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INTRODUCTION 

UNIFICATION OF TESTING AND ANALYSIS 

System identification may be defined as methods of deter- 
mining the parameters of a system from testing.  In helicopter 
dynamics it generally refers to the determination of the 
inertial parameters, the elastic parameters, and the damping 
parameters of a structure (e.g., an engine, fuselage, rotor 
blade) directly from shake testing.  System identification 
is not a replacement for a priori analytical methods but, 
rather, augments intuitively based analyses by closing the 
engineering loop between analytical engineering, which 
predicts effects, and test engineering, which measures these 
effects on the actual hardware. 

Traditionally in helicopter engineering, structural dynamic 
testing served mainly to simply either confirm or deny what 
had been predicted by analysis.  Our thinking tools in 
helicopter engineering, which we use in deciding how to 
improve our designs, have been principally based on conceptual 
idealizations of analytical form with little more benefit from 
actual testing than corroboration of predictions from our 
abstractions or, very often, evidence of mysteries beyond our 
capabilities of abstract formulation.  Analysis is valuable 
in helicopter engineering only to the extent that it affects 
engineering decisions. 

We can use system identification testing ,j provide infor- 
mation of decision-making value, obtained from the actual 
hardware, and to combine testing with analysis in a more 
unified engineering approach to the development of helicopter, 
and helicopter component, structures.  Helicopters do not 
"fly off the drawing board".  Most of the engineering is 
done, and most of the problems are solved, after a ship has 
been built.  System identification will provide an analytic 
feedback from testing, badly needed, so that as successive 
new ships are built, more of the problems will be solved 
before the ship is built.  In the shorter term, system 
identification will short-circuit much of the trial and 
error in the development of hardware helicopters, as opposed 
to paper helicopters, by extraction of analytical parameters 
from the helicopters themselves through testing. 



The need for a more unified dynamics test and analysis 
approach to all of aerospace structures and substructures 
is widely proclaimed (e.g., References 1, 2, and 3) and the 
helicopter is the most dynamically troubled of any flying 
machine (Reference 4). 

System identification is not a panacea for structural 
dynamics problems.  The logical extension of what are 
called "Impedance Methods" to their most useful engineering 
level, system identification is a synergistic combination of 
what we can measure in the hardware with what we analytically 
conceive of as idealizations of the hardware into a single 
engineering systen of rational decision making in the per- 
fection of helicopters and their components. 

SYSTEM IDENTIFICATION - SOLUTION 

Utilizing "impedance" test data, system ■identification 
distills from shake testing the principal parameters of 
analytical concern.  The concern at present is in obtaining 
elastic and inertial parameters of a helicopter structure 
or substructure, primarily, and damping parameters, 
secondarily, through testing.  It is the first task of 
system identification in helicopter work to separate the 
elastic parameters from the inertial parameters and identify 
each.  We do this first in terms of what are called "measur- 
ables", such as influence coefficients, which are independent 
of the number of measurement stations.  Mass information and 
stiffness information which readily divide into "measurables" 
through system identification cannot generally be obtained 
in static testing either because of confounding of the 
parameters, as in drop tests, or because of very small 
displacements, as in deflection tests. 

Having obtained "measurable" parameters through impedance 
shake testing, the engineer then employs the methods of 
system identification to obtain equations of motion of the 
helicopter or its components as revealed by the testing 
itself.  The engineer can use these equations to predict 
response to various loadings, to predict the dynamic effects 
of identified subsystems, to predict the effects of changes 
he can model in the structure, and to improve his a priori 
intuitive modeling techniques.  In any case, the equations and 
parameters obtained from the structure itself will supplant 
what we intuitively suppose to be parameters and equations 
when we make engineering decisions about a helicopter.  It 
is the feedback to analysis from testing that is the most 
valuable engineering part of system identification. 



■-mmi1 

SYSTEM  IDENTIFICATION  LABQRATORy   TESTING 

To test  the methods of system identification in a manner  that 
would allow comparisons  to well  established analytical  pro- 
cedures,   it was decided to  use  a specimen of fairly ideal 
analytic  form.     The  fact that the  specimen  in the  tests was 
generally  amenable to analysis had  no influence,   in  itself, 
on the ease with which  the  identifications could be made  from 
test data.     It was  further decided  that  the specimen  in  the 
laboratory  testing should be a continuous  structure,   as 
opposed  to  a simple chain  type  structure,   so that  it would 
not be  a specimen with essentially only  a  few degrees of 
freedom.     An elastically uniform beam satisfied  these con- 
ditions^ and a steel  tubular beam was  selected as  the basic 
form of the  specimen.     To eliminate  dynamic symmetry and 
uniformity,   three  lumped masses were  asymmetrically placed 
on  the beam. 

From the  standpoint of system identification,   the  laboratory 
specimen was  therefore a continuous  structure of an  infini te 
number of degrees of  freedom which was dynamically asymmetric 
and nonuniform.     From the standpoint of  intuitive analysis, 
however,   the specimen was  simplr.  enough   for approximate 
theoretical  calculation of the parameters   to be  identified 
so  that   the   theoretical  and   identified parameters  could be 
compared. 

The  specimen was  suspended  to simulate  free-body  responses 
because  helicopters  are  generally  shake  tested,   ground 
resonance  testing being the exception,  suspended as  free 
bodies.     To  restrict the identification  to  a maximum of 
six lumped parameters,   it was  specified  that only  five 
accelerometers,   plus  the  impedance  head,   could be used. 

Comparison  of system identification   results  to parameters 
derived  from theoretical  analysis of   the  specimen was  not 
considered  sufficient  laboratory  demonstration of  the single- 
point system identification   theory,   so  it  was  required  that 
identifications  be  made  independently   from  test data obtained 
by shaking at  two  stations.     The  shaking stations  selected 
were  1/2   inch   from one end of  the  specimen   and  2-1/2   inches 
from the opposite  end of the  specimen.     This allowed  a 
three-way comparison of results among  theoretical analysis 
and  two  independent  identifications. 



Correlation among the three methods of obtaining parameters 
was done  for matrices of a five-degree-of-freedom model 
covering  five modes and a six-degree-of-freedom model 
covering  five modes,   the latter being a truncated model. 
Correlation was obtained on modal accelerations   (normal 
modes and generalized masses),   inertial  coefficient matrices, 
mass matrices,   free-body influence coefficient matrices, 
stiffness matrices,  and static influence  coefficient matrices. 
The structural damping coefficient was determined for both 
the  five-degree-of-freedom model and the  six-degree-of- 
freedom model.     A method of identifying  static structural 
test  loads and deflections was demonstrated  for the six- 
degree-of-freedom model  using five modes  and using four 
modes. 

10 
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DISCUSSION OF CONCEPTS AND METHODS 

MOBILITY 

Mobility and  Impedance 

At any  frequency,   co,   the equations  of motion of a  linear 
structure with  Soroka structural damping are 

[K  - w2M + igK]{y}   =   (f) (1) 

We abbreviate  the expression by referring to  the  terms  in  the 
matrix as  the  "displacement  impedance",   Z   (Reference  5). 

[Z]{y}   =  {f} (2) 

We denote the   "acceleration impedance"   as  %  and define  it as 
the matrix coefficient of the acceleration  In  the equation 
giving the  forces.     For reasons  to be  explained later,  we 
will be working with  accelerations,   rather  than velocities or 
displacements. 

[Z]{y}   =  (f) ^3) 

Note that Z is not the second derivative of Z with respect to 
time, which is self-evident in the context in which it is 
used, and we adopt this slight abuse of mathematical nomen- 
clature because of the much needed simplification it affords 
in impedance terminology by the very obvious meaning it has 
to helicopter engineers. 

From Equation (3) we see that the accelerations are given by 

{y} = [Z]'1{f} = [Y]{f} (4) 

in which the inverse of Z, the acceleration impedance, is 
called the "acceleration mobility", Y.  Unless otherwise 
specified, our use of the term "mobility" is to be taken to 
mean "acceleration mobility". 

As seen from the matrix expressions, impedance and mobility 
are properly partial derivatives.  Acceleration impedance is 
the partial derivative of force with respect to acceleration 
Acceleration mobility is the partial derivative of accelera- 
tion with respect to force.  The j-th acceleration, as seen 
from Equation (4), can be written as 

11 



or 

9y . 3y . 

^ + jr:f3+ -•• +Trfn = h (5) 
3 n J 

Y.-f,   +  Y.0f_   +  Y.-f,  +   ...   +  Y.   f     =   y. (6) 
]1   1 D2   2 33   3 ]n  n       J] 

If we  apply one  and only one  force,   say  at  station k,   then 
we  see   from Equation   (6)   that 

Y
jk 

= Vf
k 

(7) 

In other words, mobility becomes simply a ratio of accelera- 
tion to force when only one external force is applied. With 
an external force at^k and only at k, we can measure all 
mobilities over j:  Y-iu» Ypk' Y-*ic' etc-»for as many or as 

few accelerometer stations j as we wish. 

In a continuous structure we cannot measure the impedance Z.. . 
This would require holding all the accelerations to zero  -' 
but one and "all" the accelerations are infinite. 

Measurables and Abstractions 

Suppose, now, that we ignore the "infinity minus one" problem 
by considering only a finite number of acceleration stations, 
say n.  Further suppose that we found a practical method of 
holding n-1 accelerations to zero.  Then we could measure any 
impedance Z., for n stations.  But if we considered N stations 

where N ^ n, then the value of Z.. for N stations would be 

different from the value of Z.. for n stations.  We see, 3k 
therefore, that the value of an impedance is a function of 
the number of stations chosen and is an abstraction wholly 
dependent on the analyst's intuitive simplification of a 
continuous structure to one of an arbitrary number of lumped 
coordinates. 

This leads us necessarily into the concepts of "measurables" 
and "abstractions" which are covered in Reference 6.  Impedance 
is not a measurable quantity because it is not a property of 
a continuous structure but, rather, depends on the number of 
coordinates chosen at the whim of the analyst.  Mobility, to 

12 



the contrary, is a measurable quantity, a property of the 
structure at any frequency, and is completely independent of 
the number of coordinates the analyst wishes to consider. 

Similarly, as shown in Reference 6, terms in the inverse of 
the mass matrix and terms in the inverse il   the stiffness 
matrix (the influence coefficients) are measurable properties 
of the structure while elements of the mass and stiffness 
matrices are intuitive abstractions dependent on arbitrary 
choices of the analyst. 

It is therefore quite obvious that the magnitudes of 
individual terms in the mass and stiffness matrices of a 
mathematical model of a continuous structure are not, in 
themselves, of informational value in engineering since a 
given term in, say, the stiffness matrix of a 100 x 100 is 
of quite different value than the same term in a 99 x 99 
matrix of the same coordinates but one.  This is not to 
say, continuing the example, that the stiffness matrix is 
not useful; it is not o.ily useful but extremely important. 
The individual values of the elements in the stiffness 
matrix are not meaningful but the individual values of the 
elements in the inverse of the stiffness matrix are very 
meaningful. 

In general, it is the inverse of the matrices to which the 
analysts are most accustomed which are natural properties 
of a structure, i.e., "measurables", and we deal with the 
abstract inverses of these measurables solely as mathematical 
tools.  Some methods of using these abstract tools to prac- 
tical purposes are covered in an appendix. 

It is of prime importance in helicopter engineering to 
recognize that while mathematical "laws" bound the logic 
of our contemplation of the helicopter, the helicopter 
itself is a natural thing performing in a real world not 
fully described by the mathematics of which any of us are 
capable.  The object of system identification is to make 
the mathematical methods with which we are familiar in 
the industry more capable of dealing with the facts of 
real helicopters, which we can measure. 

13 



Modal Acceleration and Mobility 

Let cj) . . be the j-th element of the i-th normal mode, $.,   be 

the k-th element of tha i-th normal mode and M. be the 

"generalized mass" of the i-th normal mode given by 

* T 
M. = {({)}. [m] H). where [m] is the infinite ordered mass 

matrix of the structure.  Then the jk-th modal acceleration 
of the i-th mode is defined as 

^ii^ki 

The response of an accelerometer at j for a force at k, in 
an undamped single-degree~of-freedom system, the acceleration 
mobility approaches the modal acceleration. A., , at forcing 

frequencies far above the natural frequency.  In a multi- 
degree-of-freedom system, the acceleration mobility at 
frequencies far above the natural frequencies approaches the 
sum of the modal accelerations, 

n 

i=l ]ki 

The  i-th modal acceleration of the j-th degree of   freedom for 
a force at k is  seen  to be  the  frequency-independent measure 
of  the contribution of the  i-th mode to the  acceleration at 
j   for a force at k.     In an  undamped system of n modes,   the 
acceleration mobility   (for   force at K)   at any  frequency oo 
is  given by 

n                      w /U. 
YJk.      =-\ Ajki T-^ <9) 

1=1 1  -  u)  /Q. 

Similarly, in a system with Soroka structural damping, g, 
the real acceleration mobility is 
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and  the imaginary acceleration mooility  is 
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Rigid-Body Acceleration Coefficient 

In an  unrestrained system we have up to six,   say   Z,   "rigid 
body"  degrees of  freedom.     This means we have   Z natural 
frequencies which are  zero.     Setting the   first  Z natural 
frequencies  to zero  in Equation   (10), we write 

jka) 

z 
=     I 

i=i. 
A., . 

Dki 

N 
Z 

i=Z+l 
'jki 

to 

Q.' 
i 

2        2 
1   -   0)  /fl. 

(1  - 

2   2 
ij 

n.' 
i 

)    + g 

-) 

2 

(12) 

(Reference 7).     The  first term is,  of course,   a  rigid-body 
property which we call  the rigid-body acceleration coefficient 
(RAC)   and denote  it as E-,    At  zero f.otcinq frequency the real 

acceleration mobility  is  equal   to the rigid-body acceleration 
coefficient. 

'..    = E .,    at a) = 0 
]k :k 

(13) 

The  RAC,  E., ,   is  the  acceleration along coordinate  j   (the 

accelerometer at  j)   for a  steady  force  at k as  the helicopter 
hurtles  into space.     If  the  force were  a.  the  center of 
gravity the RAC would be  the  same value  for every point on 
the shift but when  the  force is  not at the center of  gravity 
the  ship is rotating  as well as  translating and  the  RACs 
are different  for different points.    The  RAC is  easily 
calculated from helicopter weights data.     If,   for example, 
the ship has  a total mass  M,   roll  inertia  I    and yaw  inertia 
I   ,   then lateral   (y-direction)   acceleration34 at  j   for a 
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lateral  force at k  is  given by 

■ 

Ejk        M Ix Iy 
(14) 

where Z and X represent, ar. subscripted, distances from the 
center of gravity to the iccelerometer at j and the force at 
k or vice versa. Equation (14) assumes principal axes. In 
Appendix B we derive the general expression for the RAC for 
principal or nonprincipal axes and all directionr. The RAC 
for the test specimen are presented in the following matrix 
for stations 0.5, 6, 25, 35.5, 61, and 72.5 inches. 

53.856 
48.166 43.346 

Symmetric 

28.51 26.696 20.429 
17.647 17.494 16.966 16.674 
-8.733 -4.852 8.555 15.964 33.958 
-20.63 -14.93 4.762 15.644 42.073 53.992 

Suppose now that we specify a maneuver by hub forces h, hub 
moments M and tail rotor thrust t.  Th^ steady accelerations 
at the flight deck are then given by 

xh xM xt 

'yh 

'zh 

JyM 

ZM 

yt 

E zt 

M (15) 

.1 ( 
or 

[E]{f}   =   {q} (16) 

Conversely, we can specify as many maneuver g-loadings, q, 
as there are trim forces and moments and obtain the trim 
forces and moments by 

{f} = m'1^} (17) 
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Using antiresonance theory,  which  is discussed later,  we  see 
that the  acceleration mobility at  any  frequency,  which  is a 
nonrigid response of the helicopter,  can be obtained by 
multiplying the  rigid  body  acceleration coefficient by a 
factor.     This  factor is  a  function of frequency only and 
involves  the  forcing  frequency,   thj natural  frequencies,   and 
the  antiresonant frequencies.       See  Figure  1. 

Y:k 

YJi= 

jkll 

Ajkl + AjkII 

Figure  1.     Mobility  Versus  Frequency 
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Free-Body Influence Coefficient 

Now  let  us  convert Equation   (12)   to displacement mobility 
by dividing through by minus  the  forcing  frequency  squared 

R ^jk N Vi 1  - ^i2   
Yjkco  ::: "       2  +   .E7J,      0   2  ~ 2/n  2.2 ~       2 (18) J u) i=Z+l     fi.      (1  - a) /tt.   )     + g. 

With  zero damping,   this becomes 

E.,          N         A     . 
Y!L,  = "  -^4 +     ^ -^ ^ ö (19) 

J u) i=Z+l     n.      1  -  u) /Q. 
i '    i 

If we let the forcing frequency go to zero in Equation (19) 
we would hove the deflection at j due to a force at k but, 
because our system is unrestrained, we end up with an indeter- 
minancy because of the first term involving the RAC.  In 
other words, the static influence coefficients of a free body 
are infinite.  But the second term is finite at zero frequency. 
To avoid confusion at the outset, we will call this second 
term the free-body influence coefficient, C5 . 

N   A... 
Cik =  ^   "^ (20) 3K   i=Z+l Ü. 

i 

The physical meaning of the free body influence coefficient 
is quite simple. When the free body is hurtling into space 
at constant acceleration under a force at k, the body is 
deformed. The number of inches j is displaced, relative to 
inertial axes of body, per pound of force at k is the free- 
body influence coefficient, C?,. 

In a maneuver under forces and moments, f, wherever applied, 
the deflections of the helicopter structure, q, relative to 
the inertial axes through the center of gravity are given by 

{q] = [CE]{f} (21) 

These deflections, and therefore the free-body influence 
coefficients, have less intrinsic engineering value than 
their value as engineering tools in obtaining such quantities 
as the purely elastic static influence coefficients of an 
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arbitrarily restrained free body, which will be discussed 
later.  Note that the free-body influence coefficient is a 
static property of the structure but not purely an elastic 
property because it is a function of both the elastic and 
inertial properties. 

We observe without presenting proof, since it is not germane 
to the report, that the free-body influence coefficient is a 
function only of the RAC and the nonzero antiresonant and 
resonant frequencies. 

E N I N 1 
C1k   =   Enk    [   E -T^- "      Z -^2   ] (22) 

3K        3*    i=Z+l  a   ., .       i=Z+l Ü. 
]ki i 

Three  Parameters 

In helicopter dynamics we deal with  linear systems  in which 
normal modes  exist   (Reference  5) .     To determine  the physical 
parameters of a structure,   there are  three things we  need to 
determine  from shake  tests:     the natural  frequencies,   the 
modal  accelerations,   and  the  damping coefficients.     Natural 
frequencies are readily determined mode-by-mode  from the 
plots  themselves.     The damping coefficients are of secondary 
importance  to the structural  elastic and inertial  properties 
of a helicopter and may be estimated mode-by-mode either  from 
the mobility plots directly or,  with more useful accuracy, 
evaluated in  conjunction with  the determination of the  modal 
accelerations. 

Modal accelerations are not obvious  from the plots  alone  and 
cannot be determined  for any one mode without consideration 
of other modes.     They can,  however,   be determined  for  the 
response of any one accelerometer,  given a shaking station, 
without considering any other accelerometer.     Modal  accelera- 
tion  is  the most difficult of  the  three parameters  to 
determine  from a shake test but several methods  are  available. 
Among the methods  used in  this  contract we will present a 
new one,   based on antiresonance  theory, which is  so simple 
that  it does not require a  computer but can be  done by 
hand calculation. 

Modal  acceleration is  introduced as  a simplification of 
ambiguous and confusing mathematical  terms such as 
"generalized mass" or "element of the orthogonal mode", 
the  values of each of which  depend on arbitrary 
"normalization"  that makes  them meaningless as  independent 
measurable quantities.     The  value of  the modal  acceleration 
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for the i-th mode of an accelerometer at j for a force at k 
is a physical quantity containing in itself, and indepen- 
dently in itself, all the information of the jk response 
in the i-th mode that several other pairs of definitions 
encompass. A term involving nomenclature such as "effective 
mass", "apparent mass" or "modal mass" would suffice except 
that their use would encumber specification of what is meas- 
ured and there are so many different definitions of these 
terms that what they have most in common is confusion. 

Natural Frequencies From Mobility Plots 

The natural frequencies of consequence are accurately 
approximated by a peculiar and easily identified shape of 
the real acceleration mobility plots, as shown in Figure 2, 
which generally crosses zero. 

(N 
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w 
CO 
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«-p 
: 5H 

CO 

Figure 2.     Natural Frequency and Antiresonance, 
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The natural frequencies are distinguished from antiresonances 
in three ways: (1) There is a peak immediately above and 
below the real mobility of steep slope indicating a natural 
frequency; antiresonant crossovers are not straddled by peaks, 
(2) The natural frequencies are the same for every accelerom- 
eter; antiresonant crossover frequencies are not the same 
for every accelerometer.  (3) The imaginary acceleration 
mobility peaks at approximately the natural frequency, but 
does not at an antiresonance. 

In general, the mobility will cross zero at a natural 
frequency, but in some cases, due to damping, the curve 
will not cross zero but appear as shown in Figure 3.  The 
characteristic shape of the curve at a natural frequency 
is retained, however, and comparisons with the imaginary 
mobility for the accelerometer in question and with the real 
and imaginary curves for the other accelerometers will re- 
solve any practical possibility of doubt of the occurrence 
of a natural frequency. 
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Figure  3.    Mobility May Not Cross  Zero 
at a Natural Frequency. 
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Peaks in the imaginary acceleration mobility plots and the 
characteristic steep between-peaks slope of the real accelera- 
tion mobility in a damped system indicate the "approximate" 
natural frequency. As shown in the classic paper of Kennedy 
and Pancu (Reference 8), the frequency at which the real 
acceleration mobility has a maximum rate of change with fre- 
quency is the best approximation to the "true" natural 
frequency, defined as the resonant condition of the system 
if the damping were completely removed. With the relatively 
low levels of damping characteristic of aerospace structures 
and the fact that the lower modes are of most importance in 
helicopter dynamics, the differences between the "approximate" 
natural frequencies revealed by the real acceleration mobility 
and the "true" natural frequencies (which would occur with 
the damping removed) are such small di fferences that the 
distinction is academic.  The acaderrdc nature o^ the distinc- 
tion in helicopter structural dynamics is further highlighted 
by the fact that, as was found in this work and other work 
by the authors, the identified elastic and inertial properties 
of a structure with typical semi-monocoque level Soroka 
damping are practically the same whether or net damping is 
included. 

Immediately connected with the question of natural frequencies 
is that of determining the difference between a "major" or a 
"minor" mode. The latter is sometimes called, in a practical 
if mathematically imprecise way, a "local" mode.  This will 
be dealt with in another section. 

The method of determining natural frequencies given by 
Kennedy and Pancu 33 years ago remains the mast practical 
method for aerospace structures and has been used by various 
people, including the authors, in helicopter work for 15 
years when real and imaginary type data could be obtained, 
usually with rotary shakers. With the increasing utilization 
of modern impedance measurement equipment, it is possible to 
use the Kennedy-Pancu Principle for natural frequencies 
without the classic Kennedy-Pancu Plot, which in a complex 
structure is not practical for other than natural frequency 
determination, and with excitation from electromagnetic 
shakers instead of the less flexible counter-rotating rotary 
shakers. 
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Modal Accelerations  and Damping by Antiresonance Theory 

Using a new equation of antiresonance  theory,   the engineer 
can determine modal accelerations  of a  lightly damped system 
with only a slide  rule or  "shirt  pocket"  calculator.     This 
technique  has  the advantage of allowing rapid  on-site 
checking of test data whether or not a  computer terminal 
is  immediately  available.    Because the  modal  acceleration 
is  related to rigid body properties  and  the  test data by 
one  simple algebraic equation,  many of  the physical  implica- 
tions of  the  test parameters  and numerical  sensitivity of 
the  calculation  are obvious  by  inspection of  the antiresonance 
equation.     These  cannot be  found by inspection when,   as with 
other methods of comparable accuracy,   a matrix inversion  is 
involved. 

In a  freely suspended system,   the modal  acceleration of  the 
M-th mode   for  a driving point  is  given by: 

TTd -a.. 2) 

m=Z+l 

where E..    is a rigid body property   (depending only on gross 
weight,   e.g.   location and inertias)   the value  of which is 
accurately known before any helicopter structure or major 
component  is built.     For transfer measurements   (i.e.,   the 
response of an accelerometer  to a  force  at some other 
station)   some of the antiresonance  frequencies  may be 
imaginary, in which case  testing will  not  reveal as many 
antiresonances  as natural frequencies which are required  in 
Equation   (23).     This problem  is easily  solved  by shifting 
the  zero mobility axis  to create pseudo-antiresonances as 
many  in number as  natural frequencies.     We do  this by 
drawing a horizontal  line at  some mobility K  through  the 
mobility  test plot so that the  line crosses the test  plot 
at as  many  frequencies  as there are natural  frequencies. 
The  frequencies  at which this  line  intersects   the mobility 
are the pseudo-antiresonant  frequencies,   a,   in  Equation   (24). 
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Equation   (24),   and the  technique used therein applied to 
similar equations,   solves the imaginary antiresonance 
problem  (References  9,   10,  and 11)  which emerged in 1940. 

ü^CPS) 

Figure  4.     Driving Point Mobility. 
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Figure  5.     Transfer Mobility. 

The complex acceleration mobility is  given by: 
N „ „ 

Y^      + i Y-f,     ^ E..      M 

IT     (1  -  ü) /a.. .     + ig) 
i=Z+l JK1 

(1  - ui2/Q.2  +  ig) 
i=Z+l 

(25) 

and for pseudo-antiresonances this may be written 
N 
TT     (1  -  cü2/a,k.2 + ig) 

"T 1=7+1 1    X 

YV,       +  K  +  i   Y  .       =   (E.,    + K)   --r^  
]kcü jkui jk N 

,R 

i=Z+l 
(1  -  ui2/Q.2  + ig) 

(26) 

■ 
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At any pseudo-antiresonance, w = a^kmf Y-i]<(Jj + K = 0 and 

Equation (26) becomes 

N a.,    2 

v     (1   .  _jk2_ +  ig) 
i=Z+l 2 

i Y^      =  ig(E.v  + K)   i§n a3ki    ,  (27) 
]kain        yx   Dk N a-ki2 

IT (1  -     Jj    +  ig) 
i=Z+l ü^ 

The damping coefficient is  then seen to be approximated by 

N a...2 

■Yl TT       (1  - -f^- ) 
jkam      i=Z+l i /otn 

g= E
3

V -H K 14 i—y- (28) 

3k ,     (i  - -JMj) 
i^m a. 
i=Z+l 

ljki 

Modal Acceleration and Damping by Pseudoinverse  Iteration 
of One Component 

The derivation of psuedoinverse iteration is  given  in 
Reference  5.    With very  lightly damped systems, we prefer 
to work with  the  real  acceleration mobility  instead of the 
imaginary mobility because the imaginary mobility is 
difficult to accurately measure when the damping is very 
small.     In using the real acceleration mobility we must 
remember that,   different  from the situation using the 
imaginary, we must include all the lower modes.     In other 
respects,   the process  is the same  using either real or 
imaginary mobilities. 

For J accelerometers,   P  forcing  frequencies  and N modes,   the 
equation to be solved  is Equation   (29) . 

^(.o.-'W = ^(m'^J + 'V       <29, 

JxP JxN NxP JxP 
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R is the matrix of residuals to be minimized.  When the 
number of forcing frequencies ir equal to or greater than 
the number of modes, we calculate the S matrix ignoring 
damping and obtain A from Equation (31) . 

] (k) i    l j (k)(i)   ] (k)   lüo (31) 

where 

[s.(0)]+ H [s.(0)]T([s.(0)][s.(0)]T) 
10) 10) •'  W 10) J L 10) J 

-1 
32) 

We may now take the A matrix given by Equation (31) as a 
first approximation and obtain a new S matrix. 

[S.(1)] =. [A^i, .]+[Y* ,  - E.,,, ] 
io)    l ] (k) i l ] (k)o)   ] (k) (33) 

where 

[A./.,.]+   =   ([A. ., , . ]T[A. ,., . J"1^. .. , . ]T  (34) 1   ](k)i v     ](k)i     l   ]{k)i        l   j{k)i 

The process becomes an iteration,   as shown in  Reference 5, 
converging on  the A matrix which minimizes  the  Euclidian 
norm of the residuals. 

tAj(k)i]   "   [Yj(k)a) " Ej(k)1 [Sio)  ] (35) 

r   (2),   _   ,   (2)     ,+ "R _ , 
[Sio)   1   "   tAj(k)i]   tYj(k)o)      Ej(k)1 (36) 
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And the process is continued until the n+1 approximation to 
A is essentially the same as the n-th approximation.  Using 
the elements of the converged S matrix and the elements of 
the initial S matrix, calculated without damping, we can 
.^olve for the structural damping coefficient, g. 

This method of obtaining modal accelerations is most suitable 
when there are a large number of accelerometers being used in 
the test. The mobility data may be automatically sampled over 
all accelerometers at given frequencies. 

Modal Acceleration and Damping From Iteration Using the 
Imaginary Mobility and Pseudoinverse of the Real 

If we take one row of Equation (29), we have an expression 
for the jk-th mobility at different forcing frequencies in 
which there is a residual vector, R, when there are more 
forcing frequencies than modes in the equation. 

{Y(jk)a.} = [Sa)i
1{A(jk)i

} + {R(jk)co} (37) 

Performing the first step of the iteration of the previous 
section, as shown by Equation (31), to obtain the modal 
accelerations for the minimum Euclidian length of the 
residual vector. 

{A..., . } = [S .]+{Y*  . } (38) 
(:k)i     wi    (jk)a) 

If  the  S matrix is  square   (i.e.,   if there  are  as many  forcing 
frequencies as modes  in the  expression)   and  if the  real 
acceleration mobilities  are of equal value,   then the  modal 
accelerations  obtained  from Equation   (38)   are exactly  those 
obtained by antiresonance  theory  from Equation   (24) . 
Equation   (38)   allows  the engineer more  flexibility  in 
choosing mobility  points  and manipulating this  data  than does 
the  antiresonance  theory equation.     It requires  a computer 
for practical  employment but   this  is not a  serious  drawback 
in many  instances where time-sharing terminals  can be  used 
on-site.     On the other hand,   Equation   (38)   does not  describe 
the physics of  the  situation  as does Equation   (24)   relating 
the  resonances  and antiresonances to the modal  parameters. 

We  may  take the calculation of Equation   (38)   as  a  first 
approximation of the modal  accelerations with  the  S  matrix 
formed by assuming  the damping to be  zero.     Noting  that the 
imaginary acceleration mobility  is given by 
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where 

S1. = g. (40) 

We can solve Equation (39) for the product of the damping 
and modal accelerations as follows. 

{9iA,jk)i> = t^i'^OMu,' (41) 

Between Equations (38) and (41) we can solve for the struc- 
tural damping coefficient, g^for each mode and construct a 

new S matrix.  Then we cam solve Equation (38) again, using 
this new S matrix, for a better approximation of the modal 
accelerations, and continue the processes until the modal 
accelerations and structural damping coefficients have con- 
verged.  Except that we input the rigid-body acceleration 
coefficient, E., , as known data, this is the procet', described 

by Klostermann in Reference 12, which differs from Stahle's 
approach (Reference 13) in the use of the pseudoinverse. 

Other Methods of Determining Damping 

As seen in Figure 3 , the real mobility has a maximum just 
below the natural frequency and a minimum just above it. 
There is a well-known relationship between the critical 
damping ratio of a mode in a viscously damped system and 
the frequencies of the zero real displacement mobility 
slopes.  This relationship requires the assumption that the 
peak frequencies are negligibly affected by other modes. 

Setting the derivative of the real acceleration mobility 
(Equation 12) with respect to frequency equal to zero, we 
find that Soroka structural damping coefficient is given 
for real acceleration mobility by the same equation that gives 
the viscous critical damping ratio for displacement mobility. 
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where U refers to the mobility minimum and L refers to the 
mobility maximum. 

From Equation (11) we see that the Soroka structural damping 
coefficient can be approximated using the peak imaginary 
acceleration mobility, "I  , occurring at resonance and the 

jkfi 

modal acceleration. 

A... 
gi  =  -f^ (43) 

Yjkf2. 
i 

Comparison of Methods of Obtaining Modal Acceleration 

Computer experiments  using moderately high structural  damping 
and  physical experiments of  a very lightly  damped specimen in 
this contract show that the  iterative methods   (given  reason- 
able  start estimates)   tend to converge with acceptable 
accuracy almost immediately.     In both iterative methods,   the 
calculations converge,   not on a  "true"  value  as  in  Stodola 
iteration,  but on  the minimum sum of the  sequence of  residuals 
needed to balance the equation.     In both iterative methods, 
the  accuracy of the  answers  is a  function of the accuracy of 
the  initial "first approximations".    Particularly  for  low 
damping,   the convergence aspects of the iterative methods 
do not appear  to be of paramount  importance,   if the  input 
data  to either process  is  accurate. 

The only criterion  for acceptability of answers should not 
be minimization of  the norm of the residuals  unless   there  is 
no practical way of  separating probably  inaccurate   test data 
from probably accurate test  data.     The minimization  of   ehe 
residual norms  is a  least squares  fit and gross error  in one 
datum input out of many data   input can create  large  errors 
in  all  the answers.     On the  other hand,   the  iterative methods 
are  very beneficial when  the   first approximations  are  reason- 
able  and when  there  are no  "outlying bad"  input data. 
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A combination of deterministic methods  using  different input 
data   (to  indicate curiously  inconsistent,  and probably ex- 
cessively erroneous,   input data  to be either  rechecked or 
discarded)   and  the  iterative methods which average  the data 
is   the preferred approach whenever possible. 

The  two deterministic methods  discussed are   the  antiresonance 
theory  equation and Equation   (38)   with  a  square  S  matrix. 
It  is desirable  to  use both.     The antiresonance equation  pro- 
vides  a physical  insight,   allows  conclusions   to be  drawn   from 
inspection of the data  and can be calculated by hand.     How- 
ever,   it does not allow  flexibility in choosing the data and 
is  unsuitable  for automated  testing.    Equation   (38)   with  a 
square  S matrix permits   selection of different mobility 
levels,   can then be expanded by degrees  to increasingly 
larger  levels of nondeterminism   (i.e.,   more   forcing  frequen- 
cies  than modes)   and is  convenient  for automated testing. 
However,   it provides no physical  insight,  reveals  little   from 
inspection of  the data and,   in general,   cannot be calculated 
by hand. 

The   antiresonance equation  can be  used to check key  curves 
in  an approximate manner  so  that  the engineer  satisfies 
himself that the measured mobility  is physically reasonable, 
while  Equation   (38)   with  square  S  matrix and  various  data 
points  is  used   for  the  actual  numerical   filtering of out- 
lying data using an on-line computer before  using a pseudo- 
inverse reduction. 

Of  the  two iterative approaches discussed,  pseudoinverse 
iteration, using either the  real or  imaginary mobility, 
depending on light or heavy damping, with  all  accelerometer 
readings   ('per unit  force)   at  the same frequencies,   is  the 
method most convenient when  there  are many accelerometers 
and when  the data taking  is  highly automated.     The  technique 
which  uses the pseudoinverse of the real  acceleration 
mobility  and the  solution  of  the  damping coefficient   from 
the   imaginary mobility   for  each  accelerometer   independently 
(Reference  12)   is  preferable  when  it  is   possible  to  treat 
each  accelerometer  independently. 

Test data can never be blindly  accepted  as  accurate  anymore 
than  analytical predictions  can be blindly accepted as 
realistic.     The chances of errors   in calibration,   unrecorded 
disturbance  in  equipment  settings,   unexpected  noise,   trans- 
ducer malfunction,  human error  in applying  factor and other 
such   things comprise  a  factorial  chain of inherently  low 
reliability of  test  data.      The  engineer  should  select  such 
combinations of data reduction methods that allow him the 
maximum economy of data processing while  giving him the 
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maximum capability of cross-checking the data.  This checking 
of data should, of course, be of a nature that depends on the 
physics of the specimen, whenever possible, as opposed to 
checks dependent on links in the processing chain.  The 
optimum economy of the total test project, in contrast to the 
economy of the data processing alone, is enormously magnified 
by physical checks on the data being done on-site and during 
the testing as the setup costs, resetup costs and costs of 
erroneous conclusins drawn from erroneous data greatly out- 
weigh the costs of processing data or doing the testing. 

IDENTIFICATION OF FULL MOBILITY MATRIX FROM SINGLE-POINT 
SHAKING 

The responses of a helicopter structure to many different 
excitations are required to fully evaluate its dynamic 
performance.  It is obvious that we need the response of 
the entire fuselage to each of the three forces and moments 
at the main rotor hub and at the tail rotor hub (or at both 
main rotors in a tandem) which customarily requires twelve 
different shaker locations.  If there is a dynamic absorber 
in the fuselage, we need to know the driving point impedance 
of the ship at the absorber attachment to determine the 
required size of the abso "ber and this presently means a 
thirteenth shaking station.  In addition, engineers have an 
increasing need to know the impedance from forcing at such 
other points as engine supports, transmission mounts, ex- 
ternal stores attachments, etc., to fully utilize the power- 
ful analytical tools of impedance methods.  Because shaker 
changeover time is a major cost of a shake test program, we 
may regard each change of shaker position as a shake test in 
itself.  It is obviously impractical, from cost and schedule 
considerations, to shake at every point on a helicopter at 
which driving point impedances (or mobilities) are desired. 

It is possible to obtain the impedance data relative to a 
force at any point at which there is an accelerometer from 
single-point forcing, and it is not necessary to obtain the 
equations of motion to do this.  Therefore, with only one* 
shake test, the engineer can obtain all of the desired 
impedance test data that presently requires dozens of tests. 

To assure that all the driving point modal accelerations 
are sufficiently large in the shake test of a complete 
fuselage, the engineer would use single-point shaking 
theory for a combination of several convenient shaking 
points. 
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Note that modal accelerations for any given mode satisfy 
reciprocity, A... = A, .. , and that, for excitation at e, 

any driving-point or transfer modal acceleration is given by: 

A. .A. . 
Ä      iei kei 
jki 

(4«i) 
eei 

If we had an accelerometer at  j  and at k,  and the shaker at 
e,  we  could obtain the mobility at  j   for a force  at k by using 
Equation   (44).     Then 

Yjku)  " Ejk  + 

N (1   - a)2/^.2)   + ig. 
FA.. - =■«• 

i=Z+l   d  "  w  /^i   >     + ^i 

(45) 

As will be shown later, the validity of this procedure was 
experimentally demonstrated as part of this contract. 

IDENTIFICATION OF STATIC TEST LOADS ANrJ DEFLECTIONS 

In the static strength testing of a helicopter, four types 
of loading are applied to the suspended fuselage to simulate 
the strains and deflections which would occur in a maneuver 
critical to the strength of the ship: airloads; engine, and 
transmission mount reactions; inertial loads of concentrated 
mass items (e.g., engines, transmission, t.r. gearbox, etc.); 
and inertial loads of the distributed structure.  The last 
of these may comprise 50 percent of the stripped aircraft 
weight and are quite difficult to calculate; the engineer 
must lump the distributed inertial g-loading of intercostals, 
skin, stringers, flooring, and keels at relatively few points, 
perhaps five, along and about the fuselage.  He most often 
does this solely by judgment. 

Using test data from our tubular specimen, we will demonstrate 
below how the lumped g-loadings to be applied as forces in 
static strength testing can be determined rationally in the 
process of system identification. 

During static strength testing of an aircraft, the deflections 
are measured generally by sighting deflection scales attached 
to the ship using a telescopic transit.  These deflections 
through the linear range can be determined very accurately 
in the process of system identification and would then not 
only provide an independent check on the validity of the 
static strength test but give baseline deflections, departures 
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from which would indicate the beginnings of structural 
yielding in the strength test. 

For the given critical maneuver (e.g., 3-g rolling pullout), 
the external trim forces (e.g., main rotor shears and 
moments, tail rotor thrust, torque, etc.) are given.  Post- 
multiplying the free-body influence coefficient matrix by 
these external forces yields the deflections of the aircraft 
relative to inertial axes under the g-loadings of the man- 
euver.  These deflections may be geometrically transformed 
to be relative to any statically determinate set of points 
which may be considered of zero deflection (or rotation) , 
being the points relative to which the deflections in the 
static strength test are measured.  These deflections should 
be the same as those measured in static strength tests below 
the yield point of the structure. 

^FIC1 {External} = {6} (46) 

The free-body influence coefficients determined in system 
identification test are transformed to static influence 
coefficients with constraints at the zero deflection base 
points from which the test fuselage is suspended.  The 
concentrated forces to be applied in the static strength 
test to most closely approximate the distributed inertial 
g-loadings of the critical maneuver are given by: 

[CSIC]~
1{6} = {f} (47) 

This technique has been experimentally demonstrated under 
this contract, and the results are shown in another section 
of this report. 

IDENTIFICATION OF STATIC INFLUENCE COEFFICIENTS FROM 
FREE-BODY TESTING 

Free-body influence coefficients are not a purely elastic 
property of a helicopter because they are a function of the 
rigid-body inertial properties.  Static influence coeffi- 
cients, the classical measurable of static structural 
analysis, are purely elastic properties, but static influence 
coefficients are all infinite for a free body such as a 
flying helicopter.  In analysis of free structures, the 
static influence coefficients of a structure, determinis- 
tically constrained at arbitrary points, are often calculated 
and then transformed to give free-body influence coefficients 
so that the dynamics of the unrestrained structure can be 
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analyzed (Reference i). 

The reverse procesj of usinq free-body test data to obtain 
static influence coefficients of the structure with arbitrary 
restraint has long been of importance to all branches ot the 
aerospace industry; Rodden (Reference 7) succeeded in doing 
this for a delta wing but he had to use an intuitive (i.e., 
unmeasured) mass matrix.  In many helicopter structures, 
particularly in center fuselage sections with large doors, 
in irregular spacecraft like the Shuttle, and in any com- 
plicated structure in which to measure only a small number 
of degrees of freedom, we need to avoid the assumption of 
a lumped parameter mass matrix. 

It was experimentally demonstrated under this contract that 
Static Influence Coefficients tor arbitrary determinant 
restraints may be obtained from impedance test data on a 
free structure without assumptions of the mass matrix. 

To do this, we construct a nonsingular matrix, consisting 
only of geometric terms, relating the coordinates of restraint 
to rotations about and displacements along an arbitrary co- 
ordinate system. This matrix, which we call S , cannot be 

of order greater than six, say Z.  We also construct a purely 
geometric matrix, which we call S-, such that the forces of 
restraint, indicated by the subscript R, are related to 
forces which could be applied to the free coordinates, 
indicated by the subscript, F, by 

{fR} = [SR]"T[SA]
T{f} (48) 

Having obtained the free-body influence coefficients for both 
the restrained coordinates, subscript R, and the free co- 
ordinates, subscript F, we may calculate the static influence 
coefficient matrix from 

[C1 " tCFF + SASR'1CRRSR"V " CFRSR'V " SASR"lcRFl <49' 
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IDENTIFICATION OF INERTIAL AND ELASTIC PROPERTIES 

A term in the inverse of the mass matrix (Reference previous 
contract) is definec1. as the inertial coefficient and is 
given by 

^ Ji Vi = E:k+JZ+1 Vi        '50' 
We can use antiresonance theory directly on the plots to 
check each inertial coefficient which has the shaking station, 
e, as one of the subscripts. 

N     2 

^e = (Eje + K) "iT1     " K (51) 
IT   a. 

i-Z+1  3el 

In forming the mass matrix the number of modes, N, should be 
no greater than the number of stations, J. The mass matrix 
is then given by 

[m] - [A]+T[Aeei][A]
+ (52) 

where the matrix A has J rows and N columns.  For the same 
number of stations as modes, J=N, the mass matrix is the 
inverse of the Inertial Coefficient matrix. 

[m] = [I]"1 (53) 

Similarly, the stiffness matrix is given by 

[k] = [A]+T[Aeeini
2] [A]+ (54) 

and in this case, as opposed to the case of the mass matrix, 
the A matrix must include the rigid-body modes.  The rigid- 
body modal accelerations are obtained in the manner in which 
the rigid-body acceleration coefficient, which is simply a 
sum of the rigid-body accelerations coefficients, is cal- 
culated.  Partitioning the diagonal matrix of Equation (54) 
into rigid-body and nonrigid-body parts, we may rewrite 
Equation (54) as Equation (55) . 
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[k]  =   [A] +T |V .1 
A      . fi . 2 J 1—        eei  x ^, 

[A] (55) 

When the number of stations J is  greater than the nurober of 
modes N,  we have a "truncated model" which is a form of 
"incomplete model"   (Reference 14).     In general,  the engineer 
will be using many more stations than modes and will be using 
truncated models.     The method of calculating the effects of 
changes  in truncated models  is shown in the appendix. 
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TEST EQUIPMENT AND SPECIMEN 

SYSTEM IDENTIFICATION TEST EQUIPMENT 

The data acquisition and recording system used in the test 
program consisted of the follov^ing equipment:  Wilcoxon 
Model Z602 Impedance Head, Endevco Model 2272 and 2232C 
Accelerometers, Kistler Model 504A Electrostatic Charge 
Amplifiers, Spectral Dynamics Model SD1002E Automatic 
Mechanical Impedance Analysis System, and a Hewlett Packard 
Model 136A Recorder.  The force excitation system consisted 
of a Ling Electronics Model 411 Electromagnetic Exciter 
powered by an MB Power Amplifier. 

The Automatic Mechanical Impedance Analysis System included 
the following units:  SD109B CO/Quad Analyser, SD 112-1-H 
Voltmeter/Frequency Log Converter, SD 122 Two-Channel Tracking 
Filter Slave, SD 127 Mechanical Impedance-Transfer Function 
Analysis Control, SD 104A-5 Linear/Log Sweep Oscillator, 
SD 105B Amplitude Servo/Monitor, SD 121S Tracking Filter 
Slave. 

The SD 1002E is a complete self-contained system using one 
oscillator reference, accepts two signal inputs for complete 
operation, and yields the quadrature and in-phase components 
of the dynamic response.  Figure 6 presents a schematic 
diagram of the test configuration. 

The impedance head, capable of measuring the force excitation 
and resulting acceleration at a common point, was attached 
to the test specimen with a NO 10-32 stud with two brass 
washers placed between the impedance head surface and the 
test specimen.  The impedance head used has a small specimen 
contact area, thereby minimizing local stiffening of the 
specimen at the attachment point.  The impedance head is 
also characterized by low mass below the force gage minimizing 
the dynamic mass contribution of the impedance head.  To 
further reduce the constraining effects of the impedance head, 
the exciter was coupled to the impedance head by a flexible 
mechanical fuse allowing the specimen freedom of motion. 

The accelerometers used in the investigation were self- 
generating piezoelectric type requiring no external power 
for operation.  The transducers were attached to the test 
specimen by means of a NO 10-32 mounting stud with two brass 
washers inserted between the accelerometers and the test 
specimen. 
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Figure  6.     Schematic of Test Configuration, 
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The transducer output response was directed to the electro- 
static charge amplifiers for signal conditioning.  Since 
there were only two charge amplifiers available for the test 
program, one charge amplifier was reserved for the response 
from the force gage while the signals from the accelerometers 
measuring the driving point or transfer point responses were 
manually switched into the remaining charge amplifier as 
required. 

The conditioned force and acceleration signals were input to 
the Spectral Dynamics Automatic Mechanical Impedance System. 
The system reduced the dynamic test data yielding the vector 
components of the acceleration mobility response, the quadra- 
ture, and the in-phase data necessary to the system identifi- 
cation analysis.  The output signals from the Mechanical 
Impedance Analysis System were channeled to the Hewlett Packard 
Analog Recorder yielding effectively real time observation of 
the dynamic response of the test specimen.  Figure 7 presents 
a photograph of the test setup.  The impedance and a typical 
acceleration transducer are shown in Figure 8. 

SPECIMEN 

An analytical parametric study, using an IBM Model 360/40 
Computer, was conducted to determine the physical character- 
istics of a beam test specimen suitable for structural system 
identification.  Using a lumped mass representation of a 
continuous beam and using classical theory for vibration of 
a slender beam in bending the physical parameters, constraint 
condition, frequency spectrum for the modes of interest, and 
dynamic response were determined for a practical test specimen 
design, 

The specimen chosen for the test program was a 75-inch steel 
beam of hollow circular cross-section with cylindrical shaped 
lumpc masses attached at three span locations.  The system 
was suspended oy low spring rate elastic cord (bungee) to 
assure that the highest rigid-body natural frequency was 
significantly below the first elastic natural frequency of 
the test beam, thus simulating the free-free boundary con- 
ditions of a helicopter flight.  The test specimen was 
originally suspended by coil springs of very low spring rate- 
however, during test runs spring resonances were encountered 
which affected the dynamic response of the specimen.  These 
spring resonances appeared throughout the frequency spectrum; 
therefore, to avoid the situation the test beam was suspended 
by low spring rate shock cord.  Figure 9 presents a descrip- 
tion of the test specimen. 
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Figure 8. Impedance Head and Typical Accelerometer. 
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A fundamental model of the type used in the test program 
minimizes the extraneous effects of force excitation misalign- 
ment and boundary condition, while allowing the excitation 
frequency to remain within a reasonable level sufficient to 
achieve dynamic response over the modal range of interest. 

The model was also amenable to analytical identification 
using classical theory for vibration of a beam in bending. 
This facilitated a comparison between the dynamic response 
calculated for the model extracted from actual test results 
using system identification techniques and the dynamic 
response obtained for the model using analytical methods. 
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TEST PROCEDURES 

TEST PROCEDURE 

The test procedure required the selection of points of 
interest on the model which would yield the greatest dynamic 
response for a given force input level.  These points were 
selected on the basis of analytical calculations.  Motion 
transducers were placed at each selected point and oriented 
so that the action of the impressed force was coincident with 
the principal direction of the transducer at the point of 
interest.  Force excitation was applied over a frequency 
spectrum encompassing the modes of interest, being equal to 
or less than the number of points of interest.  In recording 
the dynamic response of the points of interest, the total 
frequency spectrum was divided into several bandwidths, each 
surrounding one of the natural frequencies of the system. 
This procedure allowed greater definition of the dynamic 
response in the region of a natural frequency. 

One further consideration which affects the recording of the 
dynamic response of the test specimen is the frequency sweep 
rate.  The frequency must be swept at a rate to assure full 
excitation of resonant conditions.  The sweep rate was set 
at the lowest possible rate consistent with the aforementioned 
requirement; however, the sweep rate must be maintained at a 
high enough level to provide good character of line from the 
analog recorder.  An oscilloscope was used to continuously 
monitor the dynamic response and force signals to assure that 
instrumentation saturation was not occurring and that the 
signals were of sufficient level to yield adequate output 
parameter resolution. 

For each frequency bandwidth the individual accelerometer 
transducer outputs were selectively directed to the charge 
amplifier, and the mobility response of each point was re- 
corded.  The same procedure was used for each successive 
frequency bandwidth until the complete frequency spectrum 
was traversed. 

■ 
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CALIBRATION PROCEDURE 

The technique used for system calibration involved observation 
of the system response for a known input condition. A trans- 
ducer was mounted on a static mass of known value and the com- 
bination was mounted on the impedance head coupled to the 
exciter. With the charge amplifiers set at appropriate 
amplification levels and the analog recorder set at a 
prescribed sensitivity level (millivolts/inch), the known 
mass was excited over the frequency range of interest.  The 
system mobility response obtained from the automatic mechani- 
cal impedance analysis system was recorded on the analog 
recorder yielding a calibration line for the particular trans- 
ducer.  This procedure was followed for each of the trans- 
ducers, thus, a calibration line was established for each 
transducer. Physical significance could be applied to the 
actual test results of the specimen by relating to the 
calibration line associated with each transducer. 
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TEST RESULTS 

SELECTION OF DATA POINTS 

By inspection of Equations (24) and (31) we see that real 
acceleration mobility values which are CIORG to the value of 
the rigid-body acceleration coefficient, E, will involve use 
of what is coiranonly called "small differences of large 
numbers" and will magnify the effect of measurement errors 
(noise) in the calculation of the modal accelerations.  This 
effect is very important in testing because practical 
engineering measurements of acceleration, and therefore 
mobility, are at best accurate to something less than two 
significant figures. 

To maximize the accuracy of the calculation, we choose values 
of mobility which are not close to the value of the rigid- 
body acceleration coefficient. An obvious, but not necessary, 
choice would be to use acceleration mobility values which 
are opposite in sign to the RAC.  In this testing, we used 
both positive and negative values of mobility, being certain 
that the mobility was never nearly equal in magnitude to the 
RAC.  However, we generally chose mobility values which were 
opposite in sign from the RAC, whenever other constraints 
allowed, because it simplified the choice of data points. 

Frequencies can be determined more accurately than mobilities. 
Using a servo oscillator, one can dwell at a frequency and use 
an electronic counter to read out the frequency to as many 
digits as the counter is capable of displaying within the 
ordinarily very narrow limits of hunting of the servo control. 
We did not use the electronic counter for this purpose, how- 
ever, because the time which would be required to obtain the 
precision possible with a counter was impractically long. We 
used the counter to calibrate the frequency scale on the 
automatic plotter and read frequency from the mobility 
graphs. 

Frequency presents another condition for the minimization of 
measurement errors, or noise, in data reduction.  In Equation 
(30) we see that mobility measured at a forcing frequency 
very near the natural frequency gives a ratio very nearly 
one which must be subtracted from one in forming the S 
matrix and could, therefore, lead to large errors.  To 
maximize the accuracy of the data reduction, we therefore 
chose forcing frequencies as far as possible from the 
natural frequencies. 

} 
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Whenever there was an antiresonance,   the antiresonant  fre- 
quency was  used because  this eliminated the effect of errors 
of the calibration factor on the associated mobility.     Anti- 
resonant  frequencies  are  the exception to the  rule  that 
mobility data should be  taken at  frequencies as  far 
away  as possible  from natural   frequenjies.    As shown by 
Equation   (23) , when there  is  an antiresonance very near a 
natural  frequency,   it is a physical  fact that the modal 
acceleration of that mode,   for the given accelerometer and 
shaking station,   is small;   i.e.,   it  is what is called a 
"minor" mode  for the stations  in question. 

Obviously, the data points must be distributed throughout 
the spectrum under consideration to insure that the modes 
are nearly equally well weighted. 

NATURAL  FREQUENCIES 

The natural   frequencies of  an  idealized 20-degree-of 
freedom Bernoulli-Euler model of the  free specimen were 
calculated by  formulating the free-body influence coefficients 
and  iterating to obtain  the  lowest nonzero natural   frequency 
first.     The   first time, calculated natural  frequencies  compared 
reasonably well with the  five measured natural frequencies. 

Natural Frequencies   (Hz) 

Mode: I II III IV V 

Calculated 
by Bernoulli- 
Euler Beam     65.113  189.819  436.332  714.302  1062.649 
Theory 
20 Pt Model 

Measured from 
Mobility Plots  65.5   186.0    413.0   662.0     937.0 

As one would expect, the theoretical predictions of natural 
frequencies are most accurate for the lowest modes. 
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MODAL ACCELERATIONS AND DAMPING 

Modal accelerations for each of five modes were obtained for 
five stations with the shaker at station 72.5 inches and for 
six stations with the shaker at station 0.5 inch in two ways: 

(1) With various combinations of five forcing 
frequencies dispersed through the five mode 
spectrum using antiresonance theory and 
Equation (37). 

(2) Using the pseudoinverse method of Equations 
(37) through (41) .  Because the damping in the 
specimen is extremely light, the modal accelera- 
tions changed little with iteration, and there 
was no apparent advantage to iterating to obtain 
modal accelerations. 

Damping values were calculated by iteration of Equations (37) 
through (41) and it was found that the values of damping 
generally became divergent, instead of convergent, after 
about six iterations.  In nearly every case, the iterative 
process was halted by the SST matrix becoming singular.  The 
damping of the specimen is so low that the procedure might 
be considered largely an operation in the noise "grass". 
The first approximations to the values of structural damping 
coefficient seemed to be reliable, judging from effects on 
modal accelerations in the low ordered iterations and the 
stability of the calculations, and in only 9 cases out of 
55 did the damping coefficient get above 1 percent with a 
maximum of 1.61 percent. The average structural damping 
coefficient obtained in shaking at the 72.5-inch station 
was 1/4 percent and in shaking at the 0.5-inch station it 
was 0.7 percent. 

Computer experiments (Reference 5) with 5 percent damping 
and higher showed that iteration was not essential to 
accuracy.  The results of physical experiments of this 
contract support that conclusion with the further indication 
that iteration may be detrimental, at least in cases of low 
damping, to results of iteration calculations not proven to 
be necessarily convergent (Reference 12). 

The modal accelerations for force at 72.5 inches obtained 
with the shaker at the 72.5-inch station, shown in Table 1, 
compare quite well with the modal accelerations for force 
at 72.5 inches obtained with the shaker at the 0.5-inch 
station, nearly the other end of the specimen, shown in 
Table 2.  Table 3 shows the modal accelerations for force 
at 72.5 inches, as calculated by Bernoulli-Euler beam theory 
for the specimen. 
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TABLE   1.      MODAL ACCELERATIONS   RELATIVE  TO  FORCING  AT  THE 
72.5-INCH   STATION   IDENTIFIED  FROM  TEST   DATA 
OBTAINED   BY SHAKING AT  THE   72.5-INCH STATION 

In./Seer Mode 

Station 

6   in. 
25  in. 
35.5  in. 
61   in. 
72.5  in. 

23.16 
-18.56 
-33.32 
-1.35 
21.84 

II III IV 

-9.40 
17.86 
-.70 

-18.52 
11.88 

2.09 
-3.49 
16.30 

-15.88 
6.21 

.94 -1.67 
3.50 5.96 
1.83 -11.64 
7.55 -7.24 
2.37 3.07 

i         TABLE 2.      MODAL ACCELERATIONS   RELATIVE 
72.5-INCH   STATION   IDENTIFIED 
OBTAINED  BY  SHAKING AT  THE   0 

TO   FORCING AT  THE 
FROM TEST  DATA 
5-INCH STATION             \ 

In./Sec2 Mode                                                       1 

Station I II III IV v       i 
6   in. 
25  in. 
35.5  in. 
61   in. 
72.5  in. 

26.08 
-19.16 
-32.46 
-2.48 
28.18 

-8.74 
17.42 

.71 
-17.11 

12.64 

1.84 
-4.30 
20.00 

-20.26 
7.38 

.79 
-4.84 
-1.93 
-7.45 

2.05 

-1.80     | 
4.65 

-9.61     1 
-5.28 
1.82 

TABLE   3.      MODAL  ACCELERATIONS   RELATIVE  TO   FORCING AT  THE 
72.5-INCH  STATION  CALCULATED  BY   BERNOULLI-EULER 
BEAM THEORY FOR   THE   SPECIMEN 

In./Sec    Mode 

Station II III IV V 

6   in. 
25   in. 
35.5  in. 
61   in. 
72.5  in. 

21.34 
-16.49 
-25.44 
-1.75 
21.89 

-8.02 
16.47 

.52 
•16.72 
11.89 

1.81 
-3.18 
17.98 

-18.36 
6.4- 

,89 
25 
28 

-8.55 
2.46 

-2.20 
4.80 

-11.64 
-7.19 
2.34 
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Comparing Table 4 to Table 5, we see that the identified 
modal accelerations relative to a force at station 0.5 inch, 
obtained by shaking at station 0.5 inch, are essentially those 
obtained for this specimen by Bernoulli-Euler beam theory. 

j             TABLE 4.    MODAL ACCELERATIONS   RELATIVE TO   FORCING AT  THE 1 
0.5- ■INCH  STATION IDENTIFIED FROM  TEST DATA 
OBTAINED BY  SHAKING AT   THE   0 .5-INCH STATION         1 

i          "                                            .       .-         ..-                    -          ..,.„,__, 

In. /Sec2  Mode 

Station I II III IV V 

0.5  in. 52.12 38.16 49.32 122.89 86.08     1 
6   in. 35.47 15.18 4.75 -6.144 -12.36 
25  in. -26.06 -30.27 -11.10 37.50 32.04 
35.5  in. -44.14 -1.23 51.67 14.92 -66.15 
61   in. -3.37 29.72 -52.36 57.68 -39.32 

172.5  in. 38.33 -21.97 19.08 -15.87 12.51     1 

!        TABLE 5. MODAL ACCELERATIONS RELATIVE TO   FORCING AT  THE     1 
0.5-INCH  STATION CALCULATED BY   BERNOULLI-EULER 
BEAM THEORY  FOR THE SPECIMEN 1 

ii-                                                                                                            i 

In./S ec2 Mode 

Station I II III IV v       I 

0.5  in. 53 .31 40.11 50.67 334.70 88.23     i 
6   in. 33 .30 14.73 5.09 -6.59 -13.53 
2 5  in. -25 .73 -30.24 -8.96 38   86 29.49 
35.5  in. -39 .70 -.10 50.60 16.88 -71.52 
61   in. -2 .73 30.71 -51.68 63.27 -44.18 

172.5  in. 34 .16 -21.84 18.00 -18.19 14*36     | 
»                                                                                                                                           i 

The columns of the modal accelerations, as shown in the 
tables, are the classical normal modes (i.e., elements in 
the eigenvectors of k"lm) and the reciprocal of the modal 
accelerations at the driving point are the generalized 
masses. 
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IDENTIFIED   INERTIAL  AND  ELASTIC  PROPERTIES  OF  THE 
FREE  SPECIMEN 

In identifying the   free-body inertial  and elastic  properties 
from the  test data obtained in  this  contract,  we  concentrated 
on the matrices with  the rigid body modes  eliminated. 
Because  the rigid-body modal parameters are known before 
testing aircraft  fuselages and major components,   and were 
calculated independently of the testing in  these experiments, 
inclusion of the  rigid-body modes  in these  identifications, 
where possible,  would exaggerate  the accuracy of the actual 
identifications   from test data alone.     There  is also some 
numerical economy  in working with  these matrices  of elastic 
modes and incorporating the known rigid body modes  in con- 
structing the mobilities although  the advantage  is not very 
significant. 

The product of the   free-body influence coefficient matrix 
and the  inertial  coefficient matrix of  the  nonzero modes 
(which  is the  inverse of the mass matrix limited to elastic 
modes)   has eigenvalues which are the nonzero natural fre- 
quencies.     The natural   frequencico  calculated by  iteration 
on this matrix are not shown because they  are exactly the 
same as  the measured natural  frequencies. 

Identifications were made  for  two  five-degree-of-freedom 
models with  five modes:   (1)   from data obtained with the 
shaker  at the 72.5-inch station,  and   (2)   from data obtained 
with the shaker at the 0.5-inch station.     The  five-degree- 
of-freedom model  consisted of  stations at  6,   25,   35.5,   61 and 
72,5 inches.     Identifications were  also made  for  a model of 
six-degrees-of-freedom having only  five modes  from test 
data with  the shaker at station 0.5  inch. 

IDENTIFIED   INERTIAL  COEFFICIENT MATRIX OF   THE   5X5  MODEL 

From the 20  x 20  Bernoulli-Euler  intuitive model  of the 
specimen,  we calculated the  following matrix of elastic 
inertial coefficients of the  five-degree-of-freedom model 
for five modes. 

in, 
72.46 
-7.80 78.30 

Symmetric 

7.55 8.91 156.79 
3.19 -.67 9.38 162.09 

-1.11 1.11 -5.22 -10.50       98. 

lb-sec 
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From test data taken with the shaker at the  72.5-inch station, 
the following elastic  inertial  coefficient matrix was  iden- 
tified  for  the  five-degree-of-freedom model   for  five modes. 

77.32 
12.92 81.77 Symmetric 

-6.20 15.14 155.87 
3.98 -12.13 10.76 144.69 
.183 3.03 -15.54 -8.47 99.36 

in. 

lb-sec 

From test data taken with the shaker at the 0.5-inch station, 
the following elastic inertial coefficient matrix was iden- 
tified for the five-degree-ot-freedom model for five modes. 

P 76.61 
-10.86 84.46 Symmetric 

!    .52 7.33 160.88 
2.41 2.09 -2.08 155.71 

1   3.40 -1.34 -7.65 -10.65   106.09 

•- ■J 

IDENTIFIED MASS MATRIX FOR THE 5X5 MODEL 

in, 

lb-sec' 

From the 20 x 20 Bernoulli-Euler intuitive model of the 
specimen, we determined the following mass matrix for five 
elastic modes of the 5x5 model. 

lb-sec' 
.772 

"i 

.402 .229 Symmetric 

.004 .005 .009 

.197 -.097 .004 .068 

.433 -.217 .007 .134   .298 

in, 

From test data taken with the  shaker at the   72.5-inch station, 
the following mass  matrix,   for  the elastic modes,  was  iden- 
tified  for  the  five-degree-of-freedom model   for  five modes. 

lb-sec' 
1.015 
.580 .352 Symmetric 

.065 .042 .017 
-.190 -.096 -.001 .067 
-.483 -.258 -.010 .134   .315  1 

in. 
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From test data taken with the shaker at the 0.5-inch station, 
the following mass matrix, for the elastic modes, was iden- 
tified for the five-degree-of-freedom model for five modes. 

lb-sec' 
629 
322 .183 Symmetric 

019 .013 .010 
166 -.080 .001 .063 
342 -.167 0 .114  .236 

in. 

IDENTIFIED  FREE-BODY   INFLUENCE  COEFFICIENT  OF  THE   5X5 MODEL 

From the Bernoulli-Euler model of the  specimen,   the  following 
free-body influence coefficients were calculated  for the 
5x5 model  for  five modes. 

1.28 
1.04 .912 Symmetric i 

1.48 1.14 1.85 
-.03 -.07 .06 .26 
1.22 -.88 -1.50 -.25 1.40     1 

in, 
ib x 10 

From test data  taken with  the shaker  at the  72.5-inch station, 
the following free-body influence coefficients were iden- 
tified  for the  5x5 model   for five modes. 

1.51 
1.27 1.14 Symmetric 

2.07 1.65 3.08 
.01 -.12 .08 .30 

1.30 -.97 -1.95 -.25 1.39 

in. 
lb x 10 

From test data taken with  the shaker  at  the  0.5-inch station, 
the  following free-body influence coefficients were iden- 
tified  for the  5x5 model  for five modes. 

in-  x 104 
1.50 
1.15 .96 Symmetric 

1.79 1.29 2.30 
-.06 -.05 .09 .29 
1.50 -1.01 -1.89 -.31 1.77    ! 

lb 

The free-body influence coefficients  are heavily dominated 
by the  lower modes. 
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IDENTIFIED STIFFNESS  MATRIX FOR THE   5X5  MODEL 

From the Bernoulli-Euler model of the specimen,   the following 
matrix of stiffnesses,   for the elastic modes,  was  calculated 
for the 5x5 model  for  five modes. 

13.48 
m 

8.25 5.13 Symmetric 
-.59 -.34 .23 

-3.86 ••2.27 .39 1.47 
-7.92 -4.76 .62 2.63      5.07 

lb 
in. x 10 -6 

From test data  taken with the shaker  at station  72.5 inches, 
the  following matrix of stiffnesses,   for  the elastic modes, 
was  identified  for the   5x5 model   for  five modes. 

16.92 
■ 

10.75 6.93 Symmetric 
.379 .294 .235 

-3.55 -2.089 .222 1.297 
-8.45 -5.194 .220 2.410       5.031 

lb 
in. x 10 -6 

From test data taken with the shaker  at station  0.5  inch, 
the  following matrix of stiffnesses,   for  the  elastic modes, 
was  identified  for the   5x5 model   for  five modes. 

9.24 
5.64 3.51 Symmetric lb 
-.152 -.70 .193 in. 
2.74 -1.59 .261 1.158 
5.22 -3.11 .340 1.89         3.33 

x 10 -6 

The stiffness matrices are dominated by the upper modes, 
and comparisons of corresponding elements show significant 
variation.  However, these variations are not physically 
significant as will be shown in the plots of the mobilities 
resulting from the identified models. 
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IDENTIFIED  FREE-BODY   INFLUENCE  COEFFICIENTS  OP*  THE   6X6  MODEL 

Using the 20 x 20 Bernoulli-Euler intuitive beam model of 
the  specimen,  we  calculated the  following  6x6  free-body 
influence coefficient matrix for five modes.     This matrix 
has,   of course,   a 5x5 submatrix of  the FIC's of the  five- 
degree-of-freedom model. 

3.62 
2.09 1.28 Symmetric 

1.74 -1.04 .91 
2.31 -1.47 1.13 1.85 
0 -.03 -.07 .06 .26 

1.91 1.22 -.88 -1.50 -.25   1.40 

in. 
lb x 10 

From the test data taken with the shaker at the 0.5-inch 
station, the following free-body influence coefficients were 
identified for five modes. 

r*"4 3.53 
2.23 1.50 Symmetric 

1.75 -1.15 .96 
2.5S -1.79 1.29 2.30 
-.04 -.06 -.05 .09 .29 
2.12 1.50 -1.01 -1.89 -.31   1 1.77 

IDENTIFIED  STIFFNESS  MATRIX  FOR THE   6X6   MODEL 

Using the  20  x 20  Bernoulli-Euler intuitive beam model of 
the  specimen,  we calculated the following  6x6  stiffness 
matrix using only  five elastic modes. 

-.  x 10 in. 

5.88 Symmetric 
5.75 11.29 
4.04 1.31 14.71 
4.30 14.56 5.84 23.05 
4.36 15.35 13.50 21.90  32.45 
5.87 17.36 11.35 25.41  30.20 33.15 
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From test data obtained with  the shaker at the  0.5-inch 
station,  we identified the  following 6x6  stiffness matrix 
using only five elastic modes. 

5.30 
4.68 8.89 Symmetric 
3.42 1.22 12.11 
3.67 12.45 5.53 21.22 
3.99 13.64 11.85 21.31       31.01 
5.07 14.63 9.84 23.39       28.12 29.68 

lb 
in, x 10 -4 

IDENTIFIED  INERTIAL  COEFFICIENTS  FOR  THE   6X6   MODEL 

From the  20 x  20  intuitive Bernoulli-Euler beam rodel of  the 
specimen, we calculated  the   following 6x6  inertial  coefficient 
matrix  for only five elastic  modes. 

in. 

420.88 
81.17 72.46 Symmetric 
31.94 -7.81 78.31 

-26.19 7.89 8.22 156.86 
-13.35 3.21 -.66 10.06       162.16 

5.87 -1.11 1.10 -5.69       -10.49 98.86 

lb-sec' 

From test data obtained with  the shaker at  the  0.5-inch 
station,   the  following 6x6   inertial coefficient matrix was 
identified for only  five elastic modes. 

402.47 
86.42 76.61 Symmetric 
31.99 -10.86 84.46 

-27.25 .52 7.33 160.88 
-13.11 2.41 2.09 -2.08    155.71 

11.42 3.40 -1.34 -7.65    -10.65 106.09 

in. 

lb-sec 

IDENTIFIED MASS  MATRIX  FOR  THE   6X6  MODEL 

From the  20 x  20 Bernoulli-Eulcr model of  the  specimen, 
we  calculated  the   following  6x6 mass  matrix using only 
five elastic modes. 
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3.10 
1.28 8.11 Symmetrie 

-.98 1.61 18.57 
.25 2.82 4.19 9.07 

1.32 6.90 9.58 3.89   14.93 
3.37 14.81 18.49 8.14   17.10 41.51 

lb-sec' 
in. x IQ- 

From test data taken with the  shaker at  the  0.5-inch  station, 
the   following 6x6 mass matrix was  identified using only  five 
elastic modes. 

3.34 
1.30 6.87 Symmetric 

1.07 1.27 17.00 
0 3.31 4.86 10.00 

1.53 6.90 9.58 5.88  16.41 
3.66 12.83 17.13 9.95  17.50 38.34 

lb-sec' 
in. x  10' 

EXPERIMENTAL  DEMONSTRATION   OF  STATIC  TEST  LOADS  AND 
DEFLECTIONS  BY   IDENTIFICATION 

Consider the beam-type  specimen used in these experiments  in 
a  "maneuver"  producing  3 g's  at station  0.5  and  2  g's at 
station 6.0  from external   forces at stations   35.5  and  61.0. 
Taking the rigid-body  acceleration coefficient  submatrix,  E, 
determined for shaking at station 0.5 and using  five  modes 
relating accelerations  at stations 0.5 and  6  to exterral  forces 
at stations  35.5 and 61.0,  we  find maneuver  trim forces of 
-284.787 pounds  at station   35.5  and  353.472  pounds  at 
station 61.0.     In actual practice,  of course,   the maneuver 
trim forces and moments would be  given. 

We  take  the   free-body   influence  coefficient matrix  for  five 
modes  shaking the  specimen at  station  0.5  and postmultiply 
by  the external  forces  to obtain  the maneuver deflections 
relative to inertial  axes: 

Station 

0.5  in. 
6  in. 
25  in. 
35.5  in. 
6]   in. 
72.5  in. 

Deflections 

-2 
7.135 x 10 , in 
4.888 x 10"^ in — 2 

-3.846 x 10 T in — 2 
-6.234 x 10 t in 
7.510 x 10 , in 
4.279 x 10 Z in 
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Let us now suppose that we wished to suspend this specimen 
at stations 25.0 and 61.0 in a static strength test.  We 
transform the deflections to be relative to zero deflection 
at the suspension stations and obtain: 

Station Deflections 

0.5 in. 
6 in. 
35.5 in. 
72.5 in. 

.1517 in. 

.1198 in. .-2 -4.184 x 10  9in. 
-1.5608 x 10"^ in, 

Using only four modes  in our system identification data 
reduction, we obtain the  following deflections. 

Station Deflections 

0.5 in. 
6 in. 
35.5 in. 
72.5 in. 

.1516 in. 

.1199 in. 
-4.165 x 10 
-1.550 x 10 

-2 
-2 in, 

in, 

These are the deflections, relative to zero at stations 25 
and 61, which occur in the "maneuver1 

0.5 and 2 g's at station 6.0. 
for 3 g's at station 

We now wish to know what forces to ap^ly to the static beam, 
suspended at stations 25 and 61, to produce the above de- 
flections occurring in the maneuver. We transform the free- 
body inertial coefficient matrix to a static influence 
oefficient matrix for constraints at stations 25 and 61, 
and multiply the inverse of the SIC by the maneuver de- 
flections. 

With an FIC matrix formed by shaking at station 0.5 and 
covering five modes, we find the forces to be applied in 
the static test to be -3.485 pounds, 100.051 pounds, 
-317.75 pounds and 278.902 pounds.  Using only four modes 
the forces calculation yields forces f.  11.536 pounds, 
78.620 pounds, -326.085 pounds and 200.557 pounds. 

Although the accuracy with which the concentrated forces 
are determined is, as one would expect, not as good as the 
accuracy in the static deflections, it promises to be a 
substantial improvement over the arbitrariness of the 
present method of using judgment and intuition to approximate 
distributed inertial forces with a small number of concen- 
trated forces. 
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This technique can be extended to approximating distributed 
inertial static forces by many more concentrated forces than 
modes covered in the system identification testing through 
the use of Moore's Generalized Inverse of the SIC matrix. 
Experimental investigation of this is beyond the scope of 
the work of this report. Nonsingular SIC matrices from 
system identification will generally satisfy the requirements 
of the present state of the art of static strength testing of 
helicopters. 

The static deflections occurring under maneuver do not involve 
matrix inversion in their determination and are dominated by 
the lower modes.  The engineer can determine the static de- 
flection under maneuver g-loading by system identification 
for every station at which he has an accelerometer and will 
find, as shown, that very few modes need be covered for high 
accuracy. 

This technique can be extended to approximating distributed 
inertial static forces by many more concentrated forces than 
modes covered in the system identification testing through 
the use of Moore's Generalized Inverse of the SIC matrix. 
Experimental investigation of this is beyond the scope of 
the work of this report. Nonsingular SIC matrices from 
system identification will generally satisfy the requirements 
of the present state of the art of static strength testing of 
helicopters. 

The static deflections occurring under maneuver do not involve 
matrix inversion in their determination and are dominated by 
the lower modes.  The engineer can determine the static de- 
flection under maneuver g-loading by system identification 
for every station at which he has an accelerometer and will 
find, as shown, that very few modes need be covered for high 
accuracy. 

IDENTIFIED STATIC INFLUENCE COEFFICIENTS 

Consider the specimen pinned to "ground" at the 6-inch and 
25-inch stations. We wish to determine the static influence 
coefficients among the 35.5-inch, the 61-inch, and the 72.5- 
inch stations. 

Using Bernoulli-Euler beam theory on the specimen, we 
calculate the following matrix of static influence 
coefficients. 
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1.071 
4.239 
5.664 

Symmetric 
24.21 
34.52           51.05 

m 

in. 
lb x 10 

From test data obtained by shaking at the  72.5-inch station, 
we identified the  following matrix of static influence 
coefficients. 

» 

1.057 Symmetric 
4.036 29.90 
4.976 41.74           60.24 

_ 

i^- x io4 
lb    x ■LU 

From test data obtained by shaking at the  0.5-inch station, 
we identified the following matrix of static influence 
coefficients. 

■" 

1.076 
4.139 
5.524 

Symmetric 
26.43 
38.30            57.63 

— 

in, 
lb x 10 

MOBILITY RERUNS 

An important proof of the value of a mathematical model is 
its ability to reproduce actual test data.  The identified 
mathematical models were used to obtain mobility data, and 
Figures 10 through 25 show the comparisons between the 
actual mobility test data and the mobility plots given 
by the identified models.  The situation here is not as 
simple as merely comparing a fitted curve to input points, 
although they are related, as failures of other methods of 
system identification to do so indicate (Reference 6).  The 
problem is to construct a mathematical model of a limited 
number of degrees of freedom using modal parameters, deter- 
mined through testing, such that the identified mathematical 
model will accurately yield not only the modal response 
put into it, but the responses at frequencies removed from 
the natural frequencies.  In other words, it is important 
for an identified mathematical model to be able to predict 
the interaction among modes. 
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The solid curves in Figures 10 through 25 show the predic- 
tions of the identified mathematical models while the 
circles show actual measurements.  Note that the model 
identified by shaking at one end of the unsymmetrical specimen 
predicts a response from shaking at the other end of the 
specimen which accurately compares throughout the useful 
frequency range with actual test data obtained by shaking 
at the other end. 
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Figure  10. Acceleration Mobility for Response at the 6-Inch 
Station and Force at the 72.5-Inch Station. 
Identification Made from Data Obtained With the 
Force at the 72.5-Inch Station. 
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Figure  11. Acceleration Mobility for Response at the 25-Inch 
Station and Force at the 72.5-Inch Station. 
Identification Made from Data Obtained With the 
Force at the 72.5-Inch Station. 
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Figure 12. 

300 

MO 

"s 

-200 

-NO 

1000 

Acceleration Mobility for Response at the 35.5- 
Inch Station and Force at the 72.5-Inch Station, 
Identification Made from Data Obtained With the 
Force at the 72.5-Inch Station. 
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Figure  13. Acceleration Mobility for Response at the 61-Inch 
Station and Force at the 72.5-Inch Station. 
Identification Made from Data Obtained With the 
Force at the 72.5-Inch Station. 
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Figure  14 
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Acceleration Mobility for Response at th~ 72.5- 
Inch Station and Force at the 72.5-Inch tation 
Identification Made from Data Obtained With the 
Force at the 72.5-Inch Station. 
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Figure   15. Acceleration Mobility   for  Response at  the  6-Inch 
Station and  Force at  the   72.5-Inch Station. 
Identification Made   from Data  Obtained With the 
Force  at  the   0.5-Inch   Station. 

65 



1000 

Figure  16. Acceleration Mobility  for  Response at the 25-Inch 
Station  and Force at  the  72.5-Inch  Station. 
Identification Made   from Data Obtained With the 
Force  at  the 0.5-Inch Station. 

1000 

Figure 17.  Acceleration Mobility for Response at the 35.5- 
Inch Station and Force at the 72.5-Inch Station, 
Identification Made from Data Obtained With the 
Force at the 0.5-Inch Station. 
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Figure  18. Acceleration Mobility  for Response  at the 61-Inch 
Station and Force at the  72.5-Inch  Station. 
Identification Made  from Data Obtained With the 
Force at the 0.5-Inch Station. 
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Figure 19. Acceleration Mobility for Response at the 72.5- 
Inch Station and Force at the 72.5-Inch Station. 
Identification Made from Data Obtained With the 
Force at the 0.5-Inch Station. 
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Figure  20 
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Acceleration Mobility for Response at the 0.5-Inch 
Station and Force at the 0.5-Inch Station. 
Identification Made from Data Obtained With the 
Force at the 0.5-Inch Station. 

Figure 21.  Acceleration Mobility for Response at the 6-Inch 
Station and Force at the C.5-Inch Station. 
Identification Made fron- Data Obtained With the 
Force at the 0.5-Inch Station. 
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Figure 22. Acceleration Mobility for Response at the 25-Inch 
Station and Force at the 0.5-Inch Station. 
Identification Made from Data Obtained With the 
Force at the 0.5-Inch Station. 
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Figure  23, Acceleration Mobility for Response at the 35.5- 
Inch Station and Force at the 0,5-Inch Station. 
Identification Made from Data Obtained With the 
Force at the 0.5-Inch Station. 
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Figure 24. Acceleration Mobility for Response at the 61-Inch 
Station and Force at the 0.5-Inch Station. 
Identification Made from Data Obtained With the 
Force at the 0.5-Inch Station. 
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Figure 25. Acceleration Mobility for Response at the 72.5- 
Inch Station and Force at the 0.5-Inch Station. 
Identification Made from Data Obtained With the 
Force at the 0.5-Inch Station. 
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CONCLUSIONS 

1. The laboratory testing confirmed that it is possible to 
accurately identify the properties of a continuous 
asymmetric structure through single-point shaking 
impedance-type testing. 

2. It was found by laboratory experiments that it is 
possible to obtain static influence coefficients for 
arbitrary restraint through free-body testing without 
assumption of a mass matrix. 

3. It was found by laboratory experiments that the equa- 
tions of Biot and Duncan, slightly modified, can be 
validly used in the presence of imaginary antiresonances. 

4. It was found by laboratory experiments that normal 
modes and modal masses can be determined accurately 
from test data by an antiresonance theory equation 
with single-point shaking on structures of ordinary 
levels of structural damping without use of matrix 
inversion. 

5. It was found by laboratory experiments that iteration 
to determine modal parameters by matrix methods is 
not necessary with low damping. 

6. Identification of a model with more degrees of freedom 
than modes covered in the testing (truncated model) 
was found to be accurate, in the laboratory experiments. 

7. Truncated models can be used to predict the effects 
of stiffness and mass changes. 

8. It was found by laboratory experiments that free-body 
influence coefficients may be expressed as a function 
of only the rigid body acceleration coefficient, the 
natural frequencies and the antiresonant frequencies. 

9. The equations of Duncan and Biot were extended to 
free systems and found to be valid. 

10. Maneuver inertial loads of the distributed helicopter 
structure can be lumped for static testing by system 
identification methods. 

11. It was found by laboratory experiments that impedance 
test data should not be relied on unless physical checks, 
independent of the signals and transducers, are made 
during the testing. 
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RECOMMENDATIONS 

1. The application of system identification by the method 
of these laboratory experiments to a large semimonocoque 
structure, such as a tail boom or full fuselage, should 
be investigated by testing in a manner that will define 
the proper and necessary procedures for general heli- 
copter engineering use. 

2. Application of these methods to solving the problems 
of the dynamics of main and tail rotor blade^ should 
be investigated, with particular attention to the 
structural properties of elastically articulated blades. 

3. The new approaches to dynamic testing offered by 
antiresonance theory should be further expanded to 
allow widespread on-site application of hand-calculator 
or computer terminal checking of data during helicopter 
shake testing and physically meaningful instant reduc- 
tion of data to the modal, static, and inertial properties 
required. 
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APPENDIX A 
TRUNCATED MODELS AND THEIR USE IN PREDICTING 
EFFECTS OF CHANGES IN MASS AND STIFFNESS 

SUMMARY 

Truncated parameters of a linear system are defined herein 
as those constant matrix coefficients in the equations of 
motion formed from fewer normal modes than degrees of freedom 
such that the Euclidian norm of the differences between the 
actual mobility matrix and the mobility matrix formed using 
the normal modes and modal coefficients of the parameters is 
a minimum with respect to the modal coefficients.  An engineer 
can construct a truncated mathematical model of a linear 
system from fewer normal modes than degrees of freedom in 
the system. 

It is shown that the classical dynamical eigenvalue problem 
using truncated influence coefficient and mass matrices 
yields as many normal modes and natural frequencies, exactly, 
as the column rank of the normal mode matrix used in forming 
the truncated parameters.  It is further shown that truncated 
mathematical models can be used to predict the effects of 
mass and stiffness changes to the extent that the new dynami- 
cal eigenvectors can be expressed as linear combinations of 
the original dynamical eigenvectors and this is demonstrated 
via computer experiments. 

DERIVATION OF TRUNCATED MODELS OF LINEAR STRUCTURES AND 
PREDICTION OF CHANGES IN MASS AND STIFFNESS  

As shown in Reference  1, the mobilities of J coordinates for 
excitation at coordinate k is given by 

Jxl     JxN  NxN   Nxl    Jxl 

where {6} is the difference between the actual mobility and 
that approximated using only N modes.  For the full mobility 
matrix this  becomes 

[Yjk(.)1 = [*HYf(uj)]m
T
+ [6] (A-2) 

JxJ     JxN  NxN NxJ   JxJ 
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Using Equation  (A-l)  we set  the partial derivative of  {6}   {6} 
with respect to  {Y*,   . } equal to zero and solve for the modal 

1 lU)J 

mobility vector which will make the Euclidian norm of the 
residuals,   {5},  a minimum. 

■WTu«)' = "Tw^W) = i*)'^^))   (Ä-3) 

+ + -1        T 
where   [*]     =   ([*]   [*])     [*!   .     For the  full mobility matrix 
of Equation   (A-2),  Equation   (A-3)   can be immediately extended 
to give the minimum Euclidian norm of   [8]. 

[¥*']   =   [<I>] + [Y., .   vl[<I']+T 
1
  icj J    l  ]k{cj)J    J (A-4) 

The truncated mobility matrix is now defined as 

mT  =   [*] [$] + [Y] [1>]+T[$]T {A-5) 

and the Truncated Impedance matrix as 

[Z]T =   [<D]+T   tyTrl t*l + (A-6) 

Note  that 

and 

I$]    [Y1T[Z]T[*]   =   I 

[*1T[Z]T[Y]T[$]+T =  I 

(A-7) 

(A-8) 

We define  the Truncated Stiffness  as 

[K]T =   [<I>]+TtK*] [<I>] + (A-9) 

the  Truncated Mass  as 

[m]T =   m+T[M*] [1.] + (A-10) 
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and the Truncated Influence Coefficient,   in the manner of 
Rodden   (Reference   2 )   and Berman   (Reference   3 ) ,  as 

[C]T =   [*] [j^-] [$]T (A-ll) 

If the truncated modal mobilities of Equation (A-6) are very 
nearly equal to the actual modal mobilities (which they will 
usually be if modal matrix contains the three or four modes 
in the vicinity of the forcing frequency) , we can uso the 
modal mobilities in Equation (A-6) and will obtain Equations 
(A-9) and (A-10) by, respectively, setting the forcing fre- 
quency to zero and infinity.  Similarly, Equation (A-ll) can 
be obtained from Equation (A-5) by setting the forcing 
frequency to zero. 

Premultiplying Equation (A-10) by Equation (A-ll) gives the 
classical eigenvalue equation using truncated parameter 
matrices: 

[C]T[m]T[$] = [*][-^] (A-12) 

as shown in Reference 1. 

We may rewrite Equation (A-l) as 

JxN 

or,   for velocity 

JxN  Nxl 

(A-13) 

From Equation  (A-10)  we see  that the Kinetic Energy  is 

T - | {y}T[m]{y}  = j {q}T[$]T[m]     [*]     {q} 

IxN  NxJ  JxJ     JxN    Nxl 

= j  {q}T[M*]{q}   =  ±  {q}TmTtm]Tm{q} (A-14) 

NxN 
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Consider a change in the mass and in the stiffness such that 
the new displacements in the frequency range of interest are 
approximated by a linear combination of the original N modes. 

{y} = [*]  (r) 

Jxl  JxN Nxl 
(A-15) 

The new kinetic energy is  approximated by 

I, 
i: 

But 

T » | {r}TmT([m]   +   [Am]) t*Hr} 

[*]T[m]     [*]   =   mTlm]T[1']   =   [M*  ] 

NxJ  JxJ    J. N NxN 

(A-16) 

and 

[<I']T[Am] [$]   =   [$]T( [*]+T[^]T[Am] [4>] [<I>]+) [*]   =   [*]T [Am] T [1>] 

(A-17) 

Defining   [Am]     =   [<J>]+   [*]    [Am] [*] [*]   ,   the  kinetic energy 
becomes 

T = |  {r}T[*]T([m]T +   [Am]T)[*]{r] (A-18) 

Similarly,   the potential  energy  is  found to be 

V = |  {r}TmT([K]   +   [AK]) [*]\r}   = ^ r }T [* ]T ( [K], 

+   [AK]T) [^Krl (A-19) 

where 

[AK]T =   [t]+T[<t]T[AK] [*] [<l>] + (A-20) 

Note   that   [^ j 1 [ Am] [<J>]   and   [$]    [AK][*1   are  not ordinarily 
diagonal. 
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As  seen  from Equations   (A-9)   and   (A-ll),   the  new truncated in- 
fluence  coefficient matrix  is  given by 

[C']T=    [*]        [<J>]T([K]T  +    [AK]T)t<M       ■1[«HT   (A-21) 

and  the eigenvalue  equation  reflecting  the   changes   is 

[C,]T[m']T[1',l   =   [*'] l4y] (A-22) 

where   the  new  eigenvectors   are   linear  combinations  of  the 
original eigenvectors: 

['{>• ]{S]   -   (y)   =   [4-] ;r 

Computer experiments were run on the Hewlett Packard 2000C 
computer using, as a specimen, an elastically supported beam 
of irregular continuous stiffness and ten unequal lumped 
masses totaling 9200 pounds. 

The mass changes shown in Tables A-l and A-2 consisted of 
raising the mass of the first station from 11.2 pounds to 
22.4 pounds and increasing the mass of the second station 
from 2840 pounds to 4260 pounds. The stiffness change of 
Tables A-3 and A-4 was effected bv doubling the stiffness 
between stations 2 and 3; i.e., adding a spring between 
coordinates 2 and 3 of rate 374,000 pounds/inch. 

Only the first three modes of the unchanged system were 
used in constructing the truncated model from Equations 
(A-9), (A-10), and (A-il).  The natural frequencies and 
mode shapes of the system with changes were calculated 
using Equation (A-22). 

The stiffness change was more drastic than the mass changes 
and it will be noted in Tables A-3 and A-4 that although 
the change severely altered the first and second mode shapes, 
the truncated model predicted the new frequencies and mode 
shapes quite accurately. 

79 



»<ia»*n<*- - 

TPiuLE   A- 1. EFFECT OF MASS CHANGES ON THE FIRST MODE 
AND PREDICTED EFFECT FROM TRUNCATED MODEL 

Mode I 

Exact Solution 
No Changes 

Exact Solution 
With 100% Change 
in Mass 1 & 50% 
Change in Mass 2 

3 Mode Truncated 
Solution With 100% 
Change in Mass 1 & 
50% Change in Mass 2 

Nat Freq 3.45067 cps 3.18247 cps 3.18257 cps 

Mode Shapes 

1 1 1 

.765 .778 .779 

.490 .516 .516 

.378 .408 .408 

.273 .304 .30^3 

.173 .205 .205 

.080 .111 .111 

-.006 .023 .024 

-.122 -.100 -.100 

-.235 -.218 -.218 

"                                                         i 
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1   TABLE A-2.  EFFECT OF MASS CHANGES ON THE SECOND MODE 
1               AND PREDICTED EFFECT FROM TRUNCATED MODEL 

Mode II 

Truncated Solution 
Exact Solution Using Only 3 Modes 
With 100% Change With 100% Change in 

Exact Solution in Mass 1 & 50% Mass 1 & 50% Change 
No Changes Change in Mass 2 in Mass 2 

Nat Freq 9.68024 cp s 8.49711 cps 8.49895 cps 

Mode Shapes 

1 1 1 

.397 .450 .452 

-.253 -.136 -.137 

-.465 -.327 -.328 

-.642 -.483 -.486 

-.782 -.608 -.613 

-.881 -.697 -.703 

-.938 -.748 -.755 

-.954 -.763 -.768 

-.968 -.770 -.771 

1  " - — —1 
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TABLE A-3. EFFECT  OF  STIFFNESS  CHANGE 
AND  PREDICTED EFFECT  FROM 

ON   THE   FIRST MODE 
TRUNCATED MODEL 

Mode   I 

Exact  Solution 
No Changes 

Exact Solution 
Double  Stiffne 
Between Sta  2 

ss 
&   3 

3 Mode Truncated 
Solution  Double 
Stiffness Between 
Sta  2  &   3 

Nat  Freq   3.45067 cps 8.14744 cps 8.22313 cps 

Mode  Shapes 

1 1 1 

.765 .524 .533 

.490 .031 .032 

.378 -.113 -.130 

.273 -.232 -.266 

.173 -.330 -.376 

.08 -.404 -.456 

-.006 -.454 -.505 

-.122 -.490 -.522 

-.235 -.519 -.519 
1 1 
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TABLE  A-4 .      EFFECT  OF  STIFFNESS  CHANGE  ON   THE   SECOND MODE 
AND  PREDICTED  EFFECT  FROM TRUNCATED  MODEL •              '                                                             ....                                                         -.., 

Mode  II 

Exact Solution 
No Changes 

Exact Solution 
Double Stiffness 
Between Sta 2   &  3 

3 Mode  Truncated 
Solution  Double 
Stiffness Between 
Sta  2  &   3 

Nat Freq  9. 68024   cps 16.8013 cps 16.9646  cps 

Mode  Shapes 

1 + .381 .256 

.397 + .180 .140 

-.253 .104 .082 

-.465 .198 .122 

-.642 .306 .179 

-.782 .413 .249 

-.881 .515 .334 

-.938 .614 .440 

-.954 .774 .662 

-.968 1 1 
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APPENDIX B 
RIC'.O-BODY  ACCELERATION  COEFFICIENT  FOR 

PRINCIPAL OR NONPRINCIPAL AXES 

(-■ 

In Figure B-l x, y, and z are any orthogonal axes through 
the center of gravity of a body of mass M, with points x. , 
y., and z., shown on the respective axes, having rotational 

acceleration.. 6,9, and 9 . x'  y'     z 

Figure B-l. Axis System. 

The moments M , M , and M about the x, y, and z axes, x  y      z 1 

respectively, may be written using Lagrange's Equation as 

M. 

M 

„ 

r T 
X 

-u 

-u xy 

-u   -U 
xz   zy 

xz 

I    -u 
xy   y     zy 

z J 

/ 9, 

(B-l) 

where 1,1, and I are the moments of inertia about the 
x  y      z 

x, y, and z axes, respectively, and U  , U  , and U  are 

the product of inertia with respect to the x and y axes, the 
x and z axes, and the y and z axes, respectively. 

Equation (B-l) may be written in general notation as 

{M } = t3M/39]{9} (B-2) 
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The [9M/86] matrix may be inverted to yield 

2 „ I .1 -U 
y z  zy 

36 

-1 
l3MJ   A 

U  I +U  U xy z zy xz 

U  I +U  U   I I -u  ' 
xy z  zy xz  x z xz 

•-UU+IU IU+UU xy  zy    y xz      x zy    xy  xz 

U       Ü       +1   U      n xy   zy    y xzn 

IU+UU x  zy    xy xz 

I   I   -U     ' x y     xy 

(B-3) 

where  A=III-2UUU       -U2I-U2I. x y  z xy  zy  xz xy     z zy     x 

Solving for the rotational accelerations and using the 
definition presented in Equation (B-3) yields 

^ = 0{V (B-4) 

The matrix   [30/9M]   represents  the rigid-body acceleration 
coefficients  of  the  rotational   acceleration  about  any  of  the 
specified axes with respect  to a moment about  any of  the 
given  axes. 

The  linear accelerations  of  the points  x. ,   v.,   and  z.   due 

solely to rotations of  the  rigid body may be expressed as 

X. 
1 

0 zi   -yi 

yi 
s z. 

i 
0        x. 

i 

zi "   yi -x.   0 
i 

(B-5) 

Equation   (B-5)   may be written  more generally  using Equation 
(B-4): 

(q)   =    [QjfO)   =    [Qi] [3e/9M]{M   } (B-6) 
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The moments about the x, y, and z axes caused by orthogonal 
forces at any point are given by 

M 

M 

M 

r 0   -zF  yF n 

^ -yF xF o 

(B-7) 

Equation   (B-7)   may be written  as 

{V   =   IQF]fF} (B-8) 

Newton's Law relates  the accelerations of  the  center  of 
gravity of the body to  the  applied forces  and mass  of  the 
body: 

(qo}   = i=   {F}   * (B-9) 

The   rigid-body acceleration  coefficients describing  rotational 
acceleration due  to moment  is  given by Equation   (B-3)   and is 
written  in matrix  form as 

r   ••   i   —    r^91 lC9MJ   ~    l9M1 (B-101 

The   rigid-body  acceleration  coefficients  relating  translational 
acceleration  and moment  is   obtained  from Equation   (B-6) : 

[eqM] [3q/9M]   =   lQil[3e/3M]   =   [Qi]IeQMl (B-ll) 

The rigid-body acceleration coefficients presenting rotational 
acceleration due to force is defined from Equations (B-4) and 
(B-8) : 
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[£-öp] = [ae/9F] =  [|i][QF] = [^][QF] (B-12) 

The accelerations of a point on the rigid body result from 
the translational acceleration of the center of gravity and 
the linear acceleration due to pure rotations of the rigid 
body.  The translational acceleration is obtained from 
Equations (B-6), (B-8), and (B-9) and is written as 

(q)  =   IF}   i+   [Q.He^HQpHF} (B-13) 

Equation   (B-13)   yields  the  rigid-body  acceleration coefficient 
relating translational  acceleration and  force: 

^ [9q/3F]   =   [-±-]  +   [QiHe^HQp] (B-14) 
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LIST OF SYMBOLS 

a.. . 

A... Dki 

E .. Dk 

f 

g 

i 

I 

k 

K 

K 

M 

m 

N 

n 

q 

R 

s 

x 

y 

y 

Y 

i-th antiresonant frequency for response at j due 
to force at k - rad/sec 

modal acceleration of the i-th mode for response 
at j due to force at k - in./sec^/lb 

jk-th influence coefficient - in./lb 

jk-th rigid body acceleration coefficient - in./sec' 

force - lb 

structural damping coefficient 

imaginary operator 

2 
jk-th inertial coefficient - in./lb-sec 

2 
mass moment of inertia - lb-sec -in. 

stiffness - lb/in. 

stiffness - lb/in. 

constant 

2 
mass - lb-sec /in. 

2 
mass - lb-sec /in. 

number of modes 

index 

generalized coordinate 

2 
mobility residuals - in./lb-sec 

defined in text 

distance - in. 

vibratory displacement - in. 

2 
vibratory acceleration  -  in./sec 

displacement mobility  -  in./lb 
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LIST OF SYMBOLS   (Continued) 

2 Y acceleration mobility -  in./(lb-sec  ) 

z distance -  in. 

Z     displacement impedance - lb/in. 

2 Z     acceleration impedance - lb-sec /in. 

4)..   j-th element in the i-th normal mode 

w     frequency - rad/sec 

Q.    i-th natural frequency - rad/sec 

BRACKETS 

[ ]( ) matrix 

[ )   diagonal matrix 

{ }   column or row vector 

SUPERSCRIPTS   

R real 

I imaginary 

E elastic modes 

(j) i-th trial 

+ pseudoinverse 

-1 inverse 

T transpose 
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LIST OF SYMBOLS   (Continued) 

SUBSCRIPTS 

i modal index 

m modal index 

M modal index 

(j) subscript j constant 

e exciter station 

R restrained 

F free 

OTHER  INDICES 

Capital  letters  under matrices  indicate the number of  rows 
and columns,   respectively. 
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