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ABSTRACT

This-report develops the algorithm for deriving attitude, heading,

and navigation information from a strapdown inertial system. Beginning

with the fundamental physical relationships, it develops all required

.equations and progresses to the onboard implementation of the algorithm.

Significant features of the algorithm include:

(1) Computations performed in the wander azimuth coordinate frame to

provide a system capable of operating in the polar regions;

(2) Separation into four loops of different iteration rates. This

maintains rapid, accurate updating of the direction cosine matrix

involving vehicle attitude, while processing other information and

extracting display data at appropriately slower rates;

(3) Fourth order Runge-Kutta integration of quaternions, using
second order rate extraction, to update the attitude direction cosine

matrix;

(4) Specification of the computations that require double precision

for adequate performance;

(5) Third order damping of the vertical channel by means of

barometric altimeter data.

The applicability of this algorithm to a range of vehicle and mission

environments is indicated, the required adaptations being edsily performed
for each particular implementation.
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SECTION I

INTRODUCTIONI{
In a gimballed inertial system, the gyros and accelerometers are

located on a platform whose orientation with respect to the vehicle is

determined by a set of gimbals. The gyro outputs are used to drive

gimbal motors in such a way as to maintain the platform in alignment

with some desired coordinate frame, regardless of the vehicle orientation

in space. Thus, the accelerometer outputs are coordinatized in that

desired frame, and navigation information can easily be generated by

performing computations in the instrumented coordinate system. Further-

more, the vehicle orientation with respect to that coordinate system can

be determined by observing the angles formed between the various gimbals.

On the other hand, the gyros and accelerometers of a strapdown system

are attached to the vehicle body, and therefore provide signals propor-

tioned to specific force and angular rate between the inertial and body

frames, coordinatized in the body frame. The inertial measurement unit

itself is significantly simpler than a gimballed system, allowing easier

maintenance and part replacement, while not being limited in performance

by the imperfect response of the gimballing mechanization. Furthermore,

instrument redundancy is more readily accomnodated in a strapdown con-

figuration. However, the simplicity of the strapdown system is gained

at the expense of subjecting the gyros and accelerometers to a more

severe environment, that of the vehicle itself. Furthermore, the com-

putational load is greater, since the onboard computer must maintain an

analytical representation of the desired coordinate frame, in addition

to the calculations it would perform with a gimballed system.

This report develops the algorithm for deriving attitude, heading,

and navigation information from a strapdown system. It will be imple-

mented in an onboard computer during a strapdown development and

evaluation project sponsored jointly by the Air Force Flight Dynamics

Laboratory and the Army Electronics Command.
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Significant features of the algorithm include:

(1) Computations performed in the wander azimuth coordinate frame to

provide a system capable of operating in the polar regions;

(2) Separation into four loops of different iteration rates. This

maintains rapid, accurate updating of the direction cosine matrix

involving vehicle attitude, while processing other information and

extracting display data at appropriately slower rates;

(3) Fourth order Runge-Kutta integration of quaternions, using

second order rate extraction, to update the attitude direction cosine

matrix;

(4) Specification of the computations that require double precision

for adequate performance;

(5) Third order damping of the vertical channel by means of baro-

metric altimeter data.

The report is arranged in the following manner. Section II introduces

the appropriate notation and coordinate frames, and then it describes the

relationships among coordinate frames by means of direction cosine

matrices and Euler angles. Furthermore, the time propagation of the

direction cosine matrix is described in terms of differential equations

for the matrix entries and equivalently in terms of quaternions. Section

III presents a conceptual description of the algorithm and then develops

the details of its various segments. Section IV considers the aspects of

onboard implementation, as integration methods, processing rates, and

rate e.;tractlon from gyro output pulse counters. The final algorithm is

also exhibited in the form of scalar equations. In conclusion, Section V

indicates the applicability of this algorithm to a range of vehicle and

mission environments.

2
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SECTION II

FUNDAMENTALS

1. NOTATION

A brief description of the notation to be employed is presented in

this section. It may appear somewhat cumbersome at first, but the

clarity it lends to the technical developments warrants its use (Ref-

erences 2, 11].

Certain letters will be used as subscripts or superscripts to specify

particular coordinate frames. These are:

i 
= 

inertial; with origin at the earth's center and nonrotating with
respect to inertial space

e earth; origin at the earth's center and nonrotating with respect
to the earth; the unit vectors point toward the equator and the
Greenwich meridian (x ), equator and 90*E (ye), and the North
Pole (Ze). e

n north-east-down; centered at the vehicle CG and pointing north
(xn), east (yn), and down (Zn).

p "platform"; wander azimuth coordinate system centered at the
vehicle CG and displaced from the n frame-by an angle (- X) about
zn' where the usual convention is used: that positive angles are

defined as clockwise as one looks in-te directioli of the axis
about which the rotation is made.

b body; centered at the vehicle CG, with xb along the longitudinal

axis, Yb out the right side, and zb out the underside of the

vehicle.

Vectors are represented by an underscored lower case letter, and a

superscript denotes the coordinate frame in which the vector is expressed

mathematically. For example, fb is the specific force vector expressed
as a three-dimensional vector quantity coordinatized in the body (vehicle)
frame. Angular velocity vectors will additionally have two subscripts,

3
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denoting the two reference frames between which the angular velocity

exists. The quantity m b is the angular velocity from the inertialie
frame to the earth frame, represented as a three-dimensional vector

coordinatized in the body frame.

Components of vector quantities are denoted by the same lower case

letter, without underscoring but with a subscript x, y, or z. Thus, f b

b
and w lex are the body frame x-components (longitudinal) of f and ie

respectively.

The three-by-three direction cosine matrix that transforms a vector

from one coordinate frame to another is denoted by an underscored capital

C, with subscript denoting the original frame and superscript for the

new frame. For instance, C is the matrix that transformis a vector from

the b frame to the i frame, as

fi =c fb (1)

For convenience, the elements of this matrix are normally written without

the subscript and superscript once the matrix itself is delineated.

Equation I thus becomes

Pere the subscripts (1, 2, 3) and (x, y, z) are Interchangeable. Each

element of C is a direction cosine between the unit vectors of the b-b
and i frames. For Instance, C12 is the direction cosine between the x

(or 1) axis of the I frame and the y (or 2) axis of the b frame.

The inverse of a direction cosine matrix is simply its transpose,

denoted with a superscript T:

4
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The values of the entries of a direction cosine matrix can be

specified completely by their initial conditions and knowledge of the
angular rates between the two frames of interest. For instance, C b (t)

(or C b (t) ) Is specified by an initial condition and knowledge of

either -b or c the angular rate from the i frame to the b frame,
-lb -ib b1b

coordinatized in either frame. (Note that _w b - ' and similarly

I 
_ b b'ad iial

ib =  bi )' In system diagrams, this dependence will be represented
as in Figure 1. The angular velocity w b used to propagate the direction

cosine matrix enters the block labelled C i from above or below. Vectors
-b

that are to be transformed by the matrix enter the block from the side.

Writing out the propagation relations explicitly will employ a "cross-

matrix". This matrix Is defined to be the three-by-three matrix which,

when postmultiplied by a vector coordinatized in the appropriate frame,
yields the result of performing a cross-product on that vector in those

coordinates. Let rb be some vector in the b frame, and suppose one

desires to compute xc~ r )b bk.
ib ; the matrix W ib is defined to satisfy

Wb rb (Mbx b  (4)

Thus, W bk is defined asib

_.b b1
0 (Jbz W by

ib b W i 'bx I(5)
b b

.Wby Wibx 0

where the entries are the components of the vect'/ ' b
i b'

Time derivatives of coordinatized vector .'antities will be denoted

by a dot above the quantity or the operator,p preceding the quantity:

d b b (6)

With physical vectors (for instance x, as opposed to x which is the
set of three scalars that defines x in terms of body coordinates), the

5 /
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Flypre 1,7 System Diagram for Direction Cosine Matrix
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operator p will bear a subscript to depict the coordinate frame used

to observe the rate of change of the vector in question. With this

notation, the Theorem of Coriolis becomes, for any vecto, v

Pi t = PbY + Cib X V (7)

2. COORDINATE YSTEM RELATIONSHIPS: DIRECTION COSINES

ANDEULER ANGLES

The coordinate systems of particular interest for this report are

the body (b), wander azimuth or "platform" (p), and earth (e) frames.

First of all, the strapdown instruments provide information coordinatized

in the body frame, while algorithm computations will be conducted in the
wander azimuth frame. Further, the relationship between these two frames

will specify the aircraft attitude. Finally, the relationship between

the wander azimuth frame and the earth frame will determine the location

of the vehicle.

There are two familiar means of describing rotations of one coordinate
frame relative to another. Euler angles are a set of three rotations

taken in a specified order to generate the desired orientation. The same

orientation can be uniquely described by means of the nine direction
cosines that exist between the unit vectors of the two frames. Whereas

there is no redundancy in the Euler angle description, there 3re six
constraints on the direction cosines (the sums of the squares of elements
in a single row or column equal unity). Despite this redundancy, the

direction cosine technique is preferable because the Euler angle de-

scription has an indeterminate orientation (analytical "gimbal lock")
and a surrounding region of poor resolution.

Tie final algorithm in this report will employ two direction cosine

matrices, one propagated by conventional means and the other evaluated as
a function of an appropriate quaternion. Essentially, a quaternion is a

means of describing angular orientation with four parameters, the minimum

redundancy that removes the indeterminate points of three-parameter

descriptions. Although the loop computations use direction cosines, the

7
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data extracted for display or autopilot inputs is most conveniently ex-

pressed in the form of Euler angles. Thus, the subsequent sections will

delineate the calculation of Euler angles from the corresponding direction

cosine matrices.

a. Wander Azimuth and Earth Frames

Figure 2 portrays the relationship between the earth and wander

azimuth frames. When the three angles, X, L and a, are ;'ro, the wander

azimuth I me is oriented so that xp is aligned with ze, yp with Ye' and

Zp with -xe. A positive rotation of X, the longitude, is taken about

the xp axis. Subsequently, a negative rotation about the displaced yo

axis, of magnitude L (latitude), is made. Finally, a negative rotation

about the displaced zp axis is made, of magnitude a (wander azimuth

angle). Use of a negative rotation was chosen arbitrarily to conform to

the usual definition of a as a counterclockwise rotation as seen from

above.

From the figure it can be seen that geographic latitude, rather than

geocentric, will be used to describe position on the earth. Thus zp is

normal to the elliptical surface of the earth rather than in the direction

of the earth center. Throughout the development of this report, the

ellipticity of the earth will be accounted for, but higher order effects

and local geoid perturbations will be neglected.

The direction cosine matrix C P can be developed as the product of
individual rotation matrices. First the p frame is rotated to align the

axes as xp .ze, Yp 'Y
e, and zp . -xe. Then rotations of X abnut Xp,

-L abou yp, and -a about zp are performed in that order, Thus,

cosa'sna O [osLO sInL1 0 0 O 0 I1

Lo  cosj a I 0 cOSX sin0o 1 0 (8)
0 0 I]LsnOoL L -_SanX ODSX I-1 0 O'

8
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Now if the elements of C P are identified as

I C1 C2 C131
C :C 2 ca (9)

31C32  3

then the individual elements are

C11- -Cosai si L cos)x + sutci sinx
C,2:- -cos a sinL sinX - sincz cosX

C13= Cosa cosL

Cal: sina sinL cosX -coscisin?

C22 _- sin a sinL senX + cos a oX (0

C2/ sna cosL

C31:-cosL Coas\

C32 -cosL sin)X

C33c - sinL

To obtain the latitude, longitude, and wander azimuth from the
elements of C P the following calculations are made

L : ncn I-C33) (1

X~P torn'(C3 /C30)(2

ap ton(C 23 /C,3,) (13)

The subscript p denotes principal values in Equations 12 and 13.
Latitude is defined in the range (-90*, 900), which coincides with the
principal values of the sin 1I function, and thus there is no ambiguity
to the solution of Equation 11. However, X is defined over (-1800, 1800)
and ai over (00, 3600), whereas the principal values of the tan- function
lie within (-901, 900). The ambiguity can be resolved by observing the
sign of the elements C 3, and C13. Since cos L is nonnegative, these
elements yield the sign of -cos X~ and Cos ai respectively. Table I
demonstrates the evaluation of the true X and a values as a function of
these signs.

10
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TABLE I

LONGITUDE AND WANDER AZIMUTH EVALUATIONS

LONGITUDE (X)

Sign of Ap Sign of C31  A Evaluation Quadrant

+ + x~ Pl800 (-180-, -9D0)

x- (-go*, 00)

+ -(0O, 900)
p

+ x~ +1800 (900, 1800)
p

WANDER AZIMUTH (oi)I

Sign of 0P Sign of C13  ai Evaluation Quadrant

+ + cp (00, 900)

- 0+1800 (go., 1800)

+ a p +1800 (1800, 2700)

+ a p+3600 (2700, 3600)
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Using conventional propagation of the direction cosine matrix, it is

possible to neglect the propagation of C11 , C21, and C31 if these values

are not required for other computations. The elements C11 and C21 will

not-be used at all, and C31 is required only to compute the value of

longitude. However, by manipulating the relations of Equation 10, it can

be shown that
C31=C25 C12 -CazCga (14)

Thus, only six of the nine direction cosines will be propagated, and

Equation 14 used to calculate the value of C31 for the longitude

evaluation.

b. Wander Azimuth and Body Frames

Figure 3 presents the relationships between the wander azimuth and

body frames. Rotating the wander azimuth frame through a positive

rotation of a ebout z yields a north-east-down coordinate frame. From

there the ordinary Euler angles of yaw (ip), pitch (0), and roll ( ) yieldb
the aircraft attitude. Consequently, the matrix Cp can be composed of

the product of three rotation matrices, (ip + s) about zb, then 0 about

the displaced YbI and ' about xb:

08 ~cs 0 -sinlJ9 csW'+a) sin(tp+a) 0l
1 0 0 V- 1 (15)

10 co s- s s.n 0 ' 0 jJ-s (4i+a ) cos(qi+ ) 0l( 5

L0-sinS cos s6 0 0 coJt 0 0

The inverse transformation will be of direct interest, so define

TI T12 T13

-b T21 2Z T23  cT (16)

12
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Using this definition, the individual elements become

T1c=oxs0P +a) cos e
T12 -cos('j' +a ) sin 8 sino -sin(* +a) cos~p

T13 =cos(,' +a) sine coso +sin(i,+a) sino
T2.1= sin(q, +akcose
T22 sin0P +a) sine sinjS+cos(4,+a coso (17)

T23 :- sin Op +a) inG 8 os- cos(* +a)ixisi;

T31 = -sine

T32=cose sino
T33 =cos 6 cos 6

The values of (ip + an), 0, and are obtained from the elements of

CP in a manner similar to the data extraction of the previous section:-b

0= st'- 31) (8

Op 1QV(T3,/T 3 ,) (19)

(*+a )p = lin'(T21 /T11) (20)

Pitch is defined over the range (-900, 900) and no ambiguities exist.

Hoeeroll is defined over (-1800, 1800) and (ip + an) over (00, 3600).

Cos 0 isnonnegative, so the ambiguity can be resolved with the aid of

the sign of T33 and Tw1 as in Table 11.

Once the value of (ip + an) is obtained, it can be combined with the

value of ot derived in the previous section to obtain yaw:

41 ='?+a - a(21)

If the result is a negative number, 3600 can be added to it to yield a

value of ip in the range of (00, 3600).

3. DIRECTION COSINE RATES

In order to propagate the values of the direction cosine matrix

elements in the conventional manner, an expression for their rate of

14
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TABLE II s

ROLL AND YAW-PLUS-WANDER AZIMUTH EVALUATIONS

ROLL (€)

Sign of p Sign of T33  * Evaluation Quadrant

+ - -1800 (-1800, -900)

-+ °p(-9o ° , oo)
+ + p (00, 900)

- °+ 1800 (900, 1800)
p

YAW-PLUS-WANDER AZIMUTH (t + a)

Sign of (Y+ a)p Sign of TI1  (N + a) Quadrant I
p

'Evaluation
+ + (p + )p (00, 900)

(' + )p + 1800 (90., 1800)

+ (' + )p + 1800 (180-, 270)

+ (' + 00p + 3600 (270', 3600)
'p

15
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change is needed. For any two frames, a and b, the Theorem of Coriolis
can be written for any vector v as

Pa b -Ob Y (22)

Coordinatize the left side of this equation in the b frame to yield

b

bo [W~ g0
go W (26)

[ Wo b = ! Wb (24)

TSe re the esred fret epsibeannecallr eetr quations. iple

a16 25
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If the available angular rate information were coordinatized in

the a frame instead of the b frame, the desired relations become

S k a (28)
-b = -ob 

(b

Sak is defined as in Equation 26, except that the entries areweeWab

c n - ab ba)" To show this, write Equation 25 with the

roles of a and b reversed:

6 . = b -b o

Now use the facts that C b =.C aT an a a bto write-a -b ad ba -ab
( ,)=(*O)T - aT wok - CoT wok

-b =-b -No '-b Wob

Transposing yields

do 
= -

Wok TC

Wok C
=oWb -b

which is Equation 28.

It has been common practice to solve these equations with a first

order integration technique using DDA's to achieve high iteration rates

(on the order of 10,000 per second) and thereby maintain accuracy. The

current algorithm is designed for whole word computers, using a slower

iteration rate but a higher order integration method where necessary for

precision. Because of the amount of computation involved in these higher

order methods, it is more efficient to propagate four quaternion par-

ameters instead of nine direction cosines, and then calculate the matrix

entries algebraically.

4. QUATERNION UPDATING OF DIRECTION COSINE MATRICES

As mentioned previously, a rotation of one frame relative to another

can be expressed uniquely in terms of four parameters, three to define

17
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the axis of rotation and the fourth to specify the amount of rotation.

A considerable amount of quaternion algebra can be Ceveloped to provide

these expressions [References 5, 7, 9], but it is more convenient for the

purpose of this algorithm to define the direction cosine matrix in

terms of the propagated quaternions [References 6, 7, 10]. Coordinate

transformations are then performed in the conventional manner.

Let A, B, C, and D be the four quaternion parameters. Conceptually,

A, B, and C will define a vector in space and D will be the amount of

rotation about that vector. With appropriate definitions of these four

parameters, a general direction cosine matrix, C b as in the previous

section, can be evaluated as

[ B 
2 
zc+ D

2  
2(AB +CD) 2(AC -BD)

2-b _2( C 60 2(8 -A) - 2 ,+C 2
2(AB-CD -A 2 +82-c 2 + D2 2(C+AD) (29)L2( Ac + 

8
D )  218c -AD) _A2_82 + C2+ D2

Note that changing the sign of D yields C aT =C b This Is expected
-b - a

since the negative of the rotation about the unit vector used to obtain

frame a should yield the original frame b again. Furthermore, changing

the sign of all four quaternion parameters leaves C b unchanged. This,

too, is reasonable: a positive rotation about a certain vector equals

the negative rotation of same magnitude about the vector in the opposite

direction. This fact will be utilized in the initialization of the

quaternions.

Now a rate equation analogous to Equation 25 will be developed.

Given the definition Equation 29 and the angular rate information

Sab 
=
w " the appropriate rate equation can be derived 

as

i [ o  -W Y- ' [Al
W: 0 W~ -Wy 1 81(0Z X Y(30)
Wy " x 0 " z

LI + L WyW X 0 JDJ
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coordinates, the relation is ,

[L [o J L W z WY W 5 ,
I~I K Wx W(32)

where

a a
Ly = ab =  

Wbo (33)
o~bo

N(ote that Equation 30 or 32 would also be satisfied if the sign of all

four parameters were reversed; again this is useful for initialization

considerations.

Since there is a single redundancy in a four parameter description

of coordinate rotations (as opposed to six for the direction cosines),

the quaternion parameters satisfy a single constraint equation:

A2 + 82 + C2 + D
2  (34)

Computationally, (A2 + B2 + C2 + D2) 1/2 can be used as a normalizingTfactor for each parameter, this is analogous to the periodic orthogonal-
ization procedure used in conjunction with direction cosine propagations.

19



A' AFFDL-TR-73-80

Quaternions will be employed to update C.P. Th. b frame is obtained

from the p frame by a rotation of (T + a) about zb, e about Yb' and
finally 0 about xb. An appropriate deflhition of A, B, C, and D that

yields C P accordinq to Equation 29 and also sati-fip; Equation 34 is:-b

A = sin - sin - cos cos cos !sin
2 2 2 2 2 2 (35a)

,+a G * ,+a 3
a:-os - sin -9 cos - - sin cos in (35b)

C =-sin et cos - + cos i sin sin (35c)
2 2 2 2 2

*+a sin ,+a .g _ t (35d)
D cos -OS cos - cos I + sin - sin-s

2 2 2 2 2

Although these relations define the quaternion parameters, they are

not convenient for ilitialization. Besides requiring sine and cosine

evaluations, the triple products of those functions suffer from potential

numerical inaccuracies on a short wordlength computer. Moreover, typical

Initialization procedures yield the direction cosines directly, with

Euler angles computed from these. Thus, the initial magnitudes of A, B,

C, and D can be defined more appropriately in :erms of elements of C b:

IAI -" /J + T, I T22 -T3 1 (36a)

181 T' -/i - T,, +T2.. T33  (36b)

IC + I/ - T, -T22 +T 3  (36c)

IDI I-A 2 - 2 
- (36d)
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The first three result from algebraic manipulation of the diagonal terms
of Equation 29, and the last is just a restatement of the constraint

Equation 34. The signs of these terms need to be established. Taking
the difference of off-diagonal terms in Equation 29 yields

4AD Tr3 - T32 (37a)

48D : T3- T13 (37b)

4CD 2 T12 - T2 1  (37c)

Thus, once the sign of D s set, these three relations provide the signs
of the other three parametfrs. It was previously demonstrated that the

choice is, in fact, arbitrary. Therefore, the signs are chosen as

sign D = + (38a)

sign A = sign (T23 - T32) (38b)

sign B sign (T3 1 - T13 ) (38c)

sign C sign (T2 - T21) (38d)

At initialization time, Equations 36 and 38 are used to evaluate

A, B, C, and D from the value of C P established in alignment. In the

pbbpb is available so the parameters are updated

according to Equation 30, with Equation 31 defined as w b When C P is

required, it is evaluated by means of Equation 29.
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SECTION III

DEVELOPMENT OF ALGORITHM

1. CONCEPTUAL DESCRIPTION OF SYSTEM

The basic computational system structure is as depicted in Figure 4.

Body mounted accelerometers measure ab, the specific force exerted on the

instruments by their supports (vehicle acceleration minus the acceleration

of mass attraction gravity) along body coordinates. This is simply the

negative of fb, conventionally defined as the specific force exerted by

the instrument set on its supports. Similarly, gyros provide a measure

of the angular rate between inertial space and the body frame, expressed

as components along body axes.

First the specific force a is transformed by the direction cosine

matrix i into wander azimuth coordinates:

.p = cp ob (39)

A current value for C P is maintained through propagations using wb b

which is generated as

b = b b--pb -Ilb -Ip

=wb -b -p (40)
1b P 1p
b PT p

C Wl
iWb ~b IP

The transformed accelerometer outputs, ap, are then processed

through the block labelled "J" in Figure 4 to obtain vP, the vehicle

linear velocity expressed in local wander azimuth coordinates. Section

111.2 will develop the appropriate level loop relationships. Required

by these computations are w p and w e' discussed in Sections 111.3 and

111.4 respectively. The vertical channel additionally requires com-

putation of ?P and damping provided by a barometric altimeter, considered

in Sections 111.5 and 111.6.
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Once vP is formed, it can be used to derive the value of the angular
rate w p; the block labelled 4)is delineated in Section 111.3. For the

wander azimuth system to be employed (sometimes termed free azimuth),

(ap is identically zero.
epz

The angular rate between the inertial and wander azimuth frames,

Pip , is then formed as

bR (GP Is (41)

wherewP is calculated as in Section 111.4. This is the quantity usediein Equation 40 and the loop is complete.

A number of these computations are functionally dependent upon

latitude and longitude. A direct evaluation of these is possible by
solving for a according to the relation

a = - sinL (42)

to form C " as
-p

[Cos a sin at 01
-n [ sin a cos c 0 (43)

0 0 I

which in turn is used to transform tO ep ,with x andy components

(0p, = . COS L (44a)

ep cs L (44a)
epy

(Ap -L (44b)

which can be integrated to evaluate L and A. However, the functional
relationships required are easily generated from the elements of C P.

2e
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Since this involves a linear propagation equation without the inherent

problems of direct integration of a, L and A, it is more efficient to

use wp3 to update C P Then L, X, a, and the desired functions areep
computed from the direction cosines.

In a similar manner, (ip + a), 8, and * are extracted from C P, while
these values are not used explicitly in the computational loop. Section

111.7 considers the extraction of data for presentation to either the

pilot or autopilot.

2. VELOCITY EQUATIONS

The equation that relates vp to ap is

0 + op- (2w' + w:)X V (45)

This relation is derived in the following manner (References 4, 8).

From Newtonian mechanics, the second derivative of position, as seen from

the inertial frame i, satisfies the equation

p2 r + m (46)

where r is the vehicle position vector, a is the output of the accel-

erometers, and % m is the mass attraction vector. If q is the gravity

vector composed of both mass attraction and centripetal components,

= -" -L1 X ola X E) (47)

then Equation (46) can be written as

Ii r + g +W_,,X(=_,, X r) (48)

It is desired to write Equation 48 in terms of the rate of change of

the velocity vector v , as seen from the computational frame p. By
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definition, the velocity I is the time rate of change of the position

vector r, as seer from the earth frame e:

P, L (49)

This can be related to the inertial rate of change of r by means of the

Theorem of Coriolis:

P 1  1 + w X -

(50)
v + WeX r

Differentiating this equation again yields

2 r pv+W X

Substitute this into Equation 48 to obtain

pl v = 0 + g - -l X vS!L a16 (52)

Again using the Theorem of Coriolis, pil can be expressed in terms

of pI, the time derivative of v as seen in the computational frame p:

p Y. + 1px (53)

Combining Equations 52 and 53 yields

p p Y = 1_ + g (No + _ ,p)X

Xv 
(54)

When coordinatized in the p frame, this is the desired relation,

(Equation 45).
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Writing Equation 45 in scalar form yields the relations to be imple-

mented in the algorithm:

P P P P P P(a)
V o Ox + VY Wz - VZ WY

.P P P (5b)
v z=a + v W (x5b

V Y =  
xz  V xr -- V2 S

where the quantities P, J, and j are defined as
x y z

WP 2W + p
(lox %PI 5a

W 2W + py (56b)
Y b.y OPY

WP 2WP (56c)
Z = ez

Note that, for the wander azimuth system being used, WP is zero.
epz

Also, the approximation that j is colinear with zp has been made:

- (57)

This will introduce only negligible errors, on the order of resolution

capabilities of present day instruments.

Equation 55c is the equation for an unaided inertial vertical channel.

The computations are unstable, and so this equation will be modified in

Section 111.6 to provide dimplng by means of barometric altimeter data.
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3. ANGULAR RATE RELATIONS

Let ro be the equatorial radius of the earth and h be the vehicle

altitude. If a spherical earth were assumed, the angular rate relations

would simply be

W p (58a)
C.epxj r+h (5bWP I . (58b)

ey ro+h

However, it is desired to account for the earth's ellipticity, so the
relations become somewhat more complex.

Consider the north-east-down (n) frame first. With respect to this

frame, the desired relations are

wn x n
Wenx I Vy (59a)re+h

nL nWeny -- rn+h (59b)

where rn is the radius of curvature of the reference ellipsoid in the
meridian plane at a given point on the surface, and re is the radius of

curvature in the plane orthogonal to the meridian plane at that same
point. Thus, the terms (rn + h) and (re + h) are the corresponding radii
of curvature at altitude h (h defined along zn or zp is colinear with both
rn and re). The values of rn and re can be shown to be (Reference 3].

ro(i- c2)rn 0 (- Csin L) "V2 (60a) 4

re =
(1 - c2 smn L)/' (60b)

where c is the eccentricity of the reference ellipsoid,
r2 r2

rd (61)

r being defined as the polar radius.
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The vehicle angular rates expressed in the n and p frames are related

by

Pw epx -en cos - wenysin (62a)

£epy: w nx sina + Wnny cos a (62b) $
and similarly the linear velocities are related by

vn  
vPcosa+v

P
sina (63a)

v;= -vPsina + v
p coso (63b)

Substituting Equation 63 into Equation 59, and then substituting the

results into Equation 62, yields

(AIp. W vP+k v (64a)

XY'

where

I cos 2 a stn a (65a)

= -+ r---F- (65b)

-- ± n+ sin a~ cosa (65c)

Equations 64 and 65 provide the exact expressions for vehicle
angular rates in terms of linear velocities, assuming an oblate spheroid

for the earth (i.e., with elliptical meridian planes). IA
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First order approximations to these equations can be derived by

expanding (rn + h)"l and (re + h)"l and retaining only first order terms

to obtain [Reference 31:

I - 2!.+ e2- c sin2L) (66a)

I I _t I sin2L) (66b)

These approximations are put into Equation 65, and 1/2 c
2 is

approximated by the ellipticity e, where

e = ro-ry (67)

yielding the first order expressions

- e(I -3cos 2Lcos2a cos in2)] (68a)

Rx ro 0  cL 21

[i- -e -3cosLsin2ca-os cos (68b)

k o cos
2
Lsina cos (68c)

These evaluations can be expressed conveniently in terms of the

elements of the direction cosine matrix C 
p
:e"

[1-= 1o -e(,-_3C2 _C2 (69a)
S, o 0

/RIo'- -(t-3d ,- 1 2) (69b)

k roC1 3 C2 3  (69c)

The algorithm to be implemented computes Rx', Ry and k according to

Equation 69, and then calculates P and WP through Equation 64.
epx epy
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4. EARTH RATE COMPONENTS

In the earth '(e) coordinate system, the earth rotational rate vector

is

le= o (70)
1wieJ

Thus, in wander azimurn coordinates, this vector becomes

[wie C3 1
Wie -e -ie- |eCa(4 "'e C 3 3 7 1 )

5. GRAVITY COMPUTATION

The standard approximation to the value of gravity (Reference 3) is

given by:

GM [(I + j jz- j4-C) +

+(c ~ ~ ~ ~ _j ~G2 IJE~ J+7je +C)sfl2L+(C 2_ C1+.5j'C1-_ ,_ j2, ,,.

-(2+6J 2 +C)hj (72)

where G is the gravitational constant, M is the mass of the earth, J,

and J4 are coefficients of the first two harmonics of the mass attraction

potential function, and C Is equal to swie2 ro3/(GM). Substituting the

numerical values Involved and using C33 * -sin L, Equation 72 is put

into final form as

g 32087437360

+016994493815C,2
-0 30877321095 + IO'h8 (ft/sec2) (73)

The subscript B on h, (measured in feet) denotes the fact that barometric
altitude is used to evaluate g in order to stabilize the vertical channel

computations. This will be discussed further in the following section.
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6. VERTICAL CHANNEL DAMPING

Barometric altimeter data is combined with inertial vertical channel

computations to damp and bound the errors In the latter. A third order

damping technique is implemented as in Figure 5. The inertial system

input is (aP + P VP - (oP vP), where aP is provided by Equation 39 and
y O x x y z

the other terms are evaluated as in Section 111.2. Added to this is the
computed value of g. The altitude h, provided by the barometric altimeter

is subtracted from h, the inertially indicated altitude, to generate the

error signal for feedback (note that his positive up). The vertical

velocity is passed through the gain C4 and added to h (since vp Is

positive down) in order to compensate for the inherent lag in the

barometric altimeter. Thus, typical values of C4 would range between

0.5 and 0.8 seconds. The feedback of h through 2ws2 compensates for
changes in gravity with altitude, and it can be recognized as the cause

of instability in the unaided inertial vertical channel. Although a

simpler second order damping system would result from setting C3 equal

to zero, the performance advantage of the more complex system is

sufficient to warrant its use.

From Figure 5, the state space model of' the vertical computational

loop is

[C1 [ + a])
C2 - 2 C2 C4  I,

LX [ c, cIc4  0

C1 0
j P -C B + o: + g + Wy -Y x  W y

C 0 (74)

Note that h is defined to be positive upward for convenience, vp is

positive downward, and x is the second derivative of h.
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The values of C1, C2 , and C3 are set so that the system characteristic

equation yields three poles at (-l/t),

(S + Dir)3 = 0 (75)

where T is the desired vertical channel time constant, usually chosen to

be about 200 seconds. The gain values that achieve ttese system poles

are:

2wz C4r 3 + 3r2 + 3C4 T + C2 (76a)

S (r2 + 3 c, 2)+ 3 + c4

, 2 4(76c)

Once the appropriate values for and C4 are chosen, these relations

yield a time invariant linear system equation. A discrete-time updating

equation can then be derived by means of the state transition matrix

technique. This will be discussed more fully in Section IV.1.

The h, value provided by the air data system can be calculated in the

standard manner, or by means of the technique developed by R.L. Blanchard
(Reference I). Rather than calculating pressure a titude based on a

standard atmosphere model (and possibly compensating later for non-

standard conditions), this method computes a dynamically corrected alti-

tude by numerically integrating the physical relation fora column of air

as a function of pressure, gravity, and absolute temperature. The

algorithm has already been flight tested and has demonstrated very

accurate performance. Letting Tad and Pad be the absolute temperature
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and pressure available from the air data system, the Blanchard algorithm

with trapezoidal integration can be written as

D : Tad/Fd

9 = g + g, sin2 L+ g2h

h8' h8 - c/g (D+ DOLD)(pOd PoLo)

OLD ad (77)

DOLD :D

In the above equations, go. g1 and g2 are the values given in
Equation 73, and C equals the universal gas constant R divided by twice
the molecular weight of the atmosphere, 2M. Again it is noted that h,
rather than h, is used to evaluate g.

7. INFORMATION EXTRACTION

The values of latitude L, longitude X, and wander azimuth a are

derived from the six propagated elements of C P as in Equations 11, 12,
and 13, using Equation 14 and the logic of Table I. Similarly, (N + a),

0, and * are computcd from the elements of C P using Equations 18, 19,

and 20, and the logic of Table II. Since these values are not required

in the computational loop itself, the data extraction can be performed at
any suitable iteration rate without any effect upon algorithm performiance.
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SECTION IV

ONBOARD IMPLEMENTATION

1. INTEGRATION TECHNIQUES

A number of propagation relations require integration in this system

algorithm. Due to computer loading considerations, first order inte-

gration techniques will be used wherever they provide adequate perfor-

mance. However, updating the elements of C P will necessitate con-b
sideratlon of higher order techniques because of the potentially high

angular rates involved. Previously th2 approach has been to employ DDA's
operating at very high rates, as about 10,000 iterations per second, to

provide accuracy with a first order technique. In contrast, this program

uses a whole word computer operating at a slower iteration rate, but

using higher order integration methods to achieve the desired precision.

There are various means of generating higher order techniques, such

as the Runge-Kutta method and Taylor Series. Runge-Kutta techniques

have been chosen because they provide an accuracy equivalent to that of

a Taylor Series solution of the same order, while not requiring past

histories of the dependent variables or high order derivative information.

Consider the updating of the direction cosine matrices C 0 and C P

Either the four quaternion parameters for C P or the six directionb
cosines for C P (three are not propagated) can be arranged into a vector,

-e
denoted as 1(t). Then an expression for the time rate of change of that

vector, *(t), can be written as

For the case of updating P using ! bb, the quaternion relations
corresponding to Equation 78 are

" (wB -WC - xD) (79a)
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4 "j(-WA + WC -Wy D) (79b)

= ( wyA- wx1  - w zD) (79c)

6 k(xA +wyB + wC) (79d)

where xT  (A, B, C, D). Updating I with p
p entails the component

,relations

C12  - Wy C32  (80a)

613 "Wy C3 3  (80b)

622 W C32  (80c)

c23  w1-X C33  (80d)

C32 
= ~ C12 - w1&C22  (80e)

C33  y C13 - WX C23  (8Of)
where X (Cz C13 , C22 , C23 , I ,, 33 )

Let the integration interval be T seconds long. Then a first order
Runge-Kutta routine to solve for x(t + T) in terms of x(t) would be

)LJt + T) = (t) + T I[(t),i(t)] (81)

This is the same as a first order Taylor Series solution or a first order

approximation to a transition matrix solution to a set of linear

equations.

A second order Runge-Kutta algorithm would be solved as

y &W + T f[x~i),w(t)j (82a)

_(t + T)= L() + T/2 { 4iL(,() ] + L1[,,_(, + T]} (82b)
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Finally, a fourth order Runge-Kutta technique computes x(t+T)

according to the following algorithm:

(83d')

T L[L(t) + , Wt+T172)] .(83b)

y = T LL, ++ ,e.- +T/2)] (83c)

S= T f [&(t) + Y, !g,, T] (83d)

_x(t +T) = x(t) + (+ 28 + 2Y +_8) (83e)

The current algorithm formulation employs fourth order integration of

the quaternion parameters related to C P and first order integration of

the elements of C p.-e"

2. RATE EXTRACTION

All of the integration techniques require a knowledge of the angularp b is generated in part by the
rate w (t). In the case of updating C be

iboutput of the gyros, ib' as seen in Equation 40. However, the gyro

outputs are in the form of a pulse rate proportional to angular rate, and

thus a pulse counter yields incremental change in angular orientation

about the i-th axis, AO. Let T be the iteration period of the inte-

gration routine. If Ae(t, t + T) denotes the &ej corresponding to the

number of pulses counted between the times t and (t +T), a first order

rate extraction would be computed as

W10) = I/T A8(t, t + T) (84)

This would be adequate for a first order integration method.

Since the fourth order algorithm (Equation 83) requires rate

information at the midpoint of the integration interval, wj(t + T/Z), a

second order rate extraction is appropriate. The gyro output pulse
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counter is sampled at twice the iteration frequency, every T/2 seconds.

Thus the measurements AD (t, t + T/2) and 60 (t + T/2, t + T) are used

to calculate wj(t), wj(t + T/2), and wj(t + T) as required by Equation 83.
Curve fitting of a second order polynomial to the data produces the

following rate extraction relations:,

(/) /T[3 (t.,t + T/2)- AO(t + T/2,t + T)] (85a)

wi(t + T/2) z I/T[ A61 0, t + T/2) + A8 (t + T/2, t + T)] (85b)

,,0 ,. T) = I/T [-A0, ,t + T/2) + 3 +9 0 T 2, t T)] (85,)

The generation of the appropriate values of W b to be subtracted from
ip

the results of Equation 85 will be discussed in Section IV.4.

3. PROCESSING RATES

In order to maintain accuracy, the C P matrix must be updated at a

high frequency. However, the other computations need not be propagated

at such a high iteration rate.

Consequently, the algorithm will be partitioned into segments that

are iterated at different rates. Let T be the iteration period of the

computation of C . Then the gyro pulse counters are sampled every T/2
seconds, whble the accelerometer pulse counter data is taken every T
seconds. The other loop computations will be iterated every NT seconds,

where N is an integer (for timing purposes in a digital computer, N might

be set most conveniently as some power of two).

As has been mentioned previously, the information extraction (i.e.,

evaluations of (t + a), e, *, L, X, and a) can occur at a completely
different rate. For timing convenience, its period will be assumed equal

to some integral number times T, denoted as KT. An efficient technique

would be to let K 2N, and to alternate outputting [L, X, a] and

+ a), 0, €] on successive passes of the slower loop iterations.

o 
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4. FINAL ALGORITHM

Based upon the previous discussions, the overall system is partitioned

as in Figure 6. The value at the top left of each segment is the peviod

of that iteration cycle. Using this diagram, the interfaces and passage

parameters between the various blocks will be described briefly.

First,-the T/2 block provides A b (t, t + T/2) and Ae b (t + T/2,

t + T) to the rate extraction algorithm for use in the integration

interval (t, t + T). These values are read into six memory registers

reserved for gyro data, for subsequent use by the T block.

The other input to the T block is w p, a slowly varying parameter

generated every N iterations of the T block. Every T seconds, the

direction cosine matrix C b is recomputed, and a new value of'W b is
b - ip

subsequently calculated based on the new C P and the currently availablevalue of w Pp

ip'

The output of the T block to the NT block is the sum of the most

recent N values of.2P(t, t + T). Every N iterations by the T block,

these sums are sent to the NT block to drive the velocity update equations.

Findlly, the 2NT blocks are merely operations upon the current

elements of the matrices C P and C P-b -e

The remainder of this section presents the detailed algorithm. All

equations are presented explicitly in their scalar form.

a. The Partition Iterated Every T/2 Seconds

Let t be some integral number of periods T from initialization. The

T/2 block provides the two samples of the gyro output pulse counters

required every T seconds. When a counter is read, its contents are
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assumed to be set to zero. A flag is maintained (denoted here as IPASS

but actually implemented as a countdown from the computer clock) to

denote whether the current sample is of the fom

A ll b (t,t + T/2) (86a)

or

A2 = A (t + T/2, t + T) (86b)

If IPASS equals 2, the accelerometer outputs are read immediately after

the gyro outputs, in order to minimize the time difference of the two

samples. Thus, although the accelerometers are sampled every T seconds,

the measurement appears in the T/2 portion of the algorithm. Figure 7

portrays the T/2 block calculations.

b. The Partition Iterated Every T Seconds

Now consider the T block. Figure 8 depicts the rate extraction

algorithm that calculates 2 lb at times t, (t + T/2), and (t + T) from

the gyro data Al and A2. At time (t + T), the quantities available for

updating C. bare these three values of w b and a value of p based on

the current value of w and the C PTof the previous T block iteration.

The single value of W is subtracted from each of the three w b
The~ sigevlu f ip b bin alue

to approximate the three corresponding values of b Noting that

T1 I T12  T13 1
C = 2 T21 T22 T23 

(87)

L'T31 T32 T33J
the matrix C b can be written as 

i

T1  T2 , T31 (

C T12 T22  T32  (8

T13  T23  T33I
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READ AU

READ AOIbY
b

READ AG1b
RED Ibz

IF 1PASS m 2, GO TO 2
b

AI x  Aoib.

b
AI Z  Ao1bz

IPASS = 2
RETURN TO EXECUTIVE

2 READ AVb

READ A~b

READ AVb

b
A2y = Ae1b

GbY

A2 z = AoibI

IPASS = I

GO TO T BLOCK

Figure 7. The T/2 Block
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lb
Wib =l/T (3I - Y2)

b~ ,) (3AlI-A~

wb
lbz M =I/T (3AIZ - A21 )

Wba (t + V/2) =l/T (Aix + A2x)

~bb (f + T/2) =-/ Al + A2

Wb (t + T/2) =IT (Al2, + A2,)

ib 0+T IT (3Ax Ai

wbiby 0? + T) I/n f3A2y Al~

.jbZ (t +T) I/T (1&2 Al

Figure 8. Rate Extraction]
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Using this convention, Figure 9 presents the computation of w b and

In the b relations, the following variables

have been defined:

4b (89a)

b

i-=Eb (t + T/2) (89b)

. Jpb (t + T) (89c)

Also, the rate extraction, w and wo bblksaentcmidbcue
ip b blocks are not combined because

b is used explicitly by alignment procedures, and thus should be
ib

separated to prevent redundant programming.

Figure 10 presents the C P update, employing fourth order Runge-Kutta

integration of four quqternion parameters. The initial value of C P is

available from the alignment routines, and its elements can be related to

the initial Euler angles and wander azimuth by Equation 17. From the

initial elements of C b can be generated the initial values of A, B, C,
and 0 through Equations 74 and 76. The update entails calculation of the

small changes in the quaternion parameters, AA, AB, AC, and AD, in single

precision, followed by a double precision update to the quaternion

parameters themselves and the 2lements of C P. Double precision is

required to add or subtract quantities of widely varying magnitude, or to

calculate the small difference of large numbers, without excessive

performance degradation due to truncation. The quaternion parameters are

calculated and stored in double precision, whereas the T i values are

computed with double precision operations but are stored in single

precision. This is because the Tij values are not used in subsequent

updating, but are computed algebraically from the updated A, B, C, and D.

In fact, performance analyses may indicate that the TIj values can

adequately be calculated in single precision.
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CALCULATE

wb TWP + T21 (Op + T3 w

Ipy 1 Ipx + p T2 1 w1 wIpx

w~ r1TWIP + T,~w + T 3 w

Ipz ipxy IPZ

CALCULATE w
-pb

WI b (f) - w

WI Iby Ipy

b b
WIZ w~ Mi - wp

W
2
, = wb (t + /4)- wb

Ibx Ipx

w =wb (t + T/2) - wb
I2 by Ipy

W~ZZ= wb (t + T/2) - w

W~ 0b ( t+ T) wb
Ibx Ipx

w3Y 2"Iby (t + T) -b

w32  wb (t + T)

Figure 9. Calculation of w and w
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a, T/2 (wlzo -wlyC-wlx.D)

a2 T/2 (wlxC-wlz.A-Wly0)
a3 T/2 (wlyAwlx-B.Ilz0D)

a4 T/2 (wix.A+wly. B+w11.C)

Al ja

B1 B +-L a

T/2 (co2zBI1-w2y-Cl -w2xl)
/3T/2 (w2xCw2z-Alw2y-0

a3 T/2 (w2y- AlI-w23 81l -w2 2. DI)
R4 =T/2(w2x.Al+ w2y.81+w2z-CI)
A2 = A + -/31
B2 B +t3
C2 c +/

02 D + -21 4

yj T/2(w2z82 -w2y-C2 -&2x.D2)
y2zT/2(w2x C2W(2z.A2-w2y.D2)
y3=T/2(w2yA2-w2xs2-w2z D2)

Y4=T/2(w2x3 A2+w2y-B2+w2z-C2)

A3 =A+yl

83= y

Figure 10. C P Update
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C3 = C + y
3

D3 = D + y
81 = T/2 (w3z • 83 -w3y C3 -w3 x  D3)

82 =/P (w3x • C3 -w3 z A3 -w3y •D3)

83 T/2 (w3y .A3 -w3x. B3 -w3z 03)

84 = T/2 (w3 x A3 + w3 83 +w3 z C3)

AA =1/6 [0, + 2(p, + ,)+ 8,

As 1/ [ 2  ('02 + 2)+ 82]
Ac 1/6 [a 3 + 2(, + y)+

AD =1/6 [a 4 + 2(04 + ))+ 84]

* DOUBLE PRECISION *

A - A + AA

8 - 8 + AB

C - C + Ac

O - D + Ar

Til = A2 -
2 - C2 + D2

"12 = r2(AB + CD)

T13 = 2(AC- BD)

T21 = 2(AB - CD)

T22 = -A2 + B2 - C2 + D2

T23 = 2 (BC + AD)

T31 2 2 (AC + BD)

T32 = 2(BC - AD)

T33 = - A2 
_ B2 + C2 + D2
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Depicted in Figure 11 is the transformation of the accelerometer data
into the wander azimuth coordinate frame. The sum registers are
initialized at zero, and at the end of each T block loop, the components

of Av P(t, t + T) are added to them; when these sums are used by the NT

block, the register contents are reset to zero.

c. The Partition Iterated Every NT Seconds

Now the NT block calculations will be delineated. The unaided

inertial system velocity updating equations were presented as Equations

55 and 56 of Section 111.2. Further, the vertical channel damping was

described by means of Equation 74, using Equation 76 to define numerical

values involved, and Equation 77 to compute hB. From Equation 74 can be

derived a discrete-time update by using a first order Runge-Kutta

(transition matrix approximation) method. This is modified slightly to
express the result in terms of AvP(t, t + NT), as available from the sum
registers of the T block. By defining

oi -NTC, bl.- NTC

012: -(I +CiC 4)NT b2 =-NTC 2

021 (C2-&4) NT b3 
= -NTC 3

022
= 

NTC 2C4

4S23=NT (90)
S631 :NTC3

S.= NTC3C 4

where the C1 values are established in Section 111.6 and ws
2 is the

square of Schuler frequency, equal to 1.536217230 x 10 6rad2 /sec 2 , the

,iblock algorithm can be developed as in Figure 12. First the air data

system 1 sampled. Then the change in vP is calculated in single

precisio,, and added to the previous value of vP in double precision

("D.P." means double precision). Similar separation of :ingle and double
precision is maintained in the vertical loop calculation of altitude as

well. Once the contents of the T block sum registers are used, these
registers are zeroed for the next iteration. The values of g, g p and

ep
P Ie used in this algorithm are available from the previous NT block

iteration.
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'&,=T1 AV. + T2fAV, + T''V

A&~ 3 v.' + T32.AV" + ii3 Av.

P bEx 1 7 V +TA + a 33v.

lp p + p

~ +Avy

z 2p + 2~

Figure 11. Computation of tivP
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READ Tod Pad

.= 2wI+ cu

wp wpy+ w.A

Ay= yN wpiV' np 'p

,&, = 2, + NT (Wp Vp - wp v)

:0

p'. vp + VpD.P

V1, -Vy + Av'D. P.

D Tod/ad

h he (C/g)(D + DOLO) (Pod -POLD) D.RP

OLD ad

D :D
OLDI

yj Olh + 012 Vzp + b, he

Y2 'P21" h* 2 z + 023 X + b2 he + &sV2

Y3 31 h + .032 V2 + b3 he

h -h + YD.P.

VI -Vp +yD. P.

X-X + O. DP.

Figure 12. The4 Blrck
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The initial conditions for this into jration are

he = h0  (+ UP)

POLO PO
Oo : TIP
OLD 0+ UPh : ho INERTIAL C4- UP)

VP (91)
2 ZO INERTIAL ( DowN)

X : 0

vP p
X V; 0 INERTIAL

PV :
i V;0 INERTIAL

where ho is the altitude used to initialize the altimeter, and the sub-

script INERTIAL refers to the initial conditions in the inertial system.

For ground alignment, the known altitude of the runway would be set into

the air data and inertial systems, with velocities and accelerations zero.

If hB is to be read directly from the air data system, the first

four statements after vP + VP + vP can be removed. By replacing the
y y y .

statements after Vp - vP + AvP with the relation vp + VP+ avP,y y y z z z
an unaided inertial system is obtained.

The Wi segment, depicted in Figure 13, computes w P from vp using

eethe C e lements generated in the previous NT block iteration. In these

relations the constants are the reciprocal of earth equatorial radius

and ellipticity:

-L = : 4.778632707 x io 'ft-2r0  20,926,488 ft. (92)

a 3.367003367 a 10 3  
(93)

297.00
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(0 BLOCK

222

~1 CIS C2 3

R- Vp + tVp
cap *R Ic

s.py -- ; a k Vy

0''BLOCK

AcI 2 =-NT (capp0 C32)

AC13  -NT (capp, C33)

ACI2  NT (wp,. C32)

AC23  NT ('op C33)

AC32  NT (cap Cle - (?p C22 )

AC33  N T (we
1

p C 13 - 4SXC 23)

*DOUBLE PRECISION
C12 - C12 + AC12

CS- C3+ A&CI3
C2 - C23 + AC2 2

C3 2 - CS2 + AkC32

C3 3 - C33 + AC33

Figure 13. w and C PBlocks-e
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Figure 13 also depicts the first order integration of C P, in whiche
the changes to the six direction cosines are computed in single precision
and then added to the whole values in double precision. The Cij values

thus are stored in double precision, with the most significant half used

in subsequent single precision computations.

The remainder of the NT block calculations are shown in Figure 14.
The earth rate vector w e is generated with the newly updated elements

of ~i C -ad h5oof C P and the constant ,e' 7.2921160 x lo'rad/sec. Having generated

-ep and w Pe' w Pp is then formed as their sum, to be used as an output

to the T block. Finally, g is calculated with the current value of C33
and the value of h, from theP block.

d. Data Extraction

As presently programmed, data is extracted from C P on odd numbered

iterations of the NT block, and from C P on even numbered iterations.
-bTHe C P extraction is shown in Figure 15, and that from C P in Figure 16.

As is noted in these figures, double precision may be required in
evaluating the sin1 and tan "1 functions to provide adequate resolution.
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CALCULATE

Wp xWIeC13

wp Wie3

Wiez "ea

CALCULATE w

(lIpx~ (4Jex + wepa '
Wp (O ,

lpy ley epy
tp WP
Wrpy~ fez

CALCULATE g:

g 32.087437360

+0. 16994493815 C 2

- 0 30877321095 X I65h8

Figure 14. Calculation of w P w and
ie' ip
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In
L sin' 1(-C 3 3)

C31= C23C12-C22C13

X=ton7I(C 3?5/C3 )

IF (C31 = + and) X ) X X -*180

IF (C3 ,= +ondX=-o), X~ -X + 1800

a tan 1(C23/C 13 )

IF (C 3 -a o- a+180

IF (C 3-- + nda a -aQ+360

sin*'l and tan ' C MAY REQUIRE

DOUBLE PRECISION

Figure 15. 2Nt Block Associated with C P

56



AFFDL-TR-73-80

O : sin(-T 31)
4: todCIT3 2ITss)

IF (T33 :-ond 4: +), 0-A-4-80

IF (T3=-ond0=-), 4,-4, +180*

IT -- ton'(T 1 /Tl)
IF (Tll= -) T -'PT 

+ 
180*

IF IT I: +ond %PT: -),PT -T+
36 0

*j ~T-a 2

IF (4), 1,- +360 °

sin-I(-) and ton'(-) MAY REQUIRE

DOUBLE PRECISION

Figure 16. 2NT Block Associated with C p-b
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SECTION V

USE OF ALGORITHM

This report has developed the algorithm to derive attitude and

position information from the outputs of strapdown gyros and accelero-

meters. By choosing aFpropriate values for the fast loop period T, the

multiplicative factor N to obtain the slow rate, and the integration

order to be employed for the various updates, a specified computational

accuracy can be attained for any expected vehicle environment. Performance

analyses can determine these parameter values for each application.

The specific program for which this algorithm was developed envisions
an angular rate environment in excess of one radian per second, and so a

fourth order integration of C P was chosen. With first order integrationsb
used for the other propagations, the values of T = 0.025 sec and N = 4
have been projected as yielding adequate performance. However, with

other choices of these parameters, and specification of desired vertical
channel time constant r and altimeter lag C4, the algorithm can be
adapted to any strapdown application.

To achieve desirable system reliability, redundant strapdown sensors

will be used in many prospective systems. The basic algorithm remains

unchanged for this application. Logic network. would be includc. in the
system to perform failure detection, faulty sensor isolation, and sensor

recalibration and/or system reconfiguration. Thus, the sensor outputs

are processed to attain a best representation of the quantities 0 lb and

Avb coordinatized along the three body axes, and these are then used as

inputs to the algorithm.

Thus, the algorithm is flexible enough to be compatible with a variety

of different vehicle, mission, and strapdown sensor package configurations.

With a moderate increase In computer loading, the advantages that a strap-
down system bears over a gimballed platform can be fully exploited in

future aerospace vehicles.
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