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LINEAR THEORY OF ELASTICITY1 

by 

A. I. Kalandiya, A. I. Lur'ye, G. F. Mandzhavidze, 
V. K. Prokopov, Ya. S. Uflyand 

(General editor t\.   I.   Lur'ye) 

81.  General Solutions and Existence Theorems 3 

1.1 General Solutions 3 
1.2 Tensor of Stress Functions 9 
1.3 Integral Equations for the Three-Dimensional 

Problem 14 

§2.   Three-Dimensional Problems   in  the Theory of 
Elasticity 23 

83.   The St.-Venant and Almanzi  Problems 34 

(continued) 

T".    This article gives a survey of studies in classical (linear) 
theory of elasticity in our country for the last 50 years. 
Only static problems in their "rigorous" formulation are 
considered. 

Lack of space made it necessary to exclude almost completely 
from the survey approximate methods for the solution of 
problems in the theory of elasticity based on variational 
principles.  Engineering theories (rods, plates, shells) 
whose construction presupposes the use of additional hy- 
potheses of a kinematic or static content are also not 
discussed. 

81 and 5 6.5 of the survey were written by A. I. Lur'e )   § 2 and 
3 by V. K. Prokopov, 84 and 85.3.9 by Ya. S. Uflyand, 8 5 and 
6 by A. I. Kalandiya and G. F. Mandzhavidze 
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§4.  Mixed Three-Dimensional Problems in the Statics 
of an Elastic Body 47 

§5.  Formulation and Methods for the Solution of 
Problems in Two-Dimensional Elasticity Theory      56 

5.1 General Complex Representation of the 
Solution of the Plane Problem 57 

5.2 Formulation of Fundamental Problems in 
Plane Elasticity Theory 58 

5.3 Methods for the Solution of Plane Problems    63 

§6.  Fundamental Results in the Study of Problems in 
Plane Elasticity Theory 83 

6.1 Solution of Fundamental Problems for a 
Homogeneous Medium 83 

6.2 Piecewise-Homogeneous Medium. Reinforcement 
and Strengthening of Plates 91 

6.3 Mixed and Contact Problems 97 
6.4 Plane Static Problem of an Anisotropie 

Body in the Theory of Elasticity 98 
6.5 Equilibrium of Brittle Bodies with Cracks   missing 

§1.  General Solutions and Existence Theorems 

1.1.  General Solutions 

In the equilibrium problem of an elastic body in the ab- 
sence of body forces, general expressions are sought (displace- 
ments or stresses) which satisfy simple differential equations 
constructed in such a way that the equations of the theory of 
elasticity are satisfied by virtue of these simple equations. 
The role of the "simple" equation is played by the Laplace 
equation and the biharmonic equation, and it is desirable to 
have the smallest number of functions.  A knowledge of the 
general solutions makes it possible when particular solutions 
of the equations of the theory of elasticity are set up,to use 
well-known "catalogs" of the solutions of "simple" equations 
in a particular coordinate system.  However, the boundary value 
problems in the theory of elasticity are, of course, irreducible 
with the exception of the simplest problems (halfspace, torsion 
of a body of rotation, etc.)  to problems of the Dirichlet or 
Neuman type for the Laplace equation.  Restriction to the case 
when body forces are absent is not essential since a particular 
solution corresponding to these forces can also be constructed 
in the general case, and is easily satisfied when they are par- 
tially given (weight, centrifugal forces, etc.). 
A survey of the early studies on general solutions was given by 
B. F. Papkovich (1937) and a unique method for their construction 
based on the use of the stress function tensor was proposed by 
Yu. A. Krutkov (1949). 
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The article of B.  G.  Galerkin,   published in 1930,   drew 
attention  to  the problem of  the construction of general solu- 
tions.     It was shown that the equations of elasticity theory 
in the stresses   Cf is  the stress  tensor,   a  is  its    first  in- 
variant) 

V-T-^O, (i + v) v2r + vva - o        (i.i) 

can be satisfied by expressing the displacement vector u in 
terms of the biharmonic vector G using the relation 

2HH = VV-^' - 2 (1 - v) vv;. (1.2) 

This solution, with the remark that the earlier known solutions 
can be obtained from ii^but without mentioning its "generality," 
was proposed by Zh. Bussineskiy already in 1889, and P. F. Pap- 
kovich (1937, 1939) has shown that (1.2) is a general solution 
of the equation of the theory of elasticity in the displacements 

(1 - 2v) v-" + W«« = n. (1.3) 

It follows that the structure of equation (1.3), in the presence 
of a body force in the right member, repeats the structure of the 
solution (1.2).  Therefore, taking in (1.2) for the vector u 
the solution of the boundary value problem in the theory of 
elasticity (satisfying three conditions on the surface of the 
body 0^, ve arc justified in expecting that also the vector G 
can be subjected to three additional conditions on 0, which is 
clearly redundant. 

Seeking the displacement vector in the form of the sum of 
the harmonic vector and the gradient of the scalar x 

„ = 4 (1 - v) /; + Vx. V27/ = 0. 

we are led after substitution in (1.3) to the equation ^i = —2S7-B; 

whose solution is represented as the sum of the particular solu- 
tion X = - R'B and the solution x = - B0 of the Laplace equation 

(R denotes the vector radius).  Thus, 
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X = - (/.*.// + ßo). » = 4 (1 - v) 7; - v (/.••/; + B0). (1.4) 

This representation of the solution of the equation of the 
theory of elasticity was given by P. F. Papkovich (1932) and 
somewhat later by G. Neuber. According to a report from P. F. Papkovich 
it was known earlier to G. D. Grodskiy-^) . The displacement vector 
(1.4) is expressed as the sum of the harmonic vector B and the 
gradient of the harmonic scalar B-, or in terms of the force har- 
monic functions BQ, BS (S = 1,2,37 where B are the projections 

of B on the axes of a Cartesian Coordinate system. 

Another form of writing solution (1.4) is due to I. S. Arzhanykh 
(1952) and M. G. Slobodyanskiy (1954) , which is 

u ■-■ 4 (1 - v) // -- livii - UVJi. (1.5) 

It differs  from   (1.4)   (when B0  = 0)   by   the  harmonic vector 
with divergence  equal   to zero  (i.e.,   the  rotor of  the harmonic 
vector) .     Forms  of solutions expressed  in  terms of harmonic 
functions with  the aid of volume  integrals  of Newtonian poten- 
tials have also been proposed.     Such  is  the  representation 
of Ter-Mkrtich'yan   (1947): 

M = 4(I~v)// + Jrv(-^cfT. (li6) 

An integral representation of the displacement vector u 
in terms of its divergence and rotor and also in terms of the 
values of u given on the surface of the body and its normal 
derivative du/an was given by I. S. Arzhany (1954). 

T.  The author of the survey is familiar with the article of G. 
D. Grodskiy published in 1935.  The outline for the deriva- 
tion of the solution (1.4) in the text was given to the 
author by G. Yu. Dzhanelidze. 
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Since only  three boundary conditions  are given on the 
surface 0 of  the body,   it  is admissible  to retain in the ex- 
pression for  the  general  solution  (1.4)   only three harmonic 
functions,   and  ignore in  it,   for example,   B0 or  one of  the 

functions B    (G.   Neybei) .     This problem was studied by s 
B.  F.  Papkovich   (1939)   and  in greater  detail  by M.  G.  Slobo- 
dyanskiy  (1954). 

Inclusion of Bn in (1.4) is redundant when the vector 
* 

VB0 can be represented in terms of a harmonic vector B with 

the aid of the relation 

VZ*o = 4 (1 - v) ]i* - WR'li*. 

But  then     VH* - 0, V x li* ---- 0,      so  that   «♦ = VÖ,  V20 = 0 

and relation   (1.7)   is written in the form 

(1.7) 

ßo==4(l-v)e-/^=V /^n(M-)' 

Here the harmonic function B0 is represented in the interior of 
the simply connected region oy a series in the harmonic poly- 
nomials RnY .  Then n 

VI rt"Vn 0=2J 4(1-V)-U n.8) 
»=0 

3 
and for n = 3,   v =  0.25,   BQ = R Yg     equation   (1.7)  cannot be 
satisifed  (it  is assumed  that 0 < v < 1/2) .     From the above, 
keeping  in mind  the Keldysh-Lavrent'ev  theorem on the represen- 
tation of a harmonic function by a uniformly converging series 
of harmonic polynomials  in a finite simply-connected region, 
we must  conclude  that   the representation   (1.7)   is improbable for 
v = 0.25.       For an infinite region with a  cavity,   in the expres- 
sion    for Bo,   n must be replaced by-(n +  1)   and  the denominator 4(1-v) 

+  (n+1)   in series   (1.8)   does not vanish for any  integer n and 
0 <  v < 1/2.     In  this case,   it  is valid to  ignore B0.     It  is 

proved analogously  that  the solution  (1.5)   is a general solution 
for a finite simply connected region,   including  v = 0.25, and for 
an infinite  region with a  cavity  for  v ^  0.25.     More general 
results  can be  found in M.   G.  Slobodyanskiy   (1954). 
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In our opinion, solution (1.4), as other forms of general 
solutions, should be seen as a useful auxiliary means for the 
solution of boundary value problems in the theory of elasticity, 
which makes it possible to use directly the classical special 
solutions of the Laplace equation.  When the solution for a 
concrete problem is constructed, the retention of the fourth 
harmonic function makes it easier to select these solutions. 
Therefore, there is no need to renounce it (A. I. Lur'e, 1955), 

V. I. Bloch (1958) starts out by representing the displacement 
vector u in the form of a sum of the harmonic vector and the 
gradient of the scalar \.     The solution (1.4) is included 
in the Bloch representation for X = - (R'B + Bn).  Letting 

2 X = - R ^-C, where C is the harmonic vector, Bloch obtained the 
expression 

./ = 2 (1 - 2v) Jl V C - 4 (1 - v) 11  x (V X C)  - /{2VV C,      (1 ^ 9) 

which can be complemented with the  gradient  of   the harmonic 
scalar and the  rotor  of   the harmonic vector.     The Bloch repre- 
sentation  includes also scalar terms which are  expressed  in 
terms of  three  plane  harmonic functions. 

The forms of  the solutions,   given by  I.   S.  Arzhanykh 
(1954)  and F.   S.   Churikov   (1953) 

2fw/ - (1 -2v)ii-v V >. {It y. li) (1.10) 

do not differ  from   (1.5). 

A more general   form  is given by V,   M.   Deyev     (1959) 

2HII - l(4v - 3) p -M (1 - v) (e - 6)1 // -r- P (V7<)-K + (1>11) 

where  ß,   e,   6 are constants,  which can be  used arbitrarily. 
When these constants  are  selected appropriately,  we return to 
the solutions   (1.4),    (1.5),   (1.9).     (1.11)   also  includes the 
solution 
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2MM=.4(l_v)7/ + ^^WV.«-i-r~ÄVV
J.Ji,      (iti2) 

which is expressed in terms of the harmonic vector B and its 
divergence v-B. 

The known solution of 0. Loew for the axially symmetric 
case (about the z-axis) follows from (1.2) if we take 
G =x(r, z),3 =0,G =0.  A more general representation z x      y 
of the solution in cylindrical coordinates (in terms of the 
harmonic and biharmonic function) is given by S. G. Gutman 
(1948). 

For a multiply connected domain DQ, bounded outside by the 
surface 00 and inside by the surface 0. (i = 1, . . ., k), 

which lies entirely in D and which has no common points with 
00, the displacement vector for v ^ 0.25 will be represented 

in the form (M. G. Slobodyanskiy, 1959) 

h k 

It —UiO,—  ^   «((). H~   Hi)  - ^ ^.n. 
i- 1 i- 1 

»,=4(i-v) /;,,,, —v/f •/*„„. »u-.-'Mi -v) /;(/,-vft(h •/*«), 

where B-..^   is a  harmonic     vector in  the  region external  to 0. 

and B,-*   is a  harmonic  vector  in D0 where   the  origin     D.   of  the 

vector R.   lies  inside  the cavity bounded by  the surface 0..     The 
form of  this solution  is  "complete"  if the  ray  from  0.   intersects 

0.   at a single point,   and  it will be  "general" when 0.   is a 

closed Lyapunov surface  ). 

T^     For  the distinction  between a  "complete" and  "general"  form 
of  the solution,   see M.   G.   Slobodyanskiy   (1959). 
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It should also be noted that  the problem of  constructing 
"general solutions" of a  system of  linear differential  equations 
of   the  form 

V LijUj-^O     (/  -1.2 n) 

(in it the L.. are linear differential operators with constant 

coefficients in the variables x, , Xo, . . ., x ) reduces (A. I. x       ä m 
Lur'e,   1937)   and later   (1953)   the Rumanian scientist G.   Moizil) 
to finding the  "potentials"  cr^   (s = 1,   .   .   . ,   n)   in terms of 

which  the solutions  u.   are expressed with  the aid of  a  relation 

of  the  form 

V.l/^fs     iJ--\,2 n). 
i- i 

Here M„ . are the unknown linear differential operators and each 

potential c satisfies the same differential equation 

Ä'(p,-0 (s-~ 1,2, .... n). 

It is easily seen that the operator K = |L. . | is the deter- 

minant of the square operator matrix L.., and that M . is the 
ij sj 

cofactor of  the j-th column of  this determinant.     When   it  is 
applied  to  the equations  of  elasticity theory  in   the displace- 
ments   for  the  isolropic  body,   the computation  that was  described 
leads  to the Galerkm-Bussinsk solution   (1.2).     Clearly,   the 
method can be applied  to an anisotropic medium,   to dynamic 
equations  in the  theory of  elasticity,   etc. 

1.2.     Tensor of Stress Functions 

We recall  that  the rotor of the transposed rotor of  the 
tensor  T  is called  the  incompatibility tensor  (Ink)   on   I: 

Ink0 = V;<(Vx0)T- (1.13) 
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This  tensor  is symmetric if   the tensor   $  is  symmetric.     In 
another  representation  Ink 1 has  the  form 

Ink 0 = -V8^ + 2 def V •* - ^V -V '<!> - (^Va - VV) ^- (1.14) 

Here E is the unit tensor and $ = li(f) is the first invariant of 

$, def a = 1/2 (Va + va ) is an operation on the vector a called 
the "deformation" of this vector.  An example is the linear 
deformation tensor i = del u.       The compactness conditions (the 

St.-Venant conditions) are expressed by the vanishing of this 
tensor: 

Ink £ = Ink def M = 0. (1.15) 

In general, for any tensor Ink def a = 0. Conversely, 
if Ink 1=0, $ = def a, a vector exists whose deformation is 
the  tensor T. 

In particular  for  the  tensor fi$  = fl  1,(1) 

Ink Zv0 - (Av2 - VV) 0, C1 •16) 

and  for a  tensor whose divergence  is  (v$ = 0) 

Ink 0 = — VW - I"l< £*• 
(1.17) 

In the absence of volumetric forces, such a tensor is 
the stress tensor f.   Introducing the notation a = I,(T) 
we have in accordance with (1.16) and (1.17) 

Ink j » - V-Z1 -i-(ÄV-- VV) a  (V-/= 0).      (1.18) 

We will  now use Hooke's  law   for  the  Isotropie  body 

2iit~t—~rvoE, ■ (1.19) 
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According to  (1.15)  and  (1.17),   we have 

~V2t + ~(^Vs-W)o = 0,   V
2

<T = 01 (1.20) 

and the second expression was obtained by forming  the 
first  invariant of the tensor in  the left member of   (1.20).     Thus, 
we obtained the Beltrami-Mitchell  relations 

vr+ZgUo. (1.21) 

It is known that a tensor with divergence equal to zero 
can be represented by the rotor of another tensor: if 
V'f =Ä0, T = v x fi, if, in addition, the tensor f is symmetric 
(f = TT) then -introducing into the discussion the symmetric 
tensor I, we must take C = (Vfx $)T. Then ^ = V x (v x öJ)7" 
= Ink0, rr = (Ink<P)T = Ink0 = r,   since $T = h     it follows that 

the equations for the statics of a continuous medium are 
satisfied in the absence of body forces (vf = 0, T = TT, if 
we take 

f^Inktf (0=<H (1>22) 

The tensor I introduced by Yu. A. Krutkov (1949), V. I. Bloch 
(1964) and B. Fintzi is called the tensor of the stress func- 
tions.  The stress tensor f remains unchanged if in the expression 
for I a term of the form def a is introduced, where a is an 
arbitrary vector. This makes it possible to simplify the form 
in which the tensor $ is given and retain in its expression 
only three components.  The Maxwell representation has this 
form (the tensor $ is diagonal and also the Merer representation ($ 
retains only: Jhe coropohents off the diagonal).  In the beck by B. I, 
Bloch (1964) $ is given in three components in Cartesian 
coordinates, and the book giyes nine variants for the three- 
component representation of I in cylindrical coordinates 
for the symmetric rotation case (see also Yu. A. Krutkov, 
1949, p. 108). 

The Transformation of Yu. A. Krutkov. Returning to an 
elastic Isotropie medium and taking into consideration that 
according to (1.20) and (1.16) wa = - Ink Ea, we can write the 
Beltrami-Mitchell relations in the form 

-11- 
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I'lk('/j-r^H)'        (1.23) 

so that the tensor in the brackets is a deformation of some 
vector c: 

Vxh-^E-^ileir. (1.24) 

At the same time, according to (1.22) 

a = /, (Ink 0) = V:* - V -V -0 = V^ — V h.   ft = V •<£,       (1. 25) 

which allows us to write (1.24) in the form 

v i,/; - rrr (x ^ -v • f,y> =def <■•        (i. 26) 

The vector c is eliminated from this expression by forming 
the first invariants of the tensors in (1.26), and we obtain 
the equality 

:\   .  2-v v-(rr^-r^v0—H- 

which expresses the vanishing of the divergence of the vector 
in the brackets. Therefore, this vector is the rotor of the 
second vector, but the latter can be included as part of the 
vector b.  This determines the vector c and then def c. 
Substitution in (1.25) leads to the equation 

V;* - i~R {V2<1>- V• ftM~ def 6-~ W«/>. (1.27) 

Now eliminating v I from expressions (1.14), (1.22) and 
(1.27)^6 obtain the representation of the stress vector T in an 
elastic Isotropie medium: 

^r3^(V2</>-V.ft)-i^(dcffi-VV0).       (1.28) 
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Now, according to (1.19), the deformation tensor S  is deter- 
mined and from it the displacement vector u (the displacement 
of the solid     is discarded): 

2^^~^dCi(V<P-h), iH«; 
l-2v 
1-1-v V4>—6. (1.29) 

The formulas of Yu. A. Krutkov 
one form of the general solution of 
elasticity theory. They determine 
of the functions of the stresses 9 
equation (1.27), the stress tensor 
tor u.  The latter depends only on !.,($) = $ and b = V-'i.     There- 
fore, it suffices, using (1.27),to 
between these quantities.  This reis 
setting up the divergence in the le; 
(1.27): 

(1.28) and (1.29) are 
the equations of linear 

on the basis of the tensor 
satisfying the differential 
T and the displacement vec- 

1' 
obtain only a relation 
.ation can be obtained by 
sft and right members of 

v'" + ra=^vv'*. (1.30) 

Letting 

ftr^V2«,  0 2(l-v)» (1.31) 

we satisfy equation (1.30) if the vector G is biharmonic.  In 
accordance with (1.29) this leads to the Galerkin-Bussinesk 
solution (1.2). 

A particular solution of equation (1.30) is b = v$ and 
the corresponding homogeneous equation (the right member equal 
to zero) differs from equation (1.3) only in the values of the 
constants for the displacement vector.  Therefore, the vector 
b can be constructed on the basis of a solution of the Papkovich 
type (1.4): 

ft = ^Z-L!'. (i _ v) /;- v (7?• /i --B0)\ + V0, 
(1.32) 

and substitution in  (1.29)   leads  to the  representation  (1.4) 
of  the vector u. 

-13- 

—.  i    i n um >—m irimi 



Yu. A. Krutkov obtained on the basis of formulas (1.30), 
(1.28) and (1.29) many other "general solutions." For example, 
if the vector K with divergence equal to zero and rotor defined 
in terms of the vectors b and v$ 

VA'= 0,  Vx K    V<1>- 2U~-v) 

is  introduced into the discussion,   according to  (1.29)   and 
(1.30)  we  obtain,   discarding  the  inessential constant  factor 
the Korn solution 

M = V X A' - (1 - 2v) b    (V-/r = V X ft.   V-/i = 0). 

1.3.  Integral Equations for the Three-Dimensional 
Problem 

The setting up of integral equations for three dimensional 
boundary value problems and overcoming the difficulties con- 
nected with their study, existence proofs and effective methods 
for constructing their solutions are the results of many years 
of work of V. D. Kupradze (1963) and his collaborators.  A 
presentation of these methods and the results of these studies 
with a detailed bibliography can also be found in the monograph 
of V. D. Kupradze, T. G. Gegeliya, M. O. Basheleyshvili and 
T. V. Burchuladze published in 1968. 

Next, we will consider in this survey only the first and 
second boundary value problems in three-dimensional elasticity 
theory for an Isotropie homogeneous medium. We will restrict 
ourselves to the interior problem (i) for a simply connected 
finite volume (V.) and Ihe exterior problem (e) for an infinite 
medium (V ) with a cavity.  It is assumed that the surface 

which bounds V. from the outside  (V from the inside) is smooth, 

Potentials in the Theory of Elasticity. The Kelvin- 
Somilini  tensor Ü(M, Q), which determines the displacement 
u(M, Q) of the point M in the unbounded elastic medium caused 
by the action of the unit concentrated force e at the point Q 
is introduced into the discussion 

u{M,Q)~Ü{M,Q}.e,   Ü {M, Q)^-^-^-^^] (1-33) 
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(E is a unit tensor, R = QM = !•„ - rQ, R = |R|). The stress 

tensor nM»
,f on the small area at the point M with the normal 

nM is determined from the expression 

nu'T='fi(M,Q).e,    <i>(Mt.Q)~ 

-Sr(T^n<3[(l-2v)(w,rÄ-WM.v)_2(l-v)£M.w.if-/?Vw«i^V-i]. 

Let 0 be a closed surface (MCT 0) .  Then 

and the generalized Gauss theorem is valid 

1 Q cr V,, 

(1.34) 

(1.35) 

(   1 QczV,, 
\[<}>(M,Q)do^--Ef>{Q),       6^)-{l2 QczO, Cl 
JJ '     V' I 0 QczV, 

36) 

(V. is the volume inside 0 and V outside 0). 

From among the vector potentials of the theory of elasticity 
introduced by V. D. Kupradze, we will subsequently consider 
two:  the first, which is similar to the potential for the 
simple layer A(Q) on the surface 0, and the second which is 
similar to the potential for a double layer B(Q): 

A(Q)--.\\a (M)■ U(M, Q)doM, (1.37) 

(1.38) jt ((?)=(( I*(M)'<P (M, Q) doM. 
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Clearly, A(Q) and B(Q) for Q JZ^l 0 are solutions of the 
equation of elasticity theory in the displacements in the ab- 
sence of body forces. 

The limiting values from the inside and outside of the 
first potential on 0 denoted by 

A,{Qo)-   Um AiQ),   Ar(Qo)~     lim A(Q), 

are equal to its direct value which is determined by the improper 
converging integral 

A {Qo) ~ jj " (-U)"•0 (Af' Qo) do,,. (1.39) 

For  the  limiting values of  the second potential,   the rela- 
tions 

Hi m^nm-l(,({)„),   HAQo)~it{Qo)+rl>(Qo), (1.40) 

which are analogous to the Plemeli formulas whose direct value 
is determined by an integral which only converges in the sense 
of the principal value: 

«(()y)= f ( ft p/).f/>(ilf, Q0)doM^ lim  JJ  &(.!/).0(M, Qo)dox 

hold (0(Q0, e) is a 2G neighborhood of the point Q0 on 0). 

When the point QCZV is sufficiently far from the surface 

0, R -* - r_, according to (1.33) and (1.37), we have (e0 = r^/r-J 

iun A^^Tisjr^w1^-4"^"^1'^^^0" 
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which is the displacement vector on Q under the action of the 
force applied at the coordinate origin which is given by the 
integral of the density a(M) on 0. 

o 
The second potential vanishes not slower than r» , as Q - Q^, 

and it may be treated as the displacencut formed by a 

system of forces distributed over the surface 0 with the 
principal vector equal to zero. 

Integral Equations.  In the first boundary value problem 
the displacement vector u(Q) which takes on a given value 
v(Qft) on the surface 0 (the volume V. in the interior problem 

and the "cavity" in the exterior problem) Is sought in the form 
of the second potential in the theory of elasticity with the 
unknown density b (M): 

«(Q) - it (<?) - JJ i> (M)-1'» (^ Q) d'>M- (1.41) 

In the case of the exterior problem, this representation 
presupposes that u(Qm) has the order rl^.  The principal vector of 

CO WJ 

forces which must be distributed on the surface 0 of the "cavity" 
in order that it have points is the displacement vector 
v(Q0) which must be equal to zero.  Therefore, the solution 

of the first external boundary value problem in the form (1.41) 
may only exist in the special case when v(Q0) is given.  In 

the general case, the solution will be represented by the sum of 
(1.41) and the potential of the simple layer (the solution of 
the Robin elastoplastic problem) . 

The integral equations for the interior (i) and exterior 
(e) problem are obtained from specifying (1.41) by a transition 
to the limit  lim «((?)-*• ((Jo)  with the aid of the Plemfelt formulas 

^o   
(1.40): 

I'*' ...\l> (<?o)- JJ h {M)'<i> (Mt Q0) doM = -f (Qo), (1'42) 

(1.43) 
I<f' ... 1 ft (Q0)-}- J J ft (M).<fi (M, Q0) doM = i' (Qo). 
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It is easily verified, on the basis of (1.30) and (1.36) 
for 6(Q) = 1/2 that when b(M) is given in the form of a displace- 
ment of a solid 

b* (M) = r0 + w x rM = »'o -f w x »'oo + w x ^       d •44) 

it is the solution of the homogeneous equation corresponding to 
(1.43) 

Il.f) ...{''* ^ = JJ ''* W'4*(M' ^ d0"^ 0-       (1.45) 

Also b(M) = - b (M) is a solution of equation (1.42) when the 
surface 0 is displaced as a solid «     The entire volume V. 

is also displaced as a solid     which follows from (1.41) and 
(1.36) for 6(Q) = 1. 

In the second boundary value problem the forces F = (n-f)« 

are given on 0 and the displacement vector is sought in the 
form of the first potential 

u (9) - { J " (■!/)• ^ (^. Q) do,t. (1.46) 
o 

Using   (1.34)   after  the  (nontrivial)   transformations which 
were omitted here,  we obtain the integral  equations 

11'«' ...±aiQu) + \l<i>{Qn.V)-<>(V)ilov = r{Qo)^(iiQ-t)o, (1 47) 

FI<e' ... 1«(()0)_ j j 0{Qn, M).a ßl) dou~ - I''{Qo)^{nQ-t)o, (1 _ 48) 

where nQ is the outer normal to V. . 
vj i 
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It was shown above that the Integrals in the vector equa- 
tions (1.42)-(1.43), (1.47)~(1.48) are discussed in the sense 
of their principal values. These are singular systems of 
equations.  The difficulty connected with the subsequent dis- 
cussion consists of proving the applicability to them of the 
Fredholm theorems and alternatives (for u and v which ensure 
a positive potential energy of the deformations), see B. D. 
Kupradze (1963, 1968) and also S. G. Mikhlin (1962). 

We will rewrite the equations that were obtained in the 
sequence^: 

j.i) .      1 ft (Q0) _ (( ft (.1/) ■ <}> (M, Qo) doM = - r (Qo). 
o 

1I«'> ... i o ((?0) - J J * (<?o, M) ■ a (M) do.st = - F {Qo); 

(1.49) 

P' ... i- ft {Qo) t- JJ 6 {M)'<f> {M, Qo) doM = i« {Qo), 
o 

IIli' ... ja{Qü)-^0{Qo, M)-a {M)doM~F {Qo); 

(1.50) 

(I(i)     II(e))   and   (jCe)^   u^1))  are coupled pairs. 

form 
The corresponding homogeneous equations are written in the 

W,  I^ ••• 4 & (Co) - ^ Jj & (A/) • * iM, Qo) doM = 0, (1.51) 

III", II(U
0 i..^a{Qo)'-k^{Qo,M)-aiM)doM^0, (1.52) 

T^  N. Kinosita and T. Mura (1956) also obtained the integral 
equations for the first and second boundary value problems 
in the form given here, but they did not pay attention to 
the difficulty that was pointed out. 
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where X = 1 for I^i) , II^e) and X = - 1 for I^e), UQ^ . 

Existence and Uniqueness of the solution of Problems I 
(?) 

and II  .  It is sufficient to verify that X = 1 is not an 
eigenvalue of the homogeneous equation HQ  (hence, also, 

the coupled equation I« )•  It is proved that the assumption 

that a solution of 11^ ' exists which is different from the 

trivial solution (a(M) / 0) is inconsistent with the requirement 
that the specific potential energy of the deformation be positive. 
According to the Fredholm theorem, the existence   and uniqueness 
of the solutions of the nonhomogeneous equations II(e) and l(i) 
follow for an arbitrarily given F(Q0) in the first set of 

equations and v(Q0) in the second set. 

Second Interior Boundary Value Problem II   .  The 

equation 1^  which is coupled with HQ  has the nontrivial 

o U<^ solution (1.44).  Therefore, also II.: ' has a nontrivial solu- 

tion and, according to a theorem of Fredholm, the nonhomogeneous 
equation II(^ can only have a solution when its free term 
F(Q0) is orthogonal to (1.44): 

J J (»'o + w X rQ) ■ F {Q) düw = iv J J /•' iQ) rf^ -f o) • J j rQ >'. t (Q) doq = 0. 

Since v0 and uu are arbitrary,   the principal  vector and the 
principal moment of  the surface forces vanish.     When this  is 
satisfied,the solution of problem 11(1)   is determined with 
an accuracy up to the  term involving the displacement of  the 
solid ,   the solution of  the coupled equation  lAe)• 

Roben's Electrostatic Problem.  The determination of the 
potential  in the field surrounding the closed conductive surface 
from a given charge  on  it  is known as  the Roben electrostatic 
problem.     In the theory of elasticity,   the term was  introduced 
by V.  D.  Kupradze   (1963),   a stressed state  in an unbounded 
elastic medium is sought when the displacement 

"*i «>) = "n - w ■  I'Q. (1.53) 
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is imparted to the solid sealed in it. The solution of 
the problem is sought in the form of a potential for a simple 
lay^r 

n'(Q).^H»(M)-Ü{M,Q)doit, (1.54) 

and it is proved that in this case the solution of the problem 

11,5:  must be taken as the density vector a (M) where 
0 F(Qn) = a  (Qn) (this follows immediately from the integral «(T 
II^)   —    0 equation IIV y).  Thus, a (Q0) determines the distribution 

of the displaced solid     on the surface 0 through the reaction 
of the medium on it.  We will denote by 
k        K+3 
a (Q-) and a (Qn) the distribution on 0 of these forces, caused u u k 
by the unit force V  = i. acting on the body along the axis i. , 

K+3   K r     K 

and, the corresponding unit moment n = i. .  Suppose next that u = i 

r+3 , v 
u  = i x uu is a system of singular solutions of 1^  .  With this 

notation 

h     r 
a-HcloQ-^.6kr     (A-, r=l, 2, ..., (i/. (1.55) 

This defines the system of singular solutions of the integral 
equation IlA1' which are orthonorraal to the system of singular 

solutions *0 iK 
(e) First Exterior Boundary Value Problem (I   ).  The problem 

has a solution if the free term in the equation I(e) is orthog- 
onal to the singular solution a0(M0) of the problem HA^ : 

l\r{Qo)-n'>(Qa)doQ^0. (1.56) 
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This condition is due not to the problem but to the 
representation adopted for u(Q) in the form of the second po- 
tential.  The vector 

>'*(Qo)  ---*'((?„)-S DrM, 
r-1 

(1.57) 

is introduced in the discussion and the constants D are deter- r 
mined in such a way that the orthogonality condition (1.56) is 
satisfied for this vector.  According to (1.55), we have 

Jj ♦'♦{<?u)-i((y^vu-Jj '•((?„)•« (<?uW%-^-0  (A-=l. ..., 0). 

Now, taking 

h   1 *(/ 

h    I   O 

(1.58) 

we obtain 

r* (Q,.)       r (Qo) - ("o - w X rQo  ). (1.59) 

Problem I   with the three terms equal to v  (Q0) has a solution 
__ # 

which is determined for QCZ V by the vector u (Q) .  The Roben 

problem in the form (1.54) is solved from the displacement 
vn + x x r0 determined in accordance with (1.58) and the 

(e) unknown solution for problem I   is represented as the sum 
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In  the books of B.   D.   Kuparadze   (1963,   1968)   integral 
equations  and existence  problems  for  the solutions  are  con- 
sidered not only  for   problems of  statics but also  for  the 
steady  state oscillations  of an elastic medium.     A  number of 
other boundary value problems are also considered,   for aniso- 
tropic and inhomogeneous  media,   thermal elastic  problems, 
problems  for a bounded volume  and an  infinite medium with 
several   "cavities" are also discussed.    A number  of difficulties 
connected with the singularity of  the  integral equations 
considered are overcome  and conceptually simple   (but  not  simple 
to apply)   numerical methods are  proposed for the  solution of 
these  equations   (B.  D.   Kupradze,   1964,   1967). 

The  integral  equation  for  problem I was  considered  in 
1907  by G.   Laurichella  and D.   I.   Sherman  (1962)   generalized 
the solution to  the case  of  an elastic body of  finite volume 
with several  "holes". 

This  survey  does not   include  the approximate  solution 
methods  based on  the application of variational  principals 
(the Ritz-Timoshenko method and  the Galerkin    and Kantorovich 
method).     The manner  in which  they are applied in  practice 
is  described in the monograph of L.   S.  Lebenzon   (1951).     A  large 
number of  studies  is devoted to the study of  the  convergence 
of  variational methods and  to error estimates   (in a  number  of 
cases  two  sided)   of  the approximate solutions   (S.   G.   Mikhlin, 
M.   G.   Sloboyanskiy). 

§2.     Three-Dimensional  Problems  in the Theory  of Elasticity 

A  systemmatic study  of  three-dimensional problems  in  the 
theory  of  elasticity was  undertaken by B.   G.   Galerkin.     Using 
the  representation  for  the  general   integral  of  the  equations 
of  elasticity theory  found by him  in terms  of three  biharmonic 
functions   (1930)   and using  series,   he developed,   starting  in 
the  early 30^ a method  for  calculating  thick plates which 
assume  that  the conditions  for arbitrary loads at   the ends and 
the  integral conditions  on  the side surface were  satisfied. 
It was he who studied rectangular,   circular,   sectional,   and 
triangular plates   (1931,   1932).     In 1931 Galerkin constructed 
a  solution for the equilibrium problem of a  layer subjected to 
the action of a normal  load.     With the aid of series,   containing 
Bessel  and Hankel  functions,   Gal  erkin considered  the problem 
of   the  equilibrium of a  hollow  cylinder and its  parts   (1933), 
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and later obtained particular solutions for the problem of an 
axisymmetric deformation of a hollow sphere (1942) . 

After these studies, the work of G. N. Maslov (1938) 
appeared in which the thermoelastic equilibrium of a thick 
plate, a hollow cylinder and sphere under the action of a 
stationary thermal flux are considered. 

The extension of the Busslnesk problem to the halfspace 
is given by V. G. Korotkin (1938) who investigated the case 
when a load is appliedto a rectangle, according to a constant 
and variable linear law.  Problems for the halfspace when the 
displacements are given on the boundary, and also the case of 
adjoint halfspaceS;were considered by D. I. Sherman (1943, 
1945).  A solution with a singularity of the "center" type 
at some point of the halfspace was obtained by V. K. Fedyan 
(1965). 

Lately studies have been published which consider the 
torsicnof a halfspace  (N. A. Rostovtsev, 1955; B. L. Mintsberg, 
1957) and an elastic layer (Ya. S. Ufland , 1959).  The case 
of the torsion of a multilayer medium (base) was discussed by 
V. I. Petrishin (1965), and the torsion of a two-layer medium 
was studied by D. V. Grilitskiy (1961). 

Problems of the Bussinesk type for an anisotropic medium 
were considered by V. A. Sveklo (1964).  Studies appeared which 
discussed the behavior of a  halfspace consisting of the 
nonhomogeneous medium:  S. G. Lekhnitskiy (1962) studied a 
halfplane and wedges with variable elasticity moduli, L. N. 
Ter-Mkrtich'yan (1961) considered three-dimensional problems 
for a nonhomogeneous medium (the Bussinesk problem for a 
symmetrically loaded cylinder) . A more general form of the 
nonhomogeneous halfspace and halfplane were studied by N. A. 
Rostovtsev (1964), the Bussinesk problem for a special type of 
linearly deformed continuous medium was formulated and solved 
by A. I. Vinogradov (1966). 

The thermoelastic problem for a halfspace bordering on 
a medium whose temperature is given by a Gaussian distribution 
was considered by I. B. Kill (1966). 

Using Fourier integrals, G. S. Shapiro (1942, 1944) 
studied the equilibrium of an elastic layer and solved the 
problem of the transfer of pressure distributed over the area 
of a circle through the layer on a rock foundation.  He studied, 
together with D. Yu. Eisenberg (1950) the transfer of pressure 
through a layer with a circular opening. The transfer of 
pressure through a layer on an elastic foundation with complete 
adhesion of the layer and foundation was studied by R. M. 
Rappoport (1948). 
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The flexure of a thick plate due to a harmonic load on the surface 
was studied by S. G. Gutman (1940).  He also obtained the solu- 
tion of the problem of the floxuxß  of a thick plate under a 
natural weight (1941). Later problems of the flexure of 
thick plates were studied by many authors (S. A. Alekseyev, 
1946, B. R. Bloch, 1954, M. I. Guseyan-Zade, 1956, V. K. 
Prokopov, 1963). 

In 1942 A. R. Lur'e proposed a new symbolic method the 
solution of the equilibrium problem of an elastic layer and a 
thick plate based on representing the solution of the equations 
of the three-dimensional elasticity theory problem in the form 
of entire transcendental functions of the two-dimensional 
Laplace operator. This representation made it possible to 
simplify operations on power series which were written compactly 
with the aid of symbolic operators, and in addition 
it led naturally to a new class of solutions which made it 
possible to satisfy more accurately the boundary conditions 
on the lateral surface of the plate. These solutions were c*lled 
by Lur'e  "homogeneous," since they satisfy the condition for 
the absence of a load at the ends of the plate. 

Lur'e's  method as applied to the theory of plates was 
later used by Ye. M. Krug (1955), R. G. Teregulov (1961), 
T. T. Khachaturyan (1963), U. K. Nigul (1963).  In the monograph 
of V. A. Agarev (1963) the domain of applicability of the symbolic 
method is extended to the theory of plates, and a further 
application of the symbolic method to the theory of plates 
in combination with the minimum potential energy principl* is 
given by B. K. Prokopov (1965) .  In the work of S. G. 
Lekhnitskiy (1959, 1962), the symbolic method is used in . 
the discussion of the equilibrium of a transverse Isotropie 
layer and a thick plate.  The same author also obtained the 
corresponding homogeneous solution.  P. F. Nedorezov (1964) 
solved, using the symbolic method, the problem of the torsion 
of a hollow multilayer cylinder. 

Using the symbolic representation of the solutions, it 
was easily established (A. R. Lur'e  1955) that in an unbounded 
plate (jz | < h) the components 0,0,1  of the tensor of 

thermal stresses are different from zero. They are expressed in 
terms of the function M (x, y, z), which plays a role similar 
to that of the Eyre function in the plane problem.  The function 
M is determined from quadratures according to the given law 
for the stationary temperature distribution. 
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S. S. Dymakov (1966) solved with the aid of the Fourier 
transform the problem of the equilibrium of an elastic layer. 
This approach also enabled the author to obtain asymptotic 
formulas for the solution.  For a layer for which the displace- 
ments on its boundaries are given (the second fundamental 
problem) a solution in a series was obtained by M. D. Martynenko 
(1964).  The action of a concentrated force inside the layer 
was considered by 0. Ya. Shekhter and 0. Ye. Prikhodchenko 
(1964).  In particular, these authors obtained the solution of 
the problem of the action of a vertical force inside a layer 
on a rock base. The case of a layer of variable thickness and 
a circular plate of variable thickness under an axisymmetric 
load was analyzed by I. I. Semenova (1965). 

The equilibrium of a circular thick plate under a uniformly 
distributed load was studied with the aid of homogeneous solu- 
tions by G. N. Bukharinov (1952), who applied P. F. Papkovich's 
generalizedorthogonality relation (1940). This relation was 
derived by Papkovich for the boundary conditions for functions 
of the homogeneous solutions which corresponded to the vanishing 
of the functions themselves and their first derivatives on the 
parallel side of the strip.  A rigorous foundation for the 
Papkovich method was later given by G. A. Grinberg  (1953). 
The equilibrium of a circular plate under the action of an 
arbitrary axisymmetric load was investigated with the aid 
of homogeneous solutions by V. K. Prokopov (1958).  The axi- 
symmetric flegure of a circular plate in a very general formula- 
tion was studied by B. L. Abramyan and A. A. Babloyan (1958) . 
An exact solution of the problem of equilibrium of a plate fixed 
on the lateral surface was obtained by V. T. Grinchenko and 
A. F. Ulitko (1963) with the aid of an infinite 
system of equations. Analogous results were obtained by G. 
N. Valov (1962). Certain special cases of the axisymmetric 
torsion of thick plates were studied by N. D. Glazunova (1963). 
A. A. Babloyan (1964) studied a non-axisymmetric load on 
a circular plate when the displacements are given on the lateral 
surface (the solution was represented in double series, whose 
coefficients were found from infinite systems) . 

An infinite thick plate with a circular opening was con- 
sidered in the study of 0. K. Aksentyan (1965) . Using 
homogeneous solutions it was possible to solve the problem of 
the concentration of stresses near the opening by reducing the 
problem to an infinite system of equations for the coefficients 
of the homogeneous solutions.  M. Abenova (1965) reduced a 
similar problem to integral equations of the Fredholm type. 
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The nonstatlonary problem of thermoelastlc (quasi- 
elastic) equilibrium of a thick plate was discussed by A. A. 
Sheveled (1965).  R. M. Rappoport (1962) obtained approximate 
homogeneous solutions for a thick plate which were constructed 
on the assumption of the absence of a transverse deformation. 
The last assumption leads to orthogonal eigenfunctions. 

The elastic equilibrium of an infinite cylinder was 
studied by many authors. The axisymmetric problem of 
the action of normal pressure on a hollow cylinder applied on 
a sector of the lateral surface was considered in 1943 by 
G. S. Shapiro.  He obtained a solution for this problem with 
the aid of Fourier-Bessel integrals (this solution was also 
obtained later by V. N. Popov, 1956).  Homogeneous solutions 
for a solid and hollow cylinder with an axisymmetric (Reforma- 
tion were studied by V. K. Prokopov (1949, 1950).  The axi- 
symmetric problem for an infinite solid cylinder under 
normal loads on the lateral surface was studied in 1953 by 
A. I. Lur'e.  The solution of this problem represented in the 
form of Fourier integrals is expressed, using contour integra- 
tion, in terms of functions which correspond to the homogeneous 
solutions of the problem of the cylinder.  The solution of a 
girdled cylinder is obtained by passing tö the limit. 
The case of a tangential load, and also the case of the 
flexure of an infinite cylinder by surface forces were studied 
using the same method in the articles of P. Z. Livschits (1960, 
1963, 1964). 

The complex loading of an infinite cylinder on its lateral 
surface, when the load can be represented by a Fourier Integral 
with respect to the axial coordinate and a Fourier series in 
terms of the angle was studied by K. V. Solyanik-Krass (1960). 
He also considered the more genera?, problem of the equilibrium 
of a body of revolution, when the trigonometric functions of 
the meridional angle can be isolated in the form of individual 
factors in the solution (1958).  For a hollow cylinder, 
he investigated (1965) the effect of a load distributed on 
the lateral surfaces in the direction of the angle cp in an 
arbitrary mannerj which represented a polynomial in the coordinate 
of the z axis (at the ends the integral conditions were satis- 
fied) . 

The mixed axisymmetric problem for an infinite solid 
or hollow cylinder was considered in the articles of B. I. Kogan, 
A. F.Khrustalev, F. A. Vaynshteyn (1958, 1959, 1963).  The 
Loew stress function was constructed by them in the form of a 
contour integral containing appropriately selected functions 
depending on the parameters of the homogeneous solutions for 
the cylinder.  The study of P. I. Kogan, A. F. Khrustalev, 
(1959) used the method of coupled integral equations. 
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The equilibrium of a solid and hollow finite cylinder 
In the axlsynunetrio case was studied with the aid of 
homogeneous solutions by V. K. Prokopov (1950, 1958).  G. N. 
Bukharlnov (1956) reduced the solution of the problem of an 
axisymmetric deformation of a solid cylinder of finite 
length to finding an additional function for which an integr 
differential equation is set up.  In recent years, many studies 
appeared which are devoted to the axisymmetric equilibrium 
problem of a solid cylinder of finite length, in which the 
solution of the problem is reduced to infinite systems of 
linear algebraic equations (B. L. Abramyan, 1954; G. M. Valov, 
1962; V. A. Likhachev, 1965).  The compression of a circular 
cylinder was studied by G. M. Valov (1961) and Ye, P. 
Miroshnichenko (1957).  The equilibrium of a revolving cylinder 
was studied by V. T. Grinchenko (1964), who also gave a very 
comprehensive analysis of all aspects under which the boundary 
conditions in the axisymmetric problem lor a semi-infinite 
cylinder are satisfied (1965).  The axisymmetric deforma- 
tion of a cylinder of finite length made from a transversal- 
Isotropic material was studied by A. A. Babloyan (1961). 

In some cases, it is possible to satisfy all boundary 
value conditions in the equilibrium problem of a cylinder of 
finite length without having to solve infinite systems (see 
B. L. Abramyan, 1958; G. M. Valov, 1957, 1958). 

The complexity of satisfying simultaneously all boundn_ 
ary  conditions on the surfaces of the cylinder made it 
necessary to seek approximate methods for the solution of the 
problem.  Thus, S. I. Trenin (1952) represented the stressed 
state in terms of two tensors:  the principal and correction 
tensor, where the latter does not yield stresses on the lateral 
surface (homogeneous solutions), and his parameters are deter- 
mined energetically.  The more general (not axisymmetric) 
problem of a hollow cylinder was studied in an analogous manner 
by V. I. lonov (1957).  Ya. S. Shein (1962) gave the con- 
struction of the correction tensor in first approximation« 

The nonsymmetric deformation of a thick-walled cylinddr 
was studied with the aid of series containing Bessel and 
McDonald functions in the work of I. I. Smolovlk and A. N. 
Shchepetev (1961) and in a number of studies of V. S. Sumtsov 
(1957-1959).  A rigorous satisfaction of the boundary condi- 
tions in the general case of a hollow cylinder under a load, 
leading to infinite systems was obtained by E. N. Bayda. 
(1959, 1960). 
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The articles of A. L. Kvitki (1959) are devoted to the 
development of techniques which can be used to reduce the 
study of the axisynunetric deformation of a thick-walled 
cylinder to computers (1959). 

The symbolic method of A. I. Lur'e as applied to solid 
and hollow cylinders mainly under an axisymmetric load, 
was used by F. A. Gokhbaum (1964) 

An approximate method for calculating hollow (and 
solid cylinders) under an axisymmetric load) was proposed 
by V. L. Biderman (1946, 1950), who represented the tangential 
stress in the form of a sum of the products of the axial and 
radial functions.  Biderman, using appropriate functions of 
the radius, for the axial functions derived ordinary 
differential equations which followed from minimum potential 
energy theory, and  contained in the right members functions 
of the normal loads applied along the level surfaces of the 
cylinder.  The method was subsequently extended to the case 
when tangential forces are present by V. G. Gorskiy (1963). 

Another approximate method for calculating hollow cylinders, 
under a normal load to the lateral surface was proposed by 
S. V. Boyarshlnov (1953), who proposed to use for the displace- 
ments expressions which are a generalization of those used in 
the theory of thin elastic shells.  An original method of 
successive approximations as applied to the equilibrium problem 
of a cylinder wars developed by F. M. Detlnko (1953), who con- 
structed a solution in a power series in powers of a small 
parameter (Polsson ratio) . 

The stationary thermoelastic equilibrium problem of a 
hollow cylinder (in the axisymmetric case) was first 
studied by P. M. Oglbalov (1954), and then by Yu. N. ShevchenKo 
(1958) who took into account the change in the elasticity 
modulus of the material along the axis of the cylinder.  A. 
N. Podgornyy (1965) took into account the effect of the end 
of the cylinder and also of centrifugal forces.  An approximate 
solution was obtained for the problem using the Lagrange 
varlational principle.  P. I. Yermakov (1961) and V. A. 
Shachnev (1962) considered the stationary thermoelastic problem 
for a solid cylinder of finite length during its axi- 
symmetric deformation.  In the first study the conditions at 
the ends were satisfied approximately, in accordance with the Biderman 
method, and in the second study the solution of the problem 
was reduced to the solution of an integrodlfferential equation. 
The stationary thermoelastic problem for an infinite cylinder 
with several "holes" was formulated by A. S. Kosmodamianskiy 
(1962).  The temperature field and the thermoelastic state are 
determined by the Bubnov-Galerkin method. 
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The nonstationary thermoelastic  problem for a hollow 
rotating cylinder was studied by Yu.   N.  Shevchenko  (1961) 
who satisfied   approximately  the  conditioos at  the end with 
the aid of  the Caatigllano varlatioaal method.   A.  A.   Shevelev 
(1966)   solved  the  thermoelastic problem for an infinite cylinder, 
where the  temperature of  the surrounding medium varies according 
to an exponential  law which  is a  function of  time.     He deter- 
mined the relation for  the maximum thermal  stresses as func- 
tions of  the  heating parameters,   which makes it possible  to 
formulate  the optimal problem.    A.   I.   Uzdalev  (1962)   studied 
the nonstationary plane axisymmetric   thermal elastic 
problem for solid and hollow cylinders from an anisotropic 
material. 

Homogeneous  solutions for a  hollow sphere in the case of 
an   axisymmetric deformation were obtained in 1943 by A.   I. 
Lur'e.       Using  these solutions,   it was possible  to solve  the 
problem for  a hollow sphere out  by a  conical surface with 
vertex at  the center of the sphere at one or both of  its poles. 
Lur'e also estimated the accuracy of   the solutions which were 
based on applying  the kinematic Kirchoff-Loev/ hypotheses  to 
a spherical  shell. 

The equilibrium problem of a hollow sphere for an arbitrary 
deformation was solved by A.   I.   Lur'e     (1953)  with the aid of 
the general  P.   F.   Papkovlch solution.     Selecting appropriately 
the  fourth function and applying  harmonic vectors,   the author 
was able  to reduce considerably  the  number of computations 
both in the  case  of  the second fundamental  problem and in the 
case of  the  first  fundamental problem for  a hollow sphere. 
The results  of  the studies of Lur'e     in three-dimensional prob- 
lems of  the   theory of elasticity are  collected in his monograph 
(1955) ,  which also contains solutions  of  the problem of a  heavy 
and rotating^sphere with a spherical  cavity  in an infinite 
medium,    and other problems.^ 

I"!!     The solution of the stressed state problem in an unbounded 
elastic medium near an ellipsoidal cavity for given stresses 
at  infinity published in the monograph of A.   I.  Lur'e 
(1952)   is  incorrect.    A  solution for more general condi- 
tions at  infinity is given by Yu.  N.   Podil'chuk  (1964). 
Later,   A.   R.   Lur'e    (1967)   considered  the stressed state 
formed  in an elastic medium when  the  rigid ellipsoid 
embedded  in  it receives successive displacements and 
rotation   (Bobbins    elastostatic  problem). 
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Another method of solving  the problem of a sphere based 
on the connection between the plane and axisymmetrlc 
problems  in  the  theory of elasticity,   using  the theory of 
analytic  functions was proposed by A.   Ya.   Aleksandrov and 
Yu.   I.   Solov'ev   (1962). 

Compression,   pure flexure,   and the flexing of a hollow 
sphere cut at  the poles by conical  surfaces by a force,  were 
considered by K.   V.   Solyanik-Krass   (1962).     The stressed state 
in a spherical  strip under the action of  internal pressure was 
studied by A.   F.   Ulitko  (1962). 

The problem of  the stressed state  of a  heavy elastic 
block near a  vertical cylindrical cavity was  first formulated 
by A.  N.  Dinnik   (1925)   in connection with the problem of the 
pressure of  rocks.     Subsequently,   this  problem was studied  in 
greater detail  by S.   G.  Lekhnitskiy (1938,   1940)  including a 
transversal-isotropic halfspace.       The  effect of a cylindrical 
cavity on the stress concentration for a volumetric stressed 
state was studied by S.  G.  Gutman   (1960).     G.  G.  Chankvetadze 
(1956,   1959)   took  into account  the action of external forces 
applied on a  sector of the surface of  the cylindrical cavity 
in an elastic  halfspace.     In other studies  he considered an 
elastic halfspace    with    spherical   (1955)   and cylindrical 
(1956)   cavities.     His method is based on  introducing in the 
axisymmetrlc problem complex variables and applying the 
methods of N.   I.   Muskheleshvili.     The concentration of stresses 
near a spherical  cavity in a heavy halfspace was studied by 
N.   P.   Fleyshman and V.  N.  Gnatykiv   (1954). 

R.   N.   Kaufman   (1958)  considered the problem of an elastic 
layer containing a  spherical cavity.     Her method of solution 
consists of  translating the coordinate  origin of the spherical 
system and of   introducing translation formulas for the spheri- 
cal  functions.     In another article,   Kaufman   (1964)  solved, 
using the  same methods,   the equilibrium problem of a sphere with 
a spherical cavity which was not concentric.     P.   I.  Perlin 
(1964)   constructed a solution of  the second  fundamental equili- 
brium problem for a  hollow ellipsoid of  rotation whose  internal 
surface  is a  sphere.     Yu.  N.   Podll'chuk   (1965)  studied in 
spherical  coordinates the Interior and   exterior problem for 
an ellipsoid of  rotation.     In the  three studies that were 
mentioned here,   the solutions, are constructed in series,  whose 
coefficients must  be  determined from an  infinite system of 
equations. 
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V.   N.   Zharkov   (1963)   formulated the  important problem 
of thermoelastic stresses in a   gravitating sphere with an 
arbitrary temperature  distribution.     The  stationary thermo- 
elastic problem  for a hollow sphere whose modulus  is a power 
function of  the  radius was solved by  I.   N.   Danilova  (1962). 

The equilibrium problem of a cone   (solid and hollow) 
under the action of an   axisymmetric  load was considered 
in 1944 by G.   S.   Shapiro.    He obtained polynomial 
solutions for the problem for certain types of surface loads 
and for  the effect of  the gravitational  force.    This problem 
was investigated,using a different method,by A.  Ya.  Aleksandrov 
(1962) .     The action of a concentrated moment applied to the 
vertex of a cone was studied by A.   F.  Ulitko   (1960).     In 
another study   (1960),   the general  equilibrium problem of an 
elastic cone  is  solved with the aid of  the Mellin transforma- 
tion.     The elastic equilibrium of an     axisymmetric loaded 
cone was also considered by K.   B.   Solyanik-Krass  (1955,   1962) 
and the solution  is  represented by him  in  the form of a Courier 
integral.     V.   N.   lonov  (1965)  gave the solution of the problem 
of the   axisymmetric deformation of a conical body where 
the satisfaction of  the boundary conditions  leads  to an infinite 
system of equations  for the constants of  the correction tensor. 
The torsion of  a cone  through a surface  load was considered 
by K.   V.   Solyanik -Krass   (1965)   and P.   F.   Nedorezov  (1965). 

The problem of  the equilibrium of a  heavy paraboloid 
of revolution was solved by G.   S.   Shapiro   (1950).    The expan- 
sion and flexure  of a paraboloid and also   the expansion 
and flexure of a  body containing a paraboloid cavity were 
considered by K.   V.   Solyanik-Krass   (1958) ,   and in another 
study   (1958)   he  investigated the compression of an ellipsoid 
and a hyperboloid with a single cavity.     N.   N.  Lebedev and 
I.  P.   Skal'skaya   (1966)   investigated the  torsion of a hyper- 
boloid. 

A.   F.   Zakharevich  (1952)   studied the equilibrium of a 
hollow g  torus with  the aid of  toroidal  coordinates.    V.  A. 
Levshin   (1962)   constructed the solution of  the problem of a 
hollow  torus subjected to external and  internal pressure. 
The torsion of a  torus of a circular cross section in con- 
nection with the calculation of helical  springs with small 
windings was studied in detail by K.   V.   Solyanik-Krass   (1950). 
The solution obtained by him with the aid of bipolar coordinates 
contains series   including hyperbolic,   trigonometric functions 
and associated Legendre functions. 
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The expansion of  a circular beam containing a small 
ellipsoidal cavity was  investigated by K.   V.   Solyanik-Krass 
(1958)   using ellipsoidal coordinates.     N.   A.   Forsman  (1958) 
solved the problem of concentrated stresses  in an expanded 
beam with a circular cross section at  the  spot where the thick- 
ness varied.     The solution was obtained in  the form of definite 
integrals which were  then evaluated approximately. 

The studies  of  I.   I.  Vorovich and his students devoted 
to the construction of asymptotic solutions  for plates and 
shells began  to appear  in 1963.    The basis  for  the construction 
were the homogeneous solutions corresponding to the three di- 
mensional elasticity  theory problem.     Infinite systems of 
equations were set up using the variational   Lagrange method 
for the contour values of the unknown  functions.    The solutions 
of the systems were constructed in power series  in powers 
of the thickness  of  the plate or shell.     The problem of  the 
flexure of  the plate was investigated using  this method  (0.   K. 
Aksentlyan and I.   I.   Vorovic^ 1963,   1964)   and also the   axi- 
symmetric problem of  the equilibrium of a cylindrical and 
spherical  shell   (N.  A.   Bazarenko and I.   I.   Vorovich,   1965, 
T.  V.  Vilenskaya and  I.   I.  Vorovich,   1966). 

The classical Lame problem for  the equilibrium of a rectangular 
parallelepiped loaded on all edges by given forces attracted 
the attention of many  investigators,   starting with the work 
of If.  M.  Filonenko-Borodlch.     In the  first article along these 
lines,   published in  1946,  M.  M.  Filonenko-Borodich introduced 
into the discussion cosine binomials,   a sequence of complete 
non-orthogonal  functions on the Interval  on which they are 
definediwhlch vanish together with their  first derivatives 
at  the endpolnts  of  the  Interval. 

In the subsequent  studies of M.  M.   Filonenko-Borodlch 
the cosine binomials were used for the approximate solution of 
the elastic equilibrium problem of a rectangular parallelepiped. 
The idea of solving  the problem consisted of  decomposing the 
stress  tensor  into  two parts:     the principal   tensor    satisfying 
the equilibrium equations and the   conditions on  the edges of  the para- 
lelloplped      and  the correction tensor constructed with the 
aid of  the cosine binomials and their derivatives.    The latter 
tensor,   which satisfies  the equilibrium conditions and zero boundary 
conditions   contains arbitrary constants which are determined by  the 
variational methods of Castlgllano.     M.   M.   Filonenko-Borodlch  (1951) 
studied the problem of  the compression of  a paralleloplped under equa] 
loads oriented in  the  opposite directions and he considered 
the thermoelastic equilibrium of a  parallelopiped.    Later    (1953) 
he extended the method to the case of cylindrical coordinates. 
The concept of  the selection of the principal  tensor for a 
parallelopiped under an arbitrary  load is  due  to him  (1957) . 
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Ye. S. Kononenko applied the method of M. M. Filonenko- 
Borotich to the study of the problem of the flexure of a 
thick plate (1953) and the compression of a parallelopiped^between 
rigid plates (1954) .  The case of an oblique parallelepiped 
was studied by A. I. Meshkov (1961). V. N. Spikhtarenko (1959) 
used this method in calculations of a plate on an elastic.parallele- 
piped. 

Another approach to the solution of the equilibrium problems 
of an elastic parallelopiped was developed in the studies 
of B. A. Bondarenko (1961, 1963) who used polynomial solutions 
of the equations of elasticity theory in the displacements ih which 
the arbitrary coefficients in these solutions were determined 
using the method of least squares. 

Certain special problems for a rectangle whose solutions 
could be obtained in series were considered by G. M. Valov 
(1959), A. P. Melkonyan (1960), A. A. Babloyan and S. M. Saakyan 
(1964). 

The two articles of E. N. Baydy (1958, 1959) are devoted 
to the study of the equilibrium problem of a parallelopiped, 
using infinite systems.  More detailed studies of the solution 
of the equilibrium problem using infinite systems for various 
types of loads and various boundary conditions were carried 
out in the work of G. M. Valov (1957-1959, 1966), S. M. 
Saakyan (1965), A. A. Baloyan and S. M. Saakyan (1964). This 
series of studies also considers the first and second funda- 
mental problems as well as certain mixed and contact problems, 
and special attention is given to the proof of regularity (or 
quasi-regularity) of the infinite systems that are obtained. 

§3.  The St.-Venant and Almanzi Problems 

It is known that the problem of the free torsion of a 
prismatic rod reduces to the harmonic problem for which 
solution methods have been developed. The early studies on 
the theory of the torsion of rods are devoted to the solution 
of the problem in closed form or with the aid of trigonometric 
series. These studies include the articles of B. G. Galerkin 
in which the torsion of a prism with a cross section in the form 
of an equilateral triangle with equal edges is studied (1919) 
and a prism of a parabolic cross section (1924) .  A number of 
problems of the torsion of cross sections bounded by algebraic 
curves were solved in the studies of D. Yu. Panov (1935, 1937) 
and D. L. Gavry (1939) and later V. I. Bloch (1959) studied 
the torsion of parabolic prisms.  The effect of a radial crack 
during the torsion of a solid and hollow rod was studied in 
the articles of A. Sh. Lokshin (1928) and V. N. Lyskov (1930). 
The monograph of A. N. Dinnik, published in 1938 is devoted 
to various methods for the solution of the problem of the theory 
of torsion. 
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In 1925 G.  V. Kolosov and D. L. Gavra applied for the 
first time in the solution of the torsion problem complex 
variables.  They considered the problem of the torsion of 
a non-circular sector with a small central angle.  The funda- 
mental results along these lines were obtained by M. I. 
Muskhelishvili (1929) who has shown that the problem of the 
torsion of simply- and doubly-connected regions reduces to 
finding a function of a complex variable which maps the 
given region, respectively, onto a circle or onto a circular ring. 
The methods of the theory of functions of a complex variable 
were applied in the solution of the problem of torsion of 
prismatic bars of various cross sections in the articles of 
D. V. Avazashvili (1940), A. V. Batyrev (1953), Kb. M. Mushtari 
(1938), A. G. Ugodchikov (1956), et_al. 

R. 0. Kuz'min (1946) used conformal mapping in a different 
form. He obtained a convenient formula for the direct calcula- 
tion of the rigidity of a  twisted beam.  This formula made 
it possible to calculate the rigidity for cross sections : . 
whose contour contains the corner points.  Another study in 
which the complex variable method is extended to the case of a 
countour goes back to P. P. Kufarev (1937) .  The method of 
Kufarev was used by O. I. Babakova (1954) in the study of the 
torsion of a Z-shaped cross section. 

Using the method of conformal mapping,Ye. A. Shiryayev 
considered the torsion of a shaft with a radial and also with 
a longitudinal arc-like crack (1956).  In another study 
Shiryayev investigated the torsion of a circular shaft with 
two cuts of different depths, along the diameter of the cross 
section (1958).  The torsion of shafts with circular grooves 
was studied by A. A. Skorobogat'ko (1958, 1962).  The torsion 
of hollow airfoils  with the aid of the theory of functions of 
a complex variable was studied by G. A. Tirskiy (1959). 

The approximate solution of the problem of the torsion 
of angular, cross-shaped and T-shaped cross sections with 
the aid of conformal mapping was obtained by B. I. Makhovikov 
(1957). A. G. Ugodchikov (1956) who developed approximate 
conformal mapping methods, studied the torsion of a circular 
shaft with teeth and a shaft in the form of a pipe with 
internal teeth (slotted coupling). 

A new method for solving the problem of the torsion and 
flexure of hollow rods was proposed in 1948 by D. I. Sherman. 
The method consists of introducing an auxiliary function, which 
is related on one of the edges of the doubly-connected region 
to the complex torsion function by a certain relation. 
This auxiliary function satisfies the Fredholm integral 
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equation, whose solution reduces to the solution of a quasi- 
regular (and sometime regular) infinite system of linear 
algebraic equations.  Sherman solved, using this method, a num- 
ber of concrete problems for the torsion of doubly-connected 
cross sections bounded by circles and ellipses (1950, 1951, 
1953). 

Additional theoretical studies along these lines, which 
led to the solution of a number of problems of the torsion of 
hollow rods were carried out by D. I. Sherman (1953, 1955, 
1959), R. D. Stepanov and D. I. Sherman (1952), Yu. A. Amenzade 
(1958) . The method of Sherman was used in the studies of 
L, K. Kapanyan (1952, 1957), V. I. Yakovyeva (1956) and also 
by I. A. Bakhtiyarov (1959) for the torsion of a box-shaped 
rod, by M. U. Ismailov (1959) in the problem of the torsion 
of a circular shaft with a triangular prismatic cavity and 
by M. I. Nayman  (1958) in the problem of the torsion of a 
circular shaft with a polygonal coaxial cavity. 

The exact solution of the problem of the torsion and 
flexure of prismatic rods with a cross section bounded by 
the two arcs of intersecting circles (raoonshaped) was obtained 
in 1949 using bipolar coordinates by Ya. S. Uflyand. A 
detailed presentation of the solutions of the flexure and tor- 
sions problems for regions in which the solution can be ob- 
tained in bipolar coordinates is given in his monograph 
(1950). Later, V. I. Bloch (1956) published an article in 
which he applied bipolar coordinates to the problem of the 
torsion of a rectangle formed by the arcs of orthogonal circles. 
The torsion of a rod with a lenticular cross section was con- 
sidered by Ya. I. Burak and M. Ya. Leonov (1960).  S. A. 
Gridnev applied polar coordinates to the study of the 
torsion of a doubly connected cross section (1963) and reduced 
the solution of this problem to a infinite system of equations. 

K. A. Kitover (1954) obtained the solution 
of the problem for a sector of a ring.  For a number of 
regions, formed by the arcs of ellipses and hyperbolas, the 
exact solution of the problem of the torsion in elliptic coor- 
dinates were obtained by V. I. Bloch (1964). 

Approximate methods for the solution of the problem of the 
torsion and flexure of beams were developed by D. Yu. Panov 
(1934, 1936, 1938), who developed the method of a small 
parameter and the graphical method, and studied the torsion 
of nearly-prismatic rocks and the torsion and flexure of 
a helical profile.  He also studied, using finite differences, 
the problem of a double- T-shaped beam and shaft with a 
key joint. 
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In the studies of M. G. Slobodyanskiy on the theory of 
torsion (1939, 1940, 1951) the method of finite differences is 
applied only to one variable, and the solution of the problem 
is reduced to a system of ordinary differential equations. 
This method enabled Slobodyanskiy, and then also A. M. Pivovarov 
(1953) to calculate the coefficients of the concentrations in 
the angles of inlet of the polygonal cross sections.  An 
analogous technique was used by V. M. Fadeyeva (1949) in the 
solution of the problem of the torsion of a rod with a trape- 
zoidal cross section.  The problem of the torsion of a standard 
section was studied by B. N. Lopovok (1952).  B. A. Rozovskaya 
(1940) studied, using the method of finite differences, the 
torsion of rolled section (angle, channel, and H-beam). 
In another study of this author (1956) and also in the study 
of Ye. P.  Obolenskiy (1959) , this method was also used to 
solve the problem of the torsion of a shaft with slits. 

Among other approximate methods for solving problems 
of the flexure and torsion of prismatic beams, the most im- 
portant ones are variational methods which became very popular 
primarily due to the work of L. S. Leybenzon and L. V. 
Kantorovich.  In the first study of L. S. Leybenzon on the 
theory of torsion which was published in 1924, the problem of 
the torsion of a helical profile was studied.  In this study 
an approximate expression was obtained for the torsional rigidity of 
the profile of the helix .  V. P. Vepchinkin (1926) 
and D. Yu. Panovich (1937) made this formula more precise. 

The study of L. S. Leybenzon (1935) on the theory of 
the flexure of prismatic rods in which he developed in detail 
an effective variational method for the solution of this problem 
and investigated the problem of determining the flexural center 
of the profile and in which he also obtained for the first time the 
theorem on the cinulation of the tangential stress during bending 
is of great importance.  A further extension of the problem 
of finding the flexural center was obtained in the studies of 
N. V. Zvolinskiy (1936), D. Yu. Panov (1934) and G. Z. Proktor 
(1936). 

The results of the studies of L. S. Leybenzon on the 
theory of the flexure and torsion of beams over many years and 
also on the development of effective techniques for the 
solution of the problems are summarized in his monograph 
(1943). 
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In 1933 L. V. Kantorovich proposed a new approximate 
method for the solution of the problem of finding the minimum of a 
double integral, according to which the problem reduces to 
ordinary differential equations (the convergence of the 
method was studied by him later, 1941).  In another joint 
article with P. V. Frumkin (1937), Kantorovich applied suc- 
cessfully his method to the solution of the problem of the 
torsion of a rectangular and standard symmetric and asymmetric 
cross section.  T. K. Chepova (1937) studied the torsion of an 
equilateral trapezoid, and also of  straight and oblique 
symmetric angles, V. L. Biderman (1950) studied the torsion 
of a trapezoid and an equilateral triangle, A. P. Karpov (1955) 
developed the solution for the problem of the torsion of a 
rhombus. 

A. I. Lur'e  (1939) applied the Kantorovich method to 
the problem of the flexure and torsion of a symmetric profile 
bounded by parallel and algebraic curves described 
by two-term equations. The problems of the torsion of triangles, 
right angled and equilateral triangles,were studied in detail 
by N. 0. Gulkanyan (1953).  By introducing a special type of 
non-orthogonal coordinates, N. Kh. Arutyunyan was able to solve 
the problem of the torsion of an angle and a channel (1942) 
and in another study to obtain the solution of the torsion problem 
for an elliptic annular section which was Isotropie or had an 
anisotropy of a special type (1947). 

Another approximate method for solving the problem of the 
torsion of a prismatic rod based on point interpolation was 
developed by L. A. Galin (1939).  An approximate solution of 
the problem of the torsion of a rod with a T-shaped cross 
section was obtained by B. A. Bondarenko with the aid of the 
alternating Schwarz method (1956). 

M. Ya. Leonov proposed an approximate method for deter- 
mining the rigidity of thin-walled profiles based on the 
introduction of "mean lines" of equal tangential stresses 
(1956, 1957).  While developing this method, M. Ya. Leonov 
(1957, 1960), G. S. Kit (1958, 1960) and others, obtained 
approximate solutions for a number of simply and doubly 
connected regions. 

G. K. Galimkhanov (1955, 1956) developed an approximate 
solution for the problem of the torsion of flat key- 
way shafts whose cross section consists of arcs of the 
principal circle and chords.  The constants in his solution 
are determined from the condition that the integrals of the 
functions of the stresses along rectilinear and arc heel, sectors of 
the contour vanish. Approximate methods were also used to 
study torsion problems by G. M. Sarkisov and Yu. A. Amenzad« 
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(1952) for regular polygonal profiles, by L. M. Mitel'man 
(1955^ 1959) for a square, semicircle, equilateral triangle 
and an airfoil, and by L. V. Mikhaylov (1962) for a 
rod with a semicircular cross section weakened by a 
circular cylindrical cavity. 

The problem of the constrained torsion of a prismatic 
rod of arbitrary cross section was considered by V. K. 
Prokopov (1959) and for a symmetric profile by G. P. Geondzhyan 
(1959).  In both studies, it was assumed that the normal stresses 
in the constrained cross section were proportional to the plane 
displacement of the free torsion and applying the variational 
method for solving the problem, elliptical and rectangular 
cross sections were studied as examples. The constrained 
torsion of a rod with a rectangular cross section was also 
studied by V. P. Netrebko (1956), who used the M. M. Filonenko- 
Borodich method which he combined with the Castigliano 
principle.  In another study, Netrebko (1954), using the same 
method, studied the problem of the torsion of a right-angled 
prism for a given distribution of tangential stresses at its 
ends.  The constrained torsion of a hollow elliptical cylinder 
was studied by S. A. Gridnev (1963). 

An exact solution of the problem of the flexing of a 
prismatic rod with a cross-section in the form of an annular 
sector was given in 1927 by B. G. Galerkin, who expressed the 
function of the stresses in the form of a series.  In this 
study Galerkin studied, with the aid of curvilinear coordinates, 
the symmetric flexure of a floating core whose profile was 
bounded by parabolic arcs, parabolas and a line, arcs of an 
ellipse and of a hyperbola. The last case was also studied 
in the article of V. S. Tonoyan (1961). 

D. Z. Avazashvili (1940) constructed the solution of the 
problem of the flexure of a cantiliver prismatic rod with the 
aid of functions of a complex variable. Through a conformal 
mapping onto an annular region, B. A. Obodovskiy obtained the 
solution of the problem of the flexing of a hollow beam with 
an elliptical cross section by a force (1960).  L. K. Kapanyan 
(1956) used an approximate conformal mapping in the solution 
of the problem of the flexure for a circle with "a curvilinear 
square" cutout. V. N. Rakivnenko (1962) studied the bending 
of a circular cylinder with two cavities with cross sections 
in the form of a square. 
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The symmetric bending of a rod whose cross section con- 
sisted of rectangular regions was studied by A. S. Bozhenko 
(1948).  In another article (1954) he studied the asymmetric 
bending of rolled sections (channel, I-beam, T-shaped beam) 
and he determined the position of the flexing center.  N. 0. 
Gulkanyan (1955) determined the coordinates of the center of 
flexure of an equilateral trapezoid and an equilateral triangle 
using an approximate method.  The solution of the problem of 
the flexure of a prism with a cross section in the form of an 
equilateral triangle in closed form was obtained by N. I. Popov 
(1954) . 

D. I. Sherman extended his auxiliary function method to 
the problem of the flexure of hollow prismatic rods, and, 
in particular, he studied the case of an elliptical bar weakened 
by a circular cylindrical cavity (1953). A number of problems 
of the flexure of hollow rods were studied, using the Sherman 
method by Yu. A. Amenzade, a circle with elliptic (1955) and 
curvilinear (1956) holes, a circle with a non-coaxial elliptical 
hole (1958) and others.  A cross section in the form of an 
ellipse with two circular holes was studied by A. S. Kosmo- 
damianskiy (1960). 

In 1948 N. Kh. Arutyunyan proposed a new method for solving 
the problem of the torsion of rods with polygonal cross sec- 
tions, which is based essentially on the introduction of 
auxiliary functions that are used to obtain the stress func- 
tions and a subsequent reduction of the solution of the problem 
to complete regular infinite systems of linear algebraic equa- 
tions.  Later, he studied the problem of the torsion of an 
angle (1949).  Using the Arutyunyan method, problems of the 
torsion of rods with various types of cross sections were studied. 
A cross section in the form of a trapezoid was studied by B. L. 
Abramyan and N. Kh. Arutyunyan (1951), a channel and a T-shape 
by Ye. A. Aleksandryan and N. O. Gulkanyan (1953), a cross- 
shaped section and a cylinder with wedge grooves by B. L. 
Abramyan (1949, 1959), a box-shaped profile with a crack by 
A. A. Babloyan (1958).  Ye. A. Aleksandryan (1952) studied the 
cases of an H-bar, a square and rectangle with a cut-off angle 
and of a parallelogram with a 45° angle. A triangular cross 
section and a rectangle with cracks was studied by N. O. 
Gulkanyan (1952, 1953), a section with teeth was studied by 
B. L. Abramyan and V. S. Tonoyan (1959). 

The torsion (and flexure) of prismatic beams with a hollow 
rectangular cross section was studied in 1950 by B. L. 
Abramyan.  In another article he studied the case of a circular 
shaft with longitudinal cavities (1959). The torsion of a 
circular rod with longitudinal recesses or teeth with a central 
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circular cavity were studied in the article of B. L. Abramyan 
and A. A. Babloyan (1960).  Using the same method of auxiliary 
functions and reduction to infinite systems, N. 0. Gulkanyan 
(1960) studied the torsion of a rectangular prism with two 
symmetric rectangular cavities.  V. S. Tonoyan (1961) obtained 
the solution of the problem of the torsion of a hollow ellipti- 
cal bar with longitudinal grooves. A detailed presentation 
of the method of auxiliary functions as applied to the torsion 
of prismatic solid and hollow bars as well as ther.problem of the 
torsion of composite bars and bodies of rotation can be found 
in the monograph of N. Kh. Arutyunyan and B. L. Abramyan (1963). 

The application of the method of auxiliary functions to 
the problem of the flexure of bars with a polygonal profile 
and the reduction of the problem to infinite systems was given 
in the article of N. Kh. Arutyunyan and N. 0. Gulkanyan (1954). 
Exact values of the coordinates of the flexural center for a 
T-shape, a channel and an angle were obtained in this article. 
N. 0. Gulkanyan (1959) also obtained the coordinates of the 
flexural center for a rectangular section with an asymmetric 
rectangular cutout. 

Using the Arutyunyan method, M. S. Sarkisyan (1956) 
studied the problem of the flexure of an H-bar, Ye. Ya. Kirin 
(1963) studied a cross-shaped cross section, V. S. Tonoyan 
(1961) a cross section in the shape of an ellipse with recesses. 
The studies of A. A. Babloyan (1960, 1961) are devoted to the 
problem of the flexure of a circular shaft with longitudinal 
lateral recesses, a sectional prism with a tooth and a shaft 
with teeth. 

N. I. Muskhelishvili (1932) developed the theory of the 
torsion and flexure of beams consisting of various materials 
welded along the lateral surfaces.  The solution of this 
problem for the case of torsion of two welded beams from 
different materials is presented in his well-known monograph 
(second issue,  1935).  I. N. Vekua and A. K. Rukhadze (1933) 
studied the torsion of a circular cylinder reinforced with a 
circular bar, and also the torsion and flexure of a composite 
beam whose cross section had the shape of confocal ellips«». 
A. K. Rukhadze (1935) studied the flexure and torsion of a 
composite profile formed by epitrochoids. The case of demar- 
cation by hypotrochoids was studied by G. A. Kutateladze (1956), 
The torsion of a composite rod with cross section in the shape 
of two circular segments welded along a chord was studied 
using bipolar coordinates by V. M. Dzyuba and A. Sh. Asaturyan 
(1965) . 
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The general problem of the torsion of a composite rod 
was studied in the article of K. S. Chobanyan (1955), in 
which he presents the theorem on the circulation of the tan- 
gential stress and studies the problem of the torsion of a 
composite rod with a T-shaped cross section. In other 
studies of K. S. Chobanyan, the flexure of a composite rod 
is discussed (1956), and the coordinates of the flexural center 
and the torsion of a composite shaft with a variable diameter 
are determined (1958).  The torsion of a multiply-connected 
composite rod was investigated by I. V. Sukharevskiy (1954). 
A. G. Ugodchikov (1964) considered the torsion and flexure of 
composite rods inserted one in another.  The solution of the 
problem is obtained with the aid of conformal mapping and a 
reduction to infinite systems of linear equations. 

The problems of the torsion and flexure of prismatic 
anisotropic beams were formulated in the studies of S. G. 
Lekhnitskiy (1938, 1942, 1956).  The results of these studies 
and the solutions of a number of other problems in the theory 
of elasticity of anisotropic media are summarized in his mono- 
graph (1950).  The torsion of anisotropic prisms with the aid 
of the generalized membrane analogy was studied even earlier 
by A. Sh. Lokshin (1927), who studied sections in the shape 
of a circle, ellipse, rectangle and parallelogram.  Certain 
problem in the flexure and torsion of anisotropic prisms 
using the variational method were investigated by L. S. Leybenzon 
(1940).  The article of V. D. Vantorin (1939) ic  devoted to 
the approximate solution of the torsion of au anisotropic 
beam in an airfoil.  Certain problems ii» the torsion of an 
anisotropic beam were studied using an approximate methci by 
N. Kh. Arutyunyan (1947, 1948).  The torsion of an anisotropic 
cylinder was studied by B. L. Abramyan and A. A. Babloyan (1958). 

The flexure and torsion of an anisotropic beam with a 
cross section in the shape of a parallelogram was studied by 
R. S. Minasyan (1938).  A number of problems on the flexure of 
anisotropic beams were studied by V. S. Sarkisyan (1961, 1962), 
using the method of power series expansion in powers of a small 
parameter.  Solving the problem of the flexure of an anisotropic 
beam with the aid of conformal mapping, Ye. Ye. Antonov (1964) 
expressed the coordinates of the flexural center in terms of 
the coefficients of the mapping function.  A. S. Kosmodataianskiy 
(1962)  presented an approximate solution for the problem of 
the torsion and flexure of orthotropic beams with an elliptic 
profile with cavities with an elliptical cross section. 
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Problems of the torsion of a  nonhomogeneous prismatic 
beam were solved by B. L. Abramyan (1951) and A. Kh. Manukyan 
(1952).  V. S. Sarklsyan and V. V. Mikayelyan (1965) developed 
formulas for the coordinates of the flexural center for a 
composite anlsotroplc beam.  Recently solutions of flexing 
problems (P. 0. Galfayan, 1960, 1961) and the torsion (A. A. 
Babloyan, 1959, P. 0. Galfayan and K. S. Chobanyan, 1959) 
appeared for bodies with thin reinforcing coatings.  S. G. 
Lekhnitskiy studied certain problems in the torsion of bodies 
with a variable modulus of elasticity (1964, 1965). 

In 1950 M. E. Herman derived formulas for the coordinates 
of the flexural center that were expressed in terms of 
functions that solved the torsion problem for a beam with the 
same cross section.  Later, V. V. Novozhilov (1957) obtained 
an analogous result, and V. K. Prokopov (1960) generalized 
these formulas to the case of a multiply -connected cross sec- 
tion of the flexed beam.  The further study of the problem 
mentioned above is due to G. Yu. Dzhanelidze (1963).  In the 
case of an anlsotroplc beam, analogous results were obtained 
by V. S. Sarklsyan (1961, 1966).  K. S. Chobanyan and V. V. 
Mikajelyan (1963) derived formulas for the coordinates of the 
flexural center of a beam with a cross section consisting of 
different materials. 

The torsion of bodies of rotation was studied using 
various methods.  A. Sh. Lokshin (1923) studied, with the aid 
of curvilinear coordinates, the torsion of a cone, an 
ellipsoid, a hyperboloid and a paraboloid of rotation.  In 
a more general formulation, the problem of the torsion of 
bodies of revolution in curvilinear coordinates was studied.by 
B. A. Sokolov (1944).  This author also studied the problem 
of applying the Ritz method to the problem of the torsion of 
a stepped shaft (1939).  The torsion of a hollow truncated 
cone was studied by N. Ya. Panarin (1937). 

K. V. Solyanik-Krassa used curvilinear coordinates to 
solve the problem of the torsion of shafts with cavities (1947) 
or circular recesses (1948, 1955).  The results of these studies 
are also available in his monograph "The Torsion of Shafts 
with a Variable Cross Section" (1949).  Using the same method, 
he studied a number of problems in the flexure of a beam with 
variable cross sections, in particular, he investigated the 
stresr concentration near a spherical cavity in a cylindrical 
beair (1955) . 
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An estimate of the stress concentration during the torsion 
of a circular shaft with a circular recess based on the applica- 
tion of the theory of functions of a complex variable combined 
with the variational method was obtained by G. N. Polozhiy 
(1957). The problem of the concentration of stresses during 
torsion where the diameter of the shaft changes sharply using 
the method of grids,was studied by B. A. Rozovskaya (1956, 
1958).  The torsion of a pipe with a yariaMe cross section was 
discussed by Yu. A. Amenzade and G. M. Sarkisov (1959). 

The torsion of anisotropic bodies of rotation was in- 
vestigated in the studies of S. G. Lekhnitskiy (1940), D. V. 
Grilitskiy (1957), B. L. Abramyan and A. A. Babloyan (1958). 

The action of forces distributed along the lateral surface 
of a circular shaft leading to its twisting was studied by 
N. V. Zvolinskiy and P. M. Riz (1939), who studied a uniformly 
and linearly distributed load. A more general case of a 
prismatic beam was studied by L. S. Gil'man and S. S. 
Golushkevich (1943) and P. M. Riz (1940).  The problem of the 
torsion of an elastic ring by couples uniformly distributed 
along its axis was studied in the article of L. S. Gil'man 
(1937). The case of uniformly distributed twisting tangential 
forces along the generatrices of the cylinder was studied by 
S. A. Bakanov (1930). The torsion of solid and hollow circular 
cylinders with axisymmptric distributed surface loads were 
studied with the aid of Fourier-Bessel series by V. I. Bloch 
(1954, 1956).  P. Z. Livshitz (1962) returned to the same problem 
for a solid cylinder. The problem of the torsion of an aniso- 
tropic beam by forces distributed along its lateral surface 
was solved by S. G. Lekhnitskiy (1961). 

The torsion of a stepped shaft with axisymmetric loads applied 
to its lateral and end surfaces was studied by B. L. Abramyan 
and M. M. Dzhrbashyan (1951), who reduced the solution of the 
problem to an infinite system of linear equations.  Using the 
same method, B. A. Kostandyan solved the problem of the tor- 
sion of a hollow stepped shaft (1956).  He also studied the 
torsion of a shaft with a circular rectangular-shaped recess 
(1954) and the torsion of a shaft with a disc slipped over it 
(1958).  The torsion of a conical beam and a cylindrical 
beam with a conical part were studied by B. L. Abramyan (1958, 
1960) and the torsion of a hollow composite halfsphere was 
studied by him jointly with N. 0. Gulkanyan (1961). 
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The problem of the equilibrium of an elastic prismatic 
beam under the action of forces applied to its ends which is 
free from loads on the lateral surfaces is known as the St.- 
Venant problem.  In linear elasticity theory, this problem is 
broken up naturally into two simple problem (expansion and 
pure flexure by couples), which are solved in an elementary 
way, and two more complex problem (torsion and bending by a 
force) which were discussed in detail above.  In nonlinear 
elasticity theory, the mutual effect exerted by various loads 
is essential.  It is necessary to take into account the secon- 
dary effects, whose study began in 1938, 1939 in the joint 
studies of N. V. Zvolinskiy and P. M. Rlz.  In the last study 
in this series of studies (1939) the torsion of an expanded 
beam was considered.  N. V. Zvolinskiy also studied the torsion 
of a beam expanded by body forces (1939).  The problem of the 
torsion of an expanded beam is the subject of the studies of 
P. M. Riz (1939) and A. K. Rukhadze (1941), who also considered 
the effect on the flexure of a beam by a couple, the bending 
from a transverse force (1947).  The secondary effects which 
occur during the expansion and flexure of composite bars were 
discussed in the study of A. Ya. Gorgidze and A. K. Rukhadze 
(1943).  These studies were made more precise and developed in 
the subsequent work of A. Ya. Gorgidze (1955, 1956), R. S. 
Minsyan (1957), A. K. Rukhadze (1954), and his joint studies 
with D. N. Dolidze (1957), V. Kh. Metsugov (1954, 1956). 
The method of a small parameter was used extensively in this 
series of studies. 

Problems of the deformations of slightly conical and 
naturally twisted beams occupied a considerable place in the 
studies of Soviet scientists.  Here the method of a small 
parameter also turned out to be very useful.  This method was 
applied for the first time by D. Yu. Panov to the solution 
of the problem of the torsion of a slightly conical beam (1938). 
Problems dealing with the expansion, torsion and flexure by 
couples of naturally twisted beams were studied by P. M. Riz 
(1939).  In a more general formulation, using a special system 
of non-orthogonal coordinates, the St.-Venant problem for a 
naturally twisted beam was solved by A. I. Lur'e and 
G. Yu. Dzhanelidze (1940). Later, G. Yu. Dzhanelidze extended 
this method to slightly conical beams (1947).  In Cartesian 
coordinates the flexure of a twisted beam by couples was in- 
vestigated by A. Ya. Gorgidze and A. K Rukhadze (1944) and 
the flexure by a transverse force by A. K. Rukhadze (1947). 
Subsequent studies complement these fundamental results, studv 
secondary effects in greater detail, complicate the load 
diagrams (A. Ya. Gorgidze, 1958, 1963), and examine the torsion 
of naturally twisted components (A. Ya. Gorgidze and V. Kh. 
Metsugov, 1957, A. K. Rukhdze, 1956, A. F. Sharangiya, 1955) 
and composite slightly conical beams (S. V. Berdzenishvill, 
1957). 
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The method of a small parameter was also successfully 
applied to the solution of the equilibrium problem of a beam 
with a slightly bent axis. Problems of this type were solved 
for the first time by P. M. Riz (1940, 1947) and by A. K. 
Rukhadze (1942).  Subsequently, expansion (R. S. Minasyan, 
1954), flexure by couples (A. K. Rukhadze, 1953) and flexure 
by a force (A. Ya. Gorgidze, 1956) were considered. 

The expansion and flexure of an anisotropic beam were 
studied in 1949 by S. G. Lekhnitskiy.  Later G. M. Khatiashvili 
studied a more complex problem, an anisotropic beam with a 
slightly bent axis (1965). He also studied the St.-Venant 
problem for composite nearly prismatic anisotropic bodies 
(1963) . 

The problem of the elastic equilibrium of a beam whose 
lateral surface is subjected to loads which are polynomial 
functions of the axial coordinate is known as the Almanzi 
problem.  A special case of this problem, when the lateral 
load is independent of the axial coordinate has already been 
studied by G. G. Mitchell.  In 1960. G. Yu. Dzhanelize 
published a general method for the solution of-the Almanzi 
problem in the stresses which reduces to the solution of a 
series of two dimensional problems which are related to one 
another by recurrence relations.  This method yielded a 
general method for solving the Mitchell-Almanzi problem and 
opened up the way for the application of methods from the theory 
of functions of a complex vairable.  A special case of the 
Mitchell problem when a uniformly distributed normal load 
is acting on the lateral surface of the beam was studied by 
A. L. Khasis (IP'SO).  He showed that a line of flexural centers 
exists which can be found by determining the harmonic torsion 
function for the St.-Venant problem.  For composite beams; 
the solutions of the St.-Venant problems were found. G. M. 
Khatiashvili (1953, 1955) obtained the solutions of the Mitchell 
and Almanzi problems for composite beams.  (A classification of and 
sequence in which the boundary value problems are solved which 
arise in connection with the Mitchell problem was given by 
A. I. Lur'e (1966) . 

The action of a lateral polynomial load on a transverse- 
isotropic cylinder leading to its torsion and to an axi- 
symmetric deformation were studied by S. G. Lekhnitskiy (1961). 
A. S. Kosmodamianskiy (1956, 1961) studied the Mitchell and 
Almanzi. problems for an anisotropic rod.  G. Yu. Dzhanelidze 
(1961) extended the method proposed by him for the solution of 
the Almanzi problem to the case of an ansiotropic beam.  This 
problem was studied in greater detail by G. M. Khatiashvili, 
who investigated the Mitchell problem for composite orthotropic 
and anisotropic beams (1962) and also generalized the 
Dzhanelidze problem to the case of the Almanzi problem for 
a composite orthotropic beam (1964). 
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§4.  Mixed Three-Dimenslonal Problems In the Statics 
of an Elastic Body 

By mixed boundary value problems in the mathematical 
theory of elasticity we usually aean elastic equilibrium 
problems when the lines which divide the boundary conditions 
of various types lie on the surface of the body.  If the 
surface of the elastic body under consideration consists of 
several smooth faces, two qualitatively fundamentally different 
variants of the mixed problems may occur. 

1) Within each face  the type of boundary condition 
does not change.  The simplest examples of such mixed problems 
are the equilibrium of an elastic layer for which the stresses 
are given on one face and the displacements on the other face 
and analogous problems for a wedge, a hollow cylinder, a cone, 
etc. The solution of the above-mentioned concrete problems is obtained 
using integral Fourier transforms, Hankel transforms, etc. 
As shown by G. Ya. Popov and N. A. Rostovtsev (1966), general 
problems of this type reduce in principle to infinite systems 
of equations. These problems are not touched on in this survey. 

2) When at least on one of the faces of the body, 
there is a dividing line for boundary conditions of various 
types. Problems of this type reduce, generally, to integral 
equations which we will analyze here in greater detail, since 
these served as the impetus for the development, mainly in 
the USSR, of various methods used in the solution of many 
important mixed problems in potential theory and the theory 
of elasticity. A number of applied problems, in particular 
contact problems and certain problems dealing with stress con- 
centrations, are mixed problems of this type. 

At the present time contact problems for an elastic half- 
space deformed by a rigid die, a circular or elliptical die 
in the plane have been studied in greatest detail. Such a 
problem was discussed for the first time already by Zh. 
Bussineskiy for the case of the axial indentation of a circular 
cylinder without friction. This category of problems includes 
the classical problem of G. Hertz of the compression of elastic 
bodies when the contact area is an ellipse.  Soviet scientists 
contributed considerably to the further development of this 
class of problems.  A. N. Dinnik (1909) and N. M. Belyaev 
(1924) calculated stresses in bodies making contact along a 
circular or elliptical area (see also M. S. Krolevets, 1966). 
A considerable number of important studies on contact problems 
were made in the SO's and 40's. V. A. Abramov (1939 and 
A. I. Lur'e  (1940) obtained the solution for contact problems 
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for a non-centrally loaded circular and elliptical die. 
Important results along these lines were obtained by I. Ya. 
Shtayerraan (1939, 1941, 1943), who studied various cases 
of the contact of bodies of revolution without assuming a 
small contact surface, and who also investigated for the first 
time the problem of a closely fitting die.  In 1941 A. I. 
Lur'e, using the Lame function studied in detail certain con- 
tact problems and then developed a natural unique approach to 
the Hertz problem and the problem of a closely fitting die. 
In the study of M. Ya. Leonov (1939, 1940) and L. A. Galin 
(1946, 1947), a number of contact problems for the halfspace 
are further generalized.  A great deal of information both of 
an original and survey character dealing with the problems 
that were discussed is contained in the monographs of I. Ya. 
Shtayerman (1949), L. A. Galin (1953), A. I. Lur'e (1955), 
as well as in the survey articles of D. I. Sherman (1950) 
and G. S. Shapiro (1950), which contain many references not 
included in this survey. 

In recent years, the development of methods based on the 
use of the general equations of the theory of elasticity, in 
particular the Papkovich-Neuber function, made it possible to 
reduce many general mixed problems in elastic equilibrium of 
the halfspace to certain classes of mixed problems in the 
theory of the potential. An important example in this class of 
problem is the case when on the entire boundary of the half- 
space the tangential stresses are given in some finite region 
S and on the boundary plane z = 0, the normal displacement 
u = f(x, y) is known and in the interior of S (in the domain 
S ) the normal stress a    = o(x, y) is given.  Thus, for the 

contact problem without friction and additional loads, we 
have a 2 0 and the function f is determined by the shape of 
the base of the die.  It is essential that mixed problems of 
the type that was mentioned can ultimately be reduced to finding 
a single harmonic function defined on S, whose normal derivative 
is known in the domain S'.  Soviet scientists developed 
efficient methods for approaching such problems in the theory 
of the potential which can be used, in particular, to obtain 
exact solutions of certain contact problems and similar mixed 
problems. Some of the fundamental methods are:  the use of 
Spherical and ellipsoidal coordinates (A. I. Lur'e), the 
construction and use of Qreen's function (L. A. Galin, M. Ya. 
Leonov, 1953), the method of integral equations (I. Ya. Shtayerman, 
V. I. Mossakovskiy, 1953), the use of toroidal coordinates and 

-48- 

- -  mllmmm 



integral transformations (Ya. S. Uflyand, 1956, 1967), the 
method of complex potentials (N. A. Rostovtsev, 1953, 1957). 
Here, we deliberately refrain from mentioning the method of 
coupled integral equations developed successfully by J. N. 
Sneddon,1 since its effectiveness is essentially verified by 
solving more complex mixed problems which we will discuss 
later. 

The authors that were mentioned,as well as many other 
authors, developed in the last decades exhaustive solutions 
lor a number of new mixed problems in three-dimensional elasticity 
theory, including contact problems.  Thus, L. A. Galin (1947) 
and V. L. Rvachev (1959) considered the problem of the indenta- 
tion of a wedge-shaped die in the halfspace, the studies of N. A. 
Kil'chevskiy (1958, 1960) generalized the Hertz problem and 
pointed out the connection between the elastic contact problem 
and a certain extremum problem, V. L. Rvachev (1956, 1957) 
solved the problem of a strip and polygonal die and also dis- 
cussed the case of a die whose base was bounded by a second- 
order curve.  The studies of G. Ya. Popov (1961, 1963) deal with 
mixed problems for a circular contact region, and a die in the 
shape of a half plane and a quadrant. N. M. Borodachev (1962, 
1964, 1966) and A. F. Khrustalev (1965) studied a number of 
thermoelastic problems for the halfspace.  In particular, the 
complex problem of the action of a hollow circular cylinder on 
the halfspace, which is known in the literature as the annular 
die problem should be mentioned. The exact solution of this 
problem is connected with functions of an annulus with an oval 
cross section which have not been tabulated (see N. N, Lebedev, 
1937). Various approximate methods for solving this problem 
were proposed in the studies of A. Ya. Aleksandrov (.955). Yu. 
O. Arkad'eva (1962), V. S. Gubenko and V. I. Mossakovski 
(1960), K. I. Yegorov (1963), G. Ya. Popov (1967)   In recent 
years, still another approach to this and similar pr?'bl<,.i,s 
based on the use of coupled integral equations using the Moler- 
Fok transformation has been proposed (V. T. Grinchenko and A. 
F. Ulitko, 1963, A. A. Babloyan, 1964, A. N. Rukhove.s end Ya. 
S. Uflyand, 1965-1967), and also on the use of triple In egral 

11 t ;<>> equations^ (N. N. Borodachev and F. N. Borodacheva, 
The methods that were mentioned can be used to obtain goal 
approximations based on the numerical solution of Fredhol ■>. 
integral equations. 

T^     See,   for example,   his  "Fourier Transforms"   (1951,  Rust. or« 
translation:     Moscow,   1955),   "Mixed Boundary Value Pr'V^lems 
in Potential  Theory." 

2.     Triple integral  equations were investigated in  the studi«: 
of K    G.   Tranter   (Quart.  J.  Mech.  & Appl.   Math.,   1961, 
14:3,   283-293)   and G.   K.  Cook   (Quart.  J.   Mech.   & Appl. 
Math.,   1963,   16:2,   193-203;   1965,   18:1,   57-72). 
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A large number of studies dealing with mixed problems 
connected with problems in the flexure of beams and plates on 
an elastic base have been published in the Soviet literature. 
Here we will only mention the studies of A. G. Ishkova (1947) , 
M. Ya. Leonov (1939) and V. A. Pal'mov (1960), dealing with the 
flexure of a circular plate on an elastic halfspace, and 
also the monographs of M. I. Gorbunov-Posadov (1953) and 
B. G. Korenev (1954, 1960).  The results of the many studies 
along these lines and a large bibliography can be obtained by 
the reader in the survey article of A. G. Ishkova and B. G. 
Korenev (1966). 

Along with contact problems, the mixed problems in the 
theory of the potential for the halfspace that were considered 
above can be treated as problems in the deformation of an 
unbounded elastic body weakened by a plane crack occupying 
the region S (or S').  In fact, in the case when the edges of 
the crack are loaded symmetrically with respect to its plane, 
it suffices to consider the halfspace on the boundary of which 
in the region S (or S') the stresses are given and in its ex- 
terior there are no tangential stresses and no normal displace- 
ment.  In the case of an antisymmetric load, even for a cir- 
cular crack, certain additional difficulties arise which were 
solved in the articles of V. I. Mossakovskiy (1955) and Ya. 
S. Uflyand (1967).  In the last article, this problem was 
considered as a special case of the general mixed problem 
when the normal stress is given on the entire boundary of 
the halfspace, and in the region S (S') the tangential displace- 
ment is known, and the tangential stresses are given in the 
domain S' (S).  An interesting problem on the contact of two 
different media whose common boundary has a circular crack 
was solved by V. I. Mossakovskiy and M. T. Rybka  (1964), 
which generalizes the well-known Griffith-Sneddon criterion 
to the case of a nonhomogeneous body (see also the article of 
the same authors, 1965).  Among the studies dealing with 
the deformation of bodies with cracks, we also point out the 
interesting articles of V. T. Grinchenko and A. F. Ulitko 
(1965), V. M. Aleksandrov and B. I. Smetanin (1965), and also 
the study of Ya. S. Uflyand (1958) dealing with the problem of 
the equilibrium of a body with a plane semi-infinite cross 
section. 

In the majority of studies that were discussed connected 
with contact problems, it was assumed that there was no friction 
between the die and the elastic body. The second limiting 
case, when the die and the base adhere (this problem is a 
special case in the basic mixed problem of elasticity theory) 
is mathematically much more difficult.  In contrast to the simpler 
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mixed problems, in this case the problem reduces to finding two 
harmonic functions in the halfspace with boundary conditions 
of the first and second type which are not separated.  Such 
a problem was solved for the first time for a circular die 
by V. I. Mossakovskiy (1954) by reducing it to a plane problem 
for the linear conjugation of two analytic functions. 
Subsequently Ya. S. Uflyand (1954, 1967) obtained a direct 
solution for this problem using toroidal coordinates and the 
Meler-Fok integral transformation.  In the article of B. L. 
Abramyan, N. Kh. Arutyunyan and A. A. Babloyan (1966), another 
approach is taken to this problem which is based on using 
coupled integral equations.  The study of V. I. Mossakovskiy 
(1963) also deals with contact problems in the presence of 
adhesion. The solution of the fundamental mixed problem in 
the theory of elasticity for a halfspace with a rectangular 
boundary which separates the boundary conditions was obtained 
by Ya. S. Uflyand (1957) with the aid of the Kontorovich- 
Lebedev integral transformation. 

The behavior of the stresses near the boundary line of the 
die under adhesion conditions was studied in the article of 
G. N. Savin and V. L. Rvachev (1963). 

A natural generalization of the classical problem of the 
indentation of a rigid die in an elastic halfspace is the 
contact problem for an unbounded elastic layer.  These problems 
were studied intensely in the USSR in the 50's and in contrast 
to the case of the halfspace, here it was not possible to 
obtain exact solutions.  It was only possible to reduce the 
corresponding problems to integral equations. Here the first 
study was the article of B. I. Kogan (1954) in which an integral 
equation of the first kind was set up and solved numerically 
for the contact pressure between a circular die and a layer 
on the halfspace. A more efficient solution of a similar 
problem was obtained by N. N. Lebedev and Ya. S. Uflyand (1958) 
who studied the axial indentation of a circular rigid die in 
the plane in an elastic layer on a rigid base in the absence 
of friction. This problem was reduced to coupled integral 
equations of the form 

' \(t>(K)Ja(f-r)dk     fir)        (0<r<fl). 
n 

3D 

f }M> (X) J, (>.r) Y^— -0  (* <r < oo), 

!!(>.)■ 

}.h ~e -).h 

/./(   -cli /.hs\\ >.U' 

Key: a. 
b. 

cosh 
sinh 
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where a  is  the radius of  the die,   h  is the thickness,of  the 
layer,   f(r)   is a given function  related to the shape of  the 
base of  the die,   and  $(^)   is  the unknown quantity.     By re- 
presenting  the solution as  a quadrature of a new unknown 
function 

a 

0) (X) - [1 — ^ (X)l ((f (0 cos U dt 

the second equation is satisfied identically, and the first 
equation reduces to the Fredholm equation with a continuous 
symmetric kernel.  This method of solution can be used to 
carry out a number of numerical calculations, in particular, 
to find the relation between the displacements of the die and 
the axial force P with the aid of the simple formula 

P = 2n^U)Jt. 

K.   Ye.  Yegorov   (1960)   applied a similar method  tothe case 
of   the  non-axial  identation of a die.     In the article of V.   A. 
Pupyrev and Ya.  S.  Uflyand   (1960)  and in the monograph of the 
latter   (1967), a solution of  the general mixed problem for an 
elastic layer is obtained and the case of  the adhesion of a 
layer and the base  is also  discussed.     It  is important  to point 
out  that the method of coupled  integral equations made  it 
possible  to study effectively  the more complex   axisymmetric 
problem when the layer is  compressed by two dies with different 
radii   (Yu.   N.   Kuz'min and Ya.   S.  Uflyand, (1967)).     I.I. 
Vorovich and Yu.  A.   Ustinov (1959)   obtained a singular 
integral equation directly  for the  function  l(X.)  and developed 
an approximate method for  its solution in a series  expansion 
in powers  of a/h.    An analogous method was used by D. V. 
Grilitskiy  in the problem of the torsion of a multi-layer 
medium with the aid of a  die adhering to it    and also in a 
number of similar contact problems.     The method of  coupled 
integral equations enabled a number of authors  (see,   for example, 
G.   M.  Valov,   1964,   S.  M.   Kotlyar,   1964,  V.   I.  Dovnorovich,   1964) 
to solve various contact  problems for an elastic layer, 
including thermoelastic problems.     Contact and mixed problems 
for anisotropic bodies were  discussed by S.   G.  Lekhnitskiy 
(1950),  D.  V.  Grilitskiy and Ya.  M.   Kizyma  (1962,   1964),   and 
R.   Ya.   Suncheleyev   (1964,   1966). 
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A special efficient method for approaching contact problems 
where a die acts on an elastic layer based on a direct investi- 
gation of the integral equation for the pressure below the die 
was proposed by V. M. Aleksandrov and I. I. Vorovich (1960, 
1964).  The solution of the problem was obtained in the form 
of an expansion in the small parameter, the ratio of the 
characteristic dimension of the die to the thickness of the 
layer.  It is essential that effective results were obtained 
not only for a circular but also for an elliptical die in the 
plane and also for certain other differently shaped bases. 
The method that was mentioned was further developed in the 
studies of V. M. Aleksandrov (1963, 1964, 1967) and other 
students of I. I. Vorovich (see, for example, the dissertation 
of V. A. Babeshko, 1966).  At the present time it can be assumed 
to be one of the most effective methods for the solution of the 
class of contact problems under consideration for an arbitrary 
value of the ratio of the thickness of the layer to the charac- 
teristic dimension of the die. 

From among the studies dealing with more complex compact 
problems, we will mention the article of V. S. Gubenko (1960) 
in which the problem of the action of annular dies on an elastic 
layer is studied, and also the article of I. I. Vorovich and 
V. V. Kopasenko (1966) for the contact problem for a halfstrip. 

Problems of the stress concentration in an elastic layer 
weakened by coaxial circular cracks which are parallel to 
the boundaries of the layer can be successfully solved with the 
aid of coupled integral equations. The simplest problem of 
this type (Ya. S. Uflyand, 1959) is the equilibrium of an 
elastic layer which has in the middle plane one symmetrically 
loaded circular crack.  I. A. Markuzon (1963) studied this 
problem in connection with the problem of finding the dimensions 
of the equilibrium crack using the G. I. Barenblatt method. 

Among other studies dealing with the equilibrium of 
bodies with cracks and holes, we mention the articles of V. 
V. Panasyuk (1960), N. N. Lebedev and Ya. S. Uflyand (1960), 
Yu. N. Kuz'min and Ya. S. Uflyand (1965), Yu. N. Kuz'min 
(1966) and N. V. Pal'tsun (1967), and also the survey article 
of G. N. Savin, A. S. Kosmodamlanskly and A. N.  Guz' 
(1967). 

We will now discuss briefly contact problems dealing 
with the equilibrium of an infinite cylinder.  In the study 
of these problems, the most effective method is the method 
of coupled Integral equations which are related to the Fourier 
transform along the axial coordinate. A characteristic 
feature of this method is the fact that in the case of a 
semi-infinite contact region, these equations can be solved 
exactly using methods of the theory of functions of a complex 
variable which are based on the possibility of :fit*ctjQjring 
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the  analytic function which  Is defined on the strip.     The 
first study along these  lines was  the article of B.   I.  Kogan 
(1956)  which studied the   axisymmetric stressed state of   , 
an  infinite cylinder pressed without  friction into a semi- 
infinite  rigid ring.    Assuming that  in the contact  region 
the  constant radial  displacement   is given,   the problem re- 
duces to coupled equations  of  the  form 

OD 

n 

]   (^-2.-2v)/iü.,-/.ä/c(/.)-"0     ('<U,■ 

whose exact solution is obtained by constructing certain 
merophoric functions in the form of an infinite product.  In 
the later studies of B. I. Kogan, A. F. Khrustalev and F. A. 
Vayanshteyn (1958-1965) this method was applied to various 
mixed problems, both for a solid and a hollow cylinder, and 
also to the case of transverse anisotropy.  The method for 
the solution of such problems, which is based on reducing them 
to a Wiener-Hopf integral equation for the contact stresses, 
was developed by G. Ya. Popov (1964). He also obtained a 
solution of the contact problem for an infinite cylinder 
with two symmetric contact sectors.  We also point out the 
article of G. M. Valov (1966), in which the problem of the 
torsion of a hollow infinite cylinder is studied with the aid 
of coupled integral equations and trigonometric kernels. 

Very recently the domain of solvable contact problems 
was expanded considerably due to the development of the new 
apparatus of coupled series which is applied to mixed problems 
for an elastic sphere.1 By coupled series (or coupled equations 
with summations) is meant the system of equations 

The solution of certain mixed problems in the theory of 
the potential with the aid of the method of coupled series 
is presented in the second book by Ya. N. Sneddon that 
was mentioned above (see p. 49). 
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S VnAnKn (x) = /i (x)    (a <a: < c), 
n=0 

in which the coefficients A must be determined, where it is n 
assumed that the kernels K  (x)   form on the interval   (a,   b) 
a closed system and that  the  numbers  o   and  Yn are given. 
Using  these coupled series,   which contain series  in Legendre 
polynomials,   several  interesting problems related to  the 
deformation of an elastic sphere and also an ellipsoid of  ro- 
tation with mixed boundary conditions were solved in the 
articles of N.  Kh.  Arutyunyan,   B.   L.  Abramyan and A.   A. 
Babloyan   (1964,   1966) .    He also considered the axisymmetric 
compression of a sphere by  two symmetrically spaced equal 
rigid dies  on the assumption  that  no friction was present. 
It was possible to reduce  this problem to coupled series of 
the  type given above where K(x)  = P   (x),   ^ = n + i/2,   Y    = 
1  +  ß     (the quantities  ß- as     n -' ^ have the crrW 1/n), 
a =  -l,b = l.     If V(x)   denotes the value of  th* sum of the first 
paired series    for     x > c,   the solution reduces,  to   rhe  integral 
equation 

rw+iil-y^lrMSiiu)^*^ 

where 

S{l,y) = Y2^ MM|)cos[(n+i-)arccosy], 
n=o 

and  $(x)   is a known function.     Using a similar technique,   the 
solution of  the problem of  the torsion of an elastic  sphere by 
two symmetrically spaced equal dies adhering  to it was obtained, 
Using  the method of coupled series  in Legendre polynomials, 
the solutions of certain mixed problems connected with the com- 
pression and torsion of an elastic sphere and an elongated 
ellipsoid of rotation have also been solved.     Finally,   the 
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contact problem for the indentation of a rigid die in an 
elastic medium was studied in which the coupled series in 
Legendre polynomials were reduced to an infinite system of 
linear algebraic equations.  As an example, a sphere at rest 
was considered without friction on the semispherical groove 
which was loaded on the remaining part of the surface. 

Coupled series in Legendre polynomials can also be applied 
effectively with the aid of bispherical coordinates to the 
solution of the mixed problem of the torsion of a half space 
with a spherical inclusion (see A. N. Rukhovets and Ya. S. 
Uflyand, 1967). 

We also mention the interesting article of N. M. 
Borodachev (1967) in which coupled series in Bessel functions 
are used in the axisymraetric problem on the indentation of 
a circular die into the end of a semi-infinite cylinder. 

Another class of three-dimensional mixed problems in the 
theory of elasticity which underwent considerable development 
in the studies of Soviet scientists in recent years must also 
be mentioned.  These are contact problems for a linearly de- 
formed base and related problems connected with the action 
of a die on an inhomogeneous elastic halfspace.  The funda- 
mental studies here go back to B. G. Korenev (1954, 1957, 
1960).  Subsequently, these problems were studied by V. I. 
Mossakovskiy (1958), G. Ya. Popov (1959), A. F. Rakov and 
V. L. Rvachev (1961), N. A. Rostovtsev (1961, 1964) and many 
other authors. The most detailed information on these problems 
is available in the survey article of A. G. Ishkova and B. 
G. Korenev (1966). 

In conclusion we note that a considerable amount of 
information and a large bibliography on mixed three-dimensional 
problems in the theory of elasticity that were studied in re- 
cent years can be found in the surveys of D. I. Sherman (1962), 
B. L. Abramyan and A. Ya. Aleksandrov (1966), G. Ya. Popov 
and N. A. Rostovtsev (1966), N. A. Kil'chevskiy and E. N. 
Kostyuk (1966) and V. L. Rvachev (1967). 

§5.  Formulation and Methods for the Solution of Problems 
in Two-Dimensional Elasticity Theory 

One of the most important and best developed branches 
in the theory of elasticity at the present time in which the 
achievements of Soviet science are especially impressive is 
the so-called plane problem in the theory of elasticity.  The 
success in the development of plane problems is explained by 
using in the discussion the theory of analytic functions of 
a complex variable. The first basic results along these lines 
which are responsible for the contemporary form of plane 
theory as a whole were obtained in the fundamental studies of 
G. V. Kolosov and N. I. Muskhelishvili. 
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By a plane problem in the theory of elasticy is meant 
a plane deformation of an elastic medium which is parallel 
to a given plane (the deformation of a long cylinder with 
free bases), or its plane stressed state (deformation 
of the thin plate by forces in its plane) . The determination 
of the elastic equilibrium in these cases reduces to the 
solution of boundary value problems for the biharraonic 
equation.  Equilibrium problems of elastic plates subjected 
to a normal load are also reduced to the biharmonic equation. 
Plane problems and problems in the bending of plates and 
their mathematical formulation are very similar and the methods 
used for their solution are also similar.  Therefore, it is 
useful to consider together these two types of problems. 

5.1.  General Complex Representation of the 
Solution of the Plane Problem 

The fundamental relations for the plane problem in the 
notation of N. I. Muskhelishvili are assumed to be known.  The 
domain S, occupied by the elastic medium, is a connected 
region in the Oxy plane which is bounded by one or several 
closed contours which do not have common points L, ,  L0,   .   .   . L 

L j^, where the last includes all previous ones.  When there 

is no contour L  , we have an infinite region in the plane with 

"holes." Cases are also considered when among the contours L. 

are open contours of finite length or infinite ones (plane with 
cracks, halfplane with "holes," etc.).  It is assumed that no 
body forces are present. 

The stresses and displacements are expressed in terms of 
the complex Kolosov-Muskhelishvili potentials cp(z) , Hz), 
according to the formulas 

Yy-Xx-2iXy^2[lir W Tf Ul 
o 
^(«-u)-xrf (:)-:<('(:)-i|(:). 

(5.1) 

These formulas were derived for the first time by G. V. 
Kolosov in 1909 in his fundamental study, "An Application of the 
Theory of Functions of a Complex Variable to a Plane Problem 
in the Mathematical Theory of Elasticity." They were derived 
rigorously by N. I. Muskhelishvili (see his monograph "Certain 
Basic Problems in the Mathematical Theory of Elasticity," 
1933, 5th ed., 1966) . 
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The potentials  cp(z)   and  ^(z)   are holomorphic  in a simply 
connected and  finite domain S  in  the absence of concentrated 
forces and moments.   In the case of  a multiply   connected region, 
the requirement  on the uniqueness  and finiteness of  the stresses 
and displacement  In S leads to the  representation 

m 

»*! 

(5.2) 

where cp (z) and ^ (z) are holomorphic on S, z. are points in 

the interior of L., X, + iY. is the principal vector of external 

forces on L. .  For rn infinite domain S, in the absence of L ,,, 
k ' m+1' 

when the stress field in parts of the body at an infinite 
distance is finite, cp and ty  are represented near a point at 
infinity in the form 

<P(2)=---^(1 
Ü
x)l»=-r«fo(s)-t-r2. 

^^^^W^) '"--te^ + rz. 
(5.3) 

The complex constants F, V   determine the stresses and rotation 
at infinity, X + iY is the principal vector of external forces 
on the boundary L of the region, and ,0(z) and ^«(z) are holo- 

morphic in the neighborhood of z = <».  The displacement vector 
at infinity is bounded for the conditions F = F' =0, 
X + iY = 0. 

5.2 Formulation of Fundamental Problems in Plane 
Elasticity Theory 

By the basic problems in plane elasticity theory are. 
usually meant the following three problems: 

The first fundamental problem  requires that the elastic 
equilibrium of a body be determined when the external forces 
are given on its boundary.  This problem leads to the following 
limiting problem in the theory of analytic functions: 
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V it) + tif' (t) + t (0 = / (0 -f C (t) ml, (5.4) 

Key:  a.  on 

where f(t) is a given function on L determined by the external 
forces from the formula 

where s is the arc of the contour L. measured on each L. from 

some fixed point on it in the positive direction, and C(t) = C. 

on L., and C. is a complex constant. 

The second fundamental problem consists of determining the 
elastic equilibrium of a body from "the given displacements of 
points on its boundary. To find the functions cp and t, which 
are analytic on the domain C, we have in this case, the 
boundary condition 

X(f(t)-t7rCt)-fÜj-= g{t)on L,   ■ (5.5) 

where g(t)   is a  given function and g(t)   =  2|-i(u + iv)   on L. 

For the  sake  of simplicity,   we will  formulate  the funda- 
mental mixed problem for a  finite simply connected domain  bounded 
by a single  closed contour.     In  this  problem,  on a part of  the 
boundary L'   = a^^  + a2b2  .   .   .   + a

n
b

n.  where akb.    (k =  1,   .   .   . ,   n) 

are nonintersecting arcs of  the contour L which occur  in a 
certain order the external stresses are given,  and on the 
second part L" =  b^g +b2a3  +  .   .   .   + b

n
a
n+i (an+i   * ai)   the 

displacements are given.    The corresponding problem in the  theory 
of analytic     functions has  the form 

* «T (0 -f t cp' (0 -j- i (t) = h (t) -f c it), (5.6) 

where h(t)  is a given function k = 1 for tG L', k = - H for 
t€ L", C(t) = Ck = const for te L' , C(t) = 0 for te L". 
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Conditions (5.4) or (5.5) must be satisfied on each contour 
Lk. Generally the constant C(t) in the right member of (5.4) 

may take on  different values on different contours.  Only on 
one of them its value can be selected (usually C    ■.   =  0) but 

on the other contours the values remain completely arbitrary 
and must be determined during the solution of the problem.  In 
precisely the same way the constants C. in the right member of 

(5.6) (except one which is selected arbitrarily) are not 
specified in advance but must be determined together with the 
functions cp and ^. . 

In plane elasticity theory, the so-called third fundamental 
problem when the normal component of the displacement vector 
and the tangential component of the external stress vector are 
given on the boundary is also considered.  This corresponds to 
the contact of an elastic body with a rigid profile of a given 
form when the contact between the elastic and rigid bodies 
occurs along their entire boundary. 

If the arbitrary constants in the right members of (5.4) 
and (5.6) are fixed, the additional conditions, as shown 
above, for cp and t will have the following form: 

in the first problem 

tf (0) = 0, Im (p' (0) - 0; 

in the second and in the mixed problem 

({ {(.))  0 .moo (|- (0) -: 0. 

Key:  a.  or 

This exhausts  any  indeterminacy  in  the  selection of the func- 
tions  cp and  t. 

It can be proved that  in  the case  of   the first problem 
when  the rigid displacement of  the body as a whole  is  ignored 
and  in  the  third problem for a circle when  the rigid rotation 
about  its center is  ignored,   each of  the  formulated problems 
has only one solution.    The necessary conditions for the ex- 
istence of a solution for the  first  fundamental problem is 
that  the principal  vector and the principal moment of the external 
forces applied to  the boundary of  the  region be zero.     When the 
function f(t),   in  the right member of   (5.4)     is   singlevalued 
and continuous,   these two conditions reduce  to the condition 
(N.   I.   Muskhelishvili,   1966): 
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lie J/(/) dt --- 0. 

In the theory of the bending of plates, it is proved 
that the flexure w(x, y) of the middla. surface of a thin 
homogeneous elastic plate subjected to a normal load uniformly 
distributed on its surface satisfies the nonhomogeneous 
biharmonic equation 

Ww- (5.7) 

where q  is  the  intensity of the load,   and D  is the cylindrical 
rigidity. 

After a particular solution of   (5.7)   is  found,  we can 
represent  the general  solution,   using the well-know Goursat 
formula  in terms  of  two analytical  functions   cp and x,  where 
X'te)   =   Hz).     The  basic quantities which  determine the stressed 
state of  the plate  are expressed in  terms  of  these functions. 
The following  formulas are valid  (S.   G.   Lekhnitskiy,   1938), 
which are analogous  to the Kolosov-Muskhelishvili formulas: 

Mv-Mx + 2iHxy='dJ (1 -v) lV(:)- 
Mx + Mt=-8D (1 - v) \n' (s)-• -r' (=)] • 
Nx-iNu~ -~8Dy'{z)+N% ■iiV°. 

.4'(2)H-i»n- M0
x+2iH »yi 

(5.8) 

Here M , M are the bending moments, H  is the torque, N , D 
x  y y 0       0    x  y 

are the shearing forces per unit length, M  . . ., N are 

the same magnitudes referring to the selected particular solu- 
tion of equation (5.7). The degree to which the functions 
cp and i{f are defined is the same as in the plane problem. 

To determine the flexures from equation (5.7), the boun- 
dary conditions corresponding to the particular character with 
which the boundary is fixed must be added to it. 

Here we have the following three basic problems. We 
will formulate them keeping in mind the case of the simply 
connected domain bounded by a closed contour. 
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I.  THE EDGE OF THE PLATE IS FIXED.   This means that 
on the boundary of the region S occupied by the middle surface 
of the plate, the relations 

n      dir       r. (5.9) 

must  be satisfied where n is the outer  normal   to the contour, 

II.     THE EDGE OF THE PLATE  IS FREE.     The  boundary condi- 
tions  have  the  form 

——-H r, r    l-rrr—pr   sinJO--2 ——— cos20   =0, on 1      ds [. V i'^       <'-i-I Ox Oi/ J        ' 

(5.10) 

where   6 is  the angle subtended by  the  outer  normal and the Ox 
axis.     The  left members  in the equations are  respectively the 
bending moment and  the generalized   shearing  force reduced 
to unit  length acting on an element of  the plate with the 
normal n. 

III.     THE  EDGE OF THE PLATE   IS  SUPPORTED.     The  following 
conditions correspond  to the free support  of  the edge: 

W----Ü, 

vA«-r(l-v)^co^0-r$s^0-.^rsin20] = 0.    ) (5.11) 

In addition  to these basic  types  of  boundary conditions, 
particularly  interesting mixed conditions  are  often encountered 
in applications,   for example,  when one part  of  the boundary  is 
fixed,   another supported and the remaining one  free. 

Since the boundary values of  the partial  derivatives of 
this  function with  respect  tu x and y can always be found from 
the boundary values of  the function w and  its normal derivative, 
problem I   for  the  bending of the plate  is equivalent to the 
first  fundamental  problem in plane elasticity  theory.    The 
boundary conditions of problem I  coincide exactly with condi- 
tion  (5.4)   with nothing arbitrary  in  the  right member of  the 
latter. 
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The conditions on the free boundary in (5.10), as noted 
by S. G. Lekhnitskiy (1938) and I. N. Vekua (1942) lead, 
after their appropriate transformation, to a boundary value 
problem in the theory of functions which is completely 
analogous to (5.5) .  The only difference is that the constant 
H in the left member of (5.5) is replaced by another constant, 
H* = (3 + v)/(l - v) , and the right member is given with an 
accuracy up to a constant having the form iCt + C,, where C 

is a real and C-, a complex constant.  Incidentally, in the case 
of the simply connected domain under consideration, these con- 
stants may be set equal to zero. 

Finally, the conditions for the free support of the edges 
(5.11) can be written in terms of the functions cp and f in 
the form (A. I. Kalandiya, 1953) 

n   ldt —     - , i UBL. (5.12) Ina L, 
fir- 

Key:    a. on 

where g,, g2 are given functions defined on L and X0 = 2(1 + v)/ 

(1 - v). 

It is easily verified that problem (5.12) and the third 
problem in plane elasticity theory are equivalent. 

It is cltar from what was said above that the methods for 
the solution of plane problems can be sometimes   applied with- 
out any problems in the bending of thin plates.  This pos- 
sibility was investigated for the first time by A. I. Lur'e 
(1928). 

5.3 Methods for the Solution of Plane Problems 

Below we will give a brief characterization of the methods 
used in the solution of plane problems which are based on 
the application on the theory of functions of a complex variable.-^ 

IT.     Section 5.3.9 also discusses the method of integral trans- 
forms in plane problems in the theory of elasticity 
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We will mainly restrict ourselves to the consideration of the 
case when the elastic medium occupies a finite simply connected 
domain bounded by a closed contour.  The principal domain S, 
inside L, will here be denoted by S+, and outside (the 
complement of S+) by S~. 

5.3.1.  We will recall certain elementary con- 
cepts and propositions in the theory of analytic functions 
which will be used in the presentation below. 

By the Gauchy  integral formula is meant  the expression 

rv=M^ (5.13) 

where t is a point on the contour h,  and z is a point in the 
plane.  If z coincides with the point t0 in the interior 
of the contour L, we shall mean by the integral 
(5.13) its principal value according to Cauchy. 

The function F(z) defined by formula (5.13) is holo- 
morphic both in the region 5' and in S~, and when the density 
f(t) is sufficiently smooth (for example, if it satisfies 
the Holder condition on L) , it is continuous in the correspond- 
ing closed regions S+ + L and S~ +  L.  The limiting value 
of this function from the left and right of L at some point 
t0£L, usually denoted by F+(t0) and F~(t0), respectively, 

is given by the well-known Sokhotskiy-Plemeli formulas. 

A function which is holoraorphic both in S and in S~ with 
continuous values F+ and F~ in the limit is called, following 
N. I. Muskhelishvili, piecewise-holoraorphic.  An example of 
a piecewise-holomorphic function is given, when the conditions 
for the function f(t) are known,by the integral (5.13). 

A necessary and sufficient condition that a given function 
f(t) on L be the limit of a function f (z) , which is holomorphic 
on S+, is 

___  | ___ .= 0 ;,.•,„  BCÜX 2 £ 5-. ( 5. X4) 

Key:     a.     for all 
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Analogously,   a condition that the  function f(t)   be 
the  boundary value  of   the function f(z),  which is   holomorphic 
on S~,   is the equality 

*[mj!Ldt^CQml   xmucexzeS*. (5.15) ini   £    t-z ^ 

Key:     a.     for all 

In the case when S  is the unit circle, the previous con- 
ditions can be expressed in a more convenient form for the 
purposes below (N. I. Muskhelishvili, 1966).  From the given 
function f (z), which is holomorphic on S+, we will determine 
another function of a complex argument according to the equality 

MsH/M. (5.16) 

For  this  function we will  sometimes use  the notation 

/.(=)=7(j). (5-17) 

Through direct verification of the Cauchy-Rieman conditions, 
it is easily verified that the function f+ (z) is holomorphic 
in the domain which includes the point at infinity. Conversely, 
if the function f(z) is holomorphic on S-, f^ (z) will be holo- 
morphic in z in the domain S+. 

The notation (5.16) can also be used in the more general 
case, when, for example, f(z) has in the interior of S a 
finite number of poles.  The function f)|c(z) will then have 
poles of the same orders at the points which are the images 
of the poles f(z) in the unit circle. 

For the boundary values of the function (5.16), we will 
have 

/;(0 =-/■(')■ /;(0-riO- (5.18) 

-65- 

L 1   gyigjgigliiillBllJglllJgjgWMI 



Applying  (5.14)   to  the function f^Cz),   we obtain the 
condition 

(Xs 

Key:     a.     for all 

which is a necessary and sufficient condition that  the  function 
f(t)  which is continuous  on the circle be the limiting value 
of  some  function f(z)     which is holomorphic on S+.     The 
constant  in the right member of  the equality has  the value f(0), 
Analogously,  as before,   condition  (5.15)   takes on  the form 

^Ji^.o.UHBCox:^-. (5>20) 
L 0- 

Key:     a.     for all 

The operation  (5.16)   is one possible way of constructing 
on S- a  holomorphic function from a given holomorphic function 
f(z)   on S+.     Clearly,   the  extension of a  function which  Is 
holomorphic in the circle  to its exterior can be obtained in 
an  infinite number of ways.     However,   the method that was  in- 
dicated  is one of  the few  methods that are useful   in applica- 
tions. 

The  function f(z),   which is defined both on S    and on 
S~  by  the formula 

nZ)    \ iM npn   |S|>1, 
cu 

Key:     a.    when 

is  clearly piecewise-holomorphic.    In addition to  this,   f(z) 
has an analytic continuation on  those arcs of the circle 
|t|   = 1 on which Im f(t)   = 0.     The last property of  f(z)   follows 
directly from  (5.18). 
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This type of extension of holomorphic functions is often 
used in applications even in the case when S+ is a halfplane. 
Then, instead of (5.16), 

F{z) = F{z). (5.21) 

is used (N. I. Muskhelishvili, 1966). 

From among the various methods used to solve plane problems 
which are known in the scientific literature at the present 
time, we will mainly touch here only on those that are directly 
connected with the names of Soviet scientists and are most 
effective both in general studies of boundary value problems 
and in their study in special cases. Primarily we will deal 
with the following four methods: 

1. The method of power series using conformal mapping, 

2. Reduction to functional (in particular, integral) 
equations using conformal mapping (the case of simply connected 
domains), 

3. General methods leading to integral equations without 
conformal mapping, 

4. Reduction to linear conjugate problems. 

In a number of special cases, especially in the study of 
multiply connected media, it is useful to use in the study a 
particular combination of these methods. 

Below we will describe briefly the methods that were men- 
tioned. 

5.3.2.  In the solution of the plane problem 
it is often useful to map conformally the given region occupied 
by the elastic medium onto another region in the plane using 
the auxiliary variable C.  In the case of a finite simply 
connected domains, bounded by a closed contour, the mapping is 
usually onto the unit circlejand in the case of a finite 
doubly connected  domain onto a circular concentric ring and 
in the case of a semi-infinite domain with the boundary at 
infinity on both sides, onto the halfplane, etc. 

We will show here one of the variants of the conformal 
mapping applied in the first case above (N. I. Muskhelishvili, 
1966) .  Let 

-67- 

■ — mtä 



= t.)U) 

be the relation used for the conformal mapping of the unit 
circle |C| < 1, whose contour we denote by y    onto the 
region S.  The functions cp(z) and Hz) expressed in terms of 
the new variable Q  will be denoted by cp(0 , f (O . 

The boundary conditions (5.4) for the first problem will 
take on the form 

T(o):.^()'(o) r-,|(a)- /(a) na Y, (5.22) 

Key:  a.  on 

i 6 
where a is a point on the contour y,   a = e     ,  and f is a given 
function on y. 

We will assume that the following Fourier series expansions 
can be obtained: 

(l)(0) If =S^' /OHS^*' (5.23) 

and we will assume that in the unit circle (for |C| "^ 1) 

q'(D-S<k. n(C)-»;;\ 

i 

(5.24) 

Then, on the basis of (5.22). when the conditions for the conver- 
gence of the above series are known, we obtain the following systems 
of equations for the unknown coefficients a., a' which must 

be determined: 
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(5.25) 

a'm+ y. kahb.m.i,-i = A.m     (m-0,1,2, .. .)• (5.26) 

It can be proved that the infinite system of linear equa- 
tions (5.25) is solvable if the static conditions are satis- 
fied, and that its solution, together with (5.26),, is the solu- 
tion of the plane problem under consideration when the given 
function f(t) is sufficiently smooth. 

The following fact is of considerable importance in prac- 
tice.  In the case when the mapping function is a polynomial 

(0 (C) = c,; + co^ + .. • + cnt
n     (c, ^0, cn^= 0), (5.27) 

the infinite system  (5.25)   degenerates  to the  following finite 
system: 

flm = .'lm       (m >«-rl), 

a2+öi62~2a^.i~ • • • —(« — '•) an-i^n = ^2. (5.28) 

and formula   (5.26)   giv« 

m-n+t 
a'm+    y,   kahb-m^h-i^^-m     ('» = 0,1,2, ••)• (5.29) 

The problem reduces  to the solution of  the finite system 
(5.28) . 
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The technique that was presented can clearly also be 
applied in the case of a mapping onto a circular" ring. 

The method of power series combined with conformal mapping 
is used extensively to this day in the solution of particular 
concrete problems.  It is sometimes applied in a slightly 
modified form (see, for example, D. I. Sherman, 1951, K. Grey, 
Quart. J. Mech. andAppl. Math., 1951, 4:4, 444-448, M. 
Kikykawa, Proc. Japan. Nat. Congr. Appl. Mech., 1953 and 
1954). 

5.3.3.  An especially useful method for the 
effective solution of the problem turned out to be the method 
presented below which combines conformal mapping with the application 
of the apparatus of Gauchy integral formulas (N. I. Muskhelishvili, 
1966, pp 78-85).  It consists of the following. 

Starting with the boundary condition (5.22) and expressing 
the condition that ^(o)   is the boundary value on the circle 
of the function f(C) which is hoiomorphic in the interior of 
the circle and vanishes at C = 0, we obtain on the basic of 
(5.19) the functional  equation 

fi^r^l-^&do^Aa)    (US), 
'•T J    I.) (O)  u~fc 

v (5.30) 

It can be proved that for the fixed constant Imfcp'(O)/^'(0) ] 
equation (5.30) defines the function ^(C) uniquely.  After it 
is defined, the function i|i(0 is found directly from (5.22) 
using the Cauchy integral formula. 

The functional equation (5.30) can be used to construct 
by elementary means the exact solution of the problem for a 
large class of regions.  In principle an approximate solution 
can be obtained for the more general case of a simply connected 
domain. 

As an illustration of what was discussed above, we will 
consider the case when the mapping function x(Q is rational. 
In this case the expression 
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under the integral In (5.30) will be the boundary value of 
the function 

zrfh* IT)- (5.31) 

which is holomorphic outside Y except at a finite number of 
poles,  the singular points of the function Uü(C) . 

Since the point £ in the integral (5.30) is in the interior of 
Y, this integral is evaluated in closed form and it will represent a 
rational function with a number of unknown coefficients from the 
expansion of cp(C). A finite system of linear equations is 
set up for these coefficients and they can always be determined 
uniquely. 

From this follows the well-known proposition of N. I. 
Muskhelishvili, according to which the solution of the plane 
problem for the class of regions under consideration can be 
obtained in quadratures with an accuracy up to the solution of 
the finite system of linear algebraic equations.  In the 
special eise of a polynomial mapping of the form (5.27), the 
function cp(C) in (5.30) will be represented as the sum of the 
Cauchy integral A (C) and the polynomial of degree n in Q, 
which contains as the unknowns the first n coefficients of the 
function cp(C).  The linear system of equations obtained for 
determining the latter coincides exactly with system (5.28). 
Both unknown functions, cp(Q and HO are determined in closed 
form by solving this system with the given function f. 

If the function ^(C) is not rational but its expansion 
on the circle is known, the method leads to an infinite system 
of linear equations, which can be used to construct an approxi- 
mate solution of the problem with an arbitrary preassigned 
accuracy. 

5.3.4.  The complex representation of elastic 
fields combined with various integral representations of 
analytic functions is convenient apparatus for the reduction 
of the plane problem to integral equations. At the present time 
several variants for constructing such equations are known. 
We will point out some of these. 

The Fredholm integral equation in cp' (o) can be obtained 
directly from the functional equation (5.30) by first writing 
it in a slightly different form and then letting the point 
C tend from the inside to the point Y on the circle (N. I. 
Muskhelishvili, 1966, §79).  An elementary analysis of this 
integral equation can be used to prove the existence of its 
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solution (hence, also the existence of the solution of the 
corresponding plane problem), provided that in the case of 
the first problem for a finite medium, the static conditions 
are satisfied.  A more detailed analysis of this equation was 
carried out by D. I. Sherman (1938).  He studied the distribu- 
tion of the characteristic numbers of the integral equation^ 
and proved that it can be solved for both fundamental problems 
by the method of successive approximations. 

A more general method which includes the case of multiply 
connected domains is the reduction to integral equations without 
a preliminary conformal mapping.  One such method was proposed 
by N. I. Muskhelishvili (1966, §98).  We will explain the 
essence of the method by assuming that the medium is finite 
and simply connected. 

In equality (5.4) which expressed the boundary conditions 
for the problem, we will use the conjugate values, and, accor- 
ding to (5.14), write down the conditions that the function 
t(t) is the boundary value of a function of z, which is 
holomorphic on S+.  We obtain the functional equation 

(V 

Key:  a.  for all 

Now   if we write down  the same condition for  cp(t)   and  cp' (t) , 
we will  have  two additional  equalities which are analogous  to 
the  previous  ones.     Combining  the  three equalities after 
passing  to  the  limit to z from the  right,   we obtain  the Fredholm 
equation for  cp(t)   derived by N.   I.   Muskhelishvili: 

<1 (M - --^ ( -I ('''/l,l Hr^Ü '1 (■")'!]—- - -A(lo). (5.32) 

A very  similar but essentially  different equation for  the 
plane problem was constructed in another way by D.   I.   Sherman 
(1940),   which we will  discuss  in greater detail  below. 
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According to the studies of D. I. Sherman (1935-1937) 
equation (5.32) is useful for any multiply connected domain. 
It r.l.ays has a solution which yields the solution for the 
corresponding plane problem.  In addition, the method of 
successive approximations can be applied in preliminary fashion 
to equation (5.32) in a slightly and easily modified form 
(D. I. Sherman, 1940). 

An integral equation for the plane problem which is also 
useful for any multiply connected domain was constructed earlier 
by S. G. Mikhlin (1934, 1935).  The so-called complex Green's 
function is introduced for this purpose into this discussion 
and then, using this function, the generalized Schwarz kernel, 
which is analytic in the region but not single-valued.  In 
a multiply connected domain the generalized kernel has a 
property which is analogous to the property of the ordinary 
Schwarz kernel for the circle.  The Mikhlin equation for a simply 
connected region coincides with equation (5.32).  S. G. Mikhlin 
analyzed the equations that were constructed and proved that 
they can be solved, and also that the method of successive 
approximations can be applied to obtain their solution.  The 
results are presented in his monograph (1949) which also in- 
cludes applications of the Schwarz kernel to the solution of 
the,plane problem in a number of special cases. 

The studies of L. G. Magnaradze (1937, 1938) have shown 
that the Muskhelishvili equations remain also valid when the 
boundary has corners, provided that the integrals in the equa- 
tions are interpreted in a certain generalized sense. 

A simple and  in many respects convenient form of the 
integral equation in the general case of a multiply connected 
region was obtained in 1940 by D. I. Sherman.  We will derive 
the Sherman equation, restricting ourselves as before, to 
the case of a finite simply connected domain.  The first and 
second fundamental problems will this time be discussed 
simultaneously and we will combine their boundary conditions 
in the following equality: 

tc- 
/;'i(/)-: MV) "1(0-- /(') '!•>/- (5.33) 

Key:  a.  on 

where k = 1 in the first problem, and k = - H in the second 
case.  Following Sherman, we let in the domain S 
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/,■ r w(t),!i       l C t<: {t)rit 

(5.34) 

where u.(t) is some function at a point of the contour L, which 
must be defined.  Passing in these formulas to the limit when 
the point z tends from the inside to the point tn£ L, and 

substituting the boundary values that were found in (5.33), 
we obtain after several simple transformations the relation 

^■'(M4-4r Uu'H'in '   j-'^i  f •'..) "-f-^/CJ.     (5.35) 

This is the Fredholm integral equation for iJ(t) that was 
already mentioned above.  It is known as the Lauricelli- 
Sherman equation. 

In the case of a multiply connected medium, it is useful, 
following Sherman, to change slightly the representation 
(5.34), as a result of which equation (5.35) is also 
modified. 

An analysis shows that the homogeneous Lauricelli-Sherman 
equation does not have nontrivial solutions and that its 
unique solution gives, according to formulas (5.34).the solu- 
tion of the original boundary value problem. 

The representation (5.34) can also be applied to the solu- 
tion of the fundamental mixed problem.  However, in this case 
we will work with integral equations with kernels of the Cauchy 
type, whose theory, at the present time, has not been 
developed to the same extent as for Fredholm equations (N. I. 
Mushelishvili, 1946, 1952, N. P. Vekua, 1950). 

Integral equations undoubtedly are a convenient means 
for a general analysis of boundary value problems, in particular, 
for proving the existence of their solutions.  However, the 
method of integral equations is often criticised as not being 
sufficiently effective, not entirely without justification. 
Attempts to solve in practice problems on the basis of this 
method, using the usual scheme for calculating the discrete 
analogue of the integral equations are not very promising 
even with contemporary computer technology.  Therefore, due 
to the absence of a more accepted algorithm for the solution 
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in the general case of a multiply connected domain  it is 
necessary to develop special methods for an efficient solution 
which are adapted to a particular class of boundary value 
problems. 

In this sense, various combinations of the methods that 
were enumerated above are important.  Primarily we have in 
mind the combination of functional equations with the method 
of power series, the linea • combinations of functions with 
conformal mapping and also more general schemes using the 
apparatus of integral equations.  Some of these special 
techniques will be discussed below. 

5.3.5. In a number of studies of D. I. Sherman 
(see, for example, 1947, 1951) an efficient method for solving 
the plane problem was developed for a particular class (of 
finite and infinite) doubly connected domains bounded by 
two closed curves.  The basic feature of the method which 
determines the class of the admissible domains- is the requre- 
ment that the plane problem for a simply connected domain 
(exterior or interior relative to one of the closed contours 
which bound the region) have a solution in closed form.  Thus, 
the boundary of the domain can be circles, ellipses, regular 
polygons with rounded vertices, etc.  An example of an infinite 
domain is a plane with two "holes" with the desired shape. 
A halfplane with two "holes" (triply connected domain) can 
also be included in the discussion if the "holes" lie 
far from the rectilinear boundary and if the boundary condi- 
tions on the latter can be satisfied only approximately. 
Problems of this type are very important in applications in 
mining.  To present the substance of the method, we will assume 
for definiteness that the domain S is finite and bounded by the 
curves L, (interior) and L2 (exterior). 

We introduce into the discussion the auxiliary function 
'aj(t) which is defined on L2 by the equality 

ff (t) - t ff' (t) - i|- (0 - 2 a) it)       {tom L2). (5.36) 

Adding and subtracting term by term equality (5.36) and (5.4) on 
L« and assuming Cg = 0, we obtain 

t(0= -(o)(/) -/V(OJ-H/(/)-//'(0l/        (5'37) } 

Using ^(t) , we introduce the two new functions ^(z) and ^«(z) 

of the following form: 
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1-2 

(5.38) 

where 

i.z i.2 

Now  if we  define completely  the unknown functions  cp and  ^ 
by setting them equal  to zero   outside L2,   equalities   (5.37)  will  ex- 
press  the condition  for  the analytic continuation of the newly 
introduced functions  through the contour Lg which is easily 
verified.     For  these  functions,   tfu and   if0 which are   holomorphic 

everywhere outside L,,   we obtain on  the basis  of  equality   (5.4) 

on L,   the boundary  condition 

To it) -I- t Vm+ToTi) - Q It; w (01, (5.39) 

where Q is a linear operator. 

According to the fundamental requirement  of the method, 
we further assume that the auxiliary plane problem (5.39) can 
be solved in finite form.  Clearly, this will always be the 
case if the function which maps the region outside L, onto 

the circle is rational. 

In the right part Q,  which is considered as a given func- 
tion of time t, using the Mushkelishvili method of functional 
equations (see above, Section 3.3) the solution of problem(5.39) 
is found in closed form and the functions cp  ty    that were found 

are substituted in condition (5.36).  This gives a relation in 
the form of a Fredholm integral equation of the second kind 
for u-(t) which must be determined.  Then, expanding uu(t) in 
a complex Fourier series, the integral equation is reduced to 
an infinite system of  linear algebraic equations. 
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5.3.6. In a number of cases the Integral equations 
can be applied directly to the effective solutions of the 
problems.  We will discuss one possible application of the 
Laurichelli-Sherman equation. 

We will assume that the function (JU(C), which maps conformally 
the circle onto the region (exterior or interior with respect 
to the contour L) is known. Making a change of variable 
in equation (5.35) according to t = uu(a) we obtain an integral 
equation on the unit circle. The kernel of this equation is 
expressed in elementary fashion in terms of üü(ö) and it pre- 
serves its simple structure in many cases, for example, in the 
case of an arbitrary transformation of the type (5.27).  In 
all these cases, the method of Fourier series can be applied 
to the integral equation that was obtained, which leads to an 
effective solution of the problem. 

5.3.7. By a boundary value problem for the linear 
conjugate equation we will mean the following problem. To 
find a function F(z) which is holomorphic on the line L of 
the complex plane from the boundary condition 

F+ it) -a it) I" it) -r b{t), (5.40) 

where a(t)  and b(t) are functions defined on L, F (t) and 
J~(t) are the boundary values on L of the unknown function 
r(z) from the left and right with respect to the positive 
direction selected along the line L.  It is assumed that these 
boundary values exist everywhere, except, possibly 
a finite number of points C,, C0,     .   . ., Cm on the line L, 

in the neighborhood of which F(z) satisfies the bound 

i^(=)K-;—'-rrw'     (A and a  are constants, a < 1) 

Sometimes a solution for the boundary value problem (5.40) 
is sought, which has a pole at some point of the plane not 
on L. Usually a point at infinity is selected as such a point. 

We will consider problem (5.40) under the following assump- 
tions: L consists of a finite number of smooth contours which 
are closed or not closed, the functions a(t) and b(t) satisfy 
the Holder condition on L except for a finite number of points 
where they have a discontinuity of the first type, and 
a(t) ^ 0. 
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Under these assumptions problem (5.40) Is solved in ex- 
plicit form (in quadratures). The solution (which has a 
pole at infinity) has the form 

■(=)"4f J:rwW+*<=)',(^      t5-«) 

where P(z) is an arbitrary polynomial and X(z) is the so-caxled 
canonical solution of the homogeneous problem F+(t) = a(t)F~(t), 
which is constructed in explicit form (in quadratures). 

To construct a solution with a definite order at infinity, 
certain constraints must be imposed on the polynomial P(z) 
and also on the function b(t) (see N. I. Mushelishvili, 
1966). 

The reduction of problems in plane elasticity theory 
to linear conjugate problems is one   effective 
method of solving these problems (especially mixed problems). 

As an illustration we will present the solution of the 
fundamental mixed problem for a halfplane, by reducing it 
to the linear conjugate problem (N. I. Muskhelishvili, 1966). 

Suppose that the Isotropie body occupies the lower half- 
plane y < 0, which we will denote by S~. The upper halfplane 
will be denoted by S+, the real axis by L and we will take as 
the positive direction on L the direction from - ^ to + 00. 

We will use the formulas for the general complex repre- 
sentation of the stresses and displacements, in particular, 
we will use the formulas 

y-;/-/.\V (D (:)-(!> (;)--: H>'(z)---V(z), (5.42) 

M^+'^H**(=)-^)-;^-m (5-43) 

where $(z) and Y(z) are the unknown functions which are 
holomorphic in the region S~ which, for large |z | have the 
form 

-78- 

---————*-———— 



where  (X,   Y)   is  the  principal vector of external  forces 
applied to L. 

Instead of  two  holomorphic functions  $(z)   and YCZ)  on the 
region S~,  we will  introduce one piecewise-holomorphic function 
$(z)  which is defined both on S" and on S+,   which will be 
defined in the upper  halfplane S+ in such a way that  its values 
will be  the analytic  continuation of  the values of   f(z)   in 
the  lower halfplane  S~  through sectors  that  are not  loaded 
(provided these exist) .     We define  $(z)   on S+ by the following 
formula: 

(D (Z) ^ -di (s) - z 0)' (z) - H' (2). 

This  formula gives an expression for the  function v(z) 
in  terms of  the function  $(z)   extended also  to S+: 

H' (z) = -U) (z) - U) (s) - z CD' (2); 

Hence the stress components are expressed only in terms of one 
function $(z) which is defined both on S+ and on S~. 

In particular, we have the formula 

Yv - iXy --= O (2) - (D (z) + (2 - I) ÖT'l^, (5.44) 

and from formula (5.43) we obtain 

^(£ + i *!'/) --  K*Hz)-rVHzJ-{z-~z)ÜrT;). (5.45) 

Suppose 

n 

is a set of segments a.b. on the real axis and suppose that the 

displacement components are given on L' and the external forces 
on the remaining part L" = L - L'.  Without loss of generality, 
we can assume that the external forces which are given on L" 
are zero (the general case is easily reduced to this). 
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We will assume that th« function $(B) can be extended 
continuously from the left and right on L 
except possibly at the points a,, b., and that in the neighborhood 
of these points 

|2—aA|
a |2—feftT 

We will also assume that 

lim (s - I) CD' (2) --= 0, 

when z  tends  to  the point  t on  the real axis,   which is 
different from the points a,   and b. . 

Under  these assumptions  it  follows from formula  (5.44) 
that 

(])+ (/) = 0)- (/)   „a r, 

Key:     a.     on 

i.e., the function $(z) is holomorphic on the entire plane, 
along L, and it vanishes at infinity. 

From formula (5.45) we have 

0+(,) = _x d)-(/) ~ 2ii g'(/)  (ttL'), (5.46) 

where g(t)   is a given  function,   g(t)   = u(t)   +  i  v(t) ,   and 
u(t)   and v(t)   denote  the known limiting values  of  the displacement 
components on L'.     We will  assume that  the derivative g'(t) 
satisfies the Hö'lder condition. 

Applying formula   (5.41)   to the solution of  the conjugate 
problem  (5.46),  we obtain 

*(=)-^SÄP-^>"^ 

where X(z) (the canonical solution) has the form 
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.l_i?   _ -i-iB  /„  lux' r-, -'-if .  .-^-'P  /Q   li»x\ 

h-l 

Since *(z) vanishes at infinity and the order of X(z) 
at infinity is n, the degree of the polynomial P(z) must not 
exceed n - 1: 

I>[z) -rv-1 - c,:"---j-• • 'n-l- 

When we reduced the problem under consideration to the 
linear conjugate problem, we differentiated the boundary 
condition along the segmentsa. b. . Hence, so far we were able 

to satisfy the boundary conditions along a.b. with an accuracy 

up to the constant terms c..  What remains to be taken into 

account are the conditions c, = c0 = . . . = c = 0.  However. i / n 
it  is  easily seen,   that   it  suffices to satisfy  the conditions 
12 n 

These conditions  reduce  to  the following: 

"**i 

j («'-u-')(//:/r («/.-;)-,?(//,,)     (A = 1.2 n-\). (5.47) 

Substituting in equations (5.47) instead of u(t) + iv(t) 
its expression in terms of the function $, we obtain a system 
n - 1 linear equaLions. 

The coefficient C0 o^ the  highest order term in the 
polynomial P(z) is determined from the given vector (X, Y) 
of external forces 

To- 
V IY 

2.1 

Substituting the value of C0 in system (5.47), we obtain 

a system of n - 1 linear equations for the coefficients 
C,, C«» •   •> C ,.  By the uniqueness theorem for the solution 

of the fundamental mixed problem, this system has a unique 
solution. 
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5.3.8. Methods  of  the  theory of  functions of a complex 
variable  that were discussed above in connection with  the plane 
problem in the  theory of  elasticity have been developed con- 
siderably in  the  studies  of  I.   N.  Vekua   and applied  to 
more general problems   in   the  theory of partial  differential 
equations.    A  large  class  of elliptic equations  in  the  case of 
two independent variables   is studied in the monograph of 
I.   N.   Vekia (1948)   from this point of view.    Applications of 
the apparatus developed by  the  author  to various  problems  in 
the  theory of elasticity   (stationary oscillations  of an 
elastic  cylinder,   vhe  bending  of  thin plates,   etc.)   are 
presented by  tue  .nihor. 

Here we ^..i.x mention the many applications of the same 
methods to the theory of elastic shells (I. N. Vekua, A. L. 
Gol'denveyzer,  G.   N.   Savin). 

5.3.9. Along with  the methods  of  the  theory of 
functions of a complex variable which can be used  to solve  the 
plane  problem for regions  of a  comparatively general form 
effective solutions  for some regions with a concrete  form can 
be  found using special  techniques,   for example,   using  the 
integral Fourier  and Mellin  transforms. 

The Fourier  transform  is  a very useful  tool   for studying 
various  elastic  equilibrium problems in an  infinite strip. 
The simplest solutions of   this  kind were already  obtained by 
L.   N.  G.   Failon.     This method which was developed  to a 
great  extent  in  the work of Soviet authors was generalized 
at   the  end of  the 30^ and summarized in  the well-known mono- 
graphs  of P.   F.   Papkovich   (1939,   1941).     Subsequently,   various 
authors  studied many  new  problems,   dealing with  the deformation 
of a strip,   a halfstrip of   the  corresponding layer media and 
anisotropic bodies by  thermal  stresses,   etc.     Not  being able 
to enumerate them,  we  refer  the  reader to  the survey articles 
of D.   I.   Sherman   (1962),   G.   Ya.   Popov and N.   A.   Rostovtsev 
(1966),   the monographs of  S.  G.   Lekhnitskiy   (1957)   and 
M.   P.   Sheremefev   (1968). 

We also point  out   the  articles of  I.   G.   Al'perin   (1930), 
M.   Ya. Balen'ko   (1952)   and S.   Ye.   Birman   (1954),   while  discussing 
mixed problems for an  infinite  strip,  and also  the articles 
of   I.   A.   Markuzon   (1963),   V.   S.   Tonoyan   (1963,   1964)   in which 
certain  classes of mixed  problems are solved with  the aid of 
coupled or  three     equations  related  to a  Fourier 
transform     for a halfplane,   a strip and  the quaurant.     Similar 
problems dealing mainly with circular crescents were considered 
by  Ya.   S.   Uflyand   (1950,   1963),   G.   N.   Savin   (1951),   M.   A. 
Savruk   (1957),  V.   V.   Yeganyan   (1959,   1964)   and  by  other authors. 

-82- 

mm 



Certain plane problems in the theory of elasticity for 
an infinite wedge can be solved exactly with the aid of the 
Mellin integral transformation.  The first studies in this class 
of problems go back to I. G. Brats and V. M. Abramov (1937). 
The problem of the action of a concentrated force on a wedge 
was studied for the first time by A. I. Lur'e and B. Z. 
Brachkovskiy (1941).  An anisotropic wedge was studied by 
P. P. Kufarev (1941) .  A bibliography on the problems that 
were mentioned is available in the book of Ya. S. Uflyand 
(1963). 

The development of the method of integral Fourier and 
Mellin transforms combined with Cauchy formulas is presented 
in the studies of S. M. Belonosov (1962) dealing with regions 
with corner points, and, in particular a strip and wedge 
(see below, Section 6.1.4.). 

§6.  Fundamental Results in the Study of Problems in 
Plane Elasticity Theory 

In this section we will discuss certain concrete results 
in the theory of plane problems that were obtained in the 
USSR in the last 50 years.  The studies that we will touch on 
are mainly closely related to complex variable methods, and, 
in this sense, they will serve as an illustration of their 
application and further development. 

6.1.  Solution of Fundamental Problems for a 
Homogeneous Medium 

The first concrete results dealing with the equilibrium 
of plane profiles were obtained by G. V. Kolosov and N. I. 
Muskhelishvili. 

6.1.1.  Using the method presented in Section 5.3.2., 
N. I. Mushkhelishvili obtained a simple solution for the first 
and second fundamental problems for a circle, a circular ring, 
and an infinite plane with a circular "hole," He analyzed 
a set of particular examples for various types of external 
forces.  For regions of this type, of course, a preliminary 
conformal mapping is not needed.  Applying conformal mapping 
Mushkhelishvili solved, at that time, the difficult problem 
of the equilibrium of a solid ellipse.  Later this problem 
was solved, using a different technique by D. I. Sherman 
(see Section 5.3.6). 

Using power series, the problem of a confocal elliptical 
ring was investipra^d in an effective form (A. I. Kalandiya, 
1953) . An algorithm fcr an efficient solution of this problem 
was outlined earlior by M. P. Sheremet'ev, who used the method 
of functional equations in combination with conformal mapping 
(see Section 5.3.3). 
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The method that was just mentioned turned out to be most 
convenient for simply connected regions. As mentioned above, 
it always leads to an effective solution provided the regions 
are mapped by a rational function.  The first applications of 
the method were pointed out by N. I. Muskhelishvili himself, 
who obtained closed solutions for the fundamental problems in several 
concrete cases.  From this set of problems, we will select the 
equilibrium ol a circular disc under the action of concentrated 
loads on the contour and an infinite plate with an elliptic 
hole.  The results of Muskhelishvili that were mentioned were 
obtained by the author in his studies during the 20's and 
30*s (in particular, his memoir  published in 1922 should 
be mentior-d). All these results, together with other results 
by the  nme author are presented in detail in the monograph 
of N. I. Muskhelishvili that was cited on a number of occasions 
above. 

We will mention here one important application of this method 
which is due to G. N. Savin.  We will consider the problem 
of concentrated stresses in an infinite plate weakened by 
some hole.  Assuming that the contour of the hole is a recti- 
linear polygon we will map the interior of the circle onto the 
region exterior to the hole with the aid of the Schwarz- 
Christof f el integral.  Expanding this integral in a series in 
powers of C and retaining in the series a finite number of 
terms, we obtain an approximate mapping which transforms the 
circle into a curve which is close to the original contour 
which has thr form 

o.(;) t;(4 + S^") (6.1) 
hi 

or in a special case 

rfl-,»;"). (6.2) 

where C, C. , m are some constants.  By changing in (6.1) the 
constants c, C. , n, we can obtain holes in the form of a 
circle, an ellipse, an oval shape, a curvilinear triangle 
and a quadrangle, etc.  When (6.1) is mapped, the method 
leads directly to a solution in closed form which makes it 
possible to obtain an approximate solution for problems of 
the type that were mentioned. 
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G. N. Savin and his students studied in this manner many 
concrete problems dealing with the concentration of stresses 
with'holes" of various shapes and configurations in a homo- 
geneous field.  The solutions of these problems were carried 
through all the way to numerical results represented in the 
form of tables and diagrams.  In addition to this in cases 
which are particularly important for applications, graphs 
were constructed for the distribution of the stresses on the 
contours.  Savin solved, in a similar manner, the problem of 
the bending of a thin plate with a hole subjected to the action 
of moments and normal stresses at infinity. A detailed pre- 
sentation of these results is given in the book of G. N. Savin 
(1951) which played an important role in the subsequent develop- 
ment of this type of problems. 

At the same time as G. N. Savin M. I. Nayman (1937, 1958)  who 
applied an original approach to the choice of the approximate mapping 
studied stress problems in plates with "holes" in the shape 
of curved polygons. He studied mainly the torsion of shafts 
weakened by longitudinal grooves. 

6.1.2.  The method presented in Section 5.3.3 
can also be applied in a certain modification to the case of 
semi-infinite regions, when the boundaries of the medium are 
a curve receding to infinity in both directions.  In this case, 
it is more convenient to use a mapping onto the half plane.  The 
application of the method in a general formulation is discussed 
in the monograph of N. I. Mushelishvili (1966) which also 
gives the solution of certain special problems of a similar 
kind. 

Of particular interest for applications is the problem 
of the concentration of stresses in a halfplane weakened by 
a cutout or with recesses near the rectilinear boundary. 
A great deal of attention has been given recently to problems 
of this type, especially abroad (F. Neyber, M. Seika, S. 
Shioya) . 

The most successful approach to these problems is the 
approach of N. S. Kurdin.  He was able to work out in detail, 
using the Muskhelishvili method, certain interesting problems 
of the type that was mentioned (1962). 

The possibility of applying the method of the theorv of 
functions to problems of the bending of plates was illustrated for the 
first time in the work of A. I. Lure (1928), which studied 
a plate with supported edges whose mean surface was mapped 
conformally onto a circle using a rational function.  This 
problem was later studied in greater detail by A. I. Kalandiya 
(1953).  In another study, A. I. Lur'e (1940) obtained by 
the same method solutions in closed form of the three funda- 
mental problems of bending theory for the case of a circle. 
Here, as in the preceding work by the same author, the 
Muskhelishvili method was used (Section 5.3.3). 
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The study of S. G. Lekhnitskiy (1938), which was cited 
above, applied systematically the methods of  complex 
variables to problems of the bending of plates.  It derived 
general complex representations for the basic magnitudes for 
the Isotropie and anisotropic cases and formulated the funda- 
mental problems in final form in terms of complex variables 
and gave the solutions in certain special cases. 

The studies of A. I. Lur'e and S. G. Lekhnitskiy were 
the beginning of intensive studies in the theory of the 
bending of plates. 

Using the method of Section 5.3.3, M. M. Fridman (1945) 
obtained the solution of certain concrete problems in the 
bending of plates with a curvilinear "hole," flexed by 
moments and forces applied to its edge. 

Particular attention was given to the equilibrium problem 
of a plate with supported edges.  This problem was studied 
in the work of Z. I. Khalilov (1950), M. M. Fridman (1952), 
D. I. Sherman (1959), A. I. Kalandiya (1953). 

6.1.3. The method of linear conjugate functions 
(see Section 5.3.7) is a very convenient means for the 
general study of the problensand also for their effective solu- 
tion in special cases.  It has clear advantages over other 
methods in the study of mixed and contact problems in which 
it is important to detect special properties of the solution. 
Problems of this type will be considered below in a separate 
section. 

The application of the method of linear conjugate func- 
tions to plane problems was first developed in the work of 
N. I. Muskhelishvili (1941), which considered the case of an 
elastic halfplane.  The solutions of the fundamental problems 
in this case were found in a simple and very elegant form.  The 
subsequent important generalization of the method was proposed 
by I. N. Kartsivadze (1943) who extended the method to the 
case of a circular region and also to the more general case 
where the region is mapped onto a circle by means of a rational 
function.  The first results in which the method is applied 
to the solution of concrete problems in the regions that 
were mentioned go back to this author.  Kartsivadze's results 
are presented in detail in the book of N. I. Muskhelishvili 
(1966) .  The mixed plane problem with a circular "hole" 
was studied by B. L. Mintsberg (1948) . 

Using the same method, N. I. Muskhelishvili obtained a 
solution in closed form for the third fundamental problem 
of plane elasticity theory (see pages 53-55). 
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The conjugate problem with a rigid profile, using 
other methods was studied by G. N. Polozhiy. The boundary 
conditions of the problem were subjected to certain preliminary 
transformations which simplified the form of these solutions 
on rectilinear sectors of the boundary.  This enabled the 
author to obtain a solution of the problem in explicit form, 
first for convex polygons (1948, 1950), and then, after 
rather sophisticated investigations of the behavior of the 
stresses at the corner points with the condition that the dis- 
placement vector be continuous,for general polygons and also 
for an infinite plane with an arbitrary polygonal Tiole" 
(1957). 

6.1.4. S. M. Belonosov (1954, 1962) who studied 
fundamental plane problems for simply connected domains pro- 
posed a method for their solution which became the theoretical 
basis for the practical application of an approximate solution 
based on rounding the corners.  The conformal mapping of a 
given region onto the halfplane Re C > 0 makes it possible 
to find the complex potentials cp and ^ by applying the apparatus 
of Laplace transforms. As a result> using a method which is 
analogous to that developed by N. I. Muskhelishvili (1966, 
Section 78, 79), integral equations whose structure is relatively 
simple are constructed which are applied in a certain sense 
to domains with corner points.  If the contour L does not 
contain the corner points and generally is sufficiently smooth, 
the kernel of the equation is ? Fredholm kernel and in 
the general case of a piece-wise smooth contour, it is a 
Carleman type of kernel. 

The integral equations of S. M. Belonosov are solvable 
for every fundamental problem which was shown (1962).  In 
the special cases of an infinite wedge or strip, the integral 
equations are solved in quadratures, which leads in these 
cases to the solution of the problem in finite form.  In the 
book of S. M. Belonosov, which was cited, to which we refer 
the reader for details, the class of domains for which the 
fundamental problems are solvable in quadratures using the 
method that was mentioned is determined.  This class of 
domains which are similar in form to a wedge, strip, and 
the outer region of a hyperbola,includes also a circular 
concentric ring. 

6.1.5. The method of D. I. Sherman which was 
presented above (see Section 5.3.5) was first proposed by him 
(1947) for the solution of problems in the torsion and bending 
of a certain class of doubly connected profiles. When 
applied to a plane deformation, it was subsequently illustrated 
(1951) on the example of a halfplane weakened by two different 
circular "holes." In later studies Sherman's method was sub- 
jected to a basic revision, which resulted in the elimination 
of a large volume of intermediate computations. As a result 
of this the solution process became more tractable, and the 
main part is based on recurrence relations. 
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In the many studies of D. I. Sherman and his students 
which were published In the last few years, the method Is 
applied to concrete plane deformation problems. Problems of a 
ponderable halfplane with two openings (circular and 
elliptical) at a considerable distance from the rectilinear 
boundary of the medium were considered, an elastic circle 
with a "hole" with a sufficiently general outline was con- 
sidered, problems of a half plane with a "hole" on whose 
edge a ring from another material was welded as well as 
analogous problems were considered.  A thorough review of the 
results of the application of the method of integral equa- 
tions with a complete bibliography is available in the survey 
of D. I. Sherman (1962), to which the reader is referred to 
acquire thorough familiarity with this class of problems. 

In certain special cases of a multiply connected medium 
the generalized Schwarz algorithm which was developed in 
general form by S. G. Mlkhlin (1949) was applied to the 
fundamental biharmonic problem.  The first Illustration of the 
method was given by the same author (1934) on the example of a 
ponderable halfplane with an elliptical "hole," when the 
stresses at infinity were distributed according to the hydro- 
static law. 

The convergence of the successive approximations, 
according to Schwarz, was studied with certain constraints on 
the region in the work of S. G. Mlkhlin and A. Ya. Gorgldze. 
The convergence of the method in a general case was established 
by S. L. Sobolev (1936). 

The Schwarz algorithm does not converge fast, which must 
be kept in mind when the method is applied in practice.  Never- 
theless in a number of cases it may give fairly good results. 
Examples of this are the studies of A. S. Kosmodamianskiy 
(1961, 1964) which study the case of two different "holes" 
in an infinite medium. 

In the study of stresses in a plate with many "holes," 
one of the fundamental problems is determining the degree 
to which the medium is weakened around a given "hole" due 
to the presence of nelghborning "holes."  This problem, which 
is of great practical Interest in mining was studied in the 
work of D. I. Sherman and his followers that were mentioned 
above.  We will point out certain generalizations along these 
lines. 

In the case when the medium is weakened by any finite 
number of "holes," A. S. Kosmodamianskiy (1961, 1962) applied 
the Bubnov-Galerkin method.  To find the unknown complex poten- 
tials cp and ii,   he used infinite series of functions of a special 
form with undetermined coefficients and obtained for the 
approximate solution a finite system of algebraic equations. 
The method gives particularly good results in the case of cir- 
cular "holes." 
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As the order of the approximation increases without 
limit, the algebraic systems become infinite. The studies of 
the same author have shown that these systems have desirable 
properties no matter how close the "holes" are to one another. 
In the case of non-circular curvilinear 'holes" it is often 
useful to apply methods which are conceptually similar to 
the method of N. I. Muskhelishivlli (A. S. Kosmodamianskiy, 
1962) .  The approximate methods that were mentioned were used 
by Kosmodamianskiy and certain other authors to solve the 
problems in a number of concrete cases. 

G. N. Bukharinov (1937, 1939), using an analogue of the 
successive approximation algorithm developed by G. M. Goluzin 
for the Dirichlet problem, studied the problem for a plate or 
disc, when the medium is weakened by any finite number of 
arbitrarily spaced circular "holes." 

6.1.6.  The periodic problem of elasticity theory 
is of considerable interest. Let us imagine an unbounded 
homogeneous medium weakened by an infinite number of equal and 
periodically spaced "holes." We will assume that all these 
"holes" are subjected to the same external forces and that 
their centers lie on one straight line.  In the case of a 
half plane, it is assumed that the center line is parallel to 
the boundary of the half plane and that it lies at a distance 
which exceeds considerably the dimensions of the "hole." 

The presence of joint symmetric geometric and force 
factors entails the periodicity of the displacements and 
stresses relative to the (real) variable which varies along 
the center line.  This periodicity makes it possible to re- 
duce the problem to the similar problem of finding two functions 
which are holomorphic in the region outside a certain : 
closed contour.  The concepts which led to the integral 
equations (5.32) , can also be applied here, which makes it 
possible to construct for the problem a Fredholm integral 
equation which always has a unique solution. This was done by 
G. N. Savin (1939) (see also S. G. Mikhlin, 1949). 

By using jointly the method of functional equationf 
and power series, it is possible to construct, in a uumber 
of cases, an effective solution of the problem. We will point 
out certain studies along these lines. 

D. I. Sherman (1961) studied the stress field in a ponderable 
medium weakened by periodically spaced circular and square 
"holes." The problem was solved by means of a reduction to an 
infinite system of linear algebraic equations. A quantitative 
analysis of the solution enabled the author to investigate the 
distribution of the stresses near the "holes" for a great range 
of the numerical paramete. e which characterized the relative 
dimensions, including the case of close "holes." 
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The periodic  problem with curvilinear   "holes" of 
general shape was already considered earlier  in the work of 
I.   I.  Vorovich and A.   S.  Kosmodamianskiy   (1959).    Certain 
integral expressions were proposed by  the authors for  the 
unknown complex potentials,  which were  expressed in terms 
of other analytic  functions  that were holomorphic  in a plane 
with one "hole."    To  find the  latter,   the method of a small 
parameter was used and  the problem was  reduced to a sequence 
of problems  of   the  same  type  for a simply  connected    domain. 
The convergence  of  the method was not  investigated.    A 
detailed analysis with numerical calculations was carried out 
for the case of  elliptic "holes" when  the plate is expanded 
at  infinity  by  forces applied at an arbitrary angle  to the 
center  line.     A  subsequent generalization of  this approach 
was  given by A.   S.   Kosmodamianskiy   (1965). 

It should be noted that  the plane  periodic problem in 
the  theory of elasticity was studied  for  the  first  time by 
V.  Ya.  Natanson   (1935),  who studied  the  case  of a doubly 
periodic system  of  circular  "holeä' in an  infinite body. 

The reader may  find more detailed  information about  the 
periodic  problem  in  the survey  of D.   I.   Sherman  (1962) 
that was cited above. 

6.1.7.     In  the  last  few years a great deal of atten- 
tion was  given   to  finding effective methods   for  the solution 
of plane problems when  the fundamental  elasticity  law  is 
nonlinear and  the assumption that  the deformations are small 
is retained.     The main interest was generated by problems 
connected with  the determination of  the stress concentrations 
in plates and shells with "holes." 

If  the nonlinearity of  the elasticity  law  is characterized 
by a small  numerical  parameter,   in  this case,   a nonlinear 
fourth order partial  differential equation with a principal 
biharmonic  term  is  obtained instead of  the  biharmonic equation for  the 
stress function.     This equation with the corresponding boundary condi- 
tions  is  integrated using the method of  a small parameter,   and  the 
deviations of  the elasticity  law  from  the  linear law and the 
shape of  the  "hole"  from a circular shape are    assumed to be 
small.     Expanding  the stress  function,   the  components of  the 
displacement  vector and also  the  functions which occur in  the 
boundary conditions  of  the problem in a series in the parameters 
which characterize  the deviations  that were mentioned above, 
we obtain a sequence of biharmonic problems  for a plane with a circu- 
lar  "hole" which can be solved with the aid of approximate methods. 
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A number of concrete problems in nonlinear elasticity 
theory were solved in this way. 

The numerical computations have shown that taking into 
account the physical nonlinearity leads to a more uniform 
distribution of the stresses near the "holes" in comparison 
with linear theory, and that the coefficient of the stress 
concentrations becomes smaller. 

The reader can familiarize himself thoroughly with the 
results along these lines from the studies of G. N. Savin 
(1965), A. N. Guz', G. N. Savin and I.A. Tsurpal (1964). 

6.2.  Piecewise-Homogeneous Medium.  Reinforcement and 
Strengthening of Plates 

By a piecewise-homogeneous medium we shall mean an elastic 
medium consisting of a number of different homogeneous parts 
which differ in shape and elastic properties, which are con- 
nected into a single solid body in one way or another.  The 
connections of the heterogeneous parts may either be natural 
or artificial.  The latter always serve the purpose of increasing 
the load-bearing capacity of structures, and they are often 
used in engineering practice. 

6.2.1.  Suppose that we have a finite or infinite 
plate with a number of "holes" in which solid rings made 
from another material are inserted which, in turn, may be 
weakened by the "holes." When the ring is connected to the 
plate it can be welded into the'hole" along the circumference, 
pressed in, or inserted in it in the hot or cold state. 
Whenever the ring is not welded, it is assumed that the contours 
of the adjacent elastic parts touch without gaps and are main- 
tained in a state which prevents slippage. 

In this section, we will assume, in addition, that the 
surfaces of the bodies which make contact are never apart 
from one another as a result of the deformation. 

Of course, not only the edges of the "holes" can be 
reinforced.  The plate may be strengthened by rings along any 
edge, and also in the interior parts which are not adjacent 
to the boundary.  In the latter case, we speak of the re- 
inforcement of the plate by rigid edges. 

The complete boundary L of the composite body consists 
of the external contour of the plate (of course, provided it does not 
extend to infinity in all directions), of the contours of 
the openings which are not reinforced, and finally of the 
interior contours of the inserted rings, provided these are 
present. The body may be subjected to any action, both inside 
and on the boundary. 
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The boundary conditions on the non-reinforced edge of 
the plate will clearly be the usual conditions which cor- 
respond to the forces acting on it which are given,or to 
the character with which it is reinforced.  The conditions 
on the separation line of the media will be different, 
depending on the manner in which the adjacent parts are 
connected. 

For example, in the case when all "holes" in the plate 
occupy a finite multiply connected domain S with the boundary 
L=L, +L0+ . . . +L ,,, and are filled with solid discs i   * m+i 
from different materials welded to the plate along the 
circumference of the "holes," and the stressed state is caused 
by the external forces applied only on the exterior contour 
of the plate, will have the following problem in the theory 
of analytic functions: 

q (/)-! M'(0-r t(0--/(') ^ A"-i- (6-3) 

er (/) -- / n' (t) -f ir (/)=- ff* (/)-; t .j;,(o-; iiA (?) °*  u. 
(6.4) 

^-q(/)-■-U'I'W-: "1(01 

-^-q/^O-TTT^'uC)-:-^Ol «" U      (^-1.2 m).    (6.5) 

where c and i|i are holomorphic n the domain S, and cp. and f. 

are holomorphic in the finite region Si- bounded by the con- 

tour Lk(k = 1, 2, . . . , m). The meaning of boundary condition 

(6.3) is clear from the preceding discussion.  The equations 
(6.4^ and (6.5) express the obvious continuity conditions for 
the components of the displacement and stress vectors when 
the separation line of the media is passed.  The subscript k 
is associated with the elastic elements of the material of 
the ring occupying the region S»-. 

One of the early studies dealing with nonhomogeneous 
elastic bodies based on complex variable methods was the 
study of S. G. Mikhlin (1935), which investigated, with the aid 
of the Schwarz kernel that was mentioned above in Section 5.3.4, 
the general problem of a piecewise-homogeneous medium using the 
method of integral equations. Certain special cases were 
studied in ai effective way in another study by the same author 
(1934). 
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Subsequently, studies of inhomogeneous elasticity 
problems  developed rapidly. Considerable success in this 
field was obtained in the Ukraine, where the corresponding 
problems have been studied by many authors for a long time. 
The results of these studies are presented in the monographs 
of G. N. Savin (1951), D. V. Vaynberg (1952), M. P. 
Sheremet'ev (1960) and G. N. Savin and N. P. Fleishman 
(1964). Below we will briefly touch on certain fundamental 
results. 

6.2.2.  We will start with a relatively simple case, 
when the basic plate and the elastic rings inserted in the 
"holes" are made from the same material.  In this case, we 
must assume that the contours of the ring in the unstressed 
state are somewhat different from the contours of the cor- 
responding "holes." From an applied standpoint, the case 
when the rings are pressed or inserted into the "hole" with a 
given elastic load is of interest. 

The boundary conditions for this problem are obtained from 
(6.3)-(6.5) by adding to the right member of (6.5) the gi-'--> 
function which expresses the presence of a jump in the - 
displacements and, in addition, it is taken into accou       i,hp 
elastic properties of the body are the same everywhere. 

A general method for solving this problem was proposp- by 
D. I. Sherman (1940).  This method is based on the analytic 
continuation of the function which is similar to that presented 
in Section 5.3.5.  According to this method the problem under 
consideration is reduced to the usual plane problem for a 
complete composite region without any conditions on the 
separation line.  However, the new problem will have a some- 
what modified boundary condition (on the exterior contour) . 
In the right member of the equation which describes this condi- 
tion there will be an additional term expressing a fictitious 
action on the system as a whole. 

In the case when the inclusions have a spherical shape, 
the above-mentioned correction term can be represented in 
explicit form.  Its form is very simple and cases are often 
encounted in practice when the jump in the displacement is 
directed along the normal and its magnitude is constant. 

Finally, in the case of circular inclusions, the soluvion 
is obtained completely for composite regions which are 
mapped onto a circle by means of a rational function. A large 
number of concrete problems were studied in this way. Detailed 
bibliographical referencet, are available in the survey of 
D. I. Sherman that was cited above (1962). 
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6.2.3.  When the inclusions have different elastic 
characteristics, matters are different.  The study of a rigid 
inclusion clearly does not introduce any complications, since, 
in this case,we will be dealing with the usual plane problem 
with elastic displacements which are given on the contour 
(second fundamental problem) .  The problem o:" elastic inclusions 
from different materials is much more complicated. 

This problem for one inclusion, for k = 1 in (6.3)--(6.5), 
was studied by a method which is similar to that outlined in 
Section 5.3.5 (D. I. Sherman, 1958).  To obtain the auxiliary 
function a(t) which this time is Introduced on the entire 
boundary of the plate L, + Lg, the author derived a Fredholm integral 

equation which he studied and discussed.  In the special case of an 
eccentric circular ring with inclusions which was discussed to 
illustrate the method, the integral equation is replaced as 
before (see Section 5.3.5) by an Infinite system of linear 
algebraic equations which makes it possible to obtain the 
solution all the way to numerical results. 

The case of different circular concentric rings inserted 
successively one in another as was mentioned above can be 
easily studied using the method of power series. 

This method,combined with the functional equation, makes it 
possible to study the problem of annular reinforcements in 
a slightly more general case, for example, when the infinite 
simply connected domain occupied by the adjacent bodies is 
mapped onto the interior of a circle by means of a rational 
function, and the reinforcing ring becomes» in the process, a 
conce:trie circular ring.  Under this assumption, the mapping 
case (6.2) was studied by M. P. Sheremet'ev (1949), who obtained 
a complete solution and numerical results for the reinforcement 
of the "hole" in the shape of a confocal elliptical ring. 
In the monograph of G. N. Savin that was mentioned (1951), 
the computational results are given also for two forms of the 
elastic reinforcement obtained by the mapping (6.2), and the 
stresses on the reinforced contour of the "holes" are compared 
with the same stresses in the two limiting cases, when the 
reinforced ring is absolutely elastic (empty) or when it is 
absolutely rigid. 

I. G. Aramanovlch (1955), who developed further the method 
of D. I. Sherman (see Section 5.3.5), constructed an effective 
solution of the problem of streses in a halfplane with a circular 
"hole" reinforced by an elastic ring made from a different 
material. Here, the medium can be loaded in various ways, 
for example, through expansion, normal pressure on the interior 
contour of the ring that was welded in, a concentrated load 
on the rectilinear boundary, etc. The solution is the same as 
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before (reduction to an infinite system of equations).  It 
was established that the system of equations obtained is 
quaslregular when the "hole" is arbitrarily close  to the 
boundary of the halfplane. 

The method of linear conjugate functions was applied to 
the solution of problems of the type considered above. As an 
example, we point out the study of I. A. Prusov (1957) who 
studied the problem of the reinforcement of a "hole" in an 
infinite plate by a ring with a variable cross section bounded 
outside by a circle and inside by an ellipse. 

6.2.4. Until now we assumed that the stressed 
state of the elastic ring reinforcing the edge of the "hole" 
in the plane is described, like the stressed state of the plate 
itself, by equations of plane elasticity theory or the 
equations for the bending of thin plates.  If the reinforcing 
ring is sufficiently thin, or has a shaped profile, it should 
be considered as a circular rod, whose deformation is described 
by elementary equations of the theory of the strength of materials. 

In this formulation, the problem of the reinforced 
edges was considered for the first time by M. P. Sheremet'ev 
(see, for example, his book, 1960).  The reinforcing ring with 
a constant cross section was taken as a thin bar with expansion 
and flexual rigidity in the case of a plane stressed and 
flexual rigidity and torsion in the bending of thin plates. 

For definiteness, we will consider infinite plates with 
one reinforced "hole." 

The boundary conditions on the contour of the reinforced 
"hole" will be obtained, as before, by requiring that the cor- 
responding forces and displacements from both sides be equal. 
In the previous case, these conditions were represented in 
the form of the equalities (6.4) and (6.5).  In this case, 
in the right members of the above-mentioned equations, instead 
of the boundary values of the functions ca and iL (it is no 

longer necessary to study these functions) there will be other 
unknowns, namely the external forces X?, Y^, acting on the n  n 
ring from the side of the plate and the displacements u0, 

v0 of the axis of the ring. 

Now, starting with the well-known equations in the theory 
of small deformations of curvilinear rods, expressing the 
displacements u0 and v0 in terms of the external load X®, Y® 

and substituting the corresponding values in the above-mentioned 
conjugate boundary condition, to determine the functions 
cp and f which are hplomorphic in the region of the plate, we 
obtain   two complex conditions which have in the right members 
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the independent forces X and Y .  For the problem of the 

bending of a plate with a reinforcement of the type that was 
mentioned, in general, the unknown functions in the right- 
hand member can be eliminated, and we will only have one 
boundary condition which will be somewhat more complex than 
the usual condition in the fundamental plane problem. 

Finally, it is possible to study effectively problems when 
the "holes" have special shapes.  The case of a circular "hole" 
was analyzed in detail using the method of power series (M. P. 
Sheremet'ev, 1960). For noncircular "holes" the problem is 
more complex and the effective solution requires the method 
of successive approximations. 

A farther generalization of this approach was given by 
G. N. Savin and N. P. Fleishman (1961). Assuming that the 
reinforcing rod was very thin (i.e., assuming that the cross 
section of the rod was very narrow), they relaxed somewhat 
the boundary condition on the contour of the layer and formulated 
the general problem of annular reinforcements with relaxed 
boundary conditions in terms of complex variables.  When these 
conditions were derived, the assumption was made that the rod 
in the case of a plane stressed state does not resist the bending 
and does not have torsional rigidity during the bending of the 
cross section. 

The problem in the theory of analytic functions that was 
obtained has, like the fundamental plane problems, a solution 
in closed form when the region of the plate is mapped conformally 
onto a circle by means of a rational function.  This is illus- 
trated on the example of an elliptic "hole" in an infinite platt;. 

G. N. Savin and N. P. Fleishman (1964) and also M. P. 
Sheremet'ev (1960) considered the strengthening of a plate 
during its cross sectional bending by thin rings made from a 
different material (rigid ribs) which lie inside the plate. 
In the simplest case of a single rib, we have the following 
picture.  A thin curvilinear ring (more precisely a closed 
elastic line) is welded to the plate in its interior part. 
The region occupied by the middle surface of the plate is 
broken up by the axial line of the ring into two connected 
parts (the internal and external parts relative to this 
axial line) .  In each of these regions a pair of holomorphic 
functions of a complex variable must be determined in accordance 
with certain conditions on the contour of the plate and 
also on the line of the ring.  The conjugate conditions on 
the line must be set up taking into account the joint work 
of the plate and the reinforced ring (there are three such 
conditions) .  In the final analysis to determine the four 
holomorphic functions, there are four complex conditions of 
the type (6.3)-(6.5), which include, in addition to the given 
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magnitudes two complex functions of the arc of the axis of 
the ring that were not given before.  The problem of the 
reinforcement of the plate by rigid ribs was studied In 
this way In a number of cases.  For example, for a circular 
plate with an arbitrary number of curvilinear ribs, a solvable 
Fredholm Integral equation was set up. 

Certain special problems (for example, a circular plate 
with a concentric rigid rib, an elliptic plate with a 
central circular rib) are solved effectively using the method 
of series. 

The monographs of G. N. Savin (1951), D. V. Valnberg 
(1952), M. P. Sheremet'ev (1960) and 0. N. Savin and N. P. 
Fleishman (1964) that were mentioned above discuss also cer- 
tain other problems in the plane stressed state and the bending 
of plates both in the Isotropie and anlsotropic case.  For 
example, problems connected with the effect of the anlsotropic 
material on the stress concentration near elliptical "holes," 
problems of the rational selection of the parameters of the 
reinforcing elements, and the effect of concentrated loads 
on the contour in a multilayer  disc have been studied in 
greatest detail. 

6.3.  Mixed and Contact Problems 

Mixed and contact problems Include the most difficult 
problems In the theory of elasticity.  When these are studied 
using complex variable methods, boundary value problems with 
discontinuous coefficients are obtained and it becomes necessary 
to study the behavior of the solutions in the neighborhoods 
of the discontinuities. 

It was already mentioned above (Section 5.3.4) that 
D. I. Sherman (1940) constructed a singular integral equation 
with discontinuous coefficients for the fundamental mixed 
plane problem.  This equation can be used to solve the problem 
of the bending of a thin Isotropie plate under a normal load, 
when a part of the edge is fixed and a part is free. 

A. I. Kalandlya (1952) constructed a system of singular 
Integral equations for solving the general problem of the 
bending of the plate when a part of the edge is fixed, another 
supported, and the remaining part free.  In a number of studies 
(see, for example, A. I. Kalandlya, 1961; D. I. Sherman, 1955) 
a numerical solution Is given for mixed problems for the 
bending of plates for special regions. 

One of the most effective methods for solving mixed 
problems in plane elasticity theory is the method of linear 
conjugations of functions.  The solution of mixed problems 
using this method was discussed above (Section 5.3.7). 
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Problems in the indentation of rigid dies in an elastic half- 
plane lead to conjugate boundary value problems which are 
analogous to the conjugate problem constructed above (Sec- 
tion 5.3.7) for the fundamental mixed problem.  The problem 
of the contact of two elastic bodies (the generalized plane 
Herz problem) , whose rhapes are nearly a half plane, when the 
contact sector is small, also leads to the linear conjugate 
problem.  The solution of these problems using the method of 
linear conjugation of functions is presented in the monograph 
of N. 1. Muskhelishvili. 

L. A. Gulin (1953) obtained a solution for a number of 
contact problems by applying methods of the theory of func- 
tions of a complex variable.  I. Ya. Shtayerman (1949) studied 
contact problems using the method of integral equations. 

In the studies of V. M. Abramov (1937), N. I. Glagolev 
(1942, 1943), V. I. Mossakovskiy and P. A. Zagubizhenko (1954), 
I. G. Aramanovich (1955), V. V. Panasyuk (1953, 1954), A. I. 
Kalandlya (1957, 1958), M. P. Sheremet'ev (1952, 1961) a 
number of contact problems are investigated using different 
methods. 

6.4.  Plane Static Problem of an Anisotropie Body 
in the Theory of Elasticity 

The methods of the theory of functions of a complex 
variable can be applied successfully to the plane problem 
of an anisotropic body as shown for the first time by S. G. 
Lekhnitskly (the first studies of S. G. Lekhnitskiy along 
these lines were published in the 30's, see, for example, 
the monograph:  S. G. Lekhnitskiy, 1947, 2nd ed., 1957). 

Suppose that a homogeneous anisotropic body has at each 
point an  elastic symmetry plane which is parallel to the 
given plane which we will take as the Oxy plane.  When the 
body is subject to a plane deformation which is parallel to the 
Oxy plane, the stress function (the Eyre function) satisfies the 
general blharmonic equation (the case when body forces are 
absent) 

d*ü d*U d*U 
■ 01 —■—S-:— ~*~ fl*1 —i—.> .   .» 

d*u   .     aw   n 
iij- dy dy* (6.6) 

where a0, . . ., a4 are real constants which depend on the 

elastic properties of the body under consideration (an 
analogous equation is also valid for the generalized plane 
stressed state of the plane). 
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Also,   In  this case,   It Is  possible  to construct a 
general solution with the aid of two analytic functions of 
a complex variable.    This representation depends on the 
roots of  the characteristic equation corresponding to 
equation  (6.6): 

flo + Ois + a,«2 + fla«3 -i- flt** = 0. (6 .7) 

S. G. Lekhnitskly has shown that this equation has no real 
roots.  In the case of an Isotropie body, equation (6.7) re- 
duces to the equation 1 + 2s^  + s^ = 0 and, consequently, has 
the double roots 1 and - 1.  When equation (6.7) has the 
double roots s=a+iß, s=a-iß, the general real solution 
of equation (6.6) is represented in the form 

U (x, i/) = i (p (=) 4 2 (p (s) + X (2) + X (2).        (6.8) 

as in the case of an Isotropie body, but this time the complex 
variable z has the form z = x + sy = x + ay + ißy ((x,y)e: S) , 
where S denotes the region occupied by the body. 

Making the affine transformation 

x' = x+ ay,     y' = ßj/. (6.9) 

we obtain the complex variable z' = x' + ly', which varies 
over the region S', obtained from the region S by the affine 
transformation (6.9). 

Formula (6.8) and the expression for the stress and 
displacement components which follows from it show that this 
case (i.e., the case of multiple roots of equation (6.7)) 
is almost completely analogous to the case of an Isotropie 
body so that it is usually not discussed. 

In the case when equation (6.7) does not have multiple 
roots, I.e., it has four different palrwise conjugate roots 

S\  - oci + J'PI, .«i = at — ißi, s. = a, -f ifii,   «a = a... — ißa, 

the general real solution of equation (6.6) is written In the 
form 
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V (a-, y) :■= t\ (;,) -f /', (=,) + /', (z,) + F. (s,,) (6 > 10) 

using two analytic  functions of   the variables 

St = x -'r siy ■-■- x -,- ocy -\- ißiy,   z2 -= x + s.^ ^ x + a^j -j- if>2y, 

which vary, respectively,  over the regions S,   and S« obtained 

from the region S by the corresponding affine  transformations. 

In  the  case under consideration,   in contrast  to  the case 
of an i&otropic body, we are dealing with analytic functions 
of   two different complex variables z,   and z«,  which vary over 

two different regions  (it  is easily seen that the variables 
z,   and Zn art  related to one another  by an affine non- 
analytic  transformation).     Generally,   this fact complicates 
the solution of  xhe boundary value problems  (the class of 
boundary value problems that are solved effectively  in  the 
case of an anisotropic   body is much smaller than in  the 
case of an anisotropic body) .    However,   also in the case of 
an anisotropic body,  it is possible to obtain a solution 
for  the boundary value problems with  the aid of methods from 
the  theory of  functions of a complex variable.    A number of 
important results along these  lines were obtained by S.  G. 
Lekhnitskiy,   S.   G.  Mikhlin,  G.  N.   Savin,   D.   I.  Sherman 
and others. 

The following complex representation of  the stresses and 
displacements  follows from  the general  representation of  the 
stress  function   (6.10): 

X.-Jllol^Kf:,) : s^J»;(s2)|. 

Xy=.-2HeM>;(c1)-^F);(-2)|: * 1 
f/ = 2 He 1^,0), (:,) -f- pßh (=2)] — '•>.'/ r "0,  1 
i?-.-2h('[(/1(I)1(cl) -f/2(I),(:,)|     (»j-i-ro.    J (6.12) 
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Here  UM:,) (//•', (/:,. <!>,(:,)- f/f, rf:.. Pi- ^i- '?i. <Ii are constants which 
are defined and expressed in terms of the elastic constants 
of the body, uu, UQ, V0 are arbitrary (real) constants, 

corresponding to the rigid displacement of the body. 

If the domain S occupied by the body is simply connected, 
the analytic functions in the general complex expressions are 
singlevalued and, in the case of a multiply connected domain | 

they are generally multiple valued analytic functions.  For 
example, if the domain S is bounded by several contours, the 
functions ^TCZT) and $2^z2^ have the form 

UM:,)- 'I'l^i)  ^ -U hi (=,-=!«). 
" ' (6.13) 
n 

iD, (:.>) = iK N : Ü /A In (52 —=20 
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The  theory  of brittle fracture dates  back to  the early 
studies of A.  A.   Griffith  (1920),   which were continued by 
G.  R.   Irwin  (1948)     and later)   and E.   0.   Orovan  (1950 and 
later).    As a result of  these studies,to characterize the 
brittle fracture strength of  the material,   a new constant was  in- 
troduced which made it  possible to study  the problem of 
brittle cracks  in  the classical   formulation of elasticity 
theory.1 

Problems of   the kinetics of  the growth of cracks were 
considered by G.   I.  Barenblatt,  V.   M.   Yentov,  R.  L.   Salganik 
(1966),   1967)   and also by G.   I.  Barenblatt,   R.  L.  Salganik, 
G.  P.   Cherepanov   (1962).     L.  N.  Kachanov   (1961)  attempted to 
estimate the durability of a body with a crack in an elasto- 
viscous body. 

G.   I.  Barenblatt and G.  P.  Cherepanov   (1960)   considered 
the problem of  the  loosening of an orthotropic elastic body 
by a  thin rigid wedge which was displaced with a constant 
speed.     In the problem of  the loosening of  an infinite body 
by a wedge of  finite length,   I.  A.  Markuson   (1961)   obtained a 
relationship  for   the length of  the crack as a function of  the 
length of  the wedge.     The spreading of displacement cracKS 
was considered by G.   I.   Barenblatt and G.   P.   Cherepanov  (1961). 
The problem of  the stable development  of a crack strengthened 
by rigid ribs was  considered in the study  of Ye.  A.  Morozova and 
V.  Z.  Parton   (1961).     The stable development of a biperiodic 
system of cracks was studied by V.   Z.   Parton  (1965).    G.  P. 
Cherepanov  (1966)   studied the development  of cracks in compressed 
bodies. 

A model of a crack in which the adhesive forces on sec- 
tors which are commensurate with the length of the crack are 
also taken into account was studied, using the condition for 
the smooth coupling of the edges of the cracks and the finiteness 
of the stresses on them, by M. Ya. Leonov and V. V. Panasyuk 
(1959).       The solution  for a large number  of plane problems dealing 

1. For greater  detail  about  the mechanics   of fracture,   see 
pp 427-574   (editor). 

2. The monograph of V. V. Panasyuk, "Limiting Equilibrium of 
Brittle Bodies with Cracks," (1968) is devoted to the static 
theory of cracks.  The monograph also contains a detailed 
bibliography 

-102- 



■ÄtrttwWWiWtöJMW*«^»**^ «wuHW^rwrmw  «ffwwTw»ww«rfM«v»«<---.,i 'r.'vrwwtKW-i'^Wv^^ 

with the limiting equilibrium of a body with cracks in various 
positions and of various shapes when the body with the cracks 
was subjected to various loads were obtained.  (V. V. 
Panasyuk and B. L. Lozovoy, 1962, V. V. Panasyuk and L. T. 
Berezhnltskly, 1964-1966).  This class of problems includes 
plane problems dealing with the stressed state in the neighbor- 
hood of the corner points of the contour of a "hole" (V. V. 
Panasyuk and Ye. V. Buyna, 1966) , in particular, a circle with 
radial cracks (V. V. Panasyuk, 1965). 

The study of G. P. Cherepanov (1963) Investigated the 
initial development of a crack from the corner points in an 
infinite rectangular cutout pressed at the bottom by a rigid 
die. 

Problems dealing with the stressed state near the edge 
of a crack extending to the edge of the plate or close to it 
were studied by V. V. Panasyuk (I960), G. I. Barenblf.tt and 
G. P. Cherepanov (1960, 1962).  The problem of the limiting 
values of an external load (bending moment, uniformly distributed 
pressure) on a strip (beam) with a rectilinear crack perpendi- 
cular to the axis of the strip were considered in the studies 
of B. L. Lozovoy and V. V. Panasyuk (1961-1963).  Three- 
dimensional limiting equilibrium problems of a body with a 
plane circular crack were studied by M. Ya. Leonov and V. V. 
Panasyuk (1961) .  The more complex case of an elliptical crack 
was studied by V. V. Panasyuk (1962) , M. Ya. Leonov and K. 
N. Rusinko (1963, 1964). 
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NONLINEAR ELASTICITY THEORY 

V. V. Novozhilov, L. A. Tolokonnikov, K. F. Chernykh 

81.  General Problems 105 

§2.  Secondary Effects in Problems in the Bending 
and Torsion of Prismatic and Cylindrical 
Bodies 110 

§3.  Plane Problems 111 

§4.  Equilibrium Stability of an Elastic Body     113 

Two assumptions are used in the construction of classical 
linear elasticity theory:  that the elongations, shifts and 
angles of rotation are small and of the same order of magnitude 
and that it is possible to apply the generalized Hooke law. 
When one of these assumptions is discarded or replaced by a 
less stringent assumption, various variants of nonlinear elasticity 
theory are obtained. 

A number of specific problems and difficulties arise in 
the transition to nonlinear theory: 

1) the selection of a coordinate system which defines the 
positions of the points of the body; 

2) the adoption of deformation characteristics of one 
kind or another and the corresponding generalized stresses; 

3) determination, taking into account tensor-invariant 
and thermodynamic concepts, the type of relation between the 
stresses and strains, the selection of a convenient set of 
invariants, expressing this relation concretely for various 
groups of materials, and carrying out the simplest experiments 
needed for this purpose; 

4) classification of the problems in nonlinear theory 
and finding approaches to the simplification of nonlinear re- 
lations in various special cases; 

5) formulation of variational and related principles; 

6) formulation of problems in equilibrium stability 
elastic bodies. 

Section 1 of the survey considers studies of a general 
character which clarify the first five problems that were 
enumerated.  Section 2 analyzes studies dealing with secondary 
effects accompanying the torsion and bending of prismatic and 
cylindrical bodies.  Section 3 is devoted to studies of 
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of plane problems.  Section 4 considers studies in the equili- 
brium stability of elastic bodies in which the initial relations 
are the relations of nonlinear elasticity theory. 

The development of nonlinear elasticity theory dates back 
to the 19th century to the work of 0. Cauchy, G. Green, G. 
Kirchhoff, I. Finger and later £. Treftz, A. Signorini, F. D. 
Murnagan, M. A. Bio and many contemporary foreign scientists, 
among whom we first mention R. S. Rivlin, R. Hill and A. E. 
Green.  The results obtained by them overlap in many respects 
with the results obtained by Soviet scientists. 

• 
Since the purpose of this article is to survey the achieve- 

ments of Soviet scinetists, it cannot give a complete picture 
of the general state of nonlinear elasticity theory.  This 
should be kept in mind when the article is read. 

-■ 

■ 

§1.  General Problems. 

Although the first publications on nonlinear elasticity 
theory in the USSR date back to the 30's (N. V. Zvolinskiy, 
1939, N. V. Zvolinskiy and P. M. Riz, 1938, 1939, D. Yu. 
Panov, 1939, P. M. Riz, 1938, 1939), serious attention has only 
been given to nonlinear problems in the last two decades. 
This was stimulated to a considerable extent by the appearance 
of publications dealing with general theoretical problems 
(K. Z. Galimov, 1946, 1948, 1949, I. I. Gol'denblat, 1950, 
D. I. Kutilin, 1947, V. V. Novozhliov, 1948) and other publica- 
tions that were published later.  The studies that were mentioned 
dealt with a wide class of problems and determined the direc- 
tion of research in nonlinear elasticity theory in the country. 

Two types of coordinates are used in the mechanics of 
continuous media;  three-dimensional Eulerian coordinates and 
material Lagrangean coordinates ("frozen in the body") (K. Z. 
Galimov, 1946-1955, I.I. Gol'denblat, 1950, 1955, V. V. 
Krylov, 1956, D. I. Kutilin, 1947, V. V. Novozhilov, 1948). 
Material coordinates (V. V. Novozhilov, 1958) in which the 
boundary conditions and the deformation hypotheses are formulated 
more simply (for example, the hypothesis of the principal normal 
in the theory of plates and shells and the hypothesis of 
plane sections in the theory of the flexure of rods) are more 
convenient in nonlinear theory.  When we consider not the de- 
formation process itself (which is done in elasticity 
theory) but only the initial and final position of the body, 
the introduction of three-dimensional coordinates is unnecessary 
(L. I. Sedov, 1962).  The magnitudes which characterize the 
deformation and equiliblrum of the body can be referred either 
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to the undeformed or deformed material coordinate basis. 
The monograph of L. I. Sedov (1962) discusses in detail the 
selection of the coordinate vector bases and the relations 
between them. 

The principal characteristics of the deformations used 
are half the differences in the components of the fundamental 
metric tensor in the deformed and nondeformed states (K. Z. 
Galimov, 1946, 1949, 1955; I. I. Gol'denblat, 1950, 1955; 
V. V. Krylov, 1956; D. I. Kutilin, 1947; V. V. Novozhilov, 
1948, 1958).  Other characteristics are also used to describe 
large deformations among which we shall mention, for example, 
the following:  logarithmic (or true) deformations, components 
of the tensor which coincide on the principal deformation 
axes with the principal relative elongations and components of 
a tensor whose contravariant components are half the differences 
of the corresponding components of the metric tensors In the 
deformed and nondeformed states.  In the study of different 
problems, preference is given to different sets of charac- 
teristics.  To treat the results properly, it is important that 
the generalized characteristics of the deformation that were 
adopted correspond to the generalized stresses (in the expres- 
sion for the elementary work) (V. V. Novozhilov, 1951).  In 
the monograph of L. I. Sedov (1962) which summarizes the re- 
sults of earlier studies (L. I. Sedov, 1960, V. D. Bondar', 
1960, 1961, M. E. Eglit, 1961) when the deformation of an 
element of the body is discussed, the theory of tensor functions 
is widely used.  From this standpoint, any analytic function 
of the deformation tensor can be used as a characteristic 
of the deformation.  A skew symmetric tensor corresponding 
to the vector of rotation of the principal axes of the deforma- 
tion is used in the same study for a deformation of general 
shape. 

The relation between the mean rotation of an element 
of the deformed body and the rotor of the displacement vector 
was established earlier (V. V. Novozhilov, 1948). 

A great deal of attention was given to the problem of 
selecting an optimal system of invariants, the calculation of 
the mechanical orientation of the invariants and the relation 
between them (K. Z. Galimov, 1946-1955; I. I. Gol'denblat, 
1950, 1955; V. V. Novozhilov, 1948, 1958).  Thus, it was noted 
(V. V. Novozhilov, 1952) that with an accuracy up to a constant 
factor, the intensity of the tangential stresses coincides with 
the mean value of the tangential stress at the point of the 
body under consideration.  Subsequently, the principal values 
of the deformation tensors and stresses were represented 
trigonometrically (V. V. Novozhilov, 1951).  The fundamental 
invariants are the linear invariants, the intensity of the 
deviator and the inclusion angle of the tensor (deviator). 
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The connection between the strain and stress tensors is 
characterized by the generalized volumetric expansion modulus, 
the generalized displacement modulus and the similarity phase 
of the deviators (which is equal to the difference of the 
"inclusion angles" of the tensors under consideration. The 
differential relations between the generalized moduli  that 
were introduced were determined from the condition for the ex- 
istence of the potentials for the stresses and strains. 

Similar relations were obtained with the aid of Mohr 
circles (A. K. Slnitskiy, 1958).  The trigonometric representa- 
tion of the principal values of the tensor made it possible 
(V. V. Novozhllov, 1951) to obtain concretely the coefficients 
proposed by V. Prager for the relation between two coaxial 
tensors.  The further development of the geometric aspects 
of the problem of the relation between symmetric tensors of 
rank two is given in the studies of V. V. Novozhllov (1963), L. 
I. Sf.dov (1962), K. F. Chernykh (1967). 

An extensive study of the problem of the relation between 
invariants using the results from the theory of algebraic 
invariants and group theory was carried out by I. I. Gol'denblat 
(1950, 1955).  The possibility of introducing invariants 
which made It possible to consider separately the change in 
the volume of the element and its shape was clarified (L. A. 
Tolokonnlkov, 1956).  Relations generalizing the similarity 
law for the stress and strain deviators were proposed in 
the same article.  L. A. Tolokonnlkov (1957) developed on this 
basis a variant of quadratic theory (with four constants), 
which was based on the following assumptions:  the pressure 
from all directions depends only on the relative change in the 
volume, the Intensity of the tangential stresses only on the 
intensity of the shearing strain, "the inclusion angles" of 
the tensors of the true stresses and the logarithmic stresses 
are equal to one another. 

It was shown (D D. Ivlev, 1961) that for an Isotropie 
body which rssisis expansion and compression in a different 
mannerj the set of the simplest experiments does not fully 
determine the potential of the deformation. 

It was established (V. D. Bondar', 1963) that any equili- 
brium state of the body with stresses and strains which are 
different from zero can be taken as the initial state provided 
the body forces are determined in a special way.  Thermodynamic 
concepts have been used relatively frequently in the construction 
of nonlinear elasticity »theory (I. I. Gol'denblat, 1950, 1955; 
D. I. Kutilin, 1947; V. V. Novozhllov, 1963).  The monograph 
of L. I. Sedov (1962) discusses in detail the problem of 
the application of the thermodynamics 'f reversible processes 
for obtaining a closed system of equations in nonlinear 
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elasticity theory. Here, all four thermodynamic potentials 
are used.  For their arguments (along with the usual components of 
the strain and stress tensors, the temperature 
and entropy), parameters which determine the physical- 
chemical properties of the materials of the body are also in- 
troduced.  The latter can also be tensor quantities.  The case 
of the presence of internal reactions has been studied 
(for example, the incompressibility condition for the material). 
The case of an Isotropie body has also been discussed in 
detail. 

In the monograph of I. I. Gol'denblat (1955), which 
summarizes his earlier studies (1949, 1950), the case corres- 
ponding to the adoption for the arguments of the thermodynamic 
potentials of the invariants of the strain and stress tensors, 
the elastic moduli (deformation coefficients) is analyzed in 
detail.  L. I. Sedov (1965) introduced into the discussion 
stress moments. 

The relations that were derived were obtained in concrete 
form when applied to rubber in the studies of G. M. Bartenev 
and T. N. Khazanovich (1960), V. L. Biderman (1953, 1957, 1958, 
1962), V. L. Biderman and B. L. Bukhin (1960, 1961).  A 
general approach was proposed for the calculation of rubber 
parts for large strains and displacements (V. L. Biderman, 
1958).  The forms of the potential of an Incompressible material 
were studied. The possibility of satisfying approximately the 
incompressibility condition was clarified (V. L. Biderman and 
N. A. Sukhova, 1963).  The four constants in the polynomial 
for the elastic potential were determined from the experiments. 
The solutions of certain problems for rubber shock absorbers 
and seals were obtained (V. L. Biderman, 1962).  G. M. Bartenev 
and T. N. Khazanovich (1960) proposed a form of the stress 
potential with three constants on the basis of an analysis 
of the behavior of rubber during a one-dimensional deformation. 

In the study of V. V. Lokhin (1963) it was pointed out 
that it was convenient to classify anlsotropic media by their 
point symmetry groups.  It was shown that any tensor which 
is Invariant with respect to a given group of points can be 
represented as a linear combination of tensors obtained with 
the aid of tensor operations from a minimum set of tensors. 
L. I. Sedov and V. V. Lokhin (1963) found such systems of 
tensors for seven types of structures and all 32 classes 
of crystals.  The general form of the formulas for tensors 
of arbitrary rank was determined in the form of nonlinear 
tensor functions of scalar and tensor functions of arbitrary 
rank,  (see also V. V.  Lokhin and L. I. Sedov, 1963). 
It was shown that to construct the tensor functions, a necessary 
and sufficient condition was the knowledge of the complete 
system of functionally independent consistent tensor invariants 
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and tensor arguments under consideration. The structure of the 
tensor functions describing the state of the structures and 
certain classes of crystals was clarified (V. V. Lokhin, 
1963). 

The general theorems of nonlinear elasticity theory are 
discussed In the studies of L. N. Vorob'ev (1956), N. A. 
Kll'chevskly (1963, 1964), D. I. Kutllln (1947), V. V. 
Novozhllov (1958).  The extension of the early varlatlonal 
principles (of the type proposed In linear theory by E. Relssner) 
was formulated by K. Z. GaXlmov (1952) and I. G. Teregulov 
(1962).  The proposed varlatlonal principles use as the 
Independent functional elements which are varied,the displace- 
ments, stresses and strains which are unrelated inside and on 
the boundary of the body.  The varlatlonal principles 
give an alternative approach to the solution of nonlinear 
problems through the use of direct methods of mathematical 
physics.  When relations are imposed on the elements that 
are varied, the principles discussed become the classical orig- 
inal displacements and possible changes in the stressed 
state (The Castigliano principle). 

The studies of N. V. Zvollnskiy, D. M. Panov and P. M. 
Riz (1938-1943) determined the general trend of the applied 
work in nonlinear elasticity in the country (§2, 3). 
The latter is characterized by the use of the so-called 
quadra ic theory (a variant of nonlinear theory), which is 
obtained by retaining in all relations the products and 
squares of the unknown quantities together with the linear 
terms. 

V. V Novozhilov (1948, 1958) made a number of critical 
remarks about the quadratic theory.  Briefly, they reduce to 
the following.  The possibility of a complete or partial 
linearization of the geometric and static (dynamic) relations 
in nonlinear elasticity theory is based on purely geometric 
factors:  the magnitude of the elongations, shifts, and 
rotation angles, both compared to one, and to one another. 
Therefore, the undifferentlated approach used in quadratic 
theory (as mentioned above) to simplify the static-geometric 
relations has a formal character.  Further, to simplify the 
relations relating the stresses and strains, the smallness 
of the strain components compared to one is not sufficient. 
They must be compared to the physical constants of the 
material (the proportionality limits), quantities, whifch, 
as a rule, are very small compared to one.  In addition, 
quadratic theory is characterized by the retention in the 
stress potential of cubic terms along with the quadratic 
terms (the five constant Feucht-Murnagan theory).  For the 
majority of real materials, the deviation from Hooke's 
law is due to the even powers of the strain components. 
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An alternative approach to the simplification of the 
nonlinear relations which is free of the disadvantages that 
were pointed out has been discussed in detail by V. V. 
Novozhilov (1948, 1958).  In particular, one consequence of 
this approach is the presently used breakdown of the problems 
into four groups:  1)  problems which are linear physically 
and geometrically, 2) problems which are nonlinear physically 
but linear geometrically, 3) problems which are linear 
physically but nonlinear geometrically, 4) problems which are 
nonlinear physically and geometrically. The monograph of 
V. V. Novozhilov (1948) analyzes from the standpoint of the 
general relations in nonlinear elasticity theory the geometric 
assumptions which are widely used in the study of the deforma- 
tion of rods, plates and shells. 

It is well known that in the important practical case of 
a simple load (all stresses in the body vary proportionally 
with the same parameter) the relations in plasticity theory 
degenerate into the formulas of nonlinear elasticity theory. 
L. I. Sedov (1959) has shown that for large deformations,the 
simple load on the body as a whole can only occur for deforma- 
tions of a very special form.  The study of V. D. Bondar (1960) 
is devoted to the clarification of the form of the deformations 
which correspond to a simple load. 

V. M. Babich (1954) considered, using kinematic and dynamic 
consistency conditions, a system of equations of motion of an 
elastic medium for which the potential for the change of shape 
is an arbitrary function of the intensity of the strain.  The propa- 
gation velocities of the waves that depend on the direction of the 
homogeneous field of Initial stresses which create the anisotropy 
were found. 

It was shown in the article of I. A. Viktorov (1963) 
that in a nonlinear elastic medium the principal longitudinal 
wave leads to the occurrence of secondary longitudinal and 
transverse waves and the same applies to the principal trans- 
verse wave. 

§2.  Secondary Effects in Problems of Bending and Torsion 
of Prismatic and Cylindrical Bodies 

The effects predicted by quadratic theory used together with the 
results of linear theory are called secondary effects.  The 
possibility and usefulness of taking into account the secondary 
effects was pointed out in 1937 by F. D. Hurnagan (Amer. J. 
Math,  Vol. 59, No. 2, 235-260 (1937)). An original approach 
to a class of problems that occur in the transition to quadratic 
theory was presented in the studies of N. V. Zvolinskiy and 
P. M. Rlz (1939) and P. M. Riz (1947).  As an application of 
the theory that was developed, the effects related to the axial 
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deformation of prismatic bodies under the action of torques 
was considered.  The extent to which expansion increases and 
compression reduces the torsional stiffness of rods was 
determined.  The critical values of the compression forces 
at which the rod has no stiffness in torsion were determined. 

P. M. Rlz (1938, 1939) solved the problem of the torsion 
of a circular cylinder retaining second order twist terms . 
Axial compression and elongation of radial wires was detected. 
Analogous effects occured during the torsion of an elliptical 
cylinder (D. Yu. Panov, 1939). 

In order to estimate the mutual effect of the pure bend-f 
ing strains in each principal plane, the oblique bending of 
a rod was investigated (P. M. Rlz and A. I. Pozhalostin, 
1942).  The studies of A. Ya. Gordidze and A. K. Rukhadze 
(1941, 1943), N. V. Zvolinskiy (1939), R. S. Minasyan (1962, 
1963), P. M. Rlz (1939), A. K. Rukhadze (1941, 1947), A. 
K. Rukhadze and A. Ya. Gordidze (1944) clarified the mutual 
effect of various actions on the rod (homogeneous or composite) : 
axial expansion by surface and body forces, bending by couples, 
bending by a force and torsion.  In particular, it was shown 
that the mutual effect of loads is considerable for long bodies 
with a thin proflie, such as airplane propellers. 

The quadratic theory was further developed by L. A. 
Tolokonnlkov (1956, 1959).  Here, the assumption about the 
similarity of the strain and stress deviators is Important as 
well as the decomposition of the general elasticity moduli in 
accordance with two parameters (the relative change in the 
volume and the degree in the change of the shape).  The results 
that were obtained are Illustrated on the problem of the torsion 
of a circular shaft.  The study of N. V. Vasilenko (1965) 
analyzes the quadratic relations in thermoelasticlty. 

§3.  Plane Problems 

Just as in the general case, it is possible to Isolate 
three trends in the study of plane problems in nonlinear 
elasticity theory. 

The first trend studies problems which are nonlinear 
both physically and geometrically, which is characteristic 
of the further development of the theory formulated in the 
work of  G. E. Adklns, A. E. Green, R. T. Shield and G. K. 
Nicholas.  The method of a small parameter which is used as 
the first approximation for the linear solution of the problem 
is used on a wide scale here. 
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This approach made it possible to apply effectively 
(G. N. Savin, 1964) the method of functions of a complex variable 
and integral formulas of the Cauchy type that were developed 
earlier and applied to linear problems.  The singularities and 
conditions for single valued complex potentials were studied 
and various variants of static and geometric boundary condi- 
tions in the initial and deformed states were formulated 
(G. N. Savin and Yu. I. Koyfman, 1961).  Next, a number of 
problems dealing with concentrated stresses around a circular 
and elliptical opening (free and supported) during a homogeneous 
stressed state at infinity were considered (Yu. I. Koyfman, 
1961-1964).  Similar problems for plates with a rigid core 
were also considered here. 

An original approach to the plane incompressible state 
was proposed by L. A. Tolokonnikov (1958), V. G. Gromov 
(1959) obtained an exact solution of the axially symmetric 
problem which made it possible to estimate the accuracy of 
approximate solution methods.  The application of the method 
of functions of a complex variable was developed further 
(V. G. Gromov and L. A. Tolokonnikov, 1963).  The constraint 
related to the incompressibility condition was removed in the 
study of I. G. Teregulov (1962). 

The study of V. V. Krylov (1946) belongs to the second 
trend, (problems which are nonlinear geometrically and linear 
physically).  A thorough analysis of the plane state was made 
in this publication which was one of the first to appear in 
the country which dealt with the nonlinear plane problem. 
The possibility of applying functions of a complex variable 
was demonstrated. 

The third direction (problems, which are nonlinear 
physically and linear geometrically) studies small deviations 
from the law governing the change of the shape (according to 
Kauderer).  G. N. Savin (1965) obtained tie solution equation 
in arbitrary isometric coordinates determined from a mapping 
function of general form.  A number of concrete problems 
dealing with the concentrated stresses around "holes" with 
different stress fields at infinity have been considered. 
The effectiveness of an elastic support of the contours has 
been studied (I. A. Tsurpal, 1962-1965).  The solution 
of a number of problems in the *hird direction is based on 
the relations of quadratic elasticity theory (I. N. 
Slezinger and S. Ya. Barskaya, 1960, 1965).  An analysis of 
the solutions that were obtained shows that taking into 
account the physical nonlinearity of the material leads to 
a reduced stress concentration around the holes. 
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94.  Equilibrium Stability of an Elastic Body 

We will only dwell on studies dealing with the tquilibrium 
stability of elastic bodies in which the relations from non- 
linear elasticity theory are initially used without the 
assumptions made in the theory of thin-walled structures. 

We begin with the study of L. S. Leybenzon (1961) 
in which the stresses, displacements and strains were 
clearly broken up for the first time into principal and 
additional stresses, displacements and deformations formed 
during the loss of stability.  The relations that were obtained 
for the additional state made it possible to determine the 
critical values of the differences in the pressures acting on 
the external and Internal surface of a hollow sphere and a 
long pipe.  In subsequent studies L. S. Leybenzon gives a thorough 
analysis of approximate solution methods for elastic equilibrium 
stability problems. 

A survey of the general formulation of problems in the 
stability of the equilibrium of an elastic body which follows 
Hooke's law is available in the monograph of V. V. Novozhilov 
(1948).  This monograph clarified (without any preliminary 
simplification) the conditions under which a new form of 
equilibrium can occur and formulated the differential equations 
and boundary conditions for the elastic equilibrium problem. 
It also analyzed the simplifications which follow from the 
assumption that the initial state is described by the rela- 
tions of classical elasticity theory and proposed an energy 
criterion for the stability. 

The study of V. V. Bolotin (1956) is devoted to general 
stability problems.  The fundamental state, described by the 
relations of linear elasticity theory is represented in terms 
of Green's tensor and the problem is reduced to a study of 
a system of linear integral equations (the latter become 
under the appropriate assumptions the stability equations for 
thin-walled structural elements).  The effect of a change in 
the surface and body forces on the stability and also in 
deformations preceding loss of stability has also been dis- 
cussed.  The general equations of nonlinear elasticity are 
used by V. V. Bolotin (1958) in the study of the stability 
problem "in the small" and "in the large." It is assumed 
that the elongations and displacements are small and the eigenvalues 
of the general stability boundary value problems are 
analyzed "in the small" and the stability relations are formu- 
lated "in the large." 

A. Yu. Ishlinskiy (1943) applied the equations for the 
equilibrium stability of an elastic body to the stability 
problem of a compressed strip.  He represents the critical 
stress in a series in powers of a parameter which vanishes to- 
gether with the thickness of the plate.  The first term in the 
series gives the value of the critical load according to Euler. 
During the study the stability of a compressible strip with 
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different boundary conditions was investigated (L. V. Yershov 
and D. D. Ivlev, 1961). 

In the spirit of the studies of A. Yu. Ishlinskiy (1943, 
1954) the problem of the stability of a square plate during 
uniaxial. and triaxial compression was studied taking into 
account the nonlinearity of the law for the change of the 
shape (I. D. Legenya, 1961, 1962).  Subsequent investigations 
led to the result that it was necessary to take into account 
the angles of rotation during the formulation of the equilibrium 
conditions for an element of the body in the perturbed state 
(I. D. Legenya, 1963).  It became apparent that when this was 
done using V. V. Novozhilov's formulation (1948), the ex- 
pressions for the critical pressure on the square plate had 
terns which differed from the classical terms and did not 
vanish when the thickness of the plate was reduced. 

Taking into account the rotation of the incompressible 
elements of the body (K. N. Semchinov, 1961);the loss of 
stability of a strip of finite dimensions was studied and the 
conditions for the bending of the strip during compression were 
obtained and the critical expanding forces at which a neck 
is formed on the strip were determined. 

The problem of the compression of a circular plate was 
discussed by L. A. Tolokonnikov (1959) taking into account the 
strain and displacements in the basic state.  It was shown that 
the critical pressure as a function of the relative length 
Is not monotonlc and single-valued.  A limiting thickness to 
radius ratio exists for which the plate no longer looses 
stability.  Using the same method, the critical loads were 
found for an annular plate, a circular cylindrical shell and 
a cylindrical panel under the action of transverse pressure 
(G. B. Kireyeva, 1961, 1966). 

The critical value of the compression force for a rod 
was determined by A. I. Lur'e (1966) from the general relations 
which he derived. 
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§1.  Introduction 

1.1.  General Remarks 

Sometimes by plasticity is simply meant the ability of the 
body to undergo a deformation which does not disappear completely 
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when the causes causing it are removed.  In this sense 
plasticity is a general property of solid bodies.  But more 
often this term has a more narrow meaning which identifies 
"plasticity" with athermal ("cold") plasticity, i.e., the 
capability for residual deformations not connected with the 
thermal mobility of the substance.  Externally this manifests 
itself in a certain kind of independence of the pattern of 
the process of time. 

For simplicity we will consider the case when the model 
(or an element of volume of the medium) is subjected to a 
deformation at a temperature which does not change when the 
external electric and magnetic fields do not change.  Let t 
be time, a

t^,   ^^^   the components of the stress tensor and 

strain tensor of the element.  In accordance with one of the 
usual initial assumptions, in this case always when t < t0, 

the element is in a state of thermodynamic equilibrium, the 
£.. = e  (t) (t> t0) are given and the functions 

a..  = a.. (t) (t ^ t0) are completely determined. 

We say that the behavior of the element is independent of 

time If for any two processes e. .  (t), e^ .■' (t) with the same 

state of the element at t = t0, such that for some c > 0 the 

equalities ef^ (t) = ef^ (ct + b) (b = (1 - c)tn, t > tn) hold 

for every t > tQ,   we also have o^' (t) = a^.' (ct + b).  This 

condition can be generalized to nonlsothermal deformation processes 
and processes with varying electromagnetic fields.  For any con- 
tinuous medium which can undergo residual deformation and 
at the same time satisfies this condition for the Independence 
of the behavior of time, the name "plastic" in the sense that 
was mentioned is justified.  The characteristic property of the 
medium from the thermodynamic standpoint is that not every 
quaslstatlc process in it is a reversible process. 

It must be emphasized that the residual deformation 
of a real solid     cannot be completely athermal.  To 
eliminate creep to a sufficient extent as well as other 
effects related to the thermal motion of atomic particles, 
we must bound below the admissible rates of the process, 
more so the higher the temperature, all other conditions being 
equal.  But for nonmetallic materials this limits the capacity 
for residual deformations of the materials themselves; during the 
deformation of a nonmetallic body at rates which ensure the athermal 
character of the process, the appearance of a residual deformation 
is usually almost immediately accompanied by fracture.  The 
fracture can only be avoided by applying a sufficiently 
large hydrostatic pressure (In most cases measured in tens 
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or even hundreds of thousands of atmospheres). Only metals 
have considerable athermal plasticity for the usual values 
of the spherical stress component. Naturally, for this reason 
the experimental foundations of plasticity theory consist almost 
exclusively of the data obtained from experiments with 
metals. 

1.2.  Short Historical Survey 

The beginning of plasticity theory goes back to the 
70's of the last century and it is connected with the names 
A. St.-Venant and M. Levi. St.-Venant was the first man who 
was able to formulate the equations satisfying the laws of 
the plastic flow cf metals in the language of the mechanics 
of a continuous medium.  This success owed a great deal to the 
experimental studies of A. Tresk, who made toward the end 
of the 60's a series of experiments dealing with the pressing 
and indentation of metals through "holes." The classical 
study of St.-Venant dealing with equations for the "internal move- 
ments whi h arise in plastic solids beyond the elasticity 
limit" begins by mentioning these experiments.  The study was 
restricted to the case of plane deformation, but the equations 
that were derived in it were immediately generalized by 
M. Levi to the three-dimensional case (the studies of St.-Venant 
and Levi appeared almost simultaneously in Journal de mathematiques 
pures et appliquees in 1871. A translation of this article 
is available in the collection "Theory of Plasticity," 
Moscow, 1948). 

Not much happened during the end of the last century and 
plasticity problems again started attracting the attention of 
major scientists at the beginning of our century.  In 1909 
the studies of A. Haar and T. Karman appeared, which made an 
attempt to obtain the equations of plasticity theory with the 
aid of Variational principles, and subsequently in 1913 
the important study of R. Mises appeared (see the collection 
of translations "Theory of Plasticity" that was already men- 
tioned) .  In this study Mises clearly formulated the plasticity 
condition according to which the transition to the plastic 
state is determined by the value of the quadratic invariant 
of the stress deviator (this condition was stated less clearly 
earlier not in connection with the development of plasticity 
theory).  The main reason why Mises favored this condition 
was its closeness to the yield condition formulated by Tresk 
and used by St.Venant (the condition of a maximum tangential 
stress).  This closeness is related to the fact that as a 
result of the symmetry of the stress tensor 

always holds where 
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is the intensity of the tangential stresses (T^., T«, T» are 

the principal tangential stresses, and s.. are the components 

of the stress deviator. 

A number of important studies appeared in the 20's. Thus 
H Hencky and L. Prandtl drew attention to two-dimensional 
problems in the theory of ideal plasticity, primarily to 
plane deformation problems.  In one study from this period 
Hencly established the properties of "slippage lines" (the 
trajectories T  ) in the plane deformation problem of an ideal 

plastic body (Z. angew, Math, und Mech., (1923), Vol. 3, No. 4, 
pp. 241-251).  In a study published soon afterwards,Prandtl 
pointed out the ways in which these properties could be applied 
to the solution of some concrete problems (pressing in of a 
die, compression of a layer; see the collection "Theory of 
Plasticity," which contains the translation of Hencky's 
article).  Together with the study of H. Heiringer (1930) 
which derived the equations for the velocities on the slippage 
lines.these studies served as an impetus for the extensive 
development of studies dealing with the plane problem in the 
theory of ideal plasticity toward the end of the 30's and later 
(see Section 3 of this survey). 

In still another study from the 20^, H. Hencky gave the 
now well known energy interpretation of the Mlses' 
condition (which is used in many texts on the strength of 
materials) and using a variational principle analogous to 
the principle formulated earlier by A. Haar and T. Karman, 
he obtained the equations for an ideal plastic body as finite 
relations between the stress and strain tensors.  A. Nadai 
generalized the Hencky equations to the case of an Isotropie 
body with reinforcement.  As in Hencky'8 study the range 
of applicability of the finite set of equations relating the stress 
and strain tensors which describe the plasticity are not 
clearly defined.  Clarity with regard to this problem was 
achieved later after the appearance in the 40's of a number of 
studies by A, A. Il'yushin (see Section 2.5.). 

A considerable step forward in the development of the 
St.-Venant-Levi theory,in which the medium under consideration 
is in fact a "rigid-plastic" medium (which can undergo only 
residual deformations) was made in the 20's.  L. Prandtl 

-118- 



was apparently the first man who drew attention to this fact.  In 
one of these studies from the early 20's he gives a generaliza- 
tion of the St.-Venant equations according to which the strain 
Increment de  at a given point of the medium always consists 

of an elastic and residual part and the stress tensor Is co- 
axial with the tensor characterizing the residual part, 
not the entire strain increment.  In 1930, E. Relss generalized 
In a similar manner the variant of the St.-Venant-Levi theory 
developed by R. Mlses (which differed from the initial variant 
only by the yield condition, Z. angew, Math, und Mech., Vol. 10, 
No. 3, 226-274 (1930); see the collection "Theory of Plasticity" 
that was cited). 

The beginning of systemmatic experimental studies connected 
with problems in plasticity theory also goes back to the 20's. 
M. Roche and A. Eichinger published the results of their ex- 
periments in 1926 and the fundamental study of V. Lode^ 
appeared two years later.  In both cases, models in the shape 
of thin^walled tubes were tested and one of the main goals of 
the experiment was to compare the Tresk and Mlses yield conditions 
for a wider set of stressed states than simple elongation and 
pure shear.  In addition to this, Lode Introduced into 
the discussion a parameter which characterized the "form" 
of the bivalent symmetric tensor (the ratio of the diameters 
of the Mohr circles) and he studied in his experiments the 
relation between |i and u ,, the Lode parameters" of the a e 
stress  tensor and  the strain velocity  tensor  respectively. 
In  the plane referred  to the coordinates u  ,   u   ,   the diagram 

a        e 
of this relation according to the data from the experiments 
of Lode, has a characteristic form which was always obtained 
even in later experiments of this type, which makes it 
possible to draw important conclusions with regard to the struc- 
ture of the defining relations. 

It must also be noted that the experimental study of the 
plasticity and strength of metallic monocrystals began in 
those years.  It is known that during the cooling of a liquid 
metal usually a body with a polycrystalline structure is 
obtained.  The growth of a metallic monocrystal is a difficult 
matter and, in spite of the long history of metallurgy, the 
first methods for obtaining monocrystals of typical 
metals were obtained only in 1918-1920.  However, the laws for 
the plastic deformation on the "crystallographic level" were 
used almost immediately on a wide scale.  S. Elam, M. Polyani, 
E. Schmidt and other physicists-metallurgists carried out in 

See the collection "Theory of Plasticity" that was cited. 
The article of V. Lode includes, in particular, a short 
survey of previous experimental studies, the experiments 
of T. Guest,V. Mason, G. Cook and A. Robertson, et al. 
which were made before World War I but which did not have 
a gTaat effect on the development of the theory of plasticity. 
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the 20's hundreds of experiments which studied the elongation 
and displacement of monocrystalllne models beyond the 
elasticity limits with different orientation of the lattice 
of the model relative to the principal stress axes. As 
a result It was established that the plastic deformation of 
a monocrystal occurrs mainly as a result of the translation 
("slippage") of Its parts separated by systems of 
crystallographlc planes, and that crystallographlc planes 
and directions in which the points of the lattice are most 
dense have the smallest resistance to slippage and a number 
of other simple facts, the most important of which describe 
the so-called'Schmidt laws" (a survey of these fadti is avail- 
able in the monograph of E. Schmidt and V. Boas, "Plasticity 
of Crystals," 1935, Russian translation, Moscow-Leningrad, 
1938). 

The Schmidt laws allow a pure macroscopic formula- 
tion.  Therefore, when they are used clarity can be introduced 
in some problems pertaining to the laws of the plastic deforma- 
tion "of a quasiisotropic" (polycrystalline) body.  However, 
the construction of a sufficiently complete and rigorous 
theory of the deformation of a polycrystalline model in this 
way is an extremely difficult problem. For this reason the 
successes of physical metallurgy did not have a great effect 
on the rheology of plastic media.  The development of the 
latter followed predominantly the same direction as in 
1930, i.e., it was based directly on the experimental data 
obtained from the usual models. 

In the early 30^ Important experiments were set up by 
G. Taylor and H. Quinne, R. Schmidt, F. Odquist, and 
K. Howenemser. The experiments of Taylor and Quinne studied 
the mutual orientation of the principal axes of the stress 
tensors and the deformation rates and hardening. 
The experiments of Schmidt were among the first experiments 
devoted specially to hardening in the complex stressed  li 

state (Ing-Arch. Vol. 3, 215-235 (1932), see the collection 
"Theory of Plasticity").  Having subjected to an analysis 
a number of variants of the hardening condition, 
Schmidt discovered that the most satisfactory variant was 
the variant according to which the intensity of the tangential 
stresses is a function of the density of the work of the 
stresses : s,,, = h (w) , dw = ^aB^aB" ^G' Taylor an^ H' 
Quinne reached the same conclusion on the basis of their 
experiments.)  It turned out that the pattern of the-process 
on the plane in the coordinates s^, w changes little in 
the transition from experiments with "a proportional load 
to loads with sharp rotations of the principal axes. F. 
Odquist noticed almost Immediately that the condition according 
to which 
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was just as unsatisfactory. 

In both bases  the  elastic component of  the deformation 
is not   taken into account.     When the elastic deformation is ignored 
the  increment de..  must  be replaced by  its residual part 

de..   = de..  - de?..     Then for any admissible state 
ij ij ij 

s, < A (w),   dw = (taß rfe^ß 

or,   according to Odquist, 

s^g(K)%    dk = Y dzltdzU, (1'1) 

where h and g are monotonic functions, and in both cases 

de^. ^ 0 only when the equality holds. 

The closeness of the conditions (1.1) which is always 
verified in experiments almost dictates that the simplest 
generalization of the Prandtl -Reiss equations be constructed 
for the case of a medium with hardening.  The point is 
that conditions (1.1) agree completely with one another 
(i.e., h(w) = g(X.) for any process) only in the case when in 

any state with de^. ^ 0 the stress tensor is coaxial with and 
n 

similar to the tensor de^..  Together with the condition for 

the plastic incompressibllity of the material and the Mlses 
yield condition the coaxality and similarity of these tensors 
includes also the Reiss equations. 

\ 
A generalization of the Reiss equations that was mentioned 

(which was obtained by replacing the Mises conditions by 
any of the conditions (1.1) was constructed in a somewhat j 
different way by G. Handelman and V. Prager (Prikl. Mat, i. 
Mekh., Vol. 2, No. 11, 291-292 (1947)).  Let j 

. / = f 2 {s, - g (k)),      where as before d\ = Vdzlpdt^. 
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The coaxality and similarity of the stress tensors and 
the rate of the residual deformation .    together with the 
plastic incompressibllity condition are equivalent to the 
relation 

def^dk-ZL, (1.2) 
OOIJ 

and, in accordance with (1.1) for any state f < 0, where 
dX ^ 0 only when f = 0, df = 0.  When the "load function" 
f has the concrete form mentioned, these relations coincide 
with the Handelman-Prager relations. For the elastic component 
of the deformation, as usual, it is assumed that Hooke's 
law is valid. 

The Handelman-Prager relations define a complete concrete 
and simple model of an elastoplastic medium with hardening. < 
In 1951 D. Ch. Drucker formulated a postulate as a result of 
which the residual deformation velocity tensor must be 
related to the load function by a "gradient" relation of type 
(1.2) for a large class of cases. When applied to isothermal 
processes in a medium with hardening and the usual 
unloading law (which does not change as a result of the plastic 
deformation), the Drucker postulate is equivalent to the 
following local maximum principle: 

CTaß deStf > ffaß rfßaß (1.3) 

for any real a.., de?. (related by the defining equations) 

and any admissible stressed state a., (bounded only by the condi- 

tion f < 0). For an ideal plastic medium (1.3) always holds 
with the equality sign.  It follows that the region in the space of 
the stresses occupied by the trajectories of the reversible chwjfges 
is never concave, and the tensor deP. for each smooth sector 

of the boundary of this region ("the loading surface") is 
related to the normal to it by a relation of type (1.2). 

The defining relations in which the load functions play 
the role of ä  "plastic potential" are usually called the 
associated law.  In the case of an ideal plastic medium with 
a smooth loading surface which is most frequently called the 
yield surface (when applied to such media) the adoption of 
the Drucker postulate exhausts the problem of defining the 
relations, at least for processes for which the temperature 
field does not change.  In the case of a medium with harden-»1 

ing  additional assumptions must be made. When the loading 
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surface has a singular point,   the problem of»the relation 
of  the tensor deP    and other variables arises during changes 
of state corresponding to displacements from these points. 

The problem of the yield law  in the case of a plastic 
potential with singularities was  touched on already by 
E.  Reiss  in the early 30*8 and later in the studies of V. 
Prager.   The studies of V.  T. Koiter,     1953-1956 gave an 
elegant solution of  this problem for a medium with a piecewise- 
smooth loading surface of general  form (Quart. App.  Meoh., 
Vol.   11,   No. 3,  350-354  (1953)  and other articles,   the furida- 
mental results and bibliography of which are available in the 
survey study of V.  T.  Koiter,   "General Theorems in  the Theory 
of Elastoplastic    Media," 1960,  Russian Translation,  Moscow, 
1961). 

When  the piecewise-smooth loading surface consists of 
n ^ 1 smooth sectors to which the loading functions f,,   f«, 
.   .   . ,   f    correspond,  according  to Koiter for any process 

df, 
def;= ^J^-^o   '   /m<0, rfXm>0,   • (1.4) 

m=l 

and for each m = 1,   2, n. dX    > 0 if and only  if, '     m 

/m = 0, d(T,p>0 (1.4') 

(for an ideal plastic medium the  last condition is formulated 
somewhat differently).     For a point on the loading surface 
belonging only to one smooth sector, according to  (1.4') 
only one  term in the sum (1.4)   is different from zero,  and 
the segment which has the direction of the normal to the 
surface corresponds to the tensor de^. as before in the   spabe 
of  the stresses.     For the points  of the   surface at which the 
normal  is not defined,   the maximum principle   (1.3) 
admits a great deal of arbitrariness.    Hence,   in these cases, 
on  the basis of (1.4)  and  (1.4')   several partial loading 
functions can be "active" simultaneously. 

In particular the studies of V. T. Koiter made  it pos- 
sible to understand the connection between the theories of the 
usual type and theories claiming a microstructural; approach. 
One of  the most important facts was established by Koiter 
himself who has shown that for an appropriate selection of 

a   transition to the limit as n - " the  functions f    and m 
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relations (1.4) reduce to the relations of S. B. Batdorf's 
and B. Budyanskiy's'fellppage theory." 

This theory was published In 1949 and It was the first 
theory which attracted attention by itslattempt to construct the 
equations of plasticity theory on the basis of the laws of 
the plastic deformation of monocrystals (NASA Techn. Note, 
No. 1871, 1949, Russian Translation in the collection of 
translations "Mekhanika,"  (Mechanics), No. 1, 1962).  In 
the 50's several tens of articles dealing with an analysis 
and certain improvements of the Batdorf-Budyanskiy theory 
were published. However, it became clear toward the end« 
of the 50's that its fundamental assumptions over-simplified 
the "slippage" pattern in a polycrystal. Experimental studies 
which demonstrated unambiguously the unsound 
characteristic predictions of this theory played an important 
role. 

A new Important contribution was made in this period to 
the theory which was developed within the framework of the 
classical approach.  In accordance with (1.1) the loading sur- 
face in any state is a Hises cylinder with a fixed axis and 
only the radius of the cylinder changes during the plastic 
deformation. Above all, this eliminates taking into account 
the Bauschinger effect.  The first concrete models of an 
elastoplastic medium with deformation strengthening anlsotropy 
and the Bauschinger effect were constructed in the studies of 
V. Prager and other scientists in the 50's.  Later, studies 
which made these models more precise appeared.  The main 
source for the improvements were the results of experiments 
with multiple loads with changing signs that were carried e^ 
out in the 50's and 60's by many experimenters and which made 
it possible to advance considerably the understanding of the 
causes and forms of the Bauschinger effect in real metals. 

Other interesting studies of models under complex loads 
were also carried out in these years. Experiments with "small 
additional loads" and studies of tho "delay" effect which will 
be discussed in greater detail in Section 2 were of fundamental 
importance. Gradually it became clear that no theory in which 
the boundaries of  the elastic behavior for each state of the 
body were described by one surface in the space of stresses 
or strain» gave satisfactory agreement with the experiment. 
As a result of this, recently the interest in theories 
which can be called with some justification microstructural 
was again revived. 
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In conclusion we note that the first studies In plasticity 
theory In our country appeared In 1936-1938.  In the last few 
years the publications of the USSR Academy of Sciences alone 
published over 200 studies.  The next section of this survey 
Is devoted to the studies of Soviet scientists In the field 
of rhöology of plastic media and Section 3 to studies In 
boundary value problems.  The survey makes no 
claims to completeness. We avoided the discussion of partial 
problems or special problems.  Thus, the theory of plastic 
shells and plates, the flow of thin plastic layers, applica- 
tion of the theory to technological problems, the problem of 
stability beyond the elasticity limit, dynamic problems and 
certain other problems were not touched at all. 

§2. Relations Between the Local Characteristics of 
the State and the Deformation of the Medium 

2.1.  Ideal Plastic Media 

According to the definition of an ideal plastic body, in 
processes in which the temperature does not change, a fixed 
region in the space of stresses corresponds to its admissible 
states.  Therefore, the function f in the equation f = 0 of 
the boundary of this region must be only a function of the 
stresses.  In the case of a piecewise-smooth yield surface 
this holds for evejry function f,, f«, . . •, fn, corresponding 

to smooth sectors. As a result, relations (1.4) together with 
the usual equations for the elastic component of the deformation 
(which describe Hooke's law) form a complete system of defining 
relations.  (1.4') is replaced by the condition by virtue of 
which dX  > 0 holds only when f  = 0, df =0, which also m mm 
follows directly from the definition of an ideal plastic 
medium. 

For an Isotropie medium the functions f must be Invariant m 
with respect to a complete orthogonal group and may therefore de- 
pend on the stress tensor only by way of its "absolute" invariants, 
The condition for plastic incompresslbility is equivalent to 
the condition that the f do not depend on the invariant m 
c:  -6 g and,   hence,  can be represented in the form of functions 
of scalar  Invariants of the stress devlator,  among which we 
can always consider the intensity 

and the  "inclusion angle" 
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as being Independent.  The concrete form of the functions 
fm = fm ^s*' ^s^ must satisfy the non-concavity condition for 

the yield surface.  In addition, it is usually assumed that 
the yield points during expansion and compression are the same. 
But even when this condition is introduced, a great deal of 
arbitrariness still remains.  In particular, both classical 
yield conditions, the Tresk and the Muses condition satisfy 
all the conditions that were mentioned. 

The idea of using the maximum dissipation power principle 
for a comparison of the yield conditions is due to D. D. 
Ivlev (D. D. Ivlev, 1958, 1966).  The preference of the 
Tresk condition is proved with the aid of such a comparison. 
However, in addition to the maximum principle it is necessary 
to use an assumption which stipulates the manner in which the 
yield point is measured (which must always be determined from 
pure shear experiments). 

Reasons in favor of good agreement between the Tresk 
condition and the physics of the plastic deformation were also 
given by other authors.  On the other hand, it is known that 
the Midea condition agrees more satisfactorily in most cases 
with the experimental data.  In this regard, the experimental data 
for the Lode parameter relation arc especially characteristic 
since this relation depends on arbitrary yield functions and 
the difference in the Tresk and Mises conditions becomes more 
and more appreciable. 

It is known that the "inclusion angle" of the given symmetric 
tensor determines the direction of its component in the "octa- 
hedral" plane of the sector (which subtends the same angle with 
the principal axes).  Taking this into account, it can be 
easily seen that within each face of the Tresk prism "the 

inclusion  angle" of the tensor de^. preserves a fixed value 

which changes by 1/3 TT during the transition to the neighboring 
face (Fig. 1) .  For the Mises condition in states with 

de^  ^0, a = a. p always holds.  The Lode parameter is uniquely 

determined by the 'Inclusion  angle," and in the transition to 
the Lode parameters, we obtain the diagram plotted in Fig. 2. 
The dashed line TOT corresponds to the Tresk condition., 
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which coincides   for. |i    „ = 0 with  the  interval   [  -  1,   l] 
de1- 

on the u axis and the line fi = s s M 
de1 

corresponds to the 

Mises condition.  After the experiments of V. Lode 
that were mentioned in Section 1, the relation between 
the Lode parameters was studied by G. Taylor and H. Quinne 
in experiments with different metals, and in the 40^ by 
E. Davis.  In the USSR several experiments of this type were 
made by Yu. I. Yagnom and his collaborators (Yu. I. 
Yagn and I. I. Vinogradov, 1954, N. M. Mitrokhin and Yu. I. 
Yang, 1960, et al.) . According to the data from all these 
experiments, curves which have the shape given by the dotted 
curve in Fig. 2 which are smooth and nearly the line 
Ua = l-i n  are obtained in all cases (including metals with a 
s   dep 

high yield point). 

th 

J 

-/         0 

T 

1       4 / : 

Fig. 1 Fig. 2 

The studies of N. K. Snitko (1948) and V. V. Novozhilov 
(1952) should also be mentioned in connection with the problem 
of the forms of the yield condition.  In accordance 
with the first study, the ratio of the elasticity limits 
during elongation and pure shear for a polycrystalline 
sample depends on the type of lattice of its monocrystalline 
elements. It was shown in the study of V. V. Novozhilov that 
the intensity of the tangential stresses can be considered as 
the mean square of the tangential stresses on the sectors 
oriented in all possible ways at the given point of the body. 
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2.2. Hardened Media with Smooth or Piecewise- - 
Smooth Loading Surface 

For a hardened  medium the load surface varies for 

cleii ^ 0.  Even here the smoothness of the surface may varyi 

in different states of the medium, for example, on a surface 
which is initially smooth at all points of the loading surface 
pointed points may appear as a result of a plastic deformation 
and the number of smooth sectors on the plecewise-smooth 
smooth surface may differ in different states of the medium, etc. 

On the other hand, the experiments that were made already 
in the 30*s that were mentioned in Section 1, have shown that 
in some cases we can restrict ourselves to the simplest assumption. 
This assumption is included in (1.1) and it consists of the 
fact that the change on the loading surface when deP ^ 0 can 

always be reduced to a similarity transformation with tespect 
to the center or its axis of symmetry ("Isotropie hardening"). 

The Bauschlnger effect is not taken into account under this 
assumption.  In the early 50*s it was understood that to describe 
this effect it wa« necessary that one element for the change 
on the loading surface when deP ^ 0 be a translation in the 

direction of the displacement of the point in the space of 
stresses.  This fact was noted in different ways in the studies 
of G. Edelman, D. Ch. Drucker and V. Prager.  The 1954-1955 
studies of V. Prager developed concrete models of the medium 
with a translation of the loading surface. 

One such model was discussed in 1954 by A. Yu. Ishllnskiy. 
The fundamental relations for this medium  follow from (1.2) with 
the following concrete form of the stress function: 

/ = («aß — Haß) («aß — Haß) — 2k3, (2.1) 

where k is a constant and the deviator with components |i 

is a linear Isotropie function of the deviator of the residual 
deformation.  In the initial state u. . = 0 and (2.1) coincides 
with the Mises condition.  Beyond theJelasticlty limit, the 
Mises cylinder is gradually displaced as a rigid A/hole. 

Further progress was made by V. V. Novozhilov and Yu. I. 
Kadashevlch (1958) who started out with the fact that in real 
metals the Bauchlnger effect and the hardening deformation 
anisotropy are related to the "microstresses" 
(inhomogenelties in the field of internal forces in volumes 
whose dimensions are on the order of a grain or smaller) .  The 
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effect of  the latter on the macroscopic properties of the 
material were analyzed with the aid of a mechanical model 
with a dry frlctlonal element on a plane and a system of spring« 
which simulated the macroscopic and residual microscopic stresses. 
The plasticity law obtained In this study  follows from (1.2) 
when the stress  function has the form (2.1),  but, unlike in the 
study of A.  Yu.   Ishlinskly,   the |i. .  are related to the components 
of the devlator of  the plastic deformation by nonlinear equa- 
tions and k Is a monotonic function of  the scalar X,  and 

] dt.^di'ij., jn particular  the authors single out  the ^ao 
case when k => const  (a medium with an ideal Bauschlnger effect) ; 
however,   in the general case the loading surface undergoes 
simultaneously a  translation and Isotropie expansion when 

de^    ^0.     It was shown later that to obtain a concrete relation 

for  the  tensor  |i   .   and other variables  the results of experi- 

ments with multiple loads with changing signs on the samples 
were Important   (R.  A. Arutyunyan and A.   A.   Vakulenko,   1965). 
It also became evident that  the  interpretation of the tensor 
|i. .  as a  "microstress tensor" which was  proposed by V.  V. 
Novozhllov and Yu.   I.  Kadashevich was well  founded also from 
the standpoint of  dislocation theory   (A.   A.  Vakulenko and 
L.  M.  Kachanov,   1969). 

Experience has shown that the hardening of real metals 
has always an anlsotropic character.    Under appropriate loads 
the Bauschlnger effect and the hardening deformation anisotropy 
are effects which basically have the same order 
of magnitude as  the hardening Itself.     Therefore,   for any 
model of a medium with anlsotropic hardening agreement with 
the experiments can only be  fully satisfied for processes whose 
trajectory  in  the devlator hyperplane In  the space of stresses 
lies in a sufficiently narrow cone with apex at the point 
s..   = 0.     For media for which the loading surface is translated^ 
this cone  is  replaced by a cylinder which  intersects  the sur- 
face in the neighborhoods of each end of some diameter,  since 
loads for which  the sign of the stresses changes are now 
permitted.     But   in both cases  the class  of processes  in which 
we can expect satisfactory agreement between the theory and  the 
experiment  is  further narrowed by certain additional condi- 
tions Imposed on  the curvature of  the  trajectories.     These 
constraints are more stringent for media with Isotropie harden- 
ing    whose behavior during sharp rotations of the principal 
axes of  the stress  Increment  tensor do not even agree qualitatively 
with the experiment.     This was clearly  detected for  the first 
time in experiments with so-called small  additional loads. 
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2.3. Theories of the "Slippage" Type 

The first experiments with small additional loads in the 
USSR were made by A. M. Zhukov and Yu. N. Rabotnov (1954). 
The samples which had the shape of thin-walled pipes were 
first subjected to expansion during which they were subjected 
to a residual strain, after which torque couples were applied 
during a fixed expanding force which caused the tangential 
stresses AT (the trajectory OMM, in Fig. 3).  If the loading 

surface remains smooth at its "active" points at the instant 
when the additional load is applied, the displacement MM, 

lies in the tangent plane (Fig. 3) , and by virtue of the 
"neutrality" of such displacements with an accuracy up to 
small higher order magnitudes AY = AYe, i.e., AT = G AY, 
where G is modulus of elasticity in shear.  In the experiment 
the ratio AT/AY was always much smaller than the modulus G. 
Experiments have been known in which a "fan" of additional loads 
from the given state occurred (the experiments of P. M. Nahdi 
and G. Rowe, see the collection of translations "Mekhanika," 
No. 3, 1955, and others).  Considerable nonelastic changes in 
the deformation of the sample were usually observed already during 
additional loads with displacements in the space of stresses 
at angles > 1/2 rr relative to the vector connecting the coordinate 
origin with the point under consideration on the loading surface. 

Within the framework of the usual definition of this 
surface, the conclusion must be drawn that for an initially 
smooth surface a pointed point can occur on it at the addi- 
tional load instant. Another argument in favor of this 
possibility are the conclusions which follow from the Battorf- 
Budyanskly "slippage theory" and from essentially similar 
theories of other authors. 

Thus, V. D. Klyushnikov (1958) proposed a plane model 
for a plastic medium in which, as in the Batdorf-Budyanskly 
theory, the plastic deformation is the result of the differently 
oriented displacements on the areas at the given point of 
the body.  However, because of its greater simplicity, 
the V. D. Klyushnikov model Is more amenable to an analysis 
of the relation between the stresses and strains during 
different "loading ways." An even simpler two-dimensional 
model was proposed by Yu. N. Rabotnov (1959) . Both these 
models lead, during a plastic deformation, to a change in the 
pattern of the loading surface which is similar in many respects, 
which, in turn, is similar to that which follows from the Batdorf- 
Budyanskly theory and differs qualitatively from that which 
corresponds to the Isotropie or translational hardening. 
In contrast to the models of a medium with hardening 
considered in Section 2.2, a pointed point is developed on 
the loading surface for a wide class of loading regimes. 
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whose apex coincides with the loading point while the "rear" 
part of the surface does not    change and remains fixed. 

M    ' 

IM    gs 
I 

Fig.   3 

As we already mentioned, the relations from the Batdorf- 
Budyanskiy theory can be obtained from the relations (1.4) 
for the associated law (see the Russian translation of the 
work of V. T. Kolter In the collected translations "Mekhanlka," 
No. 2, 1960).  For a somewhat different selection of the 
functions f and also during the transition to the limit as m 
n - oo, the relations from the theory of "local deformations" 
developed by A. K. Malmelster (1957) are obtained from (1.4). 
In both theories the stresses on the slippage surfaces (local 
displacement)coincide with the stresses resulting from external 
forces on the surfaces with a given orientation. However, 
It is kiicwn that in a real polycrystal the stresses in the 
grains and parts of the grains differ from the mean stresses 
in large volumes.  With the appearance of the macroscopic 
residual deformation, the microinhomogeneity of the field of 
stresses in the sample is strengthened in a certain sense, 
which is the reason for the deformation hardening anisotropy 
and the Bauschinger effect.  Therefore, it is natural that the 
predictions based on the Batdorf-Budyanskiy theory do not 
agree well with the experiment.  This also applies to the 
derivation of the "polntedness" on the loading surface. 

A series of experimental studies of the changes on the 
loading surface during plastic deformation are available at 
the present time.  In the USSR such studies were carried out 
by A. M. Zhukov (1957), Yu. I. Yagn and 0. A. Shishmarev 
(1958), G. B. Talypov and V. N. Kamenets (1958, 1961), G. B. 
Talypov (1961), 0. A. Shishmarev (1962, 1966).  In all these 
experiments, the behavior of the samples which had the shape of thin- 
'valled pipes was studied, but in details the experimental de- 
sign of different authors differed, so that their conclusions 
do not agree in all respects.  One general conclusion which 
can be made on the basis of the results of these experiments 
is that an important element  in the change in the 
geometry of the surface (which is often the only element 
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or is only combined with Isotropie expansion) as a result 
of a given plastic deformation Is the translation, and that 
the surface remains smooth.  Nothing resembling a singularity 
at the loading point was observed In all the studies that were 
enumerated. 

In the experiments of certain foreign Investigators, 
the translatlonal displacement of the loading surface was 
accompanied by a relatively moderate "tendency to form 
corner points" (the experiments of P. K. B4rch and V. N. 
Flndley, P. M. Nahdl, et al., and a number of other experi- 
ments) . 

2.4. Other Models of a Plastic Medium with Hardening 

In conjunction with these experimental facts, attempts 
have been made to construct a theory which was satisfactory 
when additional orthogonal loads were applied to the loads 
with a smooth loading surface of the medium In any state. 
Thus, the studies of G. A. Hemmerllng (1964) should be men- 
tioned which proposed a certain generalization of the Drucker 
postulate.  A variant of the unassociated plasticity law 
was developed on the basis of the generalization. 

A different generalization of the Drucker postulate was 
proposed earlier by A. A. Il'yushin (1961). in this study it 
is postulated that for any isothermal processes closed with 
respect to the deformation 

where the equality only holds when the process is reversible. 

As we already mentioned, the different results of the 
experiments that were discussed in Section 2.3 are  related 
to a considerable extent, to differences in the formulation 
of the study, more precisely the method by which the points 
on the loading surface are determined.  This can already be 
seen on the example of the usual tests of metals in engineering 
during uniaxlal expansion or compression of the samples.  It 
is well known that a sharp dividing line between elastic and 
elastoplastic states has not been detected and that the 
elasticity limit must be determined in such experiments,by 
convention, as the stress whibh corresponds to some given small 
value of the residual deformation.  Naturally, the situation 
in tests during the complex stressed state is no better.  The 
dimensions and shape of the loading surface depend on the 
residual deformation "tolerance'1 with which the points are 
determined on this surface. 
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Thus, In fact, the elasticity boundary Is not as clear 
cut as defined by the concept of a loading surface in Its usual 
form.  The facts that were detected in experiments with a 
small additional load are connected with the "spread" of the 
real elasticity boundary.  The first step which takes into 
account this spread is to abandon the condition for the 
neutrality of the loads to which the displacements on the 
loading surface correspond.  However, when this is done, 
the continuity of the relation relating the rates 

*. . and £?.  for the given point on the loading surface 

disappears and certain difficulties arise in the formulation 
of theoretical boundary value problems.  Therefore, it 
is natural to take the next step and consider as the changes 

with deP ^ 0 also those changes in the state of the medium 

which correspond to the displacement of the loading point inside 
the region bounded by the loading surface with a corresponding 
improvement in the direction of the latter.  More precisely 
this surface must now be considered not as the boundary in 
the space a.. in the elastic region of the material, but as 

the locus of the points corresponding to a given small "tolerance" 
for the magnitude of the residual deformation during a load 
"on the rays" from a given state (we emphasize that the surface 
is determined experimentally in this way).  In essence, such 
an approach was outlined in a study of V. D. Klyushnikov 
(1964), although the reasoning was somewhat different. 

In fact, on the basis of the Cauchy-Bunyakovskiy inequality, 
we can write 

i& ^ = (V -ä- -Jr- y<hv d^ ■'cos (' • 

With the usual assumption about the "neutrality" of the load 
with a displacement f = 0 on the surface, we have for the 
differential form dX in the relations for the associated 
law 

dl~^da^ (2.2) 
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and using this and the preceding expressions, relation  (1.2) 
can be written as 

de'.r   n-'—Vd^r.dn^Kn). (2-3) 
00 u 

where Tl > 0 is a function of the stresses and the history of 
the stresses and 

»I- (.|) -- cos ., njm 0 < | Hl  | < V..n, ,|; {,,) .. ü up» Vän < | q. | < n.     (2.3 ' ) 

Key:  a.  for 

We emphasize that (2.3) and (2.3') includes the usual concrete 
associated law in a somewhat different form for a 
hardening medium with a smooth loading surface.  According to 
(2.3) the function Hep) is continuous but not differentiable 
at cp = ± 1/2 TT.  Taking into consideration that this is one 
of the main reasons for the complexity of the boundary value 
problems in the theory of elastoplastic media with harden- 
ing , V. D. Klyushnikov proposed instead of (2.3')  that 
Hep) be defined as an analytic function which approximates 
the function defined by relations (2.3').  It is difficult to 
say to what extent this will simplify the boundary value 
problems, but it is clear that the description of the behavior 
of the models under small additional loads can be improved in 
this manner by obtaining the concrete form of the function 
Hep) directly with the aid of experimental data.  It is essential 
that the loading surface (in the sense described above) re- 
main smooth in the neighborhood of the point where the additional 
load is applied). 

2.5. Deformation when the Position of the Principal 
Axes does not Change. Deformation Theory. 

Suppose that the homogeneous deformation of the medium 
is such that during the entire process the position of the 
principal axes of the deformation tensor (relative to the 
fixed axes of the material) does not change.  If the medium 
is Isotropie in the initial state, the position of the principal 
axes of the stress tensor will also not change and we can 
assume without loss of generality that the principal axes 
of the two tensors coincide.  Then, at each Instant during the 
process, at least one of the following tensor equations holds 
(V. V. Novozhilov 1951, 1954): 
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(2.4) 

where s. . and 3. . are the components of the stress devlator 

and the strain devlator 

y   — *'ccH*-aH,  C£. = j ilrCCO.« ( ö^T j 

and 3  and ot are defined analogously (when sin 3a ^ 0 and 

sin 3a ^ 0 equations (2.4) are equivalent) .  These equations 

describe only the coaxlaliity of the stress and strain tensor 
and are, therefore, valid in the case under consideration re- 
gardless of other properties of the medium (Initial super 
isotropy).  The specific characteristics of the medium are 
reflected In the equations which relate s,,, and a to the 

scalars of the deformation tensor, which must be added to 
equations (2.4), which, for a plastic medium,are generally 
not holonomlc in this case.  This relation will only be 
holonomic with an additional constraint on the change of the 
deformation tensor. 

In particular, we will assume that along with the posi- 
tion of the trihedron of the principal axes the'Inclusion 
angle" a> of the deformation devlator does not change and that 

at any instant during the process ds^/dt > 0.   Then, it can 

be shown that when the medium is Isotropie in the initial 
state and Its behavior does not depend on time 
o"^o(e, a,, aj, s, = s* (e, ;>,. a.,), as-= a, (e, a», a^),    where 

o = 1/3 a
CvB^(vQ» 

an<^ e is tbe analogous invariant of the deforma- 

tion tensor. Usually a special form of these functions is 
considered for which relations (2.4) reduce to a "linear 
tensor" equation and, with an appropriate stipulation for 
the unloading case for a plastic medium 
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^ f  (D^) npii s, ■-= s5X, rf^ > 0 (2.5) 
S*~[   2G (3, - Ji)   li$f S.'< %  H.Ill s»~«u, rfA*«-<;o, 

Key:    a.     for 
b.     or 

where K and G are constants, $ is a monotonlc function of 
9^ and sM is the maximum value of s^ that was obtained (in- 

cluding the current state). 

The condition that the position of the trihedron 
of the principal axes and the value of the "inclusion angle" 
a\  of the deviator of the deformation do not change is 

rw» 

equivalent to the condition that 3.. = 3lk(t)3.., where5 
ij   '   ij       ij 

does not depend on the parameter t of the process.  The 
deformation process during which this condition is satisfied 
is called the simple or proportional deformation process. 
The simple loading process is defined analogously (A. A. 
Il'yushin, 1948).  According to (2.5) during a simple load, 
the deformation will also be simple. 

L. I. Sedov (1959) has shown that for arbitrary (finite) 
deformation processes the deformation can only be simple for 
some exceptional values of a  ,     This is due to the fact that 

for a finite homogeneous deformation, the angles between the 
material lines (those that are "frozen" into the material) vary 
in such a way that the orientation of the principal axes of 
the symmetric tensor cannot be retained with respect to these 
lines (the exception being uniaxial expansion and other cases 
corresponding to sin So = 0) . 

Equations (2.5) describe the fundamental and simplest 
variant of the so-called deformation theory of plasticity. 
Historically the latter dates back to the well-known studies 
of H. Hencky and A. Nadai that were mentioned in Section 1. 
However, these studies were based on concepts which did not make allow- 
ance for a definite judgment about the range of applicability 
of the theory to real metals.  The development of the concepts, 
foundations and sphere of applicability of the theory are 
connected with the studies of A. A. Il'yushin published in 
the 40's which were summarized in his monograph (A. A. 
Il'yushin, 1948). 

-136- 



..|-^r)'VTn/^w^^J''rÄ'^^»^,■,■v■''l'W^■W■:*«W^fflW'*W*W,'? 

JIndexv a simple load the trajectory of the process in 
the deviator hyperplane of the space of stresses represents 
a segment of a line with origin at the point s.. = 0.  If 

an arbitrary point in this hyperplane moves along the line 
passing through the point s.. = 0 and intersects the latter^ 

the load will not be simple.  V. V. Moskvitin (1952, 1965) 
generalized the equations of deformation theory and the 
theorems of A. A. Il'yushin for a simple load to the case of 
such a "sign changing simple" load. Effects of the Bauschinger 
type in these studies are taken into account with the aid of 
the so-call "Hazing principle" and the generalization of this 
principle proposed by V. V. Moskvitin. A detailed presentation 
of all these results can be found in the monograph (V. V. 
Moskvitin, 1965). 

2.6.  The "Isotropy Postulate" and Studies in Problems 
in the General Theory of Tensor Functions and 
Functionals which Arise in Connection with 
Rheology Problems of Plastic Media 

The Set III of all symmetric bivalent tensors which can be 
defined for a fixed point of a continuous medium is closed with 
respect to linear combinations of its elements and represent»«.some 
six-dimensional linear system.  From the standpoint of its 
linear properties, this system is completely analogous to a 
six-dimensional Euclidian space.  Thus, a vector in Euclidian 
space has only one "scalar invariant" (which is independent 
of the number of coordinate systems) while an element 
of the system III has three such independent invariants.  This 
fact was the main argument of one school in the discussion 
about the "isotropy postulate" (D. D. Ivlev, 1960, V. V. 
Novozhilov, 1961).  Later, V. V. Novozhilov characterized 
more accurately the specific characteristics of the linear 
system III and outlined a way for the construction of an ortho- 
normal basis for this system (1963).  K. F. Chernykh (1967) 
worked out in detail these concepts and constructed a concrete 
example of such a basis. 

In the classical mechanics of continuous media, the stress 
tensor and the strain tensor are symmetric bivalent tensor» 
and, hence, elements of the set III.  By specifying concretely 
the physical dimensions of the basis elements, it is possible 
to study two representatives of this set in the corresponding 
manner, "the space of stresses" and the "space of strains." 
The deviators in each of these spaces form a linear subset 
(subspace), which we will denote, respectively, by D and D . 

S 3 
"The Isotropy Postulate" (A. A. Il'yushin, 1954) is the state- 
ment according to which for an initially Isotropie medium the 
trajectory of the process in D depends only on those properties 

8 
of the trajectory in D which are invariant with respect to 
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orthogonal transformations of D .  By orthogonal transforma- 

tions are meant linear transformations of the space D for 

which the quadratic scalars of the devlators are preserved 
(the devlator with components 3.. Is transformed Into the 

devlator ;..  for which 5 0*^« " 3aB
3crB^ • Since cubic scalar 

Invariants of the devlators are not preserved under an arbitrary 
orthogonal transformation, the sphere of applicability of the 
Isotropy postulate as defined is limited and Includes only 
media for which the "material law" is described by equations 
not containing the products of bivalent tensors (tensors with 
components of the form aiab .  ai/yborBcBi' etc') and scalar 

Invariants of the"inclusion angle" type. 

In one chapter of the monograph (A. A. Il'yushln, 1963) 
an attempt is made to generalize the Isotropy postulate on 
the basis of an analytical representation of the trajectory 
of the process in D .  It should be mentioned that a number of 

experimental studies have been made in connection 
with the Isotropy postulate (V. S. Lenskly, 1958, 1961). 

2.7.  Some Results 

In conclusion we emphasize first of all that everything 
that was done until now in the field of developing the 
"defining equations" represents a treatment of the problem in 
its classical formulation (Section 1).  The concept of an ideal 
plastic medium is naturally defined in this framework and 
when the theory Is developed only the most fundamental elements 
of the macroscopic pattern of the plastic deformation of 
metals are taken into account.  The models of an ideal 
plastic medium play, in the theory of plasticity, basically the 
same role as an ideal liquid and an ideal gas in the mechanics 
of fluids and gases. 

Models of a plastic medium with hardening u/jst re- 
flect finer details of the plastic properties of metals.  The 
great variety and complexity of these details make tae problem 
of constructing a fully satisfactory theory of such media 
very difficult. The models of a plastic medium with 
hardening known until now are in satisfactory agreement 
with experimental data only for a class of processes which 
in addition to the constraints defined by the conditions 
for the Independence of the process of time and the constant 
temperature field are also limited considerably with respect 
to the admissible deformation or loading paths (the trajectories 
of the process in the space D or D -  Particular difficulties 

8       * 
arise in the description of the behavior of real metals during 
abrupt changes of the position of the principal stress axes 
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which correspond to trajectories of the type encountered In 
experiments with "an orthogonal" additional load.  In these 
cases, the "spread" of the actual elasticity boundary of the 
material manifests Itself most clearly. To take it into 
account, it is necessary to abandon certain customary 
assumptions made in the mechanics of plastic media.  It 
should be noted that this "spread" also plays a role in the 
results of experiments which study the "delay" pattern 
(V. S. Lenskly, 1958, 1961). 

Some important effects, as a matter of fact, are not in- 
cluded at all in the rheology of plastic media in its contem- 
porary state. One of these effects is, for example, the 
"aging" and other forms of the effect of a change in the 
composition of "solid solutions" on their macroscopic mechani- 
cal properties, even when this effect is considerable. 
Thus, a number of studies of Soviet physicists-metallurgists 
have shown that the plastic deformation of some metastable 
alloys is accompanied by changes in composition as a result 
of which the volume of the sample is changed irreversibly. 
Another factor which when taken into account may show that 
the assumption e§a^ag = 0 is not sufficiently accurate, is 

the so-called 'plastic elongation" (the development of a grid 
of pores and cracks along the edges and inside the grain of 
the polycrystal during the plastic deformation) .  V. V. 
Novozhilov (1964) pointed out the important fact that this 
"elongation" which is usually small until the visible frac- - 
ture of the sample, may become considerable under multiple 
cyclic loads. 

Recently, certain concrete forms were used In the 
rheology of plastic media as a result of the achievements 
in the physics of a solid     and thermodynamics. 

It should be noted that the first and second postulates 
of thermodynamics make it possible to draw a number of impor- 
tant conclusions already with the usual general assumptions 
about the properties of the medium.  Thus, it was discovered 

that the "energy balance" for which tne work p 

dissipates completely is only characteristic of an ideal plastic 
medium.  For a medium whose properties change as a result of a 
plastic deformation, a part of this work is always converted 
inco the so-called'latent energy of the deformation."  (A. A. 
Vakulenko, 1961).  When this fact is taken into account, it 
is possible to use in the analysis of existing and in the 
development of new models of a plastic continuous medium a 
number of experimental results obtained in modern physics 
of metals. 
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The model (elementary volume) of the plastic medium 
represents a system, one of whose characteristics is the 
nonlinearity and nonholonomy of the relations between the 
external and internal parameters.  The studies of L. I. 
Sedov and M. E. Eglit (1962) outline a way of constructing 
general forms of the "defining equations" for such media using 
thermodynamics.  The assumption that "phenomenological 
connectionp" exist (relations between thermodynamic "forces" 
and "fluxes") which are the foundation of modern thermodynamics 
of irreversible processes can also be used for this purpose 
(A. A. Vakulenko, 1958, 1961; V. N. Nikolayevskiy, 1966). 

The boundaries of another "bridge" between the rheölogy 
of plastic media and physics was attained with the development 
of dislocation theory.  Such parameters of deformation re- 
inforcement anisotropy as, for example, the tensor IJ.. in 

the theory of plastic media with a translated loading surface 
(Subsection 2.2) can be interpreted on the basis of the concept 
of continuous dislocation theory.  For this reason undoubtedly 
progress in dislocation theory will have an effect on the 
development of the rheology of plastic media.  This effect 
may be mutual, as the details of the relation between the con- 
cepts in continuous dislocation theory and the "usual plasticity" 
theory are clarified., the facts available to the latter, may 
turn out to be useful in the solution of problems in the 
theory of dislocations and other "defects" in solids 

3 .  Boundary Value Problems 

3.1.  General Remarks 

The solution of many engineering and geophysical problems 
presents considerable demands on plasticity theory.  Contem- 
porary plasticity theory can only provide partial answers to 
these problems.  First of all, as we have shown in Section 2, 
even the most general known equations in the theory of plasticity 
are valid only when a number of constraining conditions are 
satisfied.  As a rule, it is not possible to verify whether 
these conditions are satisfied in the body for the given ex- 
ternal forces.  Therefore, the use of a particular set of 
defining equations in concrete problems is almost always based 
on intuitive concepts. On the other hand the nonlinearity 
and nonholonomy of the plastic deformation equations leads 
to difficult mathematical problems even in relatively simple 
boundary value problems (from the standpoint of the shape of 
the body and the external effects) .  In addition, difficulties 
of a theoretical nature arise often (besides the purely com- 
putational difficulties. 
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The peculiar situation which exists in the theory of 
plasticity reflects these contradictions. The practical 
needs force us to formulate and solve, at least approximately, 
a variety of boundary value problems.  At the same time 
the nonavailability of reliable and sufficiently general 
equations for the plastic state and also the complex struc- 
ture of the equations hamper to some extent the development 
of the corresponding theoretical branches. 

Another aspect of the problem that was mentioned is the 
following.  Although computers are used on an increasing scale, 
the theory of plasticity cannot be reduced only to computational 
schemes.  Concepts about the laws governing plastic flow and 
the particular features of the patterns are Important.  This 
leads to the quest for the simplest models of the plastic 
medium which have only a limited range of applicability, but 
are useful in the formulation and solution of boundary value 
problems. 

The models of an ideal rigid-plastic body and an ideal 
elasto-plastic body which use ; the concept of a fixed yield 
surface and are used as the basis for the solution of many 
concrete problems have been defined clearly.  The plasticity 
condition has been verified well in experiments in a sufficiently 
wide range in which the stresses vary.  It is also necessary 
to take into account the indirect validations of these 
models obtained from comparing the solutions of many problems 
with the experimental data. 

The model of an ideal rigid-plastic body Ignores completely 
elastic deformations.  The body is not deformed until the 
necessary stress level Is attained,after which plastic flow 
occurs.  This scheme is useful xn determining the load bearing 
capacity of the body ("limiting loads") and in the analysis 
of developed plastic flow ("technological" problem) . 

An ideal elastoplastic scheme is necessary in the study 
of problems in which the elastic and plastic deformations 
have the same order of magnitude.  The use of this scheme hinges 
on overcoming great mathematical difficulties. 

The models that were discussed are good approximations 
also in cases when the medium is slightly strengthened. 

When it is considerably strengthened the situation is 
less clearcut. The study of boundary value problems for a 
strengthened body is based in the majority of cases on the 
simplest model of Isotropie hardening. The limited value of 
the scheme was already mentioned above and its improvement 
as a result of a rigid translation of the loading surface does 
not eliminate all discrepancies with the experiments, while, 
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at the same time, it complicates considerably the initial 
relations.  For these reasons it is convenient to study the 
problems for a strengthened medium only when the loading 
conditions are not complex, and when the character of the ex- 
ternal forces allows us to expect that the elements of the 
body are subjected to a load which is nearly a simple load 
in a certain sense.  The majority of one-dimensional problems 
that are important in the applications (axisymmetric 
problems for pipes, discs, plates, etc.) usually satisfy the 
condition that was mentioned. No matter how paradoxical 
It may seem, the mathematical difficulties here play a posi- 
tive role since they force us to limit the analysis only to 
the most Important and at the same time sufficiently simple 
problems (with regard to loading conditions). 

As we already mentioned, no theorems are available which 
would allow us to estimate the "simplicity" of a particular 
problem.  The estimate of the usefulness of the solutions that 
were obtained is usually based on Intuitive concepts and 
perhaps also a number of experimental observations. 

3.2.  The Rigid-Plastic Body 

An ideal rigid-plastic body begins to deform only when 
the limiting load is attained. At the same time certain parts 
of the body may remain rigid.  The speeds of the particles 
on the boundary of the plastic zone must agree with the speeds 
with   which rigid parts of the body move. 

The scheme of a rigid-plastic body has already been used 
intuitively in early studies in the theory of plasticity (the 
rigid zones were sometimes called elastic zones).  However, 
the necessity  of the agreement between the stress fields and 
the speeds has not been recognized for a long time. Only toward 
the end of the 40's the idea of applying the scheme of a 
rigid-plastic body has been widely accepted. 

The scheme of a rigid-plastic body is useful if the 
plastic flow which encompasses the entire body or a part 
of it does not undergo crowding. Another pattern occurs if, 
for example, a pipe subjected to internal pressure is in an 
undeformed clamp.  Here the rigid-plastic scheme cannot 
be used. 

The scheme of a rigid-plastic body is a highly abstract 
Idealization and its interpretation is connected with a 
number of difficulties. The solution using this scheme, 
generally, may differ from the solution of the same elastoplastic 
problem when the Young modulus E - oo.  The isolation of the 
rigid zones is arbitrary to some extent and the stresses in 
them are not defined. This is related to the absence of a 
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unique way of constructing the solution which is characteris- 
tic of a rigid-plastic body and with certain other paradoxical 
conclusions. 

The problems of the nonuniqueness of the solution are 
eliminated when the rigid-plastic body is studied as the 
limiting case of an elastoplastic medium.  However, the 
application of this idea is beyond the scope of the rigid- 
plastic scheme, and it is connected with great mathematical 
difficulties.  In fact, we are forced to work within the 
rigid-plastic scheme framework and tolerate its shoi'tcomings. 

Nevertheless, the idea of the gradual application of the 
scheme of a rigid-plastic body is natural when certain condi- 
tions are satisfied and turned out to be useful not only in 
the solution of static problems, but also because it pointed 
out great advantages in the analysis of a number of dynamic 
problems.  The difficulties connected with the nonuniqueness 
of the solution are overcome by evaluating the latter on the 
basis of extremal theorems for the limiting load. 

In the plastic zones the solution satisfies the differential 
equilibrium equations 

-?^ + AV-=0, O.I) 

the  law  for  the   flow 

•e<y = ^ (3.2) 

and the Mises plasticity condition 

SuSt}~k\ (3.3) 

Here, we wrote down the Mises plasticity theory equa- 
tions for  an Isotropie body.  More general equations are 
easily obtained by introducing a yield condition of the form 

and the associated flow law 
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tij = A ""// (3.4) 

for smooth points on the yield surface.  The Tresk-St.-Venant 
plasticity condition 

Tma.\;= COIlSt, 

which corresponds on the deviator plane to a hexagon inscribed 
in the Mises circle (Fig. 1) is of greatest interest. 

The Mises condition agrees better with the experimental 
data; however, the general concepts (the closeness of the maxi- 
mum tangential stress to the intensity of the tangential 
stresses) and the smallness of the deviations that are ob- 
served indicate in practice the equivalence of the Mises and Tresk- 
St.-Venant plasticity conditions.  Various concepts which are 
of interest from one point of view or another, are sometimes 
used to favor one of the two conditions.  Thus, some schemes 
for the static analysis of polycrystalline sets based on a 
number of assumptions about the mechanics of a plastic deforma- 
tion lead to the Mises condition.  On the other hand, the 
Tresk condition is defined in a certain sense by extremal 
properties (D. D. Ivlev, 1966).  However, the attempts to 
present the Tresk-St.-Venant plasticity condition as the 
condition which corresponds most to the character of plastic 
flow are not convincing.  The basis for this is the pattern 
of the plastic flow in monocrystals.  An extension of these 
concepts to polycrystal metals cannot be considered justified. 

The use of the Tresk-St.-Venant condition makes it pos- 
sible to simplify in many cases the mathematical formulation 
of the problem.  The possibility of using this yield condition 
was discovered relatively late after the studies of V. Prager 
and V. T, Koiter (1953> were published in which the scheme 
of the plastic potential (associated flow  law) was extended 
to single yield surfaces.  The flow on the edge is represented 
by a linear combination of the flow on the left and right 
of the edge: 
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where f,   = const,   f« = const are  the equations  of  the yield 
surface on the two sides of the edge.    The undetermined multipliers 
Xi,   Xn are nonnegative,     as a result of which  the flow develops 
in a direction which lies inside  the angle formed by the 
normals to the two adjacent edges.    An additional multiplier is 

needed  to satisfy  the consistency conditions  for the deforma- 
tion related to  the  "redundant" constraint on  the stressed 
state. 

Such an extension of  the   associated flow  law makes it 
possible  to obtain a  consistent system of equations and to 
derive the corresponding general  theorems. 

The physical  interpretation of  the  flow on the edge which 
was defined in  this manner is connected with certain difficulties 
which arise already  in  the case of simple   elongation corresponding 
to a corner point C   (Fig.   1)  of  the Tresk-St.Venant hexagon. 
Here the flow  is given by the equations 

El   =  ^.1 + ^2.     C2 =  —^I»      *8 —  —^-2» 

in which the first principal direction is oriented along the 
axis of the rod.  Thus, the transverse deformations are 
arbitrary, and only the incompressibility condition is satis- 
fied.  This pattern does not agree with the usual concepts 
about the flow of an Isotropie rod. Nevertheless, such 
paradoxical results occur only in extreme CHSNB and apply 
mainly to the velocity field. The general evaluation of the 
solutions obtained on the basis of the associated law un- 
doubtedly is well founded and the limiting loads ?re a good 
approximation. 

In a number of cases the Prager-Koiter srheae has considerable 
computational advantages.  It is this fact whicu ' ;<plaias the 
rapid and wide application of this scheme to tlrs ij

1aa 
stressed state problem in the theory of plastic siv.-iAa and 
plates and to the axisymmetric flow problem.  At the  same time 
the difficulties that were mentioned above force us to 
evaluate the Prager-Koiter scheme as an idealized apsroximat- 
tion of the more realistic Mises theory, and from tai J stand- 
point it is not very useful to try to interpret phj fciJiy 
the individual paradoxical results. 

The system of equations (3,1)-(3.3) which involve-; ten 
unknown functions ^.i, *■,  v. can be written down in verious 
forms.  In particular, by eliminating the components of the 
stress  deviator s.., we can obtain a system of five equations 

in the five unknown functions X, v. and the mean pressure a. 
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Three-dimensional plastic flow problems are extremely 
difficult and not well understood.  T. Thomas^ has shown that 
the system of equations, as a rule, is elliptic.  Only in 
individual problems (plane deformation, torsion and certain 
other cases) the equations have real characteristics. Since 
nonlinear hyperbolic equations are analyzed more easily and 
the formulation of the boundary value problems is simplified 
considerably, attempts were made to extend the hyperbolic boundaries. 
This is sometimes achieved by using the Tresk-St.-Venant yield 
condition.  The existence of characteristic surfaces where 
this condition is used was noted by T. Thomas, who analyzed 
systematically the discontinuities in the plastic medium. 

The so-called "complete plasticity" condition leads to 
a considerable simplification, according to which the stressed 
states corresponding to the edges of the Tresk-St.Venant 
prism (i.e., the vertices A, B, . . ., F of the hexagon 
in Fig. 1) occur.  For such ("statically determina i e") 
stressed states (D. D. Ivlev, 1966) the system of equations 
will be hyperbolic.  The physical arguments which are sometimes 
used in favor of this system are based on the deceptive 
simplicity of the mathematical analysis rather than the 
essence of the problem.  Many problems simply cannot be 
solved within the framework of this scheme (for example, 
problems in the plane stressed state) .  At the same time 
the point of view which favors the complete plasticity condition 
is much too rigid and negative, which is clearly pointed out 
in the book of R. Hill ("artificial and unreal yield conditions," 
"such calculations have little or no value at all") .  Solu- 
tions of this type are undoubtedly sometimes of interest. 
Nevertheless, an evaluation of the solutions constructed with 
the aid of the complete plasticity condition must be based 
on extremal theorems.  If a kinematically admissible field 
corresponds to a solution obtained on the basis of this 
scheme, the solution leads to the upper bound on the limiting 
load.  When the stressed state can be extended to the entire 
body without violating the yield condition, we obtain the 
lower bound.  In the cases when the solution obtained does 
not belong to either of the two classes that was mentioned, 
the question of the usefulness of the solution remains open. 

T".     T. Thomas, Plastic Flow and Fracture  in Solids, 
1961 (Russian translation, Moscow, 1964). 
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With regard to the usefulness of discontinuous 
solutions In the theory of plasticity (In particular, for 
finding approximately the limiting load) the relations on the 
discontinuity surfaces have been studied In detail. As 
R. Hill has shown In 1961 when the yield conditions are convex, 
the deformation rates are zero and the rates are continuous on 
the discontinuity surfaces of the stresses.  On the other hand, 
on the discontinuity surface of the velocities,the devlator 
of the stresses Is generally continuous and only In the case of 
a Tresk prism face the Intermediate principal stress may be 
discontinuous (G. I. Bykovtsev and Yu. M. Myasnyankln, 1966). 

The plasticity condition Imposes certain constraints on 
the magnitude of the jump In the stressed state on the dis- 
continuity surface of the stresses.  With the Tresk yield 
condition a mottled pattern occurs, since stressed states 
can occur on different sides of the discontinuity surface 
which correspond to different flow regimes.  For stressed 
states corresponding to the edges of the Tresk prism, the 
relations on the discontinuity surface were studied by 
D. D. Ivlev (1966) . 

The solutions of the system of equations for the plastic 
flow are constructed from different special cases of the 
stressed and deformed states which have a "common" mechani- 
cal meaning (plane deformation, plane stressed state, 
torsion, etc.).  Sometimes more specific cases are also studied. 

For example, for a spherical deformed state it is assumed 
that the velocity components of the deformation and stress 
in a spherical coordinate system r, 6, cp depend only on 
6, cp where T  = T ^ = 0.  For  pure shear, the problem can 

be determined statically and the corresponding system is of 
the hyperbolic type (D. D. Ivlev, 1966).  Problems dealing with 
a cone and the pressing of a wedge in the plane of a die 
have also been considered. 

Using the characteristics of the stressed and deformed 
states that were discovered in the well-known solution of 
L. Prandtl for the compression of a thin plane layer, A. A. 
Il'yushin (1954) developed a general theory for the flow of a 
thin plastic layer on nondeformable surfaces.  The equations 
that were derived were applied to the calculation of a number 
of problems in which metals are treated by pressure. 

The available solutions for the layer apply to the 
final stage of plastic flow when large tangential stresses are 
developed on the contact surface.  The change in the stressed 
state in intermediate layers as the load Increases (from simple 
compression to a complex stressed state in the final stage) 
was studied by L. M. Kachanov (1954, 1962). 
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In addition to the traditional formulation of the problem 
of finding the limiting load for a body of a given shape,optimal 
design problems ("limiting designs") are also of interest. 
By this is meant the selection of the contours of the body 
with the required load bearing capacity while satisfying simul- 
taneously certain additional optimality conditions. Usually 
this condition is the minimum weight requirement.  This 
problem,in the absence of appropriate constraints on the 
possible outlines of the body, is generally undefined.  When 
rod systems (grids, frames) are considered, the problem is 
easily reduced to a mathematical programming problem.  This 
method is used in the solution of a number of engineering 
problems in structural mechanics.  The limiting design for 
bodies with minimum weight with a more complex configuration 
is much more difficult.  Problems of this type have not been 
studied extensively. 

A presentation of the contemporary state of the theory 
of optimal design and the corresponding literature references 
are available in the book by M. I. Reitman and G. S. Shapiro 
(1966). 

3.3.  Limiting Load Theorems 

We will restrict ourselves to a study of small deforma- 
tions and we will ignore changes in the geometry of the body 
during the deformation process.  Incidentally, under certain 
known conditions, the results that are obtained can be extended 
to problems of steady state plastic flow. 

The concept of a limiting load ("plastic fracture," "load 
bearing  capacity") for an ideal plastic body is of great 
practical importance.  Calculations based on the limiting load 
make it often possible to determine more correctly and economi- 
cally the dimensions of structures and equipment.  The concept 
of a limiting load can be approached in two ways.  One can 
start directly with the scheme of the rigid-plastic body, 
in which case the instant when the limiting load is attained 
will correspond to the instant when plastic flow begins, 
the deformations are small, and the body has the initial 
configuration. 

The other approach is based on the concept of an 
elastoplastic body.  Here the limiting load corresponds to 
the final stage of the elastoplastic deformation of the body 
which is often accompanied by large (sometimes infinitely 
large) deformations (for example, during bending and torsion). 
In fact, this process is not investigated and the final state 
of the body is determined immediately when the changes in its 
configuration are small.  This can be justified by the relative 
smallness of the deformation of an elastoplastic body under 
loads which are close to the limiting load.  In both cases, 
the theorems are identical and the discussion pertains only to 
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the Interpretation of the final results.  We will start out \ 
with the concept of a rigid-plastic body which does not re- 
quire discussion and which Is Internally more consistent. 
For this scheme the formulation of the concrete boundary 
value problems is also more natural. Of course, it must 
not be forgotten that all the assumptions inherent in the idea 
of a rigid-plastic body and the usefulness of this concept 
must be subjected to an analysis every time.  Important 
problems about the suitability of structures related to the 
presence of residual stresses cannot be evaluated on the basis 
of this scheme. This problem brings us inevitably back to 
the elastoplastlc body. 

Suppose that a rigid plastic body is subjected to the 
action of forces F that are given on a part of the surface of 

the body S-, and the velocities v are prescribed for points on 
a part of the surface of the body S .  The body forces X. 
are omitted for the sake of simplicity. Since continuous fields 
are not of great Interest, it is assumed that the stresses are 
discontinuous on some surfaces S,, and so are the velocities 
on some surfaces S,. 

Let v' be any klnematically possible field which is dis- 
continuous on some surfaces S^. Then 

J I-\rdSD^k J //' dr-J /•>' dSF + k J Sv'tdS',, (3.6) 

where the last integral extends over all discontinuity surfaces 
S^,   ^ is the absolute value of the jump in the tangential velocity 
component v'  and H'   is  the intensity of shearing stress velocity 

This important inequality which characterizes the minimum 
properties of  the real velocity field has been proved rigorously 
by A.  A.  Markov  (1947)   in  the case of continuous velocity 
fields.     In the terminology    of structural mechanics^ the 
minimum properties of  real  displacements have been pointed out 
earlier by A.  A.  Gvozdev  (1938).    The contemporary  formulation 
crystallized as a result of  the later studies by G.  Greenberg, 
D.   Ch.  Drucker,  V.   Prager,   R.  Hill and other authors. 

The second inequality which follows  from comparing the 
real stress field o   .  with any statically possible field 
a'     inside  the yield circle  or on it has  the form 
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J F,,,' dSv> J /-Vd5B- J (^ ±t') \it dS,,, (3 .7) 

where F' is a surface force on S„ corresponding to the 
n v 

selected field a' and T' < k is the tangential component of 

the field a' on the discontinuity surfaces S, in the direc- 

tion of the relative velocity vector. 

The theorem on the maximal properties of the real stressed 
state has a relatively long history.  For certain problems in 
structural mechanics, this theorem was already stated in the 
work of G. Kazinchi (1934).  A clear formulation of the 
theorem in the terminology of structural mechanics is 
available in the study of A. A. Gvozdev that was mentioned 
(1938). A rigorous proof of the theorem was given by S. M 
Feinberg (1948) . As was noted recently by V. T. Koiter, the 
adaptability theorem of E. Melan which was proved 
by him in 1938, includes in essence the theorem that is 
discussed here as a special case. 

The formulations lhat were given above refer to a Mises 
medium. However, the corresponding theorems are easily es- 
tablished for an arbitrary convex yield surface and associated 
flow  law. The significance of this law was emphasized by 
V. T. Koiter who showed that for a medium obeying the Tresk- 
St.-Venant condition and the Mises relations (3.2) there are 
no  extremum theorems. 

The application of the theorems that were stated is 
especially simple in the case of a proportional load (the 
external forces increase proportionally with some parameter 
m) , and the velocities are assumed to be zero on a part of the 
surface S  (supports). The kinematically possible coefficient 
m. corresponds to the kinematically possible field v'. 

To the statically possible stressed state ol. corresponds the 

static coefficient m .  The limiting load coefficient m,,, 

which corresponds to a true value is bounded below and above 

m, ^ tnt ^ wh. (3.8) 
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Thus, *. r.ust find a kinematic mechrnism for the plastic 
fracture., lor which the boundary m. is as small as possible. 
On the other hand, we must find a statically possible stressed 
field a' which lies inside the yield circle or on it^ for 
which the boundary m is as large as possible. 

In the solution of more or less simple problems^ m. and 

m are usually brought closer to one another by guessing 
tne appropriate fields.  Sometimes it is even possible to 
find an upper and lower boundary which coincide.  In complex 
problems it is much more difficult to obtain good results. 

Mathematical programming methods which have been used 
on a wide scale in the last few years are suitable for the 
construction of the limiting surface.  In a number of cases, 
the yield condition has a linear form (problems in the struc- 
tural mechanics of rod systems and certain axisymmetric 
problems) .  In this case the well developed linear programming 
apparatus can be applied.  Many studies were carried out along 
these lines both in the USSR and abroad. 

3.4.  Plane Deformation 

The plane deformation is described by the system of 
equations (St.-Venant, 1870) 

öx    ~    dy '   or oy 

{ax-ou)-~Axl^-'ik-, (3.10) 

±Ji. + —!-^0 (3.11) 

This system has two different real families of characteris- 
tics which coincide with the slippage lines.  The Hencky 
conditions (1923) 

_£ 0 = const==;, ^r--0-const = TI, 

are satisfied along the latter, where a is the mean pressure, 
6 is the inclination of the slippage line and the Heiringer 
relations are 
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du-' vdd--=0,     dv-udQ^O, 

where u, v are the velocity components along the slippage 
lines.  The system of equations (3.9), (3.10) for the stresses 
is transformed to the form 

Ox 0      oy ax    " dy 

This is a reduced system, i.e., it is transformed to a 
linear system by a change of variables. After the transforma- 
tion, an important class of solutions with rectilinear charac- 
teristics is obtained (simple stressed states), which is 
widely used in applications.  The well-known study of S. A. 
Christianovich (1936) investigated the solvability x a x (§,T|), 
y ■= Y  (%,"t0  of the solutions and also discussed in detail solu- 
tions with straight line characteristics. 

The possibility of obtaining a separate solution of equations 
(3.9), (3.10) for the stresses when certain changes in the 
boundary conditions are permitted, led in the initial develop- 
ment of this theory to an extension of the solutions of the 
so-called statically determinable problems in which the velocity 
field was usually not discussed.  Various problems in this 
field were studied by H. Hencky, L. Prandtl, V. V. Sokolovskiy 
(1950) and other authors. 

Although the simplest discontinuities in the stresses 
(for example, during bending) have been known for a long time, 
the significance of discontinuous solutions has been recognized 
much later, after the 1948 study of V. Prager.  The slippage 
line is the boundary of the plastic region.  This fact, 
which has been used intuitively for a long time was established 
by R. Hill (and the scheme of rigid plastic body) . 

Concrete problems are usually solved by a semireversed 
method.  First, the boundary value problem for the stresses 
is considered and an attempt is made to guess the conditions 
which are needed. After this, the velocity field is deter- 
mined and its compatibility with the stress field that was 
constructed earlier is clarified. 

The application of this scheme to contact problems 
is generally difficult.  This approach can be applied if the 
contact lines and the given conditions on them are simple. 
If the contact line is a curve, it is practically impossible 
to guess the contact stresses.  In this case, the method 
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of constructing the compatible stress and velocity fields 
developed by B. A.  Druyanov  (1961)   and V.  V.  Sokolovskly   (1961) 
must be applied with the condition that the structure  of the 
slippage  field can be defined.     The solution of the problem 
begins with the determination of  the velocity field. 

The Masseau finite difference method is usually used in 
the solution of the boundary value problems.    Graphical 
methods are used less often   (V.   Prager,   1955,   S.   S. 
Golushkevich,   1948).     L.   S.  Agamirzyan  (1961)   has  shown  that 
the analytic solution of boundary value problems using  the 
Rieman method can be effective when metacylindrical functions 
and their  tables are used.     Nevertheless,   the Masseau method 
has  the advantage of simplicity. 

The studies of V.  V.   Sokolovskiy devoted a great deal 
of attention to the construction of stress fields around 
holes near  the boundary  ("plastic boundary layer") . 

A  large number of various problems which can be broken 
up into three groups  (of course,   somewhat arbitrarily)   has been 
studied by  the method of characteristics. 

These are primarily problems  of  finding  the  limiting load. 
Here changes in the configuration of the body are ignored 
and the formation of plastic flow  is studied.     These  Include, 
for example,   problems dealing with  the limiting state  of 
strips weakened by cutouts,   the pressing of dies on a plastic 
body,   the compression of a layer,   etc. 

The second large group consists of problems in steady 
state plastic flow connected with the description of contin- 
uous processes in the treatment of metals (rolling, drawing, 
pressing,   cutting,   etc.). 

Problems of nonstationary plastic flow with geometric 
similarity of  the flow pattern represent a more narrow class 
of problems which were studied  in detail by R.  Hill   (similarity 
problems) .     An example is  the problem of the indentation of 
a rigid wedge in a halfplate. 

In those cases when the solutions are accompanied by 
the construction of  the appropriate velocity  field,   the  load 
that  is  found is the upper  boundary.     It is not possible  to 
present here all or even a large part,  of the many problems 
that were  solved using this method by Soviet scientists.     We 
only mention  the books by D.   D.   Ivlev  (1966),  A.  A.   Il'yushin 
(1948),   L.   M.  Kachanov   (1969),   V.   V.   Sokolovskiy   (1969), 
A.  D.   Tomlenov (1953),  which give  the solution of a great 
variety  of  problems. 
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3.5.  Plane Stressed State 

The plane stressed state problem which arises In thin 
plates subjected to the action of loads in the middle plane is 
somewhat more complex.  The case of a plane stressed state 
is also important because such a state occurs during the 
bending of thin plates and shells. 

Unlike in the elastic problem where the mathematical 
for the case of a deformation and the plane stressed 
state are identical, these two problems are different in 
plasticity theory.  The stress components o . o . T  must x  y  xy 
satisfy the differential equilibrium equations (3.9) and 
the Mises condition 

formulations 

a% oxOy + aj öXxy   — OrC" (3.13) 

or  the Tresk-St.-Venant condition 

max {| ot — a* |, | oi |,  | 02 |}^2ä:. (3.14) 

The first equation describes an ellipse in the plane of 
principal stresses a 

inscribed in it 

a„ (Fig. 4), and the second the hexagon 

Fig. 4 
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The system of equations for the stresses was studied 
by V. V. Sokolovskly (1945).  With the Mlses condition, the 
system may be hyperbolic (for the Interior points of the 
arcs 1-2 and 3-4, here |o| < T „) , parabolic (points 1, 2, 

3, 4) and elliptic (for the Interior points of the arcs 
2-3 and 4-1, here \o\  >  T  ). max 

In the hyperbolic case, the characteristics are not 
orthogonal and do not coincide with the slippage lines. 
At the same time the system of equations for the stresses is 
reducible and simple integrals exist which correspond to 
straight line families of characteristics. 

The parabolic case is distinguished by its simplicity. 
Here the principal stresses are constant and only the in- 
clination of the principal plane is unknown. 

In the elliptic case the construction of a solution 
is connected with great difficulties. 

The equations for the velocities and the discontinuous 
solutions were analyzed in 1952 by R. Hill in the hyperbolic 
and parabolic cases.  He determined the characteristics of 
the discontinuities in the velocities which occur in the 
plane stressed state, the normal velocity component is also 
discontinuous which leads to a local narrowing ("neck") 
or thickening ("cylinder") on the characteristic. 

The solution of rigid-plastic problems, provided it can 
be obtained without studying the elliptic region,is obtained 
generally using the same technique as in the case of a plane 
deformation, although the technique is somewhat more complex. 
Many concrete problems have been studied in the articles of 
V. V. Sokolovskly (1950), R. Hill, A. P. Green, G. Ford 
and G. Llanis. 

A considerable simplification of the mathematical formu- 
lation of the problem is obtained by using the Tresk-St.-Venant 
plasticity condition.  The corresponding system of equations 
for the stresses was studied by V. V. Sokolovskly (1945) . 
For v-,°2  < 0 it is of the hyperbolic type and it coincides 
with the equations for the plane deformation.  On the horizon- 
tal and vertical edges of the hexagon., the system of equations 
is of the parabolic type, and it is easily Integrated. Dif- 
ferent types of slippage surfaces correspond to different 
types of equations. The associated flow law can be used 
to derive the equations for the velocities.  Further attempts 
have been made along these lines, namely the attempt was made 
to select an approximate plasticity condition for which the 
system of equations is hyperbolic everywhere.  In particular, 
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such a condition was proposed by R.  Mlses.    According to his 
proposal  the ellipse is approximated!by  two branches of 
parabolas.     However,  it should be noted that this approxima- 
tion is relatively coarse,   and that  the Tresk-St.-Venant 
condition simplifies the formulation of  the problem to such 
an extent  that  there is no need for further simplification 
of  the mathematical formulation. 

The Tresk-St.Venant condition with  the   associated flow 
law has  been widely used in  the analysis  of  the bending of 
plates and shells. 

In  the  last two decades,   the plane problem with a plasticity 
condition of   general form 

/(a„ of,) - const. (3.15) 

has been developed to a considerable extent. 

The deformation rates are usually determined by means of 
the associated flow law. .  We will point out a number of 
reasons which stimulated an analysis of this problem.  The 
different yield conditions in the case of a plane deformation 
and a plane stressed state, the somewhat different limiting 
conditions in the mechanics of soils, make the analysis of the 
problem with a general plasticity condition quite natural. 
The quest for simple approximate solutions that can be obtained 
for particular formulations of the yield condition has some 
value.  Finally, the important case of the generalized plane 
deformation when a long cylindrical body undergoes an axial 
deformation with a constant velocity (fe = const) caused by a Z 
given axial load can be related to some extent to a generalized 
plasticity condition. 

We return to the system of equations for the plane problem 
with plasticity condition (3.15), and note that generally 
this system cannot be obtained from the equations for the 
three-dimensional problem.  In spite of the disadvantage that 
was mentioned, a mathematical analysis of the system is un- 
doubtedly of great interest.  The type of system depends on 
the form of the yield curve and the position on it.  For 
"hyperbolic points" on the yield curve, the theory of charac- 
teristics and discontinuities was developed (J. Mandel, H. 
Heiringer, R. Hill, V. V. Sokolovskly, et al.). Various cases 
of the yield condition (3.15) were studied. Above, we 
already mentioned the parabolic Mlses condition.  We also 
mention the case of a cycloid (V. V. Sokolovskiy, 1950) for 
which the system is hyperbolic everywhere and the characteris- 
tics are straight lines. 
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3.6.  Torsion 

The problem of the pure  plastic torsion of a prismatic 
rod which was mainly studied by A. Nadai (1923) is particularly 
simple.  The stress function F(x, y) satisfies the differential 
equation 

mH^r--1" 
and the condition that F be constant on each of the bounding 
contours.  The stress surface z = F(x, y) is a surface with a 
constant slope, a "roof" constructed on the rear contour and 
it is determined without particular difficulties.  The edges 
and conical point on this stress surface correspond to the 
lines and points of discontinuity of the tangential stresses 
T
Vr/' T„rr'  The magnitude of the tangential stress vector is xz  yz 
constant and its direction changes in jumps. The limiting 
torque is also calculated relatively simply. 

When the torsion is complicated by additinal axial 
elongation (or bending), the problem becomes more difficult. 
The axisymraetric problem of the combined torsion and elongation 
of a circular cylindrical rod has been studied in detail. 

A generalization of the torsion of a straight rod is 
the problem of the torsion of a section of a circular ring with 
a constant cross section, which was considered by V. 
Freiberger, and also by A. Wang and V. Prager (in 1953-1954) . 
The stress components T  and T  which are different from zero 

(in a cylindrical coordinate system r, cp, z, the z axis is 
oriented along the axis of rotation of the ring) satisfy the 
yield condition using the substitution 

lri( ~ k sin ij-, TZ„ = k co.s t|) (3 .16) 

The function if(r, z) is determined from the differential 
equation 

sinü-—*—cos i|:-r 2 £- = 0. (3.17) 1 (J2 ■   Or r x     ' 
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Unlike In the torsion of a straight rod, here the 
characteristics can be curvilinear. 

The problem of the torsion of a straight circular rod 
with a variable diameter (the z axis Is oriented along the 
axis of the rod) , which was studied by V. V. Sokolovskly 
(1945, 1950) leads to a similar system of equations for 
the stresses.  Here the same stress components T , T 

are different from zero. 

The solution of equation (3.17) with the same boundary 
conditions must be found and the velocity field Is easily 
constructed.  A general analysis of the stress field Is not 
needed In the calculation of the limiting moment.  It Is easily 
shown that In the limiting state there Is a cutoff in the 
smallest cross section, a part of the rod above and below 
the section remains rigid. The exact value of the limiting 
moment is equal to the value of the limiting moment for the 
cylindrical rod with the smallest diameter that was mentioned. 

3.7.  Axisymmetric Problems 

During axisymmetric deformation the stress and velocity 
components of the deformation are independent of the polar 
angle cp.  If we exclude torsion, the angular velocity com- 
ponent v = 0.  The differential equilibrium equations in 

cylindrical coordinates r, cp, z have the form 

dar   , dxrz        
r''--"l; __ ^ 

or üz      ' r (3.18) 
= 0. 

The Mises yield condition is: 

(trr - a,f + K - ^f + K- - <*r)2 + 6i?2 - 6^. (3.19) 

The components  of  the deformation velocity 

Er:=.|L,   e^J-p,   e^--^,    Vrr^-gr+ir 

are related to the stress components by the Mises relations. 
We have a system of six equations in the six unknown functions 
V V V 0z' V ^z' Generally' this system is of the 
elliptic type (R. Hill, 1948), and the formulation and solution 
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of the boundary value problems Is connected with great 
mathematical difficulties.    Only special particular solutions 
have been obtained. 

Often  the  total plasticity hypothesis is used in 
the solution of various engineering problems,   i.e.,   the condition 
for  the equality of  the two  principal stresses.     In this case 
as H.  Hencky has shown in 1923,   the problem becomes statically 
determinate and tie system of equations   (3.18),   (3.19)   for the 
stress components will be hyperbolic.     The characteristics 
coincide with  the slippage lines in the r,  z plane.    Using 
techniques which are similar to the techniques used in the case 
of a plane deformation,  various special problems can be con- 
sidered.    Generally the velocity field when the Mises rela- 
tions are used cannot be constructed because of the redundant 
equations.     Because of this,   it is difficult  to evaluate such 
solutions since usually they cannot be referred either to the 
possible static or kinematic solutions. 

In individual special cases,   the total plasticity 
condition can sometimes be justified.     Apparently,   the solutions 
when the  total  plasticity condition is  used,   give in a 
number of cases,   an acceptable approximation  to the limiting 
load. 

The well-known prospects for  the analysis of  the axi- 
symmetric problem are realized when a  transition is made to 
the Tresk-St.-Venant  plasticity condition and the associated 
flow  law.     When  this  is done flows corresponding to the 
stresses on the edges of the yield prism and on its faces must 
be analyzed separately.     In the first case,   the problem is 
statically determinate and hyperbolic and the characteristics 
coincide with  the slippage lines.     The use    of  the associated 
law makes  it possible to formulate  the problem of finding 
the compatible velocity field.     Solutions of  this class of 
problems were discussed by R.   T.   Shield,   D.   D.   Ivlev   (1959) 
and by other authors.     They can be considered to be kinematically 
possible   (provided the velocity field has been defined)   and 
consequently  Interpreted as the upper boundary.    Using the 
complete plasticity condition,   the problem of  the total pressing 
in of a smooth  circular die into a half space was studied  (A. 
Yu.   Ishlinskiy,   1944,  R.  T.   Shield,   1957).     The case of an 
annular die has  also been studied  (D.  D.   Ivlev,   1966) . 

An analysis of  the flow corresponding  to the stresses 
on the face of  a prism made by A.  D.  Cox,   G.   Eison and G.  G. 
Hopkins   (1961),   H.   Lippman  (1962)   and other authors has shown 
that  it  is kinematically determinate.     According to 
the associated flow law,   the velocity of  the principal 
deformation in  the direction of  the mean principal stress  is 
zero on the edge.     This condition gives  an additional equation 
for the velocities.     As a result we obtain a system of three 
differential equations for the velocity  components 
vr'   vz and  the  angle  \|f which defines  the principal 
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direction. This system is of the hyperbolic type, its 
characteristics are orthogonal and coincide with the trajec- 
tories of the principal stresses in the centerline 
section r, z. 

Unlike in the case of total plasticity, here the 
solution is connected with well known difficulties which 
are due to the comparative complexity of the system of equa- 
tions for the velocities and the necessity of constructing 
a compatible field of stresses.  Several particular solutions 
were obtained which are characterized by simple velocity 
fields. 

Progress in the solution of the axisymmetric problem 
will probably be connected with the development of a scheme 
based on the Tresk-St.-Venant plasticity condition.  It is 
necessary to combine properly the flows on the edges and 
faces of the yield prism, which requires a thorough analysis 
of the velocity field and of possible discontinuities. Such 
solutions are a good approximation of the limiting load. 

3.8.  Anisotropy and Inhomogeneity 

Two directions have developed in the theory of an anisotropic 
plastic medium.  In the first, the plasticity condition is 
introduced in the form of a generalized quadratic Mises 
condition for an Isotropie medium.  The second approach is 
based on a generalized Tresk-St.Venant plasticity condition. 

The problem of an anisotropic plastic medium was first 
formulated by R. Mises in 1928. The plasticity condition 
was formulated by him as the condition that a certain quad- 
ratic form in the stresses whose coefficient k. . characterizes 

the anisotropy of the medium be constant, namely: 

/ = A-,, (CT.t - og2 4- A-23 K - a'f -r k3i & - tfJ2 + 
-T tyz 1*24 (Ox - Oy) + ^34 {^x - <^)] "f ^xz Vhi K - Oi) + 

. + frl5 (ay - 0.v)l + xxy [km {a, - ax) + k20 (<T2 - (tv)\ + (3 .20) 
+ "jj TvjTyj   ~ "'MXX:'CXIJ   T~ 'l'alTxyTyZ   -p «44T^   -f- K^Xxz  + 

■j- kmTxu ~ const. 

This form is invariant with respect to a transformation 
of the coordinate system to a different equivalent crystallographic 
system and an applied hydrostatic pressure.  It involves 
15 unknown constants.  For an Isotropie medium, condition 
(3.20) becomes the well-known Mises condition.  The deforma- 
tion rates are determined by the associated flow law 
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1 3f 

imj' (3.21) 

A special case of anisotropy involving 6 constants was 
studied in detail in 1948 by R. Hill: 

K'n (<r.v — crj- -- A-23 (cty - a:)
2 -f k3l (a. - (Tx)- -f- kuxlz + 

+ A*MT|. + kmxlu = const.        (3 .22) 

A series of studies were made in the USSR and abroad which 
were based on the conditions that were presented.  We mention 
here the studies of Ye. V. Makhover (1947), M. Sh. Mikeladze 
(1951), V. 0. Geordzhayev (1900), R. Hill, V. Ol'shak and 
other authors, which include torsion, the bending of plates 
and shells and other special problems. 

The extension of the Tresk-St.-Venant condition to the 
case of an anisotropic body is more complex.  The most general 
results along these lines were obtained by D, D. Ivlev 
(1959, 1966).  For an anisotropic body, piecewise-Hnear 
conditions often not only lead to simpler boundary value 
problems,but also possibly have advantages from the physical 
standpoint (at least for crystals) . 

When the yield condition is formulated, it is assumed that 
it is independent of the hydrostatic pressure and that it is 
determined in the space of the principal stresses by a surface 
which is not concave.  In the given case, this surface will be 
a hexagonal prism whose faces are parallel to tne hydrostatic 
axis ai = CT2 = 03 •  The yield limits in the plasticity condi- 

tion are regarded as functions of the direction cosines 
of the principal axes of the stresses relative to the principal 
axes of the anisotropy.  For example, in the case of a plane 
deformation, the yield condition has the form 

where ty is the angle between the direction of the largest 
principal stress and the x axis, and the x, y, axes are oriented 
along the principal axes of anisotropy.  The relation k(ilO 
is assumed to be known. 
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Studies of torsion, the plane problem and some other 
problems were made by D. D. Ivlev (1959), G. I. Bykovtsev 
(1961) and M. S. Sarkisyan (1960, 1961). 

With regard to plastic properties, real bodies are always 
heterogeneous to some extent. This heterogeneity.may be due 
to various causes:  The dependence of the yield point on the 
temperature field, the variable hardening, the effect of 
neutron radiation, etc. Sometimes the bodies consist of 
different materials (discontinuous heterogeneity). The use 
of the heterogeneity of the plastic properties makes it often 
possible to increase the strength of the bodies, which 
gives rise to certain special problems in the problem of 
optimal design. 

As a result of the heterogeneity in the rigid-plastic 
body scheme, the yield point is no longer constant but becomes 
a given function of the coordinate (which is either continuous 
or discontinuous) .  This introduces considerable complications 
in the flow pattern. 

The theory of plasticity of heterogeneous bodies was 
developed most intensely in Poland in the studies of the 
W. Olschak School.   In the Soviet Union a number of studies 
in the theory of rigid-plastic heterogeneous bodies were 
made by B. A. Druyanov (1959), A. I. Kuznetsov (1958, 1960), 
M. A. Zadoyan (1962) , Yu. R. Lepik (1963) and other authors. 
An exhaustive bibliography is given in the survey that was 
mentioned above. 

3.9. Elastoplastic Body 

In many cases it is important to know the stresses and 
strains in the body which made a partial transition to the plastic 
state. There are many reasons for the interest in such elasto- 
plastic problems.  Thus, in the neighborhood of holes, cut 
and other "stress concentrators" local plastic deformations 
are formed.  The corresponding fields must be known in order 
to evaluate the strength and the local deformations.  Local 
plastic deformations occur in the majority of contact problems. 
The determination of the residual stresses and strains which 
are the basis for the calculation of the radial expansion in 
structures, also require a study of the elastoplastic state. 

1.  See the Survey:  W. Olschak, Y. Rychlevski and W. 
Urbanovski, "Theory of Plasticity of Heterogeneous Bodies," 
1962 (Russian Translation: Moscow, 1964) . 
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The problem of temperature stresses also leads to elasto- 
plastlc problems. Finally, the solution of elastoplastic 
problems makes it possible to evaluate the rate of growth 
of the deformation approximations to the limiting state, 
and the applicability of the rigid-plastic solutions can be 
evaluated on concrete examples. 

The suitable basis  for the study of elastoplastic 
problems are  the equations of  flow theory   (the Prandtl- 
Reiss equations) 

dtij — de'j + M-*u- (3.23) 

The elastic deformation increments dc. . are calculated 

from Hooke's law.  The stresses satisfy the Mises plasticity 
condition (3.3).  In the plastic zones, equations (3.23) 
are valid, and in elastic zones dX = 0 and equations (3.23) 
become Hooke's law.  On the boundary of these zones, the 
plastic deformations are zero and the continuity conditions 
for the stresses, deformations and displacements are satisfied. 
The solution of such mixed problems is exceptionally dif- 
ficult and it can only be obtained with the aid of computers. 
The usual technique which is used is to study the ("step by step") 
development of the elastoplastic state as the loading 
parameter increases, and various variants of the grid method 
or variation methods can be used to determine the current 
state. 

Methods for the solution of a number of important 
engineering "one-dimensional" problems have been developed to 
a considerable extent (axisymmetric deformation of pipes, 
rotation of discs, bending of a straight and circular rod, 
etc.).  In relatively few cases an analytical solution can be 
obtained. 

When the external loads, the support conditions and the 
configuration of the body are sufficiently simple, we can ex- 
pect that the load in the plastic zone approaches a simple 
load, and we can start out with the equations from deforma- 
tion theory of plasticity, the Hencky equations 

tu-= t'j + <f*ij, (3.24) 

(instead of (3.23)) which considerably simplify the solution 
of the problem.  Usually important engineering "one-dimensional" 
problems (pipes, discs, circular plates, etc.) are studied on 
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the basis of the deformation theory. This approach has been 
used extensively In the Soviet Union.  A comparison of the 
available solutions based on both theories shows, as a rule, 
slight discrepancies. 

Because of the difficulties of constructing the solutions 
In the plastic zones, the total plasticity condition Is 
rarely used In the latter.  This technique Introduces 
distortions which usually cannot be estimated in this case. 

The theorems on the adaptability of elastoplastic bodies 
under the action of cyclical loads are a slight digression 
from the problems that were touched on.  Under certain known 
conditions, plastic deformations can occur in each cycle even 
when the loads are below the limiting loads.  Plastic deforma- 
tionof this type leads to fracture. Adaptability theorems give 
the boundaries for the change in the loads within which re- 
peated plastic deformations do not occur due to the propitious 
field of residual stresses formed during the first loads. 
Although the use of these theorems does not require that the 
elastoplastic problem be solved, they are based on the model 
of an elastoplastic body in which residual stresses can be 
formed. 

In conclusion we mention another difficult and still not 
very well formulated but important practical problem, the 
problem of elastoplastic vibrations. 

3.10.  Elastoplastic Torsion 

This comparatively simple elastoplastic problem was studied 
in the early work of A. Nadai (1923), who developed a method 
for determining the solution experimentally on the basis of 
the membrane analogy.  The first analytical solutions were ob- 
tained by E. Treftz in 1925 which dealt with the determination 
of the plastic zone formed near the reentrant angle during the 
torsion of a rod with an angle profile.  Treftz applied the 
method of conformal mapping to the elastics zone of the section. 
F. S. Shaw applied successfully the method of grids in 1944 
to the solution of the same problem and some other problems 
(using the R. Southwell relaxation techniques). 

L. A. Galin (1944) developed a direct method for the 
solution of the problem of elastoplastic torsion of rods with 
a polygonal cross section. 

Various variants of the semlreversed method used for the first 
time by V. V. Sokolovskly (1942) for the solution of the problem of 
torsion of an oval body which was nearly elliptical,turned out to 
be effective.  First the form of the elastic kernel is given 
and then the plastic region for it is constructed in the 
appropriate manner.  Examples of such solutions are given in 
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the studies of L. A. Galin (1949) and R. Mlses. The same 
technique «as used by V. Frelberger (1956) In the solution 
of the problem of the elastoplastlc torsion of a circular 
ring with a nearly circular cross section. Variation 
methods are also useful In the solution of the elastoplastlc 
torsion problem. 

The existence and uniqueness theorem for the solution of 
the elastoplastlc torsion problem of a rod with an oval cross 
section has been proved In the studies of B. D. Annln (1968) 
who also developed the algorithm for the numerical solution. 

For a simply connected profile;unloading does not occur 
at any point of the cross section as the torque Increases 
as shown recently by F. G. Hodge.  However, during the torsion 
of a rod with a multiply-connected cross section, unloading 
can occur under certain known conditions. Naturally, this 
fact makes the analytical solution of elastoplastlc 
problems in the class that was mentioned much more difficult. 

Mathematically the problem of an elastoplastlc nonplanar defor- 
mation  is close to the elastoplastlc torsion problem. Here 
a pure shear state also occurs but the stresses are given 
on the contour of the body.  The studies of G. P. Cherepanov 
(1962) studied the elastoplastlc problem for an arbitrary 
cutout in an infinite plane with the aid of methods of 
the theory of functions of a complex variable. The stresses 
on the contour of the cutout are given and it is assumed 
that the plastic zone contains the hole completely. 

3.11.  Plane Problem 

The elastoplastlc problems under plane deformation condi- 
tions are considerably more difficult. To reduce the difficulties, 
the formulation itself is usually simplified.  In particular, 
it Is assumed that in the plastic zone, a = 1/2 (a + a ), r- '  z       x   y 
i.e.,(if the Mlses yield condition is used) that the material 
is Incompressible. Next, the state corresponding to finite 
values of the loads is considered and the "step-by-step" 
development of the elastoplastlc state is not considered as 
the loads Increase. Meanwhile, unloading in various parts of 
the plastic zones may occur during the process. Therefore, 
it cannot be said which constraints must be satisfied by the 
loads, since the finite state that is considered has been 
attained. Nevertheless, the few elastoplastlc problems whose 
solutions have been constructed under the conditions that 
were mentioned are undoubtedly of interest. 
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An idea about the nature of the solution can be obtained 
on the basis of the analogy with the bending of a plate 
compressed on a rigid body which was given by L. A. 
Galln (1948). 

Among elastoplastlc problems that are not one-dimensional 
we should first mention the elegant closed solution of the 
problem of the tension of a plane with a free circular 
cutout found by L. A. Galln (1946).  Tensile stresses p and 
q Sive  acting at Infinity In the direction of the x and y 
axes.  It Is assumed that the plastic zone completely contains 
the hole.  This imposes certain constraints on the loading 
parameters p, q.  The biharmonic property of the stress func- 
tion in the plastic zone adjacent to the circular cutout is 
used in the solution. 

The solution of L. A. Galln was generalized with certain 
additxonal conditions to the case of a plastic heterogeneous 
medium and to the case of a nonuniform temperature field. 
Some .new results can be obtained using the method of a small 
parameter.  However, these techniques cannot be used to 
extend the condition« for th« problem considerably. 

An approximate method  for the solution of an elasto- 
plastlc problem for a plane with a cutout in the reversed 
formulation (the plastic zone is given) was developed by 
P. I. Perlin (1960). 

Methods from the theory of functions of a complex 
variable are also used in the studies of G. P. Cherepanov 
(1963, 1964) but the assumption that on the unknown separa- 
tion boundary of the elastic and plastic zones, the stresses 
are the corresponding second derivatives of the biharmonic 
function is no longer used.  It is assumed that the stresses 
that were mentioned are known functions of the coordinates. 
The method developed for the solution has been applied to the 
analysis of the elastoplastlc problem of the biaxial stressing 
of a thin plate with a circular cutout (plane stressed state) 
with the Tresk-St.-Venant plasticity condition in  the case 
when o > o > 0. 

The studies of B. D. Annin (1968) that were recently 
published studied the problem of the elastoplastlc distribu- 
tion of the stresses in a plane with holes. 

Finally, we will mention the class of problems connected 
with the generalized plane deformation which is relatively 
undeveloped.  This class deals with the equilibrium of 
long cylindrical bodies subjected to additional axial stressing 
(unlike in the plane deformation when the displacement 
along the axis is equal to zero).  For an elastic body, this 
problem reduces to the case of plane deformation resulting 
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from applying an appropriate axial stress.  In elasto- 
plas tic problems, the state of the generalized plane deforma- 
tion must be considered. From among problems of this type 
only the practical important problem of a thick-walled pipe 
subjected to the action of internal pressure and an axial 
force has been studied in detail. 

3.12. Adaptability 

Generally after the initial loading and unloading 
there will be residual stresses in the elastopiastic body. 
If the same load is applied again, new plastic deformations 
will occur under certain known conditions as a result of 
selfhardening. 

Under the action of several independently varying loads, 
the question arises what are the safe boundaries for their 
variation which will guarantee that repeated plastic deformations 
do not occur. 

Repeated loads may lead to two types of fractures: 
1) fracture  as a result of repeated plastic deformations 
with changing signs (plastic fatigue); 2) fracture  as a 
result of an increased plastic deformation in one direction 
(progrtisive deformation). 

When the field of residual stresses is selected 
appropriately, it can facilitate finding a region in which 
the loads can be varied in any manner without causing new 
plastic deformations.  The body adapts itself within certain 
limits to the external forces.  The adaptability region is 
determined by two theorems. 

The first theorem (the static theorem) was proved in the 
general formulation in the well-known 1938 study of 
E. Melan.  Suppose that the elastopiastic body occupies the 
volume V bounded by the surface S.  The load F is given on n 
a part of the surface S„  and the velocities on the part S 

e v 

are zero.  We will denote by a. . the stresses in the body 

assuming ideal elasticity, and by p.. some field of residual 

stresses which are independent of time. 

According to Melan's theorem, the body adapts itself 
le total stressed 

yield condition, i.e.. 

if the total stressed state a®  + p. . does not violate the 
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/ (olj + Pij) < k\ ^3 ^ 25) 

Conversely, adaptability cannot occur if a field of 
residual stresses p.. which is independent of time and for 

which inequality (3.25) is satisfied does not exist. 

The second theorem (the kinematic theorem) was proved by 
V. T. Koiter in 1956. 

The body adapts itself if for all admissible velocity 
cycles of the plastic deformation t. ._ and all possible 
changes in the loads F . within the given range, the inequality 

J 7 

J dt J Fnlvi0dSj. > J d/ f J!' (;•„,) c/P, (3 .26) 

holds, where v.Q  is the kinematically possible velocity field 

which vanishes on S , T is some time interval, and WC^-s-sn^ 

is the depth of the plastic deformation at the admissible 
velocities. Conversely, adaptability does not exist if a 
cycle ^.jQ and a  program for changing the loads can be 

found which violate inequality (3.26). 

The determination of the adaptability boundaries is 
much more complex than the calculation of the limiting loads. Ana- 
lytical  solutions can only be obtained for the simplest 
problems.  According to Melan's theorem, a field of residual 
stresses must be found which for the yield condition (3.25) 
makes the region in which the loads vary as large as possible. 
This formulation leads to mathematical programming problems. 
The application of mathematical programming methods to the 
adaptation problem is similar to their application used in 
finding the limiting load.  As before, the apparatus of 
linear programming can be used in a number of important cases. 

In individual cases, the cycle time can be long.  Aging, 
creep and other phenomena may develop in this time, which have 
an effect on the yield point, the field of residual stresses 
and, hence, on the adaptability region.  Ii a number of 
engineering problems, it is important that these effects be 
taken into account. 
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The adaptability problem during cyclic changes in 
the temperature field is of great applied Interest. A 
plastic deformation which changes sign can occur as a result 
of heat transfer, which leads to fracture after a comparatively 
small number of cycles ("thermal fatigue"). A gradual 
dangerous increase in plastic deformations can also occur. 

The extension of Melan's theorem to the case of variable 
temperature fields presents no difficulties.  It was intro- 
duced by V. Prager in 1956 and independently by V. I. Rosen- 
blum in 1957.  Unlike in the isothermal case, here 
g 

a . must be interpreted as the solution of the corresponding 

thermoelastic problem. 

Kolter*s kinematic theorem has also been generalized 
to bodies subjected to variable heating (V. I. Rosenblum, 
1965).  Problems related to the adaptability of structures 
under variable heating conditions have been studied in de- 
tail in the studies of D. A. Hochfeld  (1970). 

Creep as well as a change in the yield point during 
the temperature cycles may play an Important role. All 
this complicates considerably the calculations and requires 
a painstaking analysis even in the case of simple rod systems. 

Finally, we note that frequently parts in heavily loaded 
structures are subjected to variable plastic deformations 
(i.e., they operate outside the adaptability region).  In 
this connection, it becomes necessary to analyze the changes 
in the stresses and strains from cycle to cycle.  When the 
fields are  nonuniform, problems of this type are very 
difficult and their formulation and solution are only out- 
lined. 

3.13.  Hardening Body 

Modern structural metals harden considerably.  The 
scheme of an ideal elastoplastic body is then unsuitable. 
Usually in these cases either the Prandtl-Reiss equations are 
used with the Isotropie hardening condition, or the equations 
of deformation theory with the law of "a single curve" (the 
Intensity of the tangential stresses is a function of the 
Intensity of the shear).  Solutions based on the equations of 
deformation theory have been developed extensively in the Soviet 
Union,  foreign studies are characterized by a certain amount 
mistrust with regard to the use of deformation theory, al- 
though its  practical significance is not denied.  The Isotropie 
hardening law is only suitable for loading paths which are re- 
latively simple.  The scheme of a single curve is 
applicable even to a more narrow range oi problems.  Therefore, 
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the solution of boundary value problems on the basis of 
both theories Is limited to the framework of a sufficiently 
simple load.  It is not possible to formulate this condition 
more accurately. A comparison of the available solutions 
found on the basis of both theories usually shows small dis- 
crepancies. 

In the theory of flow the fundamental relations may be 
given in the form 

ei* = (cl}hi + hau) 0/,if ^3 •27) 

where the c..., are elastic constants, and the h. .., are some 
functions of the stresses, deformations and the deformation history, 
Outwardly these relations resemble the Hooke equations for 
a linear elastic anisotropic body, but the possible appearance 
of unloading (in which case h. .,, = 0) in individual zones 
and the variability of the h..., considerably complicated the 
solution.  Within the comparatively narrow frame of reference 
of the Isotropie hardening scheme that was mentioned above, the 
case of a load prolonged everywhere becomes important.  Then 
when we consider the deformation process "step by step" and 
sequentially Impart to the load small increments, at each 
loading stage we can assume that the coefficients in (3.27) 
depend only on the coordinates (not on the loading parameter 
or "time").  The solution of the elastoplastic problem reduces 
in this manner to the solution of a sequence of problems for 
an anisotropic elastic body with variable coefficients.  The 
application of the scheme in complex (.iigher dimensional) 
cases is, of course, connected with overcoming great computa- 
tional difficulties. 

Several additional possibilities of constructing the solu- 
tions follow from the variational formulations. We can intro- 
duce at each stage quadratic forms of the deformation velocities 
11(6..) and the velocities of the stresses !!(*..). 

Then the velocity field v. corresponds to the minimum 

of the quadratic functional 

\ IIM dV-^ KiVi dSF = min. (3.28) 
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The stress rates a.. minimize the quadratic 

functional 

^n(au)dV-^FnlVidSB~min. (3.29) 

To solve the variational equations, various variants of direct 
methods can be used. 

As we already mentioned, the application of deformation 
theory is justified in the solution of practical problems 
when the loads are not complex.  Then the boundary value 
problems will involve finite values of the strains and 
stresses which is much simpler than in the theory of flow. 
It was possible to construct solutions of many special problems 
and to prove the existence of a solution (classical or 
generalized) in certain problems of elastoplastic equilibrium. 

The solutions are obtained with the aid of various 
variants of the method of successive approximations (A. A. 
Il'yushin, 1948, I. A. Birger, 1951, et al.) or numericallj. 
In the first case, the nonlinear terms are brought over to 
the right members of the equations or are included in the 
"elasticity coefficients" and subsequently the method of 
successive approximations is applied in one form or another. 
At each approximation stage)the linear elasticity theory 
problem must be solved with "additional" body forces (method 
of elastic solutions) or with variable elasticity coefficients 
("method of variable elasticity parameters"). These processes 
are very laborious and in higher dimensional problems more than 
one or two approximations can seldom be constructed.  The 
convergence of the greater part of the processes that are 
used has not been studied.  The convergence of the method of 
elastic solutions under certain conditions has been established 
in the studies of A. I. Koshelev (1955) and S. G. Petrova 
(1957). 

The equations of deformation theory can be represented 
with the aid of the work of the deformation 11 and the additional 
work R in the form 

"it 

ao = -^—' e^--.., • (3.30) 
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It can be easily shown that the real field of displace- 
ments u. minimizes the total energy of the system: 

Jllc/l'-Jf^ctf^min. (3.31) 

The minimum of  the additional work   (L.   M.  Kachanov, 
1940,   1942)   is attained for the real  field 

J It dV- j Fmut dSu = min. (3 •32) 

Variational equations are useful in the construction of 
approximate solutions using the Ritz method.  The Ritz system 
will be nonlinear and its solution cannot always be obtained 
in practice, not to mention the difficulties connected with 
setting up the system itself.  The modified Ritz method is 
more useful (L. M. Kachanov, 1959) .  In it the coefficients 
are made more precise while considering a sequence of 
minimization problems for quadratic functionals. This 
technique eliminates the laboriousness of the solution and 
increases the number of approximations.  A slightly different 
modification of the Ritz method was proposed by A. A. 
Il'yushin (1961).  Generally, different direct methods 
based on variational equations (for example, the method of 
lines, the calculus of variations-difference method,  etc.), 
can be used  in the solution of nonlinear problems if these 
methods are properly combined with the method of successive 
approximations.  This remark applies to the use of the 
B. G. Galerkin method. 

The method of a small parameter which can be used to 
extend the range of application of the solutions that were 
found earlier stands somewhat apart.  It can be applied both 
to the differential and variational equations of the 
problem.  Thus, when the axisymmetric solutions are known, 
it is possible to study problems which are nearly axisymmetric 
with the aid of this method (with respect to the loads or 
contours of the body,inhomogeneity, etc.).  This technique 
cannot be used to extend the range of the solution notice- 
ably. Only a few problems of this type are of real interest 
in applications.  Among these we may include the problem of 
slightly oval and eccentric pipes, the problem of the rota- 
tion of  slightly eccentric disc, etc. 
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With regard to numerical methods, these must be used 
primarily for the solution of problems that are important 
in practice and involve a small number of geometric 
parameters.  Here we must first mention the class of prob- 
lems about the stress concentration beyond the elasticity 
limit. 

It is also useful to mention certain possible experi- 
mental solutions in plasticity problems with hardening 
connected with the photoelastic method.  We have in mind 
the application of the method of photoelastic coatings and 
the photocreep method. 

Finally, the useful analogy between problems in steady 
state creep and problems for a hardening body based on deforma- 
tion theory with the incompresslblllty condition should also 
be mentioned.  This so-called "elastic analogy" makes it 
possible to replace the solutions by the experimental data 
and vice versa. 

3.14.  Conclusion 

This section discussed only certain ("classical') boundary 
value problems  Problems in stability, dynamics, the theory 
of shells ano plates were not discusred.  In spite of the great 
effort and the undoubtedly rapid progress in the development 
of plasticity theory, the solutions of many problems are 
not known.  Partially for this reason many Important 
applied problems remain unsolved.  Even the relatively simple 
problem of determining the load bearing capacity on the basis 
of the rigid-plastic scheme is connected with mathematical 
difficulties.  The role played by numerical methods cannot 
be questioned in overcoming the latter.  In particular, the 
use of extremal properties of the limiting load and the 
mathematical programming methods based on them have great 
promise. Here it will be useful to emphasize the value of 
these methods in determining the adaptability region.  The 
optimal design problem based on the rigid-plastic scheme is 
not understood well, but undoubtedly it has great promise. 

Elastoplastic problems with the ideal plasticity condi- 
tion or Isotropie hardening are much more difficult. Here 
success based on analytical methods should not be expected. 
Numerical methods with the aid of which the solutions of 
many important problems can be constructed occupy the first 
place.  In particular, it is worthwhile to mention the class of 
problems dealing with stress concentrations which is of great 
interest in evaluating strength. 
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We should expect  that the role played by elastoplastlc 
problems under    complex loading conditions^when it is necessary 
to utilize more  fully  the changes  in the mechanical properties 
during the plastic deformation, will increase.     Boundary value 
firoblems when complex loads are applied,   during repeated 
cyclic)   plastic deformations,   an analysis of elastoplastlc 

oscillations are some    of the problems  that must be solved.     Problems 
of this  type, unlike  the problems mentioned above,  have still 
not    been formulated   unambiguously mathematically and the 
efforts of researchers must   primarily concentrate in this 
direction. 

Another class of  problems of great  interest is connected 
with plastic deformations with accompanying non-mechanical 
fields   (thermoplastic  problems,   problems  for an irradiated 
body,  etc.).     The most traditional and most important applied 
problem is  the  thermal plasticity problem.     Here many approximate 
solutions based predominantly on the equations of deformation 
theory were obtained.     However,   the   great variety of  thermo- 
mechanical actions requires the construction and use of much 
more complex state equations. 

Finally,   viscosity effects must be   taken  into account 
on a greater scale.      Viscoplastic     media   (in various variants) 
are most often discussed in journals.     Next,   problems with 
specific    features arise in  the study  of elastoplastlc 
deformations of new materials with a special heterogeneous 
structure.     These problems,   incidentally,   are outside  the 
scope of  this  survey. 
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§1.  Introduction 

The phenomenon of creep in the narrow sense consists of 
the fact that a body subjected to the action of constant loads 
deforms slowly with time.  The problem in the mechanical theory 
of creep is to determine the defining equations which connect 
the mechanical parameters of the state, the stresses and 
strains.  These relations must include in an essential manner 
certain time operators, either differential or integral 
operators.  The creep process often terminates in the frac- 
ture of the body.  Therefore, ideally, a mechanical theory 
of fracture must include elements which make it possible to 
predict the instant of the fracture. 

The phenomenologlcal approach which is characteristic of 
mechanics does not relieve the mechanics specialist from 
taking into account the physical process and taking into 
consideration those Internal mechanisms which determine this 
process. The strain curves which are obtained as functions 
of time in tensile stress tests under a constant load for 
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steel at a high  temperature,   or any plastic   (for example, 
polyethylene, at a normal  temperature,  concrete,   ice,  samples 
of  rocks,   etc.,   are  very similar.     Therefore, 
some hope exists  that   it  is possible to construct  general 
equations which will  be suitable for  the description of all 
materials under any conditions.    However,   the  internal struc- 
ture of the bodies that were mentioned is very different and 
the mechanisms which  cause creep are also different.    The 
great difference in creep processes  in metals and polymers, 
which,   for example,   is connected with the difference in the 
determining mechanisms, can also be detected in a macro 
experiment.     Thus,   the creep deformation of steel  is irreversible 
for all practical purposes;  after the load is removed,   the 
deformation that  accrued does not return or only a small part 
of  it returns.     The  creep deformation of a polymer when the 
stresses are not very high  is almost completely reversible, 
and it vanishes when  the  load is removed after a certain time. 

Different circumstances are also encountered in the study 
of creep in engineering alloys.    Materials exist which are 
structurally stable  in a given range of  temperatures and time. 
The creep of such materials  is described by relatively simple 
relations for which a mechanical  theory can also  be constructed. 
The matter is much more complex with those alloys which under- 
go phase conversions  during the creep process at  a high 
temperature.     A description of  the creep of such materials 
in  the terminology of mechanics  is connected with considerable 
difficulties.    Different atomic-dislocation grid mechanisms 
ire dominant  in different   temperature ranges,   which follows 
from physical  investigations.     Therefore,   the creep equations 
may differ considerably, depending on the  field to which they 
are applied. 

In this survey,   the main attention will  be on the theory 
of  the creep of metals at  a high temperature.     However,   certain 
theoretical results  pertaining to the creep of  polymer 
materials will also be discussed (viscoelasticity  theory). 

The creep phemwonon was encountered for  the  first  lime 
in connection with operating steam  turbines and  the problem 
of  limiting  the creep became very acute.     Given  the existing 
materials,   the creep and the limited strength of   the materials 
limited the possibility of  increasing  the working parameters 
of machines.     The needs of electric  power machine engineering 
led primarily  to intense work aimed at  producing new heat 
resistant materials and stimulated a great series of .netalo- 
physical    studies whose aim was to detect  the creep mechanism 
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of  metals.     The con temporary state of  the problem  In this 
field is discussed,   for example,   in  the survey article  by 
V.   L.   Indenbom,  A.   N.   Orlova and V.   M.   Rozenberg   (1965) 
and  in the book   by V.   M.  Rozenberg  (1968). 

At  the same  time   the designers were confronted with the 
problem hon   to use  the available materials  in   the  structures, 
how  to evaluate  the  admissible temperature  range and stresses 
to ensure u given  life.     To do this,   it became necessary  to 
construct a mechanical   theory of creep.     The   testing of materials 
for creep using certain standard methods was  carried out by 
industry on  a   large scale.     The aim of  these   tests was  to 
develop c«rtai.'  conventional  criteria  for  the  resistance of 
the alloy   .i i >  /espect   to creep,   and a comparative  evaluation 
of   the sui  ability of  particular materials  for use under cer- 
tain conditions on  the  basis of  these criteria.     The large 
amount of experimental data  that was accumulated as a result 
of   tests of   this   type  must  naturally  be used as  the basis 
for  the mechanical  theory.     However,   this alone was not 
sufficient and special   theoretical experiments were needed 
to create and justify  a mechanical  theory.     The main problems 
which had to  be clarified were primarily: 

1. Are   the  laws  for   the creep known when  the  stress is 
constant?    Is  it  possible   to predict on  the basis of  these 
data  the creep behavior under a variable  load?    In  particular, 
is   it possible  to predict   the relaxation  law,   i.e.,   the drop 
in  the stress with  time during a constant  total   strain? 

2. All  experimental   data refer  to uniaxial   elongation 
Is  it possible  to make statements on  the basis of   these data 
about    tie creep during an arbitrary complex stressed state? 

Experiments which were  designed  to clarify  these problems 
were carried out  systematically  in various countries  including 
our country.     However,   the  final solution  for   these problems 
has  not yet  been obtained.     This  is due  to  the complexity of 
the experimental   techniques,   the high cost  of  such   tests and 
the different properties of   the materials. 

With regards  to  an analysis of   the creep  tests during 
uniaxial    elongation,   a great deal of work was accomplished 
whose purpose was  to   find more or less universal  relations 
which related the strain e,   the stress o  and  the  temperature 
T   (at  a  = const) .     The goal  of  the search  »"as   to  find ways of 
extrapolating  the results   that were valid  for   tests of 
short duration to long durations. 
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The corresponding formulas were proposed by I. A. 
Odlng and other authors.  In practice, various so-called 
temperature-time parameters were applied (see, for example, 
Yu. N. Rabotnov, 1966) for the extrapolation of the data on 
creep.  However, each of these formulas Is only useful for a 
particular class of materials and no reliable extrapolation 
methods exist. 

The contemporary development of the mechanical  theory 
of creep Is characterized by a considerable extension of its 
applications. On one hand the appearance of transport gas 
pipes led to a considerable Increase In the operating tem- 
peratures and, hence, to the use of new materials and on the 
other hand it required that serious attention be given to the 
analysis of creep processes during which the loads and tem- 
peratures are not stationary. 

Creep problems were also encountered in jet technology 
and in supersonic aviation.  Therefore, the creep theory of 
thin-walled structural elements, plates and shells was 
developed.  Special stability problems arose for these 
elements on which investigators expended a great deal of ef- 
fort in the last few years. 

The wide use of polymer materials in engineering, In 
particular, reinforced plastics,, made it necessary to study 
creep problems as they applied to these materials.  Here 
the characteristic feature is that when the stresses are small 
the relation between the stresses and strains are linear. 
Therefore, creep can be regarded as lagging or hereditary 
elasticity (a term Introduced by Volterra). 

In the modern literature the term "viscoelasticity," 
which we will use is the more widely used term, although the 
Volterra term is more appropriate.  The development of linear 
viscoelastic theory is mainly based on the Boltzmann-Volterra 
idea and its development concentrated rather on the engxneering 
aspect than on the conceptual aspect. 

For higher stresses relatively weak nonlinearity occurs. 
The general tendency in the last few years which represents 
a return tothe old Volterra-Freche idea was to describe 
this type of relations with the aid of certain special opera- 
tors.  The application of this idea is connected with con- 
siderable difficulties and a number of new results were ob- 
tained along these lines. 

Creep theory as a branch of the mechanics of a deformable 
solid     was formulated relatively recently.  Tie first 
studies in this field go back to the 20's and 30's.  Their 
general character was determined by the fact that the problem 
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of creep was extremely Important in power machine building and 
that the engineers were forced to seek simple methods which 
gave quick results in the solution of practical problems. 
The foundations of creep theory owe a great deal to the 
authors who made substantial contributions to the formulation 
of modern plasticity as a result of which many ideas 
and approaches have great generality.  In our country the 
first studies in mechanical creep theory go back to N. M. 
Belynyof   (1943), K. D. Mirtov (1946), and the first studies 
at the end of the 40's were the studies of L. M. Katchanov, 
N. N. Malinin, Yu. N. Rabotnov. 

I .near viscoelastic  theory is based on one hand on the 
fund.ur.ental concepts of Boltzmann and Volterra and on the 
other hand on the theory of viscoelastic rheological models 
which go  back to G. Maxwell and V. Voigt.  Combining 
the properties of elastic bodies and viscous fluids in a more 
general relation, this theory uses linear differential or 
integrodifferential  equations.  Therefore, it opens up great 
possibilities for the application of effective mathematical 
methods.  Interest  in the theory always existed but the ab- 
sence of real engineering applications did not stimulate its 
intense  development.  The earlier studies in this field 
(A. Yu. Ishllnskiy, A. N. Gerasimov, A. R. Rzhanits, Yu. 
N. Rabotnov, and others), in fact, did not deal with the solu- 
tion of specific engineering problems, but aimed to derive 
certain mathematical results from the assumed models. 

A real field of application of linear viscoelastic theory 
opened up when the theory was applied to aging materials 
(N. Kh. Arutyunyan, A. A. Gvozdev, G. N. Maslov) and to 
creep problems in concrete and other structural materials. 
These studies were developed on a wide scale and the special 
survey by N. Kh. Arutyunyan is devoted to them in this 
collection (see pp. [these pages (155-202) missing in Russ. text]). 

The behavior of polymer materials during moderate stresses 
which are usually tolerated in structures is described 
satisfactorily by linear visocelastic theory even when 
the kernels have a relatively complex form (forms 
which do not correspond to the simples rheological models 
of a Maxwell body or a standard viscoelastic body).  The 
preceding theoretical studies furnished ready-made apparatus 
for the construction of a viscoelastic theory of polymers and 
considerable successes were achieved in this field in a 
short time.  Many investigations were carried out by scientific 
teams in which A. A. Il'yushin, A. K. Malmeister, M. I. 
Rozovskiy, G. N. Savin, and other participated. 
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92.  Development and Justification of Theory 

2.1.  Creep as a Flow Process 

We will first consider the one-dimensional case, for 
example, the tension of a cylindrical rod.  The general 
point of view with regard to the creep process will be 
that creep is a viscous flow process accompanied by cer- 
tain structural changes.  This means that the creep rate for 
the given structural state is uniquely determined by the stress 
and the temperature: 

p ~v{a, T) (2.1) 

It  is assumed that  the   complete  deformation is  the  sum of  the in- 
stantaneous deformation e0 and  the creep deformation p: 

c = e0 -j- p. 

In turn the instantaneous deformation consists of the elastic 
and plastic components so that 

«•o - ^--f A''(a) (T {(T>0), 

eo = ^- (o<0). 

If the creep is not accompanied by structural changes, or    if 
the structural changes do not have an effect on the rate 
as a function of the stress and temperature, equation (2.1) 
defines the steady state creep process, and the bodies in 
the creep state can be treated as a nonlinear viscous fluid. 

Extending this point of view to the general case of the 
triaxial stressed state, we must assume that the 
components p. . of the creep deformation rate tensor are functions of the 
components ol^the stress and temperature tensor: 

Pa = Vij{or„  T). (2.2) 
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The only condition Imposed on the functions v.. is that the 

dissipation power be positive: 

It is usually assumed that the relations (2.2) are of the po- 
tential type, i.e., that a creep potential M0*.:)  exists: 

•el 

' '■'  oaij  • 

From the above, using the Legendre transformation, we obtain 
the inverse relations 

Oij~—r~,    I ^aupu-Q. (2.4) 

Strictly speaking, the existence of the potentials $ and U 
does not follow from the general laws of mechanics or thermo- 
dynamics.  However, some justifications of the hypothesis that 
was adopted can be obtained from the thermodynamics of irreversible 
processes by generalizing the Onzager principle.  A number of 
studies along the lines of constructing a thermodynamic 
theory of plasticity and creep were made by A. A. 
Vakulenko (1958, 1961, 19XX), who also considered more general 
rheological relations) . 

The next step in making the theory more precise and more 
complete is to take into account the structural changes accompany- 
ing the creep. The structural state of the material can be 
characterized by a choice of structural parameters q. which 

are scalars in the one-dimensional case and tensors in the 
general case. The one-dimensional creep equation can be 
written in the form 

p = y (o, T, qu q*, . . ., qs). 
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The equations describing the changes In the structural 
parameters over time must also be given. In the general case, 
It must be assumed that the creep potentials depend on the 
structural parameters: 

0 = 0 (0,;, T, qm),    Ü = U (/>„, T, qm). 

2.2. Creep Accompanied by Aging 

The simplest assumption will be that the structural 
parameter which determines resistance to creep varies mono- 
tonically with time. Clearly time can be taken as such a 
parameter.  If It Is assumed that the Instantaneous deformation 
Is elastic,which Is usually done, and the creep deformation Is 
not accompanied by a change In volume, the equations of flow 
theory with aging will take on the following form: 

eu—^-ou^ , (2.5) 

Creep theory based on equations of this type was developed 
by L. M. Kachanov. The equations of the theory will have a 
particularly simple form in he case when the creep curves are 
similar.  In this case the potential can be represented In the 
form of a product of a function of the stresses and a function 
of time H0^) T' (t) and the equations coincide in form with 
the steady State creep equations (2.3) when we replace in the 
latter differentiation with respect to time by differentiation 
with respect to the modified time T.  Since the elastic deforma- 
tions are described in terms of the stresses by relations of 
the potential type, relations (2.5) can be rewritten in the 
following form: 

"—>-^7(*+^) t2-6» 

Here 11 is the additional work.  It is not necessary to assume 
in equations (2.6) that the elastic deformation is a linear 
function of the stresses.  In addition to this, it can be 
assumed that the instantaneous strain is elastoplastic 
and that it can be described by equations of the type used in 
deformation theory.  It can be shown (L. M. Kachanov, I960) 
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that  for a body In the creep state,    a     varlatlonal  principle 
of  the Castigllano type follows    from   (2.6)  which is described 
by the  fact  that the functional 

H*+f> 

has a minimum for the true distribution of the stresses. The 
necessary condition is that the power of the variation of the 
external forces at the true rates be zero. 

2.3.  Steady State Creep. 

Sometimes it is possible to ignore the steady state 
deformation in applications, 

instead of (2.3) 

Letting p 
ij 

= e. 
ij 

we obtain, 

et} 
cW 

OOij 
(2.7) 

Equations (2.7) are called the steady state creep equations. 
In fact, these equations are the equations for the flow of 
a nonlinear viscous fluid.  Their form coincides completely 
with the equations of nonlinear elasticity theory or deformation 
theory of plasticity. Assuming that the potential $ is a 
positive-definite convex function of its arguments, the unique- 
ness theorem was proved for steady state creep and varia- 
tional principles of the Lagrange and Castigllano type were 
formulated. 

With regard to the form of the function $, it is usually 
assumed that it can be represented in the form $ = §(s) , 
where s is a homogeneous function of o . of the first degree. 

The condition for the absence of three-dimensional creep im- 
plies that s must not depend on the hydrostatic component of 
the stress tensor. For Isotropie materials, it is usually 
assumed that s ^ o0, where o  is the intensity of the stresses, 

or s = o- - o„, where o.. , o3 are, respectively, the largest 

and smallest principal stresses.  The creep equations (2.7) 
are now rewritten as follows: 

*? 

*»-<*'i*)-^, (2.8) 
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Formulas (2.7) or (2.8) are transformed using the Legendre 
transformation.  Suppose that relations (2.8) are valid.  The 
derivatives ds/öo. . are homogeneous functions of o  of degree 

zero.  Hence, the six derivatives which are only functions of 
five Independent arguments satisfy an identity relation.  It 
can be shown that this identity relation can be written in the 
form 

M 
\ Mtj ) 

1. (2.9) 

where a  is a  homogeneous function of  its arguments.     We set 
v =  x(6. .) .     Similarly,   s  is  the equivalent stress and v  the 

equivalent  deformation rate.     Now  it  follows from  (2.8)   that 

v =■ <!)' (s) - v (s). 

According  to formula  (2.4)   the stress  potential is 

t/ =   sO' (s) - U) (s) = V (v) 

and the relations which are the inverse of (2.8) 
have the form 

ou-=V{v) Or 

de 
X(V)- 

ij de ij 
(2.10) 

2.4.  Creep with Hardening 

By hardening are meant those structural changes in the 
material which occur as creep deformations accumulate and lead 
to a reduced creep rate for a given stress and temperature. 
In the one-dimensional case, the simplest assumption Is that 
the magnitude of the accumulated creep deformation serves as 
a measure of the hardening.  Thus, 

p = ü(at T, p). 

The extension of the hardening hypothesis to the three-dimensional 
case is connected with certain difficulties.  Generally, the 
hardening caused by the creep is highly anlsotropic which is 
evident, for example, from the experiments of V. S. 
Namestnlkov.  However, the majority of authors restrict 
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themselves   to  the assumption of  hardening anlsotropy which, In 
this case,   Is characterized only by one scalar parameter p. 
Assuming,   as  before,   the existence  of   the creep potential 
i,  which depends on a   homogeneous  function sCa..)   of  the first degree, 
we will write  the basic equation In  the form  (2.8),   taking 
Into consideration that  i depends also  on the parameter p. 

A hardening measure can be naturally selected as follows. 
The quantities   äs/äa      which are homogeneous functions of  their 
argument  of  zero order satisfy  identity   (2.9).    Now  the hardening 
measure  is  defined in a natural way by  the following formula: 

p= Jw (dpij). (2.11) 

and it follows from (2.8) that 

When s = o0. 

P- <—■ = l-K P)- 

p= \ (-j PijPu]  'dt; 

If s = 2T P = Pl  - P 3 = 2Ymax' where pl and p3 are max' 
respectively, the largest and smallest principal creep deforma- 
tions. 

When the creep curves are similar, the potential can be 
represented as a product of a function of s and a function of 
p.  A  power hardening law is often used in the appli- 
cations 

Pi.r i—a 
I-   T) (2.12) 

When equation   (2.12)   is written down  the dimensions are selected 
so  that  dimensional constants do not  occur  in the equations.     For 
hardening  laws of  the form p = p-0*(o) ,   the function f (a) 
as S.  A.   Shesterikov has shown   (1959)   must satisfy  the 
condition 
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In particular, it follows from the above that in 
formula (2.12) n > 1. Sometimes, by analogy with steady- 
state creep f = exp |a| - 1 is used (when the function f is 
selected in this way, it does not satisfy the Shesterikov 
condition).  This condition may lead to strange and 
physically unacceptable behavior of the solution in the range 
of small o after the exact solutions are found.  In approximate 
methods, this fact does not play an important role and any 
approximation which is suitable for those values of the 
stresses which interest us is acceptable. 

2.5.  More General Hardening Laws 

The selection of the quantity p as the hardening parameter 
is not unique.  A more general hypothesis is that the structural 
parameters q are related to the stress, the creep deformation, 
the temperature and the time by certain differential relations 
which are generally not integrable.  Some variants of these 
relations were discussed in the book by Yu. N. Rabotnov 
(1966) .  In particular the amount of the irreversible 
work dissipated in the creep process can be taken as a measure 
of the hardening 

( = Jo,;d/W (2.13) 

The selection of this measure was proposed in the studies of 
A. A. Vakulenko and I. I. Bugakov (19XX) , and also by Yu. N. 
Rabotnov (1963) .  Experiments have shown that tests under 
variable loads are described better in this manner than with 
the aid of the hardening parameter (V. S. Namestnikov and N 
S. Vilesova, 1964). 

2.6.  Theory of Aging 

The application of a physically well founded hardening 
theory 4i a particular variant and also of any equations such 
as  the flow equations is connected with great difficulties« 
Therefore, in practice, in plants and design bureaus a theory 
which completely coincides in form with deformation plasticity 
theory has been us^d on a wide scale.  This theory titroduces 
explicitly  in the equation time as a parameter. The initial 
data on the creep are conveniently represented in the form of 
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so-called Isochrone curves.  A series of creep curves in the 
e - t coordinates for various values of a describes graphically 
the relations between the three variables.  This relation can 
be represented In the e - o coordinates In the form of a series 
of curves, each of which corresponds to a given time t.  The 
creep calculations based on aging theory are reduced to a 
series of calculations based on the usual deformation plasticity 
theory, where every time the isochrone creep curve is identified 
with the stress-strain diagram of the material. 

2.7.  Deformation-Type Theories 

The application of deformation plasticity theory in 
special problems turns out to be considerably simpler than the 
application of theories of the flow type.  Therefore, in 
creep theory, many authors constructed equations on the basis 
of the following principle.  It was assumed that the stress 
and strain tensors were related by the relations of the 
Nadai-Hencky-Il'yushin deformation theory: 

iMi - 

(a and en are the intensities of the stresses and strains o     0 
respectively  and the primes denote the deviators) .  Further, 
it was assumed that the quantities a0 and eQ  are related in 

the same way as the stresses and strains during uniaxlal 
tension.  Thus, N. N. Malinin U948), developing further the 
ideas of N. M. Belyayev assumes 

^H>+i^H- (2.14) 

Here, S(o0) is a function which is determined from the experi- 

ment, T(t) is a function of time which takes into account the 
form of the creep curves (N. M. Belyaev took T = t) .  F. S. 
Churikov (1949) starteJ out with the hardening hypothesis and 
assumed that the Intensities of the stresses and strains in 
the creep are related by equation (2.8) in which p is replaced 
by p0 and o by a^. 
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2.8.  Fracture during Creep 

The elastic fracture scheme proposed by N. Hoff as applied 
to the stressing of a beam under a constant load consists of 
the following.  It is assumed that the creep rate is a func- 
tion of the true stress which is equal to ^«(1 + e), where 

o is the stress referred to the initial area, and e is the 

final deformation.  The deformation rate is 6 = e/(l + e).  The 
creep equation is obtained in the following form: 

~~v[<}a{i + e)]. (2-15> 

The quantity a  is given as a function of time (in the special 

case o0 = const).  It turns out when (2.16) is integrated,that 

the deformation e may tend to infinity at  a finite time 
t = t. which is taken as the fracture  time.  When tb   '^ep 

obeys a power law v = a , the variables can be sep  >     id 
the time until the fracture is found from the rel 

aUt«±-. (2.16) 
n 

In fact, N. Hoff's analysis leads to a higher estimate of the 
time before fracture  and after a certain value of the deforma- 
tion, the stress becomes so large that plastic flow occurs in 
the body. V. I. Rozenblyum (1963) assumes an ideally plastic 
material with yield point a and takes as the fracture  instant s 
the time until the condition aA/(l + e) = o is satisfied. 0 s 
For c0 " const and a power law for the creep, we obtain 

'-M'-i^n (2-17) 

In many engineering alloys, the fracture occurs as a 
result of the development of a system of cracks on the boun- 
daries of the grains during a small deformation.  The brittle 
fracture scheme was studied by L. M. Kachanov (1958) and Yu. 

N. Rabotnov (1959).  The degree to which the material is 
damaged is characterized by the parameter 1 which varies from 
i = 1 for an undamaged material to ^ = 0 at the fracture 
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Instant.  It is assumed that the quantity i|i varies at each 
point in accordance with the equation 

i—H(±.). (2.18) 

Here o  is the largest tensile stress. When h =   ((^/Y) is 

a power function,   the time at which  the quantity  f  attains the 
value   +  = 0 is determined from a condition which has the same 
form as   (2.16); 

n 

(2.19) 

A similar scheme which differs only in small details was 
studied by Yu. N. Rabotnov. 

L. M. Kachanov also studied the case of mixed fracture 
when the condition 1=0  is attained during a sufficiently 
large creep deformation and when it is necessary to take into 
account the variable cross sectional area in determining the 
acting stress. 

A series of studies by Swedish authors (F. Odquist, Ya. 
Hult, et al.) developed further the ideas of L. M. Kachanov 
wh^-ch take into account the effect of the instantaneous 
plastic deformation and the deformation in the first creep 
phase.  According to the well known Odquist scheme the 
deformation on a sector which is not in the stationary state is added 
to the instantaneous deformation. 

Yu. N. Rabotnov (1963) assumes that the damage parameter 
x = 1 - 'if  enters the creep equations as a structural parameter. 
Thus, when hardening is ignored, the creep equations have the 
following form: 

e — v (a,  CD), ti) — (f {a,  co). (2.20) 

Both the case of  finite and small deformations can be 
analyzed.     The analysis   was carried out  for a sufficiently 
general relation of   the  form 

e = on (1 — (ö)' 0) cah (1 - (ü)-r. 
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This approach makes it possible to describe one-third segments 
of the creep curves. 

If we assume that the functions v and cp in (2.20) differ 
only by a constant factor, uu = e/e^,  where e,,, Is a uniform 

deformation which precedes fracture which Is assumed to be 
Independent of the stress. Then the creep equation has the 
form 

<-"(*■ TT) 

I.e.,   Its  form coincides with equation   (2.8)   describing  the 
hardening   (the  Instantaneous deformation Is not taken Into 
account).     Thus,  It becomes possible to describe the entire 
creep curve with the aid of only one structural parameter, 
the size of the creep deformation.     This idea was applied 
by G.  F.   Lepln who used an equation of  the form 

^-,e*p(T^r) (2.21) 

and showed on a large amount of experimental material Its 
suitability for the description of creep and relaxation. 

2.9.     Shortlived Creep 

When the  temperature and stresses are sufficiently high, 
there  Is  practically no hardening.     Thus,   the creep rate   Is 
Initially determined by equation  (2.1)  which is valid and in- 
dependent of  the loading prehistory.     Under  these conditions, 
the Instantaneous plastic deformation which Is determined by 
equation   (2.2)   plays an important role.    The elasticity 
modulus and the function g(a)  depend on the temperature. 
Creep Is usually accompanied by an    intense formation of 
cracks as a result of which the creep rate Increases and 
fracture    occurs.    The structural parameter uu must be intro- 
duced and the equations used for  the short-term creep in  the one- 
dimensional case are: 

e -- ■■■■ e, 
I      a     \n •        /     0     \ '■ 

(2.22) 

For the majority of materials,   we can  take n = k.     Then e^ 
is  the uniform deformation at  the Instant of rupture  (S.   T. 
Ml^eyko,   1962,   1963,   S.   T.  Mileyko and Yu.  N-  Rabotnov,   1966). 
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2.10.  Linear Viscoelasticity 

The creep of many non-metallic materials is described 
with the aid of the equations of linear viscoelasticity.  One 
way of constructing the relations in the theory is to combine 
the elastic and viscous properties.  Rheological models 
consisting of a set of springs and elastic resistances are 
used to represent combinations of this type.  The relations 
between the stresses and strains for the one-dimensional case 
have the form 

/'(o)  (■'('). (2.23) 

Here P and Q are linear differential operators with constant 
coefficients.  Relations of type (2.23) arc used to describe 
both solids and fluids.  The many studies dealing with 
the description of viscoelastic properties of fluids, helium, 
etc., belong to the field of rheology (these studies are not 
discussed in this survey). 

Different apparatus for describing the viscoelastic 
properties of solids was proposed by L. Boltzmann, 
which was further developed in detail in the studies of 
V. Volterra, dating back to the beginning of the century.  The 
linear Volterra operator is defined as follows: 

Ä7-A" [/(/)-:- ( x(.'-T)/(T)f/iJ. (2.24) 

This equation can be written in the form 

A7- ( /<(t-  i)/(TKr( 

if we assume that the kernel has a singularity of the delta- 
function type. 

In V. Volterra's theory difference kernels *(t, T) = 
H(t - ') are used which follows from the requirement for invariance 
with respect to the time origin. 

Under certain constraints characterizing solids 
(2.24) is equivalent to (2.23), and the kernel H(t - T) is 
a linear combination of exponential functions. 
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The general equations of linear vlscoelastlclty for 
an arbitrary anlsotroplc material can be represented as 
follows: 

all  ~ fclJklL'hl- (2.25) 

Here E... , Is the matrix of linear Volterra operators cor- 
responaing to the matrix of elasticity moduli in the usual 
theory. 

The approximation of the kernel H(t - T) using exponential 
functions makes it possible to transform relations (2.25) by 
simple means, i.e., to find the resolvent kernels of the corres- 
ponding kernels.  The principle formulated by V. Volterra that the 
solution of the usual elasticity theory problem can be 
transformed into a solution of the corresponding vlscoelastlclty 
theory problem when the elastic constants are replaced by 
operators is used in the solution of problems in vlscoelastlclty. 
In principle the values of the functions which depend on the 
operators can always be found when the functions are rational. 
If this is not the case certain difficulties arise.  It should 
be noted that the Volterra principle can only be applied when 
the form of the boundary conditions doos not change (for 
example, it is not suitable for problems dealing with a moving 
die) . 

In the modern literature a method based on the Laplace 
transform is also used in the solution of viscoelastic problems. 
For the images of the stresses and strains, equation (2.25) 
takes on the form of the usual Hooke law. 

0ij —   i'llhfikl' (2.26) 

The main difficulties are connected with the transition 
from the images to the original stresses and strains.  For 
aging metals such as concrete, the kernel of the Volterra opera- 
tor is not a difference kernel.  The creep theory of aging metals 
which goes back to the studies of N. Kh. Arutyunyan underwent 
considerable development (a special survey is devoted to it 
in this volume, see below, pp (missing in Russian text). 

For uniaxial expansion the linear vlscoelastlclty law 
takes on the form 

i ' 

t^-E-[c+\  A*(/-T)o(T)rfir],  a = £:[c-J V(t-t)e{i)dT]. 
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The function K(t -  T)   is  called the creep kernel and itp resolvent 
kernel       r(t  -   ')   the relaxation kernel.     Sometimes,   it  is 

convenient  to give not the kernels  themselves but   the spectra. 
When the function r(t)   is represented in  the form 

oo 

T (<) = f a A (a) cxp {— at) da. 

the function A (a)   is called the relaxation spectrum.     The creep 
spectrum is  defined analogously.     The complex modulus E*   + iE" 
is introduced  in  the solution of dynamic problems, which is 
expressed in  terms of  the relaxation spectrum according to 
the formula 

E'-iE"- E[\- in \ !— di 
o 

(2.27) 

In the early studies in linear viscoelasticity theory 
(A. N. Gerasimov, A. Yu. Ishlinskiy, V. G. Gololadze, M. I. 
Rozovskiy, Yu. N. Rabotnov, etal.) the formal apparatus of 
the theory was developed and the qualitative effects that can 
be detected in particular cases were clarified.  In studies 
along physical-chemical lines (G. L. Slonimskiy, et al.) the 
theory was applied to the description of those aspects of the 
behavior of different bodies which do not correspond to the 
usual models.  The considerable development of the theory in 
the 50's is related to the substantial extension of its 
applications.  When the stresses are not excessively large,the 
equations of linear viscoelasticity describe well the creep 
of concrete (taking into account aging) and also the creep 
of most polymer materials.  This theory was successfully applied 
to the mechanics of rocks, ice surfaces, etc. The formulation 
of new applied problems stimulated the development of general 
methods and the search for many particular solutions. 

2.11.  Nonlinear Viscoelasticity 

Already V. Volterra ("Fonctions de lignes," 1913) proposed 
that nonlinear viscoelasticity be described by relations of the 
form 

e-= '\   A',(/— T,) o(T,) f/i,-:- ( ( A'2(/-T,./-T2)o(T,)o(T2)rfT,e?T2.   (2.28) 
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In fact, this Idea was forgotten, for all practical purposes, 
and revived only recently in the studies of a number of American 
and Japanese authors.  A simpler relation for a uniaxial 
elongation or pure shear was proposed by Yu. N. Rabotnov (1948): 

'(O-o-f j A'(/~I)O(T)JT. (2.29) 

M. I. Rozovskiy (1951) and N. Kh. Arutyunyan (1S52) con- 
structed for the same case a different equation, namely: 

e = ^(a)+ \ L {t-t)F[a (T)] dx. (2.30) t(o)-f (/,(/- 

The function cp(e) in the left member of (2.29) for the active 
load must be determined experimentally, and during unloading 
when applied to metals it must be linear and correspond to the 
elasticity law.  Apparently, the main field of application 
of heredity relations of the type (2.29) or (2.30) is the 
mechanics of polymers; for metals the equations predict the 
observed increase, but exceed this effect (V. S. Namestnikov 
and Yu. N. Rabotnov, 1961).  Combining nonlinear visco- 
elasticity and the hardening law, G. I. Bryzgalin was able to 
describe well the creep of celluloid under variable loads. 

2.12.  Experimental Studies 

A very large number of experimental studies dealt with 
the investigation of long-term creep and fracture.  The 
results made it possible to verify and improve creep theory 
and the computational methods used.  These studies can be 
divided into the following three groups. 

1.  Obtaining the creep, relaxation and long-term strength 
characteristics of individual materials as applied to concrete 
engineering objects.  Usually the goal of such investigations 
is to determine certain conventional comparable characteristics 
which can be used to select the material under given operating 
conditions.  Along with the development of mechanical theory, 
these characteristics became the basis of calculations, even 
though by themselves they cannot be used to select a particular 
theory used as the basij for the calculation of a complex 
process. 
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2. Studies whose goal was to verify various creep 
theories. 

3. Testing of  natural  objects or models and a comparison 
of the experimental  data with the results  obtained from calcula- 
tions. 

In this survey we will briefly dwell  on studies dealing 
with  the second and third groups. 

A systematic    verification of  the hardening hypothesis 
is available in  the series of studies by A.  M.   Zhukov,  F.   S. 
Churikov and Yu.   N.   Rabotnov   (1953),  V.   I.   Danilovskaya,   G. 
M.  Ivanova and Yu.   N.  Rabotnov   (1955) ,   V.   S.   Namestnikov and 
A. A.   Khvostunkov   (1960),  V.   S.   Namestnikov   (1957,  1960), 
Yu.  P.  Kaptelin   (1962),  G.  M.   Ivanova   (1958).     All these ex- 
periments were carried out during  stressing and the results 
of tests under constant and variable loads were compared.     As 
a result of these studies and also the work of  foreign authors, 
it was established that  the hardening hypothesis of  type 
(2.8)   describes satisfactorily, at  least  in  first approximation, 
the first   creep phase. 

Creep tests  in a complex stressed state are few  in number 
and technically  difficult.    We note the studies of I.  A. 
Oding and G.  A.   Tulyakov  (1958)  which validate for    steady   state 
creep the validity of  the Tresk-St.-Venant criterion.     Tho 
results of  the experiments of V.   S.  Namestnikov   (1957),  which 
apply  to  the transient     creep phase,   did not confirm generally 
the simple relations  described above and forced  the author  to 
use more complex constructions.     V.   S.  Namestnikov  (1957) 
has also shown  that  the hardening during creep  is highly aniso- 
tropic. 

A number of  studies deal with determining   fracture criteria 
in the complex stressed state.     We note  the experiments of 
B. V.  Zver'kov   (1958),   Sh.  N.   Katz   (1955),   V.   P.   Sdobrev   (1958, 
1959),   I.   I.   Trunin   (1967),   I.  N.  Laguntsev and V.  K. 
Svyatoslavova   (1959),   I.  N.  Laguntsev and L.   I.   Fedotova   (1959). 

Systemmatic studies of  the creep in models  of elements 
of   turboengines    and also of  full-scale  discs were carried out 
at the Central Scientific Research Planning and Design Boiler 
and Turbine Institute,   Im.     I.   I.  Polzunov   (D.   P. Varshavskiy, 
P.  Ya.  Boguslavskiy,   I.   G.  Polumordvinova,   1955)   and the 
Central Scientific Research Institute of Machinery Manufacture 
and Metal  Working   (V.   P.  Rabinovich,   1959,   1960).    The result 
of these studies  is  that  the computational methods based on 
the simplest aging  theory give results which are satisfactory 
in practice in predicting the magnitude of   the deformations and 
residual stresses.     The time until   fracture   can also be pre- 
dicted with a satisfactory degree of accuracy. 
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§3.     Steady   State Creep in the Theory of Aging 

The equations  in  the theory of steady state creep and 
the equations  in  the  theory of aging are basically identical 
with the equations of deformation plasticity  theory.    The only 
differenca is  that  in the theory of steady state creep the 
deformations are replaced by  the deformation rates,  and time 
appears as a parameter  in the equations of aging theory.    The 
methods used for  the solution of the problems  based on these 
two theories are essentially analogous.     Usually,   some simple 
analytical  approximating function v(s)   =   I'Cs)   is selected 
for the steady state  creep,   for example v  =  e   (s/c )n    or 
v =  e exp(o/a ),  where  e   ,   o   ,   n,   e   ,   a    are constants.     The e e'' n'n''e'e 
main advantage of  aging  theory which is responsible for its 
wide use in engineering calculations  is  the possibility of 
using  the initial creep curves without any analytic approxima- 
tions which entail an inevitable distortion.     Therefore, 
numerical methods are used most extensively,   which represent 
a development or modification of  the methods  that were developed 
for the  theory of small  elastoplastic    deformations. 

3.1.    Variational Principles 

The Lagrange   and Castigliano principles   for creep problems 
are evidently a simple  reformulation of   the corresponding 
principles   for a nonlinear elastic body,   since  the initial 
hypothesis assumes a  relation of  the potential 
type between  the stresses and strains or deformation rates. 
A systematic    development of approximate methods based on the 
Castigliano principle   is due to L.   M.   Kachanov.     When the 
steady state   creep obeys a power law as  the exponent n increases, 
the distribution of  the stresses differs  little from that 
corresponding  to  the  limiting state of an  ideal  rigid-plastic 
body  in a number of cases.    Thus,   the concept  of a limiting 
creep state is  introduced,  and the stresses o?.   for this state 
are found on the basis of  the scheme of a rigid-plastic body, 
where  the yield point  depends on the character of  the load. 
The approximate values  of  the rates are  found by applying directly 
the Castigliano theorem.     The most accurate results are obtained 
when the stress components are represented  in  the form 

<Ju = olj + K {n) (ojy - at,). 

Here o'  is generally any statically possible distribution of 

the stresses corresponding, for example, to the elastic state, 
The multiplier K(n) is found from the condition that the 
corresponding functional be a minimum. 
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The method was Illustrated on a large number of examples, 
dealing with trusses, beams and frames, torsion problems and 
other problems. 

3.2. Methods of Successive Approximations 

A natural technique for the solution of nonlinear 
problems in the mechanics of a body is the method of 
successive approximations where a linear problem is solved 
in each stage.  In the method of elastic solutions due to 
A. A. Il'yushin, an elasticity theory problem with fictitious 
body forces and modified boundary conditions is solved in each 
approximation. 

The method of variable elastic parameters (I. A. Birger, 
1961) is based on the fact that the equations of creep theory 
coincide with the  equations of linear elasticity theory, in 
which the elastic constants are functions of the coordinates. 
These functions are not known in advance, since they are non- 
linear functions of the unknown quantities, the stress or 
strain components.  Each successive approximation is found 
by integrating linear equations with variable coefficients 
which are expressed in terms of the parameters found in the 
preceding approximation.  I. A. Birger developed techniques 
which can be used to obtain the fastest convergence of the 
successive approximations.  The schemes are conveniently 
calculated on electronic digital computers. 

The idea of variable elasticity parameters is also useful 
when variation principles of the Lagrange or Castigliano 
type are applied (L. M. Kachanov) .  Instead of finding the 
stationary values of a complicated nonquadratic functional, a 
sequence of quadratic potentials of the same type as in the 
corresponding theory of elasticity problems with a 
variable modulus is studied. Each functional is minimized 
using the Ritz method, and the values of the parameters that 
are found are used to calculate the elasticity moduli in the 
next approximation. 

3.3. Calculation of Turbine Discs using the 
Method of Successive Approximations 

The calculations of creep in a rotating disc of variable thickness 
with a variable temperature field is one of the most important 
applied problems in creep theory which is still significant 
to this day.  One variant of the raethoo of successive approxi- 
mations for this problem is as follows.  The radial stress 
a    is determined from the equilibrium equation as a functional 

of the circular stress: 

C-FAo*). (3a) 
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Next ^g is determined as a  functional of  o   .   o       involving the 
constant C from  the consistency equation and the creep equations: 

ae = F2 (ar, ae, C). (3 . 2) 

The method of successive approximations is used to solve 
the system of equations that was obtained, and some distribution 
of the stresses 0

e is used as the starting point. 

When the functional F, is determined uniquely, the functional 

Fn can be represented in differrent forms and the rate at 

which the successive approximations converge depends considerably 
on this. Various variants of the methods are available in the 
studies of P. Ya. Boguslavskiy (1950), A. G. Kostyuk (1953), 
N. N. Malinin (1959) and other authors.  R. M. Shneyderovich 
uses as the unknown functions not the stresses but the strains 
and the circular deformation is expressed in terms of the 
radial deformation by means of a simple relation obtained 
from integrating the consistency equation.  The func- 
tional representing the radial deformation is constructed 
with the aid of the equilibrium equation and the creep 
equations. 

When the discs are manufactured using forging or pressing, 
tue material acquires inevitably a texture causing anisotropy 
of the creep properties.  0. V. Sosnin (1963) studied the 
steady state creep of an anisotropic disc.  It became evident 
that the effect of the real anisotropy on the distribution of 
the stresses was not great. 

3.4.  Exact Solutions 

Relatively few exact solutions are available for one- 
dimensional problems.  Thus, the problem of a rotating disc 
is reduced to the integration of a system of two quasi-linear 
equations with given boundary conditions at the end points of 
the interval (N. N. Malinin, 1959).  The use of electronic 
digital computers makes these calculations relatively simple. 
Plecewise linear potentials can sometimes be used in certain 
cases to obtain a solution of the problem in closed form.  The 
problem of the stress concentration around a circular 
hole in a uniformly stressed plate was solved by V. I. Rozen- 
blyum (1959) and for a Tresk-type criterion by Yu. V. Nemirovskiy 
(1964) using the largest reduced stress criterion.  A. G. 
Kostyuk (1950) studied a disc with a hole whose thickness 
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varied according to a power law and depended on the 
radius when the creep law was a power law..  A uniform 
expanding load was applied to the external contour. An ex- 
act solution of the problem was obtained In parametric form. 

3.5. Plates 

In the absence of  forces  the relation between the curva- 
tures and the moments  is completely analogous   to  the relation 
between the stresses and strains In  the plane stressed state 
and the calculation of  the corresponding potential does not 
lead to any difficulties.     For circular symmetrically  loaded 
plates,  closed solutions are  obtained when  the creep laws are 
piecewlse linear.  L.   M.   Kachanov uses the Ritz method for 
these problems.    A number  of special cases were studied by 
N.   N.  Mallnin with  the aid of  the Galerkin method. 

The problem of a semicircular    plate is of  Interest in 
connection with creep calculations of a turbine diaphragm.    A 
relatively simple approximate solution based on  the Ritz 
method was developed by V.   I.   Rozenblyum  (1954).     P.  Ya. 
Boguslavskiy   (1950)   solved this problem using  the method of 
successive approximations constructed on the principle which 
was  described above and applied to  the calculation of discs. 
The selected scheme corresponded sufficiently closely  to the 
structure of  the real  diaphragm. 

3.6. Shells 

The creep theory of shells is usually constructed on the 
basis of Kirchhoff-Loew hypothesis in which terms of order 
h/R are ignored, where 2h is the thickness and R is the charac- 
teristic radius.  The equations which relate the forces and 
moments on one hand and the deformation rates on the middle 
surface and the rates for the change of the curvature on the 
other hand in the theory of steady state creep are expressed 
in the following manner: 

„  ^  M)        Oil) 

or 

^ =--¥-, M        dU 

Q^HijMu^etjTij-U.      f (3.4) 
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The main difficulty is calculating thy potential 
U(e ., H .).  If the Mises criterion is adopted, the potential 

U is obtained by integrating over the thickness a function of 
the intensity of the deformation rates H, which, in the given 
case has the form 

/^(e^M'-x^j'*. (3.5) 

Here e0 and H are the intensities of the deformation rates 

on the middle surface and the rate at which the curvatures 
change, respectively, (en) is a bilinear form constructed from 
the e. . and *. ..  To find the potential U, a function of 

H must be integrated over the thickness of the shell. It is 
not possible to obtain an explicit expresion for U. 

One technique used is to average sectionally the functions 
H over the thickness of the shell.  I. G. Teregulov (1962) 
proposes that II(z) should be regarded as a plecewlse-constant 
function, namely: 

7/- - e; + 2Mex)-; A'H-. (3-6) 

The upper sign refers to the region z > 0 and the sign at the 
bottom to the region z < 0.  It is proposed that the constants 
^, and ^n be  selected from the condition that the exact result 

be obtained from special cases selected in an appropriate 
manner. 

Sometimes a two-layer model is studied Instead of the real 
shell (Yu. N. Rabotnov, 1951).  If the thickness of the layers 
is sufficiently small compared to the distance 2h, between them, 

the distribution of the stresses along the thickness of each 
layer can be considered to be uniform, and the quantity H in 
each layer is obtained from formula (3.5) when z = ± h,. 

Hence, we must take in formula (3.6) X = X- = h,.  The quantity 

h, for the model shell is related to half the thickness of the 
real shell by an equation which describes the equivalent behavior 
of the real and model shell in some special case, for example, 
during pure flexing.  When the creep law is a power law with 
the exponent n, this condition implies 

^(2,-1) VH (3.7) 
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Another simplification of relation  (3.6)   is obtained by 
setting  X,   = 0,   i.e.,   by assuming simply that H is  constant 
along  the  thickness.     Such a scheme was proposed by V.   I. 
Rozenblyum;  however,   it was  based on different concepts. 
For n =  1  the calculation of  the potential U reduces to  the 

2 
integration of the expression for H    over the thickness. 
Thus,  U turns out  to be a  linear combination of  e*  and 
2 

H_.  By computing the function f, we find that it depends on 
tne expression 

M'^T^r- (3-8) 

Here  t0 and m0 are the intensities of  the dimensionless  forces 
and moments  that were determined in an appropriate    manner. 
On  the other hand,   V.   I.   Rozenblyum obtained earlier the 
approximate limiting state  condition for an elastoplastic 
shell  in the form 

tl T ml = 1. (3 .9) 

The statement can be made on the basis of the well-known 
theorem of Ch. R. Kelladine and D. Ch. Drucker that  in 
the space t. ., m. . the appropriately normalized surface 

ij  ij 2      2 
S = const will lie between the surfaces tn +  3/4 mn = 1 and 2   2 u      u 
t0 + m0 = 1. From this it follows that for 1 £ n < 00, 

the approximation of the potential $ will consist of letting 
it be a function of the quantity 

S = {tl + kml)'\ (3.10) 

Here 3/4 < k < 1.  A comparison with the exact result for the 
pure flexed state leads to the following expressions for k: 

T(^) 
-ft 

n-1 
(3.11) 
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3.7. Axisymmetric Deformation of a Circular 
Cylindrical Shell 

The application of a two-layer model gives especially 
simple results for the axisymmetric deformation of a circular 
cylindrical shell in the absence of an axial force.  The 
curvature does not change in the transverse direction. 
Denoting by e the rate of the circular deformation and by 
H the rate at which the curvature of the generatrix changes 
we find that 

7MTti+JTi*2r' <3-12) 

where k is given by formula (3.11). 

The problem of an infinitely long cylindrical shell under 
the action of a circular load was solved with the aid of the 
Lagrange varlational principle by V. I. Rozenblyum.  The shape 
of the deflection was assumed to be the same as in the solution 
of the corresponding problem in the theory of elasticity and 
the magnitude of the deflection was varied in the section 
to which the load was applied and the wavelength was also 
varied. 

Yu. N. Rabotnov (1966) reduced this problem to the 
integration of the system of equations 

2w(.) --- 0. 
»  .»  ,  , / (3.13) 

ID      ' 

Here u is the dimensionless rate of the circular deformation, 
m is the dimensionless longitudinal moment, and p is the 
loading parameter.  The function w is defined by the equation 

(3.14) 
i* (co) - u^-m-iä-, 
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where v(o) is the creep rate during uniaxlal tension by the 
stress o  (with an accuracy up to a constant multiplier) .  The 
primes denote differentiation with respect to the dimc-usiouless 
coordinate §. Equations (3.13) are the Euler equations for 
the variational problem for the functional 

.V-J[ttW-;-/>) ; j£--m*b>-2pu]dl, (3.15) 

where X(^) is a known function.  The arguments m(?) and u(§) 
of the functional are given and are varied independently, 
which is the advantage of the functional (3.15) compared to 
the Lagrange functional.  When the latter is applied the 
deflection can be determined with a good approximation but 
when the moment is calculated, the accuracy is lost. 

Problems dealing with the boundary effect for a semi- 
infinite shell with a supported edge and an edge supported on 
hinges were studied. 

Yu. N. Rabotnov has shown in a subsequent article that 
a variational equation of type (3.15) can be obtained from 
the general Reissner variational principle, as well as for 
other problems in the theory of shells in which the force 
in one direction can be assumed to be known, on the basis of 
concepts of one type or another in which the rate at which 
the curvature changes in the orthogonal direction is zero. 
This occurs, for example, in the theory of cylindrical shells 
of medium length. 

V. N. Mazalov and Yu. V. Nemirovskiy (1966) studied the 
problem of the symmetric deformation of a circular cylindrical 
shell using a two-layer model and the largest reduced stress 
criterion.  The case of a shell of finite length supported on 
hinges under the action of a circular load was studied and 
the solution was obtained in closed form. 

3.8.  Boundary Effect in Shells 

When the stressed state in the shell is predominantly 
torqueless and the intensity of the stresses is sufficiently 
large, the stressed state of the boundary effect near the 
supported edge can be calculated as a correction for the 
principal stressed state.  This idea was applied by I. G. 
Teregulov, who used in the boundary effect zone, equa- 
tions that were linearized in the neighborhood of the principal 
stressed state, which is assumed to be torqueless and, hence, 
known.  The theory of the boundary effect under these assumptions 
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is similar to the theory of the boundary effect in elastic 
shells.  The problem of the boundary effect in a cylindrical 
circular shell compressed in the axial direction was con- 
sidered as an illustration. The boundary effect in a 
cylindrical shell was also studied by I. V. Stasenko (1962, 
1963) . 

§4.  Transient Creep 

4.1. Variational Method in Flow Theory 

The simplest theory of transient creep is flow theory 
accompanied by aging. As mentioned above, the L. M. Kachanov 
variational principle 

6j(a,+^)^o (4.1) 

is valid for this theory. Here 0 is the corresponding elastic 
potential.  In principle the potential n need not be quadratic, 
it can correspond to nonlinear elasticity, or, equivalently, 
to the instantaneous elastoplastic deformation described by 
equations of the deformation type.  In this case, difficulties 
arise which are connected with the occurrence of unloading zones, 

A natural approximate method for solving transient 
creep problems with the aid of variational equation (4.1) 
when the external forces do not change is as follows. 
Let o*  be the distribution of the stresses corresponding to 

the elastic state, and o'.'. the distribution of the stresses 

during transient creep. We set approximately 

nij~a'i}-\-d(t) (a'j — a'ij), 

0(0) ^O. 0{oo)-l. } (4.2) 

Condition (4.1) leads to a differential equation for the 
function 9(t). The method is only applicable in the form that 
was described when the creep curves are similar, since, only 
in this case we can speak about transient creep which is 
characterized by the stress distribution 0-i'  However, a 

slight modification of the method removes this constraint. 
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For problems of the relaxation type, when fixed displace- 
ments are given on a part of the surface and the remaining 
part of the surface is free of forces (body forces are also 
absent) , it can be assumed that all stresses vary proportionally: 

atj - p (t) a'ij. 

The application of variational equation (4.1) leads in the 
given case to the conclusion that the function p(t) is in- 
dependent of the shape of the body and the manner in which it 
is secured, and it coincides with the function which describes 
the relaxation of the stresses, for example, during uniaxial 
stressing. 

The application of this method has been illustrated on 
many examples that can be found in the book of L. M. 
Kachanov, and also in publications by other authors.  These 
examples apply to rod systems, torsional and bending problems. 

4.2.  Bending of Rods on  the Basis of Hardening 
Tneory 

Even the simplest transient creep problem of a rod 
with a rectangular cross section does not have an exact solution 
during pure bending.  N. N. Shchetinin studied this problem 
with the aid of a creep equation of the form 

p -/rM.'xp | o | - 1). (4.3) 

During the analysis it became evident that the stress changes 
sign near the neutral axis.  This is a consequence of the 
fact that equation (4.3) is not suitable for small o 
(the right member must have the form on, where n > 1 + a 
as shown by S. A. Shesterikov) .  To remove the singularity 
that was mentioned a correction was introduced into the equa- 
tion for the problem.  The technique of linearizing the 
original equation made it possible to construct the solutions 
in series and to investigate their convergence.  To calculate 
the bending of rods with an arbitrary cross section and ar- 
bitrary temperature distributions, B. F. Shorr (1959) de- 
veloped a numerical  integration method.  The following 
creep law was selected: 

h(p)'l(T) (oxp^-l). (4.4) 
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To take into account both the first and second sectors 
on the creep curve 

h (p)   ~ p-'x (p < Pc),   h (p) = Pc ' ^ const   {p > pc) 

were used in those regions where  the stress  (and,   hence,   also 
the creep rate)   do not change sign.     But  the neutral axis 
is shifted in  the creep process.     Therefore,  at some   points 
the rate changes sign.    For these regions,   it is proposed 
that  the function h(p)  be replaced by  the function h(q) , 
where q is defined as follows: 

q^ p^-   lp-    (a>0), ] (4.5) 
q^p- r'.p+    (T<0). j 

Here p is the creep deformation t.iat accumulated during 
tension,  and p~ is the creep deformation that accumulated 
during compression.  The calculation itself is carried out 
numerically, in steps over time. 

4.3.  Application of the Tresk Criterion.  Axi- 
symmetric Problems. 

When the principal axes of the stresses in the body are 
fixed and the inequality 0i > 02 ''^ a3 always holds, the 

harde*iing law combined with the Tresk criterion leads to the 
following results.  The magnitude of the equivalent stress is 
5 = 0-0-,   fc, = - £3 = £>, ^2 = 0'  From here it follows that 

2p = P-i - Po, after which the creep equation is expressed in 
the same way as in the one-dimensional case: 

p =- v {p, s). 

If two principal stresses,   for example,   o    and o. are equal, 
the   associated    law gives a rate distribution which is not 
unique,   namely, 

P3 = -P,   Pi = ^   ^ - (1 - *) P   (0 < ^ < 1). 
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The magnitude of the equivalent creep deformation p 
defined In  the above manner  Is only meaningful In the case 
when the condition 0i  > a2 > a3 ^s preserved during the 
entire process.     When the signs change In this inequality, 
the maximum   displacements occur In other planes and the possibility 
of  integrating the hardening effect which occurs according 
to different mechanisms x3 an   additional hypothesis. 

The simplified variant of hardening  theory that was pre- 
sented was applied by Yu.  N.  Rabotnov  to problems in the creep 
of  rotating discs and cylinders.     The creep law used had the 
form 

ppa = exp (s — P). (4.6) 

Here the quantities p and s are dimenslonaless, ß depends 
on the temperature and, hence, is a given function of the 
coordinates.  The principle of solving axlsymmetric problems 
consists of the following.  By integrating the equilibrium 
and consistency equations, the radial, circular and axial 
stresses are found in the form of certain functionals of 
p which still contain the integration constants. For a disc 
a=0, o and o depend on the two constants B and C. 

Equation (4.6) is reduced to the form 

pp« exit (p)  - exp (5 — ß). (4.7) 

Here S is a functional of p, which depends on the constants B 
and C, the radial coordinate, the initial distribution of the 
stresses, and the temperature deformation.  The form of the 
functional S depends on the relation between the stresses o 

and o„.  Equation (4.7) is integrated in steps over time, 
and the value of the functional S Is calculated on the basis 
of the magnitude of p in the preceding approximation.  The 
constants B and C are determined in each step from the boundary 
conditions.  The case of a cylinder is studied in an entirely 
analogous manner.  If the disc does not have a hole, a finite 
region is formed in its central part, where o    = a^.     This 

case was considered by 0. V. Sosnin (1960) . The numerical 
integration has shown that the radius of this central region 
varies considerably during the creep process.  In another 
study, 0. V. Sosnin (1963) developed another method for tho 
solution of the problem of a rotating disc, namely, he 
derived a differential equation for the radial displacement 
whose solution was obtained in a series. 
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The problem of a rotating disc was studied by I. N. 
Danllova (1959) as applied to the calculation of stresses in 
the run-in period of a rotor of a gas turbine. 

4.4.  Variational Principles in Hardening Theory 

Variational equation (4.1) does not presuppose any 
special hypothesis about the character of the dependence of 
the potential on the structural parameters, and it remains 
valid in the case when $  is independent of time and of the 
hardening parameter p.  This fact was noted by S. A. 
Shesterikov (1957), who formulated the corresponding 
variational principle for hardening theory and applied it to 
the solution of relaxation problems.  Setting approximately 

a functional equation for p(t) can be obtained from (4.1) 
which can be solved under certain special assumptions about 
the creep law.  S. A. Shesterikov obtained a more general 
solution of this equation for a power creep law with power 
hardening and illustrated its application on the problem of 
the relaxation of stresses in a disc with a hole (I960) . 

Recently more flexible variational principles have been 
used widely in creep problems, in which not only the 
stresses or deformation rates are varied independently, but 
also the rates of change of the stresses or of some other 
parameters.  Thus, for example, the Relssner type variational 
principle for the creep can be formulated as follows.  Let 
us consider the functional 

J~ ( | a^j-.ilt^-illpA-FtUi'jdv- J cavjiui-nt) dl- j Tfutdl. 
(4.8) 

It is assumed that e. . = 1/2 (u. ^ - u. .) ,   o        ü.,  are varied 

independently since *.. and the structural parameters which 

may be included in the potential i  are not varied.  The rates 

u. = u. are given on a part of the surface £ and the forces 

T? are given on a part of the surface E_.  The equilibrium 

equation follows from the condition that the variations of the 
functional (4.8) vanish, from the boundary conditions and from 
the creep equation. 
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The application of the varlational equation (4.8)   is 
connected with certain technical difficulties.    For example, 
some of these difficulties are related to the fact that when 
the distribution of  the stresses are given  in the form of 
functions of  the coordinates containing free parameters, 
when the volume  Integral of the potential   $   is calculated, the 
real It cannot be expressed In  the  form of  an explicit function 
of these parameters.     To circumvent this difficulty,   I.  G. 
Teregulov   (19XX)   proposed a modification of   the varlational 
principle.     Suppose  that  $ =  $(q. ,   s) ,  where q.   are any 
structural parameters,  s Is a homogeneous  function of degree one 
of a        and it  is assumed that  the elasticity varies linearly 
with the ductibllity  tensor B. .     .     We  let   d$/ds = v(q. ,   s) xjrs x 
and consider the following functional: 

• 

aijXj{ui-xi':)dZ- J TUidZ. 

Here,   in addition  to a. .  and ü.,   cp and z are also independent 
arguments of  the  functional.     Varying cp,   we  find z = s, 
varying z,  we  find  cp = v  (q.,   z) .     The equilibrium equations, 
the boundary conditions and the creep equations are obtained 
from the above  in  the usual manner. 

The advantage of functional   (4.9)   is  that both the 
equivalent stress  s  = z and the function v(q. ,   s)   = cp are not 
expressed in  terms of  the stresses but are  given Independently 

4.5.     Power Creep Law with Power  Hardening 

A convenient analytical  form for  the creep law with 
hardening is 

^-TS-SP^7- (4-10> 

Here, all magnitudes are reduced to dimensionless form, so 
that there are no dimensional constants in the equation.  The 
hardening measure can be selected in various ways, namely: 
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a) q=^to{dpi}). 

b) ^]0(jdpij. 

When constant loads are acting on the body, in the 
limiting case, when the elastic deformation is negligibly 
small, equations (4.10) become the steady state creep 
equation! in a different time scale T = t1^1 + a> . The 
corresponding state can be called the quaslstationary 
creep state (Yu. N. Rabotnov, 1966).  Yu. N. Rabotnov (1966) 
proposed the following method for the approximate solution of 
problems dealing with the redistribution of the bonding re- 
actions in statically indeterminate  systems and finding the 
displacements of certain points.  Suppose that the generalized 
forces Q. to which the generalized displacements q. correspond 

are acting on the body. We take p. = q. - ß. .Q., where ß.. 

is the matrix of the elastic coefficient for the effect. The 
solution of the quaslstationary creep problem has the form 

pt-Q-ijT' 

where Q is a homogeneous function of  the  first degree of 
the forces Q. .     The approximate solution of  the transient 
creep   problem is obtained from the following system of equations: 

^-n-C'S.     • (4.ii) 

The quantity P  is determined as follows: 

a)     The quantities  öQ/dQ    are related by  tho identity 
n(dQ/dQ.   = 1,   where  n is a homogeneous  function of the first 
degree^ and 
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b) H,ß^ 

The case when one active constant force and one reaction 
are acting on the body was studied. 

T. G. Mustafayev (1968) developed this method and applied 
it to the solution of statically indeterminate problems 
In the neighborhood of the minimum of the function Q which 
corresponds to the limiting quasistationary creep state, this 
function is well approximated by a quadratic relation, which 
simplifies considerably the computations.  Examples of beams, 
frames, the relaxation of a composite pipe, the relaxation of 
a disc mounted on a shaft were also studied. 

4.6.  Plates and Shells 

The most important and interesting problems in creep 
theory as applied to shells deal with stability problems and 
will be considered separately. An approximate method for the 
solution of geometrically linear problems on the basis of 
flow theory was proposed by V. I. Rozenblyum.  It is assumed 
that the creep curves are similar, which makes it possible to 
introduce the modified time T(t).  The deformation rates of 
the middle surface and the rates at which the curvature 
changes with respect to the modified time are defined as 
follows: 

lu \      '   Ox)'      ite        dmtj\    ~0-tl V4.i^; 

Here n  is  the elastic  potential of the shell  expressed in 
terms of  the forces  and moments.   The structure of equations   (4.12) 
shows that for  them  the equivalent variational  formulation is 
(4.1).     Therefore,   the approximate  technique  developed by 
L.  M.  Kachanov in which the forces and moments are given in 
the  form 

tu ^t'ij + B it) Uh - t'ij),   nitj = m'fj + 9 (<) {mm
fj - m'ij). (4 .13) 
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can be used to solve  Individual problems.     Here one prime 
denotes quantities  that  refer to the initial elastic state 
and  two primes  the quantities that were found from the solution 
of  the  steady state creep problem.    Analogously,   the solution 
of  the relaxation problem is sought in the  form 

tij = p (0 t'ij,   mu - i> (t) m'ij. 

Problems in the relaxation of stresses in a cylindrical 
plate during pure flexure, cylindrical bending of a rec- 
tangular plate, the creep in a freely supported 
circular plate under the action of uniform pressure were 
solved in this manner. 

Yu. N. Rabotnov (1966) used the technique described in 
Section 4.5 to analyze creep problems of shells for power 
hardening. If the quasistationary creep potential is taken 
in the form Sn+V(n + 1) , where S is a homogeneous function of 
t. . and ra. . of first degree, taking the expression for S in 
the form (3.10), the harconing measure P is defined by the 
formula 

P^l^ln-r^Ddt. (4.14) 

Here e- and H_ are the intensities of the creep deformation 

rates and the changes in the curvature resulting from creep 
and g is a constant which depends on n.  For large values of 
the index n we can expect that the following approximation 
will be suitable for S 

S = m0 + tl (4.15) 

which corresponds to the limiting state of the rod subjected 
to the torque and the transverse force.  Expression (4.15) 
can be transformed into a homogeneous expression of first 
degree, and the hardening measure is defined according to 
the general rule. 

To estimate the errors of approximate methods, G. V. 
Ivarov (1966) considered the simplest case of an element of a 
pla" e to which a transverse force and a torque in the same 
direction were applied.  The calculation was based on the 
variational equation of D. L. Sanders, etal. , in which the 
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stress and strain rates are varied. For the problem under 
consideration, It was sufficient to vary the stress rates. 
The standard solution which was used was the solution 
obtained by replacing the Integrals over the thickness by 
a 15 point Gaussian quadrature formula, and the result 
obtained,using the V. I. Rozenblyum method with a linear 
distribution of the stresses over the thickness which was 
approximated by four terms in the Legendre polynomial expan- 
sion, was compared.  The last approximation always gives a 
rood result, and for other approximations, regions can be found 
lor the valuer of the parameters in which they are satisfactory. 

5ö.  Stability during Creep 

5.1. Formulation of the Stability Problem 

The use of the term "stability" in the many problems which 
will be considered below is arbitrary to some extent.  The 
creep of metals as a rule Is not limited.  This means that no 
matter how small the load,the deformation can be arbitrarily 
large after a sufficiently long time.  Therefore, any creep 
process is not stable.  This is illustrated by the well-known 
scheme of N. Hoff for determining the elastic rupture time. 
If we assume that the exponential creep law is valid for ar- 
bitrarily large deformations, under a constant load the 
deformation Increases with time according to the law 

e- -1 log (1 _/</). (5.1) 

Here o is the stress referred to the original area of the cross 

section.  It can be seen from expression (5.1) that e - ^ for 
t -• t  = lAna") .  It is also clear that if the quantity a0 

varies so that it becomes arbitrarily small, a time t can be 
found for which the change in e will be arbitrarily large. 

For certain creep problems in a geometrically linear 
formulation, unlike in the problem of N. Hoff, the formal 
solution yields an infinite displacement for a finite time. 
This time is called the critical time.  It is obvious that 
the time defined in this manner does not have a real meaning, 
it vanishes when the same problem is studied in a rigorous 
geometrically nonlinear formulation.  However, the character 
of the relation between the displacement and the time is such 
that the critical time is an estimate which does not over- 
estimate excessively the real operational capacity of the 
element. 
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On fee other hand the creep is accompanied by an elastic 
and plastic deformation.  The continuous increase in the 
displacements with time as a result of creep can bring the 
system into a state in which the displacements change instan- 
taneously by a finite amount.  In geometrically nonlinear systems 
an elastic crack can occur, and in plastic elements an in- 
stantaneous bulging as a result of insufficient elastoplastic 
resistance. During the solution of creep problems, the in- 
stant at which the crack or bulging occurs is detected by the 
fact that the rate at which the displacement increases becomes 
infinite at some finite value of the displacements and some 
finite time which is now taken as the critical time.  It is 
known that for a rod from an elastoplastic material which was 
bent initially, the magnitude of the critical compression 
force depends on the initial bending. Conversely, if the 
force is given, an initial bending can be found for which this 
force will be critical.  The increase in the bending as a 
result of creep can be considered to be equivalent to the 
increase in the initial bending of an elastoplastic rod.  Thus, 
for any magnitude of the compression force, the critical state 
is attained at some instant.  However, creep leads to a re- 
distribution of the stresses; therefore, as S. A. Shesterikov 
(1962) has shown, the simple system that was presented is 
only suitable for a one-parameter system. A study of the 
bulging of rods in the presence of plastic deformations 
using a numerical method is available in the study of V. I 
Van'ko and S. A. Shesterikov (1967). 

5.2.  Stability of Linear Viscoelastic Systems 

The study of A. R. Rzhanits (1946) considered the 
problem of the stability of a compressed rod from a visco- 
elastic material whose behavior is described by the model of 
a standard viscoelastic body: 

,j ~la =-- E (e- \ie). (5^2) 

In contrast to metals, the creep in the body described by 
equation (5.2) is finite:  for t = 0 a = Ee, for t = *> 
a = (|iA) Ee(M < ^) .  The results of this study reduce to the 
following.  If the force is greater than the critical force 
of long duration but smaller than the instantaneous critical 
force, the rod is not stable in the sense that any perturba- 
tion leads to an unlimited increase in the bending with time. 
If the force is greater than the instantaneous critical force, 
the perturbation causes instantaneous loss of stability. 
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This analysis was presented here in order to emphasize 
the difference between the creep In metals and bodies whose 
behavior Is described by rheologlcal models with limited creep. 

5.3.  Small Deviations from Fundamental States 

In the study of geometrically linear problems of rods, 
plates and shells, It Is natural to consider the torqueless 
stressed state as the basic state and to linearize the creep 
equations around the basic state.  Considering the problem of 
a compressed rod from a material obeying the creep law with 
hardening, Yu. N. Rabotnov and S. A. Shesterikov (1956) 
determined that the variations In the stresses and strains 
are related by an equation of type (5.2), In which the con- 
stants are replaced by known functions of time.  The deflection 
is a function of the coordinate multiplied by the function of 
time T(t).  If the rod was originally a straight line and at 
some Instant t It was perturbed, for example, a transverse 
load was applied to It, a critical time t  can be found 

such that if the perturbation occurred at an Instant 
t < t  , T < 0, and if t > t  , t > 0.  It was proposed that 

the time t  be taken as the critical time in some agreed on 

sense.  In fact, the system is not stable relative to a load 
applied at any instant, the function T(t) first decreases, 
reaches a minimum and then Increases without a bound.  The 
critical time agreed on in the sense mentioned characterizes 
the relative rate at which the bending increases after the 
perturbation is applied.  L. M. Kurshin (1961, 1963) proposed 
that this relative rate be characterized by the sign of the 
second derivative.  Thus, according to Kurshin, the time 
when the sudden perturbation causes a motion with initial zero 
acceleration (T = 0) is taken as the critical time. 

In the case of a constant acting perturbation, for example, 
in thepresence of an initial eccentricity of the applied 
load, T > Ojthe acceleration changes sign, it is first negative 
and then becomes positive.  S. A. Shesterikov (1959) proposed 
to adopt as the critical time the time when T = 0 for a constant 
acting perturbation. 

Linearized creep equations for plates were obtained in- 
dependently at the same time by S. A. Shesterikov (1961) and 
L. M. Kurshin (1961).  A number of problems dealing with the 
stability of plates and shells on the basis of the linearized 
theory were studied by S. A. Shesterikov, L. M. Kurshin, A. 
P. Kuznetsov (1964), I. G. Teregulov (19XX) and other authors. 
The same criteria as those pointed out above that were applied 
to rods were used.  G. V. Ivanov (1961) drew attention to the 
fact that when the stability criterion is generalized to the 
case of nonelastic systems, the transition from the fundamental 
state to the additional state plays an important role, and he 
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gave a generalization of the classical criterion.  The 
critical value of the loading parameter adopted Is the smallest 
value for which a nontrivlal equilibrium state can exist with 
the condition that the transition from one state into the 
nontrivlal equilibrium state take place when certain con- 
straining conditions imposed on the additional deformations 
are satisfied. Time is used as the loading parameter in 
creep problems. 

5.4. Varlational Methods for Bulging Problems 

The study of stability problems with the aid of varlational 
methods required that these methods be extended to the geometrically 
nonlinear theory.  While the Lagrange principle can be naturally 
extended to the nonlinear case, the Castlgliano principle in 
its usual form can no longer be applied, since the equilibrium 
equations contain the displacements. Therefore, for the problems 
that were mentioned, more general varlational principles were 
developed in which the quantities characterizing the stressed 
stateas well as the quantities related to the deformations 
can be varied independently.  V. I. Rozenblyum (1954) obtained 
an approximate solution of the bulging problem for a compressed 
initially twisted rod from the stationarity condition for the 
functional 

^(*+§-)^-uimiä*- (5.3) 

Here the volume integral has the same meaning as in (4.1), P 
is the compression force, u Is the deflection, and z is the 
coordinate along the rod axis.  The stress o  and strain u 
are varied independently. 

The well-known Reissner varlational principle that was 
formulated for the theory of elasticity can be naturally ex- 
tended and applied to transient creep problems.  In particular, 
a varlational equation of type (4.8) can also be obtained for 
the case when a transverse force is present.  Thus, it can 
be used to study bulging problems. 

The varlational equation of D. L. Sanders, G. D. MacComb 
and F. R. Schlechte  (NACA Techn. Note., No. 4003, 1957), is 
convenient for the numerical calculations.  The corresponding 
functional has the form 
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OijCij-- Oijiih. iith.j — — (e\j --- 2p,;) 0//J dv — 
(5.4) 

- ( ftiUi-i'Ddl- \ ffüidl. 

Here 

6. . is the rate of the instantaneous plastic deformation 

which is expressed in terms of *. . or by Hooke's law, or by 

equations from the theory of plasticity of the flow type, 
p. .   is the creep rate which depends on o . and any structural 
ij #      ^ ij 

parameters, and o      and u. are varied.  If cr. . and u. are 
ij     i xj     i 

given in the form of linear combinations of appropriately 
selected functions, the condition that the functional (5.4) 
be stationary leads to a system of ordinary differential 
equations which are linear in the derivatives. 

G. V. Ivanov (1963) constructed for geometrically 
nonlinear problems a variational equation in which the 
stresses and displacements are varied independently and in which 
those states are compared for which both the equilibrium equations 
and tne equations obtained from them by differentiation are 
satisfied. 

The variational equation (4.9) proposed by I. G. 
Teregulov remains valid also in the case when the bends are 
not small and the components of a small deformation are ex- 
pressed in terms of the displacements by means of nonlinear 
formulas.  For steady state creep I. G. Teregulov (1962, 1966) 
also constructed another variational equation.  The corresponding 
functional has the form 

v 0 

+ ] a//v/(«f —u*)rfS— J Ttutdl,. 
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Here the stresses ai •, the deformation rates e.., the displace- 

ment rates u.  and also the functions ty  and H are varied in- 

dependently. 

5.5.  Stability of Shells 

For sufficiently thick shells the stability problem can 
be formulated in the same way as for rods.  If the problem of 
the increase in the flexure with time is solved in a geometrically 
linear formulation, it turns out that the flexure becomes 
infinite for the finite value of time which is tuken as the 
critical time.  Thus, Yu. M. VJlchkov (1985) studied the 
bulging of a compressed cylindrical shell of finite length 
supported along the edges and of a semi-infinite shell with 
a supported end. Yu. M. Volchkov and Yu. V. Nemirovskiy (1966) 
extended the method to shells reinforced by stringers and 
frames.  The characteristic feature of such problems is that 
as a result of the securing conditions there is no initial 
torqueless state in the shell so that it is not necessary to 
introduce initial flexure in the analysis. 

The situation is different for thin shells.  Creep leads 
to an increase in the flexures ani a redistribution of the stresses 
in the shell, so that at a particular instant of time the 
shell becomes unstable with respect to instantaneous perturba- 
tions which obey the elasticity law, and an elastic loss of 
stability of the crack type occurs.  The study of A. S. 
Vol'mir and P. G. Zykin (1962) gives an approximate solution 
of the problem of the stability of a compressed cylindrical 
panel.  It is assumed that the form of the flexed surface is 
preserved but that the flexure increases as a result of creep. 
The change in the flexure as a result of creep is assumed to 
be equivalent to the change in the initial flexure. On the other 
hand an initial flexure exists for each value of the compression 
force for which this force is critical. The time at which the 
magnitude of this equivalent initial flexure is reached is taken 
as the critical time. 

In fact, creep leads to a change in the shape of the flexure 
and a redistribution of the stresses.  Therefore, to determine 
the critical time it is necessary to solve the creep problem 
which is accompanied by the elastic deformation.  In one- 
dimensional problems, the application of variational equations 
of one type or another leads to relatively simple approximate 
solutions.  V. N. Shepelenko (1965) studied the stability of 
an arc with latched ends on the basis of variational equation 
(5.4), and I. G. Teregulov applied variational equations (4.9) 
and (5.5) to an infinitely long cylindrical panel and to a 
spherical segment. 
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Among two-dimensional problems the greatest attention 
was given to a cylindrical panel and a cylindrical shell. 
Here the studies of G. V. Ivanov (1966), L. M. Kurshin (1964), 
L. M. Kurshin and A. P. Kuznetsova (19XX), E. I. Grlgolyuk 
and Yu. V. Lipovtsev (1965, 1966) should be mentioned. 
Various creep theories were used and simplifying assumptions 
of one type or another were made during the calculations, 
which, as a rule, were carried out on an electronic digital 
computer.  Thus, in the studies of L. M. Kurshin and also 
of E. I. Grlgolyuk and Yu. V. Lipovtsev, creep equations were 
used that were linearized around the basic torqueless state. 

5.ij.   Fracture  during Creep 

V. I. Rozenblyum (1957) obtained a solution of the problem 
of determining the time until the fracture of a disc of constant 
thickness with a hole.  The steady state creep equations 
extended to the case of finite deformations were used as the 
basis.  The viscous fracture scheme was studied in this 
manner.  L. M. Kachanov (1960) studied on the basis of his 
theories certain problems about the fracture  time of rod 
systems and obtained  the general formulation of the problem 
of the motion of the fracture front and determined the 
fracture time of a  twisted shaft.  Yu. N. Rabotnov (1963) 
solved the problem of the fracture of a disc with 
a hole  using the brittle fracture scheme.  The effect of 
the accumulated damage on the creep rate and consequently 
on the distribution of the stresses was also studied.  Later 
Yu. N. Rabotnov (1968) studied the problem of the effect of 
the stress concentration on long-term strength.  It was assumed 
that the distribution of the stresses differs little from 
the distribution of the stresses in the rigid-plastic body, 
but  a variable magnitude of the degree of damage m  does 
occur in the plasticity condition which becomes similar to the 
equilibrium condition of an inhomogeneous loose medium. 

§6.  Linear Viscoelasticity 

6.1.  Rheologlcal Models and Differential Relations 

In early studies on viscoelasticisty, differential rela- 
tions of type (2.23) were used as the basis, from which, in 
particular, the well-known Maxwell and Foigt models were ob- 
tained.  A. N. Ger&simov (1938) generalized the Maxwell 
equations to the three-dimensional case and obtained equations 
of type (2.25) with an exponential kernel.  In another study, 
A. N. Gcrasimov (1939) studied the problem of small vibrations 
of viscoelastic membranes.  A. Yu. Ishlinskiy (1940) studied 
a model which was named the standard viscoelastic body model 
for which the relation between the stresses and strains is 
given by equation (5.2).  Longitudinal oscillations of the rod 
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were considered.  In other studies A. Yu. Ishllnskly added to 
model (5.2) dry frictional elements, and static models were 
studied which were constructed from a large number of vlsco- 
e.lastlc elements with a certain distribution of the parameters. 
In 1945 A. Yu. Ishllnskly proposed a generalization of equation 
(5.2) to the three-dimensional case. 

A. R. Rzhanltsyn (1946) applied the model of a standard 
vlscoelastic body to the solution of many problems,  the 
motion of a load on a vlscoelastic beam, a vlscoelastic 
besm on a vlscoelastic base, the stability of a vlscoelastic 
rod  and other problems. 

A. Yu. Ishllnskly (1946) studied the problem of the frac- 
ture of vlscoelastic materials.  An Important generalization 
of the differential viscoelasticlty laws is due to A. N. 
Geraslmov (1948)  who proposed Instead of the usual derivatives 
for the description of the vlscoelastic properties derivatives 
whose orders are rational numbers in the sense of Liouvllle. 
The Inversion of such relations leads to integral equations 
with an Abel kernel with a weak singularity.  This idea played an impor- 
tant role In the further development of the theory. 

6.2.  Creep and Relaxation Kernels 

The selection of kernels which reproduce sufficiently 
well the properties of real materials is important In the appli- 
cation of vlscoelastic theory.  L. Boltzmann assumed that 
the creep kernel has a strong singularity of the type 

(t - T)  , which leads to a contradiction. Apparently, G. 
Duffing was the first man to apply kernels with a weak singularity 
namely, (t - T)

a(- 1 < a < 0).  In the studies of Soviet authors 
a great deal of attention was given to the selection and study 
of special kernels with a weak singularity describing the exceptionally 
fast increase in the creep deformation in the beginning and 
its asymptotic tending to some limiting value. G. L. 
Slonlmskly (1939) and A. P. Bronskly (1941) proposed a kernel 
of the following form: 

x (t) = i*~l cxp (-<«) (0 < a < 1). (6 .1) 

Using the kernel (6.1), A. P. Bronskly described the aftereffect 
processes in rubber.  The resolvent kernel of a kernel of type (6.1) 
could not be found, but A. P. Bronskly has shown that a function 
of the same form can be taken as an approximation of the re- 
solvent kernel. A. R. Rzhanits (1946) formulated the boundedness 
condition for the kernel and proposed a new singular kernel 
which was simpler than (6.1) and had similar properties 
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x (/) - f-1 cxp (-ß/). (6>2) 

Yu.   N.   Rabotnov  (1948)   constructed a class of  functions 
which were  the    resolvent kernels of  the Abel kernel   (t  -  T)~a: 

^.')-"STül^y «^ 
H     1 

These functions were called fractional-exponential functions. 
If an 3-function is taken for the creep and relaxation kernel 
the essential singularities of the kernels (6.1) and (6.2) 
are preserved.  However, operators with kernels constructed 
from ^-functions have a special algebra, and their resolvent kernels 
are formed from functions of the same class «hose parameters 
can be computed according to simple rules. The properties of 
the 3-operators were studied in the work of M. I. Rozovskiy, 
I, 1. Krush, N. N. Dolinina, Ye. S. Sinayskiy who proved a 
number of theorems about products of these operators and finding 
the inverse operators, etc.  M. I. Rozovskiy (1959) derived 
the connection between the 3-functions and the Mittag-Loeffler 
functions.  The asymptotic behavior of 3-functions was studied 
by B. D. Anin (1961), G. I. Bryzgalin (1963) and Ye. S. 
Sinayskiy (1965).  S. Z. Wolfson (1961) established that the 
resolvent  kernel of the Rzhanitsyn kernel has the form 

exp (-ßf) 5,,. (vO. (6-4) 

V. G. Gromov (1967) has shown that operators with the 
kernels (6.4) have the same algebra as the 3-operators. At 
the same time he generalized the fundamental results in the 
algebra of exponential operators to any resolvent operators 
and studied analytic functions of the operators and a general 
method for their interpretation. 

6.3.  Determination of the Parameters of the Kernels 
from Experimental Data 

M. A. Koltunov (1966) proposed a method for determining 
the parameters of the Rzhanits kernel and its resolvent kernel by 
means of a corresponding shift of the creep curve represented on 
semilogarithmic paper. Ye. N. Zvonov, N. I. Malinin, L. Kb. 
Papernik and B. M. Zeitlin (1966-1968) developed a method for 
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the selection of the fractional-exponential kernel using 
an electronic digital computer.  The Laplace transform of 
the experimental creep curve Is obtained and the best approxi- 
mation for the Image of the 3-function Is sought.  The studies 
of G. L. Slonlmskly and L. Z. Rogovina (1964) as well as the 
studies of G. L. Slonlmskly and his collaborators (1966) are 
devoted to the problem of determining the parameters of the 
kernel (6.1) . 

6.4.  The Volterra Principle 

The principle formulated by Volterra based on the fact 
that the linear operations of differentiation and integration 
with respect to the coordinates and multiplication by the 
time Volterra operator are commutative plays a fundamental 
role in the solution of static viscoelastic problems.  There- 
fore any solution of the static problem in classical elasticity 
theory is transformed into a solution of the corresponding 
problem in linear viscoelasticity by replacing in the final 
result the elastic constants by the corresponding operators. 
If the elastic constants appear in the solution of the 
classical problem in the form of a multiplier which is a 
rational combination of the elastic constants, the deter- 
mination f  the rational function of the operators reduces 
to a successive solution of Volterra integral equations of 
the second kind.  For exponential and fractional-exponential 
operators, these calculations are carried out according to 
standard rules.  A more complex situation arises when in the 
solution of the problem in elasticity theory the elastic 
constants are not rational combinations and also if the types 
of boundary conditions change at various points of the sur- 
face. 

The methods based on the direct application of the 
Volterra principle using 3-operators were developed by M. I. 
Rozovskly (1962-1964) for various problems in viscoelasticity. 
With regard  to reinforced and non-reinforced polymers, the 
studies of G. N. Savin and G. A. Van Fo Foi (1965), G. A. 
Van Fo Foi (1965-1967), G. I. Bryzglin (1965), F. Ya. Bulaves 
and A. M. Skudra (1964, 1965) should be mentioned.  In a 
number of studies, the apparatus of linear viscoelastic theory 
was applied to the mechanics of rocks.  In this field, the 
studies of Zh. S. Yerzhanov (1962, 1963) , Sh. M. Aytaliyev 
(1964), V. P. Matveyeva, M. I. Rozovskly and V. T. Glushko 
(1964), M. I. Rozovskly and G. I. Bulakh (1964) should be mentioned- 
Various variants in the theory of viscoelasticity for the anisotropic 
materials were studied by M. A. Koltunov (1964), V. V. 
Bolotin (1966), A. A. Germelis and V. A. Latishenko (1967). 
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The Volterra principle was also applied to certain 
contact problems in viscoelasticity, namely to problems in 
which the contact region increases monotonically.  Contact 
problems of this type were studied by A. B. Yefimov (1966), 
Ya. Ya. Rushitskiy (1967), M. I. Rozovskiy and N. N. 
Dolinin (1968) .  For those problems in which the visco- 
elastic operators are not rational combinations, M. I. 
Rozovskiy (1956)  proposed a semisymbolic method which re- 
duces the viscoelastic problem to the solution of an integro- 
differential equation. The problem of a moving die was studied 
by R. Ya. Ivanov (1964) and also by L. A. Galin and A. A. Shmatkova 
(1968). 

6.5. Application of the Laplace Transform 

By applying the Laplace transform to the system of equations 
and boundary conditions for the viscoelastic problem, the 
equations of classical elasticity theory are obtained for 
the images and after the solution of this problem in the 
final result the inverse images are transformed to the 
originals.  The constraints that were mentioned above in 
connection with the application of the Volterra principle 
also hold in this case. The main difficulty consists of 
applying the Mellin transformation.  The method that was men- 
tioned was applied in the work of V. B. Zelenskiy (1963) , 
M. A. Koltunov (1964), Ya. G. Skomorovskiy (1964), Ye. S. 
Sinayskiy (1964, 1965), V. N. Kukudzhanov (1963), T. Ya. 
Barinova (1965) and A. P. Khoroshun (1964).  A. A. Il'yushin 
(1968) developed an approximate method for the solution of 
viscoelastic problems based on a special approximation of the 
solution of the problem in the theory of elasticity which 
depends on the Poisson ratio.  The solution of the 
viscoelastic problem depends only on two functions which can 
be determined independently from the experiment. The studies 
of D. L. Bykov (1968) and also of V. S. Yekel'chik and V. 
N. Rivkind (1968) are also along these lines.  The last authors 
studied the viscoelastic behavior of anisotropic plates and 
shells. 

6.6. Dynamic Problems in Viscoelasticity 

V. G. Gogoladze (1938) studied certain wave problems in 
the theory of viscoelasticity keeping in mind applications 
to seismology.  Plane expansion and shear waves as well as 
Rayleigh waves were studied.  The extension of the Volterra 
principle to free and forced oscillations was obtained in 
the studies of M. I. Rozovskiy (1963) and also in a number 
of studies made by M. I. Rozovskiy and I. I. Krush.  The 
fundamental fact on which the theory is based is the commutative 
property established by M. I. Rozovskiy 
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For free oscillation problems M. I. Rozovskiy constructed a 
class of functions which are related to the fractional- 
exponential functions in a similar way as the trigonometric func- 
tions are to the usual exponential functions. 

In the studies of internal frictional processes in metals 
when the amplitudes of the stresses and deformations are very 
small, the relations of linear viscoelasticity are valid. Un- 
til recently in the description of the frequency relations for 
the internal friction, rheological models were used predominantly 
which led to differential relations and also spectral representa- 
tion of the kernels.  In the studies of T. D. Shermergor and 
S. I. Meshkov (19XX), it was shown that kernels with a 
weak  singularity of the Abel type describe well the relations 
observed in experiments. 

6.7.  Nonlinear Viscoelasticity 

Relations of type (2.29) or (2.30) for the nonlinear 
viscoelastic behavior of the material in a uniaxial stressed 
state were applied on numerous occasions and improved on the 
basis of an analysis of the experimental data.  N. I. Malinin 
and A. V. Dolgov (1964) described the results of their experi- 
ments by the relation 

e- -  .^mwr (6>6) 

11 

M. A. Koltunov (1966-1968) proposed an equation which took 
into account directly the effects of the deformation rate and 
the loading: 

H {e. '■)    «i W, a)-   \ K (/ - T) .j- (a. a) dr. (6.7) 

Various variants of nonlinear theories were studied by S. Z, 
Wolf son (1963, 1964) and A. A. Cizik (1964). 
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The relations of  the type considered were  extended to 
the complex stressed state in various ways.    Yu. N. 
Rabotnov   (1948)   used  the equation of deformation plasticity 
theory where it was  assumed that the intensity  of the stresses 
and strains were related by equation  (2.29).     I.   I. 
Bugakov  (1365,   1966)   studied integral equations of the 
general form 

dj (t) - e]j (I) -h \Qu\l - f' OaP (T). T (T)1 fh. (6.8) 

Here e. . is the elastic instantaneous deformation, and T(T) 

is the temperature.  In the studies of G. A. Teters (1965) 
and A. K. Malmeister (1965), the theory of local deformations 
is developed taking into account the time factor, which leads 
to nonlinear integral equations. A variant of nonlinear heredity 
theory as applied to frozen soils was constructed by S. S. 
Vyalov (1964).  This theory was somewhat simplified in the 
study of Yu. K. Zaretskiy (1964). 

The extension of the general relations (2.28) to the 
complex stressed state leads to very complex relations and 
it is doubtful whether the successive kernels can actually 
be determined experimentally. A. A. Il'yushin and P. M. 
Ogibalov (1966) developed a relatively simple variant of 
the theory for the case of weak nonlinearity which is typical 
of polymer materials.  The basic requirement was that the 
relations obtained be linear in the tensors.  Retaining in 
the expansions the third powers, the relations in the theory 
have the following form: 

-^-^i=JlA(<,r)4-<f(/, T)]OUT)£/T, 

(p (/, i) = \ \ A';1 (., T, I, ii) S (c, ii) dii dz, 

^a,1i)==o;.G)o;j(Ti). 

(6.9) 

Here  the primes denote  the deviators of  the corresponding 
tensors.     The structure of  the inverse  equations oi   '6.9)   is 
analogous.     It  is assumed that   the material  is  Isotropie but 
it  is not assumed  that  the properties are invariant.    For 
stable materials,   it is possible to draw certain conclusions 
about the structure of  the kernels K and K3.     Lnder certain 
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additional assumptions, simpler relations with kernels 
depending only on a single variable were obtained from (6.9). 

The studies of B. Ye. Pebedrl (1965), B. Ye. Pobedrl 
and M. M. Soldatov (1966-1968), V. V. Moskvltln (1967) are 
devoted to the study of nonlinear rexatlons of general form 
and also to the study of special cases. 

6.8.  Some Applications of the Theory of Visco- 
elastlclty 

Many applications in the theory of viscoelasticity deal 
with rods, plates and shells where, in addition to the usual 
viscoelastic relations, much more simple models of the 
Voigt or Maxwell type were also studied.  Thus, in stability 
problems during creep the basic qualitative efi'ict is related 
to the geometric nonlinearlty as a result of which an elastic 
crack can occur.  In the discussion of individual examples, 
the use of linear viscoelastic relations instead of the non- 
linear creep law simplifies considerably the technique 
without changing essentially the qualitative resul+s. On 
the other hand, depending on the properties of the kernel, 
and the character of the problem, the solution which corresponds 
to some initial perturbation !?»ay tend to a finite limit or it 
may increase without limit. 

Problems dealing with the stability of viscoelastic 
rods were discussed by A. M. Datkayev and I. I. Krush (1966), 
A. M. Lokoshchenko and S. A. Shesterikov (1966), and I. Ye. 
Prokopovich (1967).  The stability of shells was considered 
in the studies of V. I. Danilov (1966), I. G. Teregulov (1965), 
P. M. Ogibalov (1967), M. A. Koltunov (1966, 1967), A. M. 
Datkayev and I. I. Krush (1966), V. A. Kominar and N. I. 
Malinin (1966), I. Ye. Prokopovich (1967).  The stability of 
an elastoplastic arc was studied by A. P. Kuznetsov (1965) 
and V. N. Shepelenko (1965). 

Plates consisting of layers and shells with elastoplastic 
layers were studied in the work of E. I. Grigolyuk (1961), 
E. I. Grigolyuk and ?. P. Chulkov (1964). 

G. N. Savin and G. A. Van Fo Foi (1966) and V. G. 
Savchenko (1966) studied the problem of stress concentrations 
in viscoelastic structural elements. 
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§1.  Introduction 

Because of the many practical applications, the theory of 
shells developed in the Soviet Union rapidly keeping pace with 
the growth of military technology and the buildup of 
industrial power. 

The application of the theory of shells expanded considerably 
with the passage of time and the center of gravity of the efforts 
shifted in the direction of the solution of concrete problems. 
While in the first decades construction technology served as the 
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Impetus for the investigations, later the leading position 
shifted to aviation technology, shipbuilding and machine 
building. 

Along with the continuous growth in the number of 
scientific investigations needed to ensure overall technological 
progress, the number of specialists engaged in the solution 
of problems in the theory of shells also increased.  While 
earlier problems in the theory of shells were discussed within 
the framework of All-Union Conferences on Strength and Plasticity 
on the sectional level or in small meetings devoted exclusively 
to the calculation of shells (Moscow, 1952, Tartu, 1957), the 
subsequent Ail-Union Conferences in the Theory of Shells and 
Plates in Kazan' (1960), L'vov (1962), Yerevan (1963), Moscow 
(1965), Baku (1966) and Dnepropetrovesk (1969) where already 
vtry representative meetings with a continuously Increasing 
number of participants (up to 700 people), reports and papers. 
The very complete publication of the papers from these 
conferences should be mentioned.  Studies in the theory of 
shells were also represented fairly well in the Ail-Union 
Conferences on Theoretical and Applied Mechanics held in 
Moscow (1960-1968).  The network of scientific centers engaged 
in the development of the theory of shells also expanded con- 
siderably in the USSR.  Along with Moscow, Leningrad and Kiev 
strong centers were formed and strengthened in Kazan*, 
Novosibirsk, Yerevan, Tbilisi, Khar'kov, Rostov-on-the-Don, 
and in other cities. 

The number of published studies also attests to the 
developing scale of Investigations in the theory of shells. 
The reference journal "Mekhanika" contained in 1955 in the 
section "Shells and Plates" about 60 studies of Soviet authors 
in the theory of plates and shells, and in 1967 the corresponding 
number was roughly 600 publications (many studies in the theory 
of plates and shells are referenced in other sections ox the 
reference journal "Mekhanika," for example, in the sections 
"Elastic Waves," "Vibrations of Elastic Bodies." 

However, it would be a mistake to assume that the main 
part of the results which makes up at the present time the 
contents of the theory of shells and plates was obtained in 
the last ten years.  The intense development of the theory 
of shells became possible as a result of the fundamental 
studies of scientists-predecessors. 

The results of the work of Soviet scientists in the field 
of the theory of plates and shells in the early development 
stages of the theory were often summarized, in particular, 
they were presented briefly in the survey articles of 

-229- 



-W-V.. „,.■■;„    • 

Yu. N. Rabotnov (1950), I. G. Vas:il'yev (1956), B. G. 
Korenev (1956) and 0. D. Oniashvili (1957).  In the present 
survey these results can only be touched on briefly. 

We first note the studies of B. G. Galerkin (1932, 
1935) as applied to the analysis of thick plates and the 
general solutions of the equations of elasticity theory 
expressed in terms of biharmonic functions, as well as the 
monographs of B. G. Galerkin (1934) and Yu. A. Shimanskiy 
(1934), dealing with the calculation of plates with various 
contours according to classical bending theory.  The 
asymptotic integration method was applied for the first time 
to the calculation of plates by I. Ya. Shtayerman (1924), 
who also pointed out the analogy between the static calcula- 
tions of a shell of rotation and a bent  (plane) rod on an 
elastic base.  The solution of a number of interesting 
problems in the torqueless theory of domes is given in the 
monograph of V. E. Novodvorskiy (1932) whose name is connected 
with one condition for the applicability of the torqueless 
theory:  the tangential boundary conditions must not allow the 
bending of the middle surface (V. E. Novodvorskiy, 1933) . 

In the early 30's, cylindrical shells were studied in- 
tensely (the most important results were published in the 
articles of A. A. Gvozdev, 1932; P. L. Pasternak, 1932, 
and in the monographs of V. Z. Vlasov, 1933, 1936).  In the 
studies of V. Z. Vlasov, the idea of combining the methods of 
the theory of elasticity and structural mechanics was realized 
gradually and very effectively.  S. M. Feinberg (1936) proposed 
a simplified theory for the calculation of circular cylindrical 
shells with an open profile which reduces to the integration 
of a fourth order differential equation with complex coefficients. 
The problem of a girderless plating became very topical in those 
years.  The exploratory study of L. S. Leybenzon was followed 
by the studies of S. A. Gershgorin (1933) and A. S. Maliyev 
(1935) in which the formulation of the problem was made more 
precise. 

The first studies in the nonlinear theory of plates of 
the Karman type also go back to this period  (P. A. Sokolov, 
1932, B. I. Slepov, 1935, V. M. Darevskiy, 1936, P. Ya. 
Polubarinov-Kochin, 1936) .  In connection with these studies 
it is impossible not to note the outstanding achievement of 
N. V. Zvolinskiy (1940) who obtained a two-sided bound for 
the reduction coefficient of the plate after loss of stability 
with the aid of the variational method. 

The early studies on the action of a shock on the plate 
are worthy of attention (A. I. Lur'e, 1934, A. P. Filippov, 
1938). 
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The methods for the solution of linear and nonlinear 
problems in the statics and dynamics of plates that were de- 
veloped towards the end of the 30's are presented in the 
outstanding monograph of P. F. Papkovich (1941) which played 
a very important role in the training of scientists and 
engineers in different engineering branches. 

The first major studies in the general theory of 
elastic shells matured in the early 40^.  The mastery and 
analysis of the theory of shells was facilitated by the applica- 
tion of tensor analysis by the leading scientists in the 
country,which was used to represent the fundamental relations 
in the theory.  The consistency equations for the deformations 
were first derived by A. L. Gol'denveyzer (1939), A. I. 
Lur'e (1940) and A. L. Gol'denveyzer (1940) introduced in the 
theory of shells stress functions in terms of which the forces 
and moments which satisfy identically the equilibrium equations 
are determined. A. N. Kil'chevskiy (1940) developed methods 
for the theory of shells and for the solution of problems in 
it on the basis of the reciprocity theorem.  The equations 
in terms of the displacements in geometrically nonlinear 
theory were published by Kb. M. Mushtari (1939) .  The variant 
of the theory discussed by him generalized the simplified 
nonlinear theory of Karman plates to plates with an arbitrary 
contour. 

Later, V. Z. Vlasov (1944) represented the simplified 
equations of the general linear theory in a form which was 
analogous to the classical form of the equations for the plates 
in the Karman theory.  Here all unknown quantities were ex- 
pressed in terms of a single stress function (for the plane 
problem) and the bending function for the middle surface.  In 
this study, Vlasov also introduced the now well-known concept 
of a flat shell.  The flat shell is calculated on the assumption 
that the principal curvatures of the shell are constant and 
that the middle surface can be given in terms of a Euclidian 
metric (we note that in fact this variant became,after the 
appropriate generalizations were made, also the most popular 
variant in the formulation and solution of geometrically 
nonlinear problems in the theory of shells) . 

A series of studies in the qualitative investigation of 
stressed states in shells was initiated by A. L. Gol'denveyzer 
(1945-1947) .  Subsequently, the methods presented in his 
articles were used in the analysis of problems in linear 
stability and oscillation theory and also in the nonlinear 
theory of shells. 
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The analogy between the static and geometric relations 
In special cases has been noted a long time ago.  In the 
general linear theory, this analogy was pointed out by 
A. L. Gol'denveyzer (1940).  This property of the fundamental 
relations in the linear theory of shells was used most fully 
by V. V. Novozhllov (1946) in the derivation of the equations 
for the general theory of shells by introducing complex un- 
knowns obtained pairwise from analogous magnitudes.  The first 
applications of this theory deal with the calculation of 
shells of rotation and cylindrical shells. 

V. V. Novozhilov (1946) and L. I. Balabukh (1946) proposed 
the simplest elasticity relations which do not contradict the 
sixth equilibrium equation and ensure that KirchhofTs 
uniqueness theorem (or variational principles) and the Betti 
reciprocity theorems are satisfied in the theory of shells. 

Along with the development of the general theory, impor- 
tant results were also obtained in the solution of special 
problems in linear theory. The theory of torqueless shells 
was enriched by establishing the dependence of the general 
solution on the sign of the Gaussian curvature of the middle 
surface (V. V. Sokolovskiy, 1943) using the analogy between 
problems in the bending of surfaces and torqueless theory 
to derive results about the uniqueness of the solution (Yu. 
N. Rabotnov, 1946) and by applying in a number of studies 
the theory of functions of a complex variable to calculate 
shells representing second order central surfaces. A large 
number of studies was devoted to the calculation of cylindrical 
shells, most to the types of shells encountered frequently in 
practice (V. V. Novozhllov, 1946, A. L. Gol'denveyzer, 1947, 
A. I. Lur'e, 1946).  V. Z. Vlasov (1944), who developed further 
the idea of combining the methods of structural mechanics and 
of elasticity theory developed the variational method for the 
calculation of multiply connected prismatic shells, in particular 
for the calculation of vibrations in these structures (V. Z. 
Vlasov, 1947). 

A mathematical presentation of the state of the linear 
theory of shells in thosse years is available in the survey 
article by A. L. Gol'denveyzer and A. I. Lur'e (1947). 
At that time many new rer.uits were obtained in the theory of 
shells and the theory differed already in many respects from 
the classical 0. Loew presentation. Therefore, it is not 
surprising that in a short time the monographs of A. I. 
Lur'e (1947), V. Z. Vlasov (1949), V. V. Novozhllov (1951), 
A. L. Gol'denveyzer (1953) appeared which are the foundation 
of the contemporary theory of shells.  They are also well known 
abroad and have been translated into foreign languages (English, 
German, Spanish) . These outstanding studies are devoted to 
linear theory.  The monograph of V. Z. Vlasov which Includes 
a presentation of the foundations of nonlinear theory of 
flat shells is an exception. 
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The general nonlinear theory was developed mainly in the 
studies of Kh. M. Mushtari and K. Z. Galimov, and the results 
that were obtained are presented in a systematized form in 
their companion monograph "Nonlinear theory of elastic shells" 
(1957) .  These results will be discussed in greater detail 
in subsequent chapters of this survey. 

§2. Fundamental Relations in the Theory of Elastic Shells 

It would seem natural to assume that during their lengthy 
development»  the  fundamental equations of the theory of 
elastic shells acquired a final form and that today they 
are no longer the subject of studies and discussions.  In 
fact, the last decade shows an ever increasing interest in 
the problem of constructing the equations themselves or, more 
accurately, in developing a procedure for improving gradually 
the precision of the stressed state.  It would be an error to 
assume that this interest is exclusively related to new 
problems; the calculation of homogeneous anisotropic shells 
made from new structural materials and multi-layer anisotropic 
shells, the determination of the acceleration field around the propaga- 
tion front of stress waves.  This problem continues to be, not without 
justification, also a problem in the linear equilibrium 
theory of isotropic shells.  Its formulation is stimulated 
in linear equilibrium theory primarily by the importance of 
developing the foundations for the calculation of shells of "me- 
dium" thickness, and second by the needs for the analysis of 
the stressed states at singular points (for example, around 
the apex of a conical shell in the zone where the concentrated 
load is applied) , third by the necessity of clarifying the 
problem of satisfying the boundary conditions (or in which 
sense they will be satisfied with the aid of a particular 
computational algorithm).  Finally, the fundamental methods 
for reducing problems in elasticity theory to problems in the 
theory of shells when the dimensions of the objects investigated 
are reduced to unity are most easily developed on the example 
of the simplest problems (in linear equilibrium theory). 

However, it does not follow from what has been said that 
present day theory of shells is based on a shaky foundation. 
There is no doubt that for a wide class of practical problems 
the classical variant of the Kirchhoff-Loew theory describes 
adequately the stressed state of shells.  Litte many other 
outstanding achievements of science, this variant of the 
theory was slightly modified with the passage of time (although 
the modifications were necessary) and it will continue to 
be valid when applied to the solution of many complex problems 
in the theory of shells. 
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The weak point  in  the Kirkhhof-Loew theory is  the 
seeming contradiction of  the initial hypotheses:     (1) when 
the deformation is determined over  the thickness of  the shell 
it is assumed that the transverse shear is zero,  but the 
transverse forces are retained in the equilibrium conditions, 
(2)  when the deformation over the thickness of the shell  is 
determined,   it is assumed that the lengths of  the segments 
on the normal to the middle surface do not change in the 
deformation process,   but  a       = 0  is used in the elasticity 

ZZ 
relations. At the present time, we have learned to eliminate 
these contradictions in the majority of cases by means of 
an appropriate interpretation.  The exceptions are stressed 
states with a large variability index and stressed states 
in multilayer shells with a soft filler in which the transverse 
shear must be taken into account.  However, since exceptions 
exist, a revision of the fundamental equations in the theory 
of shells with the aid of new scientific research techniques 
is Justified.  For example, the numerical solution of problems 
obtained in the tLeory of elasticity with the aid of an electronic 
computer,which are similar to problems in the theory of shells, can 
fully clarify new reduction methods or even formulate the 
reduction problem in explicit form. 

At the same time it is useful to keep in mind the pos- 
sibility of applying practically the new results expected 
from carrying out the revision of the theory.  As a rule a 
shell is only a structural element.  To calculate the shell, 
it is generally necessary to determine the conditions for the 
elastic fixing of its end cross section.  Often this 
problem can only be solved in first approximation by ex- 
pressing the conditions for the fixing in terms of a limited 
number of rigidity coefficients (or pliability coefficients) . 
The kinematic conditions for the scarfing of the shell which 
serves as the rim for the structural shell is formulated  in 
terms of the same number of generalized displacements (referred 
to the line of intersection of the middle and contour surfaces 
of the shell). 

The classical Kirchoff-Loew theory determines the kinematics 
on the edge of the shell in terms of four generalized displace- 
ments, and its contemporary modifications (the Reissner- 
Timoshenko theory) in terms of five displacements.  In the last 
case, it is assumed that the tangential displacements vary 
in the direction of the normal according to a linear law, and 
that the normal displacements are equal for all points on 
one normal. 

But even if five generalized displacements are used to 
represent the kinematics of the shell, it is necessary to 
introduce an additional assumption, namely that the absolute 
value of azz everywhere on the normal is much smaller than the 

sum of the absolute value of the tangential stresses aaa,   o^, 
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Nonlinear equations In a theory of the Timoshenko type 
for rigid multilayer shells were derived by E. I. Grlgolyuk 
(1958).  Here, we will give the fundamental relations of a 
geometrically nonlinear variant of the theory for an Isotropie 
single-layer shell (L. Ya. Aynola,1965). 

Let aag, b g be the tensors of the first and second 

quadratic forms of the middle surface, let V be the covarlant 

differentiation symbol in the metric a^g, G be the shear modulus, 

v the transverse expansion coefficient, p the density of the 
material, h the thickness of the shell, p , p the components 

of the vector of external forces, m the components of the 

vector of moments referred to a unit area on the middle surface, 
va + ^a'   w + ^ tlie components of the displacement vector, 
and z the distance of the point from the middle surface.  Then 
the fundamental relations reduce to the following system of 
equations of motion: 

+ Va(i»/aTV7qf')-^<ffl.l/
av-pAV,,-rPP-0, 

^(«av + <•«) raP + VP Kr") ~ Va-V* ^ bt TpA'* -r- 

+ Vp {hUyV**) -■■ blVa (H,^) - Phw-'r /> = 0, (2.2) 

The  elasticity relations are: 

/WH" = Gh (er* + es* 4- e'Vov + «««ß). (2 .4) 

/V.-o-l/7'0 = ± Gh* (x^ + xp, - ea
yVßH.. -;- e^'v^.,. -f- bfr»*^ ~- ^to^.,),        (2.5) 

^(a) A'a = Gh (a)a -|- (fa +1\ v^..), . (2.6) 

wher^ 

taP = Vafß — bafiW,   Xap = Vafi ß — ^aßt. 
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and  <|i   is determined from the non-differential relation 

(1 -f v) Gh (2ij5 + q v(f v) _ xa.^T* = 0. (2. 7) 

The boundary conditions for this system are given in the study 
of L. Ya. Aynola that was mentioned above. 

The variant that was presented is used In the solution of 
very general nonlinear dynamic problems. The necessity of 
taking into account the natural forces makes it necessary to 
solve such problems in the displacements.  In the solution of 
equilibrium problems it is desirable to have a large set of 
fundamental relations.  The consistency conditions for the 
deformations are of primary Interest (the ten quantities eg, 
KaB' % are tietermined in terms of the six quantities va, w, 

cpa, t) . However, in nonlinear theory they have not yet been 

obtained. 

The diversity of nonlinear dynamic problems is very great 
and includes problems in the propagation of elastic waves 
with a finite amplitude, and also problems dealing with stationary 
nonlinear oscillations around the equilibrium state.  The 
general equations of nonlinear dynamics are very complex. 
Therefore, in the solution of concrete problems a preliminary 
qualitative analysis of the solution must be made in order to 
simplify (or even make partially more precise the quasi- 
linear equations that were derived purely formally.  Often 
such an analysis leads to well-known nonlinear equations of 
the Karman typd which are supplemented by taking into account 
the natural forces of the normal oscillations. 

A variant of the relations derived by K. Z. Galimov (1951) 
based on the Kirkhhof-Loew hypothesis may turn out to be more 
convenient in the solution of nonlinear equilibrium problems. 
These relations reduce to the following: 

the equilibrium conditions 

Va (S-ß - b^W) ~ ayPK, aa (5«" - b^M''') - b»,X* ~- p* = 0.   (2 .8) 

v„e* +^Pis^rbtjrn + /> = 0, (2 9) 

Va-lA-'ß + aV-P,,t av.l/-'v _ Are _ mp ^ 0; (2.10) 
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the consistency conditions for  the deformations 

— (2//aop — tat>) xaf)- Kar^e%(i = 0, 
(2.11) 

cPv (7vx„ß -I- {b,y + x;.v) P.. ^) =0; (2 > 12) 

the elasticity relations 

S«ß - ^»^•■"■e.t^ + lJ'*f,t0-**i.' (2.13) 

3/afi « /r'P^-e.-u -r- CP^x.^; (2 .14) 

the relations between  the deformation tensors and the 
components of  the displacement vector  of the middle surface 

%H = "h - ffaP = ^P "I- «Pec -T PaPfi). + f'M»P- (2.15) 

xaß = ^s - ta» - - cV'Yn,. (av -r ef) (4 + eP
X) (&aP + Va^p - &^P-,0 - . „   , ^ v 

(2.16) 

^>., ap = VaPp>. + Vitfa;. — V^ap, (2.17) 

where H is the mean and K the Gaussian curvature of the middle 
surface. 

The requirement on the physical relations must be that 
they allow for the existence of the potential energy of the 
deformation, and the kinematic relation must give zero values 
of the components of the deformation tensors during the motion 
of the shell as a solid .      The "elegance" requirements can 
Include the existence of an analogy between the equilibrium 
relations and the consistency of the deformations (a variant 
of such nonlinear theory was published by the author of the 
survey in 1957). 
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The so-called sixth equilibrium equation can also be 
the subject of discussion. Classical theory requires that it 
satisfy Identically the physical relations. However, A. I. 
Lur'e (1950) has shown that this problem is eliminated when 
symmetric tensors of the forces and moments are introduced. 

In spite of the large number of proposed variants, no 
"unified" general nonlinear theory of elastic shells exists 
so far which satisfies all requirements.  With regard to the 
practical applications ofi nonlinear theory, the vast majority 
of studies use a simplified variant of nonlinear relations 
known as a system of equations of the Karman type. The 
monographs of A. S. Vol'mir (1956), Kh. M. Mushtari and K. Z. 
Galimov (1957), M. S. Kornishin (1964), the survey articles 
by A. S. Vol'mir (1958), Kh. M. Mushtari (1958, 1962), V. I. 
Feodos'eva (1966) attest to this. 

The use of the simplified system of equations of the 
Karman type in the cases considered in practice is sufficiently 
well founded and useful.  However, the integration of even 
this system is connected with great difficulties. At the 
p esent time, a natural means for the solution of problems in 
the nonlinear theory of shells is the use of computer technology 
which was initiated in our country by A. Yu. Birkgan 
and A. S. Vol'mir (1959). At the same time progress in this 
direction is not as great as one would expect. As an example, 
we point out the problem of the axlsymmetric forms of 
equilibrium of a spherical dome which attracted the attention 
of many distinguished investigators (V. I. Feodos'ev, 1963, 
M. S. Kornishin, 1966, I. I. Vorovich and V. F. Zipalova, 
1966).  If the general mathematical software for numerical 
techniques will be improved considerably in the nearest future, 
which can be expected, many difficulties in the solution of 
nonlinear problems in the theory of shells will be eliminated by 
developing standard programs (which is the case at the present 
time in linear algebra). However, possibly in some cases, it 
will be useful to develop specific computational algorithms for 
problems in the theory of shells.  One procedure was proposed 
by M. S. Kornishin and Kh. M. Mushtari (1959). A short survey 
of the application of numerical methods to the theory of shells 
was given by I. V. Svirskiy (1966). 

In conclusion it should be mentioned that the integration 
of the equations of the theory of shells and plates in 
elementary or special (tabulated) functions is only possible 
in exceptional cases. Far-ranging results along these lines 
were obtained by A. D. Kovalenko, who developed the application 
of the theory of generalized hypergeometric functions to deter- 
mining the stressed state in discs, circular plates of variable 
thickness and conical shells of rotation based on linear 
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equilibrium  theory.    These results are partially presented  in 
the monographs and the survey article  of A.  D.  Kovalenko 
(1955,   1959,   1963)  and in  the book by A.  D.  Kovalenko, 
Ya.  M.  Grigorenko and L.  A.   Il'in   (1963). 

§3.     Variational Methods 

The inclusion in this survey of a chapter on variational 
methods may seem to be unexpected;   however,   these methods have, 
with their complex relations, such a wide range and diversity 
of applications,that their significance should be emphasized. 
The general   theory of shells or  its  simplified variants for 
the solution of any concrete problems,   of course,  may be con- 
structed without using the apparatus  of variational methods. 
However,   attention must also be given  to the opposite point of 
view.     Once a  set of relations for  the calculations has been 
constructed,   it must be verified whether  the given model  of 
the elastic system has a potential which allows a  formulation 
of  the problem under consideration using the calculus of varia- 
tions.     In  the concluding stage   of  the  development of  the equa- 
tions of  linear  theory of  shells,   this  good rule was kept  in 
mind    (A.   L.   Gol'denveyzer,   1944). 

Historically the high regard for   variational methods used 
in  the derivation of  the boundary conditions for a system of 
differential  equations which model a  thin elastic body of com- 
plex configuration and structure  is justified. 

The monograph of L.  S.  Leybenzon   (1943)   can be regarded 
as a pioneering study in the application of variational methods 
to the linear   theory of plates and shells.     It presents  the 
Lagrange,   Castigliano and Treftz methods  for the case of a 
plate,   and it  also opened up  the possibility of generalizing 
these results without any particular  difficulties  to the 
linear  theory  of shells. 

The  genuine value of variational  methods  became apparent 
during  the further development of  the  theory of shells  in 
connection with  the formulation of new  problems in nonlinear 
theory,   the development of  the theory  of anisotropic shells 
and shells  in  layers,   and attempts  to perfect the  linear 
theory of shells. 

The starting point in  the formulation of new problems  in 
the majority of  cases  is the origin of   the possible displace- 
ments which leads to the Lagrange variational formula for  the 
given object.     While the problem  is conveniently formulated 
in  the displacements,   the functions  in  the variational  calcula- 
tions  in  the solution of  the problem under consideration do 
not end in  this.     In the nonlinear  theory of shells,   the most 
widely used variants are equations of   the Karman type>formulated 
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in mixed form   (in  terms of  the deflection and the stress  function) . 
It is obvious  that different variational formulas correspond 
to different formulations.    The derivation of such formulas 
is often of sufficient interest  (sometimes even for a heuristic 
justification of  the Bubnov-Galerkin method).    For example, 
a great deal of attention was given to the generalization of 
the Castigliano variational principles  to the nonlinear 
equilibrium  theory of plates and shells   (N.  A.  Alumyae,   1950, 
K.   Z.  Galimov,   1951,   1958). 

The  first variational  formulations of  the nonlinear 
theory of  shells were constructed  intuitively.    Among these 
we will mention variational equations of  the mixed type  in the 
generalized Karman theory  (N.  A.  Alumyae,   1950,  M. A.  Koltunov, 
1952)   and also  the equations in general nonlinear theory 
(K.   Z.   Galimov,   1956). 

Somewhat  later,  L.  Ya.  Aynola   (1957)   showed on the example 
of equations of  the Karman type  that  a closed system of varia- 
tional  formulas can be derived with  the aid of   Lagrange 
multipliers  from the variations formulas for the possible 
displacements   (going back   to the original  system) .     In the case 
of  the Karman equations,   the number of  different formulas 
turned out to be 181.     In the case of nonlinear theory,   this 
number may be greater. 

K.   Z.   Galimov,  who developed  in his  studies  the variational 
formulas  for  the general  theory   (exact  theory within the frame- 
work of  the Kirkhhoff hypotheses) ,   paid no attention  to inter 
mediate results,   the variational  formulas,   and attempted to 
obtain a closed chain of these  formulas.     The basic results 
of  this study are  presented in the monograph by Kh.  M.   Mushtari and 
K.   Z.   Galimova   (1957). 

A complete set of variational  formulas which are well 
known  in  the  theory of Isotropie shells was generalized by 
N.   K.  Galimov   (1965)   to the nonlinear  theory of three-layer 
shells. 

As was  already mentioned,   variational methods are a re- 
liable means  for  the derivation of boundary conditions.     One 
of  the more complex problems in nonlinear theory is the formu- 
lation of  the geometric boundary conditions  in terms of  the 
forces and moments,  which was solved by K.   Z.  Galimov with 
the aid of variational equations   (1958,   1960). 

The starting point in the definition of nonstationary 
deformation processes with the aid of variational methods 
is  the Hamiltonian principle for elastic systems.     However, 
this principle  is applied to the  derivation of equations of 
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motion, not to the direct construction of an approximate solu- 
tion using the Ritz method, since the generalized coordinates 
of the system are unknown at the endpoint of the time inter- 
val during which the process is studied.  In order to use the 
Ritz method, additional terms must be added to the energy 
functional which describes the state of the system at the 
final instant of time, but the resulting functional has 
no longer a potential. 

Relatively recently, L. Ya. Aynola (1966) constructed a 
variational equation for the solution of nonstationary linear 
problems in the form of a convolution integral (over time) 
where the functional arguments must satisfy the initial condi^ 
tions with respect to the coordinates, but not necessarily with 
respect to the velocities. At the final instant of time, the 
functional arguments are not constrained at all.  In nonlinear 
problems, analogous variational equations in the form of a bi- 
linear convolution type integral can be obtained by doubling 
the number of functional arguments (the introduction of additional 
unknowns) . 

In the study of short-time nonstationary processes (for 
example, in the case when elastic waves propagating from the 
source did not yet envelop  the entire shell), the applica- 
tion of variational equations in the form proposed by L. I. 
Slepyan (1965) may turn out to be useful.  In these variational 
formulas, the change in the boundary of the deformed region 
over time is taken into account, i.e., the functional arguments 
are only given in the region of essential deformations.  It 
is natural to expect that the regions of essential deformation 
that were isolated will considerably improve in practice the 
convergenco of the solution of a wide class of nonstationary 
problems, including problems described by equat.c^s of the 
parabolic type. 

The fundamental basis for the reduction of hvo .'v'ensional 
problems in the theory of plates and shells to pr^Diens in 
systems with a finite number of degrees of freedom are the 
Ritz and Bubnov-Galerkin methods for the so.lution of  varia- 
tional equations.  The vast majority of nonlinea; rro )iems in 
the theory of plates and shells was solved in chis >'?y.  rn 
the process, the following questions always aride: \    what 
sense does the approximate solution provided it. exists, 
satisfy the initial boundary conditions for the problym? What 
is the error in the approximate solution? A series of studies 
by I. I. Vorovich (1955-1958) in the nonlinear static thermo- 
dynamics of flat shells deals with these problems. Vorovich 
gave the answers to the problems that were formulated ir Lärms 
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of functional analysis.  Unfortunately, it is not possible to 
present these results here even conceptually.! We will only men- 
tion that the trend that was mentioned was developed further in 
the fundamental studies of V. N. Morozov (1958, 1962), L. S. 
Srubshchik and V. I. Yudovich (1962, 1966). 

§4. Qualitative Analysis of the Stressed State 

It is hard to imagine a trend which would stimulate more 
the development of the theory and the application of compu- 
tational algorithms to shells than the development of general 
methods for the qualitative analysis of the deformed and 
stressed states.  The results of the qualitative analysis 
show that it is possible to decompose the general stressed 
states into elementary states, to simplify the relations, to deter- 
mine these elementary states^ to determine the error estimates 
for the errors which occur during the transition to the simpli- 
fied relations,and finally outline iterative processes for 
finding the general stressed state with the required uniform 
accuracy in the entire region. 

The development of all theh-e problems has a long history. 
Thus, for example, I. Ya. Shtayerman (1924) pointed out the use- 
fulness of the separate determination of the basic (torqueless) 
stressed state and the boundary effects in shells of rotation 
under an axisymmetric load more than forty years ago.  In 
the early 30's, methods for the calculation of cylindrical 
shells were developed intensely, mainly due to the successful 
studies of V. Z. Vlasov (1933, 1936) which led to a computa- 
tional variant (called today in the terminology of V. V. 
Novozhilov, 1951, "semitorqueless" theory), which describes 
the general effects around the asymptotic edge.  Later, the 
generalizations for a simplified calculation of the boundary 
effect in the statics of shells with an arbitrary contour with 
zero Gaussian curvature and negative Gaussian curvature around 
the asymptotic edge were presented in the studies of A. L. 
Gol'denveyzer (1947, 1953). The results of these studies have 
shown that for nonlinear shells, the relations that were obtained 
are special cases of the so-called "engineering" moment theory 

T~,     In the studies of I. I. Vorovich, the basic analysis is 
carried out in so-called "energy" spaces, in which first 
the strong compactness of the approximations obtained 
using the Bubnov-Galerkin method for static problems is 
established.  Next, the author derives the conditions for 
the original problem (external load, middle surface of the 
shell, supporting contour) for which the approximations 
converge for any Holder norms.  In the case of dynamic 
problems, the weak convergence of the approximations is 
established.  To present the individual results of I. I. 
Vorovich in a more concrete form, it would he necessary 
to reproduce a large part of his studies. 
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of shells (in the terminology of V. Z. Vlasov, 1944) ,developed 
for the calculation of stressed states with a large variability 
index.  In tensor notation, the resolving equation in the 
theory in mixed form is represented as follows: 

<n2 {VaVa)
2 V + CVcß^pVvVpV = 0' (4.1) 

2 
where V = 2EhT! w + icp, cp is a function of the stresses, w is 

2     /    2 the normal displacement of the middle surface, and T] = h V3(l-v , 
In the case of generalized boundary effects, the variability 
indices of the stressed states in the directions along and 
across the edge are different. Therefore, the differential 
invariants in this equation are written in a simplified form 
in which inessential terms are ignored. 

When the asymptotic edges are long, the generalized 
boundary effects degenerate:  the variability index of the 
stressed state around the edge is no longer sufficiently 
large to apply the resolving equation (4.1) . 

It should be noted that the engineering theory of shells 
by itself does not postulate the problem of decomposing the 
stressed state into elementary states.  It can be said that 
for it this is a secondary problem.  Such a variant in the theory 
of shells has already been used for a long time;not only in 
linear static problems,but also in nonlinear static problems 
in equilibrium stability and in dynamics (Kh. M. Mushtari, 
1939, V. Z. Vlasov, 1947).  The problems of decomposing the 
stressed state and determining separately the elementary 
stressed states in the problems that were just mentioned have 
not been studied thoroughly (Kh. M. Mushtari, 1949, N. A. 
Alumyae, 1953, 1954, L. Ya. Aynola, 1965, A. L. Gol'denveyzer, 
1966) . We note that in these problems the fundamental stressed 
state of shells of zero curvature very often refers to a type 
of generalized boundary effect. 

It is important to emphasize that the most difficult point 
in the qualitative analysis of the stressed state is not 
determining the possible existence of a particular elementary 
state but determining the boundary conditions for the concrete 
elementary state.  For example, the fundamental stressed 
state of a plane plate under a large more or less uniformly 
distributed transverse load will be a membrane state. This 
state is described by the system of equations 

(V^Va)2 ff ^ 0,  ^•'c»i1VaVp(f-VyVpJi'= p.      (4.2) 
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In order to integrate this system by the method of 
separating the stressed states, it is necessary to determine 
the boundary conditions for the elementary stressed states. 
This requires an analysis of the nonlinear boundary effects 
(it is known that when the deflections in the plates are large 
these occur) .  It goes without saying that it is not always 
possible to impose boundary conditions separately on the 
individual states, i.e., in the final analysis to determine 
them separately.  Incidentally, problems dealing with the 
existence of the membrane solution of plates and shells of ro- 
tation have been thoroughly studied recently using functional 
analysis in the studies of N. F. Morozov (1962), L. S. Srubshchik 
(1964), L. S. Srubshchik and V. I. Yudovich (1964, 1966). 

Similar difficulties also occur in linear problems. An 
example is the problem of determining the boundary conditions 
which must be satisfied in torqueless theory.  The studies of 
A. L. God'denveyzer (1948, 1960), K. F. Chernykh (1964) 
are devoted to this problem. 

For linear problems, the most sophisticated apparatus 
for investigating elementary stressed states was proposed by 
A. L. Gol'denveyzer (1953), who developed further this apparatus 
(1959) which represents a generalization of the asymptotic 
integration method-'- in ordinary differential equations to 
partial differential equations with a small parameter (the 
relative thickness of the shell) 

V{x\x*)^ekr(i'0 + -~i'1+...), (4.3) 

where r, v0) vi. • • • are functions of the coordinates x and 

x only and k is a sufficiently "large" constant whose order is 
determined by the character of the oscillations in the boundary 
conditions. 

This method is sometimes called briefly the V.K.B, (Ventzel- 
Kramers-Brillouin method). For brevity the generalized 
method of A. L. Gol'denveyzer will henceforth be also 
called the V.K.B. method and it will not be mentioned 
every time that the equations discussed are partial 
differential equations. 
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The following  three  procedures are the simplest procedures 
for determining recurrently r,   v0,  v,,   .   .   .   : 

(1)    The constant k  Is a  relatively small quantity 

c^.'cPi16..|,rarp =0     (rv = Vvr). 

etc.; 

(2)    The constant k determines  the variability Index of 
the same order as In the  simple boundary effect 

etc.; 

(3)    The constant k  Is a relatively  large quantity: 

it)« {Ar^r^aVpVo -f 4 (Va^ •'•B -.L ^Va/-'1) Vpfo -f 

-f [2r«VaVprP -l- (\7a ^)S] yo} .;. ^v,0l'6..f)rarpro =-- 0; 

Here,   due to  the multiplicity of the characteristic lines of 
the operator   (vaV )<%   the function v0 must  be determined from 
a second-order linear equation with variable coefficients. 
Clearly,   to Integrate  the last  equation,   again  the VKB 
method can be applied.     Hence,   v0 must be represented  in the 
form 

(4.4) 
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12 12 where   p  =  p(x   ,x ),   u0 = u0(x   ,x ),   .   .   .     and the VKB method 

leads  to the following equation used to determine  the function 

rar» {iifkW* -r c'^c^'b,,,) = 0 (pa - Vap)- (4.5) 

Thus, the solution in the case under consideration is 
sought in the form 

V = cxp (AT + Vkp) -("o !- ^-l ««i " • • •)• (4,6) 

This Is a successful case in the sense that it was possible 
to find a procedure for finding the solution. This was 
possible since the multiplicity of the characteristics of the 
operator (vaV )2 xs  the same everywhere. A. L. Gol'denveyzer 
(1960, 1962) developed general techniques  (for more general 
equations for constructing solutions by using small rational 
powers of k in the representation of the variability function 
and the intensity function. 

Much more difficult problems in the construction of the 
solution may be encountered when the VKB method is applied. 
An example is the case when the recurrence procedure (1) 
is satisfied and the middle surface of the shelf contains 
a line where the sign of the Gaussian curvature changes. 
Incidentally, the determination of the function v0 from a first 
order partial differential equation reduces to the integration 
of a system of ordinary equations. Therefore, the finding 
of singular points and determining the character of the solu- 
tion in the neighborhood of these points should not be connected 
in each concrete case with theoretical difficulties.  Problems of 
constructing a solution in the spirit of the VKB method is, 
in the presence of such singular points, the subject of research 
in modern mathematical analysis»even in problems which can 
be reduced to ordinary differential equations. 

Having devoted in this survey a great deal of attention 
to the aspects of constructing a solution/ to balance the 
discussion, it should be noted that the simple equation of 
the engineering theory of shells itself was obtained as a re- 
sult of simplifying a system of more exact (?) equations on 
the basis of a qualitative analysis.  Therefore, the determina- 
tion of a particular stressed state is broken up into three 
stages:  (1) finding the structure of tbo resolving equations 
for a given variability index for their stressed state and 
determining the range of applicability of the simplified 
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relations (her» ehe VKB procedure is applied in an implicit 
form), (2) claiifying the possibilities of applying the 
VKB method in standard form to the integration of equations 
in a predetermined region when the solution has turning 
points in this region it is necessary, as a rule, (3) to 
generalize the VKB method at least to construct formally a 
solution in the region with a turning point. 

At the present time almost all basic results were obtained 
by means of the first stage.  The studies of A. L. Gol'denveyzer 
(1959, 1960) deal with the second stage.  Problems in the 
third stage are still in the formulation stage when we speak 
about systems that are not reducible to ordinary differential 
equations. 

It is unfortunate that only one study in the theory 
of shells can be pointed out in which the VKB method was applied 
to the actual (numerical) construction of a solution of a 
two-dimensional boundary value problem (A. Petrov-Denev, 1966). 
Hence, we can expect that the powerful qualitative analysis 
method is at least a satisfactory computational algorithm. 

On the whole, the problem of the qualitative analysis 
of the solution of equations in the theory of shells does not differ 
from the corresponding problem in the theory of partial differential 
equations.  For the time being real mathematicians, specialists in the 
theory of differential equations have not bee.i attracted by the 
problems in the theory of shells.  The particioation of M. I. 
Vishik and L. A. Lyusternik (1957, I960) was much too short 
to lead to a deep analysis of the mathematJU *1 tiieory of shells. 
At the same time it is felt that the theory of shells did not 
use everything that can be proposed for the "incorporation" 
of the theory of differential equations.  Incidentally, it must 
be mentioned that also among specialists in the theory of shells 
recently there was a decline in interest in problems in the 
general theory, in particular, in problems dealing with the 
qualitative analysis of the stressed state of arbitrary shells. 
The limited capacilities of computer technology are not respon- 
sible for this, which eliminate the need for a qualitative 
analysis, but rather the fact that many objects in the new 
technology, even though they operate under complex loading 
conditions, have a simple configuration (cylindrical panels, 
shells of rotation) and the problems for these are not so 
acute.  Shells of a complex configuration are primarily en- 
countered in modern architecture.  The unique problems that 
arise there are solved there in one way or another without 
a substantial contribution to the theory. 
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§5. Reduction to Integrodifferential Equations 

The natural striving to extend the arsenal of investigations 
and computational methods led to the formulation of boundary 
value problems in the theory of shells in the form of integral 
and integrodifferential equations. The studies along these 
lines deserve attention since a study of the properties of 
solutions of integral equations is a very powerful method 
of functional analysis which is considerably simpler than the 
study of differential equations.  In addition to this, the 
numerical integration of functions is a more accurate operation 
than differentiation.  Therefore, the required accuracy of the 
result is obtained with a smaller number of computations. 
However, we must say immediately that the kernels of 
integral equations in the theory of shells are not simple and 
are a hindrance to obtaining the final results without consider- 
able effort.  In addition to this, the results must be 
interpreted from the point of view of the theory of generalized 
solutions. 

The reduction of differential equations in the theory of 
shells to integrodifferential. equations is based on the work 
reciprocity theorem.  To obtain the system of integro- 
differential equations, the action« of unit (concentrated general- 
ized) forces on the shell are considered as the auxiliary 
states. 

N. A. Kil'chevskiy (1940) was the first man to outline 
this approach to the derivation of the integrodifferential 
equations.  In this and in later studies, Kil'chevskiy (1946, 
1959) and also in many studies of his followers, the auxiliary 
states were defined in a plane plate. Therefore, a one-to-one 
correspondence was established between the metrics on the plate 
and on the shell that was studied.  According to this con- 
cept, those terms in the equation which characterize the effect 
of the curvature of the shell must be considered as loads. 
Incidentally, it is not necessary to take the shell for the system 
on the basis of which the auxiliary states are constructed. 

With the passage of time, this approach was developed 
considerably and the nomenclature of objects was also expanded 
as well as the sphere of forces acting on the shell.  Here, 
we will only mention some studies devoted to problems in the 
equilibrium of cylindrical shells (N. I. Remizov, 1959), 
shells of rotation (G. I. Tkachuk, 1961) and flat shells (B. 
N. Fradlin and S. M. Shakhnovskiy, 1958) devoted to a study 
of the dynamics of shells using operational calculus (N. A. 
Kil'chevskiy, 1955) and representing the integrodifferential 
equations of shells in forces and moments (N. I. Remizova, 
1962). 
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Without using the reciprocity theorem for the work of 
an elastic system, it is possible to derive with the aid of 
purely formal methods,the equilibrium integrodifferential 
equations even for finite displacements of a flat shell and 
a shell of rotation (A. A. Berezovskiy, 1959, 1960).  This 
approach was applied earlier in the more simple cases on a 
number of occasions (V. N. Shanshmelashvili, 1955, I. A. 
Birger, 1956). 

Because of the difficulties that were mentioned above/ 
which arise in the constructior of the solution of auxiliary 
problems, the kernels of the integral equations, the method 
of reducing the differential equations to integrodifferential 
equations and integral equations,on the whole have not been 
very successful in the theory of shells. 

On the other hand, this method was used effectively 
to solve completely problems in the stressed state around 
holes which are far from simple (rectangular and elliptical 
openings) in cylindrical shells (D. V. Vaynberg and A. L. 
Sinyavskiy, 1961).  This gives reason to the proponents of 
this school to express the hope that the method is advantageous 
in the solution of very complex problems whose class will be 
gradually outlined (N. A. Kil'chevskiy, 1964). 

§6.  Complex Representation of Equations in the General 
Theory of Shells 

The analogy between the static and geometric relations 
in the theory of shells led V. V. Novozhilov (1946) to repre- 
sent the equations in complex form, in which the unknowns are 
the complex displacements.  This method can only be applied 
to linear equilibrium problems but these have obvious advan- 
tages in their solution. Already in the first development 
stage of the corresponding theory, the Inessential terms in 
the equations were determined.  The introduction of complex 
functions made it possible to reduce the order of the differen- 
tial equations by one-half which made the system more tractable. 
This is very important in the solution of problems with variable 
coefficients.  For example, when an axisymmetric or 
antisymmetric load for a shell of rotation is considered,the 
problem reduces to a second order equation.where the complica- 
tions caused by the presence of turning points can be easily 
analyzed.  A typical example of such a case is a toroidal 
shell (Ye. F. Zenova, V. V. Novozhilov, 1951, V. S. Chernin, 
1955).  This remark applies, however, to any shell with 
nonpositive curvature.  In other cases, the method simply 
leads to a simplification of the qualitative analysis and the 
arguments that are necessary for the solution (R. M. Malkin, 
1954).  It is of interest to note that problems exist^for 
which the boundary conditions can be formulated in terms of 
complex forces or displacements; in this case it is not 
necessary to separate the real and imaginary parts before 
the solution is obtained (in analytic form). Problems of 
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this type were discussed In the monograph of K. F. 
Chernykh (1962, 1964) In which all fundamental results 
connected with the representation of the relations in the 
theory of shells in complex form are presented. Among 
these, we will note the following. 

Variational equations have been constructed for which the 
equations in the complex forces, the equations in the complex dis- 
placements and the complex conjugate conditions are Euler 
equations (K. F. Chernykh, 1958) .  Methods for the determina- 
tion of the displacements in the case of a multivalued function 
of the stresses have been developed and the Meisner equations 
for an antisymmetric load were introduced (K. F. Chernykh, 1959). 
An effective technique for the calculation of shells under 
concentrated forces (V. V. Novozhilov and K. F. Chernykh, 
1963) was also developed.  More precise equations for flat 
shells were obtained by V. Z. Vlasov, and the complex thermo- 
elastic equations were also derived. 

In conclusion it should be noted that in linear equilibrium 
theory many known variants of calculating elementary stressed 
states are represented in complex form without establishing the 
relations with the concepts introduced into the theory of shells 
by V. V. Novozhilov. This connection was studied by A. L. 
Gol'denveyzer (1957) from the general theoretical standpoint. 

A short survey of the development of their complex repre- 
sentation is given by V. V. Novozhilov (1964). 

§ 7.  Stressed State Around a Hole 

The development of the problem of the stressed state around 
holes   was started by A. I. Lur'e (1946) on the example of 
a circular  holes in a cylindrical circular shell under the 
action of uniform pressure.  In the study that was mentioned 
which served as the conceptual source for a large number of 
subsequent studies, Lur'e starts out with a system which 
defines the quickly changing stressed state around a hole. 

If the center of the hole is identical with the origin 
of a geodesic system of coordinates, the stressed state around 
the hole is described by the solution of an equation in complex 
form 

[^ + jrP+-^w)  V-^-|(Y-6c(,S20)^+ ^ ^ 

.;.(V4-6cos2n)l^+^in2n^rf-if-|r(7.;.6cos2o)JLjF=:o 
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for an arbitrary shell with curvature parameters Y, 3 (the line 

6 = 0 coincides with the line of curvature), where x2 — 2 Y'3 (1 — v2) rliliH, 

and h is the thickness of the shell, rQ  is the radius of the 

circular  hole  (p = 1), R is the characteristic radius of 
curvature of the middle surface.  Equation (7.1) is an approxi- 
mation of the more general equation 

in a geodesic coordinate system around a small hole. 

A solution in trigonometric series in the coordinate, leads 
to a complex system of compatible equations.  In the case of 
a cylindrical shell (Y = 1/2, 6 = - 1/2) A. I. Lur'e was able, 
by transforming the function V to simplify the problem con- 
siderably and to reduce it to the solution of a Bessel equation. 
Numerical results were obtained in the case of a small hole 

2 
(X << I)   by expanding the solution in a series in powers of x. 
Thus, in first approximation, the stressed state of a plate 
is studied, and the successive approximations are obtained as 
the solutions of the nonhomogeneous equations for the plane 
problem and the bending of the plate.  The above makes it 
possible to apply to the solution of the problem the powerful 
apparatus of analytic functions which was developed by N. I. 
Muskhelishvili (Yu. A. Shevlyakov, 1953). The results of the 
studies on the application of the theory of analytic functions 
are described in a general survey on the theory of elasticity 
which is included in this collection (pp. 57-104).  However, 
the application of the apparatus of the theory of analytic 
functions is not required in this class of problems.  Lur'e 
and the majority of his followers carried out the studies with- 
in the frame of reference of mathematical analysis of a real variable. 

After the publication of the fundamental article by 
A. I. Lur'e,gradually, studies dealing with the stressed state 
around  holes  appeared. At the present time the number of 
publications on this problem is rapidly increasing.  Thus, 
G. N. Savin in his survey report (1962) at the L'vov Conference 
mentioned forty domestic studies on stress concen- 
trations in shells and the number of such studies increased 
in the subsequent five years. 

The method of a small parameter (which, in the case under 
consideration, is the normalized radius of the opening) can be 
applied to the solution of a large class of problems dealing 
with the determination of the stressed state around holes. 
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It can even be said that studies in which the approach for 
obtaining the solution proposed by Lur'e is used occur most fre- 
quently in this field of study. This is not surprising since 
there Is enough room for generalizing the problem without 
basically changing the method. Thus, instead of a uniform 
internal pressure other types of loads on a cylindrical shell 
can be considered, for example, torsion (Yu. A. Shevlyakov and F. S. 
Zigel', 1954).  Several studies considered spherical and flat shells 
orthotropic shells, shells with a hole   secured in one 
way or another (with a ring with various rigid properties or 
with a gasket which is hard or elastic) . A survey of the 
studies that were made along these lines until 1961 is given 
by G. N. Savin (1961, 1962) .  The fundamental studies in 
the field under consideration were carried out in the beginning 
by Yu. A. Shevlyakov (1953, 1955, 1956) and I. M. Pirogov 
(1956, 1962, 1963), who published several tens of studies on 
a relatively narrow topic.  Later G. N. Savin and his school 
also joined these studies and extended the class of investiga- 
tions to holes whose contours are a smooth curve without corner 
points.  This generalization was achieved by means of the 
conformal mapping z = w (Q (z = p exp 16, C = P, exp iy) of 

the unit circle p = 1 into the contour T  with the aid of the 

function ^(Q = c(C + e/C ).  For example, an elliptical hole 
with semiaxes a and b is characterized by the coefficients 
c = 1/2 (a + b) , e = (a - b)/(a + b) , k = 1. The stress 
concentration in a spherical shell around an elliptical hole 
was studied by G. N. Savin and G. N. Van Fo Fu (1960) and 
for a square and triangular hole.by A. N. Guz  (1964, 1965). 
It should be mentioned that Guz'  published in those years 
a large number of articles on the results of the studies of 
the stressed state around small holes with different contours 
in shells with different configurations.  The results were obtained 
by expanding the solution in series in powers of a small parameter. 
The method of a small parameter was also used to study 
physically nonlinear problems on the concentration of the 
stresses around holes (I. A. Tsurpal, 1963).  In addition to 
what has been said above, it should be mentioned that the 
results obtained from the application of the method of a 
small parameter are better; the smaller the hole, while the 
classical theory of shells cannot be used at all to study 
the concentration of the stresses around very small holes. 

Recently interest was shown in the problem of the rein- 
forcement of a hole during which the same stressed state that 
exists under the given load without a hole is preserved . 
(G. N. Savin and N. P. Fleyshman, 1964, V. I. Tul'chiy, 1965). 
Incidentally, this problem cannot always be solved. 

Relatively few results are available on the concentration 
of the stresses around large holes (p > 1). This can be 
explained by the fact that for p » 1  the calculation of the 
shell reduces to a typical homogeneous problem in the theory 
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of shells in a multiply-connected region, in which the presence 
of a hole in a shell is no longer a determining factor. Among 
problems of this type,the simplest problems are problems 
with a circular hole in a shell with positive Gaussian curva- 
ture and the most difficult problems are problems with holes 
whose contour is tangent at individual points to the asymptotic 
line (in the case of shells with a negative or zero Gaussian 
curvature). At these points, the simple boundary effect de- 
generates, which can be easily seen by studying, for example, 
the approximate equation for determining the simple boundary 
effect (for x^ >>  1) around a circular hole 

^l_r/2(v-6cos29)V = 0; 

which shows that when 9 = eo> where y =  b  cos 26 , the boundary 

effect degenerates. Also such a point on the contour is a 
singular point of the torqueless operator of equation (7.1). 
Therefore, the decomposition of the solution into the torqueless 
state and the boundary effect in this case does not have the 
usual qualitative properties. An analysis and solution of 
such problems is undoubtedly of interest.1  The reader may 
acquire familiarity with the formulation of this problem by 
reading the article by L. B. Imenitov (1966), which considers 
the special case of a shell with a positive curvature. 

The energy method for determining the stresses for large 
holes was applied by 0. A. Frolov (1961).  D. V. Vaynberg and . 
A. L. Sinyavskiy (1961) used for this purpose on an experimental 
basis the work reciprocity principle. 

A thorough review of the state of the problem on the 
stress concentration around holes was given by G. N. 
Savin (1966).  The survey emphasizes that in practice the concept 
of a small hole can be applied in a wider interval (up to 

1.  For large holes the torqueless operator in equation (7.1) 
may not be adequate for the problem under consideration 
since, as a rule, only terms with the highest order deriva- 
tives are given. 
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2 
X = 3) which was established by theoretical and many experi- 
mental studies (A. Ya. Aleksandrov, et al. , 1966). 

§8.  Calculation of Shells for a Concentrated Load 

An elementary design rule requires that more or less 
large concentrated loads be applied to the edges reinforcing 
the shell which distribute the load on the shell along 
conjugate lines.  In spite of this sometimes It Is necessary 
to apply the load to the shell directly on a small area whose 
dimensions are commensurate with the thickness of the wall 
of the shell. 

The determination of the stressed state of shells under 
a concentrated load has attracted the attention of Investiga- 
tors for a long time. A spherical shell was studied by 
A. G. Gol'denveyzer (1944), a freely supported flat shell 
by V. Z. Vlasov (1949), a cylindrical shell by V. M. 
Darevskly (1952).  In all these studies analytical expres- 
sions were obtained for singularities of the solution in the 
neighborhood of a point where the normal concentrated force 
was applied.  Later the class of problems was extended to 
various types of acting forces (tangential and moment concen- 
trated loads) and shells with various contours. The apparatus 
of the theory of generalized functiore and polyharmonic equations 
was applied to the analysis of the stressed state.  We note 
here the studies of V. V. Novozhllov and K. F. Chernykh (1963) 
and also of 0. N. Chernyshev (1963) on finding singularities 
in an arbitrary elastic shell caused by concentrated forces 
and moments. 

The knowledge of the analytical expressions for the 
singularities of the solution around a concentrated load is 
of great theoretical and practical importance. The latter 
makes it possible to improve the convergence of the series 
to which usually the calculations of a shell subjected to the 
action of a concentrated load leads.  However, it should be 
mentioned that this possibility is used only rarely.^ 

For example, Tn the survey article by Yu. P. Zhigalko (1966) 
dealing with the calculation of cylindrical shells, formulas 
are derived for the singularities, but in the next 
article in the same collection (Yu. P. Zhikgalko and 
N. G. Gur'yanov, 1966) dealing with a freely supported 
shell, these formulas are not applied to obtain faster 
convergence of the solution which is represented in the 
form of a double trigonometric series. 
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The reason for this is clearly that the analytical 
expression for  the singularity approximates the solution 
satisfactorily only in a small region around the point at 
which the load is applied.  Formulas which will take into 
account the presence of a stressed state of the boundary 
effect type are of great interest.  But only the first 
steps we made along these lines (V. S. Chernina, 1963, 
1965, G. N. Chernyshev, 1966). 

Further, the stressed state below or around the loading 
area is basically three-dimensional.  Therefore, the equations 
of the theory of shells cannot describe the singularities of 
the solution (at best they can only model these singularities) 
which are only obtained on the basis of the leading operators 
in the equations of the Kirkhhoff-Loew theory.  In this con- 
nection the question arises what corrections are introduced 
into the results on the singularities of the solution obtained 
until now by using equations of the Reissner (or Timoshenko) 
type or a higher order two-dimensional system,which take best 
into account the three-dimensional character of the real stressed 
state. 

Recently studies dealing with the effect of "he local 
reinforcement of the loading area by plates of different shapes 
on the stressed state of cylindrical shells began (V. M. 
Darevskiy, 1964, Yu. G. Konoplev and A. V. Sachenkov, 1966). 
Recommendations were made for the selection of the shape of the 
plate to reduce the stress concentration around the 
point where the load was applied. 

Recently the particular characteristics of the stressed 
state were studied around a concentrated force during the 
free oscillations of a cylindrical panel (V. M. Darevskiy and 
I. L. Shmarinov, 1966).  The survey article by V. M. Darevskiy 
(1966) is of interest. 

§9 Torqueless Flexed Shells 

Thin shells with very small flexural rigidity (often 
called "soft" shells) are calculated mainly on the basis of 
torqueless theory.  They are characterized by a more or less 
uniformly distributed internal pressure.  In the general case, 
in equilibrium, two zones are formed in the shell:  "the 
expanded" zone and the "crumpled" zone.  In the "crumpled" 
zone, one of the principal torqueless forces is zero (the 
crumples are formed due to the local loss of stability) 
and the second is positive.  Of course, the boundary between 
the zones is not known in advance. 
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Until now the main objects of studies were shells of 
rotation.  The development of a general theory of torqueless 
highly pliable shells is in the initial stage (S. A. 
Alekseyev, 1966).  This is not surprising, since here the 
problem can only be linearized in special cases.  The 
physical relations in studies on pliable shells vary over a 
wide range. On the one hand materials exist for pliable 
shells which can be considered as materials which do not 
expand.  The assumption that the material does not expand 
simplifies the study considerably.  This class of problems 
was studied by S. A. Alekseyev (1955).  On the other hand, 
often it is necessary to take into account that the material 
can be deformed considerably when the mechanical characteriza- 
tion is based on the relation between the true stresses and the 
logarithms of the strains (A. S. Grigor'ev, 1957, 1961, 
I. V. Keppen, 1960, I. I. Fedik, 1962). 

Torqueless boundary effects may exist when the tensile 
stresses are great (Yu. N. Rabotnov, 1946) .  Under favorable 
conditions, this makes it possible to apply to the torqueless 
shell a load which is distributed along a line (not an area) . 
A number of problems of this type were solved by V. I. 
Asyukin (1964) including the case of a toroidal shell. 

Recently considerable attention was given to the load, bearing 
capacity of pliable torqueless shells (I. S. Mamedov, 1963, 
Yu. F. Fokin, 1965), which expresses itself in terms of the 
maximum load even when the assumed materials are ideal materials 
with unlimited strength. 

By and large the problem of torqueless pliable shells 
would reduce to the determination of the basic stressed 
state in rigid shells in the case of small displacements. 
But, as a rule, the theory of soft shells is characterized 
by exact geometric relations. Further, the problem of the 
local stability in soft shells is not crucial for statements 
about the operating capacity, often the crumples that are 
formed can be tolerated.  Nevertheless a clarification of 
the conditions for the existence of a biaxial stressed state 
is of interest, since local criteria of the type 

flaßr
ß>o,    caYctipr

tirf>>o 

are not very effective in the solution of complex problems. 
S. A. Alekseyev (1965) derived the condition for the non- 
negativity of the principal components of the tensor of the 

aß 
forces T  , which imposes a constraint on the shape of the 
shell under the given load; for example, in the case of a 
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triaxlal ellipsoid and uniform pressure» this is expressed 
by the requirement that it be possible to construct triangles 
on the segments which are Inversely proportional to the square 
of the axes. 

A concise presentation of the theory and the fundamental 
problems of soft shells is given in the articles by S. A. 
Alekseyev (1965, 1966) which also give partially a short 
survey of the work carried out so far. 

§10. Ductile Shells in Instruments 

A large series of studies deals with the determination 
of the main characteristics of an elastic corrugated membrane 
which is an important element in certain Instruments.  In first 
approximation such a membrane can be studied as an anisotropic 
plate, in fact, it is a membrane with a Gaussian curvature 
which changes sign (for example, in the case of a sine wave 
corrugation) or a set of short connected conical shells (with 
a saw-tooth profile of the membrane). The many parameters 
which determine the configuration of a corrugated membrane, 
which are necessary to calculate a ductile shell on the basis 
of nonlinear theory^ present great difficulties which are a hin- 
drance to obtaining general results on the operating characteris- 
tics that depend on the structural parameters.  At the same 
time during the calculation of a corrugated membrane, the 
fundamental problem is not to determine the distribution of 
the stresses, but to find the flexure in the center of the 
membrane.  This makes it possible to solve the problem using 
variational methods, which, until now, have been the main 
tool in the study of corrugated membranes. 

The study of D. Yu. Panov (1941) was one of the first 
studies in the nonlinear theory of membranes with very slight 
crimping.  Later, V. I. Feodos'yev (1945, 1946, 1949) joined 
the investigators engaged in this topic.  With the passage of 
time the constraining assumptions of a gently sloping corruga- 
tion and its smoothness were removed and the crimping of 
flat shells was studied (L. Ye. Andreyeva, 1953 
1958, 1962). Experimental studies were also carried out 
(V. Ya. Il'minskiy, 1955).  In the calculation of corrugated plates 
and flat shells with the aid of variational methods, the 
selection of the coordinate functions, especially in the 
case when their number must be small, is of great importance, 
when the corrugation of the shell is dense.  When the coordinate 
functions are selected, the step and depth of the crimp, its 
shape and the individual hardness characteristics must be taken in- 
to account in the selection of the coordinate functions 
(E. L. Aksel'rad, 1963, 1964). 
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A second type of   thin-walled elastic elements widely used 
in  instrument building are bellows.       These objects were 
already analyzed in  the monograph of V.   I.  Feodos'ev     (1949) 
and later in the studies of V.   I.  Korolev  (1954)  and V.   S. 
Chernina  (1955).    A bellow     is a composite structure 
made from toroidal shells;   therefore,   the development of 
methods for  the calculation of bellows     followed progress  in 
the  theory of  toroidal shells.     S.  A.  Tumarkin   (1959),   V.   S. 
Chernina  (1961),  A.   N.   Volkov   (1962,   1963),  A,   R.  Yaroshenko 
(1965),  V.  A.  Sukharev   (1966)   contributed to  the development 
of  these mutually interrelated problems in the  last decade. 
Studies dealing with  the flexing  of curved thin-walled pipes 
(E.  L.  Aksel'rad,   1961,   1965),   are related to  these studies. 

§11.    Natural Oscillations 

A determination of  the frequency spectrum and the associated 
forms of the natural  oscillations present a wide-open field 
to investigators.     It  is an auxiliary problem  in dynamic cal- 
culations of both forced oscillations and also    of  other quasi- 
stationary processes.     With the exception of   freely supported 
flat shells and cylindrical panels, any problem  in  this  field 
is relatively difficult  to solve even today. 

Studies in the vibrations of plates and shells have a 
long history.     The determination of  the natural frequencies 
in plates,   for example,   can be treated as classical problems 
in   mathematical physics.     The same cannot be  said with regard 
to     oscillations in a  spherical shell,   even though the latter 
"have been the subject  of many studies at  the present  time  (P. 
Ye.   Tovstik,   1965). 

Classical problems are not necessarily simple.     The early 
investigations of  the  oscillations of shells  are characterized 
by  the solution of  special  problems   (A.  P.  Filippov,   1937, 
V.   Z.   Vlasov and B.   M.   Terenin,   1947,  0.  D.   Oniashvili,   1950, 
V.   Ye.  Breslavskiy,   1953,   1954,   Z.   I.  Grigolyuk,   1956). 
The state of  the initial  development of this problem is des- 
cribed in the monograph of 0.  D.  Oniashvili   (1957)   and some 
later results for special objects are given  in  the handbook 
by V.   S.  Gontkevich   (1964).     We mention the studies of 
R.   L.   Malkina   (1958,   1960)   on the vibrations of noncircular 
cylindrical  shells,   V.   Ye.   Breslavskiy  (1959)   on the effect of 
holes on the frequencies,   I.   I.   Trapezin  (1959),  D.  D. 
Ul'yanitskiy   (1958)   on small   oscillations of a conical shell 
and hydroturbine blades.     U.   K.  Nigul  (1958)   studied in 
detail  the complete  spectrum and forms of  the  oscillations of 
a cylindrical shell.     The  first studies on free oscillations 
in anisotropic and multi-layer shells go back   to  the same 
period. 
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A natural generalization of  the problem of free 
oscillations VHB  obtained during the analysis of the natural 
frequencies  in a shell under a load  (in some usually torqueless 
stressed state).     V.   Ye.   Breslavskiy   (1956)   and M.   V.  Nikulin 
(1959)   give results  for concrete loads.     It  is known that  the 
study of the oscillatory  properties under a  load is  the main 
method used to investigate  the equilibrium stability of the given 
system.     Therefore,   the center of gravity  in  this  series of 
studies are problems  dealing with the stability of 
elastic systems. 

A comparatively  large series of studies on the vibrations 
of  plates and shells with  finite   deflections was  started by 
Z.   I.  Grigolyuk   (1955).     The main method for  investigating 
the vibrations of shells with finite amplitude  is reduction 
to a system with one  or two degrees of freedom with  the subse- 
quent application of   the results developed in nonlinear mechanics. 
At   the present  time,   this   technique  is used predominantly in 
the solution of more  complex problems in  the  dynamics of 
shells.    This includes problems on parametric oscillations, 
nonlinear flutter,   dynamic stability during an impact load, 
etc. 

In its  form, the  linear  theory of  the oscillations of 
plates and shells differs  little from linear  equilibrium 
theory.  According to  the D'Alembert principle,   the effect of 
iner ia can be taken  into  account as a load.     The development 
of  this theory could proceed in parallel with  the development of 
equilibrium  theory.     However,   so far we do not yet have studies 
in  the  theory of  the  oscillation of shells which are 
as  general as  those available in equilibrium  theory.     Without 
belittling the significance of 0.  D.   Oniashvili's monograph 
and V.  S. Gontkevich's handbook,   it must  be stated  that they 
deal with special results  and that  their  goal  is not a systematic 
analysis of  the great  variety of oscillatory  forms  from the 
standpoint of the general   theory of shells. 

At  the same  time,   it was discovered a long time ago that  in 
problems on small oscillations of shells,   the general state 
of motion  (and the stressed state)   can be decomposed into 
elementary states which are known from the general  equilibrium 
theory of shells.     These states were described in  the survey 
article by N.  A.  Alumyae   (1958).   With the exception of the 
simplest objects,  a qualitative analysis  of  the problem 
whose goal  is  to decompose  the general state  of motion into 
elementary states, leads  to a considerable  reduction in the 
amount of computational work.    Using  this procedure,  L.  Yu. 
Poverus and R.  K.  Ryayamet   (1958)   determined  the principal 
vibration tones of a  conical shell on the basis of 
torqueless   theory. 
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The problem  that   is discussed was  the subject  of a  thorough 
analysis by A.  L.   Gol'denveyzer  (1961,   1966),   who approached 
it   from the standpoint of  the general  theory  of shells,   i.e., 
as   it applied to an arbitrary shell.     In his  last article, 
Gol'denveyzer summarized the results of  the qualitative study 
of  free oscillations with a  large variability  index for 
the displacement state.     The purpose of  the  investigation 
was  to determine   regions  for  the parameters  characterizing 
the variability function in which the general  displacement 
state could be decomposed into elementary states.     The 
problems were classified taking into account   the geometric 
properties of  the contour  line on which the character of the 
additional integrals  used to satisfy  the boundary conditions 
depend.     The main attention  in the article was given to torque- 
less  transverse oscillations occurring at relatively  low 
frequencies, accompanied only by small  tangential  oscillations. 
The resolving equation  for  these oscillations  has a curious 
structure. 

€■'■•€'■■ ba^-;Vru- r: wa'^VoVfX «=0 (11.1) 

which deserves further study (A is the reduced frequency) . 
The same remark applies to a pure flexural deformation of 
shells with negative curvature where the bending of the middle 
surface with a large variability index is not localized as in 
shells with positive curvature. 

Theoretical difficulties in the application of the VKB 
method may also arise in the solution of one-dimensional prob- 
lems.  The point is that the equations with variable coefficients 
have in a certain frequency band in the integialien region 
so-called branch points,in the neighborhood of which the 
VKB method breaks down.  The articles of N. A. Alumyae (1960) 
and P. Ye. Tovstik (1965, 1966) are devoted to the solution of 
the problems that arise in this case.  In the case of two- 
dimensional problems, these problem^ as applied to the theory 
of shells, have not been studied for all practical purposes. 

Recently in the study of basically two-dimensional linear 
problems, the greatest attention was probably given to the 
asymptotic method for determining the frequencies (in the 
terminology of V. V. Bolotin, who proposed this method in 
1960).  The basic idea of the method consists of the following. 
During free oscillations of a rectangular plate with a large 
number of node lines, it is natural to expect that the deflection 
in the internal part of the plate is defined by the expression 

ir (jr. ;/)  r0 sin ki (x — /.,) sin A-.2 (y — k.,), 
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where k1 and k2 are the variability indices of the 

stressed state in the directions x and y. Taking this into account 
the  deflection  can be sought in the form w = w.MwgCy). 

The new unknown functions w^Cx) and WoCy) are determined 

to some extent separately: when w^Cx) is found it is assumed 
that w2(y) = sin k2(y - A.,,). The solution of the one-dimen- 

sional problems still contains the unknown parameter k». An 

analogous procedure is used to obtain an equation which de- 
termines ko. An equation is set up for w^Cy) and it is assumed 

that WjCx) = sin k2(y - K ).  The joint solution of the charac- 

teristic equations that were obtained for the two one-dimensional 
problems (with the parameters k, and k2) determines the compatible roots 

k,, k2 and at the same time the frequency.  The basic idea 

assumes that all integrals in the function w-^x), except 

sin k, (x - ^,) , introduce a correction into the stressed i?tate only 

around the edges, i.e., that they are damped relatively fast. 
(V. V. Bolotin calls such integrals the "dynamic boundary 
effects"), but it should be noted that the variability index 
in these integrals is the same as in the principal integral. 

The method that was described was developed rather rapidly 
by V. V. Bolotin and his school. After studies dealing with a 
rectangular plate (V. V. Bolotin, 1961, V. V. Bolotin, et al., 
1960) the spectrum of the transverse oscillations of cylindrical 
closed shells and cylindrical panels was investigated (Yu. V. 
Gavrilov, 1961, 1963). of flat shells (V. V. Bolotin, 1960), and of 
plates on the basis of Timoshenko's theory (V. N. Moskalenko, 
1961). According to Timoshenko's theory, the boundary effect 
degenerates at high frequencies, and the degeneracy consists 
of the fact that the basic stressed state is described by 
several terms of the form 

w — u-'o sin ki (x — kj sin A'j (y — >-■>). 

in which case  the application of the method becomes somewhat 
more complex. 

The method was studied on the example of a  plate also 
from  the variational point of view using  the method of  separation 
of variables  (L.  Ya. Aynola,   1963). 
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The generalization of the asymptotic Integration method 
to shells for which the variability of the metric coefficients 
must be  taken Into account is undoubtedly of Interest, but 
It requires,   in the opinion of V.  V.  Bolotln  (1961,   1962)^ 
the apparatus of the VKB method.    First,  shells must be 
analyzed whose middle surface Is developed into a surface of 
rotation whose contour lines coincide with the line of curvature. 
Shells whose contours lie on the minimal surface    in which the 
contour lines are the asymptotic lines of the middle surface 
(the calculation of theoscillatlons of turbine blades)   are 
also undoubtedly of academic and practical interest. 

With regard to the applicability of the method,   the 
question remains whether all  frequencies can be obtained in 
this way.    For  the time being  it is difficult  to answer  this 
question in the affirmative, since it was shown on the example 
of a simple one-dimensional problem that when the asymptotic 
method is applied« certain frequencies are lost   (Zh.  K.   Makhortykh, 
1964) .     Nevertheless,   the method proposed by V.  V.  Bolotln 
is very effective  in determining a large number of  frequencies 
and natural forms of free oscillations and the method was 
applied on a wide scale to the solution of various dynamic 
problems. 

V.   V.  Bolotln  (1963,   1966)   studied,on the basis of  the 
asymptotic method,, the densities of the natural  frequencies of 
plates and flat shells and showed the existence of the 
flexural oscillation spectrum,   where shells with a negative 
curvature have one accumulation point and shells with a 
negative curvature two points.     The accumulation points of  the 
spectrum of natural oscillations are found at frequencies 
w-   =   Ic/RjJ  and uu« =   |c/Re |   (for  the latter only in the case 
of shells with negative curvature).     In these expressions, 
c  is  the rate at which  the compression- tension waves propa- 
gate  in the shell and the coordinate grid on  the middle  sunace 
is such  that   |Ral  <   |RO I,   where Ra,  Rg are the principal radii 
of curvature.     The empirical  data that were obtained  from an 
analysis of spherical and circular cylindrical shells validate 
the  theoretical  results.     Nevertheless,   it is  interesting that 
at  the  frequencies  that were mentioned« the characteristic, 
lines  of  the equations  for  the  torqueless  flexural oscillations 
have multiplicity;   however,  multiple characteristics also 
occur  in shells with positive curvatures at frequencies  üJ 

and  ±2   (for a spherical  shell   these values coincide).     The 
question of  the relation between  these phenomena has not yet 
been answered.     We note here  that the first studies on   the 
asymptotic behavior of  the natural frequencies of  the oscilla- 
tions  of cylindrical and flat  shells were carried out by 
S.  A.   Tersenov   (1955). 
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The extension of the results on the density of  the 
natural  normal oscillations   to other types of oscillations 
In shells  (tangential oscillations,   high frequency flexural 
oscillations,  which occur when rotary Inertia Is 
taken  into account on  the basis of Tlmoshenko' s  theory) 
is undoubtedly of  Interest.     These results are also applied 
In  the  study of plates and shells subjected to  the action of 
random  loads. 

§12.     Transient Deformation Processes 

In modern engineering, problems often arise   In which the 
history  of the process is only of  Interest  in a short  time 
interval    that   is commensurate with the time during which  the 
deformation waves covered a path which is equal  to the 
characteristic dimension of  the middle surface of  the shell. 
Transient deformation processes are characterized by  the 
presence of unperturbed regions  in the shell  during a sub- 
stantial  part of  the entire history of the process.     The 
boundary  of  the perturbed region  is characterized  (depending 
on the  load)  more or  less  by a  pronounced front of  the stress 
waves.     When the motion of  the shell  is described by equations 
of  the  hyperbolic  type, this   fact which is clear physically, is 
also reflected mathematically.     Generally the solution  is dis- 
contint-»us at the wavefront.       Since in an elastic medium 
the ruptures spread at  two rates,   the pattern of  the ruptures 
(not  to mention the field of  the displacements)   may be very 
complex when it is  taken into account  that  the ruptures 
are reflected from the lateral  and contour surfaces.     It  is 
clear  that during a slow   (and  long)   Increase of  the  loads 
the role of these ruptures  in  the stressed state  is negligible. 
Transient processes which occur  during the collision of a shell 
with another object or barrier and also during the    flow of 
a  shock wave past  the shell are  of primary interest  in  the 
applications. 

The state of  the studies of  transient deformation processes 
in shells and plates  is described in detail  in  the survey by 
L.   Ya.  Aynola and U.   K.  Nikula   (1965)  and certain supplementary 
details can be found in  the survey report of  the author 
(N.  A.  Alumyae,1966).     Here we will restrict ourselves  to a 
condensed presentation of  the  fundamental results.     Certain 
data on  the shock on an arbitrary shell    have already  been presented 
in  the monograph of N. A.   Kil'chevski     (1949),   in which  the 
shell was modeled on  the basis of   the Kirkhhoff-Loew  theory. 
The displacements  that occurred during the shock were determined 
by applying the work reciprocity  theorem. 

-263- 



Studies of transient processes based on a model of the 
hyperbolic type were started by Ya. S. Uflyand (1947) who 
derived a new variant of the equation for the bending of 
a plate by generalizing to the plate the system of hypotheses 
proposed by S. P. Timoshenko for improving the accuracy of the 
equation of motion of a rod.  Uflyand applied the Laplace 
transform method to the solution of the nonstationary problem 
and obtained some numerical lesults. 

If we exclude the activity of geophysiclsts (see, for 
example, G. I. Petrashen', 1951, 1953) with a somewhat 
different sphere of interest, the work of Ya. S. Uflyand was 
followed almost by a decade of silence in publications 
dealing with the topic discussed.  However, recently 
there was a considerable revival of interest and two funda- 
mental problems began to take on shape. 

The first problem is the development of methods for the 
analysis of rapidly changing fields based on equations of 
elasticity theory.    One of these methods is based on the 
application of double integral Iransformations and the use of 
the method of steepest descent/ taking into account only a 
finite number of modes.  Naturally the solution of concrete 
problems must precede the study of dispersion relations in the 
high frequency region.  It was carried out, for example, for 
an antisymmetric deformation of a plate, relative to the 
middle surface (Yu. K. Konenkov, 1960, Y. K. Nigul, 1963, 
A. I. Myannil and U. K. Nigul, 1963) for which a great deal 
of information on the phase and group velocities at which the 
waves propagate is available.  Already these results make 
it possible to estimate the accuracy of the dispersion relations 
obtained on the basis of simplified theories (I. T. Selezov, 
1960).  Along with these the analysis of concrete transition 
processes is of great interest.  These include the study of 
U. K. Nigul (1963) on the wave bending process in a semi- 
infinite plate. 

The application of the Kan'yar method to the inversion of 
double Integral transformations leads, in essence, to the 

TT  approximate theo'ries (in particular, a theory of the 
Timoshenko type) does not model adequately the motion 
around fronts of stress waves, where it consists of 
high frequency oscillations. 

-264- 



construction of a system of elementary waves which are formed 
duiing the reflection of the primary waves from lateral 
surfaces.  This method requires great analytical sophistication 
but even then it does not lead to simple computational algo- 
rithms (G. I. Petrashen', 1958). The  available results de- 
termine mainly the character of the discontinuities at the 
fronts of the elementary waves. 

Partially due to analytical difficulties, and partially 
in connection with the greater possibilities of applying 
computer technology, articles began to appear in which the 
dynamic equations of the theory of elasticity are integrated 
directly using numerical methods (U. K. Nigul, 1965, 1966). 
The results that were obtained give a sufficiently clear idea 
about the applicability of approximate theories, in particular, 
the assumption was confirmed that the solutions obtained using 
the approximate theory smooth the motion around the fronts and 
other discontinuity lines (this shortcoming may turn out 
to be very palpable when the accelerations must be determined) . 

The second problem arises as a result of the fact that 
the entire necessary volume of calculations cannot be carried 
out with the aid of the theory of elasticity, and, therefore, 
simplified theories must be perfected which are based on 
various reduction procedures.  This problem is just as acute 
in nonstationary dynamics as in the theory of three-layer 
shells.  The approaches to its solution have been presented 
briefly in the section devoted to the reduction of the 
equations of elasticity theory to equations in the two-dimensional 
theory of shells (§ 16).  For the time being theories of the 
Timoshenko type have not been applied further to a concrete 
analysis and applications.  Approximate models that can be 
used to describe the stressed state around discontinuities 
are not available. 

A sufficiently large number of problems dealing with 
transition processes have been solved on the basis of a 
theory of the Timoshenko type.  If those investigations are 
omitted in which the method of expanding the oscillations 
in eigenfunctions is used (which was developed for the 
solution of quasistationary problems) , the publications of 
M. V. Dubinkin (1959), V. D. Kubenko (1965), N. D. Veksler, 
etal., (1965, 1966)  dealing with the solution of one-dimen- 
sional problems during a load on the edges and also the 
article of A. V. Agafonov (1965) on the action of a concen- 
trated force on a cylindrical shell (two-dimensional problem) 
can be mentioned. Next, the studies on the reaction of a 
plate or shell to the action of a moving load should be men- 
tioned. D. Ye. Kheysin (1963) studied the stationary motion 
of a plate floating on the surface of a fluid, V. L. Prisekin 
(1961) determined the critical velocities of motion of the 
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load in the axial direction in a cylindrical shell, L. I. 
Slepyan (1966) determined the asymptotic laws for the increase 
in the amplitudes of the displacements under critical velocities 
of motion of the load on simple objects (rod, torqueless 
cylindrical shell) M. A. Il'gamov and A. A. Yabbarov (1965) 
studied the steady state motion of a cylindrical shell with 
a moving separation boundary between the gaseous medium and 
the solid elastic filler (taking into account thermal effects)« 
A. N. Tyumanok (1965) determined on the basis of a theory of 
the Timoshenko type the transient oscillations of a cylindrical 
shell and obtained formulas for the discontinuities during the 
flow of a shock wave around a spherical shell (N. A. 
Alumyae, 1966) . P. F. Sabodash (1965) studied the steady state 
action of a moving load on the plate on the basis of elasticity 
theory. 

A great deal of attention was given to nonstationary 
problems in hydro-and aeroelasticity.  A hydraulic shock, 
taking into account the deformabili ty, was the subject of 
study in the articles by N. A. Kil'chevski, et al., (1962), 
A. S. Vol'mir and M. S. Gershteyn (1966).' In the last study 
the model of the pipe was nonlinear both geometrically and 
physically.  The action on a long circular cylindrical shell 
of an acoustical wave with a plane front parallel to the 
axis of the shell was studied by E. I. Grigolyuk and V. L. 
Prisekin (1963) in a linear formulation and later by A. S. 
Vol'mir and M. S. Gershteyn (1965) in a nonlinear formulation. 
These results refer to the initial shock stage. 

With rare exceptions, the problems that have been 
solved so far are one-dimensional.  This is understandable 
if the great power of computer technology is taken into account 
on one hand and the complexity of the discontinuity pattern in 
the stressed state on the other hand.  The solution of two- 
dimensional linear problems is on the agenda in the coming 
years.  Taking into consideration the needs of technology 
and the experience of geophysicists, the program that is being 
outlined cannot be carried out without applying computer 
technology which already furnished the solution for a number 
of complex nonlinear problems. 

The application of the simplest computational algorithms 
to the solution of partial differential equations describing 
transition processes is only possible in the cases when the 
solution is sufficiently smooth.  This can be achieved if 
the discontinuous part is isolated in the general solution 
up to the required order.  Incidentally, such an expansion is 
used very often in the solution of linear one-dimensional 
problems.  When the nonlinear process can be described by 
piecewise linear equations, known methods from linear theory 
can be used to isolate the discontinuous part of the solution. 
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The study of discontinuous solutions of quasilinear 
equations is, for the time being, a hiatus in the theory 
of shells.  It can be expected that the results in the study 
of quasilinear equations will contribute additional aspects 
to the problem of the dynamic stability of nonstatlonary 
processes in plates and shells. 

The prospects for the studies that were touched on here 
are clouded by one fact:  in the zones adjacent to the dis- 
continuities, the theory of shells does not describe adequately 
the phenomena that occur there.  Therefore, the studies in 
this region must be carried out keeping close touch with the 
development of the first problem pointed out in the beginning 
of this section. Finally, we note that strong discontinuities 
can occur in practical problems (for example, during the flow 
of a shock wave around a cylindrical shell, whose front 
is parallel to the axis of the shell).  Therefore, the 
analysis and determination of the qualitative and quantitative 
characteristics of the discontinuities is not an "academic" 
pastime, i.e., some hyperbolism in the "parabolic nature." 

§13.   New Problems in the Dynamics of Shells 

In the last decade a number of interesting directions developed in 
the dynamics of plates and shells in which so far the 
fundamental results apply to the dynamics of systems with 
a finite number of degrees of freedom.  These Include para- 
metrically Induced oscillations, oscillations induced by a 
gas flow, oscillations of vessels partially or fully filled 
with a liquid, oscillations under random loads or structural 
properties. 

The series of studies that were mentioned here were 
stimulated by practical needs.  Therefore, there is no need to 
speak about underestimating the Importance of the development 
of the studies that were started.  At the same time the problems 
that were formulated are very complex when the plates and shells 
are considered as objects of a one-dimensional or two-dimensional 
continuum.  As a result, the plate or shell is reduced 
already in the initial stage by some variational method to a 
system with a finite number of degrees of freedom.  Therefore, 
the impression may be created that the new 
investigation directions had so far no bearing on the "in- 
ternal" theory of shells, even though it is hard to deny that 
to reduce the shell to a system with one degree of freedom, 
it is necessary to have a clear idea about the work of the 
shell under the given load conditions.  At any rate the close- 
ness of these directions to the "Internal" theory of shells must 
be verified by specialists in the theory of shells, and, there- 
fore, we will dwell in this survey on the basic development 
stages In the fields that were touched on. 
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Parametric Oscillations.  In certain linear problems of 
plates and flat shells it is possible to separate the variables 
(B. Z. Brachkovskiy, 1942, G. Yu. Dzhanelidze, 1955).  In this 
case the structural oscillations are determined by the well- 
known Mathieu-Hill equation, whose coefficients determine the 
zones of the parameters in which the oscillations are not 
stable.  These problems were first solved for plates by 
V. A. Bodner (1938) and Z. I. Khalilov (1942), for shells by 
A. N. Markov (1949) and 0. D. Oniashvili (1950). 

In shells, due to the large density of the spectrum of 
the free oscillations, the instability zones of the parametric 
oscillations cover a considerable region in the "force- 
frequency" plane.  Therefore, for all practical purposes, it 
is necessary to determine the amplitudes of the oscillations 
with the aid of nonlinear theory and take into account the 
damping.  This problem was formulated by V. V. Bolotin for plates 
(1954, 1956) and later also for a spherical shell (1958). 
In the study of nonlinear problems, as in the case of linear 
problems in which the variables are not separated (N. A. 
Alfutov and V. F. Razumeyev, 1955)^ the shell is modeled 
by a system with one or two degrees of freedom. 

When the system has one degree of freedom, its dynamics 
are defined by an equation of the type 

/' + 2e/' -i- "■ U - ^ WI1 ~e(t)r- -f <* O f ^ n U). 

where x is the frequency of the free small oscillations of 
the system.  The structure of the system does not change if 
instead of the homogeneous Isotropie shel] an inhomogeneous 
shell with anisotropic layers is considered in the nonlinear 
elasticity conditions in a nonstationary temperature field 
(S. A. Ambartsumyan and V. Ps. Gnuni, 1964, V. Ts. Gnuni, 
1965).  Most often, the problem consists of determining the 
regime for the stationary forced oscillations. 

Oscillations of Shells and Plates in a Gas Flow.  The 
first studies on the combined oscillations of plates and a gas 
deal with subsonic flow velocities (G. I. Kopzon, 1956, 
V. V. Bolotin, 1956) and also low supersonic velocities. 
The problems were considered in a linear formulation assuming 
a potential flow.  It must be taken Into account that in 
this formulation the dimensionality of the aerodynamic 
problem is larger by one unit than in the elastodynamic 
problem for plates. However, it was soon discovered that 
for large velocities of the flow, the aerodynamic interaction can be 
taken into account in a highly simplified form (with Jtach number M>2"» 
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This variant,   which takes into account  the aerodynamic forces, 
received the name  "piston theory" and was already applied in 
the studies  of A.  A.  Movchan  (1957)   and R.  D.   Stepanov  (1957) . 
It must be mentioned that in addition  to the conditions 
M » 1 and the quasistationarity of  the flow,   there is an 
additional  condition for the variability indices along and 
across  the perturbed flow       (V.  V.  Bolotin,     1961).     "The 
piston theory" remained for the time being the basic computa- 
tional model  for  the flow around a plate or shell.     In spite 
of the simplification in the aerodynamic partfan exact solu- 
tion of  even  linearized boundary value problemsi can only be 
obtained in exceptional cases.     One such case,   the axisymmetric 
flow,   through an infinitely long closed cylindrical shell 
was the subject of many investigations   (B.   I.  Rabinovich, 
1959),  Yu.  Yu.   Shveyko,   1960,  G.  Ye.    Bagdasaryan, 1962, 
Ye.  P.  Kudryavtsev,   1964),  which represented various generaliza- 
tions of  the simplest problem formulated by V.  V.  Bolotin 
in 1956.     To  this incomplete list,   studies must be added in 
which the oscillations of shells  in a  gas  flow in which the 
temperature of  the shell varies over  time are studied 
(S.  A.  Ambartsumyan and G.  Ye.  Bagdasaryan,   1964). 

In  the case of plates and shells of  finite dimensions, 
the Galerkin method is used to reduce   uhe problem to a system 
with a small  number of degrees of  freedom.     In the solution 
of nonlinear  problems,   for  the  time being, this is the only 
method for obtaining final results, and the number of degrees 
of freedom is usually two. 

The  first nonlinear problems  in aeroelasticity    were 
solved by V.   V.   Bolotin  (1958,   1960)   and also by his collabora- 
tors  (1959) .     We also note the studies of Yu.  Yu.  Shveyko 
(1961),   Yu.   N.  Novichkov  (1962),   and G.  Ye.   Bagdasaryan   (1963). 
The study of  nonstationary  flutter during  the simultaneous 
change in the velocity and temperature was also initiated by 
V.  V.   Bolotin   (1962).     K.  K.  Livanov   (1963)   took into account 
the effects of  tangential inertia on  the critical velocity 
(usually only  the normal acceleration  is  taken into account 
in the problems  that are being considered).    A survey of 
studies on  the oscillations of plates and shells in a gas  flow 
published until  1961 is available  in  the report by V.  V. 
Bolotin   (1962) . 

Since  linear problems in  the stability of plates and 
shells in a gas flow reduce in the final analysis to a study 
of a system with two degrees of freedom,   various generalizations 
of  the solution of  "classical",   i.e.,   apparently simplest 
problems»can be  obtained without  any  theoretical difficulties. 
The object  can be flat,   anisotropic,   multilayered,   edged,   non- 
linear elastic shells,   and the procedure remains basically 
unchanged when all  these factors are  taken into account. 
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Oscillations of Shells Filled with a Fluid» The free 
oscillations of partially or completely filled vessels have 
naturally two different spectral regions. At low frequencies 
the fluid oscillates and the shell is practically without 
inertia (quasistatic) . Conversely, at high frequencies, the 
shell oscillates and carries with it during the motion together 
with the vessel a certain volume of the fluid.  In spite of 
the possible simplifications (ideal fluid, small oscillations) 
problems in hydroelasticity are by far not simple even in the 
case of axisymmetric oscillations of shells of rotation» since 
even then» the motion of the fluid is determined by the two- 
dimensional wave equation. 

For the time being the list of studies made on 
this problem is not long. We mention here the 
studies of B. N. Bublik and V. I. Merkulov (1966), Yu. S. 
Shkenev (1964), V. P. Shmakov (1964), F. N. Shklyarchuk 
(1965, 1966) who introduced for the simplification of the 
hydrodynamic part the hypothesis of the plane reflection of 
the fluid.  The analysis of the natural frequencies made by 
Yu. N. Novichkov (1966) is unnecessarily complicated by the 
given contact between the shell and the diaphragm which is 
not constructive»and in the study of G. Ye. Bagdasaryan and 
V. Ts. Gnuni (1966) the problem is reduced to a linear system 
with one degree of freedom. 

There is no doubt that the problems under consideration 
represent a wide field for further investigations. 

A survey of studies on quasistationary problems in the 
aero- and hydroelasticity of plates and shells is available 
in the report of L. I. Balabukh (1966). 

Oscillations under Random Loads.  Often thin plates and 
shells are subjected to atmospheric turbulence, acoustical 
radiation from operating engines, etc., i.e., they are subjected 
to random loads which induce oscillations in a wide region 
of the spectrum.  The large density of the natural frequencies 
of the oscillations under these conditions makes it impossible 
to apply the method of expanding the solution in eigenfunctions. 
On the contrary, an effective method for studying the oscilla- 
tions which occur under random loads is to replace the dis- 
crete computational scheme by a distributed scheme, instead 
of summing the free oscillations over the frequencies, integra- 
tion in the space of wave numbers is used (in different 
terminology, the variability indices of the basic stressed 
state in two characteristic directions) . An effective means 
for studying the simplest objects under a wide-band load is 
the asymptotic method of determining the natural frequencies 
and eigfnfunctions that was proposed by V. V. Bolotin (1961). 
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In the article that was mentioned this technique Is used and 
applied to a fixed plate.  The mean square of the normal stresses 
near the edge was calculated under certain conditions pertaining 
to the correlation properties of the load.  Later, V. V. 
Bolotin (1963) has shown that for the mean squares and the 
spectral densities Integral estimates can be obtained under suf- 
ficiently general conditions for the correlation functions of 
the load.  Special forms of a random acoustical field used 
as a load were the subject of the  studies made by M. F. 
Dlmentberg (1961, 1962) and Yu. A. Fedorova (1963) which were 
based on correlation methods.  Next, Yu. A. Fedorov (1964) 
studied the action on a freely-supported plane plate of plane 
acoustical waves with a random frequency and amplitude, taking 
Into account the geometric nonllnearlty of the deformation by 
the method of a small parameter.  V. A. Pal'mov (1965) derived 
the spectral densities for the deflection and stresses at a point 
sufficiently far from the edges under a random load of the 
wave type.  He did not use the method of expanding the solution on the 
basis of the shapes of the natural oscillations, and took into account 
only a particular solution (with a large variability index). 

A survey of the studies that were carried out until 1964 
can be found in the article by V. V. Bolotin (1964) in which, 
in addition to the correlation method, the possibility of 
obtaining results in the application of the quaslstatic method 
and the method of kinetic equations to the Investigation of 
the statistical properties of the oscillation of plates and 
shells under random loads is discussed.  Bolotin notes that 
a very large number of studies is devoted to the application 
of mathematical statistics to various branches of physics and 
technology which can be interpreted in terms of the theory of 
waves and shells.  The application of these results to problems 
related to the theory of shells consists of determining the 
common properties of the oscillation spectrum.  In 
linear problems this can be done at the present time.  With 
regard to the oscillation of shells with finite amplitudes, 
probably it will be necessary to restrict oneself to a 
study of concrete problems which are of Immediate practical 
interest.  From the standpoint of the theory of shells, the 
effort must be directed toward taking into account the con- 
tinual character of the work of the shell (V. V. Bolotin, 
1966). 

§14.  Anisotropie Shells 

The development of studies in the field of homogeneous 
anisotropic shells proceeded generally along the lines of 
developing the corresponding branches in the theory of 
Isotropie shells.  This is natural since the elastic co- 
efficients of an Isotropie and anisotropic body rarely differ 
in order of magnitude.  In this case, it Is easily seen that 
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(1) the basic equations of a transverse Isotropie shell differ 
from the equations of an Isotropie shell only by a different 
coefficient for the transverse displacement; (2) the basic 
equations of the orthotropic shell preserve the same structure 
but instead of two elastic constants it has 6 elastic 
constants and at the same time (3) during anisotropy with 
one plane of symmetry (from here on called the total anisotropy) 
the structure of the basic equations of an anisotroplc and 
an Isotropie shell is already different.  As one would expect, 
the majority of the results on the anisotroplc deformation 
refer to orthotropic shells, and most often, it is assumed that 
the principal directions of orthotropy coincide with the lines 
of curvature of the middle surface. Nevertheless, it must be 
mentioned that the representatives of the theory of anisotroplc 
shells were very active also in reviving the problem of 
improving the classical theory of shells based on the Kirkhhoff- 
Loew hypotheses (S. A. Ambartsumyan, 1958) .  The internal 
stimulus for bringing this problem to the fore was the incon- 
sistency of the classical theory during considerable anisotropy 
of the material, and also the necessity of applying to such 
materials relatively thick shells  (including multilayer 
shells). 

The first studies on anisotiopic shells were published 
a long time ago (I. Ya. Shtaverman, 1924, Kh. M. Mushtari, 
1938), but a more or less thorough development of the correspond- 
ing theories started only about twenty years ago when the first 
articles by S. A. Ambartsumyan (1947, 1948) were published. 
Of course, also the monographs of S. G. Lekhnitskiy (1943, 1947) 
played an important role in the development of the theory of 
anisotroplc plates and shells, although the apparatus of the 
theory of functions that was applied there cannot be applied 
to the calculation of shells (with the exception of certain 
special cases of torqueless shells). 

In one decade the development of the theory was carried out 
on the basis of the Kirkhoff-Loew hypotheses,and under multi- 
layer anisotroplc shell conditions, for an entire packet 
of layers.  This approach should be fully applicable to a 
wide class of problems in which the composite layers do not 
have essential anisotropy or pronounced different elastic 
properties. 

In a short time the results obtained for problems of 
Isotropie shells were generalized to anisotroplc shells on the 
basis of torqueless theory,  the basis of calculations of 
shells of rotation under symmetric cyclic  loads which in- 
cluded the problem of simple boundary effects. Until then the 
main attention was focused on orthotropic shells (on the 
principal lines of curvature), and these studies did not lead 
to the discovery of Important new phenomena.  An exception is 
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the case in which the middle surface of the shell has an 
umbilical point (an isolated point). (This point, according 
to S. A. Ambartsumyan> should be called a physical-geometric 
singular point).  However, at the present time, this problem 
is only of theoretical interest. 

When more general anisotropic problems were considered, 
it became evident that torqueless and pure torque states could 
not be isolated.  Instead of these elementary states, the 
complex stressed state with a small variability index is 
formed. Next, in a shell whose contours lie on the surface of 
rotation, the deformation will no longer have this property 
under a cyclic  symmetrical load»and the anisotropy has a 
great effect on the intensity function of the boundary effect. 
The remainder term in the first approximation for the simple 
boundary effect determined by the VKB method increases in 
absolute value (L. A. Movsisyan, 1958, 1959). 

The equations of orthotropic cylindrical shells were first 
derived by Kh. M. Mushtari (1939).  The general anisotropic 
case was studied much later (S. A. Ambartsumyan, 1948) .  How- 
ever, with regard to methods for the integration of the 
equations during general anisotropy, the first results were 
obtained relatively recently (V. S. Sarkisyan, 1963).  The 
abundance of elastic constants during general anisotropy 
gives rise, in cylindrical shells, to a large number of possible 
variants of the relations describing elementary states (S. 
A. Ambartsumyan, 1954) .  Perhaps it should be mentioned that 
the states of an Isotropie cylindrical shell reduce to the 
generalized boundary effect and a simple boundary effect only 
during the calculation of the stresses around a concentrated 
load or a small hole;  the state with a large variability 
index in an arbitrary direction on the middle surface is added 
to these states. 

Studies in the linear and geometrically nonlinear deforma- 
tion of flat shells deal with the orthotropic case in which 
the main methods used to integrate the equations are borrowed 
from the field of Isotropie shells (Kh. N. Mushtari, 1938, 
Ye. F. Burnistrov, 195e>, 1956).  Thermoelastic problems in 
a nonlinear formulation have also been studied (Ye. F. 
Burmistrov, 1960, S. P. Durgar'yan, 1962, S. A. Ambartsumyan, 
1963) , and variants of nonlinear theory were constructed which 
were based on hypotheses differing from the Kirkhhoff-Loew 
hypotheses (S. A. Ambartsumyan and D. V. Peshtmaldzhyan, 
1958) . 

The monograph by S. A. Ambartsumyan (1961) is devoted 
to a systematic  presentation of the linear theory of anisotropic 
shells. A wider class of problems on anisotropic shells is 
covered in his survey articles  (1962, 1964) in which the main 
development trends and problems which will successfully advance 
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the theory of anisotropic shells have been formulated.  In 
1:he opinion of Ambartsimyan, at the present time problems in 
-vhich the anisotropy of the deformation has a general charac- 
ter deserve  the greatest attention.  In this field the 
danger exists that effort and means will be dissipated in 
the solution of special problems. Instead,an effort should 
be made to solve fundamental methodological problems, to 
classify individual situations, to carry out a qualitative 
analysis of the stressed state for each class and to develop 
on this basis effective solution methods. 

§ 15.  Shells in Layers 

The thr r-1, v^r shell consisting of two thin outer layers 
from a stroi.,' :r:. p.ial joined to a light middle layer of 
low strength. ' ue filler, is the most widely used type of 
layer shell in modern engineering.  (Two-layer and multi- 
layer shells are also used.) 

The problem of reducing the three-dimensional problem 
to a two-dimensional problem manifests itself here in a more 
complex manner.  The point is that the filler may not only not 
be from an anisotropic material, but may also have homogeneous 
general anisotropic properties, or be made from a corrugated 
sheet, etc., with structural anisotropic characteristics which 
are difficult to determine and the joint deformations between 
the individual layers must be determined along lines which lie 
at discrete distances. 

The first publications in the country on the theory of 
plates in layers and shells go back to the end of the 40's 
(S. A. Ambartsumyan, 1948, 1949, A. P. Prusakov, 1949).  In 
these and in many subsequent studies, the system of Kirkhhoff- 
Loew hypotheses for the entire packet was taken as the basis 
for the construction of the relations used in the calculations. 
The main attention in the beginning was given to three-layer 
plates and to stability problems (the general and local loss 
of stability of the supporting layers.  A list of studit3 from 
this period can be found in the corresponding section of the 
survey article by L. M. Kurshin (1962).  The problems and 
results of the calculation of shells in layers are also 
discussed in great detail in the monograph and surveys of 
S. A. Ambartsumyan (1961, 1962, 1964), and the rich reference 
material on these calculation formulas and experiments can 
be found in the book by A. Ya. Aleksandrov, L. E. Bryukner, 
L. M. Kurshin and A. P. Prusakov (1960). 
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To construct simple and universal equations for the 
calculation of three-layer plates with a light filler, it was 
necessary to use different hypotheses with respect to the 
filler.  One of the pioneers in this direction was A. P. 
Prusakov (1951).  From the methodological point of view, 
the justification of the working hypotheses sometimes en- 
tails internal contradictions, which can be seen on the 
example on which the basic ideas were illustrated in the article 
by L. M. Kurshin that was Just mentioned (see pages 168-169 
in that article). 

Perhaps by developing the theory of layer shells, it was 
discovered for the first time that it was essential to abandon 
the usual Kirkhhoff-Loew hypotheses and take into account 
the effect of the transverse shear and also compression. 

E. I. Grigolyuk (1957, 1958), who constructed the 
geometrically nonlinear theory of three-layer shells with a 
symmetric  structure, started out with the assumption that 
the Timoshenko hypothesis can be used for the middle layer, 
and that the outer layer satisfies the Kirkhhoff-Loew hypotheses. 
It was assumed that the deflection in all layers is the same. 
As a result a 12-th order nonlinear system was obtained. A 
generalization of these results to shells with a nonsymmetric 
structure was obtained by Kh. M. Mushtari (1961) .  The weak 
point in this variant of  the theory is the assumption that 
the rotation vector of the normal near the outer layers is the 
same and equal to the gradient of the deflection. 

S. A. Ambartsumyan (1957) proposed that the distribution 
of the transverse shear be given along a parabola in order 
to make the classical theory of shells more precise.  This 
assumption replaces the Kirkhhoff-Koew hypotheses that the 
normal to the middle surface is unchanged after the deformation 
(the remaining Kirkhhoff-Loew assumptions are retained). The 
construction of the theory on the basis of this hypothesis 
is somewhat more complex than that based on the energy method 
applied by E. I. Grigolyuk, but it only manifests itself more 
or less essentially in nonlinear problems. 

In one study on three-layer shells, E. I. Grigolyuk and 
P. P. Shulkov (1963) took also formally into account the filler 
by introducing an appropriate coordinate.  The deformation of 
the outer layers was assumed to satisfy exactly the Kirkhhoff- 
Loew hypotheses, which led to a 16-th order system.  Later 
the same authors abandoned taking into account the compression 
(assuming o  = 0) when they set up the physical relations 

for the layers) and derived a 12-th order system which in some 
cases can be reduced to a 10-th order system when one boundary 
effect of the St.-Venant type is ignored.  At the same time 
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the simplified relations do describe one boundary effect of 
the St.-Venant type by an equation which has the same structure 
as the equation that was ignored.  For the time being, it is 
not clear which of these boundary effects is physically more 
significant. 

Recently the interest in multilayer shells increased. 
It is possible to construct a theory on the basis of the 
Kirchhoff-Luew hypotheses without any particular difficulties, 
and indeed in many cases acceptable results have been obtained with 
the aid of such a theory (S. A. Ambartsumyan, 1961).  However, 
when the individual layers have different elastic properties, 
studies must still be made to set up an adequate computational 
model.  The nonlinear equations of Isotropie multilayer 
shells during arbitrary heating using the hypothesis of 
outer  normals in each layer were obtained by E. I. Grigolyuk 
and P. P. Chulkov (1965).  The system of hypotheses that was 
adopted reduces the calculation of an n-layer shell to a 
system of quasilinear differential equations of order (6 + 4n) 
whose solution must satisfy 3 + 2n boundary conditions on 
the contour of the truncated shell. 

In the theory of multilayer anlsotropic shells many 
problems must still be solved, even though the method used for 
the solution is based to some extent on the achievements in 
the theory of homogeneous isotropy.  We will mention here only 
some of these problems which are most essential:  1) which 
equations can describe the slowly changing stressed states? 
2)  Do stressed states exist  (and under what conditions) 
which are known as simple boundary effects in classical theory 
and what is their number on the edge? 3)  Under what condi- 
tions do the simple boundary effects degenerate into generalized 
boundary effects with slower damping away from the edge? 
4)  What is the number of boundary effects of the St.-Venant 
type generated by the concrete theory of a multi-layer shell? 
Can they be grouped into individual classes by the properties 
of the stressed states, and is the given theory for the descrip- 
tion of the boundary effects of the St.-Venant type adequate? 
The real  possibilities of determining the 3 + 2 n elastic- 
fixing coefficients on each boundary must be kept in mind-, 
it is procisely here where the gap between the theory and 
practice is great. 

§16.  Reduction of Problems in Elasticity Theory to 
the Theory of Shells 

Clearly, there are many possible ways which can be used 
to reduce problems in elasticity theory to problems in the 
theory of shells for thin-walled objects, such as plates and 
shells.  The main results in this field are discussed in 
the surveys by I. I. Vorovich (1966) with emphasis on equilibrium 
problems.  The state of the reduction problem in the solution 
of dynamic problems is presented in the survey article by 
L. Ya. Aynoli and U. K. Nlgula (1965). 
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The reduction methods can be classified arbitrarily into 
the following main groups:  (1) analytical methods, (2) varia- 
tional methods, (3) asymptotic methods. 

The method of power series in which the coefficients in 
the expansion for the unknown quantities are determined 
recurrently from six basic functions (of the internal 
coordinates a, ß of the middle surface) (along the coordinate 
z which is normal to the middle surface) have the oldest his- 
tory.  The latter are determined by the conditions on the 
lateral surfaces (N. A. Kil'chevskiy, 1939, 1963), which they 
satisfy with an accuracy up to terms of a certain order z*, 
so that in practice only truncated systems (i.e., systems of 
differential equations of a finite order).  It should be 
mentioned that the satisfaction of the boundary conditions 
(on contour surfaces) and of the initial conditions with a 
given accuracy requires the derivation of a system of dif- 
ferential equations with a high order of accuracy.  The 
truncated systems obtained by expanding the solution in power 
series were obtained in a number of concrete cases by 
I. T. Selezov (1961, 1963) and U. K. Nigul (1962). 

In the case of simplest objects (plates, circular, 
cylindrical and spherical shells) the power series algorithm 
can be reduced to the elegant formulas of the "symbolic" 
method developed by A. I. Lur'e (1942, 1955) or to V. Z. 
Vlasov's method of initial functions (1955).  The symbolic 
method can also be applied to the derivation of simplified 
dynamic equations with small variability indices (Yu. K. 
Nigul, 1963). However, the boundary conditions for the 
equilibrium equations of thick plates were obtained using 
a variational formulation of the problem (V. K. Prokopov, 
1965) . 

The method of "homogeneous" solutions is intimately re- 
lated to the symbolic method in the study of the simplest ob- 
jects that were described above.  The solution of the problem 
in elasticity theory using this method is solved in the form 
of an infinite sum of particular solutions satisfying homogeneous 
boundary conditions on the lateral surfaces (which are 
parallel to the middle surface) , but, generally, not the 
boundary conditions on the contour surfaces.  The 
particular solution of the equations of elasticity theory 
satisfying the nonhomogeneous boundary conditions on the 
lateral surfaces is added to the set of solutions.  The main 
steps in the solution of the problem are (1) determining the 
roots of the transcendental characteristic equation of the 
"homogeneous" solutions and (2) determining the procedure which 
defines the arbitrariness in the integration of the homogeneous 
solutions in terms of the given boundary conditions on the 
contour surfaces.  Usually the principle of possible displacements 
is used for this purpose. 
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The method that was described was applied to the study 
of the equilibrium of circular plates by V. K. Prokopov (1952), 
0. K. Aksentyan and I. I. Vorovich (1963).  The case of a 
closed circular cylindrical shell during an axisymmetrlc de- 
formation was studied by V. K. Prokopov (1949) and also by 
N. A. Bazarenko and I. I. Vorovich (1965).  The survey article 
by G. Yu. Lzhanelidze and V. K. Prokopov (1963) is devoted to 
the application of this method to the theory of elasticity. 

It should be added that when the roots of the characteris- 
tic equations are determined}and the stressed state correspond- 
ing to each root, the unknowns are systemmatically expanded 
in powers of the small parameter, i.e., the relative thickness. 
Naturally, this is the most reliable method for studying the 
reduction problem, but, unfortunately, it can only be applied 
to a very limited class of problems.  For example, in the study 
of the propagation of stress waves, the method of homogeneous 
solutions can be applied without complications only for certain 
boundary conditions which admit a sin-cos integral transforma- 
tion with respect to the coordinate (U. K. Nigul, 1963) . 

The procedure for comparing the formal solutions in the 
form of contour integrals for problems in the theory of elas- 
ticity and the theory of plates should be included among the 
analytical reduction methods.  According to the idea of 
G. I. Petrashen (1951);both theories should give the same 
expansion for the unknown quantities in the low frequency 
(complex) oscillations part.  Since the lower dimensional 
approximate theory cannot ensure this completely, the condi- 
tion for the applicability of the approximate theory are derived 
from the comparison. 

Energy methods in which the unknown quantities are 
approximated as functions of z by some closed system (for 
example, Legendre polynomials) are very often used for the 
reduction, and the differential relations between the coefficients 
are obtained from the Lagrange or Castigliano  variational 
formulas (or some other extended variational formula).  In 
this way systems of differential equations of an arbitrary or- 
der can be constructed and the corresponding boundary conditions 
can be obtained without any difficulty (in many methods 
applied to the solution of the reduction problem, the formula- 
tion of the boundary conditions for the truncated system is 
the most vulnerable point in the theory). 

Examples of the construction of such improved theories of 
shells are given in the studies of I. N. Vekua (1955, 1965), 
1. G. Teregulov (1962), N. A. Kil'chevskiy (1963), and 
V. V. Ponyatovskiy (1962).  An analysis of the systems that 
were derived shows that when the order of the system of differential 
equations exceeds eight, boundary effects of the St.-Venant 
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type occur in the solutions.  In addition an increase in the 
order of the system of equations (physically this corresponds 
to an increase in the number of degrees of freedom) leads only 
to new integrals with a high variability index, boundary effects 
of the St.-Venant type.  Thus, if the St.-Venant boundary effects 
must be isolated which correspond  to the torsion on the edge 
and to the plane deformation on the edge in the first approxi- 
mation, the system of differential equations in the theory 
of shells must be a 14-th order system.  However, so far 
there are no published results on the analysis of such ex- 
panded systems of equations in the theory of shells. 

In connection with tie  attempts to solve the reduction 
problem by variational methods, the formulation of the problem 
of the best variant of a system of differential equations for 
determining the principal stressed states should be mentioned. 
Usually the structure of the equations is given (for example, 
in the case of the bending of a plate it is required that the 
solution equation be a fourth order equation, and what is 
sought is the best distribution of the displacements and 
stresses in the energy sense along the thickness which is 
constant and expressed in terms of one (unknown) function 
of z (L. Ya. Aynola, 1963).  The problem reduces to the solu- 
tion of a system of integrodifferential equations using 
the method of successive approximations. 

The third way of solving the reduction problem is using 
the direct asymptotic integration method.  Here, by a change 
of the coordinates (which is different for different stressed 
states which must be found, a parameter (say, e) characterizing 
the thin wall of the sh.ll is arbitrarily introduced into 
the equations of elasticity theory.  Next, a particular in- 
tensity index must be associated with each unknown function, 
which makes it possible to determine recurrently the unknown 
terms in the expansion in powers of the small parameter 
e.  It is clear from the above«that to apply the method success- 
fully, it is very desirable to have preliminary information 
about the basic properties of the stressed state that is being 
determined)since otherwise confusion may arise in finding 
noncontradlctory intensity Indices.  However, when this "starting" 
point la overcome, the subsequent steps lead quickly to 
elegant procedures for determining the stressed state whose 
accuracy is Improved successively for a wide class of problems. 

In our country this approach was developed by A. L. 
Gol'denveyzer (1962, 1963, 1965) and his collaborators A. V. 
Kolos (1964, 1965), A. N. Volkov (1965) and M. I. Guseyn- 
Zade (1965) .  The results that were published show that the 
basic asymptotic integration process leads only in the first 
approximation to the computational relations known in the 
classical theory of plates and shells which describe the so- 
called basic stressed state (compression and bending of 
plates, torqueless and torque states, and states with a large 
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variability index) .  The relations from which boundary effects 
of the St.-Venant type are determined in the first approxima- 
tion are essentially new (partial differential equations for 
the torque on the edge and the plane deformation on the edge) 
which undergo rapid damping at the edge. 

Like in all reduction methods  not based on energy 
relations, the determination of the boundary conditions which 
the differential equations that  are integrated in a certain 
approximation stage must satisfyjpresents certain difficulties. 
This problem was only solved partially for several variants 
of the boundary conditions for the plate. 

It is of interest to note that the basic procedure re- 
duces to finding the stressed states which vary quickly in 
the direction of the normal (z) , but not in the directions 
(af   ß) tangent to the middle surface.  At the same time this 
assumption leads in the zero approximation to stressed states 
for which the displacements ua,   Ug, w and the stresses a

aa, 
a g, o  are linear functions of z.  In this case, of course, 

it is difficult to say that these quantities vary quickly with 
respect to z.  Thus, a great deal must still be reformulated 
in order that the results which have been known for a long time 
be fully applicable in practice without contradicting the initial 
assumptions. 

The application of asymptotic integration methods to the 
solution of the reduction problem is by and large in the 
initial development stage.  A clear example of this statement 
is the problem of the stressed states of a closed shell of the 
solid spherical type (with positive curvature everywhere?) 
that was formulated by A. L. Gol'denveyzer.  This problem is 
considered to be the most suitable problem for the classical 
theory of shells.  The results of an analysis of the solution 
of this problem are very intriguing.  Gol'denveyzer has shown 
that by making certain changes in the physical relations, the 
accuracy of the equations of the classical theory of shells 
can be improved.  However, these relations cannot be derived 
on the basis of the Kirkhhof-Loew  hypotheses.  Therefore, all 
that can be said is that In the case under consideration, it 
was possible to represent the new content in an old form, 
which cannot always be done and which is not always useful. 

The asymptotic integration method was also generalized 
to the derivation of dynamic equations of plates with 
large displacements (L. Ya. Aynola, 1965, 1966).  The results 
have shown that the known equations of Karman's membrane theory, 
with a plane stressed state and purely linear theory are, 
under certain loading conditions, asymptotic approximations 
of the equations of geometrically nonlinear elasticity theory. 
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The studies that were mentioned above should be of methodological 
interest, the equations of motion and the boundary conditions 
are derived from the requirement that the variations of the 
corresponding functional be zero with the required asymptotic 
accuracy. 

Among the reduction methods, the application of the work 
reciprocity theorem for an elastic system to the derivation of 
two-dimensional integrodifferential equations occupies a special 
position.   The development of methods and techniques along 
these lines was begun by N. A. Kil'chevskiy (1940).  The 
results of the studies were summarized by him on a number of 
occasions in survey articles and In a monograph (1962, 1964) 
in which bibliographic references referring to the fundamental 
studies in the problem that was touched on are given. 

The work reciprocity theorem can be interpreted broadly, 
since the forces and displacements can also be considered in 
a generalized sense.  It is well known that in this theorem, 
two states are compared.  One of them is the sought main 
state and the other the auxiliary state.  This theorem can be 
useful if the solution of the auxiliary problem is considerably 
simpler than the solution of the basic problem.  One of the 
two possibilities is that the solution for the action of a con- 
centrated force in an infinite elastic system is taken as 
the basis for the auxiliary state.  But the shell has (at 
least in the direction of the normal to the middle surface) 
a finite length; therefore, the absence of the "medium" in 
this direction must be compensated by a load which is dis- 
tributed on the boundary surfaces of the shell (and also on 
the contour surfaces which are usually present) .  In the re- 
duction problem, generalized forces are considered Instead of 
the concentrated force (for example, zero, first and higher 
order moments along the thickness) and the corresponding 
generalized displacements.  This requires that relatively simple 
modifications be introduced into the procedure that was described 
above. 

In the study of shells with zero curvature and flat shells 
whose middle surface is isometric to the plane plate, the 
state of the plate is often token as the auxiliary state, 
which simplifies the construction of kernels, but at the same 
time changes their structure.  Recently, the idea was 
proposed to use "focused" kernels, i.e., rapidly damped 
auxiliary states, to improve the convergence of the computa- 
tional procedure (N. A. Kil'chevskiy, 1960, N. A. Kil'chevskiy, 
Kh. Kh. Konstantinov and N. I. Remizov, 1966).  For the time 
being this class of problems is characterized by different 
formulations of the problems, by new methods that are being 
proposed and by the absence of concrete experience which is 
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obtained by  solving the reduction problem to its logical  end, 
i.e.,   to a    certain system of  two-dimensional equations. 
Of greatest  interest is  the solution of problems for which 
the stressed state of the shell must  be  found with the aid 
of  the equations of elasticity  theory   (for example,   boundary 
effects of   the St.-Venant  type,   the state around the  "concen- 
trated"  load around propagating perturbation fronts,   etc.). 

However,   this remark applies equally  to all directions 
engaged in  the solution of  the reduction problem.     The main 
topic in  the  nearest future must be  the problem of  the stressed 
state around singular points and  "distortion" lines of  the 
stressed state.     From the standpoint of  the solution of  this 
problem,   all known methods have equal  chances for success. 
Perhaps   pure     numerical methods used in  the solution of  the 
equations of  elasticity  theory   (without  an explicit formulation 
of  the reduction problem)   should be added  to the methods  that 
were discussed here. 

§17.     Conclusion 

Any  problem of elastic shells  is characterized by a  large 
number of   initial conditions.     As an example,  we can point 
out   the  following: 

—elasticity  laws:     linear and nonlinear; 

—anisotropy of  the material:     isotropy,   orthotropy, 
transverse  isotropy,   general  anisotropy; 

—the structure of  the shell:     one-layer,   two-layer, 
three-layer,  multilayer; 

—connectedness of  the middle surface:    simply connected, 
doubly    connected,  multiply connected  (for example, 
perforation; 

—curvature of  the middle surface:     positive,   zero, 
negative,   changing sign  (torus,   corrugated plate); 

—geometric properties of contour  lines:     not asymptotic, 
simple asymptotic,  multiple asymptotic; 

—form of  load:     distributed over  the surface,   distributed 
over a  line,   concentrated; 

—deformation process:     static,   stationary*  quasistationary, 
transient; 
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—definition of load: given, depending on the interaction 
of the shell and the external field, random (with piven 
statistical characteristics); 

—geometry of the deformation:  linear, nonlinear; 

—computational model:  torqueless, Kirkhhof-Loew, 
Timoshenko type, var\ous simplified variants of these 
theories, (for example, generalized boundary effect), 
elasticity theory; 

—method of analysis:  qualitative analysis, analytical 
solution, numerical method. 

Often it is extremely difficult to draw an exact boundary 
line between the details in the individual characteristics. 

The questions that were touched on in this survey are 
an incomplete and subjective selection from all problems in 
the theory of elastic shells.  The list of studies that was 
mentioned which may not be very impressive due to its length 
has the same character. 

The contribution of Soviet scientists to the world's 
treasures in the theory of elastic shells and plates is great. 
There is no doubt that the network of well-known scientific 
schools that was developed in this country will ensure a 
successful solution of problems in the theory of shells which 
arise in practice and also the needs of the science itself. 
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ONE TREND IN THE DEVELOPMENT OF A THEORY OF SHELLS 

I. N. Vekua 
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§3.  Torqueless Theory of Shells 307 

§1.  Introduction 

1.1. This survey consists of two parts.  The first 
part deals with the general problem of constructing a theory 
of elastic shells.  The second part deals with a brief presen- 
tation of certain results in membrane theory of convex shells. 
We will deal only with those problems which were the subject of 
a study by the author which began approximately in 1950. 
Both parts are intimately related to the application of methods 
of the theory of analytic functions which began to find their 
way into the theory of shells in the 40^, mainly due to the 
well-known studies of N. I. Muskhelishvili on the plane problem 
in the theory of elasticity. 

The theory of shells is obviously an applied science, but 
it is related to many branches of contemporary analysis, and 
it was the source for the formulation of a number of important 
and interesting mathematical problems.  The study of the 
torqueless theory of convex shells led to the necessity to 
expand the classical theory of functions.  A new branch of 
analysis was developed, the theory of generalized analytic 
functions, which is also intimately connected with the geometric 
problem of infinitely small bends in convex surfaces (I. N. 
Vekua, 1959) . 

1.2, The theory of shells is a branch of the 
mechanics of a continuous medium.  It developed methods for 
the calculation of thin-walled shells which are widely used 
in modern engineering structures and in machine building. 
Typical examples of shells are walls and various covers, 
platings in ships, fuselages and airplane wings, the bodies 
of submarines, etc.  We can distinguish elastic and nonelastic 
shells.  This will depend not only on the material of the 
shell but mainly on the character of the distribution and 
the magnitude of the external load as well as the type of 
external kinematic (geometric) relations.  It the distribution 
of the external load is piecewise continuous and it does 
not exceed some characteristic critical load, the shell can 
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be considered as an elastic shell.  Below, when we speak about 
elastic shells, we will assume that they obey the generalized 
linear Hooke law.  Such shells are used rather widely In 
engineering.  Therefore, their study Is of considerable applied 
interest.  In the study of the torqueless stressed equilibrium 
of bent shells we can abandon the frame of reference of elastic 
properties.  Here it is not necessary to use elasticity re- 
lations when we are dealing only with the determination of the 
stressed state.  In this case we have a statically determinate 
problem.  The elasticity relations must only be used in the case 
when it is also necessary to determine the deformed state. 
Such a problem arises when, for example, not only a physical 
boundary condition must be satisfied, but also a certain 
geometric (kinematic) boundary problem. 

1.3. The calculation of shells on the basis of the 
equations of elasticity theory is connected with great mathe- 
matical difficulties.  The science does not yet have at its 
disposal practical convenient methods for the solution of a 
comparatively wide class of applied problems.  The theory of 
shells tries to simplify these problems by taking into account 
specific features of the shells.  First of all, the fact that 
the thickness of the shell is small compared to its other two 
linear dimensions was taken into account.  It can be easily 
seen that the pattern of the deformed and stressed state also 
depends to a considerable extent on the properties of 
middle surface.  In many engineering applications        e 
encountered whose middle surfaces are considerably       »/ben 
this fact is taken into account, the problem can be &. iU1ified 
considerably. 

1.4. The first essential important step in the theory 
of shells is the reduction of the three-dimensional problem to 
a two-dimensional problem.  For this purpose the shell is often 
represented as a sufficiently hard material surface with a 
very small finite thickness.  Clearly such a model is a very 
coarse approximation of ths  real shell.  Nevertheless, it 
allows us to simplify the mathematical problem and to recreate 
the pattern which is sufficiently close to the pattern observed 
in real shells.  Such schematic representation of the problem 
requires that a number of hypotheses of a physical and geometrical 
character be adopted,whose formulation, as a rule, is based on 
intuitive concepts.  At first glance these hypotheses seem 
to be very plausible, but their weakness is the absence of 
exact methods which would verify them experimentally for a 
wide class of problems and materials.  Their applicability 
range can only be determined in some cases in a posteriori 
fashion by comparing the numerical results that were obtained 
with the experimental data or with the exact solutions of the 
corresponding three-dimensional problem.  This rather fluid 
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situation gives rise to various variants of the theory of 
shells.  The existing variants sometimes differ considerably 
from one another and it is difficult to make a judgment about 
the advantages of a particular variant.  The common short- 
coming of many existing variants of the theory of shells is 
the absence of internal consistency between the Initial 
kinematic and physical assumptions. This lack of agreement 
can be seen, for example, in the fact that the system of 
differential equations of the theory of rhells does not ensure 
that the boundary conditions which follow from the initial 
assumptions are satisfied. 

1.5.  The majority of the variants is based on a 
physical hypothesis which assumes that to describe the stressed 
state of a thin shell it la sufficient to determine in practice 
the forces and moments acting on the elementary transverse 
areas.  In each transverse area five quantities must be deter- 
mined:  the normal and tangential forces, the shearing force, 
the torque and the bending moments, which clearly depend on 
the position of the point on the middle surface and also on 
the orientation of the area.  This problem reduces to the 
determination of two tensors of rank two and one tensor of 
rank one which belong to the middle surface.  Thus, altogether, 
ten functions which are the components of the unknown tensors 
must be found.  These functions satisfy a system of five first- 
order partial differential equations.  Therefore, generally, 
the problem is statically indeterminate.   In order to eliminate 
this indeterminacy, it is necessary to adopt additional con- 
straints on the character of the distributions of the stresses 
or deformations in the shell.  An attempt can be made to make 
the problem statically determinate by adopting for this purpose 
certain constraints on the law for the distribution of the 
forces and moments.  For example, assuming that the moments of 
the stress forces are zero everywhere, we obtain a statically 
determinate problem.  However, the torqueless equilibrium 
state is a very special case of the general stressed 
state of the shell.  This can be seen from the fact that the 
corresponding system of differential equations does not 
completely ensure that the natural physical boundary condi- 
tions for the problem are satisfied.  Generally the value 
of only one of the two components of the force vector can be 
given arbitrarily on the boundary.  For example in the case 
of a convex shell when the boundary values of the normal force 
are given, it is possible after solving the problem, to deter- 
mine the corresponding boundary value of the tangential force. 
Therefore, it is not possible to state in advance arbitrarily 
the boundary values of both components of the force vector. 
In spite of this, the torqueless or, in different, words membrane 
theory of shells, has important practical applications.  This 
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is explained by the fact that as engineering practice and 
theoretical studies have shown» the discrepancy mentioned above 
gives rise to some boundary effect which has no important effect 
on the character of the distribution of the stresses away 
from the boundary for a wide class of problems. The great 
advantage of membrane theory is the comparative simplicity 
of the corresponding mathematical problem and also the fact 
that it does not use elasticity relations and, hence, can 
be applied to a very wide class of elastic and nonelastic shells, 

A second way of eliminating the indeterminacy inherent 
in the problem of determining the forces and moments is to use 
relations which follow from Hooke's linear law.  However, 
when this is done a number of additional assumptions must be 
made to obtain the correct mathematical problem. 

When the physical hypothesis which was mentioned above is 
taken as the basis for the theory of shells, certain constraints 
are imposed on the character of the deformation of the shell. 
If the shell obeys the requirements of the physical hypothesis 
this means, in fact, that the elementary transverse areas must 
be considered as absolutely rigid figures (at least in first 
approximation).  If this were not the case, strictly speaking, 
we could not replace the continuous distribution of the 
stress forces over the area by a statically equivalent set of 
forces and couples (force and moment).  The complexity of the 
problem is constructing a kinematic model which is in 
complete agreement with the physical hypothesis that was 
adopted.  The lack of agreement which occurs here follows from 
the fajt that the system of differential equations that was 
obtained here is not compatible with the boundary conditions 
which follow fror.! the initial hypotheses. For example, this 
kind of situation arises when the well-known Kirchhoff-Loew 
hypothesis is used.  It imposes constraints on the deformation 
which are too stringent. As a result of this, the class of 
unknown functions is narrowed down to such an extent) that it 
is not possible to satisfy the five physical boundary condi- 
tions in the classical moment theory of shells and the corres- 
ponding system of differentical equations satisfies only four 
independent boundary conditions. 

Thus, both in the moment theory of shells and also in 
membrane theory, the physical boundary conditions can only 
be satisfied partially.  This contradiction is a serious 
shortcoming of the classical constructions. Trying to remove 
the defect, many investigators attempted to find new approaches 
and develop a more perfect theory.  Many important studies 
along these lines were made by scientists in various countries 
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among which we mention, for example, the studies of E. 
Reissner.1 

Below we will discuss mainly those results which were 
obtained along these lines in the last 15-20 years by the 
author of this survey. A general method was developed which 
makes it possible to construct various variants of the theory 
of shells which are classified by  the order of 
the approximation.  Following a natural and actually relatively 
simple approach, it was possible to construct a general theory 
which is mathematically correct. 

First the case of the so-called prismatic shell was studied 
whose middle surfece is a plane (1955). Generally, such 
shells may have a variable thickness.  Later these studies 
were generalized to the case of an arbitrary flat shell, 
(1964, 1965).  Below, we will briefly characterize the essence 
of the methods that are used)and we will outline the results 
that were obtained. 

§2.  Theory of Thin Flat Shells 

2.1.  Using the notation and concepts of vector and 
tensor analysis, the equilibrium equations of a continuous 
medium and the relations of the theory of elasticity can be 
written in the following form: 

1)  the equilibrium equation: 

r^-TT-- 'V-M, (2.i) 

2) the stress  force acting on an area with normal 1: 

^m-  V h      (/ft=--3u0; (2.2) 

3) the generalized Hooke law: 

^'   r^^)^--,i^)^;-n(%'^)^. (2.3) 

1. A rather complete bibliography on this problem can be found 
in the book by A. E. Green and V. Zerny "Theoretical 
Elasticity" (1954) and in the collection of translations 
"Elastic Shells" (Moscow, 1962). 
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These equations are referred to an arbitrary coordinate 
system.     We will  explain the notation used here:     g is  the 
discriminant  of  the metric quadratic  form  in the space 

d<- ■•<'.■■.     ^  - ^^u- (2.4) 

^ is the body force,I>  are the contravariant components of the 
ik 

stress force (v;' -3 f'^lh*     where P  are the contravariant 

components of the stress tensor),^. andX.  are the basis 

and conjugate basis vectors of the selected coordinate system 
U is the displacement vector and X and u are the Lame 
elasticity constants. 

The problem of integrating the system of equations (2.1) 
and (2.3) taking into account the boundary conditions is the 
fundamental problem studied in the theory of elasticity.  The 
basic boundary value problems are problems of finding a solu- 
tion of the system which satisfies the boundary condition 

'^(f. =: f on F (2.5) 

or 

U - f  on F, (2.6) 

where F denotes the boundary of the elastic body under 
consideration. 

In addition, an equally important practical problem is 
the study of various types of mixed boundary value problems. 

2.2.  As was already mentioned above, the main goal 
of the theory of shells is to develop methods which can be used, 
taking into account the specific properties of shells,to con- 
struct approximate solutions for the boundary value problems 
that were mentioned above. We now pass to the systematic 
presentation of the method that was proposed for this purpose. 

Let S and S~ be the outer surfaces, S the middle surface 
of the shell and I the lateral surface by which the shell 
is bounded.  Taking the scalar product of both members of 
equation (2.1) with some vector  and then integrating over 
the region D occupied by the shell and applying the integral 
Ostrogradskiy-Gauss formula, we obtain 
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S* S- (2.7) 

where'T, +v andrp/ _x are the stress  forces acting on Cnr;     Qn ; 
S and S~, respectively. This equality is valid for any con- 
tinuously differentiable vector field^ , when the^fe1 satisfy the 
equation (2.1).  It can be easily proved that the integral 
equation (2.7) is equivalent to equation (2.1), 

Below we will use a special coordinate system in 
which the coordinate linesx are a family of normals to 
the middle surface S.  Then the surface S will be the coordinate 
surface x3 = 0 and the radius vector^of a point on the shell 
will be described by the formula 

9i = t {x\ x1) + z' n (x\ x-), (2 . 8) 

1  2 where n  is the unit normal to S at the point (x , x ) and 
r is the radius vector at this point. 

Now let us take for3 in equality (2.7) a vector of the 
form 

«MA^Mx)  (":==0'1' •••)' (2.9) 

where P are Legendre polynomials of degree n, and Pn(x , x ) 

is any continuously differentiable vector-function on S which 
is different from zero in some subregion S' in the interior 
of S.  Then we obtain from (2.7) the following equalities: 

,_ ii),. (n - 1)     (it- :i) 

[[!  ! jVg 'J' -(2/H-m ^  :,-i-A2 v4> 3-r...H- 

s     ' 
,-,;, (ii :') (ii-i» CO-, * (2.10) 

(»= 0, 1 ...; ^*--=() nim /.•<0), 
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where 

iV, ^ (" r |) h" ] /^ir\ -. .') />„ (4) ^3, (2!ll) 

W^(«-4)^[^-(I^)^+<-1^-(I/T)^+    (2l2) 

Here a denotes  the discriminant of  the  first  fundamental quad- 
ratic form of   the middle surface 

da- --'- (7,,|;1'Wxt\      cirifi ~ Tarß, (2.13) 

i.e., 

(;   --- Ö|ia22 — "l2 ^ ^ 
(2.14) 

(ri-lf II.-3) 
1    "V'' *_/«)„   :   m    v-j  ;>. .7,2    vu   a. _Ll'Ji£j:_._(2/)   :   1)1    ^ ■'■-h2    <% 

,     (n-2) fn-4)„ ,n)     r. (2.15) 

(H-   0,  1,   ..•)• 

follows immediately from equations (2.10). 

It should be noted that this system of equations is 
exactly equivalent to the original equation (2.1).  It has the 
advantage that the unknown functions are functions only of the 

1     2 two independent variables x and x .  It disadvantage is that 
it contains an infinite number of equations.  Below we will 
show how this disadvantage can be eliminated. 
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2.3.  We will make two assumptions.  The first 
assumption is a purely mathematical assumption and Is based 
on the well-known Welrstrass theorem which says that any con- 
tinuous function can be uniformly approximated by polynomials 
on a closed interval.  On the basis of this theorem, it can 
be assumed that the approximate solution of the problem (the 
components of the displacement vector1( and the stress tensor) 
can be found in the form of polynomials of degree N in the 

3        3 variable x  (- h < x S h) . 

The second assumption imposes a constraint on the class 
of shells under consideration. We will consider so-called 
thin flat shells for which we can assume 

1 - /M-T * I,  1 - k.,x' *  1  (_/< ^ x3 < h), (2.16) 

where k, and kg are the principal curvatures of the middle 

surface S.  It should be noted that in the case when the middle 
surface is a plane, assumption (2.16) is satisfied exactly, 
since k, = ko = 0.  Hence, in the case of prismatic shells, 

(in particular for a plate) the second assumption is unnecessary 
and the theory is based only on the first assumption. 

1     2 Let us take as the coordinate lines x and x the lines 
of curvature.  Then 

ft, - r, (1 - A-jx3), Tt* --- u (1 - Avr3),  51?3 = n.    (2.17) 

Hence,   in view  of assumptions   (2.16),  we  can  take 

JK, ä T,.   9\*;«r2,    ffia = n, (2.18) 

fap » o.xn --= raTp,   ^3 --■= 0,   ^33 = 1    (a, ß = i, 2), (2.19) 

g^a[l - 2111* -f A" (x3)2! «a, (2.20) 

where H and K are the mean and principal curvature of the middle 
surface.  Therefore, formulas (2.11) can be rewritten in 
the form 
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— h 

dx3. (2.21) 

We will now use the formulas which follow from Hooke's law 

Plh=='KQSik + ^e^ (2.22) 

where 

(2.23) 

(2.24) 

In view of   (2.18),  we write 

^33 

(2.25) 

Using the formulas 

<^^4)r(/W%(^)^ (2.26) 

and representing ting the displacement vector in an infinite series 

U (./■', .i-..';) (2.27) 
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where 

Co U(^..r)={/.-4) ^f ) U (,,'.,r.^P,.^)^, (2.28) 

we obtain after some calculations 

(n) (n) (n)        (n)      (n). >)        (n)      (n)   \ 
e ih,  0 --= e j I 

.   &)3=1). ' 
(2.29) 

where 

(n) 
as 

r <") '"'a       ("' (")   ,11.. 1,-1 

(n) (n) 

(2.30) 

v is the symbol for the covariant derivative with respect to 

the metric of the middle surface S, u(n^, uW2, u^n 3, are the 

components of the vector i\       ,   i.e., 

(rO (n) (n) 
U(T

1
, a-2)= uax'1-\- u3n. (2.31) 

Further, 

V;2»<nX2ft> ^ «W(2«-i 1) ^h-^'uT, 
k--0 (2.32) 
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Now,   in accordance with the first assumption,  we 
represent  the components of   the displacement vector as 
polynomials of degree N: 

\\{x\x"-,T<) = 2hhl\\(x\x*-)Pk(^-) 
h^Q 

Hence 

(2.33) 

(») Co 
Ut^O,   e ih ~ 0 for    k > N, (2.34) 

and the sums  (2.32)   will have only a  finite number  of  terms. 
(n) 

We now represent  the    ^      ^V the formulas 

in)        (n) 
S)i «      l> '<* (2.35) 

Then, using the well-known Gauss and Weingarten formulas for 
the derivatives, equations (2.15) can be rewritten in the form 

CO *(J    i.n"»-^ («-I) 

vap
ap-^y'"-(2/i-ri)( P 

p3 ("-3) 
•/<3   1> »3 

••)- 

ex'' 

(»it ("> in- 11 (" - ••) 

,-,;,    ("--)  _ (."-♦)  o tin 

<»), 
(P-1.2; H= n, 1 V;    />iJ = 0npii /.•<n). 

(2.36) 

Key:     a.   for 
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Introducing the expressions 

P,k = X B g'" -; 2n f ^   (jf P - - fl«P, g^-1 = 0, ^3 = 1), 
(2.37) 

where 

(n) (») 
(2.38) 

we obtain 

ftV« (/r-'V'^r/P) -f MVa (/r-'V
P<;:^) -:- /.Vß (^"«V« «S -!- ] 
(«)„ (") I 

(n)    (n)   (;i) 

MVa (/i
2"^ V' « 3) - M* ~ f^o     (,,.-= o, 1 A'), J 

(2.39) 

(n) 
where M "* are homogeneous linear differential expressions 

(n) 
containing  the unknown  functions u   .   and their  first-order 

12 partial derivatives with respect  to the variables x    and x  . 
A second order system of partial  differential equations  of 
the elliptic      type was obtained in this    manner.     This system 
contains 3N + J equations and the same number of unknown 

(n) 
functions u   .   of  two independent variables.     Its order  is 
6N + 6. 

(n) 
u i 

(n)    (n) 
Now in formulas (2.32) u'. and u".  are finite sums since 

= 0, when n > N. 

It should be noted that we retained only the first N + 1 
equations from the infinite system of equations (2.15) and 
that we ignored the remaining equations. 
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2.4. When the stress forces ^3, ^ are given on the 
(n) 

lateral surface of the shell, the values of^3 ^-v can be 

calculated along the contour L of the shell using the formulas 

lL-~(n-,4)hn  J %ia,Pn(~)dx'     {«»0,1, ...)•        (2.40) 

Hence, boundary conditions of the form 

CU    CO 
Ha^* U~---U     (« = 0, 1 A). (2.41) 

can  be added to the system of equations   (2.36)   and  (2.37). 

When  the displacement field      is given on the lateral 
(n) 

surface,   the contour values of  It    can be calculated  in exactly 
the  same manner.  Hence,   boundary conditions of  the  form 

'u = u)ara ^(« 3n = fn     (« = 01,..., Ar). (2.42) 

can be added to the system of equations (2.39).  By considering 
the projections on the coordinate axes,it is easily seen that 
the boundary conditions (2.41) and (2.42) contain 3N + 3 
equalities, respectively. 

(n) 
The following identity (it is assumed that F 1 = d plays 

an important role in the proof of the uniqueness theorem for 
the solution of these boundary value problems 

M  ,.  ^  1  rr;.-^V*> /<?.   (2.43) 
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>:.'■    wam ^^v.^.^^^>l^w^^t1l^wr/;^^W^:W.n!♦>VW'^-^ 

Using this equality, uniqueness theorems are easily proved 
for the basic boundary value problems (2.41) and (2.42) and also 
for a number of other problems of the mixed type (I. N. 
Vekua, 1965).  Existence theorems can be proved with the aid 
of integral equation methods (ibid.).  The uniqueness and 
existence theorems show that the theory that was constructed 
is internally consistent.  This property is a necessary 
attribute of any correctly constructed mathematical theory 
for a physical problem. However, the applied significance 
of these theorems must also not be underestimated.  The quest 
for practical techniques for the solution of boundary value 
problems is facilitated on the basis of these theorems.  In a 
number of cases, the method of integral equations can also be 
used as a practical method for constructing an approximate 
solution for the problem. 

In practice the integration of the system of equations 
(2.36) and (2.37) is, of course, a difficult problem.  The 
degree of difficulty obviously increases considerably as 
N increases. 

However, in the case of thin shells we can restrict our- 
selves to approximations of order N = 0 and N = 1.  Therefore, 
we will consider them in greater detail.  For a plate and 
spherical shell of constant thickness,the systems of equations 
obtained above can be integrated in explicit form. Approxima- 
tions of order N = 0 correspond to the case when the patterns 
of the stressed and deformed state are completely independent 
of the coordinate x , i.e., are the same along surfaces which 
are parallel to the middle surface.  This case of the stressed 
equilibrium of a shell is in fact torqueless.  But unlike in 
classical torqueless theory, in the N = 0 order approximation, 
we obtain a concrete system of differential equations which 
is compatible with pll physical boundary conditions (in the 
given case with three conditions).  It must be emphasized that 
here we havf an elliptic system of equations which is equiva- 
lent to one sixth order elliptic equation, and that in classical 
torqueless theory the problem reduces to a second order 
elliptic equation. 

For N = 0 the system of equations (2.39) takes on the 
form 

- 2>Xr' (hlfn) - 2i\V [hi/1, u) - nUlS^u -;- F" = 0   (ß = 1, 2), 

n. V, {hS*ii) - U ((?.- 211) //- - fiA'] n -f 

- 2U!\\ir'- -;- 2}i//?l\>?1 - - jiV, {hh^j?)--F = 0. ' 
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I 

In the case of a plate of constant thickness (h = const) 
the system of equations (2.44) simplifies considerably and 
takes on the form (in a cartesian coordinate system) 

"a 

h 

(2.45) 

The general solution of the system of equations is described 
by the formulas 

2.u («, -f i«2) - y- «T (2) -- f' (-) - ^ (=) -r 

2nU-x{s)-fX^—^-JJ^lnU-sl^^n, 

(2.46) 

where cp, i|; and X are arbitrary analytic functions of the variable 
z = x 4 iy 

x- 
Jl-f3n 
A.-(-H 

.3-40. (2.47) 

The integral terns in formulas (2.46) describe the particular 
solution of the nonhomogeneous system (2.45), and the terms 
outside the integrals,the general solution of the corresponding 
homogeneous system oi aqu.tionö.  The presence in formulas 
(2.46) of three arbitrary analytic functions cp, \|i and X shows 
that the three boundary conditions can be satisfied.  In 
addition, formulas (2.46) make it possible to construct an 
infinite set of complete systems of particular solutions of 
system (2.45), with the aid of which various boundary value 
problems can be solved in regions with a special form (circle, 
circular ring, etc.).  These particular systems of solutions 
can also be used to approximate the solutions in regions of 
any form. 
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It can be seen from (2.46) that the boundary value problems 
for the plate ieduce to the solution of a plane problem 
and the Poisson equation.  The well-known methods and results 
of N. I. Muskhelishvili can be used for their solution. 

When the homogeneous system of equations (F, = F« = 0) 

is considered, the averaged components of the stress tensor 
p a can be described by the formulas 

where the function cp satisfies the equation (I. N. Vekua, 
1955, 1965) 

A-'A.Vi -■■2—- -- - 2 —-^ - A (A/r') As ,- 

i_ I ^"'l ^i.^. :-::'l. ±L .:. 2^^- ^A 
— »1 \ .■ -   ■,, -      ,-  ■".■-    - I'J r-j   ilj- c;// 

j.A^{^-\±'^::--\ ^..-i^-L^A.  ci.  (2.49) 

For h = const (plate) we obtain the biharmonic equation 

AA., -Ü. (2.50) 

whose general solution, as is well known, is expressed in 
explicit form. 

The study of a plate of variable thickness of the 
form 

h r-~~ ktf**-»u    (/i0, a, 6 = const)'. (2.51) 

(I. N. Vekua, 1965) is also of interest.  Here equation (2.49) 
takes on the form 

AA(p-2a'^l-2/>'^-r^-(«= .//)A<ph 
Ox l):/ 1 — 0 v       '   r ' 

' 1 — O \   iljr* OIJ- ox on} 

(2.52) 
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The general solution for this equation was constructed by 
A. R. Khvoles. 

For a spherical shell of radius R the system of equations 
in the displacement components takes on the form 

M Va (A-V^) -;  flVa {/'V^') -:  ^ (//Va"a) - 7^ "P "f 

.Ü^V^/^r^V^H-^-O   (ß-1,2), 

MVa (AVu) ~ ^^ « - ^yr^' Vftu- -i Va (Ä«a) i- ^ =- 0. 

(2.53) 

We will consider the case of a. homogeneous system of 
equations (F1 = F^ = F = 0) and constant thickness (h = const). 
Then the general solution of the system has the form 

u--W, "-Wj,      «H- iU2 = 
dU 

dz (2.54) 

where 

U = 2H (wi - • u>a + iwjj. (2.55) 

Here w, , Wg, and w^ are arbitrary solutions of the equations 

(V2 + A-f) w - 0  (t = 1, 2, 3), (2.56) 

where 

V 

(1-0) ÄS '   a- «« ' (2.57) 

2 
and v is the Laplace operator on a sphere of radius R.  In 
an isothermic coordinate system it has the form 

(2,58) 

3 = t?T <.-'*. (2.59) 
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The general solution of an equation of the form 

(V- + A5) w - 0 (A-2 - const) (2.60) 

is expressed by  the  formula   (I.   N.  Vekua,   1948) 

u; = a0Pn{co*0)-^Hl)(:t)-a>t(zt)\Pnlt~{l-t)cosQ]dt, ^  61) 

where n(n +1)   = k' a0 is  an arbitrary constant and  i and  $, 

are arbitrary analytic functions of z.     When w  is a real 
function,   a0  is  a real constant  and  $„,     =  $.     In the case under 

consideration w,,   Wg and w3 are arbitrary real  functions. 

Therefore,   the general solution of  the system of equations   (2.53) 
for h = const  is expressed  in terms of  three arbitrary analytic 
functions.     The  three boundary value problems are satisfied 
by an appropriate selection of  these functions. 

A particular solution for h = const can be constructed in 
explicit  form also for the nonhomogeneous system of  equations 
(2.53)   (I.   N.   Vekua,   1965). 

2.5.     We will now survey  the results   pertaining to 
the case of  the  approximation of  order N =  1   (I.  N.   Vekua, 
1965) . 

The components of  the stress  tensor and displacement 
vector in  this  case can be written in  the form 

,*&       1   Tafi ,   3  J;
3
   ^ß ivxp •    TaP   '  CaP 

1   ==JhJ +llfö ' 
p33 = 7'i 

(2.62) 

[/««l^ + l^«,     IP^-JU + JX*V, 

(2.63) 
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where 

Ta --=-- 2\\.hi'1,    T -■=-- Ue -■- Gfi^r, 

5° ^ 2\ihat\*, 

(2.64) 

rr-Uvh'-rb^), 

e = ^--3r«VaM'-2ff«-3r, 

(2.65) 

The  equilibrium equations have the  form 

VaT^-b*r - Xe = 0 (ß = 1, 2), 

var-rb^T^-rx^o, 
VaS^-b^-v^o (ß=i.2), 

Va5a + tap5aß-l' = 0, 

(2.66) 

6 6 
where X  ,   X,   Y   ,   Y are  components  of  the  vectors 

-A 
h 

(2.67) 
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We will now consider the case of the homogeneous system 
6        6 

of equations (X = X = Y = Y = 0) . Then the system of equations 
(2.66) can be integrated in explicit form for a plate and a 
spherical shell of constant thickness (I. N. Vekua, 1965). 
In both cases the displacement vector can be described by the 
formula 

U - grad f  r n X grad /' -r urn. (2.68) 

whe&e grad is taken with respect to the middle surface and 
P, P and w are scalar functions expressed in terms of the 
formulas given below. 

1.  In the case of plate of constant thickness 

? = TIT~(=/.- =/.) : ^:!'"J. (2.70) 

rc = i-(H-i-3xV), (2.71) 

where 

"-(iv; ^i-v^'iv  ='!>.), (2.72) 

^;'/--yrf~^ (/''-■-/O. (2.73) 

f,,   fn,   ^-i   and  $2 are arbitrary analytic  functions of z,   and 

X and cp are arbitrary  solutions of  the equations 

^/---(TTTfÄTZ^O.      \v>~-Li.,^ö. (2.74) 

Finally 

^3- --=-0,4- HLzülü ,!,-•. (2.75) 
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The general solution of an equation of   Lhe form 

A» -K-H   - 0, (2.76) 

2 
where X  is a real constant is described by the formula (I. 
N. Vekua, 1948) 

u = IV[/i:)_|/{n-tlc(h] 'J^-/))<//],        (2.77) 

where f is an arbitrary analytic function of z = x + iy. 

Thus the general integral of the system of equilibrium 
equations for the plate in the case of the N = 1 order 
approximation contains six arbitrary analytic functions.  The 
six boundary conditions can be satisfied by an appropriate 
selection of these functions. 

2.  In the c^e of a spherical shell of constant thickness, 
the functions P, P and w have the form 

/^l^V. + C^V^'VrQ^ (2.78) 

l'~~nH^-l-wh):-jX
:iI{{üiwi~-fiö>t-i), (2.79) 

w~ ^ If {Asr^ AM,  ■ Asr3-: ÄJrJ ~~x"{ir2~-ir3~vj, (2.80) 

where A., B., C. are defined constants depending on the 

elasticity Poisson ratio a  and the ratio h/R.  With regard 
to w., these are arbitrary solutions of equations of the form 

(V2 + A?) «•;=--0  (i - 1 5), (2.81) 

2 2 where v is the Laplace operator on the unit sphere and k. are 

constants which have been determined.  With the exception of 
2 2 ko , all  remaining k.   are real constants.     Therefore w.(i  ^ 3) 

are real  functions and Wo  is a complex single-valued function. 

Thus,   formula   (2.68)   contains,   in final  form,   six arbitrary 
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analytic functions.  Hence, it can satisfy the six independent 
boundary conditions.  For example, in the case of boundary 
value problem (2.41) the five boundary conditions from classi- 
cal moment theory are used (the normal and tangential forces 
are given along the boundary, the shearing force, the torque 
and bending moments) and an additional new boundary condition 
which is not considered in classical theory, namely a condi- 
tion of the form 

S0) --- S*!* =- /,. (2.82) 

We will clarify the physical meaning of the last condition, 
According to formulas (2.62), the stress forces 

V^--4:'Tf^(ß^^r^Kh-{~r%^^^SX)n.       (2.83) 

are acting on the transverse area £, with the normal 1. From 

the above it can be easily seen that the forces 

(2.84) 

are acting on each half of the area Z-   which is symmetric with 

respect to the middle surface. Thus, the total force 

T^h~\- T*kn (2.85) 

is acting on the area Z, , and the force couple 

^S^xt + ^SXn, —Is^iJt—^SXn) • 
(2.86) 
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The last couple is a sum of three couples 

±(SX, ~SVa)n. 

(2.87) 

The first two couples (with an accuracy up to a constant factor) 
coincide with the bending and torsional couples of classical moment 
theory, and the last is a couple of forces oriented in opposite 
directions and parallel to the normal of the middle surface 
which we will agree to call the transverse couple.  Its moment 
is zero.  If we adopt the hypotheses of the rigidity of the 
transverse areas, clearly the mechanical effect of the action of 
such a couple reduces to zero.  In fact, the transverse areas 
undergo a deformation.  Therefore, there is no a priori justifi- 
cation for ignoring  the transverse couple.      ~- 

The N = 1 order approximation differs from classical moment 
theory only by the fact that an additional transverse couple 
of forces is introduced into the discussion, which is usually 
ignored in classical formulations and considered as a higher 
order infinitely small magnitude.  It is true that in magnitude 

a 
the force S 1 may be negligible.  However, the consideration 

of the transverse couple of forces is important theoretically. 
By using it, it is possible to construct a noncontradictory 
variant of the theory of shells which is compatible with the 
corresponding boundary conditions. This theory is a modifica- 
tion of classical moment theory, but its advantage is that it 
is free of the internal contradictions which occur in classi- 
cal formulations.  It should also be noted that the more complex 
mathematical apparatus does not lead to new essential difficulties. 
This can be seen on the examples of a plate and a spherical 
shell. 

§3. Torqueless Theory of Shells 

A characteristic feature of the torqueless (or membrane) 
theory of shells is that it leads to a statically determinate 
problem.  In the final analysis this problem reduces to a 
first order system of partial differential equations in two 
unknown variables.  The type of system of equations is deter- 
mined by the sign of the Gaussian curvature K of Ihe middle 
surface of the shell.  When K > 0, we have a system of the 
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elliptic type and when K<OorK = 0, a system of the hyper- 
bolic or parabolic type, respectively. 

3.1.  The membrane equilibrium state is a special 
case of the general equilibrium state.  The condition that it 
occur is described by the equality 

JJxu^Uuds^o, (3 ^ 

where^   is  the reduced loading surface of  the shell, 

j= (gdi3-f$(,l+)+ $("-). (3.2) 

JC  is  the load on the contour and ^ is the displacement vector 
when the bending of the middle surface  is  infinitesimal,   i.e., 
•y, satisfies  the equation 

dWdx---0. (3.3) 

Equation (3.1) must be satisfied for any continuously differen- 
tiable vector field "M-, satisfying equation (3.3).  Relation 
(3.1) relates organically the torqueless theory of shells 
to the theory of the infinitesimal bending of surfaces.  This 
relation Is very useful.  The joint study of the problems makes 
it possible to study them more fully and in greater depth. 
The mechanical meaning of equation (3.1) is easily understood. 
It says that a necessary and sufficient condition that the 
membrane stressed equilibrium state be realized is that the 
work of the external load on the displacement corresponding to 
infinitesimal bends of the middle surface of the shell be 
zero. 

Clearly, the wider the class of vector fields IC,   satisfying 
equation (3.3), the more constraining the condition (3.1). 

In the case of a closed convex shell, this equality be- 
comes the well-known condition for the static equilibrium 
of an absolutely rigid body.  It Is known (I. N. Vekua, 1965) 
that such a shell is rigid, i.e., the displacement field 
has the form 
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U - t X fi !- G (Ü, 6 - const). (3.4) 

In other cases equation  (3.3) has an infinite set of 
linearly independent solutions.  Therefore, condition (3.1) 
will only be satisfied for a particular class of loads (J, I) 

on the shell.  In spite of this, the membrane theory 
of shells is widely used in engineering calculations.  The 
point is that the shells in engineering structures are 
sufficiently rigid in the majority of cases.  Therefore, if 

two external loads (j. £) and (j, J) are close, the statemant 

can be made that the corresponding stress fields will also be 
close.   (Below we will define exactly the concept of the 
closeness of two loads.)  If one load (J, Z)  satisfies the 

torquelessness condition (3.1), it can be assumed that the 

shell is practically torqueless and close to the load (J-, Z). 

This fact makes it possible to apply torqueless theory  to 
a very large class of engineering problems. 

If, due to practically insignificant variations in the 
internal load, it is possible to obtain another load which 
satisfies the torqueless condition, we will say that the 
given load admits membrane regulation. At first sight, the 
general problem of membrane regulation has a relatively un- 
defined character.  However, as we will see below, it can be 
formulated completely mathematically. 

Below, we will focus our attention exclusively on convex 
shells (K > 0) .  Then the problem reduces as we already 
mentioned above to an integration of a first order system of 
partial differential equations of the elliptic type. 

The results presented below were obtained by the author 
in connection with the development of a general theory of 
complex-valued functions satisfying the so-called generalized 
system of Cauchy-Rieman equations (I. N. Vekua, 1952, 1959) 

 au -- bv -- Ö, 
ox      nn   ■ 
t/U 

— cu -- dv=--0.   f (3.5) 
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The  theory of functions  of  the  form w = u + iv has a 
great deal  In common with the classical theory of analytic 
functions of a complex variable z  = x + ly.     Therefore,   it Is 
called  the theory of generalized analytic functions. 

The membrane equilibrium equations have the form 

It  is known that on a surface with a positive Gaussian 
curvature a conjugate  Isometric net of coordinate lines can 
be  introduced relative to which  the coefficients of  the 
second fundamental quadratic  form have the form 

bu ~ ^22,    ^i= '-'  0. (3.7) 

Then the orientation of the normaltj,to the middle surface can 
be selected in such a way that the equalities jHi _, ^   - Y'aK',        hold 

where a is the discriminant of the corresponding metric form 
of the middle surface.  The third equation in (3.6) gives 

pa = _ jn !XL.. (3.8) 
"I a A.' 

Now, introducing into the discussion the complex stress 
function 

1 _ / u u>'~aK>'*iT-~ir^1y-~xi (3<9) 

the first two equations in (3.6) can be written as a single 
compl*- x equation 

™L-.Bv'^F't (3.10) 
0z 
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where 

An- i?=;T(ri-i-l1-:-2rjI).,i(nJ_i7i_2r;i), (3.11) 

F'^UräKu^±[^)-iahlHX^iX% (3.12) 

and r^g are  the Chris toff el    symbols of the second kind, 

~~H^-'^)-     i-Hi-'i)- <3.13) 

Thus,   having found the solution of equation  (3.10),   it 
is  possible  to determine from  formulas  (3.9)  and  (3.8)   the 
corresponding field of stresses. 

Thus,   the problem of determining the torqueless  equilibrium 
stressed state field of a convex shell reduces to  the  integra- 
tion of a  nonhomogeneous generalized Cauchy-Rieman equation 
(3.10).     Hence,   the problem  is a  topic in the  theory  of 
generalized analytic  functions  to which an extensive  literature 
is  devoted at the present  time. 

It should    also be pointed out  that equation     (3.3)   can be 
writeen in complex form.     It   is  equivalent to  the homogeneous 
complex equation 

dz (3.14) 

which is  the conjugate of   (3.10).     Here w is a complex valued 
function given by the formula 

tit — m, , ii    » 
li'=—====■      ("a = Ura). .„   1    . 

1 o i A' (J.io; 

The vector field *U,   satisfying equation  (3.3),   is described 
by   the formula 
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U = Re{-2A-,V(=)^-i--l7r-^lK«A'V(=)]n}, (3.16) 

where'rt. is  the unit normal  to  the middle surface of  the  shell. 

For two arbitrary solutions of equations  (3.10)   and  (3.14), 
the identity 

Ro[^F'u>dXd,j—~r\w'wdz)~01 (3.17) 

is satisfied where D is  the region on the plane z onto which 
the middle  surface S  is mapped and  T is  the boundary of  the 
region D.     It can be proved that equalities  (3.1)  and 
(3.17)   are equivalent. 

It  follows from  (3.17)   tuat if w and w'  satisfy the 
homogeneous equations 

2Z- - B'w = 0,      —-- Bw' = 0, (3.18) 
d:. öz 

the identity 

MlH""'"'^)^- (3.19) 

is satisfied.  The force acting on the element of area Z, 

whose width is ds with the normal L, is described by the formula 

Xa.d^^^w'^f^X^ds^l^^yt,        (3.20) 

where 

t dn 1 ?, ^"> = 3ri7 ;<n^-2r(W-rT«i)- (3.21) 
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Here k and T are the normal curvature and the geodesic ro- s     s 
tation of the middle surface in the direction f , perpendicular 
to I, and the normal is oriented in the concave direction 

of the surface ." = l ^ ')• 

From (3.20) we obtain easily 

u-' (~Y^ -Ki;A[iVK^^)T(::)-ihJCs>-.^x'j, (3.22) 

where T,,,^ and T/, v are the normal and tangential stresses 
acting on E1. A number of important corrollaries can be obtained 

from this equality. 

It can be seen immediately from equality (3.22) that 
w'dz is an invariant, i.e., a quantity which is independent 
of the coordinate system selected on the middle surface. 

Equality (3.22) also shows that its right member cannot 
take on any givon (complex) values along the boundary of the 
shell.  The point is that the function w' satisfying the 
generalized nonhomogeneous Cauchy-Rieman equation (3.10), has 
the property that generally it satisfies on the contour 
either the given real or imaginary part.  Therefore, the 
values w' cannot be given arbitrarily on the contour of the 
region (more precisely the value must not be given arbitrarily 
even on any arbitrarily small arc of the boundary).  From 
this it follows that for a given load (j, S) a necessary and 

sufficient condition for the torqueless stressed equilibrium of 
a shell is that the normal and tangential forces T,,,* and 

T/, >. and also the normalized surface load X satisfy (Is) 
the equality (3.22), i,e., the expression 

-K-1'* [(VK ~ iTs) Tllh -ih-J^ -f -^ A' J (i|i)2        (3 . 23) 

must take on the boundary values of a solution of equation 
(3.10). 

This requirement can always be satisfied by selecting 
appropriately the boundary values of T(    .,  T,     .   and X. 
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If a load (#, S), is obtained which is close to the given external 

load (.V, £),this means that the given load admits boundary 
membrane regulation. A particularly important case is the case 
when membrane regulation is achieved by selecting appropriately 
the normalized normal load X along the edge of the shell. 
This problem has been studied thoroughly in the case when the 
normalized surface load has a potential, i.e., 

3f0 - A'giv.'!, V + AT, (3.24) 

where V is a scalar, and grad^V denotes the gradient of the 
scalar V on the spherical image of the middle surface.  For 
this load, it is characteristic that the right member of 
equation (3.10) vanishes (F' =0), i.e., 

A-T^TH^ ^jfsMV- (3-25) 

Thus, the problem reduces to the following generalized Rieman- 
Hilbert problem:  to find a solution w' of equation (3.10) 
satisfying on L the boundary condition 

Imjy (~)2]= -A'-^'W^-W^.l- (3.26) 

When this problem has a solution, the boundary value of the 
unknown potential V is determined from the formula 

IK1'* 
'•=-£-t>*k(£n-Trr."'- (3.27) 

When the boundary value problem (3.26) has a solution, 
the problem of the membrane regulation of the load (j. Z) . 

in the manner indicated has an infinite set of solutions. 
Formula (3,27) defines the values of the unknown potential 
only on the boundary of the shell.  In the interior of the 
region, the potential V can be continued arbitrarily, and it 
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is sufficient to ensure that the continuation of the function 
has piecewise continuous first order derivatives.  In addition, 
clearly, it is important that the load whose form has changed.» 
differ little from the original load.  This can be achieved 
by taking into account that the function V can be continued 
in such a way that it is identically zero in the interior of 
an arbitrarily narrow boundary strip, which can be achieved 
when max |v | in the region is less than or equal to |v | 
on the boundary.  It can be seen from formula (3.20) that 
the additional stress field corresponding to the additional 
potential load X0, will be described by the formula 

£»() - ATShV). (3.28) 

Hence, in the exterior of the boundary strip this field is 
identically zero. 

Thus if membrane regulation is possible through the 
loading of the shell by forces of type (3.24), this can be 
achieved so that the real stressed state pattern is only 
distorted inside a narror boundary strip.  (Of course, we 
are assuming that the shell has a sufficiently high rigidity.) 
This effect is usually called the boundary effect. 

What must still be clarified is the question whether 
membrane regulation is always possible by means of adding 
a potential load.  This depends on whether the Rieman- 
Hilbert problem (3.26) has a solution. The last question 
has been studied thoroughly by now.  Certain results pertaining 
to this question are available (I. N. Vekua, 1959). 

A study of problem (3.26) shows that a convex shell with 
two and a larger number of holes (m > 2) always admits membrane 
regulation by means of additional loading by forces of the 
type (3.24).  If the shell is bounded by one (m = 0) or 
two (m = 1) closed simple smooth contours, it generally does 
not admit this kind of membrane regulation.  It is only 
possible in exceptional cases. 

For simply and doubly connected shells, it is necessary 
to vary not only the normal surface load X but also the normal 
and tangential forces on the boundary. 

It can be seen from (3.2) that the normal surface load 
X depends on the thickness h.  Therefore, condition (3.27) 
can be satisfied in a number of cases by selecting appropriately 
the thickness h(x, y) of the shell along its edge.  In other 
words, in such cases the membrane regulation of the shell can 
be achieved by making the shell thicker and thiner along its 
boundary.  It is well known that this method is often used in 
practice. 
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If the body force o reduces to gravity, we will have 

X = Qv + X+ + X_, (3 . 29) 

where Q = 2pYh, v is the projection of the unit normal 
onto the vertical direction at the corresponding boundary 
point, Q is the weight of an element of volume of the shell 
calculated per unit area.  In a number of cases, membrane 
regulation can be ensured by an appropriate selection of the 
weight Q of the shell.  The weight can be varied both by 
an appropriate selection of the thickness h and also by 
varying the density  p of the material of the shell along 
the edge. 

3.2.  In the study of the membrane regulation problem, 
it is useful to consider a Hilbert space H, whose elements are 

the loads c = (*• '&)•  Defining the scalar product by the formula 

(C. e.) =-- J J X.i', dS -r \ S,^ds, (3.30) 

we introduce  the  following norm and distance: 

|M1 ~ I (e, f) I"8'    d^eJ^Wei-etW. (3.31) 

Let H0 be a subspace of the elements (V, £), satisfying condi- 

tion (3.1).  Then, to each load, ,e - (.*, £)   we make 

correspond the nonnegative number 

c/(e)-min||e-eoil- (3.32) 

Since, H0 is a closed subspace of the space H, an element 

e^ exists in H0 such that 

d(e)~--\\e-e*\\. (3-33) 
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Clearly,   the condition for  the regular membrane state  is   the 
equality d(e)   =  0. 

The number  d(e)   can be considered as a measure of  the 
degree of  deviation of  the  load . t- —'(.¥, £)      from the set of 

membrane loads. If the number d(e) is sufficiently small, 
the load   (i", Z)   can be considered as a membrane load for all 

practical   purposes. 

Let H    be a subspace whose elements are the couples 

g  = (U, U''),     where "J^ is the displacement vector during infinites- 

imal bending of   the middle  surface and^X. is the  tangential 
component  oflX along the boundary.     Let 7^-   be a complete sys- 

tem of particular solutions of equation   (3.3)  satisfying  the 
conditions 

{Si, Kj) '-bij'   Si = (W/. ^J)) (3.34) 

(complete  systems of particular solutions "U.  of equation   (3.3) 
«J 

can be constructed according to formula (3.16), taking the 
complete system of particular solutions of equation (3.14) 
as  the w.).     Then,   it  is easily proved  that 

d(0=^4 (3.35) 

where c. are the Fourier coefficients of the load (.V, £), i.e., 

0=JJni;^-rj£lV/^. (3#36) 

From  (3.35)   it  follows that c    -* 0 when  n - co. n 

Thus,   the  torquelessness condition   (d = 0)   is equivalent 
to  the requirement 

„-,0   (,»1.2,...). (3-37> 
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However, in practice it is difficult to verify whether an 
infinite number of equalities (3.37) is satisfied, especially 
in those cases when the loads are given not in terms of 
analytical expressions but in tabular or graphical form.  But 
in practical problems, it is not necessary that all equalities 
(3.37) be satisfied exactly, and it suffices to ensure that the 
number d(e) is small, i.e., that some finite number of the 
first equalities be satisfied. 

q  --U (y - 1. 2 «). (3.38) 

Sin: e c     - 0 when n  - ^  ,   for  the given  e  - 0    an 
n = n(G7 can always be  found such that 

<!{■)     ^ <•■<<•. (3.39) 

Thus,   to ensure  in practice the membrane equilibrium 
state of  the shell,   it  is sufficient  if a  finite number 
n of equalities  of  the  type  (3.38)   is satisfied.    Clearly, 
always n > 6, since equalities   (3.38)   must necessarily con- 
tain six static  equilibrium conditions  for  the shell as an 
absolutely rigid body. 

It  is  important  to note  that it  is  not necessary to 
require  in equalities   (3.38)   that  the vectors ft.-  be orthogonal. 

ü 
When conditions (3.38) are satisfied for an orthogonal set 
of vectors 1L , they will also be satisfied for any linear 

combination of th^se vectors.  Therefore, it is not necessary 
to use a complex and difficult orthogonalization process in 
practice. 

We will describe an additional practical way of ensuring 
membrane regulation.  This is loading the shell by point 
surface concentrated forces (I. N. Vekua, 1960). 

3.3.  The practical construction of a torqueless 
field of stresses is related to the solution of the generalized 
Cauchy-Rieman equation (3.10).  This problem is simply solved 
in the case when B = 0.  The nonhomogeneous Cauchy-Rieman 
equation is valid. 

dir'        r„ 
-T-f (3.40) 
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and its  general  solution is described by  the formula 

«•WW-TÜ-^:       ■ (3.41) 

where f is an arbitrary analytic function of z = x + iy. 
The case B = 0 occurs for second order algebraic surfaces. 
Therefore, it includes a very large class of problems that 
are important in engineering applications.  Using the well- 
known methods for the solution of boundary value problems for 
analytic functions of a single complex variable, a number of 
applied problems can be studied.  In individual cases  (for 
example, for circular regions) their solutions can be ex- 
pressed in explicit form. 

In particular, the case of a closed convex shell loaded 
by forces of the form (3.24) should be considered. Such a 
load and the corresponding stress field is determined in 
explicit form: 

X^-A'^n- --J4(A'
SI
"
TS§)

' (3.42) 

The last  case occurs,   for example,   when  the normalized normal 
surface  load is  proportional  to the principal  curvature at  the 
corresponding point of  the middle surface: 

.Y - rA'       (r-const). (3.43) 

Then, the potential V = const and the surface load ^0 has the 

form 

.Vo  r/üi. (3.44) 

and the corresponding stress field is described by the formula 

X,/, - rA"^,,,-. -4-r(/.M-rT^). (3.45) 
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Let us assume that the force XQ^ described by formula 

(3.42) has the direction 1. Then T = o, i.e., the middle s 
surface is a sphere.  Thus, when the closed convex shell is 
loaded by forces of type (3.24) the corresponding forceX/i\ 

at each point of the middle surface has the direction I 
if and only if the middle surface is a sphere.  In this 
case formula (3.42) has the form 

Z{b~~~RXU (3.46) 

where R is the radius of the sphere. 

3.4.  We conclude this survey by the following re- 
marks, which, in a number of cases, can facilitate considerably 
the practical solution of concrete problems.  Equations (3.10) 
and (3.14) are invariant with respect to a projective 
transformation of the space (I. N. Vekua, 1959). Therefore, 
it is easy to obtain tie transformation formulas for the 
displacement and force fields during the transition from the 
given shell to another shell whose middle surfaces are 
projectively equivalent. Using these projective properties, 
it is possible, having solved the problem for the given 
shell,to construct solutions of the corresponding problems 
for projectively equivalent shells.  In view of this, for 
example, many problems for ellipsoidal shells can be reduced 
to problems for a spherical shell. 
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In the first stage of development, the dynamics of deformable 
solids studied elastic bodies. 

The equations of motion of elastic bodies were already 
derived in the beginning of the last century.  First they were 
used for the solution of one-dimensional problems in the 
dynamic  tension-compression and torsion of rods, the 
flexure ot oeams and vibrations of circular cylinders and 
spheres. Only at the beginning of our century were these equa- 
tjcns applied to the solution of seismic problems. 

Seismology requires the study of laws for the propagation 
of waves from the earthquake focus to the earth's surface and 
of  those changes which the waves undergo during reflection 
and refraction on separation boundaries.  The maximum informa- 
tion about the mechanism of the focus must be obtained from 
observations of movements on the earth's surface, in parti- 
cular, the energy liberated during an earthquake must be 
estimated.  The study of the structure of the earth's core 
(or its surface layer) on the basis of observations of the 
propagation of wave perturbations, is very important. These.t 
problems are  usually solved on the basis of representing 
the soil as an elastic body. 
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After World War II, as a result of the scientific 
technological revolutionjthe dynamics of deformable rigid 
bodies changed drastically. This applies primarily to the 
theory of loads of short duration acting on the body. The 
effective use of an impulsive load (using an explosive 
material, an electromagnetic or electrohydraulic effect, 
etc.) brought about a genuine revolution in such technological 
processes as riveting, molding, welding, hardening and 
cutting of metallic billets. The use of explosive technology 
in useful excavations and oil drilling, in the excavation 
of trenches and depressions in soils in seismological research 
in the building of dams in the soil, the reinforcement of soils 
and the drilling of holes is just as important.   The evalua- 
tion of the destruction during an impulsive load (splitting- 
off, the effect of earthquakes and explosions on structures, 
etc.) became important. 

In the engineering applications that were mentioned above, 
usually the plastic or viscous properties of the materials are 
of fundamental importance.  These properties also turned out 
to be important in the description of the behavior of a number 
of new materials (in particular polymers) whose characteristics 
are highly sensitive to changes in the temperature and the 
deformation rates.  Heterogeneous and reinforced media, such 
as soils, fiberglass plastics, reinforced concrete, etc. 
display even more complex properties.  It is not surprising 
that recently the center of gravity of the investigations in 
the branch of mechanics under consideration shifted to the 
dynamics of nonelastic media. This survey does not claim 
completeness. It discusses mainly those branches of the 
dynamics of deformable solids which reflect predominantly 
the scientific interests of the authors.  The authors use 
studies which they published earlier or in which they participated 
(Kh. A. Rakhmatulin and G. S. Shapiro, 1955, N. V. Zvolinskiy, 
1965, N. V. Zvolinskiy, B. M. Malyshev and G. S. Shapiro, 
1966, M. I. Reytman and G. S. Shapiro, 1968). 

§1. Dynamics cf Elastic Bodies 

The successes in the dynamics of elastic bodies in the 
Soviet Union were, based to a certain extent on the achieve- 
ments of scientists in prerevolutionary Russia.  The first 
studies in general integration methods for the equations of 

T~.    References in the literature on engineering applications 
of impulsive loads can be found, for example, in the 
bibliography in the survey by N. V. Zvolinskiy, B. M. 
Malyshoev and G. S. Shapiro (1966). 
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dynamic elasticity  theory were already made  in   1831 by M.  V. 
Ostrogradskiy,  who constructed  (at  the same  time as S. 
Poisson)   the solutions  for  the equations of motion with arbitrary 
initial conditions.     Integrating solutions of   the simple harmonic 
type|M.  V.  Ostrogradskiy  obtained a solution corresponding to 
the propagation of  two  types of waves  in an  infinite elastic 
medium:     expansion waves and   distortional waves.     When waves of 
the first  type are considered,   compressions,    tensions and 
displacements occur  in  the medium,   but there are no rotations. 
Waves of the second  type  cause displacements and rotations with- 
out volume expansion. 

Relatively  little attention was given to  the dynamics of 
an elastic body in prerevolutionary    Russia.     In  the beginning 
of   this century>A.  N.   Krylov studied the propagation of elastic 
waves in cylindes and rods  in connection with problems of the 
stressed state   in barrels  in artillery guns and  projectiles 
during   fire.        S.   P.   Timoshenko developed  the  theory  taking 
into account  both local  and general deformations  during the 
impact of a ball  on a beam.    A.   N.  Dinnik studied dynamic 
stresses in elevator  ropes. 

In the first years  after  the Revolution,   the studies of  Soviet 
scientists    were    primarily devoted to the solution of special 
important,   one-dimensional  problems.     Ye.   L.   Nikolay 
(1919)  studied the movement of a string of variable  length. 
His  study was  the starting point  for many subsequent studies 
in  this field  that were applied to  the calculation of elevator 
ropes in mines.    A detailed survey of  these studies  is avail- 
able  in the book by G.   N.   Savin and 0.  A.  Goroshko   (1962). 
N.   M.   Belyajev (1925)   laid  the  foundation  for  the  development 
of   the dynamic stability  theory of motion of elastic systems 
by  solving the stability problem for a rectilinear prismatic 
rod with hinged supports  compressed by a  longitudinal  harmonic 
force  that varied over  time.     The results of  the subsequent 
studies in  this field are summarized in the monograph by 
V.   V.  Bolotin   (1956) . 

A new stage  in  the  development of   the plane and three-dimensional 
theory of the propagation of elastic waves began  in the 30's 
which was connected with  the achievements of mathematicians at 
the Leningrad University working in the Seismological  Institute 
(now the Earth Physics  Institute)  at the USSR    Academy of 
Sciences.    The Mathematical School  in  this  Institute whose 
outstanding representatives in the past were P.   L.   Chebyshev, 
A.   M.  Lyapunov,    A.  N.   Korkin and V. A.   Steklov,   achieved 
outstanding results  in the solution of mathematical problems 
related to theoretical problems  in natural sciences and 
engineering.     The outstanding representatives of   the mathematical 
school of the Leningrad  State University and  their followers^ 
V.   I.   Smirnov,   S.   L.   Sobolev,   V.   G.  Gogoladze,   S.   G.   Mikhlin, 
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Ye. A. Naryshkina, D. I. Sherman and others were engaged in 
work in the Seisraological Institute, and published their studies 
in the "Trudy" (Publications) of this Institute.  After World 
War II, studies in the propagation of elastic waves were con- 
tinued at Leningrad State University under the leadership of 
G. I. Petrashen and in the Earth Physics Institute under 
the leadership of N. V. Zvolinskiy and V. I. Keylis-Borok 
It should be mentioned that in the postwar years, the develop- 
ment of studies in dynamic problems for elastic media was very 
broad. This is connected with the intense development of 
a number of engineering and economic branches (seismological 
research, earthquake-proof construction etc.). The last two 
decades are characterized not only by a large number of publi- 
cations but also by a great variety of trends in the study 
of elastic waves. 

Below we will list the individual trends and supplement 
them by a brief characterization and references to the main 
published studies.  The list includes the entire 50 year period. 
At the same time the references do not exhaust the entire 
literature in each direction.  This disadvantage is compensated 
by a full list of studies by Soviet authors which make up the 
final (fourth) volume of this edition. 

1. Results of a General Character. Methods for the 
Solution of Equations in the Theory of Elasticity. •*•  The 
oscillations of a linear elastic homogeneous medium are described 
by the vector equation 

(/. ;-2u)yiM'l(liv » —uiolrot u—p^—l- (1.1) 

or by the corresponding system of scalar equations. Here, u 
is the displacement vector, t is time, and \  and u are the Üame 
constants. This system of equations has real characteristics 
and therefore can be classified as a system of the hyperbolic 

T!  The basic results in this field were obtained by V. I. 
Smirnov and S. L. Sobolev (1932), S. L. Sobolev (1934, 
1937), V. I. Smirnov (1936), N. P. Yerugin (1944), D. I. 
Sherman (1946, 1949), S. G. Mikhlin (1947), V. D. 
Kupradze (1950, 1953), A. G. Sveshnikov (1953), G. I. 
Petrashen, A. S. Alekseyev and B. Ya. Gel'chinskiy (1959), 
G. A. Skuridin (1959), B. A. Bondarenko (1960), B. M. 
Naymark (1960), A. S. Alekseyev (1962), V. M. Babich (1962, 
1967), K. I. Ogurtsov, L. S. Pakhomenko and A. I. Sutyagina 
(1962), I. P. Tsay (1962), G. I. Petrashen (1964, 1966), 
A. S. Blagoveshchenskiy (1966), L. Ya. Aynola (1967). 
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type.  The boundary value problems also Include initial condi- 
tions! and generally, boundary conditions.  Thus, problems in 
dynamic elasticity theory are either Cauchy problems or mixed 
boundary value problems. 

One second-order vector differential equation can be 
replaced by a system of two wave equations for the scalar and 
vector potentials. 

An important class of particular solutions is the class 
of functional-invariant solutions, i.e., solutions f(x, y, z, t) 
of the wave equations which generate solutions F(f(x, y, z, t)) 
for any (twice differentiable) function F.  These solutions were 
found and studied originally for the two-dimensional problem 
(S. L. Sobolev, 1934), and then generalized to the three- 
dimensional case (N. P. Yerugin, 1944). Applications to con- 
crete problems were obtained for two-dimensional problems. 
It is essential that important singular solutions of the 
concentrated forces type are described by functional-invariant 
solutions.  Functional-invariant solutions are particularly 
suitable for the description of similar two-dimensional 
problems. 

Another series of plane and axisymmetric problems in 
dynamic elasticity was brought all the way to an analytical 
solution and analysis using the method of integral transforma- 
tions (the method of incomplete separation of variables) . These 
studies are the work of G. I. Petrashen and his students. 
While it has certain advantages in the analysis of the solution 
and the study of the physical consequences, the method of in- 
tegral transformations is more complex to justify rigorously 
mathematically.  In applied problems, incidentally, such a 
justification is usually not required. 

The reciprocity principle which states that there is a 
certain symmetry between the external forces and the observed 
results of the deformation of the elastic body is known in 
statics and it can be described by the known Betti formula. 
It was extended to dynamic elastic phenomena by V. M. Babich 
(1962). 

The stationary oscillations of an elastic medium are 
described by an elliptic system of differential equations. 
These can be reduced to integral equations (V. D. Kupradze, 
1953), which to some extent, are similar to the integral equa- 
tions in potential theory, but are more complex (due to the 
presence of eigenvalues,  the frequencies of the natural 
oscillations of bounded volumes).  In the case of external 
problems, radiation conditions must be formulated at infinity 
which will ensure the uniqueness of the solution (A. G. 
Sveshnikov, 1953). 
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The few attempts to formulate inverse problems in the 
dynamic theory of elasticity, in which conclusions are drawn 
about the properties of the inhomogeneous halfspace on 
the basis of the known properties of the oscillation source 
and the movement of the boundary of the elastic inhomogeneous 
halfspace should be noted. 

2. Concrete Problems with Simplest Geometry.   Problems 
with simple boundary surfaces were studied:  halfspace, half- 
plane, layer, sphere, cylinder.  Their selection is determined, 
on one hand, by the fact that the boundary surfaces must be 
considered as coordinate surfaces, and on the other hand that 
in these simple situations» real practically important problems 
can be idealized. A particularly great deal of attention was 
given to the elastic halfspace (axisymmetric and plane problems) 
These were used to model certain seismic problems.  The 
first study on the propagation of waves in an elastic half- 
space was published already in 1904 by G. Lamb,  Subsequently 
it was again solved by S. L. Sobolev, who used the method of 
functional-invariant solutions and by G. I. Petrashen and 
his students using the method of integral transformations. 
Such repeated solutions are justified by the fact that the 
new solution method provides the investigator with new 
possibilities of analyzing the solution.  Wave fields 
in the halfspace were studied in sufficient detail.  In 
addition to the traditional source (a normal concentrated 
force on the surface) other problems were also studied:  the 
expansion center, and tangential forces on the boundary sur- 
face. 

Next, a moving load on the boundary of the halfspace 
was studied. This idealized the displacements of the atmos- 
pheric pressure centers on the surface of the earth or the 
displacements of a propagating shock wave from an explosion 

TT.     The basic results in this field were obtained by V. D. 
Kupradze and S. L. Sobolev (1930), Ye. A. Naryshkina 
(1933, 1934), V. I. Smirnov (1937), G. I. Petrashen (1945, 
1946, 1949, 1950), D. I. Sherman (1946), Kh. L. 
Smolitskly (1947), G. I. Petrashen, G. I. Marchuk and 
K. I. Ogurtsov (1950), K. I. Ogurtsov and G. I. Petrashen 
(1951), L. N. Sretenskly (1952, 1955, 1956), V. A. 
Sveklo (1954), Ye. I. Shemyakin and V. A. Faynshmidt 
(1954), G. S. Markhasev (1955), K. I. Ogurtsov (1956, 
1960, 1966), B.Ya.  Gel'chlnskiy (1958), A. S. Stavrovskly 
(1959), A. N. Margot'ev (1960), Ya. S. Uflyand (1961), Ye. 
I. Shemyakin (1961), K. I. Ogurtsov, L. S. Pakhomenko and 
A. I. Sutyaglna (1962), D. N. Klimova and K. I. 
Ogurtsov (1966), Zh. M. Imenltova and K. I. Ogurtsov 
(1967), L. A. Molotkov (1967, 1968). 
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The geophysical applications also include studies on the ef- 
fect of gravitational vibrations in water basins on 
seismic vibrations (microseisms) .  Studies on the movement 
of the elastic halfspace when the initial and boundary condi- 
tions are arbitrary are of general theoretical significance. 

3.  Reflection and Refraction on One Boundary.    The study 
of reflection and refraction on one isolated plane boundary 
dividing two media is the main link in the calculation of 
multiple reflections in a medium consisting of layers.  At 
the same time the study of a single reflection-refraction act 
describes important qualitative properties of the phenomenon. 

The most typical and frequent case is the case of the 
complete contact of two media with different elasticity con- 
stants on both sides of the separation boundary when there are 
no relative displacements of the media on the boundary. 

V. G. Gogoladze (1947) has shown that the reflection and 
refraction coefficients are meaningful for a plane incident 
wave of arbitrary "shape" (in the absence of dispersion) and he 
found these coefficients.  The dependence of the coefficients 
on the parameters of the media and the angle of incidence is 
complex.  This is due to a change in the regimes of the 
phenomenon during thf transition through the critical angles 
and the formation of a total internal reflection.  To 
facilitate the calculations in applications, extensive 
tables of the reflection and refraction coefficients have been 
compiled.  Generally, the coincident surface waves confined 
within the separation boundaries are related to the separation 
boundaries. 

In addition to the full contact case that was described 
other boundary conditions were studied on the contact surfacev 
Cases of non-rigid contact or conditions when the three- 
dimensional waves are not reflected were also studied.  Studies 
dealing with "weak" separation boundaries, i.e., on which the 
elasticity moduli are continuous,but the derivatives of the 
moduli are discontinuous,are also available.  Incidentally, 
this situation already applies to inhomogeneous media.  If 
a nonplanar wave is incident to a plane boundary, generally 
front waves are also formed. These were the subject of many 
studies.  Front waves, together with other types of waves 

1.  The basic results in this field were obtained by S. G. 
Mikhlin (1941), V. G. Gogoladze (1945, 1947), M. A. 
Isakovich (1956), T. I. Oblogina (1956), N. V. Zvolinskiy 
(1957. 1958), B. Ya. Gel'chinskiy (1958), L. M. 
Flitman (1958), G. S. Pod^'yapol'skiy (1959, 1963), K. 
I. Ogurtsov (1960), V. V. Tyutekin (1962), V. A. Sveklo 
(1962). 
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are also important in seismic research. 

Finally, we mention the study of a reflection on a 
curvilinear boundary.  This case refers essentially to the 
diffraction phenomenon. 

4.  Media Consisting of Layers.   The main object of study 
here was a system of plane parallel homogeneous layers with 
different elastic properties.  Such a structure models the 
thickness of the earth's core.  Studies along these lines were 
primarily in the field of general research and engineering 
seismology. 

Two approaches can be used in the calculation of the 
seismic field of a medium consisting of layers. One approach 
is based on solving the problem by the method of integral 
transformations. It is not connected (at least in the first 
stage) with the isolation of individual waves.  The second 
approach is based (when the original formulation allows it) on 
the study of successive reflections and refractions. The 
latter is connected with difficulties in taking into account 
a large number of waves which continuously increase with each 
reflection-refraction act.  Incidentally, in a number of cases 
modern electronic computing technology makes it possible to 
cope successfully with this problem. 

When a wave propagating parallel to the boundaries in 
a layer medium is studied, depending on the elastic properties 
of the layer, it can be described in some layers by equations 
of the elliptic type (wave of the surface type) and in other 
layers by equations of the hyperbolic type (interference waves), 

T7 The basic results in this field were obtained by I. N. 
Vekua (1937), P. K. Ishkov (1941, 1956), D. I. Sherman 
(1945), V. G. Gogoladze (1947), N. V. Zvolinskiy (1947), 
M. A. Naymark (1948), V. I. Keylis-Borok (1952, 1954, 
1956), G. I. Petrashen (1952, 1956, 1957), I. M. 
Khaykovich (1954) , G. G. Pogonyaylo and I. N. Uspenskiy 
(1959), G. S. Pod'^apol'skiy (1959), T. Ya. Barinova 
(1961), K. I. Ogurtsov (1961, 1962), L. B. Levitin, 
G. A. Skuridin and K. P. Stanyukovich (1963) and Z. A. 
Yanson (1965). 
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A general study of interference and surface waves can be found 
in the monograph by V. I. Keylis-Borok (1961).  The frequencies 
of the interference oscillations of the layers are the internal 
characteristics of the layer as an element of the layer struc- 
ture.  Studies were made in which llqiid layers were also 
considered.  Such formulations can be used on one hand to 
evaluate the differences between the phenomena occurring in 
solid and liquid (compressible) media and on the other hand they 
can be applied to the propagation of waves in the solid base 
at the bottom and in the water volume itself. 

The global geophysical study of the wave 
globe is given in the work of Z. A. Yanson, in which a spherical 
layer medium is considered. 

The well thought out and carefully written monograph 
of L. M. Brekhovskiy (1957}, on waves in layer media (including 
also predominantly acoustical and electromagnetic waves) 
should be mentioned. 

5. Media Consisting of Thin Layers.  An elastic layer 
can be considered "thin" if the time the wave takes to cover the 
path over its thickness is much smaller than the characteristic 
time of the process as a whole (for example, the characteristic 
time of the external action). During this condition, the 
wave phenomena in the "transverse direction to the layer" 
can be considered totally (in a certain sense asymptotically) . 
This point of view gave rise to a large series of studies 
which derived approximate solutions for the transverse os- 
cillations of plates (also rods and shells). Numerous im- 
provement and corrections for the usual approximate ("engineering") 
theory of oscillations of plates were proposed.  The basic idea 
is to separate the low frequency oscillation mode.  When a thin 
layer is surrounded by media with smaller propagation velocities, 
a so-called interference leading wave is formed.  Each reflection 
in the layer generates the front of a leading wave.  These waves 
are superimposed on one another with a small phase shift and 
form the total low frequency wave (L. A. Molotkov and P. V. 
Krauklis, 1963).  The formation of screening waves is related 

The main results in this field were obtained by M. A. 
Naymark (1947, 1948), G. I. Petrashen and V. A. Yenal'skiy 
(1956), G. I. Petrashen and L. A. Molotkov (1958, 1964), 
Yu. A. Voronin (1959), T. B. Yanovskaya (1959), L. A. 
Molotkov (1961), G. S. Pod"yapol'skiy (1961), P. V. 
Krayklis (1962), P. V. Krauklis and L. A. Molotkov (1962, 
1963), G. I. Petrashen (1966), L. A. Molotkov and D. 
K. Ozerov (1967). 
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to a thin layer with a higher propagation velocity. They 
also occur as a result of interference waves reflected inside 
the layer>which form the smooth low frequency transmitted wave 
which has the shape of a "smoothed" refracted wave.  The 
smoothing is greater, the thicker the layer.  Therefore, the 
screening wave is only well observed in thin layers (G. I. 
Petrashen' (1954, A. S. Alekseyev and V. M. Babich, 1954, 
Yu. A. Voronin, 1959). 

6. Asymptotic Rays.   The front of  a propagating 
wave is a discontinuity surface for derivatives of a cer- 
tain order of the displacements.  In view of this, in the 
vicinity of the front, the change in the displacement field 
in the direction of the normal to the front is much more in- 
tense than the same change along the front.  This makes it 
possible to consider the neighborhood of each point of the 
front as a locally-plane wave.  The asymptotic method for 
the study of the neighborhood of fronts (for the stationary 
observer, the neighborhoods where some wave appears for the 
first time) is based on this idea.  This method has been known 
for a long time in acoustics and optics.  It was extended 
to the theory of elasticity for the first time in the study 
of M. L. Levin and S. M. Rytov (1956).  Subsequently, it was 
developed further and used as a means for the approximate solu- 
tion of reflection and refraction problems.  The field 
in the neighborhood of the front can be described with various 
degrees of accuracy.  In applied problems,usually the first 
approximation is used but cases exist when it is theoretically 
inadequate (G. S. Pod'^apol'skiy, 1959).  On one hand, the 
ray approach is very general, for example, it can be applied 
without particular difficulties to inhomogeneous media.  On 
the other hand, exceptional situations exist when it breaks 
down or when it must be essentially reformulated, for example, 
in the neighborhood of the initial points of the leading waves 
(and generally at points where the fronts intersect), in a 
caustic neighborhood and other neighborhoods (V. M. Babich, 
1961, Yu. L. Gasaryan, 1961, B. T. Yanovskaya, 1964). 

1.  The basic results in this field were obtained by A. A. 
Gvozdev (1952), N. V. Zvolinskiy and G. A. Skuridin (1956), 
M. L. Levin and S. M. Rytov (1956), A. F. Filippov (1957), 
V. M. Babich and A. S. Alekseyev (1958), A. S. Alekseyev 
and B. Ya. Gel'chinskiy (1959, 1961), G. S. Pod'^apol'skiy 
(1959), A. S. Alekseyev, V. M. babich and B. Ya. Gel'chinskiy 
(1961), V. M. Babich (1961), T. B. Yanovskaya (1964). 
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7. Surface Waves.  These waves are characterized by 
the fact that they propagate "along" the boundary surface. 
They are particularly important in seismology and have been 
mainly studied from the point of view of this science.  Being 
confined to the boundary surface, they are damped slower 
than three-dimensional waves and they carry the energy over 
greater distances.  The structure of the medium in which they 
were formed and through which they passed leaves its trace in 
the form of the dispersion law. Attempts are being made to obtain 
information about the structure of the medium (the earth's 
core) on the basis of observations of this law. 

The surface waves may be related both to the free boundary 
and to the separation boundary of the media (V. D. Kupradze 
and S. L. Sobolev, 1930, V. I. Keylis-Borok, 1960). 

In addition to media with a plane-layer structure, continuous- 
inhomogeneous media were also studied in connection with 
surface waves (V. M. Babich and I. A. Molotkov, 1966), as well 
as regions with non-planar boundaries.  In the last case, 
high frequency wavcs^ which were rapidly damped as the distance 
from the boundary increased,were studied.  The limiting case 
of this kind is the spreading of the discontinuity of the 
derivative of the stresses along the boundary surface (I. G. 
Petrovskiy, 1945).  For curvilinear boundaries of the simplest 
types (sphere, cylinder) exact particular solutions for the 
problem of the surface waves can be obtained.  In addition 
to the typical surface waves that were mentioned here, wave 
motions which have the character of surface waves which were 
formed under more complex conditions were also detected and 
studied (L. P. Zaytsev, 1960, G. S. Pod"yapol'skiy and Yu. 
I. Vasil'ev, 1960). 

1^  The basic results in this field were obtained by V. D. 
Kupradze and S. L. Sobolev (1930), Ye. A. Naryshkina 
(1934, 1936, 1940), I. G. Petrovskiy (1945), Ya. A. 
Mindlin (1946), G. I. Petrashen (1946), V. G. Gogoladze 
(1948), I. A. Viktorov (1958), L. P. Zaytsev (1959, 1960), 
Yu. I. Vasil'ev and G. S. Pod"yapol'skiy (1960), V. I. 
Keylis-Borok (1960), V. M. Babich (1961), V. M. Babich and 
A.   Ya. Rusakova (1962), A. G. Alenitsin (1963, 1964), Ya. 
A. Mindlin (1963), T, Ya. Barinova (1964), R. V. Gol'dshteyn 
(1965), V. Yu. Zavadskiy (1965), V. M. Babich and I. A. 
Molotkov (1966), L. M. Brekhovskiy (1966, 1967), V. M. 
Babich and T. S. Kravtsova (1967), I. A. Molotkov and 
I.V. Mukhina (1967). 
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8.  Inhomogeneous Media. This is the name of elastic media 
in which the Lame coefficients X, |i and the density p are func- 
tions of the coordinates. When X, \i  and p are continuous func- 
tions and the derivatives of these functions are discontinuous 
on certain surfaces, such surfaces are usually called "weak" 
boundaries.  Some information about the studies of continuous 
media was given above in connection with asymptotic rays 
and surface waves.  The equations of motion for inhomogeneous 
elastic media which retain the same highest order derivative 
have additional terms with first order derivatives of the dis- 
placement vector.  For these equations fundamental solutions 
have been constructed (V. M. Babich, 1961) .  Primarily 
media that were inhomogeneous with respect to one of the coor- 
dinates were considered (this choice is dictated both by 
the requirements of simplicity and by the geophysical applica- 
tions) .  Generally in an inhomogeneous medium the motion cannot 
be decomposed into the sum of longitudinal and transverse waves. How- 
ever, this can be done when certain conditions (differential 
conditions) are satisfied which the functions X, |i and p must 
obey (V. Yu. Zavadskiy, 1964). 

An inhomogeneous medium as well as a homogeneous medium 
has two types of front waves, longitudinal and transverse waves. 
Each propagates at its own local rate, the longitudinal and 
transverse rate, respectively.  The rotor of the vector u has 
a discontinuity at the longitudinal front and the divergence 
on the transverse front (A. A, Gvozdev, 1959). 

In an inhomogeneous medium the rays are curvilinear. 
This leads to new effects which are far from simple.  Thus, 
in inhomogeneous media, geometric shadow zones are formed 
which the perturbations can only penetrate by way of 
diffraction. Near the separation boundary, refracted waves 
can be formed as a result of the multiple reflection of 
curvilinear rays. 

The basic results in this field were obtained by S. L. 
Sobolev (1930), A. A. Gvozdev (1959), N. V. Tsepelev (1959), 
B. S. Chekin (1959, 1964), V. M. Babich (1961), Yu. A. 
Gazaryan (1961), V. Yu. Zavadskiy (1964, 1965), I. A. 
Chaban (1964, 1965), A. G. Alenitsyn (1966, 1967). 
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We mention a study of the Lamb problem for an inhomogeneous 
medium  (A.   G.   Alenitsyn,   1966). 

9.    Anisotropie Media.       Materials with elastic anisotropy 
are frequently encountered in nature and in engineering.     Besides 
the genuine   (molecular)   anisotropy,   "structural" anisotropy 
caused,   for example,   by  the microlayer structure of  the material 
is encountered. 

The great variety of different  types of  anisotropic 
bodies  (the number of constants varies  from 3  to 21)  makes 
their study more complex.    Predominantly special  types of 
media with a small  number of  elastic constants have been 
studied.     The wave processes are described by a hyperbolic 
system of equations with constant coefficients  (for a 
homogeneous medium).     Three types of waves rather than two 
exist  for anisotropic  bodies. 

Among  the results of a more general  character,   the 
construction of singular  (fundamental)   solutions for special 
types of anisotropy and  the functional-invariant solutions 
that were generalized  to these cases and the solution of  the 
Lamb problem should be mentioned  (B.  A.   Sveklo,   1961). 

A sufficiently  large number of studies  deals with the 
reflection and refraction of waves on a plane boundary   (which 
coincides with one   plane of anisotropy)   and also with surface 
waves  of  the Rayleigh  type  (I.  0.  Osipov,   1961).     The 
diffraction problem on  the halfline    has also been solved. 

The basic results  in this  field were obtained by V.  G. 
Gogoladze   (1935),   I.  M.   Lifschitz and L.   M.   Rosenzweig 
(1946),  V.   A.   Sveklo  (1949,   1961),   I.   M.   Lifschitz 
and G.  D.  Parkhomovskiy   (1952),   I.   0.   Osipov  (1961- 
1963),   I.  N.  Uspenskiy and K.   I.  Ogurtsov  (1962). 

-333- 



10. Diffraction.   By diffraction in the broad sense 
are usually meant wave phenomena which cannot be described 
with the aid of ray concepts or plane waves.  Typical dif- 
fraction problems are the interaction of waves with different 
obstacles.  The analytical difficulties in diffraction problems 
in the theory of elasticity are connected with the presence 
of two types of waves (longitudinal and transverse waves) 
which are intertwined in the boundary conditions. 

Until now very few exact solutions are available. For 
obstacles with a simple geometry (a sphere, cylinder, ellipsoid) 
the solution can be constructed by the method of separation 
of variables (V. D. Kupradze, 1935). However, such Infinite 
series solution has a formal character, it is difficult to 
justify and very difficult to analyze physically (perhaps 
this situation can be improved by modern computing technology. 

Diffraction on a semiinfinite section (with free or 
supported edges admits a convenient application of functional- 
invariant solutions and leads to a solution in closed form 
(M. M. Fridman, 1949, A. F. Filippov, 1956). 

The diffraction problems in acoustics are much simpler. 
At the same time they are closely allied to analogous 
problems for a solid elastic medium, and therefore the study 
of the diffraction of sound waves is important in the theory 
of elasticity.  Sophisticated analytical studies which studied 
the nonstationary diffraction front separating the geometric 
shadow region behind a convex body from the perturbed medium 
were carried out (V. S. Buldyrev and I. A. Molotkov, 1958, 
V. S. Buldyrev, 1959). 

Y\    The main results in this field were obtained by V. D. 
Kupradze (1935), S. L. Sobolev (1935), D. I. Sherman 
(1945), G. I. Petrashen (1946), M. M. Fridman (1949, 
1959), A. M. Kuskov (1950), G. I. Petrashen, N. S. 
Smirnova and B. Ya. Gel'chinskiy (1953), V. V. Tyutekin 
(1956), A. F. Filippov (1956, 1959, 1964), G. A. Skurdin 
(1957), V. S. Buldyrev and I. A. Molotkov (1958, 1961), 
G. I. Petrashen, B. G. Nikolayev and D. N. Kouzov (1958), 
V. A. Sveklo (1958), V. A. Sveklo and V. A. Syukiyayn 
(1958), V. S. Buldyrev (1959), G. D. Malyuzhinets (1959), 
V. V. Tetekin (1959, 1960), Yu. L. Gazaryan (1961), A. 
S. Golubev (1961), I. A. Molotkov (1961), P. I. Tsoy 
(1961), A. V. Borovikov (1962), I. G. Filippov (1963), 
I. A. Chaban (1963), I. M. Yavorskaya (1964-1967), B. 
V. Kostrov (1965), V. Yu. Zavadskiy (1966). 
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Approximate methods have also been applied to diffraction 
problems.  The approximate method can be constructed on the 
short wave or long wave asymptote (compared to the characteris- 
tic dimension of the obstacle).  The approximate method 
proposed by G. D. Malyuzhinets (1959) is worthy of atten- 
tion. 

11. Contact Problems, ffaves Caused by Sudden Cracks. 
In wave processes of this kind, diffraction participates in an 
essential way.  Therefore, generally speaking, they could be 
combined with the previous section. Problems of waves caused 
by an instantaneous violation of continuity are forecast by 
seismology.  Contemporary concepts about the mechanism of the 
earthquake focus require the solution of the following problem: 
in an oiiginally stressed medium a crack (slit) is formed in- 
stantaneously and the stresses are removed from the edges of 
the slit. The wave field that is formed in the process must 
be determined.  For a crack of finite length, such a problem 
was first solved in a two-dimensional formulation by L. M. 
Flitman (1963).  Subsequently, this formulation was generalized 
to the case of a crack formed on the separation boundary of 
two different elastic media and to axisymmetric cracks.  In 
these formulations, the dimension of the crack that is formed 
or the law according to which it spreads are considered to be 
given in advance.  This means that fracture conditions and the 
fracture process are not considered.  This second aspect, the 
study of the crack as a result of fracture>requires an analysis 
which is outside the scope of elasticity theory and will not 
be touched on here. 

The basic resuTts in this field were obtained by L. M. 
Flitman (1958, 1959, 162, 1963), V. A. Sveklo (1959, 
1962), N. M. Borodachev (1960, 1962, 1964, 1966), B. V. 
Kostrov (1964, 1966), L. P. Zaytsev and L. M. Flitman 
(1965), R. V. Gol'dshteyn (1966), L. 0. Sigalov (1966), 
I. V. Simonov and L. M. Flitman (1966), 0. Ya. Shekhter 
(1966), A. N. Kovshov and I. V. Simonov (1967). 

See the survey "Mechanics of Fracture" by V. Z. Parton 
and G. P. Cherepanov (pp 424-574)  at the end of 
this volume (editors) 
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The mixed problems which we here have in mind can be 
of two kinds. Primarily they are dynamic problems dealing 
with the action of a die on an elastic body.  In the simplest 
formulations, by the body is meant an elastic half space 
and the die is considered either as an infinite strip (plane 
problem) or a circular region in the plane (L. M. Flitman, 
1959, N. M. Borodachev, 1960). Problems of this type were 
solved analytically, but for completeness the calculations of 
successive types of diffractions on the edges of the die> or 
the behavior on the long wave asymptote was calculated. It 
was assumed that there were no tangential stresses at the 
base of the die (free slippage). 

A kind of reverse of this type of problems  is the 
following formulation:  a rigid massive body is placed in an 
elastic medium or it lies (continuously) on its surface. 
The incident wave is given and it is required to determine the 
motion of the body.  This formulation was stimulated by 
problems in engineering seismology. Problems were solved when 
the massive body is a strip on the surface of a half space 
(L. M. Flitman, 1962), or a strip soldered in a plastic medium 
(A. M. Kovshov and I. V. Simonov, 1967).  In these problems 
which clearly belong to the diffraction field, the attention 
is shifted from the diffraction field (which in certain cases 
must not be completely known) to the law of motion of the 
massive body). 

§2. General Problems in the Dynamics of Nonelastic 
Bodies 

2.1.  Introductory Historical Survey 

The dynamics of nonelastic bodies is a comparatively 
young branch in the dynamics of deformable media which came 
into being shortly before and during World War II. Many 
fundamental results in it were obtained by Soviet scientists. 
The dynamics of nonelastic bodies followed a somewhat different 
path than the dynamics of elastic bodies. The first results 
in the dynamics of elastic bodies refer to the nature of 
perturbations (the expansion waves and distortional waves) 
propagating in an unbounded medium. Only several decades ago, 
concrete problems dealing with the propagation of longitudinal 
waves in rods were studied. On the other hand, in the theory 
of the propagation of elastoplastic waves, the propagation of 
waves in rods was studied first and only after this the 
problem of the propagation of the perturbations in an unbounded 
medium. 
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In the beginning of §1 it was noted that the main achieve- 
ment in the dynamics of elastic bodies are linked  to 
the Mathematical School of the Leningrad University and the 
Seismological Institute at the USSR Academy of Sciences. 
To some extent a similar statement can be made about the 
first achievements in the dynamics of plastic and visco- 
elastic bodies and their connection with the Mechanics- 
Mathematics School at the Moscow University and the Institute 
of Mechanics at the USSR Academy of Sciences.  The founders 
of the dynamics of viscoplastic and plastic media are the 
contemporary representatives of the school that was mentioned, 
A. A. Il'yushin and Kh. A. Rakhmatulin.  Their studies were 
continued at the Mechanics Institute (V. V. Sokolovskiy, 
G. S. Shapiro, e_t JQ.) and at Moscow State University (V. S. 
Lenskiy, P. M. Ogibalov, et al.) . The main results in this 
field are published in the Publications of the Mechanics In- 
stitute, the journal "Prikladnaya Matematika i Mekhanika" 
(Applied Mathematics and Mechanics) and "Inzhenernyy sbornik" 
(Engineering Collection) and also in "Uchenyye zapiski" 
(Learned Notes) and "Vestnik" (Herald) of the Moscow University. 

The Structural Mechanics School of A. A. Gvozdev, I. M. 
Rabinovich and A. R. Rzhanitsyn at the Moscow Construction 
Engineering Institute (MCEI) which is intimately connected with 
the Central Scientific Research Industrial Construction In- 
stitute (CSRICI) (now the Central Scientific Research Building 
and Construction Institute, CSRBCI^ played an important role 
in the development of the dynamics of nonelastic media. 

A. A. Gvozdev was the founder of the theory of limiting 
equilibrium which uses a simplified plastic model of the body 
without taking into account elastic deformations and hardening 
(the so-called rigid-plastic model) .  This model wr.s applied 
on a wide scale in the statistical theory of plasticity. 
It was also used for the first time in the solution of dynamic 
problems by A. A. Gvozdev (1942). Ten years later vMt method 
was perfected in the USA by E. Lee, P. Simondson, V. Praeger 
and G. Hopkins and it is successfully used to thi& very day 
both in the USSR and abroad. 

Simplified methods for the solution of dynamic pi )bltms 
in the theory of plasticity in wUich the structures are 
considered as systems with one decree of freedom were developed 
by I. M. Rabinovich (1948).  This engineering direction was 
subsequently developed on a wide scale. 

The very promising studies of variational methods for h' 
solution of dynamic problems for nonelastic media that were 
started by A. R. Rzhanitsyn (1959) were continued at Moscow 
State University by V. P. Tauszh (1962) and at the Central 
Scientific Research Institute for Building anc Construction ty 
M. 1. Reitman (1964).  The representatives of the same school 
at the Moscow Construction Engineering Institute 
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(G.   A.  Geniyev,   1959,   1961,   M.   I.  Estrin,   1958,   1961,   1962) 
were among the first who  studied the propagation of  dis- 
continuous waves  in a  two-dimensional and three-dimensional 
plastic medium. 

The studies of  the  scientists of the given school were 
mainly published in the collections of  the Central Scientific 
Research Industrial Construction Institute  (The Central 
Scientific Research Building and Construction  Institute) 
published by  "Stroyizdat"   (State Publishing House of Construc- 
tion Literature). 

The sphere of investigations in the dynamics of nonelastic 
media expanded considerably  in the last  two decades.     In Moscow, 
in addition to Moscow  State University and the  Institute  for 
Problems in Mechanics at  the USSR Academy of Sciences   (organized 
in  the Institute of Mechanics)   problems  in the  dynamics 
of  nonelastic media are now studied in many academic and 
departmental  institutes  and in institutions of  higher  learning. 
Studies on these problems also go on outside Moscow,   in 
Alma-Ata,  Baku,  Voronezh,   Gor'kiy,  Kiev,   Kishinev,   Leningrad, 
Minsk,  Novosibirsk,  Riga,   Tartu,  Tashkent,   Tbilisi   (Tiflis) 
etc.     Ail-Union symposia on  the propagation of  elastoplastic 
waves  in continuous media are being held regularly   (Moscow, 
1962,   Baku,  1963,   Tashkent,   1966,  Kishinev,   1968,  Alma-Ata, 
1971) . 

The behavior of materials under a dynamic  load    often dif- 
fers     considerably from  their static behavior.     This shows that 
an adequate description of  the dynamic behavior  of materials 
may require the use of  defining equations which depend on time. 
Thus,   in addition to  the difficulties of a predominantly 
mathematical character, which arise in the solution of problems 
in  the dynamics of elastic bodies,   in the dynamics of nonelastic 
bodies,   new difficulties are added,which are connected with 
the selection of  the appropriate model of  the material,   i.e., 
with  the selection of  the defining equations. 

Under static conditions, one of  the simplest  characteris- 
tics  of  the material  is   the load-elongation curve.     Under a 
dynamic  load the determination of the load-elongation curve 
becomes a nontrivial    problem.     As a result of   the  inertial 
forces  that are  formed   (which must be taken into account at 
deformation rates exceeding  10 per 1/sec)   the stress and 
strain fields  in the samples are  inhomogeneous.     Since the 
stresses and strains at  the  same point of  the sample cannot 
be  determined simultaneously  in practice,   the  form of  the 
defining equation cannot  be determined directly  from  the data 
of such  tests.     Usually  the form of the defining equation is 
specified in advance with an accuracy up to a certain number 
of  free parameters and then  the corresponding wave problem 
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is solved and the unknown parameters are determined from the 
experimental data.  This shows the fundamental Importance of 
the simplest dynamic problem of the tension of a rod under 
different assumptions about the properties of its material. 

Clearly attempts to determine universal defining equations 
which can be used in any range in which the stresses, strains 
and their derivatives vary with respect to time, temperature, 
hydrostatic pressure, etc., will lead to almost hopeless dif- 
ficulties. Therefore, in practice an attempt is made to use 
idealized models describing the behavior of the materials in 
limited ranges which correspond to the conditions of the 
problem under consideration. 

A complete solution of the problem of the selection of 
an appropriate model of the material even in this simplified 
form is far from complete; however, examples of useful special 
solutions are pvailable.  Thus, at superhigh pressures 
(on the order of the elasticity modulus) which develop during 
superfast collisions, the model of an ideal liquid is used 
successfully (M. A. Lavrent'ev, 1949). For materials of the 
polymer type for which the incomplete elasticity effects are 
essential, sometimes the model of an elastoplastic body 
is used (see, for example, A. Yu. Ishlinskiy, 1940) . With 
regard to materials such as metals under the action of 
moderately high stresses on the order of the yield limit (to 
which this survey is predominantly devoted), these can be studied 
using two approaches.  The first approach is based on the 
assumption that beyond the elasticity limits the material makes 
the transition to the viscoelastic state and its defining 
equation depends on time.  The studies of A. A. Il'yushin 
(1940, 1941) in which the defining equations used were the viscoplastic 
flow equations not taking into account the elastic deformations 
pioneered this trend.  In these studies the solution of a number of 
theoretical problems was obtained (the impact of a solid body 
on a cylindrical sample, the deformation of a smooth cylinder 
under the action of internal pressure), and in it the author 
also described the first air operated hammer designed by 
the author with which deformation rates on the order 10^ 1/sec 
were attained (the viscosity coefficients of certain metals 
were obtained with the aid of this hammer). Shortly afterwards 
the students of A. A. Il'yushin solved problems dealing with 
the rotation of a cylinder in an elastoplastic medium (P. M. 
Ogibalov, 1941) and the impact of a cylinder along a viscoplastic 
plate (F. A. Bakhshiyan, 1948.  The publication of this 
study was postponed for five years.) . From the mathematical 
standpoint, the equations of the dynamics of a uniaxial visco- 
plastic body belong to the class of equations of the parabolic 
type. 
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World War II interrupted work along these lines.  However, 
after the war^ the work began to develop in our country and 
abroad on an ever-increasing scale. A new trend in these 
studies was established by the work of V. V. Sokolovskiy (1948) 
in which the well-known elasto-visco-plastic model of a material 
was used in the analysis of the propagation  of longitudinal 
waves in a rod (the model proposed by K. Howenemzer and 
V.Praeger). At deformation rates which are zerojthe equations 
of this model become the equations of ideal plasticity, and 
at infinite deformation rates, the equations of elasticity 
theory.  A modified model taking into account the deformation 
hardening of the material was proposed in 1951 in the USA 
by L. Malver. The equations of uniaxial motion based on this 
model are of the hyperbolic type. 

The second approach which is due to Kh. A. Rakhmatulin 
assumes that under a dynamic load the material beyond the 
elasticity limit makes the transition to the plastic state. 
This point of view is justified by the fact that the deforma- 
tion curves of many materials, especially metals.» show a weak 
dependence on the deformation rates. For example, in tempered 
steels, these curves coincide almost exactly under static and 
dynamic loads.  On the other hand for a number of problems 
the deformation rates vary only by two to three orders of 
magnitude«which may almost not be reflected at all in the re- 
lation between the stresses and strains.  Thus, during a dynamic 
loadjit is often possible, at least in first approximation, 
to use the deformation laws of elasto-plastic media, even 
though the parameters of these laws may differ from the static 
parameters. 

The study of Kb. A. Rakhmatulin (1945) on the propagation 
of longitudinal waves in a semiinfinite rod started the investi- 
gations which studied the elasto-plastic rays. Taking as the 
basis the stress-strain diagram with different loading and 
unloading laws, Kh. A. Rakhmatulin detected the existence of 
the so-called unloading wave which separates the "space-time" 
plane into loading and unloading regions. One year later 
G. Taylor in England and T. Karman in the USA published less 
complete studies of this problem (without taking into account 
unloading) . 

The problem of determining the unloading wave occupies 
a key position in the one-dimensional theory of the propagation 
of elasto-plastic waves. An analysis has shown that this problem 
does not reduce to the classical Goursat, Cauchy problems or 
to a mixed problem in the theory of hyperbolic equations. 
A special solution method was developed for it (G. S. Shapiro, 
1946}, which was subsequently further developed (V. L. 
Biderman, 195?^.  Specific cases of the propagation of fractures 
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were also studied  (Kh.  A.  Rakhmatulin and G.   S.   Shapiro,   1948) 
and  in  the case of a longitudinal  impact of a rod along a 
rigid barrier the possibility of  the existence of stationary 
ruptures    was detected  (V.   S.   Lenskiy,   1949).    The construction 
of similar solutions was analyzed by G.   I.  Barenblatt   (1952). 
An original approach to  the  problem of  the propagation of 
elasto-plastic waves was proposed by K.  P.   Stanyukovich  (1955). 

The  solution of  the next more complex problem after  the 
problem of longitudinal waves,   the problem of the propagation 
of  longitudinal-transverse waves  in wires    is also due to 
Kh.  A.  Rakhmatulin   (1946)   (see  §4).     His studies served as 
the source for a long series  of studies  in  this field. 

The  theory of  the propagation of longitudinal waves was 
soon generalized to  the case  of spherical symmetry   (L.  V. 
Al'tshuler,   1946,   F.  A.   Bakhshiyn,   1948,  Ya.   B.   Lunts,   1949). 

Some methods for the application of electronic computers 
to problems in the dynamics  of  plastic media were systematically 
studied by V.  K.  Kabulov  (the  results of his studies  are summarized 
in  his  1966 monograph). 

The  following part of  this  survey does not clarify ex- 
haustively all aspects of  the dynamics of nonelastic media. 
It  is devoted to dynamic plasticity and  visco-plasticity 
problems.     It does not  touch at all on problems dealing with 
the modeling of    inhomogeneous  and anlsotropic media,   visco- 
elastic media,   fracture phenomena,   superhigh    pressure effects 
(on  the order ol  the elasticity modulus)   and also penetration 
effects.     Experiraeatul studies are almost not    mentioned at 
all. 

In  this general  introduction,   the main attention was  given 
to a  survey of  the initial   development stages in each  trend. 
An idea about their  further development  is given below.     Ex- 
tensive material on  the   topics  in the survey can also  be obtained 
from  the monographs of  I.   I.   Gol'denblat and N.  A.   Nikolayenko 
(1961),   Kh.  A.  Rakhmatulin and Yu.  A. Dem'yanov  (1961),   I.   L. 
Dikovich   (1962),  L.   P.  Orlenko   (1964),  N.  N.   Popov and B.   S. 
Rastorguyev   (1964),   Yu.  Ya.   Voloshenko-Klimovitskiy   (1965), 
N.   N.   Popov and B.   S.  Rastorguyev   (1966),  and also from the 
papers read at  the 2nd and 3rd Ail-Union Symposia on  the 
Propagation of Elasto-Plastic  Waves in Continuous Media  (1966, 
1969) . 
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2.2.     Propagation of   Strong and Weak Distortional 
Waves 

Beyond the elasticity limits  the   total  deformation 
e. .   of elasto-plastic bodies  is represented as  the sum of  the 
elastic  e. .   and of plastic   e?.   parts.     When the deformations 
are small,   the relation between  the elastic deformations and   the 
stresses  is  determined by Hooke's   law  e?.   = H.   1.1 ^i.     It  is 
assumed that  the three-dimensional  deformation is elastic, 
i.e.,   e?    = 0.    Then the  er.  will  be the components of  the 
deviator of  the deformations. 

In deformation plasticity  theory, it is assumed that  the 
relations  between the principal stresses depend only on  the 
relations  between the principal strains.     The simplest variant 
of  the isotropic relations between  the plastic deformations 
and stresses has the form  e?.   = F(I0)s. .,  where l0 =  l/2s..s. . 
(the s..  are components of  the  stress deviator).     The  dif- 
ference between nonlinear elastic and plastic deformations 
manifests  itself only during unloading.    For  dl0 = s. .ds. .  > 0 
loading occurs,   for dl0 < 0 unloading, according to Hookefs 

2 2 law and for dlo = 0^neutral  loading.     When !„ < k  ,  where k 
is  the plasticity constant^an elastic state occurs. 

A number of studies maue  in  the USSR have shown  that  the 
laws  for  the spreading of weak and strong fractures  in nonlinear 
elastic and elasto-plastic media differs considerably  from  the 
classical  case of  the spreading of  fractures  in a linear 
elastic medium. 

In the case of a  three-dimensional nonlinear elastic 
medium,   three  types of waves are  formed  (V.  M.  Babich,   1954). 
If  the displacement vector  is  continuous together with  its 
first  derivatives, and its second derivatives have discontinuities 
on some nonstationary discontinuity surface,   the maximum and 
minimum propagation velocities  of  the waves depend on  tve 
direction.     Thus,   the stress  field creates a unique kind of 
anisotropy,   the fastest and slowest waves are neither  longi- 
tudinal nor  transverse waves.     Waves moving with an inter- 
mediate velocity have  the character  of  transverse waves.     The 
direction of  the distortional  vector for  these waves  depends 
on the stress field;   however,   the rate at which they  propagate 
is  independent of the direction. 
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An analysis ^.f the propagation of waves in a two-dimensional 
compressible plastic medium (G. A. Geniyev, 1959, 1961) has 
shown that the propagation velocities of lines of first order dis- 
continuities differ from the local velocity of sound.  They 
only coincide during the propagation of the first order 
in the direction of the principal normal stresses.  The 
propagation velocity of first order discontinuity lines in the direc- 
tions coinciding with the normals to the principal stesss 
component areas is zero. Any first order discontinuity line is a 
characteristic.  In the case of stationary movement, real 
characteristics may exist even during subsonic velocities.  The 
orientation of the characteristics depends both on the direc- 
tion and magnitude of the modulus of the velocity vector and 
the orientation of the principal axes of the stresses. 

In particular the propagation of strong and weak distortional 
waves has been studied in the plane deformed state 
of an ideal plastic medium assuming a linear relation between 
the first invariants of the stress tensors and the deformation 
rates (M. I. Estrin, 1961).  The propagation of weak distortional 
waves in the plane stressed state has also been studied (M. I. 
Estrin, 1962, A. D. Chernyshev, 1966). The propagation of 
strong distortional waves in a medium with a nonlinear rigid1 

characteristic during loading characterized by linear unloading 
has also been studied (G. I. Bykovtsev, 1961). 

A considerable simplification in the analysis of the 
propagation of distortional waves is introduced by the concept 
of piecewise linear yield surfaces and the as.-oc'ated yield 
law.  First, such an analysis for weak distortional waves 
was made on the assumption that the stress point lies on the 
edge of a prism on the Tresk yield surface. 

In the Prandtl-Reiss incremental plasticity theory (flow 

theory) it is assumed that the inci pment in the plastic deforma- 

tions de?, is determined by the values of the stresses which 

are proportional to the increments in these stresses.  When 
the loading surface coincides with the plastic potential 
surface, the increment in the plastic deformation will be 
orthogonal to the loading surface, and the simplest relation 
between the increments in the stresses and strains will have 
the form 

T^ A decrease or increase in the increment of the stresses for 
a given increment in the strains by comparison with the 
initial linear behavior characterizes, respectively, the 
"soft" and "hard" behavior of the material. 
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where f is the loading function, G Is a scalar function depend- 
ing on the stresses, strains and the loading history. 

The propagation of weak distortional waves in Isotropie 
ideal elasto-plastic media was studied most extensively. 
The most detailed analysis can be carried out for media 
satisfying piecewise-llnear yield conditions (G. I. Bykovtsev, 
D. D. Ivlev and T. N. Martynova, 1966).  For a stressed state 
corresponding to some edge of the yield prism, it was detected 
that three waves can propagate in the body in any direction, 
and that the three propagation velocities of the waves are 
real and Independent of the characteristics of the edge. 
The maximum propagation velocity of the waves for the Tresk 

1/2 yield condition is [(A. + 2|i)/p]   and it is attained when the 
wavefront coincides with the surface of the tangential stresses. 
For an arbitrary orientation of the normal of the wave surface 
relative to the principal axes, the wave is accompanied by 
a change both in the dilational and shearing strain.  For a 
stressed state corresponding to an edge of the yield prism 
one wave propagates as an elastic wave with the velocity 

1/2 (u/p)   , and it does not cause changes in the plastic deforma- 
tions.  The velocities of the other two weak distortional waves 
depend both on the direction of the normal to the discontinuity 
surface relative to the principal axes of the stress  tensor 
and also on the form of the yield conditions. 

In the case of an incompressible elasto-plastic material, 
two propagation velocities of the distortional waves exist. 
Both have a shearing character, and one of them does not 
cause changes in the plastic deformations. 

Certain results of a more special character were obtained 
earlier for the plane deformed (M. I. Estrin, 1961) and plane 
stressed (M. I. Estrin, 1962, A. D. Chernyshev, 1966) states. 
The propagation of strong distortional waves in a medium with 
a nonlinear hard characteristic during loading characterized 
by linear unloading was also studied (G. I. Bykovtsev, 1961). 

For an elasto-visco-plastic medium with defining equations 
in the form (D. D. Ivlev, 1959) 
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(2.2) 

where T] is the viscosity coefficient, f is a positive multiplier 
2 2 and t > 0 for s. .s.. > a , ^ = 0 for s. .s. . < a an analysis 

of the propagation of weak and strong distortional waves 
(G. I. Bykovtsev and N. D. Verveyko, 1966) has shown that the 
plastic velocity components of the deformations cannot be dis- 

continuous:  [ fef • ] =0. Acceleration waves in such a medium 

propagate at the velocity of elastic waves, which is (G/p) 
The damping of the waves in the material under consideration 
is faster than in an elastic material.  For developing and 
convex wave surfaces, the intensity of the waves with equal 
volume tends uniformly to zero when a plastic deformation 
occurs on both sides of the wave surface. 

An interesting analysis of the propagation of distortional 
waves was made for a special dynamically hardening medium whose 
current state was determined by certain parameters charac- 
terizing the properties acquired by the material under a 
dynamic load (V. A. Skripkin, 1962). 

2.3.  Extremum Principles 

The basic difficulty in formulating variational principles 
for nonelastic media is that such media are infinite dimensional 
mechanical systems with nonholonomic, nonideal relations 
for which the Lagrange principle does not hold. The exception 
is the movement of a hard ideal plastic body whose shape does 
not change with time (M. I. Reytman, 1965).  It is natural 
that the extremum principle was first proposed for such a case. 
(A. R. Rzhanitsyn, 1959) . Later a principle was proposed 
which was free of the limitation that was mentioned (V. P. 
Tamuzh, 1962) .  It requires that the functional I attain 
a minimum 

/ - y f ('''''''f/l'- f '''"'i <iV-[ Ttui dS -r ( Oi-f'ti dV ~ \ FdV, (2.3) 
• *,' -i J J 
v v sT V V 
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where p is the density, the u. the accelerations, the P. the 

body forces, the T. the surface forces, a.  the components of 

the stress tensor, s.. the components of the strain tensor, 

V the volume of the body, ST the part of the surface of the 

body on which the external forces are given. The kinematically 
possible accelerations of the strains e  are related to the 

components of the acceleration vector by the formulas 

eij-=-i("i.J + uj,i). (2.4) 

The principle remains valid when  the accelerations have 
strong discontinuities.     In  this case for a medium without 
discontinuities,   a constraint on  the discontinuity surfaces 
must be  added  to the Gaussian constraint 

(Vv/M'//, (2.5) 

where v. are the components of the normal to the discontinuity 
*J 

surface 1.  It is easily seen that the Ostrogradskiy-Euler 
equations for the functional I are the equilibrium equations 
for a continuous medium.  Subsequently, it was shown (M. I. 
Reytman, 1965) that this principle can be generalized to media 
with very general properties.  The properties of the media 
are included in the last term in the functional I. For the 
Weirstrass-Erdman conditions for lt conditions on the first order 
discontinuity surfaces of the accelerations can be obtained 

l^/K">(v/j n, [/■] 
Ul   1 tin 

(2.6) 

It should be mentioned that the general variational principle 
with the aid of which the invariant equations of motion 
which determine the equations (model) and various additional 
conditions (boundary conditions, initial conditions on the discontin- 
uity surface, etc.) are found was formulated by L. I. Sedov 
(1965).  This principle was used to study discontinuities in 
a solid medium by M. V. Lur'e (1966). 
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§3.  Propagation of Waves in Nonelastic Media 

3.1.  Elastoplastic Bodies 

The first two parts of this section deal with plane waves. 
Plane waves are divided into two classes:  plane stress waves 
and plane strain waves. The first occur in rods and are charac- 
terized by the three-dimensional deformed state and the one- 
dimensional stressed state (more precisely nearly one- 
dimensional) .  The second waves are formed in plates and are 
characterized by the three-dimensional stressed state and 
the one-dimensional deformed state (see, for example, 
G. S. Shapiro, 1952). 

The deformation rates for elasto-plastic bodies do not 
enter the defining law in explicit form.  The dynamic character 
of the load is taken into account by using a different rela- 
tion a = a(e) between the stresses and strain than in the 
static case. 

The propagation of longitudinal loading waves is described 
by the nonlinear hyperbolic equation 

^"  -2 ^ (3.1) 

2 
where u is the longitudinal displacement, a = (1/p) (da/de) , and 

p is the density of the material.Under a monotonic continuous 
load on the boundary of a semiinfinite medium for 
2   2 d a/de < 0, shock waves are not formed in the body and for 
2   2 d a/de > 0, shock waves occur (Kh. A. Rakhmatulin, 1945, 

G. S. Shapiro, 1946). The general case of similar solutions of 
equation (3.1) was investigated, which included the possible 

2   2 change of sign of d a/de    and the occurrence of shock waves 
(G. I. Barenblatt, 1953, 1957).  The propagation of similar 
perturbations under the action of a constant load applied to 
the end of a semiinfinite rod was also considered (G. Ya. 
Galin, 1958). 

Beyond the elasticity limits, the relation a = a(e) for 
elasto-plastic media has a different form during loading and 
unloading.  The problem of the propagation of elasto-plastic 
waves in a semiinfinite medium for d^a/de2 < 0 on the assumption 
that unloading takes place in accordance with the linear 
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elastic law was analyzed for  the first  time by Kh. A. 
Rakhmatulin   (1945) .     Let x be  the longitudinal coordinate and 
t be  time.     In  the  case of a semiinfinite    medium,.the region 
(x,   t)   is divided into two parts.     In one part loading and 
in the other  part unloading occurs.     The  difficulty of solving 
the corresponding system of two hyperbolic  equations is related 
to the fact  that  the boundary between  the zones that were 
mentioned,which  is called the unloading wave^ is not known  in 
advance.     Various solution methods were proposed for the case 
when  the unloading wave is a weak distortional wave,  namely 
the method of  power series  (Kh.  A.  Rakhmatulin,   1945)   the method   of 
characteristics   (G,   S.   Shapiro,   1946,   V.   L.   Biderman,   1952) 
the graphical method   (S.  D.  Mochalov,   1952)   and other 
methods. 

Existence and uniqueness problems  for   the unloading wave 
were studied by A.   M.   Skobeyev  (1962),  who has also shown  that 
as t  - ^     the  propagation velocity of  the  unloading wave  tends 
asymptotically  to the propagation velocity of elastic waves. 

The case of  an  impact load during which  the unloading wave 
is a strong distortional wave, was also studied in great detail 
(Kh.  A.  Rakhmatulin and G.  S.   Shapiro,   1948,  V.   S.  Lenskiy, 
1949,   N.   F.  Lebedev,   1952).    This case  is  important since  it 
is encountered in problems dealing with longitudinal collisions 
of rods beyond  the elasticity limit     (V.   G.   Cheban,   1952, 
R.   I.   Nadeyeva,   1953).     Taking into account  simultaneously 
the local crimping and the propagation of   the waves is of 
interest in such problems  (S.  A.   Zegzhda,   1965).     It was pos- 
sible  to detect  the existence of a dimensionless - parameter 
which determined  the process  (including the collision time and 
the increase  in  the contact force,   the maximum value of  the 
contact force and the  recovery coefficient) .  In addition to 
this for a semiinfinite rod and a rod of  finite length,   using 
the condition  for  the equality of  the potential energy of  the 
deformation,   it was possible  to linearize  the relation between 
the contact  force and the local  crumpling. 

Progress  in  the study of  the propagation of plane elasto- 
plastic waves was reflected both in the perfected analytical 
methods and in  the application of electronic computers. 

Considerable simplifications  in  the analytical procedure 
were achieved by means of useful approximations of the rela- 
tion between  the stresses and strains or by  transformations 
of the original  system of equations.     Thus,   if we write the 
equations of motion in the form  (G.  A.  Dombrovskiy and G.  V. 
Litvinov,   1966) 
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dh . .   dt dk , .  dt 
-^ = a(',)^'    ^ = a^-^' (3.2) 

where 

a-- —-T-,    i-^farff, (3.3) 
v Pu '*  ' 

and h is the Lagranglan coordinate, t is time, u is the velocity, 
pft is the initial density and take a(v) in one of the following 

1 forms: 

«^ b C- 

ü ((•)    - n- tsr {mv),    a (c)     li1 tlr imv), a (r) -- n2 cth2 (mv) (3 ^ 4j 

Key:     a.   tan 
b. tanh 
c. coth 

(here m and n are arbitrary constants) , we can obtain from the 
formulas 

£((')=j7(iT• ^U)-f'o]«(r)rfr (3.5) 

three families of relations between the stresses and strains 
a = a (e, m, n, C,, Cg) , each of which depends on the four 

parameters m, n, C-, and Co (C, and CQ are arbitrary integration 

constants in (3.5)). If the given relation CT = o (e) belongs 
to one of the three classes, the problem has an exact solution. 
In the contrary case, simple approximate solutions can be ob- 
tained.  Examples of using such a transformation are given by 
G. A. Dombrovskiy and G. V. Litvinov (1966) and G. V. Litvinov 
(1965) 

!•  These approximations have been proposed earlier by G. A 
Dombrovskiy (1963) for the equations of gas dynamics. 
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Taking the relation between the stresses and strains 
in the form of segments of two lines (a straight line and a 
parabola) made it possible to study the decay phenomenon of 
an arbitrary fracture during the interaction of the unloading 
wave and a shock wave on the example of the problem of 
a rod of finite length to one end of which a constant load 
was applied for a certain period and then an instantaneous 
compression force (A. I. Buravtsev and N. A. Yesenina, 
1966). Using the relation 

A 

(6-; b}* (3.6) 

where A, b, a,,, and k are the material constants, the problem 

of a rod of finite length, one of whose ends moves with a 
constant velocity was solved (A. I. Buravtsev, 1965). 

A number of interesting solutions was obtained with the 
aid of piecewise-linear, bilinear (L. R. Stavnitser, 1964) 
and trilinear (A. P. Sinitsyn, 1964) approximations of the 
a - e diagram.  The last case made it possible to study the 
propagation of waves in a hardening elasto-plastic layer. 
With regard to the use of electronic computers, the advantage 
of using computer technology in the case of the method of 
characteristics was demonstrated by N. A. Nesterenko (1964). 
The problem of the damping of a one-dimensional wave during 
exponential damping of the pressure at the end of the end 
of a rod was also studied (L. P. Orlenko and G. F. Yefremova, 
1965) . 

The particular features of the propagation of elasto- 
plastic waves in rods with a variable yield point which are 
important in the study of multiple impacts on the rod were 
studied by Kh. A. Rakhmatulln (1946) . 

From a theoretical and practical point of view, the problem 
of the reflection and refraction of a plane plastic wave in 
the presence of a boundary surface is important.  It is not 
surprising that it attracted a great deal of attention among 
investigators.  However, the studies dealing with this problem 
(G. M. Lyakhov and N. I. Polyakova, 1962, N. V. Zvolinskiy 
and G. V. Rykov, 1963, 1965, G. M. Lykhov, R. A. Osadkhenko 
and N. I. Polyakov, 1965, G. M. Lyakhov, 1966, Z. V. Narozhnaya, 
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1966, N. V. Zvolinskiy, 1967) either contained solutions based 
on the simplest approximation of the compression law, or 
did not take into consideration the boundary surface, or led 
to a complex analytical description from which it was difficult 
to draw any conclusions. 

The assumption of rigid unloading (N. V. Zvolinskiy, 
1967) made it possible to study certain general characteristics 
of the reflection problem and also investigate the character 
of the phenomena on the basis of numerical solutions.  It 
became evident that the usual a priori assumption that unloading 
occurs in the region of the reflected wave is erroneous, although 
usually the errors resulting from this error are small.  In 
particular, when the compression law is linear, the unloading 
hypothesis is justified. A study of the effect of the boundary 
surface with the given stresses on it on the propagation of the 
reflected wave has shown that the reflected wave begins to 
"feel" the external load immediately after the reflection be- 
gins.  Initially this effect is small, but gradually, as 
it increases, it becomes very significant and finally it 
leads to the destruction of the shock wave which cannot reach 
the surface, except in the case of a stationary wave.  It 
turned out that this fact, which was noticed in special 
cases (see, for example, Z. V. Narozhnaya., 1965), has a 
general character. 

In     certain materials, for example, annealed low carbon 
steel, the so-called "lagged yield effect" was detected. 
It became evident that when a constant pressure exceeding the 
static yield point was suddenly applied, the plastic 
deformation does not occur immediately, but after a certain 
time. To every particular value o of the stress corresponds 
it own lagged yield time t,. When the applied load increases 
with time, usually the formula 

i^P'^. (3.7) 

is used for t, where o^, a  and C are constants of the material. Form- 

ula (3.7) which agrees well with the experimental data was proposed 
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on the basis of theoretical concepts by George Campbell, who 
used as the yield criterion a critical value of the density of 
the liberated dislocations where the quantity t, must not 

exceed 1 sec. The effect of temperature on the yield lag 
was studied by Yu. Ya. Voloshenko-Klimovitskiy (1962, 1965). 
A theory for the propagation of longitudinal elasto-plastic 
waves in rods«taking into account the yield lag effect,was 
proposed by Yu. N. Rabotnov (1967). 

Effects connected with the propagation of plane waves 
during thermal shock in an elastic medium were studied by 
V. I. Danilovskaya (1952). An analogous problem for an elasto- 
plastic material with linear hardening was studied by Yu. P. 
Suvorov (1964) , who studied a thermal shock at the end of a 
semiinfinite rod with a linear law for the temperature increase 
over time (the heat conductivity coefficient was assumed to be 
proportional to the temperature and the mechanical characteris- 
tics of the material to be independent of the temperature) . 
For such a law, the nonlinear heat conductivity equation has a 
simple solution which simplifies considerably the equation for 
the propagation of elasto-plastic waves.  It became evident 
that when the propagation velocity was equal to the velocity 
with which the elastic or plastic perturbations propagate^strong 
dislocational waves are formed. 

One-dimensional problems dealing with the propagation of 
waves in the complex stressed state are of considerable interest. 
Kh. A. Rakhmatulin (1952) formulated this problem and obtained 
a solution for it on the basis of deformation plasticity theory 
for the case of a torsional-compressional shock.  Later an 
analogous problem was studied for a shearing-compression shock 
(Kh. A. Rakhmatulin and V. S. Antsiferov, 1964).  Subsequently, 
this problem attracted a great deal of attention abroad. 
A detailed study of a shearing-compression shock on the basis 
of the Prandtl-Reiss theory was made by A. M. Skobeyev (1965). 

3.2. Visco-elastic-plastic Bodies 

In spite of the fact that an elasto-plastic model reflects 
correctly the dynamic behavior of metals in many cases, the 
studies on the propagation of nonlinear waves in solids 
that were made in the last two decades are characterized by 
a critical approach to the theory of elasto-plastic waves and 
an attempt to improve it.  Certain experimental facts have 
been detected which cannot be explained on the basis of the 
model of an elasto-plastic body. This pertains primarily to 
observations of the propagation of additional load impulses (waves) 
in stressed rods beyond the elasticity limits.  The theory of 
the propagation of elasto-plastic waves 
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predicts that the rate at which an additional load impulse propagates 
on a deformed rod is determined by the inclination of the 
dynamic pattern during the given deformation.  However, ex- 
periments (see, for example, M, V. Malyshev, 1961) have shown 
that in metallic rods the front of the additional impulsive 
load propagates for any preliminary deformations with the 
velocity of elastic waves.  There is reason to assume that the 
effect connected with the plastic deformation rates depends on 
the quantity a - f(e) which represents the overshoot of the 
instantaneous stress over the stress corresponding to the same 
deformation during the static test. Therefore, usually for a model 
of an elasto-visco-plastic medium the following 
deformation law is used 

Ee — a njm a-^os,    1 

EE---a-,-<]) (a — f (e))   npn a>as, ) 
(3.8) 

Key:  a.  for 

where o is the static yield point, or even the more general 
s 

law 

a. 
Et— a IIJIII o.-,"^, 

<Su \ (3.9) 
£e == a-f,? (a, f)    npn a>as, 

Key:     a.     for 

which agrees with dislocation theory.  When the deformation 
rates are high, the model of a visco-elasto-plastic medium 
behaves elastically with the E modulus, which is why it ex- 
plains the propagation of the additional load waves 
at elastic wave rates. 

When the equation of motion are added to these defining 
equations 

5-P§ (3.10) 
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and  the continuity equations 

iL-.ii (3.ii) 
dt "   dx 

u system of equations of the hyperbolic type is obtained which 
has three families of characteristics:  dx ± c dt = 0, 
dx = 0, where c = (E/p)1/2.  Here 

C" B^o.ib dx —       c dt     da — pc dv = — g {a, e) dt. 
o~ 

o^j.ia  uj.   — cut,        uu — pt ut/ ==   — g yu,   e; ui, 

BAO.ib dx = — c dt     do -\- pc dv = — g (a, e) dt, 
Bflo.ib dx = 0 E dz — da = g {a, e) dt. 

Key:    a.     along 

When the differential relations are replaced along the 
characteristics by finite difference equations, the problems 
can be solved numerically.  The first solutions in this domain w 'e 
obtained in this way by V. V. Sokolovskiy (1948) for the case 
f(G) = a   ,   i.e., in the case of a material without deformation s 
hardening. 

From the mathematical point of view, the most thorough 
study of the system of equations (3.8), (3.10), (3.11) was 
made by V. N. Kukudzhanov (1965, 1967).  In his first study 
he obtained a solution for the problem of the propagation of 
an elastic unloading wave and in the second the system of equations 
was analyzed using an asymptotic method on which the computations 
on the electronic computer were based. 

The propagation of longitudinal waves in a semiinfinite 
rod consisting of two parts with different yield points was 
studied on the basis of the assumption f(e) = a  (V. N. 
Kukudzhnov and L. V. Niki tin, 1966). Various cases were 
considered.  In particular, if in the zone adjacent to the end 
to which the shock is applied, the yield point is higher than in 
the farther zone«and the magnitude of the shock is selected 
so that the yield point is exceeded only in the second zone, 
the first part of the rod remains elastic.  By introducing new 
variables, both equations reduce to a form to which the Laplace 
transform is easily applied. 
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Certain generalizations   of the  deformation  law   (3.8) 
were studied.     In particular,   an analysis of  the propagation 
of  the  load waves  for a medium with a nonlinear viscosity of 
the   type 

dz 1       ''fl   ...... .. 
+ (lJK(')) (3.12) dt       K (t)   at 

has  shown   (A.  M.   Skobeyev,   1967)   that in such a medium  the 
perturbations can propagate with a  velocity which is  different 
from  the elastic velocity  (the motion is assumed to be nearly 
similar). 

The yield lag phenomenon,taking into account viscous 
effects was  studied by V.   S.   Lenskiy and L.  N.   Foina   (1959) 
and V.  A.   Kotlyarevskiy   (1962). 

When a   linear visco-plastic model was used   (which  ignored 
elastic deformations), the velocities and stresses  in  the 
region where  the plastic deformations are  formed must  satisfy 
the  heat conductivity equation.    A  number of well-know solutions 
from  the  theory of heat conductivity can be directly applied 
to problems  dealing with the  propagation of perturbation in 
visco-plastic bodies.     For example,   the problem of a  shock with 
a constant velocity on a semiinfinite    visco-plastic  rod is 
equivalent  to the problem of   the sudden heating of a  semiinfinite 
rod, at  the end of which  the  temperature suddenly increases and 
remains constant   (V.  V.   Sokolovskiy,   1949).     In  the case of 
a visco-plastic body with hard unloading, the analogous  problem 
reduces to the Stefan problem  in the  theory of  heat conduc- 
tivity   (G.   S.   Shapiro,   1966) . 

Great  interest was shown  in the problem of   the impact  of 
a    visco-plastic rod of  finite length on a hard obstacle.     Its 
solution has shown   (G.   I.   Barenblatt and A.  Yu.   Ishlinskiy, 
1962)   that  during  the impact,the rod is divided  into  two parts. 
In one part,   the part adjacent  to  the end  in which the  impact 
occurs,  visco-plastic flow occurs  and the other  part 

moves  as a solid.   The position of   the moving boundary  is deter- 
mined  during  the solution of   the problem.     The  validity of 
this  scheme  was proved by A.   M.  Skobeyev   (1966) . 

First   the system of basic equations  for  the problem was 
solved approximately using averaging methods  that are used in 
the   theory  of  the boundary layer.     Subsequently,   the  same problem 
was  solved using a discrete  technique  (A.   Yu.   Ishlinskiy and 
G.   P.   Sleptsova,   1969).     The   rod was replaced by a system of 
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concentrated masses connected by visco-plastic rods.  The 
solution of the heat conductivity equation with a moving 
boundary reduces to the solution of ordinary differential 
equations. 

The propagation of the perturbations during the impact 
of a solid on a semiinfinite visco-plastic rod taking 
into account the linear deformation hardening was investigated 
by I. N. Zverev (1950).  Later the problem was generalized to 
the case of an elasto-visco-plastic material (G. L. 
Komissarova and S. A. Lezhov, 1965). 

The dynamic stability of rods beyond elasticity limits 
is of considerable interest.  This problem, taking into account 
the yield lag effects and viscosity was considered by A. K. 
Pertsev and A. Ya. Rukolayne (1965). 

3.3. Spherical, Cylindrical and Multidimensional 
Waves 

When elasto-plastic waves are formed in a semiinfinite 
rod,the plastic deformations propagate to infinity  (it is 
easily shown that the unloading wave never catches up with 
the front of the elastic wave) .  In the case of spherical and 
cylindrical waves the plastic deformations propagate only 
over a finite distance. 

The problem of the propagation of a spherical or loading 
wave was first formulated by L. V. Al'tshuler (1946).  The 
solution for a loading wave which is valid until the strong 
distortional wave separating the elastic and plastic deformation 
regions spreads, was obtained by F. A. Bakha,hiyan (1948). A 
complete study of the problem of the propagation of loading 
and unloading waves, including the instant at which the strong 
distortional wave spreads,was carried out by Ya. B. Lunts 
(1949) . 

A study of the propagation of cylindrical shearing waves 
has shown (Kb. A. Rakhmatulin, 1948) that in the case of 
linear hardening of the material a drop in the velocities and 
deformations on the front of the elastic waves is inversely 
proportional to the square root of the distance from the 
center of symmetry.  The problem of the stresses in a cylindrical 
pipe made from an ideal plastic incompressible material to 
which a load is applied suddenly is relatively easy to 
analyze.  It reduces to the integration of an ordinary first- 
order nonlinear differential equation (Ye. Kh.  Agababyan, 
1953).  In the case of a compressible material, with the same 
compression modulus both in the region of elastic and plastic 
deformations,the problem is solved by the method of characteristics 
(Ye. Kh. Agababyan, 1955).  The presence of special types of 
waves propagating from the internal surface of the cylinder 
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at the same rate,which are subsequently separated,was detected. 

Analogous problems in the propagation of perturbations 
during spherical and cylindrical symmetry taking into account 
the viscous effect were also obtained.  The numerical solutions 
based on the elasto-visco-plastic model were found for 
cylindrical shearing waves  (V. V. Sokolovskiy, 1948), for 
spherical compression waves (V. N. Kukudzhanov, 1959) and for 
cylindrical pressure waves (L. V. Niki tin, 1959). 

Problems on the deformation of a cylinder under the action 
of internal pressure were solved on the basis of the visco- 
plastic model (A. A. Il'yushin, 1940), as well as problems in 
the propagation of cylindrical shearing waves (P. M. Ogibalov, 
1941, F. A. Bakhshiyan, 1948). 

A number of explosion problems under spherical symmetry 
conditions oriented toward the dynamics of soils^- were solved. 

Successes in the solution of higher dimensional dynamic 
problems on the basis of the plastic model of bodies were only 
achieved in the last decade.  In particular, certain methods 
from gas dynamics were used in the process.  It is known that 
when the flow around a thin body has a supersonic velocity, 
the medium moves irainly along surfaces which are perpendicular 
to the direction of flight, which considerably simplifies the 
analysis.  This was used in the solution of problems in the 
propagation of waves in a halfspace on the boundary of which 
normal pressures are acting. Here the characteristic direction 
of motion which coincides with the direction in which the 
pressure acts can be isolated.  An approximate solution for 
an elasto-plastic halfspace under the action of normal pressure 
on the part of the boundary was obtained on the basis of this 
concept by Kh. A. Rakhmatulin (1959). 

It was possible to reduce the system of equations for the 
plane deformed movement of a compressible ideal plastic medium 
to the wave equation for the motion of a barotropic gas 
(G. A. Geniyev, 1962). Using the method of natural coordinates 
used in gas dynamics, it was possible to construct approximate 
techniques for the solution of the equations of the plane de- 
formed motion of a rigid-plastic and elasto-plastic medium 
(O. D. Grigor'ev, 1962). 

The survey by S. S. Grigoryan and V. A. loselevich (pp  [these 
pages (203-225) are missing from the Russian text]) is 
devoted to the mechanics of soils.  (editors). 
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Similar movements of an incompressible ideal plastic body 
under plane deformation conditions were studied by M. I. 
Estrin in plane stressed state conr!^ ions (1958) and in the 
case of a compressible medium obeying the Tresk yield condi- 
tion (1962).  The problem of a stepped load with a constant 
velocity was studied by A. M. Skobeyev (1965) 

§4.  Dynamics of Nonelastic Structures 

By structures we will mean bodies in which one or two 
dimensions exceed considerably the third dimension.  These 
include rods, pliable wires, membranes, beams, frames, 
plates and shells. A survey of the studies on the propagation 
of waves in rods is given in Section 3. 

4.1.  Pliable Wires and Membranes 

The difficulties of constructing an elasto-plastic 
theory of transverse shock along wires are connected with the 
necessity of taking into account the double nonlinearity of 
the problem (the deviations of the wire from the original shape, 
the nonlinear form of the relation between the stresses and 
strains) as well as the conditions for the contact of the 
wire with the body to which the shock is applied. 

In the theory developed in several studies by Kh. A. 
Rakhmatulin (1945, 1947, 1952), problems of the propagation of 
longitudinal and transverse waves in wires were separated. 
In the first study the solution of the problem of a shock 
along a pliable wire of infinite length was obtained when the 
body making the impact moves with a constant velocity. Analytically 
the problem reduces to the solution of two differential equa- 
tions in the two displacement components.  In particular, the 
practical important case was considered when the load- 
elongation curve of the wire can be represented by a broken 
line coi listing of two segments (bilinear law).  In addition 
the normal shock by a body of finite mass with infinitesimally 
small dimensions was considered.  The strain formed as a 
result of the shock immediately after the collision reduces the 
velocity of the body.  At the same time a Rieman wave propagates 
simultaneously to the right and left from the collision point. 
The subsequent solution depends on the postulated relation 
between the velocities of these waves.  The first solutions dealt 
with infinite wires.  I. N. Zverev (1950) considered the impact 
of a wire on a wedge.  He introduced in his study an impulsive 
force acting on particles of the wire on the boundary of the adjacent 
and free movement regions.  In problems dealing with wires of 
finite length the pattern becomes more complex due to reflections from 
the ends.  In these cases numerical methods turned out to be most 
effective.  The subsequent improvements took into account real 
loading conditions. 
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Thus Kh. A. Rakhraatulin studied the impact of a body of 
given form (for example, a blunt wedge) on a pliable wire. 

We note that the relative analytical simplicity of the 
problem of a wire made it possible to use it in indirect 
methods to determine the mechanical characteristics of materials, 

an 
A. A. Ryabis (1966) developed this trend.  In his formulation, 

-., infinitely long pliable rectilinear wire impinges on a blunted 
body and breaks down into two regions, the free movement 
region of the wire and the region where the wire is adjacent 
to the body.  The equations of motion and the continuity 
equations are derived for the boundary of these regions,which 
is called a strong distortional wave.  In both cases it is 
assumed that the movement satisfies the wave equations.  The 
problem is closed by adding geometric conditions. The relation 
o(e) is selected on the basis of the linear hardening scheme. 
The deformation of the wire and the adjacent region until the 
instant when the transverse wave penetrates the rectilinear 
part of the wire was found. A. A. Ryabis introduced a fric- 
tional force caused by the impulsive force in the region ad- 
jacent to the strong distortional wave.  It was shown that 
the frictional force is substantially greater than the tangential 
stress formed on the strong distortional wave.  Due to this, 
it was p^ ssible to introduce the additional condition that the 
tangential velocity of the particles in the region adjacent to 
the strong distortional wave be zero.  This made it possible 
to determine the deformation of the particles that were men- 
tioned.  The deformation was positive, i.e., elongation occurs 
on the strong distortional wavej.unlike in the preceding results 
that were mentioned above,in which compression occurred and 
an unloading wave had to be introduced in the adjacent region. 
The conditions for the applicability of the above scheme were 
also analyzed. 

New numerical and analytical methods made it possible to 
expand the class of problems on wires that were studied. 

A. L. Pavlenko, B. M. Pavlov and G. S. Roslyakov (1965, 
1966) studied numerically the movement of nonlinear elastic 
wires. 

N. N. Popov and B. S. Rastorguyev (1966) using a trigonometric 
series expansion along the length obtained an approximate 
solution of the problem of the movement of a wire made from an 
elasto-plastic material with a bilinear hardening law, as well 
as for a material whose deformation law has the form 
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o-lE„e
k. (4.1) 

under the action of a uniformly distributed load.  They also 
studied the same problem for an elasto-visco-plastic material. 
The movement of an elasto-visco-plastic wire in the plastic 
stage is described by a second order nonlinear differential 
equation which was solved by the authors using the numerical 
Adams-Störmer method. P, A. Rakhmanov (1959) added to the 
conditions of the problem for the shock along the wire the 
effect of the resistance of the medium to its motion. 

The analogy in the mechanical behavior of pliable wires 
and thin membranes made it possible, soon after the shock 
phenomenon along a pliable wire was investigated,to analyze 
the analogous problem of a pliable membrane. The first 
approximate solution,with the condition that the circular 
stresses in the circular membrane were ignoredjWas obtained 
by D. M. Grigoryan (1949).  In the series of studies which 
followed, this assumption was removed.  Thus, M. P. Galin (1949) 
studied the impact at a single point of a body moving with 
a constant velocity on a circular membrane. Later, the impact 
of an axisymmetric body along a membrane was studied (U. Bektursunov 
1966).  In the last case it was assumed that the radial and 
transverse motion are not related, and that the solution of the 
problem can be obtained by integrating separately two different 
equations for the propagation of the waves. 

A more complex problem was studied by S. M. Belonosov, 
A. L. Pavlenko, B. M. Pavlov and G. S. Roslyakov (1966), who 
studied the impact of an absolutely rigid cylinder on a membrane. 
The initial jump in the velocity is transferred along the membrane 
in the form of two waves:  the transverse and longitudinal 
wave. 

4.2.  Beams 

A systematic discussion of the theory of dynamic loads 
on beams is available in the monographs by Kh. A. Rakhmatulin 
and Yu. A. Dem'yanov (1961), I. L. Dikovich (1962), I. I. 
Gol'denblat  and N. A. Nikolayenko (1961). 

Obtaining sufficiently accurate solutions for the 
dynamic loading of elasto-plastic beams is beset by serious 
difficulties,which can only be overcome in individual cases 
in the loading and support of beams.  The study of I. L. 
Dikovich (1962) describes a solution for the movement of 
a freely supported beam under the action of a suddenly applied 

-360- 



uni^ rm load which is constant over time and does not exceed 
in magnitude the limiting static load.  At a particular in- 
stant a plastic Joint is formed in the middle of the beam, 
after which the movement of the two halves of the beam is 
considered, which are analyzed to obtain the expression for 
the displacement which remains valid until the angular deforma- 
tion in the plastic joint changes sign.  For the hardening 
I. L. Dikovlch proposed approximate methods, for example, 
the Bubnov-Galerkin method. One term of the approximating 
series was retained, which is often done in nonlinear problems. 
It was necessary to introduce the assumption that the plastic 
joints are stationary, which, as is well known, is no longer 
justified as the intensity of the sudden load increases 
and may lead to serious errors.  The use of electronic com- 
puters in the calculation of beams has great promise.  Thus, 
V. K. Kabulov (1963) used a system of unequal concentrated 
masses suspended to an imponderable elasto-plastic element for 
the representation of the flexural oscillations of a cantilever 
beam. 

The mechanical behavior of beams made from reinforced 
materials has specific features.  Reinforced concrete beams 
have a number of special features (N. N. Popov and B. S. 
Rastorguyev, 1964).  This is due to the fact that the work 
of reinforced concrete elements breaks down into four stages: 
1)  from the loading instant until a crack appears in the 
expanded concrete zone, 2)  from the end of the first stage 
until the beginning of reinforcement yield, 3)  from the end 
of the second stage until the fracture of the compressed con- 
crete zone, 4) loss of loading bearing capacity by the structure.  In 
nonreinforced structures, the third stage does not occur and 
the brittle fracture of the concrete occurs immediately after 
the end of the second stage. 

The character of reinforced concrete beams is 
connected primarily with the intensity of the load which 
determines the origin of the work stages of the material that 
were mentioned.  All stages except the first,require that 
plastic deformations be taken into account,and in the second 
and third stages, a damping oscillatory process may occur.  In 
the case when the load bearing capacity is lost the results of 
rigid-plastic analysis can be used, taking as the limiting 
plastic moment the corresponding limiting value for reinforced 
concrete sections.  The problem of the movement of a beam 
undergoing brittle fracture is studied in an analogous manner. 
The relation between the angle of rotation and the moment used 
has the form of the bilinear weakening law.  Since, according 
to this curve, the resistance drops as the bends increase and 
finally becomes zero, it is possible to find for each type of 
load a value of the bend for which the structure will break 
down when this value is exceeded. 
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N. N. Popov and B. S. Rastorguyev also considered the 
movement of a reinforced concrete beam in the first three 
stages taking into account the linear dependence of the re- 
inforcement yield point on time.  The breakdown scheme for 
the beam adopted,was as before, a mechanism with one joint 
in the center. 

An analysis of the results that were obtained for a 
concrete beam showed considerable differences from the 
calculations obtained on the basis of the Prandt scheme.  It 
became evident that as the intensity of the impulse increases, 
the dynamic yield point tends to a constant value equal to 
1.75 M0 (M0 is the static limiting plastic moment). 

As was already mentioned, the considerable mathematical 
difficulties which arise during the solution of elasto-plastic 
problems and also the fact that under intense loads the elastic 
work stages of the beam can be ignored, create conditions for 
the application of rigid-plastic analysis.  Variational principles 
can be applied successfully (see, for example, the solution 
obtained by A. R. Rzhanits (1959) describing the movement of a 
beam on two supports, in which the result obtained by the 
variational method coincides with the exact result). 

At the same time the application of rigid-plastic analysis 
makes it possible to take into account certain additional fac- 
tors which cannot be accounted for by elasto-plastic analysis. 
Among these we will include the effect of the external medium 
on the movement of the beam.  The movement of rigid-plastic 
beams in a resisting medium was first studied by G. S. Shapiro 
(1962).  As he further developed this study, A. A. Amandsov 
(1965) considered the movement of a rigid-plastic beam in a 
resisting medium under the action of a concentrated force in 
which the velocity of the movement of one section was given at 
an arbitrary instant of time.  It was assumed that the resistance of the 
medium depended on the rate at which the beam was displaced' 
For a special given displacement function and a fixed cross 
section of the beam the problem was solved in quadratures. 

A number of solutions for problems dealing with the movement 
of rigid ideal plastic beams is available in the book of 
I. L. Dikovich (1962).  In particular, it includes solutions 
of problems dealing with the movement of infinite beams when 
one section is disp'i acod at a constant rate and a concentrated 
force is acting in some section, the movement of a beam of 
finite length which is not supported under the action of a 
concentrated load, and the movement of a freely supported beam 
under the action of a load distributed along a parabola. 
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4.3.     Arcs  and Frames 

V.  P.   Tamuzh   (1962)  studied the movement of a circular 
rigid-plastic arc under  the action of a concentrated load 
applied at  the center.     It was assumed that  the movement of 
the arc,   like a static deformation,   takes  place while  three 
plastic joints are  formed.    Next,   the author used,to determine 
the two independent  parameters characterizing  the deformation 
mechanism ,the same variational principle  developed by him, 
as a  result of which  the problem reduced  to  the solution of 
two transcendental  equations.     To validate  the correctness  of 
the solutions  that were obtained,it is also necessary  to 
verify that  the yield point is not exceeded  in the rigid 
parts of  the arc.     The pattern of motion that is obtained is 
generally  satisfactorily confirmed by  the experiment.     The 
study  that was mentioned is also interesting since it  is a 
first example  in which quadratic programming  is used in the 
dynamics of a . nonelastic body.     If  the arc  is broken up into 
n equal parts,   according to  (2.3)jthe problem reduces to finding 
the minimum of a quadratic function subject  to linear con- 
straints,   i.e.,   to a problem in quadratic  programming.     The 
author proposed  that   the Wolfe method be used  for  the solution 
of this problem. 

An analogous  approach from the standpoint of the  kinematic 
mechanism was applied to circular reinforced concrete arcs by 
N.  N.  Popov and B.   S.  Rastorguyev   (1966) ,   who found an expression 
for the bends  in elasto-plastic arcs under  the action of a 
symmetric and nonsymmetric  load. 

In all  the studies  that were mentioned    dealing with the 
movement of arcs,   the effects of  the normal  and transverse 
forces on  the   load bearing capacity was  ignored.    Judging by  the 
effects of  these  factors  that were  investigated for rectilinear 
beams,   they may have a considerable effect  on the deformation 
pattern. 

Starting in  the 60's,  many studies appeared which dealt 
with  the description of  the dynamic behavior of multirod 
systems  in which plastic joints are formed. 

The studies of G.  V.   Ivanov,   Yu.  V.   Nemirovskiy,   Yu.   N. 
Rabotnov   (1963)   studied  the dynamics of  cross beams covering 
a rectangular span  located at equal distances from one another. 
Depending on  the relation between  the spans,   the distances 
between  the beams and the limiting plastic moments,   two cases 
can occur:     1)   the  cross beams remain stationary during  the 
entire movement and each principal beam behaves  like a continuous 
beam on s supports   (s is the number of cross beams); 
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2) alte^ the movement of the beams in the principal direction 
began, the load bearing capacity of the cross beams is exhausted 
For each case the equations of motion were set up for the 
principal and cross beams. The form of the equations of 
motion and the number of joints depends on whether the 
number of beams with the same direction is even or odd. Thus, 
when the number of cross beams is even,the problem reduces 
to the solution of a system of linear differential equations. 

The calculation of frames for dynamic effect is carried 
out mainly in connection with their checking for seismic 
loads. This extremely complex and topical problem is 
currently the center of attention of scientists, and here the 
plastic deformations must be taken into account.  The 
requirement that the deformation resulting from the seismic 
action in the body of the equipment remain elastic leads to 
an excessive use of materials. The mathematical difficulties 
connected with the calculation of frames in the elasto-plastic 
work stage, as well as in three-dimensional structures, are 
usually overcome by reducing the number of degrees of freedom 
of the system and by concentrating the mass at one or several 
points.  Most frequently the frame is reduced to a system with 
one degree of freedom, a cantilever with the mass concentrated 
at the end. A systemmatic discussion of this approach and its 
generalization to systems with two degrees of freedom is avail- 
able in the monograph by I. I. Gol'denblat and N. I. Nikolayenko 
(1961).  The authors consider the movement of a system with 
one degree of freedom when the material of the load bearing 
element is determined by the Prandtl diagram under the action 
of an instantaneous rectangular impulse.  The work of frames 
under seismic loads is characterized by a complete fracture of 
the elements at points at which the largest bending moments 
are acting.  For this reason not plastic but ideal joints are 
formed at these points.  From the mathematical point of view 
the solution of such problems does not present additional dif- 
ficulties compared to elastic calculations., although the 
results differ considerably. This difference is also due to 
the fact that seismic loads acting on the structure depend on 
the magnitude of the reaction of the structure and the latter 
decreases considerably when plastic deformations are taken into 
account and individual links are disconnected from work. 

The same monograph contains a presentation of problems 
on the movement of systems in which the load bearing element 
is strengthened under the action of an instantaneous rectangular, 
sine wave and exponentially decreasing pulse.  As a generaliza- 
tion a system with two degrees of freedom is studied,in which 
the material of the load bearing elements obeys the Prandtl 
scheme (the unloading is parallel to the direct loading) . 
Free oscillations of the system that was described are studied 
under the condition that at the initial instant it receives 
a given velocity.  Such an approach can be used in the first 
approximation to determine the residual deformations. 
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It should be noted that the determination of the seismic 
loads during the calculation of structures is highly arbitrary. 
A more accurate approach is to take into account the accelograms 
of real earthquakes, which in the general case, is done using 
the theory of random processes. However, a deterministic 
approach to the problem can also be used as an approximation, 
when the input actions operate with the mathematical expecta- 
tions of the accelerations of the base of the structure. At 
about the same time, in the early 60's it became evident that 
the possibilities of an analytical approach to the problem of 
the dynamic calculation of nonelastic frames have been ex- 
hausted for all practical purposes, and that it was necessary 
to make a transition to numerical methods based on the use 
of electronic computers.  The study by A. S. Tyan (1964) 
considers in stages the movement of a system with some degree 
of freedom.  The use of electronic computers made it possible 
to state the law for the changes in the accelerations in non- 
analytic form. 

E. Ye. Khachiyan (1966) studied in a similar manner the 
oscillations of elasto-plastic frames with an arbitrary number 
of degrees of freedom  The accelograms of real earthquakes 
were taken as the actions.  The numerical example was calculated 
for a four-story frame whose material followed the Prandtl 
diagram.  The system was integrated numerically using an elec- 
tronic computer. As a result of this»the residual deformations 
obtained by the author are not more than 10-15% of the ampli- 
tudes and their role in the oscillatory process is not great. 
This conclusion, obtained for one particular example., does not 
yet justify generalizations. 

We draw attention to the fact that the solution of this 
and similar problems whose immediate goal is to describe the 
behavior of frames actually reduces to the calculation of 
cantilever beams^due to the approximations that are introduced. 
For this reason here the results obtained for the description 
of the movement of cantilever beams (see Section 4.2) can be 
used successfully.  This makes it possible to take into 
account the dispersion along the length of the mass, in 
particular, to solve the problem of the propagation of flexural 
waves caused by a seismic shock along a tall building. 

Of course, the approximation of a frame by a cantilever 
does not satisfy all the requirements. Due to this a number 
of recent studies proposed to consider the dynamic pattern 
of the movement mechanism which is obtained when plastic joints 
are formed in the frame.  The experience obtained from studying 
the movement of rigid-plastic beams has shown that here real re- 
sults can only be obtained when the joints are considered to be 
stationary. 
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4.4.     Plates and Shells 

The specific  features of  thin-walled three-dimensional 
structures often allow us  to assume  that for many forms of 
loadsj. all points of  the structure operate simultaneously 
so  that the corresponding wave process need not  be  investigated. 
However,  under such conditions,   the problem is  very complex and 
it  is necessary  to take  into account the three-dimensional 
operation of  the material  and the kinematics  of  the motion 
which is not  simple.     The  studies of Soviet scientists  first 
dealt with visco-plastic and rigid ideal plastic axisymmetric 
plates. 

Visco-plastic plates were studied by F.   A.   Bakhshiyan 
(1948).    He considered  the material as a Bingham material 
with a linear relationship between the stresses  and the 
deformation rates and considered the case when   the  impacting 
mass was much greater  than the mass of the part  of  the plate 
experiencing  the shock,   in view      of which the  changes  in the 
rate can be ignored at  the shock instant.     Later  the bending 
of a circular plate made from a visco-elastic material was studied 
by G.  M.  Gizatulina   (1964)   in a more precise formulation. 

A.  M.  Kochetkov   (1950)   considered the shock of an absolutely 
rigid cylinder on a plate made from an ideal  plastic material 
and obtained a numerical solution.     Shortly afterwards the 
studies extended to other models of  the material of  the plate. 
Elasto-plastic plates were studied by M.   P.  Galin  (1958,   1959). 
He studied transverse oscillations of beams and plates 
loaded beyond the elasticity  limit.     It was assumed that  the 
strengthening of  the material was linear and that  the material 
was  incompressible.     The effect of  the shearing  forces and 
torsional inertia were  ignored.    The solution was obtained with 
the aid of expansions  in series. 

The study of A.   P.   Sinitsyn (ly65)   studied  the general 
conditions for  the propagation of thermoelastic-plastic 
stress waves and calculated elasto-plastic plates of  three 
types    (rectangular plate,   a plate on an elastic base and a 
three-layer plate)   under  the action of external  heat  flow 
changing with  time.     Two specific forms of oscillations were 

studied for the  three-layer  plate and a criterion for  the optimal 
ratios of the rigidities of elements of  the plates was obtained. 
The effect of  the plastic zones was estimated. 

A.  D.  Bagdasarov   (1964)   derived a system of  differential 
equations for  the description of the oscillations of arbitrary 
elasto-plastic plates  during  large deflections.     Ya.  Aminov  (1964) 
set up the corresponding system for circular plates. 
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The use of the rigid-plastic material model enabled 
G. S. Shapiro (1959) to obtain a solution of the problem of 
a shock on a circular plate. 

The state of numerical methods and computing technology 
until the middle 60's did not make it possible to use the 
elasto-plastic model in the analysis of the dynamic behavior 
of plates with the exception of the axisymmetric problem. 
Due to this a number of solutions were proposed for structures 
with more complex contours in the plane (in particular, for 
rectangular plates) which were based on the concept of plastic 
joint lines, i.e., a generalization of the concept of a plastic 
joint in the bent beam. 

In the calculation of rectangular plates for a transverse 
load,N. N. Popov and B. S. Rastorguyev (1964) assumed that 
after the moment in the direction of the smaller span in the 
middle of the plate attains the limiting value, linear plasticity 
joints are formed instantaneously, whose outlines correspond 
to the usual "envelope" scheme which is used in determining 
the upper load-bearing capacity boundary in static calculations 
(the angles of inclination of the joints in the corners were 
taken to be 45°) .  Such a scheme, of course, is a rough approxi- 
mation, but nevertheless it is an improvement over ignoring the 
elastic work of the plate, which is done in rigid-plastic analysis, 
Thus, in the plastic stage the plate was represented as a 
system with one degree of freedom.  When the equations of 
motion were set up in the plastic work stage, the equations 
for the work were used.  Clearly, this approach can only be 
used when the deformation mechanism is given.  The equality 
of the number of movements at the end of the elastic and at 
the beginning of the plastic stage were used as the initial 
conditions for the integration of the equations of motion. 

It was emphasized by V. P. Tamuzh (1963) that the varia- 
tional principle (2.3) can be used to make the deformation 
mechanism of the plate in the plastic stage more precise. 

A number of studies were oriented to improve the concept 
of the external medium in which the movement of the deformed 
plates occurs. 

The problem of elasto-plastic deformations of a plate on 
a fluid base was studied by L. I. Slepyan (1964). 

A shock with a constant velocity on an annular rigid- 
plastic plate in a medium whose resistance is proportional 
to the velocity with which the plate moved was studied by A. 
A. Amandosov (1962). 
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Attempts were made to introduce into the discussion 
more complex models for the mechanical behavior of the 
material of plates.  The study of L. V. Nikitin in which 
he studied the movement of elasto-visco-plastic beams and 
plates was already published in 1959. 

The problem of the dynamic behavior of axisymmetric shells 
in which the plastic deformations are taken into account is 
particularly topical in connection with the studies of the 
effect of an explosion and thermal shock on such structures. 
Therefore, it became the subject of many studies-  We will 
begin with studies on cylindrical shells. 

The problem of dynamic stability for an elasto-plastic 
shell with initial imperfections was solved by A. K. Pertsev 
(1964).  The author studied the loss of stability of a 
circular cylindrical shell under the action of external 
hydrostatic pressure to whose lateral surface a dynamic load 
was applied.  It was assumed that xn  the plastic zones the 
stress components remain constant. Next, the stress function 
was introduced for the deflections and the initial counter 
The effect of the fluid on the flexural movement of the shell 
was taken into account using an approximate coefficient. As 
a result of a number of assumptions that were made« it turned 
out that the continuity equations can be integrated exactly 
and the equations of motion, using the Bubnov-Galerkin method. 
Finally, the author analyzed the behavior of the overloading 
coefficient which determined the overshoot in the critical 
dynamic load over the corresponding static load.  As the dura- 
tion of the loading effect increases, the overloading coefficient 
decreases and when the duration is equal or greater than three 
periods of the natural oscillations^ it is practically equal 
to one. 

An elasto-plastic analysis of reinforced concrete shells 
under the action of a dynamic load was made by N. N. Popov 
and B. S. Rastorguyev (1964), who studied an axisymmetric and 
flat rectangular shell in the plane. The condition for the 
transition to the plastic work stage used in the analysis of 
flat shells is the condition that the yield be obtained in 
the lateral elements of the shell. As usual, the authors 
ignored the tangential inertial forces. A system of joints 
at the corners of the shell directed at a 45° to the sides.» 
and joints parallel to the sides so that the middle rectangular 
part of the shell moved as a rigid whole« was adopted as the 
fracture mechanism in the plastic work stage. When the work 
of the internal forces was calculated using the work of the 
bending moments in the joints, the yields were ignored. 

-368- 



1 

For cylindrical shells, it was possible to study the entire 
deformation process of the structure analytically by breaking 
it up into a series of stages. 

P. A. Kuzin (1963,  1964) studied the dynamic deformation 
of a rigid-plastic cylindrical shells with fixed and free 
supported edges.  It was assumed that the load was applied to 
a section of the shell along a ring. 

A complete study of the problem of the movement of a 
semiinfinite shell with a free edge under the action of an 
annular concentrated load is given in the study of P. A. Kuzin 
and G. S, Shapiro (1965). 

Several studies deal with the movement of rigid-plastic 
spherical domes.  These include the studies by N. N. Popov 
and B. S. Rastorguyev (1964), M. I. Reytman (1964) and 
M. I. Yerkhov (1966). 

N. N. Popov and B. S. Rastorguyev (1964) proposed a 
meridional deformation scheme for the dynamic loading of a 
rigid-plastic reinforced concrete dome, which is realized when 
the support of the contour is not sufficiently firm. 

In the study by M. I. Reytman (1964). the problem of the 
dynamic deformation of a rigid-plastic shell whose material 
obeys the Tresk  condition is solved using the variational 
principle (2.3) and the generalized Ritz method.  The deforma- 
tion mechanism unlike in the studies described above is charac- 
terized not by concentrated but by distributed elongation and 
bending deformations. 

We see that in many approximate studies the authors 
ignored the work of the bending moments.  This justifies the 
application of ideal plastic shells, usually from the torqueless 
theory of shells,to dynamic load problems. 

M. I Reytman (1964) studied an ideal plastic shell on 
the assumption that the ^iitire shell was in the yield stage. 
This makes it possible to find a simple system of equations 
which is similar to the equations for the plane problem in 
the theory of plasticity under a static load.  M. I. Yerkhov 
(1966) studied a flat spherical shell under the action of a 
load acting in a given finite time interval.  It was 
assumed that the material of the shell followed the yield 
condition that was proposed by the author earlier. 

A. A. Amandosov (1962) generalized the problem of the 
movement of a cylindrical rigid-plastic shell under the action 
of internal pressure to the case of a resisting medium.  The 
resisting force was assumed to be proportional to the normal 
displacement rate.  The author reached the conclusion that 
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Liu- effect oi the resisting medium is considerable even for 
"lijcdium" loads. 

Problems in the dynamic deformation of shells under 
explosive and electiohydvaulic effects were solved by L. P. 
Orlenko and are presented in his monograph (1964). 
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§1.     General Historical  Survey 

The   theory of  stability of  elastic and nonelastic 
systems  belongs  to a  branch  of mechanics whose development   is 
intimately connected with   the  development  of  technology.     A 
great  part  of problems  in  the   theory of stability originated 
directly  in engineering  practice.     The increase  in  the strength 
of  structural materials,   the   trend  to reduce  the weight  of 
equipment  and machinery,   the   introduction of  rational   thin-walled 
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structures, all this stimulated the development of the theory. 
The last few decades were characterized by a sharp rise in 
the rates, accelerations, temperatures and other parameters, 
the introduction of new materials and new technological 
processes, outstanding progress in aviation, rocket technology, 
electrical engineering and technology. As a result of this, 
new trends in the theory of elastic and non-elastic stability 
were formed.  It can be said without exaggeration that the 
stability theory of deformable systems will never lose its 
topical character.  The problem of ensuring stability is 
inseparable from the problem of increasing the strength of 
structural materials. 

The interests of Russian scientists in the theory of 
stability of elastic and nonelastic systems has traditions 
that are rooted in the distant past.  The origin of these 
traditions goes back to the classical studies of L. Euler 
(1744-1757) in longitudinal bending theory.  Among these studies 
from the pre-Revolutionary period, the studies of F. S. 
Yasinskiy (1892-1895) on elasto-plastic longitudinal bending 
problems should be mentioned in which linear equations were 
proper^ used for the calculation of the critical forces, the 
studies of I. G, Bubnov (1902, 1904, 1912) on the stability 
and postcritical deformations of elements of ship structures, 
the studies of S. P. Timoshenko (1905-1916) on the longitudinal 
bending of rods and rod systems, the plane bending of rods, 
the bending of plates and shells, and also the studies of 
B. G. Galerkin (1909), A. N. Dinnik (1911, 1913) and A. P. 
Korobov (1911, 1913).  The energy method for determining the 
critical loads formulated by S. P. Timoshenko (1907) had an 
especially great influence on the subsequent development of 
the theory as well as the approximate method proposed for the 
first time by I. G. Bubnov (1911, 1913, 1914), which was later 
called the Bubnov-Galerkin method. 

The last 50-year period in which the theory developed and 
which is the subject of this survey can be broken down naturally 
into two periods, the prewar  period (1917-1941) and the 
postwar  period (1945-1967).  Studies published during the 
war will be classified arbitrarily as studies in the prewar 
period.  The fundamental trend in the prewar period was the 
development of the stability theory of elastic rods and rod 
systems.  Shortly after the Revolution, the studies of Ye. L. 
Nikolai (1918, 1923) on the stability of elastic rings and 
curvilinear rods were published.  The studies of I. Ya. 
Shtayerman (1929, 1930, 1937) and A. N. Dinnik (1929, 1933, 
1935, 1936) belong to the same trend.  The studies of A. N. 
Krylov (1931, 1935), I. M. Rabinovich (1932), N. V. 
Kornoukhov (1935), A. P. Korobov (1936), N. G. Chentsov (1936), 
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A.   A.   Belous   (1937),   N.   K.   Snitko   (1938),  P.   F.   Papkovich 
(1939),   I.   Ya.  Shteyerman and A.   S.   Pikovskiy   (1939)   deal with 
the stability of rods and rod systems.     The general  stability 
theory of   thin-walled rods with an open cross section was 
developed  by V.  Z.  Vlasov   (1938,   1940).    Relatively  few  studies 
were published on the stability of  elastic plates and shells. 
In particular  these include  the studies of L.   S.   Leybenzon 
(1917),   P.   F.  Papkovich   (1920,   1929),   I.  Ya.  Shtayerman   (1929), 
Kh.   M.   Mushtari   (1934,   1938),   and V.   V.  Novozhilov   (1941). 

At  the same time in  the prewar period,   studies were pub- 
lished, whose new  formulations  and  the  results obtained  in 
them were not fully appreciated for several decades and whose 
merit was  only recognized later.     These include primarily  the 
article  by  N.   M.   Belyajev (1924)   in which the problem of  the 
dynamic  equilibrium of a rod compressed by a periodic  longi- 
tudinal  force was formulated and solved for the first  time. 
Before  the  war these studies were  continued by N.   M.   Krylov 
and N.   N.   Bogolyubov   (1935),   V.   N.   Chelomy  (1938,   1939)   who 
also  introduced the term  "dynamical  stability" of elastic 
systems,   and finally by G.   Yu.  Dzhanelidze and Yu.  M.   Radtsig 
(1940)   and V.  A.  Bodner   (1940).     Ye.   L.  Nikolai   (1928,   1929) 
began  to develop another aspect  of  the  theory of  elastic 
stability,   by considering certain  problems  in  the stability of 
elastic  rods under  the action of   "followup"    forces. 

The  postwar period is characterized by attention  to 
more general  and theoretical  problems  in the  theory,   by  the 
development  of stability  theory of  elasto-plastic and visco- 
elastic  systems and a  theory  of  dynamic stability.     But  the 
main attention was  focused on  the  development of   the  stability 
theory of  shells.     The development  of  the linear stability 
theory of  elastic shells was  completed by V.   Z.   Vlasov   (1944, 
1949),   Yu.   N.   Rabotnov   (1946),   Kh.   M.   Mushtari  and his 
collaborators  (1946-1958)   and others.     The general nonlinear 
stability   theory of shells was  developed by N.  A.   Alumyae 
(1949-1956),   Kh.  M.   Mushtari   and K.   Z.   Galimov   (1948-1967), 
I.   I.   Vorovich  (1955-1957),   et  al.     An original method  for  the 
solution of  nonlinear  problems was  developed by A.   V. 
Pogorelov   (1960-1966).     Many  problems were studied by N.   A. 
Kil'chevskiy   (1942,   1967),  V.   I.   Feodos'ev  (1946,   1954),   D. 
Yu.   Panov  and V.   I.   Feodos'ev   (1948,   1949),   S.  A.  Ambartsumyan 
and his collaborators   (1950,   1955),   A.   S.  Vol'mir  and his 
collaborators   (1950-1964),   M.  A.   Koltunov  (1952,   1961), 
E.   I.   Grigolyuk   (1954,   1955),   Kh.   M.   Mushtari  and his 
collaborators   (1954-1966),   N.   A.  Alumyae   (1955-1958),   et  al. 
Problems  in   the stability of orthotropic and anisotropic plates 
and shells   in  layers were also developed.     This  trend includes 
the studies  of Kh.  M.   Mushtari   (1938,   1961),   S.  G.   Lekhnitskiy 
(1947),  V.   I.   Korolev   (1956,   1965),   A.   P.  Prusakov   (1951-1958), 
E.   I.   Grigolyuk and his collaborators   (1957-1966),  A.   Ya. 
Aleksandrov  and his collaborators   (1959,   1960),   S.  A. 
Ambrtsumyan  and his collaborators   (1961-19S6) ,   Yu.   M.   Tarno- 
pol'skiy  and G,  A.  Teters   (1965-1967),   et ai. 
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The studies in the dynamic stability of elastic systems 
were continued. Parametric oscillations were discussed in the 
studies of I. I. Gol'denblat (1947, 1948), V. V. Bolotin (1951- 
1956), G. Yu. Dzhanelidze (1953, 1956), V. N. Chelomey (1956), 
V. A. Yakubovich (1958), et al.  The study of V. N. Chelomey 
(1956) was also applied to an important engineering problem. 
The stability of elastic systems under the action of forces 
depending on the deformation ("followup") forces were studied 
by V. V. Bolotin (1956-1961), G. Yu. Dzhanelidze (1958), et al. 
The article by M. A. Lavrent'ev and A. Yu. Ishlinskiy (1949^ 
began the study of the phenomena of the loss of stability during 
an impact load. These phenomena were further studied by 
A. S. Vol'mir and his collaborators (1959-1966), E. I. 
Grigolyuk and his collaborators (1963) and others.  The 
stability of plates and shells interacting with a liquid or 
gas was analyzed by V. V. Bolotin (1956-1961), E. I. 
Grigolyuk (1956), A. A. Movchan (1956, 1957), R. D. Stepanov 
(1957-1960), V. V. Bolotin and his collaborators (1959, 1961), 
S. A. Ambartsumyan and his collaborators (1961), P. M. 
Ogibalov (1961), E. I. Grigolyuk and his collaborators (1962- 
1965), G. N. Mikishev (1959), V. V. Bolotin (1958-1961), I. 
I. Vorovich (1959) and A. S. Vol'mir and his collaborators 
(1964, 1965) began the application of physical methods to 
problems in the theory of elastic and nonelastic stability. 

Important results in the stability of elasto-plastic 
systems were obtained by A. A. Il'yushin (1944, 1948), L. A. 
Tolokonnikov (1949), L. M. Kachanov (1951-1956), Yu. N. 
Rabotnov (1952), Ya. G. Panovko (1954, 1962), Yu. R. Lepik 
(1956, 1957), E. I. Grigolyuk (1957, 1958), V. D. Klyushnikov 
(1957, 1966), L. V. Yershov (1961), et al.  The stability of 
linear visco-elastic systems was studied by A. R. Rzhanitsyn 
(1946, 1949).  The stability of rods, plates and shells in 
creep conditions was studied by Yu. N Rabotnov and S. A. 
Shesterikov (1957, 1959, 1961, 1963), L. M. Kurshin (1961, 
1963), E. I. Grigolyuk and Yu. V. Libovtsev (1965, 1966), 
M. A. Koltunov (1965-1967), et al. 

Rapid progress was made in the general theory.  V. V. 
Novozhilov (1948) analyzed the problem in elastic stability 
theory from the standpoint of nonlinear elasticity theory. 
These studies were continued by G. Yu. Dzhanelidze (1955), 
V. V. Bolotin (1956, 1958), et al.  The studies of V. V. 
Bolotin (1961, 1965) are devoted to the derivation of the 
stability equations for elastic systems from general variational 
principles.  The studies begun by A. Yu. Ishlinskiy (1954) in 
which the equilibrium stability problem of a rod is solved on 
the basis of the equations of elasticity theory started another 
trend.  This trend includes, for example, the studies of 
D. D. Ivlev (1965), A. N. Guz' (1967), et al.  A point of 
view was generally accepted according to which not only the 

-374- 



mmmm 

problems in the stability of movement but also problems in the 
equilibrium stability of elastic systems must be considered 
from the point of view of the general stability theory of 
motion.  The problem of the stability of distributed systems 
was formulated, rigorously by extending A. M. Lyapunov's 
theory to metric functional spaces (V. I. Zubov, 1957, A. A. 
Movchan, 1959, 1960). 

The development of computational methods for the calcula- 
tion of the stability of rods and rod systems was continued 
in the postwar period. A. F. Smirnov (1947) proposed an 
efficient matric computational method.  This method was fur- 
ther developed in the subsequent work of A. F. Smirnov and 
his collaborators (1950, 1957, 1958).  A. R. Rzhanits (1948) 
proposed a method for calculating the stability of composite 
rods.  Ye. P. Popov (1948) studied the post-critical behavior 
of ductile rods and classified the possible computational 
schemes.  The studies of N. V. Kornoukhov (1949), Ya. L. 
Nudel'man (1949), N. K. Snitko (1952, 1956), V. G. Chudovskiy 
(1952), I. K. Snitko (1960), S. A. Rogitskiy (1961), R. R. 
Matevoskyan (1961), N. I. Bezukhov and 0. V. Luzhin (1963), 
etal., are devoted to the calculation of the stability of 
rods and rod systems. The stability of thin-walled rods was 
studied by V. Z. Vlasov (1947, 1959), S. A. Ambartsumyan (1952), 
I. F. Obraztsov (1953), et al.  Applied problems in the calcula- 
tion of the stability of structures were developed by B. M. 
Broude (1949), A. V. Hemmerling (1949), A. I. Segal (1949), 
V. V. Piandzhan (1956), et al. 

In the prewar yearr the books by A. N. Dinnik (1939), 
I. Ya. Shtayerman and A. A. Pikovskiy (1939) were widely 
read.  The contemporary state of the theory of elasticity of 
elastic systems is discussed in a series of monographs.  These 
include the books by A. S. Vol'mir (1956, 1963, 1967), V. V. 
Bolotin (1956, 1961), A. F. Smirnov (1958), Kh. M. Mushtari 
and K. Z. Galimov (1957), P. M. Ogibalov (1963), et al.  Stability 
calculations occupy an important place in the classical three- 
volume monograph on the structural mechanics of a ship by 
P. F, Papkovich (Part 2, 1941) and in the volume edited by 
S. D. Ponomarev, et al. (1959). 

Stability problems are widely represented in the proceedings 
of symposia and conferences on mechanics, in particular in 
the Proceedings of All-Union Conferences on Stability Problems 
in Structural Mechanics and also in the theory of shells 
and plates. 
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§2.  The Concept of the Stability of Elastic Systems 

Stability is a property of motion  (in a special case 
of equilibrium) understood in the broad general scientific 
sense of the word. Let us consider a mechanical, electrical 
thermodynamicsbiologial, etc. system.   We will assume that a 
motion  of this system which occurs for a particular 
combination of the system parameters and of the surrounding 
medium is known.  We will assume that this motion is not per- 
turbed.  Now, we will imagine that the parameters that were 
mentioned  (all of them or some of them) underwent small changes. 
Then the motion of the system also changes. A very important 
question is how large these changes will be, i.e.,  by how 
much the perturbed motion will differ from the unperturbed 
motion.  When small actions cause small deviations from the 
unperturbed motions, the perturbed motions will more or less 
cluster densely around the unperturbed motion.  In this case 
the unperturbed motion is said to be stable.  On the other 
hand, if small actions cause large deviations of the system 
from unperturbed motion, the motion is said to be unstable. 
Thus, stability is a property of a system which deviates little 
from unperturbed motion during small perturbing effects. 

The concept of stability is of fundamental importance 
Both in nature and in human activity only stable phenomena 
and processes can be used over a lengthy period. Unstable 
motions  can only be observed over short periods.  Thus, 
the concept of stability is intimately related to the concept 
of realizability. 

Stability problems occupy an important place in engineering 
calculations.  The idealized structure designed by the engineer 
differs from the actual real structure based on this design. 
This difference is due to the many more or less small deviations from 
the design, the defects and imperfections.  To the engineer it 
is absolutely essential that in spite of the presence of these 
deviations, the real structure will function in approximately 
the same manner as the corresponding idealized structure.  If 
there were no such a guarantee, designing would be meaningless. 
It is easily seen that the stability concept is used here. 
The equilibrium or motion  of the design structure will be 
stable if the small imperfections and defects, the small de- 
viations from the calculated scheme cause small deviations 
from the idealized operating conditions.  If the small im- 
perfections cause incommensurately large deviations, the 
equilibrium (motion)  will be unstable.  The designer must 
select the dimensions of the design in such a way that the equilibrium 
(motion) of the structure remains stable with respect to all 
possible combinations of loads and with respect to all types 
of perturbations that may be encountered.  In addition, the 
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structure must  have a certain stability margin. 

We will  point out four elements which must be  included in 
any definition of stability.     First,   it  is finding  the unper- 
turbed motion   (equilibrium),  whose stability is investigated. 
We cannot  speak about  the  "stability of a system" in general, 
we can only speak about  the stability  of a particular motion 
(equilibrium)   of  the    system.     Second,   the definition of 
stability must  include a specification  of  the parameters of 
irotion with respect  to which the stability is studied.     The 
motion may be stable with respect   to one group of parameters 
and unstable with respect  to another group.    The third element 
in  the definition is specifying the class of perturbing 
actions causing   the deviations  from unperturbed motion.     The 
fourth element   is specifying the  time   interval during which 
the unperturbed and perturbed motions  must be close. 

A rigorous mathematical   definition of  the stability of 
motion of  elastic systems goes  back to   the classical definition 
of stability due  to A.  M.  Lyapunov   (1892).    Lyapunov's  theory 
was constructed  for systems with a  finite number of degrees 
of  freedom whose motion is  described by  ordinary differential 
equations.     The  extension of Lyapunov's  theory  to continuous 
systems became  possible after  it was  formulated in  terms of 
functional  analysis   (N.  N.   Krasovskiy,   1956,  V.   I.   Zubov,   1957, 
A.  A.   Movchan,   1959,   1960).     This made  it possible  to generalize 
many concepts,   theorems and methods developed by lyapunov 
and his  followers for a finite  dimensional Euclidian space  to 
a very  large class of metric spaces. 

We present   the basic definitions   (V.   I.  Zubov,   1957 and 
omit certain mathematical subtleties.     For simplicity we will 
restrict ourselves  to  the case when the motion is described 
by one  function  u   (x,   t)  of  the coordinate x and time t. 
We will  consider a set of motions  satisfying the boundary con- 
ditions,   the continuity conditions  and  the initial condition 
a(x,  0)   =   cr(x) .     Let us denote  the elements of  this set by 
U = U(cr,   t)   and  introduce the metric distance between  the 
elements of  the  set U and V which we  denote by   p(U,  V) .     Sup- 
pose that  to  the  unperturbed motion U0  corresponds  the  initial 
condition u(x,   0)   =  cp .    The unperturbed motion U0  is said 
to be stable with respect to the metric   p if for any  e > 0 
a   6 > 0 can be  found such  that   the condition  p(cp,   cp0)   < 6 
implies   p   [u   (cp,   t) ,  UQ] <  e for any  t  > 0.    Otherwise,   the 
motion  is  said  to be unstable.     When the unperturbed motion 
U0  is stable and also  p   [U(cp,   t) ,   U0 ]   - 0   as   t - »  ,   it  is 
said to be asymptotically stable.     A.   A.   Movchan  (1960)   pointed 
out  the usefulness of defining stability  in which two dif- 
ferent metrics  are used simultaneously. 
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The selection of the metrics depends on the t3'pes of 
problem and requirements imposed on the unperturbed motion 
on the basis of physical and engineering concepts. The require- 
ment that the function and its derivative be locally close 
leads to metrics of the form 

(•, -— nip \u — v |, (ij -= Hip I M — y I -',- sup | u, i ---i». 11 
X x X 

()a =: - sup I H —r | •; sup \ii,t-: (•.<!-, sup I u.x — v. x I 
A X X 

etc.  Metrics corresponding to closeness in the mean, form another 
group 

it 

P4 - : | | (" - ')■ ^ J' ' - Ih =' \  f K" - O- -(;/.,- r,,)-) dr} ,/s, 

f K" -/■)• -(",<-<•.,)-   {'.'„v-C..v)-]J.' {'6 ^ .' J 

etc.  In the applications, usually not only stability with respect 
to the displacements and velocities» but also with respect to 
the stresses and strains is required.  In addition, in a con- 
tinuous medium, the smallness of these initial displacements 
and velocity does not necessarily imply the smallness of the 
initial energy of the system and "jumps" in the displacements 
and velocities may occur when t > 0.  Therefore, metrics of 
the energy type occupy an important place.  A. A. Movchan 
(1959, 1960) and A. M. Slobodkin (1962) demonstrated on examples 
that a metric corresponding to the total energy of the system 
leads to results which agree with a direct solution of the 
Cauchy problem for the perturbed motion. 

Often engineering applications require that the definitions 
of stability that were presented above be generalized to the 
case when not only the initial conditions but also the co- 
efficients of the differential equations, the boundary condi- 
tions and the boundary itself are perturbed.  The extension of 
these definitions is intimately related to the concept of the 
correctness of boundary value problems in the theory of partial 
differential equations. Generally, the stability theory of 
deformable solids which would correspond in rigor and 
effectiveness to the classical Lyapunov theory is still in the 
initial development stage.  In practice all concrete results 
on the stability of elastic and nonelastic systems w«re obtained 
either on the basis of methods that were formally borrowed 
from the theory of stability of discrete systems or on the 
basis of linearlized equations of perturbed motion. 
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§3.     Equations  of Perturbed Motion 

In many cases, to make statements about  stability^ it can 
be assumed that  the perturbations are sufficiently small and 
their character can be studied using linearized equations of 
perturbed motion.     We will show how  the linearized equations 
that are applied   to stability problems  in  the motion of an 
elastic body are  set up.     We will use  the equations of non- 
linear elasticity  theory in the form proposed by V. V. 
Novozhilov   (1948) . 

Let us consider  the unperturbed motion of an elastic body 
characterized by   the displacement vector u.,   by  the stress 

tensor a. .  and by  the vectors of body and surface forces 

X.  and p..     The unperturbed motion in rectangular cartesian 

coordinates is described by the equations 

[ah! (.S;-, -;- wy,;)U -;  •*'; ~ PuJ.ti ~ 0' (3 • D 

where p is the density of the material. Here and henceforth 
we will use the rule of summing over dummy indices. On the 
loaded part of the surface of the body, the conditions 

Okt (6,7 4- ",-,;) nh =p; (3.2) 

must be satisfied (n. is the normal vector to the surface of 

the body) .  We impart to the body small deviations from the 
unperturbed motion and we will investigate how these perturba- 
tions vary with time.  The components of the perturbed motion 
(we will denote them by the symbol ~, and the perturbations 
by a bar on the top) will have the form 

.Y,  - .Y,-; ii.Y,-.     l>j'---pj-rVP}       i 

(the perturbations  of  the body and surface  forces generally de- 
pend on time  t) and  u is a small parameter).     Substituting  (3.3) 
in  (3.1)   and   (3.2)   and using  the  fact  that   the perturbations 
are small,  we obtain,   after linearization,   the equations 
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\ohl (bj: - ■ Uj. i) - Oktiij, (1;. -   -V^ - pOJlH =-- 0 (3.4) 

and the boundary conditions on the loaded surface 

lau (6,/i -f UJ,I) -" "■ ";. .'1 "-. = P.» (3.5) 

Here ' ffjfc = XfK.n"/, w      where  k..,     is  the  tensor of elastic con- jklm 
stants corresponding to the unperturbed stressed state. 

In many engineering problems^ the unperturbed motion differs 
little from the initial undeformed state, and the deformations 
only increase during the transition from stability to in- 
stability.  This makes it possible to identify the geometry 
of the unperturbed state with the geometry of the undeformed 
state. Equations (3.4) and boundary conditions (3.5) are con- 
siderably simplified when this is done, since the terms which 
involve the displacements u. are omitted, and the elastic 
constants are used for the undeformed state. 

When the external forces are potentials,a quadratic func- 
tional of ü. is easily constructed which is varied over the 

set of kinematically admissible motions to obtain  the 
linearized equations of perturbed motion (3.4) and the boundary 
conditions (3.5).  For example, in the case when all X. = p. = 0 

and the displacements in the unperturbed state are negligibly 
small, the above functional takes on the form 

11 

/=J [ [ {'■.ii:!m'!j,hlll,m-;   njlÜl.j"l.l.—p'lj,t'li.t)dV^dt. (3.6) 

Here t0 and t, are arbitrarily selected instants of time.  The 

motion is not varied at the endpoints  of the time interval. 
The functional (3.6) coincides with an accuracy up to a con- 
stant multiplier with the second variation of the action integral 
calculated for the real deviations from the unperturbed motion. 
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Stability problems are typical of thin and thin-walled 
bodies. The solutions of these problems for rods, plates and 
shells are usually constructed on the basis of approximate 
equations, in which certain kinematic and dynamic hypotheses 
are used.  These equations can be obtained in a number of ways. 
The first, the earliest method, is to study directly the forms 
of motion (equilibrium) which are adjacent to the unperturbed 
motions.  Some normalized load is sought which is introduced 
in the equation of unperturbed motion. All arguments are 
characterized by clarity; however, in sufficiently complex 
problems, this clarity turns out to be deceptive.  Another 
method is to use the nonlinear equations of the corresponding 
applied theories.  By linearizing the equations in the neighbor- 
hood of the unperturbed motion, the sought equations are obtained, 
This method was used in the theory of shells by Kh. M. Mushtari 
(1939), N. A. Alumyae (1949), Kh. M. Mushtari and K. Z. 
Galimov (1957), N. A. Kil'chevskiy (1963), V. M. Darevskiy 
(1963) and by other authors. However, in nonlinear theoryj 
there is less agreement in the opinions about how the fundamen- 
tal equations should be expressed.  Hence, when this approach 
is followed, all the difficulties are only shifted to another 
area in which there is even less agreement.  The third approach 
is to use the general equations from the theory of elastic 
stability (V. V. Novozhilov, 1940, 1948).  The method which is 
based on the corresponding variational principle was applied 
by V. V. Bolotin (1965).  This method makes it possible to 
estimate the errors in various approximate variants. Her 
a measure of the error is the absolute value of the ra^ 
terms that are ignored in the expression for the densi« 
the quadratic functional to the remaining principal term,,  the 
"energy" error. 

The equations for the stability theory of thin elastic 
shells were derived on the basis of the concept of the "energy" 
error and were subsequently simplified.  For the convenience 
of the discussion, we present the linearized equations for the 
perturbed motion for certain simple problems.  The small trans- 
verse deviations of a thin elastic rod in the presence of an 
expanding axial force V  are described by the equation 

(A7(r,T,i.,, — (.\/r,.), . • - n/-;r . r_ (i. (3.7) 

Here w(x> t) is the normal displacement of the points on the 
axis of the rod, El is the bending rigidity and F is the cross 
sectional area.  The conditions w = w = 0 must be satisfied 

on the fixed end and on the supported end the conditions 
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w = w   = 0.  When the end is freejthe boundary conditions 

depend on the behavior of the force applied to this end.  In 
the case of a force which moves with the end, retaining the 
original direction in the space ("dead" force) , the conditions 
have the form w v„ = 0, (EIw  ) v - Nw  = 0.  When the force 

turns and remains directed along the tangent to the 
deformed axis of the rod ("followup" force), the boundary 
conditions have the form 

"'.xx     '■  (/•/"•. v.v).v ■= (>- 

Small transverse deviations w(x.., x2, t) of a thin 

elastic plate of constant thickness h with the initial forces 
in the middle surface N 0 are described by the equation arp 

J>.\.\ir       (A^r,.).,,.  .,//„•.„ ;-0. (3.8) 

where x (a = 1, 2) are cartesian coordinates on the middle sur- er 
face, and D is the cylindrical rigidity.  Rectangular cartesian 
coordinates are natural for a flat shell and they differ little 
from orthogonal curvilinear coordinates on the middle surface. 
The equations (V. Z. Vlasov, 1944, Yu. N. Rabotnov, 1946) 

are obtained.  Here w(x1, x«, t) is a function of the normal 

displacements and X(x1, Xg, t) is a function of the additional 

forces in the middle surface 

Au" -- »•,!,  !/•,;;. A;ir !''»u\u ■';- ^iir,^, 

and k, and kg are the principal curvatures of the middle sur- 

face. More detailed references can be found in the textbooks 
and monographs by S. P. Timoshenko (1946, 1955), V. V. Novozhilov 
(1948), Kh. M. Mushtari and K. Z. Galimov (1957), A, S. Vol'mir 
(1963, 1965). 
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Until  now we discussed the linearlized equations for  the 
perturbed motion of  an elastic body.     The equations for bodies 
whose material has  nonelastic properties  can be set up analogously. 
Thus,   equations for a linear visco-elastic material are obtained 
from the equations  for an elastic material when the elastic 
constants are replaced by  the appropriate visco-elastic opera- 
tors.    However,   in  the case of an elasto-plastic material 
considerable difficulties arise.     The behavior of  an elasto- 
plastic material  is  very  sensitive to small  changes  in the 
deformation path,  which manifests itself,   in particular,   in 
the necessity  to  distinguish arbitrarily  small loadings and 
unloadings.     Generally,   the deformation equations  of elasto- 
plastic systems cannot be  linearized.     They  can only be linearized 
under certain additional  assumptions   (for example,   when it  is 
assumed that unloading occurs everywhere.    Assumptions of this 
kind narrow down the class of perturbed motions  that is studied 
and,   therefore,   the  results obtained on their basis are of a 
limited or arbitrary character. 

§4.    Methods  for  the Determination of Critical Parameters 

The basic problem in stability  theory of deformable sys- 
tems is to find those values of the parameters of   the system 
and/or external conditions which correspond  to the   transition 
from stability to instability.    These values  are called critical 
values.    Most  frequently,   the external  forces are  given with 
an accuracy up to the parameters.     In this case we speak about 
critical  forces. 

Suppose,   for example,   that the problem is characterized 
by ono parameter   ß.     We can assume without  loss of  generality 
that  (i  varies  in  the  range 0 < 0 < ^ and  that  the motion is 
stable when  P = 0.     The upper bound for the values   0=5,,, 
for which the unperturbed motion remains stable is called the 
critical value.     In  the more    general case, when the number of 
parameters  is finite,   it  is useful  to  introduce the n-dimensional 
parameter space  13,,   Bg»   •   •   •   5« and to distinguish in it  the 
elasticity and nonelasticity regions.     The surfaces 
FCß,,   ßo,   .   .   .   ß  )   = 0 separating the elasticity  and nonelasticity 
regions are called critical surfaces. 

When the unperturbed state is  the equilibrium,   the question 
of  the simultaneous  existence of other stable equilibrium 
states may arise.     Let us  again consider  the  case of a single 
parameter  ß.     The upper bound for  the values   P =  ß^ for which 
the unperturbed state  is  the only stable equilibrium state is 
called the lower critical  value.    For  ß^ < ß < ß+  a sufficiently 
strong perturbation may bring the system  into another stable 
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equilibrium state.     A  relatively well-known example  is  the 
phenomenon of a "crack"  in  thin shells subjected  to compression. 
In problems  in which  the concept of  the lower critical value 
is used,   the value  0  =   ß^  is called the upper critical value. 
When the behavior of  the system depends on n parameters, 
ß,,   ßn»   •   •   •»   Pn»-ant* the coordinate origin in  the parameter 
space corresponds   to stability we can introduce»analogously 
as before, the concept of an upper and lower critical surface. 

A general method for studying  the stability of elastic 
systems is  to consider  the sets of motions which are adjacent 
to  th? unperturbed motions.     This method is  intimately related 
to  the general  theory of stability of motion and is called the 
dynamic method.     When  the stability of various equilibrium 
forms is studied,   the equations of perturbed motion are usually 
linearized.     The equations which are obtained in  this manner 
describe small oscillations  of  the system around  the unperturbed 
equilibrium position.     Hence,   the second name,   the method of 
small perturbations   (Ye.  L.   Nikolai,   1928,   1929). 

Let us consider as an example a thin elastic  rod subjected 
to axial expansion by  forces which are  independent  of time. 
Replacing in equations   (3.7)   N by  PN and taking w  =  cp exp  (rt) , 
we obtain 

(^'(..v.),.v -:- ß (.VffJ.x -f p/>^ - 0. (4il) 

Equation (4.1) is considered together with homogeneous boundary 
conditions (for example, ^ = cp v = 0 for a rod supported at 

the ends) .  We obtain in this way the eigenvalue problem which 
contains two parameters, the characteristic index r and the 
loading parameter ß.  For ß = 0 all r are pure imaginaries and 
the oscillation frequencies are real.  The critical value ß^ 

is determined from the condition that for ß > ß# among the 

characteristic indices r there will be at least one with a 
positive real part.  If passage to the right halfplane occurs 
through the value r = 0, the loss of stability of the unper- 
turbed equilibrium form does not have an oscillatory character. 
In the remaining cases, instability of the oscillatory type 
will occur.  In aeroelasticity problems we speak about diver- 
gence and flutter, respectively. 

The method of small oscillations is not rigorous.  When 
dissipation is not taken into account, for ß < ß# all character- 

istic indices lie on the imaginary axis.  By analogy with the 
stability theory of discrete systems such a case should be 
classified as a doubtful case.  When the external forces are 
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potentials, using the direct Lyapunov method (A. A. Movchan, 
1959) stability can be proved rigorously for ß < ß+.  In the 

same case the introduction of any arbitrarily small full 
dissipation displaces all characteristic indices from the 
imaginary axis to the left half plane.  Then, for ß < ß+ 

we obtain the analogue of asymptotic stability in thn theory 
of discrete systems. 

When the external forces are not potentials, the case of 
pure imaginary characteristic indices is more correctly called 
"quasistability" and the value of the parameter ß+ is said 

to be "quasicritical."  Also here the introduction of dissipation 
forces with full dissipation eleminates the doubtful case 
For some ß < ß^p all indices r are in the left half plane, for 

B > ß^jj» at least one of them is in the right half plane.  In 

nonconservative elastic stability problems, we encounter a very 
important and at first sight unexpected fact, namely, that 
the tending of the dissipation parameters to zero does not 
necessarily imply ß^ - ß,,,.  The limiting value ß^ depends on 

the dissipation law that was adopted (V. V. Bolotin, 1959, 
1961). 

We will dwell on other methods used in the study of the 
stability of elastic equilibrium when the external forces are 
potentials. Among these methods, the energy method occupies 
an important place.  This method is based on the Lagrange- 
Dirichlet problem, according to which the total potential 
energy of the system has the minimum value in stable equilibrium. 
The Lagrange-Dirichlet theorem has been proved rigorously for 
a system with a finite number of degrees of freedom and has 
also been extended to elastic systems by G. H.  Brian (1888) 
S. P. Timoshenko (1907, 1908, 1910), et al. 

The application of the energy method reduces to a study 
of the properties of the quadratic functional of the potential 
energy g,which is equal to the sum of the potential deformation 
energy (internal energy) and the potential energy of the external 
forces.  When for all kinematically admissible variations of 
the state 6^3 > o, the equilibrium is stable.  If for some 
variations 623< o>it is unstable.  The critical value of the 
parameter ß must be found from those values for which 

63 = 0, 6^ = 0 simultaneously.  For the assumptions under 
which the equations of perturbed motion (3.6) were set up 
we have 

bn-3=-  | '.jl.lmllJ.kU^mdV — f, \   Sj,..Ul.jUl.hdV 
(4.2) 
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(a .   = -  Ps.,).     The expression 

6^9- f El{w\xxf ch -ß f A*{w\x)-dx. (4.3) 

corresponds to equation   (3.7).     The same notation as  for 
small perturbation    is  u ed in formulas  (4.2)   and  (4.3)   for 
varying the stresses.     We note that in textbooks and in  the 
technical literature,the  terms in the right members  of ex- 
pressions of types (4.2)   and  (4.3)  are usually  interpreted as 
the   'potential energy of  the deformations" and the  "work of 
the external  forces."    Formulas of the  type 

i 

\" EI{w,xxV.d.c 

ß = iL  (4.4) 

0 

give an upper bound for the critical parameters when the 
kinematically admissible states are compared.  These formulas 
can be considered as one possible realization of the energy 
method (S. P. Timoshenko, 1907, and later authors) . 

The study of the properties of the potential energy func- 
tional can be replaced by a systematic study of the changes 
of equilibrium forms when the parameters of the system change. 
Concepts which are similar to the well-known A. Poincare" 
bifurcation theory (1884) lead to the static method in the 
stability theory of elastic systems. This method can be 
used to reduce the study of stability to finding branching 
points and limiting points.  In the neighborhood of a branch 
point certain allied forms are found together with the equili- 
brium form that is investigated. Loss of stability may occur 
during passage through this point in accordance with the type 
of equilibrium form branching.  A discontinuous transition from 
one form of equilibrium to another corresponds to passage 
through the limiting point.  An analysis of the types of 
limiting points and changes in equilibrium state of elastic 
systems can be found in the studies of G. Yu. Dzhanelidze (1955) , 
I. I. Gol'denblat (1965), et al. The main difficulty in applying 
the bifurcation method to elastic systems is the selection of 
parameters characterizing the state of the system. Strictly 
speaking, the presence of bifurcation points is neither a 
necessary nor a sufficient condition for a change in stability. 
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The reliability of the derivations based on bifurcation concepts 
can be improved when the number of parameters is increased. 
But, when this is done, the main advantage, the geometric clarity, 
is lost. 

The analytical realization of the static method leads to 
the condition 

M6-J)=0. (4.5) 

Here 6 9 is the second variation of the potential energy of 
the system around the unperturbed equilibrium state calculated 
on the assumption that the variations of the displacements 

"2 
coincide with the real perturbations. The lunctional  o 
is calculated from formulas of the type (4.2) and (4.3) and 
then varied over all kinematxcally admissible states.  The cor- 
responding Euler-Ostrogradskiy equations are the well-known 
neutral equilibrium equations which describe the equilibrium 
of the system in the state adjacent to the unperturbed states. 
Variation of the function (4.2) leads to the equation 

(ljk!r„"l,,Xl   -  P^"..:U " 0- (4.6) 

and variation of the functional (4.3) to the equation 

(£/rv.,.AV.c-- M-
v"-.xl.v - 0V (4.7) 

etc.  These equations are the same as the linearized equations 
for the perturbed motion when it is assumed that the perturba- 
tions are independent of time.  Equation (4.7) is obtained from 
(4.1) when the characteristic exponent r is set equal to zero. 

In textbooks and ip the technical literature, the statement 
is usually made that thio method is only useful in problems in 
which the loss of stability takes place on the basis of the 
type of branching of the equilibrium forms.  In fact, the 
neutral equilibrium equations can describe the behavior of the 
system in the neighborhood of the limiting points.  However, 
to do this it is necessary to take into account the displace- 
ments and deformations in the unperturbed state, i.e., to 
start out with equations of the type (3.4). Generally the 
loading parameter will enter the equations nonlinearly. 
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A considerable number of special problems in the theory 
of elastic stability has been solved on the basis of neutral 
equilibrium equations of the type (4.6) and (4.7).  The 
solution of the problems reduces to finding the eigenvalues, 
and selecting among them those which correspond to the transi- 
tions from stability to instability. Various methods are 
used, methods that were borrowed from mathematical physics, 
numerical analysis, theory of oscillations and the more specialized 
techniques of structural mechanics, the theory of shells, etc. 
Among these,variational methods occupy an important place, 
the Rayleigh-Ritz method (1873, 1889, 1908), the Bubnov method 
(1911) and other methods.  The application of these methods 
is discussed in detail in the books by s. P. Timoshenko (1946), 
P. F. Papkovich (1939), L. S. Leybenzon (1945), Ya. A. 
Pratusevich (1948) , et al.  In problems in the stability of 
shells, the loss of stability as a rule is accompanied by 
passage through the limiting points. In addition.the post- 
critical states of the shells are of engineering interest. 
Therefore, in the stability theory of shells, nonlinear equa- 
tions and the corresponding energy functions are widely used. 
Here variational methods are almost the only means for obtaining 
concrete numerical results (Kh. M. Mushtari, 1946, 1955, A. S. 
Vol'mir, 1956, 1965, Kh. M. Mushtari and K. Z. Galimov, 1957, 
A. V. Pogorelov, 1962, 1966, 1967, et al.).  Many problems were 
solved with the aid of the P. F. Papkovich (1939) procedure, 
according to which some of the equations are satisfied exactly 
and some in the variational sense.  The method of reducing the 
stability problem to ordinary differential equations also became 
popular (V. Z. Vlasov, 1932, 1939). 

The application of the method of successive loads to the 
calculation of the stability of shells during finite deflections (V.V. 
Petrov, 1959) is a modification of the method of successive 
approximations. The method .which ignores the bulging forms 
when the critical forces of the shells are determined,was first 
proposed for linear problems (V. Z. Vlasov, 1949) and was sub- 
sequently extended to nonlinear problems for homogeneous (A. V. 
Sachenkoy, 1963, K. Z. Galimov, 1965) and layered shells 
(E. I. Grigolyuk. P. P. Chulkov, 1965). 

A series of results in the theory of elastic stability was 
obtained with the aid of other analytical methods, for example, 
the method of a small parameter (P. Ya. Polubarinova-Kochina, 
1936, S. A. Alekseyev, 1956), the method of linear Integral 
equations (N. V. Zvolinskiy, 1937, Ya. L. Nudel'man, 1949), 
asymptotic methods (I. I. Vorovich, 1955, V. M. Kornev, 1967). 
Numerical methods and matrix methods are widely used (A. F. 
Smirnov, 1947, 1958, A. A. Petropavlovskiy, 1961, A. F. 
Smirnov and his collaborators, 1964, et al.).  Structural 
mechanics methods are used for the calculation of rods and 
rod systems, namely the method of forces, the method of 
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deformations and the method of initial parameters (N. V. 
Kornoukhov, 1939, 1949, A. F. Smirnov, 1947, I. P. 
Prokof'ev and A. F. Smirnov, 1947, N. K. Snitko, 1952, 1956, 
V. G. Chudnovskiy, 1952, A. R. Rzhanits, 1955, S. A. Rogitskiy, 
1961, N. I. Bezukhov and 0. V. Luzhin, 1963, et al.) .  Qualita- 
tive methods which make it possible to obtain for the critical 
parameters one sided and two sided bounds are also used. 
These methods go back to the studies of P. F. Papkovich (1937) 
in which certain general properties of the critical surfaces 
in parameter space are determined.  A development of the quali- 
tative methods is available in the studies by A. F. Smirnov 
(1947), Ya. L. Nudel'man (1949), R. R. Matevosyan (1961), 
B. M. Browde (1964), I. I. Gol'denblat (1965), et al. 

When the external forces are not potentials, the static 
and energy methods are generally unsuitable.  The number of 
nonconservative problems in elastic stability for which an 
exact solution can be obtained is very small.  The usual 
solution method is to pass to some equivalent system with a 
finite number of degrees of freedom.  Such system can be 
obtained, for example, when the distributed mass is replaced 
by a finite number of concentrated masses (Ye. L. Nilolai, 
1928, 1929, K. S. Deyneko and M. Ya. Leonov, 1955).  Another 
way is to apply the Bubnov method, in which the solution is 
sought in the form of a series with coefficients which are 
unknown functions of time.  Another method is to solve the 
Caucly problem for a sufficiently large class of initial 
perturbations.  This solution can be obtained on models or 
digital computers.  By modeling various perturbed motions, 
conclusions can be made  about the stability of the unperturbed 
motion.  This method was used by A. S. Vol'mir and his 
collaborators (1959, 1960), V. V. Bolotin and his collaborators 
(1959, 1960), V. I. Feodos'ev (1963), et al. 

§5.  Stability of Elastic Rods and Rod Systems 

Problems of elastic rods and rod systems loaded by 
potential forces are among the less developed branches in 
the theory of elastic stability.  The study of these problems, 
which started already in the 18th Century, was begun by 
L. Euler and was continued by 0 .   L. Lagrange, G. Kirchhoff 
and other major mathematicians and specialists in mechanics. 
The intense development of industry, transportation, shipbuilding, 
etc., toward the end of the 19th and the beginning of the 20th 
Centuries,served as an impetus which intensified the develop- 
ment of the practical aspect of the theory of elastic stability. 
The computational scheme for the majority of structures at that 
time were rods and rod systems.  The main attention of investi- 
gators was focused in the beginning,on rods.  The studies of 
F. S. Yasinskiy, I.' G. Bubnov and S. P. Timoshenko go back to 
this period. 
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Among the studies on the equilibrium stability of 
elastic systems published during the Soviet period, three trends 
can be singled out. 

The first trend includes studies on the stability of 
curvilinear rods and rings.  It includes the studies of Ye. L. 
Nikolai (1918, 1923), A. N. Dinnik  (1929-1936), and I. Ya. 
Shtayerman (1929-1937) which were subsequently continued by 
A. A. Belous (1937), G. Yu. Dzhanelidze (1939), E. I. 
Grigolyuk (1951), V. G. Chudnovskiy (1952), Ya. A. Pratusevich 
(1952), A. B. Morgayevskiy (1957, 1959), V. M. Makushin (1959), 
etal.   In a number of studies, the three-dimensional forms 
in the loss of stability were studied, taking into account the 
behavior of the load during loss of stability (A. A. Petro- 
pavolskiy, 1953, V. V. Kholchev, 1961, et al.) . 

The second trend is the study of the stability of thin- 
walled rods with an open and closed profile.  The first funda- 
mental results here were obtained by S. P. Timoshenko (1905, 
1906) who constructed the stability theory of rec- 
tilinear H beams. The subsequent fundamental results were 
obtained by V. Z. Vlasov (1936-1940) who developed the general 
theory of thin-walled rectilinear rods and studied in detail 
the bending-torsional forms of loss of stability and introduced 
the concept of the stability circle, etc. The studies of 
V. Z. Vlasov were continued by I. F. Obraztsov (1949, 1953), S.A. 
Ambartsumyan (1953), Yu. D. Kopeykin (1957, 1980), V. I. 
Reut (1959), V. V Meshcheryakov (1959, 1962), et al. 

The third trend studies the deformation of rods after the 
loss of stability. A number of studies deal with the calcula- 
tion of ductile elements that are encountered in tistrument 
building.  The calculation of these elements is based on the 
exact (nonlinearized) equations Jbr the elastic curve.  Ye. P. 
Popov (1948) introduced a classification for the equilibrium 
forms of ductile rods which initially had a straight or circular 
axis and proposed an efficient method for finding these forms. 
The postcritical deformations of elastic rods, constrained as 
a result of the imposed constraints.are studied in a number of 
studies and the load-bearing capacity after the loss of 
stability is estimated. 

An extensive literature deals with problems in the 
calculation of the stability of rod systems.  Statically in- 
determinate frames and arcs are typical computational schemes 
in bridge building industrial construction, machine building 
for transportation, etc.  The calculation of the stability of 
such systems presents considerable computational difficulties, 
especially when the system consists of a large number of rods 
and when the degree of statical  indeterminacy is 
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relatively high. A large number of techniques was developed 
to overcome these difficulties,which go back to the beginning 
of the classical methods in structural mechanics. Various 
methods are discussed in the books by A. F. Smirnov (1947, 
1958), N. V. Kornoukhov (1949), A. I. Segal (1949, 1955), 
N. K. Snitko (1952, 1956), V. G. Chudnovskiy (1952), A. R. 
Rzhanitsyn (1955), I. K. Snitko (1960), R. R. Matevosyan 
(1961), A. A. Pikovskiy (1961), S. A. Rogitskiy (1961), 
N. I. Bezukhov and 0. V. Luzhin (1963). The studies of V. A. 
Gastev (1929), I. M. Rabinovich (1932), A. P. Korobova (1934- 
1954), S. N. Nikiforov (1938), A. A. Kurdyumov (1941-1964), 
N. K. Snitko (1947-1966), et al. , deal with problems in the 
stability of rod systems. 

In addition to the classical structural mechanics 
method, numerical methods were developed extensively.  A. F. 
Smirnov (1947) proposed a matrix method for the calculation 
of complex rod systems with an arbitrary degree of statistical 
indeterminacy.  This methodjwhich combined structural mechanics 
concepts with the idea of interpolation methods^ turned out to 
be a very general computational means which can be conveniently 
implemented on electronic computers. An analogous method 
was proposed abroad only ten years later (the work of G. 
Argiris, et al.) . 

The method of A. F. Smirnov was applied to the calculation 
of the stability of complex rod systems, span structures in 
bridges, arcs with structures above the arc, intertwined frame 
systems, tall radio masts, etc.  The further development of 
the method is presented in the books by A. F. Smirnov (1958) 
A. F. Smirnov, A. V. Aleksandrov, N. N. Shaposhnikov and B. 
Ya. Lashchenikov (1964), in the articles by A. V. Aleksandrov 
(1955, 1957), A. A. Petropavlovskiy (1957, 1964), V. A. Smirnov 
(1962), B. Ya. Lashchenikov (1963), B. P. Derzhavin (1966), 
and others. 

Engineers who make the calculations also need qualitative 
methods which can be used to obtain rough estimates of the 
numerical values of the critical forces in order to find easily the 
best ways of increasing the stability and apply the results 
obtained for some system to a broader class of systems.  The 
main results in this field were obtained by P. F. Papkovich 
(1937), A. F. Smirnov (1947), Ya. L. Nudcl'man (1949), R. R. 
Matevosyan (1961), B. M. Browde (1963). An example of the 
qualitative method are the theorems of P. F. Papkovich on 
the convexity of the critical surface.  Another example are the 
theorems of A. F. Smirnov on the necessary conditions for 
increasing the critical forces by changing the properties of 
the system. 

-391- 



§6.  Stability of Elastic Plates.  Stability of Elastic 
Shells (Linear Theory) 

Linear stability theory of a plane equilibrium form of 
elastic thin plates has been developed in great detail. 
Many results were obtained in the prerevolutionary period 
by S. P. Timoshenko (1907-1916), A. N. Dinnik (1911), K. A. 
Chalyshev (1914), I. G. Bubnov (1914).  The studies of the 
last author which dealt with structural ship elements were 
continued by P. F. Papkovich (1920), A. P. Filippov (1933), 
A. Sh. Lokshin (1935), N. V. Zvolinskiy (1938), A. I. Lur'e 
(1939), P. A. Sokolov (1939), and others. 

At the present time many studies dealing with the stability 
of plates of various shapes under different types of loads 
have been accumulated. N. A. Alfutov and L. I. Balabukh (1967) 
again returned to this problem and changed the variational 
method used to find the critical parameter of the external 
forces. 

Experience has shown that the plates can usually carry 
a considerable load,even after loss of stability. The 
analysis of postcritical deformations is based, as a rule, 
on the system of equations derived by T. Karman (1910): 

D AA«' - («>. „x, y,, + w, ,,,;■/:. sx — 2w. xiL x'.i) = P. 1 c   T\ 

Here the same notation is used as in equation (3.9). 
Many studies are devoted to approximate methods used to in- 
tegrate equations (6.1).  P. F. Papkovich (1920) proposed a 
method according to which the first equation in (6.1) is 
satisfied approximately in the Bubnov sense, the second equation 
is satisfied exactly, and the tangential boundary conditions 
are satisfied in the mean.  The development of this idea can 
be found in the studies of P. A. Sokolov (1932), E. I. Grigolyuk 
(1949), M. A. Koltunov (1953), A. S. Vol'mir (1956), A. V. 
Karmishin (1956), and others.  Along with this,other methods 
were used to solve equations (6.1), the method of a small 
parameter (P. Ya. Polubarinova-Kochina, 1936), the method 
of successive approximations (S. A. Alekseyev, 1956), the 
asymptotic method (I. I. Vorovich, 1955), and the method of 
finite differences (A. S. Vol'mir and A. Yu. Birkgan, 1963), 
and other methods. 
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The needs of modern technology served as an impetus for 
the development of the theory of stability of anisotropic and 
layered  plates.  Stability problems in anisotropic plates 
were worked on by S. G. Lekhnitskiy (1941-1947) and S. A. 
Ambartsumyan (1961). An extensive literature is devoted to 
the stability of three-layer plates with soft and hard fillers 
(A. P. Prusakov (1951), E. I. Grigolyuk (1957, 1958), 
L. M. Kurshin (1958), A. Ya. Aleksandrov, L. E. Bryukker, 
L. M. Kurshin and A. P. Prusakov (1960), A. V. Ivanov (1964)). 
The stability of bimetallic plates was studied by E. I. 
Grigolyuk (1953).  The theory of multi-layered plates consisting 
of alternating hard and soft layers was developed by V. V. 
Bolotin (1963),  The theory was applied to the calculation of 
the global and local stability of plates by L. P. Pomazi 
(1965) and Ye, N. Sinitsyn (1966). 

The early result in the s 
derived on the basis of linear 
S. P. Timoshenko (1910, 1914), 
(1914, 1929), R. Zelli (1915), 
became evident that for certai 
loadsjthe critical parameters 
simple approximate formulas, 
cylindrical shell of radius R 
which is neither too long nor 
p,the approximate formula 

tability theory of shells were 
theory by R. Lorentz (1908), 
R. Southwell (1913), R. Mises 
L. S. Leybenzon (1917).  It 

n basic types of shells and 
could be determined using very 
Thus, in the case of a circular 
and thickness of the wall h, 
too short, loaded by axial forces 

0,(i 
Ek 
Ji (6.2) 

can be used.  For a spherical shell under the action of external 
hydrostatic pressure p a simple approximate formula is also obtained 

1,2-' It (6.3) 

Many subsequent studies were devoted to improving the 
accuracy and to generalizing the early results. Problems in 
the stability of cylindrical shells under different loads were 
studied including a combined load (N. V. Zvolinskiy, 1935, 
1937, Kb. M. Mushtari, 1938-1957, A. S. Vol'mir, 1950-1956, 
V. M. Darevskiy, 1957-1965, S. N. Kan, 1962-1966, V. V. 
Kabanov, 1963-1967, and others).  Problems in the stability 
of conical shells were investigated (Kh. M. Mushtari, 1943, 
E. I. Grigolyuk, 1951, 1955, I. I. Trapezin, 1952-1960, N. A, 
Alumyae, 1955, 1957, and others), of toroidal shells 
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(P. A. Zagubinenko and I. N. Spiridonov, 1959) and shells 
of other shapes.  Problems in the stability of shells in the 
presence of temperature gradients were also studied (V. V. 
Kabanov, 1962, and others).  In the studies of Kh. M. 
Mushtari (1938-1943) a shell with a large number of reinforcing 
elements was replaced by an equivalent smooth anisotropic 
Shell.  Such a "spreading" of the reinforcing elements was 
later applied by many authors.  The discreteness of reinforcing 
edges was taken into account in the studies of N. A. 
Alfutov (1956), V. M. Darevskiy and R. I. Kshnyakin (1960), 
who analyzed the conditions under which the "spreading" is 
admissible.  The stability of structural anisotropic  shells 
was studied by V. V. Kabanov (1964, 1967). 

Rather recently attention was focused on the classical 
linear problem of the stability of cylindrical shells.  It 
became evident that a relaxation of the tangential boundary 
conditions may lead to a considerable reduction of the critical 
forces in comparison with the classical boundary conditions. 
Thus, in the problem of the axial compression of a circular 
cylindrical shell, the transition from the classical support 
on joints to a support in which the tangential stresses at 
the ends vanish*reduces the critical force almost by a factor 
of two.  The number of halfwaves in the circular direc- 
tion  corresponding to the loss in stability is reduced. 
Among the studies dealing with the effect of the tangential 
boundary conditions we mention the studies of A. S. Avdonin 
(1963), V. I. Kozhevnikov (1964), N. A. Alfutov (1965), N. A. 
Kil'chevskiy and S. N. Nikulinskaya (1966), Yu. M. Khishchenko 
(1966) . 

The calculation of real structures requires a study of the 
load-bearing capacity of shells under the action of local 
loads which have consideraUe initial imperfection, and generally 
shells which are in the stressed state from the instant when 
the loading begins.  The number of studies along these lines is 
very large. 

Problems in the stability of three-layer shells of various 
shapes with a filler were also developed (E. I. Grigolyuk, 
and P. P. Chulkov, 1963, L. M. Kurshin, 1958-1964, T. N. 
Vasitsyn, 1962, K. Z. Galimov, 1965, and M. A. Koltunov, 1965). 

7.  Stability of Elastic Shells (Nonlinear Theory) 

The most important stimulus for the development of a 
nonlinear theory of elastic shells were the systematic 
discrepancies between the results obtained from linear theory and the 
experimental data.  For many types of shells and loading 
conditions, the experimental critical forces were considerably 
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smaller than the values calculated on the basis of linear 
theory.  The phenomenon of the loss of stability often occurs 
in the form of a "crack',1 "fissure," i.e., it is accompanied by 
a discontinuous increase in the deformations with a considerable 
change in the shape of the middle surface.  The postcritical 
deformation pattern which is observed usually differs considerably 
from the bifurcation shape predicted by linear theory. 

The first studies in the nonlinear theory of thin 
elastic shells were made in the prewar period (the studies of 
L. G. Donnel, T. Karman and S. S. Tsyan, Kh. M. Mushtari) . 
They are essentially based on the creep theory of rods developed 
by S. P. Timoshenko (1925, 1935), K. B. Biceneau (1929) and 
K.Marguerre (1938). After the war these studies proceeded on 
a wide scale.  The key idea in these studies was that the ex- 
istence of stable equilibrium forms which were different from 
the unperturbed form for values of the loading parameters 
smaller than the classical critical value, was typical of 
problems in the stability of shells.  Many studies were devoted 
to finding the lower critical forces for various types of shells 
and boundary conditions and types of loads.  The stability of 
cylindrical shells and panels was studied by A. S. Vol'mir 
(1944-1956), Kh. M. Mushtari, K. Z. Galimov, M. S. Kornishin 
and A. V. Sachenkov (1946-1957), M. A. Koltunov (1952), N. A. 
Alumyae (1954), 0. I. Terebushko (1956) and by many other authors. 
The stability of spherical shells and panels was studied by 
V. I. Feodos'ev (1946-1961), Kh. M. Mushtari and R. G. Surkin 
(1950-1956), E. I. Grigolyui: (1956, 1959), N. K. Lebedeva 
(1964), I. I. Vorovich and V. F. Zipalova (1966) and others. 
The stability of conical shells was studied by E. I. Grigolyuk 
(1956).  The problem of the existence of lower critical forces 
was studied by I. I. Vorovich (1955, 1957).  The cracks in 
bimetallic shells during heating and cooling were studied 
(D. Yu. Panov, 1948, E. I. Grigolyuk, 1953).  The postcritical 
behavior of three-layer shells (cylinder, sphere, cone) was 
studied (E. I. Grigolyuk and P. P. Chulkov, 1965).  More 
detailed information can be found in the books by Kh. M. Mushtari 
and K, Z. Galimov «"1957), A. S. Voi'mir (1956, 1967), and also 
in A. S. Voi'.iir's sui vey (1966). 

Usually the studies were based on the theory of flat 
shells.  We present the original system of differential equa- 
tions for the problem as applied to three-layer shells 
with a hard filler subjected to a transverse shear (E. I. 
Grigolyuk and P. P. Chulkov, 1963).: 
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(7.1) 

The   deflection  is 

«• C-f^)^ 
Here   y-^ ) ( ).,, r ( ).... J.^ (i     1, 2) are orthogonal coordinates 

in the original surface, D is the cylindrical rigidity of the 
packet, h is its thickness, v is the flexural rigidity parameter 
of the outer layers, k..(i, j = 1, 2) are the curvatures of the 

0 lines of the original surface, w is the initial deflection, q is 
the transverse load and the Polsson ratio for all three layers 
is the same. 

For  ß  =  »,   w =   x,   ^ = 0 the well-known   Marguerre equation 
is obtained and with  the additional condition 

vll = k 22 k12 

we have the Föppl-Karman equation  (6.1).  System (7.1) can 
be treated as an improvement of the classical theory of the 
bending of homogeneous shells when the shear along the thick- 
ness is taken into account.  Unlike in the classical theory, 
this system is compatible with five natural boundary conditions. 

Equations of type (7.1) can also be constructed for 
multilayer shells which are homogeneous, orthotropic and Iso- 
tropie during finite deflections.  This was done in the studies of 
E. I. Grigolyuk and P. P. Chulkov (1965).  The essence of the 
matter consists of the following.  The shell, whether it is a 
layered shell or not, is broken up into a number n of fictitious 
shells. Next, for the displacements of the points in each 
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fictitious shell a linear distribution law is adopted which 
depends on the transverse coordinate.  The conditions for the 
conjugation of the layers and the hypothesis of the incompressibility 
of the material of each layer in the transverse direction 
make it possible to characterize the displacement of the points 
in the entire packet by 2n + 3 independent functions of the 
coordinate parameters for the surface of the shell. 

The principle of possible displacements yields exactly 
2n + 3 equilibrium equations, which, on the basis of Hooke's 
law, are written in terms of the displacements.  It is clear 
that such an approach makes it possible to obtain a two-dimensional 
system of equations of infinite order which is equivalent to 
a system of three-dimensional elasticity equations for a layer 
shell, assuming its incompressibility in the transverse direction. 
For this, it suffices if the number of fictitious layers tends 
to infinity uniformly over the entire thickness of the shell. 
The constraint imposed by the incompressibility of the 
material of the layers in the transverse direction is not 
essential, since it is easily removed by assuming that also 
the normal displacements within each layer are distributed 
according to a linear law, which depends on the transverse 
coordinate.  Expressing the displacements with the aid of 
differential operations in terms of three arbitrary functions, 
(the stress function F and the two displacement functions 
X, ty) it is possible to reduce the original system of 2n + 3 
equations to three equivalent resolvent equations of the sar.-* 
order.  The advantage of the resolvent equations in comparison 
with the original system is mainly that the differential opera- 
tor of the resolvent system contains coefficients which decrease 
rapidly as the order of the derivatives increases.  This makes 
it possible, depending on the external load and the type of 
boundary conditions, to retain the derivatives of the necessary 
order, i.e., in fact, only take into account the important 
boundary effects.  Mathematically the introduction of the 
stress function F and the displacement functions X, ^1,   is 
equivalent to expanding the stressed-strained state in the 
eigenfunctions of the holoaxial positive-definitive operator 
which is specially adapted to the structure of the given layered 
shell, and the retention of the principal coefficients in the 
expansion corresponds to the truncation of the operators in 
the resolvent equations. 

The subsequent development of these studies led to a sub- 
stantial revision of the point of view adopted for this 
problem.  In order to make the situation more understandable, 
we will consider in greater detail the problem of the stability 
of a circular cylindrical shell undergoing axial compression. 
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The classical theory, under certain simplifications, 
gives for this problem the approximate formula (6.2).  The 
experimental values usually lie in ranges to which in this 
formula correspond the values from 0.18 to 0.60 of the numerical 
coefficient.  The greater value is obtained for the most 
carefully manufactured shells and for the most accurate ex- 
perimental conditions.  The theoretical value of the lower 
critical force is  calculated anoroximately for this problem by 
applying variational methods either to the system of equations 
of the nonlinear theory of shells or to the corresponding energy 
functional.  The number of parameters varied in the early 
studies was small.  Thus, expressions of the form 

,     .     mt.ITi    .     m<r*   ,    .    .   .,  '"1.1/1     .   „ ni*Tn   ,    , 
u-=/, sin —j-^-sin-^p-r/:Mil-—j--^m-^j-+/o. 

were used in which the first term corresponds to the linear 
theory approximation and the remaining terms take into account 
the nonsymmetric character of the dents formed after the 
"crack." Here f0, f, and fg are the parameters that are varied, 

1 is the length of the shell, and m, and m« are positive in- 
tegers.  The calculations based on such expressions led to 
values of the lower critical force to which a coefficient 
which is close to 0.2 corresponds in formula (6.2).  This value 
fully satisfied the investigators. However, recently results 
of more accurate computations in which electronic computers were 
used became available, which made it possible to increase con- 
siderably the number of parameters that were varied.  It 
became evident that improving the accuracy of the method entails 
a reduced lower critical value.  Thus, according to the data 
of N. G. Hoff (1966),, when the number of terms in the series 
is increased from three to fifteen, the coefficient in formula (6.2) 
is reduced from 0.1860 to 0.0427.  It is not clear by what 
amount this coefficient will decrease when we further increase 
the number of terms in the series.  The situation in the stability 
problem of a closed spherical shell under the action of external 
pressure turned out to be no less dramatic.  We present some 
data about the coefficient in formula (6.3) when it is applied 
to find the lower critical pressure.  Kh. M. Mushtari and 
R. G. Surkin (1950) obtained the value 0.10, V. I. Feodos'ev 
(1954) the value - 0.13 (a negative value), Kh. M. Mushtari 
(1955) the value + 0.11, A. G. Gabril'yants and V. I. 
Feodos'ev (1961) + 0.06. 
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The explanation of these and similar results consists 
of the following.  The forms of the middle surface which are 
given after the crack in the form of a finite series consid- 
erably limit the class of its possible equilibrium forms. At 
the same time the shell is a continuous system.  The possibility 
that for loaded shells an Infinite set of subcritical equilibrium 
forms exists^which are different from the unperturbed form, 
including a certain number of stable equilibrium forms; is not 
excluded.  When the number of terms in the series is increased, 
the class of possible equilibrium forms becomes larger. 
Incidentally, their practical value is very limited.  To realize 
these forms/a finite perturbation of a special class and a suf- 
ficiently large quantity are needed. 

The main reason for tl?e reduced experimental critical 
forces in comparison with their classical magnitudes are the 
initial deflections of the middle surface from the ideal form, 
the imperfections in the supports, the presence of residual 
stresses, etc.  The upper critical force for real shells., as 
a rule, is very sensitive to a change in the parameters of the 
initial Imperfections.  This explains both the reduction in 
the experimental critical forces and also their large scatter. 
The last fact makes it necessary to take into account the ran- 
dom character of the initial imperfections, which can only be 
done by using statistical methods. 

The situation with regard to the stability of flat panels 
supported on a sufficiently rigid profile is somewhat better. 
The stability of cylindrical, conical and spherical panels in 
a nonlinear formulation was studied by A. S. Vol'mir (1956), 
E. I. Grigolyuk (1956, 1960), 0. I. Terbushko (1958), I. I. 
Vorovich and V. F. Zipalova (1966). The presence of a suf- 
ficiently rigid profile narrows down considerably the class 
of possible forms of loss of stability of a panel; therefore, 
here approximations with a few terms give usually sufficiently 
reliable result.  A similar situation is encountered in the 
calculation of reinforced shells. 

A new trend in the nonlinear theory of shells was developed 
by A. V. Pogorelov (1960, 1962, 1966, 1967), A. V. Pogorelov 
introduced the assumption that the form of the part of the 
middle surface with the cracks is isometric to its original 
form.  The cracked part makes contact with the remaining part 
of the middle surface along some edges in the neighborhood of 
which local bending occurs.  Since the method for calculating 
the displacements and the critical forces used by A. V. 
Pogorelov differs little from the usual energy method, the 
most important part of the assumptions made by A. V. Pogorelov 
is the introduction of a new large class of functions which 
describe approximately the deformations in thin shells. 
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A. V. Pogorelov made the calculations for a very large class of 
problems and compared the results of the computations with his 
original experiments. The method of A. V. Pogorelov was 
also applied by V. I. Babenko (1966) and V. V. Mikhaylov (1966). 
A discussion of the studies of A. V. Pogorelov is available in 
the supplement by I. I. Vorovich in A. V. Pogorelov's 
book (1966). 

§8. Stability of Elastic and Elasto-Plastic Systems 

Since stability problems are typical of thin and thin- 
walled bodies, they are usually formulated and solved within the 
frame of reference of applied theories for rods, plates and shells. 
Nevertheless, there are several reasons why certain stability 
problems should be studied from the standpoint of general elas- 
ticity theory. 

First, the general equations of nonlinear elasticity 
theory are used to derive rigorously the stability equations 
for thin and thin-walled bodies. Studies along these lines 
(V. V. Novozhilov, 1940, 1948, V. V. Bolotin, 1956, 1965, 
A. I. Lur'e, 1966, and others) were already discussed in 
§3.  Second, the solution of problems obtained on the basis of 
elasticity theory, can be used to estimate the accuracy and to 
determine the range of applicability of known approximate 
solutions. This trend includes the studies of L. S. 
Leybenzon (1917) and A. Yu. Ishlinskiy (1954).  We note that 
in these studies it was proposed that the equations used for 
describing equilibrium forms adjacent to the unperturbed form 
be the classical elasticity theory equations.  The external 
forces appeared only in the perturbed boundary conditions. 
This approach was recently analyzed by A. N. Guz' (1967). 
Third, the equations of elasticity theory must be used in 
stability problems of plates and shells making contact with an 
elastic material of lower rigidity. A. P. Voronovich (1948), 
V. N. Moskalenko (1964) and others applied this approach to 
layered plates with a soft filler. The stability of cylindrical 
shells with a soft elastic core was studied by A. P. Varvak 
(1966).  The application of the theory of plates and shells to the 
load-bearing layers is typical of such problems and the application 
of three-dimensional elasticity theory to the filler is also typical 

If the system does not have sufficient ductility, loss in 
stability can occur in the elasto-plastic state. F. Engesser 
developed the stability theory of centrally compressed rods 
beyond the elasticity limit on the assumption that a loading 
process takes place at all points of the cross section.  In 
this case, the critical force is determined not by the elasticity 
modulus like in a problem for an elastic material, but by the 
tangential modulus (we obtain a tangential-modulus critical 
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force) .  F. S. Yasinskiy noted with regard to this theory 
that unloading should be taken into account in a part of the cross 
section. This leads to the existence of a neutral axis in the 
cross section.Taking into account unloading in the cross 
section on the assumption that the resultant axial force does 
not change, F. Engesser obtained a formula for the critical 
force which differs from the corresponding formula for an 
elastic rod in that instead of the modulus of elasticity it 
contains a normalized modulus which depends on the shape of 
the cross section of the rod.  For almost the entire first 
half of our century it was assumed that the normalized modulus 
load is the critical load for elasto-plastic systems and that 
Engesser's original result was erroneous.  Many studies were 
published in which various problems are solved on the basis of 
this concept. 

The normalized modulus concept was the result of extending 
the theory of bifurcation equilibrium forms from the theory of 
elastic stability to elasto-plastic problems.  This extension 
ms unjustified, which became a generally recognized fact only 
after the limited applicability of the normalized modulus 
concept was demonstrated on simple models.  It became evident 
that the lower boundary for the critical forces is equal to 
the tangential-modulus load whose magnitude is calculated 
using an analogous formula for an elastic rod in which the 
tangential modulus is substituted instead of Young's modulus 
The conditions under which a tangential-modulus critical load 
is realized can be easily singled out. 

This problem was studied Yu. N. Rabotnov (1952), Ya. G. 
Panovko (1954-1965), V. D. Klyushnikov (1957, 1964), G. V. 
Ivanov (1961, 1963), Yu. A. Chernukha (1966), and others.  In 
particular, V. D. Klyushnikov studied the stability problem 
of the simplest elasto-plastic system in a dynamic formulation 
and showed that th<? unperturbed state of the system is stable 
until the tangential-modulus load is attained. 

The conclusion that the tangential-modulus and normalized 
modulus loads limit the interval of real critical forces was 
very attractive, even more so, since for many systems the 
numerical difference between these values was small.  However, 
an example exists in which the critical force apparently ex- 
ceeds the normalized value of the modulus. A. A. Il'yushin 
(1960) and V. G.  Zubchaninov (1960) studied the bulging of 
an elasto-plastic rod included in a statically indeterminate 
rod system.  When the system has an unloading effect on the 
rod, the authors show that the rectilinear shape of the rod 
may remain stable even when the normalized modulus load is 
exceeded. 
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Until now relatively complex problems in elasto-plastic 
stability were studied in a restricted formulation which 
was analogous to the tangential-modulus or normalized modulus 
concept.  The ultimate results depend on which variant of the 
theory of plasticity is used.  The stability of elasto-plastic 
rods was studied by L. M. Kachanov (1951, 1956), A. V. 
Hemmerling (1952, 1959, 1965), Ya. G. Panovko (1954, 1962), 
A. R. Rzhanitsyn (1955), V. V. Pinadzhyan (1956), Yu. R. 
Lepik (1957), and B. P. Makarov (1965). A general theory of 
stability of plates and shells based on deformation theory 
was proposed by A. A. Il'yushln (1944). He also obtained a 
solution of a number of interesting practical problems.  The 
general theory of stability of shells based on the tangential- 
modulus concept was developed by E. I. Grigolyuk (1957, 1958) 
within the framework of a theory of the flow and deformation 
type,.taking into account the elastic compressibility of the 
material. A number of problems In the stability of plates and 
shells beyond the elasticity limit was studied by L. A. 
Tolokonnikov (1949-1955), S. M. Popov (1951, 1954), Yu. R. 
Lepik (1954-1957), L. M. Kachanov (1956), V. D. Klyushnikov 
(1957), E. I. Grigolyuk (1958) and others. A general theory 
of elasticity of two-layered shells beyond the elasticity limit 
was developed by E. I. Grigolyuk (1958), which was generalized 
by E. I. Grigolyuk and V. V. Kabanov (1966), who evaluated the 
effect of rearranging the layers on the magnitude of the 
critical forces. Anisotropie shells beyor : the elasticity 
limit were calculated by V. V. Kabanov (1966, 1967).  The 
survey by E. I. Grigolyuk (1966) is devoted to the contemporary 
state of the theory of stability of shells beyond the elasticity 
limit. 

§9.  Stability of Visco-Elastic and Visco-Elasto- 
Plastic Systems 

This section discusses problems in the stability of sys- 
tems whose material Is damaged by creep. We will distinguish 
two cases:  when there are no Instantaneous plastic deformations 
and when there are instantaneous plastic deformations.  In 
the first case we shall speak about visco-elastic systems, 
in the second case about visco-elasto-plastic systems.  Sub- 
sequently, we will distinguish linear and nonlinear visco- 
elastic systems. 

The nonlinearity of visco-elastic systems^at least within 
the framework of the majority of models proposed until now,is 
analytical and it can be linearized.  Therefore, stability problems 
for visco-elastic systems turned out to be simpler than for 
elasto-plastic systems and the theory is more advanced.  The 
deformation process in visco-elastic systems develops with 
time.  The type of perturbations and the sequence with which 
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they act over time as well as the duration of the time inter- 
val during which stability is investigated are of essential im- 
portance.  The concepts of the critical time t^i by which is 

meant the duration from the instant when the load is applied 
until the critical state is reached in some sense is often 
used in the calculation of visco-elastic systems.  In the general 
case., the time t^ is a function of the parameters of the external 
forces and the type of perturbations.   The stability problem 
of systems consisting of a linear visco-elastic material 
is solved most easily.  Let us consider, for example, a 
rectilinear bar compressed by a constant force P.  Suppose that 
the material of the rod is a standard linear material in the 
sense that the relation between the stresses a and strains e 
is described by the formula 

do .,   i  r  08 a+T-^/'^e + TEo—. 

Here E0 is the instantaneous elasticity modulus, E^ is the long- 

term elasticity modulus and T is the relaxation time.  The 
equation of perturbed motion has the form (4.7), where the 
elasticity modulus E must be replaced by the corresponding 
linear operator.  It turns out that the rectilinear form of 
the rod is stable on any time interval provided P < P^, where 

P^ is the Eulerian force calculated on the basis of the long- 

term elasticity modulus.  When P > P^, the rectilinear form 

of the rod will be unstable.  For P > P0, where P0 is calculated 

from the Instantaneous modulus E0, loss of stability occurs 

instantaneously (with an accuracy to the dynamic transient 
process). 

The problem that was mentioned was first studied by A. R. 
Rzhanitsyn (1946, 1949).  The model of a linear visco-elastic 
body describes satisfactorily the creep in many types of 
polymers and concrete.  Therefore, it is widely used in the 
calculation of structures made from these materials.  We point 
out the studies of G. S. Grigoryan (1964) and Ye. N. Sinitsyn 
(1966).  V. V. Bolotin and Ye. N. Sinitsyn (1967) solved the 
problem of the surface bulging of a halfspace from a layered 
material, one of whose components has linear visco-elastic 
properties.  The general theory of visco-elastic layered shells 
with fillers receiving transverse shear during finite bends 
was developed by E. I. Grigolyuk and P. P. Chulkov (1964). 
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The creep in metals and alloys, as a rule, has a highly 
pronounced nonlinear character.  The models of a nonlinear 
visco-elastic medium used in the theory of creep are usually 
such that they give for arbitrarily small stresses a creep 
deformation which increases without limit with time.  There- 
fore if the stability problems for systems consisting of such 
materials are formulated rigorously, we will have instability 
in many important practical cases.  At the same time the 
structures are used successfully under creep conditions pro- 
vided the strength of the material is not disturbed and the 
deformations do not attain undesirable dimensions.  Thus, 
the rigorous formulation of the stability problem turned out 
to be insufficiently realistic from the standpoint of 
engineering applications. 

Many attempts were made to overcome the difficulties 
that were mentioned.  Yu. N. Rabotnov and S. A. Shesterikov 
(1957) were the first to apply to stability problems of 
rods and plates made from a nonlinear visco-elastic material 
the dynamic stability criterion.  They considered perturba- 
tions applied at some instant of time t > 0. A critical 
value t^, was found for which the perturbations applied at 
t > t% lead to a fast increase in the displacements.  It became 
evident that the value t# that was found agrees with certain 
semiempirical engineering criteria.  A further analysis and 
development of this result is available in the articles by 
Yu. N. Rabotnov (I960), G. V. Ivanova (1961), L. M. Kurshina 
(1961)  and S. A. Shesterikov (1961), I. G. Teregulova (1965, 
1966). 

The studies by E. I. Grigolyuk and Yu. V. Lipovtsev (1965, 
1966) developed a static method for the study of the stability 
of visco-elastic shells based on an investigation of the branching 
of equilibrium forms during the creep process.  Since, as a 
result of creep, the stresed and deformed state change con- 
tinuously, at some instant of time the original equilibrium 
form is no longer the only possible form and contiguous 
equilibrium forms occur which are different from the original 
form.  E. I. Grigolyuk and Yu. V. Lipovtsev have shown that 
taking into account the creep does not lead to basic changes 
in the stability concepts and solution methods that were de- 
veloped for the study of the stability of elastic systems. 
Only the computation scheme is modified and made more precise. 
The changes are only essential in that part which is related to 
the determination of the stresses and strains in the initial 
state of the system.  Here it is necessary to take into account 
the possible deviations of the system from the ideal state 
caused by the presence of initial displacements, the particular 
ways in which the loads are applied, etc.  The neutral equilibrium 
equations expressed in terms of the instantaneous increments 
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(variations) of the stresses and strains have the same form as those 
for elastic systems. When they are written down it is necessary 
to take into account the additional deformations and stresses 
in the initial states which are accumulated during the creep 
processes. 

Another way of obtaining the results is as follows: 
Instead of the stability problem, the problem of the behavior 
of the system with time forgiven initial conditions and other 
given perturbations is studied. A limiting value of the stresses, 
deformations, velocities, etc., is determined.  The time t# 
is sought in which this limiting value will be attained. 
Studies along these lines include the studies by V. I. Rozen- 
blyum (1954), A. S. Vol'mir and P. G. Zykin (1962), Yu. V. 
Lipovtsev (1964), L. M. Kurshin and Yu. V. Lipovtsev (1964), 
M. A. Koltunov (1965, 1966), G. V. Ivanov and V. N. Shepelenko 
(1966). 

Semiempirlcal criteria have also been used extensively, 
the critical deformation criterion, the tangential modulus 
criterion, etc.  A survey of these criteria is available in 
the book by Yu. N. Rabotnov (1966) and A. S. Vol'mir (1967). 

In the field of the stability of visco-elasto-plastic 
systems only the first steps were made.  The problem of taking 
into account the instantaneous plastic deformation in the 
analysis of the behavior of systems made from a material 
damaged by creep is discussed in the book by Yu. N. Rabotnov 
(1966). 

§10.  Stability of Elastic Systems under Followup Loads 

In the classical theory of stability, external potential 
forces were considered (mainly of gravitational origin).  The 
development of technology led to a considerable extension of 
the class of loads acting on a structure.  Among these, non- 
potential forces which do not depend explicitly on timejoccupy 
a special position. Examples of these are forces whose 
vectors rotate during the deformation of the system and preserve 
constant angles with the orths of the local Lagrangian basis. 
Forces of this type are usually called follow-up forces. 

Ye. L. Nikolai (1928) was the first man who studied the 
problem of the stability of an elastic system loaded by 
follow-up forces.  His study investigates the stability of 
the rectilinear form of a ductile rod, one end of which is 
fixed and the other loaded by a compression force and a 
torque.  It was established that in the case when the vector 
of the moment is "tangential" (i.e., it remains directed along 
the tangent to the bent axis of the rod) no other forms of 
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equilibrium except the rectilinear form exist. On the basis 
of this Ye. L. Nikolai concluded that the usual method of 
determining the critical force was not applicable to the 
given problem.  By setting up the equations for small os- 
cillations of the rod around the rectilinear equilibrium form, 
Ye. L. Nikolai established that this equilibrium was unstable 
for any values of the torque (if damping was not ;aken 
into account and a rod with a circular cross section was 
considered).  In the subsequent study (1929) it was shown that 
in the presence of unequal flexural rigidities the rectilinear 
form of the rod is stable for a sufficiently small value of the 
torque. A critical value of the moment exists beyond which 
the rectilinear form is no longer stable.  The result' obtained 
by Ye. L. Nikolai were further developed by G. Yu. Dzhanelidze 
(1939) and I. Ye. Shashkov (1941, 1950). 

The studies by Ye. L. Nikolai did not include explicit 
Indications with regard to the nonpotential character of the ex- 
ternal forces.  In 1939, V. I. Reut formulated the stability 
problem for a cantilever beam with a crosspiece at the end. 
The rod was compressed by a form whose line of action did not 
change in space.  It became evident that also here no other 
equilibrium forms, except the rectilinear form,exist.  B. I. 
Nikolai (1939)  pointed out that the force was nonconservative 
and studied the small oscillation of a rod around the perturbed 
equilibrium position and obtained the critical value of the 
force.  The studies of Ye. L. and B. L. Nikolai apparently have 
not been noticed  for a long time.  In particular, this can 
be seen from the fact that G. Ziegler published in 1951-1953 
a series of studies which duplicated to a considerable degree 
the results of Ye. L. Nikolai.  On the other hand in the 
50^ several studies appeared in which the absence of continguous 
equilibrium forms was erroneously classified as a stability 
criterion for unperturbed equilibrium, in which the energy 
method was applied to nonconservative systems, etc.  In the 
subsequent years, the number of publications on nonconserva- 
tive problems in elastic stability increased sharply.  We 
point out the  studies by K. S. Deyneko and M. Ya. Leonov 
(1955), V. V. Bolotin (1956, 1959), G. Yu. Dzhanelidze (1958, 
1965), K. N. Gopak and S. G. Krivosheyeva (1959), L. M. 
Zoriy and M. Ya. Leonov (1961, 1962), N. I. Ginger (1967). 
A survey of studies along these lines can be found in the 
article by G. Yu. Dzhanelidze (1965) . 

We will point out certain specific features in stability 
problems of elastic systems loaded by follow-up forces. The 
loss of equilibrium stability of such a system can have both 
an oscillatory and non-oscillatory character.  In the first 
case the critical parameter of the external forces depends not 
only on the distribution of the rigidities, but also on the 
distribution of masses of the system.  In particular, the 
critical parameter can be reduced by bringing closer the 
partial frequencies of the natural oscillations. Another 

-406- 



specific feature Is the considerable damping effect on the 
value of the critical parameters when the loss of stability 
is of the oscillatory type.  In the majority of studies on 
the stability of elastic systems in the presence of follow- 
up forces^ dissipation forces are not introduced into the 
discussion.  What is called stability in these stadies is in 
effect quaslstability in the sense of §4.  When the critical 
parameter is calculated,taking dissipation into account and 
then letting the dissipation coefficients approach zero, the 
limiting value of the critical parameter will generally not 
be the same as the corresponding value found without taking 
dissipation into account. This effect was already discovered 
by G. Ziegler in 1952. Further analysis has shown (V. V. 
Bolotin, 1959) that the limiting value depends considerably 
on the relation between the partial dissipation coefficients. 
The quasicritical value of the parameter of the external 
forces is an upper bound on the critical values during dissipa- 
tion, which tends to zero. Recently this problem was studied 
in detail by N. I. Ginger (1967). 

Follow-up forces may occur as a result of idealizing the 
interaction of the structure with liquid or gas flows (in- 
cluding pressure and the reaction of jets), during the inter- 
action of the systems with an electromagnetic field, etc., 
and also in the elastic branches of automatic control systems. 
The attempt to realize the follow-up forces using air jets 
was made by Yu. N. Novichkov (1967) and L. K. Parshin (1967). 
The stability of rods subjected to follow-up forces in a super- 
sonic flow was studied by A. G. Gorshkov and F. N. Shklyarchuk 
(1966) . 

§11.  Stability During Impact Loads 

The stability problems of elastic systems also include 
many problems on the behavior of elastic bodies loaded by 
rapidly changing loads,when the latter are such that they 
correspond to certain equilibrium stability problems in the 
classical theory of elastic stability.  When the dynamic loads 
in elastic systems are studied, their time behavior is usually 
determined for certain fully defined initial conditions, i.e., 
actually the Cauchy problem is solved.  As a rule, the problem 
of the stability of the solutions is not formulated. Neverthe- 
less, in applied studies references are made to "stability," 
"instability," "critical forces," and one meaning or another 
is assigned to these concepts depending on the context. 

We will follow the established traditions and sometimes 
use these concepts in this section. 
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The first studies dealing with the stability of elastic 
systems under impact loads were made by I. M. Rabinovich, 
M. A. Lavrent'ev and A. Yu. Ishlinskiy.  I. M. Rabinovich 
(1944) studied the problem of the longitudinal dynamic 
loading of a beam with a small initial curvature. M. A. 
Lavrent'ev and A. Yu. Ishlinskiy (1949) studied for the 
first time the effect of the magnitude of a suddenly applied 
force on the rate at which perturbations of various types 
increase.  The authors used equations of type (4.7), in the 
first term of which w was replaced by w - wft (wn is the 

initial displacement) .  When the force N = - P is applied at 
the instant t = 0 which for t > 0 remains constant, those 
perturbations increase most rapidly which correspond to half- 
wave numbers k, which are close to 

H^r 
Similar results were obtained for a circular ring and for 

a circular cylindrical shell. M. A. Lavrent'ev and A. Yu. 
Ishlinskiy (1949) made experiments in which the impact load was 
created with the aid of an explosion, which confirmed the experi- 
mental results.  Among other studies dealing with the dynamic 
bulging of rods we mention the studies by N. K. Snitko (1944) , 
I. M. Rabinovich (1947, 1953), V. A. Gastev (1949), I. M. 
Rabinovich and A. P. Sinitsyn (1956), A. S. Vol'mir (1963), 
A. S. Vol'iiiir and I. G. Kil'dibekov (1966).  The dynamic bulging 
of an elasto-plastic rod was studied by A, K. Pertsev and A. 
Ya. Rukolayne (1965). 

The dynamics of the bulging of plates and shells, as a 
rule»must be studied in a nonlinear formulation.  The study 
reduces to the integration of equations of type (7.1) with 
inertial terms and nonzero initial conditions or corresponding 
equations with additional terms which take into account the 
initial imperfections, etc.  In this formulation the behavior 
of cylindrical shells and panels was studied for the first 
time by V. A. Agamirov and A. S. Vol'mir (1959) as well as by 
G. A. Boychenko, B. P. Makarov, N. I. Sudakova and Yu. Yu. 
Shveyko (1959).  The first group of authors studied the loading 
of a circular cylindrical shell by forces which increased with 
time. Solving the Cauchy problem on an electronic computer, 
they determined the value of the load corresponding to the 
fastest rate for the increase in the deflections. This value was 
called by the authors the "dynamic critical load." The second 
group of authors studied the sudden loading of an elastic 
cylindrical panel by forces whose values subsequently decrease 
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with time to zero.     It  turned out that  it was  possible to 
formulate the stability problem.     For certain classes of 
problems,  a region was constructed in  the parameter plane 
which corresponded to  the stability of  the  initial form of 
the panel.     In  the last few years,   the dynamic bulging of 
plates and shells was  studied extensively.     A survey of  these 
studies  is available  in the book by A.   S.  Vol'mir  (1967). 
The effect of wave motions and plastic deformations on the 
behavior of  shells during rapidly changing loads is of  the 
utmost interest^but at  the same  time, the most  difficult 
problem. 

Problems dealing with the interaction of a shell in a gas 
or liquid with   shock    waves are allied to  the above-mentioned 
problem.     The most  important results here were obtained by 
V.  V.  Novozhilov,  A.  D.  Aleksandrin,   Yu.   S.   Yakovlev,  B.   V. 
Zamyshlyayev,  A.   K.  Pertsev and Yu.   I.   Kadashevich  (1961- 
1964),   E.   I.   Grigolyuk,  V.  L.  Prisekin,   L.   M.   Karshin,  A.   G. 
Gorshkov and F.   N.   Shklyarchuk   (1961,   1963,   1967),  A.   S. 
Vol'mir and M.   S.  Gershteyn  (1965,   1966).     Further studies 
in this  field should renounce the excessively  simplified 
assumptions about  the  interaction between  the shells and 
the surrounding medium. 

§12.     Stability of Forced Oscillations and Parametric 
Resonance  in Elastic Systems 

For a large  class of problems in  the  theory of elastic 
stability,   the equations of perturbed motion   involve coefficients 
which are periodic function of  time.     Problems of this kind 
are the stability of steady   state forced oscillations of 
elastic systems,   of a rectilinear elastic  rod compressed by 
a periodic longitudinal force,   an elastic plate or shell 
oscillating periodically under  torqueless  deformation condi- 
tions,   etc.     Certain problems  in  the  theory of  elastic oscilla- 
tions or systems whose parameters vary periodically over time 
are allied with  this class of problems.     The phenomenon of 
instability in such systems  is called parametric resonance. 

Let us consider,   for example,  a   rectilinear rod loaded 
by a longitudinal  force N = N0  + N.cos  tut.     When  the axial 
deformations  in  the unperturbed state are  ignored,   the linearized 
equation of perturbed motion will have  the form  (4.7).     Re- 
presenting the solution in the form 

»= Z M/),M-r)' (12.1) 
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where ca (x) is a complete system of basis functions, the forms 

of the natural oscillations of the rod^we obtain an infinite 
system of ordinary differential equations with periodic 
coefficients from the series fk(t).  This important result 
is due to V. N. Chelomey (19387 who studied the case of an 
arbitrary change of the cross section along the length and 
an arbitrary change in the compression force N over time. 
In the case of a rod freely supported at the ends, the unknown 
functions in the system can be separated and we obtain the 
Mathieu equations: 

/, h.ll ill {I - 2}iÄ cos wO fh -- U   (/v ^ 1, 2, . . .)• (12.2) 

Here (1 are the frequencies of the natural oscillations of the 

rod loaded by the force N0 and N, are the Euler forces: 

£->/:-■ ^rc-^)"' ^ !", ■Vf 

It  is known  that equation  (12.2)   has  a solution in certain 
domains  in the parameter plane,   which  increases without bound 
with time.     The instability ol  the unperturbed  form of motion, 
the steady  state longitudinal oscillations of  the rod| corresponds 
to these regions.     For  small |ik,   the  instability regions are 

near the  frequencies 

.,., 
■~       (Ä. H-l. (12.3) 

The problem that was described was  first studied N.  M. 
Belyayev (1924) .     In 1935 N.  M.  Krylov and N.  N.   Bogolyubov worked 
out the general  case of   fixed supports.     Using Bubnov's varia- 
tional method,   the authors reduced,   in first approximation, 
the problem to equation   (12.2).     N.  Ye.   Köchin   (1934)   studied 
the mathematically simpler problem of  the  oscillatioi. of 
crankshafts.     Other problems in the stability of steady state 
forced oscillations of  rods,  rod systems,   plates and shells 
were studied by V.   N.   Chelomey  (1938,   1939),  V.   A.  Bodner   (1938), 
G.  Yu.  Dzhanelidzc and M.  A.  Radtsig   (1940),   I.   S. Arzhanykh 
(1940),   Z.   I.   Khalilov   (1942),  V.   M.  Makushim   (1947),  A.   F. 
Smirnov   (1947),  A.   N.   Markov   (1949),   0.   D.   Oniashvili   (1950), 
V.  V.  Bolotin   (1951-1956),   and others. 
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It was shown   (B.   Z.   Brachkovskiy,   1942,  G.   Yu. Dzhanelidze, 
1953,   et al.)   that  a substitution of  type   (12.1)   leads  to 
equations of the Mathieu-Hill type  if and only  if  the forms of 
the natural oscillations of the elastic system coincide with 
the forms  for  the  loss  of stability during static loads 
(the eigenvalues  in   the  bifurcation problem) .     The equations 
for the general case were first studied by V.   N.   Chelomey 
(1938).    V.  V.   Bolotin   (1953)   proposed a method  for constructing 
instability regions  in  the general  case.     This method is 
based on an expansion of  the solution in matrix series.     V.  A. 
Yakubovich   (1958),   starting with  the results obtained by 
M.  G.  Crane  (1955)» developed a method based on  the introduction 
of a small  parameter.     From the standpoint of stability, 
frequencies near 

\i)j±Ok\ 

(ß = —      (/,*,« = 1,2,...). (12.4) 

are suspect. 

M.  G.   Crane   (1955)   has shown that  for Hamiltonian systems^ 
the instability regions   lie near  the frequencies with the upper 
sign in formula   (12.4).     Later, V.  A.  Yakubovich   (1957)   showed 
that for non-Hamiltonian  systems  the remaining combination fre- 
quencies may also be dangerous.     In certain cases   (for example, 
in the problem of  the stability of  a plane-shaped strip bent 
by periodic moments)   the  combined instability regions  (j  ^ k) 
may be wider than the main    regions   (j  = k) . 

In the majority of  studies on  the stability of forced 
oscillations and parametric oscillations,   the dissipation forces 
are not  taken into account.     In regions which are classified as 
stability regions,   the solutions of  the linearized equations 
of perturbed motions are  bounded.     From  the standpoint of 
Lyapunov's  stability  theory this corresponds  to  the doubtful case. 
Thus, more convincing results in stability require that the 
dissipation forces  be taken into account.     The high density 
of  the instability  regions found without  taking  into account the 
dissipation forces  should also be mentioned.    As  a result of  this 
in many problems  the  instability regions occupy almost the entire 
parameter plane.     The conditions for the boundedness of  the 
solution of the Mathieu  equation with an additional term in- 
volving the  first derivative of  the unknown  function was already 
studied by A. A.Andronov  and M.  A.   Leontovich  (1927).     With 
regard to parametric oscillations of elastic systems,   this 
problem was studied by K.   A.  Naumov   (1946),   V.  V.   Bolotin 
(1956)  and K.  R.   Kovalenko  (1959) .     The smallest value of  the 
coefficient  u^.  for which n-th parametric resonance of the k-th 

form can occur  has   the order 
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lU-M-;,)1". (12.5) 

where  1   is  the relative  dissipation during oscillations with respect  to 
this form.     As a consequence of relation   (12.5)   when the ampli- 
tudes for  the change  in  the external  forces are not  too large, 
only principal resonances   (n = 1)   and perhaps  one or  two side 
resonances are  induced.     It should be noted that  in some cases 
the addition of dissipation forces may widen  the Instability 
region.    An example  of  this  is the effect  of   the dissipation 
on  the regions of combined parametric resonances.     On the other 
hand,  a very  important result was obtained by V.   N.   Chelomey 
(1956),  who has shown  that  the introduction of high frequency 
parametric forces may stabilize the statically unstable 
equilibrium forms. 

The problem of   taking  into account  the displacements 
in  the unperturbed state when the equations of perturbed motion 
are set up was  formulated  by G.  Yu.  Dzhanelidze and V.  V. 
Bolotin  (1956).     For  example,   it was established that in the 
stability problem of a bar of rectilinear shape compressed by 
a  periodic  longitudinal  force^ instability phenomena can occur 
when the frequency of  the  external  force  is close  to the natural 
frequency of  the longitudinal oscillations of  the  rod.    A large 
number of problems  in  the  stability of rods,   rod systems,  plates 
and shells was solved taking into account  the displacements in 
the unperturbed state.     Subsequent studies were carried out by 
G.  V.  Mishenkov   (1961),   V.   Ts.  Gnuni   (1961)   and others.     It 
was shown in  the last study  that  taking into account the displace- 
ments in the unperturbed state may expand  the boundaries of 
the  instability region for a flat panel by several   tens   of a percent. 

Nonlinear problems  in parametric oscillations  of elastic 
systems were first  studied by I.   I.  Gol denblat   (1948).    A 
systematic study of  nonlinear problems for rods,   rod systems, 
plates and shells was made by V.  V.  Bolotin   (1951-1956) . 
Parametric oscillations of  thin shells«taking  into account 
geometric nonlinear!ty^ were studied by G.   V.   Mishenkov  (1961), 
S.  A. Ambartsumyan and V.   Ts.  Gnuni   (1961)   and others.    Non- 
linear combination oscillations of elastic systems were studied 
by G.  V.  Mishenkov   (1966). 

Details and additional biographical references can be 
found in the survey articles by Ye.  A.  Beylin and G.  Yu. 
Dzhanelidze   (1952)   and G.Yu.    Dzhanelidze   (1965). 
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§13.  Stability of Elastic Systems Interacting with 
a Liquid or Gas 

Problems in which the steady state movement of elastic 
bodies interacting with a liquid or a gas are studied are of 
great interest.  In these problems, the action of the medium on 
the structure as well as the reverse effect of the deformations 
in the structure on the distribution of the velocities, 
pressures, etc., in the surrounding medium are important. 
According to the existing terminology, problems of this type 
are problems in aerohydroelasticity  theory. 

The first studies in the field of aeroelasticity were 
related to the calculation of the stability of wings and fins 
of airplanes. Aeroelastic instability phenomena  (divergence 
of the wing, flutter of the wing and of the tail fin) were the 
cause of a number of failures in the early beginnings of aviation. 
The proper understanding and theoretical explanation of these 
phenomena came only much later. An important contribution to 
this field was made by M. V. Keldysh and M. A. Lavrent'ev (1935), 
Ye. P. Grossman (1937), who solved a number of problems, by 
modeling the structure as a beam model.  From the standpoint 
of the theory of elastic stability, flutter and divergence are 
typical instability phenomena in the presence of nonconservative 
forces. Flutter corresponds to oscillatory instability and 
divergence to a loss of stability due to the branching of the 
equilibrium forms. 

Judging by the number of publications, the most representa- 
tive direction in this field is the theory of the flutter of 
plates and shells in a supersonic gas flow.  An intense develop- 
ment of this theory began 10 to 15 years ago, in  connection with 
the problem of ensuring the stability of thin platings of 
aircraft. The attractiveness of the theory of panel flutter to 
investigators is explained^, to a considerable extent, by the fact 
that many problems could be formulated in a "pure"form, i.e., 
they were not complicated by engineering detail.  In the last 
few years the applied significance of the theory became much 
more important. 

Many studies on panel flutter were based on the theory of 
plane sections (piston theory) developed by A. A. Il'yushin 
(1948, 1956), or on equivalent theories, the formulas of 
Ya. Ackert,  G. Lighthill, etc., which establish the local 
relation between the perturbed pressure of a supersonic flow 
and the deformed surface and the displacement_of the surface 
at a given point.  Thus, small perturbations p in the pressure 
on the plate which is streamlined by a supersonic flow with 
an unperturbed velocity U, directed along the Ox axis are 
determined from the formula 
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^--f1(T+^ d3-» 

Here p0 is the unperturbed pressure, c0 is the unperturbed 

velocity of sound, and H is the polytropic index.  The basic 
qualitative and quantitative results were obtained on the 
basis of formulas of type (13.1). The panel flutter phenomenon 
was predicted, the order of magnitude of the critical 
velocities was estimated and the effect of the curvature of 
the shell, the presence of forces in the middle surface, 
structural damping, etc. were investigated.  In particular, 
it was shown that for a plane rectangular panel« which is not 
loadedjwith sides of the same order a, the critical velocity 
U,,, is on the order 

x/'.i 

The main results here were obtained by A.  A.   Movchan and 
his collaborators  (1956-1961),   R. D.  Stepanov   (1957,   1960), 
V.   V.   Bolotin   (1958-1960),   Yu.   Yu.   Shveyko   (1960-1966),  E. 
I.  Grigolyuk,   R.   Ye.   Lamper and L.  G.   Shandarov   (1963,   1964). 

The study of panel  flutter in a nonlinear formulation is 
of  interest in two respects.     First,   it makes  it possible to 
estimate the amplitudes of the  displacement and stresses when 
the critical  flutter  velocity  is increased and to provide 
an answer to the question  to what extent  this  overshoot is 
dangerous.    Second,   the study of nonlinear problems  is necessary 
in order to study the behavior of an elastic    system on the 
instability boundary and to make a judgment about  the pos- 
sibility of inducing natural  oscillations of  finite amplitude 
at subcritical velocities.     The theory of panel  flutter in 
a nonlinear formulation was  developed by V.   V.   Bolotin   (1958- 
1961),   S. A. Ambartsumyan and Ch. Ye.  Bagdasaryan  (1961), 
B.   P.   Makarov   (1961),   Yu.   N.   Novichkov   (1961-1963),   Yu.  Yu. 
Shveyko  (1961),   and others.     In the studies  that were mentioned, 
a number of factors was  taken  into account:     the geometric 
and aerodynamic nonlinearity,   aerodynamic heating,   the  initial 
forces in the middle surface and the interaction of  the panel 
with  the reinforced structure.     For a plane rectangular panel 
which  is not loaded and which  is fixed on  the contour  of  the 
tangential displacements,   an estimate was obtained for  the 
amplitudes  (V.  V.  Bolotin,   1958) 
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where h is  the  thickness of   the panel and U^   is  the critical 
velocity of the  flutter.     In a number of studies,   the effect 
of  the structural  parameters  on the character  of  the oscillations 
near   the instability boundary was investigated,   nonstationary 
oscillations were studied and  the rate at which the amplitudes 
increased when  the  instability regions were crossed,   etc., 
were  estimated.     Many results were obtained with  the aid of 
analog    and digital  computers   (Yu.  V.  Gavrilov,  B.   P.  Makarov 
and Yu.  Yu.  Shveyko,   1959,   A.   S.  Vol'mir,   A.   Yu.   Birkgan and 
E.   D.   Skurlatov,   1966,   1967). 

Along with  the use of simplified aerodynamic  formulas, 
stability problems of  plates  and shells in a  gas  flow were also 
studied,using linearized potential  theory.     V.   V.   Bolotin 
(1956)   studied  the stability  of an infinitely  long circular 
cylindrical shell  streamlined outside and  inside  in the sub- 
sonic and supersonic  region.     Among subsequent studies we point 
out   the articles by B.   I.   Rabinovich  (1959),   Yu.   N.  Novichkov 
(1963),   Ye.  P.   Kudryavtsev   (1964),  A.  N.   Guz'   and V.   N. 
Buyvol(1966),     D.  A.   Derbentsev   (1967).  S.   A.   Alekseyev   (1967) 
studied the stability of a   "soft" shell  in a subsonic flow. 
Starting in 1961, the question of the boundaries of  applicability 
of  the piston theory  to stability problems  in  plates and shells 
in a  gas flow was studied on a number of occasions.    Among the 
later studies we mention  the articles by K.  Ye.  Livanov   (1965) 
and O.   Yu.  Polyanskiy   (1965).     Along with  the  condition M » 1 
(M is  the Mach number  for an unperturbed flow) ,   the conditions 
for the smallness of  the  perturbations and  the  quaslstationarity, 
some  condition connecting  the variability  indices of  the per- 
turbations along and across  the flow must be satisfied.     With 
regard  to the upper bound for  the number M,it   is determined 
taking  into account aerodynamic  heating,   lonization,   dissociation 
and other phenomena  taking place in the boundary  layer.     The 
effect of ionization on  the stability of the panel   in a  flow 
is  the subject of  the articles by A.  D.  Lisunov   (1960),   L.  P. 
Klyauz and A.  M.  Myakushev   (1966),  G.  Ye.   Bagdasaryan and 
M.   V.   Belubekyan  (1966). 

Apparently some region exists for which  the application 
of piston theory leads   to sensible results.       Therefore, 
its application  is justified when the problem  is complicated 
by certain additional   (primarily structural)   factors.     Many 
studies deal with  the  calculation of reinforced,   layered and 
anisotropic shells.     Among  these studies we first mention 
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the studies of S.  A.  Ambartsumyan and his collaborators   (1963- 
1967),   E.   I.  Grigolyuk and his  collaborators   (1965).     Several 
articles by S.  A.  Ambartsumyan and his collaborators   (1964- 
1966)   study panel  flutter, taking into account  the effect of 
the  temperature on  the elastic parameters of  the shell.     Among 
other studies in which the piston theory is used,we mention the 
article by A. D.  Busilovskiy,  L.   M.  Mel'nikova and Yu.   Yu. 
Shveyko   (1966).     In this article  the problem of  the stability 
of a  circular cylindrical  shell  of finite length  is studied, 
which by now became a classical  problem.    Unlike  in a number 
of previous studies in which the Bubnov method is used, here 
the exact solution of the problem is brought all  the way  to 
numerical results. 

The number of studies  dealing with the experimental  investi- 
gation of panel flutter  is not  large.    We mention  the study by 
G.   N.   Mikishev  (1959) ,  who studied the behavior of plane 
panels  for Mach numbers  from  1.7  to 3,  and the study by E.   I. 
Grigolyuk,  R.  Ye.   Lamper and L.   G.  Shandarov   (1964).     The 
last authors studied the stability of cylindrical  panels at 
R/h =  2250 and M = 1.39.     The  experiments confirm  the  general 
qualitative pattern predicted by the calculation even  though 
the phenomenon is complicated by a number of side  factors. 

§14.     Statistical Methods  in the Theory of Elastic 
Stability 

A profound   relation     exists between the concepts of 
stability and probability.     Stable states and stable motions 
in nature and engineering are most probable and unstable ones 
least  probable,   or even impossible.    A statistical approach 
to the  problem of stability  is  in some sense an extension of 
the classical approach.     Stability^in the classical sense^is 
basically the property of  the system   to remain close 
to  the state  (motion)  under  consideration.     The statistical 
approach consists of studying  the distributions  of  the 
parameters of the system near  the state under  consideration 
and,   thus,   includes a more detailed description of  the behavior 
of  the system. 

The significance of  statistical methods  for  the  theory of 
elastic stability  is  primarily  due to the high sensitivity of 
elastic systems to small changes in a number of parameters 
and the random character of  the change in   these parameters. 
For  thin rods,  plates and especially shells,   such parameters 
are  the small initial  deviations  from the  ideal  form  (the initial 
imperfections).     The effect  of  these small  initial  imperfections 
explains  the large scatter of  the experimental critical  forces 
for  thin elastic shells   (B.   P.   Makarov,   1962,   A.   S.  Vol'mir, 
1963 ,   and others) . 
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The solution of stochastic problems for distributed non- 
linear systems is connected with serious mathematical dif- 
ficulties. Therefore, usually, the distributed system is 
replaced by an equivalent system which has; in some sense,a 
finite number of degrees of freedom. One problem is to find 
the distribution of the critical forces from a given 
distribution of the parameters of the initial perturbations. 
Suppose that the deterministic relation between the critical 
parameter ß and the perturbation parameters u,, u«, . . • > u

m 

is known.  Then, under certain constraints (V. V. Bolotin, 
1958) the probability density pCß,,,) can be expressed In terms 
of the joint density p(u, , u0, . . ., u ).  This method was 

used to analyze the distribution of the critical forces of a 
flat cylindrical panel loaded by axial pressures.  The expected 
values and the variances that were calculated were close to 
the experimental values.  B. P. Makarov (1962, 1963) and V. 
M. Goncharenko (1962) studied a number of other cases:  the 
axial and hydrostatic compression of a circular cylindrical 
shell, the hydrostatic compression of a cylindrical panel and 
other problems. B. P. Makarov (1962) and A. S. Vol'mir 
(1963) treated statistically the ecperimental data obtained 
from the testing of shells for stability.  In particular B. 
P. Makarov (1962) studied the experimental data from the stand- 
point of the hypothesis which he postulated that the critical 
forces may have bimodal distributions. 

The problem of the behavior of elastic systems with 
small random imperfections during the quasistatic increase of 
the external forces i^ strictly speaking, beyond the scope of 
elastic stability theory.  Suppose that the deterministic re- 
lation between the state parameters of the system v,, v«, • • •» vn 
and the loading parameters ß and the parameters u,, u„, . • • > % 

is given.  Then, under certain constraints, the joint probability 
density p(v1, Vg, . . ., vn I ß) for the parameters v,  Vg, . . . ,v 

can be calculated.  The probability that the system will remain 
in the region of permissible parameter values, which includes 
the stable equilibrium, is determined by integrating the density 
p(v,, v«, . . •> v Iß) over this region. When the maximum value 

of the loading parameter ß is a random variable, the total 
probability formula is used.  The probability which was calculated 
in this manner is a measure of the reliability of the system 
(V. V. Bolotin, 1958, 1965). 

The practical implementation of the given scheme encounters 
a number of difficulties.  These are both the finding of the 
deterministic relation between the parameters and the experi- 
mental determination of the probability densities p(u, ^„j. . •>%)• 
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The possibility of overcoming the experimental difficulties 
was recently demonstrated by B. P. Makarov (1967) who 
measured and treated statistically on an electronic computer 
about 60 circular cylindrical shells and constructed the 
correlation matrix for the first 50 Fourier coefficients for 
the function of the initial imperfections. 

A study of the stability of elastic systems under the action 
of random dynamic loads was started by I. I. Vorovich (1959). 
Considering the shell as a nonlinear system with a finite 
number of degrees of freedom under the action of slowly 
changing forces and random impulses of the Brownian type, he 
used the following equation for the function p(v1, v«, • • ., v ): 

7i n 

oi " 2f ---i   on \p arj ) 't ik* ZJ or] (14.1) 

Here 3 (v  Vg, . . ., v ) is the potential energy of the system, 

e is the dissipation parameter and c is a parameter characterizing 
the fluctuation level.  The stationary solution of equation 
(14.1) has the form 

/-(f,,/-v, .,,, r,,)^^!'(—f3)i (14.2) 

where C is the normalizing constant. The distribution (14.2) 
coincides with the Gibbs distribution in statistical physics. 
It describes the explicit relation betwen the stability and 
probability (the minimum potential energy corresponds to the 
maximum of the probability density and vice versa) .  At the 
same time distribution (14.2) can only be justified under very 
special assumptions about the character of the external random 
forces and dissipations in the system. 

Equation (14.1) is the Fokker-Planck-Kolmogorov equation 
for a continuous Markov process in configuration space. 
In the studies by V. M. Goncharenko (1962, 1964), M. F. Dimentberg 
(1962, 1964), A. S. Vol'mir and I. G. Kil'dibekov (1964, 1965), 
the evolution of elastic systems with a finite number of 
degrees of freedom was treated as a Markov process in phase 
space.  The main content of these studies is the approximate 
estimate of the probability of a "crack" (the first transition 
past the separatrix range or the first crossing of the energy 
barrier for the simplest model of the shell, a nonlinear system 
with one degree of freedom) .  This problem was also studied by 
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B. P. Makarov (1965) using the electronic modeling method. A 
transition to systems with several degrees of freedom, however, 
is connected '«ith great difficulties.  V. V. Bolotin and B. P. 
Makarov (1965) proposed that the equilibrium stability be 
estimated on the basis of the mean time during which the system 
remains in some neighborhood of equilibrium and they developed an 
approximate method for the solution of L. S. Pontryagin's 
differential equation.  Further results are given in the study 
by B. P. Makarov (1965). 

The study of probabilistic stability problems in elastic 
systems which are treated as a distributed system has only 
started.  V. V. Bolotin and B. P. Makarov (1967) solved the 
problem of the subcritical deformations of a flat elastic 
shell with initial irregularities.  It was assumed that the 
scales of the irregularities and the correlations were small 
in comparison with the characteristic dimension of the shell 
and that the initial irregularities form a homogeneous ergodic 
random field.  Formulas were obtained for the correlation 
functions, the spectral densities and the variances of the 
total and additional displacements, for additional forces in 
the middle surface, etc.  The change in the spectral composition 
of the irregularities and the character of the correlation re- 
lations between various types of irregularities with increased 
loads were studied. 

§15.  Future Problems and Prospects 

The theory of elastic and nonelastic stability deals with 
those branches of mechanics in which the development of solu- 
tions for special problems, as a rule, preceded considerably 
the development of general theoretical problems. Many problems 
which arose out of the needs of engineering were solved without 
a proper analysis of the fundamental concepts, the validity 
of the methods that were used and the boundaries of their 
applicability. An example are the statistical method and the 
normalized-modulus concept in the theory of stability of 
elasto-plastic systems, the unjustified application of statisti- 
cal criteria to problems in elastic stability in the presence 
of nonconservative forces as well as other problems which were 
dominant for many years.  Incidentally, this situation is 
also common in many other applied sciences.  In view 
of this R. Bellman (1964) characterized the "stability" concept 
as a "highly overloaded term whose definition has not been 
established." 

In the last decade the situation improved considerably for 
the better (see §2-4 where an attempt was made to throw some 
light on the contemporary state of the general theory).  Never- 
theless, a stricter definition of the fundamental concepts 
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and a development of general rigorous methods are the most im- 
portant tasks in the nearest future. A theory of stability 
of deformable solids must be developed which in rigor 
and generality will correspond to the classical Lyapunov 
theory.  Apparently there is great hope that the Lyapunov 
theory can be extended to the case of metric functional spaces. 
If it is possible to construct for elasto-plastic, visco-elasto- 
plastic systems and also for elastic systems which are loaded 
by forces that are not potentials, functionals which are 
similar to the Lyapunov functions in classical stability theory, 
new effective and rigorous methods for the study of concrete 
problems will be obtained. 

In the stability of elastic systems under the action of 
potential forces, the most important branch is, and remains, 
the stability theory of thin elastic shells. The studies 
that were carried out in recent years definitely cast some 
doubt on the established pattern of concentrating on lower critical 
forces.  From the standpoint of the calculation of thin-walled 
structures and also the evaluation of the experimental observa- 
tion data, the true (upper) critical forces found taking into 
account the initial deflections of the middle surface from the 
ideal state, the real manner in which the boundary conditions 
are realized and the real loading methods, are of greatest 
interest.  Also, in many cases, it is necessary to treat the 
unperturbed state as a moment state and take into account the 
displacements corresponding to the unperturbed state. Thus, 
it becomes necessary to take into account the entire complexity 
of the behavior of real shells as the loads increase.  To 
overcome all these difficulties, the nonlinear theory of elastic 
shells must be made more precise, and effective numerical 
methods for the solution of concrete problems not based on very 
strict assumptions about the character of the deformation of the 
shells must be developed.  Experimental methods must be proved 
and experimental data must be gathered. It must also be added 
to what has already been said, that a large part of the factors 
which must be taken into account for the approximation of the 
theoretical computational schemes for real shells have a 
random character. Generally, the development of probabilistic 
and statistical methods is one of the most promising trends 
in the theory of elastic and nonelastic stability. This applies 
in particular to the theory of stability of thin shells, since 
the behavior of the latter is very sensitive to small changes 
in the form of the middle surface, the way in which the boundary 
conditions are realized,and the actual loading method. 
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The stability of elasto-plastic and visco-elasto-plastic 
systems remains the mo^t difficult and least developed branch 
in the theory of stability of a deformed solid.  In this 
field, non-rigorous approximate methods are used almost 
exclusively.  Although they fully satisfy engineers and give 
a correct idea about the load-bearing capacity of the structure, 
from the theoretical standpoint, the situation cannot 
be considered satisfactory. 

The theory of stability of elasto-plastic systems must be 
constructed on the basis of the theory of stability of motion. 
What must be studied is not the stability of some elasto-plastic 
equilibrium form, but the stability of the entire deformation 
process which develops over time.  This does not necessarily 
require that inertial forces be taken into account.  If the 
external forces are conservative, in view of the dissipativeness 
of the elasto-plastic systems,, the study of slow perturbations 
is sufficient.  The "slow" time theory of plastic flow can be 
used for this purpose. Along with the unperturbed process, 
perturbed elasto-plastic deformation processes must be studied. 
The study of stability reduces to finding the conditions which 
ensure that the perturbed processes are close to the unperturbed 
processes. 

The problem that was formulated is extremely difficult. 
The point is that an elasto-plastic system represents a nonlinear 
system with nonholonomic one-sided relations. Mathematical 
difficulties during the linearization of the equations of per- 
turbed motion are already encounted in one-dimensional problems. 
These difficulties are connected with the necessity of distinguish- 
ing loading and unloading and, in a number of cases, the secondary 
plastic deformations must be taken into account. 

In two-dimensional and three-dimensional problems, the 
situation is even more complex^ due to the presence of corner 
points on the yield surface and effects connected with deforma- 
tion anisotropy.  In addition, as a result of the irreversibility 
of the plastic deformations, arbitrarily small perturbations 
at any stage of the deformation process may be accumulated and 
thus have an effect on the subsequent behavior of the system. 
In view of this, it becomes necessary to distinguish single 
and repeated loads. 

Since the vast majority of structures operates under re- 
peated load conditions, the very important problem of the 
stability of elasto-plastic systems under repeated loads arises. 
This problem is evidently Intimately related to the adaptability 
problem.  Adaptability is nothing else but the stabilization of 
the accumulation of elasto-plastic deformations.  Thus, 
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adaptability and stability are allied concepts.  It is possible 
that starting with adaptability theory, a number of results 
in the theory of elasto-plastic stability can be obtained. 
The hypothesis can be proposed, that for small vanishing per- 
turbationsj the tangential-modulus load will be the upper 
boundary for the forces at which adaptability occurs. 

The solution of the problems that were enumerated requires 
a corresponding development of the theory of plasticity.  The 
behavior of elasto-plastic systems during loss of stability may 
differ substantially from the proportional load.  Therefore, 
a detailed and adequate description of the plastic deformation 
process during small but sharp changes from the qualitative 
standpoint of the loading paths is needed.  Perhaps this 
will require taking into account the time effects. 

Elasto-plastic stability problems formulated rigorously 
and completely may turn out to be too difficult for practical 
use.  In addition, a rigorous formulation may turn out to be 
unrealistic from the practical standpoint.  In this case, it 
is useful to replace the study of stability by a direct solution 
of the Cauchy problem for given perturbations.  The development 
of computer technology opened up great possibilities for such 
an approach.  In essence, we are speaking about the mathematical 
modeling of motions which neighbor to the unperturbed 
motion.  This modeling may have a stochastic character if the 
perturbations are given in accordance with some probability 
distributions.  Analogous approaches have already been used to 
study systems operating under creep conditions or under the 
action of impact loads. However, it should be noted that what 
is solved are not stability problems but related problems. 
When properly formulated, such an analysis may give more com- 
plete information aboutIhe properties of motions neighboring 
the unperturbed motions than an analysis of stability in the 
narrow sense. 

Many unsolved problems also exist in the non-classical 
branches of the theory of stability.  An example is the 
stability theory oi elastic systems interacting with a liquid 
or gas.  At the present time there is a tendency to use 
improved aerodynamic approaches and to obtain exact solutions 
for at least very reliable approximate solutions with the aid 
of electronic computers. Problems that had first priority 
are problems taking into account the boundary layer, the 
turbulence pulsations in the flow, Ihe  initial irregularities 
in the shell, vibrations caused by additional internal factors, 
etc.  The complicating additional factors must be taken into 
account if we want to obtain theoretical results which agree 
fully with the behavior of the real structures under operating 
or experimental conditions. 
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Certain problems connected with taking into account the 
effect of damping forces on the stability of elastic systems 
loaded by forces which are not potentials remain unsolved. 
A large part of problems in the stability of elastic systems 
in the presence of follow-up loads was solved without taking 
into account damping.  What has been classified as stability 
in many studies is in fact "quasistability" (in the sense of the 
definition given in §4).  When the real properties of damping 
forces in structures are taken into account^certain solutions 
obtained earlier may be revised. Nonlinear problems must be 
studied in the future.  Elasto-plastic and elasto-visco- 
plastic effects as well as wave processes in dynamic problems 
in stability theory must be taken into account in the future. 

One of the most promising trends is the application 
of methods of probability theory and mathematical statistics. 
The necessity of taking into account the continuous character 
of elastic systems leads to a study of stochastic boundary 
value problems.  The methods for the solution of nonlinear 
problems of this kind have not yet been developed sufficiently. 
Until now many problems are solved by reducing the elastic 
system to a system with a finite number of degrees of freedom 
which is equivalent to it in some sense.  Further development 
in this field requires more sophisticated mathematical methods. 

The demands of engineering and the internal development 
of the theory will facilitate the formulation of new stability 
problems in deformed systems.  In this regard, the theory of 
stability is practically inexhaustible.  Various structural 
schemes which include complex three-dimensional rod and thin- 
walled systems, anisotropic, reinforced and layer structures, 
grid and "soft" shells, etc., the great variety of the 
mechanical properties of the materials and the associated 
necessity of taking into account elastic, plastic and viscous 
deformations, the variety of the surrounding media (gas, liquid, 
plasma, complex rheological media) and the manner in which 
they interact with the structures (force, thermal, electro- 
magnetic interactions) all these are sources of new interesting 
problems.  But the interest in new problems must not reduce 
the attention given to fundamental concepts, general and 
rigorous methods. 

-423- 



MECHANICS OF FRACTURE1 

V. Z. Parton, G. P. Cherepanov 

§1.  Introduction 425 

§2.  Theories of Fracture and Strength Theories    427 

§3.  Analysis of Stresses for Bodies with Cracks   443 

3.1. Isotropie Elastic Body, Plane 
Problem 446 

3.2. Axisymmetric and Three-Dimensional 
Problems for an Elastic Isotropie 
Body 454 

3.3. Torsion, Bending and Longitudinal 
Shear 457 

3.4. Anisotropie Materials 458 
3.5. Heterogeneous Materials 459 
3.6. Bending of Strips (Beams), Stressed 

State of Shells with Cracks 460 
3.7. Dynamic Problems in the Theory of 

Cracks 461 
3.8. Cracks  in Rocks,  Development of Cracks 

in Compressed Bodies 463 
3.9. Temperature Stresses 465 

§4. Analysis of the Limiting State 466 

§5.  Effect of the Configuration and Dimension of 
the Structure on the Strength 468 

(continued) 

TT.    The authors are  deeply grateful  to Ye.   F.  Afanas'ev,   R.  D. 
Vagapov,   B.  A.   Drozdovskiy,   T.   K.   Zilova,  L.   N.  Karpenko, 
V.   P.   Kogayev,   N.  A.   Makhutov,  V.  N.   Mosints,   N.  D. 
Sobolev,   I.   I.   Tikhonov,  M.   V.  Khanin,   K.  K.   Shal'nev and 
R.   M.   Shneyderovich for the material made available for 
this survey. 

-424- 



5.1. Physical Nature of the Scale Effect   470 
5.2. Statistical Nature of the Scale 

Effect 479 

§6. Rupture under a Cyclic Load 486 

§7.  Effect of Temperature on Solids 499 

§8.  Long-term Strength Problems 510 

§9.  Effect of the External Medium on the Rupture  526 
of Solids 

§10.  Permanent Fracture Problems 537 

§11. Rupture during an Explosion 548 

§12.  Some Special Problems in the Mechanics of 
Fracture 558 

12.1. Disintegration of Liquids 559 
12.2. Effect of Residual Stresses and 

Loading Rates on the Strength of 
Solids 563 

12.3. Fracture under the Effect of High 
Frequency Electrical and Magnetic 
Fields 569 

12.4. Effect of Neutron Radiation on the 
Mechanical Properties, Strength and 
Rupture of Solids 570 

12.5. Fracture under the Effect of 
Powerful Photoirradiation 573 

§1.  Introduction 

The term "mechanics of fracture," which was coined several 
years ago and which quickly became popular is used in two 
senses.  In the first, narrow sense of this term, the mechanics 
of fracture applies only to studies dealing with the spreading 
of cracks, which have been carried out on a wide scale in the 
last two decades both in the USSR and abroad, especially in 
the USA.  In the broader sense, the mechanics of fracture 
includes that part of the science of the strength of materials 
which is related to the study of the strength of structures and 
buildings which takes or does not take into account the initial 
cracks in them and also the study of various laws for the 
development of the cracks.  The mechanics of fracture is under- 
stood by the authors in the broader sense. 
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The origins of this science go back to such leading 
figures as Leonardo da Vinci, and Galileo Galilei. Probably 
Leonardo da Vinci was the first man who formulated the problem 
of making an experiment to determine the load bearing capacity 
(experiments with an iron wire). Although people^since ancient 
times, constructed various and very complex buildings, knowledge 
about the strength and fracture of materials was accumulated 
empirically and haphazardly to a large extent, and the 
experience was handed over from generation to generation as an 
art.  In particular, the phenomenon which today is called 
the scale effect is attributed to Leonardo da Vinci.  However, 
the achievements of Leonardo da Vinci were not known to the 
following generations and, therefore, had no effect on the 
development of the mechanics of fracture.  Galileo Galilei, 
who determined that the destructive load in a stressed beam 
is directly proportional to the area of its cross section and 
is independent of its length,can be rightly considered the 
founder of the mechanics of fracture.  We note that this result 
which is somewhat modernized to the inhomogeheous stressed 
state until now plays the basic role in practical engineering 
strength calculations. 

The subsequent development of the mechanics of fracture 
is connected with the names of S. Coulomb, A. St.-Venant, 
0. Mohr, A. Griffith, S. Coulomb, A. St.-Venant and 0. Mohr 
who laid the foundations for the theory of limiting equilibrium 
and A. Griffith, who is the founder of the theory of brittle 
rupture.   Both these theories which were perfected by numerous 
investigators are currently the foundation of the modern theory 
of fracture.  They describe theoretically various properties 
of the fracture process, which occur to one extent or another 
in all solids. 

In nature and in human practical activity a great variety 
of materials with different fracture properties are encountered. 
These are primarily metals and their alloys which are of the 
greatest practical importance in engineering structures. These 
are followed by polymers, biological tissues and bones, rocks 
and soils, free flowing bodies, glasses and ceramics, porous materials, 
compounds, ice, etc.  The external conditions, the types of 
loads, the configurations of the structures, the temperature, 
etc., are also variegated.  The tendency of individual materials 
or certain classes of these materials to fracture under par- 
ticular conditions are studied in various natural sciences and 
engineering disciplines and entire scientific trends have been 
established. 
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Mechanics Is characterized by a striving to describe 
the fundamental  features of the fracture phenomena within 
the framework of rigorously formulated and sufficiently 
general models that are applied to certain classes of 
materials.    Along with this a number of very  important 
practical fracture    phenomena exist which,  until now have 
not been interpreted from  the mechanical  point of view and which 
present an interesting field of activity for future  theoretical 
research. 

Giving preference  to  the most typical mathematical approach 
in mechanics,   the authors considered it nevertheless necessary 
also to present  the fundamental  practical results.     The 
authors are aware of  the  fact  that certain interesting studies 
in the mechanics of fracture are not reflected at all in 
this survey or are not discussed in sufficient detail.     The 
broadness of  the selected  topic can serve as a partial 
justification of  this fact. 

A number of valuable comments and ideas which consider- 
ably helped to improve  the survey were made by A.   A. 
Il'yushin, V.  V.  Novozhilov,  G.   S.  Pisarenko,  Yu.  N.   Rabotnov, 
L.   I.   Sedov and S.  V.   Serensen.       The authors express  their 
sincere gratitude to  them. 

§2.    Theory of Fracture and Theory of Strength 

The presence of structural  formation such as grains, 
microcracks,   dislocations,   molecular bundles,   etc.,   in all 
materials which are encountered in practice results  in the 
fact  that their strength  is  two-three orders of magnitude smaller 
than  the theoretical strengths corresponding to the  ideal 
molecular order.     Speaking descriptively,   the more defective 
the material   (the deviation of  its structure from  the  ideal 
order)   the smaller  the strengt^ all other conditions being 
equal. 

Various  types of materials are characterized by structural 
formations of one  type or another which determine  their 
specific deformation and fractural properties.     Along with a 
physical study of  the microstructure and microfracture of 
materials,   it  is useful  to make a phenomenologlcal analysis 
of  the   fracture phenomenon on the basis of some models which 
reflect  the most essential aspects of this phenomenon.     Since, 
apparently,   at  the present  time,it is still  too early  to speak 
of  the possibility of constructing a general  theory of  fracture, 
it  is more advantageous  to develop special theories which 
describe more or  less adequately the behavior of certain classes 
of materials under certain conditions.     This requires a relatively 
complete and general classification of  the basic  types of be- 
havior of solids and of  the corresponding theories. 
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We will first classify the rheologlcal models that are 
used. Let us consider an element of volume dx dy dz, loaded 
on the surface by the stresses a., as a "black box," to whose 

input the stresses o.. are supplied and at whose output the 

strains a,,  are picked up.  For simplicity, we will assume that 

if the parameters of the system also include the temperature 
T^the system will be closed.1 According to the fundamental 
phenomenological assumption, tie    strains e. . must be completely 

determined by the quantities ^.i.: > T and the evolution of their 

changes.  Infinitesimal Increments in the output quantities 
can be expressed in terms of the corresponding increments 
da  . dt and dT in the following form: mn 

de i A i}mn dGn BtJdt + CudT (t  is  time) (2.1) 

Here A. . , B. ., C. . are functlonals of the parameters ijmn'  ij'  ij 

eu (x. it. z. t), au {r.  ;/. :. t), T (x. ?/. z. t) 

body. 

in the region occupied by the 

Let us introduce the "short-range effect" hypothesis. According 
to this hypothesis the parameters which define equation (2.1) 
for an arbitrary element of volume do not depend on the state 
in any other element of volume no matter how close it is.  In 
addition to this, it is assumed that equations (2.1) do not 
Include body forces (in particular, inertlal and gravitational 
forces) . This hypothesis is based on the physical observation 
that the interaction forces in elementary particles quickly 
decrease as the distance between them Increases.  Systems which 
satisfy this hypothesis will be called systems with a short-range 
effect. Many known rheologlcal models in mechanics are systems 
with a short-range effect.  Only such systems will be considered below, 
The functional A. .  , B. ., C. . in t, x, y, z in the fundamental ijmn'     ij'     ij 
equations  (2.1)   in the case  of systems with a short-range effect de- 
generate into functlonals of  t in the parameters  S-J-^-S-JI  

T 

and only several of  their derivatives with respect  to x,  y,  z. 

IT.     In other words,  we exclude from the discussion  the general 
case of models with internal degrees of freedom 
characterized by additional parameters. 

-428- 



■'*, •■■■-'■■•■■ 

Rheological models for systems with a short-range effect 
can be broken up into gradient and nongradient models.  In 
the last case the fundamental equations do not include the 
derivatives of e a  , T with respect to x, y, z.  The majority 
of models studied in mechanics are nongradient models.  However, 
in the theory of elasticity certain gradient models have also 
been proposed (£. and F. Kosser, R. D. Mindlin and R. A. 
Tupin abroad, V. V. Bolotin, V. A. Lomakin, V. V. Novozhilov 
and M. E. Eglit in the USSR).  In the last few years much more 
attention was given to gradient theories.  Apparently this is 
explained by the fact that the physical theories of a micro- 
inhomogeneous elastic body make it necessary to take into 
account the gradient terms for derivatives of certain orders. 

If the functionals A. .  . B. ., C.j "are not invariant" ijmn'  ij' ij 
with respect to time shifts, the corresponding systems are 
called systems with "aging."  (In fact, time does have an 
effect by way of the corresponding structural physical 
parameters which are excluded from the explicit study.)  In 
particular, in the theory of creep, systems of this type were 
studied by N. Kh. Arutyunyan (as applied to creep in concrete) . 
The noninvariance with respect to time shifts indicates 
that the rheological properties of the system change with 
time.  A large part of the rheological models that were 
proposed is invariant with respect to a change of the time 
origin and, therefore, describes systems whose properties do 
not change with time.  Below only nongradient models which are 
invariant with respect to a time shift for systems with 
a short-range effect will be considered. 

It is convenient to classify naturally such systems by 
the character of the reaction of the system to external 
perturbations.  We note that the strains e. . play the rO'.p of 

the reaction of the system (element of volume, and the loads 
a. . and the temperature T on the surface element of the 

volume play the role of the external perturbations.  Here we 
do not discuss (since in the given case it is not important 
theoretically) the problem of the specific meaning of the 
finite deformations e. . of the element of volume.  We assume 

that for a given state of the particle starting at a particular 
instant t = 0, the evolution of the external perturbations 
a. . and T is known exactly.  We also assume that the distribution 

of e. •, cr . and T is known at the initial instant t = 0.  The 
element ot^volume consists of the same material particles (x, y, 
z are Lagrangean coordinates).  It is required to determine the 
reaction of the system e.. over time. 
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The reaction of the system to an external disturbance 
may be Instantaneous or with an aftereffect (the corresponding 
systems will be called systems with an Instantaneous reaction 
and with an aftereffect) . For systems with an Instantaneous 
reaction. B. . = 0 and the functionals A. . „ and C. . are In- ij Ijmn     ij 
dependent of time (this includes derivatives of the parameters 
of any order with respect to t).  In such systems, the reaction 
to the Instantaneous disturbance occurs Immediately and remains 
generally unchanged, provided a., and T do not vary.  In 

arbitrary systems It Is useful to represent the total re- 
action (the total Increment In the deformations) in the form 
of a sum of the Instantaneous reaction and its aftereffect. 
The latter is by definition that part of the total reaction 
which occurs with the passage of time. 

We will assume that the external perturbation vanishes 
over time.  The reaction of the system may also vanish (re- 
versible reaction) .  Systems in which the reaction to a dis- 
turbing perturbation also vanishes even after an infinite time 
Interval, will be called systems with a reversible reaction 
(for this definition of models in the theory of elasticity, 
see L. I. Sedov, 1960).  Thus, the total reaction of an ar- 
bitrary system to the external perturbation which vanished at 
some finite instant of time can be represented as the sum of 
the reversible and Irreversible reaction, which remains even 
after an arbitrarily long time interval has elapsed.  In turn, 
each term consists of the instantaneous reaction and the after- 
effect.  The residual deformations characterize the "memory" 
of the system with respect to the external perturbation which 
occurred in the past and vanished. 

The fundamental rheological models can be classified on 
the basis of the type of reaction as follows: 

A thermoelastic body refers to systems with an in- 
stantaneous reversible reaction.  The deformations e.. in 

thermoelastic bodies are single-valued functions of a  and T. 

Thus, for this case, the coefficients A.. „ and C.. ' ijmn     ij 
(B.. = 0) in the fundamental equations (2.1) are the usual func- 

tions of a. . and T which satisfy, in addition, the existence 

conditions for the total differential. The same result 
can be obtained using the thermodynamic method.  Equations 
(2.1) can be further simplified if the system has physical or 
geometric symmetry properties (for example, isotropy) when 
the deformations are small, when the relations (2.1) are 
linear and when the process is isothermic. An effective solu- 
tion of many Important problems in the deformation of solids 
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was obtained within the framework of such models.  The corres- 
ponding trends in the mechanics of a deformable solid were 
investigated in many studies by Soviet authors (V. V. Bolotin, 
L. A. Galin, E. I. Grigolyuk, N. I. Muskhelishvili, V. V. 
Novozhilov, G. S. Pisarenko, I. M. Rabinovich, A. R. Rzhanitsyn, 
G. N. Savin, V. I. Feodos'ev, and others).  The studies in 
these fields are discussed in other surveys in this volume. 

An elasto-plastic body belongs to systems with an in- 
stant äneöüFTFeäcTIxiirnCBTT-^ 0).  The introduction of the additional 

hypothesis on the existence of the loading surface and the 
application of the quasithermodynamic Drucker postulate are 
probably the simplest way of obtaining the associated flow 
law which is the basis of the modern theory of elasto-plastic 
media.  The following two assumptions can also be used instead 
of the Drucker postulate:  a)  the entire irreversible work 
is converted into heat, b) the entropy increases 
at a maximum rate.  Other assumptions can also be used. 
According to the associated law, the role played by the experi- 
ment, in addition to the determination of the elaso-plastic 
constants,,reduces to determining the loading surface and its 
changes during irreversible deformation processes.  The use 
of additional physical principles makes it possible to find in 
a special form the functionals A .  and C.  from a smaller ijmn     ij 
number of experiments.  The body is said to be an ideal elasto- 
plastic body if the corresponding loading surface does not 
change during any deformation process (in this case it is 
also called the yield surface or the yield condition). 

The different variants of yield theory which are mainly 
applied to metals and their alloys and also to soils (R. Mises, 
E. Reiss, V. Koiter, V. Prager, F. Hodge, V. V. Novozhilov, 
Kh. A. Rakhmatulin, S. S. Grigoryan, D. D. Ivlev, and others) 
are best known. 

If a proportional load occurs, i.e., at each point of the 
body, the state parameters increase according to a known law 
which is directly proportional to the loading parameter, 
equations (2.1) can be integrated (when B.. =0).  The same 

also holds for any fixed loading path of a given small particle 
in (c^-j» T) space.  This approach is used in the study of 

elasto-plastic media in so-called deformation plasticity 
theories (G. Hencky, A. Nadai, A. A. Il'yushin, V. D. Klyushnikov, 
V. S. Lenskiy, and others). 
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In the USSR,many studies in the theory of plasticity 
have been and are being made, both of a general 
theoretical character (A. A. Il'yushin, V. V. Novozhilov, 
L. I. Sedov, and others), as well as studies dealing with 
the solution of concrete problems (L. A, Galin, D. D. Ivlev, 
A. A. Il'yushin, L. M. Kachanov, Kh. A. Rakhmatulin, V. V. 
Sokolovskiy, G. P. Cherepanov, 0. S. Shapiro, and othörs) . 

It should be mentioned that the basic successes in the 
solution of concrete problems are mainly related to the ideal 
rigid-plastic model or the one-dimensionality of the problem. 
However, some successes were also achieved in much more complex 
higher dimensional elasto-plastic problems. 

Theories of the limiting state (an ideal rigid-plastic 
body, a free flowing body, not experiencing tensile stresses, 
etc.) can be considered as limiting cases of an ideal elasto- 
plastic medium in whose equations terms with the elastic 
deformation components are omitted. 

A viscous body refers to systems with an aftereffect 
(with a zero instantaneous reaction) and with an irreversible 
reaction.  Here in equations (2.1) A. .  = C. . = 0. The 

B. . are naturally considered as the usual functions ü*j,   e^^ 

and T.  In the simplest case, when the B. . are linear functions of 

Ihe a. . we obtain the classical model of a viscous fluid. 

When the instantaneous deformation which is determined in 
accordance with the theory of elasto-plastic media is also 
taken into account and when the B. . are taken as some functions of 

tea.., (e. . - e^.) and T, we obtain from (2.1) the most widely 

used variant o.E the creep theory of metals (the e^. are the 

stantaneous deformations) .  The assumption of the existence of 
the creep velocity potential is fundamental in this theory. 
Studies in creep theory received a great stimulus in the studies 
of N. Kh. Arutyunyan, L.. M. Kachanov, Yu. N. Rabotnov, M. I. 
Rozovskiy. and others). 

1. Detailed information on this problem is available in the 
monograph by Yu. N. Rabotnov (1966). See also the surveys 
by N.Kh.Arutyunyan (pp.  [pp. 155-202 missing from Russian 
text]) and Yu. N. Rabotnov (pp. 175-227)    in this 
volume. 

-432- 



•vt*»m&tV 

A body with a prehistory,   aftereffect and a cpmpletely re- 
versible reaction describes the behavior of the majority of 
polymer materials.    A very general description of such systems 
is obtained with the aid of a slight generalization of the 
Volterra  theory: 

e<; = /o(o(> 7")-- | A;.-,,,,, (7\ <-/'. o,,,, (/')|f//'-i- 

t   t 

+ j ( Ktjkimn [T,t-t',t~ t", ak: (/'). amn (/")] dt' di" +...,      , 
0    0 

(2.2) 

where 

Kijmn (T". t — t', am„ {/'] -■: 0 tcnpii /' > ^, 

Kijumn [T, t~i\ i-r, OkiiO, a»". (/")]-" «^npii <'>/;, r>/;, 
hijmn(T, t, a.,,„)-*■() a. npu /->-oo, 

Kißimn (T, f, t, CM, a,.,,,) -> 0 u^upn i- v c», 

(2.3) 

Key: a. for 

Here K. K. ijmn' 'ijklmn' 
of the arguments T, a 

functions. 

are  continuoaji   siynglc-value  functions 

mn ' akl' and gone; Klly, generalized 

When conditions (2.3) are ignored, the residual component 
of the deformations will also be included srd eruations (2.2) 
can also be used to describe the irreversiDlc? reaction (creep) . 

The most widely used variant of a linear visco-elastic 
body or a Boltzman hereditary body is included in (2.2).  In 
viscoelasticity the most important results in the  USSR were 
obtained in the studies by N. Kh. Arutyunyn, A. A. Il'yushin, 
A. K. Malmeyster, Yu. N. Rabotnov, and others. 
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A visco-plastic body refers to a different variety of 
nonlinear elastic media.  It is assumed that a fixed surface 
exists in the (c^.., T) space* such that on one side of the 

surface there is no response to the perturbation and that the 
medium behaves on the surface itself like a viscous body.  The 
simplest models of this type describe the behavior of thick 
lubricants, metals at high temperatures, etc.  In the USSR 
the theory of a visco-plastic body was developed in the studies 
by A. A. Il'yushin, Kh. A. Rakhmatulin, V. V. Sokolovskiy, 
and others. 

The main types of Theological bodies (elasto-plastic, 
viscous bodies and bodies with a pre-history) that were mentioned, 
or some combination of these, describe the behavior of the 
system under consideration, provided the system does not have 
some implicit parameters (describing, for example, chemical 
reactions, phase shifts, electromagnetic effects, etc).  In 
concrete studies» the main difficulty is the art of selecting 
appropriately the simplest model which gives the required 
explanation and describes the rheological phenomenon that is 
observed in the experiment. 

The correct selection of the rheological model is of the 
utmost importance in the solution of fracture and strength 
problem in the mechanics of fracture.  Without a preliminary 
study of the deformation processes of bodies, problems in the 
mechanics of fracture cannot be studied.  At the same time, 
we emphasize,that from the physical standpoint, the plastic de- 
formation plays the role of the damages that have accumulated 
i.e., the microfractural process which gradually paves the way 
for the macroscopic fracture. 

Studies in the mechanics of fracture can be broken down 
into two trends.  According to the first trend which goes 
back all the way to Galileo, it is assumed that the fracture 
of the body occurs only at some point of the body when a 
particular combination of the parameters a.., e.., T and t 

attains the critical value.  The fracture process itself is 
not studied.  It is clear that when such an approach is used, 
the strength problem is solved by selecting one rheological 
model or another and the fracture criteria (the selection of 
the latter is often called the theory of strength in the 
strength of materials). 

This approach is the direct logical consequence of the 
phenomenological approach which was adopted within the frame of 
reference of the parameters that were mentioned. Physically it is 
justified by the fact that the development of faults in the 
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material which leads to a loss of load-bearing capacity often 
occurs in a narrow-near-crltlcal region, so that a 
detailed knowledge of the fracture process Itself is of 
secondary Importance. The fracture criterion which is de- 
termined experimentally can often be considered to be the 
result of complex microphysical fracture processes occurring 
on the structural cell scale up to the molecular level 
leading to the formation of the macrodefect.  In addition, 
the behavior of the macrodefect (which is interpreted phenomeno- 
logically as a rupture shift) depends on the type of rupture. 
For example, the formation of dislocations and slippage lines, 
even those that cut the body, as a rule, do not lead to its 
fracture. 

The criterion quantity which is used most often is the 
largest principal stress, the largest relative elongation, the 
largest principal tangential or octahedral stress, the specific 
energy for the change in shape or the total specific energy 
of the deformation.  Each criterion is applicable, under definite 
conditions, to some class of materials.  The correct use of 
these criteria depends considerably on the practical experience 
of the investigator or engineer. 

Most of the experimental strength studies presented below 
have been devoted to the accumulation of such experience. 
We note that at different historical periods, different im- 
portance was attributed to different criteria. For example, 
G. Lame and V. Rankine used as the strength criterion the lar- 
gest principal stress and V. Poncelet and A. St.-Venant the 
largest strain. 

We present the two most vivid examples of using, for 
example, the largest principal relative elongation criterion. 

During the straining of a beam under the action of a 
constant stress a, generally Irreversible creep deformations 
occur (which are most substantial for metals at high temperatures 
and polymers) . For a great part of the time before the fracture, 
T, the rod develops creep at a constant deformation rate e 

(steadystate creep).  Thus, we obtain 

CcT ~ eo, (2.4) 

where e0 is the largest relative elongation.  If we consider the 

quantity £_ as the material constant and take into account the 
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empirical relation between the steadystate creep rate and the 
load1 

t    =  ce {    (C and X are material constants),    (2.5) 

formula (2.4) can be used to find the time to rupture 
as a function of the applied stress.  The formula for the time 
to rupture that was obtained was first proposed by S. N. Zhurkov. 
Subsequent experimental studies made by S. N. Zhurkov and his 
collaborators have shown the validity of this formula for a 
wide class of polymers and metals, also including materials 
in which irreversible deformations before rupture have not been 
detected, for all practical purposes, and which undergo brittle 
rupture.  The last two concepts that were presented above lose 
their meaning. 

When a rod is loaded by a cyclic stress with an amplitude 
a which is smaller than the conventional yield point a- „> 

plastic deformations accumulate in the rod and a fatigue change 
occurs in the structure of the material.  Physically, this is 
explained by its microinhomogeneity and as a consequence of the 
impossibility of avoiding a local concentration of stresses. 
Suppose that during each cycle the deformation Ae is 

accumulated where the quantity Ae is an exponential function 

of the applied stress a   (by analogy with the accumulated irrever- 
sible creep deif ormations): 

A£p^Be^. (2.6) 

Clearly the deformation e0 accumulated in N cycles before 

rupture will be Ae N. From the above, using the assumption 

that £_ is constant, we can easily find the number of cycles 

to fracture as a function of the load (the Wöhler curve) : 

T^ For many materials it is more advantageous to use other 
empirical formulas; for example, in the form of a power 
function.  When this is done, the form of the relation 
for the time to rupture of the material also changes. 
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This relation  is,   in  fact,  observed in  the case when the load 
o is greater  than the fatigue limit.       For a  smaller load, 
the assumption of  the accumulation of plastic  deformations is 
inadmissible, apparently,as a result of  the microadaptabillty 
effect. 

In the USSR many scientific groups  carried out extensive 
investigations  in the  theory of strength,  which are connected 
with  the names N.  M.   Belyayev, v.  V.   Bolotin,   N.  N,  Davidenkov, 
A.  N.  Dinnik,   S.   N.   Zhurkov,  A.  A.   Il'yushin,   L.  M.  Kachanov, 
V.  V.  Novozhilov,   I.   A.  Oding,   G.  S.  Pisarenko,   S.  D.  Ponomarev, 
I.  M.  Rabinovich,  Yu.  N.  Rabotnov,  P.  A.   Reblnder, A.  R. 
Rzhanitsyn,   S.V.Serensen,  N.   S.   Streletskiy,     G. V.  Uzhik, 
V.   I.   Feodos'ev,  Ya.   B.  Fridman,  N.   P.   Shapov and many others. 
These studies made it possible  to develop computational methods, 
safety factors,   standards and norms on  the basis of which 
various  equipment and mechanisms are designed.     It can be said 
with assurance  that  the gradiose success achieved in raising 
the construction and  industry level  in  the USSR would not have 
been possible without  these studies. 

A study of  fricture criteria  (theory of  strength)  within 
the framework of  the  approach that was  described retains  its 
basic  practical  value  in strength calculations.    However,   the 
studios  in strength and fracture only along  these lines are 
inadequate  for  a number of reasons. 

Already V.   Voigt      made a series of  experiments with 
brittle materials and reached a negative  conclusion with regard 
to the possibility of  using strength criteria.    P.  Bridgeman 
discovered in 1931  the  "pinch-effect" phenomenon which cannot 
be explained from the  standpoint of strength   theory  (G.   P. 
Cherepanov,   1965,   explained this phenomenon).     In the famous 
study by A.  F.   Joffe  and his collaborators   (1924)  a series 
of experiments was made in which  the strength  of the crystals 
of rock-salt was studied when the surface of   the sample was 
in various states.     It was detected that  the  strength of  the 
crystal with the surface layer dissolved  in hot water exceeds 
many times  its  engineering strength and attains in some cases 
the theoretical  strength value.     The effect  that was discovered 
and also the many cases of the fracture of metallic structures 
under stresses  that are smaller  than the  yield point a    2 and 
many other    fracture  phenomena which cannot be explained in 
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principle from  the point of view of strength  theory forced 
certain  investigators  to abandon  the Galilean  concept of 
strength as a material  constant   (of course,   for fixed external 
conditions).     This approach, which goes  back  to the studies by 
A. A.   Griffith,   G.   I.   Taylor,   E.   0.  Orovan,  G.   R.   Irwin and 
others is based on  the study of  the rupture process itself. 

The  following initial concepts are usually used. 

The fracture of a solid occurs almost always as a 
result of  the development of several  rupture displacement surfaces 
in it.     If a displacement rupture which  is normal to the surface 
occurs^we speak of a normal rupture   (breakoff) ,    crack or 
simply a crack.     If a  rupture displacement which is tangential 
to the surface occurs,   we speak about a shear  crack or 
dislocation. 

The role played by  the two types of  ruptures that were 
mentioned is different under different concrete conditions. 
As the strength of  the material  is reduced    due to the in- 
creased temperature during compression,   as a  rule, the role 
played by the shear cracks and dislocations  increases.    As the 
strength  increases due  to the reduced temperature,   in the 
presence of cyclic loads,   aggressive media,   radiation,   as a 
rule; the  role played by the normal rupture cracks increases. 

The development of rupture surfaces  begins with the  im- 
perfections  in  the structure of  the material which must be 
studied at the initial   instant as certain given disturbances 
which are always  presenx  in the systems.     These disturbances 
must be considered as  certaiii initial cracks or dislocations« 
which agrees well with  the accepted experimental observations. 
The  subsequent development of  the original disturbances under 
loads may . ssume  a great variety  of  forms. 

The simultaneous and stable  development of many dislocations 
forming slippage  bands and entire plastic regions is characteristic of 
the growth of dislocations.    Therefore,   the  theory of dislocations is 
the physical  basis for  the phenomenological  theory of plasticity. 
We note that  the  model of an imperfect  elasto-plastic body and 
the  theory of  the  limiting state   (a  theory of   the Mohr  type^) 
provide  the answers to  the problem of  the limiting load and 
the load-bearing  capacity of structures withia   the  frame  of reference 
of  the rheological model without  the use of any additional 
strength criteria. 

T^     Mohr's theory was  applied on a wide scale   in reinforced 
concrete structures. 
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Th'    p sferred development of  one most dangerous crack 
is characteristic of  the growth of cracks   (however,   there are 
exceptions,   for example,   the growth of cracks under compression 
conditions which are close to compression  in all directions),   and 
its tendency  to grow unstably,   usually causes a separation of 
the body  into  two parts.     When strength criteria based on 
the theory of cracks were compared,   it became evident that 
in the majority of cases the usual strength theories are ob- 
tained.     However,   the constants which occur in  these must be 
considered to depend on the dimensions of  the initial cracks 
and also on their  shape and position.     Incidentally,   for a wide 
class of fracture  phenomena in microinhomogeneous bodies,   the 
strength does not  depend on the magnitude  of  the initial per- 
turbation   (the  initial  crack)  and it  is determined by the 
characteristic parameters of  the structure of  the body,   for 
example,   the size of  the grain  (this fact was already pointed 
out in 1939 by G.   Neyber,   see also G.   P.   Cherepanov,   1967) . 
Thus,   this problem can  be approached formally as  the simplest 
generalization of  the usual theories of strength obtained by 
introducing an additional internal structural  parameter which 
is not used in  the formulation of  the rheological model.     This 
approach is similar to  the idea of  introducing  in the state 
equations additional structural parameters an  idea developed 
by L.   I.   Sedov.     It must also not be forgotten  that the study 
of the rupture process  is very often of  independent interest, 
not connected with  the  problem of  the load-bearing capacity. 

Historically  dislocation theory and the  theory of cracks 
developed separately.     The differen'   formal apparatus used in 
these theories  is  explained by the  ,"?.c*    cnat  dislocation theory 
studies directly  discontinuities  in  the displacements, and 
therefore  in linear  theory, deals with logarithmic singularities, 
whereas  in the  theory of cracks on the discontinuity surface 
the force conditions are usually given and,   therefore,   it deals 
with higher order singularities.     However,   a deep internal similarity 
exists between  these theories which consists of  the fact tnat 
the coefficients at  these singularities  in both  theories have  the 
meaning of  the basic parameters of  the system which lead the 
process. 

In the theory of cracks,   the most  important problem 
is the formulation of   the condition for  the local rupture at 
the point on the  contour of the crack.     This  is just as  important 
in the solution of  the  problem of  the development of  the crack 
as,   for example, the selection of  the correct  fracture criterion 
for a smooth sample.     The local  fracture condition is formulated 
most simply in  the theory of so-called quasibrittle    cracks, 
when the largest  dimension of the plastic deformation region 
at the point on  the contour of the crack  is small compared with 
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the distance of this point from the nearest boundary of the 
body. The simplest variant of this condition based on the 
physical ideas of A. A. Griffith and G. Neybcr was proposed 
in 1957 by G. R. Irwin.  The coefficient at the crack singularity 
at the point under consideration at the local fracture instant 
(and the movement of the crack at this point) is considered to 
be equal to some material constant. The stresses are calculated 
on the assumption that the body is perfectly elastic. Since 
the coefficient that was mentioned is a function of the external 
loads, the length of the crack and the geometry of the body 
which is found from solving the elasticity problem as a whole» 
the local fracture condition on the contour of the crack makes 
it possible)in principle? to determine its development, in 
particular, to find the combination of external loads which 
separates the stability and instability regions. 

When these external loads are considered as independent 
parameters which define completely the state of the system, 
the combination of loads that is obtained will be analogous 
to the limiting equilibrium surface for the same body without 
cracks made from some hypothetically perfect elasto-plastic 
material. However, when the loading path is changed, the 
rupturing combination of loads will generally be different. 
Thus, the analogy between the behavior of an ideal elastic body 
with a crack and a perfect elasto-plastic body without cracks 
is only valid for each given loading path (in particular, for 
a proportional load or when one external loading parameter 
increases monotonically) . Figure 1 shows this analogy in a 
schematic diagram whose coordinates are the "generalized load 
p—generalized displacement v" (the arrows denote the admissible 
displacements along the diagram) .  Of course, the analogy 
is valid from the point of view of the external observer who 
knows how to measure the response of the system v to the external 
disturbance p. 

Fig. 1 
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Various models for the detailed rupture mechanism at  the 
end of a quasibrittle crack have been proposed.     The Leonov- 
Panasyuk model  (1959)  which was proposed independently by 
foreign authors is most simple and universal.    According to 
this model it is assumed that a region of weakened bonds exists 
on the continued crack;   the thickness of  this region,in the 
theory of small  deformations,is assumed to be zero.     In 
addition,   it is assumed that the opposite sides of  this region 
are contracted towards one another by some stress which re- 
presents a material constant and that in the beginning of this 
region which coincides with the end of the crack the jump in 
the normal  displacement at  the Instant of rupture  is equal 
to some other material constant.    This criterion can also be 
applied to cracks  in elasto-plastic bodies J provided the plastic 
region is not small and the plastic deformations are concentrated 
along some thin layer where the crack continues.     The last case 
occurs,   for example, in  tMn    plates made from low  carbon steel. 

Subsequently,   it was  shown that all known models (at the 
present time,   about  ten)   differ in the detailed scheme used to 
describe the local rupture at the end of a brittle crack but 
are equivalent  in  the sense  that they always  lead  to the 
Griffith-Irwin condition. 

An approach  to  the description of  the development of cracks 
in arbitrary continuous media was proposed by G.  P. 
Cherepanov  (1967) .     It  is  based on an energy concept and on 
the concept of a superthin    structure at  the end of  the crack, 
whose dimension is small compared with the dimension of the 
plastic region near the apex of the crack. 

The limiting equilibrium theory and the  theory of brittle 
cracks are  the basis  of modern mechanics of  fracture.    Many 
concrete problems of great  practical importance have been solved 
on  the basis of these  theories.    These theories give an idealized 
description of plasticity and brittleness properties which are 
found to various degrees in all solids.     However, 
phenomenological  theories of strength should not be juxtaposed 
with the theory of cracks which interprets  the phenomenological 
concept of resistance  to direct pull and explains  the reduction 
in  the latter by a comparison with a crystal without defects 
giving it a static character. 

Under real conditions   the strength of a solid may 
depend on the following main factors:     the material,   the shape 
and dimensions of   the body,   the time,   the manner in which 
the load is applied,   the number of loading cycles,   the tempera- 
ture,   the parameters determining the degree of agressiveness 
of   the external medium,   the velocity and the deformation prehistory. 
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In particular in the following sections, we will give cer- 
tain generalizations of the theories that were mentioned above 
to the case when these factors have an effect (the simplest 
generalizations are, for example, to indicate the dependence 
of the constants that appear in the theories on certain parameters). 

In practice it turns out that some transition zone in 
which the above-mentioned factors change exists, which separates 
the viscous fracture region from the brittle fracture region, 
where, in the latter, the use of the structure is not permitted. 
In the viscous fracture region, the calculation of the strength 
is based either on the limiting equilibrium theory or on 
strength theories. 

The conclusion about the inadmissibility of the operation 
of the structure in the brittle rupture region is connected 
with the difficulty of detecting in advance, using control 
methods which do not cause fracture, cracklike defects, which 
couldlead to fracture and which occur in the brittle strength 
formulas.  It should be kept In mind that there is a great 
variety of such defects, for example, they can consist of 
various types of poor penetrations in welded structures, oxi- 
dized or embrittled zones In the metal, impurities, and other 
types of inclusions of a metallurgical or technological kind, 
etc.  In many structures produced in the country it is often 
not even possible to avoid defects whose dimensions are very 
large.  This is primarily due to the general tendency to use 
stronger (as a rule more brittle materials and the specific 
conditions under which certain structures operate.  It must 
also be taken into account that the rupture of crystals which 
are nearly ideal has a brittle character.  So far very large 
strength values exceeding several tens and hundreds of times 
the technical strength have been attained only under laboratory 
conditions. 

The conclusion of the Inadmissibility of the work of the 
structure in the brittle fracture region has a temporal charac- 
ter and apparently will have to be revised in the future.  In 
certain structures already today, the presence of controllable 
cracks whose dimensions do not exceed the critical dimensions 
is permitted. 

We note two very Important classes of problems when the 
limiting load problem can be solved in principle without using 
the mechanics of fracture on the basis of the solution of the 
problem within the framework of a rheological model.  These 
are cases when the body can undergo arbitrary finite deformation 
and problems in the loss of stability. 
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§3. Analysis of Stresses for Bodies with Cracks' 

Recently the capacity of materials to form cracks was studied 
and a great deal of attention was given to determining the 
possibility of using structural elements and equipment with 
cracks. One of the most Important special features of these 
types of calculations within the framework of linear elasticity 
theory is taking into account the redistribution of the 
stresses which occurs as a result of the fissures and cracks 
that are formed under the action of the external loads. The 
coefficients at the singularity of the elastic stresses at the 
end of the crack (which, according to the GriffIth-Irwin 
condition determine the local fracture at the point on the 
contour of the crack under consideration) are called the 
coefficients of the stress Intensity. 

The field of elastic stresses in a small neighborhood 
of an arbitrary point O of the contour of the crack Is represented 
in the following form: 

ox^4L-cosl(l--Sm^Sm?)-^
Lsi,^(2-:--co4cos7)/ 

a^J^cosl(l--si.4-n?)-   -^sialcoslcosf. 
'     \ 2nr        - V -i - '       1 2.ir       - - •* 

T.vv: 

I 

.    0   .   30\   ,    An    .    n        0 ._   30 
4 '   '■■•■■■ -C( 

L'.ir        2 - -       \ 2.M-        -  \ - - ' 

II 
n-.v(a,.   S). T^-Ä^ml, T^-^COS^. (3.1) 

(cont'd) 

1,    Additional bibliographical references on  the problems dis- 
cussed in this  section can be found by  the reader  in the 
collection, "Applied Problems in Viscous Fracture,"    (1964, 
Russian translation,  Moscow,   1968),   in  the survey by 
D.  D.   Ivlev   (1967)   and in  the subsequent  articles:     G. N. 
Savin and V.  V.  Panasyuk   (Prikl.  mekh.,   Vol.   4, 
No.  1,   1968,   pp.  3-24),   G.  P.  Cherepanov   (Intern.  J.  of 
Solids and Structures,   Vol.  4,  No.  8,   1968,   pp.   811-831), 
Ye.  M.  Morozov and Ya.  B.   Fridman   (in  the collection, 
"Strength and Deformation of Materials  in Nonuniform Physical 
Fields," 2nd ed.,   Moscow,   1968,   pp.   216-253),   G.   G.  Johnson 
and P.  K.  Paris   (Engineering Fracture Mech. ,  Vol.   1,  No.   1, 
1968,   pp.  3-45) . 
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^4..|/ir.sill|(2-2v-cos^) + 

u;- 

^/^co4(„^2v+sina|) (3.1) 

w, are Here ax, ay>  o^,   Txy, TXZ, Tyz are the stresses, u, v 

the components of the displacement along the axes of the xyz 
cartesian coordinate system, r and 0 are polar coordinates 
in the xy plane (Fig. 2), Kj, K,,, K-,, are the coefficients 

of the intensity of the stresses, G and v are the shear 
modulus and the Poisson ratio, respectively. 

Fig. 2 

When the local symmetry condition K,- = K-,, =0 is 

satisfied we speak about normal fracture cracks (or tear- 
off cracks).  In the case when Kj = K,,, = 0, Kj- / 0, the 

expression "transverse shear crack" is used and when 
Kj = KJJ = u, Kj,, ¥■  0, the expression "longitudinal shear crack" 

is used. 

In the most frequently occurring and important case of 
a normal fracture crack, the Griffith-Irwin condition has the 
following form: 
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Here K-p is a constant of the brittle material, the critical 

coefficient of the intensity of the stresses, E is Young's 
modulus and v is the dissipation energy per unit area of the 
growing crack.^ 

It should be noted that in the vicinity of the ends of 
cracks in solids goemetric and physical linearization 
conditions are inadmissible from the standpoint o.t determining 
the fine structure.  Therefore, near the edge of the crack 
a region always exists in which solution (3.1) does not 
describe the details of the phenomenon.  The elastic solution 
(3.1) is realized at distances which are large compared to 
the characteristic dimension of the region that was mentioned, 
but small compared to the characteristic linear dimensions of 
the body or the cracks.  Hence, for a more rigorous formulation 
of the problem, solution (3.1) plays the role of an intermediate 
asymptote. The quantity a is equal to the irreversible work 
of the external forces done to form a unit area on the surface 
of the crack. 

Thus, the fundamental problem in the mechanics of brittle 
fracture reduces to an analysis of the stresses in the correspond- 
ing body with the cracks. 

This section presents a survey of the basic studies in 
the theory of brittle cracks dealing with the determination of 
the stresses in bodies with cracks (including not only studies 

TT  The corresponding relation for the case of the dynamic 
spreading of cracks was obtained by G. P. Cherepanov in 
1968. 
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in which an expression for the coefficients of the intensity 
of the stresses was obtained directly but also studies which 
are important in the theory of cracks which investigate the 
solutions of problems in the theory of elasticity in regions 
containing fissures and cuts) . We will not dwell in detail 
on the methods used in the solution of problems in the 
mathematical theory of cracks.  We only mention that the 
studies by G. V. Kolosov and N. I. Muskhelishvili are the 
foundation on which the solutions of the most important 
problems dealing with this branch of mechanics of a continuous 
medium have been constructed.  In view of the well-known 
isomorphism of many phenomena^the studies by L. A. Galin, 
F. D.  Gakhov,, M. V. Keldysh, N. Ye. Kochin, M. A. Lavrent'ev, 
S. G. Lekhnitskiy, A. I. Lur'e, G. N. Savin, L. I. Sedov, Ya. 
S. Uflyand, D. I. Sherman, I. Ya. Shtayerman and other scientists 
have been used on a number of occasions and can be used in 
the future to obtain solutions of problems in the theory of 
cracks.  It should be mentioned that a great part of the studies 
in the mechanics of brittle fracture were made in the last 
decade. 

3.1.  Isotropie Elastic Body, Plane Problem 

Studies in the theory of the stressed state near a hole 
which  is similar to the ruptures that occur during the forma- 
tion of cracks were begun by Ch. E. Inglis in 1913 and N. I. 
Muskhelishvili (1919) who obtained the solution of the equili- 
brium problem of an infinite body with an elliptical opening (in 
particular with a rectilinear fissure) under the action of an 
arbitrary stress field within the framework of the classical 
theory of elasticity.  The fundamental studies in the mechanics 
of fracture are the studies by A. A. Griffith (Phil. Trans. 
Roy. Soc. London, 1920, A221:587, pp. 163-298, Proc. 1st. Intern. 
Congr. Appl. Mech. (1924)(1925), pp. 55-63), who, using the 
solution obtained by Ch. E. Inglis for an infinite brittle 
body with a rectilinear crack determined the critical values 
of the tearing stresses in the case of a plane deformation and 
a plane stressed state.  He took into account the phenomenon 
of surface adhesion near the edge of the crack and proposed 
and energy criterion for equilibrium cracks. 

Subsequently the problem of the development of isolated 
rectilinear cracks in an infinite brittle body for which 
various variants of the external loads were given was in- 
vestigated in many studies. 

D. I. Sherman (1940) and N. I. Muskhelishvili (1942) 
obtained an exact solution of the fundamental problems in 
the theory of elasticity for an arbitrary number of cuts 
along one straight line or circle in an infinite plane. 
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The problem of determining the clearance between two elastic 
half planes approaching one another, which Is formed as a result 
of certain forces that are applied to the edges of the clearance 
was solved In the study by V. I. Mossakovski and P. A. 
Zagublzhenko (1954).  Approximately at the same time (1955- 
1960) certain problems on cracks In rocks were formulated and 
solved as problems In the mathematical theory of elasticity 
without taking Into account the strength properties of the 
rocks near the edges of the mine workings (see Section 3.8). 

In 1959 several models for the local fracture at the end 
of a brittle crack were proposed (see the model of H. Ya. 
Leonov and V. V. Panasyuk that was mentioned above and the 
modeling of the adhesion forces at the end of the crack of 
G. I. Barenblatt, which Is equivalent In its result to the 
Griffith-Irwln construct) . 

The studies by V. V. Panasyuk and L. T. Berezhnl.tskiy 
(1965) Investigated the general case of the biaxial expansion 
of a plate with an arbitrarily oriented crack. V. I. Mossakovskiy, 
etal. (1968) considered the problem of the spreading of a 
rectilinear crack at an angle to the original direction, when 
a fracture point appears at the end of the crack.  The 
study by I. A. Markuzon (1965) deals with the problem of the 
effect of the initial stresses on the character with which a 
brittle crack spreads. Here the load is selected so that in 
the absence of initial stresses the crack develops stably in 
many cases, and the initial stresses are the reason for the 
instability that is created. 

It must be mentioned that the beginning of the growth of 
the crack cannot be identified with complete fracture.  The 
latter occurs only in the case of an avalanch-like unstable 
spreading.  Experiments and calculations have shown that in 
many cases cracks interact with barriers and the boundaries, 
and also in problems dealing with interaction of systems of 
cracks, the cracks develop stably on a large region in which 
the loads vary. Clearly the presence of stable cracks in 
structures and equipment often operating in definite regimes 
in which in the external loads change is much less dangerous 
and the reinforcement of such equipment by means of rivets 
and plates and drilling of holes on the path along which the 
cracks spread can considerably prolong their "life." The 
problem of reinforcing the cracks by transverse rigid ribs 
was solved in the study of Ye. A. Morozova and V. E. 
Parton (1961). 
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The problem of the mutual effect of collnear or ar- 
bitrarily oriented systems of cracks is of great importance 
in strength and fracture calculations. G. I. Barenblatt and 
G. P. Cherepanov (1960) obtained the solution for the problem 
of a periodic system of cuts which can be used to determine 
the length of a fissure in a strip. This study also Investigated 
the effect of the boundaries of the body on the spreading 
of the cracks and examined the case of two cracks of the same 
length maintained in the open state by concentrated forces 
applied to their surface.  The most detailed study of the 
limiting equilibrium problem of a plate with two colinear 
cracks of the same length and the derivation of the computa- 
tional formulas are given in the studies by V. V. Panasyuk 
and B. L. Lozovoy (1961), B. L. Lozovoy (1964), and L. T. 
Berezhnitskiy (1965). V. V. Panasyuk and B. L. Lozovoy (1962) 
studied the problem of the development of two colinear cracks 
of different length. B. L. Lozovoy (1964) determined the 
critical stresses for a plate with three colinear cracks. 

L. T. Berezhnitskiy (1965) studied the most general case 
of cracks of different lengths distributed along a straight 
line at an angle to the direction of tension.  The results that 
were obtained make it possible to determine the critical stresses 
in problems with an arbitrary number of cracks lying on one 
axis.  In the case of a system of cracks of different lengths 
which are parallel to some direction, the most dangerous crack 
is the crack which moves first.^ 

It is known that real materials, no matter what preliminary 
treatment they are subjected to, contain a large number of 
microdefects of various types, whose development under the 
action of the applied stress field leads to the occurrence 
of a system of cracks whose mutual effect can be highly varied. 

T.     The study by Ye. A. Morozov and V. Z. Parton (1968), in 
which as an example of different loading conditions the 
problem of the interaction of three cracks on the real 
axis was studied,  where the external sections are semi- 
infinite is devoted to the investigation of this problem. 
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V. Z. Parton (1965) using the asymptotic representation 
of V. T. Koiter, obtained a solution of the problem for 
an elastic plane weakened by a doubly periodic system of 
cracks of the same length (checkerboard arrangement of the 
cracks, each of which was subjected to a homogeneous tensile 
stress.  This study has shown that a particular mutual 
arrangement of the cracks leads to their stabilization (stable 
development). 

V. M. Kuznetsov (1966) investigated an approximate method of 
solving the equilibrium problem for a system of semiinfinite 
parallel cracks with a constant load acting on a sector of 
finite length in the absence of tangential forces.  The 
author compared the results with the exact solutions of 
similar problems that were obtained earlier. Using the same 
approximate method,P. A. Martynyuk (1966) studied the above- 
mentioned problem of determining the stresses in 
an infinite plate weakened by a system of cracks located 
on the axis at equal distances from one another.  Like in the 
study by V. M. Kuznetsovjthe simplifying assumption that 
a = a on the continuation of the section x   y 
and that the distance between the cracks is large in compari- 
son with their length is introduced. 

When the problem of the spreading of a curvilinear crack 
is studied, the additional hypothesis is used that the initial 
spreading of the crack occurs in the plane in which the 
tensile stress a- attains a maximum value (see Fig. 2) .  This 

hypothesis was proposed independently by G. P. Cherepanov (1963) 
and F. Erdogan and G. S. Si (Trans. Amer. Soc. Mech. Engrs., 
1963, D85, No. 4, pp. 519-527), and also in the studies by V. V. 
Panasyuk and L. T. Berezhnitskiy (1965-1966).  In the last 
studies, expressions were obtained for the determination of 
the magnitude of the limiting loads in the case of one, two 
and a system of arc cracks with the aid of this hypothesis.  We 
note that L. V. Yershov and D. D. Ivlev (1967) proposea in 
their study a formulation of the problem of determining the direc- 
tion in which the crack developed on the basis of energy 
concepts.  A preliminary determination of the field of elastic 
stresses in the neighborhood of the vertices of the sections 
was obtained with the aid N. I. Muskhelishvili's solution. 

An additional condition at the end of the crack was obtained 
by G. P. Cherepanov in 1968 for arbitrary curvilinear 
brittle cracks. 
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The problen of an investigation of the limiting equilibrium 
of plates weakened by holes with sharp ends is of particular 
interest.  In addition to the independent value of determining 
the load-bearing capacity of parts with such defects, the 
difference in the magnitude of the critical loads for these 
regions and for rectilinear cracks of the appropriate length 
is important. 

An effective solution of many problems of the type that 
was mentioned can be obtained with the aid of methods using 
the theory of functions of a complex variablejwhich were de- 
veloped in the monograph by N. I.Muskhelishvili (1966, 1968), 
G. I. Polozhey (1949), G. N. Savin (1951, 1968), F. D. Gakhov 
(1963), S. M. Belonosov (1962).  G. P. Cherepanov (1962) 
pointed out a class of problems in plane elasticity theory in 
which the corresponding boundary value problems for the analytic 
functions can be solved in closed form. 

V. V. Panasyuk (1962) constructed ehe solution for the 
problem of the stressing of a plate WJ ch an opening in the 
shape of a hypercycloid and determined the elastic stresses in 
the neighborhood of the corner points.  This problem was also 
studied in the study by A. P. Gres'ko (1965) with the aid of 
the method proposed by S. M. Belonosov (1962).  V. V. Panasyuk 
and Ye. V. Buyna (1967) studied the problem of a brittle body 
weakened by holes in tie  shape of hypercycloid cavities which 
do not interact with each other.  He obtained the condition 
for attaining the critical state at least at one vertex of 
the opening with the aid of N. I. Muskhelishvili's method. 
Then they studied the problem of the limiting equilibrium of a 
plate with sharp stress concentrators, V. V. Panasyuk and L. T. 
Berezhnitskiy (1965) expressed the coefficients of the intensity 
of the stresses in terms of the stress function and a function 
mapping such a contour onto the unit circle.  This makes it 
possible to obtain approximate solutions also in the case of a 
distant crack. 

The difficulties connected with the nonavailability of 
rational mapping functions onto a halfplane and plane with a 
circular hole occur in problems on cracks that extend to 
the surface of the body. At the present time several techniques 
were developed for the numerical solution of problems involving 
cracks extending to the boundary of the body, primarily in 
the studies by o. L. Bowe (J. Math. & Phys., 1956, Vol. 1 
No. 35, pp. 60-71), G. F. Buckner (Boundary problems in dif- 
ferential equations, Univ. of Wisconsin, 1960), A. A. Kaminskiy 
(1965 and later).  Stud' ±ng  problems involving an arbitrary 
number of symmetrically located cracks, extending to the free 
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surface of a circular hole in an infinite body, 0. L. Bowe 
used for the mapping of such region onto the unit circle an 
approximate polynomial representation for the analytic function, 
after which the N. I. Muskhelishvili methods could be applied. 
The actual calculations made by him for the simplest cases of 
one and two opposite cracks on the center line require a large 
volume of computations, since to obtain the required accuracy, 
about 30 terms had to be retained in the polynomial expansion. 
A. A. Kaminskiy perfected the Bowe method and obtained much 
better convergence when the mapping function was replaced by 
a rational function which preserved the singularity at the 
ends of the crack and rounded the corners at the points where 
the crack left the cavity. He obtained simple formulas for 
determining the magnitude of the limiting load in the plate 
weakened by a circular hole with two equal radial cracks that 
was mentioned.  Using this method, N. Yu. Babich and A. A. 
Kaminskiy (1965) constructed a solution of the problem for one 
rectilinear crack, and A. A. Kaminskiy (1965) for two recti- 
linear cracks* extending to the contour of an elliptical hole 
(here the results of tn*. calculations of the critical load as 
a function of the length of the crack are not given).  Sub- 
sequently, A. A. Kaminskiy (1966) obtained a solution of the 
problem for the case when one or two equal cracks extend to the 
contour of an arbitrary smooth curvilinear hole during uniaxial 
stressing or stressing in all directions and determined the 
critical loads causing the development of the expanded cracks. 
G. G. Grebenkin and A. A. Kaminskiy (1967) calculated as an 
example the critical loads for two equal cracks extending to 
the contour of a square hole. V. V. Panasyuk (1965) studied 
the Bowe problem of a circular hole with two radial cracks of 
equal length extending to the boundary of the hole. An approxi- 
mate method which is similar to the method of successive 
approximations developed in the studies of S. G. Mikhlin (1935) 
and D. I. Sherman (1935) is used to determine the normal stresses. 
A comparison with the 0. L. Bowe solution for two cracks of 
the same length gives satisfactory agreement.  Some results on 
the effect of the free boundary of a halfspace on the spreading 
of cracks were obtained earlier in the studies by Yu. A. 
Ustinov (1959) and V. V. Panasyuk (1960) . 

The numerical methods that were mentioned above give good 
results for infinite regions with cracks extending to the contour 
of a hole.  The methods that were mentioned are not very ef- 
fective in the study of finite regions with corner points, in 
which special difficulties arise.  The problem of the stressing 
in all directions of a disc with a radial crack extending to a 
contour was studied for the first time in the study by Ye. M. 
Morozov and Ya. B. Fridman (1958), in which the rupturing 
stress applied along the edge of the disc when the lengths 
of the section were small was determined only approximately. 

-451- 



L.   L.   Libatskiy   (1965)   reduced the solution of   the problem 
for a circular  plate with rectilinear sections  along one 
diameter   to a singular integral equation with a regular part 
for which we constructed an approximate  solution method which 
preserved  the  type of  singularity  on  the edges  of the crack. 

The  solution of  the limiting equilibrium problem for a 
circular  disc with a central  crack was  obtained in the study 
by L.   L.   Libatskiy and S.  K.   Kovchik   (1967), in which  the 
analytical solution   is compared with the experimental data. 

The solution of mixed problems of  elasticity theory  for 
nonclassical regions such as a strip  (layer)   is of interest 
in  the study of   the  problem of stress concentrations,   around 
fissures and cracks.     From the mathematical point of view«these 
problems  are very difficult.     However,   the systematic    study 
of  this problem>which began about  10 years ago«led to  the 
development of  effective solution methods for problems in  this 
class   (V.   M.  Aleksandrov,   I.   I.  Vorovich,   N.   N.   Lebedev,   Ya. 
S.  Uflyand,   and others).    These problems are easily reduced to 
the solution of  integral equations of  the first kind with a 
nonregular kernel with  the aid of operational  calculus methods. 
The greatest success  in finding the solutions  of  these equations 
which are convenient  for practical use was achieved by using 
specific asymptotic methods.     I.  A.   Markuzon   (1963)  bef,an  the 
studies of  the equilibrium problem of cracks  in a strip  (1963). 
V.  M.  Aleksandrov  (1965)  studied equilibrium cracks along a 
strip or  layer  in which an integral equation is  constructed 
for  the  function which determines  the shape of   the crack.     He 
obtained an approximate solution by expanding  the kernel  of 
the equation in a series   for  a large  thickness   to dimension 
ratio of   the crack and obtained the load as a  function of 
the dimensions  of  the crack.     Using the  same method and the 
solution of the Wiener-Hopf equations,   V.  M.  Aleksandrov and 
B.   I.   Smetanin   (1965,   1966)   obtained an  expression for  the 
coefficient of   the  intensity  of  the stresses on  the edges of 
an equilibrium crack  in a thin layer.     For the  case of a con- 
stant  load,   the  relation between the dimension of the equilibrium 
crack and  the acting load is  determined.     A similar solution was 
obtained  for a  disc-shaped crack in a  layer of   finite  thickness. 
V.  M.   Yentov and R.   L.   Salganik  (1965)   studied  in the beam 
approximation»the problem of  a semiinfinite crack along  the 
center  line of   the strip.    For  loads applied to  the edges  of 
the crack,   the  problem reduces  to a study of the   lamination 
under the action of a  normal  or tangential force.     In  the same 
study,   using the Wiener-Hopf method,   and expression was obtained 
for  the coefficients of  the  intensity of  the stresses  for 
sufficiently large and sufficiently small values of the ratio 
of  the distance  from  the end of  the crack  to the point at which 
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the force is applied to the halfwidth of the strip. Using the 
analytical method developed by V. M. Aleksandrov and I. I. 
Vorovich (1960)  in the study of contact problems for a compara- 
tively thick layer, B. I. Smetanin (1968) studied the problem 
of a longitudinal crack in a wedge and also the plane and 
axisymmetric problem of a longitudinal crack in a layer under 
different conditions on the boundaries of the wedge and layer. 
For a crack whose position is symmetric with respect to the 
edges of the wedge (layer), and a normal load applied to the 
surface of the cracks, formulas were obtained to determine the 
surface of the crack.  The coefficient of intensity of the 
stresses is expressed as an asymptotic series in powers of 
the dimensionless parameter. 

The plane mixed problem for a crack was studied for the 
first time in the study by V. I. Mossakovskiy and P. A. 
Zagubizhenko (1954).  Important practical lamination problems are 
also mixed problems in the theory of elasticity.  The solution 
of the problem of the lamination of brittle bodies is a peculiar 
combination of solutions of the contact problems in the theory 
of elasticity and problems in the mathematical theory of cracks. 

A problem which can be solved exactly effectively is the 
problem of the lamination of an infinite body by a fixed wedge. 
G. I. Barenblatt (1959) obtained a solution of such a problem 
for a wedge of constant thickness.  Unlike in the case when the 
position of the creep point is known,for a wedge with a rounded 
front edge the position of the cre^p point on the surface of 
the crack from the wedge must also be determined. G. I. 
Barenblatt and G. P. Cherepanov (1960) studied the problem of 
the spreading of a crack in front of a wedge with a small 
rounding and a wedge where the shape of Ihe rounding is given 
by a power law.  Here, the case of Coulomb friction acting 
on the jaws of the wedge were studied.  I. A. Markuzon (1961) 
made the next step in the study of the problem of the lamination 
of brittle bodies.  He obtained a relation for the length of 

The first study in which lamination problems are studied was 
the study by I. V. Obreimov (1930) made in connection with 
experiments in the splitting of mica.  Here the chip that 
moved was considered as a thin beam and methods from 
strength of materials were used to solve the problem. 
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the crack as a function of the length of the wedge and studied 
the effect of homogeneous compression or elongation stresses 
at Infinity on the length of the free crack In the problem 
of the lamination of an Infinite body by a wedge oi finite length. 
Lamination problems were also studied in G. P. Cherepanov's 
study (1962) where the solution of a Rleman linear boundary 
value problem for two functions in mixed problems In plane 
elasticity theory was used as an example of an application. 

There are no exact solutions for the problem of the 
lamination of a strip.  Along with the study by I. V. Obreimov 
(1930) we mention the studies of V. D. Kuznetsov (1954), M. S, 

also based 
ipproximatj 

Metsik (1958), N. N. Davldenkov (196), which are 
on the beam approximation. 

3.2. Axlsymmetrlc and Three-Dimensional Problems 
for an Elastic Isotropie Body 

M. Ya. Leonov (1939) was the first man to determine the 
distribution of the stresses for a brittle three-dimensional 
Isotropie body containing a plane circular crack in the plane 
during tension by a constant stress at infinity.2 

We also mention here the studies by Ye. M. Morozov and V. Z. 
Parton (1968) which examine the varlatlonal principle 
and show that it is possible to apply It successfully to 
the solution of various plane and three-dimensional problems 
for bodies containing cracks for all possible variants 
of given external loads.  In addition to the usual deter- 
mination of the magnitude of the limiting cr*tlcal loads 
the authors constructed an approximate technique which 
can be used to determine the trajectories of the cracks. 

The classical studies by A. Sommerfeld and N. E. KochJn 
(1938), in which problems in the theory of diffraction and 
hydrodynamics whose mathematical formulation is analogous 
were solved should also be mentioned. 
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Subsequently this problem was studied by M. Ya. Leonov 
and V. V. Panasyuk (1961)  for various given variants of the 
external load and recently by Ye. M. Morozov and V. Z. Parton 
(1968). The relations that were found here; in a number of cases, 
relate the length of the crack to the applied loads and they are 
completely analogous to the corresponding plane deformation 
cases and can be obtained with an accuracy up to the dimen- 
sionless constant multiplier from dimensional analysis (L. 
I. Sedov, 1957). 

The first basic problem in the theory of elasticity for 
a space with a plane circular crack was solved in general form 
by V. I, Mossakovskiy (1955). The case of an annular (circular 
in the plane) crack was studied in the study by V. T. Grinchenko 
and A. F. Ulitko (1965) .  The values for the magnitude of the 
limiting stresses obtained by him differ from the result 
obtained in 1945 by R. A. Zak only by a numerical multiplier. 

The axisymmetric problem in the theory of elasticity for 
an unbounded space containing two plane circular cracks in 
which the stressed state is symmetric with respect to the 
middle plane, was studied in the studies by Ya. S. Uflyand 
(1958), N. N. Lebedev and Ya. S. Uflyand (1960).  The solution 
of this problem is constructed with the aid of an expression 
for the omponents involving two harmonic functions (the 
Papkovich-Neyber representation) with a subsequent reduction of 
the problem with the aid of Hankel transformations to coupled 
integral equations. 

The Meler-Fok transformations enabled Ya. S. Uflyand 
(1959) to obtained a solution of the problem of the axisymmetric 
deformation of an unbounded body containing a plane crack in 
the exterior of a circle of a given radius.  Here the 
solutions were obtained both for the case of a symmetric and 
antisymmetric load.  V. V. Panasyuk (1962) returned to a study 
of this problem and determined the rupture loads that are 
formed in the process. 

V. I. Dovnorovich (1962) using the methods that were 
developed for the solution of three-dimensional problems in 
elasticity theory (1959) determined the stressed state of an 
elastic body in the presence of a plane crack (slit). As an 
example equations were obtained for widened cracks for various 
given variants of the normal pressure applied to the surface of 
a plane crack in an unbounded elastic body.  The study by 
Yu. N. Kuz'min and Ya. S. Uflyand (1965) considered the axi- 
symmetric problem in elasticity theory for a halfspace weakened 
by a plane circular crack, and Yu. N. Kuz'min (1966) studied 
the case of an unbounded body with two coaxial cracks of 
different radii. 
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The Hankel transformations which reduce the problem to 
the problem of solving coupled integral equations can be applied 
effectively to axisymmetric problems for an elastic layer, 
in particular, to problems in the stress concentration in an 
elastic layer weakened by a plane circular crack (Ya. S. 
Uflyand (1959).  The same problems were studied using different 
methods in the studies by V. M. Aleksandrov (1965), V. M. 
Aleksandrov and B. I. Smetanin (1965, 1966), B. I. Smetanin 
(1968) that were mentioned above.  Using the apparatus of 
dual integral equations, N. V. Pal'tsun (1967) solved a number 
of problems on circular cracks in a layer. 

Using the Kontorovich-Lebedev transformations, Ya. S. 
Uflyand (1958) studied the problem for an infinite elastic 
body containing a slit in the form of a half plane under the 
effect of an arbitrary system of external forces. 

V. V. Panasyuk (1962, 1965) studied the problem of the 
development of cracks whose shape in the plane was nearly circular 
in an unbounded Isotropie brittle body.  A crack, the maximum 
distance of whose contour from a circle is small in comparison 
with the radius of the circle, is said to be such a crack. 
Continuing the studies begun by M. Ya. Leonov and K. I. 
Chumak (1959), V. V. Panasyuk developed a method for the approxi- 
mate solution of the class of problems that was mentioned in 
which the problem of the limiting load for the crack having a 
nearly circular shape in the plane is reduced to the determina- 
tion of the elastic stresses in the neighborhood of the contour 
of the crack. A particular example in this class of problems 
is the case of a plane crack which has the shape of an ellipse 
in the plane.  With the aid of the approximate method that was 
developed, V. V. Panasyuk determined the limiting critical 
stresses fiom points on the minor and major axes of the ellipse 
and compared them with the results from the exact solution of 
this problem obtained by him earlier (1962). 

The expression which determines the magnitude of the 
limiting stresses necessary for the spreading of the crack in 
the direction of its smaller axis was obtained in the study 
by M. Ya. Leonov and K. N. Ruslnko (1963) on the basis of 
microstress theory developed by the same authors (1961). 

Yu. N. Kuz'min (1966) found the distribution of the stresses 
in an elastic space weakened by a system of plane cracks of 
equal radius which were periodic along the z axis.  For a 
normal load applied to the surface of the cracks, the problem 
reduces to the solution of coupled integral equations which 
are further reduced to the Fredholm equations with a continuous 
kernel expressed in terms of known special functions. 
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3.3.  Torsion, Bending and Longitudinal Shear 

The early studies of the problem of torsion of rods with 
holes (in the limiting case with fissures) were made by L. N. 
FayIon (Phil. Trans. Roy. See. London, Vol. A193, 1900, 
pp. 309-352). A. N. Dinnik obtained in 1913 a solution for the 
problem of the torsion of a circular rod containing a radial 
crack. The methods that are discussed in the monographs by 
N. I. Muskhelishvili (1966), K. V. Solyanik-Krass (1949), N. 
Kh. Arutyunyan and B. L. Abramyan (1963)  are widely used to 
solve problems in this class. 

Ye. A. Shiryaev (1956) using the methods developed by him 
for the solution of torsional and bending problems (1951)^ 
studied the problem of the torsion of a homogeneous Isotropie 
circular beam with one crack along an arc of a circle or along 
the radius and with two cracks located on the diameter. 

A. A. Balobyan (1958) studied the problem of the torsion 
of prismatic rods with a box-shaped cross section and a crack. 

The general formulation of longitudinal shear crack problems 
wherethe case of the so-called "nonplanar" deformation corres- 
ponds to the distribution of the displacements (stressed state 
in an infinite cylindrical body under the action of constant 
loads directed along the generatrices of the cylinder) was 
studied in the study by G. I. Barenblatt and G. P. Cherepanov 
(1961) . Unlike in normal rupture cracks and transverse 
shear cracks, in this case, effective exact solutions of many 
problems can be obtained,since the unique displacement w 
which is different from zero satisfies, in this case,the Laplace 
equation. Here the highly developed methods and results of 
hydrodynamics can be applied directly because of the obvious 
analogy between problems in the theory of elasticity for a 
nonplanar deformation and problems in plane hydrodynamics.  In 
the study that was mentioned, exact solutions were obtained for 
problems for an infinite body containing a circular hole with 
one or two cracks, loaded at infinity by constant tangential 
stresses (the analogue of O. L. Bowe's problems for normal 
distortional cracks) and for the mixed problem for an isolated 
rectilinear crack on a part of which the constant displacement 
is given (the analogue of the lamination problem by a 
wedge of finite length studied in 1961 by I. A. Markuzon). 
In the same study problems in the interaction of an infinite 
system of the identical cracks on the real axis and 
the case when the same cracks lie on a vertical one-row lattice 
have also been studied in this study.  In the study of the 
problem of the development of curvilinear longitudinal shear 
cracks and also cracks whose shape differs little from the 
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rectilinear or circular shape, the authors used the hypothesis 
that the development of the curvilinear longitudinal shear 
crack occurs in the direction ol the Maximum stress T 6.  In z 
the same study, using the Keldysh-Sedov formulas, a solution was 
obtained for the dynamic problem of the shearing of a body. 

R. L. Salganik (1962) studied two problems on axisymmetric 
longitudinal shear cracks (a disc-shaped and infinite annular 
crack) in an infinite body, when the cracks are subjected to 
the action of tangential forces distributed on their surface. 

3.4. Anisotropie Materials 

The methods developed in the monographs by S. G. 
Lekhnitskiy (1947, 1950) can be widely used in the study of 
equilibrium problems and problems dealing with the . spreading 
of cracks in anisotropic media.  The problem of a rectilinear 
crack in an anisotropic plate was studied for the first time 
by A. N. Straw (Adv. Phys., Vol. 6, 1957, pp. 418-465). 

G. I. Barenblatt and G. P. Cherepanov (1961) studied the 
problem of an isolated rectilinear crack spreading along some 
elastic symmetry line in an orthotropic infinite body under 
plane deformation conditions.  The same studies considered the 
problem of the lamination of an orthotropic body with planes of 
symmetry parallel to the two axes by a rigid infinite wedge 
moving at a constant rate.  It was assumed that on the surface 
where the wedge makes contact with the laminated body, Coulomb 
frictional forces are acting.  The problem of the lamination of 
an orthotropic body by a stationary wedge of constant thickness 
in which the frictional forces are ignored has been studied in 
greater detail.  Within the framework of dislocation theory 
of thin twins and cracks, the problem of the spreading of a 
thin equilibrium crack along an anisotropic strip of finite 
thickness, was studied in the study by Ye. P. Fel'dman (1967). 
As the external loads gradually increase, the crack grows up 
to some critical value^ after which instantaneous fracture of 
the strip occurs. 

Some problems on cracks on the boundary of welded halfplanes 
made from different anisotropic materials were studied by D. V. 
Grilitskiy (1963).  D. V. Grilitskiy and R. M. Lutsyshin (1967) 
studied the stressed state of an anisotropic plate with a cir- 
cular Isotropie core with a soldered-in Isotropie core in the 
presence of cuts on the seam. 

m 
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0. M. Romaniv and R. S. Kosychin (1968) considered the 
equilibrium problem of a brittle anlsotroplc plate with an 
artlbrarlly oriented crack under biaxial tension-compression 
conditions.  The anisotropy of the resistance to brittle frac- 
ture was taken into account by giving the corresponding 
coefficient for the intensity of the stresses and by assuming 
that the development of the crack in the beginning occurs along 
the plane where the limltinj intensity of the normal tensile 
stresses is achieved earlier than in other directions. 

3.5. Heterogeneous Materials. 

The study of fractures of cemented bodies in which the 
cracks can spread along the cemented area is of great practical 
Importance in the case when the strength of the latter is 
relatively small.  If the cementing strength, for example, of 
two elastic homogeneous bodies Is great, the crack spreads into 
the depth of one or both cemented bodies in accordance with the 
law for the development of cracks in homogeneous materials. 

G. P. Cherepanov (1962) obtained the solutions for the 
fundamental problems in plane elasticity theory in the case 
when the separation line of the different elastic bodies Is 
a straight line or a circle, and an arbitrary number of cuts 
lies on this line.  Similar problems using other methods were 
solved independently by D. V. Grilitskiy (1963). 

The field of stresses and displacements in the vicinity 
of the end of a rectilinear section which is the cementing 
boundary was investigated in the study by R. L. Salganik (1963). 
R. V. Gol'dshteyn and R. L. Salganik (1963) solved the problem 
of the development of cracks between plane plates along a 
rectilinear cementing boundary. 

An analogous problems was investigated once more in the 
study by V. I. Mossakovskiy and M. T. Rybka (1965), in which 
the fracture criterion for an inhomogeneous plate consisting 
of two homogengeous plates but with different elastic properties 
weakened by a crack on the boundary was determined on the basis 
of the Griffith condition. 

V. I. Mossakovskiy and M. T. Rybka (1964, 1965) studied the 
R. A. Zak problem that was mentioned above for the case of a 
heterogeneous brittle material consisting of two cemented half- 
spaces with different elastic properties.  The cementing 
surface contains a plane circular crack under the action of 
homogeneous stresses applied at Infinity which are perpendicular 
to the separation boundary of the halfspaces.  The authors ob- 
tained the solution by reducing the problem to a linear boundary 
value problem in the theory of analytic functions with the 
aid of potential theory. 
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3.6. Bending of Strips (Beams), Stressed State of 
Shells with Cracks 

A number of problems for the limiting equilibrium of strips 
containing various cracks was solved by V. V. Panasyuk and 
B. L. Lozov (1961-1964) , using effective solution methods for 
the corresponding problems in the theory of elasticity developed 
by N. I. Muskhelishvili and G. N. Savin.  The same study also 
considered problems on the bending of strips with rectilinear 
cracks^ symmetric relative to the longitudinal axis of the strip 
and with nonsymmetric cracks (perpendicular to the lateral 
edges of the strip) .  The stressed-deformed state and the 
magnitude of the limiting rupturing load were determined for 
various conditions in which the external loads were given 
(constant bending moments, concentrated forces, uniform pres- 
sure) . 

P. Ye. Berkovich (1966), continuing the studies of V. I. 
Mossakovskiy and P. A. Zagubizhenko (1954), obtained a solution 
for the problem of the bending of a strip (beam) containing a 
rectilinear crack of finite width at an angle to the longitudinal 
axis of the beam. 

The study of the stressed state of shells containing cracks 
is connected with great difficulties. At the present time 
these studies are only in the initial stage, but because of the 
great successes achieved in the solution of problems in the 
general theory of shells, we can expect that in the nearest future 
extensive studies dealing with the analysis of the stressed 
state and the limiting equilibrium conditions of shells containing 
cracks will be undertaken.^- 

We mention here the study by S. Ya. Yarem and M. P. 
Savruk (1967), who studied the stresed state of a cylindrical 
shell with a crack under a symmetric load, and also the 
study by Ye. M. Morozov and V. T. Sapunov (1968), who 
Studied the problem of a spherical shell with a crack 
under the action of internal pressure.  In the last case 
the stressed state is determined in the vicinity of the 
ends of the crack, in particular the character of the 
change of the stresses as a function of the thickness and 
curvature of the shell and the length of the crack. 
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3.7. Dynamic Problems in the Theory of Cracks 

Recently studies connected with problems in the dynamic 
spreading of cracks attracted a great deal of attention.  These 
studies were begun by N. F. Mott (Engineering, Vol. 165:4275 
1948, pp. 16-18) who studied the development of an isolated 
rectilinear crack in an infinite body under the action of a 
homogeneous field of tensile stresses. The dynamic problem 
in the theory of elasticity for an infinite body with a 
rectilinear crack of a fixed length moving at a constant rate 
under the action of a homogeneous tensile stress applied at 
infinity was studied by E. G. Joffe (Phil. Mag., Vol. 42:330, 
1951, pp. 739-750).  G. I. Barenblatt and G. P. Cherepanov 
(1960) studied stationary problems dealing with the movement 
of rectilinear normal rupture cracks.  They found the 
limiting speed for the spreading of a rectilinear crack in 
a homogeneous elastic body (which is approximately 0.6 c«, 

where Cg is the velocity of the transverse waves) .  This is 

the velocity at which the rectilinear character of the spreading 
is violated and the crack begins to branch due to the redis- 
tribution of the stresses near its end. However, if recti- 
linearity is ensured in advance, the limiting velocity of a 
crack spreading in a homogeneous material is equal to the 
velocity of the surface Rayleigh waves (~ 0.9 c«) . 

Studies of the equilibrium and the spreading of a crack 
in an anisotropic medium (G. I. Barenblatt and G. P. Cherepanov, 
1961) have shown that as in an Isotropie body, the rate at 
which the crack spreads cannot exceed the velocity of the 
Rayleigh waves.  In the case of an orthotropic body with two 
mutually perpendicular symmetry planes, for a rectilinear 
crack, the ratio of the critical coefficients of the intensity 
of the stresses in the lamination direction and in the direction 
perpendicular to it must not be greater than one.  However, 
on the basis of the fundamental assumptions in problems dealing 
with stationary lamination at a constant rate, the end of the 
crack which is formed before the wedge moves uniformly at the 
same speed.  Nevertheless, experimental studies have shown 
that during the development of the crack, for example, at a 
low speed, the speed at the end oscillates regularly about 
some mean value. G. I. Barenblatt and R. L. Salganik (1963) 
studied the self-oscillatory phenomenon of the process during 
lessening, assuming like A. N. Straw (J. Mech. & Phys. Solids, 
Vol. 8, No. 2, 1960, pp. 119-122) that the critical coefficient 
for the intensity of the stresses depends on the instantaneous 
speed at which the crack spreads^which first decreases and 
then increases*as the velocity increases. These authors also 
studied the self-oscillations during lamination by a rigid wedge 
moving at a constant rate in an infinite brittle body, a thin 
beam and a thin chip shaved off from a large body. 
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The problem of the transient spreading of cracks was 
studied by G. I. Barenblatt, R. L. Salganlk and G. P. 
Cherepanov (1962). Taking Into account several assumptions 
made with respect to the adhesion forces^ acting in the 
region at the end and also the distribution of the tensile 
stresses found by K. B. Broberg (Arklv. fys., Vol. 18, No. 2, 
1960, pp. 159-192), the authors obtained a relationship be- 
tween the rate at which the crack spreads and the magnitude 
of the applied stress.  It turned out that for any material 
a minimum rate exists for the stable spreading of the crack 
which Increases as the load increases and tends to the velocity 
of the Rayleigh waves. 

B. V. Kostrov (1964) using the Smirnov-Sobolev method of 
invariant solutions obtained a solution for the similarity 
problem for the transient spreading of an axisymmetric crack 
under the action of a homogeneous tensile stress applied at 
infinity. 

Continuing the study of the problem of the dynamic develop- 
ment of cracks, B. V. Kostrov (1966) obtained a solution for 
the nonstationary spreading of longitudinal shear cracks in 
an unbounded elastic body and calculated the distribution of 
the stresses outside the crack for an arbitrary time law for 
the displacements of the ends of the crack. Here the methods 
developed in problems dealing with the supersonic flow around 
a wing with a finite span were used. 

The study by R. V. Gol'dshteyn (1966) deals with the problem 
of determining the stresses in the neighborhood of a stationary 
crack moving along the cementing boundary. The study considers 
the movement of a semiinfinite crack at a constant velocity in 
plane deformation conditions to the end of which equal concen- 
trated forces in opposite directions are applied at a fixed 
distance.  Using a Fourier transform and the Wiener-Hopf method,, 
the problem reduces to the Rieman-Hilbert method for a system 
of functions with piecewlse- constant coefficients.  Continuing 
the study of the laws for the development of cracks in cemented 
bodies, R. V. Gol'dshteyn (1967) studied surface waves propagating 
in cemented materials along the cementing boundary under various 

T]     In the framework of classical elasticity theory, the in- 
troduction of adhesion forces is unnecessary and re- 
dundant in the formulation of the fracture criterion. 
It cannot explain the true pattern of the deformation 
process in the case of a detailed analysis of the 
phenomena at the edge of the crack (see, for example, 
Ye. M. Morozov and V. Z. Parton, 1968). 
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contact conditions along this line. 

A. M. Mlkhaylov (1966) considered the movement of a crack 
in a narrow strip in the beam approximation. Using the 
variatlonal principle, he derived the equations of motion and 
the boundary conditions for the displacements of the neutral 
axis of the beam located on one side of the crack. 

An exact solution of the problem of the stationary move- 
ment of a semiinfinite crack along the middle line of a strip 
when the velocity of the end of the crack does not exceed the 
velocity of the Rayleigh waves was obtained in the study by 
R. B. Gol'dshtey and M. Matchinskly (1967). These authors 
noted that both the solution and the coefficient for the 
intensity of the stresses depend on the frequency of the natural 
antisymmetric waves in the strip propagating at the same 
velocity as the crack.^ 

3.8.  Cracks in Rocks, Development of Cracks in 
Compressed Bodies 

The development of cracks in rocks which are formed both 
naturally as a result of tectonic movements and artiflcally 
by hydraulic ruptures of strata, etc., is of considerable 
practical interest. 

The problem of a vertical crack (a crack not completely 
filled with a viscous fluid under the action of lateral rock 
pressure) was studied for the first time by Yu. P. Zheltov 
and S. A. Khrlstianovich (1955) .  Only the lateral rock pressure 
and the pressure of the fluid were taken into account in the 
solution.  The condition for the finiteness of the stresses at 
the end of the crack postulated by S. A. Christlanovlch (1955), 
was used in this study to determine the dependence of the length 
of the cracks on the external loads.  This condition was proposed 
earlier in the study by G. M.Westergaard (J. Amer. Concrete 
Inst., Vol. 5, No. 2, 1933, pp. 93-103, J. Appl. Mech., Vol. 5, 
No. 2, 1939, A49-A53). 

In 1968, R. V. Gol'dshteyn, using as in the previous case, 
the Wiener-Hopf method constructed a solution for the 
problem and for the condition that the velocity of the 
Rayleigh waves is exceeded and noted that the spectrum 
of the natural waves leads to peculiar resonance phenomena 
in the strip. 
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G. I. Barenblatt (1956) considered in his study of 
the hydraulic rupture mechanism of an oil layer the problem of 
a horizontal disc-shaped crack containing a viscous liquid 
located at some depth from the surface of a heavy half space. 
Using the solution of Ya. N. Sneddon and the condition for 
the finiteness of the stresses at the ends of the cracL, 
an expression was obtained for the radius of the crack as a 
function of the volume and pressure of the pumped fluid, 
the depth of the deposit and the specific gravity of the rock. 

Using the same formulation, the solution of the generalized 
problem of a vertical crack for the case of a fluid pumped 
through its surface was obtained in the studies by Yu. P. 
Zheltov (1957).  He also proposed an approximate method for 
the solution of the problem of a horizontal crack with a 
variable vertical pressure field along the radius. 

The development of theoretical geology, the calculation 
of stresses formed in rock mines, reinforced concrete struc- 
tures, etc., required a study of the compressive strength of 
brittle bodies. 

V. I. Mossakovskiy and M. T. Rybka (1965) proposed an 
approach for constructing the theory of strength of compressed 
brittle bodies with cracks based on the energy concepts of 
A. A. Griffith.  M. T. Rybka (1966) used the Griffith criterion 
to determine the length of a rectilinear crack along which 
Coulomb frictional forces are acting in the problem of the 
biaxial elongation of an elastic Isotropie plate, to deteimine 
the length of the rectilinear crack.  Without analyzing the 
stressed state at the end of the crack, V. I. Mossakovskiy, 
et al, (1965) found the distribution of the stresses in the plane 
containing a crack in the shape of a three-branch broken line 
where homogeneous compression at infinity occurs at some angle 
to the middle branch of the crack. 

G. P. Cherepanov (1966) studied the laws for the compression 
strength of brittle bodies in the idealized case of a crack 
with free edges.  In the same study, the solution for the 
plane elasticity theory problem for "superimposed" cracks 
(a mathematical section with a given jump in the normal dis- 
placements and stresses and a tangential stress, while the 
interacting forces at the opposite sides are arbitrary and aonlinear), 
located on one line was obtained.  As an application a theoretical 
scheme was proposed for a rock impact and certain ideas about 
the safest forms of the mines were predicted. 
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P. Ye. Berkovich (1966) determined the stress distribution 
in an elastic plane with a crack in an inhomogeneous field of 
compression stresses. Assuming that the crack consists of 
three sectors and that the difference in the vertical displace- 
ments of the edges is constant on the contact sector, the 
author reduced the problem,with the aid of complex potentials, 
to the solution of four linear conjugate problems in which four 
functions must be determined. 

S. Ya. Yarema and G. S. Krestin (1966) using the method of 
successive approximations, determined the magnitude of the 
limiting load in the problem of the compression of a disc by 
concentrated forces containing a symmetric crack. 

The critical loads caused by the development of one or 
two cracks which extend to the contour of the curvilinear 
hole when the plane is compressed by constant forces were de- 
termined in the study by A. A. Kaminskiy (1967).  In the case 
of an elliptical hole, the author obtained simple formulas for 
the determination of the critical load. 

3.9.  Temperature Stresses 

It is known that temperature problems in which the steady- 
state heat flow is considered with the aid of the method proposed 
by N. I. Muskhelishvili in 1916 can be reduced to the solution 
of ordinary plane problems in the theory of elasticity.  The 
concept of the coefficient for the intensity of the stresses 
is basically preserved also for problems dealing with the  deter- 
mination of temperature stresses. 

N. M. Borodachev (1966) determined the distribution of 
thermoelastic stresses for an infinite body containing an axi- 
symraetric crack, and G. S. Kit and Ya. S. Podstrigach (1966) 
found the distribution of a stationary temperature stress field 
formed in the vicinity of a heat resistant fissure when the 
homogeneous heat flow is given at infinitely remote points on 
the plate. 

A more general formulation of this kind of problems is 
available in the study by Ya. S. Podstrigach and G. S. Kit 
(1967).  For the case of a plane, containing an arbitrary number 
of heat conducting cracks, between whose opposite edges no 
ideal heat contact occurs, they proposed a method which can 
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be used  to determine  the stationary temperature of  the  field.^ 

§4.     Analysis  of  the Limiting State 

The   theory of   the limiting state and  the  theory of  ideal 
elasto-piustic media give an idealized description of   the  basic 
properties   of   the  deformation and  fracture  process  for  the majority 
ol   solids   in   the viscous  fracture  region for a large 
range of   times,   temperatures, deformation rates,   etc.     These 
theories which were  developed  in  the work of S.  Coulomb,  A. 
St.-Venant,   A.   Tresk   ,  M.  Lcvi,   0.   Mohr.   L.   Prandtl,   were  further 
developed  ^.n all   aspects by Soviet  and  foreign scientists. 
Thp  practical  significance of   the   these  theories extends 
f p .•  h':.-)nd  the  determination of  the strength and load-bearing 
cap'iily  of  structures.     It  should  be  mentioned here  that   their 
most   important  application deals with  problems  in  the   technologi- 
cal   treatment  of metals,   mechanics  of soils   and rocks  and 
that  recent  applications solved pseudoliquificiation    problems 
in chemical   technology. 

In  our country   the development  of  plasticity  theory started 
in  the 30's  in   the  studies by S.   L.   Sobolev   (1935),   S.  A. 
Khristanovich   (1936),   S.  G.   Mikhlin   (1938),   who studied certain 
problems  for an elasto-plastic  and rigid plastic body.     The 
studies by A.   A.   Gvozdev   (1934,   1938)   in which  the upper and 
lower  bound    method  for  the  limiting  loads on a rigid-plastic 
body was  proposed was  important.     This method was subsequently 
developed  intensely  and it became  the  basis  for strength 
calculations based on the kinematically possible velocity  field 
and statically  admissible stress     fields. 

An extensive  development  of  the  theory  of plasticity  in 
our country  goes  back  to  the 40's.     A.   A.   Il'yushin  (1943) 
proposed  the  theory  of small  elasto-plastic  deformations which 
was widely  applied   in applications.   He  proved  (19^'>,   1947) 
the simple  load  theorem which made  it  possible  to use  in an 
important   special   case  the relation  between  the nonlinear elastic 
body model  and  the model of an elasto-plastic medium.     L.   M. 
Kachanov   (1940),  A.   A.   Markov   (1947)   and S.   M.   Feynberg   (1948) 

An   illustration  of  this method  is   the  stationary  temperature 
and stress  field in an infinite  plane with a  thermally 
insulated arc-shaped crack with a   fixed homogeneous heat 
flow  at   infinity which was  found  in  1968  by   G.   S.   Kit 
and Yu.   S.   Frenchko.     The stress  distribution in  the neigh- 
borhood of   the  ends of  the  crack and  the  limiting value 
of  the heat  flow make it possible   to determine  the beginning 
of   the  crack  propagation in  the  brittle material. 
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obtained the fundamental results for a nonlinear elasto- and 
rigid-plastic  body on  the basis of  variational principles. 
L.  A.   Galin,   A.   A.   Il'yushin,   Kh.  A.   Rakhmatulin,  V.  V. 
Sokolovskiy and many  others obtained  the solutions for a 
number of interesting and difficult  problems  and laid down 
the foundation  for  the basic scientific schools in the  theory 
of plasticity  in  the USSR. 

V.   V.   Sokolovskiy obtained  the  solution  for a number  vf 
elasto-plastic  problems   (1942,   1944,   1948)   and contact p      »lems 
dealing with  the pressing of rigid dies  into a rigid-plastic 
body   (1940) ,   and also developed  the  theory of   the plane stressed 
(1946)   and plane  deformed  (1945)   state. 

A.   A.   Il'yushin   (1948)   proposed  the method of elastic solu- 
tions  for hardening bodies,  which reduces  the  solution of the 
boundary value  problem for a nonlinear  elastic body  to an 
infinite sequence of corresponding problems  for linear elastic 
bodies with     additional  body  forces.     Important results were 
obtained by A.   A.   Il'yushin  (1944-1950)   in  the  load-bearing 
theory  of plates and shells made from an elasto-plastic material, 
in particular  during   loss of stability. 

L.   A.   Galin   (1944-1949)   applied methods  of  the theory of 
functions of a  complex variable  to  the solution of a number  of 
complex^ basically  two-dimensional,elasto-plastic problems. 

Kh.  A.   Rakhmatulin   (1945-1948)   laid down   the foundations 
of  the   theory of   the  propagation of waves  in  elasto-plastic 
media. 

In  the  following  years,   the mathematical   theory of  plasticity 
was developed  in   the USSR both by way of  general constructions 
and an analysis   of  the  initial assumptions as well as by way 
of an accumulation of  concrete results  and methods for  the 
solution of  boundary  value problems. 

We will  only mention several  general  results. 

L.   I.   Sedov   (1962)   developed the  general   thermodynamic 
and kinematic analysis  of  the basic  models  for  a continuous 
medium and  the  most  general  formulation  of  the  associated flow 
law  for a hardening body for an arbitrary number of parameters 
describing  the   loading prehistory.     In   1965 L.   I.   Sedov 
proposed  the  variational method  for   the  construction of mathe- 
matical  models  of a continuous medium and pointed out  the 
general   form of   the corresponding principle which is applicable 
not only  in  classical  mechanics  but  also  in  the  relativistic 
mechanics of  continuous media and in electrodynamics.     The 
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relations between  the  theory of plasticity and  the continuum 
dislocation  theory were  determined using  this method. 

Yu.   N.  Rabotnov   (1968)   proposed a   theory  of plasticity 
which  took  into account   the effect of a yield retardation in 
the general  three-dimensional case.    In  1958 he  proved convin- 
cingly     the validity of   the relations  of  the deformation  type 
for singular  loading surfaces.     In  1951  Yu.   N.   Rabotnov 
proposed an engineering  theory of shells which had a great 
effect  on  the  further  development of  the  load-bearing capacity 
theory    of  shells. 

V.   V.   Novozhilov   (1947)   developed  the   theory of  finite 
deformations} and  in 1957-1958 jointly with Yu.   I.   Kadashevich, 
proposed a variant  of  plasticity  theory  for a medium with 
translational  hardening. 

A.   A.   Il'yushin   (1963)   analyzed from a  general  theoretical 
standpoint   the  possible  relations between  the stresses and 
strains,   formulated  the  isotropic postulate and derived struc- 
tural  formulas  for  the  relations between  the stresses and 
strains. 

D.   D.   Ivlev   (1958,   1966)   starting with  the  principle of 
the maximum dissipation  velocity of  the mechanical energy 
proposed a derivation of  the associated flow  law and analyzed 
the equations   for   the most widely used  variants  of plasticity 
theory.     He also  investigated  essential  and removable discontinuities 
in  the displacements and stresses  in an arbitrary  three-dimensional 
case.     He  proposed and also studied various models of complex 
media.     In  1958,   D.   D.   Ivlev proposed an anisotropic  ideal 
plasticity  theory  based  on a generalization of   the Tresk 
plasticity condition. 

V.   D.   Klyushnikov   (1958)   developed several  variants  of 
the  theory of  plasticity with anisotropic  hardening.    A.   A. 
Vakulenko   (1959)   proposed an approach  to  the  theory of elasto- 
plastic media  from  the  standpoint  of nonlinear  thermodynamics 
of  irreversible  processes developed by  him. 

The model  of  an elasto-plastic  body  and  the  limiting 
equilibrium theory were  applied on a wide scale  in the mechanics 
of soils and rocks.     The  limiting equilibrium  theory with  the 
Coulomb yield  condition  is usually  called  the  statics of  a 
loose medium.     Along  these lines  the most  important results were 
obtained by V.   V.   Sokolovskiy,  V.   G.  Berezantsev,   S.   S. 
Golushkevich,   A.   Yu.   Ishlinskiy,   and others. 
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Considerable progress was also made along  the lines of 
constructing new models of an elasto-plastic medium which are 
applied  to  the  study of  a certain class of  deformation and 
rupture phenomena  in soils. 

N.  M.  Gersevanov,   V. A.  Florin,  N.  A.   Tsytovich 
developed the so-called filtration consolidation theory for 
the description of  the  deformation of soils  saturated with a 
liquid.     They used  the concept of a doubly continuous medium 
and certain ideas about  the properties of  the skeleton and the 
liquid and about  their  interaction.     A more general  theory 
along the same  lines was developed by V.   N.   Nikolayevskiy 
(1960-1962)   and V.   Z.   Parton  (1964-1968)   studied the consolida- 
tion problem mathematically. 

Yu.   P.  Gupalo and 0.  P.  Cherepanov   (1967)   used a model 
of a body which did not withstand tensile stresses in the solu- 
tion of several  problems  in pseudoliquification in chemical 
reactors. 

S.   S.  Grigoryan   (1967)  proposed one variant of an elasto- 
plastic body which represented a generalization of the one- 
dimensional  c  -   e curve with a fixed "tooth"    (observed in experi 
ments with soft  steel but following other more complex laws) 
for explosions  in hard rocks.     The spreading boundary of  the 
elastic and plastic zone  is the discontinuity line of the 
stresses and strains   (the fracture  front).   The model  that was 
mentioned is a  generalization of  the model  of  a soft soil 
proposed by  the same author in 1960 and also constructed by 
V.  P.  Koryavov   (1962)   and V.  N.   Rodionov   (1962). 

§5.     Effect  of  the Configuration and Dimension of the 
Structure on  the Strength 

The science  of strength underwent  rapid development  in the 
last half century.     This  is primarily connected with the 
progress  in  the development of new materials and alloys with an 
ever increasing strength.     While,   during  the  19th Century 
technical  iron was used  in structures   (and  the strength 
limit was raised approximately from 30  to 40 kg/mm  ,  at the 
present  time steel alloys exist,whose strength  limits are on 
the order 200-300 kg/mm^ and in  the  last  decade strengths on 
the order of 400-600 kg/mm^ have been attained.     At the same 
time the physical  theories about  the nature  of strength and 
fracture have a considerable effect  on  the selection of  the 
means for producing stronger alloys   (this applies primarily 
to dislocation  theory and the theory of  cracks) . 
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We will  distinguish  two concepts:     metallurgical strength 
and structural strength.     By the first  is meant   (usually in 
handbooks on materials)   the value of  the strength obtained on 
smooth laboratory samples of certain standard dimensions on  the 
material  in  the  delivery stage.     The strength of  the product 
from the same material   (structural strength)   is  sometimes 
much smaller.     In particular, this occurs  frequently near the 
brittle rupture  region.     The effect of the dimension of  the 
structure on the ((structural)   strength will  be called the 
scale effect. 

In  the viscous  fracture region there  is no scale effect and 
the dependence of  the strength on the configuration of the body 
is determined by  calculations with the aid of  the selected 
model of  the body and the  fracture condition at   the point  in 
accordance with  some  theory of strength.     In  the case of ideal 
elasto-plastic bodies, there is no need for a  theory of strength 
and the strength  is  calculated within the  frame of reference 
of  the model  itself.     In the brittle  fracture region, a scale 
effect always occurs, and  the dependence of  the strength on the 
configuration and dimension of  the body   (including the shape 
and dimension of  crack defects)   are calculated within the 
frame of reference of a model of an elastic body  in accordance 
with the Griffith-Irwin theory.     In this  section we mainly 
consider  the practically most important  transient  fracture region, 
in which the scale effect also occurs,  which has  not been studied 
as extensively. 

5.1.     Physical Nature of  the Scale Effect 

The evolution of  the views about  the physical nature of 
the scale effect was  comparatively long and tortorous.    This 
was due to  the fact   that  the phenomenological concepts of 
brittleness and plasticity had a descriptive character, which was 
related to the observation of the fracture process and the shape 
of  the rupture surfaces.     Brittle rupture  is characterized by a 
rapid fracture process,   the absence of a  neck,   and the 
orientation of  the break-off surface along  the  largest  principal 
tensile stress area.     During viscous rupture considerable plastic 
deformations develop and a neck is formed  in  the sample and the 
break-off surface  is  oriented along the maximum  tangential 
stress area.     However,   in practice,   combined brittle and 
viscous rupture  occurs  in various degrees  in all materials. 

When the scale of  the sample  is  increased and cuts or 
any stress concentrrttions are present  in  it,   the probability 
of brittle rupture   tends  to increase.     Therefore,   the first 
question is how  to compare  the plastic and brittle character of 
the rupture of materials   (how to determine  the resistance to 
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break-off and the  tendency of the material  to brittle rupture. 
Notwithstanding  the fact that a theoretical answer  to this 
question was already  given  in the classical  study by A. A. 
Griffith  (1920),   for almost   thirty years  the answer  had no 
effect on tlu.- solution of  problems for structural metals. 

The difficulty of  the  comparison  is  that  an ideal 
plastic scale    effect   is not characteristic, •'■  and  that in the 
brittle rupture  region,the  strength also  depends on  the internal 
structural parameters  and  the length dimension.    According to 
the A. A.  Griffith  theory  the latter are  the  lengths of certain 
initial cracks which are always present  in a real material, 
and,   in fact,   various  types of    stress concentrates may play 
the role of  the crack   (inclusions of a different kind,  empty 
spaces,   pores,   etc.),   which was first  emphasized by A. P. 
Aleksandrov and S.   N.   Zhurkov  (1933). 

Only in  the  last  few years the comparative evaluation of 
materials with regard  to brittleness or plasticity  by means of 
rupture  tests made on samples with an artificially created 
crack with the smallest possible radius of curvature2 at its 
end  (which creates the largest relative stress concentration) 
was generally recognized.     The studies of N.   N.  Davidenkov, 
A.   F.  Joffe,  G.   V.  Uzhik,   Ya.  B.  Fridman,   B.   A.  Drozdovskiy 
played a fundamental  role  in  the development  of  this point of 
view. 

Theoretically  the model  of an ideal elasto-plastic bouy or 
limiting equilibrium cannot explain  the  scale effect.     The 
same applies  to  any other model when  the  rupture is described 
with  the aid of  strength theory,   and obviously in this 
case,   the strength is  completely determined by  the external 
loading parameters. 

In fact,   a critical value of  the radius of   .urvature at the 
end of  the crack exists below which a further  reduction of 
the radius of curvature  is no longer meaningful.    This 
critical value  depends on the plastic properties of the 
metal   (it  is on  the order of ID-*' -  10-2 cm) , 
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When this testing method is used,the fracture point is 
localized in advance^ which reduces to a minimum the statistical 
factor, and only physical causes which are the basis for the 
viscous and brittle rupture phenomena which explain the scale 
effect are left. As many experiments have shown (see, for 
example, the study S. V. Serensen and N. A. Makhutov, 1967), 
the mean stresses in the internal cross section at the instant 
of fracture a for a sample with a cut depend in the following 

manner on the characteristic linear scale L (the depth of the 
cut-crack or the distance of ^.ts end from the opposite side of 
the sample): when the L are small and the geometric similarity 
conditions are preserved, a is independent of L and it is 

equal to the metallurgical strength of the given alloy (viscous 
fracture); as the scale L increasesj the strength a    drops and 

tends to the quasibrittle Griffith-Irwin asymptote (brittle 
rupture). 

A very convenient scheme which explains the transition from 
viscous fracture to brittle fracture with a drop in the tempera- 
ture was proposed for the first time by A. F. Joffe (1924). 
According to this scheme, the stresses a_ and a0 „ depend dif- 

ferently on the temperature T. The first stress increases as 
T increases, whereas the second decreases so that the point where 
these curves intersect (the cold brittleness temperature) divides 
the viscous and brittle rupture regions. 

T^  In 1968 G. P. Cherepanov proposed a quantitative description 
of the brittle and viscous rupture phenomena and also of 
transient phenomena  (thus also the scale effect) from a 
unified point of view.  According to this approach, the 
question of the degree of brittleness for the possible 
fracture of the structure reduces to a calculation and 
comparative evaluation of the dimensionless number x- 
All possible values of this number lie between zero and 
infinity, and when y « 1 the fracture is brittle, and 
when x >> 1> the fracture is viscous.  The energy concept 
used here is a generalization of the well-know Grlffith- 
Irwin-Orovan concept, which also makes it possible to de- 
termine the stable growth at the end of the crack which 
always occurs in an elasto-plastic material before the 
loss of stability and, in addition, to determine the rate 
of growth of the crack under a variable (for example, cyclic) 
load.  In the presence of recesses or cuts in the structure, 
tests with an appropriate sharp crack on smaller samples can 
be used to verify directly the danger of brittle fracture by 
comparing the numbers x and the model experiments (or the 
functions x(T) when the temperatures T are different) . 
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Developing further the scheme of A. F. Joffe, N. N. 
Davidenkov (1930-1936)  introduced the concept of brittle and 
viscous resistance to direct pull. He proposed that the re- 
sistance to direct pull be estimated by the elongation of smooth 
samples in liquid nitrogen.  In 1930 N. N. Davidenkov published 
the study by A. M. Dragomirov (made in 1917), who was the first 
to draw attention to the relation between the type of rupture 
and the character of the reduced load after the maximum during 
the bending of cut samples (the crystalline sectors in the 
rupture correspond to the stalls in the loads).  N. N. Davidenkov 
related these observations to impact viscosity tests.  In the 
same years, N. N. Davidenkov developed the definition of the 
critical (transient) brittleness temperature with the aid 
of "impact viscosity-temperature" curves which he constructed. 
He proposed that these curves also be used to determine in- 
directly the resistance to direct pull. N. N. Davidenkov (1938) 
noted that the part of the resistance work done after the maximum 
load is reached is most sensitive to the testing temperature 
and that a drop in the temperature primarily reduces this 
characteristic. 

In 1946 B. A. Drozdovskiy divided the bending work of a 
cut sample into the elasto-plastic deformation work for a given 
cut and into the work used up in the development of the crack. 
He proposed that the latter be used as a quantitative estimate 
for the fracture viscosity of the material (which corresponded 
to the qualitative estimate based on the shape of the fracture) . 
This concept is very similar to the generalization of the 
Griffith concept^ which was developed at approximately the same 
time abroad by K. Zener, G. G. Holomon, G. R. Irwin and 
E. 0. Orovan. 

We mention several studies which deal with the determination 
of the resistance to direct pull of smooth samples.  It was proposed 
that the circular bending of discs at a temperature of 1960C 
be used to estimate the resistance to direct pull (Ya. B. Fridman, 
1941) in tensile tests of a thin disc welded to two rods made from 
a harder material (A. L. Nemchinskly, 1950-1955). 

S. I. Ratner (1959) studied the correlation between the 
resistance to direct pull and the magnitude of the rupturing stress 
during repeat«d loads.  M. V. Yakutovich and V. A. Pavlov (1953) 
studied the relation between the stressed state and the direc- 
tion of growth of the cracks. 
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P. 0. Pashkov (1950) investigated the resistance of the 
material to brittle and viscous fracture in relation to the 
structure of the material and the shape of the sample. 
Ya. M. Potak (1955) gave an extensive analysis of brittle 
fractures in alloyed steel structures and pointed out the 
danger of brittle fracture in alloys with a large ferrite 
grain.  Ye. M. Shevandin (1953-1965) made extensive experimental 
studies in the cold-brittle region of low alloyed structural 
steels. 

T. A. Vladimirskiy (1953-1958) constructed for a series of 
structural steels three-dimensional "impact viscosity-sharpness 
of cut-temperature" curves.  It became evident that when the 
sharpness of the cut was changed, the materials may damage 
in isolated places in comparison with the estimates obtained 
from the cold-brittle temperature. 

Developing further the concepts of N. N. Davidenkov, Ya. 
B. Fridman (1941-1952) proposed the so-called generalized theory 
of strength, which was obtained from a systhesis of the theory 
of maximum tangential stresses and the theory of maximum elonga- 
tions.  The mechanical state diagrams proposed by Ya. B. Fridman 
take into account both the form of the stressed state and the 
properties of the materials (the resistance to direct pull and 
the resistance to yield or shear). 

It was shown on samples with fissure defects using the 
method of knurling grids that the fracture process localizes 
near the end of the crack (Ya. Fridman and T. K. Zilova, 1950- 
1959) .  It follows from this theory that for the same material 
the fracture criterion may be, depending on the ratio of the 
tensile to maximum tangential stresses, either the resistance 
to shear or the resistance to direct pull. 

In 1950 G. V. Uzhik proposed that the resistance to direct 
pull be estimated by tensile tests made on circular samples 
with a sharp annular cut.  Yu. I. Likhachev (1956), who 
developed this method, proposed that the diameter in the cut be 
also changed during the stressing. A. Ye. Asnis (1947) estimated 
qualitatively the brittleness of steel by indicating the welded 
joint by the impact on the crack under the action of internal 
stresses.  The characteristic used was the maximum temperature 
at which brittle rupture occurred. 

An important stage in the development of experimental 
methods for estimating the brittle strength was the use of 
samples with a fatigue crack obtained previously in static 
or impact bending tests proposed by B. A. Drozdeovskiy and 
Ya. B. Fridman (1955-1960) as a universal method for estimating 
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the sensitivity of metals (Including high strength 
metals) to a crack. This method made it possible to obtain 
easily with the aid of special vibrators almost any fatigue 
crack with a radius of curvature at its end smaller by 
several orders of magnitude than the radius of curvature of 
the usual tension crack, i.e., to satisfy in advance the 
requirement for the maximum sharpness of the crack. 

We also mention here the method of W. D. Robertson, 
according to which the crack is initiated by the impact from 
the locally cooled region near the end of the cut, after 
which the temperature and the stoppage stresses of the 
crack are estimated. A slight modification of this method 
(the application of controlled static loads) was obtained 
by V. G. Cherkashkin and I. M. Rozenshteyn (1964).  A. P. 
Gulyayev (1967) studied the impact bending of samples with 
cuts of different sharpness and extrapolated the "impact work- 
radius of cut" straight line relationship up to the zero value 
of the radius. 

In 1965-1967 Ya. B. Frldman, B. A. Drozdovskiy and V. M. 
Markochev proposed that a "fracture curve" be constructed 
(a relationship between the Increment in the size of the crack 
and the applied stress, the number of cycles or time) to 
characterize the capability of the material to brake fracture. 
The method developed by them for recording the development of 
a crack li sheet materials was used in the construction of these 
curves. 

V. S. Ivanova (1967) proposed that the fracture viscosity 
on fatigue cracks be determined on the basis of the rupturing 
cyclic stress. 

V. M. Finkel' (1964 and in later studies) studied experi- 
mentally the dynamics of the growth of cracks. 

In the last few years workers engaged in applications and 
experiments in the USSR began to recognize more and more the 
approach in which the development of the cracks and the related 
fracture and strength problems are investigated in the frame of refer» 
ence of Studie? dealing with the fine structure of the end 
of the crack, i.e., within the frame of reference of a single 
parameter describing the distribution of the stresses and 
strains near the end of the crack, the coefficient of the in- 
tensity of the stresses (for the most important practical case 
of normal fracture cracks).  This point of view agrees 
well with the mathematical theory of quasibrittle cracks and 
in spite of its limitations, it is very progressive (it cannot 
be applied to a viscous or nearly viscous fracture) . 

-475- 



Experimental studies on controlled fracture (with cracks) 
along these lines were made by B. M. Malyshev (1964, 1965) 
CLamination experiments), S. Ye. Kovchik and V. V. Panasyuk 
(1963-1967) (study of the growth of a crack under the action 
of concentrated forces, and a study of'the effect of humidity 
and temperature on the energy on the surface of glass, etc.), 
V. M. Markochev (1966) (study of the rate of growth of cracks 
under the action of cyclic loads). 

It was proposed that the controlled stable growth of a 
brittle crack be used to determine the brittle rupture constants 
and thus also the sensitivity of the materials to cracks. 

The elegant method used to determine directly the effective 
surface energy from the hysteresis branch obtained in the 
"displacement-force" coordinates under loading and unloading 
during the stable growth of the crack should be mentioned.  This 
method applied to the loading by concentrated forces was 
proposed by S. Ye. Kovchik and V. V. Panasyuk (1961).  A similar 
method was applied abroad first to the unstable growth of cracks 
in metals by G. R. Irwin in 1958 (the so-called displacement or 
ductility method).  In this approach, the theoretical solutions 
are not used, so that the method can be applied to a body of any 
shape, which can be very convenient in some practical cases. 

Solutions of problems of an ideal elasto-plastic body with 
cuts whose thickness is zero are of interest in the theory of 
fracture in the transient region when the dimension of the 
plastic zone is comparable to the characteristic linear dimen- 
sion of the body.  When these solutions are supplemented by a 
condition for the local fracture at the end of a crack, the 
relationship between the strength and the shape and configura- 
tion of the body can be determined, in particular, the scale 
effect in the transient region can be determined.  It is impor- 
tant to emphasize that the rigid-plastic (viscous) and brittle 
ruptures are always described as some limiting cases. 

The jump in the displacement at the end of the crack in 
the case when the plastic deformations are concentrated along 
a line of zero thickness which continues the crack (M. Ya. 
Leonov and V. V. Panasyuk, 1959), and the specific energy flux 
near the end of the crack (G. P. Cherepanov, 1967) were 
proposed for the criterion magnitude which determined the be- 
ginning of th( growth at the end of the crack. 

We will mention several theoretical solutions that were 
obtained.  M. Ya. Leonov and V. V. Panasyuk (1959, 1961) ob- 
tained a solution for the plane and axisymmetric elastic 
problem for one crack with a discontinuity in the normal dis- 
placement on the continuation of the crack.  This elastic 
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solution can be Interpreted as a solution of the elasto-plastic 
problem In the approximate formulation (the formulation of D. 
S. Dugdale, named after the British scientist who proposed In 
1961, on the basis of experimental observations a similar 
solution as the solution of the elasto-plastic problem). 

M. Ya. Leonov and N. Yu. Shvayko (1961) considered a 
hard body deformed everywhere except In "bad material" Intermediate 
layers (slippage strips) which can be cut out conceptually and 
whose effect can be replaced by the corresponding forces. 
This leads to the linear elasticity theory problem on the 
deformation of a body with discontinuous displacements on 
some surfaces.  P. M. Vitvitskiy and M. Ya. Leonov (1960-1962) 
solved several plane problems with linear Volterra disloca- 
tions.  They found the values of the Kolosov-Muskhellshvlli 
functions which determine the stressed-deformed state under the 
action of a linear dislocation in an unbounded plane with an 
elliptical hole. 

Th« studies by P. M. Vitvitskiy and M. Ya. Leonov proposed 
a computational scheme for problems dealing with the development 
of slippage strips around sharp shell concen4  Mons 
in elasto-plastic materials, with the aid        the solution 
was found for a plate with a narrow crat. >:   ■      .rculsr hole. 
The last problem was also the subject of ^t   s made by L. L. 
Libatskiy (1966).  The relationship between rh I ngth of the 
plasticity strips and the load was obtained ir di ?se studies. 

P. M. Vitvitskiy, M. Ya. Leonov awd S. Ya. Yarema (1963) 
have shown that the first oblique slippage lines at the end of 
the cut during the elongation of thin metallic plates are formed 
at stresses at infinity equal to 0.^6 a , where a is the 

yield point of the material and the direction of these strips 
subtends a 58° angle with the plane of the crack.  These results 
were confirmed experimentally in the studies of S. Ya. Yarema 
(1962, 1964).  The same problem was Investigated in the study 
by K. N. Rusinko (1964) . 

During his study of the possible existence of a stable 
crack in problems dealing with the fracture of elasto-plastic 
plates, L. G. Lukashev (1963) developed concepts which are 
similar to the Leonov-Panasyuk model. 

P. M. Vitvitskiy (1965) studied the problem of elasto- 
plastic deformations of a thin plate weakened by colinear cracks 
of equal length and also by two external semiinfinite cracks 
under stressing conditions at infinity by forces perpendicular 
to the line of the cracks. 
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B. V. Kostrov and L. V. Nikitin (1967) obtained in their 
study the solution of the problem for a longitudinal shearing 
crack with an infinitely narrow plastic zone near the ends of 
the crack, where the Mises plasticity condition had to be 
satisfied on the boundary of the plastic zone. 

G. P. Cherepanov (1962) obtained the solution of the 
elasto-plastic problem for a longitudinal shearing crack with 
a plastic zone whose shape and dimensions were determined.  In 
1967 he proposed a solution for the elasto-plastic problem of 
the distribution of stresses and strains in the neighborhood 
of the end of a fissure.  The material was assumed to be 
incompressible with a power relation between the second invariants 
of the stress and strain deviators.^- 

Defects causing the rupture of a sample or a structure can 
be conventionally classified into defects formed in the 
metallurgical process, which are created in the technological 
process) and defects which are formed or which develop during 
the operation of the structure (for example, corrosive or 
fatigue cracks).  An alloy which is formed as a result of 
the metallurgical process is very complex in its structure 
(heterogeneous, anisotropic, with a complex distribution of 
internal stresses).  By definition the strength is approvi^ately 

K-p/ x/'d, where d is the characteristic diameter of the most 

dangerous crack defect and KT_ is a complicated function of the 

coordinates.  The purpose of the metallurgical process, in 
addition to the defined chemical and temperature stability con- 
ditions of the alloy, is to create in the space uniformly distri- 
buted structural cells with minimum dimensions, whose boundaries 
play the role of energy strength barriers. (Host frequently such 
cells are the grains of the basic material and the chemically active 
additives formed in the crystallization centers during the hardening of 
the meet.)  Apparently, the whole of the barriers is played by the in- 
tercrystalline  films formed from the chemically inactive atoms. 

TT  Later when he studied the problem of the crack in D. S. 
Dugdale's formulation, G. P. Cherepanov (1968) obtained 
the growth in the length of the crack as a function of 
the applied load ("the fracture diagram') on the basis of 
the modified Griffith-Irwin-Orovan criterion proposed by 
him, and calculated the scale effect in the entire region 
(the brittle and viscous fracture are naturally limiting 
cases) . 
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of the additives which are squeezed towards the boundary during 
the growth of the grains.  The original crack defect develops 
during the loading process approximately up to the dimensions 
of the grain which are controlled in advance, so that at the 
instant of fracture>the quantity d is approximately equal to the 
diameter of the largest grain.  This explains the fact that the 
strength of even very brittle alloys varies in a relatively 
small range in comparison with the strength of amorphous 
materials such as glass.  Thus the basic method for increasing 
metallurigical strength from the standpoint of the linear 
mechanics of rupture is to increase KTr (using alloying 

additives and thermal treatment which have an effect on the 
phase conversions, primarily on the boundaries of the grains) 
and to decrease the dimension of the largest grain  (by 
a homogenization of the crystallization process). 

Some investigators pointed out the importance of taking 
into account thr total elastic energy margin and the 
ductility of the system in the explanation of the scale 
effect (N. N. Davidenkov, T. K. Zilova, I. A. Razov, Ya. B. 
Fridman, Ye. M. Jhevandin, et al). 

5.2.^ Statistical Nature of the Scale Effect 

The strength of a material is always some random variable, 
since the exact position of all defects is not known in advance 
and second, even if this position were known,the corresponding 
mathematical problem could not be solved because of its com- 
plexity.  The probability of encountering the largest and most 
dangerous effect in a large sample is greater.  This concept 
is the basis of the explanation of the scale effect used in 
statistical theory. 

The following two approaches can be used in the construction 
of the statistical theory: 

a)  one or several most dangerous defects can be 
selected on the basis of experience or intuition, and the re- 
maining defects can be "spread" uniformly, assuming that the 
properties of the resulting continuous medium are known 
rigorously from the macro experiment (the length and possibly 
several additional parameters which determine the position of 
the most dangerous effect are assumed to be random variables 
with given distributions); 
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b)  all defects, without exception, are "spread" 
over the volume and the resulting averaged medium is assumed 
to be continuous and "without defects" (the local strength 
of this medium and also the stresses are assumed to be random 
variables with given distribution functions at each point of 
the body, and the mean values of the stresses and the strength 
are determined, respectively, from macrotheory and macro- 
experiments) .  When this approach is used, a number of additional 
assumptions must be made (see below) to obtain the final ex- 
pressions.  The first method resembles more the theory of cracks 
(it stresses the physical nature of strength and of the scale 
effect), the second method is more formal and it resembles 
more the theory of the strength and resistance of materials.  The 
approaches that were mentioned have somewhat different applica- 
tions and they also play a different role in different stages 
of tha physical rupture process. 

Suppose that in the technological process defects which 
are more dangerous than metallurgical defects were formed in 
it (it is assumed that the dimensions of the grain are not large) 
and that the characteristic linear dimension of the structure 
is large in comparison with the dimension of the grain.  In 
this case there is no doubt that the second approach must be 
used.  It is this approach which is used in the majority of 
studies dealing with statistical problems in strength which 
will be presented below. 

Now let us assume that during the technological process 
defects which are more dangerous than the metallurgical defects 
can occur in the structure.  To obtain the distribution func- 
tions, according to the second approach, a representative sample 
from a number n of the corresponding structures is needed, 
and here the forecast of the strength for one concrete structure 
will already be probabilistic. Therefore, in practice the 
approach that was mentioned can only be applied to comparatively 
cheap mass produced articles and it cannot be used for unique 
or expensive structures.  In this case, the only possible 
approach may be the first approach, which makes it possible by 
analyzing, for example, a comparatively small number of failures^ 
to determine approximately the size and position of the defects 
causing the rupture.  It must be emphasized that the technologi- 
cal and operational defects may completely distort even the 
usual character of the scale effect (for example, in larger 
products the strength may be higher).  In what follows these 
defects are not included in the discussion, and by strength we 
shall mean the usual metallurgical strength.  The conventional 
character of classifying the defects on the basis of their 
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origin should be noted.  Several statistical theories were proposed 
for the quantitative description of the stochastic laws which govern 
strength. The basic principles of a statistical theory of 
strength for microscopic heterogeneous brittle ruptures bodies 
were formulated on the basis of experimental observations by 
A. P. Aleksandrov and S. N. Zhurkov (1933).  They can be 
described by the following axioms.  The spreading of the 
inhomogeneity in the properties (defects) over the volume of 
the brittle fractured medium is equiprobable.  The instant 
when the weakest element of the body ruptures coincides with 
the rupture of the body as a whole.  The strength of the sample 
cut out from such a body is determined by the most dangerous 
defect among all defects which occur in its surface layer. 

The random character of the distribution of the inhomogeneity 
of the properties over the volume of the medium manifests it- 
self in the scatter of the brittle strength of the samples. 
As the dimensions (surfaces) of the samples are increased, the 
frequency with which more dangerous defects occur incrases, 
the scatter region narrows down and the most probable strength 
value decreases, which is the way in which the scale effect 
is displayed.  For a homogeneous stressed state, the lower 
scatter boundary is the same for samples of all dimensions and 
the strength of the largest samples is determined by the 
lowest strength of the samples with small dimensions, provided 
the latter are still large in comparison with the defects. 

The study by A. P. Aleksandrov and S. N. Zhukov introduced 
the concept of a common lower scattering boundary for the 
strength and the dependence of the distribution of the random 
strength values of the body on its dimensions (1933). 

These concepts are the basis for the statistical theory 
of strength proposed in 1939 by W. Weibull, which is based on 
the hypothesis of the "weakest link." This theory, in the 
case of homogeneous stressing,leads to a power relation for 
the strength as a function of the volume.  Below it will be 
confirmed by some experimental data for metals (for example, 
in the studies by N. N. Davidenkov, 1943, and B. B. 
Chechulin, 1954-1963). 

A logarithmic relation for the strength as a function of 
the volume was also proposed, which as G. M. Bartenev and Yu. 
S. Zuyev (1964) have shown,describes better the experimental 
data for rubbers.  For glasses, the volume in the Weibull 
distribution must be replaced by the working surface (G. M. 
Bartenev and Yu. S. Zuyev, 1964). 
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A mathematical variant of the theory of the "weakest link" 
expressed in the form of a distribution for the smallest sample 
in a random sample was proposed by T. A. Kontorova and Ya. M. 
Frenkel in 1941-1943.  This theory was used to determine the 
scale effect from the mean values of the brittle strength in 
the case of a homogeneous stressed state using a simplified 
form of the normal distribution law for the random values of the 
strength of elements of the body. 

Subsequently a "weakest link" theory was proposed in 1949 
by W. Weibull for the description of fatigue fractures, and 
was treated in a general mathematical formulation in the study 
of V. V. Bolotin (1961) and it was also used to describe the 
scale effect during fatigue fracture (R. D. Vagapov, 1958-1964, 
S. V. Serensen and V. P. Kogayev, 1959-1962). 

Extensive experimental studies whose purpose was to 
clarify the nature of the scale effect under a single load were 
made by G. M. Bartenev, F. F. Witman, A. Ya. Volovik, M. Ya. 
Gal'perin, N. N. Davidenkov, N. A. Makhutov, N. G. Plekhanov, 
S. I. Ratner, S. V. Serensen, G. A. Stepanov, G. V. Uzhik, 
Ya. B. Fridman, B. B. Chechulin, Ye. M. Shevandin, N. P. 
Shchapov, and others. 

The scale factor plays a particularly important role in the 
presence of embrittling factors (an external medium active on 
the surface, etc.).  The fatigue strength scale effect has been 
studied most thoroughly. 

Given the contemporary engineering development trend (the 
building of large power engineering structures, hydroengineering 
equipment, etc.) the natural fatigue tests of parts with large 
dimensions are impractical for all practical purposes. There- 
fore, an estimate of the scale effect becomes more and more 
important, since strength calculations are based on the charac- 
teristics of fatigue resistance obtained in laboratory samples 
whose dimensions can be tens or hundreds of times smaller than 
the characteristic dimensions of the parts. 

With regard to the action of variable loads, it was established 
that a reduction of the fatigue limit in samples and parts 
when their dimensions are increased has two aspects, namely 
a metallurgical and mechanical aspect.  In the first case, the 
scale effect is caused by the comparatively high degree of im- 
perfection in the structure of the material in large casts or 
forgings used in the manufacture of parts with large dimensions. 
In the second case, the scale effect manifests itself in the 
reduced strength in geometrically similar samples when their 
absolute dimensions are increased and also when the samples 
are cut out from the same body (G. V. Uzhik, 1942) . 
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The first experiiüental studies were devoted to explaining 
the relationships between the fatigue limits in geometrically 
similar samples during variable bending and torsion and the 
dimensions of their cross section. To eliminate the effect 
of the metallurgical factor, the samples were cut out from the 
same billet. 

A generalization of the experimental study of the effect 
of the scale factor on the fatigue limit made it possible to 
introduce this factor along with the concentration effect into 
the definition of the load-bearing capacity of elements of struc 
tures under variable loads (S. V. Serensen, 1937-1945, C. V. 
Uzhik, 1942). 

In order to make the transition from fatigue limits in 
laboratory samples to the strength of the part, a coefficient 
for the effect of the cross sectional dimensions was intro- 
duced, which was equal to the ratio of the fatigue limits of 
samples with a large diameter to the fatigue limit of the 
laboratory sample (S. V. Serensen, 1934).  The experimental 
studies were generalized in the form of graphs for the relation 
between the reduced fatigue limits and the increasing dimensions 
of the cross section (S. V. Serensen, 1957, G. V. Uzhik, 1957). 

It was established that the scale effect has an esymptotic 
tendency, which is more pronounced for high strength steels, 
and inhomogeneous cast materials in the presence of stress concen- 
trations (S.  V. Serensen, I. V. Kudryavtsev0, V. P. Kogayev 
and L. A. Kozlov, 1949). 

At the same time natural testing methods of the parts 
were developed which made it possible to obtain important in- 
formation (N. P. Shchapov, S. V. Serensen).  Test benches which 
can be used to fracture samples with a 150-300 mm charac- 
teristic dimension of the cross section were produced to 
approximate the experimental results by the natural dimensions 
of the parts and to estimate the metallurgical factor.  It 
turned out that for samples with such cross sections, the 
fatigue limr.ts are reduced two or three times as much in 
comparison with the fatigue limit of standard samples with a 
7-10 mm diameter (V. A. Voller, V. P. Kogayev, I. V. 
Kudryavtsev, S. V. Serensen, S. I. Yatskevich). 

The specific features of the scale effect in a corrosive 
medium were investigated (L. A. Glikman, 1953, 0. V. 
Karpenko, 1953). 
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Simultaneously with the generalization of the experimental 
data for the purpose of an analytical extrapolation in the 
region of the natural dimensions of the parts, a theory of 
the scale effect under the action of variable loads was developed. 

To describe the scale effect by the fatigue limits which 
depend on the dimensions of the cross section of the body and 
the nonuniform distribution of the macroscopic stresses in 
this cross section, the statistical model of a microscopic 
inhomogeneous polycrystalline body was used (N. P. Afanas'ev, 
1940). 

According to the statistical theory of N. P. Afanas'ev 
the limiting safe stress amplitude is determined by the presence 
in the body of a number of crystallites located next to one 
another, in which the microstresses attain the values of their 
strength limit during the cycling loading process.  The 
probability of such an event depends only on the dimensions 
of the cross section of the body and the nonuniform distribution 
of the microstresses on this section, so that it is assumed that 
the transition from one cross section to another does not lead 
to a new combination in the distribution of the microinhomogeneities 
Therefore, the length of the body and the distribution of the 
stresses along its contour are not taken into account.  From 
this a deterministic relation is obtained between the reduced 
fatigue limits during tension-compression and the increased 
dimensions of the cross section of the body, and a stronger 
scale effect during variable bending. According to another 
\ariant of the same theory, the scale effect is related to the 
nonuniform distribution of the microstresses in the surface 
layer, whose depth is determined by the minimal rupturing stress 
which is equal to the fatigue limit during the tension- 
compression of a large sample.  From this the relation is ob- 
tained between the fatigue limit which is expressed in terms 
of the amplitude of the stress at the dangerous point of the 
body and the gradient of the stresses in the cross section. 
This theory gives a unique deterministic interpretation of the 
szale effect during the bending of smooth samples in the presence 
of stress concentrations. 

According to a proposal of I. A. Oding, the imperfections 
in a real body on the microscopic level during variable deforma- 
tions which are phenomenologically nearly elastic can be 
represented schematically by the ideal plasticity curve with 
a horizontal sector which is equal to the tension-compression 
fatigue limit during the stressing« The fictitious fatigue 
limit calculated on the assumption of an elastic distribution 
of the stresses, turns out to be smaller, the smaller the ncn- 
uniformity of the distribution of the stresses in the dangerous 
cross section of the body, i.e., the larger the diameter of the 
sample in bending. 
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On the basis of decomposing the effect of the stress 
gradients and the dimensions of the body on the magnitude of the 
fatigue limit, the scale effect is represented by two com- 
ponents, one of which is due to the imperections of the material 
on the microscopic level and the other to the macroscopic 
heterogeneity which manifests itself in the scatter of the 
fatigue resistance characteristics (R. D. Vaganov, 1955) . 
Subsequently, the scale effect was also considered in the 
bounded endurance region, i.e., along the fatigue curve which 
is represented in the "stress amplitude-endurance" coordinates. 

It was shown that the scale effect can be interpreted as 
a reduction in the mean statistical values of the durabilities 
and the endurance limits as the surface of the body increases 
while the common lower scatter boundary is preserved when the 
scatter region is represented in the "stress amplitude at the 
dangerous point-endurance" coordinates in the cycles (there is 
no scale effect along the lower boundary) . 

As the stress distribution approximates in the cross section 
of the body a uniform distribution, the entire scatter region 
can be displaced in the direction of smaller durabilities and 
the limiting fatigue curve will be the curve along the lower 
scatter boundary for the smooth samples tested for tension- 
compression. This shows that it is possible to estimate 
probabilistically the resistance to fatigue of parts with 
large dimensions from the results of model samples (R. D. 
Vagabov, 0. I. Shishorina and L. A. Khripina, 1958-1960). 

In 1959 V. P. Kogayev also showed on the basis of a statis- 
tical analysis of the results of tests made on samples with 
various shapes and dimensions the possible existence of a common 
lower boundary of the minimal endurance values when the probabilites 
for the initial damaging stage were small and the mean endurance 
values depended considerably on the shape and dimensions of the 
body. 

Ya. S. Podstrigah and M. I. Chayevskiy (1959) proposed 
that the temperature effect of the cyclic load caused by the 
imperfections in the material on the microscopic level and the 
nonuniformity of the stationary temperature field formed 
in the process in the sample be taken into account.  According 
to this theory due to the reduced heat transfer from the 
internal zones of the body accompanied by an increase in its 
cross section, the magnitude of the tensile thermoelastic 
stresses in the surface layer incrases.  The scale effect is 
treated as the effect of the asymmetry of the cycle caused by 
the thermoelastic stresses that were mentioned. 
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For the stage in which the body is separated by the main 
crack, it is proposed that the scale effect be estimated from 
the increase in the rate at which the crack develops as the 
dimensions of the body increase while the 'geometric and 
force similarity are preserved  (R. D. Vagapov, 1960, 1961). 

S. V. Serensen and V. P. Kogayev (1962) using the 
"weakest link" theory and the Weibull distribution function 
described the scale effect taking into account the non- 
uniform distribution of the stresses in the cross section of 
the body.  The scale effect is determined as the reduction in 
the mean statistical fatigue limits as the stress gradient 
decreases in the dangerous cross section of the body, and the 
perimeter of the body increases.  It was proposed that the 
parameters of the original distributions for elementary 
macrovolumes of the body and the lower scatter boundary be 
determined from the results of statistical tests made on two 
series of samples with different relations between the stress 
gradients and the diameter of the sample. Such information 
is universal in the description of the scale effect which 
depends on the stress gradient and the dimensions of the body. 

The studies by R. D. Vagapov (1964, 1965) using the same 
Weibull distribution function, described the scale effect after 
the body was damaged by the first macrocrack in relation to the 
stress distribution in its surface layer. The relations between 
the mean statistical endurance and strength values and the 
surface of the body and the distribution of the stresses along 
its generatrix (in particular, the length of a cylindrical sample) 
were confirmed experimentally and the parameters of the original 
distribution were determined from the results of tests made on 
samples having the same shape. 

§6.   Rupture under a Cyclic Load 

The phenomenon of fatigue rupture was discovered by V. 
Rankine and A. WöTiler more than one hundred years ago.  Since 
then it has been studied intensely and at the present time 
the mechanics of fatigue failure is the basis for the design 
and calculation of the majority of dynamically stressed 
structures and machines.  The increase in the operational 
reliability, the reduction in the weight and the increase in 
the economic usage indices of dynamically stressed structures 
in the national economy are intimately related to the develop- 
ment of fatigue problems.  The fatigue studies of structural 
materials including steel for bridges, air dried timber 
that were begun at the beginning of the century were further 
developed after the Revolution.  M. V. Voropayev started 
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the study of fatigue failure earlier than many foreign authors 
and introduced into the process the concept of irreversible 
hysteresis losses as the reason for the fatigue failure. 

We will dwell briefly on certain aspects of the phenomenon 
of fatigue failure without discussing here such questions as 
the creep of metals and polymers. 

In the machanics of fatigue failure,studies were made to 
determine the strength criteria which depend on the regime 
and type of stressed state; the similarity conditions and the 
kinetics of the accumulation of fatigue failures during a 
nonstationary variable load were analyzed and statistical 
concepts and the theory of plasticity were used for the quan- 
titative description of the laws for the formation and develop- 
ment of fatigue cracks and the transition to brittle rupture. 

The development of the statistical aspect of the mechanics 
of fatigue failure made it possible to relate studies of strength 
during variable loads to operational reliability theory. 
According to contemporary concepts,the fatigue failure of 
metals and polymers is physically caused by the microinhomogeneity 
of the structure of the material, and as a result, it is im- 
possible to avoid a local stress concentration, which causes 
the accumulation of irreversible microplastic deformations. 

The criteria for the resistance to fatigue failure during 
symmetric and asymmetric cycles and a complex stressed state 
were developed in the light of the analogy with plasticity 
and statistical strength criteria and also on the basis of statis- 
tical energy concepts. 

S. V. Serensen (1937) proposed to adopt a linear approxima- 
tion for the relation between the limiting amplitudes of the 
stresses and the mean stresses in the cycle and to express the 
coefficient characterizing the effect of the asymmetry of the 
cycle in terms of the endurance limits under a symmetric and 
fluctuating cycle.  In 1955 L. I. Sevel'ev proposed that this 
coefficient be expressed in terms of the endurance limit during 
a symmetric cycle and the true resistance to fracture. 

Taking as the criterion quantity characterizing fatigue 
strength, the area of the hysteresis loop, I. A. Oding (1937) 
obtained a quadratic relation relating the limiting amplitudes 
to the mean stresses. D. I. Gol' tsev (1953), using the 
analogy with statistical strength obtained a power relation be- 
tween the limiting amplitudes and the mean stresses.  He used 
for the criterion quantity a power function of the intensity 
of the tangential stresses and the mean pressure. 
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I. A. Oding (1948) proposed that the imperfections in the 
real material during variable deformations which were phenomen- 
ologically nearly elastic be represented schematically by the 
hysteresis loop or by the corresponding ideal plasticity curve 
with the horizontal sector equal to the tension-compression 
fatigue limit during the stressing.  At the same time he 
adopted for the fatigue damage criterion the amplitudes of the 
deformations at which the width of the hysteresis loops had 
a certain small value. 

In subsequent studies, G. S. Pisarenko and V. T. Troshchenko 
(1967) proposed that the equation for the fatigue curve in the 
region of large numbers of cycles be represented in terms of 
the deformation amplitudes.  Beyond the fatigue limit, the 
authors proposed to use those stresses which correspond to some 
(small) value of the width of the hysteresis loop.  Thus, the 
fatigue limit is defined as the cyclic proportionality limit. 

S. V. Serensen (1941) proposed on the basis of experimental 
fatigue studies made on steels, pig iron and light alloys,to 
express the strength conditions during variable loads for the 
plane stressed state by the hypotheses of the largest tangential 
or octahedral stresses, taking into account (in linear form) 
the effect of the components of the normal stresses on the 
corresponding areas. 

N. N. Afanas'ev (1940) formulated the basic statistical 
assumptions for the mechanics of rupture of a polycrystalline 
body. 

To obtain the strength conditions during oymmetric or 
asymmetric cycles and a complex stressed state, he used physical 
concepts for the me^al as a microinhomogeneous medium 
characterized by the nonuniform microstressing of the crystals. 
It was assumed that during the cyclic loading the stresses in 
individual unfavorably oriented grains increased all the way 
to the resistance to direct pull which leads to their fracture 
However, the fracture of isolated grains does not yet cause the 
rupture of the body. The criterion quantity for the fatigue 
strength of a body that was used was the fracturt of a par- 
ticular number (which was constant for each materi?!) of adjacent 
micrograins of the metal.  The probability of such a situation 
depends on the dimensions of the cross section of the body, 
the nonuniformity of the microstress distribution and the 
macroscopic stressed state. 
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S. D. Volkov (1953, 1954) made an important contribution to 
the further development of the statistical mechanics of a 
polycrystalline body. Considering the material of a detail 
as a microinhomogeneous medium and assuming that fracture in 
some microvolume occurs when the tensile stresses attain the 
cohesion strength,he obtained the strength condition during 
variable loads and a complex stressed state taking into account 
the asymmetry of the cycle  (1960) . 

D. I, Gol'tsev (1953), using the imperfect elasticity 
characteristics used the area cf the hysteresis loop as the 
measure of the damage in one cycle without taking into account 
the area of the loop at the fatigue limit.  The measure of 
the damage is independent of the number of cycles and the 
total rupture work, of the amplitude of the stresses. From 
the above follows the equation for the fatigue curve, the linear 
integration law for the damages during nonstationary loading 
regimes and the strength conditions during variable stresses 
and a complex stressed state in the power form. 

Continuing these studies, R. D. Vagapov (1964) considered 
in connection with creep and relaxation phenomena (repeated 
load) the problem of a hysteresis loop with a variable number 
of parameters depending on the number of cycles describing the 
dependence of the measure of damage on the number of cycles, 
the deviation from the linear integration law for the damages 
and the dependence of the endurance on the type of loads. 

N. N. Vasserman and V. A. Gladkovskiy (1965)^ studied the 
fatigue phenomenon from the standpoint of two mutually inter- 
related processes:  hardening and softening. The hardening 
process was characterized by the magnitude of the minimal damaging 
stress which increases with the number of cycles.  On this 
basis a unique interpretation of the equations for the fatigue 
curve and the aging phenomenon during nonstationary cycles was 
obtained. 

I. A. Birger (1948) formulated the strength condition for 
a plane stressed state with asymmetric cycles on the basis of 
the assumption that during an asymmetric cycle only the 
statistical normal stresses have an effect on the fatigue 
strength 

S. V. Serensen (1933) proposed in his study a relation for 
the fatigue limit as a function of the amplitude of the 
maximum stress and the local gradient of the stress. Continuing 
studies along these lines, N. N. Afanas'ev (1936) proposed a 
statistical explanation of the relation that was mentioned.  The 
same effect was described by I. A. Oding (1948) on the basis of im- 
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perfect elasticity concepts with the aid of cyclic viscosity 
(equal to the product of the elasticity modulus and the width 
of the plastic hysteresis loop). S. V. Serensen, G. V. 
Uzhik and R. D. Vagapov (1955) proposed conditions for the 
modeling of fatigue failure. 

Subsequently, the variability of fatigue characteristics 
which manifests itself in the scatter of the fatigue 
strengtti characteristics became the objett of theoretical 
and experimental studies.  In 1948 A. I. Kochetov and A. D. 
Krolevetskiy and in 1952 M. Ya. Shashin used correlation 
analysis in tie statistical description of the sloping segment 
of the fatigue curve, taking into account various probabilities 
of failure.  Here the normal distribution law was used for the 
logarithm of the endurance, with parameters which were in- 
dependent of the amplitudes of the stresses.  The possibility 
of applying the lognormal distribution for the rupturing 
number of cycles, taking into account the sensitivity threshold 
was investigated (V. P. Kogayev, 1957) as well as regression 
analysis for the description of the sloping segment of the 
fatigue curve which depends on the fracture, taking into account 
the dependence of the distribution functions on the level of 
the stresses  (M. N. Stepanov, Ye. V. Giatsintov and V. P. 
Kogayev, 1959) . 

The fatigue damage process is separated into two stages; 
the stage in which microdamages are accumulated,which are 
scattered over the volume of the body culminating in the forma- 
tion of the first microcrack,  and the stage when the body is 
separated by the main crack.  The laws were estimated on the 
basis of equiprobable parameters for equal damage (R. D. 
Vagapov, 0. I. Shishorina and L. A. Khripina, 1958-1964). 
These studies established the analogy between the statistical 
rupture model of an ideal brittle body based on the "weakest 
link" iS.  N. Zhurkov and A. P. Aleksandrov, 1933) and the 
proposed model for the damage of the body by the first fatigue 
microcrack.   It was shown that the strength and endurance of 
parts with large dimensions could be estimated probabilistically 
in this manner on the basis of the results of the statistical 
tests made on model samples all the way up to the determination 
of the lower scattering boundary from the damage caused by the 
first microcrack. 

L. G. Sedrakyan (1958 and in later studies) proposed a 
statistical deformation and rupture theory for brittle materials, 
viiich made it possible to clarify certain particular features of 
the resistance to deformation of real structural materials, such 
as pig iron, concrete, rocks, etc.  The theory is based on the 
scheme of an ideal heterogeneous material and the real deformation 
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characteristics depend on an arbitrary function (the distribution 
function f r the inhomogeneity of the material for the given 
inhomogeneity characteristic) and the material constant (the 
coefficient of friction) which are determined from the experi- 
ment. This model explains the gradual character of the 
rupture process, the fatigue and long-term strength, the in- 
crease in the volume of the material during its preferred 
compression and the presence of a descending branch in the 
compression-elongation curve and other characteristics. 

To describe the statistical laws for fatigue rupture, 
V. V. Bolotin (1961) used the "weakest link" hypothesis and 
made this hypothesis more precise by relating it to the ex- 
istence of a minimum value threshold. 

On the basis of the hypothesis that was mentioned, 
S. V. Serensen and V. P. Kogayev (1962), determined the de- 
pendence of the distribution function for the random endurance 
and strength values for a body of a given shape and dimensions 
on the stress gradient in the dangerous section and the perimeter 
of the dangerous section. The statistical similarity criterion 
used was the ratio of the perimeter of the dangerous section or 
a part of it to the relative gradient of the first principal 
stress in this section. Using the criterion that was introduced, 
the relation between the maximum rupturing stresses in the 
stress concentration zone and the probability of the rupture 
of the body was determined. 

R. D. Vagapo  (1959-1965) proposed for the limiting case 
when the probability that the body will be damaged at some depth 
is negligibly small a theory of scatter for the endurances and 
the fatigue limit which took into account not only the trans- 
verse but also the longitudinal dimensions of the body and the 
distribution of the microstresses along its contour. The 
distribution function depends on its shape, the dimensions of 
the body and the loading method, i.e., it gives a probabilistic 
estimate of the stress concentration and the scale effect.  The 
joint probability density for the random variables, the strength 
and endurance, is used in the discussion as well as the random 
coordinate of the  damage by the firbt microcrack. 

An intense study oi the fatigue strength of parts under 
loads 'vith variable amplitudes during the operating process 
began roughly in the 40's. The studies by 
S. V. Serensen (1944), D. N. Reshetov (1945) and V. M. Bakharev 
(1945) analyzed the linear hypothesis for the integration of 
fatigue failures to estimate the endurance and strength for 
a stress amplitude which varied over time.  They proposed 
phenomenological treatments for the accumulation of the fatigue 
failures when the amplitudes were varied,which were based on 
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an analysis of the properties of the secondary fatigue curves for 
programmed loading and deviations of their parameters from the 
linear integration conditions for the failures (S. V. 
Serensen, L. A. Kozlov, 1953), the use of the hysteresis energy 
absorbed by the metal under stresses exceeding the endurance 
limit (D. I. Gol'tsev, 1955), on an analysis of the properties 
of the measure for the damage and the introduction of two 
fatigue failure stages (V. V. Bolotin, 1959-1963). 

The study of fatigue strength under random external effects 
is of great practical and theoretical interest. 

V. V. Bolotin (1963) formulated the principles for the de- 
composition of the random process into cycles and conditions 
which are needed to determine the mean endurance margin using 
the concept of a limiting fatigue surface (in the "stress ampli- 
tude-mean stress of cycle-endurance" coordinates). 

S. V. Serensen, Ye. G. Buglov and V. P. Kogayev (1960 
and in later publications) discussed the estimate for the 
fatigue strength under a random load in the probabilistic 
aspect.* 

An evaluation of the experimental fatigue laws based on 
the equiprobable damage parameter, made it possible to obtain 
from the statistical laws deterministic laws for the nonlinear 
integration of the relative endurances during a nonstationary 
loading regime (R. D. Vagapov, 1964 and later studies) .  On 
the basis of a study of the accumulated fatigue damages from the 
statistical aspect, S. V. Serensen and V. P. Kogayev (1966) 
estimated the deterministic and random components in the sum 
of the relative endurances and proposed a correction for the 
linear hypothesis which depended on the spectrum of the stress 
taplitudes. 

Y.     In 1968 M. Ya. Filatov used for the fatigue failure criterion 
the energy accumulated per unit volume in the metal during 
the entire loading period which made it possible to 
analyze the effect of the complex form of the cycle on 
the fatigue strength. 
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The subsequent development of this branch of mechanics Is 
connected with the construction of stochastic models of the 
fatigue process.  V. V. Bolotln and Kh. B. Kordonskly (1961) 
proposed that the fatigue damage process be treated as a 
random process of the Markov type. The use of processes that 
are nonunlform over time, where the Insensltltes of the trans- 
itions diminish over time would make It possible to justify 
the lognormal distribution for the endurance and to explain 
the aging phenomenon, I.e., the Increase or decrease In the 
endurance during the transition from one amplitude level of the 
stresses to another (Kh. B, Kordonskly, 1961). 

S. V. Serensen and V. P. Kogayev (1965) considered the 
fatigue process as a Markov process with a finite number of 
states which is uniform over time, with continuous time, and 
analyzed and quantitatively characterized the statistical laws 
for the accumulation of the fatigue failures during a programmed 
load. The distribution function for the endurance was obtained 
by means of stochastic matrix multiplication and the Monte-Carlo 
method. 

By introducing the concept of a damage tensor which 
depends functionally on the stress tensor, A. A. Il'yushin 
(1966) was able to develop an approach to the study of the 
strength of materials,taking into account the loading history 
during cyclic loads. 

The fatigue failure under variable contact pressures was 
studied by means of an Investigation of the contact stresses, 
taking into account both th£ normal and tangential forces at 
the points where the parts made contact, and by an analysis of 
the strength conditions for the three-dimensional stressed 
state. This made It possible to obtain the relations between 
the limiting contact pressures and the fatigue characteristics 
(M. M. Saverin, 1948, S. V. Pinegin, 1967). 

The extensive experimental studies of the fatigue failure 
laws made it possible to accumulate, starting in the mld-30's, 
voluminous material on the character of the fatigue curves, 
the types of distribution functions of the random values of the 
strength and characteristics of the effect of the state on the 
surface, the interaction of media, the field of residual stresses 
and the mechanical properties of the surface layer on the 
fatigue strength (N. M. Belyayev, M. E. Garf, L. A. Glikman, 
M. M. Hochberg, N. N. Davidenkov, G. V. Karpenko, I. V. 
Kudryavtsev, A. V. Ryabchenkov, M. N. Stepnov, V. I. 
Trufyakov, M. Ya. Shashin, N. P. Shchapov and others). 
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The results of  the  theoretical and experimental studies 
in  the mechanics  of  fatigue failure are  the   basis for the 
improvement of   the  structural shapes and parts of  their strength 
calculations and  the manufacturing  technology, including surface 
hardening. 

The manufacture of  powerful high parameter  structures of 
large dimensions   required the development of strength problems 
under a cyclic  load  in the elasto-plastic region,     linder  these 
conditions» in the most stressed    zones of  the nodes and parts» 
a considerable change in   the deformation  laws and  the conditions 
under which  the cracks are  formed and spread during the cyclic 
load   occurs. This  is  due   to the fact  that under  the loads  that 
were mentioned which correspond to a comparatively small number 
of cycles before rupture   (up to 10**  - 10*) ,   the  elasto-plastic 
deformations are redistributed according  to   the number of cycles 
which depend on  the  loading conditions  (the   nonuniformity of  the 
stressed     state,   the  temperature,   the deformation rate,   etc.) 
and the cyclic properties  of  the materials.     The  formation and 
spreading of cracks  during a small number of cycles,in the general 
case occurs against  the background of  the accumulated cyclic 
plastic deformations which have the same direction and the 
description  is based on  the corresponding failure criteria for 
a  small number of cycles.     The nonstationarity of  the elasto- 
plastic deformations, during a small  number of  loading cycles 
determines the conditions  for the attainment of  the limiting 
states by the structural  elements and,   hence,   also  their load- 
bearing capacity. 

The first studies  in   the USSR which studied  the fatigue 
of aviation structural elements for a small  number of cycles 
were made by N.   I.   Marin   (1946).    The experiments  that were 
made on cylindrical  pipes (ivith welded seams and without  them) 
and plates with a nole have shown that  the resistance to small- 
cycle  fracture      ^pressed  in terms of  the nominal  rupturing 
stresses  is  lower than the  resistance  to  fracture  during a 
single static  load    which  depends on  the mechanical 
properties of  the material  and the  level  of  the  stress concen- 
tration. 

In the subsequent years,   the basic results  in the study 
of resistance to small-cycle rupture were obtained in the 
studies  by D.  A.   Hochfeld,   V.  V.  Moskvitin,   V.   V.   Novozhilov, 
S.   I.  Ratner,   S.   V.   Serensen,  Ya.  B.   Fridman and R.   M. 
Shneyderovich.     At  the same time considerable attention was 
given to the construction of the state equations  for the case 
of cyclic loading on one  hand,  and the fracture criteria on 
the other hand. 
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V.  V.  Moskvitin   (1951-1965)   generalizing the  conditicns of 
G.  Masing and using  the theory of small elasto-plastic deforraa- 
tionn x'or the case of a repeated load proved    a number of 
theorems on variable loads,   secondary plastic deformations and 
limiting states.   It was possible to use on the basis of. these 
theorems finite  relations  betweeh the stresses and strains for 
the solution of  the corresponding problems.     These relations 
are valid when the  loads are nearly simple.     The studies by 
V.   V.  Moskviti'-. also proved the possibility of applying the 
theory developed by him to  the case of a complex  load,  when 
the principal stresses change sign during cyclic  loading. 
The  theory of small elastic deformations during cyclic loads 
was used by V.  V.   Moskvitin and V. Ye.  Voronkov   (1966)   in the 
solution of a number of concrete problems   (the cyclic bending 
of a beam and plates,   repeated torsion of rods with a circular 
and oval cross section,   repeated loading by  internal pressure 
of a thick-walled cyclinder and sphere and other problems) . 

Along with this approach,N.  N. Afanas'ev  (1953),  Yu.  D. 
Sofronov  (1959),   N.   I.   Chernyak and D.  A.  Gavrilov   (1966) 
developed in their studies statistical models for  a polycrystalline 
conglomerate consisting of a large number of differently 
oriented elements with different mechanical  properties  (both 
without hardening and with hardening) .     It was possible to 
describe analytically  the  form of the elasto-plastic hysteresis 
loop,   the Bauschinger effect, and also the change  in the stresses 
and strains on the  basis of  these models.     Yu.  D.   Sofronov 
obtained a relation betveen the stresses,   strains and the number 
of cycles before rupture which he applied to    cyclically hardening 
materials. 

A systematic experimental study of  the state equations^made 
by S.  V.  Serensen,   R.   M.   Shneyderovich and A.  P.   Gusenkov 
(1960-1966), made it  possible to determine  the existence of a 
generalized cyclic  deformation curve,  which for  the given material 
was a function of  the number of cycles which was  independent of 
the character and type of  leading.     It was proposed that the 
cycle- by-cycle relations  between the stresses and strains for  the 
loading processes be expressed in finite form on  the basis of 
the generalized cyclic deformation curve. 

It was shown in these studies that the plastic components 
of  the cyclic deformations   (the width of  the  loop)   decreases or 
increases»depending on the properties of  the cyclic hardening 
or softening of  the material.     In addition,   the  properties of 
the cyclic anisotropy were determined, which manifested themselves 
in a one-sided accumulation of  the plastic deformations. 
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Subsequently  the  generalized cyclic deformation diagram 
was extended to asymmetric stress cycles and deformation under 
raised temperature conditions,using the aging hypothesis. 
Problems in the benuing and torsion of solid rods,    tension- 
compression of a strip with holes and rods with a  circular 
cross section with annular recesses under cyclic  deformation 
were solved in  this  formulation  (R.  M.   Shneyderovich,  A.  P. 
Gusenkov and G.   G.   Medeksha,   1966,   1967) . 

V.  V.  Novozhilov,   R.   A.  Arutyan,  A.   A.   Vakulenko,  Yu.   I. 
Kadashevich obtained in  their studies  the state equations 
during cyclic deformation on the basis of  the generalized theory 
of plastic flow,using a model with dry friction and taking into 
account  the microstresses.     This enabled them to study a com- 
plex load and the corresponding limiting states. 

I.  Z.  Palley  (1965 and in later studies)   studied non- 
isothermal cyclic loading processes on the basis of a generaliza- 
tion of plasticity and creep theory, introducing  the similarity 
of  the stress deviators and the plastic deformation   rates. 
The problem of a nonuniformly heated plate and disc under a 
cyclic load was solved in conjunction with this. 

V.   I.  Rozenblyum,   D.   A.  Hochfeld and V.   V.   Moskvitin 
(1958 and in later studies)   investigated the  limiting state 
during the cyclic  loading of rod systems,   plates,   discs and 
shells  in the  light  of  adaptability theory. 

D. A.  Hochfeld   (1964-1967)   developed stabilization criteria 
for  deformation processes under repeated loads and heating and 
described the accumulation of deformations leading  to   "pro- 
gressive" rupture and solved the load-bearing capacity problem 
of discs,  pipes,   shells and other structural  elements on the 
basis of adaptability  theory.    A.  A.  Chiras   (1966)   used linear 
programming methods  in  the  solution of adaptability problems 
in rod systems. 

S.  V.   Serensen,   N.   A.   Makhutov and R.  M.   Shneyderovich 
(1964-1966)   proposed a description of  the conditions for 
rupture in a small number of cycles based on  force and deforma- 
tion rupture criteria.     An analysis of  the conditions for 
rupture in a small number of cycles was obtained by  them on 
the basis of deformation criteria.    The criterion  for the quasi- 
static rupture proposed by  them was the magnitude of  the 
limiting one-sided accumulated plastic deformation which is 
equal  to the deformation during rupture from    a single load 
for   uniform and nonuniform stressed states.     The use of 
generalized cyclic deformation curves and deformation criteria 
enabled these authors   (1966 and in later studies)   to determine 
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the limiting state during fatigue processes with a small number 
of cycles. For the cases of small-cycle loads during which the 
intensities of the accumulated quasistatic and fatigue failures 
are comparable, the limiting number of cycles is determined on 
the basis of the integrability hypothesis of these damages. 

For the experimental verification of the kinematics of 
cyclic deformation and the rupture criteria, experimental methods 
were developed which studied the deformation fields with the 
aid of optically active coatings (R. M. Shneyderovich and 
V. V. Larionov, 1965) the moire method (R. M. Shneyderovich 
and 0. A. Levin, 1967) and the method of grids  (N. A. 
Makhutov, 1964). 

In their studies V. V. Novozhilov and 0. G. Rybakina (1966) 
proposed as the fracture criterion during static loads with a 
small number of cycles the plastic deformation path which 
is proportional to the product of the intensity of the plastic 
deformations and the number of cycles, whose limiting value 
depends on the plastic friability of the material.  This criterion 
was used to describe the cyclic ruptures during a symmetric and 
asymmetric deformation cycle. 

A force criterion for loading witi^ a small number of cycles 
in the form of the maximal local stress was developed by R. M. 
Shneyderovich and V. V. Larionov (1962-1965).  This criterion 
made it possible to describe the rupture during rigid loading 
under uniform stressed state conditions and also the rupture 
during an external load in the concentration zones from the 
given stresses. 

It should be mentioned that the energy criteria for smali- 
cycle rupture are based on various concepts:  the total energy 
of the plastic deformation (A. G. Kostyuk, 1966), the thermal 
equivalent of the elasto-plastic deformations (V. S. Ivanova, 
1967) and the energy of the plastic deformations in the hardening 
region (N. S. Mozharovskiy, 1966). 

To describe the rupture conditions during a small number 
of cycles,a function of the damage in the material was usedj 
which depends on the plastic deformation path (V. V. 
Novozhilov and 0. G. Rybakina, 1966), and the accumulated 
energy of the plastic deformation (A. G. Kostyuk, 1966). 
This function is introduced both in the state equations and 
in the strength conditions to determine the degree of cyclic 
and long-term static damage and the effect of the asymmetry of 
the deformation cycle. 
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A very important part  of  the general  fatigue problem is 
the  study of  the laws  for  the  development of  the cracks 
in. metals and polymers under cyclic loads.     The first  investiga- 
tors  of  the fatigue phenomenon noted that  the fracture  is 
usually preceded by a lengthly stable development of a crack. 
Subsequent  investigations have shown that about 30-60% of the 
time  before   failure     a crack  develops in a product  subjected 
to a  cyclic load  (S.  V.   Serensen,  R.  M.  Shneyderovich and 
N.  A.   Makhutov,   1966) .     However,   the experimental data on this 
problem do not agree sufficiently well because of  the  difficulty 
of  detecting the initial  developing crack. 

One of  the first  studies on  the stable development of a 
fixed fatigue crack in the USSR was made by R.  D.  Vagapov 
(1959).    Later in connection with the results obtained from 
the   theory of brittle cracks,   it was established on  the basis of 
many  experimentsjthat  the rate at   which the fatigue crack propagates 
depends only on the characterisitics of the coefficient of 
the  intensity of  the stresses  at  the end of  the crack,   when 
the  dimension of  the plastic zone on the edge of  the crack 
is small in comparison with the dimensions of  the body   (D. 
K.   Donaldson and V.   E.  Anderson,   Proc.  Crack Propagation Symp. 
(1961),  Vol.   2,  Cranfield,   1962,   pp.  375-441,   P„   K.   Paris, 
ibid. ,   V.  M.  Markochev,   1966,   K.   D.  Mirtov,   .1968). 

Thus,   the dependence of  the  rate of growth of  the  crack on 
the  geometric dimensions  of  the body and the external  loading 
parameters  is represented in  this case by one quantity   (the 
coefficient of the intensity of  the stresses) .     It should be 
mentioned that the assumption  that the plastic region is  small 
for  fatigue cracks  is much less  essential  than in the case of 
fracture under a monotonic  load,as a result of  the  lower  stress 
level  during which the fracture process occurs. 

G.   P.   Cherepanov derived in  1968 a theoretical relationship 
between the rate of  growth of a fatigue crack and the 
characteristics of  the coefficient of  the intensity  of the 
stresses and solved several  concrete problems   (an  analogue 
of  the Griffith problem,   a crack in a layer under  the action 
of a cyclic moment and other problems) .     The solution was 
based on a modification of   the physical concepts of 
G.  R.   Irwin and E.  O.   Orowan on the specific energy  dissipa- 
tion.     The empirical  formula of P.  K.  Paris can be 
obtained from the relation  that was derived when  the 
stress  level  is not  very high. 
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§7.     Effect of Temperature  on   Solids 

In  the study of  the strength and rupture of metals and 
polymers,   thermal strength problems which consist    of a study 
of  the  strength of materials and structural elements under the 
action of various types of  force and thermal  loads  in a wide 
range of  temperature changes are particularly  important.     These 
problems are particularly  topical in connection with the develop- 
ment of  such branches of modern machine building as  the 
building of reactors,   engines,   rocket technology and many other 
branches.     The  tendency  to increase the operating  temperature 
of various aggregates  and installations requires not only  that 
the distribution and intensity  of  the temperature stresses and 
deformations be determined exactly, but also an investigation 
of  their effect on the short-term and long-term strength, 
thermal  fatigue,   thermal bulging and other phenomena.     On  the 
other handjstrength criteria during comparatively  low  temperatures 
are also of interest.     The development of space explorations, 
problems  in chemical  technology,   the use of metallic structures 
under Far East conditions,   etc.,   make it necessary  to study the 
laws  for  the cold-brittleness  phenomenon. 

Extensive  theoretical and  experimental studies of various 
general  and special  problems  in  thermoelasticity and thermal 
strength were made in our country  (V.  V.  Bolotin,   I.   I.   Gol' 
denblat,   E.   I.  Grigolyuk,  V.   I.   Danilovskaya,  A.  A.   Il'yushin, 
A.   D.   Kovalenko,  G.   S.   Pisarenko,  Yu.  N.  Rabotnov,   S.  V. 
Serensen,  V.  N.  Feodos'ev,   Ya.   B.  Fridman and others).     In this 
section we will only consider  thermal strength problems and 
ruptures at high and low  temperatures.    Problems in  the analysis 
of   thermoelastic and thermoplastic d6formations and stresses 
before  rupture are not  discussed here.     The study  of  strength 
at high and low temperatures encompasses a  large class of 
problems  of an experimental  and  theoretical character.     The 
experimental studies are primarily related to obtaining  the main 
strength and deformability characteristics of various materials 
(predominantly refractory materials)  which depend on  the 
temperature both during loads of short and long duration.     This 
series  of studies also  includes  the experimental  determination 
of  the  elastic constants of  the material at high and low  tempera- 
tures. 

Recently a large amount of data about the properties of 
solids and polymers at raised temperatures and various loads 
has  been accumulated.1    A very   large number of  interesting and 

1.     See,   for example,   "Handbook on Machine Building Materials," 
Vol.   2,   (Moscow,   1959)   and the collection  "Plastic Layers 
of Organic Origin.     Classification,  Engineering,   Nomenclature 
and Basic Properties   (handbook material)"   (1959). 
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important studies deal with an  investigation of mechanical 
and thermal properties of   solids and polymers at different 
temperatures.     Systematic     studies along these  lines were made 
by N.   N.  Davidenkov,  B.  A.  Drozdovskiy,   I.  A.  Oding,     G.   S. 
Pisarenko,   S.  V.  Serensen,   Ya.   B.   Fridman and their  students. 

The studies by G.   S.   Pisarenko and his students   worked out 
problems connected with the methodology and means  for determining 
various characteristics of  the materials and high and low  tempera- 
tures   (1958 and later studies).     The studies by  I.   A.  Oding 
(1945-1962),   S.  V.   Serensen     (1950 and later studies),   and by 
Ya.  B.   Fridman  (1952-1962)   and  their students are devoted to 
a  clarification of  the complex  laws for the mechanical  and 
thermal  strength. 

The large volume of data on  the properties of  different 
materials at raised and lower  temperatures that was accumulated 
facilitates  the problem of  determining the admissible stresses 
during  the calculations of  the  strength of structures  from the 
stresses caused by  the external  load and the temperature.     The 
correct selection of  the admissible stresses  is an exceptionally 
important problenijSince not only  the strength of  the structure 
but  also  its economy and light weight depend on it.     We  note 
that  almost all methods for  the  calculation of  the admissible 
stresses at high and low  temperatures have a very approximate 
character,   since the material undergoes  "fatigue" and  "ages" 
with  the passage of  time and is  subjected to a series  of  condi- 
tions which can only be  taken  into account with difficulty or 
not at all     and   are not  included in the calculations.     Therefore, 
the selection of the admissible stresses is predominantly based 
on empirical or    statistical  data.l    The calculation methods that 
were constructed make it possible  to determine both  the  short- 
term admissible stresses at a uniform and nonunlform temperature 
and the admissible  stresses during Hie protracted action  of the 
load at  raised temperatures.     Recently studies in fatigue problems 
and imperfect elasticity of materials at normal  and high  tempera- 
tures  also attracted a great  deal  of attention.^ 

T.     See,   for example,  Z.  B.   Kantorovich  (1946),   S.  D.  Ponomarev, 
et  al.,   (1956,   1959),   I.   A.   Oding  (1962),   N.   I.   Bezukhov, 
et  al.     (1965) . 

2.     See  the collection,   "High Temperature Strength Problems in 
Machine Building,"   (Kiev,   1962,   1963)   and "Thermal  Strength 
of Materials and Structural Elements"  (Kiev,   1965). 
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S. V. Serensen and L. A. Kozlov (1958, 1965) applied to 
the study of the fatigue of metals at raised temperatures a 
statistical approach which makes it possible to estimate the 
reliability and the safety factors of the parts operating 
at a raised temperature.  Similar studies for metaloceramic 
materials were made by G. S. Pisarenko, et al. (1962). 

Particular attention should be given to the so-called 
temperature (heat or thermal) fatigue phenomenon, which 
essentially consists of the formation and development of micro- 
cracks as a result of the repeated action of the temperature 
stresses caused by the cyclic changes in the temperature. 
In this case failure occurs under conditions which are similar 
to failure for a small number of cycles at raised temperatures 
which, however, are not isothermal»as a result of which the 
thermal structural stresses do have an effect on the fracture. 
The thermal fatigue problem is especially important in such 
fields as power engineering (repeated starting of units and 
varying of their power aircraft construction (repeated kinetic 
heating), engine construction, etc. when considerable temperature 
stresses are formed in the structural elements. 

D. K. Chernov noted as early at 1919 the basic properties 
of thermal fatigue. He emphasized that the reason for the 
formation of a grid of cracks on the walls of the bore in 
artillery guns and on the surface of rolling mills is the 
plastic deformationjWhich changes sign,which is formed during 
repeated heating and cooling. 

Until the 50's the study of the resistance of structural 
metals to thermal fatigue rupture  was made in order to compare 
qualitatively the behavior of materials at temperatures that 
varied in cycles.  Samples of various shapes and dimensions 
were used in these studies, in which "to make more rigorous" 
the testing conditions, cuts in the shapes of holes and recesses 
were made.  The samples were heated in various ways (in electrical 
resistance furnaces, high frequency flows, combustion product 
or heated air flows, gas burners, introduction in a melt), 
and cooling by immersion in a liquid or in air. 

For the given thermal regime, the number of cycles before 
the appearance of a crack, the change in the shape and dimension 
of the samples and sometimes also the kinetics of the development 
of the cracks without an analysis of the stressed and the deformed 
state during the heating and cooling of the samples was deter- 
mined in the studies that were mentioned. For example, in the 
study by L. A. Glikman (1937) when the number of cycles before 
rupture was determined in whole prismatic samples with longi- 
tudinal grooves» it was established that the cracks appear faster 
in samples with cuts. 
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V. I. Zalesskiy and D. M. Korneyev (1954) studied the 
thermal disintegration of cyclindrical samples made from 
different steels which were heated in a lead bath and cooled in 
running water.  It was established that the cracks were formed 
earlier in the presence of structural conversion in a steel 
"which was less dense" whose surface was treated less 
thoroughly. 

M. V. Pridantsev and A. RJCrylova (1958) testing sheet 
samples with holes during heating with a gas burner and 
cooling in air have shown that the heat resistance is reduced 
as the thickness of the sheet increases, and M. Ya. L'vovskiy 
and I. A. Smiyan (1958) developed a method for estimating 
the resistance of sheet materials to the effect of thermal 
changes. 

It was already mentioned that the results of these studies 
ivere mainly used for a comparative evaluation of the thermal 
fatigue strength of different materials.  They cannot be 
applied to estimate the load-bearing capacity of structural 
elements and buildings, the stressed and deformed states in the 
dangerous zones which depend, to a considerable extent, on the 
dimensions and shapes of the products and also the heat transfer 
conditions. 

The development of thermal fatigue studies in the last 
10-15 years is based on a temperature-time analysis of the 
stressed and deformed state in structural elements and a study 
of resistance to fracture as it pertains to the corresponding 
thermal and mechanical processes, which opens up certain pos- 
sibilities in the solution of strength calculation problems for 
the parts under a cyclic thermal load. 

An important stage in the experimental study of thermal 
fatigue were the studies by L. F. Coffin and R. P. Wesley (Trans. 
Amer. Soc. Mech. Engr., Vol. 76, No. 6, 1954, pp. 923-930), 
which made it possible to determine the stresses and strains 
relatively simply and reliably by testing a thin-walled tubular 
sample fixed at the ends and heated  in cycles.  Subsequently 
it was proposed (S. V. Serensen and P. I. Kotov, 1959) that 
tests be made with a rigidity that was varied by way of 
controlling the elastic loading system, i.e., varying the 
boundary conditions in the case when the magnitude of the 
force deformation is smaller than the temperature deformation. 

The extension of the possible variants of the relations 
between the mechanical and temperature cycles (the deformation 
from the external loads may be larger than the temperature 
deformation and at the instant when the maximum temperature 
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is attained,  tension  rather than compression may occur; 
the phase shift of the temperature and mechanical cycles, 
Various combinations of thermal and mechanical loads, etc.) 
were obtained by N. D. Sobolev and V. I, Yegorov (1962) 
by synchronizing the additional temperature loading cycle 
during heating-compression and cooling-tension), by 
A. V. Strizhalo (1967) by using an Installation with a 
programmed change of the load and temperature, by A. I. 
Ivanov and B. F. Trakhtenberg (1968) by developing a method 
for independent mechanical and thermal loading. 

A. A. Platonov and N. M. Sklyarov (1962) and A. V. 
Ratner (1964) proposed that the resistance of the material 
to thermal fatigue be estimated by testing samples during the 
one-sided accumulation of plastic deformations in tension 
halfcycles at the instant when the sample is cooled. 

R. A. Dul'nev, V. I. Yegorov, Ye. N. Pirogov and N. D. 
Sobolev proposed more exact methods for determining the magni- 
tude of the elasto-piastic deformations during the tension- 
compression testing of the samples (1962 and later studies) . 

The great variety of variants of the stressed and deformed 
state under real cyclic temperature loading conditions made the 
corresponding studies necessary.  In the experiments made by 
V. N. Kuznetsov (1957) in a tubular sample a plane stressed state 
with changing sign was formed as a result of the radial tempera- 
ture gradient which changes cyclically.  Yu. F. Balandin (1967) 
tested cyclically heated and cooled tubular samples fixed at 
the ends which were uniformly loaded by constant internal 
pressure. 

It should be mentioned that the thermal fatigue mechanism 
is similar in many respects to the fatigue mechanism during 
mechanical interaction, since in both cases the reasons for 
the fracture are the same factors:  the interaction of multiple 
variable stresses and the plastic deformations which change 
sign.  Therefore, to determine the thermal fatigue laws^often 
auxiliary data on the behavior of the material that is studied 
during an isothermal cyclic load are used  (Ya. B. Fridman, 
1962). However, differences also exist which do not allow us, 
in a number of cases, to replace the thermal fatigue tests by 
mechanical fatigue tests.  The point is that due to a change 
in the temperature during each cycle a constant change in 
various physical properties of the material occurs (the 
elasticity modulus, the yield point, etc.) which in turn leads 
to a change in the resistance of the material to the action of 
thermal stresses.  Thermal fatigue is characterized by a 
localization of the deformation in zones with the largest 
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temperature drop even in a homogeneous stress field (thermal 
concentration) due to the nonuuiformity of the temperature 
field which occurs in the parts. We also note that the 
resistance to mechanical fatigue at temperatures that are not 
high and loading frequencies that are not too small depend 
little on the loading frequency while thermal fatigue is 
essentially related to the duration of the loading cycle and 
also to the endurance time of the material in the high temperature 
part of the cycle. 

Multiple cyclic loads often lead first to the rupture of 
individual grains or the boundaries between them and then to 
the complete rupture of the sample (thermal fa-igue from the 
thermal structural stresses). The studies by V. A. Likhachev 
(1958), N. N. Davidenkov and V. A. Likhachev (1960) investigated 
the dependence of the microstructural stresses on the tempera- 
ture. 

The facts that were mentioned above indicate the necessity 
of a systematic study of thermal fatigue, in particular of 
obtaining for the given temperature intervals curves which 
relate the magiJ.tude of the deformation to the number of cycles 
before rupture. 

Serious theoretical studies of this aspect of the problem 
were made by L. Coffin (see above) and S. Manson (Mach. Design, 
Nos. 12-13 and 16-18, 1958).  The last author proposed a single 
fatigue strength curve. 

V. N. Kuznetsov (1957) studied experimentally strength 
problems during thermal fatigue and proposed a relationship 
between the numbers of cycles before rupture, the intensity 
of the plastic deformations and the maximum amplitude of the 
linear plastic deformation. 

S. V. Serensen and P. I. Kotov (1960) obtained in their 
studies deformation curves in heating and cooling halfcycles. 

N. S. Mozharovskiy (1966) obtained the relations between 
the stresses and strains for any thermal loading cycle on the 
basis of experimental studies of the tension of rods made 
from refractory hardening materials. 

Subsequently S. V. Serensen, Yu. F. Balandin, V. I. 
Yegorov, P. I. Kotov, N. S. Mozharovskiy, N. D. Sobolev (1960 
and in later studies) obtained the empirical relations between 
the endurance (the number of cycles before fracture) and 
various parameters of the stressed and deformed state and the 
thermal cycle (the magnitude of the change in the plastic 
and total deformation, the stresses, the temperature drop per 
cycle, etc.) . 
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The results of tests made on a number of refractory 
steels in the same temperature interval in the uniaxial stressed 
state and during pure shear enabled N. D. Sobolev and V. I. 
Yegorov (1963) to propose an energy theory for the change in 
shape for thermal fatigue.  The energy rupture criterion that 
was set up and the existence of a single cyclic deformation 
curve made it possible to obtain the relations between the 
endurance and the change in the intensity of the stresses, the 
deformations and the energy of the plastic deformation per cycle 
and to find the relation among them. 

N. S. Mozharovskiy (1967) has shown in his study that the basic 
rupture criterion that can be used for plastic hardening materials under 
thermal cyclic loads caused by plastic deformations which 
change sign is the value of the total 
irreversibly absorbed energy used up in the hardening deformation 
process, which is determined from the corresponding noniso- 
thermal deformation curves. 

Yu. F. Balandin (1964) and N. S. Mozharovskiy (1967) 
investigated the effect of an applied static loac1 on the thermal 
cyclic stress. 

The character of the temperature cycle (the temperature 
level, the duration of the cycle) determine the size of the 
deformation, the shape of the cyclic deformation curve, the 
relaxation of the stresses and the resistance to rupture.  In 
this connection the results obtained in the studies by Yu. 
F. Balandin (1966) and R. A. Dul'nev (1967)  who studied the 
problem of the effect of the time endurance at a maximum 
temperature of the cycle are of practical significance. 

P. I. Kotov (1961) and N. S. Mozharovskiy (1963) have 
shown in their studies that the characteristics of the 
refractory materials at different temperature regimes can be 
represented in the form of a single thermal fatigue curve. 
Many studies studied the "damage" in the material resulting 
from a thermal fatigue load. A considerable change (reduction) 
in the resistance of the material to deformations and fracture 
during successive single static loads has been observed 
(Ya. B. Fridman and V. I. Yegorov, 1960). 

N, D. Sobolev and Ye. N. Pirogov (1967) studied the 
laws for the accumulation of the damages during nonstationary 
regimes, dividing the loading process into two stages, one of 
which is related to the time until the macrocrack is formed 
and the second is related to the development of this crack. 
It was established that for the same rupture probability in 
the first stage, the transition from the higher load to the 
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lower level yields a greater damage than predicted by the 
linear law for the summation of the damages and vice versa; 
it is smaller when the order of the loading is reversed.  The 
accumulation of the damages in the first stage is described by 
the linear law and the rate at which the crack develops at a 
given instant is independent of the loading prehistory. Problems 
dealing with the summation of the damages were studied by V. 
M. Filatov (1967) who has shown the applicability of the 
linear summation with respect to the number of cycles under- 
the conditions of his experiment. 

At the present time an important problem is the possibility 
of comparing different materials according to their thermal 
stability*, taking into account the effect of many changes in 
their physical and mechanical properties. 

G. N. Tert'yachenko (1964) obtained an expression which 
determined the minimum value of the temperature drop for the 
heat transfer boundary conditions, at which plastic deformations 
which are responsible for the thermal fatigue failure are formed 
on the surface of the cylinder.  This temperature drop is a 
function of the yield point, the Poisson ratio, the modulus of 
elasticity and a quantity which depends on the Bio criterion 
(Bi = hbA, where h is the heat transfer coefficient, b is the 
characteristic dimension of the body and \  is the heat conduc- 
tivity coefficient). 

The study by V. I. Yegorov and N. D. Sobolev (1963) gives 
for the uniaxial stressed state,on one hand,a relative evaluation 
of the materials based on their endurance for the same values 
of the deformations and stresses in a fixed temperature inter- 
val, and on the other hand, a comparison is made for the same 
boundary conditions, when the deformation for a fixed temperature 
drop is a function of the linear expansion coefficient. One 
method of estimating the thermal stability of parts is to test 
them under conditions which model natural conditions. 

G. N. Tert'yachenko, R. N. Kuriat and L. V. Kravchuk (1963, 
1964) tested along these lines real nozzle plates in gas turbines 
and modeled the temperature flux and the boundary conditions 
for the heat transfer on a gas dynamic bench. 

Various methods are used to increase the resistance to thermal 
fatigue strength including those used to increase mechanical 
strength (improve the quality of the surface and reduce the 
stress concentration, etc.), as well as specific methods used 
for equalizing the temperature field (heat conductive coatings, 
etc.) . 
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We will mention another aspect of the direct effect of the 
temperature on the strength of materials and polymers. 
In some cases the parts, the structural elements and the equip- 
ment are subjected to the effect of temperature stresses formed 
in a very short time interval (almost instantaneously) as a 
result of a rapid change in the temperature.  Such a stress 
which is called a temperature (heat or thermal shock) causes 
dynamic thermal stresses and leads to the brittle rupture of the 
material. 

The temperature shock is most dangerous for materials 
in the brittle state.  In the plastic state the thermal shock 
is usually not dangerous, since the stresses cannot exceed 
much the yield point and they decrease With time. 

It is well known that the stressed and deformed state of 
the body caused by the thermal shock can be determined in a 
number of cases by solving jointly the heat conductivity and 
thermal elastic equations. 

For superrapid heat processes (explosions, heat systems 
with large heat fluxes) the correct pattern for the propagation 
of the thermoelastic stresses is obtained from the solution of 
dynamic thermoelastic problems, taking into account inertial 
terms, whereas the fields of the temperature stresses during 
slower thermal effects are determined with a sufficient degree 
of accuracy from solving quasistatic  thermoelasticity problems. 

The analytical solutions of certain dynamic problems in 
thermoelasticity which determine the character of the propagation 
of the dynamic thermoelastic stresses have been obtained relatively 
recently (V. I. Danilovskaya, 1950, 1952, 1960).  However, in 
spite of the importance of dynamic problems dealing with various 
types of explosive rapid processes, it must be mentioned that 
the most practical applications in many branches of engineering 
are the solutions of stationary thermoelasticity problems with 
nonstationary temperature fields.  In this case, it is assumed 
that the stressed state at each instant of time corresponds 
exactly to the temperature drop which occurs at this instant 
and the inertial terms are ignored.  In practice, even these 
theoretical results are considerably simplified}and in many 
cases the resistance of the materials during thermal shock is 
determined directly from the experiment. 

The main methods for the experimental study of the resistance 
of materials to thermal shock consist of the following.  A 
sharp change in the temperature field is obtained by placing 
the sample in a liquid bath and by blowing a gas stream or a 
liquid over the sample.  The difference between the temperatures 
of the medium and the sample is selected on.the basis of the 
fracture conditions. 
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Samples can also be heated rapidly with the aid of a 
low-inertial heater or with the aid of internal heat released 
in the material of the sample.  The heat release can be obtained 
by nuclear radiation or by passing electric current or high 
frequency current through the sample. 

G. N. Tret'yachenko and L. V. Kravchuk (1964) used a gas 
dynamic bench to generate the thermal shock, where annular 
samples or parts of different shapes were subjected to heating 
in combustion products and cooling in an air stream. As a 
result of this, the values of the rupturing temperature dif- 
ferences (the temperature of the gas-initial temperature of 
the sample) were found for a number of high temperature 
metaloceramic materials. 

A method for the study of the resistance of brittle 
materials to thermal shock with a variable heat transfer co- 
efficient was proposed in the study by N. I. Tikhonov, et al., 
(1963). According to this method, the samples are heated in 
a continuous furnace which is then cooled and the sample is 
cooled by thermal radiation. The thermal stresses are deter- 
mined by calculations during the experiments, using the temper- 
ature on the surface of the sample that is measured during the 
experiment. 

The study by V. I. Dauknis, et al. (1967) describes an in- 
stallation for the study of thermal shock in which a moving 
collection of samples is used. 

The proposals for the use of beam and electron heating in 
thermal shock installations that appeared recently in the litera- 
ture also merit attention. 

One useful app.1iation of thermal fracture is flame boring 
or thermal boring, in >v!:ich a high temperature gas jet is used 
to destroy the rock. A theoretical model of the flame boring 
phenomenon was proposed by G. P. Cherepanov (1966). 

The effect of the temperature on the strength of polymer 
materials will be discussed below.  Here we will mention the 
studies dealing with the strength of rubbers at raised tempera- 
tures.  In the study of problems dealing with the effect of 
temperature «n the rupture rate of hollow rubbers, G. M. 
Bartenev (1958-1964) has shown that the rate at which the 
cracks and cuts are formed and grow increases as the temperature 
increases.  The same studies investigated the effect of the 
temperature on the time curve for the strength of rubber in 
the interval from 20 to 140oC. The complex effect of the tem- 
perature on the endurance was determined and the range of 
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practical safe loads was found.  It was shown that the tempera- 
ture-time curves for rubber differ from those for solid polymers 
and that at high temperatures (90-1400C) the time curves for 
the strength deviate from a linear curve in the region of large 
endurances (in the coordinates log T - log a) which is 
apparently connected with the change of the structure in the 
surface layer of the samples under the action of the destruc- 
tive processes.  In addition, unlike in solids  (G. M. Bartenev, 
1964), the stress has an insignificant effect on the activa- 
tion energy, which for rubber, has a sufficiently low value. 
This is apparently connected with the fact that the kinetics 
of the destruction of rubber are mainly determined by the inter- 
molecular bonds. 

Recently in connection with the extensive use of low 
temperatures (liquid oxygen, hydrogen, helium) it became neces- 
sary to investigate the mechanical and other properties of 
metallic materials under low temperature conditions in many 
branches of modern engineering. Many studies were published 
dealing with the behavior of structural metallic and nonmetallic 
materials at temperatures up to - 2530C (20oK).  These data are 
useful in the selection of materials used in building various 
machines which are used, for example, as the working body or 
the working medium or reduced gases.  Tests that are carried 
out at low and very low temperatures made it possible to study 
the transition process from the viscous to brittle rupture and 
to determine the limiting brittle failure strength. 

The cold-brittleness problem is inseparably connected with 
the names of F. F. Vitman, N. N. Davidenkov, A. F. Joffe, Ye. 
M. Shevandin, N. P. Shchapov, M. V. Yakutovich, and others. 

Studies in the strength of soldered, welded and rivetted 
jointSjas well as materials with stress concentrations,were very 
important and made it possible to foresee and to avert sudden 
disasters that could possibly occur in low temperature condi- 
tions. 

Studies connected with evaluations of the cold brittleness 
were begun by N. N. Davidenkov (1930-1938) , who defined the 
critical (transient) brittleness temperature and proposed the 
use of curves relating impact viscosity and the temperature for 
the indirect determination of the resistance to brittle rupture. 
N. N. Davidenkov (1938) noted that that part of the work which is 
used up after the maximum load is reached is most sensitive to 
the testing temperature (during the bending of a cut sample) and 
that this characteristic is reduced when the temperature is 
lowered. 
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Subsequently, Ye. M. Shevandin (1953-1965) studied low 
alloyed structural steels in the cold-brittleness region and 
Ya. M. Potak (1955) analyzed the brittle fracture of struc- 
tures made from alloyed structural steel. He also noted the 
tendency to brittle fracture of parts containing large ferrite 
grains. 

The series of studies made by T. A. Vladimirskiy (1953- 
1958), led to the construction of three-dimensional curves 
(impact viscosity-sharpness of the cut-temperature) for several 
structural steels.  He showed that when the sharpness of the 
cut is changed the materials can change in places on the basis 
of an estimate of their critical temperature. 

It was noted in the study by G. V. Uzhik and Yu. Ya. 
Voloshenko-Klimovitskiy (1962) that brittle rupture is a form 
of violation of strength that can be overcome at low temperatures 
He determined the laws for the change of the yield point in 
metals at high loading rates and at low temperatures. He also 
pointed out in the same study the importance of these parameters 
in the evaluation of the danger of brittle failure. 

The data on the effect of low temperatures on the mechanical 
properties of metallic alloys were systematized in the study 
by P. F. Koshelev and S. Ye. Belyaev (1967). 

In conclusion we draw attention to the fact that the 
majority of investigators noted an increasing sensitivity of the 
material to stress concentrations and a drop in the strength 
of cut samples with a drop in the temperature  (Ya. B. Fridman, 
1952, Ya. M. Potak, 1955, G. V. Uzhik, 1957). 

§8.  Long-term Strength Problems 

One of the simplest forms of loading is static loading up 
to a certain value taken on by the stress tensor with subsequent 
maintenance of the material at the load values that were attained, 
li this case the deformations increase (decrease) and after the 
passage of a certain time the material rupturei. However, 
fracture does not occur until the stress tensor exceeds a certain 
value which is called the limiting long-term strength of the 
material. 

Systematic studies of various laws related to the long-term 
strength of metals and polymers led to the development of 
several trends in this branch of mechanics of rupture (A. P. 
Aleksandrov, G. M. Bartenev, S. N. Zhurkov, V. A. Kargin, 
P. P. Kobeko, B. P. Konstantinov, Yu. S. Lazurkin, A. K. 
Malmeyster, A. N. Orlov, Yu. N. Rabotnov, and others). 

-510- 

I 



Studves of the dependence of the strength on time 
began when the role played by time during the loading process 
in silicate glasses was clarified. A. A. Griffith has already 
shown in 1920 that the newly prepared glass rods have much 
greater strength than those that were left in the air for 
some time. A similar phenomenon was noted by A. P. Aleksandrov 
and S. N. Zhurkov (1933) during their studies of the strength 
of quartz fibers, which served as the beginning of the 
theoretical and experimental studies in this field made by 
S. N. Zhurkov and his collaborators (1953-1961).  A study, 
mainly of the uniaxial stressing of materials with different 
mechanical properties has shown that for metals, plastics, and 
polymer fibers, the relation between the stresses and the 
endurance can be expressed by an exponential relation 

T--=^-aa, (8.1) 

where A and a  are constants depending on the temperature. 
Relation (8.1) is valid in a sufficiently wide range of tempera- 
ture changes and the "endurance lines" at different temperatures 
form (in log T - a coordinates) a bundle emanating from one point which 
evidently corresponds to the critical stress a, . At relatively 
low temperatures the time dependence is weak, and if, for example, 
the tension occurs at a fast rate, the fracture has a character 
which is similar to the critical rupture.  In this case time 
has a small effect on the magnitude of the rupturing stress and 
rupture does not occur for all values a < ak,no matter how long 

the material is in the stressed state. Accordingly, the concept 
of the "strength limit" or the engineering concept "time 
resistance to brittle fracture" is introduced.  The dependence on time 
does not manifest itself for all practical purposes at all for 
plastics at temperatures - 200oC and below, while for metals 
and inorganic glasses with a high melting temperature, the 
usual temperatures are already low.  Except the case of relatively 
low temperatures, the problem of the strength is solved as a 
function of the time until the rupture during which the sample 
is in the stressed state. 

In the early 30's studies connected with the investigation 
of the mechanical properties of amorphous and high molecular 
solids began to develop intensely. Progress along these lines 
is connected with the names of A. P. Aleksandrov, P. P. 
Kobeko, M. 0. Kornfeld, Ye. V. Kuvshinskiy, and others. 
Approximately at the same time the concepts on the leading role 
of thermal movement in the determination of the mechanical proper- 
ties of solids were about to be developed.  This approach was 
mainly based on the ideas of Ya. I. Frenkel of the thermal 
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fluctuating mechanisji. lor the motion of particles which was 
universal for all liquids and solids. According to this concept 
a change in the configuration of the atoms in a solid occurs 
at the thermal fluctuation instant which increases for a 
certain time the local energy, and the e>ternal stress leads 
only to the orientation of such changes and macroscopic plastic 
deformation and rupture processes. 

An extensive series of studies of the effect of the tempera- 
ture on the deformation of polymers was made mainly in the 40's 
(A. P. Aleksandrov, P. P. Kobeko, Ye. V. Kuvshinskiy, Yu. S. 
Lazurkin, N. I. Shishkin, and others) and metals (N. N. Davidenkov, 
F. F. Vitman, N. A. Zlatin, V. A. Stepanov, L. M. Shestopalov, 
and others). 

The kinetic concept in which the determining factor during 
a plastic deformation are the thermal fluctuations was also 
extended to the rupture of all solids.  S. N. Zhurkov obtained 
on the basis of an empirical study of the endurance of solids 
under a load the following temperature-time relation: 

T —Tne.M)1 (-■#-")• (8.2) 

Here T is a constant which is close to the period of the thermal 
fluctuations (for solids T0 ~ 10"

12 - 10~13 sec), k = 1.37 x 10"16 

is the Boltzman constant, U = U0 - y^o  is the activation energy, 

UL is the activation energy in the absence of a stress which is 
close to the sublimation energy for metals and the energy of the 
chemical bonds for polymers and Y* is a correction factor 
which depends on the nature and structure of the material. 

Relation (8.2) turned out to be useful for a sufficiently 
large class of materials, including polymers, in a large range 
of testing temperatures and times.  We note that the largest 
scatter in the experimental data is observed at very long and 
very short unloading times, and the smallest scatter at medium 
times for the long-term strength, for which relation (8.2) 
is most justified.  The tests made in a high vacuum (G. M. 
Bartenev, 1955) have shown that the external medium does not 
have the most important direct effect on the time curve with 
the exception of certain special cases of strong media which are 
active on the surface (see V. I. Lichtman, Ye. D. Shchukin and 
P. A. Rebinder, 1962). 
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The problem of obtaining the long-terra strength charac- 
teristics of various materials in the necessary working 
temperature range is connected with a very large number of 
experimental studies which often cannot be made for materials 
intended for long-term service.  Therefore, the many attempts 
to construct a long-term strength theory based on the extrapola- 
tion of the results of short-term tests where the long-term 
tests at low temperatures are replaced by tests of short dura- 
tion at high temperature are natural. The physical models 
which were constructed taking into account these experiments 
are based on idealized materials, and probably absolutely 
universal formulas do not exist at all, since various materials 
behave generally differently during the tests. Dislocations and 
plastic deformations play the fundamental role in the fracture 
of crystalline bodies and various types of defects and micro- 
cracks for brittle amorphous bodies. 

Ya. I. Frenkel predicted already in the 20!s on the basis 
of a study of thermal fluctuations the occurrence of point 
defects-vacancies in bodies in thermodynamic equilibrium. At 
the present time the theory of vacancies is one of the basic 
trends in the theory of solids.  In particular, the condensation 
of the vacancies which are no longer in equilibrium as a result 
of rapid cooling during plastic deformation may lead to the forma- 
tion of pores, whose growth and combination cause the rupture. 
The theory of coagulation of the vacancies was developed in 
the studies by V. I. Vladimirov (1960), V. I. Vladimirov and 
Sh. Kh. Khannanov (1967). 

It was already mentioned above that the plastic deformation 
always precedes rupture and subsequently often accompanies it, 
so that the study of the dislocation properties is important 
in this connection. The first mathematical model of a moving 
dislocation was constructed by Ya. I, Frenkel and T. A. 
Kontorova (1938).  Subsequently studies on the kinetics of 
dislocation structures and the fine structure of the dislocation 
center were continued by A. N. Orlov, et al. (1950 and in later 
studies). 

B. Ya. Pines (1955, 1959), L. E. Gurevich and V. I. 
Vladimirov (1960), A. N. Orlov (1961), and others proposed 
time dependent theories for crystalline bodies. 

These theories are based on assumptions of one kind or 
another about the character of the origin of the mic rocracks 
vhich coagulate in the growth process into one main crack leading 
to rupture. The studies by B. Ya. Pines (1955, 1959) proposed 
the idea of a selfdiffusion mechanism for the growth of cracks 
which led the author to a relation which is similar to (8.2). 
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L. E. Gurevich and V. I. Vladimirov (1960) paid attention to the 
role played by the plastic deformation in the origin and develop- 
ment of the cracks. 

The problem of the connection between the formation of 
cracks and creep and long-term strength has not been studied 
sufficiently so far.  However, the empirically established fact 
(in particular, for pure metals and single-phase alloys) 
that the product of the steady-state creep rate 
£ = de/dt and the time until rupture is constant 

tT =--K (8.3) 

is well known (S. N. Zhurkov and T. P. Sanfirova, 1958, B. Ya. 
Pines and A. F. Sirenko, I960).  (Here X is independent of the 
stresses and the temperatures.)  This fact1 made it possible 
to use the same relations for the extrapolation of data on 
creep and long-term strength. 

A. N. Orlov (1961) has shown that as a result of the 
plastic deformation, creep develops in parallel and prepares the 
material for rupture.  The author obtained this result on the 
basis of the experimental relation (8.3) that was mentioned above, 
which relates the creep rate to the time before rupture.. . 
A. N. Orlov proposed a rupture model during the coagulation of 
a large number of microcracks formed on different slippage lines. 
In the following years these studies were continued by 
A. N. Orlov, V. I. Vladimirov and Sh. Kh. Khannanov, who have 
shown that when the discreteness of the dislocation accumulations 
and their displacements are taken into account during the 
development of the crack, the possible origin of the microcrack 
under local stresses which are considerably smaller than the 
theoretical strength can be explained on the basis of the thermal 
fluctuations. 

A number of general theories on dependence of the strength 
on time for brittle bodies and brittle solid polymers which 
are similar were proposed both in our country (G. M. 
Bartenev, 1955), as well as abroad (P. Gibbs and I. B. Cutler, 
J. Amer. Ceram. Soc, Vol. 34, No., 1951, pp. 200-206, D. A. 
Stuart and 0. L. Anderson, ibid., Vol. 12, No. 36, 1953, 
pp. 416-424).  These theories are based on the kinetics for 

See the monograph by Yu. N. Rabotnov (1966) . 
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the growth of the crack which is considered as the successive 
rupture of the bonds at the apex of the crack under the action 
of the stresses and thermal fluctuations of the atoms or 
molecules.  The studies of Yu. N. Rabotnov, based on the 
state equations^ taking into account cracking are important for 
the kinetics of the long-term static rupture (see also the 
studies by S. T. Mileyko, V. L. Mirkin, I. A. Oding, and 
others). 

Recently several studies appeared in which an attempt was 
made to take into account the time effects in the macroscopic 
theory of cracks. These are taken into account in various ways. 

In the model of an ideal elastic body with a constant energy 
surface, the crack cannot develop under a fixed load.  Therefore, 
the observed growth of the crack during a constant load must be 
related to the elastic imperfections, in particular, to the 
yield phenomenon in solids. 

L. M. Kachanov (1961, 1963) studied the case of linear creep 
corresponding to a Maxwell medium scheme and established a 
linear relationship between the critical coefficient of the 
intensity of the stresses and the time, and introduced a new 
material constant called the coefficient of damage.  In this 
formulation he studied the problem of the development of a crack 
under the action of concentrated forces in an infinite plane 
and in a strip of finite width.  L. M. Kachanov noted that 
the qualitative pattern is generally preserved also in other 
linear media with the yield property (for example, a medium 
obeying the Boltzman integral relations). 

G. I. Barenblatt, V. M. Yentov and R. L. Salganik (1966, 
1967), have shown that the constant value of the critical 
coefficient of the intensity of the stresses in the theory 
of equilibrium cracks becomes a function of the rate at which 
the crack propagates when the fracture kinematics are taken 
into account.  It is assumed that all effects for sufficiently 
large stresses (visco-elasticity, microstresses, etc.) are 
concentrated in a small region at the end, and as before the 
material outside the crack is assumed to be elastic.  The 
form of the functional relationship for this critical coefficient 
can be determined for a particular concrete model of the 
relations from the system of basic equations set up by the 
authors.  As an example, the authors consider the case of 
a Griffith  crack which was nearly an equilibrium crack 
where the relation between the critical coefficient of the 
intensity of the stresses and the rate of movement at the end 
of the crack were selected for the two cases of a pure fluctua- 
tion and pure rheological mechanism.  When they investigated 
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the fracture conditions and problems related to the long-term 
strength, the authors have shown that a generalization of the 
well-known static fracture condition is the possibility of 
determining the fracture in the case under consideration as 
the nonexistence of the system of differential equations 
defining the length of the crack (for the given propagation path). 
It was also shown in the studies that the critical coefficient 
of the intensity of the stresses depends on the character of 
the loading and that a large loading rate interval must exist 
in which the critical coefficient corresponding to the rupture 
instant is constant for all practical purposes. 

The pure fluctuation rupture which occurs under relatively 
small loads was subjected to a special study.  In this case 
the time effects occur only as a result of the random ruptures 
of the bonds under the action of the thermal fluctuations and 
the movement of the crack is so slow that the relaxation processes 
can be ignored. Assuming that the initial cracks have a dimension 
on the order of the end region of a crack, the authors obtained 
the value of the characteristic time in the endurance formula 
(8.2).1 

It was already mentioned that the most important strength 
characteristic of the material is its endurance during arbitrary 
loading regimes.  Usually this characteristic is determined directly 
from the experiment. However, it can also be calculated theoretically 
in the case, when, for example, the time relation for the 
strength under constant elongating loads is known.  If we assume 
as S. N. Zhurkov and B. N. Narzullayev (1953) did that the 
fracture is an irreversible process and the rate of growth of 
the crack depends only on the stress a, the G. Bailey condition 
is satisfied (Glass Ind., Vol. 20, No. 1-4, 1939, Ceram. Abs. 
Vol. 19, No., 1940, p. 89) 

1^ In 1968 G. P. Cherepanov obtained the following equation 
for the rate of growth of the crack dl/dt as a function 
of the coefficient of the intensity of the stresses K: 

on the basis of the G. Neuber concept and the experimental 
data on long-term strength.  Here a  and A are constants and 
T is the temperature. 
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.1 ti«)r 
(8.4) 

Here T' is the endurance of the sample for any given testing 
regimeiT(a) is the endurance during a constant elongating stress 
which is found from the known time curve for the strength. 

To estimate the fracture time during a load which varies 
over time, the Bailey rule for the integration of the damages 
is used in the form (8.4) where now a  = a(t) , and T(a) = T(a(t), 
T are found, for example from relation (8.2). Many experimental 
tests agree well with relation (8.4) especially when the rates 
at which the loads vary are small. 

The problem of the effect of time on the deformation and 
strength of polymers is extremely important.  It is known that 
depending on the structure, temperature, the thermal pre- 
historyj polymers may either be in the structural-liquid (vis- 
cous flow and highly elastic) or in solid (crystalline and 
glass-like) states.  The strength of a polymer depends not only 
on its structure and deformation properties but also on its 
physical state, which is intimately related to the deformation 
time, temperature, etc. 

P. P. Kobenko, Ye. V. Kuvshinskiy and G. I. Gurevich (1937) 
were the first to propose the relaxation theory for the de- 
formation of polymers and V. A. Kargin and G. L. Slonimskiy 
(1941, 1948, 1960), starting with the general Boltzman- 
Volterra theory and concepts on the molecular structure of 
polymers developed the mathematical theory of three deformed 
states (glass-like, highly elastic and viscous flow) which 
occur under small stresses. Under large stresses a series of 
interesting features occur, for example, the oriented structure 
during the elongation of the solid polymers., which has an effect 
on the strength and fracture and considerably hardens the 
material. 

V. A. Kargin and T. I. Sogolova (1953, 1964) studied the 
effect of the orientation, structure and relaxation time on 
the strength of polymers (a temperature-time relation for the 
relaxation time was proposed and studied by A. P. Aleksandrov, 
G. I. Gurevich, etal., 1945). 

-517- 



It was  already mentioned above   that according to S.   N. 
Zhurkov the  rupture process Is a process  In which the bonds 
that were ruptured by  the thermal fluctuation accumulate. 
S.  N.   Zhurkov,   E.   Ye.   Tomashevskly,   et al.   (1964)  observed 
directly such an Increase in the number of ruptured bonds 
using the barometric resonance method.     S.   N.   Zhurkov,  A.   I. 
Slutsker,   V.   I.  Betekhtin,  et al.   (1962-1967)   determined in 
their studies  the relation between the dislocation structure 
of  the material and the structural-sensitive coefficient.1 

The new concepts about  the kinetic nature of  the fracture 
were extended  to  the case of the complex stressed state in the 
study by V.   A.   Stepanov,   et al.   (1964). 

The initial  development of microcracks as a result of  the 
thermal fluctuation ruptures of  individual bonds  in oriented 
polymers was  studied by A.   I.  Gubanov and A.  D.  Chevychelov 
(1963 and later publications) .     They  have shown that as a 
result of  the  redistribution of  the stresses along the bonds, 
depending on  the length of the polymer chains  in polymers  the 
ruptures of   the bonds begin immediately after  the load is 
applied.     This  leads„to the formation of microcracks with 
dimensions ~100-600 A   (on the order of  the dimension of 
fibrilla). 

Thus,   according  to modern concepts, the microcracks are 
formed both  in crystals and in polymers in  the earliest stages 
of  the plastic deformations,  and their-   concentration increases 
over time,   they Interact among themselves,   conglomerate,   appear 
as macroscopic cracks and finally lead  to rupture. 

Experimental  studies of the dependence of  the strength 
on time for  organic and inorganic glasses were made both in 
our country   (G.  M.  Bartenev,   1950,   1951,   1960,   B.  Ya.  Pines 
and A.  F.   Sirenko,   1960),   as well as  abroad  (A.  Holland and 
W.  Turner,   J.   Soc.   Glass Technol.,  Vol.   24:101,   1940,   pp.   73- 
93,  and Vol.   32:144,   1948,  pp.   5-20),   and led to  the deriva- 
tion of a relatively  large number of  empirical  formulas, 
among which  the power approximation 

The increase in the number of microcracks with dimensions 
~100-600  A in oriented polymers under a  load was observed  in 
1969 by V.   3.   Kuksenko, A.   I.  Slutsker and S.  N.  Zhurkov. 
It was  shown  that a definite concentration of microcracks 
fviol3_iol7 i/cm3  corresponds  to  the microscopic rupture 
of the  sample   (depending on the  type of polymer and mean 
dimension of  the cracks). 
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T~Bo-b. (8.5) 

turned out to be most useful.  Here, as before, T and o are 
the values of the endurances and the tensile stresses and 
B and b are constants. Several theoretical schemes for the 
dependence of the strength on time were proposed on the basis 
of these data (T. A. Kontorova, 1946, G. M. Bartenev, 1960). 

Studies of the strength and rupture mechanism of various 
polymers (crystalline, amorphous solid polymers, linear and 
three-dimensional structured polymers) made it possible to 
clarify the dependence of the reduction in the strength of 
polymers on time (static fatigue). 

A. V. Tobol'skiy (1960) proposed the method of generalized 
coordinates for the construction of universal endurance curves 
for polymers.  Usually it is extremely difficult to obtain 
the curves for various properties of polymers in a large time 
interval.  To obtain such relations, the curves for various 
temperature values are shifted on the graph to obtain  the 
generalized curve at the chosen temperature.  This method, 
which is used extensively, which was formulated by A. V. 
Tobol'skiy is based on the use of the temperature-time super- 
position, in particular the temperature-frequency relation in 
the deformation of polymers which was first detected by 
A. P. Aleksandrov and Yu. S. Lazurkin in 1939. This method 
can also be used to construct endurance curves under conditions 
which cannot be studied directly in the experiment. 

A. P. Aleksandrov, G. M. Bartenev, V. A. Kargin, A. I. 
Kitaygorodskiy, Yu. S. Lazurkin, A. K. Malmeyster, G. L. 
Slonimskiy, and others studied extensively the effect of time 
on the strength of crystalline polymers and amorphous solid 
polymers.  Under low stresses, the crystalline polymers, plastics 
at the usual, and rubbers at low temperatures^behave like 
ordinary solids.  However, after the stress reaches a certain 
value, a "neck" is formed at the weakest point, into which the 
entire sample passes with the passage of time, after which 
elongation occurs again until total rupture.  We note that in 
spite of the similarity, the mechanism for the formation of a 
"neck" in a crystalline polymer and an amorphous solid polymer is 
different.  The mechanism for the rupture of amorphous polymers 
in a glass-like state was studied by G. M. Bartenev (1960, 
1964, 1966). 
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In the analysis of rupture of any materials, It Is Im- 
portant to take Into account the time effects. This problem 
Is especially Important In the study of polymer materials 
which are characterized by a pronounced dependence of the 
rupture on the external conditions and the presence of relaxa- 
tion processes. 

G. N. Savin and A. A. Kamlnskly (1967) studied the growth 
of cracks under solid polymer fracture conditions (polymer 
glasses) at a fixed temperature in the case of a constant 
protracted external load. Having considered the development 
of a crack in an elasto-plastic material, the structure of 
whose contour takes into account the specific structural 
features of the crack in polymer materials (the opposite edges 
of the crack In the end region on a sector of finite length 
are connected by thin fibers), the authors did not require that 
the condition for the smallness of the end region be satisfied 
like in their previous studies. According to this scheme in 
some time interval 0 < t < t,,, the crack expands but does not 

elongate and from the instant t^ the entire crack begins to 

grow. 

According to the concepts of G. M. Bartenev (1960), 
the action of vibrating loads creates an inhomogeneous distribu- 
tion of the temperature in the sample which leads to the 
activation of the fracture process in the region where It is 
localized.  The effect of vibrational heating on the propagation 
of cracks in polymers was investigated in the study by 
G. I. Barenblatt, V. M. Yentov and R. L. Salganik (1967). 
These authors proposed that the fracture time is determined 
by the development of the main crack and that the fracture has 
a fluctuating character. The authors did not take into account 
the direct force action of the vibration loads and restricted 
themselves only to taking into account the heating induced by 
them (Redistribution of the stresses and deformations was 
calculated on the basis of the equations of elasticity theory). 
This approach is dictated by the fact that in experiments with 
cyclic loading of polymers at the surrounding medium temperature, 
the fracture time that is observed in reality is smaller than 
that calculated from the Bailey condition (8.4), which is explained 
either by the effect of the relaxation processes or by the 
heating of the material during the cyclic deformation as a 
result of the mechanical losses (V. R. Regel' and A. M. 
Leksovskiy, 1965). 
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G. P. Cherepanov (1967) studied a quaslstatlc isothermal 
process for the propagation of cracks in an Isotropie homogeneous 
viscoelastic body.  He derived for the general case a non- 
linear  integro-differential equation which he used to 
determine the time and along with it the law for the propaga- 
tion of the crack over tirne.^- 

In 1968 A. A. Kaminskiy used in the study of the propagation 
of cracks in elasto-plastic media the 6K-theory of M. Ya. 

Leonov-V. V. Panasyuk. He obtained the solution of the 
problem for a crack which weaked a thin elastic plate when 
concentrated forces of equal magnitude were applied to 
the edges of the cut and using the Volterra principlejob- 
tained the equation of motion for the ends of the fracturing 
crack, replacing the Young modulus by the appropriate time 
operator. A. A. Kaminskiy investigated the special cases 
of exponential and rational-exponential heredity kernels 
for a Maxwell body. From the last two examples it follows 
that during transient creep, when the effect of the creep 
is damped, the crack grows at a damped rate and ceases to 
grow altogether after some time.  At the same time in the 
case of stationary creep the growth of the crack is not 
damped and takes place at a constant rate.  These conclusions 
agree with the results of L. M. Kachanov (1961, 1963) 
and G. P. Cherepanov (1967). 

V. M. Yentov and R. L. Salganik (1968) studied, taking into 
account the distribution of the stresses in a visco-elastic 
body with a propagating crack, the problem of the rupture 
of a beam made from a visco-elastic material with a crack 
to which symmetric forces were applied in a material with 
"memory." Using the relation that was obtained, which 
relates the length of the crack l(t) to the applied load 
P(t) , the work done to form the new surface was determined, 
which was calculated in a similar way as that used by I. V. 
Obreimov (1930) in the case of the splitting of an elastic 
beam.  The authors also studied the distribution of the 
stresses and deformations near the end of a semiinfinite 
crack under an arbitrary (symmetric) load in a Kelvin- 
Foigt material. 
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We note that the term "viscoelasticity" Includes a large 
class of physical processes, for example, such as relaxation, 
caused by physical-mechanical, thermoelastic, electrical, 
mechanical, and other phenomena.  it is known that a deep 
relation exists between the theories of elasticity and visco- 
elasticity and that the equations of linear elasticity theory 
(with linear boundary conditions) can also be extended to the 
viscoelastic case by substituting instead of the elastic 
constant the operators which depend on time (the Volterra 
principle) . 

Along with the energy approach,which has the advantage of 
simplicity and generality, there is a tendency to set up 
fracture models in which the stressed bonds in the body are 
ruptured successively.  The first model for such brittle 
rupture was proposed by L. Prandtl (Z. angew. Math, und Mech., 
Vol. 13:2, 1933, pp. 129-133) who considered two elastic 
bodies (beams) secured along their entire length containing 
a crack, when the transverse elastic bonds undergo brittle 
rupture after a certain elongation is obtained.^ 

Recently studies of the endurance of rubbers have become 
more and more important. According to S. N. Zhurkov and 
B. N. Narzullayev (1953), equation (8.2) can be applied not 
only to solids« but also to all rubbers except those that are 
being crystallized.  At the same time the experimental studies 
made by G. M. Bartenev and Yu. S. Zuyev (1964) lead to 
relation (8.5) for a particular value of the long-term strength 
of rubbers.  Now in relation (8.5) B is a constant which depends 
on the thickness of the sample and the temperature, b is 
a constant which characterizes the slope of the endurance 
curves which depends on the stiffness of the rubber (3 < b < 12 
for real rubbers).  The largest deviation from equation (8.2) 
(when it is assumed that the constants do not depend on the 

V. M. Yentov and R. L. Salganik studied in 1968 within the 
frame of reference of this model a semiinfinite crack 
in an infinite body in which the bonds were assumed to 
be ideally brittle.  They also examined the relation 
between the microscopic and macroscopic approach in the 
theory of fracture.  In the analysis of the kinetics of 
fracture in the pure fractured case, unlike in their 
previous studies, tie authors did not make any simplifying 
assumptions about the form of the region at the end of the 
crack.  The problem of the stationary propagation of the 
crack at a rate nearly equal to the velocity of the Rayleigh 
waves was also studied in the same study. 
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stress and the  time  for  such materials as  rubber,   silk and 
glass,  certain plastics and ebonite)   is explained by the change 
in the structure  in  the polymer during the deformation process. 
The time curve for the strength of rubber  is intimately j 
related to  the type of  latex and the degree of   its  transverse   cross- 
linking as well as  the  effects of  the  temperature.    For certain 
latex-like polymers,   the  following temperature-time relation 
for the strength was proposed together with  (8.2) 

:Ca-"oxp(^) (8.6) 

Here b and C are constants which depend on  the   type of latex 
and vulcanizate. 

Using relations   (8.2),   (8.4),   (8.5)   and   (8.6)   the endurance 
of plastics and rubbers  under cyclic loads were calculated 
(S.  N.  Zhurkov and £.   Ye.   Tomashevskiy,   1955,   B.   I.  Panshin, 
G.   M. Bartenev,   et jil. ,   1960, V.  P.  Regel'   and A.  M. 
Leksovskiy,   196271" 

Problems   dealing with the effect of aggressive media on the en- 
durance of plastics and rubbers are presented  in the following, section. 

A  detailed study of  these problems and a presentation of methods 
for increasing the endurance of rubbers  in aggressive media, 
are available in  the study by G.  M.  Bartenev and Yu.   S.  Zuyev 
(1964). 

We will  dwell  briefly on another aspect related to the 
study of artificial stones,   in particular  concrete.     It is 
known that concrete hardens after it is prepared and that its 
elastic,  nonelastic and strength properties change with the 
passage of time.     Various rheological equations,   both in 
differential and integral  form in which the rheological coefficients 
are functions of  time are used to describe  the  deformation pro- 
cess in concrete.     In particular,  we mention the studies by 
N.   Kh. Arutyunyan,  A.  A.   Gvozdev,  A.  K.   Malmeyster,  Yu.  N. 
Rabotnov and A.  R.   Rzhanitsyn along  these  lines. 

Concrete is a set of crystallizing and coagulating struc- 
tures which have an effect on the strength characteristics of 
the concrete.     However,   in  the study of problems related 
to   long-term strength, the crystallization structure plays 

a  determining role.     The property of concrete  to rupture with 
the passage of time under   smaller loads  than the value of the 
short-term loads has  been known for a long  time   (G.  R.  Schenk, 
J.   Amer.  Concrete  Inst.,   Vol.  27,   1935    p.   2).     A.  K.  Malmeyster 
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and his collaborators (1957) proposed methods for determining 
the rheological coefficients and made detailed studies of the 
long-term strength of systems which exhibited twinning and which 
model qualitatively well the rupture phenomena In real materials 
during rupture  and shear. An experimental verification of 
the results that were obtained (A. M. Skudra, 1956, Ye. K. 
Shkerbelis, 1957) confirmed these results well.  The method 
that was developed for calculating the long-term strength 
of concrete during stressing makes it possible to foresee the 
development of cracks in reinforced concrete over time and to 
make a judgment about the redistribution of the stresses 
occurring in concrete during its fracture with the passage of 
time. 

Studies of the long-term strength under complex stressed 
state conditions are extremely important. Depending on the 
conditions (temperature, stress, material), the fracture occurs 
during large or small deformations, i.e., it has a viscous or 
brittle character.  Thus, we can speak about the viscous 
fracture time and the brittle fracture time.  The calculation 
of the viscous fracture time is a problem in the theory of 
creep, in which experiments are useful rather in the verification 
of creep laws of one kind or another than for obtaining 
fracture criteria (Yu. N. Rabotnov, 1966) . 

In many cases the brittle rupture region is more important 
in the evaluation of the endurance of structures and buildings. 
Most frequently the limiting deformation is not very large and 
the service life is limited by this limiting deformation, not 
by the viscous fracture,in the region of large deformations. 
Modern materials, for example, those in turbines (are charac- 
terized by the brittle character of the fracture at a relatively 
small deformation at the fracture instant.  With regard to 
the brittle fracture criterion, it is logical to assume that 
the rate at which the crack develops depends on the magnitude 
of the normal stress in the planes in which the crack is 
formed.  The tests made by V. P. Stobyrev (1958, 1959) on 
EI-437B alloys made from rod materials and from pressed inter- 
mediate materials for a gas turbine disc have shown that the 
estimate based on the largöst noimal stress is more accurate. 
It was proposed that the quantity a^ = 1/2(aK + aQ)   be used 

as the equivalent stress, where aK is the maximal stress 

during brittle rupture and a. is the localized rupture 

stress.  In the a^ -log T coordinates (T is the time before 
rupture), the experimental data were near the standard curve. 
A treatment of the experimental data by Sh. N. Kats (1955, 
1957) for tubular samples from carbon and austenitic 

-524- 

J 



steel and the data of B. V. Zver'kov (1958) for the EI-496 
alloy have shown that the best results are obtained when the 
above expression is taken as the equivalence stress.  The 
studies by V. P. Sdobyrev and also by I. Ye. Kurov and V. A. 
Stepanov (1962) and I. I. Trunin (1963) have shown that the 
endurance values of Ihe metals during torsion are determined, 
a« beforerin accordance with relation (8.2), which, however, 
is slightly smaller than the value of the endurance during 
tension. 

The experimental studies of the long-term strength in the 
complex stressed state that were made make it possible to 
determine the time until rupture of products of various shapes 
under complex and inhomogeneous stressed state conditions. 
The usual approach is to find the magnitude of their largest 
normal stress on the basis of some theory of creep, which is 
then compared with the long-term strength curve found during 
the experiment.  The time until rupture is determined from 
the long-term strength curve.  This method is clearly arbitrary, 
since it does not take into account at all the formation of 
cracks. The calculations based on aging theory take this only 
partially into account. 

L. M. Kachanov (1958 1960) proposed a scheme for deter- 
minjng the endurance in which the general creep equations are 
used, snid in which the cracks are formed only on the surfaces 
which are perpendicular to the largest stress a.. , where the 

equation for the kinetics of the cracking have the form 

<l (a,, m). (8.7) 

For fixed external  loads while the distribution of the 
stresses remains unchanged,   tu increases according  to  (8.7), 
assuming the value  uu =  1  over  time, which corresponds  to the 
boundary of the rupture front separating the zone which has 
the capacity to resist   (uu < 1)   from the zone where rupture 
already occurred. 

The possibility of constructing more general  theories 
of  long-term strength with the aid of various  creep  theories 
was pointed out by Yu.  N.  Rabotnov  (1959,   1966).1 

TI     See the surveys  by N.   Kh.  Arytyunyan and Yu.  N.   Rabotnov, 
in this volume   (pp.   175-227). 
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§9.  Effect of the External Medium on the Rupture of Solids 

The effect of the external medium on the mechanical 
properties of solids, in particular metals, has been known for 
a long time.  In the beginning studies of this aspect of the 
problem were made predominantly from the standpoint of the 
chemical (corrosive) action of the medium (the change in 
the mechanical properties of metals during electrochemical 
corrosion or etching). 

Continuing the studies begun by A. F. Yoffe and his 
collaborators (1924) on the elastic properties and strength 
of crystals (rock-salt) in various media, P. A. Florenskiy, 
et al. (1932) have shown that the technical strength varies as 
the medium changes (studies of the strength of mica in air, 
oil and a number of organic liquids).  S. N. Zhurkov (1932) 
derived the condition for obtaining samples of higher strength 
from glasses of various types whose surfaces were etched with 
hydrochloric acid.  At the same time they studied the effect 
of the medium on the strength of quartz. 

However, the effect of the surrounding medium was observed 
not only during its chemical action.  It was shown that the 
adsorption of the particles active on the surface from the sur- 
rounding medium facilitates the deformation and fracture of 
the solid, often to a much greater degree than during the 
chemical conversions. 

The physical-chemical effect of the external medium on 
the deformation and fracture processes is based on the effect 
of the reduced strength resulting from adsorption.  The 
initial effect of the adsorption is that the particles are active 
on the surface and facilitate the beginning of plastic dis- 
placements and the development of various defects under smaller 
stresses. Thw work used up to form such "defective" surfaces is 
reduced when the free surface energy on the boundary of the 
solid with the surrounding medium is reduced in comparison with 
its values observed in vacuum.  Hence, the presence of the 
medium active on the surface leads to the result that the 
interaction with the adsorption-active molecules (or atoms) 
facilitates the reconstruction and rupture of the bonds between 
the atoms in the given material.  The effect of the adsorption 
facilitating the  deformation or the adsorption reduction in 
the strength is sometimes called the P. A. Rebinder effect. 

As a result of the studies made in this field which belongs 
to the boundary between molecular physics, the physics of 
solids and physical and colloidal chemistry, it was possible 
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to determine several new  phenomena caused by  the absorption 
interaction of deformed solids with the surrounding medium. 
Among  these new phenomena we should first mention   such phenom- 
ena    as structural changes  in  the deformed materials,   a re- 
duced    yield point under  the effect of adsorption,   an 
increased creep rate in  the metals,  and   the electrocapillary 
effect   enhancing        the deformation of metals and a  reduced 
fatigue strength. 

The studies and use of  the   strength reduced  as  a result 
of adsorption have led at  the present  time  to a new  Independent 
branch of science and engineering.     The study of  the negative 
effect  of particles acting on  the surface on the strength of 
materials led,   for example,   to a new method   of    obtaining 
stronger materials which was proposed recently,  which is 
based on  the use of active adsorption particles. 

In the beginning the effect of the surrounding medium 
on  the mechanical  properties of metallic monocrystals 
such as  tin,   lead,  zinc,   aluminum,  which were 
grown using the P.  L.   Kapitsa,   I.   V.  Obreimov method and the  recrystal- 
ization method were mainly studied.     It was  established  that the in- 
tensity of the action of  the particles acting on the  surface 
on the mechanical  properties of metallic monocrystals  depends 
essentially on the temperature and the deformation rate 
(V.   I.   Lichtraan,  P.  A.  Rebinder and L.  P.  Yanova,   1947). 
At  the  same time for equal  temperatures and deformation rates^ 
the mechanical properties of solids,  especially metals may 
change  in a sufficiently wide  range,   depending on  the distribu- 
tion of  the stresses  Inside  the sample.     It is well known that 
the usual deformation curves represent  the average values of 
the forces and deformations and give a very indirect  idea 
about  the true distribution of   the stressed and deformed state 
inside  the body.     The quantitative aspect of  this problem is 
very complex,   but  the qualitative pattern of  the phenomenon 
has  been investigated sufficiently completely,   starting mainly 
with  the studies by N.  N.   Davidenkov  (1936).     The point  is 
that  during the deformation process the homogeneous mechanical 
system  is converted into a    heterogeneous system and  that  this 
conversion consists mainly   of the development of defect zones 
in  the structure which are always found in a real solid.     Ex- 
periments have shown   (V.   I.   Llcntman and Ye.   K.   Venstrem,   1949) 
that  the three-dimensional stressed state depends essentially 
on  the  magnitude of  the adsorption effect   (for example,   it 
increases in proportion  to  the deviation of the stressed state 
near  the surface from the   compressed state in all  directions 
see P.   A.  Rebinder,  L.  A.   Shreyner,   etal,   1944,   1949). 
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Subsequent studies of monocrystals made it possible to 
clarify the effect of the medium active on the surface in the 
initial plastic stage to the yield point (V. I. Lichtman and 
Ye. P.Zakoshchikova, 1949).  The relations for the hardening 
coefficient as a function of the number of loading cycles in 
the inactive and active medium were obtained.  The phenomenon 
of the redistribution of the deformations and stresses under 
the action of the adsorbed particles which is observed here 
is explained by the activation of the relaxation processes. 

At the same time the studies by P. A. Rebinder, Ye. K. 
Venstrom, et al., investigated the interesting phenomenon called 
the electröcapillary effect, which consists of the fact that 
during the polarization of the surface of brittle bodies having 
electronic conductivity and also of metals in aqueous electrolyte 
solutions, the hardness of the metals varies and depends on the 
jump in the potential on the "solid-solution" boundary. 

It is known that the magnitude of the surface tension 
determines several properties of the solid, such as, for 
example, the hardness, the creep, the coefficient of friction 
and other properties, which serve as the basis for the determination 
of the zero charging points in metals.  The adsorption region 
of a bounded substance can be determined according to the change 
in this dependence of the mechanical properties on the potential 
and a judgment can be made about the adsorption degree of the 
latter (P. A. Rebinder and N. JV. Kallnovskaya, 1934, P. A. 
Rebinder and Ye. K. Wenstrom, 1944, 1945, 1949, V. I. Lichtman, 
Ye. D. Shchukin and P. A. Rebinder, 1962).  The studies by 
P. A. Rebinder and his collaborators determined the relation 
between the hardness of the metal and the potential in the 
form of the electrocapillary curve obtained for liquid metals. 

It should be mentioned that the hardness of the metal 
reflects the degree of its dispersion which leads to the forma- 
tion and expansion of the microcracks and that the rate at 
which these processes take place increases as the surface 
tension of the metal is reduced.  From here when the electrode 
potential is displaced (in the positive or negative direction 
from the potential with a zero charge) and during the adsorption 
of the organic substances on the "electrode-solution" boundary 
the hardness of the metals is reduced. 

In connection with the interest shown in the role of 
oxidation films (B. V. Deryagin, 1937) in the adsorption 
effect which facilitates the deformation, the studies of the 
electrocapillary effect were continued during the study of 
the creep in metallic monocrystals (Ye. K. Benstrem and 
P. A. Rebinder, 1952).  For metals with a cubic lattice, the 
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differences in the mechanical  properties between the mono- 
and polycrystals  is negligible.     However,   this difference  becomes 
very pronounced for metals which have the same basic  system 
of slippage planes (for example,  metals with a hexagonal 
lattice or  0-tin) .    The studies  that were made   (V.   I. 
Lichtman and P.  A.  Rebinder,   1947,   S. Ya.  Weiler and L.  A. 
Schreiner,   1949,   1950,   S.  Ya.   Weiler and G.   I.  Yepifanov,   1953) 
have shown the considerable effect  of the particles active on 
tne surface  in the elastic  deformation region of polycrystalline 
.netals. 

Considering  this aspect  from another point of  view,   S.   W. 
Weiler  and V.   I.   Lichtman   (1960)   established  the effect of 
adsorption layers on the elastic  deformation of metals when 
lubricants active on the surface are used during the  treatment 
of metals by pressure.     Studies  along these lines  led  to  the 
development of the theoretical  basis and methods for  the appli- 
cation of  lubricants.     It was shown that in the presence of 
substances acting on  the surface,   the surface layer  of  the 
metal  becomes more fluid,   it  is  plasticized,   and when  it  is 
treated by pressure^ it receives  the main part of  the redundant 
shear     deformation.        A kind of  selflubrication    occurs   (the 
metal  is not  lubricated by  the  lubricant,   but by its  own  thin 
layer which is plasticized by  this  lubricant) .     The action of 
this  thin,easily deformed layer,is  intensified by  the chemical 
interaction of  the metal with the active molecular groups  in 
the substances acting on the surface,, which leads  to the 
formation of peculiar metallic soaps bonded Vkith the surface, 
which  intensify  its plastification process.     Clearly,   it  is 
difficult  to evaluate this     phenomenon quantitatively,   but 
S.   J.   Weiler   (1949,   1950,   1953),   for example,   proposed a 
method  for estimating the  lubricating actior  of  the medium 
during   the deep drawing of metals.     The considerable reduction 
in  the  forces  in the presence  of active lubricants  turned out 
to  be characteristic  for various methods jf   ^ruating the metals 
(pressing,   setting,   drawing,   cutting). 

Subsequent experiments made on polycrystalline metals 
made  it  possible  to determine  the  effect of the  increase  in 
the degree of the hardening  (strengthening)   tlut <cctrs  during 
periodic deformations  in  the presence of particles acting on 
the surface   (T.  Yu.  Lyubimova,   P.   A.  Rebinder,   et al,   1948, 
1950). 

Continuing the studies of  this aspect,  G.  V.   K^rperko 
and his  collaborators   (1949-1953,   1962)   extended  thr  concepts 
of various forms of the adsorption and corrosion effects 
of  the medium on the  fatigue strength of metals.     11  is 
known  that  the fatigue strength of metals may be cor.F idsrably 
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reduced under the action of agents which reduce the strength 
(for example, a corrosive medium) and that this reduction de- 
pends on the time during which the part was in the corrosive 
medium and on the number of loading cycles (I. A. Oding, 
1949).  It was shown that during corrosion fatigue leading to 
a considerable loss of fatigue strength>only limited endurance 
exists and that there is no true fatigue limit (G. V. 
Karpenko, 1952). 

Generally, corrosion fatigue involves two processes, 
the first being the facilitated formation of microcracks under 
the action of a cyclic load as a result of adsorption, and the 
second the electrochemjcal corrosion inside the microcracks 
that are formed,facilitating their further growth.  It is 
interesting to note the particular orientation of the fatigue 
microcracks and the preferred saturation of the surface by 
fracture foci when the values of the cyclic load coefficient 
are small (G. V. Karpenko, 1951). 

The corrosion fatigue phenomenon shows that a medium which 
is acting chemically on the metal has an effect on its fatigue 
strength.  However, in the absence of a chemical action, the 
fatigue strength is reduced when the medium contains particles 
that are active on the surface.  This phenomenon was called 
adsorption fatigue^and, unlike in the corrosive action,the 
roduction in fatigue strength under the action of media that 
are activing on the surface, it does nox depend on the time 
spent by the part in the medium and on the number of loading 
cycles. 

Sh. Ya. Korovskiy (1948) began the study of the effect of 
media acting on the surface on the fatigue strength.  Later 
the cooling effect of liquid media and generally the adsorption 
and corrosive effect of liquid media on the fatigue strength 
of steel was also studied (G. V. Karpenko, et al., 1949, 1952, 
I. V. Kudryavtsev, 1949).  We note that a considerable role 
in the reduction of the fatigue strength under the action of 
particles acting on the surface is played by the concentration 
of these particles in the solution and the nature of the solvent 
(A. B. Taubman, 1930, G. V. Karpenko, 1950). 

Studies of the rupture of metals in the stress concentration 
region under the action of an agressive medium are important 
in the mechanics of rupture.  Experimental studies have shown 
both tie catastrophic drop in the fatigue strength of samples 
with stress concentrations under the action of liquid metals 
(M. I. Chayevskiy, 1961) and also the absence of the softening 
effect under the action of a corrosive medium (G. V. Karpenko 
and F. P. Yanchishin, 1955, M. I. Chayevskiy, 1959).  Thus, 
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In the fatigue loading process the adsorption, diffusion and 
corrosion factors may both reduce and increase the fatigue 
strength of samples with stress concentrations or not have 
a noticeable effect at all (M. I. Chayevskiy and G. V. Karpenko, 
1962).  I. A. Oding (1959) has shown that during cyclic loading, 
the dislocations that are generated, their movement coagulation 
and the annihilation of vacancies are related to the diffusion 
and movement of the dislocations which are more intense^ and 
that the change in the crystal lattice prevents the return of 
the dislocations during unloading.  The stresses from the 
cyclic load are superimposed on the stresses formed as a result 
of the directed movement of the dislocations and their accumulation 
around barriers (the formation of a constant stress gradient 
in f;he volume of the grain) . 

M. I. Chayevskiy (1962, 1965, 1968) using the results of 
the studies of the adsorption, diffusion and corrosive effects 
of aggressive media under static loads reached the following 
conclusions with regard to the character with which the deformed 
metal interacts with the aggressive medium (samples with 
stress concentrations whose cross-sectional dimension exceeds 
many times the dimension of the grain):  1)  the fatigue strength 
can be considerably reduced as a result of diffusion of the 
medium into the defective part of the metal at the apex of the 
stress concentrator, 2) the operational capabilities of the 
samples with stress concentrators are Increased as a result of 
a protective diffusion layer formed by the medium resulting from 
the diffusion and interaction with the defective volume of the 
metal, 3) the medium dissolves the metal at the bottom of the 
concentrator (see M. S. Hochman, A. M. Datslshin, et al, 1968). 
A regular process smoothes the stress concentrators and an 
irregular process (along the boundaries of the grains) weakens 
the sample with the stress concentrator and a reduction in the 
performance of the sample occurs only when the test base is 
large (G. V. Karpenko and F. P. Yanchishin, 1955, M. I. 
Chayevskiy, 1959). 

Thus, along with the important role played by adsorption 
effects, the chemistry of the process is also important in the 
softening of a polycrystalline metal which is deformed in an 
agressive medium. 

The problem of the effect of lubricant oils (which are 
practically corrosion safe) on the strength of steel became 
recently important.  Experiments have shown that during the 
cyclic loading of steel, the adsorption fatigue phenomenon 
occurs in the oils which depends on the adsorption activity of 
the oil (G. V. Karpenko, 1953) .  Some aspects of the studies 
dealing with the effect of liquid media on the fatigue of steel, 
the qualitative changes in the steel under the action of the 
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adsorption-fatigue and corrosion-fatigue processes are discussed 
in the monographs by V. I. Lichtman, P. A. Reblnder and G. V. 
Karpenko (1954) and G. V. Karpenko (1963).  The results 
pertaining to the changes In the cyclic viscosity of the steel 
in various media, problems dealing with the effect of the fre- 
quency with which the stresses change, the effect of residual 
stresses on the adsorption and corrosion fatigue of steel and 
the scale effect are also discussed here. 

The effect of the external medium manifests itself 
differently depending on the structure and composition of the 
metal (for example, in soft steel with a low carbon content 
the fatigue strength limit in an aggressive medium Is reduced 
by 3-7%, and in steels with a higher carbon content by 
15-20%).  The study of the noxious effect of particles acting on the 
surface on the fatigue properties of metals led to the 
development of methods for increasing the resistance of the 
metals (particularly steel) to fatigue in aggressive media. 
A detailed study of problems in the strength of prestressed 
structural elements and building subjected to corrosive action, 
of the corrosive fatigue of steel and the cracking of metals» are 
available in the studies by A. V. Ryabchenkov (1953), V. V. 
Romanov (1960, 1967), Ya. M. Potak (1955), G. V. Karpenko (1963, 
1967), E. M. Gutman (1967). 

Another important trend is related to the strength of metals 
in the presence of dissolved metallic coatings. Many cases of 
rupture when a small amount of the liquid metal was present 
on their surface and when the applied stresses are belov the 
limiting admissible stresses have been known in engineering for 
a long time.  The Interest in the problem of preserving the 
strength of structures and buildings in the presence of melted 
metals increased, in particular in conjunction with the con- 
struction of energy, nuclear and rocket installations in which 
the heat carriers that are used are liquid metals.  This 
phenomenon was explained for the first time with the aid of 
the Reblnder effect in the studies by S. T. Kishkin and Ya. 
M. Potak (1955), and the studies by p. A. Reblnder, V. I. 
Lichtman, Ye. D. Shchukin (1962) and their collaborators have 
shown that the greatest fracture of metals may occur in the 
presence of liquid metals.  The studies that were made have 
shown that the adsorption activity of a liquid metal depends 
on the degree of its solubility in the solid metal»where the 
solution of the problem of the reduced strength by adsorption 
(N. V. Pertsov and P. A. Rebinder, 1958) the melting diagram 
corresponding to a binary system (a diagram with a narrow 
solubility region for a light alloyed metal in a refractory 
metal indicates the possible changes in the strength^unlike in 
diagrams with a wide region of solid solutions or chemical 
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bonus)   is  used  for the  diagnosis.     The study of  the electron 
structure of atoms in both metals has shown that a 
sharp reduction  in the strength occurs mainly when both 
metals are of  the non-transition category  (Yu.  V.  Goryunov, 
N.  V.  Pertsov and P.   A.  Rebinder,   1959).     The subsequent study 
of the adsorption-active effect of melted metals detected an 
interesting analogy between the brittle   temperature loss 
without coatings and  the brittle rupture  loss at  the usual 
temperatures under  the action of melted metals  leading to 
rupture at considerably lower values of   the stresses   (Yu.  V. 
Goryunov,   N.  V.   Pertsov,  P.  A.  Rebinder,   B.  D.   Summ,   Ye. 
D.   Shchukin,   et  al,   1963 and later publications). 

In addition  to the sharp reduction of the strength and  the 
brittleness which occurs,   a liquid adsorption-active metal  at 
high  temperatures and relatively low deformation rates  leads 
to a     lower    yield point and a smaller hardening coefficient 
of the metal   (plasticizing action),   which was already mentioned 
above when  the  effect  of lubricants was  considered in  the 
treatment of metals by pressure.    We recall that  the plastic 
flow  in crystals represents  the origin and movement of  the 
dislocations  in  the slippage plane and their rise to  the surface 
of the crystal.     Ye.  D.   Shchukin  (1962)   has shown that the ad- 
sorption of  the  particles acting on  the surface has an effect 
on the  interaction of  the dislocations with the surface.     As a 
result of  the reduced surface energy of   the deformed solid,lue 
to adsorption,   the material  is  plasticized  (the  dislocation which 
extends  to  the surface  occurs at a  smoller total stress,   and 
when the external stress is constant a  larger number of dis- 
locations  reaches  the  surface per unit  time,   i.e.,  more 
plastic shifts  occur) .     Tlu? plasticizing  action of the melts  is 
similar  to  the action of organic adsorption-active particles^ 
in both cases  the rise of the dislocations to  the surface  is 
facilitated. 

One important problem in  the mechanic.3 of  a solid is  the 
problem of   the  development of macroscopic cracks.» where  the 
presence of  thr  adsorption metal  is  reflected essentially  in 
the entire  character  of  the rupture.     The  rate  of growth of 
the crack  depends on  the  "flow-around" rate on  the edges of 
the crack,   in particular en the rate at which  the metallic 
melt arrives at   the apex of  the crack.     Together with  the 
propagation of  the melt along  the edges^ the liquid metal 
penetrates  the walls of  the crack thai  is  being  formed,   and  the 
finite length of  the crack depends on  the particular  type of 
competition in  these processes,     fe.  D.   Shchukin has shown  that 
the faster  the adsorption metal propagates and  the slower  it 
penetrates  the walls,   the greater  the length of   the crack 
all other conditions being equal   (the mass of  the solvent,   the 
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tensile stresses, the geometry of the plate, etc.).  The following 
relation was obtained for the length of the crack 1 as a function 
of the mass of the adsorption-active melt m (Yu. V. 
Goryunov, N. V. Pertsov, B. D. Summ, Ye. D. Shchukin, etal, 
1962, 1963) 

l~W. (9tl) 

Thus, the development of the crack is intimately related to 
the loss for the spreading of the liquid metal along the 
unoxidized metallic surface film in which the surface diffusion 
must be distinguished (the migration displacement of multiple 
layers) and the viscous dissolution of the phase layer. 

A study of the laws for the propagation of adsorption- 
active metals (Yu. V. Goryunov, B. D. Summ, N. V. Pertsov, 
P. A. Rebinder, Ye. D. Shchukin, et al., 1963) made it possible 
to explain a number of specific features in the development of 
microcracks in the presence of mercury and gallium.  It is 
interesting to note that the laws for the spreading of liquid 
metals can be successfully applied not only to the study of the 
problem of the development of microcracks^ but also to welding, 
soldering processes, the application of protective metallic 
coatings, the behavior of the liquid under weightless conditions, 
etc. A further study of the deformation processes of polycrystalline 
metals in the presence of adsorption-active liquid metals made 
it possible to obtained the computational equations used to 
determine the amount of the melt necessary to obtain the limiting 
adsorption reduction in the strength (Yu. V. Goryunov, G. I. 
Den'shchikova, B. D. Summ, V. Yu. Traskin, 1965, 1967). As 
Yu. V. Goryunov, B. D. Summ, N. I. Flegontova (1964) have shown, 
the reduction in the strength in definite ranges depends on the 
ratio of the amount of the liquid metal to the volume of the 
sample. 

Until :ow it was emphasized that the Rebinder effect 
manifests itself mainly when an external load and a medium active 
on the surface act simultaneously on the solids (in the un- 
stressed state, no noticeable changes occur in the mechanical 
properties of the solid). However, for example,a polycrystalline 
zinc plate in the presence of gallium begins to flow at a very 
small load, its own weight, which occurs usual7'; with metals 
at very high temperatures which are close to the melting tem- 
perature.  The sharp rise in the plasticity in this case is 
related to the structural changes that occur in the layers be- 
tween the grains as the surface energy is reduced due to the 
adsorption of the gallium atoms. 
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The changes  in  the  structural properties of monocrystals 
are even more  -tunning  (which are especially pronounced in 
a   "gallium-    IP" pair).     It became evident  that a monocrystal 
without stiuclural   defects similar to the grain boundaries  is 
converted in  the presence of a gallium film in a polycrystalline 
sample.     The phenomenon of spontaneous internal dispersion of 
the metal which is  accompanied by a  sharp drop in  the surface 
energy can be used  to raise the strength of   the metals,   and 
in the process, the adsorption-active melts are no  longer agents 
which reduce  the strength but rather  facilitate the rise  in 
the strength of metals.     Along with   perfecting the methods 
for growing  tiny nearly defect-free fibrous  crystals,a method 
was proposed  (V.   I.   Lichtman,  P.  A.   Rebinder    and Ye. D. 
Shchukin,   1960,  P.   A.   Rebinder,   1968)   for  freezing  the samples 
in which internal  dispersion occurred,leading to a homogeneous 
and fine-grained structure.    The strength of such samples ex- 
ceeds several   times   the strength of  the initial undispersed 
sample. 

Recently  it became possible  to use the  effect  of the 
external medium to raise  the strength of catalysts,  which play 
a very important role in modern chemical  industry,   and to 
investigate  the adsorption reduction  in the  strength of solids 
during irradiation.     The reduced strength of non-metallic  bodies 
under the action of  particles acting on the surface was applied 
to problems  in the    reducing strength of minerals,   which 
led    to   a considerable  intensification of  drilling processes. 

As was already mentioned above,   ar  :;iportant  fact in the 
mechanics of  fracture  is  that  the particles  on the surface of 
the samples can considerably change  the critical stresses at 
which the cracks begin  to grow   (for exanple     the strength of 
glass that was dried well  increases 4-5  Umes as much). 

Ye.  D.   Shchukin and V.   I.  Lichtman  (1958,   1959)  made the 
following assumption about  the brittle fracture mechanisms of 
bodies with arbitrary dislocation inhomogeneities.     Two 
fundamental stages are observed during the fracture of metals. 
In  the first stage,   equilibrium cracks are  formed and they 
develop under  the action of shearing stresses at points with 
a high stress concentration.    In the second stage,   the cracks 
make the  transition  from  the equilibrium state under  the action 
of  normal stresses  to  the spontaneous propagation along the 
entire cross section of  the monocrystal.     Both these processes 
are naturally facilitated when the free surface energy is re- 
duced as a result of   the particles active on  the center, which 
penetrate inside the  crystal along the defective sectors of the 
structure.     Such a model may serve as  the  theoretical basis 
for  the well-known experimental  fact  that  the product of  the 
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normal and shearing stresses during brittle rupture is constant, 
which allows us to select this product as a measure of the 
strength of the monocrystal. 

It was already mentioned that a study of the effect of the 
media active on the surface on the development of the cracks 
is of interest.  The great variety and the complex physical- 
chemical interactions of the media which occur under high local 
stress conditions at the end of the crack can be reduced to the 
fact that the dependence of the physical (adsorption) and 
chemical (corrosion) factors on the stressed-deformed state 
at the end of the crack in the brittle fracture region is com- 
pletely determined by a single natural parameter, the coefficient 
of the intensity of the stresses (G. G. Johnson and P. K. Paris, 
Engng. Fracture Mech., Vol. 1, No.,1, 1968, pp. 3-45).  The 
rate of growth of the crackjin the phenomonological sense, 
depends only on the coefficient of intensity of the stresses 
and on the physical-chemical constants of the "deformed body- 
external medium" pair.  The important experimental result, 
namely that the effect of the external medium begins to be felt 
only at a certain ratio of the physical-chemical parameters 
of the medium to the coefficient of the intensity of the 
stresses (which manifests itself in the growth of the crack for 
a constant coefficient for the Jitensity of the stesses) should 
be mentioned. 

Apparently the best studied mechanism for the reduction of 
the effective surface energy in a solid in a medium acting on 
the surface is the pure adsorption mechanism.  The subcritical 
growth of the crack may be negligibly small in a number of cases, 
so that the change in the effective surface energy that was 
mentioned completely describes the effect.  For example, for 
silicate glass, the surface energy in the presence of moisture is 
reduced approximately by 20%.  In metals, the effective surface 
energy exceeds approximately by three orders of magnitude the 
free surface energy estimated on the basis of physical concepts. 
However, it is interesting to note that the rupturing stress 
is determined by the effective surface energy, whereas the 
adsorption effect has primarily an effect on the free surface 
energy. 

1^  See, for example, G. G. Hillman, Splitting, plasticity and 
Viscosity of Crystals (1959, Russian translation in the 
collection:  Atomic Fracture Mechanism, Moscow, 1963). 

2. G. P. Cherepanov gave an explanation of this seeming contra- 
diction (1968), who found for the case of a thin plate from 
the energy equation the following bound:  the ratio of the 
effective surface energy to the free surface energy has the 
same order of magnitude as the ratio of the Yung modulus 
to the yield point. 
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§10.  Permanent Fracture Problems 

Together with local fracture processes (for example, at 
the end of a crack) and three-dimensional fracture (for 
example, during absolute viscous fracture, when the load bearing 
capacity of the sample is used up uniformly over the entire 
dangerous section), gradual unloading processes on the surface 
of the body or on a sector of the body are of great practical 
and theoretical interest.  The most important phenomena in 
this class of problems are the erosion rupture of the surface 
layer of a solid as a result of the force effect of a gas flov 
or liquid (the pairs "solid-liquid," "solid-gas"), the wear 
of solids during friction (the "solid-solid" pair), the wear 
of a solid in a liquid flow with hard particles (the pair 
"solid-liquid with hard particles") and also some other 
phenomena. 

The short fracture times for structural materials as a 
result of erosion,after which the use of the industrial objects 
becomes economically unfeasible«is the reason for the many 
studies of this phenomenon. As a result of the difficulties 
connected with the study of erosion fracture in pure form, 
almost all investigators were forced to consider erosion frac- 
ture under the simultaneous action of a number of factors having 
an effect»to a greater or smaller degree^ on the erosion fracture 
process itself,which made its study more difficult. Among 
these studies the following can be singled out:  the chemical 
interaction of the materials with gas flows or liquids, the 
chemical conversions in the material itself, sublimation, melting, 
thermal stresses, adsorption phenomena, the effect of various 
kinds of radiation on the properties of the materials, etc. 

In this section we will consider gas erosion, hydroerosion, 
wear during friction on the edges and abrasive erosion. We 
will cover not only those studies which, in the opinions of 
the authors, had an important effect on the evolution of the 
views on the problems that were mentioned but also those which 
had an important effect on the contemporary state of this 
problem. An acquaintenance with this branch of knowledge which 
borders physical-chemical mechanics and in which, for the time 
being, predominantly only qualitative results have been obtained^ 
is fruitless for theoreticians in mechanics, since it is a new 
field of future quantitative research. 

The majority of investigators who studied gas erosions 
saw the reason for the mechanical fracture of the surface of 
materials in various processes accompanying the erosion.  These 
views were supported in no small degree by the fact that the 
frictional stresses on the surfaces of materials even under 
such difficult conditions as, for example, when spacecraft 
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enter the dense layers of the atmosphere are relatively famall 
and considerably smaller than the limiting shear strength 
of the material. 

In the 50's K. K. Snitko, et al., proposed the so-called 
oxidation theory, a variant of the chemical theories of gas 
erosion. According to this theory,the main reason for the 
erosion fracture of metals is the oxidation of iron (and the 
burned up carbon) and other elements which oxidize iron more 
easily during the direct oxidation by free nitrogen and also 
during the indirect oxidation by means of the carbon dioxide 
and water vapors present in the gases.  These conclusions were 
based on the results of studies of mechanism and kinematics of 
the decomposition of dust at high pressures. 

According to chemical theories of gas erosion,the surface of 
the metal around which hot gases flow, under pressure 
undergoes both structural-chemical (under tht effect of oxida- 
tion, cementing, anisotropy)  as well as mechanical changes, 
which result in the fracture of the thin surface layer of the 
metal. 

A. F. Golovin (1941) made a systematic study of fractured 
bores in artillery guns resulting from erosion and determined 
the presence of hardened sectors below the fields of the cuts 
caused by the dynamic effects leading the nose of the 
projectiles.  The conclusion was reached that the thermal 
factor has the dominant effect on the hot gas erosion process 
and that the basis for the rupture mechanism is the "spreading" 
or "blowing" of gas jets of the melted or softened no lonnrer 
solid surface layer of the metal (as a result of small thermal 
fatigue cracks). 

I. S. Gayev (1950), et al., obtained some experimental data which 
confirmed indirectly the idea of the vaporization of metals 
during erosion fracture.  It was established that the vaporiza- 
tion rate for steel increases as the temperature and the 
carbon content increase.  A comparison of the reduction in the 
weight of the sample during vaporization under the effect of 
a high temperature with the erosion tests of the samples made 
from the same alloys has shown that the strength of the materials 
in both types of tests follow the same squence.  It was estab- 
lished that together with the diffusion and recrystallization, 
the vaporization rate may characterize the strength of the 
bonds maintaining the atoms in the crystal lattice during 
heating. Apparently these parameters often characterize the 
endurance of the metals and alloys at high temperatures also 
in the case of erosion tests.  I. A. Oding (1949, 1963) assumed 
that the erosion fra ture process represents a pure mechanical 
action of the vapor flowing on the metal containing drops of 
water and various hard particles. 
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N. S. Alferov (1952), who studied the erosion fracture 
of plates in gas turbines in a gas flow with dust reached a 
similar conclusion.  In his opinion, one of the causes for the 
mechanical fracture of the surface of metals in a gas flow 
not accompanied by the melting of their surface,is the presence 
of dust particles in it.  Its mechanical fracture occurs as a 
result of the many impacts of these hard particles on the sur- 
face of the metal. 

The formation of minute cracks oriented into the depths 
of the metal was detected on the surface of the blades. These 
indicate the fatigue phenomenon in the surface layer of the 
metal.  The mechanical rupture is explained by the knocking- 
out of the smallest particles of the metal that are formed as 
a result of the microcracks which occur and the cutting of 
the surlcices that are formed (plateaus) bombarded by the 
rapidly-moving particles. 

I. N. Dekhtyarev (1949) expressed the opinion that the 
values of the stresses in the upper layers of the metal of 
turbine blades may attain values which are commensurate with 
the fatigue limit in blade steels. 

I. N. Bogachev and R. I. Mints (1958 and in later publica- 
tions) concluded on the basis of the nonuniformity of the 
distribution of acoustical pressures during the flow past 
the surface of airwings of an airstream that the distribu- 
tion of the pressures in the metal was nonuniform.  The rapid 
gas flow acts mechanically on the metallic surface which, in 
view of the inhomogeneity of the flow, leads to considerable 
inhomogeneity of the stress field in the metal.  The latter 
throws some light on one of the most important mechanism of 
erosion fracture.  Under a local load, microvoluraes can 
occur in some sector in which, along with the elastic deforma- 
tion, a plastic deformation or even microcracks will occur.  The 
total recorded deformation  level may not be high; however, 
the presence of microfracture is already dangerous to some ex- 
tent with respect to the sufficient performance reliability of 
the structure.  The same authors noted the large values of the 
loads associated with the aerodynamic action of the gases flowing 
out from a jet exhaust nozzle and the pressure impulses with 
the high frequency oscillations formed in the process, etc. 
It turned out that the loads from the factors that were mentioned; 
which can lead to fracture during the service life of the 
airplanesjare encountered relatively often. 
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When a gas flow acts on the surface of the metal, its 
relief is shaped.  The character of the microrelief is deter- 
mined not on]/ by the type of load, deformation, but also by 
the nature of the metal.  The microrelief obtained when a 
rapid flow is acting on the surface of the metal should be 
considered as a characteristic of the surface which determines 
the performance strength of the structure.  The character of 
the relief allows us to make preliminary conclusions about the 
strength of the metal under the given conditions, since the 
capability of the metal to form microrelief and the endurance 
are directly related.  The usual properties of the material 
(the macrocharacteristics obtained on standard samples taking 
into account the aggressiveness of the medium and the tempera- 
ture) are only a coarse preliminary criterion for estimating 
the endurance of the material during the contact with a rapid 
flow. 

L. A. Urvantsev (1966) proposed, on the basis of an analysis 
of known theories of the erosion structure of materials caused 
by various reasons» that the existing concepts be generalized and 
introduced for this purpose the so-called "principal generalizing 
function" which must characterize the propoerties of the medium, 
of the boundary layer and of the material.  The description of 
the erosion fracture mechanism proposed by him includes a 
repeated cyclic loading of the surface layer of the material 
and the fatigue cracks formed in it (both in the body of the 
grains as well as on their boundaries), chemical, thermal and 
electrical effects of the medium and the changes that 
occur in the material as a result of them.  The majority of 
investigators see the reason for hydroerosion in corrosion and 
cavitation processes. 

A. D. Moiseyev (1954-1956) considered hydroerosion 
as an electrochemical process which develops and depends on the 
rate at which water moves.  It is assumed that when the flow 
moves at high velocities, there is not enough time for the 
formation of the oxidation film and the corrosion medium inter- 
acting with the bared surface creates conditions for an in- 
tense development of the electrochemical process. 

I. N. Voskrenskiy, V. V. Fomin, et al. (1949) assumed 
that the fracture of metals during hydroerosion occurs under the 
action of the corrosion and mechanical factors and that it 
depends on the velocity with which the water moves.  At low 
velocities of the flowi mainly only the electrochemical process 
develops. As the velocity increases, the mechanical factor 
begins to act and the fracture of the metal becomes corrosive- 
mechanical. At high flow velocities,the mechanical factor is 
dominant.  It was shown in the study by M. G. Timerbulatov 
(1965) that in addition to the high mechanical strength and the 
high fatigue limits the materials must have high anticorrosive 
properties. 
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L. A. Gllkman (1955) has shown the subordinate role of 
the corrosion factor during hydroerosion.  It was established 
that the hydroerosion rate sometimes exceeds 10 times the 
corrosion fracture rate. 

The erosion fracture has essentially a heterogeneous 
character.  The strengthening of plastic metals with time 
(hardening) under the effect of cavitation spreads into the 
depth by several microwaves (L. A. Glikman, Yu. Ye. Zobachev, 
etal., 1956), and relatively weak sectors on the surface of 
the alloys are first subjected to erosion (I. N. Bogachev, 
R. I. Mints, et al., 1961), on the surface of the alloys and 
concrete the erosion is primarily localized in the natural pores 
and cracks (K. K. Shal'nev, N. P. Rozanov, et al., 1965). 
K. K. Shal'nev, R. D. Stepanov, et al.  (1966) detected the 
considerable effect of the load on the tested sample due to the 
external stressing force on the intensity of the erosion. 

The study of erosion fracture on models is of interest. 
I. Varga, B. A. Chernyavskiy and K. K. Shal'nev (1962, 1963) 
studied the relation between the intensity of the corrosion 
and the hydrodynamic parameters and the physical properties of 
liquids (the velocity of the flow, the characteristic dimension 
of the model, the density, the surface strain, the viscosity, 
and the three-dimensional elasticity of the liquid). 

I. R. Kryanin (1955-1962) considered the hydroerosion 
of metals as a corrosion-fatigue process resulting from one- 
sided cyclic compression.  In his opinion, the reason for 
the unsuccessful attempts to determine a relationship between 
the cavitation strength of the  metals and their corrosion- 
fatigue strength is the special character of the cycle of 
hydraulic shocks that occur during the cavitation which is not 
taken into account by many investigators. V. V. Havranek 
(1955) considered hydroerosion as a microfatigue process.  The 
protrusions on the surface of the metal were considered by him 
as microoverhan^s which experience* during the hydraulic shock 
loads with changing signs*,and are broken off as a result of 
this. 

V. A. Konstantinov (1947), who studied the physical nature 
of cavitation reached the conclusion that the fracture of the 
metal during cavitation is related to the electric charges 
which are formed during the compression of the cavitation 
bubbles.  These electrical charges in the form of microscopic 
"lightening^' can rupture in a short time materials with any 
strength. Later^in connection with the use of cathode protection 
of hydroturbines from cavitational erosion, additional studies 
of the electrical effect in the cavitation zone were made (V. I. 
Skorobogatov, 1960, Yu. N. Paukov, M. K. Bologa and K. K. 
Shal'nev, 1968).  The presence of the electrical effects and 
the effect of the external electrical field on the intensity of 
the erosion were confirmed. 
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I. N. Bogachev and R. I. Mints, V. V. Havranek, M. Fuchs, 
D. K. Bol'shutkin, et al.  (1955) have shown In their studies 
that the hydroeroslon process is caused by the mechanical 
action of the hydraulic shocks which occur when the cavltatlonal 
blisters contract. As a result of such multiple shocks, In- 
dividual mlcrovolumes are deformed and displacement and double 
lines occur. The hardness of the surface layer is increased 
during the process.  X-ray analysis shows the distortion of the 
crystal  lattice and the fragmentation of the structural mosaic 
blocks.  The fracture of the metal is preceded by the forma- 
tion of cracks and fracture foci in the surface layer. 

The studies made by S. P. Kozyrev, K. K. Shal'nev and M. G. 
Timerbulatov (1956, 1965) in hydrodynamic pipes have shown 
that cavltation depressions do not only not collapse in- 
stantaneously, which follows from the Rayleigh theory, but do 
not collapse at all.  A ripple was detected in the cavity over 
time^with a large frequency, and during the ripple the cavity 
decreases in diameter, then vanishes, is formed again, etc. 
The basis for the cavitation fractures are the fatigue phenomena 
on the surface resulting from the high frequency impulse effect.1 

V. V. Fomin (1966) reached the conclusion on the basis of 
his studies of the hydroeroslon of metals and the generaliza- 
tion of the results obtained by other authors, that as a rule it 
is observed at high flow rates and that it occurs mainly due 
to the mechanical action o± the liquid. The nature of this 
effect is related to the qualitative change of the character 
of the liquid flow.  Under these conditions, the impact load 
has an impulsive character, i.e., it is distinguished by a 
fast increase in the pressure, which is followed by its rapid 
decrease.  A characteristic feature is the very small region 
in which the maximal stresses are acting which is commensurate 
with the dimensions of the Individual microsectors (whose size 
is approximately lO"'* - 10~° mm ) .  The stresses are distinguished 
by being local and nonuniform, and they are formed in individual 
mlcrovolumes regardless of what occurs at another point in the 
surface layer. During such character of the mechanical action, 
the fracture of metals is related to the break-off of very 
small particles resulting from the formation of microscopic 
cracks in the surface layer that are formed as a result of the 

T~.     In 1968 S. P. Kozyrev considered as one of the most 
probable reasons for the strong force action on the surface 
the effect of the cumulative collapse of the cavltatlonal 
cavity. 
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plastic deformation which occurs in the microvolumes.  V. V. 
Fomin assumes that the hydroerosion of metals must be considered 
at a process which occurs as a result of the microimpact action 
of the liquid. During such character of the load^the resistance 
of the metal to rupture is determined not by the averaged 
properties of the individual microvolumes but by the properties 
of the metal inthe microvolumes, i.e., the mechanical strength 
of the individual microsectors or structural components. 

During the microshock action, stresses and strains are 
formed which are localized in the microvolumes of the surface 
layer, so that the rupture has a local character.  The properties 
of the surface layer determine the erosion strength of the 
metal. 

The state on the surface of the sample has also an effect 
on the formation of the rupture foci.  However, the effect of 
the surface profile is only felt in the initial stage of the 
erosion process. When the deformation relief is formed,this 
effect is removed. 

I. N. Bogachev and R. I. Mints (1958, 1964) studied several 
steels and resistance to cavitation-erosion rupture.  As a 
result of these studies they found out that the cavitation- 
erosion strength of the steel depends on the size of the grain, 
the character of the boundary and the body of the grains.  The 
intensity of the rupture is determined by combining the properties 
of the grains and its boundaries.  It was also noted that steels 
in the viscous state resist erosion better than in the brittle 
state.  The authors proposed the hypothesis that the resistance 
to cavitation-erosion rupture must depend on the damping 
capability of the material (i.e., on the magnitude of the 
decrement in the damping of the oscillations) , provided the 
fracture of the metal due to erosion is considered as a fatigue 
phenomenon, taking into account the multiple action of the 
water drops on the surface of the plates. 

In the mutual contraction processes of solids, studies of 
problems dealing with the abrasive rupture during friction on 
the boundary play an important role.  V. D. Kuznetsov (1947) 
assumed that the mechanism of the abrasive wear is extremely 
simple and reduces to the sum of a large number of abrasion 
processes.  A deep relationship must exist between the phenomenon 
of a simple scratch and the abrasive wear. However, studies 
have shown that no unique relation exists between abrasive wear 
and the mechanical properties of the metal. 
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Using the concept that during wear under the same condition 
the same degree of plastic deformation and hardening is attained, 
M. M. Khrushchev and M. A. Bablchev (1960) proposed a 
theoretical relationship between the three-dimensional wear, 
the length of the frictional paths, the dimension of the ab- 
rasive grain, the load and the initial hardness of the metal. 
The tests that were made have shown that, in fact, the wear 
is directly proportional to the frictional path, the load 
and the dimension of the abrasive wear and that a critical 
value exists for the dimension of the grain after which the 
abrasive wear does not increase.  At the same time, the wear 
is inversely proportional to the value of the hardness of the 
metal before the test which was confirmed experimentally for 
technical pure metals and steels in the annealed state. 

Subsequent studies have shown that the actual contact area 
of two surfaces differs considerably from the contact which is 
blackened by the outer contour of the surfaces and conventionally 
used to calculate the mean specific pressures.  Given the purity 
attained during the treatment at the present time, the actual 
contact area is lO-^ to 10"^ of the contact area, as a result 
of which specific pressures of several thousands kg/cm2 

are formed on the contact areas.  Naturally this leads to a 
rapid plastic deformation of the microinhomogeneities and also 
to the rupture of incividual sectors in the surface layer of 
the metal.  The fracLure occurs as a result of the micro- 
and macrocracks that are formed and, apparently, the main reason 
for the formation of the cracks are the internal and thermal 
stresses.  The latter are formed as a result of the local 
temperature burst caused by the transition into the body of 
over 50% of the external energy used up in the irreversible 
plastic deformation process, and also as a result of the rapid 
cooling of the surface layers of the entire metal mass.  Since 
in plastic materials under variable temperature field conditions,, 
the stresses in the plastic region are much smaller than the 
elastic stresses in brittle materials, the latter resist better 
thermal fatigue and consequently, pitting.  In addition to this 
it must be remembered that the micioplastic deformation of 
grains formed during cyclic temperature changes which manifests 
itself in the form of slippage lines and in some metals also 
in twins and mosaic structures is accompanied by distortion of 
the crystal lattice, by a loosening of the boundaries of the 
grains and the formation of microvacanciesrwhich also worsens 
the mechanical properties (long-term strength) and enhances 
the fracture of the material. 
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I. V. Ki-agel'skiy (1963 and later studies) considered the 
occurrence of free particles during friction on the boundary 
as a result of microcut processes, "depth" tear-off and 
repeated deformation. Microcuts are observed during the in- 
dentation of the contact protrusion at a sufficiently large 
depth (approximately 0.2-0.3 of the radius of the protrusion) , 
i.e., when the external frictional threshold is exceeded. 
At the usual frictional nodes particles are not obtained for 
all practical purposes, as a result of microcuts, since the 
loads for which the indent at Ion does not attain a value necessary 
for a cut are selected in advance. 

Depth tear-outs are formed when the external frictional 
threshold is violated as a result of the negative gradient of 
the mechanical properties, which is formed along the depth of 
the frictional surface or as a result of the excessively 
large relative indentation.  It has the character of tear-out 
or spiking of the material not along the seam but inside one 
of the bodies.  However, the microcut and the depth tear-out 
of the material are extreme cases of wear during friction. 

According to I. V. Kragel'skiy, during a stationary 
frictional regime, the coarseness of the surface is reproduced. 
However, the coarseness reproduction mechanism remains unknown. 
Usually, the wear of frictional surfaces occurs mainly during 
slippage.  This can only occur when films are formed on the sur- 
faces which protect the main material from direct contact. 
The film which separates the surface is an absolutely necessary 
condition for the slippage.  In its absence, depth tear-out 
will inevitably occur. 

Under dry frictional conditions, the oxidation film which 
is formed on the surface increases along its thickness up to 
a certain value, peals off, increases again, etc.  This film 
interacts molecularly with the film on the second surface. 
The films protect the main material from depth tear-out; 
however, they do not protect it from deformation which it under- 
goes during the indentation of the protrusion on it during 
slippage. 

Each section of the worn body is successively subjected 
to compressive and tensile stresses.  This effect was described 
for the first time on the basis of experimental data by 
A. S. Radchik and V. S. Radchik (1958), who detected a change 
in the sign of the deformation in a particular zone of the 
worn sample. 
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Even a small repeated load on the surface may lead to Its 
fatigue fracture.  Fatigue cracks are formed on defects which 
are always present in the solid.  They are related both to 
the structure of the metal (the vacancy in the crystal lattice 
the boundaries of the blocks) , and to the traces from 
the treatment (scratches) and, finally, to the metallurgical 
defects (contraction pores, gas bubbles, slag inclusions, the 
pronounced inhomogeneity in the dimensions of the crystals, 
differences in hardness, etc.). 

During the development of a crack, the cracks which gradually 
amalgamate may lead to the formation of wear particles.  The 
ruptures formed on the frictional surface as a result of re- 
peated actions were called by I. V. Kragel'skiy (1963 and later 
studies) frictional fatigue.  The rupture of the material 
as a result of repeated deformations leading to the loosening i 
of the metal has been described in detail by N. N. Afanas'ev 
(1965) . 

i 
M. V. Khanin (1966 and later publications) who studied the 

fracture of materials in high temperature and high velocity 
flows of an inertial gas under conditions which excluded practically 
all forms of rupture except erosion rupture, has shown experi- 
mentally the presence of mechanical rupture on the surface. 
Microstructural studies of the surface layers of a material 
subjected to erosion rupture have detected characteristic 
fatigue changes (wide slippage strips, microcracks, etc.). 
This indicates the presence of cyclicly changing force action 
on the surface of the material from the side streamlined by 
a gas flow.  In the uneven depressions, a vortex pulsating motion 
occurs,as a result of which forces which vary with time are 
acting on the pimples which are the causes for the erosion 
rupture. 

M. V. Khanin reached recently the conclusion on the basis 
of an analysis of the fatigue theory of erosion rupture of 
materials during friction on the boundary developed by I. V. 
Kragel'skiy by comparing it with the mechanism for the erosion 
rupture of materials in gas flows and a liquidjthat the erosion, 
both during friction and during the action of the liquid flow, 
represents a fatigue rupture process on the surface layer, 
occurring as a result of the forced oscillations of material 
particles on whose protruding parts variable forces are acting. 
He obtained formulas for determining the erosion rate for the 
fracture of the materials and the value of the coarseness on 
their surface. 
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In our country, especially in recent years, extensive 
studies were also made on the wear of all kinds of equipment 
in a liquid or gas flow with hard particles. For example, we 
mention the studies dealing with combatting the so-called 
aerosol wear in boiler equipment. Considerable attention was 
given to this problem in the studies by I. K, Lebedev, 0. N. 
Murovskin, A. V. Ryabchenkov, S. N. Syrkin, and others. 

The studies by Ye. I. Pazyuk (1953), Sh. M. Bilik (1960) 
and by other authors deal with the study of the hydroabrasive 
treatment of metals. The abrasive-erosion wear of equipment 
used in the oil and gas industry (Christmas tree and tubing head, 
drilling pumps, turbine drills, pipes, etc.) presents especially 
acute problems.  Extensive studies along these lines were made 
by A. V. Kol'chenko (1956), L. A. Shreyner and A. I. Spivak 
(1958), A. A. Antonov (1963), V. N. Vinogradov (1963), and 
others. 

One hypothesis explaining the nature of abrasive-erosion 
pitting was proposed by L. B.Erblich (1950). According to this 
hypothesis^ most adjoining parts operating under contact load 
conditions have certain characteristic features, namely the 
short duration of the loads on individual sectors of the opera- 
ting surfaces, considerable local loads, multiple cycle repeated 
external loads, a comparatively large mass of the metal adjacent 
to the surface layers, the presence of the structural component 
in the form of a wide istrip which is not etched by the usual 
reagents and which is only detected as a result of a metallographic 
analysis.  L. B. Erblich proposed a scheme which outlined a 
sequence of  phenomena which occur in the surface layers of 
the working parts.  According to this scheme, first instantaneous 
force action occurs in the surface layer, then the contact 
loading, next the successive plastic deformation, a temperature 
burst and rapid cooling.  The instantaneous action of the forces 
is caused by the kinetic energy from the impact of the abrasive 
particles on the surface of the product and it depends on the 
mass and the speed of the particles.  The contact pressure which 
attains extremely high values is very important. 

During the multiple action of the abrasive particles on 
the surface of the metal a thermal load which changes sign 
resulting from the causes that were presented above is observed. 
The crack, which is formed in the pT-ocess, has a fatigue charac- 
ter and it facilitates the stress concentration on the surface 
of the product and is probably one of the main reasons for the 
pitting of the material.  Thus, it is obvious that the kinetics 
of the pitting process, including the abrasion-erosion rupturej 
includes various forms of deformation and is determined by 
a number of mechanical properties of the metal. 
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A very  interesting variety of  permanent  rupture  is  the 
rupture of  s- perstrong materials,  whose strength approaches 
the  theoretical  strength  (high-strength glasses obtained 
when special  technological conditions are maintained,   metallic 
"whiskers,"  "delert-free" glass  fibers,   high-strength polymer 
fibers,   etc.).     The rupture of such materials occurs  in  "flairs" 
when they are decomposed into a set of  small  particles.     We 
note  that  the rupture of an ideal crystal  structure during a 
sufficiently high load must occur in  the limit in the  form of 
decomposition  Into  individual atoms. 

"The  flair-like" rupture of superstrong    glasses was 
observed,   for example,   by M.  S.  Aslanova,   G.   M.  Bartenev,  F.   F. 
Vitman, L.   K.   Izmaylova,   and others.     A  theory of this 
phenomenon,   called the selfsustaining rupture phenomenon,  was 
proposed by L.   A.  Galin and G.   P.  Cherepanov   (1967).     It is 
based on a  study of  the front  of  the permanent surface  rupture 
spreading due  to a margin of elastic energy  in the body   (which 
is analogous  to  the motion of a detonation wave resulting from 
a margin of chemical  energy).     We note  that  such a type of 
rupture may also occur in  the usual brittle  bodies  (for example, 
in hard rocks),   provided they have a sufficient margin of 
elastic energy.     This can be obtained,   tor example,   as a result 
of compression   in nearly all directions.     The monograph by 
S.   G.  Avershin   (1955)   discusses  in detail various aspects of 
the rupture phenomenon that was mentioned which is becoming 
more and more  Important in the mechanics of  rocks   (rock impact) . 

§11.     Rupture during an Explosion 

The strength problems  that were discussed above pertnAn 
mainly  to problems in the protection of  equipment and structures 
whose rupture  is undesirable.     The study of  rupture processes 
during an explosion  is of  Independent  Interest and it determines« 
to a considerable extent,the effectiveness and usefulness of 
explosive work. 

When a sufficiently large amount of energy is released 
very rapidly in a volume of a solid,   many  rupture processes 
occur whose character depends considerably on the  total amount 
of energy  that  was  released and its concentration,   the source 
and the manner  in which the energy was  released,  and on the 
physical-mechanical  properties  of  the solid. 

The sources  for  the explosive  release of energy are 
variegated.   They are nuclear reactions   (atomic and nuclear 
explosions),   chemical reactions   (the majority of explosives 
used),   strong electrical discharges   (for example,   atmospheric 
lightning),   powerful  light pulses   (obtained  in lasers),   a 
margin  in  the kinetic or elastic energy   (obtained,   for example, 
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during the collision of fast moving bodies, during the 
explosions of balloons with compressed gas, during the 
shocks in rocks in earthquakes, during .the rupture of high- 
strength glasses or highly brittle materials), etc. 

The problem of regulating the explosion energy in order 
to obtain the most useful effect is one of the most important 
problems in engineering. A substantial contribution to the 
solution of this problem was made by Russian engineers and 
scientists, B. N. Bokiy, M. M. Boreskov, M. M. Protod'yakonov 
and others.  However, the greatest progress in this field was 
made in the last few decades. 

We will first discuss the main results that were obtained 
in the study of the effect of an explosion in rocks and 
soils.  Explosive substances are used in mining and construction 
to crush and pit rocks, and also to eject or displace the 
rocks in order to form artificial cavities, dams, etc. 

Explosion practice is based on the empirical similarity 
law, on the basis of which the volume of the rock Lhat is 
destroyed (and also the volume of the cavity formed after the 
explosion) is directly proportional to the volume of the ex- 
plosive charge.  Now, it is difficult to determine who was the 
first person to formulate this law (it is mentioned, perhaps 
for the first time in 1628, and it is due to the Frenchman 
Deville).  The proportionality coefficient in the law depends 
on the strength of the rocks, the characteristics of the ex- 
plosive material, the shape and the position of the charges, 
etc.  The similarity law that was mentioned is violated in 
very powerful explosions due to the comparatively high effect of 
gravity, and for very strong brittle rocks apparently as a 
result of the strength constant of the material (the critical 
coefficient of the intensity of the stresses), whose dimen- 
sionality is different from the dimension of the stresses. 

During the study of the effect of an explosion in toils 
and rocks, the model of an ideal incompressible fluid ha.s been 
widely used (the explosion itself is considered to be instan- 
taneous) .  The distribution of the pressure pulses and of the 
velocities in the space immediately after the explosion is 
determined from solving a boundary value problem for the 
Laplace equation, and it can be constructed with sufficient accuracy 
This kind of approach was developed by M. A. Lavrent'ev and 
also by 0. Ye. Vlasov (1945).  It is justified physically, 
since the pressure in the explosion chamber from the usual 
explosives attains tens and hundreds of thousands of atmospheres, 
which exceeds many times the strength of rocks. Using this 
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frame of reference, 0. Ye. Vlasov and S. A. Smirnov (1962) 
developed in this frame of reference a theoretical scheme 
for the crushing of rocks by the explosion of concentrated 
and elongated charges, and found the boundaries and the 
volume of the crushing zone, the distribution of the size of 
the crushed rocks, the statistical grain size 
distribution,the crushed part of the rock mass and estimated 
the duration of the crushing process.  They used the concept 
of the critical destruction rate introduced by 0. Ye. Vlasov. 
According to this concept, the dimension of the pieces of 
the rock formed as a result of the explosion is such that 
the difference of two neighboring pieces is equal to some 
critical value (each material has its own value). These 
calculations made it possible to obtain a general description 
of the character of the crushed rock during an explosion. 
We note that the problem of uniform crushing is exceptionally 
important in mining and that many experimental and theoretical 
studies have been devoted to it (so that pieces of 
rocks whose dimensions exceed some limiting volume permitted 
by the technological conditions are not left as a result of 
the explosion). 

V. M. Kuznetsov (1966) used the model of the medium that 
was mentioned to calculate the shape of the explosion crater. 
He used the formulation for the problem proposed by M. A. 
Lavrent'ev.  The model of an ideal liquid was used by 
G. P. Cherepanov in the solution of a number of problems 
on the effect of an explosion on underwater equipment and 
equipment below the ground (1966), and also in the construction 
of a hydrodynamic variant in the theory of cracks formed under 
the effect of the explosion (1963).  The acoustical variant 
of the knock theory proposed earlier by V. S. Lenskiy (1958) 
is intimately related to this approach. 

M. A. Lavrent'ev, V. M. Kuznetsov and Ye. N. Sher formulated 
in 1960 the problem of the directed ejection of the soil by an 
explosion and obtained an elegant solution for it as a 
reverse hydrodynamic problem.  This solution was validated 
experimentally for soft soils.  Mass explosion methods for 
ejection with the aid of elongated charges distributed 
properly in underground minos were based on it. Using 
chambers with an enlarged volume to improve the effectiveness 
of the explosion; it became evident that it was useful to fill 
them with water. 

When the seismic effect of an explosion is studied, the 
soil or the rock is usually considered as an elastic body. 
The problem of the damping of shock and seismic waves in 
soft soils saturated with water was studied in the last 
decade by G. M. Lyakhov, V. N. Nikolayevskiy, and others. 
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The concept used for representing the soil was a two component 
medium ("double" solid medium-porous deformed solid with pores 
filled by a liquid or gas). These problems are discussed in 
the special survey by G. K. Mikhaylov and V. \. .«ikolayevskiy 
published in the second volume of the collection, which is 
not mentioned here. 

Many approaches using various complex models of a solid 
medium were proposed for the study of the destruction process 
and the stress waves in the explosion zone.  We will first men- 
tion the main results obtained by means of a formulation of the 
mathematical model and the solution of certain boundary value 
problems for the corresponding differential equations. All 
these results are based on various variants of the model of 
an elasto-plastic body. 

In 1957 Kh. A. Rakhmatulin proposed a model for "a plastic 
gas" which was a generalization of the model of an ideal com- 
pressible fluid.  According to this model, a single valued 
relation exists within the pressure and the density of the gas 
(the tangential stresses are ignored) during the loading, 
which is replaced by a different law during the unloading 
(in the simplest case, it is assumed that the density remains 
constant under the unloading conditions).  This model gives 
an ideal zed description of the properties of the soil when the 
mean hydrostatic pressure exceeds many times the tangential 
stresses. 

Subsequently, Kh. A. Rakhmatulin, A. Ya. Sagomonyan and 
N. A. Alekseyev (1965) generalized the model  to the case when 
tangential stresses are present using deformation concepts (the 
system of equations that was derived is a generalization of the 
Hanke-Nadai equation for the case of an arbitrary and irreversible 
three-dimensional compression).  In their earlier studies, 
A. Yu. Ishlinskiy, N. V. Zvolinskiy and I. Z. Stepanenko (1954) 
and A. Ya. Sagomonyan (1954) considered several one-dimensional 
problems in the dynamics of soils under certain concrete 
assumptions with regard to the properties of the medium ("plastic 
gas"). The studies by A. S. Kompaneyts (1956), N. V. 
Zvolinskiy (1960), A. Ya. Sagomonyan (1961) take also into 
account the tangential stresses in similar one-dimensional 
problems (with the Prandtl plasticity condition). 

The experimental studies by V. V. Adushkin and A. P. 
Sukhotin (1961), S. S. Grigoryan, G. M. Lyakhov, V. V. 
Mel'nikov and G V. Rykov (1963), M. V. Gogolev, V. G. Myrkin, 
G. V. Parkhomov and A. N. Khanukayev (1965), A. B. Bagdasaryan 
and S. S. Grigoryan (1967) should be mentioned.  These studies 
investigated the physical pattern of the destruction process 
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in the nearest camouflet  exposure zone  (to improve the explosion 
in  the organic glass,   high speed camera photography was used 
and during an explosion in a forest soil   the explosion cavity 
was analyzed after  the explosion. 

The problem of a camouflet explosion in an ideal plastic 
body was studied for different special variants by G. Taylor, 
R.  Hill,  E.  Pinni,   and others. 

E.   I.  Andriankin,  V.  P.  Koryavov   (1962,   1965),  V.  N. 
Rodionov (1962),  Kh.   M.  Aliyev  (1964)   introduced in  their studies 
for the solution of  the spherical symmetric problem of an explosion 
in a brittle body  the concept of a destructive wave separating 
two possible states of  the medium  (the destroyed state and the 
state that was not destroyed) .     Generally^ the stresses on this 
wave have a discontinuity. 

In the studies by S.   S.  Grigoryan  (1959-1967)   problems  in 
the dynamics  of soils were studied in the most general formula- 
tion.    The hypotheses of a mechanical and thermodynamic nature 
formulated by  them reflect the specific  properties of the soils 
and rocks.     Models describing the deformation and rupture 
processes and the movement of the media under consideration under 
arbitrary external  forces are based on these hypotheses.    They 
constructed models  for soft soils   (1960)   and for solid brittle 
rocks  (1967) ,     The authors studied the general properties of  the 
solutions of   the  equations that were constructed and found the 
basic qualitative  properties of the movements which they described 
and formulated the conditions and the rules  for  the modeling. 

S.  S.  Grigoryan studied several problems on the effect of 
an explosion  in soils   and rocks on the basis oi  the models 
that were proposed.     In particular he obtained  the solution for 
problems dealing with  the effect of an explosion from a 
concentrated charge  in an unbounded soft  soil  and rock. 

In addition,   S.   S.   Grigoryan  (1962)   formulated and developed 
an algorithm for   the numerical solution of problems on waves 
indicated in   the  ground halfspace    by an explosion above ground. 
The solution of  the problem provided quantitative  information 
about the changes  in the parameters of ex^osive waves with  the 
distance  (maximal  stresses,   velocities,   residual and    total 
deformations,   displacements,  characteristic active times of 
the wave,   etc.),   the  dynamics for the elongation of the cavity 
and the boundaries of  the destruction regions,   the plastic 
deformations and the character of  the destruction in these 
regions. 
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The real  ground or rock has properties  in  the vicinity 
of a sufficiently powerful  explosion,which apparently occur 
in all possible sets of models of a continuous medium,  all 
the way from an ideal  fluid in the immediate vicinity of the 
point where the explosion occursj to an elastic body at 
relatively large distances  from the explosion.     The problem is 
further complicated by  the  development of a  set  of explosion 
displacement surfaces   (cracks)  in the explosion zone.     Under 
these conditions any,   even  the most complex model  of  the 
medium,  can only yield a very approximate description of the 
entire set of destruction phenomena that were mentioned.     In 
addition,   it must  be  taken  into account  that  the volume and 
complexity of  the corresponding calculations  increases sharply 
when the model  of  the medium is more complex.     Under  these 
conditions,  simple approximate computational  techniques^based 
to a large extent on engineering experience,are   important in 
practice. 

It should also be mentioned that  the problem of optimizing 
the crushing or  tear-out  process during an explosion is essentially 
a reverse    problem   (which  is,   therefore,   much more complex of 
the problem of calculating  the deformations and stresses in 
a medium subjected  to a  force which is known in advance. 
Therefore,   the importance of  finding sufficiently simple estimates 
for  the solution of direct  problems  (sometimes only of a quali- 
tative character)   is obvious. 

M.  V.  Machinskiy   (1935)   posed the problem of  developing a 
general  theory  for  the crushing of rocks.     According to his 
studies,   the  three main factors which determine   the crushing, 
are  the shock wave,   the  distribution of   the weak spots in the 
rock and the rate at which  the cracks propagate  in  it.    M.  V. 
Machinskiy studied  the joint effect of a system of points and 
linear charges,   paying particular attention  to  the determination 
of  the most advantageous  distance between the charges. 

In the last decades, the relation between  the explosive 
characteristics of  explosives and various effects of  the explosion 
in a rock was established. 

A.  F.  Belyayev and M.   A.   Sadovskiy   (195?)   have shown that 
the disruptive characteristics of explosives caused by the 
head part of the explosion  impulse which are related to the 
density of  the explosive and its detonation speed,determine 
in advance the degree of  crushing of  the rock only  in the 
immediate vicinity of  the charge.    The total  effect of the 
explosion,which manifests  itself in the destruction of the body 
at greater distances  from Ihe charge and  is proportional  to  the 
total  impulse of  the charge, is related to the  total energy of 

-553- 

J 



I 

the explosion and does not  directly depend on  the detonation 
rate.     Therefore,   to crush  large volumes of rock,it  is 
necessary to Increase  the duration of  the effect of  the 
explosion on the rock,   not   the peak pressure. 

To solve the last  problem,  N.  V.  Mel'nikov and L. N. 
Marchenko  (1958,   1964,   1965)   proposed modifications  for the 
design of the charges.     These modifications boil  down to a 
different ratio of  the height of the charge  to  its  diameter, 
the  introduction of air gaps between the charges and also be- 
tween  the charges and  the walls of  the charge chamber.     The 
proposals that were mentioned,which are also useful   in 
tear-out explosions, were verified on a  large volume  of experi- 
mental material and incorporated in production.     It  also became 
possible to increase  the  explosion time by way of     producing 
new  less high explosive   types  of explosives. 

The short   fuse explosion method where each successive 
charge or series  of charges   is exploded after a certain time inter- 
val   (on the order of  10~3 sec), after the explosion of  the pre- 
vious charge,is used for  the same purpose.     This method is 
particularly effective  in  combination with the  rational selec- 
tion  of the spatial  location of the charges.     The 
theoretical and experimental  studies by K.  A.  Berlin   (1934), 
F.   I.   Kucheryavov,   M.   F.   Drukovann and Yu.  V.   Gayek   (1962), 
N.   G.   Petrov  (1964),   V.   N.   Mosintz  (1967),  who  proposed a number 
of  schemes for  the positioning of the charges and calculated the 
delay time, played an important role in the development of this 
trend. 

The series of studies  by G.   I.  Pokrovskiy   (1955-1958) 
deals with the study of  the  destruction of rocks by means of 
an explosion.    According  to his concepts, the medium makes the 
transition to the plastic stage in some vicinity of   the spot 
where the explosion occurs,while it is only subjected to com- 
pressive stresses.     The zone where the cracks are formed 
follows this region in which  the circular tensile stresses are 
acting. 

G.   I.  Pokrovskiy emphasized the impossibility of  the ex- 
istence of a gap in the consolidation in grounds with a smoothly 
increasing compressional characteristic and poirted out  the 
great  effect of  the fr-^e surfaces or the artificially created 
free cavities on the distribution of the destructive  energy 
in  the space.    As soon as  the compression wave    arrives at  the 
free surface,   the compressed body begins  to expand and a 
refraction wave  is  formed which is caused by  the  tensilo 
stresses.     In the acoustical  approximation,   this wave  corresponds 
to  the source of  the  tension which is  the mirror  image of the 
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Charge with respect to the free surface.  The reflected wave 
of the tensile stresses causes incomparably greater destruction 
than the compression wave.  This mechanism is analogous to the 
knock mechanism. Depending on the mechanical properties of 
the rocks and the location of the charges, the relative portion 
of the direct and reflect, d wave will be different in the 
tctal destruction.  On the basis of the general qualitative 
destruction pattern in sample computational schemes, G. I. 
Pokrovskiy proposed several useful formulas which are widely 
used in explosive work in a wide range of variations of the 
parameters. 

Different concepts about the effects of explosion were 
developed by S. D. Osnovin (1939), A. F. Sukhanov (1950, 1958), 
M. P. Brodskiy (1953) and others. They assumed that a part 
of the energy is used up during the explosion ii tearing-off 
the rock from the mass that is destroyed along the lateral 
surface of the crater, and that the other part is used up in 
overcoming the gravity of the volume that is being destroyed 
and in the crushing of the rock inside this volume.  According 
to these concepts (which are also based on some additional 
assumptions) the similarity law that was mentioned above must 
be replaced by a different relationship (which is a generaliza- 
tion of the M. M. Frolov formula proposed already in 1868). 

The approach that was mentioned was further developed in 
the studies by A. N. Khanukayev (1958, 1962) and V. N. Mosinets 
(1963, 1967).  In particular, A. N. Khanukayev proposed to classify 
the destruction of the rock on the basis of acoustical charac- 
teristics (the best known classification of rocks on the basis 
of strength was given by M. M. Protod'yakonov in 1911) . V. N. 
Mosinets formulated the general energy law for the crushing of 
rocks by means of an explosion, in accordance with which the 
destruction of rocks is characterized by the presence of a de- 
finite energy content for the crushing which depends on the 
mechanical propertis of the rocks, the statistical distribution 
for the natural crack and the cracks developed during the 
crushing deformations.  The studies of these authors are 
characterized by a deep analysis of the mechanism for the 
energy transferred from the explosion to the rock mass which 
takes into account the physical-mechanical properties of the 
rocks which make up the monolith and its natural cracks. 

A promising method for controlling the explosion are special 
artifical cavities (low yield explosions).  Such cavities 
can be used as a protective screen which protects useful ob- 
jects from destruction and also for reflecting the compression 
wave (and directing the reflected tensile stress wave to the 
given object which must be demolished).  V. N. Mosinets (1963, 
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1967)   found certain fundamental  laws for  the screening of 
stress waves.     The experiments made by him have shown  that it 
is  possible  to reflect  in  this manner in  the direction of the 
demolished object up to  20-25% of  the energy of  the waves 
(67-72% is used up to destroy  the material near  the screen 
and only 8-10% passes  through  the screen) . 

In connection with  the problem of protecting buildings 
from an explosion,the studies  by M.  A.  Lavrent'ev,   V.   M. 
Kuznetsov and Ye.  N.   Sherr   (1962),  who developed a  cavitational 
system for  the protection  from an explosion should be mentioned. 

Explosions are used more and more in the construction of 
very  large buildings which require more powerful well-calculated 
explosions.     As  the scale of   the explosion increases,   the 
similarity law is violated as a result of  the effect  of gravity, 
and  it becomes necessary  to use more accurate computational 
formulas which take  into account  the scale factor.     G.   I. 
Pokrovskiy proposed the corresponding corrections  for  the 
M.   M.   Boreskov formula  for  the calculation of  the size of  the 
charge.     The experimental  studies by M.  M.  Dokuchayev,   V.  N. 
Rodionov and A.   N.  Romashov   (1963)  with powerful  ejection ex- 
plosions» made it possible  to determine a  formula  for  the calcula- 
tion of large charges  taking  into account  their  scale.     The 
theory for the formation of cavities and the  theory  of rock 
movements during ejection explosions have been  the  subject of 
many  investigations  in  the  last  few years.     The most  important 
reai Its along these  lines were obtained by F.  A.   Baum,  L.  K. 
Belopukhov,   A.  F.   Belyayev,   V.   A.  Vinogradov,   O.   Ye.   Vlasov, 
M.   M.   Dokuchayev,  V.   M.   Kuznetsov,  M.  A.   Lavrent'ev,   G.  M. 
Lyakhov,   L.   N.  Marchenko,   G.   I.   Pokrovskiy,  V.   N.   Rodionov, 
A.   N.   Romashov,   K.   P.   Stanyukovich,   I.   S.   Fedorov,   A.   A. 
Chernigovskiy,  Ye.  N.   Sher,   B.   I.   SheKhter. 

Studies of directed  rock ejection by an explosion are 
of  particular interest.     G.   I.   Pokrovskiy,   I.   S.   Fedorov and 
M.   M.  Dokuchayev   (1963)   proposed to realize directed ejection 
by  means of creating additional  free surfaces,   cavities or 
craters on  the given ejection side.    M.  A.  Lavrent'ev,   Ye.  N. 
Sher  and V.   M.  Kuznetsov   (1964) ,  starting with a simple exact 
solution of  the problem in a hydrodynamic formulation,   proposed 
to use for  this purpose a  nonuniform distribution of  the ex- 
plosive charge along the depth of  the holes   (the     thickness 
of   the explosive  layer must   increase linearly with  the depth). 
A.   A.   Chernigovskiy   (1965)   developed a variant,  of  this method, 
using a special  system of  plane and wedge-shaped charges. 
Apparently  the joint utilization of  the ejection explosion methods 
that were mentioned is most  effective. 
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A characteristic example of a powerful  directed ejection 
explosion is  the explosion that  took place in October  1966 in 
Meadow,   as a result of which a runoff    dam was  formed. 
In the process  for several  seconds before the explosion of  the 
main charge  (about 3700  tons of    trotyl)   four axuiliary charges 
were  exploded  (total weight about  1600 tons),   creating an 
artificial auxiliary crater which ensured the directed ejection 
of  the  rock. 

The use of powerful short-term pressures formed during 
a   directed explosion for  the creation of high velocity metallic 
jets   (the   hollow charge phenomenon)   is exceptionally  in- 
teresting.     The   hollow  charge  effect which was already  discovered 
in  the  last century consists of  the fact that,   for instance, 
if,   on  the external  surface of  a metallic cone-shaped shell, 
the charge is distributed uniformly and is subsequently ex- 
ploded,   as a result of  the explosion a thin jet   (thread)   is 
formed from the metal which moves along its own axis  at  a  tremen- 
dous  speed  (on the order of 2-10 km/sec) .    A speed of about 
100 km/sec was attained in   hollow charge jet experiments  in a 
vacuum. 

The studies by M.   A.   Lavrent'ev,  who developed a hydrodynamic 
theory of  this phenomenon are  fundamental  in   the  theory of hollow 
charges.     He determined on  the  basis of  this  theory  the speed, 
thickness and length of  the   hollow charge jet that  is  formed as 
well  as  the speed and depth at  which the initial jet 
penetrates the solid which  lies on its path of motion. 

Many interesting aspects  of  the use of an explosion   (for 
example,   during pressing,   hardening of  the structure  of metals, 
catalytic   acceleration of  chemical reactions,   etc),   which 
merit  a special  discussion are  outside the scope of  this  survey. 

A  problem which is allied  to demolition during an explosion 
occurs  in the study of  the collision of bodies moving at  high 
relative velocities   (depending on  the material  from hundreds of 
meters  to cosmic speeds on  the  order of tens of kilometers per 
second) .     Important  results along  these lines were obtained by 
L.   V.   Al'tshuler,  F.  A.   Baum,   M.   I.   Brazhnik,  F.   F.   Vitman, 
L.   A.   Vladimirov,  L.  A.   Galin,   N.  A.  Zlatin,   K.   K. 
Krupnikov,   M.  A.   Lavrent'ev,   K.   P.   Stanyukovich,  V.  A. 
Stepanov,   G.  P.   Cherepanov,   B.   I.   Shekhter,   and others.     The 
extent   to which this phenomenon  is understood corresponds 
approximately to the general  level of the theory of action of 
an explosion on the surface of  a solid. 
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&12.     Some Special  Problems  in the Mechanics of Fracture 
i 

The intense development of technology poses a series of 
new important problems in the mechanics of fracture.  We first 
mention the  problem of the effect of irradiation on the strength 
and rupture of solids (neutron and proton beams, powerful 
photoirradiation, high frequency magnetic and magnetic fields, 
etc.) .  In connection with the needs of rocket and space 
technology, the destruction of solid fuels which occurs under 
complex combustion conditions which is often the cause for 
the transition of the engine operation to an unstable regime 
is of great importance.1  Certain problems related to new 
technological processes also occur in the study of known 
phenomena (disintegration of fluids, the effect of residual 
stresses and other problems). 

The study of the strength of ideal structures is of funda- 
mental importance in the mechanics of fracture and its many 
applications. By an ideal structure is meant a strictly periodic 
arrangement of the atoms in space (an ideal crystal lattice). 

Specific problems in the mechanics of rupture which are 
intimately related to physical chemistry and gas dynamics 
occur in the study of certain unstable combustion processes 
of solid fuels which are especially important in rocket 
technology  (I. Ye. Sorkin, 1964). 

One of the frequent reasons why the engine does not operate 
in the calculated regime is the presence of crack-like defects 
in the solid fuel vhich are too large and which can 
lead to unstable combustion.  The instability mechanism 
consists of the following.  When the combustion front 
approaches the edge of the crack-shaped cavity.the combustion 
quickly spreads over the surface of the cavity, since the 
pressure in the chamber is much greater than the original 
pressure in the cavity.  As a result of the more difficult 
gas transfer, the local pressures and the temperature can 
increase sharply, especially at the end of the cavity. 
In addition to this, because of the specific structure of 
solid fuels in the end region that was mentioned, volume 
combustion can occur which, in combination with the rup- 
ture mechanism in this region, may lead to burn-outs or 
even an explosion. 
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Already the first theoretical strength estimate had a revolu- 
tionary effect on the development of the physics of strength 
and the mechanics of rupture.  Further progress in this direction 
can apparently be achieved by using quantum mechanics concepts 
from the very beginning. Here we may expect considerable 
successes not only ii a deeper and more precise study of the 
theoretical strength of known crystalline structures, but also 
in the discovery of new structures, for example, structures with 
a much higher strength. 

We will briefly discuss some of the problems that were 
mentioned above. 

12.1. Disintegration of Liquids 

The upper bound for the volume strength of the fluid which 
is used is the absolute value of the maximum negative pressure 
which can be ^nplied to the fluid.  The upper bound for the 
volme strength varies within a wide range for different liquids. 
For example, at 200C, this quantity is 24,500 kg/cm2 for mercury, 
3250 kg/cm2 for water and 600 kg/cm2 for ethyl ether.  These 
numbers correspond to the concept of the disintegration or 
decomposition of the fluid which takes place simultaneously 
in the entire volume. However, the disintegration mechanism 
for fluids is much more complex.  The fluid begins to disintegrate 
from the  "weakest" link (such a link can be, for example, a 
gas bubble contained in the volume of the fluid) . During the 
expansion of the fluid,the radius of the bubble and the surface 
energy of the liquid are increased and the gas pressure in it 
drops.  A simple calculation shows that the dependence of the 
tensile stress p on the radius of the bubble R has the form 
given in Fig. 3. Thus, until the hydrostatic pressure reaches 
the maximum value, the gas bubble is stable.  The loss of stability 
occurs at the instant when the hydrostatic pressure attains the 
maximum.  The disintegration mechanism of fluids is analogous 
to the brittle rupture mechanism in solids. 

Fig. 3 

-559- 

J 



A study of the strength of the fluid has shown that it 
decreases as the radius of the bubble increases. Hence, the 
^TS bubble with the greatest radius from among all existing bubbles 
before the expansion is most dangerous.  These concept? are 
confirmed experimentally by the considerable increase in the 
strength of the liquid when the gas bubbles are removed by 
means of applying large pressures (E. N. Harvey, V. D. MacElroy 
and A. G. Viteli, J. Appl. Phys., Vol. 18, No. 2, pp. 162-176). 

However, the existence of small gas bubbles is difficult 
because of their solubility in the surrounding liquid, and, 
therefore, in this connection gas bubbles must be considered 
which are formed in the fluid during favorable fluctuations. 
Such a bubble increases when the elasticity of the liquid 
vapor p is greater than the external pressure p (the sum of 

the hydrostatic pressure and the surface tension force), and 
is reduced in the contrary case.  The critical dimension of 
the bubble is 

Key:  a. v 

Thus, the disintegration of the fluid subjected to the pressure 
p - p occurs at the instant when gas bubbles with a radius 

♦ 
R > R are formed. 

Experimental tests have shown that the strength of liquids 
is 5-6 orders of magnitude lower than the theoretical strength. 
One reason for this divergence is the fact that the disintegra- 
tion of fluids occurs not in the volume but on the separation 
boundary of the liquid and any solid surface (the particles 
suspended in the liquid, the walls of the vessel, etc.). 

Ya. I. Frenkel (1945) who introduced into the discussion 
the value of the angle on the edge (the damping angle) calculated 
the strength on the "solid-liquid" boundary during the rupture 
of the vapor bubble.  The calculations have shown that the sur- 
face strength is reduced as the damping angle increases and 
that it becomes much smaller than the volume strength. 

The volume strength of liquids increases monotonically with 
an increase in the temperature and becomes zero near the critical 
temperature^which agrees relatively well with experiments for 
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the majority of liquids,except water for which the maximum 
volume strength is attained at 60C.  The similarity between 
the disintegration mechanism in fluids and solids served 
as an impetus for making a number of experiments which have 
shown at sufficiently high deformation rates that the liquid behaves 
like a solid which can undergo brittle fracture. 

M. 0, Kornfeld and M. M. Ryvkin (1939) made a series of 
original experiments on a mixture of rosin and transformer 
oil in which the desired viscosity of the mixture was obtained 
by varying the rosin concentration.  The disintegration of the 
jet flowing out through the bottom of the vessel was obtained 
with the aid of a Guillery impact machine. The experiments have 
shown that for small rates the deformation of the jet is 
plastic (laminar) and when the impact rate is about 23 m/sec 
brittle rupture of the jet occurs and the brittle rupture 
phenomenon can be observed at viscosities on the order of 
10  poise, i.e., in substances which are known to be liquid. 

We also mention here the interesting features of the un- 
stable flow of polymer systems which leads, under certain 
conditions, to brittle rupture. 

Experiments made on various polymer substances (solutions 
and melts elastomers, rubber mixtures, etc.), which were 
pressed from smooth samples have shown that the surface of 
the jet can vary, depending on the flow rate, from light tur- 
bidity (coarseness) to a complete decomposition of the jet 
into individual irregularly shaped pieces.  To desicribe this 
phenomenon, various terms are used in the literature vhich 
attempt to emphasize the peculiar behavior of the surface of 
the jet in the given case under consideration ("shagreen," 
"orange skin," "disintegration" or "break-up" of the melt, 
"elastic turbulence" or "unstable flow") . By the break-up of 
the melt is meant the appearance of sharp fluctuations in the 
flow at the entry to the capillary which leads to considerable 
defectiveness.  The study of the break-up of a melt is of 
great importance, for example, in the manufacturing technology 
of polymer materials, where the defectiveness of the jet hampers 
considerably the prod'^Livity of such processes as the ex- 
trusion of fibers, insulation for cables, etc. 

In   Che experimental studies the flow occurred predominantly 
under isothermal conditions with a constant volume rate or 
drop in the pressure in which the shearing stress and the 
shearing rate were determined.  T'ne instant at which the 
unstable flow regime occurred corresponded to some critical 
values of the rate and shear stress. 
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G.  V.   Vinogradov,   M.  L.   Fridman,   et  al.   (1962)  have shown 
that   two critical  points exist,   the first of which corresponds 
to  the beginning  of  the  unstable flow and  the second to  the 
appearance on  the jet  of  large periodic   defects   (at higher 
velocities).     The  dependence of  these critical  values on various 
parameters was    studied extensively  (such as  the  temperature, 
the relative  j.ength of   the capillary and molecular characteris- 
tics of  the polymer). 

In   the majority of  studies  in which   the effect of  the 
temperature   vas  studied,   it was shown  that  the critical value 
of  the shear stress varies little when  the unstable flow be- 
gins.     In  this  case the  dependence  of  the critical  shear 
rate on the   temperature was determined by  the activation energy 
calculated  from   the largest Newtonian viscosity   (G.  V. 
Vinogra lov  und A,   Ya.   Malkin,   1965). 

A       wjy of  the effect of   the  length  of  the  capillary on 
the condition for   the beginning instability has  shown  that  the 
critical  values  of  the  velocity and shear stress  increase as  the 
length  increases  at constant  pressure,   which,   in   the opinion 
of many authors,   is related to  the  disturbing effect of  the ot  many 
inlet A 

When theoretical schemes were constructed,which take into 
account the phenomenon that was described above, a large number 
of experimental factors was taken into account which have shown 
that in many cases the unstable flow of polymers is related to 
their elasticity.  The hypothesis on the main role played by the 
high elasticity when instability of the flow begins was proposed 
for the first time by G. P. Tordell (Trans. Soc. Rheol., Vol. 1, 
1957, pp. 203-212) and E. B. Begli (Trans. Soc. Rheol., Vol. 5, 
1961, pp. 355-368) . 

G. V. Vinogradov, A. Ya. Malkin and V. F. Shumskiy proposed 
in 1968 the hypothesis that this is caused by the excessively 
slow stabilization of the stationary values of the normal 
stresses and deformations in the displacement flow in com- 
parison with the tangential stresses.  However, the effect 
of the geometry of the inlet zone is rather qualitative 
than quantitative.  In other words, the critical conditions 
remain the same regardless of the angle of 
the inlet cone (in a sufficiently wide range of variation) 
and the intensity with which the defects appear in the jet 
depends on the flow conditions at the inlet to the 
capillary. 
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G. V. Vinogradov, A. I. Leonov and A. Ya. Malkin (1963), 
without considering the detailed instability mechanism, pro- 
posed as the condition for the beginning instability, the 
attainment of a certain ratio between the elasticity and 
viscosity forces in the flow.  For a system with one relaxation 
time, this criterion represents the product of the characteristic 
relaxation time and the displacement rate»and in the simplest 
case, it is equal to the critical value of the elastic deformation. 
Experimental studies made on different polymer systems have 
shown that the beginning instability is described satisfactorily 
by this criterion.  Thus, the highly elastic deformation which 
accumulates in the flow determines the critical flow condi- 
tions . 

Recently attempts were made in the studies by V. A. 
Gorodtsov, A. V. Karakin, A. I. Leonov and S. A. Regirer to ob- 
tain a solution of the stability problem of flow of elasto-viscous 
media and to solve individual special problems. 

We note that under certain conditions some analogy was 
noted between the brittle rupture phenomenon in bodies and the 
beginning instability of the flow. 

G. F. Hutton (Nature, Vol. 200, No. 4907, 1963, pp. 646- 
648, Proc. Roy. Soc, London, A287, No. 1409, 1965, pp. 222-239) 
proposed a criterion for the beginning instability of the flow 
which is analogous to the Griffith criterion during the forma- 
tion of cracks in an elastic medium.  However, E. B. Bagley and 
coauthors (Nature, Vol. 203, No. 4941, 1964, pp. 175-176) 
subjected this criterion to criticism, since the Griffith 
criterion does not take into account the energy dissipation 
during irreversible deformations,which plays an important role 
in elasto-plastic media. 

12.2.  Effect of Residual Stresses and Loading Rates 
on the Strength of Solids*- 

It is known that residual stresses2 exist in bodies re- 
gardless of the external effects (forces and temperature effects) 

Ti  A detailed discussion of the problems that are touched on here 
can be found in the n.onographs by F. F. Vitman (1933), I. Ye. 
Kantorovich and L, S. Livshits (1943), P. M. Gur' (1947), 
I. V. Kudryavtsev (19bl), Ya. B. Fridman (1952), M. A. 
Babichev (1955), B. A. Kravchenko (1962), A. D. Monasevich 
(1962), V. V. Abramov (1963). I. A. Birger (1963). 

2.  They are also called internal, natural or original stresses. 
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which are found as a result of the nonuniformity of the linear 
or three-dimensional deformations in adjacent volumes of the 
material. Depending on the dimensions of the latter, we 
distinguish macro- micro- and ultramicroscopic stresses 
(stresses of the first, second and third kind).  The first 
scientific studies on residual stresses were made by H. Rodman 
(1857), I. A. Umnov (1871) and N. V. Kalkutskiy (1887), 
who were the first to propose a method for the measurement of 
internal stresses.  However, for a long time  these studies 
went unnoticed and only beginning inthe 20's of our century 
serious attention was given to the study of problems related 
to internal stresses. 

Apparently, no standard classification of internal stresses 
exists.  The most complete and accurate classification was 
proposed by N. N. Davidenkov (1936), which was made more pre- 
cise by B. M. Rovinskiy (1948, 1949).  The report by E. Orowan 
at the Symposium on Internal Stresses in Metals and Alloys 
(London, 1948) in which the definition of internal stresses 
corresponded to the concept of an "internal stress" introduced 
already by N. V. Kalakutskiy, is devoted to the problem of the 
"classification and nomenclature of internal stresses." Without 
analyzing these problems, we can arbitrarily divide the residual 
stresses into macrostresses and microstresses, depending onthe 
rate of change of the stresses along the space coordinate. 
Macrostresses are stresses in the material which vary negligibly 
within the dimensions of the grain.  Below, we will touch on 
certain problems connected with the effect of the residual 
stresses on the strength and deformations in parts which take 
into account the action of macroscopic stresses. 

A necessary condition for the formation of internal stresses 
is the occurrence of the non-uniformity of the deformed state 
at various points of the body (violation of the compatibility 
condition of the deformations).  This nonuniformity may be 
the result of various causes:  the nonuniform thermal stressing 
or compression during thr nonuniform heating or cooling of the 
body, phase conversions leading to nonuniform volume changes 
(tempering, hardening, cooling after welding, etc.), nonuniform 
plastic deformation, etc. 

The complexity of studying the laws for the appearance 
of residual stresses is related to the necessity of taking into 
account the mechanical, thermal and physical-chemical factors, 
which have an effect on the behavior of the technological 
process. 
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The problem of determining the residual stresses formed 
during the metallurgical and techiologlcal processes is ex- 
tremely complex since its solution requires a theor3tlcal 
study of the associated physical-chemical processes. Promising 
studies along these lines were bogun by Ya. S. Podstrigach (1964 
and later publications).  Generally the operational residual 
stresses can be calculated within the frame of reference of 
the corresponding mechanical models of a continuous medium with 
an irreversible reaction. 

We will consider the effect of residual stresses on the 
strength during static and variable loads.  A large amount 
of experimental data Indicates the strong effect of the 
residual stresses on the reliability and endurance of struc- 
tures and buildings.  The fracture of the latter (often in the 
beginning of the operation) at a relatively low value of the 
acting stresses is sometimes explained by the disadvantageous 
distribution of the residual stresses.  Experiments have shown 
that for plastic materials, the residual stresses do not have 
a great effect on the magnitude of the rupturing force, and 
that the plastic deformation formed by the single external 
loads,leads to a reduction or even complete vanishing of the 
residual stresses. 

A study of the effect of the residual stresses on the 
static strength of brittle materials has shown that the magni- 
tude of the fracturing load is usually lower than the value 
of the same load in the absence of residual stresses. The 
small plastic deformations which occur before the rupture do 
not eliminate the residual stresses, and given the tendency 
of the material to brictle rupture, the effect of the residual 
stresses may be considerable. 

To reduce the residual stresses and harmful effect on the 
brittle strength, the parts are usually subjected to special 
thermal treatment. 

Various parts are often subjected during the operation to 
the action of variable stresses.  Then  in the general case 
the expression for the stresses which vary according to the 
asymptotic cycle has a constant and variable component: 

o  fr,,,  av/(i). (12.2) 

where t(T) is a periodic function of dimensionless time 
(- 1 < f(-) 

slant stress 

(- 1 < f(T) < 1, a  is the variable stress, and a  is the con- . / _  -  v '     m 
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It is known that the residual stresses may vary under the 
action of cyclic loads.  If the sum of the residual stresses 
and the variable stresses is larger than the elasticity limit 
of the material, plastic deformations which reduce the 
residual stresses are formed on the cyclic load.  In addition, 
in the case when the plastic deformation caused by the 
variable stresses exceeds the magnitude of the original 
residual stresses^the residual stresses may change sign (L. A. 
Glikman, 1956). 

In th*1 case when the sum of the stresses (the residual 
and variabxe stresses) is smaller than the elasticity limit of 
the material, the residual stresses vary little under the 
action of variable loads. 

Experimental studies have shown that the residual stresses 
are reduced jn the surface layers,which are weaker by their 
physical nature.  In this case, to preserve the residual stresses 
the surface layers are hardened and shot blating is used,which 
leads to the formation of residual compression stresses and 
an increase in the fatigue strength of the parts (S. V. Serensen, 
1950, I. V. Kudryavtsev, 1951, M. M. Kobrin, 1954, M. M. 
Severin, 1955).  Thus, the residual compression stresses in- 
crease the fatigue strength while the tensile stresses have 
an unfavorable effect. An increase in the fatigue strength 
during considerable residual stresses iranlfests itself to a 
large extent in less plastic materials in the presence of 
stress concentrations. 

The phenomenon of residual deformations during thermal 
cycles was studied in the studies by A. A. Bochvar, et al. 
(1957), A. A. Bochvar and G. I. Thomson (1957), N. N. 
Davidenkov and V. A. Likhachev (1960). 

The effect of the residual stresses on the rupturing 
process was studied by V. A. Lomakin, Ya. S. Podstrlgach, S. F. 
Yur'ev (mechanical studies which determine the values of the 
residual stresses connected with volume changes), by S. P. 
Borisov, N. A. Borodin (relaxation problems in residual 
stresses), by V. P. Kogayev, M. N. Stepnov (quantitative laws 
for the increase and decrease of the load-bearing capacity 
related to the stress fields, the temperature-time factor) 
and many others. 

In strength calculations, sometimes it is necessary to 
take into account the loading rates, since, under real condi- 
tions, the deformation processes occur at various rates, 
all the way from the smallest rates (for example, under long- 
term creep conditions) to very high rates (for example, in those 

-566- 

i - J 



cases when the plastic deformation and rupture end in a minute 
fraction of a second).  The bulk of the studies along these 
lines are the experimental studies related to the determination 
of the mechanical properties of dynamically deformable materials 
The most complete survey of the studies made along these lines 
can be found In the monograph by L. P. Orlenko (1964) and also 
In the book by P. M. Oglbalov and I. A. Klyko (1966), which 
provide Information about the behavior of the materials under 
superlntense effects. 

The static and dynamic characteristics of Armco iron 
and different steels under impact and wrapping loading are 
described in the monograph by Yu. Ya. Voloshenko-Kllmovitskiy 
(1965) . 

Generally the effect of the loading rate reduces to the 
following: as the loading rate increases the relative role 
played by the plastic effect is reduced and the rupture becomes 
more brittle. 

The effect of the loading rate in carbon steels was 
investigated most extensively.  Two yield points are introduced 
(the upper and lower) and it turns out that the upper yield 
point is most sensitive to a change in the loading rate.  In 
order to have an idea about the magnitude of this effect, we 
note that when the loading rate is increased by one order of 
magnitude, the upper yield point in carbon steels is increased 
approximately by 4 kg/mm^.  Thus, when the loading rate is 
Increased by 5 orders of magnitude, which corresponds roughly 
to a transition from static to impact loading, the upper yield 
point increases by 20 ki/mm .  It is clear that for soft (low 
carbon) steels this effect is considerable and for high strength 
(high carbon) steels it can be ignored.^- 

A survey of experimental studies on lagged flow in steels 
was given in 1968 by Yu. V; Suvorova.  At the same time 
Yu. N. Rabotnov proposed a*general three-dimensional model 
for an elastoplastic medium with delayed flow.  Within 
the frame of reference of this model he and Yu. V. 
Suvorova solved several concrete dynamic problems. 
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P. I. Skokov and V. P. Belyayev (1966), applying the 
statistical theory of strength studied the problem of the 
increased resistance to deformation with the increase in the 
deformation rate.  The authors have shown that an increase in 
the deformation rate leads to a more uniform distribution of 
the stresses over the cross section of the sample. 

G. I. Pogodin-Alekseyev and B. A. Artamonov (1964) com- 
pared the stress-strain diagrams constructed using the method 
of deformation characteristics and oscillographs from samples 
that were not cut during the study of structural steels sub- 
jected to different kinds of thermal treatment.  V. I. Bugay 
and V. P. Troshchenko (1966) , who continued the investigations 
along these lines»taking into account the experimental data 
have shown that the dissipation of the energy under elasto- 
plastic deformation conditions depends on the degree of hetero- 
geneity and the type of stressed state (for example, according 
to the data of F. S. Savitskiy (1964), the energy losses under 
elasto-plastic shock conditions in bending are approximately 
7%, and under impact stressing, 5%). 

V. Ya. Moroz, A. V. Popov and Yu. P. Sogrishin (1964) 
studied the effect of the deformation rate on the plasticity 
of different steels and also on aluminum and other alloys. 
The authors divided these materials into three groups, depending 
on the reaction to an increase in the deformation rate. 

The static and dynamic tests of copper samples made by 
A. G. Bobrov, A. I. Nikolayeva and Ye. 0. Shvaykovskaya (1964) 
have shown that during a dynamic load, the crystal lattice is 
less distorted than in the case of the static tests. 

Unlike in metals and the majority of natural materials, 
polymers are characterized by a stronger effect of such 
factors as the deformation rate, the temperature and time 
effects. 

The study by K. A. Kerimov (1965) has shown on the example 
of rubber and polyvinyl that the dynamic "stress-strain" 
curves which are nearly lines lie above the static curves and 
that in the region of stresses, which are nearly zero, the 
residual deformations from the dynamic loads may exceed  the 
static deformations by a factor of three. 

The study of various plastics (epoxypolyester resin, 
polyvinyl-butyryl, glass-textolite) enables N. P. Ivanov and 
V. A. Stepanov (1965) to detect a relatively high correlation 
between the impact strength and the temperature (an increase 
in the impact rate by a factor of 10^ under raised temperature 
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conditions leads to an increase in the strength by a factor 
of 3-6, whereas at a temperature of -196° for the same increase 
in the rate, the strength is only increased by 25%). 

The study by S. M. Kokoshvili and V. P. Tamuzh (1966) 
investigated the effect of the deformation rate on poly- 
formaldehyde samples.  The results have shown that an increase 
in the deformation rate leads to an increase in the strength 
of the materials whereas the ductility does not change, 
tor all practical purposes, which leads to an increase in the 
rupture energy.! 

12.3.  Fracture under the Effect of High Frequency 
Electrical and Magnetic Fields 

Recently, both in the Soviet Union and abroad, electro- 
physical methods used in the rupture of various materials 
have been investigated intensely.  These required a detailed 
study of electro-physical and other properties of the materials 
subjected to the effect of electromagnetic  fields and 
electric charges.  The first studies along these lines deal with 
the electrothermal destruction of dielectric materials during 
dielectric heating.  In the 40's G. I. Babat, A. V. Varzin, et al, 
studied on the example of rocks the behavior of dielectric 
materials in high frequency electric fields between flat 
electrodes.  It was shown that the high voltage electric fields 
that are formed under the electrodes lead to the dielectric 
heating of the regions adjacent to the electrodes and the 
formation of temperature stresses (for rocks, this leads to 
the cracking of large pieces and the splitting of the rock from 
the monolith).  The effectiveness of the rupture depends con- 
siderably on the agreement in the parameters of the oscillatory 
circuit of the generator with the properties in the material 
(the load).  In addition, the electric field which is formed 
in a certain way may ensure the splitting of the material 
along a given splitting line ("directed high frequency rupture"). 
Many experiments in this field were made on rocks by V. S. 
Kravchenko, A. P. Obraztsov, V. M. Semenov, and others (1961- 
1963) .  The directed high frequency rupture may be particularly 
valuable, for example, in such problems as the dielectric 
heating of rocks containing valuable inclusions, which requires 

T^  Sufficiently complete information dealing with studies of 
the effect of the rate on the mechanical properties and 
strength of metals and polymers is available in the 
published 1968 survey by M. I. Reitman and G. S. 
Shapiro. 
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a selective destruction of empty rocks and preservation of 
valuable rocks. 

The attempts to intensify the destructive process relative 
to simple dielectric heating,led to the discovery of the 
high frequency thermal breakdown phenomenon. 

The theory of high frequency thermal breakdown and electro- 
thermal fracture must relate the physical properties of the 
material subjected to the crushing to the parameters of the 
field which determines the thermal breakdown and fracture 
conditions. Attempts to construct such a theory for rocks 
(ferrous, granular quartz, and similar rocks) were made by 
V. D. Itskhakin, A. P. Obraztsov and V. V. Ustinov (1962-1964) 
but the complexity of the structure and the anisotropy of 
the rocks, the variability of their characteristics and the 
complex dependence of the latter on the temperature, the 
stressed field and the frequency for different samples, made it 
only possible to obtain some qualitative results. 

Recently, in connection with the successes in the field 
of high power electronics, which made it possible to design 
powerful high frequency generators, wave guides and radiators 
the study of the fracture of materials by super high frequency 
(SHF) radio waves began.  In the 50's G. I. Babat, A. V. 
Varz^n, et al., have shown that the super high frequency radio 
wave (on the order of 3000 MHz) incident to sandstone causes 
the splitting off of thin layers from its surface.  Using a 
5 kwt magnetron, an impulsive splitting takes place in inter- 
vals of several tens of seconds and when the power of the 
magnetron  is increased 3 times,the destruction productivity 
is increased 6 times.  The depth and the distribution of the 
electromagnetic energy flow in the material depends on the 
length of the elactromagnetic waves, the manner in which they 
are supplied and the electrophysical properties of the material. 
During the action of electromagnetic waves from a distance 
they can be focused at some depth which may lead to the 
phenomenon of the splitting of the material ("radio wave 
breakage") .  This phenomenon was verified experimentally on 
a granite sample by V. S. Kravchenko, A. P. Obraztsov, et al., 
(1965). 

The thermal factor is not only the cause of the fracture 
in the case of a heat flux (jet burner or plasmatron)  but 
also in the case of radio wave destruction. However, radio 
wave heating occurs in the entire volume pierced by the electro- 
magnetic flux while, during thermal heating, the heat propagates 
into the depth mainly as a result of thermal conductivity. 
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Conversions leading to a weakening of the strength, all 
the way to complete destruction of the grain of the material> 
or to the weakening of the intercrystalline bonds under the 
effect of high frequency electromagnetic fields and also the 
effect of the splitting of mica in high frequency electric 
f ieldSj are of particular importance in rock science.  The 
search for the most effective methods advanced the problems 
of the destruction of rocks by industrial-frequency currents 
(thermal breakdown, the method of an electric arc and 
melting of the rock) and impulsive electrical charges which 
differ in their dynamic and explosive character. 

12.4. Effect of Neutron Radiation on the Mechanical 
Properties, Strength and Rupture of Solids^ 

Many experiments dealing with radioactive irradiation have 
shown considerable changes both in the chemical and mechanical 
properties of materials, where in many cases these changes can 
only be restored with difficulty and are preserved for a long 
time.  This fact required not only the development of technologi- 
cal protective measures from harmful effects, but also the 
development o ? new methods for the calculation of structural 
elements and buildings subjected t%o radioactive radiation (atomic 
reactors, artificial satellites, spacecraft and space stations). 

The main method for the experimental study of radioactive 
radiation having an effect on the strength characteristics of 
the material, is determining the spectrum of the natural 
frequencies of the sample and the change in the logarithmic 
damping decrement. A large amount of experimental data on 
radioactive radiatxon has shown the insignificant change in the 
modulus of elasticity, while the strength (and especially the 
yield) are exceptionally sensitive to radiation.  The common 
factor for metals during irradiation is the heterogeneity of 
the elasto-plastic properties, the outward displacement of 
the stress-strain diagram, the tendency towards embrittlement, 
and, in the majority of cases, the reduced strength in the 
plastic masses. 

The effect of t.\e  radiation on high-molecular substances 
is of particular interest.  For moderate radiation dose.j, 
plastics (for example, polyethylene) are strengthened whereas 
other substances lose strength and become brittle all the way 
to conversion into powder.  However, under large radiation doses 

Ti  More detailed information on these problems is available 
in the monograph by P. M. Ogibalov and I. A. Kiyko (1966). 
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almost all plastics are destroyed which brings to the fore 
the problem of reinforcing the plastics and producing radiation- 
resistant polymers. 

The most complete list of studies dealing with the changes 
in the properties of materials and under the effect of 
radioactive radiation which include a description of some 
physical mechanisms for this phenomenon is available in the 
surveys by F.Bowie (1959) and V. S. Lenskiy (1960).  The 
survey by V. S. Lenskiy proposed a generalization of the theory 
of small elasto-plastic deformations to the case of an hetero- 
geneous medium caused by the nonuniformity of the radiation. 

The irradiation of the substance by a neutron flux causes 
a series of complex structural changes and conversions.  The 
primary effects consist of the displacement of the atoms from 
the lattice points and also of the excitation of atoms and 
electrons without displacement and   nuclear conversions, 
and the secondary effect is the ionization effect. 

Internal stresses may occur in the body due to different 
physical processes (for example, as a result of the three- 
dimensional elongation that is formed in the body.  Generally, 
the different three-dimensional elongation that occurs at 
various points of the body leads to the formation of internal 
stresses even in the absence of external loads. 

Yu. I. Remnev (1958, 1959) considered the relation between 
the stresses and the small deformations in a crystalline solid 
during three-dimensional elongation caused by irradiation 
by heavy particles and proposed a number of hypotheses which 
made it possible to determine this elongation. He studied 
neutron irradiation as well as the bombarding neutron which 
passed through the crystal lattice without interacting with 
the atoms of the Coulomb forces, causing the greatest damage. 
It was assumed that as a result of the irradiation, the 
mechanical properties of the material (the Young modulus, 
the yield point, etc.) may vary and that the isotropy of the 
material is preserved. A. A. Il'yushin and P. M. Ogibalov 
(1960) proposed methods for calculating the strength of shells 
in a thick-walled cyclinder and a smooth sphere. As in the 
studies by Yu. I. Remnev, it was assumed here that the drop 
in the neutron flux is proportional to theaiergy and the 
thickness of the layer and that the properties of the body at 
a given point depjnd on the radiation dose at this point. 
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A.   G.   Zhuravlev  (1961,   1962)   assumed in studies dealing 
with the  determination of  the stressed and deformed state of 
light metals during irradiation,in addition to the assumption 
that  there are no nuclear reactions and that the two hypotheses 
that were mentioned above are satisfied,that the nonuniformity 
of  the elastic properties in  the body can be ignored.     This 
is due  to  the presence of  the experimentally verified facts 
that  the  elastic properties change little in comparison with 
the changes  in  the plasticity and strength characteristics, 
which makes  it possible to use  the ordinary equations of 
elasticity  theory to calculate   the stresses and strains. 

12.5.     Fracture under   the Effect of Powerful 
Photoirradiation 

New aspects in the study of   the strength and fracture of 
solids were discovered ii connection with the use of  lasers 
which can generate very powerful   laser beams.     The studies of 
the stressed state during the passage  of a laser ray were 
begun  in  transparent polymers   (organic glasses).     The passage 
of  the  laser ray  is accompanied  by complex physical phenomena 
and for  a particular power of  the pulse  it leads  to the  rupture 
of  the  transparent material.     At   the present time    relatively 
few physical-mechanical studies  of  this phenol 
In this  regard,   the problems of  determining 
having an effect on the  fracture  as well as 
of  the  laws for  the conversion of  the energy o+   c' 
magnetic  oscillations into mechanical  stress are 
completed. 

♦'e available. 
parameters 
rmlnaxion 
^lect co- 
fror» 

The   first  study along  these   lines was the study by B.   M. 
Ashkinadze,   V.   I.   Vladimirova,   V.   A.   Likhachev    et al. , 
(1966),   who determined the formation of  plane cracks with a 
circular  contour approximately  at  a 45    angle to the ray 
axis.     The cracks are also formed on  the path of  the laser 
beam reflected from the boundary,   when  the latter is internally 
fully reflected.     The exceptionally high energy concentration 
during  the formation of  the cracks which is generally comparable 
to  the energy concentration must   be mentioned.     In the  opinion 
of  the authors of  the study  that  was mentioned,   the fracture 
occurs under  the effect of  the coherent hypersound generated 
by the  laser.     The rupture of  the material at a 45°  angle 
occurs under  the    effect  of  the  limiting and transverse  phonons 
which are  directly generated by   the  light wave. 
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At the same time V. V. Volkov, V. A. Likhachev, et al. 
(1967), V. A. Likhachev, V. M. Salganov, et al. (1968) 
note that the main effect in these processes is heat 
liberation. 

The studies by G. I. Barenblatt, N. N. Vsevolodov, 0. Ye. 
Marin, et al. (1967, 1968) proposed ihe hypothesis that 
dynamic stresses are formed at the initial fracture instant 
in the region of the channel as a result of heating and 
the hypersound effect. The formation of the stresses leads 
to the formation of tiny shear defects in the plane of the 
largest tangential stresses which are at a 45° angle to the 
ray axis.  The formation of these defects is accompanied by 
the light energy absorption which leads to the formation of 
gas bubbles with a high internal pressure and temperature which 
determines in advance the subsequent development of the cracks. 

We note that the rupture of transparent dielectric 
substances under the effect ol powerful laser radiation occurs 
in a time period on the order of 10"^ - lO-** sec. The rupture 
begins at the local inhomogeneities and it depends both on the 
power and on the energy of the light wave. 

Some concepts about the character of the rupture of trans- 
parent polymers have also been proposed in the studies by 
B. M. Ashkinadze, V. A. Likhachev, et al. (1966, 1967), B. F. 
Ponomarenko, V. I. Samoylov, et al. (1968). 
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