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Introduction

The work for this research contract on atmospheric-pressure gas
lasers had as its main objectives the generation of short laser pulses
through mode locking and cavity dumping, the study of the nonlinear
amplification processes in a transversely excited atmospheric pres-
sure laser, and development of computer programs to check the
observed amplifier responses against models of the relaxation proces-
ses of the CO2 molecule in a laser discharge.

During the progress of this work, it was realized that a simple
yet reliable model of the discharge excitation of the laser medium was
needed if quantitative predictions of laser performance were to be
made without excessive computational effort and hence a certain loss
in understanding. With this in mind an analytic model was developed
for the interaction between the electrons in a molecular laser discharge
with the active molecules,

One of the major bottlenecks in the generation of short laser pulses
is the mode-locking process. Shorter pulses in general are obtained
through the use of saturable absorber mode locking as compared with
forced mode locking. The saturable absorber mode-locking process
is less well understood than the forced mode-locking process. In an
effort to gain a better understanding of saturable absorber mode
locking a new theory of mode locking was developed. The first closed-

form solution for a pulse produced by saturable absorber mode locking

was obtained.




/)2

The ensuing sections of this report are addressed to one topic at
a time and describe briefly the main thrust of the investigations.
Details will be given in five appendices. Appendices I, II, and III
contain excerpts from the Quarterly Progress Reports of the
Research Laboratory of Electronics. Appendices IV and V are
preprints of a paper that has been accepted for publication and of a

paper that is in preparation.

Mode Locking and Cavity Dumping

In order to produce high-intensity pulses to be used in nonlinear
amplifier studies in a CO2 TEA amplifier, a single pulse was selected
from the laser oscillator by means of mode locking and cavily dumping.
The cavity dumping scheme shuttled the mode-locked pulse out of the
cavity at a time when the pulse had reached maximum intensity. In
this way the full energy of the pulse inside the cavity was obtained in
a single emitted pulse.

This scheme was made to work to produce single pulses 4 ns wide
and with a peak power of the order of a few kilowatts. Unfortunately
the power was not as high as we originally hoped because the losses
of the mode -locking crystal and the electro-optic switch used for the
cavity dumping were high enough to depress the laser power greatly
below the value that would have been obtaired without the insertion of

these two elements. We then decided to select one or more pulses

for the amplifier study from the mode-locked pulse train emerging
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from the output mirror. In this scheme, which is described in greater

4
detail in Appendix I, 500 kW pulses with a pulse duration of 2 ns were

obtained. )

Measurement of Short-Term Recovery of CO2 Population Inversion

Sequences of pulses selected in the manner described in the pre-
ceding section were used to determine the population inversion (gain)
recovery via V-V relaxation in a CO2 TEA amplifying system. The
amplifier was filled with a mixture of CO2 N2 and helium at 200 Torr
and the partial pressure of CO2 was varied in the experiment from
5 Torr to 40 Torr. The individual input pulse lengths were 2 ns,
the spacing between the pulses, 12 ns. The-first laser pulse was- -
made to enter the amplifier ~30 us after the application of the dis-
charge current pulse. The recovery of the gain of the second pulse
as a function of partial pressure of CO2 was determined. The total
pressure in the amplifier was sufficient for appreciable equilibration
of the rotational population distribution within the duration of one
pulse. Furthermore, since the rotational relaxation is mainly a
function of the total pressure, and not of the partial pressure of COZ’
variation of the partial pressure did not affect the recovery time of
the rotational population distribution. Therefore the increased
recovery as a function of increasing pressure is attributable to
V-V relaxation processes. The level which has an appreciable popu-

lation after equilibration of the vibrational temperatures and which
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can feed the upper laser level appreciably within 12 ns at the partial
pressure used is the 011 level, Hence this experiment ascertains the
rate of relaxation of the 011 level and the degree of population recovery
by means of this relaxation process. Figure 1 shows the result of the
experiment. At the very low partial pressures when the relaxation
mechanism is not operative within 12 ns the gain of the second pulse
compared with that of the first one has been reduced by 20% because
of the population depletion of the first pulse. The experimentally
observed recovery as a function of partial pressure is shown. Two
theoretical curves computed on the assumption that the recovery is due
entirely to the feeding of the upper laser level by the 011 level popula-
tion are shown as dashed curves. The two curves were computed for two
values of population inversion changesrconsistént with the gain changes
caused by the first pulse. This shows that the major portion of the
recovery is explainabl. by this mecharism. The fact that the experi-
mentally observed recovery is larger than the one predicted on the
basis of the 011 level relaxation is attributable to the more effective
relaxation of the lower laser level with increasing partial pressure, an
effect not taken into account in the theory which assumed that even at
the low partial pressures the lower laser level relaxes completely
within the 12-ns interval.

Details of the experiment are given in Appendix II. The theoretical
computations are contained in the Master's thesis of Y. Manichaikul.[l]

The conclusion drawn from the experiment is that energy storages

available in vibrational combination modes can be utilized if the pulse
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to be amplified is lengthened. The present experiment indicates the
magnitude of the effect and the time scales at which such utilization

occurs,

Development of Computer Codes for Amplifier Studies

A four-temperature model including rotational relaxation for the
study of pulse amplification in a TEA amplifier has been developed by
A. H. M. Ross as originally proposed. The work eventually was not
supported by this program but by a National Science Foundation grant.
Yet Ross's results were used, for example, in the interpretation of
the amplifier experiment discussed above. Ross's program is out-
lined in Appendix IIT and is available upon request.

The funds freed by the fact that NSF support was available to Ross
provided the basis for two other research projects not originally pro-

posed. These are described below.

Electron Distribution and Lasing Efficiency. Computer codes

evaluating the electron distribution and the pumping of laser levels
have been developed in several laboratories, notably at United Air-
craft Corporation. Whereas good quantitative results can be obtained
from these programs, it is difficult to cull from them physical insight
about the influence of various parameters, without carrying out costly
computations, With this in mind, we have developed a simplified

model for the electron distribution and the pumping of the electron




laser levels which is amenable to closed-form solutions. The details
of this work have been published.[Z] Here we give a brief summary of
the salient features,

By simplifying the energy dependence of the collision cross sec-

s sge o D Sr o s

tions of the electrons, it was possible to obtain a closed-form solution

for the electron distribution, a function of the degree of molecular

excitation. In this way the feedback could be ascertained of the changes
in the molecular population inversion upon the electron distribution.
Also the question could be asked to what extent the i-v characteristic

of a preionized laser (E-beam laser) depends upon the lasing action.

It was found that the i-v characteristic depends only weakly upon

lasing; in fact when the elastic collision frequency of the electrons is

p’)
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assumed independent of electron energy, the i-v characteristic is
entirely independent of whether lasing does or does not occur. The
energy extraction by induced emission is offset by a decrease of the
energy transfer to the translational modes of the gas. For other

details we refer to the publication itself.

Mode-Locking Theory

A major bottleneck in the production of short laser pulses is the - ;
mode-locked oscillator. Extensive work has been done on the theory ' }
of mode locking, but no simple analysis has been published on the
theory of mode locking by a saturable absorber. In an effort to develop

a closed-form theory for saturable absorber mode locking, we arrived
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at a greatly simplified theory of forced mode locking which enabled us
to solve hitherto unsolved problems. A paper has been submitted to

the Journal of Quantum Electronics and revised upon request of the

reviewers. The revised version is attached as Appendix IV, The
rew problems that have been solved are (a) forced mode locking of an
inhomogeneously broadened laser medium, (b) forced mode locking by
square-wave amplitude modulation, and (c) stability analysis of the
forced mode-locked pulse train.

A closed-form solution has been obtained for the mode-locked
pulse of a homogeneously broadened laser mode locked by a saturable
absorber of relaxation time that is short compared with the pulse

length, Details are given in a preprint which forms Appendix V.

References
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1. GENERATION AND AMPLIFICATION OF HIGH-INTENSITY,
NANOSECOND TEA CO, LASER PULSES

National Science Foundation (Grant GK-33843)
U.S. Army — Research Office — Durham (Contract DAHC04-72-C-0044)

Y. Manichaikul

We have reported previously on generation of short nanosecond puts - from a pin
resistor TEA CO2 laser by way of mode locking and cavity dumping.l Single pulses
4 ns wide (full width at half maximum, FWHM) with peak power ~1 kW were produced.
Problems were encountered with the system and a new one was built. The problems,
and the changes that have been made in the new system, are as follows.

(i) The peak power obtained from the previous system was too low for some exper-
iments. For example, to saturate a TEA CO, laser amplifier requires a peak power
of intensity greater than 100 kW/cmz. In our new system we use a 3-electrode TEA CO,
discharge tube which has s higher gain than the pin-resistor TEA CO, discharge .
tube.2 f
in excess of 500 kW.

With this improved system we have obtained mode-locked pulses of peak powers

(ii) A germanium acousto-optic modulator at Brewster angle is now being used. This
eliminates the power-density limitation that arose in the old system, which used an
antireflection-coated germanium modulator.

(iii) An antireflection-coated GaAs crystal is now placed outside, rather than inside,
the optical cavity, which makes alignment of the cavity less critical. Also, since the
antireflection coating of the GaAs crystal was slightly damaged, there is less distor-
tion of the TEM mode when the crystal is outside the cavity.

(iv) In the old system the high-voltage supply to the cavity-dumping GaAs crystal
was falsely triggered by electrical noise generated by the laser discharge tube. In the
new system a laser-induced spark gaps is used to eliminate this problem.

(v) Previously, continuous RF power was supplied to the germanium mode-locking

QPR No. 110 118




Fig, Vi-22,

Photograph of experimental
apparatus,

HIGH
VOLTAGE

-

PULSED RF GENERATOR

Al, A2, A3, A4 Apertures

B1 NaCl beam splitter

D1 Cold-doped detectnor

D2 Copper-doped detecter

GaAs Electro~optic madulator

Ge L Germanium lens, 1.5" focgl length
CGe M Germanium acousto-optic modulator
Ge P Germanium plate at Brewster angle
LS Laser=induced spark gap

M1 Gold=coated mirror, 99.6 % reflecting, 4 m radius of curvoture

M2 Germanium mirror, 20 9/0 transmitting
M3, M4, M6 Gold=coated flat micars, totally reflecting

M5 Gold=-coated mirror, 99.¢ % reflecting, 2 m radius »f curvaty e

T1, 12 3-electrode discharge tubes, 1 m long

Fig. VI-23. Diagram of experimental arrangement.

QPR No. 110
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cryvstal, This caused the germanium crystal to heat up, thereby changing its acoustic

resonance Irequenctes,  We are now using pulsed RE power to minimize this problem.

Lixperimental Arrangement

Figure V91-22 15 a photograph of the new ns TEA C()2 laser pulse-producing system,
and g, VI-23 1s o schematic diagram of the experimental arrangement, With a de volt-
age of 5 kV across the GaAs electro-optic modulator a fraction of the energy trom the
beam can be swatched out at the Brewster-angle germanium plate (Gel?, sce Fig, VI-23),
This fraction of the beam was guided by two flat mirrors to a gold-coated muirror with
2-m radius of curvaturce, which focuses the beam inside the 3-electrode laser amplifier,
t'he tube is operated between 10 Forr and 400 Torr, A fraction of the beam, before
going into the amplifier, is reflected out from a beam splitter and detected by a copper-
doped liquid-helium-cooled detector with a rise time of <1 ns,  The fraction ol the beam
thut has passed through the amplifier is detected by a gold-doped liquid-nitrogen-cooled

detector with a rise time of ~1 ns,
Fxperiments
4. Generation of Nanosceond TEA CO, Laser Pulses

Fre laser cavity has an optical length of approximately 1. 88 m. To achieve torced
mode locking, RE driving power at 2.5 ms with 4 W peak power was suppliced to the ger -
manium acousto-optic modulator, The 3-electrode discharge tube inside the cavity is sct
to trigger at 2 ms after the RE power is on, We have obtained mode-locked pulses <2 ns
wide (I"WHM) with a peak power of ~500 kW, IMigure V1-24 shows a typical train of
mode-locked pulses detected by a copper-doped detector and displayed on a Tek-

tronix 7904 oscilloscope,

Fig, V1-24,

Typical mode -locked pulses [rom the lascer
oscillator (5 ns/div).

The switching out of individuul pulses 1s uccomplished by using the lascr-induced
spaurk gap, which is normally filled with prepurificd nitrogen at 100 psi,  The coaxial

cable was charged up to 15 kV. Me can vary the temporal triggering of this gap by

QPR No. 110 120
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altering the nitrogen prossure,

i
{

or bott. When the spark gap is triggered, a square voltage pulse of 7,5 k
length of cable, is produced. This pulse is supplied to the GaAs crystal,

the polarization of the desired

i 1 aumber of mode=locked .lel‘l S. 'hese
pulses are then reflected out of the train at the B

b. Amplification of Nanosecond TEA CO,, Laser

Fhree pulses from a train of

mode=locked pulses were switched out
through an ;:!hf\i;f.!‘l tube, These pulses were measured before and after ti

through the laser amplifier. Figure V1-25 shows input

RESEARCH)

mode =focked

ewster-angle germanium plate,

imput anda outpu
taset iplitier, 1
electri lela t itated the j1s=
pl (50 ns /div).
copper-doped and gold-doped germanium detectors, respectively, Ihe output signal
from the gold-doped germanium detector rtificiaily delayed 200 ns by use of
coaxial deluy line. By using the add-mode on a Tektronix 454 A osc illoscope, we wer
ble to display both signals on a single trace
In our preliminary studies we have found that the first pulse of our the er | i
is of sufficient power density to saturate the laser amplifiet Further Kk on thi
pect of the experiment will be described in a future report
References
1. Y, Marichaikul and E. E. Stark, Jr., Quarterly Progress Report No. 107, Resear

Laboratory of Electronics, M.1. T., October 15, 197

. P. R, Pearson and H. M. Lamberton, "Atmospheric |}

High Output Energy Per Unit Volume,”" 1EEE J, Quant, Electronic
No. 2, pp. 145-149, February 1972,

Vol

3. A, ¥V, Nurmikko, IEEE J. Quant.

" Electronics, v ol, W1 at, NO. 9 PP,
September 1971,
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2. AMPLIFICATION OF TWO HIGH-INTENSITY NANOSECOND

TEA CO, LASER DPULSES (AIHN)

National Science Foundation (Grant GK-37979XN)

U, S, Army - Research Office — Durham (Contract DAHC04-72-C-0044)

Y. Manichaikul
Ixperiment

We have previously reported on the generation and amplification of high-intensity
nanosccond pulsvs.1 Two or three of these pulses were produced.  They were from
the I’(16) transition, 2 ns wide (FWTIN), scparated by 12 ns. When these pulses were
focusced into n threc-clectrode laser amplifier as shown in Fig. VI-12, a peak intensity
of 2-3 MW/cm© was obtained. A\ beam splitter was used so that the intensity ot the
pulscs could be monitored.  The input and output detectors were as shown in Fig, VI-12,

In this experiment the detected input signals were delayed 100 ns by using 60 ft of

R 100%, FLAT MIRROR

R 100%, ==
RADIUS OF CLURVATURE

ARAIL ¥ W

FROM OSCHLATOR OF HIGH - INTENSITY ne PULSE

SEMERATING SYSTEM DESCRIBED PRE .‘I()l“l\.l

Fig, VI-12, lixperimental arvrvangement for amplification of

high-intensity ns pulses. (Sce Y. I\l:mic[mikul.l)

HG-8 cable,  The odd mode of a Tektronix oscilloscope was used to display the signals
for both input and output pulses ou the same screen. The two detectors were calibrated
aoaninst cach other by comparing the oscilloscope picture of the input and output pulscs

without discharge exciting the three-clectrode lasce amplifier. Fignre VI-13a shows

QPR No. 111 109
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INPUT INPUT . ]
OUTPUT OUTPUT ;

(a)

Fig. VI-13. Output and input of AHN experiment, Total pressure:
200 Torr, Gas mixture: LO ’\I Hc = X:4:100,

Intensity of input pulse: 0,75 MW/om )/div. Inten-

sity of output pulse: 1.12 (MW/em- )/div. Time:
50 ns/div. (a) Amplifier oif. (h) Amplifier on,

the oscilloscope display for this case.

In order to probe the temporal evolution of the three-cleetrode laser amplifier, we
first fired the amplifier and, after a chosen delay time, the oscillator. In general, the
oscillator was fired ~30 pus after the onset of the discharge in the amplifier for two rea-
sons: first, we wished to avoid the effects on our measurements of the shock waves
generated by the discharge. Second, we wished to be certain thut the symmetric
stretching (SS) and bending (B) modes of CO2 had equilibrated with each other at
slightly above the kinetic temperature of the gas.2

Measurements on the amplification of high-intensity ns pulses were made at 200 Torr
of CO :N tHe mixtures. The ratio of these mixtures was CO N tHe = X:4:100, wher
COZ partlal pressure was varied from 3.5 to 35 Torr partial pr essure. Small-signat
gain of this three-cleetrode laser amplifier in each case was measured by a ew CO
laser,

Results

Figure VI-13b illustrates the input and output putses when the amplifier is turncd
on, l'our such measurements were made and their aver age was taken at each CO
partial pressure studied.  We have found that the RG-8 cable used for the time del

introduces some distortion in the input signals.

cly
This distortion can be accounted for
if the first (sccond) pulses of the input and output pulses {rom the amplification me

aame s bl

a-
surements are compared with the first (second) pulses of the input and output pulses
when the amplifier was evacuated,

QPR No. 111 110




194, VI-14, LSC..,/LSGl vs partial CO,

% {63
15 b pressurece.

0 10 0 30 40

€O, FARTIAL PRESSURE (Tor)

Table VI-1. Iixperimental results,

-
5 Gl S @ AN

No. B oo, SSG LSG, hul "
(Torr) £10% £10% (° K) N,(0)

1 35 5 0.50 0.30 1180 0.12

.70 0.36 1150 0.11

e
o
(S}
o

3 11.0 1.50 0.76 1155 0.14
4 20.0 1.00* 0.52 845 0.11
5 23.0 1. 50%* 0.75 860 0.13

.00%* 0.96 890 0.14

fopl
rS
[ieN
o
3

7 27.0 2,50% 1.15 935 0.15

5 35,0 2.00 0. 81 830 0.10

Notes: “Not measured directly; calculated from LSGI and the
peak intensity of the pulse.

. -1
Sa T in out . . 7 .
ssG = 2O g the small-signal gain across the tube.
in
o

Here the intensity is less than 1 W/em”™.

IJSGI, large-signal gain of the first pulse.

.l»ll

ar temperature of the asymmetric stretching mode cal-

culated from SSG.

AN

, fractional depletion of the 00° 1 population by an
Nu(O) ns pulsc,

AN , calceulated from the large-signal gain and the inten-
sity of the pulse.

N (0), obtained from 5SS5G.

ol
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Figure VI-14 shows LSGZ/LSGl vs the partial pressure of CO2 studicd, We have

rsq O Touti ™ linj
! Lini

where i=1,2, with 1 and 2 rcpresenting first and second pulscs, LSGl (LSGZ) is

the large-signal gain of the first (sccond) pulses. The following observations can be

madc from these mcasurements, (i) LSGZ/LSGl is less than unity,
expected, since the first pulse had deplete
level of COZ'

This is to be
d a fraction of the population from the 00° ]
(ii) The ratio LSGZ/LSGl is approximately 0, 8 at CO2 partial pressure

of 3.5 Torr and the ratio increases slowly to 0.9 as CO2 partial pressure increases

to 20 Torr or highcr, which is as cxpected, since the 00°1 level of CO2 was being
rcpopulated by the higher O nﬂm levels at a rate3

that is directly proportional to the
CO2 partial pressure,

Tablc VI-1 gives other experimental results of interest, We found that thc large-

signal gain of our pulses is approximately one-half the small-signal gain, and the fr
AN
tional depletion of the 00° I lcvel, 4

N _(0)
u
A theoretical model for the amplification of high-intcnsity n
dcveloped. We shall prescnt the theory, and make a comp
in a future report,

ac-

»is between 0.10 and 0., 15,

anosecond pulscs is bcing

arison of theory and experiment
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1. CO, SHORT-PULSE AMPLIFICATION STUDIES

National Science Foundation (Grant GK-37979X)

A, . M. Ross

Recent advances in high-pressure gas discharge technology have made possible the
deposition of as much as 300 joules/liter in carbon dioxide lascr media. Because of
the several vibration-rotation degrees of freedom ol the C()2 molccule, this energy is
stored in a great many molecular states, and therefore elficient extraction ol it requires
optical pulse lengths that are large compared with the kinetic collision times governing
the energy -exchange processes in the medium, Operation of high-pressure devices as
oscillators yields as much as 50 joules/liter from the afterglow ol o pulsed discharge,
and quasi cw operation has given hundreds of joules/liter in 10-100 ps pulses, bxtrac-
tion in ns pulses is tar less clficient, In this report we summarize theoretical results
from a multitemperature kinetic model Iormulated to describe ns pulse amptlification by
devices operating at pressures above 1 atm, Numerical results for 1-atm and 3-atm
pulse amplifiers arc presented.

Amplification of pulses comparable to, or faster than, kinetic collision times
requires consideration of the polarization ol the molecules, and of inertiual cffects in the
molecular dipoles (for example, see Hopt and Rhoclcsl ). Theoretical models incorpo-
rating only two vibration states and the full rotution spectrum will be adequate
descriptions.  If energy is to be extracted celliciently, the pulse length must be several
collision times, in which casc the cohierence offects can be neglected, and the medium
can be described by a rate-cquation model,

In the rate-equation limit the growth of » plane wave in a transverscely uniform
medium with nonresonant logss @ can be described by a first-order differential equation
in distance

a1 . 5 ) LT
57)t = ~al + o(w) N 4[00° 1,07~ == {100, 3] o 1, (1)

.
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where the stimulated emission ¢ross scction is

|
Y L
2 T y :
_ X JJ! 0 .
o(w) = mt R > 5 (2) - R
gy e 2
: sp 2d' (w (.u()) + e

with 1\.’C the CO, density, £, the degencracy of the .lth rotational state

g‘]=2J+l, (3)

P N TR T

and [n n,ng, J| is the fractional L() populiation in the state of these quantum numbers

(thut is, the diagonal clement of the c}unsity matrix for o single molecule).  The Spon - : 4

tancous cemission time written here is that for the entire band; an individual line has i

a matrix element proportional to the rotational matrix clement

5 J for a P(l1) line (J'=.0-=1)

: Tyt ‘ & :
‘N J+ 1 foran R(J) tine J'=. + 1) R
y 1

We shall neglect frequency pulling effeets, although in high-gain systems they will be
important if the input pulse is detuncd appreciably,

Weassu e that the molecular kinetics can be desceribed adequately by rate cquations

in which only binury collisions arc important, Even with the rate-cquation model, the

six degrees of frecdom of the CO.,, molccule in its clectronic ground state give risc to .

2 $O many important vibration-rotation states that the problem would be intractable with-
out further simplifying assumptions, The fact that the molecule §
in its low vibrational states, and that the inter action of vibration and rotation is weak

allows us to treat the relaxation of the

1s reasonably harmonic .

various degrees of frecdom .subbtmtmlly

3 independently.  We also make use of the obscrvation of Osipov and Stupochenko™ that

| relaxation of molecular vibrations from . nonequilibrium distribution tokes place in two
phascs: first, o rapid rclaxation to quasi ecquilibrium in which the various normal

modes of the motecule acquire a Boltzmann distribution of excitation, which can corre-

spond to a temperature far different from the kine 'tic temperature of the gas
a slow relaxation of

and second,
these quasi-cquilibrium  distributions to the kinetic tempera-

ture,
Since we are concerned with amplificrs in which the pumping takes place over a time g

scale that is large compared with the kinctie collision times, it is reasonable to assume :

that prior to the arrival of the clectromagncetic pulse the vibrational states are dis-

tributed according to the partial cquilibrium distribution

n n, n

[nynung]= (1=5)(1-b)° (1=a) s D(ny+1) b a2

) (5)

B b= s
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where s, b, and a are Boltzmann factors for the symmetric stretch, bending, and
asymmetric stretch modes (vl, Vo v3) of the (‘O2 molecule,  We have taken the state

[n1112n3] to include all of the states [nln§n3j, of which there are n, + 1 (f represents
an angular momentum around the symmetry axis of the molecule, and hence can take

on the values -n,, -n, +2, -112+4, cees M, 112).
a
s = expl|~ (6)
L. B s
€
b = exp| - - (7)
| KB'b

a

€
a
exp [- kB—yl"l:l . (8)

The rotation states also reflect a Boltzmann distribution

¢ = ] [ heB\ .. [ heB
[n1n2n3, J_] = [nlnzn?’:lZ gJ <E—F}’,l—‘_>(‘\p|: _—k T . J(J'*‘l )} R (9)
I B

where we assume that the rotational constant B is independent of the vibrational state

(CO, has cB = 11606 MHz and 11698 MHz in the upper and lower laser levels, respec-
tively). Doppler broadening of the laser lines is less than 1% of the homogeneous line-
width at 1 atm, so the veloeity distribution of the molecules will be neglected.

Passage of an optical pulse will introduce deviations from thesc distributions, In
particular, a fast pulse will create a "hole" in the state {0091, J'] (that is, it will
depress the population below that given by (5)), and a "peak" in l10°0, J] because of the
stimulated emission process, Judicious approximations allow a description of the kin-
ctics in terms of variables giving the average occupations of the three vibrational
modes and the depths of the "holes" in both vibration and rotation., In particular, we
assume that the two laser states have the forms

00 1] =2 a + e (10)

[10°0J=Z;ls+ﬁ (11)
and that the other states retain their previous occupation probability exclusive of nor-
malization

1 2
S (n2+l) b "a 7, (nlnzn # laser state. (12)

[nlnz 3J= Zv 3)
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The normalization condition requires

Z;l = (l"fl"f‘)(l--s)(l—b)2 (1-a). (13)

Defining the occupation fractions for the individual modes

X = ¥ |mnq] (14)

9 mn

Yy = T [mnq] (15)
mq

z =T [mnq], (16)
nq

and with the assumptions (10), (11), and (12), we find the following cxpressions,

~

xq = (l—a-ﬁ)(l—zl)nq, q#0 or]l

X, =l =a=a+(atfla = (I-a-p)(1-1) + p (17)

X = (1-e-p)(1-a)a + @ J

¥, = (1=a=p)(n+1)1" (18)
m N

Z., = (1-a=p)(1-8)s ", m#0 or]l

zo=l —s—ﬁ+(a+ﬁ)s=(l—a—ﬁ)(l-s)+ar (19)

z) = (1-a-B)(1-s)s + . J

These distributions are illustrated in Fig. VI-8,

While this assumption of "holes" in single vibrational states is a convenient approx-
imation, the corresponding ansatz for the rotational distribution is supported experi-
mentally by the work of Cheo and Abmms.3 They have tound that the rotational
relaxation may be J-independent and all rotational levels are thermalized in one

collision time, so that the expression

[00°1,] = [00°1] z;l 2 g, uxp{-(%) .J'(.J‘+l)} + £ (20)
' Br

with
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1 - hcB .
. 7,1_1 = (1~g)<k T > (21)
4 3 ) Br
. 3 i correctly parametrizes solutions of the model. £ measures the depth of the "hole"
3 3 in the rotational sublevel depleted by the radiation; the other levels are populated
A

, { |

-~
~
~
~
~
, ~
~
;i lot { ~ -
e,

- q=0 1 J
1 : N\
% ( N
2.8
i Y n N
1 T~

4 [~

k- [ -
‘? g n 0 1 2 s :
3 ]
) 3 B

o1 { ] N
‘ 3
B =
23 mou 1 ? {NERGY

I'ig. VI-8. Assumecd distributions of CO, normal vibrational

'_ made excitations.
in proportion to a Boltzmann distribution scaled in amplitude by 1-£ so that the net
vibratioal-state population is held constant as £ varies, A similar expression is
assumed for the lower level:
J [10°0,0] = [10°0]{ 2 2 g exp |- 222 ) D)+ o (22)
3 1 J kil
B r

3 with
=1 he B

2! = e (25 ) (23)

1 Br

This rotational distribution is illustrated in Fig, VI-9,
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Fig, VI-9, Assumed distributions of

C 02 rotational-state
excitations,

o = .4
I'he Landau-Teller assumption  that the dependence of energy exchange cross sce -

tions is that of harmonic oscillator matrix elements can be used to determine

the cross
sections for the processes to all orders from the

measured rates.,  We have taken into
account the following processes.

V-t in the v, mode:

ky,
1] —_— -
(nlnzn3)+1\lﬁ(nl,n2 l,n3)+l\!+£b

Intermode V-V between vy and N

k
an

\ _— |
(nl, n2+1, n3) + I\Z(v) v—(nln2n3) + NZ(V+1) + 18 em

Intermode V-V botween V3 and 3v2:

ab

sy -1
(nan’ n3+1) + M —— (nl,n2+3,n3) + M+ 346 cm

104
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Intramode V-V in vyt

an

[ Yy ——— [ '
(nlnz, n3+1) + (nlnz, n3) pe— (nln2n3) + (nlnz, n3+l)

k
I

(Y + M= (j") + M.
In addition, the lower laser state has been assumed to have o V-V retaxation of inde-
terminate nature which has been modeted by & simple exponential decay.,  Other V-T
processes could be included, but the principal loss rate from both V3 and VN is by the
Vo mode.  Also, because of the close coupling of the ) and v, modes by the Fermi reso-
nancce (that is, large cross scctions for the conversion of one member of a Fermi reso-
nant pair into the other), we have assumed that the Yy and vy vibrational temperatures

are equal.  The proper variable for the description of the combined bath of states is
Q=25+B8, (24)
where S and B are the average occupancics of Yy and v,
“

=1 5

S=Z mz =7 oot 6 (25)
m
— - =l 2b s
B=% ny, = /'v -5 (26)
n
T | a i
A=Zqgx_ =7 +a (27)

For simplicity, we have also assumed G 2 €, SO that

s=b", (28)

‘The derivation of the equations for A, N, Q, a, f, £, n and the kinetic-rotational cnergy
per particte is straightforward but tedious. Neglecting the e + pterms in (17)-(19) com-

pared to 1, we find (w=w0):

-e_ /k.T
9A an’ B
ot - _Hun [I\(N+l )= (A+1)N ¢ j]

3 3 -€ . /k,T
3B B _ BY  Cab’ "B
—Rab[l + —B”:l [A( 5 + 1) (1\+1)(2> «
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3 € L /kT 3
0Q _ 2B B B L oab’ B !
55 = 43R, }[1 + 13+ J[A( AJ’I)(_) o } _ i
R, (BB oy (30)
B,
— k'l
oN i
5 = l{nu[ (N+1)=(A+])N ¢ 9" B } (31)
3 %1' —ZI{ G% T R (32)
: 9B
: ar = TERyP Ry (33) .
!
EJ- o i
] a0 = "V E = (1-€) R./[00° 1 (34)
on
57 = Y+ (I-n) Ri/[IO"OJ (35)
_:i _8_ I B - —B- ﬂ1
(2+¢c+¢n> ot (kBl)—lbcebRb =
By 5
2 :’
3 —e, /n_T
J € ] m[ A(N+1) - (A+1)N e an B ]
; 3 _€' /k r}v
i; (! )[ (Bef (@) Tt]
3 where .
} lbCR(ln B Lljanu = LbctbnknnIJ (37) '
| (M)
3 - I\ 3
b T 5 ka0 (38)
- (M)
R, = z“;l Uppky P (39)
=g S (40)
B= BT, = T) (41)
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. i B B I
R; = a(w)) {[oo 1.0 I-?j [10 O.JJ}E—V. (42)

Equations 1 and 29-36 (which are in the canonical form of a set of hyperbolic equa-
tions if t' is the retarded time t - z/c) have been solved numerically for a 30% CO,
gas mixture at 1 atm and 5 atm total pressure. The input pulse was a 1 ns (FWHM):-

1 MW/cm2 Gaussian shape. Initial conditions were calculated under the assumption
of equilibration of Q at To. and of ’I‘a = Tn sufficient to give the small-signal gains

10

10 "—

SMALL =SIGNAL GAIN PER cm

5% Iul“/. Y 3% 5 atm
e

}11"0

INTENSITY (W

L (meters)

Fig. VI-10. Peak intensity of amplified short pulse in CO,

media of known small-signal gain at 1 and 5 atm
total pressure. Gas mixture: 0.30:0,05:0, 65
(COZ:N,:HD). Input pulse: Gaussian shape, 1 ns

; ; 6 2
FWHM, peak intensity 10° W/em®,
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illustrated; these are typical of those to be expected in various high-pressure
discharges. Peak pulse intensity as a function of depth in the amplifier is
shown in Fig. VI-10, and the output pulse shapes are shown in Fig. VI-11,

Note that there is substantial broadening of the pulse at 1 atm, while at 5 atm the output
is a reasonably faithful diplicate of the input, even after amplification by more than 1000
in intensity. Note also the extremely large saturation intensity at 5 atm; elementary

considerations of the saturation process show that it should scale approximately as

the

QPR No. 111 108
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INTENSITY (108 w/em?)

TIME (ns)

Fig. VI-11. Temporal pulse profiles for amplifiers of
Fig. VI-10, 4%/cm small-signal gain at
1 atm, 3%/cm at 5 atm.

square of the total pressure,
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A THEORY OF FORCED MODE LOCKING*

by H. A. Haus**

Abstract:

A theory of forced mode locking is set up on the basis of
an expansion of the electromagnetic fields in the optical cavity

in terms of the cavity modes. Mode locking is viewed as injection

..locking of the cavity modes via generation of frequency sidebands

by the mode locking element. The approach leads naturally to
simplifying assumptions that are legitimate in most practical
cases. In the case of a homogeneously brocadened laser medium, a
simple differential equatiﬁn is obtained for the mode locked pulse
train for an arbitrary periodic mode locking modulation. 'The
analogy of the equation with well,known solved problems of quan-
tum mechanics is used to determine the nature of the solutions.
For any given modulation, usually more than one mode locked solu-
tion is found. In the case of sinusoidal ‘modulation, one of the
solutions reduces to that previously derived by Siegmann and
Kuizenga. The higher order solutions are shown to be unstable.

The case of mode locking of an inhomogeneously broaédened laser

medium is solved.

* Work supported by Joint Services Electronics Program (Contract
DAAB07-71-C-0300) . US Army Research Office - Durham (Contract
DAHC04-72-C-0044) .

** Electrical Engineering Department and Research Laboratory of
Electronics, Massachusetts Institute of Technology, Cambridge,
Mass, 02139,
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Introduction

The theoretical investigations of mode locking[see Ref. 1
for a large list of references] may be roughly divided into two
groups, (a) those which treat the mode locking process in the
time domain, e.g. the paper by Kuizenga and Siegman(2], and
(b) those which treat the phenomenon in the frequency domain
"{notably the paper by McDuff and Harris[3]1). 1In this paper we
present a useful extension of the mode locking analysis in the
frequency domain. When setting up the analysis of saturable

absorber mode locking by a somewhat novel approach we soon dis-

covered that this approach lent itself very well to a better"

the solution of previously unsolved problems of mode locking
theory. !
This paper is devoted to forged mode locking. In particular

the following issues are addressed: 1. Mode locking of a homo-

e s i T ¥ U et R T Ry Pt et T e 1 e
i S il o - e e e R S S S s it (st il R s - b S FR st

geneously broadened laser by sinusoidal amplitude modulation.
Well known results are obtained, but this part of the paper is
intended mainly to show the correspondence with previous work.
2. Mode locking by sinusoidal ;mplitude modulation of an
inhomogeneously broadened laser. 3. 'Modulation, other than
sinuscidal, of a homogeneously broadened laser, 4. Stability

; of the mode locked pulses of a homogeneously broadened laser.

The presentation of a theory of mode locking from a dif-

ferent point of view needs some justification in view of the




iarge literature on the subject. It is believed that the approach
presented here offers the following advantages:

(a) The theory of coupled oscillators is a well known one
and offers insights which are not as easily obtained using the
approach of pulse propagation through nonlinear media.

(b) The theory of injection locking has been recently dis-
cussed very lucidly[4]. The analysis of the stability of locked
oscillators can be transferred almost unchanged to the treatment
of the stability of mode locked pulse trains. )

(c) Simplifying assumptions concerning the character of the
laser medium are suggested by the new approach which lead to very
simple differential equations. The very simplicity of these dif-
ferential equations then allows the treatment of problems not
hitherto attempted. The present paper illustrates two such ap-

plications: mode locking of an inhomogeneously broadened laser

and stability analysis of the mode locked pulse train.
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I. Mode Locking as Injection Locking

Injection locking of a cavity with a single mode containing
a negative conductance may be analyzed with the aid of the equiv-
alent circuit of Fig. 1. Here the admittance YL(|V|) represents
the active admittance of the gain element which is in general

complex and a function of the magnitude of the complex voltage

Vv, and Y, is the cavity admittance, a function of w. If a

C

current source IS of frequency w 1is applied across the circuit

- as indicated, then the equation for this injection locked oscillator

is.given by

Ig = (Y (w) + Y (v, [V])]V o " o (1.1

Equation (l.1l) can be adapted to the case of a mode locked
optical cavity involving the interaction among many axial modes.
The identification of equivalent circuit elements of each reso-
ance circuit (representing one axial laser mode) with laser and
optical cavity parametefs is carried out in Appendix I.

The electric field in the cavity is expanded in the set of
axial modes of the empty cavity, with mode pattern Ek(E);,the
expansion coefficients become the veoltages Vk of the different
resonance circuits. One assumes at the outset that mode locking
is successful and that all modes oscillate near their respective
resonance frequencies. The frequency separation of the oscilla-
tions is dictated by the injection signals which are by definition

separated by w the frequency of the mode locking element.

Ml
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ﬁhether or not the solutions thus found are physically acceptable,
i.e. stable, and the starting assumption of ‘successful mode
locking is indeed justified, must be left for a stability analysis
which is carried out at the end of the paper.

These assumptions imply that the electric field in the cavity
can be expanded as follows:
jwot jkw

Mt

E(r, t) = e IV, e Ek(E) + c.c. (1.2)

" where the k-th mode has the frequency
e =k wy + o, \ (1.3)

jw _t
The fast time dependence exp 1% has been explicity extracted

where w is to be identified with the frequency of the central

o

mode (k = 0), the mode nearest to the peak of the laser gain

profile (peak of the negative conductance Re YL). :
Each complex amplifude Vk obeys a set of equations that

can be summarized in a parallel equivalent circuit. The equiva-

lent circuits describing different modes are coupled by the side-

band generation of the mode locking element, i.e. the driving

current for the k-th cavity mode, ISk’ contains contributions

of Vi(i # k). We shall disregard couplings as caused by other

effects. Thus, in particular, we shall assume that the gain of

the laser medium (represented by YL) is time independent and




therefore no sidebands are produced on frequency components
amplified by the laser medium. This in turn implies that the
population relaxation time T1 is long compared with'éhe cavity
transit time so that the laser medium, while affected.by the

time average optical power in the cavity, does not respond to
instantaneous power fluctuations. (This assumption was also made
in Ref. 2.) Generalizing (l.1l) to the k-th cavity modé with

armd i tude Vk one has:
(Yo (wy) + Y (0 )] v = | (1.4)

Consider first the dependence of YCk(wk) upor.  w, . The
k-th cavity mode has a quality factor Q (assumed to be the
same for all modes) and a resonance frequency

Vo = k Aw + w 5 (1.5)

o
where Aw is the separation between the resonances of the
(empty-axial) cavity modes. Since the frequency of excitation
is given by (1.3), one has

: ' Wy = Aw
YCk = G l + kj 20 ————1|. (1.6)

c
wO

Next, consider Isb of (1.4). If the cavity is mode locked

by the time dependent loss of a mode locking element, then

TR
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Isk = - GC m(t) Zz Vz e (1.7)
: k-th Fourier component

where m(t) has the time dependence of the loss modulation (with
period Zn/mM) and its magnitude is a measure of the "loading"
of the cavity by the mode locking element. (See Appendix I for
details.)
In (1.7) all modes & affect the mode k equally (m(t)

is k and 2 independent) an assumption justified if the mode
locking element is near one of the mirrors. Other positions of
the mode locking elemen% must be handled differentiy as shown in

Section V, The expression (1.7) may also be written,

Ige = - G ruk -~y

| | | (1.8)
sk i L

where Mk -8 ;o the (k - 2)-th Fourier component in the

Fourier decomposition of m(t);

5k it
m(t) = z mk) 70 M (1.9)

Combining (1.4), (1.6), and (1.7) we obtain

. wM - Aw
Ge 1 +k 320 Vi + YL(wk) Vi =
Wo
jlet ' '
-  Gg [m(t) £ vV, e ] (1.10)

L k-th component
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ki : ’ Finally, consider the admittance of the laser medium (for
details, see Appendix I). The laser gain is frequency dependent,
and a Lorentzian line shape will be assumed. The admittance may

be normalized to GC so that

YL(uk) Ge (1.11)
wk-w
1+

where w is the laser medium linewidth, and g is the magnitude

L

of the negative conductance at line center normalized to GC'

We have assumed that the center frequency of the laser line

coincides with one of the cavity mode oscillations. If the mode

spectrum is dense as it must be to get good mode locking, this is
not a serious restriction.

We shall now make the most important assumption of this study,
which, in fact, is the assumption crucial for obtainment of the
simple equations of this treatise. We assume that (1.11) can be

expanded in W, = wo/mL and only terms up to second order are

retained

YL(uk) e - Gcg 1l - ( R (1.12)

This assumption implies that the pulse widths predicted by the
ensuing analysis must be long compared with 1/wL. This éssumption

is usually justified in practice.

-
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The conductance g is power dependent. If one normalizes
.thé field pattern ék appropriately, the power P on the travel-

ling waves of the (standing wave) modes propagating in one axial

direction can be set equal to

k

for a homogeneously broadened medium; PL is the saturation power
of the laser medium in general a function of W, If the pulse
spectrum is narrow, as assumed, the w -dependence can be disregarded.
'(1.12) is correct strictly speaking only if all modes act on the
laser medium in an identical way, i.e. if the medium is concentrated
near one of the mirrors. The phenomenon of "spatial hol: burning”

is thus ecluded. Assumption (1.12) may not be too restrictive

even for a laser medium occupying a larger portion of the cavity

length.

Sﬁppose at first that
m({t) = 2M[1 - cos Wy t] : (1.14)
the modulation is purely sinusoidal. Then

Adhering to this example, and introducing (1.15), (1.3), (1.5) and

(1.12) into (1.10) we obtain the second order difference equation:

-
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(1.16)
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IXI. Solution of Sinusoidal Mode Locking of

Homogeneously Broadened Laser

We make a further approximation so as to enable us to find

simple solutions to the difference equation (1.16). If many

modes are to be locked, and if the variation of the gain over

a frequency range corresponding to the mode spacing is small,

then the difference equation can be replaced by a second order

differential equation. One has

2
- 2 d*v
[Vk+1 Ve + Ve L g|r eyt —
. dw
where V

w, the frequency deviation from Wy r and Wy is the frequency

separation of the spectral lines. The modes are identified by

the continous variable ¢ = lim k' w

k4w

number, which assumes wM*O

both positive and negative values.

M’ where k is the mode

One obtains for (1.16)([5]:

2 2

l1-g (1 --L14 § 2 tE * g)| Vv = M 2 av (2.1)
2 M 2
wy Wy dw

~

where § is a measure of cavity "detuning", proportional to the

difference between the modulation frequency and cavity resonance

frequency spacing:

(2.2)

" is now replaced by a continuous function of the variable

o e e ki

¥ r——
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ﬁq. (2.1) is particularly simple, if we require that

This implies that

W
uy - bo = - Lg Mo (2.4) |
d 20 ) ' ' i

The modulation frequency deviates from the cavity frequency by

an amount proportional to the laser medium dispersion. In fact,
(2.4) means that the modulation frequency is adjusted to equal the
cavity mode frequency separation as modified by the laser medium. i
Hence (2.4) may be viewed as excitation by a modulation tuned
to the actual mode separation, i.e. resonant modulation. With

- }2.3) satisfied, (2.1) has a pure real coefficient on the right

R A

hand side. The resulting equation is identical with the harmonic

E oscillator equation of quantum mechanics, where V plays the

11 role of the wave function and w the role of the spacial vari-
able.
'.'
{3 2 2
i l1-g -l v=nyg2 &Y (2.5)
: . 2 M 2

4 Y, dw

We can now bring to bear the entire formalism of the quantum

mechanical harmonic oscillator on the problem of loss modulation

in a homogeneously broadened medium. The solutions of (2.5) are
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the well known Hermite gaussians (6]

Viw) = H_ (—“’) exp - & (i)z , (2.6)
wp 2 Wp
where
& M V
e =J—.; e | (2.7)

" The role of the energy eigenvalues En of the harmonic oscillator

is played by the parameter g - 1 in (2.5). We find for the
quantization of this parameter

2 Vg QM (n + 1/2)
E =g-1-= (2.8)

“s

Equation (2.6) defines "supermodes" or "mode locking modes"
of the mode locked oscillator. The higher the order n of the
"supermode"”, the more structure in the frequency spectrum, Since
the Fourier transform of the spactrum (2.6) leéds to the same

time dependence, we find that mode locked solutions may exist of

higher and higher temporal structure exhibiting more and more

pulses. The lowest order supermode was obtained by Siegman and
Kuizenga[2] and the higher order supermodes by Haken and
Pauthier(7]) and others(8,9]. We sl all show in Section VI that

all higher order supermodes (n > 0) cannot be excited in the
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steady state because they are unstable. Equation (2.8) determines
the power in the mode locked cavity. Indeed by solving for g
from (2.8) and then using the dependence of g upon power P,

(1.13), we find the following relationship for P:

g .
R . o = 3 (2.9)

where u =

N =

' 2

W
(2n + 1)2 M (-ﬂ)
Wy,

In the limit of a small modulation coefficient M, (2.9) becomes

p Wy
— =g, ,-1-29 /H— (n+1/2) (2.10)

P Wy,

Let us now return to an interpretation of the present
solution in terms of the physical model used as a starting point
of the investigation, the injection locking model. We must re-
member that the differential equation was used as a mathematical

approximation to the difference equation, and that the solution

- obtained must be interpreted as an approximate solution of the

difference equation if the replacement is made: V(w) -+ Vk and
the solution (2.6) is assigned values on%y at discrete frequencies
Wy« Mode locking has led to simultaneous oscillation of many modes
in a homogeneously broadened system, even though the unmodulated



system would have oscillated only in a single mode. The simul-

taneous oscillation in many modes is allowed because of injection

locking. The injection currents are 4

ISk=GCM[Vk-1-2Vk+Vk+1 ]

o i s g o

Figure 2 shows a plot of the real part of the two sides of (1.16)
VS W, (the imaginary part vanishes because of assumed resonant ;
modulation) , showing explicitly the discrepancies Rel[Y,(w,) + 1

YL(wk)] which are balanced by the modulation-produced "source”

current normalized to the oscillation voltage, ISk/V . %
i
The results obtained thus far are well known, One can extend :

our expressions tc cover reactive (phase) rather than loss (ampli-

tude) modulation by replacing M by an imaginary quantity, again

arriving at results derived previously. The mathematical steps

necessary for such modifications are interesting, but are not i

Zeoidta

presented here because no new results are obtained[l10). Instead,

=

we shall concentrate here on problems whose solutions were not

obtained previously.
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III. Inhomogeneously Broadened Medium

If the medium is inhomogeneously broadened, then the power

in any particular cavity mode determines the pulldown of the gain _

line at that particular cavity frequency (provided, of course,
that the separation of the cavity modes is large compared with
the homogeneous linewidth of the medium). The adaptation of
(2.1) to the case of an inhomogeneously broadened medium is ac-
complished by changing the character of the dependence of the
negative conductance g upon intensity. To first order, the

reactive contribution is unaffected by saturation. The equation

is: .
- z )
g - w,\ T
' Y7L atv
1 - o + § = (6 + g V=M wMZ = (3.1)
1 + |V| wr, dw
P

b I' -d

where PL is a conveniently defined saturation intensity. Eq.
(3.1) is a nonlinear differential equation for the voltage V.

It is a difficult equation to solve; yet it is possible to gain
considerable ins.ight into the nature of its solutions by giving
it a physical interpretation. Let us separate the complex voltage

amplitude into an amplitude and a phase factor

v=ael? C3.2)

\
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Taking the second derivative of (3.2) one obtains

d2 v oo [

i A ej¢ + 2j$ A ej¢ + jo A ej¢ - &z A ej¢ (3.3)
dw

Introducing (3.2) and (3.3) into (3.1) one has

2
[\
go[ = ——;
20 [ ] wM
Muw2 (A -422) ={1 - A (3.4)
M Az
1 + =—
Py
e . L4 = w
M mM’ (R¢p + 2A ¢) = — (& + go) A (3.5)

o

Here we have written (') for d/dw in order to emphasize
the analogy with the equations of motion of a particle in polar
coordinates; the frequency variable plays the role of "time", the
amplitude A is analogous to "radius". The force field is
"radius" and "time" dependent. If one assumes that the driving
frequency is matched to the frequency separation of the cavity
modes as modified by the medium, then § + 9y = 0 and the force
field becomes a central one. 1In this case, one may define a
potential function, the derivative of which gives the force. The

potential function plotted against "radius" A as a function of

*time" w is shoWn in Fiqure 3. The potential hill travels as

a function of time towards the origin and then the origin becomes

e ol

-
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a hill in its own right. 1If one looks for a mode locked "super-
mode™, one léoks for the motion of a particle that starts with
zero velocity at a time t = 0 (zero slope at center frequency) ,
and tben approaches the origin (A = 0) where it comes to a full
stop. |
Consider fifst theicase in the absence of modulation. In
the particle motion analog, this corresponds to a massless.parti-
cle. The particle "looks" for a position in which it is exposed
to zero force field. The particle stays at the top of the hill
gtarting infinitesimally to the left and then searches for the
position in which the force is infinitesimally small yet directed
from right to left. When the potential hill has made it to the
origin, the particle has followed it there and then stays there
forever. This case can be solved very simply analytically by
setting the righthand side of equation (3.4) = 0.
' Consider next the case when there is modulation, at first
the case of very small mass (modulation). Near t = 0, when
the force field is strong, the particle seeks out positions in
the potential field at which it is exposed to a small force to
the left. This means that the particle starts to the left of the
hill at t =0, i.e. at a smaller radius than the massless par-
ticle. 1In the language of mode locking, this corresponds to a
power of the mode near line center that is smaller than the power
in the absence of mode locking. Near the origin, the particle
has acquired a finite velocity and kinetic energy. 1In order to

come to a full stop at the origin, it has to expend the kinetic

{
o

3
L
1
4
3,
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énerqy by climbing up a hill, This means that, before the particle
comes to full rest, the origin must have already risen above its
surroundings. Translated into the language of the mode locked
"mode™ this means that the frequency bandwidth of the mode is
wider than in the absence of modulation (in the language of the
equivalent particle the origin of the radial coordinate develops
into a hill before the massless particle has reached the origin).

The model is useful also for determining what happens when
the strength of mode locking is increased excessively. This
corresponds to a very massive particle. The potential, as defined,
does not involve the mode locking amplitude M and hence, in the
equivalent language of the partiqle, the initial hill becomes
smaller, the heavier the particle. A supermode, symmetric at
line center, corresponds to an initial condition for the analog
particle starting at rest to the left of the potential hill, A
particle which starts initially at rest slightly to the left of
the potential hill may be too massive to make it near the origin
before the potential distribution has changed beyond recall,
preventing the particle from acquiring sufficient kinetic energy.
The particle never makes it to the origin, No solution exists
for excessively high values of M.

There are also higher order solutions, if the modulation is
not too strong. One may start the particle on the down slope of
the hill. (Note the peak intensity at center frequency for this
mode is less than for the lowest order supermode.) The particle

may go through the origin and climb up the hill on the other side,




After oscillating back and forth, the particle can be brought to
rest at the origin. Such solutions exist only for particles of
finite mass (i.e. finite modulation).
Equation (3.4) has two adjustable parameters, 95 = 1,
the excess small signal gain at line center (w = 0) and the
W

normalized modulation parameter LM

N9 Y
two parameters, solutions for the particle motion were obtained.

. For a range of these

Figure 4 shows plots of A//FL vs normalized frequency ”/”M' for

w
various choices of the parameters éL Gﬂ and 9o 1. Figure
o L
5 shows the range in the (g° -1),
& .
§ﬂ'5§ plane over which mode locked solutions are obtained.
o L

'~ Figure 6 shows the decrease of the oscillation amplitude at line
center A(0)//P., as a function of normalized modulation, for

different excess small signal gains.
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IV. .General Time Dependent Loss Modulation

The generalization to a general, time dependent, loss
modulation calls for re-examination of the "injection current"
expressioﬁ (1.7). This expression suggests that an analysis of the
mode locking problem in the time domain may lead to simplifications.

Indeed, if one defines

jkth
is(t) =z Igk © (4.1).
" one finds
Ig(t) = - G, m(t) v(t) . (4.2)
jszt
where v(t) =L vl e is the time dependent amplitude of
£

the electric field near one of the mirrors. Equation (4.2) states
éimply that the time dependent source current is the product of
the modulated time dependent conductance GC m(t) and the field
ampli tude.

All of this is straight forward and would not profit us
very much if one could not transform the left hand side of (1.4)
into the time domain and obtain a simple result. In general, this
is not possible. However, with the approximations already made
for Yc(wk) and YL(wk) we may carry out the transformation

and obtain a very simple result. Using the same approximations

that led to (1.6), one obtains in the time domain:



‘could have been solved in the time domain, with 1 -~ cos w

2
1-g [1 + —d-] + (g +8) Llve) = n(v)yviv) (4.3)
wL’ dt? dt

In the case of "resonant" excitation, g + § = 0, one obtains
a differential equation in time for wv(t) with a simple quantum
mechanical analog. A particle with the mass 2m/hi? = sz/g
moves in the potential well m(t) where the role of the spatial

variable x of guantum mechanics is now played by the time. The

"sinusoidal modulation problem of the homogeneously broadened laser

M
and the hermite gaussian solutions would have been obtained,

another way of observing the invariance of hermite gaussians wi;h
regard to Fourier transformation. Note, however, that a sclution
of the inhomogeneously broadened laser mode locking problem would
have been diffie»'t in the time domain.

Solutions ° (4.3) can be obtained once one assumes special
forms of the modulation function. Consider for example a very
deep modulation of the mode locking crystal which shuts off trans-
mission entirely outside an interval of length 1. This is shown
in Figure 7. Equation (4.3) for the square potential well is the
quantum mechanical problem of an electron in a perfectly reflectiné
box. The eigenfunctions and eigenvalues of this problem are well
known and are

cos 2T ¢ (4.4)

V(t)

R \
t-» -Z-(NMt)
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in the time domain. The eigenvalues are

(4.5)
w2\l

g-lg_L(n_w)’_
L

In the time domain the mode locked pulse is entirely confined to
the time period of length 1.
‘ If the square wave modulation is modified to one of lesser

depth, one has the problem of an electron in an open square well

with well known eigenfunctions (6].

One may think of many other modulation forms for all of which
it is easy to arrive at qualitative conclusions as to the shape
of the mode locking pulse and the possibility of mode locking,

The viewing of the mode locking problem in the time domain

affords other insights. Consider for example the question as to

what approximations were made when the discrete spectrum of the

cavity oscillations was replaced by a continuum and the modulation

of loss, which was sinusoidal, was replaced by the operator d2/dy,2?.

In the time domain, this operator is replaced by the function
1

Y t’, If one considers the periodic problem, one has to make

two modifications: (a) one must return to the full time dependence

.0of the modulation and replace, in the time domain, the parabola by

the cosine function. (b) One must look for solutions of the time

dependent problem which are periodic,

Clearly the introduction of a periodic modulation function

in lieu of the parabolic one, introduces a periodic w

ell in time
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space. The problem is now a quantum mechanical problem in a
periodic potential. If the modulation is strong enough so that
the eigenvalues lie near the bottom of the well, one obtains a
set of solutions in each of the well bottoms, which is almost the
same gaussian solution that has been obtained previously. The
eigenfunction consists of isolated pulses in time, repeating

- periodically. On the other hand when the modulation decreases,
the walls of the periodic wells decrease and for a given strength
of modulation, solutions are found with overlap between the wave
functions within each of the periodic wells. The mode locking

is not strong enough to suppress the amplitude between pulses.
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- V. General Position of Mode Locking Element

When the mode locking element is moved a distance z, away
from one mirror, where wp zo/c is comparable to one or larger,
one may not assume that the modes of interest have roughly the
same field patterns thoughout the mode locking element,

If the time varying conductivity of the mode locking element

; is oM(E, t), the injected current Toy is proportional to
jszt

dv V, e

= r e % o o
T J OM(r, t) e e, i

k
. k-th Fourier component

and m(t) of (1.7) has to be replaced by an expression proportional

to
m,(t) « f oM(E, t) 59. . ék* dv

which depends on k and %. Now

- (k Aw + w,)
€ « sin z
c

i and using a corresponding expression for Ez, one finds that
] Ek* . Ez contains some rapidly spatially varying terms, which
ihtegrate out to zero and a more slowly varying term

A Aw

exp jlk - 2) 22 z + exp - j(k - 2) &Y 2
(o [ o

N |
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Spatial integration over the "short" mode locking element replaces

z by 2z where z, is the position of the element measured

ol
from one mirror. The injection current is(t) in the time domain,

as defined by (1.8), becomes

Aw

jkw,,t
1 (k - 2) 3% :
i (t) =21 1I, e == I M e exp j(k - L) — 2z
s k Sk 2 k,i [ o

1]

= z
+ exp j(z = k) éﬂ zo = !'— m t - 1ﬂ"—""" _G + m t + ﬂ—m —0 V(t)o
Cc 2 {I.'IH c NH c

The time dependent injection signals are produced by the delayed
and advanced versions of the mode locking modulation, a very
obvious result. What is remarkable, however, is that we may now
effect a simple genecralization of the results of the preceding
section to obtain the mode locking solutions for this problem,

Suppose we have a square wave modulation as shown in Figure 8, If

4 , .
the time delay (advance) %E -2 is one quarter of the period
M c
of Wy (center of the cavity, 4w = wM) the number of potential

wells has doubled as shown in Figure 8 but their depth has de-
creased. The number of mode locked pulses doubles provided the
depth of tlLe wells is still sufficient to allow "trapped" solutions.
If the modulation is of a more general shape, displacement of the
element causes variations in the shape of the effective potential
well, leading to distortions in the wave function (pulse shape).

The present approach can be used to ascertain pulse shapes in a
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standing wave cavity with the mode locking element not near one

of the mirrors.
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VI. Stability of Solutions of Homogeneously Broadened Laser Medium

In this section we study the stability of the supermodes
with respect to arbitrary perturbations. Wwe shall follow the
analysis of stability of injection locking of Kurokawa{4]. 1In
this analysis, the assumed steady state is perturbed, the per-
turbation is taken to be a slow function of time (compared with
the time variation of the unperturbed oscillation).

An instantaneous frequency and growth or decay rate is ob-
tained for the perturbation and the transient time evolution of
the perturbation is studied for net growth or decay. If it can
be shown that there is no net growth the injection locking is
stable, otherwise it is unstable. |

We shall extend this analysis to the study of the stability
of "steady state" mode locking solutions. Here all oscillations
are coupled to each other through the injection locking process.
The stability study is concerned with the time evolution of
these coupled perturbations. |

Study of transients implies the replacement of the frequencies
by of the modes by Wy + Qk where Qk is complex; -Im(nk) >0
implies growth of excitation. Further the "instantaneous" per-

turbation frequency Qk itself is a function of time. Thus even

temporary growth may be offset by eventual decay.

The objective then is to obtain an equation for a complex

perturbation svk of the steady state Vk and the frequency

Qk of the perturbation which is, 1n general, a functicn of the
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ﬁhase Qk between Gvk and Vk' The perturbation obeys the
gsame difference equation (1.16) as Vk’ except that Qk must
be replaced everywhere by Wy + Qk and g may be perturbed
because an amplitude perturbation changes P and thus changes
g. All Wy dependent parameters may be expanded to first order
in the Qk's if the Qk's are assumed small (small growth
rates and frequency deviations).

We shall disregard all derivatives of the parameters of (1.4)
with respect to Qk' except that of Im Yck(wk). This is tan-

tamount to disregarding all energy storages other than the elec-

'tromagnetic energy storage of the cavity modes. If the oscillation

of the perturbation GVk of the k-th axial mode occurs with
the frequency Wy + Qk' then the admittance to be associated with
is

GVk

= . 20
Yo (o + @) = Yo (o) + 3 8 =
) Wg
or in the continuum limit
Y (w + Q) = Y. (w) + 30 20 «(6.1)
C C
Yo

If we assume that the unperturbed solution is the n-th
supermode, Vn(w), excited at synchronism (i.e. g + § = 0)

expand the difference equation as indicated and go to the continuum

limit, we obtain the equation:
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2 2
roc e o)
dw wy,
_ A |
+ (69) (1-%-j-‘i’-)vn=?2jn sV (6.2)
: i Wy, Wo
Next, consider the perturbation Vnég.
V. g
V69 = v_ g, 8 1 g o = D50 8 (11) (6.3)
pL

2
1+ B (1 + ll)
PL PL

.~

If the voltage V (w) is so normalized that SV (w2 dw is

equal to the power, then

6P = [|V_(w) + &V(w) |2 duw - SV (W) ]? dw =2/ V. (w) Re 6V duw (6.4)

and thus we obtain for (6.2)

2 2 . E 2 V g /' V_(w)Re §Vdu
M mMz _id_. + g - l -- aw 6V -~ 2(1 - 2 = j w ) n n
1l

+ = L
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It is convenient to test first the stability of a general

n-th supermode with respect to a perturbation &V(w) proportional
to the m~th supermode, 6V(w) = an um(w), and study the fre-
quency Q(w) of the perturbation; here um(w) is a properly

normalized eigenfunction of the defining equation of the supermodes

2 2
w (L)L

and the eigenvalues Em are given by (2.8). Since the eigen-

functions are orthogonal, we may set

[- )
S w, u dw

Gnm' (6.7)

Introducing 6V = an um(w) in (6.5) and using the orthogonality

condition, we obtain for the frequency deviation:

Q=3 Zo (E; = E_) (6.8)
20 |

For Em < En' i.e. for m < n, one obtains ImQ < 0 and one
finds growth of the perturbation. Thus any n-th supermode is
unstable with respect to a perturbation having a dependence upon
cavity mode number (w) corresponding to a lower order supermode.,
Hence all modes n > 0 are unstable.

The only possible stable mode is the 0-th order (gaussian)

mode. In order to prove its stability we must show that a general
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perturbation 6V = I ag, um(w) does not lead to exponential
m

growth. We find from (6.5), using Vo(w) = /P u, (w)

P
? §;. w? w
- i (Em - Eo) amum(w) - : 2Reao 1l - ;—; -3 ;—) uo(w)
l + — L L
PL
B i
=2 = 3JQ I a_ u_(w) (6.9)
m m . (
We m _ .

Through multiplication by um(w), m=20,1l,..., and subsequent
integration one obtains a set of coupled equations for the coef-

ficients a,e For m= 0 we obtain

w.g—2C
°p °° ~2j6_
- a (1l +e ) = 39 a (6.10)
P o} (o}
Q(1+_)
Py,
where
2
o 2 (V)
C Efu’(w)( -—“’—)dm=1--1--—- (6.11)
oo " ' © 2 2 2
wL NL

and 00 is the phase angle of a,r i.e. the phase difference

between the 0-th order component of the initial perturbation

a, uo(w) and the steady state. Note that Coo > 0 even though

[}
T

T S !
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(6.11) seems to imply the possibility of negative values. We
recall, however, that we have expanded a Lorentzian, an approxi-
mation valid only when the pulse bandwidth Wp is small compared
with Wy . If the expansion had not been made, (6.1})'wou1d be
positive definite.

Equation (6.10) is interpreted by a stability circle similar
to the one discussed by Kurokawa when treating stability of
injection locking of a single oscillator, Figure 9. For an arbi-

trary initial phase ¢o' the frequency deviation and rate of

decay are as shown in the figure. For no initial phase is arowth

observed. Suppose the initial phase of the perturbation ¢° >0
as shown in Fiqure 9., Then Re Qo > 0 and the frequencies of

the perturbations are greater than the frequencies of the steady
state oscillation. ¢ grows at the same rate for all modes and

hence the circle is described with increasing time as shown. ¢

varies as the circle is traversed. The amplitude of §6V(w) decays

at the rate Im © which is always positive. The perturbation
has relaxed when the origin is reached. If the initial phase

¢° = /2, Im(R) = 0 and no growth or decay occurs, i.e. there
is no restoring force for a perturbation of this kind. A quadra-
ture perturbation corresponds to a phase perturbation of the
carrier frequency. Hence, the mode locked pulses have no carrier
phase stabilization, just like a free running van der Pol oscil-
lator(ll).

Next consider the equations obtained for the perturbation

amplitudes ay and a,. The equations for m > 2 are all given

by (6.8) with n = 0 because the integral

AR i i
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_ . w? W
Cmo 3 | um(w) uo(w) 1l - = - = dw
vy, wy,

vanishes for all m# 0, 1, 2. Hence decay is predicted for all

perturbations with m > 2, We have for m= 1 and 2:

R
Vs © Py,
- ;a (Em - Eo) a, - o Cno Re 2, = jif an (6.12)
o1+ —
P
where
C10 = -3/ u, vy 2 dw
Wy,
and
&g = 1]
020 qu uz( ——%i)dw g

This equation shows that Re a, acts as a source of these per-
turbations. In fact, a proper interpretation of (6.12) is obtained
only after one recalls that 3jQ is equivalent to a time derivative
in the spirit of the present analysis (and Kurokawa's stability
analysis) which deals with the time evolution of an instantaneous
amplitude and frequency.

Since the natural "frequencies" of the system of (6.12) are
decaying exponentials, (6.12) predicts solely that the lowest

order perturbation m =0 produces m=1 and m= 2 pertur-

.
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bations while it decays according to (6.10). These excitations
of m=1 and m= 2 in turn vanish along with the decay of

the m = 0 perturbation.
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VII. Conclusions

The analysis of forced mode locking as a problem of injection
locking led naturally to approximations which would have been less
evident in a different approach. 1In particular, the expansion of
the laser medium susceptance in terms of frequency deviation intro-
duced, in the time domain, first and second derivatives as a
description of pulse distortion by the laser medium. This ap-
proximation reduced every forced mode locking analysis to a
Schroedinger equation. Detuning of the mode locking drive intro-
duces first derivatives which can be removed by writing'the func-
tion v(t) as a product of an exponential multiplying factor and
another time fuhction. The displacement of the mode locking crys-
.tal is represented simply as a shaping and a repetition of the
"potential well". The inhomogeneously broadened mode locked laser
could be treated by this new approach. The stability analysis of
ﬁhe mode locked solution reduced to a problem in essence treated
by Kurokawa.

It is believed that the potential of the present analysis
has been hardly tapped and that many other issues of interest,

both in forced mode locking and saturable absorber mode locking,

will be analyzable using this new approach.
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Figure Captions

Equivalent circuit for single mode, injection locked

oscillator.

The balancing of admittance discrepancy by injected currents

produced by mode locking modulation.

The force-field-potential as a function of "time".

The normalized amplitude versus noraalized frequency of

the lowest order supermode for an inhomogeneously

broadened laser.

Range of normalized gain and normalized mode locking
modulation within which steady state mode locking solutions
with single peak are found.

Amplitude at line center as function of normalized modulation.

"Deep" modulation and the quantum mechanical wave function

analog.

The equivalent "well" for mode locking element in cav? ty

center and square wave modulation.,

The stability circle.
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Appendix I

In this Appendix we derive the circuit equations used in
the body of the paper for the mode locking analysis. We assume
an open cavity formed by curved mirrors in free space, portions
of which are filled by the laser medium and the mode locking

element. The electromagnetic field in the cavity obeys Maxwell's

equations
VxE= - Mg oK, ) (1.1)
ot :
vxﬁ-_-eoa_E_+3 | (I.2)
ot

In these equations J represents the perturbation of the cavity
modes by thelosses, ti.2 laser medium, and the mode locking element.
We expand the electromagnetic field in terms of the cavity modes
with normalized field patterns Ek(r) and Ek(r) for the elec-

tric and magnetic field respectively. These mode patterns are

related by
Vxe = By h (%) : (1.3)
V x h = B8, h(r) (1.4)

where Bk is related to the resonant frequency Wy of the cavity,




: w
By = .ol (1.5)
c .
These field patterns are divergence free.
v . e, = 0 (I.6)
v . hk =0 (107)

In general, an expansion in modes having divergence is also
necessary([12]. Nowever, the effect of these modes is negligible
in optical cavities. Ve shall omit contributions due to such modes.

The field patterns are orthogonal and may be normalized.
. * = f o h % =
J ey *e*dv=1/,h - h*dv=N3}$ (1.8)

Here N 1is a normalization constant whose choice is dictated by

convenience., To be specific, one may consider a Gaussian mode

whose field pattern is proportional to

- 2,2
e (r) « 2 W g DY (1.9)
k k
YT1L w(z)

where L is the spacing between the mirrors and w 1is the beam

WS o TR L,

diameter which is the well known function of position 2z and

3 radii of curvature of the mirrors{13]. One may assume that at
1

the mirrors the boundary condition is met that the tangential

electric field vanishes. The field is approximately transverse
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to the direction of propagation, the polarization vector lies
in the surface of constant phase.
Use of the mode patterns effects a separation of the time

dependence from the spafial dependence. One may write

o - - jmot

E(r, t) =L v (t) e (xr) e + C.C. (1.10)
k

= ) . jwot '

H(r, t) =T 1,(t) hk(r) e + C.C. - (1.11)
k '

where we display only the positive frequency parts and extricate
explicitly the fast time dependence exp jmot corresponding to
the cente' frequency of the laser line., We indicate all fre-
quency coinponents from wvhich the fast time dependence has been
extracted by a bar under the letter. When these expansions are
introduced into Maxwell's equations and the ortogonality condi-
tions (I.8) are utililized, one obtains differential equations
in time for the amplitudes i, (t) and Vi (t), the equivalent

currents and voltages.

: d) .
Vp = -L |ju + =11 (I.12)
k k ( o dt) k
. d 1 = =
I, =960 (dug + — |y * — [ J ¢+ e * dv (I.).3)
: dt By N

The equivalent capacitance and inductances of (I.12) and (I.13)

R o

|
|

e e e b i B hcdl B - Sp
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are given by

€ ,c
c=-—o-=._1._ _O
k 8 "
ko “b

k
H u
TR . /_0 . (1.14)
k B ® €
k ko o
The resonance frequencies of an optical cavity are evenly spaced,
so that
Weo = Yo + kAw (1.15)

where Wy is the frequency of the mode nearest laser-line center
and the mode index k assumes positive and negative values.

If mode locking is achieved, the frequencies of the

“x
Fourier components of the field will be evenly spaced with the

frequency separation w where w is the frequency of modula-

M’ M
tion of the mode locking element. Because of the resonant nature
of (I.12) and (I.13), the time dependence of the k-th cavity

mode will be essentially exp j mkt where Wy is thelfrequency
of the spectral component nearest the resonance freguency Wy o

of the cavity. This implies, on one hand, that Wy must be near

Aw and that

W, = k w, + W, (1.16)

M
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where W, is the frequency of oscillation of the mode nearest
to laser line center. In fact, the wo's in (I,15) and (I.1l6)
need not be identical; but in the case of cavity modes spaced
closely compared to the laser line-width one will always find

a mode near line center that oscillates essentially at its reso-
nance frequency. The equation of the amplitude of the k-th
cavity mode, whose amplitude has the time dependence exp j wkt
as explained above is: |

1

jBC(wk) !k + —_b';f \_T_ . ek* dv

Bx Kk

0 i (1.17)

where the "susceptance" of the k~th mode is

Bc(wk) = (wo + wk) Ck - ( " v = 2 = k(wM - Aw) GC
wo Wy k )
'w, C w C
where o= Xok _ o (1.18)
Ge Ge '

with GC to be defined later, and Wio and C

as independent of mode number k. Here we have denoted the Fourier

x are approximated

component of the last term in (I.17) at frequency w by a ver-

k
tical bar followed by the subscript k. This is the driving term
for the k-th cavity mode which contains in addition to the in-
jected signal due to the mode locking modulation a contribution

of the cavity loss and the laser medium gain. We assume that the
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- _ jw_ t _
positive frequency part of J, with e © omitted, J, may

be written in the form

J(E, £) = log(D) + Ju €y ¥, (X) + opy(r, £)] E(r, t)., (I.19)

The first term is an equivalent conductivity representing the
cavity losses. The second term includes the complex polarizability
X, of the laser medium. The last term is the modulated conduc-
tivity produced by the mode locking element, under the assumption

of resistive modulation. A modulation of a dielectric constant

can be treated by replacement of the conductivity by an imaginary

guantity. In (I.19) it has been assumed that the cavity loss and
the laser medium susceptibility are time independent and hence
produce no modulation sidebands of the electric field. The instan-
taneous variation in laser gain as produced by a passage of a mode
locked pulse have been disregarded. This means that the assumption
has been made that the laser medium relaxation time 'I‘1 is very
long and hence the laser medium responds only to the time indepen-
dent power of the mode locked pulse train. The k-th Fourier
component of the driving term of the k-th mode in (I.16) assumes

then the following form

1l ;5.3 (5 - :

-B_;q- / J ek(r) dv = [GC + YL]& + GC i mkl(t) \_79('1.)

k k k-th Fourier
component
(1.20)

R TSP P Sty . o

e




where the various coefficients have been defined

G. = 1 0o (D) & + &% av _ (1.21)
8 N
(o)
Y. =L ;v (F) e .o *ay (I.22)
L XL k k .
B _N .
o -
~ 1 = D s
GC mk (t) = 'é—-;]- J oM(r, t) ek* el dv . (1.23)
(o)

‘'If the modelocking element is near one of the mirrors, the
integral becomes k- and 2- independent and one may then omit
the subscripts k, 2. This has been done in the first part of the
text. If the laser medium and the equivalent loss are nonuniformly
distributed through the cavity, then cbupling is produced between
the different mode patterns. This coupling leads to injection
signals caused by the k-th Fourie:r component into modes of index
2 # k. Such injection signals excite the mode off resonance and
therefore produce a negligible effect and will be disregarded.

The conductance assigned to the mode locking element, on the other
hand, because of its time variation, produces Fourier components

at frequencies other than the frequency of the driving electric
field, and hence coupling between the modes due to this conductivity

Oy must be included. Intrcducing (I.18) through (I.23) into (I.17),

we finally obtain the desired relationship




k-th Fourier component

This is (1.10) of the text.

Next we study the effect of gain saturation and the approxi-
mations necessary to lead to manageable equations. The rate

equation for the population inversion for a driving field near j

the resonance frequency of the medium is

§£=-n_—-ne_21-j'§|2,rn
at T, "

Here yu 1is the matrix element of the laser levels.

that all Fourier components of the electric field lie sufficiently
near the resonance of the laser medium so that all Fourier com-

ponents in E may be assumed to have an identical depleting effect
on the population inversion. If one assumes that the relaxation | 1
time T1 of the laser medium is long enough so that the laser
medium cannot respond to the time dependent components of the mode :
locked laser pulses, one may Qrite for the population inversion : i

'approximately

We assume i

(X.24)

3yt

(1.25)
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2

>T, T, | (1.26)

it

ns=n 1l - 2<

where <> indicates a time average. The time independent com-

ponent of the square of the electric field may be written

<|E|2> = } |Vk|2 ék s e t. o (1.27)
k

We are interested in the term, (compare (I.22)):

= - - - 2
! Xp, € ¢ €k dv = J dv e, ¢ e.* {1 - 2T, T, Lﬁl

- & 2 L
i e, - e |V2| : (1.28)

A simple evaluation is possible if the laser medium is short and
positioned near one of the mirrors of the optical cavity., Using

the mode pattern (I.9), one has for the second term in brackets

of (I.27)

el (I.29)
L
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where we have made the assumption that the propagation conétant
B is identical for all modes of interest an assumption valid if
the integration is to be carried over a volume short compared to
the optical cavity length and situated near cne end of the cavity;

GL is the length of the laser medium. With this finding one may
write for the integral (I.27):

L |v,|? |
- - o - - 2 .
J xg, e * e*dv =[x e * e* dv {1 - . ‘(I.JO)
’ T
where the saturation power PL is defined by
2
L. 3N |p % (I.31)
P, mLw? 'h

When the medium fills the entire cavity, the integral in (1.28)
is somewhat more complicated and in fact what ié included by
carrying out the integral is the effect of spatial hole burning,
an effect not to be considered in the present study.

One may generalize (I.30) to be valid approximately also
for large field intensities by replacing the factor 1 -3t Vv Z/PL
by 1/(1 + & Vnz/Pb). This is the form used in the bulk of the
paper.

It is convenienf to norm%lize the "voltage" components so

that their mean square amplitude gives the power in one of the
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two counter travelling waves in the standing wave cavity. With
the mode pattern (I.9) the peak amplitude of the electric field

of a travelling wave component is

- .

= 1 _-r?/w? ' . '
Eoeak © - e . | (I.32)

Al

If one implies that the integral of the power density of the
wave over the cross-section of the optical beam be equal to the

voltage amplitude squared, one obtains the relation for the

normalization constant N

u
N=1rL’-—q. , (1.33)
e

o]

This is the normalization employed in the bulk of the paper.

-
s
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MODE LOCKING WITH A FAST SATURABLE ABSORBER*
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Abstract

A closed from solution is obtained for mode locking of a

laser by a saturable absorber with instantaneous response, The

as a function of time, is a hyperbolic secant,
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] ’ I. Introduction

In another publication, we have developed a theory of forced

mode locking in the frequency domain (see appendix IV), With

some modifications of this mode locking theory, it is possible to
obtain what we believe is the first closed-form solution for
saturable absorber mode locking.

As in the case of forced mode locking, we treat moée locking
by a saturable absorber as a form of injection locking. This
means that the admittance mismatch of the resonant circuit repre-
senting a cavity mode is balanced by the injection locking current
produced through interaction of the equivalent cavity voltage (i.e.
electric field amplitude) with the saturable absorber.

In equation form:

(Yck(wk) + YL(wk)] vy = Toke (1.1)

Here YCk is the equivalent admittance of the k-th axial cavity
mode and YL is the equivalent admittance of the laser medium,
The reader is referred to appendix IV for details of the derivation.

The following approximations are made:

(a) The mode susceptance is expressed as a linear function of

freguency deviation from the mode resonance frequency w, and

the equivalent conductance is assumed mode independent




Yc(wk)

(b) The laser medium equivalent admittance has a Lorentzian shape

that is approximated by an expansion in frequency 1

~ : o
Y (o) =-6G.9(1~-73 = (1.3)

Here, g 1is power dependent, where P is equal to the sum of the

counter traveling powers of the standing waves of each axial mode.

g
g = i (1.4)
o]
1 + —

L

The saturation expression is approximately independent of frequency
if the frequency spectrum of the pulse is narrow compared with the

linewidth,

(c) All Fourier components of the amplitude of the k-th axial
mode other than the one near the cavity resonance are neglected

(high Q approximation) .

(d) One assumes that mode locking is successful, i.e. that a solu-
tion of periodic pulses does exist, so that all Fourier components

are everly spaced at separations The frequency of the k-th

M*

axial mode amplitude is

(1.5)




where W, is the frequency of the mode nearest medium line center
(set approximately at line center, an assumption legitimate if

the mode spectrum is dense).

(e) The injection current Isk in (1.,1) is assumed to be produced
by modulation products of the equiva.ient mode voltages (electric
fields). The loss element is assumed to interact equally with all

modes (i.e. the element is thin and near one of the laser cavity

mirrors).

jlth
I, = - GC m(t) i v, e (1.6)

The separation of the resonance frequencies Wy of the axial

modes is constant, Aw, and thus

(1.5) and (1l.7) imply that the central mcde, k = 0, oscillates

at resonance, an assumption justified by the fact that we obtain

a solution.

Introducing (1.2), (1.3), (1.5), (1.6), and (1.7) into (1l.1)

we obtain

w,, - Aw (k w,)?
1+jkmM(2-9L—-+g—1-)-g I = e | Y




The right hand side of (1.8) is more conveniently expressed in the
time domain, as - m(t) v(t) where

leMt

vi(t) = ¢ V, e (1.9)

. L
is the time dependent amplitud>» of the standing wave electric field
near the mirror (next to which the saturabla absorber is situated).
One may lqok, therefore, for simplification of (1.8) by expressihg
the entire equation in the time domain. Multiplying the left hand
side by exp j k wMt, adding over all k and noting that multi-

plication by (j k wM)n is dn/dtn in the time domain, one has

2
1% (5§ + g) ==L =g (1 + —I—_d-) v(t) = - m(t) v(t) (1.10)
mL dt wL‘ at*
yhere
w, = Aw W
§ = 20 -2 = (1.11)
Wo UM

The equation describes the change wrought on a pulse of the

electric field by the action of the cavity and the laser medium

and sets this change equal to the change caused on the pulse by

the tire dependent element as expressed by m(t). The term
l x v(t) is proportional to the distorcion-free decrease of the

pulse caused by the cavity loss. The laser gain produces a change

proportional to




If v 1is a single pulse with two iﬁflection points, the second
derivative is a pulse with three extrema. Remember

that d?/dt? is the Fourier transform operator of -w?. Hence
this contribution expresses the deficiency of gain at larger fre-
quency deviations from line center as compared to the gain at the
center frequency. The pulse with the three extrema subtracts at
the center of the original pulse (t - 0, w + =) and adds on the
wings (|/t] + », w =+ 0). The pulse passing through the medium
is amplified and broadened (in time).

On the right hand side appears the (negative) change produced
by the time varying element, in our case the saturable absorber.
This element has to compensate for the shape change prcduced by
the laser medium,

For the purpose of relating to the derivation in the next
section, note that m(t) as produced by a saturable absorber
may be written as Q/QA(t) where Q 1is the cavity quality factor

in the absence of the absorber and l/QA(t) is the time dependent

inverse Q of the saturable absorber.

.
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II. The Saturable Absorber

The rate equation for the population difference n between

the lower and the upper levels of the saturable absorber is

n-=-n 2
an _ _ e _ . Lvtor |z S (2.1)

o]
A
3t T hmoA

v{t) is so normalized that |v(t)|? gives the sum of the powers
in the two counter traveling waves in the cavity added over all
axial modes. Here TA is the relaxation time of the absorbing
medium,~ n, is the equilibrium population difference, 9a .is
the optical cross-se_tion of the absorbing particles and A is
the cross-section of the laser mode. If the thickness of the
absorbing medium is eA and the length of the cavity is L, one

may define a Q associated with the absorbing medium.

—_—= (2.2)

vhere Wo o the resonance frequency of a cavity mode, is set equal

to the laser line center frequency. This Q is a function of
intensity and is obtained from (2.1) and (2.2) as a solution Gf
the differential equation. If the relaxation time T of the ab-

A
sorber is fast compared with the rate of change of the intensity,

4




we may assume that the population difference is an instantanecus
function of intensity, and obtain an approximate expression for

the instantaneous Q of the saturable absorber

co, 2
Iy Wid Wir S IR 7€ 1 KN IS S PR K701 ) R

woL P Q P

:’o l*"

where we have defined the saturation power for the absorber by

A ow A i
P = _.._._—.o__. : (2.4)

A
2 Oa TA

The time-independent part of the Q of the abksorber may be in-
corporated in the cavity loss. Thus, for the fast absorber, we

obtain the differential equation

2
1+(g+5)i_§.+g(1+—1—i) ST 1701 LV
Q

2 2 o
wy, dt wy, dt A A

We shall now look for solutions of this equation corresponding

to mode locked pulses. Remember that the frequency Wy is an
adjustable parameter, to be determined from the character of the
problem. It will become clear that no periodic solutions exist

when g + § # 0 and thus we may state at the outset that the pulses
must pick their repetition period so that g + § = 0. The remaining

equatiorn




T T, T

\
2 2
l-g (1 + —l--Ji-) v - —93 lv]? v =20 (2.6)
2 g2
5 at Qa PA

can be recognized as the equation of motion of a particle of

displacement v(t) in a potential well

Y
=& (i = ¢) v2+l-°_°-"_ (2.7
2 40°0p,

If the particle is launched at the well height 0, at

o]

vl=2-2p 0 - g (2.8)
=%y

with zero velocity it moves tc tiie origin and stops there. This

solution is symmetric in time. A oulse like solution for the motion

of the particle is then

vit) = —©° ' ' (2.9)

(2,10)

(2.11)




as can be ascertained by substitution of (2.9) in (2.6),

This solution is an isolated pulse. A succession of periodic
pulses, of any desired period 2n/wL/7TI—:7?D < Tp <= is obtained
by launching the particle at a lower height. 1If Tp << TR = ?w/wM
then the single pulse is an excellent approximation to one period

of the periodic pulse train. Wwell mode locked pulses with good

time separation are of this character. Since

) = ZTP'

the energy in the pulse is given by 21 voz. The power P of

cthe laser is then P = 215 voz/Tb. Introducing this expression

into (2.10), one obtains an equation between P and Tp

k B o= _9
P “ T

where we have defined the coefficient

P
0 ‘L

2 o — uw Tg . (2.13)
4,° P,

(2.11) and (2.12) supplemented by the dependence of the negative

conductance g upon power P, (1.4)

9
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yield three equations for the three unknowns P, g, and the
pulse width Tp:

From (2.11), we note that g is less than unity. This means
that the laser is helow threshold with respect to the linear loss
(loss .n absence of laser power). The laser oscillates because
the bleaching of the absorber reduces the 1oss below the linear
loss. The equivalent injection locking voltages have to be equal
to the difference between the voltages produced by the positive
and negative impedances. Because this combination of impedances
is below threshold over the entire mode spectrum the injection
voltages are all of the same sign. This finding has to be con-
trasted with forced mode locking, where the center portion of the
spectrum is above threshold, the wings are below threshold and
+he equivalent injection locking voltages change sign as one pro-
gresses from the center of the line to its edge.

(2.11) mav be used to eliminate g, and from the remaining

two equations (2.12) and (1.4) one may obtain two equations for

P/PL and wp Tp respectively.
1/(g_x)
e A . o W R _-?E_;. (2.14)
g, P 1 g w. ¥t
o L w, Tp + o] L P
Yy Tp

Solutions of l/wLTP Vs g are shown in Figure 1. It is clear
from the figure that under certain conditions no mode locking so-

lutions are found. Indeed, that happens for a fixed excess gain




parameter 1 - l/go when S becomes too large, i.e. the Q of

the absorber becomes too small or its saturation power PA becomes
too small. The saturable absorber is too "overpowering", the pulse
wants to become too high and too short, and the laser medium cannot
adjust itself to it.

An asymptotic expression for l/erP as a function of I oK
is easily obtained and helps in the interpretation of Figure 2.
If one assumes that gk << l, i.e. if one views the portion of
the plots closest to the ordinate, and looks for solutions l/wLTP
<< 1, one may simplify (2.14) to become

1 . (1-1 g x (2.15)

P gn

Thus the lower branches of the curves in Fiqure 1 are straight

lines with slopes proportional to (1 - = .

(o)

Since we have found in general two solutions for each set of
parameters corresponding to different pulse widths and intensities
one would expect that in general some of these solutions would be
unstable. This question will be investigated in another puklica-
tion, Suffice it to state here that the branch above the "locus
of apices" in Figure 1 is found to correspond to unstable solu-
tions, except in the very neighborhood of the locus., There two

stable solutions are found within a very narrow regime of «q_,

for any given 9o°
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Conclusions:

The problem of a fast saturable absorber has been solved in
closed form. The pulse shape is a secant hyperbolic as a function
of time. Incidentally, the spectrum has also a secant hyperbolic
shape because the secant hyperbolic is its own Fourier transform.

The net gain of the system (g - 1) .is negative before and
after the pulse. This is a necessary requirement for the stability
of the solution found. Indeed, if the gain had been found positive
in the dead-time between the pulses, any disturbance could grow in
this time interval and thus destroy the sequence of periodic short
pulses. Experimentally observed two photon fluorescence traces
produced by picosecond pulses have been compared against assumed
gaussian and Lorentzian pulse shapes(l]. The present analysis

suggests that the assumption of a hyperbolic secant shape is more

plausible.
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