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INTRODUCTICN

UNIFICATION OF TESTINC AND ANALYSIS

System identification may be defined as methods of deter-
mining the parameters of a system from testing. In helicopter
dynamics it generally refers to the determination of the
inertial parameters, the elastic parameters, and the damping
parameters of a structure (e.g., an engine, fuselage, rotor
blade) directly from shake testing. System identification
is not a replacement for a priori analytical methods but,
rather, augments intuitively based analyses by closing the
engineering loop between analytical engineering, which
predicts effects, and test engineering, which measures these
effects on the actual hardware.

Traditionally in helicopter engineering, structural dynamic
testing served mainly to simply either confirm or deny what
had been predicted by analysis. Our thinking tools in
helicopter engineering, which we use in deciding how to
improve our designs, have been principally based on conceptual
idealizations of analytical form with little more benefit from
actual testing than corroboration of predictions from our
abstractiors or, very often, evidence of mysteries beyond our
capabilities of abstract formulation. Analysis is valuable

in helicopter engineering only to the extent that it affects
engineering decisions.

We can use system identification testing .. provide infor-
mation of decision-making value, obtained from the actual
hardware, and to coumbine testing with analysis in a more
unified engineering approach to the development of helicopter,
and helicopter component, structures. Helicopters do not
"fly off the drawing board". Most of the engineering is
done, and most of the problems are solved, after a ship has
been built. System identification will provide an analytic
feedback from testing, badly needed, so that as successive
new ships are built, more of the problems will be solved
before the ship is built. In the shorter term, system
identification will short-circuit much of the trial and
error in the development of hardware helicopters, as opposed
to paper helicopters, by extraction of analytical parameters
from the helicopters themselves through testing.
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The need for a more unified dynamics test and analysis
apprcach to all of aerospace structures and substructures
is widely proclaimed (e.g., References 1, 2, and 3) and the
helicopter is the most dynamically troubled of any flying
machine (Reference 4).

System identification is not a panacea for structural
dynamics problems. The logical extension of what are

called "Impedance Methods" to their most useful engineering
level, system identification is a synergistic combination of
what we can measure in the hardware with what we analytically
conceive of as idealizations of the hardware into a single
engineering systein of rational decision making in the per-
fection of helicopters and their components.

SYSTEM IDENTIFICATION - SOLUTION

Utilizing "impedance" test data, system identification
distills from shake testing the principal parameters of
analytical concern. The concern at present is in obtaining
elastic and inertial parameters of a helicopter structure

or substructure, primarily, and damping parameters,
secondarily, through testing. It is the first task of

system identification in helicopter work to separate the
elastic parameters from the inertial parameters and identify
each. We do this first in terms of what are called "measur-
ables", such as influence coefficients, which are independent
of the number of measurement stations. Mass information and
stiffness information which readily divide into "measurables"”
through system identification cannot generally be obtained

in static testing either because of confounding of the
parameters, as in drop tests, or because of very small
displacements, as in deflection tests.

Having obtained "measurable" parameters through impedance
shake testing, the engineer then employs the methods of
system identification to obtain equations of motion of the
helicopter or its components as revealed by the testing
itself. The engineer can use these equations to predict
response to various loadings, to predict the dynamic effects
of identified subsystems, to predict the effects of changes
he can model in the structure, and to improve his a priori
intuitive modeling techniques. In any case, the equations and
parameters obtained from the structure itself will supplant
what we intuitively suppose to be parsmeters and equations
when we make engineering decisions about a helicopter. It
is the feedback to analysis from testing that is the most
valuable engineering part of system identification.



SYSTEM IDENTIFICATION LABORATORY TESTING

To test the methods of system identification in a manner that
would allow comparisons to well established analytical pro-
cedures, it was decided to use a specimen of fairly ideal
analytic form. The fact that the specimen in the tests was
generally amenable to analysis had no influence, in itself,
on the ease with which the identifications could be made from
test data. It was further decided that the specimen in the
laboratory testing should be a continuous structure, as
opposed to a simple chain type structure, so that it would
not be a specimen with essentially only a few degrees of
freedom. An elastically uniform beam satisfied these con-
ditions, and a steel tubular beam was selected as the basic
form of the specimen. To eliminate dynamic symmetry and
uniformity, three lumped masses were asymmetrically placed

on the beam.

From the st:ndpoint of system identification, the laboratory
specimen was therefore a continuous structure of an infinite
number of degrees of freedom which was dynamically asymmetric
and nonuniform. From the standpoint of intuitive analysis,
however, the specimen was simple enough for approximate
theoretical calculation of the parameters to be identified

so that the theoretical and identified parameters could be
compared.

The specimen was suspended to simulate free-body responses
because helicopters are generally shake tested, ground
resonance testing being the exception, suspended as free
bodies. To restrict the identification to a maximum of
six lumped parameters, it was specified that only five
accelerometers, plus the impedance head, could be used.

Comparison of system identificaticn results to parameters
derived from theoretical analysis of the specimen was not
considered sufficient laboratory demonstration of the single-
point system identification theory, so it was required that
identifications be made ind=:pendently from test data obtained
by shaking at two stations. The shaking stations selected
were 1/2 inch from one end of the specimen and 2-1/2 inches
from the opposite end of the specimen. This allowed a
three-way comparison of results among theoretical analysis
and two independent identifications.



Correlation among the three methods of obtaining parameters
was done for matrices of a five-degree-of-freedom model
covering five modes and a six-degree-of-freedom model
ccvering five modes, the latter being a truncated model.
Correlation was obtained on modal accelerations (normal

modes and generalized masses), inertial coefficient matrices,
mass matrices, free-body influence coefficient matrices,
stiffness matrices, and static influence coefficient matrices.
The structural damping coefficient was determined for both
the five-degree-of-freedom model and the six-degree-of-
freedom model. A method of identifying static structural
test loads and deflections was demonstrated for the six-
degree-of-freed>m model using five modes and using four
modes.

10



DISCUSSION OF CONCEPTS AND METHODS

MOBILITY

Mobility and Impedance

At any frequency, w, the equations of motion of a linear
structure with Soroka structural damping are

K - w?M + igk]{y} = (£} (1)

We abbreviate the expression by referring to the terms in the
matrix as the "displacement impedance", Z (Reference 5).

(z1{y} = {f} (2)

We denote the "acceleration impedance" as 7% and define it as
the matrix coefficient of the acceleration in the equation
giving the forces. For reasons to be explained iater, we
will be working with accelerations, rather than velocities or
displacements.

(z]{y} = (£} (3)

Nute that Z is not the secoud derivative of Z with respect to
time, which is self-evideat in the context in which it is
used, and we adopt this slight abuse of mathematical nomen-
clature because of the much needed simplification it affords
in impedance terminology by the very obvicus meaning it has
to helicopter engineers.

From Equation (3) we sce that the accelerations are given by

iy} = (217 teE) = g (4)

in which the inverse of 2, the acceleration impedance, is
called the "acceleration mobility", Y. Unless otherwise
specified, our use of the term "mobility" is to be taken to
mean "acceleration mobility”.

As seen from the matrix expressions, impedance and mobility
are properly partial derivatives. Acceleration impedance is
the partial derivative of force with respect to acceleration.
Acceleration mobility is the partial derivative of accelera-
tion with respect to force. The j-th acceleration, as seen
from Equation (4), can be written as

11



ay1 JY 4 : )
T atege ot aEr iyt et s b5 Yy (5)
l 2 3 n
or
Y]lfl + Y 2f2 + Yj3f3 + + an n - yj (6)

I1f we apply one and only one force, say at station k, then
we see from Equation (6) that

ij = yj/fk (7)

In other words, mobility becomes simply a ratio of accelera-
tion to force when only one external force is applied. With
an external force at k and onliy at k, we can measure all
mobilities over j: Ylk’ sz, Y3k’ etc., for as many or as

few accelerometer stations j as we wish.

In a continuous structure we cannot measure the impedance Z'k'
This would require holding all the accelerations to zero

but one and "all" the accelerations are infinite.

Measurables and Abstractions

Suppose, now, that we ignore
by considering only a finite
say n.

the "infinity minus »one" problem
number of acceleration stations,

Further suppose that we found a practical method of

holding n-1 accelerations to zero.

Then we could measure any

impedance ij for n stations. But if we cons.idered N stations
where N # n, then the value of ij for N stations would be
different from the value of ij

therefore, that the value of an impedance is a function of
the number of stations chosen and is an abstraction wholly
dependent on the analyst's intuitive simplification of a
continuous structure to one of an arbitrary number of lumped
coordinates.

for n stations. We see,

This leads us rnecessarily into the concepts of "measurables"
and "abstractions" which are covered in Reference 6. Impedance
is not a measurable quantity because it is not a property of
a continuons structure but, rather, depends on the number of
coordinates chosen at the whim of the analyst. Mobility, to

12
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the contrary, is a measurable quantity, a property of the
structure at any frequency, and is completely independent of
the number of coordinates the analyst wishes to consider.

Similarly, as shown in Reference 6, terms in the inverse of
the mass matrix and terms in the inverse .. the stiffness
matrix (the influence coefficients) are masurable properties
of the structure while elements of the mass and stiffness
matrices are intuitive abstri~tions dependent on arbitrary
choices of the analyst.

It is therefore quite obhvious that the magnitudes of
individual terms in the mass and stiffness matrices of a
mathematical model. of a continuous structure are not, in
themselves, of informational value in ergineering since a
given term in, say, the stiffness matrix of a 100 x 100 is
of quite different value than the same term in a 99 x 99
matrix of the same coordinates but one. This is not to
say, continuing the example, that the stiffness matrix is
not useful; it is not ouly useful but extremely important.
The individual values of the elements in the stiffness
matrix are not meaningful but the individual values of the
elements in the inverse of the stiffness matrix are very
meaningful.

In gencral, it is the inverse of the matrices to which the
analysts are most accustomed which are natural properties

of a structure, i.e., "measurables", and we deal with the
abstract inverses of these measurables solely as mathematical
tools. Some methods of using these abstract tools to prac-
tical purposes are covered in an appendix.

It is of prime importance in helicopter engineering to
recognize that while mathematical "laws" bound the 1logic
of our contemplation of the helicopter, the helicopter
itself is a natural thing performing in a real world not
fully described by the mathematics of which any of us are
capable. The object of system identification is to make
the mathematical methods with which we are familiar in
the industry more capable of dealing with the facts of
real helicopters, which we can measure.

i3



Modal Acceleration and Mobility

Let ¢ i be the j-th element of the i-th normal mode, ¢k be
the k- th element of tr2 i-th normal mode and M be the

"generalized mass" of the i-th normal mode glven by

*
Mi = {¢}$[m]{¢}i where [m] is the infinite ordered mass
matrix of the structure. Then the jk-th modal acceleration
of the i-th mode is defined as

A, . = ¢11¢k1 (8)
Jki (41T (m ()
i 1

The response of an accelerometer at j for a force at k, in
an undamped single-degree-of-freedom system, the acceleration
mobility approaches the modal acceleration, Ajk’ at forcing

frequencies far above the natural frequency. In a multi-
degree-of-freedom system, the acceleration mobility at
frequencies far above the natural frequencies approaches the
sum of the modal accelerations,

n

k1 Py

Tae i-th modal acceleration of the j-th degree of freedom for
a force at k is seen to be the frequency-independent measure
of the contribution of the i-th mode to the acceleration at

j for a force at k. In an undamped system of n modes, the
accelerotinon mobility (for force at K) at any frequency w

is given by

NZ/Q_Z

1
j- — = = (9)
jki 1 - wz/Qiz

=<
i
|
t a3

Similarly, in a system with Soroka structural damping, g,
the real acceleration mobility is
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“R n w2 1 - mz/Qi2
Y. = = T Aip: : (10)
Jkw .y ki 2 2,5 2,2 2
i=1 Qi (1L - w /Qi )<+ 9,
and the imaginary acceleration monility is
i
!
¢ - N 2 g,
I _ w 1
Yikw = .2 Pyki T2 773 (11)
i=1 Qi (1 - ELq " 2
2’ Y9
9y

Rigid-Body Acceleraticn Coefficient

In an unrestrained system we have up to six, say Z, "rigid
body" degrees of freedom. This means we have Z natural
frequencies which are zero. Setting the first Z natural
frequencies to zero in Equation (10), we write

“R z N w2 il S— wz/Qi2
Y. L A.,., - Z A, . ( ) (12)
jkw i=1 jki i=2+1 jki Q.2 2 2
1on-y +g2
Q_Z i
i

(Reference 7). The first term is, of course, a rigid-body
property which we call the rigid-body acceleration coefficient
(RAC) and denote it as Ejk' At zero forcinjy frequency the real

acceleration mobility is equal to the rigid--body acceleration

coefficient.
R =g atw=0 (13)
ik jk )
The RAC, Ejk’ is the acceleration along coordinate j (the

accelerometer at j) for a steady force at k as the helicopter
hurtles into space. If the force were a. the center of
gravity the RAC would be the same value for every point on
the ship but when the force is not at the center of gravity
the ship is rotating as well as translating and the RACs

are different for different points. The RAC is easily
calculated from helicopter weights data. 1If, for example,
the ship has a total mass M, roll inertia I_ and yaw inertia
Iy, then lateral (y-direction) acceleration”™ at j for a
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lateral force at k is given by

1, %%, 3%
Esk “m* T~ ¥ I, (=}

where Z and X represent, a- subscripted, distances from the
center of gravity to the accelerometer at j and the force at
k or vice versa. Equatior (14) assumes principal axes. In
Appendix B we derive tlre general expression for tlie RAC for

& principal or nonprincipal axes and all directions., The RAC
for the test specimen are presented in the follouwing matrix
i for stations 0.5, 6, 25, 35.5, 61, and 72.5 inches.
i
[ 53.856 L
: 48.166  43.346 Symmetric

28.51 26.696 20.429

; 17.647 17.494 16.966 16.674

¥ -8.733 -4.852 8.555 15.964 33.958

| -20.63 -14.93 4.762 15.644 42.073 53.992

Suppose now that we specify a maneuver by hub forces h, hub
moments M and tail rotor thrust t. The steady accelerations
at the flight deck are then given by

Exh EXM Ext h X
Eyh EyM Eyt M} = ‘y (15)
Ezh EzM Ezt 3 Z
- —
or .
[E1{f} = {q} (16)

Conversely, we can specify as many maneuver g-loadings, q,
as there are trim forces and momen.s and obtain the trim
forces and moments by

-1."

{f} = [7] “{q} (17)
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Using antiresonance theory, which is discussed later, we see
that the acceleration mobility at any frequency, which is a
nonrigid response of the helicopter, can be obtained by
multiplying the rigid body acceleration coefficient by a
This factor is a function ~f frequency cnly and

factor.

i involves the forcing frequency, tbh.: natural frequencies, and
‘; the antiresonant frequencies. See Figure 1.
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Figure 1. Mobility Versus Frequency.
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Free-Body Influence Coefficient

Now let us convert Equation (12) to displacement mobility
by dividing through by minus the forcing fr-quency squared

2 2
E. N AN 1 - w™/Q,
Yigw == =3+ 2 4 ) /212 2 (18)
jkw . _
w i=2+1 Qi (1 w /Qi YO+ 9
With zero damping, this becomes
E. N A.as
Y s =~ — (19)
J w i=z+1 Q,° 1 - /0,

If we let the forcing frequency go to zero in Equation (19)

we would have the deflection at j due to a force at k but,
because our system is unrestrained, we end up with an indeter-
minancy because of the first term involving the RAC. 1In

other words, the static influence coefficients of a free body
are infinite. But the second term is finite at zero frequency.
To avoid confusion at the outset, we will call this second
term the free-body influence coefficient, C?k.

cgk = 3 -15% (20)
J i=z+4l

The physical meaning of the free body influence coefficient
is quite simple. When the free body is hurtling into space
at constant acceleration under a force at k, the body is

deformed. The number of inches j is displaced, relative to
inertial axes of body, per pound of force at k is the free-
body influence coefficient, C?k.
In a maneuver under forces and moments, f, wherever applied,
the deflections of the helicopter structure, q, relative to
the inertial axes through the center of gravity are given by

{q) = cEiis} (21)

These deflections, and therefore the free-body influence
coefficients, have less intrinsic engineering valu= than
their value as engineering tools in obtaining such quantities
as the purely elastic static influence coefficients of an
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arbitrarily restrained free body, which will be discussed
later. Note that the free-body influence coefficient is a
static property of the structure but not purely an elastic
property because it is a function of both the elastic and
inertial properties.

We observe without presenting proof, since it is not germane
to the report, that the free-body influence coefficient is a
function only of the RAC and the nonzero antiresonant and
resonant frequencies.

N N
)} - I — ] (22)
i=Z2+1 a

E _
Cjk = E

ik

Three Parameters

In helicopter dynamics we deal with linear systems in which
normal modes exist (Reference 5). To determine the physical
parameters of a structure, there are three things we need to
determine from shake tests: the natural frequencies, the
nodal accelerations, and the damping coefficients. Natural
frequencies are readily determined mode-by-mode from the
plots themselves. The damping coefficients are of secondary
importance to the structural elastic and inertial properties
of a helicopter and may be estimated mode-by-mode either from
the mobility plots directly or, with more useful accuracy,
evaluated in conjunction with the determination of the modal
accelerations.

Modal accelerations are not obvious from the plots alone and
cannot be determined for any one mode without consideration
of other modes. They can, however, be determined for the
response of any one accelerometer, given a shaking station,
without considering any other accelerometer. Modal accelera-
tion is the most difficult of the three parameters to
determine from a shake test but several methods are available.
Among the methods used in this contract we will present a
new one, based on antiresonance theory, which is so simple
that it does not require a computer but can be done by

hand calculation.

Modal acceleration is introduced as a simplification of
ambiguous and confusing mathematical terms such as
"generalized mass" or "element of the orthogonal mode",

the values of each of which depend on arbitrary
"normalization" that makes them meaningless as independent
measurable quantities. The value of the modal acceleration
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2
A

for the i-th mode of an accelerometer at j for a force at k
is a physical quantity containing in itself, and indepen-
dently in itself, all the information of the jk response

in the i-th mode that several other pairs of definitions
encompass. A term involving nomenclature such as "effective
mass", "apparent mass" or "modal mass" would suffice except
that their use would encumber specification of what is meas-
ured and there are so many different definitions of these
terms that what they have most in common is confusion.

Natural Frequencies From Mobility Plots

The natural frequencies of consequence are accurately
approximated by a peculiar and easily identified shape of
the real acceleration mobility plots, as shown in Figure 2,
which generally crosses zero.

+

I\

“R 2
ij IN./LB-SEC

Figure 2. Natural Frequency and Antiresonance.
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The natural frequencies are distinguished from antiresonances
in three ways: (1) There is a peak immediately above and
below the real mobility of steep slope indicating a natural
frequency; antiresonant crossovers are not straddled by peaks.
(2) The natural frequencies are the same for every accelerom-
eter; antiresonant crossover frequencies are not the same

for every accelerometer. (3) The imaginary acceleration
mobility peaks at approximately the natural frequency, but
does not at an antiresonance.

In general, the mobility will cross zero at a natural
frequency, but in some cases, due to damping, the curve
will not cross zero but appear as shown in Figure 3. The
characteristic shape of the curve at a natural frequency

is retained, however, and comparisons with the imaginary
mobility for the accelerometer in question and with the real
and imaginary curves for the other accelerometers will re-
solve any practical possibility of doubt of the occurrence
of a natural frequency.

N +
Q
m
¢
S 0 w
~
Z
H -
A
(= A}
QL]

Figure 3. Mobility May Not Cross Zero
at a Natural Frequency.
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Peaks in the imaginary acceleration mobility plots and the
characteristic steep between-peaks slcpe of the real accelera-
tion mobility in a damped system indicate the "approximate"
natural frequency. As shown in the classic paper of Kennedy
and Pancu (Reference 8), the frequency at which the real
acceleration mobility has a maximum rate of change with fre-
quency is the best approximation to the "true" natural
frequency, defined as the resonant condition of the system

if the damping were completely removed. With the relatively
low levels of damping characteristic of aerospace structures
and the fact that the lower modes are of most importance in
helicopter dynamics, the differences between the "approximate"
natural frequencies revealed by the real acceleration mobility
and the "true" natural frequencies (which would occur with

the damping ramoved) are such small differences that the
distinction is academic. The acaderic nature of the distinc-
tion in helicopter structural dynamice is further highlighted
by the fact that, as was found in this work and other work

by the authors, the identified elastic and inertial properties
of a structure with typical semi-monocoque level Soroka
damping are practically the same whether or nct damping is
included.

Immediately connected with the question of natural frequencies
is that of determining the difference between a "major" or a
"minor" mode. The latter is sometimes called, in a practical
if mathematically imprecise way, a "local" mode. This will

be dealt with in another section.

The method of determining natural frequencies given by
Kennedy and Pancu 33 years ago remains the rmost practical
method for aerospace structures and has been used by various
people, including the authors, in helicopter work for 15
years when real and imaginary type data could be obtained,
usually with rotary shakers. With the increasing utilization
of modern impedance measurement equipment, it is possible to
use the Kennedy-Pancu Principle for natural frequencies
without the classic Kennedy-Pancu Plot, which in a complex
structure is not practical for other than natural frequency
determination, and with excitation from electromagnetic
shakers instead of the less flexible counter-rotating rotary
shakers.
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Modal Accelerations and Damping by Antiresonance Theory

Using a new equation of antiresonance theory, the engineer
can determine modal accelerations of a lightly damped system
with only a slide rule or "shirt pocket" calculator. This
technique has the advantage of allowing rapid on-site
checking of test data whether or not a computer terminal
is immediately available. Bccause the modal accelerat*tion
f is related to rigid body proparties and the test data by
one simple algebraic equation, many of the physical implica-
tions of the test parameters and numerical sensitivity of
the calculation are obvious by inspection of the antiresonance
equation. These cannot be found by inspection when, as with
¥ other methods of comparable accuracy, a matrix inversion 1is
involved.

In a freely suspended system, the modal acceleration of the
M-th mode for a driving point is given by:

2
N Oy
Ta- 2
= -E.. i=Z+] JJj_ (23)
i3 i3 N 2 9
M TTa - e, 70 9
m#M
mn=z+1

where Ejk is a rigid body property (depending only on gross

weight, c.g. location and inertias) the value of which is
accurately known before any helicopter structure or major
component is built. For transfer measurements (i.e., the
response of an accelerometer to a force at some other
station) some of the antiresonance frequencies may be
imaginary, in which case testing will not reveal as many
antiresonances as natural frequencies which are required in
Equation (23). This problem is easily solved by shifting
the zero mobility axis to create pseudo-antiresonances as
many in number as natural frequencies. We do this by
drawing a hcrizontal line at some mobility K through the
mobility test plot so that the line crosses the test plot
at as many frequencies as there are natural frequencies.
The frequencies at which this line intersects the mobility
are the pseudo-antiresonant frequencies, a, in Equation (24).
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n-(l = QM /a'k‘ )
- K) i=Z2+1 Jx1 (24)
jk N
TTa - QMZ/QmZ)
m¢M
m=Z+1

Equation (24), and the technique used therein applied to
similar equations, solves the imaginary antiresonance
problem (References 9, 10, and 11) which emerqged in 1940.

MOBILITY

= o (CPS)

DRIVING POINT

REAL ACCELERATION
IN./LB-SEC>
=
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i3

Figure 4. Driving Point Mobility.
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Figure 5. Transfer Mobility.
The complex acceleration mobility is given by:
N
T (1l - wz/ajki2 + ig)
°R N r i=7+1
ijw M ijw - "3k N 2 9 (25)
m (1 - w /Qi + 1iq)
i=2+1
and for pseudo-antiresonances this may be written:
N 2 2
"R . ilz+{l—m/ajki i
ijw + K + 1 ijw = (Ejk + K) N 5 5
m (1-(0/91 +lg)
i=z+1
(26)
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At any pseudo-antiresonance, w = ajkm' ijw + K = 0 and
Equation (26) becomes
H a'km2
m (1 - L2 4+ ig)
i=2+1 a 2
T = i#m Jki
i ijam 19(Ejk + K) =R ~E (27)
m (1 - —% + ig)
i=2+1 Qi

The damping coefficient is then seen to be approximated by

2
. N a.k.
I T (1 - =2
Y T 0.2
> _Jkam i=Z+1 (28)
STE, +R N CY)
] no(1 - 15
i#m CI
i=2+1 J

Modal Acceleration and Damping by Pseudoinverse Iteration
of One Component

The derivation of psuedoinverse iteration is given in
Reference 5. With very lightly damped systems, we prefer
to work with the real acceleration mobility instead of the
imaginary mobility because the imaginary mobility is
difficult to accurately measure when the damping is very
small. In using the real acceleration mobility we must
remember that, different from the situation using the
imaginary, we must include all the lower modes. In other
respects, the process is the same using either real or
imaginary mobilities.

For J accelerometers, P forcing frequencies and N modes, the
equation to be solved is Equation (29).

"R _
JxP JXN NxP JxP



g
E
;
g

BT A

w

E

o wT i
Sy ™ 3 2% (30)
2, 1

R is the matrix of residuals to be minimized. When the
number of forcing frequencies ir equal to or greater than
the number of modes, we calculate the S matrix ignoring
damping and obtain A from Equation (31).

1) | _ R (0) ,+
Biayid = Mme = Byl 84, (31)
where
-1
(0) .+ - (0),T (0) (0).,T
(s01% = ({07 (159 1s{00) 7, (32)

We may now take the A matrix given by Equation (31) as a
first approximation and obtain a new S matrix.

(1), _ ,(1) #.IR _
S50 1 = B d Yymye ™ B! 23

where

A ( (AL T -1

T

The process becomes an iteration, as shown in Reference 5,
converging on the A matrix which minimizes the Euclidian
norm of the residuals.

(2) _ R _ (1)
(2), _ (2) [+ R -
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And the process is continued until the n+l approximation to
A is essentially the same as the n-th approximation. Using
the elements of the converged S matrix and the elements of
the initial S matrix, calculated without damping, we can
s30lve for the structural damping coefficient, g.

This method of obtaining modal accelerations is most suitable
when there are a large number of accelerometers being used in
the test. The mobility data may be automatically sampled over
all accelerometers at given frequencies.

Modal Acceleration and Damping From Iteration Using the
Imaginary Mobility and Pseudolnverse of the Real

If we take one row of Equation (29), we have an expression
for the jk-th mobility at different forcing frequencies in
which there is a residual vector, R, when there are more
forcing frequencies than modes in the equation.

{"

Y k! = 18

.} + (R

wil B gx) 1 (5k) w? (37)

Performing the first step of the iteration of the previous
section, as shown by Equation (31), to obtain the modal
accelerations for the minimum Euclidian length of the
residual vector.

+, R
{A(jk)i} = [8,;] {Y(jk)w} (38)
If the S matrix is square (i.e., if there are as many forcing
frequencies as modes in the expression) and if the real
acceleration mobilities are of equal value, then the modal
accelerations obtained from Equation (38) are exactly those
obtained by antiresonance theory from Equation (24).
Equation (38) allows the engineer more flexibility in
choosing mobility points and manipulating this data than does
the antiresonance theory equation. It requires a computer
for practical employment but this is not a serious drawback
in many instances where time-sharing terminals can be used
on-site. On the other hand, Equation (38) does not describe
the physics of the situation as does Equation (24) relating
the resonances and antiresonances to the modal parameters.

We may take the calculation of Equation (38) as a first
approximation of the modal accelerations with the S matrix
formed by assuming the damping to be zero. Noting that the
imaginary acceleration mobility is given by
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where
st =g, (40)
wi i

We can solve Equation (39) for the product of the damping
and modal accelerations as follows.

= [SI +{"I }

{9 4k 4 wil Y500 YaL)

Between Equations (38) and (41) we can solve for the struc-
tural damping coefficient, g, for each mode and construct a

new S matrix. Then we can solve Equation (38) again, using
this new S matrix, for a better approximation of the modal
accelerations, and continue the processes until the modal
accelerations and structural damping coefficients have con-
verged. Except that we input the rigid-body accelceration
coefficient, Ejk’ as known data, this is the proces~ described

by Klostermann in Reference 12, which differs from Stahle's
approach (Reference 13) in the use of the pseudoinverse.

Other Methods of Determining Damping

As seen in Figure 3, the real mobility has a maximum just
below the natural frequency and a minimum just above it.
There is a well-known relationship between the critical
damping ratio of a mode in a viscously damped system and
the frequencies of the zero real displacement mobility
slopes. This relationship requires the assumption that the
peak frequencies are negligibly affected by other modes.

Setting the derivative of the real acceleration mobility
(Equation 12) with respect to frequency equal to zero, we
find that Soroka structural damping coefficient is given

for real acceleration mobility by the same equation that gives
the viscous critical damping ratio for displacement mobility.
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where U refers to the mobility minimum and L refers to the
mobility maximum.

From Equation (11) we see that the Soroka structural damping
coefficient can be approximated using the peak imaginary
acceleration mobility, I , occurring at resonance and the

Y5k
modal acceleration.
Bigi
9; = w%—— (43)
Y.
Jin

Comparison of Methods of Obtaining Modal Acceleration

Computer experiments using moderately high structural damping
and physical experiments of a very lightly damped specimen in
this contract show that the iterative methods (given reason-
able start estimates) tend to converge with acceptable
accuracy almost immediately. 1In both iterative methods, the
calculations converge, not on a "true" value as in Stodola
iteration, but on the minimum sum of the sequence of residuals
needed to balance the equation. 1In both iterative methods,
the accuracy of the answers is a function of the accuracy of
the initial "first approximations". Particularly for low
damping, the convergence aspects of the iterative methods

do not appear to be of paramount importance, if the input
data to either process is accurate.

The only criterion for acceptability of answers should not
be minimization of the norm of the residuals unless there is
no practical way of separating probably inaccurate test data
from probably accurate test data. The minimization Of the
residual norms is a least squares fit and gross crror in one
datum input out of many data input can create large errors
in all the answers. On the other hand, the iterative methods
are very beneficial when the first approximations are reason-
able and when there are no "outlying bad" input data.
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A combination of deterministic methods using different input
data (to indicate curiously inconsistent, and probably ex-
cessively erroneous, input data to be either rechecked or
discarded) and the iterative methods which average the data
is the preferred approach whenever possible.

The two deterministic methods discussed are the antiresonance
theory equation and Equation (38) with a square S matirix.

It is desirable to use both. The antiresonance equation pro-
vides a physical insight, allows conclusions to be drawn from
inspection of the data and can be calculated by hand. How-
ever, it does not allow flexibility in choosing the data and
is unsuitakle for automated testing. Equation (38) with a
square S matrix permits selection of different mobility
levels, can then be expanded by d.grees to increasingly
larger levels of nondeterminism (i.e., more forcing frequen-
cies than modes) and is convenient for automated testing.
However, it provides no physical insight, reveals little from
inspection of the data and, in general, cannot be calculated
by hand.

The antiresonance equation can be used to check key curves
in an approximate manner so that the engineer satisfies
himself that the measured mobility is physically reasonable,
while Equation (38) with square S matrix and various data
points is used for the actual numerical filtering of out-
lying data using an on-line computer before using a pseudo-
inverse reduction.

Of the two iterative approaches discussed, pseudoinverse
iteration, using either the real or imaginary mobility,
depending on light or heavy damping, with all accelerometer
readings (per unit force) at the same frequencies, is the
method most convenient when there are many accelerometers
and when *he data taking is highly automated. The technique
which uses the pseudoinverse of the real acceleration
mobility and the solution of the damping coefficient from
the imaginary mobility for each accelerometer independently
(Reference 12) is preferable when it is possible to trcat
each accelerometer independently.

Test data can never be blindly accepted as accurate anymore
than analytical predictions can be blindly accepted as
realistic. The chances of errors in calibration, unrecorded
disturbance in equipment settings, unexpected noise, trans-
ducer malfunction, human error in applying factor and other
such things comprise a factorial chain of inherently low
reliability of test data. The engineer should select such
combinations of data reduction methods that allow him the
maximum economy of data processing while giving him the
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maximum capability of cross-checking the data. This checking
of data shculd, of course, be of a nature that depends on the
physics of the specimen, whenever possible, as opposed to
checks dependent on links in the processing chain. The
optimum economy of the total test project, in contrast to the
economy of the data processing alone, is enormously magnified
by physical checks oa the data being done on-site and during
the testing as the setup costs, resetup costs and costs of
erroneous conclusins drawn from erroneous data greatly out-
weigh the costs of processing data or doing the testing.

IDENTIFICATION OF FULL MOBILITY MATRIX FROM SINGLE-POINT
SHAKING

The responses of a helicopter structure to many different
excitations are required to fully evaluate its dynamic
ncrformance. It is obvious that we need the response of

the entire fuselage to each of the three forces and moments
at the main rotor hub and at the tail rotor hub (or at both
main rotors in a tandem) which customarily requires twelve
different shaker locations. If there is a dynamic absorber
in the fuselage, we need to know the driving point impedance
of the ship at the absorber attachment to determine the
required size of the abso ‘ber and this presently means a
thirteenth shaking station. 1In addition, engineers have an
increasing need to know the impedance from forcing at such
other points as engine supports, transmission mounts, ex-
ternal stores attachments, etc., to fully utilize the power-
ful analytical tools of impedance methods. Because shaker
changeover time is a major cost of a shake test program, we
may regard each change of shaker position as a shake test in
itself. It is obviously impractical, from cost and schedule
considerations, to shake at every point on a helicopter at
which driving point impedances (or mobilities) are desired.

It is possible to obtain the impedance data relative to a
force at any point at which there is an accelerometer from
single-point forcing, and it is not necessary to obtain the
equations of motion to do this. Therefore, with only one*
shake test, the engineer can obtain all of the desired
impedance test data that presently requires dozens of tests.

* To assure that all the driving point modal accelerations
are sufficiently large in the shake test of a complete
fuselage, the engineer would use single-point shaking
theory for a combination of several ccnvenient shaking
points.
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Note that modal accelerations for any given mode satisfy
reciprocity, Ajki = Akji' and that, for excitation at e,

any driving-point or transfer modal acceleration is given by:

A, .A .
A - _jei kei (44)
jki A__.
s eel

If we had an accelerometer at j and at k, and the shaker at
e, we could obtain the mobility at j for a force at k by using
Equation (44). Then

. N (1 - w?/9.%) + ig,
Y. =E. + IA L 5 12

(45)
jkw jk (1 - MZ/QiZ) + g,

jki
i=z7+1

As will be shown later, the validity of this procedure was
experimentally demonstrated as part of this contract.

IDENTIFICATION OF STATIC TEST LOADS AN") TEFLECTIONS

In the static strength testing of a helicopter, four types
of loading are applied to the suspended fuselage to simulate
the strains and deflections which would occur in a maneuver
critical to the strength of the ship: airloads; engine, and
transmission mount reactions; inertial loads of concentrated
mass items (e.g., engines, transmission, t.r. gearbox, etc.);
and inertial loads of the distributed structure. The last
of these may comprise 50 percent of the stripped aircraft
weight and are quite difficult to calculate; the engineer
must lump the distributed inertial g-loaiing of intercostals,
skin, stringers, flooring, and keels at i1elatively few points,
perhaps five, along and about the fuselage. He most often
does this solely by judgment.

Using test data from our tubular specimen, we will demonstrate
below how the lumped g-loadings to be applied as forces in
static strength testing can be determined rationally in the
process of system identification.

During static strength testing of an aircraft, the deflections
are measured generally by sighting deflection scales attached
to the ship using a telescopic transit. These deflections
through the linear range can be determined very accurately

in the process of system identification and would then not
only provide an independent check on the validity of the
static strength test but give baseline deflections, departures
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from which would indicate the beginnings of structural
yielding in the strength test.

For the given critical maneuver (e.g., 3-g rolling pullout),
the external trim forces (e.g., main rotor shears and
moments, tail rotor thrust, torque, etc.) are given. Post-
multiplying the free-body influence coefficient matrix by
these external forces yields the deflections of the aircraft
relative to inertial axes under the g-loadings of the man-
euver. These deflections may be geometrically transformed
to be relative to any statically determinate set of points
which may be considered of zero deflection (or rotation),
being the points relative to which the deflections in the
static strength test are measured. These deflections should
be the same as those measured in static strength tests below
the yield point of the structure.

[Cornllf } = {8} (46)
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The free-body influence coefficients determined in system
identification test are transformed to static influence
coefficients with constraints at the zero deflection base
points from which the test fuselage is suspended. The
concentrated forces to be applied in the static strength
test to most closely approximate the distributed inertial
g-loadings of the critical maneuver are given by:

O e e ) (47)
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This technique has been experimentally demonstrated under
this contract, and the results are shown in aaother section
of this report.

IDENTIFICATION OF STATIC INFLUENCE COEFFICIENTS FROM
FREE-BODY TESTING

Free-body influence coefficients are not a purely elastic
property of a helicopter because they are a function of the
rigid-body inertial properties. Static influence coeffi-
cients, the classical measurable of static structural
analysis, are purely elastic properties, but static influence
coefficients are all infinite for a free body such a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>