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LINEAR THEORY OF ELASTICITY!
by

A. I. Kalandiya, A, I. Lur'ye, G. F. Mandzhavidze,
V. K. Prokopov, Ya. S. Uflyand

(General editor a. I. Lur'ye)

§1. General Solutions and Existence Theorems 3
1.1 General Solutions 3
1.2 Tensor of Stress Functions 9

1.3 Integral Equations for the Three-Dimensional
Problem 14

§2. Three-Dimensional Problems in the Theory of
Elasticity 23
§3. The St.-Venant and Almanzi Problems 34
(continued)

1. This article gives a survey of studies in classical (linear)
theory of elasticity in our country for the last 50 years.
Only static problems in their '"rigorous'" formulation are
considered.

Lack of space made it necessary to exclude almost completely
from the survey approximate methods for the solution of
problems in the theory of elasticity based on variational
principles. Engineering theories (rods, plates, shells)
whose construction presupposes the use of additional hy-
potheses of a kinematic or static content are also not
discussed.

§1 and 56.5 of the survey were written by A. I, Lur'e , § 2 and
3 by V. K. Prokopov, §4 and §5.3.9 by Ya. S. Uflyand, § 5 and
6 by A. 1. Kalandiya and G. F. Mandzhavidze
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§4. Mixed Three-Dimensional Problems in the Statics

of an Elastic Body 47
§5. Formulation and Methods for the S8olution of
Problems in Two-Dimensional Elasticity Theory 56
5.1 General Complex Representation of the
Solution of the Plane Problem 57
5.2 Formulation of Fundamental Problems in
Plane Elasticity Theory 58
5.3 Methods for the Solution of Plane Problems 63
§6. Fundamental Results in the Study of Problems in
Plane Elasticity Theory 83
6.1 Solution of Fundamental Problems for a
Homogeneous Medium 83
6.2 Piecewise-Homogeneous Medium. Reinforcement
and Strengthening of Plates 9]
6.3 Mixed and Contact Problems 97
6.4 Plane Static Problem of an Anisotropic -
Body in the Theory of Elasticity 98
6.5 Equilibrium of Brittle Bodies with Cracks missing

§1. General Solutions and Existence Theorems
1.1. General Solutions

In the equilibrium problem of an elastic body in the ab-
sence of body forces, general expressions are sought (displace-
ments or stresses) which satisfy simple differential equations
constructed in such a way that the equations of the theory of
elasticity are satisfied by virtue of these simple equations.
The role of the "simple'" equation is played by the Laplace
equation and the biharmonic equation, and it is desirable to
have the smallest number of functions. A knowledge of the
general solutions makes it possible when particular solutions
of the equations of the theory of elasticity are set up,to use
well-known ''catalogs'" of the solutions of "simple'" equations
in a particular coordinate system. However, the boundary value
problems in the theory of elasticity are, of course, irreducible
with the exception of the simplest problems (halfspace, torsion
of a body of rotation, etc) to problems of the Dirichlet or
Neuman type for the Laplace equation. Restriction to the case
when body forces are absent is not essential since a particular
solution corresponding to these forces can also be constructed
in the general case, and is easily satisfied when they are par-
tially given (weight, centrifugal forces, etc.).

A survey of the early studies on general solutions was given by
B. F. Papkovich (1937) and a unique method for their construction
based on the use of the stress function tensor was proposed by
Yu. A. Krutkov (1949).




The article of B. G. Galerkin, published in 1930, drew
attention to the problem of the construction of general solu-
tions, It was shown that the equations of elasticity theory
in the stresses (f is the stress tensor, ¢ is its first in-
variant)

v.=0 (1-+v) VT -+ Vve =0 . (1.1)

can be satisfied by expressing the displacement vector u in
terms of the biharmonic vector G using the relation

2nu = Vv — 2 (1 — v) V(. (1.2)

This solution, with the remark that the earlier known solutions
can be obtained from it, but without mentioning its ''generality,"
was proposed by Zh. Bussineskiy already in 1889,and P. F. Pap-
kovich (1937, 1939) has shown that (1.2) is a general solution
of the equation of the theory of elasticity in the displacements

(I —2v) Vi + UV =0, (1.3)

It follows that the structure of equation (1.3),in the presence
of a body force in the right member, repeats the structure of the
solution (1.2). Therefore, taking in (1.2) for the vector u

the solution of the boundary value problem in the theory of
elasticit’ (satisfying three conditions on the surface of the
body O), we arc justified in expecting that also the vector G

can be subiected to three additional conditions on O, which is
clearly redundant.

Seeking the displacement vector in the form of the sum of
the harmonic vector and the gradient of the scalar ¥

u=41—vWB+Vy, VI =0,

we are led after substiitution in (1.3) to the equation Vv¥y = —2V-B:

whose solution is represented as the sum of the particular solu-
tion X = - R-B and the solution X = - B0 of the Laplace =2quation

(R denotes the vector radius). Thus,
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X = = (Relb +Bo). w=4(1—v) B — V(R It ~ By). (1.4)

This representation of the solution of the equation of the
theory of elasticity was given by P. F. Papkovich (1932) and

somewhat later by G. Neuber. According)to a report from P. F. Papkovich

it was known earlier to G. D. Grodskiy"). The displacement vector
(1.4) is expressed as the sum of the harmonic vector B and the
graqient of the harmonic scalar B,, or in terms of the force har-
monic functions BO, Bs (s = 1,2,39 where BS are the projections

of B on the axes of a Cartesian Coordinate systenm.

Another form of writing solution (1,4) is due to I. S. Arzhanykh
(1952) and M. G. Slobodyanskiy (1954), which is

w4 --NYR=- RV — RV-I. (1.5)

It differs from (1.4) (when Bo = 0) by the harmonic vector

with divergence equal to zero (i.e., the rotor of the harmonic
vector). Forms of solutions expressed in terms of harmonic
functions with the aid of volume integrals of Newtonian poten-
tials have also been proposed. Such is the representation

of Ter-Mkrtich'yan (1947):

e=4(—v B4 v [ S g (1.6)

D

An integral representation of the displacement vector u
in terms of its divergence and rotor and also in terms of the
values of u given on the surface of the body and its normal
derivative ou/on was given by I. S. Arzhany (1954).

1. The author of the survey is familiar with the article of G.
D. Grodskiy published in 1935. The outline for the deriva-
tion of the solution (1.4) in the text was given to the
author by G. Yu. Dzhanelidze.
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Since only three boundary conditions are given on the
surface O of the body, it is admissible to retain in the ex-
pression for the general solution (1.4) only three harmonic
functions, and ignore in it, for example, Bo or one of the

functions BS (G. Neyber). This problem was studied by
B. F. Papkovich (1939) and in greater detail by M. G. Slobo-
dyanskiy (1954).

Inclusion of B, in (1.4) is redundant when the vector

0
%
VB0 can be represented in terms of a harmonic vector B with

the aid of the relation

VBO=4(1 s ‘V) l;‘—v.’f'l‘*. (1'7)

But then V:I* =0,V X I* =0, so that pB* =vO, vOo=0
and relation (1.7) is written in the form

Bo=4(1—~')r-)—lz§,67= M R"Yo (0, 2),

n. v

Here the harmonic function B, is represented in the interior of
the simply connected region gy a series in the harmonic poly-
nomials RnYn. Then

R T
6:'}.! f(1—~v)—n (1.8)
n=0

3

and for n = 3, v = 0.25, Bo = R Y; equation (1.7) cannot be

satisifed (it is assumed that 0 < v < 1/2). From the above,
aeeping in mind the Keldysh-Lavrent'ev theorem on the represen-
tation of a harmonic function by a uniformly converging series
of harmonic polynomials in a finite simply-connected region,

we must conclude that the representation (1.7) is improbable for
v = 0.25. For an infinite region with a cavity, in the expres-

sion for By, n must be replaced by-(n + 1) and the denominator 4(1-V)

+ (n+l) in series (1.8) does not vanish for any integer n and
0 < v<1/2. 1In this case, it is valid to ignore BO‘ It is

proved analogously that the solution (1.5) is a gencral solution
for a finite siwmply connected region, including v = 0.25,and for
an infinite region with a cavity for v # 0.25. More general
results can be found in M. G. Slobodyanskiy (1954).




In our opinion, solution (1.4), as other forms of general
solutions, should be seen as a useful auxiliary means for the
solution of boundary value problems in the theory ot elasticity,
which makes it possible to use directly the classical special
solutions of the Laplace equation. When the solution for a
concrete problem is constructed, the retention of the fourth
harmonic function makes it easier to select these solutions,
Therefore, there is no need to renounce it (A. I. Lur'e, 1955),

V. I. Bloch (1958) starts out by representing the displacement
vector u in the form of a sum of the harmonic vector and the
gradient of the scalar x. The solution (1.4) is included

in the Bloch representation for x = - (R*B + Bo). Letting
X = = sz-C, where C is the harmonic vector, Bloch obtained the
expression

W=2{1--2)RV-C—40—v)Ex(VXC)— IVVC, (1.9)

which can be complemented with the gradient of the harmonic
scalar and the rotor of the harmonic vector. The Bloch repre-
sentation includes also scalar terms which are expressed in
terms of three plane harmonic functions.

The forms of the solutions, given by I. S. Arzhanykh
(1954) and F. S. Churikov (1953)

S = (1-2) B— Vo (R0 1) (1.10)

do not differ from (1.5).

A more general form is given by V. M. Deyev (1959)

1

2ui = v — NP -+A =V (eI B = BVE)-T -+ .
B ' L2 (v — ) & — 6] RV + eRVV D, (1.11)

where 8, €, & are constants, which can be used arbitrarily.
When these constants are selected appropriately, we return to
the solutions (1.4), (1.5), (1.9). (1.11) also includes the
solution




2pu:-4(l—-v)li-;-2(!”‘”3)RV-IH- L Rvve.n, (1.12)

7—8v 7—8v

which is expressed in terms of the harmonic vector B and its
divergence V-B.

The known solution of O. Loew for the axially symmetric
case (about the z-axis) follows from (1.2) if we take

GZ = X (r, z), Gx = 0, Gy = 0. A more general representation

of the solution in cylindrical coordinates (in terms of the
harmonic and biharmonic function) is given by S. G. Gutman
(1948) .

For a multiply connected domain DO’ bounded outside by the
surface O0 and inside by the surface Oi (1i=1, . . ., k),

which lies entirely in D and which has no common points with
OO, the displacement vector for v # 0.25 will be represented

in the form (M. G. Slobodyanskiy, 1959)

h k
u=—=ugy S i, DB=D,~- S B,

i-1 i-1

Hg=4 (t—v) B—VR-By,, Wy =4 (1 --v) B, — VR B,

where B(i) is a harmonic vector in the region external to 0i

and B(O)
vector Ri lies inside the cavity bounded by the surface Oi. The

is a harmonic vector in D0 where the origin Qi of thLe

form of this solution is ''complete' if the ray from Oi intersects

Oi at a single point, and it will be 'general' when Oi is a

closed Lyapunov surfacel).

1. For the distinction between a '"complete' and '"general" form
of the solution, see M. G. Slobodyanskiy (1959).




It should also be noted that the problem of constructing
"general solutions'" of a system of linear differential equations
of the form

n
:LUH}"-‘-‘O (I'r-‘—l.:.).....,ll)
i1

(in it the Lij are linear differential operators with constant
coefficients in the variables X1s Xgy o o ., xm) reduces (A. I.
Lur'e, 1937) and later (1953) the Rumanian scientist G. Moizil)
to finding the "potentials" «, (s =1, . . ., n) in terms of

which the solutions uj are expressed with the aid of a relation

of the form

n

wy= N Mepps  (j=-1,2, .00 m).
-1

Here Msj are the unknown linear differential operators and each

potential vg satisfies the same differential equation
Kip =0 =42, len b

It is easily seen that the operator K = ILijl is the deter-
minant of the square operator matrix Lij’ and that Msj is the

cofactor of the j-th column of this determinant. When it is
applied to the equations of elasticity theory in the displace-
ments for the isotropic body, the computation that was described
leads to the Galerkin-Bussinsk solution (1.2). Clearly, the
method can be applied to an anisotropic medium, to dynamic
equations in the theory of elasticity, etc.

1.2, Tensor of Stress Functions
We_ recall that the rotor of the transposed rotor of the

tensor ? is called the incompatibility tensor (Ink) on $&:

Ink® =V (v x )7 (1.13)

e




A
This tensor is symmetr%c if the tensor ¢ is symmetric. In
another representation Ink has the form

Ink® = —V + 2 def V- — EV-V-® — (EV: — VV) D. (1.14)

Here E is the unit tensor and % = Ii(@) is the first invariant of

3} def a = 1/2 (Va + VaT) is an operation on the vector a called
the "deformation'" of this vector. An example is the linear
deformation tensor § = def . The compactness conditions (the

St.-Venant conditions) are expressed by the vanishing of this
teiusnr:

Ink & = Ink def u = 0. (1.15)

In general, for any tensor Ink def a = 0. Conversely,
if Ink ¢ = 9, ¢ = def a, a vector exists whose deformation is
the tensor ¢.

In particular for the tensor B¢ = £ 11(3)
luk E@ = (EV? — VV) @, (1.16)

and for a tensor whose divergence is (v:§ = Q)
Ink d = — v — luk £o. (1.17)

In the absence ot volumetric forces, such a tensor is
the stress tensor T. Introducing the notation o = Il(T)
we have in accordance ‘with (1.16) and (1.17)

Ink T &= —V:T + (EV:P=VW) o (VT =0). (1.18)
We will now use Hooke's law for the isotropic body

gl.z‘;m'i'—-i—:_—voll‘, - (1.19)

~10-
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According to (1.15) and (1.17), we have

— v+ (EV —VV)0=0, Vo=0, (1.20)

and the second expression was obtained by forming the
first invariant of the tensor in the left member cof (1.20). Thus,
we obtained the Beltrami-Mitchell relations

V27'+m=0. (1.21)

It is known that a temnsor with divergence equal to zero
can be represented by the rotor of another temnsor: if
v.# =0, T=vx6€, if, in addition, the tensor f is symmetric
(f = TT) then -introducing into the discussion the symmetric
tensor ¢, we must take C = (vfx #)T. Then 7 =v x (v x ¢))7

=Inkd, 77 =(Inkd)’ =Inkd =T, since 3T - 3. It follows that

the equations for the statics of a continuous medium are
satisfied in the absence of body forces (v'T =0, T =TT, if
we take

T =1Inkd @ =), (1.22)

The tensor ¢ introduced by Yu. A. Krutkov (1949), V. I. Bloch
(1964) and B. Fintzi is called the tensor of the stress func-
tions. The stress tensor T remains unchanged if in the expression
for § a term of the form def a is introduced, where a is an
arbitrary vector. This makes it possible to simplify the form
in which the tensor ¢ is given and retain in its expression
only three components. The Maxwell representation has this
form (the tensor § is diagona) and also the Morer representation (%
retains only: the-components off the diagonal). 1In the boek by B. 1.
Bloch (1964) ¢ is given in three ccmponents in Cartesian
coordinates, and the boox giyes nine variants for the three-
component representation of ¢ in cylindrical coordinates
for the symmetric rotation case (see also Yu. A. Krutkov,

1949, p. 108).

The Transformation of Yu. A. Krutkov. Returning to an
elastic isotropic medium and taking into consideration that
according to (1.20) and (1.16) vvo = - Ink Eo, we can write the
Beltrami-Mitchell relations in the form

-11-
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Ink |p—me) =1), (1.23)

so that the tensor in the brackets is a deformation of some
vector c:

V‘-’(i)—‘_“jl:]:defr. (1.24)
At the same time, according to (1.22)
a=1Ik®)=VO® - VVD =V — Vb, b=V-D, (1.25)

which allows us to write (1.24) in the form

s B A
\"/"—rr—v(\'(l)—\"))=d0f('. (1.26)

The vector c¢ is eliminated from this expression by forming
the first invariants of the tensorsin (1.26), and we obtain
the equality

V-(i—i—;h—?fzv¢—c) =0,

which expresses the vanishing of the divergence of the vector
in the brackets. Therefore, this vector is the rotor of the
second vector, but the latter can be included as part of the
vector b. This determines the vactor ¢ and then def c.
Substitution in (1.25) leads to the equation

Vfd):;r;;ﬁ(vﬁrl)_v-b)~:~lidcfb——f%::VV‘f’- (1.27)

Y

Now eliminating V23 from expressions (1.14), (1.22) and
(1.27),we obtain the representation of the stress vector T in an
elastic isotropic medium:

L=2Y (derv—vvo). (1.28)

1w

T=—"E(Vd—V-b)—

R Y

-12-




Now, according to (1.19), the deformation tensor 3 is deter-
mined and from it the displacement vector u (the displacement

of the solid is discarded):
208 = =2 def (VO —0), 2= o vo—b. (1.29)

The formulas of Yu. A. Krutkov (1.28) and (1.29) are
one form of the general solution of the equations of linear
elasticity theory. They determine on the basis of the tensor
of the functions of the stresses ? satisfying the differential
equation (1.27), the stress tensor T and the displacement vec-
tor u. The latter depends only on I.(¢) = ¢ and b = v-¢., There-
fore, it suffices, using (1.27), to o%tain only a relation
between these quantities. This relation can be obtained by
setting up the divergence in the left and right members of
(1.27):

; 2(1—v : :
Letting
. V-G -
b ==V, (I)=2“__V)I (1'31)

we satisfy equation (1.30) if the vector G is biharmonic. In
accordance with (1.29) this leads to the Galerkin-Bussinesk
solution (1.2).

A particular solution of equation (1.30) is b = V¢ and
the corresponding homogeneous equation (the right member equal
to zero) differs from equation (1.3) only in the values of the
constants for the displacement vector. Therefore, the vector
b can be constructed on the basis of a solution of the Papkovich

type (1.4):

b=aX A (1--v) B=V (R- B - By)]+V®,

{—2v

(1.32)

and substitution in (1.29) leads to the representation (1.4)
of the vector u.

=18




Yu. A. Krutkov obtained on the basis of formulas (1.30),
(1.28) and (1.29) many other ''general solutions.”" For example,
if the vector K with divergence equal to zero and rotor defined
in terms of the vectors b and v¢

. e O N
vV-K-=0, VK= v 2(--v)

+

is introduced into the discussion, according to (1.29) and
(1.30) we obtain, discarding the inessential constant factor
the Korn soiution

N=VXK~1-=20 (V'K =V %0, V-K =0).

1.3. Integral Equations for the Three-Dimensional
Problem

The setting up of integral equations for three dimensional
boundary value problems and overcoming the difficulties con-
nected with their study, existence proofs and effective methods
for constructing their solutions are the results of many years
of work of V. D. Kupradze (1963) and his collaborators. A
presentation of these methods and the results of these studies
with a detailed bibliography can also be found in the monograph
of V. D. Kupradze, T. G. Gegeliya, M. O. Basheleyshvili and
T. V. Burchuladze published in 1968.

Next, we will consider in this survey only the first and
second boundary value problems in three-dimensional elasticity
theory for an isotropic homogeneous medium. We will restrict
ourselves to the interior problem (i) for a simply connected
finite volume (Vi) and the exterior problem (e) for an infinite
medium (Ve) with"a cavity. It is assumed that the surface

which bounds Vi from the outside (Ve from the inside) is smooth.

Potentials in the Theory of Elasticity. The Kelvin-
Somilini tensor O0(M, Q), which determines the displacement
u(M, Q) of the point M in the unbounded elastic medium caused
by the action of the unit concentrated force e at the point Q
is introduced into the discussion

7 , | B YR
w(M,Q)=U(M, Q)-e, U(lll,(‘)):‘zm[_ﬁ._‘mj (1.33)

-14-




(E is a unit tensor, R = QM = Ty - rq, R = |R|). The stress

tensor nM-T on the small area at the point M with the normal

n, is determined from the expression

ny-T=dM, Q)e, DM, Q)= (1.34)

1 .
== IO [(l-—-2v) (nyR—EKny)—2(1—v) Eny - R— 11%;,,.1:\‘;’.}7] .

Let O be a closed surface (MC O). Then

SSR:-: B (M, Q) doyy =0 (1.35)

O

and the generalized Gauss theorem is valid

S 1.36
[§ o, @ dou = —E5 (@), 6(0)={12 00, (1%.56)
n Qc=V,

0o

(Vi is the volume inside O and Ve outside 0).

From among the vector potentials of the theory of elasticity
introduced by V. D. Kupradze, we will subsequently consider
two: the first, which is similar to the potential for the
simple layer A(Q) on the surface O, and the second which is
similar to the potential for a double layer B(Q):

4@ ={[a@n-001,0) dox, (1.37)
4]

B(Q)= SS b (M- (M, Q) doy. (1.38)

o

=15~




Clearly, A(Q) and B(Q) for QZ~ O are solutions of the
equation of elasticity theory in the displacements in the ab-

sence of body forces.

The limiting values from the inside and outside of the
first potential on O denoted by

A(Qo) = lim (), Ac(Qu)= lim  A(Q),

Vi@, Vo 6-+Qp

are equal to its direct value which is determined by the improper
converging integral

A (Qo) = J' j @ (M)o-U (M, Qy) oy (1.39)

For the limiting values of the second potential, the rela-
tions

Qo) = B Q) =7 b (@), Be(Qo)=1(Qo)+5b (@)  (1.40)

which are analogous to the Plemeli formulas whose direct value
is determined by an integral which only converges in the sense
of the principal value:

1;(0.,):551,(31).(/‘»(11{, Qu) doy; == lim SS b (M) (M, Qo) doxe

o #=00-Gig. 0
hold (O(QO, €) is a 2¢ neighborhood of the point Q, on 0).

When the point QC:ZVe is sufficiently far from the surface

O, R~ - rq, according to (1.33) and (1.37), we have (eQ = rQ/rQ)

1 ” A . ‘ :
Q]il(l) A Q)= T —virq [(3—4v) E — eqeql S(S a (M) doy;

-16-




which is the displacement vector on Q under the action of the
force applied at the coordinaie origin which is given by the
integral of the density a(M) on O.

The second potential vanishes not slower than raz, as Q - Q_,

and it may be treated as the displacemcut formed by a

system of forces distributed over the surface O with the
principal vector equal to zero,

Integral Equations. In the first boundary value problem
the displacement vector u(Q) which takes on a given value
v(QO) on the surface O (the volume Vi in the interior problem

and the 'cavity" in the exterior problem) is sought in the form
of the second potential in the theory of elasticity with the

unknown density b (M):

" (Q)=1(Q) = 5 5 b ()b (M, Q) do. (1.41)

In the case of the exterior probleg, this representation
presupposes that u(Q, ) has the order ra . The principal vector of

forces which must be distributed on the surface O of the '"cavity"
in order that it have points is the displacement vector
v(Qo) which must be equal to zero. Therefore, the solution

of the first external boundary value problem in the form (1.41)
may only exist in the special case when v(Qo) is given. 1In

the general case, the solution will be represented by the sum of
(1.41) and the potential of the simple layer (the solution of
the Robin elastoplastic problem).

The integral equations for the interior (i) and exterior
(e) problem are obtained from specifying (1.41) by a transition

to the limit .(Pw w (Q) = 1 (Qo) with the aid of the Pleméd2i formulas
- o N
(1.40):
1 Qo= [] 800)-6 (1, Qo) dose = = Qo) (1.42)
(4] .
(1.43)

... "12_" (Q0)-+ SS b (M) - (M, Qo) dox = v (Qo).
)
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It is easily verified, on the basis of (1.30) and (1.36)

for 6(Q) = 1/2 that when b(M) is given in the form of a displace-
ment of a golid

D* (M) = 1o+ 0 Xy =1to+ 0 X1y + 0 XN (1.44)

it is the solution of the homogeneous equation corresponding to
(1.43)

1 ... g 00 Qo) = [ 0* O1)-P (M, Qo) doy =0. (1.45)
0

Also b(M) = - b*(M) is a solution of equation (1.42) when the
surface O is displaced as a solid . The entire volume Vi

is also displaced as a solid which follows from (1.41) and
(1.36) for 6(Q) = 1.
In the second boundary value problem the forces F = (no"f‘)0

are given on O and the displacement vector is sought in the
form of the first potential

u (Q):SS« (M)-U (M, Q) doy. (1.46)

o

Using (1.34) after the (nontrivial) transformations which
were omitted here, we obtain the integral equations

it 1 I ' . oy = I’ == ) ]
H L a(Qu)- Sf) @ (00, M)eet (M) doyy = F (Qu) = (g T)os @ AT
e ...+ a(Qo)— j 5 B (Qo. M)-a (M) doy = — I"(Qo) = (g To, (1.48)

O

where nQ is the outer normal to Vi.
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It was shown above that the integrals in the vector equa-
tions (1.42)-(1.43), (1.47)-(1.48) are discussed in the sense
of their principal values. These are singular systems of
equations, The difficulty connected with the subsequent dis-
cussion consists of proving the applicability to them of the
Fredholm theorems and alternatives (for u and v which ensure
a positive potential energy of the deformations), see B. D.
Kupradze (1963, 1968) and also S. G. Mikhlin (1962).

We will rewrite the equations that were obtained in the
sequencel:

19 ... 30(00)— [ & () (M. Qo) dosr = ~ (o),
> ) (1.49)

e ... _'}a (Qo) — SS 7 (007 "‘[) - (‘I) doyy= —I (QO);
(]
... 1 -+ (M)- & (M, Qo) doss = v (Q )
7 ¥ (o) SOS G (1.50)
1| G 7:‘“(00)—5 B (Qo, M)-a (M)doy = F (Qo);

(0]

(I(i), II(e)) and (I(e), II(i)) are coupled pairs.

The corresponding homogeneous equations are written in the
form

e 1 j =
19, 15 ... 71)(@0)—*505"(“”""(1"' Qo) doxe =0, (1.51)

g, ne .. '} « (Qo)— 2 SS(f) (Qo» M)-a(M) dopr =0, (1.52)
0

1. N, Kinosita and T. Mura (1956) also obtained the integral
equations for the first and second boundary value problems
in the form given here, but they did not pay attention to
the difficulty that was pointed out.
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éi), Ilée) and A = - 1 for Iée), Iléi).

Existence and Uniqueness of the solution of Problems I

and II(e). It is sufficient to verify th?t A =1 is not an
eigenvalue of the homogeneous equation Iloe) (hence, also,

the coupled equation I(i)). It is proved that the assumption
that a solution of IIé ) exists which is different from the

trivial solution (a(M) # 0) is inconsistent with the requirement
that the specific potential energy of the deformation be positive.
According to the Fredholm theorem, the existénce and uniqueness
of the solutions of the nonhomogeneous equations 11(e) and 1(i
follow for an arbitrarily given F(QO) in the first set of

equations and v(Qo) in the second set.

where A =1 for I

(1)

(1)

Second Interior Boundary Value Problem II . The
equation Iée) which is coupled with Ilél) has the nontrivial
solution (1.44). Therefore, also Ilé1 has a nontrivial solu-

tion and, a?gording to a theorem of Fredholm, the nonhomogeneous
equation I1{(1) can only have a solution when its free term
F(QO) is orthogonal to (1.44):

(] trot0x 7e)- #(Q) dog= w0+ [ { # (©) dog + - [ [ g #(0) dog=0.
Y "] I

Since Vo and v are arbitrary, the principal vector and the

principal moment of the surface forces vanish. When this is
satisfied, the solution of problem 11(1) is determined with
an accuracy up to the term involving the displacement of the
solid , the solution of the coupled equation Ife),

Roben's Electrostatic Problem. The determination of the
potential in the field surrounding the closed conductive surface
from a given charge on it is known as the Roben electrostatic
problem. In the theory of elasticity, the term was introduced
by V. D, Kupradze (1963), a stressed state in an unbounded
elastic medium is sought when the displacement

(1.53)

Wi Q) = o — @ 3 ro.
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is imparted to the solid sealed in it. The solution of
the problem is sought in the form of a potential for a simple
lay~r

(@ [far0n-C 1, Q) dow, (1.54)

o

and it is proved that in this case the solution «f the problem
Ilél) must be taken as the density vector aO(M) where
F(Qo) = aO (Q,) (this follows immediately from the integral

equation II(e ). Thus, aO(QO) determines the distribution

of the displaced solid on the surface O through the reaction
of the medium on it., We will denote by
k K+3
a (QO) and a (Qo)kthe distribution on O of these forces, caused
by the unit force V = ik acting on the body along the axis ik’
K+3 r
and, the corresponding unit moment n = ik. Suppose next that u = ir‘
r+3 (e)
u = ir X w is a system of singular solutions of I0 . With this
notation

L
. e Yy ] 2 .o (.. .
SOS a-wdog=8, (k,r=1,2,...,4 (1.55)

This defines the system of singular solutions of the integral
equation II i) which are orthonormal to the system of singular

)

solutions IOe :

First Exterior Boundary Value Problem (I(e)). The problem

has a solution if the free term_ in the equation I'®) js orthog-
onal to the singular solution a®(M0) of the problem IIél):

SS v (Qo)-0°(Qy) dog = 0. (1.56)

O

-21-




This condition is due not to the problem but to the
representation adopted for u(Q) in the form of the second po-
tential. The vector

6 r
e* (00) G (00)_ 2 Dr"v (1.57)
r--1 .

is introduced in the discussion and the constants Dr are deter-

mined in such a way that the orthogonality condition (1.56) is
satisfied for this vector. According to (1.55), we have

SS " (()U) :; (’\’(_I) dUQU Ex .\ .\ [ (04,)(’; (Q“) dOQO—Dh :':0 (k: 1, 00o0g 6).

LV}

Now, taking

g Ad h
Uy == Z‘. il( g\ " (Ol))'a (()0) (IUUO' l

-
[ | O

3 - k-3
o= N i || ()« Q) dog,

R

l (1.58)

we obtain

* Q) v (00) —(Uy+ 0 X rqy, ). (1.59)

*
Problem I(e) with the three terms equal to v (Qo) has a solution
which is determined for QC::Vé by the vector u*(Q). The Roben

problem in the form (1.54) is solved from the displacement

Vo t WX rQ determined in accordance with (1.58) and the
0

(e)

unknown solution for problem I is represented as the sum
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1 (Q) = u* Q) - w. Q) (Qc Ve). (1.60)

In the books of B. D. Kuparadze (1963, 1968) integral
equations and existence problems for the solutions are con-
sidered not only for problems of statics but also for the
steady state oscillations of an elastic medium. A number of
other boundary value problems are also considered, for aniso-
tropic and inhomogeneous media, thermal elastic problems,
problems for a bounded volume and an infinite medium with
several '"'cavities" are also discussed. A number of difficulties
connected with the singularity of the integral equations
considered are overcome and conceptually simple (but not simple
to apply) numerical methods are proposed for the solution of
these equations (B. D. Kupradze, 1964, 1967).

The integral equation for problem I(l) was considered in
1907 by G. Laurichella and D. I. Sherman (1962) generalized
the solution to the case of an elastlc body of finite volume
with several "holes". :

This survey does not include the approximate solution
methods based on the application of variational principals
(the Ritz-Timoshenko method and the Galerkin and Kantorovich
method). The manner in which they are applied in practice
is described in the monograph of L. S. Lebenzon (1951). A large
number of studies is devoted to the study of the convergence
of var-iational methods and to error estimates (in a number of
cases two sided) of the approximate solutions (S. G. Mikhlin,
M. G. Sloboyanskiy).

§2. Three-Dimensional Problems in the Theory of Elasticity

A systemmatic study of three-dimensional problems in the
theory of elasticity was undertaken by B. G. Galerkin. Using
the representation for the general integral of the equations
of elasticity theory found by him in terms of three biharmonic
functions (1930) and using series, he developed, starting in
the early 30's a method for calculating thick plates which
assume that the conditions for arbitrary loads at the ends and
the integral conditions on the side surface were satisfied.

It was he who studied rectangular, circular, sectional, and
triangular plates (1931, 1932). 1In 1931 Galerkin constructed

a solution for the equilibrium problem of a layer subjected to
the action of a normal load. With the aid of series, containing
Bessel and Hankel functions, Gal erkin considered the problem
of the equilibrium of a hollow cylinder and its parts (1933),
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and later obtained particular solutions for the problem of an
axisymmetric deformation of a hollow sphere (1942).

After these studies, the work of G. N. Maslov (1938)
appeared in which the thermoelastic equilibrium of a thick
plate, a hollow cylinder and sphere under the action of a
stationary thermal flux are considered.

The extension of the Bussinesk problem to the halfspace
is given by V. G. Korotkin (1938) who investigated the case
when a load is appliedto a rectangle, according to a constant
and variable linear law. Problems for the halfspace when the
displacements are given on the boundary, and also the case of
adjoint halfspaces.were considered by D. I. Sherman (1943,
1945). A solution with a singularity of the '"center' type
at some point of the halfspace was obtained by V. K. Fedyan
(1965) .

Lately studies have been published which consider the
torsimof a halfspace (N. A. Rostovtsev, 1955; B. L. Mintsberg,
1957) and an elastic layer (Ya. S. Ufland , 1959). The case
of the torsion of a multilayer medium (base) was discussed by
V. I. Petrishin (1965), and the torsion of a two-layer medium
was studied by D. V. Grilitskiy (1961).

Problems of the Bussinesk type for an anisotropic medium
were considered by V. A. Sveklo (1964). Studies appeared which
discussed the behavior of a halfspace consisting of the
nonhomogeneous medium: S. G. Lekhnitskiy (1962) studied a
halfplane and wedges with variable elasticity moduli, L. N.
Ter-Mkrtich'yan (1961) considered three-dimensional problems
for a nonhomogeneous medium (the Bussinesk problem for a
symmetrically loaded cylinder). A more general form of the
nonhomogeneous halfspace and halfplane were studied by N. A.
Rostovtsev (1964), the Bussinesk problem for a special type of
linearly deformed continuous medium was formulated and solved
by A. I. Vinogradov (1966).

The thermoelastic problem for a halfspace bordering on
a medium whose temperature is given by a Gaussian distribution
was considered by I. B. Kill (1966).

Using Fourier integrals,G. S. Shapiro (1942, 1944)
studied the equilibrium of an elastic layer and solved the
problem of the transfer of pressure distributed over the area
of a circle through the layer on a rock foundation. He studied,
together with D. Yu. Eisenberg (1950) the transfer of pressure
through a layer with a circular opening. The transfer of
pressure through a layer on an elastic foundation with complete
adhesion of the layer and foundation was studied by R. M.
Rappoport (1948).
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The flexure of a thick plate due to a harmonic load on the surface

was studied by S. G. Gutman (1940). He also obtained the solu-
tion of the problem of the flexure of a thick plate under a
natural weight (1941). Later problems of the flexure of

thick plates were studied by many authors (S. A. Alekseyev,
1946, B. R. Bloch, 1954, M. 1. Guseyan-Zade, 1956, V. K.
Prokopov, 1963).

In 1942 A. R. Lur'e proposed a new symbolic method the
solution of the equilibrium problem of an elastic layer and a
thick plate based on representing the solution of the equations
of the three-dimensional elasticity theory problem in the form
of entire transcendental functions of the two-dimensional
Laplace operator., This representation made it possible to
simplify operations on power series which were written compactly
with the aid of symbolic operators, and in addition
it led naturally to a new class of solutions which made it
possible to satisfy more accurately the boundary conditions
on the 1lateral surface of the plate. These solutions were c&lled
by Lur'e '"homogeneous,'" since they satisfy the condition for
the absence of a load at the ends of the plate.

Lur'e's method as applied to the theory of plates was
later used by Ye. M. Krug (1955), R. G. Teregulov (1961),
T. T. Khachaturyan (1963), U. K. Nigul (1963). In the monograph
of V. A. Agarev (1963) the domain of applicability of the symbolic
method is extended to the theory of plates, and a further
appliecation of the symbolic . method to the theory of plates
in combination with the minimum potential energy principle is
given by B. K. Prokopov (1965). In the work of S. G.
Lekhnitskiy (1959, 1962), the symbolic method is used in
the discussion of the equilibrium of a transverse isotropic
layer and a thick plate. The same author also obtained the
corresponding homogeneous solution. P. F. Nedorezov (1964)
solved, using the symbolic method, the problem of the torsion
of a hollow multilayer cylinder.

Using the symbolic representation of the solutions, it
was easily established (A. R. Lur'e 1955) that in an unbounded

plate (lzl < h) the components ox, Gy, Txy of the tensor of

thermal stresses are different from zero. They are expressed in
terms of the function M (x, y, z), which plays a role similar

to that of the Eyre function in the plane problem. The function
M is determined from quadratures according to the given law

for the stationary temperature distribution.

-25-~




S. S. Dymakov (1966) solved with the aid of the Fourier
transform the problem of the equilibrium of an elastic layer.
This approach also enabled the author to obtain asymptotic
formulas for the solution. For a layer for which the displace-
ments on its boundaries are given (the second fundamental
problem) a solution in a series was obtained by M. D. Martynenko
(1964) . The action of a concentrated force inside the layer
was considered by O. Ya. Shekhter and 0. Ye. Prikhodchenko
(1964) . 1In particular, these authors obtained the solution of
the problem of the action of a vertical force inside a layer
on a rock base. The case of a layer of variable thickness and
a circular plate of variable thickness under an axisymmetric
load was analyzed by I. I. Semenova (1965).

The equilibrium of a circular thick plate under a uniformly
distributed load was studied with the aid of homogeneous solu-
tions by G. N. Bukharinov (1952), who applied P. F. Papkovich's
generalizedorthogonality relation (1940). This relation was
derived by Papkovich for the boundary conditions for functions
of the homogeneous solutions which corresponded to the vanishing
of the functions themselves and their first derivatives on the
parallel side of the strip. A rigorous foundation for the
Papkovich method was later given by G. A. Grinberg (1953).

The equilibrium of a circular plate under the action of an
arbitrary axisymmetric load was investigated with the aid -

of homogeneous solutions by V. K. Prokopov (1958). The axi-
symmetric flexure of a circular plate in a very general formula-
tion was studied by B. L. Abramyan and A. A. Babloyan (1958).

An exact solution of the problem of equilibrium of a plate fixed
on the lateral surface was obtained by V. T. Grinchenko and

A. F. Ulitko (1963) with the aid of an infinite

system of equations. Analogous results were obtained by G.

N. Valov (1962). Certain special cases of the axisymmetric
torsion of thick plates were stud1ed by N. D. Glazunova (1963).
A. A. Babloyan (1964) studied a non-axisymmetric load on-

a circular plate when the displacements are given on the lateral
surface (the solution was represented in double series, whose
coefficients were found from infinite systems).

An infinite thick plate with a circular opening was con-
sidered in the study of O. K. Aksentyan (1965). Using
homogeneous solutions it was possible to solve the proilem of
the concentration of stresses near the opening by reducing the
problem to an infinite system of equations for the coefficients
of the homogeneous solutions. M. Abenova (1965) reduced a
similar problem to integral equations of the Fredholm type.
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The nonstationary problem of thermoelastic (quasi-
elastic) equilibrium of a thick plate was discussed by A. A.
Sheveled (1965). R. M. Rappoport (1962) obtained approximate
homogeneous solutions for a thick plate which were constructed
on the assumption of the absence of a transverse deformation.
The last assumption lcads to orthogonal eigenfunctions.

The elastic equilibrium of an infinite cylinder was
studied by many authors. The axisymmetric problem of
the action of normal pressure on a hollow cylinder applied on
a sector of the lateral surface was considered in 1943 by
G. S. Shapiro. He obtained a solution for this problem with
the aid of Fourier-Bessel integrals (this solution was also
obtained later by V. N. Popov, 1956). Homogeneous solutions
for a solid and hcllow cylinder with an axisymmetric deforma-
tion were studied by V. K. Prokopov (1949, 1950). The axi-
symmetric problem for an infinite solid eylinder under
normal loads on the lateral surface was studied in 1953 by
A. I. Lur'e. The solution of this problem represented in the
form of Fourier integrals is expressed, using contour integra-
tion, in terms of functions which correspond to the homogeneous
solutions of the problem of the cylinder. The solution of a
girdled cylinder is obtained by passing tb6 the limit.
The case of a tangential load, and also the case of the
flexure of an infinite cylinder by surface forces were studied
using the same method in the articles of P. Z. Livschits (1960,
1963, 1964).

The complex loading of an infinite cylinder on its lateral
surface, when the load can be represented by a Fourier integral
with respect to the axial coordinate and a Fourier series in
terms of the angle was studied by K. V. Solyanik-Krass (1960).
He also considered the more general problem of the equilibrium
of a body of revolution, when the trigonometric functions of
the meridional angle can be isolated in the form of individual
factors in the solution (1958). For a hollow cylinder,
he investigated (1965) the effect of a load distributed on
the lateral surfaces in the direction of the angle ® in an
arbitrary manner; which represented a polynomial in the coordinate
of the z axis (at the ends the integral conditions were satis-
fied).

The mixed axisymmetric problem for an infinite solid
or hollow cylinder was considered in the articles of B. 1. Kogan,
A, F.Khrustalev, F. A. Vaynshteyn (1958, 1959, 1963). The
Loew stress function was constructed by them in the form of a
contour integral containing appropriately selected functions
depending on the parameters of the homogeneous solutions for
the cylinder. The study of P. I. Kogan, A. F. Khrustalev,
(1959) used the method of coupled integral equations.
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The equilibrium of a solid and hollow finite cylinder
in the axisymmetric case was studied with the aid of
homogeneous solutions by V. K. Prokopov (1950, 1958). G. N.
Bukharinov (1956) reduced the solution of the problem of an
axisymmetric deformation of a solid cylinder of finite
length to finding an additional function for which an integr -
differential equation is set up. In recent years, many studies
appeared which are devoted to the axisymmetric equilibrium
problem of a solid cylinder of finite length, in which the
solution of the problem is reduced to infinite systems of
linear algebraic equations (B. L. Abramyan, 1954; G. M. Valov,
1962; V. A. Likhachev, 1965). The compression of a circular
cylinder was studied by G. M. Valov (1961) and Ye. P.
Miroshnichenko (1957). The equilibrium of a revolving cylinder
was studied by V. T. Grinchenko (1964), who also gave a very
comprehensive analysis of all aspects under which the boundary
conditions in the axisymmetric problem for a semi-infinite
cylinder are satisfied (1965). The axisymmetric deforma- .
tion of a cylinder of finite length made from a transversal-
isotropic material was studied by A. A. Babloyan (1961).

In some cases, it is possible to satisfy all boundary
value conditions in the equilibrium problem of a cylinder of
finite length without having to solve infinite systems (see
B. L. Abramyan, 1958; G. M. Valov, 1957, 1958).

The complexity of satisfying simultaneously all boundwm
ary conditions on the surfaces of the cylinder made it
necessary to seek approximate methods for the solution of the
problem. Thus, S. I. Trenin (1952) represented the stressed
state in terms of two tensors: the principal and correction
tensor, where the latter does not yield stresses on the lateral
surface (homogeneous solutions), and his parameters are deter-
mined energetically. The more general (not axisymmetric)
problem of a hollow cylinder was studied in an analogous manner
by V. I. Ionov (1957). Ya. S. Shein (1962) gave the con-
struction of the correction tensor in first approximation.

The nonsymmetric deformation of a thick-walled cylinddr
was studied with the aid of series containing Bessel and
McDonald functions in the work of I. I. Smolovik and A. N.
Shchepetev (1961) and in a number of studies of V. S. Sumtsov
(1957-1959). A rigorous satisfaction of the boundary condi-
tions in the general case of a hollow cylinder under a load,
leading to infinite systems was obtained by E. N. Bayda
(1959, 1960).
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The articles of A, L. Kvitki (1959) are devoted to the
development of techniques which can be used to reduce the
study of the axisymmetric deformation of a thick-walled
cylinder to computers (1959).

The symbolic method of A. I. Lur'e as applied to solid
and hollow cylinders mainly under an axisymmetric load,
was used by F. A. Gokhbaum (1964)

An approximate method for calculating hollow (and
solid cylinders) under an axisymmetric load) was proposed
by V. L. Biderman {1946, 1950), who represented the tangential
stress in the form of a sum of the products of the axial and
radial functions. Biderman, using appropriate functions of
the radius, for the axial functions derived ordinary.
differential equations which followed from minimum potential
energy theory, and contained in the right members functions
of the normal loads applied along the level surfaces of the
cylinder. The method was subsequently extended to the case
when tangential forces are present by V. G. Gorskiy (1963).

Another approximate method for calculating hollow cylinders,

under a normal load to the lateral surface was proposed by
S. V. Boyarshinov (1953), who proposed to use for the displace-
ments expressions which are a generalization of those used in
the theory of thin elastic shells. An original method of
successive approximations as applied to the equilibrium problem
of a cylinder was developed by F. M. Detinko (1953), who con-
structed a solution in a power series in powers of a smail |
parameter (Poisson ratio). -

The stationary thermoelastic equilibrium problem of a
hollow cylinder (in the axisymmetric case) was first
studied by P. M. Ogibalov (1954), and then by Yu. N. Shevchenko
(1958) who took into account the change in the elasticity
modulus of the material along the axis of the cylinder. A.
N. Podgornyy (1965) took into account the effect of the end
of the cylinder and also of centrifugal forces. An approximate
solution was obtained for the problem using the Lagrange
variational principle. P. I. Yermakov (1961) and V. A.
Shachnev (1962) considered the stationary thermoelastic problem
for a solid cylinder of finite length during its axi-
symmetric deformation. In the first study the conditions at
the ends were satisfied approximately, in accordance with the Biderman
method, and in the second study the solution of the problem
was reduced to the solution of an integrodifferential equation.
The stationary thermoelastic problem for an infinite cylinder
with several "holes" was formulated by A. S. Kosmodamianskiy
(1962) . The temperature field and the thermoelastic state are
determined by the Bubnov-Galerkin method.
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The nonstationary thermoelastic problem for a hollow
rotating cylinder was studied by Yu. N. Shevchenko (1961)
who satisfied approximately the conditions at the end with
the aid of the Castigliano variatiomal method. A. A. Shevelev
(1966) solved the thermoelastic problem for an infinite cylinder,
where the temperature of the surrounding medium varies according
to an exponential law which is a function of time. He deter-
mined the relation for the maximum thermal stresses as func-
tions of the heating parameters, which makes it possible to
formulate the optimal problem. A. I. Uzdalev (1962) studied
the nonstationary plane axisymmetric thermal elastic
problem for solid and hollow cylinders from an anisotropic
material.

Homogeneous solutions for a hollow sphere in the case of
an axisymmetric deformation were obtained in 1943 by A. I.
Lur'e. Using these solutions, it was possible to solve the
problem for a hollow sphere cut by a conical surface with
vertex at the center of the sphere at one or both of its poles.
Lur'e also estimated the accuracy of the solutions which were
based on applying the kinematic Kirchoff-Loew hypotheses to
a spherical shell.

The equilibrium problem of a hollow sphere for an arbitrary
deformation was solved by A. I. Lur'e (1953) with the aid of
the general P. F. Papkovich solution. Selecting appropriately
the fourth function and applying harmonic vectors, the author
was able to reduce considerably the number of computations
both in the case of the second fundamental problem and in the
case of the first fundamental problem for a hollow sphere.

The results of the studies of Lur'e in three-dimensional prob-
lems of the theory of elasticity are collected in his monograph
(1955), which also contains solutions of the problem of a heavy
and rotating sphere with a %Pherical cavity in an infinite
medium, and other problems.

T.” The solution of the stressed state problem in an unbounded

elastic medium near an ellipsoidal cavity for given stresses

at infinity published in the monograph of A. I. Lur'e
(1952) is incorrect. A solution for more general condi-
tions at infinity is given by Yu. N. Podil'chuk (1964).
Later, A. R. Lur'e (1967) considered the stressed state
formed in an elastic medium when the rigid ellipsoid
embedded in it receives successive displacements and
rotation (Robbins elastostatic problem).
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Another method of solving the problem of a sphere based
on the connection between the plane and axisymmetric
problems in the theory of elasticity, using the theory of
analytic functions was proposed by A. Ya. Aleksandrov and
Yu. I. Solov'ev (1962).

Compression, pure flexure, and the flexing of a hollow
sphere cut at the poles by conical surfaces by a force, were
considered by K. V. Solyanik-Krass (1962). The stressed state
in a spherical strip under the action of internal pressure was
studied by A. F. Ulitko (1962).

The problem of the stressed state of a heavy elastic
block near a vertical cylindrical cavity was first formulated
by A. N. Dinnik (1925) in connection with the problem of the
pressure of rocks. Subsequently, this problem was studied in
greater detail by S. G. Lekhnitskiy (1938, 1940) including a
transversal-isotropic halfspace. The effect of a cylindrical
cavity on the stress concentration for a volumetric stressed
state was studied by S. G. Gutman (1960). G. G. Chankvetadze
(1956, 1959) took into account the action of external forces
applied on a sector of the surface of the cylindrical cavity
in an elastic halfspace. In other studies he considered an
elastic halfspace with spherical (1955) and cylindrical
(1956) cavities. His method is based on introducing in the
axisymmetric problem complex variables and applying the
methods of N. I. Muskheleshvili. The concentration of stresses
near a spherical cavity in a heavy halfspace was studied by
N. P. Fleyshman and V. N. Gnatykiv (1954).

R. N. Kaufman (1958) considered the problem of an elastic
layer containing a spherical cavity. Her method of solution
consists of translating the coordinate origin of the spherical
system and of introducing translation formulas for the spheri-
cal functions. In another article, Kaufman (1964) solved,
using the same methods, the equilibrium problem of a sphere with
a spherical cavity which was not concentric. P. I. Perlin
(1964) constructed a solution of the second fundamental equili-
brium problem for a hollow ellipsoid of rotation whose internal
surface is a sphere. Yu. N. Podil'chuk (1965) studied in
spherical coordinates the interior and exterior problem for
an ellipsoid of rotation. In the three studies that were
mentioned here, the solutions. are constructed in series, whose
coefficients must be determined from an infinite system of
equations.
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V. N. Zharkov (1963) formulated the important problem
of thermoelastic stresses in a gravitating sphere with an
arbitrary temperature distribution. The stationary thermo-
elastic problem for a hollow sphere whose modulus is a power
function of the radius was solved by I. N. Danilova (1962).

The equilibrium problem of a cone (solid and hollow)
under the action of an axisymmetric load was considered
in 1944 by G. S. Shapiro. He obtained polynomial
solutions for the problem for certain types of surface loads
and for the effect of the gravitational force. This problem
was investigated,using a different method,by A. Ya. Aleksandrov
(1962) . The action of a concentrated moment applied to the
vertex of a cone was studied by A. F. Ulitko {1960). 1In
another study (1960), the general equilibrium problem of an
elastic cone is solved with the aid of the Mellin transforma-
tion. The elastic equilibrium of an axisymmetric loaded
cone was also considered by K. B. Solyanik-Krass (1955, 1962)
and the solution is represented by him in the form of a Fourier
integral. V. N. Ionov (1963) gave the solution of the problem
of the axisymmetric deformation of a conical body where
the satisfaction of the boundary conditions leads to an infinite
system of equations for the constants of the corre¢tion tensor.
The torsion of a cone through a surface load was considered
by K. V. Solyanik -Krass (1965) and P. F. Nedorezov (1965).

The problem of the equilibrium of a heavy paraboloid
of revolution was solved by G. S. Shapiro (1950). The expan-
sion and flexure of a paraboloid and also the expansion
and flexure of a body containing a paraboloid cavity were
considered by K. V. Solyanik-Krass (1958), and in another
study (1958) he investigated the compression of an ellipsoid
and a hyperboloid with a single cavity. N. N. Lebedev and
I. P. Skal'skaya (1966) investigated the torsion of a hyper-
boloid.

A. F. Zakharevich (1952) studied the equilibrium of a
hollow 2 torus with the-aid of toroidal coordinates. V. A.
Levshin (1962) constructed the solution of the problem of a
hollow torus subjected to external and internal pressure.

The torsion of a torus of a circular cross section in con-
nection with the calculation of helical springs with small
windings was studied in detail by K. V. Solyanik-Krass (1950).
The solution obtained by him with the aid of bipolar coordinates
contains series including hyperbolic, trigonometric functions
and associated Legendre functions,
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The expansion of a circular beam containing a small
ellipsoidal cavity was investigated by K. V. Solyanik-Krass
(1958) using ellipsoidal coordinates. N. A. Forsman (1958)
solved the problem of concentrated stresses in an expanded
beam with a circular cross section at the spot where the thick-
ness varied. The solution was obtained in the form of definite
integrals which were then evaluated approximately.

The studies of I. 1. Vorovich and his students devoted
to the construction of asymptotic solutions for plates and
shells began to appear in 1963. The basis for the construction
were the homogeneous solutions corresponding to the three di-
mensional elasticity theory problem. Infinite systems of
equations were set up using the variational Lagrange method
for the contour values of the unknown functions. The solutions
of the systems were constructed in power series in powers
of the thickness of the plate or shell. The problem of the
flexure of the plate was investigated using this method (0. K.
Aksentiyan and I. I. Vorovich 1963, 1964) and also the gaxiji-
symmetric problem of the equilibrium of a cylindrical and
spherical shell (N. A. Bazarenko and I. I. Vorovich, 1965,
T. V. Vilenskaya and I. I. Vorovich, 1966).

The classical Lame problem for the equilibrium of a rectangular
parallelopiped loaded on all edges by given forces attracted
the attention of many investigators, starting with the work
of M. M. Filonenko-Borodich. In the first article along these
lines, published in 1946, M. M. Filonenko-Borodich introduced
into the discussion cosine binomials, a sequence of complete
non-orthogonal functions on the interval on which they are
defined,which vanish together with their first derivatives
at the endpoints of the interval.

In the subsequent studies of M. M. Filonenko-Borodich
the cosine binomials were used for the approximate solution of
the elastic equilibrium problem of a rectangular parallelopiped.
The idea of solving the problem consisted of decomposing the
stress tensor into two parts: the principal tensor satisfying
the equilibrium equations and the conditions on the edges of the para-
lellopiped and the correction tensor’ constructed with the
aid of the cosine binomials and their derivatives. The latter
tensor, which satisfies the equilibrium conditions and zero boundary
conditions contains arbitrary constants which are determined by the
variational methods of Castigliano.. M. M. Filonenko-Borodich (1951)
studied the problem of the compression of a parallelopiped under equal
loads oriented in the opposite directions and he considered
the thermoelastic equilibrium of a parallelopiped. Later . (1953)
he extended the method to the case of cylindrical coordinates.
The concept of the selection of the principal tensor for a
parallelopiped under an arbitrary load is due to him (1957).
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Ye. S. Kononenko applied the method of M. M. Filonenko-
Borotich to the study of the problem of the flexure of a
thick plate (1953) and the compression of a parallelopiped:-between
rigid plates (1954). The case of an oblique parallelopiped
was studied by A. I. Meshkov (1961). V. N. Spikhtarenko (1959)
used this method in calculations of a plate on an elastic.parallelo-

piped.

Another approach to the solution of the equilibrium problems
of an elastic parallelopiped was developed in the studies
of B. A. Bondarenko (1961, 1963) who used polynomial solutions
of the equations of elastlcity theory in the displacements in which
the arbitrary coefficients in these solutions were determined
using the method of least squares.

Certain special problems for a rectangle whose solutions
could be obtained in series were considered by G. M. Valov
(1959), A. P. Melkonyan (1960), A. A. Babloyan and S. M. Saakyan
(1964) .

The two articles of E. N. Baydy (1958, 1959) are devoted
to the study of the equilibrium problem of a parallelopiped,
using infinite systems. More detailed studies of the solution
of the equilibrium problem using infinite systems for various
types of loads and various boundary conditions were carried
out in the work of G. M. Valov (1957-1959, 1966), S. M.
Saakyan (1965), A. A. Baloyan and S. M. Saakyan (1964). This
series of studies also considers the first and second funda-
mental problems as well as certain mixed and contact problems,
and special attention is given to the proof of regularity (or
quasi-regularity) of the infinite systems that are obtained.

§3. The St.-Venant and Almanzi Problems

It is known that the problem of the free torsion of a
prismatic rod reduces to the harmonic problem for which
solution methods have been developed. The early studies on
the theory of the torsion of rods are devoted to the solution
of the problem in closed form or with the aid of trigonometric
series, These studies include the articles of B. G. Galerkin
in which the torsion of a prism with a cross section in the form
of an equilateral triangle with equal edges is studied (1919)
and a prism of a parabolic cross section (1924). A number of
problems of the torsion of cross sections bounded by algebraic
curves were solved in the studies of D. Yu. Panov (1935, 1937)
and D. L. Gavry (1939) and later V. I. Bloch (1959) studied
the torsion of parabolic prisms. The effect of a radial crack
during the torsion of a solid and hollow rod was studied in
the articles of A. Sh. Lokshin (1928) and V. N. Lyskov (1930).
The monograph of A. N. Dinnik, published in 1938 is devoted
to various methods for the solution of the problem of the theory
of torsion.
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In 1925 G. V. Kolosov and D. L. Gavra applied for the
first time in the solution of the torsion problem complex
variables. They considered the problem of the torsion of
a non-circular sector with a small central angle. The funda-
mental results along these lines were obtained by M. I.
Muskhellshvili (1929) who has shown that the problem of the
torsion of simply- and doubly-connected regions reduces to
finding a function of a complex variable which maps the
given region, respectively, onto a circle or onto a circular ring.
The methods of the theory of functions of a complex variable
were applied in the solution of the problem of torsion of
prismatic bars of various cross sections in the articles of
D. V. Avazashvili (1940), A. V. Batyrev (1953), Kh. M. Mushtari

(1938), A. G. Ugodchikov (1956), et al.

R. 0. Kuz'min (1946) used conformal mapping in a different
form. He obtained a convenient formula for the direct calcula-
tion of the rigidity of g twisted beam. This formula made
it possible to calculate the rigidity for cross sections
whose contour contains the corner points. Another study in
which the complex variable method is extended to the case of a
countour goes back to P. P. Kufarev (1937). The method of
Kufarev was used by O. I. Babakova (1954) in the study of the
torsion of a Z-shaped cross section,

Using the method of conformal mapping,Ye. A. Shiryayev
considered the torsion of a shaft with a radial and also with
a longitudinal arc-like crack (1956). 1In another study
Shiryayev investigated the torsion of a circular shaft with
two cuts of different depths, along the diameter of the cross
section (1958). The torsion of shafts with circular grooves
was studied by A. A. Skorobogat'ko (1958, 1962). The torsion
of hollow airfoils with the aid of the theory of functions of
a complex variable was studied by G. A. Tirskiy (1959).

The approximate solution of the problem of the torsion
of angular, cross-shaped and T-shaped cross sections with
the aid of conformal mapping was obtained by B. I. Makhovikov
(1957). A. G. Ugodchikov (1956) who developed approximate
conformal mapping methods, studied the torsion of a circular
shaft with teeth and a shaft in the form of a pipe with
internal teeth (slotted coupling).

A new method for solving the problem of the torsion and
flexure of hollow rods was proposed in 1948 by D. I. Sherman,
The method consists of introducing an auxiliary function, which
is related on one of the edges of the doubly-connected region
to the complex torsion function by a certain relation.

This auxiliary function satisfies the Fredholm integral
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equation, whose solution reduces to the solution of a quasi-
regular (and sometime regular) infinite system of linear
algebraic equations., Sherman solved, using this method, a num-
ber of concrete problems for the torsion of doubly-connected
cros? sections bounded by circles and ellipses (1950, 1951,
1953) .

Additional theoretical studies along these lines, which
led to the solution of a number of problems of the torsion of
hollow rods were carried out by D. I. Sherman (1953, 1955,
1959), R. D. Stepanov and D. I. Sherman (1952), Yu. A. Amenzade
(1958) . The method of Sherman was used in the studies of
L. K. Kapanyan (1952, 1957), V. I. Yakovyeva (1956) and also
by I. A. Bakhtiyarov (1959) for the torsion of a box-shaped
rod, by M. U. Ismailov (1959) in the problem of the torsion
of a circular shaft with a triangular prismatic cavity and
by M. I. Nayman (1958) in the problem of the torsion of a
circular shaft with a polygonal coaxial cavity.

The exact solution of the problem of the torsion and
flexure of prismatic rods with a cross section bounded by
the two arcs of intersecting circles (moonshaped) was obtained
in 1949 using bipolar coordinates by Ya. S. Uflyand. A
detailed presentation of the solutions of the flexure and tor-
sions problems for regions in which the solution can be ob-
tained in bipolar coordinates is given in his monograph
(1950). Later, V. I. Bloch (1956) published an article in
which he applied bipolar coordinates to the problem of the
torsion of a rectangle formed by the arcs of orthogonal circles.
The torsion of a rod with a lenticular cross section was con-
sidered by Ya. I. Burak and M. Ya. Leonov (1960). S. A.
Gridnev applied polar coordinates to the study of the
torsion of a doubly connected cross section (1963) and reduced
the solution of this problem to a infinite system of equations.

K. A. Kitover (1954) obtained the solution
of the problem for a sector of a ring. For a number of
regions, formed by the arcs of ellipses and hyperbolas, the
exact solution of the problem of the torsion in elliptic coor-
dinates were obtained by V. I. Bloch (1964).

Approximate methods for the solution of the problem of the
torsion and flexure of beams were developed by D. Yu. Panov
(1934, 1936, 1938), who developed the method of a small
parameter and the graphical method, and studied the torsion
of nearly-prismatic rocks and the torsion and flexure of
a helical profile, He also studied, using finite differences,
the problem of a double- T-shaped beam and shaft with a
key joint.
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In the studies of M. G. Slobodyanskiy on the theory of
torsion (1939, 1940, 1951) the method of finite differences is
applied only to one variable, and the solution of the problem
is reduced to a system of ordinary differential equations.

This method enabled Slobodyanskiy, and then also A. M. Pivovarov
(1953) to calculate the coefficients of the concentrations in
the angles of inlet of the polygonal cross sections. An
analogous technique was used by V. M. Fadeyeva (1949) in the
solution of the problem of the torsion of a rod with a trape-
zoidal cross section. The problem of the torsion of a standard
section was studied by B. N. Lopovok (1952). B. A. Rozovskaya
(1940) studied, using the method of finite differences, the
torsion of rolled section (angle, channel, and H-beam).

In another study of this author (1956) and also in the study
of Ye. P. Obolenskiy (1959), this method was also used to
solve the problem of the torsion of a shaft with slits.

Among other approximate methods for solving problems
of the flexure and torsion of prismatic beams, the most im-
portant ones are variational methods which became very popular
primarily due to the work of L. S. Leybenzon and L. V.
Kantorovich. 1In the first study of L. S. Leybenzon on the
theory of torsion which was published in 1924, the problem of
the torsion of a helical profile was studied. In this study
an approximate expression was obtained for the torsional r1g1d1ty of
the profile of the helix . V. P. Vepchinkin (1926)
and D. Yu. Panovich (1937) made this formula more precise.

The study of L. S. Leybenzon (1935) on the theory of
the flexure of prismatic rods in which he developed in detail
an effective variational method for the solution of this problem
and investigated the problem of determining the flexural center
of the profile and in which he also obtained for the first time the
theorem on the cirtulation of the tangential stress during- bending
is of great importance. A further extension of the problem
of finding the flexural center was obtained in the studies of
N. V. Zvolinskiy (1936), D. Yu. Panov (1934) and G. Z. Proktor

(1936) .

The results of the studies of L. S. Leybenzon on the
theory of the flexure and torsion of beams over many years and
also on the development of effective techniques for the
solution of the problems are summarized in his monograph

(1943) .
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In 1933 L. V. Kantorovich proposed a new approximate
method for the solution of the problem of finding the minimum
double integral, according to which the problem reduces to
ordinary differential equations (the convergence of the
method was studied by him later, 1941). in another joint
article with P, V. Frumkin (1937), Kantorovich applied suc-
cessfully his method to the solution of the problem of the

of a

torsion of a rectungular and standard symmetric and asymmetric
cross section. T. K. Chepova (1937) studied the torsion of an

equilateral trapezoid, and also of straight and oblique
symmetric angles, V. L. Biderman (1950) studied the torsion
of a trapezoid and an equilateral triangle, A. P. Karpov (195
developed the solution for the problem of the torsion of a
rhombus.

A, I. Lur'e (1939) applied the Kantorovich method to
the problem of the flexure and torsion of a symmetric profile
bounded by parallel and algebraic curves described
by two-term equations. The problems of the torsion of triangl
right angled and equilateral triangles,were studied in detail
by N. O. Gulkanyan (1953). By introducing a special type of
non-orthogonal coordinates, N. Kh. Arutyunyan was able to solv
the problem of the torsion of an angle and a channel (1942)
and in another study to obtain the solution of the torsion pr
for an elliptic annular section which was isotropic or had an
anisotropy of a special type (1947).

Another approximate method for solving the problem of th
torsion of a prismatic rod based on point interpolation was
developed by L. A. Galin (1939). An approximate solution of
the problem of the torsion of a rod with a T-shaped cross
section was obtained by B. A. Bondarenko with the aid of the
alternating Schwarz method (1956).

M. Ya. Leonov proposed an approximate method for deter-
mining the rigidity of thin-walled profiles based on the
introduction of "mean lines" of equal tangential stresses
(1956, 1957). While developing this method, M. Ya. Leonov
(1957, 1960), G. S. Kit (1958, 1960) and others, obtained
approximate solutions for a number of simply and doubly
connected regions.

G. K. Galimkhanov (1955, 1956) developed an approximate
solution for the problem of the torsion of flat key-
way shafts whose cross section consists of arcs of the
principal circle and chords. The constants in his solution
are determined from the condition that the integrals of the

5)

es,

e
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functions of the stresses along rectilinear and are hed. sectors of

the contour vanish. Approximate methods were also used to
study torsion problems by G. M. Sarkisov and Yu. A. Amenzade®
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(1952) for regular polygonal profiles, by L. M. Mitel'man
(1955; 1959) for a square, semicircle, equilateral triangle
and an airfoil, and by L. V. Mikhaylov (1962) for a

rod with a semicircular cross section weakened by a
circular cylindrical cavity.

The problem of the constrained torsion of a prismatic
rod of arbitrary cross section was considered by V. K.
Prokopov (1959) and for a symmetric profile by G. P. Geondzhyan
(1959). 1In both studies, it was assumed that the normal stresses
in the constrained cross section were proportional to the plane
displacement of the free torsion and applying the variational
method for solving the problem, elliptical and rectangular
cross sections were studied as examples. The constrained
torsion of a rod with a rectangular cross section was also
studied by V. P. Netrebko (1956), who used the M. M. Filonenko-
Borodich method which he combined with the Castigliano
principle. 1In another study, Netrebko (1954), using the same
method, studied the problem of the torsion of a right-angled
prism for a given distribution of tangential stresses at its
ends. The constrained- torsion of a hollow elliptical cylinder

was studied by S. A. Gridnev (1963).

An exact solution of the problem of the flexing of a
prismatic rod with a cross-section in the form of an annular
sector was given in 1927 by B. G. Galerkin, who expressed the
function of the stresses in the form of a series. In this
study Galerkin studied, with the aid of curvilinear coordinates,
the symmetric flexure of a floating core whose profile was
bounded by parabolic arcs, parabolas and a line, arcs of an
ellipse and of a hyperbola. The last case was also studied
in the article of V. S. Tonoyan (1961).

D. Z. Avazashvili (1940) constructed the solution of the
problem of the flexure of a cantiliver prismatic rod with the
aid of functions of a complex variable. Through a conformal
mapping onto an annular region, B. A. Obodovskiy obtained the
solution of the problem of the flexing of a hollow beam with
an elliptical cross section by a force (1960). L. K. Kapanyan
(1956) used an approximate conformal mapping in the solution
of the problem of the flexure for a circle with "a curvilinear
square' cutout. V. N. Rakivnenko (1962) studied the bending
of a circular cylinder with two cavities with cross sections

in the form of a square.
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The symmetric bending of a rod whose cross section con-
sisted of rectangular regions was studied by A. S. Bozhenko
(1948) . In another article (1954) he studied the asymmetric
bending of rolled sections (channel, I-beam, T-shaped beam)
and he determined the position of the flexing center. N. O.
Gulkanyan (1955) determined the coordinates of the center of
flexure of an equilateral trapezoid and an equilateral triangle
using an approximate method. The solution of the problem of
the flexure of a prism with a cross section in the form of an
equilateral triangle in closed form was obtained by N. I. Popov
(1954) .

D. I. Sherman extended his auxiliary function method to
the problem of the flexure of hollow prismatic rods, and,
in particular, he studied the case of an elliptical bar weakened
by a circular cylindrical cavity (1953). A number of problems
of the flexure of hollow rods were studied, using the S8herman
method by Yu. A. Amenzade, a circle with elliptic (1955) and
curvilinear (1956) holes, a circle with a non-coaxial elliptical
hole (195%) and others. A cross section in the form of an
ellipse with two circular holes was studied by A. S. Kosmo-
damianskiy (1960).

In 1948 N. Kh. Arutyunyan proposed a new method for solving
the problem of the torsion of rods with polygonal cross sec-
tions, which is based essentially on the introduction of
auxiliary functions that are used to obtain the stress func-
tions and a subsequent reduction of the solution of the problem
to complete regular infinite systems of linear algebraic equa-
tions. Later, he studied the problem of the torsion of an
angle (1949). Using the Arutyunyan method, problems of the
torsion of rods with various types of cross sections were studied.
A cross section in the form of a trapezoid was studied by B. L.
Abramyan and N. Kh. Arutyunyan (1951), a channel and a T-shape
by Ye. A. Aleksandryan and N. O. Gulkanyan (1953), a cross-
shaped section and a cylinder with wedge grooves by B. L.
Abramyan (1949, 1959), a box-shaped profile with a crack by
A. A. Babloyan (1958). Ye. A. Aleksandryan (1952) studied the
cases of an H-~bar, a square and rectangle with a cut-off angle
and of a parallelogram with a 45° angle. A triangular cross
section and a rectangle with cracks was studied by N. O.
Gulkanyan (1952, 1953), a section with teeth was studied by
B. L. Abramyan and V. S. Tonoyan (1959).

The torsion (and flexure) of prismatic beams with a hollow
rectangular cross section was studied in 1950 by B. L.
Abramyan. In another article he studied the case of a circular
shaft with longitudinal cavities (1959). The torsion of a
circular rod with longitudinal recesses or teeth with a central
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circular cavity were studied in the article of B. L. Abramyan
and A. A. Babloyan (1960). Using the same method of auxiliary
functions and reduction to infinite systems, N. O. Gulkanyan
(1960) studied the torsion of a rectangular prism with two
symmetric rectangular cavities. V., S. Tonoyan (1961) obtained
the solution of the problem of the torsion of a hollow ellipti-
cal bar with longitudinal grooves. A detailed presentation

of the method of auxiliary functions as applied to the torsion
of prismatic solid and hollow bars as well as the_.probiem of the
torsion of composite bars and bodies of rotation can be found
in the monograph of N. Kh. Arutyunyan and B. L. Abramyan (1963).

The application of the method of auxiliary functions to
the problem of the flexure of bars with a polygonal profile
and the reduction of the problem to infinite systems was given
in the article of N. Kh. Arutyunyan and N. 0. Gulkanyan (1954).
Exact values of the coordinates of the flexural center for a
T-shape, a channel and an angle were obtained in this article.
N. 0. Gulkanyan (1959) also obtained the coordinates of the
flexural center for a rectangular section with an asymmetric
rectangular cutout.

Using the Arutyunyan method, M. S. Sarkisyan (1956)
studied the problem of the flexure of an H-bar, Ye. Ya. Kirin
(1963) studied a cross-shaped cross section, V. S. Tonoyan
(1961) a cross section in the shape of an ellipse with recesses.
The studies of A. A. Babloyan (1960, 1961) are devoted to the
problem of the flexure of a circular shaft with longitudinal
lateral recesses, asectional prism with a tooth and a shaft

with teeth.

N. I. Muskhelishvili (1932) developed the theory of the
torsion and flexure of beams consisting of various materials
welded along the lateral surfaces. The solution of this
problem for the case of torsion of two welded beams from
different materials is presented in his well-known monograph
(second issue, . 1935). I. N. Vekua and A. K. Rukhadze (1933)
studied the torsion of a circular cylinder reinforced with a
circular bar, and also the torsion and flexure of a composite
beam whose cross section had the shape of confocal ellipses.
A. K. Rukhadze (1935) studied the flexure and torsion of a
composite profile formed by epitrochoids. The case of demar-
cation by hypotrochoids was studied by G. A. Kutateladze (1256),
The torsion of a composite rod with cross section in the shape
of two circular segments welded along a chord was studied
using bipolar coordinates by V. M. Dzyuba and A. Sh. Asaturyan
(1965) .

—41-




The general problem of the torsion of a composite rod
was studied in the article of K. S. Chobanyan (1955), in
which he presents the theorem on the circulation of the tan-
gential stress and studies the problem of the torsion of a
composite rod with a T-shaped cross section. In other
studies of K. S. Chobanyan, the flexure of a composite rod
is discussed (1956), and the coordinates of the flexural center
and the torsion of a composite shaft with a variable diameter
are determined (1958). The torsion of a multiply-connected
composite rod was investigated by I. V. Sukharevskiy (1954).
A. G. Ugodchikov (1964) considered the torsion and flexure of
composite rods inserted one in another. The solution of the
problem is obtained with the aid of conformal mapping and a
reduction to infinite systems of linear equations,

The problems of the torsion and flexure of prismatic
anisotropic beams were formulated in the studies of S. G.
Lekhnitskiy (1938, 1942, 1956). The results of these studies
and the solutions of a number of other problems in the theory
of elasticity of anisotropic media are summarized in his mono-
graph (1950). The torsion of anisotropic prisms with the aid
of the generalized membrane analogy was studied even earlier
by A. Sh. Lokshin (1927), who studied sections in the shape
of a circle, ellipse, rectangle and parallelogram. Certain
problem in the flexure and torsion of anisotropic prisms
using the variational method were investigated by L. S. Leybenzon
(1940). The article of V. D. Vantorin (1939) iz devoted to
the approximate solution of the torsinn of au anisotropic
beam in an airfoil. Certain problems 1. tne torsion of an
anisotropic beam were studied using an approximate methcd by
N. Kh. Arutyunyan (1947, 1948). The torsion of an anisot.ropic
cylinder was studied by B. L. Abramyan and A. A. Babloyan (1958).

The flexure and torsion of an anisotropic beam with a
cross section in the shape of a parallelogram was studied by
R. S. Minasyan (1938). A number of problems on the flexure of
anisotropic beams were studied by V. S. Sarkisyan (1961, 1962),
using the method of power series expansion in powers of a small
parameter. Solving the problem of the flexure of an anisotropic
beam with the aid of conformal mapping, Ye. Ye. Antonov (1964)
expressed the coordinates of the flexural center in terms of
the coefficients of the mapping function. A. S. Kcsmodamianskiy
(1962) presented an approximate solution for the problem of
the torsion and flexure of orthotropic beams with an elliptic
profile with cavities with an elliptical cross section,
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Problems of the torsion of a nonhomogeneous prismatic
beam were solved by B. L. Abramyan (1951) and A. Kh. Manukyan
(1952) . V. S. Sarkisyan and V. V. Mikayelyan (1968) developed
formulas for the coordinates of the flexural center for a
composite anisotropic beam. Recently solutions of flexing
problems (P. O. Galfayan, 1960, 1961) and the torsion (A. A.
Babloyan, 1959, P. O. Galfayan and K. S. Chobanyan, 1959)
appeared for bodies with thin reinforcing coatings. S. G.
Lekhnitskiy studied certain problems in the torsion of bodies
with a variable modulus of elasticity (1964, 1965).

In 1950 M. E. Berman derived formulas for the coordinates
of the flexural center that were expressed in terms of
functions that solved the torsion problem for a beam with the
same cross section. Later, V. V. Novozhilov (1957) obtained
an analogous result, and V. K. Prokopov (1960) generalized
these formulas to the case of a multiply -connected cross sec-
tion of the flexed beam. The further study of the problem
mentioned above is due to G. Yu. Dzhanelidze (1963). 1In the
case of an anisotropic beam, analogous results were obtained
by V. S. Sarkisyan (1961, 1966). K. S. Chobanyan and V. V.
Mikaelyan (1963) derived formulas for the coordinates of the
flexural center of a beam with a cross section consisting of
different materials.

The torsion of bodies of rotation was studied using
various methods. A. Sh. Lokshin (1923) studied, with the aid
of carvilinear coordinates, the torsion of a cone, an
ellipsoid, a hyperboloid and a paraboloid of rotation. 1In
a more general formulation. the problem of the torsion of
bodies of revelution in curvilinear coordinates was studied_ by
B. A. Sokolov (1944). This author also studied the problem
of applying the Ritz method to the problem of the torsion of
a stepped shaft (1939). The torsion of a hollow truncated
cone was studied by N. Ya. Panarin (1937).

K. V. Solyanik-Krassa used curvilinear coordinates to
solve the problem of the torsion of shafts with cavities (1947)
or circular recesses (1948, 1955). The results of these studies
are also available in his monograph ''The Torsion of Shafts
with a Variable Cross Section" (1949). Using the same method,
he studied a number of problems in the flexure of a beam with
variable cross sections, in particular, he investigated the
stress concentration near a spherical cavity in a cylindrical
bear (1955).
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An estimate of the stress concentratdon during the torsion
of a circular shaft with a circular recess based on the applica-
tion of the theory of functions of a complex variable combined
with the variational method was obtained by G. N. Polozhiy
(1957). The problem of the concentration of stresses during
torsion where the diameter of the shaft changes sharply using
the method of grids was studied by B. A. Rozovskaya (1956,
1958) . The torsion of a pipe witha wariable cross section was
discussed by Yu. A. Amenzade and G. M. Sarkisov (1959).

The torsion of anisotropic bodies of rotation was in-
vestigated in the studies of S. G. Lekhnitskiy (1940), D. V.
Grilitskiy (1957), B. L. Abramyan and A. A. Babloyan (1958).

The action of forces distributed along the lateral surface
of a circular shaft leading to its twisting was studied by
N. V. Zvolinskiy and P. M. Riz (1939), who studied a uniformly
and linearly distributed load. A more general case of a
prismatic beam was studied by L. S. Gil'man and S. S.
Golushkevich (1943) and P. M. Riz (1940). The problem of the
torsion of an elastic ring by couples uniformly distributed
along its axis was studied in the article of L. S. Gil'man
(1937). The case of uniformly distributed twisting tangential
forces along the generatrices of the cylinder was studied by
S. A. Bakanov (1988). The torsion of solid and hollow circular
cylinders with axisymmetric distributed surface loads were
studied with the aid of Fourier-Bessel series by V. I. Bloch
(1954, 1956). P. Z. Livshitz (1962) returned to the same problem
for a solid cylinder. The problem of the torsion of an aniso-
tropic beam by forces distributed along its lateral surface
was solved by S. G. Lekhnitskiy (1961).

The torsion of a stepped shaft with axisymmetric loads applied
to its lateral and end surfaces was studied by B. L. Abramyan
and M. M. Dzhrbashyan (1951), who reduced the solution of the
problem to an infinite system of linear equations. Using the
same method, B. A. Kostandyan solved the problem of the tor-
sion of a hollow stepped shaft (1956). He also studied the
torsion of a shaft with a circular rectangular-shaped recess
(1954) and the torsion of a shaft with a disc slipped over it
(1958) . The torsion of a conical beam and a cylindrical
beam with a conical part were studied by B. L. Abramyan (1958,
1960) and the torsion of a hollow composite halfsphere was
studied by him jointly with N. O. Gulkanyan (1961).
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The problem of the equilibrium of an elastic prismatic
beam under the action of forces applied to its ends which is
free from loads on the lateral surfaces is known as the St.-
Venant problem. In linear elasticity theory, this problem is
broken up naturally into two simrle problem (expansion and
pure flexure by couples), which are solved in an elementary
way, and two more complex problems (torsion and bending by a
force) which were discussed in detail above. In nonlinear
elasticity theory, the mutual effect exerted by various loads
is essential, It is necessary to take into account the secon-
dary effects, whose study began in 1938, 1939 in the joint
studies of N. V. Zvolinskiy and P. M. Riz. In the last study
in this series of studies (1939) the torsion of an expanded
beam was considered. N. V. Zvolinskiy also studied the torsion
of a beam expanded by body forces (1939). The problem of the
torsion of an expanded beam is the subject of the studies of
P. M. Riz (1939) and A. K. Rukhadze (1941), who also considered
the effect on the flexure of a beam by a couple, the bending
from a transverse force (1947). The secondary effects which
occur during the expansion and flexure of composite bars were
discussed in the study of A. Ya. Gorgidze and A. K. Rukhadze
(1943). These studies were made more precise and developed in
the subsequent work of A. Ya. Gorgidze (1955, 1956), R. S.
Minsyan (1957), A. K. Rukhadze (1954), and his joint studies
with D. N. Dolidze (1957), V. Kh. Metsugov (1954, 1956).

The method of a small parameter was used extensively in this
series of studies.

Problems of the deformations of slightly conical and
naturally twisted beams occupied a considerable place in the
studies of Soviet scientists. Here the method of a small
parameter also turned out to be very useful. This method was
applied for the first time by D. Yu. Panov to the solution
of the problem of the torsion of a slightly conical beam (1938).
Problems dealing with the expansion, torsion and flexure by
couples of naturally twisted beams were studied by P. M. Riz
(1939). In a more general formulation, using a special system
of non-orthogonal coordinates, the St.-Venant problem for a
naturally twisted beam was solved by A. I. Lur'e and
G. Yu. Dzhanelidze (1940). Later, G. Yu. Dzhanelidze extended
this method to slightly conical beams (1947). 1In Cartesian
coordinates the flexure of a twisted beam by couples was in-
vestigated by A. Ya. Gorgidze and A. K. Rukhadze (1944) and
the flexure by a transverse force by A. K. Rukhadze (1947).
Subsequent studies complement these fundamental results, studyv
secondary effects in greater detail, complicate the load
diagrams (A. Ya. Gorgidze, 1958, 1963), and examine the torsion
of naturally twisted components (A. Ya. Gorgidze and V. Kh.
Metsugov, 1957, A. K. Rukhdze, 1956, A. F. Sharangiya, 1955)
and )composite slightly conical beams (S. V. Berdzenishvili,
1957) .
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The method of a small parameter was also successfully
applied to the solution of the equilibrium problem of a beam
with a slightly bent axis. Problems of this type were solved
for the first time by P. M. Riz (1940, 1947) and by A. K.
Rukhadze (1942). Subsequently, expansion (R. S. Minasyan,
1954), flexure by couples (A. K. Rukhadze, 1953) and flexure
by a force (A. Ya. Gorgidze, 1956) were considered.

The expansion and flexure of an anisotropic beam were
studied in 1949 by S. G. Lekhnitskiy. Later G. M. Khatiashvili
studied a more complex problem, an anisotropic beam with a
slightly bent axis (1965)., He also studied the St.-Venant
problem for composite nearly prismatic anisotropic bodies -
(1963) .

The problem of the elastic equilibrium of a beam whose
lateral surface is subjected to loads which are polynomial
functions of the axial coordinate is known as the Almanzi
problem. A special case of this problem, when the lateral
load is independent of the axial coordinate has already been
studied by G. G. Mitchell. 1In 1960, G. Yu. Dzhanelize
published a general method for the solution of..‘the Almanzi
problem in the stresses which reduces to the solution of a
series of two dimensional problems which are related to one
another by recurrence relations, This method yielded a
general method for solving the Mitchell-Almanzi problem and
opened up the way for the application of methods from the. theory
of functions of a complex vairable. A special case of the..
Mitchell problem when a uniformly distributed normal load
is acting on the lateral surface of the beam was studied by
A. L. Khasis (1950). He showed that a line of flexural centers
exists which can be found by determining the harmonic torsion
function for the St.-Venant problem. For composite beams;.
the solutions of the St.-Venant problems were found. G. M.
Khatiashvili (1953, 1955) obtained the solutions of the Mitchell
and Almanzi problems for composite beams. (A classification of and
sequence in which the boundary value problems are solved which
arise in connection with the Mitchell problem was given by
A. I. Lur'e (1966) .

The action of a lateral polynomial load on a transverse-
isotropic cylinder leading to its torsion and to an axi-~
symmetric deformation were studied by S. G. Lekhnitskiy (1961).
A. S. Kosmodamianskiy (1956, 1961) studied the Mitchell and
Almanzi_ problems for an anisotropic rod. G. Yu. Dzhanelidze
(1961) extended the method proposed by him for the solution of
the Almanzi problem to the case of an ansiotropic beam. This
problem was studied in greater detail by G. M. Khatiashvili,
who investigated the Mitchell problem for composite orthotropic
and anisotropic beams (1962) and also generalized the
Dzhanelidze problem to the case of the Almanzi problem for
a composite orthotropic beam (1964).
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§4. Mixed Three-Dimensional Problems in the Statics
of an Elastic Body

By mixed boundary value problems in the mathematical
theory of elasticity we usually mean elastic equilibrium
problems when the lines which divide the boundary conditions
of various types lie on the surface of the body. 1If the
surface of the elastic body under consideration consists of
several smooth faces, two qualitatively fundamentally different
variants of the mixed problems may occur,.

1) Within each face the type of boundary condition
does not change. The simplest examples of such mixed problems
are the equilibrium of an elastic layer for which the stresses
are given on one face and the displacements on the other face
and analogous problems for a wedge, a hollow cylinder, a cone,
etc. The solution of the above-mentioned concrete problems is obtained
using integral Fourier transforms, Hankel transforms, etc.
As shown by G. Ya. Popov and N. A. Rostovtsev (1966), general
problems of this type reduce in principle to infinite systems
of equations. These problems are not touched on in this survey.

2) When at least on one of the faces of the body,
there is a dividing line for boundary conditions of various
types. Problems of this type reduce, generally, to integral
equations which we will analyze here in greater detail, since
these served as the impetus for the development, mainly in
the USSR, of various methods used in the solution of many
important mixed problems in potential theory and the theory
of elasticity. A number of applied problems, in particular
contact problems and certain problems dealing with stress con-
centrations, are mixed problems of this type.

At the present time contact problems for an elastic half-
space deformed by a rigid die, a circular or elliptical die
in the plane have been studied in greatest detail. Such a
problem was discussed for the first time already by Zh.
Bussineskiy for the case of the axial indentation of a circular
cylinder without friction. This category of problems includes
the classical problem of G. Hertz of the compression of elastic
bodies when the contact area is an ellipse. Soviet scientists
contributed considerably to the further development of this
class of problems. A. N. Dinnik (1909) and N. M. Belyaev
(1924) calculated stresses in bodies making contact along a
circular or elliptical area (see also M. S. Krolevets, 1966).
A considerable number of important studies on contact problems
were made in the 30's and 40's. V. A. Abramov (1939 and
A. I. Lur'e (1940) obtained the solution for contact problems

-47-

e b




for a non-centrally loaded circular and elliptical die.
Important results along these lines were obtained by I. Ya.
Shtayerman (1939, 1941, 1943), who studied various cases

of the contact of bodies of revolution without assuming a
small contact surface, and who also investigated for the first
time the problem of a closely fitting die. 1In 1941 A. I.
Lur'e, using the Lame function studied in detail certain con-
tact problems and then developed a natural unique approach to
the Hertz problem and the problem of a closely fitting die.
In the study of M. Ya. Leonov (1939, 1940) and L. A. Galin
(1946, 1947), a number of contact problems for the halfspace
are further generalized. A great deal of information both of
an original and survey character dealing with the problems
that were discussed is contained in the monographs of I. Ya.
Shtayerman (1949), L. A. Galin (1953), A. I. Lur'e (1955),

as well as in the survey articles of D. I. Sherman (1950)

and G. S. Shapiro (1950), which contain many references not
included in this survey.

In recent years, the development of methods based on the
use of the general equations of the theory of elasticity, in
particular the Papkovich-Neuber function,made it possible to
reduce many general mixed problems in elastic equilibrium of
the halfspace to certain classes of mixed problems in the
theory of the potential. An important example in this class of
problem is the case when on the entire boundary of the half-
space the tangential stresses are given in some finite region
S and on the boundary plane z = 0, the normal displacement
u,2 = f(x, y) is known and in the interior of S (in the domain
s*) the normal stress O = o(x, y) is given. Thus, for the

contact problem without friction and additional loads, we

have ¢ = 0 and the function f is determined by the shape of

the base of the die. It is essential that mixed problems of

the type that was mentioned can ultimately be reduced to finding
a single harmonic function defined on S, whose normal derivative
is known in the domain S'., Soviet sciéntists developed
efficient methods for approaching such problems in the theory

of the potential which can be used, in particular, to obtain
exact solutions of certain contact problems and similar mixed
problems. Some of the fundamental methods are: the use of
spherical and ellipsoidal coordinates (A. I. Lur'e), the
construction and use of @Green's function (L. A. Galin, M. Ya.
Leonov, 1953), the method of integral equations (I. Ya. Shtayerman,
V. I. Mossakovskiy, 1953), the use of toroidal coordinates and
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integral transformations (Ya. S. Uflyand, 1956, 1967), the
method of complex potentials (N. A. Rostovtsev, 1953, 1957).
Here, we deliberately refrain from mentioning the method of
coupled integral equations developed successfully by J. N.
Sneddon,1 since its effectiveness is essentially verified by
solving more complex mixed problems which we will discuss

later.

The authors that were mentioned,as well as many other
authors, developed in the last decades exhaustive solutions
tor a number of new mixed problems in three-dimensional elasticity
theory, including contact problems. Thus, L. A. Galin (1947)
and V. L. Rvachev (1959) considered the problem of the indenta-
tion of a wedge-shaped die in the balfspace, the studies of N. A.
Kil'chevskiy (1958, 1960) generalized the Hertz problem and
pointed out the connection between the elastic contact problem
and a certain extremum problem, V. L. Rvachev (1956, 1957)
solved the problem of a strip and polygonal die and also dis-
cussed the case of a die whose base was bounded by a second-
order curve. The studies of G. Ya. Popov (1961, 1963) deal with
mixed problems for a circular contact region, and a die in the
shape of a halfplane and a quadrant. N. M. Borodachev (1962,
1964, 1966) and A. F. Khrustalev (1965) studied a number of
thermoelastic problems for the halfspace. 1In particular, the
complex problem of the action of a hollow circular cylinder on
the halfspace, which is known in the literature as the annular
die problem should be mentioned. The exact solution of this
problem is connected with functions of an annulus with an oval
cross section which have not been tabulated (see N. N. Lebedev,
1937). Various approximate methods for solving this problem
were proposed in the studies of A. Ya. Aleksandrov {.955). Yu.
O. Arkad'eva (1962), V. S. Gubenko and V. I. Mossakovski
(1960), K. I. Yegorov (1963), G. Ya. Popov (1967). in recent
years, still another approach to this and similar pr~hlecas
based on the use of coupled integral equations usinyg t'e Meler-
Fok transformation has been proposed (V. T. Grinchenko and A.
F. Ulitko, 1963, A. A. Babloyan, 1964, A. N. Rukxhoveis «nd Ya.
S. Uflyand, 1965-1967), and also on the use of triple in egral
equationsZ2 (N. N. Borodachev and F. N, Borodacheva, '¢:3;.

The methods that were mentioned can be used to obtain gouad
approximations based on the numerical solution of Fredhol -
integral equations,

T. See, for example, his '"Fourier Transforms'" (1951, Rus:s.:on
translation: Moscow, 1955), '"Mixed Boundary Value Proilems
in Potential Theory."

2. Triple integral equations were investigated in the studi<:z
of K. G. Tranter (Quart. J. Mech. & Appl. Math., 1961,
14:3, 283-293) and G. K. Cook (Quart. J. Mech. & Appl.
Math., 1963, 16:2, 193-203; 1965, 18:1, 57-72).
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A large number of studies dealing with mixed problems
connected with problems in the flexure of beams and plates on
an elastic base have been published in the Soviet literature.
Here we will only mention the studies of A. G. Ishkova (1947),
M. Ya. Leonov (1939) and V. A. Pal'mov (1960), dealing with the
flexure of a circular plate on an elastic halfspace, and
also the monographs of M. I. Gorbunov-Posadov (1953) and
B. G. Korenev (1954, 1960). The results of the many studies
along these lines and a large bibliography can be obtained by
the reader in the survey article of A. G, Ishkova and B. G.
Korenev (1966) .

Along with contact problems, the mixed problems in the
theory of the potential for the halfspace that were considered
above can be treated as problems in the deformation of an
unbounded elastic body weakened by a plane crack occupying
the region S (or S'). 1In fact, in the case when the edges of
the crack are loaded symmetrically with respect to its plane,
it suffices to consider the halfspace on the boundary of which
in the region S (or S') the stresses are given and in its ex-
terior there are no tangential stresses and no normal displace-
ment. In the case of an antisymmetric load, even for a cir-
cular crack, certain additional difficulties arise which were
solved in the articles of V., 1. Mossakovskiy (1955) and Ya.

S. Uflyand (1967). 1In the last article, this problem was
considered as a special case of the general mixed problem
when the normal stress is given on the entire boundary of

the halfspace, and in the region S (S') the tangential displace-
ment is known, and the tangential stresses are given in the
domain S' (S). An interesting problem on the contact of two
different media whose common boundary has a circular crack
was solved by V. I. Mossakovekiy and M. T. Rybka (1964),
which generalizes the well-known Griffith-Sneddon criterion
to the case of a nonhomogeneous body (see also the article of
the same authors, 1965). Among the studies dealing with

the deformation of bodies with cracks, we also point out the
interesting articles of V. T. Grinchenko and A. F. Ulitko
(1965), V. M. Aleksandrov and B. I. Smetanin (1965), and also
the study of Ya. S. Uflyand (1958) dealing with the problem of
the equilibrium of a body with a plane semi-infinite cross
section,

In the majority of studies that were discussed connected
with contact problems, it was assumed that there was no friction
between the die and the elastic body. The second limiting
case, when the die and the base adhere (this problem is a
special case in the basic mixed problem of elasticity theory)

is mathematically much more difficult. 1In contrast to the simpler
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mixed problems, in this case the problem reduces to finding two
harmonic functions in the halfspace with boundary conditions
of the first and second type which are not separated. Such

a problem was solved for the first time for a circular die

by V. I. Mossakovskiy (1954) by reducing it to a plane problem
for the linear conjugation of two analytic functions.
Subsequently Ya. S. Uflyand (1954, 1967) obtained a direct
solution for this problem using toroidal coordinates and the
Meler-Fok integral transformation. 1In the article of B. L.
Abramyan, N. Kh. Arutyunyan and A. A. Babloyan (1966), another
approach is taken to this problem which is based on using
coupled integral equations. The study of V. 1. Mossakovskiy
(1963) also deals with contact problems in the presence of
adhesion., The solution of the fundamental mixed problem in
the theory of elasticity for a halfspace with a rectangular
boundary which separates the boundary conditions was obtained
by Ya. S. Uflyand (1957) with the aid of the Kontorovich-
Lebedev integral transformation.

The behavior of the stresses near the boundary line of the
die under adhesion conditions was studied in the article of
G. N. Savin and V. L. Rvachev (1963).

A natural generalization of the classical problem of the
indentation of a rigid die in an elastic halfspace is the
contact problem for an unbounded elastic layer. These problems
were studied intensely in the USSR in the 50's and in contrast
to the case of the halfspace, here it was not possible to
obtain exact solutions. It was only possible to reduce the
corresponding problems to integral equations., Here the first
study was the article of B. I. Kogan (1954) in which an integral
equation of the first kind was set up and solved numerically
for the contact pressure between a circular die and a layer
on the halfspace. A more efficient solution of a similar
problem was obtained by N. N. Lebedev and Ya. S. Uflyand (1958)
who studied the axial indentation of a circular rigid die in
the plane in an elastic layer on a rigid base in the absence
of friction. This problem was reduced to coupled integral
equations of the form
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where a is the radius of the die, h is the thickness,of the
layer, f(r) is a given function related to the shape of the
base of the die, and ¢(A) is the unknown quantity. By re-
presenting the solution as a quadrature of a new unknown
function

a

®A)= [1——g(k)]5q‘(1)cos}.t dt

0

the second equation is satisfied identically, and the first
equation reduces to the Fredholm equation with a continuous
symmetric kernel. This method of solution can be used to
carry out a number of numerical calculations, in particular,
to find the relation between the displacements of the die and
the axial force P with the aid of the simple formula

P = 2nj ¢ (1) dt.
1]

K. Ye. Yegorov (1960) applied a similar method tothe case
of the non-axial identation of a die. In the article of V. A.
Pupyrev and Ya. S. Uflyand (1960) and in the monograph of the
latter (1967),a solution of the general mixed problem for an
elastic layer is obtained and the case of the adhesion of a
layer and the base is also discussed. It is important to point
out that the method of coupled integral equations made it
possible to study effectively the more complex axisymmetric
problem when the layer is compressed by two dies with different
radii (Yu. N. Kuz'min and Ya. S. Uflyand, (1967)). I. I.
Vorovich and Yu. A. Ustinov (1959) obtained a singular
integral equation directly for the function %(X) and developed
an approximate method for its solution in a series expansion
in powers of a/h. An analogous method was used by D. V.
Grilitskiy in the problem of the torsion of a multi-layer
medium with the aid of a die adhering to it and also in a
number of similar contact problems. The method of coupled
integral equations enabled a number of authors (see, for example,
G. M. valov, 1964, S. M. Kotlyar, 1964, V. I. Dovnorovich, 1964)
to solve various contact problems for an elastic layer,
including thermoelastic problems. Contact and mixed problems
for anisotropic bodies were discussed by S. G. Lekhnitskiy
(1950), D. V. Grilitskiy and Ya. M. Kizyma (1962, 1964), and
R. Ya. Suncheleyev (1964, 1966).
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A special efficient method for approaching contact problems
where a die acts on an elastic layer based on a direct investi-
gation of the integral equation for the pressure below the die
was proposed by V. M. Aleksandrov and I. I. Vorovich (1960,
1964). The solution of the problem was obtained in the form
of an expansion in the small parameter, the ratio of the
characteristic dimension of the die to the thickness of the
layer. It is essential that effective results were obtained
not only for a circular but also for an elliptical die in the
plane and also for certain other differently shaped bases.

The method that was mentioned was further developed in the
studies of V. M. Aleksandrov (1963, 1964, 1967) and other
students of I. I. Vorovich (see, for example, the dissertation
of V. A. Babeshko, 1966). At the present time it can be assumed
to be one of the most effective methods for the solution of the
class of contact problems under consideration for an arbitrary
value of the ratio of the thickness of the layer to the charac-
teristic dimension of the die.

From among the studies dealing with more complex compact
problems, we will mention the article of V. S. Gubenko (1960)
in which the problem of the action of annular dies on an elastic
layer is studied, and also the article of I. I. Vorovich and
V. V. Kopasenko (1966) for the contact problem for a halfstrip.

Problems of the stress concentration in an elastic layer
weakened by coaxial circular cracks which are parallel to
the boundaries of the layer can be successfully solved with the
aid of coupled integral equations. The simplest problem of
this type (Ya. 5. Uflyand, 1959) is the equilibrium of an
elastic layer which kas in the middle plane one symmetrically
loaded circular crack. I. A. Markuzon (1963) studied this
problem in connection with the problem of finding the dimensions
of the equilibrium crack using the G. I. Barenblatt method.

Among other studies dealing with the equilibrium of
bodies with cracks and holes, we mention the articles of V.
V. Panasyuk (1960), N. N. Lebedev and Ya. S. Uflyand (1960),
Yu. N. Kuz'min and Ya. S. Uflyand (1965), Yu. N. Kuz'min
(1966) and N. V. Pal'tsun (1967), and also the survey article
of G. N. Savin, A. S. Kosmodamianskiy and A. N. Guz'
(1967).

We will now discuss briefly contact problems dealing
with the equilibrium ot an infinite cylinder. 1In the study
of these problems, the most effective method is the method
of coupled integral equations which are relatcd to the Fourier
transform along the axial coordinate. A characteristic
feature of this method is the fact that in the case of a
semi-infinite contact region, these equations can be solved
exactly using methods of the theory of functions of a complex
variable which are based on the possibility of fectaring
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the analytic function which is defined on the strip. The
first study along these lines was the article of B. I. Kogan
(1956) which studied the axisymmetric stressed state of .

an infinite cylinder pressed without friction into a semi-
infinite rigid ring. Assuming that in the contact region
the constant radial displacement is given, the problem re-
duces to coupled equations of the form

f10yensan—o0 ¢>0),

0 v
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0

whose exact solution is obtained by constructing certain
merophoric functions in the form of an infinite product. In
the later studies of B. I. Kogan, A, F. Khrustalev and F. A.
Vayanshteyn (1958-1965) this method was applied to various
mixed problems, both for a solid and a hollow cylinder, and
also to the case of transverse anisotropy. The method for
the solution of such problems, which is based on reducing them
to a Wiener-Hopf integral equation for the contact stresses,
was developed by G. Ya. Popov (1964). He also obtained a
solution of the contact problem for an infinite cylinder
with two symmetric contact sectors. We also point out the
article of G. M. Valov (1966), in which the problem of the
torsion of a hollow infinite cylinder is studied with the aid
of coupled integral equations and trigonometric kernels.

Very recently the domain of solvable contact problems
was expanded considerably due to the development of the new
apparatus of coupled series which is applied to mixed problems
for an elastic sphere.1 By coupled series (or coupled equations
with summations) is meant the system of equations

1. The solution of certain mixed problems in the theory of
the potential with the aid of the method of coupled series
is presented in the second book by Ya. N. Sneddon that
was mentioned above (see p. 49).
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in which the coefficients An must be determined, where it is
assumed that the kernels Kn(x) form on the interval (a, b)
a closed system and that the numbers an and Y, are given.

Using these coupled series, which contain series in Legendre
polynomials, several interesting problems related to the
deformation of an elastic sphere and also an ellipsoid of ro-
tation with mixed boundary conditions were solved in the
articles of N. Kh. Arutyunyan, B. L. Abramyan and A. A.
Babloyan (1964, 1966). He also considered the axisymmetric
compression of a sphere by two symmetrically spaced equal
rigid dies on the assumption that no friction was present.

It was possible to reduce this problem to coupled series of

the type given above where Kn(x) = Pn(x), ¥ =n+ 1/2, imy

1 + B_ (the quantities B_as n — « have the ordes 1/n),

a = —nl, b=1. 1If V(x)ndenotes the value of the sum of the first
paired series for x > ¢, the solution recduces to the integral
equation

x 1
Vot o= [ vOse =00,

n dr Vr—y

where

SE y=V2 i Bals (i) cos [(n-{—%) arccosy] ,

n=0

and ¢(x) is a known function. Using a similar technique, the
solution of the problem of the torsion of an elastic sphere by
two symmetrically spaced equal dies adhering to it was obtained.
Using the method of coupled series in Legendre polynomials,

the solutions of certain mixed problems connected with the com-
pression and torsion of an elastic sphere and an elongated
ellipsoid of rotation have also been solved. Finally, the
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contact problem for the indentation of a rigid die in an
elastic medium was studied in which the coupled series in
Legendre polynomials were reduced to an infinite system of
linear algebraic equations. As an example, a sphere at rest
was considered without friction on the semispherical groove
which was loaded on the remaining part of the surface.

Coupled series in Legendre polynomials can also be applied
effectively with the aid of bispherical coordinates to the
solution of the mixed problem of the torsion of a half space
with a spherical inclusion (see A. N. Rukhovets and Ya. S.

Uflyand, 1967).

We also mention the interesting article of N. M.
Borodachev (1967) in which coupled series in Bessel functions
are used in the axisymmetric problem on the indentation of
a circular die into the end of a semi-infinite cylinder.

Another class of three-dimensional mixed problems in the
theory of elasticity which underwent considerable development
in the studies of Soviet scientists in recent years must also
be mentioned. These are contact problems for a linearly de-
formed base and related problems connected with the action
of a die on an inhomogeneous elastic halfspace. The funda-
mental studies here go back to B. G. Korenev (1954, 1957,
1960). Subsequently, these problems were studied by V. I.
Mossakovskiy (1958), G. Ya. Popov (1859), A. F. Rakov and
V. L. Rvachev (1961), N. A. Rostovtsev (1961, 1964) and many
other authors. The most detailed information on these problems
is available in the survey article of A, G. Ishkova and B.

G. Korenev (1966).

In conclusion we note that a considerable amount of
information and a large bibliography on mixed three-dimensional
problems in the theory of elasticity that were studied in re-
cent years can be found in the surveys of D. I. Sherman (1962),
B. L. Abramyan and A. Ya. Aleksandrov (1966), G. Ya. Popov
and N. A. Rostovtsev (1966), N. A. Kil'chevskiy and E. N.
Kostyuk (1966) and V. L, Rvachev (1967).

§5. Formulation and Methods for the Solution of Problems
in Two-Dimensional Elasticity Theory

One of the most important and best developed branches
in the theory of elasticity at the present time in which the
achievements of Soviet science are especially impressive is
the so-called plane problem in the theory of elasticity. The
success in the development of plane problems is explained by
using in the discussion the theory of analytic functions of
a complex variable. The first basic results along these lines
which are responsible for the contemporary form of plane
theory as a whole were obtained in the fundamental studies of
G. V. Kolosov and N. I. Muskhelishvili.
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By a plane problem in the theory of elasticy is meant
a plane deformation of an elastic medium which is parallel
to a given plane (the deformation of a long cylinder with
free bases), or its plane stressed state (deformation
of the thin plate by forces in its plane). The determination
of the elastic equilibrium in these cases reduces to the
solution of boundary value problems for the biharmonic
equation. Equilibrium problems of elastic plates subjected
to a normal load are also reduced to the biharmonic equation.
Plane problems and problems in the bending of plates and
their mathematical formulation are very similar and the methods
used for their solution are also similar. Therefore, it is
useful to consider together these two types of problems.

5.1. General Complex Representation of the
Solution of the Plane Problem

The fundamental relations for the plane problem in the
notation of N. I. Muskhelishvili are assumed to be known. The
domain S, occupied by the elastic medium, is a connected
region in the Oxy plane which is bounded by one or several
closed contours which do not have common points Ll’ L2, d D d Lm,

Lm+1’ where the last includes all previous ones. When there
is no contour Lm+l we have an infinite region in the plane with
"holes.' Cases are also considered when among the contours Lk

are open contours of finite length or infinite ones (plane with
cracks, halfplane with "holes," etc.). It is assumed that no
body forces are present,

The stresses and displacements are expressed in terms of
the complex Kolosov-Muskhelishvili potentials ©(z), V(z),
according to the formulas

Xo+Y,=20¢" () ~4" ()]s |
Yy— X 20X, =2 [z () + 0" ()], ' (5.1)

2u (4= iv) = nq (z) — 24" (3)— ] (3).

These formulas were derived for the first time by G. V.
Kolosov in 1909 in his fundamental study, "An Application of the
Theory of Functions of a Complex Variable to a Plane Problem
in the Mathematical Theory of Elasticity." They were derived
rigorously by N. I. Muskhelishvili (see his monograph '"Certain
Basic Problems in the Mathematical Theory of Elasticity,"

1933, 5th ed., 1966).

57~




The poteniials ¢(z) and V¥(z) are holomorphic in a simply
connected and finite domain S in the absence of concentrated
forces and moments. In the case of a multiply connected region,
the requirement on the uniqueness and finiteness of the stresses
and displacement in S leads to the representation

m

1 " g
(p (z) == 2 u _:'_ Z) 2 (Xh i I) '-) l" (:—:h) e (p‘ (:')1
R

;’ (5.2)
O = gy 2’ (Xx—iY8) In (s —321) +9* (2),

* *

where ® (z) and V¥ (z) are holomorphic on S, z, are points in
the interior of Lk, Xk + iYk is the principal vector of external
forces on Lk’ For ¢n infinite domain S, in the absence of L

when the stress field in parts of the body at an infinite

distance is finite, ¢ and | are represented near a point at
infinity in the form

m+1’

XY . g
(P(z):—.. —._'Z.'l—(i-—;l-r)’]" S-r ({0(3) -t= FZ, l

o (5.3)
V(@) = kg e e () =12 ,

The complex constants I', ['' determine the stresses and rotation
at infinity, X + 1iY is the principal vector of external forces
on the boundary L of the region, and ?O(Z) and wo(z) are holo-

morphic in the neighborhood of z = «, The displacement vector
at infinity is bounded for the conditions I' = ['' = O,
X + iY = 0.

5.2 Formulation of Fundamental Problems in Plane
Elasticity Theory

By the basic problems in plane elasticity theory are.
usually meant the following three problems:

The first fundamental problem requires that the elastic
equilibrium of a body be determined when the external forces
are given on its boundary. This problem leads to the following
limiting problem in the theory of analytic functions:
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¢O O +FVO =1 +C0) L, (5.4)
(/%

Key: a. on

where f(t) is a given function on L determined by the external
forces from the formula

FO=i | Kntia)ds

where s is the arc of the contour Lk measured on each Lk from
some fixed point on it in the positive direction, and C(t) = Ck

on Lk’ and Ck is a complex constant.

The second fundamental problem consists of determining the
elastic equilibrium of a body from the given displacements of
points on its boundary. To find the functions ¢ and V, which
are analytic on the domain C, we have in this case, the
boundary condition

ko) —t¢ )=y () =g(t)on L, - (5.5)

where g(t) is a given function and g(t) = 2u(u + iv) on L.

For the sake of simplicity, we will formulate the funda-
mental mixed problem for a finite simply connected domain bounded
by a single closed contour. 1In this problem, on a part of the
boundary L' = alb1 + a2b2 s a5 * anbn’ where akbk Gk = 1; i 2 wp D)

are nonintersecting arcs of the contour L which occur in a
certain order the external stresses are given, and on the

second part L" = bla2 +b2a3 + . . . 4+ bnan+1(an+1 = al) the

displacements are given. The corresponding problem in the theory
of analytic functions has the form

ke -1 (O +V @O =h@) + C ), (5.6)
where h(t) is a given function k = 1 for ¢t€ L', k = - » for

t€ L", C(t) = C, = const for t€ L', C(t) = 0 for t€ L".
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Conditions (5.4) or (5.5) must be satisfied on each contour
Lk‘ Generally the constant C(t) in the right member of (5.4)

may take on different values on different contours. Only on
one of them its value can be selected (usually Cm+1 = 0) but

on the other contours the values remain completely arbitrary
and must be determined during the solution of the problem. 1In
precisely the same way the constants Ck in the right member of

(5.6) (except one which is selected arbitrarily) are not
specified in advance but must be determined together with the
functions ¢ and V..

In plane elasticity theory, the so-called third fundamental
problem when the normal component of the displacement vector
and the tangential component of the external stress vector are
given on the boundary is also considered. This corresponds to
the contact of an elastic body with a rigid profile of a given
form when the contact between the elastic and rigid bodies
occurs along their entire boundary.

1f the arbitrary constants in the right members of (5.4)
and (5.6) are fixed, the additional conditions, as shown
above, for ¢ and ¥ will have the following form:

in the first problem

¢ (0) =0, Img (0)==0;

in the second and in the mixed problem
@
¢ (0) - 0 auio 1 (0) = 0.

Key: a. or

This exhausts any indeterminacy in the selection of the func-
tions « and V.

It can be proved that in the case of the first problem
when the rigid displacement of the body as a whole is ignored
and in the third problem for a circle when the rigid rotation
about its center is ignored, each of the formulated problems
has only one solution. The necessary conditions for the ex-
istence of a solution for the first fundamental problem is
that the principal vector and the principal moment of the external
forces applied to the boundary of the region be zero. When the
function f(t), in the right member of (5.4) is singlevalued
and continuous, these %wo conditions reduce to the condition
(N. I. Muskhelishvili, 1966):
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In the theory of the bending of plates, it is proved
that the flexure w(x, y) of the middle. surface of a thin
homogeneous elastic plate subjected to a normal load uniformly
distributed on its surface satisfies the nonhomogeneous

biharmonic equation

AAw==%n (5.7)

where q is the intensity of the load, and D is the c¢ylindrical
rigidity.

After a particular solution of (5.7) is found, we can
represent the general solution, using the well-know Goursat
formula in terms of two analytical functions o and X, where
x'(z) = ¥(z). The basic quantities which determine the stressed
state of the plate are expressed in terms of these functions.
The following formulas are valid (S. G. Lekhnitskiy, 1938),
which are analogous to the Kolosov-Muskhelishvili formulas:

My— M+ 2iH o= 4D (1 =) [3¢7 () -+ §' ()] = My — M5+ 205y,
My My=—8D (1--¥) ¢’ (5)- 4 (3)] -+ M&4-213, :
Ny—iNy= —8D¢" (z) - Ne—iNy. l

(5.8)

Here Mx’ My are the bending moments, ny ﬁ? the torgue! Nx’ Dy

are the shearing forces per unit length, Mx L E o Ny are
the same magnitudes referring to the selected particular solu-

tion of equation (5.7). The degree to which the functions
¢ and | are defined is the same as in the plane problem.

To determine the flexures from equation (5.7), the boun-
dary conditions corresponding to the particular character with
which the boundary is fixed must be added to it.

Here we have the following three basic problems. We
will formulate them keeping in mind the case of the simply
connected domain bounded by a closed countour.
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1. THE EDGE OF THE PLATE 1S FIXED, This means that
on the boundary of the region S occupied by the middle surface
of the plate, the relations

du
w=0, =0, (5.9)

must be satisfied where n is the outer normal to the contour.

I1I. THE EDGE OF THE PLATE IS FREE. The boundary condi-
tions have the form

. P , e, P
(] —w 20 2 i 20 | =
vAw-- (1 x)[ - c0s? 0 o Sin U o Sin -9]_0, I

(5.10)

dAw {—v d 2w o o2 '
SIS = s S, 20, D) e S ;9 —
on ! 2 ds [ ( day? d1? ) sin 0+ 2 dar Jdy 0% "O] =0,

where & is the angle subtended by the outer normal and the Ox
axis. The left members in the equations are respectively the
bending moment and the generalized shearing force reduced

to unit length acting on an element of the plate with the
normal n.

III1. THE EDGE OF THE PLATE IS SUPPORTED. The following
conditions correspond to the free support of the edge:

=,

1 o2 . g e i 0 o 2.0 ) - (5.11)
vAu._T_(l_\‘) L-’Z%COS' OTW :lll'o';—wSlll-OJ—O. i

In addition to these basic types of boundary conditions,
particularly interesting mixed conditions are often encountered
in applications, for example, when one part of the boundary is
fixed, another supported and the remaining one free.

Since the boundary values of the partial derivatives of
this function with respect tu x and y can always be found from
the boundary values of the function w and its normal derivative,
problem I for the bending of the plate is equivalent to the
first fundamental problem in plane elasticity theory. The
boundary conditions of problem I coincide exactly with condi-
tion (5.4) with nothing arbitrary in the right member of the
latter.

-62-




The conditions on the free boundary in (5.10), as noted
by S. G. Lekhnitskiy (1938) and I. N. Vekua (1942) lead,
after their appropriate transformation, to a boundary value
problem in the theory of functions which is completely
analogous to (5.5). The only difference is that the constant
#w in the left member of (5.5) is replaced by another constant,
«* = (3 + v)/(1 - v), and the right member is given with an
accuracy up to a constant having the form iCt + Cl’ where C

is a real and C; a complex constant. Incidentally, in the case
of the simply c%nnected&dom&ln under consideration, these con-
stants may be set equal to zero.

Finally, the conditions for the free support of the edges
(5.7') can be written in terms of the functions ¢ and { in
the form (A. I. Kalandiya, 1953)

Ha L, (5.12)

e {Rot’ (0= (5) 0 O+ ¥ 1} =1 0, }
(s

Re {Z @010’ Oy @1} =g 0)

Key: a. on

where g,) By ave given functions defined on L and AO =21 + v)/
(1 -v).

It is easily verified that problem (5.12) and the third
problem in plane elasticity theory are equivalent.

It is clear from what was said above that the methods for
the solution of plane problems can be sometimes applied with-
out any problems in the bending of thin plates. This pos-
sibility was investigated for the first time by A. I. Lur'e
(1928) .

5.3 Methods for the Solution of Plane Problems
Below we will give a brief characterization of the methods

used in the solution of plane problems which are based on
the application on the theory of functions of a complex variable.l

1. Section 5.3.9 also discusses the method of integral trans-
forms in plane problems in the theory of elasticity
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We will mainly restrict ourselves to the consideration of the
case when the elastic medium occupies a finite simply connected
domain bounded by a closed contour. The principal domain S,
inside L, will here be denoted by.S*, and outside (the
complement of S*) by S-.

5.3.1. We will recall certain elementary con-

cepts and propositions in the theory of analytic functions
which will be used in the presentation below.

By the Gauchy integral formula is meant the  expression

{ f{tydt
F(:)=-._,—_,,.—§ —— (5.13)

where t is a point on the contour L, and z is a point in the
plane. If z coincides with the point t, in the interior

of the contour L, we shall mean by the integral

(5.13) 1its principal value according to Cauchy.

The function F(z) defined by formula (5.13) is holo-
morphic both in the region 3' and in S—, and when the density
f(t) is sufficiently smcoth (for example, if it satisfies
the Hblder condition on L), it is continuous in the correspond-
ing closed regions St + L and S + L. The limiting value
of this function from the left and right of L at some point

toe L, usually denoted by F+(t0) and F‘(to), respectively,

is given by the well-known Sokhotskiy-Plemeli formulas.

A function which is holomorphic both in S+ and in S~ with
continuous values F* and F~ in the limit is called, following
N. I. Muskhelishvili, piecewise-holomorphic. An example of
a piecewise-holomorphic function is given, when the conditions
for the function f(t) are known,by the integral (5.13).

A necessary and sufficient condition that a given function

f(t) on L be the limit of a function f(z), which is holomorphic
on St, is

1 f“)(“ vl Co” 1
—2;?5‘—‘::—:0 A ugg\ 2E ST (5.14)

Key: a. for all
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Analogously, a condition that the function f(t) be
the boundary value of the function f(z), which is holomorphic
on S7, is the equality

2ni t—z

L ’Y—I-L”-it—dl--wconst :l.'maufex ZE ST, (5'15)

Key: a, for all

In the case when ST is the unit circle, the previous con-
ditions can be expressed in a more convenient form for the
purposes below (N. I. Muskhelishvili, 1966). From the given
function f(z), which is holomorphic on S*, we will determine
another function of a complex argument according to the equality

—rc
L@)=1(=). (5.16)
For this function we will sometimes use the notation

/‘@)=7(%)_ (5.17)

Through direct verification of the Cauchy-Rieman conditions,
it is easily verified that the function f*(z) is holomorphic
in the domain which includes the point at infinity. Conversely,
if the function f(z) is ho.lomorphic on S, f*(z) will be holo-
morphic in z in the domain S*.

The notation (5.16) can also be used in the more general
case, when, for example, f(z) has in the interior of S™ a
finite number of poles. The function f_ (z) will then have
poles of the same orders at the points which are the images
of the poles f(z) in the unit circle.

For the boundary values of the function (5.16), we will
have

@)= I @ f;(t)»—-/"_Tl)'. (5.18)
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Applying (5.14) to the function f,(z), we obtain the
condition

l l(f dt . = - o vy
5T = consl ,1.mallce.\ IESH (5.19)

!

Key: a, for all

which is a necessary and sufficient condition that the function
f(t) which is continuous on the circle be the limiting value

of some function f(z) which is holomorphic on S*. The
constant in the right member of the equality has the value T(0).
Analogously, as before, condition (5.15) takes on the form

—_—23

_1—_ S Jmdt g a1am Beex s€87. (5.20)
2ai z ]
L o

Key: a., for all

The operation (5.16) is one possible way of constructing
on S- a holomorphic function from a given holomorphic function
f(z) on S*t. Clearly, the extension of a function which is
holomorphic in the circle to its exterior can be obtained in
an infinite number of ways. However, the method that was in-
dicated is one of the few methods that are useful in applica-

tions.

The function f(z), which is defined both on S+ and on
S~ by the formula

G

f(z) npn |3]<<t,

f(")::{ fu(2) mpn |z]>1,
o

Key: a. when

is clearly piecewise-holomorphic. In addition to this, f(z)
has an analytic continuation on those arcs of the circle
|t| = 1 on which Im f(t) = 0. The last property of f(z) follows

directly from (5.18).
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This type of extension of holomorphic functions is often
used in applications even in the case when S* is a halfplane.
Then, instead of (5.16),

T (2) = F (2). (5.21)

is used (N. I. Muskhelishvili, 1966).

From among the various methods used to solve plane problems
which are known in the scientific literature at the present
time, we will mainly touch here only on those that are directly
connected with the names of Soviet scientists and are most
effective both in general studies of boundary value problems
and in their study in special cases. Primarily we will deal
with the following four methods:

1. The method of power series using conformal mapping,

2. Reduction to functional (in particular, integral)
equations using conformal mapping (the case of simply connected
domains),

3. General methods leading to integral equations without
conformal mapping,

4. Reduction to linear conjugate problems.

In a number of special cases, especially in the study of
multiply connected media, it is useful to use in the study a
particular combination of these methods.

Below we will describe briefly the methods that were men-
tioned.

5.3.2. In the solution of the plane problem
it is often useful to map conformally the given region occupied
by the elastic medium onto another region in the plane using
the auxiliary variable (. In the case of a finite simply
connected domain S, bounded by a closed contour, the mappingis
usually onte the unit circle;and in the case of a finite
doubly connected domain onto a circular concentric ring and
in the case of a semi-infinite domainwith the boundary at
infinity on both sides, onto the halfplane, etc.

We will show here one of the varian.s of the conformal
mapping applied in the first case above (N. I. Muskhelishvili,
1966) . Let
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z = ()

be the relation used for the conformal mapping of the unit
circle |€| < 1, whose contour we denote by Y onto the
region S. The functions ¥(z) and V(z) expressed in terms of
the new variable ( will be denoted by »(C), V(7).

The boundary conditions (5.4) for the first problem will
take on the form

 (n)

¢(0)~-?—q 4@ = (a) - f(0) m oy, (5.22)

Key: a, on

. ; i® A ;
where ¢ is a point on the contour y, o = e, and f is a given
function on v.

We will assume that the following Fourier series expansions
can be obtained:

o (0)
;_(;_)._;_,b,o, f(a)»—“n I (5.23)

-

and we will assume that in the unit circle (for |§| < 1)

10 Yo, - ,\Z at, |
(5.24)

¢’ (8) = Vhah“‘

Then, on the basis of (5.22).when the conditions for the conver-
gence of the above series are known, we obtain the following systems

of equations for the unknown coefficients a, aﬁ which must

be determined:
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S T - .
"""*',‘%', kagbpin1=Am  (m=1,2,...), (5.25)

(5.26)

- 2 k;hb-ymh-: =A.m (n=0,1,2,...).
k-1 '

It can be proved that the infinite system of linear equa-
tions (5.25) is solvable if the static conditions are satis-
fied, and that its solution, together with (5.26), is the solu-
tion of the plane problem under consideration when the given
function f(t) is sufficiently smooth.

The following fact is of considerable importance in prac-
tice. In the case when the mapping function is a polynomial

o =alt+ell+...+t" (#0, ¢*0), (5.27)

the infinite system (5.25) degenerates to the following finite
system:

am=Am  (m=n--1),
@y @3y - 2obo - . . . = NAabn = Ay,
Gyt @by - 2aby =+ o = (n—1) @nogba=As, | (5.28)
an+-a-(bn 3-'1".
and formula (5.26) gives
m-n+l
an+ E kayb_moroy = Adem  (m=0,1,2,...). (5.29)
k=1

The problem reduces to the solution of the finite system
(5.28).

-69-




The technique that was presented can clearly also be
applied in the case of a mapping onto a circular ring.

The method of power series combined with conformal mapping
is used extensively to this day in the solution of particular
concrete problems. It is sometimes upplied in a slightly
modified form (see, for example, D. I. Sherman, 1951, K. Grey,
Quart. J. Mech. and Appl. Math., 1951, 4:4, 444-448, M.
Kikykawa, Proc. Japan. Nat. Congr. Appl. Mech., 1953 and
1954).

5.3.3. An especially useful method for the
effective solution of the problem turned out to be the method
presented below which combines conformal mapping with the application
of the apparatus of Gauchy integral formulas (N. I. Muskhelishvili,
1966, pp 78-85). It consists of the following.

Starting with the boundary condition (5.22) and expressing
the condition that y(c) is the boundary value on the circle
of the function {({) which is hOlomorphic in the interior of
the circle and vanishes at { = 0, we obtain on the basis of
(5.19) the functional equation

(5.30)

It can be proved that for the fixed constant Im[%'(0)/w'(0)]
equation (5.30) defines the function ®({) uniquely. After it
is defined, the function V({) is found directly from (5.22)
using the Cauchy integral formula.

The functional equation (5.30) can be used to construct
by elementary means the exact solution of the problem for a
large class of regions. 1In principle an approximate solution
can be obtained for the more general case of a simply connected
domain.

As an illustration of what was discussed above, we will
consider the case when the mapping function 1({) is rational.
In this case the expression

20,

w’ (3)

-70-~




under the integral in (5.30) will be the boundary value of
the function

8 (2) (5.31)

Gj"(‘::)

which is holomorphic outside Y except at a finite number of
poles, the singular points of the function w(().

Since the point { in the integral (5.30) is in the interior of
Y, this integral is evaluated in closed form and it will represent a
rational function with a number of unknown coefficients from the
expansion of ¢((). A finite system of linear equations is
set up for these coefficients and they can always be determined

uniquely.

From this follows the well-known proposition of N. I.
Muskhelishvili, according to which the solution of the plane
problem for the class of regions under consideration can be
obtained in quadratures with an accuracy up to the solution of
the finite system of linear algebraic equations. In the
special ci: se of a polynomial mapping of the form (5.27), the
function «({) in (5.30) will be represented as the sum of the
Cauchy integral A ({) and the polynomial of degree n in ¢,
which contains as the unknowns the first n coefficients of the
function ©({). The linear system of equations obtained for
determining the latter coincides exactly with system (5.28).
Both unknown functions, ®({) and V({) are determined in closed
form by solving this system with the given function f.

If the function w({) is not rational but its expansion
on the circle is known, the method leads to an infinite system
of linear equations, which can be used to construct an approxi-
mate solution of the problem with an arbitrary preassigned

accuracy.

5.3.4. The complex representation of elastic
fields combined with various integral representatiors of
analytic functions is convenient apparatus for the reduction
of the plane problem to integral equations. At the present time
several variants for constructing such equations are known.
We will point out some of these.

The Fredholm integral equation in ®' (o) can be obtained
directly from the functional equation (5.30) by first writing
it in a slightly different form and then letting the point
r tend from the inside to the point Y on the circle (N. I.
Muskhelishvili, 1966, §79). An elementary analysis of this
integral equation can be used to prove the existence of its
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solution (hence, also the existence of the solution of the
corresponding plane problem), provided that in the case of

the first problem for a finite medium, the static conditions
are satisfied. A more detailed analysis of this equation was
carried out by D. I. Sherman (1938). He studied the distribu-
tion of the characteristic numbers of the integral equation,
and proved that it can be solved for both fundamental problems
by the method of successive approximations.

A more general method which includes the case of multiply
cohnNected domains is the reduction to integral equations without
a preliminary conformal mapping. One such method was proposed
by N. I. Muskhelishvili (1966, §98). We will explain the
essence of the method by assuming that the medium is finite
and simply connected.

In equality (5.4) which expressed the boundary conditions
for the problem, we will use the conjugate values, and, accor-
ding to (5.14), write down the conditions that the function
y(t) is the boundary value of a function of z, which is
holomorphic on S*. We obtain the functional equation

) g S oLt dt =
L \ Ll".'_’_.{..-,;';- 5 —(L—(_’.;- A (3) cuim meex s€S,
b == ¢

i !(I)rlt

Key: a. for all

Now if we write down the same condition for ®(t) and T (),
we will have two additional equalities which are analogous to
the previous ones. Combining the three equalities after
passing to the limit to z from the right, we obtain the Fredholm
equation for ®(t) derived by N. 1. Muskhelishvili:

T g § A e T d = = — (), (5.32)
18

A very similar but essentially different equation for the
plane problem was constructed in another way by D. I. Sherman
(1940), which we will discuss in greater detail below.
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According to the studies of D. I. Sherman (1935-1937)
equation (5.32) is useful for any multiply connected domain.
It cl.,ays has a solution which yields the solution for the
corresponding plane problem. In addition, the method of
successive approximations can be applied in preliminary fashion
to equation (5.32) in a slightly and easily modified form
(D. I. Sherman, 1940).

An integral equation for the plane problem which is also
useful for any multiply connected domain was constructed earlier
by S. G. Mikhlin (1934, 1935). The so-called complex Green's
function is introduced for this purpose into this discussion
and then, using this function, the generalized Schwarz kernel,
which is analytic in the region but not single-valued. 1In
a multiply connected domain the generalized kernel has a
property which is analogous to the property of the ordinary
Schwarz kernel for the circle. The Mikhlin equation for a simply
connected region coincides with equation (5.32). S. G. Mikhlin
analyzed the equations that were constructed and proved that
they can be solved, and also that the method of successive
approximations can be applied to obtain their solution. The
results are presented in his monograph (1949) which also in-
cludes applications of the Schwarz kernel to the solution of
the,plane problem in a number of special cases.

The studies of L. G. Magnaradze (1937, 1938) have shown
that the Muskhelishvili equations remain also valid when the
boundary has corners, provided that the integrals in the equa-
tions are interpreted in a certain generalized sense.

A simple and in many respects convenient form of the
integral equation in the general case of a multiply connected
region was obtained in 1940 by D. I. Sherman. We will derive
the Sherman equation, restricting ourselves as before, to
the case of a finite simply connected domain. The first and
second fundamental problems will this time be discussed
simultaneously and we will combine their boundary conditions
in the following equality:

By a0 0 f@) ma L, (5.33)
Key: a. on

where k = 1 in the first problem, and k = - » in the second
case. Following Sherman, we let in the domain S
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w1yt |0 o a
T | S

-z i ) T

where u(t) is some function at a point of the contour L, which
must be defined. Passing in these formulas to the limit when
the point z tends from the inside to the point toe L, and

substituting the boundary values that were found in (5.33),
we obtain after several simple transformations the relation

oo -

T ¢ )d = ’_‘—z‘—‘]'(!..). (5.35)

. l 1 ’ e -1,
ker(ty) +-a37 .\ Lyyain. 7 A

1L L

This is the Fredholm integral equation for w(t) that was
already mentioned above, It is known as the Lauricelli-
Sherman equation,

In the case of a multiply connected medium, it is useful,
following Sherman. to change slightly the representation
(5.34), as a result of which equation (5.35) is also
modified,

An analysis shows that the homogeneous Lauricelli-Sherman
equation does not have nontrivial solutions and that its
unique solution gives, according to formulas (5.34); the solu-
tion of the original boundary value problem.

The representation (5.34) can also be applied to the solu-
tion of the fundamental mixed problem. However, in this case
we will work with integral equations with kernels of the Cauchy
type, whose theory, at the present time, has not been
developed to the same extent as for Fredholm equations (N. I.
Mushelishvili, 1946, 1952, N. P. Vekua, 1950).

Integral equations undoubtedly are a convenient means
for a general analysis of boundary value problems, in particular,
for proving the existence of their solutions. However, the
method of integral equations is often criticised as not being
sufficiently effective, not entirely without justification.
Attempts to solve in practice problems on the basis of this
method, using the usual scheme for calculating the discrete
analogue of the integral equations are not very promising
even with contemporary computer technology. Therefore, due
to the absence of a more accepted algorithm for the solution
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in the general case of a multiply connected domain it is
necessary to develop special methods for an efficient solution
which are adapted to a particular class of boundary value
problems.

In this sense, various combinations of the methods that
were enumerated above are important., Primarily we have in
mind the combination of functional equations with the method
of power series, the linea' combinations of functions with
conformal mapping and also more general schemes using the
apparatus of integral equations. Some of these special
techniques will be discussed below.

5.3.5. In a number of studies of D. I. Sherman
(see, for example, 1947, 1951) an efficient method for solving
the plane problem was developed for a particular class (of
finite and infinite) doubly connected domaims bounded by
two closed curves. The basic feature of the method which
determines the class of the admissible domains is the requre-
ment that the plane problem for a simply connected domain
(exterior or interior relative to one of the closed contours
which bound the region) have a solution in closed form. Thus,
the boundary of the domain can be circles, ellipses, regular
polygons with rounded vertices, etc. An example of an infinite
domain is a plane with two "holes'" with the desired shape.
A halfplane with two '"holes'" (triply connected domain) can
also be included in the discussion if the "holes" lie
far from the rectilinear boundary and if the boundary condi-
tions on the latter can be satisfied only approximately.
Problems of this type are very important in applications in
mining. To present the substance of the method, we will assume
for definiteness that the domain S is finite and bounded by the
curves L1 (interior) and L2 (exterior).

We introduce into the discussion the auxiliary fusrction
w(t) which is defined on L2 by the equality

¢ty —tqg O —¢ ) =200 (tom L), (5.36)

Adding and subtracting term by term equality (5.36) and (5.4) on
L2 and assuming 02 = (0, we obtain

g =w0+10). ' }

()= —[o@)-=16 O]+ () —Lf O] (5.37)

Using w(t), we introduce the two new functions wo(z) and wo(z)

of the following form:
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Vo) =¥ )+ gy | LOEL0 gy gy, l

where

L[ fnd R AR R ()
FO=g5m (125, 6@ o [ {92 0 a,

i e

- 2

Now if we define completely the unknown functions © and V
by setting them equal to zero outside Lz, equalities (5.37) will ex-

press the condition for the analytic continuation of the newly
introduced functions through the contour L, which is easily
verified. For these functions, % and wo &hich are holomorphic

everywhere outside Ll’ we obtain on the basis of equality (5.4)

on L, the boundary condition

1

Go () - £ 4 (1) -F o (1) == Q [t; v (1)), (5.39)

where (0 is a linear operator.

According to the fundamental requirement of the method,
we further assume that the auxiliary plane problem (5.39) can
be solved in finite form. Clearly, this will always be the
case if the function which maps the region outside L1 onto

the circle is rational.

In the right part Q, which is considered as a given func-
tion of time t, using the Mushkelishvili method of functional
equations (see above, Section 3.3) the solution of problem(5.39)
is found in closed form and the functions wo, VO that were found

are substituted in condition (5.36). This gives a relation in
the form of a Fredholm integral equation of the second kind
for u(t) which must be determined. Then, expanding «(t) in

a complex Fourier series, the integral equation is reduced to
an infinite system of linear algebraic equations.
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5.3.6. In a number of cases the integral equations
can be applied directly to the effective solutions of the
problems. We will discuss one possible application of the
Laurichelli-Sherman equation.

We will assume that the function w((), which maps conformally
the circle onto the region (exterior or interior with respect
to the contour L) is known. Making a change of variable
in equation (5.35) according to t = w(oc) we obtain an integral
equation on the unit circle. The kernel of this equation is
expressed in elementary fashion in terms of w(¢) and it pre-
serves its simple structure in many cases, for example, in the
case of an arbitrary transformation of the type (5.27). 1In
all these cases, the method of Fourier series can be applied
to the integral equation that was obtained, which leads to an
effective solution of the problem.

5.3.7. By a boundary value problem for the linear
conjugate equation we will mean the following problem. To
find a function F(z) which is holomorphic on the line L of
the complex plane from the boundary condition

Fr(t) ==a(t) F-(t) = b (t). (5.40)

where a(t) and b(t) are functions defined on L, F¥(t) and
F-(t) are the boundary values on L of the unknown function
F(z) from the left and right with respect to the positive
direction selected along the line L. It is assumed that these
boundary values exist everywhere, except, possibly

a finite number of points Cl’ Cz, . . "Cm on the line L,

in the neighborhood of which F(z) satisfies the bound

- A
IFEI<y— (A and @ are constants, o <1).

Sometimes a solution for the boundary value problem (5.40)

is sought, which has a pole at some point of the plane not
on L. Usually a point at infinity is selected as such a point.

We will consider problem (5.40) under the following assump-
tions: L consists of a finite number of smooth contours which
are closed or not closed, the functions a(t) and b(t) satisfy
the Hdlder condition on L except for a finite number of points
where they have a discontinuity of the first type, and

a(t) #0.
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Under these assumptions problem (5.40) is solved in ex-
plicit form (in quadratures). The solution (which has a
pole at infinity) has the form

R N ] b (t) dt 7. S
F(")_" RET 15 .l’*(!) U‘—z) +1\ (u) 1) (g),‘l (5.41)

where P(z) is an arbitrary polynomial and X(z) is the so-caliled
canonical solution of the homogeneous problem Ft(t) = a(t)F-(t),
which is constructed in explicit form (in quadratures).

To construct a solution with a definite order at infinity,
certain constraints must be imposed on the polynomial P(z)
and also on the function b(t) (see N. I. Mushelishvili,
1966) .

The reduction of problems in plane elasticity theory
to linear conjugate problems is one effective
method of solving these problems (especially mixed problems).

As an illustration we will present the solution of the
fundamental mixed problem for a halfplane, by reducing it
to the linear conjugate problem (N. I. Muskhelishvili, 1966).

Suppose that the isotropic body occupies the lower half-
plane y < 0, which we will denote by S=. The upper halfplane
will be denoted by S*, the real axis by L and we will take as
the positive direction on L the direction from - = to + =,

We will use the formulas for the general complex repre-
sentation of the stresses and displacements, in particular,
we will use the formulas

Y, —iX, =) =D (z)--z D (2)-- ¥ (), (5.42)

4

2;1 (-‘;-'Ii +1i W) =g ()= )=z 4 (), (5- 43)

where $(z) and v(z) are the unknown functions which are
holomorphic in the region S~ which, for large |z| have the
\ JY_fO(

form
W () = :)

L ro(3)

12

'._.

1)

N

¥ (z):

-78-




where (X, Y) is the principal vector of external forces
applied to L.

Instead of two holomorphic functions ¢(z) and v(z) on the
region S~, we will introduce one piecewise holomorphic function
¢(z) wh1ch is defined both on S~ and on S*, which will be
defined in the upper halfplane St in such a way that its values
will be the analytic continuation of the values of $(z) in
the lower halfplane S~ through sectors that are not loaded
(provided these exist). We def.ne $(z) on St by the following
formula:

O () = _.q-)_(:-_)—- z (D—'_(_Z)- — ¥ (2).

This formula gives an expression for the function v(z)
in terms of the function 3(z) extended also to S*:

¥ () = —0(2) — b @) —z 0 @);
Hence the stress components are expressed only in terms of one
function $(z) which is defined both on st and on S~.
In particular, we have the formula

Y, —iX, =D E) —0E) + -1 ), (5.44)

and from formula (5.43) we obtain

(5.45)

(X

2;1( -1 ‘—u ) -—.:u(l)(:)—:—(ll(?)—(:-—z) M (

Suppose

n
S

L' = ’?J a,.bk
=1

is a set of segments akbk on the real axis and suppose that the

displacement components are given on L' and the external forces
on the remaining part L" = L - L', Without loss of generality,
we can assume that the external forces which are given on L"
are zero (the general case is easily reduced to this).
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We will assume that the function ¢(2) can be extended
continuously from the left and right on L
except possibly at the points a, bk,'and that in the neighborhood
of these points

4 4
¢ L —"—, W)L
0@ <= (0@

z—bk la

(% << 1).

We will also assume that

lim (z — z) @ (5) =0,
when z tends to the point t on the real axis, which is
different from the points a, and bk’
Under these assumptions it fellows from formula (5.44)

that

O+ (1) = D (t) wa L7,

Key: a. on

i.e., the function $(z) is holomorphic on the entire plane,
along L, and it vanishes at infinity.

From formula (5.45) we have
Q* (1) = —2®- (1) =2ug (1) (tEL), (5.46)

where g(t) is a given function, g(t) = u(t) + i v(t), and

u(t) and v(t) denote the known limiting values of the displacement
components on L'. We will assume that the derivative g'(t)
satisfies the Hblder condition.

Applying formula (5.41) to the solution of the conjugate
problem (5.46), we obtain

A WX@) p_Tewndt sy pys
D) =7 3 Aty N@EPG).
g

where X(z) (the canonical solution) has the form
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Since $(z) vanishes at infinity and the order of X(z)
at infinity is n, the degree of the polynomial P(z) must not
exceed n - 1:

P (:) = (:0.',"_1 -- C‘:” = 4. = C,‘ -1

When we reducal the problem under consideration to the
linear conjugate problem, we differentiated the boundary
condition along the segmentsakbk. Hence, so far we were able

to satisfy the boundary conditions along akbk with an accuracy

up to the constant terms Cp - What remains to be taken into
account are the conditions C;p = C = . . . =C, = 0. However,
it is easily seen, that it suffices to satisfy the conditions
e =l ea SN, =cC_.

1 2 : n

These conditions reduce to the following:

"’ldvl
.(U““wﬁdﬁ~z(muo~y(M) (k=1.2...., n--1). (5.47)
by

Substituting in equations (5.47) instead of u(t) + iv(t)
its expression in terms of the function ¢, we obtain a system
n - 1 linear equalions.

The ccefficient C, of the highest order term in the.
polyrnomial P(z) is detgrmined from the given vector (X, Y)
of external forces

Substituting the value of C0 in system (5.47), we obtain

a system of n - 1 linear equations for the coefficients
Cl’ Cz, 5 O Cn-l' By the uniqueness theorem for the solution
of the fundamental mixed problem, this system has a unique

solution.
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5.3.8. Meirhods of the theory of functions of a complex
variable that were diccussed above in connection with the plane
sroblem in the theory of elasticity have been developed con-
siderably in the studies of I. N. Vekua and applied to
more general probiems in the theory of partial differential
equations., A iarge class of elliptic equations in the case of
two independent var.ables is studied in the monograph of
I. N. Vekwm (1948) from this point of view. Applications of
the apparatus developed by the author to various problems in
the theory of elasticily (stationary oscillations of an
elastic cylinder. the bending of thin plaies, etc.) are
presented by !uc¢ .uthor.

Here we w.!1 mention the many applications of the same
methods to th¢ theory of elastic shells (I. N. Vekua, A. L.
Gol'denveyzer, G. N. Savin).

5.3.9. Along with the methods of the theory of
functions of a complex variable which can be used to solve the
plane problem for regions of a comparatively general form
effective solutiuns for some regions with a concrete form can
be found using special techniques, for example, using the
integral Fourier and Mellin transforms.

The Fourier transform is a very useful tool for studying
various elastic equilibrium problems in an infinite strip.
The simplest solutions of this kind were already obtained by
L. N. G. Failon. This method which was developed to a
great extent in the work of Soviet authors was generalized
at the end of the 30's and summarized in the well-known mono-
graphs of P. F. Papkovich (1939, 1941). Subsequently, various
authors studied many new problems, dealing with the deformation
of a strip, a halfstrip of the corresponding layer media and
anisotropic bodies by thermal stresses, etc. Not being able
to enumerate them, we refer the reader to the survey articles
of D. I. Sherman (1962), G. Ya. Popov and N. A. Rostovtsev
(1966) , the monographs of S. G. Lekhnitskiy (1957) and
M. P. Sheremet'ev (1968).

We also point out the articles of I. G. Al'perin (1930),
M. Ya. Balen'ko (1952) and S. Ye. Birman (1954), while discussing
mixed oroblems for an infinite strip, and also the articles
of I. A. Markuzon (1963), V. S. Tonoyan (1963, 1964) in which
certain classes of mixed problems are solved with the aid of
coupled or three equations related to a Fourier
transform for a halfplane, a strip and the quaurant. Similar
problems dealing mainly with circular crescents were considered
by Ya. S. Uflyand (1950, 1963), G. N. Savin (1951), M. A.
Savruk (1957), V. V. Yeganyan (1959, 1964) and by other authors.
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Certain plane problems in the theory of elasticity for
an infinite wedge can be solved exactly with the aid of the
Mellin integral transformation. The first studies in this class
of problems go back to I. G. Brats and V. M. Abramov (1937).
The problem of the action of a concentrated force on a wedge
was studied for the first time by A. I. Lur'e and B. Z.
Brachkovskiy (1941). An anisotropic wedge was studied by
P. P. Kufarev (1941). A bibliography on the problems that
were mentioned is available in the book of Ya. S. Uflyand
(1963) .

The development of the method of integral Fourier and
Mellin transforms combined with Cauchy formulas is presented
in the studies of S. M. Belonosov (1962) dealing with regions
with corner points, and, in particular a strip and wedge
(see below, Section 6.1.4.).

§6. Fundamental Results in the Study of Problems in
Plane Elasticity Theory

In this section we will discuss certain concrete results
in the theory of plane problems that were obtained in the
USSR in the last 50 years. The studies that we will touch on
are mainly closely related to complex variable methods, and,
in this sense, they will serve as an illustration of their
application and further development.

6.1. Solution of Fundamental Problems for a
Homogeneous Medium

The first concrete results dealing with the equilibrium
of plane profiles were obtained by G. V. Kolosov and N. I.
Muskhelishvili,

6.1.1. Using the method presented in Section 5.3.2.,
N. I. Mushkhelishvili obtained a simple solution for the first
and second fundamental problems for a circle, a circular ring,
and an infinite plane with a circular "hole," He analyzed
a set of particular examples for various types of external
forces. For regions of this type, of course, a preliminary
conformal mapping is not needed. Applying conformal mapping
Mushkhelishvili solved, at that time, the difficult problem
of the equilibrium of a solid ellipse. Later this problem
was solved, using a different technique by D. I. Sherman
(see Section 5.3.6).

Using power series, the problem of a confocal elliptical
ring was investigat<d in an effective form (A. I. Kalandiya,
1953). An algorithm fcr an efficient solution of this problem
was outlined earlier by M. P. Sheremet’'ev, who used the method
of functional equations in combination with conformal mapping
(see Section 5.3.3).
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The method that was just mentioned turned out to be most
convenient for simply connected regions. As mentioned above,
it always leads to an effective solution provided the regions
are mapped by a rational function. The first applications of
the method were pointed out by N. I. Muskhelishvili himself,
who obtained closed solutions for the fundamental problems in several
concrete cases. From this set of problems, we will select the
equilibrium oif a circular disc under the action of concentrated
loads on the contour and an infinite plate with an elliptic
hole. The results of Muskhelishvili that were mentioned were
obtained by the author in his studies during the 20's. and
30's (in particular, his memoir published in 1922 should
be mentior~d). All these results, together with other results
by the _ame author are presented in detail in the monograph
of N. I. Muskhelishvili that was cited on a number of occasions

above.

We will mention here one important application of this method
which is due to G. N. Savin. We will consider the problem
of concentrated stresses in an infinite plate weakened by
some hole. Assuming that the contour of the hole is a recti-
linear polygon we will map the interior of the circle onto the
region exterior to the hole with the aid of the Schwarz-
Christoffel integral. Expanding this integral in a series in
powers of { and retaining in the series a finite number of
terms, we obtain an approximate mapping which transforms the
circle into a curve which is close to the original contour
which has the form

2w L+ ar) (6.1)

k1

or in a special case

3 ('(-1—--4"_:"), (6.2)

LI )

where C, C,, m are some constants. By changing in (6.1) the
constants C, C,, n, we can obtain holes in the form of a
circle, an ell*pse, an oval shape, a curvilinear triangle
and a quadrangle, etc. When (6.1) is mapped, the method
leads directly to a solution in closed form which makes it
possible to obtain an approximate solution for problems of
the type that were menticned.
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G. N. Savin and his students studied in this manner man»
concrete problems dealing with the concentration of stresses
with 'holes' of various shapes and configurations in a homo-
geneous field. The solutions of these problems were carried
through all the way to numerical results represented in the
form of tables and diagrams. In addition to this in cases
which are particularly important for applications, graphs
were constructed for the distribution of the stresses on the
contours. Savin solved, in a similar manner, the problem of
the bending of a thin plate with a hole subjected to the action
of moments and normal stresses at infinity. A detailed pre-
sentation of these results is given in the book of G. N. Savin
(1951) which played an important role in the subsequent develop-
ment of this type of problems.

At the same time as G. N. Savin M. I. Nayman (1937, 1958) who
applied an original approach to the choice of the approximate mapping
studied stress problems in plates with "holes" in the shape
of curved polygons. He studied mainly the torsion of shafts
weakened by longitudinal grooves.

6.1.2. The method presented in Section 5.3.3
can also be applied in a certain modification to the case of
semi-infinite regions, when the boundaries of the medium are
a curve receding to infinity in both directions. In this case,
it is more convenient to use a mapping onto the halfplane. The
application of the method in a general formulation is discussed
in the monograph of N. I. Mushelishvili (1966) which also
gives the solution of certain special problems of a similar
kind.

Of particular interest for applications is the problem
of the concentration of stresses in a halfplane weakened by
a cutout or with recesses near the rectilinear boundary.
A great deal of attention has been given recently to problems
of this type, especially abroad (F. Neyber, M. Seika, S.
Shioya).

The most successful approach to these problems is the
approach of N. S. Kurdin. He was able to work out in detail,
using the Muskhelishvili method, certain interesting problems
of the type that was mentioned (1962).

The possibility of applying the method of the theory of
functions to problems of the bendiny of plates was illustrated for the
first time in the work of A. I. Lur'e (1928), which studied
a plate with supported edges whose mean surface was mapped
conformally onto a circle using a rational function. This
problem was later studied in greater detail by A. I. Kalandiya
(1953). In another study, A. I. Lur'e (1940) obtained by
the same method solutions in closed form of the three funda-
mental problems of bending theory for the case of a circle.
Here, as in the preceding work by the same author, the
Muskhelishvili method was used (Section 5.3.3).
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The study of S. G. Lekhnitskiy (1938), which was cited
above, applied systematically the methods of complex
variables © problems of the bending of plates. It derived
general complex representations for the basic magnitudes for
the isotropic and anisotropic cases and formulated the funda-
mental problems in final form in terms of complex variables
and gave the solutions in certain special cases.

The studies of A. I. Lur'e and S. G. Lekhnitskiy were
the beginning of intensive studies in the theory of the
bending of plates.

Using the method of Section 5.3.3, M. M. Fridman (1945)
obtained the solution of certain concrete problems in the
bending of plates with a curvilinear "hole," flexed by
moments and forces applied to its edge.

Particular attention was given to the equilibrium problem
of a plate with supported edges. This problem was studied
in the work of Z. I. Khalilov (1950), M. M. Fridman (1952),
D. 1. Sherman (1959), A. 1. Kalandiya (1953).

6.1.3. The method of linear conjugate functions
(see Section 5.3.7) is a very convenient means for the
general study of the problemsand also for their effective solu-
tion in special cases. It has clear advantages over other
methods in the study of mixed and contact problems in which
it is important to detect special properties of the solution.
Problems of this type will be considered below in a separate
section.

The application of the method of linear conjugate func-
tions to plane problems was first developed in the work of
N. I. Muskhelishvili (1941), which considered the case of an
elastic halfplane. The solutions of the fundamental problems
in this case were found in a simple and very elegant form. The
subsequent important generalization of the method was proposed
by I. N. Kartsivadze (1943) who extended the method to the
case of a circular region and also to the more general case
where the region is mapped onto a circle by means of a rational
function. The first results in which the method is applied
to the solution of concrete problems in the regions that
were mentioned go back to this author. Kartsivadze's results
are presented in detail in the book of N. I. Muskhelishvili
(1966) . The mixed plane problem with a circular "hole"
was studied by B. L. Mintsberg (1948).

Using the same method, N. I. Muskhelishvili obtained a
solution in closed form for the third fundamental problem
of plane elasticity theory (see pages 53-55).

-86-




The conjugate problem with a rigid profile, using
other methods was studied by G. N. Polozhiy. The boundary
conditions of the problem were subjected to certain preliminary
transformations which simplified the form of these solutions
on rectilinear sectors of the boundary. This enabled the
author to obtain a solution of the problem in explicit form,
first for convex polygons (1948, 1950), and then, after
rather sophisticated investigations of the behavior of the
stresses at the corner points with the condition that the dis-
placement vector be continuous, for general polygons and also
for an infinite plane with an arbitrary polygonal 'hole"
(1957) .

6.1.4. S. M. Belonosov (1954, 1962) who studied
fundamental plane problems for simply connected domains pro-
posed a method for their solution which became the theoretical
basis for the practical application of an approximate solution
based on rounding the corners. The conformal mapping of a
given region onto the halfplane Re { > O makes it possible
to find the complex potentials ¢ and V by applying the apparatus
of Laplace transforms. As a result, using a method which is
analogous to that developed by N. I. Muskhelishvili (1966,
Section 78, 79), integral equations whose structure is relatively
simple are constructed which are applied in a certain sense
to domains with corner points. If the contour L does not
contain the corner points and generally is sufficiently smooth,
the kernel of the equation is ? Fredholm kernel and in
the general case of a piece-wise smooth contour, it is a
Carleman type of kernel.

The integral equations of S. M. Belonosov are solvable
for every fundamental problem which was shown (1962). In
the special cases of an infinite wedge or strip, the integral
equations are solved in quadratures, which leads in these
cases to the solution of the problem in finite form. 1In the
book of S. M. Belonosov, which was cited, to which we refer
the reader for details, the class of domains for which the
fundamental problems are solvable in quadratures using the
method that was mentioned is determined. This class of
domains which are similar in form to a wedge, strip, and
the outer region of a hyperbola,includes also a circular
concentric ring.

6.1.5. The method of D. I. Sherman which was
presented above (see Section 5.3.5) was first proposed by him
(1947) for the solution of problems in the torsion and bending
of a certain class of doubly connected profiles. When
applied to a plane deformation, it was subsequently illustrated
(1951) on the example of a halfplane weakened by two different
circular "holes." In later studies Sherman's method was sub-
jected to a basic revision, which resulted in the elimination
of a large volume of intermediate computations. As a result
of this the solution process became more tractable, and the

main part is based on recurrence relations.
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In the many studies of D. I. Sherman and his students
which were published in the last few years, the method is
applied to concrete plane deformation problems. Problems of a
ponderable halfplane with two openings (circular and
elliptical) at a considerable distance from the rectilinear
boundary of the medium were considered, an elastic circle
with a "hole" with a sufficiently general outline was con-
sidered, problems of a halfplane with a "hole" on whose
edge a ring from another material was welded as well as
analogous problems were considered. A thorough review of the
results of the application of the method of integral equa-
tions with a complete bibliography is available in the survey
of D. 1. Sherman (1962), to which the reader is referred to
acquire thorough familiarity with this class of problems.

In certain special cases of a multiply connected medium
the generalized Schwarz algorithm which was developed in
general form by S. G. Mikhlin (1949) was applied to the
fundamental biharmonic problem. The first illustration of the
method was given by the same author (1934) on the example of a
ponderable halfplane with an elliptical "hole," when the
stresses at infinity were distributed according to the hydro-
static law.

The convergence of the successive approximations,
according to Schwarz, was studied with certain constraints on
the region in the work of S. G. Mikhlin and A. Ya. Gorgidze.
The convergence of the method in a general case was established
by S. L. Sobolev (1936).

The Schwarz algorithm does not converge fast, which must
be kept in mind when the method is applied in practice. Never-
theless in a number of cases it may give fairly good results.
Examples of this are the studies of A, S. Kosmodamianskiy
(1961, 1964) which study the case of two different "holes"
in an infinite medium.

In the study of stresses in a plate with many "holes,"
one of the fundamental problems is determining the degree
to which the medium is weakened around a given "hole' due
to the presence of neighborning "holes.' This problem, which
is of great practical interest in mining was studied in the
work of D. I. Sherman and his followers that were mentioned
above. We will point out certain generalizations along these
lines.

In the case when the medium is weakened by any finite
number of "holes,'" A. S. Kosmodamianskiy (1961, 1962) applied
the Bubnov-Galerkin method. To find the unknown complex poten-
tials ¢ and V, he used infinite series of functions of a special
form with undetermined coefficients and obtained for the
approximate solution a finite system of algebraic equations.

The method gives particularly good results in the case of cir-
cular "holes."
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As the order of the approximation increases without
limit, the algebraic systems become infinite. The studies of
the same author have shown that these systems have desirable
properties no matter how close the '"holes'" are to one another.
In the case of non-circular curvilinear 'holes;' it is often
useful to apply methods which are conceptually similar to
the method of N. I. Muskhelishivili (A. S. Kosmodamianskiy,
1962) . The approximate methods that were mentioned were used
by Kosmodamianskiy and certain other authors to solve the
problems in a number of concrete cases.

G. N. Bukharinov (1937, 1939), using an analogue of the
successive approximation algorithm developed by G. M. Goluzin
for the Dirichlet problem, studied the problem for a plate or
disc, when the medium is weakened by any finite number of
arbitrarily spaced circular "holes."

6.1.6. The periodic problem of elasticity theory
is of considerable interest. Let us imagine an unbounded
homogeneous medium weakened by an infinite number of equal and
periodically spaced "holes.'" We will assume that all these
"holes" are subjected to the same external forces and that
their centers lie on one straight line. 1In the case of a
halfplane, it is assumed that the center line is parallel to
the boundary of the halfplane and that it lies at a distance
which exceeds considerably the dimensions of the 'hole."

The presence of joint symmetric geometric and force
factors entails the periodicity of the displacements and
stresses relatctive to the (real) variable which varies along
the center line. This periodicity makes it possible to re-
duce the problem to the similar problem of finding two functions
which are holomorphic in the region outside a certain
closed contour. The concepts which led to the integral
equations (5.32), can also be applied here, which makes it
possible to construct for the problem a Fredholm integral
equation which always has a unique solution. This was done by
G. N. Savin (1939) (see also S. G. Mikhlin, 1949).

By using jointly the method of functional equations

and power series, it is posgible to construct, in a unumber"
of cases, an effective solution of the problem. We will point

out certain studies along these lines.

D. 1. Sherman (1961) studied the stress field in a ponderable
medium weakened by periodically spaced circular and square
"holes." The problem was solved by means of a reduction to an
infinite system of linear algebraic equations. A quantitative
analysis of the solution enabled the author to investigate the
distribution of the stresses near the "holes'" for a great range
of the numerical paramete: ¢ which characterized the relative
dimensions, including the case of close '"holes."
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The periodic problem with curvilinear "holes" of
general shape was already considered earlier in the work of
I. 1. Vorovich and A. S. Kosmodamianskiy (1959). Certain
integral expressions were proposed by the authors for the
unknown complex potentials, which were expressed in terms
of other analytic functions that were holomorphic in a plane
with one 'hole."” To find the latter, the method of a small
parameter was used and the problem was reduced to a sequence
of problems of the same type for a simply connected domain.
The convergence of the method was not investigated. A
detailed analysis with numerical calculations was carried out
for the case of elliptic "holes" when the plate is expanded
at infinity by forces applied at an arbitrary angle to the
center line. A subsequent generalization of this approach
was given by A. S. Kosmodamianskiy (1965).

It should be noted that the plane periodic problem in
the theory of elasticity was studied for the first time by
V. Ya. Natanson (1935), who studied the case of a doubly
periodic system of circular "holes'in an infinite body.

The reader may find more detailed information about the
periodic problem in the survey of D. I. Sherman (1962)
that was cited above.

6.1.7. In the last few years a great deal of atten-
tion was given to finding effective methods for the solution
of plane problems when the fundamental elasticity law is
nonlinear and the assumption that the deformations are small
is retained. The main interest was generated by problems
connected with the determination of the stress concentrations
in plates and shells with "holes."

If the nonlinearity of the elasticity law is characterized
by a small numerical parameter, in this case, a nonlinear
fourth order partial differential equation with a principal
biharmonic term is obtained instead of the biharmonic equation for the
stress function. This equation with the corresponding boundary condi-
tions is integrated using the method of a small parameter, and the
deviations of the elasticity law from the linear law and the
shape of the "hole" from a circular shape are assumed to be
small. Expanding the stress function, the components of the
displacement vector and also the functions which occur in the
boundary conditions of the problem in a series in the parameters
which characterize the deviations that were mentioned above,
we obtain a sequence of biharmonic problems for a plane with a circu-
lar "hole'" which can be solved with the aid of approximate methods.
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A number of concrete problems in nonlinear elasticity
theory were solved in this way.

The numerical computations have shown that taking into
account the physical nonlinearity leads to a more uniform
distribution of the stresses near the '""holes'" in comparison
with linear theory, and that the coefficient of the stress
concentrations becomes smaller.

The reader can familiarize himself thoroughly with the
results along these lines from the studies of G. N. Savin
(1965), A. N. Guz', G. N. Savin and I. A. Tsurpal (1964).

6.2. Piecewise-Homogeneous Medium. Reinforcement and
Strengthening of Plates

By a piecewise-homogeneous medium we shall mean an elastic
medium consisting of a number of different homogeneous parts
which differ in shape and elastic properties, which are con-
nected into a single solid body in one way or another. The
connections of the heterogeneous parts may either be natural
or artificial. The latter always serve the purpose of increasing
the load-bearing capacity of structures, and they are often
used in engineering practice.

6.2.1. Suppose that we have a finite or infinite
plate with a number of "holes" in which solid rings made
from another material are inserted which, in turn, may be
weakened by the "holes.'" When the ring is connected to the
plate it can be welded into the 'hole'" along the circumference,
pressed in, or insertedin it in the hot or cold state.
Whenever the ring is not welded, it is assumed that the contours
of the adjacent elastic parts touch without gaps and are main-
tained in a state which prevents slippage.

In this section, we will assume in addition, that the
surfaces of the bodies which make contact are never apart
from one another as a result of the deformation.

Of course, not only the edges of the 'holes'" can be
reinforced. The plate may be strengthened by rings along any
edge, and also in the interior parts which are not adjacent
to the boundary. 1In the latter case, we speak of the re-
inforcement of the plate by rigid edges.

The complete boundary L of the composite body consists
of the external contour of the plate (of course, provided it does not
extend to infinity in all directions), of the contours of
the openings which are not reinforced, and finally of the
interior contours of the inserted rings, provided these are

present. The body may be subjected to any action,both inside
and on the boundary.
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The boundary conditions on the non-reinforced edge of
the plate will clearly be the usual conditions which cor-
respond to the forces acting on it which are given,or to
the character with which it is reinforced. The conditions
on the separation line of the media will be different,
depending on the manner in which the adjacent parts are
connected.

For example, in the case when all "holes'" in the plate
occupy a finite multiply connected domain S with the boundary
L = L1 + L2 + . . .+ Lm+1’ and are filled with solid discs

from different materials welded to the plate along the
circumference of the "holes,'" and the stressed state is caused
by the external forces applied only on the exterior contour

of the plate, will have the following problem in the theory

of analytic functions:

G- DR D= 8 Ly (6.3)
| T (2;’_[ ;(—'—_(_I—l%m sy (1)1t q—T(l_) - —\1—,—‘.(;) om L. G, 43

Zoq ()= T = .
:-ﬁ’;—qh(/)——:r LR +Te ] on Ly (k=1,2, ..., m. (6.5)

where © and {y are holomorphic .n the domain S, and P and ¢k
are holomorphic in the finite region SE bounded by the con-
tour Lk(k =1, 2, . . ., m). The meaning of boundary condition

(6.3) is clear from the preceding discussion. The equations
(6.4) and (6.5) express the obvious continuity conditions for
the components of the displacement and stress vectors when
the separation line of the media is passed. The subscript k
is associated with the elastic elements of the material of
the ring occupying the region SE’

One of the early studies dealing with nonhomogeneous
elastic bodies based on complex variable methods was the
study of S. G. Mikhlin (1935), which investigated, with the aid
of the Schwarz kernel that was mentioned above in Section 5.3.4,
the general problem of a piecewise-homogeneous medium using the
method of integral equations. Certain special cases were
studied in a1 effective way in another study by the same author
(1934) .
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Subsequently, studies of inhomogeneous elasticity

problems developed rapidly. Considerable success in this
field was obtained in the Ukraine, where the corresponding
problems have been studied by many authors for a long time.
The results of these studies are presented in the monographs
of G. N. Savin (1951), D. V. Vaynberg (1952), M. P.
Sheremet'ev (1960) and G. N. Savin and N. P. Fleishman
(1964) . Below we will briefly touch on certain fundamental
results.

6.2.2., We will start with a relatively simple case,
when the basic plate and the elastic rings inserted in the
"holes'" are made from the same material. In this case, we
must assume that the contours of the ring in the unstressed
state are somewhat different from the contours of the cor-
responding "holes.' From an applied standpoint, the case
when the rings are pressed or inserted into the "hole'" with a
given elastic load is of interest.

The boundary conditions for this problem are obtained from
(6.3)-(6.5) by adding to the right member of (6.5) the gi'-»
function which expresses the presence of a jump in the -
displacements and, in addition, it is taken into accou .. .- he
elastic properties of the body are the same everywherc.

A general method for solving this problem was proposer: b
D. I. Sherman (1940). This method is based on the analytic
continuation of the function which is similar to that presented
in Section 5.3.5. According to this method the problem under
consideration is reduced to the usual plane proklem for a
complete composite region without any conditions on the
separation line. However, the new problem wil} have a some-
what modified boundary condition (on the exfterior contour).
In the right member of the equation which describes this condi-
tion there will be an additional term expressing a fictitious
action on the system as a whole,

In the case when the inclusions have a spherical shape,
the above-mentioned correction term can be represented in
explicit form. Its form is very simple and cases are often
encounted in practice when the jump in the displacemnent is
directed along the normal and its magnitude is constant.

Finally, in the case of circular inclusions, the solution
is obtained completely for composite regions which are
mapped onto a circle by means of a rational function. A large
number of concrete problems were studied in this way. Detailed
bibliographical references are available in the survey of
D. I. Sherman that was cited above (1962),
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6.2.3. When the inclusions have different elastic
characteristics, matters are different. The study of a rigid
inclusion clearly does not introduce any complications, since,
in this case,we will be dealing with the usual plane problem
with elastic displacements which are given on the contour
(second fundamental problem). The problem o’ elastic inclusions
from different materials is much more complicated.

This problem for one inclusion, for k = 1 in (6.3)-(6.5),
was studied by a method which is similar to that outlined in
Section 5.3.5 (D. I. Sherman, 1958). To obtain the auxiliary
function 2w (t) which this time is introduced on the entire

boundary of the plate L1 + L2’ the author derived a Fredholm integral

equation which he studied and discussed. In the special case of an
eccentric circular ring with inclusions which was discussed to
illustrate the method, the integral equation is replaced as

before (see Section 5.3.5) by an infinite system of linear
algebraic equations which makes it possible to obtain the

solution all the way to numerical results.

The case of different circular concentric rings inserted
successively one in another as was mentioned above can be
easily studied using the method of power serijies.

This method, combined with the functional equation, makes it
possible to study the problem of annular reinforcements in
a slightly more general case, for example, when the infinite
simply connected domain occupied by the adjacent bodies is
mapped onto the interior of a circle by means of a rational
function, and the reinforcing ring becomes, in the process, a
conce:. tric circular ring. Under this assumption, the mapping
case (6.2) was studied by M. P. Sheremet'ev {1949), who obtained
a complete solution and numerical results for the reinforcement
of the "hole" in the shape of a confocal elliptical ring.
In the monograph of G. N. Savin that was mentioned (1951),
the computational results are given also for two forms of the
2lastic reinforcement obtained by the mapping (6.2), and the
stresses on the reinforced contour of the "holes'" are compared
with the same stresses in the two limiting cases, when the
reinforced ring is absolutely elastic (empty) or when it is
absolutely rigid.

I. G. Aramanovich (1955), who developed further the method
of D. I. Sherman (see Section 5.3.5), constructed an effective
solution of the problem of streses in a halfplane with a circular
"hole'" reinforced by an elastic ring made from a different
material. Here, the medium can be loaded in various ways,
for example, through expansion, normal pressure on the interior
contour of the ring that was welded in, a ccacentrated load
on the rectilinear boundary, etc. The solution is the same as
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before (reduction to an infinite system of equations). It
was established that the system of equations obtained is
quasiregular when the "hole" is arbitrarily close to the
boundary of the halfplane.

The method of linear conjugate functions was applied to
the solution of problems of the type considered above. As an
example, we point out the study of I. A. Prusov (1957) who
studied the problem of the reinforcement of a "hole'" in an
infinite plate by a ring with a variable cross section bounded
outside by a circle and inside by an ellipse.

6.2.4. Until now we ‘assumed that the stressed
state of the elastic ring reinforcing the edge of the ''hole"
in the plane is described, like the stressed state of the plate
itself, by equations of plane elasticity theory or the
equations for the bending of thin plates. If the reinforcing
ring is sufficiently thin, or has a shaped profile, it should
be considered as a circular rod, whose deformation is described
by elementary equations of the theory of the strength of materials.

In this formulation, the problem of the reinforced
edges was considered for the first time by M. P. Sheremet'ev
(see, for example, his book, 1960). The reinforcing ring with
a constant cross section was taken as a thin bar with expansion
and flexual rigidity in the case of a plane stressed and
flexual rigidity and torsion in the bending of thin plates.

For definiteness, we will consider infinite plates with
one reinforced "hole."

The boundary conditions on the contour of the reinforced
"hole'" will be obtained, as before, by requiring that the cor-
responding forces and displacements from both sides be equal.
In the previous case, these conditions were represented in
the form of the equalities (6.4) and (6.5). In this case,
in the right members of the above-mentioned equations, instead
of the boundary values of the functions B and Wk (it is no

longer necessary to study these functions)othere will be other
unknowns, namely the external forces Xn, Yn, acting on the
ring from the side of the plate and the displacements Uy,

Vo of the axis of the ring.

Now, starting with the well-known equations in the theory
of small deformations of curvilinear rods, expressing tBe
displacements u, and Vo in terms of the external load xn, Yg

and substituting the corresponding values in the above-mentioned
conjugate boundary condition, to determine the functions

¢ and ¥ which are holomorphic in the region of the plate, we
obtain two complex conditions which have in the right members
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the independent forces xg and Yg. For the problem of the
bending of a plate with a reinforcement of the type that was
mentioned, in general, the unknown functions in the right-
hand member can be eliminated, and we will only have one
boundary condition which will be somewhat more complex than
the usual condition in the fundamental plane problem.

Fim1lly, it is possible to study effectively problems when
the "holes' have special shapes. The case of a circular "hole"
was analyzed in detail using the method of power series (M. P.
Sheremet'ev, 1960). For noncircular "holes'" the problem is
more complex and the effective solution requires the method
of successive approximations.

A fuarther generalization of this approach was given by
G. N. Savin and N. P. Fleishman (1961). Assuming that the
reinforcing rod was very thin (i.e., assuming that the cross
section of the rod was very narrow), they relaxed somewhat
the boundary condition on the contour of the layer and formulated
the general problem of annular reinforcements with relaxed
boundary conditions in terms of complex variables. When these
conditions were derived, the assumption was made that the rod
in the case of a plane stressed state does not resist the bending
and does not have torsional rigidity during the bending of the
cross section,

The problem in the theory of analytic functions that was
obtained has, like the fundamental plane problems, a solution
in closed form when the region of the plate is mapped conformally
onto a circle by means of a rational function. This is illus-
trated on the example of an elliptic "hole" in an infinite plate.

G. N. Savin and N. P, Fleishman (1964) and also M. P.
Sheremet'ev (1960) considered the strengthening of a plate
during its cross sectional bending by thin rings made from a
different material (rigid ribs) which lie inside the plate.
In the simplest case of a single rib, we have the following
picture. A thin curvilinear ring (more precisely a closed
elastic line) is welded to the plate in its interior part.
The region occupied by the middle surface of the plate is
broken up by the axial line of the ring into two connected
parts (the internal and external parts relative to this
axial line). 1In each of these regions a pair of holomorphic
functions of a complex variable must be determined in accordance
with certain conditions on the contour of the plate and
also on the line of the ring. The conjugate conditions on
the line must be set up taking into account the joint work
of the plate and the reinforced ring (there are three such
conditions). In the final analysis to determine the four
holomorphic functions, there are four complex conditions of
the type (6.3)-(6.5), which include, in addition to the given
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magnitudes two complex functions of the arc of the axis of

the ring that were not given before. The problem of the
reinforcement of the plate by rigid ribs was studied in

this way in a number of cases. For example, for a circular
plate with an arbitrary number of curvilinear ribs, a solvable
Fredholm integral equation was set up.

Certain special problems (for example, a circular plate
with a concentric rigid rib, an elliptic plate with a
central circular rib) are solved effectively using the method
of series.

The monographs of G. N. Savin (1951), D. V. Vainberg
(1952), M. P. Sheremet'ev (1960) and G. N. Savin and N. P.
Fleishman (1964) that were mentioned above discuss also cer-
tain other problems in the plane stressed state and the bending
of plates both in the isotropic and anisotropic case. For
example, problems connected with the effect of the anisotropic
material on the stress concentration near elliptical "holes,"
problems of the rational selection of the parameters of the
reinforcing elements, and the effect of concentrated loads
on the contour in a multilayer disc have been studied in
greatest detail.

6.3. Mixed and Contact Problems

Mixed and contact problems include the most difficult
problems in the theory of elasticity. When these are studied
using complex variable methods, boundary value problems with
discontinuous coefficients are obtained and it becomes necessary
to study the behavior of the solutions in the neighborhoods
of the discontinuities,.

It was already mentioned above (Section 5.3.4) that
D. I. Sherman (1940) constructed a singular integral equation
with discontinuous coefficients for the fundamental mixed
plane problem. This equation can be used to solve the problem
of the bending of a thin isotropic plate under a normal load,
when a part of the edge is fixed and a part is free.

A. I. Kalandiya (1952) constructed a system of singular
integral equations for solving the general problem of the
bending of the plate when a part of the edge is fixed, another
supported, and the remaining part free. 1In a number of studies
(see, for example, A, I. Kalandiya, 1961; D. I. Sherman, 1955)
a numerical solution is given for mixed problems for the
bending of plates for special regions.

One of the most effective methods for solving mixed
problems in plane elasticity theory is the method of linear
conjugations of functions. The solution of mixed problems
using this method was discussed above (Section 5.3.7).

-97-



Problems in the indentation of rigid dies in an elastic half-
plane lead to conjugate boundary value problems which are
analogous to the conjugate problem constructed above (Sec-
tion 5.3.7) for the fundamental mixed problem. The problem
of the contact of two elastic bodies (the generaliz:d plane
Herz problem), whose rhapes are nearly a halfplane, when the
contact sector is smali, also leads to the linear conjugate
problem. The solution of these problems using the method of
linear conjugation of functions is presented in the monograph
of N. 1I. Muskhelishvili.

L. A. Galin (1953) obtained a solution for a number of
contact problems by applying methods of the theory of func-
tions of a complex variable. 1I. Ya. Shtayerman (1949) studied
contact problems using the method of integral equations.

In the studies of V. M. Abramov (1937), N. 1. Glagolev
(1942, 1943), V. I. Mossakovskiy and P. A. Zagubizhenko (1954),
1. G. Aramanovich (1955), V. V. Panasyuk (1953, 1954), A. 1I.
Kalandiya (1957, 1958), M. P. Sheremet'ev (1952, 1961) a
number of contact problems are investigated using different
methods.

6.4. Plane Static Problem of an Anisotropic Body
in the Theory of Elasticity

The methods of the theory of functions of a complex
variable can be applied successfully to the plane problem
of an anisotropic body as shown for the first time by S. G.
Lekhnitskiy (the first studies of S. G. Lekhnitskiy along
these lines were published in the 30's, see, for example,
the monograph: S. G. Lekhnitskiy, 1947, 2nd ed., 1957).

Suppose that a homogeneous anisotropic body has at each
point an elastic symmetry plane which is parallel to the
given plane which we will take as the Oxy plane. When the
body is subject to a plane deformation which is parallel to the
Oxy plane, the stress function (the Eyre function) satisfies the
general biharmonic equation (the case when body forces are
absent)

AU N . ar i o\ 0
ao'a_r,l '7‘01—6‘;{“&'!7"?‘02 112201[2 =y fl,r()y“ a4 0!/‘ ' (6.6)
where agy « . ., @, are real constants which depend on the

elastic properties of the body under consideration (an
analogous equation is also valid for the generalized plane
stressed state of the plane).
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Also, in this case, it is possible to construct a
general solution with the aid of two analytic functions of
a complex variable. This representation depends on the
roots of the characteristic equation corresponding to
equation (6.6):

ap + a;s + a,8® + a;s* + aist = 0. (6.7)

S. G. Lekhnitskiy has shown that this equation has nn real
roots. In the case of an isotropic body, equation (6.7) re-
duces to the equation 1 + 2s2 + s4 =0 and, consequently, has
the double roots i and - i. When equation (6.7) has the
double roots s = o + if, § = @ - iB, the general real solution
of equation (6.6) is represented in the form

Ui =390+ :¢6 + %@ +16 (6.8)

as in the case of an isotropic body, but this time the complex
variable z has the formz = x + sy = x + oy + iBy ((x,y)€ S),
where 8 denotes the region occupied by the body.

Making the affine transformation

£ =z+ay. Yy =Bu (6.9)

we obtain the complex variable z' = x' + iy', which varies
over the region S', obtained from the region S by the affine
transformation (6.9).

Formula (6.8) and the expression for the stress and
displacement components which follows from it show that this
case (i.e., the case of multiple roots of equation (6.7))
is almost completely analogous to the case of an isotropic
body so that it is usually not discussed.

In the case when equation (6.7) does not have multiple
roots, i.e., it has four different pairwise conjugate roots

sy = ay -+ Py, o =y — iffy, 8y = ay -1 P s2 = @y — iBy,

the general real solution of equation (6.6) is written in the
form
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U, y) == Fu(z) - Fir @) + Fo (@) 4 F, G) (6.10)
using two analytic functions of the variables

Sy X sy o 2ol b P, S = & o sy s= x o+ agy + Py,

which vary, respectively, over the regions S1 and 82 obtained
from the region S by the corresponding affine transformations.

In the case under consideration, in contrast to the case
of an isotropic body, we are dealing with analytic functions
of two different complex variables 2, and Zgy, which vary over

two different regions (it is easily seen that the variables
z, and z, are related to one another by an affine non-
aﬁalytic transformation). Generally, this fact complicates
the solution of i1he boundary value problems (the class of
boundary value problems that are solved effectively in the
case of an anisotropic hody is much smaller than in the
case of an anisotropic body). However, also in the case of
an anisotropic body, it is possible to obtain a solution
for the boundary value problems with the aid of methods from
the theory of functions of a complex variable. A number of
important results along these lines were obtained by S. G.
Lekhnitskiy, S. G. Mikhlin, G. N. Savin, D. I. Sherman

and others.

The following complex representalion of the stresses and
displacements follows from the general representation of the
stress function (6.10):

X
Yy=2Re D (z)-- Ay (z.)],
Xy= —2Re[s;D{(z)) — 2D, ()]

=2 Re [siD (1) 83, (z2)].
} (6.11)

n = 2Re[pD; (z,) -+ paW; (52)] — wy -+ g, }
v-=2Re [qihy (3)) =gty (3)] - o -1 Lo,

(6.12)
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Here O, (z) -dF, dz. Wu(z)=dFydzy pio pae G102 are constants which
are defined and expressed in terms of the elastic constants
of the body, w, Uy, Vo are arbitrary (real) constants,

corresponding to the rigid displacement of the body.

If the domain S occupied by the body is simply connected,
the analytic functions in the general complex expressions are
singlevalued and, in the case of a multiply connected domain,
they are generally multiple valued analytic functions. For
example, if the domain S is bounded by several contours, the
functions él(zl) and éz(zz) have the form

My (z) =Dy (zy) - :_;1 A (s —2m)s ‘ B

M, (z) =5 (5) - k‘\;x By In (32— 220)- l
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The theory of brittle fracture dates back to the early
studies of A. A, Griffith (1920), which were continued by
G. R. Irwin (1948) and later) and E. O. Orovan (1950 and
later). As a result of these studies,to characterize the
brittle fracture strength of the material, a new constant was in-
troduced which made it possible to study the problem of
brittle cracks in the classical formulation of elasticity
theory.1

Problems of the kinetics of the growth of cracks were
considered by G. I. Barenblatt, V. M. Yentov, R. L. Salganik
(1966) , 1967) and also by G. I. Barenblatt, R. L. Salganik,
G. P. Cherepanov (1962). L. N. Kachanov (1961) attempted to
estimate the durability of a body with a crack in an elasto-
viscous body.

G. I. Barenblatt and G. P. Cherepanov (1960) considered
the problem of the loosening of an orthotropic elastic body
by a thin rigid wedge which was displaced with a constant
speed. In the problem of the loosening of an infinite body
by a wedge of finite length, I. A. Markuson (1961) obtained a
relationship for the length of the crack as a function of the
length of the wedge. The spreading of displacement cracks
was considered by G. I. Barenblatt and G. P. Cherepanov (1961).
The problem of the stable development of a crack strengthened
by rigid ribs was considered in the study of Ye. A. Morozova and
V. Z. Parton (1961). The stable development of a biperiodic
sy stem of cracks was studied by V. Z. Parton (1965). G. P.
Cherepanov (1966) studied the development of cracks in compressed
bodies.

A model of a crack in which the adhesive forces on sec-
tors which are commensurate with the length of the crack are
also taken into account was studied, using the condition for
the smooth coupling of the edges of the cracks and the finiteness
of the Btresses on them, by M. Ya. Leonov and V. V. Panasyuk
(1959) . The solution for a large number of plane problems dealing

1. For greater detail about the mechanics of fracture, see
pp 427-574  (editor).

2. The monograph of V. V., Panasyuk, "Limiting Equilibrium of
Brittle Bodies with Cracks," (1968) is devoted to the static
theory of cracks. The monograph also contains a detailed
bibliography.
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with the limiting equilibrium of a body with cracks in various
positions and of various shapes when the body with the cracks
was subjected to various loads were obtained. (V. V.

Panasyuk and B. L. Lozovoy, 1962, V. V. Panasyuk and L. T.
Berezhnitskiy, 1964-1966). This class of problems includes
plane problems dealing with the stressed state in the neighbor-
hood of the corner points of the contour of a "hole" (V. V.
Panasyuk and Ye. V. Buyna, 1966), in particular, a circle with
radial cracks (V. V. Panasyuk, 1965) .

The study of G. P. Cherepanov (1963) investigated the
initial development of a crack from the corner points in an
infinite rectangular cutout pressed at the bottom by a rigid
die.

Problems deal'ng with the stressed state near tke edge
of a crack extending to the edge of the plate or close to it
were studied by V. V. Panasyuk (1960), G. 1. Barenbl:stt and
G. P. Cherepanov (1960, 1962). The problem of the l.miting
values of an external load (bending moment, uniformly distributed
pressure) on a strip (beam) with a rectilinear crack perpendi-
cular to the axis of the strip were considered in the studies
of B. L. Lozovoy and V. V., Panasyuk (1961-1963). Three-
dimensional limiting equilibrium problems of a body with a
plane circular crack were studied by M. Ya. Leonov and V. V.
Panasvuk (1961). The more complex case of an elliptical crack
was studied by V. V. Panasyuk (1962), M. Ya. Leonov and K.
N. Rusinko (1963, 1964).
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NONLINEAR ELASTICITY THEORY

V. V. Novozhilov, L. A. Tolokonnikov, K. F. Chernykh

§1. General Problems 105

§2. Secondary Effectsin Problems in the Bending
and Torsion of Prismatic and Cylindrical

Bodies 110
§3. Plane Problems 111
§4. Equilibrium Stability of an Elastic Body 113

Two assumptions are used in the construction of classical
linear elasticity theory: that the elongations, shifts and
angles of rotation are small and of the same order of magnitude
and that it is possible to apply the generalized Hooke law.
When one of these assumptions is discarded or replaced by a
less stringent assumption, various variants of nonlinear elasticity
theory are obtained.

A number of specific problems and difficulties arise in
the transition to nonlinear theory:

1) the selection of a coordinate system which defines the
positions of the points of the body;

2) the adoption of deformation characteristics of one
kind or another and the corresponding generalized stresses;

3) determination, taking into account tensor-invariant
and thermodynamic concepts, the type of relation between the
stresses and strains, the selection of a convenient set of
invariants, expressing this relation concretely for various
groups of materials, and carrying out the simplest experiments
needed for this purpose;

4) classification of the problems in nonlinear theory
and finding approaches to the simplification of nonlinear re-
lations in various special cases;

5) formulation of variational and related principiles;

6) formulation of problems in. equilibrium stability
elastic bodies.

Section 1 of the survey considers studies of a general
character which clarify the first five problems that were
enumerated. Section 2 analyzes studies dealing with secondary
effects accompanying the torsion and bending of prismatic and
cylindrical bodies. Section 3 is devoted to studies of
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of plane problems. Section 4 considers studies in the equili- ;
brium stability of elastic bodies in which the initial relations i
are the relations of nonlinear elasticity theory.

The development of nonlinear elasticity theory dates back
to the 19th century to the work of O. Cauchy, G. Green, G.
Kirchhoff, I. Finger and later E. Treftz, A. Signorini, F. D.
Murnagan, M. A. Bio and marny contemporary foreign scientists,
among whom we first mention R. S. Rivlin, R. Hill and A. E.
Green. The results obtained by them overlap in many respects
with the results obtained by Soviet scientists.

Since the purpose of this article is to survey the achieve-
ments of Soviet scinetists, it cannot give a complete picture
of the general state of nonlinear elasticity theory. This
should be kept in mind when the article is read.

§1. General Problems.

Although the first publications on nonlinear elasticity
theory inthe USSR date back to the 30's (N. V. Zvolinskiy,
1939, N. V. Zvolinskiy and P. M. Riz, 1938, 1939, D. Yu.

Panov, 1939, P. M. Riz, 1938, 1939), serious attention has only
been given to nonlinear problems in the last two decades.

This was stimulated to a considerable extent by the appearance

of publications dealing with general theoretical problems

(K. Z. Galimov, 1946, 1948, 1949, I. I. Gol'denblat, 1950,

D. I. Kutilin, 1947, V. V. Novozhliov, 1948) and other publica-
tions that were published later. The studies that were mentioned
dealt with a wide class of problems and determined the direc-
tion of research in nonlinear elasticity theory in the country.

Two types of coordinates are used in the mechanics of
continuous media; three-dimensional Eulerian coordinates and
material Lagrangean coordinates ("frozen in the body") (K. Z.
Galimov, 1946-1955, I. 1. Gol'denblat, 1950, 1955, V. V.

Krylov, 1956, D. I. Kutilin, 1947, V. V. Novozhilov, 1948).
Material coordinates (V. V. Novozhilov, 1958) in which the
boundary conditions and the deformation hypotheses are formulated
more simply (for example, the hypothesis of the principal normal
in the theory of plates and shells and the hypothesis of

plane sections in the theory of the flexure of rods) are more
convenient in nonlinear theory. When we consider not the de-
formation process itself (which is done in elasticity

theory) but only the initial and final position of the body,

the introduction of three-dimensional coordinates is unnecessary
(L. I. Sedov, 1962). The magnitudes which characterize the
deformation and equilibirum of the body can be referred either
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to the undeformed or deformed material coordinate basis.
The monograph of L. I. Sedov (1962) discusses in detail the
selection of the coordinate vector bases and the relations
between then.

The principal characteristics of the deformations used
are half the differences in the components of the fundamental
metric tensor in the deformed and nondeformed states (K. Z.
Galimov, 1946, 1949, 1955; I. I. Gol'denblat, 1950, 1955;

V. V. Krylov, 1956; D. 1. Kutilin, 1947; V. V. Novozhilov,
1948, 1958). Other characteristics are also used to describe
large deformations among which we shall mention, for example,
the following: 1logarithmic (or true) deformations, components
of the tensor which coincide on the principal deformation

axes with the principal relative elongations and components of
a tensor whose contravariant components are half the differences
of the corresponding components of the metric tensors in the
deformed and nondeformed states. 1In the study of different
problems, preference is given to different sets of charac-
teristics. To treat the results properly, it is important that
the generalized characteristics of the deformation that were
adopted correspond to the generalized stresses (in the expres-
sion for the elementary work) (V. V. Novozhilov, 1951). 1In
the monograph of L. I. Sedov (1962) which summarizes the re-
sults of earlier studies (L. I. Sedov, 1960, V. D. Bondar',
1960, 1961, M. E. Eglit, 1961) when the deformation of an
element of the body is discussed, the theory of tensor functions
is widely used. From this standpoint, any analytic function
of the deformation tensor can be used as a characteristic

of the deformation. A skew symmetric tensor corresponding

to the vector of rotation of the principal axes of the deforma-
tion is used in the same study for a deformation of general
shape.

The relation between the mean rotation of an element
of the deformed body and the rotor of the displacement vector
was established earlier (V. V. Novozhilov, 1948).

A great deal of attention was given to the problem of
selecting an optimal system of invariants, the calculation of
the mechanical orientation of the invariants and the relation
between them (K. Z. Galimov, 1946-1955; 1. I. Gol'denblat,
1950, 1955; V. V. Novozhilov, 1948, 1958). Thus, it was noted
(V. V. Novozhilov, 1952) that with an accuracy up to a constant
factor, the intensity of the tangential stresses coincides with
the mean value of the tangential stress at the point of the
body under consideration. Subsequently, the principal values
of the deformation tensors and stresses were represented
trigonometrically (V. V. Novozhilov, 1951). The fundamental
invariants are the linear invariants, the intensity of the
deviator and the inclusion angle of the tensor (deviator).
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The connection between the strain and stress tensors is
characterized by the generalized volumetric expansion modulus,
the generalized displacement modulus and the similarity phase
of the deviators (which is equal to the difference of the
"inclusion angles'" of the tensors under consideration. The
differential relations between the generalized moduli that

were introduced were determined from the condition for the ex-
istence of the potentials for the stresses and strains.

Similar relations were obtained with the aid of Mohr
circles (A. K. Sinitskiy, 1958). The trigonometric representa-
tion of the principal values of the tensor made it possible
(V. V. Novozhilov, 1951) to obtain concretely the coefficients
proposed by V. Prager for the relation between two coaxial
tensors. The further development of the geometric aspects
of the problem of the relation between symmetric tensors of
rank two is given in the studies of V. V. Novozhilov (1963), L.
I. Sedov (1962), K. F. Chernykh (1967).

An extensive study of the problem of the relation between
invariants using the results from the theory of algebraic
invariants and group theory was carried out by I. I. Gol'denblat
(1950, 1955). The possibility of introducing invariants
which made it possible to consider separately the change in
the volume of the element and its shape was clarified (L. A.
Tolokonnikov, 1956). Relations generalizing the similarity
law for the stress and strain deviators were proposed in
the same article. L. A. Tolokonnikov (1957) developed on this
basis a variant of quadratic theory (with four constants),
which was based on the following assumptions: the pressure
from all directions depends only on the relative change in the
volume, the intensity of the tangential stresses only on the
intensity of the shearing strain, "ihe inclusion angles'" of
the tensors of the true stresses and the logarithmic stresses
are equal to one another,

It wvas showr (D. D. Ivlev, 1261) that for an isotropic
body whick rzsis.s expansion and compression in a different
manner, the set of the simplest experiments does not fully
determine the potential of the deformation,

It was established (V. D. Bondar',6 1963) that any equili-
brium state of the body with stresses and strains which are
different from zero can be taken as the initial state provided
the body forces are determined in a special way. Thermodynamic
concepts have been used relatively frequently in the construction
of nonlinear elasticity ftheory (I. I. Gol'denblat, 1950, 1955;

D. I. Kutilin, 1947; V. V. Novozhilov, 1963). The monograph
of L. I. Sedov (1962) discusses in detuil the problem of
the application of the thermodynamics °f reversible processes
for obtaining a closed system of equations in nonlinear
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elasticity theory. Here, all four thermodynamic potentials

are used. For their arguments (along with the- usual components of
the strain and stress tensors, the temperature

and entropy), parameters which determine the physical-

chemical properties of the materials of the body are also in-
troduced. The latter can also be tensor quantities. The case

of the presence of internal reactions has been studied

(for example, the incompressibility condition for the material).
The case of an isotropic body has also been discussed in

detail.

In the monograph of I. I. Gol'denblat (1955), which
summarizes his earlier studies (1949, 1950), the case corres-
ponding to the adoption for the arguments of the thermodynamic
pctentials of the invariants of the strain and stress tensors,
the elastic moduli (deformation coefficients) is analyzed in
detail. L. I. Sedov (1965) introduced into the discussion
stress moments.

The relations that were derived were obtained in concrete
form when applied to rubber in the studies of G. M. Bartenev
and T. N. Khazanovich (1960), V. L. Biderman (1953, 1957, 1958,
1962), V. L. Biderman and B. L. Bukhin (1960, 1961). A
general approach was proposed for the calculation of rubber
parts for large strains and displacements (V. L. Biderman,
1958). The forms of the potential of an incompressible material
were studied. The possibility of satisfying approximately the
incompressibility condition was clarified (V. L. Biderman and
N. A. Sukhova, 1963). The four constants in the polynomial
for the elastic potential were determined from the experiments.
The solutions of certain problems for rubber shock zbsorbers
and seals were obtained (V. L. Biderman, 1962). G. M. Bartenev
and T. N. Khazanovich (1960) proposed a form of the stress
potential with three constants on the basis of an analysis
of the behavior of rubber during a one~dimensional deformation.

In the study of V. V. Lokhin (1963) it was pointed out
that it was convenient to classify anisotropic media by their
point symmetry groups. It was shown that any tensor which
is invariant with respect to a given group of points can be
represented as a linear combination of tensors obtained with
the aid of tensor operations from a minimum set of tensors.

L. I. Sedov and V. V. Lokhin (1963) found such systems of
tensors for seven types of gtructures and all 32 classes

of crystals. The general form of the formulas for tensors

of arbitrary rank was determined in the form of nonlinear

tensor functions of scalar and tensor functions of arbitrary
rank, (see also V. V. Lokhin and L. I. Sedov, 1963).

It was shown that to construct the tensor functions, a necessary
and sufficient condition was the knowledge of the complete
system of functionally independent consistent tensor invariants
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and tensor arguments under consideration. The structure of the
tensor functions describing the state of the structures and
certain classes of crystals was clarified (V. V. Lokhin,

1963) .

The general theorems of nonlinear elasticity theory are
discussed in the studies of L. N. Vorob'ev (1956), N. A.
Kil'chevskiy (1963, 1964), D. I. Kutilin (1947), V. V.
Novozhilov (1958). The extension of the early variational
principles (of the type proposed in linear theory by E. Reissner)
was formulated by K. Z. Galimov (1952) and I. G. Teregulov
(1962) . The proposed variaiional principles use as the
independent functional elements which are varied, the displace-
ments, stresses and strains which are unrelated inside and on
the boundary of the body. The variational principles
give an alternative approach to the solution of nonlinear
problems through the use of direct methods of mathematical
physics. When relations are imposed on the elements that
are varied, the principles discussed become the classical orig-
inal displacements and possible changes in the stressed
state (The Castigliano principle).

The studies of N. V. Zvolinskiy, D. M. Panov and P. M.
Riz (1938-1943) determined the general trend of the applied
work in nonlinear elasticity in the country (§2, 3).
The latter is characterized by the use of the so-called
quadre "ic theory (a variant of nonlinear theory), which is
obtained by retaining in all relations the products and
squares of the unknown quantities together with the linear

terms.

V. V. Novozhilov (1948, 1958) made a number of critical
remarks about the quadratic theory. Briefly, they reduce to
the following. The possibility of a complete or partial
linearization of the geometric and static (dynamic) relations
in nonlinear elasticity theory is based on purely geometric
factors: the magnitude of the elongations, shifts, and
rotation angles, both compared to one, and to one another.
Therefore, the undifferentiated approach used in quadratic
theory (as mentioned above) to simplify the static-geometric
relations has a formal character. Further, to simplify the
relations relating the stresses and strains, the smallness
of the strain components compared to one is not sufficient.
They must be compared to the physical constants of the
material (the proportionality limits), quantities, whith,
as a rule, are very small compared to one. In addition,
quadratic theory is characterized by the retention in the
stress potential of cubic terms along with the quadratic
terms (the five constant Feucht-Murnagan theory). For the
majority of real materials, the deviation from Hooke's
law is due to the even powers of the strain components.
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An alternative approach to the simplification of the
nonlinear relations which is free of the disadvantages that
were pointed out has been discussed in detail by V. V. 3
Novozhilov (1948, 1958). In particular, one consequence of
this approach is the presently used breakdown of the problems
into four groups: 1) problems which are linear physically
and geometrically, 2) problems which are nonlinear physically
but linear geometrically, 3) problems which are linear
physically but nonlinear geometrical.y, 4) problems which are
nonlinear physically and geometrically. The monograph of
V. V. Novozhilov (1948) analyzes from the standpoint of the
general relations in nonlinear elasticity theory the geometric
assumptions which are widely used in the study of the deforma-
tion of rods, plates and shells.

It is well known that in the important practical case of

a simple load (all stresses in the body vary proportionally
with the same parameter) the relations in plasticity theory
degenerate into the formulas of nonlinear elasticity theory.

L. I. Sedov (1959) has shown that for large deformations, the
simple load on the body as a whole can only occur for deforma-
tions of a very special form. The study of V. D. Bondar (1960)
is devoted to the clarification of the form of the deformations
which correspond to a simple load.

V. M. Babich (1954) considered, using kinematic and dynamic
consistency conditions, a system of equations of motion of an
elastic medium for which the potential for the change of shape
is an arbitrary function of the intensity of the strain. The propa-
gation velocities of the waves that depend on the direction of the
homogeneous field of initial stresses which create the anisotropy
were found.

It was shown in the article of I. A. Viktorov (1963)
that in a nonlinear elastic medium the principa. longitudinal
wave leads to the occurrence of secondary longitudinal and
transverse waves and the same applies to the principal trans-
verse wave.

§2. Secondary Effects in Problems of Bending and Torsion
of Prismatic and Cylindrical Bodies

The effects predicted by quadratic theory used together with the
results of linear theory are called secondary effects. The
possibility and usefulness of taking into account the secondary
effects was pointed out in 1937 by F. D. Murnagan (Amer. J.

Math, Vol. 59, No. 2, 235-260 (1937)). An original approach

to a class of problems that occur in the transition to quadratic
theory was presented in the studies of N. V. Zvolinskiy and

P. M. Riz (1939) and P. M. Riz (1947). As an application of

the theory that was developed, the effects related to the axial

L i ok
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deformation of prismatic bodies under the action of torques
was considered. The extent to which expansion increases and
compression reduces the torsional stiffness of rods was
determined. The critical values of the compression forces
at vhich the rod has no stiffness in torsion were determined.

P. M. Riz (1938, 1939) solved the problem of the torsion
of a circular cylinder retaining second order twist terms.
Axial compression and elongation of radial wires was detected.
Analogous effects occured during the torsion of an elliptical
cylinder (D. Yu. Panov, 1939).

In order to estimate the mutual effect of the pure bend+
ing strains in each principal plane, the oblique bending of
a rod was investigated (P. M. Riz and A. 1. Pozhalostin,
1942) . The studies of A. Ya. Gordidze and A. K. Rukhadze
(1941, 1943), N. V. Zvolinskiy (1939), R. S. Minasyan (1962,
1963), P. M. Riz (1939), A. K. Rukhadze (1941, 1947), A.
K. Rukhadze and A. Ya. Gordidze (1944) clarified the mutual
effect of various actions on the rod (homogeneous or composite):
axial expansion by surface and body forces, bending by couples,
bending by a force and torsion. In particular, it was shown
that the mutual effect of loads is considerable for long bodies
with a thin profile, such as airplane propellers.

The quadratic theory was further developed by L. A.
Tolokonnikov (1956, 1959). Here, the assumption about the
similarity of the strain and stress deviators is important as
well as the decomposition of the general elasticity moduli in
accordance with two parameters (the relative change in the
volume and the degree in the change of the shape). The results
that were obtained are illustrated on the problem of the torsion
of a circular shaft. The study of N. V. Vasilenko (1965)
analyzes the quadratic relations in thermoelasticity.

§3. Plane Problems

Just as in the general case, it is possible to isolate
three trends in the study of plane problems in nonlinear
elasticity theory.

The first trend studies problems which are nonlinear
both physically and geometrically, which is characteristic
of the further development of the theory formulated in the
work ©of G. E. Adkins, A. E. Green, R. T. Shield and G. K.
Nicholas. The method of a small parameter which is used as
the first approximation for the linear solution of the problem
is used on a wide scale here.
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This approach made it possible to apply effectively
(G. N. Savin, 1964) the method of functions of a complex variable
and integral formulas of the Cauchy type that were developed
earlier and applied to linear problems. The singularities and
conditions for single valued complex potentials were studied
and various variants of static and geometric boundary condi-
tions in the initial and deformed states were formulated
(G. N. Savin and Yu. I. Koyfman, 1961). Next, a number of
problems dealing with concentrated stresses around a circular
and elliptical opening (free and supported) during a homogeneous
stressed state at infinity were considered (Yu. I. Koyfman,
1961-1964). Similar problems for plates with a rigid core
were also considered here.

An original approach to the plane incompressible state
was proposed by L. A. Tolokonnikov (1958), V. G. Gromov
(1959) obtained an exact solution of the axially symmetric
problem which made it possible to estimate the accuracy of
approximate solution methods. The application of the method
of functions of a complex variable was developed further
(V. G. Gromov and L. A. Tolokonnikov, 1963). The constraint
related to the incompressibility condition was removed in the
study of I. G. Teregulov (1962).

The study of V. V. Krylov (1946) belongs to the second
trend, (problems which are nonlinear geometrically and linear
physically). A thorough analysis of the plane state was made
in this publication which was one of the first to appear in
the country which dealt with the nonlinear plane problem.

The possibility of applying functions of a complex variable
was demonstrated.

The third direction (problems, which are nomlinear
physically and linear geometrically) studies small deviations
from the law governing the change of the shape (according to
Kauderer). G. N. Savin (1965) obtained the solution equation
in arbiirary isometric coordinates determined from a mapping
function of general form. A number of concrete problems
dealing with the concentrated stresses around "holes' with
different stress fields at infinity have been considered.

The effectiveness of an elastic support of the contours has
been studied (I. A. Tsurpal, 1962-1965). The solution

of a number of problems in the *third direction is based on
the relations of quadratic elasticity theory (I. N.
Slezinger and S. Ya. Barskaya, 1960, 1965). An analysis of
the solutions that were obtained shows that taking into
account the physical nonlinearity of the material leads to
a reduced stress concentration around the holes.
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§4. Equilibrium Stability of an Elastic Body

We will only dwell on studies dealing with the equilibrium
stability of elastic bodies in which the relations from non-
linear elasticity theory are initially used without the
assumptions made in the theory of thin-walled structures.

We begin with the study of L. S. Leybenzon (1961)
in which the stresses, displacements and strains were
clearly broken up for the first time into principal and
additional stresses, displacements and deformations formed
during the loss of stability. The relations that were obtained
for the additional state made it possible to determine the
critical values of the differences in the pressures acting on
the external and internal surface of a hollow sphere and a
long pipe. In subsequent studies L. S. Leybenzon gives a thorough
analysis of approximate solution methods for elastic equilibrium
stability problems.

A survey of the general formulation of problems in the
stability of the equilibrium of an elastic body which follows
Hooke's law is available in the monograph of V. V. Novozhilov
(1948). This monograph clarified (without any preliminary
simplification) the conditions under which a new form of
equilibrium can occur and formulated the differential equations
and boundary conditions for the elastic equilibrium problem.
It also analyzed the simplifications which follow from the
assumptionthat the initial state is described by the rela-
tions of classical elasticity theory and proposed an energy
criterion for the stability.

The study of V. V. Bolotin (1956) is devoted to general
stability problems. The fundamental state, described by the
relations of linear elasticity theory is represented in terms
of Green's tensor and the problem is reduced to a study of
a system of linear integral equations (the latter become
under the appropriate assumptions the stability equations for
thin-walled structural elements). The effect of a change in
the surface and body forces on the stability and also in
deformations preceding loss of stability has also been dis-
cussed. The general equations of nonlinear elasticity are
used by V. V. Bolotin (1958) in the study of the stability
problem "in the small" and "in the large.'" It is assumed
that the elongations and displacements are small and the eigenvalues
of the general stability boundary value problems are
analyzed '"in the small" and the stability relations are formu-
lated "in the large."

A. Yu. Ishlinskiy (1943) applied the equations for the
equilibrium stability of an elastic body to the stability
problem of a compressed strip. He represents the critical
stress in a series in powers of a parameter which vanishes to-
gether with the thickness of the plate. The first term in the
series gives the value of the critical load according to Euler,.
During the study the stability of a compressible strip with
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different boundary conditions was investigated (L. V. Yershov
and D. D. Ivlev, 1961).

In the spirit of the studies of A. Yu. Ishlinskiy (1943,
1954) the problem of the stability of a square plate during
uniaxial. and triaxial compression was studied taking into
account the nonlinearity of the law for the change of the
shape (I. D. Legenya, 1961, 1962). Subsequent investigations
led to the result that it was necessary to take into account
the angles of rotation during the formulation of the equilibrium
conditions for an element of the body in the perturbed state
(I. D. Legenya, 1963). 1t hecame apparent that when this was
done using V. V. Novozhilov's formulation (1948), the ex-
pressions for the critical pressure on the square plate had
terms which differed from the classical terms and did not
vanish when the thickness of the plate was reduced.

Taking into account the rotation of the incompressible
elements of the body (K. N. Semchinov, 1961). the loss of
stability of a strip of finite dimensions was studied and the
conditions for the bending of the strip during compression were
obtained and the critical expanding forces at which a neck
is formed on the strip were determined.

The problem of the compression of a circular plate was
discussed by L. A. Tolokonnikov (1959) taking into account the
strain and displacements in the basic state. It was shown that
the critical pressure as a function of the relative length
is not monotonic and single-valued. A limiting thickness to
radius ratio exists for which the plate no longer looses
stability. Using the same method, the critical loads were
found for an annular plate, a circular cylindrical shell and
a cylindrical panel under the action of transverse pressure
(G. B. Kireyeva, 1961, 1966).

The critical value of the compression force for a rod

was determined by A. I. Lur'e (1966) from the general relations
which he derived.
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§1. Introduction

: 1.1. General Remarks

Sometimes by plasticity is simply meant the ability of the
body to undergo a deformation which does not disappear completely
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when the causes causing it are removed. 1In this sense
plasticity is a general property of solid bodies. But more
often this term has a more narrow meaning which identifies
"plasticity" with athermal ("cold") plasticity, i.e., the
capability for residual deformations not connected with the
thermal mobility of the substance. Externally this manifests
itself in a certain kind of independence of the pattern of
the process of time.

For simplicity we will consider the case when the model
(or an clement of volume of the medium) is subjected to a
deformation at a temperature which does not change when the
external electric and magnetic fields do not change. Let t
be time, oij’ eij the components of the stress tensor and

strain tensor of the element. In accordance with one of the
usual initial assumptions, in this case always when t < to,

the element is in a state of thermodynamic equilibrium, the
eij eij (t) (t 2 to) are given and the functions
°ij = 955 (t) (t =2 to) are completely determined.

We say that the behavior of the element is independent of
time if for any two processes €§;) (t), eég) (t) with the same
state of the element at t = to, such that for some ¢ > 0 the
equalities eg) (t) - eﬁ) (ct +b)(b = (1 - e)ty, t=t)) hold
for every t > to, we also have oi;) (t) = oig) (ct + b). This
condition can be generalized to nonisothermal deformation processes
and processes with varying electromagnetic fields. For any con-
tinuous medium which can undergo residual deformation and
at the same time satisfies this condition for the independence
of the behavior of time, the name ''plastic'" in the sense that
was mentioned is justified. The characteristic property of the
medium from the thermodynamic standpoint is that not every
quasistatic process in it is a reversible process.

It must be emphasized that the residual deformation
of a real solid cannot bc completely athermal. To
eliminate creep to a sufficient extent as well as other
effects related to the thermal motion of atomic particles,
we must bound below the admissible rates of the process,
more so the higher the temperature,all other conditions being
equal., But for nonmetallic materials this limits the capacity
for residual deformations of the materials themselves; during the
deformation of a nonmetallic body at rates which ensure the athermal
character of the process, the appearance of a residual deformation
is usually almost immediately accompanied by fracture. The
fracture can only be avoided by applying a sufficiently
large hydrostatic pressure (in most cases measured in tens
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or even hundreds of thousands of atmospheres). Only metals

have considerable athermal plasticity for the usual values

of the spherical stress component. Naturally, for this reason
the experimental foundations of plasticity theory consist almost
exclusively of the data obtained from experiments with

metals.

1.2. Short Historical Survey

The beginning of plasticity theory goes back to the
70's of the last century and it is connected with the names
A. St.-Venant and M. Levi. St.-Venant was the first man who
was able to formulate the equations satisfying the laws of
the plastic flow o metals in the language of the mechanics
of a continuous medium. This success owed a great deal to the
experimental studies of A. Tresk, who made toward the end
of the 60's a series of experiments dealing with the pressing
and indentation of metals through "holes." The classical
study of St.-Venant dealing with equations for the '"internal move-
ments whi ‘h arise in plastic solids beyond the elasticity
limit" begins by mentioning these experiments. The study was
restricted to the case of plane deformation, but the equations
that were derived in it were immediately generalized by
M. Levi to the three-dimensional case (the studies of St.-Venant
and Levi appeared almost simultaneously in Journal de mathematiques
pures et appliquees in 1871. A translation of this article
is available in the collection '"Theory of Plasticity,"
Moscow, 1948).

Not much happened during the end of the last century and
plasticity problems again started attracting the attention of
major scientists at the beginning of our century. In 1909
the studies of A. Haar and T. Karman appeared, which made an
attempt to obtain the equations of plasticity theory with the
aid of yariational principles, and subsequently in 1913
the important study of R. Mises appeared (see the collection
of translations ''Theory of Plasticity' that was already men-
tioned). In this study Mises clearly formulated the plasticity
condition according to which the transition to the plastic
state is determined by the value of the quadratic invariant
of the stress deviator (this condition was stated less clearly
earlier not in connection with the development of plasticity
theory). The main reason why Mises favored this condition
was its closeness to the yield condition formulated by Tresk
and used by St.Venant (the condition of a maximum tangential
stress) . This closeness is related to the fact that as a
result of the symmetry of the stress tensor

b 3 Se <Tmax<23u

always holds where
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se= V(0115 T) = V11 5apsap

is the intensity of the tangential stresses (Tl, Tos T3 are
the principal tangential stresses, and sij are the components

of the stress deviator.

A number of important studies appeared in the 20's. Thus
H Hencky and L. Prandtl drew attention to two-dimensional
problems in the theory of ideal plasticity, primarily to
plane deformation problems. 1In one study from this period
Hencly established the properties of ''slippage lines'" (the
trajectories Tmax) in the plane deformation problem of an ideal

plastic body (Z. angew, Math. und Mech., (1923), Vol. 3, No. 4,
pp. 241-251). 1In a study published soon afterwards,Prandtl
pointed out the ways in which these properties could be applied
to the solution of some concrete problems (pressing .in of a
die, compression of a layer; see the collection ''Theory of
Plasticity," which contains the translation of Hencky's
article). Together with the study of H. Heiringer (1930)

which derived the equations for the velocities on the slippage
lines, these studies served as an impetus for the extensive
development of studies dealing with the plane problem in the
theory of ideal plasticity toward the end of the 30's and later
(see Sectivn 3 of this survey).

In still another study from the 20's, H. Hencky. gave the
now well known energy interpretation of the Mises'
condition (which is used in many texts on the strength of
materials) and using a variational principle analogous to
the principle formulated earlier by A. Haar and T. Karman,
he obtained the equations for ar ideal plastic body as finite
relations between the stress and strain tensors. A. Nadai
generalized the Hencky equations to the case of an isotropic
body with reinforcement. As in Hencky's study the range
of applicability of the finite set of equations relating the stress
and strain tensors which describe the plasticity are not
clearly defined. Clarity with regard to this problem was
achieved later after the appearance in the 40's of a number of
studies by A. A. Il'yushin (see Section 2.5.).

A considerable step forward in the development of the
St.-Venant-Levi theory, in which the medium under consideration
is in fact a "rigid-plastic' medium (which can undergo only
residual deformations) was made in the 20's. L. Prandtl
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was apparently the first man who drew attention to this fact. 1In
one of these studies from the early 20's he gives a generaliza-
tion of the St.-Venant equations according to which the strain
increment deij at a given point of the medium always consists

of an elastic and residual part and the stress tensor is co-
axial with the tensor characterizing the residual part,

not the entire strain increment. In 1930, E. Reiss generalized
in a similar manner the variant of the St.-Venant-Levi theory
developed by R. Mises (which differed from the initial variant
only by the yield condition, Z. angew, Math. und Mech., Vol. 10,
No. 3, 226-274 (1930); see the collection "Theory of Plastizity"
that was cited).

The beginning of systemmatic experimental studies connected
with problems in plasticity theory also goes back to the 20's.
M. Roche and A. Eichinger published the results of their ex-
periments in 1926 and the fundamental study of V. Lodel
appeared two years later. In both cases, models in the shape
of thindwalled tubes were tested and one of the main goals of
the experiment was to compare the Tresk and Mises yield conditions
for a wider set of stressed states than simple elongation and
pure ghear. In addition to this, Lode introduced into
the discussion a parameter which characterized the "form"
of the bivalent symmetric tensor (the ratio of the diameters
of the Mohr circles) and he studied in his experiments the
relation between My and Moo the Lode parameters' of the

stress tensor and the strain velocity tensor respectively. .
In the plane referred to the coordinates u , Mgt the diagram
g

of this relation according to the data from the experiments

of Lode has a characteristic form which was always obtained
even in later experiments of this type, which makes it
possible to draw important conclusions with regard to the struc-
ture of the defining relations.

It must also be noted that the experimental study of the
plasticity and strength of metallic monocrystals began in
those years. It is known that during the cooling of a liquid
metal usually a body with a polycrystalline structure is
obtained. The growth of a metallic monocrystal is a difficult
matter and, in spite of the long history of metallurgy, the
first methods for obtaining monocrystals of typical
metals were obtained only in 1918-1920. However, the laws for
the plastic deformation on the ''crystallographic level'" were
used almost immediately on a wide scale. S. Elam, M. Polyani,
E. Schmidt and other physicists-metallurgists carried out in

1. See the collection "Theory of Plasticity' that was cited.
The article of V. Lode includes, in particular, a short
survey of previous experimental studies, the experiments
of T. Guest,V, Mason, G. Cook and A. Robertson, et al.
which were made before World War I but which did not have
a gr2at effect on the development of the theory of plasticity.
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the 20's hundreds of experiments which studied the elongation
and displacement of monocrystalline models beyond the
elasticity limits with different orientation of the lattice
of the model relative to the principal stress axes. As

a result it was established that the plastic deformation of
a monocrystal occurrs mainly as a result of the translation
("slippage") of its parts separated by systems of
crystallographic planes, and that crystallographic planes
and directions in which the points of the lattice are most
dense have the smallest resistance to slippage and a number
of other simple facts, the most important of which describe
the so-called 'Schmidt laws" (a survey of thesefacdtsis avail-
able in the monograph of E. Schmidt and V. Boas, '"Plasticity
of Crystals,'" 1935, Russian translation, Moscow-Leningrad,
1938) .

The Schmidt laws allow a pure macroscopic formula-
tion. Therefore, when they are used clarity can be introduced
in some problems pertaining to the laws of the plastic deforma-
tion "of a quasiisotropic" (polycrystalline) body. However,
the construction of a sufficiently complete and rigorous
theory of the deformation of a polycrystalline model in this
way is an extremely difficult problem. For this reason the
successes of physical metallurgy did not have a great effect
on the rheology of plastic media. The development of the
latter followed predominantly the same direction as in
1930, i.e., it was based directly on the experimental data
obtained from the usual models,

In the early 30's important experiments were set up by
G. Taylor and H. Quinne, R. Schmidt, F. Odquist, and
K. Howenemser. The experiments of Taylor and uinne studied
the mutual orientation of the principal axes of the stress
tensors and the deformation rates and hardening.
The experiments of Schmidt were among the first experiments
devoted specially to hardening in the complex stressed
state (Ing-Arch. Vol. 3, 215-235 (1932), see the collection
"Theory of Plasticity"). Having subjected to an analysis
a number of variants of the hardening condition,
Schmidt discovered that the most satisfactory variant was
the variant according to which the intensity of the tangential
stresses is a function of the density of the work of the
stresses : s, = h (w), dw = daadeas. (G. Taylor and H.

Quinne reached the same conelusion on the basis of their
experiments.) It turned out that the pattern of the .process
on the plane in the coordinates s,, w changes little in

the transition from experiments wIth "a proportional load

to loads with sharp rotations of the principal axes. F.
Odquist noticed almost immediately that the condition according
to which
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se=g(1), dr=V deap deqp.

was just as unsatisfactory.

In both bases the elastic component of the deformation

is not taken into account. When the elastic deformation is ignored
the increment deij must be replaced by its residual part

B - de€
deij deiJ deij' Then for any admissible state

Se <h(w), dw= 0,5 delp

or, according to Odquist,

o <2y dh=Y/ Tepdely, 1.1)

where h and g are monotonic functions, and in both cases

defj # 0 only when the equality holds.

The closeness of the conditions (1.1) which is always
verified in experiments almost dictates that the simplest
generalization of the Prandtl -Reiss equations be constructed
for the case of a medium with hardening. The point is
that conditions (1.1) agree completely with one another
(i.e., h(w) = g(L) for any process) only in the case when in
any state with degj # 0 the stress tensor is coaxial with and

similar to the tensor degj. Together with the condition for

the plastic incompressibility of the material and the Mises
yield condition the coaxality and similarity of these tensors
includes also the Reiss equations.

A generalization of the Reiss equations that was mentioned
(which was obtained by replacing the Mises conditions by
any of the conditions (1.1) was constructed in a somewhat
different way by G. Handelman and V. Prager (Prikl. Mat. i.
Mekh., Vol. 2, No. 11, 291-292 (1947)). Let

f=V2s. B 5} (.A)), where as before d = Vdeﬁgdel;g.
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The coaxality and similarity of the stress tensors and

the rate of the residual deformation . together with the
plastic incompressibility condition are equivalent to the
relation ’
af
de?) = d). o (1.2)

and, in accordance with (1.1) for any state f € 0, where

dX # O only when £f = 0, df = 0. When the "load function"

f has the concrete form mentioned, these relations coincide
with the Handelman-Prager relations. For the elastic component
of the deformation, as usual, it is assumed that Hooke's

law is valid.

The Handelman-Prager relations define a complete concrete
and simple model of an elastoplastic medium with hardening.
In 1951 D. Ch. Drucker formulated a postulate as a result of
which the residual deformation velocity tensor must be .
related to the load function by a '"gradient" relation of type
(1.2) for a large class of cases. When applied to isothermal
processes in a medium with hardening and the usual
unloading law (which does not change as a result of the plastic
deformation), the Drucker postulate is equivalent to the
following local maximum principle:

Oap delp > Gap delp (1.3)

for any real oij’ defj(related by the defining equations)
and any admissible stressed state 33j(bounded only by the condi-

tion £ < 0). For an ideal plastic medium (1.3) always holds

with the equality sign. It follows that the region in the space of
f the stresses occupied by the trajectories of the reversible chamges

is never concave, and the tensor degj for each smooth sector

i of the boundary of this region (''the loading surface'") is
v related to the normal to it by a relation of type (1.2).

The defining relations in which the load functions play
the role of a 'plastic potential'" are usually called the
associated law. In the case of an ideal plastic medium with
a smooth loading surface which is most frequently called the
yield surface (when applied to such media) the adoption of
the Drucker postulate exhausts the problem of defining the
relations, at least for processes for which the temperature
3 field does not change. 1In the case of a medium with harden-:
ing additional assumptions must be made. When the loading
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surface has a singular point, the problem ofi.the relation )
of the tensor deP, and other variables arises during changes :
of state correspaﬂding to displacements from these points.

The problem of the yield law in the case of a plastic
potential with singularities was touched on already by
E. Reiss in the early 30's and later in the studies of V.
Prager. The studies of V. T. Koiter, 1953-1956 gave an
elegant solution of this problem for a medium with a piecewise-
smooth loading surface of general form (Quart. App. Mech.,
Vol. 11, No. 3, 350-354 (1953) and other articles, the funda-
mental results and bibliography of which are available in the
survey study of V. T. Koiter, "General Theorems in the Theory
of E;astoplastic Media," 1960, Russian Translation, Moscow,
1961).

When the piecewise-smooth loading surface consists of
n 2 1 smooth sectors to which the loading functions fl’ fz,

e fn correspond, according to Koiter for any process

defi= 3 dhn i, fn<0, dhn>0, - (1.4)
me=1
and for eachm=1, 2, . . ., n,dkm >0 if and only if,
3fm
fm=0, ()Ofaa do'zﬂ>0 (1.4')

(for an ideal plastic medium the last condition is formulated
somewhat differently). For a point on the loading surface
belonging only to one smooth sector, according to (1.4')

only one term in the sum (1.4) is different from zero, and
the segment which has the direction of the normal to the

surface corresponds to the tensor defj as before in the space

of the stresses. For the points of the surface at which the
normal is not defined, the maximum principle (1.3)

admits a great deal of arbitrariness. Hence, in these cases,
on the basis of (1.4) and (1.4') several partial loading
functions can be "active'" simultaneously.

In particular the studies of V. T. Koiter made it pos-
sible to understand the connection between the theories of the
usual type and theories claiming a microstructural’ approach.
One of the most important facts was established by Koiter
himself who has shown that for an appropriate selection of
the functions fm and a transition to the limit as n - =
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relations (1.4) reduce to the relations of S. B. Batdorf's
and B. Budyanskiy's 'slippage theory."

This theory was published in 1949 and it was the first
theory which attracted attention by its:attempt to construct the
equations of plasticity theory on the basis of the laws of
the plastic deformation of monocrystals (NASA Techn. Note,

No. 1871, 1949, Russian Translation in the collection of
translations '""Mekhanika," (Mechanics), No. 1, 1962). 1In

the 50's several tens of articles dealing with an analysis
and certain improvements of the Batdorf-Budyanskiy theory
were published. However, it became clear toward the end=

of the 50's that its fundamental assumptions oversimplified
the '"slippage" pattern in a polycrystal. Experimental studies
which demonstrated unambiguously the unsound .
characteristic predictions of this theory played an important
role,

A new important contribution was made in this period to
the theory which was developed within the framework of the
classical approach. 1In accordance with (1.1) the loading sur-
face in any state is a Mises cylinder with a fixed axis and
only the radius of the cylinder changes during the plastic
deformation. Above all, this eliminates taking into account
the Bauschinger effect. The first concrete models of an
elastoplastic medium with deformation strengthening anisotropy
and the Bauschinger effect were constructed in the studies of
V. Prager and other scientists in the 50's. Later, studies
which made these models more precise appeared. The main
source for the improvements were the results of experiments
with multiple loads with changing signs that were-carried °d
out in the 50's and 60's by many experimenters and which made
it possible to advance considerably the understanding of the
causes and forms of the Bauschinger effect in real metals.

Other interesting studies of models under complex loads
were also carried out in these years. Experiments with ''small
additional loads" and studies of th> "delay'" effect which will
be discussed in greater detail in Section 2 were of fundamental
importance. Gradually it became clear that no theory in which
the boundaries of *the elastic behavior for each state of the
body were described by one surface in the space of stresses
or strains gave satisfactory agreement with the experiment.

As a result of this, recently the interest in theories
which can be called with some justification microstructural
was again revived.
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In conclusion we note that the first studies in plasticity
theory in our country appeared in 1936-1938. 1In the last few
years the publications of the USSR Academy of Sciences alone
published over 200 studies. The next section of this survey
is devoted to the studies of Soviet scientists in the field
of rheaology of plastic media and Section 3 to studies in
boundary value problems. The survey makes no
claims to completeness. We avoided the discussion of partial
problems or special problems. Thus, the theory of plastic
shells and plates, the flow of thin plastic layers, applica-
tion of the theory to technological problems, the problem of
stability beyond the elasticity limit, dynamic problems and
certain other problems were not touched at all.

§2. Relations Between the Local Characteristics of.
the State and the Deformation of the Medium

2.1. 1Ideal Plastic Media

According to the definition of an ideal plastic body, in
processes in which the temperature does not change,a fixed
region in the space of stresses corresponds to its admissible
states. Therefore, the function f in the equation f = 0 of
the boundary of this region must be only a function of the
stresses. In the case of a piecewise-smooth yield surface
this holds for eveyy function fl, fz, A fn’ corresponding

to smooth sectors. As a result, relations (1.4) together with
the usual equations for the elastic component of the deformation
(which describe Hooke's law) form a complete system of defining
relations. (1.4') is replaced by the condition by virtue of
which dkm > 0 holds only when fm =0, dfm = 0, which also

follows directly from the definition of an ideal plastic
medium. :
For an isotropic medium the functions fm must be invariant

with respect to a complete orthogonal group and may therefore de-
pend on the stress tensor only by way of its 'absolute' invariants.
The condition for plastic incompressibility is equivalent to
the condition that the fm do not depend on the invariant

°aBbaB and, hence, can be represented in the form of functions

of scalar invariants of the stress deviator, among which we
can always consider the intensity

Sg = V‘/zsaﬂ"'aﬂ

and the "inclusion angle"
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as being independent. The concrete form of the functions

fm = fm (s*, aq) must satisfy the non-concavity condition for
the yield surface. In addition, it is usually assumed that

the yield points during expansion and compression are the same.
But even when this condition is introduced,a great deal of
arbitrariness still remains. In particular, both classical
yield conditions, the Tresk and the Rises condition satisfy

all the conditions that were mentioned.

The idea of using the maximum dissipation power principle
for a comparison of the yield conditions is due to D. D.
Ivlev (D. D. Ivlev, 1958, 1966). The preference of the
Tresk condition is proved with the aid of such a comparison.
However, in addition to the maximum principle it is necessary
to use an assumption which stipulates the manner in which the
yield point is measured (which must always be determined from
pure shear experiments).

Reasons in favor of good agreement between the Tresk
condition and the physics of the plastic deformation were also
given by other authors, On the other hand, it is known that
the Mides condition agrees more satisfactorily in most cases
with the experimental data. In this regard, the experimental data
for the Lade parameter relation are especially characteristic
since this relation depends on arbitrary yield functions and
the difference in the Tresk and Mises conditions becomes more
and more appreciable.

It is known that the ''inclusion angle'" of the given ‘symmetric

tensor determines  the direction of its component in the '"octa-
hedral'" plane of the sector (which subtends the same angle with
the principal axes). Taking this into account, it can be
easily seen that within each face of the Tresk prism ''the

inclusion angle" of the tensor deij preserves a fixed value

which changes by 1/3 m during the transition to the neighboring
face (Fig. 1). For the Mises condition in states with

degj #0, ag = @yep always holds. The Lode parameter is uniquely

determined by the "inclusion angle," and in the transition to
the Lode parameters, we obtain the diagram plotted in Fig. 2.
The dashed line TOT corresponds to the Tresk condition

-126-



r,p-—'p-:r-mo e

which coincides for. u p = O with the interval [ -1, 1]
de
on the Hg axis and the line “s = p corresponds to the
de
Mises condition. After the experiments of V. Lode
that were mentioned in Section 1, the relation between
the Lode parameters was studied by G. Taylor and H. Quinne
in experiments with different metals, and in the 40's hy
E. Davis. 1In the USSR several experiments of this type were
made by Yu. I. Yagnom and his collaborators (Yu. I.
Yagn and I. I. Vinogradov, 1954, N. M. Mitrokhin and Yu. I.
Yang, 1960, et al.). According to the data from all these
experiments, curves which have the shape given by the dotted
curve in Fig. 2 which are smooth and nearly the line
Mg = ud p are obtained in all cases (including metals with a
€
high yield point).
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The studies of N. K. Snitko (1948) and V. V. Novozhilov
(1952) should also be mentioned in connection with the problem
of the forms of the yield condition. In accordance
with the first study, the ratio of the elasticity limits
during elongation and pure shear for a polycrystalline
sample depends on the type of lattice of its monocrystalline
elements. It was shown in the study of V. V. Novozhilov that
the intensity of the tangential stresses can be considered as
the mean square of the tangential stresses on the sectors
oriented in all possible ways at the given point of the body.
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2.2, Hardened Media with Smooth or Piecewise- -
Smooth Loading Surface

For a hardened medium the load surface varies for
deP # 0. Even here the smoothness of the surface may varyi 1

1j
in different states of the medium, for example, on a surface
which is initially smooth at all points of the loading surface
pointed points may appear as a result of a plastic deformation
and the number of smooth sectors on the piecewise-smooth
smooth surface may differ in different states of the medium, etc.

On the other hand, the experiments that were made already
in the 30's that were mentioned in Section 1, have shown that
in some cases we can restrict ourselves to the simplest assumption.
This assumption is included in (1.1l) and it consists of the
fact that the changz on the loading surface when c.'leli’:j # 0 can

always be reduced <o a similarity transformation with respect
to the center or its axis of symmetry ('isotropic hardening').

The Bauschinger effect is not taken into account under this
assumptiocn. In the early 50's it was understood that to describe
this effect it wass necessary that one element for the change
on the loading suirface when degJ # 0 be a translation in the

direction of the displacement of the point in the space of
stresses. This fact was noted in different ways in the studies
of G. Edelman, D. Ch. Drucker and V. Prager. The 1954-1955
studies of V. Prager developed concrete models of the medium
with a translation of the loading surface.

One such model was discussed in 1954 by A. Yu. Ishlinskiy.
The fundamental relations for this medium follow from (1.2) with
the following concrete form of the stress function:

| = (Sap — Hap) (Sup — Hap) — 2%, (2.1)

where k is a constant and the deviator with caomponents uij

is a linear isotropic function of the deviator of the residual
deformation. In the initial state u,. = 0 and (2.1) coincides
with the Mises condition. Beyond théJelasticity limit, the
Mises cylinder is grddually displaced as a rigid whole.

Further progress was made by V. V. Novozhilov and Yu. I.
Kadashevich (1958) who started out with the fact that in real
metals the Bauchinger effect and the hardening deformation
anisotropy are related to the "microstresses'

(inhomogeneities in the field of internal forces in volumes
whose dimensions are on the order of a grain or smaller). The
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effect of the latter on the macroscopic properties of the

material were analyzed with the aid of a mechanical model

with a dry frictional element on a plane and a system of springs
which simulated the macroscopic and residual microscopic stresses.
The plasticity law obtained in this study follows from (1.2)

when the stress function has the form (2.1), but, unlike in the
study of A. Yu. Ishlinskiy, the “ij are related to the components

of the deviator of the plastic deformation by nonlinear equa-
tions and k is a monotonic function of the scalar A, and

= Vialiliep

dh =V defgder., In particular the authors single out the ~as
case when k = const (a medium with an ideal Bauschinger effect);
however, in the general case the loading surface undergoes
simultaneously a translation and isotropic expansion when

defj # 0. It was shown later that to obtain a concrete relation
for the tensor uij and other variables the results of experi-
ments with multiple loads with changing signs on the samples
were important (R. A. Arutyunyan and A. A. Vakulenko, 1965) .

It also became evident that the interpretation of the tensor

M., as a "microstress tensor'" which was proposed by V. V.
N&@ozhilov and Yu. I. Kadashevich was well founded also from

the standpoint of dislocation theory (A. A. Vakulenko and
L. M. Kachanov, 1969),

Experience has shown that the hardening of real metals
has always an anisotropic character. Under appropriate loads
the Bauschinger effect and the hardening deformation anisotropy
are effects which basically have the same order S
of magnitude as the hardening itself. Therefore, for any
model of a medium with anisotropic hardening agreement with
the experiments can only be fully satisfied for processes whose
trajectory in the deviator hyperplane in the space of stresses
lies in a sufficiently narrow cone with apex at the point
s.. = 0, For media for which the loading surface is translated,
thds cone is replaced by a cylinder which intersects the sur-
face in the neighborhoods of each end of some diameter, since
loads for which the sign of the stresses changes are now
permitted. But in both cases the class of processes in which
we can expect satisfactory agreement between the theory and the
experiment is further narrowed by certain additional condi-
tions imposed on the curvature of the trajectories. These
constraints are more stringent for media with isotropic harden-
ing whose behavior during sharp rotations of the principal
axes of the stress increment tensor do not even agree qualitatively
with the experiment. This was clearly detected for the first
time in experiments with so-called small additional loads.

-129-




2.3. Theories of the "Slippage'" Type

The first experiments with small additional loads in the
USSR were made by A. M. Zhukov and Yu. N. Rabotnov (1954).
The samples which had the shape of thin-walled pipes were
first subjected to expansion during which they were subjected
to a residual strain, after which torque couples were applied
during a fixed expanding force which caused the tangential
3tresses AT (the trajectory OMM1 in Fig. 3). 1If the loading

surface remains smooth at its "active'" points at the instant
when the additional load is applied, the displacement MM1

lies in the tangent plane (Fig. 3), and by virtue of the
"neutrality'" of such displacements with an accuracy up to

small higher order magnitudes Ay = AY®, i.e., AT = G Ay,

where G is modulus of elasticity in shear. In the experiment

the ratio AT/Ay was always much smaller than the modulus G.
Experiments have been known in which a '"fan'" of additional loads
from the given state occurred (the experiments of P. M. Nahdi

and G. Rowe, see the collection of translations '"Mekhanika,'"

No. 3, 1955, and others). Considerable nonelastic changes in

the deformation of the sample were usually observed already during
additional loads with displacements in the space of stresses

at angles > 1/2 m relative to the vector connecting the coordinate
origin with the point under consideration on the loading surface.

Within the framework of the usual definition of this
surface, the conclusion must be drawn that for an initially
smooth surface a pointed point can occur on it at the addi-
tional load instant. Another argument in favor of this
possibility are the conclusions which follow from the Battorf-
Budyanskiy ''slippage theory" and from essentially similar
theories of other authors.

Thus, V. D. Klyushnikov (1958) proposed a plane model
for a plastic medium in which, as in the Batdorf-Budyanskiy
theory, the plastic deformation is the result of the differently
oriented displacements on the areas at the given point of
the body. However, because of its greater simplicity,
the V. D. Klyushnikov model is more amenable to an analysis
of the relation between the stresses and strains during
different '"loading ways.'" An even simpler two-dimensional
model was proposed by Yu. N. Rabotnov (1959). Both these
models lead, during a plastic deformation, to a change in the
pattern of the loading surface which is similar in many respects,
which, in turn, is similar to that which follows from the Batdorf-
Budyanskiy theory and differs qualitatively from that which
corresponds to the isotropic or translational hardening.
In contrast to the models of a medium with hardening
considered in Section 2.2, a pointed point is developed on
the loading surface for a wide class of loading regimes,
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whose apex coincides with the loading point while the '"'rear!
part of the surface does not change and remains fixed.

Fig. 3

As we already mentioned, the relations from the Batdorf-
Budyanskiy theory can be obtained from the relations (1.4)
for the associated law (see the Russian translation of the
work of V. T. Koiter in the collected translations '"Mekhanika,"
No. 2, 1960). For a somewhat different selection of the
functions fm and also during the transition to the limit as

n - », the relations from the theory of ''local deformations’
developed by A. K. Malmeister (1957) are obtained from (1.4).
In both theories the stresses on the slippage surfaces (local
displacement)coincide with the stresses resulting from external
forces on the surfaces with a given orientation. However,

it is kncwn that in a real polycrystal the stresses in the
grains and parts of the grains differ from the mean stresses
in large volumes. With the appearance of the macroscopic
residual deformation, the microinhomogeneity of the field of
stresses in the sample is strengthened in a certain sense,
which is the reason for the deformation hardening anisotropy
and the Bauschinger effect. Therefore, it is natural that the
predictions based on the Batdorf-Budyanskiy theory do not
agree well with the experiment. This also applies to the
derivation of the ''pointedness' on the loading surface.

A series of experimental studies of the changes on the
loading surface during plastic deformation are available at
the present time. In the USSR such studies were carried out
by A. M. Zhukov (1957), Yu. I. Yagn and O. A. Shishmarev
(1958), G. B. Talypov and V. N. Kamenets (1958, 1961), G. B.
Talypov (1961), O. A. Shishmarev (1962, 1966). In all these
experiments, the behavior of the samples which had the shape of thin-
walled pipes was studied, but in details the experimental de-
sign of different authors differed, so that their conclusions
do not agree in all respects. One general conclusion which
<an be made on the basis of the results of these experiments '
is that an important element in the change in the

geometry of the surface (which is often the only element
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or 1is only combined with isotropic expansion) as a result

of a given plastic deformation is the translation, and that
the surface remains smooth. Nothing resembling a singularity
at the loading point was observed in all the studies that were
enumerated.

In the experiments of certain foreign investigators,
the translational displacement of the loading surface was
accompanied by a relatively moderate 'tendency to form
corner points'" (the experiments of P. K. Birch and V. N.
Findley, P. M. Nahdi, et al., and a number of other experi-
ments) .

2.4. Other Models of a Plastic Medium with Hardening

In conjunction with these experimental facts, attempts
have been made to construct a theory which was satisfactory
when additional orthcgonal loads were applied to the loads
with a smooth loading surface of the medium in any state.
Thus, the studies of G. A. Hemmerling (1964) should be men-
tioned which proposed a certain generalization of the Drucker
postulate. A variant of the unassociated plasticity law
was developed on the basis of the generalization.

A different generalization of the Drucker postulate was
proposed earlier by A. A. Il'yushin (1961). In this study it
is postulated that for any isothermal processes closed with
respect to the deformation

S Onp de,p >0,

where the equality only holds when the process is reversible.

As we already mentioned, the different results of the
experiments that were discussed in Section 2.3 are related
to a considerable extent, to differences in the formulation
of the study, more precisely the method by which the points
on the loading surface are determined. This can already be
seen on the example of the usual tests of metals in engineering
during uniaxial expansion or compression of the samples. It
is well known that a sharp dividing line between elastic and
elastoplastic states has not been detected and that the
elasticity 1imit must be determined in such experiments, by
convention,as the stress whith corresponds to some given small
value of the residual deformation. Naturally, the situation
in tests during the complex stressed state is no better. The
dimensions and shape of the loading surface depend on the
residual deformation '"'tolerance!' with which the points are
determined on this surface.
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Thus, in fact, the elasticity boundary is not as clear
cut as defined by the concept of a loading surface in its usual
form. The facts that were detected in experiments with a
small additional load are connected with the ''spread" of the
real elasticity boundary. The first step which takes into
account this spread is to abandon the condition for the
neutrality of the loads to which the displacements on the
loading surface correspond. However, when this is done,
the continuity of the relation relating the rates .-
¢ij and éfj for the given point on the loading surface
disappears and certain difficulties arise in the formulation
of theoretical boundary value problems. Therefore, it
is natural to take the next step and consider as the changes
wifﬁ de:!i"j # 0 also those changes in the state of the medium
which correspond to the displacement of the loading point inside
the region bounded by the loading surface with a corresponding
improvement in the direction of the latter. Mpre precisely
this surface must now be considered not as the boundary in
the space cij in the elastic region of the material, but as

the locus of the points corresponding to a given small "tolerance"
for the magnitude of the residual deformation during a load

"on the rays" from a given state (we emphasize that the surface
is determined experimentally in this way). In essence, such

an approach was outlined in a study of V. D. Klyushnikov

(1964), although the reasoning was somewhat different.

In fact, on the basis of the Cauchy-Bunyakovskiy inequality,
we can vwrite

Af

Gy

7 af —
e B ]f(/nu. day, ‘,)cus .
Mo My .

d”—.;r’. e ( l//

With the usual assumption about the ''meutrality'" of the load
with a displacement £ = 0 on the surface, we have for the
differential form dx in the relations for the associated

law

. 1
di.= - d”zﬂv

0 (2.2)

-133-




and using this and the preceding expressions, relation (1.2)
can be written as

7] of PPy -
defj- ) 'UOL.'; Vd“czﬂ dagsf (4). (2.3)

where N 2 0 is a function of the stresses and the history of
the stresses and

U () = cosy nw O TV, i) =0 npi La < lg | < (2.3")
Key: a. for

We emphasize that (2.3) and (2.3') includes the usual concrete
associated law in a somewhat different form for g3

hardening medium with a smoothloading surface. According to
(2.3) the function {(y) is continuous but not differentiable

at ¢ = + 1/2 ., Taking into consideration that this is one

of the main reasons for the complexity of the boundary value
problems in the theory of elastoplastic media with harden-

ing , V. D. Klyushnikov proposed instead of (2.3') that

V(v) be defined as an analytic function which approximates

the function defined by relations (2.3'). It is difficult to
say to what extent this will simplify the boundary value
problems, but it is clear that the description of the behavior

of the models under small additional loads can be improved in
this manner by obtaining the concrete form of the function

¥(w) directly with the aid of experimental data. It is essential
that the loading surface (in the sense described above) re-

main smooth in the neighborhood of the point where the additional
load is applied).

2.5. Deformation when the Position of the Principal
Axes does not Change. Deformation Theory.

Suppose that the homogeneous deformation of the medium
is such that during the entire process the position of the
principal axes of the deformation tensor (relative to the
fixed axes of the material) does not change. If the medium
is isotropic in the initial state, the position of the principal
axes of the stress tensor will also not change and we can
assume without loss of generality that the principal axes
of the two tensors coincide. Then, at each instant during the
process, at least one of the following tensor equations holds
(V. V. Novozhilov 1951, 1954):
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where sij and 313 are the components of the stress deviator
and the strain deviator
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and 34, and aaare defined analogously (when sin 308 # 0 and
sin 3a. # 0 equations (2.4) are equivalent). These equations

descrige only the coaxiality of the stress and strain tensor
and are, therefore, valid in the case under consideration re-
gardless of other properties of the medium (initial super
isotropy). The specific characteristics of the medium are
reflected in the equations which relate Sy and as to the

scalars of the deformation tensor, which must be added to
equations (2.4), which, for a plastic medium,are generally
not holonomic in this case. This relation will only be
holonomic with an additional constraint on the change of the
deformation tensor.

In particular, we will assume that along with the posi-
tion of the trihedron of the principal axes the 'inclusion
angle" ay of the deformation deviator does not change and that

at any instant during the process ds,/dt > O. Then, it can

be shown that when the medium is isotropic in the initial
state and its behavior does not depend on time
Jn;o(e..x,aJ, So = 8 () 040 @) O == 2, (€, 3y, o) where

!
e 1
”’i

S T A SRS AT »u;é%"

c =1/3 oaebae’ and € is the analogous invariant of the deforma-

tion tensor. Usually a special form of these functions is
considered for which relations (2.4) reduce to a ''linear
tensor'" equation and, with an appropriate stipulation for
the unloading case for a plastic medium
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Key: a, for
b. or

where K and G are constants, ¢ is a monotonic function of
9y and Sy is the maximum value of Sy that was obtained (in-

cluding the current state).

The condition that the position of the trihedron
of the principal axes and the value of the "inclusion angle"
oy of the deviator of the deformation do not change is

~
2

B £y
equivalent to the condition that Sij *(t)Jij, where ij

does not depend on the parameter t of the process. The
deformation process during which this condition is satisfied
is called the simple or proportional deformation process.
The simple loading process is defined analogously (A. A.
I11'yushin, 1948). According to (2.5) during a simple load,
the deformation will also be simple,

L. I. Sedov (1959) has shown that for arbitrary (finite)
deformation processes the deformation can only be simple for
some exceptional values of aa. This is due to the fact that

for a finite homogeneous deformation, the angles between the
material lines (those that are '"frozen'" into the material) vary
in such a way that the orientation of the principal axes of

the symmetric tensor cannot be retained with respect to these
lines (the exception being uniaxial expansion and other cases
corresponding to sin 309 = 0).

Equations (2.5) describe the fundamental and simplest
variant of the so-called deformation theory of plasticity.
Historically the latter dates back to the well-known studies
of H.Hencky and A. Nadai that were mentioned in Section 1.
However, these studies were based on concepts which did not make allow-
ance for a definite judgment about the range of applicability
of the theory to real metals. The development of the concepts,
foundations and sphere of applicability of the theory are
connected wi*h the studies of A. A. Il'yushin published in
the 40's which were summarized in his monograph (A. A.
I1'yushin, 1948).
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Under: a simple load the trajectory of the process in
the deviator hyperplane of the space of stresses represents
a segment of a line with origin at the point siJ =0, If

an arbitrary point in this hyperplane moves along the line
passing through the point siJ = 0 and intersects the latter,
the load will not be simple. V. V. Moskvitin (1952, 1965)
generalized the equations of deformation theory and the
theorems of A. A, Il'yushin for a simple load to the case of
such a '"sign changing simple'" load. Effects of the Bauschinger
type in these studies are taken into account with the aid of
the so-call '"Mazing principle'" and the generalization of this
principle proposed by V. V. Moskvitin., A detailed presentation
of all these results can be found in the monograph (V. V.
Moskvitin, 1965) .

2.6, The "Isotropy Postulate' and Studies in Problems
in the General Theory of Tensor Functions and
Functionals which Arise in Connection with
Rheology Problems of Plastic Media T

The Set III of all symmetric bivalent tensors which can be
defined for a fixed point of a continuous medium is closed with
respect to linear combinations of its elements and represents.some
six-dimensional linear system. From the standpoint of its
linear properties, this system is completely analogous to a
six-dimensional Eug¢lidian space. Thus, a vector in Euclidian
space has only one '"scalar invariant" (which is independent
of the number of coordinate systems) while an element
of the system III has three such independent invariants. Th1s
fact was the main argument of one school in the discussion
about the "isotropy postulate'" (D. D. Ivlev, 1960, V. V.
Novozhilov, 1961). Later, V. V. Novozhilov characterized
more accurately the specific characteristics of the linear
system III and outlined a way for the construction of an ortho-
normal basis for this system (1963). K. F. Chernykh (1967)
worked out in detail these concepts and constructed a concrete
example of such a basis.

In the classical mechanics of continuous media, the stress
tensor and the strain tensor are symmetric bivalent tensors
and, hence, elements of the set I1I. By specifying concretely
the physical dimensions of the basis elements, it is possible
to study two representatives of this set in the corresponding
manner, ''the space of stresses" and the "space of strains.”
The deviators in each of these spaces form a linear subset
(subspace), which we will denote, respectively, by Ds and Da.

"The Isotropy Postulate" (A. A. Il'yushin, 1954) is the state-
ment according to which for an initially isotropic medium the
trajectory of the process in Ds depends only on those properties

of the trajectory in D; which are invariant with respect to
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orthogonal transformations of D:’ By orthogonal transférma-
tions are meant linear transformations of the space D’ for

which the quadratic scalars of the deviatoms are preserved
(the deviator with components 23 is transformed into the

ij

deviator ;ij for which 34p3a8 = 306903)' Since cubic scalar

invariants of the deviators are not preserved under an arbitrary
orthogonal transformation, the sphere of applicability of the
isotropy postulate as defined is limited and includes only

media for which the '"material law" is described by equations

not containing the products of bivalent tensors (tensors with
components of the form aiabaj, aiabaBCBj’ etc.) and scalar

invariants of the "inclusion angle" type.

In one chapter of the monograph (A. A. Il'yushin, 1963)
an attempt is made to generalize the isotropy postulate on
the basis of an analytical representation of the trajectory
of the process in D’. It should be mentioned that a number of

experimental studies have been made in connection
with the isotropy postulate (V. S. Lenskiy, 1958, 1961).

2.7. Some Results

In conclusion we emphasize first of all that everything
that was done until now in the field of developing the
"defining equations' represents a trz2atment of the problem in
its classical formulation (Section 1). The concept of an ideal
plastic medium is naturally defined in this framework and
when the theory is developed only the most fundamental elements
of the macroscopic pattern of the plastic deformation of
metals are taken into account. The models of an ideal
plastic medium play, in the theory of plasticity, basically the
same role as an ideal liquid and an ideal gas in the mechanics
of fluids and gases.

Models of a plastic medium with hardening wist re-~ -
flect finer details of the plastic properties of metals. The
great variety and complexity of these details make tine problem
of constructing a fully satisfactory theory of such media
very difficult. The models of a plastic medium with
hardening known until now are in satisfactory &agreement
with experimental data only for a class of processes which
in addition to the constraints defined by the conditions
for the independence of the process of time and the constant
temperature field are also limited considerably with respect
to the admissible deformation or loading paths (the trajectories
of the process in the space Ds or Da. Particular difficulties

arise in the description of the behavior of real metals during
abrupt changes of the position of the principal stress axes
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which correspond to trajectories of the type encountered in
experiments with "an orthogonal' additional load. In these
cases, the ''spread" of the actual elasticity boundary of the
material manifests itself most clearly. To take it into
account, it is necessary to abandon certain customary
assumptions made in the mechanics of plastic media. It
should be noted that this '"spread" also plays a role in the
results of experiments which study the ''delay' pattern

(V. S. Lenskiy, 1958, 1961).

Some important effects, as a matter of fact, are not in-
cluded at all in the rheology of plastic media in its contem-
porary state. One of these effects is, for example, the
"aging'" and other forms of the effect of a change in the
composition of "solid solutions' on their macroscopic mechani-
cal properties, even when this effect is considerable.

Thus, a number of studies of Soviet physicists-metallurgists
have shown that the plastic deformation of some metastable
alloys is accompanied by changes in composition as a result
of which the volume of the sample is changed irreversibly.
Another factor which when taken into account may show that
the assumption egaéaa = 0 is not sufficiently accurate, is

the so-called'plastic elongation'" (the development of a grid
of pores and cracks along the edges and inside the grain of
the polyerystal during the plastic deformation). V. V.
Novozhilov (1964) pointed out the important fact that this
"elongation' which is usually small until the visible frac- -
ture of the sample may become considerable under multiple
cyclic loads.

Recently, certain concrete forms were used in the
rheology of plastic media as a result of the achievements
in the physics of a solid and thermodynamics.

It should be noted that the first and second postulates
of thermodynamics make it possible to draw a number of impor-
tant conclusions alreacy with the usual general assumptions
about the properties of the medium. Thus, it was discovered

that the "energy balance" for whiéh tBE work p

dissipates completely is only characteristic of an ideal plastic
medium. For a medium whose properties change as a result of a
plastic deformation, a part of this work is always converted
irco the so-called 'latent energy of the deformation." (A. A.
vakulenko, 1961). When this fact is taken into account, it

is possible to use in the analysis of existing and in the
development of new models of a plastic continuous medium a
number of experimental results obtained in modern physics

of metals.
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The model (elementary volume) of the plastic medium
represents a system, one of whose characteristics is the
nonlinearity and nonholonomy of the relations between the
external and internal parameters. The studies of L. I.

Sedov and M. E. Eglit (1962) outline a way of constructing
general forms of the '"defining equations' fcr such media using
thermodynamics. The assumption that "phenomenological
connections" exist (relations between thermodynamic '"forces'

and "fluxes'") which are the foundation of modern thermodynamics
of irreversible processes can also be used for this purpose

(A. A. Vakulenko, 1958, 1961; V. N. Nikolayevskiy, 1966).

The boundaries of another "bridge' between the rheology
of plastic media and physics was attained with the development
of dislocation theory. Such parameters of deformation re-
inforcement anisotropy as, for example, the tensor “ij in

the theory of plastic media with a translated loading surface
(Subsection 2.2) can be interpreted on the basis of the concept
of continuous dislocation theory. For this reason undoubtedly
progress in dislocatiom theory will have an effect on the
development of the rheology of plastic media. This effect

may be mutual, as the details of the relation between the con-
cepts in continuous dislocation theory and the ''usual plasticity"
theory are clarified,the facts available to the latter, may
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