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Statistical thermodynamics of irreversible processes involves study of 
nonequilibrium processes - transfer of energy, momentum, mass and charge - in 
the various physical systems  Cgascs,  liquids, solids)  by means of statistical 
mechanics methods. 

The book is the first in world  literature to examine the state of the art 
of nonequilibrium statistical thermodynamics as the natural extension of equi- 
librium statistical tliermodynan.ics  from a single viewpoint.       In the book are 
presented:    basic ideas of equilibrium and nonequilibrium statistical thermo- 
dynamics of classical  and quantum systems;  the effect on statistical ensembles 
of various mechanical and thermal perturbations which upset equilibrium; 
fluctuation-dissipation theorems, a method based on original  investigations 
by the author of developing nonequilibrium distribution functiois  and statis- 
tical operators which permit development of thernodynamic equations of irre- 
versible processes; and the application of these methods to various problems. 
Lxamined are the statistical derivation of thermal conductivity and diffusion 
equations and the Navier-Stokes  equation for a multicomponent  liquid or gas. 
Also investigated are the connection between kinetic coefficients  and correla- 
tion functions; the statistical theory of relaxation processes and chemical 
reactions both in linear and in nonlinear  (with respect to attractive thermo- 
dynamic  forces)  approximations;  relativistic statistical hydrodynamics;  the 
derivation of generalized kinetic equations;  and the derivation of the 
Kramers  and  Fokker-Planck type equations  for small subsystems which  interact 
with  larger ones; and the extremal  properties of a nonequilibrium statistical 
operator. 

The book is intended  for physicists  and physical chemists   (scientific 
personnel,  graduate students and advanced undergraduates) working  in the 
fields of theoretical physics,  molecular physics, physical  chemistry,  and 
chemical physics. 

Iwc  illustrations,   3^2 bibliographical entries. 
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PREFACE 

In this book an attempt is made to present from a unified point of view 
the current state of nonequilibrium statistical thermodynamics as a natural 
generalization of equilibrium statistical thermodynamics. 

From a logical point of view it would be desirable to present the 
statistical theory of nonequilibrium processes first and to consider the 
theory of equilibrium processes as a limiting case.      However, such a presen- 
tation is at the present time scarcely feasible, as nonequilibrium and equi- 
librium statistical thermodynamics are at very different levels of development. 
Therefore,  in Chapters  I and II we give a brief account of the basic ideas 
of classical and quantum statistical mechanics of equilibrium systems to the 
extent that these ideas are necessary to derive the basic thermodynamic 
relationships  for the case of statistical  equilibrium. 

The purpose of these introductory chapters is to recall the general 
method of statistical ensembles, due to Gibbs, because later in Chapters  III 
and IV attempts are made to apply the ideas of statistical ensembles to non- 
equilibrium statistical thermodynamics. 

A separate chapter is devoted to classical statistical mechanics, 
although classical statistical mechanics can be regarded as the limiting case 
of quantum statistical mechanics for those situations in which it is permissi- 
ble to neglect quantum corrections.      We shall not  follow such a course, 
because classical statistical mechanics  is  interesting in itself and is com- 
pletely adequate for many problems.      The methods of classical and quantum 
statistics have much in common as regards the theoretical formulation of 
problems.      Very similar difficulties are encountered in attempts to justify 
both methods.      The limiting transition from quantum to classical statistics 
will be considered later, at the end of Chapter II. 

In Chapter III we consider nonequilibrium processes and study the reac- 
tion of statistical ensembles to external, mechanical perturbations.       By this 
is meant a perturbation which arises from switching on an external  field when 
the perturbation energy can be represented by an additional term in the 



Hamiltonian.      A state of statistical equilibrium is used as the initial 
condition.      A discussion is given of the fluctuation-dissipation theoreirs, 
dispersion relations, and sum rules and their application,  in particular for 
systems of charged particles. 

Chapter IV is dedicated to thermal perturbations, which cannot, generally 
speaking, be represented by any perturbation energy; for example, perturba- 
tions arising from a change of temperature, pressure, or the concentration of 
particles in space and time are considered.      This case requires a more expli- 
cit construction of statistical ensembles than does the case of mechanical 
perturbations. 

Using the idea of "quasi-integrals of motion" for a compact description 
of the system,  a nonequilibrium statistical operator is constructed and then 
applied to various problems, such as a derivation of a system of equations 
for the translation of energy, momentum and number of particles into a multi- 
component system, or a derivation of relaxation equations, kinetic equations 
and equations of the Kramers-Fokker-Planck type.       It is shown that this non- 
equilibrium statistical operator may be obtained from an extremum of the 
information entropy when the fixed quantities defining the nonequilibrium 
state are specified not only at a given moment, but also for all past times. 
This chapter is to a large degree based on the work of the author. 

It is assumed that the reader is acquainted with the fundamentals of 
quantum and classical equilibrium statistical mechanics to the extent given 
in the usual university courses. 

The book was read in manuscript by V.  A.  Moskalenko, Yu.  L.  Klimontovich, 
V, P.  Kalashnikov, A.  Ye. Marinchuk,  L.  A.  Pokrovskiy, A. G. Bashkirov,  G.  0. 
Balabanyan,  M.  V.  Sergeyev, S. V. Tishchenko,  M. Yu. Novikov, to whom the 
author is grateful for advice and comments. 

The author is deeply grateful to academician N. N. Bogolyubov for fruit- 
ful discussions of the diverse problems of the theory of nonequilibrium 
processes. 

I).  Zubarev 
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INTRODUCTION 

Nonequilibrium statistical thermodynamics forms the theoretical basis 
for nonequilibrium thermodynamics  [1], just as the usual statistical thermo- 
dynamics is the basis for equilibrium thermodynamics.       In nonequilibrium 
statistical thermodynamics one studies the processes of transfer of energy, 
momentum and particles in various physical systems (gases,  liquids, solids) 
on the basis of statistical mechanics.      The problem is to derive the equations 
of nonequilibrium thermodynamics by the methods of statistical mechanics  (to 
the extent that this is possible)  "from first principles," i.e., to find from 
the equations  of quantum or classical mechanics expressions for the kinetic 
coefficients in terms of microscopic characteristics,  to justify the symmetry 
properties of the coefficients, and to prove fluctuation-dissipation theorems. 

The most highly developed method in the theory of irreversible processes 
is the method of the kinetic equation for the distribution function; the 
method was proposed already by Boltzmann and justified and further developed 
by N. N. Bogolyubov  [2],  Kirkwood [3], Born and Green  [4], Van Hove [5], and 
others  [b,7].      This method allows one to derive the equations of nonequili- 
brium thermodynamics, and to calculate explicitly the kinetic coefficients. 
The method has  great practical importance, but  it can be applied only to 
sufficiently dilute gases or to sufficiently weakly interacting gases.      Thus 
there arises the problem of constructing the equations of irreversible thermo- 
dynamics on the basis of statistical mechanics for more general systems. 

The usual  linear phenomenological nonequilibrium thermodynamics can be 
applied to any system provided that the system is in a weakly nonequilibrium 
state,  i.e.,  it  is  close to complete statistical  equilibrium.      We note that 
this theory does not employ a consistently macroscopic point of view.  Besides 
the axiomatic thermodynamic method,  it uses  in an essential way an argument 
at a microscopic level, namely, that the particles obey the eqiations of 
mechanics.      As an example, one can derive the Onsager reciprocity relations 
from the invariance of the equations of motion with respect to time reversal. 
In this, bjwever,  one uses only the fact that the equations of motion exist, 
not their specific form, which is associated with the form of the llamiltonian. 
Nonequilibrium thermodynamics goes further in this direction, starting with 
a system described by a specific Hamiltonian and making explicit use of the 
equations of motion. 

Nonequilibrium statistical thermodynamics is an outgrowtli of the equili- 
brium theory, but the equilibrium theory is relatively well-developed,  its 
foundations having been laid by Gibbs  [8]  around the turn of the century. 
On the other hand, the nonequilibrium theory is still  in a state of develop- 
ment and is  far from completion. 

Until recently the opinion was widespread  (it is held by many people even 
today)  that there was no universal method,   like the Gibbs method, which could 
be applied to the analysis of irreversible processes  in an arbitrary system. 
It was thought that an exact formulation of the problem was possible only in 
the limiting cases of systems for which a kinetic equation could be constructed. 

- 3 



The development of the theory of irreversible processes during the past 
ten years (see the reviews  [9-13]) shows that  important steps have been taken 
toward the const not ion of the statistical thermodynamics of irreversible 
processes for arbitrary systems, and the theory has already begun to produce 
its own techniques.      This confirms the idea of Callen and Weiten expressed 
in 1951 in a work on the general theory of fluctuations and generalized 
noise [14]:    "We believe that determination of the connection between equi- 
librium fluctuations and irreversibility opens up the path to the construction 
of a general theory of irreversibility using the methods of statistical 
ensembles."      In this book an attempt is made to sum up the preliminary 
results which one encounters on this path. 

We shall study nonequilibrium processes in macroscopic thermodynamic 
systems, for example, gases,  liquids, and solids, by the methods of statisti- 
cal mechanics.      Therefore we shall assume in all that follows that the 
system under consideration is made up of a large number of particles and that 
it obeys the laws of quantum (or classical) mechanics and that Hamiltonian of 
the system is known.      (An account of equilibrium statistical mechanics can 
be found in the references  [15-19].) 

Any state of a thermodynamic system which differs from a state of com- 
plete statistical equilibrium we shall call a nonequilibrium state.      A pro- 
cess will be called a nonequilibrium process if it includes nonequilibrium 
states. 

Processes accompanied by a production of entropy in the system (i.e.,  the 
formation of entropy, but not its redistribution)  will be called irreversible. 
Examples are diffusion, viscous motion, thermal conduction, and electrical 
conduction in normal metals.      Irreversible processes are also called 
dissipative. 



CHAPTER I 

EQUILIBRIUM STATISTICAL THERMODYNAMICS OF CLASSICAL SYSTEMS 

Statistical thermodynamics of both equilibrium and nonequilibrium pro-
cesses begins with the equations of mechanics (quantum or classical) for the 
collection of particles making up the system. The solution of this system 
of equations is impossible in practice because of the huge number of varia-
bles, but even if a solution were possible, we could not set up the initial 
conditions for such a large number of equations - this is far beyond experi-
mental capabilities. Therefore, to study such systems the methods of 
statistical mechanics are used; these methods are based upon the introduction 
of distribution functions in classical statistical mechanics or of statisti-
cal operators in quantum statistical mechanics. 

In this chapter we shall consider the basic concepts of classical statis-
tical mechanics of equilibrium systems, i.e., the Gibbs method of statistical 
ensembles for systems of particles obeying classical mechanics. 

S 1. Distribution Functions 

1.1 Distribution Functions for Systems of Interacting Particles. 

Let us consider a system of N identical, interacting particles contained 
in a finite, but macroscopically large volume V. For simplicity we shall 
assume that the particles have no internal degrees of freedom. 

In classical mechanics the dynamical state of each particle is defined 
by giving its coordinates q and momentum p, where q and p denote the set of 
three Cartesian coordinates and three components of momentum qa,P° (asl»2,3). 
The state of the whole system is defined by giving the set of coordinates 
qi»>*«,qN 4X141 momenta PI,...,PN of all particles, or by giving the location 
of a point in the 6N-dimensional phase space (PI,...,PN; 

The dynamical evolution of the system is defined by Hamilton's equations: 

is the total Hamiltonian of the system; the Hamiltonian is assumed to be known. 
For example, for a system of N particles with a two-particle, centrally-
symmetric interaction, described by the potential $(|qi-qj), the Hamiltonian 

il' 
dt (1.1) 

where 
" = 11 (P <7; <i\\ !) 
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has the form 

// V J!L 
~*A 2.11 '!'C<i<- <1, !)• (1.2) 

The corresponding equations of motion are 

/' • >o ( i <7 — Q I t 
».-£• "=• - i f, «•- I. 2 A'). (1.3) 

where Fk is the force produced on the k*h particle by all the other particles. 
The fact that the volume is finite can be taken into account by adding to 
(1.2) an additional potential function Uv(qj,...,q^) which depends on the 
coordinates of the particles: Uv is constant within the volume V and rapidly 
approaches infinity upon the approach of any particle toward the boundary of 
the volume. 

A probabilistic treatment of dynamical processes is applied in statisti-
cal mechanics. Following Gibbs, a given system is not considered by itself, 
but rather, a large number (in the limit - an infinite number) of copies of 
the system are considered; these copies arc in macroscopically identical con-
ditions. I.e., a statistical ensemble "representing" the macroscopic state 
of the system is introduced. 

The identity of external conditions in a macroscopic sense means that 
all ensembles are characterized by identical values of the macroscopic param-
eters (to within the accuracy of possible fluctuations) and by identical 
types of contacts with the surrounding objects: reservoirs of energy or par-
ticles, or movable pistons. This puts restrictions on the coordinates and 
momenta of the particles; otherwise these variables are arbitrary. 

A point in phase space (pi,...,ps; qi,...,qN) or briefly, (p,q), corres-
ponds to each system in the ensemble. With the passage of time each phase 
point moves along its characteristic trajectory in phase space in accordance 
with equations (1.1) or (1.3). 

The statistical is defined by the distribution function 

f(p.q.t) 

which is the probability density for the distribution of systems in phase 
space. It is defined such that 

dw * f(p,q,t) dp dq (1.4) 

is the probability of finding the system at an instant t in the element of 
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phase volume dpdq near the point (p,q), i.e., (px,...,pN; qi»...fqN). 

1.2 Normalization. 

The distribution function (1.4) must satisfy the normalization condition 

Jf(P.q»t)dpdq = 1, (1.4a) 

since the sum of the probabilities of all possible states must equal one. 

However such a normalization of the distribution function is inconvenient. 
Classical statistics is the limiting case of quantum statistics for tempera-
tures which are high enough such that quantum effects can be neglected. But 
the normalization (1.4a) does not correspond to the limiting transition from 
quantum to classical statistics. Thus, it is more convenient to use a dis-
tribution function with a different normalization. 

From quantum mechanics it is known that the classical concepts of the 
position and momentum of a particle can be introduced without contradicting 
quantum mechanics only within the scope of the quasiclassical approximation. 
The smallest cell in phase space corresponding to one-dimensional motion of 
the i*h particle in the quasiclassical approximation has the magnitude 
h = 2irft (Planck's constant). 

Ail* A/>* > //. 

Consequently, the "volume" of the smallest cell in the phase space of a single 
particle is h3; in the phase space of N particles it is h3N. Thus, the 
quantity h3N is the natural unit of phase-space (or simply, phase) volume. 
Therefore it is convenient to introduce a distribution function which is nor-
malized to unity on the dimensionless phase volume dpdq/h3N. 

In addition, one must take into account that a quantum-mechanical state 
is unchanged by the interchange of the identical particles, and this property 
must be retained in classical statistics, if this is to be regarded as the 
limiting case of quantum statistics. Since the number of permutations of N 
identical particles is N!, the element of phase volume must be divided by N!, 
as it is necessary to take into account only distinct states. 

From the above it is seen to be convenient to introduce a dimensionless 
distribution function, referred to an element of phase volume expressed in 
units of h3N and taking into account the identity of the particles, i.e., 
dpdq/N!h3N. Consequently, it is more convenient to define the distribution 
function f(p,q,t) by 

du) = / (p, q% t) 4*7%. (1.5) 
iv! n 
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rather than by (1.4). In this case the normalization condition for the 
distribution function is 

/ Hp. q, i)c'X= I, (1.5a) 
where 

d\; ^ Jil'JJi 
(1.5b) 

is the dimensionless element of phase volume. Now the integration in (1.5a) 
corresponds to a summation over all distinct states. It can be shown that 
if classical mechanics is regarded as the limiting case of quantum mechanics, 
then this is precisely the normalization condition which is obtained (see g14). 

We remark that the factor 1/N! in the phase volume was introduced by 
Gibbs [1] before the creation of quantum mechanics in order to avoid the 
paradox which bears his name - the increase of entropy upon mixing identical 
gases at the same temperature and pressure. He distinguished "specific" 
phases p,q and "generic" phases, for which the phase volume was divided by N!, 
and he normalized the distribution functions with respect to the generic 
phases. 

Knowledge of the distribution function f(p,q,t) allows one to calculate 
the mean value of any dynamical variable A(p,q), i.e.. 

where the normalization (1.5a) is assumed. 

S 2. The Liouville Equation 

2.1 The Liouville Theorem on the Invariance of the Phase Volume. 

The possibility of introducing a distribution function as a probability 
density is based upon a theorem of Liouville - a theorem of pure mechanics, 
not drawing at all on probabilistic considerations. According to the 
Liouville theorem the phase volume is constant for the motion of systems 
obeying Hamilton's equations (1,1). That is, if at an initial time the 
phase points (p°,q°) continuously fill up some initial region G0 in phase 
space, and at time t they occupy a region Gt, then the corresponding phase 
volumes are equal: 

(A) - f A (i>, q)Hr>, (?, I) dV, 
(1.6) 

| {/;>' O.q' -- j dp .'/</, (2.1) 
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or for infinitesimal elements of phase volume 

dp°dq° « dpdq (2.2) 

In other words the motion of phase points representing systems in phase 
space is similar to the motion of an incompressible fluid. 

To prove the Liouville theorem we change the variables of integration on 
the right hand side of (2.1) from p,q to p°,q°. Then 

a(p»q) 
where 3(p°,q°) is the Jacobian of the transformation from the variables p,q 
to p°,q°. It is a determinant with elements 3xj/3xf? where xi is the set of 
momenta and coordinates pi,qj, and xg is the set pg.qg. 

We shall now show that this Jacobian is equal to one on the basis of 
Hamilton's equations, i.e., 

- 1 <2-5' 

One can prove equation (2.3) directly by differentiating the Jacobian 
with respect to time [2]. It is simpler, following Gibbs [1], to make use 
from the beginning of the property of functional determinants 

J? (/'• <i) „ (/•'. q') <> (p• q) 
d (/)", q") " d <HP'< '/') ' 

where p'.q' are the values of momenta and coordinates corresponding to an 
arbitral/ time t'. We differentiate this identity with respect to t, keeping 
tQ and t' constant: 

d_ d jp, q) _ 0 (p', q') il 0 (p, q) 
ill' 0 (p<7U) — i) (p°, q 'j til 0 (/)', ./') ' 

As t' is arbitrary, we put f « t after differentiating. In this case the 
only non-zero terms of the Jacobian are the elements along the main diagonal, 

IZ <)(/>, ,]) <)(p, 1) Y fdf>. OtjA 
'ill 0 (p", q") d (p\ q») 2d \ dn~'] dq, ) 1 } 

(see [2,20]). But from the equations of motion (1.1) 
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and, consequently, 

3F " »• (2.6) 

i.e., the Jacobian is independent of time. 

Using the initial condition 

0 (/'• '/>. j j 
'Hp", q ) !*„/: ' 

we verify that the Jacobian (2.3) indeed equals one; thus, the theorem of 
Liouville is proved. 

2.2 Liouville's Equation. 

Until now in the derivation and formulation of Liouville's theorem we 
have nowhere made use of the concept of a distribution function; this is rea-
sonable in that we have been discussing a theorem of mechanics. If now the 
distribution functions are introduced, as in § 1, then different formulations 
of Liouville's theorem can be given. 

From Liouville's theorem it follows that the distribution function is 
constant along phase trajectories; this can be considered as one statement of 
the theorem. 

In fact, for motion in phase space of points representing systems, the 
number of phase points does not change; all the phase points found at time t 
in the element of volume dpdq go into the element dp'dq' at the time t". 
Thus, 

f(P.q.t)dpdq = f(p-,q',t')dp'dq', 

and since, by Liouville's theorem, dpdq - dp'dq', we obtain 

f(P.q.t) = f(p'.q'.t'), (2.7) 

i.e., f is constant along phase trajectories, which was to be shown. 

We give one more very convenient formulation of Liouville's theorem which 
is most often used in practical problems - we derive Liouville's equation for 
the distribution function. 

Putting the time t infinitesimally close to t" ~ t • dt, we have from (2.7) 

f(P»q»t) • f(p+£dt,q*4dt,t+dt). 
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Assuming further that the function f is differentiate, we obtain the 
differential equation for f: 

•'/ V ; <}! ' • \ 
it oi • (2.8) 

Equation (2.8), combined with Hamilton's equations, is Liouville's equation: 

V ; .• ;// ,1/ • >. 1 7'. <v, v ' (2.9) 

The sum on the right hand side of (2.9) is called the Poisson bracket 
for the functions H and f: 

m f \ = V I^IL . JL\ - (i// ,Ji • 
I ' l l ±u[dqk ' dpk dpk ' dqk) dq dp dp dq ' (2.10) 

thus, Liouville's equation can be written in the form 

3f 
at • <».*>• (2.11) 

This equation is fundamental for the construction of statistical ensem-
bles in both equilibrium and nonequilibrium situations. Using this equation 
one can calculate f at any time t, if it is known at the time t » t0. The 
equation allows one to study the reaction of statistical systems to external 
perturbations (see Chapter III). 

Liouville's equation has the form of a continuity equation for the motion 
of phase points in phase space. One can obtain a simple, intuitive interpre-
tation of this equation by considering the motion of points in the 6N-dimen-
sional phase space as the motion of a "liquid" with density f. The velocity 
of flow is represented by a vector in this space P1,...,PN; 4l»**>»qN* Thus, 
the condition of the conservation of phase points, i.e., the equation of con-
tinuity in phase space has the form 

-ft + ̂  17̂  * (/P*) + Tq; • (/**>] = 0, 
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where the quantity in brackets is the 6N-dimensional divergence of the current 
vector. Carrying out the differentiation under the summation sign and using 
(2.5) (which came from Hamilton's equations) we verify that equation (2.12) 
is of the form of (2.8), i.e., it is Liouville's equation. From (2.5) it 
follows that the motion of the "liquid" is incompressible. 

In statistical equilibrium f and H do not depend explicitly on time, and 
the Liouville equation is 

• 0, (2.13) 

i.e., in this case the distribution function is an integral of the motion. 

In fact, Liouville's equation is a linear partial differential equation, 
while Hamilton's equations form the corresponding system of differential 
equations in the total derivatives. Therefore, the general solution of 
equation (2.9) is an arbitrary function of all the solutions of the system 
(1.1). 

2.3 Time Evolution of the Distribution Function. 

To study the time evolution of the distribution functions it is conve-
nient to write the Liouville equation as 

where L is a linear operator defined by the relation 

iLf = (H,f>; (2.14a) 

it is called the Liouville operator. 

The representation of the Liouville equation in the form (2.14) is con-
venient, because the operator L is Hermitian, and the properties of Hermitian 
operators are well known. The Hermiticity of L is easy to verify. Indeed, 
for arbitrary functions ra(p,q), 4>̂ (p,q)« which vanish on the boundaries of 
the phase volume, a partial integration of the Poisson brackets gives 

J <T« (L(Pn) clP ll'l " { % (L'(C) dP dc1- (2.15) 

The relationship (2.15) is just the condition for the Hermiticity of L. 

There exists a formal analogy between the Liouville equation (2.14) and 
the Schroedinger equation 

/A-g-= //*!'. 
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as L and H are both linear Hermitian operators. This analogy was widely 
used by Prigogine [3] to transfer the methods of quantum mechanics into 
classical statistical mechanics. 

For the Hamiltonian (1.2) the Liouville operator has the form 

\ 1 1 Pi, J 
1- ~i \ i 1 P-i • "7~ -J [_ 0qk •- dpu 

(2.16) 

and does not depend explicitly on time. 

Using the Liouville operator (2.14a) a formal solution of the Liouville 
equation can be written, if the initial value (at t = 0) of the distribution 
is known. The solution has the form 

f (p. q, I) = c!" Hp, q, 0), (2.17) 

if L does not depend explicitly on time. 

Differentiating (2.17) with respect to t, we verify that this function 
indeed satisfies the Liouville equation 

== H- CUJ; (p, <7, 0) *=iL!ip, q, t) 

and the initial condition 

Hp, q, <;> °)-

We shall often make use of such a formal solution of the Liouville 
equation. 

Let us derive the equation of motion for a dynamical variable A(p,q,t), 
where the last argument indicates the explicit time dependence. To do this 
we differentiate A(p,q,t) with respect to time, considering p and q to have 
the time dependence given by Hamilton's equations. We have 

d/\ OA t r a *T» -jr=-or+lA- H)- (2.18) 
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We show that in this case the mean value of the time derivative of A is 
equal to the derivative of the mean value.      The mean value of A(p,q,t)  at 
time t is 

(/I) = J.I (p. q, i)f{p, q, i)d\\ 
(2.19) 

where f(p,q»t) satisfies the Liouville equation (2.11).  Differentiating 
(2.19) with respect to time, using the Liouville equation for f, and inte- 
grating the Poisson brackets by parts, we obtain 

dt 
{A)~\[^ + {AtU))ldV 

which was to be shown. 

If A does not depend explicitly on time, then 

(2.19a) 

~{,i, //}- -iL.-., (2.20) dt 

i.e., the dynamical variable satisfies an equation similar to the Liouville 
equation, but with the opposite sign in front of the Poisson bracket. 

If the value of the dynamical variable A(0)  is known for t»0, then,  if 
L does not depend explicitly on time,  (2.20) has the formal solution 

/l0)-6'-''-'/l(ü), (2.21) 

i.e., the time evolution of dynamical variables can be expressed using the 
Liouville operator. 

The operator e-i-1* is called the evolution operator.  It acts on an 
arbitrary function <p(p(0) ,q(0)) to translate it intoq* (p(t) ,q(t)), i.e.. 
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e~iLl q> (p (0), q (0)) = <p (p (/), q (/)), (2.21a) 

where p(t),q(t) are solutions of Hamilton's equations in which H has no 
explicit time dependence, and with the initial conditions p(t)|t-o * p(0), 
q(t) 11=0 = <l(0)-

The relation (2.21a) is easily shown directly. 

The relation (2.21a) follows from the properties of the Liouville opera-
tor, as 

'it> 
- i L < , - i L p = ~dT 

/ •/ \" I il \" -jr) "• {-iL)np=[nr) »• 
from which we obtain 

"""io) - i] -£• (-S-L -q U)' e~iU p (0)•p 
c 

because these are Taylor series with the derivatives defined from the equations 
of motion. Very similar properties hold also for powers of the coordinates 
and momenta; for example, _î q2 - dq2 

dt The relation (2.21a) for the evolu-
tion operator can be demonstrated using these properties by expanding in a 
Taylor series in p,q. 

2.4 Entropy. 

The negative of the logarithm of the distribution function plays a 
special role in statistical mechanics: 

n = - In f(p.q.t) (2.22) 

(Cibbs calls -n the phase index). The quantity n is convenient because it 
is additive for multiplicative distribution functions, and, as we shall see 
in what follows, it is connected with the entropy of the system. 

It is easy to see that n satisfies the Liouville equation 

3 = {//, (2*23> 
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just as does f.      This equation, obtained already by Gibbs, turns out to be 
very useful in the theory of irreversible processes, although it receives 
much less attention than the Liouville equation.      The convenience of equation 
(2.23)  lies in the fact that the properties of H are rauen closer to r\ than 
to f(p,q). 

The mean value of the negative of the logarithm of the distribution 
function, i.e., the mean value of n» is called the Gibbs entropy.      Using the 
dimensionless normalization of the distribution function (1.5a) the entropy 
is equal to 

,//.,/.-/ I M;'-/./.!../(,, (M)^L. (2<24) 

Formula (2,24)  is the Gibbs definition of entropy. 

For a dilute gas the states of the different particles can be regarded 
as statistically independent; therefore, the total distribution function 
equals the product of the distribution functions for the individual particles: 

!(P< '/• 0--p- [[/.(Pi, (li, I)       (inA'l ^AMn-'l, {2.2S) 

where the single particle distribution functions have the normalization 

U(P:, ^.O^f^.V. (2.2b) 

The factor N!/N is in (2.25) in order to coordinate the normalization 
(1.5a) with (2.26).  In fact. 
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For the distribution function (2.25)  the entropy (2.24)  equals 

where (2.27) 

^6=- l/.lPt. <?,./)Ini^'^^^i^ (2.28) 

is the Boltzmann entropy. 

In the general case, when the nultiplicative property (2.25)  does not 
hold, the Boltzmann entropy can still be defined by the formula (.1.28), where 
fl(P]»qi#t)    is the single particle distribution function, obtained from 
^(Pil»^! by integrating over all coordinates and momenta except Pi»^: 

fiipt. q.< ')= i Hpx. qu .... />.v, qx-> n ~'J~:—^~~r"-■ (2.29) 

The function fi(Pi,qi,t)    has the normalization  (2.26). 

From thermodynamics it  is well known that  the entropy of an isolated 
system increases,  or in thermodynamic equilibrium,  is a constant.      If 
fl(pi,qiit)    satisfies  Boltzmann's kinetic equation  [4], then the Boltzmann 
entropy increases, but  it is constant in the case of statistical equilibrium. 
However, the Boltzmann definition for the entropy  (2.28)  gives the correct 
expression for the entropy as a thermodynamic function in equilibrium states 
only for an ideal  gas.      Therefore S^ cannot be identified with the entropy 
of the system, and  in the general case the Boltzmann definition of entropy 
is unsuitable. 

The Gibbs definition of entropy (2.24)  is notably better than the 
Boltzmann definition,  since in the equilibrium case it gives the correct 
expression for entropy as a thermodynamic function  (see §§  3 and 5). 

For an equilibrium situation there is no problem with the Gibbs defini- 
tion of entropy.       It  is a different matter if f is time dependent.      In that 
case the Gibbs definition of entropy has an essential defect and must be made 
more accurate (see Chapter IV). 

It is easily seen that  for an isolated system the Gibbs entropy is time 
independent and therefore cannot increase. 

In fact,  let the distribution function equal  f(po,qo,0)  at t=Ü and 
^(Pi^it)  at ti,ne t» where (p,q)   lies on the phase trajectory passing through 
(pO,qO) and defined by the equations of motion.    By the Liouville theorem 
(2.7) we have 

f(pO,qO,0)   =   f(p,q,t). 
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The Gibbs entropy at time t is equal to 

- j /(/>. q, t)\u\{p, q, t) = 
• A ! If'' 

- -J HA A OllnfOC, 

since by the Liouville theorem (2.2) 
dpdq = dp°dq°. 

Thus, the Gibbs entropy (2.24) for an isolated system does not change 
with time. 

Gibbs tried to show that the entropy of an isolated system can in some 
sense increase. P. and T. Ehrenfest [5,6] showed in what sense this is 
possible. They proposed to "coarsen" the Gibbs definition of entropy and 
in place of the actual distribution function f(p,q,t), which might be called 
the fine-structure distribution density, to introduce the roughened coarse-
structure density"1 

- i f . 
I (Pt q, t) — | lip, q, i) dp clq, (2.30) 

•where the integration is carried out over a small, fixed cell u in phase 
space. From a physical point of view the operation of coarse-structure 
averaging (2.30) corresponds to the fact that observed quantities are always 
averages over some region. Quantum mechanics establishes a lower bound for 
the cell b>; it cannot be smaller than h3N. 

The Gibbs entropy constructed using the coarsened density is, generally 
speaking, not constant in time and can increase; this is true for arbitrarily 
small coarsenings. 

Let us compare the values of the Gibbs entropy calculated for the coarse-
structure distribution function (2.30) at times t and t=0; we assume that 
initially the actual and coarsened densities are the same: 

1 In Russian literature the terms "coarse grained" and "fine grained" are 
sometimes used; such terminology does not seem very felicitous to us. 
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\ 

f(P0.q0,ü) * ?(Po.qo.0). (2.31) 

We have 

5,-5,= - J/(p. q,t)\ni{f>,q, t) dV + 

-fJ/(/>W.O) In/(/.". 7". 0)jro = 

= - J {Up, Q. 01»)(P. q, t)-f(P, q, Oln/(p. q, t)]dV (2.31a) 

(we have used the Liouville theorem and removed the tilde from the distribu- 
tion function which is not in the argument of a logarithm;  this can always be 
done inside an integral). 

For any two normalized distribution functions f and f", defined on the 
same phase space, there exists the inequality 

l/la(-|rWr>0. (2.32) 

The equality holds only if f^f'.      Using (2,32)  we obtain 

St ? Sy. 

The inequality (2.32) is a consequence of the obvious inequality 

lni-f)>l-|   (,'X), />()), (2.32a) 

the equality holding only for f»f'.  Inequality (2.32a) is easily verified 
by noting that In x - 1 + 1/x is a positive function, equal to zero only for 
x^l, and then putting x=f/f'. 

We obtain inequality (2.32) by multiplying (2.32a) by f and integrating 
over all phase space.  Thus, 
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/iu(f)i/r>J/(i-^./r^o. 

which was to be shown. 

Let us suppose that f(po,qo,0)  does not correspond to an ensemble in 
statistical equilibrium;  then at time t 

f(P,q,t)  t f(p,q,t), (2.33) 

because although f(p,q»t)  does not change along phases trajectories, phase 
points will be interchanged between the given cell ui and other cells, and, 
in general, the vjmber of points entering and leaving w    will not be identi- 
cal.      A "mixing" of phase points among the phase cells will take place. 
Using  (2.33) we obtain 

St > S0, (2.34) 

i.e., the entropy for the coarse-structure distribution function  can increase. 

The introduction of the coarse-structure averaging does not, however, 
resolve the question of the increase of the entropy;   it must be verified that 
mixing in fact takes place.       The smaller the scale of coarseness, the smaller 
becomes the growth of the entropy St, and in the limit w+0 it approaches zero. 
But the growth of the physical entropy cannot depend on the scale of the 
coarseness. 

In answer to this objection we note that in applying the operation of 
coarse-structure averaging, we are effecting two limiting processes: the 
usual  limiting transition of statistical mechanics V-M»  (N/V = const.)  and the 
approach to zero of the cell w.      There is no basis   for supposing that the 
result will not depend on the order in which the limits are taken,    bhrenfest's 
coarsening of the distribution function can be effective only if the limit 
V-H» is taken first and then the limit arK), and if there are no discontinuities 
in the limiting transitions. 

It is interesting to recall that Gibbs,  in constructing the analogy 
between the approach of a system toward equilibrium and mixing in an incom- 
pressible liquid,  essentially introduced the procedure for the coarsening of 
the density of the distribution and noted the absence of discontinuities in 
the limiting transitions  (see  [1],  chapter 12, pages   143-147). 
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Ehrenfest's coarse-structure averaging thus does not solve the problems 
of the increase of entropy, but the idea of averaging the distribution 
functions is clearly of interest. 

The smoothing of the distribution functions is possible not only in phase 
space, but also in time. Actually, all observed quantities are averages 
taken over a time interval T of the order of the observation time. Therefore, 
the distribution function can be averaged over a time interval T 

i u YJ')~ Y J M/> (•'+>:). ;/(/+/,))<//; (2.35) 

The dynamical variables can be averaged in an analogous way. 

This smoothing of the distribution functions with respect to time has 
been widely used by Kirkwood [7], and it is evidently more effective than 
Ehrenfest's coarse-structure smoothing. It is analogous to the averaging of 
the equations of motion in nonlinear mechanics, which smoothes the rapid 
oscillations about the mean trajectory and helps to define the average motion 
[8]. There is in general a deep relationship between the methods of non-
linear mechanics and statistical mechanics. A statistical system tends 
toward a state of statistical equilibrium regardless of the initial condi-
tions, which are rapidly "forgotten"; this is similar to the approach of a 
nonlinear system toward a limit cycle. The methods of eliminating secular 
terms in constructing kinetic equations are the same as those used to solve 
the equations of nonlinear mechanics [9]. 

There is another possible method for time smoothing the distribution 
functions: 

0 
'A/1. /• 

f(l>,q,t) = e J e"' HpV + 'i). <7(' + 'i))dtu (2.36) 

This method is applied to wave functions in collision theory in formulating 
the boundary conditions to select retarded solutions of the Schroedinger 
equation [10] (see Appendixes I and III). Later (Chapter IV) we shall use 
exactly this method of "causal" smoothing of dynamical variables, and we 
shall find that it is most convenient. It is necessary to take the limit 
c-*-0 after the usual limiting transition of statistical mechanics V-H» 
(V/N = const.). 

§ 3. Gibbs Statistic.il Ensembles 

In order to construct statistical equilibrium ensembles it must be 
decided on which integrals of motion the distribution function depends and 
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what form it has for the various external conditions which macroscopically 
define the ensemble.      This problem was solved by Gibbs,  although rigorous 
justification of the resulting distributions is a complicated problem which 
up to the present time is not completely solved.      It is not even clear to 
what extent a rigorous justification is possible. 

For nonequilibrium states the construction of statistical ensembles is 
significantly more complicated, and tentative progress has been made in this 
direction only in the last few years.      Here the more urgent problem is the 
actual construction of the ensembles,  rather than their rigorous formal justi- 
fication.      We shall consider these questions in Chapters  III and IV. 

According to Gibbs the distribution function f in states of statistical 
equilibrium depends only on the single valued, additive integrals of motion. 

The additive property of the integrals of motion means that the integrals 
of motion of the total system are obtained simply by adding the integrals of 
motion of the subsystems. 

| Three such integrals of motion are known:    the energy H, the total 
| momentum P, and the total angular momentum M.      Consequently, 

f =  f(lI,P,M). (3.1) 

Neglecting the interaction with the container walls, P and M are exactly 
additive.      H is additive to within a factor of the energy surface on    the 
interface between subsystems; this energy surface arises  from the interaction 
between particles in the different subsystems. 

If the total number N of particles in each system in the ensemble is not 
specified, then N must be regarded as a fourth integral of motion,  as N does 
not change with the evolution of the systems.      Thus,  in this case 

f = f(ll,N,P,M). (3.1a) 

The integral of motion M must be taken into account if the system is 
rotating as a whole with constant angular velocity, and the integral of 
motion P must be considered for superconducting systems in quantum statistics. 

The number of essential integrals of motion is decreased if the system 
is analyzed in a motionless container.  Then the total momentum P and 
angular momentum M are zero in states of statistical equilibrium, and the 
additive integrals of motion P and M need not be considered.  Thus, for 
systems with a fixed number of particles 

f = f(H) (3.2) 

- 22 



or if the number of particles is not fixed 

f = f(H,N). (3.2a) 

The function f also depends on the macroscopic parameters defining the ensem-
ble; these parameters are considered to be constant for all copies of the 
system in the ensemble. Examples are the total volume and the total number 
of particles N (for systems in which this parameter is fixed). 

3.1 The Microcanonical Distribution, 

Let us consider a statistical ensemble of closed, energetically isolated 
systems in a constant volume V, i.e., an ensemble of systems with constant 
particle number N in an adiabatic jacket and having identical energy E to 
within an accuracy AE<<E. Following Gibbs, we assume that the distribution 
function f(p,q) for such an ensemble is constant within a layer AE and equal 
to zero outside this layer: 

0\ ' f1 - ' ' • <! ' for £ <5 H (/'. </)<£" + A£, 
i. 0 outside this layer 1 " ' 

Such a distribution is called microcanonical, and the corresponding ensemble 
is called the microcanonical ensemble. The macroscopic state of systems in 
such an ensemble is defined by three extensive parameters E, V, N. The 
constant n(E,N,V), called the statistical weight, is defined from the normal-
ization condition (1.5a) and has the meaning of a dimensionless phase volume 
- the number of states in the layer AE: 

£>(£, N, V) = J±ZT J dP d<!' 
E<H(P.q)<E+*E (3.3a) 

In classical mechanics the limit AE-*0 can be taken and f can be written 
in the form 

f'=Q~i(E,N,V)(>(U(p,q)-E), f- ... 
where 

9.{E, N, V)= | 6 (// (p, q) - E) dp do, 

Q~l(E, A', l')-[Q(£, .V, V)] , (3.4a) 
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(In formulas (3.3) and (3.4a) the number of states in the layer AE and the 
density of states on the constant-energy surface are denoted by the same 
symbol fl(E,N,V).) 

A similar limiting transition in quantum mechanics is forbidden by the 
uncertainty relation between observation time t and energy, AE't̂ ft; the 
approach of AE toward zero would correspond to an infinite observation time. 
Therefore we shall make use of the representation (3.3) for f and only 
occasionally use (3.4) in order to simplify calculations. 

Let us calculate the entropy (2.24) for the microcanonical distribution: 

•S — (*1> — - '.3.V | tip. Q) h"« f (P> q)cipi'tq. (3.5) 
A ! U * 

Substituting into this expression the expression (3.3) and using (3.3a), we 
obtain 

S(E,N,V) « lnft(E,N,V). (3.5a) 

Thus, for the microcanonical ensemble the entropy is equal to the loga-
rithm of the statistical weight (3.3a). It can be shown that the entropy 
defined in this way indeed has the properties of the thermodynamic entropy. 
We shall return to this question in § 5. 

The hypothesis that the microcanonical ensemble actually represents the 
macroscopic state of a closed, energetically-isolated system, i.e., that 
microcanonical averages coincide with the observed values of physical quanti-
ties, is one of the basic postulates of statistical mechanics. 

The observed values of physical quantities A(p,q) are always average 
values over some interval of observation time T. The problem of justifying 
the replacement of time averages with microcanonical averages it the so-called 
ergodic problem. The problem is to demonstrate for closed, energetically 
isolated systems the equality 

i 1 (,)(/), <7 (/) )dt — 
N! it 3.Y 

/ (p, </) A (p, q) dp dq, (3.6) 

where f is the microcanonical distribution. This problem is very complex, 
and, despite the many important results which have been obtained, it is still 
not resolved. Therefore, we shall not consider the problem, and we refer the 
reader to the literature [6, 11, 12]. 
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The microcanonical distribution is sometimes useful for general investi-
gations, because of all the Gibbs distributions it is the one most directly 
connected with mechanics (all the parameters E,N,V have meaning in mechanics), 
but this distribution is not convenient for practical application to specific 
systems, because the calculation of n(E,N,V) is difficult. 

It is much more convenient to consider systems in thermal contact with 
their surroundings, rather than to consider energetically isolated systems. 

3.2 The Gibbs Canonical Distribution, 

Let us now consider closed systems in thermal contact with a thermostat. 
We shall call a thermostat any system with a large number of degrees of free-
dom which is capable of exchanging energy with a given system and which is 
sufficiently large such that its state is practically unchanged by this 
exchange. 

A statistical ensemble of systems with a fixed number of particles N and 
volume V in contact with a thermostat is called a Gibbs canonical ensemble. 

Such an ensemble is described by the Gibbs canonical distribution 

/</>, i{)~Q "(0, V, A') exp (— (3.7) 

where 0 is the modulus of the canonical distribution, which plays the role of 
the temperature, as will be shown below, and Q(6,V,N) is the statistical 
integral defined by the normalization condition (1.5a): 

0 ;o, l\ A i -- fexp/'-itii^dr. Where = 
11 / A'! /«3V (3.8) 

The statistical integral (3.8), constructed on the basis of the Gibbs 
canonical distribution, is a function of the macroscopic parameters e,V,N 
which define the ensemble. Two of them, V and N, are extensive parameters, 
i.e., they are proportional to V when V/N = const., but the third, e, is 
intensive, i.e., it has a finite value as V-*-, V/N = const. The statistical 
integral Q(0,V,N) is a fundamental quantity which determines the thermodynamic 
properties of the system. 

The logarithm of the statistical integral (3.8) defines the free energy 
of the system: 

F(0,V,N) = -0 In Q(0,V,N). (3.8a) 

- 25 -



For real systems in which N is very large we do not need the exact value 
of the function F(0,V,N); it is sufficient to know the thermodynamic limit 

i.e., the free energy per particle as the number of particles increases 
without limit for fixed density. This function defines all thermodynamic 
properties of the system. 

Proof of the existence of the thermodynamic limit for the canonical 
ensemble is given by Van Hove [13] and N. N. Bogolyubov and B. I. Khatset [34] 
under fairly mild restrictions on the interaction potential between particles. 
Their proof was further refined for a large ensemble by Lee and Yang [14], 
Ruelle [15], R. L. Dobrushin [16] and others [17 a,b,c,d]. These works can 
be regarded as the start of a new branch of mathematical physics - mathemati-
cal statistical physics. 

Differentiating (3.8) with respect to 6 and taking (2.19) into account, 
we obtain the expression for the mean energy: 

(here relations (3.8a) and (3.8b) were used). 

The relations (3.8b) and (3.8c) have the form of thermodynamic equali-
ties, showing that F and S are indeed the free energy and entropy. We obtain 
a more conplete thermodynamic analogy if we consider the canonical ensemble 
with a slowly changing volume (see section 5.4). 

Fluctuations can also be calculated using the canonical distribution 
(3.7). Differentiating (3.8) twice with respect to 1/6 and using (3.8b), 
we find the expression for energy fluctuations in the Gibbs ensemble: 

(3.8b) 

The entropy (2.24) of the Gibbs canonical ensemble is 

s~(n>- - j —o:--= - (•§£),. (3.8c) 

(.IF) - </;>'-• - «/; - <«»*>» £jS$ - - o'cv, (3,8d) 
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where Cv is the specific heat at constant volume. 

The quantity <H> is proportional to the number of particles N, while e 
is independent of N; thus, for large systems the relative mean square energy 
fluctuations are proportional to 1/N, i.e., they are very small. Therefore, 
the canonical and microcanonical ensembles differ very little from each 
other. (More detail on the thermodynamic equivalence of ensembles is eiven 
in S 13.) 

We have assumed until now that the system is not moving as a whole, and 
we have considered a single integral of the motion - the total energy H. If 
in addition to the energy there exist other additive integrals of the motion 

the Gibbs distribution has the form 

He- «>-«->. NJ. (3-9) 
v 1 <4 k s J 

where are the new thermodynamic parameters. We shall not indicate expli-
citly the dependence of Q on V and N. 

In the particular case in which the total momentum P and the total angu-
lar momentum M are considered, the distribution (3.9) has the form 

/ '/>, q) - Q~' exp | - [// (p, q) - v • P (p) - to • M (p, <•/)) \, (3.9a) 

where v is the velocity of the system as a whole, and u is its rotational 
angular velocity. 

It is convenient to put expression (3.9) in a more symmetric form: 

•/)- • x!> . ... Ts)~ V . 'k?k(p, <l)\> 
t o-.H-Cs i (3.10) 

where the notation 

•A (/•-•, q) - a q), v 0 « I/O, «i» .7*,.) = In Q. 
(3.10a) 

has been introduced. 
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The thermodynamic potential *(Sr
0,...,^)  is called the Mas'ye-Planck 

therniodynamic function. 

For distribution functions in the form (3.1U)  the thermodynamic equalities 
and expressions for the fluctuations assume the especially simple form: 

<Mi ,W 

S = a. + N J-k (A) - ^ - 1 ^ -JA - 

/-(D 

(3.10b) 

where S is the entropy. 

3.3      Gibbs Theorem on the Canonical  Distribution. 

The postulates concerning the microcanonical distribution (3.3)  and 
those concerning the canonical distribution  (3.7)  are not independent.      We 
shall now prove a theorem of Gibbs on the canonical distribution according to 
which a small part of a microcanonical ensemble of systems with many degrees 
of freedom is distributed canonically. 

The combination of the given system and the thermostat, which  is supposed 
to be significantly larger than the given system (with respect to the number 
of degrees of freedom), can always be regarded as one large, closed,  isolated 
system.       If a microcanonical distribution is assumed for this total system, 
then it follows from the Gibbs theorem that the system in the thermostat has 
a canonical  distribution. 

Let us turn now to a proof of the theorem of Gibbs. 

Let a large system with Hamiltonian li consist of two subsystems  (1)   and 
(2) with llarailtonians Hi(p,q)  and H2(p',q'), where p,q and p',q' are the sets 
of coordinates and momenta of the subsystems.      The interaction between the 
subsystems will be considered negligible;  then 

Hl(p,q)   + n2(p-,q'). (3.11) 

We suppose that subsystem (1)  is significantly smaller than subsystem (2), 
which we shall call the thermostat.      We assume further that the total system 
is distributed microcanonically.      By  (3.3)  the distribution function of the 

-  28  - 



total system has the form 

,4n the ,     -i    411   nie 
fip,ri:i>',<n~\"   (^  l«ycr   h^il^H + A^ 

1     0   outside this  layer U.i^J 

where the statistical weight n    (H) may also depend on the total particle 
number N and on the volume V, but for brevity we shall omit such dependence. 

In order to obtain the distribution function for the subsystem (1),  i.e., 
for the small subsystem, the total distribution function must be integrated 
over all variables of the second subsystem (the thermostat), taking into 
account the normalization factors introduced in (1.5a), i.e.. 

M:'.'/) =■--7: ,77 j M;', T, P', ./'M/<V = 

^'^TTW I dp'c!q'' 
/;-//,' /.■.'■ ii-H +5K 

where the integration is carried out over variables p',q' falling in the  layer 

Taking into account the definition of statistical weight  (3.3a), we 
notice that the distribution function of the first subsystem is equal to the 
ratio of the statistical weight of the second subsystem with energy E-Hi to 
the statistical weight of the entire system: 

-   //;   ,,■.,  0 1  j (;■■. .,) ■'•----,,   - "^—, (3.13) 

To calculate f^ we must obtain the asymptotic limit of the ratio of the 
statistical weights of the thermostat and the entire system, with the assump- 
tion that the thermostat is large. 

Let us first give a very simple but nonrigorous derivation of the canon- 
ical distribution (3.7)  from equation (3.13). 
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We introduce the entropy of the thermostat S2(E) and the entropy of the 
entire system S(E) using the relation (3.5a): 

S2(E) = ln«2(E), S(E) = lnn(E) (3.14) 

and rewrite (3.13) in the form 

flCP.q) • exp {S2(E-H1(p.q))-S(E)}. 

Because of the small size of subsystem (1) in comparison with the thermostat 
(Hj«E), the function S2(E-HJ) can be expanded in a series in Hi, keeping only 
the first two terms: 

S3 (!: - 11, < p, c.)) SS S3 (E) - H //, (p, q). 
(3.14a) 

Using this expansion, we write f̂  in the form 

/: (/>. v) » Q~l exp ( - , (3.15) 

where Q is the normalizing term (3.8), i.e., the statistical integral, and 
the quantity 

-L - ill^ 'Hi " in(Ht 
'•> ' ol: ~ "dt. (3.16) 

plays the role of the inverse temperature. Thus, a system in the thermostat 
has a canonical distribution, which was to be shown. 

In order to elucidate the character of the asymptotic approach of (3.13) 
to the Gibbs distribution upon increasing the size of the thermostat, we 
present a beautiful and more rigorous derivation of the Gibbs theorem due to 
Yu. A. Krutkov [18]. 
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Let us write the expression (3,13) for fj in the form 

/I(P. ^^ wi£)    ' (3.17) 

^m—TT'     «^--AT (3.18) 

are the densities of states of the thermostat and of the total system 
respectively. 

Since Hi(p,q)  and H2(p',q') depend only on variables referring to the 
different subsystems, the statistical weight of the total system can be put 
into the form of successive integrations first over the coordinates of the 
second subsystem with fixed Ui(p,q)=Iii,  and then over the coordinates of the 
first subsystem with O^E^E,  i.e., 

o(£) = —~7 I dpcUiX 

dp' dq'. 
(3.18a) 

We take into account separately the identity of particles in the thermo- 
stat and the system, because we do not allow the possibility of exchange of 
particles between them.      It follows from (3.18a)  that the density of states 
of the total system u is related to the densities of states of the first and 
second subsystems u^ and U2 by a convolution integral: 

0 <-   //;   ! 

V 

■i..;)-:;, < E 

" .v. hiS'                       J 
E-E,< II: W. Q'l  -' E-l:t-M: 

CD (/:) = j ü, (£ - E2) w, (/:\,) dE,. (3.19) 

The relationship (3.19) can be considered as an integral equation defining 
ü)2(E).  We solve it using Laplace transforms.  Multiplying (3.19) by e~XE, 
integrating over E from zero to infinity, and going over to the variables 
Ei  = E-E2, E2 we obtain 

Q(X) = Q1(X)Q2(X), (3.20) 
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where 
oo 

Q(X) = J" «-*•«• co (£)</£, 
0 
oo 

QuO.) = J e-^ok(E)dE (k = l, 2) (3#21) 

are the Laplace transforms of the densities of states (3*18). We find the 
densities of states by inverting the Laplace transformations (3.21): 

a 4 i •» 

<0* (£) = -J-' I cJ-/; Qfc (/-) Clk (ft =1,2), 
a-,» (3.22) 
n I / ;e 

(/:') ~ j Q (/.) J/., 
a-i w 

where a>0 is a real positive constant. 

Let us now assume that the second subsystem (the thermostat) consists of 
n-1 identical weakly interacting parts, each of which is identical with the 
first subsystem. Then from (3.20) 

Q(X) » [Qi(X)]n, Q2(X) = [Qi(X)]n_1. (3.23) 

and the solutions of (3.22) have the form 

« , ( / • ) ' I K 
a— t z* 

a -i- i 
I = iFT .! c 

a — I 

:-qQi (}.))" dk. (3.24) 

We obtain an asymptotic estimate of expressions (3.24) for the densities 
of states as n-x» by the method of steepest descents (or saddle point method) 
[19], We write the second integral in (3.24) in the form 
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a + 1 co 

(.»(£) = J c**wdh, (3.25) 

where the function 

X(«.)-J4+I..Q,(1). (3.25a) 

was introduced. The function X(X) is assumed to be analytic in the region 
ReX>0 in the complex X plane. From the properties of analytic functions the 
function X(X) can have neither a maximum nor a minimum; its extremum corres-
ponds to a saddle point. A saddle point X} is defined from the conditions 

/ J 
V I/, t --- -• — -- !!. 
'• it t j , </.;l (3.26) 

(3.26a) 

where Xj is the single real root of equation (3.26). We assume that the 
conditions for applicability of the saddle-point method are fulfilled. We 
shall verify below that the condition (3.26a) is satisfied. 

We introduce a new real variable £, 

X * Xi • it. 

and expand X(X) at the saddle point in a Taylor series, keeping quadratic 
terms in £: 

thus, 

«<£> -s- J «P {"*<*.) - JS9hl }1*'' -k e""U VITnfe 
and f i na l l y 

<o (£) - e™ [Q, (?.,)]" Y^n-^X^x') ' (3.27) 
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Completely analogously, we obtain for «2 

o). (Jj) KM^r' 1 inn 
_1_ 

i/.,) (3.27a) 

Substituting (3.27) and (3.27a) into (3.17), we find 

fl(P,q) = Qi"1(X1)exp(-X1ll1(p,q)), (3.28) 

which is the same as the canonical distribution (3.7) with the modulus 

e = (3.29) 

The condition (3.2b) at the saddle point is the same as the thermodynamic 
equality (3.8b), and the inequality (3.26a) implies that energy fluctuations 
are positive, as is easily seen using (5.8d), and this is also satisfied. 
Thus, the Gibbs theorem is proved. 

In the derivation of the canonical distribution presented above the 
system and the thermostat were considered to be identical in character.  This 
assumption need not be made.  The thermostat and the system can be described 
by different llamiltonians, provided that the thermostat is sufficiently large 
and that its interaction with the system is sufficiently weak.  That the 
Gibbs theorem remains valid in this case follows from a simple investigation 
(see (3.13) - (3.1b) ). 

The Gibbs theorem can be shown in other ways, for example by the method 
of Khinchin [20,21], which is based on an application of the central limit 
theorem of probability theory. 

Still another approach is possible in constructing distribution func- 
tions for statistical ensembles [22,23]; the approach is based on information 
theory, and we shall discuss it later in § 4. 

3.4  The Gibbs Grand Canonical Distribution. 

Harlier we considered closed systems in contact with a thermostat.  A 
more general type of contact of a system with its surroundings is also possi- 
ble.  We consider an open system in a thermostat; the system can exchange 
both energy and particles with its surroundings.  For example, there might 
be permeable walls between t'ie system anJ the reservoir.  Then the energy 
and the number of particles .n the s/stun are not constant, but the volume is 
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assumed to be specified. A statistical ensemble corresponding to a collec-
tion of such systems in thermal and material contact with their surroundings 
is called the Gibbs grand canonical ensemble. 

Such an ensemble is described by the Gibbs grand canonical distribution 

fx (/'. q) - Q~1 (0, Si, V) cxp { - -//,p- \, 
* O ) (3.30) 

where p is the chemical potential, Q(6,y,V) is the statistical integral for 
the grand ensemble, defined by the normalization condition 

V 
r >o 

1 | . 
Yn,7* J 'v q) "Pi <!ti1 • • • c!p-x v -1, (3.30a) 

which is the natural generalization of the normalization (1.5a) for a system 
with a variable particle number. Thus, 

Qi0. b. i 'H X J oxp ( - )f/pVi 

where 
(3.31) 

The statistical integral for the grand canonical ensemble is a function of 
the macroscopic parameters 0, y, V defining the ensemble. One of them, V, 
is an extensive parameter, and two of them, e and u, are intensive. We have 
denoted the statistical integral for the grand ensemble by the same letter Q 
as was used for the statistical integral of the canonical ensemble, but no 
confusion is possible, as they are functions of different variables.1 

Using (3.30) the average value of any dynamical variable can be found: 

J A^p' Dfs(p. q)dr». ,, 
AT>O (3.32) 

The statistical integral for the grand ensemble is sometimes denoted by 
H(6,u,V). We shall use the same designation Q for the statistical integrals 
(and sums) of all the Gibbs ensembles, distinguishing by the arguments to 
which ensemble we refer. 
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The logarithm of the statistical integral (3.31) defines the thermooy* 
namic potential fl(e,vi,V)  for systems with variable particle number: 

n(e.u,v) » -e in Q(e,w,v). (3.33) 

The existence of the thermodynamic limit 

lim     ^^ 
\,(\)      11,1,St 

was demonstrated by Lee and Yang  [14]  for restricted forms of the interaction 
potential (see also [15-17d]). 

Differentiating (3.31) with respect to 6 and u we obtain expressions for 
the mean energy and mean particle number: 

(-V)-0-ilnQ(0.MoHf)^. ' (3,33a) 

The average of the negative of the logarithm of the distribution function 
(3.30) is the entropy of the Gibbs grand canonical ensemble: 

^/.■A_._ V f/ ,i;f .r.^^r^l/. \ 1)- - 1 I /.vliW. ^.v --—-—- ' - U-!;.        (3.34) 

(the relations (3.33)  and (3.33a) have been used). 

Using the Gibbs grand canonical distribution the fluctuations in energy 
and particle number in the Gibbs grand ensemble can be calculated.      Differen- 
tiating (3.31) twice with respect to B and u, we find 

(.VJ)-vV)J -   tl '',,;-, 

((//-U.V)/-(//-|i.\y-0 ''-1;//)   \tW'}). (3.35) 
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The relative snallness of these fluctuations shows that the grand canon-
ical ensemble differs very little from the canonical and microcanonical ensem-
bles, but the grand ensemble is much more convenient for calculations, because 
the constancy of particle number and the constancy of energy do not have to 
be taken into account as auxiliary conditions. 

For systems with variable particle number there exists also a theorem, 
due to Gibbs, according to which a small part of a microcanonical ensemble 
of systems with many degrees of freedom has a grand canonical distribution if 
the particle number is not constant for this part of the ensemble. 

The combination of the given system and the thermostat, which is also a 
particle reservoir, can be regarded as one large, closed, isolated system. 
If a microcanonical distribution is assumed for the total system, then from 
the Gibbs theorem it follows that the open system in the thermostat has a 
Gibbs grand canonical distribution. 

Let the large system with Hamiltonian H and particle number N consist of 
two subsystems (1) and (2) with Hamiltonians Hj and H2 and with particle num-
bers Nj and N2. We neglect the interaction between the subsystems; then 

H = N = NJ+N2. 

We assume that the subsystem (1) is significantly smaller than subsystem 
(2), which we shall call, as before, the thermostat. 

Let us assume that the total system has a microcanonical distribution: 

, = I 12~1 (£, AO £<//<£ + 
v 1 0 outside this layer. (3.36) 

We find the distribution function of subsystem (1) by integrating f over the 
variables of the second subsystem: 

/.V, - I /.v+vA-
+A* (3.37) 

where 
' i ' , r 'ip'i <tq[ • • • 

,V'~ A'v! hSN' • 

Using (3.36) we find that the distribution function of the first subsystem is 
equal to the ratio of the statistical weight of the second subsystem with E-Hj 
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and N-N}, to the statistical weight of the total system: 

, , „ Qj (£ — //, (/>, q), N — Mi) 
(/) -- rnCvj * (3.38) 

Using (3.5a) we introduce the entropy of the thermostat S2 and of the 
total system S 

S-, (!:. X) =•• !n <>, (/;, A/), 5{£, A') ̂  o (£_ V) 

and write (3.38) in the form 
/.'.'i (p> '/)=" sxp [-So (£ -- //. (pt A — .Vt) — (£, A')}-

Taking into account the smallness of the first subsystem in comparison to 
the thermostat (Hi<<E, Ni<<N), we expand the function S2(E-HI,N-NI) in a 
series in Hi and Nj, keeping only two terms: 

S2 (E - //,. /V - JV.) ss 5, (E, N) 

Making use of this expansion, we write fN in the form 

/.V (P, q) = Qi"' cxp | - "'*(p' qQ—— J-. 
where (3.39) 

1 OS; |i _ OS, 
¥ ~ ~OE ' T os • (3.39a) 

i.e., 6 is the temperature, and u is the chemical potential. 

A more rigorous proof of the Gibbs theorem can be given for the grand 
canonical ensemble [24]; the proof is analogous to the proof given in the 
preceding section for the canonical ensemble. Instead of the integral rela-
tionship (3.19) we have a similar expression in which besides an integration 
over the energy there is a summation over the number of particles N, where N 
is a variable which takes on only positive, integer values. The problem is 
thus reduced to the solution of a convolution-type integral equation in a 
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continuous and a discrete variable and to obtaining an asymptotic estimate of 
the resulting solution. We shall not carry out the derivation here; we refer 
the interested reader to the work of S, Shubin [24], Later in S 9 of Chapter 
II we shall carry out a similar proof of the Gibbs theorem for the case of 
quantum statistics. 

3.5 The Gibbs Distribution for an Isobaric-Isothermal Ensemble. 

Until now we have considered the volume of the systems as fixed. We 
shall now allow it to vary, but we shall take pressure and particle number as 
fixed. This can be realized by using a movable piston to maintain the con-
stant pressure. 

An ensemble of systems with constant particle number and fixed pressure 
in contact with a thermostat is called a Gibbs isobaric-isothermal ensemble. 
We shall discuss briefly the properties of this ensemble. 

The system together with the surroundings can be considered as one large, 
closed system with constant energy and volume. Let ^1,^2 be tlie energies of 
the first and second subsystems, i.e., the given system and the thermostat, 
and let Vj,V2 be their volumes; then 

E = Ex + £2> V - K, + V, (£, < V, « V,) (3.40) 

are considered constant. The microcanonical distribution can be applied to 
the total system, and then the distribution function of the first subsystem 
can be found by integrating over the coordinates of the particles in the 
second subsystem. 

Repeating the arguments of section 3.3, we obtain the distribution func-
tion of the first subsystem: 

/! (/>. (!) •---1>, </:-//,. I' - 1', 1 
1>(£. I') « exp {S3 (/• - H„ I' - I',) - 5 (/f, V)}. (3.41) 

Expanding S2 in a series and using the fact that the first subsystem is small, 
we obtain 

M/> u)~Q ' tO, p , .V) exp | II1 (/', '/) r- />'/ 
0 4. (3.42) 
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where 

1 OSt(E.V) !> dSjlli.V) 
"if" Ti7; ' "o ~ OV (3.42a) 

The parameter p plays the role of the pressure, as will be verified below. 

Thus, we have shown that the Gibbs distribution for an isobaric-isothermal 
ensemble has the form 

/.•(/>. (I) - Q~' (0. P. A') c.\p { - — ( 3 . 4 3 ) 

where we have omitted the index 1. 

Here Q(6,p,N) is the statistical integral for an isobaric ensemble, 
defined from the normalization condition, which can be taken to be, for 
example 

ji-Ap. q)d\.\lV — 1; (3.43a) 
thus, , 

Q(0. p, N) - j cxp | - - 'n' />l [dI'dV. (3.43b) 

With this normalization fy has the dimension of inverse volume. A dimension-
less normalization of fv is also possible. 

The statistical integral for the isobaric-isothermal ensemble is a 
function of the macroscopic parameters 6, p, N defining the ensemble. Two 
of these parameters, 0 and p, are intensive, and one, N, is extensive. One 
should not confuse Q(0,p,N) with Q(9,V,N) and Q(0,u,V) which were introduced 
earlier. 

Using (3.43) the mean value of any dynamical variable A(p,q) can be 
calculated: 

(.1)= A(p, </)/\* (/», <i)d\*dV. (3.44) 
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The logarithm of the statistical integral (3.43b) defines the thermo-
dynamic potential $(6,p»N) for an isobaric-isothermal system, or simply the 
thermodynamic potential 

<i> iU, n. V) — — 0 In Q (0, n, .V). (3.45) 

Differentiating (3.43b) with respect to 6 and p, we obtain the expressions 
for the average energy and average volume: 

00-- O^lnQW, 
(3.46) 

The average of the negative of the logarithm of the distribution function 
(3.43) is the entropy of the isobaric-isothermal Gibbs ensemble: 

S — J I v t * d V - + - ( - ^ v. (3.47) 

The relations (3.46), (3.47) show that • plays the role of the thermo-
dynamic potential and the parameter p is the pressure. The second derivative 
of • with respect to p defines the volume fluctuations: 

( V I - O T - l l S " - 0 T T • (3.48) 

Sometimes a generalized Gibbs ensemble is introduced for systems in the 
thermostat with variable volume and variable particle number [25,26]. Then 
the ensemble is characterized by three intensive parameters 0,y,p, i.e.. 

1 The function $(e,p,N) should not be confused with the Mas'ye-Planck function 
(3.10a), as they depend on different variables. 
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the temperature, the chemical potential, and the pressure. This is inconve-
nient, because the parameters 0, p, and p are not independent, but are related 
by p*p(p,9)> Therefore we shall not use this generalized ensemble, which has 
no advantages over the other ensembles. To describe an ensemble of systems 
it is always convenient to have at least one extensive parameter, as was the 
case in the Gibbs ensembles introduced previously. 

The various Gibbs ensembles are equivalent in a thermodynamic respect, 
i.e., thermodynamic functions calculated with the different ensembles are the 
same for large systems in the limit V-»«, N-»», V/N»const. Therefore the 
question of which ensemble to use is a question of practical convenience only 
As we have said already the most convenient is the Gibbs grand canonical 
ensemble, because with this ensemble no additional conditions need be consi-
dered. For the calculation of fluctuations the various Gibbs ensembles are 
not equivalent, and lead generally speaking to different results. The rea-
son for the thermodynamic equivalence of the statistical ensembles is the 
small size of the fluctuations in energy, particle number, and volume (3.8d), 
(3.35), (3.48). A more rigorous proof of the thermodynamic equivalence of 
the statistical ensembles can be given by comparing the thermodynamic func-
tions calculated with the different ensembles [26,27]. We shall return to 
this question in S 13. 

S 4. Connection Between Gibbs Distributions and the Information Entropy 
Maximum 

The concept of entropy in statistical mechanics is intimately connected 
with information theory. We discuss this connection in the present paragraph 

4.1. Information Entropy. 

The information entropy or simply the entropy is a measure of the uncer-
tainty in the information corresponding to the statistical distribution [22, 
23,28,29]. 

Let pfc be the discrete probability distribution of events. The quantity 

II - - ^ pk In pk, 

where (4*1) 
n S/»»-!• 

(4.2) 

is called the information entropy. It is also called the Shannon entropy. 

In fact, the quantity H is equal to 0 if any of the p̂  is equal to one 
and the remaining p̂  are equal to 0, i.e., when the result of the experiment 
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can be predicted with certainty and there is no uncertainty in the information. 
The quantity H takes on its largest value when all of the pu are mutually 
equal, i.e., pfc-l/n. It is clear that this limiting case has the largest 
uncertainty. The entropy H is additive for a collection of independent 
events with probabilities U£ and v̂ , because if Piî UjVfc, then 

pik ptk— — ' n u ' - — j f c ' n 

i. k • " 

i. 2uk-2vk> 
k b 

(4.3) 

The uniqueness of the definition of the information entropy (4.1) with 
the required properties of continuity and additivity to within a constant 
factor was shown by Shannon [28,29]. 

For the probability distribution of the continuous quantity x with 
density f(x) the information entropy is equal to 

Su = - J / ( v) In / (.v) dx. (4.4) 
where 

j i (.V) </.V = I* 

The information entropy (4.4) is additive for independent events just as 
was (4.1); i.e., if 

f(x,y) • f i (x) f2(y)» 

then 

- j J f (.v, y) In / (JC, y) dx dy=~\/, (*) In /, (*) dx - j h (y) In h(y) dy. 

For the distribution function f(p,q) in phase space the Gibbs entropy 
(2.24) is also an information entropy, i.e. 

J/ln/rfT (4.5) 
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with the normalization 

ff/r-i (4.6) 

for ensembles with fixed particle number, or 

S"~~ -JJ /«l'i/A'^r.v (4t7) 

with normalization 

V j Mr.v = l (4.8) 

for ensembles with variable particle number. 

It is completely natural to consider the entropy in statistical mechanics 
as an information entropy, because statistical mechanics must not go outside 
the limits o^ the restricted possibilities of measurements on macroscopic 
systems.      In the  language of information theory it might be said that the 
maximum integrity of information contained in the distribution function must 
be satisfied.      The distribution for the Gibbs ensembles as we shall verify 
below satisfies this requirement. 

The definition of entropy in the form (4.5)  obviously makes sense only 
in the domain of applicability of classical statistics;  it can be regarded 
as the limiting case of a quantum mechanical expression.      Thus,  in classical 
mechanics the concept of a probability density with an invariant measure dr 
is introduced, just as  in quantum mechanics the concept of probability and 
its measure are naturally introduced. 

Let us consider the extremal properties of the Gibbs distributions which 
were established by him long before the creation of information theory  [1], 
They are easily obtained from the   auxiliary   inequality (2.32) 

J/'ln(f)^ü. C4.9) 
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where f and i* are any two normalized distributions defined in the sane phase 
space. The equal sign in (4,9) holds only for f-f'. In formula (4.9) and 
hereafter we shall omit the index N from dr. 

4.2 Extremal Property of the Microcanonical Distribution. 

Let us now show that the microcanonical distribution (3.3) corresponds 
to the maximum value of the information entropy (4.5) for all distributions 
with the same particle nuaber and with energy falling within the same energy 
layer [1]. 

Let f be the distribution function of the microcanonical ensemble and f 
an arbitrary distribution function defined in the same phase space and within 
the same energy layer; for these functions 

fi'dv=jfur= i. 

Substituting f and f* in the inequality (4.9), we obtain 

- j/' inr <ir < - J r In / dr = - In / J /' rff — — J/In/dV, 

where we have used the fact that f is constant in the energy layer, and we 
have used the normalizations of f' and f. 

Thus it is shown that of all distributions with a given particle nunber 
and a given energy layer the microcaponical distribution corresponds to the 
maximum of the information entropy. The other Cibbs ensembles have similar 
extremal properties but with different conditions. 

4.3. Extremal Property of the Gibbs Canonical Distribution. 

The fact that systems described by the Gibbs canonical ensemble are in 
contact with the thermostat means that they are characterized by a fixed 
value of the average energy. 

Let us show that the Gibbs canonical distribution (3.7) corresponds 
to the maximum of the information entropy (4.5) for fixed average energy 

(4.10) 
<//>= | / / / f / r 
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with the condition that the normalization 

(4.11) 

be preserved.      Let us find the extremum of the functional (4.1) with the 
auxiliary conditions  (4.10)  and (4.11).      Following the usual procedure, we 
look for the absolute extremum of the functional 

j/laMr-ß \ frldV-X \ ld\\ 

where ß and X are Lagrange multipliers defined by the conditions  (4.1Ü), 
(4.11).      Setting the first variation of this functional equal to zero we 
find 

/^-'(O. V, .\;exp(-p//). 
where r n (4.12) 

Q(G. K. .¥)=. I ex;n-fi//Ur, 

which is the same as the Gibbs canonical distribution (3.7). 

We have verified that  (4.12)  corresponds to an extremum of the functional 
(4.5).      Let us now show that this extremum is a maximum. 

Let f be a normalized statistical distribution corresponding to the 
same average energy as the canonical distribution f. 

i'iidV^ i jndi'. 

with f being otherwise arbitrary.        Substituting  (4.12)  into the inequality 
(4.9), we obtain 

- J /' In r jr< - J /' ln/dr= InQ ~ß J /'//^r^lnQ + p (flldV, 

i.e.. 
- | nnf'dV^- f fhiftiV. 
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Thus, the Gibbs canonical distribution corresponds to a maximum of the 
information entropy for fixed average energy. 

If the average values of any n quantities are specified, possibly 
including the energy, * * v 7 

then from the extremal condition of the information entropy (4.5) we obtain 
immediately by the same technique as before the distribution 

which is the same as (3.9), if^k are integrals of motion. If the<̂ k are 
not integrals of motion, then (4.14) does not satisfy the Liouville equation 
and cannot describe a statistical equilibrium ensemble. We shall consider 
similar distributions in Chapter IV. 

4.4. Extremal Property of the Grand Canonical Distribution. 

The fact that systems described by the Gibbs grand canonical ensemble 
are in contact with the thermostat and the reservoir of particles means that 
I w*T? cJ)aracterized by fixad average energy and average particle muter, 
we shall show that the grand canonical distribution (3.30) corresponds to 
the maxiaum of the information entropy (4.7) with fixed average energy 

(&k)- f f?kdr <* = o, J «-o. (4.13) 

(4.14) 

<//>-VJ afx dl\ 
.V 

with fixed average particle number 
<-V)-V;.v/.vrfr 

v 

and with the preservation of the normalization 

v J / v,/r- 1. 
A 
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Just as before, we look for the absolute extremis of the functional 

- X J f.v I" /.V <'r-P23J *»" </r + v 2 / f*N dV -'* S J /.v dr, 
A' A' N N 

where 6, v, X are Lagrange Multipliers. From the extexmia condition we find 

r I // - ,«,V 1 /.v =* Q 
where 

Q (0. 11. V) = S j cxp| - — j dl\ 

(4.18) 

.V 

which is the saae as the Gibbs grand canonical enseable (3.30). 

From the inequality (4.9) it follows that the extreaua is a maximia. 
In fact, we have 

Substituting for fN the expression (4.18), we obtain 

- S f /;.•1" /•• «r < - v; J /; /A -
.. v v 

where the conditions (4.15), (4.16), (4.17) have been used. Consequently, 

- Y j n >» ̂  J ,n f'v dV> 
A ' 'V 

i.e., the grand canonical distribution (4.18) indeed corresponds to the aaxi-
mm of the inforaation entropy for fixed average energy and fixed average 
particle number. 
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Finally, it is easily verified by the sane method that the Gibbs distri-
bution for the isobaric-isothermal ensemble (3.43) corresponds to the maximum 
of the information entropy 

with the auxiliary conditions of constant average energy and constant volume 

Proof of this assertion is in no way different from the previous proofs. 

The extremal properties of the Gibbs ensembles considered in this para-
graph allow these ensembles to be introduced somewhat differently. Informa-
tion theory borrowed many of its ideas from statistical mechanics. Now 
that information theory has become a we11-developed theory in its own right, 
it is possible, following Jaynes [22,23], to consider its concepts as primary 
and to make use of them in statistical mechanics. The existence of the 
invariant probability measure (1.5b) can be postulated, and then, regarding 
statistical mechanics as information theory, one can obtain all the Gibbs 
distributions from the condition of maximum information entropy [22,23]. 
In this case all the calculations presented so far are still valid. 

Such a method of deriving the statistical distributions must not, 
however, be regarded as a rigorous justification of statistical mechanics; 
in this method questions of justification are simply not considered. But in 
any case the use of the extremal properties of the information entropy is a 
very convenient heuristic method for finding the various distribution functions. 
This method is applicable both in classical and in quantum statistical 
mechanics. It is especially convenient for the nonequilibrium case, and we 
shall often make use of it (see Chapter IV). 

5 5. Thermodynamic Equalities 

5.1. Quasistatic Process. 

Until this time we have obtained thermodynamic relationships simply by 
differentiating the statistical integrals for the various ensembles with res-
pect to the variables on which they depend. To construct a complete system 

(4.19) 

(4.20) 
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of thermodynamic equalities it is necessary to consider the process of an 
infinitely slow change of the external parameters which define the given 
ensemble, i.e., a quasistatic process, because it is exactly these processes 
which are studied in equilibrium thermodynamics. For the present time we 
accept without proof the existence of quasistatic processes. In Chapter IV 
we shall consider the influence on statistical ensembles of a change of the 
external paraaeters, and we shall make more precise the concept of a quasi-
static process. 

Let the external parameters 01,02,...,as characterize in a macroscopic 
sense the state of statistical equilibrium of the dynamic systems under con-
sideration. Such parameters might be the volume of the container, the 
strength of an external electric or magnetic field, and so on. 

Let us suppose that the ensemble is in a state of statistical equilibrium. 
If the external parameters are changed, then in general the distribution 
function of the ensemble will also be changed. Let us imagine that the 
external parameters <>i,a2,...,as are changed so slowly that during a time on 
the order of the relaxation time of the system to an equilibrium distribution 
they can be considered practically constant. Then the system can be consi-
dered to be in a state of statistical equilibrium at each moment of time. 
Such a process of change of the external parameters we shall call quasistatic. 

If the parameters al,..*tas *re considered to be generalized coordinates, 
then the corresponding generalized forces are equal to 

(s.i) 

For a quasistatic process the observed value of a generalized force is equal 
to the average value over an equilibrium statistical ensemble: 

(.•I,)« -(»L\ 
\t)u. / - \ f(p, (5.2) 

If the volume of the system V is chosen, for example, as one of the external 
parameters, then the corresponding generalized force is the pressure. 

'j// 1 
l> - - \ ov (S.3) 

Later we shall define precisely the explicit form of the dynamical variable 
3H(p,q)/3V. 
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5.2.    Thermodynamic Equalities for a Microcanonical Hnsemble. 

In systems described by a microcanonical distribution (3.3)  the pressure 
can be obtained by differentiating the statistical weight  (3.3a) with respect 
to volume,  i.e., by differentiating the corresponding phase integral with 
respect to the variable limit of integration.      To do this  it  is convenient 
to write the statistical weight using a 6-function (3.4a): 

ü{E.N,V)~\Htlip,q)-&-—$■■ (5.4) 

Here we considered that H(p,q)  depends on V through the potential Uv(q), 
which represents the action of the walls and which rises sharply near the 
boundaries of the volume V;  the limits of integration are taken to be infinite. 
Differentiating (5.4)  with respect to V, we obtain 

^-l^öiHip.ri-vdV-- \ ^Htiip.rt-Br^i-^är 

or,  since  3H(p,q)/3V is  independent of E, 

W^-UF    Mllip.'i)-L)~-l)V~d\. 

Using (3.4)  this equation can be rewritten in the forr.i 

from which it follows that 

A In [>(/;, .V, V)- 
{I I 

,i\'      'ill. ">■ 'i      < 
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The first tern on the right hand side of (5.5a) is finite as N-~ 
(V/N»const.), because the entropy S»lnfl is proportional to the volume, but 
the second tern falls off as 1/N, and can therefore be dropped. Thus, 

r̂lnQ(£, AT, V)~- ( ^ - . V . V), 

which can l>e written using (5.3) in the form 
P- — JL in o (£• v (/:' 'v- V) 
0 OV " K ' ,<1/ » 

or the quantity 
4- = — lnf>(£ N F) — (?,s v- v> 6 dE ; v ' v> di-

es. 5b) 

(5.6) 

(5.6a) 

plays the role of the inverse temperature. 

From the relations (5.6), (5.6a) one can obtain a couplete system of 
thermodynamic equalities for the microcanonical ensemble. 

The differential of the entropy 

S{E, S, N. V) 
i s equal t o 

<iS - / T dr. + w dV + -iW f/'V 
(5.7) 

or using (5.6) and (S.6a) 

0 dS — dE + p dV - ii dX (5.8) 

" h , r e _s 
" ° v ' (S.8a) 

w is the chemical potential. 

Thus, 1/0 is an integrating factor for the left hand side of (5.8); 
therefore, in accordance with macroscopic thermodynamics the quantity 6*kT, 
where k is Boltzmann's constant, can be identified with the absolute tempera-
ture, and S can be identified with the entropy. Equation (5.8) has the 

52 -



form of the usual thermodynamic equality which expresses the first and second 
laws of thermodynamics. Thus, all thermodynamic relations can be derived 
Irom tKe microcanonical distribution. 

5.3. Virial Theorem. 

We have defined the pressure as the average value of the generalized 
force 3H(p,q)/3V, which represents a dynamical variable, i.e., a function of 
the momenta and coordinates of all particles. Let us make more precise the 
explicit form of this dynamical variable. We shall proceed as before from 
the microcanonical ensemble, although all derivations can be carried out com-
pletely analogously for any of the Gibbs ensembles. 

Let us write the statistical weight (5.4) in the form 

p. A\ n~ 
i... 

(S.9) 

where we consider that H(p,q) does not depend explicitly on V, and the term 
Uy(q), describing the action of the walls, is taken into account by restricting 
the region of integration such that each qj lies in the volume V (this is 
denoted by the symbol {...V...}). 

The variability of the volume is conveniently described by introducing 
a parameter X3 in front of V: 

UIII, /.a10 « 
. >> v. 

S(iJ(/>, i/) — 
(5.9a) 

We carry out a change of the variables of integration, a change of scale by 
the factor A: 

q = kif, p = (5.9b) 

This is a canonical transformation which leaves the phase volume dpdq 
unchanged and renders the limits of integration independent of X: 

Q (II, \\ /.V) = [ 6 ///1f, Xr/) - E) -^L. 
"J , v I I Nl h * 
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Differentiating this expression with respect to X, we obtain 

do _       r    ö 
di ~ J      'öl. 

(...I'...) 

U(»(f..,)-.)^P,., 

or,  setting X»!, 

(fL--^"^"^--'^,' ^'") 

(5.10a) 

On the other hand,       ^ 

thus, 

[iv]^ " - -OE^V^ inT'Kl'\!)^ (5.11) 

Comparing  (5.11)  with (5.5), we find the explicit expression for the dynamical 
variable corresponding to the pressure 31I(p,q)/8V: 

'"7(''^- ^4-//(f ac/),   . (5.12) './ 3K   61      V 

For example,  if H is the Hamiltonian of the system of particles with the 
two-particle interaction (1.2),  from (5.12) we obtain directly 

(5.13) 
where .   . , 

Of (it -ni) 

is the two-particle interaction force between the i^h and the jth particles. 

Formula (5.13)  is the required explicit expression for the dynamical 
variable describinß the pressure. 
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The average value of the dynanical variable (5.13) leads to an expression 
for the pressure 

(5.14) 

which is called the virial theorem. The quantity 

2 (fai Vi) • Fit) 

is called the virial force. 

Thus according to the virial theorem the pressure is equal to 2/3 of the 
average kinetic energy density plus 1/3 of the virial force density. This 
theorem remains valid, if by <...> is understood an averaging over any of the 
Gibbs ensembles, not just over the microcanonical ensemble. It is valid 
also in quantum statistics, if by <...> is understood an averaging over a 
quantum ensemble (see section 11.3, Chapter II). For the classical Gibbs 
canonical ensemble the average kinetic energy is easily calculated: 

and the virial theorem gives 

1*1 

This form of the virial theorem is valid only in classical statistics. 

The relation (5.14a) can be written in the form 

(5.14a) 

(5.14c) 
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i.e., in classical statistics the average kinetic energy per degree of free- 
dom is the same for all degrees of freedom and is equal to 

For the harmonic oscillator in classical statistics the potential energy is 
also uniformly distributed over the degrees of freedom, and each degree of 
freedom again has 6/2. 

5.4. Thermodynamic Equalities for the Gibbs Canonical Ensemble. 

In the case in which the ensemble is described by the Gibbs canonical 
distribution (3.7), the average value of the derivative of the Hamiltonian 
with respect to the parameter "i is equal to 

WS 
*    0. V 

Thus, the observed value of the average of the generalized force, which 
corresponds to a change of the parameter «j in a quasistatic process with 
constant  9 and N,  is equal to 

!';'''  K.N (5.15) 

or in the particular case when ai=V, 

P-(§ !,v- (5.16) 

Now all  thermodynamic relations  for the canonical ensemble can be easily 
obtained.      The free energy of the system F is a function of O.a^i • • • »as»N« 
Thus, 

(IF 
O / .'/■■ , ,  ■''! m ^-s-i ^-a) ^ (5.17) ^v.v    rV"-- „v 
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or 

(tF =. - S </u - ^ {Ai) da. + !i "'■V; (5.17a) 

here we have made use of the relations  (3.8c),   (5.15)  and have introduced the 
chemical potential 

^UNIV 
(5.18) 

In § 13 it will shown that the values of \i  calculated from (5.18) and from 
(5.8a) coincide in the thermodynamic limit. 

Using (3.8c) the relationship (5.17) can be written in the form 

d(H) = d{F+ OS) = Or/5 - ^ (.4A da, + nd.\f. (5.19) 

Thus, 1/6 is an integrating factor for 

dim + liA^kii-iid. 

therefore e=kT can be identified with the absolute temperature of the thermo- 
stat and S with the entropy. 

The equation  (5.17a)  comprises a complete system of thermodynamic rela- 
tions, which can be expressed not only in terms of the free energy F, but 
also in terms of the other thermodynamic potentials. 

A thermodynamic equality (5.17a)  can be rewritten in the form 

d (F -f- V /,,i.) (1\ =:,/,!, „ _ «j ,/() + V Ui d (Ai) + (l ^V| (5.2Ü) 

where 
a^r + l1^).^ (5.2i) 
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is the thermodynamic potential for the isobaric-isothermal systems (a function 
of the variables 0, <Aj~ N), which we introduced earlier for the particular 
case ai*V, <Aj>»p. In ti*at case 

<\>~r+i>v. (5.22) 

A thermodynamic potential * is often simply called the thermodynamic potential 
(in the narrow sense of the word) or the Gibbs potential and is denoted by 
G(e,p,N). The transition from F to * is a Legendre transformation for the 
thermodynamic functions. 

From (5.20) it follows that u*3t/3N. On the other hand, the function * 
depends on only one extensive variable N, and therefore the thermodynamic 
limit 

must be finite; 4> must be proportional to N and have the form •-Nf(0,p). Thus, 

u"*/N (5.23) 

The thermodynamic equality (5.17a) can also be written in the form 

d (r - n.V) - da ---• - Sdl) - ̂  (Ai) dat - N d\i. (5.24) 

where (5.25) 

is the thermodynamic potential in the variables 0,di#vi.1 The transition 
from F to n is also a Legendre transformation. 

1 Do not confuse (5.25) with the statistical weight (3.3a) which is denoted 
by the same letter. 
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Using (5.21) and (5.23) we obtain for ü  the expression 

(5.26) 

In the particular case when there is only one external parameter V, 

Ü  = -pV. (5.27) 

Thus, after the introduction of quasistatic processes all thermodynamic 
functions can be obtained on the basis of the canonical distribution alone. 

5.5,    Thermodynamic Equalities for the Gibbs Grand Canonical Ensemble. 

A similar derivation of the thermodynamic equalities can be carried out 
also for the other ensembles, for example,  for the Gibbs grand canonical 
ensemble.      In that case 

Thus,  the average generalized force is equal to 

(■•^=-(^\    ' (5.28) 

or,  in a particular case^ 

(' < ü \ 
P=-f-jf'l     • (5.29) 

The thermodynamic potential n is a function of 6,u,ai,... ,"5.  Therefore 

(5.30) 
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1 

or, using the relations  (3,33a),   (3.34)  and  (5.28), 

(til = - St/0- V (,!.) tiu. _ (;v) (/il, (5t 3!) 

Thus, we have obtained a thermodynaraic relationship, which is the same 
as  (5,24)   if one puts  <iN>=N. 

§ ö.      Fluctuations 

6.1,    Quasithermodynamic Fluctuation Theory. 

The Gibbs statistical ensembles make it possible to calculate fluctuations 
of any dynamical variable in a statistical equilibrium state.      We have already 
considered fluctuations of several quantities,  for example, energy fluctua- 
tions in the Gibbs canonical ensemble (3.8d),  fluctuations of particle number 
and energy in the Gibbs grand canonical ensemble (3.35), volume fluctuations 
in the Gibbs  isobaric-isothermal ensemble (3.48).       In all these cases we were 
interested in fluctuations  in quantities on which the ensemble distribution 
function depends explicitly.      In the microcanonical ensemble energy and 
particle number are specified and, thus, do not  fluctuate, but in this ensem- 
ble there exist pressure fluctuations. 

The calculation of fluctuations for an arbitrary dynamical variable is 
no less complicated    than the calculation of its average value; therefore the 
problem must be restricted.        One might be interested in the probability 
distribution of the fluctuations of various quantities, assuming the thermo- 
dynamic functions of the system to be known.      This  is how the problem is 
posed in the quasithermodynamic theory of fluctuations; we are proceeding 
toward an exposition of this theory in which we shall follow the work of 
R.  Green and 11.  B.  Gallen  [3Ü].      The simplifying feature in the theory of 
fluctuations  is their relative smallness. 

Let Ci,52»,"iCs be physical quantities characterizing the system, but 
not necessarily integrals of motion.        he shall assume, however, that the 
average values <(,^> can characterize some state of partial statistical equi- 
librium.      It  is necessary to determine the thermodynamic functions of this 
state. 

We define,  following Leontovich  [2], the free energy of the nonequili- 
brium state,  characterized by giving the average values <Ck>i  as ^w free 

energy of an equilibrium state in auxiliary fields which produce an equili- 
brium system with fixed values <Ck>«      We shall  repeatedly use this approach 

In  [30]  the quantities ^ are considered to be integrals of motion. 
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in what follows. 

Wo shall consider the most general possible equilibrium with fixed values 
<£)t>. This Mans that a statistical ensemble must be used in which is speci-
fied the average values of the quantities 

and in which the information entropy (4.5) is a maximum. For enseables with 
variable N in (6.1) a summation over N is assumed in addition to the integration. 

The condition (6.1) must be added to the usual conditions of constant 
average energy (4.15), average particle number (4.16), and preservation of the 
normalization. 

Repeating the arguments of S 4, we obtain 

where are tht> parameters thermodynamically conjugate to <f.^> and are 
defined by equation (6.1). 

The statistical integral Q, defined by the condition of normalization of 
the distribution function (6.2), is a function of 0,w,<*k or 6,w,<Ck> 
defines the thermodynamic functions in a state of partial statistical equili-
brium with fixed <£k> as a function of From now on we shall not 
stipulate the possible dependence of q on the volume V. 

The distribution function (6.2) in general does not satisfy the Liouville 
equation, if the £k are not integrals of motion, but it turns out to be useful 
for calculation of fluctuations. 

The physical meaning of the distribution function for systems in partial 
statistical equilibrium (6.2) consists of regarding such a state as a statis-
tical equilibrium state, but in some auxiliary field ô , which makes it an 
equilibrium state [2]. 

It is convenient to rewrite the distribution function (b.2) in a more 
symmetric form, similar to (4.14): 

\lk) = j I*/</>, <l)(!r (6.1) 

(6.2) 

(6.3) 
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where _ 
•^0 ~ P. -A ~ W • 
Tx - - flu. «>', = A\ 

= — Pa*_i, ^it~ lt-i {k = 2, 3, ..., «). 
The function 

<W^n .T„) = InQ(.7-( T,X 

defined from the normalization condition (6.3) 
e-f „ V f c.\p (- V . r J rfr, 

* \ *? f 

(6.3a) 

(6.4) 

0>.S) 

is called the Mas*ye-Planck thermodynamic function. It is related to the 
entropy (4.4) by the relation 

1 

S ( 6 . 6 ) 

and it allows one to represent all thermodynamic relations in an especially 
symmetric form. 

For example, the average values and fluctuations of the quantities'̂  
are equal to * 

W=--Jy? 
ig> rp \ / j i \ i<p \ ^<•?*) (6«7) V St) Vo {<rk} - )Tj- ^ r-

Higher correlations are easily calculated in an analogous fashion [30]. 

Using the entropy (6.t>) the distribution function (6.3) can be written 
in the form 

(6.8) 
where 

"P [ - X (A - <A» \ dV. 
I " J (b.9) 

Differentiating (6.9) with respect to <'A>, we obtain another form of 
the thermodynamic equalities 
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"I (V)" 
SO 

(6.10) 

because the terns which appear upon differentiating ̂  with respect to </k> 
are zero. Formulas (6.7)-(6.10) serve as a basis for calculating the proba-
bility distribution of the fluctuations of the quantities;?̂ . 

6.2. Gaussian Distribution for Fluctuation Probability. 

Let us proceed to the calculation of the probability of the fluctuation 
of the quantity^. In the formulas (6.3) and (6.8) the quantityis a 
dynamical variable, i.e., a function of the momenta and coordinates of all 
particles p,q. 

Following Einstein [31], we construct a macroscopic distribution function 
on the basis of (6.3), assuming that have some fixed values. 

We introduce the macroscopic distribution function W: 

' d j \ ... d J \ -
-Qd3>„ ... dJ\. CX1> | -- <1> Wo fn) - S3~k?k }. (6.11) 

which gives the probability that the parameters ̂ b,...«̂ n lie in a region 
dfo 4ft, around the values D̂,... j>n. Now we regard^ not as dynamical 
variables, but as ordinary quantities; we continue to use the previous nota-
tion however. The quantity ft is the number of states in the region d/£>,..., 
djQj around The function W must be normalized not in phase space, 
but in the space of the values of 

IV (.''y, . . ., -̂ \l) r. '• (6.12) 

The quantity ft can be estimated using the entropy s of the microcanonical 
ensemble in which the parameters are given in a region d^, 
around the values ̂>0,...,̂ n: 

s • In fi/8v • (6.13) 

where is a normalization constant which is unimportant for us right now 
and which will be defined later. 
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Using (6.6) and (6.13) we write the macroscopic distribution function 
(6.11) in the forn 

y-Qoexp ( 6 a 4 ) 

where S is the entropy in the quasiequilibrium grand canonical ensemble (6.3). 

Let us note something which will be essential in what follows. As a 
consequence of the thermodynamic equivalence of the statistical ensembles 
the entropy in the ensemble (6.3) is the same function of </^>,..., n̂

> 

the entropy in the corresponding microcanonical ensemble is of the variables 
Pof'jpn* *•••• s •"d s are identical functions, but of different variables. 
Therefore s - S can be expanded in a series in/̂  - <A. >; because of the 
small size of the fluctuations the series may be terminated with terms of 
the second order. Using (6.10) we obtain 

S S ~ 3~h 2 0 (St) d (Sk) 
* '•* (6.15) 

Substituting (6.15) in (6.14) and using the fact that the linear terms 
cancel, we obtain the distribution function for fluctuations: 

W - .4 cxp J 4 ^ TmhrT)lVJ>lVJ>k} (6.16) 

(the constant A is defined by the normalization condition (6.12) ). Thus, 
the probability of fluctuations of the quantities^ is defined by the 
Gaussian distribution (6.16). 

We write the Gaussian distribution (6.16) in the form 

W-.4expf-i 
(6.17) 

t drt f 
where 

KH - = - TT^S(S„) • v'" - ?i ~ W . 17a> 
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or, after calculation of the normalization constant A 

j ~ 7," |' 
(6.18) 

where X is a determinant with elements which are assumed positive and 
non-zero, and n+1 is the number of variables x̂ . 

All fluctuations can be calculated using the Gaussian distribution 
function (6.18). We write (6.18) in the form 

is a quadratic form, X is a tensor with elements Ajk. * is a vector with coa-
ponents x̂ ; the symbol : between tensors denotes their complete contraction. 

We calculate the average value with respect to the Gaussian distribution 
of the product of xA and X̂ , 

Carrying out an integration by parts, we obtain 

U *-Ae-K{x* V 
where (6.18a) 

>-uX,xk = -T * : ** 

(6.18b) 

Thus (6.20) 

\X' Ox'J ~ ~ 6i'c 
(6.21) or 

rn 
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i.e., the product of the matrix <x̂ xjc>with A^ is equal to the unit matrix. 

Thus, the mean square fluctuations are defined by the matrix which is 
inverse to A^: 

<.v;.v„> - (A (6.22) 

Let us show that A is a positive definite matrix. We convert (6.21) to 
diagonal form using a canonical transformation from x to x"; then 

(6.22a) 

thus, ̂ii>0, as was assumed earlier. 

Formula (6.22) is the quadratic fluctuations calculated using the 
Gaussian distribution. On the other hand, the formula (6.7) gives the exact 
value of the fluctuations calculated using the Gibbs distribution (6.3): 

(X;Xj (6.23) 

It is easy to see that these values are the same. In fact the matrices 

,7M> <J--S 
ITtd.r* and HJfrod^k) 

are mutual inverses. Using (6.7) and (6.10) we obtain 

-S o-s 
djr,dS-k d(!Pm)d(?k) 

= V 0(?t) 
03T k 

or* . . 
0(jT,n) ~0 {?m) " °im- (6.24) 

This means that the Gaussian distribution (6.18) gives the exact value of the 
quadratic fluctuations of the quantities x̂ . For higher order fluctuations 
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this is not true, and higher order terms in the expansion (6,15) of the entropy 
must be considered. 

In this chapter we shall not consider further the theory of fluctuations, 
referring the interested reader to the literature [2, 26, 32, 33].  We shall 
return again and again to the question of fluctuations, because they are inti- 
mately connected with irreversible processes. 

We end this paragraph with a short review of the basic concepts of classi- 
cal statistical mechanics. 

Classical statistical mechanics is applicable only for temperatures suf- 
ficiently high that quantum effects can be neglected.  Otherwise it can lead 
to incorrect results.  For example, the uniform distribution of energy over 
the degrees of freedom, which follows from classical statistics, is not valid 
for low temperatures.  But even in the region of its applicability classical 
statistical mechanics, as we have seen in § 1, borrows some of its concepts 
from quantum statistics.  For example, the assumption of the existence of a 
smallest cell in phase space h^N and the factor 1/N!, which takes into account 
the identity of states, differing only by a permutation of the particles, are 
introduced into classical statistics from without.  These effects are taken 
into account completely naturally in quantum statistical mechanics, the basic 
principles of which we discuss in Chapter II. 
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I s 

QIAPTER II 

liQUILIBRIUM STATISTICAL MECHANICS OF QUANTUM SYSTEMS 

We give a short review of the basic propositions of statistical mechanics 
of quantum systems for the equilibrium case to the extent that this is neces- 
sary for what follows (see [1-4]). 

§ 7.  Statistical Operator 

7.1.  Pure Ensemble. 

Until now we have considered classical statistical mechanics, in which 
the state of the system was described by a point (p,q) in a bN-dimensional 
phase space, and the time evolution of the state was described by Hamilton's 
equations (1.1).  The dynamical variables, for example the energy (1.2), and 
the total momentum, were functions of the coordinates and momenta p,q, i.e., 
functions of the state of the dynamical system. 

Quantum statistical mechanics proceeds from the basic representations of 
quantum mechanics, where the situation is entirely different.  In quantum 
mechanics the state of a dynamical system is described by a wave function 
^(xj,...,XN,t) or, more briefly, f(x,t), depending on time and the coordinates 
of the particles XI,...,XN or on some other system of simultaneously measur- 
able quantities. 

The time evolution of the state is described by the Schroedinger equation 

(7.1) 

where il is a self-adjoint operator acting on the wave function T,  and t»  is 
Planck's constant. 

For example, for a system of N identical particles of mass m, having no 
internal degrees of freedom and interacting among themselves with the poten- 
tial (K|x|),   the Schrocdinger equation has  the form 

', ■MU/-**!)^', 

(7.2) 

0« 



where 

is the Laplacian. 

The Schroedinger equation completely determines Y at any moment of tine 
t, if it is known at an initial tine t«Q. For exanple, for an isolated 
system, when 11 has no explicit time dependence. 

is a formal solution of the Schroedinger equation. 

The dynamical variables in quantum mechanics are not functions of the 
state of the dynamical system, but are represented by linear self-adjoint 
operators acting in the space of the wave functions. Their spectrum defines 
the possible observable values of the physical quantities. Therefore a 
specification of the state of the system, i.e., Y, does not imply an exact 
knowledge of the dynamical variables. The wave function Y allows calcula-
tion only of the average value of any dynamical variable represented by the 
operator A in the state Y: 

where the wave functions are normalized to unity 

(M'\ >10-1. (7_ 

and the brackets denote the scalar product of functions in llilbert space, 
i.e.. 

/in (7.4) 

(7.6) 

- 69 



x is the collection of coordinates xi,x2,...,XN. 

In general the function Y(x) depends also on tine t, i.e., one must 
write Y(x,t), but we shall omit the argument t. If the state is characterized 
also by spin variables 0I,...,0N» then in C7*6) a summation over spin variables 
must be carried out in addition to the integration. 

The formula (7.4) gives only the probabilities of prediction of the 
observed values of any physical quantities. Only in the particular case in 
which f is an eigenfunction of the operator A does formula (7.4) give the 
exact value of the quantity A in the state ¥. 

A state which can be described by a wave function is called a pure state. 
The corresponding statistical ensemble, i.e., a large number of non-interacting 
"copies" of the given system, in the given quantum state and with the stipu-
lation that averages are calculated according to formula (7.4), is called a 
pure enseable. A pure state is usually called simply a quantum mechanical 
state. It represents the maximum possible information about a quantum 
mechanical system. All of quantum mechanics, with the exception of some ques-
tions in the theory of measurement [2, 5-9], is founded on applications of 
pure ensembles. 

It is convenient to use a projection operator to represent the average 
values of dynamical quantities in a pure ensemble. 

We write the linear operator A in a matrix x-representation, defining 
it through the matrix elements, 

A 'F (.v) =-- | A (.v, x')V(x')dx'. (7.7) 

Substituting (7.7) into (7.4), we obtain 

(7.8) A = j" A ( A\ A) clx dxf = Sp(A7»). 

(7.8a) 
W h e r* = 

is called the projection operator, which thus represents a pure ensemble. 

This name stems from the fact that the operation of the operator^on 
any function q? projects it in the Hilbert space onto the direction V. In 
fact, 
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/ ?(x, .V/)T(.C'),//-(,P1 (p)M'(JC). 
(7.9) 

The function ¥ is assuned to be normalized. 

That the projection operator is Hernitian follows from (7.8a): 

(X, x') = J>(x', x). 

Besides this, it has the property that 

T = 
(7.10) 

which follows from (7.9). This property is evident, because after one pro-
jection operation all subsequent projections onto the same direction no 
longer change the result. 

In addition, it is always true that 

Sp^=l, (7.11) 

which follows from (7.8) after substituting for A the unit operator or from 
(7.8a) using the normalization (7.5). 

Let us show that all eigenvalues of the projection operator are equal to 
zero, except one which is equal to unity. 

The Hermitian operator^ can always be converted to diagonal form. Then 
its eigenvalues will also satisfy equation (7.10), and, thus, are equal to 
zero or unity. But from the normalization condition (7.11) the projection 
operator can have in this case only one eigenvalue equal to unity. There-
fore all eigenvalues of the projection operator are equal to zero, except one 
which is equal to unity. 

Condition (7.10) together with the Hermiticity condition can be regarded 
as the definition of the projection operator, and thus of a pure state. 

Knowledge of the wave function ¥i(x,t) allows calculation of the proba-
bility of transition from the state ¥i(x,t) to any state ,C2(x»t) the time t 
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■^„^(MMO/r, (/));-. 

which can be written using projection operators: 

\Vl2U)~ | SAx, x', /);7,,(.v^ x, t)dxiLx' - Sp(./,(/).?,(/)), 

where 

are the p.-ojection operators corresponding to the states 4^ and l^. 

For a pure ensemble the negative of the average of the logarithm of P 
corresponds to the information entropy  (4.1),  and it  is  zero: 

-(hi.?)- - Si)(;/ln.O-0. 

In connection with this,  if /> is converted to diagonal form, then the product 
J>nn In j>nn is equal to zero, because ^>nn is either zero or one and x In x 
for x=Ü is taken to be zero.      Thus,  for a pure ensemble the measure of 
uncertainty in the information entropy is equal to zero;  i.e.,  it corresponds 
to the maximum possible information about quantum mechanical systems. 

Quantum statistical mechanics is in some sense simpler than classical, 
because it already contains the concept of probability,  but a pure quantum 
mechanical ensemble turns out to be insufficient in quantum statistics, 
because as a rule we do not have available complete information about the 
systems we study, because of the larpe number of particles. 

7.2.    Mixed Lnsemble and Statistical Operator. 

Quantum statistical mechanics makes use of a statistical ensemble of a 
more general type than the "pure" ensemble considered above, namely a mixed 
ensemble (or "mixture"), which is based on an  incomplete set of data about 
the system (see   [1-10J). 

Let us consider a large number of identical, non-interacting copies of 
the given system, which may be in different quantum states. 

In a mixed ensemble only the probabilities Wj,W2,... of finding the 
system in various quantum states *i,H'2,...  are defined.      The average value 
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of any physical quantity, represented by the operator A, is defined in a 
mixed state by the expression 

{A)--=^wk(%AxVk), (7.12) 

for which y , 
* (7.12a) 

Here (Y^Affc) is the quantum mechanical average of the operator A in the 
state Yk. The auxiliary conditions (7.12a) mean that the total probability 
of all quantum states is equal to unity and that the probability cannot be 
negative. 

A pure ensemble is a particular case of a mixed ensemble in which all 
probabilities ŵ  are equal to zero except one, which is equal to unity. Then 
(7.12) goes over into (7.4). 

In a mixed ensemble, as distinguished from a pure ensemble, the different 
quantum states do not interfere among themselves, because in the definition 
of averages for the mixture (7.12) it is average values rather than wave 
functions which are added. If the system were described by a wave function 
in the form of a superposition of the states then in the expression for 
averages (7.4) there would also be cross terms (interference terms) connect-
ing the different quantum states; this is not the case in (7.12). 

To study mixed ensembles it is convenient to introduce a statistical 
operator proposed by von Neumann [2,3], and also for a particular case by 
L. D. Landau [11]. We write the linear operator A in the matrix 
x-representation (7.7). Substituting (7.7) into (7.12), we obtain 

(/!)== J A (x, .v/)p( v'1 A*) dxclx'. 
or </l) — Sp (/lp), 

(7.13) 

(7.14) 

^ P<^«?-Wv)W (7.15) 

is the statistical operator in the matrix x-representation or density matrix. 
The statistical operator (7.15) depends on the 2N variables XI,...,XN; 
x'l»• • • #*'N» on exactly the same variables as does the distribution 
function in classical statistical mechanics, which depends on the 2N coordi-
nates and momenta qi«*.<»qN;Pl»***»PN* 
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The statistical operator (7,IS) satisfies the normalization condition 

i>p p — 1, 
(7.16) 

because 

Sue— [ p (.v, .v) dx = N wk 

and from the normalization conditions of the wave functions and the probabil-
ities wk it follows that 

(xr;, xvk) = l, 

The normalization condition (7.16) follows also from (7.14) if the unit 
operator is substituted into it in place of A. This normalization condition 
is the quantum analog of the normalization condition of the distribution 
function (1.5a). 

Formula (7.14) is convenient because the spur (or trace) of a matrix is 
invariant with respect to unitary transformations of the operators. There-
fore the formula (7.14) does not depend on the representation of the opera-
tors A and p; it is valid for any representation, not just for the matrix 
x-representation of the operators. Other more convenient representations 
for the operators are usually used in practical problems. 

For example, in the discrete matrix n-representation 

—J •^miiPnna 

where the are the matrix elements of the operator in the n-representation, 
and pnm is the density matrix in the n-representation. 

The statistical operator (7.15) is Hermitian: 

?'(X, x') = P (.v't x), (7.17) 
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which follows immediately from its definition (7.15). 

Using the projection operator (7.8a) the statistical operator (7.15) can 
be written in the form 

O -- ~ I > ^ 
* (7.18) 

where ̂ Kk is the projection operator onto the state in the particular 
case in which all the wk are equal to zero except one, which is equal to 
unity, the statistical operator (7.18) coincides with the projection operator 
(7.8a). 

Let us show that the statistical operator is positive definite, i.e., 
that it has no negative eigenvalues. This property follows from (7.18), 
because the sum of positive definite matrices as also positive definite, and 
the projection operator, as we have verified earlier, is positive definite. 
In any case, it is easy to prove directly that the eigenvalues of p are posi-
tive. 

Because p is Hermitian, the condition that its eigenvalues be positive 
definite can be written in the form 

(̂ -SpfcM̂ X), (7.19) 

where A2 is an arbitrary Hermitian operator. Indeed, taking p to diagonal 
form, which is possible because it is Hermitian, we can write (7.19) in the 
form 

—j j Ank '• > 0, • * n. k 

from which it followx that Pnn}0. For the statistical operator (7.15) the 
property (7.19) is satisfied, because 

«= — -vWl. k = — P 0. f , 1Q, 
it i, w k. *n \ 

and thus, the statistical operator is positive definite. 

It is not difficult to verify that any positive definite Hermitian 
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operator satisfying the normalization condition (7.16) can be represented in 
the for* (7.18). To do this it is necessary to reduce the operator to 
diagonal form; after this it is represented as a SUM of matrices in which 
all the diagonal eleaents except one are equal to zero. The positive eigen-
values of the operator, the sua of which is equal to unity by the normaliza-
tion condition, play the role of the wfc, and the remaining matrices will be 
the projections. 

Let us show that all matrix elements of the statistical operator are 
bounded. The spur of the square of the statistical operator is equal to 

Spp2- I i Pmn 1°. 
"I. t. 

Let us note that in the diagonal representation this quantity is less than 
one, because in that case from the positivity of the eigenvalues pnn of the 
statistical operators 

So' y = i. 
— . -It — » . f|,| I 
>1 , '» 

Keeping in mind that the spur is invariant with respect to the representation, 
we obtain 

Sp p2 " II | Or!.-. I" ̂  !• 
in, •; 

This inequality shows that all matrix elements of the statistical operator 
are bounded. 

5 8. Liouvilie's Quantum Equation 

8.1. Liouvilie Equation in the Quantum Case. 

Let us consider the time evolution of the statistical operator for an 
ensemble of systems with a Hamiltonian II, which may be time dependent. The 
statistical operator at the instant t has the form (7.IS), but now the 
depend on time: 

}>U, v', i) - ^ ,'l\ (*, /) (.v', (8.1) 
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where the ŵ  do not depend on t, because they correspond to the probability 
distribution at t»0. The functions yĵ x.t) are solutions of the Schroedinger 
equation, satisfying the initial condition 

where *k(x) is some system of wave functions defining the statistical opera-
tor at t*0: 

Because of this initial condition the non-stationary solutions of the 
Schroedinger equation depend on the quantum number k. 

If at the initial moment of time the relative number ŵ  of dynamical 
systems is found in the state VkU,0), then at time t the same number of 
systems will be in the state *jt(x,t). 

The change of the state V^U.t) in time is defined by the Schroedinger 
equation (7.1) 

which can be written using (7.7) in the matrix form 

k 

(8.3) 

Thus, the statistical operator (8.1) satisfies the equation 

ih ^ - j V<//(A. V", (A", t) T (x\ i) -
Ul » 

- ( v. t) »i'; (.v", /) n (x", x')) dx" -

I (//(v. v")o(*", A'. /) — p(.v, A", /)//(A". x'))dx". 
(8.4) 
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where the hermiticity of the Hamiltonian has been used 

H'(x, x') = //(.«', x). (8.5) 

Thus, we have obtained the equation of motion of the statistical opera-
tor - the quantum Liouville equation in matrix form (8.4). It is convenient 
to write it in operator form 

p], (8>b) 

where 
TJTr//. pi - ir ( " p ( 8 - 7 ) 

are the quantum Poisson brackets. 

The quantum Liouville equation (8.6) is analogous to the classical 
Liouville equation (2.11) for the distribution function f(p,q,t). Instead 
of the classical Poisson brackets (2.10), it contains the quantum Poisson 
brackets (8.7). There exists, however, also an essential difference. The 
statistical operator p(x,x',t) is a complex function of the collection of 
coordinates of the particles xj,...,x̂  and x'j,...,x'fj, but f(p,q,t) is a 
real function of the collection of coordinates and momenta. A closer analogy, 
shown by Wigner [12], exists between the statistical operator in the mixed 
coordinate-momentum representation p(x,p,t) and the classical distribution 
function (see § 14). 

In the case of statistical equilibrium p and li do not depend explicitly 
on time, and the quantum Liouville equation has the form 

[H.P] a 0, (8.8) 

i.e., in this case the statistical operator p commutes with the Hamiltonian 
and, consequently, is an integral of motion. In classical statistical mechan-
ics the equilibrium distribution function, as we verified in i 2, is also an 
integral of motion, which is evident from (2.13). 

The facts that the operators p and H commute and are both hermitian show 
that they have a common system of eigenfunctions. Therefore the statistical 
operator in the case of statistical equilibrium can be represented in the form 
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P (X, A') - £ M'ft (.r) M;- (*'), 
(8.9) 

where ¥fc(x) are the eigenfunctions of the Hamiltonian 

ir-\\ = (8.10) 

In quantum mechanics not all eigenfunctions are admissible wave functions 
of the system; only those wave functions which have the necessary symmetry 
properties are permissible. 

For a system of particles with spin equal to zero or an integer multiple 
of Ik only wave functions which are symmetric with respect to simultaneous 
permutation of the coordinates and spins of the particles are admitted. In 
this case it is said that the particles obey Bose statistics. 

For a system of particles with half-integer (in units of 1t) spin only 
wave functions which are anti-symmetric with respect to permutation of 
coordinates and spins are admissible. In this case it is said that the 
particles obey Fermi statistics. 

In the expression (8.9) for the statistical operator it is assumed that 
the summation is carried out not over all wave functions, but only over those 
functions which are admissible in the quantum states of the system. 

The Liouville equation (8.6) allows one to find the statistical operator 
at any moment of time, if it is known at the initial time. 

Let the statistical operator at t«0, p(0), be given. Then at time t the 
statistical operator has the form 

if the Hamiltonian H does not depend on t. Indeed, differentiating (8.11) 
with respect to time, we verify that p(t) satisfies the Liouville equation 
(8.6), In addit.ion, p(t) satisfies the initial condition 

p(0-c-1""-p(0)c"M'* (8.11) 

P('H_O-=P(OJ. (8.11a) 
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The expression (8.11) is a formal solution of the Liouville equation (8.6). 
It is analogous to the expression (2.17) in classical statistical mechanics. 
In what follows we shall often make use of a similar method of formal solu-
tion of the Liouville equation. 

If the Hamiltonian Ht is explicitly time dependent, then the Liouville 
equation can be formally integrated using the evolution operator U(t.O) - a 
unitary operator satisfying the equation — — — 

ih -ulJ;01 - utu (t, o), w uh(/„ /,) - u (/„ Q. (8# 12) 

and the initial condition 

U(0,0) * 1. (8.12a) 

The statistical operator at time t has the form 

p(t) • U(t,0)p(0)U-1(t,0). (8.13) 

In this connection, p(t) satisfies the Liouville equation 

P (')! »•"> 

and the initial condition (8.11a). 

8.2. Schroedinger and Heisenberg Representations for Statistical Operators. 

Up to now we have made use of a representation in which the statistical 
operator p is time dependent, but the dynamical variables have no time depen-
dence (through the coordinates and momenta); they can depend on time only 
through an external field. This corresponds to the Schroedinger representa-
tion in quantum mechanics. 

Sometimes it is more convenient to use the Heisenberg representation, in 
which p is tiae independent, but the dynamical variables depend on tine through 
the coordinates and momenta, in addition to the possible parametric dependence 
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on time through an external field. 

The average value of any dynamical variable is equal to 

<A> « Sp(p(t)A). (8.15) 

Substituting p(t) from (8.11) (or (8.13)) into this expression and using 
the permutability of operators under the spur (trace) sign, we obtain 

(.•!}« Sp(?(0) .•!(/)), (8.16) 
where A (/) = e"«i" A c -

0 1 A{t)"U-l{t,0)AU(t,0) 

(8.17) 

(8.17a) 

is the operator A in the Heisenberg representation, and U(t,0) is the evolu-
tion operator (8.12). Formula (8.15) corresponds to the Schroedinger repre-
sentation, while (8.17) and (8.17a) correspond to the Heisenberg representa-
tion for""the operator A. 

Let us obtain an expression for the time derivative of a dynamical 
variable in the Heisenberg representation in the general case. 

Differentiating the identity (8.15) with respect to time, we find 

Substituting here dp/dt from the Liouville equation (8.6), we obtain 

;«•<••<>• v "•)»} 
— M)= S »(— — •- /--) (8.18) 
dt ^ ' \ ,u \ <tt /' 

W h e r* dA OA I <8-19> 
ill - % + lF 1* 

# 

is the derivative of the dynamical variable A with respect to time. The same 
relationship can be obtained by differentiating (8.17) or (8.17a) with respect 
to time. Formulas (8.18) and (8.19) are analogous to the formulas (2.19a) 
and (2.18) in classical statistical mechanics. 
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If the dynamical variable A is not explicitly time dependent, then its 
derivative is equal to 

-';!'.'' (8.20) 

In what  follows we shall make wide use of the equation of motion for 
dynamical variables. 

8,3,    tint ropy Operator. 

In classical statistical mechanics one can introduce the entropy opera- 
tor 

n =  -  In p, (8.21) 

which  is analogous to the phase  index  (2.22)  of classical statistical 
mechanics. 

As we showed earlier,  the statistical operator p is llermitian and posi- 
tive definite.        Thus, its  logarithm is llermitian, and the entropy operator 
n  is positive definite.      In fact,  if w^,W2,... are the eigenvalues of the 
operator p,  for which ü^w^l, then -In wi,-  In W2 are the eigenvalues of n, 
because the eigenvalues of a function of an operator are equal to the same 
functions of the eigenvalues. 

From the inequality wj^l it  follows tiiat  -In w^O,  i.e.,  that the 
eigenvalues of n are positive, but not necessarily bounded, although 
is always bounded. 

The entropy operator n has the property of additivity,  i.e.,   if the 
operator p  ib the direct product^ of the operators p^ and p2 

P  = Pi  X p2, (8.22) 

which denotes the direct product of the corresponding matrices,  then 

n = ni ♦ na. (8.23) 

A square matrix C is the direct product of A and B,  if C » 1 v: „ 
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where n,-lnp,rii«-lnpi,n2=-lnp2t 

The entropy operator n satisfies the Liouville equation, just as does p, 

H'^f     [U. Ml. (8.24) 

which can easily be shown directly.  For example, if p satisfies the equation 
(8.6), then p2 satisfies the same equation 

'/j JW'C' -!•'/. !'('!, (8.25) 

because the Poisson brackets have the property 

1//.P!>1-=[//. PIP-; Pi'7-i^- 

The equation (8.24)  sometimes turns out to be very convenient, because H and 
n are additive ilermitian operators. 

8.4,     Eint ropy. 

The average value of the negative of the logarithm of the statistical 
operator,   i.e.,  the average value of the entropy operator,  is called the 
Gibbs  entropy. 

.S"     >'i|)-- ('::i ;';=-- Sj, f., Iiioj. (8.26) 

This definition corresponds to the Gibbs definition of the entropy (2.24) 
in classical statistical mechanics and is its quantum generalization. 

From the properties of the statistical operator which were considered 
in section 7.2, it follows that the entropy (8.26) is a positive definite 
quantity.  In fact, in the diagonal representation it has the form 

•S- - -I'.Jl'V,-,.-.^'1''. ^•27^ 

because in accordance with (7.1'J) the eigenvalues of the statistical operator 
cannot be negative, pnn^ü. 
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Only in the particular case in which the statistical operator describes 
a pure state does S*0. 

The entropy (8.26) has the additivity property. If p describes statis-
tically independent ensembles and is the direct product of pi and P2 (8.22), 
then 

S-S. + S* (8.28) 
"here . .. . 

S = - (111 ('). Si = - (111 (.,)• s.,= - (111p2>. 

The entropy defined using formula (8.26) is time independent for an 
isolated system. 

In fact, the statistical operator at time t is connected with its value 
at t*0 by the unitary transformation (8.13): 

p(/) = U(l.0)o(0)U~,(t. 0). (8.29) 

For exanyle* U(t,0)«e"iHt^ if the Hamiltonian is time independent. 

Then we have 

S (0 - - Sp \f (/. 0)0(0) U~'1 (/. 0)In(U (1. 0)p(0) U~' (/, 0))] -
« - Sp [U (/. 0) |. (0) U~x (/, •)) l! it, 0) III (p (0)) u (/, 0)|, 

because 
;n (u (/, 0) p (0) U (I, 0)) U 0)In (p (0)) U 1 (/, 0). 

which holds in general for any function of an operator and can be demon-
strated by expansion in a Taylor series. Using the fact that 

Il(t, 0) (/"'(/, 0} 1 
i 

and that operators under the spur sign can be cyclically permuted, we obtain 

Si/1 • Sp{o(0)!nt.(0)} = S(0). (8 30) 
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On the other hand, it is well known from thermodynamics that the entropy 
of an isolated system can increase.      Therefore for nonequilibrium processes 
it is sometimes suggested  [14]  that the thermodynaroic entropy should be asso- 
ciated not with (8.26), but rather with the entropy calculated using a 
"coarsened" statistical operator p, averaged over a small range of the quantum 
mechanical states AT - a coarse-structure statistical operator 

ü-Tr-S1)u.p. {8,31) 

The operation of coarsening the statistical operator (8.31) is analogous to 
the operation of coarsening the distribution function in classical statistical 
mechanics (2.30).  For the coarse-structure statistical operator (8.31) the 
entropy 

(8.32) 

can increase. 

Suppose that at t=ü the state is described by the coarse-structure sta- 
tistical operator 

P(0)  = p(Ü). 

The corresponding entropy is equal to 

S, - - SpftHUjluiHO))- (8.33) 

At time t the entropy calculated using the coarsened statistical operator is 
equal to  (8.32), which gives 

Sf-S^ - Si)(ü(/)hip(/))-, S^iniOjliiölO)) 
- Sp imt) Ii. f' {')) -1- Sp (;.(0 Inp{t)) (8,34) 

(cf. (2.31a) ), because in accordance with the Liouville theorem 

Sp(p(t)lnp(t)) = Sp(p(ü)lnp(ü)). 
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For any two statistical operators there exists the inequality 

SpO,.lniOHp<1.lup1), (8.35) 

and equality is achieved only in the case p=p^.      The inequality (8.35) fol- 
lows from the obvious inequality 

!n.v>!-^,   .00, (8.36) 

where equality holds only for x=l. 

Substituting in (8.36) x=ppi" 
and averaging the equality over p, we obtain 

Substituting in (8.36) x=ppi" (p and pj are positive definite operators) 

spu.in^n;:--^ -v-vr'»   0- (8*37) 

because both operators are normalized  (the operators under the spur sign have 
been permuted).      The inequality (8.37)   coincides with (8.35), which was to 
be demonstrated. 

Putting p  =p(t),p1=p(t)   it  follows   from  (8.34)   and  (8.35)  that 

St j s0. 

Let us assume that p(t) does not describe a state of statistical equili- 
brium;  then,  in general, 

and 
St>S,h (8.39) 

i.e.,  the entropy St can increase. 

In quantum statistical mechanics,  as in  classical,   besides   smoothing of 
the statistical operator over the states,  a smoothing in time is also possible 
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u 
or 

!.(/)-e   | cv: p(/-; /,)>//;, (8.41) 

analogous to the corresponding averaging of the distribution function  (2.35) 
and  (2.36)   in classical statistical mechanics. 

Most convenient is the smoothing in the form (8.41),  for which e-»-0 after 
the limiting transition V-*»  (V/iN=const),   because it  correSj ond^  (as was noted 
earlier at  the end of  §  2)  to the apnlication of the causalit" condition for 
choosing the retarded  solutions of the Schroedingcr equat: e  f: rmal 
theory of scattering  (see appendices  I  and  III). 

The remarks made earlier about the coarsening of thj ^ at'   fcal  opera- 
tor do not resolve the question of the definition of the entrc        f a ron- 
equilibrium state.      The concept of the entropy of a nonequilibrium state 
will be considered in Chapter IV. 

§ 9.      dibbs Statistical Lnsembles in the Quantum Case 

The basic ideas of the theory of Cibbs statistical ensembles, discussed 
in § 3,  carry over directly into quantum statistical mechanics  [1-3]. 

In states    of statistical equilibrium the statistical operator can 
depend only  on the additive integrals of motion of the quantum Liuuville 
equation  (8.0).      Three such integrals of motion are known: the total energy, 
represented  by the llamiltonian operator II   (time independent),  the total 
momentum P and the total angular momentum M.      All of these quantities are 
dynamical variables in the sense of quantum mechanics,   i.e., ilermitian opera- 
tors acting  in the space of the wave functions. 

Consequently,  in accordance with the basic  ideas of Cibbs ensembles,p 
is a function of H,P,M: 

p  = pOl.P.M). (y.l) 

If the number of particles N  in the ensemble  is not  specified,  then  it must 
be considered as  a fourth integral of motion: 

[N.ll]   =  U, 
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where N is an operator taking on positive integer values Ü,  1, 2,,...      Then 

P  = P(I1,N,P,M). (y.2) 

If we further consider systems in a motionless container, then P=M=ü, 
and these integrals of motion need not be considered.      Thus,  for systems  with 
a specified particle number 

P = POD, (y.3) 

and for systems with an unspecified particle number 

P = P(H,N). (9.4) 

In addition,   the statistical operator can depend paramctrically on the 
quantities wh'ch  are specified for systems  in the ensemble,   for example,  on 
the volume V and particle number N in the case  (y.5),  or on V in the case 
O-M). 

9.1.    The Gibbs Microcanonical Distribution 

The microcanonical  distribution can he   introduced   in exactly the same 
way in quantum statistical mechanics as   in classical  (see section 5.1).       For 
this  let us consider an ensemble of closed,   eiiergetically isolated systems 
with constant  volume V and total particle number .'i, having identical energy L 
to within tiie accuracy AL<<L.       let us assume that for  such systems all quantum 
mechanical  states   in the  layer L,t+Al; are equally probable.      Such a distri- 
bution,  for which 

i Li -u':, .v, /)   fuT. /■• :/;,   '/;•, \/:, 
l  0 outside this  layer (.-'.^J 

is called the microcanonical distribution,  and the corresponding ensemble  is 
called the microcanonical  ensemble of quantum statistics. 

Microcanonical  distribution  ('J.j)   is the quantum generalization of the 
distribution  (5.3)   of classical statistical  mechanics.       The difference  is 
tiiat tiie statistical weight U(L,N,V')   is now  not  simply equal to the phase 
volume  (5.5a),  but   is the number of quantum mechanical   states in the layer 
L,L*AL  for a system with particle number N and volume V.      This  follows  from 
the fact that  the probability w(LiJ   must be  normalized to unity: 
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2 w (£*)-!. (9.6) 

We assume, as in Chapter I, that the quantity AE is small but finite, 
because in quantum mechanics an exact specification of the energy would 
require an infinite observation time, in accordance with the uncertainty 
principle between time and energy. For AE one might choosc, for example, the 
average value of the energy fluctuation of the system. 

Theoretically one can consider as an idealized limiting case an ensemble 
of completely isolated systems. Such a model is convenient in the respect 
that all arguments about the properties of isolated systems, introduced in 
section 8.1 and in the beginning of this paragraph, are exactly applicable. 
For completely isolated systems fl(E,N,V) is equal to the degree of degeneracy 
of the energy level E of a system with particle number N and volume V. If 
N is large, the number ft(E,N,V) is very large. 

The statistical operator (8.9) corresponds to the microcanonical distri-
bution (9.S). It has the matrix form 

o (.V, /)- IT:' (£, ;V, V) V >Yk (.v)
 xlrk CO, 

I < k C D (9.7) 

where x is the set of coordinates (and spins) of the N particles, and *t,..., 
are eigenfunctions of the Hamiltonian operator H, corresponding to the 

energy E. In operator form we have: 

p = 0-X(E,N,V)A(H-E), (9.7a) 

where H is the Hamiltonian of the system, and A(x) is a function which is non-
zero only in a thin energy layer 0$x$AE, where it is equal to one; outside of 
this layer it is equal to zero. 

From the quantum Liouville theorem (8.6) it follows that the microcanoni-
cal distribution is stationary. It must be stressed, however, that the 
assumption about the equal probability of the quantum mechanical states with 
the same energy for a closed, isolated system is the simplest assumption, but 
it is in no way a self-evident assumption. The problem of justifying this 
hypothesis is called the quantum mechanical ergodic problem. h'e shall not 
discuss these questions here, referring the reader to the literature [13,14]. 

The extremal property of the microcanonical distribution can serve as an 
argument in its favor. The microcanonical distribution corresponds to the 
maximum entropy among all distributions in the same energy layer (see section 
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lü.l).      The extremal property of the microcanonical distribution in classical 
statistical mechanics has already been discussed in § 4. 

Let us calculate the entropy for the microcanonical distribution.      In a 
diagonal representation 

S-<n)= - Sp(nliip)= - IVfcln^, (y#8) 

or,  since all w.   in the layer L,l>AH are identical  and equal to n"^(li,N,V), 
we obtain 

S =   InlUL.N.V), (9.9) 

i.e.,  the entropy for the microcanonical ensemble is equal to the logarithm 
of the statistical weight.       Formula (9.9)  corresponds to the Planck defini- 
tion of the entropy, which  is valid in general only  for the equilibrium case 
and  for the microcanonical  ensemble. 

The microcanonical distribution is inconvenient  for practical applica- 
tions, because in order to calculate the statistical weight, one must inves- 
tigate the distribution of eigenvalues of the llarailtonian 11, which is a very 
complex problem.       Rather than to consider energetically  isolated systems, 
it  is more convenient to consider systems in thermal  contact with their 
surroundings. 

9.2,    The Gibbs Canonical Distribution 

Let us consider quantum mechanical  systems with constant particle number 
and constant volume in contact with a thermostat.       The thermostat  is assumed 
to be sufficiently large such that upon interchange of energy with the sys- 
tems of the ensemble the state of the thermostat is  practically unchanged. 
The statistical ensemble of quantum mechanical  systems with fixed particle 
number N and constant volume V in contact with a thermostat  is  called the 
Ciibbs canonical ensemble in quantum statistics.      Such an ensemble is des- 
cribed by the (Uhbs canonical distribution 

w(tk)   = Q"1(0.V,N)exp(-tk/0), (9.10) 

where 9 is the modulus of the canonical distribution, wluch plays the role of 
the temperature,  and Q(e,V,N)   is the statistical sum, defined from the normal- 
ization condition  (7,12a): 
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Q (0, V, AO-Vexp(- Ehl0). 
k 

(9.11) 

In the statistical sum (9.11) the summation is carried out over all quantum 
mechanical states allowed by the symmetry principle; states belonging to a 
degenerate level are considered distinct. 

The logarithm of the statistical integral (9.11) defines the free energy 

F(0,V,N) = -0lnQ(0,V,N) (9.12) 

as a function of the parameters G,V,N. 

The Gibbs canonical distribution (9.10) is significantly more convenient 
than the microcanonical distribution, because the sum (9.11) over the eigen-
values can sometimes be calculated without knowing the eigenvalues themselves. 
In calculating the statistical sum it is necessary to consider only the 
auxiliary condition of constant particle number, rather than particle number 
and energy, as in calculating the statistical weight in the microcanonical 
distribution; therefore it is much simpler to work with the canonical distri-
bution rather than the microcanonical. 

The statistical operator 

[•(.V. *•)-<?->. V. A0S«-^*«W «*'). (»•!» 
k 

corresponds to the Gibbs canonical distribution (9.10), where x is the set of 
coordinates (and possibly spins) of the particles XI,...,XN; *k(*) are the 
eigenfunctions of the Hamiltonian 11. 

Let us introduce the operator e~"/e and stipulate that it acts not in 
the entire space of the wave functions, but only in the space of the wave 
functions allowed by the symmetry principle. Then (9.13) and (9.11) can be 
written in a more compact operator form: 

p = Q"' (0, I', — eu ~m'°, 
Q (0. V, .V) = Sp c-"'° - V J H'-; (A) J-"'° T, (.v) dx. 

k 

The expression (9.15) for the statistical sum is very convenient, because by 
the invariance of the spur (trace) operation with respect to the representation 

(9.14) 

(9.15) 
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of the matrix it is independent of the choice of functions ̂ (x), which need 
not even be eigenfunctions of H. 

Up to now we have assumed that the system does not move as a whole and 
has a single additive integral, the energy il. In the case in which besides 
the total energy H there exist integrals of motion P\t» ..,̂ s# the statistical 
operator has the form 

where ,...,fs are new thermodynamic parameters defined from the conditions 

(•A) = S 

9.3. Gibbs Theorem on the Canonical Distribution. 

In quantum statistical mechanics, as in classical, the postulates about 
the microcanonical distribution (9.5) and about the canonical distribution 
(9.10) are not independent. Here also there is a Gibbs theorem about the 
canonical distribution, according to which a small part of a microcanonical 
ensemble of quantum systems is distributed canonically. Proof of this 
theorem is very similar to the corresponding proof of the Gibbs theorem in 
the classical case, which was presented in section 3.3. 

The combination of the given system and the thermostat will be regarded 
as a single, closed, energetically isolated system with the Hamiltonian 

where Hj is the Hamiltonian of the original system, and H2 is the Hamiltonian 
of the thermostat, which is assumed to be significantly larger than the 
original system, i.e., having a much greater number of degrees of freedom. 
The interaction between the system and the thermostat is assumed to be very 
small but non-zero, because it must insure that the energy of the total sys-
tem remains constant. In fact, thermal contact with the thermostat is 
effected through the walls of the container and is therefore a small surface 
effect. 

The wave function of the Hamiltonian of the total system (9.17) splits 
into a product of wave functions of the thermostat (system (2) ) and the 

(9.16) 

II = Hj • II2 (9.17) 
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system under consideration  (1): 

YikCx.y) = ^oo^iCy). OMS) 

where V^Cx)  are the eigenfunctions of Hj, and VjCy)  are the eigenfunctions of 
H2;  x and y are the sets of coordinates of the system being considered and the 
thermostat, respectively. 

The energy levels of the total system are equal to the sum of the levels 
of system (1) and (2): 

^ik = V-i > Ek, (9.18a) 

where E^ are the energy levels of the system (1), and E^ are the energy levels 
of the thermostat. 

In accordance with (7,15) the statistical operator of the total system 
has the form 

()(v//, .vV)- l^;,M
f. (v, v)'l^(.v'.//'), 

1   k (9.19) 

where wi^ is defined by the expression (9.5). 

By calculating the spur of the total statistical operator over the coor- 
dinates of the thermostat we obtain the statistical operator of the system(l); 

p(.v. ,v') - Sp^p (vy. .vV) - V ::v ; \  ^ : '-v, vi %< (v'. //)'///. 

from which, using (9.18)  and assuming that the eigenfunctions  are normalized, 
we obtain 

where 
(9.2Üa) 

k   " 

- v.., 
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Thus, to find the probability distribution over the states in the system 
(1), it is necessary to sun the probability distribution in the total system 
over all states of the thermostat: 

©(£*)« V iy(£/ + £t):=_|_ £ i. 
(9.21) 

(to shorten the notation we shall omit the arguments N and V from (2(E)). 
This expression for the probability distribution of states in the original 
system can be written in the form 

where ft2(E~Ek) *s tl*e number of quantum mechanical states of the thermostat 
corresponding to the level E-Ek, and n(E) is the number of states of the 
total system corresponding to the level E. 

In order to calculate w(E)J it is necessary to obtain asymptotic estimate 
for the ratio of the statistical weights of the thermostat to the weights of 
the entire system, assuming that the thermostat is large, just as this was 
done in the case of classical statistics for the ratio (3.13). 

We shall present first a simple, but non-rigorous, derivation of the 
canonical distribution. 

Introducing the entropy of the thermostat S2(E) and the entropy of the 
entire system S(E) using the relation (9.9), we write (9.21a) in the form 

Taking into account that the system (1) is small compared to the thermostat, 
i.e., Ej^E, we expand S2(E-Ek) in a series in Ek and keep only two terms: 

w(Ek) = exp{S2(E-Ek)-S(E)}. (9.22) 

Using this expression we rewrite (9.22) in the form 

(9.23) 
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where Q is the statistical sum (9,11) and 

(9.23a) 

is the inverse temperature.      Thus, a small part of the microcanonical ensem- 
ble is distributed canonically. 

We shall present now a more rigorous proof of the Gibbs theorem, analogous 
to the proof of Yu. A. Krutkov given in section 3.3, 

Let us calculate the number of eigenfunctions of the total system with 
energy E,      tach eigenfunction of the system (1) with energy lij can be com- 
bined with any of the eigenf unctions of the system (2)   (thermostat)  with 
energy E-Ej,      ^(Ej) eigenfunctions of the system (1)  correspond to the 
energy level El.      fl2CE-Ei) eigenfunctions of the system (2)  correspond to 
the energy level E-Ej,      Thus, the total number n(E)  of eigenfunctions of the 
system, corresponding to the energy E,  is equal to 

ü(ß)- ^ Ü^.UM/r-W- (9.24) 
L. ■ '- 

The relationship (9,24) can be considered as a defining equation for üz,  if 
ii  and ^i  are considered to be known.  This equation is the quantum analog of 
the integral equation (3.19). 

Multiplying (9,24) by e"*^ and summing over all E, we obtain 

Changing the order of the summations on the right hand side of the equa- 
tion, we have 

Making a change of variables Ei=E-E2, we obtain 

Q(/.)--Q,(ä)Q..W. ,  r, 
where (9.25) 

(u-1. 2). 
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To estimate the statistical weights it is necessary to invert equation 
(9.26). 

Let us show that for the discrete spectrum the number of eigenvalues with 
energy in the interval from Ü to t is equal to 

nB)~-k j" ^w-t« (9.27) 

where a is a positive constant 

ä<ii<<» k (9.28) 

Formula (9.27) expresses the theorem on the inversion of a statistical sum. 

Substituting (9.28) into (9.27), we obtain 

1 ^ r (9.29) 

where</(x) is the discontinuous function: 

f 0 for •v<0' 
;r (A) :-,',  I  '._-:/>.-- I '- fur  .v-n, (9.29a) 

I 1  for  ,v>0. 

Thus, r(E) gives with very good accuracy the total number of eigenvalues 
less than E, because the lowest eigenvalue can always be chosen to begin the 
calculation of the energy.  In applying (9.29) to the calculation of the 
eigenvalues, the error introduced by the value of/'(x) near x=ü can clearly 
be neglected, because the number of eigenvalues is very large. 

The number of eigenvalues in the interval of energy (L,E+At) is evidently 
equal to 

«(t) = r(t+AL)-r(L), (9.3Ü) 
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and, thus, using the expression (9.27) for r(E), we obtain 

Q & = "ST f ^(E+A£) ~ ekE) Q (>•) 4- • 
* ~ 1 ' t /» (9.31) 

Formula (9.31) gives the required inversion of the series (9.28). 

Using (9.31) we obtain an inversion of the series (9.26): 

£>(£)- >, QiVdK 
(9.32) 

In accordance with the basic ideas of the Gibbs ensembles we assume now 
that the system (2) (thermostat) consists of n-1 identical, weakly interacting 
parts, each of which coincides with the system (1). The total system con-
sists of n such systems where n is assumed to be very large, and in the limit 

êt us recall that the system (1) itself consists of a very large num-
ber of particles. 

From (9.25) it follows that Q(A) splits into a product of n identical 
factors equal to Qj(X): 

Thus, the expression (9.32) for the statistical weights takes on the form 

QU) = [QlU)]\ (9.33) 

and analogously for the thermostat 

Q2U) a [QiU)]"-1. (9.33a) 

(9.34) 
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We shall obtain an asymptotic estimate of these expressions for the case n-«0 

by the saddle-point method.      It is convenient to write the first integral in 
(9.34)   in the form 

a+l t» 

Q(/r):=W    J   g""*1^"'^. (9-35) 

where 

Repeating the same arguments as in the classical case (see (3.25)),  we 
find the asymptotic estimates of the statistical weights: 

o (£)=— 
.>., Ar- 

^^hc>-L[Q^>r' 

where the parameter X^ is defined from the condition of the existence of the 
saddle-point   (3.25). 

Substituting the resulting estimates  (y.3b)   into (9.21a), we verify that 
the expression for w(I'ic)  is independent of the quantity AE and has the form 

v{Ek)~Q~l{0,V,\-)a-l:tl\ (9.37) 

where | 
0 = xr (9.37a) 

is the temperature, and 

QiQ.V.M^Ie-^QAV-la-W (9.37b) 

is the statistical sum. 

Thus,  if the total system has a microcanonical distribution, then a small 
subsystem is distributed according to the (libbs canonical distribution. 
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9.4.      The Gibbs Grand Canonical Distribution 

Let us consider quantum mechanical  systems with constant volume in con- 
tact with a thermostat which serves also as a reservoir of particles.      The 
thermostat  is assumed to be large enough such that upon interchange of energy 
and particles with systems of the ensemble its state is practically unchanged. 
A statistical  enseiuble of quantum mechanical systems with fixed volume V in 
contact with a thermostat and a reservoir of particles is called the Gibbs 
grand canonical ensemble in quantum statistics.      Such an ensemble is des- 
cribed by the Gibbs graml canonical distribution 

£*-(i.V ^(^Q-'^Dcxp^-i^^), (9.38) 

where o is the absolute temperature, and Q(e,)j,V)  is the statistical sum for 
the grand ensemble, defined by the normalization condition 

rf^^1 (9.38a) 
and equal to 

n       l L      l (9.39) 

We assume throughout the discussion that t^ depends on N, i.e.,  Bj^E^ ^,  but 
we shall not  indicate this explicitly. 

in the statistical sum (9.39)  tite summation is carried out over all 
admissible quantum mechanical states and over all positive integers N^U. 
We shall denote by the same letter Q the statistical sum for the grand ensem- 
ble (9.39)  and  for the canonical ensemble  (9.11), but we shall distinguish 
them through the variables on which they depend^. 

The logarithm of the statistical sum (9.39)  defines the thermodynamic 
potential  fi(e,vi,V): 

n(e,y,V)   = -01nQ(e,u,V). (9.40) 

The statistical sum of the grand ensemble is sometimes denoted by £(6,y,V). 
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The statistical operator 

p(.V,.v'H V«P(" 
+ [i V 
0 )w»;w. (9.41) 

corresponds to the Gibbs grand canonical distribution (9.38) where x is the 
collection of coordinates and spins of the particles, and Vfc(x) are the 
eigenfunctions of the Hamiltonian H and the operator N, i.e., ¥k(x)"*k R(X)• 
Since the operator H commutes with the total number operator N, the functions 
*k(x) can simultaneously be eigenfunctions of the operator N. 

Let us introduce the operator e"(H-MN)/0, which acts in the space of 
admissible wave functions of the system; here we consider N as an operator, 
although we retain the previous notation for it. Then the formulas (9.41) 
and (9.39) can be written in a more compact operator form: 

where ̂ (x) is a complete set of functions satisfying the symmetry or anti-
symmetry property, but not necessarily satisfying the Schroedinger equation. 
Formula (9.42a) is convenient because of the invariance of the spur (trace) 
with respect to the representation of the operators. 

Until now we have considered systems consisting only of one type of 
particle. It is easy to generalize the Gibbs grand canonical distribution 
to systems consisting of several types of particles. It can be imagined 
that the system is found in thermal and material contact with s large reser-
voirs of particles and of energy using semi-permeable membranes, which trans-
mit only one type of molecule. The statistical operator of such an ensemble 
will have the form 

p = e&-H + n-no (9.42) 
a'0*-Spe-1"'*™ = 5 J —(//—H/V)/0 

(9.42a) 

(9.43) 

where ua is the chemical potential for particles of type a 
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9.5.  The Gibbs Theorem on the Grand Canonical Distribution. 

For an ensemble of quantum mechanical systems with variable particle num- 
ber there exists a Gibbs theorem analogous to the corresponding theorem in 
classical statistics: consider a small part of a microcanonical ensemble of 
quantum mechanical systems with many degrees of freedom.  If in this small 
part of the ensemble the particle number is not constant, this part of the 
ensemble has a Gibbs grand canonical distribution (9,42). 

Let us prove the theorem. 

Let the system with energy U and particle number N consist of two weakly 
interacting subsystems with energies ^1,^2  an^ particle numbers N^,^, res- 
pectively; then 

b * Hj * E2,  N = Hi *  N2. Cy.44) 

Let us assume that the second subsystem (thermostat and particle reservoir) 
is significantly larger than the first 

bj  <<  I.2,      Nj  <<  N2. 

As the total system is closed and isolated, the microcanonical distri- 
bution (9.5) can be applied to it.  Repeating the arguments vhich were made 
in deriving the canonical distribution in section 3.3, we find the probability 
distribution in the first, small subsystem w^^tj) by summing the microcanoni- 
cal distribution of the total system over all states of the second subsystem. 
We thus obtain, in complete analogy with formula (9.21a): 

iF.)__üAE-nl,x1x,) (y.45) 
V "' ü(/;, .V) ' 

where Qj is the statistical weight of the second subsystem, and ii is the 
statistical weight of the entire system.      An eleuentary proof of the Gibbs 
theorem follows from this  immediately,      Lxpressing the statistical weishts  in 
(9.45) through the entropy of the second subsystem and of the total system 
according to the relationship  (9.9) and expanding the argument of the expo- 
nent with Ei<<E,Ni<<N, we obtain inncdiately the C.ibbs grand canonical  dis- 
tribution   (9.3HJ,      A similar derivation for the classical case was carried 
out  in section 5.4. 

We shall give below a more rigorous proof of the Gibbs theorem based on 
inversion of the statistical  sums. 
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The statistical weight of the total system n is connected with the 
statistical weights of the subsystems ft} and bX the relationship 

.i (/•. .V) = X Gi (Ei. A'I) ̂  (•-' ~ E.> -V 
OC V. . V 
0 < c. ~ 

-A',), 
(9.46) 

which is analogous to the relation (9.24), but which takes into account the 
possibility of the various distributions of particles between the subsystems 
(1) and (2). 

The relation (9.46) can be considered as a defining equation for ̂ 2, if 
ft and ft} are considered to be known. It has the form of a finite-difference 
equation with respect to the variables E and N. In the case of classical 
statistics it goes over into an integral equation in the variable E and a 
difference equation in the variable N; this equation was studied by Shubin 
[15]. 

Let us solve the equation (*9.46) for «2. To do this we multiply both 
sides of the equation by e-*E-fVN and sum it over all values of E and N from 
0 to »: 

V ()(/;, .v) = 

^ V V V.v A',) (£-/:„ .V-.V,). 
0\" V . x, !f-$"•:*.V 
0 /; < 'Z 

Changing the order of summation on the right hand side of this equation and 
making the changes of variables E-EI«E2,N-NJ«N2, we convert this equation to 
the form 

Q(/.. v) = (?,(;.. v)<?.(>.. v), 
where v , Q(*. v )= v 

0 < E < « 

2 e 4 £ t v ' v t ! ( f , N), oc.v << 

Qu (>•. V)= . V <?->•*' V.v o u ( / : > >v) ( a ^ 1 2). 
0«fc N < «0 
0 < £ < o o 

(9 .47) 

(9 .48) 

Let us note that if v is purely imaginary, then the right hand sides of 
(9.48) become Fourier series in the variable v. 

Inverting the relations (9.48) to find the statistical weights, just as 
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was done for the relations (9.26), we obtain 

Q2 (£, N) = 

1 i I Q i,.y \E-V A.V _ n — = J J U >. * 
c—3nl a-i'o 

Q(£. Ar)= (9.49) 
c+siw o+i® 

dk 

-THF J' dy I 
c—2.H a-<«> 

where a>0,c>0. Thus, (9.49) is a solution of the equation (9.4b). 

Let the second subsystem, i.e., the reservoir of energy and particles, 
consist of n-1 subsystems identical with the first subsystem. Then the total 
system consists of n such subsystems. On the basis of (9.47) we have 

Q2U#v)*[Ql(*#v)]n-1» QU,v)»[Qi(A,v)]n. (9.50) 

Using these relations, we write (9.49) in the form 

G,(£. A'H 
C + 2.*W 0 + i ~ , , 

' | dv i iQ,oi..)r'«i,-w<«lA*-*"-l)x' 
[2xir J *5 c—sxi 

Q(£, iV) = (9.51) 
e+'2xt a +<•» 

-JU J </v j 10,0., v )rc^(^ A t - v A v - i ) f • 
*" c - i t f i < a - » » 

Subst i tut ing (9.51) in to (9 .45) we obtain 

° T * s-"x (».«, 
J •>. — 

c - -J.i I . a-'00 

< r V " n > P-vV I /. A£-V AX _ 0 j ,7v | [Qi (>., v)] e v A U /. 
a - J < ® 
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The integrals in formula (9.52) can be estimated by the saddle-point 
method, using the fact that n is large, just as we did in section 9.3. 

The saddle point for the integrand in the denominator of (9.52) corres-
ponds to the minimum of the function x(x»v) (see (9.3S) and (9.35a)) for real 
values of the variables X and v: 

Thus, on the basis of the properties of functions of a complex variable, the 
function x(x,v) has a sharp maximum in the direction parallel to the imaginary 
axis, because n is large (E/n=const, N/n»const). 

Let the roots of the equations (9.53) be equal to Xj and vj. The path of 
integration in (9.52) is taken through these points. Let us note that the 
asymptotic expression for W^J(EJ) as n-*** can be written immediately if the 
slowly varying function 

is taken out from under the integral sign in the numerator at the saddle 
point A»*x,v«vi. Then the remaining integral cancels with the integral in 
the denominator, and we thus obtain 

7 (/., v) — k~:— v ~ + Q i v)-

The minimum of x(x*v) is found from the equations 

£ + 4rlnQ.(/i. v) — 0, n OA. 

!L+-jL\nQA*., v)=;0. 
U O V 

(9.53) 

Q1-1(X,v)e"^l*vNl 

WNI(HI) * Qi"l(X1,vi)e-xlEl*vlNl, (9.54) 

which is the same as (9.38), if one puts 

(9.55) 
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Thus, the probabilities of states in the small subsystem are distributed 
according to the Gibbs grand canonical ensemble. 

9.b,  The Gibbs Uistribution for an Isobaric-Isothermal ünsemblq. 

Let us consider quantum mechanical systems with constant particle number, 
but variable volume in contact with a thermostat.  A statistical ensemble of 
quantum mechanical systems with fixed particle number N and pressure p in 
contact with a thermostat is called the uibhs isjbaric-isothermal ensemble. 

Let the system with energy L and volume V consist of two weakly inter- 
acting parts with energies bi,L2 and volumes Vi,V2: 

E « Ei ♦ 1-2,  V » Vi ♦ V2, (y.5b) 

in which the first subsystem is significantly smaller than the second (the 
thermostat), 

111 «  E2,  Vi << V2. 

Let us assume that the total system has a microcanonical distribution. 
Then, repeating the arguments of the preceding section, we find the proba- 
bility distribution in the first subsystem: 

    (r._Ü!iE~E„V-V1)_ 
wi.U-iJ nAEi V) 

= exp{SJ(£-/r„ V-V^-SU-, V)), (y.57) 

where n2(H,V) and n(I:,V) are the numbers of quantum mechanical states for t 
and V for the thermostat and the entire system, respectively; ST and S are 
the entropies of the thermostat and of the entire system. 

Taking into account the smallest of the first subsystem, we expand the 
entropy in (9.57) in powers of Ej and V^. Terminating the scries with the 
linear terms, we obtain 

where      . dS.in.V)        P „'■*■[ 
01: 
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and e is the temperature, p is the pressure, and 4>(0,p,N) is the Gibbs 
thermodynamic potential, in complete analogy with the corresponding formulas 
(3.42)-(3.43) of classical statistical mechanics. 

The statistical operator 

corresponds to the distribution (9.58). 

We have considered four types of Gibbs statistical ensembles: the mici-o-
canonical, the canonical, the grand canonical, and the isobaric-isothermal 
ensembles. Sometimes a generalized Gibbs ensemble is introduced in which 
the energy, particle number, and volume are variables [16, 17]. But such 
an ensemble is inconvenient, as we have already noted in Chapter I, because 
in this ensemble it is necessary to introduce the intensive variables 6,y,p, 
which are not independent. In constructing statistical ensembles it is 
convenient to keep at least one extensive thermodynamic variable. 

i 10. Connection Between the Gibbs Distribution and the Maximum Information 
Entropy (Quantum Case) 

In 5 4 we considered the connection between the Gibbs distribution of 
classical statistical mechanics and the maximum of the information entropy. 
There exists a completely analogous relationship in quantum statistical 
mechanics. 

The information entropy (4.1) is defined for a discrete probability 
distribution. Quantum statistics studies distributions over discrete, 
quantum states; therefore, the analogy between the information entropy (4.1) 
and the entropy in quantum statistical mechanics (8.2b) is closer than in 
classical statistical mechanics. The difficulty in choosing an invariant 
probability measure, which arises for continuous distributions, does not 
exist in quantum statistics. 

We have already introduced the entropy for quantum ensembles in section 

(9.59) 

8.4: 

~ — (111 o) = — Sp (f> 111 p), (10.1) 

or, if the statistical operator is represented in diagonal form 

(10.1a) 
k 
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We have denoted the entropy not by S but by Su,  in order to emphasize that we 
are considering the information entropy as a functional of an arbitrary 
statistical operator p. 

Let us consider the extremal properties of the Gibbs quantum statistical 
ensembles.      The extremal properties of all of the Gibbs ensembles can be 
obtained from the  inequality (8.35): 

Sp(p'lnp-) > Sp(p-lnp), (1Ü.2) 

where p and p' are arbitrary statistical operators.     We have already made 
use of this  inequality in section 8.4. 

10.1.      Extremal Property of the Microcanonical Distribution. 

Let us show that of all distributions with the same particle number and 
energy falling in the same energy layer the microcanonical distribution {y.7a) 
corresponds to the maximum value of the information entropy. 

Let p  be the statistical operator of the microcanonical distribution 
(9.7a), and  let p' be an arbitrary statistical operator acting in the same 
space and non-zero in the same energy layer as p.      From the normalization 
condition of the statistical operators  it  follows that 

Spp  = Spp' =   1. 

Substituting p and p" into the inequality  (10.2), we obtain 

-Sp(p'lnp') ^  -Sp(p'lnp)   = Spp'lnfi = lnn(E,N,V), 

i.e., using  (9.8)   and (9.9) 

-Sp(p'lnp')   $  -SP(plnp). (10.3) 

Thus it is shown that the microcanonical distribution (9.7a) corresponds 
to the maximum of the information entropy among all distributions in a given 
energy layer. 
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10,2.      Extremal Property of the Gibbs Canonical Distribution, 

Let us show that the Gibbs canonical distribution corresponds to the 
maximum of the information entropy (10.1)  for fixed average energy 

and with the normalization 

<ll> = Sp(pH) (10.4) 

Spp =  1. (10.5) 

We shall seek an extremum of the functional  (10.1) with the auxiliary 
conditions  (10.4)  and (10.5).      For this it is necessary to find the absolute 
extremum of the functional 

-Sp(plnp)-ßSp(pH)-XSpp, 

where ß and X are Lagrange multipliers, defined from the conditions  (10,4), 
(10,5).      Setting the first variation of this functional to zero, we find 

P-Q-'expC-ß//), 
where (10.6) 

i QlO.l'^Spe^-.//),      ß..'> (1Ü46a) 

which coincides with the canonical distribution (9.14).      Thus,  (10.6)  cor- 
responds to the extremum (10.1). 

Let us now show that  (10.6)  corresponds to the maximum of (10.1). 

Let p' be a normalized statistical operator, corresponding to the same 
average energy as (10.b). 

Sp(p'H)  = Sp(pll), 

but otherwise arbitrary.  Substituting (10.6) into the inequality (10.2), 
we obtain 

108 - 



- Sp(p'lnp') < - Sp(p' lap) = 

i.e., 
= Sp p' InQ + p Sp (p 'H) = in Q + ji Sp (p//), 

- Sp(p/lnp'X-Sp(p!np), 

where p is the Gibbs canonical distribution (10.6). 

Thus, the Gibbs canonical distribution corresponds to the maximum of the 
information entropy among distributions with the same average energy. 

In the case in which the average values of any n quantities are given 

from the extremum condition of the information entropy (10.1) we obtain 

which corresponds to its maximum. 

10,3. Extremal Property of the Gibbs Grand Canonical Distribution. 

Let us show that the Gibbs grand canonical distribution (9.42) corres-
ponds to the maximum of the information entropy (10.1) for fixed average 
energy 

<:/Y> = Sp(p.A.) (A = 0, 1. 2 ii - !), (10.7) 

<H> = Sp(pil) (10.9) 

and average particle number 

<N> » Sp(pN) (10.10) 
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and with the nbrmalization 

Spp « 1. (10.11) 

We look for the absolute extremum of the functional 

-Sp(plnp)-BSp(pH)+vSp(pN)-ASppp 

where 6,v,X are Lagrange multipliers. From the extremum of the functional 
we find 

f 9.-1/ . ) 
P o }• (10.12) 

where 
£-£2,0 Spexp| — — 5 — |. v = |, 

' ' u (10.12a) 

which is the same as the statistical operator of the Gibbs grand canonical 
distribution (9.42). 

From the inequality (10.2) it follows that the extremum corresponds to 
a maximum: 

- Sp(p'lnp'X-Sp(p'lnp) = 
-f+-^-)}=-Sp(p!np), (10.13) 

where the conditions (10.9)-(10.U) have been used for p and p', i.e., 

Sp(p'H) - Sp(pH), Sp(p'N) » Sp(pN). 

Thus, the statistical operator (10.12) corresponds to the maximum of the 
information entropy for fixed average energy and average particle number. 

It is easily verified by an analogous method that the statistical opera-
tor for the isobaric-isothermal Gibbs ensemble (9.59) corresponds to the 
maximum of the information entropy 
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5U= - J Sp(plnp)(/K, (10.14) 

with the auxiliary conditions of constant average energy and average volume 

W-Jsp 

The extremal properties of the Gibbs quantum ensembles were noticed long ago 
[2, 3, 9]. In generalizing the Gibbs ensembles to the case of quantum 
statistics, von Neumann proceeded from exactly these extremal properties of 
the entropy [2, 3]. 

The extremal properties of the Gibbs statistical ensembles which have 
been considered above can be used as a basis for their definition; this is 
done by Jaynes [18, 19]. In what follows we shall often make use of the 
extremal properties of the entropy to construct ensembles in nonequilibrium 
statistical thermodynamics (see Chapter IV). 

S 11. Thermodynamic Equalities 

11.1. Quasistatic Process. 

To obtain thermodynamic equalities in quantum statistical mechanics, as 
in classical, it is necessary to consider a quasistatic process of infinitely 
slow change of the external parameters defining the ensemble. We shall 
assume that in a quasistatic process the external parameters ai,a2,*.*,as 
are changed so slowly that the ensemble of quantum mechanical systems can be 
considered at each moment of time to be in statistical equilibrium. The 
generalized forces correspond to the parameters 

'' ' On, (11.1) 

Their observed values in a quasistatic process are equal to averages calcu-
lated using the equilibrium statistical operator: 

</!,) = Sp (p/l,)= - (11.2) 
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In the particular case in which the volume V is chosen as the generalized 
parameter, the generalized force is the pressure 

P—W/- (11.3) 

The quantity dH'dV is a dynamical variable whose form we shall define more 
precisely below. 

11.2.  Thermodynamic Equalities for a Microcanonical Ensemble. 

In accordance with (9.9) the entropy for the Gibbs microcanonical ensem- 
ble is equal to the logarithm of the statistical weight: 

S(E,N,V) = lnn(E,N,V). (11.4) 

The total increase of the entropy for a change of the energy, the number of 
particles, and the volume is equal to 

.) l, (i       .) :.. (">        ,1 1.-, O 

uS^-ji-dt^-^y-dV -.--j^dN. (11.5) 

which can be written in the form of the usual thermodynamic equality 

''.,;!■•_.i-(/V (11.6) 

where 
u 

') :iir'  ~ii~u~"ö[^'   ;ö "   ' ox ' (ii.7) 

and 0 is the temperature, p is the pressure,  and u is the chemical potential, 

It is easily verified that the pressure defined by formula (11.7)   is 
indeed the average value of the generalized force 3H/3V.      In fact, the 
statistical weight of the microcanonical distribution (9.7a)  can be written 
in the form 

n(E,N,V) = Sp(A(ll-E)). (11.8) 
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For convenience of calculation it can be considered that A is a continuous 
function approximating the step function.      Let us calculate the partial 
derivative with respect to V of the identity (11.8): 

or dQ 0   „/df/\ rill l<)!I- 
JF "' _ "oil"\äV I ~    'oil ^ov I (11.y) 

(we have discarded the small terras of the order of the fluctuations, which is 
permissible in the thermodynamic limit).  Thus, 

cM,i aa:, .V, l') dh\il{E, .V. V) (ÜH\   < 
dV    "~ ~     Oii \dV/' (11.9a) 

and p, jefined by equation  (11.7),  coincides with the average value of the 
generalized force 3H/8V, which was to be shown. 

The physical  interpretation of 6 as the temperature is evident from the 
fact that this quantity is an integrating factor for dH+pdV-pdN, 

11,3,      Virial Theorem for Quantum Systems, 

Let us consider the virial theorem for the case of quantum statistics; 
it is analogous to the classical virial theorem considered in section 5,3. 

Earlier we defined the pressure as the average value of the operator of 
the generalized force 3H(p,x)/iV, which is a function of the momentum and 
position operators p,x.      Let us determine the explicit form of this operator. 

We shall begin with the statistical distribution (y.7a).      We write the 
statistical weight  (11.8)   in the form 

ß(E,N,V)  = Spv{A(H(p,x)-L)}, (11.1U) 

where we consider that H(p,x) is independent of the volume V; a volume depen- 
dence enters only through the dimensions of the basic region V=L3 of normal- 
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ization of the wave functions which are used to calculate the spur (trace) in 
(11.10).      We indicate this by the subscript V on the spur.      We shall describe 
the variation of the volume by introducing the parameter X3 in front of V: 

Q {E, N. W) = Sp^ {\(H {p. x) - £)}. (11. lüa) 

We make the chanp.e of variables 

x = >x',   p = X'V, (U.lüb) 

i.e., we carry out a canonical transformation, which does not change the 
phase of the wave functions 

(xp) = (xV) 

and which makes the basic region of normalization independent of X: 

Q(Z:..V.;rV')^Spr|A(//(f, u)-£)}. (llill) 

Differentiating ü  with respect to X, we obtain 

^-^ivb^Hx'^H) ill 

or,  putting X=l, 

{31]     ~--d
r\il(--Il{

1-,Ax\)]      . 

Using (5.10a), we obtain 

(11.12) 

(11.12a) 

Comparing (11.12a) with (11.9), we find the explicit form of the operator 
3H(p,x)/3V, which corresponds to the pressure: 
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d// ip, x) __ 1 U_ , £ \ , j_x OV 3K U ' jx_, " Ul.IJJ 

w The formula thus obtained differs from (5.12) only in that p and x are now 
non-commuting operators. Otherwise it has an identical form. 

In the particular case of a ilamiltonian for particles with a two-body 
interaction we obtain 

dlUfi, x) 
OV 

2 
W 

V* mi 
2m 

iVfv *»(*<-*/) 
6/ JU X" Ox. 

i-fit (11.14) 

This formula gives the required representation for the pressure operator. 
The average value of the operator (11.14) gives an expression for the pressure: 

P = 17 + TF ~ 
l i f ! 

a*(xl-xi) (11.15) 
' 1 - dx, ' 

i.e., a generalization of the virial theorem for the case of quantum statis-
tics. Thus, in quantum statistics the pressure is equal to 2/3 of the 
average kinetic energy density plus 1/3 of the virial forces, as in classical 
statistics. 

The difference from the classical case lies in the fact that the opera-
tors appearing in (11.15) for the kinetic energy and the virial forces do 
not commute among themselves. Therefore the formula (5.14c), expressing the 
law of uniform distribution of energy over the degrees of freedom, is not 
valid in the quantum case. 

11.4. Thermodynamic Equalities for the Gibbs Canonical Ensemble. 

The entropy for the Gibbs canonical ensemble (9.14) is equal to 

S=- Spfrlnp)--^--. (11.16) 
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Differentiating the identity (9.IS) 

e-F/e - sP e-»/e 

with respect to 0, we find an expression for the average energy: 

( i D - n ' K i l r <»•"> 

Substituting (11.17) into (11.16), we obtain another expression for the 
entropy: 

S - - ( « • ("•«) 
\ 'a,. N 

The average value over the Gibbs canonical distribution of the generalized 
force (11.1) is equal to 

dH 
^ 

tiT 

= - (l̂ > " ~ cF'° SP.(e_///° ̂7). (11.19) 

(/If) = 0 ~ Sp =-• - 0 eF'° <»-«• 
Vc/, 

Thus, the observed value of the average of the generalized force, correspond-
ing to a change of the parameter ai# is equal to 

(11.20) 

or, in the particular case in which c*i«V, 

Uv)f,.v (11.20a) 
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We write the system of thermodynamic equalities thus obtained in the form of 
one relationship giving :he change of the free energy F upon variation of 
the parameters 6, as, N: 

dF = (w)aj>/e + l(̂ )0t.vrfrt' + (l̂ )0iaid:V' ^ ^ 

or using (11.18) and (11.20) 

dF = - SrfO- (A^dcii + ndN, (11.22) 

Equation (11.22) comprises a complete system of thermodynamic relations, 
which can be expressed not only through F, but also through the other thermo-
dynamic functions, as in section 5.4. 

11.5. Thermodynamic Equalities for the Gibbs Grand Canonical Ensemble. 

The thermodynamic equalities for the Gibbs grand canonical ensemble are 
obtained in exactly the same way as for the canonical ensemble. 

The entropy for the Gibbs grand canonical ensemble (9.42) is equal to 

5= - Spfr>lnp)= (H) ~ Q0~ "
 {N) . (11.24) 

Differentiating the identity (9.42a) with respect to 6 and y, we obtain an 
expression for the average energy and average particle number: 

;;;>-„<.v)--0>£(f\ , (H)- - (f)e . (11.25) 
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Substituting (11.25) into (11.24), we write the entropy in the form 

c - - (J*L\ 
(11.26) 

The average of the generalized force (11.1) over the grand canonical 
ensenble is equal to 

Thus, 

= 0 aD'° Sp <»-<//-nv>/8 = Q fio/n j|_ 

\ <'n. ,v 

In the particular case in which aj»V 

(11.27) 

(11.27a) 

To obtain a complete system of thermodynamic equalities we calculate the 
change of the thermodynamic potential fi(6»u»ai****»as) upon variation of the 
parameters d, u, «1(...(as: 

dQ = ("^ 1. dQ + ^ ("^ )o. ai
dai + ^d*' (11.28) 

or using (11.26), (11.27), and (11.25) 

dQ - - 5 dQ - 2) (/l,) - (<V) dn. (11.29) 
. ' - i 

Equation (11.29) comprises a complete system of thermodynamic relationships. 
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11,6.      Nemst Theorem. 

In the preceding sections of this paragraph, we obtained thermodynamic 
equalities expressing the first and second laws of thermodynamics on the basis 
of the various Cibbs ensembles.      We discuss now the Nernst theorem, or the 
third law of thermodynamics. "        ' 

The Nernst theorem establishes the behavior of the thermodynamic func- 
tions upon the approach of the temperature to zero and is  connected with the 
quantum properties of the systems at  low temperatures.      Nemst established 
experimentally that upon the approach of the temperature to zero for all 
substances the difference of their entropies S(9,ai)   (which is the only measur- 
able quantity)  approaches zero together with its derivative with respect to 
external parameters,  i.e.. 

s(o, crW(o..;;.    (■'''] C11.3Ü) 

for all values of the parameters ctj, a'i.      For example,   if the volume is the 
external parameter, then 

S(0. V'.HSCO.F,).     {§■]     -0. (11.30a) 

Since the limiting value of the entropy is independent of the parameters 
defining the system,  it is  convenient,  Tollowing Planck,  to put  it equal to 
zero and to obtain an absolute normalization of the entropy of any substance: 

StU^i)  = ü. (11.3Üb) 

These distinctive features of the behavior of the entropy at low tempera- 
tures constitute the theorem of Nernst  [20-22]. 

The Nernst theorem is not applicable to substances which are not in 
statistical equilibrium,  for example,  amorphous bodies or disordered alloys, 
which can exist even at very low temperatures as "frozen" metastable states 
with very long relaxation times.      Because of the illegitimate application of 
the Nernst theorem to such substances the validity of the theorem was formerly 
doubted. 
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Unlike the first and second laws of thermodynamics, which follow 
directly from the Gibbs distributions, there does not exist a general statis-
tical proof of the Nernst theorem, although for all known, physically reason-
able oodels the Nernst theorem can be shown to be satisfied by the use of 
quantum statistical mechanics. 

Let us consider the limit of the Gibbs distribution 

e (11.31) 

as the tenperature approaches zero. 

It is convenient to express the free energy in (11.31) through the entropy 
using the relationship (11.16) 

V)k — exp < — 5 J± S + 
or 

(11.31a) 

where EQ is the energy of the ground state, for which Efc>E0 for kj«0, because 
the degenerate levels lie above the ground state. As e-KJ the average energy 
<H> approaches E0. Calculating the limit of the expression (11.31a) as e+0 
using l'Hopital's rule, we obtain 

lim c:<!: = (0) « exp(- S (0) + Cv (0)) bE P . 
. l - k ' i »» V 0->0 

s ue re fl upu /:4 — £"0, (11.32) 
fir, „ r: —- \ _ 

' 0 i; pii i: ;v-/T0, 

is the specific heat at constant volume for e»0. From 
the normalization condition for the probability (11.32) it follows that 

M0) = Tr^w.,' (11.33) 
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where Q0 is the multiplicity of the ground state E0.      But from the expression 

s.^IL 

it follows from 1'Hopital's rule that 

S(Ü)   = Cv(0)   * S(0), 

i.e.«  that 

Cv(0)   = 0. 

Thus, the limiting value of the entropy as 9-*l) is equal to 

S(ü) =  lmj0. (11.34) 

From the formula (11,33)   it follows that as e-K) the Gibbs canonical 
ensemble goes over into the microcanonical ensemble with entropy (11.34). 

For all known systems (crystal lattices, quantum gases, etc.) the ground 
state is non-degenerate,  i.e.. 

"o a 1. 

and, consequently, for these systems the entropy approaches zero as e->-ü. 
Even if QO>>1» but the thermodynamic limit 

lim --..^o, 

it can be considered that 

S(ü) » 0. (11.35) 

Sometimes in textbooks the Nernst theorem is incorrectly associated only 
with the absence of degeneracy in the ground state.  In reality the main 

121 - 



point of the Nernst theorem does not lie in that; rather it lies in the dis- 
tinctive features of the energy spectrum for small degeneracies. 

If the Nernst theorem is associated only with the absence of degeneracy 
of the ground state, then the distinctive features of the behavior of the 
thermodynamic functions which follow from the Nernst theorem would begin to 
appear only at very low temperatures 61, of the order of the difference of 
the energy of the first excited level and the ground state. 

öl = lu - li0, 

but since the spectrum of macroscopic bodies is practically continuous, these 
are very low, unobservable temperatures.  For example, for an ideal gas of 
atoms with mass m in volume V=L^ 

E -E -1- /• ■    li- 
9.: 2.71 r''' 

where kmjn=2Ti/L is the minimum value of the wave vector.      For a crystal 
lattice 

fi - £0 ^ firmln ~ 
/;■: 

where s is the speed of sound. 

In reality the behavior of the entropy required by the Nernst theorem 
begins to appear at much higher temperatures.      For example,  for ideal quan- 
tum gases the Nernst theorem follows  from the degeneracy effects.      For an 
ideal Bose gas the behavior of the entropy corresponding to the Nernst theorem 
begins to appear at temperatures of the order of the degeneracy temperature e0 

^-S-ITT' C
11

-
36

) 

and for an ideal Fermi gas it begins to appear at temperatures  lower than that 
corresponding to the Fermi energy.      The order of magnitude of this tempera- 
ture is given by the same expression  (11.36), but for electrons  in a metal 
this can be very large because of the smallness of their masses. 

The degeneracy temperature of ideal gases is significantly higher than 
Oj, which is defined by the position of the first excited level.       For crystal 
lattices the Nernst theorem begins to appear at temperatures of the order of 
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the Debye temperature eD, defined by the energy of the elementary excitations 
for maximum wave vector ki>: 

G0=iskh—tis y*. 

The fact that the degeneracy temperature and the Debye temperature are both 
proportional to Planck's constant 1i shows that the Nernst theorem is con-
nected with the quantum properties of the system. To prove the Nernst 
theorem for the general case it would be necessary to study the distribution 
of the eigenvalues Efc near the ground state, i.e., to study the function 
fl(E,N,V) near E»E0. Up to the present time this has been done only for 
specific models. For all models of physical interest which have been stu-
died, the distribution of eigenvalues near the ground state is such that the 
Nernst theorem is satisfied. It can be said that in all cases when the 
lower part of the spectrum of the system can be represented in the form of 
an ideal gas of quasi particles (Fermi or Bose types), the Nernst theorem 
turns out to be satisfied. 

i 12. Fluctuations in Quantum Systems 

We shall consider fluctuations for the quantum Gibbs statistical ensem-
bles. It is particularly simple to calculate fluctuations of quantities on 
which the statistical operator which describes the ensemble depends, for 
example energy fluctuations in the Gibbs canonical ensemble. 

12.1. Fluctuations in the Gibbs Canonical Ensemble. 

The average value of the energy for the Gibbs canonical ensemble is 
equal to 

v'l) = Sp (gP-mx //). (12.1) 

Differentiating this identity with respect to 6 for constant V and N, and 
using (11.17), we obtain an expression for the energy fluctuations in the 
Gibbs canonical ensemble 

m - W - ( 1 2 . 2 ) 

which has the same form as in the classical case (3.8d), but with the dif-
ference that the averaging is carried out not with the classical distribution 
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function, but with the statistical operator. 

The relative sraallness of the energy fluctuations in the Gibbs canonical 
ensemble follows from (12,2), because the average energy is proportional to 
the number of particles N, while e is independent of N, 

12.2,      Fluctuations in the Gibbs Grand Canonical Ensemble, 

In an analogous way we calculate the fluctuations of energy and particle 
number in the Gibbs grand canonical ensemble.      Differentiating the expres- 
sions 

(//-iiAO-Spü",J-;;H''-"(//-H-V)). 
fl7   31 

/ Y\ = S;) (c.'l"~;'+|lV)" ;V) i*6.jj 

with respect to 8 and y with the remaining parameters being constant,  and 
using  (11.25), we obtain expressions for the fluctuations of energy and 
particle numbers in the Gibbs grand canonical ensemble: 

((//-^)_(//_;(.v)^.= 0.^((//)_!iCv))i (12.4) 

<)   X) 
JUT- 

i.e., the same expressions as in the classical case (3.35). 

The relative smallness of the fluctuations in energy and particle number 
in the Gibbs grand canonical ensemble follows from (12.4). 

12.3,      Fluctuations in the Gibbs Generalized linsemble. 

Let us consider fluctuations for the distribution which is described by 
the statistical operator (10.8) 

= expU<I>(^ ^J-^nl. (12-5) 
p = cxp 
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in which are given the average values 

(A) = Sp(p^,)   (,',-0, 1 n). ^12.6) 

In (12.5)  ♦ (sF0,... ,irn)  is the Mas'ye-Planck function, defined by the normali- 
zation of the spur (trace) to unity: 

a>     c     -l^-n (12.7) 

Differentiating this identity with respect to Z^, we obtain the average value 
of^: 

{^-Spie-*--^^)--™ (12.8) 
Ofk 

To calculate fluctuations it is necessary to distinguish two cases: when 
all of the „^j. are integrals of notion and when not all of the ^ are integrals 
of motion. 

Let us consider the first case.      Since it is assumed that all of the 
^ commute the exponential of the sum of operators can be differentiated 
like an ordinary function, even outside the spur sign.     Differentiating the 
identity (12,8) with respect to f^, we obtain an expression for fluctuations 
of the quantities 

;.,VA)-(^H^) — ------- - Trrr^UTTJTv C12.9) 

analogous to the classical expression (b.7). 

In the second case when not all of the ^ are integrals of motion and 
may not commute among themselves, care must be taken in differentiating the 
exponential, which contains a sum of non-commuting operators. 

Let us derive a formula for differentiating the exponential e"^ with 
respect to the parameter a.     To do this it is necessary to expand the expo- 
nential eA*B in a series in B, where B^öA and does not commute with A. It 
is convenient to introduce the auxiliary operator XCt) 

, ■■'^•~X(x)eAx. (12.10) 
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satisfying the condition 

*(0)-l. (12.10a) 

The expression (12.10) can be simply differentiated with respect to T( because 
A+B is independent of T, and the increment (A+B)5r commutes with A+B. The 
relationship (12.10) is equivalent to the differential equation for JC 

^ = (12.11) 

with the initial condition (12.10a), because in differentiating (12.10) with 
respect to T the termsJffê A on the left and right sides cancel. The dif-
ferential equation (12.11) and the initial condition (12.10a) are equivalent 
to the operator integral equation forjf: 

% (T)= 1 + f .7/(T,)eAl>Be-Ax<dx,. (12.12) 

Iteration of the equation (12.12) gives an expansion ofjjfin powers of B. 
Keeping only the first order term in B, we obtain 

x (T) & i + f e.it, rfTi# (12.12a) 

i 

Setting T*1 in (12.12a) and substituting this expression into (12.10), we 
obtain 

gA+B ^ + j eAx fie-Ai eAf 

I 
= J eAx6Ae~Azc*dx, (12.13) 

o 
i 

jjigAw.. feAxJjLe-AxgAfr. (12.14) 

0 

or i 

Formula (12.14) gives the rule for differentiating the exponential of an 
operator in the general case. In the particular case where A is proportional 
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to a, the usual rule of differentiating an exponential follows from (12.14). 

To calculate the fluctuations of the quantities^ we differentiate the 
formula (12.8) with respect toiTi according to the rule (12,14),      We obtain 

where 

£1^1 = (^) (£',) - | {Putfi (T)) dx, (12.15) 

^(^-^V**^-^-. (12.16) 

thus, i 
i_f^I = - f {{J\ - {.?,)) [A (t) - (^i))) dr. (12.17) 

ÖJ  i 
U 

It is convenient to introduce a more compact notation for the quantities 
on the right hand side of (12.17), which we shall often encounter. 

i 

(^. ^H ((^-(.'A)){^(v)-(^)))^. (12#18) 
0 

Therefore,   (12.17) can be rewritten in the form 

(l?     n>x^_l^A^-A^l.^^£±-.. (12.19) 

Thus,  if the quantities ^(isO,  1,  ..,, n) do not commute among them- 
selves, the second derivative of $ with respect to the parameters ^Fi and «^ 
does not simply give the relative fluctuations of ^j and^, but rather the 
average with respect to T of the value of the fluctuations of ^ and ^(T). 

Only in the particular case in which the operators ^ commute or in 
which their non-commutativity can be neglected do we obtain the formula (12.9) 
for the fluctuations.      In that case the macroscopic distribution function 
(6.11),  introduced in S 6, can be constructed. 

i 13.      Thermodynamic Equivalence of Gibbs Statistical Ensembles 

As was shown in §§  3 and 9, all of the ensembles of statistical mechanics 
are defined by specifying the external conditions in which the systems making 
up the ensembles are found.      For example, the microcanonical ensemble is 
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defined by constant energy, constant particle number, and constant volume; 
the canonical  is defined by constant particle number,  constant volume, and 
contact with a thermostat; the grand canonical  is defined by constant volume 
and by contact with a thermostat and a reservoir of particles; the isobaric- 
isotherraal is defined by constant particle number, constant pressure,  and by 
contact with a thermostat. 

The application of statistical ensembles to concrete problems is usually 
not restricted by the conditions for which the ensembles are defined.      In 
the choice of an ensemble one is guided by the convenience of calculation,  and 
not by the conditions in which the system is found. 

As justification for replacing one ensemble by another, it is usually 
pointed out that the different ensembles differ very little from one another, 
because of the small fluctuations in the quantities which are not specified 
for the ensembles.      Indeed, as we verified in §  12, the fluctuations in energy 
in the Gibbs  canonical ensemble and the fluctuations in particle number in the 
Gibbs grand canonical ensemble are small.      These physical considerations can- 
not, of course, be considered as a proof of the equivalence of the statis- 
tical ensembles in a thermodynamic sense.      To prove this equivalence it  is 
necessary to show that  in replacing one ensemble by another that the thermo- 
dynamic functions calculated with each ensemble differ little from each other 
and coincide in the thermodynamic limit V-*», N/V=const. 

The question of the thermodynamic equivalence of the statistical ensembles 
was considered in   [17], where it was shown, for example, that if one retains 
only the maximum term in the statistical sum of the Gibbs grand canonical 
ensemble, then the thermodynamic functions obtained in this approximation 
coincide    in the thermodynamic limit with the thermodynamic functions calcu- 
lated on the basis of the canonical ensemble with particle number equal to 
the average particle number in the Gibbs grand ensemble.      However, this  is 
still not a complete proof of the thermodynamic equivalence of the ensembles, 
because in the method used to separate out the maximum term in the statistical 
sums there is no way to estimate the discarded terms. 

In this paragraph we shall give, following  [25],  a proof of the thermo- 
dynamic equivalence of the statistical  ensembles using the saddle-point 
method. 

13.1.      Thermodynamic Liquivalence of Gibbs Canonical and Microcanonical 
Hnsemble.    *""" ——-—"—  - —-    -—-    -•   -— 

Let the system be in a thermostat and described by the Gibbs canonical 
distribution  (9.10).      We shall find an approximate microcanonical distri- 
bution for the system, with which all thermodynamic functions could be calcu- 
lated. 

The statistical sum Q(0,V,N)  is connected with the statistical weight 
!HE,N,V)  by the relationship 
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Q(0, V, A')-^e-«U(£tiV. V), {UA) 

where the sununation is carried out over all allowed values of the energy, and 
n(E,N,V) is the number of states for systems with energy E, particle number N, 
and volume V.  If the summatior is carried out over a layer of energy At, as 
we shall assume from now on, thru n(H,N,V) is the number of states in that 
layer. 

Using the theorem on the inversion of the statistical sum (9,27), we 
obtain for the statistical weight the expression 

Q(£, .V. l') = r(/:+A^ A'. V)-r(£. K, V)~ 

a-ioo (13.2) 

Q(X"1,V,N)=Q(X) in the previous notation, and a is a real positive number. 
Thus, (13.2) gives the inversion of the statistical sum (13.1).  It is con- 
venient to rewrite formula (13,2) in the form 

■•w-!n (13.3) 

Cl-i ^ 
where 

r          F i).'-, v. .v) 
'/.(>■) = y >--?-—.v ' (13.3a) 

and F(e,V,N)   is the free energy.      In writing the exponential  in formula (13.3) 
the larp,e magnitude of the term (Nx)  is explicitly taken into account, because 
x is finite as N-*». 

We shall  assume that  the thermodynamic  limit 

lini 4      (1//.V = const). 

exists for our system.  Then as N-*» the function (13.3a) approaches a finite 
limit; therefore, for larpe N the integral (13.3) can be estimated by the 
saddle-point method, assuming that x(^) is an analytic function for ReX>a. 
We shall see below that the necessary conditions for the applicability of the 
saddle-point method are indeed satisfied. 
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As the saddle point we select Xj, the real positive root of the equation 

(13.4) 

and we put in (13.3) a"Xj»l/0, Then, repeating the calculations of section 
3.3, we obtain 

a (£, N, V)~ ^ Q (0 V N) eE'» «***-' 

(13.5) 
where 

cr~£.f, (13.5.) 

The condition (13.4) for the saddle point takes on the form 

£ = E- <//> = - f-F'0'̂ AI), (13.6) 

i.e., E must be taken equal to the average energy (11.17) in the canonical 
ensenble. 

In order that the saddle-point method be applicable it is necessary that 
the point Xj be a maximum as one moves parallel to the imaginary axis. i.e.. 
that x"(Xt) be positive, or that 

Cv>0. (13.7) 

which is one of the conditions of thermodynamic stability of the system, 
which is satisfied for ordinary systems as a result of the relationship (12.2) 

<(// - (ll)f) - Qi'Cv > 0. (13.8) 

Let us construct an approximate microcanonical distribution 

^ (rk) = I a"1 (/:, .V, V) for £</•*<£ + AE, 
[0 outside this interval' (13.3) 
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where ft(l:,N,V) is defined by the formula (13.5), I;=E, and AE is equal to the 
average energy fluctuation (13.8). The relation (13.5) can be rewritten in 
the form 

(13.1Ü) 

The expression (13.10), where 6  is defined from the equation (13.b),  gives 
the statistical weight as a function of U, N, V for the required approximate 
microcanonical distribution (13.9).      The entropy of the approximate micro- 
canonical ensemble is equal to 

In o(E, x, V) = £^^v) +., ^rr^ypy ^ 

"5(0, V, N)+ ]/CV", (13.11) 

where only the leading term in N is kept, and S(6,V,iN')  is the entropy of the 
canonical ensemble. 

Thus, the difference in the entropies calculated with the approximate 
microcanonical distribution (13.9)  and with the canonical distribution is 
equal to    / Cy.      If the fluctuations are normal,  i.e.,  /"IvV N, then the 
last   .erm in (13.11)   gives a correction which vanishes for the limiting 
trar   ition 

l:m In —— v- = CüMslj, 

The temperature 0  is connected to the statistical weight by the relation 

-Ui-lnnCf   A'   lO-Lf-fe)      . (13.12) 

which is obtained by substituting F from (13.11)  into (13.b).      From (13.12) 
it follows that in the thermodynamic limit the inverse temperature is equal 
to the derivative of the entropy of the approximate microcanonical ensemble 
with respect to energy. 

The relations  (13.11)  and  (13.0)  allow one to calculate all thermodynamic 
quantities for the approximate microcanonical distribution,  if they are known 
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for the canonical distribution. For example, for the pressure and chemical 
potential we obtain 

i = ^ l „Q(£ .Ar . V) (°VCy\ 
\ dv I / 1 + 

0. N 

' (*Vcv) (d±\ 
C „ \ do Jv,N\OVl 0..V* 

(13.13) 

The second and third terms on the right hand sides of equations (13.13) repre-
sent the difference in the pressure and the chemical potential (divided by e) 
calculated using the canonical and microcanonical distributions (13.9). This 
difference is small, of the order of 1/i/N, and disappears in the limit N̂ ». 

We must turn our attention to a special case. For a system composed of 
a liquid in equilibrium with a saturated vapor at constant pressure, the 
temperature is constant independent of the energy imparted to the system. 
In this case, as was noted already by Gibbs [24], the specific heat is infi-
nite. For such a system our derivation of the equivalence of the canonical 
and microcanonical distributions is invalid. 

Let us note, however, that systems with such properties can be obtained 
only after the transition to the thermodynamic limit !*•-, \h- (V/N-const). 
Therefore it is impossible to substitute Cv» into the formula (13.11); but 
rather it is necessary to estimate the order of magnitude of the approach of 
Cy to infinity and to carry out the transition to the thermodynamic limit. 

As at the present time there exists no satisfactory theory of condensa-
tion, we cannot generalize the theorem on the equivalence of statistical 
ensembles to the case of systems consisting of several phases in equilibrium. 

We shall make an observation on the meaning of the thermodynamic limit 
for the case in which there exists surface energy. It is well known that 
the thermodynamic method can be successfully applied to surface phenomena 
and there exists a statistical thermodynamics of surface phenomena [2S]. In 
the thermodynamic limit for the free energy it is necessary to consider in 
addition to the volume terms also terms of a higher order of smallness, pro-
portional to the surface of the system, i.e., in the expression for the free 
energy it is necessary to keep terms of the order of 

F ̂  Vf + Sfs, 

where f and fs are the densities of volume and surface energy, and S is the 
surface of the system. In order that this be possible it is necessary that 
the energy fluctuations be significantly smaller than the surface energy, 

G/C^ << Sfs. 
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Since Cy^N, S~N^/3# then we have 

= l»m ~ - 0, 
A ->t» ' 

i.e., the energy fluctuations are small compared to the surface energy. Thus, 
one can take the surface energy into account while neglecting fluctuations. 
This estimate shows that statistical thermodynamics of surface phenomena is 
possible, despite fluctuations of extensive quantities. 

13.2. Thermodynamic Equivalence of Gibbs Grand Canonical and Canonical 
Ensemble!" 

Let systems with variable particle number in a thermostat be described 
by the Gibbs grand canonical distribution (9.38). Their thermodynamic prop-
erties are defined by the statistical sum (9.39), which is related to the 
statistical sum of the canonical ensemble (13.1) by the relation 

Q(0. H. V)= 2 AA'Q(0, V. N)^Q(k), (13.14) 
N ieO 

W h e r e
 m ,, > X = (13.14a) 

is the absolute activity. Here, as earlier, we are using the same letter Q 
for the statistical sum of the Gibbs grand canonical and canonical ensembles, 
distinguishing them only by the arguments on which they depend. 

Considering X as a complex quantity, we obtain the analytic continuation 
of the function Q(X) into the complex region. 

The inverse of formula (13.14) has the form 

Q(0, V, (13.15) 

where the contour of integration encloses the point X»0. Indeed, substituting 
(13.14) into (3.15), we verify that only one term in the sum, Nj«N, is non-
zero, and the contour integral is equal to the residue at the point X«0. The 
method of Darwin and Fowler [16] is based on an application of the inversion 
formula (13.15). 
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We introduce in place of Q(X) the function (9.40) 

a(X) = -elnQ(X), (13.16) 

which plays the role of the thermodynamic potential for the Gibbs grand ensem- 
ble (n^-pV), and we rewrite (13,15) in the form 

Q(0 

wltere 

The function <c(X)  approaches    a finite limit as N-M»,v=constt because the 
ratio ü(X)/V is finite in the thermodynamic limit.      In addition, cp(X)  is 
assumed to be analytic in the region KeX>Ü of the complex X plane.      There- 
fore the integral (13.17)  can be estimated by the saddle-point method, as in 
the preceding paragraph.      As a result we obtain 

O(0 v v)--~-!Vr';-^-- 

where X is the real positive root of the equation 

^ = 0. (13.19) 

which can be rewritten using (13.17a)   in the form 

nr 
v   ' l'O "^      üi'    ' 

■V = ~ 7?r = Ü' «here   !'■„ - 0 !n;. 

(13.19a) 

(13.19b) 
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The expression (13.18) can be considered as a statistical sum of the 
approximate canonical ensenble with particle number equal, in accordance with 
(13.19b), to the average particle number in the grand canonical ensemble. 

In order to apply the saddle-point method it is necessary that for motion 
parallel to the imaginary axis and through the point x0 (see section 3.3) a 
true maximum exists at that point, i.e., satisfication of the condition 

d-'qiUo) ̂  A 

(13.20) 

which can be written in the form 
tiff 
On >0' (13.20a) 

In general this condition is satisfied, because using (12.4) we have 

f-=J-(.V-,VF>0. (13-21) 

We write the expression (13.18) for the statistical sum in the form 

cxp (- .Vii/Q) __ Q(o. M. V)exp(-.Vn/0) 
Q(0, V, N) = Q (0, \i, V) 

l/o UN A V (iv2-(.V)*) 
V (13.22) 

(}i = Mo)-

If the fluctuation in particle number is small, then in (13.22) only the 
leading terms need be kept, and we obtain 

Q (0, V, iV) ss Q (0, n. V) cxp (- Nti/0), (13.23) 

because the discarded term gives no contribution in the thermodynamic limit. 

As is well known, in a region of coexisting phases the absolute activity 
X is independent of specific volume, i.e., 

^--0 J = oo as V =• V/N. or v ' as 
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In this case we cannot make any conclusion from formula (13.22)  about the 
thermodynamic equivalence of the grand canonical and canonical ensembles. 
However :.t must be noted that in formula (13.22) one cannot substitute 
1/V 3N/JA ■ o», because, as we have already noted in the previous paragraph, 
systems with such properties can be obtained only after the transition to 
the thermodynamic limit, but because of the absence of a consistent vheory of 
condensation, we cannot estimate the order of magnitude of the growth of 
3N/3X. 

Using  (13.22)  and (13.2U)  all thermodynamic functions can be calculated. 
For the free energy we obtain 

m V, ^) = Q(0. n, l'H.u.V + |lii(2.iO~-), (13.24) 

where y is defined from the equation (13.19b).      Substituting (13,24)   into 
(13.19b),  but we shall have for the chemical potential the expression 

•^UvU-T^Uri • (13-25J 

Differentiating (13.24) with respect to V and 6, and using (13.19b)  and 
(13.25), we obtain for the pressure and the entropy, respectively. 

f^-\      ~-i*L\      -ililiilfi'ir1] (13.26) 

=4a.-M0)(f)(fr^i{oi"(^si- 
(13.27) 

In the expressions (13.25)-(13.27) the dominant contribution is given by 
the first terms on the right hand sides, and the remaining terms are negligibly 
small in the thermodynamic limit.  Neglecting these small terms, we obtain 
the well-known relations (11.23), (11.2üa), (11.18), i.e., the chemical poten- 
tial, pressure, and the entropy are the same whether calculated with the 
statistical sum (13.14) of the Gibbs grand ensemble or with the statistical 
sum (13.23).  Thus, the Gibbs grand ensemble is equivalent to the canonical 
ensemble in the thermodynamic respetr.. 
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i 14. Limiting Transition from Quantum Statistics to Classical Statistics 

For sufficiently high temperatures and sufficiently low densities, when 
quantum effects can be neglected, the Gibbs quantum mechanical ensemble goes 
over into the classical ensemble, and the statistical sum of the quantum 
ensenfcle (9.11) goes over into the statistical integral of the classical 
ensemble (3.8). This problem was considered by Wigner [12], Uhlenbeck and 
Cropper [26], and Kirkwood [27]. We shall follow the last work. 

14.1. Limiting Transition for Statistical Sums. 

Let us restrict ourserves for simplicity to a system composed of N mona-
tomic molecules with mass m in a volume V, interacting by means of the poten-
tial 

»(*„ .... *v) = (*-*/>• 
1*>I 

For the Gibbs canonical ensemble the statistical sum for the system has 
the form 

*•.(*• *.»)''*>••• d*v 

(14.2) 

ft 

where v-, ,.j 
// = — —j V j + v (*,, ..., *v). 

fit is a complete set of functions with the required symmetry. Here and in 
what follows we shall not explicitly write out the arguments 6,V,N, on which 
Q depends. 

Since Q does not depend on the choice of the functions any complete 
orthonormal set of functions can be chosen, symmetric in the case of Bose 
systems and antisymmetric in the case of Fermi systems. We shall choose for 
the Yk a symmetrized or antisymmetrized product of plane waves, normalized in 
a volume V: 

'•v- - «>,(*.»)• ' 
P-(P />„)• C14-3) 

The plus sign corresponds to Bose statistics, and the minus sign corresponds 
to Fermi statistics (for simplicity we do not consider the spin of the 
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particles).      The operator /'denotes a permutation of the quantities 
X1»«««»XN or vh&t is the same thing, of the quantities PI,...,PN;   (±1)  =1 for 
a   Bose gas and *1 or -1, depending on the sign of the permutation,  for a 
Fermi gas.      The factor l/t/ft!  guarantees the normalization of the functions 
Vp to unity.      In this regard, 

of. It" 

X i\x   ... dx' - ------ >   I dxi ... dxN = — \ 1 = 1, 
l-.Vl   -^ . ;V!   -f 

because for \/>ilf'  the integral is equal to zero, and AU 1 is equal to the 
number of permutations of N elements. 

We choose the single particle wave functions qpp-(XJ) in such a way that 
they are periodic in a cube with side L=V1/5, i.e., 

in which case the quantum numbers pj can take on only the values 

„      2.1 fi 

where npa are whole numbers 0, ±1, ±2,   ....        Thus, there are V dpj/(2Trti)2 
quantum ^states in the element of phase volume of each particle 

The summation over the quantum states p" in (14.1)  can be replaced by 
integration over momentum, because the number of particles is very large,  and 
the spectrum is practically continuous: 

v  _ '   i-    r     r 
~     ' m Ttün^7 J • • • J lIpi • • ■ «>'V. (14.4) 

^-■■••".v 

where the sum over the momenta denotes a summation over all distinct states. 
The factor 1/N!   compensates for the fact that a permutation of particles does 
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not change the state; cf.  (1.5b)1. In going over from sums to integrals we 
are neglecting the possible case of a degenerate Bose gas for which in the 
ground state there can be a macroscopically large number of particles.      This 
case must be considered separately. 

Using (14.3)   and (14.4) we write the statistical sum (14,1)   in the form 

xe-v'cxpi±/
Fy(plxi)y^Xllp, 

dx dp =■ dxl ... dxx dpi • •. dpx. 

(14.5) 

where 

Since the integral in (14.S)   is unchanged upon a permutation of the variables 
of integration, which is only a change in notation,  the double sum over the 
permutations can be replaced by a single sum.      Using the fact that 

we obtHin 

Q=j ... J ii-lf cxp/-^V(^y)|^^ 
y I y i I     / I, 

(14.6) 
where 

^'i&iw ll4-7) 

Now the statistical sum is represented in the form of an integral over the 
entire phase space of N particles, which is similar to the statistical inte- 
gral of classical statistical mechanics (3.8). The element of integration 
(14.7) has precisely the same form as (1.5b), which was assumed earlier in 
classical statistical mechanics without rigorous proof. To calculate the 
integral (14.6) it is necessary to determine explicitly the results of the 
action of the operator e-ß" on the function .,, 

1 This factor was at first mistakenly omitted by Kirkwood  [27], but was noticed 
by him and corrected  [27a].      However, this mistake has passed into textbooks 
[17]. 
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i . e . , to find the function 

a ir t (PX) u — e h
 t (p-v) = 3 iPjXi). (14.8) 

Below we shall calculate functions of a somewhat more general type: 

u {?) = c-Zi'eir i!"\ (14.9) 

where J* is the permutation operator for the coordinates of the particles. 
For^-1 (14.9) coincides with (14.8). We shall need these functions later 
at the end of this paragraph in order to calculate the statistical operators 
in the quasi-classical approximation, i.e., when quantum effects can be con-
sidered as small corrections to the classical. The functions (14.9) satisfy 
the equation 

<hL „ - l!u (p = -Q] (14.10) 

with the initial condition (14.10a) 
u ![>-() 

Equation (14.10) is called the Bloch equation and plays an important role in 
quantum statistics. It is applied not onlywith the initial condition 
(10.10a)( but also with different initial conditions. For example, the 
operator 

u » e-6H 

also satisfies equation (14.10), but with the initial condition 

U|6«0 - 1. 

If in the Bloch equation the replacement fr»it/h is made, then it has the 
same form as the Schroedinger equation. This formal analogy is convenient 
for transferring the methods developed in quantum mechanics and in the quantum 
theory of fields into quantum statistics. In particular, following this 
analogy, to find the solution of equation (14.10) we shall later make use of 
the method of expansion in powers of Planck's constant "h, i.e., a quasi-class-
ical approximation, an analog of the well-known method of Wentzel-Kramers-
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•Bril'.ouin in quantum mechanics. 

Let us replace in equation (14.10)  the unknown function u by w; 

ui^-e-MiP.^iT^a^ Xt p)( (14.11) 

where w(p,x,ü)   is a function of the variables p,  x, 0, and H(p,x)  is a function 
of p, x and not an operator.      Then the equation (14.1Ü)  is brought to the  form 

en lh , (14.12) 
£3L « ePw (P. *> I ^ V2 {e~W 'P- 

x)w) + ^-^ (pV) e^"^- ^ts\, 

where 

l^ ■■• d*N r 
fl4  12a^ »»ith the initial condition v    . *  »^ 

^ 1,1-0= 1' 

or,  since 
■> 

to the form (14.13) 
i|. = e^w | ii59(pV)e-'"wIü + T—V-(t-^ w'^1. 

The small parameter ti is contained on the right hand side of this equa- 
tion.      In fact,  as we shall verify later, the role of the small parameter is 
played not by ti itself, but by the dimensionless ratio of the deBroglie wave 
length, corresonding to the average thermal speed, to the average distance 
between molecules. 

liquation  (14.13)  can be solved using an expansion in powers of "h: 

W~ li li"*n- (14.14) 
ff>0 

To do this it  is convenient to write it in the form of an integral equation 
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®~ 1 + IT J e"U,T (Pv) e " t W t a>]dt + 
o 

3 + "£ J e°(Jt) X y2 <e"° W T w) <**. 
0 

from which it is easy to find the coefficients w0#wi,... by the method of 
successive approximations: 

- 1; 

w' = M j e°(x)' & (/>v) e~" M T dx = & (pV) V (x); 

©s = ô T j *a M T ? (»V) c-° <*>T (pV) y (.*) T" dt + 
0 

H 
+ i j cMTvze-<*>xdT= 

0 

- - i { f ̂ - X w ~ =<? 0*) F» + £<*' (pV) vf } 
etc. (14.15) 

Using the resulting expressions and setting ŝ "l, we write the statistical 
sum (14.6) in the form 

0 = | 'p-v) [ i + »i/i + w2h- + ... J dV + 
-!- V (± if J [ft4w]eTM(-«M X 

X [ 1 + Wih + w2li- + ...] , (14.16) 

where x»(xi,...,xN), P*(PI,...,PN)» and wj are calculated with?=l. We have 
written out separately the first integral, corresponding to the identity per-
mutation. 
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Carrying out the operation of permutation of the particle coordinates 
and retaining only pairwise permutations, we transform (14.16) to the form 

Q = j t'-''''"1,*'[1-}" si>\li + iVih~ + • • c / l — 

± V J e-p// (P. x)eir **-*<•> x 

Xll + w,/» + B-pJ+ ...]dT. (14.17) 

It is easy to carry out the integration over PI»*»*»PN in formula (14,17), 
if use is made of the relation 

oo 00 Y2 

j g-w'+iY**</* = -!.-£- J e-«1+'v*dj;=yy £ 4a-
• — r*r» 

Finally for the statistical sum we obtain the expression 

Q = (2:t»i0) 
,3'v AM J \ 12/n y V 2 1 (2ahr AM J \ 1-'" 

£ exp{ - )[l + 4 *«' <»'»'"'V*">+ * *' 1) d*> ''4 dX" 
i+k 

(14.18) 

Xik « X: - Xk. 

The first two terms in formula (14.18) corresponding to the identity 
permutation, were first obtained by Wigner [12], and the remaining two terms 
taking into account pairwise permutations, were obtained by Uhlenbeck and 
f.ropper [26]. 

If only the first term is kept in (14.18), then the statistical sum goes 
over into the statistical integral of classical statistical mechanics (3.8): 

. (2nm0)̂  ( V I M * , . . . dxN = f I-*"**#. 
Qcl~ (2*hfxm j J 
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Thus, if classical statistical nechanics is regarded as the limiting case of 
quantum statistical mechanics, then we obtain the correct expression for the 
statistical integral (3.8), which corresponds to the normalization of the 
classical distribution functions (l.Sa). This is a good definition in that 
it does not lead to the Gibbs paradox. 

The second term in (14.18) gives the quantum corrections connected with 
the interaction, but without taking into account exchange effects. The third 
term is caused by quantum exchange and is non-zero even in the absence of 
interaction, i.e., for an ideal quantum gas. The last term is connected 
both with exchange and with the interaction. 

The terms connected with exchange contain the exponential factor 

exp| j. 

and therefore they are small if the density is not too large, in which case 

I"*3! » (14.20) 
m mQ ' 

where |x̂ | is the mean square distance between particles, i.e., when the 
average distance between particles is significantly larger than the deBroglie 
wave length ft/i/mO corresponding to particle energy 6. 

At low temperatures or at high densities, when condition (14.20) is not 
satisfied, the statistical sum and statistical integral can be quite different 
and degeneracy of quantum gases sets in. 

14.2. Limiting Transition for Equilibrium Statistical Operators. 

There is no difficulty in obtaining quasi-classical expansions, similar 
to (14.16), for equilibrium statistical operators. 

Using the plane waves (14.3) the statistical operator in the coordinate 
x-representation can be written in the form 

p{*,, x .... * v) = 

- 2 *;,(•< 
(14.21) 
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It is especially simple to find the statistical operator in a nixed 
coordinate-momentum representation: 

p (j£|, ..*.v. P:> Px) 

= *v' *' *'v)x 

X exp| - 75- V. (p,*,) | dx\... dx's. 

Substituting (14.21) into this expression and using the fact that 

-~Tv j exP [ 7 £ (*/' P'l ~ ^Pl) }dX> •'' dx'* = 6 (P' ^P)> 

we obtain 
p(x., . . x N , plt ..P,v) -

(14.21a) 

L _ - \ ^ ( ± 1 ) J > | 6(p'— &>p)c-l"-F'i°tlh W dp'l ••• dp'y, 
A'! (2.iby ^ 

OT \ _ p(x„ . . . . XA; pit . . . . PN;=* 

V ( ± l ) ' c 0 3" . (14.22) 3.V A11 (2nfj> 

Thus, to calculate the statistical operator in the mixed representation 
it is necessary to find the function (14.9), the calculation of which we 
considered in the previous paragraph. 

Using the relations (14.9) and (14.11), we obtain 

p(*l, X\, py, pA.) = 
! Hip, x)-F 

~ A'! (2 nft)5-v C ° 0 + K'1A + «M,+ ...)t (14.22a) 

where wj,w, are given by formulas (14.15). Retaining only the first term in 
formula (14.22a), we obtain the classical distribution function except for an 
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inessential phase factor: 

^ x*'Pi P'v)==        ^^  i^ 

I! In, .t)-F 

In order to avoid such phased factors, Wigner [12] proposed a somewhat 
different definition for the operator in the mixed representation. Wigner 
introduced the function 

fixu ..., *,v. Pi P.vH t 

.-    '     |pU + ^ xv + -s  X.-Y ^- o;x 

XexpjIVCp.^Ul, ...^.v. 
(14.24) 

The integrals of this function over all x and all p have the form of the 
diagonal elements of the density matrix in the x- and p-representations, 
respectively: 

r (14.25) 
/ (x, p) dn = p (.v, .v),       | / ( Y, p) dx = p (p, p). 

where x=(xi,... ,XN) , Ps(Pl»«••IPN)•      We obtain the relationship   (14.25) by 
making the change of variables Xi-(Ci/2)sx''i, Xi + (^i/2)=x"i. 

The function fCXjp)   cannot, of course, be considered as a    distribution 
function for the coordinates and momenta.      Its integrals give distribution 
functions for coordinates and   nonenta,   but the function itself can be negative 
and does not have the meaning of a probability density. 

The limiting transition to classical statistics can be discussed using 
the statistical operator in the mixed Wigner representation f(x,p), as was 
done by Wigner himself   [12]. 

Thus, we have verified thac  tike quantum mechanical  Gibbs canonical 

-  140 - 



jf.    l?>ä«'rM*5^i*HVc>^ 

ensemble goes over into the classical ensemble upon taking frK),      One can 
also consider the more general question of the transition of the quantum 
Poisson brackets to the classical Poisson brackets and of the transition of 
the statistical operators into distribution functions, when the system is 
described by an equilibrium Gibbs ensemble.      This question is discussed in 
reference  [28], where it is shown that the quantum Poisson brackets go over 
into the classical Poisson brackets as H-H), but the limiting transition for 
the statistical operators must be carried out with "classical symmetry." 
I.e., the statistical operators are symmetric only with respect to simultane- 
ous permutation of both groups of variables xi,...txM and x'j,...(X'N, because 
the quantum symmetry property (with respect to permutations of only one group 
of the variables) has no classical analog. 

i 
This question is essentially related to the limiting transition from 

quantum mechanics to classical mechanics, and we shall not consider it here. 
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CHAPTER III 

IRREVERSIBLE PROCESSES INITIATED BY MECHANICAL PERTURBATIONS 

S  15.      Reaction of a System to External Mechanical Perturbations 

Up to this time we have considered only equilibrium processes.      Let us 
go now to a study of noncquilibrium,  irreversible processes. 

One of the fundamental problems of the theory of irreversible processes 
is the study of the influence on statistical ensembles of various perturbations 
which disturb the equilibrium.      We have essentially already considered the 
influence of a change of the external parameters earlier in Chapters I and II, 
which were devoted to equilibrium statistical mechanics, when we derived the 
thermodynamic equalities in §§  5 and 11.      But in doing this we made an assump- 
tion about the infinitely slow,  quasi-static character of the change of the 
parameters, according to which at each moment of time the system can be con- 
sidered to be in statistical equilibrium.      A change of the external para- 
meters  is also considered in the theory of irreversible processes, but the 
change need not be infinitely slow. 

A nonequilibrium ensemble can arise, for example,  from an equilibrium 
ensemble  (described therefore by one of the C.ibbs distributions)   if some 
external processes begin to influence the ensemble,  leading to a change of 
the parameters which define the ensemble  (volume, particle number,  temperature, 
chemical potential, etc.).      The source of these perturbations might be work 
carried out on the system,  through a change of its volume,  or the interaction 
with different ensembles  (having different temperature or chemical potential), 
or,  finally, the switching on of external fields which act directly on the 
particles of the system.      This  last example of an irreversible process, 
initiated by a mechanical perturbation, will be considered in the present 
chapter.      This is the easiest  case in whicli to explain the mechanism of the 
appearance of irreversibility. 

In general a change of the external parameters  influences the distribu- 
tion function (or statistical operator)   indirectly;  it creates a state of 
statistical nonequilibrium which then approaches an equilibrium state,  if 
there are no effects which  inhibit this approach.      Only in the case in which 
the perturbation is caused by external  fields does  it have a direct  influence 
on the distribution function;   this  is the reason for tiie relative simplicity 
of the study of such perturbations. 

We shall make several  comments about terminology.       In macroscopic thermo- 
dynamics work carried out on the system, for example,  in r* change of the volume 
by a movable piston (mechanical  contact), is called a mechanical effect.      A 
perturbation caused by contact  of the system with    other thermodynamic systems 
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having different temperatures  (thermal contact)  is called a thermal effect. 
This type of contact includes contact with a reservoir with which exchange of 
matter (material contact)  is possible.      In the statistical thermodynamics of 
irreversible processes a somewhat different terminology is customary.      One 
calls mechanical ptrturbations only those perturbations which represent the 
action of external fields and which can be completely described by adding to 
the liamiltonian the corresponding interaction energy of the system with the 
field.      Perturbations which in general do not admit of such a representation 
are  in the terminology of Kubo   [1-4]  called thermal perturbations.      In what 
follows we shall follow this terminology.      Work carried out on the system by 
a change of its volume  (or other parameters, not linked to a real external 
field)  will be referred to in what follows as thermal perturbations  in accor- 
dance with accepted terminology. 

Let us note that one can sometimes formally describe thermal perturbations 
as the result of several mechanical perturbations,  if one  introduces the cor- 
responding fictitious fields   [S-U].      F-'or example, a diffusion current can be 
considered as a consequence of switching on an auxiliary gravitational or 
centrifugal  field  [S], a viscous  current as a consequence of the motion of the 
walls of the container  [5],      Depending on the character of this motion, one 
can obtain either sheer viscosity  [5],  or second viscosity   [0],      To take into 
account an inhomogeneous temperature one can introduce an auxiliary gravita- 
tional  field  [7], because in accordance with the general theory of relativity 
the temperature in a gravitational field is nonhomogeneous even in a state of 
statistical equilibrium. 

The arbitrariness of the replacement of thermal perturbations by mechan- 
ical perturbations should be noted.      In reality the motion of the walls of 
the container cannot be instantaneously transferred to the molecules,  and 
the influence of the motion is indirect.      It creates a nonequilibrium state, 
which is propagated at the speed of sound and which cannot be exactly repre- 
sented as the action of an external field.      But in the case of sufficiently 
slow change of the parameters these analogies, not taken too literally,  lead 
to reasonable results and are very useful.     They are based on the fact that 
mechanical and thermal perturbations can give rise to identical transfer 
processes. 

Let us go now to an exposition of the theory of the  linear reaction of 
statistical systems    to mechanical perturbations. 

15.1,      Linear Reaction of a System (Classical Statistics). 

It is easy to analyze the reaction of a statistical  ensemble to an 
external  time dependent perturbation for either the classical or the quantum 
case   [1-14].      It is closely connected with the theory of the retarded Green 
function  [15,  12-14],      We discuss this problem first on the basis of 
classical statistical mechanics   (we shall consider the quantum case in the 
following section). 
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We shall consider a statistical ensemble of systems with a Hamiltonian 
M(p,q) which is not explicitly time dependent, and where p,q is the set of 
coordinates and momenta of all particles.      The Hamiltonian includes all pos- 
sible interactions between the particles.      We shall study the reaction of 
the ensemble to the switching on of an external time dependent perturbation 

Hj(p,q). 

The dynamical variable nl(p,q) represents the energy of interaction of 
the system with the external field.  The subscript t denotes only the explicit 
dependence of the perturbation on time.  In addition it has a possible impli- 
cit time dependence through the coordinates and momenta of the particles 
pU)»q(t) in accordance with the equations of motion. 

The total Hamiltonian describing the system and its interaction with the 
field is equal to 

H(P.q) + "J(p.q). (15.1) 

The Hamiltonian of ehe external field which is causing the interaction Hnp,q) 
is not included here, because the external field is considered to be fixed. 

We shall assume that at t=-» there is no external perturbation,  i.e., 

"Jcp.q)|t=.- = Ü. (15.1a) 

The perturbation Hl(p,q)   can often be represented in the form of a sum 

i!\{p,q) = - S/M^WO. (15-2) 

i 

where the Fj(t) are functions of tine but are independent of the coordinates 
and momenta of the particles - external driving forces, and Bj(p,q)  are 
dynamical variables, not explicitly time dependent, conjugate to the fields 
Fj(t). 

For an adiabatic switching on of a periodic perturbation 

l'''ip,q}~Ze*-^ßuAf}i(}}       (e>0)i (15.2a) 

where e is a positive infinitesimal quantity, and 1^=^*.^, because the energy 
111 is real.  For an instantaneous switching on 
t 

- ISU - 



F 

[Note:    two pages missing from original Russian text - pp. 128-129] 
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it is necessary to add the initial condition 

(•) — fo< (15.10) 

which follows from (15.5) and (15.5a), because e~itLf0«fp, as fQ is a solution 
of the Liouville equation. Equation (15.8) contains only the perturbation 
energy Ĥ (t) on the right hand side, therefore it is convenient for a study 
of the behavior of the system when there are small perturbations. 

It is convenient to write equation (15.8) and the initial condition 
(15.10) in the form of a single integral equation 

or 

— OO 

(15.11) 

(15.11a) 

If the perturbation H* is small, then the solution of equation (15.11a) 
can be obtained by the method of iteration, taking f0 as the zero order 
approximation. In the first approximation we find 

i(/) « /c + J ~t]' M dt'' (is. 12) 

where the Poisson brackets are equal to 

I 'i- f • - d//< d/!' °i > 
l '* '•> 0t/ dp Op dq ' 

where a summation over all particles is understood on the right hand side. 
Noticing that 

/„) — — P("J. °5'15) 
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we write (15.12) in the form 

/ (/) - h f1 - P J (i' ~i}• H^dt ) ' 
\ — 

(15.14) 

Using (15.12) or (15.14) the average value of any dynamical variable 
A(p,q) can be calculated to an approximation linear in H£: 

is an averaging with the equilibrium distribution function. 

In principle, formula (15.16) gives the solution to the problem of the 
reaction of a classical system to a mechanical perturbation. An actual cal-
culation of the right hand side of (15.16) is far from simple however, because 
it contains the averages of dynamical variables at different moments of time 
and requires solution of a dynamical problem. In some cases this can be done 
for systems with a small parameter. 

The expression (15.16) describes the retarded reaction of the average 
values of A to a variable perturbation til*. This reaction has a causal 
character, because the effect of the perturbations turns out to be significant 
only for t'ct, i.e., for perturbations taking place at past times. 

It is convenient to extend formally the range of integration in formula 
(15.16) by introducing the discontinuous function e(t-t'): 

•where (15.15) 

Substituting (15.12) into (15.15) and integrating by parts, we obtain 

{A) - (A% + J ([A, H}> ( / - /)}>o dt'> 
—oo 

(...>0= f ••• fodV 

(15.16) 

where 
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f 1 f o r t>0, 
0 ( " = l O f c , r K O . (15.17) 

Then oo 

</l> = (/l>0 + $ ((AHbW-t)))dt', (15.18) 
— JO 

• here 
«All (/' - /)» - 0 (/ - O <{/!, B (/' - /)})„ =-- 0 (/ - /') <{/! (/), D (/')})» (15.19) 

is the retarded doubletime Green function of classical statistical mechanics. 

The last equality in (15.19) is connected with the fact that the average 
value of the product of dynamical variables <A(t)B(t')>0 (or of the corres-
ponding Poisson brackets) in a statistical equilibrium state depends only on 
the difference of the time arguments. The dependence of the average of a 
product of dynamical variables, taken at different moments of time, on only 
the difference of the times is the stationarity condition, which is well 
known from the theory of random stationary processes [16, 17]. It implies 
that in a stationary case the time correlation functions cannot depend on the 
choice of the time origin, i.e., 

04 (f + T W + T)> = 04 (W)>, 

from which, putting i»-t, we obtain 

where the averaging is carried out over a stationary state. 

This property is easy to demostrate for averaging over an equilibrium 
state. By definition we have 

(A(tt)li(Q)0 = 

p (!) ••= c~UL p (0), q (t) = q (0). 

— Q-1 f c-W<»'<»A (/>(/,), <7(/.)) B(p(t2), q(t , 
J iVi n 

where 

- 157 -



Using the Liouville theorem (2.2) 

dp (0) dq (0) -= dp (/,) dq (it) 

we transform the integral on the right hand side to 

J* (P. Q) A (p (/1)> q (/,)) B (p (t .), q (/•>)) 

Introducing new variables of integration p"ap(ti), q"aq(tj), we obtain 

because y „ c-i th-u^p (/,) = L p'. 
q ~ e~l L q (h)" e~l ^ L «'• 

and H(p,q) is an integral of motion. Thus, the required property is demon-
strated. 

Thus, we have verified that the effect of an external mechanical pertur-
bation on the average value of a dynamical variable is described by the 
retarded Green function, which connects this variable with the perturbation. 

The retarded Green functions (15.19) introduced by N. N. Bogolyubov and 
S. V. Tyablikov [15] for the case of quantum statistics, are very convenient 
to use in the statistical mechanics of equilibrium and nonequilibrium systems 
because of their transparent physical interpretation and simple analytic 
properties [12-15] (see further i 16). They are also useful in classical 
statistical mechanics [18-20]. 

The physical meaning of the retarded Green functions can be explained by 
considering the effect of the instantaneous 6-form perturbation 

on the average value of the dynamical quantity A. Substituting (15.20) into 
(15.18), we obtain 

{A Ui) 3 = 
= Q-I [ e—is it (P'. i'*> A (p', q') B (p' (t-i - 'i)» l' ('« ~'< 1 iv i re 

= {AB (/2 — M)a> 

(15.20) 
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{A) = (A\ + ('. - 0» = <̂>« + «-4 WB M»- (15.21) 

Thus, the retarded Green function is equal to the change of the average value 
of A at the time t because of the instantaneous switching on of the 6-form 
perturbation at the time tj. 

Using (15.14) another form for the relation (15.18) can be obtained: 

t 

{A) - (̂l>o - j J {AH}. (/' - /)>0 dl' -

= (A\ + | J <A (/-/') H}\ dt' (0 = JJ-'). 
— JO 

A = [A, //}. 

(15.22) 
— JO 

where 

The last equality in (15.22) follows from the stationarity condition 

(AW - ox --(Mi- n (l5-2i) 

In fact, the average value of the product of dynamical variables in a state 
of statistical equilibrium depends only on the time difference: 

- /)>o - (.-1 (/ - /') //.'->o. 

from which we obtain the relationship (15.23) by differentiating with respect 
to t. 

Thus, in the linear approximation the change of the average value of A 
r the influence of the perturbation II* is defined by the time correlation under the influence of the perturbation ll£ 

function, relating A to II* or A to H*. 

If the external perturbation has the form (15.2), then the formulas 
(15.18) and (15.22) can be written in the form 
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a)=<A-S J {{AWB^nvFiinds. 
I -TO 

f 

(/I) = (A)0 + V 1 J (.4 (/) fi;. (/'})0 Fj (/') rf/'. 
/ -=o 

These relationships for the linear reaction of a system are called the Kubo 
formulas. 

Kubo has made a detailed study of the reaction of classical and quantum 
systems to the switching on of an external perturbation, proceeding from the 
Liouville equation and the equilibrium condition at t»-»[l, 3, 4]. However, 
relationships similar to the Kubo formulas were obtained still earlier for a 
particular case by Kirkwood [21], who expressed the coefficient of friction 
of a Brownian particle for the classical case through the correlation function 
of the forces acting on the particle (see § 2b), and also by Callen and 
Welton [22], who proved the generalized Nyquist theorem on the.connection 
between susceptibilities (or kinetic coefficients) in linear dissipative 
processes and equilibrium fluctuations; we shall consider this theorem in 
§ 17. The great merit of Kubo's work consists in the fact that he gave the 
most general proof of these formulas, widely applied them to the theory of 
linear dissipative processes, and drew the attention of physicists to them*. 

The remarkable property of the Kubo relations consists in the fact that 
they express nonequilibrium properties in the form of averages over a state of 
statistical equilibrium and have an extremely general character. 

In the case of an adiabatic switching on of a periodic perturbation 
(15.2a) formula (15.18) takes on the form 

I A) = (A)o + ea~:u ({AiSw))u. 
lt> 

where 
oo 

< v i O w = .! ^ A B - ^ d t 

is the Fourier component of the retarded Green function̂ . 

If the external perturbation contains only one harmonic of frequency u, 

The method of Callen and Welton [22] proceeding from the Schroedinger equa-
tion and the theory of quantum transitions, as will be shown in section 17.5, 
has a more restricted region of applicability than the method of Kubo. 

2 The normalization of the Fourier component (15.25a) of the Green function 
differs from that used in [12] by a factor of 2IT. 

(IS.24) 

(15.24a) 

(15.25) 

(15.25a) 
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//{ ̂  — /•' cos lof c' B. (IS.26) 

where F is the amplitude of the periodic force, which is independent of the 
coordinates and the momenta, and B is a dynamical variable, then the linear 
reaction has the form 

where Re denotes the real part of the expression, and x(u) is the complex 
generalized susceptibility, equal to 

This then is the Kubo formula for the susceptibility. The relations (15.27) 
and (15.28) show that the Fourier components of the retarded Green function 
have the meaning of the generalized complex susceptibility, which describes 
the influence of the perturbation (15.26) on the average value of A. 

Let us note that in calculating the complex susceptibility (15.28) it is 
necessary to carry out two limiting transitions: the usual limiting transition 
of statistical mechanics V-"* (V/N*const) for calculation of the statistical 
averages, and the limiting transition e-*0. The result depends on the order 
of carrying out these limiting transitions. The correct order is to take 
first V-M» and then e-»0l. 

Just as in equilibrium statistical thermodynamics it is always assumed 
that the thermodynamic limit V-»», V/N»const exists, in nonequilibrium statis-
tical thermodynamics it is assumed in addition that the limiting process 
described by first taking V*— and then c-»0 exists for the expressions (15.28). 
We shall call it the (V,c)-limit. While the existence of the thermodynamic 
limit for specific restrictions on the interaction potential has been shown 
(see the literature [13-17d] for Chapter I), the existence of the (V,e)-limit 
has not been rigorously proven mathematically. Later in sections 15.4 and 
17.4 of this chapter, we shall again return to a consideration of the order 
of the limiting transitions. 

* In Appendix I it is shown by the example of the problem of quantum mechanical 
scattering (where the volume in which the wave functions are normalized plays 
the role of V) that such an order of limiting transitions corresponds to 
excluding advanced solutions of the Schroedinger equation. 

{,1} - </t)o -I- Kc {-< (©) ftr (15.27) 

where j {{AB{t)))iU. (15.28) 
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15.2.      Linear Reaction of a System (Quantum Statistics). 

Let us consider the reaction of a quantum statistical ensemble of systems 
with a tlamiltonian H, which is  independent of time, to the switching on of an 
external time dependent perturbation llL 

The total llamiltonian of the system including the external perturbation 
is equal to 

11 * nj, [15.29) 

where 11^ is the operator for the interaction of the system of particles with 
the external field.  The llamiltonian of the external field itself, with 
which the particles interact, is not included in (15.29), because the field 
is considered to be fixed. 

We shall assume that earlier at t=-" there was no exten al perturbation, 
i.e., 

"Jit*-» = ü' (15.293) 

The perturbation 11^ can often be represented in the form 

//!-- ^ «;/•'/(0. (15-3Ü) 

/ 

where the I'j(t)  arc functions of time and are C-numbers1,  - the external 
driving forces, and the Bj   are operators, widch do not depend explicitly on 
time,   linked to the fields  lj(t).       Lxpression (15.30)   is analogous to the 
classical expression  (15.2). 

If a periodic perturbation is switched on adiabatically, then 

(15.3Ua) 

^ In the terminology of quantum mechanics quantities which do not have an 
operator structure are called C-numbers, 
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where c is a positive infinitesimal quantity, and Bu is a quantum mechanical 
operator, which does not depend explicitly on time. From the hermiticity of 
(15.30a) it follows that 

The statistical operator p satisfies the quantum Liouville equation (8.6) 

ot 

and the initial condition 
P!/-_„ = P0 = Q~!(°. V, N)e 

/.^ = f// + //!.p] d5.31) 

-ihCi (15.32) 

which implies that at t»-- the system is in a state of statistical equilibrium 
and is described by the Gibbs canonical ensemble (9.14). The Gibbs grand 
canonical ensemble (9.42) can also be taken as the initial condition: 

— Pn =̂ -'(0, |i, V)e -(H-U.V ;0 (15.32a) 

We go from the statistical operator p to the operator pj by means of the 
canonical transformation 

— pi lit th Q Hit, '4 (15.33) 

Then the quantum Liouville equation is transformed to 

= p.] (15.34) 

with the initinl condition (15 35) 
Pi!/—» = 

where (15.3b) 

is the perturbation operator in the Heisenberg representation with the 
llamiltonian H; with respect to the total Hamiltonian (15.29) formula (15.36) 
gives the interaction representation. 

Equation (15.34) and the initial condition (15.35) can be written in the 
form of a single integral equation 
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Pi(0 = Po+ J" Tjf ["<'(/'). (15.37) 

or ^ 

p(/)-p„+ [.-•">-*»±\Hk p ] l l 5 - 3 7 l ) 

— oo 

these equations are analogous to the classical equations (15.11) and (15.11a). 

If the perturbation ii£ is snail, then the solution of equation (15.37) 
can be obtained by iteration, taking p0 as the zero order approximation. In 
the first approximation we have 

i 

p = + J 7FI//'' ~ Poldi' • (15.38) 

Up to this point all relationships are valid if p0 is the canonical or 
grand canonical distribution, but they are also valid for any equilibrium 
distribution, for example the Gibbs microcanonical distribution, because we 
have nowhere made use of the explicit form of p0. Let us assume now that 
p0 is the Gibbs canonical distribution (15.32). 

Using the identity, which is valid for any operator A, 

[A, e"pw] = - H\e~*"d)., (15.39) 

usually called the Kubo identity, which we shall prove somewhat later (see 
formula (15.42) and below), we obtain 

\ 0 —00 

*here III (/' - /) = 7F ' ~ ̂  

(15.40) 

(15.41) 
t ll'tt \ t — II. H \» 

ih 

In the case in which pQ is the Gibbs grand canonical distribution (15.32a), 
the formula (15.40) remains valid, but the replacement must be made 
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\uW-t\ 

If H* commutes with N, as is often the case, then (15.41a) coincides with 
(15.41). If p0 is the microcanonical distribution, then formula (15.40) is 
not valid. 

We shall now derive the Kubo identity (15.39). We put 

lA.e'S"] . e-BH S(fi), (15.42) 

where S(0) is an unknown operator. Differentiating (15.42) with respect to 
8, we obtain a differential equation for S(0): 

- eW[A, //] 

with the initial condition S|gSQ*0. Integrating this equation and using 
the initial condition, we obtain the Kubo identity (15.39). 

Formulas (15.37a) and (15.40) allow one to calculate in an approximation 
linear in H*t the average value of any observable quantity, represented by 
an operator A: 

<A> - Sp(pA). (15.43) 

Substituting (15.38) into (15.43) and using the invariance of the spur with 
respect to a cyclic permutation of operators, we obtain 

{A) = (A)o + jT)r<UW, //I'0')i>«<"'. (15.44) 
— oo 

Where A (t) = e"""' A <15 •45J 

is the operator A in the lleisenberg representation, and 

{ . . - Sp(»., • • •) (15.4b) 
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is an averaging with the equilibrium statistical operator (15.32) or (15.32a) 

Equation (15.44) describes the retarded reaction of the average values 
of the operator A to the switching on of the perturbation for a quantum 
statistical ensemble. It has exactly the same form as equation (15.16) in 
classical statistical mechanics, except for the replacement of the classical 
Poisson brackets by the quantum brackets and the replacement of the classical 
averaging by the quantum averaging. 

Extending the integration over time in (15.44) to by introducing the 
discontinuous function O(t-t') (15.17), equation (15.44) can be conveniently 
written in the form 

(/I) -- </l\, -i- J ((•'! (0 ^ ))) l': • (15.47) 

where , . 
{(A (i) />' (/')» «=• C (x - l') 7;- \\A ('). ^ V >i/o (15.48) 

is the retarded doubletime Green function in quantum statistical mechanics, 
which was introduced by Bogolyubov and Tyablikov [12-15]. 

Formulas (15.47) and (15.48) are analogous to the formulas (15.18) and 
(15.19) of classical statistical mechanics. Thus, the effect of external 
perturbations on the average value of observable quantities in quantum statis 
tics, as in classical statistics, is described by retarded quantum Green 
functions, which relate the observable quantity to the perturbation. 

The Green functions (15.48) depend on the difference of the time argu-
ments t-t', just as do the time correlation functions 

(A (/) B (l')\ = (-4 (/ - i') B)o = (AH «' ~ <)>.„ 

because the averaging is carried out over an equilibrium ensemble. This is 
easily verified directly by making use of a cyclic permutation of the opera-
tors under the spur sign. Indeed, 

{art -imt-n -tut') 
c-V'e " Aa * Be * J 13 

( ill (t'-t) -lH(t'-t) } 
= Q _ lSp (Ac '• Be " c-*")~{AB{i'-t)), 
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which was to be shown.  The same relationship is valid for averaging over the 
grand ensemble; in the proof it is necessary only to make the replacement 
\\-*i\  - pN. 

The physical meaning of the retarded quantum Green functions is the same 
as for the classical functions.  The instantaneous 6-form perturbation of 
the type (1S.2Ü) effects the average value of the observable quantity A through 
the Green function 

{A)~{A)a + {{Mt)n{i:))). CIS.49) 

Just as in classical statistics, the effect of the perturbation on the 
average values can be expressed ttrough the time correlation functions.  To 
do this we make use of the expression (15.4ü) for the perturbed statistical 
operator.  Then 

Ü - >» 

^^1 i^iil'in^'Mr^^. (15>5ü3 

where use has been made of the stationarity condition (15.23), as in the 
derivation of (15.22),  Formula (15.5Ü) can also be written in the form 

(.1) - (.IX, - j"   I ( ill{t' - ihl) A {tikdh di' - 

- V-l>o + J j {Hi- it' - ihl) A {t)\ dh di'. 
U   —ao V • / 

Comparing (15.51) with the classical expression (15.22)  for the linear reac- 
tion, we notice that(lS.51)  goes over into  (15.22),  if one formally puts h=ü 
and replaces the quantum averaging by classical averaging.      This simple rule 
can be applied for obtaining classical  formulas from quantum formulas. 

Formulas (15.47) and (15.51) give expressions for the linear reaction to 
a mechanical perturbation of a quantum statistical ensemble through the Green 
function or the quantum time correlation functions. For an external pertur- 
bation in the form (15.30) the formulas can be written in the form 
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I «'!(') a, (/')» F, ((')</(', 
/ -» 

<,1>-<-« + S / J <«"Bl(l')e-"'AV)\F,(l,)'trdK < ,. < ., , 
y —oo o (15#51E) 

which is similar to the formulas (15.24) and (15.24a) of classical statistical 
mechanics. These are the Kubo formulas for the linear reaction of a quantum 
system. 

Formulas (15.51a) for the linear reaction of a system are sometimes 
represented in the form 

/ - c o 

where p 

t 

(A) - (."I), + V J <p ^ (< _ t'} f , (r) ^ 

VAB, V< J ( '0 c~Mi A (0)j dh n p (By (/'), .1 (/)) 

is the reaction function, or aftereffect function, describing the effect of 
the perturbation Bj on the average value of A. Sometimes it is called the 
response. In the classical case it goes over into the time correlation 
function 

W'M (.').o 

The reaction function differs from the Green function only by the discon-
tinuous factor e(t-t'). Indeed, by comparison with (15.51a) 

{{/» J) Li (/'})) — — 0 (t — i ' ) A O V - ! ' ) . 

Sometimes the relaxation function is introduced in addition to the reaction 
function 

&AU {l) = j ^ di'~ 

The theory of the linear reaction can be presented using these functions, 
as is done by Kubo (see [1,3,4]). But since they are simply connected with 
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retarded Green functions, which have a very simple physical interpretation 
it is evidently simpler to construct the theory of the linear reaction on 
the basis of the retarded Green functions, and this is the course we shall 
follow in this book. 

15,3.      Nonlinear Reaction of a System. 

The nonlinear reaction of a statistical system to external mechanical per- 
turbations  can be studied by the same method as was used in sections  15.1 and 
15.2 to analyze the linear reaction  [1,  11].       In this section we shall  con- 
sider only the quantum case, because the classical case can be treated anal- 
ogously, by replacing the quantum Poisson brackets by the classical Poisson 
brackets and the quantum averaging by classical averaging. 

Once again we proceed from the quantum Liouville equation (15.31)  and 
the  initial conditions (15.32)  or (15.32a)  and transform the Liouville equa- 
tion to the integral form (15.37).      Iterating the equation (15.37a), we 
obtain a perturbation series for the statistical operator  [1] 

P(0-P.. + . t t 

+iw idti\dL...]ldilie"'l"'\iiUt;}[iiUQ... 

...\ll\n{tn), p..) ...|.'''" (15.52) 
n -1 - to - x) 

and for tue avcra«« value of the operator A 

( 

v_^ i i ... j spi.uoK^)!^^... 
! . ..|\f,i   ... J/- (15.52a) ://;„(/..),   ;',j 

The series  (15.52a)  describes the nonlinear reaction of a statistical svstem 
i to the switching on of the perturbation 11^. 

A more compact  formula for the nonlinear reaction of a system is  easily 
obtained,  if one proceeds from the equation of motion for the evolution 
operator U(t) : 

,-/, llliiil.-.-f// -\- !!i)U it). (15.53) 
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For H^s0 the solution of equation (15.53) has the form 

U(t) = e-'"«\ 

because in this case the Heisenberg representation (8.17a) has the form (8.17). 
Thus, equation (15.53) must be supplemented by the initial condition 

o i , < 1 5 ' 5 3 , ) 

It is easily verified that if U(t) satisfies equation (15.53) and the 
initial condition (15.53a), then 

P(0-i/ (/)pu6/+ (/) (15.53b) 

satisfies the Liouville equation (15.31) and the initial condition (15.32) or 
(15.32a). Indeed, differentiating (15.53b) and using (15.53), we obtain 
(15.31). In addition, in accordance with (15.53a) as t-»-« p(t) approaches 

c-lHtlh el,nih — po. 

i.e., p(t) satisfies the initial condition (15.32) or (15.32a), as was to be 
shown. 

It is convenient to multiply equation (15.53) from the left by 
and to transform it to the form 

ih ~ 0 u {/)) = III (/) e'""" V (/), (15.54) Ot 
w h e r e

 I | ! / A II:M„ i - i t f i / * ( 1 5 . 5 5 ) 

is the operator of the perturbation energy in the ileisenberg representation. 
Integration equation (15.54) with respect to t from -<• to t and using the 
initial condition (15,53a), we obtain an integral equation for U(t): 

I 'r I (15.5t>) 

) 
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It is convenient to transform to the operator 

which satisfies a simpler integral equation 

t 

U, (/) = 1 -i- | tl]. (ti) U i (to dti 
-co 

with the initial condition 

^ W U - 1 . 

Solving this integral equation by iteration, we obtain a perturbation series 
for U(t): 

. i di.i u'!,(i :)Htt{ti) ... (/,:). 
(15.56a) 

The operator U(t) can be written in a more compact form by using the 
chronological ordering operator P, which, acting on any product of time 
dependent operators, places them in chronological order of decreasing time, 
i.e.. 

P f/1 (/,) B (L) ...L (/„)] « A (/,) B (/,) ...L (/„), 

where ti>t2>..>tn; A,B,...,L are arbitrary operators depending on time, for 
example, through the ileisenberg representation or the interaction represen-
tation. By use of P the n*h term of the series (15.56a) can be written in 
the form of a multiple integral with identical upper limits: 

t ' i ,n-1 

_J__ J dtl J dt, ... j dtnUl^Ui^h) ... ///'„(/»)-
— oo — «> 

t I ' 

=_L_i_ U , jata... Jdt,j>[//;,(/.)//},(/•,)... 
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because the integral on the right hand side of this equation is symmetric with 
respect to t},...,tn and there are n! possible permutations of the time argu-
ments. Thus, the evolution operator (15.56a) can be written in the form of 
an ordered P-exponential 

(/(/) = e~lH"h P exp | fj- J" //),('iM*i (15.56b) 

as this is usually done in the quantum theory of fields [23-26]. 

The formula (15.53b) can be written in the explicit form: 

or 

p (t) = U{t)e-™'-F)U + (t). (15.57) 

(15.57a) 

respectively for the Gibbs canonical and grand canonical ensembles. 

We shall obtain one more formula for the statistical operators (15.57) 
and (15,57a). Let us note that for f(A) - an arbitrary function of the 
operator A - there exists the relationship 

Uf(A)U+ = f(U All*), (15.58) 

where U is an operator corresponding to an arbitrary unitary transformation 
(U+U*UU,f'«l), for example (15.56). The relation (15.58) is easily shown by 
expanding f(A) in a Taylor series and taking into account that 

UAnU + = UAU+UA ... JAUh = [UAU+)", 

because U+U*l, Using (15.58) we obtain 

O (0 = cxp I - j i '[U (.')//£/+ (/)-/•' •JS 
or 

p (/) = cxp { - f5[i/ (t) (I! - JI.V) U * (/) - Q]) 

(15.59) 

(15.59a) 
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instead of (15.57) and (15.57a). These formulas together with (15.5ob) give 
a compact description of the perturbation series (15.52) for the statistical 
operator. 

We note, however, that the theory of the nonlinear reaction to mechanical 
perturbations, which was given above, is less well-founded than the theory of 
the linear reaction. We considered the contact with the thermostat as an 
initial condition at t=-», and then studied the evolution of the system as if 
it were isolated from all external interactions, except the force field. In 
reality, almost every real system which receives energy from an external field 
can transfer it to its external surroundings. This is particularly evident 
if the system is understood to be only a mentally separated part of a large 
system. 

liven if it is assumed that at the initial time the system was in equili-
brium with the thermostat, this equilibrium is violated as a consequence of 
the mechanical perturbations, and this gives rise to thermal perturbations, 
which cannot be described by an external field. Only in the linear approxi-
mation are mechanical and thermal perturbations additive. 

A system containing a large number of particles which is obtaining energy 
from an external field can distribute the energy among its particles, for 
example, in the form of liberation of Joule heat, and the system is character-
ized by a time dependent temperature. Many experiments on the behavior of 
magnetic materials which arc found in a constant magnetic field and to whicn 
is applied a variable magnetic field can be interpreted if a time dependent 
snin temperature is introduced [27]. On the other hand, the theory of the 
nonlinear reaction presented above contains only the equilibrium values of 
the parameters ii = l/kT and u, which appear because of the initial condition of 
statistical equilibrium at t=-«. This theory in the usual form is not very 
well adapted for the introduction of the concept of a time dependent tempera-
ture. This temperature dependence is usually obtained from the condition of 
balance of the energy anu the work done by the external field on the system, 
taking into account the effect of the field adiabatically [27], but this 
procedure is rather artificial. In t lie references [28] it is shown that for 
spin systems the time dependence of the spin temperature can be discussed on 
the basis of the theory of the nonlinear reaction by means of a summation in 
the perturbation scries (15.52a) of the terms which are significant at large 
times. An analogous procedure in nonlinear mechanics is the selection and 
summation of the secular terms. In Chapter IV it will be shown how to find 
the solution of the Liouville equation with time dependent parameters. 

We note that in the theory of the nonlinear reaction there does not always 
exist a unique connection between the external perturbation and <A>-<A>y 
- the system reaction to the perturbation. This is most easily explained by 
an analogy with the theory of nonlinear automatic systems 129]. In the lan-
guage of this theory the perturbation III can be called the input signal, and 
<A>-<A>u the output signal. It is well known that for nonlinear automatic 
systems with feedback there cannot exist a unique connection between the input 
and output signals. Such (autonomous) systems are possible not only in 
cybernetics, but also in statistical mechanics, because in statistical ncchanics 
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there is also a possible feedback mechanism. For example, the self-oscillat-
ing regime is possible in turbulent flow^, in nonlinear acoustics for thermal 
generation of sound [30], and in a quantum oscillator [31,32]. A self-oscil-
lating regime is possible also in chemical kinetics (chemical oscillations) 
where the mechanism of feedback is created either by chemical autocatalysis 
(kinetic oscillations), or by heat, which is given off in a reaction and which 
accelerates the reaction (thermokinetic oscillations) [33]. biological 
rhythms in a living organism can also be connected with periodic chemical 
processes [33]. 

In automatic systems small perturbations grow to some finite magnitude, 
which does not depend on the initial conditions. An analogous situation 
exists in nonlinear mechanics [34-30], where the oscillation tends toward a 
limit cycle, independently of the initial conditions. 

he shall explain in somewhat more detail the analogy between the theory 
of the nonlinear reaction in statistical mechanics and the theory of nonlinear 
automatic systems. 

In the theory of the linear reaction the connection between the driving 
force F(t) (input signal) and the reaction of the system AA*<A>-<A>Q (output 
signal) is given by the linear integral relationship (15.51a) 

t 
4'\ i: /4'\ .w M(0- J L(/-/')m*'. (lS-fc0) 

where 
L(t-i') =-«/!(/)/*(/')» 

is the retarded CJreen function. In the nonlinear theory of automatic systems 
with feedback the input signal F(t) and the output signal AA are related by 
the nonlinear integral relation [29] 

A.l <; O/j /•(.")- J.V(/\ n A.l III (15.01) 

where the function L(t,t") defines the reaction AA (response) of the system, 
k(t ,t ) is the feedback reaction (the countereffect on the perturbation F 

The mechanism of feedback was formally introduced bv L. I). Landau in the 
theory of turbulence to describe the establishment of a limit to the growth of 
turbulent pulsations for hydrodynaiaically unstable motions [So]. 
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of the response of the system), and f[...J is the noninertial nonlinear trans-
formation to a direct circuit. In the linear theory without feedback 

f[F(t)]=F(t), L(t,t')=L(t-t'), K(t'.t")=U. 

and (15.61) goes over into (15.t>U). In the nonlinear theory of the reaction 
of a statistical ensemble without feedback K(t',t")=0, and the transformation 
f has a nonlinear and retarded character, as can be seen from (15.52a) (every 
power of F gives one integral of the retarded type). 

I'he nonlinear integral equation (15.01) for positive feedback defines, 
ai is well known [29], the regime of automatic control. Analogous processes 
are possible also in nonequilibrium statistical mechanics, when an unstable 
state is excited and an oscillation appears. liquation (15.01) can be taken 
as a model of such a process. 

For a nonlinear system with feedback it is impossible to obtain in expli-
cit form the dependence between the input and output signals. In such a 
system small perturbations grow to some value, and then the system fluctuates 
about this value. In this case the statistical characteristics of the trans-
formed signal are studied for fixed characteristics of the input signal. An 
analogous formulation of the problem is necessary for unstable statistical 
systems. 

Hie theory of the nonlinear reaction, presented in this section, has 
nevertheless its own region of applicability, when the thermal perturbations 
arising from the mechanical perturbations can be neglected, and the medium is 
passive, i.e., there is no feedback and oscillation in the medium is impossi-
ble. These conditions can be realized, for example, in the theory of magne-
tic resonance [27,37], in nonlinear optics [38], and in nonlinear acoustics 
[30]. 

15.4. Effect of Variable Electrical Field; Electrical Conductivity. 

In sections 15.1-15.5 we considered the linear and nonlinear reaction 
of a system to a perturbation not defining its nature any further, and 
assuming only that it is the result of the action of a real external field. 
This perturbation can be caused by a variable electric, magnetic, or in 
general electromagnetic field, and also by a gravitational field. 

Let us consider the effect on u statistical ensemble of switching on a 
spatially homogeneous variable external electric field, which is periodic 
in time: 

£'(') - E 'cos at c« «= R e f t - ' - ' ( 1 5 . 0 2 ) 
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The electric field E in a medium which contains charges is not the same 
as the external electric field because of the strong shielding of the charges; 
this is due to the Coulomb interaction between the charges. In deriving 
formulas for the theory of the linear reaction in an electric field sufficient 
attention is not always given to the difference between the external field and 
the field in the medium [1,4,5,11,12,39]. A more detailed discussion of this 
question is given in [3,40,41], 

The electrical conductivity is defined as the coefficient of proportion-
ality between the current density and the average field in the medium, or if 
there is dispersion, then it is defined as the coefficient of proportionality 
between the spatial and temporal Fourier components of the same fields (see 
3 18). To define the conductivity it is necessary to know the relation 
between the external field E° acting on the charges and the average field. 
Two cases must be distinguished: 

1) The Coulomb interaction between the charges is taken into account by 
introducing a shielded field, as is often done in the electron theory of 
metals [42,43]. In this case it is not necessary to take the effect of 
shielding into account a second time, and the external field is equal to the 
average electric field in the medium Ê »E. The majority of authors studying 
the linear reaction of a system to an external electric field consider exactly 
this case [1,3,5,11,12,39], although this is not always stipulated. In this 
case to describe the electrons interacting with the lattice the Froehlich 
model is used [44-46], in which the Coulomb interaction is taken into account 
only indirectly, through a modification of the matrix elements of the inter-
action of the electrons with the latticê . 

1 In the Froehlich model the electron-phonon interaction Hamiltonian, in 
second quantized notation, is 

where uiq is the phonon frequency, and vq~q is the shielded interaction energy 
of the electrons with the lattice potential, which has been deformed as a 
result of the motion of the atoms (the proportionality of Vq to the phonon 
wave number q arises as a result of the shielding of the Coulomb interaction 
between the electrons [44-46]). The quantity 

is the generalized coordinate for the normal oscillations of the lattice. 
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2) The Couloab interaction between the electrons is taken into account 
explicitly. To describe the interaction of the electrons with the lattice 
it is necessary to use a model in which the matrix elements of the interaction 
do not include the Coulomb interaction between the electrons, which is taken 
into account separately1. 

If this model is assumed, then it is necessary to take into account the 
effect of shielding and of dielectric polarization of the medium [4,40,41]. 
In this case the external effective field E° is equal to the displacement 
E°»D. 

Let us consider the reaction of the system to the external electric field. 
The operator 

in = V C, (E%) cos <0/ « - (£"P) cos <o/ e", (1* • 63) 

corresponds to the perturbation (15.62), where ej is the charge of the parti-
cle, xj is the radius vector to the position of the particle, and 

(15.64) 

is the polarization vector, considered as a quantum mechanical operator, or 
in the classical case, as a dynamical variable. In accordance with (15.47) 
the perturbation (15.63) gives rise to an electrical current in the system 

a>" J «4(/)//MO»<//'. (15.65) 

In this formula there is no constant term, because in statistical equilibrium 
the average current is equal to zero, <Ja>o«0. In formula (15.65) 

For the electron-phonon interaction Hamiltonian in this case one must use 
an expression similar to Hint in the Froehlich model, but in this case Vq*v* 
-.the "bare" interaction of the electrons with the phonons, for which 
Vq~l/q, and which does not include the effects of Coulomb shielding. If 
the Coulomb interaction is taken into account through the shielding effect, 
then it can be excluded from the Hamiltonian, replacing v̂  by Vq~q (see 
[44-46]). We then arrive at the Froehlich model. 
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//: (0~ - (E"P 0)) COS ote", /,.(/)« 2L '>*/a (0=^(0- ,1C . 

JQ is the electric current operator, and XjQ is the a component of the velocity 
operator of the j*" particle. In second quantized notation the electric cur-
rent operator has the form 

J,, ' (15.65b) 

where a* and o_0 are respectively the creation and annihilation operators 
for particles in a state with momentum p and spin a (we assume that the charges 
of the particles arc identical). 

Using (15.05a) we write the expression (15.65) in the form 

<'«> - - >] J «/a (/) P (/')» £(J cos to/' etV dt\ 115 * b5c> 
0 — cw 

All of the arguments up to now are valid both for the first case, where 
E°=E, and for the second case, where E°=D. In the following we shall con-
sider first the first case, in which the applied field is equal to the average 
field in the medium. Formula (15.65c) can then be rewritten in the form 

^ faufi (<0)e li"'+") (15.66) 
where 

(«) - - J c~>«> «/„/>, (/)» dl (15.66a) 

is the electric conductivity tensor in a periodic field. The limiting transi-
tion e-*0 is carried out after passing to the thermodynamic limit \M) (V/N* 
const). 

Let us now consider the second case in which it is necessary to take into 
account the dielectric polarization of the medium1, and the external field E° 

1 In the case of an inhomogeneous field (see S IS) it must be taken into account 
that only the longitudinal part is shielded, i.e., the part parallel to the wave 
vector. 
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corresponds not to the average electric field in the medium E but to the 
displacement 0: 

(15.67) 

where e(u) is the dielectric permittivity tensor, for which we shall later 
obtain an explicit expression. We represent formula (15.65c) in the form 

<'«>=£ C15.08) 

where oo 

*„,»= - (IS.68a) 

is the electric susceptibility tensor in a periodic field. Expressions 
(15.66a) and (15.68a) are identical in external form; the difference between 
them is in the meaning of the averaging operation <...>, and in particular, 
in the way the Coulomb interaction is taken into account in the Hamiltonian 
with which the averaging is carried out, as a shielded self-consistent field 
or in an explicit manner. In the first case the Hamiltonian does not con-
tain the Coulomb interaction, but the matrix elements of the interaction of 
the electrons with the phonons are modified by the Coulomb interaction (see 
the footnote on page 176). In the second case the Hamiltonian contains 
both a term for the interaction with the phonons, and a term for the direct 
Coulomb interaction (see the footnote on page 177). 

Using (15.66) formula (15.68) can be rewritten in the form 

(L) {cr,̂  (»)«-'*+* £,i} = Re {<7 (<D) • E s iat+")a, 
I ' 

where 
<M («) = 32 X-uV (<") CV i M ' 

' V 

a (u.) = x (a) • e (to) 

is the electric conductivity tensor in a periodic field. 

The dielectric permittivity tensor e(u) can be expressed through the 
susceptibility tensor x(w), by making use of the relation 1 

In the case of an inhomogeneous field (see i 18) the relationship (15.71) is 
valid only for the longitudinal components of the field, because only they are 
shielded. 

(15.69) 

(15.70) 
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D = £ + 4* <P>. (15.71) 

which in our case of a periodic field (15.62) in complex notation has the form 

because 

in accordance with (15.65a). Using this relation and (15.67)-(15.70), we 
obtain for û O 

a(u))«x(«>:'l+i2*i®Lr' (15.72) 
\ iuj I ' 

Thus, the electric susceptibility tensor (15.68a) allows one to define the 
dielectric permittivity tensor c(u) and the electric conductivity tensor a(u) 
in a periodic field. 

Thus, the adiabatic switching on of an electrical field leads to the 
formation of an electric current (15.66) in a system with finite electrical 
conductivity, i.e., it leads to an irreversible process. In general, the 
electrical conductivity remains finite even for a static electric field, for 
which u*0. In this case from (15.66a) in the limit (>>>0 we find the static 
conductivity: 

>vj 

I "" V . I J ' ( 1 5 - " ) 

Another expression for the tensor xQg(u) can be obtained if (15.68a) is 
written in the form 

o 

* , ( » ) - - 7F J e - ' " " ' Sp {[/>„(/), Pol/Jrf/ 

and the Kubo identity (15.39) is used, according to which 
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111 

i) 

Tnen we obtain 

ri   » 

J   I ^'-"{J^At + Uilfr^dt^p f ^-'•(/,, /<fr/))<//. 

The formula (15,6üa)  is reduced to the same form: 

P 

(15.75) 

ai:iJ((o)= J  J f'"'-" (/,,/„(/ + /^)) J/. rf/, (15.7t,) 
o   o 

which  in the classical  limit "h->ü has  the form 

(T„,(0)) = ß  j   ^■-''(//,(/))<■//. (15.77) 

This formula also follows directly from the classical formula for the linear 
reaction (15.22) by using (15.o5). 

In the case of a static field formula (15,7b) becomes 

(15.78) 

cr,, (0)--- lii.i ; | <,•-■'' (/,,/„(,' !-/.',/.i)(//. „7. 

Lxpressions for the kinetic coefficients of the type  (15.70)-(1J.78)   and 
the equivalent expression  (15.73)   are usually called Kubo formulas,  although 
they were known earlier to other authors   (see the footnotes on pages  lou and 
161). 

The order of the limiting transitions E->U and V-x» in tiie Kubo  formulas 
is  very  important, because there  is no uniformity with respect  to these two 
transitions,  and the result depends on the order in which tiiey are carried 
out.       The  limiting transition in which  first V-«° (for V'/N=const),   and then 
c-*U,   i.e.,  the  (V,e)-limit,  corresponds  to imposing the condition of causality 
on the solution of the Liouville equation.       It Laplies   the exclusion of 
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advanced solutions, which is evident from a consideration of the boundary 
conditions of the formal scattering theory of Cell-Mann and Goldberger [47] 
(see Appendix I). Only this order of the limiting transitions can give a 
finite value for the kinetic coefficients (IS.66a), (15.68a), 

A different order of the limiting transitions in which first r+0 for 
finite volume, and then V-** (for V/N»const), is unsuitable, because for 
it leads to absurd expressions for the kinetic coefficients. We shall return 
again to this question in i 17. 

Using the Kubo formula (15.78) the static electrical conductivity can be 
calculated [48-50], and the dynamic electrical conductivity can be calculated 
by means of (15.7b) [41,49,51-56,103] without making use of the kinetic equa-
tion, but this is not a simple problem, because it requires calculation of 
the time correlation functions. 

15.5. Effect of Variable Magnetic Field; Magnetic Susceptibility. 

To conclude this paragraph we shall consider the effect on a statistical 
ensemble of switching on a spatially homogeneous external magnetic field H(t) 
with a periodic time dependence of frequency u: 

H (/.) = H cos oi e2* = Ro {e~ iu.' + e/ *}• (15.79) 

This problem is analogous to the problem considered earlier in section 15.4 
of the effect of an electric field; therefore, we shall discuss it more 
briefly. 

The operator 

ll\ = — (M • H (0) = — (MM) cos co/ / • (15.80) 

corresponds to the perturbation (15.79), where M is the total magnetic moment 
operator of the system. Under the influence of the perturbation (15.80) the 
magnetic moment changes in time in accordance with (15.47) according to the 
formula 

'OLWAX-r ! «• (/) U')))dl' (15.81) 
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where <*Vo is the average component of the magnetic moment on the a axis in 
a state of statistical equilibrium. If in the equilibrium state a magnetic 
field is present, then <^>^0. We write formula (15.81) in the form 

OAi) — O'uX, -r V Re {•/„,> (u) //(1> (IS.82) 
where 

(15.83) 

is the magnetic susceptibility tensor in a periodic magnetic field. Using 
the Kubo identity (15.39) the magnetic susceptibility tensor (15.83) can be 
written also in the form 

which is analogous to formula (15.75). Application of the formulas (15.83) 
and (15.84) to the theory of magnetic resonance can be found in the articles 
[15-59] and in the monographs [13,14,27,37]. 

I 16. Doubletime Green Functions 

The reaction of a quantum system to an external mechanical perturbation, 
as was shown in the previous paragraph, is expressed through the retarded 
doubletime Green functions (15.48) and the reaction of a classical system is 
expressed through (15.19). We shall now discuss the basic properties of 
quantum doubletime Green functions, and we shall discuss the connection 
between Green functions of the various types, their spectral representations, 
dispersion relations, and their symmetry properties. This will allow us 
later in S 17 to obtain in an extremely simple fashion the fluctuation-
dissipation theorems and all properties of the kinetic coefficients. The 
properties of Green functions (especially the retarded) will be widely used 
in what follows. We shall restrict ourselves to the case of quantum Green 
functions, because the classical case is easily obtained analogously, or by 
the limiting transition 1t*-0. 

There are many papers in which Green functions are applied to the various 
problems of statistical mechanics, both equilibrium and nonequilibrium (see 
[12-15,60-64], where a more extensive list of references can be found). 

Various types of Green functions are applied which differ according to: 

Xap (<») = / J* <AfpAf. (t + /u)> dK dt. (15.84) 
U 0 
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the character of the averaging process, the arguments on which they depend 
explicitly, and their analytic properties. If the averaging is carried out 
over the ground state, then this is the field theoretic Green function, which 
is usually used in the quantum theory of fieldŝ  If the averaging is carried 
out over a statistical ensemble, then this is the thermodynamic Green function. 
If the Green functions depend on time variables, then they are called time 
dependent Green functions; if they depend explicitly on the temperature, then 
they are called temperature dependent or Matsubara Green functions, because 
they were first introduced by Matsubara [65]. 

The various Green functions have their advantages and disadvantages. 
The causal Green functions have a more complicated analytic structure, but 
they are closely connected with perturbation theory. The retarded Green 
functions have a single analytic structure, and they are simply connected 
with the kinetic coefficients, but are more indirectly related to perturba-
tion theory. In the theory of irreversible processes, evidently the most 
convenient are the retarded Green functions; therefore, we shall give primary 
consideration to them. 

In this paragraph will be considered the spectral representations, dis-
persion relations, sum rules, symmetry properties, and several other properties 
of Green functions and of tne correlation functions. 

16.1. Retarded, Advanced, and Causal Green Functions. 

Green functions in statistical mechanics are a convenient generalization 
of the concept of correlation functions. Like the correlation functions, the 
Green functions are closely related to the calculation of observable quanti-
ties, but they have advantages in constructing and solving their defining 
equations. 

In statistical mechanics, as in the quantum theory of fields, one can 
consider retarded Gr(t,t'), advanced G0(t,t'), and causal Gc(t,t') Green 
functions: 

0, (/, /') ~ ({A (!) B «')», - -L 0 (/-/')< f A (t), H (/'.)] >, 

GaU, O = = -77" 0 (/'-/)< [/1(f), B (/')]>. (16.1) 

W (/, t') « «/{(/) B (0»c - <771 (/) ii (O). 

Here <...> denotes an averaging over the Gibbs grand canonical ensemble (9.42). 
We omit the index 0 on the brackets, denoting equilibrium averages, because in 
this paragraph we shall consider only averaging over an equilibrium ensemble; 
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(...) = Q-1 Sj> (c'-̂ 'O .. Q M S p c-M/o M e-Qia. (16.2) 

0 is the thermodynamic potential (9.40) in the variables e,y,V. The operator 
M included a ten with the chemical potential p: 

>•'"//-! i.V. (16.3) 

The time arguments of the operators A(t),B(t") denote the Heisenberg represen-
tation: 

/I (/) •--> c:uct','Ac~!Jct/i ( *) 

The symbol T denotes the chronological product of operators!; 

(16.5) 
T.\ (.') B (./') = 0 (/ - i ' ) A [!) 3 (/') + nO V*' -0 3 (/') A (i), 

where 0(t) is the discontinuous function (15.17). Finally [A,B] is the com-
mutator or anticommutator, depending on the sign of n: 

[A,B\=*AB-x\BA, (16.6) 

i.e., for n"l it is the commutator* and for n"-l it is the anticommutator. 

The sign of n in formulas (16.5) and (16.6) is chosen plus or minus on 
the basis of convenience in the problem. If A and B are Bose operators, the 
plus sign is usually taken. If they are Fermi operators, the minus sign is 
usually taken (for such a choice of n we have IA,A+J*1) but another choice of 
the sign of n is possible. We have already introduced the Green functions 
Gr(t#t') with n"l (see formula (15.48)). Generally speaking, A and B are 
neither Fermi nor Bose, because the products of operators can satisfy more 
complicated commutation relations than the original operators. In quantum 
field theory the sign of n in the T-product is defined by the parity of the 
permutation of the Fermi operators making up the product upon transferring 
them to chronological order. 

1 We made use of a particular case of this operation with n«l in S 15 in writing 
the ordering of the P-exponential (15.56b). 
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Let us note that if t=t'# the (ireen functions are undefined because of 
the discontinuous factor e(t-t'). This indefiniteness is well known in the 
quantum theory of fields   [23-2o]. 

From the definitions  (1ö,1)-(1ü.(J)   it follows  that the Green functions 
used in statistics differ from the field  theoretic (.reen functions only  in the 
method of averaging.       Instead of averaging over the  lowest, vacuum state of 
the system,  the  averaging is carried out over the Gibbs grand canonical  ensem- 
ble  (lb,2),      Thus, the Green functions which have been introduced here depend 
both on time and on temperature.      Obviously,  as the temperature approaches 
zero the Green functions  (lb.1)   go over  into the usual field theoretic  (".reen 
functions,   in which the averaging is  carried out over the lowest energy  state. 
Let us note that   in contrast to quantum field theory, where the vacuum aver- 
ages are infinite and are discarded as having no physical meaning,  in statis- 
tical mechanics  the averages over the ground state of the systeu in the 
thermodynamic  limit   (see section 5.2)   give observable quantities. 

The use of the Gibbs grand ensemble  is  not accidental.      It is  very con- 
venient  to work with this ensemble,    because   it  is not necessary to impose an 
auxiliary condition of constant particle number,  as  for the Gibbs canonical 
ensemble  (9.14),   and the occupation numbers  of the various states are  indepen- 
dent. 

For the case of statistical  equilibrium the Green functions  (lo.l)   depend 
only on t-t";  this follows because of the possibilL'.y of cyclic permutation 
under the spur sign   (see  (15.48a)). 

Many problems of statistical mechanics  can be  limited to doubletime 
functions;   it  is  not  necessary to resort  to multiple time functions.       The 
doubletime functions are very convenient,  because one can make use of simple 
spectral expansions  for them, wl ich greatly   luciiitates the solution ot   tue 
equations  for the Green  functior-.      On the  other hand, they contain a  suf- 
ficiently great  amount of inform- tion about  ttie equilibrium and nonequilibrium 
properties of many particle systems.      Of the doubletime Gruen  functions the 
most convenient  are the retarded and advanced Green functions Gr and Ga, 
because their 1 ourier componentj can be  analytically continued into the complex 
energy plane. 

Ke shall  obtain a system of equations   for the Green functions   (lo.l). 
The operators  A(t)   anil  B(t)   satisfy equations  o*" motion of the  form 

(10.7) 

where A is an operator in the Heisenberg representation (lb.4). The right 
hand side of equation (lo.7) can be expanded using tne explicit form of tae 
llamiltonian and the commutation relations for the operators.  differentiatinp 
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the Green functions (16.1) with respect to t# we obtain the equation 

th ~ir,((A(t)B«',)) = 

- <[,1 (/), n (/')! > + ((it, ^ B (/')». 

which is identical for all three Green functions Gr, Ga Gc because 

Therefore we write simply G and <<.,.>> without subscripts denoting the 
type of Green function. Using the relation of the discontinuous function 
6(t) to the 6-function of t, 

6(0 — j 6 (t)di. (lb. 8) 

and the equation of motion (lb.7) for the operator A(t), we write the equation 
for the Green function in the form 

ih * a(t- /') (t<l (°> >'• > 
+ «(,!</) X-XAV) )R (•')))> 

(16.9) 

where we have taken into account that in statistical equilibrium <A(t)B(t')> 
depends only on the difference t-t", and thus 

(.4 U) 3 (.')> = (.1 (0) 12 (0)}, .11)) ~ . i 3 (0) = B. 

In general, doubletime Green functions of a higher order than the original 
appear on the right hand side of equation (16.9). One can also set up for 
the higher order Green functions an equation of the type (16.9) and obtain a 
chain of coupled equations for the Green functions. 
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Chains of equations of the type (16.9) are singly equations of motion 
for the Green functions. These equations alone are insufficient, which is 
evident from the fact that they are identical for all Green functions Gr, Ga# 
Gc, if they are constructed from the same operators A and B. It is neces-
sary to supplement them with boundary conditions. This will be done below, 
in section 16.3, using the spectral theorems. 

Equations (16.9) are exact; therefore solution of this chain of equations 
is an immensely complicated problem. It is sometimes possible by using some 
sort of approximate method to uncouple the chain of equations of the type 
(16.9), i.e., to transform it to a finite system of equations and to solve 
them. Examples of such uncouplings can be found in [12-15,63,64,66]. If 
the system contains a small parameter, for example a small interaction or a 
small density, then such uncouplings can be justified. 

16.2. Spectral Representation of Time Correlation Functions. 

In solving equations (16.9) for the Green functions it is important to 
have spectral representations for them, which supplement the system of equa-
tions with the necessary boundary conditions. We shall obtain spectral rep-
resentations for the Green functions (16.1) in the following section; here we 
do so for the corresponding correlation functions 

u.\ (,' - /) = (B (/') A (/)>, rAB {t -1') = (/I (t) B [:')). (16.10) 

Let Cv and Ev be the eigenfunctions and eigenvalues of the Hamiltoniai: 
(16.3): 

JfC, - /• VCV (16.11) 

We write out explicitly the operation of statistical averaging for the time 
correlation functions (16.10): 

<B(O/U0> = Q-'2(C;B(O/U0CV)C" 0 • (16-12> 

We make use of the usual method of the theory of dispersion relations, based 
on the completeness of the system of functions Cv [23,25,07), and represent 
(16.12) in the form 
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(B (/') /I (/)) - Q"1 22 (CvB (/') c j (QU (/) Cv)e~ 0 = 
V. i* 

= Q"1 ^ (C'VB (0) Cj (clA (0) Cv) c~£v/° cxp - £v) (/ - /')}. 
v . | l 

(16.13) 
because IEV> wt u:lk' 

e-i*f.*Cv»e'~Cv. (£« * =Cle~. 

On the other hand 

{.\(t)B (.")> = 
-= Q-1 v (C;,\ (0) CnXcV/3 (0) Cv) 0 cxp [j (£„ - £v) (/' - /)}. 

V. H 

(16.14) 

Interchanging the summation indices w and v in the last equation and comparing 
(16.13) and (16.14), we notice that they can be represented in the form 

{B(t')A(t))~± \ J M d o , 
— CO 

C° /•< 
</l (/) B (/')> = ~ J 

where the notation 

{«) - 2nQ-' V (C;B .0) Cv)(c;.'l (0) C.) 6 - «). 
v. *4 

has been introduced. 

Relations (16.15) are the required spectral representations of the time 

(16.15) 

(16.16) 
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correlation functions1: JBA(") *S the spectral intensity of the function 
<B(t')A(t)>. 

Comparing the first of relations (16.15) with the second, we obtain an 
important property of the spectral intensity: 

— <•>) — (o)e' (lb.lba) 

For the systems studied in statistical mechanics the spectrum Ep is 
practically continuous because of the large dimensions of the system; there-
fore the summation over the states in (16.16) is essentially an integration, 
which can "remove" the 6-function. Thus, the spectral intensity is in 
general not a 6-type function; only in particular cases of "ideal" systems, 
in which the elementary excitations are undamped, can they have the form of 
a 6-function. 

To derive the relations (16.15) it would not be necessary to use the 
eigenfunctions of the operator#. For this it is sufficient to note that 
<B(t')A(t)> depends only on the difference t-t". Thus, the first of relations 
(lb.15) is simply the definition of the Fourier component of the time correlation 
function; here it is assumed that such an expansion is possible2. The second 
relation (16.15) can be obtained from the first by the replacement 
t-t'-*t-t'*(i1l/0), because 

The spectral representations for the time correlation functions and Green 
functions of statistical mechanics were first used in the article of Callen 
and Welton [22] on the theory of fluctuations and noise and were later widely 
used by many authors [1,3,4,60-64,68]. 

2 A, Ya. Khinchin [16] has shown that for a continuous, stationary random 
process the correlation functions can be represented in the form of a Fourier-
Stieltjes integral: 

CO 

(/) — (.4)}) > j cos ill dF (<:>) 
— 

(A represents dynamical variables of classical mechanics, A*=A), where F(u>) is 
a nondecreasing function with bounded variation, called the spectrum of the 
process. Instead of a pourier-Stieltjes integral one can use simply a Fourier 
integral, if one allows. dFjio) _ _ ^ to be a generalized function. 
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• (B (0) A(t + £)) - (/I (0 B (0)), (16# 17) 

which is easily verified by inspection, by carrying out a cyclic permutation 
of the operators under the spur sign. In fact, after the permutation which 
shifts the operator B to the first place, we obtain 

_ Q - S P 

i.e., the relation (16.17). 

For all real systems the correlations decrease with the increase of time, 
i.e •» 

(A and B are not integrals of motion); thus if <A>*0 or <B>»0, then 

If new operators A(t)-<A>,B(t)-<B>, are introduced, then they will lose 
their correlations in time. Then the expansion (16.15) can be written in 
the form 

<(B (/') - (B)) (A (l) - (A))) = <B (/') A (/)> ~(B)(A)~ 
00 

1 //M(O»)C'« «'-«,/«o. 
(16.15a) 

( i r... it.,\i-t'o 
— cm 

In what follows we shall always assume that if <B(t')A(t)> approaches a 
finite limit as | t-t"|-*«», then its expansion in a Fourier integral has the 
meaning of (16.15a). 
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If JgA(u) is a continuous function, then in accordance with the Riemann 
Lebesgue Lemma 

lim <(a(O-<fl»('U/)-(/l)))-0. 
J t — / ' { -> OO 

If JBA(U) has 6-function singularities at some frequencies, the correla-
tion functions (lb. 15a) will not approach zero as |t-t* (-•«•, but will oscillate. 
If these frequencies are incommensurable, the correlation functions are almost 
periodic. 

The time average of the correlation functions is equal to zero: 

f .'X> 

lirai f4r ! = 
r -¥ ** J • —r -*30

 lX> 

jim 4r | ,Mft (••>)J'111 ~%r ~ °* 
T _ . . • . - > » 

if the spectral intensity is finite at u»0, which is a characteristic of the 
spectrum of a random, crgodic process*. In what follows we shall assume that 
JBA(U) does not have a 6-for,a at us°« This is essential for the unique defi-
nition of the Green function from equations (16.9) [70]. 

The time correlation functions for any finite system, i.e., before taking 
the limit V-*«, are almost periodic functions of t-t", as was shown by 
Bocchiery and Loinger [71] and Percival [71a]. This is a quantum mechanical 
theorem analogous to the Poincare recurrence theorem of classical mechanicŝ . 
The decay of the correlation functions for real systems can be obtained only 
after passing to the limit V-*» (V/N=const), which is as if to eliminate the 
long Poincare cycles. 

1 The connection between the spectrum of a stationary random process and the 
ergodicity property is established by the Wiener-Khinchin theorem [16,69]. 
2 According to the Poincare recurrence theorem any isolated mechanical system 
in a finite volume will repeatedly approach arbitrarily closely to its initial 
state. A very elegant and simple proof of this theorem and its precise for-
mulation can be found in the book of Katz [72]. 
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If A or B is an integral of motion, then the time correlation function 
in general is independent of time. Indeed, let A be an integral of motion. 
Then 

.,1 (/) = Ac~= A (0) 

and, consequently. 

(.1 (/) R (/')> «<.-t (/ - n B (0)> -= (/I (0) B (0)>. 

Let us demonstrate one important property of the spectral intensity, 
which we shall need in what follows. We shall show that the spectral inten-
sity J,+ (u) of the time correlation function, constructed from the conjugate 
operators A+ and A, is non-negative, i.e., in the spectral expansion 

(16.18) 
oo 

<A+(n (̂')>=ir j h*A^emt'~t)d<a 
— 00 

it is alway true that w»°-
(16.18a) 

From the expression (16.10) for the spectral intensity it follows that 

A"*"A * ' "" , 

- 2*Q -l £ KA+ (0) cv) (C\A (°) <rV°6 " ") ̂  °' 
v. H 

because all of the terms under the summation sign are non-negative. Thus, 
the spectral intensity JA*A(U) cannot by negative. From the proof above it 
follows directly that JM*(U) is also non-negative. 

16.3. Spectral Representation and Dispersion Relation for Green Functions. 

Let us now consider the spectral representations for Green functions, 
first for the retarded and advanced functions. They are easily obtained by 

- 193 -



using the spectral representations (16.15) for the time correlation functions. 
Indeed, let Gf(w) be the Fourier component of the Green function Gr(t-t'): 

G. (t — — -77 f 
(16.19) 

CO 

G, (io) = J Gr(t)cu'dt. 
— OO 

For the Fourier components of the Green functions we use the same notation as 
for the Green functions themselves, distinguishing them only by their argu-
ments. Sometimes we shall also make use of the notation <<A|B»U: 

{(A (t) D (*')» = i f I e-'*'-"'1*-
(16.19a) 

Substituting in the second of equations (16.19) the expression (16.1) for 
Gr(t), we obtain 

Here in the integrand, besides the discontinuous function, are the time 
correlation functions. Using the representation (16.15) for them, we have 

0,(.)-£• f jdt<>•<-«• 0(t). 
-i 

We represent the discontinuous function 6(t) in the form 

0(/)= J c"6(()di (e-> 0, e>0), 
— 

or# since 
«JO 

= j c~tx'dx, m* * •» 
— (XI 
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in another very convenient form: 

CO 

0 ̂ ) 2n J (16.23) 

It is easy to verify that a function so defined indeed has the properties 
of the discontinuous 6-function. We shall consider x as a complex variable 
and consider that the integral is carried out along the contour depicted in 
Figure 1. The integrand has a pole in the lower half plane. 

For t>0 the contour must be closed in the lower half plane and the integral 
(16.23) is equal to one. For t<0 the contour must be closed in the upper 
half plane and the integral (10.23) is equal to zero. 

The discontinuous e-function can be represented also by means of the 
contour integral 

where the integration is carried out along the contour Cr, which is depicted 
in Figure 2. 

Fig. 1 

r 

Fig. 2 

- 195 -



Using (16.23) and (16,22), we obtain 

oo 

i f ei(»-•»')ie(Arf/= ' f a(«-<a'-fO rf j • 
—T J i-t J x + /e 2.T <o —(o' + /e 

Thus, Gr(u) - the Fourier component of the retarded Green function Gr(t) 
is equal to 

r C'((o)== asr J . (16.24) 

Repeating the same calculations for Ga(u) - the Fourier component of the 
advanced Green function Ga(t) - we obtaiu 

J' (16-24a) 

We write formulas (16.24) and (16.24a) as a single formula 

no 

c,. W - -si J («**» -1) j .A <»') • 
(16.24b) 

where the plus corresponds to the subscript r, and the minus corresponds to 
the subscript a. 

As yet we have considered u to be a real quantity. The function (16.24b) 
can be analytically continued into the complex u plane. Indeed, considering 
u to be complex, we obtain 

ry 
\Gr (o) .for Ini(o>0, 

for Iinco<0. (I62r>) (16.25) 
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Therefore the function Gr a(u) can be considered, following [15], to be a 
single analytic function in the complex plane, having a singularity on the 
real axis. In what follows we shall omit the subscripts r,a and write sim-
ply G(u), considering u to be complex. We then write the relation (16.25) 
in the form 

G((o) = ((/l 1 ^ = ̂/7 j VUAW-ZTZ (16.26) 

The analyticity of G(u) follows from a theorem proved by N. N. Bogolyubov 
and 0. S. Parasyuk in the theory of dispersion relations [73]. According to 
this theorem it is necessary and sufficient for the analyticity of G(u) that Gr(*) (°r Ga(t)) be generalized functions in the sense of Sobolev-Schwartz, 
which is not too stringent a demand. 

Let us consider first the analytic properties of Gr(u). According to 
(16.19) we have 

G, (co) = j Gr (i) e:<J (!!, (16.27) 

for which Gr(t)=0 for t<0. 

We shall show that the function Gr(u) can be analytically continued into 
the region of complex u in the upper half plane. Let u have a positive, 
non-zero imaginary part y: 

^ a — Re<o + t'Im<o = a + /Y. Y>0-

Then, we have 
oo 

Gr (a + i\') = [ Gr{t)ciat~*dt. (16.28) 

n»e term e"Y* plays the role of a cut-off factor which guarantees the conver-
gence of the integral (16.28) and its derivatives with respect to u under 
sufficiently general assumptions about the function Gr(t) [73]. Thus, the 
function Gr(w) can be analytically continued into the upper half plane. 

It can be shown analogously that the function Ga(u) can be analytically 
continued into the lower half plane: 
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U» = O • iy» Y < 

If a branch cut is made along the real axis, then the function 

f G,M for (16.29) 
O'(o')5=1 \(;(i ((,)', for 'ni <o <° 

can be considered as a single analytic function, made up of two branches, one 
of which is defined in the upper and the other in the lower half plane of the 
complex u plane. 

If G(w) is known, then the spectral intensity JJJA(W) can be found by the 
relationship 

G (o + te) - C (» - re) - (e4*0 - n) h.\ (<•>)• (lb'30) 

where u is real, and v+0. Indeed, forming the difference of expressions 
(16.26) for real u 

C (<» + it) -G( co - ie) = 
l I 

-iar j " ( u , ) I I<,u' 

and making use of the representation of the 6-function 

^ (A) 2ni {* —ie * + i'e }' 

we obtain the relationship (16.30), which plays an important role in applica-
tions of Green functions. 

Thuse if we can in some way uncouple the chain of equations for the Green 
functions (16.9) and find the Green function G(u), then using (16.30) we can 
construct the spectral intensity JBA(U) aml ^ntl expressions for the time 
correlation functions (16.15). 
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We shall obtain simple but important relations between the Green func- 
tions and the spectral intensities of the correlation functions. 

Using the symbolic identity 

^TTTTF^Mu-o/). (1Ö.32) (ü — in i :c 

in the integrands of the formulas (10.24) and (lb.24a), where e->-U,e>ü, and 
^denotes the principal value of the integral.  Mere u-w' is considered as 
a real variable.  Then we obtain* 

— JO 

Ga (") = "4 ^   j ^ ~ ^ J*A (ü/) ^V + 
— DO 

J' (10.33) 

from which follows the connection between the real and imaginary parts of the 
Hreen functions (.'BM'-

1
)  ^

S
  assumed real); 

RcM«)«-^   (hiJ^i    . (lb.34) 
— JO 

Re ^(o) =-!./'    rjmfin(..>1^   , 
•T j Ul  — 0) 

The relations (10.33) express the well-known properties of the limitinr, 
values of a Cauchy integral upon shifting the point u onto the contour of 
integration.      i'hese properties were first established by Yu.  V. Sokhotskiy 
in  1873,  and then by K. Plemel*   in iyU8 (see the textbook on the theory of 
functions of a complex variable by M.  A,  Lavrent'yev and B.  V. Shabat  [74]). 
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The relations (16,34) are called dispersion relations. If the spectral 
intensity is real, these relations follow directly from (16.33), because in 
that case 

Iiu G, (cu) - - -Ir {ehb"J ~ ll) hi A (">). 
, " (16 .34a) 

Ins G„ («> )Yf f " — *"A '<0^' 

but the relations (16.34) are valid not only in that case. The dispersion 
relations (16.34) follow from the analyticity of (̂ (u) in the upper, and 
G_(w) in the lower half planes in the conplex u plane (see (16.28)). Indeed, 
if Gr(w) is analytic in the upper half plane, and ̂ (u) in the lower, then 
they can be represented in the form of Cauchy integrals: 

J (lmo>i>0). 
»5— 

- I'A j » 

1 ou («) = - ».' - - </u»' (Inuii < — A<0). 

(16.35) 

It is assumed that for any positive 6 

i Or.u (fc>) i <T£T- for Im <» > 6 (or Ir.i <o < —6), 

and therefore, the integral along the path of radius R which closes the con-
tour in the upper (or lower) half plane approaches zero as R+«*. 

Let us take the path of integration down to the real axis, having let 
6-*0. Then 

G,.n(0))=" ± y,7 
l'r. u iW. (16.36) 

We now let the point u approach the real axis, putting ur*u±ie(e-»-0), and we 
rewrite (16.36) in the form 
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The dispersion relations (16.34) follow from (16,36a) by using the symbolic 
identity (16.32). 

Consequently, a detailed knowledge of Gr(t-t') (or G,j(t-t"))is not 
required to derive the dispersion relations; it is sufficient to know that 
the Green function is retarded (or advanced), i.e., that it is equal to zero 
for t<t" (or for t>t'), and that its Fourier components fall off sufficiently 
rapidly as ur>«. 

The spectral representations (16.26) and the dispersion relations (10.34) 
for the Green functions lead directly to the spectral representations and 
dispersion relations for the kinetic coefficients, because the latter are 
expressed through the retarded Green functions (see (IS.66a)). We discuss 
these questions in a subsequent paragraph, which is devoted to the fluctuation-
dissipation theorems. 

The spectral representations derived above are for the retarded and 
advanced Green functions, which are applied in the theory of irreversible 
processes. However, in statistical physics the causal Green functions, 
for which diagrammatic techniques have been worked out [60-64,75], are applied 
rather often. Spectral representations for causal Green functions can be 
found in [76,60,61]. 

16.4. Sum Rules. 

From the existence of the spectral expansions for the Green functions 
there follow for these functions some simple identities - sum rules, which 
find application in the theory of nonequilibrium processes, for example, in 
the theory of electrical conductivity and magnetism [1,3,4]. 

For the retarded Green functions we have by definition 

(16.37) 

Integrating this relationship over all u, we obtain 
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f «.4 i B»: to - j *» I i< « Ml) *< -
* — OO — ® — » 

0 

- fl(0])6(/)^. 
— oo 

Thus, for the retarded Green functions there exists the identity 

ao 

/ «>4i *»:</»=£<̂ (0), (lt>,38) 

called a sun rule. This name stems from the fact that such relations were 
first obtained in a matrix form, containing sums over quantum states. 

An analogous relationship is valid for advanced Green functions, but 
with the opposite sign on the right hand side: 

f <(/i i £»! (o). B (°)l >• (lb.38a) 

To obtain sum rules of a different type we integrate (16.37) by parts, 
setting <lA,B(t)]>|ta.#o»0. We obtain 

w 

«'I|B»'.--JS<IK0). B(0)l)-i J ( [ A - T T I ) 
— 30 

and thus, 
CO 

j (/.a ({A 1 D))l - < [A (0), B (0)] >} do = 
»-Oo 

0 

— 2, J([,.^]}6(0<»— 
— OO 

and analogously for the advanced Green functions 

(to «A i li))l - (\ A (0), B (°)i >) </u •= * \ L' ~f~] //-0* 

(16.39) 

(16.39a) 
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Relations (lb.39) and (lb.39a) are sum rules of the second type. 

From the convergence of the integrals on the left hand side of (16.39) 
and (16.39a) it follows that the retarded and advanced Green functions behave 
as 1/u as 

Bm-ss. ( * 3 

provided that the average commutator (or anticommutator) on the right hand 
side of relation (16.40) is non-zero; otherwise they fall off even faster as 
u increases. 

Continuing to integrate by parts in (16.37) up to terms of n**1 order, 
we obtain 

- iRFW/<[* ̂ T1]) (16.41) 

from which follows a generalized sum rule of the second type: 

* ' n i\ . dn+1B(/) 1 \ (16.41a) 
<//" + ' J^-D' 

Similar relations for the advanced Green functions differ from (16.41a) 
only by the sign on the right hand side of the equation. 

From (16.41a) we obtain as n+» an asymptotic expansion in powers of 1/u; 
it is identical for the retarded and advanced Green functions. We obtain 
the same expansion if in the equation for the Green functions (16.9) in the 
Fourier representation 
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we carry out a successive iteration and eliminate terras with time derivatives 
bv using similar equations, in which           </.'{      dli      ,/'/> 

ß "'"..•.■" '  "iU"^"!^ etc. 

The sum rules which were considered earlier are applied in the theory of 
irreversible processes, for example,  for the electrical conductivity tensor, 
magnetic suscep.ibility (see §  18), which are expressed through the  retarded 
Green functions. 

lb.5.      Symmetry of Green Functions. 

Let us now consider the symmetry properties of the correlation functions 
and the  Green functions  (see  [1,77]). 

From the definitions of the retarded and advanced Green functions   (lo.l) 
it follows that 

.'■un.'Mn:v-=>i(W'^u))v (lü.42) 

i.e., that the retarded Green functions with the commutator (n = l)  are equal 
to the advanced functions of the same type with permuted operators,   and the 
retarded functions witii the anticommutator  (n=-l)  goes over into the advanced 
functions, with the opposite sign, upon a permutation of the operators. 

Taking the Fourier components in   (10.1)  uf the Green functions 

((.-KW))),-—  J {{AlB%c-^->'>lIa, 

CO 

(WM (/))),, = — j'((ß;.-i))^-^*.--'t/A 
— oo 

we obtain the symmetry conditions for then: 

Here u is everywhere real. 

We make use of the analytic continuation of the Green functions into the 
complex plane (lb.21)) to write the symmetry condition (lb.43) in the form 

(10.43) 

2Ü4 



«Ai iQ»M = ,n«/3t ̂ »-«-
(16.43a) 

We obtain another useful symmetry property by taking the complex conjugate 
of the expressions (16.1) for the retarded and advanced Green functions: 

«,1 (t)B (/')»• 0')». 
(16.44) 

Using the commutator for the Green functions we obtain in the particular 
case of Hermitian operators 

{{.'1 (0 B (*')»" = {(A (' 'Ht'))) (16.44a) 

for A«A+,B»B+,n"l» Thus, the commutator Green functions of Hermitian opera-
tors are real. 

In the case in which the equations of motion for the operators are invar-
iant with respect to a reversal of time, i.e., with respect to the replacement 

t-*-t, t'-*-t", i-»-i, 

the Green functions have still other symmetry properties. The equations of 
motion of particles in the absence of a magnetic field, for example, are 
symmetric with respect to time reversal. 

Let the equations of motion for A and B be invariant with respect to time 
reversal, for which A*e*A, fr+xBB, where CA#eBB± »̂ depending on the parity of 
the operators under an inversion of velocities. Let us consider the spectral 
expansion 

(,!(/) fl (/'))- ~ f /,u,(<o)<?<»«-'' c/<o. (16.45) 

Upon making the replacement t-*,-t,t'-+-t",i->-i the left hand side of this equa-
tion is multiplied by ĉ cg, and on the right hand side J/y}(u) goes over into 
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J*AfiC«) (® consequence of the replacement of i by -i). Thus, in the case 
considered 

l.Ui M = Uu (<•>) e.leu-
l.\n («) — JAB ^ for S'VeiJ= *̂ ^ ^ 

i.e., the spectral intensity is real for operators with the same parity. 

Comparing (16.45) and its complex conjugate 

oo 

<B+(*')4+ (0) = -̂ - j JAB^)e-"iV-i',da. (16.46a) 

where we have made use of the reality of the spectral intensity, we verify 
that 

(16.47) 

and, thus, . (16.48) 
«A|B»„-«B+U »-

In the case in which the magnetic field is not zero, the spectral inten-
sity of the time correlation functions is no longer real, but because the 
equations of motion are invariant with respect to time reversal and a simul-
taneous reversal of the direction of the magnetic field (H*-H), the spectral 
intensity has the symmetry property 

, JAB. = JAB.-u(u)eAtn (16.49) 

instead of (16.46), which holds in the absence of a field. Thus, the Green 
functions have the symmetry property 

«fl* {1)A* (<')»// = (0 (16.50) 

instead of (16.47) and (16.48). 
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The symmetry relations considered in this section will be necessary later 
in S 17 to establish the properties of the complex conductivity and suscepti-
bility. 

I 17. Fluctuation-Dissipation Theorems and Dispersion Relations 

The relationships between the kinetic coefficients or susceptibilities, 
which define the reaction of the system to an external perturbation, and the 
equilibrium fluctuations are called fluctuation-dissipation theorems. The 
Kubo formulas for the electrical conductivity (15.76) and (15.77) are a par-
ticular case of these theorems. The fluctuation-dissipation theorems for 
the general case were first formulated by Callen and Welton [22] as generalized 
Nyquist theorems [78], which are known from the theory of electrical noise in 
linear circuits. The fluctuation-dissipation theorems are further generalized 
and applied to the thermodynamics of irreversible processes in the articles 
[79-81,1,11]. 

In S 15 expressions for the kinetic coefficients (or for the generalized 
susceptibility and conductivity) were obtained through the retarded Green 
functions, and in S 16 the general properties of the Green functions were 
discussed. The Callen-Welton fluctuation-dissipation theorem, the dispersion 
relations, the sum rules, and the symmetry relations for the kinetic coeffi-
cients and the generalized susceptibility follow directly from these properties. 

17.1. Dispersion Relations, Sum Rules and the Onsager Reciprocity Relations 
for Generalized Susceptibility. 

Let an external, time dependent, mechanical perturbation act on the 
system. The perturbation is switched on adiabatically and is described by 
adding to the llamiltonian a term 

~ (0«/ 
/-1 

F(t)~eet as t-*-«,e>0, where the aj are dynamical variables, and Fj(t) is 
tile "force" with which the external field acts on the variable oj, i.e., the 
force conjugate to it; Fj(t) is considered to be a known function of time. 

The perturbation (17.1) is conveniently represented in the form of a 
scalar product of n-dimensional vectors: 
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H\ — — (F {t) • a), (17.1a) 
WherC JO •••• a^' F(t) = (FiU). •••. Fn (•'))• 

Taking the perturbation in the form (17.1), we assume that in statisti-
cal equilibrium F̂ «0 (or <ai>y=0). If this is not the case and in statistical 
equilibrium F^O, then for the perturbation one must take the deviation of 
the interaction energy from its equilibrium value and not (17.1): 

//i Z(F,(t)-F^ai. 
/-i 

(17.1b) 

In what follows for brevity we shall write the perturbation in the form (17.1), 
assuming that for the case in which F^O, that the equilibrium value of Fj(t) 
has been subtracted out. 

In accordance with (15.47) the reaction of the system to the perturbation 
(17.1) is equal to 

(a) - (a)0 + \*(t-t')-F(t',di', 
— ao 

w h e r e 

(17.2) 

(17.2a) 

is the generalized reaction matrix with components 

Xi* (t -/') = — ((«i (0 (/')»• (17.2b) 

The double brackets denote the retarded Green function (15.48) in the quantum 
case and (15.19) in the classical case. 

Since the retarded Green function is non-zero only for positive arguments, 
then it is always true that 

xtf-O-0 for <«'• (1?,3) 

which is an expression of the causality principle; the reaction of a system 
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cannot precede in time the perturbation which produces the reaction.      In a 
phenomenological theory in which the explicit expressions  (17.2a) do not 
exist for the reaction matrix, the causality principle  (17.3)  is taken as a 
fundamental physical postulate of the theory  [82]. 

Let us expand the functions F(t),<a>  in Fourier   integrals: 

(") = « + —     Ju(c0)C-WicD. 

(17.4) 
oo 

*■(/)=—    |F(0))6'-'"'Jü). 

where a(u) and F(u) are the Fourier components; 

"(w)- j{{a)~{a))^ilt, (17.4a) 
-co 

f(üi)- \F{i)c^dt. 

Substituting tiie expansions  (17.4)   into  (17.2)  we obtain an algebraic 
equation instead of the  integral relations  for the  linear reaction 

(17.5) 

where u (w) =/. (a)) • f (w), 

■A.k (co) =    [ Xjfc (/) e"*1 dt = - ((a, 1 ak)\0 = 
— oo 

ao    |i 

W^adi + m^'-'äläK (17(5a) 
o   o 
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is the generalized susceptibility taatrix*. Formula (17.Sa) expresses the 
fluctuation-dissipation theorem of Kubo. 

As the generalized susceptibility is expressed through the retarded Green 
functions, all of the properties of the Green functions considered in S 16 are 
extended to the susceptibility. 

Separating x(u) into real and imaginary parts, 

v. (to) — v! (co) + iv." (to), (17.6) 

we obtain from (16.34) the dispersion relations for the generalized suscepti-
bility or Kramers-Kronig relations: 

x'Uo) = ̂  x" (u) 
// — 0) 

au9 x-W —Xfl- J ZS±4u (17.7) 

Similar relations between the real and imaginary parts of the index of 
refraction were first obtained in classical electrodynamics by Kramers [83] 
and Kronig [84] already by 1926-1927. 

From the reality of a and F(t) it follows that 

« (CO) = «• (— (0), / (0)) = F (— (it), 
and therefore n -

x(0)) = x*(- ©), (17.9) 

1 Sometimes, for example in [82], in addition to the generalized susceptibility 
matrix x(u) the generalized admittance matrix is introduced 

Y(w) = -iwn(w) 

as is the inverse to this matrix, generalized impedance, 

Z(u>) * iw"lji~l(u). 

Then the equation for the linear reaction (17.5) takes on the form 

a („,) ̂  >' ((o) • F (to), for 1' (tu) - ivi {(a i u))w. 
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from which it follows that the real part of the generalized susceptibility x(u) 
is even, and the imaginary part is odd with respect to u: 

rf(u>) = y/(-<o), v." («)--** (-<?)• ' (17*9a) 

By means of (17,9a) the Kramers-Kronig relations can be written in the 
form 

(17.10) 
y." (GO - — - £? f x' (M) —j———~ (iu. V ' 71 J V ' U2 — (U* 

From the sum rules for the retarded Green functions (16.38) and (16.39) 
there follows a sum rule for the generalized susceptibility: 

-J- j x..A(<o)rf<o = -g"([o/, aA]>, 
(17.11) 

CO 

•i- j {A©x</k(co) + ((a,, afc]>}£f0) = ([«,-. 

From the symmetry property (16.50) for the Green functions it follows that for 
the generalized susceptibility 

a, ek= ±1, (17.12) 

and in the absence of a magnetic field 

'^ik (<>>) = Hht (a)e:E,e. (17.12a) 
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Dividing the susceptibility into symmetric and antisymmetric parts 

XI^TK+O.  x^vl^-^j. (17.13) 

we verify that Xs is  even,  and x01 is odd with respect to an inversion of the 
magnetic field H; 

x!;;(a, Jt/) = ^i(ü)1 —//), K^(ü), //) - - x^ (co,  -H)  forf4i     =1. (17.14) 

These symmetry properties   (17.12)   and (17.14)   are called the Unsager 
reciprocity relations  for the generalized susceptibility.      They thus result 
from the theory of the linear reaction of a system to mechanical perturbations 
and the invariance of the equations of motion with respect  to time reversal 
with the replacement H-^-H.      They are valid also for the kinetic coefficients, 
independently of the type of perturbation - mechanical or thermal - which is 
producing the irreversible process. 

The reciprocity relations  for the kinetic coefficients were established 
in  1931 by Onsager  [85],  who proceeded from a hypothesis  about the character 
of the damping of the fluctuations  in time.      In particular,  he assumed that 
they obey the same equations  as do the average values,  and he made use of the 
invariance of the equations of motion of the particles with respect to time 
reversal and the inversion of the magnetic field. 

The Unsager relations  reflect on a macroscopic  level  the  invariance of 
the microscopic equations  of motion.      They have a very great significance for 
the theory of irreversible processes.       In fact they are the basis  for all of 
nonequilibrium thermodynamics  a good exposition of which can be found in the 
monograph by deGroot  and Mazur  lö2] ,  and also in the books   [80-iH)].      Ue shall 
again return to a discussion of the Onsager reciprocity relations  in section 
17.5 and in Chapter  IV for the case of thermal  perturbations. 

17.2.       Callen-Welton Fluctuation-Dissipation Theorem for Cencralized 
Susceptibility. 

Fluctuation-dissipation theorems relate the characteristics of a dissipa- 
tive process (for example,  the complex susceptibility x^(w)   or conductivity 
ou^(u)))   with equilibrium fluctuations  in the system.      Thus,  they express non- 
equilibrium properties through equilibrium properties. 



In section 17.1 we considered the Kubo fluctuation theorem (17.5a). The 
Callen-Welton fluctuation-dissipation theorem is another representation of the 
Kubo formula. It follows from the theory of the linear reaction and from 
the spectral representation for the retarded Green function (16.24). For the 
complex susceptibility Xik(u) we obtain 

K„<»> -sir J - '> V , " 
— 00 

oo 

- i(«'•*" -1>'v,W—Sh? J -i>v, wŝ r• 

to)" f ««. ifl - <»>W (•") " % » . 

is the Fourier component of the time correlation function, relating <*k and ON. 
In the time correlation function in (17.15a) the averaging is carried out over 
an equilibrium ensemble, but we shall not use a subscript 0 on the brackets 
to indicate this. We denote by this subscript only <ak>Q. 

Formula (17.15) represents the complex susceptibility through the spec-
tral intensity of the equilibrium fluctuations (17.15a) and expresses the 
Callen-Welton fluctuation-dissipation theorem. In the classical case, takine 
the limit IHV in (17.15), we obtain — — — 

(17.15) 

(17.15a) 

no 

*«(•> "ST du 
+ /e (17.15b) 

We express the spectral intensity Jakai(u) in terms of Jaiok(-w) by 
using (16.16a): 

- ^a. (it); — J 'ito/Q (17.16) 

Let us introduce the symmetrized time correlation functions 

{«* (/). a, (/')} - ~ «a/; (/) at (/')> + (a,- (/') ak (/))), (17.17) 
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which are symmetric with respect to i,k with replacement t+t', and which have 
Fourier components 

JiVi) ((0) = 7 [^a, (u) + yU(aA. (-(1))) = y<;; „, (a) -i (1 + e**0), (17.17a) 

which follows from (17.1b),  By using (17.17a) we can write the fluctuation- 
-dissipation theorem (17.15) in the form 

^M=-ir ! '^mi^^ir (17-18) 

The factor th(1lu/2e) (hyperbolic tangent) in the integrand of formula (17.18) 
is proportional to the average energy of an oscillator with frequency u, 
because 

2ri+1==th^-,  « = -,-'- 

Up to this time we have expressed the generalized susceptibility through 
the time correlation functions.  One can obtain also the inverse relations, 
expressing fluctuations in terms of the Rtneralized susceptibility.  The 
fluctuation-dissipation theorem was first obtained by Callen and Welten in 
just such a form. 

From formula (17.18) it follows that 

Taking into account that as a consequence of the assumed hermiticity of 04 
and ak 

4«. (") - JVk (,.,;, 

214 



we obtain 

•<ki*)-*kii*)~fhihI$th*>H)(<*)' (17.19) 
i.e., 

Ira y-i, (co) =- ¥th ~ Re /ftaft) (o)). Re <k (a)) - { ;h ^ Im J{li.%] ((o), (17# 19a) 

and the inverse relation 

{^(fi-xuA.). ^aO-C^V))- (17.19b) 

„ A   [ ^•, (w) _ x.. (a) fcth ^ e^ i'-''5 da, 

from which it follows that for t=t' 
Key: 

a. hyperbolic cotangent 
('>!   -(ö/,.).'.      ^-V'i)»)) 

ir J (•4^)-%-M)cth-i'f/ö- 
(17.19c) 

For the particular case of a single variable we obtain 

, v   •■      hi',,,.   ,,   /K..  , (17.19d) 

Relations  (17,19)  and (17.19c) were obtained by Callen, Barash, and 
Jackson   [81], and formula (17.19d) by Callen and Welton  [22],      Relations 
(17.19c)  and (17.19d) have the form of sum rules (see section 16.4). 
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17.3. Linear Relation Between Current and Forces; Kinetic Coefficients 
and Their Characteristics. 

The rate of change of a dynamical variable <*j with respect to tine oj is 
called the current operator (or dynamical variable), and its average value 
<oj> is called the current. In states of statistical equilibrium there are 
no currents, because 

<d/>d=-l<a/)0==Of 

therefore, they characterize a nonequilibrium state. 

It is convenient to introduce an n-dimensional vector of current operators 

ti = (U;, . . « ). 

Using the theory of the linear reaction we find the connection between 
currents and forces F(t) when the forces are sufficiently small. 

Under the influence of the perturbation (17.1) there arises in the system, 
in accordance with (15.47), the currents 

<«'> ̂  V j Lik (/ - f ) Fk (/') dt' (17.20) 
k -"«> 

or 
i 

<«> = j' L(t-t')-F (t')dt', (17.20a) 
— rv» 

where L (/ ((<i >})) ( n > 2Qb) 

is a tensor with components 

M 

/ - i t = (/')))= j «,(/))d\. (17.20c) 

Relations (17.20) and (17.20a) are called the linear relations between 
forces and currents. 
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The linear relations (17.20) are integral relations of the retarded type. 
Expanding the forces Fj(t) and the currents <ai> in Fourier integrals, we 
obtain algebraic relations between the Fourier components of the forces and 
the currents: 

« M-= Mto) • f (a)), (17.21) 
where 

CO 

— 30 
OO       (i 

== j j («.äi (t + ////.)) c''"' - ■' <// dk (17.21a) 

is the tensor of kinetic coefficients for periodic processes with frequency u, 
and 

«(")=   [<«) t-"<// (17.21b) 

are the Fourier components of the currents. 

The function Lit(t-t') is significantly different from zero only in the 
region |t-t'|^T, where T is the correlation time, and the function tends to 
zero as |t-t'|-*».  If the forces Fj-Ct") vary sufficiently slowly with time, 
so that their change in a time x can be neglected, then on the right hand 
side of (17.20) the slowly varying function Fjc(t'*) can be taken outside the 
integral sign at the point t'=t.  Then the retarded linear relations (17.20) 
go over into the usual linear relations relating the instantaneous values of 
the forces and the currents: 

('V/=^/-..;/-\(a (17.22) 
where 

tail •'    .' ■ '    ■ 0^ (17.22a) 

is the tensor of kinetic coefficients for stationary processes. 

217 



The generalized susceptibility Xik(u0 (17,5a), introduced in the preceding 
section, is connected with the kinetic coefficients Lik(u) (17.21a) by the 
relation 

/.,•, (UJ)-=-—(fa,, U;;])-/a)/.,;^a)), (17.23) 

which is obtained by integrating (17.21a) by parts.      From (17,23)  it follows 
that the imaginary part of the susceptibility is related to the real part of 
the kinetic coefficient and vice versa. 

Dispersion relations for kinetic coefficients Lj^O,)) follow from (16.34); 

du. 

■c^-^-i., \-^ilJllt 
(17.24) 

U   - o. 

they have the same form as xi|c(w). 

The kinetic coefficients have the property 

(17.25) 

which follows from the reality of <a> and F(t).  Using this relation (17.24) 
becomes 

(17.24a) 

h' 
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The SUM rules (16.38) and (16.39) give the relations 

Llk (w) = --([«,, a J). 

(17.26) 

for the kinetic coefficients. 

Froa the symmetry properties of the Green functions (16.50), which cose 
about from the invariance of the equations of motion with respect to time 
reversal and inversion of the direction of the magnetic field, follow the 
symmetry properties for the frequency dependent kinetic coefficients 

Llk (©, H) = Lki (©, - H) tfik (17.27) 

and for the stationary kinetic coefficients (w>0) 

La, (if) *= Lkt (— (L(h (H) — Lik (0, H)), (17.27a) 

from which follow for the symmetric and antisymmetric parts 

Lik = j (Llk + Lkl), La
lh = ±(Llk-Lkl) 

the symmetry conditions 

Lik (a, H) «= Lit («£», 
La

ik (co, //) La
ki (to, —H) e,et. 

(17.27b) 
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• aaw tT « \ " * w f » • » 

Onsag«r reciprocity relations (or the Onsager theorem). Onsager derived then 
for the stationary case [85]. 

In this section we shall derive the Onsager theorem for the case of 
mechanical perturbations. We shall consider it for the case of thermal per-
turbations in Chapter IV. 

The Welton-Callen fluctuation-dissipation theorem for the kinetic coeffi-
cients (17.21a) follows from (16.24): 

— CO 

where ® (17.28a) 
v>)= J <«*(/)6, 

or in another form 

a r ca-t+iP , (17.29) 
w h e r c " Key: a. Hyperbolic tangent 
'(Vi) " T {7V, fa) + /Vi (- a)} = (o>) ̂(1 + e'1""0) (17.29a) 

are the Fourier components of the symmetrized time correlation functions 

K (0. 6; (/')}- j ((ak [t) d, (/')) + (a, (/') ak (/))). (17.29b) 

From (17.29) there follow also other formulations of the fluctuation-
-dissipation theorem for the kinetic coefficients 

Lik (<0) Lki ̂  - Hith lif (°J) 
and 
{<*,(/), ak (t') — («A)0} = 

(17.30) 

= J («) ~ Lki (®))cth (17.30a) 
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analogous to the relations (17.19) and (17.19b) for the generalized suscepti-
bility. 

Up to now we have considered the general case of the reaction of the 
system to the perturbation (17.1). We shall now derive the Welton-Callen 
fluctuation-dissipation theorem, the Onsager relations, and sun rules for the 
particular case of electrical conductivity, when the perturbation has the 
font (15.63). In this case 

where 
I s M - i f /„(')> + </,(Oi. me'"dt -

— oo 

°Z (17.31a) 
= J {/a (0)i i^)}e^dt. 

— oo 

(In S 15 the quantity ja is designated by J0.) 

Thus, the electrical conductivity tensor is related to equilibrium fluc-
tuations of the current. 

From (17.31) for the symmetric and antisymmetric parts of the conductiv-
ity tensor we obtain analogously to (17.19a): 

Re o-; .» - j (/a(0). /„ 0)) cos at dt, 

~l (17.32) 
Im a"»(o) = " l ( y 2 - j {/„(0). (*)} sin to/ dt, 

from which for ur*0 follows the Nyquist theorem: 

Re(0) - 1 j (/u(0) /(J (/)} ,//. (17.32a) 

It was first established by Nyquist as the connection between fluctuations in 
potential difference and resistance in linear electrical circuits. 
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The symmetry properties of the electric conductivity tensor follow from 
the symmetry properties of the Green functions.       For example, from (16.50) 
follow the Onsager reciprocity relations for the electrical conductivity: 

^(o)l//) = a(1,l(co. -//). ^17.33) 

From the sum rules  (16.38)  it follows that 

j ((/-15>^iC d^h 'li," r e'Xl^=: ^6u3' (17*34) 

where N is the total number of particles.  In (17.34) the commutation rela- 
tions between position and momentum have been used: 

Uß< Pun] = if' Üjt 

The relation (17.34) can be written in the form of a sum rule for a^iu): 

i I Si (G)) ^ = -ir ^P 
(17.34a) 

The dispersion relations for the electrical  conductivity tensor have the 
form of (17.24)  and  (17.24a). 

The theory of thermal radiation is connected to the theory of electrical 
fluctuations  (see the works of S. M.  Rytov  [91-93]   and F. V.  Bunkin  [94]). 

If the state of the system is far from an equilibrium state and the anal- 
ysis cannot be restricted to the case of the linear reaction, then for the 
nonlinear susceptibility one must consider correlations of a higher order1. 

For a discussion of nonequilibrium fluctuations see the work of F. V,  Bunkin 
[95]  and the series of articles by Lax [96-99], which treat the theory of noise 
for a classical and a quantum case by application of the theory of Markov 
processes. 
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17.4, Order of Limiting Processes V+—. e-»0 in Kinetic Coefficients, 

In the expressions (17.22a) for the kinetic coefficients 

oo 3 

it is necessary to carry out two limiting transitions V+- and e+0. As we 
have already remarked the correct order of the limiting transitions is first 
to take V-M* and then e-M), because this guarantees the choice of the retarded 
solutions to the Liouville equation (see Appendices I and III)* Proceeding 
from the explicit expression (17.35) for the kinetic coefficients, one can 
verify that only this order of limiting transitions will lead to a finite 
result for L^. 

We shall make use of the spectral expansion (16.15) for the time correla-
tion functions, assuming that the limiting transition V-*» in che averages 
<...> is already carried out: 

(Mi (»> - ~ J (<o)</(0. 
(17.36) 

Substituting this expression into (17.35), we obtain 

co |i 
dt cl). dm — 

o i> -••«> » «> a/,u i 

- ~ ] f Vl(®)«-W"e' —toT-dtd*' 

where the order of integration has been interchanged and the limit signs have 
been omitted. Because 

f e-M-u (n = = — i [~ + fctfi (<o)) = 2n5+ (i»), J Jfc) -t- 8 \ (0 ; 
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we obtain for the kinetic coefficients the expression 

it i = - -JrJj J V* -wL rf(D+i V; (°>-

Here the integral over w is equal to zero, if there is no magnetic field. 

Indeed, in that case the correlation functions are symmetric with respect 
to time reversal and their spectral intensity is real (see (16.46)). From 
(16.33) and (17.25) we obtain 

1.11 ((u,- i 

T t / • I * X X 

I;:! <(«;•! it it i in 

Thus, the imaginary part of Lĵ  is proportional to the integral of a function 
which is odd with respect to w and is equal to zero, because 

CP j lm«U;i <V/)ô r -°-

In fact, for î O it follows from (17.37) that the imaginary part of the Green 
function approaches zero as u, 

Im <(d,|dt»w~ /v. (0), 

because it is assumed that the spectral intensity is finite. The integrand 
has a simple pole; consequently, the principal value integral is equal to zero. 

Finally, for the kinetic coefficients we obtain the expression 

no < 0 

= \ /vk,(°)~-f = j (ak(t)ai)dt, (17.38) 

which is valid in the absence of a magnetic field. 

— ;jjj (i.''1'"'1 0 Al . rt. (®)» 

— — Im ««,! 
(17.37) 
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And so, the kinetic coefficients are finite for systems in which the 
spectral intensity of the time correlation function of currents (17,35)  is 
finite at u=0^. 

If it is assumed that the spectral intensity Ja^ajCui)  has a ö-function 
singularity at 01=0,  i.e.,  if 

!&,<■>. ("))= CV/ö(üI)+ Jiiia), 

where J'^iC")  is finite as urK) and C^i/Ü, then the expression for the kinetic 
coefficients (17.35)  diverges as 1/e.      In fact, 

We shall now show that the order of limiting transitions,  in which first 
V-x» and then e-K),  is  indeed necessary. 

Lei. us suppose that the transition V-x» has not yet been carried out and 
that the spectrum is discrete.      In accordance with  (16.16)  the spectral 
intensity is equal to 

.^M-^^ara^-V-5^^..-.). (17>39) 

where a is the matrix element of the current operator.  If the spectrum is 
discrete, then the expression loses its meaning at u=0, because the 6-function 
is defined only for continuous arguments.  But if the limiting transition 
V-+«> has already been carried out, then the expression 

V ■ -■ •>;■ -'■■ • /'■.. -•':'vN (17.39a) /.^-iw y^'urv'.. •,)!- 
v n h       1 

This is the case for dissipative systems in which current fluctuations repre- 
sent an ergodic process,  in the terminology of the theory of random processes 
(see  [16,17]  and the lecture by Mazur [69]). 
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is meaningful, because the 6-function depends now on a continuous variable. 

17,5. Energy Increase Due to External Mechanical Perturbation. 

Under the influence of external driving forces Fi(t),...,Fn(t) the energy 
and the entropy of a system can increase. Let us consider first how the 
energy of a system with a Hamiltonian H changes under the influence of the 
external perturbation (17.1). 

The statistical operator satisfies the quantum Liouville equation (8.6): 

The change of the energy of the system under the influence of the perturbation 
ni is described by the dynamical variable 

because H is not an explicit function of time. The external field which is 
causing the perturbation and the perturbation itself are not included in 
the system. We obtain the average change in the energy by averaging (17.41) 
with a statistical operator p, which satisfies equation (17.40). Consequently, 

. .).> 
It! ~A~ }// + //), p]. (17.40) 

,/// 
Ji 

(17.41) 

(17.41a) 

where (8.18) has been used. Introducing the notation 

/)!iVW'i. "1. 
(17.41b) 

wo rewrite (17.41a) in the form (17.42) •£<//>--<' '<>• 
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The operator AJ has the meaning of a dorivarive of an operator only with res- 
pect to the time variable which enters in the Heisenberg representation.      We 
expand the right hand side of equation (17,42) by means of the relationship 
(15.47)  from the theory of the linear reaction.      We obtain 

./ , 
:;.-^')i--    I /;MUn^li/l/)ili', (17.43) 

because in a state of statistical equilibrium the currents are equal to zero: 

<//;)o=- 2^(0(^)0=0. 

Thus, the rate of change of the energy in the system under the influence 
of the perturbation 11* is defined by the retarded Green function, which relate; 
the derivative of the perturbation ll* with the perturbation itself. 

Using the formula (15.51) for the linear reaction we write (17.42) in the 
form 

■|-(/-/) = J J </-/;''(/'-M)//l (/)>.'/..//' = 

I 

where the notation which was used earlier has been introduced 

U(0. B{t'))~f' \{A{i)li{t' + m)dl (17.44a) 

for the quantum correlation functions. 

Thus, the rate of change of the energy of the system  (17.44)   is defined 
by the quantum time correlation functions, which relate the operators H* at 
different moments of time. 

After substituting  (17.1)  into (17.44) we have 
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(17.45) 

Where /,/c(/-n = f.(MO.M/))- C17.45a) 

4-(//>-S \ i.l!:{t-t')FAnr,{t)dt', 
i, k -<*> 

Using the   linear  relationship between forces and currents (17.2U), we rewrite 
(17.45)  in the form 

4('0 = ^wo->)-m ci7.4b) 

Thus, the rate of change of the energy of a system under the influence 
of mechanical perturbations, which are caused by driving forces F|, is deter- 
mined by the sum of the products of the forces Fj and their conjugate currents 
<oi>. 

We shall discuss the physical meaning of the formula (17.43) and show 
that it can be written in the form 

v U\\) .^-'<■■'    K^?1 (17.47) 

where wag(t)  is the probability per unit time of the transition ß-+a. 

The meaning of formula (17.47)   is evident: 

is the probability per unit time of the change of energy for quantum transi- 
tions from the state ß to all possible states,a.      The sum of these expressions 
over ß with the Gibbs statistical factor e^'^ß^'6 gives the average statis- 
tical rate of change of the energy under the influence of a perturbation as 
a result of all possible transitions. 

According to the quantum theory of transitions (see,  for example,  [100]), 
the probability of the transition ß-^a by the time t under the influence of the 

111 perturbation 111 is equal to 
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uv'H i / < « 

or, if the perturbation operator is written in the iieisenberg representation. 

= J (u !//;.(/,) |p> dt> (17.48) 

For the probability per unit time of the transition 6-»a 

... ^(/) (17.49) 
d( 

we obtain the expression 

s\i;)(o»-,5? j K«i"> (')IPXP! //!.(/>)!«> + 
+ i in u)! «> <« I ul it,) i p» dtu (17 •49a) 

which is finite as tg*-», and which we shall assume in what follows. 

Substituting (17.49a) into (17.47) and carrying out the summation over 
a and 6 and using the completeness of the system of eigenfunctions, we obtain 
formula (17.43), which was to be shown. 

Using formula (17.1) we write formula (17.44) in the form 

| f <i(M-ink)) :F(t)F(t')dkdf, (17.50) 
ill 1/ *' 

where the symbol : denotes the complete contraction of tensors. Expanding 
the time correlation function in a Fourier integral 

cw 

<«(Oa (/» = •— J (17.51) 
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and carrying out the integration over X, we rewrite (17.50)   in the form 

I CO 

i^l = _L  j   [ J^__1.;..((o):/?(/)f(/'H,-..u--<'),//'(/üJ. (17.50a) 
-oo  —oo 

Let us  consider the particular case in which forces which are constant in 
time are switched on adiabatically^, 

F{t)~Fi*', (17.52) 

and let us show that in this case the energy increases. 

Carrying out the integration over t" in  (17.50a), we obtain 

H) i,   ;• III) F^i'lr j ^y-^^'-i- '■■'■' 
or usinR (lb.32) 

1# = 7/^; (0, + ^■/,   J  1lnv{Kü)!i:ir-di*: (17.50b) 

because J-{ü>): FF ~ J^-.i^l 

The spectral intensity Jfjl^lCw) is positive in accordance with (10.18a), 
because it corresponds to the time correlation function of mutually conjugate 
operators. 

The integral on the right hand side of (17.5üb)  is equal to zero, because 
d<ll>/dt is  real; below we shall verify this directly. 

As the spectral intensity JfUuiC«)   is real, from (10.34a)  and (17.25) 

The operation of adiabatic switching on of a perturbation which is constant 
in time is somewhat arbitrary.      This  is an artificial method for selecting 
the retarded solutions of the Liouvillc equation, which is evident from the 
analogy with the formal theory of scattering (see Appendix I  and  [47]). 
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we have 

im air-1 //'»„ W"* ~1) JWH' («>• 

Im ((//' I tfl»« = - lm «W' i //'»_u (17.53) 
» 
and, consequently. f 

I Im((//'I//'»« ; -0. 
IJX J (17.53a) 

because the integrand is an odd function of w. Equation (17.55a) implies 
that the imaginary part of (17.50b) is equal to zero. Consequently, 

Thus, the energy of a system under the influence of a constant perturba-
tion increases at a finite rate. For this it is necessary that the spectral 
intensity JHIAIUO have no singularity of the type 6(u) at u«0 and that it be 
non-zero at this point. 

We shall show that the average energy increases ever* in the case in which 
the forces are arbitrary, but are sufficiently slowly varying functions of 
time. Let the parameters Fi(t") change very little during the time in which 
the correlations are lost. Then in formula (17.50) they may be taken outside 
the integral sign at the point t"«t: 

which implies a neglect of retardation effects. Expanding the time correla-
tion functions in (17.55) in a Fourier integral (17.51) and carrying out suc-
cessive integrations over A,ti, and frequency, analogously to the case of 
constant forces, we obtain 

(17.54) 

= F(l)F(I): J f e«' <« (/,) (/ -I- it:).)) (IX dth 
(17.55) 

(17.56) 

- 231 -



i.e., the average energy increases, if the spectral intensity at w-0 is not 
zero. 

Let us consider the change of the energy of a system under the influence 
of a periodic perturbation 

= Re (17.57) 

where H* can be complex. We calculate the rate of change of the energy by 
means of (17.43). Substituting (17.57) into (17.43), we obtain 

,!{!!) 
tit ~S KO'1 i -i- <<//'! (17.58) 

Thus, the rate of change of the energy is conposed of two terms - one 
constant in time and one oscillatory. The constant term is positive, because 

- Re «//- 1 //'»„ >0. 
In fact, 

' ~ j /•/•»„ = Rc la ((//" | //'». = 
= - »Im ((//'• I //'»„ -- ~ - 1) (tt) > o, 

where the relations (16.18), (16.19), and (16.33), and the positivity of the 
function u(e®"u-l) have been used. 

Using (17.1a) and (17.21a) we write formula (17.58) in the form 

= j Re {F* • L (<o) • F + F - L (a). Fe~(17.58a) 

The average rate of change of the energy is always positive and is equal to 

2A/«t 
dE <o f 
dt " 2n J 

d(H) 
dt dt •±ReF' L (Q) • F > 0. 

(17.59) 
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Systems whose energy increases under the influence of a periodic pertur- 
bation are called dissipative.      It is necessary that they have densely dis- 
tributed levels,  in order that L(u)) make sense after the limiting transitions 
V->«,e-^0. 

The average rate of absorption of energy (17.59) can be represented as 

-U'/M1: lieFF- - l"{*f : laiFF}. (17.59a) 

where L'(u))s  is the real, symmetric part,  and L'"'(u)01 is the imaginary, anti- 
symmetric part of the tensor of the kinetic coefficients.      The remaining 
terms give no contribution, because the tensor ReFF* is symmetric,  and ImFF* 
is antisymmetric. 

We shall now express the average absorption of energy over a single 
period by means of the generalized susceptibility.      Using (17.58)   and  (17.59), 
we obtain 

(17.59b) 

or 
i^U ^ (K" (ü)V : ReFF -f *' M": imf/' j. (17.59c) 

where x"{jui)s  is the imaginary part of the symmetric susceptibility tensor, 
and x'tu)01 is the real part of the antisymmetric susceptibility tensor. 

The asymptotic expressions  for the probability per unit time of a transi- 
tion under the influence of the perturbation (17.57)  is used in deriving the 
fluctuation-dissipation theorems   [22,101]: 

this expression is applicable for a large time interval t, when the probability 
(17,48)  becomes proportional to time,  and the probability of transition w0^  is 
already  independent of t. 

Let us calculate the average rate of absorption of energy by means of 
(17.60): 
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^ V e(»-Wa
 Wop f {| (a | //' I P> I2 6 (£« ~ M + 

a, | i + i (§| / / ' |a)p6(£0 -£p + M } 
« -|L V c(Q-^)/°{| <a | //' |p> i26 (£ a -£„ -Ao) -

"Jo> j » a 
• *% - I (PI//'la)P6(£« —£e + J>®». 

(17.61) 

where "ag*(Ea-Eg)/ft. Substituting here the integral representation of the 
tioi <S-function 

J °,Mdt 

and carrying out the summation over a and 6, we obtain 

J {(//"//'(0> e-iak'-<//'//" = 
I I, , s . , (17.62) 

Making use of the properties (16.16a) of the spectral intensities 

we transform (17.62) to the form 

,/<//> f 17.62a) IT ~ Thu> (») ̂  °> 

i.e., the energy increases. 

For u"0 formula (17.62a) takes on the form 

(17.62b) 
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which differs by a factor of 1/2 from (17.54).      The source of this difference 
is that  (17.62b)  denotes the average over a period. 

Thus, if one uses   the  asymptotic formula (17.60) for the probability per 
unit time of a transition, then for a periodic perturbation the energy 
increases monotonically.     This implies that formula (17.61) gives the correct 
result for t\e average absorption over one period and averages the oscillations, 

17.6.      Production of Entropy. 

In the preceding section we considered the effect of mechanical pertur- 
bations on the change of energy of a system.      We shall now study their 
effect on the change of entropy. 

It is first of all necessary to define the entropy for a nonequilibriura 
state. 

The average of the negative of the logarithm of the statistical operator 

<ri> = -<lhp> » -Sp(plnp), (17,63) 

which is the entropy in an equilibrium case,  cannot describe the entropy in 
a nonequilibrium state.      In this regard. 

n = -Inp (17.64) 

satisfies,  as does p,  the Liouville equation 

//,^=!// + //;, :i! (17-65) 
at 

(see § 8 Chapter II).      Consequently, n  is an integral of motion 

di      <)t   '  Hi 

from which  it follows that <n> is constant in time 
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4 «-<#•>-• (17,66a) 

and cannot possess the properties of entropy for a nonequilibrium state. 

We shall not at the present tine give a general definition of the entropy 
of a nonequilibrium state (we shall discuss this question in § 20)( and we 
shall restrict ourselves to defining it for the case of the linear reaction. 

We shall assume that the state of the system remains spatially homoge-
neous and stationary in time, i.e., the energy which is released is drawn off. 
Then it is natural to define the entropy in analogy with an equilibrium state 
by the thermodynamic relationship (11.24) 

c . <H>-y<N>-ft (17.67) 
0 • 

but assuming that the averaging is carried out over a nonequilibrium state. 

The entropy (17.67) is equal to the average of the negative of the 
logarithm of the equilibrium distribution (9.42): 

S « -<lnp0> • -Sp(plnp0). (17.67a) 

The time rate of change of the entropy (17.67) is equal to 

• , ' * CD (17.68) 
0t 0 clt ' 

because the parameters e, y, and ft characterize a statistical equilibrium 
state and are independent of time, and the external perturbation does not 
change the number of particles. Using (17.45) we write the expression (17.68) 
in the form 

t 

# •-= iV v i Ft (o itk (/ - n h in at'= Ot 0 
i, li - c o 

0 J F(t)-L{t /')• F(l')(ll', (17.69) 

- 236 -



or, if one can neglect the retardation, i.e., if one can assume that F(f) 
changes little during the tiae in which the correlations die out, and one 
takes it outside the integral sign at the point t'-t, then 

(17.69a) 

For the case of external forces which are constant in tine it follows 
from (17.68) and (17.S4) that the entropy increases: 

i£ = i V n F . n (17.69b) 
ot n 1 iLiki k > 0, 

l. k 

For external forces which are periodic in time (see (17.57)) it follows 
from (17.68) and (17.69) that the average rate of change of the entropy over 
a single period is positive 

LWio 
o f OS i i n *?• r / \ A (17.70) 
7- J -J,- ( f t "if "jRef • L (®) • F>0. 

0 * 

Thus, entropy appears in the system, and (17.69b) and (17.70) might be 
called the production of entropy. 

i 18, System of Charged Particles in a Variable Electromagnetic Field 

We shall consider in this paragraph, as an example of the general theory 
of the linear reaction, a system of charged particles in a variable electro-
magnetic field. We shall study the relation between the retarded Green 
functions and the dielectric permittivity, the magnetic susceptibility, and 
electrical conductivity, both static and wave number dependent, their symmetry 
properties, and dispersion relations. 

18.1. Dielectric Permeability and Conductivity. 

In sections 15.4 and 17.3 a system of charged particles in an electric 
field which was variable in time, but constant in space, was considered. 
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We shall now consider the behavior of such a system in an electromagnetic 
field, which changes both in time and in space [40,41,52,56,64,102-104], 

The Hamiltonian of a system in an external electromagnetic field with 
vector potential A(x,t) and scalar potential q>(x,t) has the form 

where e is the charge of a particle, and Hin* is the operator for the inter-
action between particles. At the present time we do not take into account 
the interaction of the spin of the particle with the field (see section 18.3). 
For simplicity we shall assume that the particles have a single kind of charge, 
for example, if they are electrons, then the ions can be considered as a 
shielding background. 

In (18.1) <Kx), <J»+(x) are second quantized wave functions, i.e., operators 
which act on wave functions in occupation number space, and which satisfy the 
commutation (or anti-commutation) relations 

where the plus sign is taken for Fermi statistics, and the minus sign for 
Bose statistics (see [105,25] and courses of quantum mechanics [100,106,107]). 

The operators *(x), 4>+(x) are related to \ , a£0 - the creation and 
annihilation operators for the state k# - by the relations 

i J ̂ (x) ("T V ~ 7 A °)2 +{x) dx + 

* (.v) »i'+ (.*') ± ij>+ (*')y (X) — 6 (* — *'), 
*!' (*) *1> (*') ± i|) (*') ij: (x) -• 0, 

i|>+ (*) lj-,+ (*') ± (x') ^ ( x ) = 0( 

(18.2) 

1 * 1 vri, (18.3) 

where <*k0»°k0 satisfy the commutation (or anti-commutation) relations 

(18.4) 
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6k,ki is the Kroneeker delta, and the argument s2 on ̂ (x) is not written out 
explicitly. It is easily verified that (18.4) follows from (18.2) and con-
versely. 

The potentials A(x,t) and<p(x,t) define the electromagnetic field which 
operates on the particles. As was already noted in section 15.4, it is 
necessary to distinguish two cases - when the Coulomb interaction is explicitly 
taken into account in the Hamiltonian and when it is taken into account through 
a shielding field. In the first case it is necessary to account for the 
screening effects, but in the second case it is not, because they are already 
taken into account through the shielded interaction. In what follows we 
shall consider only the first case. 

In introducing the dielectric permittivity and the magnetic permeability 
it must be taken into account that induced charges shield only the longitudi-
nal part of the electric field, because they define the divergence of the 
field1, and the induced currents shield only the transverse part of the mag-
netic field, because they define the curl of the field. Therefore the 
potentials A(x,t) and qp(x,t) define the electric displacement vector 

l SA 
O — Yep - — -fif (18.5) 

only for the longitudinal part of D, and they define 

B • rot A (18.5a) 

only for the transverse part of B; however, the field B is always transverse, 
because divB>0. 

The current density operator is equal to the variational derivative of 
the Hamiltonian (18.1) with respect to the vector potential 

•/ / \ / 
/ (.v) — - CX4*(*T' (18.6) 

Vand thn*, 
= (x) Yil- (x) - V$ h (x) if (x)} - A(*, /)\|-+ (18.7) 

This is sometimes not taken into account in textbooks [108], although the 
question was conpletely clear long ago, already in the works of Ewald [109] 
(see also [110-113]). 
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The current (18.7) satisfies the continuity equation (conservation of charge) 

(18.7a) 

p(x) is the charge density. 

Separating out the linear and quadratic terms the total Hamiltonian of 
the system can be written in the form 

and H is the Hamiltonian of the system in the absence of an electromagnetic 
field, and j(x) is the current operator in the absence of a field. 

Let us consider the reaction of a system to the adiabatic switching on 
of an electromagnetic field. 

Let the current be zero in the absence of the field. After switching 
on the field the current and charge, to within the accuracy of terms linear 
in A(x,t) and y(x,t), are according to (15.47) equal to 

iv « // //, //,, 

//. ^ - 1 | j{x) • A(x, t) tix -I- f p (•.•)«( (*, /)</*. 
C v %. 

//._» ~ | p i x ) l '(.v.:) ilx, 

(18.8) 

where 
(18.8a) 

*{(*) ll (-} \ - (*) 'v\ (*) A) ~~ «(*)i (18.9) 

/(*. 0 = 0 -

- 7 J t)i (*'. /')»• A (*'. /') dx' dt' + 
••oo 

oo (18.10a) 

<p (,)> = - i J J «o (*, /) / (*', *')» • A (x', /') dx' dt' + 
— oo 

oo 
(18.10b) 
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idier* in the integrands are retarded Green functions of tensor, vector, and 
scalar types, and n»<**(x)*(x)> is the muter of particles per unit voluae, 
which is independent of x as a consequence of the spatial homogeneity of the 
system. 

The relations (18.10a) and (18.10b) take on an especially simple form 
if the functions A(x,t), <p(x,t), J(x,t) and <p(x)> are expanded in series of 
plane waves 

k — ao 
no 

q (*. /)-y]£ J <!•(*. du>, 
t — CO 

0 0 

/(*./)- y S J ' <*• el 'k"~m rfa>* 
(18.11) 

ft —00 

the operators are written in aoaentua representation 

= = (18.11a) 

where . _ eh y /_ v\ . 
* m] V \ :") «-*•«» 

c 

7v 
11.11 

P « - i y f l + t . , (i8.nb) 
' * 1/ V tmd 0 J 3 ' 

and the Green functions are expanded in Fourier integrals. Then the relations 
(18.10a) and (18.10b) becoae linear, algebraic relations between the Fourier 
transforms of current and charge and the Fourier transforas of the vector and 
scalar potential: 

/ (*. <0 )^-~A (ft, CD) - «/, j y,,)̂  • 1A (ft, (0) + 
©). (18.12) 

p (ft, «)= - «PA j /_t»u • 7 A (ft, e>) + «PA ! P^))^ (ft, to). 
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where we have made use of the fact that as a consequence of the assumed 
translational invariance of the problem the averages <Jk*jk'>» <JkPk'>» 
<PkPk"> u* non-zero only for k+k'»0. In crystals because of the spatial 
inhomogeneity this property does not exist. 

The relation (18.12) can be written in a for* in which it does not con-
tain the vector and scalar potential, but only the electric displacement and 
the magnetic field. We write the tensor and vector Green functions in such 
a way that their tensor or vector character is explicitly expressed. As they 
depend only on the vector 7., and the system is assumed isotropic, the tensor 
function must depend linearly on the tensor kakn and the unit tensor 6ag, and 
the vector function on ka with coefficients which depend only on |k|, i.e., 

' ? (k, <i>) - — • 6 U 3 = ((/*; / - fc})« -

- +( .V- ! p 4 )^ 
<</! I p-»>>.-<<(*'»)!•>-•>>. &• 
«p. I - «'•»! (*'-»i». v • 

where I 
y} (*. <•>) - v <6/:/,.) I {!<Li)))0> 

yy (it, co) ~ «[* x • 1 \k X /_*l»u 

(18.13) 

(18.13a) 

are the longitudinal and transverse parts of the susceptibility tensor 

(A. «) -

The susceptibility XaS(k«*) expresses the linear reaction of the current to 
the vector potential. 

Ne obtain the second expression in (18.13a) by calculating complete con-
traction of the tensor Xa6(k*w) with 6ae-(kake/,t2)» noting that 

^ VV,_o p kl • k* ) — -• 

and using the vector identity 

I* X /,1 • |* X i.,1 - If (/,/_«) - (*/.)(*/_.). 
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We note that the operator (kjjj can be expressed in terms of the time 
derivative of p^ (18.11b).  To do this we calculate the commutator of pk 
with the kinetic energy operator T: 

*. u 

Consequently, as p^ commutes with the interaction operator 

""a^ X V(fe)<„'C/V^..Ä:-».." (18-14) 

the equation of motion for p^ has the form 

p.-Tir[p.."l--W a8•I5, 

Calculating the commutator of pk (18.15) and p.^, we obtain the important 
commutation relation 

which is called the longitudinal sum rule. 

For the induced charge (18.12) we obtain using (18.13) and (18.15) 

P^^-i^J^XT^^"))^-^^-.))^^^     (18-17) 

- 243 



We express the function < < p k | p . k » u in terns of «pk |p_k > >
w

 M a n s of an 
integration by parts: 

((P.|P-.».- I 
• 8# 

•.Jjj-flp,. P-*]>w+/®«P»!?-»»• (18.18) 

because the operators and p.̂  comute. The ten with the conautator in 
(18.18) appears when the discontinuous function e(t) is differentiated. 
Making use of (18.18) we rewrite the expression (18.17) for the induced 
charge in the form 

which, in accordance with (18.5), has the meaning of the Fourier transform 
of the divergence of the electric displacement vector. Thus, we have 
expressed the induced charge through the longitudinal part of the electric 
displacement vector. 

The induced charge is usually expressed through the divergence of the 
polarization vector P(x,t) according to the relationship 

where 

Pik, ")=• p-«<>* j ik ' D w)' 

ik • D [k, CJ) «=> •- /to {ik • A (k, ca) + k-<p (k, ID) ) 

(18.19) 

(18.19a) 

0 - ~ div P(x, /) = 
a . 

div (D (*. i) — E (x, /)), 
Key: a . ind(uced) 

(18.20) 

or in Fourier components 

p{&» ©)— 4;t 'k (£(*, <o)-D(k, - ljik • D(k, OJ), (18.20a) 

where 
A • I; (/;, ci>) = e (A, t>) A • E (k, (•>), (18.20b) 

. 244 -



and c(k,w) is the dielectric permittivity, which defines the relation between 
the longitudinal components of the electric field and the displacement. 

He note that it does not follow from (18.20b) that D(k,b)1>c(k,u)E(k,u), 
because the induced charges shield only the longitudinal part of the electric 
field. 

Comparing (18.19) with (18.20a), we obtain an expression for the dielec-
tric pereittivity, which depends on k and u through the Green function: 

£-: (ft, to) ~ 1 + -£T ({p«! 1 P-fc))u* 
(18.21) 

Let us now consider the expression for the induced current, i.e., the 
first of the equations (18.12), and write it using (18.13) and (18»13a) in 
the form 

/ (ft, *>) - - A (*. *> - «P.! k'A <*•w)+ 

- •/:' (/•', «) TP {k~ • A (ft, © )-k(k- A (ft, to))}, (18.22) 

because in accordance with (18.13a) and (18.15) the longitudinal part of the 
susceptibility tensor (18.13) is equal to 

x («.«) =-«p* I (18.23) 

We express the Green functions <<Pk|P-k>>w 8,111 ^pjjp.k^w *n t e r i B S 
<<Pk|P.k>>u> by integrating then by parts. We obtain 

«P*i P-.»- i®«Pelp-*»«-
«P*lP.*»w-- l l p - P-»l + <°2«p*lP-*»»! 

™ifc' + <D!«P4|p_*»tt. (18.23a) 
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where use has been made of the longitudinal sum rule (18.16). The expression 
(18.22) for the induced current can be written, using (18,23) and (18.19a), in 
the form 

/ {k, (o) = «pft 1 p_Ä))a -£ A ft . D i*. w) - 

- (x"" (*. w) -i- ™j 7p (Ä5/I l^, cd) - kl: ■ A {k, c,))). (18« 24) 

where the longitudinal and transverse parts of the current have been separated. 
The transverse part of the current can be identified with the curl of the 
induced magnetic moment vector N(x,t), i.e.. 

_ J^ (^ (&. co) + -J ) [Ik X B{k, co)] ~c[ikX M (*, co)! = 

Ax l 

where ß (ft] „-, .^ [,/; x /I (/c, co)] (18.25) 

is the Fourier transform of the magnetic field (18.5a), and 

II ' IK. dl 

is the magnetic permeability, which depends on k and w. 

Using (18.21) and (18.26) the expression (18.24) for the current can be 
written in the form 

/ (tii co) = - 7,'- (1 - e-1 (k, co)) (to 7>,V (h ■ D [k.  .o)) -r 

4 'l-d-u-«^, (,>),l/ft KB{k,m)\. (18.27) 

The current (18.27) can also be expressed through the electric field 
vector E(k,u), by making use of the Maxwell equation 
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1 OB (x. <) 
rot E{x, t) = — ~ ot 

in Fourier components 

[ikXE(k, = «) (18.28) 

and eliminating B(k,w) from (18.27). Then we obtain 

/ ( * , C0) = 

= o! (//, u) -p (k • £ (A', (.»)) - o" (/«', <o) '{, [k X [/v X E (It, 0>)1 ], (18.29) 

where 
a1 co) ~ (1 — e (It, to) ), 

olr co) = - 4 - {1 - }i"' (It, fci) ) 
(18.29a) 

are the longitudinal and transverse electrical conductivities. 

Earlier we considered the equation (18.12) for the induced current and 
charge. We shall show that it is sufficient to consider the first of then, 
and the second follows from it by using the conaautation relations between 
charge and current. 

Ne take the scalar product of the first of equations (18.12) with k. 
Making use of (18.15), we obtain 

k • J (/i, CD) = 

= —77 k • A (k. o) - «6<. | • 7 A(k, ®) -i- «P* | co). (18.30) 

By means of an integration by parts we find 

<[p* 
(18.31) 
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By making use of (18.23) and (18.31) we write (18.30) in the form of a con-
servation law 

h • J (/e, w) op 6>), 
(18.30a) 

where use has been made of the commutation relation between Fourier components 
of charge and current, 

a I- * -iv*' ~= *, a+,a 
(18.32) '!• q-V>! J* 

! ,* I - -• '» . i n \ V ' l - f . J)» 

which with a change of summation variables in the term with nq+kt0 leads to 
(18.32). 

Thus, we have verified that the average values of current and charge 
exactly satisfy the conservation law (18.30a); therefore, in calculating the 
average current, we simultaneously find also the induced charge. 

The converse is not true. The equation for the current does not follow 
from the equation for the charge, because the current can have a transverse 
rotational part, but the law of conservation of charge defines only its 
longitudinal part. 

Ne shall obtain an equation for the curl of the current in the Fourier 
representation. Taking the vector product of the first of equations (18.12) 
with k, we obtain 

[k X /(A, ©)1 - ~ + *,r (*. ®)) I* X ®>1 =* 

= 7 ( ~ r ' - T w ) ) B ^ (18.33) 

In accordance with (18.26) the coefficient on the right hand side of this 
equation is expressed through the magnetic permeability. 
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In ordinary systems the term xtr(k,(o)  almost compensates for the term 
e2n/m as ur+^.k-K), and their sum gives only a very small diamagnetic effect 
(Landau diamagnetism  [42,114]),      This compensation is violated only in super- 
conducting systems, because of the existence of a gap in the spectrum of 
elementary excitations   [115,116], 

Let us consider what the formulas for the dielectric permittivity (18,21) 
and the longitudinal susceptibility (18,23)  yield in the limiting case of a 
spatially homogeneous medium, i.e., for k+U.      In this case it is necessary 
to make explicit the uncertainty in the formulas.      To within an accuracy of 
terms linear in k we have 

77 J i>{x)e->^üx:--^f\ !)W ./*--'*- | Xl,{x)üx, 

i.e., 

where 

vv J '    ' yv 

^77-77^. (18-34) 

Pj= \ xn(x)dx (18.34a) 

is the total dipole moment operator.  Consequently, as k+O the formula (18,21) 
takts on the form 

.-1 en «\._ 1 , 1- e-'lö.oj^M-^^.i^)^ (18.35) 

where use has been made of the assumed isotropy of the medium.      The dot 
denotes the scalar product. 

From formula (18.23) we obtain as k+O 

(18.36) 

18.2.      Symmetry Properties, Dispersion Relations. 

The susceptibility tensor (18.13), and also the dielectric permittivity 
(18.21)and the magnetic permeability  (18.20),  have the symmetry property 
(17.9),   (17.25): 
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X,:; ('•• C>) ~ Xu.l ( W)» 

e(A\ o>)~ t'( — A, — «»)i 

jt (/f, o) — \i{—k, — ©). 

(18.37) 

as do all generalized susceptibilities and kinetic coefficients* This fol-
lows from the reality of Xog(x-x*,t-t"). 

Taking into account, in addition, the synmetry of the Green functions 
with respect to an inversion of the spatial coordinates x-*-x, which is equi-
valent to the replacement k+-k, we have 

Consequently, the susceptibility tensor (18.13), and also the dielectric 
permittivity (18.21) and the magnetic permeability (18.26), possess the 
symmetry properties: 

Thus, the real parts of Xa&(k»w)» e(k,w), and y(k,w) are symmetric with 
respect to the replacement u*-u, and the imaginary parts are antisymmetric: 

(18.38) 
«/;; i f-)\=«'-* i «p* i p-*»-- «?-1 P*)V 

•/.,, (.V. <*> - "4 l-k> - (~ k'w)' 
- a ) 

u (fc, o») » !1' i&. - ci^ ^ 

(18.37a) 

Re (/;, to) = Re (A, - ©), 
Re e (k, <o) = Re e {k, — co), 
Re (A, co) = Re ji (Ar, — to), 

I: v. 'A:, (k, a) ---- - - co), 
I;!iC (A", ©) — — 111! 8 (/v, io), 

Ii:i (&, o ) — — Ini }i (k , — (o). 

(18.39) 
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Using (18.39)  we obtain from (16.34)  the Kramers-Kronig dispersion rela- 
tions1 for the susceptibility Xaß^iw): 

,.    ,       -u 75 i :——r~——du. 

(18.40) 

18.3,  System of Particles with Spin in an Electromagnetic Field. 

We shall consider the action of an electromagnetic field on a system of 
particles with spin and calculate the average current and magnetic moment, 
which is associated with the spin of the particles. 

The interaction of the spins of the particles with the magnetic field 
H(x,t) is defined by the operator 

where -,       ,;, 
^1 (x) = 2/i': ^ ^Y^0''(X} •'' (18.41a) 

is the magnetic moment density operator,  and ax,  Oy, o2 are the Pauli matrices, 
We shall assume that the spin of the particles is equal to 1/2. 

The perturbation operator (18.41)  can be written in the form 

ii M{x) ■ voiAU, /)(/.v- - -'- \ i:Jx) ■ A {x. i)dx, 
(18.42) 

where .  ^ M,    > t18-42a) 

1 A generalization of the Kramers-Kronig formulas  to the relativistic case was 
achieved by M.  A.   Leontovich   [117,112]. 

251  - 



is the current operator associated with the magnetic moment of the particles. 
Indeed, in agreement with the usual definition of current (18.6) 

(18.43) 
c • 
<5-1 (*) 

In accordance with (15.47) the perturbation (18.41) changes the magnetic 
moment 

t 

<M(*))-<M (*)>„+ J \XvMt,x'l')-H{x' t')dx'dt', (18<44) 

— oo 

Where *'/')= 0/> (18.44a) 

is the magnetic susceptibility tensor associated with the spin. 

The relationship (18.44) has an especially simple form in the Fourier 
representation. Putting 

(.11 (*)) = (M (x))0 + y V j M (k, co) c< (**>-« da, 
, v * < 1 8- 4 5) 

M (x, !) - — > > M/; (/) c' y r 

and making use of the spatial homogeneity of the system, we obtain 

M (k, to) - (It, to) • II (ft, co), (18 • 46) 
Wher® (ft, ") -= ~ «-'•*/: i (18.46a) 

is the magnetic susceptibility tensor of the spin system in the Fourier repre-
sentation. 

For the case of a spatially constant magnetic field formulas (18.46) and 
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(18.46a) go over into (15,82) and (15,83), which were considered earlier. 
The tensor Xn(k,u) satisfies the symmetry conditions and dispersion relations, 
analogous to (18.39) and (18.40). 

18.4. System of Particles with a Dipole Moment. 

Another case, which is of interest for the theory of dielectrics, is a 
system of interacting particles with dipole moments. 

We shall calculate the polarization of such a system, induced by an elec-
tric field. The interaction of the dipole moments of the particles with the 
electric field is described by the operator 

//'=- J P(x) • L'{Xi 
(18.47) 

where P(x) is the operator (or dynamical variable) of the dipole moment den-
sity. The perturbation (18.47) induces a dipole moment with density 

t 

(P (*)} - <P (.Y»,j j j « (x - x', t - t') £ (X, !') llx' dt\ 
- A < 

where 
u -- .v', / - - « - «P (x, /), P /')» 

(18.48) 

(18.48a) 

is the dielectric polarizability tensor of a system of electric dipoles, and 
<P(x)>0 is the dipole moment density in the equilibrium state as E+-0, which 
may be non-zero for ferrodielectrics. Going over in (18.48) to a Fourier 
representation of the type (18.45) and making use of the spatial homogeneity 
of the system, we obtain 

P (k, o>) = a(k, w) • E {k, o), (18.49) 
where a (ft, to) = — «P*! P-*»G> 

is the dielectric polarizability tensor of the system as a function of k,u. 

For a system in a uniform electric field or for sufficiently long wave 
lengths, when the change in the field in a correlation length can be neglected. 
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the connection between the induced moment and the field is local, 

*A 

P (to) = a (to) • E ((°)> (18.50) 
a(o)= - ((P\P))<*> (18.50a) 

where
 P=jp(x)dx 

is the total electric dipole moment. Expanding formula (18.50a) in terms of 
the matrix elements of the polarization operator Pi, we obtain 

Im a „ (o)-Q- 1 V p>" | (6 + (ll))i 

where 
Pic — ( C k P xCrt), dir.:: — {En — 

and Cjj and Ê  are the wave function and energy of the state k, respectively. 

Thus, we have obtained the Kramers-Heisenberg formula [100,10b,107J by 
means of statistical averaging. 
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QlAPTtR IV 

NONEQUILIBRIUM STATISTICAL OPERATOR 

In Chapter III nonequilibriura processes, which cnuld be represented as 
the reaction of the system to external mechanical perturbations,  were studied. 
There exist, however,  irreversible processes, which arise from thermal per- 
turbations, i.e., which are caused by internal  inhomogeneities  in the system, 
as for example, diffusion,  thermal conductivity, and viscosity.      Sometimes 
one attempts to express them in terms of mechanical perturbations.      Such an 
approach has the disadvantage that  it assumes    prior knowledge of the equa- 
tions of nonequilibrium thermodynamics and makes use of the analogy with 
mechanical perturbations.      In addition, the separation of perturbations into 
mechanical and thermal  is in general justified only  in the  linear approxima- 
tion.      In higher approximations mechanical perturbations  create inhomogene- 
ities in the distributions of mass,  energy, and momentum,  and therefore,  lead 
to the appearance of thermal perturbations. 

In order to develop the statistical thermodynamics of nonequilibrium 
processes, which would also include thermal perturbations,  it  is, strictly 
speaking, necessary to construct statistical ensembles which represent the 
macroscopic conditions  in which the systems are found.      This turns out to be 
possible if one is interested in the behavior of the system for time scales 
which are not too small, when the details of the initial   state of the system 
have already become inessential and the number of parameters necessary to 
describe the state has been reduced.      The idea of abbreviating the descrip- 
tion of the system belongs  to N.  N.  Bogolyubov and was used by him to con- 
struct kinetic equations on the basis of the Liouville equation   [1], 

In this chapter we shall  formulate the statistical  theory  of irreversible 
processes by the method of statistical eisembles for nonequilibrium systems 
[2-5,184-190], generalizing the usual mrthod of (iibbs ensembles, which was 
presented in Chapters  I  and  II.      This possibility of transferring the ideas 
of r.ibbs to nonequilibrium statisticpl mechanics was   first mentioned by Callen 
and Welton [6]   in connection witli the fluctuation-dissipation theorem. 

In studying irreversible processes caused by mechanical perturbations all 
authors use the same method  - the dynamical treatment of the perturbations 
with the condition of statistical   equilibrium at some initial  time (usually at 
t = -<x.),      Many different methods have been proposed to study thermal perturba- 
tions.      Following Zwanzig   [7], these methods can be divided into the following 
groups. 

1.    Indirect methods of the theory of the linear reaction,  based on repre- 
senting the effect of thermal perturbations in terms of mechanical perturbations, 
because the same transfer processes might be caused both by external fields and 
by inhomogeneities in the system  (Montroll   [8],  Luttinger  [9],   kaaunoff and 



Martin  [10], Jackson and Mazur  [11],  Felderhof and Oppenheim   [12]).      The 
usual procedure is first to calculate the susceptibility from a fictitious 
external perturbation, which could cause the given nonequilibrium state. 
The susceptibility is used to calculate kinetic coefficients using the fluc- 
tuation-dissipation theorem and a limiting transition to zero wave number and 
zero frequency of the perturbation.      In these methods the validity of macro- 
scopic equations, for example, the Navier-Stokes equation,  is assumed before- 
hand. 

2. Methods which use the theory of stochastic processes and the Fokker- 
Planck equation.      These methods, which were used first  in the theory of 
Brownian motion, were developed mainly by Kirkwood  [13]   and M.  üreen  [14] witli 
the assumption that the processes were Markov processes.      The first signifi- 
cant results in the general theory of irreversible processes, namely the 
connection between the kinetic coefficients and the time correlation functions, 
were obtained by Kirkwood and M.   Green with just this approach.      The method 
of stochastic processes has been  further developed by various  authors  [15-21], 
It has recently been improved by Mori ami Kubo by taking into account retar- 
dation in the Langevin equation   [22-24], 

This group also includes the work of llelt^nd  [25], where the Linstein 
relation for the mean square deviation of a Brownian particle in a time t, 
<K2>=oi)t   (I) is the diffusion coefficient),  is generalized and applied to 
expressing the kinetic coefficients in terms of the correlation functions. 

3. Methods based on a hypothesis about the character of the damping 
out or regression of fluctuations.      This approach was  first used in the 
classic articles of Onsager [20] , who expressed the hypothesis that the 
damping out of fluctuations is  governed by the same law as  is the change of 
the corresponding macroscopic variables  .      Taking into account in addition 
the reversibility of the microscopic equations of motion, he established his 
reciprocity relations for the kinetic coefficients (see section 17.3).      Kubo, 
Yokota,   and Nakajima  [28]   made use of this method to construct  a theory of 
thermal perturbations in irreversible processes.      It was  later used also by 
Felderhof and Oppenheim  [12], who took into account the spatial and temporal 
dispersion of the kinetic coefficients. 

4. Methods based on the use of local equilibrium distributions as the 
initial  condition for the  Liouville equation.      In this method it  is assumed 
that  in weakly nonequilibrium states a distribution which  is  similar in form 
to the flibbs distribution   is established in small  volumes,  but the parameters 
of the distribution depend on the point in space  (local  equilibrium distribu- 
tion),  and corrections to this  distribution are sought.       This approach was 
developed mainly by Mori   [29-51].      II.   f'.reen  [32]  obtained expressions for 
the kinetic coefficients by making use of a local Maxwell distribution as the 
initial  condition for the  Liouville equation, using the method of Chapman and 

For a discussion of the Onsager hypothesis on the damping out of fluctuations 
and on the limits or  its  applicability see the monograph    by deCroot and Mazur 
[27],  Chapter IV,  and the   literature cited therein. 
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linskog for its solution.      The connection between the correlation formulas for 
the kinetic coefficients and the Chapman-Hnskog method has been analyzed by 
Ernst   [33].      M.  I.  Klinger  [34]  applied the method of Mori to the theory of 
transport phenomena in semiconductors, and B. N, Provotorov  [35]  applied it to 
spin systems,      S. V. Peletminskiy and A.  A. Yatsenko  [36]   developed it further 
and extended its region of applicability to smaller time scales,  so that it has 
become applicable also for constructing kinetic equations  for strongly non- 
equilibrium states. 

5.      The methods of Gibbs statistical ensembles  for nonequilibrium sys- 
tems,  which have been developed in two different variants:    the method of the 
nonequilibrium statistical operator, proposed by the author  [2-5], and based 
on the construction of local  integrals of motion, and the method of McLennan 
[37-40], which is based on taking into account the influence of the thermo- 
stat through forces which are not derivable from a potential.      Both methods 
[2-5]  and  [37-40] were developed independently and lead essentially to iden- 
tical  results, but the method  [2-5]   is evidently simpler for applications. 
The method of the nonequilibrium statistical operator will be discussed in 
the present chapter on the basis of  [2-5,184-190], and the connection between 
this method and the method of McLennan is discussed in Appendices II  and III. 

The method  [2-5]  has been applied by many authors  [41-57]   to the various 
problems of the theory of irreversible processes.      This method is especially 
simple for constructing hydrodynamic equations, for example, taking into 
account internal degrees of freedom (the author [4],  L. A.   Pokrovskiy  [41]), 
relativistic hydrodynamics[3] , and equations of the Grad type  (T.   M.  Kliazanovich 
and V.  A.  Savchenko  [42]).       L.   L.   Buishvili and the author  [43],  L.   L. 
Buishvili   [44], and G.   R.   Khutsishvili   [45] have applied this method to the 
theory of nuclear spin  diffusion;     L.   L.   Buishvili,  N.  S.   Bendiashvili, N.  P. 
Giorgadze,  M.  D.  Zviadadze,   and G.   R.  Khutsishvili   [46-5Ü]   have applied it to 
the theory of nuclear magnetic resonance and dynamic polarization of nuclei 
in solids.      T. N.  Khazanovich aas  applied it tu the relaxation of nuclear 
magnetism in liquids   [183];   L.   L.   Buishvili, M.  L).  Zviadadze   [51], and V. G. 
Grachev   [52]   Iiave applied it  to the theory of spin-lattice relaxation of 
impurity centers.      V.   P.  Kalashnikov has applied this method to the theory 
of spin-lattice relaxation of conduction electrons   [53]  and to the theory of 
hot electrons in semiconductors   [54], where it turns out to be applicable not 
only  for linear dissipative processes,  but also in the case of strong non- 
linearity  in the electric field.      The method gives the correct  result  for tiie 
rate of exchange of energy between subsystems with a small   interaction between 
them for a state which  is highly nonlinear in terms of the therraodynamic 
forces,  as was demonstrated by L.   A.  Pokrovskiy  [55].      He also showed  [5o] 
that  the method can he applied to obtain generalized kinetic equations, which 
are the same as those in the  article by Peletminskiy and Yatsenko  [3o] ,  for a 
corresponding choice of parameters to describe the state of the system. 
Using the same method one can construct not only the usual   kinetic equations, 
but  also equations of the Fokker-Planck  type,  as was  shown by A.   G.   Bashkirov 
and the author  [57,190].       (Applications  ci" the method can be seen also in 
[191-215].) 

The classification presented of the methods of study of thermal pertur- 
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bations  is not completely rigorous,  because in many works the indirect method 
of the theory of linear reactions is combined with the ünsager hypothesis  [12] 
or with the use of the local equilibrium distribution as an initial condition 
[10]. 

For the different methods used to investigate thermal perturbations see 
the reviews of Chester  [58], Zwanzig  [7],  Brnst and others  [21b],  and the 
monograph by Rice and Gray  [5y], where an extensive bibliography is presented. 
All these methods lead to identical results for the kinetic coefficients, but 
each has  its own region of applicability.      Some authors have expressed,  how- 
ever, doubt  in the validity of the expressions for the kinetic coefficients 
in terms of the correlation functions   [60,bl], but these doubts have turned 
out to be unjustified  [62], and the doubts were removed by the same authors 
[63,64]. 

Nonequilibrium corrections to the equilibrium distribution function are 
calculated in the majority of the enumerated works, except  [2-5,37,38].      The 
basic question which will  interest us  in what follows is how to construct the 
total statistical operator (or,  in the classical case, the distribution func- 
tion)  for nonequilibrium processes, proceeding from general principles,  i.e., 
how to generalize the ideas of Gibbs statistical ensembles for the nonequili- 
brium case.       In the article  [2]   a nonequilibrium statistical operator was 
constructed for stationary processes by means of a generalization of the 
class of integrals of motion on which the operator can depend;  their meaning 
will be explained in § 21.      McLennan  [37,38] obtained a nonequilibrium sta- 
tistical operator for nonstationary processes by another method,  considering 
the effect of the thermostat by means of forces which are not derivable from 
a potential.      The method of local integrals of motion  [5]   leads to exactly 
the same distribution as the method of McLennan  [37,38]. 

In order to construct  local  integrals of motion it  is necessary to for- 
mulate conservation laws  for mechanical  quantities in operator form (.or  in 
the form of relations for the dynamical variables) and to find expressions 
for the corresponding densities and currents of mechanical quantities.      This 
problem is considered in §   19  for various systems. 

i  19.      Conservation Laws 

Conservation laws play a fundamental   role in all of theoretical physics. 
The phenomenological thermodynamics of irreversible processes  is based on 
conservation   laws for the average values of physical quantities,   for example 
particle number, energy,  and momentum   [27].      The statistical  thermodynamics 
of nonequilibrium processes, which will be presented below,   also proceeds  from 
conservation  laws, but not  for the average values of dynamical quantities, but 
for the dynamical quantities themselves.       Tims, conservation  laws will be 
considered not  from a macroscopic point of view, but from a microscopic point 
of view. 

In this paragraph we discuss conservation laws for a system of identical 
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particles with a direct interaction, and for a mixture of particles with 
internal degrees of freedom. The latter case is essentially quantum mechan-
ical nature. These examples allow us to obtain local conservation laws 
for energy, momentum, and particle number in a form sufficiently general to 
serve in whet follows as the basis for constructing the statistical thermo-
dynamics of nonequilibrium processes. 

19.1. local Conservation Laws in Classical Mechanics. 

Let us consider the conservation laws for energy, momentum, end particle 
number i° local form for the case of classical mechanics, The quantum case 
will be considered later. 

Let a system of identical interacting particles be described by the 
Hamiltonian (1.2) 

a 
I \ : -r-i J (19.1) 

where +(|xi-xj|) is the potential energy of interaction between particles, 
and m is the mass of a particle. Hamilton's equations (1.1), describing the 
motion of the particles, have the form 

x. .20- - , •?>-- 2L - V F, , (19.2) 
• Up, if I 1 JX, 1 

1 i /•> i 

W h e r e
 P r ^( i *.--'/!) (19.2a) 

*"'/ ~ ""•* ox~ 

is the interaction force between particles i and j. 

The role of a dynamical variable - the number density of the particles • 
is played by the function 

«(*) =—6 (*,-*), (19.3) 

,ull,,ation is carried out over all particles, because the integral of 
(19.3) over the volume is equal to the total number of particles, and the 
average of the integral over a small volume is equal to the average number of 
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particles  in this volume.      The coordinates of the particles XJ in  (19.3) 
change in time in accordance with the equations of motion (19.2);  consequently, 
the time derivative of n(x)  is equal to 

iiiLl ^ V ö (.v (,) - *) = V x.. v/,^ _ x), 
i < 

i.e.. -^.-.-dh/u). (19-4^ 

where , 
/W   ^^K^-X) (19.5) 

is the particle number current density,      Equation (19.4)   is the law of con- 
.ervation of particle number in local form. 

As  in any field theory, the densities of mechanical quantities  and the 
densities of their currents are not uniquely defined: the densities are 
defined to within an accuracy of the divergence of an arbitrary vector,  and 
the currents are defined to within an accuracy of the curl of an arbitrary 
vector.       Indeed, in an integration over the volume the divergence parts 
contribute only surface integrals,  and the divergence of the curl part is 
equal to zero.      This non-uniqueness  is related to the fact that quantities 
like the density are not observable.      Only their integrals over a volume 
which is macroscopically small, but which contains a large number of particles, 
are observable;  in this case the surface contribution can be neglected. 

We shall now obtain the law of conservation of momentum in local form. 
It  is natural to introduce the quantity 

/> (*) - m\ U) - 2L />. ö (>. - *)• (19.6) 
i 

as  a momentum density.      The integral  of (19,0) over the entire volume is 
equal to the total momentum P, 

|" p'.v) r/jc - V p, - P. (U.ba) 

and the average value of (19.0)   gives the momentum current density. 
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Differentiating (19.6) with respect to time, we obtain 

~~ V ^ Vi ~ A") + 7 «Li F'! ̂  ~ *) ~ 5 (*; - *)). (19.7) 

where p̂ p̂  is a tensor; the expression in the second summation sign in (19.7) 
is symmetrized by using (19.2a). 

Equation (19.7) still does not have the form of a local conservation law, 
because the second term on the right hand side is not in the form of a diver-
gence. In order to transform it to such a form, we note that in what follows 
we shall be interested not in the dynamical variables themselves, but in inte-
grals of the dynamical variables multiplied by functions which change little 
in a length of the order of the radius of the interaction force. 

Let us consider the second term on the right hand side of (19.7) 

and show how it can be represented in the form of the divergence of a tensor. 

Let us multiply B(x) by an arbitrary vector function of position A(x), 
which changes little in a length of the order of the radius of the influence 
of the forces, and consider the integral of (19.8) over all space 

The force FJJ is significantly different from zero only for distances of the 
order of the radius of the influence of the forces, and the function A(x), by 
assumption, changes little in such distances; therefore the difference 
A(xi)-A(xj) can be expanded in a Taylor series in Xi-Xj>Xj.j in which only 
the first term is kept: 

£ (*) = Fij (6 (•*< - *) - 6 (.v, - *)) (19.8) 
ii '/•'/) 

f A (.>) • B (.*) ilx = 4- Zt F>r ~ A W >• (19.9) 
i 

(i w 
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Consequently, 

or, after an integration by parts. 

i B (*). A(*) dx - - 4 V I A (x) • V 757- f i/ -v?; 6 (*< - *) dx. 

from which we obtain, on the basis of the arbitrariness of A(x), 

Ba (*) - - 2 ~-j ^ A"?/ 6 (JC, - *). 
ft ^ . ' i 

(19.10) 

Thus, the quantity (19.8) can be approximately represented in the form 
of the divergence of a tensor, and (19.7) can be written in the form of a 
local conservation law: 

is the symmetric stress tensor. Indeed, as the forces are centrally symet-
ric, then 

is a symmetric tensor. 

We note that we would obtain the same result for T0g(x), if in (19.8) 
the 6-functions were formally expanded in a Taylor series, keeping two terms 
of the expansion: 

dpa (*) y dTfr, (*) 
di «-J J.Vj ' a »* (19.11) 

where 
(19.12) 
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6 (*/-*) = 6 ( - *) + (•*/ ~ *<) * v»6 ~ *)• 

The arguments presented with the arbitrary, slowly varying function sake 
precise the meaning of such an expansion of 6-functions. The process of 
representing equation (19.7) in the form of a divergence of a tensor can be 
continued further, and corrections of a higher order of smallness can be 
found for T6o(x). The nethod described here is applicable also to the 
quantum case (see the following section of this paragraph)*. 

Let us now consider the law of conservation of energy in local form. 
It is natural to define the quantity 

= + Y (19.13) 
T V i*i ' 

as the dynamical variable of energy density. It is evident that 

// = j // (x)dx (19.14) 

is the Hamiltonian of the system. Differentiating (19.13) and taking into 
account the equations of motion (19.2), we obtain 

i \ hMl J 
+ 7 ]£ + (*<-*)- a (*/-*))• (19.15) 

/. I 
(i V*- /> 

Carrying out the same procedure of smoothing of operators as was used earlier 
in the derivation of equation (19.11), we obtain 

= - div in (*). (19. lb) ot 

* An exact representation in the form of a divergence is possible in (19.11) 
and (19.12), but with an auxiliary integration over the parameter in (19.12) 
[217,218,225]. 
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where 

in (*) = ̂  ("£r+T ̂  *1(11 ~*' 1:)) ̂  61[X> ~ X) + 
i \ i+i 1 

i. i 

is the energy current density vector. It can be written in the same approxi-
nation in a different form: 

'Jm ' 2 -J.7 " /£*, j 
i \ / '•» ' 

where the expression in the round brackets is a tensor, and U is the unit 
tensor. 

And thus, the equations of the conservation of energy, particle number, 
and momentum in local form are 

* ! L - div/,/(*). 
di 
M — — div j (.*). (19.18) 

<)'. 
J>pJx}. - Div T (x), 

0! 

where the densities of the mechanical quantities are defined by the expressions: 
ll(x)-(19.13), n(x)-(19.3), p(x) and j(x)-(19.6), jn(x)-(19.17) and (19.17a), 
T(x)-(19.12). 

We note that the Fourier components of the functions n(x), H(x), and p(x) 

f n(x)e-l{bx)dx 

II 4 = f ! l ( x ) ( 1 9 . 1 9 ) 
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represent collective variables. Indeed, 

4 I 

»' - i] W l"') +17 2'" <«> (19 .19.) 
I I 

p.-Yp.e-1^ (v(q)=!+(\x\)c->^ctx) 

depend on the coordinates and momenta of all particles symmetrically. 

Collective variables are convenient for the study of collective proper-
ties of many particle systems, especially systems with long ranged (for 
example Coulomb) interaction forces. These variables are used in the 
articles [65-68]. 

19.2. Local Conservation Laws in Quantum Mechanics. 

Let us consider now the laws of conservation of energy, momentum, and 
particle number in local form for a quantum mechanical system of identical 
particles with a direct interaction between them. 

In order to obtain a simple, local form for the conservation laws we 
carry out a smoothing of operators over inhomogeneities smaller than the 
radius of action of the forces between the particles, just as in the preceding 
section for classical dynamical variables. Conservation laws for other sys-
tems can also be obtained by a similar method. 

A quantum mechanical system of identical particles of mass m with a 
direct interaction by means of the potential $(x) is described by a Hamiltonian 
in the representation of second quantization 

r ( .|t if - 1 C19.Z0J 
H - J (*) | - -2— V- + -2 J tix-x') ^ (.*') 1|: (x') ux' j v|> (*) c!x, 

where the operators iji(x) and i|>+(x")» acting on a wave function in the occupa-
tion number representation, satisfy Fermi or Bose commutation relations: 

'0 - (*) (,*) + '•!* " (,*) 'A (*) +'''> 
•0 - (*) * (,*) * + (,*) i> (*) -ll (19.20a) 

'(tx — (*) b (,*) +4* + (/*) +'-lv (*) ̂  

- 265 -



where the plus sign corresponds to Fermi statistics, and the minus sign cor-
responds to Bose statistics. If the particles have spin, then in addition 
to the coordinates x one must take into account the spin variable, and then 
in (19.20) it is necessary to carry out a summation over the spin variables 
in addition to the integration over x. 

It is convenient to write the Hamiltonian (19.20), using an integration 
by parts, in the form 

//« J H{x)c!x, (19.21) 

where 

_i-l f <!. (X - x') (;:)4'•' (*') »i: (*0 -I"' (*)(lx' (19.21a) 
* J 

is the energy density operator, chosen to be hermitian. 

The energy density operator (19.21a) is not completely defined by the 
condition (19.21), because the divergence of any vector can be added to H(x); 
for example, one can define 

// ^ ~ (*)<!" (*) + vi;+ ( * ) ' r " | n t ^ ~ 

- Jl- | Vi[>+ (JC) • (*) - 4- V2/i {x) j--IIir.t (*) 

or 
H {x) = (x) y (*) - 2V^+ (*) • Vtp (x) 4- + + (*) *** (*» + 

+ (*)—£{ V«+ (*) • ̂  (*) ~ T v2/l (x)} + //i:" {x)' 
where 

It (.v) - li-"' (x, lj" \.x) 

is the number density operator, and 

Him (.V) = -J J t(x- x') i':"1 (*) (*") 4 (.«') ,|- (x) dx' 

is the interaction energy density operator. 

This ambiguity in defining densities of quantities exists in any field 
theory. 
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The definition (19.21a) is usually used in quantum field theory. 

The operator i|»(x) satisfies the equations of motion, which follow from 
(19.20) and (19.20a): 

ft i m „ n<»), u| VHW + J' y «*•«"*'• (19-23) 

where n(x) is the number density operator (19.22). 

The operator n(x) satisfies a conservation law, which follows from the 
equations of motion for <|>(x) and 

di 

where 

i l j i I + div/U) = 0, (19.24) 

j (X) = J L (*) V+ (*) - V-4>+ (*) * (*)} (19.24a) 

is the particle number current operator. Expression (19.24a) is the quantum 
analog of the classical particle current density (19.5). 

We shall derive the equation for conservation of momentum in local form, 
which is necessary for deriving the hydrodynamic equations. The momentum 
density operator p(x) for a single component system differs from the particle 
current operator (19.24a) only by a factor of the mass of a particle 

p (x) = m] (*)• (19.25) 

The equations of motion for p(x) have the form 

• • V d h* ( w (*) : <) [•->• (X) of (x) 1 i)2n (x) \ 
Pav ^ d.ip 2m I dxfl dxa

 r <Jxri 2 0x^0xu j 
3 

~ ~ J dc, * ] '̂+ ^ l''+ ^ 'I'1 ^ l , x ' ** ~ B« W (19.26) 
(a - 1, 2. 3). 

Equation (19.26) still does not have the usual form of a conservation law, 
because the operator Ba(x) is not represented in the form of a divergence of a 
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tensor, but, as we shall verify below, this can be done with excellent accuracy 
Cor real systems with a short effective radius of interaction between molecules. 
Indeed, we are interested not in the operator Ba(x) itself, but in integrals 
of the operator of the type ) A(x)*B(x)dx, where A(x) is some arbitrary vector 
function of position, which changes little in a distance of the order of the 
radius of the interaction forces between particles; we shall consider such 
integrals in S 20 and further. 

We have 

| Aa(x)Ba(*)dx= J AJx) a"*0 Fix, x')dxdx' = 

= -j f (A, (*) - A,(*')) F *') <'* dx\ 
wnere 

F (x, x') ••= (x) *1".' (*') (x') (x) 

is an operator which is symmetric in x,x"; we shall assume that the function 
4(x-x") is radially symmetric. 

Using the fact that AQCX") is a slowly varying function, we expand it in 
a series in x-x'»xi, keeping terms of first order; after carrying out an inte-
gration by parts, we have 

I .-U*> ft, M ism | S J <« J ' F < ' • " 

f *'>• • 
n • I' • 

As AQCX) is arbitrary, we obtain 

^ .i. -A ,1 ' T = ! X — * i» 

consequently, Ba(x) is the divergence of a tensor. Using this expression the 
equation of motion for the momentum density (19.26) takes on the form of a 
local conservation law: 
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.•21: ' — -r V L r.vi (*) « 0, 
(19.27) 

li 

where 
t ;.L tv) <>.!<*) , O . J - + I d:n(x) I r,a u - or! - ̂  - -vr—+—J— ~*T ~ ~ i 

.. 1 f (,v, - »••'., i -- v'j f - - *+ **ix) * <* > •? ( * ) ( 1 9 . 2 7 a ) 

is the stress tensor operator, analogous to the classical expression (19.12). 

The symmetry of the stress tensor follows from (19.27a) 

i r,„ ' x \ 

which is related to the radial symmetry of the interaction forces. 

One can take into account also higher terms in the expansion in x-x' by 
the saae method; this brings terms with higher derivatives of (x) into the 
expression for Tga(x), but these terms are very small for short ranged forces 
(see the footnote on page 263). 

We shall now obtain the conservation equation for energy density, which 
we shall need later in order to study transfer of energy. Using the commu-
tation relations or the equations of motion (19.23), we obtain for the energy 
density operator (19.21a) 

—' ,7— T " i v j'i ( A ( * ) , ** (19.28) 

where 

. (x) = J L . i v ( * ) - v V + 

+ 1 f ̂  (x - *') it+1*') / UH (*') <'*'• 
~ • 

B ix). - ± J V* (x - x') • * (*') I (*) * <*'> + 

(19.28a) 
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Following the aethod of smoothing small inhoaogeneities, which was used 
earlier in deriving the equations of aoaentua conservation in local fori, we 
represent B(x) approximately as the divergence of a vector. To do this we 
construct the expression 

\ A (x)B(x)dx~ 
ft 

. . - ± J i4 (x> (V* (x - *0 - V* (*-*'))• f (*. *'> '** '!*' =• 

„ 1 f (A (*) - A (*'))^(x~ x') • F(x, x') dx dx', 

where F (x. *') - T+ «*') / M * (*') + *+ ix) i (x'] *{x) 

is an operator which is synaetric with respect to and A(x) is an arbi-
trary function which changes little in a distance of the order of the radius 
of interaction between particles. 

Using the fact that A(x') is a slowly varying function, we expand it in 
a series in keeping terns of first order. After an integration by 
parts we have 

f A(x)n'x)dx ^ 
J i r ̂  <") ' \ f v x-laV̂ (x,) . F .'X, x - *>'

dx J*' 
a - 7 J ** <>*<i 

f A T f dxixxM^)'F(x,X *x)' m dx A (x) ^ dXa .1 J 
« (1 

Because A(x) is arbitrary, we obtain 

li(x I 
xM,V«(xi)-F(x.x-*lV/*, 

()Xj 4 J 

div 

Thus, we have approxiaately represented B(x) as the divergence of a vector. 
Equation (19.28) has the fom of the local conservation of energy law: 
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Of I ( A ) I i t • / \ « — — T tl»V J„ (*) - 0, 
where 
in M - - S i F V (*) Vt|> (*) - v>r (x) \ *• (x)} + 

+ j J t(x-x') V+ (*') / (*) * (*') </*' -
- 7 j ~ *') (* - *') • (vf+ (*') j(*) if (*') + ij!+ (Jf) / (*') 1|- (x)) JX' 

is the energy current operator, corresponding to the classical expression 
(19.17a). 

Proceeding from the definition (19.21c) for H(x), we obtain 

olLlAdiv { i» (x) - Vdiv j (x)} « 0, 

i.e., expression (19.29), but with a different definition of the energy cur* 
rent operator jn(x). 

Thus, we have obtained a complete system of conservation laws for energy, 
particle number, and momentum in local for* for the case of a quantum mechani-
cal system of identical particles: 

Hifi- -aiv/«(*). ,u 
ilifL- -div/(*), (19.30) 

()i 

J}£ix±~ - Div Tlx). 

This system is analogous to the classical equations (19.18), but the densities 
of mechanical quantities in this system are quantum mechanical operators. For 
example, H(x) is defined by equation (19.21a), n(x) by equation (19.22), p(x) 
by equation (19.25), J»(x) by equation (19.29a), j(x) by equation (19.24a), 
T(x) by equation (19.27a). 

It is convenient to write the conservation laws (19.30) in the form of a 
single equation: 

(19.29) 

(19.29a) 
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L V • * (x^5=5 ̂  (wi — 0, 1, 2), (19.31) 

where Pjx) = '/1». = .'/ <», /Ji ( * ) P i x ) - P- ~ n 
(19.31«) 

are the densities of Mechanical quantities, and 

( * i h ^ ) ~ T ( x ) , &(*)-/(*) (19.31b) 

are the current densities. 

In the more general case, when the inhomogeneities of the system at dis-
tances of the order of the effective radius of the interaction between parti-
cles cannot be neglected, one cannot introduce jB(x) explicitly, and the 
equations of balance of mechanical quantities are written in the form 

In the conservation equations for mechanical quantities (19.30) we have 
not written a law of conservation of angular momentum. This is not acciden-
tal, because for our case of centrally symmetric forces the law of conservation 
of angular momentum follows from the law of conservation of momentum. Indeed, 
let us introduce the tensor density of angular momentum moB(*) by the defini-
tion: 

where p(x) is the momentum density operator. Ke shall assume that the par-
ticles do not have an intrinsic angular momentum; otherwise it must be taken 
into account in (19.32). The tensor nag(i) satisfies the equation of motion 

= Pm(*. <)."!• (19.31c) 
ui 

(19.32) 

<ji (*' <>Pr,{x' 
- -v" iiT 
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In the case of central forces which we are considering, the tensor T
O 6 W is 

symmetric, and the equation for mag(x) already has the for* of a conservation 
law: 

Thus, in the case of central forces the law of conservation of angular men-
tun follows fron the law of conservation of momentum. For noncentral forces 
the tensor Tag(a) is not symmetric, and the angular momentum Jn̂ g(x)dx is 
not conserved, but this means only that it is necessary to take into account 
the contribution to the total angular momentum of the internal degrees of 
freedom, for example to take into account the angular momentum of rotation of 
the molecules, or of the spin of the particles (see [41]). To take into 
account noncentral forces without introducing internal degrees of freedom 
would be inconsistent1. 

19.3. Virial Theorem for the Nonhomogeneous Case. 

The virial theorem, classical and quantum, for the case of statistical 
equilibrium was discussed in Chapters I and II in sections 5.3 and 11.3. We 
shall now discuss how to generalize it to a spatially inhomogeneous case. 

In the quantum case we shall begin with expression (ly.27a) for the stress 
tensor (in the classical case it is necessary to use expression (19.12)). In 
what follows we shall consider the quantum mechanical case. 

If in a gas (or a liquid) there are no hydrodynamic currents, then the 
stress tensor <T0g(x)> coincides with the pressure tensor <Pag(x)>. If 
there exist currents with average velocity 

•<(*)!'>/<(*)/>-(*>* (19.34) 

then to define the pressure tensor one must go to a moving system of coordi-
nates, in which the hydrodynamic velocity is equal to zero, and define the 
pressure tensor in this system. 

The transition to a system moving with velocity v(x) can be carried out 
by means of a canonical transformation of the operators 

In this case the tensor T0g(x) can be synmetrized by making use of the 
ambiguity in its definition [69]. 
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i;- (x) — -4/ (Xj Cl'> U', V {x) ~ « V((. (JC). (19.35) 

Then ToS(x) is transformed to T'a6(x), which we shall call the pressure ten-
sor operator P06(x): 

1 '*'• {-x)" f";>'x) - (-V) + i\.ju (x); 4- mn (X) v<fly 
(19.36) 

In analogy with ordinary hydrodynamics one can define the pressure opera-
tor as one-third of the trace of the tensor Pa6(x): 

(19.37) 
i* 

Thus, p(x) is a scalar operator, equal to 

n (,)... .'V. \ (*) • V;[-. (*) - - \ Jn (x) j- -
• O.tl ( 

.. J. f (.v - x') • (A- - *') »|>+ (x) 1 (x ) l'r (x') >i- (x) dx' -
• •> 1 , v x (19.37a) 

— niv {x) • j [x) ;i mn (*)(*)• 

Averaging (19.37a), we obtain the virial theorem for the inhomoeeneous 
case: 

<p <*»" in {<V*+ (*) • (*)> - Y V- (n (*)> : - 4 m £££ -
1 4 i *J J. 

- j J (x - X'). V* (X - X') <r (x) t+ (*') ,j- W) ,| (,)> dx', (19,37b) 

where <...> denotes an averaging, for which <j(x)>«<n(x)>v(x). 

It is easily verified that the average pressure for the homogeneous case 
in which v(x)'0 satisfies the virial theorem in the usual form (11.15). 
Indeed, in this case 
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(«(x))0 = const II V-' (n (x))o = 0, 

where <...>o is an averaging over an equilibrium state; therefore the average 
equilibrium pressure is equal to 

is the equilibrium pair correlation function. 

In formula (19.38) the first term is equal to 2/3 of the average kinetic 
energy density, and the second term is 1/3 of the virial of the interaction 
forces, i.e., (19.38) coincides with (11.15). 

In sections 5.3 and 11.3 the virial theorem was proved by the method of 
infinitesimal dilatation (5.9b) and (11.10b) of the scales of the coordinates 
and momenta; thus, it is an exact theorem. It might seem strange that we 
obtained it from an approximate expression for Tog(x). We shall verify that 
there is no contradiction here, and for the homogeneous state the higher terms 
in the expansion do not contribute to <Tag(x)>o. Using the same method as 
in section 19.2 and taking into account all terms of the expansion, we obtain 

For the homogeneous state the pair correlation function (19.38a) depends 
only on the difference x-x", and therefore the average values of the integrals 
on the right hand side of this expression do not depend on x. Consequently, 
in <Tag(x)>o in the sum over n there remains only one term n*l, which gives 
the virial of the forces. 

P-(pW> 0 = 4lr<v+M*)-VvM*)>-
- i I* (X - x') • (X - *') F., (x - *') dx', 

O » 

where f , (* — *') = (^+ (*) IJJT (*') vj: (*') \[ (*)>0 

(19.38) 

(19.38a) 

(A'o ~ A'p)" 4'+ (*) *l'+ <*')'!" (*') vf (x) dx' 
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19.4. Conservation Laws for a Mixture of Gases or Liquids. 

In the preceding section ve studied the conservation laws of particle 
number, energy, and momentum by means of the example of a system of identical 
particles with pairwise interactions. Let us now consider the conservation 
laws for a mixture of various gases or liquids, restricting ourselves to the 
case in which there are no chemical reactions among the components and there 
is no excitation of the internal degrees of freedom of the molecules. This 
example is of interest, because it enables one to study the mutual transfer 
of energy and momentum between components, as these quantities are already 
not integrals of motion for a single component. 

The Hamiltonian of a system of 1 types of interacting molecules has the 
form 

-7iJ I *7 "• j (19.39) 
X y\i(x) dx. 

where •ik(x-x') is the potential energy of interaction of the particles of 
types i and k - assumed to be radially symmetric, and the second quantization 
operators <|<i(x) and i|»k(*) for each component satisfy the commutation relations 
for Fermi or Bose statistics 

^ (*) *+ (x') :t rt (*') A'i <*} - 6 (* -
t|\< (x) ij-< (*') ± ih (*') *f, (*) ~ 0, 

depending on the parity of the spin of the molecule, and they commute for 
î k, i.e., for different components. 

We write the Hamiltonian (19.39) in the form 

//- i f Iltix)iU, (19.39a) 
i J 

where 
//, (x) « — (x) • \ >!'. U) + 

+ V I J tik(x-x')x\t (xHH*)*kMtt(x)d*> (19.39b) 

is the energy density of the ith component with the interaction with other 
conponents taken into account. 
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The particle number of the i**1 component is represented by the operator 

.V, =•= j nt (x) (fx. ni (x, - i\-7 (*) 4-, (x) 

and is conserved, because 
(//(, •*) 
—jt— i- »Iiv /,(*)«= 0, 

where . 
ii (*) = I1!'/' (*) v*l(*) - v tf (*) ti (*)j 

is the particle current density operator of the i**1 component. This is a 
consequence of the fact that chemical reactions do not take place between the 
components. 

The equation for the conservation of energy of the ith component in local 
form is 

div/W; (*) = ]ni(x\ (19.42) 
where 

h, W - 7~T" W (x) v',|-. (x) - (*) (*)] + 
I -1 wji 1 1 

+ S j J (*~*')K /,<*) (*')Ax' -
f; 

- i h f ( x ~ x>) <* - *') • {*£ (*') /*, (x) (x') + 
k 

+ ti+ (*') /(! (*) ti (*') + (*) ii (*') »r.. {*) + Ayi (*) jk (*') if/ (x)) t!x' (19.42a) 

is the energy current density of the i*'1 component, and 

( X)=-Vi | V+mi (X - X') • {/!;„ (*') ii (*) + n, (*) j;„ (*') -
' ™ J (19.42b) 

- "i (•«')/,„ (*) ~ »,n (*) /', (*"» 

is an operator representing the rate of change of energy of the i*h component 
as a consequence of its interaction with other components. In obtaining the 
equation̂  (19.42)-(19.42b) we have made use of the method of smoothing of 
operators over small inhomogeneities, which was discussed in section 19.2. 

(19.40) 

(19.41) 

(19.41a) 
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The operator JH^(X) *n equation (19.42) satisfies the relation 

S/„,<*)- o. (19.42c) 

which is a consequence of the conservation of the total energy. It is impos-
sible to represent this operator as the divergence of a vector, because 
Hj»jĤ (x)dx is not an integral of notion. 

The total energy density 

a (x) = - "i (x) (19.43) 

satisfies a conservation law of the usual form 

= (19.44) 
at 

where /„(*) = £;„,(*) (19.44a) 

is the total energy current density. The rate of change of the energy of 
the ith component is equal to the integral of (19.42) over volume: 

ot 
where 

" '' "= Jir, (19.45) 

j„i = - V l j Wwi- (x - x) • (u;ll (*')/,- (*) + ii: (*)/"„, (*')) dx rix' (19.45a) 

is the total energy current operator for the i*h component, for which 

S/II.-O. (19.45b) 

Equations (19.45) and (19.45b) describe the transfer of energy between 
components of the mixture. Using these equations one can study the relaxation 
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of this process, if the energy transfer is carried out slowly (for example 
when there is a large mass difference between the components). 

The conservation equations for the momentum of the i*h component and the 
total momentum in local form are 

lip I . * ) 
—J. r Div T, (x) = /, (*), 

Div T (x) = 0, 
where 

Pi <» = ///;/'; (*), p (.*1 — IllJi ( X ) 

(19.46) 

(19.46a) 

are the momentum densities of the î h component and total momentum, and 

tr f 5'i-f (.v) (vi ( __ \ __ 
X' Lit* i \ Ox a JXfl ' 

I «••'/.' <r) • \ V * 1 

vT J (•*.»--0(̂ -4) 7 
x (•;-/ (v) (*') y\ j(*) + ''t xi'- '"v) ̂ ( ,x> ̂ 'lx (ix ' 

r" (x)^lrrix) 
(19.46b) 

are the stress tensor of the ith component and the total stress tensor, and 

fi '.x) - - V J ! V+J, (x - X') (nj (x'j ,it (x, - n, (x) nt (*')) dx' (19. 4bc 
/ VM * 

is the operator for the density of viscous force between the i*h component 
and the remaining components. The sum of all viscous forces fifx) is equal 
to zero, 1 M 

S/iW-o. 
i (19.46d) 

The total momentum of the î '1 component 
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Pt-\ Pi{x)dx (19.47) 

i s not conserved, because 
(19.47a) 

where 
Fi= I ft (*) dx • 

= - V 1 f Vf „ (*-.*') (/:, (*) /!,• (*')-':/ (*') n, (*)) dx dx' (19.47b) 
J ¥» t 

is the viscous force between the i*h component and the remaining components. 
The total momentum is, of course, conserved, because 

2*1-0-
(19.47c) 

It is convenient to write equations (19.42), (19.41), and (19.4o) in the 
form of a single matrix equation: 

where 

0Pm
d
l
l
ix)- + V • jmi (*) = /„, (*), (19.48) 

pu (x) - II, (*). Pu (x) = Pi (*). M - /ii (*). ( ^ ^ 4 b a ) 

/oi(*) — ///, (*)» in(x) — Ti{x), i.i (x) = ji(x), 
hi M « J Hi (*). / | | (*) = /. (*). y-i M °-

i 
Pmi(x) is the matrix of densities of mechanical quantities - energy, 

momentum, and particle number; 
jmi(x) is the matrix of currents; 
Jmi(x) is the matrix of the sources. 

19.5. Conservation Laws for a System of Particles with Intrinsic Degrees 
of Freedom. 

If a gas or a liquid is made up of complex molecules, then it is 
possible to excite the internal degrees of freedom, for example vibrations, 

280 



rotations, or others. The exchange of energy between the internal and trans-
lational degrees of freedom may be inhibited, and then relaxation phenomena 
are possible; these processes correspond to the slow establishment of equili-
brium between the external and internal degrees of freedom. In order to study 
these phenomena, it is necessary to formulate the laws of conservation of par-
ticle number, energy, and momentum for a subsystem with given internal molecu-
lar states, which we shall do in this section, following the article [4]. 

Let us denote by y the set of variables yi,y2,...» describing the inter-
nal degrees of freedom of the molecule, and by x the coordinates of its center 
of mass. The llamiltonian of the system has the form 

where $(xy,x'y')=$(x'y' »*y) is the operator for the energy of interaction 
between molecules, and Hjnt(y) is the llamiltonian of the internal degrees of 
freedom, for which 

where qpi(y) and are the eigenfunction and energy of the internal state i, 
and â i are the second quantization operators in occupation number space k 
and i. 

We introduce the second quantized operators ̂ i(x), which describe a sub-
system with a given quantum number i: 

! , ' tV, tt') $ (*//, x'y')(*', ;/') tlx' ill/' | \'i (x, y) dx dy, (19.49) 

Hint '• •,;i- " E * ' ' • ( ^ ~ 7 7 i °l {kx' fi (z/). (19.49a) 

i v) •- ~ JV akl<?' ix, y) --- «r; (y) »!"; (*). (19.49b) 

The operators i|»i(x) satisfy the commutation relations 

V i t U ' ) ± (•*') (•«) = 1-*-' - A:'). 
, - A') , (.v') ± \| (x') \\ (x) • 0, 

(19.49c) 
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in which the plus sign is taken if the spin of the molecule is odd, and the 
minus sign if it is even. The relations (19.49c) follow from the commutation 
relations for â i. 

Using (19.49a) and (19.49b) we write the Hamiltonian (19.49) in the form 

n — i (x) i - J.u X * + Ei) >l': dx + 

+^v I vmtwtljt*<"•*'• (Uf0) 
iiM 

where the function <j>kj(x,x') has the form 

./.*• (x, x') - j <|\ (//) <|; (:/') ? (xtj, x'y) q>t (//') «p, (//) dy ill/ (19.50a) 

and has the symmetry properties 

Wx. x ' ) - W . X), *j}U. x'). • (19.50b) 

which follow from the symmetry of the function <p(xy,x"y) with respect to the 
replacement x-*x',y+y' and the hermiticity of the interaction operator. 

The function 4>^(x,x') plays the role of an interaction potential between 
the molecules in the states k and 1, and the result of the interaction is to 
convert these molecules to the states i and j. One can imagine that a chemical 
reaction is taking place between the molecules according to the scheme 

(*) + (/)<*(/) + ('/). 

The function $H(x,x") can be estimated from the effective cross section for 
an inelastic collision with the transition k,l-*i,j. The Hamiltonian (19.50) 
is similar to the Hamiltonian for a mixture of gases (19.39), with the differ-
ence that in this case the internal energy of the molecules and the possi-
bility of transitions k,Ci,j upon collisions are taken into account. 

The Hamiltonian in the form (19.50) was used in [4]. It can be regarded 
as the original model for a system of particles with internal degrees of free-
dom. It could have been written down immediately; the preceding arguments 
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were given only to suggest the approach. A more detailed account of inter-
nal degrees of freedom is given in the articles by L. A. Pokrovskiy [41,209] 

The operator <|<i(x) satisfies the equation of motion 

+ **(*')W*' (19.51) 

The number of particles in the state i 

nt (x) - ^ (,) f. {x) (19.52) 

is not conserved, because transitions from one internal state to another are 
possible upon collisions. The operator ni(x) satisfies the balance equation 

i a i f l + div/,(*) =/,(*), (19.53) 
where 
J, (x) = jj, J] j {̂ + (*) (*') Wi (*. * ' )+(* ' . *)) A-t(x') 'h (*) -

jkl 
- (*) (*') (tfj (*, x')' + <j>][ (*', *)') vfy (*') <\ (*)] <'*' (19.53a) 

is the operator for the rate of "reaction" of formation of particles in the 
state i. The particle current operator ĵ (x) has the usual form (19.41a). 

The total density of particles in all internal states 

n (x) --- a i (x) 

is conserved, because using (19.50a) we have 

-;i(x)=rU' (19.53b) 
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On the other hand, the number of particles in the state i 

A'i — | /:,• (JC) dx 
is not conserved, because 

(19.54) 

where J, is the operator of the rate of formation of particles in the state 
i, which is non-zeroa 

The density of internal energy in the state i 

//,(je) = EiM*) (19.55) 

satisfies the balance «•-££ £ w _ ^ (19.5Sa) 
01 

.na the total ener<~ in the state j. ^ ^ 

satisfies the equation (19.57) 
(it 

The conservation equations (19.55), (19.55a), (19.54a), and (1-|.57) allow 
one to investigate the relaxation of internal degrees of freedom, which we 
shall discuss in 5 23. 

The total system of conservation laws for the case of a system with inter-
nal degrees of freedom can be written in matrix form (19.48), where the sub-
script i denotes the internal degree of freedom, and 

(19.58) 

and not zero as before, i.e., there are sources not only of energy and momen-
tum, but also of particle number. This is the most general form of the 
conservation laws. 
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I 20, Local Equilibrium Distributions. 

To define thermodynamic functions of nonequilibrium states it is necessary 
to construct the corresponding statistical ensemble which represents systems 
in a nonequilibrium state. 

Sometimes this is done by means of a switching on of an auxiliary field, 
which would make the thermodynamic state an equilibrium state, while leaving 
it inhomogeneous, as is done in the textbook of statistical physics by M. A. 
Leontovich [70], However it is impossible to include a temperature inhomo-
geneity by means of any auxiliary field, unless one uses the somewhat artifi-
cial procedure of switching on a gravitational field, which obeys the general 
theory of relativity [9], Therefore we shall make use of a different method, 
which is based on the introduction of Gibbs local equilibrium distributions. 

20.1, Statistical Operator and Distribution Functions for a Local Equilibrium 

The concept of a Gibbs statistical ensemble can be carried over to non-
equilibrium stationary systems in the following manner. 

In this case a Gibbs statistical ensemble will denote a collection of 
systems found in identical stationary external conditions, i.e., having iden-
tical types of contact with thermostats and semipermeable membranes and having 
all possible values of the microscopic parameters compatible with the given 
values of the microscopic parameters. The microscopic parameters are not 
assigned exactly, but to within definite small limits of the order of the 
possible fluctuations. 

In a system found in stationary external conditions some stationary 
distribution is established, which we shall call stationary local equilibrium. 
If the external conditions depend on time, then the local equilibrium distri-
bution will not be stationary. In order to define precisely the local equi-
librium ensemble it is necessary to define the distribution function corres-
ponding to it or the statistical operator. 

Let a nonequilibrium state be specified by an inhomogeneous distribution 
of energy and particle number; the densities of these quantities correspond 
to the operators H(x) and n(x) (see (19.21a), (19.22)) or to the corresponding 
Fourier components 

System. 

= j a-"*" n(x)dx, (20.1) 
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which for a single component system have the form 

-£•(*. q + k)a*a, 
. _L V v(k'-k.,)a+a+a .a r .2V v -• v , (20.1a) 

We shall assume that these variables are sufficient to describe the macro-
scopic state of the system. 

In the classical case Hk and nk are the collective variables (19.19a). 

We note that the zeroth Fourier components of the energy density and 
particle density are integrals of motion: 

Thus, for sufficiently small k they are close to integrals of motion. 

The simplest method of constructing the local equilibrium statistical 
operator (or distribution function) is based on information theory; the con-
nection between information theory and statistical mechanics was discussed 
in SS4 and 10 (see [71,72]). 

The statistical operator or distribution function is defined from the 
maximum of the information entropy, which in the quantum case is equal to 
(10.1) 

I!t ! t >0 = / / 0 = / / , nt \t „ 0 = n0 = N. (20.1b) 

- (In {}) — - Sp Coinp) (Spp= 1), (20.2) 

or in the classical case is equal to (4.5) 

(20.2a) 

S „ - (hi f ) -
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with the auxiliary conditions that the average Fourier components of energy 
and particle density be constant upon variation of p or f 

<Hk> = const, <n̂ > = const (20.2b) 

and with the constant normalization 

<1> » const. (20.2c) 

Here the brackets denote either quantum or classical averaging. 

As usual, we look for the absolute extremum of the function 

y =. — Spiohio)— . S,)(f>/7i.) -i- .i. v.* Sp(f'JA.) — /«.Spo, 
it j 

where are Lagrange multipliers, defined by equations (20.2b,c). The 
extremum condition for S', i.e., the equality to zero of its variation with 
respect to p, gives the statistical operator of the local equilibrium distri-
bution: 

where 

p, = Q, ' e x p { - ~ v _ , « 4 ) | • ( 2 O . 3 ) 

Qi = SP CXP { - ^ ( P V * - (20.3a) 

is the corresponding statistical sum. 

For the classical case we obtain by exactly the same method the local 
equilibrium distribution function: 

wnere 

fl = Q, 1 exp | - 2- ( P V * ~ V-*'!A) }. 

Qi-Jexpf-S (P-kHt - v.,"*) J dW 

(20.4) 

(20.4a) 

In external form (20.3) and (20.4) are identical; the difference is in the 
fact that in (20.3) Hfe and n̂  are operators, but in (20.4) they are functions 
of the coordinates and momenta of the particles. 
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Going over from the Fourier components H^n^ to the operators for the 
density of energy and particle number H(x) and n(x), we write (20.3) and 
(20.3a) in the form 

Pi = Qt 1 exP {~ J P (*) l/! (*) ~ !l (*)11 (*)] dx } • 
Q, = Sp exp | - j p (*) [// (*) - H (x) n (*)] dx }, 

whCTG 
P (*) = 22 t V P (*) .'i (*) = — vkc' lkx\ (20.6) 

It U v y 

(20.5) 

and 6(x) plays the role of the local inverse temperature, and u(x) of the 
local chemical potential. 

For the classical ease (20.4) and (20.4a) can be written in the same 
form as (20.5): 

J p(*) [H(x)-u (*)«(*)] rf*}, (20.7) 

Q, = j exp { - |" p(x) III (*) - ;i (x) ii (x)\ ilx J- dl\ 

In the particular case in which the temperature and chemical potential 
are spatially homogeneous, (20.7) and (20.5) go over into the Gibbs erar.d 
canonical distribution (3.30) and (9.42). 

We have shown that (20.3) corresponds to the extremum of the information 
entropy. We shall now show that this extremum corresponds to a maximum by 
making use of the inequality (10.2) 

Sp(pInp)>Sp(p!np;), (20.8) 

which holds for any two statistical operators. The equality is attained only 
for p»pj. 

Substituting (20.3) into (20.8), we obtain 

S u = - Sp (pin p ) < In Q, + E(P_* (H„)- V_4(«,)), C2 0-9) 

where (20 
<//,> — sp (p / ; , ) -Sp «,)-<«„>,. <«»>-<»»>,• u " 
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Using (20.9a) the inequality (20.9) can be written in the form 

Su = — S:> (;-) ill f!) — Sp (p. 111 (),), 
(20.oa) 

where the equality holds only for psp^. 

Consequently, the local equilibrium distribution (20.3) (and also (20.4)) 
corresponds to a maximum of the information entropy with the auxiliary condi-
tions that the average Fourier components of energy and particle number be 
constant and that the normalization be preserved. 

In the general case for systems with conservation laws in the matrix 
form (19.48) the local equilibrium distribution has the form 

The possibility of introducing a local equilibrium distribution is related 
to the fact that there exist two scales for the relaxation time, which are of 
different orders of magnitude [1,30]: the relaxation time T for establishing 
statistical equilibrium in the entire system, which depends on the volume of 
the system, and another significantly smaller relaxation time tr<<T, which 
defines the time for establishing equilibrium in a volume which is macroscop-
ically small, but which contains a large number of particles; this time does 
not depend on the volume of the entire system. A local equilibrium state is 
at first established in a time Tr in such small volumes, and after this the 
system tends slowly to the Gibbs distribution wiv.h a characteristic time T, 
if there are no external influences which prevenv this. 

The kinetic theory of gases is also founded on the existence of relaxa-
tion times of different orders of magnitude - the collision time, the tine on 
the mean free path, and the time for establishing equilibrium in the entire 
volume. This idea was first enunciated and systematically developed as the 
basis for approximations in the work of N. N. Bogolyubov on dynamic problems 
in statistical physics [1]. 

Two scales for the relaxation time do not always exist. For highly 
dilute gases Tr can be of the order of T, and the local equilibrium distribu-
tion loses its meaning. 

The local equilibrium distribution is sometimes introduced by means of 
nonrigorous intuitive considerations [30]. We shall give a brief account of 
these considerations. Let us assume that in a time tr in a macroscopically 
small volume AV around the point x a "quasi-Gibbs" distribution is established 

(20.10) 
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with local temperature T(x)=3'^(x) and chemical potential vi(x).  It is pro- 
portional to the Gibbs factor 

cxp j - ß (x) / J" // {*) dx - \i (A:) I n (*) dx 

Considering that such distributions in different volumes AV are statistically 
independent, we multiply these operators, and we come to the local equilibrium 
distribution (20.5).      The weak point in this argument is that the operators 
H(x) at different points do not commute, and the product of the exponentials 
is not equal to the    exponential of the sum. 

We shall now investigate the physical meaning of the parameters t% and 
vj^.      They can be expressed in terms of <Hk>\  and <^>\ through the equations 

(//,), = Sl)((VM.      <".); - SP (.0.'"A)- (20.11) 

Differentiating InQ^  with respect to ß.^ and v.j^, we obtain the relations 

,.i;,Q,-> ,     v        :a'..:<h\ (2U.12) 

analogous to the thermodynamic equalities  (3.33a). 

We introduce the entropy of the local equilibrium distribution by the 
relationship 

a. }<\ S = - Sp i^ h: [.,) - In Q, + \ {p_k i //,>, - v 

-InQ.-f- \?>(x){{II(x))l-~y.ix)'nix))l)clx. (20.13) 

It can be regarded as a function of <\>\  and <njt>^,   if one considers ß^ and 
vjj to be expressed through <llK>i and <n^>^  from the solution of the system of 
equations  (20.12),      Then we have 

«     __J'1_        v     ^--J"'-, (20.14) 
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because upon varying (20.13) the remaining terms cancel on the basis of 
(20.12). 

Equalities (20.12) and (20.13) can be written also in the form of func-
tional derivative relations: 

J 

(20.14a) 

/ b(h \ 
(H {x))l - [1 (*) <« (*)/! - ~ \6fi (X) {xt' 

- i , J 6Q; \ (rt (*))/ = ? • 
6 S 

PW-TtraJT* = " (20.14b) 

The thermodynamic relations (20.12)-(20.14b) can be considered as a 
generalization to the nonequilibrium case of the usual thermodynamic relations 
(11.7), (11.24), and (11.25). This implies that 8(x)=T(x)-l can be inter-
preted as the inverse temperature at the point x, and u(x) can be interpreted 
as the chemical potential at the same point. 

The functional Q\ [3(x) ,w(x)] (20.5), (20.7) plays the role of the statis-
tical sum (or statistical integral), and the functional S(<H(x)>l,<n(x)>t) 
plays the role of the entropy; thus, for a local equilibrium state thermo-
dynamic functionals play the role of thermodynamic functions. 

The local equilibrium distribution is easily generalized to an I-component 
system with an ir.homogeneous distribution of momentum density and particle 
number. In this case, in addition to the Fourier coefficients of the opera-
tors for energy density and the number of particles of the a-component 
n®, it is necessary to use the Fourier coefficient of the operator for momen-
tum density p̂ : 

Pi: f e~i ax) p (x) (iXt p(*) = Y snj(. (*). (20.15) 

In the representation of second quantization 

V JLi 
a. </„ 

(,, + -£W' \'a •> 'hi (20.15a) 

- 291 -



For k*0 we have H0=H, n^aNa# and p0=P, where Na is the number of particles 
of the type a, and P is the total momentum. All these quantities are inte-
grals of motion; consequently, for small k they are slowly varying. This is 
evident if only from the fact that the conservation laws (19.30) in the momen-
tum representation have the form 

">>« , Vt —JL = — /; • Tk, 

where the right-hand sides contain the small vector k. 

Choosing the operators Hk,n£,Pk to be fundamental, we define the statis-
tical operator for the local equilibrium state by analogy with (20.3) from 
the extremum of the information entropy (20.2) with the auxiliary conditions: 

Then 

or 

const. <<)-'const, < P , > " ( 2 0 . 1 6 ) 

(20.17 

0 - i evp ' - I f , (*) [// (*) - V (y.Jx) - (20.17a) 
•• ' ' \ j I. - i 

- V- U')j "u (*) - V W ' f M] dX f ' 

where the notation 

has been introduce, and where 

Q:.SPexP{-fpW[»W-li""W-
_ («))»„ (Jt) - V (*) ' P (*>] dX I = 

(20.17b) 

(20.17c) 

is the statistical sum - a functional of the parameters (20.17b). 

In expression (20.17a) $(x) is the inverse temperature, ua(x) is the 
chemical potential of the a-component, and v(x) is the mass velocity. 
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The physical meaning of such a choice of parameters is easy to understand. 
The average logarithm of p defines the entropy. In order to exclude system-
atic motion of the liquid, it is necessary to choose a system of coordinates 
moving together with the element of liquid with velocity v(x). In this sys-
tem of coordinates we define the statistical operator 

= Qr' exp ( - P (x) |H' (x) - £ Hu W < <*)] dx } • (20.18) 

where H'(x) and n'a(x)*na(x) are the densities of energy and particle number 
of the type a in the moving system. 

We go over by means of the canonical transformation (19.35) to the 
laboratory system, where the energy density H(x) and the momentum density 
p(x) are: 

//' (x) - H(x) -v(x)-p (x) + -?'<*> p(x)t (20.18a) 

P (x)<=*p(x) — p(x)v(x), 
where (20.18b) 

P (*) = 2 mana (x) 
a 

is the mass density operator. 

Substituting (20.18a) into (20.18), we arrive at (20.17a). 

We define the mass velocity v(x) by the relation 

, , (20.19) 
)T7* 

and therefore . .. n (20.19a) (p (x)),= bp(p,p(*)) = 0, 

i.e., the average momentum in the co-moving system is equal to zero. 

It follows from (20.19) that the variational derivative of Qj with res-
pect to v(x) is equal to zero: 

" I"'u') KP (X))I - (p (*)>/ v (AT)} = 0. (20.19b) 
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If the average hydrodynamic velocities Va(x) and temperatures Ta(x)s 
=6 ̂ (x) for the various components are considered distinct, then the statis-
tical operator for the local equilibrium state with such a separation of 
temperature and velocities of the components can be defined in the form 

n-«PvDf - V f (20.20) 
l>. =- Q, { — i } 1 u 1 

where for each component is chosen its own co-moving system of coordinates, 
moving with the velocity va(x). In this case, going over to the laboratory 
system, we write the statistical operator (20.20) in the form 

p, - Q, ' exP [ ^ J < A ) ' / / u ^ ^ (20.20a) 
( {x) „ S L L . ( x ) \ n :(x) - va(x) • pa(*>]dx j • 
u1.. \ 

for which 61„ji . ^ (v ) {(P,,(*)}. - <?«(*)). v*(x)} ~ 0 

i . O 

(o. (x) •= mjijx)). 

(20.20b) 

If the molecules are not spherical, then the transfer of angular momentum 
in collisions must be taken into account. In the same way as we introduced 
earlier in the velocity of Hydrodynamic motion v(x), we can also introduce the 
average angular velocity of rotational motion u(x). To do this it is first 
necessary to define the statistical operator in a system which is rotating 
locally with velocity «(x), which is equal to the average velocity of rota-
tional motion of the particles in the neighborhood of the given point. In 
this system the systematic rotation of the particles is compensated for by 
the motion of the system of coordinates (see [41]). The distribution func-
tion and the hydrodynamic equations for systems of molecules with internal 
angular momentum were considered earlier by Grad [73] and Curtiss [74]; the 
latter generalized the Boltzmann kinetic equation and the Chapman-Enskog 
theory to the case of molecules which do not have radial symmetry. 

The calculation of average values by means of pt is a rather complicated 
problem, although in the local approximation, if the parameters 6(x) and 
p (X) change little over distances of the order of the correlation length of 
the quantities H(x) and n(x), the leading term in the calculation of the 
averages is very simple. It is equal to 

- 294 



{A)l~{{Ä)h'?'W---^r^xu 

i.e.,  in equilibrium averages  it is necessary to replace the equilibrium 
parameters by their position-dependent values.      This relationship can be 
shown by summing the corresponding terms of the perturbation series. 

20.2.      Thermodynamic Equalities. 

We obtain thermodynamic equalities for an inhomogeneous system by vary- 
ing the statistical sum (20.17c): 

(2Ü.17d) 

where , , p (x\ ~ // {X) 

ovbr 

f<44; (^ = - ß (x) I ,lu ix) - '> S W) ■    ^ i ■ ^ - "" ^! 

(a-1. 2, ...), 

the local parameters F^x) ,  from which we have 

= - (P,Jxfh 

or in more exnlicit  form 
6 in f.»' //' (X)).-YIIH'«K". (■,C.".'. 
iVf, i x i « 

-   |1U-)vf« , fJt)); 

Äy l.v) 
-0, 

(2Ü.21a) 

where H'(x)  is the enerp)   density in the co-moving system. 

The relations  (20.21a)  are natural generalizations of the thermodynamic 
equalities (11.25), which hold for the case of statistical equilibrium. 

From the relations  (20.21a)   in the variational derivatives we obtain for 
the total variation of Q^: 
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6 ln Q, = f ( - ((//' (x)), - ("u (*)>/) I*) + 
* \ 

-rPU)^(«uU));6."u(*)jrf*-
(20.21b) 

Denoting r . , . . 
In Q/ = - i p(jt)Q(x) dx, 

we ob ta in , (20.21c) 
f ! (fl (x) il (x) ) ~ 1(11' (*))/ - Ma (*) <-'a (•*)>/) 6P W + 
J t V » > 

-r ,H (*) V („u (*)}, (Siia (*) | rf* = 0, 
a ' 

from which it follows, because the volume is arbitrary, that 

(> ̂  (x) n {x,) = (//' (.*)>. (x) - >; («0(*)>, fi $(*)(*> )• (20.22) 

Equation (20.22) is called the Gibbŝ Duhem relation. 

We introduce the density of entropy S(x) by the relation 

n"! (x) S (x) = (//' (*)>, - ft, (*) ("U (*)>I ~ - (*)• (20•23) 

analogous to (11.24), and rewrite the thermodynamic equality (20.22) in the 
form 

- 6£2 (.*) S (.0 6;i ' ix) + ̂  ("u (*)); 6.ua (*) (20.24) 
ll 

P"1' <*) f-S ix) - A <!." <*)>, - 2L ft, (*) 6<«u(*))f. (20.24a) 
O 

We introduce quantities computed with respect to a unit mass, namely 

su>_ 
SW- (Pi*»): (20.23a) 
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the entropy per unit mass. 

t! \.\ t 
{//' < •<>''! 

' " ~{p (X))t 
(20.23b) 

the energy per unit mass in the moving system, and 

. ' _ m«(n«(x»L (20.23c) 

the relative mass concentration of particles of the a-component. Then the 
thermodynamic equality (20.24a) takes on the more familiur form 

V !i» 'A fr T (*) (*) = W + p W ̂  ̂  ~ J a (20.24b) 

where (20.24c) v(x> vo(*))i 

is the specific volume per unit mass, and 

p (x) — - U(*)= T (*) S (*) - (//' (*)) + 22 }iu (•*•') (n* (*))i (20.24d) 

is the pressure. 

The thermodynamic equality (20.24b) is analogous to the equality (5.8), 
and (20.24d) is analogous to the relations (3.34) and (5.27) of equilibrium 
thermodynamics. 

We have considered the variation of quantities in the co-moving system, 
moving with the center of mass of the element with velocity v(x); consequently, 
(20.24b) can be written in the form of a relation in the total derivatives: 

r t r \ - £!L[lL_j_ n ( x ) - V u ( x ) <>'••> , ( 2 0 . 2 4 e ) 1 w ~ d: 1 p w dt -4 • u w dt ' 
U 
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where 

— = — + iu*) • V. dt dt ~ w 

The relation (20.24e) is usually postulated in nonequilibrium thermodynamics 
as an expression of the hypothesis about local equilibrium [27]. 

20,3. Fluctuations in a Local Equilibrium Ensemble. 

The local equilibrium distribution (20.17a) allov;s one to calculate fluc-
tuations in the densities of energy, particle number, and momentum through 
the variation of the average values of the densities of these physical quan-
tities with respect to local parameters S(x), Ma(x), and v(x), just as in 
SS 6 and 12 for the Gibbs grand ensemble the fluctuations of mechanical quan-
tities were expressed through derivatives of their average values with respect 
to the corresponding parameters. 

We shall calculate the variation of the average value of an arbitrary 
operator A(x) with respect to B(x), ua(x), and v(x). We have 

(,1 sp A w l . (20.25) 
where 

ll (*) = //(*)" [flu (*) - V" M "a (*)] - V (*) ' P M ^ 

= ^ U u ( x ) / i u ( x ) . (20.25a) 
c 

Noting that for any operator the variation of an exponential is equal to 
(12.13), and taking into account that the variation of Qj gives the thermody-
namic relations (20.21), we obtain 

- (A(x), /)(*')), 
(A; ) 

i = p (x') (.4 (*). /»„(*')). (20.26) 
oii., (x ) 

,, p (*') (A (*), p (*') - P (*') v (*') )• 
(X ) 

where the following notation has been introduced for the quantum correlation 
functions: 
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BW>- j ww-wewwe. ">-<B (20.26a) 

_tf •>.f.vii~nx)<!x p T f (»(*)/.'t*)J* (20.26b) 
Bih)--=c - ' "c 

The notation (20.26a) and (20.26b) is analogous to that used earlier in S 12 
in equations (12.18) and (12.16). In the limiting case of classical mechanics 
the quantum correlation functions (20.26a) go over into the classical correla-
tion functions: 

(A ii (*')) = {(A (*) - (*)>/) (*') ~ (20.26c) 

From (20.26) we find the fluctuations in the densities of energy, particle 
number, and momentum: 

„ [ii (x), II (*')). 
, x') 

"i\ 
(* > r 

^ • /> __ ̂  (*') (/; (.*), P <*') " P (*' > v '* ' ̂  

6 <«-LV-i - j* <Y) ("a(*). »(i (*') >• , 
6|:,. (* ) (20.27) 

fcvU ) 

Other variational derivatives can also be expressed in terms of the correlation 
functions in a similar fashion. 

Let us consider the more general case of a nonequilibirum ensemble in 
which the state is defined not only by H(x), n0(x), and p(x), but also by the 
quantities €k(x)» which in general are not the densities of integrals of 
motion. In this case one can also construct a statistical operator, which 
defines the specified average values of £k(x), which are equal to the averages 
<Ck(x)>iOver a local equilibrium state. 

The statistical operator with a fixed value of <£k(x)>, corresponding to 
the maximum of the information entropy (20.2), has the form 

!>, = Q.r1 exp | - j P> (x) II (*) - Yj (nu (.v) -
I u 

- v'! (*) "a (*)) - V (*) • l> (*) -1- V ak (*) Ik (*)J (Ix J , (20.28) 
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where a^Cx)  is an auxiliary field, which makes <dw(x)>l>'Ü.      The average value 
<C|((x)>  corresponds to the state (20.28), and it is equal to 

__L_Aiü^., (20.29) 

where the variation is carried out with constant ß(x) and pa(x)  and variable 
ak(x)' 

It  is convenient to write the statistical operator (20.28)  in a more 
symmetric  form: 

p = cxpI_(I>^(x). ..., FjxK-VJFtix}!^!*^ (20.30) 

where FA^m M~inx)' 
Fl{x) = -mvM' /M*) = PW. 

F:{x)^V{x)ai{x), /^W-^W 
la=l, 2 /; / = /+! ") 

ii>[FAx) Fn{x)]~\nQ (20.30b) 

(20.3Üa) 

is the Massieu-Planck functional. 

In  §S  6 and 12 it was shown that   in  the theory of fluctuations  it   is very 
convenient to use the Massieu-Planck function (6.4)  and (12.7).      The Massieu- 
Planck  functional  (20.3Üb)  also turns out to be very useful in the study of 
fluctuations  in spatially inhomogeneous systems   [3], 

We write the statistical operator (20.30)   in the form 

-expi-S-V j" Fi{x){Pi{x}-{Piixl)t)dx\, (20.31) 

n 

-S-IH V f/M^CM*))/''* (20.31a) 

p - exp 

where 

is the entropy, considered as a functional of <Pi(x)>l.      The relation  (20.31a) 
is the analog for thermodynamic functionals of the Legendre transformation 
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(3.10b) for thermodynamic functions. 

From the normalization condition of the statistical operator in the form 
(20.30) 

<J>-taSpexp J P,(*)P,<*),/, !, ( 2 0 .3 2 ) 
I i-0 } 

we obtain, by varying it with respect to Fj(x), the thermodynamic equalities 

. 
?>l-; (x) 

(t' = 0, 1 «)• (20.33) 

Analogously, from the normalization condition for the statistical opera-
tor in the form (20.31) 

I " I 1'-toSpcxp - v j /•-, w(P,(«)- <p, WWi*\. 
I (-0 ' 

we obtain by varying it with respect to <Pi(x)>̂  the thermodynamic equalities 

( 2 0- 3 S ) 

We express fluctuations in terms of the variation of the average value 
of <Pi(x)>l with respect to Fra(x). We have 

6 (/'»(*))» = Sp (/-»£ (x) Jp). 

Making use of (20.30), (12.13), and (20.33) we obtain for the variation of Sp 

/: ! 
op = - V j j C-M (/>. (x>) _ /p. (,')),) e-.4 6Fi {x>) dx (lx't 

A-to + V f Fi{x)Pi(x)dx. 

i" 0 u 
where 

(20.36) 
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Consequently, 

o {P, [x))t = ~ ̂  J (P< (*)• P'» 6f'"{X,) dX''* (20.37) 
m 

Wher* tf,w. p.lx')) - { ' < 2 ° - 3 7 a > 

It follows from (20.37) that the quantum correlation function (20.37a) 
is expressed through the variational derivative of <Pi(x)>| with respect to 
Fm(x'): 

(20.37b) 

We shall generalize the Einstein thermodynamic theory of fluctuations 
[75,76], discussed in 5 6 for the equilibrium case, to the case of a local 
equilibrium state, following [3]. For the local equilibrium distribution 
(20.30) one can introduce a macroscopic functional or macroscopic distribution 
function, similar to the function (6.11). 

We introduce a macroscopic distribution function W for the Fourier com-
ponents P£ of the variables Pi(x) 

Pi = J P, (x)e~l{kx)dx, Fl = f F,(x)c~l 1>X)dx (20.38) 

(1-0, 1, n), 

which gives the probability that the parameters ...P̂ ...Pj[... lie in the region 
... AP£...AP£... around the point ...PjJ...PjJ...: 

W A Pi ... A P'i = Q A P'I ... A P'i cxp j - (1) - ̂  FLtPl J = 

= QAP* ... AP*expj-<D-^] J Fi{X)Pl(X)dX j, (20.39) 

where the quantities pj are considered now not as operators, but as ordinary 
functions, although we make use of the same notation as for the corresponding 
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operators. 

The quantity flAP£...AP" can be interpreted as the number of microstates 
in the region .. .APjJ.. .APj|.... It can be estimated from the entropy s of 
the microcanonical ensemble, in which the parameters ...P̂ ...P̂ ... are speci-
fied in the region ...AP®...AP£...: 

s = In (20.40) 

where nQ is a constant which is at the present time not essential to us, and 
which we shall define later from the normalization condition for W. 

Using (20.40) and (20.34), we write the macroscopic distribution function 
(20.39) in the form 

= Qu cxp | — (l> + s — ̂  J" Fi (*) Pi (*) | 

-D„cxp|S-S-SI (20.39a) 

where S is the entropy in the local equilibrium grand canonical ensemble 
(20.31a). 

As a consequence of the equivalence of statistical ensembles, which was 
demonstrated in S 13, the entropy in the local equilibrium grand canonical 
ensemble is the same function of <Pj!>....»<}$> the entropy in the local 
equilibrium microcanonical ensemble is of P|t#•••»?£» i.e., S and s are iden-
tical functions, but of different variables. Therefore it is convenient to 
expand s-S in a functional series in APi(x)=Pi(x)-<Pi(x)>1 and to retain, 
because of the smallness of the fluctuations, only terms through second order: 

s — s = V j Ft(x)bPdx)dx + 

, t V i I — — 
T —s J J 6 (I'i Ui)>i 6 (P»> 

A PtixJbPm (x^dx^lx,. (20.41) 

Substituting (20.41) into (20.39a) and using the fact that the linear 
terms cancel, we obtain 
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APi (*i) APm(x.) clxI (20.42) 

or 
W7 = .-1 cxp ! - I V . i f (*„ X2) (*,) A Pm (*> Jx> dx,J. (20.42a) 

where (20.42b) 
!• A ( P j 6 (Pm 

is a function which describes the correlation of fluctuations in space, and 
which we shall consider again below. 

Formulas (20.41)-(20.42b) are a direct generalization of formulas (6.14) 
-(6.17a). 

There exist especially simple relations for the fluctuations, if the 
parameters Fi(x) and the quantity Pi(x) are expressed in the Fourier repre-
sentation (20.38). Then 

The entropy (20.31a) is.now already not a functional, but a function of 
the Fourier components of <Pj>. 

Instead of the thermodynamic equalities (20.33) in terms of variational 
derivatives we obtain relations in terms of ordinary derivatives 

(20.43) 

(20.44) 

and for the quantum correlation functions we obtain the expressions 

o(/i)i (''I'.\ 
or;-

(20.44a) 
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analogous to the formulas (20.33) and (20.37b), 

In the Fourier representation the macroscopic distribution function 
(20.42) has the form 

,C-Mt4^^«v     T (2U-45' 
*,*: 

APj=P^-<Pj>^.      As before we regard the quantity P.   not as a dynamical 
le, but as an ordinary variable.      Thus,  the Gaussian distribution 

where 
variabl 
(20,45) is approximately valid for the Fourier components of PK 

The argument of the exponential  (20,45)  can be expressed in terms of 
the correlation function.      In this connection, 

'iS        }■•;", (20.45a) 

where S is the entropy  (20.31a).      Consequently, 

V 
'■'0F~*'dF~r 'V'V A''" I.I k.. "' i       "' ,,,'       'V  „'_,!     N    k.Jl 

V !Wi ^.-   ■ ■—*^ - *r\ (20.45b) 

"V <'J ^\\  "'K^ 

analogous to the formula (6.24).      Thus, the matrices of the second derivatives 
of $ and S are mutual  inverses. 

Formula  (20,45)  describes the correlation of the Fourier components 
(20.38) and, thus, expresses the connection between fluctuations at different 
points.      If one takes  into account the correlation only between the Fourier 
coefficients Pj^ and PÜ^P™*.  i.e., if one makes use of the nearness of the 
state to a spatially homogeneous state, then the formula (20.45) can be approx- 
imately written in the form 
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where 

r - M e x p l - ^ S f ^ - . y 
I i,* ' 

c - f ' 

(20.46) 

(20.46a) 

The effect of such a spatial correlation is the basis for the theory of fluc-
tuations near a critical point (Ornstein and Zernike [77]). This theory was 
developed further in the article by Klein and Tisza [78]; we shall discuss it 
in the following section, following [3]. 

20.4. Critical Fluctuations. 

Using the probability distribution functions (20.45) and (20.46) one can 
study fluctuations near a critical point, where they can increase dramatically. 

We shall first consider some exact relations for fluctuations. 

It is convenient to write the distribution function (20.45) in the form 
of an exponential of the complete contraction of a product of matrices with 
elements i,m: 

APv is a vector with components APi, and the symbol : denotes the complete 
contraction of a product of matrices. In the coordinate representation the 
function (20.47) has the form 

(20.47) 

where *s a with elements 

f"« 
I l-.k 

(20.47a) 

W = A cxp { - j f(x„ *,): AP (*•) AP (*2) dx, dx2}. 
(20.47b) 
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The distribution function (20.47) can be written in a still more compact form: 

<2°-47c> 

where f is a matrix with elements fP^ , AP is a matrix with elements AP*, and 
the symbol : denotes a contraction 1 over all indices im, k]k2. 

Fluctuations calculated by means of a Gaussian distribution function, as 
is well known (see formula (6.22)), are expressed through the matrix which is 
inverse to f, i.e.. 

<• (20.48) !• 
or in explicit form rrfI.«5„., (20.48a) 

—— ' /. I: i k '•k 

k. 

where is the Kronecker symbol. On the left hand side of (20.48a) is 
understood also a contraction over all indices, except i and m, and on the 
right hand side is understood a unit matrix in the indices i and m; these 
indices will not be written out explicitly. Thus, (20.48a) coincides with 
(20.45b). 

In the x-representation equation (20.48a) is an integral equation 

J f(x„x,)g(x„*')</*, =6(*-*'), (20.49) 

where 
g(*L *0 - Y 5 e '' * £ * . * , = (P(*|). />(*'))- (20.49a) 

£.<t | 

Equation (20.49) can be satisfied only if f and g have 6-type singulari-
ties when their arguments are identical (similar characteristics of correla-
tion functions are well known in the theory of fluctuations). Consequently, 
it is convenient to regularize this equation by separating out the 6-type 
singularities. We introduce instead of f and g the functions fj and gj, 
which already have no such singularities: 

/(*,*,) = A (*) (6 (*-*,) - /. (*. *i) )• (20' 5°) 
g{xi, *') — A — *') + Si (*i« *'))• 
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We find the function Aj(x) by integrating the second of relations (20.50) 
twice over a small volume AV near the point x«xi, the dimensions of which are 
chosen such that the contribution from gj can be neglected. Then 

( j i\P(x')dx' J AP(x') c/*') = |" A,(x')dx', 
AV M' AV 

from which we find, by applying the mean value theorem, 

,,tU) = (AV/-,)(j AP(*)</* .f A P • 
AV Al' 

For the volume AV one can choose the volume per particle, AV=<n(x)>"*; in 
this case, of course, the condition that AV be small will be satisfied. 

Substituting (20.50) into (20.49), we obtain an integral equation for gj 

'*• ""> - i (*• *'> + j /, (X. x,) Sl 
JWAW-l. 'W:*hlx, (20i51) 

This is the Ornstein-Zernike integral equation for the inhomogeneous case [3] 
The function fj is usually called the direct correlation function. The 
function gj satisfies a normalization condition, which is obtained from the 
second of equations (20.50) by means of a double integration over x^x': 

j j X')dx,dx' ̂ <APAP>- j A,(x)dx, . (20.51a) 

where 
AP = j" AP (*) dx, (AP AP) = - , F = y j F (*) dx. 

For the homogeneous case fj and gj depend only on the difference of the argu-
ments, and equation (20.51a) goes over into the usual Ornstein-Zernike equa-
tion [77-79]: 
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gl (X - X') = /, (* - *') + J fx - x-] (*« - *'> d*' (20.52) 

with the normalization condition 

j -T̂ SHr1- t20-S2a) 

The spatially homogeneous case can be considered, by proceeding directly 
from (20.46): 

lv - .-1 cxp | - ~T ̂  f- '• AP* AP* V (20.53) 
I " J 

where f̂  is a matrix with elements f jm, for which 

f fix) 
r)2S f - V v-rrrr — hk (20.53a) 

Instead of (20.48a) we shall have the quite simple expression 

(20.54) 

which is equivalent to the integral equation 

! (20.54a) 

After regularizing this equation we again come to the usual Ornstein-Zernike 
equation. 

Let us now consider the solution of the Ornstein-Zernike equation. In 
solving equation (20.52) one assumes that the function f(x) falls off suffi-
ciently rapidly with distance that its even momentsf x2nf(x)dx are finite 
and the odd moments are equal to zero because of the spatial isotropy. One 
expands the function g(x) in a Taylor series and keeps terms through second 
order, which reduces the integral equation to a differential equation [79]. 
The same results can be obtained in a simpler fashion by expanding fj, in 
(20.53) in a series in k2 and keeping several terms, which we shall also do 
later. 
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Let us investigate the behavior of the fluctuation correlation function 

at large,distances |x-x'| in the case of spatial homogeneity.  To do this we 
expand ff"1 of (20.53a) in a series in powers of k2, keeping terms through k4. 
The expansion in small values of k implies that we are considering the behavior 
of the correlation function for large jx-x'].  The coefficients for odd powers 
of k are equal to zero because of the spatial isotropy of f(x).  We have 

iT-ai:n + bl"^-]-C"■'C• (20.55) 

where 

1     l* Juuix)x''ilx. 
(20.55a) 

In this we assume that the integrals  (20.55a)  converge,  i.e., that fiin(x)  is 
a short range function. 

At a critical point the zero order term of this expansion,  i.e., the 
matrix 

fo ='' = 
<>•■*     = _ v     tYls 

j{x)dx=~V -jjFjrjTf?, ,yj',äKi-, (20.55b) 

becomes positive semidefinite, which corresponds to the stability limit.  In 
this case the determinant of the matrix flm is zero 

|fjm| = 0, (20.55c) 

and the inverse matrix to f0, which in accordance with (20.48) determines the 
fluctuations, approaches infinity. Therefore, if correlations between fluc- 
tuations at different points were not taken into account, the fluctuations 
would become infinite.  In reality the fluctuations only increase strongly 
at the critical point, and this increase is suppressed by the correlations 
between the fluctuations. 

The average value of the fluctuations is expressed by the inverse of the 
matrix f^, i.e., 
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<APi -\P1%> = V (a + bk~ + ck%\. 
(20.56) 

The Omstein-Zernike theory follows from (20.56) with c»0. The case with 
cr*0 also presents no difficulty. 

For the correlation function 

gi:il (x - x') = -i- V (Ap'k e< «• *-*'< 
k 

we obtain the expression 
Sin-- (x - x') = (,z + y/c-' + c::)̂  e' <*• 

which satisfies the differential equation 

(a - bV- + cV) /r (x) = V (», (20•58) 

where g(x) is a matrix with elements gim(x). The differential equation 
(20.58) is considered in the Ornstein-Zernike theory with c*0. One can 
find g(x) by solving this equation, but it is simpler to calculate the inte-
gral (20.57a) directly. 

In the case considered by Ornstein and Zernike (c=0) we obtain for the 
fluctuation correlation function in a diagonal representation 

(n = TCj y I U'li + bait2) 1 sin (kr) k ci/c = -pL.e-Y<-nll'ur 
' •> 4.1 r 9 

if a„lbSi> 0, (20.59) 

i.e., an exponential decay with distance. Here â i* b^, and Cĵ  are the 
expansion coefficients of f]; in a diagonal representation. 

At a critical point, i.e., for aij=0, we obtain 

(20.59a) 

(20.57) 

(20.57a) 
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i.e., the fluctuations die out very slowly. 

In the more general case in which cii»*0, we obtain 

gu (r) - 7 7 f («H -I- bu# + Ctik*)'1 sin (lir) h dk -
(20.59b) 

where n- «= - (»;1- -

V''r;: (/><,• + 1' bft — 4aticu)• 

if Reai>0# Rea2>0. 

Thus, the fluctuations decay exponentially and oscillate. At a critical 
point c*ii»0, ai*0, and c»2a"hii/ĉ i. Consequently, 

Experimental investigation of fluctuations in solid binary solutions 
near a critical point of separation of the mixture [79] indicates the exis-
tence of damped and oscillatory fluctuations in the correlation functions 
connecting the densities of the various components. 

Critical fluctuations were considered in the article by Klein and Tisza 
[78] by dividing the system into small cells and making the limiting transi-
tion to a continuum, which is a somewhat artificial approach. The meaning 
of this method lies in the use of a definite, but, perhaps, not very felici-
tous representation for the functionals, which are the thermodynamic func-
tions in the inhomogeneous case. As we shall verify below, the Fourier rep-
resentation for the thermodynamic functionals is significantly simpler 
and more natural and reduces them to functions. 

The theory of critical fluctuations is semiphenomenological, because it 
makes use of a macroscopic distribution function. We present it as a simple 
example of the application of the local equilibrium distribution function. 

20.5. Absence of Dissipation Processes in a Local Equilibrium State. 

We shall show that dissipative processes are absent in the local equili-
brium state (20.17a), i.e., there is no thermal conductivity, diffusion, or 
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viscosity.  We shall calculate the average values of the currents of energy, 
particle number, and momentum, jn(x), ja(x), T(x) over the local equilibrium 
distribution. 

Let us first put v(x)=ü.  Then the statistical operator (or distribution 
function) is equal to 

_rl-los,ll_.(l;,^//u)-^!..W"'"'l;'
Ii■        C2U.00) 

where H(x) is expressed by formula (li).13) in the classical case and by (19.21a) 
in the quantum case.  Expression (20.60) contains only the densities of 
energy (19.13), (llJ.21a) and particle number (19.3), (19.22), which are invar- 
iant with respect to a reversal of momenta, i.e., they are even quantities. 
Therefore p^' is also invariant with respect to this operation, i.e., it is 
an even quantity.  On the other hand, with this transformation the a-corapo- 
nents of the particle number current ja(x), energy current jfjtx), and the     * 
non-diagonal elements of the tensor Ta^(x), which depend on p^ and p^, change 
sign; consequently, the average of these quantities over (2Ü.6Ü) is equal to 
zero.  The local equilibrium average of the integral part of the non-diagonal 
elements Tag(x) is zero because it contains products of (x^-x^)(XQ-X^) with 
the two particle distribution function, which depends only on |x-x'| in the 
local approximation.  This is evident from (19.5), (19.17a), and (19.12) 

in the classical case and (19.24a), (19.29a), and (19.27a) in the quantum 
case. 

Consequently, when averaging with respect to p-jt  the quantities 
j (x) » JH^X^ anc^ t'ie nondiagonal elements T(Jlo(x) go to zero since under 
the spur (or integral) sign quantities of different parity are produced: 

U {x))r ■ Sp((,,/(.t))-n, 

' T„ (.vi., - sp(1V /;.,,(*))- ■ \,/rii:lix))r ---■ i\,(p(x))r 

where  the  following  is  introduced: 

ir 

which conveys pressure (19.37). 

Now let v(x) ^ 0.  We shall discuss a coordinate system moving 
with velocity v(x) employing the transformation 

p. ■--■ p'^Vmvix), 

in the classical case and the canonical transformation (19.35) in the 
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quantum case .  For v(x) we select the average mass velocity, i. e. 

*(*) = -$§■ (20.62) 

The energy, pulse, and particle number densities are transformed in the 
following manner: 

// (x) = //' (x) + v{x)- p' (x) + I p (x) u2 [x), 
(20.63) 

p (A) =-- p' {x)  I- p(*) v (x),    ni (x) « n't (x), 

where 

PW = 1'",",U). (20.63a) 

In the new variables  the statistical operator  taices  the form 

a   -..O    \.xp!   -   |   |i(,V) //'W-^t1/(«)<(*) J*   ,     (20.6-1) 

where H'Cx), nl(x) have the same form as before, but with ^(x) replaced 
by ij/(x), while in the classical case p^ is replaced by p^.  In the sys- 
tem in motion we have 

J'(x)\--V,    (/'.■ (.vl) •■ -0, 

where p(x) is the hydrostatic pressure operator (19.37); it is not 
written with a stroke since hydrostatic pressure is determined rigtit in 
the system moving with nass velocity. 

In converting to a coordinate system moving with velocity v(x), 
the particle number cm rent (19.24a), energy (19.29a), and pulse 
(19.27a) are transformed by the formulas 

i^x) ■ -/'ui i ", uit'U), 

in (*' r I'ti 1-vl '' ll' '-^ ' I' '■v)  .^' : (v lvl • /'' UV! I v (.vl i 

■I -r.()
vl p'ix)  I- /'(»-iM.vl I J'(( (\/A)ii(.v), 

T(x)-- T'(x) \-v{x)n'ix)  I //(.v);'(.v) 1 <> (,vi r i.vl;'f.v). V?ßM) 

In the (20.66) formula for JH(x) the term ,|',„ (^" (•»» \ ):■ (.vl has a purely 
quantum origin and is very small when v(x) and n(x) vary little at 
a distance on the order of a de Broglie wave length corresponding to 
the average particle energy; therefore, we shall omit the term having 

In the classical case the velocity field can be nonpotential, while 
quantum vortices require a special treatment. 
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a velocity gradient. Now, the density and current conversion formulas 
take the form 

// ix) - //' U) + v (x) p {x) + y p(*) v- ix), 

nl (x) = n] (*),   /,. (x) = /; ix) + «, [x] v (*), 

//,- (*) =' /;, (*) + { //' (*) -1 (' (*) -T|- -! (/•' f*) ■ i' (.v)) [• v (.v) -! 

+—(,-//(A-)-i-r(.v)--.'(.vi, 

r [x] ---- r ix) 1- v ix) i>' (x) + // (x) v {x) -I-1) l.v) v (x) v ix),    120.67) 

which are valid  in  both the quantum and classical case. 

Since  the relationships  (20.65)   are valid  in the system having 
local velocity v(x) ,     by    averaging    with    respect 
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to the local equilibrium distribution, we obtain 

(H (*)}, = (//' (*)), + j (9 (*)), v* (*). 
(/i. (*)), = (/i; (*)),, (/',• (*)), -- <";• (*)), v (*). 

(*)}/ " <P (-*:;)/ v (*), 
(20.68) 

where 

(in (*)>f- {/»(*) + (P (*)>/ —r1}»(*). 
('/' (*)>/ = </> (*))/ U + (p (.V)>; V (x) V (*), 

/i (*)«<//'(*)>, +</»(*)>, 
(20.68a) 

is the enthalpy density, <p(x)>\ is the average pressure, and U is the unit 
tensor. 

From formula (20.68) it is evident that in the local equilibrium state 
there exist only currents characteristic of an ideal liquid [82]. Currents 
of energy and particle number are proportional to the mass velocity, and the 
momentum current is a bilinear function of the mass velocity. These currents 
do not depend on the gradients of thermodynamic parameters and have a con-
vective character. 

The local equilibrium distribution (20.17a) is defined from the condition 
of maximum information entropy with fixed values of <H(x)>i, <p(x)>\ and 
<ni(x)>\. This implies that there exists an arbitrariness in the specifica-
tion of these quantities or of the corresponding thermodynamic (and hydro-
dynamic) parameters 0(x,t), v(x,t) and ui(x,t). We shall specify them in 
such a way that they satisfy the hydrodynamic equations for an ideal liquid. 
The currents (20.68) correspond to exactly this case. We put 

~T>F~~ = - v • (/// (*))/, 

JtSrJjDiL - V • (T (.¥));, (20.69) 

or in more compact notation 

•L±!jd*)lL .. - \ U;V. (20.69a) 
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Dtese equations cannot be obtained simply by averaging the conservation laws 
(19.18) over p^, because p̂  does not satisfy the Liouville equation, and 
therefore for it the derivatives of averages of operators are not equal to, 
in general, the averages of their derivatives. 

Making use of relations (20.68) and the equation of balance of total mass 
and kinetic energy 

jL /p (*-)), — — Jiv (p v 

we write the equations (20.6(J) for the hydrodynamics of an ideal liquid in 
the form 

where 

4l = + v • \u = - (u + p) div v, 
dt at 

dn, On, _7 _ L = _ + v-\n,= -n, div v, (20.69b) 

#-£• + *•1* —p-Y,». 

u = <//' (*)>„ «, = <«; (*)>, = <", <*)>,. 

V = V (*,/), p = (p (*)>/. P = />(*). 
(20.69c) 

i.e., u is the energy density in the co-moving system. 

We shall show that for the local equilibrium distribution it follows 
from (20.69) that the entropy 

where 

S = — (In p 1)1 — «l> 4- ̂  j Fm (.V, t) {Pm (•*))* dx, (20.70) 
in 

<D = lnSpexpJ - | F(x, t)Pm(x)dx | , (20.70a) 
[ m » 

i.e., it cannot be produced in the system, but can only flow in or flow out 
through its surface. 
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The time derivative of the entropy (20,7Ü) is equal to 

■§-i \F,AxJ)^{l'mUr):dx. (20t71) 
»i 

because fron (20.70a)   it follows that 

^ = - Jj J —Ji VmW.'t^- (2Ü.71a) 

Making use of the hydrodynamic equation (2ü.b9a), we write (20,71) in the form 

as 
a, it *** J 

(20,71b) 

where on the right hand side of the equation in the first sura the integral is 
taken over the surface of the system.      The second sum in  (20.71b)  is equal to 

\ r.. ;.V, .; • v'.,. KX)n ~~ 

- ^vU, OC'/iU-i), • \i.5(A') .'jfi, U-, /). (20,71c) 
«.4 

The last summation in (20,71c)  can be expressed in terms of the gradient 
of the function 

«l'U)--|i'x. O/U-v, 0. (2Ü.71d) 
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where p(x,t) is the pressure, and use has been made of the Gibbs-Duhem rela-
tion (20.22) and (20.24d): 

6<I»lx)--= 5(tH*. '))--• 
~ - <//' (x»|6|iU, t) + D. (20.72) 

v<(*/.)-(»(*. J ®Mdx< 
from which it follows that ̂  ^ ^ ̂  ^ (20.72a) 

J[U.x. I) V' 

The gradient of »(x) as a function of 8(x,t) and vj(x,t) is equal to 

(20.72b) 

M» (x) ,, ,v n V \ v, (JC. /) -
\U)--dpruTTTU' 0 • -f 0vi(x-n 

« - (//' (*))/ V f. (X, /) + W>.f X Vi 

Making use of this relationship, we write (20.71c) in the form 

V \ I'',.. (X, t) • (/„; (*))/ = | (}ll (X))t ~ 

— ! (H' (x))i — («(*)}.' — j v (A:, t) — {T (*)); • v (*> 0 j* • ^ P lx'« 0 ~ 
- {('/' (AM); - W> (*) - (<> (*)), V (x, l)v (x, /)}: p (X, t) Sv (x, t) -
— tiiv (v (x, i) p (.*)) — - Jiv (w (x, 0p(*))» (20.73) 

because the factors in front of Vg(x,t) and Vv(x,t) are zero on the basis of 
(20.68). 

In addition, 

2 Fm (*. 0 </» (*))/ + P (x. 0 V (x, /) /J (*) = (h (x))l = f (*. t) S (X), ( 2 0^ 7 4 ) 
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because from (20.23)  it follows that 

(2U.75) 
f' U. 0 S (x) = (W (x))i + Pix) - ^{"i i*))t!'; (*• ''■ 

Using (20.73) and (20.74)  we write the entropy balance equation (20.71) 
in the form of a surface integral: 

iS.Ä_  ft,(x, OSUW«. (20.76) 

or in local form 

(20.76a) 
i>Stx) ,. 
—.jr~ ■■=-- - tl.v(i,'u, oM.c;), 

Thus, the entropy in a local equilibrium state can change only by flowing 
in or out of the volume of the system.      Consequently, dissipative processes 
are absent in a local equilibrium state, and although such a state describes 
nonequilihrium processes, they are nevertheless reversible processes. 

Thus, the local equilibrium distribution allows one to determine the 
thermodynamic functions of nonequilihrium states and to obtain thermodynamic 
equalities for inhomogeneous systems, but it does not allow one to describe 
transfer processes.      This is related to the fact that p\  is not a solution 
of the Liouville equation, because H(x), n(x), and p(x)  are not integrals of 
motion.      We note, however,  that these quantities are defined only up to the 
divergence of a vector or a tensor, which can be used to construct a statis- 
tical operator satisfying the Liouville equation [2-5],      This question is 
discussed in the following paragraph, where the local equilibrium distribu- 
tion is changed such that  it can describe irreversible transfer processes. 

§ 21.     Statistical Operator for Nonequilibrium Systems 

The existence of exact,   i.e., valid for any interaction,  expressions for 
kinetic coefficients in terms of equilibrium time correlation functions, which 
we discussed in Chapter III  suggests that they can be obtained by generalizing 
the statistical operator to nonequilibrium states and expanding it in terms of 
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the small gradients of the thermodynamic parameters.      We shall show, following 
the works of the author [2-5,184-186], that the method of Gibbs, which was 
presented in Chapters I and II,  can be generalized to the nonequilibrium case 
to construct a nonequilibrium statistical operator or distribution function, 
which allow one to obtain transfer equations and to calculate kinetic coeffi- 
cients  in terms of correlation functions, and which go over to the Gibbs dis- 
tribution for the equilibrium case.      The results of the theory of the linear 
reaction, which was discussed in Chapter III, follow from the linear approxi- 

1 mation for these distributions. 

In what follows the idea of N. N.  Bogolyubov on the hierarchy of relaxa- 
tion times in nonequilibrium statistical mechanics   [1]  will have very great 
significance; this idea is  contained in the followingl. 

If the initial distribution is arbitrary, then in the initial  stages the 
state of the system can differ markedly from an equilibrium state,  and its 
description requires the specification of a large number of distribution 
functions:    not only the single particle and two pörticle functions, but also 
higher order functions, which change rapidly in time in accordance with the 
Liouville equation. 

However, for many systems with a large number of particles (for example, 
for gases with small density or small  interaction during a time on the order 
of a collision time)  the "synchronization" of the distribution functions begins 
very rapidly, when all distribution functions are completely defined by the 
single particle distribution function  (thib is also called the kinetic stage). 
A kinetic equation for the single particle distribution  function has been 
successfully constructed from the Liouville equation for this stage. 

For large time scales   (for gases this is significantly larger than the 
time between collisions)  the number of parameters necessary to describe the 
state of the system is further reduced,  and the hydrodynamic stage begins, 
which can be described by hydrodynamic equations (together with the thermal 
conductivity equation),  i.e.,  it can be described by the first few moments of 
the distribution function  (the average particle number,  average energy, and 
average velocity).      The distribution function begins to depend on time only 
through these parameters. 

Later we .hall show that  a description of the hydrodynamic stage is pos- 
sible by means of some nonequilibrium distribution function or statistical 
operator, which depend on time through their parameters,  and we shall show that 
this  is possible not only  for dilute gases and systems with weak interactions, 
but also for the more general case of condensed media. 

The Gibbs construction of equilibrium statistical  ensembles, which was 
considered in Chapters I and II,  is based on the Liouville theorem,  according 
to which the time derivative of the statistical operator (or distribution 

A very clear presentation of these ideas of N. N. Bogolyubov can be seen in 
the article by Uhlenbeck in the book  [83]. 
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function)  is equal to zero, if it is a function only of integrals of motion. 
The Gibbs distribution (3.30)  and (9,42)  is obtained by assuming that the 
energy and particle number are additive integrals of motion.        We shall  later 
proceed, as  in the equilibrium case,  from the Liouville theorem,  but we shall 
generalize the class of integrals of motion on which the statistical operator 
or distribution function can depend. 

21,1.      Nonequilibrium Statistical Operator, 

We shall attempt to construct a statistical operator for a nonequilibrium 
system (for example, a liquid),  consisting of I components,  taking into account 
the transfer of energy, particle number, and momentum. 

Let us consider the state of a system which is macroscopically defined 
by specifying the temperature field, the chemical potential, and the velocity 
(i.e., the density of energy, momentum, and particle number) as a function of 
position and time. The system can be considered to be in thermal, material, 
and mechanical contact with a collection of thermostats and reservoirs, which 
provide the given distribution of parameters. 

We shall assume that the chosen parameters are sufficient to define 
macroscopically the state of the system.       If this is not the case,  for example, 
if the system cannot be described by a s>iiigle temperature,  or in general the 
concept of temperature loses  its meaning,   it is necessary to find another more 
complete set of quantities characterizing the state of the system. 

The construction of the Gibbs grand ensemble is based on (see sections 
3.4 and 9.4)   the laws of conservation of energy and particle number.      We 
shall  also proceed from the laws of conservation of energy,  particle number, 
and momentum, but in local form, which was discussed in detail  in §  19: 

l^il-; DivrU.O-O, 

i 

where H(x),  ni(x), and p(x) are the operators for the density of energy, par- 
ticle number,  and momentum, j|i(x)   is the energy current density,  jjtx)   is the 
particle number current density, and T(x)   is the momentum current tensor or 
the stress tensor.      The form of these operators is assumed to be known.    For 
example,  for a multicomponent mixture of various particles with a direct  inter- 
action in the quantum case they are    xj.ressed by formulas  (19.59b),  (19.43), 
(19.4U),  (19.41a),  (19.42a),   (ID 44a},  (.19.4fab), and in the classical case for 
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a single component system they are expressed by formulas (19.13), (19.5), 
(19.6), (19.17), (19.12). 

All operators considered in the quantum case are in the Heisenberg rep-
resentation, for example 

II \x, i) = (x) c-m'h (// (*, 0) = // (*)), (21.2) 

where H is independent of time. In classical mechanics the Heisenberg rep-
resentation (21.2) is replaced by the action of the evolution operator (see 
section 2.3) 

"(*>• (21.2a) 

where L is the Liouville operator (21.6). 

If the system being considered consists of subsystems with a weak inter-
action, which leads only to a slow exchange of energy or momentum, then one 
can discuss equations of balance for energy and momentum for each subsystem. 
Then the right hand sides of equations (21,1), written for each component 
separately, will contain source terms, expressing the exchange of energy and 
momentum among the subsystems (see equations (19.42) and (19.46)). 

If excitation of internal degrees of freedom (or chemical reactions) are 
possible in molecular collisions, then the equation for the density of par-
ticles with a given quantum number (or molecules of a given type) will contain 
on the right hand side a term which represents a source of particles with the 
given quantum number as a consequence of the excitation of the internal degrees 
of freedom or flux of molecules which take part in the chemical reaction (see 
equation (19.53)). 

It is convenient to write the conservation laws (21.1) in a more compact 
form, analogous to (19.48): 

— o - o (m-o, i ( + o. (JK3) 

where PQ (*)=//(*). k (*)-*///(*). (21.3a) 
Pi(*) = p(*), /i (*) = T (x), 

/'i r : (•*•") ~ "i (•*•')> /( (. 1 (.v) " ji (•*} '' - 1. -> • • • 1 0* 

From the definitions (21.3a) it follows that the densities Pjn(x) can be 
scalar or vector, and the currents jm(x) can be vector or tensor. The dot 
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after the nabla operator denotes a scalar product, i.e., the divergence of a 
vector or a tensor. 

In what follows we shall consider only the quantum case, because the 
classical case is completely analogous. 

For the construction of the statistical operator which describes non- 
equilibrium processes use is made of the fact that in irreversible processes 
there are various relaxation time scales, a discussion of which was given at 
the beginning of this paragraph, and we shall be interested in the state of 
the system for time scales which are not too small. 

We shall assume that during a small interval of time t  a nonequilibrium 
distribution is established, which depends on time only    through  its param- 
eters  and is a slowly varying function of time, with characteristic time 
TI>>T.      Then we shall seek the statistical operator p  for t>>T  as an inte- 
gral of the quantum Liouville equation  (8.üj 

Ä+JriP./'l-o. 

in which the partial derivative of p denotes a differentiation with respect 
to time of the time dependent parameters Fn which enter into p.      As the 
parameters are defined by the external  conditions in which the system is 
found, then this  terra is the result of an external action on the system, 
which renders it nonstationary. 

Depending on the choice of the parameters Fn and the operators Pni, such 
an approach is possible both in the hydrodynamic and in the kinetic stages. 
The discussion which follows in this uiapter refers to the hydrodynamic stage. 

To construct  the statistical operator p, which describes the nonequili- 
brium state of the system, we shall make use of the collection of operators 
Bm(x,t), depending on position x and time t through the values of the param- 
eters  Fm(x,t). 

Let Bm(x,t)   satisfy the equation 

^IfLÜ.i   '   l/iri(.v, n,  /•'!-  0. (21.4) 
tit l*i 

Then,  if p(t)  is a functional of the Uin(x,t)  as functions of x,   i.e., 

rW/)-n{... nr,(x} t] ...), (21.S) 
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then p(t) satisfies the Liouville equation. Indeed, the functional (21.5) 
can be considered as a function of the Fourier components of Bm(x,t) with 
respect to x, and these components satisfy the equation (21.4), and conse-
quently p itself satisfies the equation. 

To construct the quantities BQ(x,t) we shall proceed from the equations 
of balance of energy, particle number, and momentum in differential form 
(21.1) or in the more compact form (21.3). 

We construct operators which depend on time through Fm(x,t), having 
taken the part of the operators Fm(x,t*ti)Pm(x,ti) which is invariant with 
respect to the evolution with the tiamiltonian II, i.e.. 

Bm{x, t) = Fn (x, t) Pm (*) = 
o 

-« t + ti)Pm(x, /,)<//, (e->0), C21-6) 
— 90 

where the parameters Fm(x,t) have the meaning of the thermodynamic parameters 
(20.17), which now depend on time: 

M*.0- -P(*. ')w(*. o. 
/=",+ ,(*, /)--&(*. O(M*. ^); (21.6a) 

6(x,t) is the inverse temperature, Pi(x,t) is the chemical potential, and 
v(x,t) is the mass velocity (their meaning will be explained below, see 
(21.15) and (21.16)). The time argument of the operator Pm(*,tj) denotes 
the Heisenberg representation (21.2) for II independent of time; we shall for 
the present be restricted to this case. The parameter e tends to zero, but 
after the transition to the thermodynamic limit. 

The operation of taking the invariant part, smoothing the oscillatory 
terms, is used in the formal theory of scattering to impose boundary conditions 
which exclude the advanced solutions of the Schroedinger equation [84,85] 
(see Appendix I); we then select by the same method the retarded solutions of 
the Liouville equation. 

If the parameters Fra(x) are independent of time, then 

H (.V) =-- F,n (x) P„, (x), 
U 

PrAx) — 8 I (*, t) dt = P,,, (x) + J Cct V • /,„ (x, i)dt, 
(21.7) 
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where Pm(x) are local integrals of motion, which differ from the corresponding 
densities Pm(x) only by divergences, and therefore also have the meaning of 
densities of energy, momentum, and particle number. We shall show that they 
are indeed local integrals of motion as e-H). 

In the Heisenberg representation equations (21.7) have the form 

0 

t) ---- Pm u\ /) 4- J e"' V-/,(*.
 1 + 'i)dti- (21.7a) 

Differentiating (21.7a) with respect to time and taking into account the con-
servation laws (21.3), we obtain: 

diJr:<X, n _ (x, I) J # Ojm (*, t + •'l' __ 

— oo 

(21.8) 
==e | e" >,„(*, l + t^dti, 

i.e., the derivative of (21.7) is expressed through the same integral which 
appears on the rî ht hand side of (21.7), but with an additional factor of e. 
Consequently, 3?*m(x,t)/3t tends to zero as e-M). if the integrals on the right 
hand side of (21.8) are finite, and thus, the Pm(x,t) are local integrals of 
motion for e-*0. 

AAAJ AAAi AAA/ W" 

We call Pm(x,t) integrals of motion, although they are conserved only in 
the limit c-H) (which is taken after the thermodynamic limit), and it would be 
more correct to call them "quasi-integrals of motion". In what follows we 
shall not make this stipulation, calling them local integrals of motion. We 
note that the operations of taking the invariant part and taking the thermo-
dynamic limit do not commute1. 

Making use of an integration by parts we write the operators (21.6) in 
the form 

Um(x. t) = Fm(*, t)Pm{x)~ 

- J e*' (*, t+ti)Pm{ti)+dFml%t + ,l) Pm(x, /»)}^|. 
-*» (21.9) 

We might note the close analogy of this property with the Vantlove condition 
[86] of the "diagonal singularity" of matrix elements, which also appears when 
the volume of the system (or number of particles) approaches infinity. 

- 328 -



They satisfy the equation 

™^+±lBmix,i)tH\~ 

e J c'^.F.Ax, tttdKix, /:)-i- l2f:^;l±liL fii)}{Xt .^.//^ 

where on the right hand side are operators of the same type as in (21.9), but 
with the parameter e in front of the integral. Consequently, BjnCx^) satis- 
fies equation (21.4) as e+ü. 

For the functional (21.5) we choose the same form as for the local equi- 
librium state (20.17a): 

pt/HQ-'expj-V I'tf,^, t)dx\. 

Q = Spex13l-V|/.„u. 0^1 (21-1Ü) 

or in explicit  form 

o',',)-Q- 

-.,    -V\\F,nix,l)P,,t{x}-   \c"{l-:.^J + ii)Pl!Ax,ti) + 
■■ i   -^ 1 -i 

+ '^^Pffl(x1/!))^.|^}. (21.lüa) 

where e-»-0 after the thermodynamic limit  in the calculation of the averages. 
For the distribution function in the classical case we choose an analogous 
expression 

/(/HQ-'expj-^l/^.  0^1 
" . , (21.10b) 

■•MT4' J 
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which, in contradistinction to (21.10), is not an operator, but a function of 
the coordinates and momenta of all particles*. 

We check that (21.10) indeed satisfies the Liouville equation (21.3) as 
C-+0. 

Let us recall that if p satisfies the Liouville equation, then 

n • -lnp (21.11) 

also sa t i s f ies the Liouville equation (see (8.24) and (2.23)). 

In our case 

Jh 
a: m-Sf 

1 1 in v 

dF"' (pn; {x, /,) - (•*» M))/(il[ llx' (21. 12) 

i.e., on the right hand side of (21.12) are operators of the same type as in 
the second term of the exponential (21.10a), and thus, lnp satisfies the 
Liouville equation in the limit e-*0. 

Using the conservation laws (21.3) and carrying out an integration by 
parts, neglecting surface integrals, we represent the statistical operator 
(21.10a) in the form 

P (0 = Q-' exp | - >] J (Fm (x, t) Pm (X) -
I m 

0 

- 2*•'.(Vf.(*,, +,,). jm(,,,,) + Pm{Xi ) I l xy (2i.l0c) 

We point out the formal similarity of the expression for the average of -<lnp 
with the Lagrangian which is chosen for the formulation of the variational 
principle in the theory of transfer phenomena on the basis of the method of 
conjugate functions (see [87]). Evidently there exists a deep connection 
between the method of the nonequilibrium statistical operator and the varia-
tional principle. This is indicated by the extremal properties of the non-
equilibrium statistical operator which are established in the article [170] 
(see 5 27). 
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If jm is a tensor,  then it is assumed that  it  is symmetric. 

The statistical operator (21.10c)  is already not an exact solution of the 
usual Liouville equation for e->ü because of the neglect of currents of energy, 
particles, and momenta through the surface of the system.      These terms cor- 
respond to the "nonpotential forces", which McLennan introduces to describe 
the effect of the thermostat  [37-40]   (see Appendices  II and III). 

In the stationary case (21.10a)  goes over into the distribution 

p = Q-' exp I - N] J /^ W KMdx\ - 
I        m ' 

\      m -" (21.10d) 

where the ^(xj are also densities of integrals of motion, differing from 
Pm(x) only oy a divergence, and (21.1üc) goes over into the expression 

p = Q-'exp j -Vj {Fm{x)pm{x)-   \s'i,n{x, t).\Fm(x)clt)dX\, (21.10c) 

which was obtained in the article [2]. 

It is more convenient, however, to consider the stationary case as the 
limit of the nonstationary case in which 3Fm/3t-*ü.  In this way the terms 
representing the free evolution of the operators are more naturally compen- 
sated. 

Substituting the expressions (21.ba) into (21.10c) for the parameters 
Fm(x,t) and (21.3a) for the densities Pni(x), we write the statistical operator 
(21.10c) in expanded form: 

331 - 



p(/) = Q-'exp J - J p(*, /)[//(*)-V (n/U, /)-
X 

- -y- v2 (x, t) n{ (*)) - v {x, t) • p (*)] dx + 
o 

4 J J «"• 07/ (*. /,) • vp(x, / + /,) + // (*, /,) -ap (*./ + /,) 
d/, 

- ^ it (*. t:) • VP (*, / + /,) (n; (*, / + / , ) - -y- y-' (*, / + /,)) + 

-T- ^ «» (*. ':) -g^- P (*, / + *i) (fi/ (*. / + / , ) - 4 r y? ( * , / + /,)) -
4 

-T(x, /,): Vp(*, t + tt)v(x, / 4- /j) — (21.lOf) 
~ P '•) • -J7^- P(*> t + M V (.V. / -r /,) ) (!!, tf.vj-. 

Here V and 3/3tj act on all thermodynamic parameters g, p;, V standing 
to the right of them. The statistical operator (21.10f) was obtained by 
McLennan by a different method [37,38], based on the introduction of nonpoten-
tial forces, describing the influence of the thermostat (see Appendix II). 
Other derivations of (21,10a) can be seen in S 27, Appendix III, and in 
[186-189], 

Let us consider particular cases of the distribution (21.10f). 

If all parameters Fm(x) are constant in space, then (21.10f) goes over 
into the Gibbs distribution for the grand ensemble of a system moving as a 
whole with velocity v: 

If in (21.lOf) the term with currents is neglected, then one obtains the 
statistical operator of the local equilibrium distribution 

f,z = Q-1 cxp | - V Fm (x, I) (-V) </xj = 

rv - Qr1 c x i - \ ^ *• 
= Q,7 cxp I-pf// - V u \r - v . P +JL V m V ; 

I I T ~ T , i i 

(21.13) 

Qr1cxp, 
(21.14) 
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which was used by Mori   [29-31]  as an initial condition for the solution of 
the Liouville equation.      The local equilibrium statistical operator is not a 
solution of the Liouville equation, and it does not describe irreversible 
processes, although for small gradients of thermodynamic parameters it differs 
only slightly from C21,10f).      This circumstance is the reason for the success 
of the Mori theory. 

21,2.      Physical Meaning of Parameters. 

We shall discuss in more detail the meaning of the parameters Fm(x,t) 
which go into the statistical operator (21.10)-(21.10c) . 

We choose the parameters Fn,(x,t) such that they have the significance of 
the thermodynamic parameters  (21.6a), conjugate to <P|n(x)>, and such that they 
satisfy the thermodynamic equalities (20.21).      For tnis it is sufficient to 
require that the average values of PmCx) over the distribution (21.10a), 
(21.10c) be equal to the averages over the local equilibrium distribution, 
i.e., that 

{Pjx))~{Pm{x)),. (21.15) 

which gives the conditions for defining the parameters Fm(x,t).      In fact, 
then 

4^.= _(Pm(x)),== -(PmW). (21.10) 

where Q; = Sp cxp I - ^ | Fm U. /) Pm ix) dx\. (21.16a) 

Such a definition of the thermodynamic parameters is well  known from the 
kinetic theory of gases.      In the theory of irreversible processes such a 
definition is used by Green  [14], Mori   [30], McLennan  [37-40], and many other 
authors. 

The meaning of such a definition of the parameters Fm(x,t)  corresponds 
to introducing the concept of thermodynamic functions of the nonequilibrium 

| states  [70,14], by which is understood the thermodynamic functions of that 
local equilibrium state which is characterized by the same quantities <Pm(x)>, 
as the given nonequilibrium state.      The local equilibrium state can be 
regarded as an equilibrium state in fictitious external fields. 

The introduction of the statistical operator (21.10a-f), depending on the 
local parameters Fm(x,t),  is based on the assumptions that the parameters are 
sufficient to describe the macroscopic state of the system, and that fluctua- 
tions of local mechanical quantities are not too large.      The condition for 
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the applicability of the method can be formulated in the following way. 

If the macroscopic state of the system can be described by the parameters 
Fm(x»t)» then the corresponding statistical operator has the form (21.10a), 

The parameters Fm(x,t) can have the meaning of (21.6a); then the statis-
tical operator is applicable to the description of the hydrodynamic stage, 
but this is not necessary. The method is applicable also for another, more 
general choice of parameters. For example, they can be chosen such that the 
statistical operator is applicable also for the description of the kinetic 
stage, and one can obtain generalized kinetic equations [56] (see S 25). 

If the fluctuations are large, then the state is characterized not only 
by the average values of mechanical quantities, but also by their dispersions 
and the latter can also be considered as thermodynamic parameters characteriz-
ing the macroscopic state of the system. The completeness of the choice of 
parameters characterizes the representativeness of the statistical ensemble. 
For example, a statistical ensemble which is characterized only by the average 
values of velocities cannot be used to represent turbulent motion. For this 
it is necessary to introduce a random field of velocities and their correla-
tions. 

21.3. The Meaning of Local Integrals of Motion. 

We shall make several more remarks about the meaning of local integrals 
of motion in the form (21.6), (21.7). 

If one assumes that for the operator Pm(x,t) the limit 
exists, then the operation of taking the invariant part coincides with the 
operation of averaging over time, i.e., 

According to Tauber's theorem [88], if one of these limits exists and Pm(x,t) 
is bounded from below, then the second limit also exists and is equal to the 
first. 

In reality is not completely defined; only the limit of the 
expression 

f ect Pr (x, t) lit = lim y- I P,n <*. t) dt = p.» (*. - °°)-
' '* 7* - v fti 
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exists for any operator A, representing an observable quantity, where first 
V+», and then e+0; therefore, the Tauber theorem is not applicable, and, in 
general, one cannot substitute a time averaging for taking the invariant 
part. If one nevertheless makes this replacement, then one also obtains 
local integrals of motion, but with a different definition of the meaning of 
the improper integrals, namely 

0 0 

P;n (•*) — y j Pm(x, t)dt~Pn(x) + j (! + y- j V • /,„ (*, I) dt, (21.17) 

i.e., integrals in the sense of Cesaro, not in the sense of Abel as in (21.7). 

The quantities (21.17) are also conserved as T-*». in this connection. 

n 
lim Pm(x) = lim y \ Pm(x, t)dt = 
r->ot> 1 j>r 

= |j|Xl ^ ^ ~ ^,n ~ ^ — Q 
T-* oo T 

The application of local integrals of motion in the form (21.17) is 
inconvenient, as we shall verify in section 22.3, because it requires an 
additional definition of the meaning of the resulting integrals. 

Formula (21.17) corresponds to the usual time smoothing of dynamical 
variables, but (21.7) corresponds to their causal time smoothing, which was 
discussed at the end of S 2. 

The choice of local integrals of motion in the form (21.6) and (21.7) 
is not unique. For example, instead of choosing integrals of motion of the 
retarded type, as (21.6) and (21.7), one can choose the advanced type, i.e.. 

P'Jx) = Pm (x) - J <?-« V • j (x, t) dt, (21.18) 

or a superposition of retarded and advanced solutions. 

The quantity (21.18) is conserved as e+0, just as is (21.7a), because 

M W «//< 

= - e f eVy,n(*, t + t')dt' 
dt J 
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analogous to the relation (21.8). 

As we shall verify in section 22.4, local integrals of motion of the 
advanced type (21.18) give not an increase, but a decrease of the local pro-
duction of entropy; therefore, one must reject the choice of (21.18) in con-
structing the statistical operator*. 

The choice of local integrals of motion of the retarded type, as was 
already mentioned earlier, implies the imposition of boundary conditions 
which exclude advanced solutions of the Liouville equation, i.e., conditions 
of causality, which is intimately connected with the choice of boundary con-
ditions in the formal theory of scattering. This connection becomes espe-
cially obvious by comparing with the boundary conditions of the formal theory 
of scattering in the exposition of Gell-Mann and Goldberger [84,85], where 
retarded solutions of the Schroedinger equation are selected also by means of 
the limiting transition e-M) in integrals of the type (21.6) and (21.7) after 
the limiting transition V->- (see Appendices I and III). 

We shall show that the nonequilibrium statistical operator (21.10a) cor-
responds to the invariant part of the logarithm of the local equilibrium 
operator (21.14), i.e., that 

np=Tnp/ = p- I ert,\no,(t + th t^dtu (21.19) 

where e-K) after V-x». The first argument in denotes the time dependence 
through the parameters, and the second argument denotes the time dependence 
through the Heisenberg representation for the operators. We have 

lnp,(* + /.,*!)- + j M*. t + U)dx, (21.20) 
m 

(21.21) 

" h e " «>,(( + M- lnSpcxpl -Xl F„<*./+«.)P. 
I HI 

The choice of the advanced solution leads to an associated equation of 
thermal conductivity 

with a different sign in front of the time derivative than in the usual equa-
tion for thermal conductivity. The associated temperature T+ is convenient 
as an auxiliary concept for the formulation of the variational principle [87]. 
Associated equations for other quantities are introduced analogously. 
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Using (21.20) we write (21.19) in the form 

p — exp 
rt 1 

— tl> — J f ctt: Fm (x, t + :i) P~ (x, t\) dt\dx j , (21.22) 

where « 
(l> = e j* t'a' «!>,(/ + i)dtx = 

-1- f dt-, eft In Sn j - V j* Fm (*, t + /,) P„ U) dx\ . 
! I H ' 

(21.23) 

On the other hand, from the requirement that the normalization be conserved 
after taking the invariant part we obtain 

<l> =•= hi Sp exp | - X e 1 \ e?'< Fm{x, i + tdPmix.tJdtidxl. (21.24) 
I /•; — JO ' 

From (21.23) it follows that 

M» = - e j J e«>(Pm (*)>{+'• AF,„ (x, t + /,) dt.dx, 
— on 

and front (21.24) t ha t 0 
6d>= -e J J *"•(P,Ax, /,))'t>Fm(x, t+i{)dt, dx. 

(21.25) 

(21.25a) 

Consequently, fulfillment of the condition 

M>' (21.26) 

guarantees conservation of the normalization, because in this case the varia-
tions (21.25) and (21.25a) coincide. For the case of statistical equilibirum 
(21.23) and (21.24) also coincide. 

Thus, conditions (21.15), which were assumed earlier in order to satisfy 
the thermodynamic equalities can be obtained from the condition of conservation 
of the normalization after taking the invariant part of the local equilibrium 
operator (see [184,185,188]). 
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i  22. Tensor, Vector, and Scalar Processes.  Equations of Hydrodynamics, 
Thermal Conductivity, and Diffusion in a Multicoaponent Liquid 

In this paragraph we shall obtain linear relations between currents and 
therraodynamic forces, the production of entropy, and transfer equations with 
the example of a multicomponent liquid.  We shall study tensor, vector, and 
scalar transfer processes, in which the currents and therraodynamic forces are 
either tensors (shear viscosity), or vectors (thermal conductivity, diffusion, 
thermal diffusion, the Dufour effect), or scalars (second viscosity). 

22.1.  Transfer Processes in a Multicomponent Liquid; Statistical Operator. 

We shall consider the processes of transfer of energy, momentum, and 
particle number in an Isotropie, multicomponent system (a liquid or a gas), 
when the statistical operator has the form (21.10c): 

where 

p^Q'exp   -Vj F,Ax. t)P,r(x)- 

—      c U'(U*.   M-V/^f*, /-!- ';)+/',,(*,   .'.JX 

X 
■ >r,,(.   ; + ;,) 

'//, clx    , 

(22.1) 

/•„(*. 0=-- PU.O. PJx)~H(x), 
l\{x)~p(x), 

h ix) - /// (x).      U (xi =--' '" ix),      h 11 ix) - /, [x]     (i > 1). 
(22.1a) 

The exponential in (22,1) contains time derivatives of the therraodynamic 
forces, in addition to their gradients.  The time derivatives can also be 
expressed in terms of the gradients by means of the equations of hydrodynamics 
[38). 

Restricting ourselves to the local approximation, we shall consider that 
the pressure p(x) at the point x is a function of the values ß(x) and vi(x) 

338 



at the sane point, i.e., p(x)«p(B(x),...,vi(x)...); consequently. 

vP-~vf} +V^i-Vv,. (22>2) 
i 

This assumption may be violated close to critical points (see section 20.4). 
Taking into account (22.2) the last of the system of equations (20.69b), i.e., 
the Euler equation, takes on the form 

L V A V v (22.3) 
dt {(>) tiji P (p) '• 

(l>) = (f> (*)>, 
where d 0 . , 

-JT—ST+V-V 

is the total time derivative. We make use of the thermodynamic equalities 
(20.72a), which, taking, into account (20.71b,d), and (20.69c), have the form 

n (22.4) 

or 
-o^r- m. 

aP __ " •!• n Qp nj_ ( 2 2 . 4 a ) 
<>(i |i ' (JVi ' |i » 

where 

is the energy density, and 
11; = \ttj (.*)>, 

is the particle number density, and we write (22.3) in the form 

li'i. ~ u ' - \ ft — (22 SI dt (p) fi 1 

Thus, the time derivative of the velocity is expressed in terms of the gradi-
ent of the thermodynamic parameters g and and the velocity v. 

One can express 3g/3t analogously in terms of these gradients. Restrict-
ing ourselves as before to the local approximation, i.e., assuming that 
8(x)*B(u(x),...,ni(x)...), we obtain 

4- V —'- — (22 »6) 
dt ~ du dt —i oni dt ' 

i 
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or making use of the first and second equations of the system (2U,öyb) 

^=-(,, + p)^divv-£^Mivü = 
= (^li>il„Vj^jl_Udivt; (22.6a) 

where use has been made of the thermodynamic equalities (22.4a). 

In accordance with (20.35) 

)S       as 

where S is the entropy as a function of u, nj.  Consequently, ß and VJ are 
related by the thermodynamic equality 

W      _i^L - —— 
-j;;; - d« Ouoni {22.7a) 

and one can therefore rewrite (22.ua) in the form 

f'^^^t^'^-it].^- (22.8, 

i.e., the partial derivative of 8 with respect to time is expressed through 
v7ß and div v. 

Assuming further that Vi(x)=\>i(u(x).. .njjx)...), we obtain 

</V£_ _   »Vi    du    |   \^   dv;     dj/j 
.'! Ou    dt   "^ ^i d/i».    (i/ 

k 

-~!~{u + p) div i» - 2 ~ «/2 div o. (22.9) 

or, taking into account  (22.4a)  and  (22.7)  and the thermodynamic equality 

■j^"- >i ' (22.ya) 

which is derived analogously to (22.7a), we obtain 
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cl\l _ j *-[ JjJ 
'>V| 

Ju 
- V J^L -SiP (iivv 

O JTiL p | ap Ju 
V. d.n -3v.t t 

OVi J / i , 
^ div w = 

— — pl-~f "^"+ \ ~ r ~ tiivf = — div». 1 | J(1 dni Jv t Orn j r \ Oni Ju 
(22.9b) 

Finally, for the tine derivatives of the thermodynamic parameters in the 
hydrodynamic approximation for an ideal liquid we have 

lu wV <• -r W ap 

AtnrV?i/p Ifl - ^ 
•I \ </p )^ "?.\/> ( 2 2 . 1 0 ) 

"I \ i 7/' 

We now express the sum 

which is in the exponential in formula (22.1), in terms of V£, Vvi>V3ui» and 
Vv. We obtain 

or 

£ /'«• <*> • VF»< = /«<*>' VP ~ £ /< <*> •VP (* - ^T1) -*"<*): Vpv = 
TO i 

- (/// (*) - T (x) • v + p (x) •-£) • VP- V j. (x). Vv. _ 
i 

— p(T(*) — vp(x)): Vz\ x (22.11) 

m 

= - 7$" ' P v/> + (/#/ M -?"(*)• B + pW T - l ? f P <*>) • -

- £ (/' M ~ P (*)) • Vv, - P (r (x) - vp (*)): Vw, (22.11a) 

because taking into account (22.2) and (22.4a) for the pressure gradient we have 
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V^- V>+N, \v.. (22.11b) 

Such a description is convenient, because in averaging over a local equilibrium 
state the coefficient of Vvi averages to zero. 

Hi (*)), - TJTpP (*)); = (/. i*))i - i'h) v (x) = 0. 

We express y     (.ßF„Axtn 
^j ' •'■w      Ft 

i.e., the second term in the exponential  in formula (22,1), in terms of Vß, 
Vv^, and Vv,      We obtain 

in < 

«rw-f-S^w^-ßp'wIr. C22.12) 
i 

H'{x) = ll{x)-p(x)-v-\~p{x)~,      p'U) = pW-pWt> (22.12a) 

are the densities of energy and momentum in a system moving with mass velocity 
v (see (20.bb), (20.b7)).  We substitute the expressions for 8(i/9t, avi/3t, 
and 3v/3t from (22.10) into (22.12).  Taking (22.11b) into account, we obtain 

m 

+ yi(ni(x)-{ni)^-]v.\\ + 
i 

+ v(11' M (Ir),. u -i- V ,fj (X) (-;^)w (/ + p' (Ä) v]: w.     (22. i2b) 

where U is the unit tensor.  Combining (22.11a) with (22.12b), we note that 
the terms with the pressure gradient cancel each other. 

- 342 - 



or, 

I 

- /QW • ^ß-ß/' (*): ^ - 2 iui*) ■ Vv' = 5 "(X)' 'Y"'(X)' (22.13) 

where 

i 

y'+1U) = /jW = /:(*)-i(7fp'U)   U">1J (22.13a) 

are the operators  for thermal, viscous, and diffusion currents, and 

j X,,(XJ)^ -\]{x,t)\vix,i)., (22.13b) 

are the corresponding therinodynamic forces. 

Taking into account  (22.13)-(22.13b), we write the statistical operator 
(22.1)  in the form 

p-Q-'expj-V Ji'^^i)^^) 

c ■' ; fix, /,)• A',; [x, t+ (,)(!(, ]dx\. (22.14) 

Unlike (22.1), this expression is approximate to within the accuracy of 
gradients of therinodynamic parameters in the exponential, because their time 
derivatives were eliminated using the hydrodynamic equations for an ideal 
liquid  (22.10).       In higher approximations,  if one eliminates time derivatives 
using hydrodynamic equations with viscosity, thermal conductivity, and diffu- 
sion, the exponential of (22.14) will contain terms with higher spatial deriv- 
atives of Ffo.      Another approximation which was made in the derivation of 
(22,14) was the application of therinodynamic relations in local  form. 
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22.2.      Linear Relationship Between Current and Therroodynamic Forces. 

If the thermodynaraic forces are small, using (22.14) we obtain for the 
averages of the currents linear relations, which relate them to the therroo- 
dynamic forces; the relations are non-local and have time retardation. 

We write the statistical operator (22.14)   in the form 

where 
A..V ' p  „. AP  r....,-. C22-15) 

B - - V j  J' e ' f" [x,!;]- Xm (x.t + tjdxdtu 

and we expand e"A"B in a series in powers of B, following the same method as 
in § 12. For this it is convenient to introduce the operator K(T) by means 
of the relation 

ä  '- [.: füi i = ft IJ) „■-■••Vt 

(22.1b) 

which is equivalent to the operator equation 

K(T)=1_ \K[%,)e-^Be^dx< (22.17) 
U 

with the initial condition 

K(0) = 1. 

Iterating this equation, we obtain in the approximation linear in B 

i 

e-i-u^e-*- j e-Ax BeAxe-Adx, 
a 

i 

Spt-^-J Sp{e-AtDcA%
e-

A)dx 
0 
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1-1 (J-U Be^ - {ü-Al Be^t) dx ) p,, 
I u ' 

p/ = e-'VSp4?-'4 

(...^-SpCp;...) 

(22.18) 

(22.18a) 

(22.18b) 

denotes an averaging with the local equilibrium distribution (21.14),   (22.18a). 

Using (22.18)  for the average values of the currents, we obtain 

(/"' (*)) - 

(rv^ + y ! i ^'-''(n*), ru'. /'-/))• 4.1*'. o^'^'. 

where 

(22.19) 

(22.19a) 

are the quantum time correlation functions. 

ln{x , t, «) = -r   = .>-l' .U i« /"{*'. Of1'   ' .r.-'.u 
(22.19b) 

The linear relations (22,19) between currents and thermodynamic forces 
are retarded and non-local. 

Let the thermodynamic forces depend periodically on time with frequency 

Then 
XJx', t')~Xn{x')cos(i>!'. 

i 

X (/■■'(;;), f U', /' - /;) • .V„ ix'). —''dt'dx'. 
(22.19c) 
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The kinetic coefficients in (22.19c) are the Fourier components of the 
quantum correlation functions, i.e., taking into account the retardation leads 
to dispersion of the kinetic coefficients [89,90]. 

If retardation is neglected, i.e., if one considers that Xn(x',t") changes 
slowly during the time of the dying out of the correlations between currents, 
then one can take the thermodynamic forces outside the integral over time at 
the point t'»t. Then we obtain linear relations between the thermodynamic 
forces and currents without retardations, but with a non-local character. 

<T (*)> = </"' (*»/ + H f Lmn (*. x') • Xn (*', /) dx\ 
» ' (22.20) 

where o 
Lmn(x, *') = |>(f (*), /"(*', t))dt 

(22.20a) 

are the kinetic coefficients. 

In the expression (22.20a) for the kinetic coefficients in the linear 
approximation one can replace the averaging over the local equilibrium dis-
tribution by an averaging over the statistical equilibrium operator po 
(21.13), in which the variables Fm(x), which are functions of position, are 
replaced by the spatial averages of these parameters. For the kinetic 
coefficients we then obtain the expression 

1-mn * ) 
1} o 

- f>~' j J eFi (x) (/" (*', t + HIT) — (/" (*'))u))o dx dt, ( 2 2 . 2 0 b ) 

where (• • •)o = Sp(p0 •. .)• 

We shall assume that the currents commute with the total number of par-
ticles of the nth type Nn: 

Um.Nn] » 0, 

which is usually the case. 

The expression (22.20b) for the kinetic coefficients differs from the 
expression obtained by Mori [29-31] because we have used ordinary, and not 
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causal averaging; 

3   T 

/,„.„(*. x'HjT' I j(l -y)(;"(*)(/"V. i-ri!n)-{r{x')\))o^dt 

is defined only by improper Abel integrals, and not by Cesaro integrals, as 
used by Mori,      This is easily verified by making the replacement t->-t,T-*ß-c, 
and taking into account (16.17). 

If the non-locality is neglected,  i.e., if one considers that the thermo- 
dynamic forces change little in a correlation length, over which LmnU^')  is 
significantly different from zero, then in (22.20)  Xn(x',,t)  can be taken out- 
side the integral over space at the point x'*x.      Then 

where 
/.m.(jc)= J /.„,„(«, x')dx'. (22.20d) 

From (22.2Ü) we obtain for the average thermal, viscous, and diffusion 
currents 

(iQ (*)) = (J'H W) -= i] j Lu* (*' x"> ■ x'>{x'' ^ dx'' 
ti 

(rU)) = (rU)),+ V j/MaU  x')-Xn(K',   t)dx', 
n 

(Hi '-)> - a: (•«)) - ^ | /.,: («. *') • x,. (*'' ^d*'   (' >'). 

(22.20e) 

because in accordance with (20.b5) 

(/;,{*)),= </>);,-o. 

In the local approximation the linear relations are not integral rela- 
tions, but rather algebraic: 
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I " (22.20f) 
I {T,ix)) = {riX))l + ^Lln{x)-Xn{x,i). 

(Pa M) - </' (*)) = 1 llH U) ■ Xn (x, t)      (i > 1). 

Noting that    in  (22.20a)  the averaging is carried out over a local equi- 
librium state, 

p,-=Q;'cxpj-jß(*. «^/'W-VH.U. l)n't{x)\dx\t (22<21) 

one can omit the primes  in formulas (22.13a)  and  (22.21), assuming that 

n*)-ri*)~[t]jrKx)u-^iji.\ ni{x)Ut (22.22) 

lM{*)" I'M)- ikx)-^- p{x). 

and one can replace in (23.2Üa)  the averaging with  (22.21) by an averaging 
with 

p^-Qf'cxpj- J \\[x, l)!u{x)-^l{x, ^„tix^dx]. (22.21a) 

In the case in which the thermodynamic forces are constant in space, the 
linear relations  (22,20)  can be written in the form of relations between the 
total currents and the thermodynamic forces: 

where 
^ I y"(*)'•'* (22.23a) 
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are the total currents, and 

/-,.,•:-T- I ^Uni.  y"(il)J/ (22.23b) T  J 

are the kinetic coefficients. 

22.3.  Onsager Reciprocity Relations. 

The kinetic coefficients (22.2üb) can be expressed in terms of the double- 
time retarded Green functions (15,48),  In this connection, introducing yet 
another integration over f, we write (22,2üb) in the form 

L,:::i{x. X')--[
}

J 
l   \     ( * L:(f"(x]-~rj"ix', t'-i-iln) dtdi'dx, 
— LC  *- CO  ■ ( 

because we assume that us t-*-« the correlation between currents vanishes,  i.e.. 

Carrying out the integration over T , we obtain 

Lmni*.  •,c') = 

where we have omitted the Ü on the brackets <,.,>, 

In the first term under the integral sign one can change the order of the 
operators with a time shift of rhß using the identity (16.17), which in our 
case gives 

(n^ru'.H-^-^'ix'.^rw). 
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from which we obtain 

0       ( 

— IM   —iXi 

ll t 

~ - {T1    |     | eJ ((/'" (x) i'1 i*'r O))' dt at', (22.24) 

where the bracket term in the integrand is a retarded doubletime Green func- 
tion of the type (lb.1).       The relation (22.23b)  can be written in an analogous 
form: 

o     ( 

L     =.     '     \     \e"{{J"'r-it'))ydtdt'. (22.24a) 

The Onsager relr-tions for the kinetic coefficients follow directly from 
expressions (22.24) and (22.24a) and the invariance of the llamiltonian with 
respect to time reversal t-*-t with the simultaneous reversal of the direction 
of the magnetic field H, H+-H.  From the symmetry property (16.5Ü) of the 
Green function it follows that 

{{r(x)rix',mll~{{r{x')rix.m_}l. 

because the current operators are hermitian; therefore, the Unsager reciproc- 
ity relations are valid for the kinetic coefficients 

l,mn(x, x\ 11) =  /.„„.(*'. x, -U), (2.:.25) 
UMD ~ Ltllh(-H). 

If a system is rotating with constant angular velocity u, then the rota- 
tion causes centrifugal  and Coriolis forces.      As the Coriolis forces change 
sign when the direction of the velocity is reversed,  then with the reversal 
of time it is necessary to reverse the direction of the angular velocity. 
Consequently, the Onsager reciprocity relations in this case have the form 

/,„U-, x',  <0)  -/.,,,(*'.  X, -o)), 

/..>.)--/,„.(-...,. (22-25a) 
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Let us consider the condition that the kinetic coefficients   (22.2Ub) have 
a finite value.      Since this expression and (17,35)  have an identical form up 
to a factor of ß'1, which is obvious after the replacement t-*-t,-t-»-ß-T,  formula 
(22.20b)  can be transformed in the same way as  (17.35)   in section 17.4.    Assum- 
ing that there is no magnetic field, we obtain 

LmB = -V   1 U'"(DU" -(/")))dl - -^ J (0). 
-l    ^ (22.2b) 

i.e.,  the kinetic coefficients are proportional to the spectral  intensity of 
the correlation function of currents for w=Ü and finite when these quantities 
are finite,  i.e.,  for dissipative processes (see the footnote on page 225). 

We pointed out earlier (see (21.17)) the formal possibility of another 
definition of the improper integrals over time in the sense of rhe limiting 
transition T-*». 

1 + ^ )\ -U*. t)cH. 

We shall show that such a definition of the integrals  is significantly less 
convenient than (22.2üb).       lor the kinetic coefficients we would obtain the 
Mori expressions  [5(J] 

/,.,„- ffiVT1   |       |  (l  + y] {}"-'Jh it+ II,X)-{J")]) dldt. U2#27) 

Assuming that the  limiting transition V-H» has already been effected, we cal- 
culate the limit   (22.27)   as T-^.       For this  it  is sufficient to consider the 
integral in the sense of (22.27)  of one harmonic of the quantum correlation 
function,  i.e.. 

'.// -- -----  -l-n -e'W . '"' /•.,-■'(1~t''UJ^- (22.27a) 

Making use of this equation and the spectral representation (lb.15), we obtain 
for the kinetic coefficient (22.25b) 

(.'Hi 

(22.28) /■ ■.- ..-':  ' '-r'»--^- „liJ. ri 
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because the contribution of the second term of (21.27a)  approaches zero as 
T-H»,      The  integrand in  (22.28)  has a pole at u=Ü, because 

.'■,'■'   i 

Ofiii) 

is  finite as w+0 (JmntO)  is assumed finite).     Therefore the integral   in 
(22.28),  strictly speaking,   is not defined until the contour of integration 
is chosen.      In order to give a definite meaning to this  integral, we displace 
the contour of integration over u  from the real axis  into the upper half plane 
by  ie, making the replacement tx»-u+ic  (c>ü,u is real).      Then 

I- —.BY   J ^ni^-^—ZT^irW1™^' (22.29) 

i.e., we obtain the same result as in defining the integral in the sense of 
(22.2Ub). 

We note that the displacement of the contour of the w integration by ie 
into the upper half plane is  equivalent  to introducing a damping factor eet 

in the integrals over time.       In  this way we again return to the definition 
of the integrals in the sense of  (22.2Ub), and the introduction of the factor 
(l*(t/T))   turns out to be unnecessary. 

The definition of the integrals in the sense of (22.27)   is  equivalent tc 
the procedure of smoothing  in tine  (71.17), which is often used in statisti- 
cal  mechanics of nonequilibriun processes,  for example in tue works of 
Kirkwood   [13].      The arguments presented above point out  the  insufficiency of 
this procedure and the advantage of tine causal smoothing  (21,0). 

22.4.       Lntropy Production  in Nonequilibriun Processes. 

The meaning of the thermodynamic  functions for nonequilibriun) states was 
already discussed in section 21,2  for the choice of the parameters F^^t). 
The quantity -<lnp>, where p   is  given by formula (21.10),  cannot be chosen as 
the entropy, because Inp  satisfies the   hiouville equation, and the entropy 
would be  constant,  rather than  increasing.      We define the entropy of the 
nonequilibrium state  (21.10),   (21.10c)   as the entropy of the correspondint! 
local equilibrium state 

V;       '  •     -J ' (22.30) 
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which is characterized by the same values of the average densities (see 
(21.15)), i.e., we assume 

S - - (In t,), = - (In f»/> (22.31) 

or 

5 = (1> + V J fm (x, t) (Pm (x))t dx -
m + J F* <*• ̂  (Pm ̂  dx> (22.32) 

m 
where <!» = In Q; (22.33) 

is the Massieu-Planck function for the local equilibrium state. 

We choose the local equilibrium state from the condition of maximum 
information entropy for arbitrary, given <I>ro(x)>i (see (20.1b)); this arbi-
trariness is removed by the conditions (21.15). 

In accordance with (22.31) the entropy of a nonequilibrium state is the 
entropy of the equilibrium state in the auxiliary fields Fm(x,t), which has 
the same distribution for the densities of mechanical quantities <Pn>Cx)>* 
i.e., <n(x)>, <H(x)>, <p(x)>, as in the original nonequilibrium state. This 
interpretation of the thermodynamic functions of nonequilibrium states was 
already given long ago by Leontovich [70] for a state with an inhomogeneous 
density <n(x)> in the theory of fluctuations. An inhomogeneous distribu-
tion of energy <ll(x)> can be regarded, following Luttinger [9], as the 
result of the action of a gravitational field (taking into account the 
general theory of relativity), and an inhomogeneity of <p(x)> can be regarded 
as a consequence of the action of a magnetic field through the vector poten-
tial. 

The definition of the entropy (22.32) guarantees satisfaction of the 
thermodynamic equalities. In fact, we have 

where S=S(...<Pm(x)>...), which confirms the correctness of the definition 
(22.31). 

6(*, t) ~~ W.u(x))l - (22.34) 

and consequently, 

(22.35) 
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Let us calculate the change with time of the entropy (22.32); 

■V-V ' X I'^lr-kPrAx'tidx + y I F,Jx. (){P,nU)}Jx. 
tit hi 

Differentiating (22.33), we find 

and consequently 

dS 
dt ^Hl'mU. 'K/^ (*))'/*• 

(22.3b) 

Making use of the conservation laws and integrating (22.36) by parts, we 
obtain 

^ = - >] J F'n (*'  ') Om U)) ■ ^ + i J Um W) ' ^ ^ (*. 0 'I*. (22 . 3üa) 

where do is a surface element.      Thus,  the entropy can change, even if the 
surface integral in (22.3ba)  is equal to zero, i.e., unlike the energy, 
momentum, and particle number,  the entropy in the system is not conserved. 

We introduce the entropy density S(x), taking into account  (2U.21c)   and 
(2ü.24d): 

S= $ S(x}c!x,    <I)= I [Hx, i)i>ix} t)dx. 37) 

S(x) = y^Fm{x, 0(P„^i) + f;'x, l)p[x, t).     ■ 
(22.37a) 

Then, making use of (20.73), the equation of balance of the entropy follows 
from (22.3ba) 
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I 
where 

at 

is (x) = S Pm (*, /) (/,., (*)) + P(«. ') ^ («' 0 P ^) 

is the entropv cnrrent Jensitv,  und 

(22.38) 

(22.3öa) 

(22.38b) 

is the local production of entropy,  i.e., the density of its sources.      The 
quantities S(x), Js(x), and a(x)   depend also on t, but for brevity we omit 
this argument.      The production of entropy in accordance with   (22.38b)  is 
equal to the sum of the products of the thermodynamic forces with their con- 
jugate currents. 

We write the local production of entropy  (22.38b)  in terms of the thermo- 
dynamic forces Xm (22.13b): 

n 

= (/•;■; w> • vß - ß((r (*» - (r (*)),): v* - i </; (*)> • vv,. - 

Mr w) -<rw>/) • A'm^). (22.3a) 

wnere use has been made of the relation (22.11) and the equality of the 
averages of n(x), M(x), and p(x) in the state (22.1) and a local equilibrium 
state. 

According to (22.38a), and with use of (2Ü.74), the average entropy 
current is equal to 

'h U-. 0 == X ^ ^. 0 (/.. ^)) !-10' (*-')y (*-') p (*) -'" 

-.SixM*:. O + flU. 0(/Q W)- 

- 1 '^ (-vn '' ^ l) \}1- ix'  0 ~   2 ) - 
- K/'(■«••)-C/'U")),)-11 (.v, /)-.'U, /).      (22,40) 

where S(x) is the density of entropy (22.37a), and the average thermal, dif- 
fusion, and viscous currents are given by formulas (22.2Ud) or (22.2üf). 
The first term in (22.4ü) represents a convection current, and the remaining 
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terms represent irreversible transfer processes. 

Substituting the linear relations   (22.20)   into (22.39), we obtain for the 
local production of entropy the expression 

0(.V)- >] j Lim{*.  *') : Xn(*'' 0^m(*. Da*'. 
in, i: 

(22.41) 

that 
We shall show that the total production of entropy is positive, i.e., 

o (.v) :lx > :). (22.42) 

Indeed,   (22.42)  can be written in the form 

| a{x)dx c"{C,Cit))ä!>0      (C+«C). (22.42a) 

where the notation 

C--V (■/■(^•A'.Jx. t}dx. 

(22.42b) 

was introduced.      The positivity of (22.42a)  follows from the fact that 
spectral  intensity of self-adjoint operators  is positive (see (lb.18a)). 
Transforming  (22,42) analogously to (17.38), we obtain 

the 

aiX)dx^±   I {C{C{t)~{C%))Jl>0, (22.43) 

because CsC*. 

In the  local  approximation, when the thermodynamic forces change  little 
over a distance of the order of the    correction length, which is usually 
assumed in thermodynamics, not only the tot 1,  but also the local production 
of entropy is positive.      In this  case we have 
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Q ~ ^j Lmn . XnXm. 
m, n (22.44) 

The production of entropy is thus a positive definite form made up of 
thermodynamic  forces. 

Consequently, the choice of the retarded local integrals of motion (21.6) 
and  (21.7a)   leads to the law of increase of entropy.     However, as was noted 
above,  this choice is not unique.       If instead of integrals of motion of the 
retarded type  (21.7a)  one chooses integrals of motion of the advanced type 
(21.18),  then in place of formula (22.2Ü)  one obtains 

</m (*)) = (/„: (*)), - V   |" imn (Xt *') . Xn (*', /) dx'. (22.45) 

In this  case we shall have for the production of entropy instead of (22.41) 

a W = - ^ j l-mn (x. x'): A',, (*'. t) Xm (x, t)'dx 

or in the local case 

v , V /       •   v   V 

i.e., the same expressions as before, but with a different sign; consequently, 
the entropy decreases rather than increasing.      Therefore, under ordinary 
conditions the choice of local integrals of motion of the retarded type makes 
sense,  but the choice of the advanced type does not.      Cases of nonequili- 
brium systems,  however, are possible  in which there exist currents which are 
reflected from the boundaries.      To describe such systems on a microscopic 
level,   in general,  a superposition of integrals of motion of the type  (21.7a) 
and  (21.18)  turns out to be useful.      An analogous situation exists  in radia- 
tion problems, where one obtains standing waves by means of a superposition 
of retarded and advanced potentials. 

Nonequilibrium thermodynamics can give a new approach to the very old 
question of the heat death of the universe. 

The entropy of a closed,  isolated system increases,  as follows  from 
(22.42).       If one considers the universe as a closed,  isolated system and 
assumes  that   the results of thermodynamics  are applicable to it,  then the 



universe must tend to a state of statistical equilibrium - a heat death, which 
in reality does not take place.      This paradox has occupied scientists since 
the time of Boltzmann.      Considering the universe to be a closed,  isolated 
thermodynamic system is, of course, not valid.      The results of thermodynamics 
refer to a large, but  finite system,  found in specified external conditions; 
therefore it  is better to consider the observable part of the universe as a 
large, but  finite, unisolated system.      liven here there remains a paradox, 
because from irreversible thermodynamics it follows that the local production 
of entropy  (22.44)   is positive, and thermodynamics  indicates only one possible 
process - the increase of entropy.      The inverse process - the  local  decrease 
of entropy, not connected to the transfer of entropy, - is not allowed by 
thermodynamics, and  it seems incomprehensible that the universe does not 
approach statistical equilibrium. 

This paradox is still not explained at the present time, and various 
hypotheses have been put forth to explain it.      For example, the Boltzmann 
fluctuation hypothesis  [91,92], according to which the universe is a gigantic 
fluctuation from a state of statistical equilibrium.      The weakness of this 
hypothesis  is that the probability of fluctuations from a state of statistical 
equilibrium is extremely small and dies off exponentially, because the proba- 
bility is described by a Gaussian distribution (b.16).     Therefore,  the 
appearance as a consequence of fluctuations of states which differ widely 
from equilibrium states is very unlikely. 

Much more convincing hypotheses are based on the general theory of 
relativity  [92,93],  according to which the universe must be considered not as 
a closed system, but as a system in a variable gravitational field with a 
time dependent metric tensor.      Indeed, taking gravity into account a uniform 
mass distribution is unstable and does not  correspond to the maximum entropy. 
Therefore, the formation of stars and galaxies from a uniform distribution of 
matter can take place with a growth of entropy  [94], and thus the growth of 
entropy does not contradict the evolution of the universe. 

The conclusion about the increase of the entropy of a system,  presented 
in this section,  is based on the  linear relations between thermodynamic forces 
and currents, which are valid only for small deviations from equilibrium. 
For some of the simplest cases one can demonstrate the increase of entropy 
also for strongly nonequilibrium states  (see §  23).      However,  as was noted 
in section 15.3, there may be cases when there is no unique connection at all 
between the perturbation and the response,   i.e.,  in our case between thermo- 
dynamic forces and currents, and  in particular, when in nonlinear nonequili- 
brium thermodynamics there exists a feedback mechanism of the type  (IS.bl). 
We have already cited examples of such a feedback in section 15.3. 

If the  state of statistical equilibrium of the universe is unstable, 
similar to the unstable center of the theory of nonlinear oscillations,  and 
there exists  a feedback mechanism, then fluctuations in the universe will 
increase,  and  it will go over into a highly nonlinear, but stable,   self- 
oscillating state similar to a limit  cycle  in the theory of nonlinear oscil- 
lations.       In auch a model of the universe with feedback there would already 
be no paradox of heat death.       In rclativistic astrophysics an oscillating 
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model of the universe is well known, in which oscillations are possible with 
and without the increase of entropy (see [94], Chapter 20).  The case with- 
out the increase of entropy corresponds to the self-oscillating regime. 
These questions are still in a stage of development and are far from being 
resolved. 

22.5.  Tensor, Vector and Scalar Processes; Thermal Conductivity, Diffusion, 
Thermal Diffusion, the Dufour Effect, Shear and Second Viscosity. 

It is convenient to write the production of entropy (22.39) in a some- 
what different form, decomposing the shear stress tensor <Tr>a<T(x)>-<T(x)> ^ 
and the tensor W into parts with a zero spur and a divergence multiplied by 
the unit tensor U: 

{n)~{n)UHn), C22-4b) 

W=l(/cliv. + vV C22-4(,a) 

where ,      , v (22.4bb) 

The tensors <Tf>  and W have zero spur.      The complete contraction of the ten- 
sors  (22.4b)  and  (22.4ba)  is equal to 

(n): Vv-(:t) :\v hiWfdiw. (22.4bc) 

Noting that <TT>  is a symmetric tensor, we obtain 

(n): \:v = (n): (VvY + (U>div v (22.4bd) 

(the superscript  s denotes the symmetric part of a tensor), because the com- 
plete contraction of a symmetric and an antisymmetric tensor is equal  to zero. 

From (22.22)   it  follows that the average diffusion currents are connected 
by the relation 

i 

i(/iw;-l("^aw/--rf>r(pW)]=o1 (22<47) 

because <p(x)>  is the total momentum.      Taking into account (22.4bd)  and 
eliminating the  l**1 diffusion current by means of (22.47), we obtain for the 
production of entropy the expression 
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( 

a = ' ' 
(22.48) 

Irreversible processes can be divided into two groups on the basis of the 
character of the currents and thermodynamic forces:    vector processes corres- 
ponding to the first two terms in (22.48),  and connected to the transfer of 
energy and matter;  tensor processes corresponding to the third term in (22.48), 
representing shear viscosity, and scalar processes corresponding to the fourth 
term in  (22,48), describing second viscosity. 

For an isotropic medium the linear relations between forces and currents 
can be simplified,   if one takes into account that in accordance with the 
Curie theorem currents and thermodynamic forces of different tensor rank can- 
not be connected with each other (a proof of this theorem can be found in 
[27]). 

Consequently,  the linear relations can be written separately for vector 

i-i 

tensor 

! o 'Ml       /\'..\5 

and scalar processes 

where the kinetic coefficients are equal to 

- 5b0 

(22.49) 

^)=_±lL.(Vvy        , (22.49a) 

(n)-j'^{^)---''f-dWv, (22.49b) 



/-': ■ 

/-«r-= J   j c-'{jQ{x), iQ{x', i))dx'(lt, 

I) 

— c« 

(I 

/../={  [if'iiiAx), }>d{x\ t))dx'dt. 

cF'(r(x). r(*-'. t^dx'ilt, 

(22.50) 

(22.50a) 

/-':-  j    j'-'ipix).   P{/,  i)-(^)rU{X\   t)- 

Here jg(x)   is the heat current density, defined by formula (22.22); 
ju(x)  is the energy current density (19.42a),  and  (19.44a); jj(x)   is the 
diffusion current density  (22.22), where Ji(x)  is the particle number current 
density  (19.41a); p(x)  is the moraentura density  (21.1a),  and f(x)  is the 
divergenceless part of the stress tensor (19.4()b), 

T{x)'-=T{x) rUpix), 

where p(x)   is the pressure operator 

p{x)=-^y,TU{i{x], 

(22.51) 

(22.51a) 

and U is the unit tensor. 

In formulas  (22.50) the averaging is carried out    with a local equili- 
brium distribution  (22.21).      The brackets denote the quantum correlation 
functions  (22.19a).      In the case of classical mechanics the current density 
operators must be replaced by the corresponding dynamical variables  (see 
section 19.1),  and the quantum correlation functions must be replaced by the 
classical correlation functions. 

As a consequence of the ünsager reciprocity relations  (22.25)  we have in 
the absence    of a magnetic field for the kinetic coefficients (22.23b)  the 
symmetry relations 
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iio.      Lti — L it' 

or,  if there is a magnetic field   H, 

(22.52) 

(22.52a) 

For the case under consideration of an isotropic medium the relations 
(22.49)-(22.49b) and the expressions (22.50) can be still further simplified. 
The correlation functions, which are constructed from vectors or tensors, in 
this case have the form of scalars multiplied by unit tensors: 

(22.52b) 

The last term on the right hand side of the last expression is added in order 
to satisfy the properties 

y i nwiv, _ V ^v»1 ^i = o, 

because the correlator is constructed from tensors with zero spur. 

The scalar functions LQ, Li, and L^ are found by calculating the spur 
(i.e., the contraction) of the tensors on the left and right hand sides of 
the relations (22.52b): 

Z-o — -j S p Ljd = i.w, 

Li --= -j- Sp Lot ^ -j Sp Lio = L-u, 

(22.52c) 

Substituting  (22.52b)   into  (22.49)-(22.4yb),  we obtain 
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,    trad 7"      \i , , /1», \ 

; 
,    ßrad 7"     V , . /|i/\ -L(—7rr--2/^/erad(i-y-j, 

t" r ö 

(Il^-^divi., 

(22.53) 

where the kinetic coefficients have a scalar character and are equal to 

Ao^-J    j  f?% (*)•;>'.  t))clx'dt. 
— oo 

n 

n 

AV'-I !    | c''(n*):r(«'. t))dx'dt; 

(22.53a) 

the dot in the brackets denotes the scalar product of vectors, and two dots 
denote the complete contraction of tensors. 

Rewriting  (22.53)   in other, more familiar notation, we obtain 

where 

(/Q) = -Ävr-V/^rad(^-J. 

I üi;,       OVA       2 1 

;. = i:i = -^ j j e" {jQ (x) ■ jQ (*'. /)) dx' 

ft 

dt = 

(22.54) 

(22.54a) 
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is the coefficient of thermal conductivity, 

— oo 

0 

= y j" jV(r,,W. TtlJ{x'. t))dx'dt (22.54b) 

is the coefficient of shear viscosity, and 

0 

^if--fII^(pc*).pU'.o-(^li//(x'^) 
V(^-l ^(x'. Oh/x'rf/ 

(22.54c) 

is the coefficient of second viscosity. 

The kinetic coefficients \, n, and i, are positive. 

Noting that the tensor Ln^L^-t-L^U on the basis of (22.54),  (22.54b), 
and  (22.54c)  is equal to 

/-u  ' ' = Tr\\ ö,l(iiövv, + 6(ivö,n, - — i\iv^n v. f • r ^nvÖ,, s, 1 ' (22.54d) 

and setting u=v=yj=vi, we obtain another expression for second viscosity: 

ii 

The coefficients  L^ describe the transfer of matter as a consequence of 
a cemperature gradient,  i.e., thermal diffusion (or the Soret effect), and 
the transfer of heat as a consequence of a density gradient,  i.e., the Dufour 
effect.      Such processes are called cross processes.      They will be considered 
in more detail in section 22.7 with the example of a binary mixture.      The 
coefficients  Lij  describe the transfer of matter as  a consequence of a density 
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gradient, i.e., ordinary diffusion (see section 22.7). 

Expressions (22.50), (22.55a), and (22.54a-d) for the kinetic coefficients 
were first obtained by M. Green [14] by the method of the theory of stochastic 
processes for the classical case on the basis of the microcanonical ensemble. 
In this case in the expressions (22.54c) for second viscosity the terms with 
(dp/3u)n and (3p/3n^)u may be omitted. Indeed, all kinetic coefficients can 
be expressed through the total currents Jm: 

* " L",u-ijf Je*<r(*). r(*'. 0)dxdx'dt = ± J>(Jm, Jn(t))dt. 
— — o o 

(22.54f) 
where 

/m= J r (x)dx. 

In (22.54f) is taken into account the fact that the average correlator depends 
only on x-x', and one can introduce another integration over x with a factor 
of 1/V, Formula (22.54c) for second viscosity then takes on the form 

where , r 
P=*Y J P (*)</* 

is the averape nressur* rt«rrnt«r, and 

// =» j ll(x)dx. A', — | ti;(x)dx 

are the total ilamiltonian and total particle number of the type i. If the 
averaging is carried out over a microcanonical ensemble, as in the article by 
Green [14], then ii and Nj do not experience fluctuations, and consequently, 
in the correlator (22.54g) the terms with (3p/3u)n and (3p/3n;) can be 
omitted. Then u 

C = y J c"(p. p{t))dt. 

Such an expression was also obtained by Green. However, the microcanon-
ical ensemble is not convenient for calculations, because one must take into 
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account the auxiliary conditions of constant 11 and Nj,   and therefore formula 
(22.54g)   is more effective, 

txpressions (22.3ÜJ,   ^2.S3a),  and  (22.I)4a)-(22.S4c)   for ti.e quantum 
case were obtained by Mori   [2^-31], who  integrated the  Liouville equation with 
an initial  condition  in the form of the  local equilibrium grand canonical dis- 
tribution  (21.14).      His expressions  for the kinetic coefficients contain 
("esaro integrals  (22.7),  rather than Abel   integrals  (22.23b)   (this difference 
was  discussed  in section 22.3).       In addition,  in his  expression  (22.54g)   for 
second viscosity terms with  (äp/3u)n and  (jp/bn^)u were not taken into account. 
This discrepancy wc     ..'       corrected by Mori himself  in the article  [95]   by 
the method of coll ^riables.      This  result has been confirmed also by 
other authors   [58,;    i' ,'.2], 

Formulas  for k.netic coefficients   in the form of current  correlation 
functions were obtaiieii  after (irecn and Mori by many other authors by means 
of various methods of taking into account  the thermal  perturbations, which 
were discussed at the beginning of Chapter  IV, or by means of a combination 
of these methods. 

lornula  (22.54b)   for the shear viscosity was obtained by Montroll   [bj 
bv the  indirect method of the  linear reaction,  considering the viscous  cur- 
rent  created by a change in the dimensions of the container.      This  idea    was 
expressed earlier by  leynman in unpublished  lectures. 

All   formulas  for the  kinetic  coefficients were obtained by  kadanoff  and 
Martin   [1U]   by means of variants  of tue method of the   linear reaction,  and 
they were also obtained by  Luttinger   [J] . 

kadanoff and Martin considered a state of a liquid which was  weakly non- 
eqmlibrium with  respect  to temperature,   chemical  potential,  and  velocity and 
introduced  fictitious mechanical  perturbations, which bring the system to the 
same state  (the difference between the exponentials of the local  equilibrium 
and  equilibrium distributions).        I'his  perturbation  is  switched  off  instan- 
taneously  at   t=0,  and  the  system develops   further according  to  the  equations 
of hydrodynamics. 

The average values  of mechanical  quantities  (densities of  energy,  momen- 
tum,  and particle numberJ   for tsO can be expressed through the perturbation 
and  the  susceptibility,  while  the   latter  is  expressed  through   the  correlation 
functions  or  (Teen  functions.       By  comparing these expressions  with the  solu- 
tions  of the  hydrodynamc  equations  one  can express  the  susceptibility  through 
the   kinetic  coefficients.       'nverting  these  relations   gives   formulas  for  the 
kinetic  coefficients   in  term;   of  the  correlation  functions. 

The ;,ietiiüd of  Luttinger   ['Jj   is   very  close to the  method of  kadanoff  and 
Martin,  but   Luttinger  strives   for  a  closer analogy between the  auxiliarv 
mechanical   perturbations  and the  real   fields.       Ihe perturbation   in  the   local 
temperature  is  associated  witn  a  gravitational  field,   which  causes  tue  same 
nonuni fornity   in the  energy density;   the  perturbation   in tiie  chemical  poten- 
tial   is  associated with  tue  potential  of  an electric   field;  tue  perturbation 
in  the  velocity  is associated witn a magnetic field,  winch  is  descriued  by 
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a vector potential.  These fields can create the same distriburion of energy, 
mass, and momentum in an equilibrium state, as exist in the given nonequili- 
brium state. 

We have already mentioned at the beginning of Chapter IV other articles 
in which formulas for the kinetic coefficients in terms of the correlation 
functions have been derived, and we refer the reader .o the literature cited 
therein. 

The formulas for the kinetic coefficients in terms of the correlation 
function in the case of sufficiently dilute gases, for which the kinetic 
eqr.^tica of Boltzmann is applicable, lead to the same expressions for the 
kinetic coefficients as in the Chapman-Lnskog theory [yd] in the approxima- 
tion which is linear in terms of the gradients of thermodynamic parameters 
[52,lJ7-9y].  This result is understandajle, because the normal solution of 
th'i Boltzmann equation (which is studied in the Chapman-Lnskog theory) is 
br.sed on assumptions similar to those which are used in constructing the non- 
rquilibrium distribution, and in particular that for a time which is suffi- 
ciently large compared to the mean time between collisions the distribution 
function begins to depend on time only through its thermodynamic parameters. 

To obtain the Chapman-Lnskog formulas from (22.53a) one can omit terms 
with the interaction potential in the expressions for the currents (22.22), 
[19.12),   (iy.l7a), (llJ.2 7aJ, and (ID.J'Ja).   lor liquids tnese terns are 
significant.  According to the Chapman-Htvskof theory for monotomic ideal 
nases the coefficient of second viscosity is equal to zero, c=u« 

In approximations which take into account higher powers of the density 
the formulas ^22.50) lead to the same results as the theory of N. 'A, 
bogolyubov [1,100], which is based on solving a chain of equations for the 
distribution functions by means of an expansion in powers of the density. 
Kor subsequent approximations it is necessary to take into account ternary 
and higher order collisions, which is a very complicated problem.  The con- 
nection between the calculation of kinetic coefficients and the solution of 
the generalized kinetic equation of Bogolyubov can be found in [35J.  The 
theory of transfer processes can be found also in [210-220]. 

22.0.  Transfer Processes in a Single-Component Liquid.  Thermal Conductivity 
and NavTer-Stokes liquations. 

In a single-component liquid (or gas) the diffusion current density 
operator jjCx) (22.13aJ is identically zero, because 
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Consequently,  in this liquid the processes of diffusion and thermal diffusion 
and the Dufour effect are absent, because 

Li =  Lij   = Ü. (22.5()) 

In this case there remain only the processes of thermal conductivity and vis- 
cosity, which we shall discuss later.  (If a ringle-component liquid is a 
mixture of isotopes, then equalization of the isotopic composition can take 
place in the liquid, i.e., the process of sell-diffusion.) 

In av-cordance with (20.ö8) in a local equilibrium state the current den- 
sities of energy, momentum, and particle number are equal to 

(///); = (" + p T p 4"-) ». 

('V'= ^ + P^V (22.57) 

and the corresnonding entropy current in accordance with  (2Ü.74)  has the form 

is-S(X)v, (22.57a) 

where S(x) is the entropy density (22.37a). 

To study the process of thermal conductivity one can consider either the 
transfer equation for energy or for entropy, but the latter is more conve- 
nient, because the equation for the transfer of entropy in a local equilibrium 
state lias a very simple form 

,l,S(x) 
o: 

fliv/, = -A\\-{S(x)v) 
(22.58) 

(see (22.38), (22.38a)). 

The  linear relations between    thermodynamic forces and currents   (22.54) 
in a single-co.nponent  liquid take on the form 
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(11) = (p)-</>>/ 

(22.593 

wliere <^> and <n> are the divergenceless and divergence parts of the viscous 
stress tensor, 

av-^B^WH^V {22.59aJ 

The first equation of the system (22.59) is sometimes called Fick's 
first law. 

The laws of conservation of mass, energy, and momentum and the equation 
of entropy balance have the forms 

where 

I/O 
r divpv — 0, 

,/ (h ' U' | '■   ,   ..     . « 
„       -r div (;;,)- -o, 

ill —' ./A',, 

itSixi    .    ,.    . 

a = (IJ ■ V|i - f, (.t): (Vu)' - ß {1I> div u 

i« the production oc  cntropv, and 

(22.6Ü) 

(22.61) 

(22.62) 

is the entropy current, because the remaining terms in formulas (22.48) and 
(22.40) are zero. 

Taking into account the linear relations (22.59), we write the produc- 
tion of entropy (22.61) and the entropy current (22.02) in the form 
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G = -JT (v I'? T 1 (vV= (Vf)' + -y- (div vf, (22.62a) 

/, - S (*) v — \ T - Q (Vw)* • v - 4" v div v, (22.62b) 

and the equations for the balance of energy, momentum, and entropy we write 
in the form 

2Y [u + P -j-) + di v [ti + p + ~ - j v « V (7.V7), 
t»oya . \ T 0 Op 

I* 
v i d fdua dv* 2 \ 5 

= JL oZ11 VJZ tT«Tx " "3 Au& W / A t ! * uI v l'' (22.63) 
ti 

J^M + div (S (*)») = 

= V . \T) + 2V • (J, (Y'v)' - v) + V • ( f v divv) + — (\ 7")2 + 

(VW)*+Y (divv)2. 

In equations (22.63) the kinetic coefficients depend on the thermodynamic 
parameters, for example on the pressure and temperature, and consequently, 
for a spatially inhomogeneous state they may depend on position. However 
this dependence is usually small, and these kinetic coefficients can be con-
sidered to be constant and taken outside of the gradient sign. Then 

W (" + p T ) + d iv (w + P + p T")v = xy2T• 
p + V • Vwj -{- \p — ^ + y T]j V div v, 

P (Jf-+ v - v«) - Y v*r + 2nv. [j- (Vvy.») + (22 •63a) 
+ • (4* V div v) +(S/v)1: (W)' + (div v f , 

is the entropy per unit mass. 

The second equation of the system (22.63a) is the Navier-Stokes equation, 
and the first (or the third) is the heat transfer equation̂  As a consequence 
of (22.37a) the third equation follows from the first two and the law of 
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conservation of mass. 

If the speed of flow of the liquid is significantly smaller than the 
speed of sound,  then the change in pressure as a consequence of the motion is 
very small, and one can disregard the change in density and in other thermo- 
dynamic quantities caused by the motion.      Consequently,  in calculating deriv- 
atives of thermodynamic quantities the pressure can be considered constant, 
and 

Oi     \0TJp ui'      x-s ~\',)f l(,w- (22.64) 

Taking into accounx  that , (lf ■> 
rl^7r)p^C" (22.()4a) 

is the specific heat at constant pressure, we obtain 

ds -!lL—       v       £iLvr (22.b4b) 

Consequently, the heat transfer equation for incompressible motion of a 
the liquid, when div v=Ül takes on the form 

where ^ .-^ X/oC,, 
(22.65a) 

is the coefficient of thermal conductivity, and 

v = ri/p (22.65b) 

is the kinematical viscosity.      In a stationary liquid, when the transfer of 
heat  is caused exclusively by the mechanism of thermal conductivity, equation 
(22.65)  takes on the  form 
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(22.65c) 

and is called the thermal conductivity equation or the Fourier equation. 

22.7.      Transfer Processes in a Binary Mixture.      Thermal Conductivity, 
Diffusion and Cross~E"f7ects.      ' '" 

We shall consider transfer processes in a two-component liquid (or gas) 
in the absence of velocity gradients.      In this case there exist only vector 
processes - thermal conductivity, diffusion,  and cross effects - thermal 
diffusion, and the Uufour effect, and the linear relations  (22.54) between 
thermodynamic forces and currents take on the form 

(V 
i-1 

(/^-^vr-Vz^l^)     (' = 1-2)- 
i -i 

(22.bb) 

The diffusion currents <j .> and <j .> are connected by the relation 

i:'». (Hu =o (22.b7) 

for any VT, ^(yi/T), which follows from the  last relationship in (22.22); 
consequently,  the kinetic coefficients Lj and  Ljj satisfy the relations 

il/^/.i-O,    ^intLn^O. (22.b8) 

In the  linear relations  (22.bb)   it is sufficient to consider only one 
diffusion current,  for example <jj>=<jj>, because the second current can be 
found from equation (22.b7).      TakinR into account  (22.08)  we write (22.bb) 
in the form 
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(22.b5a) 

where the chemical potential has been introduced [82] 

iii yh_ 
"   Hli    " 

(22.bob) 

The chemical potential (22.bbb) enters into the thermodynamic equality 
(2U.24b).   Indeed, 

ris = ß du [x) + ßp dv (AC) - p ^ |f ^^< = 
i 

-?dn{x)-^rdv(x)-f,[^-^)dC, 
(22.by) 

where CI+CT*!, C=Ci=mini/p is the mass concentration, u(x)=<ll'(x)>/p is the 
energy density per unit mass, and v(x)al/p is the specific volume per unit 
mass. 

From (22.b9) it follows that 

(22.bya) 

Then 
Let us  change to the variables p,T,C in the thermodynamic functions. 

^=(fH.r
vc+(li, "+(£),> ("•'") 

Substitutinp (22.70) into (22.0ba), we obtain 

- 373 



where 

and 

tu       l\ T\oL}p/r        ^r\iiCiPi (22,71a) 

*'--■?* ~irvjr (22.72) 

is the coefficient of thermal conductivity in the binary mixture,  and 

»-^föU ("•7ä, 

is the diffusion coefficient, and 

■7'^r-"P   ■■/-""'''TyrlT/c,/)' (22.74) 

where K-j-L) is the coefficient of thermal diffusion, and K,j- is the thermal 
diffusion ratio, and ~ ~ — -    —     -— - 

where KpL) is the coefficient of pressure diffusion. 

From the second equation of the system (22.71) it follows that the dif- 
fusion current is caused by gradients in concentration, temperature, and 
pressure (ordinary diffusion, thermal diffusion, and pressure diffusion). 
The last process is significant if strong pressure gradients are produced, 
for example in a centrifuge. 

The coefficient of thermal diffusion is proportional to the product of 
Ci=C and C2 = l-C, in the absence of a coefficient of diffusion, which in the 
first approximation is indapendent of the concentration.  Therefore one 
introduces the constant of thermal diffusion 
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a=-^_. (22.76) 

Diffusion and thermal conductivity in our case, when v=ü, are defined 
by the equations 

d"u' -Miv (/,) = (). 
0! 

dSix) 
(22.77) 

'H 
-rCwjs^a, 

where in accordance with (22.4U) and (22.3lJ) 

/, = </9)P- ^</:,) v( -HiQ-id'"M)' (22.77a) 

cT = </,).V^-V^.Vvr (22.77b) 

Substituting (22.71) and (22.77a) into (22.77^ and neglecting terms with 
a pressure gradient and terms of a higher order in the gradients, we obtain 
the system of equations 

,;r        Kr  j (iji \       .)C (22.78) 

which define the distribution of the concentration and the temperature in a 
binary mixture.  In the particular case in which the temperature is a con- 
stant we obtain 

- j-----„OV-C, (22.79) 

i.e.,  the usual diffusion equation. 
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22.8.      Another Choice of Thermodynamic Forces. 

In section 22.1 we began with the nonequilibrium statistical operator in 
the form (22.1)  and chose the thermodynamic forces in the form (22.13b)  as 
gradients of thermodynamic parameters.      There is another possible choice for 
the thermodynamic forces. 

We shall proceed from the nonequilibrium statistical operator in the 
form (21.1üa) 

P -Q-'expj- ^ J /•„{*, t)Pm(x)dx + 
*       m 

(i 

+ Xj   J   ^   i^nix,   /+/,)/'„.(*,   /,) + 
m     —<*> 

.^JJJApjxj^]^,,,} (22.80) 

and we shall choose as the thermodynamic forces the I ourier components of the 
parameters Fm(x,t)  with respect to the spatial variables. 

The statistical operator in the form (22.80)   is sometimes more convenient 
than (22.1), because it does not require knowledpe of the explicit expressions 
for the currents jm(x,t), the choice of which is not completely unique.      This 
is especially important  for a system with long range forces, where it is impos- 
sible to perform a smoothing of the operators over a small  radius of action 
of the forces, as  in §   19. 

In an approximation which is linear in the small velocities the thermody- 
namic parameters  I:ni(x,t)  have the form 

Flt(x, /) = ß(x( /), 
r,(x, /)= -ßU, i)v{x, /)--«{*■ 0- 

Ft,, (x, 0 = - ß (*- 0 (n. u-. o -i-1*—-1 -- 
^ -|l(.v, l)n:ix, t).   - v. f.v, ;). 

(22.81) 

We expand the operators  Pm(x)  and the parameters  Fm(x)  in Fourier inte- 
grals.      Then the statistical operator (22.8Ü)  takes on the form 
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p = Q-,exp| - t)PA~k) + 
I m. h 

0 

+ V} J ert {Fm{k, t + t\) P,;t( 'i) + 
m. * -oo (22.82) 

We eliminate the time derivatives of the parameters Fm by means of the 
relations (22.10), which in the approximation linear in the velocities have 
the form 

MSJLJl. = (JhL\ divu(x, 0. 
Ot \ On }n 

dvAx.t) (0p\ clivw(*. /), 
at \ dnt )u 

du(X,t) tl+P . . V ("|> r;. / , — = O-li (P) l>> 

or in Fourier components 

Substituting (22.83a) into (22.82) and making use of the relationship 

p ( - k) = /A • p ( - A), 
(22.84) 

we ob ta in 
p = Q"1 cxp { - V pm (kt /) pn ( - i) -i-

I m, * ° 1 
+ 51 J o" Jm(-k, /,)*«(*, / + /,)<//, . 

m. * —u> ) (22.85) 

where we have introduced the currents for energy, momentum, and particle number 
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JA-k)^ll(-k)~^o{-k), 

i 

and tlie thprmodvnaric  forces 

X,(k. t)-~~Hk, '■) 

A'.ift. l)--u{k, t), 

(22.85a) 

(22.85b) 

Using the smallness of the thermodynamic forces and expanding (22.ä5) in 
a series, analogously to (22.18), we obtain 

(   • 1 

where 
1 

ß = _ V [ t,f/. /;ti(_ jt, /,) A',, [k, t + /,)<;,-,. 

(22.8b) 

(22.8ba) 

By means of (22.80) we obtain  linear relations between the thernodynamic 
forces and currents• 

where in the (juantum time correlation function in the  integrand the averaging 
is  carried out over a state of statistical equilibrium,  and thus, because of 
the isotropy of space the only non-zero terms are those with ki=k: 

(./„(*)) = {/,„ (A)),-f ^   |V (/...(ft), /,(-*, t,))Xn{k. t + i,)Ji . (22.87) 

If the  retardation  is neglected,  then 
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(22.87a) 
where 

Zmn{k)~ \^{}m(k), /„(-ft. MW/, 
(22.87b) 

are the kinetic coefficients.     Taking into account that in accordance with 
the Curie theorem the only non-zero correlators are those connecting quanti- 
ties of identical tensor rank and taking into account ''.tat in accordance with 
(21.15) 

(6 {*))=-(* ■(?(*)) = (,> (ft)),. 

('I,n (*)) = ("„. (ft)),. C22-8») 

we write the linear relations (22.87a)  in the form 

(//(ft)) = (//(*)),+ ^00W^lft, 0- S irün+I(ft)%•„(*, i), 

(';,„ m = ('im (ft))/ + ^mo(A) ß(*. 0 - ^ ^nn,, (fe) v„ (fc, 0. (22 *89) 

(p(ft))--(P(ft)),-<?„(*)-«(ft,/)• 

Analogous relations without retardation have been obtained by Kubof 
Yokota, and Nakajima [28]  using the Onsager hypothesis on the character of 
the damping of fluctuations.     These authors considered a single-component 
liquid and did not take into account the transfer of momentum, which is des- 
cribed by the  last equation of the system (22.89).      They obtained the 
improper integrals in (22.87b) as Cesaro integrals, rather than Abel inte- 
grals, because they did not explicitly consider the causality condition (see 
sections 21.3, 22.3).      In addition, in the expressions for the currents they 
Jid not take into account the additional terms which compensate for the non- 
dissipative motion of the center ot mass. 

The linear relations  (22.87a) have, in general, a non-local character 
because of the dependence of Sd—Ck) on k«       If we expand ^^(k)  in a series 
in k, keeping only the first non-vanishing terms of the expansion, we obtain 
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tp^M^VL^k?       (««.« = 0.2. 3. ...). 

a V (A)« v IT, [k% + -j M,)+^ r^a^ = 

because the odd powers of k are absent as a consequence of the isotropy of 
space.      Taking into account (22.90) the linear relations (22.89) take on a 
local form 

(//(ft)) = (//(*)),+KLoo^fK*. /) - U V Lan^k:vn(k, t), 

{'tJ^-inmikh + VL^m O-^l^m+^XC*. 0.     ( (22.91) 

{pik^-^ipik^-VT^uik. i) + 

+ \k(kuik,(})-VTlk{ku(k,t)). 

From (22.90) and (22.91) it follows that the kinetic coefficients Lmn. 
n, and c are equal to 

A„:„ = lim%^-       0//. « = 0, 2. 3. ...). I iJ 

11 = li"! 7V--7v S ^i'l' (*) (/i?6a& - ^«'^ )• 
(22.92) 

ail 

d 4 »ii     r"' 

In the expression for n we have used the fact that 

It is easily verified that the expressions  (22.92)  for the kinetic 
coefficients are equivalent to the expressions   (22.53a)  obtained earlier. 
Indeed, 
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/,.,    um A/ | S'UAk). lA-k, i))dt, (22.93) 

Where /«^»//W-^M*). (22.93a) 

or, sines 

we have 
A^)=-^-(///^)-~ö-P^>) = -,*,/«(fc)-      (22.93b) 

Because of the spatial hoirogeneity of the system the formula (22.93) can be 
transformed to the form 

0 

loo - lim -pjr J *" (M*). M- *■ 0): ** dt - 

0 

-Ilm^L $e"iiQ(k)-jQ{-k,t))dt, {229A) 

where the dot denotes the scalar product of the currents.      In this connec- 
tion, the current tensor can be divided into transverse and longitudinal 
parts: 

We obtain formula (22.94) (  if we take into account  [10]  that 

0 0 

lim   {e"A(k,i)dt~\\m   { e*'B(k. t)dL 
ft->o  J k->n   ■> 

Formula (22.94)  coincides with the first of the formulas (22,53a). 

Analogously we write the last formula in (22.92): 

S + ^U-lim-r^-   f^ft-^W,/.(-ft./)).A J/, (22.9.1a) (22.94a) 
" »-»0   ' *       •! 
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where 

— ik^fikHU (p(*) - (U-)n //(*)- S (^)u „( (ft)) }. 

U is the unit tensor, p(k)«-ik*T(k), and t(k)  is the divergenceless part of 
the tensor 

T(k) « T(k) ♦ p(k)U. (22.95) 

We denote 

Ap(Ä)=pw-(^)n//(ft)-5;(^)/.w. 

Then J1(k)=-ik»{TCk)*UAp(k)}.      Consequently, 

U 

^i-^lim^- JVftft:(mh-*. t)):kkclth 
o 

Wmlr  fe"(Ap(ft)lAp(-fe. 0)^ + 1 

or 

^ + 41 = lim jn \ e" (a? (ft), Ap (- ft, /)) rf/ + 
— 00 

0 

+ IimTi|F JV'Ch*): f{-k,t))dt. (22.96) 

Analogously we also obtain expressions for c and n separately: 

(i 

S-ISmypr   I ^'(ApW. Ap(-ft> /))rf/. 
(22.97) 

0 

TI= lim-~   \ce'(f(k):f(-k, t))c!l. 
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which coincide with  (22.54c)   and (22.54b). 

Thus, formulas  (22.92)  for the kinetic coefficients are equivalent to the 
formulas (22.53a)  obtained earlier. 

In the choice of currents and thermodynaraic forces  (22.ä5a)  and (22.85b) 
it is convenient to put in the entropy balance equation 

—57—-Hiv/s(*)-or(jc) (22.98) 
the expressions 

is («) = | Fm («. /) </m (*, /))/ + ti (*, /) v(x, t) p [x).      (22.99a) 

aix) = | ((A,. (*)) - (K, (*))/) F.a ix, t). (22.99b) 

Then the total production of entropy is positive, 

j a (*) dx = 5] ({Pm(k)) - (f'm {k))t) Fm (~k)~ 

=   V  Fn{k)Zmn{k)F'm{k)^0. 
m. * (22.1ÜÜ) 

m, n, » 

The examples considered show that to construct the hydrodynamic equa- 
tions   one can use for the nonequilibrium statistical operator either the 
expression (22.1)  or the expression (22.80). 

i 23.     Relaxation Processes 

23.1.      General Theory. 

Until now it has been assumed that the macroscopic state of the system 
can be completely characterized by specifying the fields of temperature and 
mass velocity and the chemical potentials of the components. However this 
is not always ehe case. For example, in the case in which the system con- 
sists of weakly interacting subsystems, between which it is difficult to 
exchange energy, the approach to statistical equilibrium is effected in two 
stages: first, a partial equilibrium is established in the subsystems, and 
this partial equilibrium then slowly approaches complete statistical equili- 
brium, if there are no factors which prevent this.      To describe the state 
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of such a system a single temperature is not sufficient, but rather it is neces- 
sary to introduce different temperatures for its subsystems. 

Such a situation can exist both for the various components because of a 
large difference in their masses, for example, in an electron-ion plasma 
[101-103], and for the various internal degrees of freedom of the molecules 
[100,104-107], and for the spins of the electrons and the nuclei [108,109]. 
The thermodynamic theory of relaxation processes  in gases and liquids was 
developed in the articles by Kneser [HO],  Leontovich and Mandel'shtam [HI, 
112], and many other authors  (see the monograph  [113]).      A formal scheme of 
taking into account the internal degrees of freedom of molecules on the basis 
of the Boltzmann kinetic equation was developed by Wang-chang and Uhlenbeck 
[106].     Their results were refined by Snyder [114], who took into account 
the degeneracy of states.      Further development of this approach can be seen 
in the book [107], 

Sometimes the system cannot be characterized by a single mass velocity, 
for example for supersonic flows, when the velocity field has gradients which 
are too large at the front of the shock wave, and the basic assumption of the 
linear dissipative theory about the smallness of the velocity gradients is 
violated.      In this case in order not to exceed the limits of the linear dis- 
sipative processes, one makes use of a two-liquid model with two velocity 
fields, before andafter the front of the shock wave  [104,105].     The equations 
of two-liquid hydrodynamics are derived in the articles   [115-117],    A single 
velocity field is also insufficient for constructing the hydrodynamics of a 
superfluid  [118-121]. 

The general scheme for constructing a nonequilibrium statistical opera- 
tor, which was presented in §§ 21,22, can be generalized to systems which are 
relaxing.      For this it is necessary to formulate the conservation laws in 
more detail than was done earlier, separately for each weakly interacting sub- 
system.     We have already considered conservation laws of such a   type in 
section 19.5, where the subsystems were characterized by the quantum numbers 
of the internal degrees of freedom. 

The conservation laws for energy, particle number,  and momentum for the 
ith subsystem have the form 

Olli (X) 
dt 

On Ax) 

01 
^L+Divr,w-f,w. c"-1) 

where Hj(x), n^Cx). Pi(x)  are the densities of energy, particle number, and 
momentum of the i1" subsystem, JHjC*)» Ji(*)» Ti(x)  are the corresponding 
currents of energy, particle number, and momentum, J|h(x)   is the rate of 
change of energy of the i^ subsystem, fi(x)  is the density of the force of 
interaction of the i^h subsystem with all remaining subsystems, and Ji(x)   is 
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the density of particle sources. 

The total energy, mass, and momentum densities 

"UHS/M*).   PW-S^M*).   p(x)~2Plix)        (23.2) 

satisfy the consen'stion laws 
a// (<> 

(?,- + div/„(*) = {), 
g£ («) 

d/ + divpW-01 ^JJ 

The conservation laws  (23.1)  can be written in the form of a single 
equation for quantities which depend on two indices: 

(23.4) 
where we have introduced the notation 

^ (*)-",(*).     /0JW«///jWl     J6ti*)~J{i{ix)) 

!y{TPiix);    /"W=^w.    'uM-hU       mq, 

The operators Jnii(x) satisfy the additional conditions 

ZJH({X) = 0,     Zhi*)~0,      V^;((*) = 0     (23.6) 

or 
lJm;[x)-*0, (23.6a) 

denoting the conservation of total energy, momentum, and mass. 

The operators (23.5)  can describe subsystems with different internal 
degrees of freedom, but they can also have a different meaning.      For example, 
if one considers a system in which chemical reactions are taking place, then 
the index i denotes the type if molecules of the reagents and products of the 
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reaction, while the index m denotes the type of the conserved quantities 
(energy, mass, or momentum). 

Following [4,5], we apply the general scheme of constructing a nonequili- 
brium statistical operator, presented in section 21.1, to a system with con- 
servation laws (23.4). 

The subsystems are characterized by the quantities Pini(x),  and thus, the 
nonequilibrium statistical operator is equal to 

f •   0 1 
p-Q-'exp i-Sej  J^'^^.' + MPm.U. *,)<*/,</*  = 

*       m, i -oo J 

•= Q-1 exP (- S | ^ (*•') Pn't W dx + 
I       m. i 

0 

m.i       - oo 

P^t^^y^dx]       {e->0) + 
(23.7) 

or after an integration by parts 

P=Q-' cxp / - v r Ftm («, /) pmi {x) dx+ 
[       m.l 

0 

+ S J  J ^ O"' (*• <•)•V^. i*,t+li)+ Pm, (X. /,) ^i2^i±M - 

-Jmiix, t)Fim(x,  t + t^dt.dx], 
m, i      —oo 

where 
FiAx. ') = &(*, /). 

(23.8) 

Fn(x, 0=-ß1(x, /)M*. /). (27.9) 

ßi(x.t)  is the inverse temperature of the ith subsystem,  yi(x,t)  is its chem- 
ical potential, and Vi(x,t)  is  its mass velocity, which we have introduced 
for a possible generalization to a two-liquid hydrodynamics. 

We choose the parameters Fiin(x,t) such that they have the meaning of the 
thermodynamic parameters, and this is achieved if we put , 

■  <'-'<'» ^."»" (23.10) 
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In fact, then 

where 
W^~-ViM)'~-(P'',x>- (23.11) 

is the local equilibrium distribution, and 

Q, = Sp exp j - 2 j ^m (*. 0 ^ml («) <lx \ 
I       ml I 

is the statistical functional which corresponds to it. 

The relations (23.11)  are therraodynamic equalities for relaxing systems, 
which confirm the interpretation of 3i(x,t), ii^(x,t), and Vi(x,t)  as the 
inverse temperature, the chemical potential, and the mass velocity of the 
subsystems. 

To explain the physical meaning of the concept of the temperature of a 
subsystem it is convenient to express the therraodynamic equalities in terms 
of the variational derivatives of the entropy: 

(23.13) 

5 = - (In p,) = In Q, + N] j f ;m (x. i){Pml{x))dx.        (23.14) 
mi 

Varying (23.14)  and taking into account (23.11), we obtain 

Bapuupyn (23.14), c yHCTOM (23.11) noJiynuM 
6S* (23.15) 

———— = F    (K   t) 
6{Fmi(x))     rf^x'ih 

and thus, bs (23.1b) 

where <H^(x)> is the energy density of the i**1 subsystem in the co-moving 
system of coordinates, or for the spatially homogeneous case 
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?i~T(k>'     ^-l^'W)^ (23.16a) 

i.e., the inverse temperature of the i^1 subsystem is equal to the derivative 
of the entropy with respect to the average energy of the i^ subsystem. 

The temperature of a subsystem does not necessarily have to be positive, 
but in this there is no paradox, because ßi~l is not the temperature of a 
thermostat, as in the equilibrium case.      A more detailed discussion on the 
meaning of negative temperature can be found in section 23.2 of this chapter. 

Let us calculate the change of the entropy (23.14) with time.      Taking 
into account the fact that 

iLLii^.-Vr^^il^^)^. 
mi (23.17) 

we obtain 

In      h J Fim (*• ') \ —It / dx - 
mi 

-  S J ^trn U. 0 V (/mi (*)) • d* + }] j^m («. 0 {Jni (*)> dx 
(23.18) 

or after an integration by parts 

■f-=-Sj^«(*, 0</mt(*))-rfor + 
ml 

+ 2 J </".«(*)> • V/?
im(*)</*+V] J Fim{x, i){Jmi(x))dx. (23.18a) 

mi mi 

In what follows we shall be restricted to the case of a single mass 
velocity, and we shall obtain a balance equation for entropy density. 

We introduce the entropy density S(x)  and the density $(x)  of t'ie Massieu- 
Planck function by the relations 

Then 
S~jS(x)dx,    <I) = lnQ,= |«D(je)J«. 

S{x)»lFlm{x, t){Pml{x)) + (t>ix) (23.20) 

(23.19) 
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satisfies the balance equation 

i^-=-div/s(x) + a(x). (23>2i) 

^^ /s (*)= | Fimix, t){iml(x)) + v{x,  mix) (23>22) 

is the entropy current density, and 

-S(0miW)-(/ma*)>/)-^mU. t)+yi{Imt{x))Ftmix, t) (23.23) 
im 

is the production of entropy. 

In the derivation of (23.21)-(23.23) use has been made of the relation- 
ship 

SOmiWVVf.m^, /) = - div(v(x, /)»!)(*)), (23.24) 

which can be obtained analogously to (2U.73) by taking into account the 
thermodynamic equalities 

and the relations 
O («) - S O.ix) - | ß^^.     pi = (r; (<))i; (23.25a) 

the primes, as usual, denote a system moving with velocity v. 

The sources JmU) are not independent, because they are connected by 
the relationships (r.ba). . 

After eliminating the Ith source, we obtain 

a U) = V ((/m/ (*)) - </mJ U));) • \Flm {x, /) + 

+ yi(Jmt{x))(Flm{x, t)-Flm(x, /)). (23.26) 
in 

' m 
im 
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Introducing in place of VFim the thermodynamic forces 

X» = - ^ Vv, (*. /) = - ^ Vß, (x, /) ti, (x. 0. 

we rewrite (23.26) in the explicit form 

i 

where /' ^  r / s  t - 

(23.27) 

(23.26a) 

Comparing (23.26a) with (22.39), we notice that in relaxing systems new 
sources of entropy are added - the two last terms in (23.26a), which are 
related to the exchange of energy and particles between subsystems. 

Introducing more compact matrix notations for currents and sources 

and for the thermodynamic  forces 
-V;,,, (.v, /) - {\ Ft,, (*, 0, I7,,,, KX, t) - ;•;., {x, :)), (23.28a) 

we write (23.26) in the form 

"(*)= ^ ((/"" (x))-(rU));)-A-(,.(*. /). 

because 

(/o ix))i - (/// i*))i = O'n ix))t + (/ i*))i • f (x. 0 = Ü. 

where the primes denote an averaging in the co-moving system, and we have 
taken into account formulas  (19.42b)  and (19.46c) and the fact that the 
velocity changes  little over distances of the order of the radius of action 
of the forces. 

We obtain linear relations among currents, sources, and thermodynamic 
forces    by averaging the conservation laws (23.4) with the statistical opera- 
tor (23.8) and restricting ourselves to terms which are linear in the thermo- 
dynamic forces.      In the stationary case we obtain 
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(f (x)) = </"■' {*)>, + 2 I a'' U, /) ■ I/.., U') ^'.     (23.30) 

where 

LZHX.X')- I/0-';:'U)./""'(*'. 0) J/ 

are the kinetic coefficients.  Substituting (23.30) into (23.29), we obtain 

a W= >; j X^.ix) ■ L'Ü'ix, x') ■ Xlm{x')dx'; (23-3^ 
im 

where as before, 
j a{x)ax>0. 

Important special cases of the problem considered above are provided by 
irreversible processes in a spatially homogeneous system, consisting of 
weakly interacting subsystems, for example the exchange of energy between 
components of a mixture which are at different temperatures (see section 23.4), 
or a chemical reaction in a homogeneous phase (see section 23.5).  The con- 
servation laws for energy and particle number in this case have the form 

"' - ]"i = h"i' "1.  -V. - Av, = ^[.V, //J. C23.52) 

where H^ and N^ are the energy and particle number of the i1*1 subsystem, for 
which 

2/;/,-().  V/.v c. (23.32a) 

The quasi-integrals of motion 

o c 

li.-Hi-  J>//,(/)<//. N-Ni-   j^N^Ddl (23.32b) 
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correspond to the conservation laws, and in the stationary case the nonequili- 
brium statistical operator is 

p-Q-lexpj-^ß;(/7i-niA
?
/)UQ-

1expj-Vßi(//1.-,il.A'i) + 

+ V(f5i-ß,) j^MOd'-S^-.V.) J^V,(0^[-    (23.33) 

AveraginR  (23.32)  with (23.33), we obtain 

(",) = | {^//.W„ (ßm - ß.) - L/V,V,n i^m - ^l.)) > 

(.V,) = S [Z.^,^ (Pm " P.) - L^m [^m - ^]. 
(23.34) 

where 

— oo 

— >X) 

0 

(23.34a) 

are the kinetic coefficients. 

Later in sections 23.2 and 23.3 we shall consider concrete examples of 
relaxation processes for a system of nuclear spins  in a solid and for conduc- 
tion electrons in a semiconductor.      In the theory of rates of chemical reac- 
tions the assumption about the smallness of the difference of the chemical 
potentials is often not justified,  and it is essential to take into account 
nonlinear effects, which will be considered in section 23.5. 

23.2.      Relaxation of Nuclear Spins in a Crystal. 

As an example of an application of the methou we consider,  following 
L.   L.  Buishvili   [40], the relaxation of nuclear spins, which are interacting 
with magnetic impurities and the lattice.      We write the liamiltonian of the 
system in the form 

// = /// + lla + 'h + 'hd + "äi- (23.35) 

//,= -ofl2/i (23.3Sa) 
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is the Zeeman energy of the nuclei in a constant magnetic field, I? is the 
z-component of the nuclear spin, and un is the frequency of precession of the 
nuclear spin; 

"a-YZt""''1! (23.35b) 

is the dipole-dipole interaction of the nuclear spins; l\\  is the Hamiltonian 
of the lattice, the explicit form of which we do not require; 

O     '1$ i" nP 
//M=S^W (23.35c) 

is the interaction of the electron and nuclear subsystems, and Sj  is the 
electron spin of the magnetic impurity.      To a good approximation one can 
retain in (23.35c)   only terms which cause flips of the nuclear spin: 

Tn (23.35d) 
If = Jl± ill 

Finally, W^\   is the interaction of the nuclear spins with the lattice. 

We restrict ourselves to the spatially homogeneous case, when the nuclear 
magnetization is independent of position (distance from the impurity); other- 
wise it is necessary to take into account the spin diffusion of the nuclei 
[43,44,46]. 

We consider the nuclear Zeeman subsystem Hj, the dipole-dipole reservoir 
Hj, and the lattice, together with the remaining interactions H^+Hu+Hdii as 
weakly interacting subsystems.      The exchange of energy among them is des- 
cribed by the operator equations 

"T77 
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because Hj  commutes with 11..      The smallness of the right hand sides in (23.3b) 
allows one to consider the subsystems as quasi-independent. 

For the stationary case the statistical operator corresponding to the 
chosen subsystems has the form 

p = CT1 exp {- ß/T, - ßj/y, - ß (// - //', - //,/)} = 

o o I 
■f   f^(ß/-ß)/C/(0^+   {e*Hh-®KAt)dt\, 

_i -1 ) (23.37) 

where ßj, ßj, and ß are the inverse temperatures, respectively, of the nuclear 
Zeeman reservoir (NZK), the dipole-dipole reservoir (DDR), and the lattice. 
The concept of the temperature of the UDR was first introduced by B. N. 
Provotorov in articles on the theory of nuclear magnetic resonance [35]. 

Although the nonequilibrium statistical operator (23.37)  corresponds 
to a stationary state,  it can be applied also for a nonstationary state, con- 
sidering that &i and ßj are slowly varying functions of time. 

The average value of the balance equations  in operator form (23.36) cal- 
culated using (23.37),  gives the relaxation equations 

4. (//,),=(K/) = vL/i (ßi-ß). 
(.'/ 

(23.38) 

where 
/,,/=   jVc/v,-, Kjimdl (23.38a) 

are the kinetic coefficients.      In equations  (23.38) we have taken into 
account that 

where the subscript  I denotes an averaging with a quasi-equilibrium operator 
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(23.39) 

and we have used the fact that 

l>/ ^ Q;' t-xp [ - $,11, - yij - ß (// - //; - //j]. 

We express the derivatives of the average energies through the deriva- 
tives of the inverse temperatures: 

""^ ^   "--{",)l'"' (23.40) 

where terms with <ilc|ili> have been neglected.      Taking into account  (23.40), 
the relaxation equations can be rewritten in the form 

(23.41) nh rv-f» h-t '•'i\/      h~t ßf- 
V  

in T/ T/,/ '" T..'/ 

where TJ» TJ, TJJ, and TJJ are relaxation times, connected with the kinetic 
coefficients (23,38a) by the relations 

T, = /.;,' (Hj),,      xu = - LTliU'ih, (23.42) 

T.: - Lud (ßä)h        XJI = — l-<" \H~ä)t- 

For spin systems one can make use of the high temperature approximation 
and expand the exponential in (23.311) with respect to all quantities, except 
3H|.      Then the formulas for the relaxation times become 
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^^ITLi s"-   ' (23-42a3 

Si>(l)P   f    f   « Sp^c 

sP(i)P f   f ^Sp^-^A/'j-j^l^^ 

We note that the spurs in (23.42a)  are taken over the eigenfunctions of 
the spin matrices. 

Further calculations of the relaxation times by formulas  (23.42a)  can be 
seen in  [46], and a discussion of the results is given in  [122]. 

The nonequilibriuro statistical operator allows one to introduce naturally 
the concept of a spin temperature, for example the spin temperature of the 
nuclei ßi"l.      It can be different from the temperature of the lattice g"! 
and can even turn out to be negative.      This does not create a paradox in 
nonequilibrium statistical thermodynamics, because Ti=ßi"l is not the tem- 
perature of a thermostat, but rather it is defined by the relation 

P'     '}{",)' (23.43) 

where S is the entropy. 

Negative temperatures are formally introduced even for the equilibrium 
case [92], which is possible for systems in which the energy spectrum is 
bounded above,  as, for example,  in spin systems, because otherwise the statis- 
tical sum would diverge for negative temperatures.      However,  real systems 
which have an energy spectrum bounded from above always  interact with a 
system whose energy spectrum is not bounded from above, and therefore the 
spectrum of the total system is not bounded from above; consequently, negative 
temperatures can be introduced in a consistent way only for the nonequilibrium 
case.      Experimental verifications of the existence of negative temperatures 
can be seen in the articles   [123,124]. 

The important case of the action of a variable magnetic field on spin 
systems is a nonstationary nonequilibrium process. However, this problem 
can be reduced formally to a stationary case,  if one first eliminates the 
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variable field with frequency u by going over into a system of coordinates 
rotating with frequency u, and then introducing in this system a nonequilibrium 
statistical operator.      This was done in the work of L.   L.  Buishvili  [4b], and 
it leads naturally to the concept of temperature in a rotating system of coor- 
dinates.     Unfortunately, the transition to a rotating system of coordinates 
cannot eliminate completely the dependence of the Hamiltonian on time, if 
there is an interaction of the spin system with the lattice.      Therefore one 
first derives equations without taking the lattice into account, and then in 
the resulting equations introduces the corresponding terms describing the 
influence of the lattice.      Another more consistent method of taking into 
account a variable field, also developed by L.  L.  Buishvili  [4ba], consists 
in first regarding the variable classical field as a quantum subsystem, the 
temperature of which then tends to infinity, and the quantum correlators of 
the field variables are replaced by the classical correlators.      Taking into 
account the variable magnetic field allows one to consider by means of the 
nonequilibrium statistical operator the dynamical polarization of nuclei. 
Other applications of this method to nuclear magnetic relaxation can be seen 
in   [193-200]. 

23.3.      Spin-Lattice Relaxation of Conduction Electrons  in Semiconductors in 
a Magnetic Field. 

We shall consider one more application of the nonequilibrium statistical 
operator in the theory of relaxation processes - we shall study the spin- 
lattice relaxation of conduction electrons in a quantizing magnetic field, 
following the work of V.  P.   Kalashnikov [S3b].      This problem is considered 
in the articles   [125,126]  by    the method of the kinetic equation. 

We write the Hamiltonian of the conduction electrons,  interacting with 
optical phonons in a magnetic field, in the form 

U « //, 4- Hs + Hp + He, + Hpl + //., 
(23.44) 

where H^ is the kinetic energy of the electrons, and Hs is their Zeeman energy. 
The sum of H^ and Hs,  i.e.,  the energy He of the free electrons in a magnetic 
field, is equal to 

Vo    ,+ 
"c -^ " a ~ "s — 

where 

Ht - //< + Ils - ^ e,„av.iOv,)> 
V.I (23.44a) 

^~4r + t>4n+l) + la^11       (^±1)      (23.44b) 

sre the energy levels of a free electron in a magnetic field parallel to the 
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z axis; o«(ntpx,p,)  are its quantum numbers, g is a factor which gives the 
spectroscopic splitting of conduction electrons, \IQ is the Bohr magneton, 
UQseH/mc is the Larmor frequency, and the last term in (23.44b) gives the 
Zeeman energy of the electrons Hs.      Further, 

//p = 2 h&qkCqKCqi.. 
qk (23.44c) 

is the energy of the optical phonons, where q and X are respectively the 
momentum and polarization index of the optical phonon with energy ti^qx*. 

''*p D      dmi     ' t/v',i'. VüC^A + t/vir. v'ü'Cqr^j flv'u'flvi 
va.vo' (23.44d) 

is the electron-phonon interaction; Hp^ is the energy of interaction of the 
optical phonons with the thermostat; l\\  is the energy of the thermostat. 
For example, if the non-electron relaxation of optical photons is connected 
with their decay into two acoustical phonons and the inverse process, then 

Hpl = 2 («lÄ"'' CubpK'bi-r. v + ^^"'C^b^b.,-,: A (23.44e) 
qq'KK'K' 

H^lih^xbqxbqK. (23.44f) 
ql 

where Uq^ is the frequency of the acoustical phonons. 

We shall consider Hs, Up and the remaining part of the iiamiltonian of 
the crystal as weakly interacting subsystems.  The mutual exchange of energy 
between subsystems is described by the operator equations 

fff     ' i//p, //i = -1 [H„, Het> + //„;! - flpw - I'P ;••> 
dt     in i ' 

(23.45) 

The subsystems chosen correspond to the stationary nonequilibrium operator 
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f 

P = Q-1 c.xp {- t\//. - |\//,V - p (A/ - //; - //„ - n.V)}. 

where n 

— oo 

0 

^ = //p- je6'(^(/)(0 + //p(;,(0)^; 

N is the total number of electrons.      Consequently, 

P = Q -' exp | - ß,//, - ßp//p - ß (//-//s -//p - jx/v) + 
0 

+ J>{ß,-ß)//,(p)(Od/ + 
— c» 

0 

+  J^(ßp-ß)(//p(.,(/) + //pa)(/))d/l. 

(23.46) 

(23.47) 

(23.48) 

where 3S"1 is the spin temperature of the current carrier, and ßp"^ is the 
temperature of the "hot" phonons.      The constant temperature a      is assigned 
to the remaining degrees of freedom of the crystal. 

In the approximation which is linear in the thermodynamic forces ßs-ß 
and ßp-3, we write the nonequilibrium statistical operator (23.48)  in the form 

P -=   1 - (ß. - ß) ß~' J dt [lls {ihr) - {Hs)0 - ß -^ (A^ m - (AO) ] - 

- (ßp - ß) ß~' J dx [Hp (Un) ~ (Hp)a] + 
o 

P        o 

+ (ß. - ß) ß~' J dt  | dt e^H, (p) {t + itn) + 

+ (fin - ß) ß-' J ^T  J dt c" {lip m (t + itn) + Hp m [t + itn))  p0l        (23.49) 
0 -co J 

where the nonequilibrium chemical potential is expanded with respect to Bs-ß 
and PQ - the equilibrium statistical operator for no interaction. 

We find the quantity 3u/3ßs  from the condition <N>1 = <N>Q,  i.e., 
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'¥ 
(.V.//.) = p-.|r('V'A')- (23.49a) 

Averaging the balance equation (23.45) with the operator (23.49), we obtain 
the relaxation equations 

•|-(^>-{ßi-ß)i„ + (ßs-ß)Lsp. 0) 

i-W-Ck-ß^ + ^-ßU pp. 

where 

Lss=   Jrf/^(//4W, ^W(/)). 
0 

LPp =   J d/ e« {Hp „5 + //p (,). //p u, (/) + //p ,o (/)), 
— i» 

o (23.50a) 
Lsp=  j dte"{Hs{p), ArpW(0 + //p »,(0). 

— oo 

0 

are the kinetic coefficients. 

A calculation of the kinetic coefficients  (23.50a)  using the smallness 
of the electron-phonon interaction (23.44d) can be seen in the article [53c]. 
The scheme of calculation presented in this section has been applied by V.  P. 
Kalashnikov to the theory of spin-lattice relaxation in semiconductors with 
magnetic impurities in a quantizing magnetic field  [53c]  and to the theory of 
hot electrons  [54].      (See also   [201-203].) 

23.4.      Energy Exchange Between Two Weakly Interacting Subsystems. 

Up to this tine we have everywhere been restricted to the case of weakly 
nonequilibrium systems, where in the expressions for the currents it is suf- 
ficient to take into account only terms which are linear in the thermodynamic 
forces,  i.e., we have considered linear dissipative processes.      There are 
often cases in the theory of transfer processes in which the linear approxima- 
tion is not applicable; for example, the rate of a chemical reaction is 
usually nonlinear with respect to thermodynamic forces  [27], and electrical 
conductivity in semiconductors in a strong electric field can be essentially 
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nonlinear [54].     The method of the nonequilibrium statistical operator allows 
one to consider even such strongly nonequilibrium processes, i.e., the method 
is applicable even in the case in which it is already impossible to make use 
of the usual Kubo method, an account of which is given in Chapter III. 

In order to take into account the nonlinear effects we shall expand the 
statistical operator not with respect to thermodynamic forces, which are 
already not small, but with respect to other small parameters,  if these exist 
in the problem. 

We shall consider the exchange of energy between two weakly interacting 
subsystems, when it takes place slowly, for example because of the large 
difference in the masses of the components or in general because of the small- 
ness of the corresponding effective cross section, following the article by 
L.  A.  Pokrovskiy [55].      As we shall see below, suci systems can be charac- 
terized by very different temperatures, and the process of exchange of energy 
is nonlinear with respect to thermodynamic forces. 

We use the Hamiltonian of the system in the form 

H = Hi + 112, (23.51) 

where Hj and H2 are the Hamiltonians of the subsystems. 

" 11 (23.52) 

K= i] W!»i>l«V)ÄtVv; 

a and y are the quantum numbers of the parcicles of the first and second 
types, and $ is the interaction potential between them.  For simplicity we 
omit the interaction between identical particles.  It can be considered that 
this is included in the renormalizations of the values of the energies of the 
elementary excitations Ea and Eu, as this is done in the theory of quantum 
liquids [127,128]. 

We note that since the total iiamiltonian is an integral of motion, then 
in dividing the system into subsystems one can choose independently only one 
of them, and it makes no difference where one refers the interaction energy. 
If the interaction energy is essential in the balance of energy, then it can 
be considered as a separate reservoir of energy; for example, the dipole- 
dipole interaction can be taken into account in this way (see section 23.2). 

The operators for the currents of energy between subsystems are equal to 

401 - 



A'&?tm'7$'-*r*sv-'< ■'.•■vs-:-;*i'->••■>?•'*-."**■■• •■*•&*"■ < -■!»■ 

= 4- V  (En'-i^Kanl^laV)ßu^rMu'. 
''' a^- (23.53) 

The relations (23.53)  give equations of balance for dynamical variables 
and allow one to construct a nonequilibrium statistical operator.      As a con- 
sequence of the smallness of the exchange of energy, the temperatures of the 
subsystems will change slowly with time, and one need consider only a sta- 
tionary variant of the theory.      Taking nonstationarity into account leads to 
terms of a higher order of smallness in the expression for the energy current. 

Following the general method, we construct the statistical operator 

p = Q-' exp {- ß, (//, - ^A',) - ß, (//, - (uV,)} =-- 

= Q-1 exp {- \\ (//, - ii.A'ri - p. (//, - fu.V2) 

^'(ßi-W/M'W/    . (23.54) 

where ßj and 82 are the inverse temperatures, u^ and vi are the chemical poten- 
tials, and Ni and N2 are the particle number operators for the subsystems. 

The operator Hx contains a small parameter, because the exchange of energy 
is assumed to be slow.      We average the current (23.53)  over the distribution 
(23.54),  retaining only terms through second order in the small parameter.   We 
obtain 

0 1 

(^) = (ßi-ß.)  j die" j dx(II^11,(1)0^, (23.55) 
-00 n 

where <...>\ denotes an averaging over a quasi-equilibrium distribution 

P.-Qr'f-0. (23.50) 
O-M//I-PHV1) + M//2-M^. (23.57) 
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where in H, the interaction u is omitted. 

The relation (23.55) appears superficially like a linear relation between 
the thermodynamic force ßi-ß2 and the current <H]>, but it is actually non- 
linear with respect to 31-62» because the averaging is carried out over the 
quasi-equilibrium distribution (23.56) rather than the equilibrium distribu- 
tion. 

The relation (23.55) is valid also in the case in which the interaction 
between particles is taken into account in the operators H^i^.  Then the 
operator (23.53) will include additional terms, which depend on the interaction 
potentials between the identical particles. 

We shall calculate the average energy current (23.55).  Substituting 
(23.53) into (23.55) and integrating over T, we obtain 

(1/,)=- j J/e' (ßi - P.') _j i/)\ I«,   '■)' 

aiili"\*li 

X (a^l «I) la'n'Xa,!!, I ^^^^J^H^H^) + ß,{^- V) ' 
(23.58) 

where we have introduced the Green function 

GannV (/-M = 

-(lÄr'ou-/,) ■A "l   ^1   *'!   "l 
(23.59) 

which is a generalization of the doubletime Green functions (15.48),  consi- 
dered in S  16, to the case of a quasi-equir.brium ensemble. 

In the case of a weak interaction the interaction can be neglected in 
the Green function (23.59) in the Heisenberg representation for the operators, 
because in (23.58) there is already a factor of second order in the inter- 
action.      Therefore the Green function (23.59)  can be calculated directly by 
pairing the operators according to the Wick theorem: 
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X     > X^u^V^'V (23.60) 

where the upper sign is taken for Bose statistics and the lower for Fermi 
statistics# and na,nv are the occupation numbers 

, ^ie\^)T.iy\   „^MV'^I)-1. 

Substituting (23.60)  into (23.58), we obtain 

/ rV N _        ra       IX   \   XlF   -F ■* liHÜiLLgW   x 

(23.60a) 

unu'M 
(i 

x  |^^t%-^-tl)'+cirf/x 

X {/I,.«,. (1 ± «u) (1 ± "H) - "..'"li' (1 ± «u) (1 ± «tOl- 
(23.61) 

Carrying out in (23.61) the integration over time, taking into account 
the relation (16.32), and noting that the integrals in the sense of the 
principal value give no contribution, we obtain 

V' i/ —   «d   i-n^iiii   X 
(ItKl »i' 

X {«u%(l±Hu'){l ± //(1)-//,;7i,.-,1 ± /i,,)^ ± „„)}, (23.62) 
where 

<::' = if i ("n: 'i' iuV) i:'• (/:„ + /r(V - i;t, - £ll() (23.b2a) 

is the probability per unit time of a transition in the Bom approximation 

We note that in going from (23.61)  to (23.62) the factor tij-32 cancelled, 
but there remains the nonlinear effect of the dependence on 3^ and &2* because 
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na and na^ depend on ßj, while n^ and n  depend on a2' 

For a nondegenerate gas with uisU2  we have 

«^,4 (1 ± Hu') (i ± «(.') - «a«n- (1 ± Hu) (1 ± «n) S 

where the fact that energy is conserved in a collision has been taken into 
account, 

Ea + E^ = Ea' + /Tu'. 

Co^ueutly, ^ _  ^ ^.^ _ c.l(r,1 (i„.V))| (23.62b) 

Thus, we have obtained an expression for the energy current which is non- 
linear in the therroodynamic forces 3x~32 which agrees with the result which 
follows from the kinetic equation. 

The connection of the kinetic equation with equation (23.62)   is obvious, 
because the latter equation can be written in the form 

where 

01 Ä (23.64) 

is the kinetic equation for the occupation numbers.      The rignt hand side of 
equation (23.64)   is the collision integral. 

The kinetic equation (23.64)  can be deduced directly, if one averages 
the operator 

%=^(W 

over the statistical distribution (23.54), which is expanded in powers of the 
small  interaction, as was done for the c< Iculation of <Hi>. 
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From equation  (23.b3)  it can be seen that in the nonlinear theory instead 
of the product of thermodynaroic forces with currents a sum of the products of 
the subsystem energies with the collision integrals is used. 

For small ßi-ß2t expanding the exponential  in (23.62b)  in a series  in 
&1-Q2 with an accuracy up to the linear terms, we obtain a linear relation- 
ship between the thermodynamic force and the current: 

whero 

is the kinetic coefficient for the rate of transfer of energy. 

The rate of transfer of energy (23.58)  is easily calculated also in the 
case of small particle density (or small density of elementary excitations). 
In order to obtain an explicit expansion of the expression (23.So),  it is 
necessary to calculate the Green    function  (23.59)   for small density.      Dif- 
ferentiating  (23.59)  with respect to t, we obtain an equation for the Green 
function  (23.bO): 

,una'n'    m_ 

' U1H1 

Hos 'ft'VAv^uV 
-O^V)MH™M}+*1$^ 

(23.bb) 

where H^)   is the two particle liamiltonian,  F(t)   is a term which contains 
Green functions of a higher order, which we shall not write out explicitly, 
and K is  the average commutator of the operators a^byb ^Oj,- and a*>.b*,.byOia. 

We shall consider the limiting case of a gas with small density, when 
we can restrict ourselves to the approximation of pair collisions.      Then the 
term F(t)  which describes the higher order collisions can be omitted, thereby 
breaking the chain of equations  for the Green functions.      The average com- 
mutator K in this approximation is equal  to 

SS/JuMl 1-«,.)(! ± ",.')-««'").(1 ±Ha)(l ± flu)- (23.b7) 
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In our approximation na «  1, iv «   1 one can consider the distributions 
to be Boltzmann distributions. 

The solution of the equations  (23.66)  has the form 

G^P-iom W\^ """' iait0(«K(^Wt8 '/a.^,. 

Substituting (23.68)  into (23.58), we obtain 

(23.68) 

X 

/        I     _1W«U        , '   ' ^ (23.69) 
X \ rt^ j-Ite   " |«;u;/ X (a'X ! f,..(t) -EJaii), 

where (23-7ü) 
//^»/z. + ^ + tD, 

hj and hj are the single particle liamiltonians of the particles of the first 
and second type, their time argument denoting the Heisenberg representation, 
and 

U (£«'. -tV) = ^uV (A (^ - £"«') + ^ (^ - f ^j-'. (23.71) 

We note that in the matrix elements 

(aV| (M-/)-£,)/<,, (M-'). M-')) kiO 

<aX|M/)-£Ja(l) 

one can omit the dependence on t, which is equivalent to neglecting terms of 
the order of v3t^/V=(vt/L)3 in comparison with unity, where v is the relative 
velocity of the colliding particles, and V=L3 is the volume of the system 
(see [214]). 
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Indeed, because of the factor eet the integrand in (23.69)  is noticeably 
different from zero only for times t" t    , and therefore v^t^/V'-v3/Ve3, from 
which it follows that for the correct order of the limiting transitions, when 
first V-x» and then e-+0, the dependence of the matrix elements on time can be 
neglected in our case.      At the same time this automatically excludes waves 
reflected from the boundaries of the volume.      A similar procedure is discussed 
in the formal theory of scattering of Gell-Mann and Goldberger [84]   (see 
Appendix I). 

From the formal theory of scattering it follows that for large times, 
significantly larger than the collision time TC,  the matrix elements of the 
operator of the pairwise interaction with the two particle evolution operator 
$e±(i/ti)H(2)t can be expressed through the scattering matrix  [85],  and  in 
particular, for |tl>>TC 

^qh: ^      '     ■ '(«.iriaV) for   +• 

(unlrMaV)for 
4^V)'l<u!lirii/!l/)   for ^3„72j 

where <ay|T|a'y'>    are the matrix elements of the scattering T-matrix.      Sub- 
stituting in  (23.09)  the asymptotic expressions  for the matrix elements and 
integrating over time, we obtain the previous equation  (23.b2), but with the 
transition probability expressed in terms of the T-matrix: 

<r = 17 i (^i7W> fHEa -r E, - Ea. - E» ). {23.73) 

Therefore all the derivations of the previous section are preserved also for 
the case of small density. 

In particular, n^ also satisfies the  kinetic equation (23.64), but  in 
the equation the probability of transition corresponds to small density  (23.73), 
rather than to a small  interaction as before. 

The positivity of the production of entropy was demonstrated earlier only 
for linear dissipative processes.      We shall consider the production of entropy 
for the nonlinear process of exchange of energy between subsystems. 

In accordance with the general definition of entropy (20.13)   it is  in 
our case equal to 
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S= -(Inp,),« - (Inp,), 

S = ^piTO + luQ, 
' (23.75) 

After differentiating with respect to time and taking into account the fact 
that 

di     -     ZiVi^lh (23.76) 

we obtain ,.       . 
ir=lß1(//i> = (ß1-ß.)(/A). (23.77) 

i 

We shall  show that o I 
^—(ß.-ß^   [<?f'^ f</T(//^-W/1(/)^«>I>0. (23.78) 

The inequality  (23.78)  has already been used earlier for the case in which 
the averaging is carried out over an equilibrium distribution. 

Taking into account  (23.62) we write the production of entropy (23.77) 
in the form 

X{/l«Ml ±M(l ±«1i')-nu'v(l :i:/7a)(l ±«li)}: (23.79) 

consequentlv# 

^XCP.-WC^-^d-^^1"^^^)^0' (23.8Ü) 

since for arbitrary x v(1_t,-,v)>0 (23<81) 

and all the remaining terms in (23.8U)  are positive. 

And thus,  it is shown that in the nonlinear process considered above the 
production of entropy is positive. 
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i) 

i 

23.5.      Rate of Chemical Reactions. 

Chemical reactions in a homogeneous phase are an example of nonlinear 
irreversible processes, similar to relaxation processes, in which the method 
of the nonequilibrium statistical operator can be very easily applied. 

We shall assume that the chemical reactions take place sufficiently 
slowly such that a spatially homogeneous state with identical temperatures 
for the reagents and the products of the reaction is established in the volume 
in which the reaction is taking place.     We shall consider the simplest reac- 
tions in such a system. 

Assume that in the system there takes place only a single binary reaction 
between the molecules A and B with the formation of the molecules C and L), 
i.e.. 

A + B^C + D. (23.82) 

For simplicity we shall assume that the reaction takes place in the gas 
phase. 

We take the llamiltonian of the system to be of the form 

11^^11,-i-u, (23.83) 

where Hi,H2 are the Hamiltonians of the reagents, 113,114 are the llamiltonians 
of the products of the reaction, and u is the interaction which drives the 
reaction.      For it we use a model form of the type 

u = s j^;:;^^^^'1^^'.^;^.;^ !•• (23.84) 

where aaii^a2'<:a{$^a2 are tlie creation operators for the molecules A,B,C,D in 
the states oi,oi2»ai»"2» anJ aai »^»^i»^^ are t^e destruction operators for 
the corresponding states. Thus,  the second term in (23.84) 
describes the direct reaction (23.82), and the second term describes the 
inverse reaction.      The operator (23.84)  is analogous to the corresponding 
operator for the excitation of internal degrees of freedom (23.52), which was 
considered in section 23.4 of this chapter. 
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The Hamiltonian (23.83)  is a model llamiltonian by virtue of the fact that 
we assume that the matrix elements are known from quantum mechanical 
calculations.      Such a Hamiltonian is applicable for the theory of 
chemical reactions in the gas phase only, because in a liquid upon collisions 
of the molecules of the reagents part of the energy will be transferred to the 
liquid in the form of elementary excitations, and it is necessary to   take 
this process into account in the interaction operator. 

The operator for the total particle number 

N=^Mi. (23.85) 

where 

^ic:ca, Nakata*, (23-85a) 

is conserved in time, because 

but Nj changes in time as a consequence of the reaction, 

Ni^-rrlN^H]       (/»I.2. 3.4). 
(23.87) 

All of these currents are expressed through a single rate of reaction 
operator 

, = ,v = V  —!a)u'Vb*c ,d,-ovV,c>.. a 

O^JO^'J 

A/,-/,   iV2-A    N3~~J.    N^-J 

(23.88) 

(23.89) 

01 A'.« v./. (23.89a) 
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where the Vj are the stoichiometric numbers in the equation for the reaction, 
i.e., vi»V2"l, V3»V4»-1, 

The conservation law  (23.89a)  corresponds to the statistical operator 

-{('A'ri^-A/jy-jd^^ö-d (23,90) 

where MytVi are the chemical potentials of the rea^snts, and U3»M4 are the 
chemical potentials of the reaction products.      Taking into account (23.89*1 
we write (23.90)  in the form 

p - Q-'exJ - ß ill - V n./V, + V n.v,   J e*tj {I) dt\ j = 

= Q-'exp   -ßf//-VHi,v;-/l   \e''J{t)dl\y (23.91) 

where x, 
/l^--!^.. (23.92) 

is the chemical affinity in the terminology of de Uonde  [21], which plays 
the role of the thermodynamic force in the linear approximation. 

The operator J contains a small parameter - the matrix elements of the 
transition which accompanies the chemical reaction. 

We average the reaction rate  (23.88) over the distribution (23.91)  and 
expand the statistical operator in terms of the small parameter contained in 
(23.88).     We obtain 

(y) = (A/,) = /Iß J dxc" J dx{Nle~™Ns (/)e^% 
(23.93) 

where <...>i denotes an averaging over the quasi-equilibrium distribution 

P/ = QrV
fl.   ß = ß(//-^^)- (23-94) 
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If we replace in (23.93) the averaging over a quasi-equilibrium state by an 
averaging over an equilibrium state, then we obtain the linear relationship 
between the reaction rate and the affinity: 

n  p 
(23.93a) wher« n p 

^'(N^^t + ih^adtdx, 
(23.93b) 

i.e., the relation obtained by Yamamoto [129,130]. 

We shall expand formula (23.93) for the case of a small interaction, but 
for arbitrary A. 

Taking into account the fact that 

e        "a 

we obtain 

6 A;   a2 al   a2 

Oi 

= exp (-ß [(£,_ + Eai - EA - ^ + ^1 *1 «l^S'i (23.95) 

In the Heisenberg representation for the operator Ni(t) one can neglect 
the interaction, because in (23.93) there is already a factor of second order 
in the interaction; therefore,  averages are easily calculated using Wick's 
theorem making use of (23.95).      Carrying out in (23.93)  an integration over 
T and t, as in the expansion of formula (23.55), we obtain for the rate of a 
chemical reaction the expression 
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where ''A     2n 
ö       =-5- u. a,        (i «,«2       V   "1 ".'        "1 i) 

iJ 
(23.97) 

is the probability per unit time of a reaction. 

On the right hand side of equation (23.96)  is the summed collision inte- 
gral of the kinetic equation  (23.64) with the probabilities of transition 
(23.97).      It is easily verified,  as in the preceding section, that the occu- 
pation numbers satisfy the kinetic equation. 

For a non-degenerate gas na<<l, and the reaction rate is equal to 

(/V'I) = (l-e-3^) V        Vi! 
/ /     -1 

a, a ,a 1", ■nwn 
(23.98) 

where A is the chemical affinity (23.92). 

If the system is close to a state of statistical equilibrium, i.e., 

ß|A|   «  1, (23.99) 

then the reaction rate is equal to 

where 

(Wl) = LNlS?Ä' 

1 1 
u.a., ^ 

(23.100) 

(23.101) 

is the kinetic coefficient, which has the meaning of the rate of the direct 
reaction.  Thus, by the condition (23.99) the total rate of the chemical 
reaction is proportional to the chemical affinity, and A is a thermodynamic 
force. 

The condition of chemical equilibrium is that the rate of the chemical 
reaction be zero, i.e., the equality to zero of the chemical affinity: 

/I = - 1 I'iV; - 0. (23.102) 
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For a mixture of ideal gases the chemical potential is equal to [92] 

ft-'i        u (23.103) 

where ^^^ (23.1ü3a) 

is the partial pressure of the i1" component, ci=Ni/N is the concentration of 
particles of the itil component, and xi is a function of temperature, which is 
easily calculated from the statistical sum for an ideal gas.      Taking into 
account (23.103) the condition of chemical equilibrium takes on the form of 
the law of mass action: 

i  Pi'-e    '  "~K, (23.104) 

where K is a constant of the chemical equilibrium, depending only on the 
temperature. 

Taking into account   (23.104)  the kinetic coefficient  (23.101)  can be 
written in the form 

(23.105) 
u"ere „-/«.«V S ^cV'ev-..) 

is the constant of the rate of the direct reaction.      The relation (23.105) 
expresses the kinetic law of mass action. 

Using (23.89a) the linear relation (23.100) between the reaction rate 
and the chemical affinity can be written in the form 

(23.107) 

where we have introduced the parameter      '' 
(\'I)-(NI)O 

6   ' V, 
(23.108) 
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X    > 

which is the completeness, or the degree of development of the chemical 
tion, and <Ni>Q is the equilibrium concentration of the product i. 

reac- 

The chemical affinity A can be expressed in terras of the derivative of 
the entropy with respect to the completeness of the reaction ^: 

S-lnOf + fU/O-ßSft^V,). (23.1Ü9) 
In fact, 

ir=-ß>]fii(^) = p/l-f-> (23.110) 

because the derivatives of lnQe with respect to ß and ^ cancel, and we assume 
that <H>  is constant.      Consequently, 

A~T[^)    . (23.111) 
^ "■= Urn 

In a state of statistical equilibrium A=0, because the reaction rate is 
zero.      We expand A in the neighborhood of equilibrium with respect to the 
small deviation of 5 from the equilibrium value ^Q; 

A~T(Wij^' (23.112) 

Substituting (23,112)  into (23.107), we obtain a relaxation equation for the 
completeness of the reaction 

dt (23.113) 
where 

T"i       ,       (fl] (23.114) 

is the time of relaxation of the reaction.      Integrating  (23.113), we obtain 
the time dependence of the completeness of the reaction: 

6 -1,, = isC))-la)i"-"1. (23. US) 
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i.e., the completeness of the reaction tends exponentially to the equilibrium 
value ^Q. 

The relaxation time,  introduced in  (23.114), corresponds to constant 
energy and constant particle number.      Analogous relations can be obtained 
also for other thermodynamic conditions   [27,131], 

In the general case the rate of a chemical reaction is nonlinear with 
respect to the affinity, i.e., 

(A'i) = /^,|X, (1-e-M). (23.116) 

The discussion presented above is valid also for an arbitrary number of 
components, among which different chemical reactions are possible.      Then 

where 
(23.117) 

L-  •   -=        V        v/'^-(i,ni)nana ... (23.118) 
a,a0 ... u.u.,... 

is  the kinetic coefficient, (23 119) 
An = - Ü Wim 

i 

is the chemical affinity,  and  vim are the stoichiometric coefficients, with 
which the substance i enters  into the m1*1 reaction. 

The condition of chemical equilibrium 

' (23.120) 

takes on the form, taking into account  (23.103), 

Up^-e    '        =/Cm, (23.121) 

where Km is the constant of chemical equilibrium of the mth reaction. 

The kinetic law of mass action in this case takes on the form 
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Höhere 

II , ^ 
(23.122) 

! (23.122a) 

Xj^g m pm Zi ^ 
/ i 

a.a 
0,0,,....i^.^... 

la2- 

and everywhere vi^O, i.e., only positive stoichiometric coefficients are 
taken into account. 

Let us consider the production of entropy in chemical reactions in a 
homogeneous system for the nonlinear case. 

The entropy for such a system is equal to (23,109), and taking into 
account  (23.89a) the production of entropy is equal to 

Substituting here the expression (23.Uö)  for the average reaction rate, we 
obtain for the production of entropy the expression 

^«L^/Ul-c-^O. (23.124) 

which follows from the inequality  (23.81).      Consequently,  the production of 
entropy in a chemical reaction is positive. 

Until now we have considered only equations of balance for particles in 
chemical reactions.     One can consider analogously the balance of energy. 
Although this is essential for chemical reactions (see [132]), we shall not 
make here such a generalization.      The goal of this paragrapii was to demon- 
strate that the method of the nonequilibrium statistical operator can des- 
cribe even nonlinear processes in chemical kinetics. 
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i 24.      Statistical Operator of a Relativistic System and Relativistic 

24.1.      Relativistic Statistical Operator. 

The phenomenological nonequilibrium thermodynamics for the relativistic 
case was developed by Eckart [133J   for a single-component  liquid (or gas)  and 
was generalized for a mixture by Kluitenberg, de Groot,  and Mazur  [134].      An 
account is given,  for example,  in  [82]. 

We shall apply the method of constructing nonequilibrium statistical 
operators, presented in § 21 to a relativistic system, following [5].      Taking 
into account relativity only simplifies the problem, because it makes it pos- 
sible to construct easily invariant quantities while the statistical operator 
and the entropy which it defines must in the relativistic case be invariant 
with respect to a Lorentz transformation [135]. 

The law of conservation of energy-momentum in the relativistic case has 
the form 

Y dT^y, {x, t)  _ 

^      ^      ~   " (24.1) 

where x is the set of coordinates xi,X2,X3, a X4='ict, and Tuv(x,t) is the 
relativistic expression for the symmetric energy-momentum density tensor, 
which is assume«.' to be known.  We shall consider a system which is charac- 
terized only by this conservation law, and in particular a system without 
electrical charge and spin. 

The conservation law (2^.1) corresponds to the local integral of motion 

■I 

~TM + t   je^^Jlicclt. (24.2) 
(t «J l   — to u 

In  (24.2) we have selected tne retarded solution,  i.e., we have made use 
of the causality condition. 

Using (24.2) one can discuss stationary processes, but we shall discuss 
immediately nonstationary processes, because a discussion of these processes 
in the relativistic case is even simpler because of the symmetry between 
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space and time coordinates. 

By the usual method, but taking into account the conservation law (24.1), 
we construct operators, which depend on time only through some parameters 
I?v(x,t) (v=l,...,4), and which define the macroscopic state of the system: 

ßiv{x, t) -   - l:Ax,'t)T.Ax) = - l-,{x, i) T^{x) + 

+ |^ {fvu./ + /i)r.lvu./1)+ ^VU-H-ZU r4v(jC|/i)l^|a3 

~-Fv{x,t)TiM+  J^  -^U./-!-/:)'^i—^-—+ 

T 3f- ^4v(*.'i)/dM- (24.3) 

The parameters Fv(x,tJ, the physical meaning of which we shall explain 
later, are selected such that the expression 

V 

is Lorentz invariant.      Dropping the surface integrals, we obtain for this 
quantity the expression 

2 J ß4v (x. /Rv ■= - >] J f v (x. /) r4v (*) dx + 
v v 

+ i j j^^tr^7'-^ /^*^rf/'-    (24*4) 
H, v-l      —oo 

Following the usual approach, we construct the statistical operator 

p = Q-'c.xpf-V|ßiv(X|/)^.|  -Q^pj V \F,{x,t)T^x)dx- 
l v | I   v   ' • 

o 

-S/ J^^;^-'^ T^x, iddxicdt], (24.5) 
M. V        -oo " ) 
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where the parameters Fv(x,t) are defined from the conditions 

(r4vU)) = (r1v(x))„ 

wnere p, = Q,-1 cxp { V j/rv (Xi 0-^ (x) J* \ 
(24.6) 

(24.7) 

is the relativistic local equilibrium statistical operator. 

24.2,  Therroodynamic Equalities. 

We shall now explain the physical meaning of the parameters Fv(x,t). We 
put 

Fv(x, t)-~ p(*. t)iuvix, t), 
(24.8) 

where uv is the four dimensional velocity,  i.e., 

V»;ix1/)= - 1. (24.8a) 

This guarantees the Lorentz invariance of the statistical operator (24.S), 
because jT4v(x)dx transforms like a 4-vector,  if the field is non-zero only 
in a finite region of space  [13b]. 

Let us consider the local equilibrium state (24.7) 

(>, - Q;' cxp l - v J ^(JCi /) /^ (jCi t) T^ {x) dx i ( t24 g) 

l        v I 
where 

Q, = Spexp j - V J pU, t)ü^{x, i) riv(x) dx\. (24.9a) 

Let us go over into a moving system in which the spatial components of 
the 4-vector uv are equal to zero, ui=»U2=U3=0, u^i,  i.e.. 
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(24.1Ü) 

which satisfies the condition (24.8a).  Here and in what follows we shall 
denote by primes the components of vectors and tensors in this moving system. 

In this co-moving system the statistical operator (24.9) has the usual, 
nonrelativistic form 

P^Qf'esp] -]f>{x,i)!l'(x)dx\, 

(24.11a) 

I  J''^"" ^'"-l' (24.11) 

where //'(*)=-7l(*) 

is the Hamiltonian density in the moving system.  Formulas (24.11) and 
(24.11a) confirm the correctness of the definition (24.9). 

We choose uv such that the variation of InQ^ with respect to uj, U2, or 
U3 is equal to zero, i.e.. 

Li^ixJ) (24.12) 

We have already made use of a similar condition in § 20, where we considered 
an ordinary velocity, rather than a four-dimensional velocity.  This condi- 
tion insured the choice of the parameter v(x,t) PS  the average mass velocity, 
which was required for the fulfillment of the thermodynamic equalities. The 
condition (24.12) implies that we are defining the densities of mechanical 
quantities, on which the statistical operator depends, in a local system, 
which moves together with the element of liquid. 

We calculate the variation of (24.9a), taking into account (24.8a): 

„0,= - .-Y fp(..d(^(x))-(r4)W)^f}ö«v(x./)^ 6li 

because a 
S«vö«v + «tö«4==0   (v-1.2.3). 
v-l 

From the condition (24.12) we obtain 
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where 

"v(*. i)  _ {r,v(x)) _ __  (Ov(x)> 
"<(*.')      {Tui*}) " (//U)) ' (24.13) 

Gv(*) = -^r<v(«)(  //(*)=-^.(x) (24.14) 

(24.15) 

are the densities of momentum and energy, respectively. 

If one introduces the ordinary, three-dimensional local velocity 

fv(*. O-t (//U), -uT__   (v-1,2.3). 

then tne relation (24.13) can be written in the form 

»vU, /)  ___ ii\ (x, t) 
«.(*. 0 ~    c      ' (24.16) 

or takinR into account (24.8a) 

1/1
_~ti-■(*.7^,  ,v ' '  ,/■;—.-■ ürTT" (24.16a) 

Thus, for the local velocities vv(x,t) and uv(x,t) we obtain well-known rela- 
tivistic relations. 

There remains to explain the meaning of the parameter &(x,t). We cal- 
culate for this the variation of the statistical sum (24.9a) with respect to 
ti(x,t) for constant uv(x,t): 

A In Qi   _ _ Y ' 
WTr= -1 "v(x' ncr^M). (24 17) 

from which we obtain, taking into account (24.13),   (24.8a),  (24.16a),  and 
(24.14), the thermodynamic equality 

m-V""» l''1 -^ -<"<'» l/l -^ ■  («.n., 

-  423 - 



-»"«.--«.:;•!?.. ■: 

which is analogous to the first of the equations of the system (20.21a], and 
which goes over into it in the nonrelativistic limit v(xlt)<<c and for a 
zero value of the chemical potential \i. 

From (24.17) it follows that ß"^(x,t) plays the role of an invariant 
"proper" temperature, while the quantity 

r1 (*,/)(•   "'t/r 

plays the role of an ordinary, noninvariant temperature. 

24,3.      Relativistic Hydrodynamic liquations. 

The statistical operator (24.5) allows one to obtain the equations of 
relativistic hydrodynamics.      For this we    obtain linear relations between 
the average energy-momentum tensor and the thermodynamic forces SFy/ax^, 
assuming that the latter are small: 

(7VvU)) = o 

= (r.v (*))/ - >] J   f ^ (7Vv (*), 7Vv, ix', f,)) (?fvi(f,/ + <) dx' ic dtu 
w.    -L dV, (24.18) 

where (TjiV,TlJlvj)   is the quantum correlation function, and <...>l denotes an 
averaging over the local equilibrium distribution (24.9). 

Expression (24.1a)  unites all irreversible processes which can take place 
in a system with a single conservation law of energy-momentum,  i.e., thermal 
conductivity and shear and second viscosity, but for an Isotropie medium it 
is  inconvenient, because processes of different tensor rank are not separated 
in it.      Below we shall give another,  less general,  but correspondingly more 
convenient expression for irreversible currents in an Isotropie medium. 

In order to construct operators which describe irreversible currents,  it 
is necessary to separate out from the tensor T^y the part which describes 
convective motion with a hydrodynamic velocity u^; we have already defined 
this velocity by the condition  (24,12), 

We note that any vector Fw can be dividwd into a sum of vectors, one of 
which is parallel to Uy,  and the other of which is perpendicular to it,  i,e,, 

Fy    =   fUy    ♦    fy. (24.19) 
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From the condition of orthogonality of f^ to u^ 

find, taking into account  (24.8a), 
(24.19a) 

(24.19b) 

(24.20) We express the vector fy in tern's of the tensor 
•\iv   ~ "iiv   '   "|i"v' 

where 6^ is the Kronecker symbol.      The tensor Ayy is orthogonal to u^,: 

-",lA'lv = 0- (24.21) 

^v' (24.22) 
Assuming that .  v 

we verify that this vector is indeed the component of Fu perpendicular to x^. 
In this connection, multiplying (24.19) by ä]iV  and summing over p, we obtain 
with the use of (24.21) the expression (24.22). 

The tensor Ayv plays the same role in relativistic theory as does the 
Kronecker symbol in the nonrelativistic theory.  To make clear the meaning 
of this tensor we go over into a system of coordinates moving with the hydro- 
dynamic velocity (24.10).  The tensor Ayv in this system has a very simple 
form 

Anv = 6nv — ÖJMÖVI, ^24 22al 

or in matrix form 
10    0    0" 

,     ,0100, 
A=|  0   0    1    öl" ^24.221» 

.0    0    0   0/ 

Such a separation into characteristic components with respect to the 
hydrodynamic motion can be carried out for any tensor, and in particular for 
TpV: 
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(24.23a) 
Sv,..o,    SP^-O. '24-23> 

The coefficients of the decomposition (24.23) are equal to 

e=2 "Jti,.ih.. 
H,  A 

vV' (24-24) 
' MV ~ ^> AjiWl/niv1Av|V, 

HiV, 

which can be verified directly.  We shall omit the arguments x and t where- 
ever this leads to no confusion. 

The quantities (24.24) have a simple physical meaning: e is the density 
of internal energy, which is not related to the convective motion; P^csq^ is 
the heat current; PlJV is the stress tensor.  All of these quantities are 
operators or dynamical variables. 

In order to elucidate the physical meaning of the expressions (24.24), 
we write them in a system moving with the hydrodynamic velocity.  Making use 
of (24.10) and (24.22), we obtain 

e = — '44, 

n'      T'  » T'  * T' ^ A A T' (24.24a) 
i'nv ■= .l HV ~ ÖH4MV — 0v4i nl + OJJ40V4/44- 

Taking into account  (24.14)  these relations can be written in the form 

e - //', 

p'n~cG'i      01=1.2,3),       P; = 0, (24.24b) 
Puv-r^   (f., v=1.2, 3),     PU^O. 
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In a system moving with the hydrodynamic velocity all quantities must 
coincide with their nonrelativistic expressions.      Thus,  indeed, c has the 
meaning of an energy de.isity,  Py is the energy current in the co-moving sys. 
tern, i.e., the heat current divided by c, and Pvv is the stress tensor. 

We introduce the viscous shear stress tensor nyv* which,  like Fyvl is 
orthogonal to Uy, but which has  zero trace: 

5 

' (iv ~ nnv "r P^HV« 

where 

11 

Then 

1 S Xuvtly, = 0, 
u 

and, in addition. 

\                    because 
V AM^l(l+4) = 3 

(24.25) 

(24.25a) 

(24.26) 

(24.26a) 

Using (24.25) we write the decomposition of the tensor TpV into charac- 
teristic components  (24.23)   in the form 

TV = tu,uv + PV + /V'v + p^ + ***• (24.27) 

Thus, we have divided the tensor Tyv into three parts, having scalar, 
tensor, and vector character with respect to the operators e, p, Py and vvv. 
This division, which is applied in phenomenological relativstic hydrodynamics 
[133,134], enables us to separate scalar, vector, and tensor processes. 

After an averaging with    respect to local equilibrium the first two 
terms in (24.27) have the meaning of the energy-momentum tensor of an ideal 
liquid and describe non-dissipative processes.      The two following terms give 
the heat current, and the last term gives the viscous momentum current.      These 
parts describe irreversible processes. 

For a local equilibrium state the average values only of the first two 
terms are non-zero: 

iT^)i = ;(«)( + (/>)/) V'v + {p)i öMv. (24.28) 
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because in the co-moving system the average values of vectors and of the non- 
diagonal elements of tensors are equal to zero (see section 20.5), 

(^-0,  (^ = 0. (24.29) 

We represent the statistical operator (24.5)  in such a form that scalar, 
vector, and tensor processes will be separated in it.      Taking into account 
(24.27)  and the orthogonality of aup/axy to u^,, 

k"^  du 
^"5^7"^ = °. (24.30) 

which follows from (24.8a), we obtain 

V T    - ^- = 
Jj ' w dXv 

(24.31) 

n 

where vi     JL 
U-C-j'^üx» (24.32) 

is a scalar operator, having the meaning of the total derivative in relativis- 
tic theory.      In this connection,  in the moving system (24.10)   the operator D 
coincides with the time derivative, 

D-W (24.32a) 

In the expression (24.31) which goes into the exponential of the statis- 
tical operator, terms containing operators of different tensor rank are 
separated.      Taking into account  (24.31), we write the statistical operator 
in the form 
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p = Q-'cxpl - V] J ß(*. 0 in A*. 0 T^i*) d* - 
0 

(24.33) 

The quantities 

^  p-i^L_lD,v    div« 

play the role of thenaodynamic forces, associated with the currents 

while the quantity D3 can be expressed in terms of divu by using the equations 
of ideal hydrodynamics.      In this connection,  in accordance with  (24.28)  for 
a local equilibrium state we have for the energy-momentum tensor 

{Tf,v («)); = /'Vv + Kiv. (24.34) 
where 

h-Wi + ip), (24#34a) 

is the thermal function or enthalpy per unit volume, and 

p = <p>l (24.34b) 

is the pressure.      Equating to zero the four-dimensional divergence of (24.34) 

^-(^(«^-O. (24.35J 

we obtain the hydrodynamic equation of a relativistic system, neglecting dis- 
sipation processes: 
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(24.36) 

where a summation over repeated indices is assumed.      Taking the scalar prod- 
uct of this equation with u^ and making use of (24.8a), we find 

^V "' "tl ox, '"   ' (24.37) 

or in the notation of (24.32) 

-t/iaivui-D(p-/n = 0. (24.38) 

In ovir case p and h are functions of ß, and consequently. 

.—j~r^^«-pf-- ^       C24o39j 

because , ,        a ^£. 
(24.39a) 

Consequently, one can eliminate the quantity Uß in the exponential of the 
statistical operator (24.33): 

p = Q"' exp j - ^ J ß (x, 0'"v (*. 0 7"4v («) '/* - 

a 

-J  J ^-cß (*,/ + /,) l'V-^.^)-^  

-S^^^)'p"'^<+/')'P'X)M~^D",'(JC'<+<|))+ 
I* 

+ p'(*. idülvuix.t + t^dxüt^, (24.40) 

I where , 
j p'{x,t)~P{x,t)-lgz(x,i). 
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We shall now obtain linear relations between the average currents and 
the thermodynamic forces, assuming that the forces are small; we shall limit 
our attention to linear terms and make use of the Curie theorem  [27], accord- 
ing to which only currents of the same tensor rank can be connected: 

OVvW) = - ü J J ef'' i^ix), n.cv.U', /.OßU'. / + /,) X 

(PtlW> = c-1((7(l(jc10)=        x '^~^ cdx'dtu (24.41a) 
u 

V J J ^{P^XIP^K'^M^'J + DX 

IJ 

= - I \ etf'{i)'{x),i/{x',il))f,!X',t + ll)d\\'u(x', l + t^cdx'dti. 
(24.41c) 

We shall make use of the property of spatial isotropy of the system to 
simplify the expressions for the correlation functions which appear in the 
relations (24.41a) and (24.41b). 

In the moving system the tensors (P',P') and (TI',0 have the usual form: 

K, p;)-MJtv. 
(%v. %,%•,) = ^n-Tjj^W.Ävv, + Önv.övii, --jöt.vö,iv J, (24.42) 

where Lp^L,, are scalar constants, and u» v, wi» vi=l, 2, 3, while the time 
components are equal to zero; then 6uv"

A'yv» where the prime denotes the 
function (24.20) in the moving system. 

Returning to the original system, we obtain 

(n.iv, %,»,) — ^« a » ^'tl'^VVi + ,^'v'Av'1' - T ^wvAtt.v, j •      (24.43) 

The tensors (24.43) satisfy the conditions of orthogonality to the 
4-velocity, which follow from (24.23a), condition (24...5a), and spatial 
isotropy, 
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Calculating the complete contraction of the left and right hand sides of 
(24.43), W3 find the scalars Lp and L^: 

LA*,X', o=.;-(/>(*) •/>(*'./)). 

L« ix, x', t) ■- i (.i (X) : * ,*'_ /)), (24.44) 

In deriving the second cf the relations (24.44) we have made use of the fact 
that 

because 

SpA2 ■ SpA = 3, 

^A|VVV = .V.V. 
?. 

Taking into account (24.43), we write the relations (24.41a-c) in the 
form ,, 

(Sv (*)) ^ - i J J S' i.-, ix, x', /i)tiU'. / + /,) X 

;1 ,       Ölt,. Ix'. /-r/,) \ 
V V-.Vv.-^---,—^k^'j/,, 

Jvv.     J 

V (PnW)-^J J c" l.r.{x.x\ t.)\Mx'. t + t{)X 
V    — v 

{p[x))-\l){X})i^ 

^~}  I s'-Lpix.x'.iMHx', t hti)nvu(x',l + ll)cäx'ätl,  (24.45) 
(24.45) 

where 

LAx.x'Jd-ip'lxlpHx'JM (24.45a) 

If one neglects the retardation and spatial dispersion in (24.45), then 
these relations go over into the linear relations of relativistic hydrodynamics: 
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(24.46) 

which were obtained, except the last relation, by Eckart [133] (see also [82]) 
by the method of phenomenological nonequilibriutn thermodynamics.  In statis- 
tical nonequilibrium thermodynamics one obtains in addition to these relations 
explicit expressions for the kinetic coefficients - shear viscosity n» second 
viscosity t» and thermal conductivity: 

— Oj 

0 

Ä = |J $e*'iP{x).p{x'tt))l/x'dtt (24.47) 
— X) 

II 

C = ßJ J ^ip'ix),p'{xf.t)}Clx'dt. 

j   Expression (24.4b) for the heat current contains the relativistic term 
^I)uv, which shows that the heat current in a single-component system is 
caused not only by a temperature gradient, but also by an acceleration. 

24.4.  Charge Transfer Processes. 

Up to this time we have considered only the conservation of energy- 
momentum.  In the relativistic region the number of particles is not con- 
served, and if one considers the transfer of a number of particles, then one 
must take into account their formation as a consequence of various reactions, 
i.e., in the equations of balance for particle number one must add source 
terms, as in the theory of chemical reactions (see section 25.5). 

Besides energy-momentum charges of various types are conserved in rela- 
tivistic theory (electrical, baryon, lepton, etc.).  We shall consider the 
conservation law for charge of a single type (the generalization to different 
types of charge presents no difficulties): 
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' = o, O d/v (*. ') 
dXv 

(24.48) 

iS^he dfnsity of 4-vector current with spatial components ji, j2, 
charge density CnS10nal CUrrCnt) tine comP°nent J4-icp. where p is the 

The conservation law (24.48) corresponds to the local integral of motion 

K(*) = ii (x) + ic >] J ^ —07^ dt, 
CT.-i J*v (24.49) 

which transforms like the fourth component of a vector. 

We construct the quantity B4(xft). which transforms also like "ft 00. but 
which contains the parameters q> (x.t) - some auxiliary scalar field, and 
8(x»t) - the inverse temperature: 

*)- — 'P(*. ')»(*. t)u(x)= /)cp(*. t)jA*) + 
0 

+ i J t -+-/|) q> (*, t + t.)i4(*. = 
—a* 

0 ( 
--i'P(x, /)(*. /);'.,(*) + / Je"1|/4(*,+/i)<p(*, / + /i)-

-/<$(*, i + /;)«r(*. t + 'i) V M j dtx. 
v"' V ' (24.50) 

The operator B^x.t) is a solution of the Liouville equation for e-»-0. 
It corresponds to the invariant 

j" £,(*, /)/.'A = — I [}(*, /)(P(*. t)ijt(*)dx + 

+ 0£ j j /v(*. 'i) ' + /i)«P(*. / + /i))/cd*d/,, 
V — to 

(24.51) 

where surface integrals are omitted. 
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In the statistical operator (24.5)  one must also take into account the 
invariant  (24.51): 

p^Q-'expl- | /Vtflv(*. 0 + 7^(*. t)]dx\. (24.52) 
i -1 v y  J 

The nonequilibrium statistical operator (24.52)  can be applied to the 
study of transfer processes of energy-momentum and charge in a spatially homo- 
geneous  system.      We write it in the explicit form: 

p = Q~1 exp ß (*./)/- S "v (x, t) iTiv (*) + j <p (*. /) U («) ] äx— 

—oo \ nv 

Z-Hx. t + h)^^.* • -..,_.•..>• i24^} +kix.i,)-£- ßix, i + td T <P(x, t + ts)]ic dx dtl 1 

The quantities  3Fv/3xu and 3fif/3xu play the rolo of thermodynaroic forces, 
If they are small, then for the average current of energy, momentum,  and 
charge we obtain linear relations of the type (24.41a-c).      Here, as earlier, 
it  is convenient to separate the convective motion in T^ with the help of 
(24.23)   and analogously in jv.      If the particles have spin, then in addition 
to the conservation of energy-momentum (24.1)  and charge (24,48)  one must 
also take into account the conservation of angular momentum, which can be 
done by the same method. 

For ordinary gases the quantum hydrodynamic effects are very small. 
Quantum hydrodynamics finds application in a different area -  in the theory 
of multiple production of particles in collisions of fast nucleons with 
nuclei   [157,138]. 

i 25.      Kinetic Equations 

25.1.      Generalized  Kinetic liquations. 

Up to this time we have considered transfer equations for the hydrodynamic 
regime,  in which the nonequilibrium state can be described macroscopically by 
a small number of hydrodynamic (or thermodynamic)  parameters:    temperatures 
and chemical potentials of the components,  mass velocity, etc.      In considering 
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strongly nonequilibriun processes for systems with a small interaction in the 
spatially homogeneous case (sections 23.4, 23.S)  it turned out that the average 
occupation numbers satisfied the kinetic equation (see equation (23.64)).      We 
shall show that this is not accidental and that the method of the nonequili- 
brium statistical operator can be applied,  following the work of L.  A. 
Pokrovskiy  [5b,191], also to the kinetic stage, if the parameters describing 
the state of the system are chosen in an appropriate manner.      (For a dis- 
cussion of the meaning of the kinetic and hydrodynamic stages see page 323). 

Let us consider a quantum mechanical system with a liamiltonian 

H = Hg ♦ Hi, (25.1) 

where HQ is the Hamiltonian of the free particles or quasi-particles,  and H, 
is the Hamiltonian of the interaction, which we shall consider to be small. 

We shall assume that the set of quantities <Pk>  is sufficient to des- 
cribe the nonequilibrium state for time scales which are not too small, where 
the brackets denote a nonequilibrium averaging.      For example, for a spatially 
homogeneous state of a gas one can choose 

^* "="»«* • (25.2) 
and tnen 

W-W.) (25.3) 

is the distribution function for the states k.      For a spatially inhomogeneous 
case one can choose 

and then 
*H' *■ (25.5) 

is the distribution function, characterizing a spatially inhomogeneous state 
of a gas.      Thus, the distribution function <Pk> is considered as a therrao- 
dynamic parameter, which allows one to extend the general scheme of nonequili- 
brium thermodynamics to kinetic processes.      As the kinetic equation is in 
general nonlinear,  it is necessary to consider a nonlinear variant of the 
theory. 

We note that the operators P^ often satisfy simple commutation relations 
with the Hamiltonian of the free particles 

i//., pa-':>■,■/p" (25.0) 
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v; 

where the a^ are some numerical coefficients, which define the free evolution 
of the operators Pfc.      In the article by S. V.  Peletminskiy and A. A.  Yatsenko 
[36] a generalized kinetic equation has been constructed for the average 
values of such operators. 

In the particular case in which the Pfc are chosen in accordance with 
(25.4), and 

we have 
(25.7) 

(25.8) 

For the choice of (25,2) we have aki=0. 

In the majority of problems it is sufficient to consider only operators 
which satisfy the condition (25.6), although it is sometimes convenient to 
include in the discussion operators which do not satisfy this condition; we 
shall not consider such cases. 

The operators l\ obey the equations of motion 

^l^.//)---^^!^.//.) (25.9) 

To the equations of motion (25.9)  corresponds the nonequilibrium statis- 
tical operator, constructed according to the usual rules (see § 21), which 
in the limit  e-H) satisfies the Liouville equation 

p-Q-'exp   - 

or 

(25.10) 

(25.11) 
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where the Fk(t)  are some parameters related to <P\i>,      This dependence is 
defined from the auxiliary conditions 

where wc denote by 
(...HSpfo...) (25>13) 

an averaging with the nonequilibrium statistical operator (25.11), and by 

(...)7=Sp(p      .) 
(25.14) 

an averaging with the quasi-equilibrium statistical operator 

Q„ = Spexp|-V/.^(^p I 
(25.14a) 

(25.14b) 

The quasi-equilibrium statistical operator  (25.14a)  is constructed analogously 
to the local equilibrium statistical operator (20.10), which was discussed in 
S 20, but the statistical operator (25.14a)  can describe strongly nonequili- 
brium states and is not related to the concept of local temperature. 

For the nonequilibrium statistical operator  (25.11)  the relations 

d In Q?        öd 

öf*    = ^" — (^X^—<^t). (25.15) 

serve as an analog of the thermodynamic equalities, where 

<D-<I.(...fft...)-lnQ, (25ab) 

is the analog of the Massieu-Planck function. If k takes on a continuous set 
of values, then in (25.14a) the sums go over into integrals, and the functions 
go over into functionals. 

The thermodynamic equalities can also be represented in the form 

T^f-^W- (25.17) 
where 

S-V+liP^FtU, (25.18) 

438 



mztmmr&m^'t' -.- v- t'-"-A::V-rW-9!*n-r.-H' 

is the entropy of the nonequilibrium state. 

The production of entropy is equal to 

S~Z{Pk)Fkii), (25tl9) 

because 
<i>~-2i{Pk)F*{t). (25.20) 

The fact that the relations (25.IS)-(25.18) have the same form as the 
thermodynamic equalities does not imply that the nonequilibrium state which 
is described by the statistical operator (25.11) is close to a state of 
statistical equilibrium. 

The average value of (25.9), calculated with the operator (25.11), 

-^--i^'^ + TF«^ ^D. (25.21) 

is a generalized kinetic equation for <Pji>, because the average commutator of 
P^ with the interaction opeiator is expressed in terms of <Pk> with the help 
of (25.11),  (25.12).      The first term on the right hand side of (25.21) 
expresses the free,  collisionless evolution of the distribution function 
<pk>» while the second term expresses the collision integral. 

We shall eliminate in the exponential of the statistical operator (25.11) 
the time derivatives of the parameters Fjjt+ti).      We have 

'!F>i W     V -i^*- / p \ = 
at    ~-J O(P,) 

K'l! 

V    äFk 
-Ibl lHP7)aim {Pm) n' ~* T(Pjlb^" "M- (25.22) 

im l 

Further, we note that 

Vf^(PJ) = ([//o. X^j^-O. 

because  ^   h commutes with Pq.      Differentiating the identity (25.23) 
with respect to F^,  we obtain 
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>;a,m(Pm) + VfA^.0. 
(25.24) 

TakinR into account that 
^(Pf) d'lnQ, = d(^) (25.25) 

V    / OFk   ~       äFnOFt äFt    ' 

we multiply (25.24) by dfi/d<Pyk> and sum over k.      As a result we obtain 

S dW a*' ^^ + S /7'"a"" = 0- (25.26) 

Using (25.26), we bring (25.22) to the form 

dFk (t) I     Y V      ^*        I    /ir.       ,r n 

This equation can be considered as a kinetic equation in the variables 
Fk. 

Substituting (25.9)  and  (25.27) into (25.11), we write the nonequilibrium 
statistical operator in the form 

p-Q-'exp -yf*(on+ 
o 

-oe * V 

+i;^w-«'>..".i)'rt'>.(',))}.   (25.28) 

where the superscript t+tj on the averaging sign implies that it is carried 
out with the statistical operator (25.11), taken at the instant t+tj.  From 
(25.28) it is evident that the integral term in the exponential is of at least 
first order of smallness in the interaction. 

We shall seek an expansion of the collision integral 
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Sk^-JbilPtoHti (25.29) 

in a series in powers of the interaction.      Since the operator which is being 
averaged (25.29)  is of first order in the interaction,  in an expansion of the 
exponential (25.28)   (see section 22.2) one need keep only first order terms 
in order to obtain an expansion which is accurate through second order terms. 
The expansion of (25.29) begins with terras of the first order and has the form 

where 
ski...{pi)...) = sv + sv+ ..., i2Sti0) 

SV-ii^HA),. C25.31) 
c(2)        c'(2)   .    c"(2) 

(25.32) 

S'km 2-F J ^'([tfu />*], Wdh), P, (/,)]) f, (/ + /,). (25.33) 
/ -oo 

0 

s""--^ J^.^'-d//,. PtiPtUMx 
in, I        —oo 

x^W^hiu), pnm)q (25#34) 

and the usual notation for the quantum correlation functions has been intro- 
duced : 

(ß, C) = J dx {B {c-^ Ce^ - (C),)),, (25-3^ 

(25.3fa) 

k 

Formulas  (25.31)-(25.34)   already give the collision integral of the 
generalized kinetic equation with an accuracy through second order in the 
interaction, but they can be further simplified.       In the collision integrals 
(25.33)  and (25.34)  one can omit the interaction in the Heisenberg represen- 
tations for the operators, because in these formulas there is already a factor 
of second order in the interaction.      In addition,  in (25.33)  one can put 

Sf,«-M,>;■,(',)-SM')/',. (25i37) 

441 



J'# «»:»-•>% ■ .'4:-*!W»w(WWr«»«r»..ww«ni|.m.-.,. 

because this sum is an integral of motion when the interaction is neglected. 
Indeed, (25.28) is an integral of motion for e-K), and the integral terms in 
its exponential are proportional to the interaction.  Noting also that 

kJ 
Vc-n/MO. PA (01^ = ^-^M-'iK'1-4. (25.38) 

and carrying out an integration over T, we obtain 

Ofe  — 
_1_ rf/ef'([//.(/). [//;, ^11), (25.39) 

i.e., this part of the collision integral is proportional to the Fourier 
component of the retarded Green function with usie, or to the spectral inten- 
sity of the time correlation function for zero frequency (see § 16). 

We now transform Sj^'C^), writing it in explicit form: 

ST-.-V-L J^JW.. Ptu-«*ä^x 
I, m —oo 

X ([//.(/,), Pm{ti)])qiPl{ti)-{PiUi))q)e'X 

We shall shew that 

(25.40) 

(25.41) 
t.m 

from which it follows that in (25.40) one can put  tj^O everywhere except li(ti). 

Neglecting the interaction, we calculate the time derivative of the matrix 

d{n*) ()2lnQ„ 

0Fn                dFnOFk 
« 

We have 
d   0(Pk)          V     ö'lnQ,, 

IT     Ot'n               ***  OFn^FnOlm 

(!Fm 

m 

s _v 

I 

frfT(P*<?-^(P„-<Pn)r,)C^ 

'«. / 

1       <V la Q., 
Ih   .IFnOFkriF,,,  al,"l'l- 

(25.42) 

(25.43) 
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Differentiating the identity (25.23) with respect to Fn and Fj^, we find 

v      d> In Q7 V ^ In Qv Y ^ ^ _ 
2J dFndrk0Fm 

ai'"ti + -j ,-ii:.(iF... a*«'+-j fw\f)/.._ a'"» " u- 
/, m 

()/■„ <}/•"„, 

(25.44) 

With the help of (25.44),   (25.43), and (25.42), we obtain 

d   HP*) 
(It      dFn 

 L V i'HIL 
ih (25.45) 

Taking the derivative with respect to t of the identity 

V     ^3      d{p'")  _ A 

(25.46) 

multiplying the result by 9Fji/a<Pj.>, and sununing over k, we find 

d     OF 
dt   0 (25.47) 

from which, by making use of (25.9), we obtain (25.41). 
one can omit tj everywhere except ll^tj). 

Noting also that 

Therefore in (25.40) 

öS? 
J dx{[Hu Pk]c'^iPn-{Pn)q)e^)^ib-^-n 

we write (25.40)  in the form 

Ok      = n  J die" /MO. >/m-3- 
3Sl_ 
(Pm) ). 

(25.48) 

(25.49) 

or, combining (25.39) and (25.49), we obtain 
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ft" = j-j- J  d! <--   < //,(/). \iil,Pk[ + U'Vpm 
dS' (1) 

<>{Pm) (25.50) 

Formulas (25.31)  and (25.50)  give an expansion of the collision integral 
in powers of the interaction with an accuracy up to terms of second order. 
They were obtained in this form in the article by S. V.  Peletminskiy and A. A. 
Yatsenko  [36] by a different method, which is close to the method of Mori  [30]. 

25.2.      Non-ideal Quantum Gases. 

As a simple example we shall consider the construction of the kinetic 
equations for non-ideal quantum gases.      In this case the Hamiltonian of the 
free particles is 

//.: ü ^«*"»' ^ = 
¥1* 

(25.51) 

and the interaction Hamiltonian is 

//■ = rnT V 
"l   "2 (25.52) 

ft   l &.,-*. +k„ 

where 
.1. (iM2 i fei*') = I (v iki -k\)±v (fe, - ftl), 

(25.53) 

is the matrix element of the interaction, and 

v(k)^ i '|i(.v)c' {kx)ilx (25.54) 

is the Fourier component of the interaction potential. 

The matrix element  (25.53)  is symmetrized for liose statistics and anti- 
symmetrized for Fermi statistics.      This is convenient to do, because for Bose 
statistics an interchange of the operators \^ and ak2, wheh is equivalent to 
an interchange of the indices k\ and k2, does not change the sign of the 
product, while for Fermi statistics it docs change the sign.      If one does 
not perform this symmetrization (or antisymmetrization), then in the final 
results similar combinations of the Fourier components will  appear just the 
same. 
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V ^ 

We choose as the basic operators 

(25.55) ',» = fl*fl» = '1». 
and then 

.; "'"■"■|-0 (25.56, 

and in relations (25.6) we have ak\s0> 

The commutator of the interaction operator with n^ is equal to 

[//!.« *1=Y  S  (l)(*l^l*lÄ)(a*ß*2a*;a*~a*a*'1
a^a*l), 

i. * t' (25.57) 

where the symmetry (or antisymmetry) properties of the matrix elements (25.53) 
have been taken into account. 

It is now easy to calculate the collision integral  (25.39), using Wick's 
theorem and formula (lb.32) 

ST -p- Jd/*"([//■('). [^„«*11),= 
— oo 

""(^^(^"»a)'1*'."*)' (25,58) 

where 
^M.|ifeW-^|cD(M2|^)f6{^1 + \"^;-^) (25.59) 

is the probability of a transition per unit time in the Bom approximation, 
and 

«* = («*)„ (25.00) 

are the average occupation numbers of the state k.      The remaining collision 
operators  (25.31)  and (25.49)  are equal to zero, 
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We finally obtain the kinetic equation for th- quantum Bose or Fermi 
gas in the form 

dn 

.,.-, 

where the plus sign refers to a Bose gas, and the minus sign refers to a 
Fermi  gas. 

A third approximation for the collision operator for quantum gases was 
obtained by N, N. Bogolyubov and K.  P, Gurov  [139]  (see the monograph  [140]), 
and a fourth approximation was obtained by V.  G.  Bar'ya^htar, S.  V. Peletminskiy, 
and A.  A. Yatsenko [141]. 

The kinetic equation for quantum gases with the collision operator (25.61) 
was first obtained by G. Uhlenbeck and ii.  Uehling [142].      This problem was 
considered later by many authors   [143-145], who began with the mixed coordinate- 
-momentum representation of Wigner (see section 14.2).      More detail on the 
derivation of the quantum kinetic equation can be seen in the monograph by 
Fudzita  [146]  and in the articles   [147-149]. 

Kinetic equations of the type  (25.61)  are applied to nondegenerate quan- 
tum gases.      For degenerate gases    the kinetic equation must be constructed 
for the distribution functions of the elementary excitations,  rather than 
for the distribution functions of the particles.      For example,  for the ele- 
mentary excitations in a non-ideal Bose gas the kinetic equation was obtained 
by N.  N.  Bogolyubov  [150]. 

For a non-ideal degenerate Bose gas the distribution functions (25.3)  are 
not sufficient;  it is necessary to consider also the functions <oiiia_j>>,  i.e.. 

This scheme is carried out  in the article  [151].      An analogous situation 
exists in the theory of superconductivity. 

25.3.      Kinetic Equation for Electrons in a Metal. 

Let us consider one more example of a quantum kinetic equation - the 
Bloch equation for electrons  in a metal.      In this case 
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where 

// = //„+//„ 

u   »^"*. 'i 

(25.62) 

(25.62a) 

is the Hamiltonian of the free electrons and phonons, and 

li.b.a.  o 
»,-* -o 

(25.62b) 

is the interaction Hamiltonian of the electrons with the  lattice phenons  (see 
the footnote on page 176). 

To derive the kinetic equation for electrons in the spatially homogeneous 
case we choose 

P, = «tVww- (25.63) 

The kinetic equation for <n^a>  has the form 

Noting that 

%^ = ^(K..//Il) = ^ + s^ + 

s,*,, = 1
,
;/([*,,. //,1V--0. 

(25.64) 

we write the kinetic equation (25.64) in the form 

'  V -iLiüvr/iAVM)/u;{l-".)-.V./(l-/i-..,)^)X 
V      *•■  w 

ft.-*-7 

X 6 (C*.-£*-/«•»„)--JT- J^ >.  -—tfuf X 

where 

(25.65) 

(25.06) 
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are the distribution functions for electrons and phonons. 

liquation (25.65) is the well-known Uloch equation, on which the theory 
of electrical conductivity and thermal conductivity of metals and semicon- 
ductors is constructed [152-155]. 

In the same way one can derive the kinetic equation for the phonon dis- 
tribution function: 

^-     -yv-V,. //.I). (25.b7) 

where the right hand side is easily expanded using perturbation theory. This 
equation is considered in the book [153]. 

One can obtain just as simply other kinetic equations, for example, the 
I'eierls equation for phonons in a lattice [156], where collisions are caused 
by anharmonicity effects. 

The equation for a small subsystem, interacting with a large system 
which is in an equilibrium state (thermostat), is a special case of the 
kinetic equations.  For such a  subsystem the probability of a direct transi- 
tion is not equal to the probability of the inverse transition, because upon 
transition an exchange of energy with the thermostat is possible.  Therefore 
the probability of the transition is not simply the square of the matrix ele- 
ment of the perturbation, as in (23.5'.)), but rather it must depend on the 
temperature.  The method of the nonequilibrium statistical operator is con- 
venient for obtaining equations of this type, as was shown in the article of 
L. A. Pokrovskiy [157],  In this article is considered also the particular 
case of the derivation of the equations for spin systems taking into account 
the nondiagonal terms (the Redfield equations [138]) and the equations for 
the average spin operators, i.e., the Bloch equations [158] (see also [211]). 

An important area for the application of the kinetic equation is a com- 
pletely or partially ionized plasma and plasma-like media.  To construct the 
theory of transfer processes in such systems it is necessary to go beyond the 
bounds of the ordinary perturbation theory of the small interaction and to 
take into account the effects of polarization of the medium; otherwise diver- 
gences appear in the kinetic equation.  The kinetic equation for a plasma 
taking into account polarization was first derived by Balescu [176,177] by 
the method of Prigogine [178] and Lenard [179] by the method of Bogolyubov 
[1].  A sufficiently simple and completely rigorous method of deriving this 
equation was given by Yu. L. Klimontovich [163].  The statistical theory of 
inelastic processes in a plasma was developed by him using the same method 
[180], 

The kinetic theory of the electron liquid in metals was worked out by 
V. P. Silin [181,182], who predicted spin waves in nonfcrromagnctic metals. 

In this book we shall not be concerned with the theory of transfer pro- 
cesses in a plasma, because this is a large and independent subject.   In addition, 
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the method of the nonequilibrium statistical operator [2-5] up to the present 
time has not been applied to a plasma, although this is possible. 

v J 
§ 26. Kr—ers-Fokker-Planck Equations 

In many problems of nonequilibrium statistical mechanics (Brownian motion 
of a particle in a liquid, relaxation in a system of oscillators, the theory 
of homogeneous nucleation, etc.) the evolution of a small subsystem in contact 
with a large thermodynamically equilibrium subsystem, hereinafter called the 
thermostat, is considered. In the case of a weak interaction between the 
subsystems this evolution is described by the Kramers-Fokker-Planck kinetic 
equation, which was first derived by Kramers [161] using the theory of Markov 
processes, and proceeding from the Langevin equation with a phenomenological 
friction constant. Later this equation was obtained by Kirkwood [13] for the 
particular case of Brownian motion in a liquid. In this Kirkwood succeeded 
in deriving an expression for the coefficient of friction in terms of the auto-
correlation function of the forces acting on the Brownian particle. The 
Fokker-Planck equation was obtained from the equations of mechanics (classical 
and quantum), and expressions for its coefficients in terms of the correla-
tion functions of the perturbing forces were first obtained already in 1939 
in an article by N. N. Bogolyubov and N. M. Krylov [169] (see also the work 
of N. N. Bogolyubov [169a]) long before the article by Kirkwood [13]. Unfor-
tunately, these important articles were published in an almost inaccessible 
publication and because of this did not receive sufficient recognition at the 
time. 

In this paragraph we give a derivation of the Kramers-Fokker-Planck 
equation for the case of classical statistical mechanics using the method 
discussed in § 21, following the work of A. G. Bashkirov and the author [162]. 

26.1. General Method. 

Let there be N identical subsystems in contact with a thermostat, and 
not interacting with each other. The total llamiltonian of such a system has 
the form 

// = 1 ", (Pi, + "AP, Q) + - U (/>;. </„ P. Q), (26.1) 
I ' 

where Hl(pi,qi) is the Hamiltonian of the i*h small subsystem with dynamical 
variables pi,qi, »2Cp»Q) *s the Hamiltonian of the thermostat, P and Q being 
the collection of its dynamical variables, and U(pi,qi,P,Q) is the interaction 
potential between the i"1 subsystem and the thermostat. 

The macroscopic state of the total system is characterized, besides by 
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the thermodynamic variables of the thermostat, also by the distribution func-
tion of the subsystems f(p,q,t) in phase space. To this quantity corresponds 
a dynamical variable - the composite density of systems in phase space 

" (p, q)= 'Skip- Pi)t>(q- <7i). (26.2) 

such that 
/ (p. <7, /) = <" (/>. r/)>. (26.3) 

where <...> is an averaging with some nonequilibrium distribution function, 
which will be considered below. We note that the integral of (26.2) over 
the phase variables p and q is equal to the total number of the small subsys-
tems Jn(p,q)dp dq * N. In the particular case in which the small subsystems 
are, for example, spherically symmetric Brownian particles, pi and qi are the 
ordinary momenta and coordinates of the i*h Brownian particle pj_ and qi, and 
the expression (26.2) defines the density in the six-dimensional phase space 

n(p. q)= 4 (p-Pi) 6 («-«!>• (26.2a) 

which has been widely used by Yu. L. Klimontovich for constructing kinetic 
equations in the theory of the nonequilibrium plasma [163]. 

We shall consider first the general case when (26.2) is the density in a 
multi-dimensional phase space, the dimension of which is defined by the number 
of canonically conjugate dynamical variables Pi,qj. of a single small subsystem. 

The composite density (26.2) satisfies the equation of motion 

n (p, q) = {« (p, q), //) - - ~ /, (/>. q) - j, (p, q), (26.4) 

where (...) is a classical Poisson bracket (2.10), 

hip. ,)-(**£*+ *"»£"•"> (P. i). 
hip. J,A"')»<p-1)• (».») 

In accordance with the general method of constructing the nonequilibrium 
distribution function, the conservation law (26.4) corresponds to the nonequi-
librium distribution function 
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f) = Q  ' exp ! — \\n 1- ß I dp '.'</ e   j </f, c''; tf (/), </, / -;-/;)«(p, ^) /,)  = 

- Q    oxp | - !J,// + p J (//) i/// if (/'. (/. /) « f/J. q) - 

U 

+ ii (/;, ./, t + tjnip, q, /,)]) 

or taking into account   (ib.4) 

p = CT'cxn i--fv//+ß I dpcltjuip, q, I)nip, q)- 

(i 

(26.6a) 

(26.6b) 

where qp(p,q,t)   is a function of <n(plq)>; this  functicp will later be elimi- 
nated and will not enter into the final result.      This function is defined 
from the condition 

{nip, f/))-(«(>. 4»V (26.7) 

where <...> is an averaging with the total distribution function (26.6b), and 
<...>! is an averaging with a local equilibrium or quasi-equilibrium distri- 
bution function - 

p;-Qr'cxp [-ß//-f f) \ dpdqiip, q, i)n(p, q)}. (26.8) 

To eliminate the derivative<p(p,q,t)   from  (26.6b) we differentiate both 
sides of the equation  (26.7) with respect to time.      Then for the left hand 
side we obtain 

4 {n (p. q)) " - ~~ (/, (/'• 1)) - 717 ^(''- '''•> - 

.. (1 "Hid'. .11 '\ .: ULutJil .'II') p („ (p, q)) 
r=- \ ,1;, (hi    ' "7 ''/' /' 

^„„^..■-^   ^(w(/,,))+-^L-;i<n(,.,))S 

(26.9a) 
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where we have neglected terms of the type 

/ OUilK q, P, Q) \ /'Win, q, l\ Q)\ 
\ jf, / and \        oq i 

and we have made use of the equality (26.4) (see (2b.24)).  We now differen- 
tiate the right hand side of (26.7): 

where we have neglected the term 

'^ - I dp dq ip (/), f/. i) (;; (/), r/)),., (26.10) 

which has the order of magnitude of the average force in the local equilibrium 
state. 

Equating (26.9a) and (26.%), we obtain the collisionless kinetic equation 

till, (r, q\   th\ l/i, q.  M , ^'7i I/'. '/!_ 'j 'Z'. "■ 'l 

(i (/',</,/)- -,17    ,M   
;  ■-■'-/'■     ">n     ■'        (26.11) 

which we could have written down immediately, by assuming that <P(p,q,t)   is a 
function of the single particle distribution function <n(p,q)>, for which such 
an equation is evident. 

Substituting  (20.11)   into (26.6b), we obtain 

p«Q"!LXpf-p// + ß  I dpdqct(j>, q, i)u[p, q)~ 

-^dpdq 'idt^^^-fap.q^y- 

——Oq 1-ir' C1, '''Jl (26.12) 
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or in the approximation which is linear in the interaction between the sub- 
system and the thermostat 

|     vi "     p^/-p;{ijrf,K/J.//1^[^t^0;(p'^/l)-</;(P,?,/l)>')+ 
I' — oo 

I + £lii^l±iiL (^(p. ^ td-iuip. q. /.))/)]• (26.13) 

| where 

I and ~^^^). C-.Ua) 

I = ^ n{'}'q>- (26.14b) 

We shall now proceed to the derivation of the equation for the distribu- 
tion function f(p,q,t)=<n(p,q)>.  For this we average the exact mechanical 
equation of motion (2b.4) over all dynamical variables of the system, which 
gives 

(2b.15) 

01   , oni in, o)  i'f f>//i (p, q)   Of 

Uli ' Op          ('■/ <),/         öp 

-h'Uip, '7)>--(77</'•(/'. '/)>• 

This equation is none other than the Bogolyubov chain [1] for the dis- 
tribution functions.  Indeed, on the left hand side of (2b.IS) is the dis- 
tribution function in the phase apace of the subsystem, while on the right 
hand side is the distribution function of a higher order in the phase space 
both of the dynamical variables of the subsystem and of the thermostat.  To 
uncouple this equation we make use, on the right hand side, of the distribu- 
tion function obtained earlier (2C.13).   Then, 

x(i\ip,'Mi'<p<'i','y-<i'(i>''«''t^'))' + 

(26.1b) 

op' 
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Let us investigate the second term on the right hand side of (26.16) 

— oo 

.,        .. /W(p, 7. P. Q)\ /^r(/+<i) '^'p. g. P. 0. ülM 
-/ (P. <?. 0 ( ^ A. ^—5^ ^ /oj 

0 

-ß /^^^^/(P.^.OX 
— oo 

X\ ^ ^ /u' (26.17a) 

where we have neglected the correlation between different small subsystems, 
the correlation corresponding to a higher order of the small interaction U. 

We replace the local equilibrium averaging <...>^ of quantities small 
with respect to U by an averaging over the equilibrium conditional distribu- 
tion: 

{...n{p, q))i^l(p. q, /)(...>o. (26.18) 

//„ - //, {p, q) + U2 [P. Q) + U (p, q, P, Q); (26.19a) 
where 

the bar above the quantities in (26.17a) denotes the averaging (26.10).  In 
addition, we have neglected terms of second order with respect to the "average 
forces" 

/ dU (/>, q, P. Q)\        , /dUip, q, P. Q)\ 
\ üi /o and \ äp 'o' 

which are very small. 

In particular, if, for example, the potential depends on q only through 
the difference Q-q, and the ilamiltonian (26.1) is an even function of Q, then 
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I     v y 

the average force 

Op /„ 
/OUip. q, P, Q)\ 
\     da     /n 

is exactly zero, which is the case, for example, for a Brownian particle in 
a liquid. 

These arguments can be used also to calculate the local equilibrium 
current 

ifdp, ^-{miLlJLQL,^ q))r^lE^QL)Q f (p, ,. 0i    (20.20) 

which may also be equal to zero, but which in the general case is a small 
quantity; as will be shown below, taking this quantity into account leads to 
a renormalization of the energy of the subsystem Hi-^Hi+<U>o. 

In an analogous way one can investigate the third tern on the right hand 
side of (2b. 16).  It is equal to 

blip a t)   f (ii gw, ^{
P- £ ' + '■> (MJh <?■ p- & dt/fp. g. p. Q. M\ (26.17b) 

— 00 

in the same approximation as for (26.17a). 

Thus, 

/OUip. q. !\ 0}   iW (/'■ <?■ ^ V.'ilN   i 

/ JLMf, ?. /', 0)  .^0'. g. P. Q. 'ON (26.21) 
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and analogously 

| \li W' HI/ \~ oq 

+ ?,;P. ,. /) / ,/M- '""■■;;IHM(ac"',-J/-QI x 
— OO 

(26.22) 

lie shall now eliminate the derivatives df/dq and 3<p/3p from (26.21) and 
(26.22).      For this one needs only the zeroth order in the interaction poten- 
tial, putting 

/(p, qt t)~]t(p, q, 0sQrlcxp{-ß(/i'1(p1(7)-(P(P. <7. 0)}. (26.23) 

from which 

dqi (p. q. I + M       dH, (p, q)    ,   ,T  0 In I (/», ?. l + h) 
 TP ' V'P       +U h 

 Tq öq + U dq ' (26.24) 

Substituting into the right hand side of (26.15) the expressions (26.21) 
and (26.22), and taking into account (26.24), we obtain 
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X   ' 

dl     d (//, (£. £j + {U (p. <?, P   Q))o) Hl    d (//, (p, g) + {U (p, q, P, Q])0) dj ^ 
■ ft --—' 0p jq" Qq öp = 

L _oo 

A\ öp dp /o"*" 

+ß/(p. ,. /) j' d/. .«■ (Ä^i + kr iMi£..tI±lii) x 
— 00 

/£N£, ?■ g, Qj  Wjg, g. P. Q. /ij.\ 1 _ 
A \ dp eJ« /oj 

ii 

ß/ (p. 9. /)   | r/1, ^. (^1^- + /er ±ÜLÜ^1±M) x 
— oo 

v /äUJjh g, g. Q) g£j£. 7. P. Q. /i)\ 
*\dq dp U~ 

-VHP. ,. 0 /^.^(i^^r^^^i'ijx 
— 00 

- / w {£• i- ^91 ()U{''- Q' p' % 'AS 1 

"dp 

(26.25) 

This equation describes the evolution of the distribution function of a 
subsystem which has coordinates p and q, and which is in contact with a thermo- 
stat; it can be considered as the Liouville equation for an open system.      The 
right hand side (the collision integral) shows that the evolution of the dis- 
tribution function f(p,q,t)  at the moment of time t depends on the state of 
the system at the preceding moments of time —<t*t1<0.      It  is customary to 
refer to equations of this type as not being Markov.      A Markov equation is 
obtained from (26.25)  in the particular case in which the time correlation 
functions 

^ dp       dp   ' o'        ^ dp       d.y   'o etc., 

die out so rapidly that the terms which stand in front of them of the type 

Oil   ^ ~       Oq 

do not have time to change significantly and can be taken outside of the inte- 
gral over time.      In the Markov approximation (26.25)  has the form 
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öq dp 

"-^[Luip, q)(-~Yq—HP. <?. o + ftr—^ )- 

- ^-12 (P. fl) ^ .j- / iP< Q. 0 + "T j-p jj - 

- L.n {p, q) [ ^-'- / (p. Cht) + kT rp )J , 

where the following kinetic coefficients have been introduced; 

— 00 

II 

,    , sain   ... /Oi'i :■>.'!. P,   >')   OU ip, n, P, Q, t)\ LAP. 9)-ß J '//^( -^ ^ )o. 

(26.26) 

(26.27) 

The resulting equation  (26.26)  is the Kramers-Fokker-Planck equation, 
which describes the behavior of a small subsystem in a thermostat.      It can 
be regarded as the generalization of the Liouville equation to the case of an 
unisolated system.      This equation has been obtained by many authors   [161, 
164-168] using the theory of stochastic processes,  for which the kinetic coef- 
ficir its are expressed through the transition probability, which is considered 
to be a given characteristic of the random process. 

Application of the method of the nonequilibirum statistical operator to 
the given problem allows one not only to derive the Kramers-Fokker-Planck 
equation, but also to obtain expressions for the kinetic coefficients  (26.27) 
which enter into the equation in terms of the correlation functions of the 
forces which act on the subsystem. 
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26.2.      Special Cases. 

The simplest example of the problem which is being considered is that of 
the Brownian motion of a heavy particle in a gas or liquid, where the small 
interaction between the particle and the liquid results from the large differ- 

x /       ence in the mass of the Brownian particle M and a particle of the  liquid a. 

The Hamiltonian in this case has the form 

' i.l 

For the density (26.2a) we obtain an equation of motion of the type 
(26.4) with currents 

ii (p, q) = ^r n (p, </). 

; in ^        V dU(l~Qi) (26.29) 

The nonequilibrium statistical operator (26.13) in our case takes on the 
form 

II 

P = p,-p,ß jüpclg   (%//; <•". ■'^■^Ztll' jj(pt qt ti). ^^ 

here the average local current <J2>\  is equal to zero, because the liquid is 
considered to   be in equilibrium. 

As a consequence of the large mass difference (M>>ni)  the Markov approxi- 
mation  (26.26)  is completely adequate for the motion of the Brownian particles; 

:!l;-
:lq)iMl + !:T^' ^26.31) 

where ,1 

v r):  u/    Q.) 'iUiq-Qhi)x ...    ... 

M 
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X      ^ 

is the coefficient of friction, expressed in terms of the correlator of the 
forces which act on the Brownian particle. 

By the same method one can obtain the Kramers-Fokker-Planck equation for 
Brownian motion in a liquid with an inhomogeneous temperature distribution 
[57]. 

Another interesting example is the relaxation of a harmonic oscillator 
which is weakly interacting with an equilibrium system of oscillators similar 
to itself. 

The Hamiltonian of the total system in angle-action variables   (a,J)  has 
the form 

// = o) ^ Jt + U («i, .... a«, /|, .... Jn)- (26.33) 

A distinctive feature of this system is the dependence of the interaction 
potential U on both the generalized coordinates »j and on the generalized 
momenta Jj.. 

The density (26.2) in the angle-action space has the form 

n(u,  /)-^.V«-",) ^ (/-A). (26.34) 

Applying the general scheme to the system (26.33), we obtain the corres- 
ponding Kramers-Fokker-Planck equation  [Ibl]   (for more detail  see  [162];  for 
a generalization of the method see  [2U4]). 

i 27.      Extremal Properties of a Nonequilibrium Statistical Operator 

The equilibrium distribution functions and statistical operators for all 
of the Gibbs ensembles correspond to a maximum of the information entropy for 
various,  given, external conditions, as was shown in §§ 4 and  10.      The local 
equilibrium distribution also corresponds to a maximum of the information 
entropy for given distributions of energy, momentum, and particle number as 
functions of position and time.       In §§ 21-26 we constructed nonequilibrium 
statistical operators from quasi-integrals of motion, not connecting such dis- 
tributions with an extremum of the information entropy. 

Attempts have been made repeatedly to construct a nonequilibrium statis- 
tical operator from the extremum of the information entropy   [71,72]; however. 
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one usually obtains in this way only quasi-equilibrium distributions, which do 
not describe irreversible processes. In this paragraph we shall show, fol-
lowing the work of the author and V. P. Kalashnikov [170,189], that from the 
extreinum of the information entropy one can obtain a statistical operator 
which describes irreversible processes, if one requires the extremum of the 
information entropy for fixed thermodynamic coordinates not only for a given 
moment of time, but also for all past moments of time. It turns out that 
this statistical operator coincides with the nonequilibrium statistical opera-
tor which was obtained on the basis of quasi-integrals of motion in SS 21-26. 

27.1. Extremal Properties of a Quasi-Equilibrium Distribution. 

Our further discussion will pertain both to the hydrodynamic and to the 
kinetic stages of the nonequilibrium process; therefore we shall consider from 
the beginning the extremal properties of the quasi-equilibrium distribution 
which describes such states. 

Let the nonequilibrium state be defined by the collection of average 
values of some operators Pm, where m is an index which may take on continuous 
and discrete values. To describe the hydrodynamic stage of the nonequilibrium 
process one must choose for the Pm the densities of energy, momentum, and par-
ticle nunfcer (21.3a) or their Fourier components. To describe the kinetic 
stage one may choose as the Pm the occupation numbers of the single particle 
states (25.4). 

The quasi-equilibrium (or local equilibrium) operator is defined from 
the extremum of the information entropy (10.1) 

Su = - Sp(plnp) (27.1) 

with the auxiliary conditions of the constancy of 

Sp(p PJ = {Pm)[ (27.2) 

and conservation of the normalization 

Spp = 1. (27.3) 

In fact, the conditional extremum of the functional (27.1) corresponds 
to the unrestricted extremum of the functional 

Up) = - Sp(plnp)- Sp (p/',J - (<l» - l)Spp, (27.4) 
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where Fn and $-1 are Lagrange multipliers. From the condition 

6L(p)= - Sp/(lnp + U>+ J />
mFBl(0)fip} = 0 ( 2 7 > 5 ) 

it follows that the extremum corresponds to the quasi-equilibrium statistical 
operator 

P, = exp | - (D - V] PmFm ( / ) J s exp { - 5 (/, 0)}, 

'I> = in Sp exp| - V] P„fm (/)J. ( 2 7 * b ) 

In the particular case of the hydrodynamic regime the parameters F*. have 
the meaning of the thermodynamic parameters (21.6a), which depend on time and 
space coordinates. In this case in the formula (27.6) the summation over o 
implies also an integration over x. In the case of the kinetic regime Pm 
can be chosen in accordance with (25.3) or (25.4), and then the summation 
over m goes over into an integration over momentum. 

The quasi-equilibrium statistical operator (27.6) is not a solution of 
the Liouville equation and cannot give a correct description of irreversible 
processes; nevertheless, the properties of the nonequilibrii&i statistical 
operator are closely connected to the properties of the quasi-equilibrium 
operator (27.6) (see section 27.3 and Appendix III). 

*n tl,e case statistical equilibrium the quasi-equilibrium distribution 
(27.6) goes over into the Gibbs distribution 

Pu = exp f - «I»u - V I , 
where 1 J (27.6a) 

P0« J //(*)</*=//, f j -p . 
Pt " j p (x) tlx =• P, F*l *= — 

P2 = \n(x)dx = N, f j - - - j f 2 ) . 

which not only corresponds to an extremum of the information entropy, but 
which is also a solution of the Liouville equation. 

The thermodynamic entropy and the logarithm of the statistical sum (the 
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Massieu-Planck functional] of the distribution (27.b] are connected by the 
relation 

v S--*+l{Pl,.yF,,(n.      (...)'-Sp(p. ...). (27.7) 

which can be considered as a generalization to the quasi-equilibrium case of 
the Legendre transformation of equilibrium thermodynamics.      Varying the nor- 
mal iz^tion condition for the operator (27.6)  and making use of the relation 
(27.7), we obtain 

W-- ^ (/'„:)■ ^„:(/).   65-IV^Ö</>„)' (27.8) 

from which follow the thermodynamic equalities 

v'"h--M;;vr (27.9) 

'"'•^ Wj (27.10) 

and the Gibbs-llelmholtz relations 

M'-Vf^n-Tr- .     "'-^-^^'■•X/- 
(VS 

s^^-y Fi:.An7ir- ,    'i'-^-^'^/^)'' (27.li) 
m 

The relations   (27.7)-(27.11) differ from the equilibrium thermodynamic equali- 
ties only in the replacement of the partial  derivatives by functional deriva- 
tives,  if m is a continuous index. 

We shall  find the connection between the second functional derivatives 
of S and <t> and the quantum correlation functions   in a quasi-equilibrium state; 
differentiating the equalities (27.1))   and  (27.10): 
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öfn(0 Ö.'VnW)Ö/-"ß('l './■'■« U) Vrn.   rm;. (27.12) 
Af,nl()   _ ft-.S _    fifn il] 
6 (/Vi" ~  A (/,fl}'/ ö (/',„/, ~ iT/'m/, ' (27. 13) 

^öfm(.')öfm,(/, 6(/>m.)U(^ =        "*' (27.14) 

wliere the corre.   tLo^ function?  (Pn.Pm)1 have the form 

i 

{Pn. Pj-\ dr{Pn{e-"'<"Pnc^"-*~{Pn.yq)yQ. (27#15) 

J 

Relations   (27.14)  have already been used in §  6 (see (0.24)). 

27.2.      Derivation of a Nonequilibrium Statistical Operator from the bxtremum 
of InformatTon"'Entropy. 

The quasi-equilibriura statistical operator (27.b)  corresponds to the 
extremura of the information entropy (27.1)  for fixed <l>

m>t and at a fixed 
time t.      Consequently, the operator is  a function of Fm(t)   (if m is  a dis- 
crete index)  for a given moment of time t, and it does not take into account 
"memory" effects,  i.e., the possible functional dependence of p on Fin(t*t') 
at past moments of time -"«t'^O.      Irreversible processes are often charac- 
terized by    such retardation, which leads to dispersion of the kinetic coeffi- 
cients. 

We shall show that the nonequilibrium statistical operator which we 
applied in §S  21-26 can be defined from the extremum of the information 
entropy  (27,1)  with the auxiliary conditions that the values of 

sp(pPB{rn = (pm)'+'' (27.io) 

are specified in the interval -••<t'<ü, i.e., not only for the given moment t, 
but also for all past moments of time, and with conservation of the normali- 
zation 

Spp = 1. (27.17) 
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In (27.16) PB(t") implies the Heisenberg representation, i.e., the evolu-
tion of the system in time in accordance with the Liouville equation. Thus, 
the auxiliary condition (27.1b) has a dynamical character and includes informa-
tion about the evolution of the system, while the auxiliary condition (27.2) 
has a statistical character and includes information only about the state of 
the system at a given moment. 

This conditional extremum with the "memory" effect corresponds to the 
unrestricted extremum of the functional 

n 

A(p) «• — Sp(o !np) — (<1> — 1) Sp p — J dt'^Gm(t, t')Sp(pPm (/')), (27.18) 
—oo m 

where »-l end Gn(t,t') are Lagrange multipliers. From the extremum condition 
for the functional (27.18) it follows that 

6L(p)--Sp lap + <li + \] f di' Gm (t, t') Pm (/')] 5p J - 0, (27.19) 
m -co J ' 

from which we find 
p — e.\p I — (i> — f rf/'Vcj/, f)Pm(n 

— JO ni 

(27.20) 

The Lagrange multipliers are defined from the condition (27.16) and the 
normalization (27.17). Varying the normalization condition with respect to 
r*m(t,t") and taking into account (27.1b), we obtain 

M' 
6Ci/n (t, t ) 

- {Pn, W))' = - (PJ (27.21) 

If the Pn are integrals of motion, then Pm(t')»Pin and the statistical 
operator (27.20) must go over into the fiibbs distribution (27.6a), i.e., the 
integral 

f G„M, t')dt' 
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must converge to the constant value FQ. This can be achieved by putting 

Cm (/, /') I'm jr.- c' -•= re F,., (e > 0). 

Taking into account this property and relation (27.21), the Lagrange multi-
pliers are conveniently chosen in the form 

Gm(t, (') EJ'1' Fm(/ + /'), (27.22) 

where the Fm(t*t") are the parameters conjugate with <Pn>t+t 
obtain the statistical operator 

Then we 

p = exp j - 4> — e J di' e"' ̂  Fm (/ + /') P* (O 
( - w m (27.23) 

which coincides with the nonequilibrium statistical operator which was 
obtained earlier (21.10a), (25.10)1. The parameter c>0 approaches zero after 
the thermodynamic limit is taken in the calculation of the averages. 

Thus, it is shown that the nonequilibrium statistical operator (27.23) 
corresponds to the extremum (maximum) of the information entropy for fixed 
average <PBj>tj at any past moment of time ti in the interval -«<ti$t. 

The nonequilibrium statistical operator can be written in the more com-
pact form: 

P = exp | PmFm (/) J., 
i vi » ( 2 7 . 2 4 ) O-lnSpexpJ- 1 

where we have introduced the operation of taking the invariant (or quasi-
invariant) part of an operator with respect to motion with the Hamiltonian H, 
which is denoted, as always, by a wavy line over the operators: 

1 Earlier in Sî  21,22 we denoted the normalizing factor for the distribution 
(27.23), (̂ exp«, by means of Q«exp$. 
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Wjl) - e   j dl' ?<■ Pm (/') Fm {i+t')~ 

t) 

-i\nFmit)- jdi'c'-[pm{t')Fmu+n + pm(nFjt +1% 
(27.25) 

P,,, ii)~e * Pmc    '■ 

P   =-i 1 ipm.n\,  Fjtj^älzM 

In the final results e-^+O after the volume of the system has become infinite. 
The operators PniFniCtO  satisfy the Liouville equation 

-JT ihAni't) ) + -J liK/Jt) ),   II] = 
II 

- e  J dt' c" {Pi:i {t') F,» (/ f /') + />„, (/') Fm [t + t')) 
(27.26) 

where f*-*0.      Therefore we call (27.25)  the invariant  (or quasi-invariant) 
part of the product PmFm(t) with respect to the evolution with the ilamiltonian 
II.     These products are thus integrals of motion for e-^+O.     It is evident 
that in this  limit the statistical operator (27.24), constructed from the 
operators  (27.25), will also be a solution of the Liouville equation.      The 
operation of taking the invariant part, which smoothes the oscillatory terms, 
is used in the formal theory of scattering to impose boundary conditions 
which exclude the advanced solutions of the Schroedinger equation  [84]   (see 
Appendix I); we shall also us? this operation in order to choose the Lagrange 
multipliers  (27.22)   such that the nonequilibrium statistical operator (27.23) 
is a retarded solution of the Liouville equation. 

The parameters  Fn,(t)   of the nonequilibrium statistical operator are 
chosen such that Fm(t)  and <Pm>*- are thermodynamically conjugate parameters, 
which is achieved if one  imposes on Fm(t) the conditions 

(Pj-iPj,. (27.27) 
where 

(/5,r.>;-Sp((r,Pm) = Sp(^"1"/5J. 

Indeed,  in th^t case 

and thus 
6<I)-- yiiPjf>Fmill (27.21)) 
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By definition the entropy is equal to 

S=-Sp(p>p7) = .I)+i:(/^)'f,n(/), (27.30) 

from which follow, taking into account (27.29), the thermodynaraic equalities 

tS-^rir,(i)i>{Pj, (27.31) 

F^J^y' (27-31a) 

tlie same as for the quasi-equilibrium distribution  (27.10). 
I 

\ 
27,3.      Connection Between Nonequilibrium and Quasi-Cquiiibrima Statistical 

QperatorsT "      "   "" " 

The nonequilibrium statistical operator (27.24)  is intimately connected 
with the quasi-equilibrium statistical operator (27.6).      The nonequilibrium 
operator can be constructed from the quasi-equiliunum operator, if one takes 
the quasi-invariant part of the logarithm of the latter: 

:!'ii im 
p = exp{liip.,} =.e.\i) | a   J dt' a'' cl   \n^{i -f/') e~ "      = (27.32) 

^cxp(-sTro)}. 
or 

p = exp    -e  jf//'ef''S(/ + /'. i')\ = 

= cxp   - 5(/. 0) +  j dt' c"' S [t + i', t')}, 
(27.32a) 

where (27.33) 
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V     • 

is the entropy operator, and 

S{t,0) = ^P-+jlT[S{t,0),H], 
(27.34) 

Sit, n='ül''""'S{t, 0)e-"'"lh 

is the entropy production operator. 

The argument t+t' in PqCt+t") implies a time dependence through the param- 
eters Fm(t*t');  in SCt+t'^t )  the first argument    implies    a    time dependence 
through the parameters, while the second argument implies a time dependence 
through the Heisenberg representation of the operators Pra(t'). 

We shall require that  from the normalization  (27.6)   it follow that  (27.32) 
also be normalized.      The relation (27.32) defines the following connection 
between the logarithms of the normalizing factors of the quasi-equilibrium 
(27.6)  and nonequilibrium (27.24) operators: 

cD 
0 

= 6  J J/'c^'d» (/ + /')=-'l'(0 -  jc//V''<b (/ + /'). (27.35) 

if the conditions  (27.27)  are imposed on the function Fm(t). 

Actually, the variations of the left and right hand sides of the formula 
(27,35) with respect  to the functions Fm(t+t')  are equal to, respectively, 

6aJ = - e  J dl' ^ V {Pm (/'))' bFm (t + t'), i27ib) 

— oo m 

0 0 

efl | rf/V <[> (/ + /')=- e J^' *"' % {Pj^' bPmit + /')• (27.36a) 

By virtue of the equalities   (27.27) these variations must coincide.      In addi- 
tion, for a concrete choice of the functions Fni(t),  corresponding to the 
statistical equilibrium distribution (27.6a), namely Fni(t)=F^, we have 

,,=--.(),•-(),„    ti»----<ii = a»a. 
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This then proves the relation (27.,55), 

The entropy production operator (27.34)  can be written in the form 

m 

--^{PmF,n{i)-HP,.~{Pj)Fm{t)}. f„   „v "i (27.37) 

For this the average production of entropy § is written in the following 
way: 

y'     !      -Vn^'vAl). (27.38) 

From (27.38)  it follows that the quantities Fm(t) play the role of the 
thermodynamic forces, while the <Pni>

t are the conjugate currents.     As we 
verified in section 22.3, the positivity of the production of entropy is con- 
nected with the choice of the retarded form of the integrals of motion (27.25). 

In a quasi-equilibrium state we have 

(S it, m, - ^ (/',„), Fm [t) = Spi-l [5(/, 0). tl\c-s<t. w| ^ 0j (27.38a) 

where we have made a cyclic permutation of the operators under the spur sign. 
Consequently, the entropy production operator (27.37) can be written in the 
form 

SKt, 0) -A ^ (/',„/•',„(/» - PjM (27.37a) 

where 

It is easy to verify that the nonequilibrium statistical operator (27.32) 
is a solution of the Liouville equation for e-K).  Indeed, we have 
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Vv-,    ■::-S'->-> 

= —e 

+(p.. in - {pm in)') P„. c+n ^% p.   ^7 •30) 
(27.39) 

where e+*0 after the approach of the system volume V to infinity.      For the 
indicated sequence of calculation of the limits there exist the relations 
[186] 

lim     (/^ (/'))'= (P,,)'r''. 
■    , ,. (27.40) 

lim     {Pin{t'))'~{P,n)
nt. 

Essentially, we do not require that the operator p satisfy exactly the 
Liouville equation*,  rather it is sufficient that the properties  (27.40) be 
satisfied for any operator. 

The introduction of the quasi-integrals of motion (27.25)  can be regarded, 
in connection with the ideas of N. N. Bogolyubov on "quasi-averages"  [171, 
172], as the introduction of infinitesimal sources in the Liouville equation, 
which then tend to zero in the calculation of averages after the volume of 
the system has approached infinity (see Appendix III and the articles  [186, 
187]). 

27.4.      Generalized Transfer Equations. 

In nonequilibrium statistical mechanics for a description of the time 
evolution of a nonequilibrium state it is necessary to know, besides the 
thermodynamic equalities, the equations of motion of the average values of 
dynamical quantities - generalized transfer equations  (or generalized kinetic 
equations).        We have already considered such equations  in § 25 for the 
kinetic regime and in §§ 21-24 for the hydrodynamic regime. 

One can obtain generalized transfer equations describing the time evolu- 
tion of the averages <Pin>t or of the related functions Fni(t) by averaging over 
the nonequilibrium distribution (27.24) the equations of motion for the opera- 
tors Pm, which together with the conditions  (2".27)  gives 

(27.41) 
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We call these equations generalized transfer equations, including in this con- 
cept all possible equations of balance of the theory of irreversible processes, 
for example, the kinetic equations for various particles or quasi-particles 
(§§ 25, 26), equations for the balance of energy, particle number, or momentum 
(§ 22), relaxation equations  (S 23), etc.       If there is a small parameter, 
the right hand side of equation (27.41) can be expanded in a series in powers 
of this parameter, which leads, in general, to integral equations for F^t) or 
<Pffi>t«      To obtain hydrodynamic equations one uses as the small parameters the 
gradients of the thermodynamic parameters (§ 22), to obtain relaxation equa- 
tions one uses the differences of the thermodynamic parameters  (§  23), and to 
obtain kinetic equations one uses as the small parameter the interaction 
between particles or quasi-particles  (S 25). 

For the conclusion of this section we shall expand the generalized trans- 
fer equations for a simple particular case in which the Hamiltonian has the 
form 

H = lly + V, (27.42) 

where V is a small perturbation.      We have already considered this case in 
S  25,  following the work   [56],      We return to this example in order to demon- 
strate the convenience of the use of the entropy production operator (27.34) 
and to write in explicit form the generalized transfer equation (27.41). 

We shall assume, as in  §  25, that the equations of motion for the opera- 
tors PQ have the form 

A«- ji-, \r'm, a« +v]~--j7 V(lmupn + pin {vh (27>43) 

where a^ is a matrix of c-numbers, which are defined by the commutation rela- 
tions   (25.6), and 

''.n.v. -~jh [P„„ I'l- (27.44) 

In this case the entropy production operator (27.37)   can be written, 
taking into account  (25.22),   in the form 

ji' (27.45) 
-ii:"^v")/-,+-;;X^^,v<'v>')} 
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h 

The expansion of the operator §(t,0)  in powers of V begins with terms of 
the first order in V, because the sum of terms in the round brackets in (27.45) 
is identically equal to zero, because of the identity (25,23).      Consequently, 

S(l, ())--A 
— j    -••••■■-■  „j- '" öü-'.)' s- 'w>!  ]■ 

(27.46) 

Thus, the integral term in the exponent of the exponential in the expression 
for the nonequilibrium statistical operator (27.32a) is small, and p can be 
expanded in powers of this term: 

1 + j (W t-"' J dx e-™ <'■ü' S (/ + /', t') e« «■l" + ... L-s c,«. 
1      -oo u j 

It is now possible to obtain explicit expressions for the right hand 
side of the generalized transfer equation (27.41) with an accuracy through 
terms of second order in V: 

n 
0 

+  J^/V''>>,„<„. PniV)[t')),Fn{t+t') + 
a 

4    [r/ZV«'V(P P„ (/'))' *!LiSL+£l ,6      yi+f. 
1 -^^  m!,"• r«u;/  fi^ti- ^/(v,),     + .... (27.48) 

where the brackets (...,   ...)    denote the correlation functions  (27.15). 

In the important particular case in which <Pn(V)>q=0»  the generalized 
transfer equation  (27.48)  takes on the form 

^O—y^r..  ^)'M') = ät 

= v iam,APn)'+   ldt'e"-(Pmm. Pnn-AnyFJt + t')).^^ 49) 
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On the right hand side of equation (27.49) are the time correlation functions 
of the currents, calculated with respect to a quasi-equilibrium state.  They 
define either the collision operator of the kinetic equation or the kinetic 
coefficients. 

We remark that expansions of the type (27.47) make it possible to write 
approximately the production of entropy in the following simple form 

5= | d/V(S(/. 0). £(/ + /'. /'))'. (27.5U) 

Thus, the production of entropy is defined by the correlation functions 
for the entropy production operators. 

27.5,      Generalized Transfer Equations and Evolution Criteria of Prigogine 
and filansdorf   Macroscopic Systems.~""~"'~~~ ~ ~ "" 

We shall consider what  restrictions are imposed by the requirtment of 
maximum entropy in a quasi-equilibrium state, and we shall show,  following 
[170], that this stipulation gives the criteria, which were established by 
Prigogine and Glansdorf  [173,174], for the evolution of macroscopic systems, 
and in the particular case in which the kinetic coefficients are constant, it 
leads to the theorem of Prigogine on the minimum production of entropy  [175, 
27]   (see also  [227]). 

We shall consider the time derivatives of the functionals S (see  (27.38)) 
and 4: 

We obtain 

'I'--  "  l^nV/vUI  ^{PJPM ^7   ^ 
(27.5J) 

Making use of (27.49),   (27.9),   (27.10), and (27.12),  the first terms OK 
the right hand sides of formulas   (27.52)  and (27.53)  can he taken to the form 
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TT = -<''«>'tr.unw.w '«(')̂(•')• 
m, a 

= - y(/*m. *«)'Fmit)Fn(0, 

iV-O 

m. n 

~ 
ti'S . , (irS 

t>(P.n)'&{Pr.) 

(27.54) 

(27.55) 

They have the meaning of the rate of change of the production of entropy, 
caused by the change of the thermodynamic forces, and the rate of change of 
*, caused by the change of <Pm>t. 

The condition of maximum entropy in the quasi-equilibrium state implies 
that the quadratic form 62s is negative definite, i.e., 

y.,f ,.»<*«>'»«•.)'<0. 
*<Pn) (27.56) 

From here it follows, taking into account (27.55) and (27.54), that 

a,s 
<0, 

dt >o. (27.57) 

The first of these relations constitutes the general evolution criterion 
for macroscopic systems [173,174] (the Glansdorf-Prigogine theorem), which 
says that in a real irreversible process there takes place a decrease of part 
of the production of entropy dFS/dt. 

The second of relations (27.57) is another formulation of the general 
evolution criterion, according to which in a real irreversible process there 
takes place an increase of dp$/dt. This theorem is established in [170]. 

We shall now show that in the approximation which is linear in the thermo-
dynamic forces the generalized transfer equations satisfy the relations 

d>'S = „ dFS 
dt £ dt <0, dt 

rfP<i> dr6 d.,a> 
dt dt ~" JT ^ 0. 

(27.58) 

(27.59) 
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i.e., in other words these processes are accompanied by a decrease of the 
production of entropy and an increase in the time rate of change of the func-
tional • . 

>The relation (27.58) is the Prigogine theorem on the minimum production 
of entropy [175,27], The theorem (27.59) on the maximum of the functional 
$ is proved in [170]. 

Assume that the deviations of the thermodynamic forces Fra(t) from their 
equilibrium values 

AFm = Fm (t) - F„ (27.60) 

are small, and that the connection between AFm and APm 

A/*,;, = (Pmy - (Pm)0 (27.61) 

i 1 

i l 
X * 

can be considered linear, i.e.. 

A<P,„>= - NJ W ^ r j i ) *Fn> (27.62) 
n 

\p . V -MP,.). (27.63) 
*r"> -J 6//>„)' 6 (/»„)' 

a 

The subscript 0 on the quantities Sy and implies that after taking the 
functional derivatives one must put Fm(t)*F$ in the resulting correlation 
functions; the <Pm>o denote averages over an equilibrium state. 

Further, it is evident that 

1. PmFm = 0 m d ^ </»,„>'Fl = 0, (27.64) 

H — V, p F' 
where we assume T m '*, and for weakly equilibrium states there exists 
a linear connection between the currents and the thermodynamic forces: 

4 

(Pm)'- Lm* Af„, (27.65) 
a 
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where L^n are the kinetic coefficients,  from which it follows  tiiat the produc- 
tion of entropy (27,38)   is equal to 

S=^^</'m)'=  ll.LM:,:.\I:.. (27.bb) 

There exist also linear relations  for the rates of change of the thermo- 
dynamic forces Fm and the increases A<Pn>: 

"'     T   'n  "'' (27.07) 

where the L^n are kinetic coefficients, connected to the Lftn by the relations 

/'' =. V  _ 'v",!, ,f ^_ (27.t)8) 

and satisfying the Unsager reciprocity relations 

'nn = ^n»    Mnn = hnn* (27.69) 

Making use of the relations  (27.05)   and (27.09),  we obtain 

-— - ^ F it)fp '■' = V /'   \;:'   \r ill .J ' ni^i'J n.i   — I.H.i^i :n iM n. 

•''■- = ü ^«(O O'J - ^ /-', \i m A/'n = —-. (27.7Ü) 

which together with formulas  (27.57)  prove the first of the inequalities 
(27.58).       Analogously, making use of (27.05)  and  (27.09),  we obtain 
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^WfrufrXii^.'Si*-..--?^-*^^-   .■.   :r t-f&fv/tvp   .'":-' - ,-^ »r," "il*,--r.' '^ ' 

J,A' 

'-ViP.)' ^(t)~ ~%L^iPm)l{Pa)~ ~^±, C27.71) 
I/,:«!» 

which together with (27.57) proves the second of the inequalities (27,58). 

Thus, the generalized transfer equations satisfy the evolution criteria 
of nonequilibrium phenomenological thermodynamics. 
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1 

APPLNÜICtS 

Appendix 1 

FORMAL THEORY  OF SCATTERING IN QUANTUM MECHANICS 

The forinal theory of scattering is discussed in many textbooks and nono- 
graphs   [1-3],  but in these for the most part the important question of effect- 
ing the limiting transitions - the approach of the dimensions of the system L 
to infinity and the approach to zero of the parameter e, which characterizes 
the switching on of the interaction - is not considered sufficiently explicitly. 
It  is very significant that the result depends on the order of effecting these 
limiting transitions.      This question is elucidated completely explicitly in 
the article by Cell-Mann and Goldberger  [4], a short account of which we shall 
present, because the question of the order of the limiting transitions  is basic 
also in nonequilibrium statistical mechanics  (see § 21). 

For the quantum mechanical description of the scattering the total llaril- 
tonian of the colliding particles il is divided into two parts K and V,  where 
K is the Hamiltonian of the noninteracting particles, and V is the interaction 
between then.       It  is assumed that V approaches zero sufficiently rapidly as 
the particles  are separated.      The probability of a transition per unit  time 
from one free particle state into another is sought. 

The total  system is described by the Schroedinger equation 

'■''-^-(K-i-WVU). (I#1) 

An essential, distinctive feature of the problem consists  in the  fact 
that the interaction V exists at any moment of time, although the scattering 
process takes place between states without any interaction. 

In the absence of the  interaction the Schroedinger equation has the  form 
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,^-w,). (I_2) 

and the stationary solution is 

(I»,-(f)" dv    h   . (1.3) 

It is required to calculate the effective differential cross section for 
the scattering from the state *j into the state *i under the influence of the 
interaction V.  The initial state Oj is used to characterize the actual state 
Vj of the real system.  Knowing ^(t), we can find the probability that by 
tne time t the system will make a transition into one of its final states <!>j. 

We shall now discuss the question of formulating correctly the boundary 
conditions for scattering in the Schroedinger equation (1.1).  Suppose that 
we observe the scattering process at the instant t=0.  It is necessary to 
formulate mathematically the physical procedure for preparing the quantum 
mechanical state fj by the time of the transition t=ü,  i.e., for t<0 (fixing 
the energy and the direction of the beam). 

If one assumes simply that at some distant moment of time t-T, preceding 
the collision, the wave function f; was equal to the wave function of a free 
state 

''"/('V- e    '•   i     ''.''/(?•}.   // K : V, 

then such a boundary condition introduces the unphysical element of "instan- 
taneously" switching on of the interaction V at t=T.      In reality the  inter- 
action is switched on gradually; therefore such boundary conditions are 
inconvenient. 

One can impose the boundary conditions differently, representing the 
incoming wave train as the average over some time interval T in the past 

T     .' 
- £ 

and allowing T to become infinite at the end of the calculations,  i.e.,  to 
carry out the operation of "smoothing" in time.      Such a boundary condition 
is also inconvenient, because it leads to expressions which are not suffi- 
ciently well defined, and which require additional procedures to make precise 
their meaning. 
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The most convenient boundary condition consists in assuming that  for t<U 
the wave function Yj  is equal to 

riHt-T) 

(1.4) 

where e-*+Ü at the end of the calculations.  In this we are also carrying out 
a "smoothing" in time, because 

but the factor eeT separates out the "past", and therefore the averaging (1.4) 
has a "causal" character. 

Une must, however, take precautions, because in addition to e->U it is 
necessary to effect also another limiting transition Lx» (the functions a 
are normalized to unity in the large volume L3).  The time of switching on 
the interaction T is of the order of magnitude e"^-, and cannot be larger than 
the time of spreading of the wave packet to the length L, i.e., it cannot be 
larger than the magnitude L/v, where v is the group velocity 

e"1 « L/v; 

consequently, the quantity e"^L"^ approaches  zero as L"^ü and e    -*•».      This 
implies that  first one must make the limiting transition L-^-K», and then t+O. 

Condition  (1.4)  together with the rule indicated above for the limiting 
transitions L-»«,  e-*-0 guarantees the choice of the correct retarded,  causal 
solutions of tie Schroedinger equation.       In this connection, for e'^L/v 
waves reflected from the boundaries of the system,  i.e., converging waves, are 
excluded, because the length of the beam of waves in time t'    is shorter than 
the time necessary for its propagation over the length L.      The great conve- 
nience of the boundary condition (1.4)  compared with the Sommerfeld condition 
consists  in that the causality condition is  imposed more automatically, with- 
out a detailed analysis of the diverging waves.      The boundary condition  (1.4) 
can be justified by the method of wave packets   [5],      A boundary condition 
analogous to  (1.4)   is applied in §  21 of this book to the Liouville equation. 
It  is evident that part of the significance of this boundary condition consists 
in the fact that  it selects retarded solutions   (see Appendix III). 

We shall now calculate the probability of a quantum transition between 
states as  a function of time.      The probability that a system which is des- 
cribed by  ehe wave function yj(t) will be found at the time t in the state $i 
is equal to,  in accordance with the basic rules of quantum mechanics. 
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'VMM') I2 A'/"'. (1.5) 
where Mo~K«)liVo) (I.5a) 

is the probability amplitude of the transition, and 

A'/ - {% it) Vj (I,) 
(1.5b) 

is the normalization constant, which is independent of time because of the 
hermiticity of the Hamiltonian. 

Taking into account (1.3), the equation (1.4) can be written in the form 

Uli n     ' („-E ) T 

(1.6) 

or, after carrying out an integration over T, 

-T'"       p 
Vl(i)=e  ~ 'D/. (1.7) 

e-i-J-Vl-Ej) 

The function ♦j satisfies the equation 

and therefore for t=0 the equation (1.7) can be written in the form 

,1^0^,I,/ + T/7F-/b-Tt''1''- (1.9) 

Instead of the explicit expression for 4^(0)     (1.9)  one can write for it the 
equivalent equation 

/('O-V^^-y-^l'V')). (I>10) 
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which is called the Lippmann-Schwinger equation.  Iterating equation (I.10) 
gives a series in powers of V.  The factor 

is the retarded Green function. 

With the help of (1.10) we obtain for the transition amplitude the 
expression 

^^•'-w^rnPF*''^ (i.ID 

VtM'V'V'O (i.i2) 

is the reaction matrix.      Equation (I.11)  is convenient because it points out 
explicitly the existence of a singularity in fjj   for ni=Ej and e-*0. 

The operator Rij(e)  is a smooth function of energy after the transition 
to the limit; each singularity is contained in a factor 

(];•/- /;,) i-'t'h' 

However the limiting transition L^-«« can still not be applied to RijCe), 
because it is proportional to L~3, as a consequence of the normalization of 
*i to unity in the volume L3.      Therefore it is convenient to introduce the 
operator 

1,.,:     AV/ffU3-^"//, 

f-^r. (i.i3) 

which already has no singularity nt lii=Ej. 

In order to calculate the derivative of fjj   for t=0 we write (1.5a)   in 
the form 

^ n'.mi /,,(.')-»■■■ v''    ' n';mj. (1.14) 

from which it  follows that 
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M^i'M'WWo)). ^^ 

or, making use of (1.8), 

^^^-yKi'^iO)).-^^^.        (1.15a) 

This relation justifies the use of the name reaction matrix for Ru,  because 
it is proportional to the rate of change of the transition amplitude f^j. 

From (1.11) and (1.15a) follows an expression for the rate of change of 
the modulus of the transition amplitude: 

r '      I    i 

There remains to calculate the normalization constant Nj. Making use of 
(1,5a) and the completeness property of the system of functions 4j, it follows 
that 

Sl/'/i'-"/- (1.17) 

From (1.16)  and  (1.17)  it follows, taking into account that the normalization 
constant Nj  is time independent, that 

-- I"' A'.; Cl-1 -■ V '■■■ l v U)ls-0. (1.18) 

From (1.17) and (I.11) we obtain for Nj the expression 

(1.19) 

or taking into account (1.18) 

,V,  1+-1. Ini/.V/^) 
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Noticing that Rjj   is of the order of L"3, we find that for our double limiting 
transition Nj approaches unity. 

The effective differential cross section for the transition j>i (ij'j) is 
equal to the probability of transition per unit time (1,16), divided by the 
current vL-3, where v is the relative velocity of the colliding systems. 
Therefore from (1.16) it follows that 

a^  Urn    lim -—    ~rrr^ß I^Wi8^"- C1-20) 

Tlie factor og 

approaches 2-n/ti 6(Ej-Ei)  in the limit e-*Ü.      The final states j are in the 
continuous spectrum; thus, transitions are observed not into a given state i, 
but into a small interval of final states, and therefore it is necessary to 
average (1.20) over a small interval of final states.      This operation cor- 
responds to the "coarse structure" coarsening in statistical mechanics.      In 
such an averaging 6(Ej-Ei) is removed, and in its place appears p(Ej)L3 - the 
density of states  in momentum space in the volume V per unit interval of energy 
at the energy Ej.      Finally 

rr;,-ill ^(/^(M•'-'/) a"'- 
(1.21) 

where OJJ   is already calculated on the small interval of final states, usually 
on an element of solid angle. 

Until this time we have assumed that j/i,  that  is, that the initial state 
does not coincide with the final state.    It is evident that a single sta^e can 
have no effect on the transition probability calculated above, but the change 
of wjj   in time is essential for calculating the change of the population of 
the initial level. 

From equation  (1.16)  for i=j  it follows that 

I I.n/?„(, i + ^l !/?„(.) I'. (L22) 

Now on the other hand, in the limit L-*«, e-*+0 the second term in (1.22) is 
vanishingly small compared with the first term. 

Going over in (1.18) to the limit e->-+0, we obtain 
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~1J = I* 2j U! K",2 6 {F'i - Ei)' 

i.e., the relation 
~ (1.23) 

^    '       v (I.23a) 

giving the connection between the imaginary part of the scattering matrix and 
the total effective cross section.      This relation, which follows from the 
conservation of the normalization, is called the optical theorem. 

The boundary conditions for the quantum mechanical collision problem can 
be formulated by introducing infinitesimally small  sources, which pick out 
the retarded solutions of the Schroedinger equation  [6]. 

We note that the Schroedinger equation (1.1)   is invariant with respect to 
the transformation of time reversal, i.e., with respect to the replacements 
t-»-t,  i-*-i and the reversal of the sign of the magnetic field.      In addition, 
the solution of the equation (1.1)  is sensitive to the introduction of an 
infinitesimal source which breaks this symmetry. 

The boundary conditions which select the retarded solutions of the 
Schroedinger equation in the formal theory of scattering, in the variant of 
Cell-Mann — Goldberger  [4], can be obtained,  if,  following  [0], one introduces 
in (1.1)  for t<0 an infinitesimal source, which breaks the symmetry of the 
Schroedinger equation with respect to time reversal: 

^->^-M'^)-0,)). tl.24) 

where e-^+O after the approach of the volume of the system to infinity, and 
*(t) is the wave function of free motion of particles with the llamiltonian K. 
The infinitesimal source (1.24) is introduced in such a way that it is equal 
to zero for yit)*!i(.t') ,  i.e., in the absence of interaction.  It indeed violates 
the symmetry of the Schroedinger equation with respect to time reversal, because 
in this transformation the left hand side of equation (1.24) changes sign, 
while the right hand side remains unchanged.  The sign of c is chosen so as 
to obtain the retarded, and not the advanced solutions. 

We write equation (1.24) in the form 

— (/ M-, (/, ;))-iv'''!'(/, n. (1.25) 

where 
>:', (/, t) -■•■•" " ■!', (I).   >i. (/, /) -o-IVi!' * (/). (1.25a) 
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Integrating  (I.2S)   fron -• to t, we have 

TE(.-)~e   (V"-' ■/-""'-"'.MM^-c   \ e'\~!::',l,0{: rHJ:'- (1.20) 

Putting in (1.26)   t=l'# we obtain the boundary condition for scattering theory 
in the form ol GeH-Mann — Goldberger 

r.f    -'Ai Vi 0) (!'■ i'' 

which we have already cor.'-idered above. 

Appendix II 

STATISTICAL THEORY OF TRANSFER PROCESSES ACCoRDING TO McLENNAN 

The construction of a statistical theory of transfer processes according 
to McLennan  [1,2]   is based on the introduction of external  forces of a non- 
potential character, which describe the irfluence of the surroundings or the 
thermostat on a given system,  i.e., the i ifluence of reservoirs of energy and 
particles and movable pistons, which are in contact with the system.    We shall 
describe briefly  this method, because it is close to the method of the non- 
equilibrium statistical operator [3-6], an account of which is given in 5 21, 
and it leads to the same results.      A comparison of these two methods enables 
one to consider the same questions from different points of view and to better 
clarify their physical meaning. 

We shall consider classical systems with total liamiltonian llu - the 
Hamiltonian of the universe in the terminology of McLennan.      One must not 
attribute a great  significance to this tern; we shall,  as before, be interested 
in the evolution of a small  subsystem, accessible to our measurements,  and we 
shall not be concerned with questions of the construction of the universe. 
We have 

Hu -- 11 ♦ Ms * U, (II.1) 

where 11 is the liamiltonian of the system being considered, lls is the Hamiltonian 
of the surroundings, and U is the ilrniltonian of the interaction of the system 
with the surroundings. 
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The distribution function of the total system f obeys the Liouville 
equation (2.11) 

+ (11,2) 

where (...) denotes the classical Poisson brackets (2.10). The distribution 
functions for the system under consideration and the surroundings are respec-
tively equal to 

/ - J" i u J iu'ir. (11.3) 

where drs and dr are elements of phase volume for the surroundings and the 
given system. If fu is normalized, then f and g are also normalized: 

j"/</r = l, j A ' d r ^ i , 

f/utfrdr,-1. ( I I .4 ) 

We obtain an equation for f, integrating (II.2) over the phase space of 
the surroundings drs: 

//} + | [iu, f {fu, u)itrs = o. J (II.5) 

because ii depends only on the variables of the system under consideration. 
The third term in this equation is zero, because the integrand is a divergence 
in the phase space of the surroundings. The last term can be simplified, if 
one introduces the function X, which describes the correlation of the system 
with the surroundings: 

iu = /A'.V. (II.6) 
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Then, 

•^ + {A + -°-
where ( " . 7 ) 

Fu~-J RXfudV" 
(II .8) 

qa and pa are the coordinates and momenta of the system, and in (II.7) a sum-
mation over a is assumed. The quantity Fa has the meaning of a "force", 
which represents the action of the surroundings on the system. If there is 
no correlation between the system and the surroundings, i.e., X»l, then 

i.e., the force F0 is a potential type force and its action can be represented 
by an additional term in the Hamiltonian. In the general case the force Fa 
is nonpotential. 

We note that the derivation of equation (II.7) from equation (II.2) is 
analogous to obtaining the chain of coupled equations in the method of 
Bogolyubov-Born-Green-Kirkwood-Ivon (B-B-G-K-I) [7]. 

We introduce the negative of the logarithm of the distribution function 
n=-In f: 

f = e"n, (II.9) 

Then equation (II.7) can be written in the form 

-IZD- 4. //) J. /: "'I <)/ ,, 
d! lT1' '« (11.10) 

or, if one introduces the total derivative of the dynamical variable n» 

(11.11) 
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then equation (11.10)  can be rewritten in the forn 

T:"^- (11.12) 

From this equation it is  obvious that if the forces Fa depend on the momenta, 
then the total derivative of n  is non-zero. 

For what follows it  is npcessary to establish the form of the external 
forces which appear on the right hand side of equation (11.12).       We shall 
consider that they are defined by thermodynainic variables - the temperature, 
the chemical potential,  and the velocity, which characterize the surroundings, 
and not by the details of tht microscopic state of the system.       In this case 
the term äFa/äpo in equation (II. 1U)   is connected with the entropy current, 
which flows into the system.      One can assume for it the expression 

l—U-)'. 
(11.13) 

where js(x) is the entropy current density (including the work which is car- 
ried out on the system),  ds is an element of the surface which bounds the 
system, for which 

jix)    fin, I)1 jJAx)~iik(x, t)-~fmv'-[x)fi{x)~ . (x, l)-T{x)\, (11.14) 

where Jn(x), j(x), and T(x)  are the dynamical variables of the currents of 
energy, particle number,   and momentum (see §   19). 

One can give arguments which motivate this choice for the sources of 
entropy, considering a system of discrete sources   [8], but esseitially this 
is the basic assumption of the McLennan theory:    the assumption that the 
influence of the surroundings can be characterized by the functions ß(x,t), 
y(x,t),  and v(x,t).      In   ehe expression (11.14)  the first term corresponds to 
the contribution of the energy current, the second term to the contribution 
of the particle current ,    and the third term is caused by the work done, 

In what follows  for simplicity we shall first consider the case in which 
the only process is exchange of energy with a thermostat,  i.e.,  the case in 
which the equation for n has the form 

/• 
-",'-'-- -  I jH«, :)l,.lx)'<U. 

" (11.15) 
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We transform the surface integral in (II,IS) into a volume integral by taking 
into account the law of conservation of energy (19.16): 

Jll [XI        _     , 

We obtain after an integration by parts 

(II.lb) 

-Ij üU.o/.'uK.'.-j |y/;Uj.v^) + //(*,i^ij.(/*. (IItl7) 

This equation for n has many solutions, because one can always add a solution 
of the homogeneous equation 

dn 
UT = o. (".18) 

In order to obtain the particular solution which interests us,  it is necessary 
to give  in audition an initial condition.      We shall assume that at t=-<» the 
system is  found in statistical equilibrium and is described by the Gibbs canon- 
ical ensemble: 

ill,..-^ artW. (11.19) 

The initial condition (11.19)  corresponds to the usual  situation,   in which 
one proceeds from an equilibrium state of the system and takes it to a non- 
equilibrium state with the help of an external influence,  as in the indirect 
methods of the theory of the linear reaction (see the beginning of Chapter IV). 
One can verify that the solution of equation (11.17) with the initial condition 
(11.19)  has the form 

ti(r) = a+ | ß(*, t)lt(x)dx- 

t 

It is assumed that ß(x,t)-*ß for t-»--«» sufficiently rapidly for the convergence 
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of the integrals.     The function 

f = e-ri (11.21) 

is the required distribution function. 

In the more general case, when one takes into account also the exchange 
of particles and momenta with the surroundings, one obtains formula (21.1Üe) 
of Chapter IV. 

Thus,  the McLennan method   [1,2]  and the method of the nonequilibrium 
statistical operator  [3-6]  lead to identical expressions for the distribution 
function. 

Appendix III 

BOUNDARY CONDITIONS FOR STATISTICAL OPERATORS IN THE THEORY OF NONEQUILIBRIUM 
PROCESSES AND QUASI-AVERAGE METHOD 

In the theory of nonequlx^Drium processes one considers the solutions of 
the quantum Liouville equation for the statistical operator p 

jJ.+_rIPi//1.o, (1IM) 

or of the classical Liouvilli   equation for the distribution function f 

!!1T+ 11.^-0. (II 1.2) 

where {...,   ...} denotes the classical I'oisson brackets.      We shall show, fol- 
lowing   [1], how to formulate the boundary conditions  for the Liouville equa- 
tion with the help of infinitesimal sources.      In what follows we shall dis- 
cuss the boundary conditions only for the quantum case, because the classical 
case is analogous to it. 

It is very simple to find a formal solution of the Liouville equation 
(III.l): 

P10 - t'(/,/„) p (/,) 6'f (/./0), (111.3) 

-  492  - 



where p(tQ) is an arbitrary statistical operator at the initial moment of time 
to, and UCt.ty) is the evolution operator.  However the formal solution 
(111,3) is useful only in the case when the initial statistical operator p(tü) 
is well chosen.  For example, if the state is close to statistical equili- 
brium, then in the Kubo theory one chooses to=-~ and p(-~) in the form of an 
equilibrium statistical operator.  In the general case the formal solution 
(111.3) is of little use in describing a nunequilibrium process.  Consequently, 
the fundamental problem of nonequilibrium statistical mechanics is not to find 
formal exact solutions of the Liouville equation, but to choose correct boun- 
dary conditions for the equation, and to construct solutions in the sense of 
quasi-averages, as in the quantum theory of collisions. 

A state with specified average values <Pm> can be described by the quasi- 
equilibrium statistical operator 

p, - ex|, f - 'I' - V fmPn Ul \ - «P {-S{t, 0)), (111.4) 

where ,    ., , 
a.-iuSpv.xpf-^/v^l/U 

I        ,11 ) (. 1 1 1 . D J 

is  the Mass.eu Pianck function,  and the Fm(t)  are the parameters which are 
conjugate \o the average values 

(/',,..\', -S|> (<,,/'J. (III.6) 

The quasi-equilibrium statistical operator (III.4)  guarantees satisfac- 
tion of the thermodynamic equalities for its parameters *,  Fni(t),  and 
S=-<lnp >q, namely 

Mi ,, ,")S 
Ti^ii:   ~ {/'"!'.,-   -; --r =f,„(/), (HI.7) 

i.e., the parameters Fm(t)  and <Pin>Q are indeed thermodynamically conjugate1. 
However, the statistical operator (III.4)  does not satisfy the Liouville 
equation and does not describe  irreversible processes.      As we shall verify 
below, this operator can be used to formulate the boundary conditions  for the 
Liouville equation (III.l),  in a manner which is similar to the way in which 
the wave function of free particles is used to formulate the boundary 

If the index m takes on discrete values, then the variational derivatives 
in  (111.7)  go over into ordinary partial derivatives. 
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conditions for the Schroedinger equation in the quantum theory of scattering. 

The quantum Liouville equation (III.l), as well as the classical  (III.2), 
is symmetric with respect to the transformation of time reversal (in the clas- 
sical case this implies the replacement t-*-t, reversal of the momenta of all 
particles, and reversal of the direction of the magnetic field).      However, 
the solution of the Liouville equation is unstable with respect to small per- 
turbations which break this symmetry. 

We introduce, following  [1],  into the Liouville equation an infinitesimally 
small source,  satisfying the following requirements: 

1) The source breaks the symmetry of the Liouville equation with respect 
to time reversal, or in other words,  it breaks the total isolation of the sys- 
tem.      In addition, it approaches zero as E:->-0, where this limiting transition 
is carried out after taking the thermodynamic limit. 

2) The source picks out the retarded solutions of the Liouville equation. 
This condition defines the sign of c;  i.e.,  if one introduces a source as  in 
(1.24), then c>0 and f**0.      The advanced solutions would give a decrease 
rather than an increase in entropy  [2]. 

3) The source is equal to zero when p  is equal to the quasi-equilibrium 
statistical operator p^  (III.4).       In the particular case of statistical 
equilibrium the source must be absent. 

Two methods can be proposed to introduce into the Liouville equation 
infinitesimally small sources which satisfy these requirements. 

The first method consists in introducing an infinitesimal source into the 
right hand side of the Liouville equation (III.l) 

i^ + 7jr[0t<//1 = -e(oi,-;.;,. (III.8) 

where e-*-+0 after the thermodynairix limiting transition for the calculation of 
averages.      liquation (III.8.,  is  analogous to equation (1.24)  of the quantum 
theory of collisions.      This is the only form which satisfies the requirement 
that the source be linear with respect to pc and also conditions  1-3.      The 
infinitesimal source in (111,8)   indeed breaks iHe symmetry of equation  (III.l) 
with respect to time reversal, because  in this transformation the left hand 
side of equation (III.8)  chr.nges sign, while the right hand side remains 
unchanged. 

We write equation (III.3)  in the form 
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"^7 (e" °t '>) ~ tet'Pq ('• 

(r, o = t/+ (/. o) pc (/, o) u (/. o] 
P (/. /)-£/*-(/. 0) p (/, l») £/ (/. 0). 

w h e r e p£[i, i) = u+ 0. o) pc (/, o) u(t. o), ( I I I ' S ) 

v. r , v. «/. ( I I I . 10) 
4 j f (/, 0) =• cxp | -JJT- J-

v ) 

1J 

(H is independent of time), and the notations 

pe=oeao). p„-p,e. o). (in.ii) 

have been introduced. Integrating equation (III.9) from •» to t and assuming 
that 

lirn e"p( / , / ) = 0, 
—oo 

we obtain t 0 
Pe(U) = e p ) J / , - « J > V + /'./ +/-)<//'• 

— oo - o o l l X l e l A j 

Consequently, the required nonequilibrium statistical operator has the 
form 

0 

Pe - Pg(I. 0) = P7(TO) = e |' cr'' P„ (/ -i- /') 
(III.13) 

J 
— CO 

where the wavy line above an operator denotes the operation of taking the 
quasi-invariant part. The statistical operator (III.13) was obtained earlier 
from other considerations in the article by V. P. Kalashnikov and the author 
[3]. The nonequilibrium statistical operator (III.13) with an integration by 
parts can be written conveniently in the form [3] 

0 I 

p =pfl+ f At' c"' f Oc(T-,,S 
' -i o (III.14) 

w h e r e dS(t i s (/, o) - a5(j;0) + -i- [S (t, 0), //j. 
S (/. /') = U+ (/'. 0) S (/, 0) U (/', 0) (111. 15) 

is the entropy production operator. 
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We choose the parameters Fm(t), which enter into the expression for the 
entropy operator, from the condition that the averages of the quantities Pm> 

calculated with the nonequilibrium statistical operacor (III.13), coincide 
with the averages of the same quantities calculated with respect to the quasi- 
equilibrium statistical operator (III.4): 

ipj-ip,^. iin.it>) 
where v ' 

(...)'-   lim   Sp(p, ...). 
(III.17) 

Then <Pm>t and Fm(t) become conjugate parameters, because 

Wmii) K   "''" {   ",'- (111.18) 

With the help of the nonequilibrium statistical operator (III. 13)   one can 
calculate the average value of any operator A: 

M)-  Hm  Sr.(pc.-1) = </iV 
e->l" (III.19) 

Such averages in the terminology of N. N. Bogolyubov [4,5] are called quasi- 
averages. If one applies the averaging operation (III.19) to the operators 
^m» then, taking into account  ^III.l'i), one obtains the transfer equations 

ul {>',„)[.'{i'mY -*-    \^.X^\di>J',n)~<l'm>. (I 11.20) 

Consequently, the transfer equations are equations for quasi-averages. 

The second method of introducing infinitesimal sources is based on the 
fact that the logarithm of a statistical operator, which satisfies the 
Liouville equation, also satisfies the Liouville equation 

T+iJr^f'^-c (in.2i) 
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The parameters Fm(t), which enter into the expression for the entropy operator 
S(t,0) and the entropy production operator S(t,ü), are defined, as earlier, 
from conditions (111,16). 

The nonequilibrium statistical operator (III.25)  corresponds to the 
extremum of the information entropy with the additional conditions that the 
quantities 

are fixed for any past moment of time -«xti^O and that the normalization be 
preserved  (see  [7] and S 27 of this book). 

The statistical operator (III.25) bears a similarity to the statistical 
operator of McLennan [8].     The latter may be obtained from (III.25)  after an 
integration by parts, taking into account the conservation laws and discarding 
surface integrals.      The difference between this method and the method of 
McLennan is that in this method one considers infinitesimal perturbations of 
the Liouville equation, rather than finite,  real perturbations, caused by the 
thermostat, as are considered by McLennan.      One might say that the introduc- 
tion of boundary conditions for the Liouville equation takes into account  in 
an idealized,conditional way the influence of the thermostat. 
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which is related to the properties of both the quantum and the classical 
Poisson brackets.      Consequently, infinitesimal sources can be introduced not 
only in (III.l), but also in (111.21). 

If we require that the infinitesimal source satisfy conditions 1-3, and 
in addition, that it be linear with respect to Inp, we obtain 

(5 In p,        1 
"JT ■ + ih ['" fV '''I " - e ('" 0e - 'n P.) (III.22) 

where E-^+0 after taking the thermodynamic limit.      Indeed, the source in 
(III.22) violates the symmetry of equation (III.21) with respect to time 
reversal, and it conforms with conditions  1-3.      We write equation  (III.22) 
in the form 

-'- (V;' IP. (V (/, ft] - ecr' In p   (/, I). 
ä,{ (III.23) 

Integrating  (III.23)  from -• to t, we obtain 

n 

L " '      -M " (III.24) 

and, consequently, the required nonequilibrium statistical operator has the 
form 

I •' 1 
f'£ " i>t 0. 0) = cxp {ln',T(M))} - «,>    - ,,    j  ,//' c"' In p/l ) t'.i'}'., r T T T   ,r-. 

where e-^*0 after taking the thermodynamic limit for the calculation of averages. 

The nonequilibrium statistical operator (III.25) was obtained earlier in 
articles by the author [2-6] from other considerations. It is convenient to 
write this operator, after an integration by parts,  in the form 

i '' > 

pE = cxp{-S'(',Vi'))=.o\|. < -S(.'10)+    f ill'/1' Sd+l'.l')' 
I J '•' (III.2b) 

- 497  - 


