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ABSTRACT
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described. The programs constructed are expressed in a subset of ALGOL containing -
assignments, function calls, conditional statements, while loops, and non-recursive :
nrocedure calls. The input is an environment of primitive programs and programming

methods specified in & language current!y used to define the semantics of the output ]
programming language. The system has been used to generate programs for symbolic .
manipulation, robot control, every day planning, and computing arithmetical functions. :

This research was supported in part by the Advanced Research Projects Agency of the
Office of the Secretary of Defence under contract [DAHC15-73-C-0435] The views
and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied,
of ARPA, NASA, or the U.S. Government.

SE oy e il et e




1 INTRODUCTION

1. INTRODUCTION.

We present an experimental system for writing certain simple kinds of programs
automatically. The system requires as input @ programming environment consisting,
roughly speaking, of primitive functions and procedures, rules of composition and
logical facts. If it is then given a problem it attempts to find a method of solution in
terms of these rules and primitives. It will take account of certain kinds of advice from
the user. Some of the techniques it uses are most decidedly "heuristic". If
successful, the system will output the method of solution in the form of a plan or
program in a language somewhat similar to a subset of Algol containing
assignments, function calls, conditional branches, while loops, and non-recursive
procedure calls. We call this language the QUTPUT ( or PROGRAM) language. The
forms of the definitions of the clements of the programming environment (i.e. the
primitive procedures and rules of composition) correspond to axioms and rules of
inference in a logic of programs currently used to define the semantics of the
programming language Pascal [Hoare 1969, Hoare and Wirth 1972; see also lgarashi,
London, Luckham 1973} For example rules for constructing while loops have a form
corresponding to the iteration rule. The contents of these definitions vary with the
actual envircnment. Thus, the system can be used to generate simple Algol-like
programs for robot control problems, for every-day planning, or for computing
arithmetical functions.

Given a programming environment (from now on, often called a FRAME), problems to be
solved are stated as pai”s of conditions, the initial input condition and the goal output
condition. We may regard these pairs as the input-output assertiors of formulas in
the logic of programs referred to above. The system is presented with an
incomplete formula (i.e. a program part that satisfies the input-output
assertions is missing), and its job is to complete the formula. The construction of a
solution program may therefore be formulated as a search for a proof in the logic
of programs of a theorem whose input-output assertions match those of the
incoinplete problem formula. This enables us to justify the formal methods of the
system (as opposed to the actual implementation) by showing that the fcrmal methods
will always construct correct programs.

The basic component that does rmost of the searching is a very simple backtrack
problern reduction algorithm. It recursively applies to a given goal the primitives and
rules of the programming environment t. senerate subgoals whose solution will imply a
solution to the goal. It proved necessary to use some of the logical facts of
the programming environment in special ways to evoke procedures fcr restricting
the growth of the subgoal tree. This is often referred to as "building in" knowledge.
In this case, this ied to a few rather unusual complexities in the primitive
language we have for aefining the environment, which we cai the FRAME
language. The choice of special facts, as it stands at the moment, was very much
influenced by our original aim to study autonomous robot planning. The set of these
facts is not dependant on the environment but it probably should be.  The point
is that the definition of a programming environment requires not only the
definitions of primitive procedures, rules of composition, and logical facts, but also
some additional infermation about the relations in the environment as well. This
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INTRODUCTION 2

information to some extent guides the problem-solving behavior. The basis of the
frame language is a free variable first order logic in which statements may have one
of three truth values (TRUE, FALSE, and UNDETERMINED).

In addition to the special logical facts, certain statements about the action of the
problem solver itself are useful in reducing the search. These are statements such
as "when an attempt at goal A fails, do goal B before reattempting A" or "try the
procedure FLY before the procedure WALK"; their usefulness usually varies from
problem to problem within a given fram2. We have therefore chosen not to allow
such statements within the frame language, but to develop a separate ADVICE
language for them. Advice can be given to the system interactively while it is
attempting to produce a program. The kind of advice that can bc expressed at the
moment is very elementary and is nol specialized tewards any particular domain of
program generation. The function of advice is to impose structure on the frame (more
accurately, preference and relevance connections between the rules and axioms).

Cerlainly the class nf programs that this system will construct given only input-output
specifications depends on the extensiveness of the frame. If the frame contains enough
primitives and rules { one might call these programming methods) and logical facts, the
system ought to enable a user to program a solution to a problem without having to
give much thought in aavance to detailed methodology. Thus one of our examples of
generated programs (Section 3) is the very simple Fibonacci program suggested in
[Balzer 1972] as an example of what automatic programming systems ought to try
to do. Admittedly, our frame input isn’t quite so informal, but it could easily be
extended to accept the recurrence equation input suggested in [Balzer 1972]; this
could be transiated into an iterative rule in the frame by straightforward methods
(even the standard algorithm for translating linear recursive definitions to iterative form
would do).

LIBRARY <
PRAME, |y
PROBLEM, | 7 | TRANSLATOR | BACKTRACK ;ﬁ pROGRAM | ~?|  ouTPUT
ADVICE. PROBLEM ASSEMBLER PROGRANM
SOLVER J/
INPUT — oﬁ OUTPUT
SUR -
PROCEDURE
PRORBLEMS

Figure 1. Main System Components
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INTRODUCTION

At run time the first action of the system is to translate a given frame into a
backtrack problem solver augmented by special search procedures. If advice is
given during a search for a solution (i.e. during the program generation phase) the
translator is called and the problem solver is modified. if a solution program is found,
the user is faced with a number of choices. He can ask for another program which
takes the output conditions of the solution as its input conditions; programs can thus
be constructed in segments that "fit together”. He can choose to have the
solution optimized according to some very trivial criteria, or generalized and placed
on a library of nonprimitive procedures. If the solution program contains conditional
branches calling other procedures, he can choose to have those secondary
procedures constructed. Eventually he may choose to stop. Figure 1 shows the
main components of the system and how they interact. We have begun to make
some other additions, for example, the ability to assume the existence of non-
primitive procedures, in order to try the system as an interactive aid to
structured programming. The system is implemented in LISP using the primitives
and backtracking facilities of MicroPlanner [Hewitt 1971, Sussman and Winograd
1872.] In the following sections we have tried to say what the various
components of the system do without going into too many details of how. Most of
the algorithms are quite straightforward so it does seem possible to do this.
Wherever we omit discussion of special tricks, or inadequacies in the
implementation languages force restrictions upon us, we try to leave a warning.
Details of the actual implementation are given in [Buchanan 1974).

We assume that the reader is familiar with the usual notation and terminology of
first order logic and also with some straightforward concepts from the theory of
subgoaling and tree searching that are explained in [Nilsson 1971) In addition we
rely on (ie. use without defining) some of the concepts of backtrack
programming which have attained fairly standard usage in many papers, and may be
found in [Hewitt 1971, Sussman and Winograd, 1972]. The interest in applications
to :obot planning is manifest in our use of concepts such as FLUENT and NON-
FLJENT etc, to be found in [McCarthy and Hayes 1963]

Section 2 presents an overview of the program generation system, and introduces
some of the questions dealt with in later sections. A brief outline of the logic of
neograms is given and it is shown how frame definitions and the program construction
rules of the system may be formulated within this logic. An example of a frame
and problem is given. We indicate how a successful subgoal search for a solution may
be converted into a proof within the logic of programs that the output program
solves the given problem. At this point we give a sketch of how correctness
proofs may be constructed in general.

Section 3 describes the language for frame definitions, the advice language and the
output program language. Details of features ot the system are given in the following
sections: Seclion 4 provides a brief description of how the various problem soiving
and program generation processes use the extra facts provided in a frame
definition, evaluation of LISP functions, and advice frem the user. The methods for
constructing conditional statements are given in Section 5, and for constructing
iterative loops in Section 6. Section 7 illustrates how simple facilities of this
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INTRODUCTION

present system can be used to develop complicated programs in structured steps.
Illustrative examples of frames and generated programs are given in Sections 3, 5, 6
and 7, and the appendix contains a complete interactive session.

This present system can be extended at many points. These include adding new
kinds of frame rules (for constructing recursive procedures, co-routines etc.),
and improving the implementation facilities, the interactive system, and ihe
problem solver. There are many other problem domains beyond those presented in
this paper where the possibility of wusing the present system to generate
procedures for colving problems exists. For example, its application tc generating
assembly and repair programs for simgie machinery is illustrated in [Luckham and
Buchanan, 1974]. At some point in theso developments it will certainly pay to
construct specialized systems for particular classes of frames. Additional special
features common to frames in each class can be then used as built-in assumptions to
speed up lhe problem solver, make the frame and advice languages more natural,
and build up the program library.

What has been demonstrated thus far by the system presented here is (i) the
current axiomatic theory of defining the semantics of programming languages can
be used with slight modifications to define many other simple but useful problem
environments; (ii) there are straight-forward techniques fur translating declarative
descriptions into procedural descriptions for problem solving; (iii) standard problem-
solving methods can be used to synthesize programs in a structured way on the
basis of given specifications, and to handle some burdensome details.
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LOGICAL BASIS and OVERVIEW

2. LOGICAL BASIS AND OVERVIEW

We begin by describing how frames and the program construction methods of the
system can be formulated within the Logic of Programs. The soundness of frames and
1 correctness of programs are discussed. A brief description of the underlying problem-
3 solving algorithm of the system is given. We then outline proofs that under certain
assumptions the programs constructed by the system will be correct. The presentation
here is intended to be informal and to serve as an introduction to the later
sections;many details are left unmentioned until later, and statements of the correctness
results are weaker and more restricted than they need be. Extensions of the
correctness proof are discussed in later sections.

NOTATION:  x,y,2,u,v,w...variables,

XY, Z,.. lists of variables,
f,gh.... functions,
s,t... functional terms,

G,,P,Q,R.S,.. Boolean expressions (essentially formulas of first order logic
with standard functions and predicates for equality, numbers, lists
and other data types),

P(X) denotes the formula obtained by replacing each free variable in P by
a new variable from X,

. E i e
- e SSeau

(AX)P(X) denotes existential quantification over all X-variables in P(X),
ABC,. programs and program parts in an Algol-like plan language (details
r in Section 3),
‘ p,0,... procedure names,
‘. ¢, \,... substitutions of terms for variables, also denoted by (<x«t>).
; P(t) denctes the result of replacing x by t everywhere in P(x).
~/A denotes the COMPOSITION of o and /& Ex/ =(Ec)3 for all

s

expressions E.

We assume the existence of a fixed arbitrary ordering of literals (atoms and negations
of atoms).

2.1 LOGIC OF PROGRAMS

We review briefly the elements of an inference system for proving properties of
programs [Hoare 1969] Further details may be found in [lgarashi, London, Luckham
1973].

STATEMENTS of the logic are of three kinds:

(1) Boolean expressions, (henceforth often called ASSERTIONS)
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LOGICAL BASIS AND OVERVIEW

(ii) statements of the form P{A}Q where P,Q are Boolean expressions and A is a
program or program part.

P{A}Q means "if P is true of the input state and A halts (or halts normally in the
case that A contains a GO TO to a label not in A) then Q is true of the output
state™.

(il Procedure declarations, p PROC K where p is a procedure name and K is a
program (the body of p).

A RULE OF INFERENCE is a transformation rule from the conjunction of a set of
statements (premisses, say H; ,..,H, ) to a statement (conclusion, say K) of kind (ii). Such
rules are denoted by

The concept of PROOF in the logic of programs is defined in the usual way as a
sequence of statements that are either axioms or obtained from previous members of
the sequence by a rule. A proof sequenca is a proof of its end statement.

NOTATION: We use H |- K to derote that K can be proved by assuming H H |- K

denotes the same thing for first order logic. It is sometimes helpful to denote
statements that are problems or subproblems for the program generator to solve by
P{?}Q.

2.2 FRAMES AND PROBLEMS

We restrict our discussion to problems that can be represented in the following general
form.

The problem representation consists of two elements:
(1) F - aset of rules (or laws) called the ENVIRONMENT (or FRAME)
(2) The problem, which is a pair <|,G>:
| - an input assertion (or initial state).
G - output assertion (or goal).
The RULES in F are of at least three kinds:
(a) PROCEDURES: transforming states into states;

(b) SCHEMES: methods for constructing programs:
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LOGICAL BASIS AND OVERVIEW

(¢) RELATIONAL LAWS: definitions and axioms which hold In ell states and serve to
"complete" incomplete state descriptions by permitting deduction of other
elements of a state from those given.

The PROBLEM is the problem of transforming | into G using the rules of F. A SOLUTION
is a sequence of rules that transforms | to G.

REMARKS:

1. For the purposes of discussing the present system we can make the following
restrictions:

(i) The language of assertions is very similar to Algol Boolean Expressions (as
referred to above).

(i) Procedure rules and schemes are expressed as statements and as rules of
inference (respectively) in the logic of programs.

(iii) The underlying logic of the relational laws is first order logic.
(iv) The logic of the procedures and schemes is the logic of programs.

2. We probably ought to permit other kinds of rules in F, eg. rules for evaluating
states, comparing states etc.

NOTATION and RESTRICTIONS: Q U F > R denotes that R is a logical consequence of Q
and the axioms of F. Assertions describing states are denoted by |}',..,.G,G’,.. These
assertions (but not the assertions in rule definitions) are restricted to be conjunctions
of atomic assertions. We write R¢l to denote that R is a conjunct in | L(F) denotes the
logic of F,.e. the set of consequences of the rules of F. Substitutions o« do not
replace any variable that occurs in the initial state I. Expressions, all of whose
variables occur in the initial state are calied "fully instantiated".

STANDARD FRAME RULES: A set of standard rules are assumed to be part of every
frame. These are rules implemented in the program constructlon methods of the
problem solving algorithm:

RO. Assignment Axioms:
(i) Simple Assignment: P(t){xet}P(x)

(iiy Conditional Assignment: (J2)P(Z){IF P(W) THEN Y<W]P(Y)
~(JA2P)AQUY{IF P(W) THEN YeW]Q(Y)

where Y-variables in P(Y) do not occur in P(W), W-variables are special
variables occurring only in conditional assignments, and Y«W denotes
the sequence of simple assignments between members of Y and W that
occur in the same argument pesitions in P(Y) and P(W).

e i =




| LOGICAL BASIS AND OVERVIEW 3

R1. Rule of Consequence: P=QQ{A}R P{A}Q,Q=R

R2. Rule of Composition: P{A}Q,Q{BIR

R3. Rule of invariance: if P{A}JQ and | U F o P then {AYnv(Q))
where if R},R5..,R, are the conjuncts of |
in the fixed order, then |, = Q,
for O<m<n, | ,, =1y A Ry if ~(ly UF 2 -Rp)
| . =1, otherwise,

ms |

and Inv(Q) = I

R4. Change of Variables: P(x){A(x)}Q(x) where y is not a
---------------- special variable.

P(y){A(y)}Q(y}
R5. Conditional Rule: PAQ{AIR, PA-Q{BJR

P{IF Q THEN A ELSE BJR

4 R6. Undetermined values: If '{?}G cannot be solved and
~(I’UF o -G) then G is UNDETERMINED in I.

STANDARD RULES

REMARKS: The axioms RO(ii) define the semantics of conditional assignment statements.

The occurrence of P(W) within the IF statement is interpreted as a call to a procedure

with variable parameters W, the result of which is to bind those W-parameters to
i values that make the Boolean statement P(W) true, if such values exist. We have
: adopted a convention on W-variables, W ,W,,.. whereby they occur only in conditional
assignments as above, and indicate the use of an atomic assertion as a procedure call
(we call them “special variables”). This eliminates the need for explicit Skolem
"successor” functions for each relation in the frame. Note that if ~(32)P(Z) is true of
the input, then the rule "says" that the THEN part of the IF statement is not executed.
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Invariance states that things stay the same unless it can be proved that they conflict.
This is a way of dealing with the "frame problem” [McCarthy and Hayes 1969], but it
does force the user into being careful about stating what does change.Invariance can be
derived within the logic of programs from a rule which states that procedures do not
have side effects. Undetermined values is a rule for deciding when to construct
conditional statements (section 2.4). The change of variables rule is an instance of the
rule  of substitution (see [Hoare 1969]for this and the remaining rules).
Usually,restrictions are placed on R4 to maintain consistency. In this system the use of
the assignment axiorns RO is restricted However, the user can introduce a primitive
assignment procedure (see below) which would not be restricted in its usejin this case
he should use a formulation which distinguishes between a variable and its value.

INPUT FRAME RULES: In addition to the standard rules, a frame may contain rules of the
following types (these constitute the user defined elements of the frame):

S1. Primitive procedures (or operators): the rule defining procedure p is of the for-
P{piQ. The assertions P and Q are the pre- and post-conditions of p. p must cont?’ .. a
procedure name and parameter list.

S2. lterative rules: an iterative rule definition containing the Boolean expressions
P(basis), Q(loop invariant), R(iteration step goal), L(control test) and G(rule goal) is a
3 rule of inference of the form:

- (@ P, I~ Q QAL{?IR, R{ZZ}Qv-L

Piwhile L do %??}G

where the free variables of R and L occur in Q. Such rules are permitted not to contain
P or L,in which case they correspond to inferences of the form:
(b) Q, QA-G{?IR, Ry?7:QVG i

Q{while -G do %??}G

53 Definitions. A definition of G in terms of P is a logical equivalence |- P=G.
S4. Axioms. A frame axiom P is a logical axiom |- P.

Terms and predicates in assertions may contain calls to LISP functions. If the frame
definition contains functional terms or predicate tests that are evaluated by calls to
LISP functions, the set of premisses must be expanded to include both the input-output
assertions for these function calls and the logical axioms for the relevant data types.

REMARKS (i) The iterative schemes S2 permit the definition of methods for constructing
loops; they are instances of:

i

4
(78

-




LOGICAL BASIS AND OVERVIEW

WEAK ITERATION RULE:  QAL{B}JQv-L

Q{WHILE L DO B}-L

¥

where Q is the invariant of the loop. The meaning of |-Q in the premiss is that the rule
may only be applied in states where Q is a first order consequence of the state
description. The program part ?? is restricted to be a sequence of assignment
statements (see Section B6). (ii) Inconsistencies may arise in several different ways in
frames. The axioms can be inconsistent, or the post conditions of a rule can be
inconsistent with the axioms. Also the ciements of iterative schemes must satisfy some
simple consistency criteria (section 6). (iii) Note that each frame rule has a goal. The
goal of a procedure is its postcondition; the goal of an axiom or definition is its
consequent. If invariance (R3) is applied to program part A constructed from applying a
single frame rule,then Q is the goal of that rule.

The following lemma is useful in proving propert.es of conditional assignments
[igarashi,London,Luckham 1973]:

OR-LEMMA P{A}Q, R{A}S
PvR{A}QVS
EXAMPLE: Next, we show how a rather simple problem can be stated within our frame
formalism. This leads us very quickly into the further questions of (i) defining simple
general methods of finding solutions, (ii) formulating the correctness of solutions, and

(iii) the correctness of solutions obtained in frames that have unintended or nonstandard
interpretations.

Consider the following frame and problem:

INPUT FRAME RULES:

1. Procedure: standon

AT(x,y)AAT(2,y) AROBOT(x)ABOX(z){standon(x,2) JON(x,z).

F2. Procedure: step-up

ROBOT(x)AON(x,y) ASTACKED(2,y){step-up(x,y,z) JON(x,2).

F3. Iterative Rule: climb
ROBOT(M)AON(M,y)ASTACKED(u,y)A-ONTOP(M){? JON(M,u)

ROBOT(M)AON(M,y)ASTACKED(u,y){ WHILE-ONTOP(M)DO BEGIN 7;?? END}JONTOP(M)

SR - d pbacd b gl e Sy o B
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F4. Axiom: ROBOT(x)A3y(ON(x,y)AYz-STACKED(z,y))»ONTOP(x).
PROBLEM:

l: ROBOT(M)ABOX(B1)ABOX(B2)ABOX(B3)AAT(B1,LIAAT(ML)
ASTACKED(B2,B1) A STACKED(B3,B2).

G: ONTOP(M)
FRUBLEM 1: CLIMBING
COMMENTS ON PROBLEM 1:

i. The iterative rule says "A solution to the problem of climbing one box at a time, can
be used to construct a WHILE loop that solves the problem of climbing a stack of
boxes". The rule defines the meaning of WHILE in the environment. Or, if we regard
WHILE as a primitive constructor whose meaning we understand, the rule is an induction

principle for the environment.
ii. The program part ?” in the conclusion of the iterative rule transforms the situation
after the execution of the loop body (?) back into one in which the invariant is again
true if the test is true:

ON(x,L)1?? ;ROBOT(x)AON(x,y)ASTACKED(u,y).
We restrict ?? to be a sequence of assignments.

iii. The goal of climb is ONTOP(M), the negation of the control test in this example.

Steps taken by a search procedure in solving this problem are shown in Figure 2. |t
starts with state situation | and determines by logical reasoning from | and the axioms
which operators have pre-conditions that are true in | . It applies these operators and
updates the state to the new state using the rule of invariance. it repeats this process
on the new states. Node 6 indicates the initiation of a subprobler: {the premiss of the
iterative rule) with a new initial state (the invariant) which is a subset of the state
above it at Node 5.

L T oy L TPy T T RYETOTeL VOJCR e g (S pory
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standoa (M, B1)

oNQy,B1)

0% [T, 1A AXTOM) = OETOF (H)

ID!OT(H)\O.‘J(H,Y)ASTLCKED(U,Y) n
stepup(M,Y,U)
od (4,0)
clinb
’ o ONTOP (M)

SEARCH FOR SULUTLONS TO THE CLIMBING PROBLEM
Figure 2

The solutions corresponding to the paths shown in figure 2 are:
(i) I{standon(M,Bl);stepup(M,Bl,BZ);stepup(M,BZ,BB)}ONTOP(M).

(ii) I{standon(M,B1);y~B1;u~B2;
WHILE -~ONTOP(M) DO BEGIN
stepup(M,y,u);

y<ui
IF STACKED(w,y)THEN uew;
END}ONTOP(M)

where the assignments within the WHILE loop correspond to the ?? of the iterative rule.
The variable w is a special variable.

NOTE: It looks as though solution (ii) is more general than solution (i).

Using the frame rules we can now construct a proof of the statement I{solution}G within
the logic of programs.
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1. I>(ROBOT(M)AAT(M,LIAAT(B1,L)ABOX(B1))

L T ST e R T
>

TR

2. |{standon(M,B1);ON(M,B1)ASTACKED(B2,B1)AROBOT(M) 1,F1,R4,R1,R3

3 3. ON(M,B1)ASTACKED(B2,81)AROBC T(M){y«BI;
1-B2JROBOT(M)AON(M,y)ASTACKED(u,y) RO(i),R2,R3

4. |{standon(M,B1);y<B1;u~B2iROBOT(M)AON(M,y)ASTACKED(u,y) 2,3,R2
St ROBOT(M)/\ON(M,y)XSTACKED(U,y){stepup(M,y,u)}ON(M,U)/\ROBOT(M) F2,k4

SRR L B e Ml bl 4 b o o T

6. ROBOT(M)AON(M,u){y«<u}ROSOT(M)AON(M,y) RO,R3

7. ON(M,y)~3zSTACKED(z,y){!F STACKED(w,y) THEN u<w]}ON(M,y)ASTACKED(u,y) RO,R3
& 8. -~3zSTACKED(z,y)AONTOP(M){IF STACKED(w,y) THEN uew}ONTOF(M) RO

X3 9. (ON(M,y)A3zSTACKED(z,y))v(~32STACKED(2,y) AONTOP(M))
4 {IF STACKED(w,y) THEN u«=w }{ON(M,y)ASTACKED(u,y))v ONTOP(M) OR-Lemma 7,8.

a8

b 10. ROBOT(M)AON(M,y)A~(32)STACKED(z,y) > ONTOP(M) F4,

A >(ON(M,y)AdzSTACKED(z,y)) vVONTOP(M)

E ‘, ROBOT(M)AON(M,y)A 32STACKED(z,y) > (ON(M,y)AdzSTACKED(z,y)) VONTOP(M)
3 ROBOT(M)AON(M,y) > (ON(M,y)A3zSTACKED(z,y)) vVONTOP(M)

11. ROBOT(M)AON(M,y)ASTACKED(u,y){stepup(M,y,u);y«u;
IF STACKED{w,y) THEN u~w }(ON(M,y)ASTACKED(u,y}}v ONTOP(M) 5,6,10,9,R2,R1

A e

1 |

12. ROBOT(M)AON(M,y) ASTACKED{u,y){ WHILE-ONTOP(M) DO ..JONTOP(M) 11,R1F3
E | 13. 1{solution (i) JONTOP(M) 4,12,R2

¥ PROOF of I{solution (ii)}G

We refer to a formal proof of L(F)||-I{A}G as a correctness proof. The existence of
b ¢ such a proof implies only that the program is correct relative to the frame. Thus it is
- easily seen that the final state implies (Yx)(BOX(x)>ON(M,x)), hardly a situation we had
4 intended, but which arises from the invariance rule owing to our not having axioms such
¥ as,
4 ON(M,x)AON(M,y)>x=y.

o g

In other words, our frame admits non-standard models.

We could extend the frame by adding this additional logical axiom and go back to
solving the problem all over again. But this would have to be repeated if some other
non-standard model was discovered still later. We ought to be able to do better than
that!

Now, solution (ii} may still be "correct” (or solve the problem) in the extended frame.
And we can determine this from the proof of I{solution (ii)JONTOP(M) by checking to

S A S D atlT B Lo el o kg bear el opie Sl Ly



LOGICAL BASIS AND OVERVIEW 14

see if any step uses facts from an intermediate state situation I that contradict the
extra logical rule. In other words, we can "run” the proof on the new world with a
special consistency check against the additional facts. This ought to be much easier
than solving the problem again from scratch.

The proof above formalizes (i.e. provides a description for the purposes of analysis)
WHAT it is the problem solver has finally done when it has solved the problem. It is a
record of those features of the frame and initial state thet were essential in
constructing the solution. For example, we have actually proved
ROBOT(M)ABOX(B!)ASTACKED(B2,B1)AAT(MLIAAT(BL,L){Solution(ii) ;ONTGP(M)

within L(F). This proof did not use BOX(B2),BOX(B3),or STACKED(B3,B2!. If there was
a stacking operator in the environment, we could alter the proof--without having to
resort to the problem solver again -- to eliminate the hypothesis "Stacked (B2,B1)". It
will be noticed that a similar proof for solution (i) uses more properties of |; solution (i)

IS less general.

It is therefore plausible that a carrectness proof for a solution program will be useful in
answering further questions about that program such as: Does it solve this new
problem? Can it be altered to solve a given ne'v problem? Are there problems it will

work on that anothcr program won't?

e ;
Vi !

PROBLEM 1: THAND-OR-AND TREE SEARCH
Figure 3
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2.3 THE FORMAL PROBLEM SOLVING ALGQORITHM

To automate solving simple problems of this kind it is sufficient to use a straightforward
problem reduction search [Nilsson) Figure 3 illustrates the depth first reduction of
goals to subgoals using the input frame rules (as described bslow) until subgoals are
reached that are true in the current state. In figire 3, there are two kinds of nodes,
Goal nodes and Rule nodes corresponding to ths separate steps of (1) choosing a rule
to use, and (2) generating the subgoals necessary to apply that rule. Goal nodes may
be any combination of THAND,(defined below) OR, AND, but Rule nodes are always OR
nodes [Nilsson 1971]. The arrows from each rule node point to its immediate subgoals.
If a node reduces to an OR of its subgoals (which are thus OR- nodes), it has no angle
mark; i’ it reduces to a THAND of its subgoals the relevant arrows are connected by
one argle mark; an AND of subgoals is denoted by two angle marks. Each rule node is
labeiied <nFm> where n is the order in which it was achieved ( omitted if it was not)
and Fm is the frame rule used; similarly goal nodes are labelled <n,Gm>.

We give an informal description of the reduction algorithm (or subgoaler) in the simple
case where it does not contain the rule of undetermined values, as follows:

The subgoaler computes on a triple, <G'[',A>, where G is the subgoal to be attempted
next, I’ is the description of the current state, and A is the current partial answer. Let
.~ be a sub tution that replaces variables by terms from | (the Initial state). Nodes in
the subgcal tree are developed by using inpu! rules in F: if a rule of F has a conclusion
or postcondition Q such that Qx = G’ then the rule is USED to develop the node by
appending its premisses or preconditions H,o¢,aHeot as subgoals of G’. Q is said to

match G

A goal G"is ACHIEVED in one of four ways:

(@) if there is an « such that I'UF 2 G,

(b) if not (a), then G is developed using an instance of a frame rule with post-condition
(or goal) Qo Let the immediate subgoals of G’ be Gl1¥G2 where * is the principle

connective in the preconditions of the frame rule, so that Gl and G2 are *-ncdes. In
this case, G is ACHEEVED it:

(i) one of G1 or G2 is achieved (in the case * is OR),

(i) both G1 and G2 are achieved (in the case * is THAND),

(i) both GI and G2 are achieved (in that order, say) and the updated state
(defined below) that results from achieving G2 also satisfies Gl (in the
case * is AND).

A A 3 e Mt e P St
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If G’ is achieved under (a) there is no change in the current state and answer,
However, in case (b), both are UPDATED as follows: let I’ be the current state :esulting
from achieving G1#G2; the state resulting from achieving G’ is Inv(Qe¢,I). A is composed
(by R2) with the procedure call or while statement corresponding to the rule that was
used to develop G'.

A node in the THAMND-OR-AND tree FAILS when the goal associated with the node
cannot be achieved - essentially because it is not true of the associated state and
either no rule can be applied to reduce it or one of its subgoals is not achievable.
Whenever a goal node fails, the search procedure (simplest form) "BACKS UP" to the
goal node immediately PRECEDING it and attempts the next OR-possibility for that goal.
The search is DEPTH FIRST.

Thus, an AND assertion is achieved when all of its elements (subgoals) have been
achieved simultaneously in the same state; a THAND assertion requires only that its
subgoals be achieved in some order but not necessarily simultaneously.

This simple kind of search algorithm can be implemented quite easily using the goal tree
generation, automatic backtrack and data bace access functions of MICRO PLANNER
[Hewitt 1971, Sussman and Winograd 1972], or any of the other current problem
solving lunguages. However,it is necessary to distinguish betuveen the formal algorithm
and the implementation since the latter can only approximate some of the formal rules.

THE UPDATE PROBLEM. The updating of a state to the new state resulting from the
application of an input rule is formulated by invariance. In general the rule of
invariance is not computable, but even in cases where it might be, it is IMPRACTICAL.
The implementation of this rule has to fall short of its formulation. Inconsistencies in
the state description are almost certain to arise eventually. We can try to delay this
by paying special attention to those axioms that are most likely to be transgressed (e.g.
uniqueness and single-valuedness properties). The case of ITERATIVE rules provides a
particular difficulty since the rule goal G may not provide enough information about
what went on during the iterations of the loop body to continue planning after an
application of such a rule. We allow the user to specify an output assertion as part of
an iterative rule, in which case invariance is applied using this assertion in place of the
usual rule goal (see section 6).

2.4 CONDITIONALS.

Extending the description of the goal reduction algorithm to include the rule of
undetermined truth values follows closely the actual system implementation discussed in
Section 5. Here we give some motivation for rules RS and R6.

Conditional statements cre constructed whenever an undetermined goal occurs. The
notion of undetermined truth value used here is an operational one. The problem
solver wants G’ to be true in I, G’ is not true in I, no way of making G’ true can be
found, and G’ is not false in I. In such cases, the algorithm continues by splitting its
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problem into two subproblems: to solve a more global problem G+ say, (a) assuming G’
is true and (b) assuming G’ is false.

For example, relative to the frame in problem 1 we can pose a second problem,
117 :ONTOP(M) where |1 differs from | only in not containing the assertion AT(M,L). Our
solution (ii) above is no longer a solution to this new problem since AT(M,L) is not true
in 11 (neither is it known to be false!) and there is no way of achieving it. Using R6 and
RS ,the extended algorithm can construct the solution:

(i) 11{IF-AT'M,L) THEN CALL PROCI(ML) ELSE
BEGI]
standon(M,B1)iy~Bl;u~B2;
WHILE-ONTOP(M) DO
BEGIN stepup(M,y,u); y«u;
IF STACKED(w,y) THEN uew;
END
END ;ONTOP(M).

and the proof of correctness of solution (i) can be extended to a proof of I1{solution
(iii) JONTOP(M).

The implementation of these rules is complicated by considerations such as the
following.

(a) A stack is required for the subproblems for cases when undetermined subgoals are
assurned false, i.e. subproblems for the form ’A~G’{PROCN}Gx.

(b)- Criteria for the choice of G# are required. For example, the contingency problem
above is 11A-AT(M,L){PROCI(M,L)JONTOP(M). Although the problem solver has found
that it cannot solve I1{”}AT(M\L), there is no reason to suppose that this is a good
choice, or indeed that it can be solved We might have chosen

11 A~AT(M,L){PROC!!ON(M,B1) instead.

(¢c) The order in which goals are attempted may affect not only whether a solution can
be found, but also whether the solution is sensible.

(d) Undetermined truth values can also arise as a result of app'yiing unreliable
operators, for example:
AT(hand,x)AAT(object,x){!ift(hand,object) }HAS(hand,object)v DROPPED(hand,object).

We shall consider these problems in detail in Section 5.

2.5, CORRECTNESS OF SOLUTIONS

In the previous examples we showed that if the frame rules were taken as assumptions
then the solutions could be proved within the logic of programs to solve the problems.

s A e
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This is what we mean by the CORRECTNESS of the solutions. The proofs require the
standard rules, but these are all rules of the logic of programs, with the exception of

f invariance and undetermined values. A proof of correctness of a solution generated by
f_ the formal problem solving algorithm, based on the frame in which the problem was
1 posed,can be given in every Case. This does not guarantee the correctness of every

actual solution since, as we have seen, the implementation only approximates certain

rules of the formal algorithm. It is a justification of the formal methods. In addition it
: provides a measure of confidence in actual solutisns relative to the soundness of the
; frame (which is the uset’s responsibility) and to the degree to which unsound heuristics
: ixy the imolementation have been invoked in finding a solution. In fact, the result allows
: us to state sufficient conditions under which actual solutions will be correct, but we wiil
not do that here.

To establish this result it is necessary to prove (a) a successful search tree of the
formal algorithm has certain properties, and ‘b) a tree with those properties can be
transformed into a correctness proof of the solution. We shall state withcut proof the
properties of successful searches, and then give the details of step (b).

Let us first consider the very restricted case where (a) no calls to LISP functions take
place, (b) no undetermined goals occur, and (c) no iteration rules are used. We assume

that the problem is stated in the form 1{?}G where G contains only variables occurring in

The subgoaling algorithm treats \ (or) as exclusive; in order to achieve P(x) v Q(x) it
tries to achieve P(x) and if this fails it tries Q(x). When the subgoaler cumpletes a
successful computation it has constructed a goal tree, Tr say, and a substiiviion «¢. Tr
consists solely of goal nodes (tne single rule node between a goal and its subgoals in
the completed search tree can be eliminated and the arrows leading directly from the
goal to its subgoals labelled by the rule name). Tr and o have the following properties:

)

IR e T

(1) each node of Tr has associated with it the number n if it was the nth node to be
achieved, a Boolean expression G(n) (its goal), a program part A(n), and a state
condition I(n),

(2) - substitutes terms from | for variables in Tr,

(3) WF]-G(De,

(4) if G(n+1) is at a leaf node then KnMUF|-G(n+1)<¢,

(5) if G(n+1) is not at a leaf node then it is related to its immediate subbgoals
G(k),.,G(n) by a procedure PipiQ or a definition P=Q such that Qe =G(n+1)eAQ«¢ and
P.. =G(k)+...+G(n),where * is either AND or THAND. G(n+1)is achieved from I(n).

(6)in cases 3 and d,and where a definition was used to develop G(n+1), Kn+1)=kn) and
A(n+1)=A(n); in the case of a procedure call of the form Poc{pec}Qer, Wn+l) is

inv(Q:x,i(n)) and A(n+1)=A(n);p<. Finally, the property that G(n+1) is achieved from I(n)
] implies that Kn)UF|-Pec. (NOTE: this use of "|-" is an extension of the usual notion of

e ol et hesa s e — e Lo il
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first order proof in the case when P« is a THAND; however it is easily seen that
THAND connectives may be eliminated from frames by introducing extra definitions, so
the extension is not essential.)

Let the root of Tr be lhe my, node. We rmay prove that the output program A(m)
solves the problem, i.e, L(F) |- {A(m)}G, (here G(m)=G) by proving a similar result for
each intermediate goal and partial answer. Namely, for each n<m, L(F) ||-I{A{n)}I(n) and
I(n)>G(n)~ can be proved by induction on n. The cases are as follows,

First, L(F)||- | @ G(1)c¢ by property (3) above.
Now assume L{%) ||- 1{A(n);l(n).

If Cin+1) is at a leaf node then Kn)UF>G(n+1)e¢, n+1)=l(n), and A{n+1)=A(n). Thus
LOFY||- HA(n+ 1) }I(n+1) and L(F) {|-1{A(n+1)}G(n+1)e¢ by the rule of consequence R1.

If G(n+1) is not a leaf node then I(n)UF|-Pe¢ by property (5) above. If G(n+1) is related
to its immediate subgoals by a procedure, say P{p}Q, then Po{p}Qct is derivable by the

change of variables rule R4. The rule of consequence implies L(F) [|- I(n}{pot}Qc¢ and
invariance implies L(F)]|- I(ni{p:z<tl(n+1). Rule R2 allows the composition of this with the
inductive assumption so that L(F) ||~ A(n);pecilin+l). Finally i(n+1) |- G(n+1)ec since

Qx= G(n+ A Q. The case when G(n+l) is related to its subgoals by a frame
definition is straightforward

Thus, by induction on n we can prove L(F) [~ I{A(m)}I{m) and (m)>Gec. Finally we note
that if G contains only variables uccurring in | then Gee=G. Therefore, we have proved
"5‘ LCF) fj- {ASG.

The extension of this proof for the case when there are undetermined goals is given in
Section 5, and for the case when iterative rules are used in Section 6.
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3. DEFINING THE PROGRAMMING ENVIRONMENT

In this section the Frame definition formalism is presented. This includes the Frame
language the Advice language, and the output Program language. A complate example
of an input frame, together with advice, and the resulting output program is given.

3.1 FRAME LANGUAGE

3.1.1 ASSERTIONS: The syntax for assertions used in definitions of rules, axioms and
state descriptions is shown in Fisure 4.

<variable> = <identifier>
<function symbol> = <identifier>
<predicate symbol> : = <identifier>
<term> u= <variable>|(<function symbol>)|
(<function symbol><argument list>) )
<argument list> u= <term>|<term>,<argument list>
<functional term> = (EV<term>)|(EVN<term>)|<term>
<atomic formula> u= <predicate symbol>(<predicate argument list>)
<predicate argument list> u= <functional term>|<functional term>,
<predicate argument list>
<literal> ::= <atomic formula>}~<atomic formula>
<literal element> ::= <literal>|REQUEST(<literal>)|{<assertion”}
<disjunction> ::= <literal element>|<literal element><or><disjunction>
<assertion> = <disjunction>|<disjunction><and><assertion>
<and> u= A&
<or> u= vi®

SYNTAX OF ASSERTIONS
Figure 4.

Identifiers are strings of characters not containing the negation symbol, "-", nor the
usual LISP delimiters, e.g, blanks, commas or parentheses. The <or> connectives have
higher precedence than the <and> connectives and a logical condition is terminated by a

sernicolon, i .

The only constructs whose meaning requires special explanation are <functional term>,
<literal element>, and the connectives "&" and "8".

It a term is in the scope of the modifier "EV" then all functions in that term are applied
to their arguments (i.e. evaluated as LISP functions) when that literal is used in the
problem-solving process. "EYN" further specifies that the functions to be evaluated
have numerical values. The default convention is that the term is manipulated as an
unevaluated symbolic expression. The "REQUEST" modifier, which takes a literal as its
argument, alters the way that literal is treated by the problem solver. This is discussed

in Section 4.

The AND connective is denoted by "A" . Thus a state satisfies the assertion AAB if it
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21 DEFINING THE PROGRAMMING ENVIRONMENT

satisfies both A and B. The weaker THAND connective s denoted by & (Section 2).
Exclusive OR is denoted by "@".

3.1.2 STATE DESCRIPTIONS: Assertions specifying states are restricted to be
conjunctions of literals.

2.1.3 AXIOMS: Axioms are stated in either of the forms P=Q or P, where P and Q are
assertions. They hold in all states and are used to complets a glven state description
by deduction of other elements of a state from those given.

3.1.4 RULES: There are three types of rules: primitive procedures, definitions, and
iterative rules.

(a) A primitive procedure Is specified by a name, an argument list, and its pre and post
- conditions, i.e.

P {f (x, .. )}Q where P and Q are assertions in wtich X; ,...,x are free, and f
is the procedure name.

The variables are formal parameters of the procedure. They may be "bound" by
substitution of actual parameters when the procedure is applied to a state.

When a primitive procedure is defined it may be declared to be an ASSUMPTION. If it
is used in a successful program construction, then the user is informed and is given the
oppertunity to carry out a structured program development of this non-primitive
operation. This is described in Sectinn 7.

(b) A definitional rule s of the form R=S where R and S are assertions. The relation, S,
is given as the post- condition of the rule. The meaning of a definltlon is that
whenever it is desired that S be true it is equivalent to establish the truth of R. A
definition is often used to shorten assertions in rules by defining a single relation as
equivalent to an often used condition.

(c) lterative rules specify conditions that if satisfied justify the assembly of a "while"
loop to achieve the associated goal. They are instances of the iterative rule S2 in
Section 2.2, and are defined by giving:
(i A name, e.g. TLOOP, (without parameters).
(ii) A basis assertion P.
(iiiy A loop inveriant assertion () that specifies relations that must be true in the
«tate prior to each iteration.
(iv)  An iteration step assertion R that specifies the goals to be achieved during
an execution of the loop body.
(v)  An iterative goal G, the assertion considered achievable by the iterative
process.
(vi) The format of iterative rules also allows the specification of a loop control
test L and an output assertion S If they differ from G.
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The ruie,

TLOOP

P;Q:R:GL;S;

where P,QR,GL and S are assertlons,
defines the iterative rule "TLOOP"
associated with the goal G.

3.1.5 SPECIAL AXIOMS: After the rules and initial state have been defined the system
requests the following information for each pradicate symbol P that has been
mentioned. The system use of this information is discussed in Section 4.

a) "Is P a function of the state? The intent of this classification is to separate
those relations whose truth value may be affected by a state transformation,”
i.e.,, FLUENT relations,from those whose truth value is constant over all
achievable worlds, i.e, NON-FLUENT relations such as “ROBOT(X)",
“INTEGER(Y)".

b) “Is knowledge represented using P partial?” A partial relation may have truth
values TRUE, FALSE, or UNDETERMINED. Partial relations may be used to
represent incomplete knowledge of the world which may cause conditional
statements to be generated as explained in Section 5. A relation may be
declared "uncertain”" which implies an absence of knowledge about it so th:* it
is assigned a truth value of undetermined a priori. If P is not "partial” it is
“total" and can only have truth vaiues of either true or false. Thus rule R6
applies to partial predicates only.

¢) "Does P have a uniqueness property in certain argument positions?" A "yes"
answer indicates that P cannot be triie for two sequences of argument values
that differ only at one of those positions that are unique. The unique
positions are given using the notation, (X1,£,X3%,.,Xn), for example, to
designate the second and fourth argument positions. For each unique
argument position in relation P(al,..,an), an axiom is "built-in" from which a
contradiction may be established with P(bl,.,bn) that differs in a unique
position and matches elsewhere.

For example the statement, "an object can only be in one place at one time", is
expressed by, AT(X1,x). If we add, "and only one object can be at any place", then we

use AT(xx).

3.1.6 SIMPLIFICATION: Algebraic simplification rules may be given to simplify the terms
that may occur in subgoals during the problem solving phase. The simplification is driven
by a table of rules of the form s=t where s and t are terms; occurrences of se are
replaced by tee for any substitution .

The output format of any functional term may be specified by the user by giving a rule
in which its input prefix form is on the left, e.g, (PLUS X Y) = (X+Y).
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23 DEFINING THE PROGRAMMING ENVIRONMENT

3.2. ADVICE LANGUAGE

The advice facility is intended to enable the user to impose structure relevant to
solving a particular problem upon an already defined frame. This additional structure
includes preference orderings among goals and rules, and restrictions on the search
space. The preferences may also reflect the kind of solution the user wants.

Advice is given during program generation by means of an interactive facility. The
advice subsystem may be entered by responding to a system query, "DO YOU HAVE
ADVICE?" , or by typing any key during program generation. The user may request (o
see the current path in the subgoal tree i.e. rules entered and goals pending, and
receive a diag"»ms of the cause of any failure. This is useful In declding what advice

to give.

The advice system enters a read loop recognizing and numbering commands from the
language shown in Figure 5. In the language syntax, optional symbols are enclosed in
"[" and "]"; enclosing a list of symbols in "{" and "}" indicates that one must be chosen;
<rule> |s a rule name; <rule list> is a list of rule names; <proc> ls a primitive procedure
name; <advice num> is of the form " n", where n is an Integer; and Q denotes the pre-

condition of <rule>.

After advice has been given the system may be directed to reject the rule it is
currently using, if any, or to try (perhaps re-try) the current rule.

The advice facility is an important tool for experimenting interactively with different
frames to determine their adequacy and soundness. At present, the language is
rudimentary and should be extended.

3.3 PROGRAMMING LANGUAGE

The generated programs are expressed in an elementary ALGOL-like language which
includes block structure, assignment statements, conditional statements, while loops, and
non-recursive procedures calls. The procedures may be typed, including Boolean, ard
may have side effects in addition to the value returned. The procedure parameters are
normally called by value except in the case of special W-variables in conditional
assignments (rule RO, Section 2).
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ADVICE LANGUAGE

COMMAND SYNTAX

ACTION PERFORMED

TRY <rulel> BEFORE <rule2>

Use <rulel> before <rulci’’> to
develop a subgoal.

FOR <rule> [FIRST] TRY <literal>

Change the precondition Q of <rule>
to <literal> & Q if "FIRST" is
given otherwise Q V <literal>.

DELETE {<rule>,<literal>,
<advice num>}

1f <rule> is given, rcmove that
rule. If <literal> thcn alter
state to make <literal> not true.
1f <advice num> then delcte the
associated advice and undo its
effects on the system.

ADD{ <rule>,<literal>}

1f <rule> is given then accept a
new rule. 1If <litcral> then alter
state to make <literal> true.

ALTER <lrule>

<rule> may be modified.

ASSUME |<rule>,<literal>}

1f <rule> is given then an assumed
rule may be defined.

If <literal> then alter statc to
make <literal> true and mark it as
an assumption.

RESTRICL ~rule>{TO,FROM}
<rule list>

For any goal in Q, if "TO" is given
then only rules in <rule list> may
be used, if "FROM" then no rulc in
<rule list> will be used.

ADV1CE

All advice given that session is
displayed.

STATUS

The following information is dis-
played:
-rules entered and goals
pending in current subgoal
tree,
-rules and goals in longest
path obtained so far,
-currently constructed program
segment
-longest program segment
constructed so far.

PATRWISE INEQUALITIES <proc~

Pairwise equality is prohibited
in primitive procedurec argument
positions containing alt,

RECURSIVE <rule>

The rule may be used directly to
achieve a goal in its pre-condition,
otherwise it may not.
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3.4 AN EXAMPLE

Consider the task of writing a program to compute the nth Fibonacci number for some
integer n. This task has been posed in [Balzer 1872] The basic information required
is the recursive definition and the basis values. One way to express this in the Frame
language uses the following predicates with the indicated meanings:

VFIB(X,Y): “The value of the X Fibonacci number is Y
C(X,Y): "“The contents of the variable X s W

FIB(X,Y): "The variable X contains the Y Fibonacci number,
INTEGER(X): "X is an integer”,

ISVAR(X): "X is & variable",

>(X,Y): "X is greater than Y"

NEWVAR(X,Y): "X and Y are local variables"”.

The problem is ISVAR(X3)AINTEGER(N) {?}FIB(X3,N).

The frame contains:

1. Axioms VFIB(1,1)and VFIB((ADD1 1),2) (these define initial values).

2. Axiom
TAFIB
VFIB((SUB1 V1),V2AVFIB((SUB1(SUB1 V1)),V3)A =(V4(PLUS V2 V3));

VFIB(V1,V4);
(defines VFIB(V1,V4) for terms beyond the initial values).

3 An iterative rule (named TFIB) with goal FIB(V3,V8); this rule defines the conditions
to be satisfied during an iterative upward computation. The basis condition (to initialize

the counter and program variables) is:
NEWVAR(V1,V2)AINTEGER(V8)AC(V1,(ADD1 1))AC(V2,1)AC(V3,(ADD1 D).
The loop invariant condition is:
C(V1,V5)AC(V2VI)AC(V3VIO0AVFIB(VEVI 0)AVFIB((SUB1 V5),V9);.

This states that at each entry to the loop body, if the value in the counter is i and the
values in the program variables are j and k then j is the ith Fibonacci number and k is

the (i-1)st Fibonacci number.

The iteration step condition

C(V1,(ADD1 VS))AFIB(V2,VS)AFIB(V3,(ADD1 V3));

specifies what the iteration step is to accomplish. The control test, >(V5,V8) and an
output assertion FIB(V3,V8) are given.
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4. A definition of FIB in terms of VFIB and C

TOFIB :
VFIB(V2,V3)AC(V4,V3); FIB(V4,V2);

5. A simple primitive procedure for assignment is aiso given, l.e.

«(V1,A1)
ISVAR(V1); C(V1,Al);.

No rules are declared as assumptions. The additional information given to compiete the
Frame specification is shown in Figure 6, and a program generated from this Frame Is
shown in Figure 7.
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PREDICATE SYMBOL PART IAL UNIQUENESS

C FALSE c(x,*)
FIB FALSE FIB(X,*)
> FALSE FALSE
VFIB FALSE VEIB(*,*)
INTEGER FALSE FALSE
FALSE FALSE

N N OUTPUT SYNTAX:
STMPLIFICAT1ON RULES: BUNCEyION oS Y X

(ADDY X) (X+1)
‘suBl X) = (X-I)
(PLUS X Y) = (X+Y)

‘ADD1 (SUBL X)) - X
‘SUBL (ADDL X)} — X

ADVICE: TRY TFIB BEFORE TDFIB
RECURSIVE TAF1B

N MR e F F NN O 3 M 36 P . a bt a o

PROCL (X3,N)
ISVAR(X3); INTEGER(N);
COMMENT
INPUT ASSERTION
NONE
OUTPUT ASSERTION
FIB(X3,N)
BEGIN
vl ~ 1+I);
Y2 ~ I
X3 — (1+1);
WHILE =>(YL,N) DO
BEGIN
Y1 - (YL + I);
22 - X33
X3 ~ (X3 + Y2);
Y2 - 722}
END
END

Figure 7
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4. PROBLEM SOLVING PROCESSES

During the process of problem solving ard program generation, informatlon is needed at
many points to reduce the cearch space or to produce reasonable programs. Some of
the information is provided in the frame specification by statements about the rules znd
predicates; other useful facts are provided to the problem solver in the form of rather
simple advice. Roughly speaking, there are slx basic processes in the problem-solving
system where extra facts can help: (a) pattern matching, (b) development of nodes in
the subgoal tree, (c) updating the state description (i.e. implementing invariance), (d)
backtracking in the subgoal tree, (e) conditional branching, (f) assembly of programs.
Each fact (as opposed to a rule or axlom) in a frame speciflcation and each sort of
advice has at least one function in speeding up a basic process. Below we describe
some of the ways in which the present variety of facts and advice Is used (full details
are given in [Buchanan 1974)).

(1) OR-Node Selection. When more than one rule can be applied to reduce a given
goal, some selection and preference criteria are needed. By using the advice
systemthe rules and axioms that may be &applied to achieve goals within the
precondition of a rule or axlom may be restricted to or excluded from a given list.
Also, a preference ordering may be specified among rules and axioms with common
post-conditions. Goals within the preconditions of axioms are always restricted to
deduction within the current state, i.e. can be reduced only by use of other axioms, and
do not cause a state transformation nor add any construct to the generated program.

(2) Predicate Classification. A predicate P is classified according to the kind of
subgoaling permitted to achieve a goal of the form P(t). If P is declared to be NON-
FLUENT, then sny goal literal containing P can be achieved only by deduction; frem the
current state. No rules (procedure, iterative or definitional) are applied. FLUENT goals
are attempted by deduction and state transformation. If a fluent predicate occurs In a
literal which is ihe argument of the REQUEST modifier, then it is treated as a non-
fluent.

(3) Goal Ordering. The achievement of a condition (and the efficiency of the output
program) is strongly influenced by the ordering of its subgoals. In particular, the
bindings of variables cccurring in goals may be determined by earlier achieved
instances. In some cases only certain orderings will permit achievement. An objective
of an automatic problem solving system is to determine the optimal subgoal .. dering,
but at present this is provided by the user when the Frame is defined and may be
altered by advice. However, the system automatically orders non-fluert goals first in a
condition; this relatively short achievement search is used both as a quick rejection
strategy and to get variable bindings of the correct type for the remaining fluent goals.

(4) Recurring failures. When failure occurs in some subtree prior to successfully
solving a subproblem, its causes should be used to avoid repeating the same failure In
the continued search if possible. At present this must be handled using the interactive
advice system. This informs the user of the current path in the subgoal tree, current
program generated, and goals that fail, thus allowing interactive correction when a
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ref.. tition occurs. These situations can also be eliminated by placing the (eventual)
su..cessful subprograms on the program library for use as MACROS. '

(5) Repetition. Certain types of looping behavior in the subgoaler are prevented using
the feature of the Frame language that allows a rule to be declared recursive or nch-
recursive. If declared non-recursive, then that rule will not be used directly to achieve
a goal in its pre- condition and it will not be entered twice to achieve the same
instance of its post-condition within the same subgoal tree. A more general mechanism
should consider not only the current goal and rule but also the current state as well.

(6) Truth Values. Thougn the underlying semantics is three valued, search efficiency is
gained by restricting relations involving certain predicate symbols to be two valued. If
a predicate P is declared to be TOTAL, then failure to achieve P indicates that -P is
true. Only true positive instances of total predicates are stored in the state. The rule
of undetermined values is not applicable to literals involving total predicates. The
additional processing required for PARTIAL predicates is described in Sectior: 5.

(7) Useless Procedure Calls. In some cases, the application and generation of redundant
or trivlal procedure calls are detected and avoided. At the moment this is done by
placing restrictions in the frame on the actual parameters of primitive procedures. The
system will not use an instance of a primitive procedure that contains pairwise equallty
between its actual parameters that has been orohibited by the user. For example, the
advice "PAIRWISE EQUALITY MOVE(x1x2%)" will cause the rejection of the procedure

call "MOVE(MAN,CHAIR,P,P)".

(8) Uniqueness Properties. Uniqueness or single-valuedness In argument positions of
certain predicates is sufficiently important to jusiify a special mechanism rather than to
rely on deduction using axioms. The designation of certain argument positlons as unique
is equivalent to efficiently building in axioms of a particular form, e.g. P(x1%)

represents the axiom,
P(x1,x2) A x2 # x3 = ~P(x1,x3).

These special axioms are used for consistency checking (in the implementation of the
rule of invariance) when the state is updated.

(9) Context Linking. The context, which includes the state and bindings on subgoals
currently pending at a node, should be available to aid search decisions, e.g.
instantiations of subgoals or choice of rule, at descendent nodes in the subgoal tree.
The system has a mechanism that if requested will keep track of the instantiated goals
at each level of the subgoal tree so that their variable bindings are available when
attempting iower level goals that precede them in the depth first ordering. This is used
to instantiate the lower level goals. For example, suppose Q(b) A P(a) is a condition to
be achieved and a primitive procedure R(y) A P(x) {p(xy)}Qly) is applied to achieve
Q(b), then for the P(x) in the precondition of p, P(a) wili be used since it must be
achieved at the higher level anyway, i.e,
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Qb)  P(a)
[\

LN
R(b) P(x) (<x«a>)

This heuristic may be viewed as the apposite of subsumption, the strategy being to get
ground instances as soon as possible to nhelp avoid long searches using rules. This is a
rather restrictive strategy that may exclude solutions and is only used when requested
by the user.

(10) Evaluation of Predicates and Functions. For certain predicates occuriing in
subgoals, achievement is most efficient by direct evaluation. If a literal occurring in a
goal is formed with a predicate that has a LISP definition, than that literal is evaluated
as a LISP statement. Special processes or even subsystems ran thereby be linked into
program generation. Evaluation of arbitrary functions occurring in terms in arguments of
goal literals is done if the function occurs in the scope of an EV modifier. These
evaluations assume the soundness of implicit axioms describing the LISP definitions, and
the consistency of these axioms with the Frame. For example, the equality predicate,
"=", is evaluated using the LISP "EQUAL", and the predicate NEWVAR(x1,x2,..,xn) takes
an arbitrary number of arguments and binds each Frame variable xi (o a new program
variable (for use perhaps as a local variable in a block).

(11) Simplification rules. Rules of the form s - t where s and t are terms, may be
included in the Frame. Such rules are applied to simplify terms /i goals by replacing
occurrences of se by toc. This not only reduces the complexity of terms in the subgoal
tree, but it also modifies the pattern matching process and the set of rules that can be
applied to reduce a goal.

(12) Computing Input/Output Assertions. In Section 2 primitive procedures were
viewed as frame rules of the form P{p}Q, where P and Q are the pre and
postconditions for p. The conditions P and Q may also be viewed as sufficient input and
output assertions for p , that must be satisfied by the actual parameters of p. For any
generated program segment A, the input assertion |, is computed as the conjunction of
all literals, I, from a state that were used in achieving subgoals encountered during the
generation of A and did not occur in that state as a result of a postcondition of g
procedure whose generation in A preceded the addition of | to |, The output assertion
Oa is the conjunction of literals added to a state during the generation of A that are
true in the final state.

The usefulness of computing sufficient input and output assertions for a program or
segment thereof will become apparent when we discuss program generalization and the
construction of conditional statements.

All of these applications of facts and advice with the exception of (12), are intended to
have a direct effect on reducing the growth of the subgoal tree (process (b)). In
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addition, the pattern matching process (a) is extended by (11); (c) is aided by the
restriction of truth values and the special axioms (6,8); (e) is dependent on (6 and 12);
(f) is aided by (3,7,11,12). There are other tachniques, mainly detalls of the
implementation, some of them heuristic, that affect problem solver, particularly the
backtrack (d), the updating (c) and assemkt!v of programs (f) (e.g. the implementation of
the A connective by software interrupts that protect already achieved goals, includes
certain assumptions about backtracking when an AND-node fails). Details of these will
be found in [Buchanan 1974]
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5. GENERATION OF CONDITIONAL STATEMENTS

Conditional statements are generated in situations where the rule nf undetermined
values applies or when the outcome of a primitlve procedure Is uncertaln. In this
section the system methods for constructing conditionals will be described and an
example given. The question of extending the formal algorithm and the correctness
proof is considered.

5.1 UNCERTAIN FRECCNDITIONS. As previously mentloned, relations involving partial
predicates may have truth values of TRUE, FALSE, or UNDETERMINED, whereas all other
relations must be either TRUE or FALSE. Partially valued predicates are intended to
express the possibility of an uncertainty or lack of knowledge about a state arising
during the problem solving and program generation phase of the system. The formal
algorithm for deciding when an uncertainty hss arisen is rule R6 (the "| give up"”
criterion of the system). As with invariance, the implementation of R6 is only an
approximation to the formal rule The system may give up too early, but this, in itself,
does not lead to incorrect programs, merely redundant ones.

5.1.1 UNDETERMINED VALUES. During the generation of a program, uncertainty may
arise when a precondition for the application of a rule is UNDETERMINED with respect
to the current state. The implementetion of the rule R6 is described by the following
definitions:

DEFINITION A literal | is UNDETERMINED in a state S if the following conditions hold:

(i) pred(l) is partial,
and (ii) the system halts without solving S{?}l,
and (iii) the system cannot prove SUF>-l.

Condition (ii) means that | is not true in S nor can S be transformed into a state in
which | is true. If condition (i) is true and -l is true in S then | must retain a truth
value of FALSE and the precondition subgoal | must fail. Failure to prove -l from S
establishes a truth value of UNDETERMINED for | with respect to S. This definition
applies to fluent and nonfluent literals but since the truth value of a “nonfluent” cannot
be changed by a state transformation, for them, it is sufficient to use only the loglcal
axioms in deciding condition (ii).

For the more general case in which the precondition may be a disjunction of literals we
have the definition,

DEFINITION A disjunction of literals {I, 1"., is UNDETERMINED in a state S if at least one
literal is UNDETERMINED and no literal can be achieved from S.

5.2 CONDITIONAL STATEMENTS: When a pre-condition P is UNDETERMINED in a state 5,
a conditional branch is inserted in the solution program. If P is a single literal |, then
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program generation may continue either along the path in which | is assumed to be
TRUE and in which future goals are attempted with respect to state S U{l}, or along the
path in which -l is assumed to be TRUE using state S U{~l}. The system convention has
been to generate a call to a yet ungenerated procedure for the latter case. The tasks
of generating such contingency programs are placed in a subproblem stack for later
attention (see section 5.3). Program generation continues, by convention, along the
path using state S U {I). This path is referred to as tye "trunk” program of the tree of
contingency programs genevated while attempting to achieve the maln goal. The path
selection at present is rather ad hoc since no assignments of prebability are made at
the polnts of uncertainty and no path is considered more likely to be successful in

general.

If an undetermined disjunctive precondition {I. I, occurs in which literals fl. 3™, m<n
are UNDETERMINED in S, then a nested conditional of the following form will be
generated:

if -l then
If =l,  then

if =l,, then py
else p,_,

else p,
else po

where each p, is a call to a program to achieve u selected goal G from state S; = S U {l;
s i=j+1 & i<m } U {~, : I<i<j} } and po is the trunk program segment which satisfies
SAl,{p, }G and forms the else-statement in the main-clause of the conditional. Each
member of the set of triples {<p; » § G 1cjcm } is placed in the stack of
contingencies and program generation continues for po. The assumed literall,, is
removed from the state following the generation of the ELSE clause in the trunk
program if it is not in the output assertion.

5.3 SELECTION OF CONTINGENCY GOAL: The goal G to be achieved by the contingency
programs is selected from the set of gouls in the subgoal tree that are global to the
undetermined precondition. Let us refer to the set of goals which are below G in the
subgoal tree, as the SCOPE of G.

The particular G chosen and its associated scope affect the length of po , duplication
among contingency programs, degree of difficulty in generating contingency programs
and validity of their use. If the structure of the trunk program is to remain fixed during
contingency program generation then the choice of G cannot be deferred. The block
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structure of our program language imposes the restriction that for any conditionals in
Por @ contingency goal G’ must not have a greater scope than G. There is also the
problem that if G is not fully instantiated (i.e. some of its varlables are not in the initial
state) then inconsistent instantiations may occur in different contingency programs which
must validly rejoin the main program following the ELSE clause. The present system
selects the least global fully instantiated goal thereby satistying the block nesting
constraint and minimizing the scope while avoiding the problem of handling deferred
instantiation. This selection process is always effective in the present system since the
top level goal is fully instantlated.

5.4 REJOIN CONDITIONS: When a contingency program is generated its output state
must satisfy certain conditions, hereafter called the rejoin condition, for return of
control to the trunk program to be correct. Censider the case of an undetermined goal
L in state S and a contingency goal G in Figure 8 . Let A and B be program segments
that satisfy S A L{A}G and S A ~L{B}G and let C be the rest of the trunk program.

Figure 8

Let R be the output state of B obtained by applying invariance; thus SA-L{B}R and R>G.
Similarly, let SAL{A}P where P>G, and let Q be the minimal subset of P required as
input to C (section 4(12)). Then, the REJOIN CONDITION for B is R°Q. B is said to have
BAD SIDE EFFECTS if in fact R>Q cannot be established.

5.5 SUBPROBLEM STACK: The task of generating a contingency procedure is specified
by the quadruple:
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(<procname> <state> <goal> <rejoincond>)

where,
<procname> is the name of the yet ungenerated procedure that must
satisfy <state>{<procname>}<goal> A <rejoincond>.

At the point in the planning when the uncertainty is encountered, the flrst three
elements of the quadruple are placed in a stack. The rejoin condition is not known at
this time since it involves the input assertion for the trunk segment C following the
point where contro! returns from the contingency plan to the trunk plan. After C is
generated, the rejoin condition is computed and stored as the fourth element of the
quadruple.

When planning has been completed for a trunk procedure, if the subproblem stack is
not empty then contingency planning may be done by removing a quadruple from the
stack and posing this as a program generation task. The state of the system is
initialized to the specified contingency state and the subgoaling system is given <goal>
as its main goal. If it is successful in achieving a state in which the main goal is true
then a test is made to see if the rejoin condition is true in that state. If it is then the
procedure declaration is adjoined to its trunk program. If the condition cannot be
proved, the system allows the user two alternatives: (i) Mark the call to the program as
an error exit in the trunk program, or (ii) "Fit" the program to the trunk program by
posing the currently untrue rejoin ceidition as a new goal, constructing a new program
segment that achieves i, and appending this segment to the end of the contingency
program.

This process of generating a trunk procedure which may create new contingency tasks
then generating contingency procedures as directed by the user may continue untll all
contingencies have been processed and the stack is exhausted.

5.6 COMPUTATION OF INPUT/QUTPUT ASSERTIONS The computation of input/output
assertions for programs not containing conditionals is described in Section 4(12). The
uncertainty as to which path computation will follow in a program containing conditional
statements complicates these assertions. The input/output assertions in this case must
be cotmputed incrementally as each contingency program is generated.

In the conditional statement shown in Figure 8, suppose we know the minimal input and
output assertions for A and B, say P{A}JQ and R{B}S. then the input and output
assertions for the conditional statement are

(L AP) v (-L AR)if L then A else B}JQ v S.

To reduce computation, We use the simpler sufficient input assertion P A R, (Note that
P A R should be consistent since it is a subconjunct of a previous state). There doesn’t
appear to be a simplifying approximation for output assertions .
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5.7 UNCERTAIN PRIMITIVE PROCEDURES: A primitive procedure q defined by P{q}Q
has an uncertain outcome if Q is a disjunction. In the present system, disjunctive post-
conditions use the exclusive OR connective, "®". This allows us to define frame
procedures that have an intended result but may be unreliable. It is assumed that
exactly one of the possible outcomes will be true in the output state. At the point
where an uncerlain operalor it applied, the problem sclver has no knowledge of what
the outcome will be and a conditional statement must be generated. Let Q be the
disjunction of literals {I;}',,. The first outcome |, is considered to be the normal (goal)

resull of execuling 9 Following the inclusion of g in the program in state S, a
conditional statement of the following form is generated:

if ~1, then
if a || AN !2 A - Is AW AN In then p2
else if~1; A~ Al A-ly AWAST, then pg

else if~1; Al Aua-l Al then p,
else p,,,

where each p,, 2 < i< n,is a call to a program to achieve |, from state S, =S U {l, } U
(-1, :j#i&1<j<n} andp,, is an error exit. The contingency states will

correspond to the n ways of assigning exactly one literal true and the remaining literals
false.

5.8 AN EXAMPLE Suppose a procedure is to be generated for a man to travel from San
Francisco to New York given three modes of travel, i.e, flying, driving, or walking. This
is similar to the "airport problem" discussed in [McCarthy 1959]. A FRAME for this
problem consists of defining a primitive procedure for each mode of travel, an initial
state, and relation information as shown in Figure 9. A few of the contingency programs
generated are shown in Figure 10.
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RELAT IONS DEFINITION FLUENT ___ DPARTIAL UNIQUENESS
ROB( X) "X is a robot" FALSE FALSE FALSE
AUTO! X) "X is ac automobile” FALSE FALSE FALSE
PLANE'X) "X is an airplane” FALSE FALSE FALSE
AIRPORT X) "X is an airport" FALSE TALSE FALSE
AT X, Y) " is at location Y" TRUE FALSI AT{X,*)
WALKABLE X.Y) "A walkable pah exists between TRUE TRUE FALSE
X and Y"
CLEAR X, Y) “rhe sky is clear between X and Y"  TRUE TRDE FALSE
DRIVABLE X, V} “A drivable road exists between TRIE TRUE FALST
X and Y"
HASUMBRELLA X) "X has an umbrella" TRUE TRUE FALSL
CRASHED %,Y,7) " ¢rashed between Y and 2" TRUE FALSE FALSE
RELLED X) "X has been killed" TRUE FALSE FALSE
RUNS XD " will run properly” TRUE TKUE FALSE
FLIES X) "% v 111 Tly properly” TRUE TRUE FALSE
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PRIMIT IVE_PROCEDURE

PRE~COND 1T [ONS

POST~-CONDITIONS

walk RL,L1,L0)
"Rl walks from L1 to L

drive R1,CLl,L1,1.0)
"pl drives €1 Trom L1 to L>"

Ny (RT,ALLL LY
"kl (lies Al iram L1 to L0

ROB/R1)A= KILLED (RL)AATIRL,LL)
ACLEAR(L1,1. )WHASUMBRELIA (R1)
AWALKABLE 'L1,L0),

ROR R1)A= KILLED(RL)AAUTOC1)
AT(C1l,LL)ARUNS(C1)
ADRIVABLE(L1,L )AAT(RL,L1);

ROB R1)A= KILLEDIRL)APLANE:AL)
AAIRPORT /L7 JAAT AL,L1)

AFLIES /A1)ACLEAR LL,L )

AAT (R1,L1);

st adadEus st saV st ebRAT Re A e BB E

[NATIAL STATE

AT(R1,L7)

AT{R1,L")
AAT(CL,L)

AT R1,LO)A
AT(AL,L )]

2/ CRASHED Al,L1,L )
ARTLLED R1)

ROB MAY VAAUTO BMYIAPIANE FLI11 JAATRPORT SEOVAATRPORT NYC)AAT MAN, HOME 1 A\AT “BMY  CARAGE JAAT FLL1,SF0);

PATRWISE IUEQUALITIES:

TRY FLY BEI'ORE DRIVE,

ADVICE

Figure 9

TRY DRIVE BEFORE WALK

walk RL,*,*),drive R1,Cl, , ", tly RL,AL, ", 7

o pdm, cadd ke T i
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GENERATION OF CONDITIONAL STATEMENTS

PROCL MALL ITYC
ROA AN GALUTO 3MY S PLASE TILT A IRPORD INC
COMMENT
[NPUT ASSERTION:
AT MAN HOME NCLEAR HHOME (ARAGE AT BMY CGARAGE “Ad
APLIES F111 ACLEAR SIO W€ #RUNS BM
ADRIVABLE GARACE SFO “WALRABLE HOMNE GARACL
OUTPUT ASSERTION:
AT B SIO AT T1LE NYU AT AL Ve
COMMENT
PROCI1T ATTEMPTS _FO_ACHIEVE AT JAN I
PROCL  ACTEMPTS _TO_ACHIEVL . AT MAY CARAGL
PROC  ATTEMPTS _TO_ACHIEVE AT ML GARAGE
PROC  ATTEMPTS _TO_ACHTEVE_ AT A0 GARACGE
PROCT ATTEMPTS _TO_ACHIEVE _ AT MAN 510
PROC. ATTEMPTS _TO_ACHIEVE _ AT MAN S0
PROCS ATTEMPTS _TO_ACHIEVE_ AT (AN NYC
PROC™ ATTEMPTS _TO_ACHIEVE_ AT Al IO
BEGIW
IF —FLIES FI11  THEXN
PROC AN NYC
ELSE
BEGIX
IT —CLEAR SI'0 NYC  THLXN
PROCY MAN NYC
ELEE
BEGLN
[I" “RUNS BMY  THEL
PROC. MAN STO
ELSE
BEGIN
IF —bRIVABLE CGARAGE SFO  THEN
PROC: MAN 510
ELSE
BECTN
HE =CLEAR HOME CARAGE  THEXN
FE THASUMBRELLA MAN  THEXN
PROCT MAN GARAGL
ELSE PROC  MAN CGARAGE
ELSE
BEGIN
PP =VHWALKABLE HOME GARAGE, THEX
PROCLT MAN CGARAGE
ELSE
BEGTN

VAN HIOME GARAGE

END
DRIVE MAN BM GARAGL SO,
LND
END
FLY MAN FLIT SFO NYC
=P AT NG fih

111D Sto

i =ATe D ie) A CRASHED F111 SFO NYC)

PUOCTIE W WYC)
LLSE PROCER(MAN NYC)
papt P

tND
PROC  MAN NYC)Y
ROB MAN Y AITO BMW
COMMENT
INPUT_ASSERTION:

AT MAN HOME ACLEAR HOME GARAGEAAT BMW GARAGE ~RUNS BMJ

ADRIVABLL CARAGE NYC ANALKABLE. HOME CARAGE

Figure 10a
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OUTPUT_ASSERTTON:
AT/ BMW NYC)AAT (MAN NYC)
COMMENT
PROCLC ATTEMPTS _TO_ACIIEVE _ (AT MAN CARACE)
PROCL5 ATTEMPTS_TO_ACHIEVE_ (AT MAN GARACE)
PROCIL ATTEMPTS_TO_ACHIEVE_ (AT MAN GARAGE)
PROCL? ATTEMPTS_TO_ACHIEVE_ (AT MAN NYC)
PROC1Z ATTEMPTS_TO_ACIITEVE_ (AT MAN NYC);
BEGIN
[F —RUNS (BMY) THEN
PROGLY (MAN NYC)
ELSE
BEGIN
¥ —DRIVABLE (GARAGE NYC) THEN
PROCL*{MAN NYC)
ELSE
REGIN
[F =CLEAR HOME GARAGE) THEN
IF =IASUMBRELLA MAN) THIEN
PROGL. (MAN GARAGE)
ELSE PROCLS (MAN GARACGE)
ELSE
BEGIN
IF —WALKABLE - HlOME. GARACE) THEN
PROC16 (MAN CARAGE)

ELSE
BEGIN
WALK(MAN TIOME GARAGE);
END
END
DRIVE(MAN BMJ GARAGE NYC)
END
END
END

PROCL (MAN SFO)
ROB{MANY §
COMMENT
INPUT_ ASSERTION:
AT :MAY IOME JACLEAR(HOME SFO)AWALKABLE (HOME SFO)
OUTPUT_ ASSERTION:
AT MANTSFO);
COMMENT
PROC & ATTEMPTS _TO_ACHIEVE_ ‘AT MAN SFOJ
PROC ©© ATTEMPTS _TO_ACHIEVE_ (AT MAN SFO)
PROC 5 ATTEMPTS TO_ACIHEVE _ AT MAN SFO)3
BEGIN
[ ~CLEAR HOME SFO) T'HEN
IF —HASUMBRELLA (MAN) TUEN
PROC. 5 /MAN SFO)
ELSE PROC. » (MAN SFO
ELSE
BEGIN
1F —WALKA BLE HOME SFO! THEN
PROC. 'S (MAN SFO)
ELSE
BEGIN
WALK/MAN [IOME SFO°
END
END
END

PROCL  MAN NYC

ROB MAND;

COMMENT

1 WPUT ASSERTTON:

AT MAN HOME)A\CLEAR HOME NYC)AWALKABLE(HOME NYC)

Figure 10b
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o
OUTPUT_ASSERTION: &
AT MAN NYC), :
‘ COMME NT *
: PROCY0 ATTEMPIS_TO_ACHIEVE _ (AT MAN NYC)
%§ PROC: ATTEMPTS_TO ACIIEVE_ (AT MAN NYC)
g PROC: ATTEMPES TO_ACHIEVE_ (AT MAN NYC),
& REGIN
Qg 1¥ —CLEAR HOME NYC) THEN
?@ I —HASUMBRELLA MAN) THEN
ﬁg PROCT (MAN NYC)
gg ELSE PROCZ = MAN NYC)
? ELSE
g REGIN
# I F WALKABLE IOME NYC) THEN
- | PROCZ0L MAN NYC)
e % ELSE 3
i Z; BEGIN
3 @ WALK MAN TIOME NYC)
3 END
% END

TR,
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5.9 CORRECTNESS The formal algorithm of Section 2.3 can be extended to include the
case when G’ is undetermined in I' by formallzing a simplified version of the system
methods described above. We shall mention some of the pertinent detalls here.

The extension requires formalizing the subproblem stack and the methods of choosing
contingency goals. Also, it is necessary to add clauses for assembling conditional
statements into the answer A according to rule RS. Thus contingency goals must be
“marked” and the appropriate undetermined subgoals associated with them, so that
when a contingency goal is achieved during the generation of the trunk program, the
related conditionals are assembled into A. The computation of the state I(n) must be
modified when G(n) is the contingency goal for G(i) by removing G(i) if it is not in the
output assertion of the program segment generated between achieving G(i) and G(n).
We do not justify the system method of computing input assertions, and instead assume
that in the formal algorithm the state at any node in the subgoal tree is the input
assertion for the following segment of the generated program.

To extend the correctness proof of Section 2.5, we must extend the induction step to
include the cases when (3) G(n+1) is undetermined in (n), and (b) G(n+1) is achieved
from In) and is the contingency goal for G(i), say, where i<n+l. The induction
hypothesis must be modified to take account of any undetermined goals (assumed true
in the trunk program) whose contingency goals have G(n) within their scope. Thus,
typically, the hypothesis would be I{A(}i(i) and KDAG(){AG,N }(n), where G(i) is
undetermined in (i) and has a contingency goal more global than Gin), and A(i,n) denotes
the program segment generated between achieving G(i) and G(n).

Case (a): G(n+l) is achieved by assumption in generating the trunk program,
Kn+1)=I(NAG(n+1) and A(n+1,n+1) is empty.

Case (b): let B be the contingency branch. The previous proof implies that
I(n+1)>G(n+1). We also have that A(n+1) = A(i)sIF Gi) THEN A(i,n+1) ELSE B.

(1) A}, hypothesis,

(2) (D) A GYSAGn+1) H(n+1) hypothesis

(3) Ki) A -G(){Bi'(n+1) assumption,

(4) I’(n+1)>l(n+1) rejoin condition,

(5) Ii){IF G(i) THEN AGi,n+1) ELSE Bli(n+1)  R5,2, R1,3,4
(6) {A(n+1)}i(n+1) and in+1) > G(n+1) R2,1,5.

The proof of I{A(m)G follows by noting that all contingency goals must have been
achieved when the final goal G is achieved.

AT ST L Y Ty
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6. GENERATION OF ITERATIVE STATEMENTS

An iterative rule allows the program generator to construct a WHILE loop provided it
can construct a loop body to satisfy the premisses of the rule. Ultimately such rules
should require the user merely to specify an invariant in order to have the system
write a correct iterative program. At the moment, the user needs to furnish some
additional relevant facts. The algorithms usad in the system to implement iterative
rules of the form S2 (Section 2) and to assemble while loops are described briefly and
an example given.

6.1 PREMISSES FOR CONSTRUCTING A LOOP: An iterative rule is defined by the
assertions P(basis), Q(loop invariant), R(iteration step goal), G(rule goal), L{control test)
and S(output assertion). All the free variables in R and L must be among the free
variables in Q. In order to use the rule, to achieve I{?}G say, the formal algorithm
requires that all of the following subgoals be achieved or be true:

(i) Construct A such that L(F)||- I{A}P

(if) L(F)|- 1{A}Q

(iii)  Construct B such that L(F}||-QAL{BIR

(iv)  L(F) |- QAL{BXIDQAUDV(~IDQDA -L )

(v)  Construct C such that L(F) ||- QAL{B;C}Qv-L

Note that (ii) and (iv) are restricted to first order rules (consequence, invariance, and
the frame axioms). The input state for (iii) is QAL. In addition, an iterative rule must
satisfy the following minimal consistency requirements within the frame F:

(vi) ~(SUF>L)andSUF> G
The conclusion of the rule is:  {A;WHILE L DO BEGIN B;C END}G.

lterative frame rules are instances of the iteration rule [Hoar2 1969]:

QAL{AIQ, QA-LoG

Q{WHILE L DO A}G .

It is possible to derive a weak form of the rule:

QAL{A}Qv-L, -LoG

Q{WHILE L DO A}G.

The weak form allows the invariant to fail on exit from the loop. We have found the
weak form convenient to use in many examples.

The present implementation sets up clauses (i) - (iv) as a THAND of subgoals to be

Bl s e




43 GENERATION OF ITERATIVE STATEMENTS

achieved. More specifically, suppose an iterative rule is invoked to solve the problem
1{?}G. Let V be the list of variables in Q. The system does the following:

(1) A program segment p(P) is generated such that Hp(P)}’ and PUF |- P ( note
that p(P) may be empty).

(2) An instance QA of the loop invariant must be true in the state I’ i.e. A = {<v,
€ 8 >p<V, © 5, >} s constructed such that 'UF > QX

(3) A program segment p(R) is generated such that Q A L{p(R)}I" and I"UF > R.

(4) It is checked that I"UF > QAv-LAB for some substitution B and a set of
conditional assignment statements C is constructed such that I"{C}Q v -L.

Thus, at the moment, clause (iv) ensures that C need contain only conditional
assignments. In the future we would want to relax this restriction. It is assumed that
the user’s definition of the rule satisfies (vi). The user may omit S or L; in the latter

case -~ G is used as the control test.

6.2 ASSEMBLY OF WHILE LOOPS: After the premisses have kaeen achieved, a loop is
assembled as follows:

(1) Let Y and W be two distinct lists of variables in one-to-one correspondence
with V. For each <v, « § > € X construct an initial assignment statement "y, « s; ™.

Let "Y « S" dencte "y, € 5, ;Y2 ¢ 825 . i Ya® i
(2) The WHILE loop is then assembled in the form:

p(P);
YeS;
WHILE L(Y) DO
BEGIN
p(R(Y));
IF QW) THEN Y « W;
END

where Q(W) is an expression containing calls to Boolean procedures indicated
(syntactically) by the presence of the special W-variables (Section 2, Rule RO). Q(W)
is constructed from Q(V) by replacing V-variables by corresponding W-variables;
p(R(Y)) is obtained in a similar way from p(R(V)). Since the variable lists are disjoint,

none of the Y-variables occurs in Q(W).

There are many heuristics in the system to reduce the number of program variables, i.e.
y’s and w’s generated, to select the relevant portion of Q to be used in conditional
assignment statements, to generate simple assignment statements (whose right hand
sides are functional terms composed from functions in the frame) instead of conditional
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assigriments, and to eliminate unnecessary assignment statements in the assembled
program. These may all be classified as optimizations, some of which are done as the
WHILE loop is assembled and others during a later optimization phase.

6.3 UPDATING THE STATE: After the while statement has been generated, the system
updates the state. If an explicit output assertion S is given then the rule of invariance
is applied in the same manner as with the postcondition of a primitive procedure. In the
absence of an output assertion, a special update procedure runs the loop interpretively
on the state until the goal G becomes true. The resultant state is used in further
planning. This latter method is useful when the global effects of the loop computation
are so extensive, or even unpredictable, that an explicit specification of S is difficult. It
may result in excessive update computation, particularly when loops are nested.

6.4 CORRECTNESS: We sketch how the basic correctness proof of the formal
algorithm (section 2.5) may be extended to the case where iterative rules are used to
develop nodes in the successful subgoal tree. This requires that we supply the
argument for this extra case in the induction step of that proof.

Let node G(n+]) be developed using an iterative rule, and assume first that this is the
only iterative rule used. To simplify the notation, we shall assume that the matching
substitution between the rule goal G and G(n+1) is the identity, i.e. G= G(n+1) A G,

It is convenient to view G(n+1) as being the root node of a THAND subtree (see e.g.
figure 3, Section 2.3). The immediate subgoals of G(n+1) are (i) to (iv) above (6.1).
Suppose that the last node to be achieved in the main tree is G(n), the associated state
and program being I(n) and A(n) respectively. The induction hypothesis is I1{A(n)}I(n).

Let us abbreviatz "IF Q(W) THEN Y«W" by C. In the successful subgoal tree, the
subgoals of G(n+1) are all achieved so that we have

1. in){p(P)Kn)’ where (n)> UF > Pand (n)”UF o2 QA
(subgoals (i) and (ii).
2. QAY=SIQ(Y) by the assignment axiom, RO.
3. QVALM{pE(R) H(n)" where I(n)" U F > R(Y) (see comment below),
and I(n)"UF > (32)QAUZ2v(~(32)Q(2)A-L(Y))
a

)Q(2)
(subgoals (iii) and (iv)).

4. (A2)Q2){CQY) Sy RO,
5. ~«(32QUDA-LY)Y{CI-L(Y) by RO,
6. (ADQUDV(H(IDQUDA-LIYN{CIQUYIVALY) by OR-lemma, 4,5,

7. (n)"{CQ(Y)v-L(Y) by consequence R1,

8. QY)ALM{P(R;CIQ(Y)VAL(Y) by composition R2,3,7,
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9. Q(Y){WHILE L DO p(R);,C}G by iteration, 8,
10. [(n){p(P);YeS;WHILE L DO piR);CH(n+1) by R2,R3,1,2,9

where I(n+1) = Inv(S,(n))

Finally, A(n+1) = A(n); p(P); YeS; WHILE L DO p(R)C; so that I{A(n+1)}i(n+1). Since SUF
> G is assumed true and G = G(n+1)AG, it follows that I(n+1)UF>G(n+1).

COMMENT: Step 3 above is justified by a second induction, LA~ ALY {p(R)IR(Y),
namely that programs constructed without using iterative rules are correct. This
follows from the proof for the simplified case (Section 2.5), since the variables in the
goal, R(Y) are required to occur in the initial state, Q(Y) A L(Y).

The axtension of the proof for more than one iterative rule is similar.

6.5 AN EXAMPLE: As an example of “while" loop generation consider the task of
generating a program to compute the value of n factorial for some positive integer n
where multiplication is not a primitive operation but is done by repeated addition. The
Frame for this problem is shown in figt  11. Also used is the primitive procedure for
assignment used in the example in ¢ .ion 3. To achieve the goal "FACT(XO,N)" the
system applies the iterative rule T+ ACT. The premises are achieved according to
Section 6.1 which results in an application of another iterative rule TPROD. The
premises of TPROD are achieved, the "inner" loop assembled and optimized and state is
updated with respect to the output assertion. The assembled while loop is appendec!
to the iteration step program for TFACT. The "outer” loop is then assembled and
optimized and the state further updated reflecting the total state transformation of an
execution of the nested loop program.

The output program afier optimization with statements labeled according to their source
of generaton in the algarithm is shown in figure 12. Notz that successive values of the
loop variables (called "U’DATE ASSIGNMENTS") are obtained by simple assignment
statements rather than by conditional assignment as described in the algorithm. This is
the result of applying system heuristics which are able to use the arithmetic operations
PLUS and ADD!1 which are primitive functions in the frame, to replace the conditional
assignments.
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RELATLONS DEFINELTON FLUENT PART1AL UNIQUENESS
VEACT N, "The value of Y factorial is X" TRUE FALSE VFACT (', ¥)
CoX,Y) "The contents of variable X is Y" TRUE FALSE cix, )
FACT X,Y) "The variable X contains Y factorial'’ TRUE FALSE FACT(X,*)
VPRODUCT X, ¥,2) "X is equal to the product of Y and 2" TRUE FALSE FALSE
INTEGER X0 "X is an integer' FALSE FALSE FALSE
ISVAR X) "X is a variable" FALSE FALSE FALSE
ﬁ»‘ NEWVAR X0 "{ is a new local variable" TRUE FALSE I'ALSE,
.fﬁ %’ =%, "X equals Y" TRUE FALSE FALSE ;
CES NN N RN K AN KRN N R R AN N
AXIOM ANTECEDENT CONSEQUENCE
‘;, ¥ TAFACT F={v9,1)A=(v16,1)} VFACT(V9,V19),
v VFACT. (DIV V9 V10), (SUBL v1o));
% FAPROD {=(v5,8)A=(v(,0)) VPRODUCT (V5, V6,V3);
% v VPRODUCT ( (MINUS V5,v5), (SUBL V(),v3)

'. s

-

. (ADDL{SUBL X)) — X

i g?i (sUBL(ADDL X3} - X

e B (MINUS(PLUS X Y)¥) - X
4 ‘f:g (DIV(PROD X Y)Y) = X
g

g

?" FUNCT1ON OUTPUL SYNTAX
(ADDL X) = (X + 1)

B wi (SuBl %) = (X - 1)

4 E (PLUS X Y) = (X +Y)
."l e

g L

. b Figure lla
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ITERATLVI: RULES

RULE NAME TFACT TPROD
BASIS CONDITION NEWVAR{ V7 )AINTEGER: Vi) NEWVAR (VY )AC! VI, 1)
AVFACT VS, VO )AC(V5,V5) AC(VL,E);

AC(VT,VE)

INVARTANT COvr,VIB)ACIVS, VG C(Vh,VO)AC( VL, V8)
AVFACT (V1,V10); AVPRODUCT (V5,Vi,V5) ;
ITERATION STEP CIvr, (ADDL VIg))A C(vh, (ADDL VG))
PRODUCT (v3,Vh, (ADDL V1@)); C(V1,(PLUS V5,V5));
. GOAL FACT (V5,Vh) PRODUCT (VI V" ,V5);
TEST —=(V1g, W), —=(V5,V2 )3
3 .

OUTPUT ASSERTION CIVi, (FAC Vi) C(V1,(PROD V2,V5));

AERRARKE KL S R FRR D R RF fr KK o kA
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GENERATION OF ITERATIVE STATEMENTS
PROCL (X§ N)
ISVAR(X) ; INTEGER(N) ;
COMMENT
INPUT ASSERTIONS:
NONE
OUTPUT ASSERTIONS:

C(x¢ (FAC N));

BEGIN
p(P) (TFACT) Xp ~ 1;
Initial Assignment—— Y4 «~ 1;

(TFACT)
WHILE = (Y4 N) DO

BEGIN
p(P)(TPROD) (Optimized Out)~\\\\;§i:- (Yh + 1);
Yl - @;

~ e - s

WHILE == (Y1 X@) DO

Initial Assignment (TPROD)

BEGIN
pR) (TPROD)———____________________ Y2 = (Y2 4+ Yh);
Y1l ~ (Y1 + 1);

UPDATE Assignments (TPROD)
(Optimized Out)

END

UPDATE Assignment (TFACT)——— Xf «~ Y2;

END

END

Figure 12.
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7. PROGRAMMING AIDS

The complexity of programs that can be generated using the system is increased by
some simple facilities described in this section. The capabilities discussed here are
incremental extension of a current program, use of a program library, and expansion of

assumptions.

Tha system enables a user to plan incremental extensions of a program simply by
saving each comrleted program segment A and its output state O in a stack. The user
may then pose a new goal G and solve the problem O{B}G. The composition A;B will
then be output. He may choose to start from any previously saved state and

associated program segment.

7.1 Pl <AM LIBRARY When a program A has been generated to solve P{A}Q, the user
may request that it be "seneralized" and filed in the program library where it may be
accessed by the subgoaler (similar use of a library in robot planning is reported in

[Fikes,Hart, and Nilsson 1972).

zation is a process which constructs a procedure declaration for the library as

Generaliz

follows. Let | and O be the input-output assertions computed for A during its
construction. We assume Pal, 0=QA0, and H{A}O. The non-fluent conjuncts of | are
taken as the type declarations, their variables being the parameters of the new
procedure. These actual parameters are replaced throughout {AJO by new formal

parameter variables. An entry of the form:

((<procname> <goal> <effects> <type conditions> <state condition>)<body>)

is made in the library, where <procname> is a name and parameter list, <goal> is Q,
<effects> is O°, <body> is A, and it is assumed that

<type conditions> A <state condition>{<procname>}<goal> A <effects>

Library procedures are used during program generation by matching on the <goal> then
=stablishing the <type conditions> and <state conditions> as subgoals in that order. If
the conditions are satisfied then the instantiated <body> is included in the program.
There is no attempt to organize the library for efficient selection; the system merely
tries all library procedures before any frame rule.

As an example of program assembly using the library consider the task of building a
sower to reach an object, i.e. achieve "HAS(M,B)". Use will be made of a library
program to find and put on shoes which achieves WEARING(M,SHOES), previously
generated using the same Frame. The generated program is then extended

interactively by posing a new goal, AT(M,P).

A robotics Frame for this problem is shown in Figure 13, and the generated programs in
Figure 14.
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RELA LONS DEF INITION FLUENT PARTIAL UNIQUENESS
ROSOT X} "X is a robot" FALSE FALSE FALSE
BOX X) "X is a box" FALSE FALSE FALSE
AT X,Y) "X is at location Y" TRUE FALSE AT(X, ")
oN X,Y) "X is on Y" TRUE FALSE ON/X, *)
HAS X,¥) '\ has possession of Y TRUE FALSE FALSE
STACKED X,Y,Z) "X isstacked on Y at location 2" TRUE FALSE FALSE
INSTACK X,V "X is in a stack at location Y" TRUE FALSE INSTACK X, *)
STACKHE ICHT X,Y) "the stack height at location TRUE FALSE SYACKHEIGHT *,Y )
Y is X"
HEIGHT X,Y) "X is positioned at a height TRUE FALSE HEIGHT (X, *)
of Y"
TOP X,Y) "X is the top object in stack TRUE FALSE TOP{ *,Y )
at Yy
HIENUF/X,Y,2) " is as high as Y at 2" TRUE FALSE FALSE
HOLDING X,Y,2) "¢ is holding Y at location Z" TRUE FALSE HOLDING X, *,%)
CHATR X} "X is a chair" FALSE FALSE FALSE
CLOTHES X' "X is an article of clothing" FALSE FALSE FALSE
UNDER X, ¥ "X is under Y" TRUE TRUE FALSE
WEARING X,Y) "\ is wearing clothing Y" TRUE FALSE FALSE
FOUMD X,'! "X found Y" TRUE FALSE FALSE
= X,Y) " is equal to Y" FALSE FALSE FALSE
ABOVER X,Y.7 “ohject X is above robot V¥ at 2" TRUE FALSE FALSE
ABOYE X, "object X is above object Y at Z: TRUE FALSE FALSE
WTTOMBOY X, Y " is the bottom box at v'" TRUE FALSE FALSE
JOTTOMBOXU X, ¥, 21 "¢ {s the bottom box at . under Y" VRUE FALSE FALSE
BELOWR X,Y,% "object ¥ is below robot ¥ at " TRUE FALSE FALSE
BELOW X,V,Z "object ¥ is below object Y at Z" TRUE FALSE FALSE
SUPPLY "the supply is at location X" FALSE FALSE FALSE
SEXTBOY XY "¢ is the next bhox after v" TRUE FALSE FALSE
Figure 13a
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PRIMITIVE PROCEDURE

PRE-COND ITT ONS

PROGRAMMING AIDS

POST -COND IT IDNS

travel (R1,L1,L?)
"Rl travels [rom Ll to L

move(R1,01,L1,12)
"Rl moves Ol from L1 to I

stack R1,07,01,L1}

"Rl stacks O° on 0Ol at L1"

climb'R1,01,L1)
"R1 climhs Ol at L1"

unclimb'R1,07,L1)
"R1 unclimbs O at LL"

stepoff(R1,01,L1)
"Rl steps off Ol at L1"

reach R1,01,L1)
"Rl reaches Ol at L1"

1irt (R1,01,L1)
"R1 lifts Ol at LL"

find R1,01,LL)
"R1 tinds Ol at L1"

put_on(R1,01)}
"R1 puts on O1"

ATOM

LG ]

ROBOT, R1)AAT(R1,L1)AHEIGHT (R1,0);

ROBOT (RL)ABOX{O1 )AAT (O1,L1)A = INSTACK(0O1,LL)A
CLOTHES (0% )AWEARING (R1,05)AAT(R1,L1);

ROBOT (R1)ABOX (O1)ABOX (07 )A#(01,07 YAAT (0L, L1)A
AT{0",LL)AAT(R],L1)AHOLD ING(R1,00 ,L1)A

HETGHT (R1, 3)AON(R1,01,L1)A~STACKED (03,01, L1)
ASTACKHETGHT (H1,11);

ROBOT (R1)AABOVER(O1,R1,L1)AAT(RL,L1)A
=INSTACK(OL,L1)V

{STACKED (01,02 ,L1)AON(R1,0”,L1)}A
REQUEST(HEIGHT (R1,H1));
ROBOT(R1)ABELOWR (01,R1,LL)AAT(R1,L1)A
REQUEST (IE IGHT {R1,H1))A

REQUEST (STACKED(0°,01,L1))A
ON{R1,02,L1);

=(H1,0)AHEIGHT (R1,1)AON(R1,01,L1);
ROBOT (R1)AAT{O1,L1)AHIENUF(R1,01,L1);
ROBOT (RL)ABOX(OL1)AAT(01,L1)AAT(RL,L1)A

-INSTACK(OL,LL)

ROBOT (R1)ACHATR(02 )AAT (02, L1)AAT(R1,L1)A
UNDER(01,07);

ROBOT (R1)ACLOTHES (01 )AFOUND (R1,01);

R R s R R NI

ANTLCEDENT

AT(RL,17);

AT(O1,12 YAAT(RL, L),

STACKED (0. ,01,L1)A

STACKHE IGHT { (EVN(ADDL 11)),L1)

ATOP(01,L1);

ON{R1,01,L1)A
HEIGHT (R, (KVN(ADDL H1)));

ON(R1,0L1,L1)A
HEIGHT (R1, (EVN(SUB] H1)));

HEIGHT (R1,H1)A
“ON(R1,01,L1);

HAS (R1,01);
HOLDING (R1,01,L1);

FOUND(R1,01);

WEARING(R1,01);

CONSLEQUENCE

TABOVER
TAROVIE
TBELWR
TBELOW
THOT

THOTI

TNEXT

TEINSTACK

DEFINITION

THITE

—ON RL,"

WIRL,0%,L1)AABOVE(01,0%,L1)};
=.01,0, ED . 07,05, L1)AABOVE (01,0”7,L1)};
ON,R1,0°,LLYABLELOW 01,07, L1},
=(01,05)W{STACKED (0%, , LLYABELOW 01,00 ,L1Y};
TOP(0* ,LLYABOTTOMBONU (O ,05,L1);

STACKED 07,04 , LLYASTACKED{ O, 00, L1)v
STACKED(0%,01,L1)ATSTACKED (O , G, L1)v
BOTTOMBONU/OL,04 ,11);

SUPPLY (LL)AAT{OL ,L1);

TOP{02,LL)ABELOW (01,0 ,LL1);

B R R N S A I T T

HELGUT (01 ,H1 YASTACKHE tGHT (111, L1 )ATOP (02, L1 JAON(R1,07,L1) = HIENUF/RL,0l,L1)

Figure 13b

ABOVERO1,R1,LL);
ABOVE(OL,0%,L1);
BELOWR'01,R1,L1Y;
BELOW(01,0%,L1);
BOTTOMBOX (C1,L1);

BOTTOMBOSU (01,05 ,L1);

NEXTBOX (04,04 )3

INSTACK(OL,L1);
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ouTPuUT
ITERATIVE RULE _ BASIS CONDITION INVARIANT ITERATION STEP GUAL TEST  ASSERTION

*ﬁ TUP REQUEST HEIGHT (R1,H2)7  ON.R1,01,L1)A ON’R1,07,L1); UEIGHT/RY,UY ) == -

B, AGZ IV STACKED (02 ,01,L1)

i’ { BOTTOMBOX (0%,L1) vTOP{O1,L1};

% AONTRL,OZ,L1V);

e THOWR GZ(H1). ON‘R1,01,L1}A ON R1,U",L1); HETGHT 'R1,HL);  =- --

3 REQUEST HEIGHT R1,1I'))  STACKED 01,0°,L1)

B AGT 11D, v BOTTOMBOY 01,L1);

b [STA STACKED 07 ,01,L1) TOP 07, L1A HOLDING(R1,0h L1} STACKUETGUT - --

& AON R1, 00 ,L1Y, STACKHE IGHT AHETGHT R, H7) H,L1Y,

fi 113, LA ASTACKED QL 0% L1 )5

NEXTBOX OL,05);

INFTIAL STATE

|
bl ROBOT MIABOX B2 )ABOX B-)ABOX B 'ABOX. B IABON B IABON 87 JAAT (M, PIAAT B,UJAAT B ,SLOCIAAT (B, SLOCIAAT (B, SLOC)A
: AT B, SLOCYAAT B4 ,SLOCIAAT B ,SLOC)ASUPPLY ' SLOC)ASTACKIUEIGHT (O, U)AIELCIT (M, )AREIGIFT( B,k JACLOTHES (SIIOES )A
I CHATR CHATRIDACHA IR CHATRYNAT SHOES ,CORNERIAAT (CHAIR1,CORNER)AAT (CHAIR® ,CORNERY;
N i
. 1 AbVICE
RECURS IVE RULES:  CLIMBTABOVE,TRELOW, TBOTU PAIRWISE INEQUATITIES: travel(R1,*,*) ,move /Rl,C1, ",
| STACK R1,*,,L1)
N Figure 13c
b |
I - 5

et
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PROCIL (M SIOES)
ROBOT MY;CHAIR CHAIR.);CLOTHES SHOES);
COMMENT
INPUT ASSERTION:
HETGHT M YAATIM PYAAT (CHATR” CORNER)
OUFPUT_ASSERTION:
AT M CORNERDAFOUND M SHOES JAWEARING(M SHOES),
COMMENT
PROCT AFPEMITS _TO_ACHIEVE_ (FOUND M SIOES)
BEGIN
TRAVEL' M P CORNER);
1F —UNDER- SII0ES CHATR) TIEN
PROCO (M SHOES)
ELSE
BEGIN
FIND M SHOES CORNER'
ESD
PUT_ON'M SIIOES)
END

PROCS (M B)
ROBOT M) ;BOX (K7 ) ;CLOTUES { SHOES}JCHA TR (CHATR™ ) HOX(1th ) ;SUPPLY (SLOC) ; BOX(BO ) 5 BOX(B2) 3
COMMENT
INPUT_ASSERTION:
AT M PIAAT/ B’ SLOC)AIEIGHT (M @ )AAT({CHAIR® CORNER)AAT(Bh $LOC)
AHEIGHT B h)ASTACKHEIGIT (§ UDAAT 86 SLOC)AAT (B3 SLOC)
OUTPUT_ASSERTION:
AT(M PYAAT(B7 UWAAT(B4G UASTACKED(B4 B7 U)AAT(B6 U)
ASTACKED(BH B4 UYASTACKHEIGHT (4 UAHAS(M R)AHEIGHT (M )
AFOUND M, SIOES )JAWFAR ING (M, SHOES ) s AAT (B3 U)/.STACKED (B3 8O U);
REGIN
YRAVEL (M PICORNER) ;
IF—UNDER SHOES CHAIR®) THEN
PROC (M SHOES)
N E1.SE
BEGIN
FIND M SHOES CORNER)
EMD
PUT_ON M SIOES);
T . TORNER SLOC)Y;
MOVE M B SLOC U);
TRAVEL. M U SLOC";
MOVE M Ba SLOC U,
LIFT M B U,
CLIMB'M B UY;
STACK M B4 B U);
CLIMB/M B4 U);
Y= 23
vho o= Bl
1F NEXTBOX/Wh Yh) THEN
L e Why
WHILE —STACKHEIGHT! I U) DO
BEGIN
27 = ADDLITY)
¥l o~ Y,
IF STACKED Y1 W1 U) THEN
721 ~ WL,
WHILE =NETICHT (M 1 DO
BEGIN
UNCLIMB: M Y1 U);
Yl ~ 21;
IF STACKEL Y1 WI ©) THEN
Z1 - Wl
END
STEPOFE M B U);
IRAVEL M U SLOC),
MOVE ‘M 74 SLOC U);

Figure l4a
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LIFT(M 24 U);
E: CLIMB(M B/ U);
k- Yo o~ B3
i T STACKED (W Y UY THER
3 27— WO,
WIHLLE —HETGHT(M Y3) DO
BEGIN
CLIMB{M 20 U);

4 YO e 205
0 1F STACKED W Y7 u) THEN
70— WO,

END

STACK M Zb ¥ U)3

Yh o= 10

yho o= 205

IF NEXTBOX Wh Yh) THEN
G e Wy

R T TN Y ST T

END
g CLIMB M BY UT5
REACH. M B U5

YH o~ B2

LT STACKED v5 W9 U) THEN
75 = W53

WHILE mHEICGHT (M 1 U) DO
BEGIN
UNCLIMB(M Y9 U);

incremental
. —
Extension

e

3
)
yh e 455
g IF STACKED Y5 W U) THEN
g | 2y = W3
E END
e STEPOFF M 1 U3
B TRAVEL M U P)3
k| END
|
b Figure 14b
& $ 4
i
-
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7.2 EXPANSION OF ASSUMPTIONS: A basic capability for structuring programs is
provided by interactively allowing the user at any level in program generation to defii:e
a primitive procedure, P{p}Q, as an assumption. The program generator will then use p
as usual except at each point of call to p in the program the current state I’ and
current goal G will be saved. The triple <p,,G> is placed in & stack of subtasks for
later expansion.

When a program containing assumed primitive procedures has been generated, the user
is given the list of assumptions his program depends on and allowed to selectively
expand them in terms of lower level procedures. For the subtask <p,’,G>, the state is
initialized to I’, the frame may be changed, G is given as the goal,and a body for the
procedure p is generated.

Consider the example given in Section 6 of computing the value of n factorial where

multiplication is not a primitive operation. The initial frame is the same except that in

place of an iterative rule for multiplication, thzre is an assumed primitive procedure
ISVAR(V1){times(V1,V2,V3)}PRODUCT(V1,V2V3),

where PROCUCT(V1,V2,V3)=C(V1,(PROD V2,V3)).

The program generated using this frame is given in Figure 15. To expand the non-
primitive procedure "times(V1,v2,V3)" the full frame including the iterative product rule
is given and the sub-program generated is shown in Figure 1t

In the current implementation it is assumed that the expanded sub-programs will have
no side effects. However this assumption could be removed by a mechanism similar to
checking rejoin conditions for contingency programs (Section 5.4).

To develop a useful structured programming system interaction appears essential along
with further study about how humans do (or should do) programming.
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PROCL( O N)

ISVAR X¢); INTEGER 'N);

COMMENT

[NPUT ASSERTON:

NONE

OUTPUT ASSERTION:
C1X0 (FAC N));

COMMENT

THIS PROGRAM RELIES ON TIE FOLLOWING ASSUMPTIONS ¢

(TIMES)
BEGIN
N0 - 1;
Y- 1,

WHILE = >'Y1 N) 1O

BEGIN

VI = Y141,

TIMES X0 Xd v1)

END
END

TIMES (%9 V1 Z1)

ISVAR{NO)
COMMENT

[NPUT ASSERTION:

NONE

Figure 15

OUTPUT ASSERTION:
c(x0 (PROD Y1 Z1));

BEGIN
BRe B
Y S K

WHILE 7

BEGIN

Yo=Y O+,

XO -
END
END

Y

Y1) 1O

XLy

Figure 16
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APPENDIX 1 - AN INTERACTIVE SESSION

A sample interactive session is here presented to illustrate the system’s use in frame
definition and program generation. Statements typed by the user will always be
prompted by "#". The top level system function is "SUBGOAL" which is called in the
manner given below to accept a frame definition from the terminal. Comments to aid
the reader’s understanding of the dialogue will be enclosed in quotes.

*(SUBGOAL)

"The system now enters an interactive mode for Frame definition."

*+ ¥ ¥ % SEMANTIC FRAME DEFINITION * % % %

RULE TYPE+ AXIOM

RULE NAME+ AONTQOP

IS THIS AN ASSUMPTION?* NIL

IS THE RULE DIRECTLY RECURSIVE?+ NIL
INEQUALITIES IN ARGJMENT POSITIONS* NIL
PRECONDITIONS:

* ROBOT(X1) A ON(X1,X2) A -STACKED(X3,X2);
POSTCONDITIONS:

* ONTOP(X1);

RULE TYPE* PRIMITIVE PROCEDURE

RULE NAMEx STANDON(R1,Z1)

iS THIS AN ASSUMPTION?+ NIL

IS THE RULE DIRECTLY RECURSIVE?+ NIL

INEQUALITIES IN ARGUMENT POSITIONS* NIL

PRECONDGITIONS:

* ROBOT(R1) A ~ON(R1,W1) A BOX(Z1) A CLOTHES(O1) A WEARING(R1,01)
A AT(ZE,YD) A AT(RLY1),

POSTCONDITIONS:

* ON(R1,21);

RULE TYPE# PRIMITIVE PROCEDURE

RULE NAME+ DRESS(R1,01)

IS THIS AN ASSUMPTION?+ T

IS THE RULE DIRECTLY RECURSIVE?* NIL
INEQUALITIES IN ARGUMENT POSITIONS+ NIL
PRECONDITIONS:

* ROBOT(R1) A CLOTHES(O1);
POSTCONDITIONS:

* WEARING(R1,01);

RULE TYPE% PRIMITIVE PROCEDURE

RULE NAMEx TRAVEL(R1,L1,L2)

IS THIS AN ASSUMPTION?+ NIL

IS THE RULE DIRECTLY RECURSIVE?+ NIL
INEQUALIT!ES IN ARGUMENT POSITIONS* (R1,%,%)
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PRECONDITIONS:

* ROBOT(R1) A AT(R1,L1) A - ON(R1,02,L1);
POSTCONDITIONS:

x* AT(R1,L2);

RULE TYPEsx PRIMITIVE PROCEDURE

RULE NAME* STEPUP(X1,Y1,Z1)

IS THIS AN ASSUMPTION?+ NIL

IS THE RULE DIRECTLY RECURSIVE?+ NIL

INEQUALITIES IN ARGUMENT PQSITIONS* (R1,%,%)
PRECONDITIONS:

¥ BOX(Z1) A ROBOT(X1) A STACKED(Z1,Y1) A ON(X1,Y1);
POSTCONDITIONS:

* ON(X1,Z1);

RULE TYPE# ITERATIVE

RULE NAME=* ITONTOP

IS THIS RULE DIRECTLY RECURSIVE?+ NIL
BASIS CONDITION:

¥ ROBOT(X1) A ON(X1,X2);
INVARIANT:

* ON(X1,X3) A STACKED(X4,X3);
ITERATION STEP CONDITION:

¥ ON(X1,X4);

CONTROL TEST* NIL

OUTPUT ASSERTION« NIL
GOALx ONTOP(X1);

RULE TYPE=* NIL

INITIAL STATE:

£ AT(M,CORNER) A AT(B1,L) A STACKED(B3,B2) A STACKED(B2,B1)
A BOX(B3) A BOX(B2) A BOX(B4) A STACKED(B4,B3) A BOX(B1)

A ROBOT(M) A CLOTHES(SHOES);

SEMANTIC PROPERTIES OF RELATIONS:

IS ROBOT(R1) A FUNCTION OF THE STATE?+ NIL
IS ROBOT(R1) PARTIAL?+ NIL
ARGUMENT UNIQUENESS PROPERTIES+ NIL

IS AT(R1,L1) A FUNCTION OF THE STATE?* T
IS AT(R1,L1) PARTIAL?+ NIL ‘
ARGUMENT UNIQUENESS PROPERTIES* (R1,%)

IS STACKED(X4,X3) A FUNCTION OF THE STATE? T
IS STACKED(X4,X3) PARTIAL?+ NIL

APPENDIX
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ARGUMENT UNIQUENESS PROPERTIES* (X4,%)

IS BOX(Z1) A FUNCTION OF THE STATE?+ NIL
IS BOX(Z1) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES+ NIL

IS ONTOP(X1) A FUNCTION OF THE STATE?* T
IS ONTOP(X1) PARTIAL?+ NIL
ARGUMENT UNIQUENESS PROPERTIES+ NIL

IS CLOTHES(O1) A FUNCTION OF THE STATE?+ NIL
IS CLOTHES(O1) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* NIL

IS WEARING(R1,01) A FUNCTION OF THE STATE?* T
IS WEARING(R1,01) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* NIL

IS ON(X1,21) A FUNCTION OF THE STATE?* T
IS ON(X1,21) PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES# (X1,%)

FILENAME# DSK:PCLI

TRACE MODE?+ T
PERFORMANCE STATISTICS?+ T
LOOKAHEAD?+ NIL

ALGEBRAIC SIMPLIFICATION?x NIL

SUBGOALING SYSTEM GENERATED!!
"A subgoaling system corresponding to the Frame has now been generated
and the system may now receive a goal to achieve."

SUBMIT GOAL+ ONTOP(M)

DO YOU WANT THE PROGRAM LIBRARY?x+ NIL

DO YOU HAVE ANY ADVICE?* T
¥ ENTERING ADVICE SYSEM #xx

1* TRY STANDON BEFORE STEPUP

2% NIL "Exit advice system and begin program generation."

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
---ITONTOP .

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
---(ITONTOP(ON M X2))STANDON

RULES ENTERED AND GOALS PENC!NG IN CURRENT SUBGOAL TREE PATH:
---(ITONTOP(ON M X2)}(STANDON(WEARING M SHOES))DRESS

LR Srb s -
AU R R e e
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((DRESS M SHOES))
"Current program segment generated is displayed in this form."

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
---(ITONTOP(ON M X2))(STANDON(AT M L)) TRAVEL

((DRESS M SHOESHTRAVEL M CORNER L))
((DRESS M SHOES)TRAVEL M CORNER L)(STANDON M B1)
"This constitutes the basis program for the iterative rule.”

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
---(ITONTOP(ON M B2)STANDON

STANDON IS FAILING!!
-—-(-ON M W1) WAS THE LOSER
“STANDON is only applicable for climbing from ground level."

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
---(ITONTOP(ON M B2))STEPUP

((STEP M B1 B2))
"“This is part of the loop body."

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:

——-(ITONTOP(ONTOP M))AONTOP
“The system now interpretively updates the state until the goal is

true, then the while loop is assembled."

DO YOU WANT TO OPTIMIZE THE PROGRAM”* NIL
IS THIS PLAN USEFUL ENOUGH TO GENERALIZE?* T
IS THIS A PROCEDURE WITHOUT SIDE EFFECTS?+ NIL

THE GOAL (ONTOP M) IS ATTAINABLE BY THE FOLLOWING PROGRAM:
"The desired program has been generated and will now be displayed."

PROC (M)
POBOT(M);CLOTHES(SHOES)(BOX(B1);B0X(B2);
COMMENT
INPUT ASSERTIONS:
AT(M CORNER) A AT(B1 L) A STACKED(B2 B1) i
OUTPUT ASSERTIONS: ;
WEARING(M SHOES) A AT(M L) A ONTOP(M);
COMMENT ,
THIS PROGRAM RELIES ON THE FOLLOWING ASSUMPTIONS:
(DRESS); ]
BEGIN /
DRESS(M SHOES);
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TRAVEL(M CORNER L);
STANDONM Bl1);
Y1 « Bl;
IF STACKED(WI1 Y1) THEN
21 « WI;
WHILE ~ ONTOP(M) DO
BEGIN
STEPUP(M Y1 21);
Y1 - 21
IF STACKED(W1 Y1) THEN
21 « WI;
END
END

DO YOU WANT TO DO STRUCTURED PROGRAM DEVELOPMENT?+ T

TRYING---((DRESS M SHOES)(WEARING M SHOES)(STAT1.AST))
“This task triple consists of procedure name, goal and state."

DO YOU HAVE ANY ADVICE?+ T

++*ENTERING ADVICE SYSTEMs#x#x
1+ ADD PUT-ON

RULE TYPE* PRIMITIVE PROCERURE

RULE NAME+ PUT-ON(R1,01)

IS THIS AN ASSUMPTION?+ NIL

IS RULE DIRECTLY RECURSIVE?+ NIL
INEQUALITIES IN ARGUMENT POSITIONS* NIL
PRECONDITIONS:

* ROBOT(R1) A CLOTHES(O1) A FOUND(R1,01);
POSTCONDITIONS:

*WEARING(R1,01);

RULE TYPE+ PRIMITIVE PROCEDURE

RULE NAME=* FIND(R1,01,L1)

IS THIS AN ASSUMPTION?+ NIL

IS RULE DIRECTLY RECURSIVE?+ NIL

INEQUALITIES IN ARGUMENT POSITIONS* NIL

PRECONDITIONS:

* ROBOT(R1) A CHAIR(02) A AT(02,L1) A AT(R1,L1) A UNDER(Q1,02);
POSTCCNDITIONS:

* FOUND(R1,01);

RULE TYPEx NIL
INITIAL STATE:
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* CHAIR(CHAIR1) A CHAIR(CHAIR2) A AT(CHAIR],CORNER)
A AT(CHAIR2,CORNER);

SEMANTIC PROPERTIES OF RELATIONS:

IS FOUND(R1,01) A FUNCTION OF THE STATE?* T
IS FOUND(R1,C') PARTIAL?* NIL
ARGUMENT UNIQUENESS PROPERTIES* NIL

IS CHAIR(O2) A FUNCTION OF THE STATE?+ NIL
IS CHAIR(O2) PARTIAL?+ NIL
ARGUMENT UNIQUENESS PROPERTIES#* NIL

IS UNDER(O1,02) A FUNCTION OF THE STATE?* T
IS UNDER(01,02) PARTIAL?* T
ARGUMENT UNIQUENESS PROPERTIES* NIL

ALGEBRAIC SIMPLIFICATION?+ NIL

SUBGOALING SYSTEM GENERATED!!
“The Frame addition has now been translated."

2+« DELETE DRESS
3% NIL
"Exit Advice system.”

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
---(PUT-ON(FOUND M SHOES))FIND

((FIND M SHOES CORNER))

((IF(~UNDER SHOES CHAIR1) THEN (PROC2 M SHOES)

ELSE((FIND M SHOES CORNER)))(PUT-ON M SHOES))

"The conditional statement is generated since it is not known where
the shoes are."

DO YOU WANT TO OPTIMIZE THE PROGRAM?* NIL
IS THIS PROGRAM USEFUL ENOUGH TO GENERALIZE?+ T
IS THIS PROCEDURE WITHQUT SIDE EFFECTS?+ NIL

THE GOAL (WEARING M SHOES) IS ATTAINABLE BY THE FOLLOWING PROGRAM:

"This procedure is the structured expansion of the non-primitive
procedure DRESS called in PROC1."

DRESS(M SHOES)
ROBOT(M);CLOTHES(SHOES);CHAIR(CHAIR 1 );
COMMENT

INPUT ASSERTIONS:
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AT(M CORNER) A AT(CHAIR] CORNER)
QUTPUT ASSERTIONS:
WEARING(M SHOES) A FOUND(M SHOES) A WEARING(M SHOES);
COMMENT
PROC2 ATTEMPTS TO ACHIEVE FOUND(M SHOES);
BEGIN
IF ~UNDER(SHOES CHAIR1) THEN
PROC2(M SHOES)
ELSE
BEGIN
FIND(M SHOES CORNER);
END
PUT-ON(M SHOES)
END

DO YOU WANT TO DO CONTINGENCY PLANNING?+ T
WHAT IS YOUR PREFERENCE?
----IF NONE TYPE NIL* NIL

TRYING---(PROC2 (FOUND M SHOES)HSTAT2.CST))
"The contingency task tripie consists of procedure name, goal and state.”

DO YOU HAVE ANY ADVICE?+ NIL

RULES ENTERED AND GOALS PENDING IN CURRENT SUBGOAL TREE PATH:
---FIND

((FIND M SHOES CORNER))

DO YOU WANT TO OPTIMIZE THIS PROGRAM?+ NIL

IS THIS PROGRAM USEFUL ENOUGH TO GENERALIZE?+ T

IS THIS PROCEDURE WITHOUT SIDE EFFECTS?+ NIL

THE GOAL FOUND(M SHOES) IS ATTAINABLE BY THE FOLLOWING PROGRAM:

PROC2(M SHOES)
ROBOT(M);CHAIR(CHAIR2);
COMMENT
INPUT ASSERTIONS:
AT(CHAIR2 CORNER) A AT(M CORNER)
QUTPUT ASSERTIONS:
FOUND(M SHOES);
COMMENT
PROC3 ATTEMPTS TO ACHIEVE FOUND(M SHOES);
BEGIN
IF ~-UNDER(SHOES CHAIR2) THEN
PROC3(M SHOES)
ELSE
BEGIN
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FIND(M SHOES CORNER);
END

END
DO YOU WANT TO DO CONTINGENCY PLANNING?+ NIL

DO YOU WANT TO CONTINUE FROM THE CURRENT STATE?+ NIL




