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I 

Background: 

As material for possible historical (as well as motivational) 

interest,  we may observe that Volume 1, No. 1 of Management Science 

contained an article entitled "The Stepping Stone Method for Explaining 

Linear Programming Calculations in Transportation Type Models. " 

Volume 1, No. 2 contained an article entitled "Optimal Estimation of 

Executive Compensation by Linear Programming. "    The purpose of 

these two papers was to help this new journal and the new society, 

TIMS, which published it get off to a start that would also provide a 

basis for further growth not only in themselves but also in a society 

(TIMS) which would, in turn, greatly enlarge the prospects for these 

and other related developments in the management sciences. 

By emphasis at least, the first of these two articles was designed 

to appeal to immediate use and understanding.   The emphasis in the 

second article was directed to longer range potentials for additional 

applications in the then new discipline of linear programming.   Some 

of these applications included extensions to areas like "inequality con- 

atrainpd regression," "nalilli-dimensional objective optimizations" 

and their extensions to ordinal non-metric scaling, including non- 

2 
Archmedran    constructs.     New theory as well as new methodological 

possibilitit s were also haturally kept in mind, and exploited as their 

1. See 12] and [31 in the bibliography appendix to this paper. 

2. See [41. 
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potency for applications appeared to warrant.    Thus, the transportation 

model in the first of these two articles was extended via a variety of new 

ideas which ranged from the development of the "poly - uu method'    to the 

use of model transformations and approximations.   Ideas in the second 

article subsequently gave birth to attempts to exploit the use of linear 

programming models and methods to attack a variety of nonlinear 

4 
problems.      They also gave rise to the goal programming ideas which 

have now begun to be used in a variety of novel contexts.   One such use, 

the OCMM series of models [12I, has also involved a change in the 

state of modeling  ger se by joining the ideas of goal programming and 

Markov processes into a new approach for dealing with decision (Markov) 

processes. 

As in these other developments, applications associated with 

the OCMM models have provided points  which now  make   it 

possible to undertake further methodological and theoretical developments, 

as well as applications, that will provide still better bases for future 

extensions.    This, in fact, is the point of the present paper, which will 

be followed by others, in which we shall undertake to join some of the 

preceding work (e.g., in model approximation and goal programming) 

3. See [4]. 

4. See fill,  ri31, [14). 

5. OCMM (Office of Civilian Manpower Management, U. S. Navy) 
This series of models is described in [12]. 
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not only with each other but also with presently disparate developments 

(e.g., in linear programming under uncertainty) while we simultaneously 

attempt to provide solution procedures (including good starts) that can 

supply operational significance for the new problem areas that might 

then be addressed. 

Introduction 

Explicit solutions to linear programming or linear fractional 

programming problems presently exist only for special cases, the 

6 
most general of which are the full row rank interval programming 

7 
and the full row rank linear fractional programming. 

In some cases these models are of direct interest.   This 

naturally includes those cases where problems can be modelled to 

fit the theoretical and computational requirements.   It also includes 

cases for which model fetructurd approximation and parameterization 

methods can yield either exact or approximate solutions to more 

8 
complicated problems.     Finally it includes cases in which advanced 

starts can be thus obtained including ones which greatly accelerate 

the attainment of solutions—as when, e.g. , primal simplex technique 

applied to such starts have yielded great improvements in efficiency 

6. See [1). 

7. See (5). 

8. See [6l. 
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relative to alternative solution procedures that might otherwise have 

been required. 

There are at present no comparable classes of explicit 

solutions to "goal programming" models.   The increased usage now 

being accorded to this type of model, however, would seem to justify 

such developments in order to anticipate benefits  for this class which 

are analogous to those described in the preceding paragraph. 

The present paper is directed toward developing such solution 

procedures for the general case of piecewise linear, but separable, 

"goal functionals. "    We define a separable functional as a sum og 

one-variable goal functionals.   A one-variable goal functional, f.(x.), 
J       J 

is a function that is monotone decreasing for x  < g   --g. * the stip- 
i      i       1 

ulated j    goal--and monotone increasing for x- >g..   Note, however, 
J J 

that strict monotonicity is not required.   In fact for the important 

"goal interval" type of model, the functional has a constant minimum 

over a whole interval. 

The following examples are included in this class: 

(i)  Absolute value functions, including those with asymmetric 
weights and multi-goal components. 

(ii)  General convex piecewise linear functionals 

(iii)  Goal interval functionals 

9.   See [8] and (10). 
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(iv)   Ilvpßfmifdian lunctionals and rnlatnfl functionals in extension.-; 
of ordinary goal programming. ^ 

This list is not exhaustive, but it is nevertheless indicative 

of the many significant kinds of problems that are included for the 

development that we shall now provide as follows:   P'irst we shall state 

and prove a very general lemma which can be used to reduce and 

simplify such problems.    This lemma will be presented in the next 

section--!, e. ,   section 2--along with its application to a simple (but 

significant) class of cases.   The lemma, we may note, is not restricted 

to the latter class of cases and is, indeed, established in far greater 

generality than required for any part of the present paper.   In addition, 

we shall proceed to our results for obtaining explicit solutions via 

general separable convex piecewise linear functionals, which will be 

covered in section 3.   In this section--i.e. ,  section 3--we shall 

obtain a linear programming equivalent which will be extended in 

section 4 where procedures for obtaining explicit solutions will be 

delineated.   Section 5 will then conclude tWs   paper with a numerical 

example which will serve to illustrate some of the results achieved 

in the present paper and also indicate some of the possible extensions 

that will be covered in later papers in this series. 

10.    See [ 7 ] 



2.   A General Reduction Lemma: 

The following lemma is established in far greater generality 

than we shall require for this paper.   Indeed, no properties other 

than monotone decrease up to the goal and monotone increase to its 

right are stipulated.    Thus, we let f =Sf  (x ) where f.(x ) is monotone 
j  j     J J   J 

decreasing for x^ ih   and monotone increasing for x  a h..    Then we 

consider the following problem: 

(1.1)   Min. f(x) = £f. (x ) 
J   J    i 

subject to Sx. £ b- 
j    J      J 

(1.2) aj « x. sb- 

With this in mind we now develop 

Jo      3o' 
Lemma 1:  If x satisfies (1.2) and for some j0. xH  

> h^ , then 
If satisfies (1. 2) and fOr)« f(x), where 

A \ •   •   •   f  Jii $      i   •  ■   /| 

x  = (*r i* ]e j      \max (aJo. hjo), j=j£ 

Proof:   Ifx.    is replaced by x,    -A,  OSAsmin.  (x.   - h. , Xi  -a,  ), then 
  Jo Jo Jo     lo     Jo    Jo 

Lix.   -A)*t. (x.  ) 
JO    Jo Jo    Jo 
a^x.    -A« b. 

J     3o ] 
and     £,x   + x     -A sb , where j0 signifies that the summation 

Jo 3      Jo 

omits the variable with this index. 



Thus. (1.2) is still satisfied.   Also f- (x.  ) is monotone increasing 
Jo   Jo 

for h:   s   x;  .   We therefore obtain a decrease (or at lease no 
Jo       3o _ 

increase) by setting A at its upper limit ZT and define Xj   = x-  - A   r 

max (^  , a.;   ) * x,  .    But x.   > h.  .   Hence 
Jo     Jo Jo Jo       Jo 

and 
f.  (x.   ) s  f.  (x,  ) 
Jo    Jo        Jo   Jo 

Lt (x ) + f,  (ST.   ) sf(x). 
J       J IQ     'O I.e..    J 

f(x) sf(x), 
and the lemma is thus established. 

The lemma covers in particular nonlinear goal functionals of types 

such as those drawn in the following figures. 

w 

J 

Non-Convex Functional 
Figure la 

Convex Functional 
Figure lb 

Piecewise Linear 
Functional 
Figure 1c 

Note, further, also that the simple constraintSx^ sb in the lemma may 

be replaced by any system of constraints such that decreasing any single 

variable preserves feasibility of the constraints.    E. g. , the system 

6xj + 2XJ, +   x4 s 20 

x2 + 3x3 + 5x4 s50 
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would be a valid type of replacement for the single constraint of the lemma. 

See the illustration in Section 5. 

We proceed first to consider, however, the particular case 

(2.1) minS ^ (x, " g. I 
.     J     J       ] 

subject to ;Cx, « b0 

j   J 

(2.2) aj«*j*bj 

where, without loss of generality, the constants u. are indexed so that 

Mi * l-kj a... 2Mi * . • . 2 M * 0. Because of Lemma 1, we can impose the 

additional condition 

(3.0) x. < max (g., aJ sb'.. 
J J     J       J 

Via (2. 2), however, a. «x. so that if g. sa. we need only set x^a. and 

reduce the preceding problem to one in the remaining variables 

(3.1) minEUj ("j -gjl 

subject to 

S"J 'b'o 
J 

(3.2) a.<x   sb'. 
j      j       J 

where b    is defined as in (3, 0) and a  s g  sb ; with, again, |ij ^ U2 2-■• 2 

U  ^ .. .2 Mn    ^ 0,  by r-o numbering, if required,  and b^ is b0 reduced 

by the x. = a: values.     Abusing notation, we replace n' by n too. 
J J * 

Because of Lemma 1 and the definition of b ',  however, we now 
j 

have xj ' gj ^O all j and this implies 

lxJ-gj,=gJ-xj 
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Thus wc may now replace the preceding problem by 

(4.1) maxZyu x 
.1   J   J 

subject to ^ x   sb' 
i   3 

(4.2) x   * - a . 
J J 

This is an ordinary linear programminc oroblem with a dual that mav be 

writtei n 

(5. 1) min v0bo 

äubject to 
j   J 

b.'- 
i V 

(5. 2) vo J 

V'i 
Ä 0 

J 

If 2Ja >b(j then the constraints of (4. 2) are evidently inconsistent 
J   J 

since the a  are lower bounds which the corresponding x   must satisfy. 

If we assume thatSaab0 then the optimum solution of (4. 2) can be 
j   J 

immediately written: 

x    = b'   j*l.  .. ., k-1 

*.* = bl ' A b, * 2, i. a, k       o     ]=1   J     j=k+l   ] 

Xj = a., j = k + 1. ... , n 

where k is the smallest positive integer such thai 
k-1    ^ ^     n 
^   b.' s   b ' -La: 

) =1   J 0    k+1 J 

and 

^   b'> b' -£   a. 
1*1    J       0   k^l   J 
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these x* choices are optimal we observe that they satisfy 
n k-1 k-1 ,     n n 
r H x* =2^  b' + U, (b' -2b,   -^'a. + v; u   a 

the constraints in (4.2) and produce ^^j  J    f   J    J       k    o    T   J     k+l J   k+1  i   j 

in the functional (4. 1).   Via regrouping11 this becomes Ukb^ ^ (^-u^bj^^u, -Mk'H) 

Applying the "regrouping principle" (see [   )), we posit these coefficients 

as optimal dual variables and need only verify that they satisfy the dual 

constraints--viz., 

k-1 

vo = Mk 
*+ 

V     = 
J V Uk*0. J = l.   • 

V 
J 

= 0, S'h... ,  k-1 

vr =  V* • = 0 

v*- = 
J ^ 

- M   »0, 3 = ^, .. n 

v* =0, j= k-H n. 

These values of v0, v j, v,    are non-negative as required.   They also 

satisfy the other dual constraints in (5.2) since, as may be seen, these 

v* choices give 

Mk + V^k=^ i=1 k-1 

M
k =yk 

J 

upon substitution in (5.2). 

Uk + M.l ^k^-' J=k+1' 

11.    I. e., we are here using a variant of the "regrouping 
principle" first set forth in f 9 ] as a means of obtaining explicit solutions 
via the dual problem.   See also (4|. 
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This completes the proof that our explicit solution x* is optimal. 

It also shows in full detail how we can use the lemma to obtain explicit 

solutions  in this class of cases.     The next section will extend this 

result to the case of general separable convex plecewise linear 

functionals. 

3.   The General Separable Convex Piecewise Linear Functional 

The functional we are considering is separable--i.e., it is 

a sun. of functions each involving only one variable.   Hence, we will 

be able to apply Lemma 1 and perform a reduction on one variable 

at a time to obtain a linear programming format.   The explicit 

solution will then be developed and exhibited in the section after this 

one. 

The general (continuous) one variable case has a graph con- 

sisting of straight line segments with slopes that increase from left 

to right.    See Figure 1c.   As is well known classically, such a function 

can be written as 

(6.1)   fa(t) =2:M   It-g  |+pt+ q 
J   J '      i 

where the g , M . p and q are given constants with |i   = 0, all j. 
J     J • 

In this form we state the following: 

Lemma 2:   A necessary and sufficient condition for fa(t) with 

Mi »0, V . to be a goal functional is that^M »  |p|. 
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Another representation of such a function is also possible, bearing in mind 

that we shall wish to minimize on f(t).   Because It explicitly specifies the 

slopes involved In f(t) we shall specify it by fs(t).   We shall now proceed 

to develop this second representation of f(t) and then relate It to the f^t) 

representation that we have already given. 

Without loss of generality, we may suppose that g  s g1 +j for all 

j.   Suppose also that a * t < b.   We may then write t = 2l/t., for some 
3   • 

sequence of t. starting with t , wherein we restrict the t. by the following 

iltions: 

tl*8l 

0 s W gH' j«2. 

8ns Vl 

, n 

Since we are minimizing on t(t) for a « t < b, we will choose t   > 0 only if 

t*_, (which is associated with the greater slope) has reached its upper 

bound.    Thus, for minimization purposes, f(t) convex can be equlvalently 

written in separated linear form as 

s     a,+1 

(6.2)   fS(t) =S, M   +d1 
J=l   ' J       l 

where k   is the slope of the line segment of the graph of f(t) which runs 

from g   j to gy 

For various important goal functionals we shall need to be able to 

pass from one representation of the function to the other. We proceed to 

develop the needed formulae. 
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Consider then 

fa(t) =£ a, |t-gj +pt+ q 

and 

8 n+1 

fs(t) ^kt.   ^d. k.sk..,.. V5. 
j=l JJ        J   J+' 

The graph of f8!) is shown In Figure 2.   Now consider 

Fort-*»:       ^(tl-^Uj + p) tn+1 

f8(t) ~ kn+l ^l 

Hence 
n 

fa(t)~(-yi 

f^t)^^^ 

Fort->-«,:        fa(t)~(-^aj + p)t. 

Hence 
n 

P-^UJ   '-\ 

Therefore 

p = 1/2 (k1 + kn+1).   •pMj - 1/2 (kn+1 - kj) 

^et, for g    «t s g , we have t = g.  , + t.,  so 

j-l n 
fa(t) «2 Mr(g       + K  - gr) +S ^r vg    - g   - t ) + p(g       H) + q 

r=l J  ^      J r=j *       J      J J"^     J 
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f8(t) -i icr(gr. g,.^ + ^ - d1, 

where g0= 0. 

Thus 
1 P 

fa(t) = J^r - 2^ + p)^ + <^r - ^r + P) giml   
4 

+ f Urgr+f^r8r+<» 

j-l 
f8(t) = M  +pr(gr-gr.1)+d1 

For 1=^ igi1. 

fa(t) = (p-SMj) t!+^3+q 

fs(t) =   k^+dj 

Fro in before: 

kn^ = P +fy]       P = l/2 (kl + kn+l)'  f^ = 1/2 (kn+l " kl) 

Fort^.j+t.; k=p+Ws-7>s 
J 1     J J 1 i 

Fo 

J 

rt=gj-2+tH: Vip+ifjiis7-^ 

Hence      k   - kj.j   = 2ti_  1 

Thus,  Riven ly  ....  kn+ ^ gj Sn
: dl in the f8(t) form,  we 

can determine the f^t) form via 
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P = 1/2 (kj + kn+1) 

g = fl, - 1/2 (kn+1 - kj) 

Mj = 1/2 (Vl - k^ 

Conversely, given the fa(t) form with Wj, .... |in; p. q and 

gi.... ig  . we can determine dj,  kj kn+1,  for the f (t) 

form via 

d^q+^j 

k, = p .r>M. 
1    J 

= P+S^-^S = VI + 2UJ-I 1 1 j J 

n+J 

Si ß2 äJ-l 

Figure 2 
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Because we are dealing with a piecewlse linear and convex 

problem, we have been able to reduce the portion corresponding to 

one variable t to a separable linear form on the t. with individual 
J 

interval constraints.   Going back to our total functional (which is the 

sum of functions of one variable each) and splitting each variable whose 

functional is nonlinear, into a sum, as above, we have thereby reduced 

the solution of the general convex problem to that of a linear program. 

The solution of the latter will be exhibited in the following section. 

4.1 Explicit Solution 

Because of the equivalence we have develop' i in the last section 

between functions in fa(t) and f8(t) format, we can evidently always 

write the general convex piecewise linear separable functional (with 

a finitr number of pieces) as a linear functional subject io internal con- 

straints on the "incremental" variables.   We shall therefore take our 

candidate for explicit solution in the reduced (equivalent) form: 

(8.1) min k        x       + k x 

AIYT   W     .(2)T   (2)  «l^ 
d        x     + d x 

(1>       <     .   Ü) .(1) a s     I x s bw 

<2) A   (2)        /2) a t Ax      s.bu' 



-17- 

in which we now use vector-matrix notation with 

(2)T        (2) (2) , 
k        = (k ...... kM   ) 

1 n2 

(1)T . . (1) tf<l) 
x        = (xi xn1

) 

(2)T_     (2) (21 
l ng 

A        ~ (a..)    is of full row rank 
ij 

Note that if A is of full row rank, so is  a    matrix {Q A ).   Thus the above, 

which we have written to separate out that part of the constraints and 

functional which corresponds to the non-linear goals, can be rendered 

in the form 

•    .T min k   x 

(8.2) dTx  < b0 

a s Ax   * b 

where A is of full row rank.    We can make the transformation y = Äx, 

or x = A "y + (1-A Ä) z,  where A    is a generalized inverse of A (e. g. , a 

right inverse) and z is an arbitrary vector. 



-18- 

The problem may now be rewritten 

min kTA#y + kT (I-A*A)2     with 

(9.1) dTÄ#y + d    (I-Ä#Ä) z *bf o 

ä * y *b 

Now let 

fctfyy if dTÄj * 0 

rdT a. Ä#Ä)k zk . if dTa-Ä#A)k /   0 

z . if      (l-A*Ä)u = 0 

Then the problem may be written 

(9.2)  min kTn + (<Ts 

-T        «T 

e. t. e   n + e  s s b 

where 

ä s n iß 

, .. ifdTAf   ^   0 
e    = J 3 

(: 
1    > -   ifdT4  .  0 

rkTÄ^/d^* if dTÄ# * o 
^  -) i J 3 
^"W        ..fdTÄ».« 

1. if dT(I-Ä#Ä)k / 0 

| 0.  if       fl-AA^ = 0 
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Ä#Ä)r/dTa-A#A)   If dTa-Ä#Ä)   /  0 r r r 

a  = 

pa 
ikT(I-Ä*Ä)r If dT(I-Ä'rÄ)r   = 0 

dTÄfa,;if d7^ >0 

S\ a.. ifdT4-0 

dTÄ#b.( ifdTÄ* <0 
J ] J 

d   Ab ,  if d  A   > 0 
J     J J 

T # 
b= / I) , if d  Ä.   = 0 

J     1 J J 

dTÄ*a., if dTÄj ^ 0 

Combining the components of n and s into a single vector 

T §    = (Si,..., ^1) in the order of decrease of their functional coefficients 

k., lrr, and adjoining -", + »lower and upper bounds for the ^ which are 

S , s, the problem may be written in the form 

(10.1)    min    V?% 

with  eT§   *b0 

a*? sB 

where It, s. k2 « . ..  $ ltn, the a, correspond to ä;'s or -", the E. cor- 

respond to b-'s or +00, the e. are the appropriate & or k.    For consistency 
n      „ 

must have 2 e; aj s bi Setting f . = X '•'f j» the problem may be rewritten 

we 
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max.    E (-M 5.+T;(-Ki)a. 
j       J     J    j      ->    J 

(10.2) with    Se. I- ib0 -££ a. • b' 
j     J    j      "    j J   •»       o 

This is a linear programming problem.   It therefore has the following 

dual 

min.     w b    + Sw  B' 
\0   i   3 * „ 

(10.3) with     w  e,+    w. »-ic 
o j j        J 

w  , w   > 0. 
0      J 

We now introdrce 

(11)       Jo«  {j:   -k^Oande-o} 

Jl s  $'•   "^j a0 and ®i = l| 

r- 
r = max j such that -k. i 0, e: - 1, 2J e b  < b 

J J        i   ä B      o 

and shall show that an optimal solution to the primal problem is 

(12)       5j*=^,   je J1 

fj = b0-E ^B^bj-z;    ?.B; 

?*=0, je ^u^uJj 
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where (r) is the singleton set with element r.    Then 

(13)     ^-kir = E(-ki)B' + S(-S:^;+(-K „Xb'-S    £;) 
]       J   J    Jo J     Tl J .^UJj-1 

= (-1? )b' •  5 M-lc) - e.l-kr))^' + terms under J,. r    o       j^L.    j        J       'J   j 1 

We now employ the regrouping principle and posit the following values 

for the dual variables:  wo = -lcp, Wj = -kj - e^-kr), j eJ0 U-Jj     w   - 0 otherwis 

Noting that these are all non-negative,     we check that these w   satisfy 

the other dual constraints--viz., 

(14.1)    wo ej + w . = (-kr) e   +[-kJ - ^ (-kr)] = ^] for J e J0 U Jj 

Thus the J u J, dual constraints are satisfied.   Next, 

(14. 2)   w*e, * w* - -(k r) ej for j^ Jo J Jj 

We need to show here that  -(EL) e.    - k..     If -k  » 0 then e- = 1 and j> r so 
.1 .1 " J 

that -k   » -k..   If -1?. < 0, then since (-Itje, i 0 we have (-K )ej > 1c.. r        J J r   j r   J      j 

Thus all dual conditions are satisfied. 

Passing back from 5 to §, our optimal solution for (10.1), is therefort- 

VVjCJoUJi 

(15)       i* = b0 -2        e^ -£ e.l 
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4.2   Further Computational Reduction: 

For simplicity of exposition the general separable convex 

piecewise linear functional was transformed directly into linear interval 

programming format employing additional variables, one for eacli of 

the linear segments.   Our fundamental lemma, however,  makes it 

possible to reduce (sometimes very substantially) the number of seg- 

ments which need to be considered and also reduces the number 

of variables and constraints which need to be introduced.    Because 

of this lemma, we can restrict an original variable in the goal functional 

to be bounded above by the first g   at which the eoal functional minimum 

over a * t s b is attained. 

The use of this technique, together with other reductions that 

are possible for special goal programming functionals, will be presented 

in additional reports in this series together with applications involving 

various utilizations of advance starts.   Asa start toward that end we have 

supplied a numerical illustration which illustrates some of the preceding 

developments. 

5.    Numerical Illustration: 

We now conclude the present paper with a numerical example 

which illustrates the remarks we have just made.    For this purpose 

we adapt an example from the paper which initiated this series of studies 
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in manpower planning. 

Applying the procedure of model approximation sketched in 

the next to last paragraph on page II-8 of (   ] to a curtailment of that 

example we have as our problem 

min.   (Nj (1) - 301+ |N2 (1) - 200| + 1^(2) - 70| + |N2(2) - 300| 

subject to 

(16) 

0 s N^l) S      OD 

0   A N2(l) s   » 

151^(1) +).3N2(1) s   3,000 

44   s N (2) S      CO 

143   s N2(2) i     a» 

15^(2) 13^(2) s   4,000 

Here we have confined ourselves to a model involving only two types of 

manpower in a 2-period plan.   Thus, the variable HAt) refers to the 

amount of the i    type of manpower, 1 • 1, 2, scheduled for recruitment 

in period t = 1, 2.   The admissible values for these variables are in 

interval form except for the two budgetary constraints which are 

applicable at the indicated salary levels of 15 and 13(thousand dollars/annum) 

in each period.   Essentially then this is all in the form of the expressions 

given in our General Lemma (see section 2, above) with the goals of 

30,  200, 70 and 300 stipulated in the absolute value functional for (16). 

By our Lemma 1, the above example may be transformed into 
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maximize NjU) +N2(1) +N1(2) + N2(2) 
subject to 

0 s Njd) « 30 

0 s N2(l) « 200 

(17) 15N1(1)+13N2(1) * 3,000 

44 s 1^(2) * 70 

143 i N2(2)   s 300 

ISNj (2) +13N2(2)< 4,000 

We now have only an ordinary linear programming problem that 

involves no more variables than the nonlinear problem (16).    Further- 

more, (17) mtiy be split into the following two separate subproblems. 

maximize N^l) + N2(l) subject to 

0 «Njd) s  30 

(18.1) 0* N2(l) s 200 

ISN^l)+13N2(1)       *3.000 

maximize 14,(2) + N2(2) subject to 

44   * ^(2) * 70 

143 « N2(2)       « 300 

151^(2) +13N2(2)     « 4,000 

Without further ado we can then write our optimal solution for 

and 
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(17). and honce (16), via U8.1) and (18,2)  This gives 

N*(l) « 400/15, Ngd) = 200 

Nj'(2) - 44       , N|(2)= 143 + i—= 257. 

Evidently our lemma has produced a simplification so that achieving a 

solution to the nonlinear problem (16) Involved practically nothing more 

than merely a solution by Inspection of two much smaller linear problems. 

This suggests further possible ways In which the ideas contained In our 

lemma may be extended to other classes of problems.   Such develop- 

ments are best delayed, however, until they can be treated in their 

own right via other papers in this series. 
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