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Statistical thermodynamics of irreversible processes involves study of
nonequilibrium processes - transfer of energy, momentum, mass and charge - in
the various physical systems (gases, liquids, solids) by means of statistical
nechanics methods,

The book is the first in world literature to examine the state of the art
of nonequilibrium statistical thermodynamics as the natural extension of equi-
librium statistical thermodynarics from a single viewpoint. In the book are
presented: basic ideas of equilibrium and nonequilibrium statistical thermo-
dynamics of classical and quantum systems; the 2ffect on staicistical ensembles
of various mechanical and thermal perturbations which upset equilibrium;
fluctuation-dissipation theorems, a method based on original investigations
by the author of developing nonequilibrium distribution functioas and statis-
tical operators which permit development of thermodynamic equations of irre-
versible processes; and the application of these methods to various problems,
Examined are the statistical derivation of thermal conductivity and diffusion
equations and the Navier-Stohes equation for a multicomponent liquid or gas,
Also investigated are the connection between kinetic coefficients and correla-
tion functions; the statistical theory of relaxation processes and chemical
reactions both in linear and in nonlinear (with respect to attractive thermo-
dvnamic forces) approximations; relativistic statistical hydrodynamics; the
derivation of generalized kinetic equations; and the derivation of the
Kramers and Fokhker-Planck type equations for small subsystems which interact
with larger ones; and the extremal properties of a nonequilibrium statistical
operator.

The book is intended for physicists and physical chemists (scientific
personnel, graduate students and advanced undergraduates) worhing in the
fields of theoretical physics, molecular physics, physical chemistry, and
chemical physics,

1we 1llustrations, 392 bibliographical entries.
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PREFACE

In this book an attempt is made to present from a unified point of view
the current state of nonequilibrium statistical thermodynamics as a natural
generalization of equilibrium statistical thermodynamics.

From a logical point of view it would be desirable to present the
statistical theory of nonequilibrium processes first and to consider the
theory of equilibrium processes as a limiting case, llowever, such a presen-
tation is at the present time scarcely feasible, as nonequilibrium and equi-
librium statistical thermodynamics are at very different levels of development,
Therefore, in Chapters I and Il we give a brief account of the basic ideas
of classical and quantum statistical mechanics of equilibrium systems to the
extent that these ideas are necessary to derive the basic thermodynamic
relationships for the case of statistical equilibrium,

The purpose of these introductory chapters is to recall the general
method of statistical ensembles, due to Gibbs, because later in Chapters IlI
and IV attempts are made to apply the ideas of statistical ensembles to non-
equilibrium statistical thermodynamics,

A separate chapter is devoted to classical statistical mechanics,
although classical statistical mechanics can be regarded as the limiting case
of quantum statistical mechanics for those situations in which it is permissi-
ble to neglect quantum corrections. We shall not follow such a course,
because classical statistical mechanics is interesting in itself and is com-
pletely adequate for many problems. The methods of classical and quantum
statistics have much in common as regards the theoretical formulation of
problems. Very similar difficulties are encountered in attempts to justify
both methods, The limiting transition from quantum to classical statistics
will be considered later, at the end of Chapter II,

In Chapter III we consider nonequilibrium processes and study the reac-
tion of statistical ensembles to external, mechanical perturbations. By this
is meant a perturbation which arises from switching on an external field when
the perturbation energy can be represented by an additional term in the




Hamiltonian, A state of statistical equilibrium is used as the initial
condition, A discussion is given of the fluctuation-dissipation theorers,
dispersion relations, and sum rules and their application, in particular for
systems of charged particles.

Chapter IV is dedicated to thermal perturbations, which cannot, generally
speaking, be represented by any perturbation energy; for example, perturba-
tions arising from a change of temperature, pressure, or the concentration of
particles in space and time are considered, This case requires a more expli-
cit construction of statistical ensembles than does the case of mechanical

perturbations,

Using the idea of ''quasi-integrals of motion" for a compact description
of the system, a nonequilibrium statistical operator is constructed and then
applied to various problems, such as a derivation of a system of equations
for the translation of energy, momentum and number of particles into a multi-
component system, or a derivation of relaxation equations, kinetic equations
and equations of the Kramers-Fokker-Planck type, It is shown that this non-
equilibrium statistical operator may be obtained from an extremum of the
information entropy when the fixed quantities defining the nonequilibrium
state are specified not only at a given moment, but also for all past times.
This chapter is to a large degree based on the work of the author.

It is assumed that the reader is acquainted with the fundamentals of
quantum and classical equilibrium statistical mechanics to the extent given
in the usual university courses.

The book was read in manuscript by V., A. Moskalenko, Yu, L. Klimontovich,
V. P, Kalashnikov, A, Ye., Marinchuk, L. A. Pokrovskiy, A. G. Bashkirov, G. O.
Balabanyan, M. V. Sergeyev, S, V, Tishchenko, M. Yu, Novikov, to whom the
author is grateful for advice and comments.

The author is deeply grateful to academician N, N, Bogolyubov for fruit-
ful discussions of the diverse problems of the theory of nonequilibrium
processes.

D, Zubarev
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INTRODUCTION

Nonequilibrium statistical thermodynamics forms the theoretical basis
for nonequilibrium thermodynamics [1], just as the usual statistical thermo-
dynamics is the basis for equilibrium thermodynamics. In nonequilibrium
statistical thermodynamics one studies the processes of transfer of energy,
momentum and particles in various physical systems (gases, liquids, solids)
on the basis of statistical mechanics. The problem is to derive the equations
of nonequilibrium thermodynamics by the methods of statistical mechanics (to
the extent that this is possible) "from first principles,” i.e., to find from
the equations of quantum or classical mechanics expressions for the kinetic
coefficients in terms of microscopic characteristics, to justify the symmetry
properties of the coefficients, and to prove fluctuation-dissipation theorems,

The most highly developed method in the theory of irreversible processes
is the method of the kinetic equation for the distribution function; the
method was proposed already by Boltzmann and justified and further developed
by N. N. Bogolyubov [2], Kirkwood [3], Born and Green (4], Van llove [5], and
others [6,7]. This method allows one to derive the equations of nonequili-
brium thermodynamics, and to calculate explicitly the kinetic coefficients.
The method has great practical importance, but it can be applied only to
sufficiently dilute gases or to sufficiently weakly interacting gases., Thus
there arises the problem of constructing the equations of irreversible thermo-
dynamics on the basis of statistical mechanics for more general systems.

The usual linear phenomenological nonequilibrium thermodynamics can be
applied to an)y system provided that the system is in a weakly nonequilibrium
state, i,e,, it is close to complete statistical equilibrium., We note that
this theory does not employ a consistently macroscopic point of view, Besides
the axiomatic thermodynamic method, it uses in an essential way an argument
at a microscopic level, namely, that the particles obey the equiations of
mechanics, As an example, one can derive the Onsager reciprocity relations
from the invariance of the equations of motion with respect to time reversal.
In this, however, one uses only the fact that the equations of motion exist,
not their specific form, which is associated with the form of the Hamiltonian.
Nonequilibrium thermodynamics goes further in this direction, starting with
a system described by a specific Hamiltonian and making explicit use of the
equations of motion,

Nonequilibrium statistical thermodynamics is an outgrowth of the equili-
brium theory, but the equilibrium theory is relatively well-developed, its
foundations having been laid by Gibbs [8] around the turn of the century.

On tle other hand, the nonequilibrium theory is still in a state of develop-
ment and is far from completion,

Until recently the opinion was widespread (it is held by many people even
today) that there was no universal method, like the Gibbs method, which could
be applied to the analysis of irreversible processes in an arbitrary system,
It was thought that an exact formulation of the problem was possible only in
the limiting cases of systems for which a kinetic equation could be constructed.

-t
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The development of the theory of irreversible processes during the past
ten years (see the reviews [9-13]) shows that important steps have been taken
toward the constyction of the statistical thermodynamics of irreversible
processes for arbitrary systems, and the theory has already begun to produce
its own techniques., This confirms the idea of Callen and Welton expressed
in 1951 in a work on the general theory of fluctuations and generalized
noise [14): "We believe that determination of the connection between equi-
librium fluctuations and irreversibility opens up the path to the construction
of a general theory of irreversibility using the methods of statistical
ensembles,"” In this book an attempt is made to sum up the preliminary
results which one encounters on this path,

We shall study nonequilibrium processes in macroscopic thermodynamic
systems, for example, gases, liquids, and solids, by the methods of statisti-
cal mechanics. Therefore we shall assume in all that follows that the
system under consideration is made up of a large number of particles and that
it obeys the laws of quantum (or classical) mechanics and that Hamiltonian of
the system is known, (An account of equilibrium statistical mechanics can

be found in the references [15-19].)

Any state of a thermodynamic system which differs from a state of com-
plete statistical equilibrium we shall call a nonequilibrium state. A pro-
cess will be called a nonequilibrium process if it includes nonequilibrium

states.

Processes accompanied by a production of entropy in the system (i.e., the
formation of entropy, but not its redistribution) will be called irreversible.
Examples are diffusion, viscous motion, thermal conduction, and electrical
conduction in normal metals. Irreversible processes are also called

dissipative,
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CHAPTER 1

EQUILIBRIUM STATISTICAL TiERMODYNAMICS OF CLASSICAL SYSTEMS

Statistical thermodynamics of both equilibrium and nonequilibrium pro-
cesses begins with the equations of mechanics (quantum or classical) for the
collection of particles making up the system. The solution of this system
of equations is impossible in practice because of the huge number of varia-
bles, but even if a solution were possible, we could not set up the initial
conditions for such a large number of equations - this is far beyond experi-
mental capabilities. Therefore, to study such systems the methods of
statistical mechanics are used; these methods are based upon the introduction
of distribution functions in classical statistical mechanics or of statisti-
cal operators in quantum statistical mechanics.

In this chapter we shall consider the basic concepts of classical statis-

tical mechanics of equilibrium systems, i.e., the Gibbs method of statistical
ensembles for systems of particles obeying classical mechanics.

§ 1, Distribution Functions

1.1 Distribution Functions for Systems 2£ Interacting Particles.

Let us consider a system of N identical, interacting particles contained
in a finite, but macroscopically large volume V. For simplicity we shall
assume that the particles have no internal degrees of freedom.

In classical mechanics the dynamical state of each particle is defined
by giving its coordinates q and momentum p, where q and p denote the set of
three Cartesian coordinates and three components of momentum q%,p% (a=1,2,3).
The state of the whole system is defined by giving the set of coordinates ;
q1s+++,qQN and momenta pj,...,pN of all particles, or by giving the location
o} a point in the 6N-dimensional phase space (PloeeesPNi Qroeee, V).

The dynamical evolution of the system is defined by Hamilton's equations:

t:.' L _n'l’}k dt ,-,‘qk- s essey V), (l. 1)
where

is the total Hamiltonian of the system; the Hamiltonian is assumed to be known.
For example, for a system of N particles with a two- article, centrzily-
symmetric interaction, described by the potential O(TQi'le). the Hamiltonian
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has the form
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The corresponding equations of motion are
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where Fx is the force produced on the kth particle by all the other particles.
The fact that the volume is finite can be taken into account by adding to
(1.2) an additional potential function Uy(q]l,...,qy) which depends on the
coordinates of the particles: Uy is constant within the volume V and rapidly
approaches infinity upon the approach of any particle toward the boundary of
the volume,

A probabilistic treatment of dynamical processes is applied in statisti-
cal mechanics. Following Gibbs, a given system is not considered by itself,
but rather, a large number (in the limit - an infinite number) of copies of
the system are considered; these copies are in macroscopically identical con-
ditions, I.e,, a statistical ensemble '"representing" the macroscopic state
of the system is introduced.

The identity of external conditions in a macroscopic sense means that
all ensembles are characterized by identical values of the macroscopic param-
eters (to within the accuracy of possible fluctuations) and by identical
types of contacts with the surrounding objects: reservoirs of energy or par-
ticles, or movable pistons. This puts restrictions on the coordinates and
momenta of the particles; otherwise these variables are arbitrary.

A point in phase space (P],«.«,PN: Qls+++,qN) Or briefly, (p,q), corres-
ponds to each system in the ensemble. With the passage of time each phase
point moves along its characteristic trajectory in phase space in accordance
with equations (1.1) or (1.3).

The statistical is defined by the distribution function

f(p,a,t)

which is the probability density for the distribution of systems in phase
space, It is defined such that

dw = £(p,q,t) dp dq (1.4)

is the probability of finding the system at an instant t in the element of



phase volume dpdq near the point (p,q), i.e., (P1seeespns Qlsecerqy) .

1.2 Normalization,

The distribution function (1.4) must satisfy the normalization condition

jf(p.q.t)dpdq =1, (1.4a)
since the sum of the probabilities of all possible states must equal one.

However such a normalization of the distribution function is inconvenient.
Classical statistics is the limiting case of quantum statistics for tempera-
tures which are high enough such that quantum effects can be neglected. But
the normalization (1.4a) does not correspond to the limiting transition from
quantum to classical statistics. Thus, it is more convenient to use a dis-
tribution function with a different normalization.

From quantum mechanics it is known that the classical concepts of the
position and momentum of a particle can be introduced without contradicting
quantum mechanics only within the scope of the quasiclassical approximation.
The smallest cell in phase space corresponding to one-dimensional motion of
the ith particle in the quasiclassical approximation has the magnitude
h = 2nh (Planck's constant),

AgsApr=h.

Consequently, the 'volume" of the smallest cell in the phase space of a single
particle is h3; in the phase space of N particles it is h3N, Thus, the
quantity h3N is the natural unit of phase-space (or simply, phase) volume.
Therefore it is convenient to introduce a distribution function which is nor-
malized to unity on the dimensionless phase volume dpdq/h3N,

In addition, one must take into account that a quantum-mechanical state
is unchanged by the interchange of the identical particles, and this property
must be retained in classical statistics, if this is to be regarded as the
limiting case of quantum statistics. Since the number of permutations of N
identical particles is N!, the element of phase volume must be divided by N!,
as it is necessary to take into account only distinct states.

From the above it is seen to be convenient to introduce a dimensionless
distribution function, referred to an element of phase volume expressed in
units of h3N and taking into account the identity of the particles, i.e.,
dpdq/N!th3N, Consequently, it is more convenient to define the distribution
function f(p,q,t) by

dw=[(p, q, I)—“—p-"q— (1.5)
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rather than by (1.4). In this case the normalization condition for the
distribution function is

[ip, ayav=1, (1.5a)
where
e sép e

NIV (1.5b)

is the dimensionless element of phase volume. Now the integration in (1.5a)
corresponds to a summation over all distinct states, It can be shown that

if classical mechanics is regarded as the limiting case of quantum mechanics,
then this is precisely the normalization condition which is obtained (see §14).

We remark that the factor 1/N! in the phase vclume was introduced by
Gibbs [1] before the creation of quantum mechanics in order to avoid the
paradox which bears his name - the increase of entropy upon mixing identical
gases at the same temperature and pressure., e distinguished "specific"
phases p,q and '"generic' phases, for which the phase volume was divided by N!,
and he normalized the distribution functions with respect to the generic
phases.

Knowledge of the distribution function f(p,q,t) allows one to calculate
the mean value of any dynamical variable A(p,q), i.e.,

. [loitn: doiiConien d N
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where the normalization (1.5a) is assumed.

§ 2, The Liouville Equation

2.1 The Liouville Theorem on the Invariance 2£ the Phase Volume.

The possibility of introducing a distribution function as a probability
density is based upon a theorem of Liouville - a theorem of pure mechanics,
not drawing at all on probabilistic considerations, According to the
Liouville theorem the phase volume is constant for the motion of systems
obeying Hamilton's equations (1.1). That is, if at an initial time the
phase points (p©,q°) continuously fill up some initial region G, in phase
space, and at time t they occupy a region G, then the corresponding phase
volumes are equal:

; f.’" {;."”- ; dp f"
" ¥ i | o 4y, (2‘1)

by 0‘



or for infinitesimal elements of phase volume

dp9dq® = dpdq (2.2)

In other words the motion of phase points representing systems in phase
space is similar to the motion of an incompressible fluid.

To prove the Liouville theorem we change the variables of integration on
the right hand side of (2.1) from p,q to p0,q°.  Then

) (P- q )
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where 3(p9,q0) is the Jacobian of the transformation from the variables p,q
to p°,q°, It is a determinant with elements axilaxﬁ where xj is the set of
momenta and coordinates pj,qj, and xf is the set rR,af.

We shall now show that this Jacobian is equal to one on the basis of

Hamilton's equations, i.e.,
) | e 1
'a'Tgpo' ,:quj_ (2.3)

One can prove equation (2.3) directly by differentiating the Jacobian
with respect to time [2]. It is simpler, following Gibbs [1], to make use
from the beginning of the property of functional determinants

Ap. @) _ 2, q) 2(p,q)

(p% ¢ T 9(p0 g% alp' )

where p’.q” are the values of momenta and coordinates corresponding to an
arbitrazy time t“, We differentiate this identity with respect to t, keeping
to and t° constant:

d d(p,q) _

d(p’,q) d_ 0dlp,q)
dt o‘pn' 9°) .0 (% q") ar 9 ‘I"v J)

As t”° is arbitrary, we put t° = t after differentiating. In this case the
only non-zero terms of the Jacobian are the elements along the main diagonal,

_i a(p, q) i a(p, 7) s/ dp, aa,
dt 0 (p° q° — 9(p° 6&7 d \'Z)',',;" _\.)"".‘_— (2.4)
i

(see [2,20]). But from the equations of motion (1.1)
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TG (2.5)
9, : dq‘ . 2

and, consequently,
d_a(p,q)__ .
dt 3(p%,q ’ (2.6)

i.e., the Jacobian is independent of time.

Using the initial condition

we verify that the Jacobian (2.3) indeed equals one; thus, the theorem of
Liouville is proved.

2.2 Liouville's Equation.

Until now in the derivation and formulation of Liouville's theorem we
have nowhere made use of the concept of a distribution function; this is rea-
sonable in that we have been discussing a theorem of mechanics. If now the
distribution functions are introduced, as in § 1, then different formulations
of Liouville's theorem can be given.

From Liouville's theorem it follows that the distribution function is

constant along phase trajectories; this can be considered as one statement of
the theorem,

In fact, for motion in phase space of points representing systems, the
number of phase points does not change; all the phase points found at time t

in the element of volume dpdq go into the element dp“dq” at the time t~°,
Thus,

£(p,q,t)dpdq = £(p°,q°,t")dp“dq”,
and since, by Liouville's theorem, dpdq = dp“dq”, we obtain
£(p,q,t) = £(p°,q°,t7), (2.7)
i.e,, f is constant along phase trajectories, which was to be shown.

We give one more very convenient formulation of Liouville's theorem which
is most often used in practical problems - we derive Liouville's equation for
the distribution function,

Putting the time t infinitesimally close to t° = t + dt, we have from (2.7)

f(p,q,t) = f(p+pdt,q+ddt,t+dt).

- 10 -



Assuming further that the function f is differentiable, we obtain the
differential equation for f:

"‘:. . “‘ ' oo r.) 4 --‘-";—- . .,‘ =
it T 2 (Gpy Put = 0] =0, (2.8)

Equation (2.8), combined with Hamilton's equations, is Liouville's equation:

rut CORKT MU & (2.9)

The sum on the right hand side of (2.9) is called the Poisson bracket
for the functions H and f:

_NY(OH 0 _Of o _ o of _ i of.

thus, Liouville's equation can be written in the form

- w0, (2.11)

This equation is fundamental for the construction of statistical ensem-
bles in both equilibrium and nonequilibrium situations. Using this equation
one can calculate f at any time t, if it is known at the time t = t,. The
equation allows one to study the reaction of statistical systems to external
perturbations (see Chapter III),

Liouville's equation has the form of a continuity equation for the motion
of phase points in phase space. One can obtain a simple, intuitive interpre-
tation of this equation by considering the motion of points in the 6N-dimen-
sional phase space as the motion of a "liquid" with density f. The velocity
of flow is represented by a vector in this space PlseeesPN; &1.....aN. Thus,
the condition of the conservation of phase points, i.e., the equation of con-
tinuity in phase space has the form

of W N[ 2 e A
v TRLE .:_‘ [:)Z - (Ipe) + Er (:"h.-)] =0,

(2.12)
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where the quantity in brackets is the 6N-dimensional divergence of the current
vector., Carrying out the differentiation under the summation sign and using
(2.5) (which came from Hamilton's equations) we verify that equation (2.12)

is of the form of (2.8), i.e., it is Liouville's equation. From (2.5) it
follows that the motion of the "liquid" is incompressible.

In statistical equilibrium f and H do not depend explicitly on time, and
the Liouville equation is

{“.f} - 0’ (2.13)

i.e., in this case the distribution function is an integral of the motion.

In fact, Liouville's equation is a linear partial differential equation,
while Hamilton's equations form the corresponding system of differential
equations in the total derivatives. Therefore, the general solution of
equation (2.9) is an arbitrary function of all the solutions of the system
(1.1).

2.3 Time Evolution of the Distribution Function.

To study the time evolution of the distribution functions it is conve-
nient to write the Liouville equation as

igr=~LFf (2.14)

where L is a linear operator defined by the relation
iLf = {H,f}; (2.14a)

it is called the Liouville operator.

The representation of the Liouville equation in the form (2.14) is con-
venient, because the operator L is Hermitian, and the properties of Hermitian
operators are well known. The Hermiticity of L is easy to verify. Indeed,
for arbitrary functions ¢ p(p,q), ®n(P,q), which vanish on the boundaries of
the phase volume, a partial integration of the Poisson brackets gives

j‘qL(L¢J‘“’“”=:f‘“fffWL)dpdq' (2.15)

The relationship (2.15) is just the condition for the Hermiticity of L.

There exists a formal analogy between the Liouville equation (2.14) and
the Schroedinger equation

il oMb I\
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as L and H are both linear Hermitian operators. This analogy was widely
used by Prigogine [3] to transfer the methods of quantum mechanics into
classical statistical mechanics.

For the Hamiltonian (1.2) the Liouville operator has the form
g \1 " "’.': J LK __(l__
=i, EREI F, ] (2.16)

and does not depend explicitly on time,

Using the Liouville operator (2.14a) a formal solution of the Liouville
equation can be written, if the initial value (at t = 0) of the distribution
is known. The solution has the form

Fln, q, y=cf(p, q, 0), (2.17)

i

if L does not depend explicitly on time,

Differentiating (2.17) with respect to t, we verify that this function
indeed satisfies the Liouville equation

and the initial condition

o, g0 o =T(p, ¢ 0).
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