
pBwiMWfm^^

, MMMMMHR» ••■■•K:

AD-784 5

ON AUTOMATING THE CONSTRUCTION OF
PROGRAMS

jack R. Buchanan, et al

Stanford University

Prepared for:

Office of Naval Research
Advanced Research Projects Agency

May 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

MUrMttiiirii-i^TiiiMWmi vaxv..:.^„-:J^J*i**
"«w«**ja»is»iB -4

■|PPSWBW?lP8^a>p?ffI?Wl!Wff!»^fWPn^

UnclassifLed
SECURITY CLASSIFICATION OF THIS PAGE fttTion Data En(oio<f;

REPORT DOCUMENTATION PA(
I. REPORT NUMBER

STAN-CS-T^SÖ

2. GOVT ACCESSION NO.

4. TITLE fand Subtllle)

ON AUTOMATING THE CONSTRUCTION OF PROGRAMS.

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

ftp •7f?/*s-/3>
5. TYPE OF REPORT & PERIOD COVERED

technical, May, 197^

7. AUTHORfs)

Jack R. Buchanan and David C. Luckham

9. PERFORMING ORC A,: I I AT ION NAME AND ADDRESS

Stanford University
Computer Science Department
Stanford, California 9450^

II. CONTROLLING OFFICE NAME AND ADDRESS

ARPA/IPT, Attn: Stephen D. Crocker,
1400 Wilson Blvd., Arlington, Va. 22209

6. PERFORMING ORG. REPORT NUMBER

STAN-CS-T^SS
8. CONTRACT OR GRANT MUMBERfs)

DA11C 15-73-0-0^35

10, PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

ARPA ORDER NO. 2^9^

12. REPORT DATE

May 197^

14. MONITORING AGENCY NAME & ADDRESSCif d/Heren(tiom Canltolline Olllce)

0NR Representative: Jack Ducey^
Durand Aeronautics Bldg., Rm. l6^
Stanford University
Stanford^ California 9^305

13. NUMBER OF PAGES

66
15, SECURITY CLASS, (of (h/.i report;

Unclassified
"15a DEC LASSIFI CATION 'DOWNGRADING

SCHEDULE

16- DISTRIBUTION ST ATEMEN T fot this RsportJ

Releasable without limitations on dissemination.

17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20. II dtllerent Irnm Report)

IB. SUPPLEMENTARY NOTES

Reproduced S.v
NATIONAL TCCHNICAL
INFORMATION SERVICE

U S Dr;t. • ' ' Commerco

19. KEY WORDS CCntlttrme on raversa side il neressar)- and identify by block number)

automatic programming, problem solving, logic of programs, correctness
of programs, interactive structured programming.

20. ABSTRACT 'Continue on reverse side (f n.^essary and identify by block number)

An experimental system for automatically generating certain simple
kinds of programs is described. The programs constructed are expressed
in a subset, of ALGOL containing assignments, function calls, conditional
statements, while loops, and non-recursive procedure calls. The input
is an environment of primitive programs and programming methods specified
in a language currently used to define the semantics of the output
programming language. The system has been used to generate programs
for .vmbolic maniEUlation, robot control, eveiy day planning, and computing arithmetical

DD 1 JANM73 *!473 EDITION OF 1 NOV 65 IS OBSOLETE

^
Unclassified

SECURITY CLASSIFICATION OF THIS PAGE fWien Data Entered)

!Hf!B^SW!flW5'^s?a5W^S*BBW!S!l^™«^^

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM- 236

COMPUTER SCIENCE DEPARTMENT
REPORT STAN-CS-74- 433

I

ON AUTOMATING THE CONSTRUCTION OF PROGRAMS

by

JACK R. BUCHANAN and DAVID C. LUCKHAM

Artificial Intelligence Laboratory
Stanford University

May 1974

ABSTRACT

An experimental system for automatically generating certain simple kinds of programs is
described. The programs constructed are expressed in a subset of ALGOL containing
assignments, function calls, conditional statements, while loops, and non-recursive
orocedure calls. The input is an environment of primitive programs and programming
methods specified in a language currently used to define the semantics of the output
programming language. The system has been used to generate programs for symbolic
manipulation, robot control, every day planning, and computing arithmetical functions.

This research was supported in part by the Advanced Research Projects Agency of the
Office of the Secretary of Defence under contract [DAHC15-73-C-0435]. The views
and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied,
of ARPA, NASA, or the U.S. Government.

f

agm^,..,.-;,.^;.....:...^.^:^..^.. ^-^.^ •

p^^l^fllpfplll^ll^w^

PRODUCTION

1. INTRODUCTION.

We present an experimental system for writing certain simple kinds of programs
automatically The system requires as input a programming environment consisting,
rouehlv speaking, of primitive functions and procedures, rules of composition and
logical facts If it is then given a problem it attempts to find a method of solution in
terms of these rules and primitives. It will take account of certain kinds of advice from
the user Some of the techniques it uses are most decidedly heuristic . If
successful the system will output the method of solution in the form of a plan or
oroeram in a language somewhat similar to a subset of Algol containing
assignments, function calls, conditional branches, while loops, and non-recursive
pocedure calls. We call this language the OUTPUT (or PROGRAM) language. he
forms of the definitions of the elements of the programming environment (i.e. the
primitive procedures and rules of composition) correspond to axioms and rules of
inference in a logic of programs currently used to define the semantics of the
oroßramming language Pascal [Hoare 1969, Hoare and Wirth 1972; see also Igarashi,
London, Luckham 1973]. For example rules for constructing while loops have a form
corresponding to the iteration rule. The contents of these definitions vary with the
actual er.vircnrnent. Thus, the system can be used to generate simple Algoi-ike
programs for robot control problems, for every-day planning, or ,or computing

arithmetical functions.

Given a programming environment (from now on, often called a FRAME), problems to be
solved are stated as pari of conditions, the initial input condition and the goal output
condition We may regard these pairs as the input-output assertions of formu as in
the logic of programs referred to above. The system is presented with an
ncomplete formula (i.e. a program part that satisfies the mput-output
assertions is rr.issing), and its job is to complete the formula The construction of a
solution program may therefore be formulated as a search for a proo in the logic
of oroerams of a theorem whose input-output assertions match those of he
incomplete problem formula. This enables us to justify the formal methods of the
system (as opposed to the actual implementation) by snowing that the frrmal methods

will always construct correct programs.

The basic component that does most of the searching is a very simple backtrack
problem reduction algorithm, It recursively applies to a given goal the primitives and
rules of the programming environment L generate subgoals whose solu ion will imply a
solution to the goal. It proved necessary to use some of the logical facts of
the programming environment in special ways to evoke procedures for restricting
he growth of The subgoal tree. This is often referred to as "building in knowledge.

In this case, this ied to a few rather unusual complexities in the primitive
language we have for aefming the environment, which we call the FRAME
anguage, The choice of special fads, as it stands at the moment, was very much
influenced by our original aim to study autonomous robot planning, ihe set of these
facts is not dependant on the environment but it probably should be. The point
is that the definition of a programming environment requires not only the
definitions of primitive procedures, rules of composition, and logical facts, but also
some additional information about the relations in the environment as well. This

,JJ«pi"W«»P4|.WIW»W SWP IKJIIC' ►»■)i«n«iin».inMi.miWWiij«pwi«"i«««'"w ™WlraS8W^W»ff,?WPWI»BW^W«S*ra^«BW|^P!™

INTRODUCTION

!

information to some extent guides the problem-solving behavior. The basis of the
frame language is a free variable first order logic in which statements may have one
of three truth values (TRUE, FALSE, and UNDETERMINED).

In addition to the special logical facts, certain statements about the action of the
problem solver itself are useful in reducing the search. These are statements such
as "when an attempt at goal A fails, do goal B before reattempting A" or "try the
procedure FLY before the procedure WALK"; their usefulness usually varies from
problem to problem within a given frame. We have therefore chosen not to allow
such statements within the frame language, but to develop a separate ADVICE
language for them, Advice can be given to the system interactively while it is
attempting to produce a program. The kind of advice that can bo expressed at the
moment is very elementary and is nol specialized tcwards any particular domain of
program generation, The function of advice is to impose structure on the frame (more
accurately, preference and relevance connections between the rules and axioms).

Certainly the class of programs that this system will construct given only input-output
specifications depends on the extensiveness of the frame. If the frame contains enough
primitives and rules (one might call these programming methods) and logical facts, the
system ought to enable a user to program a solution to a problem without having to
give rnuch^hought in aavance \o detailed methodology. Thus one of our examples of
generated programs (Section 3) is the vsry simple Fibonacci program suggested in
[Ba^er 1972] as an example of what automatic programming systems ought to try
to do. Admittedly, our frame input isn't quite so informal, but it could easily be
extended to accept the recurrence equation input suggested in [Balzer 1972]; this
could be translated into an iterative rule in the frame by straightforward methods
(even the standard algorithm for translating linear recursive definitions to Iterative form
would do).

T TURAk'V !

<-

 l

FRAME,
PROBLEM,
ADVICE.

V f

->
TRANSLATOR

-> BACKTRACK
PROBLEM
SOLVER

PROGRAM
ASSEMBLER

-> OUTPUT
PROGRAM

\
A

INPUT

> ̂
/

STACK OF
SUB-
PROCEDURE
PROBLEMS

OUTPUT

Figure 1. Main System Components

. ,. ■ , ■ ■

»^^'^'.rT^^5~W)^M!\>B>mW.>^*,*"l^

i. t:

INTRODUCTION

At run time the first action of the system is to translate a given frame Into a
backtrack problem solver augmented by special search procedures. If advice is
given during a search for a solution (i.e. during the program generation phase) the
translator is called and the problem solver is modified. If a solution program is found,
the user is faced with a number of choices. He can ask for another program which
takes the output conditions of the solution as Its input conditions; programs can thus
be constructed In segments that "fit together". He can choose to have the
solution optimized according to some very trivial criteria, or generalized and placed
on a library of nonprimitive procedures. If the solution program contains conditional
branches calling other procedures, he can choose to have those secondary
procedures constructed. Eventually he may choose to stop. Figure 1 shows the
main components of the system and how they interact. We have begun to make
some other additions, for example, the ability to assume the existence of non-
primitive procedures, in order to try the system as an interactive aid to
structured programming, The system is implemented in LISP using the primitives
and backtracking facilities of MicroPlanner [Hewitt 1971, Sussman and Winograd
1972.] In the following sections we have tried to say what the various
components of the system do without going into too many details of how. Most of
the algorithms are quite straightforward so it does seem possible to do this.
Wherever we omit discussion of special tricks, or inadequacies in the
implementation languages force restrictions upon us, we try to leave a warning.
Details of the actual implementation are given in [Buchanan 1974].

We assume that the reader is familiar with the usual notation and terminology of
first order logic and also with some straightforward concepts from the theory of
subgoaling and tree searching that are explained in [Nilsson 1971], In addition we
rely on (i.e. use without defining) some of the concepts of backtrack
programming which have attained fairly standard usage in many papers, and may be
found in [Hewitt 1971, Sussman and Winograd, 1972} The interest in applications
to ;obot planning is manifest in our use of concepts such as FLUENT and NON-
FLJENT etc, tobe found in [McCarthy and Hayes 1969].

Section 2 presents an overview of the program generation system, and introduces
some of the questions dealt with in later sections, A brief outline of the logic of
programs is given and it is shown how frame definitions and the program construction
rules of the system may be formulated within this logic. An example of a frame
and problem is given. We indicate how a successful subgoal search for a solution may
be converted into a proof within the logic of programs that the output program
solves the given problem. At this point we give a sketch of how correctness
proofs may be constructed in general.

Section 3 describes the language for frame definitions, the advice language and the
output program language. Details of features ot the system are given in the following
sections: Section 4 provides abrief description of how the various problem solving
and program generation processes use the extra facts provided in a frame
definition, evaluation of LISP functions, and advice frcm the user. The methods for
constructing conditional statements are given in Section 5, and for constructing
iterative loops in Section 6, Section 7 illustrates how simple facilities of this

»jB*EK.:i,....-'

mm ifliWisippiPwaww**^^

INTRODUCTION

present system can be used to develop complicated programs in structured steps.
Illustrative examples of frames and generated programs are given in Sections 3, 5, 6
and 7, and the appendix contains a complete interactive session.

This present system can be extended at many points. These include adding new
kinds of frame rules (for constructing recursive procedures^ co-routines etc.),
and improving the implementation facilities, the interactive system, and the
problem solver. There are many other problem domains beyond those presented In
this paper where the possibility of using the present system to generate
procedures for colving problems exists. For example, its application to generating
assembly and repair programs for simple machinery is illustrated in [l.uckham and
Buchanan, 1974]. At some point in theso developments it will certainly pay to
construct specialized s>stems for particular classes of frames. Additional special
featuros common to frames in each class can be then used as built-in assumptions to
speed up the problem solver, make the frame and advice languages more natural,
and build up the pro-am library.

What has been demonstrated thus far by the system presented here is (i) the
current axiomatic theory of defining the semantics of programming languages can
be used with slight modifications to define many other simple but useful problem
environments; (ii) there dre straight-forward techniques far translating declarative
descriptions into procedural descriptions for problem solving; (iii) standard problem-
solving methods can be used to synthesize programs in a structured way on the
basis of given specifications, and to handle some burdensome details.

•urirttnii'iiiiiir ni'iiiili-nffOlih Misiä&jämti äii&&sia

Hfw^p^psa^ppp^

■- ■■.'. MMMaMM ..-'-.--.. | ..■-.■■■■■:

LOGICAL BASIS and OVERVIEW

LOGICAL BASIS AND OVERVIEW

We bepin by describing how frames and the program construction methods of the
system can be formulated within the Logic of Programs. The soundness of frames and
correctness of programs are discussed, A brief description of the underlying problem-
solving algorithm of the system is given. We then outline proofs that under certain
assumption, the programs constructed by the system will be correct The presentation
here is intended to be informal and to serve as an introduction to the later
sections;rnany details are left unmentioned until later, and statements of the correctness
results are weaker and more restricted than they need be. Extensions of the
correctness proof are discussed in later sections.
NOTATION: x,y,z,u,v,w...variables,

X.Y.Z,... lists of variables,
f.g.h,.,. functions,
S)t... functional terms,

G,I,P,Q,R.S,... Boolean expressions (essentially formulas of first order logic
"'with standard functions and predicates for equality, numbers, lists

and other data types),
P(X) denotes the formula obtained by replacing each free variable in P by

a new variable from X,
(3X)P(X) denotes existential quantification over all X-variables in P(X),

A.B.C,... programs and program parts In an Algol-like plan language (details
in Section 3),

p,q,... procedure names,

u,ß,K" substitutions of terms for variables, also denoted by (<x<-t>).

P(t) denotes the result of replacing x by t everywhere in P(x).

uß denotes the COMPOSITION of <* and ß; £*ß =(Ec<)/3 for all
expressions E.

We assume the existence ot a fixed arbitrary ordering of literals (atoms and negations

of atoms).

2.1 LOGIC OF PROGRAMS

We review briefly the elements of an inference system for proving properties of
programs [Hoare 1969]. Further details may be found in [Igarashi, London, Luckham

1973].

STATEMENTS of the logic are of three kinds:

(i) Boolean expressions, (henceforth often called ASSERTIONS)

[i lililliriimilillttf■HittMmilTiftrni'rmifiiiiirnfn*****^^*^ 'MliilllilimMiiii^^ ..^.^^.^^a^.^^fc.^ . _.„

jBBi^i^lijaiiMl^UiM^'g;^

LOGICAL BASI? AND OVERVIEW

(11) statements of the form P{A}Q where P,Q are Boolean expressions and A is a
program or program part.

P{A}Q means "if P is true of the input state and A halts (or halts normally in the
case that A contains a GO TO to a label not in A) then Q is true of the output
state".

(iii) Procedure declarations, p PROC K where p is a procedure name and K is a
program (the body of p).

A RULE OF INFERENCE is a transformation rule from the conjunction of a set of
statements (premisses, say H, ,..,,Hn) to a statement (conclusion, say K) of kind (ii). Such

rules are denoted by

Hi,...,Hn

K

The concept of PROOF in the logic of programs is defined in the usual way as a
sequence of statements that are either axioms or obtained from previous members of
the sequence by a rule. A proof sequence is a proof of its end statement.

NOTATION: We use H ||- K to dcrote that K can be proved by assuming H. H |- K
denotes the same thing for first order logic. It is sometimes helpful to denote
statements that are problems or subpr'oblems for the program generator to solve by

P{?}Q.

2.2 FRAMES AND PROBLEMS

We restrict our discussion to problems that can be represented in the following general

form.

The problem representation consists of two elements:

(D F - a set of rules (or laws) called the ENVIRONMENT (or FRAME)

(2) The problem, which is a pair <I,G>:

1 - an input assertion (or initial state).

G - output assertion (or goal).

The RULES in F are of at least three kinds:

(a) PROCEDURES: transforming states into states;

(b) SCHEMES: methods for constructing programs;

IJ lUIUItlllii MMIiu.iUJH iMai|iij|j||v|.ip{pg^)Nmin»WJ*iP)WI>i|ipii '»■ IM ™wi«ii.i«»iiM™ii«pmjliiiiuiuLiu,iMiii/«i.iw»|iu>i(«WJW^Hin.iu»i I ^■*~r*^™*~*-

LOGICAL BASIS AND OVERVIEW

j

I

(c) RELATIONAL LAWS: definitions and axioms which hold in all states and serve to
"complete" incomplete state descriptions by permitting deduction of other
elements of a state from those given.

The PROBLEM is the problem of transforming I into G using the rules of F. A SOLUTION
is a sequence of rules that transforms I to G.

REMARKS:

1. For the purposes of discussing the present system we can make the following
restrictions:

(i) The language of assertions is very similar to Algol Boolean Expressions (as
referred to above).

(ii) Procedure rules and schemes are expressed as statements and as rules of
inference (respectively) in the logic of programs.

(iii) The underlying logic of the relational laws is first order logic.

(iv) The logic of the procedures and schemes is the logic of programs.

2. We probably ought to permit other kinds of rules in F, e.g. rules for evaluating
states, comparing states etc.

NOTATION and RESTRICTIONS: Q U F ^ R denotes that R is a logical consequence of Q
and the axioms of F. Assertions describing states are denoted by l,IV..,G,G',... These
assertions (but not the assertions in rule definitions) are restricted to be conjunctions
of atomic assertions. We write R(l to denote that R is a conjunct in I. L(F) denotes the
logic of F.i.e. the set of consequences of the rules of F. Substitutions <*. do not
replace any variable that occurs in the initial state I. Expressions, all of whose
variables occur in the initial state are called "fuliy instantiated".

STANDARD FRAME RULES: A set of standard rules are assumed to be part of every
frame. These are rules implemented in the program construction method« of the
problem solving algorithm:

RO. Assignment Axioms:

(i) Simple Assignment: P(t){x«-t}P(x)

(Ii) Conditional Assignment: (3Z)P(Z){IF P(W) THEN Y^W}P(Y)
->(3Z)P(Z)AQ(Y){IF P(W) THEN Y*-W}Q(Y)

where Y-variables in P(Y) do not occur in P(W), W-variables are special
variables occurring only in conditional assignments, and Y<~W denotes
the sequence of simple assignments between members of Y and W that
occur in the same argument positions in P(Y) and P(W).

artMtiftiwwflrtfmA»i^ih-wiii--nrMbl
;^ii«fiaiiii lii'i^iiBiMi-iiM^ifet.-SMre.i» »«Afeääsäi. aüäiÄia&Ä

j^IJilllWJ/i.JUJ. Wli.:IV|i,ilAM^^

LOGICAL BASIS AND OVERVIEW 8

:

Rl. Rule of Consequence: P^Q.QiAjR P{A}Q,Q:)R

P{A)R P{A}R

R2. Rule of Composition: P{A}Q,Q{B}R

P{AiB}R

R3. Rule of invariance: if P{A}Q and I U F => P then l{A}lnv(Q,l)
where if R|,R2,...,Rn are the conjuncts of I
in the fixed order, then l0 = Q,
for 0<m<n, lmt) = lm A Rm if -(lm U F => -RJ

L, = Im otherwise,
and lnv(Q,l) = ln.

R4. Change of Variables: P(x){A(x)}Q(x) where y is not a
 special variable.
P(y){A(y)}Q(y)

R5. Conditional Rule: PAQ{A}R, PA.Q{B}R

P{IF Q THEN A ELSE B}R

R6 Undetermined values: If l'{?}G cannot be solved and
-id'UF 3 -G) then G is UNDETERMINED in I'.

STANDARD RULES

REMARKS: The axioms RO(ii) define the semantics of conditional assignment statements.
The occurrence of P(W) within the IF statement is interpreted as a call to a procedure
with variable parameters W, the result of which is to bind those W-parameters to
values that make the Boolean statement P(W) true, if such values exist. We have
adopted a convention on W-variables, w,^,... whereby they occur only in conditional
assignments as above, and indicate the use of an atomic assertion as a procedure call
(we call them "special variables"). This eliminates the need for explicit Skolem
"successor" functions for each relation in the frame. Note that if -(3Z)P(Z) is true of
the input, then the rule "says" that the THEN part of the IF statement is not executed

ittMltltfllflimMttWMfm^

JpWP»BCT»«PP^RilWSPip»«*«»W*w<w>«^

9 LOGICAL BASIS AND OVERVIEW

Invariance states that things stay the same unless it can be proved that they conflict.
This is a way of dealing with the "frame problem" [McCarthy and Hayes 1969], but it
does force the user into being careful about stating what does change.lnvariance can be
derived within the logic of programs from a rule which states that procedures do not
have side effects. Undetermined values is a rule for deciding when to construct
conditional statements (section 2.4). The change of variables rule is an instance of the
rule of substitution (see [Hoare 1969]for this and the remaining rules).
Usually.restrictions are placed on R4 to maintain consistency. In this system the use of
the assignment axioms RO is restricted. However, the user can introduce a primitive
assignment procedure (see below) which would not be restricted in its use;in this case
he should use a formulation which distinguishes between a variable and its value.

INPUT FRAME RULES; In addition to the standard rules, a frame may contain rules of the
following types (these constitute the user defined elements of the frame):

51 Primitive procedures (or operators): the rule defining procedure p is of the for-
P{p}Q. The assertions P and Q are the pre- and post-conditions of p. p must contal.i a
procedure name and parameter list.

52 Iterative rules: an iterative rule definition containing the Boolean expressions
P(basis), Qdoop invariant), Rdteration step goal), L(control test) and G(rule goal) is a
rule of inference of the form:
(a) P , I- Q, QAL{?}R, R{??}QV^L

p.Jwhile L do ?i??}G

where the free variables of R and L occur in Q. Such rules are permitted not to contain
P or L.in which case they correspond to inferences of the form:
(b) Q, QAnG{?}R, R{??}QvG

Q{while -G do ?i??}G

53. Definitions. A definition of G in terms of P is a logical equivalence |- P=G.

54. Axioms. A frame axiom P is a logical axiom |- P.

Terms and predicates in assertions may contain calls to LISP functions. If the frame
definition contains functional terms or predicate tests that are evaluated by calls to
LISP functions, the set of premisses must be expanded to include both the input-output
assertions for these function calls and the logical axioms for the relevant data types.

REMARKS (i) The iterative schemes S2 permit the definition of methods for constructing
loops; they are instances of:

llftBIWaMSifmiMiiiiMiiiiBiMMi^yMMirtiMt-Miiiit i •nmmn ii mmiutUHtmomii"^"—-

WJBMWH^'HÄWWW',-WWWWWW^

LOGICAL BASIS AND OVERVIEW 10

WEAK ITERATION RULE: QAL{B}QV-L

Q{WHILE L DO BbL

where Q is the invariant of the loop. The meaning of |-Q in the premiss is that the rule
may only be applied in states where Q is a first order consequence of the state
description. The program part ?? is restricted to be a sequence of assignment
statements (see Section 6). (ii) Inconsistencies may arise in several different ways in
frames. The axioms can be inconsistent, or the post conditions of a rule can be
inconsistent with the axioms. Also the dements of iterative schemes must satisfy some
simple consistency criteria (section 6). (ill) Note that each frame rule has a goal. The
goal of a procedure is its postcondition; the goal of an axiom or definition is its
consequent. If invariance (R3) is applied to program part A constructed from applying a
single frame rule.then Q is the goal of that rule.

The following lemma is useful in proving properties of conditional assignments
[igarashi.London.Luckham 1973]:

OR-LEMMA P{A}Q, R{A}S

PvR{A}QvS

EXAMPLE: Next, we show how a rather simple problem can be stated within our frame
formalism. This leads us very quickly into the further questions of (i) defining simple
general methods of finding solutions, (ii) formulating the correctness of solutions, and
(iii) the correctness of solutions obtained in frames that have unintended or nonstandard
interpretations,

Consider the following frame and problem:

INPUT FRAME RULES:

1. Procedure: standon

AT(x,y)AAT(z,y)AROB0T(x)AB0X(z){standon(x,z)}0N(x,2)

F2. Procedure: step-up

R0B0T(x)A0N(x,y)ASTACKED(z,y){step-up(x,yIz)}0N(x,z).

F3. Iterative Rule: climb

R0BOT(M)A0N(M,y)ASTACKED(u,y)A.0NT0P(M){?}0N(M,u)

ROBOT(M)AON(M,y)ASTACKED(uly){WHILE-0NT0P(M)DO BEGIN ?;?? END}0NT0P(M)

MtMllMa««»fr^ai»»«MiMahlMMn«^l^-irirrii7 «»i iiilinlrllMrilin jn^c^im^»-^.. - ,„.... _ _.. ■.--^..J-^. .

l^4UWJ<HJU.m«llM,llUWIU«l|UM^ BA'it|l*Wl^*i»..!Ji«j«li,«!mpiJllllirjU|l,UIIJj|»»^pi^»WMJJ^*^ IJJJJUfJiSPP'W1-' WWMI'*'ilHll'1'lAl(''}»J!

l 11 LOGICAL BASIS AND OVERVIEW

F4. Axiom: R0B0T(x)A3y(0N(x,y)AVz-STACKED(z,y))«0NT0P(x),

PROBLEM:

I: ROBOT(M)AB0X{B1)ABOX(B2)AB0X(B3)AAT(B1IL)AAT(M)L)

ASTACKED(B2,B1) A STACKED(B3)B2).

G: ONTOP(M)

COMMENTS ON PROBLEM 1:

PROBLEM 1: CLIMBING

i. The iterative rule says "A solution to the problem of climbing one box at a time, can
be used to construct a WHILE loop that solves the problem of climbing a stack of
boxes". The rule defines the meaning of WHILE in the environment. Or, if we regard
WHILE as a primitive constructor whose meaning we understand, the rule is an induction
principle for the environment.

ii. The program part ?? in the conclusion of the iterative rule transforms the situation
after the execution of the loop body (?) back into one in which the invariant is again
true if the test ;s true;

ON(x,u);r'(ROBOT(x)AON(xly)ASTACKED(u,y).

We restrict ?? to be a sequence of assignments.

iii. The goal of climb is ONTOP(M), the negation of the control test in this example.

Steps taken by a search procedure in solving this problem are shown in Figure 2. It
starts with state situation I and determines by logical reasoning from I and the axioms
which operators have pre-conditions that are true in I . It applies these operators and
updates the state to the new stale using the rule of invariance. It repeats this process
on the new states. Node 6 indicates the initiation of a subproblem (the premiss of the
iterative rule) with a new initial state (the invariant) which is a subset of the state
above it at Node 5.

llV.i l-iT-Mllll^i »amiiiani^ rr-''■-■--"'•"-■-■ *--"■■" ■ „u^.^-^.- ■-■■■.—^i . -^-. ..H.V..;.,.. .,.. .- ,. . .. l.ri-füttM-HAii^i^nif^^A^^-*^.^"-

ppppppBIBBHiiPPIffiiBIPP^pwr, ^ JimBpwiBipipBpiipipspwi^wwp^^

LOGICAL BASIS AND OVERVIEW 12

• CindoaCll.tU

STACKED(U.T)

ll01OTOOAM(M,Y)»STAaB)(U.Y) Q

OBIOt.B) Q

.t.pup(M.t.U)

cllnb

ONTOP(M)

SEARCH FOR SOLUTIONS TO Ijg CLIMBING PROBLEM
"" Figure 2

The solutions corresponding to the paths shown in figure 2 are:
(j) |{standon(M,Bl);stepup(M)Bl,B2);stepup(M,B2,B3))0NT0P(M).

(ii) l{standon(M,Bl);y^Bl;u*-B2i
WHILE ^ONTOP(M) DO BEGIN

stepup(M,y,u);
y-u;
IF STACKED(w,y)THEN u*-w;
END}ONTOP(M)

where the assignments within the WHILE loop correspond to the ?? of the iterative rule.
The variable w is a special variable.

NOTE: It looks as though solution (ii) is more general than solution (i).

Using the frame rules we can now construct a proof of the statement l{solution}G within
the logic of programs.

JlittBVffliMiBlMiiiiiiliMl'iiii'r 11 •■'-■■'•^•'•'■'^^'^■^^'^'^'^^^^^■t'^.^^i^~.^^--^.r.-^-. ■ ■■-■■ iifiil,ti>fiiiiiii1ii1lit|--|Vli-»tiii>hiiiiiiiiirr-|iliiii-fii r in „ ...

13 LOGICAL BASIS AND OVERVIEW

1. I=>{ROBOT(M)AAT(M,L)AAT(B1,L)ABOX(B1))

2. l{standon{M,Bl)}ON(M1Bl)ASTACKED(B2)Bl)AROBOT(M) lfFl,R4fRl,R3

3. ON(MlBl)ASTACKED(B2,Bl)AROBCT(M){y<-Bli
j^B2}R080T(M)A0N(MIy)ASTACKED(u,y) R0(i),R2,R3

4. l{standoniMIBl)iy*-BliU^B2}R0B0T(M)A0N(M1y)ASTACKED(u,y) 2,3,R2

5. R0B0T(M)AON(M,y)ASTACKED(u,y){stepup(M.y.u) }ON(M,u)AROBOKM) F2,R4

6. ROeOT(M)AON(M,u){y<-u}ROBOT(M)AON<M,y) R0,R3

7. 0N<Mly)A3zSTACKED{z,y){IF STACKED(w,y)THEN u^w}ON(M,y)ASTACKED(u,y) R0,R3

8. -3zSTACKED(z,y)A0NT0P(M)(IF STACKED(w)y)THEN u<-w}ONTOP(M) RO

9. (0N(M,y)A3zSTACKED(zly))v(^2STACKED(z)y)A0:\lT0P(M))
{IF STACKED(w)y)THEN L-wHON(Mly)ASTACKED(u,y))v ONTOP(M) OR-Lemma 7,8.

10. R0B0T(M)A0N(M,y)A.(3z)STACKED(z)y) = ONTOP(M) F4,
^{0N(M,y)A3zSTACKED(z,y))v0NT0P(M)

R0B0T(M)A0N(M1y)A 3zSTACKED(z,y) o (0N(Mly)A3zSTACKED(z,y))v0NT0P(M)
ROBOT(M)AON(M,y) = (0N(M,y)A3zSTACKED(z,y))v0NT0P(M)

11. R0B0T(M)A0N(M,y)ASTACKED(u,y){8tepup(M,y,u);y*-Ui
IF STACKED(w,y)THEN u^w}(ON(M,y)ASTACKED(u,y))v ONTOP(M) 5,6,10,9^2^1

12. ROB0T(M)AON(M,y)ASTACKED(u,y)iWHILE^0NT0P(M) DO ...}ONTOP(M) 11,R1,F3

13. Ksolution (ii)}ONTOP(M) 4(12,R2
PROOF of l{solution (il)}G

We refer to a formal proof of L(F)||-I{A}G as a correctness proof. The existence of
such a proof implies only that the program is correct relative to the frame. Thus it is
easily seen that the final state implies (Vx)(B0X(x)^0N(M,x)), hardly a situation we had
intended, but which arises from the invariance rule owing to our not having axioms such
93

0N(M(x)A0N(M,y)=)x=y.

In other words, our frame admits non-standard models.
We could extend the frame by adding this additional logical axiom and go back to
solving the problem all over again. But this would have to be repeated if some other
non-standard model was discovered still later. We ought to be able to do better than
that!

Now, solution (ii) may still be "correct" (or solve the problem) in the extended frame.
And we can determine this from the proof of l{solution (ii)}0NT0P(M) by checking to

-— aa. .».,...,.^. .; .,.....^.IJJ„.,„.„.„ mir-ininMuMiMin *-iv-'—^"'--'■■ ■■- -

■iilijfjuj^ljwyiiiiiuuiw^

LOGICAL BASIS AND OVERVIEW 14

see if any step uses facts from an intermediate state situation I' that contradict the
extra logical rule. In other words, we can "run" the proof on the new world with a
special consistency check against the additional facts. This ought to be much easier
than solving the problem again *rom scratch.

The proof above formalizes (i.e. provides a description for the purposes of analysis)
WHAT it is the problem solver has finally done when it has solved the problem. It is a
record of those features of the frame and initial state thst were essential in
constructing the solution. For example, we have actually proved
R0B0T(M)ABOX(Bl)ASTACKED(B2,Bl)AAT(M,L)AAT(Bl,L){Solution(ii)}0NTGP(M)
within L(F). This proof did not use BOX(B2),BOX(B3),or STACKED(B3,B2). If there was
a slacking operator in the environment, we could alter the proof—without having to
resort to the problem solver again -- to eliminate the hypothesis "Stacked {B2,B1)". It
will be noticed that a similar proof for solution (I) use? more properties of I; solution (I)
IS less general.

It is therefore plausible that a correctness proof for a solution program will be useful in
answering further questions about that program such as: Does It solve this new
problem'.' Can it be altered to solve a given new problem? Are there problems it will
work on that another program won't?

PROBLEM 1: THAND-OR-AND TREE SEARCH
Figure 3

 -■ -r v- ^-~^-~— .^i^j.....,^,^,!^;,...^,-.;..,^.,::.,!.,^;.^;.......-

15 LOGICAL BASIS AND OVERVIEW

2.3 THE FORMAL PROBLEM SOLVING ALGORITHM

To automate solving simple problems of this kind it is sufficient to use a straightforward
problem reduction search [Nilsson]. Figure 3 illustrates the depth first reduction of
goals to subgoals using the input frame rules (as described below) until subgoals are
reached that are true in the current state. In figure 3, there are two kinds of nodes,
Goal nodes and Rule nodes corresponding to the separate steps of (1) choosing a rule
to use, and (2) generating the subgoals necessary to apply that rule. Goal nodes may
be any combination of THAND,(defined below) OR, AND, but Rule nodes are always OR
nodes [Nilsson 1971]. The arrows from each rule node ooint to its immediate subgoals.
If a node reduces to an OR of its subgoals (which a.'-e thus OR- nodes), it has no angle
mark; i' it reduces to a THAND of its subgoals the relevant arrows are connected by
one argle mark; an AND of subgoals is denoted by two angle marks. Each rule node is
labelled <n,Fm> where n is the order in which it was achieved (omitted if it was not)
and Fm is the frame rule used; similarly goal nodes are labelled <n,Gm>.

We give an informal de-icription of the reduction algorithm (or subgoaler) in the simple
case where it does not contain the rule of undetermined values, as follows:

The subgoaler computes on a triple, <G',I',A>, where G' is the subgoal to be attempted
next, I' is thfv description of the current state, and A is the current partial answer. Let
- be a sub tution that replaces variables by terms from I (the initial state). Nodes in
the subgoal tree are developed by using inpu! rules in F: if a rule of F has a conclusion
or postcondition Q such that Q* = G' then the rule is USED to develop the node by
appending its premisses or preconditions H^-.^u as subgoals of G'. Q is said to

match G".

A goal G" is ACHIEVED in one of four ways:

(a) if there is an .-< such that I' U F = G'od,

(b) if not (a), then G" is developed using an instance of a frame rule with post-condition
(or goal) Qu. Let the immediate subgoals of G' be GUG2 where * is the principle
connective in the preconditions of the frame rule, so that Gl and G2 are *-nodes. In
this case, G' is ACHIEVED if:

(i) one of Gl or G2 is achieved (in the case * is OR),

(ii) both Gl and G2 are achieved (in the case * is THAND),

(iii) both Gl and G2 are achieved (in that order, say) and the updated state
(defined below) that results from achieving G2 also satisfies Gl (in the
case * is AND).

ktttutummMsxi ^s^iiÄi^.a^1,^„i.i^u^^VÄ,,,,;..,.w,v^

«nBWB»WWpWIH!5P«BpopW«PWP5!P^»W^W»^ wmimmwmm^mmmmmmmmmtmmm®?!

LOGICAL BASIS AND OVERVIEW 16

If G' is achieved under (a) there is no change in the current state and answer.
However, in case (b), both are UPDATED as follows: let I' be the current state iesulting
from achieving G1*G2; the state resulting from achieving G' is MQod.D. A is composed
(by R2) with the procedure call or while statement corresponding to the rule that was
used to develop G'.

A node in the THAND-OR-AND tree FAILS when the goal associated with the node
cannot be achieved - essentially because it is not true of the associated state and
either no rule can be applied to reduce it or one of its subgoals is not achievable.
Whenever a goal node fails, the search procedure (simplest form) "BACKS UP" to the
goal node immediately PRECEDING it and attempts the next OR-possibility for that goal.
The search is DEPTH FIRST.

Thus, an AND assertion is achieved when all of its elements (subgoals) have been
achieved simultaneously in the same state; a THAND assertion requires only that its
subgoals be achieved in some order but not necessarily simultaneously.

This simple kind of search algorithm can be implemented quite easily using the goal tree
generation, automatic backtrack and data base access functions of MICRO PLANNER
[Hewitt 1971, Sussman and Winograd 1972], or any of the other current problem
solving languages. However.it is necessary to distinguish between the formal algorithm
and the implementation since the latter can only approximate some of the formal rules.

THE UPDATE PROBLEM. The updating of a state to the new state resulting from the
application of an input rule is formulated by invariance. In general the rule of
invariance is not computable, but even in cases where it might be, it is IMPRACTICAL.
The implementation of this rule has to fall short of its formulation. Inconsistencies in
the state description are almost certain to arise eventually. We can try to delay this
by paying special attention to those axioms that are most likely to be transgressed (e.g.
uniqueness and single-valuedness properties). The case of ITERATIVE rules provides a
particular difficulty since the rule goal G may not provide enough information about
what went on during the iterations of the loop body to continue planning after an
application of such a rule. We allow the user to specify an output assertion as part of
an iterative rule, in which case invariance is applied using this assertion in place of the
usual rule goal (see section 6).

2.4 CONDITIONALS.

Extending the description of the goal reduction algorithm to include the rule of
undetermined truth values follows closely the actual system implementation discussed in
Section 5. Here we give some motivation for rules R5 and R6.

Conditional statements ?re constructed whenever an undetermined goal occurs. The
notion of undetermined truth value used here is an operational one. The problem
solver wants G' to be true in I', G' is not true in I', no way of making G' true can be
found, and G' is not false in I'. In such cases, the algorithm continues by splitting its

üaiiWMMMi)t]kHMiMttlMjllMHaiigittlli *4*4MU i ifiMi^iMiwiam 11 "*i«.^jn-; ■•■■•: ■■•- ^ -..-.:.■-. ..MI..>,j...■■..,■ -■„...w.j.a

IIHIimillllllH in ■nmmmm-.rr.r .,..,

17 LOGICAL BASIS AND OVERVIEW

problem into two subproblems: to solve a more global problem G* say, (a) assuming G'
is true and (b) assuming G' is false.

For example, relative to the frame in problem 1 we can pose a second problem,
ll{';}ONTOP(M) where II differs from 1 only in not containing the assertion AT(M,L). Our
solution (ii) above is no longer a solution to this new problem since AT(M,L) is not true
in II (neither is it known to be false!) and there is no way of achieving it. Using R6 and
R5 ,the extended algorithm can construct the solution:

(iii) IHIF-'AT.M.L) THEN CALL PR0C1(M,L) ELSE
BEGIN
standon(MlBl);y-BliU'-B2;
WHILE-ONTOP(M) DO

BEGIN stepup(M,y,u)i y«-u;
IF STACKED(w,y) THEN u^w;

END
END}0NT0P(M).

and the proof of correctness of solution (ii) can be extended to a proof of II{solution
(iii)}0NT0P(M).

The implementation of these rules is complicated by considerations such as the
following.

(a) A stack is required for the subproblems for cases when undetermined subgoals are
assumed false, i.e. subproblems for the form rA^G'{PR0CN}G*.

(b)-Criteria for the choice of G* are required. For example, the contingency problem
above is llAiAT(M,L){PROCl(M,L)}ONTOP(M). Although the problem solver has found
that it cannot solve ll{?]AT(M,L), there is no reason to suppose that this is a good
choice, or indeed that it can be solved. We might have chosen
llA-.AT(M,L){PROCl}ON(M,BU instead.

(c) The order in which goals are attempted may affect not only whether a solution can
be found, but also whether the solution is sensible.

(d) Undetermined truth values can also arise as a result of applying unreliable
operators, for example:
AT(hand,x)AAT(object,x){!ift(hand,object)}HAS(hand,object)v DROPPED(hand,object).

We shall consider these problems in detail in Section 5.

2.5. CORRECTNESS OF SOLUTIONS

In the previous examples we showed that if the frame rules were taken as assumptions
then the solutions could be proved within the logic of programs to solve the problems.

immtiammmmimm
 - -■ - -- ■ -■"^-'■•— -^-i r • i; iiiih iiirtmgiMiitltiiiiMWiitiii,i i ii m , uä

|l|Mju|j||uwiW'<^l,'JÜLMu.'4<«>UW(^WW>fl^mMiWV<w^uniin"Mi < i.i. • «vw wwvmww« w.^iawiiWf^wiwPjBwnwTO.wjnTTfjwwwJ^BySimaSSP^^

LOGICAL BASIS AND OVERVIEW 18

This is what we mean by the CORRECTNESS of the solutions. The proofs require the
s tndard rules, but these are all rules of the logic of programs, w. h the excep ,on of
^variance and undetermined values. A proof of correctness of a solution generated by
he formal problem solving algorithm, based on the frame ,n wh.ch the problem was

nosed can be given in every case. This does not guarantee the correctness of every
actual 'olution since, as we have seen, the implementation only approximates certain
mes of he formal Igorithm. It is a justification of the ormal methods. In addition .t
nrovides a measure of confidence in actual solutions relative to the soundness of he
frame (which is the user's responsibility) and to the degree to which unsound heuristics
n the mp ementation have been invoked in finding a solution. In fact, the result allows
us to safe Sent conditions under which actual solutions will be correct, but we w.ll
i

i
not do that here.

To establish this result it is necessary to prove (a) a successful search tree of the
L.^V ^nrithm has certain properties, and (b) a tree with those properties can be

nstSln^o a'o^nes's p?oof of the solution. We shall state without proof the
properties of successful searches, and then give the details of step (b).

Let us first consider the very restricted case where (a) no calls to LISP functions take
dace (b no undetermined goals occur, and (c) no iteration rules are used, We assume
Sat the problem is stated in the form l{?}G where G contains only variables occurring in

I.

The subpoaling algorithm treats v (or) as exclusive; in order to achieve P(x) v Q(x) it
[Js to achieve Rx) and if this fails it tries Q(x). When the subgoaler completes a
successful computation it has constructed a goal tree, Tr say, and a subs ii.Mon u Tr
cSs solely of goal nodes (the single rule node between a goal and its «ubgoals in
fhe comple ed search tree can be eliminated and the arrows leading directly from the
goal to its subgoals labelled by the rule name). Tr and * have the following properties:

(1) each node of Tr has associated with it the number n if it was the nth node to be
achieved, a Boolean expression G(n) (its goal), a program part A(n), and a state

condition l(n),

(2) u substitutes terms from I for variables in Tr,

(3) IUF|-G(1)<*,

(4) if G(n+1) is at a leaf node then l(n)UF|-G(n+l)ci,

(^ if G(n+1) is not at a leaf node then it is related to its immediate subbgoals
G(k) G(n) by a procedure P{p}Q or a definition P^Q such that Qo^n*)*AQ* and
pL=G(k)*...*G(n),where * is either AND or THAND. G(n+l)is achieved from l(n).

^ln rases 3 and 4,and where a definition was used to develop G(n+1), l(n+lH(n) and
A(+l)=A(n): n th; case of a procedure call of the form P.{pc.}Qc. I(n+1) is
lnv(Q .Kn) and A(n+l)=A(n);p.y.. Finally, the property that G(n+1) is achieved from l(n
mplies that l(n)UF|-Pod. (NOTE: this use of V is an extension of the usual notion of

*"iJ'-^'-i''~ ■■'■'•'- ■\'Mü-m-m-iikätf^mMiV*b^iSirVi'iiiim'-.ti-\' .^..„^.-^^^.^^....^.i.. i.Vi.nrr■it'ia-"-'"''-'-" m«^*«.^-^. .. _ . ._^, ■ -;....i.-v.....!

iiwwuwumwiw«« UP mw'1 jm' l^l!ippjjPJ(pi(ypjK!l(»*H'^B»»wvv,l^«i<'H^^^

IS LOGICAL BASIS AND OVERVIEW

first order proof in the case when P* is a THAND; however it is easily seen that
THAND connectives may be eliminated from frames by introducing extra definitions, so
the extension is not essential.)

Let the root of Tr be ihe mTH node. We may prove that the output program A(m)
solves the problem, i.e., L(F) ||- l{A(m)}GI (here G(m)=G) by proving a similar result for
each intermediate goal and partial answer. Namely, for each ncm, L(F) ||-l{A(n)}l(n) and
l(n)^G(n)^ can be proved by induction on n. The cases are as follows.

First, L(F)1|- I => GU>.y. by property (3) above.

Now assume 1{F) ||- l{A(n)}l(n).

If C(n+1) is at a leaf node then l(n)UF3G(n+l)c^, l(n+l)=l(n), and A(n+l)=A(n). Thus
L(F)||- l{A(n+l)}l(n+l) and L(F) ||-l{A(n+l)}G(n+l)ai by the rule of consequence Rl.

If G(n+1) is not a leaf node then l(n)UF|-Pc^ by property (5) above. If G(n+1) is related
to its immediate subgoals by a procedure, say P{p}Q, then Pod{p}Qoi is derivable by the
change of variables rule R4. The rule of consequence implies L(F) ||- l(n)(pod}Qo^ and
invariance implies L(F)||- l(n){p«:|l(n+l). Rule R2 allows the composition of this with the
inductive assumption so that L(F) |i- l{A(n);p^}l(n+l). Finally l(n+l) |- G(n+l)c^ since
Q*= G{r\+l)oc A QV.. Tlie case when G(n+1) is related to its subgoals by a frame
definition is straightforward.

Thus, by induction on n we can prove L(F) |!- l{A(m)}l(m) and l(m)='Gc^, Finally we note
that if G contains only variables occurring in I then Gu=G. Therefore, we have proved
L(F) ||- l{A|G.

The extension of this proof for the case when there are undetermined goals is given in
Section 5, and for the case when iterative rules are used in Section 6.

^ s= m^t, tmmmitmtmm^imtvitwi, ': :;.'■.... ■.:-.-■ -. ■. ■■.',:■. '-.i,

P"" WB»PBW»ÄWWPIWWW^W!W»IW^ »Tl^TTWSPWWWIi^ .JIUJIJ^ .LA^tMr^M^^^m

20

3. DEFINING THE PROGRAMMING ENVIRONMENT

In this section the Frame definition formalism is presented. This includes the Frame
language the Advice language, and the output Program language. A complete example
of an input frame, together with advice, and the resulting output program is given.

3.1 FRAME LANGUAGE

3.1.1 ASSERTIONS: The syntax for assertions used in definitions of rules, axioms and
state descriptions is shown in Roure 4.

<variable> ::= <identifier>
<function symbol> ::= <identifier>
<predicate symbol> : - <identifier>
<term> ::= <variable>|(<fL'nction symbol>)|

(<function symbol><argument list>)
<argument list> ::= <term>|<term>)<argument list>
<functional term> ::= (EV<term>)|(EVN<term>)|<tsrm>
<atomic formula> ::= <predicate symbol>(<predicate argument list>)
<predicate argument list> ::= <functional term>|<functional term>,

<predicate argument list>
<literal> ::= <atomic formula>b<atomic formula>
<!iteral element> ::= <literal>|REQUEST(<literal>)|{<assertiön>}
<disjunction> ::- <literal element>|<literal element><or><di9Junction>
<assertion> ::= <disjunction>|<disjunction><and><assertion>

<and> ::= A|&

<or> ::= vjs

SYNTAX OF ASSERTIONS
Figure 4.

Identifiers are strings of characters not containing the negation symbol, "-", nor the
usual LISP delimiters, e.g., blanks, commas or parentheses. The <or> connectives have
higher precedence than the <and> connectives and a logical condition is terminated by a
semicolon, ";''•

The only constructs whose meaning requires special explanation are functional term>)

<literal element>, and the connectives "&" and V.

If a term is in the scope of the modifier "EV" then all functions in that term are applied
to their arguments (i.e. evaluated as LISP functions) when that literal is used in the
problem-solving process. "EVN" further specifies that the functions to be evaluated
have numerical values. The default convention is that the term is manipulated as an
unevaluated symbolic expression. The "REQUEST" modifier, which takes a literal as its
argument, alters the way that literal is treated by the problem solver. This is discussed
in Section 4.

The AND connective is denoted by "A" . Thus a state satisfies the assertion AAB if it

MrtliMMiiHimT i ***^W.rf.iM.-.frw^.^ .«^..q UM^ii,..- .»..^^«mn^m«»

• ■■■r-v.i .■• ..' ..J> r,,JI.-■-.-,.. .. ,,
■ - - -- -—■ ! ——' ■■ ! : —««

21
DEFINING THE PROGRAMMING ENVIRONMENT

satisfies both A and B. The weaker THAND connective is denoted by & (Section 2).

Exclusive OR is denoted by "a".

3 1.2 STATE DESCRIPTIONS: Assertions specifying states are restricted to be

conjunctions of literals.

- 1 3 AXIOMS- Axioms are stated in either of the forms P=Q or P. where P and Q are
aiertlons They hold in all states and are used to complete a giver, state descnpt.on
by deduction of other elements of a state from those given.

3.1.4 RULES: There are three types of rules: primitive procedures, definitions, and

iterative rules.

(a) A primitive procedure is specified by a name, an argument list, and its pre and post

- condHions, i.e.

P {f (x,XK)}Q where P and Q are assertions in which x,^ are free, and f

is the procedure name.

The variables are formal parameters of the procedure. They may be "bound" by
lubsmution of actual parameters when the procedure is appl.ed to a state.

When a orimitive procedure is defined it may be declared to be an ASSUMPTION. If it
^u^d in successful program construction, then the user is '" ^f «;d'«X. J«
opportunity to carry out a structured program development of this non-primitive
operation. This is described in Section 7.

(b) A definitional rule is of the form R=S where R and S are assertions, ^e relation, S,
b) A aeT,n,llona' r . condition 0f the rule. The meaning of a definition is that is given as the post condition OTJ ^ ^.^ ^ ^ of R A

Änris iLnreV^short^^aTsJrtionsln rules by defining a single relation as

equivalent to an often used condition.

(c) Iterative rules specify conditions that if satisfied justify the assembly of a "while"
loop to achieve the associated goal. They are instances of the iterative rule S2 In

Section 2.2, and are defined by giving:
A name, e.g. TLOOP, (without parameters).

A ^inJaHa^assertion Q that specifies relations that must be true in the
'late orior to each iteration. . .
An iteration step assertion R that specifies the goals to be achieved during

an execution of the loop body. U^.HW-
An iterative goal G, the assertion considered achievable by the iterative

(i)
(ID
(iii)

(iv)

(v)

(vi)
The^mat of iterative rules also allows the specification of a loop control
test L and an output assertion S if they differ from G.

i iiiiiiMnli ——- -- ^^^"'iMM*''1****'^^ ^.,..<...i,.,.J.,a-.1....-viftt,.[v ,MAifä,-irliillilih,l;in- i mrn „-vn

.

DEFINING THE PROGRAMMING ENVIRONMENT 22

The rule,
TLOOP
P;Q;RiG;L;Si
where P.Q.R.G.L and S are assertions,
defines the iterative rule "TLOOP"
associated with the goal G.

3.1.5 SPECIAL AXIOMS: After the rules and initial state have been defined the system
requests the following information for each predicate symbol P that has been
mentioned. The system use of this information is discussed in Section 4.

a) "Is P a function of the state7" The intent of this classification is to separate
those relations whose truth value may be affected by a state transformation,"
i e., FLUENT relations.from those whose truth value is constant over all
achievable worlds, i.e., NON-FLUENT relations such as "ROBOTW,
"INTEGER(Y)".

b) "Is knowledge represented using P partial?" A partial relation nay have truth
values TRUE, FALSE, or UNDETERMINED. Partial relations may be used to
represent incomplete knowledge of the world which may cause conditional
statements to be generated as explained in Section 5. A relation may be
declared "uncertain" which implies an absence of knowledge about it so thaf it
is assigned a truth value of undetermined a priori. If P is not "partial" it is
"total" and can only have truth values of either true or false. Thus rule R6
applies to partial predicates only.

c) "Does P have a uniqueness property in certain argument positions?" A "yes"
answer indicates that P cannot be true for two oequences of argument values
that differ only at one of those positions that are unique. The unique
positions are given using the notation, (XI,^XS,*...-.^), for example, to
designate the second and fourth argument positions. For each unique
argument position in relation P(al,...,an), an axiom is "built-in" from which a
contradiction may be established with P(bl,..,,bn) that differs in a unique
position and matches elsewhere.

For example the statement, "an object can only be in one place at one time", is
expressed by, AT(X1,*). If we add, "and only one object can be at any place", then we
use AT(*,*).

3.1.6 SIMPLIFICATION: Algebraic simplification rules may be given to simplify the terms
that may occur in subgoals during the problem solving phase. The -jimplification is driven
by a table of rules of the form s=t where s and t are termc, occurrences of su are
replaced by t<* for any substitution u.

The output format of any functional term may be specified by the user by giving a rule
in which its input prefix form is on the left, e.g., (PLUS X Y) = (X+Y).

— ...4*m lll^WllinflMfti^m'Wttfltii^i^lflM ^^:w.:--...:.v ■,J:...., ,.v--- r|-|iii^V|Wtf^^^"^^^'^.;t^i.^,'r,^.^^.,..,Mi,::/-f ,. ■, . ■- ^. ■- ... , L.

,- . ■ ■,•-. . -. ■

23 DEFINING THE PROGRAMMING ENVIRONMENT

3.2. ADVICE LANGUAGE

The advice facility is intended to enable the user to impose structure relevant to
solving a particular problem upon an already defined frame. This additional structure
includes preference orderings among goals and rules, and restrictions on the search
space. The preferences may also reflect the kind of solution the user wants.

Advice is given during program generation by means of an i^8^^1^80'1'^- J.1)?
advice subsystem may be entered by responding to a system query, DO YOU HAVE
ADVICE'" or by typing any key during program generation. The user may request \o
see the current path in the subgoal tree i.e. rules entered and goals pending, and
receive a diagrasis of the cause of any failure. This is useful in deciding what advice

to give.

The advice system enters a read loop recognizing and numbering commands from the
laneuaee shown in Figure 5. In the language syntax, optional symbols are enclosed m
■T" and "]"• enclosing a list of symbols in T and T indicates that one must be chosen;
<rule> Is a rule name; <rule list> is a list of rule names; <proc> is a primitive procedure
name; <advice num> is of the form " n", where n is an integer; and Q denotes the pre-
condition of <rule>.

After advice has been given the system may be directed to reject the rule it is
currently using, if any, or to try (perhaps re-try) the current rule.

The advice facility is an important tool for experimenting interactively with different
frames to determine their adequacy and soundness. At present, the language is
rudimentary and should be extended.

3.3 PROGRAMMING LANGUAGE

The generated programs are expressed in an elementary ALGOL-like language which
includes block structure, assignment statements, conditional statements, while loops, and
non-recursive procedures calls. The procedures may be typed, including Boolean, and
may have side effects in addition to the value returned. The procedure parameters are
normally called by value except in the case of special W-vanables in conditional
assignments (rule RO, Section 2).

-"— — -- - - ■

JilUji.!^. :■ :i.^^..;,^_.,.„_.,__^.,.^ , :. ..f..., y...... ,.;;.:.i-:tl,....^.:. -y.^. ...;^.-

I»^!^^?!^^!*»^^^ ' '«WT.fl»Hr-l.»TO,-l

.■-.....-■ •■'■..■■■■■ v: ■'-'-'■

DEFINING THE PROGRAMMING ENVIRONMENT

ADVICE LANGUAGE

24

COMMANi) SYNTAX

TRY <rulel> BEFORE <rule2:

FOR <rule> [FIRST] TRY <literal>

DELETE [<rule>,<literal>,
<advice aum>}

ADD{<rule>,<literal>3

ALTER <rule>

ASSUME [<rule>,<literal>3

RESTRICT • :rule;{TO .FROM]
■rule list>

ADVICE

STATUS

PAIRWISE INEQUALITIES <proc>

RECURSIVE <rule>

ACTION PERFORMED

Use <rulel> before -Crule,^- to
develop a subgoal.

Change the precondition Q of <rule>
to <literal> & Q if "FIRST" is
given otherwise Q V <literal>.

If <rule> is given, remove that
rule. If <literal> then alter
state to make <literal> not true.
If <advice num> then delete the
associated advice and undo its
effects on the system.

If <rule> is given then accept a
new rule. If <literal> then alter
state to make <literal> true.

Crule> may be modified.

If <rule> is given then an assumed
rule may be defined.
If <literal> then alter state to
make <literal> true and mark it as
an assumption.

For any goal in Q, if "TO" is given
then only rules in <ru]e list> may
be used, if "FROM" then no rule in
<rule list> will be used.

All advice given that session is
displayed.

The following information is dis-
played :

-rules entered and goals
pending in current subgoal
tree ,

-rules and goals in longest
path obtained so far,

-currently constructed program
segment

-longest program segment
constructed so far.

Fairwise equality is prohibiced
in primitive procedure argument
positions containing '■ .

The rule may be used directly to
achieve a goal in its pre-condition,
otherwise it may not.

Figure 5
--:■:;;■..:-■■—.—.-. , , , ■ - u —■- — , ■

^MiW.«WMi^JlJ;-^4.«Hfl*W4^

25 DEFINING THE PROGRAMMING ENVIRONMENT

3.4 AN EXAMPLE

Consider the task of writing a program to compute the nth Fibonacci number for some
integer n This task has been posed in [Balzer 1972]. The basic information required
is the recursive definition and the basis values. One way to express this in the Frame
language uses the following predicates with the indicated meanings:

VFIBiX.Y): "The value of the X Fibonacci number is Y",
C(X,Y): "The contents of the variable X is Y",
FIB(XIY): "The variable X contains the Y Fibonacci number,
INTEGER(X): "X is an integer",
ISVAR(X): "X is a variable",
>(X,Y): "X is greater than Y"
NEW\/AR(X,Y): "X and Y are local variables".

The problem is ISVAR(X3)AINTEGER(N){?}F1B(X3,N).

The frame contains:

1. Axioms VFIBd.Dand VFIB((ADD1 1),2) (these define initial values).

2. Axiom

VFIB((SUB1 V1),V2)AVFIB((SUB1(SUB1 V1)),V3)A =(V4,(PLUS V2 V3));

VFIB(Vl,V4)i ,,,...,., , ,
(defines \/FIB(\/l,\/4) for term? beyond the initial values).

3 An iterative rule (named TFIB) with goal FIB(V3,V8)i this rule defines the conditions
to be satisfied during an iterative upward computation. The oasis condition (to initialize
the counter and program variables) is:

NEWV AR(V1 ,V2) AiNTEGER(V8) AC(V1,(ADD 1 1))AC(V2,1) AC(V3,(ADD 1 1));.

The loop invariant condition is:

C(V1,V5)AC(V2,V9)AC(V3,V10)AVFIB(V5,V10)AVFIB((SUB1 V5),V9);.

This states that at each entry to the loop body, if the value in the counter is i and the
values in the program variables are j and k then j is the ith Fibonacci number and k is
the (i-l)st Fibonacci number.

The iteration step condition

C(V1,(ADD1 V5))AFIB(V2,V5)AFIB(V3,(ADD1 V5));

specifies what the iteration step is to accomplish. The control test, >(V5,V8) and an
output assertion FIB(V3,V8) are given.

liatdiättiaimmtaM^ttimimmttk - " ■ ■ —IrMWi—IIM^m—iitii» »■"'^^ , ; , : I ^ -■ ■ ^ —■ ■""'£

■ppSIWJS-'JWM1^*!1 ?SI ?y»^.!^iP!»^ij^.i-4i^jpiitp^|^^|^Bi;)p^ ■:«B!pwwffr!^»wwia!g|

DEFINING THE PROGRAMMING ENVIRONMENT

4. A definition of FIB in terms of VFIB and C

TDFIB
VFIB(V2,V3)AC(V4,V3); FIB(V4,V2);

26

5. A simple primitive procedure for assignment is also given, i.e.

HV1,A1)
ISVARO/l); C(VlfAl)}.

No rules are declared as assumptions. The additional information given to complete the
Frame specification is shown in Figure 6, and a program generated from this Frame is
shown in Figure 7.

»itmäm^tmntmamiiammammit^ttii iiifniamHMiMhili"--'- — ^-.-~ , --^- ■■■'- ■■ ■ . ^^ ■ ■ ■ - ■ ■ ~..~ *■*£*

«!W!iPBWPIBrpp!!PPI*»»«wsw!«p^^

27 DEFINING THE PROGRAMMING ENVIRONMENT

\

■

PREDICATE SYMBOL

C
FIB

VFIB
INTEGER

ISVAR

FLUENT

TRUE
TRUE
TRUE
TRUE
FALSE
TRUE
FALSE

PARTIAL UNIQUENESS

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

C(X,")
FlBfX,*)
FALSE
VF1B(
FALSE
FALSE
FALSE

■)

SIMPLIFICATION RULES:

.ADD! (SUB1 X)) - X

[SUSI (ADD1 X)) - X

FUNCTION OUTPUT SYNTAX;

(ADD1 X) = (X+l)

;SUBI X) = (X-l)

'PLUS X Y) = (X+Y)

ADVICE: TRY TFIB BEFORE TDFIB

RECURSIVE TAFIB

Figure 6

IHHHHHHHHt ii me» » rnt «K**»»-1"'»111 i'"'*11 ******'""'"'***

PROCl ;xj,N)
ISVAR(X3);im'EGER(N);

COMMEOT
INPUT ASSERTION

NONE
OUTPUT ASSERTION

FIB(X5,N)
BEGIN

YI - i+i);
YP - i;
x5 - (i+i);
WHILE ->>(Y1,N) DO

BEGIN
Yl - (Yl + i);
Z2 - Xjr,
X3 - (X3 + Y2);
Y2 - Z2 ;
END

END

Figure 7

■»■^■..■^■i.^iuMiiJkUMm-»-^.^.—■..■.-J , ^^^.^—._. _ . i itiiiiMmiiiiliiini- i- i ^-^.--4.,f...<..Vrt^..^.t-.is^iU*iJ.:ö;v^\Ui-iaa

(J-iaMüllMvl-'T-i":,1 ' ntft^-mtftwaz-?!^!!^^*?****^^ ■

28

V.

4. PROBLEM SOLVING PROCESSES

During the process of problem solving ard program generation, information is needed at
many points to reduce the rearch space or to produce reasonable programs. Some of
the information is provided in the frame specification by statements about the rules and
predicates; other useful facts are provided to the problem solver in the form of rather
simple advice. Roughly speaking, there are six basic processes in the problem-solving
system where extra facts can help: (a) pattern matching, (b) development of nodes in
the subgoal tree, (c) updating the state description (i.e. implementing invariance), (d)
backtracking in the subgoal tree, (e) conditional branching, (f) assembly of programs.
Each fact (as opposed to a rule or axiom) in a frame specification and each sort of
advice has -4 least one function in speeding up a basic process. Below we describe
some of the ways in which the present variety of facts and advice is used (full details
are given in [Buchanan 1974]).

(1) OR-Node Selection. When more than one rule can be applied to reduce a given
goal, some selection and preference criteria are needed. By using the advice
system,the rules and axioms that may be applied to achieve goals within the
precondition of a rule or axiom may be restricted to or excluded from ä given list.
Also, a preference ordering may be specified among rules and axioms with common
post-conditions. Goals within the preconditions of axioms are always restricted to
deduction within the current state, i.e. can be reduced only by use of other axioms, and
do not cause a state transformation nor add any construct to the generated program.

(2) Predicate Classification. A predicate P is classified according to the kind of
subgoaling permitted to achieve a goal of the form P(t). If P is declared to be NON-
FLUENT, then any goal literal containing P can be achieved only by deduction f.rqjn the
current state. No rules (procedure, iterative or definitional) are applied. FLUENT .goals
are attempted by deduction and state transformation. If a fluent predicate occurs in a
literal which is ihe argument of the REQUEST modifier, then it is treated as a non-
fluent.

(3) Goal Ordering. The achievement of a condition (and the efficiency of the output
program) is strongly influenced by the ordering of its subgoals. In particular, the
bindings of variables occurring in goals may be determined by earlier achieved
instances. In some cases only certain orderings will permit achievement. An objective
of an automatic problem solving system is to determine the optimal subgoal ^.dering,
but at present this is provided by the user when the Frame is defined and may be
altered by advice. However, the system automatically orders non-flue^ goals first in a
condition; this relatively short achievement search is used both as a quick rejection
strategy and to get variable bindings of the correct type for the remaininp fluent goals.

(4) Recurring failures. When failure occurs in some subtree prior to successfully
solving a subproblem, its causes should be used to avoid repeating the same failure in
the continued search if possible. At present this must be handled using the interactive
advice system. This informs the user of the current path in the subgoal tree, current
program generated, and goals that fail, thus allowing interactive correction when a

 --'■■■iiimini ii in - ■...—...■-■„■.■^■., ..■ .,- . ■ iniiirüriiiiittiiiim , .. -. ;.,.:._. -. i—ma ■,

\. LUKWIIHIJUIJIIIJIMUIIfUWIIVUW^'IWMWIWUIR«^^^^^ ,l UHIJLUAWHP IJJi.m IUJ»I«N I m... I

2g PROBLEM SOLVING PROCESSES

repetition occurs. These situations can also be eliminated by placing the (eventual)
successful subprograms on the program library for use as MACROS.

(5) Repetition. Certain types of looping behavior in the subgoaler are prevented using
the feature of the Frame language that allows a rule to be declared recursive or non-
recursive. If declared non-recursive, then that rule will not be used directly to achieve
a goal in its pre- condition and it will not be entered twice to achieve the same
instance of its post-condition within the same subgoal tree. A more general mechanism
should consider not only the current goal and rule but also the current state as well.

(6) Truth Values. Though the underlying semantics is three valued, search efficiency is
gained by restricting relations involving certain predicate symbols to be two valued. If
a predicate P is declared to be TOTAL, then failure to achieve P indicates that --P is
true Only true positive instances of total predicates are stored in the state. The rule
of undetermined values is not applicable to literals involving total pred'-cates. The
additional processing required for PARTIAL predicates is described in Section 5.

(7) Useless Procedure Calls. In some cases, the application and generation of redundant
or trivial procedure calls are detected and avoided. At the moment this is done by
placing restrictions in the frame on the actual parameters of primitive procedures. The
system will not use an instance of a primitive procedure that contains pairwise equality
between its actual parameters that has been prohibited by the user. For example, the
advice "PAIRWISE EQUALITY M0VE0<l,x2,*,*)" will cause the rejection of the procedure
call "MOVE(MAN,CHAIR,P,P)".

(8) Uniqueness Properties. Uniqueness or single-valuedness in argument positions of
certain predicates is sufficiently important to justify a special mechanism rather than to
rely on deduction using axioms. The designation of certain argument positions as unique
is equivalent to efficiently building in axioms of a particular form, e.g. P(xl,*)
represents the axiom,

H P(xl,x2) A x2 ^ x3 -» ^P(xl,x3).

These special axioms are used for consistency checking (in the implementation of the
rule of invariance) when the state is updated.

(9) Context Linking. The context, which includes the state and bindings on subgoals
currently pending at a node, should be available to aid search decisions, e.g.
instantiations of subgoals or choice of rule, at descended nodes in the subgoal tree.
The system has a mechanism that if requested will keep track of the instantiated goals
at each level of the subgoal tree so that their variable bindings are available when
attempting lower level goals that precede them in the depth first ordering. This is used
to instantiate the lower level goals. For example, suppose Q(b) A P(a) is a condition to
be achieved and a primitive procedure R(y) A P(X) {p(x,y)}Q(y) is applied to achieve
Q(b), then for the P(x) in ,the precondition of p, P(a) wil! be used since it must be
achieved at the higher level anyway, i.e..

^^—.^—i^^^^.,......— .. , „... . —^-. .

^i&&KP%*&*n$m*&mzwm&^^

■■■mMtfBUMw

PROBLEM SOLVING PROCESSES 30

/ \
Q(b) P(a)
/ \

/ \
R(b) P(x)(<x-a>)

This heuristic may be viewed as tht -»pposite of subsumption, the strategy being to get
ground instances ss soon as possible to help avoid long searches using rules. This is a
rather restrictive strategy that may exclude solutions and is only used when requested
by the user.

(10) Evaluation of Predicates and Functions. For certain predicates occurring in
subgoals, achievement is most efficient by direct evaluation. If a literal occurring in a
goal is formed with a predicate that has a LISP definition, then that literal is evaluated
as a LISP statement. Special processes or even subsystems ran thereby be linked into
program generation. Evaluation of arbitrary functions occurring in terms in arguments of
goal literals is done if the function occurs in the scope of an EV modifier. These
evaluations assume the soundness of implicit axioms describing the LISP definitions, and
the consistency of these axioms with the Frame. For example, the equality predicate,
"=", is evaluated using the LISP "EQUAL", and the predicate NEWVAR(xl,x2,...,xn) takes
an arbitrary number of arguments and binds each Frame variable xi to a new program
variable (for use perhaps as a local variable in a block).

(11) Simplification rules. Rules of the form s -» t where s and t are terms, may be
included in the Frame. Such rules are applied to simplify terms In goals by replacing
occurrences of su by tc^. This not only reduces the complexity o; terms in the subgoal
tree, but it also modifies the pattern matching process and the set of rules that can be
applied to reduce a goal.

(12) Computing Input/Output Assertions. In Section 2 primitive procedures were
viewed as Frame rules of the form P{p}Q, where P and Q are the pre and
postconditions for p. The conditions P and Q may also be viewed as sufficient input and
output assertions for p , that must be satisfied by the actual parameters of p. For any
generated program segment A, the input assertion lA is computed as the conjunction of
all literals, I, from a state that were used in achieving subgoals encountered during the
generation of A and did not occur in that state as a result of a postcondition of a
procedure whose generation in A preceded the addition of I to lA. The output assertion
0A is the conjunction of literals added to a state during the generation of A that are
true in the final state.

The usefulness of computing sufficient input and output assertions for a program or
segment thereof MII become apparent when we discuss program generalization and the
construction of conditional statements.

All of these applications of facts and advice with the exception of (12), are intended to
have a direct effect on reducing the growth of the subgoal tree (process (b)). In

«•.-. .duiUBUiiu'ttuUiBM .^l,..,.....,.^.^..^..^.,... -,......,,. = ...,.^./.;i_....... „. . ; ., ^.■,. l.»^.-^..^^.'!,.^......! , -„..^..».^.„..^...J..^... ^■., ■..^a^.V...

ppWHNMWiAfMWWW^

31 PROBLEM SOLVING PROCESSES

addition, the pattern matching process (a) is extended by (U); (c) is aided by the
restriction of truth values and the special axioms (6,8); (e) is dependant on (6 and 12);
(f) is aided by (3,7,11,12). There are other techniques, mciinly details of the
implementation, some of them heuristic, that affect problem solver, particularly the
backtrack (d), the updating (c) and assembly of programs (f) (e.g. the implementation of
the A connective by software interrupts that protect already achieved goals, includes
certain assumptions about backtracking when an AND-node fails). Details of these will
be found in [Buchanan 1974].

:

\

:

.L.
am mamämimmmäämmätiäm iillM^l^r^^'^^^^^■'^a■■>"^^''■^^■^»J-^•'•■^^->^^"^^^J^•''• '"''MlflMMMiM • ;:■..

PP!«p*4iP!W!#i)ilp^^

1 HS
I
K: 32

I
5. GENERATION OF CONDITIONAL STATEMENTS

Conditional statements are generated in situations where the rule of undetermined
values applies or when the outcome of a primitive procedure Is uncertain. In this
section the system methods for constructing conditionals will be described and an
example given. The question of extending the formal algorithm and the correctness
proof is considered.

5.1 UNCERTAIN PRECONDITIONS. As previously mentioned, relations involving partial
predicates may have truth values of TRUE, FALSE, or UNDETERMINED, whereas all other
relations must be either TRUE or FALSE. Partially valued predicates are intended to
express the possibility of an uncertainty or lack of knowledge about a state arising
during the problem solving and program generation phase of the system. The formal
algorithm for deciding when an uncertainty has arisen is rule R6 (the "I give up"
criterion of the system). As with invariance, the implementation of R6 is only an
approximation to the formal rule The system may give up too early, but this, in itself
does not lead to incorrect programs, merely redundant ones. » »

5.1.1 UNDETERMINED VALUES. During the generation of a program, uncertainty may
arise when a precondition for the application of a rule is UNDETERMINED with respect
to the current state. The implementetion of the rule R6 is described by the following
definitions:

DEFINITION A literal I is UNDETERMINED in a state S if the following conditions hold:

(i) pred(l) is partial,
and (11) the system halts without solving S{?}l,
and (ill) the system cannot prove SUF^I.

Condition (ii) means that I is not true in S nor can S be transformed into a state in
which I is true. If condition (ii) is true and i| is true in S then I must retain a truth
value of FALSE and the precondition subgoal I must fail. Failure to prove -I from S
establishes a truth value of UNDETERMINED for I with respect to S. This definition
applies to fluent and nonfluent literals but since the truth value of a "nonfluent" cannot
be changed by a state transformation, for them, it is sufficient to use only the logical
axioms in deciding condition (ii).

For the more general case in which the precondition may be a disjunction of literals we
have the definition,

DEFINITION A disjunction of literals {I, }",., is UNDETERMINED in a state S if at least one

literal is UNDETERMINED and no literal can be achieved from S.

5.2 CONDITIONAL STATEMENTS: When a pre-condition P is UNDETERMINED in a state S,
a conditional branch is inserted in the solution program. If P is a single literal I, then

MriUMMM '-•■..'■^•'^■■-•'■■' '^-^■■I.^.-.,;-,......„.-„-,...JJ.. „. .^ ..„ i . ..^.^^^^..—.^J.i. »^■^..H ,* ..J:,i-..^.^-..:..V.....

»^<PfcKT"«WW!5^»W?SWppiWWS!^^

33
GENERATION OF CONDITIONAL STATEMENTS

nro^ram eeneration may continue either along the path in which I is assumed to be
TRUE and rnwhkh future goals are attempted with respect to state S U{l}, or along the
Sth in which I is assumed to be TRUE using state S UH}. The system convention has
I , »« «inljtl a cTto a yet ungenerated procedure for the latter case. The tasks
or^erlinr-ch tinged programs areplaced in a subproblem stack for later
!Jnti!n (see section 5 3) Program generation continues, by convention, along the
fthusTnß state SU {1} This path is referred to as tie "trunk" program of the tree of
ÄnÄpogral generated while attempting to achieve the main goal. The path
Sinn at oresent is rather ad hoc since no assignments of probability are made at
thtXts oruncttifnty and no path is considered more likely to be successful In

general.

If an undetermined disjunctive precondition {I, }",, occurs in which literals {I, }-. m<n
are UNDETERMINED in S, then a nested conditional of the following form will be

generated:

if
if

then
then :

else p

then pm

m-l

else Pi
else Po

where each p. is a call to a program to achieve u selected goal G from state S, = S U {I,
• i=i+l & i<m } U {-1, ! Ui<j) } and Po is tho trunk program segment which satisfies
QAMD IG and forms' the else-statement in the main-clause of the conditional. Each
member of the set of triples (<pi , S, ,G>: Ujcm] is placed in the stack of
rnntinpencies and program generation continues for p0. The assumed literal,! „ is
rem^vedTom the state folfowing the generation of the ELSE clause in the trunk
program if it is not in the output assertion,

5 3 SELECTION OF CONTINGENCY GOAL: The goal G to be achieved by the coptingency
orograms is selected from the set of goals in the subgoal tree that are global to he
^determined precondition. Let us refer to the set of goals which are below G in the

subgoal tree, as the SCOPE of G,

The oarticular G chosen and its associated scope affect the length of Po , duplication
Imonp contingency programs, degree of difficulty in generating contingency programs
and v'alidUrof their use If the structure of the trunk program is to remain fixed during
contingency program generation then the choice of G cannot be deferred. The block

■M m^m ^jttmMtkmmmM »»jr^,J,,..»-^^,.:^^.;,,4.v|JMv,tfr,fciY-(ft,-fiM-l

ip«^ji«^At!i«!!f.,W»)WWMJ»»*«f|»«')WS i^HST^sgpriopa^Hwsraww»»^^

GENERATION OF CONDITIONAL STATEMENTS 34

structure of our program language imposes the restriction that for any conditionals in
p0, a contingency goal G' must not have a greater scope than G. There is also the
problem that if G is not fully instantiated (i.e. some of its variables are not in the initial
state) then inconsistent instantiations may occur in different contingency programs which
must validly rejoin the main program following the ELSE clause. The present system
selects the least global fully instantiated goal thereby satisfying the block nesting
constraint and minimizing the scope while avoiding the problem of handling deferred
instantiation. This selection process is always effective in the present system since the
top level goal is fully instantiated.

5.4 REJOIN CONDITIONS: When a contingency program is generated its output state
must satisfy certain conditions, hereafter called the rejoin condition, for return of
control to the trunk program to be correct. Consider the case of an undetermined goal
L in state S and a contingency goal G in Figure 8 . Let A and B be program segments
that satisfy S A L{A}G and S A -L{B}G and let C be the rest of the trunk program

NO

i

Figure 8

Let R be the output state of B obtained by applying invariance; thus SA-.L{B}R and R=>G
Similarly, let SAL{A}P where P=>G, and let Q be the minimal subset of P required as
input to C (section 4(12)). Then, the REJOIN CONDITION for B is R^Q. B is said to have
BAD SIDE EFFECTS if in fact R^Q cannot be established.

5.5 SUBPROBLEM STACK: The task of generating a contingency procedure is specified
by the quadruple: . .

j-'~—■"~~'"-; >_»_ ;,....:,.J...-*„-.^:,a^-, uMütiäiniiüittaBiiii .^■■L:,;.... . -vw... ■--.. ■■..■■ :/.*.-■ .■■■■;--;..^-. . ■

PiPSWWCTPWlW'iWWPBS^W'wpil^^

35 GENERATION OF CONDITIONAL STATEMENTS

<<pf'ocname> <9tate> <goal> <rejoincond>)
where,

<procname> Is the name of the yet ungenerated procedure that must
satisfy <state>{<procname>}<goal> A <rejolncond>.

At the point in the planning when the uncertainty is encountered, the first three
elements of the quadruple are placed in a stack. The rejoin condition is not known at
this time since it involves the input assertion for the trunk segment C following the
point where control returns from the contingency plan to the trunk plan. After C is
generated, the rejoin condition is computed and stored as the fourth element of the
quadruple.

When planning has been completed for a trunk procedure, if the subproblRm stack is
not empty then contingency planning may be done by removing a quadruple from the
stack and posing this as a program generation task. The state of the system is
initialized to the specified contingency state and the subgoaling system is given <goal>
as its main goal. If it is successful in achieving a state in which the main goal is true
then a test is made to see if the rejoin condition is true in that state. If it is then the
procedure declaration is adjoined to its trunk program. If the condition cannot be
proved, the system allows the user two alternatives; (i) Mark the call to the program as
an error exit in the trunk program, or (ii) Tit" the program to the trunk program by
posing the currently untrue rejoin erudition as a new goal, constructing a new program
segment that achieves it, and appending this segment to the end of the contingency
program.

This process of generating a trunk procedure which may create new contingency tasks
then generating contingency procedures as directed by the user may continue until all
contingencies have been processed and the stack is exhausted,

5.6 COMPUTATION OF INPUT/OUTPUT ASSERTIONS The computation of input/output
assertirns for programs not containing conditionals is described in Section 4(12). The
uncertainty as to which path computation will follow in a program containing conditional
statements complicates these assertions. The input/output assertions in this case must
be computed incrementally as each contingency program is generated.

In the conditional statement shown in Figure 8, suppose we know the minimal input and
output assertions for A and B, say P{A}Q and R{B}S. then the input and output
assertions for the conditional statement are

(L A P) v H A R){if L then A else B}Q v S.

To reduce computation, We use the simpler sufficient input assertion P A R, (Note that
P A R should be consistent since it is a subconjunct of a previous state). There doesn't
appear to be a simplifying approximation for output assertions .

mm inttiMtmrinitr1—^"—■- -

^»""•■***PW*W»*»*W*W*"^^

.... v.-.■,..-■ •■.• ■■ ,--.,.: ■■::.■■.■■■ ■ ■ r ' m ■ taatm BOMHI BM

GENERATION OF CONDITIONAL STATEMENTS 36

•:,

5.7 UNCERTAIN PRIMITIVE PROCEDURES: A primitive procedure q defined by P{q}Q
has an uncertain outcome if Q is a disjunction. In the present system, disjunctive post-

conditions use the exclusive OR connective, "e". This allows us to define frame
procedures that have an intended result but may be unreliable. It is assumed that
exactly one of the possible outcomes will be true in the output state. At the point
where an uncertain operator is applied, the problem solver has no knowledge of what
the outcome will be and a conditional statement must be generated. Let Q be the
disjunction of literals {IJ*,!- The first outcome I, is considered to be the normal (goal)
result of executing q. Following the inclusion of q in the program in state S, a
conditional statement of the following form is generated:

if -> 1. then
if A A I3 A...A - ln

else if -> A

then P2
12 A I3 A -. |4 A,..A 1 ln then P3

else if-I, A - l2 A...A n i^j A ln then pn

else pn

where each p;, 2 < i < n, is a call to a program to achieve 1, from state S; = S U (Ij } U
{-> Ij : j 5^ i & 1 <: j < n}, and pn<| is an error exit. The contingency states will

correspond to the n ways of assigning exactly one literal true and the remaining literals
false.

5.8 AN EXAMPLE Suppose a procedure is to be generated for a man to travel from San
Francisco to New York given three modes of travel, i.e., flying, driving, or walking. This
is similar to the "airport problem" discussed in [McCarthy 1959]. A FRAME for this
problem consists of defining a primitive procedure for each mode of travel, an initial
state, and relation information as shown in Figure 9. A few of the contingency programs
generated are shown in Figure 10.

— - m*Mm-^^10». inniiiiiinilnilllW'"——-—I—1 ^*fcjN«*fei» ^tSStatte

wj^JMipttPPwpiip^ mvsmmmf

GENERATION OF CONDITIONAL STATEMENTS

RELATIONS PEFMITIQN FLUENT

ROH X)

ALTO X)

PLANE X)

AIRPORT Xl

AT X,Y)

WALKABLE X,Y)

CLEAR X.Y1

DRIVABLE X,Yl

HASUMBRELLA X5

CRASHED X,Y,Zl

KILLED Xl

RUN'S X^

FLIES X)

"X Is a robot" FALSE

"X is an automobile" FALSE

"X la an airplane" FALSE

"X is an airport" FALSE

"X Is at location Y" TRUE

"A walkable pa-h exists between TRUE
X and Y"

'Tbe sky is clear between X and Y" TRUE

"A drivable road exists between TRUE
X and Y"

"X has an umbrella" TRUE

"X crashed between Y and Z" TRUE

"X has been killed" TRIE

"X will run properly" TRUE

"X v 111 Ely properly" TRUE

PARTIAL UNIQUENESS

FALSE FALSE

FALSE FALSE

FALSE FALSE

FALSE FALSE

FA LSI- AT(X,•)

TRUE FALSE

TRUE FALSE

TRUE FA LSI

TRIE FALSE

FALSE FALSE

FALSE FALSE

TRUE FALSE

TRUE FALSE

I'RIMITI'.T: PROCEDURE

walk Rl,U,l.'-1
"Rl walks from 1.1 to I-

drlve(Rl,Cl,Ll,!:)
"Rl drives Cl Irom 1.1 to 1.

llv.Rl,Al,l.l,l. s

"Rl I lies Al irom 1,1 to 12

PRE-CONDITIONS POST-CONDITIONS

ROB(Rl)A-iKILLED(Rl)AAT(Rl,Ll)
ACLEARi 1.1,1. MlASUMbRELIA(Rl)
AWALKABLE 11,1.);

ROR Rl)A-i KILLED(R1)MUT0(C1)
AT(C1,L1)ARÜNS(C1)
ADRIVABLE(L1,I;)AAT(Rl,Ll)i

ROH R1)A-,KILLED{R1)APIANE Al)
AA1RPORT' L2)AAT(A1,L1)
AFLIES{A1)ACLEAR{L1,L)
AAT(Rl,Ll)i

AT;RI,I.)

AT.Rl.L)
AAT(Cl,L2)

[AT(R1,LP)A
AT (Al ,1.)]
:■■/ CRASHED Al ,1.1,1. '
AK1LLED(R1)1

[NmAL STATE

ROU MAN/AITO BHl^APLANE FIU'AA IRl'ORT SFO)AAIRPORT NYC)AAT MAN',HOME VAT BW,GÄRAGE)AATfFlll,SFO

PAIRWISE INEQUALITIES;

TRY FLY BEFORE DRIVE,

ADVICE

walk Rl,',*),drive Rl.Cl,', *),fly Rl.Al,

TRY DRIVE BEFORE WALK

Figure 9

VÜM iiiai*iliiaii*läi*Ai^^...':^,-.,..^.^^ .., ., .J..x,,^,.,,.. . -■■---^IM.toiaWll'iTlit' rMi lY' , ' ■ ■■ ■■ ■ ü^ .^-^ ^ , ..■ ...i,.::^..;,*

■:-, .. . - .:J-I,V!«- :- :-:>-l I A':■:■"■

GENERATION OF CONDTTIONAL STATEMENTS 38

AT MAN GAHAfiK
AT MAN SKI

AT MAN SKI
AT M\N NYC
AT MAN ^.T'C ;

PROCl MAN •T-X
ROB MAN ;ALTO ilM; ;PUNE 1111 ;AIRPORl :rvc :

COMMENT
INPUT ASSERT ION:

AT MAN HOME NC1.EAR HdME GARAGE AT BMW iAI<,\(,i: Al I III Sid
A IT. IKS 1111 u;l.MK SFO STi'C 'HINS BMJ

xniuvAiu.E GARAGE sro u'Ai.KAm.E iioM C«\RJ\C;I:

OTTI'l'T ASSERTION;

AT B* SIO »AT 1111 NYC AT M\N NYC ;

COMMENT
FROCU ATTEMPTS_TO_ACIIiEVi:_ Al MAN NVt
PROCl ATTEHPTS_T0~ACII1EVE~ Al MAN (ARAGI:
PROC ATTEMPTS_fo_ÄaiIEVE_ AT MAN CMiAiX
PROC ATTEMPTS~TO_ACII 1 l.VV.

I'ROC ATTEHPTSjrO^ADl 1 EVE'
PROC- ATTEHPTS~TOj\CttIEVE.
PROC; ATTEhffTSjrO_ACIIIEVK

I'RUC ATTEMI>TSJ0_AC1I1EVE_

BEG IN
ir H LIES Till rm::;

PROC MAN NYC
ELSE

BEGIN
IT -CLEAR SFO NYC THEN

PROC; MAN NYC

E LEI-
BEG IN

IF -RUNS m; THEN
HRÜC- MAS SIO

ELSE
BEGIN
IT -imiVABLi: GARAGE SFO THEN

PROC- MAN SFO
ELSE

BEGIN
11 -CLEAR HOME GARAGE 1 HLN

II -IIASL'MBHELIA MAN THEN
i'KOO MAN GARAGE

ELSE PROC MAN GARAGE

ELSE
BEGIN
ir-iUALKAHLE HOME GARAGE; THEN

PROCI: MAN GARAGE;
ELSE

BEGIN
WALK MAN HOME GARAGE
END

END
DRIVE MAN BMW GARAGE SFO

END
END

ILY MAN Till SFO NYC
II -ATCMAN MYC) HI,.:.

I) -ATC-lnN :.V:,) A CRASHED (Fill SFO NYC)

PiiOCll (:tAN „YC)
ELSE PKOCi:'iiM,\N NYC)

„KND
END

(Nil

PROC Mi\N NTCl
ROB MAN'' lATTO IMV ;

COMMENT

IMiT^ASSERTlON:
AT MAN IIDM!" -H:LI-J\R IIOMF GARAGE^AAT. BMW CAR/NCE 'RUNS BMW

M)RIVABLE GARAGE NYC AKALKABLE HOME GARAGE)

Figure 10a

^,^^^^1,.^ . -...y^ „..^■^o^^^.^.... -.. ,.-w..^,.

39 GENERATION OF CONDITIONAL STATEMENTS

OUTPUT_ASSERTU)N:
ATfBhM HYC)AAT(MAN NYC);

COMMENT
PROC16 ATTEMPTS TO ACHIEVE (AT MAN GARAGE)
PROC15 ATrEMPTS~TO~ACHIEVE_ (AT MAN GARAGE)
PROCllt ATTEMn-S_TO_ACll]EVE_ (AT MAN GARAGE)
PROG I'. ATTEMPrS~TO ACHIEVE^ (AT MAN NYC)
PROC12 ATTEMPTS_Tn_AGll[EVE_ (AT MAN NYC)!

BEGIN
IF-iRUNS(BtM) THEN

l'ROGL1(MAN NYX)

ELSE
BEGIN
IF-iDRlVABLE(GARAGE NYC) THEN

PROG 111 MAN NYC)

ELSE
BEGIN
IF-iCLEAR(llOME GARAGE) THEN

IF-'HASUMBRELLA.MAN) THEN
PROG 1.'MAN GARAGE)

ELSE PROCl5(MAN GARAGE)

ELSE
BE I ax
lF-,WAl.Ki\BLE HOME GARAGE) THEN

PR0C16(MAN GARAGE)

ELSE
»EG IN
WALK' MAN 110^ GARAGE) ;
END

END
DRIVE; MAN BMW GARAGE NYC)
END

END
END

PROGI.'MAN SFO)
ROB,MAN';
COMMENT
INPUT ASSERTION: „. .„_,

AT HAFT HOMEJACLEAR(HOME SFO)<NWAU<ABLE(HOME SFO)
OUTPUT ASSERTION:
AT MAN SFO);
COMMENT
PROG ■. ATTEMPTS T0_ACI1IEVE_ AT MAN SFO
PROG li ATTEWI'S'TO ACHIEVE_ AT MAN SFO)
PROG .} ATTEMPTSjrolACHIEVE_ AT MAN SFO);

BEGIN
IF-iGLhAR 110« SFO) I'HEN

IE -,IIÄSUMBRELtA(MAN) THEN
PROC 5(MAN SFO)

ELSE PROC, . MAN SFOl

ELSE
BEG IN
1F ^WALKA BLE , HOME SFO THEN

PROG. 5(NAN SFO)

ELSE
BEGIN
WALK'MAN HOME SFO",

END
END

END

PROCl MAN NYC)
ROB MAN);
COMMENT
INPUT ASSERTION:

AT MAN HOMEUGLEAR HOME NYCVWALKABLE(HOME NYC

Figure 10b

mgljalimmUimm
J^i^i^.e.„.;.,.„..

GENERATION OF CONDITIONAL STATEMENTS 40

M

I 0UTPUT_AS8ERTI0N!

AT MAN NYC];

COMMKNT
HROC':'.' ATTEMrrS_TO_AC)iIEVE_ (AT MAN NYC)

PROC: ATTEMPTSJTO V.1I[EVK_ ,AT MAN NYCl
PKOC ■ ATTEMPTSjrOJ^CHIEVE~ (AT MAN NYCl);

BEGIN
IK-.CLEAR,HOME NYCl THEN

IT -itlASUMBREUAfMAN) THEN
PROC' 'MAN NYCl

ELSE PROCr' MAN NYC)

ELSE
BEGIN
n-iWM.KAIlLE.IlOME NYC) THEN

PROC;.0{MAN NYC)

ELSE
BEGIN
WALK I MAN HOME NYCl

KNI)
END

EN»

Figure 10c

mä aäta - • ^ ^-"li^-'—--^IMllfiTfi^i"-"-" " • ■ ■■■ ■ • i ■^■■-

41 GENERATION OF CONDITIONAL STATEMENTS

5.9 CORRECTNESS The formal algorithm of Section 2.3 can be extended to include the
case when G' is undetermined in I' by formalizing a simplified version of the system
methods described above. We shall mention some of the pertinent details here.

The extension requires formalizing the subproblem stack and the methods of choosing
contingency goals. Also, it is necessary to add clauses for assembling conditional
statements into the answer A according to rule R5, Thus contingency goals must be
"marked" and the appropriate undetermined subgoals associated with them, so that
when a contingency goal is achieved during the generation of the trunk program, the
related conditionals are assembled into A. The computation of the state l(n) must be
modified when G(n) is the contingency goal for G(i) by removing G(i) if it is not in the
output assertion of the program segment generated between achieving G(i) and G(n).
We do not justify the system method of computing input assertions, and instead assume
that in the formal algorithm the state at any node in the subgoal tree is the input
assertion for the following segment of the generated program.

To extend the correctness proof of Section 2.5, we must extend the induction step to
include the cases when (a) G(n+1) is undetermined in l(n), and (b) G(n+1) is achieved
from l(n) and is the contingency goal for G(i), say, where i<n+l. The induction
hypothesis must be modified to take account of any undetermined goals (assumed true
in the trunk program) whose contingency goals have G(n) within their scope. Thus,
typically, the hypothesis would be l{A(i)}l(l) and l(i)AG(i){A(i,n)}l(n), where G(i) is
undetermined in l(i) and has a contingency goal more global than G(n), and A(i,n) denotes
the program segment generated between achieving G(i) and G(n).

Case (a): G(n+1) is achieved by assumption in generating the trunk program,
|(n+lH(n)AG(n+l) and A(n+l,n+l) is empty.

Case (b)- let B be the contingency branch. The previous proof implies that
l(n+l)3G(n+l). We also have that A(n+1) = A(i);IF G(l) THEN A(i,n+1) ELSE B.

(1) l{A(i)}Ki), hypothesis,
(2) l(i) A G(i){A(i,n+l)}l(n+l) hypothesis
(3) l(i) A -G(i){Bfl'(n+l) assumption,
(4) l'<n+l)=l(n+I) rejoin condition,
(5) l(i){IF G(i) THEN A(i,n+1) ELSE B}l(n+1) R5,2, Rl,3,4
(6) l{A(n+l)}l(n+l) and l(n+l) = G(n+1) R2,l,5.

The proof of l{A(m)}G follows by noting that all contingency goals must have been
achieved when the final goal G is achieved.

 — ■ - — i IMUMBililMIlirii i ii -^--^-. *-- ..-

42

6. GENERATION OF ITERATIVE STATEMENTS

An Iterative rule allows the program generator to construct a WHILE loop provided it
can construct a loop body to satisfy the premisses of the rule. Ultimately such rules
should require the user merely to specify an invariant in order to have the system
write a correct iterative program. At the moment, the user needs to furnish some
additional relevant facts. The algorithms usad in the system to implement iterative
rules of the form S2 (Section 2) and to assemble while loops are described briefly and
an example given,

6.1 PREMISSES FOR CONSTRUCTING A LOOP: An iterative rule is defined by the
assertions P(basis), Q(loop invariant), R(iteration step goal), G(rule goal), L(control test)
and S(output assertion). All the free variables in R and L must be among the free
variables in Q. In order to use the rule, to achieve l{?}G say, the formal algorithm
requires that all of the following subgoals be achieved or be true:

(i) Construct A such that L(F)||- l{A}P
(ii) L(F)|- l{A}Q
(ill) Construct B such that L(F)||-QAL{B}R
(iv) L(F) I- QAL{B}(3Z)Q(Z)VH3Z)Q(Z)A .L)
(v) Construct C such that L(F) ||- QAL{B;C}QV-L

Note that (ii) and (iv) are restricted to first order rules (consequence, invariance, and
the frame axioms). The input state for (iii) is QAL. In addition, an iterative rule must
satisfy the following minimal consistency requirements within the frame F:

(vi) -(S U F ^ L) and S U F => 3.

The conclusion of the rule is: l{A;WHILE L DO BEGIN B;C END}G.

Iterative frame rules are instances of the iteration rule [Hoare 1969]:

QAL{A}Q, QA-L=G

Q{WHILE L DO A}G .

It is possible to derive a weak form of the rule:

QAL{A}QV-L, -L^G

Q-;WHILE L DO A}G .

The weak form allows the invariant to fail on exit from the loop. We have found the
weak form convenient to uso in many examples.

The present implementation sets up clauses (i) - (iv) as a THAND of subgoals to be

..:>■...,ü^..-.:,.J.^t—^.^.;i,^.„...J.,^......., ..■..^..,^,.,..^.... ...,,.,.,.„ J....J.4^iMd^ai^.„^,v^....li;ja^-__)j ^ ^.^ iid

43 GENERATION OF ITERATIVE STATEMENTS

achieved More specifically, suppose an iterative rule is invoked to solve the problem
|{?}G. Let V be the list of variables in Q. The system does the following:

(1)A program segment p{P> is generated such that l{p(P)}l' and I'UF |- P (note
that p(P) may be empty).

(2) An instance QX of the loop invariant must be true in the state I', i.e. X = {<v1

«- s, >,...,<vn <- sn >} is constructed such that I'UF => QX.

(3) A program segment p(R) is generated such that Q A L{p{R)}l" and l"UF => R.

(4) It is checked that f'UF = Qß^lß for some substitution ß and a set of
conditional assignment statements C is constructed such that l"{C}Q v -L

Thus at the moment, clause (iv) ensures that C need contain only conditional
assignments In the future we would want to relax this restriction. It is assumed that
the user's definition of the rule satisfies (vi). The user may omit S or L; in the latter
case i G is used as the control test.

6.2 ASSEMBLY OF WHILE LOOPS: After the premisses have been achieved, a loop is
assembled as follows:

(1) Let Y and W be two distinct lists of variables in one-to-one correspondence
with V. For each <v, <- s, > (X construct an initial assignment statement 'Vi *- s, ".
Let "Y *- S" denote "y, *■ s, ; yz <- s2;. . .; yn *- sn;".

(2) The WHILE loop is then assembled in the form:

p(P);
Y ^ S;
WHILE L(Y) DO

BEGIN
p(R(Y));
IF Q(W) THEN Y ^ W;
END

where Q(W) is an expression containing calls to Boolean procedures indicated
(syntactically) by the presence of the special W-variables (Section 2, Rule RO). Q(W)
is constructed from Q(V) by replacing V-variables by corresponding W-variables;
p(R(Y)) is obtained in a similar way from p(R(V)). Since the variable lists are disjoint,
none of the Y-variables occurs in Q(W).

There are many heuristics in the system to reduce the number of program variables, i.e.
v's and w's generated, to select the relevant portion of Q to be used in conditional
assignment statements, to generate simple assignment statements (whose right hand
sides are functional terms composed from functions in the frame) instead of conditional

^aMBMmMM-^r^-^.^... -„„„^ -, l^^tuaM^atM^J,

GENERATION OF ITERATIVE STATEMENTS 44

assiginTients, and to eliminate unnecessary assignment statements in the assembled
program. These may all be classified as optimizations, some of which are done as the
WHILE loop is assembled and others during a later optimization phase.

6.3 UPDATING THE STATE: After the while statement has been generated, the system
updates the state. If an explicit output assertion S is given then the rule of invariance
is applied in the same manner as with the postcondition of a primitive procedure. In the
absence of an output assertion, a special update procedure runs the loop interpretively
on the state until the goal G becomes true. The resultant state is used in further
planning. This latter method is useful when the global effects of the loop computation
are so extensive, or even unpredictable, that an explicit specification of S is difficult. It
may result in excessive update computation, particularly when loops are nested.

6.4 CORRECTNESS: We sketch how the basic correctness proof of the formal
algorithm (section 2.5) may be extended to the case where iterative rules are used to
develop nodes in the successful subgoal tree. This requires that we supply the
argument for this extra case in the induction step of that proof.

Let node G(n+1) be developed using an iterative rule, and assume first that this is the
only iterative rule used. To simplify the notation, we shall assume that the matching
substitution between the rule goal G and G(n+1) is the identity, i.e. G= G(n+1) A G'.

It is convenient to view G{n+1) as being the root node of a THAND subtree (see e.g.
figure 3, Section 2.3). The immediate subgoals of G(n+1) are (i) to (iv) above (6.1).
Suppose that the last node to be achieved in the main tree is G(n), the associated state
and program being l(n) and A(n) respectively. The induction hypothesis is l{A(n)}l(n).

Let us abbreviatä "IF Q(W) THEN Y-W" by C. In the successful subgoal tree, the
subgoals of G(n+1) are all achieved so that we have

1. KnMp^Kn)'

2. Q\{Y*-S}Q(Y)

where l(n)' U F = P and l(n)' U F => Q X
(subgoals (i) and (ii)).

by the assignment axiom, RO.

3. Q(Y)AL(Y)ip(R)}l(n)" where l(n)" U F = R(Y) (see comment below),
and l(n)"LiF o (3Z)Q(Z)vH3Z)Q(Z)AiL{Y))
(subgoals (ill) and (iv)),

4. (3Z)Q(Z){C}Q(Y) Sy RO,

5. ^3Z)Q(Z)A-1L(Y){CbL(Y) by RO,

6. (3Z)Q(Z)vH3Z)Q(Z)A.L(Y)){C;.Q(Y)v^L(Y) by OR-lemma, 4,5,

7. l(n)"{C}Q(Y)v-L(Y) by consequence Rl,

8. Q(Y)AL(Y){p(R)iC}Q(Y)v^L(Y) by composition R2,3,7,

IMmm^äi ^Wrr-rn nil »iTiiriiiii-liiliiliiBtfiliillttitiiliiWiMii.iMiv.iviivr -ml I, -- -■-'■ ■

45 GENERATION OF ITERATIVE STATEMENTS

9. Q(Y){WHILE L DO p(R);C}G by iteration, 8,

10. Kn){p(P)iY«-S;WHILE L DO p(R)jC}l(n+l) by R2,R3,1,2,9

where Kn+1) = lnv(S,l(n))

Finally, A(n+1) = A(n)j p(P); Y^-S; WHILE L DO p(R>iC; so that l{A(n+l)}l{n+l). Since SUF
D G is assumed true and G = G(n+1)AG', it follows that l{n+l)UF:>G(n+l).

COMMENT: Step 3 above is justified by a second induction, L(F)||-Q{Y)AL(Y){P(R)]R(Y),

namely that programs constructed without using iterative rules are correct. This
follows from the proof for the simplified case (Section 2.5), since the variables in the
goal, R(Y) are required to occur in the initial state, Q(Y) A L(Y).

The sxtension of the proof for more than one iterative rule is similar.

6.5 AN EXAMPLE: As an example of "while" loop generation consider the task of
generating a program to compute the value of n factorial for some positive integer n
where multiplication is not a primitive operation but is done by repeated addition. The
Frame for this problem is shown in figi 11. Also used is the primitive procedure for
assignment used in the example in r .ion 3. To achieve the goal "FACT(X0,N)" the
system applies the iterative rule Tr ACT. The premises are achieved according to
Section 6.1 which results in an application of another iterative rule TPROD. The
premises of TPROD are achieved, the "inner" loop assembled and optimized and state is
updated with respect to the output assertion. The assembled while loop is appended
to the iteration step program for TFACT. The "outer" loop is then assembled and
optim^ed and the state further updated reflecting the total state transformation of an
execution of the nested loop program.

The output program afier optimization with statements labeled according to their source
of generaton in the algorithm is shown in figure 12. Not? that successive values of the
loop variables (called "UPDATE ASSIGNMENTS") are obtained by simple assignment
statements rather than by conditional assignment as described in the algorithm. This is
the result of applying system heuristics which are able to use the arithmetic operations
PLUS and ADD1 which are primitive functions in the frame, to replace the conditional
assignments.

Iflül— J -— ü

GENERATION OF ITERATIVE STATEMENTS 46

RELATIONS DKriNITlON' LUENT PARTIAL UNIQUENESS

TRUE FALSE VFACr(■,'■)

TRUE FALSE C(X,«)

TRUE FALSE FACTX,')

TRUE FALSE FALSE

FALSE FALSE FALSE

FALSE FALSE FALSE

TRUE FALSE FALSE

TRUE FALSE FALSE

VTACT X.Y)

Ci'X.Y)

FACT X,Yl

VPROBUCT X.Y.Zl

INTEGER X)

ISVAR Xl

fffiWVAR Xl

= X, Y'

"The value oi V factorial is X"

"The contents of variable X is Y"

"The variable X contains Y lactorlal"

"X is equal to the product oi Y and 7.'

"X is an integer"

"X Is a variable"

"X Is a new local variable"

"X equals Y"

'*■*:*-*•«-* tHHH •: >E-}t^H*-tf-***«-#**-******» • f y-

€

AXIOM

TAFACT

I'APROD

ANTECEDENT CONSEQUENCE

f=i:v9,nA=(viö,i)i
v VFACT (DIV V',) viO),fSUIil VIOM;

[= :V5,0)A=(VC,0))
J VPROIJUCT! (MINUS V5,V3),(SUB1 V6),V3);

SIMPLIFICATION RULES

VFACT(VO.VIÖ);

VPR0UUCT(V5,V6,V3);

(ADDKSUIil X)) -. X
(SUB1(ADD1 X)) -. X
(MINUS(PLUS X Y)Y) -. X
(DIV(PROD X Y)Y) -. X

FUNCTION OUTPUT SYNTAX

(A0D1 X) = (X + 1)
(sum x) = (x - i)
lPLUS X Y) = (X + Y)

Figure 11a

,

IBB -*—■ — ■■....-...^ .. - ■ — — ■ iaatMÜMütäta ^./^:;.:-v.^ ■ ., ■.■-,.■ .■:::,..,^i;.

47 GENERATION OF ITERATIVE STATEMENTS

ITERATIVE RULES

RULE NAME Tl-'ACT TPROß

liASiS CONDITION NEWVAR{ V7)AINTEGER> Vk)

AVFACT (V5 , V6)AC (V;;, V5)

AC(V7,V6);

NEWVAr.iV.'i)AC| Vl| ,())

AC{VI,C);

INVARIANT C(V7,VI^)AC(V3,V9)

AVFACT(Vg.VlÖ);

C(V^,V6)AC(V1)V5)

AVPRODUCTi V5,V.>,VJ) ;

ITEIUTION STEf

COAL

TEST

0(^7, (ADDl V1^))A
PRODUCT(\'3,Vlt, (ADDl VlÖ)) ;

FACT (V5 , Vit) ;

-i=iV10,v;0 ;

C('V't,(ADDl Vbl)
c(VI.(PLUS V5,V3));

1>R0DUCT(V1,V: ,Vi) ;

-1=(V6,V2);

OUTPUT ASSERTION c:v;,(EAC Vh)); C (VI, (PROD V2>V3))j

/■ *■* M-n-X-M- *• * •■ .<- <■ «■ »-X-■«■ .•:■*K »■« *«■ *-.<•* :• H <- .«■«•*- * K-

Figure 11b

liimiiiiliililii^ i - ■ ■ ■ ■ ---—- - »i£i:.<,.'...v....1ji.ig,iJ,.1,..,.,. -.- ,j..^J..«^J^;a:...tf^...A,.. >JA-.-\.:,

GENERATION OF ITERATIVE STATEMENTS

PROC1(X0 N}

p(P) (TFACT)-

Initial Assignment-
(TFACT)

ISVAR(X^);INTEGER(N);

COMMENT

INPUT ASSERTIONS:

NONE

OUTPUT ASSERTIONS:

C(X0 (FAC N));

BEGIN

— xp *- l;

— Yi+ - 1;

WHILE -1= (Y^ N) DO

p(P)(TPROD) (Optimized Out)>

Initial Assignment (TPROD)

BEGIN

Yk *- {Yh + I);

p';R) (TPROD)

UPDATE Assignments (TPROD
(Optimized Out)

UPDATE Assignment (TFACT)-

END

X0 - Y2;

END

48

p(R)(TFACT)

END

MMMHI ttwuaMHMai

Figure 12,

^J^u-,-,..■■.■-^ :..u- .JJ...... ■ ■^■■ula^i^Mj.^^—....

49

f

t:

7. PROGRAMMING AIDS

The complexity of programs that can be generated using the system is increased by
some simple facilities described in this section. The capabilities discussed here are
incremental extension of a current program, use of a program library, and expansion of
assumptions.

Tha system enables a user to plan incremental extensions of a program simply by
saving each comrMed program segment A and its output state 0 in a stack. The user-
may then pose a new goal G and solve the problem 0{B}G. The composition A;B will
then be output. He may choose to start from any previously saved state and
afesociated program segment.

7 1 PP • sAM LIBRARY When a program A has been generated to solve P{A}Q, the user
mav request that it be "generalized" and filed in the program library where it may be
accessed by the subgoaler (similar use of a library in robot planning is reported in
[Fikes.Hart, and Nilsson 1972]).

Generalization is a process which constructs a procedure declaration for the library as
follows Let I and 0 be the input-output assertions computed for A during its
construction. We assume P^l, OQAO', and 1{A}0. The non-fluent conjuncts of I are
taken as the type declarations, their variables being the parameters of the new
procedure. These actual parameters are replaced throughout 1{A}0 by new formal
parameter variables. An entry of the form:

({<procname> <goal> <effects> <type conditions> <state condition>)<body>)

is made in the library, where <procname> is a name and parameter list, <goal> is Q,
<effects> is 0', <body> is A, and it is assumed that

<type conditions> A <state condition>{<procname>}<goal> A <effects>

Library procedures are used during program generation by matching on the <goal> then
establishing the <type conditions> and <state conditions> as subgoals in that order. If
The conditions are satisfied then the instantiated <body> is included in the program.
There is no attempt to organize the library for efficient selection; the system merely
tries all library procedures before any frame rule.

As an example of program assembly using the library consider the task of building a
^ower to reach an object, i.e. achieve "HAS(M,B)". Use will be made of a library
oroeram to find and put on shoes which achieves WEARING(M,SHOES), previously
generated using the same Frame. The generated program is then extended
interactively by posing a new goal, AT(M,P).

A robotics Frame for this problem is shown in Figure 13, and the generated programs in

Figure 14.

 niiiitt^nmi . ..i-,-.^F,-.^.-■-■■„.w^.,- ..-. i...-L'.lJ.J,^.;'.. :..|--^..'^ig?i

51 PROGRAMMING AIDS

PR IM IT tVE PROCEDURE PRE-CUNIHTIONS POST-CO.N1HT 1DNS

travel (Rl,Ll,t.?l
"Rl travels from LI to I."

move(Rl,ül ,1.1,Lf')
"Rl moves 31 from 1,1 to 13"

slack Rl,0?,Ol,Lll
"Rl stacks CO on 01 at LI"

climb'Rl.Ol.LP
"Rl climbs 01 at 1,1"

uiiclimb Rl.Of'.LlI
"Rl uncllmbs OS at LI"

stepoir(Rl,01,Ll)
"Rl steps off 01 at LI1

reach Rl,01,1.11
"Rl reaches 01 at LI"

lilt;Rl,01,Ll)
"Rl lifts 01 at LI"

find Rl.Ol.U)
"Rl finds 01 at LI"

put_on'Rl.Oll
"Rl puts on 01"

ROBOT , SI)AAT (Rl, LI)/SHElCHT (Rl ,40 ; AT(Rl,l2)i

R08OT(lU)A8QX(Ol)AAT(01,U)A-i INSTACK (01, LI)A AT(01.1-'^AATfRl ,L");
CLOTHES (03)AWEARING (Rl ,03)AAT (Rl, LI);

R01)OTiRl)AROXi01lAI10X(0;,)A^(ül>0."'')AAT(01,Ll)A STACKEU(0: ,01 ,L1)A
AT;O;',LI)AAT(RI,LI)AHOLI)iNr^Ri.o: ,1.1)A STACKHEIGHT;''EVNIADDI HI)),U)
HEIcmT(Rl,3)AON(Rl,01,Ll)A-^TACKED;0J,01,Ll) ATOPI'O 1,1.1);
ASTACK11EU;11T(H1,T 1);

ROBOT; RDAABOVER I 01,Rl, LI)AAT(Rl, LI)A
-iINSTACK(01,Ll)v
(STACKED(01,03,L1)A0N(R1,0:',L1)JA
REQUESTi'HEICHTiRl.lll)) ;

R0B0T(Rl)ABEL0WR(01,Rl,LnAAT(Rl,Ll)A
R£QUEST(liEICHT(Rl,Hl))A
REQUEST(STACKED(02,01,LI))A
ON(Rl ,02,1.1)!

= (H1 „6)AHEIGHT (Rl, 1)AON(Rl ,01 .Ll);

ROBOT (R1)MT(01,U)AHIENUF(R1,01,U);

ROBOT (R1)AB0X (01)MT (01 ,L1)MT(Rl, Ll)A
-iINST/.CK(01,Ll);

ROBOT (K1)ACIIAIR(02 >MT (02 , LI)AAT (R1,1.1)A
UNDER(01,0'');

R0B0T(R1)ACLOTHES (01)AF01JNU (Rl ,01);

ON(R1,01,LI)A
HEIGHT(Rl,(EVNlADDl HI)));

0N(R1,01,L1)A
HEIGHT(R1,(EVN(SUB1 HI)));

HEIGHT(R1,II1)A
-t)N(Rl,01,1.1);

HAS(R1,01);

H0LD1NG(R1,01,L1)

FOUNDi'Rl.Ol);

WEARINC(Rl,01);

AX I DM

TATOVER

TABOVE

TBELWR

rBELOW

T110T

TBOTU

TNEXT

T1NSTACK

AjgECEDENT CONSEQUENCE

-ON Rl,")N> Rl.OJ,LI)MB0VE(01,05,1.11] ; AB0VES(01,R1,L1) ;

= (01,0, ED{CX,,03,Ll)AABOVE(0l,a?,H)] | AB0VE(0t,03,Ll) i

OS{81,a?,Ll)ABEL0W(01,02,Ll); BELOWR Ol.Rl.I.l);

=(01,03)vlSTACKED(O3,a ,L1)ABELOW(01,02 ,1.11] ; BELOW 01,05,LI);

T0P(0: ,1.1 lABOTTOMBOXU [01,03,LI) i

STACKED(05,Öt ,Ll)ASTACRED{Ol| ,02,L1)V
STACKED(05,01,LI)A-iSTACKED (Oil ,00 ,1.1)V
B0TT0MB0XU(0l,CA ,1.1);

SUPPLY (LI)AÄT(Ol(,H);

T0P(02,LI)ABEL0W(01,02,LI);

BOTTOMBOXlOl.Ll);

B0TT0MB0XU(01,03,L1);

NEXT BOX (Oi* ,03);

1NSTACK(01,L1);

DEFINITION

T1IITK liEIGIlTi;01,Hl)ASTACKHEIGHT(lll,Ll)ATOP(0.',I.l)AON(Rl,Q ,L1) s H I ENl)F(Rl ,01, LI)

Figure 13b

-.■ -■ . ■■■.-■ :, ■. i:-

-***—-—■■ - — i mum ^-.^

wr- '• ■ «™ . -, WWWWPPSWW1 ■ ■^«Ti^SPFWpJjmJfM««!

PROGRAMMING AIDS 52

[TgRATIVE RULE BASjS CONDITIOM

TU P

INVARIANT ITERATION STEP (WAL
OUTPUT

TEST ASSERTION

TD0W1

REQUEST(H£IGHT(Rl,H2)) ON ,R1,01,1.11 A ON R1,0;,L1);
AC;Z H:1v STACKED(02,01 .Ll)
lBOTT0HB0X{05,U) /TOl^Ol.Ll) ;
A0N.'Rl,v ,LlU ;

GZ(m)A 0N('Rl,0l,U)A ON Kl,ü: ,L1);
RKOUESTHEICHTRl.lil'l STACKED 01,0 ,1.1)
ACT HP,HI); /BOTTOMBOX(0l,Ll);

STACKED O: ,01,1.11
AON Rl.a ,1.11;

Topfoj.i.riA
STACKI1E ICMT

1I",L11A
NEXTBOX o'. ,05);

HOUUNCiKl.rt. ,1.1 I
MIEICIIT:RI,II ')
ASTACKED'OI. ,05,1.1)

IIICIGHT Rl,lll ';;

HEIGHT Kl ,111);

STACKHE1GIIT
(111,1.11;

IN'Hl Al. STATE

ROBOT MlAilOX »rlAKOX B AllOX W AI10Ä !!■)AB0X li.'AlldX ir 1AAT ,M, I'lAAT li.L'lAAT 11 ,SU)C)AAT{B5 ,SLOC)AAT(B5,S1.0C)A
AT B ,SLOC)MT(B!t ,SL6ciMT(B ,'sL0C)ASüPPLY(SLOC)ASTACKHE1GHT(0,U)AH£ICHT(M,«[)AHEIGHTI B,!))ACL0T1IES(SHOES)A
CHAIR'CHAIR!)ACHAIR CHAIR?)MT SHOES ,CORNER)AATi'CHAIRl ,C0RNER)AAT(CHAlR2,C0RtffiR) i

RECURS I VE RULES : CLIMB,TABOVE.TBELOW , T1«TU

ADVICE

PA1KW1SE INEQWITIES: Ir.ivel Kl ,■,•'■,move HI ,1 , - ,■'■

STACK, Kl, ', M.H

Figure 13c

,,,-,
——"—-' iiillMmrtltfrllilitBi^lliliitl'affirrirriiilliiir'-' ■ - ^■..^-^ .am ^ .:.. .

IW^JW^WJWM^

v--'.-;

53 PROGRAMMING AIDS

?, I

I
B

Assembled
I rom
Library

PROCl (M SIIÜES1
ROBOT M^JCHAIR C11AIR. 1 CLOTHES SIIÜKS);

COWCNT
INPUT ASSERTION:
I1EIGIIT M 3 'AAT.M P)AAT(CHAIR? CORNER)

orrPn_ASSERT10N:
AT M CORNER)APOUND M SHOES)AWEARINC(M SHOES);

COMMENT
PROC ATTEMPTS_TO_ACIUEVE_ FOUNT) M SHOES') ;

DEC IN
THAVE1, H P CORNER) ;
IK ^UNDER SHOES CHAIR:) THEN

PR0C5(M SHOES)
ELSE

BECMN
IIN1) M SHOES CORNER
END

I'LTJIN M SHOES)
END

PROC; (M 1!)
ROBOT(H);BOX(B7) ;CLOTHESi SHOES^CHAlRfCHAIK.') ;I!OXI'I1U) ;SUPPLY (SI.ÜC) ;BOXi B6); BOX(u;);

CDMMENT
INPirr_ASSERTION;

AT H P)AAT IV SU)C)AHEIC11T(M 0)AAT (CHAIR." CORNER)AAT (Bll SLOC)
AHEIGHT It lt)ASTACKHEI{;HT(0 llV.AT »! SLOC)MT(lii SLOC)
OLTPL'T_ASSERTION:

AT(M PlAATdl? UMAT(B4 inASTACKED(n4 R7 lOAATCBf) U)
ASTACKEDdib B4 U)ASTACKtlEIGHT(4 U)MIAS(M li,AHEIGIIT(M 0)
AFOUND M.SHOESlAWEARINCl M,SHOES) •,AAT(B? U)'STACKED (BJ 1)6 U) ;

BEGIN
TRAVE1.(N P)C08MER) ;
IF-UNDER SHOES CHAIR.) THEN

PROCPI M SHOES)
ELSE

IIEC; I N
KIND M SHOES CORNER)
END

PUTON M SHOES);
TAAWT'H CbRNER SLOC);
MOVE M li SLOC IJ);
TRAVEL M U SLOC);
MOVE M Bit SLOC V ;
LIKT M Hi. LI);
n.lMii M 11 U);
STACK M Bli li' U) ;
CI.IMB'M Bit U);
Y' - :■;

yit - Bit ;
IF NEXTBOX(Wlt Ylt) THEN

Zlt - Wit ;
WHII.i:-STACKHEICHT 1. U) DO

IIEC IN
y - AUDKY});
VI - ylt;
IF STACKED yl Kl U) THEN

7.1 - Wl;
WHILE-HE I CHI M I 1)0

IIEC IN
UNCLIMliM Yl U) ;
Yl - 7.1;
IF STACKED Yl WI U) THEN

Zl - Wl;
END

SIE POKE M li U);
TRAVEL M U SLOC) ;
MOVE M Zlt SLOC U) ;

Figure 14a

'"'-—- ' -'■ " -"■^--"^--"■»■- - -JiMifi-ntL,,», lii-nilil-nti Tl-.iW tliF H.IM- r ^-.^.^^ ~-''-^'-.MMt li M I ■ ■

isSgPPwPwBmpw Sfpsi^?^i!PPSPiSSPPPpiPi oppugn

PROGRAMMING AIDS 54

Incremental
Extension

I.H-TIM Z1» U)i
CLIMB(M BT u';

Y? - in;
IF STACKED(W? YZ Ul THEN

V: - W2 ;
WHILE -.MEIGHT'M Y5) DO

»EG IN
CLIMB(N /. Ul!

IF STACKED(W Y? U) THEN

z: - w; ;
EN'D

STACK,M ZU YU Ul;
YJ - zy,
\U - Zli;
IF NEXTBOX Wl. YH) THEN

ZU - Wh J
END

CLIMB(H B3 U)!
IIEAGII M B I'V.

IF STACKED Y5 W5 U) THEN

Z'j -W5i
WHILE-THEiraiT(M 1 U) DO

BEGIN
UNCUMlii'M Y5 Ul i

I? STACKED Y'; W5 U) THEN

25 - w5;
END

STEPOFF H BY U)i
TRAVEL M U I');
END

Figure 14b

J»lll]MlJIJ»ai»^liI^AA;^i:^^^^.^iaMMU^ji^^»>»:.^ia„..^ ■......;.. ---1 . .; ...».i. .V: ■v ..,; ,.,;;^;..:..-'.,jaM>'-^aa„..^,^j.,i.ji.,J... ^,. , ■■■--*-

r^fiTO*?!«SfW9WBWPP«PS!W!wBW»»WÄW

55 PROGRAMMING AIDS

7.2 EXPANSION OF ASSUMPTIONS: A basic capability for structuring programs is
provided by interactively allowing the user at any level in program generation to define
a primitive procedure, P{p}Q, as an assumption. The program generator will then use p
as usual except at each point of call to p in the program the current state I' and
current goal G will be saved. The triple <p,r,G> is placed in a stack of subtasks for
later expansion.

When a program containing assumed primitive procedures has been generated, the user
is given the list of assumptions his program depends on and allowed to selectively
expand them in terms of lower level procedures. For the subtask <p,r,G>, the state is
initialized to I', the frame may be changed, G is given as the goal.and a body for the
procedure p is generated.

Consider the example given in Section 6 of computing the value of n factorial where
multiplication is not a primitive operation. The initial frame is the same except that in
place of an iterative rule for multiplication, there is an assumed primitive procedure

ISVAR(Vl){times(Vl,V2,V3)}PR0DUCT(Vl,V2,V3),
where PR0CUCT(V1,V2,V3)HC(V1,(PR0D V2,V3)).

The program generated using this frame is given in Figure 15. To expand the non-
primitive procedure "times(\/l,\/2,V3)" the full frame including the iterative product rule
is given and the sub-program generated is shown in Figure 16.

In the current implementation it is assumed that the expanded sub-programs will have
no side effects. However this assumption could be removed by a mechanism similar to
checking rejoin conditions for contingency programs (Section 5.4).

To develop a useful structured programming system interaction appears essential along
with further study about how humans do (or should do) programming.

—- -■ -- - '--W-—J— jitj^,..^..-^..1.

~^~ . -. - ..,,-

PROGRAMMING AIDS
56

i

PROCli XÖ N)
ISVAR XÖ)iim'ECER(N)i
GOM^U■;NT
INPUT ASSERTION:
NONE
OUTPUT ASSERTION:

C;XÖ (FAC N))i
COMMEtfr
THIS PROGRAM RELIES ON TIE FOLLOWING ASSUMPTIONS!

(TIMES':
BEGIN
NO - i;
Yl - 1;
WHILE -1 >(Y1 N) DO

HE GIN
Yl - YI+l;
TIMES XÜ XO Yl)
END

END

Figure 15

TIMES XO Yl Zl)
ISVARfXC);
COMMENT
INPUT ASSERTION:

NONE
ourpirr ASSERTION;
C(X0 (PROD Yl 21)1;

BEGIN

WHILE -■ =(Y Yl; DO
BEGIN
V - Y +1 ;
U - Xß+Zl;
EN»

END

Figure 16

mm lAaLLmiat-it^^w«.^-..^..■,-.-■ . .-.^,..n.,.._..- »„,.,i^.,.^,-.--...».:---iminlai''^t""*^"'-"<'■'■-■- • ^. , ■ ■ ■ . ..■-. ■...■■,%-.-aifi

mmmtmmu-mMmMm^mmn&^mmmwmwm !^»PmR»!»P«HM!!!SI!WP98PWWS^^^

57

REFERENCES

Balzer, R. 1972. "Automatic Programming", Information Sciences Institute, Univ. Southern
California, Technical Memorandum, September 1972.

Buchanan, J.R. 1974. Ph.D. Thesis, Stanford University, 1974.

Pikes, R.E.; Hart, P.E.; Nilsson, N.J. 1^72. "Learning and Executing Generalized Robot
Plans", Artificial Intelligence 3, 2J1-288.

Hewitt, C. 1971. "Description and Theoretical Analysis of Planner" Ph.D. Thesis, M.IT,
1971.

Hoare, C.A.R. 1969. An axiomatic basis for computer programming, Comm. ACM, 12, 10,
October 1969, 576-580, 583.

Hoare, C.A.R.; and Wirth, N. 1972. An axiomatic definition of the programming language
Pascal, Berichte der Fachgruppe Computer-Wissenschaften 6, E.T.H., Zurich,
November 1972.

Igarashi, S.j London, R.L; Luckham, D.C. 1973. "Automatic Program Verification I: A
Logical Basis and Implementation", Stanford AIM 200, May 1973. (to appear in
Acta Informatica)

Luckham, D.C; Buchanan, J.R. 1974. "Automatic Generation of Programs Containing
Conditional Statements", Proceedings A.I.S.B. Summer Conference, Sussex,
England, July 1974.

McCarthy, J.; and Hayes, P 1969. "Some Philosophical Problems from the Standpoint of
Artificial Intelligence" Machine Intelligence 4, pp. 463-502, Edinburgh University
Press.

Nilsson, N., "Problem Solving Methods in Artificial Intelligence", McGraw-Hill, 1971.

Sussman, J.; Winograd, T. 1972. "Micro Planner Reference Manual", M.I.T. Project MAC
Report 1972.

^_ ^mm " ' '-- - ■ riAmlBiiiiniir lull iii-liMiailftllÜMaMWltMitirri

gH!WUWM*W^,i^,ww,l»l^,»l.^H^ K^KP!^»^!"!^:*!.?*,!».«!!«-)»'^*^1*^'*™^

58

I
APPENDIX 1 - AN INTERACTIVE SESSION

A sample interactive session is here presented to illustrate the system's use in frame
definition and program generation. Statements typed by the user will always be
prompted by "*". The top level system function is "SU5G0AL" which is called in the
manner given below to accept a frame definition from the terminal. Comments to aid
the reader's understanding of the dialogue will be enclosed in quotes.
*(SUBGOAL)
"The system now enters an interactive mode for Frame definition."
* * * * SEMANTIC FRAME DEFINITION * * * *

i

r

\
I

RULE TYPE* AXIOM
RULE NAME* AONTOP
IS THIS AN ASSUMPTION?* NIL
IS THE RULE DIRECTLY RECURSIVE?* NIL
INEQUALITIES IN ARGUMENT POSITIONS* NIL
PRECONDITIONS:
* ROBOT(Xl) A ON(XlIX2) A nSTACKED(X3,X2);
POSTCONDITIONS:
* ONTOP(Xl);

RULE TYPE* PRIMITIVE PROCEDURE
RULE NAME* STAND0N(R1,Z1)
IS THIS AN ASSUMPTION?* NIL
IS THE RULE DIRECTLY RECURSIVE?* NIL
INEQUALITIES IN ARGUMENT POSITIONS* NIL
PRECONDITIONS:
* ROBOT(Rl) A nON(Rl,Wl) A BOX(Zl) A CLOTHES(Ol) A WEARING(R1,01)
A AT(ZI,Y1) A AT(RltYl);
POSTCONDITIONS:
* 0N(R1,Z1);

RULE TYPE* PRIMITIVE PROCEDURE
RULE NAME* DRESS(R1)01)
IS THIS AN ASSUMPTION'* T
IS THE RULE DIRECTLY RECURSIVE?* NIL
INEQUALITIES IN ARGUMENT POSITIONS* NIL
PRECONDITIONS:
* ROBOT(Rl) A CLOTHES(Ol);
POSTCONDITIONS:
* WEARIN^Rl.Ol);

RULE TYPE* PRIMITIVE PROCEDURE
RULE NAME* TRAVEL(R11L1,L2>
IS THIS AN ASSUMPTION?* NIL
IS THE RULE DIRECTLY RECURSIVE?* NIL
INEQUALITIES IN ARGUMENT POSITIONS* (Rl,*,*)

MMMW^MMUMMMMM ■-■ - — —ii niiiiiMfttiiüniaimiiriniii

■<i«^lM^M#W«lWU™M.™5BT'CTra^^ ^^^^«w»?^w?7j>mw!-!»T!n!™TW^

59 APPENDIX

PRECONDITIONS:
* ROBOT(Rl) A AT(R1,L1) A
POSTCONDITIONS:
* AT(Rl,L2)i

ON(Rl,02,Ll)i

RULE TYPE* PRIMITIVE PROCEDURE
RULE NAME* STEPUP(X1,Y1,Z1)
IS THIS AN ASSUMPTION?* NIL
IS THE RULE DIRECTLY RECURSIVE?* NIL
INEQUALITIES IN ARGUMENT POSITIONS* (Rl,*,*)
PRECONDITIONS:
* BOX(Zl) A ROBOT(Xl) A STACKED(Z1,Y1) A ONWl.Yl);
POSTCONDITIONS:
* 0N(X1,Z1);

RULE TYPE* ITERATIVE
RULE NAME* ITONTOP
IS THIS RULE DIRECTLY RECURSIVE?* NIL
BASIS CONDITION:
* ROBOT(Xl) AON(X1,X2);

INVARIANT:
* 0N(X1,X3) A STACi<ED(X4,X3)i
ITERATION STEP CONDITION:
* 0N(Xl,X4)i
CONTROL TEST* NIL
OUTPUT ASSERTION* NIL
GOAL* ONTOP(Xl);

■

RULE TYPE* NIL

INITIAL STATE:
* AT(M,CORNER) A A^Bl.L) A STACKED(B3,B2) A STACKED(B2,B1)
A B0X(B3> A BOX(B2) A B0X(B4) A STACKED(B4,B3) A BOX(Bl)
A ROBOT(M) A CLOTHES(SHOES);

SEMANTIC PROPERTIES OF RELATIONS:

IS ROBOT(Rl) A FUNCTION OF THE STATE?* NIL
IS ROBOT(Rl) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* NIL

IS AT(R1,L1) A FUNCTION OF THE STATE?* T
IS AT(R1,L1) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* (Rl,*)

IS STACKED(X4,X3) A FUNCTION OF THE STATE?* T
IS STACKED(X4IX3) PARTIAL?* NIL

-^—^..^■.»i.—^^-..^ .i.-ii.—-- ■..—.^. -—^■- .,.V...^v.; ■

!8PP«i?spjpTO»iilPi^^

■'-"'■ -----.^ -■

APPENDIX 60

ARGUMENT UNIQUENESS PROPERTIES^ (X4,*)

IS BOX(Zl) A FUNCTION OF THE STATE?* NIL
IS BOX(Zl) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* NIL

IS ONTOP(Xl) A FUNCTION OF THE STATE?* T
IS ONTOP(Xl) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* NIL

IS CLOTHES(Ol) A FUNCTION OF THE STATE?* NIL
IS CLOTHES(Ol) PARTIAL''* NIL
ARGUMENT UNIQUENESS PROPERTIES* NIL

IS WEARING(R1,01) A FUNCTION OF THE STATE?* T
IS WEARING(R1,01) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* NIL

IS O^Xl.Zl) A FUNCTION OF THE STATE?* T
IS OMXl.Zl) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* (XI,*)

FILENAME* DSK:PCLI
TRACE MODE9* T
PERFORMANCE STATISTICS?* T
LOOKAHEAD?* NIL
ALGEBRAIC SIMPLIFICATION?* NIL

SUBGOALING SYSTEM GENERATED!!!
"A subgoaling system corresponding to the Frame has now been generated
and the system may now receive a goal to achieve."

SUBMIT GOAL* ONTOP(M)
DO YOU WANT THE PROGRAM LIBRARY?* NIL
DO YOU HAVE ANY ADVICE?* T
*** ENTERING ADVICE SYSEM ***

1* TRY STANDON BEFORE STEPUP
2* NIL "Exit advice system and begin program generation."

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
—ITONTOP

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
—(ITONTOP(ON M X2))STAND0N

RULES ENTERED AND GOALS PEND'NG IN CURRENT SUBGOAL TREE PATH:
—(ITONTOP(ON M X2))(3TAND0N(WEARING M SHOES))DRESS

MM
_.

IM«« gMMilgiiMiil
•----"■ -■ ---- Mhfrmftillhfi"-^-'' ' ■..■■■-..../ . t.!.; <..^.< v.^...-.^.,.^.:^.;.- _ ^

IPPBB!IS^pSPWa!SnB»WPW!W^raw5>w^^

61
APPENDIX

((DRESS M SHOES)) „ , J. ... <
"Current program segment generated is displayed In this form.

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
—(ITONTOP(ON M X2))(STANDON(AT M L))TRAVEL

((DRESS M SHOES)(TRAVEL M CORNER D)
DRESS M SHOES)(TRA.VEL M CORNER L)(STANDON M Bl)

"This constitutes the basis program for the iterative rule.

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
—(ITONTOP(ON M B2))STAND0N

STANDON IS FAILING!!!
—(.ON M WD WAS THE LOSER .,.,..
"STANDON is only applicable for climbing from ground level.

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
—(ITONTOP(ON M B2))STEPUP

((STEP M Bl B2))
"This is part of the loop body."

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
—(ITONTOP(ONTOP M))AONTOP ,
"The system now interpretively updates the state until the goal is
true, then the while loop is assembled."

DO YOU WANT TO OPTIMIZE THE PROGRAM','* NIL
IS THIS PLAN USEFUL ENOUGH TO GENERALIZE''* T
IS THIS A PROCEDURE WITHOUT SIDE EFFECTS?* NIL

THE GOAL ^ONTOP M) IS ATTAINABLE BY THE FOLLOWING PROGRAM:
"The desired program has been generated and will now be displayed.

ROBOT(M);CLOTHES(SH0ES)i(B0X(Bl)iB0X(B2)i

COMMENT
INPUT ASSERTIONS:
AT(M CORNER) A AT(B1 L) A STACKED(B2 Bl)
OUTPUT ASSERTIONS:
WEARING(M SHOES) A AT(M L) A ONTOP(M);

SS'PROGRAM RELIES ON THE FOLLOWING ASSUMPTIONS:

(DRESS);
BEGIN
DRESS(M SHOES);

^ttliHflttiMttiMililifcii .^-^..^■^■U»*i-|dJkaU^ ^^^■1J^1L>^---L^^1J^..;;ilu.1-.-„v,. :.. -.,_■.. ■.-;:-^■■^^....■■«^w.. ^.^..^.^w-,, .__,

p!^;wv WW'U«J'J Hwjft'ipwiw^^^ w.w^i.«»»"-u = WJ^Wf^lf^m^

APPENDIX 62

TRAVEUM CORNER L);
STANDON(M Bl);
Yl *- Bl;
IF STACKED(W1 Yl) THEN

Zl *- Wl;
WHILE - ONTOP(M) DO

BEGIN
STEPUP(M Yl Zl);
Yl - Zl
IF STACKED(W1 Yl) THEN

Zl «- Wl;
END

END

DO YOU WANT TO DO STRUCTURED PROGRAM DEVELOPMENT?* T

TRYING—«DRESS M SHOES)(WEARING M SHOESKSTATl.AST))
"This task triple consists of procedure name, goal and state."

DO YOU HAVE ANY ADVICE?* T

ENTERING ADVICE SYSTEM
1* ADD PUT-ON

RULE TYPE* PRIMITIVE PROCEDURE
RULE NAME* PUT-ON(Rl,0])
IS THIS AN ASSUMPTION?* NIL
IS RULE DIRECTLY RECURSIVE'^* NIL
INEQUALITIES IN ARGUMENT POSITIONS* NIL
PRECONDITIONS;
* ROBOT(Ri) A CLOTHES(Ol) A FOUND(Rl,01);
POSTCONDITIONS:
*WEARING(R1,01);

RULE TYPE* PRIMITIVE PROCEDURE
RULE NAME* FIND(R1,01,L1)
IS THIS AN ASSUMPTION?* NIL
IS RULE DIRECTLY RECURSIVE?* NIL
INEQUALITIES IN ARGUMENT POSITIONS* NIL
PRECONDITIONS;
* ROBOT{Rl) A CHAIR(02) A AT(02,L1) A AT(R1,L1) A UNDE^Ol.O^;
POSTCONDITIONS:
* FOUND(Rl,01);

RULE TYPE* NIL

INITIAL STATE;

vsmuissamam

»»(!i!f!f?HH!ip5iW<!!WpnS5W^

63 APPENDIX

* CHAIR(CHAIRl) A CHAIR(CHAIR2) A AT(CHAIR1,CORNER)
A AT(CHAIR2,CORNER);

SEMANTIC PROPERTIES OF RELATIONS:

IS FOUND(Rl,01) A FUNCTION OF THE STATE?* T
IS FOUND(R1,01) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* NIL

IS CHAIR(02) A FUNCTION OF THE STATE?* NIL
IS CHAIR(02) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* NIL

IS UNDER(01,02) A FUNCTION OF THE STATE?* T
IS UNDER(01,02) PARTIAL?* T
ARGUMENT UNIQUENESS PROPERTIES* NIL

ALGEBRAIC SIMPLIFICATION?* NIL

SUBGOAL1NG SYSTEM GENERATED!!!
"The Frame addition has now been translated."

2* DELETE DRESS
3* NIL

"Exit Advice system,"

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
—(PUT-ON(FOUND M SHOES))FIND

((FIND M SHOES CORNER))
((FOUNDER SHOES CHAIR1) THEN (PROC2 M SHOES)
ELSE((FIND M SHOES CORNER)))(PUT-ON M SHOES))
"The conditional statement is generated since it is not known where
the shoes are."

DO YOU WANT TO OPTIMIZE THE PROGRAM?* NIL
IS THIS PROGRAM USEFUL ENOUGH TO GENERALIZE?* T
IS THIS PROCEDURE WITHOUT SIDE EFFECTS?* NIL

THE GOAL (WEARING M SHOES) IS ATTAINABLE BY THE FOLLOWING PROGRAM:
"This procedure is the structured expansion of the non-primitive
procedure DRESS called in PROC1."

DRESS(M SHOES)
ROBOT(M);CLOTHES(SHOES);CHAIR(CHAIRl)i
COMMENT
INPUT ASSERTIONS:

lüi ^iö^*i^^:iiii.(AWi*.^v.>,iJ.ii.i:...;.iv';.'.«■

mpM*A*iJv!tvm^wum*wmw9-f~mu!wmmw>*v*m;. SWW!0'™?5^I^,»J3^W«I!Wr'!!S>B»^ra™^^

APPENDIX

AT(M CORNER) A AT(CHAIRl CORNER)
OUTPUT ASSERTIONS:
WEARING(M SHOES) A FOUND(M SHOES) A WEARING(M SHOES);
COMMENT
PR0C2 ATTEMPTS TO ACHIEVE FOUND(M SHOES);

BEGIN
IF -UNDER(SHOES CHAIR1) THEN

PROC2(M SHOES)
ELCE

BEGIN
FIND(M SHOES CORNER);
END

PUT-ON(M SHOES)
END

64

DO YOU WANT TO DO CONTINGENCY PLANNING?* T
WHAT IS YOUR PREFERENCE?
 IF NONE TYPE NIL* NIL

TRYING—(PROC2 (FOUND M SHOES)(STAT2.CST))
"The contingency task triple consists of procedure name, goal and state,"

DO YOU HAVE ANY ADVICE?* NIL

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
—FIND
((FIND M SHOES CORNER))
DO YOU WANT TO OPTIMIZE THIS PROGRAMS NIL
IS THIS PROGRAM USEFUL ENOUGH TO GENERALIZE?* T
IS THIS PROCEDURE WITHOUT SIDE EFFECTS?* NIL

THE GOAL FOUND(M SHOES) IS ATTAINABLE BY THE FOLLOWING PROGRAM:

PROC2(M SHOES)
ROBOT(M);CHAIR(CHAIR2);
COMMENT
INPUT ASSERTIONS:
AT(CHAIR2 CORNER) A AT(M CORNER)
OUTPUT ASSERTIONS:
FOUND(M SHOES);
COMMENT
PROC3 ATTEMPTS TO ACHIEVE FOUND(M SHOES);

BEGIN
IF -1UNDER(SHOES CHAIR2) THEN

PROC3(M SHOES)
ELSE

BEGIN

jtmiMt* iWHMaHMfii .J,.i;,,.,I.,.-<..J.»l^,^^-aT^--.J. -..,:!,^.,- -... : ., ■,...,.> ,.:., „ . . . , . . - .a.t,. .^. .:■-^.«^ »»..a.»;.^. .■ .,_■... ■

BW^WWW'WP^WWSTW'WI,,», i,iIS«pi^«r^,M^J5iW-JJ,V«™!»f^^«P»W?i^^ W^.','- 1»^(WI«1IJ>W«.!«»»?JHWSW

65
APPENDIX

F!ND(M SHOES CORNER);
END

noEYOU WANT TO DO CONTINGENCY PLANNING?* NIL
DO YOU WANT TO CONTINUE FROM THE CURRENT STATE?* NIL

J

;—1 , , . _

