 8, and ¢ are obtained from the elements of
Q_g in a manner similar to the data extraction of the previous section:

8= sin’(-Ty,) (18)
$p 108! (Typ/ T3y) (19)
(V+a)p = tan' (T /Ty) (20)

Pitch is defined over the range (-90°, 90°) and no ambiguities exist.
However, roll is defined over (-180°, 180°) and (y + «) over {0°, 360°).
Cos 6 is nonnegative, so the ambiguity can be resolved with the aid of
the sign of T33 and Tn, as in Table II.

Once the value of (v + a) is obtained, it can be combined with the
value of o derived in the previous section to obtain yaw:

Vz(Vta)-a (2n

If the result is a negative number, 360° can be added to it to yield a
value of ¥ in the range of (0°, 360°).

3. DIRECTION COSINE RATES

In order to propagate the values of the direction cosine matrix
elements in the conventional manner, an expression for their rate of

1
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TABLE II
ROLL AND YAW-PLUS~WANDER AZIMUTH EVALUATIONS
ROLL (4)
Sign of ¢p Sign of T33 ¢ Evaluation Quadrant
+ - op-180° (-180°, -90°)
- .an° o
| + ¢p (-90°, 0°)
| o ]
+ + ¢p (0°, 90°)
- - by +180° (90°, 180°)
YAW-PLUS-WANDER AZIMUTH (¢ + o)
Sign of (W + a)p Sign of Ty, W+ a) Quadrant
‘Evaluation
+ + (v +a), {0°, 90°)
- - (y + a)p + 180° (90°, 180°)
+ - (v + a)p + 180° (180°, 270°)
- + (y + u)P + 360° (270°, 360°)
!
a
3
'}
”
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change is needed. For any two frames, a and b, the Theorem of Coriolis
can be written for any vector v as

Pox = Ppy + wab Xy (22)
Coordinatize the left side of this equation in the b frame to yield
pov® = 8 [pv°]
=cg [P(Q%.Y.b)] (23)
=c8 {tocdv®+c8 pv?]
0B (pch ¢+ py®
Equating this to the right side coordinatized in the b frame yields

px® + cb (pQg)Lb < pe® o+ whh WP (24)

Since this is true for all vectors \_I_b, Equation 24 implies

0 _ A bk (25)
Qb = Qb !’ob
where
0 -w, w,
bk _
Wb = wg O -w,
[y @x O (26)
wx-
= P = b
Wy [ = Wap * W
(27)
“’zJ

These are the desired relations, expressible as nine scalar equations.




AFFDL-TR-73-80

If the available angular rate information were coordinatized in
the a frame instead of the b frame, the desired relations become

10 _ (28)

G

gb = -vidb gb
where ¥ :t is defined as in Equation 26, except that the entries are
components of :b (= - ga). To show this, write Equation 25 with the

roles of a and b reversed:

1 b 0k
&, a

!bo

10

Now use the facts that C . b. C §T and aba = -y b to write

(oT) (c°) - c° 0: __ch wob

Transposing yields

0 _ ok T .o
€ “-Wap S
- wok C°
“ab ~

which is Equation 28.

it has been common practice to solve these equations with a first
order integration technique using DDA's to achieve high iteration rates
(on the order of 10,000 per second) and thereby maintain accuracy. The
current algorithm is designed for whole word computers, using a slower
jteration rate but a higher order integration method where necessary for
precision. Because of the amount of computation involved in these higher
order methods, it is more efficient to propagate four quaternion par-
ameters instead of nine direction cosines, and then calculate the matrix
entries algebraically.

4. QUATERNION UPDATING OF DIRECTION COSINE MATRICES

As mentioned previously, a rotatfon of one frame relative to another
can be expressed uniquely in terms of four parameters, three to define

17
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[
the axis of rotation and the fourth to specify the amount of rotation.
A considerable amount of quaternion algebra can be developed to provide
these expressions [References 5, 7, 9], but it is more convenient for the
purpose of this algorithm to define the direction cosine matrix in
terms of the propagated quaternions [References 6, 7, 10]. Coordinate
transformations are then performed in the conventional manner.

Let A, B, C, and D be the four quaternion parameters. Conceptually,
A, 8, and C will define a vector in space and D will be the amount of
rotation about that vector. With appropriate definitions of these four
parameters, a general direction cosine matrix, _(}_g as in the previous
section, can be evaluated as

A2-g2-c24+0®  2(AB+CD) 2(AC - BD)
- 2 2 2 2
g: ={ 2(ag-cp)  -A® +8%-c® + 0® 2(8C+AD) (29)
2(AC + BD) 2(8c —AD)  -A%-8% +¢%+ D%

Hote that changing the sign of D yields C gT = C g. This is expected

since the negative of the rotation about the unit vector used to obtain
frame a should yield the original frame b again. Furthermore, changing
the sign of all four quaternion parameters leaves Q_ﬁ unchanged. This,
too, is reasonable: a positive rotation about a certain vector equals
the negative rotation of same magnitude about the vector in the opposite
direction. This fact will be utilized in the initialization of the
quaternions.

Now a rate equation analogous to Equation 25 will be developed.
Given the definition Equation 29 and the angular rate information

@ap =@ ga’ the appropriate rate equation can be derived as
A 0 ww, -y A
. - -_|- - -
B 3 w, 0 w wy 8 (30)
¢ wy ~wy O ~wy c
D Wy wy W, 0 D
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/
where ////
/
(31)/f
//’
/
r's
A/
If instead the angular rate data were available in a-frams//
coordinates, the relation is ,/
- //
. 7/
A 0 -w, wy  -uwy A /
Bl = t|w 0 -w -wlle) (32)
¢ “w, w, O ~w, A
. 4
D Wy wy wy (o] 0
where
Wy
- wu - - a
Wyl = YWop ¥ e (33)
L “2

Note that Equation 30 or 32 would also be satisfied if the sign of all
four parameters were reversed; again this is useful for initialization
considerations.

Since there is a single redundancy in a four parameter description
of coordinate rotations (as opposed to six for the direction cosines),
the quaternion parameters satisfy a single constraint equation:

24824024022 (34)
Computationally, (A2 + B2 + C2 + Dz) /2 can be used as a normalizing

factor for each parameter; this is analogous to the periodic orthogonal-
{zation procedure used in conjunction with direction cosine propagations.

19
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Quaternions will be employed to update C P The b frame is obtained
from the p frame by a rotation of (¥ + a) about zy> 8 about Yy and
finally ¢ about Xpe An appropriate defipition of A, B, C, and D that

yields gg accordina to Equation 29 and also satisfies Eauation 34 is:

A = sin _‘l_l_ztg_ sin % cos % cos \k_:a cos —g— sin % (352)
8 =-cos‘£§-ﬂ sin -g cos -4—; - sin W_—;a cos -%— sin ; (35b)
€ =-sin W: cos -—g— cos % + cos i‘% sin —g— sin -g (35¢)
D= cosw: cos—g cos i; + sin i%f. sin —g— sin g 353

Although these relations define the quaternion parameters, they are
not convenient for iitialization. Besides requiring sine and cosine
evaluations, the triple products of those functions suffer from potential
numerical inaccuracies on a short wordlength computer. Moreover, typical
initialization procedures yield the direction cosines directly, with
Euler angles computed from these. Thus, the initial magnitudes of A, B,
C, and D can be defined more appropriately in :erms of elements of C g:

al = SEE T T2 Ty (36a)
I8l = 5. /1 = T, +Tpoc Tay (36b)
it £ /1= mTea* Tas (36¢)

toi 1- A% - g% - ¢? (364)

n
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The first three result from algebraic manipulation of the diagonal terms
of Equation 29, and the last is just a restatement of the constraint
Equation 34. The signs of these terms need to be established. Taking
the difference of off-diagonal terms in Equation 29 yields

4AD = Tpy -~ Ty, (37a)
48D = Ty) = Tyy (37b)
4CD = T, = Ty, (37¢)

Thus, once the sign of D .s set, these three relations provide the signs
of the other three parameters. It was previously demonstrated that the
choice is, in fact, arbitrary. Therefore, the signs are chosen as

sign D = + (38a)
sign A = sign (Tpy = Typ) (38b)
sign B = sign (Ty, - Tys) (38c)
sign C = sign (T, - Tyy) (38d)

At initialization time, Equations 36 and 38 are used to evaluate

A, B, C, and D from the value of _c_g established in alignment. In the

operational mode, w :b is available so the parameters are updated

according to Equation 30, with Equation 31 defined as w :b' When QE is
required, it is evaluated by means of Equation 29.

21
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SECTION III
DEVELOPMENT OF ALGORITHM

1. CONCEPTUAL DESCRIPTION OF SYSTEM

The basic computational system structure is as depicted in Figure 4.
Body mounted accelerometers measure g?, the specific force exerted on the
instruments by their supports (vehicle acceleration minus the acceleration
of mass attraction gravity) along body coordinates. This is simply the
negative of f?, conventionally defined as the specific force exerted by
the instrument set on its supports. Similarly, gyros provide a measure
of the angular rate between inertial space and the body frame, expressed
as components along body axes.

First the specific force gP is transformed by the direction cosine
matrix € g into wander azimuth coordinates:

€= (39)

A current value for C g is maintained through propagations using w :b,
which is generated as

b . b _.b
Lob T ¥ T Y
Sub b P (40)
@y % Y
=l _ aPT P
o & @y

The transformed accelerometer outputs, gP, are then processed
through the block labelled "of * in Figure 4 to obtain !?, the vehicle
linear velocity expressed in local wander azimuth coordinates. Section
111.2 will develop the appropriate level loop relationships. Required
by these computations are w gp and w ?e, discussed in Sectiens I11.3 and
111.4 respectively. The vertical channel additionally requires com-
putation of 9? and damping provided by a barometric altimeter, considered

in Sections III.5 and III.6.
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Once _v_p is formed, it can be used to derive the value qf the angular
rate w Fe)p; the block labeiled 4 is delineated in Section III.3. For the

wander azimuth system to be employed (sometimes termed free azimuth),
o gpz is identically zero.

The anguiar rate between the inertial and wander azimuth frames,

o, . is then formed as

1p
P_ 4P P
le - Qtp + Qlc (41)
where w 'i)e is calculated as in Section I111.4. This is the quantity used
in Equation 40 and the loop is complete.

A number of these computations are functionally dependent upon
latitude and longitude. A direct evaluation of these is possible by
solving for o according to the relation

.

a = -i sinl, (42)
to form g: as
cosa sina O

gp 2 | —sina cosa O (43)
0 0 I
which in turn is used to transform w gp tow zp’ with x and y components
noL 4
U.px = X cosl (44a)
oo
Wy = - ¢ (44b)

which can be integrated to evaluate L and A. However, the functional
relationships required are easily gencrated from the elements of g’e’.
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Since this involves a linear propagation equation without the inherent
problems of direct integration of a, L and A, it is more efficient to
use 22 to update € g. Then L, X, o, and the desired functions are
computed from the direction cosines.

In a similar manner, (y + o), 6, and ¢ are extracted from C g, while
these values are not used explicitly in the computational loop. Section
I11.7 considers the extraction of data for presentation to either the
pilot or autopilet.

2. VELOCITY EQUATIONS

The equation that relates !_p to g_p is
_\Zp = o+ - (pr + o ) x v (45)
= “le " ~e =

This relation is derived in the following manner (References 4, 8).
From Newtonian mechanics, the second derivative of position, as seen from
the inertial frame i, satisfies the equation

2

LTty (46)

where r is the vehicle position vector, a is the output of the accel-

erometers, and g m is the mass attraction vector, If g is the gravity
vector composed of both mass attraction and centripetal components,

3% S T Y X (gle X 1) (47)

then Equation (46) can be written as

PP =atgtuy, X(y, X L) (48)

It 1s desired to write Equation 48 in terms of the rate of change of
the velocity vector v , as seen from the computational frame p. B8y
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definition, the velocity v is the time rate of change of the position
vector r, as seepr from the earth frame e:

r=eL (49)

This can be related to the inertial rate of change of r by means of the
Theorem of Coriolis:

pL=pL tw X
(50)
=Lty Xs
Differentiating this equation again yields
2. -
RL=prty X pr
(51)

* pl-v-"'glcx!- +9Iex (Qlexl)

Substitute this into Equation 48 to obtain

Py =oa+g-w X ¥

i -~ le (52)
Again using the Theorem of Coriolis, Py can be expressed in terms
of ppy_, the time derivative of y as seen in the computational frame p:

y= opy tow

X
P P “p T Y (53)

I
Combining Equations 52 and 53 yields

ey

p MR G L

(54)

+g - (z_q“+ y.p)x ¥

When coordinatized in the p frame, this is the desired relation,
(Equation 45).
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Writing Equation 45 in scalar form yields the relations to be imple-

mented in the algorithm:

G: = o: + v; wg - vlpwz (85a)
<P (4 P
v = o, +y, w: - v:w: (55b)
\;zp = u: + 9 + v:w: - v;w: (55¢)
where the quantities “’z’ wg. and wg are defined as
P _ p P
wy = ZwI“ + Wepx (56a)
P_ ., P ?
wy = Zw'” + Yapy (56b)
P P
wy = 2w, (56¢)
Note that, for the wander azimuth system being used, “’gpz is zero.
Also, the approximation that g is colinear with zp has been made:
o]
P o~
0
= (57)
9

This will introduce only negligible errors, on the order of resolution
capabilities of present day instruments.

Equation 55¢ is the equation for an unaided inertial vertical channel.

The computations are unstable, and so this equation will be modified in
Section II1.6 to provide damping by means of barometric altimeter data.
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3. ANGULAR RATE RELATIONS

Let o be the equatorial radius of-the earth and h be the vehicle
altitude. If a spherical earth were assumed, the angular rate relations
would simply be

!
wgpx= oth v? (58a)

1
whp, = e o (58b)
However, it is desired to account for the earth's ellipticity, so the

relations become somewhat more compliex.

Consider the north-east-down {n) frame first. With respect to this
frame, the desired relations are

1 n

n D —
Wenx = oth vy (59a)
way = v (59b)
where T is the radius of curvature of the reference ellipsoid in the
meridian plane at a given point on the surface, and r_ is the radius of

e
curvature in the plane orthogonal to the meridian plane at that same

point. Thus, the terms (r-n +h) and (re + h) are the corresponding radi{
of curvature at altitude h (h defined along z orz is colinear with both
A and re). The values of n and re can be shown to be [Reference 3].

. roli=€®

'n * - Femn) (60a)
s —T

© T &t (60b)

where ¢ is the eccentricity of the reference ellipsoid,
2 __ 2

P &%’L
fo (61)
rp being defined as the polar radius.
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The vehicle angular rates expressed in the n and p frames are related
by

p
w epx = Wny €05 A = Wehy Sin@ (62a)

u,f,’p, = wox sin@ + w;‘,,y cos @ (62b)

and similarly the linear velocities are related by

v = vfeosa+ vf sina (63a)
v';= -v,?sina + v}’cosa (63b)

Substituting Equation 63 into Equation 59, and then substituting the
results into Equation 62, yields

whx = %y W) +kyd (64)
L P
whpy = TR X -kvj {64b)
where
L. wie sda (652)

Ry tnth (e+h

2 2
L . sn‘a  costa
Ry © tath T eth (65b)
k= ——-‘ ——l Qa
"(rn+h - ’e*’h) SINQA Cos (65¢)

Equations 64 and 65 provide the exact expressions for vehicle
angular rates in terms of 1inear velocities, assuming an oblate spheroid
for the earth (i.e., with el1iptical meridian planes).

29




AFFDL-TR-73-80

First order approximations to these equations can be derived by
expanding (r, + h)'] and (r, + h)'] and retaining only first order terms

to obtain [Reference 33:

F,T';T = 7'(; (l—-'r';*‘ €2~} e?sinL) (66a)
i E 0-Bodetsin’L) (66b)

These approximations are put into Equation 65, and 1/2 52 is
approximated by the ellipticity e, where

ex J’%’L (67)

yielding the first order expressions

El? = —:- [l - ;h- —e(1-3cos®Leos?a —cosstmzc)] (68a)
X () [
1 1 h
BT {l-— '—o—ell—Bcosstmza —coschosza)] {68b)
k= 2e cos?Lsina cosa
=t (68¢c)

These evaluations can be expressed conveniently in terms of the
elements of the direction cosine matrix € g:

mE e (12 —en-ack -c3y) (692)
L z:—o[n—-',lo—eu-3c§,~ﬁ?,)] (69b)

28
kE T CnCas (69¢)

The algorithm to be implemented computes Rx°l, Ry", and k according to

p
Equation 69, and then calculates Yepx and “’zpy through Equation 64.
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4, EARTH RATE COMPONENTS

In the earth ‘(e) coordinate syster.n, the earth rotational rate vector

Tt :[o ]
Lie (70)
Wie

Thus, in wander azamutn coordinates, this vector becomes

wie Ci3

PP, €.
we® Co Wie®  |w, C23
' wie 33

m
5. GRAVITY COMPUTATION

The standard approximation to the value of gravity (Reference 3) is
given by:

oM
g & [u +30,-%0C) +
#le®-jeeP+isnel-Fe -3 0 R+ nlL
h‘
-(2+64,+C){ | (72)

where G is the gravitational constant, M is the mass of the earth, J,
and J4 are coefficients of the first two harmonics of the mass attraction

potential function, and C is equal to “’iez ro3/(GM). Substituting the
numerical values involved and using c33 = -sin L, Equation 72 is put
into final form as

9 = 32087437360
+016994493815C;¢
- 030877321095 +10 ng (ft/sec?) (73)

The subscript B on hB (measured in feet) denotes the fact that barometric
altitude is used to evaluate g in order to stabilize the vertical channel
computations. This will be discussed further in the following section.
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6. VERTICAL CHANNEL DAMPING

Barometric altimeter data is combined with inertial vertical channel
computations to damp and bound the errors in the latter. A third order
damping technique is impleﬁented as in Figure 5. The inertial system

: P PP _ PP P ; : i
input is (aZ + wy vy T oy vy), vihere a, is provided by Equation 39 and

the other terms are evaluated as in Section II1.2. Added to this is the
computed value of g. The altfitude hB provided by the barometric altimeter
is subtracted from h, the inertially indicated altitude, to generate the
error signal for feedback (note that h.is positive up}. The vertical
velocity is passed through the gain C4 and added to h (since vg is
positive down) in order to compensate for the inherent lag in the
barometric altimeter. Thus, typical values of C4 would range between

0.5 and 0.8 seconds. The feedback of h through ZwSZ compensates for
changes in gravity with altitude, and it can be recognized as the cause
of instability in the unaided inertial vertical channel. Although a
simpler second order damping system would result from setting c3 equal
to zero, the performance advantage of the more complex system is
sufficient to warrant its use.

From Figure 5, the state space model of the vertical computational

loop is
) -¢, -(1+cc,) © h
Wl em2w? ey, v [+
i_)'( 3 €3Cy 0 X
c, ]
+[-cof ng + o‘z’+g+w;’vf-w§v:
=3 o (78)

Note that h is defined to be positive upward for convenience, vg is
positive downward, and x is the second derivative of h.
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The values of C], Cz, and c3 are set so that the system characteristic

equation yields three poles at (-1/t),

(s+wvrid=o0 (75)

where 1 is the desired vertical channel time constant, usually chosen to
be about 200 seconds. The gain values that achieve tfese system poles
are:

2 3 2 2
o = 2wg CoT° + 31° + 3C, T + C4 (76a)
! (l-2w§ cf) 3
. 2w? (° +3¢,7%)+ 37 + ¢, (76b)
2 (1-202c2) 3
Cy = ";; {76c)

Onie the appropriate vaiues for Tt and C4 are chosen, these relations
yield a time invariant linear system equation. A discrete-time updating
equation can then be derived by means of the state transition matrix
technique. This will be discussed more fully in Section IV.1.

The hB value provided by the air data system can be calculated in the
standard manner, or by means of the technique developed by R.L. Blanchard
(Reference 1). Rather than calculating pressure a titude based on a
standard atmosphere model (and possibly compensating later for non-
standard conditions), this method computes a dynamically corrected alti-
tude by numerically integrating the physical relation for’a column of air
as a function of pressure, gravity, and absolute temperature. The
algorithm has already been flight tested and has demonstrated very
accurate performance. Letting Tad and Pad be the absolute temperature
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and pressure available from the air data system, the Blanchard algorithm
with trapezoidal integration can be written as
b = Tad/ R:d

= P2
q-q°+q,sm L-O-qzhB

hg = Mg = C/9 (D+ Do p)(Rg = Foro)
POLD ? ﬁ:d (77')
Ogrp = O

In the above equations, % 90 and g, are the values given in
Equation 73, and C equals the universal gas constant R divided by twice
the molecular weight of the atmosphere, 2M. Again it is noted that hB’
rather than h, is used to evaluate g.

7. INFORMATION EXTRACTION :

The values of latitude L, longitude A, and wander azimuth o are
derived from the six propagated elements of g_g as in Equations 11, 12,
and 13, using Equation 14 and the logic of Table I. Similarly, (y + a),
8, and ¢ are computed from the elements of g_g using Equations 18, 19,
and 20, and the logic of Table Il. Since these values are not required
in the computational loop itself, the data extraction can be performed at
any suitable iteration rate without any effect upon algorithm perfornance.
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SECTION IV
ONBOARD IMPLEMENTATION

1. INTEGRATION TECHNIQUES

A number of propagation relations require integration in this system
algorithm. Oue to computer loading considerations, first order inte-
gration techniques will be used wherever they provide adequate perfor-
mance. However, updating the elements of C g will necessitate con-
sideration of higher order techniques because of the potentially high
anguiar rates involved. Previously th2 approach has been to empioy DDA's
operating at very high rates, as about 10,000 iterations per second, to
provide accuracy with a first order technique. In contrast, this program
uses a whole word computer operating at a slower iteration rate, but
using higher order integration methods to achieve the desired precision.

There are various means of generating higher order techniques, such
as the Runge-Kutta method and Taylor Series. Runge-Kutta techniques
have been chosen because they provide an accuracy equivalent to that of
a Taylor Series solution of the same order, while not requiring past
histories of the dependent variables or high order derivative information.

Consider the updating of the direction cosine matrices C g and C g.

Either the four quaternion parameters for C § or the six direction
cosines for C g (three are not propagated) can be arranged into a vector,
denoted as x(t). Then an expression for the time rate of change of that
vector, x(t), can be written as

2 = £ fxtnwn] (78)

For the case of updating C p using w :b’ the quaternion refations
corresponding to Equation 78 are

A= 4 (w8-uws - w0o) {79a)
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6 = 4 (-wA+uC - D) (796)
¢ = %(w,A-wa - wy D) (79¢)
b = -g(w,u+w,a+w,c) (79d)

where z_T = (A, B, C, D). Updating gz with o gp entails the component
- relations

S * - wy Ca (80a)

€3 =~ wy Cy3 _ (80b)

€ap = W Cse (80¢)
(80d)

€ps = Wy Cay
Cyp = wyCjp - wxCyp (80e)

63! = uy cl3 - wlczs (80f)

T
where £ = (Ci2+ Ci31 C22» Ca3 4 C32» C33)

Let the integration interval be T seconds long. Then a first order
Runge-Kutta routine to soive for x(t + T) in terms of x(t) would be
A +1 = gl + Tt aln,en] (81)

This is the same as a first order Taylor Series solution or a first order
approximation to a transition matrix solution to a set of linear

equations.

A second order Runge-Kutta algorithm would be solved as

Y= an+T 1[1(1),9(1)] (82a)
alt+T) = x (1) + 772 {_f_[;_(n,g(t)] + L[_y_,(_p_(g + -r)]} (82b)

37

PN S e b0 TS AR Tt iy,

T Mt LSS T W v ) bhud e W€ i

ST s T

(LU PIUNS VPN

L Bemn

T A s Ay a

s




AFFDL-TR-73-80

Finally, a fourth order Runge-Kutta technique computes x(t+T)
according to the following algorithm:

a = 7 efumniem) (834)
B = T e[xn+fa,ulemal . (83b)
y + T tfun+fBuwnwa) (83c)
g =7 L[;,(t) + oy w4 T)] (83d)
24TV = x(N+F(a+ 284+ 2y +8) (83e)

The current algorithm formulation employs fourth order integration of

the quaternion parameters related to C g and first order integration of
the elements of ¢ P.

2. RATE EXTRACTION

A1l of the integration techniques require a knowledge of the angular
rate w(t). In the case of updating [ g, 9_ :b is generated in part by the

output of the gyros, w ‘i)b’ as seen in Equation 40. However, the gyro
outputs are in the form of a pulse rate proportional to angular rate, and
thus a pulse counter yields incremental change in angular orientation
about the j-th axis, 46;. Let T be the iteration period of the inte-
gration routine. If Aej(t, t + T) denotes the Ae:j corresponding to the
number of pulses counted between the times t and (t +T), a first order
rate extraction would be computed as

wl(t) = VT AB,(t.t +T) (88)

This would be adequate for a first order integration method.
Since the fourth order algorithm (Cquation 83) requires rate

information at the midpoint of the integration interval, wj(t +7/2), 2
second order rate extraction is appropriate. The gyro output pulse
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counter is sampled at twice the iteration frequency, every T/2 seconds.
Thus the measurements Aej(t, t + T/2) and Aej(t +T/2, t + T) are used

to calculate wj(t), wj(t + T/2), and wj(t + T) as required by Equation 83.

Curve fitting of a second order polynomial to the data produces the
following rate extraction relations:

g/T[sAel(:.t + 1/2) - Ae,u + T/2, + 'r)] (85a)

w](t)

wl(t + 1/2) I/T[ Ae,(m + T/2) + A91(1+T/2.1+ T)] (85b)

w](l +T) = |/T[-A81(m + T/2) + 3A8](: +T/2,1 4 T)] (85¢)

The generation of the appropriate values of w ti’ to be subtracted from
the results of Equation 85 will be discussed in Section IV.4.

3. PROCESSING RATES

In order to maintain accuracy, the C g matrix must be updated at a
high frequency. However, the other computations need not be propagated
at such a high iteration rate.

Consequently, the algorithm will be partitioned into segments that
are fterated at different rates. Let T be the iteration period of the
computation of C P, Then the gyro pulse counters are sampled every T/2
seconds, while the accelerometer pulse counter data is taken every T
seconds. The other loop computations will be iterated every NT seconds,
where N is an integer (for timing purposes in a digital computer, l might
be set most conveniently as some power of two).

As has been mentioned previously, the information extraction (i.e.,
evaluations of (Y + «), 6, ¢, L, A, and o) can occur at a completely
different rate. For timing convenience, its period will be assumed equal
to some integral number times T, denoted as KT. An efficient technique
would be to let K = 2N, and to alternate outputting [L, X, «] and
[{v + a), 8, ¢] on successive passes of the slower loop iterations.
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4. FINAL ALGORITHM

Based upon the previous discussions, the overall system is partitioned
as in Figure 6. The value at the top left of each segment is the pei-iod
of that iteration cycle. Using this diagram, the interfaces and passage
parameters between the various blocks will be described briefly.

First, .the T/2 block provides A9 ?b (t, t +7T/2) and 28 li)b (t +71/2,
t + T) to the rate extraction algorithm for use in the integration
interval (t, t + T)}. These values are read into six memory registers !
reserved for gyro data, for subsequent use by the T block.

The other input to the T block is » ‘i)p’ a slowly varying parameter
generated every N iterations of the T block. Every T seconds, the
direction cosine matrix gg is recomputed, and a new value of w li)p is

e R et b AR et Y Deda 0 T 0y

Finally, the 2NT blocks are merely operations upon the current

subsequently calculated based on the new gg and the currently available i
p
value of o ip*

The output of the T block to the NT block is the sum of the most ! ;
recent N values of _Ay_p(t, t + T). Every N iterations by the T block, ‘ fj
these sums are sent to the NT block to drive the velocity update equations. ‘ iﬁ

)
ios
l
t

elenents of the matrices ¢ § and ¢ P. A
The remainder of this section presents the detailed algorithm. ANl {
equations are presented explicitly in their scalar form. ;
%

s

a. The Partition Iterated Every T/2 Seconds

Let t be some integral number of periods T from initialization. The
T/2 block provides the two samples of the gyro output pulse counters
required every T seconds. When a counter is read, its contents are
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assumed to be set to zero. A flag is maintained (denoted here as IPASS
but actually implemented as a countdown from the computer clock) to
denote whether the current sample is of the form

A = 28 (1,1 + T2) (862)
or
- a8 / +7)
f2 = A, 1+ 12,1 (86b)

If IPASS equals 2, the accelerometer outputs are read immediately after
the gyro outputs, in order to minimize the time difference of the two
samples. Thus, although the accelerometers are sampled every T seconds,
the measurement appears in the T/2 portion of the algorithm. Figure 7
portrays the T/2 block calculations.

b. The Partition Iterated Every T Seconds

Now consider the T block. Figure 8 depicts the rate extraction
algorithm that calculates w gb at times t, (t + 7/2), and (t + T) from
the gyro data Al and A2. At time (t + T), the quantities available for
updating Q_g are these three values of w ti)b and a value of @ ?p based on

the current value of u gp and the C gTof the previous T block iteration.

The single value of w ?p is subtracted from each of the three w !i)b values
to approximate the three corresponding values of :b‘ Noting that
T T2 T |

§: =l T T2 Tos (87)
| T Taz Tas
the matrix gg can be written as

T Ty Ty

b
LT T2 T2 (88)

Tz Tas Tas
. -
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b
READ AGM
READ Aeb

iby

b
READ Aa"n

IE 1PASS = 2,60 TO

b
Al =488,

b
Bly =86,

b
A, =48,

IPASS = 2

RETURN TO EXECUTIVE

2 READ AV:

READ Av;’

READ AV}

b

A2, =08,

b
b2, =48,

b
A2, =08,

IPASS =1
GO TO T BLOCK

Figure 7. The T/2 Block
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b
Wi (M = /T (34, - Az,)
wiy, (1) = UT (38l -~ A2))
w:’bz(t) = VT (341, - A2,)

wpp, 1+ T2) = T (A1, 4+ B2,)

w:’by(t +2) = WT (Al + A2) i

wp 11+ T2) = T (Bl + B2,)

wh (1 + TV = VT (382, - AL ) f

W0+ T =T (2, - A) ;

w:’bzh +T) = UT (382, - Ai) ’
i

Figure 8. Rate Extraction
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Using this convention, Figure 9 presents the computation of w ? and
the three values of w . In the gb relations, the following variables
have been defined:

w = @by (89a)

w2 = @b 1+ T2) (89b)

ws = el e T (85c)
b

Also, the rate extraction, w ; and @ gb blocks are not combined because

ip
w ?b is used explicitly by alignment procedures, and thus should be
separated to prevent redundant programming.

Figure 10 presents the € g update, employing fourth order Runge-Kutta
integration of four quaternion parameters. The initial value of C g is
availabie from the alignment routines, and its elements can be related to
the initial Euler angles and wander azimuth by Equation 17. From the
initial elements of € g can be generated the initial values of A, B, C,
and D through Equations 74 and 76. The update entails calculation of the
small changes in the quaternion parameters, aA, 4B, AC, and 4D, in single
precision, followed by a double precision update to the quaternion
parameters themselves and the 2lements of C g. Double precision is
required to add or subtract quantities of widely varying magnitude, or to
calculate the small difference of large numbers, without excessive
performance degradation due to truncation. The quaternion parameters are
calculated and stored in double precision, whereas the Tij values are
computed with double precision operations but are stored in single
precision. This is because the Ti values are not used in subsequent
updating, but are computed algebraically from the updated A, B, C, and D.
In fact, performance analyses may indicate that the Tij values can
adequately be calculated in single precision.

45

L E Bl st T Sk s

P o




AFFDL-TR-73-80

CALCULATE lep :

Ipx

Ipy

b p (3
wlpx T wlpx + Ty w'py
b P P
w'” Ti2 u"” + T w'”
b P P
wlpz Tis wlpn + Ty wlp,
CALCULATE wby :
=z wb - b
why = wy (1) Wiox
- b N
wly = wlb,(t) “lpy
s Wb (1) — &b
wl, = "'ibz(') “iz
w2, = wd {t +172) - wb
X ibx
= b ]
w2y = Wiby (t +7/2) - w
. b
w2, = Wbz {t +71/2) wlpx
= b - P
w3, = Wibx {t+T) Wiox
= b . ]
w3y = Yiby {(t +T) Yy
b - b
w3, = Wbz {t +T) “’Ipz
Figure 9. Calculation of o li’p and
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T/2 (wiyB ~wlyC-wiy-D)
T/2 (why-C =wlz- A~ wly*D}

/2 (wly-A~wix: B-wlzD)

T/2 (wly-A+wly- B+wlz-C)
A+ia,

: B+za,

c+ia,

D+3}a,

T/2 (w22 Bl- w2y Cl =w2y-DI)
T/2 (w2x-Cl=w2y- Al ~w2y-D0l)
T/2 (w2y- Al =w2x-Bl —w2,- DI)
T72{w2y: Al + w2y Bl +w2;Cl)
A+3B,

B+iB,

T CH3pBy

=D+ "zﬁ4

T/2 (w2z- B2 ~w2y-C2 —w2y-D2)
T/2{w2y C2 ~w2z-A2 —w2y-02)
T/2(w2y A2 —w2y B2=w2; D2)
T/2{w2x A2+ w2y B2+w2z:C2)
= Aty

: By,

Figure 10, _c_g Update
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c +
4

=D + y‘
= 2 (w3, - 83 - w3, - €3 - w3, - D3)

Y
7 (w3x - C3 ~w3, « A3 —u3y + 03)

V2 (w3, - A3 - w3, - B3 - w3, - 03)

2 (w3, - A3 +w3_ - B3 + w3, - C3
x z

y
176 [a, + 2(B + 7+ 8]
176 [a, + 2(B, + 7+ 8]
16 [a, +2(B, + ya)+ 83]
176 [ay + 2(B, + y)+ 84
# DOUBLE PRECISION »

A+ AA

B + Ap

c + Ac

D+ Ar

A2 - g% -2 4+ p2

2(AB + CD)
2(AC -~ 8D)
2(A8 - cD)

-2 ¢+ B2 - ¢? 4 p?

= 2(BC + AD)

2 (AC + 8D)
/
2(BC ~ AD)

= —A% - 824 24 p?
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Depicted in Figure 11 is the transformation of the accelerometer data
into the wander azimuth coordinate frame. The sum registers are
initialized at zero, and at the end of each T block loop, the components
of av p(t:. t + T) are added to them; when these sums are used by the NT
block, the register contents are reset to zero,

c. The Partition Iterated Every NT Seconds

Now the NT block calculations will be delineated. The unaided
inertial system velocity updating equations were presented as Equations
55 and 56 of Section 111.2. Further, the vertical channel damping was
described by means of Equation 74, using Equation 76 to define numerical
values involved, and Equatien 77 to compute hB' From Equation 74 can be
derived a discrete-time update by using a first order Runge-Kutta
(transition matrix approximation) method. This is modified slightly to
express the result in terms of g_p(t, t + NT), as available from the sum
registers of the T block. By defining

¢y = -NTC, b,z NTC,
G2z ~(1 +CCHNT b, =~NTC,

¢u= (Co=2uINT by ==NTC;

$22= NTC,Cq

$a3=NT (90)
¢z =NTC3

$322NTCCy

where the ci values are established in Section II1.6 and "’52 is the

square of Schuler frequency, equal to 1.536217230 x lo'sradzlsecz. the

o block algorithm can be developed as in Figure 12. First the air data
system iz sampled. Then the change in y_p is calculated in single
precision and added to the previous value of _v_p in double precision
{"D.P." means double precision). Similar separation of zingle and double
precision is maintained in the vertical ioop calculation of altitude as
well. Once the contents of the T block sum registers are used, these
vegisters are zerced for the next iteration. The values of g, o gp and
w "?e used in this algorithm are available from the previous NT block
{teration,

49

e B X% LA e e

b AN s

e Kt t

oty e,

ek e EE ey

pouY




2: -— 2: + Av:

AFFDL~TR-73-80
P b b b
Avg = Ty AV + T Avp + T AV,
P b b b
Avy = Ty AV + Ty AV + T4V,
p b b b
Av, = Ty AV + Ty AV, + T Ay,
|
| J P J
I, — 2, +A,
P P P
I, — Z, + Uy

Figure 11. Computation of g_p
|
|
|
|
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READ TAd ' P¢4
P . (4
w, = 2w|“ + w'.'”
P 4 P
w! ,zuloy + w.w
P = P
u: Zwlu
= P _ WP P
&y = Z, 48T (W W - Wb
P P P
Avy = 2¥+ NT ("’x v, -—w: V,)
(4 4 P
& = E, 4+ 8T (W) v - WV + )
5, o
5, o
5, :o0
ie— v+ o.P.
vy —v, + Ay 0.P.
D = Toe/Rg
hy ~——hy = {c/g)(p + Dyp) (Rg = Porp) DO.P.
Bo * Fae
0 =0
oLo
- P
NooF b gV + bhy
- P (]
Y2 = $ah 4 oV, + oy X + byh, + A, >
. P
Yy = Pah + Py Vz + Byhy B
ho——h +y D.P. {8
i ¥
Vi— Vi +y, 0.P. | ¥
X o—— X + ,3 0.P.

Figure 12. The+ Blrck
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The initial conditions for this inte,ration are

hg = Mo (+ uP)

Foro R

wo - W%

h = by earar (VP ()
P P

V@ % Vioneara (F DOWN)

X = 0

P, P

Ve * VyoinermiaL

P P

Yy = VyoINERTIAL
where h0 is the altitude used to initialize the altimeter, and the sub-

script INERTIAL refers to the initial conditions in the inertial system.
For ground alignment, the known altitude of the runway would be set into
the air data and inertial systems, with velocities and accelerations zero.

If hB is to be read directly from the air data system, the first

four statements after vs - V; + Avs can be removed. By replacing the

p Py agP ion VP Pyl
statements after vy -« vy + Avy with the relation vy v v v,

an unaided inertial system is obtained.

The (b segment, depicted in Figure 13, computes gz from y_p using
the gg elements generated in the previous NV block iteration. In these
relations the constants are the reciprocal of earth equatorial radius
and ellipticity:

i E O E— =8 g1
DY 20,926,486 11, 4778632707 x 107" ft (92)
= ! -3
e —=e0 3.367003367 x 10 (93)
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@ 8LoCK

R
- -'lo_[|- +oh - (I-!oc.;z ‘czsz)]

2¢
ko= 5, Ci3Cas

-1 P 4
=Ry Yy + kY

P P
.—I(Vy

€
°
"

-p-!
Ry,

b sLock

B¢yy ==NT (wgy, Csp)

Acyy == NT (w], Cs3)
ACyp = NT (whpy Cy2)

Ac,y

NT (g, Css)
Acy, = NT(”fpy Ciz = whpx C22)

p
Acyy = NT(wgp, Cj5 = whpsCay)

# DOUBLE PRECISION »
Cz = €2 + &Cy

C3 = Cy3 + ACyy
Gaa=— Ca2 + OCop
Cay=— Cpy + ACyy
Csp=— C3p + ACy,

Cyy = Cy3 + ACyy

Figure 13. w and € § Blocks
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Figure 13 also depicts the first order integration of C 2. in which
the changes to the six direction cosines are computed in single precision
and then added to the whole values in double precision. The c1j values
thus are stored in double precision, with the most significant half used
in subsequent single precision computations.

The remainder of the NT block calculations are shown in Figure 14.
The earth rate vector u ‘i’e is generated with the newly updated elements

of gg and the constant Wiar 7.2921160 x lo'srad/sec. Having generated
w gp and @ ‘;e, W li’p is then formed as their sum, to be used as an output
to the T block. Finally, g is calculated with the current value of (:33
and the value of hy from the<? block.

d. Data Extraction
As presently programmed, data is extracted from C 2 on odd numbered

iterations of the NT block, and from gg on even numbered iterations.

THe gg extraction is shown in Figure 15, and that from C P in Figure 16.

As is noted in these figures, doub’e precision may be required in
evaluating the sin™) and tan™! functions to provide adequate resolution.
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CALCULATE  wP:

P .

Wiex T WeCi3
P

Wgy =WigCos

P .
Wiez = Wielas
CALCULATE  wP:

p

P ) P
Wipx = Wiex + Wepx

P _ P P
wlpy- Wiey + Wepy

p_ P
Wipy = Wiaz

CALCULATE o:

9 = 32.087437360

+ 0.16994493815 Cyf
- 030877321095 X10°hg

Figure 14. Calculation of w ‘;e' ) l;p and g
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L = sin'(=Caa)

Cyu= C23Ci2=C22C13

A = tant(Cyp/Cy))

IF (Cy=+ondX =4), A —~A ~180°
IF (Cy= +andA==), A =X +180°
a = tan'(Cps/Cy3)
IF {Cpy= =), a=—a +180

IF (Caz + onda = ~), a =-a +360

sin”'(-) and ton'( ) MAY REQUIRE
DOUBLE PRECISION

Figure 15. 2Nt Block Associated with ¢ P
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6 = sin'(~Ty)

¢ = ton'(Ts/Tay)

IF (Tag=—~ond = +), pp—180°
IF (Tyy=—ondgp==), p==p +180°
¥y = ton! (T /Tyy)

IF (T2 =), ¥p =y +180°
IF (T,)= +0nd Y72 =), g7 = P +360°
V= Yyr-a

IF (y==), Y = ¢ +360°

sin'(+) and ton'(-) MAY REQUIRE
DOUBLE PRECISION

Figure 16. 2NT Block Associated with ¢ P
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SECTION V
USE OF ALGORITHM

This report has developed the algorithm to derive attitude and
position information from the outputs of strapdown gyros and accelero-
meters. By choosing aporopriate values for the fast loop period T, the
multiplicative factor N to obtain the siow rate, and the integration
order to be employed for the various updates, a specified computational
accuracy can be attained for any expected vehicle environment. Performance
analyses can determine these parameter values for each application.

The specific program for which this algorithm was developed envisions
an angular rate environment in excess of one radian per second, and so a
fourth order integration of C E was chosen. With first order integrations
used for the other propagations, the values of T = 0.025 sec and N = 4
have been projected as yielding adequate performance. However, with
other choices of these parameters, and specification of desired vertical
channel time constant t and altimeter lag Cy» the algorithm can be
adapted to any strapdown application.

To achieve desirable system reliability, redundant strapdown sensors
will be used in many prospective systems. The basic algorithm remains
unckanged for this application. Logic network., would be include. in the
system to perform failure detection, faulty sensor isolation, and sensor
recalibration and/or system reconfiguration. Thus, the sensor outputs
are processed to attain a best representation of the quantities A6 ?b and
A!P coordinatized along the three body axes, and these are then used as
inputs to the algorithm.

Thus, the algorithm is flexible enough to be compatible with a variety
of different vehicle, mission, and strapdown sensor package configurations.
With a moderate increase in computer loading, the advantages that a strap-
down system bears over a gimballed platform can be fully exploited in
future aerospace vehicles.
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