
AD- 78 4 135

A RESEARCH PROGRAM IN THE FIELD
OF COMPUTER TECHNOLOGY

Keith W. Uncapher

University of Southern California

Pre pared for:

Advanced Research Projects Agency

May 1974

DISTRIBUTED BY:

Mr
National Technical information Service
U S. DEPARTMENT OF COMMERCE
5285 Port Royal Road. Springfield Va. 22151

·•·

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

SECURITY CLASSIFICATION Or THü PAGE 'Whun Dmtm Entmrad}

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I REPORT NUMBER

ISI/SR-7A-2

2 GOVT ACLESIION NO 3 RECIPIENT'S CATACOG NUMBER

4 T|Tut '«nd Subm*

A Resea/cH Program in the field of Computer
Technology

5 TyPF OF REPORT * PERIOD COVERED

Annual Technical Report

May 1V73 - H^Y 1974
6 PEREORMING ORG. REPORT Nl'MBCR

7 AuTHOR'»y

Keith W. Uncapher (Principal Investigator)

• CONTRACT OR GRANT NUMBERC«;

DAHC 15 72 C 0308

9 PERFORMING ORGANIZATION NAME AND ADDRES5

ÜSC Information Sciences Institute
4676 Admiralty Way
Marina Del Rey, gflUfflnla 9Q29I

10 PROGRAM ELEMEN^ PROJECT. TASK
AREA ft WORK UNIT NUMBERS

ARPA Order #2223

' I CONTROLLING OFFICE NAME AND ADDRESS

Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, Virginia 22209

12 REPORT DATE

May 1974
19. NUMBER OF PAGES

iM.
U MONITORING AGENCY NAME ft AOORESSO^ dlllmttM from Co/i.'rol/Jnf Olhcm) 15 SECURITY CLASS, (of fhf« fport)

Mm OECLASSIF*CATION'DOWNGRADING
iCMLOULl

'« DISTRIBUTION STATEMENT (of f M t Rmport)

Distribution unlimited. Available from National Technical Information
Service, Springfield, Virginia 22151.

17 DISTRIBUTION STATEMENT (of thm abmtrmct »nffd In Block 30. It dlUmrtnf from Report;

tt 5URRLEMENTARV NOTES

• •, ■

19. KEY WORDS rContinw* on r«r*r«« mil» U nocoitary mtd Idontlty by block numbor)

1: automatic programming, domain-independent interactive system, natural lang-
uage, nonprocedural language, nonprofessioral computer users, problem solving,
problem specification, process transformation, world knowledge
2: interactive theorem proving, lemma generator, Pascal, program correotness,
program verification. Reduce, symboxic executor, verification condition

M ABS* H ^C1 fContlnum an rmvoroo »Mm U n*c**a«r md fdmnllty by block numbor)

This reporL sunanarizes the research performed by USC/Information Sciences
Institute from 17 May 1973 to 16 May 1974. The research is aimed at applying
computer science and technology to problem areas of high DoD/military iu^ct.

The ISI program consists of ten research areas: Automatic Prograinming- the
study of acquiring and using problem knowledge for program generation; Program
Verification- logical proof of program validity; Programming Research Instru-

L
ment- developwent of a ma lor time-shared microprogrammlns facility; Protection

DD . .AH 7| U73 EDITION OF 1 NOV«* IS OBSOL:

S/N 0103-014- «601
SECURITY CLASSiriCATiON O^ THIS RAvlf fWhmn Dmto Mmtmmd)

iWiTV CLASSIFICATION OF THIS PAGfc'»»'h«n Dar« Enlmrmd)

19. Key Words ''continued)
generator
3: ARPANET, control memory, microprogrammed processor, microprogramming,
microprogramming language, microvisor, MLP~900, operating systems, resource
shar ng, TENEX, time sharing, writable control memory
4: access control, computer security, encapsulation, error analysis, error-
driven evaluation, error patterns, evaluation methods, protection mechanisms,
software security, verification
5: computer security, COTCÜ, interactive message service, message service,
reliability, terminal based message service
6: computer terminals, interactive message service, office automation, CONNECT
nonprofessional computer users, terminal-based message service
7: computer network, digital voice communication, network conferencing,
packet-switched networks, secure voice transmission, signal processing, speech
processing, vocoding
8: liquid crystal displays, minimum communications terminal, plasma displays,
portable terminals, video display system, Xerox ujaphics Printer
9: computer networks, configuration control, decisionmaking, Information
display, load leveling, network data base, network managprent, network
performance, performance analysis, performance measu lent
10: TENEX, KA/KI, PDP-10, PDP-11/40, resource allocation, computer network,
user quotas, ARPANET interface

20. Abstract (continued)
Analysis- methods of assessing the viability of security mechanisms of
operating systems; Command and Control Message Technology- study of
advanced computer-based techniques for military message handling; Information
Automation- development of a user-oriented message service for large scale
military requirements; Network Secure Speech- work on low-bandwidth, secure
voice transmission using an asynchronous packet-switched network; Techno'' (^r
Support- development of Xerox Graphics Printer facilities, portable te.v. -ils,
and military office terminal system; Network Management Information Cerr^r-
development of a network performance-measurement methodology; and Research
Resot. vces- operation of TENEX service and continuing development of advanced
support equipment.

<U SECURITY CLASSIFICATION or THIS PkntfWhmn Dmt» Sntvr«*)

ISI/SR-74-

A Research Program in the field of Computer Technology

ANNUAL TECHNICAL REPORT: May 1973 - May 1974

prepared for the Advanced Research Projects Agency

EFFECTIVE DATE OF CONTRACT

CONTRACT I'XPI RATION DATE

AMOUNT OF CONTRACT

PRINCIPAL INVESTIGATOR

17 May 1972

15 July 1975

$6,616,798

Kei th W. Uncapher
(213) 822-1511

THIS RESEARCH IS SUfPCRTED RY THF AÜVANCPD RESEARCH PROJECTS AGENCV UNDER CONTRACT NO DAHC15 72 C 0308 APPA ORDER

NO 2223 PROGRAM CODE NO 3D30AND3PtO

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY AF*{ THf AUTHORS AND SHOULD NOT BF. I NTERP.'ETFL AS REPRESENTING THE

OrFlClAI OfMNlON OR POLICY Or ARtA THI U b GOVERNMENT OR ANY OTHER PFRSON OR AGENCv CONNECTED wVITH THEM

THIS DOCUMtNT APPROVED TOR PUPUC RELEASE AND SALE DISTRIBUTION IS UNLIMITED

IMllMSITY or UJIIHI.RS (MIlOKSi \ MI
ISFORMATIOS SCIKSCFS ISSTITUTI:

i/rr* AiiiNn\il!\ xXa\lMarhhide! H?)/Califonna WJ'H

iK

R£StAftCH/AOMINISTRAT ION SUPPORT

Gerhdrd w. Albert Business Mane^r

Nancy L. Bryan Eöitor

Deoorah L« Dunn Reception

Patricia A* Hagedorn Secretary to Deputy Director

Rose L. Kattlove Librarian

G. Nelson Lucas Graphic Arts

Mary J. Minchei) Business Office

Ruth Wnite Secretary to Director;

Principal Secretary

ü

CONTENTS

Figures Iv

Abstract v

Executive Overview vH

!• Automatic Programming I

2* Program Verification 25

3. Programming Research Instrument 33

4. Protection Analysis 4 3

5. Command and Control Message Processing Technology S5

6. Information Automation 65

7. Network Secure Speech 83

8. Technology Support 89

9. Network Management Information Center 97

10, Research Resources 107

11. Programmed Automation 115

Co 11oqula 117

Publications 120

Doctoral Theses in Progress 121

FIGURES

Fi gure

1.1 System architecture 12

1.2 NSM hardware 22

2.1 üecomposJtIon of the verification task 28

2.2 Overall organization of currently running
verification system 29

2.3 Outputs from components of program design and
verification system 30

3.1 The MLP-900 34

3.2 Basic PRIM configuration 34

3.3 MLP~900 configuration 35

3.4 basic PRIM software architecture 37

^♦.1 Security encapsulation unit ^6

4.2 Representational hierarchy 47

4.3 IPb evaluation scheme 4£

4.4 Error-driven evaluation process 52

5.1 abbreviated block diagram of proposed
communication system architecture 58

8,i The IS] portable terminal 93

10.1 JSI research resources facility 108

10.2 I/O bus swi tch 109

iv

AöSTHACT

Tnis report summarizes the research performed by

u^C/lnform<it i on Sciences Institute from 17 May 1973 tc ib

i'.ay 197^. The research is aimea at applying computer

science and technology to problem areas of high OoO/mi I •'tar y

.* mpact.

The 1^1 program consists of ten research areas«

Automat i c Programme ng- the study of acquiring ane using

problem knowledge for program generation; Progr am

Verification- logical proof of program validity; Progr ammi ng

Kescarch Instrument- development of a major time-shared

microprogramming faci lity; Prct ect j on Analysis- methods of

assessing tne viability of security mechanisms of operatini

systems; Commano and Centro 1 Mess ^ge Process i ng Iechnology-

tne study of advanced computer-oased techniques for military

message handling; Informat i on Automat i on- development -f a

user-oriented message service for large-scale military

requirements!, Networ K Secure Speech« work on low-bandwi uth,

secure voice transmission using an asynchronous

packet-switched network; [echnology Suppor c- development of

Xerox Graphics Printer facilities, portable terminals, and

ABSTRACT

miUTeiry office 16™!^' system» Network Management

informati on Center - development of a network performance-

measurement methodology; and Research Resources - operation

of TcNEX service and corr. Inuing development of advanced

support equipment. ^rc; gramme d Automat I on« an investigation

of tne feasibility of a computer-based manufacturing

tecnnology, consisted of a study phase only.

VI

EXECUTIVE OWERVIEW

The Information sciences Institute

(IS]}, d research cnlt of the University

of Southern California's School of

engineering, was formed In May 1972 to do

research In the fields of computer and

communications sciences with an emphasis

(>r systems anJ applications. The Insti-

tute, located off-campus, has sufficient

vjtonomy wit .In tie Unlvtrsity structure

o assure It the freedom required to

i 'T fjfy and engage In significant

rcse^r h programs.

& close relationship Is maintained

wltn U-C dcadem,- programs through active

cooperatit- among tne Institute, the

school of Cngi rK*er i ng, the Üe^ar tment of

Electrical Eno nverim, and the Computer

Science Uepa: mei.t. Ph.D. thesis super-

vision Is an integral par1: of IS I

programs. Also, participating fatult' and

graduate students from other departments

provide interdisciplinary,' capabilities for

I SI projects.

At the end or the second year of

operation, the fu/'-tlmc prof ess I on«.»

research staff numoers 32. The total

number of ISJ employees. Including

full-time research staff, participating

faculty and gjaduate students, and support

per sonne 1 , is 80.

The activities of ISl's eight major

are «s of research and associated support

projects are summarized brief!v below,

iome of the researcn projects rer rted in

this document are discrete activities in

cherrselves» others can be seen as parts of

a larger whole. for example. Automatic

Programming, Pro^r^m Verification, and the

Programming Research Instrument projects

should be considered as Individual parts

of an overall rese irch effort in Program-

ming Methodology; Command and Control

Message Processing Technology, Information

Automation, Network Secure Speech, ar.d

Technology Support are {»nked elements of

a major investigation into Network

Conmunicationj Technology. These mutual

I nt ■«rdepe'ioenci es among the various

projects at 1SI contribute largely to the

fruitfulness o* the Inselcute's research

act i vlti es.

vii

EXECUTIVE OVERVIF.W

AUTOMATIC PHOGRAMMING

Th« Automatic Programming project Is

composed of three -naln activities» first,

the design and preliminary Implementation

or an automatic programming system;

second, the Implementation of a Program-

mer's Interface, a language-Independent

Interface Detween a programmer and nls

language; and third, tne initiation (in

cooperation with ARPA) of the National

Sof:*are WorKs, an effort to transfer

technology for program development to

ml II tary commands,

""le automatic programming system rep-

resents a major attempt to ded directly

with nonprofess Iona. computer users

without the intervention of computer

programmers. "le primary goal of the

system Is to acquire from a dialogue wltn

the user the elements of tne probieir;

jomain, then translate tne ill-defined

specifications '~t.o a precise form and

write a program to accomplish the user'j

desired task. An initial automatic

(roqramm!rg system and tne associative

data oase mecnanisms it relies on nave

oeen implemented, and it has oeen used in

turn to implement an initial version of

th^ Model Completion phase. Th»s version

Is able to take carefully selected small,

simple dorn-31 n and problem statements of an

Imprecise form and convert them to running

programs by performing a series of

structuring and program building trans-

formations that reorder the arguments of

relation, and actions, convert the

arguments c.o tne coi rect type, and fl II in

oml ss I .ins .

[he Programmer's Interface eTfort

addresses the general problem of creating

a suitable ori-li;.e environment for pro-

gramming. It attempts to exploit the

observable uniformity among programminr

environment systems by creating a single

proqrammlnu envlronmenf capab'e of easi ly

Interfacing users to a variety of on-line

prog/amminq ianquages. With minima! cost

and effort, the Programmer's Interface

thus transforms a proqrammer's language

into a orogrammir.q system with powerful

deougqinq, editing, and filing apa-

oillties. Ihe first such Programmer's

Interface has been constructed and

interfaced to the programminq languaqe

ECL. it was irrplemented and debugged in

appr ox i mdt e I y three weeks, including the

interface to tCL. Although no other

language interfaces have yet been built,

it is estimateu that. an interface to

another suitable language could be

designed« implemented, and debugqed in

less than a week.

EXECUVm OVERVIEW

The concept of the National Software

rtorks arose from the realization that

serious progress in !.i proving toe pro-

duction of large programs would be made

only as the result vf a major attempt to

Improve genera/ access to tools, central-

izing the management of a vast inventory

of currently existing hardware and

software. lo do this, it is proposed to

link tne great variety of tools now

available on the ARPANET into a coherent

system for software development, employing

a standard interface for users and a very

large secondary memory for storing and

managing user files. I Si was instru-

mental ?n the system design and functions

as technical project engineer.

PROGRAM VERIFICATION

The verification of a computer

program Is ihe demonstration by a mathe-

matical proof of the consistency between

the program and Its specification or

documentation. ■'rogram verification can

greatly Increase the reHabiUty of

software by assuring that orograms

actually do what they are intended to do.

The large amount of time and effort now

devoted to testing activities can be

significantly decreased by verlfl ration

procedures, which will ultimately reduce

software costs. Program verlflcar.on can

also have an influence on the design of

programming languages and can serve to

test advances in both programming method-

ology and the semantic definition of

programming languages.

In addition to experimenting with

new specification languages, structuring

methods, and proof methods, the Program

Verification project Is building 'oftware

tools that will aid in the design and

construction of verified programs.

Verification condition generators for two

programming languages are already in

operation? algebraic simplification and

Interactive proving of the lemmas produced

oy the verification condition generator

are *<so being accomplished. Current

olans are to deve'-.p these components

Into a smoothly integrated system whose

capabilities can be demonstrated on

signl*lcant, re^l programs.

PROGRAMniNG RESEARCH IHSlRU^r

The Programming Research Instrument

(PRIM) project has created a fully

protected experimental computing environ-

ment w'th continuous multiuser access. An

ARPAN£T-based system, PRIM a Hows each

esearcher to create hi- own specialized

computing engine capable of being changed

and adapted to his specific needs. The

PRIM hardware and software together

EXECUTIVE ÜWUHVIhW

provide 0 working environment in which the

user can linplement hl z own compul^r in

nn» croc ode ^nd run that computer in his

target program environment, PRlft can oe

useo to explore romputer architecrure,

language development, and special-pu pose

processor design—all of especial rel-

evance to OoO selection ond use of

computer equipment.

To familari.'e potential users with

the operation of the PRlh syst-m, i ;> 1 will

provid? i f!t r oductor y seminars and an

extensive documentation package PRIM

user documentation, consisting of an üv^r-

view. User's Guide, MLP-900 n'e/ere;ce

Manual, and GPM Reference Manual, is

nearing ccrspletion and should be available

to interested potential users by mid-197^.

The PRIM facility makss It poss'ole

to simulate new hardwa e .rchi tec .ures and

designs ;r mlcroprogrammew software. That

is, software can be created for nardware

nc yet available, and hardware designs

may be extensively used and changed ^ven

before the protoCypc stage of development

is reached, whlc. should both cut lead

time 0.1a in- ove decisions connected with

the special-purpose machine procurement

eyele.

At present, most microprogrammed

processors operate MI a single »r •

environment, with a minimal operating

system and a single application. Tn*

particular value of the PRIM project and

Its Introduction of a mJ ^1 wirogr ammed

supervisor (»Icrovlsor) state has been to

make an easily accessed, sharable,

powerful design looi for the .conputer

developwent co««un3tv.

PRQIFCTIJ^ ANAtrSIS

The Protection ^nalysi' project has

ceveloped and ?s continuing to refine

Lechni* es and standards for testing .jnd

evaluating the protection features of

operating systems, its goal is to provide

answers to the question o.T what test*, can

and should be applied tc 'T aerating systems

in order to determine to what extent r

given sy5i.«-m neet1 Its requirements for

presenting unautnorized or improper opera-

tions and how systems can best be

designed ^-nd implemented to reflect such

requirements. The research directly

supports the software security require-

ments issued by £o0 security pollcymaking

agencies.

During the iast reporting period,

what is now the Protection Analysis pro-

ject was designateo as the Empirical

System Stu^y and Protection Theory

EXECUTIVE OVERVIEW

projects. These projects merged to study

ways ot applying empirical techniques

toward acbievino a "production* evaluation

tool. Ih? stu<iy was influenced by the

oDservat.ons thdt the security commur.i t /

lacks a production evaluation tool; that

tnere Is currently no known organized

effort ,o collect and analyze protection

errors; and that such errors do fall Into

distinct classes or 'patterns.- The study

focuses on the way in which the output of

protection evaluations (i.e., errors and

their patterns) can pe utilized as

feecoack In tne development and invove-

ment of an evaluation method itself. [he

resuit is the design of a systematized

pattern-driven evaluation scheme that

utilizes the output of error analysis Potn

directly, to govern the evaluation

process, and indirectly, to Increase the

corcprenensi »-ene^s of the tool Dased on

tnis metnod. the Empirical System i>tudy

group also devised a simple, economical,

and reliable approach to the security

retrofit problem for batch and remote Job

entry systems, termed encapsulation.

COhfiANO ANO CONTgOl Mt SS AGE PROCESSING
I£ChNüLOGY

Ir.Js project explores the use of

aovanced computer and communication tech-

ni i-es ' n military environments. The

implementation of an automatic message

handling service on a packet-switched

digital network (exemplified by the

ARPANET) has immediate arci significant

usefulr.ess to the military community. Ine

possible applications of such a service

have served as the principal focus of the

work to Jäte.

A specific example of such an

environment was the object of a study

performed oy ISI in the spring of 19/3 to

investigate the posslple application of

network technology to the COTCü (Consol-

idation of [eiecommunlcatiors on üahu)

program, a DoÜ effort to improve military

cofTinuni cat i ons on üahu.

The fnav /, whicn has been asslnred the

task of implementing the JlCG program,

currently r.as the ISI plan under consider-

ation. Interest nas been expressed in

performing, with the cooperation of ARPA,

a test of an interactive system such as

the one proposed.

In tne meantime, the Command and

Contro! Messaoe Processing Technology

(CCMPT) project has addressed the issues

involved in the implementation of auto-

mated message handling services for other

military environments besides COICU. in

order to achieve the sort of system

EXECUTIVE OVERVIEW

envisioned. It is necessary to piovl^e tne

folJowIng Dasic components and attrlöutefJ

« Core-systen« hardware architecture that

serves as the foundation for building

the service,

■ Core-system software architecture and

programs whose facilities are easy to

learn and operate by users unfamiliar

vl th comr»uters.

" Application software that performs the

funct'ons required,

■ Reliability of service.

■ Security of data.

The CCfii3! project is currently in a

study pnase, identifying the orcblems and

the opportunities for message processing

in the military environment. The program

outlining detailed areas for research Is

now being prepared. In addition, we are

exploring opportunities for joint cievel -

opment with military use's tnat will apply

our message technology In experimental

form to actual mllitary situations,

INFOftflAnON AUTOMATION

The Information Automation project is

currently in the design phase of a teie-

communl cat Ions task conceived to aid the

military and users of the ARPANET, The

goal Is to implement an on-line message-

handling system (the core of the Command

and Control Message Processing Technology

Projecc above), which will be usable by

people unfamiliar with computers. The

initial study for .his task Investigated

the user style and functional require-

ments of a large multiservice military

community. The functloral specifications

for this system Incluae message prepa.-

ation (creation, editing, coordination),

message transmission ^routing, release,

status query), and message oo II very

(priority, delivery, sorting, scanning,

forwarding). Additionally, the system

will suppert off-line report generation

and message archives. The research goal

of the Information Automation project is

to develop the necessary human-factors

methodology needed to Introduce inter-

active computer terminals Into office

environments. The project thesis is that

current systems technology will suffice

for many of the ccrrent automatable

problems and rnat what is required Is a

collection oi teenniques to make the

computer acceptable arid useful to non-

technical personnel. The target system

wi Ii be Implemented at ISI on TLNEX and

trie ARPANET, It Is expected that an

experimental system providing tne above

EXECUTIVE ÜVERVIEI

functions will be available r.o A^PANtf

users ear Iy 1n]97S.

In response to thM high military

priority of oeveloping a digital means for

secure speech transmission, tne ISl Net-

work secure Speech project Is attempting

to estaolisn the means to us" a packet-

switching network (the ARPANET) for

secure, high-quality, real-time, full-

duplex voice communication, Tne resulting

voice cowmunications system will have the

following advantages^ it will oe able to

oe secured (encrypted) to anv desired

level of complexity and security; It will

be able to achieve extremely high quality

transmission with a low error rate; it

wl II exploit the natural pauses and breaks

In human speech to achieve a lower overall

data rate; it will be nlghly compatible

with future communications systems (satel-

lites, lasers, etc.;. The project's major

goal Is to establish the methodology of

using the ARPANET for communlc/ Ion and to

I plement It with real-time bandwidth

compression (vocoding) as a proof of feas-

IbiJity. Present efforts are to perform

network measurements for the development

of the required protocols and to Implement

the chosen vocodlng technique; fururc

plans are to optimlz** the communi cat Io;i!

protocols and to Improve the quality an<

reduce the bandwidth of the vocodin<

t eenni que,

TECHNOLOGY SüPPOHI

The lechnoicgy Support settlor

describes three of the major advanced

hardware sysceirs being develcped at ISIS

the enhancement of a Xerox Graphics

Printer system to produce a high-quality

document printing capability In the form

of a network terminal; a video display

system; and a briefcase-sized portable

terminal designed for use with the

ARPANET. Each of these hardware efforts

was undertaken either to demonstrat«* a

capo^illty for a recognized DoO appll-

c.jtlon or to provide the necessary support

for the several software projects tnat

compose the Network Communications Tech-

nology effort (Command and Control Message

Processing Technology, Information Auto-

mation, and Network Secun Speech).

NETWORK MANAGEKENT INTQRMATIQN CENTER

Computer networks service a highly

heterogeneous user population, possess a

complex structure of hardware and soft-

ware, and require careful arbitration of

the potential conflicts «mong users.

hosts, and the network Duüget. The need

for a performance measurement methodology

is great, particulariy because of the

dynamic short- ara long-term variations in

net vor* wofMload,

?ne NetworM Management information

Center (NMIC) at ISJ, launched in Maren

J^/i», will provide .in effective means for

resolving technological issues in network

performance by developing a report/display

cjpaPllitv that will furnish information

on network status and operations as well

as providina un alternatives assessment

capaDility that will permit rapid man-

v-'gement assessment of the relative

desjrability of network alterations and

enhancements.

Achieving the caoabilities described

above reauires accurate knowledge of

network/subnetwork status ara performance.

Thus, the nitial focus of the project

wi II üc to establish an alternate Net-

work Control Center (NCC) which wi 11

(1) provide a scheduled backup capability

to the existing NCC at bbN, (2) develop

operating policies and procedures for

concurrent cooperative operation of

multiple NCC's, thus assuring the Integ-

ri:y of the network in the event of an

NCC outage, and (3) develop requirements

and objectives for a minimum-manpower.

mi ni mum-sxH l - leve J NCC, thus clearly

separating the roles of equipment vendor

ana operations.

NMIC will oe of direct use to all uoü

and domestic aoencies concerned with the

design and implementation of computer

networks. Since it wi I 1 provide a cen-

tralized means for data reduction and

transformation Into forms permitting

cirect I^terpretatiin by management, this

research will -Iso constitute a perfor-

mance-analysis capability of direct

interest to aoencies dealing with

sensitiv« mat eria I--agencies traditionally

unable to gain full use of performance

tools and consultants oecause of the

sensitive nature of their Job stream. in

addition, the research will also be o*

direct benefit tc APPA/IPIO in manaulng

the ARPANET, since on-line per for nvince

information maintained at NMIC will

provide a centralized access point for all

networx performance Information for use in

management decislonnaking.

PROGRAMMED AUTOMAT ION

From July 1973 to Oecember 1973 the

Programmed Automation project evaluated

tne feasibility of various advancements In

c mputer-uased manufacturing s/stems,

evaluated the economic impact on the U.S.

EXECUTIVE OVERVIEW

economy and tne DoD from Implementing

those advances, and defined the specific

development propram and resources required

to acnieve tnem. Iris project consisted

cf a study phase only, and further work

nas since oeei, discontinued.

HCSFARCH R^SOU^Cf^

The ISI time-sharinq facility,

operatpa as a research and service center

in support of a oroad set of ARPA

projects, consists of t^o PDP-IO CPUs,

paqing DOX, large-capacity memory, nigh-

oerformance paginc drum, on-line file

storage, a-'j associated peripherals. The

hardware acquired In the past year as part

of tne general effo.'t to improve system

availability, capacity, and efficiency in-

cludes a second PDH-IO CPU, an additional

i2ÖK of nigh-speed memory, six disk drives

that will approximately aouble the present

on-line file storage, and several Inter-

faces and switches deslqned and built at

ISI.

In an effort to reduce system load, a

group allocation scheme was introduced In

March. This scheme divides the total

numbc of available job slots Into

general-access and limited-access cate-

gories, with each type further subdivided

into grotps assigned a quota (varying in

size throughout the day) specifying how

many group members wl 11 pe guaranteed

access to the system. Group members whose

group quota is f' lied can log in off-quota

to fill other slots not in use at the

time. irtnen the system's total available

quoca is set to a sufficiently low level,

the system Is responsive and effective to

those allowed to log on. In all, the

initial experience with group allocation

nas oeen good.

The report that follows presents a

detailed view of the goals and accomplish-

ments of the many different areas of ISI

researen during the Institute's second

year of operation.

XV

/

AUTOMATIC PROGKAmiNG

PROJECT LEADER:

RESEARCH STAFF:

RESEARCH STAFF SUPPORT:

RESEARCH ASSISTANTS:

Robert M, Balzer

Norton K. Greenfelo
Ml 1 1 Iar C. Hann
Walter K. Kyoer
Dovic S. Wile
Albert t.. Zobrlst

CÜNSULTANTS: John Brown
Martin J. Y ay
hi 1 1 i an- S. hark
Ann D, Rubin
B. A. Shei 1

Cnloe Hoi rj

Richard Hale
Robert Li nfi.;r<1
naolne MaIcoIm
Davld Wl1czynskl

INTRODUCTIÜf:

As reported last year, work in the

Automatic froornrr I no (AP) project har.

centered upon three r^riin activities.

First, ve have dcslaned an'' be^un to

ipplenent an antorratic proqrawnil nq system»

Functionally, the two post Important

characteristics of this sv ter, are its

I ndependen.'r frr;rr, any particular prof-. I er.1

domain and Its attempt to real directly

vith nonprofessIonai computer users

without the intervention of computer

proararrmer s. [hese choices have larcelv

dictated the direction of the project.

Domain independence requires that the

"physics" of the domain--Its objects and

tnel r relatlrnshi DS v.i th other objects,

its lavs, it • trans forrrations, and its

cons trai ntrJ--b« .iv.-i ! .-d: I c In J processable

torn: within the systen and that tn<- systen

be ocneral onouoh uc deal effectively vfUt

.i vi<io variety r;f such physics. Direct

Interactior with nonj rofo^sslonal computer

users re.ins that both the physics and the

problem statements will be I r, problem-

oriented (ci*. opposed tr computer-oriented)

terms, preferablv in natural lanqufiqe, .^n<i

that ttiey wM I be "loose11 descriptions

containing Incomplete, inconsistent, dnc

irrelevant, statements rather than a

precise formal structure, fhe primary

on.» I of the system is to acquire from a

dialoque with the »r.er the r.nysics of the

loosely defined donain, structure it, anci

use it to understand further communication

f

INPOüuc i lo:-

rirr* write a proqfrini LO accorrpHsh the

i ".vlr \ s tatrri La j k.

Tovard this end, we have i m.;! ementeti

sn an^ociatlve a.ita base In vhich tf r>t.nre

the n, Us t objects, ano r«'at ions of a

noPdin anü have lntecrate<^ Inte LI Sr; a

pattern match facility to access the I tews

stored. Using this raclMty we have si so

irplenented a prelirinary version of our

system's stncturinq portion, called Model

Completion, vhlch Is ab'e to structure and

convert to executable form simple small

domain and pre hl er descriptions. The

other major component of our system,

Homaln Accinsltion, which will acquire the

loose model of the domain, is still In the

plannln« stanej we are at present

Mmulatinq Its behavior in scenarios to

learn ^ore about how It should perform.

Our Inn this next year, we expect to

Implement an Initial version of Domain

Acquisition, achieve a complete running

system, and concentrate on extend?nq both

the capabilities of each phase and the

system's ability to deal with domains of

significant size and complexity.

Second, we have completed work on a

1an^uage-Independent Interface between a

prog'-ammer ang his laniuage, called

the Programmer's Interface (PI), which

trans frrms his language Into a Trograrmil nq

system wltn almost all of the capabilities

ni the Ii.rLwLlSP (formerly BPN-LISP)

system: powerful debugging, editing, and

filing capabilities, as well as the

ability tc mod'fv, croup, ami reissue

previous commands. fhls work is

significant at two levels. first, I i:

provides a very qui:k and Inexpensive way

of enhancing the programming environment

of an interactive language. r'.ur.h more

importantly, however, it demonstrates the

relative ianguaqs Independence of many of

the tools required tor program building

arui debiiugl ng,

I his recoqnition led directly to the

Initiation, In cooperation with ARPA, of

our third area of Involvement, the

National Software works (T-SW). This I a

major new ARPA project to transfer

technology for program development to

military commards within DoD, Because the

Initial NSW Is planned for test

Installation In July I WS, its scope is

deliberately limited to make this early

delivery feasible. Nevertheless, it

Incorporates many advanced concepts and is

explicitly designed for exp«..,:»! on. It

siqnifleant 1y e. tends the PI concept by

separating the tools used for programming

from those used for program execution.

AU r DM r i c PK UöK AüTI I N G

The ^S^^/ provides a franewcrK thdt controls

the access to and use of tools Chrotiqh a

standard user Interlace and enables new

tools to be easily added. Because these

tools can evisr or» different tracbines, tne

framework acts as an operating systerri by

nük'mq the use of a tool i ncjependert of

Its location; It autofnatl cj } i y Initiates

th*» tcol, establishes communication with

It, transfers necessary files for Its use,

a,>d saves any output cjenerated. The NSW

thus ties together tools that exist

anywhere on the ARPANET into a coherent

system for software development. Part of

the NSW Is a user Interface that

standardizes the way in which users

initiate a tool, communicate with It, ask

for help, or examine their outpirt. Tne

final comprnent Is a very laroe secondary

memory for the storace and manaqement of

user fIles.

In addition to these components of

the NSW, which merely provioe a convenient

home for tools and which enable users to

uniformly access and con.munlcate with

them, the tools themselves exist,

determining the system's capabilities to

affect software development. These tools

are divided into two categories:

(I) "centralized" tools, like editors,

flowcharters, test case generators, etc..

which are i ncepencient of the target

machine on which the proqrarr being

developed is to run while In production

node and which therefore only require

implementation on a single nnrjehine, and

(z) execution machine tools, like

cor.pliers anc run-time monitors, which

actual>y run on the target machine and

which "ust be re-impIemented on each

target rrachine.

AüKJMATiC P^JGRAmiNG LFrCtfU

After an initial survey of current

work in the field, the AP project members

qevelcped a rlan for attackinc what

appeared to be the fundamental issues of

automatic pronramnino. This took the form

of dn actual system, the desiqr and

implementation of which Is now in its

early staqes. The results of the initial

survey and the overall view of the field

adopted are reported elsewhere [l,2j. It

should be emphasized that this project is

seen not as an »ncremental advance in

computer lannuaqes or the art of

programming, but rather as an attempt to

make the power of the computer available

to a large class of users without the

necessity of a step like that now called

programmlnc. Ultimately, a client should

be able to neqotlate directly with a

AUTOMATIC PROGRAMMING

computer system In much the same way as he

nov negotiates vfth a programmer.

Computer use generally falls into two

cateqorless use of existing programs or

crecalnn of n*-.w ones. There is no sharp

distinction between the two, because data

fed into existing programs can be thoucht

of as instructions that program their

behavior and because the creation of new

programs utilizes either compilers or

interpreters that treat such instructions

as data. Also, the techniques for trans-

lating a task into appropriate input for

the twc are very similar. Nevertheless,

we have chosen to deal only with

nrorramminn activities, whlcS we renard as

the process of cranslatinn a task to be

performed into a computer language, taking

into account the constraints and limi-

tations of both the computer and the

domain of interest from which the task was

drawn.

The constraints and restrictions of

the computer have increasingly been

incorporated and internalized In pro-

gramming advances for several years, Ihey

are manifest in better languages,

automatic storage mechanisms, and optimi-

sations of many forms. On the other

hand the structure, constraints, and

limitations of the problem domain have

generally not been incorporated Into

programming systems. The use of such

Knowledge is a major theme of auto-

matic programming, characterizing the

distinction between it ana conventional

programming, and raises J number of

Issues. If the system is to understand

something of a domaln--a particular

universe of discourse—how is the

knowledge on which this understanoing is

based to be represented? What procedures

can be made available for exploiting this

knowledge in guiding the system's inter-

action with a user and in generating

programs? How, in particular. Is the

essentially nonprocedural information in

constraints and limitations to be

reflected in a procedural form? What can

be done tc help identify inconsistencies*

How cat. ''he system be oiven a capacity for

inference similar to that which forms the

mainstay of human communication and which

allows obvious details to be left

unspecified? ««ill the system be able to

understand its own products well enough to

be able to moolfy them in response to

chanced requirements? Answers to these

questions define the front on which

important advances In automatic pro-

gramming <M 11 be made.

AirC'^TIC PROGRAMMING

The deslqners of procjrammi no systems

have until nov roncentrated their

attention on creatlno Instruments that

would be easy to play- Like all

Instruments, the system had a purely

passive role In the proyrarranlng enter-

prise. We, on the other hand, took

the view that the problem of prcqrarnmlnq

Is largely a problem of communication and

that communication, to be easy and

neural, must be with an active agent.

Thus the main distinction between

conventional and automatic programming is

the latter's use of a semantic mnoel of a

domain to structure the dialogue between

the system and the user, to understand the

user's responses, and to translate the

user's responses Into actions. The major

distinctions between the work reported

here and other automatic programming

efforts are the tollowing: first, its

I ndepcncionce of any particular domain <M,d

its acaulsition of th? dona in model

through a dialogue with the user; and

second, the informal and typically

i 11-structured manner in which both the

domain semantics and the task to be

programmed are specified. In fact, these

two areas represent the two main

focuses of the project: dlalogue-driven

acquisition of a domain and translation of

ill-defined specifications Into a precise

form.

Overa 11 System Structure

In our plan, the HP system consists

of four process!no modules and six data

bases. The data ba-.es consist, as much as

possible, of descriptive (rather than

imperative) knowledge, organized so that

the system can use tpis knowledge in many

different ways. These data basts have

been segregated because of the rij fferent

logical functions they perform and because

of the v^ay they are treated by the

different processing modules«

Data Pases

The Domain KnovJedoe data base

contains all the descriptive Information

about the problem domain, such as the

types of objects that can exist In the

domain and their descriptions, the types

of actions that can occur in the domain,

the relations tra«. may exist between

objects or ever.es (action oc ..urrences),

and any constraints that must be satisfied

by the domain.

I he Domain Model contains, at any

point in time, an Instantaneous snapshot

of the Instantiated objeccs In the domain

f

AUTCrtATlC PROGRAMMING

an<i their relationship to other objects In

the domain. It represent«;, through t.rr*»,

a direct slrrulation of the probiert» domain.

The Loose Mode' contains the problem

statenent in an imprecise form that may be

incomplete or ambiguous and that can be

understood only in the context of the

inforrration In the Domain Knowledge and

Donain Model data bases.

The Precise Model, on the other

hand, represents a precise, complete,

unambiguous, and directly interpretable

process for 'clvlng the problem posed.

The Strateny Knowledge data oazc

consists of information that guides the

choice of actions and/or objects for those

actions when alternative possibilities

exist within the domain.

Finally, the Script data base

contains parti a 11y-fi 11ed in forms that

nuldc the dialonue between the system and

the user and are dynamically altered on

the basis of the user's Input and by the

demands of the Model Completion moduie.

Processing Modules

Initially, to simplify the

Implementation, the processing r.iodulcs

will be highly self-contained and will

nave only a limited knowledge of the

process!na and requirements of other

modules. Lacer thev will be mere highly

integrated and cooperative.

The Domain Acquisition module is

responsible for communicating with the

user, building the Domain Knowledge arid

Domain Model data bases, obtaining the

Loose Model statement, determining on

syntactic grounds the well-formedness of

all this information, building and

modifyiru: the Script, and using It to

direct the dialogue for the acquisition of

further Informetlon necessary for such

syntactic wo I I -fon; edness or requested by

the Model Completion module.

The Model Completion module deter-

mines the semantic well-formedness of

the Loose Model on the basis of the

information in the Domain Knowledge and

Unnaln Model data bases. It Is

responsible for fansf orml ng the Loose

Model into an operational, interpretable

form called the Precise Model. Any

Inability to perform this transformation

causes a description of the reason to be

passed back through the Script to the

Domain Acquisition phase, which then

Interacts with the user to correct the

deficiency (usually by adding more

"".

AUTCMATIC PKül1kA/-r.iNTi

knowlecire about the domain to the i;ofn<iin

Knowledrje ciata base).

The Interpreter exer.«jtes the action

sequences In the Precise IMcriel and updates

t he Ooma i n Mode i a ccor fll nq 1 y • It Is

resp-onsibls for locatlnq objects defined

descriptively, evaluatinq conditions to

select alternative sequences of actions,

and maintainlnq restrictions on domain

behavlor.

Tue Data Base Handler \z responsible

for maintainlnq the various data

bases, deciding on store-recompute policy,

nalntalnlnq consistency, and (through

Inferenr«^) r.h<;curlnq the difference

between explicit and Implicit data.

A primary objective of our project

has been to create a core experimental

system for testing progress on üomaln

Acquisition and Model Completion. As

such, the Interpreter and Data Pase

Handler, which have been completely

specified and Implemented, are being used

for both the Precise Model and the

Implementation of the AP system itself.

To fully utilize these Implementation

capablUdes, the Domain Acquisition and

Model Cofnplctfon modules will be treated

as domains with their own actions,

objects, constraints, and rules of

inference. This bootstrapping will focus

attention on the real problems of usinq

our approach In cor pi ex domains.

A more detailed description of the

system is riven in the rollowing

subsections, which focus on tne

representation of Nnowlertqe and the form

of the Precise Mode] produced by Model

Corrp leti on.

Knowledge hepresentation

Throughout the system, knowledge is

represcntecJ as stored tuples. The first

element of any tuple specifies the type of

tuple; the rest of the elements are the

arguments for that tuple. Each stored

tuple Is associated with a particular

domain. Data bases are compartmenta11 zee

into separate do..-Tins that fort; a lattice,

each domain is defined as A-KINÜ-Of (AXO)

another domain; this structure forms the

basis of the domain lattice. The

Interpretation of the lattice structure Is

that, unless specifically prohibited,

properties (of all types) from higher

level domains are Inherited by lower level

ones.

The structure of knowledge in the

system Is highly constrained by two

mechanisms: types and constraints. tach

AUTOMATIC PROGRAMMING

element of a tuple must be of a type of the user's problem In the programming

acceptable for that argument as specified language AP/I [^]. This language Is an

In the definition of that kind of tuple. extension of LISP [5jf which supports

Like domairs, types are defined by AKÜ associative relational data bases vjth

relation and form latti <-:*•:. (This domain corr^ar tmenta 11 zatl on, strongly

structure is very similar t AFL C3J.) An typed variables, compound pattern matches,

element of a tuple Is acceptable If its and failure control. Strong typing and

tyr^ Is the same as that specified In the compound patterns are especially important

tuple definition or If its type Is a In simplifying the system's writing of

lattice descendant of the specified type. f.he Precise Model by minimizing the

In addition to type acceplabi1ity, the translation between It and the Loose Model

elements of a tuple must also satisfy ano by reducing and simplifying the

arbitrary constraints specified in the control structures required, in fact,

•■uple definition. These constraints are compound patterns have enabled the

checked at the vilme that the tuple is elimination of backtrackinc and Its

added to a domain. replacement by a slnole FOR loop that

A domain consists of types (objects),

actions, relations, constraints, rules of

inference, and instantiations of all of

the above. Together with the type and

constraint mechanisms for tuples, this

knowledce of the kinds of Information Additionally, Model Completion

iterates through a set of Instantiations

of the compound pattern. It also rakes :t

possible to apply intelligence, within the

pattern matcher, to determine how best to

obtain valid instantiations.

contained within a domain represents the utilizes only a subset of AP/1 (which is

syntactic basis used by the Domain also the I rnp lemt-.ntat i on language for the

Acquisition module to construct and modify project) to further simplify the writing

Its Script, and hence Its dialogue with and analysis of Precise Model programs,

the user. The major difference Is that the Precise

Model utilizes no free or local variables,

Preclse Mode\ except for pattern-match variables, that

The Precise Monel Is the restatement
ar*-* Instantiated during the matching

process. All communication between

AUTOMATIC PROGRAMMING

routines is either by way of explicit

parameter passing or through data

contained in the Domain Model*

AP/I qenerally allows the arbitrary

mixinq of tuoles to be instantiated and

functions to be evaluated. This includes

tnn r^r.ctlcr.s AND, Oft, and NOT, as 've!! as

any other defined LiSP functions* It is

assuined that such functions have no side

effects. Each tuple in an expression is

treated as a function and evaluated if it

has a runction definM.ion. If not, then

It Is treated as a pattern to be

Instantiated. Because there are no free

variables and the only local variables .ire

pa*tern-natch variables, the rule for

Instantiation Is very simple. Any

parameter or variable unbound at the tiire

it is encountered within n pattern is

Instantiated; already bound variables are

left unchanced.

The value of a pattern is always the

Instantiated version of that pattern if

the match was successful, or ML

otherwise. Because no other possibilities

exist, all pattern rratches return either

the Instantiated pattern or NIL. The

concept of failure does not exist within

the pattern matcher, since it always

returns to its caller with one or the

other of these values.

The routines (statement*■) that Invoke

the pattern matcher may take other actions

upon the returned value. They nay

extract from it particular bl »dings or

subexpressions or cause failure when a

ML value is sturned £ •'-h of ehe

"statements" in AP/1 is, in fact, a

function that uses the value returneo from

the pattern matcher as it see^ fit. In

this regard, the ANC, uK, and NOT

functions are no ci fferent than any other

in the system.

Current Project Status

AP/1 and the associative data base

mechanisns it relies on have been

Implemented, and It has been used in turn

to Implement an initial version of the

Nodel Completion phase. This version is

able to take (carefully selected) sma1),

simple dona In and problem statements in

Loose Model form and convert them, to

running programs oy performing a series

of structurinc and program building

transformations that reorder the L. guments

of relations and actions, convert the

arruments to the correct type, and fill in

missing ones. Ihey also fill in omitted

relations between objects, convert

AUTOMATIC PROGRAMMING PKOGRAMMtK'S INTERFACE

actions. Implications, and constraints to

procedural form, and infer Implied

relations needed to maUe sense of

structures in the Loose Model.

In all cases, these transformations

are not complete. They recognize only

specific simple instances of the desired

situation. During the next year, we plan

to extend the range of these

transformations, include new ones, and

implement ar initial version of Domain

Acquisition to form a complete system.

One problem in particular will be

attacked. Currently the system attempts

to make each part of the generated program

"precise" (that Is, well-defined), and

stops transforming eich part when this

goal is satisfied. However, In the

nenerated progra.. only certain "precise"

forms will occur In the data base, and all

those used must work In harmony with each

other. Thus only cereal n "precise-4* forms

should be acceptable; this set must be

determined on a global basis.

THE PROGRAMMER'S INTERFACE

Th« Prograwner's Interface (PI)

addresses the general problem of creating

a suitable on-11 no environment for

programming. The amount of software to

support such an on-line environment, and

the effort required to produce It, is very

large relative to that needed to produce a

Programm!no language, a fact that largely

accounts for the scarcity of such

programming environments. This factor was

largely responsible for the discarding of

a major languane (OA^ [6J) as a separate

entity and Its inclusion instead as a set

of extensions In a LISP [^J environr^nt.

The few systems that do exist (e.g., LISP,

APL, BASIC, and PL/I) have greatly

benefiter their users and have strongly

contributed to the widespread acceptance

rf *"He associated language.

At a bare minimum, a suitable

programmlnr environment consists of

an on-line interpreter (or Incremental

compiler), an integrated interactive

source-level debugilng and editing system,

and a supporting file structure. More

extensive environments would Include

such facilities as automatic spelling

correction, structural editors, tracing

packages, test case generators, docu-

mentation facilities, and so forth.

Examining several programnlng envi-

ronment systems, one recognizes a

great deal of unlfonnity. Most of the

software supporting these systems Is

10

PROGRAMMER'S INTERFACE

similar In both Its organizational

structure and functions. In fact, the

systems differ In detail more because of

differences In style among system

designers than because of differences

required by the programming languages.

The PI concept attempts to exploit

this uniformity by creating a single

programming environment capable of easily

interfacing users with a wioe variety of

on-line programming languages. The Fl Is

thus responsible for transforming these

programming languages Into systems. The

cost of providing such an environment for

a language vould drop from the several

man-years now reguired to the few man-days

(estimated) to Interface to a PI.

Additionally, the existence of a comron

prooramnlnq environment for many different

languages would justify including further

capabl11 ties.

This common programming environment

provided by a PI should Include facilities

for creating, modlfylnc], storing, and

retrieving programs; on-line debugging.

Including trace and break facilities as

well as the facilities of the language for

evaluation of expression« at breaks;

modifying the Interface between routines

(via an ADVISE [73 capability); automatic

spelling correction; remembering, mod-

ifying, and reissuing previous Inputs;

and undoino the effects of any of these PI

fad 1 i tics.

Sucn a Pi has been constructed and

interfaced to the programming language

£CL [8]. The remainder of the PI

discussion exp'ains Sie PI concept in

terms of this inplementea program.

The deficiencies of this particular

implementation are dlscussec in the

Evaluation subjection.

System Archltecture

The facilities provided by the

Implemented Proorammer's Interface (PI-M

are based on the 1MEALISP (forrr riy

BBfi-LISP) system. In fact, they are

the facilities of this system, as

modified for language Independence. PI-I

Itself, implemented In INTERLISP, coexists

with the facilities It Invokes to provide

the programming environment. INTERLISP

was chosen as the basis both because It

already had an extensive set of

programming tools In an accessible form

and because the structure and operation of

the tools could easily be altered to

operate as required for a PI.

11

PaOGRAMhtR'S INfERFACE

The system structure Is shown In

Figure 1.1. The ARPANET [9J Is used as the

corwTHin I cations mechanism between PI-1 and

the user's language processor, a choice

which has three advantages. First, it

allows PI-1 to be Interfaced to any

language processor available on the

Put volue
in history

Echo
suppression

n
ARPANET

o
LISP

Perform

action

Generate
output

Store command
in history

Who should
proc's it?

No/ F? A Y«s .
 A user language I ^

V component?y

User's
language

ARPANET

User's language
processor

Figure 1.1 System architecture

ARPANET, Independent of what machine It

runs on. Second, this Interfacing can be

done by PI-1 without the knowledge of the

language processor; thus no modifications

to the language processor are required.

Finally, the use of the ARPANET greatly

simplifies implementing the Intercon-

nection by allowing external character

strings to be used for coiwmuni cat! on

rather than internal data structures with

the attendant Incompatibility problems.

Three properties ^re required of a

languaae processor to be used with a PN

1) A way must exist to form a coroutine

linkage between the language

processor and the PI by

interconnecting their I/O ports.

This cype of linkage Is discussed in

detail In Ref. 1Ü. With PI-1, the

ARPANET provides this linkage. Thus,

for PI-1, any language processor

available on the ARPANFT satisfies

the first requirement.

2) It must have an on-line evaluator

(either an interpreter or fast

compiler) and be able to field breaks

or errors within a computation.

3) It must be able to evaluate arbitrary

forms in that language either at

12

PROGRAMflER'S INTERFACE

breakpoints or at the top level.

Pl-1 begins processing user Input by

storlnn It In a history list used by the

Progranwper's Assistant [7} (an INTtRLISP

subsystem) to retrieve, edit, group,

reissue, or undo previous commands. Pl-1

then »xamlnes the Input to determine

whether It should be processed by an

INTERLJSP facility or by the user's

language processor. Basically, envi-

ronment-type activities, such as loading

files, editing programs, advising a

function, etc., are performed within

PI-I, while expressions in the user's

lanauage to be evaluated arc passed to the

lannuage processor.

If the user's input is intended for

his language processor, it is passed

across the ARPANET to that languane

processor. Any output generated by the

processor Is received across the ARPANLT.

again by Pl-1- It suppresses the echo of

the input and passes the outout to the

user, extracting from It the "value" and

putting it Into the history list for use

by the Programmer's Assistant.

If the user's input Is an

cnvlronment-typc coimrand and should be

performed within Pl-1, the appropriate

facility Is Invoked. In simple cases the

operation completes, returns a value that

is put in the history, and another input

Is processed. In more complex situations,

some Interaction is equired during the

operation wfth the user's language

processor; this is accomplished by

dynamically generating a series of Inputs

for the language processor that will have

the desired effect or return the desired

Information. fhese are passed through the

communications mechanisms to the

processor; its output is captured, and

either the success of the modifications Is

verified or the desired information Is

extracted. Any number of such cycles may

be required before the Pl-1 facility

corrpletcs its processing of the user's

command. As an example, consider the

loadinn of a file. As the function

definitions are read In, they are stored

as a property of the correspondlno atoms

to be used by the Pl-l's editor for any

modifications required later. The

function deflnitlcns are also passed to

the language processor so that It can use

these for *• aluation. Thus, one cycle is

required foi eacn function defined in the

fi le.

PI-I maintains a copy of all

functions defined by the user, and this Is

used by Pl-l's editor wnen the user alters

13

PROGRAMMER'S INTERI-ACE

the definition. Whenever this definition

chanqes (by redefinition or through

exltlnq the editor), the resulting

definition Is passed to the language

processor as a nev definition of the

function.

Interfäci ng a Language to a Programmer^s

Interface

Most of Pl-i Is language-i ndepv.,ccnt,

but the following portions must be

modified to accept a new language: syntax

modification, synchronization, program

writing, and debugging.

The INTERLISP editor used by PI-1 is

structural rather than strlnn-oriented.

To be effective, the text It is

manipulating must have a structural basis.

The syntax modification routines are

responsible for Introducing the structure

Into the user's languaac (only for use

within PI-1). This structure Is of two

forms. First Is the grouping of

characters Into lexical units. The user's

language may have very different lexical

grouping rules than LISP, and the syntax

modification package Is responsible for

the lexical analysis. Second, the lexical

units thus produced are grouped Into

larger units by the use of parentheses.

These units can be nested within one

another to form the familiar LISP

S-expresslon structure. The designer of

the syntax modifier must decide where to

introduce tnls structual grouping. In

ALGOL-like languages. It would be natural

to group the lexical units of a statement

together and groups of statements within

blocks together. The structural groupings

selected are Introduced Into all program

text Input by the user and employed by him

to direct the editor in Its modifications

of this text. When this text is passed to

the language processor, those structural

groupings artificially Introduced fcr

editing purposes are removed before

transmlssion,

PI-1 and the language processor must

be kept In synchronization with each

other. Logically this Is very simple; It

is accomplished by having PI-1 wait until

the language processor has completed

evaluating the previous Input before

giving It another. This situation is

signaled by the language processor's

attempt to read the next Input,

unfortunately {due to a deficiency In the

network protocol), this Information Is not

avallable. Therefore the language

processor's state of readiness must be

determined by examination of Its output

14

PROGRAMMER'S INTERFACE

stream. Fortunatejy, most on-line

lannuage processors explicitly Indicate

their readiness for more input by

providlnq the user with a Prompt

character. The lanouage processor's

output must be scanned for this character,

and this action is used as a

synchronization mechanism between HI-I and

the language processor.

Several fad titles wfthin Pl-1, such

as Break, Trace, and Advise, cause

additional statements to be written into

the user's program for evaluation at

runtime. The interfacer of a new language

must specify the form of these additions.

Pl-1 contains many advanced debugging

capabilities not found in most language

processors. All of these aids are based

on Information gathered durlno execution

or at a breakpoint within the program. To

use these factUties, the desinner of the

language Interface must supply routines

that provide the basic information on

which these debugging aids arc- built.

PI-1 was Implemented and debugged in

approximately three weeks, including the

language Interface to ECL. Although no

other language Interfaces have yet been

built, it Is estimated that an Interface

to another suitable language could be

designed, implemented, and debucged Jn

less than a week.

Eva 1uation

The significance of th£ PI effort

lies neither In the particular interface

provided between INTERLiSP and ECL nor In

the extensive capabilities provldea the

user, but rather in 1) the observation

that very little of the interface Itself,

or of the capabilities provided. Is

language-dependent; 2) the recognition

that the programming environment can be

effectively split into an "envlronment"

part anc an execution and evaluation part;

anr, 3) the experience gained from building

such a systerr and interfacing a language

to it.

PI-I, however, suffers from a number

of deficiencies, the most Import t of

which Is the use of already existing tools

In environments more general than those

for which they were designed. This was

most notable In the use of LISP's editor

for nor.structured text (making It

necessary to introduce structure by

parentheses) and the requirement to

replace LISP's Input routines to provide

the proper lexical analysis for the

interfaced language. Both of these

15

PROGRAMMER'S INTERFACE

problems could be avoided Ina PI If ft

used the syntax description of the

languaqc to guide the Input and the

editing and display of programs.

While one of the strengths of the PI

concept Is the split between "environment"

and evaluation, this split Introduces

the problem of communlcaclon and

synchronization, for each part must keep

the other Informed «bout changes It makes

that affect the other» In PI-1, this

communication and synchronization was

partial and clumsy. The flow of

Information from the environment to the

evaluation part was adequate, but the

reverse flow was not. The need to

communicate to another program suitable

explanations of the state of the

evaluation, the cause of the error, or

even that an error occurred, was simply

not envisioned or planned for.

PI-1 has thus demonstrated that a

moderately Integrated PI can be built

whose facilities are far beyond what Is

typically available at a fraction of the

cost. However, development of a highly

Integrated PI .will have to await a

better understanding of the functional

requirements of a language processor In

such an environment.

Although the PI has been Interfaced

to only one language (ECL), and altltough

It contains only a small fraction of the

capabilities ultimately desired. It Is

having a major effect by acting as a

prototype for the NSW described below

[11,12], which Is being undertaken to

develop this understanding and provide a

single, common, comprehensive prognmmlng

environment Interfaced to a wide variety

of languages running on many different

machines communicating through a network.

New languages or machines could be

Interfaced to the system at a fraction of

the cost of providing a separate

programmlnr environment. Widespread usoge

would justify the expenditure of more

resource'. to auoment and Improve th2

capabilities provided. Such a PI could

free users from having to develop their

programs using only software available on

their own machines and could provide a

much more comprenenslve and coordinated

software development package than Is

currently available.

THE NATIONAL SOFTWAKE WORKS

The production and maintenance of

large programs Is still an outrageously

expensive activity; the costs are not only

high, but also difficult to predict or

16

NATIONAL SOFTWARE WOÄKS

control. Aside from the manifest benefits

derived from the use of r.ompMers and

(some) operating systems and a certain

amount of improvement experienced by

programmers vho cooe Interactively, It Is

not at a)) clear that the last twenty

years of research and development In

programming technology have made any

serious Inroads upon the problem. This

situation is particularly Interesting In

the light of a general suspicion that. In

principle, the problem ought to be eased

by the creation cf better software to

support the proqram production and

maintenance process, for surely a qreat

deal has been spent in the effort to

invent Just such software. The reasons

for our failure are arguable; a variety of

hypotheses have been put forwards

■ That the necessary tools--or, at least,

many of them--exlst in the research

centers but are not being effect-

ively delivered to the practical

programmlng conmuni ty.

■ That feedback from the user community

has Insufficient Influence on the

research laboratories, so that

research emphasis Is unrelated to

user needs.

■ That the necessary tools exist, but are

diffused over a variety of hardware

In many physical locations, the

problem being that of difficulty of

access.

£ach of these hypotheses—and the

list may readily be extended—doubtless

contains a certain amount of truth, and

collectively they surely suggest that

dramatic improvements in the way programs

are built are less likely to come from

marginal improvenents in present tools (or

the invention of sorre maaical new one)

thar from better methoos cf tool access

and delivery and better communication

between research laboratory and end user.

The idea of a National Software Works

(NSW) on the ARPANET [l>] arose fairly

naturally from these considerations. If

sore number of end users were put on

the network, and enough additional

off-the-shelf software were brought up on

the network to supply a complete

set of conventional tool S—COJ. , f ers,

documentation aids, debugging systems,

etc. — for normal program development work,

some useful results might be expected to

follow:

■ The user would Immediately have more

convenient access to standard tools

17

NATIONAL SOFTWARE WORKS

unavailable on his own hardware (or

seldom available If his hardware Is

often tied up running production).

■ The user would find it easy to access

novel tools In use at research

facilities presently on the network,

but not otherwise available to him,

■ Contact between the research labor-

atories and the user community would

naturally Improve.

In sum, the NSW might both

immediately improve the present situation

of the user and. In the long term, provide

an effective vehicle for the communication

of need from user to researcher and of

responsive tool from researcher to user.

It was soon recognized, however, that

a view of the NSW as a mere lash-up of

tools that happened to reside on the

ARPANET would be extremely short-sighted.

The fact that all programmer contact with

tools would pass through a common

communication mechanism with Immense

computing resources created a golden

opportunity for the study—and perhaps

control—of the whole process of creating

and maintaining large programs. This

thought, was particularly attractive In the

light of our feeling that one of the most

weakly supported areas In the production

and maintenance process Is project

management--a tool that keeps track of

what Is qoing on, relating particular

programmer activities to each other and to

the overall project.

Ub^ NSW Environment

Against the background of our feeling

that serious progress In making the

production of lar^e programs a more

rational process will come less from the

polishing of particular tools than from a

frontal attack on the Issue of Improved

access to tools and centralized management

of the vast Inventory of text floating

around a large project, the logic of our

NSW strategy becomes easy to see.

■ It Is our Intent to put a project's

programmers on-line to the ARPANET,

which has the Immediate effect of

giving them access to many tools

unavallable on their own local

hardware.

■ Me will supply Interactive editing

packages, both a general text editor

and editors that "speak" one or two

common programming languages. The

effect of such toots In facilitating

program preparation and modification

18

NATIONAL SOFTWARE WORKS

Is too well known to require any

defense here.

■ Projects will be able to store these

files on very Inexpensive on-line

mass storage devices (such as the

Datacomptter CH]). This should

relieve a considerable part of

a project's local off-line file

maintenance problems and facilitate

load-sharing when the project's local

computer Is busy.

■ \ File Manager will always be on-line

monitoring the content and structure

of the project's files and keeping

the books up to date, as text pieces

arc* created and manipulated«

The presence of the first three

facilities will permit the project to

conduct Its business more or less a«:. It

does now (using the same languages,

the same tools, etc.) with certain

Improvements In ease of tool access and

foreign hardware access, editing, and file

management. In addition, the project may

at Its option experiment with using

different tools scattered around the

network.

The fourth facility opens the door to

some genuinely new ways of controlling

projects in the future. To begin with, a

fairly powerful query system will be

provided to answer questions about any

filed entity: what it is, where It came

from, what other entitles depend on It,

etc- Later we will Introduce a variety of

experimental tools for project control

that use the File Manager's book? as their

primary data or that use the fact of the

File Manager's existence as their means of

Irvocation (after all, the latter provides

a single control point "awakened11 every

tire anything interesting happers).

Support!ng Technology

Virtually all multlprogram operating

systems have attempted to create a

suitable pronrammlng environment by

providing a set of tools. Some merely

provided a library from which tools could

be selected one at a time by the

programmer. Others, llkeMULTICS, CP-67,

VS, and TENEX, have provided an on-line

environment for program building and

debugging.

All of these systems nave been built

on a single computer, which has severely

limited their capability to provide the

type of environment described In the

previous subsection. In fact, until

19

•

NATIONAL SOFTWARE WORKS

recently a combination of several such

hardware and software technical problems

existed that prevented the conception

and Implementation of this type of

environment. These problems and their

solution In the NSW are discussed below.

Single-machine I mplfc..ientat Ion of a 11

tools. Computer networks, such as the

ARPANET, have established a communication

mechanism whereby cooperating programs In

different machines can funr'-'on together

as a single system. The technical basis

for eliminating these problems Is

provided by computer networks, centralized

mass storage, the PI [14] described In the

previous section, ACTORS [15], and

execution machines (see the System

Description subsection below). The PI has

utilized this network technology lo create

an on-line programming environment

combining tools that run on different

machlnes.

Nonlntegrated"tool-at-a-tlme"systems.

Current systems either segregate their

tools Into noninteractlng components

Invoked one at a time or provide highly

complex Integrated versions of these, with

the Interactions between them bollt Into

the systems themselves. The type of

programming envlroriment we envision

requires that actions or events In one

part of the system penneate the rest to

maintain consistency and coordination

between the components. The ACTORS

concept, by externalizing and removing the

control and communication between the

component parts, greatly simplifies tne

construction of an Integrated and

coordinated syr em.

Machine Independence. Although tools

running on different machines may be

Integrai-d Into a single tool, the

technology does not exist to run a single

program on several different machines and

obtain the same results. Therefore,

software being produced must be executed

and tested on the machine for which It Is

Intended to run in production mode. Thus,

If the software environment Is to be used

to produce programs for more than one

machine, each of these must be connected

through the computer network and a small

portion of the system replicated on each

execution machine to provide for

translation and run-time monitoring

capabilities. The rest of the software

environment is common and can be shared

independent of the machine for which

execution Is Intended.

20

NATIONAL SOFTWARE WORKS

Language Independence. Currently, If

software Is to be produced for more than

ore lanquaqe, then the tools must either

be duplicated In separate ami distinct

Integrated proqrarmnlng environments or

else available In a nonlnteqrated

tool-at-a-tlme mode. The PI has shown

that rnai., of these tools are

language-Independent or only slightly

language-dependent and has demonstrated

how such tools can be extended to handle a

wide set of programming languages. It

utilizes the programmlna tools (editors,

file systems, debuggers. Programmer's

Assistant C7j, etc.) developed for one

language (LISP [5]) for the development

of software In other languages (e.g.f tCL

[8]). It has established Interface

requirements for other langutqer that

would greatly reduce the effort required

to transform these fron simple Interactive

procramming languages Into an extensive

programrring environment.

Economlcs. In addition to the costs

of creating an appropriate programming

environment addressed above, several

economic factors currently limit the

use and utility of existing programming

environments. Most machines are sized

for their production, not development,

requirements. Hence, typically they

contain neither enough mass storage for

the files that would be required in an

on-line environment nor enough memory Co

support both the code being developed and

the tools for that development. Also,

access to the system is limited by the

priorit.^s of the production workload.

Networking and economies of scale offer

solutions by providing access to a system

specifically designed and sized for

software development and on which no

production workload exists. Charges would

be based on usage and development costs

for the system, spread over a much wider

community of users because of the

language- and machine-independence aspects

of rhe system. In addition» very cost-

effective mass storage can be provided by

the Datacomputer, which provides a

trillion-bit on-line memory at a cost of

about a dollar per megabit per year.

System üescrIptlon

The hardware for the NSW, snown In

Jlgure 1.2, consists of three logical

components interconnected by the ARPANETJ

mass storage, the execution machine, and

the Interactive machine. The first

consists of the Datacomputer, composed of

a trillion-bit store and a file management

system. 1 he second, the execution machine.

Is a set of machines responsible for

21

» i

NATIONAL SOFTWARE WORKS

runnlnq the proqram befng developed

and for collecting d^ .a on Its execution.

For each proqram beinq developed, the

execution machine chosen Is automatically

the same as the production machine for

that proqran. Tnus, during development, a

program fs executed on the same (actually

a copy of the) machine It will run

on during production. This mechanism

eliminates all machine-dependence compat-

LOCAL

Video Hord
copy system

IMP
or

TIP

- Netwo»k
connecfion

SYSTEM

InterocHve

Execution
[mochine *1

Execution
machine 'N

Ibillty Issues at the cost of replicating

the execution software In each machine for

which this capability Is desired and

having that machine available In the NSW.

On the other hand. It provides the great

advantage cf allowing the final component,

the Interactive machine (or machines), to

be Independent of the choice of production

machine, thereby allowing It to handle a

wider set o.' Implementation efforts. The

Interactive machine contains most of the

system's software and provides all of the

facilities of the NSW except those

described above.

The ARPANET not oniy Interconnects

the NSW components, but also provides

access for users to the system and

supports a variety of terminals. Howeve/,

the NSW will be oriented toward the use of

high-capacity video terminals.

Although the system Is distributed

across the ARPANET, It Is organized so

that neither the user nor the component

software modules are aware of this. The

user sees c 'y a single Integrated

facility* The framework enables modules

either locally or remotely connected to

communicate without Knowing each other's

precise location.

Figure 1.2 NSW hordwor«

22

NATIONAL SOFTWA^t 'WORKS

Sy&tem Growth

Tnough we have described the NSto

system and Iti tool interface at length,

we h.ive not discussed the tools

themselves, partly because we believe It

Is the delivery and access system rather

than specific tools which Is significant,

partly because many of the tools to be

Included already exist, and mainly because

NS#(does not plan en becoining Involved In

a massive tool development effort.

Rather, NSrt has Jeen designed to create a

compeiitive marketplace in which vendors

make tools available on a usage charge

basis. Such a marketplace has advantages

for all concerned. Because the NSW will

eventually have a verv 'arne user base,

vendors will have a wider audience from

which to recover their development costs.

More I m . "»rtant 1 y, .Ince the entire user

population can access and use th« tools

independent of their own production

hardware (unless the tool is dependent on

tne execution machine), a single

I mplementat.'on Is sufficient. The

Implemcnter Is free to choose the most

cost-effective rachine for development and

execution of his tool. Users are able to

choose the best tool avallable and are not

restricted to software running on their

own hardware. Finally, because NSW does

all the accounting for all users,, t

decision of which tools to Install In tie

NSi* ar.d which ones to use can be

distributed. Vendors who oe11 eve In the

economic viability of their tools can

install them and make the user aware of

their availability. Users can, on an

individual basis, decide which tool Is

mo^t appropriate for their own needs and

can try new tools without any

administrative arrangements.

IS!, together with other members of

the AftPA community, was Instrumental In

the conception and design of the National

Software Works. During the remainder of

the project, we will provide technical

coordination and planning for Its

development and growth.

?3

REFERENCES

1 Balzer, R. M.f Atuowatlc Prograwwlng, USC/Informatlon Sciences Institute, RR-73-1
(In progress)«

2 Balzer, R. M.f "A Global View of Automatic Prograwning*. Proceedings of Third
International Joint Conference on Artificial Intelligence, Stanford University,
August 20-23, I^TTTPP". A9A-A95.

3 Project MAC Progress Report X^ July 1972-July 1973, The Massachusetts Institute of
Technology,~CaiBbrIdge, Mass., 1973, pp. 17*-176,

k Balzer, R. M., AP/K A Lanouage for Automatic Prcgramwi! ng. USC/Information
Sciences Institute, Rff-7TnTTrn progressiv "

5 Teltelman, W., 0. G. Bobrow, A. K. Hartley, and 0. L. Murphy, BBN-LISP T£N£X
Reference Manual. July 1971.

6 Rullfson, J. F., J. A. Derksen, and R. J. Waldinger, QAA; A Procedural Calculus
for Intuitive Reason!ng, Stanford Research Institute Artificial Intelligence
Center, Technical Note 73, November 1972.

7 Teltelman, W., "Automated Programmings The Programmer's Assistant", AFIPS
Conference Proceedings, Fall Joint Computer Conference 1972, Vol. ^1, AFIPS
Press, Montvale, N.J., 1972, pp. y17-921.

8 Weqbreft, B.. "The ECL Programming Systems," AFIPS Conference Proceedlncs, Fall
Joint Comr er Conference 1971, Vol. 39, AFIPS Press, Montvale, N.J., 1971,
pp. 253-262.

9 Roberts, L. G., and B. Ü. Wessler, "Computer Network Development to Achieve
Resource Sharing," AFIPS Conference Proceedings, Spring Joint Computer Conference
1970, Vol. 36, AFIPS Press, Montvale, N.J., 1§70, pp. SA3-5A9.

10 Fal/er, H. M., Ports? A Method f^ Dynamic Interprogram Communication and Job
Control, The Rand Corporation," R-605-ARPA, August 1971.

11 Balzer, R. M., T. E. Cheatham, S. Crocker, and S. Warshall, The National Software
Work;,, USC/Informatlcn Sciences Institute, RR-73-16 (in progressT^

1/ Balzer, R. M., i. E. Cheatham, S. Crocker, and S. Warshall, Design of a National
Software Works, USC/Informatlon Sciences Institute, RR-73-r^TTnpr ogres sjl

13 Datacomputer Software Architecture. Datacomputer Project Working Paper 5, February
1972, Computer Corporation of America.

U Balzer, R. M., A Language-Independent Programmer's Interface, USC/Information
Seleses InstituteT RÄ-75-15, March 197A.

IS Hewitt, C, P. Bishop, and R. Steiger, "A Universal Modular ACTOR Formalism for
Artificial Intelligence," Proceedlngs of the Third International Joint Conference
on Arti flclal Intelllgence^ Stanford university, August Jü^?3, 1973,
pp. 23$-2A5.

24

PROGRAM VERiFICATlON

PROJECT LEADER:

RESEARCH STAFF:

RESEARCH STAFF SUPPORT:

RESEARCH ASSISTANT:

Ralph Lm London

Raymond L« Bates
Peter L. Bruel1
Lawrence H, Fagan
Donald I. Good

Betty L. Randall

Donald S. Lynn

'The concepts of progran verification are actually the cornerstone of any
deeper understanding of algorithms, without which the prograrar^r would have no
other tool besides his own insufficient Intuition.*

Nlklaus Mirth« Systematic Prograwwlng:
An Introducticn. 1973. p. xll.

INTRODUCTION

To verify a computer program means to

demonstrate, by a mathematical proof» the

consistency between the program and the

sped f Ic4t{fins or documentation of what

the program Is to do. Program

verification can have a great Impact on

the construction of reliable software by

assuring that programs actually do what Is

Intended and by ultimately reducing

software costs. In addition, program

verification helps to Influence the design

of prograrmlng languages. It also serves

as an Important test-bed for advances In

both programming methodology and the

semantic definition of programming

languages.

Program verification Is not

Inexpensive or rapidly completed, but It

need not he an additional cost In software

projects. In Boehm's data on current

software practices [1]v It Is especially

relevant to note the large amounts of time

and effort (4S to SO percent) devoted to

testing activities, much of which can be

eliminated by verification procedures.

It Is now technically possible to

verify small programs automatically.

Techniques and experience exist to permit

25

PROGRAM CONSTRUCTION

the computer-assisted verification of more

ambitious programs. If necessary. It Is

even possible to verify still more

ambitious programs manually.

A PROGRAM CONSTRUCTION AND VERIFICATION

SYSTEM

The Program Verification project Is

building an Integrated system or software

tools to aid In the design and

construction of verified programs .<nd to

experiment with new specification

languages, structuring methods, and proof

methods. We fully expect to demonstrate

tho system's feasibility and practical

applicability on significant» real

progr >ms«

Previous experience with actual

proofs of a variety of programs and with

various experimental program verification

systems supports two conclusions: (I)

automatic or Interactive program verifiers

can be of significant help In proving

actual programs, and (2) the best way of

exploiting existing program proving

methods Is to develop a program and its

proof simultaneously, that Is, by

considering the proof at each step of the

program design and Implementation process

rather than writing the program first and

then attempting to prove It. In short. If

we are to prove programs of significant

size and complexity with current methods,

those pronrair.s must be designed to be

proved*

Programs can be designed to be proved

because current verification techniques

are perfectly compatible with currently

advocated methods of program construction

(for example, the concepts of structured

programming, levels cf abstraction, and

their numerous aliases). One can verify

each elaboration of a developing program

at the time of elaboration rather than

wait to verify only the final version of

the program. The use of this approach

should result In a structured, modular,

and understandable verification. An

encouraging example is the verification

[2] of a structured algorithm of several

levels. The proof follows that structure

exactly. Small changes to the algorithm

will mean corresponding small changes to

the proof.

Currently, It Is not Intended that

the program construction and verification

system Include any significant automatic

programming or code synthesis facilities.

The system Is not expected to aid In

selecting an algorithm for accomplishing a

76

PROGRAM CONSTRUCTION

.

task or In choosing data and control

structures. The human programmer stfH

retains primary responsibility for

designing, and for proving, his program.

The purpose of the system IJ to provide a

set of facilities that make It possible

for the programmer tu Interactively

develop., from a precise specification of

his problem» both a program and a proof

that the program solves his problem. It

Is assumed that the programmer is highly

knowledgeable both In his problem area and

In the methods of program proof supported

by the system.

The system focuses on providing the

programmer vlth three fundamental and

Interrelated capabilities: program

construction, program execution, and

program verification. The program

construction part of the system provides a

basis for designing the program on a

structured, segment-by-segroent basis while

maintaining the integrity c: the proof as

the program is expanded and modified.

The program execution capability Is

supplied by an Interpreter that provides a

sophisticated debugging tool along

conventional lines. By this means, faulty

programs can be detected without using the

considerably more expensive verification

machinery. The verification part of this

system Is based on the conventional

inductive assertion methods generate

verification conditions, simplify them,

and prove them.

The spirit of tne verification

component, as well as the entire r.ystem,

is to provide automatic tools where

practical and to rely on interactive

capability for manual Intervention

otherwise. This philosophy Is motivated

by our beliefs that for real programs,

(I) large parts of the total proof can and

should be done automatically, and (2) In

the foreseeable future, some parts wl II

have to be done manually.

CURRENT STATUS

Our currently running system consists

of a r.ext editor, a program and

specification parser, a program

interpreter capable of running both actual

and symbolic data, a verification

condition generator, a simplification and

substitution package, and a theorem

prover.

The program verif» itlon portion of

the system Is based on decomposing the

verlfl -atlon task as snown In figure 2.1.

The Inputs are (1) the program to be

27

CURRENT STATUS

verified and (2) the specifications and

assertions to which the program Is to be

shown consistent* The verification

condition generator or lemma generator.

Invoking the syntactic and semantic rules

of the programming language, reduces the

Specifications
Program (assertions)

Verification
Condition
Generator

Lemmas to
be proved

3imp!ificction
Lemmas shown true

Lemma> still
in doubt

Lemmas til!
in doubt

Lemmas shown true

Figure 2.1 Decomposition of the verification task

verification task to proving a derived set

of mathematical lemmas; the program Itself

has essentially been eliminated. Large

segments of the derived lemmas are proved

by relatively straightforward simpli-

fications and Si st1 tutions Involving

global aUebraic facts, global Boolean

facts, and problem-specific facts. The

remaining lemmas are then passed to an

Interactive theorem prover that Invokes

global, generally useful theorems as well

as problem-sped fie theorems.

The human user, represented by the

stick figure, can guide the verification

Interactively. He Is an Importune

conponent of our verification system--in

fact, one that distinguishes our s/stem

from most others. Such interaction Is

being used successfully in at lf;ast one

theorcr.. prover [3]. If, as we expect (and

arc beginning to demonstrate), the human

is left to supply to the system only a

minimal amount of crucial advice and

hunches to complete the proofs of the

remaining lemmas, tnen this will be an

appropriate and cost-effective use of the

human user in the verification task. Of

course, ensurinq that the system does not

In the end ask the user to do what he

considers too obvious is a nontrlvlal

problem, taking the human an important

28

CURRENT STATUS

component seems a proper response to the

genuinely open-ended nature of the factsv

theorems, and deductions needed to verify

real programs. If we wish the system to

be abl • to handle a particular type of

reasoning or set of facts, we can

hopefully add the appropriate capability*

In the meantime, however, the system/human

combination can together verify programs.

Note In Figure 2.1 that the human can

advise both the simpllfler and the theorem

prover. In particular, by supplying

additional facts and theorems to be used.

He can also change either the original

prooram or the specifications, or both. If

that seems appropriate In light of any

false lemma (I.e., a counter-example has

been found) or a lemma whose truth or

falsity cannot be deterr.l neM (I.e., the

can't tell cjse),

A more detailed view of the

verification part of the system Is shown

In Figure 2.2. Input programs are written

In an Interesting subset of the fre-

quently-used Algol-like language Pascal,

to which assertions have been added.

The Input specifications and assertions

are written as (Boolean) expressions of

Pascal, augmented by Implication,

caul valence, and limited quantification.

Because function calls are permitted In

expressions, this assertion language Is

theoretically adequate. In practice It Is

somewhat Inelegant, but not Inconvenient.

Other notations for assertions are

beginning to be developed and Implemented.

The Input Is converted to a prefix

representation used throughout the rest of

the system. One use Is as Input to the

interpreter for Pascal, permitting

Program Specifications

Parser

Profix represenfetion

/
Verification
Condition
Generator

Interpreter
(symbolic)

Lemmas sufficient
to verify program

t
Algebraic
execution

Figure 2.2 Overall organization of currently
running verification system

29

CURRENT STATUS

algebraic execution, in addition to the

usual numeric execution. One use for the

aloebralc execution Is to assist In the

(human) construction of the assertions

needed In verification, although, of

course, some program construction

strategies suocest the assertions will be

known before the actual program code Is

written. The Interpreter can also serve

as an alternative basis for a verification

condition generator.

The otter use for the prefix

representation is as input to the

verlflcatior condition generator, the

output of which serves as input to the

simplifier and to the theorem prover

(whose function and use were described

above). The verIfI cat!or condition

generator Is based directly upon the

axioms and rul-as of Inference that

constitute the definition of Pascal. We

also have available a standard Pascal

compiler, an interesting convenience but

not a necessity to the verification

system,

A different view of the construction

and verification system. In figure 2.3,

shows additional relationships of the

components and emphasizes the outputs of

each.

The construction and verification

system Is proor smmed In Reduce I**] and Is

therefore Lisp-based. Besides the virtues

of programming In a high-level compilable

language, Reduce provides three Important

advantages. First, nearly all of the

changes fo
- program
and specs.

program
and

soec if I cations

semanfic
inconsistency

new program
and specs.

syntax ^^
errors

internal
prefix

execution
results

from interpreter

BUGS-

verification
conditions

I
simplified

vc's

false or
unproved

vc's

proved
vc's

I
VERIFIED

PROGRAM

Figure 2.3 Outputs from components of program
design ana verification system

30

CURRENT STATUS

simplification and substitution Is Currently, the verification system

provided vlth minimal effort by the can verify an Interesting class of small

existlnc Reduce capabilities; the pronrams from the program verification

remainder is provided by easily literature, from various programming

constructed Reduce procedures. The manuals and texts, and from our ovn test

pattern -matchlnn capabilities or Reduce examples. furthermore, the use of such

arc exploited to permit the easy Input of simple structuring notions as procedures

aadltlonal, user-defined sinplIficatIon anu functions eases the verification task,

rules. Second, Lisp programs written Although this system has not yet verified

independently of Reduce can be made part all of the programs of other existing

of the system; this capability has been program verifiers, we are nevertheless

exploited to advantage. The previous Iv encouraged by the power Inherent in Reduce

existinr1 verification condition gener- and In the theorem prover that we have

ator [5] vas Imported via ARPANET and just begun to exploit. We remain

esserulally pluoqed into the system. Ihe confident that our- system will be able to

Interactive theorem prover [3] that we verify such programs shortly, and that the

havr Incorporated into the system took system will be an extremely flexible and

more effort because it first had to be valuable asset in experimenting with

converted from one Lisp system to another. assertion languages, structuring methods.

Third, because Hearn has inveited and proof metnods for verifying

considerable resources in making the significant, real programs, such as a

Reduce system available on a wide class of compiler for Pascal, an editor, parts of

computers and operating systems, the the verification system Itself, or

corresponding availability of the approprI ate application programs,

verification system will be achieved

merely by keeping the programming of the

system In Reduce.

31

*rf

REFERENCES

Boehp», B. W,f "Software and Its Impact: A
VoK 19t No. 5, «ay 1973. pp. %8-59.

Quantitative Assessment,M Datamation.

London» R. L.v Proof of Wulffs Prime Sieve Program, contained In M. A. Wulf,
■ALPHARDJ Towards a Language to Support Structured Programs,■ Computer Science
Department Report, Carnegie-Mellon University (In progress).

Bledsoe, W. W., P. BrueU, "A Man-Machine Theorem Proving System", Third
International Joint Conference On Artificial Intelligence, Advanced Papers of the
Conference. 1973, pp. 56-65.

Hearn, A. C, "Reduce 2: A System and Language for Algebraic Manipulation",
Proceedings of the Second Symposium on Symbol|r and Algebraic ManIpulatlon. ACM,
1971, pp. 128^T3T:

Igarashlv S«, R. L. London, 0. C. Luckham, "Automatic Program Verification M A
Logical Basis and Its Implementation," USC/Informatlon Sciences Institute,
ISI/RR-73-n, May 1973. Also accepted for publication In Acta Informatlca. 1974.

32

PROGRAMMING RESEARCH INSTRUMENT

PROJECT LEADERS

RESEARCH STAFF:

RESEARCH STAFF SUPPORT:

RESEARCH ASSISTANTS:

Louls Gallenscn

Joel Goldberg
Raymond L. Mason
Donald R. Oestrelcher
Leroy C. Richardson

R. Jacque Bruninga
George W, DIetrlch
Rennle Duge
Orallo E. Garza
Lloyd G. Jensen

John M* Malcolrri
Ronald Tugender
Martin D. Vonke

INTRODUCTION

The Progrannrri pq Research Instrument

(PHIM) project has created a fully

protected exper I rrental cornutinn environ-

ment with contlnuors rrultiuser access. An

ARPANEl-based rrultiaccess system, PRIM

allows each researcher to create his own

specialized computing engine capable of

being changed and adapted to his specific

needs. The PRIM hardware and software

together provide a working environment in

which the user can Implement his own

computer in microcode and rcn that com-

puter In his target program environment.

PRIM can be used to explore computer

architecture, lanouage development, and

special-purpose processor design—all of

especial relevancf? to ÜoO selection and

use of computer equipment.

The PRIM facility makes it possible

to easily sli.iulate new hardware archi-

tectures and designs in microprogrammed

software- That Is, softvjre can be

created for hardware not yet available,

and hardware designs may be extensively

used and changed even before the prototype

stage of development Is reached. This

snould both cut lead time and improve

decisions connected with the special-

purpose hardware procurement cycle.

To familiarize potential users with

the operation of the PRIM system, ISI will

provide introductory seminars and an

extensive documentation package. F.'UM

user documentation, consisting of an

Overview, User's Guide, MLP-9ü(.i Reference

Manual, and GPM Reference Manual, is

nearfng completion and should be available

to interested potential users by mid-lW*.

33

INTRODUCTION

Thfs documentation Is currently available

via the ARPANET at ISI, directory

PRItf.OÜCUNENTATIOiN. The PRIM Overview has

already been published and distributed

[!]• Interested Individuals will be

invited to a user's seminar, scheduled for

June, at which time FRl/i will be operating

in the environment for which It was

designed, 1SI personnel will continue to

be available to assist users and correct

bugs within the system as required,

HARDWARE

PRlM's hardware system Is based on

two processors^ the Digital Equipment

Corporation's POP-10 and the STANDARD

Computer Corporation's MLP-900 prototype

processor (see Fig. 3.1). The PDP-1Ü and

MLP-900 share memory as dual processors;

the MLP-90Ü Is a device on the POP-10 I/O

bus (see Figure 3.2).

POP-I 0

The POP-10, connected to the ARPANET,

runs under the TENEX time-sharing system

of Bolt ßeranek and Newman, Inc. on a

paged virtual memory. Its processor

contains 256K words of 36-bit memory. The

I/O operations performed by IFNEX Include

file, terminal, and network handling.

swapping, and a I

peripheral devices.

other accesses to

F'SureS.l The MLP- 900

bus
MLP-900

i

i

Pager

Memory
I bus

256 K four-way inferleaved
36-bif memory

Figure 3.2 Basic PRIM c onfiguratioo

34

HARDWARE

nLP-900

The MLP-900 Is a vert Ical-word

fnlcroproqrflmmed processor that runs

synchronously with a ^-MHz clock. It Is

characterized by two parallel computing

engines: the Operating Engine (C£), which

performs arithmetic operations, and the

Control Engine (CE), which performs con-

trol operations (sec Figure 3.3)« The

OE contains 32 36-blt general-purpose reg-

isters for operands and 32 36-blt mask

registers to specify operano fields. A IK

36-blt high-speed auxiliary memory is

associated with the OE. The CE contains

256 state flip-flops, a 16-word hardware

subroutine return stack, ana 16 8-bit

pointer registers.

The MLP-900 Is accessible only

through the POP-10 as outlined above

(i.e., the I/O bus and shared memory); no

OPERATING ENGINE CONTROL ENGINE
(Branches, testing)

Flip/flops
256x1 bits, F,0-F.377

Pointer registers
I6x8bits, K0-P.17

Subroutine stack
16x16 bits, S.0-S.17

(I/O, ortthmsHc, logic)

General registers
; 32x36 bits, R.0-R.37

Auxiliary memory
IKxSöbifs, A.0-AJ777

Mask registers
16x32 bits, M.0-M.I7

CONTROL MEMORY
4Kx36bin

Figure 3.3 MLP-900 configuration

provisions have been made for direct

connection of any peripheral devices.

The Introduction 3f a mlcrovlsor

state has been of major Importance to the

PRIM project. Prior to this project,

little had been done toward making the

multitude of available microprogrammed

processors potentially sharable resources.

This initial experiment goes a long way

toward making microprogrammed processors

widely and inexpensively available.

The majcr hardware effort was

conducted In four broad areas:

1) Reconfiguring the MLP-buO mainframe

for necessary expansion, improved

reliability, better cooling, and

improved power distribution.

2) Interfacing the MLP-9Ü0 to the POP-10

(including I/O and memory bus

interfaces and a paging facility).

3) Creating a microprogrammed supervisor

(mlcrovlsor) state within the

MLP-bOU, with facilities for pro-

tection of the privileged resources

and appropriate communication to

change state.

k) Enhancing the user environment within

the MLP-900.

35

HARDWARE

The modification of the MLP-90Ü and the

Interface to TtNEX (Items lf 2t and 3)

were essentially completed during the last

reporting period; the details of these

operations can be found In Ref. 2.

Enhancement of User Environment

Althouqh this year's hardware effort

consisted primarily of debugging the

MLP-90Ü, a few hardware developments are

worthy of mention. These Include language

boards. Control Memory Address Compare

(CMADRC), Virtual Menory Address Compare

(VMADRC), auxiliary memory, and streaming

mode transfers.

As orioinally conceived, the language

boards were to perform a variety of

functions for the nLP-90ü relating to the

interpretation of tarqet instructions.

These boards were to be designed ^nd

unirue'y used .or specific target level

lancuaoes, ope board per languace. The

functions performed simplified and/or

reriucrd the mini steps required to execute

target level instructions. The concept Is

being modified to generalize the function

of the language boards such that one set

of language boards will enhance all tarnet

level languages and minimize the need for

redesign and change of lanquaqe boards

throughout the life of PRIM. Because the

functions and registers required by

microvisor Interaction and user control

are protected, two types of language

boards have been designated^ the

oupervisor Language Board (SLß) and the

User Language Board (ULB). The SL3

utilizes language board outputs for task

assignments, page faults (communicating

with the TENEX system), and MLP-900 mode

control. The ULB, which Is currently a

nulI board, passes data from target memory

to the MLP-900 without modification or

interpretation but will grow as users'

requirements become known. All the

currently required ULB functions are being

performed with MINIFLOW and wi M be

modified ns speed, space, and loqic

eventually become a factor.

The compare registers VMAÜRC ano

CMAURC (lb bits and li bits, respectively)

have been implemented as user debuqning

tools. These registers can be loaded and

compare-enabled to assist the user when

debugging software, üne reqister operates

at the nii.If LuU (control memory) level,

the other at the tarqet (rrain memory)

level.

A lu2^-word Ob bits) 2Ü0-ns

auxiliary memory has been added to the OE

36

SOFTWARE

to be i'"-ed d'i a f ncht? or scratchpad. The

penory fs IppI evented with a Cooar

Corporation module identical to that used

for control memory, and the memory boards

are i nterchantieabl •: in all /'.LP-Vit'

memories (control, translator, and

auxi1i ary).

The streamlnr? mode (fast block

transfers) from the F^P-IU core to the

MLP-^00 Is operating satisfactorily at an

averaqe transfer rate of J3ti ns (never

more than 35Ü ns); three-way memory

overlap can be achievea. The desirjn aoa 1

was tc maximize the speed of the the

context swapping, taklnc advantage of

four-way memory overlap capabilities of

the PDP-ICi memory.

SOFTWARE

There are three principal items of

pRIf. software:

• The General Purpose Microprogramming

Languare (CPM) compiler.

• The MLP-9ÜÜ mi croprrgrrim supervisor

(mi crovi sor).

• The TEftEX hLP-^UO programs, i.e.;, tne

iiLP-9üü driver and .iLP-tXtC.

I he nasic PRI/I software architecture is

shown in Figure i,*».

The GPM compiler was esenttally

completed in ear y 1^/3; for a more

detailed account of its cevejopmtnt the

reader should consult Hefs, 3 and 4. The

major effort of this year, and the major

emphasis of this section, is the

development of the r£«N£X software support

an<' the ri crovi sor .

GP/'. and the GPM compi le

GPM is a hi oh-level machine-oriented

language, written in Tiii\£X BLISS, designed

explicitly for the MLP-^UO. As a

high-level language, GPM offers a block

structure ono statement syntax similar to

PL/1 or /'LGUL. The specific statement

types defined in GPM are oeneraIizations

PDP-10 MLP-900
V//////y///////,y/////////////i

L '/OB"' J

Memory Bu*

Figuie 3.4 Basi; PRIM soffwore achirecture

37

SOFTWARF

of thr actual MLP-900 MINIFLOW Instruction

Si*t; :o;istructs completely foreign to

MlNJF^wW (e.g., multiplication) do not

appear In GPM. As a simple example of

MINIFLOW generalization, consider that the

result of a GEAR (GEneral ARIthmetic)

mlnlstep may be shifted left or right only

by 0, I, 2, A, 6, 8, 12, or 16 bits; In

GPM, any shift amount may be specified,

and the compiler will generate multiple

shifts as required.

As the production language for the

MLP-900, GPM Is constralnec to satisfy

mflny of th«» usual requirements if an

assembly lannuaoe. First. there Is a

vc 1 l-d2f I nerj subset of Gr'n statements that

produce exactly one mlnlstep per

statement; the suoset is capable of

generatlnc all possible ministeps.

Second, r.ul t i-mi ni step :. tater-ents ao not

generate implicit side effects; for

example, a complex arithmetic assignment

that requires a temporary register for an

Intermediate result will generate a

compi 1 e-t i me error unless the progr ^mr.cr

Kas explicitly dec'ared some register to

be avai lable as a temporary.

The GPM compiler Is successfully

beim; used to write diagnostics for the

MLP-9ÜÜ anu test user software (emulation

of a POP-10). Experience with the

compiler reveals that minor modifications

and suggested speed Improvements may be

required. The lmprove?nents will be

considered as more measurement data Is

accumulated and specific critical code Is

further Identified.

MLP-900 Mlcrovisor

The MLP-9Ü0 microprogram supervisor

(mlcrovisor) is a small, fully protected

resident system that controls the MLP-900

and Its communication with the PUP-10. Jt

loads and unloads the user's M».P-9ÜÜ

context upon command frcm the PUP-10,

supports paging of the user target

program, protects main memory and the rest

of the PUP-10 system from user interpreter

errors, and provioes the Interpreter with

a few services, such as an extended

subroutine stack ana calls for external

commjnicat•on. (The nicrovisor requires

/>o (octal) woros of control memory.

Including its Action request locations.)

ihe nicrovisor performs the functions

normally expected of an operating system,

the difference being that it 12 written In

microcode and supervises the execution of

microcode. The mlcrovisor interacts only

with the user microcode and the TcNtX MLP

38

SOFTWARE

driver; It does not provide any facilities

for--or Impose any restrictions upon—the

nser taroet system. User microcode | r.

subject to the restrictions Imposed by the

user mode MLP-SOC hardware«

PDP-10 Support Programs

The PjP-lÜ TENEX software for support

or the MLP-900 consists of a driver to

control communication with and sharing

of —the MLP-9ÜÜ, and a subsystem

(MLP-EXEC) to allow Interactive access to

the M.P-900 for a user at a TCNEX

terminal. The ttLF driver and Its TENEX

JSYS's comprise the Interface to the

;!LP-9üO used by MLP-EXEC.

The TENEX MLP-900 Driver. As

mentioned above, access to the MLP-90'J

from a TENEX process is accomplished via

the MLP driver in TENEX. The MLP-9^0

driver Is the extension In TENEX of the

mlcrovlsor; all communication with the

MLP-90G goes through the driver. While

new microcode "machines" can be designed

and debugged under the MLP-EXEC, completed

ones will work directly through their own

terminal subsystems, wh-ch will

corrrnunlcatc d.rectly with the driver.

Communication with the driver is

accomplished through a series of JSYS's

which mlnic (rouchly) the JSYS's for

subsidiary fork control. The two

principal elements involved in creating

and running the MLP are the Ml P context

(the user microcode together with all the

MLP registers) and the target system upon

which the context is to operate. The

calling process must build both before

establishing access to the MLP.

The context is a structure that

contains all the data necessary to load

the MLP and begin (or resume) execution of

the desired microcode. it includes not

only an imace of the MLP-900 control

memory, bit also the internal MLP-9Ü0

registers and sore cells used fay the

driver to Implement MLP-900 communication

with the PEP-10. The context Is 10 memory

pages (Sl^ words) lono, and must begin on

a page boundary in the caller's address

space.

The target system Is the memory upon

which the MLP context is to operate. It

is defined as a TENEX fork (or process),

either tne caller or a SUDS!diary fork

established solely for this purpose.

Typically, the target system fork (SEORK

or SFRKV) will never be started on the

PüP-lu; It exists to define an address

space for MLP execution.

39

SOFTWARE

To protect the ISI TENEX system and

lessen the Impact of MLP debuogJnq, both

hardware and software, the initial version

of the driver has been implemented almost

entirely as a normal user process rather

than as part of the TENEX operating

system. This prelininary driver is being

used in cebuoqlncj the entire system,

including the interfaces between the

microvlsor and the driver, and between

MLP-EXEC and the driver. i;hlle the

differences oetween preliminary and final

driver are transparent to both the

microvlsor and the user microcode, there

are so^e unavoidable differences for the

callinc TEKEX process. MLF-EXtC ic. aware

of the differences, and flan«" I es their

p;operly; to tie user of M-P-EXLC, the

onlv visible difference is that the

response tire Is longer.

[jlP^EXtC ana Its Conn:anas. iVJ.U»-EXtC

Is a user program, called via TE'NEXf

written primarily In BLISS. The program

basically consists of two modules5 tne I/O

handler (whicn includes tile access and

tarnet memory allocation) and tne ge-

buqeln: faclMty (1'U.P DOT). Ihe MLP-EXEC

commands assure a familiarity with

TENfcX fxec ccmtnandsi a subset of TFNLX

coifwands is Irplcrented i or functions

similar to those of the It.-LX Lxec.

MLP-EXEC provides an environment In

which the user at a terminal can compile,

load, execute, and debug MLP-900 microcode

In a manner similar to that used for

debugging programs on the POP-10, In

addition, he can create and debug target

programs and environments—although these

tools must be provided at a very primitive

level, since MLP-EXEC cannot know the

nature of the target environment.

The MLP--tX£C "ready" character, il>,M

si anals the user to enter a command.

Commands to MLP-EXEC can sped fy any of

several types of actions^

i) Control I inr cht loadinc;, execution, or

eeDugring cf the ;:LP context.

2) Control Iinr tne loadinc ano debunaino

of the tarr 2t system.

.>) Settlru; up the input/output files for

the J\LP.

U) Providing access to tne TLNCX within

MLP-EXEC as a convenience.

All the commands for user context

manipulation begin with a per I on (".").

j nese include Lüä^, KL öd, CÜNilMüt« RUN,

SAVL, GL1, an: i,L f commands. All of the

cormands for tne target system beqin with

t,'>e character u/u ann use standard TtNEX

40

Subsystems In responding to the command

(I.e., /LOAD Invokes the standard TENEX

loader to load a relocatable binary file

Into the target systen's address space).

These Include GET, MERGE, DDT, SAVE,

SSAVE, and RESET commands.

The coninand format, key words,

arguments, and separators are Identical to

those used In TENEX. MLP-EXEC prompts for

each field required by the user's command,

and the escape terminator wl U complete

abbreviated commands. Additionally, two

characters (Control T and Contro? C) act

as corrands in themselves to control HLP

execution and to provide status

Information on the MLP. Editing control

characters are also included to edit

command key words and arnuttents.

User Interpreter and Target Program

The user's interpreter is a program

written in GPM to run on the ''.LK-S0^; it

defines a (re-entrant) nLP-90ü control

memory image. This image, together with

all the nonprivi legen registers and

Hip-Hops within the iiLP-^Uu, comprises

the MLP-900 context; user's contexts are

loaded and unloaded as the HLP rriver

shares the T.LP among different users.

FUTURE EFFORT

The context defines the user's

Interpreter (or target machine) and

operates upon the user target program In a

totally arbitrary way. The only

constraint upon the target program Is that

it fit Into a SI2K, 36-bit (virtual)

memory space.

FUTURE EFFORT

The ISI TENEX environment currently

includes a KA-1Ü and a KI-IÜ CPU, one as a

backup for the other In providing TENEX

service to the ARPA user community.

Initially the PRIM project will use the

backup CPU to provide the flexibility

required by the development effort with

the user interaction without jeopardizing

the service operation. The Ki/KA CPU corr-

patibility introduces problems requiring

mortifications to the microvisor, espe-

cially in the page faulting .outine,

which will be performed durinr the next

fev months. The remainirn hatdware

efforts are to investigate faster clock

speeds (currently *» MHz) and to design the

general-purpose language boards. The

system integration, documentation, and

software debuorlng is currently nearing

completion.

The major effort of the near future

!

41

FUTIIRF EFFORT

will be that of maintaining the PI. IM

facility <;nd of Iminctrlnatlng users. The

i ntroHuctlon of «isers via the ARPANtT will

b«: t^e final system test and will help to

identify possible areas of I rrprovement.

initially, the MLP-90Ü vi II operate with a

single bser with locked paqcs of target

mencry. With Increased confidence and

experience the PRJM system will evolve

into the tine-shared resource originally

specified. User Interest has been

expressed by rrllltary services Interested

In emulation of CPU's currently In the

procurement cycle, by researchers

interested In direct high-level language

Interoreters, and by computer science

Instructors preparing curricula for

microprogrammed processor» design. PRIM

shoild he supporting one of these users by

June of 1V/4.

R£f£RENC£S

Richardson, L. C, PRIM Overview, USC/Inforrnatlon Sciences Institute, ISI/RR-7^»-1 b,
February 197A.

Annual Technical Report, May 197/-May 19/i, USC/1nformatI on Sciences Institute,
~TST7SR-73"I, \v7y.

Test re I eher, D. R., Genera I Purpose fii croprogrammi ng Language Reference ^anua I ,
1'Sr/Infrr^atlon Sciences Institute (in pronress).

TENFX JSYS ManuaI, Polt fceranek and Newman, Inc.^ Cambrlgne, iiass., 1^73.

A2

PROTECT ION ANALYSIS
4

RESEARCH STAFF

CONSULTANTS3

Richard L. Blsbey, II
Jin CarJstedt

Kicharo J, Fei er tan
Gerald J. ^ope*

RESEARCH STAFF SUPPORT: Betty L. Randall

INTRODUCTION

This project has developed and is

continuing to refine methodologies,

techniques, and standards for the

analysis, tescinq, and evaluation of the

protection features of operating systers.

Its goal is to provide answers to the

question of what tests ancJ procedures can

and should be applied to operating systons

in order to deternir.e (1) to what extent a

given systerr peets its requirements for

preventing unauthorized or improper

operations and (2) how systems can best be

designed and Implemented to reflect such

requirements. The research directly sup-

ports the software security requirements

Issued by DoO security pollcymaklng

agencies.

Tnc Protection Analysis project was

formed In September, 1973 by the union of

the Empirical System Study and Protection

Theory projects, reported last year as

part of the Software Assurance

project [1j. The former Focused on

near-term solutions, while the latter was

a more deductive approach to discovering

more complete and systematic evaluation

methods. 1hese are reported separately

below, followed by a report of activities

of the Protection Analy.-.ic project since

September.

fcrtHlRlCAL SfSILtt SiUuY

Durind 19/2, the Empirical System

Study group at ISI devised a method for

finding security errors In operating

systems by identifying types of "error

patterns". This approach was based on the

empirical observations that (1) the

majority of errors In operating systems

can be categorized using a limited number

of generic error types an 1 (2) It is

easier to find errors by ystematlally

searching for Instances of generic error

types than by randomly searcnlng for logic

flaws«

43

r

EMPIRICAL SYSTEM

Ffcld Tests

In late 1972 a test was made, using

the Multlcs operating system as a test

subject, to determine the usefulness and

effectiveness of the method. As

previously reoorted i\}9 security errors

were found, and the n.ethod was shown to be

effective. A second test was conducted In

the summer of 1973 using the error pattern

approach, again using Multlcs as a test

subject. The purpose of this test was

again to verify the error pattern approach

and to accumulate more Information on Its

use. Coring this test, a rrember of the

Multlcs staff was added as a test

participant, having been briefed on the

expected error patterns. The protocol

used for the te' t was the same as that

reporter! In Ref. 1, I.e.5

■ All system Information was made

available to the test participants

prior to the test.

■ The system being tested was not

modified during the test.

^ Proposed errors were verified by

logical analysis and not by writing

or runnlno programs to exploit the

errors on '. Ive systems.

The purpose of the protocol was both to

expedite the test and to eliminate any

possible "gaming" situations In which

svätems personnel could retroactively

alter the system to disguise or eliminate

faults.

The goal, wnlch was to find a system

error using the above procedure, was

Immediately achieved. A design error In

Multlcs affecting operating system

security was discovered, necessitating a

redesign and reprogramming of portions of

the system. The error was reported to

both Mi md Honeywell, and changes are

currently being made to correct It. The

results of this and the previous test, as

well as insights Into the use o error

patterns, have formed the basis for an

automated protection evaluation systerr

based on generic error types, which Is

described belo'^.

Encapsulation

Enormcus sums are presently invested

In computing egulpment and operating

system software. The neeo for security in

those systems Is strongly felt in

government and business as well as in the

military. The problem Is Intensified by

the current unreKaDle state of

44

EMPIRICAL SYSTEM

Information controls In contsmporary

systems.

To^ay a ccrtlflably secure multiuser

operating system docs not exist. No

operating system has been able to

withstand malicious attacks by sKl1 led

penetrators* Hetroflttlng these systems

(In the general sense of repairing the

respective operating systems In all their

various versions) Is an enormous task, not

well underbtood. To date, all such

attempts have failed. Even systems

created with security as a major design

parameter have been easily penetrated. 'n

general, retrof(tti ng the multlple

version? of various operatlng systems by

revising thei r code i s i ppractlcal.

Nevertheless, the security problefn of

existing systems is important and will not

diminish In the coming years. The only

solution now available to those instal-

lations requiring reliable protection

has been physical Isolation^ to have

separate operating systems for each

security category or level and run them

sequentially. For the military, a

separate operating system Is required for

each of the four security levels. For the

typical commercial Installation, separate

operating systems might be required for

payroll, accounts receivable, and general

computing. A considerable amount of

useful machine time Is thus wasted

changing systems, rigid schedules must be

established, and sharing can be achieved

only through off line procedures,

controlled adminstratlvely.

The Empirical System Study group has

developed an approach to the security

retrofit problem for batch and remote Job

entry (RJE) systems. It is fairly simple

ano appears economical; In addition, the

same solution will provide certifiable

security for a variety of manufacturers,

computers, and operating systems. A small

minicomputer controlling several banks of

switches is added to a currently existing

confInuration. These switches, which are

placed In tne read/write clroit of the

pcrlpneral devices, allow the minicomputer

to enable or disable those devices (sec

Floure A.l). As in the case of virtual

machine systerrs, each encapsulated user

program will run with Its own operating

system. Depending on vhich operating

system Is currently In control of the

production CPU, the minlcomputer sets the

device switches accordingly, so that the

operating system can physicaliy access

only appropriate devices. For many

existing peripheral devices, such switches

45

EMPIRICAL SYSTEM

already exist. Estimates of the cost of

the above encapsulation unit. Including

the one-time expense of system design and

software verification as veil as the

pcr-lnstaIlatlon expeidlture for hardware,

appear to be eminently reasonable.

The unit has several attractive

aspects. Original software can rur

without changes, read-only sharing is

provide^ and scheduling flexibility Is

Increased. Most important, the software

relevant to security Is small enough that

its security properties can be formally

verified; also, its code Is Isolated and

protected from any other software. In

this fashion, encapsulation provi des a

certi fidble, reliable means for mu)tilevel

computer securIty on exj stj ng batch

systems, possibly end ng thei r retrof11

problem. This work Is documented in more

detal1 In Ref. 2.

PROTECTICN THEORY

Disk drives

Tope drives

To

Protection is that central aspect of

computer security concerned with the

control of operations within the domain of

the operating system. I.e., by internal

processes on internal objects. Although

the security of a computer system depends

on the correctness and completeness of Its

protection mechanisms, there Is a

Figure 4.1 Security encapsulation unit

unit record veil-known shortage of methodologies
equipment

either for designing these mechanisms or

for evaluating existing systems for

errors.

The goal of the Protection Thtory

project was to design and develop an

evaluation method that would be both

thorough and systematic, properties that

current methods lack. A method specific

to the protection problem Is likely to

46

PROTECTION THEORY

become cost-effective sooner than tools

Intended for the verification of computer

proq^ams In general [3J. The project was

begun In January 1973, starting with an

extensive survey of the field to determine

the current state of evaluation

methodology and the boundaries of the

protection probler.!. The work reported

here was concerned with two major areass

1) Outlining an evaluation scheme. The

result Is an Independent policy-based

(IPB) evaluation method, utilizing

concepts from the field of structured

design»

2) Formulating the protection problem and

deriving a notatlonal basis for the

expression of protection policy. A

level-Independent formulation was

de'Ivcd.

The JPL Evaluation Method

From the point of view of structured

design i*»], s/stem development Is a

process of transformations on some

hierarchy of objects and specifications of

Increasing concreteness and decreasing

abstractness toward the lower levels,

ordered by the relation o> representation

(see Figure 4,2).

With respect to protection, the more

abstract elements are those of po1 Icy and

the more concrete those of mechanism. If,

during development, all the represen-

tational relations were maintained ex-

plicitly, the protection mechanisms of a

target system could be evaluated

constructively« Otherwise, assuming that

the elements at some level of policy

(Psys) are stated as explicitly as those

at the mechanism level (Mays), evaluation

must consist of an Independent coirparison

of Msys with Psys—hence the name "IPBU,

Ab.troctness

i

Policy

Concreteness Mechanism

0 -{9) : "X IS (parfially) represenfed by Y"

Figure 4.2 Represenfationol hierarchy

47

PROTECTION THEORY

Such a method requires a separate

hierarchy (see Figure 4.3) vhose ordering

relation Is one of logical Implication

from policy to mechanism. An Input to

such an evaluation Is the set Psys of

target system policy. The implications

define a mapping that produces a

corresponding set of reference speci-

fications (/Iref) at the mechanism level,

with which flsys can be compared for

correctness. If the IPB method is to be

applicable to a variety of systems, thi

domain of IMPL must be a collection of

Figure 4.3 IPB evaluation scheme

protection policies that encompasses the

policies of all those systems, and Its

range must be a generalized set of

protection mechanisms, such as that

proposed In Ref. 5, suitable to enforce

them. A major difficulty Is that In order

to compare Msys with Mref, the

systern-sped fie description of the former

must first be "normal I zed" Int«-

generalized terms.

Policy and Its Express.on

1 hough many protection schemes ana

models exist at the mechanism level,

little work has been done at the policy

level, so that the explicit basis needed

for IPB evaluation is missing. The

essence and boundaries of the protection

problem are not readily apparent. Among

many f orrnuJat Ions, the one most

appropriate fron a number of standpoints

is that protection Is the prevention of

unintended use of certai n (protected)

objects, which translates in more

concrete terms Into the following^

■ The attachment to each protected object

(explicitly or implicitly) of a

cond i 11onaI goverr?ng Its Involvement

In certain operations.

48

PROTECTION ANALYSIS

• The prevention of i.uch an operation

when the conditional evaluates to

false.

An operation Is a combination

|X9MVY| wiiere X Is a process, W Is an

operator, and Y Is the set of operands In

the application of W by X- Any of these

may be protected objects. Pre'entlng the

operation JX»W9Y) means either pre-

venting the selection of W by X to form P*

activation Wx or preventing the binding of

one or more elements of Y to either W

(static) or Wx (dynamic).

Taken at the mechanism level, this

formulation exhibits the key role of

primitive linking and binding operators,

which must enforce all occurring

conditionals. For the sake cf economy,

octual operating systems severely restrict

the generality inherent in this

formulation and also make heavy use cf

stored representations of the results of

condition evaluations, e.g., in the form

of "capabi llties,,v

However, because the concepts of this

formulation can be interpreted at any

level of representation. It Is also

well-suited to be the basis for

specifications at the policy level. This

Is demonstrated In Kef. 4.

PRQJECUON ANALYSIS

In September 1973, the Empirical

System Study and Pr^ action Theory

projects began a study oi ways In which

their complementary approaches to

protection evaluation could be combined

into a single method, with the empirical

techniques of the former applied to

achieving the goals of the lattor« The

was influenced by three

observationss

1) The security community lacks a

production evaluation tool. Such a

tool must be exportable, requirinq

for its apjlication only a

familiarity with the target system

rather than a high level of expertise

In evaluation techniques; rel[able,

finding consistently all errors of

the types covered; and economicai.

not requiring large evaluation

projects or tooling-up phases. These

attributes Imply that such a tool

will be largely automated or

computer-assi sted.

2) There is currently no known

organized effort to collect and

anaiyze protection errors detected

during various evaluations of

existing operating systems. Such an

49

PROTECTION ANALYSIS

effort could have significant value

to the computer security field, both

In facilitating future evaluation

efforts and In Identifying classes of

errors to be avoided In the

development of future systems.

3) Protection errors do fall Into

distinct classes or "patterns.,,

Guided by these observations, the

study focused on the way in which the

output of protection evaluations (I.e.,

errors and their patterns) can be utilizer;

as feedback In the development and

Improvement of an evaluation method

Itself. The result was the design of

a systemriM zed error-driven evaluation

scheme t^at utilizes the output of error

analysis both directly, to oovern the

evaluation process, and indirectly, to

increase the comprehensiveness of the tool

based on thi s method. The two projects

merged Into the Protection Analysis

pro.'ect, using the collection and analysis

of protection errors as the immediate

phase In the development of the evaluation

tool.

fcrror and Pattern Process!ng

This work, which began in early 1^7^,

consists of the following activities:

Error Col lection. The primary Input

is an "error base" consisting of Informal

descriptions oT protection errors

— detected as well as potential — both

contributed by evaluation personnel and

gleaned from the literature and other

sources. In addition to the Empirical

System Study project reported above,

current sources include Project klSOS at

Lawrence Llvermore Laboratory, the

Computer Systems Research Group at MIT,

and a Security Analysis Group at The Rand

Corporati on.

Error Analysi s. The analysis

proceeds in two steps: iaentification of

t^o raw pattern and Identification of

fta^jres. The raw pattern Is the

(minimal) set of conditions that together

constitute a possible error: either those

holding for the operating system as a

whoie or possible sequences of actions

that can occur more locally« "Raw11 means

described in terms of a particular

operating system or line of systems.

Features are the Individual conditions of

the raw «rror, as well as the operating

system entitles they Involve. The feature

terminology becomes the technical

vocabulary of the ptoject.

50

PROTECTION ANALYSIS

Class? fI cat I on and Generalizatlon.

These two activities arc closely related.

Each raw pattern Is compared with others

in the current set .o determine

differences and similarities. As "he set

grows, a grouping or class«f'cdtlon

occurs, with the patterns In each group

seen as Instances of some generalized

pattern, described In correspondingly more

abstract terms. As this process

continues, genera'I zed patterns In turn

become associated with sti i1 more general

patterns, resulting In a hierarchy with

the most general and abstractly described

patterns at the upper levels anc the most

specialized and concrete ones at the lower

levels.

Data Management. The collection of

raw errors, the hierarchy of patterns, and

the glossary of features will be

represented as 0 computerized da'.a

base In such a way that classifying aru

qcnerallzlno activities can be carried cut

efficiently. The following retrieval

functions «M I be Implemented:

• The retrieval of error description,

pattern description, or feature

definition by name.

* The generalizing pattern of a gl^en

error or pattern, respectively.

■ The errors or patterns of which a

given pattern Is a generalization.

■ The errors or patterns in which a

given feature occurs.

I he facilities of iSI's TENEX operating

system will be used to maintain this data

base.

The Error-Drl ver> Evaluation Method

Protection ealuatlon Is regarded

here as a two-step process^ normalization

and comparison. The first is the

loentificaticn, extraction, and formalized

description of tne protection aspect,

which is generally embedded in the large

and complex volur.» of Information

representing a target operating system.

The second is a comparison of the

rv ruallzed protection description with a

given set of reference Information to

determine the presence of errors.

In the error-driven scheme, these

steps arc directed by the output of the

error and pattern processlrj activity (sec

Figure ^.4). Normalization is directed by

the generalized feature set., It Is

essentially a systematic search of the

target system for Instances of the

generalized features. This is basically a

51

PROTCCriON ANALYSIS

Class! f Icatlon a^nd General Izatlon.

These two activities are closely related.

Each rav pattern Is compared with others

In the current set to determine

differences and similarities. As the set

grows, a grouping or Classification

occurs, with the patterns in each group

seen as Instances of some generalized

pattern, described In correspondingly more

abstract terms. As this process

continues, generalized patterns In turn

become associated with still more general

patterns, resulting In a hierarchy with

the most, general and abstractly described

patterns at the upper levels and the most

specialized and concrete ones at the lower

levels.

Data Management. The collection of

raw errors, the hierarchy of patterns, and

the glo sary of features will be

represented as a computerized data

base In such a way that classifying and

generalizing activities can be carried out

efficiently. The following retrieval

functions wlM be Implemented:

• The retrieval of error description,

pattern description, or feature

definition by name.

■ The generalizing pattern of a given

error or pattern, respectively»

• The errors or patterns of which a

given pattern is a generalization.

• The errors or patterns In which a

given feature occurs.

The facllitles of 1SI's TcNEX operating

system will be used to maintain this data

base.

The Error-Driven Evaluatlor. Method

Protection evaluation is regarded

here as a two-step process^ normalization

and comparison. The first Is the

fdentificatlon, extraction, and formal I zed

description of the protection aspect,

which Is generally embedded In the large

and complex volume of Information

representing a target operating system.

The second is a comparison of the

normalized protection description with a

given set of referenco Information to

determine the presence of errors.

In the error-dr.'ven scheme, these

steps are directed by the output of the

error and pattern processing activity (see

Figure **,**), Normalization Is directed by

the generalized feature set. It Is

essentially a systematic search of the

target system for Instances of the

generalized features. This Is basically a

51

PROTeCTlON ANALYSIS

manual process, but can be computer-

assisted by means of a program similar to

computer-assisted Instruction« Compar-

ison is directed by the aener^iized

pattern set; it is a search of the

normalized desclption for combinations

matching any of the given error patterns,

a process that can easily be automated.

The output Is a list of error indications.

The error-driven method is Tmllar to

the IPE method described under otection

Theory above In that a normalized

description of the Jtectlon mechanisms

of the target system Is compared with a

set of reference information. The most

important difference Is that with the IPB

method the reference information Is the

complete set of generalized mechanisms

logically Implied by the stated policy

of the target system, so that the

completeness and consistency of the target

mechanisms can be determinca. with the

error-driven methoci, only errors of the

types represented by the given patterns

w|I I be detected.

Developmenf ProducHon

Error
Analysis

Figur» 4.4 Error-driven •valwofion proCMS

The aovantages of the error-driven

method are the following;

■ It systematically capitalizes on

accumulated protection evaluation

experience.

■ it Is applicable In the short-term

future as a standard evaluation tool.

■ As the error and pattern processing

activity continues and Its scope

expands, the comprehensiveness of the

irethod Increases correspondingly.

• Because of the Insights gained, the

error and pattern processing activity

Is also valuable as a contribution to

protection theory and to «.he

development of the IPB method.

52

PROT CTION ANALYSIS

especially in Identifying different

protection policies and understanding

their implications. The error-driven

evaluation method provides a pro-

duction tool for testing operations

that is suitable for use as a test

standard.

REFERENCES

Arnual Technical Report- May 1972 - May 1573, DSC/Information Seltnes Institute,
-TCTTSR-?^, 1973.

Bisbey, R. L., and G. J. Popek, Encapsulations An Approach to Operating System
Security, USC/Information Sciences Institute, TSI/RR-/3-17, October 1973.

Linden, T. A., 'A Summary of Progress Toward Proving Program Correctness," AfIPS
Conference Proceed ings, 1972 Fall Joint Computer Conference, ^'ol. M, Part 1,
AFIPS Press, Montvale, N.J., 1972, pp. 201-211«

Carlstedt, J.t Toward Expli ci t Pol leys A Structured Approach to Desj gn and
Evaluation oT P"fotectlon Systems, USC/Information Sciences "Instl tute (i n
progress).

Jones, A. K., Protecti on i n Frograreneci Systems, Carnegie-Mellon University,
Department of Toinputer "Science, June 19/3 (aval lablc from MIS as AD-76S-S35).

53

:

COrtMANO AND CONTROL MESSAGE PROCESSING TECHNOLOGY

PROJECT LEADER:

CONTRIBUTING STAFF:

CONSULTANT:

RESEAHCH STAFF SUPPORT:

Robert H. Stotz

Thomas 0. Ellis
Louf s Gallenson
John F. Hcafner
Donald R. Cestrelchcr

J. Clifford Shaw

Norma 0. Johnston

INTPODüCTIüN

Thl j project explores the use of

advancer com; »iter and common I cat i on

terhnlques in wfHtary env* ronments. The

us« rf packet-svitched dlnltal network to

provide a messaoe hand lino service

(exemplified by the ARPANET) has i miT>ec!i ate

,ind 'ianlflcant usefulness to the military

community. The possible applications of

such a service have served as the

principal focus of the work to date«

typically requires from several hours to

an entire day. Preparinq a messaqe at the

origination point can involve hours of an

action officer'^, time (and several days of

total elapsed time) to obtain the

necessary approvals, each of which may

require modlflcdticn of the messaqe. This

coordination of messaqes qeneraliy has to

be done In person, which consumes large

amounts of time. in fact, nearly all

communication about classified material

must be handled in this manner because of

the lack of secure telephones.

Current military comiruni cati ons A specific example of such an

systems use the Autodln system to handle environment was the object of a study

formal messages at electronic speeds performed by iSi In the spring of

between command coramumcat Ions centers. 1973 (IJ, Investigating the possible

However, manual messaqe delivery from the application of network technology to the

ronrrjjnl cat I on center to the addressee CÜTC0 (Consolidation of Teleccmmuni cat I ons

Preceding page blank «

IHTROOUCTIOW

on Oahu) ^rogra». COTCO Is a OoO effort

to improve military conaunI cations on

Oahu. The ISI report transmitted via ARPA

to the Joint Chiefs of Staff recommended

that the present largely manual message

transmission system be replaced by

ai Interactive computer-based system

providing direct vrlter-to-reader service

for some 6000 action officers on 24

ml Utary bases.

The system proposed vas based upon an

ARPA-like network connecting 2000 widely

dlstrlbutvu CRT terminals to five nessage

processing computers. Such a system would

not only Improve existing services but

also provide several nev capabilities as

veil: informal communication channels to

aid In conducting everyday business;

faster coordination of forma! messages

transmitted via Autodln; and broad support

services related to communications, such

as facilities to file and retrieve

messages by user-defined subject titles,

suspense (tickler) files for action, and

automatic message status reports. A

mechanism for automatically creating

duplicate files was proposed, as well as

dual connections between the host computer

and the Intermediate Message Processors

ilhPs), so that no equipment failure could

Interrupt communications to a large

segment of users« Actual installation of

a test model of the system on Oahu was

proposed tc prove the feasibility of the

approach.

The Navy, which has been assigned the

task of implementing the COTCO program,

currently has Lhe ISI plan under

consideration. Interest has been

expressed In performing, with the

cooperation of APPA, a test of an

Interactive system such as the one

proposed.

ISSUES FOR IMPLEMENTING AN AUTOMATED
MESSAGE SBWICE

In the meantime, the Command and

Control Message Processing Technology

(CCMPT) project has addressed the Issues

Involved In the Implementation of auto-

mated message handling services for other

military environments besides COTCO. The

goals of such systems are the following:

■ Enhance the current formal message

service.

■ Provide an Informal message service,

• Enhance current off-line message

handling (letters and reports),

■ Enhance functions that support message

handling (file retrieval, suspense

files, etc.).

56

H AR üWAR F.

In order to achieve the sort of

systeir» envisioned, it is necessary to

provide the following basic components and

attributes:

■ Core-system hardware architecture that

''»rves as the foundation for building

the service,

■ Core-system software architecture and

programs whose facilities are easy to

learn and operate by isers unfamiliar

with computers,

■ Application software that performs the

functions required.

■ Pellablllty of service,

• Security of data.

Although eventually the system '-nust

Incorporate all of these considerations

simultaneously, current research Is

Investigating them independently. The

form of the core-system hardware

architecture exists today within the

ARPANET, although the specific

Implementation does not meet the

reUablllty and security criteria for a

military environment. Most cf the other

Issues have only part'al solutions at this

time; research programs directed toward

completing these solutions are Peing

Identified or are under way.

HARDWARE ARCHITECTURE

The core system must allow

interactive response, connection to many

terminals at distant sites, and processing

power for the message service. The systam

architecture Is ^hown In Flg. 5.K

Terminals connect to Terminal Interface

Processors (TIPs) like those in the

ARPANET. TIPs Interconnect through

high-speed (e.g., 50-kb) communication

lines. This arrangement of TIPs serves as

a distributed, packet-switched, store-

and-forward network. Through this network

the terminals have access to several

message processors that supply the message

service functions. In principle any

message processor on the network can

provide that service as long as It can

access the user's files (which reside on

more than one message processor).

Also shown connected to the network

In Fig. 5.1 are the special-function

computers INT and WWMCCS. These

Illustrate the way this message service

permits Interface to external networks

(INT Interfaces to Autodln) and

task-oriented systems (WWMCCS Is a

special-purpose conmand and control

computer system). By extending this

concept to Include other networks and

57

SOI TWARE

AUTODIN SWITCH

•Terminal users

MSG
PROC

MSG
PROC

WWMCCS

ACTION OFFICE

•Teninal u^ers

FILES

FILES

Figure 5.1 Abbreviated block diagram of proposed com^jnication
system architecture.

58

SOFTWARE

other task-orlfinted computer systems, a

mechanism Is pfovlded for Inteoratlnq Into

.1 slnole framtpvork the multltucJc of

Independent systems being built In the

ml 11 tar\ today.

In this scheme a terminal always

talks to and through a message processor.

If the user engages In a conversation with

another terminal or a special purpose

computer, all of the message processor

functions (editor, files, etc.) are still

.it His Mnnertlps.

Thi^. architecture provides redundant

nathr for messane3, which results In hinh

inhrrent reHtbl 11 ty« Its flexibility In

tr-r-s of scaiabilfty and perfcrmance

r^pt i r-i 7.it I on rakes the approach extremely

applicable to the military corwinnl ty.

SOFTWARE ARCHITECTURE

The software architecture provided

must, of course, support the functional

operation of an interactive message

handllnn service. This service must

possess good response time and be

consistent and easy to use. It must also

provide d.^ta security and highly reliable

servlce.

The CONNECT system being developed at

1SI Is a human-factors-orlenled research

system capable of encompassing a message

service such as that described here,

CÜNNECT is discussed in more detail In

Section 6 of this report. Lrietly,

however. It Is an on-line comunlcation

service designed to interact with its

users In a way that seems natural to them,

it gives the appearance of personalized

service, makes extensive use of tutor

facilities to guide the user, and employs

a consistent language for interaction that

is easy to learn and use.

The application prooram for an

interactive message service is that part

of the total enterprise most apparent to

its uiers as they employ it. To

understand users' needs in sufficient

detail, a team of four ISI staff members

spent three days at ClNCPAC headquarters

at Camp Smith on Oahu In February 19A In

an intensive study of procedures currently

employed for generating and distributing

messages.

The required funct ons of a message

service IdentKied by that study Include

facilities to aid In message

preparation, transmission, and reception.

Sophisticated text editors can make it

easier to prepare the various initial

59

SOFTWARE

cirafts of a message. Coordination of the

message (I. e,f getting the necessary

approvals) up to Its final release can be

automated, eliminating the present need

for hand-carrying. The routing of a

message can be assisted through an

automated "directory assistance" service.

Message transmission vl11 be virtually

Immediate, regardless of the distance

covered. Many aids can be provided the

addressees for reading, printing, filing,

and retrlevino messages. An alerting

nechanlsm will call a user's attention to

rHe arrival of a hiqh-prlor Itv messaoe,

racllltles for scanning messages,

reacif'.re0. :i nr then (sending on to others

"rt ^n the address list), and informing

the nrininator of action tcken will also

prove useful. Other requirements iden-

tified were various facilities for

status Inquiry, programming, responsi-

bility tracinq, accounting, training, and

interface to off-line processes.

Many of the functions Identified are

stralqhtforward and already exist in

present systems. Others are more subtle,

reqt'Irinq research Into mcthcdologl es for

their Imple entatI on. As a part of the

CONNECT development, the existing pieces

are being Inteqrated Into a slnqle system

to which are being added the necessary

programs to conduct the research required.

An experimental message service

within an actual military user community

would provide an excellent basis for

conduct»" ny some of the needed research on

*:he application program. In addition. If

the user community were carefully

selected, it would provide the opportunity

of performing some direct technology

transfer without the usual Intervening

development cycles. investigation of

potential sites for such a test is

currently under way.

SECURITY

System security must be considered at

several levels. One aspect Is simply

control of access to the computer, files,

communications links, and terminals. A

second Is radiation security (i.e., the

shielding of electromagnetic and acoustic

emission from the active elements of the

system). A third Is "privacy" or

operating system security, so that one

user cannot accidentally or intentionally

have access to flics to which he Is not

authorized. This last consideration

extends also to reliability In that one

user should not be able to render part or

60

SECURITY

all of the systerr useless by any operation

he can oerform at a ternlna.. Nor should

any loafi condition render the system

Ineffective to critical users.

With a terminal-dented service such

as that proposed for COTCO, security can

be violated through a large number of

devices (I.e., all terminals and

communications lines), ihis fact

necessitates either stringent access

control or a multilevel plan of system

security. If "J svstem can be developed

that cannot be broken. It can be used for

both unclassified and classified messages:

communications lines and terminals that do

not carry classified traffic N^III not need

special security measures- Otherwise, all

users must be cleared to the highest

security level, and all communications

lines and terminals must be provided the

same level of security control. Clearly,

a multilevel secure system is an important

Ingredient to realizing the full potential

of message technology In the military

communi ty.

Even In a multilevel secure system,

those terminals that handle secure traffic

will need to meet the access and radiation

restrictions. Radiation control of CRT

terminals generally requires expensive

filtering and shielding. Display

technologies that do not require

refreshing In a fixed time pattern are

much less prone to deciphering, for this

reason, plasma and other direct-view

image-storage displays are being

Investigated as potential "secure"

termlnals.

Corwunlcation lines between terminals

and TIPs and between Tips and TIPs must

also be protect^ from being read by

unauthorized persons, which can be done by

specialized "hardened" wires for short

runs through moderately controlled

environments. Otherwise, encrypting

devices can oe used that scramble

the data on the line so It Is

unintelligible except to a matching

decryptor. This encryption/decryption

equipment currently tends to be rather

evpensive ($10,UOü to $15,000 apiece).

Since the number of lines between TIPs Is

relatively smaiI, encrypting these Is

reasonable; however, encryption at the

terminal level appears extremely costly.

One approach to so1- «g this problem Is to

Install local multiplexors to reduce the

number of encrypted lines. for

environments In which this Is difficult,

new technology must be applied to develop

less expensive encryption devices.

61

SECURITY

Encrypting between TIPs on the

netvorM wf11 serve no purpose unless the

TIPs themselves are also secure—which

current TIPs are not. Designing a

certlflably secure TIP Is a challenging

but achievable feat (Autodln, for

Instance, Is considered secure). It

Involves security clearances for

programners, careful design, classified

program listings, and complete analysis

and testing.

An alternative approach to TIP

security Is to develop software that can

be proved to be secure (see Section 2 of

this report). To date no such system Is

known to exist, but several programs are

under way (at Mitre Corporation and UCLA,

for example) to develop secure operating

systems for minicomputers.

Another alternative Is to encrypt

secure traffic at the terminal and the

message processor only and have the

network operate In the clear on the

encrypted traffic (I.e., all the network

header data will be in the clear while the

body Is encrypted). This Is somewhat

awkward operationally and requires changes

to the ARPA TIP software that currently

does Interpretive functions on the data.

It also opens the Information about the

flow of traffic within the nef.work to

possible penetration. For many n.llltary

purposes, this too Is classified

Informatlon.

The Message Processor also roust meet

rigid security specifications. Because

there are relatively few Message

Processors In the system, the problem of

physical access and radiation security Is

manageable. However, development of an

operating system that provides multilevel

security with the complexity required for

message processing Is another major

project. If the system s closed (not

connected to other systems) and Is limited

to transactions only (no programnlng

a IU wed) It appears to be feaslt e.

Security of full general-purpose operating

systems will probably have to await a

breakthrough In the development of

mathematically provable secure systems.

ftELIABRITY

The current reliability of the network

and host computers, although possibly

adequate for research, will not satisfy

the requirements of an operational

mil)tary message system«. Unfortunately,

the various factors underlying the

reliability of such a complex system as

RELIABILITY

the ARPANET are Imperfectly understood. A

program Is being outlined to determine h* »w

to collect the data necessary to better

understand these factors« which will help

In formulating specific action to Improve

network rellablllty.

It Is Imperative to produce not on I

a program to reduce the probability <

componen-; failure In the system, but cJao

a means to recover from failures smoothly

and rap^ly. If a terminal, encryptor,

comnu Meat Ions line, or TIP In a system

such as COTCO falls, the Message Processor

will retain the state of the user r>o that

He can recover ft later on a different

channel. If a Message Processor falls,

the total system must recoqnlze this fact

and switch his connection to a backup

Message Processor. In order to preserve

the files In this case, every file written

by P essage Processor w| 11 be sent to a

backup Mescage Processor as well« When a

Message Processor falls and a user's Job

Is switched over to a back-up Processor,

It Is Important to maintain as much

apparent continuity as possible to the

user. This lmpn.is a process residing

outside the user's primary Message

Processor that Is monitoring the status

and context of th^ user's activity. This

process then controls the switchover and

keeps the user Informed of events as they

ppen. These recovery functions, wnlch

c not currently Implemented In the

network, must be completed before a

reliable system can be provided.

CONCLUSION

The CCMPI project Is currently In a

study phase. Identifying the problems and

the opportunities for message processing

systems In the military environment. A

program outlining detailed areas for

research Is now being prepared. In

addition, we are exploring opportunities

for Joint development with military users

that will apply our message technology In

experimental form to actual military

situatlons.

REFERENCE

Ellis, T. 0., L. Gallenson, J. F. Heafier, J. T. Melvin, A Plan for Consolidation
and Automation of Military Tclecomnunicatlons on Oahu, USC/Informition Sciences
Tns11 uTtiriWRR^Ta- * 2, May VHT.

63

INFORMATION AUTOMATION

PROJECT LEADER;

RtSEARCH STAFF'

CONSULTANTSJ

RESEARCH STAFF SUPPORT^

RESEARCH ASSISTANT

Donald R. Oestrelcher

John F, Heafncr
Richard C. Mandel 1
Jeff Rothenberg

Russell Abbott
J. C U fford Shaw

Katle Patterson

Larry Ml 11 er

INTRÜDUCTICN

Many large segments of the military

(rtost critically, perhaps. Command and

Control) depend as heavily on the

transmission of information as on tht?

transportation of people and materiel. At

present, sending and responding to a

typical military message (using a variety

of manual and semiautomatic techniques)

requires, at best, days. using an

automated computer-based sender/receiver

on-ilne message service system, the same

communication could be completed within

ml nute*-.

The technology exists today to

produce systems for automatic communi-

cation, Wfat does not exist Is a

methodology for making such systems

effective and attractive for people

unfamiliar with the use of computers. The

Information Automation (IA) project at ISI

is designinq and developing this kind of

fully automated easy-to-use Interactive

coi.imunlcat ion system to improve the

effectiveness of action officers' message

generation and sending capability. The

proposed system, called Communications

Network Nodes Effected ry Computer

Terminals (CONNECT), is designed to serve

a large class of both technical and

nontechnical users (Including clerical

personnel and managers) and could be used

to aid many everyday military base

communications activities as well.

CONNECT could also be useful to

organizations with geographically distant

offices needing to maintain constant

communication with each other. Because

CONNECT will be designed to serve a

Preceding page blank 65

INlküDUCIIÜN

variety of users with a variety of

conmun! cat i ons requi r erne it s , it should be

aole 'o meet many civil as veil as

ml I i tat y neeas.

FtT.ct i era I Speci f i cat ior s

The functions rcqui''e<j of a messaye

strvice like CONNECT can oe divided into

five classes- message preparat.'on, message

transmissic^. ^vssage reception, infor-

mation (.. ^i nter.once, ano off-line

func.Icns, (The word "message" loosely

refers to any formal or informal w itten

oncurenc.) In addition tr tfe rcf^saqe-

related functions, tne on-lin*»

capabilities Include access to compu-

tational facilities« since users of

CONNCCT may communicate witn computational

processors linked no the communications

network,

Message preparation. ^.c s s ü 'j e

preparation basically consists of

compost no text and oDtairi.ig approval for

senc. r,g It. The user corr ei ponOs %i en fl

m^ssa/e creation runctlon Dy ifvear.s of Q

simple glulogue. CONi . CT is oerigned to

handle .'a'u'^rd formats and can prompt

users for necessary completions. wnen

several peoule are Involved tn messaqe

preparation, the hand-carry phase of

coordinating trie message for approval Is

automated.

riessao^ transrol ss i on. The message

t r ansfr,,'-JS ion function provides facilities

to verify destinations and to monitor the

message's status. The service validates

tne addresses of the list of recipients

provided Dy the originator of the message.

If the recipient is not currently

accessible, CONNECT can deliver the

nessaq^ tc a responsible alternate, or

maintain the mess a q» until th^ recipient

available. CONNECT users can ascertain

th^ status of a r.ess.iqe ry Tie^ns of such

queries as "'has it been read?" and "fcy

wnom?", or "Is action pending?", and "fey

vno»i.?" (Ouery rights of addressees can pe

limited by the messaqe « 'iginatcr.;

Me s s a c«- recept ior. Mile several

medern systems provide adequate message

transnussion facilities, few give in-depth

cjnsidor-u ion to the rec«i/er's needs,

some of wnich are tne following:

• [he >ervice should provide some audible

a:id/or visual alarm to a'ert a

receiver to a ne» pending messaqe.

• flessaqes should be ordered to reflect

priority, originator, subject, etc..

66

INTRODUCTION

■Mit! 09 It easier for the user to

scan ivessages

Browsing should be available, either

for reading large messages or for

familiarizing new personnel with a

particular correspondence file. Aids

for Increasing efflc ^ In scanning

large numbers of messages (e, g.,

key word searches) should be

provlded.

Users should be able to forward or copy

messages to others, although In

special situations tr» sender may

1 i mi t this cdpabl 11ty.

Recipients should i>e able to

automatically generate feedback to

sonder.,, sucn as "flesfage not read,*

"Read but no action," and "Action

pend? ng."

/Messages should be receiveo in a form

that allows them 'o be Incorporated

Into other documents.

Information maintenance. Information

structures such as archives,

correspondence files, name and acdress

files, and schedule files are maintained.

All Information Is auto' tlcally archived

to provide a reliable repository for

messages. Usars may crr*.^z specific

correspondence files for all messages

pertaining to a particular subject. Other

users «ay subsequently address messages to

an addressee's particular correspondence

file rather than to his general delivery

fi:es.

Off-line functions. CONNECT supports

the generation of documents such as

reports and letters destined for off-line

distribution. Functions available will

induce report preparation, editing, and

formatting.

EXISTING TECHNOLOGY

Hardware

The CÜNNCCT service operates within

existing network and time-sharing tech-

nology. Its components are <1) the

ARPANET, (2) tne TENEX time-sharing oper-

ating syitc.u, (3) the Xerox Graphics

Printer (XGP), and (4) high-bandwioth/

so ft-copy fninals. Some of the com-

ponents '>f CONNECT are unique, whi le

•jfners have functional equivalents

throughout the industry. Most were chosen

because or their accessibility to the

project.

I] The AKPANET'S unique concatenation of

computer resources provides redundant

communications paths for reliable

67

EXISTING TECHNOLOGY

connections to remote points, and its

modularity allows the total systera to

expand or contract Incrementally as

r equlred.

2} ta«.h host computer on tne AßPANf 7

that wll1 be providlng a message service

will oe a Digital Equipment Corporation

t^t-\U usiri."i the lENEX operating system.

CuNNtCI vi 11 snielc the user from tne

varied system load levels to produce

uniform response time. In a later test

env« rorimerit me user vi it communi cat e

directly with CONNECT, oraltt Ina tnp

<:ialogue wi tn the ItNtX jy^cutive,

3J The XGf, a hi gTi-quality raster

printer connectec to a support ccfnpuler,

provide: trt* n^ce^sary hard-copy facility

tc cl sseir, n<it*' messdq^s ar.c rt-port',

outside the service, Xur car. DO tjs«'<j as a

typewriter r ^'p i acefnenr. to maintain

machine-reaoaD]e copies o^ all outgoing

c o r r e s p<> rrnenc e.

H) ui tn»' many suitable rermlnais, t wr

partict • r t^rfrir, is arc being considered

v ittf IA pro jeer staff J f ne Institute

I * r xi »<<i\ jys t er (I J i) .jr»', t r.» I 1 1 ko. I i i

; , a ocul« i e-oen', i t y fV-P ised .y^ietr r*iir'.'

».ui ir for I^i Liy jystems Ccncepts

ff»c, i «r ni f.tj I ■. display •.■ I i ne^ oi oO

- i„tr a t tr . -.J< ;. ; t: ♦ / • .^v» veir i .it 1 •

control of character fonts and Xerox

urapnlcs Printer compatipi 1ity. Ine IJIkü

is a new soft-copy/nard-copy terminal tc

oe off*red by Teletype Corporation,

purported to o* of particular interest

wnere security Is paramount. A large

number of medl um-Panowioth soft-copy

terminals are aval IaDIe on the mark't in

the $2,UÜU to >,000 range. Ihe above two

are of particulrr interest in tnat the

first is already available and hly

fler' wh- ie the ceconc is expected

to aval lap ie for classified

app1i cat. _ s.

User Inter I dee I« cf nt ques

It is dr. J(nf.?ortant part cf the

L^NNECI pfii losopny to treat eacn user as

an i ndi vi (jua I • Amona the technlau^s

pr ev i ous i y u',e<J to r-»moot h the user

Interface, CONNECT empnaslzes the

fcllowingi :#">uack responses, homo-

geneity, help feature. terror randlers,

.M < i roi v » ou.i i I zr- ; Interfaces«

r^roLoCr r e ^f rise8;, In its simplest

form, r he response mt'relv tells tre user

tfat CO«'<NLCT i'. cperational and under-

stands his reguest. however, many of the

«' , 'CH resp» nses al^.r rrompt tr*1 user

tii input, Fhese '.f.ort messages (often

6fi

■ in

EXISTING lECHNOLOGY

one character) cbanqe as, the user novos

fron» state to state; tney might differ

wrier the user is typlnq corrmands, as

opposeo to entering text. Other klncis of

feedcack responses are messages that

descrio^ the service's last action; some

are more elaöorate prompts that give more

getai led instructions descrihin'j the

expected input. Other responses are

associated vith aPPrevIations or short

forms of commands. Ihtse inciode ways for

the user to request tre expansion of an

appreviation in order to confirm the

service's rt ognition of fis intentions.

Homogenei ty. Tc insure .natural use,

actions common to services are carried out

in a consistent way. jf the user knows

now to do something in cne context (supply

a date, specify someone's name, refer to a

file, etc.) he can do it th> same way 1 r.

any other context, wnlch increases user

confidence and reduces errors and learning

time. Ihis is not to say tnat parameters

tnat are not meaningful in some context

are required just for consistency, nor

trat the usual construction o. a request

must specify enough information to resolve

the most amniguous context. In tne former

case simplification is accepted; In «.he

latter ca^e ampiouous requests result In

further interaction to clarify the user's

intent. Itomogenelty does not Interfere

with natural operation. Recognition of

aPPrevIations, for example, may P" highly

context-dependent (e.g., recognition of

file names is iimited to tne user's

current set of flles). 7o enforce

consistency would require prohibiting suc.i

recognition. Rather« CÜ/iN£C7 provides

consistent, ways of asking for further

specification when necessary.

Help features. Help features aid the

user in determining his choice of actions

at any given time and the consequences of

these actions. Ihey are of two varieties-

one Initiated by the user, the other by

the service. User-lnltIated help features

include requests such as the local time at

a message destination, the status of an

operation, or a tutorlcj on some service.

CuhNtCT-generated help features a.e

triggered by user actions. For example,

I f the user attempts to use a command h

nas never used be^re, the service may

recommend a short tutorial on the use of

the command. If the user Is making

repetitive errors, assistance is offered,

perhaps in tne form of an explanation of

the service's current expectation from the

user or a more detailed tutorial dialogue

with him. Also, if the user Is doing

scmcth.'ng awkwardly, CONNECT can teach hi m

69

^t

EXISTING TECHNÜLOGY

a new comreand to alJcvIate the difficulty. adjusts its internal operating parameters

In this case the motivation for the nev to fit his individual style, tailoring its

command will be clear to the user. For prompting and feedback responses to

examr!-» CONNECT may suggest a composite reflect his familiarity with the service.

command to replace a frequently repeated

command sequence. RESEARCH DIRECTIONS

Error handlers. The proper response

to errors is of major importance in a

we 11-designed user interface to an on-line

service. CüNNtCT Is concerned with

detection» prevention, correction, and

notification of any detected errors, When

an error is detected, the cause is

explained to the user In detail, and he

.nay then De invited to use the tutorial.

Terse or cooed nessages are avoided, When

an error Is detected, the offending

conxnand is aborted. when the user

discovers a semantic error, he has

convenient ways to remedy its effect by

specific commands that undo the effects of

previous commands. In concert with error

correct'on, he has powerful intracommand

edlti ng 'eatures.

Individualized interfaces. CONNECT

permits vser: to select personal desig-

nations for commands and even creat? macro

commands for themselves to simplify or

expedite their work. On the basis of a

profile maintained for each u«;er, CONNECT

In addition to technology already

available for Implementing CONNECT, some

Innovative methods are needed to deal with

the problems rac.nq the nontechnical user.

Tbese metnods fall into four categories^

■ Adaptive processes

■ Program structures

■ Integrated tutorials

■ Response-time adjustments

Adaptive Processes

A common fault of many man-machine

systems is that, although they provide the

necessary functions, they fall to fit any

particular application very well. This

prop em may be due to a rinld command

structure that requires using overly

comple; commands to perform often-used

functions. CONNECT, on the other hand. Is

much more adaptable to each of its

potential applications. The wide rang« of

message-1 ike functions It supports were

70

RESEARCH OIRECIIOKS

dftu-Mincd by studying potential (semJ-

automated and manual) user environments.

7he user interface Is incompletely

specified except with respect to a par-

ticular group of Indlvldjals. The

command language and service Idiosyn-

crasies are adjusted ■on site* to suit

the Individual user environment. The

■on-slte" adjustments are aided by models

of users and services that are used as

predictors In choosing.

In addition to this site-dependent

preadjustment, the service/user Inter-

actions and Intraservlce dependencies are

Instrumented. Data samples, collected

through real-time measurements, are

analyzed on the spot, and Imrcedlate

adjustments are recommended to the user.

Ihe purpose of such dynamic evaluation Is

to further refine the user's performance.

While techniques for service self-

regulation are perhaps the least well

knovn and understood of the various

techniques discussed below, th* potential

increase In efficiency to Pe calned by the

use of instrumenrat ion and adaptation Is

thought to be great enough to warrant

including this aspect In the project

study.

Program Structure

Most large programming systems are

structured to minimize the interactions

between modules, which provides clean

Intermodule Interfaces (In many cases null

Interfaces). This approach also tends to

produce vertical partitioning. In which

each module decides and provides for

itself In all situations« resulting In an

uneven, heterogeneous system. CONNECT Is

partitioned horizontally, with each module

responsible for a single service-wide

function; all other modules needing this

function use the single module designate^

for that purpose.

Horizontal structure prevents several

classical human-related problems. Firs»-,

nc application meduje Interacts dlr.ctiy

with the user, Ali input or output

activities are handled by a collection of

Interaction modules, which In turn Insures

that .-ach Implementer will give more

thought to the user Interface standards.

Second, each module iseveral may be active

simultaneously) maintains state Infor-

mation In a data table, which allows

CONNECT to know Us total state, a

requisite for service monitoring of user

interaction. Finally, all modules must

indicate on return how to reverse their

n

i

RESEARCH OlRECTiONS

effects, which gives the user methods to

abort or undo previous actions.

Integrated [utorjals

Today many examples can be found of

either computer-aided instruction (CAI) or

computer systems vith help features.

CONNECT integrates the two Into a tutorial

service with novel capabilities. When the

user requests help, he is automatically

connected to the tutorial module. Aside

from conducting fixed dialogues with the

user, the tutorials are able to

demonstrate commands to the user, ana can

also ask the scr to try things and

oDserve any proL-loms. In fact, a novice

user mi gr.t spend his first sessions

totally under tutor observation.

In addition to the above method of

operation, the tutorial service aids the

us ' in personalizing language constructs

to reduce or eli^1inat*, those forms tnat

lead to inefficient and ineffective

per formance,

Pespot je-ti me Adjustments

i'-'.ost interactive application systems

attempt to minimize response time.

However, we oelieve that response-time

characteristics should oe a stated.

realizable goal, not an Instantaneous,

unrealizable Ideal only erratically

approached, CONNECT does net try to

minimize response time; Instead, It

adjusts response time In concert with the

user's psychological expectations. Con-

siderations include the following^

■ Providing constant response for a given

action, so that the user knows what

to expect,

■ flaking smaP resr.vi^se-t I me adjustments

to decrease tne user's error rate,

■ Al low inn tne user to do other work

while waiting, if a request Is not an

interactive response-time task.

EVOLVING DESjG/j

The design of tne CONNECT system nas

evolved to meet tne needs and problems of

prospective users. ihe design now

consists of two partsi the core system and

a set of application rrx'dul^s. While the

application modules have not been

specified in much detail to this point,

the core system f^s been designed to a

fai r 1 eve) of detai 1,

This core system consists of five

parts! I) an txecutlvt that supervises the

execution cf the system and provides tne

72

EVOLVING DESIGN

interface between the operating system and

the rest of the service (i.e»# the rest of

the core and the applicdtion modules);

2) a Command Language Processor that

parses and examines all input to the

service and maintains a consistent

Interface between the user and the

application modules; 3) an Editor respon-

sible for all text manipulations the user

may require; k) an instrumentation and

adaptation package, called the User

Monitor, that monitors the user's

interactions c»nü suggests new dialogue

elements to personalize tne interface for

fdcn user; anc finally, S) a Tutor that

teaches the user and aids him in

regulating the dialogue forms for maximun,

user's performance.

Inc Execut i ve

The CONNECT Executive (Exec),

functioning as the interface between the

operating system and the remainder of the

CONNECT system, serves the following

purposes•

I) It buffers the terminal u. H*r from

interaction with the primary operating

system and channels all error Interaction

and housekeeping communication through the

appropriate CONNECT module.

2) It acts as a common channel through

which all modules request service from the

operating system, in order to buffer the

rest of the system from changes to or

replacement of the primary operating

system.

3) It provides the primary operating

system two supplementary services;

fulfillment of requirements not satisfied

oy TENEX and reformulation of TENEX

service in a form suited to the CONNECT

system or to particular CONNECT fu ctions.

Executive services provided Include

error control and system request routing.

The Exec supplements TENEX services both

by provicing services not available

tnrough TENEX and by reformulating certain

TENEX services for the convenience of the

programmer.

The Command Language Processor

The Command Language Processor (CLP),

which processes all user inputs, is the

complete logical input interface between

the user and the rest of the system (and

may be the complete output Interface as

*eli). The CLP must satisfy four

sometimes conflicting requirements^

73

EVOLVING DESIGM

1) because th« CLP provides the Janguaqe

and mechanism for service modules to

comnunicate with users. It must be general

and flexible. it must provide a command

language definition capability powerful

enough for the Interactive service modules

not as yet specified? at the same time,

however. It must be simple and convenient

enough to use so that the service module

authors are willing and able to use It.

2) It must, at the same time, establish

an Interface that can be understood by

cotTpu t er-nai ve users ^1 th mini mal

training. Its commands must be simple and

consistent. Wnlle providing a language

for writing commands for service module

autnors, the CLP must simultaneously

represent the needs and interests of the

intended users. experience with other

computer systems has shown that these two

requl rer.»ents are often in direct conflict.

3) Cl r1 must provide alternate ways for

users to express their needs. Alternate

forms are used when the User Monitor

detects Inefficient or Ineffective

dialogue and, via tne Tutor, suggests an

Improved form for a particular user. If

tne user elects to empioy a new dialogue

element, the CLP must be ab If to parse and

understand It.

«0 Finally, CLP must perform ail Its

functions In an especially transparent

manner. It Is expected to make available

to the Tutorial and Help subsystems

Information about existing commands, the

user's knowledge and use of them, and a

recent history preced.ng an error.

The CLP may be seen as t discrete

(horizontally structured) pieces« (1)

tbe Parser, String Processor, or Compiler

£-"1 (23 the Interpreter, Virtual Machine,

or Executor, In effect the CLP Is both a

compiler (ror the command language a",

entered by the user) and the virtual

machine whose "machine language" Is the

target language into which the compiler

translates the user language, within this

viewpoint the remainder of the system

provides the functions that help define

the virtual macnlne. Henceforth we refer

to the first part of the CLP as tne

Command Language Compiler (CLC) and the

second part as the Command Langu

Executor (CLt).

Command Language CompIler. The task

of CLC Is to take the corrected Input

store and produce a program executaole by

tne CLL. CLC has as two of Its goals to

pr >vI de a consistent, system-wide flavor

to the commjnd language. In order to

74

EVOLVING DESIGN 11

achieve these goals, CLC takes a

psei/do-natural-language approach to

commands, with the command language

defined In terns of a very simple

'ngllsh-llke syntax. This Is not to say

that CLC attempts to Interpret anything

like genera] English Input. Rather the

CLC command syntax uses the same basic

notations and categories (noun, verb,

adjective, etc.) that native English

speakers comprenend. Ail rules provided

by each application module are defined In

tnese termsi the application module author

is required to categorize tne words he

uses to fit this framework. CLC uses

this framework tc provide horizontal

consistency throughout the command

1anguage.

Command Language Executor. CL£'s

task Is to perform the services requested

by the user, which It accomplishes by

making calls on other modules of the

overall system.

The Edltor

The design of the CONNECT Editor has

proceeded from three basic maxims«

1) Whenever the user Is typing, he is

entering text and should have available to

him as much of the Editor as Is

appropriate.

2) There should be as little difference

as possible between the text as the user

sees It while editing and the text that

would appear In hard copy at that moment.

3) The Editor should provide ail the

basic capabilities of paper, pencil,

scissors, paste, and typewriter while

being as natural to use as possible.

A careful examination of the range of

possible user environments also produces

some boundaries defining what the CONNECT

Editor should not attempt to do. In

particular, since the Editor Is not

envisioned as a "program" editor. It

will not seek to provide specific

program-structure-oriented commands, nor

will it support the writing of

sophisticated editing programs such as

might be required If Its users were

primari'y programmers. It will also

restrict itself to nongraphic editing. In

deference to the limits of commonly

available and inexpensive CRT terminals.

The design of the Editor may be

viewed at three logical levels: the

correction function, low-level editing,

and the fuI I edltor.

75

i

EVOLVING DESIGN

The Corrector provides Intrailne

editing of the user's Input, whether

commands or text. This must Pe rarefully

human-engineereo to be as natural as

possible (though this obviously varies

depending on terminals). This levei of

the Editor requires absolutely minimal

training and has the flavor of actually

"making correct Jons'' rather than "issuing

commands" to an editor. As far as

possible (dependent on the terminal's

local capabilities and bandwloth

considerations} the results of tnese

corrections should be reflected back to

the user.

Low-level editing is accomplished by

simply generalizing i.ne Corrector's

intraline capabilities to exte.d to text

in general. With greater "moving"

capaoility, the user can perform any

editing task wi tnout needing "linguistic"

commands. If the Corrector interface is

natural, this low-level editor requires

almost no additional training. It does

not, of course, provide the power of

searches, block transfers, or replacing,

out it does allow a user to start using

the system to edit text almost as soon as

he can io^ on. Fnis level also Includes

t^xt reading facilities.

Full editor capabilities Include

search, replace, restructuring, block

manipulation, interfile, mu1tl-author, and

annotation. They attempt, however, to

minimize the number of distinct commands

without going to the opposite extreme of

complex parameterization. They also

attempt to optimize tie tradeoffs between

terseness and intelligibility, and between

/eedback and bandwidth requirements.

User Monltor

The malr purpose of today's

hardware/software measurement tools Is tc

aid In the design or selee ion of new

equipment or the reconfiguration of

present equipment. One criterion or a

combination oS criteria is established as

o metric (sucn as processing a specified

joo to maximize throughput or minimize

cos')- Our interest, however, in an

instrumentation and adaptation package Is

tc Increase the user's performance (as

cposed to trie system's performance) as he

uses a service of a time-sharing system.

Thus, the User Monitor instruments,

evaluates, and predicts user/system

behavior patter*. In order to reuulate

service activities and the user's

practices to optimize the user's

76

EVOL*iNG DESIGN

per fcrmdnct*. Ihe following illustrate the

nature of improvements to be made in real

11 me.

1) Detect when the u-^er is doinq things

"wrong* Dy means of elicitea errors or

repetitive operations. Here, we are not.

looking for errors tnat prohibit usefu'

work, but rather tnose tnat contribute to

poor performance. Corrective action

involves interaction witn the user.

2) Detect when the user has mastered

elementary sequences of operations and

then advance tutoring to the next level of

language constructs useful to nis work.

3) Model the system and user to

determine wnen a different sequence of

events can more effectively accomplisn the

same task.

To improve performance, adaptive

features must oe able to affect system

operation In real time according to the

fluctuations In system and user actions.

Hence, measurement and regulatory aids

must be designed as an integral part of

the system in order to assist resource

scheduling and to alter the user's

practices. Given compumetrics as a

fundam^rttal component of the system, it

should function as unobtrusively as

possible. Much of the data related to

performance cannot be accurately estimated

by the user, since large Inefficiencies

can occur in small time frames that cannot

be detecteo. Hence, measurements are

integral and are tdken In real time.

Jo succeed in real time. the User

Monitor must employ a data extraction

technique that does not significantly

alter the system's opeiation. Hence,

pseudo-random sampling rather than event-

oriented monitoring Is used primarily.

Synchronization Is avoided to Insure that

the data obtained is a function only

of the number of samples, not the

sampling frequency.

Operating witnln these prerequisites,

tne User Monitor .»as two very different

functions. Ine first is connected with

the exoerimentdl goals of the project. As

experiments are run, the User Monitor

mates measurements in real time and In

background analyzes the acquired data.

Inferences based on the results are

made by the designejs, Ihus a user's

performance is correlated witn an off-line

model of the user and the service,. Given

models r>f tne user and service, they may

be used in cnc future as predictors for

choosing language forms yielding best

77

EVOLVING DESIGN

performance, best teaching methods, and so

forth.

The second function is to aid the

user (via the Tutor) in improving and

personalizing elements of the language.

Three cases arise. The first case is to

recognize dialogue sequences yrhich occur

vlth significant regularity. Once

Identified, the Tutor will suggest a

composite form to the user. The second

case arises where the CLP Is unable to

recognize an ir;ut. The Monitor attempts

to identify the spurious command and

suggest (via the lutor; * retredial

action. Tne third case olves the

isolation of those language constructs

that do not prohio«t useful work but do

lead to poor performance. Again,

alternate forms are recrnmended through

the Tutor.

The Tutor

One of the prime aims of CONNECT Is

to be easy to learn and forgiving to use.

A crucial aspect of both these goals Is

the provision of fully integrated help and

teach Ing faci Ii tles.

A number of systems make use of a ■?■

or 'Help* feature to allow the user to «"sk

for assistance whenever he Is confused.

Vyplcally, these use a minimal amount of

the user's recent actions to make a guess

at what the user wants to know, then

provide him with a shor* description or

list of options open to him at this point.

A slightly more sophisticated approach Is

to give the user a set o* choices and

converse with nlm tc find out what he

wants to know, although this takes more

t ime.

We envision this sort of capability

(wnich ultimately provides Interactive

access to an on-line User's Manual) as the

first step towaro a helpful system. This

"Help" facility mu^t provide terse

reminders for experienced users who have

momentarily forgotten something, verbose

explanations (e.g., selections from a

User'*. Manual) for naive users, as well as

an Interface with the actual Tutorial

segment described below. It must allow

the user to interact to select what he

wants to see, while recognizing enough of

his state ro make reasonably accurate

first guesses to minimize such

interactions. It must also allow easy

ways for the user to ask for help at

higher or lower levels' for example, a

request for help whon typing a command

might yleid a description of that command,

whereas the user realiy wanted either

78

EVOLVING DESIGN

alternate commands or details of

particular parameters to that command.

The Tutor provides help on request.

Introduces users to new aspects of the

service. Interprets service errors for the

user, and provides User Manuals at various

levels tailored to a user's knowledge of

the service.

Additional Issues applying both to

Help and Tutorial concern whether the

system should take the initiative In

giving the use help when it "thinks" he

needs It (e.g., when he repeats errors In

using some commanoj or whether it should

always wait until he asks for help.

Though the value of human classroom

teaching and personal tutoring should not

De unaerest i mated, sooner .-«r later a user

is required to do something with the

system for which he has not been trainee.

Ihe only instructional aid that we can

guarantee to be available whenever the

user Is on the system is the system

itself. Inerefore we consider It

important to make tre system as

seIf-teaching as possible.

The majority of existing CAJ systems

eitner are oriented toward teaching seme

specific suoject or provide languaaes in

which Instructional programs (or

•"lessons") can be written. The former

approach is Inappropriate for an open-

ended system like CONNECT that must

provide for arblt/ary services. The

latter Is a feasible approach! however,

the designer of a service module should

not be required (or, more to the point,

expected) to write CA1 lessons, since this

Is tangential to his major goal. It may

be possible to make the CONNECT Tutor

table-driven ^y a description of the

particular service, though this requires

further research.

The Tutor is designed both as an

extension of the Help system (so that if

the User's Manual is insufficient. to

resolve a user "'s confusion, he can ask for

a lesson on the subject in question) and

as an introduction to the system as a

whole or to a given module or cownand.

Essential to our concept of tho Tutor

is a recognition of the need for the user

:o get his hands en the system and try

things. Ideally, the Tutor should provioe

tne qulvalent of an interactive classroom

(or tutored) lesson, and thr^ allow the

MS er to experiment with the system as If a

human tutor were looking over his

snouI der.

79

EVOLVING DESIGN

Of the two apparent ways to Iwpiemenr

this, the f J rst--havJ ng the Tutor sitnu ate

the commands that the user trles--has been

discarded in the belief that it can only

lead to an ultimate disparity between the

system^s behavior as simulated by the

Tutor and the actual system's behavior

once the user leaves tne Tutorial. In

order to avoid the inevitable loss of user

confidence that vouId result, we are

seeking to provide the lutor with a

"monitor- mode in which it can

experimentally pass the user off to some

service, allow hirr to execute commands

"safely," ana Insure that »he Tutor can

always maintain control. I . a sense this

allows the lutor to simulate tne system oy

using tne system itself.

Inis dpprodcn greatly expands tne

possibilities for the lutori It can lead

tne user through trials and examples in

which re Ts actually using the system.

Iris capability may be abl'. to greatiy

reduce the gap oetween classroom

instruction and actual hands -on use, an^

wl il make the system behave far more

neIpfu11y.

In summary, the Tutor seeks to make

the system Intelllglole to the user by (1)

providing an on- or off-line User Manual

for thai part of the service which the

user Is Interested in, (2) answering

questions about the service, (3) teaching

the user to do new things with the

service, and ik) translating all service

error messages into terms the user can

understand.

footer STATUS

Ihe project, which consists of three

phases, is currently In the latter stages

of the first pnase and entering the

seconc. tach phase is scheduled to

reouire about six months for completion.

The first phase Is t;.«? design of a

mcdel system that will reflect, the state

of the art witr. respect to human-factors

technology and the methodology described

in this section, as well as incorporate

tne two qoals for tne resulting system:

first, ^nat it De a demensirat Ion service

to exjtiolt and evaluate tnat technology;

second, tnat it be an experimentation

veriele to develop a new methodology.

Fnase two is i n.p Jementat i on. During

the sec<. .d phase the project wi II

implement the model system on the POP JO

under the TCNf-X operating system, using

the blISS-JO programming language.

Fortra) will also be used for much of the

80

SUMMARY

stdtJsticöi analysis öone by t^e User

Monitor. Because of a mild Interest In

transferal*! 11 ty, ail operating system

calls wj II oe restricted to one r-odule.

^hase three li the experiment and

evaluation phase. Ihe currently planned

experiments oeal with different language

forms which can oe provided to the user.

These include functional notations,

computer-directed dialogue, multiple-

choice commands, function »«eys, sub-

comnands (key word macros), etc The

goal, as described under the User

Monitor, will be to match various user

characteristics to the different language

forms. The evaluation phase will address

Doth the suitability of the model system

as a production paradigm to be used In

directing grand or production targets and

its appiIcabi1 11y as a human-factors

testing facility. The expected future

efforts should Include both the more

production-orierted goal of deliver ng

complete command and control message

services and the put suit of research Into

user's needs.

SUfYIARr

The main goal of the Information

Autonatl^n project Is to e<tend the

benefits of computer technology and

methodology to users of written

information, delivering these benefits In

a way that users find convenient and

nelpful. The primary emphasis of the

proposed system design Is people

efficiency rather than machine efficiency.

It is the conviction of the project

personnel that general .oppose put

nontunable services do not solve these

types of problems. Hence, CONNECT makes

it possible to efficiently generate

specialized sirple services for

corrmunlcat Ions applications by means of

continuous measurement and adaptation.

Though some of the aoove Ideas are

not lew, Uie/ have not yet been

successfully combined into an Integrated

service for use by people unfamiliar with

computers. In fact, the attempt to design

a human-engineered service Is a relatively

recent one. Attempts In this dircctlor

are prone to many pitfalls, parti icJar I y

the failure to understand In sufficient

depth and breadth the true needs of the

prospective user population, CONNECT will

attempt to avoid these pitfalls by

careful, ongoing attention to the needs

and requirements of specific user groups.

A prototype CONNECT service should be

available on the ARPANET early In 1975.

81

REFERENCES

Hooerts. L.
Resource

ij.t dfiü b. U. wessler, "Computer Network
^ndrlng,* At IPS Conference »roceedi n

Conference, Vol. 36, AFI^S Press, Montvd N,

Development to Achieve
s, 19/0 oprinq Joint Computer

IV70, pp. S43-5SO.

"arcr. !S72, pP. |35-l*3? ^^-|ü. CoiMUm cat Ions of tne AC*. Vol. 15. No. 3,

NETWORK SECURE SPEECH

PROJECT LEADER«

RESEARCH STATfJ

RESEARCH SIAEf SUPPORI

STUDENT AIOE

Can Coh«n

Raymond L. faat^s
E. Randolph Cole
Themes N. HI £>bard
Rotoert H. Parker
Paul K. Raveling
Guner Robinson

Norma 6« Johnston

Steven L. Casner
Jl mmy T. Kcda

INTRODUCTION

The development of a digital mccins

for secure speech transmission is a very

hlqh priority military qo.il. The iSI

netvork secure speech project Is

attemptlnq to establish secure, hlnh-

quality, real-time, full-duplex voice

rofnrvjrii cat i on using the ARPANET as a

transmission channel. The resulting voice

communications system will have the

following advantages:

(although possibly at the expense o^

substantially higher data rates),

l) Packet-switched communication can

exploit the natural pauses and breaks

in human speecn in order to achieve a

lower overall data rate. Because

packet-switching methods used in the

ARPANET are asynchronous, however,

the received speech will be delayed

slightly, since it must be assembled

synchronous Iy.

1) It can be secured (encrypted) to any **) Such a voice communications method

desired level of complexity and

security, since Infinitely many

coding schemes exist that can be

readily applied to a digital signal.

2) If desired, extremely high quality and

low error rates can be achieved

will be highly compatible with future

communications system^ (such as

satellites, lasers, packet radio,

etc.)v all of which will be digital

and many of which will be

packet-swltched.

83

PACKf: f-SWITCHING NETWORKS

PACKTT'SWITCHING NETWORKS

Packet swltchfnq offers more

efficient use of communication chanitls

than circuit svftchfng« It Is suited for

voice communicat I or because of its

Intrinsic nature, i.e., of acnieving any

qiven rate by using short bursts of higher

rate« This technique by its very nature

takes advantage of ehe variable data rale

in human speech (long vowels, silence

periods, etc).

The philosophy behina packet

switching is that the highest reliability

can be achieved by error detection and

retransnjosion when necessary, which

allows reliability to be as high as

desired at the possible cost of delays and

hanewidth. Since voice conmunication

cannot tolerate arbitrary gaps and delays,

the ARPANET'S piesent definition of

reliable transmission must be modified

and transmission procedures changed

accordi ngly.

Special protocols are developed for

voice communication independent of the

specific vor.odlng techni coe being used.

In fact, a part of the orctoco) is to

make sure that both parties use the

same vocoding technique. The sa/ru;

communication protocol wlli be used for

LPC (linear Prediction Coding), CVSD

(Continuous Variable Slope Delta

modulation), and any other vocoding

technique.

VUCUUiNG

In order to achieve digital voice

communications over the ARPANE 1, it will

be necessary for the data rate requlreo to

be as low as possible in order to minimize

the load on the network; some type of

bandwidth compression (called vocoding

wren applied to speech) will thus be

required. An extensive study of available

vocoders, Poth hardware implementations

and software a IacrIthms, determined that

present hardware vocoders are inflexible,

expensive, am: of insufficient quality.

It was tnerefore decided to implement the

best available software vocodt, using a

powerful ccneraI-purpose siqnal-processing

machine. Following the evaluation of

several signal processors, .1 Signal

Processing Systems SPS-;*1 was purchased,

alcnq with a PÜP-11/^S to drive It and

handle conrruni cat I ons with the ARPANET.

Soft wire s«vport JI forts for these two

machines will be cescrlbed in the final

part of this section.

The software vocoding method chosen

for implementation was LPC (Linear

HA

VOCÜb/NG

Predictive Coding), specifically the

version developed at the Speech

CorrPMjril cat I on Research Laboratory (SCRL)

In Santa Barbara [1]. Off-line simu-

lations have shovm that relatively

hlgh-nuailt/ speech can be transmitted at

a data rate of around 3kb/sec using LPC-

LPC requires much less computation than

other known vocodlng methods, with

superior quality and the same data rate.

It Is Important to note, however, that

the vocodlng m^tnod and the network

communications algorithms will be Inde-

pendent of each other. ihe letter

will be optimized to take full advantage

of the properties of speech, but not the

properties of the particular vocodlng

method itself. Should the speech research

community develop a vocodl ng method that

Is clearly superior to LPC (no. likely In

the nd• future), the vocodlng method

could be changed without changing the

network communications software.

The real-time LPC vocoder will be

Implemented In the following steps:

1) An off-line floating-point simulation

on TENEX, undertaken to familiarize

project personnel with thr LPC

algorithm and Its Implementation, Is

almost, complete.

2) An off-line Integer simulation will be

implemented on TENEX. This must, be

done in order to Insure that problems

with the lb-bit Inteqer structure of

Che SPS-'*! 'iM i 1 be minimized and to

verify that results from the SPS-^1

are correct.

i) The resulting algorithm will be

impleniented to run in real time on

the SPS-41/PDP-n system. Because of

the highly complex programming

structure of the SPS-M, this step

will probobly require much mere time

and effort than the previous two

steps.

SPECIAL PROTOCOLS FOR VOICE COMMUNICATION

The communication protocol to be used

for voice transmission has two components:

control and data transfer.

The control component of the protocol

fs responsible for per forml no the

connection ^o the rjght party and

generating the equivalent of a "busy" tone

or a "ring" tone at the originator and the

equivalent of a telephone bell at the

answering party. It is also responsible

for making sure that the vocodl ng

techniques used are compatible, and for

negotiating some options.

85

SPFCIAL PROTOCOLS

Later, when conferencing is

implemented, the control component will

also be responsible for "Conference

Control" (the chairmanship). it will

direct voice output from the speaker to

all the conference participants und direct

control siMials fror; the choirman (a

person or d program) to ail participants

to Inforn them *hen a participant will

become the speaker. Dtner signals will

tell the chairman who wants to speak at

any t i me.

The data transfer component is

.esponsiblt for transferrinc the data from

the speaker to the listener at the best

combination of rrinimum delay ano highest

barscvldth. Ihfs wf I i be accomplished by

continuous monitoring of the network

performance on-line and by adapting the

transmission parimeters to the variable

network chrifGCteristics. The transmitting

party wi i1 measure the delays, bandwidth,

and actual number of parallel links

available to the destination, and adapt

itself accordingly. The receiving party

will self-Impose a voluntary de^ay in

order to maintain better continuity

(smoothing) of the output. This delay

will vary according to the network

performance as measured on-line«

EU ANÜ SPb SWPQKTjHG EFfüRTS

The software environment for

Implementation of voice protocols will be

provided by LLT, an operating system

created by SCHL that is undergoing

continued development. User processes

running under tLlr wj i I control the

vocooin.j «ilfjorithf. on the SPS-^I and

interface to the ARPANET using the special

voice protocols. An additional user

process will hancle cebucging facilities

for the Si-^-41 ,

i'inor /nool f i cat i ons to fcLf's network

control program will support those aspects

of voice protocols that differ from

standard AHPA host-host protocol and will

supply fdcititics for measuring network

tiring chdracteristics during voice

transmi ssl en.

6otn iif and SPÜü (Signal Processing

Unit bebugger) have been modlfiuo to

support ISl's PUP-11/^*5 configuration, and

each is operational independently. Work

currently in progress Includes conversion

of SPUD to run as an £Lf process, addition

of a process to measure netvork timing

characteristics as perceived by rhe

PPP/ll, Implementation of a CVSO vocoder

on the SPS-^I, and final checkout of

hardware built at I Si (POP-11/IMP

86

SUMMARY

Interface ind A/0 and 0/A converters for

the SPS-'

Vfrt all program support other

than debugglg is handled by programs

under TfN£X« Support prograrrs In use by

the speech project include an assembler

for SPS-^1 programs, ßllss-ll, MACMI, and

many utility programs. MACN11's

facilities for assembling PDP-11 programs

have been substantially augmented by ISI

and SCRt.f and Its development Is

cont'nul ng,

SUiiMARY

Diqital voice transmission can be

rrade as secure and as reliable as desired.

Because of its inherent asynchrorou^

nature, packet-switching technology is

naturally suited to voice transmission.

Therefore, developing the means to use a

packet-switching network for dlcital voice

transmission Is an effort of great

potential usefulness to the military

communl ty.

Our werk in this area Is performed In

close collaboration w'th the ARPA-NSC

(Network Secure Commjnlcatlon) group,

particularly with the Sseech Communication

Research Laboratory of Santa Barbara,

mentioned above.

Our major role in this effort Is

establishing the metnoaology of using the

ARPANET ?or this project and Implementing

It with real-time vocodlng to prove the

feasibility of using packet-switched

digital networks for secure voice

communications. Presently, our efforts

are aimed at (1) performing network

measurements for the development of the

protocols required for real-time voice

comrrunications and (2) implementing i.PC,

botn on-line and off-line. The next stage

r,f effort will be to optimize the

con muni cation protocols and improve the

quality and reduce the bandwidth of the

vocodlng technique.

REFERENCE

Markel, J. 0., and A. H. Gray Jr., "Documentation for SCRL Linear Prediction
Analysis/Synthesis Programs", Speech Comunications Research Laboratory, Inc.-
November, 1973.

87

TECHWOLOGY SUPPORT 8
RESEARCH STAFFi

RESEARCH SUPPORT S'AFF:

Thomas 0. EWlz
Louis Gallenson
Robert E. Hoffman
Robert H. Parker
John J. Vlttal

George W. Dietrich
OralJo E, Garza
Lfoyd G, Jensen

STUDENT AJ0£: Ronald L. Currier

INTRODUCTION

This section describes three of the

major advance^ hardware systems being

developed at ISI« Each of these hardware

efforts was undertaken In response to

research support requirements and/or to

demonstrate a capability for a recognized

DoO application«. As mentioned earlier,

they are also being developed as necessary

support Items for the several software

projects that compose the Network

Communication Technology effort. The

projects Include the Xerox Graphlcr

Printer (a high-quality document printing

capability In the form of a network

terminal}9 the Video Display System, and

Portable Terminals.

XEROX GRAPHICS PRINTER

Two Xerox Graphics Printers (XGP's)

are now In operation at ISI as terminal

devices« Each XGP Is attached through a

POP-11/40 to tne POP-10 via a 2400-baud

data link. The POP-11/40, with a modified

version of the software designed at

Carnegie-Mel ion University, will drive the

XGP and provide hard-copy output i*. c...

files on the POP-ID. The PDP-ll acts as a

data buffer and line "rasterizer,*

providing video data and synchronization

to drive the XGP through an ISI-dcsIgned

Interface. The Interface design, based on

a design origlrally conceived for ARPA at

the University of Utah, has been

repackaged and Improved, resulting In a

factor-of-four reduction In package siz«

and an Increase In reliability and

performance.

One of the XGP systems Is being

shipped to the ARPA office In Washington,

D.C. and attached to a Ter.ilnal Inter-

face Processor (TIP) there to provide

high-quality on-line hard copy. The

Preceding page blank *

XEROX GRAPHICS PRINTER

System remaining at ISI will be used

experimentally to develop a two-speed

version of the copier capable of providing

(I) a high-quality output at 300 lines per

inch resolution and 0.5 inch/second paper

speed and i2j a lower-quality output at

100 lines per inch resolution and

approximately 2 Inch/second paper speed«

Presently, the system runs at 196

lines/Inch resolution and 0.67 inch/second

paper speed. When the experimental system

is completed, hardware and software will

be retrofitted to the system in the ARPA

office; If the system modification

provides a useful function. It will

prooably be Incorporated into future XGf

•-.vstems supplied by the Xerox Corporation.

Th«- schedule for completion of two-speec

rn^difK "ion to the ISI mach ne is late

fai) of 19 .

VIDEO L. ^Pj^AY SYSTEM

The development of the Video Display

System Is cont'nulng as previously

reported [lj. The system design provides

an inexpensive hjgh-quality tern.ir.al

for computer users (I.e., programmers,

managers, and secretaries) who require

significantly more rapabllltles than

are currently aval;able with low-cost

terminals. These Include a fu 11 page of

text (more than 4000 characters),

graphics, 256 characters of writable font,

and a stardard communications interface to

facilitate computer connection. A modular

design (part of the staged requirements)

will make it possible to use components In

a clustered envlrcn/nent as well as In a

remote stand-alone unit, with a minimum

cost differential, A contract for the

system has been let to System Concepts,

Inc. of Palo Alto, Internal problems of

that firm have delayed completion of the

system by one year—first deliveries are

now »xpected in the first quarter of 1976.

Alternative suppliers are being examined,

and the question of how to provide the

desired high-quality terminal system Is

being reconsidered.

As an Interim measure, JSI has leased

Beehive terminals, a video-based tele-

type replacement. These terminals are

standard equipment In each full-time pro-

fessional's and each secretary's office;

in addition, sfverai public terminals are

available for graduate students, consul-

tants, and other part-time personnel.

One major effort during the year was

the design of the keyboard layout for the

proposed terminal system. We required the

keyboard to generate the 128 seven-bit

90

VIDEO DISPLAY SYSTEM

standard ASCII characters In an doll bit

field (to be compatible with the ARPANET).

The American National Standards Institute

has proposed two standards for ASCII

keyboards (proposed standard XAA9/199b):

one with * logical bit palrlngj' and t',"

other with "typewriter pairing." But, In

either case, the standard defines only the

"Inboard" area containing the alpha-

numerics and punctuation symbols; the

layout of the "outboard control are<iM

(e.g., eturn. Delete, Control) is left to

the designer. Thus we had three topics on

which further design was necessaryJ which

of the two standard keyboard^ to choose,

the design of the outboard control area,

and the method by which the operator can

produce the 128 other characters permitted

by the eight-bit field generated by the

keyboard,.

Most computer terminals use the

logical bit pairing principle, which

specifically pairs characters on a key so

that there Is a single-bit difference

between the Internal ASCII code reore-

sentatlons of the characters. This was an

early design decision made to ease the

construction of older electrcmechanlcal

keyboards! current technology permits more

flexibility, and so we have chosen the

typewriter pairing. A number of our

projects envision the use of the terminal

in standard office environments as an

individual's first personal contact with a

computer* The typewriter pairing will

ease the transition to the terminal and

permit easy switching back and forth

between typewriter and terminal.

Our design for the outbc control

area is similar to that found on a number

of ASCII terminals. Two exceptions are

that the Infrequently used Line Feed key

was moved to the edge of the keyboard, and

an Alpha Lock key (which locks only the

alphabetic keys to upper case) was

substituted for the normal Shift Lock key.

Included In the outboard control area are

Case II keys, a Control II key, and

appropriate Lock keys. When activated,

these keys shift the entire keyboard (with

the exception of the formatting keys like

Space and Return) Into a "third" case, and

permit the generation of the upper »28

ASCII codes (octal 200-377K Finally, the

keyboard Includes explicit Tab and ßack

Space keys, as well as a key labelled

"Help," which will cause ISI-dcslgned

software to take tutorial action.

Another major effort during the year

has been work on a standard protocol for

controlling the, proposed terminal, A

91

VIDEO DISPLAY SYSTEM

major start on an acceptable protocol has

been made by Che ARPANET Network Graphics

Group, chaired by Jim MIchener of Project

MAC ac the Massachusetts Institute of

Technology, institute efforts have been

devoted io understanding this protocol,

especially wl tn a view to any hardware

features Il nJght suggest, and cooperating

with Robert Sprou11 of Xerox Palo Alto

Research Center and Charles Irby of *:he

Augmentation Research Center of Stanford

Research Institute In refining It, Irby

especially is the major designer of the

•positioned texc" portion of the protocol,

the part in which the Institute Is most

interested. The positioned text protocol

permits the programmer to divide the

display screen into ^windows" and to

manipulate text independently within each

window. For example. In a text-editing

application, four separate windows might

be used for messages from the system,

command entry and feedback, the file being

edited, and a flie of connections.

As mentioned, we have been especially

interested in designing hardware features

for our terminal system that would ease

the I rrp I emendation of the protocol. The

most significant area In which hardware

can help Is with the windows, especially

Independent scrolling of slue-by-side

windows and automatic actions at window

boundaries. Our roost promising Idea Is to

organize the display character buffer as a

list, with pointers and lengths being

separate fron the characters. Independent

window manipulations can then be

accomplished Ly relatively quick manip-

ulation of the pointers instead of

time-consuming rewrites of major portions

of the character buffer. Finally, we are

working on including new character fonts

In the protocol to take advantage of the

hardware proposed for the IS] terminals.

PQRTASLi. TERMINALS

Since its inception last year, the

goal of this project has been the

development of a portable terminal device

able to communicate from any telephone to

any ARPANET site, permitting mobile users

to e* !ly take advantage of mall, message,

and other ARPANET services. In July of

1973, a prototype portable terminal was

delivered to ARPA and has been functioning

since then free of additional maintenance.

The unit weighs 20 pounds and Is enclosed

in a small briefcase (10" x \km x 6") that

can fit comfortably under an airplane

seat (see Figure 6.1). In contrast,

conventional portable display terminals

92

PORTABLE TERMINALS

Figure 8.1 The ISI portable terminal

93

PORTABU TERMINALS

weigh nearly tvice as much and are bulky

and unwieldy to carry.

The IS] terminal is buJU entirely of

standard off-the-shelf components. It

uses «» 53-key electronic keyboard, built-

in acouftic coupler, and a Burroughs

Corporation S* If-Scar, panel display unit

with «. lines of 32 alphanumeric upper-case

characters (256-character display).

This terminal is intended primarily

as an evaluation instrument to help in

defining the functional capabilities

required of second-generation portable

terminals. he critical areas of the

present design have been found to be its

limited visual context and Its size and

weight parameters. The optimum tradeoff

between minimum size and maximum «djspiay

area is now being empirically defined.

In an attempt to improve these

critical areas of design and ^Jso to gain

insight into alternatives to the Burroughs

display panel, two plasma panels have been

purchased frora Owens-Illinois Corporation,

These are roughly comparaüie in size and

vei »jnt to the turrougns panel, but their

4ü-charac ter-per-11 ne format is much mere

compatible with the öC-character lines

generated ty ILN£X (nearly doubling the

line display capabMity of the terminal).

The Owens-Illinois panels win be used In

two further prototype portable terminals

that will incorporate the following

additional design refinements* upper- and

lower-case characters, increased visual

context, smaller power supply weight,

smaller keyboard size and weight, and

resulting smaller overaH weight.

When these two prototype terminals

are completed, the project will

concentrate upon the most critical of tne

problem areas so far identified: the

display screen. Liquid crystal displays,

wnich could provide a llghtweignt,

low-power, electromagnetic-radlat I on-free

substitute for CRT terminals, look

feasible for the portable terminal

application. They seem to oreatly reduce

electrical power requlrti^cnts, although

with a proportional decrease In writing

speed. An optimum tradeoff between power

demands and writing speed requirements

will need to be Identified. The liquid

crystal technology no* existing In

industry will probably be capable of

providing a usable display panel within

two years if this project can provide

proper encouragement and direction by de-

fining specific military requirements and

perhaps provldi.ig financial assistance.

94

R£fEP.£NC£

Annual lechnical Report, May 1972 - May 1973, USC/InformatJon Sciences Institute,
ISI/SR-73-U 1 973.

95

NETWORK MAWAbEMENT INfORMAIIOW CENTER

PROJECT LEADERJ Stepben R. Klmbleton

PROJECT SUPPORT: Linda K. Tisnado

INTRODUCTION

The NettoorW Management Information

Center (NMIC) was established on March 4,

197A. Its objective is to orovide a

conprenensive base for network management,

to develop policies and procedures for

concurrent operation of Network Control

Centers (NCCs), anö to develop

requirements and staffing characteristics

for minimum-manpower, minimum-ski I I -leve1

NCCs. To ensure the feasibility of the

approaches developed, the Initial

objective will oe to establish a backup

NCC for the currently existing NCC at ßbN

which, on a scheduled Dosis, will be

capable of assuming responsibility for

detecting outages and performing

appropriate notifications to accomplish

their repair.

Accomplishing this InltiaJ objective

will require a significant level of

effort. The potential reward to oe

achieved is large when measured In ter^is

of reliability, efficient resource use,

and ability to acconmodate rapidly

changing workloads such as occur in stress

situations for command and control

installations. A framework for developing

the total rpquirements of NCC(sj is

needed. The tcI lowing remarks provide one

approach to the development of such a

framework« It is to oe anticipated that

this approach will oe critically examined

during the Implementation of the initial

phase discussed above.

The ARPANET interconnects equipment

provided by most of the major mainframe

vendors, permits effective snaring of

these resources by a widely varying user

population, and serves as a research

vehicle for directing and evaluating

potential network technologies such as

packet-swltched radio and satellite

communication. As a result of str'-"'^ user

demands for the latest advances In

computing technology, high reliability,

and ease of interface, management of the

ARPANET Is an exceedingly difficult task.

The difficulty of ARPANET management

is Increased by the nearly exponential

growth In network traffic Cljt the

Preceding page blank ^

INTROOUCnON

increasing demand within the OoO community

for access to tne network, and--öecause of

budgetary Iimi tations--the requirement

that ARPA-supported hosts operate near or

above the utilization levels at which

effective service can be rendered.

Conputing economies achievable through

resource sharing, coupled with the

opportunities resource sharing affords to

provide services previously unacH evaöle,

e.g., the National Software Works [2,3],

render it unlikely that this trend In

usage will reverse. Thus, the requirement

for efficient network management Is of

increasing importance. The need for this

capaoMity is Increased oy Its relevance

to ail organizations possessing large

collections of computer systems. Indeed,

within tue OoO several mu11imi I iion-do Ilar

examples of sucn procurements exist,

Inriuding the World Wide Military Command

arj Control System (WWMCCS), the Air Force

Advanced Logistics S/stem (ALS), and the

Air Force Base Logistics System.

Effective network management reaulres

rapid determination of existing choke-

points, timely Identification of new

configurations designed to eliminate these

chokepolnts, and tne ability to determine

the performance impact of proposed

configurations upon both users and hosts.

Estimation of the performance Impact of

new technologies must be avallable to

provide for their smooth integration into

an ongoing network. Determination of the

performance impact of security require-

ments Is necessary to permit effective

utilization of network technology by other

Ooü or domestic agencies. Öoth existing

and proposed configurations must provide

sufficient. reliability to encour^ce

acceptance and continued usage.

NMIC has been established to provide

both tools for the effective management of

tne ARPANET and a vehicle for research in

the management of computer communication

networks. The objective of this center

is to afford a means for effective

(management) dec!sionmaking among techno-

logical issues in network management. The

resulting tools will also assist network

management in evaluating organizational

issues by determining tnelr technological

impli cations.

These capabilities will be achieved

through a coordinated approach involving

tne establishment of an on-line data base

containing network Information, develop-

ment of a management-oriented Information

display permitting rapid pinpointing of

network chokepoints and easy fixing of

their determinants and implications, art

98

iNTRÜÜUCnON

implementation of programs designed to

permit rapid examination of the perfor-

mance Impact of alternative network

conflguratlons.

The existence of such capabilities

will be of significant use In determining

the kinds, types, and locations of network

traffic--a subject on which nttle Is

currently known--anc wl M p'-ovlde advanc*

planning Information to meet evolving

network needs. In addition, these

capabilities will provide a factual basis

for resolving potential conflicts among

users, hosts, anc budgetary constra nts

through estimation of the total «...pact of

oemands or changes and provision of

information to pinpoint reliability

problems and other difficulties Impeding

effective usage.

In addition to the direct role tney

will play In network management, these

tools will also be of significant Interest

in several network-related issues, e.g.,

configuration control, sizing and tuning

of command and control systems, dynamic

approaches to reliability, and peak work-

load processing througn dynamic job

migration. Further, the organized ap-

proach provided for displaying and

manipulating of network performance infor-

mation, as well as for determining the

systems Impact of network modifications,

promises to be of assistance to other

network-based research projects.

The remainder of this section Is

oevoted to a fuller discussion of the

ultimate objectives and approach of NMIC.

To place this jlscwsslon In perspective

and to demonstrate that the present

confused state of comouter system

performance analysis does not preclude

an effective capability for network

management, we uegin by reviewing some of

th^ major factors responsible for the

current somewhat unsatisfactory state of

computer systems performance analysis.

PROBLEMS IN COMPUTE« SrSTEMS PERFORMANCE
ANALYSIS"

Computer systems performance has been

the object of careful analysis by a sig-

nificant number of Individuals for approx-

imately the last five years. Never-

tneiess, the current state of the art Is

generally regarded üS unsatisfactory. In

large part, this appears to be due to

tnree factors^ (1) the ad hoc nature of

much of the effort, (2) the failure to

oistingulsh between organizational and

technological issues In performance, and

(3) a lack of coordination between Infor-

mation required for decisionmaxing, oata

99

 .

PHüeUMS IN ANALYSIS

required to generate this Information, and Thus, performance roust be viewed as a con-

tools used to aid In declslonmaklng. tlnuing rather than d sporadic activity.

Ihe aa hoc nature of prevailing

performdnce efforts was strongly in-

fluenced oy maridgement expectdtlcns that

{)) decredsing hdrdwdfe costs vouId grad-

ually eliminate the need for performance

efforts and (2) a 'good-" system config-

uration ecu Id Pe found which, ence

oDtalned, would need reldtively little

ddjustment. lime hds shewn, however, thdt

decredsing hdrdwdre costs increase the

complex"ty of the appIiCdtions that can

usefully .. e supported; thus the demand

rate continues to outstrip availdPle

capacity. In addition, the computer

system workload vdrles significantly with

time Pecduse of chdnges in the organ-

ization, its product, and Its objectives.

effective utilization of computer

systems performance methodologies by nwn-

dgement requires distinguishing between

orQdnlzat;ondi dnd technological issues in

performdnce [4j; some of the topics

relevdht to edch category are Indicdtcd In

Taole I. ürganizational issues have two

pnmdry endrdcter i st Ics ^ tne inclination

of mdndgement to sdtisflce rdther thdn

optirrize r>n these vdridbles, and the

depende icy of reasondble values for these

variables upon factors specific to a given

site. Thus, although centralized guidance

In the resolution of organizational Issues

can be provided, a centralized solution Is

precluded.

TAßlt I

ORCaANIZATICNAL AND TECHNOLOGICAL ISSUES JN
ZUnPUTlRTYsWhT PERF ORMAMCE

Organizational Issues

Unnecessary Jobs

Insufficiently trained
programmers

Priority structure requireroentö

Acceptable reliability

System overhead

Programming language support

Data base capabilities

lechnological Issues

Extended Instruction set

More host memory

Device/channel ratio

Data set location

Hardvare-compatible upgrades

Lo*d leveling

Performance impact of flle
backup

100

TechnologI Ce: I Issues, by contrast,

are capable of cent lized investigation

and soiution. Sucn an app oacn requires

coordination of data gathering, the Infor-

mation to be derived frcrr tru's data, the

decisions to be made oy management, ana

the means used to assess these decisions.

Tne cost of not having a centralized

approacn Is reflected in the fact that a

typical Simulation stijdy of a computer

system costs $S0,CO0 and requires one

man-year of effort over six man-montr.s,

while the cost of renting the simulator

for six man-montns vcuJa usually be less

than $S,00o. The difference reflects

manpower costs to gatrer the data and the

cost of execution of the simulator.

The distinction between organi-

zational and technological Issues is not

completely Invariant. As an example, if

the number of users In a proposed message

switching system (Si were to Increase by a

factor of five, ooth categories of issues

would be affected. However, a co-

ordinated approach to technological Issues

would significantly enhance the capability

of management to project the Imp heat ions

of such an increase.

Effective ^--clsions among techno-

logical Issues In network iranagement must

oe based on suitable Information to permit

PRÜ8LFMS IM ANALYSIS

(I) timely detection of usage trends and

their derer - rits, (i; better assessment

of the performance impact of modifications

and enhancements designed to provide

cost effective service, and (3) factual

resolution of th«^ performance impact of

requests for additional service,-. Thus,

the gathering of data and the trans-

formation of data into Information and

information display must be coordinated.

One dimension of the cost Implicit in not

naving a coordinated approach is reflected

in tne cost of present computer system

simulation stucies as discussed earlier.

I he need for a coordinated infor-

mation-based approach to performance has

been well recognized (6J, The available

Information on ooth management require-

ments and performance technologies Is

sufficient to permit such an approach. It

has been argued [U] th«t a major reason

for tne absence of such an approach for

individual computer systems is the lack of

leverage in comparing the cost of Ks

Implementation against the probable

accrued benefits. Networks, however,

provide an immense leverage poteiitiai.

furticr, their geographical dispersion,

coupled with the magnitude of the

resources Involved, serve to Increase this

leverage. Let us discuss the requirements

and Implications of such an approach.

101

ISSUES AND MANAGEMENl

TECHNOLOGICAL ISSUES AND NETWORK
hANAGEhENY

In the preceding subsection we

Identlflea the distinction between techno-

logical and organizational Issues In

performance; it Is evident that a similar

dichotomy f.ists for netwcrKs. A major

objective of network management should oe

an effective capabiliry to resolve

technological issues and thereoy make it

possible to determine tne technological

implications of organizational issues.

Management of technological Issues

requires three functional capabi11ties:

(1) a monitor function that helpj to

Identify the relative "health* of the net-

work, (2) a detection function that helps

to identify factors responsible for poor

performance, and »3) a correction function

that helps to identify appropriate

modifications to achieve satisfactory

performance.

The first function reculres identi-

fication of display variables of use to

management In monitoring the quality of

the network environment. In addition, it

requires instrumentation of users to track

their evolving requirements and instrumen-

tation of the networx to track its

performance. To avoid inundating manage-

ment with unnecessary information, a

management by exception approach Is

required that provides information on a

few key factors to determine If network

performance Is acceptable.

The second function requires a

hierarchically organized data base on

network performance that permir 3 rapid

i denti f i cat. ^»n of tf 2 determinants and

implications of network chokepoints.

Carefui control of the amount and types of

information presented is necessary to

pen.** quick identification of n«jor

factors.

The ^.hird function requires a

capability to predict network performance

as a function of resource modifications

that might be performed. Although a

network Is very complex, basic network

research suggests that. In an unsaturated

network, a structured consideration of

hosts, TIPs/IMPs and transmission links

may be used to determine or predict over-

all network performance In an effective

manner [7,0]. Thus the requirement to

predict network performance as an entity

can be replaced by a requirement to

predict the performance capabilities of

major resources and Interrelate the

resulting predictions to determine network

performance In an unsaturated network.

For a saturated network, py contrast.

102

ISSUES AND MANAGEMENT

performance degrades so rapidly (91 that a

major objective Is to reduce load or

Increase capacity until It Is below the

point of saturation.

The preceding observation suggests

that management of technological Issues

requires two basic capabilities« a report/

display capaolllty <inu an alternatives

assessment capability. The first would

permit quick Inspection of existing or

projected performance and determination of

the nature of aeslred modifications to

obtain additional Improvement through

careful hierarchical organization of per-

formance information. The second would

permit projection of network performance

for a proposed configuration.

Determination of the precise infor-

mation cc be displayed, as well as the

manner in which it is to oe organized and

stored, requires further investigation.

However, it Is apparent that at least four

categories of information must be pro-

vided i (I) current performance, (2)

present network resource availability, (3)

projected resource availability (to

coordinate preventive maintenarre and

other scheduled resource reductions), and

(4) detailed performance information for

evaluating the effects of proposed changes

and determining desirable directions of

future changes.

The dimensions of the network per-

formance problem as reflected in the large

number of potential alternatives avail-

able, the probable variation in the

metrics used to compare alternatives, the

constraints that must be observed in com-

paring alternatives (e.g., the connec-

tivity of an IMP In d network topology)

must be at least two, and the necessity to

consider alternatives to satisfy orcani-

zational issues (requirements) argues

against a stralgntforward (single-stage)

approach to acnieving networks with good

performance. Instead, an interactive

approach permitting rapid management

investigation of alternative config-

urations is required.

To oe effective, tnis approacn must

stress speed in achieving performance

projections, perhaps at the cost of some

slight amount of accuracy. Current

research (|0j suggests tnat very fast

performance prediction ror computer sys-

tems can be achieved through analytically

driving simulators. Tnus, a key element

for rapid prediction of network

performance Is potentially at hand.

Rapid network performance prediction

also requires an efficient means of

103

ISSUES AND MANAGEMENT

Inputting data descriptive of host capa-

bilities, host workloads, IMH workloads,

and traffic among IMPs. This can be

achieved tnrough (Ij autooiatic data

gathering, (2) maintenance cf performance

Information on-line, and (3) inputting of

only change data in assessing alternative

configurations. No major technical

obstacles preclude such an approach,

althougn organization of the performance

data base will require careful consid-

eration. Thus, these capabilities can

easily oe achieved within the research

environment provided by the ARPANET, It

should be noted that tht use of artificial

Intelligence tecnnology coula permit more

effective management interaction at a

relatively low net cost.

Jur discussion of network management

has been primarily focused on tne

management of resources to meet evolving

workload needs. However, tne capabilities

represented by NMIC also promlse to be of

substantial use in other significant

management concerns directly driven by tne

existence of tne network. These include

(Ij prediction of network capability to

hdnale a new research project and deter-

mine the "home* host for this project, (2)

determination of network Impact of

reliability problems and the nature of

appropriate changes, (3) provision of

basic performance and capability infor-

mation to other research projects

predicated on network existence (e.g.,

CÜTCü [3J, National Software Works [2,^',

and Network Secure Speech) and (k)

investigation of tne user iiupact of

emergent network technology.

RELATEO bENLFITS

Configuration control, i.e., the

assurance of compatibility among programs,

files, and nosts, is a topic of continuing

concern to network management. This prob-

lem is of particular significance to

organizations in wnich tne network Is

centrally funded and is Intended as a

centralized means of investigation of

particular problems (e.g., large-sca'e

command and control systems). Existence

of NMIC will provide a means for semi-

automating configuration control thrcugn

establishment of data bases describing

salient properties of nosts, files, and

program resource requirements,

Tne existence of these data bases

will also be of interest in resolving two

other problems cf concern In command ant

control system^: (I) workload reallocatlon

to piovide for continuing effective pro-

cessing In the presence of outages

104

RELATED ßENEfITS

originating during d stress situation, and

(2) reallocation of required, but not

esi-cntial, workload from sites suffering a

processing overload to less heavily loaded

sites during periods of peak processing.

Thus, the first problem effectively

requires a fail-soft capaoillty In the

face of equipment malfunction or destruc-

tion, while the second reflects the fact

that proper functioning of an Installation

requires processing of both the stress-

Induced workload and other workload com-

ponents during lengthy stress situations.

Network reliability Is a major topic

of concern to users faced with deadlines

and increased manpower costs occurring

oecause of an inability to access network

resources. The numher of distinct

resources In a computer network both make

It highly probable that c se or more

resources will be unavailable during a

given time interval and simultaneously

preclude a straightforward redundancy

approach to rellabilitv (because of bud-

getary limitations). However, the network

and the global sharing of resources which

It affords provide an opportunity to

achlevt reliability through dynamic

migration of jobs and files. The

requirements and costs for such a software

approach to reliability constitute an

Interesting subject for future study.

Sizing individual nosts to handle

peak loads is a problem of continuing

concern. If sufficient resources are

required to handle peak loads while pro-

viding satisfactory resources, slonif-

icant average excess capacity may result;

conversely, if sizing Is performed to

permit good service for the average

»orkload, peak load processing may suffer.

Workload migration to permit effec-

tive peak lead processing could be a

viable and cost-effective solution within

ncmogeneous (subnetworks. In a crude

sense, remote job entry capabilities pro-

vide one form of such mJgratlonal c«pa-

oi titles. The extent to which these

capabilities can oe realized dynamically

Is a significant research topic whose

resolution requires Information concerning

network capabilities, user loads, and

resource requirements« Much of this

Information Is potentially available in

the data base maintained by NMlC.

The diversity of funding sources and

organizations represented on the ARPANET

limit widespread application of a central-

ized approach to sizing and selecting

network resources. However, organizations

possessing large collections of computer

systems, e.g., command and control systems

or logistics systems, are often con-

105

SÜMMAKY

strained by a fixed allocation of funds

for procurement of the entire system.

Thus, dynamic worn load migration promises

significantly Increased system capabil-

ities within fixed budgetary constraints.

SUmAftY

A trIal-and-error approach to network

performance promi»es to be disastrous.

Network management requires consideration

of both tecnnologlcal and organizational

Issues, and the dimensions of a network

demand the development of tools to facil-

itate management assessment of these

Issues. Such tools can pe achieved

through a coordinated approach involving

data gathering, transformation of data

Into Information, information display, and

alternatives assessment. Subsaturation be-

havior of a network permits a hierarchical

approach to performance projection which.

In turn, permits development of appropri-

ate managerial tools. In addition to as-

sisting in network management, these tools

will also be of significant use toother

projects requiring networking capabilities«

REFERENCES

1 Kleinrock, L., "On Measured Behavior of the ARPA Network," Proceedings of the 1974
National Computer Conference, pp. 767-780.

2 ßalzer, R. M., T, E. Cheatham, and S. Crocker, National Software Works Des!gn,
DSC/Information Sciences Institute, JSI/RR-73-16 (In progress).

3 --^t jhe National Software Works, USC/Information Sciences Institute, ISI/RR-73-18
(in progress).

i Kimbleton, S. R., "An Analytic Framework for Computer System Sizing and Tuning,*1

P.oceedi ngs of tne NBS/ACM Computer Per f orniance Evaluation Workshop, San Diego,
Cal I forni a, /.arch 1973. ÄTso appeared as P-51627 The Rand Corporation, Santa
Monica, California, oanuary 1974.

5 Ellis, T. 0., L. Gallenson, J, F. Heafner, and J. T. Melvin, A Plan for
Consoli dation and Automation of Mi 11tary Te1ecommuni cat i ons on Qahu,
USC/Information "ScTences Institute,"TSI/RR-73-12, May 1973.

6 ßoehm, 8. W., T. E, Bell, and 5. Jeffery, eds., "Introductory Comments" In
Proceedl ngs o_f the NBS/ACM Computer Performance Evaluation Workshop, San Diego,
täTTTornla, M'ärch"T57jr^

7 Kleinrock, L., "Analytic and Simulation Methods In Computer Network Design," AFIPS
Conference Proceedings, 1970 Spring Joint Computer Conference, pp. 569-579.

ö Frank, H#, I. T. Frisch, and W. Chou, "Topologlcal Considerations in the Design of
the ARPA Computer Network," AFI r)S Conference Proceedings. 1970 Spring Joint
Computer Con'erence, pp. 581-587.

9 Frank, H., R. £, Kahn, and L. Klelnrock, "Computer Communication Network
Design--£xperlence with Theory and Practice," AFIPS Conference Proceedings, 1972
Spring Joint Computer Conference, pp. 255-270.

10 Kimbleton, S. R., A Fast Approach to Computer System Performance Prediction,
DSC/Information Sciences Institute, ISI/RR-7A-20 (In progres«TI

106

10
RESEARCH RfSOURCtS

PROJECT LEADER:

RESEARCH STAFF:

CONTRIBUTING STAFF:

RESEARCH STAFF SUPPORT:

STUDENT AIDES:

Thomas L. Boynton

Robert E. Hoffman
Jeff Jacobs
John J. VUral

Louls Ga1lenson
Robert H. Parker
Leroy C. Richards ,n

Jerry Pi pes
Deborah E. Williafns

Danny L. Charlesworth
Dale Chase
Ronald L. Currier
Mark Norton
Jimmy T. Koda
Kyle Lemmons
Margaret Mathers

LNTROOUCTION

The 1SI tine-sharing facility is

operated as a research and service center

in support of a broad sut of AiiPA

projects. It currently services ^ou

u^ers, feS percent of whom access the

facilities v;a the ARPANET fror locations

extending from London, Lnglanu ^o Hawaii.

All facilities of the operating system are

available to rill users, whether they are

connected through the ARPANET locally or

rer jtel y.

jhe system consists of two Digital

equipment Corporation PDP-lu CPUs, Bolt

l er.jnek dnd Newman paging box.

paging drum, on-line file storage, and

associated peripherals (sec figure 10.1).

In conjuncticn with the large core anci

drum memory, the BBN TtNEX operating

system provides considerable computing

capacity jnd is capable of supporting a

wicie variety of si n u 1 ta.-eous 'j:ers.

üL;.E)%AL öYSiE/-: UPGKAüjjvG

In a continuing effort to improve

system availability, Cdpacit), and

efficiency, a<ic«ticns have been made in

hardware and software and in support

per sonne I.

Hardware

The hardware acquired in the past

large-capacity memory, high-performance year as part of i..-.. general upgrading

107

GENERAL SYSTFM UPGRADING

: 176K word memory

Mixed ip««dt

208 K word r»--»! ry

I i^ ice .

Ch anr«I
control n

>lih
ron trol

Chonn«!
control

Üisk
control m uz

60 mtg word« 60 m«g words

Kl I/O But

I/O bu»
iw!tck«t

Z3

Poo*r

MLP-900

Druir
ind

control

• m

B8 ,
Po9«r

| CPU I

KA I/O But

Magtape DECtap«

uu Alarm

ISI
ARPANET-10

i i n t«r f a c «

IMP
»witcK

»SI
AHPANET-1 !

inf«rfoc«

ISI
i ARPANET-IOl

intcrfcc«

Phon« line»

SPEECH PROCESSOR
XGP SYSTEM SYSTEM

i 1 r:

PDP-t 1/40

XGP PDP-ll
ln»«ffoe«

XGP

| POP-n/45 | I

1^-41
ip«e i

proc«tlor

ISI Data
ARPANET-I I lin«

interfae« scanner

2400 baud

T«rm inoll

2400 baud

HT.rminal.rj
*** M6) ^

Figure 10.1 ISI research resources facility

108

GENERAL SYSTEM UPGRADING

effort Includes a second POP-10 CPU, an

additional I28K of high-speed (B5Ü-nsec)

memory, six CALCOMP 230 disk drives that

will approximately double the rrestnt

on-line file storage, and several

Interfaces and switches designed and built

at ISI. Figure 10.1 shows the current ISI

POP-10 configuration. Note that the two

CPU's, the KA-10 and the new KI-10, do not

operate In a dual CPU node. Instead, the

main noal of having the two CPU's and the

switches Is to provide a significant

Increase In the availability of the ISI

■primary* machine. Thus If the CPU acting

as the primary machine breaks down or

Is needed for preventive Hardware

maintenance, system software maintenance,

or development, then the other CPU may be

started as the primary machine and service

continued after a brief (15-30 minutes)

Interruption to switch machines. This

ability to switch machines is made

possible by the several components

described below.

A second copy of the ISI ARPANET-10

Interface produced for the KI-10 Is now

operational. This Interface, together

with the first ISI ARPANET-10 Interface

running on the KA-10, Is attached to an

ISl-^eslgned electronic IMP switch that

allows the interfaces to be easily

switched from one distant IMP port to the

other. The purpose of this switch Is to

allow either of the two POP-10's to assume

the Identity of the primary outside user

machine on the ARPANET and to allow rapid,

error-free changeover from one primary

machine to the other.

Electronic PUP-1Ü 1/0 bus switches

have also been designed and developed to

allow the two POP-10 * to share peripheral

equipment (see Figure 10.2). The two

POP-10 buses can be looped through each

switch. A single stub slot Is provided to

CPU
PDP-10 Kl

I/O
bus

CPU
PDP-10 KA

OFF

^

I/O
bus

Switched stub
KA-typc bus

To other
unswitched

devices

^

Switched
devices

To other
unswitched

devices

Figure 10.2 I/O bvs switch

109

GENERAL SYSTEM UPGHADING

allow Ädafsy-chalnlng" of peripheral

devices. The switch accommodates either

KA or KI I/O buses, but the stub slot

accommodates a KA bus only. The switch

also has a center off poslMon to detach

the swltchcH peripheral equlpme-t from

bnth machines for pi^ventlve maintenance

or service. When the switch Is thrown, a

half-second timer resets the peripheral

device and then engages the device onto

the main computer bus to provide

trouble-free switching. Two complete

switches are now operational, one

switching the DECtapes and the other the

magnetic tapes between the KA-10 and

KI-10,

In order to alert operators to system

malfunctions more quickly, one Interface

not previously reported has been

Implemented for the primary machine. A

"watchdog" or "deadman" timer monitors the

CPU, tripping both a visual alarm at overy

terminal and an audible alarm on each

floor of I SI If the CPU goes down. The

alarm has an override feature and a

silence feature that overrides either the

two types of alarms or only the audible

alarm, respectively.

The new CALCOMP disk system also will

contribute to the ability to switch

primary machines quickly by making It

possible to switch the disk controller

from one machine to the other using Its

two-channel swltch feature.

Software

The rfema'-d for ISl's computing

c.iparlty far exceeded supply for most of

the year, and a way was needed to reduce

the load on the system and to restrict

access to designated users at scheduled

times, as specified by ARPA and ISI

managements. In March, I SI Installed a

modified version of the group allocation

scheme developed at Stanford Research

Institute for controlling user access to

the POP-10. Tl e group allocation scheme,

as modified by ISI, divides the total

number of Job slots available on the

system Into two categories^ genera I-access

slots permitting full use of the system

and 1 limited-access slots restricting the

user to certain facilities, principally

messane and text editing activities.

These access slots are further subdivided

Into groups, with each group defined by

the names of group members and by a quota

(which may vary In sl^e throughout the

day) that specifies the number In that

group guaranteed access to the system for

general use. For most groups, the number

110

GENERAL SYSTEM UPGRADING

of group members Is much greater than the

quota» and a user may therefore not be

able to log In on~quota. If the system as

a whole Is stf 11 under quota (because some

other group Is not at quota), then

the vser vl11 be permitted to log In

off-quota. If the slot taken up by an

off-quota user Is later needed to serve a

new on-quota user, tnen the off-quota user

Is given a flve-mlr.ute warning and logged

off.

operator when It exceeded a tolerable

level. Selected Individuals were then

asked to temporarily stop their computing.

The program Is now being used to monitor

the working of group allocation and to

provMe statistics on system usage. In

or^er to understand load problers, S'vera'

analysis programs were developed that

display the system use data for

mananement.

Management designates the group

members and the quotas :or each group

throughout the da/. By setting the

system's totjl available quota to a

sufficiently low level, management can

reduce the load on the system so that

those who can log on will fk
?nd the system

responsive and effective. Although the

qroup allocation system docs not directly

allocate the scarce central processing

rapacity, the ISI syste»., supports enough

users that the'r requests usually make an

acceptable average central processor

rjemand. In all, the Initial experience

with group allocation has been good.

Before group allocation was In-

stalled, a program was developed to

monitor the system load and to warn the

Support Personnel

ISI has hired and trained stu-

dent operators to provide twenty-four-

hour machine service. The primary

responsibility of the operator Is to

assist the system staff In maintaining the

operating system and assuring the

continuous functioning of the overall

system. The on-duty operator Is

nrlncipally engaged In running system

rrfll ntenance programs and monitoring

^acH? >e-room equipment. The latter

function Includes detecting failure* on

the computer or Its support equipment,

taking corrective action, and notifying

appropriate system personnel In the event

of a nonrecoverable fallure.

Ill

LOCAL PROJECT SUPPORT

LOCAL PROJECT SUPPORT

The TENEX facility has been utHIzed

extensively In support of local projects.

The staff makes use of all of the

available standard subsystems (e. g.f

editors, compilers, assemblers, and

utilities). Additionally, staff members

have written subsystems and utilities In

support of their own projects (e. g., a

program for copying POP-U programs to the

PDP-11's and TENEX accounting package

extensions). The facility has supported

less frequently used subsystems at the

special rauest of users (e. g., POP-n

cross assemblers and the DECUS Scientific

Subroutln. Package).

ISI has also taken delivery of three

DEC PDP-n's. One of these, an 11/45, is

described In Section 7. The other two are

il/AO's Intended to support the XGP's (see

Section ß). One W/Uü is being used until

new IMP ports-are provided in two modes:

during the day the FüP-11 serves as many

as 16 local terminal users as a local

terminal support processor to the ARPANET,

and at night It supports the XGP.

An ISl-designed interface, the iSI

ARPANET-II Interface, provides a local

ho'.t connection to an ARPANET IMP for any

model PDP-II minicomputer. The Interface

operates In full-duplex mode to the IMP,

employing four-way handshaking of serial

data. A direct memory access capability

allows the Interface to operate from

PDP-11 memory directly for data transfers

without the Intervention o* the PDP-11

CPU. The dialogue with PDP-Jl memory Is

handled on a starting address and byte

count basis, where each half of the duplex

Interface operates Into or out of a unique

buffer area In core.

Hardware features of the interface

Include a capability for byte swapping on

a per-word basis, four diagnostic modes

(LOCK, LOOP. TEST INC, and LOCAL),

extended memory capability, complete

control panel, separate power supply, odd

output starting address and odd byte count

capability, output buffer chaining, a

factor-of-four size reduction over other

existing des inns, modularity (each half of

the interface Is one unique card), low

power consumption (27 watts), and a total

front panel space (Including control

panel) of only 1U-1/2 Inches. Two ISI

ARPANET-11 interfaces are now operational,

one supported by the PÜP-11/4S running ELF

(po.rt of the speech processing effort) and

the other supported on a PDP-11/40 running

Elf with up to sixteen ARPANET users. ELF

Is a multiuser PDP-H operating system

112

developed by Speech Communfcations

Research Laboratory, Santa Barbara, spec-

if Fca 11 y designed to allov POP-M's to

be attached to the AKHANfT.

f^LP-gOO PROCESSOR

Ml.P-90^ PROCE55CR

MLP-900 have been developed and verified.

These modifications allow basic pro-

cessor-to-processor coiwniinlcatlon through

both the I/O bus and memory. This Is the

first step In a multlstep plan for fully

Integrating the MLP Into the TENEX
Monitor modifications to support the

operating system (see Section 3)
initial Installation and checkout of the

113

//

PROJECT LEADER:

RESEARCH STAFF:

PROGRAMMED AUTOrtAlIOW

Robert H« Ander^.on

Ernest M. Hinds
Gopal K. KadekodI
Nake M. Kamrany
Bennet P. Uentz
Elliott A. Ponchfck

Michael Boretsky
Alexander F, Brewer
Vernon Edwards
Jack Rosenberg

RESEARCH STAFF SUPPORT: Sandra F. UM taker

CONSULTANTS:

INTRODUCTION

The project goals frow July 1973 to

Oecember 1973 have been to 1) evaluate the

technological feasibility of signif-

icant advancements In computer-based

manufacturing systems for discrete product

^nufacture; 2) evaluate the economic

Impact on the OoO and the U. S. economy

resulting from the Implementation of those

advancements; and 3) define the specific

development program and resources required

to achieve those advancements. The

evaluations and recommendations of the

project's staff were provided to ARPA In a

final report on the study phase of

the project [1], consisting of a major

economic analysis of the costs, laborv and

Industry-structure factors characterizing

OoO procurement. In addition, the report

presented several detailed case analyses

of particular DoO-related manufacturing

operations In order to facilitate

the understanding of the manufacturing

enterprise as a system.

The following selection describing

the project's achievements and expected

Impact Is taken from the Preface to that

report.

In October 1971, a research effort was
begun at the request of the Advanced Re-
search Projects Agency of the Department of
Defense to investigate the feasibility of sig-
nificant production advancements using
computer-based manufacturing technology
and to evaluate the impact such advance-
ments might have on DOD procurement of
manufactured goods

This report presents specific recommen-
dations for a major high-impact ARPA-
sponsored research and development pro-
gram in advanced computer-based manu-
facturing technology, including the objec-
tives, required level of effort, milestones,
and duration of such a program. The eco-
nomic analysis in this report also provides a
major source of information on many key
characteristics of DOO-reiated manufactur-
ing industries. The data obtained In the
course of our study will be of great impor-
tance to other governmental agencies and to
research contractors in formulating and
evaluating complementary research and de-
velopment programs in computer-based
manufacturing.

Preceding page blank
115

PROJECT STATUS

PROJECT STATUS

The Project vas term?nated at the

close of the study phase by mutual

aqreeinent of ARPA-IPTO and I Si. At the

time It was concluded thst ft would not be

possible to adequately staff a combined

research and development effort to explore

fully the conclusions of the final report.

REFERENCE

Anderson, R. H.t and N. M. Kamrany, Advanced Computer-Based Nanufacturj ng Systems
for Defense Needs, USC/Information Sciences Institute, ISI/RR-73-10, September
T?73.

116

.

COLLOQUIA

May 197; to M/.y 1974

MAY

Bob 3a\zcr, ISl
Report on Pajaro Oones Proble« Solving
Conference
ia «ay 1973.

Oar Cohen, Harvard University
Squeezing high bandvldth for graphics from
a network

2k Hay 1973.

JUNE

Ellis Cohen, iSI
Object schematology*
IS June 1973.

pride and protection

Joe Olive, Bell Telephone Laboratory
Speech work
22 June 1973.

Bill Wulf, Carnegle-Hellon University
Some tentative thoughts on another
approach to high-speed computation

22 June 1973.

Larry Ragland, ISI
A verified program verifier
28 June 1973.

Joir

Jim King, JfaM
Effigy» A symbolic executor
3 July 1973.

Koger Schänk, Stanford University
The fourteen primitive actions and their
Inferences

S July 1973.

BMi Wulf, Carnegl*-Hel Ion University
Sojre tentative thoughts on another
approach to structured programming

5 July 1973.

feter Deutsch, Xerox PARC
An Interactive program verifier
6 July 1973.

Nell Miller, Stanford University
Artificial Intelligence Laboratory
Speech enhancement
10 July 1973.

Bill Wuif, Carnegie-Mel ion University
Informal presentacion on HYORA and Its
protection

12 July 1973.

BI II Mark, MIT
Artificial Intelligence Laboratory
MAPL language
16 July 1973.

Ellis Cohen, 1SJ
Formal semantic approach to protection
27 July 1973.

John Barr, UCLA
Interactive man-machine communications
3» July 1973.

Don Waterman, Carnegie-Mellon University
Summary of the Al-Psychology workshops at
Carnegie

31 July 1973.

AUGUST

Ben Leintz, U5C
A simulation program for the automation
project

3 August 1973.

BIII Mark, Mil
Artificial Intelligence Leooratory
Model debugging In automatic prograwiml ng
7 August 1973.

Dan Cohen, Harvard University
Network graphics and flight simulation
7 August 1973.

Terry Winograd, MIT
Artificial Intelligence Laboratory
Breaking the complexity barrier (again)
9 August 1973.

Ron Tugender, ISI
Interface between microprogramming and
language design

10 August 1973.

JonaId Good, IS]
Axiomatic models of programming languages
10 August 1973.

Andee Rubin, ISI
A quick look at time
14 August 1973.

117

COU.OQUIA

8eau Sh«I1. ISI
Experiments «1th a mixed declarative,
assertive and procedural language

16 August »973.

SEPTEMBER

Jay Moor«, University of Edinburgh
Proving theorems about Lisp functions
3 September 1^73.

Peter Lauer, University of Newcastle upon
Tync

Consistent and comp lenientary formal
definitions of programming languages

14 September 1973.

Peter Christy, University of California at
Berkeley

Application of information technology to
health care delivery

24 September 1973.

OCTOBER

Randy Cole, University of Utah
The removal of unknown image blurs by
homomorphic filtering

4 October 1973.

Michael J. flynn, Pdlyn Associates, Inc.
Towards more efficient organizations
9 October 1973.

ö. R. Musser, University of Texas
Mlgeurdic as[>?cts of program verification
10 October 197 3.

rt. I«, bledsoe. University of Texas
Interactive theorem proving
10 October 1973.

U. C. Luckham, Stanford University
Program and theorem proving activities at
Stanford

10 October 1973.

Lou Ga1lenson, ISI
Video display systems for ISI
10 October 1973.

csob Bai zer , ISI
software production facility project!
status and opportunities

Id October 1973.

üan Cohen, ISI
Computer-aided instruction
25 October 1973.

jean-Marie Cadlou, IRIA, France
Mechanizable procfs about parallel

processes
26 October 1973.

NOVEMBER

Chlno Srlnlvason, Rutgers University
The architecture of coherent Information
systems* a general problem-solving system

16 November 1973.

01 ck Mandel I, Compata inc.
Computer performance estimation
20 November 1973.

DECEMBER

Jim Moore, CarnegJe-MeI Ion University
Knowledge representation In the Merlin

System
17 December 1973.

Nake Kamrany, ISI
MIT's Sub-Sahara Projecti a system

dynamics approach
20 December 1973.

Martin Kay and Bill Mann, ISI
Human ccmmunicat ions with humans and

macni nes
26 December 1973.

JANUARY

Warren ieltelman, Xerox Corporation
New capaoilities in Lisp
9 January 1974.

£, M. Greenawalt, Uruverslty of Texas
Automatic program partitioning
14 January 197^«.

Nadlne Malcolm, ISI
Data bases
29 January 1974.

FEBRUARY

John S. brown, bolt Beranek and Newman, Inc.
SOPHIE* An intelligent CAI system for
electronic troubleshooting
19 February 1974.

MARCH

Larry Yelowitz, New Mexico Institute of
Mining and Technology
Joint program/proof development
7 March 1974.

David Rumelhart. University of California at
San Ciego

SOL* Semantic Operating Language
8 March 1974.

George Hei dorn, IBM
English as a very high level language for
simulation programming

27 March 1974.

118

COLLOQUIA

APRIL

Tom Martin, Ann«nberg School of
Communications

Comparative analysis of Interactive
retrieval systems« questions and answers

9 AprII 1974.

Steve KImbleton, ISI
Structures and solution methodologies for

network performance
2K Apr I I 1974.

119

PUBLICATIONS

1 Anderson, Robert H.t Programraab Ie 13
Automat I on» The Future of Computers
In Manufacturing,]SI/Rft-73-2, March
1973? also appeared In Datamation,
Vol. Id, No. 12. December 1972,
pp. ^6-S2. U

2 , ano Nake M, Kamrany, Advanced
Computer-based ManufacturIng Systems
for Defense Needs, 1SI/RR-/3-10,
September 973c IS

3 Balzer, Robert M., Automat'c
Programming, ISI/RR-73-1 (draft only).

<♦ •CASAPJ A Test bed for Program
Flexlblllty, ISI/ftfi-73-5 (in ")6
progress).

b , Anotner Lc' at Program)7
Jrganlration, 1-.7RR-73-6 (in
progress).

6 , Hutran Use of Wor 1 d Knowledge.
ISI/RR-73-7. March 1974.

18
7 , A Global View of Automatic

Programming, TTfZRR-73-TTTn
progress).

ß » AP/1 - A Language for Automat!c
Programming, TS1/RR-73- 13 ITn
progress J,

9 • Language-Independent Programmer"s
Interface, ISI/RR-73-I 5," Mar^h 1974;
AflPS Conference Proceedings, Vol. 43,
AfIPS Press, Montvale, N. J., 1974.

10 , Norton R. Greenfeld,
Martin J. Kay, William C. Mann, 20
Malter R. Ryder, Oav^d WliczynsKl, and
Albert L. Zobrlst, Oomaln-Independent
Automatic Programming. ISI/RR-73-14,
March I^74; also to appear in 21
Proceedlngs of the Internatlonal
Federation of Infor-nat I on Froccssi ng
Congress, 1974. 22

11 »Thomas E. Cheatham,
Stephen 0. Crocker, and 23
Stephen War shall. National Software
Works Design. iSI/RR-73-16 TTn
progress).

12 , Thomas E. Cheatham,
Stephen 0. Crocker, end
Stephen Warshall, The National
Software Works, Isr7RR-73-l8 (in
progress).

19

Bisbey, Richard L., and
Gerald J. Popek, Encapsulatlon^ An
Approacn to Operat i ng System Security,
TSl7RR-7i~f7, October 1973.

Carlstedt, Jim, Toward Explicit
Pol Icy « A Structured Approach to
DecI si on and Evaluation of Protection
Systems (In progress).

Ellis, Thomas 0., Louis Gallenson,
Jonn f, Heafner, and John T. Melvin, A
P1 an for Consoli dat ion and Automat ion
of Mi Ii tary Telecommunicat ions on
Qahu, ISI7RR-73-12, June 1973.

uoidberg, Joel, and Leroy Richardson,
PRJM User ^s Gulde (In progress).

Kamrany, Nake M., A Pre)Im>nary
Aralysi s of tne Economic Impact of
Programmable Automat ion Ufjon PI screte
Manufacturing Products, ISI/RR-73-4,
October 1973.

London. Palph L., Shigeru Igarashi, and
David C. Luckham, Automatlc Program
Veri fi cat ion I: A LogicaI Bas i s and
Its Implementation, ISI/RR-73-11, May
1973; also appeared In Arti fleal
Inte111gence Memo 2000,'Stanford
University. May 1973.

Uestreicher. Donald R., A
Mlcroprogrammi ng Language for the
MLP-90Q. :SI/RR-73-8, June 1973; also
appeared in the Proceedngs of the ACM
Sigplan Slgmicro Interface Meeting,
New York, May 30-June 1, 1973.

 ♦ Qgneral Purpose Mlcroprogrammi ng
Language Reference Manual fTn
progress).

---. and Joel Goldberg, MLP-900
Reference Manual (In progress^,

Richardson, Leroy, PR IM Overview,
ISI/RR-74-19. February 1974.

Annual Technical Report. May 1972 - May
HOT rnTSirTs-ufm. —

120

ÜÜC1ÜRAL THESES IN PROGRESS AI ISI

AUIüMIIC PROGRAMMING

Richard Haie, ÜptJmlzJ ng or Search!n^ In PseuOo-augmented-transltlon-network
Models,

RoDert w. Lingard, A Representat i o- for Semant i c InformatIon wlthin an
Inference-fna^j ng Computer Program.

Nad Ine Malcolm, Methods for Improved Access 11 n.e In a Re I at ional Data base.

üavid wl IczynsKl# Interactive Qomaln Acgulsi11 on for Automat ic Programming.

PRIM/MLP-90Ü

John M. Malcolm, E ff I cl ent Language-speci fled Instruct I on Sets for a
Mi croprocessor.

Martin Ü. Yonke, A SemantIc Approach ror On-11ne Program Development.

PRÜGRAM VERIf I CAT ION

i'onald S. Lynn, Automat I c Pronram Ver i f I cat i on i Compi I er Proofs.

121

