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ABSTRACT 

An experimental system for automatically generating certain simple kinds of programs is 
described. The programs constructed are expressed in a subset of ALGOL containing 
assignments, function calls, conditional statements, while loops, and non-recursive 
orocedure calls. The input is an environment of primitive programs and programming 
methods specified in a language currently used to define the semantics of the output 
programming language. The system has been used to generate programs for symbolic 
manipulation, robot control, every day planning, and computing arithmetical functions. 
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and conclusions contained in this document are those of the authors and should not be 
interpreted as necessarily representing the official policies, either expressed or implied, 
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PRODUCTION 

1.   INTRODUCTION. 

We   present   an   experimental   system  for  writing  certain  simple  kinds   of   programs 
automatically     The system requires   as input a programming environment consisting, 
rouehlv  speaking, of primitive functions   and procedures,   rules   of composition and 
logical facts     If it is then given a   problem it attempts to find a method of solution in 
terms of these rules and primitives.   It will take account of certain kinds of advice   from 
the    user      Some    of  the    techniques  it    uses    are  most  decidedly    heuristic .    If 
successful    the   system will output   the method of solution   in the form   of a plan   or 
oroeram   in    a   language   somewhat    similar    to    a    subset    of    Algol    containing 
assignments,   function   calls,   conditional   branches,   while   loops,   and    non-recursive 
pocedure calls.    We   call this  language the  OUTPUT (   or PROGRAM) language.        he 
forms   of   the definitions   of the   elements   of the programming environment (i.e.   the 
primitive procedures and   rules of composition) correspond   to axioms and rules of 
inference   in   a   logic   of   programs   currently   used  to  define  the   semantics   of   the 
oroßramming language Pascal [Hoare 1969, Hoare and Wirth 1972; see also Igarashi, 
London, Luckham 1973]. For example rules for constructing while loops have  a form 
corresponding to the   iteration rule.    The contents   of these definitions vary with the 
actual   er.vircnrnent.    Thus,  the  system can  be    used  to  generate   simple  Algoi-ike 
programs   for   robot   control   problems,   for    every-day   planning,   or   ,or    computing 

arithmetical functions. 

Given a programming environment (from now on, often called a FRAME), problems to be 
solved are stated as pari of conditions, the initial input condition and the goal output 
condition We may regard these pairs as the input-output assertions of formu as in 
the logic of programs referred to above. The system is presented with an 
ncomplete formula (i.e. a program part that satisfies the mput-output 
assertions is rr.issing), and its job is to complete the formula The construction of a 
solution program may therefore be formulated as a search for a proo in the logic 
of oroerams of a theorem whose input-output assertions match those of he 
incomplete problem formula. This enables us to justify the formal methods of the 
system (as opposed to the actual implementation) by snowing that the frrmal methods 

will always construct correct programs. 

The basic component that does most of the searching is a very simple backtrack 
problem reduction algorithm, It recursively applies to a given goal the primitives and 
rules of the programming environment L generate subgoals whose solu ion will imply a 
solution to the goal. It proved necessary to use some of the logical facts of 
the programming   environment in   special   ways   to evoke   procedures   for restricting 
he growth of The subgoal tree. This is often referred to as "building in knowledge. 

In this case, this ied to a few rather unusual complexities in the primitive 
language   we   have    for   aefming    the   environment,     which    we   call    the   FRAME 
anguage, The choice of special fads, as it stands at the moment, was very much 
influenced by our original aim to study autonomous robot planning, ihe set of these 
facts is not dependant on the environment but it probably should be. The point 
is that the definition of a programming environment requires not only the 
definitions of primitive procedures, rules of composition, and logical facts, but also 
some   additional    information  about   the   relations    in  the environment   as well.   This 
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INTRODUCTION 
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information to some extent guides the problem-solving behavior. The basis of the 
frame language is a free variable first order logic in which statements may have one 
of three truth values (TRUE, FALSE, and UNDETERMINED). 

In addition to the special logical facts, certain statements about the action of the 
problem solver itself are useful in reducing the search. These are statements such 
as "when an attempt at goal A fails, do goal B before reattempting A" or "try the 
procedure FLY before the procedure WALK"; their usefulness usually varies from 
problem to problem within a given frame. We have therefore chosen not to allow 
such statements within the frame language, but to develop a separate ADVICE 
language for them, Advice can be given to the system interactively while it is 
attempting to produce a program. The kind of advice that can bo expressed at the 
moment is very elementary and is nol specialized tcwards any particular domain of 
program generation, The function of advice is to impose structure on the frame (more 
accurately, preference  and  relevance connections between the rules and axioms). 

Certainly the class of programs that this system will construct given only input-output 
specifications depends on the extensiveness of the frame. If the frame contains enough 
primitives and rules ( one might call these programming methods) and logical facts, the 
system ought to enable a user to program a solution to a problem without having to 
give rnuch^hought in aavance \o detailed methodology. Thus one of our examples of 
generated programs (Section 3) is the vsry simple Fibonacci program suggested in 
[Ba^er 1972] as an example of what automatic programming systems ought to try 
to do. Admittedly, our frame input isn't quite so informal, but it could easily be 
extended to accept the recurrence equation input suggested in [Balzer 1972]; this 
could be translated into an iterative rule in the frame by straightforward methods 
(even the standard algorithm for translating linear recursive definitions to Iterative form 
would do). 
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At run time the first action of the system is to translate a given frame Into a 
backtrack problem solver augmented by special search procedures. If advice is 
given during a search for a solution (i.e. during the program generation phase) the 
translator is called and the problem solver is modified. If a solution program is found, 
the user is faced with a number of choices. He can ask for another program which 
takes the output conditions of the solution as Its input conditions; programs can thus 
be constructed In segments that "fit together". He can choose to have the 
solution optimized according to some very trivial criteria, or generalized and placed 
on a library of nonprimitive procedures. If the solution program contains conditional 
branches calling other procedures, he can choose to have those secondary 
procedures constructed. Eventually he may choose to stop. Figure 1 shows the 
main components of the system and how they interact. We have begun to make 
some other additions, for example, the ability to assume the existence of non- 
primitive procedures, in order to try the system as an interactive aid to 
structured programming, The system is implemented in LISP using the primitives 
and backtracking facilities of MicroPlanner [Hewitt 1971, Sussman and Winograd 
1972.] In  the   following  sections  we  have    tried    to    say    what    the    various 
components of the system do without going into too many details of how. Most of 
the algorithms are quite straightforward so it does seem possible to do this. 
Wherever we omit discussion of special tricks, or inadequacies in the 
implementation languages force restrictions upon us, we try to leave a warning. 
Details of the actual implementation are given in [Buchanan 1974]. 

We assume that the reader is familiar with the usual notation and terminology of 
first order logic and also with some straightforward concepts from the theory of 
subgoaling and tree searching that are explained in [Nilsson 1971], In addition we 
rely on (i.e. use without defining) some of the concepts of backtrack 
programming which have attained fairly standard usage in many papers, and may be 
found in [Hewitt 1971, Sussman and Winograd, 1972} The interest in applications 
to ;obot planning is manifest in our use of concepts such as FLUENT and NON- 
FLJENT etc,  tobe   found in [McCarthy  and Hayes 1969]. 

Section 2 presents an overview of the program generation system, and introduces 
some of the questions dealt with in later sections, A brief outline of the logic of 
programs is given and it is shown how frame definitions and the program construction 
rules of the system may be formulated within this logic. An example of a frame 
and problem is given. We indicate how a successful subgoal search for a solution may 
be converted into a proof within the logic of programs that the output program 
solves the given problem. At this point we give a sketch of how correctness 
proofs may   be   constructed   in general. 

Section 3 describes the language for frame definitions, the advice language and the 
output program language. Details of features ot the system are given in the following 
sections: Section 4 provides abrief description of how the various problem solving 
and program generation processes use the extra facts provided in a frame 
definition, evaluation of LISP functions, and advice frcm the user. The methods for 
constructing conditional statements are given in Section 5, and for constructing 
iterative loops    in   Section   6,   Section 7   illustrates how simple   facilities  of this 

»jB*EK.:i,....-' 
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present system can be used to develop complicated programs in structured steps. 
Illustrative examples of frames and generated programs are given in Sections 3, 5, 6 
and 7,    and  the   appendix  contains  a  complete interactive session. 

This present system can be extended at many points. These include adding new 
kinds of frame rules (for constructing recursive procedures^ co-routines etc.), 
and improving the implementation facilities, the interactive system, and the 
problem solver. There are many other problem domains beyond those presented In 
this paper where the possibility of using the present system to generate 
procedures for colving problems exists. For example, its application to generating 
assembly and repair programs for simple machinery is illustrated in [l.uckham and 
Buchanan, 1974]. At some point in theso developments it will certainly pay to 
construct specialized s>stems for particular classes of frames. Additional special 
featuros common to frames in each class can be then used as built-in assumptions to 
speed up the problem solver, make the frame and advice languages more natural, 
and build up the pro-am library. 

What has been demonstrated thus far by the system presented here is (i) the 
current axiomatic theory of defining the semantics of programming languages can 
be used with slight modifications to define many other simple but useful problem 
environments; (ii) there dre straight-forward techniques far translating declarative 
descriptions into procedural descriptions for problem solving; (iii) standard problem- 
solving methods can be used to synthesize programs in a structured way on the 
basis of given  specifications, and to  handle some burdensome details. 

•urirttnii'iiiiiir  ni'iiiili-nffOlih Misiä&jämti äii&&sia 
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LOGICAL BASIS AND OVERVIEW 

We bepin by describing how frames and the program construction methods of the 
system can be formulated within the Logic of Programs. The soundness of frames and 
correctness of programs are discussed, A brief description of the underlying problem- 
solving algorithm of the system is given. We then outline proofs that under certain 
assumption, the programs constructed by the system will be correct The presentation 
here is intended to be informal and to serve as an introduction to the later 
sections;rnany details are left unmentioned until later, and statements of the correctness 
results are weaker and more restricted than they need be. Extensions of the 
correctness proof are discussed in later sections. 
NOTATION:    x,y,z,u,v,w...variables, 

X.Y.Z,... lists of variables, 
f.g.h,.,. functions, 
S)t... functional terms, 

G,I,P,Q,R.S,...   Boolean expressions (essentially formulas of first order logic 
"'with standard functions and predicates for equality, numbers, lists 

and other data types), 
P(X) denotes the formula obtained by replacing each free variable in P by 

a new variable from X, 
(3X)P(X) denotes existential quantification over all X-variables in P(X), 

A.B.C,...   programs and program parts In an Algol-like plan language (details 
in Section 3), 

p,q,... procedure names, 

u,ß,K" substitutions of terms for variables, also denoted by (<x<-t>). 

P(t) denotes the result of replacing x by t everywhere in P(x). 

uß   denotes   the   COMPOSITION   of   <*   and   ß;   £*ß   =(Ec<)/3   for   all 
expressions E. 

We assume the existence ot a fixed arbitrary ordering of literals (atoms and negations 

of atoms). 

2.1 LOGIC OF PROGRAMS 

We review briefly the elements of an inference system for proving properties of 
programs [Hoare 1969]. Further details may be found in [Igarashi, London, Luckham 

1973]. 

STATEMENTS of the logic are of three kinds: 

(i)        Boolean expressions, (henceforth often called ASSERTIONS) 

[i lililliriimilillttf■HittMmilTiftrni'rmifiiiiirnfn*****^^*^     'MliilllilimMiiii^^ ..^.^^.^^a^.^^fc.^    . _.„ 
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(11)       statements of the form P{A}Q where P,Q are Boolean expressions and A is a 
program or program part. 

P{A}Q means "if P is true of the input state and A halts (or halts normally in the 
case that A contains a GO TO to a label not in A) then Q is true of the output 
state". 

(iii)      Procedure declarations, p PROC K where p is a procedure name and K is a 
program (the body of p). 

A RULE OF INFERENCE is a transformation rule from the conjunction of a set of 
statements (premisses, say H, ,..,,Hn) to a statement (conclusion, say K) of kind (ii). Such 

rules are denoted by 

Hi,...,Hn 

K 

The concept of PROOF in the logic of programs is defined in the usual way as a 
sequence of statements that are either axioms or obtained from previous members of 
the sequence by a rule.   A proof sequence is a proof of its end statement. 

NOTATION: We use H ||- K to dcrote that K can be proved by assuming H. H |- K 
denotes the same thing for first order logic. It is sometimes helpful to denote 
statements that are problems or subpr'oblems for the program generator to solve by 

P{?}Q. 

2.2 FRAMES AND PROBLEMS 

We restrict our discussion to problems that can be represented in the following general 

form. 

The problem representation consists of two elements: 

(D     F - a set of rules (or laws) called the ENVIRONMENT (or FRAME) 

(2)     The problem, which is a pair <I,G>: 

1 - an input assertion (or initial state). 

G - output assertion (or goal). 

The RULES in F are of at least three kinds: 

(a) PROCEDURES: transforming states into states; 

(b) SCHEMES: methods for constructing programs; 
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I 

(c) RELATIONAL LAWS: definitions and axioms which hold in all states and serve to 
"complete" incomplete state descriptions by permitting deduction of other 
elements of a state from those given. 

The PROBLEM is the problem of transforming I into G using the rules of F. A SOLUTION 
is a sequence of rules that transforms I to G. 

REMARKS: 

1. For the purposes of discussing the present system we can make the following 
restrictions: 

(i)      The language of assertions is very similar to Algol Boolean Expressions (as 
referred to above). 

(ii)     Procedure rules and schemes are expressed as statements and as rules of 
inference (respectively) in the logic of programs. 

(iii)    The underlying logic of the relational laws is first order logic. 

(iv)   The logic of the procedures and schemes is the logic of programs. 

2. We probably ought to permit other kinds of rules in F, e.g. rules for evaluating 
states, comparing states etc. 

NOTATION and RESTRICTIONS: Q U F ^ R denotes that R is a logical consequence of Q 
and the axioms of F. Assertions describing states are denoted by l,IV..,G,G',... These 
assertions (but not the assertions in rule definitions) are restricted to be conjunctions 
of atomic assertions. We write R(l to denote that R is a conjunct in I. L(F) denotes the 
logic of F.i.e. the set of consequences of the rules of F. Substitutions <*. do not 
replace any variable that occurs in the initial state I. Expressions, all of whose 
variables occur in the initial state are called "fuliy instantiated". 

STANDARD FRAME RULES: A set of standard rules are assumed to be part of every 
frame. These are rules implemented in the program construction method« of the 
problem solving algorithm: 

RO.   Assignment Axioms: 

(i)   Simple Assignment: P(t){x«-t}P(x) 

(Ii)   Conditional Assignment:  (3Z)P(Z){IF P(W) THEN Y^W}P(Y) 
->(3Z)P(Z)AQ(Y){IF P(W) THEN Y*-W}Q(Y) 

where Y-variables in P(Y) do not occur in P(W), W-variables are special 
variables occurring only in conditional assignments, and Y<~W denotes 
the sequence of simple assignments between members of Y and W that 
occur in the same argument positions in P(Y) and P(W). 

artMtiftiwwflrtfmA»i^ih-wiii--nrMbl
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: 

Rl.   Rule of Consequence:    P^Q.QiAjR    P{A}Q,Q:)R 

P{A)R P{A}R 

R2.   Rule of Composition:   P{A}Q,Q{B}R 

P{AiB}R 

R3.   Rule of invariance:  if P{A}Q and I U F => P then l{A}lnv(Q,l) 
where if R|,R2,...,Rn are the conjuncts of I 
in the fixed order, then  l0 = Q, 
for 0<m<n,  lmt) = lm A Rm  if -(lm U F => -RJ 

L, = Im  otherwise, 
and  lnv(Q,l) = ln. 

R4.  Change of Variables:   P(x){A(x)}Q(x) where y is not a 
         special variable. 
P(y){A(y)}Q(y) 

R5.  Conditional Rule:   PAQ{A}R, PA.Q{B}R 

P{IF Q THEN A ELSE B}R 

R6   Undetermined values: If l'{?}G cannot be solved and 
-id'UF 3 -G) then G is UNDETERMINED in I'. 

STANDARD RULES 

REMARKS: The axioms RO(ii) define the semantics of conditional assignment statements. 
The occurrence of P(W) within the IF statement is interpreted as a call to a procedure 
with variable parameters W, the result of which is to bind those W-parameters to 
values that make the Boolean statement P(W) true, if such values exist. We have 
adopted a convention on W-variables, w,^,... whereby they occur only in conditional 
assignments as above, and indicate the use of an atomic assertion as a procedure call 
(we call them "special variables"). This eliminates the need for explicit Skolem 
"successor" functions for each relation in the frame. Note that if -(3Z)P(Z) is true of 
the input, then the rule "says" that the THEN part of the IF statement is not executed 

ittMltltfllflimMttWMfm^ 
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9 LOGICAL BASIS AND OVERVIEW 

Invariance states that things stay the same unless it can be proved that they conflict. 
This is a way of dealing with the "frame problem" [McCarthy and Hayes 1969], but it 
does force the user into being careful about stating what does change.lnvariance can be 
derived within the logic of programs from a rule which states that procedures do not 
have side effects. Undetermined values is a rule for deciding when to construct 
conditional statements (section 2.4). The change of variables rule is an instance of the 
rule of substitution (see [Hoare 1969]for this and the remaining rules). 
Usually.restrictions are placed on R4 to maintain consistency. In this system the use of 
the assignment axioms RO is restricted. However, the user can introduce a primitive 
assignment procedure (see below) which would not be restricted in its use;in this case 
he should use a formulation which distinguishes between a variable and its value. 

INPUT FRAME RULES; In addition to the standard rules, a frame may contain rules of the 
following types (these constitute the user defined elements of the frame): 

51 Primitive procedures (or operators): the rule defining procedure p is of the for- 
P{p}Q.   The assertions P and Q are the pre- and post-conditions of p.   p must contal.i a 
procedure name and parameter list. 

52 Iterative rules: an iterative rule definition containing the Boolean expressions 
P(basis), Qdoop invariant), Rdteration step goal), L(control test) and G(rule goal) is a 
rule of inference of the form: 
(a) P , I- Q, QAL{?}R, R{??}QV^L 

p.Jwhile L do ?i??}G 

where the free variables of R and L occur in Q. Such rules are permitted not to contain 
P or L.in which case they correspond to inferences of the form: 
(b) Q, QAnG{?}R, R{??}QvG 

Q{while -G do ?i??}G 

53. Definitions.   A definition of G in terms of P is a logical equivalence |- P=G. 

54. Axioms.   A frame axiom P is a logical axiom |- P. 

Terms and predicates in assertions may contain calls to LISP functions. If the frame 
definition contains functional terms or predicate tests that are evaluated by calls to 
LISP functions, the set of premisses must be expanded to include both the input-output 
assertions for these function calls and the logical axioms for the relevant data types. 

REMARKS (i) The iterative schemes S2 permit the definition of methods for constructing 
loops; they are instances of: 

llftBIWaMSifmiMiiiiMiiiiBiMMi^yMMirtiMt-Miiiit i •nmmn ii mmiutUHtmomii"^"—- 
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WEAK ITERATION RULE:      QAL{B}QV-L 

Q{WHILE L DO BbL 

where Q is the invariant of the loop. The meaning of |-Q in the premiss is that the rule 
may only be applied in states where Q is a first order consequence of the state 
description. The program part ?? is restricted to be a sequence of assignment 
statements (see Section 6). (ii) Inconsistencies may arise in several different ways in 
frames. The axioms can be inconsistent, or the post conditions of a rule can be 
inconsistent with the axioms. Also the dements of iterative schemes must satisfy some 
simple consistency criteria (section 6). (ill) Note that each frame rule has a goal. The 
goal of a procedure is its postcondition; the goal of an axiom or definition is its 
consequent. If invariance (R3) is applied to program part A constructed from applying a 
single frame rule.then Q is the goal of that rule. 

The following lemma is useful in proving properties of conditional assignments 
[igarashi.London.Luckham 1973]: 

OR-LEMMA P{A}Q, R{A}S 

PvR{A}QvS 

EXAMPLE: Next, we show how a rather simple problem can be stated within our frame 
formalism. This leads us very quickly into the further questions of (i) defining simple 
general methods of finding solutions, (ii) formulating the correctness of solutions, and 
(iii) the correctness of solutions obtained in frames that have unintended or nonstandard 
interpretations, 

Consider the following frame and problem: 

INPUT FRAME RULES: 

1.   Procedure:   standon 

AT(x,y)AAT(z,y)AROB0T(x)AB0X(z){standon(x,z)}0N(x,2) 

F2.   Procedure:   step-up 

R0B0T(x)A0N(x,y)ASTACKED(z,y){step-up(x,yIz)}0N(x,z). 

F3.   Iterative Rule:  climb 

R0BOT(M)A0N(M,y)ASTACKED(u,y)A.0NT0P(M){?}0N(M,u) 

ROBOT(M)AON(M,y)ASTACKED(uly){WHILE-0NT0P(M)DO BEGIN ?;?? END}0NT0P(M) 
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F4.   Axiom:   R0B0T(x)A3y(0N(x,y)AVz-STACKED(z,y))«0NT0P(x), 

PROBLEM: 

I:   ROBOT(M)AB0X{B1)ABOX(B2)AB0X(B3)AAT(B1IL)AAT(M)L) 

ASTACKED(B2,B1) A STACKED(B3)B2). 

G:  ONTOP(M) 

COMMENTS ON PROBLEM 1: 

PROBLEM 1:  CLIMBING 

i. The iterative rule says "A solution to the problem of climbing one box at a time, can 
be used to construct a WHILE loop that solves the problem of climbing a stack of 
boxes". The rule defines the meaning of WHILE in the environment. Or, if we regard 
WHILE as a primitive constructor whose meaning we understand, the rule is an induction 
principle for the environment. 

ii. The program part ?? in the conclusion of the iterative rule transforms the situation 
after the execution of the loop body (?) back into one in which the invariant is again 
true if the test ;s true; 

ON(x,u);r'(ROBOT(x)AON(xly)ASTACKED(u,y). 

We restrict ?? to be a sequence of assignments. 

iii. The goal of climb is ONTOP(M), the negation of the control test in this example. 

Steps taken by a search procedure in solving this problem are shown in Figure 2. It 
starts with state situation I and determines by logical reasoning from I and the axioms 
which operators have pre-conditions that are true in I . It applies these operators and 
updates the state to the new stale using the rule of invariance. It repeats this process 
on the new states. Node 6 indicates the initiation of a subproblem (the premiss of the 
iterative rule) with a new initial state (the invariant) which is a subset of the state 
above it at Node 5. 

llV.i  l-iT-Mllll^i »amiiiani^ rr-''■-■--"'•"-■-■ *--"■■" ■ „u^.^-^.-  ■-■■■.—^i .   -^-. ..H.V..;.,.. .,.. .- ,.   .    .. l.ri-füttM-HAii^i^nif^^A^^-*^.^"- 
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• CindoaCll.tU 

STACKED(U.T) 

ll01OTOOAM(M,Y)»STAaB)(U.Y) Q 

OBIOt.B)  Q 

.t.pup(M.t.U) 

cllnb 

ONTOP(M) 

SEARCH  FOR  SOLUTIONS   TO Ijg  CLIMBING PROBLEM 
"" Figure  2 

The solutions corresponding to the paths shown in figure 2 are: 
(j)   |{standon(M,Bl);stepup(M)Bl,B2);stepup(M,B2,B3))0NT0P(M). 

(ii) l{standon(M,Bl);y^Bl;u*-B2i 
WHILE ^ONTOP(M) DO BEGIN 

stepup(M,y,u); 
y-u; 
IF STACKED(w,y)THEN u*-w; 
END}ONTOP(M) 

where the assignments within the WHILE loop correspond to the ?? of the iterative rule. 
The variable w is a special variable. 

NOTE: It looks as though solution (ii) is more general than solution (i). 

Using the frame rules we can now construct a proof of the statement l{solution}G within 
the logic of programs. 
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1. I=>{ROBOT(M)AAT(M,L)AAT(B1,L)ABOX(B1)) 

2. l{standon{M,Bl)}ON(M1Bl)ASTACKED(B2)Bl)AROBOT(M) lfFl,R4fRl,R3 

3. ON(MlBl)ASTACKED(B2,Bl)AROBCT(M){y<-Bli 
j^B2}R080T(M)A0N(MIy)ASTACKED(u,y) R0(i),R2,R3 

4. l{standoniMIBl)iy*-BliU^B2}R0B0T(M)A0N(M1y)ASTACKED(u,y) 2,3,R2 

5. R0B0T(M)AON( M,y)ASTACKED(u,y){stepup(M.y.u) }ON(M,u)AROBOKM) F2,R4 

6. ROeOT(M)AON(M,u){y<-u}ROBOT(M)AON<M,y) R0,R3 

7. 0N<Mly)A3zSTACKED{z,y){IF STACKED(w,y)THEN u^w}ON(M,y)ASTACKED(u,y) R0,R3 

8. -3zSTACKED(z,y)A0NT0P(M)(IF STACKED(w)y)THEN u<-w}ONTOP(M)   RO 

9. (0N(M,y)A3zSTACKED(zly))v(^2STACKED(z)y)A0:\lT0P(M)) 
{IF STACKED(w)y)THEN L-wHON(Mly)ASTACKED(u,y))v ONTOP(M)   OR-Lemma 7,8. 

10. R0B0T(M)A0N(M,y)A.(3z)STACKED(z)y) = ONTOP(M)       F4, 
^{0N(M,y)A3zSTACKED(z,y))v0NT0P(M) 

R0B0T(M)A0N(M1y)A 3zSTACKED(z,y) o (0N(Mly)A3zSTACKED(z,y))v0NT0P(M) 
ROBOT(M)AON(M,y) = (0N(M,y)A3zSTACKED(z,y))v0NT0P(M) 

11. R0B0T(M)A0N(M,y)ASTACKED(u,y){8tepup(M,y,u);y*-Ui 
IF STACKED(w,y)THEN u^w}(ON(M,y)ASTACKED(u,y))v ONTOP(M) 5,6,10,9^2^1 

12. ROB0T(M)AON(M,y)ASTACKED(u,y)iWHILE^0NT0P(M) DO ...}ONTOP(M) 11,R1,F3 

13. Ksolution (ii)}ONTOP(M) 4(12,R2 
PROOF of l{solution (il)}G 

We refer to a formal proof of L(F)||-I{A}G as a correctness proof. The existence of 
such a proof implies only that the program is correct relative to the frame. Thus it is 
easily seen that the final state implies (Vx)(B0X(x)^0N(M,x)), hardly a situation we had 
intended, but which arises from the invariance rule owing to our not having axioms such 
93 

0N(M(x)A0N(M,y)=)x=y. 

In other words, our frame admits non-standard models. 
We  could extend the frame by adding this additional logical  axiom and go back to 
solving the problem all over again.   But this would have to be repeated if some other 
non-standard model was discovered still later.   We ought to be able to do better than 
that! 

Now, solution (ii) may still be "correct" (or solve the problem) in the extended frame. 
And we can determine this from the proof of l{solution (ii)}0NT0P(M) by checking to 

-—   aa. .».,...,.^. .; .,.....^.IJJ„.,„.„.„    mir-ininMuMiMin *-iv-'—^"'--'■■ ■■-   - 
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see if any step uses facts from an intermediate state situation I' that contradict the 
extra logical rule. In other words, we can "run" the proof on the new world with a 
special consistency check against the additional facts. This ought to be much easier 
than solving the problem again *rom scratch. 

The proof above formalizes (i.e. provides a description for the purposes of analysis) 
WHAT it is the problem solver has finally done when it has solved the problem. It is a 
record of those features of the frame and initial state thst were essential in 
constructing the solution. For example, we have actually proved 
R0B0T(M)ABOX(Bl)ASTACKED(B2,Bl)AAT(M,L)AAT(Bl,L){Solution(ii)}0NTGP(M) 
within L(F). This proof did not use BOX(B2),BOX(B3),or STACKED(B3,B2). If there was 
a slacking operator in the environment, we could alter the proof—without having to 
resort to the problem solver again -- to eliminate the hypothesis "Stacked {B2,B1)". It 
will be noticed that a similar proof for solution (I) use? more properties of I; solution (I) 
IS less general. 

It is therefore plausible that a correctness proof for a solution program will be useful in 
answering further questions about that program such as: Does It solve this new 
problem'.' Can it be altered to solve a given new problem? Are there problems it will 
work on that another program won't? 

PROBLEM   1:   THAND-OR-AND  TREE   SEARCH 
Figure   3 
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2.3 THE FORMAL PROBLEM SOLVING ALGORITHM 

To automate solving simple problems of this kind it is sufficient to use a straightforward 
problem reduction search [Nilsson]. Figure 3 illustrates the depth first reduction of 
goals to subgoals using the input frame rules (as described below) until subgoals are 
reached that are true in the current state. In figure 3, there are two kinds of nodes, 
Goal nodes and Rule nodes corresponding to the separate steps of (1) choosing a rule 
to use, and (2) generating the subgoals necessary to apply that rule. Goal nodes may 
be any combination of THAND,(defined below) OR, AND, but Rule nodes are always OR 
nodes [Nilsson 1971]. The arrows from each rule node ooint to its immediate subgoals. 
If a node reduces to an OR of its subgoals (which a.'-e thus OR- nodes), it has no angle 
mark; i' it reduces to a THAND of its subgoals the relevant arrows are connected by 
one argle mark; an AND of subgoals is denoted by two angle marks. Each rule node is 
labelled <n,Fm> where n is the order in which it was achieved ( omitted if it was not) 
and Fm is the frame rule used; similarly goal nodes are labelled <n,Gm>. 

We give an informal de-icription of the reduction algorithm (or subgoaler) in the simple 
case where it does not contain the rule of undetermined values, as follows: 

The subgoaler computes on a triple, <G',I',A>, where G' is the subgoal to be attempted 
next, I' is thfv description of the current state, and A is the current partial answer. Let 
- be a sub tution that replaces variables by terms from I (the initial state). Nodes in 
the subgoal tree are developed by using inpu! rules in F: if a rule of F has a conclusion 
or postcondition Q such that Q* = G' then the rule is USED to develop the node by 
appending its premisses or preconditions H^-.^u as subgoals of G'. Q is said to 

match G". 

A goal G" is ACHIEVED in one of four ways: 

(a) if there is an .-< such that I' U F = G'od, 

(b) if not (a), then G" is developed using an instance of a frame rule with post-condition 
(or goal) Qu. Let the immediate subgoals of G' be GUG2 where * is the principle 
connective in the preconditions of the frame rule, so that Gl and G2 are *-nodes. In 
this case, G' is ACHIEVED if: 

(i)        one of Gl or G2 is achieved (in the case * is OR), 

(ii)       both Gl and G2 are achieved (in the case * is THAND), 

(iii) both Gl and G2 are achieved (in that order, say) and the updated state 
(defined below) that results from achieving G2 also satisfies Gl (in the 
case * is AND). 

ktttutummMsxi ^s^iiÄi^.a^1,^„i.i^u^^VÄ,,,,;..,.w,v^ 
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If G' is achieved under (a) there is no change in the current state and answer. 
However, in case (b), both are UPDATED as follows: let I' be the current state iesulting 
from achieving G1*G2; the state resulting from achieving G' is MQod.D. A is composed 
(by R2) with the procedure call or while statement corresponding to the rule that was 
used to develop G'. 

A node in the THAND-OR-AND tree FAILS when the goal associated with the node 
cannot be achieved - essentially because it is not true of the associated state and 
either no rule can be applied to reduce it or one of its subgoals is not achievable. 
Whenever a goal node fails, the search procedure (simplest form) "BACKS UP" to the 
goal node immediately PRECEDING it and attempts the next OR-possibility for that goal. 
The search is DEPTH FIRST. 

Thus, an AND assertion is achieved when all of its elements (subgoals) have been 
achieved simultaneously in the same state; a THAND assertion requires only that its 
subgoals be achieved in some order but not necessarily simultaneously. 

This simple kind of search algorithm can be implemented quite easily using the goal tree 
generation, automatic backtrack and data base access functions of MICRO PLANNER 
[Hewitt 1971, Sussman and Winograd 1972], or any of the other current problem 
solving languages. However.it is necessary to distinguish between the formal algorithm 
and the implementation since the latter can only approximate some of the formal rules. 

THE UPDATE PROBLEM. The updating of a state to the new state resulting from the 
application of an input rule is formulated by invariance. In general the rule of 
invariance is not computable, but even in cases where it might be, it is IMPRACTICAL. 
The implementation of this rule has to fall short of its formulation. Inconsistencies in 
the state description are almost certain to arise eventually. We can try to delay this 
by paying special attention to those axioms that are most likely to be transgressed (e.g. 
uniqueness and single-valuedness properties). The case of ITERATIVE rules provides a 
particular difficulty since the rule goal G may not provide enough information about 
what went on during the iterations of the loop body to continue planning after an 
application of such a rule. We allow the user to specify an output assertion as part of 
an iterative rule, in which case invariance is applied using this assertion in place of the 
usual rule goal (see section 6). 

2.4 CONDITIONALS. 

Extending the description of the goal reduction algorithm to include the rule of 
undetermined truth values follows closely the actual system implementation discussed in 
Section 5.   Here we give some motivation for rules R5 and R6. 

Conditional statements ?re constructed whenever an undetermined goal occurs. The 
notion of undetermined truth value used here is an operational one. The problem 
solver wants G' to be true in I', G' is not true in I', no way of making G' true can be 
found, and G' is not false in I'.   In such cases, the algorithm continues by splitting its 

üaiiWMMMi)t]kHMiMttlMjllMHaiigittlli *4*4MU i ifiMi^iMiwiam 11 "*i«.^jn-; ■•■■•:    ■■•- ^ -..-.:.■-. ..MI..>,j...■■..,■   -■„...w.j.a 
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problem into two subproblems: to solve a more global problem G* say, (a) assuming G' 
is true and (b) assuming G' is false. 

For example, relative to the frame in problem 1 we can pose a second problem, 
ll{';}ONTOP(M) where II differs from 1 only in not containing the assertion AT(M,L). Our 
solution (ii) above is no longer a solution to this new problem since AT(M,L) is not true 
in II (neither is it known to be false!) and there is no way of achieving it. Using R6 and 
R5 ,the extended algorithm can construct the solution: 

(iii) IHIF-'AT.M.L) THEN CALL PR0C1(M,L) ELSE 
BEGIN 
standon(MlBl);y-BliU'-B2; 
WHILE-ONTOP(M) DO 

BEGIN stepup(M,y,u)i y«-u; 
IF STACKED(w,y) THEN u^w; 

END 
END}0NT0P(M). 

and the proof of correctness of solution (ii) can be extended to a proof of II{solution 
(iii)}0NT0P(M). 

The implementation of these rules is complicated by considerations such as the 
following. 

(a) A stack is required for the subproblems for cases when undetermined subgoals are 
assumed false, i.e.   subproblems for the form rA^G'{PR0CN}G*. 

(b)-Criteria for the choice of G* are required. For example, the contingency problem 
above is llAiAT(M,L){PROCl(M,L)}ONTOP(M). Although the problem solver has found 
that it cannot solve ll{?]AT(M,L), there is no reason to suppose that this is a good 
choice, or indeed that it can be solved. We might have chosen 
llA-.AT(M,L){PROCl}ON(M,BU instead. 

(c) The order in which goals are attempted may affect not only whether a solution can 
be found, but also whether the solution is sensible. 

(d) Undetermined  truth   values  can  also  arise  as  a  result   of   applying  unreliable 
operators, for example: 
AT(hand,x)AAT(object,x){!ift(hand,object)}HAS(hand,object)v DROPPED(hand,object). 

We shall consider these problems in detail in Section 5. 

2.5.   CORRECTNESS OF SOLUTIONS 

In the previous examples we showed that if the frame rules were taken as assumptions 
then the solutions could be proved within the logic of programs to solve the problems. 

immtiammmmimm 
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This is what we mean by the CORRECTNESS of the solutions. The proofs require the 
s tndard rules, but these are all rules of the logic of programs, w. h the excep ,on of 
^variance and undetermined values.   A proof of correctness of a solution generated by 
he formal problem solving algorithm, based on the frame ,n wh.ch the problem was 

nosed can be given in every case. This does not guarantee the correctness of every 
actual 'olution since, as we have seen, the implementation only approximates certain 
mes of he formal Igorithm. It is a justification of the ormal methods. In addition .t 
nrovides a measure of confidence in actual solutions relative to the soundness of he 
frame (which is the user's responsibility) and to the degree to which unsound heuristics 
n the mp ementation have been invoked in finding a solution. In fact, the result allows 
us to safe Sent conditions under which actual solutions will be correct, but we w.ll 
i 

i 
not do that here. 

To establish this result it is necessary to prove (a) a successful search tree of the 
L.^V ^nrithm has certain properties, and (b) a tree with those properties can be 

nstSln^o a'o^nes's p?oof of the solution.  We shall state without proof the 
properties of successful searches, and then give the details of step (b). 

Let us first consider the very restricted case where (a) no calls to LISP functions take 
dace (b no undetermined goals occur, and (c) no iteration rules are used, We assume 
Sat the problem is stated in the form l{?}G where G contains only variables occurring in 

I. 

The subpoaling algorithm treats v (or) as exclusive; in order to achieve P(x) v Q(x) it 
[Js to achieve Rx) and if this fails it tries Q(x). When the subgoaler completes a 
successful computation it has constructed a goal tree, Tr say, and a subs ii.Mon u Tr 
cSs solely of goal nodes (the single rule node between a goal and its «ubgoals in 
fhe comple ed search tree can be eliminated and the arrows leading directly from the 
goal to its subgoals labelled by the rule name).  Tr and * have the following properties: 

(1) each node of Tr has associated with it the number n if it was the nth node to be 
achieved, a Boolean expression G(n) (its goal), a program part A(n), and a state 

condition l(n), 

(2) u substitutes terms from I for variables in Tr, 

(3) IUF|-G(1)<*, 

(4) if G(n+1) is at a leaf node then l(n)UF|-G(n+l)ci, 

(^ if G(n+1) is not at a leaf node then it is related to its immediate subbgoals 
G(k) G(n) by a procedure P{p}Q or a definition P^Q such that Qo^n* )*AQ* and 
pL=G(k)*...*G(n),where * is either AND or THAND. G(n+l)is achieved from l(n). 

^ln rases 3 and 4,and where a definition was used to develop G(n+1), l(n+lH(n) and 
A( +l)=A(n):   n  th;  case  of   a  procedure  call  of  the   form  P.{pc.}Qc.    I(n+1)   is 
lnv(Q   .Kn ) and A(n+l)=A(n);p.y..   Finally, the property that G(n+1) is achieved from l(n 
mplies that l(n)UF|-Pod.   (NOTE: this use of V is an extension of the usual notion of 
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first order proof in the case when P* is a THAND; however it is easily seen that 
THAND connectives may be eliminated from frames by introducing extra definitions, so 
the extension is not essential.) 

Let the root of Tr be ihe mTH node. We may prove that the output program A(m) 
solves the problem, i.e., L(F) ||- l{A(m)}GI (here G(m)=G) by proving a similar result for 
each intermediate goal and partial answer. Namely, for each ncm, L(F) ||-l{A(n)}l(n) and 
l(n)^G(n)^ can be proved by induction on n.   The cases are as follows. 

First, L(F)1|- I => GU>.y. by property (3) above. 

Now assume 1{F) ||- l{A(n)}l(n). 

If C(n+1) is at a leaf node then l(n)UF3G(n+l)c^, l(n+l)=l(n), and A(n+l)=A(n). Thus 
L(F)||- l{A(n+l)}l(n+l) and L(F) ||-l{A(n+l)}G(n+l)ai by the rule of consequence Rl. 

If G(n+1) is not a leaf node then l(n)UF|-Pc^ by property (5) above. If G(n+1) is related 
to its immediate subgoals by a procedure, say P{p}Q, then Pod{p}Qoi is derivable by the 
change of variables rule R4. The rule of consequence implies L(F) ||- l(n)(pod}Qo^ and 
invariance implies L(F)||- l(n){p«:|l(n+l). Rule R2 allows the composition of this with the 
inductive assumption so that L(F) |i- l{A(n);p^}l(n+l). Finally l(n+l) |- G(n+l)c^ since 
Q*= G{r\+l)oc A QV.. Tlie case when G(n+1) is related to its subgoals by a frame 
definition is straightforward. 

Thus, by induction on n we can prove L(F) |!- l{A(m)}l(m) and l(m)='Gc^, Finally we note 
that if G contains only variables occurring in I then Gu=G. Therefore, we have proved 
L(F) ||- l{A|G. 

The extension of this proof for the case when there are undetermined goals is given in 
Section 5, and for the case when iterative rules are used in Section 6. 
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3.   DEFINING THE PROGRAMMING ENVIRONMENT 

In this section the Frame definition formalism is presented. This includes the Frame 
language the Advice language, and the output Program language. A complete example 
of an input frame, together with advice, and the resulting output program is given. 

3.1 FRAME LANGUAGE 

3.1.1 ASSERTIONS: The syntax for assertions used in definitions of rules, axioms and 
state descriptions is shown in Roure 4. 

<variable> ::= <identifier> 
<function symbol> ::= <identifier> 
<predicate symbol> : - <identifier> 
<term> ::= <variable>|(<fL'nction symbol>)| 

(<function symbol><argument list>) 
<argument list> ::= <term>|<term>)<argument list> 
<functional term> ::= (EV<term>)|(EVN<term>)|<tsrm> 
<atomic formula> ::= <predicate symbol>(<predicate argument list>) 
<predicate argument list> ::= <functional term>|<functional term>, 

<predicate argument list> 
<literal> ::= <atomic formula>b<atomic formula> 
<!iteral element> ::= <literal>|REQUEST(<literal>)|{<assertiön>} 
<disjunction> ::- <literal element>|<literal element><or><di9Junction> 
<assertion> ::= <disjunction>|<disjunction><and><assertion> 

<and> ::= A|& 

<or> ::= vjs 

SYNTAX OF ASSERTIONS 
Figure 4. 

Identifiers are strings of characters not containing the negation symbol, "-", nor the 
usual LISP delimiters, e.g., blanks, commas or parentheses. The <or> connectives have 
higher precedence than the <and> connectives and a logical condition is terminated by a 
semicolon, ";''• 

The only constructs whose meaning requires special explanation are functional term>) 

<literal element>, and the connectives "&" and V. 

If a term is in the scope of the modifier "EV" then all functions in that term are applied 
to their arguments (i.e. evaluated as LISP functions) when that literal is used in the 
problem-solving process. "EVN" further specifies that the functions to be evaluated 
have numerical values. The default convention is that the term is manipulated as an 
unevaluated symbolic expression. The "REQUEST" modifier, which takes a literal as its 
argument, alters the way that literal is treated by the problem solver. This is discussed 
in Section 4. 

The AND connective is denoted by "A" . Thus a state satisfies the assertion AAB if it 
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satisfies both A and B. The weaker THAND connective is denoted by & (Section 2). 

Exclusive OR is denoted by "a". 

3 1.2 STATE DESCRIPTIONS: Assertions specifying states are restricted to be 

conjunctions of literals. 

- 1 3 AXIOMS- Axioms are stated in either of the forms P=Q or P. where P and Q are 
aiertlons They hold in all states and are used to complete a giver, state descnpt.on 
by deduction of other elements of a state from those given. 

3.1.4 RULES: There are three types of rules: primitive procedures, definitions, and 

iterative rules. 

(a) A primitive procedure is specified by a name, an argument list, and its pre and post 

- condHions, i.e. 

P {f (x, .....XK )}Q where P and Q are assertions in which x, ....^ are free, and f 

is the procedure name. 

The variables are formal parameters of the procedure. They may be "bound" by 
lubsmution of actual parameters when the procedure is appl.ed to a state. 

When a orimitive procedure is defined it may be declared to be an ASSUMPTION. If it 
^u^d in successful program construction, then the user is '" ^f «;d'«X. J« 
opportunity to carry out a structured program development of this non-primitive 
operation.  This is described in Section 7. 

(b) A definitional rule is of the form R=S where R and S are assertions, ^e relation, S, 
b) A aeT,n,llona' r     .    condition 0f the rule.   The meaning of  a definition  is that is given as the post    condition OTJ ^ ^.^ ^ ^ of R   A 

Änris iLnreV^short^^aTsJrtionsln rules by defining a single relation as 

equivalent to an often used condition. 

(c) Iterative rules specify conditions that if satisfied justify the assembly of a "while" 
loop to achieve the associated goal. They are instances of the iterative rule S2 In 

Section 2.2, and are defined by giving: 
A name, e.g. TLOOP, (without parameters). 

A ^inJaHa^assertion Q that specifies relations that must be true in the 
'late orior to each iteration. .   . 
An iteration step assertion R that specifies the goals to be achieved during 

an execution of the loop body. U^.HW- 
An iterative goal G, the assertion considered achievable by the iterative 

(i) 
(ID 
(iii) 

(iv) 

(v) 

(vi) 
The^mat of iterative rules also allows the specification of a loop control 
test L and an output assertion S if they differ from G. 
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The rule, 
TLOOP 
P;Q;RiG;L;Si 
where P.Q.R.G.L and S are assertions, 
defines the iterative rule "TLOOP" 
associated with the goal G. 

3.1.5 SPECIAL AXIOMS: After the rules and initial state have been defined the system 
requests the following information for each predicate symbol P that has been 
mentioned.   The system use of this information is discussed in Section 4. 

a) "Is P a function of the state7" The intent of this classification is to separate 
those relations whose truth value may be affected by a state transformation," 
i e.,  FLUENT  relations.from  those whose truth value  is  constant   over  all 
achievable    worlds,    i.e.,    NON-FLUENT    relations    such    as    "ROBOTW, 
"INTEGER(Y)". 

b) "Is knowledge represented using P partial?" A partial relation nay have truth 
values TRUE, FALSE, or UNDETERMINED. Partial relations may be used to 
represent incomplete knowledge of the world which may cause conditional 
statements to be generated as explained in Section 5. A relation may be 
declared "uncertain" which implies an absence of knowledge about it so thaf it 
is assigned a truth value of undetermined a priori. If P is not "partial" it is 
"total" and can only have truth values of either true or false. Thus rule R6 
applies to partial predicates only. 

c) "Does P have a uniqueness property in certain argument positions?" A "yes" 
answer indicates that P cannot be true for two oequences of argument values 
that differ only at one of those positions that are unique. The unique 
positions are given using the notation, (XI,^XS,*...-.^), for example, to 
designate the second and fourth argument positions. For each unique 
argument position in relation P(al,...,an), an axiom is "built-in" from which a 
contradiction may be established with P(bl,..,,bn) that differs in a unique 
position and matches elsewhere. 

For example the statement, "an object can only be in one place at one time", is 
expressed by, AT(X1,*). If we add, "and only one object can be at any place", then we 
use AT(*,*). 

3.1.6 SIMPLIFICATION: Algebraic simplification rules may be given to simplify the terms 
that may occur in subgoals during the problem solving phase. The -jimplification is driven 
by a table of rules of the form s=t where s and t are termc, occurrences of su are 
replaced by t<* for any substitution u. 

The output format of any functional term may be specified by the user by giving a rule 
in which its input prefix form is on the left, e.g., (PLUS X Y) = (X+Y). 
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3.2.   ADVICE LANGUAGE 

The advice facility is intended to enable the user to impose structure relevant to 
solving a particular problem upon an already defined frame. This additional structure 
includes preference orderings among goals and rules, and restrictions on the search 
space. The preferences may also reflect the kind of solution the user wants. 

Advice is given during program generation by means of an i^8^^1^80'1'^- J.1)? 
advice subsystem may be entered by responding to a system query, DO YOU HAVE 
ADVICE'" or by typing any key during program generation. The user may request \o 
see the current path in the subgoal tree i.e. rules entered and goals pending, and 
receive a diagrasis of the cause of any failure. This is useful in deciding what advice 

to give. 

The advice system enters a read loop recognizing and numbering commands from the 
laneuaee shown in Figure 5. In the language syntax, optional symbols are enclosed m 
■T" and "]"• enclosing a list of symbols in T and T indicates that one must be chosen; 
<rule> Is a rule name; <rule list> is a list of rule names; <proc> is a primitive procedure 
name; <advice num> is of the form " n", where n is an integer; and Q denotes the pre- 
condition of <rule>. 

After advice has been given the system may be directed to reject the rule it is 
currently using, if any, or to try (perhaps re-try) the current rule. 

The advice facility is an important tool for experimenting interactively with different 
frames to determine their adequacy and soundness. At present, the language is 
rudimentary and should be extended. 

3.3 PROGRAMMING LANGUAGE 

The generated programs are expressed in an elementary ALGOL-like language which 
includes block structure, assignment statements, conditional statements, while loops, and 
non-recursive procedures calls. The procedures may be typed, including Boolean, and 
may have side effects in addition to the value returned. The procedure parameters are 
normally called by value except in the case of special W-vanables in conditional 
assignments (rule RO, Section 2). 

-"— —  -- -  - ■ 
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COMMANi)   SYNTAX 

TRY <rulel> BEFORE <rule2: 

FOR <rule> [FIRST]   TRY  <literal> 

DELETE [<rule>,<literal>, 
<advice  aum>} 

ADD{<rule>,<literal>3 

ALTER <rule> 

ASSUME [<rule>,<literal>3 

RESTRICT • :rule;{TO .FROM] 
■rule   list> 

ADVICE 

STATUS 

PAIRWISE   INEQUALITIES  <proc> 

RECURSIVE <rule> 

ACTION   PERFORMED 

Use  <rulel> before  -Crule,^- to 
develop a   subgoal. 

Change   the precondition Q  of <rule> 
to <literal>     &   Q   if  "FIRST"  is 
given otherwise Q V  <literal>. 

If <rule> is   given,   remove   that 
rule.     If <literal> then alter 
state  to make  <literal> not  true. 
If <advice   num>  then delete   the 
associated  advice  and   undo   its 
effects   on  the   system. 

If <rule> is   given  then accept  a 
new  rule.     If <literal>  then alter 
state   to make  <literal> true. 

Crule> may  be  modified. 

If <rule> is   given   then an assumed 
rule may  be  defined. 
If <literal>  then alter   state   to 
make <literal>  true  and mark   it as 
an assumption. 

For any  goal   in Q,   if  "TO"  is   given 
then  only  rules   in <ru]e   list> may 
be  used,   if  "FROM"  then  no  rule   in 
<rule   list> will   be  used. 

All  advice  given  that   session  is 
displayed. 

The   following   information   is dis- 
played : 

-rules  entered  and  goals 
pending  in  current   subgoal 
tree , 

-rules  and   goals   in   longest 
path  obtained   so   far, 

-currently constructed   program 
segment 

-longest  program   segment 
constructed   so   far. 

Fairwise equality is prohibiced 
in primitive procedure argument 
positions  containing     '■   . 

The  rule may  be  used  directly   to 
achieve  a  goal   in  its   pre-condition, 
otherwise  it may  not. 

Figure   5 
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25 DEFINING THE PROGRAMMING ENVIRONMENT 

3.4 AN EXAMPLE 

Consider the task of writing a program to compute the nth Fibonacci number for some 
integer n This task has been posed in [Balzer 1972]. The basic information required 
is the recursive definition and the basis values. One way to express this in the Frame 
language uses the following predicates with the indicated meanings: 

VFIBiX.Y): "The value of the X Fibonacci number is Y", 
C(X,Y):  "The contents of the variable X is Y", 
FIB(XIY):  "The variable X contains the Y Fibonacci number, 
INTEGER(X):  "X is an integer", 
ISVAR(X):  "X is a variable", 
>(X,Y):  "X is greater than Y" 
NEW\/AR(X,Y):  "X and Y are local variables". 

The problem is ISVAR(X3)AINTEGER(N){?}F1B(X3,N). 

The frame contains: 

1. Axioms VFIBd.Dand VFIB((ADD1 1),2) (these define initial values). 

2. Axiom 

VFIB((SUB1 V1),V2)AVFIB((SUB1(SUB1 V1)),V3)A =(V4,(PLUS V2 V3)); 

VFIB(Vl,V4)i ,,,...,.,     ,     , 
(defines \/FIB(\/l,\/4) for term? beyond the initial values). 

3 An iterative rule (named TFIB) with goal FIB(V3,V8)i this rule defines the conditions 
to be satisfied during an iterative upward computation. The oasis condition (to initialize 
the counter and program variables) is: 

NEWV AR( V1 ,V2) AiNTEGER( V8) AC( V1,(ADD 1 1 ))AC( V2,1) AC( V3,( ADD 1 1));. 

The loop invariant condition is: 

C(V1,V5)AC(V2,V9)AC(V3,V10)AVFIB(V5,V10)AVFIB((SUB1 V5),V9);. 

This states that at each entry to the loop body, if the value in the counter is i and the 
values in the program variables are j and k then j is the ith Fibonacci number and k is 
the (i-l)st Fibonacci number. 

The iteration step condition 

C(V1,(ADD1 V5))AFIB(V2,V5)AFIB(V3,(ADD1 V5)); 

specifies what the iteration step is to accomplish. The control test, >(V5,V8) and an 
output assertion FIB(V3,V8) are given. 
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4.   A definition of FIB in terms of VFIB and C 

TDFIB 
VFIB(V2,V3)AC(V4,V3);  FIB(V4,V2); 

26 

5.  A simple primitive procedure for assignment is also given, i.e. 

HV1,A1) 
ISVARO/l); C(VlfAl)}. 

No rules are declared as assumptions. The additional information given to complete the 
Frame specification is shown in Figure 6, and a program generated from this Frame is 
shown in Figure 7. 

»itmäm^tmntmamiiammammit^ttii  iiifniamHMiMhili"--'- — ^-.-~     ,  --^-   ■■■'- ■■ ■ . ^^ ■        ■   ■ - ■  ■    ~..~  *■*£* 



«!W!iPBWPIBrpp!!PPI*»»«wsw!«p^^ 

27 DEFINING THE PROGRAMMING ENVIRONMENT 

\ 

■ 

PREDICATE SYMBOL 

C 
FIB 

VFIB 
INTEGER 

ISVAR 

FLUENT 

TRUE 
TRUE 
TRUE 
TRUE 
FALSE 
TRUE 
FALSE 

PARTIAL UNIQUENESS 

FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 

C(X,") 
FlBfX,*) 
FALSE 
VF1B( 
FALSE 
FALSE 
FALSE 

■) 

SIMPLIFICATION RULES: 

.ADD!   (SUB1  X))  - X 

[SUSI   (ADD1  X)) - X 

FUNCTION OUTPUT   SYNTAX; 

(ADD1   X)   =   (X+l) 

;SUBI X) =  (X-l) 

'PLUS   X  Y)   =   (X+Y) 

ADVICE:      TRY  TFIB  BEFORE TDFIB 

RECURSIVE TAFIB 

Figure  6 

IHHHHHHHHt ii me» » rnt «K**»»-1"'»111 i'"'*11 ******'""'"'*** 

PROCl   ;xj,N) 
ISVAR(X3);im'EGER(N); 

COMMEOT 
INPUT  ASSERTION 

NONE 
OUTPUT  ASSERTION 

FIB(X5,N) 
BEGIN 

YI -   i+i); 
YP - i; 
x5 - (i+i); 
WHILE    ->>(Y1,N)   DO 

BEGIN 
Yl - (Yl + i); 
Z2 - Xjr, 
X3 - (X3 + Y2); 
Y2  - Z2 ; 
END 

END 

Figure 7 
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V. 

4.   PROBLEM SOLVING PROCESSES 

During the process of problem solving ard program generation, information is needed at 
many points to reduce the rearch space or to produce reasonable programs. Some of 
the information is provided in the frame specification by statements about the rules and 
predicates; other useful facts are provided to the problem solver in the form of rather 
simple advice. Roughly speaking, there are six basic processes in the problem-solving 
system where extra facts can help: (a) pattern matching, (b) development of nodes in 
the subgoal tree, (c) updating the state description (i.e. implementing invariance), (d) 
backtracking in the subgoal tree, (e) conditional branching, (f) assembly of programs. 
Each fact (as opposed to a rule or axiom) in a frame specification and each sort of 
advice has -4 least one function in speeding up a basic process. Below we describe 
some of the ways in which the present variety of facts and advice is used (full details 
are given in [Buchanan 1974]). 

(1) OR-Node Selection. When more than one rule can be applied to reduce a given 
goal, some selection and preference criteria are needed. By using the advice 
system,the rules and axioms that may be applied to achieve goals within the 
precondition of a rule or axiom may be restricted to or excluded from ä given list. 
Also, a preference ordering may be specified among rules and axioms with common 
post-conditions. Goals within the preconditions of axioms are always restricted to 
deduction within the current state, i.e. can be reduced only by use of other axioms, and 
do not cause a state transformation nor add any construct to the generated program. 

(2) Predicate Classification. A predicate P is classified according to the kind of 
subgoaling permitted to achieve a goal of the form P(t). If P is declared to be NON- 
FLUENT, then any goal literal containing P can be achieved only by deduction f.rqjn the 
current state. No rules (procedure, iterative or definitional) are applied. FLUENT .goals 
are attempted by deduction and state transformation. If a fluent predicate occurs in a 
literal which is ihe argument of the REQUEST modifier, then it is treated as a non- 
fluent. 

(3) Goal Ordering. The achievement of a condition (and the efficiency of the output 
program) is strongly influenced by the ordering of its subgoals. In particular, the 
bindings of variables occurring in goals may be determined by earlier achieved 
instances. In some cases only certain orderings will permit achievement. An objective 
of an automatic problem solving system is to determine the optimal subgoal ^.dering, 
but at present this is provided by the user when the Frame is defined and may be 
altered by advice. However, the system automatically orders non-flue^ goals first in a 
condition; this relatively short achievement search is used both as a quick rejection 
strategy and to get variable bindings of the correct type for the remaininp fluent goals. 

(4) Recurring failures. When failure occurs in some subtree prior to successfully 
solving a subproblem, its causes should be used to avoid repeating the same failure in 
the continued search if possible. At present this must be handled using the interactive 
advice system. This informs the user of the current path in the subgoal tree, current 
program generated, and goals that fail, thus allowing interactive correction when a 
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repetition occurs. These situations can also be eliminated by placing the (eventual) 
successful subprograms on the program library for use as MACROS. 

(5) Repetition. Certain types of looping behavior in the subgoaler are prevented using 
the feature of the Frame language that allows a rule to be declared recursive or non- 
recursive. If declared non-recursive, then that rule will not be used directly to achieve 
a goal in its pre- condition and it will not be entered twice to achieve the same 
instance of its post-condition within the same subgoal tree. A more general mechanism 
should consider not only the current goal and rule but also the current state as well. 

(6) Truth Values. Though the underlying semantics is three valued, search efficiency is 
gained by restricting relations involving certain predicate symbols to be two valued. If 
a predicate P is declared to be TOTAL, then failure to achieve P indicates that --P is 
true Only true positive instances of total predicates are stored in the state. The rule 
of undetermined values is not applicable to literals involving total pred'-cates. The 
additional processing required for PARTIAL predicates is described in Section 5. 

(7) Useless Procedure Calls. In some cases, the application and generation of redundant 
or trivial procedure calls are detected and avoided. At the moment this is done by 
placing restrictions in the frame on the actual parameters of primitive procedures. The 
system will not use an instance of a primitive procedure that contains pairwise equality 
between its actual parameters that has been prohibited by the user. For example, the 
advice "PAIRWISE EQUALITY M0VE0<l,x2,*,*)" will cause the rejection of the procedure 
call "MOVE(MAN,CHAIR,P,P)". 

(8) Uniqueness Properties. Uniqueness or single-valuedness in argument positions of 
certain predicates is sufficiently important to justify a special mechanism rather than to 
rely on deduction using axioms. The designation of certain argument positions as unique 
is   equivalent   to   efficiently  building  in  axioms  of   a  particular   form,   e.g.   P(xl,*) 
represents the axiom, 

H P(xl,x2) A x2 ^ x3 -» ^P(xl,x3). 

These special axioms are used for consistency checking (in the implementation of the 
rule of invariance) when the state is updated. 

(9) Context Linking. The context, which includes the state and bindings on subgoals 
currently pending at a node, should be available to aid search decisions, e.g. 
instantiations of subgoals or choice of rule, at descended nodes in the subgoal tree. 
The system has a mechanism that if requested will keep track of the instantiated goals 
at each level of the subgoal tree so that their variable bindings are available when 
attempting lower level goals that precede them in the depth first ordering. This is used 
to instantiate the lower level goals. For example, suppose Q(b) A P(a) is a condition to 
be achieved and a primitive procedure R(y) A P(X) {p(x,y)}Q(y) is applied to achieve 
Q(b), then for the P(x) in ,the precondition of p, P(a) wil! be used since it must be 
achieved at the higher level anyway, i.e.. 
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/ \ 
Q(b) P(a) 
/  \ 

/     \ 
R(b)  P(x)(<x-a>) 

This heuristic may be viewed as tht -»pposite of subsumption, the strategy being to get 
ground instances ss soon as possible to help avoid long searches using rules. This is a 
rather restrictive strategy that may exclude solutions and is only used when requested 
by the user. 

(10) Evaluation of Predicates and Functions. For certain predicates occurring in 
subgoals, achievement is most efficient by direct evaluation. If a literal occurring in a 
goal is formed with a predicate that has a LISP definition, then that literal is evaluated 
as a LISP statement. Special processes or even subsystems ran thereby be linked into 
program generation. Evaluation of arbitrary functions occurring in terms in arguments of 
goal literals is done if the function occurs in the scope of an EV modifier. These 
evaluations assume the soundness of implicit axioms describing the LISP definitions, and 
the consistency of these axioms with the Frame. For example, the equality predicate, 
"=", is evaluated using the LISP "EQUAL", and the predicate NEWVAR(xl,x2,...,xn) takes 
an arbitrary number of arguments and binds each Frame variable xi to a new program 
variable (for use perhaps as a local variable in a block). 

(11) Simplification rules. Rules of the form s -» t where s and t are terms, may be 
included in the Frame. Such rules are applied to simplify terms In goals by replacing 
occurrences of su by tc^. This not only reduces the complexity o; terms in the subgoal 
tree, but it also modifies the pattern matching process and the set of rules that can be 
applied to reduce a goal. 

(12) Computing Input/Output Assertions. In Section 2 primitive procedures were 
viewed as Frame rules of the form P{p}Q, where P and Q are the pre and 
postconditions for p. The conditions P and Q may also be viewed as sufficient input and 
output assertions for p , that must be satisfied by the actual parameters of p. For any 
generated program segment A, the input assertion lA is computed as the conjunction of 
all literals, I, from a state that were used in achieving subgoals encountered during the 
generation of A and did not occur in that state as a result of a postcondition of a 
procedure whose generation in A preceded the addition of I to lA. The output assertion 
0A is the conjunction of literals added to a state during the generation of A that are 
true in the final state. 

The usefulness of computing sufficient input and output assertions for a program or 
segment thereof MII become apparent when we discuss program generalization and the 
construction of conditional statements. 

All of these applications of facts and advice with the exception of (12), are intended to 
have  a direct  effect on reducing the growth of the subgoal tree (process (b)).    In 
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addition, the pattern matching process (a) is extended by (U); (c) is aided by the 
restriction of truth values and the special axioms (6,8); (e) is dependant on (6 and 12); 
(f) is aided by (3,7,11,12). There are other techniques, mciinly details of the 
implementation, some of them heuristic, that affect problem solver, particularly the 
backtrack (d), the updating (c) and assembly of programs (f) (e.g. the implementation of 
the A connective by software interrupts that protect already achieved goals, includes 
certain assumptions about backtracking when an AND-node fails). Details of these will 
be found in [Buchanan 1974]. 

: 

\ 

: 
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5. GENERATION OF CONDITIONAL STATEMENTS 

Conditional statements are generated in situations where the rule of undetermined 
values applies or when the outcome of a primitive procedure Is uncertain. In this 
section the system methods for constructing conditionals will be described and an 
example given. The question of extending the formal algorithm and the correctness 
proof is considered. 

5.1 UNCERTAIN PRECONDITIONS. As previously mentioned, relations involving partial 
predicates may have truth values of TRUE, FALSE, or UNDETERMINED, whereas all other 
relations must be either TRUE or FALSE. Partially valued predicates are intended to 
express the possibility of an uncertainty or lack of knowledge about a state arising 
during the problem solving and program generation phase of the system. The formal 
algorithm for deciding when an uncertainty has arisen is rule R6 (the "I give up" 
criterion of the system). As with invariance, the implementation of R6 is only an 
approximation to the formal rule The system may give up too early, but this, in itself 
does not lead to incorrect programs, merely redundant ones. » » 

5.1.1 UNDETERMINED VALUES. During the generation of a program, uncertainty may 
arise when a precondition for the application of a rule is UNDETERMINED with respect 
to the current state. The implementetion of the rule R6 is described by the following 
definitions: 

DEFINITION A literal I is UNDETERMINED in a state S if the following conditions hold: 

(i)   pred(l) is partial, 
and  (11)   the system halts without solving S{?}l, 
and (ill)   the system cannot prove SUF^I. 

Condition (ii) means that I is not true in S nor can S be transformed into a state in 
which I is true. If condition (ii) is true and i| is true in S then I must retain a truth 
value of FALSE and the precondition subgoal I must fail. Failure to prove -I from S 
establishes a truth value of UNDETERMINED for I with respect to S. This definition 
applies to fluent and nonfluent literals but since the truth value of a "nonfluent" cannot 
be changed by a state transformation, for them, it is sufficient to use only the logical 
axioms in deciding condition (ii). 

For the more general case in which the precondition may be a disjunction of literals we 
have the definition, 

DEFINITION A disjunction of literals {I, }",., is UNDETERMINED in a state S if at least one 

literal is UNDETERMINED and no literal can be achieved from S. 

5.2 CONDITIONAL STATEMENTS: When a pre-condition P is UNDETERMINED in a state S, 
a conditional branch is inserted in the solution program.   If P is a single literal I, then 
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nro^ram eeneration may continue either along the path in which I is assumed to be 
TRUE and rnwhkh future goals are attempted with respect to state S U{l}, or along the 
Sth in which I is assumed to be TRUE using state S UH}. The system convention has 
I , »« «inljtl a cTto a yet ungenerated procedure for the latter case. The tasks 
or^erlinr-ch tinged programs areplaced in a subproblem stack for later 
!Jnti!n (see section 5 3) Program generation continues, by convention, along the 
fthusTnß state SU {1} This path is referred to as tie "trunk" program of the tree of 
ÄnÄpogral generated while attempting to achieve the main goal. The path 
Sinn at oresent is rather ad hoc since no assignments of probability are made at 
thtXts oruncttifnty and no path is considered more likely to be successful In 

general. 

If an undetermined disjunctive precondition {I, }",, occurs in which literals {I, }-.   m<n 
are  UNDETERMINED in S, then a nested conditional  of the following form will  be 

generated: 

if 
if 

then 
then : 

else p 

then pm 

m-l 

else Pi 
else Po 

where each p. is a call to a program to achieve u selected goal G from state S, = S U {I, 
• i=i+l & i<m } U {-1, ! Ui<j) } and Po is tho trunk program segment which satisfies 
QAMD IG and forms' the else-statement in the main-clause of the conditional. Each 
member of the set of triples (<pi , S, ,G>: Ujcm ] is placed in the stack of 
rnntinpencies and program generation continues for p0. The assumed literal,! „ is 
rem^vedTom the state folfowing the generation of the ELSE clause in the trunk 
program if it is not in the output assertion, 

5 3 SELECTION OF CONTINGENCY GOAL: The goal G to be achieved by the coptingency 
orograms is selected from the set of goals in the subgoal tree that are global to he 
^determined precondition. Let us refer to the set of goals which are below G in the 

subgoal tree, as the SCOPE of G, 

The oarticular G chosen and its associated scope affect the length of Po , duplication 
Imonp contingency programs, degree of difficulty in generating contingency programs 
and v'alidUrof their use If the structure of the trunk program is to remain fixed during 
contingency program generation then the choice of G cannot be deferred.   The block 
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GENERATION OF CONDITIONAL STATEMENTS 34 

structure of our program language imposes the restriction that for any conditionals in 
p0, a contingency goal G' must not have a greater scope than G. There is also the 
problem that if G is not fully instantiated (i.e. some of its variables are not in the initial 
state) then inconsistent instantiations may occur in different contingency programs which 
must validly rejoin the main program following the ELSE clause. The present system 
selects the least global fully instantiated goal thereby satisfying the block nesting 
constraint and minimizing the scope while avoiding the problem of handling deferred 
instantiation. This selection process is always effective in the present system since the 
top level goal is fully instantiated. 

5.4 REJOIN CONDITIONS: When a contingency program is generated its output state 
must satisfy certain conditions, hereafter called the rejoin condition, for return of 
control to the trunk program to be correct. Consider the case of an undetermined goal 
L in state S and a contingency goal G in Figure 8 . Let A and B be program segments 
that satisfy S A L{A}G and S A -L{B}G and let C be the rest of the trunk program 

NO 

i 

Figure  8 

Let R be the output state of B obtained by applying invariance; thus SA-.L{B}R and R=>G 
Similarly, let SAL{A}P where P=>G, and let Q be the minimal subset of P required as 
input to C (section 4(12)). Then, the REJOIN CONDITION for B is R^Q. B is said to have 
BAD SIDE EFFECTS if in fact R^Q cannot be established. 

5.5 SUBPROBLEM STACK: The task of generating a contingency procedure is specified 
by the quadruple: .        . 
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<<pf'ocname> <9tate> <goal> <rejoincond>) 
where, 

<procname> Is the name of the yet ungenerated procedure that must 
satisfy <state>{<procname>}<goal> A <rejolncond>. 

At the point in the planning when the uncertainty is encountered, the first three 
elements of the quadruple are placed in a stack. The rejoin condition is not known at 
this time since it involves the input assertion for the trunk segment C following the 
point where control returns from the contingency plan to the trunk plan. After C is 
generated, the rejoin condition is computed and stored as the fourth element of the 
quadruple. 

When planning has been completed for a trunk procedure, if the subproblRm stack is 
not empty then contingency planning may be done by removing a quadruple from the 
stack and posing this as a program generation task. The state of the system is 
initialized to the specified contingency state and the subgoaling system is given <goal> 
as its main goal. If it is successful in achieving a state in which the main goal is true 
then a test is made to see if the rejoin condition is true in that state. If it is then the 
procedure declaration is adjoined to its trunk program. If the condition cannot be 
proved, the system allows the user two alternatives; (i) Mark the call to the program as 
an error exit in the trunk program, or (ii) Tit" the program to the trunk program by 
posing the currently untrue rejoin erudition as a new goal, constructing a new program 
segment that achieves it, and appending this segment to the end of the contingency 
program. 

This process of generating a trunk procedure which may create new contingency tasks 
then generating contingency procedures as directed by the user may continue until all 
contingencies have been processed and the stack is exhausted, 

5.6 COMPUTATION OF INPUT/OUTPUT ASSERTIONS The computation of input/output 
assertirns for programs not containing conditionals is described in Section 4(12). The 
uncertainty as to which path computation will follow in a program containing conditional 
statements complicates these assertions. The input/output assertions in this case must 
be computed incrementally as each contingency program is generated. 

In the conditional statement shown in Figure 8, suppose we know the minimal input and 
output assertions for A and B, say P{A}Q and R{B}S. then the input and output 
assertions for the conditional statement are 

(L A P) v H A R){if L then A else B}Q v S. 

To reduce computation, We use the simpler sufficient input assertion P A R, (Note that 
P A R should be consistent since it is a subconjunct of a previous state). There doesn't 
appear to be a simplifying approximation for output assertions . 
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GENERATION OF CONDITIONAL STATEMENTS 36 

•:, 

5.7 UNCERTAIN PRIMITIVE PROCEDURES: A primitive procedure q defined by P{q}Q 
has an uncertain outcome if Q is a disjunction. In the present system, disjunctive post- 

conditions use the exclusive OR connective, "e". This allows us to define frame 
procedures that have an intended result but may be unreliable. It is assumed that 
exactly one of the possible outcomes will be true in the output state. At the point 
where an uncertain operator is applied, the problem solver has no knowledge of what 
the outcome will be and a conditional statement must be generated. Let Q be the 
disjunction of literals {IJ*,!- The first outcome I, is considered to be the normal (goal) 
result of executing q. Following the inclusion of q in the program in state S, a 
conditional statement of the following form is generated: 

if -> 1.   then 
if A A I3    A...A - ln 

else  if -> A 

then   P2 
12  A I3  A -. |4 A,..A 1 ln   then P3 

else if-I,   A - l2 A...A n i^j  A ln   then pn 

else  pn 

where each p;, 2 < i < n, is a call to a program to achieve 1, from state S; = S U (Ij } U 
{-> Ij : j 5^ i & 1 <: j < n}, and pn<| is an error exit. The contingency states will 

correspond to the n ways of assigning exactly one literal true and the remaining literals 
false. 

5.8 AN EXAMPLE Suppose a procedure is to be generated for a man to travel from San 
Francisco to New York given three modes of travel, i.e., flying, driving, or walking. This 
is similar to the "airport problem" discussed in [McCarthy 1959]. A FRAME for this 
problem consists of defining a primitive procedure for each mode of travel, an initial 
state, and relation information as shown in Figure 9. A few of the contingency programs 
generated are shown in Figure 10. 
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RELATIONS PEFMITIQN FLUENT 

ROH  X) 

ALTO X) 

PLANE X) 

AIRPORT  Xl 

AT  X,Y) 

WALKABLE  X,Y) 

CLEAR  X.Y1 

DRIVABLE  X,Yl 

HASUMBRELLA  X5 

CRASHED X,Y,Zl 

KILLED Xl 

RUN'S  X^ 

FLIES  X) 

"X  Is  a   robot" FALSE 

"X  is an automobile" FALSE 

"X la  an airplane" FALSE 

"X  is  an airport" FALSE 

"X   Is  at   location Y" TRUE 

"A walkable  pa-h exists between            TRUE 
X and Y" 

'Tbe   sky   is clear  between  X and  Y"      TRUE 

"A  drivable   road  exists between             TRUE 
X  and   Y" 

"X has an  umbrella" TRUE 

"X crashed  between Y and Z" TRUE 

"X has  been  killed" TRIE 

"X will   run  properly" TRUE 

"X v 111   Ely  properly" TRUE 

PARTIAL UNIQUENESS 

FALSE FALSE 

FALSE FALSE 

FALSE FALSE 

FALSE FALSE 

FA LSI- AT(X,•) 

TRUE FALSE 

TRUE FALSE 

TRUE FA LSI 

TRIE FALSE 

FALSE FALSE 

FALSE FALSE 

TRUE FALSE 

TRUE FALSE 

I'RIMITI'.T: PROCEDURE  

walk  Rl,U,l.'-1 
"Rl  walks   from 1.1   to  I- 

drlve(Rl,Cl,Ll,!: ) 
"Rl  drives  Cl   Irom 1.1   to  1. 

llv.Rl,Al,l.l,l.   s 

"Rl   I lies Al   irom  1,1   to  12 

PRE-CONDITIONS POST-CONDITIONS 

ROB(Rl)A-iKILLED(Rl)AAT(Rl,Ll) 
ACLEARi 1.1,1.  MlASUMbRELIA(Rl) 
AWALKABLE  11,1. ); 

ROR Rl)A-i KILLED(R1)MUT0(C1) 
AT(C1,L1)ARÜNS(C1) 
ADRIVABLE(L1,I; )AAT(Rl,Ll)i 

ROH  R1)A-,KILLED{R1)APIANE Al) 
AA1RPORT' L2)AAT(A1,L1) 
AFLIES{A1)ACLEAR{L1,L ) 
AAT(Rl,Ll)i 

AT;RI,I. ) 

AT.Rl.L  ) 
AAT(Cl,L2) 

[AT(R1,LP)A 
AT (Al ,1. )] 
:■■/ CRASHED Al ,1.1,1.   ' 
AK1LLED(R1)1 

[NmAL  STATE 

ROU  MAN/AITO   BHl^APLANE  FIU'AA IRl'ORT  SFO)AAIRPORT  NYC)AAT  MAN',HOME   VAT   BW,GÄRAGE)AATfFlll,SFO 

PAIRWISE   INEQUALITIES; 

TRY   FLY   BEFORE DRIVE, 

ADVICE 

walk  Rl,',*),drive  Rl.Cl,', *),fly Rl.Al, 

TRY DRIVE   BEFORE WALK 

Figure 9 
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GENERATION OF CONDTTIONAL STATEMENTS 38 

AT  MAN GAHAfiK 
AT  MAN SKI 

AT  MAN SKI 
AT  M\N NYC 
AT  MAN ^.T'C   ; 

PROCl   MAN •T-X 
ROB MAN  ;ALTO  ilM;   ;PUNE  1111   ;AIRPORl   :rvc   : 

COMMENT 
INPUT   ASSERT ION: 

AT MAN HOME   NC1.EAR  HdME GARAGE    AT   BMW  iAI<,\(,i:    Al   I III   Sid 
A IT. IKS  1111  u;l.MK  SFO  STi'C  'HINS   BMJ 

xniuvAiu.E GARAGE sro   u'Ai.KAm.E iioM C«\RJ\C;I: 

OTTI'l'T   ASSERTION; 

AT   B* SIO  »AT  1111  NYC    AT   M\N  NYC   ; 

COMMENT 
FROCU ATTEMPTS_TO_ACIIiEVi:_    Al   MAN  NVt 
PROCl    ATTEHPTS_T0~ACII1EVE~    Al   MAN  (ARAGI: 
PROC    ATTEMPTS_fo_ÄaiIEVE_    AT  MAN CMiAiX 
PROC    ATTEMPTS~TO_ACII 1 l.VV. 

I'ROC    ATTEHPTSjrO^ADl 1 EVE' 
PROC-  ATTEHPTS~TOj\CttIEVE. 
PROC; ATTEhffTSjrO_ACIIIEVK 

I'RUC    ATTEMI>TSJ0_AC1I1EVE_ 

BEG IN 
ir H LIES Till    rm::; 

PROC     MAN  NYC 
ELSE 

BEGIN 
IT -CLEAR  SFO  NYC    THEN 

PROC;   MAN  NYC 

E LEI- 
BEG IN 

IF -RUNS   m;    THEN 
HRÜC-   MAS SIO 

ELSE 
BEGIN 
IT -imiVABLi: GARAGE  SFO     THEN 

PROC-   MAN SFO 
ELSE 

BEGIN 
11   -CLEAR  HOME  GARAGE     1 HLN 

II   -IIASL'MBHELIA   MAN     THEN 
i'KOO   MAN  GARAGE 

ELSE   PROC    MAN  GARAGE 

ELSE 
BEGIN 
ir-iUALKAHLE  HOME  GARAGE;   THEN 

PROCI: MAN GARAGE; 
ELSE 

BEGIN 
WALK MAN HOME  GARAGE 
END 

END 
DRIVE MAN  BMW GARAGE  SFO 

END 
END 

ILY  MAN  Till  SFO  NYC 
II   -ATCMAN MYC)   HI,.:. 

I)   -ATC-lnN :.V:,)   A CRASHED (Fill   SFO NYC) 

PiiOCll (:tAN „YC) 
ELSE   PKOCi:'iiM,\N  NYC) 

„KND 
END 

( Nil 

PROC    Mi\N  NTCl 
ROB MAN'' lATTO  IMV   ; 

COMMENT 

IMiT^ASSERTlON: 
AT MAN IIDM!" -H:LI-J\R  IIOMF GARAGE^AAT. BMW  CAR/NCE  'RUNS   BMW 

M)RIVABLE GARAGE  NYC AKALKABLE  HOME  GARAGE) 

Figure 10a 
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39 GENERATION OF CONDITIONAL STATEMENTS 

OUTPUT_ASSERTU)N: 
ATfBhM  HYC)AAT(MAN  NYC); 

COMMENT 
PROC16 ATTEMPTS TO ACHIEVE     (AT MAN GARAGE) 
PROC15 ATrEMPTS~TO~ACHIEVE_   (AT  MAN GARAGE) 
PROCllt  ATTEMn-S_TO_ACll]EVE_  (AT  MAN GARAGE) 
PROG I'. ATTEMPrS~TO ACHIEVE^  (AT MAN  NYC) 
PROC12 ATTEMPTS_Tn_AGll[EVE_  (AT MAN  NYC)! 

BEGIN 
IF-iRUNS(BtM) THEN 

l'ROGL1(MAN NYX) 

ELSE 
BEGIN 
IF-iDRlVABLE(GARAGE   NYC)  THEN 

PROG 111 MAN  NYC) 

ELSE 
BEGIN 
IF-iCLEAR(llOME  GARAGE)  THEN 

IF-'HASUMBRELLA.MAN)   THEN 
PROG 1.'MAN  GARAGE) 

ELSE  PROCl5(MAN GARAGE) 

ELSE 
BE I ax 
lF-,WAl.Ki\BLE  HOME GARAGE)   THEN 

PR0C16(MAN  GARAGE) 

ELSE 
»EG IN 
WALK' MAN 110^ GARAGE) ; 
END 

END 
DRIVE; MAN  BMW  GARAGE  NYC) 
END 

END 
END 

PROGI.'MAN SFO) 
ROB,MAN'; 
COMMENT 
INPUT   ASSERTION: „.  .„_, 

AT HAFT HOMEJACLEAR(HOME  SFO)<NWAU<ABLE(HOME  SFO) 
OUTPUT   ASSERTION: 
AT MAN SFO); 
COMMENT 
PROG ■. ATTEMPTS T0_ACI1IEVE_    AT  MAN  SFO 
PROG li ATTEWI'S'TO ACHIEVE_   AT MAN SFO) 
PROG .} ATTEMPTSjrolACHIEVE_    AT  MAN SFO); 

BEGIN 
IF-iGLhAR  110« SFO)   I'HEN 

IE -,IIÄSUMBRELtA(MAN)  THEN 
PROC 5(MAN SFO) 

ELSE   PROC,  .   MAN  SFOl 

ELSE 
BEG IN 
1F ^WALKA BLE , HOME SFO    THEN 

PROG. 5(NAN SFO) 

ELSE 
BEGIN 
WALK'MAN  HOME SFO", 

END 
END 

END 

PROCl    MAN  NYC) 
ROB MAN); 
COMMENT 
INPUT ASSERTION: 

AT  MAN HOMEUGLEAR  HOME   NYCVWALKABLE(HOME  NYC 

Figure  10b 

mgljalimmUimm 
J^i^i^.e.„.;.,.„.. 



GENERATION OF CONDITIONAL STATEMENTS 40 

M 

I 0UTPUT_AS8ERTI0N! 

AT MAN NYC]; 

COMMKNT 
HROC':'.' ATTEMrrS_TO_AC)iIEVE_  (AT  MAN  NYC) 

PROC:     ATTEMPTSJTO V.1I[EVK_  ,AT MAN NYCl 
PKOC ■    ATTEMPTSjrOJ^CHIEVE~  (AT MAN  NYCl); 

BEGIN 
IK-.CLEAR,HOME  NYCl  THEN 

IT -itlASUMBREUAfMAN)  THEN 
PROC' 'MAN  NYCl 

ELSE  PROCr'     MAN NYC) 

ELSE 
BEGIN 
n-iWM.KAIlLE.IlOME  NYC)   THEN 

PROC;.0{MAN NYC) 

ELSE 
BEGIN 
WALK I MAN  HOME  NYCl 

KNI) 
END 

EN» 

Figure  10c 
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41 GENERATION OF CONDITIONAL STATEMENTS 

5.9 CORRECTNESS The formal algorithm of Section 2.3 can be extended to include the 
case when G' is undetermined in I' by formalizing a simplified version of the system 
methods described above. We shall mention some of the pertinent details here. 

The extension requires formalizing the subproblem stack and the methods of choosing 
contingency goals. Also, it is necessary to add clauses for assembling conditional 
statements into the answer A according to rule R5, Thus contingency goals must be 
"marked" and the appropriate undetermined subgoals associated with them, so that 
when a contingency goal is achieved during the generation of the trunk program, the 
related conditionals are assembled into A. The computation of the state l(n) must be 
modified when G(n) is the contingency goal for G(i) by removing G(i) if it is not in the 
output assertion of the program segment generated between achieving G(i) and G(n). 
We do not justify the system method of computing input assertions, and instead assume 
that in the formal algorithm the state at any node in the subgoal tree is the input 
assertion for the following segment of the generated program. 

To extend the correctness proof of Section 2.5, we must extend the induction step to 
include the cases when (a) G(n+1) is undetermined in l(n), and (b) G(n+1) is achieved 
from l(n) and is the contingency goal for G(i), say, where i<n+l. The induction 
hypothesis must be modified to take account of any undetermined goals (assumed true 
in the trunk program) whose contingency goals have G(n) within their scope. Thus, 
typically, the hypothesis would be l{A(i)}l(l) and l(i)AG(i){A(i,n)}l(n), where G(i) is 
undetermined in l(i) and has a contingency goal more global than G(n), and A(i,n) denotes 
the program segment generated between achieving G(i) and G(n). 

Case (a): G(n+1) is achieved by assumption in generating the trunk program, 
|(n+lH(n)AG(n+l) and A(n+l,n+l) is empty. 

Case (b)- let B be the contingency branch. The previous proof implies that 
l(n+l)3G(n+l).  We also have that A(n+1) = A(i);IF G(l) THEN A(i,n+1) ELSE B. 

(1) l{A(i)}Ki), hypothesis, 
(2) l(i) A G(i){A(i,n+l)}l(n+l) hypothesis 
(3) l(i) A -G(i){Bfl'(n+l) assumption, 
(4) l'<n+l)=l(n+I) rejoin condition, 
(5) l(i){IF G(i) THEN A(i,n+1) ELSE B}l(n+1)     R5,2, Rl,3,4 
(6) l{A(n+l)}l(n+l) and l(n+l) = G(n+1)   R2,l,5. 

The proof of l{A(m)}G follows by noting that all contingency goals must have been 
achieved when the final goal G is achieved. 

 —  ■     - —  i IMUMBililMIlirii i ii -^--^-.  *-- ..- 
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6.   GENERATION OF ITERATIVE STATEMENTS 

An Iterative rule allows the program generator to construct a WHILE loop provided it 
can construct a loop body to satisfy the premisses of the rule. Ultimately such rules 
should require the user merely to specify an invariant in order to have the system 
write a correct iterative program. At the moment, the user needs to furnish some 
additional relevant facts. The algorithms usad in the system to implement iterative 
rules of the form S2 (Section 2) and to assemble while loops are described briefly and 
an example given, 

6.1 PREMISSES FOR CONSTRUCTING A LOOP: An iterative rule is defined by the 
assertions P(basis), Q(loop invariant), R(iteration step goal), G(rule goal), L(control test) 
and S(output assertion). All the free variables in R and L must be among the free 
variables in Q. In order to use the rule, to achieve l{?}G say, the formal algorithm 
requires that all of the following subgoals be achieved or be true: 

(i)       Construct A such that L(F)||- l{A}P 
(ii)       L(F)|- l{A}Q 
(ill)      Construct B such that L(F)||-QAL{B}R 
(iv)      L(F) I- QAL{B}(3Z)Q(Z)VH3Z)Q(Z)A .L ) 
(v)       Construct C such that L(F) ||- QAL{B;C}QV-L 

Note that (ii) and (iv) are restricted to first order rules (consequence, invariance, and 
the frame axioms). The input state for (iii) is QAL. In addition, an iterative rule must 
satisfy the following minimal consistency requirements within the frame F: 

(vi)      -(S U F ^ L) and S U F => 3. 

The conclusion of the rule is:     l{A;WHILE L DO BEGIN B;C END}G. 

Iterative frame rules are instances of the iteration rule [Hoare 1969]: 

QAL{A}Q, QA-L=G 

Q{WHILE L DO A}G . 

It is possible to derive a weak form of the rule: 

QAL{A}QV-L, -L^G 

Q-;WHILE L DO A}G . 

The weak form allows the invariant to fail on exit from the loop. We have found the 
weak form convenient to uso in many examples. 

The present implementation sets up clauses (i) - (iv) as a THAND of subgoals to be 
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43 GENERATION OF ITERATIVE STATEMENTS 

achieved More specifically, suppose an iterative rule is invoked to solve the problem 
|{?}G.   Let V be the list of variables in Q. The system does the following: 

(1)A program segment p{P> is generated such that l{p(P)}l' and I'UF |- P  ( note 
that p(P) may be empty). 

(2) An instance QX of the loop invariant must be true in the state I', i.e. X = {<v1 

«- s, >,...,<vn <- sn >} is constructed such that I'UF => QX. 

(3) A program segment p(R) is generated such that Q A L{p{R)}l" and l"UF => R. 

(4) It  is checked that  f'UF = Qß^lß for some substitution ß and a set  of 
conditional assignment statements C is constructed such that l"{C}Q v -L 

Thus at the moment, clause (iv) ensures that C need contain only conditional 
assignments In the future we would want to relax this restriction. It is assumed that 
the user's definition of the rule satisfies (vi). The user may omit S or L; in the latter 
case i G is used as the control test. 

6.2 ASSEMBLY OF WHILE LOOPS: After the premisses have been achieved, a loop is 
assembled as follows: 

(1) Let Y and W be two distinct lists of variables in one-to-one correspondence 
with V. For each <v, <- s, > ( X construct an initial assignment statement 'Vi *- s, ". 
Let "Y *- S" denote "y, *■ s, ; yz <- s2;. . .; yn *- sn;". 

(2) The WHILE loop is then assembled in the form: 

p(P); 
Y ^ S; 
WHILE L(Y)   DO 

BEGIN 
p(R(Y)); 
IF Q(W) THEN Y ^ W; 
END 

where Q(W) is an expression containing calls to Boolean procedures indicated 
(syntactically) by the presence of the special W-variables (Section 2, Rule RO). Q(W) 
is constructed from Q(V) by replacing V-variables by corresponding W-variables; 
p(R(Y)) is obtained in a similar way from p(R(V)). Since the variable lists are disjoint, 
none of the Y-variables occurs in Q(W). 

There are many heuristics in the system to reduce the number of program variables, i.e. 
v's and w's generated, to select the relevant portion of Q to be used in conditional 
assignment statements, to generate simple assignment statements (whose right hand 
sides are functional terms composed from functions in the frame) instead of conditional 
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assiginTients, and to eliminate unnecessary assignment statements in the assembled 
program. These may all be classified as optimizations, some of which are done as the 
WHILE loop is assembled and others during a later optimization phase. 

6.3 UPDATING THE STATE: After the while statement has been generated, the system 
updates the state. If an explicit output assertion S is given then the rule of invariance 
is applied in the same manner as with the postcondition of a primitive procedure. In the 
absence of an output assertion, a special update procedure runs the loop interpretively 
on the state until the goal G becomes true. The resultant state is used in further 
planning. This latter method is useful when the global effects of the loop computation 
are so extensive, or even unpredictable, that an explicit specification of S is difficult. It 
may result in excessive update computation, particularly when loops are nested. 

6.4 CORRECTNESS: We sketch how the basic correctness proof of the formal 
algorithm (section 2.5) may be extended to the case where iterative rules are used to 
develop nodes in the successful subgoal tree. This requires that we supply the 
argument for this extra case in the induction step of that proof. 

Let node G(n+1) be developed using an iterative rule, and assume first that this is the 
only iterative rule used. To simplify the notation, we shall assume that the matching 
substitution between the rule goal G and G(n+1) is the identity, i.e. G= G(n+1) A G'. 

It is convenient to view G{n+1) as being the root node of a THAND subtree (see e.g. 
figure 3, Section 2.3). The immediate subgoals of G(n+1) are (i) to (iv) above (6.1). 
Suppose that the last node to be achieved in the main tree is G(n), the associated state 
and program being l(n) and A(n) respectively.  The induction hypothesis is l{A(n)}l(n). 

Let us abbreviatä "IF Q(W) THEN Y-W" by C. In the successful subgoal tree, the 
subgoals of G(n+1) are all achieved so that we have 

1.   KnMp^Kn)' 

2.   Q\{Y*-S}Q(Y) 

where l(n)' U F = P and l(n)' U F => Q X 
(subgoals (i) and (ii)). 

by the assignment axiom, RO. 

3. Q(Y)AL(Y)ip(R)}l(n)"       where l(n)" U F = R(Y)   (see comment below), 
and l(n)"LiF o (3Z)Q(Z)vH3Z)Q(Z)AiL{Y)) 
(subgoals (ill) and (iv)), 

4. (3Z)Q(Z){C}Q(Y)        Sy RO, 

5. ^3Z)Q(Z)A-1L(Y){CbL(Y)   by RO, 

6. (3Z)Q(Z)vH3Z)Q(Z)A.L(Y)){C;.Q(Y)v^L(Y)    by OR-lemma, 4,5, 

7. l(n)"{C}Q(Y)v-L(Y) by consequence Rl, 

8. Q(Y)AL(Y){p(R)iC}Q(Y)v^L(Y)   by composition R2,3,7, 
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9. Q(Y){WHILE L DO p(R);C}G  by iteration, 8, 

10. Kn){p(P)iY«-S;WHILE L DO p(R)jC}l(n+l) by R2,R3,1,2,9 

where   Kn+1) = lnv(S,l(n)) 

Finally, A(n+1) = A(n)j p(P); Y^-S; WHILE L DO p(R>iC; so that l{A(n+l)}l{n+l). Since SUF 
D G is assumed true and G = G(n+1)AG', it follows that l{n+l)UF:>G(n+l). 

COMMENT: Step 3 above is justified by a second induction, L(F)||-Q{Y)AL(Y){P(R)]R(Y), 

namely that programs constructed without using iterative rules are correct. This 
follows from the proof for the simplified case (Section 2.5), since the variables in the 
goal, R(Y) are required to occur in the initial state, Q(Y) A L(Y). 

The sxtension of the proof for more than one iterative rule is similar. 

6.5 AN EXAMPLE: As an example of "while" loop generation consider the task of 
generating a program to compute the value of n factorial for some positive integer n 
where multiplication is not a primitive operation but is done by repeated addition. The 
Frame for this problem is shown in figi 11. Also used is the primitive procedure for 
assignment used in the example in r .ion 3. To achieve the goal "FACT(X0,N)" the 
system applies the iterative rule Tr ACT. The premises are achieved according to 
Section 6.1 which results in an application of another iterative rule TPROD. The 
premises of TPROD are achieved, the "inner" loop assembled and optimized and state is 
updated with respect to the output assertion. The assembled while loop is appended 
to the iteration step program for TFACT. The "outer" loop is then assembled and 
optim^ed and the state further updated reflecting the total state transformation of an 
execution of the nested loop program. 

The output program afier optimization with statements labeled according to their source 
of generaton in the algorithm is shown in figure 12. Not? that successive values of the 
loop variables (called "UPDATE ASSIGNMENTS") are obtained by simple assignment 
statements rather than by conditional assignment as described in the algorithm. This is 
the result of applying system heuristics which are able to use the arithmetic operations 
PLUS and ADD1 which are primitive functions in the frame, to replace the conditional 
assignments. 

Iflül—  J  -— ü      
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RELATIONS DKriNITlON' LUENT PARTIAL UNIQUENESS 

TRUE FALSE VFACr( ■,'■) 

TRUE FALSE C(X,«) 

TRUE FALSE FACTX,') 

TRUE FALSE FALSE 

FALSE FALSE FALSE 

FALSE FALSE FALSE 

TRUE FALSE FALSE 

TRUE FALSE FALSE 

VTACT X.Y) 

Ci'X.Y) 

FACT X,Yl 

VPROBUCT  X.Y.Zl 

INTEGER X) 

ISVAR Xl 

fffiWVAR  Xl 

=  X, Y' 

"The value  oi V   factorial   is X" 

"The  contents  of  variable X  is  Y" 

"The  variable X contains Y   lactorlal" 

"X   is  equal   to  the  product   oi Y and  7.' 

"X  is an  integer" 

"X   Is  a   variable" 

"X   Is  a   new   local   variable" 

"X equals  Y" 

'*■*:*-*•«-* tHHH •: >E-}t^H*-tf-***«-#**-******» • f y- 

€ 

AXIOM 

TAFACT 

I'APROD 

ANTECEDENT CONSEQUENCE 

f=i:v9,nA=(viö,i)i 
v   VFACT   (DIV V',) viO),fSUIil   VIOM; 

[ = :V5,0)A=(VC,0)) 
J  VPROIJUCT! (MINUS  V5,V3),(SUB1 V6),V3); 

SIMPLIFICATION RULES 

VFACT(VO.VIÖ); 

VPR0UUCT(V5,V6,V3); 

(ADDKSUIil  X))  -. X 
(SUB1(ADD1  X)) -. X 
(MINUS(PLUS  X Y)Y) -. X 
(DIV(PROD  X Y)Y)  -. X 

FUNCTION OUTPUT  SYNTAX 

(A0D1  X)   =   (X + 1) 
(sum x) = (x - i) 
lPLUS  X Y)  =   (X + Y) 

Figure  11a 

, 
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ITERATIVE  RULES 

RULE  NAME Tl-'ACT TPROß 

liASiS  CONDITION NEWVAR{ V7 )AINTEGER> Vk ) 

AVFACT ( V5 , V6)AC (V;;, V5) 

AC(V7,V6); 

NEWVAr.iV.'i )AC| Vl| ,()) 

AC{VI,C); 

INVARIANT C(V7,VI^)AC(V3,V9) 

AVFACT(Vg.VlÖ); 

C(V^,V6)AC(V1)V5) 

AVPRODUCTi V5,V.>,VJ) ; 

ITEIUTION  STEf 

COAL 

TEST 

0(^7, (ADDl   V1^))A 
PRODUCT(\'3,Vlt, (ADDl  VlÖ)) ; 

FACT (V5 , Vit) ; 

-i=iV10,v;0 ; 

C('V't,(ADDl   Vbl) 
c(VI.(PLUS V5,V3)); 

1>R0DUCT(V1,V:  ,Vi) ; 

-1=(V6,V2); 

OUTPUT  ASSERTION c:v;,(EAC  Vh)); C (VI, (PROD  V2>V3))j 

/■ *■* M-n-X-M- *• * •■ .<- <■ «■ »-X-■«■ .•:■*K »■« *«■ *-.<•* :• H <- .«■«•*- * K- 

Figure  11b 
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PROC1(X0 N} 

p(P) (TFACT)- 

Initial Assignment- 
(TFACT) 

ISVAR(X^);INTEGER(N); 

COMMENT 

INPUT ASSERTIONS: 

NONE 

OUTPUT ASSERTIONS: 

C(X0   (FAC N)); 

BEGIN 

— xp *- l; 

— Yi+ - 1; 

WHILE -1=    (Y^   N)   DO 

p(P)(TPROD)   (Optimized Out)> 

Initial Assignment   (TPROD) 

BEGIN 

Yk *- {Yh + I); 

p';R)    (TPROD) 

UPDATE Assignments   (TPROD 
(Optimized Out) 

UPDATE Assignment   (TFACT)- 

END 

X0 - Y2; 

END 

48 

p(R)(TFACT) 

END 

MMMHI ttwuaMHMai 

Figure  12, 
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t: 

7.   PROGRAMMING AIDS 

The complexity of programs that can be generated using the system is increased by 
some simple facilities described in this section. The capabilities discussed here are 
incremental extension of a current program, use of a program library, and expansion of 
assumptions. 

Tha system enables a user to plan incremental extensions of a program simply by 
saving each comrMed program segment A and its output state 0 in a stack. The user- 
may then pose a new goal G and solve the problem 0{B}G. The composition A;B will 
then be output. He may choose to start from any previously saved state and 
afesociated program segment. 

7 1 PP • sAM LIBRARY When a program A has been generated to solve P{A}Q, the user 
mav request that it be "generalized" and filed in the program library where it may be 
accessed by the subgoaler (similar use of a library in robot planning is reported in 
[Fikes.Hart, and Nilsson 1972]). 

Generalization is a process which constructs a procedure declaration for the library as 
follows Let I and 0 be the input-output assertions computed for A during its 
construction. We assume P^l, OQAO', and 1{A}0. The non-fluent conjuncts of I are 
taken as the type declarations, their variables being the parameters of the new 
procedure. These actual parameters are replaced throughout 1{A}0 by new formal 
parameter variables. An entry of the form: 

({<procname> <goal> <effects> <type conditions> <state condition>)<body>) 

is made in the library, where <procname> is a name and parameter list, <goal> is Q, 
<effects> is 0', <body> is A, and it is assumed that 

<type conditions> A <state condition>{<procname>}<goal> A <effects> 

Library procedures are used during program generation by matching on the <goal> then 
establishing the <type conditions> and <state conditions> as subgoals in that order. If 
The conditions are satisfied then the instantiated <body> is included in the program. 
There is no attempt to organize the library for efficient selection; the system merely 
tries all library procedures before any frame rule. 

As an example of program assembly using the library consider the task of building a 
^ower to reach an object, i.e. achieve "HAS(M,B)". Use will be made of a library 
oroeram to find and put on shoes which achieves WEARING(M,SHOES), previously 
generated using the same Frame. The generated program is then extended 
interactively by posing a new goal, AT(M,P). 

A robotics Frame for this problem is shown in Figure 13, and the generated programs in 

Figure 14. 
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PR IM IT tVE PROCEDURE PRE-CUNIHTIONS POST-CO.N1HT 1DNS 

travel (Rl,Ll,t.?l 
"Rl   travels   from LI   to  I." 

move(Rl,ül ,1.1,Lf') 
"Rl   moves   31   from 1,1   to  13" 

slack  Rl,0?,Ol,Lll 
"Rl   stacks  CO  on  01  at   LI" 

climb'Rl.Ol.LP 
"Rl   climbs  01  at   1,1" 

uiiclimb  Rl.Of'.LlI 
"Rl  uncllmbs  OS at  LI" 

stepoir(Rl,01,Ll) 
"Rl   steps  off  01   at   LI1 

reach Rl,01,1.11 
"Rl   reaches  01 at  LI" 

lilt;Rl,01,Ll) 
"Rl   lifts  01  at   LI" 

find  Rl.Ol.U) 
"Rl   finds  01  at  LI" 

put_on'Rl.Oll 
"Rl   puts  on 01" 

ROBOT , SI )AAT (Rl, LI )/SHElCHT (Rl ,40 ; AT(Rl,l2)i 

R08OT(lU)A8QX(Ol)AAT(01,U)A-i INSTACK (01, LI )A AT(01.1-'^AATfRl ,L"); 
CLOTHES (03 )AWEARING (Rl ,03 )AAT (Rl, LI); 

R01)OTiRl)AROXi01lAI10X(0;,)A^(ül>0."'')AAT(01,Ll)A STACKEU(0:  ,01 ,L1)A 
AT;O;',LI)AAT(RI,LI)AHOLI)iNr^Ri.o: ,1.1 )A STACKHEIGHT;''EVNIADDI HI)),U) 
HEIcmT(Rl,3)AON(Rl,01,Ll)A-^TACKED;0J,01,Ll) ATOPI'O 1,1.1); 
ASTACK11EU;11T(H1,T 1); 

ROBOT; RDAABOVER I 01,Rl, LI )AAT(Rl, LI )A 
-iINSTACK(01,Ll)v 
(STACKED(01,03,L1)A0N(R1,0:',L1)JA 
REQUESTi'HEICHTiRl.lll)) ; 

R0B0T(Rl)ABEL0WR(01,Rl,LnAAT(Rl,Ll)A 
R£QUEST(liEICHT(Rl,Hl))A 
REQUEST(STACKED(02,01,LI))A 
ON(Rl ,02,1.1)! 

= (H1 „6)AHEIGHT (Rl, 1 )AON( Rl ,01 .Ll); 

ROBOT (R1)MT(01,U)AHIENUF(R1,01,U); 

ROBOT ( R1 )AB0X (01 )MT (01 ,L1 )MT(Rl, Ll )A 
-iINST/.CK(01,Ll); 

ROBOT (K1)ACIIAIR(02 >MT (02 , LI)AAT (R1,1.1)A 
UNDER(01,0''); 

R0B0T(R1 )ACLOTHES (01 )AF01JNU (Rl ,01); 

ON(R1,01,LI)A 
HEIGHT(Rl,(EVNlADDl   HI))); 

0N(R1,01,L1)A 
HEIGHT(R1,(EVN(SUB1  HI))); 

HEIGHT(R1,II1)A 
-t)N(Rl,01,1.1); 

HAS(R1,01); 

H0LD1NG(R1,01,L1) 

FOUNDi'Rl.Ol); 

WEARINC(Rl,01); 

AX I DM 

TATOVER 

TABOVE 

TBELWR 

rBELOW 

T110T 

TBOTU 

TNEXT 

T1NSTACK 

AjgECEDENT CONSEQUENCE 

-ON Rl," )N> Rl.OJ,LI )MB0VE(01,05,1.11] ; AB0VES(01,R1,L1) ; 

= (01,0, ED{CX,,03,Ll)AABOVE(0l,a?,H)] | AB0VE(0t,03,Ll) i 

OS{81,a?,Ll)ABEL0W(01,02,Ll); BELOWR  Ol.Rl.I.l); 

=(01,03)vlSTACKED(O3,a ,L1)ABELOW(01,02 ,1.11] ; BELOW 01,05,LI); 

T0P(0: ,1.1 lABOTTOMBOXU [01,03,LI) i 

STACKED(05,Öt ,Ll)ASTACRED{Ol| ,02,L1)V 
STACKED(05,01,LI)A-iSTACKED (Oil ,00 ,1.1 )V 
B0TT0MB0XU(0l,CA ,1.1); 

SUPPLY (LI )AÄT(Ol( ,H); 

T0P(02,LI)ABEL0W(01,02,LI); 

BOTTOMBOXlOl.Ll); 

B0TT0MB0XU(01,03,L1); 

NEXT BOX (Oi* ,03); 

1NSTACK(01,L1); 

DEFINITION 

T1IITK liEIGIlTi;01,Hl)ASTACKHEIGHT(lll,Ll)ATOP(0.',I.l)AON(Rl,Q  ,L1)   s  H I ENl)F( Rl ,01, LI) 

Figure  13b 
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[TgRATIVE  RULE       BASjS  CONDITIOM 

TU P 

INVARIANT ITERATION STEP (WAL 
OUTPUT 

TEST    ASSERTION 

TD0W1 

REQUEST(H£IGHT(Rl,H2)) ON ,R1,01,1.11 A ON  R1,0;,L1); 
AC;Z H:1v STACKED(02,01 .Ll) 
lBOTT0HB0X{05,U) /TOl^Ol.Ll) ; 
A0N.'Rl,v ,LlU ; 

GZ(m)A 0N('Rl,0l,U)A ON Kl,ü: ,L1); 
RKOUESTHEICHTRl.lil'l STACKED 01,0   ,1.1) 
ACT HP,HI); /BOTTOMBOX(0l,Ll); 

STACKED O: ,01,1.11 
AON  Rl.a ,1.11; 

Topfoj.i.riA 
STACKI1E ICMT 

1I",L11A 
NEXTBOX o'. ,05); 

HOUUNCiKl.rt. ,1.1 I 
MIEICIIT:RI,II ') 
ASTACKED'OI. ,05,1.1) 

IIICIGHT  Rl,lll ';; 

HEIGHT  Kl ,111 ); 

STACKHE1GIIT 
(111,1.11; 

IN'Hl Al. STATE 

ROBOT MlAilOX  »rlAKOX  B    AllOX   W  AI10Ä   !!■  )AB0X   li.'AlldX  ir 1AAT ,M, I'lAAT  li.L'lAAT   11   ,SU)C)AAT{B5 ,SLOC)AAT(B5,S1.0C)A 
AT   B   ,SLOC)MT(B!t ,SL6ciMT(B   ,'sL0C)ASüPPLY( SLOC)ASTACKHE1GHT(0,U)AH£ICHT(M,«[)AHEIGHTI B,!) )ACL0T1IES(SHOES)A 
CHAIR'CHAIR!)ACHAIR CHAIR?)MT  SHOES ,CORNER)AATi'CHAIRl ,C0RNER)AAT(CHAlR2,C0RtffiR) i 

RECURS I VE  RULES :     CLIMB,TABOVE.TBELOW , T1«TU 

ADVICE 

PA1KW1SE   INEQWITIES:     Ir.ivel  Kl ,■,•'■,move  HI ,1 , - ,■'■ 

STACK, Kl, ', M.H 

Figure 13c 
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?,   I 

I 
B 

Assembled 
I rom 
Library 

PROCl (M SIIÜES1 
ROBOT M^JCHAIR C11AIR. 1 CLOTHES SIIÜKS); 

COWCNT 
INPUT  ASSERTION: 
I1EIGIIT M     3   'AAT.M  P)AAT(CHAIR?   CORNER) 

orrPn_ASSERT10N: 
AT  M CORNER)APOUND M SHOES)AWEARINC(M SHOES); 

COMMENT 
PROC   ATTEMPTS_TO_ACIUEVE_    FOUNT)  M SHOES') ; 

DEC IN 
THAVE1, H  P CORNER) ; 
IK ^UNDER   SHOES   CHAIR:  )   THEN 

PR0C5(M SHOES) 
ELSE 

BECMN 
IIN1)  M  SHOES  CORNER 
END 

I'LTJIN  M  SHOES) 
END 

PROC; (M   1!) 
ROBOT(H);BOX(B7) ;CLOTHESi SHOES^CHAlRfCHAIK.') ;I!OXI'I1U ) ;SUPPLY (SI.ÜC) ;BOXi B6 ); BOX(u;); 

CDMMENT 
INPirr_ASSERTION; 

AT     H   P)AAT   IV   SU)C)AHEIC11T(M  0   )AAT (CHAIR."   CORNER )AAT (Bll   SLOC) 
AHEIGHT  It lt)ASTACKHEI{;HT(0 llV.AT   »!  SLOC)MT(lii SLOC) 
OLTPL'T_ASSERTION: 

AT(M PlAATdl?  UMAT(B4  inASTACKED(n4 R7  lOAATCBf)  U) 
ASTACKEDdib  B4 U)ASTACKtlEIGHT(4 U)MIAS(M li,AHEIGIIT(M 0) 
AFOUND  M.SHOESlAWEARINCl M,SHOES) •,AAT(B? U)'STACKED ( BJ   1)6  U) ; 

BEGIN 
TRAVE1.(N P)C08MER) ; 
IF-UNDER  SHOES CHAIR. )  THEN 

PROCPI M SHOES) 
ELSE 

IIEC; I N 
KIND M  SHOES   CORNER) 
END 

PUTON M SHOES); 
TAAWT'H CbRNER SLOC); 
MOVE M  li    SLOC IJ); 
TRAVEL M U SLOC); 
MOVE M  Bit   SLOC  V ; 
LIKT M   Hi.   LI); 
n.lMii M 11    U); 
STACK M  Bli   li'  U) ; 
CI.IMB'M Bit   U); 
Y' - :■; 

yit - Bit ; 
IF NEXTBOX(Wlt   Ylt) THEN 

Zlt  - Wit ; 
WHII.i:-STACKHEICHT   1.   U)   DO 

IIEC IN 
y - AUDKY}); 
VI - ylt; 
IF  STACKED   yl   Kl   U)   THEN 

7.1  - Wl; 
WHILE-HE I CHI   M I   1)0 

IIEC IN 
UNCLIMliM  Yl   U) ; 
Yl   - 7.1; 
IF  STACKED   Yl   WI   U)   THEN 

Zl   - Wl; 
END 

SIE POKE M  li    U); 
TRAVEL M  U  SLOC) ; 
MOVE  M  Zlt   SLOC  U) ; 

Figure  14a 
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Incremental 
Extension 

I.H-TIM Z1»   U)i 
CLIMB(M  BT   u'; 

Y? - in; 
IF STACKED(W?  YZ  Ul  THEN 

V:   - W2 ; 
WHILE -.MEIGHT'M Y5)  DO 

»EG IN 
CLIMB(N /.    Ul! 

IF  STACKED(W    Y?   U)  THEN 

z:  - w; ; 
EN'D 

STACK,M ZU  YU   Ul; 
YJ - zy, 
\U - Zli; 
IF  NEXTBOX Wl.   YH) THEN 

ZU  - Wh J 
END 

CLIMB(H B3  U)! 
IIEAGII  M  B  I'V. 

IF STACKED Y5 W5  U)  THEN 

Z'j -W5i 
WHILE-THEiraiT(M 1  U)   DO 

BEGIN 
UNCUMlii'M Y5   Ul i 

I?  STACKED  Y';  W5   U)  THEN 

25 - w5; 
END 

STEPOFF H  BY  U)i 
TRAVEL M U  I'); 
END 

Figure 14b 
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7.2 EXPANSION OF ASSUMPTIONS: A basic capability for structuring programs is 
provided by interactively allowing the user at any level in program generation to define 
a primitive procedure, P{p}Q, as an assumption. The program generator will then use p 
as usual except at each point of call to p in the program the current state I' and 
current goal G will be saved. The triple <p,r,G> is placed in a stack of subtasks for 
later expansion. 

When a program containing assumed primitive procedures has been generated, the user 
is given the list of assumptions his program depends on and allowed to selectively 
expand them in terms of lower level procedures. For the subtask <p,r,G>, the state is 
initialized to I', the frame may be changed, G is given as the goal.and a body for the 
procedure p is generated. 

Consider the example given in Section 6 of computing the value of n factorial where 
multiplication is not a primitive operation. The initial frame is the same except that in 
place of an iterative rule for multiplication, there is an assumed primitive procedure 

ISVAR(Vl){times(Vl,V2,V3)}PR0DUCT(Vl,V2,V3), 
where PR0CUCT(V1,V2,V3)HC(V1,(PR0D V2,V3)). 

The program generated using this frame is given in Figure 15. To expand the non- 
primitive procedure "times(\/l,\/2,V3)" the full frame including the iterative product rule 
is given and the sub-program generated is shown in Figure 16. 

In the current implementation it is assumed that the expanded sub-programs will have 
no side effects. However this assumption could be removed by a mechanism similar to 
checking rejoin conditions for contingency programs (Section 5.4). 

To develop a useful structured programming system interaction appears essential along 
with further study about how humans do (or should do) programming. 

—- -■ -- - '--W-—J— jitj^,..^..-^..1. 
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i 

PROCli XÖ  N) 
ISVAR  XÖ)iim'ECER(N)i 
GOM^U■;NT 
INPUT ASSERTION: 
NONE 
OUTPUT ASSERTION: 

C;XÖ   (FAC N))i 
COMMEtfr 
THIS  PROGRAM RELIES  ON TIE  FOLLOWING ASSUMPTIONS! 

(TIMES': 
BEGIN 
NO - i; 
Yl - 1; 
WHILE -1 >(Y1   N)   DO 

HE GIN 
Yl - YI+l; 
TIMES   XÜ   XO   Yl) 
END 

END 

Figure  15 

TIMES   XO Yl  Zl) 
ISVARfXC); 
COMMENT 
INPUT  ASSERTION: 

NONE 
ourpirr ASSERTION; 
C(X0  (PROD Yl 21)1; 

BEGIN 

WHILE -■ =(Y     Yl;   DO 
BEGIN 
V    - Y  +1 ; 
U - Xß+Zl; 
EN» 

END 

Figure  16 
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I 
APPENDIX 1 - AN INTERACTIVE SESSION 

A sample interactive session is here presented to illustrate the system's use in frame 
definition  and  program generation.   Statements typed by the user will   always  be 
prompted by "*".   The top level system function is "SU5G0AL" which is called in the 
manner given below to accept a frame definition from the terminal.   Comments to aid 
the reader's understanding of the dialogue will be enclosed in quotes. 
*(SUBGOAL) 
"The system now enters an interactive mode for Frame definition." 
*   *   *   *   SEMANTIC FRAME DEFINITION  *   *   *  * 

i 

r 

\ 
I 

RULE TYPE* AXIOM 
RULE NAME* AONTOP 
IS THIS AN ASSUMPTION?* NIL 
IS THE RULE DIRECTLY RECURSIVE?* NIL 
INEQUALITIES IN ARGUMENT POSITIONS* NIL 
PRECONDITIONS: 
* ROBOT(Xl) A ON(XlIX2) A nSTACKED(X3,X2); 
POSTCONDITIONS: 
* ONTOP(Xl); 

RULE TYPE* PRIMITIVE PROCEDURE 
RULE NAME* STAND0N(R1,Z1) 
IS THIS AN ASSUMPTION?* NIL 
IS THE RULE DIRECTLY RECURSIVE?* NIL 
INEQUALITIES IN ARGUMENT POSITIONS* NIL 
PRECONDITIONS: 
* ROBOT(Rl) A nON(Rl,Wl) A BOX(Zl) A CLOTHES(Ol) A WEARING(R1,01) 
A AT(ZI,Y1) A AT(RltYl); 
POSTCONDITIONS: 
* 0N(R1,Z1); 

RULE TYPE* PRIMITIVE PROCEDURE 
RULE NAME* DRESS(R1)01) 
IS THIS AN ASSUMPTION'* T 
IS THE RULE DIRECTLY RECURSIVE?* NIL 
INEQUALITIES IN ARGUMENT POSITIONS* NIL 
PRECONDITIONS: 
* ROBOT(Rl) A CLOTHES(Ol); 
POSTCONDITIONS: 
* WEARIN^Rl.Ol); 

RULE TYPE* PRIMITIVE PROCEDURE 
RULE NAME* TRAVEL(R11L1,L2> 
IS THIS AN ASSUMPTION?* NIL 
IS THE RULE DIRECTLY RECURSIVE?* NIL 
INEQUALITIES IN ARGUMENT POSITIONS* (Rl,*,*) 

MMMW^MMUMMMMM ■-■    -   —      —ii niiiiiMfttiiüniaimiiriniii 
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PRECONDITIONS: 
* ROBOT(Rl) A AT(R1,L1) A 
POSTCONDITIONS: 
* AT(Rl,L2)i 

ON(Rl,02,Ll)i 

RULE TYPE* PRIMITIVE PROCEDURE 
RULE NAME* STEPUP(X1,Y1,Z1) 
IS THIS AN ASSUMPTION?* NIL 
IS THE RULE DIRECTLY RECURSIVE?* NIL 
INEQUALITIES IN ARGUMENT POSITIONS* (Rl,*,*) 
PRECONDITIONS: 
* BOX(Zl) A ROBOT(Xl) A STACKED(Z1,Y1) A ONWl.Yl); 
POSTCONDITIONS: 
* 0N(X1,Z1); 

RULE TYPE* ITERATIVE 
RULE NAME* ITONTOP 
IS THIS RULE DIRECTLY RECURSIVE?* NIL 
BASIS CONDITION: 
* ROBOT(Xl) AON(X1,X2); 

INVARIANT: 
* 0N(X1,X3) A STACi<ED(X4,X3)i 
ITERATION STEP CONDITION: 
* 0N(Xl,X4)i 
CONTROL TEST* NIL 
OUTPUT ASSERTION* NIL 
GOAL* ONTOP(Xl); 

■ 

RULE TYPE* NIL 

INITIAL STATE: 
* AT(M,CORNER) A A^Bl.L) A STACKED(B3,B2) A STACKED(B2,B1) 
A B0X(B3> A BOX(B2) A B0X(B4) A STACKED(B4,B3) A BOX(Bl) 
A ROBOT(M) A CLOTHES(SHOES); 

SEMANTIC PROPERTIES OF RELATIONS: 

IS ROBOT(Rl) A FUNCTION OF THE STATE?* NIL 
IS ROBOT(Rl) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPERTIES* NIL 

IS AT(R1,L1) A FUNCTION OF THE STATE?* T 
IS AT(R1,L1) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPERTIES* (Rl,*) 

IS STACKED(X4,X3) A FUNCTION OF THE STATE?* T 
IS STACKED(X4IX3) PARTIAL?* NIL 
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ARGUMENT UNIQUENESS PROPERTIES^ (X4,*) 

IS BOX(Zl) A FUNCTION OF THE STATE?* NIL 
IS BOX(Zl) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPERTIES* NIL 

IS ONTOP(Xl) A FUNCTION OF THE STATE?* T 
IS ONTOP(Xl) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPERTIES* NIL 

IS CLOTHES(Ol) A FUNCTION OF THE STATE?* NIL 
IS CLOTHES(Ol) PARTIAL''* NIL 
ARGUMENT UNIQUENESS PROPERTIES* NIL 

IS WEARING(R1,01) A FUNCTION OF THE STATE?* T 
IS WEARING(R1,01) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPERTIES* NIL 

IS O^Xl.Zl) A FUNCTION OF THE STATE?* T 
IS OMXl.Zl) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPERTIES* (XI,*) 

FILENAME* DSK:PCLI 
TRACE MODE9* T 
PERFORMANCE STATISTICS?* T 
LOOKAHEAD?* NIL 
ALGEBRAIC SIMPLIFICATION?* NIL 

SUBGOALING SYSTEM GENERATED!!! 
"A subgoaling system corresponding to the Frame has now been generated 
and the system may now receive a goal to achieve." 

SUBMIT GOAL* ONTOP(M) 
DO YOU WANT THE PROGRAM LIBRARY?* NIL 
DO YOU HAVE ANY ADVICE?* T 
*** ENTERING ADVICE SYSEM *** 

1* TRY STANDON BEFORE STEPUP 
2* NIL "Exit advice system and begin program generation." 

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH: 
—ITONTOP 

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH: 
—(ITONTOP(ON M X2))STAND0N 

RULES ENTERED AND GOALS PEND'NG IN CURRENT SUBGOAL TREE PATH: 
—(ITONTOP(ON M X2))(3TAND0N(WEARING M SHOES))DRESS 

MM 
\_. 
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((DRESS M SHOES)) „   ,     J.   ...   < 
"Current program segment generated is displayed In this form. 

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH: 
—(ITONTOP(ON M X2))(STANDON(AT M L))TRAVEL 

((DRESS M SHOES)(TRAVEL M CORNER D) 
DRESS M SHOES)(TRA.VEL M CORNER L)(STANDON M Bl) 

"This constitutes the basis program for the iterative rule. 

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH: 
—(ITONTOP(ON M B2))STAND0N 

STANDON IS FAILING!!! 
—(.ON M WD WAS THE LOSER .,.,.. 
"STANDON is only applicable for climbing from ground level. 

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH: 
—(ITONTOP(ON M B2))STEPUP 

((STEP M Bl B2)) 
"This is part of the loop body." 

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH: 
—(ITONTOP(ONTOP M))AONTOP , 
"The system now interpretively updates the state until the goal is 
true, then the while loop is assembled." 

DO YOU WANT TO OPTIMIZE THE PROGRAM','* NIL 
IS THIS PLAN USEFUL ENOUGH TO GENERALIZE''* T 
IS THIS A PROCEDURE WITHOUT SIDE EFFECTS?* NIL 

THE GOAL ^ONTOP M) IS ATTAINABLE BY THE FOLLOWING PROGRAM: 
"The desired program has been generated and will now be displayed. 

ROBOT(M);CLOTHES(SH0ES)i(B0X(Bl)iB0X(B2)i 

COMMENT 
INPUT ASSERTIONS: 
AT(M CORNER) A AT(B1 L) A STACKED(B2 Bl) 
OUTPUT ASSERTIONS: 
WEARING(M SHOES) A AT(M L) A ONTOP(M); 

SS'PROGRAM RELIES ON THE FOLLOWING ASSUMPTIONS: 

(DRESS); 
BEGIN 
DRESS(M SHOES); 
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TRAVEUM CORNER L); 
STANDON(M Bl); 
Yl *- Bl; 
IF STACKED(W1 Yl) THEN 

Zl *- Wl; 
WHILE - ONTOP(M) DO 

BEGIN 
STEPUP(M Yl Zl); 
Yl - Zl 
IF STACKED(W1 Yl) THEN 

Zl «- Wl; 
END 

END 

DO YOU WANT TO DO STRUCTURED PROGRAM DEVELOPMENT?* T 

TRYING—«DRESS M SHOES)(WEARING M SHOESKSTATl.AST)) 
"This task triple consists of procedure name, goal and state." 

DO YOU HAVE ANY ADVICE?* T 

***ENTERING ADVICE SYSTEM*** 
1* ADD PUT-ON 

RULE TYPE* PRIMITIVE PROCEDURE 
RULE NAME* PUT-ON(Rl,0]) 
IS THIS AN ASSUMPTION?* NIL 
IS RULE DIRECTLY RECURSIVE'^* NIL 
INEQUALITIES IN ARGUMENT POSITIONS* NIL 
PRECONDITIONS; 
* ROBOT(Ri) A CLOTHES(Ol) A FOUND(Rl,01); 
POSTCONDITIONS: 
*WEARING(R1,01); 

RULE TYPE* PRIMITIVE PROCEDURE 
RULE NAME* FIND(R1,01,L1) 
IS THIS AN ASSUMPTION?* NIL 
IS RULE DIRECTLY RECURSIVE?* NIL 
INEQUALITIES IN ARGUMENT POSITIONS* NIL 
PRECONDITIONS; 
* ROBOT{Rl) A CHAIR(02) A AT(02,L1) A AT(R1,L1) A UNDE^Ol.O^; 
POSTCONDITIONS: 
* FOUND(Rl,01); 

RULE TYPE* NIL 

INITIAL STATE; 

vsmuissamam    
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* CHAIR(CHAIRl) A CHAIR(CHAIR2) A AT(CHAIR1,CORNER) 
A AT(CHAIR2,CORNER); 

SEMANTIC PROPERTIES OF RELATIONS: 

IS FOUND(Rl,01) A FUNCTION OF THE STATE?* T 
IS FOUND(R1,01) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPERTIES* NIL 

IS CHAIR(02) A FUNCTION OF THE STATE?* NIL 
IS CHAIR(02) PARTIAL?* NIL 
ARGUMENT UNIQUENESS PROPERTIES* NIL 

IS UNDER(01,02) A FUNCTION OF THE STATE?* T 
IS UNDER(01,02) PARTIAL?* T 
ARGUMENT UNIQUENESS PROPERTIES* NIL 

ALGEBRAIC SIMPLIFICATION?* NIL 

SUBGOAL1NG SYSTEM GENERATED!!! 
"The Frame addition has now been translated." 

2* DELETE DRESS 
3* NIL 

"Exit Advice system," 

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH: 
—(PUT-ON(FOUND M SHOES))FIND 

((FIND M SHOES CORNER)) 
((FOUNDER SHOES CHAIR1) THEN (PROC2 M SHOES) 
ELSE((FIND M SHOES CORNER)))(PUT-ON M SHOES)) 
"The conditional statement is generated since it is not known where 
the shoes are." 

DO YOU WANT TO OPTIMIZE THE PROGRAM?* NIL 
IS THIS PROGRAM USEFUL ENOUGH TO GENERALIZE?* T 
IS THIS PROCEDURE WITHOUT SIDE EFFECTS?* NIL 

THE GOAL (WEARING M SHOES) IS ATTAINABLE BY THE FOLLOWING PROGRAM: 
"This procedure is the structured expansion of the non-primitive 
procedure DRESS called in PROC1." 

DRESS(M SHOES) 
ROBOT(M);CLOTHES(SHOES);CHAIR(CHAIRl)i 
COMMENT 
INPUT ASSERTIONS: 
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AT(M CORNER) A AT(CHAIRl CORNER) 
OUTPUT ASSERTIONS: 
WEARING(M SHOES) A FOUND(M SHOES) A WEARING(M SHOES); 
COMMENT 
PR0C2 ATTEMPTS TO ACHIEVE FOUND(M SHOES); 

BEGIN 
IF -UNDER(SHOES CHAIR1) THEN 

PROC2(M SHOES) 
ELCE 

BEGIN 
FIND(M SHOES CORNER); 
END 

PUT-ON(M SHOES) 
END 

64 

DO YOU WANT TO DO CONTINGENCY PLANNING?* T 
WHAT IS YOUR PREFERENCE? 
 IF NONE TYPE NIL* NIL 

TRYING—(PROC2 (FOUND M SHOES)(STAT2.CST)) 
"The contingency task triple consists of procedure name, goal and state," 

DO YOU HAVE ANY ADVICE?* NIL 

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH: 
—FIND 
((FIND M SHOES CORNER)) 
DO YOU WANT TO OPTIMIZE THIS PROGRAMS NIL 
IS THIS PROGRAM USEFUL ENOUGH TO GENERALIZE?* T 
IS THIS PROCEDURE WITHOUT SIDE EFFECTS?* NIL 

THE GOAL FOUND(M SHOES) IS ATTAINABLE BY THE FOLLOWING PROGRAM: 

PROC2(M SHOES) 
ROBOT(M);CHAIR(CHAIR2); 
COMMENT 
INPUT ASSERTIONS: 
AT(CHAIR2 CORNER) A AT(M CORNER) 
OUTPUT ASSERTIONS: 
FOUND(M SHOES); 
COMMENT 
PROC3 ATTEMPTS TO ACHIEVE FOUND(M SHOES); 

BEGIN 
IF -1UNDER(SHOES CHAIR2) THEN 

PROC3(M SHOES) 
ELSE 

BEGIN 
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F!ND(M SHOES CORNER); 
END 

noEYOU WANT TO DO CONTINGENCY PLANNING?* NIL 
DO YOU WANT TO CONTINUE FROM THE CURRENT STATE?* NIL 

J 
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